

LITERATURE

In addition to the product line handbooks listed below, the INTEL PRODUCT GUIDE (no charge,
Order No. 210846-003) provides an overview of Intel's complete product lines and customer services.

Consult the INTEL LITERATURE GUIDE (Order No. 210620) for a listing of Intel literature. TO
ORDER literature in the U.S., write or cal! the INTEL LITERATURE DEPARTMENT, 3065 Bowers
Avenue, Santa Clara, CA 95051, (800) 538-1876, or (800) 672-1833 (California only). TO ORDER
literature from international locations, contact the nearest Intel sales office or distnbutor (see listings ill
the back of most any Intel literature).

Use the order blank on the facing page or call our TOLL FREE number listed above to order literature.
Remember to add your local sales tax.

1985 HANDBOOKS

Product line handbooks contain data sheets, application notes, article repnnts and other design
information.

QUALITY/RELIABILITY HANDBOOK (Order No. 210997-001)
Contains technical details of both quality and reliability programs and principles.

CHMOS HANDBOOK (Order No. 290005-001)
Contains data sheets only on all microprocessor, peripheral, microcontroller and
memory CHMOS components.

MEMORY COMPONENTS HANDBOOK (Order No. 210830-004)

TELECOMMUNICATION PRODUCTS HANDBOOK (Order No. 230730-003)

MICRO CONTROLLER HANDBOOK (Order No. 210918-003)

MICROSYSTEM COMPONENTS HANDBOOK (Order No. 230843-002)
Microprocessors and peripherals-2 Volume Set

DEVEWPMENT SYSTEMS HANDBOOK (Order No. 210940-003)

OEM SYSTEMS HANDBOOK (Order No. 210941-003)

SOFTWARE HANDBOOK (Order No. 230786-002)

MILITARY HANDBOOK (Order No. 210461-003)
Not available until June.

COMPLETE SET OF HANDBOOKS (Order No. 231003-002)
Get a 25% discount off the retail price of $160.

*V.S. Price Only

*U.S. PRICE
$15.00

$12.00

$18.00

$12.00

$18.00

$25.00

$15.00

$18.00

$12.00

$15.00

$120.00

u.s. LITERATURE ORDER FORM
NAME: _______________ .--__ TITLE: ______ _

COMPANY:

ADDRESS: ________________________ _

CITY: ___________ ~---- STATE: _____ ZIP: ____ _

COUNTRY: __ _

PHONE NO.: (, __ "'---___________________ ___

ORDER NO.

!=!=:::=::~~I-I~ :=:::::
~:!=!:=!=!~I-~I ~
~:!=!:=!=!~I-~I ~
~:!=!:=!=!~I-:=I :=:::::
~:!=!:=!=!~I-~I ~
~--,-....&... -.....I-,-I -'--..&......I

POSTAGE AND HANDLING:
Add appropriate postage
and handling to subtotal
10% U.S.
20% Canada

Allow 4-6 weeks for delivery

TITLE QTY. PRICE TOTAL

x

x

x

x

x

x

Subtotal ______ __

Your Local Sales Tax ______ _

Total ____ _

Pay by Visa, MasterCard, Check or Money Order, payable to Intel Literatu reo Pu rchase Orders
have a· $50.00 minimum.

o Visa Account No. ____________ _ Expiration _____ _
o MasterCard Date

Signature: __________________________ _

Mail To: Intel Literature Distribution
Mail Stop SC6-714
3065 Bowers Avenue
Santa Clara, CA 95061.

Customers'outside the U.S. and Canada should con­
tactthe local Intel Sales Office or Distributor listed in
the back of this book.

Eor information on quantity discounts, call the 800 number below:
TOLL-FREE NUMBER: (800) 548-4725
Prices good until 12/31/85.
Source HB

Mail To: Intel Literature Distribution
Mail Stop SC6-714
3065 Bowers Avenue
Santa Clara, CA 95051.

inter

MICROSYSTEM
COMPONENTS HANDBOOK

1985

About Our Cover:
The design on our front cover is an abstract portrayal of microprocessors and associated

peripherals as the building blocks which provide total systems development solutions. Intel
superior technology and reliability provide easier solutions to specific development problems

thereby cutting "time-to-market" and creating a greater market share.

(

Intel Corporation makes no warranty for the use of Its products and assumes no responsibility for any errors which may appear il)
this document nor does It make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only tie used to identify Intel Products:

BITBUS, COMMputer, CREDIT, Data Pipeline, GENIUS, i,~, ICE, ICS, iDBp, lOIS, 121CE,
ILBX, 1m, iMDDX, IMMX, Inslte, Intel, Intel, InteIBOS, Intelevision, Inlellgent Identifier,
intellgent Programming, Intellec, Intel/Ink, iOSp, IPDS, iRMX, ISBC, iSBX, iSDM, iSXM,
KEPROM, Library Manager, MCS, Megachassis, MICROMAINFRAME, MULTI BUS,
MULTICHANNEL, MULTI MODULE, OpeNET, Plug-A-Bubble, PROMPT, Promware,
QUEST, QueX, Ripplemode, RMX/80, RUPI, Seamless, SLD, SYSTEM 2000, and UPI,
and the combination of ICE, ICS, iRMX, ISBC, iSBX, MCS, or UPI and a numencal suffix

MDS IS an ordering code only and is not used as a product name or trademark. MDS') is a registered trademark of Mohawk Data
Sciences Corporation,

* MULTIBUS is a patented Intel bus,

Additional copies of this manual or other Intel literature may be obtained from:

© INTEL CORPORATION 1984

Intel Corporation
Literature Department
3065 Bowers Avenue
Santa Clara, CA 95051

CHAPTER 1
OVERVIEW

Introduction

CHAPTER 2
MCS®-80/85 MICROPROCESSORS

Table of Contents

1-1

8080Al8080A-1/8080A-2, B-Bit N-Channel Microprocessor.. 2-1
8085AH/8085AH-2/8085AH-1 B-Bit HMOS Microprocessors 2-10
8155H/8156H/8155H-2/8156H-2 2048-Bit Static HMOS RAM with I/O Ports and Timer 2-26
8185/8185-21024 x 8-Bit Static RAM for MC5-85 .. 2-38
8205 High Speed 1 out of 8 Binary Decoder .. 2-43
8224 Clock Generator and Driver for 8080A CPU .. 2-48
8228/8238 System Controller and Bus Driver for 8080A CPU 2-53
8237A18237A-4/8237A-5 High Performance Programmable DMA Controller................ 2-57
8257/8257-5 Programmable DMA Controller.. 2-72
8259A18259A-2/8259A-8 Programmable Interrupt Controller.... 2-89
8755A18755A-2 16, 384-Bit EPROM with I/O .. 2-107
AP-59 USing the 8259A Programmable Interrupt Controller ... : 2-118

CHAPTER 3
IAPX 86, 88, 186, 188 MICROPROCESSORS

iAPX 86/10 16-Bit HMOS Microprocessor... 3-1
iAPX 186 High Integration 16-Bit Microprocessor.... 3-25
iAPX 88110 B-Bit HMOS Microprocessor .. 3-79
iAPX 188 High Integration B-Bit Microprocessor ... 3-106
80898& 16-Bit HMOS I/O Processor .. 3-161
8087/8087-218087-1 Numeric Data Coprocessor ... 3-175
80130/80130-2 iAPX 86/30,88/30.186/30.188/30 iRMX'· 86 Operating System Processors 3-198
80150/80150-2 iAPX 86/50.88/50, 186/50, 188/50 CP/M'-86 Operating System Processors 3-220
8282/8283 Octal Latch ... 3-232
8284A/8284A-1 Clock Generator and Driver for iAPX 86, 88 Processors 3-237
828618287 Octal Bus Transceiver .. 3-245
8288 Bus Controller for iAPX 86. 88 Processors ... 3-250
82188 Integrated Bus Controller for iAPX 86, 88, 186, 188 Processors ... _ > ••••••••• 3-257
8289/8289-1 Bus Arbiter .. 3-274
AP-67 8086 System Design ... 3-285
AP-123 Graphic CRT Design Using the Intel 8089 3-348
AP-113 Getting Started with the Numeric Data Processor 3-420
AP-143 Using the iAPX 86/20 Numeric Data Processor in a Small Business Gomputer 3-481
AP-144 Three Dimensional Graphics Application of the iAPX 86/20
Numeric Data Processor•.. 3-504
AP-186 Introduction to the 80186 : 3-543

CHAPTER 4
IAPX 286 MICROPROCESSORS

iAPX 286110 High Performance Microprocessor with Memory Management and Protection .. 4-1
80287 8Q-Bit HMOS Numeric Processor Extension 4-54
82258 Advanced DMA Controller Architectural Overview 4-79
82284 Clock Generator and Ready Interface for iAPX 286 Processors 4-92
82288 Bus Controller for iAPX 286 Processors .. 4-100
82289 Bus Arbiter for iAPX 286 Processor Family ~ 4-118

'Cp/M is a Trademark of Digital Research. Inc.

iii

CHAPTER 5
MEMORY CONTROLLERS

DATA SHEETS
8202A Dynamic RAM Controller... 5-1
8203 64K Dynamic RAM Controller ,....................... 5-15
8206/8206-2 Error Detection and Correction Unit , 5-30
8207 Dual-Port Dynamic RAM Controller .. 5-51
8208 Dynamic RAM Controller '. 5-98

USERS MANUAL
Introduction ... 5-117
Programming the 8207 .. 5-118
RAM Interface ... 5-123
Microprocessor Interfaces .. 5-132
8207 with ECC (8206) .. 5-140
Appendix .. 5-143

APPLICATION NOTES
AP-97A Interfacing Dynamic RAM to iAPX 86/88 Using the 8202A and 8203 5-147
AP-141 8203/8206/2164A Memory Design .. 5-183
AP-167 Interfacing the 8207 Dynamic RAM Controller to the iAPX 186 5-189
AP-168 Interfacing the 8207 Advanced Dynamic RAM Controller to the iAPX 286 ... 5-194

ARTICLE REPRINTS
AR-364 FAE News 1/84 "8208 with 186" .. 5-201
AR-231 Dynamic RAM Controller Orchestrates Memory Systems 5-212

-VOLUME2-

SUPPORT PERIPHERALS
DATA SHEETS

8231A Arithmetic Processing Unit ... 5-219
8253/8253-5 Programmable Interval Timer ... 5-229
8254 Programmable Interval Timer .. 5-240
82C54 CHMOS Programmable Interval Timer 5-256
8255A!8255A-5 Programmable Peripheral Interface 5-273
82C55A CHMOS Programmable Peripheral Interface 5-294
8256AH Multifunction Microprocessor Support Controller 5-317
8279/8279-5 Programmable Keyboard/Display Interface 5-340

APPLICATION NOTES
AP-153 Designing with the 8256 .. 5-352
AP-183 8256AH Application Note ... 5-427

FLOPPY DISK CONTROLLERS .
DATA SHEETS

8272A Single/Double Density Floppy Disk Controller 5-444
APPLICATION NOTES

AP-116 An Intelligent Data Base System Using the 8272 5-463
AP-121 Software Design and Implementation of Floppy Disk Systems 5-504

HARD DISK CONTROLLERS
DATA SHEETS

82062 Winchester Disk Controller ... 5-574
82064 Winchester Disk Controller with On-Chip Error Detection and Correction 5-601

UPI USERS MANUAL
Introduction ,., , 5-635
Functional Description ' .. 5-639
Instruction Set .. 5-656
Single-Step, Programming, and Power-Down Modes 5-683
System Operation•.............................. 5-688
Applications .. 5-694
AP-161 Complex Peripheral Control with the UPI-42 5-750
AP-90 An 8741A/8041A Digital Cassette Controller 5-806

iv

DATA SHEETS
8041A/8641 A/8741 A Universal Peripheral Interface 8-Bit Microcomputer 5-814
8042/8742 Universal Peripheral Interface 8-Bit Microcomputer. .. 5-826
8243 MCS-48 Input/Output Expander ... 5-840

APPLICATION NOTES
AP-182 Multimode Winchester Controller Using the 82062 5-846

SYSTEM SUPPORT
ICE-42 8042 In-Circuit Emulator .. 5-910
MCS-48 Diskette-Based Software Support Package 5-918
iUP-200/iUP-201 Universal PROM Programmers 5-920

CHAPTER 6
DATA COMMUNICATIONS

INTRODUCTION
Intel Data Communications Family Overview....... 6-1

GLOBAL COMMUNICATIONS
DATA SHEETS

8251 A Programmable Communication Interface.. 6-3
8273/8273-4 Programmable HDLC/SDLC Protocol Controller 6-20
8274 Multi-Protocol Serial Controller (MPSC) 6-48
82530/82530-6 Serial Communications Controller (SCC) 6-85

APPLICATION NOTES
AP-16 Using the 8251 Universal Synchronous/Asynchronous
ReceiveriTransmitter ... 6-113
AP-36 Using the 8273 SDLC/HDLC Protocol Controller 6-144
AP-134 Asynchronous Communications with the 8274 Multiple
Protocol Serial Controller ... 6-191
AP-145 Synchronous Communications with the 8274 Multiple
Protocol Serial Controller ... 6-228
AP-222 Asynchronous SDLC Communications with 82530 6-268

LOCAL AREA NETWORKS
DATA SHEETS

82501 Ethernet Serial Interface .. 6-288
82C502 Ethernet Tranceiver Chip Data Sheet 6-299
82586 Local Area Network Coprocessor ... 6-302
82588 Personal Workstation Lan Control ... 6-336

ARTICLE REPRINTS
AR-345 Build a VLSI-Based Workstation for the Ethernet
Environment•... 6-362
AR-346 VLSI Solutions for Tiered Office Networks•................... 6-370
AR-342 Chips Support Two Local Area Networks 6-380

OTHER DATA COMMUNICATIONS
DATA SHEETS

, 8291A GPIB Talker/Listener ... 6-386
8292 GPIB Controller ... 6-415
8294A Data Encryption Unit ... 6-430

APPLICATION NOTES
AP-66 Using the 8292 GPIB Controller ... 6-442
AP-166 Using the 8291A GPIB Talker/Listener 6-496

ARTICLE REPRINTS
AR-208 SLI Transceiver Chips Complete GPIB Interface 6-528
AR-113 LSI Chips Ease Standard 488 Bus Interfacing 6-536

TUTORIAL
Data Encryption Tutorial .. 6-546

v

CHAPTER 7
ALPHANUMERIC TERMINAL CONTROLLERS

DATA SHEETS
8275H Programmable CRT Controller•............. _. 7-1
8276H Small System CRT Controller. 7-25

APPLICATION NOTES
AP-62 A Low Cost CRT Terminal Using the 8275 . \. 7-42

ARTICLE REPRINTS
AR-178 A Low Cost CRT Terminal Does More with Less 7-84

GRAPHICS DISPLAY PRODUCTS
DATA SHEETS

82720 Graphics Display Controller .. 7-91
ARTICLE REPRINTS

AR-255 Dedicated VLSI Chip Lightens Graphic Display
Design Load•.•........................ ; 7-128
AR-298 Graphics Chip Makes Low Cost High Resolution, Color
Displays Possible .. 7-136

TEXT PROCESSING PRODUCTS
DATA SHEETS

82730 Text Coprocessor .. 7-143
82731 Video Interface Controller .. 7-187

ARTICLE REPRINTS
AR-305 Text Coprocessor Brings Quality to CRT Displays 7-20p
AR-297 VLSI Coprocessor Delivers High Quality Displays 7-214
AR-296 Mighty Chips .•........................•................................ 7-217

vi

Numeric Index

80130/81030-2 iAPX 86/30,88/30,186/30,188/30 iRMX'· 86 Operating System Processors 3-198

80150/80150-2 iAPX 86/50, 88/50, 186/50, 188/50 C/PM*-86 Operating System Processors 3-220

80186 (iAPX 186) High Integration 16-Bit Microprocessor 3-25,3-543

80188 (iAPX 188) High Integration 8-Bit Microprocessor 3-106

80286 (iAPX 286/10) High Performance Microprocessor with Memory Management

and Protection .. 4-1

80287 80-Bit HMOS Numeric Processor Extension ... 4-54

8041A/8641A/8741A Universal Peripheral Interface 8-Bit Microcomputer 5-814,5-635,5-639

8042/8742 Universal Peripheral Interface 8-Bit Microcomputer 5-826,5-635,5-639,5-910

8080A/8080A-1/8080A-2, 8-Bit N-Channel Microprocessor 2-1

8085AH/8085AH-2/8085AH-1 8-Bit HMOS Microprocessors 2-10

8086 (iAPX 86/10) 16-Bit HMOS Microprocessor .. 3-1,3-285

8087/8087-2/8087-1 Numeric Data Coprocessor 3-175,3-420,3-481,3-504,6-362

8088 (iAPX 88/10) 8-Bit HMOS Microprocessor .. 3-79

80898 & 16-Bit HMOS I/O Processor : 3-161, 3-348

8155H/8156H/8155H-2/8156H-2 2048-Bit Static HMOS RAM with I/O Ports and Timer 2-26

8185/8185-2 1024 x 8-Bit Static RAM for MCS®-85 .. 2-38

8202A Dynamic RAM Controller .. 5-1, 5-147

8203 64K Dynamic RAM Controller ... 5-15,5-147,5-183

8205 High Speed 1 out of 8 Binary Decoder .. 2-43

8206/8206-2 Error Detection and Correction Unit 5-30,5-183,5-212

82062 Winchester Disk Controller .. 5-574,5-846

82064 Winchester Disk Controller with On-Chip Error Detection and Correction 5-601

8207 Dual-Port Dynamic RAM Controller 5-51, 5-118, 5-123, 5-132, 5-140

5-143,5-183,5-189,5-194,5-212

8208 Dynamic RAM Controller .. 5-98, 5-201
82188 Integrated Bus Controller for iAPX 86, 88, 186, 188 Processors 3-257

8224 Clock Generator And Driver for 8080A CPU .. 2-48

82258 Advanced DMA Controller Architectural Overview 4-79

8228/8238 System Controller and Bus Driver for 8080A CPU 2-53

82284 Clock Generator and Ready Interface for iAPX 286 Processors 4-92

82288 Bus Controller for iAPX 286 Processors .. 4-100

82289 Bus Arbiter for iAPX 286 Processor Family ... 4-118

8231 A Arithmetic Processing Unit .. 5-219

8237 A/8237 A-4/8237 A-5 High Performance Programmable DMA Controller 2-57

8243 MCS-48 Input/Output Expander .. 5-635,5-840

82501 Ethernet Serial Interface .. 6-288, 6-362, 6-38'0

82C502 Ethernet Tranceiver Chip ... 6-299

8251 A Programmable Communication Interface•.............. 6-3,6-113

8253/8253-5 Programmable Interval Timer '" '" 5-229

82530/82530-6 Serial Communications Controller (SCC) 6-85, 6-268

vii

8254 Programmable Interval Timer ... 5-240
82C54 CHMOS Programmable Interval Timer '," 5-256
8255A/8255A-5 Programmable Peripheral Interface " 5-273, 7-84
82C55 CHMOS Programmable Peripheral Interface ... 5-294
8256AH Multifunction Microprocessor Support Controller " 5-317, 5-352, 5-427

8257/8257-5 Programmable DMA Controller '" , 2-72 j

82586 Local Area Network Coprocessor. .. 6-302, 6-362, 6-370, 6-380
82588 Personal Workstation Lan Control .. 6-336
8259A/8259A-2/8259A-8 Programmable Interrupt Controller 2-89, 2-118
8272A Single/Double Density Floppy Disk Controller 5-444,5-463,5-504,7-128
82720 Graphics Display Controller 7-91,7-128,7-136,7-206,7-214,7-217
8273/8273-4 Programmable HDLC/SDLC Protocol Controller 6-20,6-144,6-380
82730 Text Coprocessor 6-262,7-136,7-143,7-206, 7-214, 7-217
82731 Video Interface Controller .. .7-187,7-206
8274 Multi-Protocol Serial Controller (MPSC) ,6-48,6-191,6-228,6-380
8275H Programm~ble CRT Controller ... 7-1, 7-42
8276H Small System CRT Controller ... 7-25, 7-84
8279/8279-5 Programmable Keyboard/Display Interface 5-340
8282/8283 Octal Latch ... 3-232
8284A/8284A-1 Clock Generator and Driver for iAPX 86, 88 Processors 3-327

, 8286/8287 Octal Bus Transceiver ... 3-245
8288 Bus Controller for iAPX 86, 88 Processors , 3-250,6-362
8289/8989-1 Bus Arbiter .. , 3-274
8291A GPIB Talker/Listener .. 6-386,6-496,6-528,6-536
8292 GPIB Controller .. 6-415,6-442,6-528,6-536
8294A Data Encryption Unit .. 6-430
8755A/8755A-2 16,384-Bit EPROM with I/O ... 2-107

/

viii

Overview 1

, I
I

inter
INTRODUCTION

Intel microprocessors and peripherals provide a complete
solution in increasingly complex application environ­
ments. Quite often, a single peripheral device will replace
anywherefrom 20 to 100 TIL devices (and the associated
design time that goes with them).

Built-in functions and a standard Intel microprocessor/
peripheral interface deliver very real time and perfor­
mance advantages to the designer of microprocessor­
baseq systems.

REDUCED TIME TO MARKET

When you can purchase an off-the-shelf solution that
replaces a number of discrete devices, you're also re­
placing all the design, testing, and debug time that goes
with them. '

INCREASED RELIABILITY

At Intel, the rate offailure for devices is carefully tracked.
Highest reliability is a tangible goal that translates to
higher reliability, for your product, reduced downtime,
and reduced repair costs. And as more and more
functions are integrated on a single VLSI device, the
resulting system requires less power, produces less heat,
and requires fewer mechanical connections-again result­
ing in greater system reliability.

LOWER PRODUC~ COST

By minimizing design time, increasing reliability, and

replacing numerous parts, microprocessor and peripheral
solutions can contribute dramatically to lower product
costs.

HIGHER SYSTEM PERFORMANCE

, Intel microprocessors and peripherals provide the highest
system performance for the demands of today's (and
tomorrow's) microprocessor-based applications. For
example, the iAPX 286 CPU, with its on-chip memory
management and protection, offers the highest per­
formance for multitasking, multiuser systems.

HOW TO USE THE GUIDE

The following application guide illustrates the range of
microprocessors and peripherals that can be used for the
applications in the vertical column on the left. The
peripherals are grouped by the 1/ 0 function they control:
CRT, datacommunication, universal (user program­
mable), mass storage dynAmic RAM controllers, and
CPU/bus support.

An "X" in a horizontal application row indicates a poten­
tial peripheral or CPU, depending upon the features
desired. For example, a conversational terminal could
use either of the three display controllers, depending
upon features like the number of characters per row or
font capability. A "Y" indicates a likely candidate, for
example, the 8272A Floppy Disk Controller in a small
business computer.

The Intel microprocessor and peripherals family provides
a broad range of time-saving, high performance solutions.

1-1

POTENTIAL CANDIDATE X-TYPICAL CANDIDATE Y

, j.lPROCESSOR DISPLAY DATACOMM UPI DISKS DRAM CONTROL SUPPORT

C\I

'"
0

APPLICATION
It)

0> "- '<t C\I '<t C;; N 5 '<t '<t co co a 0> ~ r-- r-- !2 Si 0 « ~ 0 ~
co « « co co N C\I co co C\I '" U; co '" '<t c;; '" co co C\I co '" co r-- co '<t It) C;; co co co co co r-- r-- r-- It) r-- r-- It) ~ ~' ;g '<t r-- 0 0 0 0 0 It) It)

0 0 co co co C\I C\I C\I C\I C\I C\I C\I C\I C\I 0 C\I C\I C\I C\I C\I C\I C\I C\I C\I
ClO ClO ~ ~ C\I co co co co co ClO co co co co co ClO co co ClO ClO co ClO ClO co co co

PERIPHERALS I
Printers
Plotters I X I X I X I X I I I IX I I IX I xlxl I I I I I I X I
Keyboards

MASS STORAGE I J I I I .J I I I I I I I I I I I I
Hard Disk
Mini Winchester X Y V
Tape
Cassette X X

-4 Floppy/Mini
~ COMMUNICATIONS

PBX
LANS Xl X X X I I I

... ,
'X I X X Y X T T I I I X I

Modems
Bisync I I I IX I I X I I X I I I I J X I
SOLC/HOLC
Serial Back Plane I I I IXIXI X X X I I I I I I
Central Office
Network Control Y X V X X X X X X

OFFICE/BUS
Copier/FAX .
Word Processor X X V V V X V X X X V X X X X V V
Typewriter
Elect. Mail X X X X V X X X X
Transaction System
Data Entry X X X X X X X X X X X X V

COMPUTERS
SM Bus Computer
PC IV XIVIX XIXIVIVIX XI I X I X I X I X I X I X I X I V I V I X I X I X I X I V I VI
Portable PC
Home Computer lX~IX X XIX X V X X V V'I

-4

c:,

APPLICA TION

TERMINALS
Conversational
Graphics CRT
Editing
Intelligent
Videotex
Printing, Laser, Impact
Portable

INDUSTRIAL AUTO
Robotics
Network
Num Control
Process Control
instrumentation
AVlatlon/Navlg

INDUST/DATA ACO
Laboratory Instr
Source Data
Auto Test
Medical
Test Instr
Security

COMMERCIAL DATA
PROCESSING

POS Terminal
Financial Transfer
Automatic Teller
Document Processing

WORKSTATIONS
Office
Engineering
CAD

MINI MAINFRAME
Processor & Control Store
Database Subsys
ilO Subsystem
Comm Subsystem

POTENTIAL CANDIDATE X-TYPICAL CANDIDATE Y (CONTINUED)

!,PROCESSOR DISPLAY DATACOMM UPI DISKS DRAM CONTROL SUPPORT

CX) w
ex> 0::> co <.0 oOooco
CX) CX)

N
M g

MI ~ 5 ~ ~ ~ ID ~ ~ ~ ~ ~ a
~ a 0 ~ ~ 0 ~ ~ ~ ~ ~ ~
~ N M ~ ID M ~ ~ M ~ ~ V N N ~ M ID ~ 00 wl~ ~ ~ ~ ~ ~ ~ m ~ ~ ~ v v ~ 010 a a 0

00 N N N N N N N N N N N 0 0 N N N N N N
N 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

kesl:,;;:>~kJ,~Jc"",~~~;",h'2:J, "J: /,,,1cs""0b,Ui;o,""

r'yr;,;
'~~~

"7fT I Y

xtxTXi')t- x I X I X
~

....
ll)
N
CX)

ll)
ll)
N
CX)

«
;;;
N
CX)

Xl X ~x X x')(xxx X r'~' . X F F'" ~ ,~""7,,

~~kdw Y 'X"' ']x 'XX)(YX:' ~. /, 'X'~:;,25
X XX 'X "X 'X 'x 'X

"4;;:>J~,~"",, .

X :x X

X,lLI xTx'lx
-~r'x~&,."",

[x,IXIx" XiX

X r'X X [x [y'l)(

1..,,,

X
h,\

"x
Xl~~~~~~~~'~~~~~~~~l~~~~~a~~~~;~l;~

ru,,,,X
X

XIX 'x', X X X X

ltt"~~~\~rYTV lX'll< L~~11~~J,~J~!I!~1~--, C.»=." 'WA~A ~w_ ~,_.

X YIY X

X

Cl

"-~x' xTx'T"'ix X

(

MCS®-SO/S5
Microprocessors

2

8080A/8080A·1/8080A·2
8·BIT N .. CHANNEl MICROPROCESSOR

• TIL Drive Capability
• 2 /-'s (- 1 :1.3 /-'s, - 2:1.5 /-,s) Instruction

Cycle
• Powerful Problem Solving Instruction

Set

• 6 General Purpose Registers and an
Accumulator

• 16·Bit Program Counter for Directly
Addressing up to 64K Bytes of
Memory

• 16·Bit Stack Pointer and Stack
Manipulation Instructions for Rapid
Switching of the Program Environment

• Decimal, Binary, and Double Precision
Arithmetic

• Ability to Provide Priority Vectored
Interrupts

• 612 Directly Addressed flO Pons
• Available in EXPRESS

- Standard Temperature Range
The Intel"' aOaOA is a complete a-bit parallel central processing unit (CPU). It is fabricated on a single LSI chip using
Intel's n-channel silicon gate MOS process. This offers the user a high performance solution to control and processing
apQlications.

The aOaOA contains 6 a-bit general purpose working registers and an accumulator. The 6 general purpose registers may be
addressed individually or in pairs providing both single and double precision operators. Arithmetic and logical instructions
set or reset 4 testable flags. A fifth flag provides decimal arithmetic operation.

The aOaOA has an external stack feature wherein any portion of memory may be used as a last in/first out stack to
store/retrieve the contents of the accumulator, flags, program counter, and all of the 6 general purpose registers. The 16-bit
stack pointer controls the addressing,of this external stack. This stack gives the aOaOA the ability to easily handle multiple
level priority interrupts by rapidly storing and restoring processor status. It also provides almost unlimited subroutine
nesting.

This microprocessor has been designed to simplify systems design. Separate 16-line address and a-line bidirectional data
busses are used to facilitate easy interface to memor" and I/O. Signals to control the interface to memory and 110 are
provided directly by the aOaOA. Ultimate control of the address and data busses resides with the HOLD signal. It provides
the ability to suspend processor operation and force the address and data busses into a high impedance state. This permits
OR-tying these busses with other controlling devices for (DMA) direct memory access or multi-processor operation.

NOTE:
The 8080A is functionally and electrically compatible with the Intel"' 8080.

0,°0
&IDIRECTIONAl

DATA BUS

Figure 1. Block Diagram

2-1

'10
GNO

RESET

HOLD

INT

SYNC

'5V

8080A

40

3.

3.

37
36

35

34

33

32
31

30

2'
2.
27

26

25

24

23

22

2'

'. ..
'3
+12V

" .,
Ao
WAIT

READY

" HLDA

Figure 2. Pin Configuration

8080AI8080A·118080A·2

Table 1. Pin Description

Symbol Type Name and Function

A15.AO 0 Address Bus: The address bus provides the address to memory (up to 64K a-bit words) or denotes the I/O
device number for up to 256 Input and 256 output devices Ao IS the least significant address bit.

DrDo I/O Data Bus: The data bus provides bl-dlrectlonal communication betweeen the CPU, memory, and I/O
devices for Instructions and data transfers. Also, dUring the first clock cycle of each machine cycle, the
aOaOA outputs a status word on the data bus that describes the current macHine cycle. Do IS the least
significant bit.

SYNC 0 Synchronizing Signal: The SYNC pin provides a signal to indicate the beginning of each machine cycle

DBIN 0 Data Bus In: The DBIN signal Indicates to external circUits that the data bus IS In the input mode. This
signal should be used to enable the gating of data onto the aOaOA data bus from memory or I/O

READY I R!'ady: The READY signal indicates to the aOaOA that valid memory or Input data is available on the aOaOA
data bus This signal is used to synchronize the CPU With slower memory or I/O devices If after sending
an address out the aOaOA does not receive a READY Input, the aOaOAw11i enter a WAITstate for as long as
the READY line IS low. READY can also be used to Single step the CPU.

WAIT 0 Wait: The WAIT signal acknowledges that the CPU IS In a WAIT state.

WR 0 Write: The WR signal IS used for memory WRITE or I/O output control. The data on the data bus IS slable
while the WR signal IS active low (WR ~ 0).

HOLD , I Hold: The HOLD signal requests the CPU to enter the HOLD state. The HOLD state allows an external
device to gain control of the aOaOA address and data bus as soon !\S the 8080A has completed its use of
these busses for the current machine cycle. It IS recognized under the following conditions:
• the CPU is in the HALT srate.
• the CPU IS In the T2 or TW state and the READY signal is active. As a result of entering the HOLD state

the CPU ADDRESS BUS (A1S-Ao) and DATA BUS (Dr Do) will be In their high Impedance state. The CPU
acknowledges ItS state With the HOLD ACKNOWLEDGE (HLDA) pin

HLDA 0 Hold Acknowledge: The HLDA signal appears in response to the HOLD signal and indicates that the data
and address bus will go to the high impedance state. The HLDA signal begins at·
• T3 for READ memory or input.
• The Clock Period following T3 for WRITE- memory or OUTPUT operation.

\

In either case, the HLDA signal appears after the rising edge of <1>2

INTE 0 Interrupt Enable: Indicates the content of the Internal Interrupt enable flip/flop This flip/flop may be set
or reset by the Enable and Disable In\;rrupt instructions and inhibits interrupts from being accepted by
tbe CPU when It IS reset It IS automatically reset (disabling further interrupts) at time T1 of the instruction
fetch cycle (M1) when an Interrupt is accepted and is also reset by the RESET signal.

INT I Interrupt Request: The CPU recognizes an interrupt request on this line at the end of the current
Instruction or while halted If the CPU IS In the HOLD state or if the Interrupt Enable flip/flop is reset it will
not honor the request

RESET1 I Reset: While the RESET signal IS activated, the content of the'program counter is cleared. After RESET,
the program will start at location 0 In memory. The INTE and HLDA flip/flops are also reset. Note that the
flags, accumulator, stack pOinter, and registers are not cleared.

Vss Ground: Reference

VDD Power: +12 ±5% Volts

Vee Power: +5 ±5% Volts.

Vss Power: -5 ±5% Volts.

<111, <1>2 Clock Phases: 2 externalfy supplied clock phases. (non TTL compatible)

2-2

inter 8080Al8080A·1/8080A·2

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias. dOc to +70° C
Storage Temperature -65°C to +150°C
All Input or Output Voltages

With Respect to Vee -0.3V to +20V
Vcc , VOO and Vss With Respect to Vee -0.3V to +20V
Power Dissipation 1.5W

"NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this
specification is not implied. Exposure to absoluta maxi­
mum rating conditions for extended periods may affect
device reliability.

D.C. CHARACTERISTICS (TA = O"C to 70"C, VOO = +12V ±5%,

VCC = +5V ±5%, Vee = -5V ±5%, Vss =OV; unless otherwise noted)

Symbol Parameter Min. Typ. Max.

VILC Clock Input Low Voltage Vss-l Vss+o.8

VIHC Clock Input High Voltage 9.0 Voo +l

VIL Input Low Voltage Vss-l Vss+0.8

VIH Input High Voltage 3.3 Vcc+l

VOL Output Low Voltage 0.45

VOH Output High Voltage 3.7"

loe(AV) Avg. Power Supply Current (Voo) 40 70

ICC (AV) Avg. Power Supply Current (Vcc) 60 80

IBe(AV) Avg. Power Supply Current (VBe) .01 1

IlL Input Leakage ±10

ICL Clock Leakage ±10

IOL[2] Data Bus Leakage in Input Mode -100
-2.0

IFL
Address and Data Bus Leakage +10

During HOLD -100

CAPACITANCE (TA = 25°C, VCC = VOO =VSS = OV, Vee = -5V)

Symbol Parameter Typ. Max. Unit Test Condition

C", Clock Capacitance 17 25 pf fc = 1 MHz

CIN I nput Capacitance 6 10 pf Unmeasured Pins

COUT Output Capacitance 10 20 pf Returned to Vss

NOTES:
1. The RESET SIgnal must be active for a mInimum of 3 clock cycles.
2. <l.1 u I I<l.T S pp y A ~-O.45%fC.

2-3

Unit Test Condition

V

V

V

V

V } IOL = 1.9mA on all outputs,

V IoH =-150~.

mA

mA }O ';M
T Cy '" .48 J.Lsec

mA

J.LA Vss .;;;; VIN .;;;; Vcc

J.LA Vss .;;;; VCLOCK .;;;; Voo

J.LA Vss ';;;;VIN ';;;;VSS +0.8V
mA VSS+0.8V';;;;VIN ';;;;VCC

J.LA
VAOOR/OATA = Vcc

V AOOR/OATA = Vss + 0.45V

,.

'O~ ----r---
o.

0 +2' +50

AMBIENT TEMPERATURE (OC)

typical Supply Current v ••
Temperature, Normallzed[3]

+7&

,

, 8080Al8080A·1/8080A·2

A.C. CHARACTERISTICS (8080A) (TA = ooe to 7ooe, VDD = +12V ±5%, Vee = +5V ±5%,
VBB =-5V ±5%, vss =OV; unless otherwise noted)

, '1' ·1 ·2 ·2
Symbol Parameter Min. Max. Min. Max. Min. Max. Unit Tesl Condilion

ICy[3J Clock Penod 0.48 2.0 0.32 2.0 0.38 2.0 JAsec

Ir' If Clock Rise and Fall Time 0 50 0 25 0 50 nsec

112'1 12'1 Pulse Wldlh 60 50 60 nsec

112'2 "'2 Pulse Widlh 220 145 175 nsec

101 Delay "'1 10 "'2 0 0 0 nsec

102 Delay 12'2 to "'1 70 50 70 nsec

103 Delay "'1 10 "'2 Leading Edges 80 60 70 nsec

IDA Address Oulpul Delay From "'2 200 150 175 nsec J CL;loo pF
too Data Oulput Delay From "'2 220 160 200 nsec

IDC Signal Output Delay From I.e! Ilor "'2 (SYNC, WR, WAIT, HLDA) 120 110 120 nse~
},CL;50 pF

IDF DBIN Delay From 12'2 25 140 25 130 25 140 nsec

101[1] Delay for Input Bus to Enter Input Mode tDF tDF tDF nsec

IDSI Data Selup TimeDurlng 12'1 and DBIN .. 30 10 20 nsec

IDS2 Data Selup Time to 12'2 During DBIN 150 120 130 nsee

tDH[tJ Data Holt time From "'2 During DBIN [IJ [1J [IJ nsec

tiE INTE Output Delay From 12'2 200 200 200 nsec CL;50 pF

tRS READY Setup Time During "'2 120 90 90 nsec

IHS HOLD Selup Time to 12'2 140 120 120 nsec

liS INT Selup Time During 12'2. 120 . 100 100 nsec

IH Hold Time From 12', (READY, INT, HOLD) 0 0 0 nsec

IFD DelJlY Ip Float Dur\ng Hold«Address and Data 'Bus) t~e ~20' 12'iJ nsec
-

lAW Address Slable· Prior 10 WR [5J [5J [5J nsec

lOW Oulput Dala Slable Prior to WR [6J [6J [6] nsec

IWD. Oulpul Dala Slable From WR [7] [7] [7] nsec

IWA Address Stable From WR [7] [7] [7] nsec
CL; 100 pF: Address, Data
51.; 50 pF: WR,HLDA,DBIN

tHF HLDA to Float Delay [8] [8] [8] nsec

tWF WR to Float Delay [9J [9] [9] nsec

tAH Address Hold Time After DBIN During HLDA -20 -20 -20 nsec __

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER ~

TEST
'--____ ..J I C, ~ 100 pF

CL = 100pF
CL INCLUDES JIG CAPACITANCE

2-4

I

8080A/8080A·1/8080A·2

WAVEFORMS

0, ____ ...J

0,
-----1---'11

A1SAO ---------I-~~

SYNC ---------1--'1

OBIN ----------------r---'I

WR

READY @I '0jI ! ~' ~"lI-'"T- ·
- '" ,-i -I '" --='1 'DC I--:~ I,

WAIT '" - - , f \ I
--------------------~~'D~c---+~'I- _~,"~.~r .. -!~-.~I~,~'

~W _~,

-tHS­

HLDA

INT-----------~1--H---13'
----------------------------~...:I '

," __ 1_
lNTE

NOTE:
Timing measurements are made at the following reference voltages: CLOCK "1" = B.OV,
"0" = 1.0V; INPUTS "1" = 3.3V, "0" = O.BV; OUTPUTS "1" = 2.0V, "0" = O.BV.

2-5

WAVEFORMS (Continued)

J

'FO

~'5-AO

----+---- --
0,.°0

SYNC

DBIN

...
READY

WAIT

HOLD
~

HLDA

.....
INT

INTE

8080Al8080A·1/8080A·2

-.
~~

-.
-~

2-6

NOTES: (Parenthesis gives -1, -2 specifications, respectively)
1. Data Input should be enabled with DBIN status. No bus con­

flict can then occur and data hold time Is assured.
tOH ,. SO ns or tOF, whichever Is less.

2. tCY = t03 + tr</>2 +'<1>2 + tf</>2 + t02 + tr</>l ;;. 480 ns (- 1 :320
ns, - 2:380 ns).

TYPICAL L> OUTPUT DELAY VS. L> CAPACITANCE

c ,.
~
0 ..
::>
~
::>
0
<l

+20

+10 /
/

-10 /'" "- SPEC

-20 /
-100 -50

...\ CAPACITANCE lpf)

(CACTUAL - CSPEC)

+50 +100

3. The followihg are relevant when Interfacing the BOBOA to
devices havl ng V I H = 3.3V:
a) Maximum output rise time from .BV to 3.3V = l00ns@ CL
= SPEC.
b) Output delay when measured to 3.0V = SPEC +60ns@CL
= SPEC.
c) If CL = SPEC, add .6nsipF If CL > CSPEC, subtract .3nsipF
(from modified delay) If CL < CSPEC.

4. tAW = 2 tCY- t03 - tr</>2 - 140 ns (- 1 :110 ns, - 2:130 ns).
S. tow = tCY - t03 - tr</>2 - 170 ns (- 1 :1S0 ns, - 2:170 ns) .
6. If not HLDA, two = tWA = t03 + tr</>2 + 10 ns. If HLDA, two

= tWA = tWF'
7. tHF = too + tr</>2 -SO ns).
B. tWF = too + tr</>2 - 10ns.
9. Data In must be stable for this period during DBIN T 3.

Both tOSl and tOS2 must be satisfied.
10. Ready signal must be stable for this period during T 2 or T w.

(Must be externally synchronized.)
11. Hold Signal must be stable for this period during T 2 or T W

when entering hold mode, and during T 3, T 4, T 5 and T WH
when in hold mode. (External synchronization is not re­
quired.)

12. Interrupt signal must be stable during this period of the last
clock cycle of any instruction in order to be recognized on the
following instruction. (External synchronization is not re­

,qulred.)
13. this timing diagram shows timing relationships only; it does

not represent any specific machine cycle.

inter SOSOAISOSOA·1/&OSOA·2

INSTRUCTION SET

The accumulator group instructions include arithmetic and
logical operators with direct, indirect, and immediate ad­
dressing modes_

Move, load, and store instruction groups provide the ability
to move either 8 or 16 bits of data between memory, the
six working registers and the accumulator using direct, in­
direct, and immediate addressing modes.

The ability to branch to different portions of the program
is provided with jump, jump conditional, and computed
jumps. Also the ability to call to and return from sub­
routines is provided both conditionally and unconditionally.
The RESTART (or single byte call instruction) is useful for
interrupt vector operation.

Double precision operators such as stack manipulation and
double add instructions extend both the arithmetic and
interrupt handling capability of the 8080A. The ability to

Data and Instruction Formats

increment and decrement memory, the six general registers
and the accumulator is provided as well as extended incre­
ment and decrement instructions to operate on the register
pairs and stack pointer. Further capability is provided by
the ability to rotate the accumulator I!lft or right through
or around the carry bit.

Input and output may be accomplished using memory ad­
dresses as I/O ports or the directly addressed I/O provided
for in the 8080A instruction set.

The following special instruction group completes the 8080A
instruction set: the NOP instruction, HALT to stop pro­
cessor execution and the DAA instructions provide decimal
arithmetic capability. STC allows the carry flag to be di­
rectly set, and the CMC instruction allows it to be comple­
mented. CMA complements the contents of the accumulator
and XCHG exchanges the contents of two 16-bit register
pairs directly.

Data in the 8080A is stored in the form of 8-bit binary integers. All d~ta transfers to the system data bus will be in the
same format.

ID7 D6 D5 D4 D3 D2 D, Dol

DATA WORD

The program instructions may be one, two, or three bytes in length. MUltiple byte instructions must be stored
in successive words in program memory. The instruction formats then depend on the particular operation
executed.

One Byte Instructions TYPICAL INSTRUCTIONS

I D7 D6 D5 D4 D3 D2 D, Do I OP CODE Register to register, memory refer-
ence, arithmetic or logical, rotate,
return, push, pop, enable or disable
Interrupt instructions

Two Byte Instructions

I D7 D6 D5 D4 D3 D2 D, Do I OPCODE

I D7 D6 D5 D4 D3 D2 D, Do I OPERAND Immediate mode or I/O instructions

Three Byte Instructions

I D7 D6 D5 D4 D3 D2 D, DO I OPCODE Jump, call or direct load and store

I D7 D6 D5 D4 D3 D2 D, Do I LOWADDRESSOR OPERAND 1
instructions

I D7 D6 D5 D4 D3 D2 D, Do I HIGH ADDRESSOR OPERAND 2

For the 8080A a logic "1" is defined as a high level and a logic "0" is defined as a low level.

2-7

8080Al8080A·118080A·2

Table 2. Instruction Set Summary

Clock Clock
Instruction Code [1] Operations Cycle. Instruction Code [1] Operations Cycle.

Mnemonic 0] 06 05 04 D:3 D:1 01 DO Description [2] MnemoniC 0] 06 Os 04 03 02 01 Do Description [2]

MOvE, LOAD, AND STORE JPO 1 1 1 0 0 0 1 0 Jump on parity odd 10
MOVr1,r2 0 1 0 0 0 S S S Move register to register 5 PCHL 1 1 1 0 1 0 0 1 H & L to program 5
MOVM,r 0 1 1 1 0 S S S Move register to counter

memory 7 CALL
MOVr,M 0 1 0 0 0 1 1 0 Move memory to regis- CALL 1 1 0 0 1 1 0 1 Call unconditional 17

ter 7 CC 1 1 0 1 1 1 0 0 Call on carry 11/17
MVlr 0 0 0 0 0 1 1 0 Move immediate re9j5- CNC 1 1 0 1 0 1 0 0 Call on no carry 11/17

ter 7 CZ 1 1 0 0 1 1 0 0 Call on zero 11/17
MVIM 0 0 1 1 0 1 1 0 Move immediate CNZ 1 1 0 0 0 l' 0 0 Call on no zero 11/17

memory 10 CP 1 1 1 1 0 1 0 0 Call on positive 11/17
LXI B 0 0 0 0 0 0 0 1 Load immediate register 10 CM 1 1 1 1 1 1 0 0 Call on minus 11/17

Pair B & C CPE 1 1 1 0 1 1 0 0 Call on parity even 11/17
LXI 0 0 0 0 1 0 0 0 1 Load Immediate register 10 CPO 1 1 1 0 0 1 O. 0 Call on parity odd 11/17

Pair 0& E RETURN I
LXI H 0 0 1 0 0 0 0 1 Load immediate register 10 RET 1 1 0 0 1 0 0 1 Return 10

PalrH&L RC 1 1 0 1 1 0 0 0 Return on carry 5111
STAXB 0 0 0 0 0 0 1 0 Store A Indirect 7 RNC 1 1 0 1 0 0 0 0 Retu rn on no carry 5111
STAXO 0 0 0 1 0 0 1 0 Store A Indirect 7 RZ 1 1 0 0 1 0 0 0 Return on zero 5111
LOAX B 0 0 0 0 1 0 1 0 Load A Indirect 7 RNZ 1 1 0 0 0 0 0 0 Return on no zero 5111
LOAXO 0 0 0 1 1 0 1 0 Load A indirect 7 RP 1 1 1 1 0 0 0 0 Return on positive 5111
STA' 0 0 1 1 0 0 1 0 Store A direct 13 RM 1 1 1 1 1 0 0 0 Return on minus 5111
LOA 0 0 1 1 1 0 1 0 Load A direct 13 RPE 1 1 1 0 1 0 0 0 Return on parity even 5111
SHLO 0 0 1 0 0 0 1 0 Store H & L direct 16 RPO 1 1 1 0 0 0 0 0 Return on panty odd 5/11
LHLO 0 0 1 0 1 0 1 0 Load H & L direct 16 RESTART
XCHG 1 1 1 0 1 0 1 1 Exchange 0 & E, H & L 4 RST 1 1 A A A 1 1 1 Restart 11

Registers INCREMENT AND DECREMENT
STACKOPS INRr 0 0 0 0 0 1 0 0 Increment register 5
PUSH B 1 1 0 0 0 1 0 1 Push register Pair B & 11

C on stack
OCRr 0 0 0 0 0 1 0 1 Decrement registe~ 5
INRM 0 0 1 1 0 1 0 0 Increment memory 10

PUSH 0 1 1 0 1 0 1 0 1 Push register PaH 0 & 11 OCRM 0 0 1 1 0 1 0 1 Decrement memory 10
E on stack INXB 0 0 0 0 0 0 1 1 Increment B & C 5

PUSH H 1 1 1 0 0, 1 0 1 Push register Pair ~ & 11
L on stack

registers
INXO 0 0 0 1 0 0 1 1 Increment 0 & E 5

PUSH 1 1 1 1 0 1 0 1 Push A and Flags 11 registers
PSW on stack INXH 0 0 1 0 0 0 1 1 Increment H & L 5
POPB 1 1 0 0 0 0 0 1 Pop register Pair B & 10 registers

C off stack OCXB 0 0 0 0 1 0 1 1 Decrement B & C 5
POP 0 1 1 0 1 0 0 0 1 Pop register Pair 0 & 10

E off stack
OCXO 0 0 0 1 1 0 1 1 Decrement D & E 5
OCXH 0 0 i 0 1 0 1 1 Decrement H & L '5

POPH 1 1 1 0 0 0 0 1 Pop register Pal r H & 10 ADD
L off stack AOOr 1 '0 0 0 0 S S S Add register to A 4

POPPSW 1 1 1 1 0 0 0 1 Pop A and Flags 10 AOCr 1 0 0 0 1 S S S Add register to A 4
off stack With carry

XTHL 1 1 1 0 0 0 1 1 Exchange top of 18 AOOM 1 0 0 0 0 1 1 0 Add memory to A 7
stack, H & L AOCM 1 0 0 0 1 1 1 0 Add memory to A 7

SPHL 1 1 1 1 1 0 0 1 H & L to stack pOinter 5 With carry
LXISP 0 0 1 f 0 0 0 1 Load Immediate stack 10 AOI 1 1 0 0 0 1 1 0 Add Immediate to A 7

pOinter ACI 1 1 0 0 1 1 1 0 Add immediate to A 7
INXSP 0 0 1 1 0 0 1 1 Increment stack pointer 5 With carry
OCXSP 0 0 1 1 1 0 1 1 Decrement stack 5 OAOB 0 0 0 0 1 Q 0 1 AddB&CtoH&L 10

pointer DADO 0 0 0 1 1 0 0 1 AddO&EtoH&L 10
JUMP OAOH 0 0 1 0 1 0 0 1 AddH&LtoH&L 10
JMP 1 1 0 0 0 0 1 1 Jump unconditional 10 OAOSP 0 0 1 1 1 0 0 1 Add stack pointer to 10
JC 1 1 0 1 1 0 1 0 Jump on carry 10 H&L
JNC 1 1 0 1 0 0 1 0 Jump on no carry 10
JZ 1 1 0 0 1 0 1 0 Jump on zero 10
JNZ 1 1 0 0 0 0 1 0 Jump on no zero 10
JP 1 1 1 1 0 0 1 0 Jump on positive 10
JM 1 1 1 1 1 0 1 0 Jump on minus 10
JPE 1 1 1 0' 1 0 1 0 Jump on parity even 10

2-8

inter 8080Al8080A·1/8080A·2

SUm ry of Proce_r Instructions (Cont.)

Clock
Instruction Code [1] Operations Cycl.s Instruction Code [1)

Mnemonic D7 Ds Ds D4 OJ D2 Dl DO Description [2] Mnemonic D7 De Ds D4 OJ II:! Dl Dc

SUBTRACT ROTATE
SUBr 1 0 0 1 0 S S S Subtract regIster 4 RLC 0 0

from A RRC 0 0
SBBr 1 0 0 1 1 S S S Subtract regIster from 4 RAL 0 0

A WIth borrow
SUBM 1 0 0 1 0 1 1 0 Subtrect memory 7 RAR 0 0

from A
SBBM 1 0 0 1 1 1 1 0 Subtract memory from 7 SPECIALS

Awlth borrow CMA 0 0
SUI 1 1 0 1 0 1 1 0 Subtract ImmedIate 7 STC 0 0

from A CMC 0 0
SBI 1 1 0 1 1 1 1 0 Subtract immedIate 7 OM 0 0

from A WIth borrow INPUT/OUTPUT
LOGICAL IN
ANAr 1 0 1 0 0 S S S And regIster with A 4 OUT
XRAr 1 0 1 0 1 S S S ExcltJsive Or register 4 CONTROL

wIth A EI
ORAr 1 0 1 1 0 S S S Or regIster WIth A 4 01
CMPr 1 0 1 1 1 S S S Compare regIster WIth A 4 NOP
ANAM 1 0 1 0 0 1 1 0 And memory WIth A 7 HLT
XRAM 1 0 1 0 1 1 1 0 ExclUSive Or memory 7

wIth A
ORAM 1 0 1 1 0 1 1 0 Or memory WIth A 7
CMPM 1 0 1 1 1 1 1 0 Compare memory WIth

A 7
ANI 1 1 1 0 0 1 1 0 And Immediate With A 7
XRI 1 1 1 0 1 1 1 0 ExclUSive Or Immediate 7

wIth A
ORI 1 1 1 1 0 1 1 0 Or ImmedIate with A 7
CPI 1 1 1 1 1 1 1 0 Compare ImmedIate 7

wIth A

NOTES:
1 DOD orSSS' B~OOO, C~OOl, D~OlO, E-Oll , H~lOO, L~lOl, Memory~llO, A~111.
2. Two possIble cycle times (6112) Indicate InstructIon cycles dependent on condItion flags.
'All mnemonIcs copyroght Clntel Corporallon 19n

2-9

1 1
1 1

1 1
1 1
0, 0
0 1

0 0 0 1 1 1
0 0 1 1 1 1
0 1 0 1 1 1

0 1 1 1 1 1

1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 1 1 1
1 0 0 1 1 1

0 1 1 0 1 1
0 1 0 0 1 1

1 1 1 0 1 1
1 1 0 0 1 1
0 0 0 0 0 0
1 1 0 1 1 0

Clock
Operetlons Cycle.
Description 121

Rotate A lell 4
Rotate A roght 4
Rotate A lell through 4
carry
Rotate A right through 4
carry

Complement A 4
Set carry 4
Complement carry 4
DeCImal adlust A 4

Input 10
Output 10

Enable Interrupts 4
Disable Interrupt 4
No-operatlDn 4
Halt 7 ..

SOSSAH/SOSSAH-2/S0SSAH-1
8-BIT HMOS MICROPROCESSORS

• Single + 5V Power Supply with 10%
Voltage Margins

• 3 MHz, 5 MHz and 6 MHz Selections
Available

• 20% Lower Power Consumption than
SOS5A for 3 MHz and 5 MHz

• 1.3 JLS Instruction Cycle (SOS5AH); O.S
JLS (SOS5AH-2); 0.67 JLs (SOS5AH-1)

• 100% Compatible with SOS5A

• 100% Software Compatible with SOSOA

• On-Chip Clock Generator (with
External Crystal, LC or RC Network)

• On-hhiP System Controller; Advanced
Cycle Status Information Available for
Large System Control

• Four Vectored Interrupt Inputs (One is
Non-Maskable) Plus an
SOSOA-Compatible Interrupt

• Serial In/Serial Out Port
• Decimal, Binary and Double Precision

Arithmetic
• Direct Addressing Capability to 64K

Bytes of Memory
• Available in EXPRESS

- Standard Temperature Range
- Extended Temperature Range

The Intel® 8085AH is a complete 8 bit parallel Central Processing Unit (CPU) implemented in N-channel, depletion
load, silicon gate technology (HMOS). Its instruction set is 100% software compatible with the 8080A microproces­
sor, and it is designed to improve the present 8080A:s performance by higher system speed. Its high level of system
integration allows a minimum system ofthree IC's [8085AH (CPU), 8156H (RAM/IO) and 8755A (EPROM/IO)] while
maintaining total system expandability. The 8085AH-2 and 8085AH-1 are faster versions of the 8085 AH.

The 8085AH incorporates all of the features that the 8224 (clock generator) and 8228 (system controller)
provided for the 8080A, thereby offering a high level of system integration.

The 8085AH uses a multiplexed data bus. The address is split between the 8 bit address bus and the 8 bit data bus.
The on-chip address latches of 8155H/8156H/8755A memory products allow a direct interface with the 8085AH.

i"NTA I

* ::: :~: ,:: }REGISTER
REG REG ARRAV

STACK POINTER 1161

PROGRAM COUNTER 11$1

INCREMENTERIOECREMENTER
AOORESS LATCH 11~1

AD7-ADo
AODRESSIOATA BUS

Figure 1. BOB5AH CPU Functional Block Diagram

Vee
HOLD

RESET OUT 3 HLDA
SOD elK (OUT~

SID RESET IN
READY

RST 75 101M
RST 65 5,
RST 5 5 AD

lNTR ViR
lNTA ALE

ADo So
AD, A15

AD2 A14
AD3 A13

AD, A12

ADS A11

AlO
A,

A8

Figure 2. BOB5AH Pin
Configuration

Intel Corporation Assumes No Responsibllty for the Use of Any Circuitry Other Than Circuitry Embodied In an Intel Product. No Other Circuit Patent lIcenses ale Implied

·INTEL CORPORATION. 1981 2-10

intJ 8085AH/8085AH-218085AH-1

r--::---;--;-_r=----. __ :-:-_---,--:-__ --=T..:8..:b.:.:'e:....1..:.:....;Pln Description
Symbol lYpe Name and Funcllon

READY I Ready: If READY is high during a
read or wrote cycle, It indicates that
the memory or peropheralls ready to
send or receive data. If READY is
low, the cpu Will walt an Integral
number of clock cycles for READY
to go high before completing the
read or wrote cycle. READY must
conform to specified setup and hold
times.

HOLD I Hold: Indicates that another master
IS requesting the use of the address
and data buses. The cpu, upon
receiving the hold request, will
relinquish the use of the bus as
soon as the completion of the cur-
rent bus transfer Internal process-
Ing can continue. The processor
can regain the bus only after the
HOLD IS removed. When the HOLD
IS acknowledged, the Address,
Data RD, WR, and 101M lines are
3-stated

HLDA 0 Hold Acknowledge: Indicates that
the cpu has received the HOLD re-
quest and that It will relinquish the
bus In the next clock cycle. HLDA
goes low after the Hold request IS
removed. The cpu takes the bus one
half clock cycle after HLDA goes
low.

INTR I Interrupt Request: Is used as a
general purpose Interrupt. It is
sampled only during the next to the
last clock cycle of an instruction
and during Hold and Halt states. If It
IS active, the Program Counter (PC)
will be I~ited from Incrementing
and an INTA will be Issued. During
this cycle a RESTART or CALL in-
struction can be inserted to Jump to
the Interrupt service routine. The
INTR IS enabled and disabled by
software It IS disabled by Reset and
immediately after an interrupt IS ac-
cepted

INTA 0 Interrupt Acknowledge: Is used In-
steaE..,of (and has the same timing
as) RD during the Instruction cycle
after an INTR IS accepted. It can be·
used to activate an 8259A Interrupt
chip or some other Interrupt port.

RST 5.5 I Restart Interrupts: These three In-
RST 6.5 puts have the same timing as INTR
RST 7.5 except they cause an internal

RESTART to be automatically
Inserted.

The priority of these interrupts IS
ordered as shown In Table 2. These
interrupts have a higher priority
than INTR. In addition, they may be
indiVidually masked out using the

(SIM instruction.

2-11

I ,

i

intJ 8085AH/8085AH-2/8085AH-1

Table 1. Pin Description (Continued)

Symbol Type Name and Function Symbol lYpe Name and Function

TRAP I Trap:' Trap interrupt IS a non· RESET OUT 0 Reset Out: Reset Out Indicates cpu
maskable RESTART interrupt. It is is being reset. Can be used
recognized at the same time as as a system reset. The signal IS
INTR or RST 5.5·7.5. It is unaffected synchronized to the processor
by any mask or Interrupt Enable. It clock and lasts an.integral number
has the highest priority of any inter- of clock periods.
rupt. (See Table 2.) XI, X2 I XI and X2: Are connected to a

RE~ETIN I R ••• t In: Sets the Program crystal, le, or RC network to drive
Counter to zero and resefs the Inter· the internal clock generator. XI can
rupt Enable and HlDA flip-flops. also be an external clock input from
The data and address buses and the a logic gate. The input frequency is
control lines are 3-stated during divided by 2 to give the processor's
RESET and because of the asyn· internal operating frequency.
chronous nature of RESET, the pro-
cessor's internal registers and flags
may be altered by RESET with un-
predictable results. RESET IN is a
Schmitt·triggered input, allowing

ClK 0 Clock: Clock output for use as a sys·
tern clock. The period of ClK is
tWice the X1, X2 input period.

SID I Serial Input Data line: The data on
connection to an R-C network for thiS line is loaded Into accumulator
power-on RESET delay (see Figure bit 7 whenever a RIM instruction IS
3). Upon power·up, RESET IN must executed.
remain low for at least 10 ms after
minimum Vee has been reached.
For proper reset operation after the

SOD 0 Serial Output Data Line: The out-
put SOD IS set or reset as specifIed
by the SIM instruction

power-up duration, RESET IN
should be kept Iowa minimum of Vee Power: +5 volt supply.

three clock periods. The CPU is held Vss Ground: Reference.
in the reset condition as long as
RESET IN is applied.

Table 2. Interrupt Priority, Restart Address, and Sensitivity

Address Branched To (1)
Name Priority When Interrupt Occurs Type Trigger

TRAP 1 24H Rising edge AND high level until sampled.

RST 7.5 2 3CH Rising edge (latched).

RST 6.5 3 34H High level until sampled.

RST 5.5 4 2CH High level until sampled.

INTR 5 See Note (21 High level until sampled.

NOTES:
1. The processor pushes the PC on the stack before branching to the Indicated address.
2. The address branched to depends on the instruction provided to the cpu when the Interrupt IS acknowledged.

VecO L~ f

c,

I~
TYPICAL POWER.()N RESET RC VAWES'
R, ~75Kn
C, ~1.,F

"VAWES MAY HAVE TOVARY DUE TO
APPLIED POWER SUPPLY RAMP UP TIME.

Figure 3. Power-On Reset Circuit

2-12

intJ 8085AH/8085AH-218085AH-1

FUNCTIONAL DESCRIPTION

The 8085AH is a complete 8-bit parallel central pro­
cessor. It is designed with N-channel, depletion load,
silicon gate technology (HMOS), and requires a single
+5 volt supply. Its basic clock speed is 3 MHz (8085AH),
5 MHz {8085AH-2), or6 MHz (8085AH-1), thus improv­
ing on the present 8080A's performance with higher
system speed. Also it is designed to fit into a minimum
system of three IC's: The CPU (8085AH), a RAM/IO
(8156H), and an EPROM/IO chip (8755A).

The 8085AH has twelve addressable 8-bit registers.
Four of them can function only as two 16-bit register
pairs. Six others can be used interchangeably as
8-bit registers or as 16-bit register pairs. The 8085AH
register set is as follows:

Mnemonic Register Contents

ACC orA Accumulator 8 bits
PC Program Counter 16-bit address
BC,DE,HL General-Purpose 8 bits x 6 or

Registers; data 16 bits x 3
pointer (HL)

SP Stack Pointer 16-bit address

Flags or F Flag Register 5 flags (8-bit space)

The 8085AH uses a multiplexed Data Bus. The
address is split between the higher 8-bit Address
Bus and the lower 8-bit Address/Data Bus. During
the first T state (clock cycle) of a machine cycle the
low order address is sent out on the Address/Data
bus. These lower 8 bits may be latched externally by
the Address Latch Enable signal (ALE). During the
rest of the machine cycle the data bus is used for
memory or I/O data.

The 8085AH provides Fm, WR, So, 51, and 10/M
signals for bus control. An Interrupt Acknowledge
signal (INTA) is-also provided. HOLD and all Inter­
rupts are synchronized with the processor's internal
clock. The 8085AH also provides Serial Input Data
(SID) and Serial Output Data (SOD) lines for simple
serial interface.

In addition to these features, the 8085AH has three
maskable, vector interrupt pins, one nonmaskable
TRAP interrupt, and a bus vectored interrupt, INTR.

INTERRUPT AND SERIAL I/O

The 8085AH has 5 interrupt inputs: INTR, RST 5.5,
RST 6.5, RST 7.5, and TRAP. INTR is identical in
function to the 8080A INT. Each of the three RE­
START inputs, 5.5, 6.5, and 7.5,has a programmable
mask. TRAP is also a RESTART interrupt but it is
nonmaskable.

2-13

The· three maskable interrupts cause the internal
execution of RESTART (saving the program counter
in the stack and branching to the RESTART address)
ifthe interrupts are enabled and ifthe interrupt mask
is not set. The nonrriaskable TRAP causes the inter­
nal execution of a RESTART vector independent
of the state of the interrupt enable or masks. (See
Table 2.)

There are two different types of inputs in the restart
interrupts. RST 5.5 and RST 6.5 are high level­
sensitive like INTR (and INT on the 8080) and are
recognized with the same timing as INTR. RST 7.5 is
rising edge-sensitive.

For RST 7.5, only a pulse is required to set an inter­
nal flip-flop which generates the internal interrupt
request (a normally high level signal with a low
going pulse is recommended for highest system
noise immunity). The RST 7.5 request flip-flop
remains set until the request is serviced. Then
it is reset automatically. This flip-flop may also be
reset by using the SIM instruction or by issuing a
RESET IN to the 8085AH. The RST 7.5 internal flip­
flop will be set by a pulse on the RST 7.5 pin even
when the RST 7.5 interrupt is masked out.

The status of the three RST interrupt masks can only
be affected by the SIM instruction and RESET IN.
'(See SIM, Chapter 5 of the MCS-80/85 User's
ManuaL)

The interrupts are arranged in a fixed priority that
determines which interrupt is to be recognized if
more than one is pending as follows: TRAP­
highest priority, RST 7.5, RST 6.5, RST 5.5, INTR­
lowest priority. This priority scheme does not take
into account the priority of aroutine that was started
by a higher priority interrupt. RST 5.5 can interrupt
an RST 7.5 routine if the interrupts are re-enabled
before the end of the RST 7.5 routine.

The TRAP interrupt is useful for catastrophic events
such as power failure or bus error. The TRAP input is
recognized just as any other interrupt but has the
highest priority. It is not affected by any flag or mask.
The TRAP input is both edge and level sensitive. The
TRAP input must go high and remain high until it is
acknowledged. It will not be recognized again until it
goes low, then high again. This avoids any false
triggering due to noise or logic glitches. Figure 4
illustrates the TRAP interrupt request circuitry
within the 8085AH. Note that the servicing of any
interrupt (TRAP, RST 7.5, RST 6.5, RST 5.5, INTR)
disables all future interrupts (except TRAPs) until an
EI instruction is executed.

inter SOS5AH/SOS5AH-2!SOS5AH-1
I ,

EXTERNAL
TRAP
INTERRUPT
REQUEST

IN8IDETHE
IICII5AH

TRAP

SCHMITT
TRIGGER

+5V D elK

o
FIF

INTERNAL TRAP F F
TRAP

ACKNOWLEDGE

Figure 4. TRAP and RESET IN Circuit

The TRAP interrupt is special in that it disables inter­
rupts, but preserves the previous interrupt enable
status. Performing the first RIM instruction follow­
ing a TRAP interrupt allows you to determine
whether interrupts were enabled or disabled prior to
the TRAP. All subsequent RIM instructions provide
current interrupt enable status. 'Performing a RIM
instruction following INTR, or RST 5.5-7.5 will
provide current Interrupt Enable status, revealing
that Interrupts are disabled. See the description of
the RIM instruction in the MCS-80/85 Family User's
Manual.

The serial I/O system is also controlled by the RIM
and SIM instructions. SID is read by RIM, and SIM
sets the SOD data.

DRIVING THE X1 AND X2 INPUTS

You may drive the clock inputs of the 8085AH,
8085AH-2, or 8085AH-1 with a crystal, an LC tuned
circuit, an RC network, or an external clock source.
The crystal frequency must be at least 1 MHz, and
must be twice the desired internal clock frequency;
hence, the 8085AH is operated with a 6 MHz crystal
(for 3 MHz clock), the 8085AH-2 operated with a 10
MHz crystal (for 5 MHz clock), and the 8085AH-1 can
be operated with a 12 MHz crystal (for 6 MHz clock).
If a crystal is used, it must have the following
characteristics:

Parallel resonance at twice the clock frequency
desired
CL (load capacitance) .;; 30 pF
Cs (shunt capacitance) .;; 7 pF
Rs (equivalent shunt resistance) .;; 75 Ohms
Drive level: 10 mW
Frequency tolerance: ± .005% (suggested)

Note the use of the 20 pF capacitor between X2 and
ground. This capacitor is required with crystal fre­
quencies below 4 MHz to assure oscillator startup at
the correct frequency. A parallel-resonant LC circuit
may be used as the frequency-determining network
for the 8085AH, providing that its frequency
tolerance of approximately ± 1 0% is acceptable. The
components are chosen from the formula:

fF ----'----

To minimize variations in frequency, it is recom­
mended that you choose a value for Cext that is at
least twice that of Cint, or 30 pF. The use of an LC
circuit is not recommended for frequencies higher
than approximately 5 MHz.

An RC circuit may be used as the frequency­
determining network forthe 8085AH if maintaining a
precise clock frequency is of no importance. Var­
iations in the on-Chip timing generation can cause a
wide variation in frequency when using the RC
mod~. Its advantage is its low component cost. The
driving frequency generated by the circuit shown is
approximately 3 MHz. It is not recommended that
frequencies greatly higher or lower than this be
attempted.

Figure 5 shows the recommended clock driver cir­
cuits. Note in 0 and E that pullup resistors are re­
quired to assure that the high level voltage of the
input is at least 4V and maximum 10"':' level voltage
of 0.8V.

For driving frequencies up to and including 6 MHz
you may supply the driving signal to X1 and leave X2
open-circuited (Figure 50). If the driving frequency
is from 6 MHz to 12 MHz, stability of the clock
generator will be improved by driving both X1 and X2
with a push-pull source (Figure 5E). To prevent
self-oscillation of the 8085AH, be sure that X2 is not
coupled back to X1 through the driving circuit.

2-14

inter 8085AH/8085AH-218085AH-1

X, ---...,
I
I
-

I C,NT
.L ~15pF .,...
I

2 X i
L-'--4-----t 2 ___J

·20 pF CAPACITORS REQUIRED FOR
CRYSTAL FREQUENCY" 4 MHz ONLY

a. Quartz Crystal Clock Driver

X, ---..., IllllAH

LeXT CEXT

I
I C'NT

...L.=16pF

T
2 I

X2 ___ ..J

b. LC Tuned Circuit Clock Driver

c. RC Circuit Clock Driver

+5V

4700
TO
1IUl

")(2 LEFT FLOATING

*

d. 1·6 MHz Input Frequency External Clock
Driver Circuit

+5V

1c
....... 4_700_I'--LOW-i TIME> 40 ..

X,

4700

'------1X2

e. 1·12 MHz Input Frequency External Clock
Driver Circuit

Figure 5. Clock Driver Circuits

GENERATING AN 8085AH WAIT STATE

If your system requirements are such that slow
memories or peripheral devices are being used, the
circuit shown in Figure 6 may be used to insert one
WAIT state in each 8085AH machine cycle.

The 0 flip-flops should be chosen so that
• ClK is rising edge-triggered '
• CLEAR is low-level active.

2-15

+
CLEAR -ALE°---. ClK CLKOUTPUT' - ClK TO

IOIIAH
"'D" "0"' READY
F/F

Q
F/F a INPUT

+5V-0 0 ->---

·AlE AND CLK (OUT) SHOULD BE BUFFERED IF CLK INPUT OF LATCH
EXCEEDS 8085AH IOl OR IOH

Figure 6. Generation of a Wait State for 8085AH
CPU

8085AH/8085AH-2/8085AH-1

A8-15

A
ADO-7

ALE

8085AH RD r---
r---WR

101M r---
elK r---
RESET OUl t--
READY r--

I r--
I.
:TIMER AD A8- AD _ 10/

RESET I IN WARD ALE eE 07 101M
AIO 07 CE M. ALE RDl"'lW

T6~~R_

8156H
[RAM + 1/0 + COUNTERITIMERJ 8755A [EPROM + 1/0]

"NOTE OPTIONAL CONNECTION B B B 8 8
Figure S. MCS-S5® Minimum System (Memory Mapped I/O)·

- x, x, RESET IN -TRAP HOLD - RST7 HLDA
t-- RST6 SOD t-- RST5 8085AH 510_ - lNTR s,t-- fNfA RESET

Sot-ADDR/ OUT
AODR DATA ALE R5 Wl'i: 101M ROY eLK

'''I~' 101M les)

\VA

~~
RD

DATA

STANDARD

j,. MEMORY

L ADDR (CS)

Y
(16)

~ elK

r-l- t- RESET

101M (es)

\VA

RB

DATA

STANDARD
I/O

ADDR

0DI 1 1 v"
v"
Vee

I/O POR TS.
lS

B

Figure 9. MCS-S5® System (Using Standard Memories)

2-16

~

~

.

I
I.
I

CLKRS~RDY

-- vee

Vee

Vee

808SAH/808SAH-2/808SAH-1

As in the 8080, the READY line is used to extend the
read and write pulse lengths so that the 8085AH can
be used with slow memory. HOLD causes the CPU to
relinquish the bus when it is through with it by float­
ing the Address and Data Buses.

SYSTEM INTERFACE

The 8085AH family includes memory component~,
which are directly compatible to the 8085AH cpu. For
example, a system consisting of the three chips,
8085AH, 8156H, and 8755A will have the following
features:

• 2K Bytes EPROM
• 256 Bytes RAM
• 1 Timer/Counter
• 4 8-bit I/O Ports
• 1 6-bit I/O Port
• 4 Interrupt Levels
• Serial In/Serial Out Ports

This minimum system, using the standard I/O tech­
nique is as shown in Figure 7.

In addition to standard I/O, the memory mapped I/O
offers an efficient I/O addressing technique. With
this technique, an area of memory address space is
assigned for I/O address, thereby, using the memory
address for I/O manipulation. Figure 8 shows the
system configuration of Memory Mapped I/O using
8085AH.

The 8085AH CPU can also interface with the standard
memory that does not have the multiplexed address/
data bus. It will require a simple 8-bit latch as shown in
Figure 9.

2-17

riD~ TTl
TRAP

x, x, RESET !N
HOLD f--- AST75 HLDA f-- RST6,5

8085AH
SOD t-- RST5,5 SlOt-- INTR s,t-

RESET - TrilTA
ADOR/ OUT sor-

ADOR DATA ALE AD WR IO/M ROY elK

v" v"
181 IBI

IH- ~ POR:~
WR fOV _ PORT (8)
RD 8156H B

ALE PORT~
DATAl C (6)

ADDR

IN
101M TIMER -

~t-r- RESET QUlt--

'----
.---

tOW

AD

ALE

~ PORT

l+- EE A

{';= .A
A8-10

V 8755A
DATA!
ADDR

101M PORT ~ ~+- '- RESET B

-- ROY V"

>--- CCK 16R-l

t
Vss Vee Voo PROG

V"

V"

V

"NOTE OPTIONAL CONNECTION

Figure 7. 8085AH Minimum System (Standard I/O
Technique)

8085AH!80&5AH-2!8085AH-1

BASIC SYSTEM TIMING

The 8085AH has a multiplexed Data Bus. ALE is used
as a strobe to sample the lower 8-bits of address on
the Data Bus. Figure 10 shows an instruction fetch,
memory read and I/O write cycle (as would occur
during processing of the OUT instruction). Note that
during the I/O write and read cycle that the I/O port
address is copied on both the upper and lower half
of the address.

There are seven possible types of machine cycles.
Which of these seven takes place is defined by the
status of the three status lines (101M, S1, So) and the
three control signals (RD, WR, and INTA). (See Table
3.) The status lines can be used as advanced con~
trois (for device selection, for example), .since they
become active at the T1 state, at the outset of each
machine cycle. Control lines RD and WR become
active later, at the time when the transfer of data is to
take place, so are used as command lines.

A machine cycle normally consists of three T states,
with the exception of OPCODE FETCH, which nor­
mally has either four or six T states (unless WAIT or
HOLD states are forced by the receipt of READY or
HOLD inputs). Any T state must be one of ten
possible states, shown in Table 4.

PCH (HIGH ORDER ADDRESS)

PC, ~ ___ _

(LOW ORDER DATA FROM
ADDRESS) MEMORY

(INSTRUCTION)
ALE

WR

101M

STATUS

Table 3. 8085AH Machine Cycle Chart

MACHINE CYCLE
STATUS CONTROL

101M S1 SO RD WR

OPCODE FETCH 10FI 0 1 1 0 1
MEMORY READ IMRI 0 1 0 0 1
MEMORY WRITE IMWI 0 0 1 1 0
I/O READ IIOR) 1 1 0 0 1
110 WRITE IIOWI 1 0 1 1 0
ACKNOWLEDGE
OF INTR IINAI 1 1 1 1 1

BUSIDLE IBII DAD 0 1 0 1 1
ACK OF
RST,TRAP 1 1 1 1 1

HALT TS 0 0 TS TS

Table 4, 8085AH Machine State Chart

Machme
State 81,SO

T,

T2

TWAIT

T3

T,

T5

T6

TRESET

THALT

THOLD

0= LogiC "0"

1'" LogiC "'"

X

X

X

X

1

1

1

X

0

X

Status & Buses

101M As-A15 ADo-AD7

X X X

X X X

X X • X

X X X

o t X TS

o t ·X TS

0' X TS

TS

I

TS TS

TS TS TS'

TS TS TS

TS = High Impedance
x = Unspecified

Control

Ro,WR iNTA ALE

1 1 l'

X X 0

X X 0

X X 0

1 1 0

1 1 0

1 1 0

TS 1 0

TS 1 0

TS 1 0

.. ALE not generated during 2nd and 3rd machine cycles of DAD instruction

t 101M = 1 dUring T4 - T6 of INA machine cycle

10 (READ) 01 WRITE 11

Figure 10. 8085AH Basic System Timing

2-18

INTA

1
1
1
1
1

0
1

1

1

8085AH/8085AH-2/8085AH-1

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias O°C to 70°C
Storage Temperature -65°C to +150°C
Voltage on Any Pin

With Respect to Ground -0.5V to +7V
Power Dissipation 1.5 Watt

-D.C. CHARACTERISTICS

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

8085AH,8085AH-2: (TA = O°C to 70°C, Vee = 5V ±10%, VSS =OV; unless otherwise specified)'
8085AH-1: (TA = O°C to 70°C, Vee = 5V ±5%, VSS = OV; unless otherwise specified)

Symbol Parameter Min. Max.

VIL Input low Voltage -0.5 +0.8

VIH Input High Voltage 2.0 Vee +0.5

VOL Output low Voltage 0.45

VOH Output High Voltage 2.4

135

lee Power Supply Current
200

IlL Input leakage ±10

ILO Output leakage ±10

VILR Input low level, RESET -0.5 +0.8

VIHR Input High level, RESET 2.4 Vee +0.5

VHY Hysteresis, RESET 0.15

A.C. CHARACTERISTICS
8085AH,8085AH-2: (TA = O°C to 70°C, Vee = 5V ±10%, VSS = OV)'
8085AH-1: (TA = O°C to 70°C, Vee = 5V ±5%, VSS = OV)

8085AH[21

Symbol Parameter (Final)

Min. Max.

teye ClK Cycle Period 320 2000

t1 ClK low Time (Standard ClK loading) 80

t2 ClK High Time (Standard ClK loading) 120

tr , tf ClK Rise and Fall Time 30

tXKR X1 Rising to ClK Rising 20 120

tXKF X1 Rising to ClK Falling 20 150

tAe Aa-15 Valid to leading Edge of ControPI 270

tAeL AO-7 Valid to leading Edge of Control 240

tAD AO-15 Valid to Valid Data In 575

tAFR
Address Float After leading Edge of

0
READ (INTA)

tAL AS-15 Valid Before Trailing Edge of ALE [11 115

'Nole: For Extended Temperature EXPRESS use MS085AH Electricals Parameters.

2-19

Units Test Conditions

V

V

V IOL = 2mA

V IOH = -400/LA

rnA 8085AH, 8085AH-2

rnA 8085AH-1 (Preliminary)

/LA 0,,;; VIN ,,;; Vee

Ji,A 0.45V ,,;; VOUT ,,;; Vee

V

V

V

8085AH-2[21 8085AH-1
(Final) (Preliminary) Units

Min. Max. Min. Max.

200 2000 167 2000 ns

40 20 ns

70 50 ns

30 30 ns

20 100 20 100 ns

20 110 20 110 ns

115 70 ns

115 60 ns

350 225 ns

0 0 ns

50 25 ns

8085AH/8085AH-2!8085AH-1

A.C. CHARACTERISTICS (Continued)

8085AH[21 8085AH.2[21 8085AH·1

Symbol Parameter
(Final) (Final) (Preliminary)

Units
Min. Max. Min. Max. Min. Max.

tAll AO-7 Valid Before Trailing Edge of ALE 90 50 25 ns

tARY READY Valid from Address Valid 220 100 40 ns

tCA Address (Aa-1S) Valid After Control 120 60 30 ns

tcc
Width of Control Low (RD, WR, INTA)

400 230 150 ns
Edge of ALE

tCl
Trailing Edge of Control to Leading Edge

50 25 0 ns
of ALE

tow Data Valid to Trailing Edge of WRITE 420 230 140 ns

tHABE HLDA to Bus Enable 210 150 150 ns

tHABF Bus Float After HLDA 210 150 150 ns

tHACK HLDA Valid to Trailing Edge of CLK 110 40 0 ns

tHOH HOLD Hold Time 0 0 0 ns

tHOS HOLD Setup Time to Trailing Edge of CLK 170 120 120 ns

tlNH INTR Hold Time 0 0 0 ns

tiNS
INTR, RST, and TRAP Setup Time to 160 150 150 ns
Falling Edge of CLK

tLA Address Hold Time After ALE 100 50 20 ns

tlC
Trailing Edge of ALE to Leading Edge

130 60 25 ns
of Control

tlCK ALE Low During CLK High 100 50 15 ns

tLOR ALE to Valid Data During Read 460 270 175 ns

tLOW ALE to Valid Data During Write 200 140 110 ns

tll ALE Width 140 80 50 ns

tlRY ALE to READY Stable 110 30 10 ns

tRAE
Trailing Edge of READ to Re-Enabling

150 90 50 ns
of Address

tRO READ (or INTA) to Valid Data 300 150 75 ns

tRY
Control Trailing Edge to Leading Edge

400 220 160 ns
of Next Control

tROH Data Hold Time After READ iN'i'A 0 0 0 ns

tRYH READY Hold Time 0 0 5 ns

tRYS
READY Setup Time to ~eading Edge

110 100 100 ns
of CLK

two Data Valid After Trailing Edge of WRITE 100 60 30 ns

tWOl LEADING Edge of WRITE to Data Valid 40 20 30 ns

2-20

inter 8085AH/8085AH-2/8085AH-1

NOTES:
1. As-A'5 address Specs apply IO/M, So, and S, except Aa-A'5

are undefined dUring T4-Ts of OF cycle whereas IO/M, SO, and
S, are stable.

3. For all output timing where CL 1150 pF use the following
correction factors:

25 pF '" CL < 150 pF: -0.10 ns/pF
150 pF < CL '" 300 pF: +0.30 ns/pF

2. Test Conditions; tCYC = 320 ns (8085AH)/200 ns (8085AH-2);/
167 ns (8085AH-1); CL = 150 pF.

4. Output timings are measured with purely capacitive load.
5. To calculate timing specifications at other values of tCYC use

Table 5.

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT

DEVICE
UNDER ' '}CC_ 15O PF TEST

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND 0 45V FOR
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC 1
AND 08V FOR A LOGIC 0

-::-

Cl=150pF
CL INCLUDES JIG CAPACITANCE

Table 5. Bus Timing Specification as a TCYC Dependent

Symbol 8085AH 8085AH-2 8085AH-1

tAL (1/2) T - 45 (1/2) T - 50 (1/2) T - 58

tlA (1/2) T - 60 (1/2)T - 50 (1/2) T - 63

tll (1/2) T - 20 (1/2) T - 20 (1/2) T - 33

tlCK (1/2) T - 60 (1/2) T - 50 (1/2) T - 68

tlC (1/2) T - 30 (1/2) T - 40 (1/2) T - 58

tAD (5/2 + N) T - 225 (5/2 + N)T - 150 (5/2 + N)T -192

tRD (3/2 + N)T -180 (3/2 + N)T - 150 (3/2 + N)T -175

tRAE (1/2)T - 10 (1/2) T - 10 (1/2)T - 33

tCA (1/2) T - 40 (1/2) T - 40 (1/2) T - 53

tDW (3/2 + N) T - 60 (3/2 + N) T - 70 (3/2 + N)T -110

tWD (1/2) T - 60 (1/2) T - 40 (1/2) T - 53

tcc (3/2 + N) T - 80 (3/2 + N) T - 70 (3/2 + N)T - 100

tCl (1/2)T - 110 (1/2) T - 75 (1/2) T - 83

tARY (3/2) T - 260 (3/2) T - 200 (3/2) T - 210

tHACK (1/2) T - 50 (1/2) T - 60 (1/2) T - 83

tHABF (1/2) T + 50 (1/2) T + 50 (1/2) T + 67

tHABE (1/2) T + 50 (1/2) T + 50 (1/2) T + 67

tAC (2/2) T - 50 (2/2) T - 85 (2/2) T - 97

t1 (1/2) T - 80 (1/2) T - 60 (1/2)T - 63

t2 (1/2) T - 40 (1/2) T - 30 (1/2) T - 33

tRY (3/2) T - 80 (3/2) T- 80 (3/2) T - 90

tLDR (4/2) T - 180 (4/2) T - 130 (4/2) T - 159

NOTE: N IS equal to the total WAIT states. T = tCyc.

2-21

Minimum

Minimum

Minimum

Minimum

Minimum

Maximum

Maximum

Minimum

Minimum

Minimum

Minimum

Minimum

Minimum

Maximum

Minimum

Maximum

Maximum

Minimum

Minimum

Minimum

Minimum

Maximum

inter SOS5AH/SOS5AH-2/S0SSAH-'

WAVEFORMS (Continued)

READ OPERATION WITH WAIT CYCLE (TYPICAL) - SAME READY TIMING APPLIES
TO WRITE

T, T, TWAIT T,

CLK

tCA

As A,s

~~--+---------+---------~I~----------+-~~----

ALE

READY

NOTE 1 READY MUST REMAIN STABLE DURING SETUP AND HOLD TIMES

INTERRUPT AND HOLD

1------ BUS FLOATING" ------1

~--------------t-----~----------------~

HOLD

HLDA

"101M IS ALSO FLOATING DURING THIS TIME

2-22

inter 8085AH/8085AH-2/8085AH-1

Table 6. Instruction Set Summary

I Instruction Code Operations
Mnemonic 07 06 05 04 03 02 0, 00 Description

Instruction Code Operations
Mnemonie 0, 06 05 04 D3 D2 0, 00 Description

MOVE, LOAD, AND STORE CZ 1 1 0 0 1 1 0 0 Call on zero

MOVr1 r2 0 1 D D D S S S Move register to register
MOVMr 0 1 1 1 0 S S S Move register to memory
MOVrM 0 1 D D D 1 1 0 Move memory to register
MVI r 0 0 D D D 1 1 0 Move Immediate register
MVIM 0 0 1 1 0 1 1 0 Move Immediate memory
LXI B 0 0 0 0 0 0 0 1 Load Immediate register

l'alrB&C

CNZ 1 1 0 0 0 1 0 0 Call on no zero
CP 1 1 1 1 0 1 0 0 Call on positive
CM 1 1 1 1 1 1 0 0 Call on minus
CPE 1 1 1 0 1 1 0 0 Call on panty even
CPO 1 1 1 0 0 1 0 0 Call onpantv odd
RETURN
RET 1 1 0 0 1 0 0 1 Return

LXI D 0 0 0 1 0 0 0 1 Load Immediate register
PalrD&E

RC 1 1 0 1 1 0 0 0 Return on carry
RNC 1 1 0 1 0 0 0 0 Return on no carry

LXI H 0 0 1 0 0 0 0 1 Load Immediate register
PalrH&L

STAX B 0 0 0 0 0 0 1 0 Store A Indirect
STAXD 0 0 0 1 0 0 1 0 Store A indirect
LDAX B 0 0 0 0 1 0 1 0 Load A indirect
LDAX D 0 0 0 1 1 0 1 0 Load A I nd I rect

RZ 1 1 0 0 1 0 0 0 Return on zero
RNZ 1 1 0 0 0 0 0 0 Return on no zero
RP 1 1 1 1 0 0 0 0 Retu rn on positive
RM 1 1 1 1 1 0 0 0 Return on minus
RPE 1 1 1 0 1 0 0 0 Return on panty even
RPO 1 1 1 0 0 0 0 0 Return en panty odd

STA 0 0 1 1 0 0 1 0 Store A direct
LDA 0 0 1 1 1 0 1 0 Load A direct

RESTART
RST 1 1 A A A 1 1 1 Restart

SHLD 0 0 1 0 0 0 1 0 Store H & L direct INPUT/OUTPUT

LHLD 0 0 1 0 1 0 1 0 Load H & L direct
XCHG 1 1 1 0 1 0 1 1 Exchange D & E, H & L

IN I ~ 1 0 1 1 0 1 1 Input
OUT 1 0 1 0 0 1 1 Output

Registers
STACK OPS
PUSH B 1 1 0 0 0 1 0 1 Push register Pair B &

C on stack
PUSH D 1 1 0 1 0 1 0 1 Push register Pair D &

E on stack

INCREMENT AND DECREMENT
INR r 0 0 D D D 1 0 0 Increment register
DCR r 0 0 D D D 1 0 1 Decrement register
INR M 0 0 1 1 0 1 0 0 Increment memory
DCR M 0 0 1 1 0 1 0 1 Decrement memory
INX B 0 0 0 0 0 0 1 1 Increment B & C

PUSH H 1 1 1 0 0 1 0 1 Push register Pair H &
L on stack

registers
INX D 0 0 0 1 0 0 1 1 Increment 0 & E

PUSH PSW 1 1 1 1 0 1 0 1 Push A and Flags
on stack

registers
INX H 0 0 1 0 0 0 1 1 Increment H & L

POPB 1 1 0 0 0 0 0 1 Pop register Pair B &
C off stack

registers
DCX B 0 0 0 0 1 0 1 1 Decrement 8 & C

POP D 1 1 0 1 0 0 0 1 Pop register Pair 0 &
E off stack

DCX D 0 0 0 1 1 0 1 1 Decrement 0 & E
DCX H 0 0 1 0 1 0 1 1 Decrement H & L

POP H 1 1 1 0 0 0 0 1 Pop register Pair H &
L off stack

ADD
ADD r 1 0 0 0 0 S S S Add register to A

POPPSW 1 1 1 1 0 0 0 1 Pop A and Flags
off stack

XTHL 1 1 1 0 0 0 1 1 Exchange top of
stack, H & L

SPHL 1 1 1 1 1 0 0 1 H & L to stack pOinter
LXI SP 0 0 1 1 0 0 0 1 Load Immediate stack

ADC r 1 0 0 0 1 S S S Add register to A
with carry

ADDM 1 0 C 0 0 1 1 0 Add memory to A
ADCM 1 0 0 0 1 1 1 0 Add memory to A

with carry
ADI 1 1 0 0 0 1 1 0 Add Immediate to A

pomter
INX SP 0 0 1 1 0 0 1 1 Increment stack pOinter
DCX SP 0 0 1 1 1 0 1 1 Decrement stack

ralnter
JUMP
JMP 1 1 0 0 0 0 1 1 Jump unconditional
JC 1 1 0 1 1 0 1 0 Jump on carry
JNC 1 1 0 1 0 0 1 0 Jump on no carry
JZ 1 1 0 0 1 0 1 0 Jump on zero
JNZ 1 1 0 0 0 0 1 0 Jump on no zero
JP 1 1 1 1 0 0 1 0 Jump on positive
JM 1 1 1 1 1 0 1 0 Jump on minus
JPE 1 1 1 0 1 0 1 0 Jump on panty even
JPO 1 1 1 0 0 0 1 0 Jump on panty odd
PCHL 1 1 1 0 1 0 0 1 H & L to program

counter

ACI 1 1 0 0 1 1 1 0 Add Immediate to A
with carry

DAD B 0 0 0 0 1 0 0 1 AddB&CtoH&L
DAD D 0 0 0 1 1 0 0 1 AddD&EtoH&L
DADH 0 0 1 0 1 0 0 1 AddH&LtoH&L
DADSP 0 0 1 1 1 0 0 1 Add stack pOinter to

H&L
SUBTRACT
SUB r 1 0 0 1 0 S S S Subtract regIster

from A
SBB r 1 0 0 1 1 S S S Subtract register from

A with borrow
SUB M 1 0 0 1 0 1 1 0 Subtract memory

from A
SBBM 1 0 0 1 1 1 1 0 Subtract memory from

A With borrow

CALL SUI 1 1 0 1 0 1 1 0 Subtract Immediate

CALL 1 1 0 0 1 1 0 1 Call unconditIonal from A

CC 1 1 0 1 1 1 0 0 Call on carry SBI 1 1 0 1 1 1 1 0 Subtract Immediate
CNC 1 1 0 1 0 1 0 0 Call on no carry from A With borrow

2-23

8085AH/8085AH-2/8085AH-1

Table 6. Instruction Set Summary (Continued)

Instruction Code Operations Instruction Code~ Operations
Mnemonic 0-, O~ 0 5 04 ~ 02 0, DO Description Mnemonic 07 D6 D5 D4 D3 D2 D, Do Description

LOGICAL SPECIALS
ANAr 1 0 1 0 0 S S S And register with A CMA 0 0 1 0 1 1 1 1 Complement
XRA r 1 0 1 0 1 S S S Exclusive OR register A

with A STC 0 0 1 1 0 1 1 1 Set carry
ORA r 1 0 1 1 0 S S S OR register With A CMC 0 0 1 1 1 1 1 1 Complement
CMPr 1 0 1 1 1 S S S Compare register With A carry
ANAM 1 0 1 0 0 1 1 0 And memory With A DAA 0 0 1 0 0 1 1 1 Decimal adjust A
XRAM 1 0 1 0 1 1 1 0 Exclusive OR memory CONTROL

With A EI 1 1 1 1 1 0 1 1 Enable Interrupts
DRAM 1 0 1 1 0 1 1 0 OR memory With A 01 1 1 1 1 0 0 1 1 Disable Interrupt
CMPM 1 0 1 1 1 1 1 0 Compare NOP 0 0 0 0 0 0 0 0 No~operatlon

memory With A HLT 0 1 1 1 0 1 1 0 Halt
ANI 1 1 1 0 0 1 1 0 And Immediate With A
XRI 1 1 1 0 1 1 1 0 Exclusive OR Immediate

With A
ORI 1 1 1 1 0 1 1 0 OR immediate With A

NEW BOB5A]NSTRUCTIONS
RIM 0 0 1 0 0 0 0 0 Read Interrupt Mask
SIM 0 0 1 1 0 0 0 0 Set Interrupt Mask

CPI 1 I I I I I I 0 Compare Immediate
With A

ROTATE
RLC 0 0 0 0 0 I I I Rotate A left

RRC 0 0 0 0 1 I 1 1 Rolate A right
RAL 0 0 0 I 0 I 1 1 Rotate A left through

carry
RAR 0 0 0 1 1 1 1 1 Rotate A right through

carry

NOTES:
1. DOS or SSS' BODO, COOl, 0010, EO'", H 100, L 101, Memory 110, A 111
2. Two possible cycle times (6(12) indicate instruction cycles dependent on conditIOn flags

"All mnemonics cOPYrighted ©Intel Corporation 1976

2-24

intJ
WAVEFORMS

CLOCK

X1 INPUT

elK
OUTPUT

READ

WRITE

HOLD

elK \

HOLD

HLDA

8085AH/8085AH·2/8085AH·1

tr _____ - t2 _____ 1 __ tf

�------- teve ------~I
---- tXKf --

1 T, 1 T, 1 T3 I T,

eLK \, / } r---\ / \ I

i- tlCK -
I. leA_

As-A15)! ADDRESS I
_I) ''AE -~--- ~ -- ----- - - t AD - -: I RDH ___ ...-.

ADo-AD 7) ADDRESS 7/11 11111) DATA IN I' 1,--
1'----

[--.l lL -- I- 'LA - ! I
tAFR ___ ..

1'''11 ALE tLDR--~

-..-. I Al --. ~- _I'D-~
RD/INTA

_---ICC I -- -tLC --_I
I----- 'AC ---I

I T, I T,
I

T3 I I T,

eLK ~ \ / j

r-'''K-I
As-A15) ADDRESS X

r- tLDW
-

r-'OA-I
ADo-AD7) ADDRESS) DATA OUT X

1-~tLL-1 _______ tLA-~ 'ow . ~'wo-I
ALE - f--tWDL

_ I
Al

-

_______ tLc ~ 'CC -WR

~'AC =1 _tCL -

T, T3 THOlD T HOLD

/ \ j I \ \

:~ t 1-
"l .. t HOS " I,HDH r- t HACK--

t '\
t HABF -

1- IHABE-H

BUS (ADDRESS, CONTROLS) >-1
I!

2-25

T,

•
•
•
•
•
•
•

8155H/8156H/8155H-2/8156H-2
2048-BIT STATIC HMOS RAM
WITH 1/0 PORTS AND TIMER

Single +5V Power Supply with 10% • 1 Programmable 6·Bit I/O Port
Voltage Margins • Programmable 14·Blt Binary Counter/
30% Lower Power Consumption than Timer
the 8155 and 8156 • Compatible with 8085AH, 8085A and
100% Compatible with 8155 and 8156 8088 CPU
256 Word x 8 Bits • Multiplexed Address and Data Bus
Completely Static Operation • Available in EXPRESS
Internal Address Latch - Standard Temperature Range
2 Programmable 8·Blt I/O Ports - Extended Temperature Range I

The Intel$ 8155H and 8156H are RAM and 1/0 chips implemented in N-Channel, depletion load, silicon gate technology
(HMOS), to be used in the 8085AH and 8088 microprocessor systems. The RAM portion is designed with 2048 static cells
organized as 256 x 8. They have a maximum access time of 400 ns to permit use with no wait states in 8085AH CPU. The
8155H-2 and 8156H-2 have maximum access times of 33b ns for use with the 8085AH-2 and the 5 MHz 8088 CPU.

The I/O portion consists of three general purpose I/O ports. One of the three ports can be programmed to be status
pins, thus allowing the other two ports to operate in handshake mode. .

A 14-bit programmable counter/timer is also included on chip to provide either a square wave or terminal count pulse
for the CPU system depending on timer mode.

PC3 vee

PC. PC2

101M

~
TIMER IN PC,

RESET PCo
PAo~7

PCs PB,

ADo 7 256 X 8 TIMER OUT
STATIC

101M PBs
RAM

G
CE OR CE* * PB.

pBo·, RJj PB3
ALE iNA PB2

Rll ALE PB,

G
ADo PBo

iVA
AD, PA,

PCO- 5
RESET TIMER AD2 PAs

AD3 PAs

~veel+5V)
AD. PA.

ITIMER eLK AD. PA3

TIMER OUT Vss IOV) AD. PA2

AD, PA,

'8155H/815611-2 = CE, 815811/811811-2 = CE ' Vss PAo

f

Figure 1. Block Diagram Figure 2. Pin Configuration.

Intel Corporation A •• ume. No R •• ponaibilty for the Use of Any Circuitry Other Than Circuitl")' Embodied In an Intel Product No Other CirCUit Patent Licenses a'. Implied.

© INTEL CORPORATION, 1981 2-26

inter 8155H/8156H/8155H-2/8156H-2

Table 1 Pin Description
Symbol Type Name and Function

RESET I Reset: Pulse provided by the BOB5AH to Initialize the system (connect to BOB5AH RESET OUT). Input
high on thiS line resets the chip and initializes the three 1/0 ports to Input mode The width of RESET
pulse should typically be two BOB5AH clock cycle times

ADO_7 I/O Address/Data: 3-state AddresslData lines that Interface with the CPU lower B-blt AddresslData Bus
The B-blt address is latched into the address latch inSide the 8155H/56H on the falling edge of ALE. The
address can be either for the memory section or the 1/0 sectIOn depending on the 101M Input The B-bit
data IS either written Into the chip or read from the ChiP, depending on the WR or RD Input signal.

CEorGE: I Chip Enable: On the B155H, thiS pin IS CE and IS ACTIVE LOW On the B156H, thiS pin IS CE and is
ACTIVE HIGH

RD I Read Control: Input Iowan thiS line with the Chip Enable active enables and ADo_7 buffers If 101M pin
IS low, the RAM content Will be read out to the AD bus OtherWise the content of the selected 1/0 port or
commandlstatus registers Will be read to the AD bus

WR I Write Control: Input Iowan thiS line with the Chip Enable active causes the data on the AddresslData
bus to be written to the RAM or 1/0 ports and commandlstatus register, depending on 101M

ALE I Address Latch Enable: ThiS control signal latches both the address on the ADO_7 lines and the state
of the Chip Enable and 101M Into the chip at the failing edge of ALE

101M I 1/0 Memory: Selects memory If low and 1/0 and commandlstatus registers If high

PAO-7(B) 1/0 Port A: These 8 pinS are general purpose 1i0 pinS The Inlout direciion IS selected by programming
the command register

PBO_7(B) 110 Port B: These B pinS are general purpose 1/0 pms The In/out direction IS selected by programming
the command register

PCo-s(6) I/O Port C: These 6 pinS can function as either Input port, output port, or as control Signals for PA and PB
Programming IS done through the command register When PCo- s are used as control Signals, they
Will proVide the follOWing
I;'Co - A INTR (Port A Interrupt)
PC t - ABF (Port A Buffer Full)
PC2 - A STB (Port A Strobe)
PC3 - B INTR (Port B Interrupt)
PC4 - B BF (Port B Buffer Full)
PCs - B STB (Port 8 Strobe)

TIMER IN I Timer Input: Input to the counter-timer

TIMER OUT 0 Timer Output: This output can be either a square wave or a pulse, depending on the timer mode.

Vcc Voltage: +5 volt supply

Vss Ground: Ground reference

FUNCTIONAL DESCRIPTION

The 8155H/8156H contains the follOWing:

• 2k Bit Static RAM organized as 256 x 8
• Two 8-blt I/O ports (PA & PB I and one 6-blt I/O port r PC i
• 14-blt timer-counter

The lo/Kii (IO/Memory Select I pin selects either the five
registers (Command, Status, PAO-7, PBo-7, PCO-SI or
the memory r RAM I portion

I
I
I
I
I
I
I
I
I
I
I

-

-

I
I
I
I
I
I
I
I
I
I
I

The 8-blt address on the Address/Data lines, Chip Enable
Input CE or CE, and 10iM are all latched on-chip at the
falling edge of ALE

L ____ _ _____ ~ ___ J

Figure 3_ 8155H/8156H Internal Registers

2-27

intJ 8155H/8156H/8155H-218156H-2

CE(8155H) \ V \
o R

CE(81&8H) / 1\ /

101M \ V \
,

X ADDRESS 1\ J X DATA VALID 7 V "
Al E

R

NOTE: FOR DETAILED TIMING INFORMATION, SEE FIGURE 12 AND A.C CHARACTERISTICS.

Figure 4. 8155H/8156H On-Board Memory Read/Write Cycle

PROGRAMMING OF THE
COMMAND REGISTER
The command register consists of eight latches Four
bits (0-3) define the mode of the ports, two bits 14-51
enable or disable the Interrupt from port C when It acts
as control port, and the last two bits 16-71 are forthe timer

The command register contents can be altered at any
time by using the 110 address XXXXXOOO dunng a WRITE
operation with the Chip Enable active and lo/fiil = 1 The
meaning of each bit of the command byte IS defined in
Figure 5. The contents of the command register may
never be read.

READING THE STATUS REGISTER
The status register ConSiStS of seven latches, one for each
bit, SIX 10-5) for the status of the ports and one 161 for the
status of the timer.

The status of the timer and the I/O section can be polled
by reading the Status Register (Address XXXXXOOO)
Status word format is shown in Figure 6. Note that you
may never write to the status register since the command
register shares the same I/O address and the command
register 15 selected when a wnte to that address IS Issued

2-28

76543210

ITM,ITM11IEBI'EAI pC21 PC, PB I PA I
L- ----'

0= INPUT

DEFINES PBo-7 1 = OUTPUT 1:= DEFINES PAQ., }

OO=ALT1
11"" ALT 2

DEFINES PCo-5 { 01 = AL T 3
10 = ALl 4

L--,-_____ ~:r~RL:u~RT A
L-_______ • ~:TAEBRL:U~RT B

}
t = ENABLE

0= DISABLE

r 00 = NOP _ DO NOT AFFECT COUNTER
OPERATION

01 = STOP - NOP IF TIMER HAS NOT STARTED;
STOP COUNTING IF THE TIMER IS
RUNNING

~TIMER COMMAND

10'" STOP AFTER Te - STOP IMMEDIATELY
AFTER PRESENT Te IS REACHED (NOP
IF TIMER HAS NOT STARTED)

11 = 8T ART - LOAD MODE AND CNT LENGTH
AND START IMMEDIATELY AFTER
LOADING (IF TIMER IS NOT PRESENTLY
RUNNING) IF TIMER IS RUNNING, START
THE NEW MODE AND CNT LENGTH
IMMEDIATELY AFTER PRESENT TC
IS REACHED

Figure 5. Command Register Bit Assignment

inter 8155H/8156H/8155H-2/8156H-2

AD, AD6 AD, AD, AD3 ADz AD, ADo

IXJTlME'RIIN;EI SBF IIN;RIIN;EI ~ [INIRI

I I I L PORT A INTERRUPT REQUEST L ~"'. ,"m. >"""-, (INPUT/OUTPUT)

PORT A INTERRUPT ENABLE

PORT B INTERRUPT REQUEST

PORT B BUFFER FULL/EMPTY
(INPUT/OUTPUT I

PORT B INTERRUPT ENABLED

TIMER INTERRUPT (THIS BIT
IS LATCHED HIGH WHEN
TERMINAL COUNT IS
REACHED, AND IS RESET TO
LOW UPON READING OF THE
CIS REGISTER AND BY
HARDWARE RESET)

Figure 6. Status Register Bit Assignment

INPUT/OUTPUT SECTION
The I/O section of the 8155H/8156H consists of five regis­
ters: (See Figure 7.)

• CommandlStatus Register (CIS) - Both registers are
assigned the address XXXXXOOO The CIS address
serves the dual purpose

When the CIS registers are selected during WRITE
operatIOn, a command IS written into the command
register. The contents of this register are not accessible
through the pins

When the CIS (XXXXXOOO) is selected dUring a READ
operation, the status Information of the I/O ports and
the timer becomes available on the ADo-7 lines.

• PA Register - This register can be programmed to be
either Input or output ports depending on the status of
the contents of the CIS Register. Also depending on
the command, this port can operate In either the basic
mode or the strobed mode (See timing diagram) The
I/O pins assigned in relation to this register are PAO-7
The address of this register is XXXXX001.

• PB ,Register - This register functions the same as PA
Register. The I/O PinS assigned are P80-7. The address
of this register is XXXXX010

• PC Register - This register has the address XXXXX011
and contains only 6 bits. The 6 bits can be program­
med to be either input ports, output ports or as control
signals for PA and PB by properly programming the
AD2 and AD3 bits of the CIS register.

When PCO-5 is used as a control port, 3 bits are
assigned for Port A and 3 for Port B. The first bit is an

2-29

interrupt that the 8155H sends out. The second is an
output signal indicating whether the buffer is full or
empty, and the third IS an input pin to accept a strobe
for the strobed input mode. (See Table 2.)

When the 'C' port IS programmed to either AL T3 or AL T4,
the control signals for PA and PB are initialized as follows

CONTROL INPUT MODE OUTPUT MODE

BF Low Low

INTR Low High

STB Input Control Input Control

I/O ADDRESS+
SELECTION

A7 A6 AS A4 A3 A2 A1 AO

X X X X X 0 0 0 Interval Command/Status Register

X X X X X 0 0 1 General Purpose 1.'0 Port A
X X X X X 0 1 0 General Purpose I/O Port B
X X X X X 0 1 1 Port C - General Purpose 1/0 or Control
X X X X X 1 0 0 low-Order 8 bits 01 Timer Count
X X X X X 1 0 1 High 6 bits 01 Timer Count and 2 bits

of Timer Mode

X Don't Care

t I/OAddress must be qualified by CE "" 1 (8156H) or CE "" 0 (8155H) and 101M"" 110
order to select the appropnate register

Figure 7. I/O Port and Timer Addressing Scheme

Figure 8 shows how I/O PORTS A and B are structured
within the 8155H and 8156H:

8155H/8156H
ONE BIT OF PORT A OR PORT B

NOTES

(2) SIMPLE INPUT MULTIPLEXER
(1) OUTPUT MODE }

(3) STROBED INPUT CONTROL

STO

(4) = 1 FOR OUTPUT MODE
'" 0 FOR INPUT MODE

READ PORT = (lO/M=1). (RD=O). (CE ACTIVE). (PORT ADDRESS SELECTED)
WRITE PORT = (IO/M"'1). (WR=O). ICE ACTIVE). (PORT ADDRESS SELECTED)

Figure 8. 8155H/8156H Port Functions

· 8155H/8156H/8155H-218156H-2

Table 2. Port Control Assignment

Pin ALT 1 ALT2 ALT3 ALT 4

PCO Input Port Output Port A INTR (Port A Interrupt) A INTR (Port A Interrupt)
PCl Input Port Output Port A BF (Port A Buffer Full) A BF (Port A Buffer Full)
PC2 Input Port Output Port A STB (Port A Strobe) A STB (port A Strobe)
PC3 Input Port Output Port
PC4 Input Port Output Port
PC5 Input Port Output Port

Note In the diagram that when the I/O ports are pro­
g rammed to be output ports, the contents of the output
ports can still be read by a READ oper<\.tion when appro­
priately add ressed.

The outputs olthe 8155H/8156H are "glitch-free" meaning
that you can write a "1" to a bit position that was previ­
ously "1" and the level at the output pin will not change.

Note also that the output latch is cleared when the port
enters the input mode. The output latch cannot be loaded
by writing to the port if the port is in the input mode. The
result is that each time a port mode is changed from input
to output, the output pins will go low. When the8155H/56H
is RESET, the output latches are all cleared and all 3 ports
enter the input mode.

When in the AL T 1 or AL T 2 modes, the bits of PORT C
are structured like the diagram above in the simple input
or output mode, respectively.

Reading from an input port with nothing connected to the
pins will provide unpredictable results.

Figure 9 shows how the 8155H/8156H I/O ports might be
configured in a typical MCS-85 system.

TO 8OB5AH RST INPUT

PORT A OUTPUT PORT A t
A INTR (SIGNALS DATA RECEIVED) ---t .. "."''',o,,'"''~, }

I A STB (ACKNOWL DATA RECEIVED) TO/FROM

PORT C III B STS (LOADS PORT B LATCH) PERIPHERAL

B BF (SIGNALS BUFFER IS FULL) INTERFACE"

B INTR (SIGNALS BUFFER 1
READY FOR READINGI.l

PORT B A. INPUT • TO INPUT PORT (OPTIONALI

TO BOB5AH RST INPUT

Figure 9. Example: Command Register = 00111001

Output Port B INTR (Port B Interrupt)
Output Port B BF (Port B Buffer Full)
Output Port B STB (Port B Strobe)

TIMER SECTION
The timer is a 14-bit down-counter that counts the TIMER
IN pulses and provides either a square wave or pulse
when terminal count (TC) is reached

The timer has the I/O address XXXXX100for the low order
byte of the register and the I/O address XXXXX101 for
the high order byte of the register. (See Figure 7.)

To program the timer, the COUNT LENGTH REG is loaded
first, one byte at a time, by selecting the timer addresses. Bits
0-13 of the high order count register will specify the length of
the next count and bits 14-15 of the high order register will
specify the timer output mode (see Figure 10). The value
loaded into the count length register can have any value
from 2H through 3FFFH in Bits 0-13.

6 5 4 2 0

M2 M, ! T13! T'2! T" ! T,o ! T9! Tal

II
I i

I
TIMER MODE MSB OF CNT LENGTH

6 5 4 3 2 o

LSB OF C~T LENGTH

Figure 10. Timer Format

There are four modes to choose from: M2 and Ml define
the timer mode, as shown in Figure 11.

MODE
BITS

M2 Ml

o 0

TIMER OUT WAVEFORMS

1 SINGLE
SQUARE WAVE

2 CONTINUOUS
SQUARE WAVE

3 SINGLE

START TERMINAL (TERMINAL)
COUNT COUNT COUNT

~ _____ l ____ _

PULSE ON,
TERMINAL COUNT

v-----------

4. CONTINUOUS
PULSES u

Figure 11. Timer Modes

2-30

8155H/8156H/8155H-2/8156H-2

Bits 6-7 (Tfv12 and TM1) of command register contents
are used to start and stop the counter. There are four
commands to choose from:

TM2 TM1

o 0 NOP - Do not affect counter operation.

o STOP - NOP if timer has not started;
stop counting if the timer is running

o STOP AFTER TC - Stop Immediately
after present TC is reached (NOP if timer
has not started)

START - Load mode and CNT length
and start immediately after loading (If
timer is not presently running). If timer
is running, start the new mode and CNT
length immediately after present TC is
reached.

Note that while the counter IS counting, you may load a
new count and mode into the count length registers
Before the new count and mode will be used by the
counter, you must issue a START command to the
counter. This applies even though you may only want to
change the count and use the prevIous mode.

In case of an odd-numbered count, the first half-cycle
of the squarewave output, which IS high, is one count
longer than the second (low) half-cycle, as shown In

Figure 12.

NOTE 5 AND 4 REFER TO THE NUMBER OJ" CLOCKS IN THAT TIME PERIOD

Figure 12. Asymmetrical Square-Wave Output
Resulting from Count of 9

2-31

The counter in the 8155H is not initialized to any particular
mode or count when hardware RESET occurs, but RESET
does stop the counting. Therefore, counting cannot begin
following RESET until a START command is issued via the
CIS register.

Please note that the timer circuit on the 8155H/8156H chip
IS designed to be a square-wave timer, not an event
counter. To achieve thiS, it counts down by twos tWice
In completing one cycle. Thus, its registers do not con­
tain values directly representing the number of TIMER IN
pulses received. You cannot load an initial value of 1 into
the count register and cause the timer to operate, as its
terminal count value IS 10 (binary) or 2 (decimal). (For
the detection of single pulses, it is suggested that one
of the hardware interrupt pins on the 8085AH be used.)
After the timer has started counting down, the values
residing in the count registers can be used to calculate
the actual number of TIMER IN pulses required to com­
plete the timer cycle if desired. To obtain the remaining
count, perform the following operations in order:

Stop the count

2. Read In the 16-blt value from the count length registers

3. Reset the upper two mode bits

4. Reset the carry and rotate right one position all 16 bits
through carry

5. If carry IS set, add 1/2 of the full original count (1/2 full
count - 1 if full count is odd).

Note: If you started with an odd count and you read the
count length register before the third count pulse occurs,
you will not be able to discern whether one or two counts
has occurred. Regardless of this, the 8155H/56H always
counts out the right number of pulses in generating the
TIMER OUT waveforms.

inter,. 8155H/8156H/8155H-2/8156H-2

808SA MINIMUM SYSTEM CONFIGURATION

Figure 13a shows a minimum system using three chips,
containing:

• 256 Bytes RAM
• 2K Bytes EPROM
• 381/0 Pins
• 1 Interval Ti mer
• 4 Interrupt Levels

8085 MINIMUM SYSTEM CONFIGURATION

A8-15

ADO-1

" ALE I. C>
8085AH RD

~

101M

elK

RESET OUT

READY

TIMER
RESET IN WR AD ALE eE ..; 7- 101M

I
'--7l LATCHES

T6~~R_ B -'-- I
I

CONTROL 266)(8
RAM

, 815611 - t

~cPcP~
B B B

~
f-----

.t---
t---
f-----
f-----
f-----

7-~~~

I

;.

7~D 0-7
CE '~I ALE iIDliOil

8755A [EPROM + I/0j

B B
Figure 13a. 8085AH Minimum System Configuration (Memory Mapped 1/0)

2-32

r...

V

Vee

I=lKRS ROY

.

inter 8155H/8156H/8155H-218156H-2

8088 FIVE CHIP SYSTEM • 381/0 Pins

Figure 13b shows a five chip system containing: • 1 Interval Timer

• 1.2SK Bytes RAM • 2 Interrupt Levels

• 2K Bytes EPROM

/} 0- Vss Vee

I I
II+- CE PORr~

~+---_VIR ~
__ Rij PORT (8)

815614-2 8

ALE PORT~
DATAl C (6)

-,/ ADDR
IN_

101M TIMER

RESET
OUT f--

Aa-A19 ~OoR ~ lOW

Rij

~ ADDRIDATA h ClKADo - AD7 ALE pV - J~ PORT
CE A

8088 ~ V
AS_10

,- READY 8755A-2

MN/MX I--Vee
DATAl

rOl
--y ADDR

ALE l- I-
101M PORT pV RST lID Rij l- f-+- ~- RESET 8

X, X,
ClK \vR l- I READY Vee

READY I-- 101M I- iORJ

RES .--- I-
8284 111 LROG

RESET I- Vss Vee Voo

RCYl Vee

VIR

.... " Rij

CD
CE1 8185-2
ALE

\1- CS.

15-1- CE,

II-I- As.Ag

V ADo_7
--y

J
Vss

J
Vee

Figure l3b. 8088 Five Chip System Configuration

2-33

8155H/8156H/8155H-2/8156H-2

ABSOLUTE MAXIMUM RATINGS*

TemperatureUnderBlas OOeto+70oe
Storage Temperature ; -65°C to +150oe
Voltage on Any Pin

With Respect to Ground -0.5V to +7V
Power Dissipation 1 5W

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this
specificatIOn is not implied. Exposure to absolute maxi­
mum rating conditions for extended periods may affect
device reliability.

D.C. CHARACTERISTICS (TA = ooe to 70°C, Vee = 5V ::!: 10%)

Symbol Parameter Min. Max. Units Test Conditions

VIL Input Low Voltage -0.5 0.8 V

VIH Input High Voltage 2.0 Vee+{)·5 V

VOL Output Low Voltage 0.45 V IOL = 2mA

VOH Output High Voltage 2.4 V IOH = -400!.£A

IlL I n put Lea kage ±10 !.£A OV,s; VIN ,s; Vee

ILO Output Leakage Current ±1O !.£A 0.45V <; VOUT <; Vee

lec Vee Supply Current 125 mA

IIL(CE) Chip Enable Leakage
815"5H +100 !J.A OV,s; VIN,s; Vee
8156H -100 !J.A

A.C. CHARACTERISTICS (TA = ooe to 70°C, Vee = 5V ±10%)

8155H/8156H 8155H-2/8156H-2

Symbol Parameter Min. Max. Min. Max. Units

tAL Address to Latch Set Up Time 50 30 ns

tLA Address Hold Time after Latch 80 30 ns

tLe Latch to R EADIWR ITE Control 100 40 ns

tAO Valid Data Out Delay from READ Control 170 140 ns

tLO Latch to Data Out Valid 350 270 ns

tAD Address Stable to Data Out Valid 400 330 ns

tlL Latch Enable Width 100 / 70 ns

tROF Data Bus Float After READ 0 100 0 80 ns

tCl READ/WRITE Control to Latch Enable 20 10 ns

tee R EADIWR ITE Control Width 250 200 ns

tow Data In to WRITE Set Up Time 150 100 ns

two Data In Hold Time After WR ITE 25 25 ns

tRV Recovery Time Between Controls 300 200 ns

twp WR ITE to Port Output 400 300 ns

tpA Port Input Setup Time 70 50 ns

tAP Port Input Hold Time 50 10 ns

tSBF Strobe to Buffer Full 400 300 ns

tss Strobe Width 200 150 ns

tABE READ to Buffer Empty 400 300 ns

tSI Strobe to I NTR On 400 300 ns

2-34

8155H/8156H/8155H-2/8156H-2

A.C. CHARACTERISTICS (Continued) (TA = O°C to 70°C, Vee = 5V ±10%)

8155H/8156H 8155H-2/8156H-2

Symbol Parameter Min. Max. Min. Max. Units

tRDI READ to INTR Off 400 300 ns

tpss Port Setup Time to Strobe Strobe 50 0 ns

tpHS Port Hold Time After Strobe 120 100 ns

tSBE Strobe to Buffer Empty 400 300 ns

tWBF WR ITE to Buffer Full 400 300 ns

tWI WRITE to INTR Off 400 300 ns

tTL TIMER-IN to TIMER-OUT Low 400 300 ns

tTH TIMER-IN to TIMER-OUT High 400 300 ns

tRDE Data Bus Enable from READ Control 10 10 ns

t, TIMER-IN Low Time 80 40 ns

t2 TIMER-IN High Time 120 70 ns

tWT WRITE to TIMER-IN 360 200 ns
(for writes which start counting)

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT

DEVICE
UNDER

ifcLe1soPF
rEST

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND 0 45V FOR
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC 1
AND a BV FOR A LOGIC 0

WAVEFORMS

READ
CE (B155H I

OR

CE (8156H I ~

101M \

7 1< ADDRESS

'AD

-tAL - --'LA--

AL E / \
--'LL--

RD

-=
CL "" 150pF
CL INCLUDES JIG CAPACITANCE

--""-

1\

V \

2 DATA VALID ~

I
...,tRDE _

I-tRDF-

\--'RD-- l/

---tLC - --'CL-
r-----'CC- _tRV -

'LO

2-35

1"-

8155H/8156H/8155H-2/8156H-2

WAVEFORMS (Continued)

WRITE

CE(8155H) \ V \
OR

CE(8156H) / ~I\ /

101M \ V \ ~

ADO_7 ~ ADDRESS K ~ DATA VALID K
~tAL- -tLA - ~tDW~ --tCL -

ALE / ~\ V
~tLL- ~ 'LC -------:1· ~tWD-

WR

TIMER IN

STROBED INPUT

BF

INTR

INPUT DATA
FROM PORT

tSBF

/

\~~-'~~

---- tpss t pHS

X ~

2-36

1I
1----------- tee ----------+-

'WT
I~ tRY ------------

'RBE--J

\ "'i /

\-) / j \

\-

8155H/8156H/8155H-2/8156H-2

WAVEFORMS (Continued)

STROBED OUTPUT

/ \ -3 BF

STROBE ~K. /
tWBF

INTR ~ /
'WI

I j
) WR \ If-

~ I--twP

OUTPUT DATA
TO PORT

BASIC INPUT

'ee !._! ___ "_' ;~'I,
INPUT ~-----------K=

RD

DATA BUS' ~-= = = = : ~'-________ _
TIMER OUTPUT COUNTDOWN FROM 5 TO 1

TIMER IN

TIMER our
(PULSE)

'T'l"MERouT
(SQUARE WAVE)

LOAD COUNTER FROM CLR _I
I 2 I 1

" {NOTE 1) "
~ ___ J

" (NOTE 1) " ~ ________ J

NOTE 1 THE TIMER OUTPUT IS PERIODIC IF IN AN AUTOMATIC
RELOAD MODE IM1 MODE BIT = 1)

~

BASIC OUTPUT

*DATA BUS TIMING IS SHOWN IN FIGURE 7

RELOAD COUNTER FROM CLR

2 I ,

2-37

~~

inter
8185/8185-2

1024 x 8-BIT STATIC RAM FOR MCS-85@

• Multiplexed Address and Data Bus

• Directly Compatible with 8085AH
and iAPX 88 Microprocessors

• Low Operating Power Dissipation

• Low Standby Power Dissipation

• Single +5V Supply

• High Density 18-Pin Package

The Intel@ 8185 is an 8192-bit static random access memory (RAM) organized as 1024 words by 8-bits using N-channel
Silicon-Gate MOS technology. The multiplexed address and data bus allows the 8185 to interface directly to the 8085A and
iAPX 88 microprocessors to provide a maximum level of system integration. •

The low standby power dissipation minimizes system power requirements when the 8185 is disabled.

The 8185-2 is a high-speed selected version of the 8185 that is compatible with the 5 MHz 8085AH-2 and the 5 MHz iAPX 88.

cs
CE,
CE2

A/W RD LOGIC
WR

ALE

l

ADo-A07
1\ DATA 1KxB

BUS RAM

---v BUFFER MEMORY
ARRAY

X-YDECODE

As. As
~~ur

ALE

Figure 1. Block Diagram

ADD

AD,

A~

AD3

AD.

ADs

ADs

A07

Vss

ADo-A07
As. As
CS
CE,
CE2
ALE
WR

Vee

RD

WR

ALE

CS

CE,

CE2

As

As

ADDRESS/DATA LINES
ADDRESS LINES
CHIP SELECT
CHIP ENABLE (101M)
CHIP ENABLE
ADDRESS LATCH ENABLE
WRITE ENABLE

Figure 2. Pin Configuration

Intel Corporatton Assumes No Responsibilty for the Use of Any Circuitry Other Than CircuItry Embodied In an Intel Product No Other Circuit Patent licenses afe Implied

© INTEL CORPORATION. 1980 2-38

inter 8185/8185·2

FUNCTIONAL DESCRIPTION
The 8185 has been designed to provide for direct interface
to the multiplexed bus structure and bus timing of the
8085A microprocessor.

At the beginning of an 8185 memory access cycle, the 8-
bit address on ADo-7, As and Ag, and the status of CE, and
CE2 are all latched internally in the8185 by the falling edge
of ALE. If the latched status of both CE, and CE2 are
active, the 8185 powers itself up, but no action occurs until
the CS line goes low and the appropriate Ri5 or WR control
signal input is activated.

The CS input is not latched by the 8185 in order to allow
the maximum amount of time fori address decoding in
selecting the 8185 chip. Maximum power consumption
savings will occur, however, only when CE, and CE2 are
activated selectively to power down the 8185 when it is not
in use. A possible connection would be to wire the 8085A's
101M line to the 8185's CE, input, thereby keeping the
8185 powered down during 1/0 and interrupt cycles.

Table 1.
Truth Table for

Power Down and Function Enable

CE, CE2 CS (CS·)12]· 8185 StatuI

1 X X 0 Power Down and
Function Disablel']

X 0 X 0 Power Down and
Function Disable!,]

0 1 1 0 Powered Up and
Function Disable!,]

0 1 0 1 Powered Up and
Enabled

NOTES:
X: Don'l Care.
1: Function Disable implies Dala Bus in high impedance slale

and nol writing.
2: CS· = (CEI = 0) • (CE2 = 1). (CS = 0)

CS· = 1 signifies all chip enables and chip selecl aclive

Table 2.
Truth Table for

Control and Data Bus Pin Status

- AD0-7 During Data
(CS·) RD WR Portion of Cycle 8185 Function

0 X X Hi-Impedance No Function

1 0 1 Data from Memory Read

1 1 0 Data to Memory Write

1 1 1 Hi-Impedance Reading, but not·
Driving Data Bus

NOTE:
X: Don'l Care.

2-39

J1D~
Vss Vee

I I I
TRAP

X, X, RESET IN
HOLD -RST7,5 HLDA -RST6.S SOS5A SOD -

RSTS.5 SID -INTR s,f--
TIiITA RESET s"f--AODR/ OUT

ADDR DATA ALE AD WR IOliVI ROVelK

18/ 18/ Vi' Vr

i~- eE POR!W

WR W PORT 8
1[!;8156 B II

ALE PORT W DATAl C (6)

ADDR
~ y IN

IO/Iiit TIMER ~ RESET OUT

lOW

RD

ALE fN PORT

~- CE A

~=
"- AS10

V 8755A
DATAl
ADDR

101M ~ PORT

RESET B

RDY

........ elK

vs! v!c Joo tROG

WR

I[!;

eE, 8185
ALE

1+- es, eE2

H- As.A9

ADo.7

v!s vL

Figure 3. 8185 In an MCS·85 System

4 Chips:
2K Byles EPROM
1.25K Byles RAM
38110 Lines
1 CounlerlTimer
2 Serial 1/0 Lines
51nterrupllnpuls

Vee
Vee

inter 81.85/8185-2

iAPX 88 FIVE CHIP SYSTEM:

• 1.25 K Bytes RAM
• 2K Bytes EPROM
• 38 I/O Pins
• 1 Internal Timer
• 2 Interrupt Levels

As- A19 t-----;A"'DC;;CDR;;-----'"

ADo - AD7 ADDRIDATA

eLK

.---------- eLK I '-r

I

8088

,-- READY

MNIMX r--Vcc

ALE

RD

WR

101M

-

~vee. ~ D~ I RST®

r- RES READY r--- [
8284A 1

~ RESET t----+---------t---I I Vee I '''MA:~~L RDY1

GND RESET
....

(Vss)

f-
r---
r---
-

-

-

Vss Vee

I I
t--t-T-t----t---t---I ~ POR! W

rr---- WR W
RD POR~ (8)

t--t--t--t---- 8155-2

ALE PORTW
J-. DATAl e (6)

/~~-~~~~--"~ADDR

IN_
t--t----I 'O/M TIMER

t---.(RESET OUT I---

t-+-+---IIOW

t-+-+-t----IRD

t--t-T-r--r--- ,ALE

r--T-t----t---t-t---I CE

f=~~=;:~=;===-1', AB·"
-V 8755A.2

I--

r---r-

DATAl
ADDR

101M POR~~
~-RESET ~

iOR -.J f READY Vcr;

I----t---j--j--t-t-~ 1 1 I LROG
Vss Vee Voo

-
t-+-+-t------1RD

t--i----j eE, 8185-2

t-i--t-T-r-----1 ALE

r--+T--t---t----t------1 CS.

r--+T--t---t----t------1 eE,

r--TT--r---t---t---c- As. Ag

ADO_7

I I
Vss Vee

Figure 4. i,APX 88 Five Chip System Configuration

2-40

8185/8185-2

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias O°C to +70°C
Storage Temperature -65°C to +150°C
Voltage on Any Pin

with Respect to Ground -0.5V to +7V
Power Dissipation 1.5W

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA = O°C to 70°C, Vee = 5V ± 5%)

Symbol Parameter Min. Max. Units Test Conditions

V,L Input Low Voltage -0.5 0.8 V

V,H Input High Voltage 2.0 Vee+0.5 V

VOL Output Low Voltage 0.45 V IOL = 2mA

VOH Output High Voltage 2.4 IOH = - 400J,tA

IlL Input Leakage ±10 J,tA OV ,;;;V,N ,;;;Vcc

ILO Output Leakage Current ±10 /JA 0.45V ,.; VOUT ,.; Vee

Icc Vec Supply Current
Powered Up 100 mA
Powered Down 35 mA

A.C. CHARACTERISTICS (TA = O°C to 70°C, Vcc = 5V ± 5%)

8185 8185-2

Symbol Parameter Min. Max. Min. Max. Units

tAL Address to Latch Set Up Time 50 30 ns

tLA Address Hold Time After Latch 80 30 ns

tLC Latch to READ/WRITE Control 100 40 ns

tRO Valid Data Out Delay from READ Control 170 140 ns

tLO ALE to Data Out Valid 300 200 ns

tLL Latch Enable Width 100 70 ns

tRoF Data Bus Float After READ 0 100 0 80 ns

tCL READ/WRITE Control to Latch Enable 20 10 ns

tcc READ/WRITE Control Width 250 200 ns

tow Data In to WRITE Set Up Time 150 150 ns

two Data In Hold Time After WRITE 20 20 ns

tsc Chip Select Set Up to Control Line 10 10 ns

tcs Chip Select Hold Time After Control 10 10 ns

tALCE Chip Enable Set Up to ALE Falling 30 10 ns

tLAeE Chip Enable Hold Time After ALE 50 30 ns

2-41

inter 8185/8185-2

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT

2.4 =:)(2.0 2.o)C > TEST POINTS <
0.8 0.8

0.45

A C TESTING INPUTS ARE DRIVEN AT24V FORA lOGIC 1" AND'045V FOR
A LOGIC "0" TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC "1"
AND 0 8V FOR A LOGIC "0 .,

WAVEFORM

ALE

(Ge,"O).
(CE,",)

ADo-AD7
(AS. AS)

(SELECTED)

\

DEVICE
UNDER

iJCL~'50PF TEST

CL = 150 pF,
CL INCWDES JIG CAPACITANCE

(READ CYCLE)

tcc---~'I

(WRITe CYCLE)

---"x-(DESELECTED)

2-42

8205
HIGH SPEED 1 OUT OF 8 BINARY DECODER

• I/O Port or Memory Selector

• Simple Expansion - Enable Inputs

• High Speed Schottky Bipolar
Technology - 18ns Max. Delay

• Directly Compatible with TTL Logic
Circuits

• Low Input Load Current - .25 mA
max., 1/6 Standard TTL Input Load

• Minimum Line Reflection - Low
Voltage Diode Input Clamp

• Outputs Sink 10 mA min.
• 16-Pin Dual-In-Line Ceramic or

Plastic Package

The Intel@ 8205 decoder can be used for expansion of systems which utilize input ports, output ports, and memory
components with active low chip select input. When the 8205 is enabled, one of its 8 outputs goes "low," thus a single row
of a memory system is selected. The 3-ch ip enable inputs on the 8205 allow easy system expansion. For very large systems,
8205 decoders can be cascaded such that each decoder can drive 8 other decoders for arbitrary memory expansions.

The 8205 is packaged in a standard 16-pin dual in-line package, and its performance is specified over the temperature
range of O°C to + 75°C, ambient. The use of Schottky barrier diode clamped transistors to obtain fast switching speeds
results in higher performance than equivalent devices made with a gold diffussion process.

AO

A, Ao 16 Vee

A, A, 15 0 0

A, 14 0 ,
8205

E 1 13 0,
8205

E, E, 12 0 3

E, E3 11 0 4

E3 0, 10 °5
GRD 9 0 6

ADDRESS ENABLE OUTPUTS

A, A, A, E, E, E, 0 , 7 3 4 " h I

l l l l l H l H H H H H H H
H l l l l H H l H H H H H H
l H l l l H H H l H H H H H
H H l l l H H H H l H H H H
l l H l l H H H H H l H H H
H l H l l H H H H H H L H H
l H H l l H H H H H H H l H
H H H l l H H H H H H H H l
X X X l l l H H H H H H H H

Ao A2 ADDRESS INPUTS

E 1 E3 ENABLE INPUTS
X X X H l l H H H H H H H H 00· 07 DECODED OUTPUTS
X X X l H l H H H H H H H H
X X X H H l H H H H H H H H
X X X H l H H H H H H H H H
X X X l H H H H H H H H H H
X X X H H H H H H H H H H H

Figure 1. Logic Symbol Figure 2. Pin Configuration

2-43

8205

FUNCTIONAL DESCRIPTION

Decoder

The 8205 contains a one out of eight binary decoder. It ac·
cepts a three bit binary code and by gating this input, creates
an exclusive output that represents the value of the input
code.

For example, if a binary code of 101 was present on the AO,
A 1 and A2 address input lines, and the device was enabled,
an active low signal would appear on the 05 output line.
Note that all of the other output pins are sitting at a logic
high, thus the decoded output is said to be exclusive. The
decoders outputs will follow the truth table shown below in
the same manner for all other input variations.

Enable Gate

When using a decoder it is often necessary to gate the out·
puts with timing or enabling signals so that the exclusive
output of the decoded value is synchronous with the overall
system.

The 8205 has a built-in function for such gating. The three
enable inputs (El, E2, E3) are ANDed together and create
a single enable signal for the decoder. The combination of
both active "high" and active "low" device enable inputs
provides the designer with a powerfully flexible gating func·
tion to help reduce package count in his system.

2-44

A.,

A,

A,

E,-----
E,
,,----L..J

Figure 3. Enable Gate

ADDRESS ENABLE OUTPUTS

Ao A, A2 E, E2 E3 a 1 2 3 4

L L L L L H L H H H H
H L L L L H H L H H H
L H L L L H H H L H H
H H L L L H H H H L H
L L H L L H H H H H L
H L H L L H H H H H H
l H H L L H H H H H H
H f' H L L H H H H H H
X X X L L L H H H H H
X X X H L L H H H H H
X X X L H L H H H H H
X X X H H L H H H H H
X X X H L H H H H H H
X X X L H H H H H H H
X X X H H H H H H H H

o~

0,

6;

0,

0.

0;

66

0,

" 6 7

H H H ., H H
H H H
H H H
H H H
L H H
H L H
H H L
H H H
H H H
H H H
H H H
H H H
H H H
H H H

8205

Applications of the 8205

The 8205 can be used in a wide variety of applications in
microcomputer systems. I/O ports can be decoded from the
address bus, chip select signals can be generated to select
memory devices and the type of machine state such as in
8008 systems can be derived from a simple decoding of the
state lines (SO, Sl, S2) of the 8008 cpu.

1/0 PORT DECODER

Shown in the figure below is a typical application of the
8205. Address input lines are decoded by a group of 82055
(3). Each input has a binary weight. For example, AO is as·
signed a value of 1 and is the LSB; A4 is assigned a value of
16 and is the MSB. By connecting them to the decoders as
shown, an active low signal that is exclusive in nature and
represents the value of the input address lines, i~ available at
the outputs of the 8205s.

This circuit can be used to generate enable signals for I/O
ports or any other decoder related application.

Note that no external gating is required to decode up to 24
exclusive devices and that a simple addition of an inverter
or two will allow expansion to even larger decoder net·
works.

CHIP SELECT DECODER
Using a very similar circuit to the I/O port decoder, an ar·

A, 0, p----
A, 0, p----
A, 0, p....-

820S
0, p----
0, p....-

E, 0, p....-
A, E, 0, p----

E, 0, p----

~A, 0, p----
I-- A, 0, p----
I-- A, 0, p----

8205
0, p---- 11

""RT
0, p---- 12 NUMBERS

E, 0, p---- 13

EN E; o,p---- 14

E, o,p.:- 15

C--- A, 0, c>-- 16

'----- A, 0, c>--

_A, 0, c>-- 18

0, c>-- '9
8205

0, c>-- 20

E, 0, c>--

EN E; 0, c>-- 22

E, 0, c>-- 23

Figure 4. 1/0 Port Decoder

2-45

ray of 8205s can be used to create a simple interface to a
24K memory system.

The memory devices used can be either ROM or RAM and
are 1K in storage capacity. 2708s and 2114As are devices
typically used for this application. This type of memory
device has ten (10) address inputs and an active "low"
chip select (CS). The lower order address bits AG-A9
which come from the microprocessor are "bussed" to all
memory elements and the chip select to enable a specific
device or group of devices comes from the array of 8205s.
The output ofthe 8205 is active low so it is directly compat­
ible with the memory components.

8asic operation is that the CPU issues an address to identify
a specific memory location inwhich it wishes to "write" or
"read" data. The most significant address bits A 10·A 14 are
decoded by the array of 8205s and an exclusive, active low,
chip select is generated that enables a specific memory de·
vice. The least significant address bits AO-A9 identify a
specific location within the selected device. Thus, all ad'
dresses throughout the entire memory array are exclusive
in nature and are non· redundant.

This technique can be expanded almost indefinitely to sup·
port even larger systems with the addition of a few inverters
and an extra decoder (8205).

A" A,\ L ________ -.) ~~MORIES

A, °0 C>--------
CS,

A, 0, D------ CS,

A, 6; ::r----es,

0, ::>--- cs-]
8205 6; ::>--- es,

E, Os J------ es,

E; 06 0------ CS;;

E, 0-7 :::;--- CS7

I ~A" ~ ::>-- eSa

I ~A, ~o--

It- ~A, 0; ::r----
0-; :)-----

8205
0; _0.

CSg

CS'O

ts;,
CHIP

OS;; SELECTS

r; 0;0--~

eND

I
E, o,p--

E, 0; p....-
~4

CS;-"

I
, -A, O~ 1=>---,

-A, 0, p....-
CS'6

~

I

~~A2 0·, p....-
I

I 0; p....-

I
820S o,p--

I
E, 6;p....-
E, 0; p----

~

CS,-g

es"
cs;,
CS;;

E, a,p....- CS;;

Figure 5. 24K Memory Interface

8205

ABSOLUTE MAXIMUM RATINGS·
Tempera~ure underlias: ° °

Ceramic -65 C to +125 C
Plastic -65°C to + 75°C

Stcrage Temperature -65°C to +160°C
All Output or Supply Voltages -0.5 to +7 Volts
All Input Voltages -1.0 to +5.5 Volts
Output Currents 125 mA

"NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or at any other condition above
those indicated in the operational sections of this specifi­
catioll is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA = O°C to +75°C. Vee = 5V ±5%)

Limit
Symbol Parameter -i--~-

Min. . MaX:- Unit Test Conditions

IF INPUT LOAD CURRENT -025 rnA
:~

Vee = 5.25V, V F = 0.45V
"-- -~

IR INPUT LEAKAGE CURRENT 10 I'A Vee = 5 25V, VR = '5.25V

Ve INPUT FORWARD CLAMP VOLTAGE -10 V Vee = 4 75V, Ie = -5.0 rnA

VOL OUTPUT "LOW" VOL TAGE 045 V Vee = 4 75V. IOL = 10.0 rnA
.. _--- -- ---~ - .. --------

VOH OUTPUT HIGH VOLTAGE 24 V Vee = 4.75V. IOH = -1.5 rnA
-_ ... _------ - - ---- _._--i-~-.- -_.

~-

VIL INPUT "LOW" VOLTAGE 0.85 V Vee=50V

INPUT "HIGH"~VOLTAC;E~' .--
---1--.- -- .. -

VIH 2.0 V Vee=50V ._---_.-_._-- ._ .. _- --_. ..- ~. ._.-
Ise OUTPUT HIGH SHORT -40 -120 rnA Vee = 5.0V, VOUT = OV

CIRCUIT CURRENT
.---~------ .. -

Vox OUTPUT "LOW" VOLTAGE 08 V Vee = 5.0V, lox = 40 rnA
@ HIGH CURRENT

lee POWER SUPPL Y CURRENT 70 rnA Vee = 525V

A.C. CHARACTERISTICS (TA = O°C to + 75°C. Vee = 5V ±5%; unless otherwise specified)

Symbol Parameter Max. Limit Unit

'+ + 18 ns

t -+ ADDRESS OR ENABLE TO 18 ns

t+
OUTPUT DELAY 18 ns

t 18 ns

CIN
(1, INPUT CAPACITANCE P8205 4(typ) pF

C8205 5(typ.) pF

1 This parameter IS periOdically sampled and IS not 1 OQ"'o tested

TYPICAL CHARACTERISTICS

OUTPUT CURRENT VS. OUTPUT CURRENT VS.
OUTPUT "LOW" VOLTAGE OUTPUT "HIGH" VOLTAGE

80 10

20 --t-

40 i-t-+-r--+'-Ij. ·30

20 ~40

~ 50 '---'----i-..... ~I..--'--_'__'____'_J......I
, 0 o 10 20 30 40 50

OUTPUT "LOW" VOL lAGE (VI OUTPUT 'HIGH" VOL TAGE (V)

2-46

50

40

20

, 0

Test Conditions

I = , MHz. Vee = OV
VBIAS = 2.0V. T A • 250 e

DATA TRANSFER FUNCTION

4 6 8 10 1214 16 18 20

INPUT VOL lAGE (V)

TYPICAL CHARACTERISTICS (Continued)

g
~ ..
~~ Ww
\SO
~5
2i§
!;i)

ADDRESS OR ENABLE TO OUTPUT
DELAY VS. LOAD CAPACITANCE

20,.------------..,
Vee ~ 5.OV
TA = 25"C , ,

"
15

10

0
0 50 100 150 200

LOAO CAPACITANCE (PF)

SWITCHING CHARACTERISTICS

8205

TEST LOAD

CONDITIONS OF TEST:

Input pulse amplitudes: 2.5V

Input rise and fall times: 5 nsec
between 1 V and 2V

Measurements are made at 1.5V

TEST LOAD:

ADDRESS OR ENABLE TO OUTPUT
DELAY VS. AMBIENT TEMPERATURE

20,-------------,

t+_,L_

--------~~----------

'++

0~0---~2~5---~50~--~75

AMBIENT TEMPERATURE rC)

39011

All TranSIstors 2N2369 or EQuIvalent CL = 30 pF

WAVEFORMS

ADDRESS OR ENABLE
INPUT PULSE

OUTPUT

--I
. ~ .. -.-.--------------~

______ • _______ J ~ _______________ _

2-47

•

•
•
•

8224
CLOCK GENERATOR AND DRIVER

FOR 8080A CPU

Single Chip Clock Generator/Driver for • O-scillator Output for External System
BOBOA CPU Timing

Power-Up Reset for CPU • Crystal Controlled for Stable System
Operation

Ready Synchronizing Flip-Flop • Reduces System Package Count

Advanced Status Strobe, • Available in EXPRESS
- Standard Temperature Range

The Intel® 8224 is a single chip clock generator/driver for the 8080A CPU. It is controlled by a crystal, selected by the
designer to meet a variety of system speed requirements.

Also included are circuits to provide power-up res~t, advance status strobe, and synchronization of ready.

The 8224 provides the designer with a significant reduction of packages used to generate clocks and timing for 8080A.

RESET Vee

RESIN XTAL 1
I)D XTAL1

13> OSC

1!9 XTAL2
RDYIN XTAL 2

@> TANK

READY TANK
¢, lD>

SYNC OSC

rf!2 (TTL) ., " ij9

¢2(TTU[D.
STSTB ~2

GND Voo

lD SYNC STSTB !I>-

'D RESIN

RESET [!>
RESiN RESET INPUT

[D RDYIN READY~
RESET RESET OUTPUT

RDYIN READY INPUT

XTAL 1 (CONNECTIONS

XTAl2 FOR CRVSTAL

READY READY OUTPUT TANK USED WITH OVERTONE XTAl

SYNC SYNC INPUT OSC OSCILLATOR OUTPUT

STSTB STATUS STB ¢2 (TTL) ¢2 elK (TTL LEVEL)
(ACTIVE LOW) Vee +5V

~ ! 8090 .,
CLOCKS

Voo +12V

GND OV

Figure 1. Block Diagram Figure 2. Pin Configuration

2-48

8224

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias 2°C to 70:C
Storage Temperature -65 C to 15El C
Supply Voltage, Vee -0.5V to +7V
Supply Voltage, Voo -0.5V to +13.5V
Input Voltage -1.5V to +7V
Output Current 100mA

*NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA = O°C to 70°C. Vee = +5.0V ±5%. VOD = +12V ±5%)

Limits
Symbol Parameter Min. Typ. Max.

IF Input Current Loading -.25

IR Input Leakage Current 10

Ve I nput Forward Clamp Voltage 1.0

V1l Input "Low" Voltage .8

V1H Input "High" Voltage 2.6
2.0

V1WV1l RESIN Input Hysteresis .25

VOL Output "Low" Voltage .45

.45

VOH Output "High" Voltage

<1>, , <1>2 9.4
READY, RESET 3.6
All Other Outputs 2.4

Icc Power Supply Current 115

IDO Power Supply Current 12

Note 1 For crystal frequencies of 18 MHz connect 5100 regIsters between the X11nput and ground as
well as the X2 Input and ground to prevent QscHlatlon at harmonic frequencies

Crystal Requirements

Tolerance: 0.005% at 0·C-70·C
Resonance: Series (Fundamental)*
Load Capacitance: 20-35 pF
Equivalent Resistance: 75-20 ohms
Power Dissipation (Min): 4 mW

·Wlth tank CirCUit use 3rd overtone mode

2-49

Units Test Conditions

mA VF ~ .45V

/lA VR ~ 5.25V

V Ie ~ -5mA

V Vee ~ 5.0V

V Reset Input
All Other Inputs

V Vee ~ 5.0V

V (<1>1,<1>2), Ready, Reset, STSTB
IOl ~2.5mA

V All Other Outputs
IOl ~ 15mA

V IOH ~ -1 OO/lA
V IOH ~ -100/lA
V IOH ~ -lmA

mA

mA

".nf_r
I I 'ell 82244

A.C. C;:HARACTERISTICS (Vee = +5.0V ±5%, Voo = +12.0V ±5%, TA = O°C to 70°C)

Limits Test
Symbol Parameter Min. Typ. Max. Units Conditions

tq,1 <1>1 Pulse Width, 2tcy _ 20ns
9

t</>2 <1>2 Pulse Width 5tcy _ 35ns
9

tOl <1>1 to <1>2 Delay 0 ns

t02 <1>2 to <1>1 Delay 2tcy _ 14ns CL = 20pF to 50pF
9

t03 <1>1 to <1>2 Delay
2tcy 2tcy + 20ns

9 9

tR <1>1 and <1>2 Rise Time 20

tF <1>1 and <1>2 Fall Time 20

to</>2 <1>2 to <1>2 (TTL) Delay -5 +15 ns <l>2TTl,Cl=30
R1=300n
R2=600n

toss <1>2 to STSTB Delay 6tcy _ 30ns 6tcy
9 9

tpw STSTB Pulse Width t~y _ 15ns STSTB, Cl=15pF
9 Rl = 2K

tORS
RDYIN Setup Time to 50ns _ 4tcy R2 = 4K

Status Strobe 9

RDYIN Hold Time 4tcy
tORH

After STSTB 9

tOR RDYIN or RESIN to 4tcy _ 25ns Ready & Reset
<1>2 Delay 9 Cl=10pF

Rl=2K
R2=4K

tCLK ClK Period tcy
9

jf max
Maximum Oscillating

27 MHz
Frequency

Cin Input Capacitance 8 pF Vcc=+5.0V

, Voo=+12V
, VBIAS=2.5V

f=1 MHz

2-50

i~· 8224

A.C. CHARACTERISTICS (Continued) (For tCY = 488.28 ns) (TA = O·C to 70·C. Voo = +5V ±5%.
Voo = +12V ±5%)

Symbol Parameter Min.

tq,1 t/>1 Pulse Width 89

t4>2 t/>2 Pulse Width 236

t01 Delay t/>1 to t/>2 0

t02 Delay t/>2 to t/>1 95

t03 Delay t/>1 to t/J2 Leading Edges 109

tr Output Rise Time

tf Output Fall Time

toss t/>2 to STSTB Delay 296

t04>2 t/>2 to t/J2 (TTL) Delay -5

tpw Status Strobe Pulse Width 40

tORS RDYIN SetupTimeto STSTB -167

tORH RDYIN Hold Time after STSTB 217

tOR READY or RESET 192

to t/J2 Delay

fMAX Oscillator Frequency

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

"~u ":C 045
08
> TEST POINTS < 08

AC TESTING INPUTS ARE DRIVENAT24V FORA LOGIC"1 " ANDO.45VFOR
A LOGIC "0 "TIMING MEASUREMENTS ARE MADEAT2 OV FORA LOGIC "1"
AND 0 BV FOR A LOGIC "0" (UNLESS OTHERWISE NOTED)

Limits
Typ. Max. Units Test Conditions

ns tCy=488.28ns

ns

ns

ns r- t/>1 & t/J2 Loaded to

129 ns
CL = 20 to 50pF

20 ns

20 ns

326 ns

+15 ns

ns
Ready & Reset Loaded

ns to 2mA/10pF

ns All measurements

ns referenced to 1.5 V
unless specified
otherwise.

18.432 MHz

A.C. TESTING LOAD CIRCUIT

2-51

DEVICE
UNDER

TEST

j"Vcc

R,

R,

-= ,-

CL INCWDE$ JIG CAPACITANCE

inter 8224

WAVEFORMS

., \

.,

SYNC
(FROM 8080A)

I
I--.--------toss------

1-------tDRH----~1

"\Ir---------'\I, -

- - - - - - - - - - - - - - - - - - -'\~-----+------------
READY OUT

-------------'1'- .

RESET OUT

VOLTAGE MEASUREMENT POINTS: <1>,. <1>2 Logic "0" = 1.0V. logic "'" = a.ov. All other signals meesured at 1.5V.

CLOCK HIGH AND LOW TIME (USING X1, X2)

X, elK
18MHz $

X2

R, R2

":" -

2-52

8228/8238
SYSTEM CONTROLLER AND BUS DRIVER

FOR 8080A CPU

• Single Chip System Control for
MCS-80® Systems

• Bullt·ln Bidirectional Bus Driver for
Data Bus Isolation

• A"ows the Use of Multiple Byte
Instructions (e.g. CALL) for Interrupt
Acknowledge

• User Selected Single Level Interrupt
Vector (RST 7)

• 28·Pin Dual In· Line Package

Ii Reduces System Package Count
• 8238 Had Advanced IOW/MEMW for

Large System Timing Control

• Available in EXPRESS
- Standard Temperature Range

The Intel'" 8228 Is a single chip system controller and bus driver for MCS·80. It generates ail signals required to
directly interface MCS·80 family RAM, ROM, and 1/0 components.

A bidirectional bus driver is included to provide high system TTL fan·out. It also provides isolation of the 8080 data bus
from memory and 1/0. This allows for the optimization of control signals, enabling the systems designer to use slower
memory and 1/0. The isolation of the bus driver also provides for enhanced system noise immunity.

A user selected single level interrupt vector (RST 7) is provided to simplify real time, interrupt driven, smail system
requirements. The 8228 also generates the correct control signals to ailow the use of multiple byte instructions (e.g.,
CALL) in response to an interrupt acknowledge by the 8080A. This feature permits large, interrupt driven systems to
have an unlimited number of interrupt levels.

The 8228 is designed to support a wide variety of system bus structures and also reduce system package count for
cost effective, reliable design of the MCS·80 systems.

Note: The specificallons for the 3228/3238 are identical with those for the 8228/8238

r~ -~t
STSTB v" 0,_ -081

CPU °2- -082 HlDA I/aw
DATA °3- = g:~ SYSTEM DATA BUS WR MEMW BUS ,°4 -.- °5- -085

i70R ' °6- -DB6 OBIN
0,- -OB7

MEMR 084

DRIVER CONTROL 04 INTA

DB' iiUsEN
;;m;nI

0' 06 ~''''"' IroM'i
DBS LATCH DB3

GAriNG
i70R 03 OS

ARRAY
I/OW DB2 DB.

STSTS 02 01
OBIN -- BUS!N

WFi OBl
HLDA iNTA

011

0700 DATA BUS !8080 SIDE) INTA INTERRUPT ACKNOWLEDGE

DB7 aBO DATA BUS (SYSTEM SIDE) HLDA HLDA (FROM 8080)

IIOR I/ORUD \VIi WR I FROM 80801

I/OW I/O WRITE iJUSEN BUS ENABLE INPUT

MEMR MEMORY READ STSTB STATUS STROBe (FROM 8224)

MEMW MEMORY WRITE Vee •• v
OBIN OalN (FROM 80801 GNO o VOLTS

Figure 1. Block Diagram Figure 2. Pin Configuration

2-53

IntJ 8228/8238

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias•.•...... - O·C to 70·C
Storage Temperature ...•..•.••..•. - 65°C to 150°C
Supply Voltage, Vee••••. -_0.5V to + 7V
Input Voltage• - 1.5V to + 7V
Output Current.•................... 100 mA

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This Is a stress rating only and functional opera·
tion of the device at these or any other conditions above
those indicated In the operational sections of this specifi·
cation is not limited. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA = o·c to 70·C, Vcc = 5V ±5%)

Limits
Symbol Parameter Min. Typ.(1) Max. Unit Test Conditions

Ve Input Clamp Voltage. All Inputs .75 -1.0 V Vee=4.75V; IC=-5mA

IF Input Load Current,
STSTB 500 IlA Vcc=5.25V

02& Os
--&,

750 IlA VF=0.45V

00,0,.04. 05, ~A
& 07 250

All Other Inputs 250 IlA

IR Input Leakage Current
STSTB 100 IlA Vcc=5.25V

OBo·OB7 20 IlA VR =5.25V

All Other Inputs 100 IlA

VTH Input Threshold Volt!lge, All Inputs 0.8 2.0 V Vcc=5V

Icc Power Supply Current 140 190 mA Vcc=5.25V

VOL Output Low Voltage,

00-0 7 .45 V Vcc=4.75V; 10L =2mA

All Other Outputs .45 V 10L = 10mA

VOH Output High Voltage,
00-0 7 3.6 3.8 V Vcc=4.75V; lOH=-10IlA

All Other Outputs 2.4 V 10H = -lmA

los Short Circu it Cur-rent, All Outputs 15 90 mA Vcc=5V

10 (off) Off State Output Current,
All Control Outputs 100 IlA Vcc=5.25V; Vo=5.25

-100 IlA Vo=·45V
-- ----

liNT INTA Current 5 mA (See INTA Test Circuit)
.-

Not. 1: Typical values are for T A = 250 C and nominal supply voltages.

2-54

inter 8228/8238

CAPACITANCE (VBIAS = 2.5V, Vee = 5.0V, TA = 25°C, f = 1 MHz)

This parameter IS periodically sampled and not 100% tested.

limits

Symbol Parameter Min. Typ.lll Max. Unit

C,N Input Capacitance 8 12 pF

GoUT
Output Capacitance

7 15 pF
Control Signals

I/O
I/O Capacitance

8 15 pF
(D or DB)

A.C. CHARACTERISTICS (TA = O°C to 70°C, Vee = 5V ±5%)

Symbol Parameter

tpw Width of Status Strobe

tss Setup Time, Status Inputs Do·D 7

tSH Hold Time, Status Inputs Do·D 7

toc Delay from STSTB to any Control Signal

tRR Delay from DBIN to Control Outputs

tRE Delay from DBIN to Enable/Disable 8080 Bus

tRO Delay from System Bus to 8080 Bus dUring Read

tWR Delay from WR to Control Outputs

tWE Delay to Enable System Bus DBo·DB7 after STSTB
/-----f--

two Delay from 8080 Bus 0 0-0 7 to System Bus
DBO-DB7 during Write

j---------

tE Delay from System Bus Enable to System Bus DBo·DB 7

tHO HLDA to Read Status Outputs

tos Setup Time, System Bus I nputs to H LOA

tOH Hold Time, System Bus Inputs to HLDA

A.C. TESTING LOAD CIRCUIT

OEVICE
UNOER

TEST

-rVcc

R,

For 00-07: Rl = 4Kn, R2 = ~n,
CL = 2SpF. For ~II other outputs'
Rl = soon, R2 = 1 KP., CL = 100pF.

2-55

limits

Min. Max. Units Condition

22 ns

8 ns

5 ns
--

20 60 ns CL = 100pF

30 ns CL = 100pF
t-~ -----

45 ns CL = 25pF

30 ns CL = 25pF

5 45 ns CL = 100pF

30 ns CL = 100pF

ns CL = 100pF
5 40

30 ns CL = 100pF

25 ns

10 ns

20 ns CL = 100pF

+12V

1KH'10%

8228

23
INTA p------~

INTA Test Circuit (for RST 7)

8228}8238

WAVEFORM

.,

., ____ J

STATUSSTFioiE
________ -+~tMv--~------------,_-~

MMroDATABUS _________ -J)(~_+_+--~~~---
t~ += -,,;;--1

\. OBIN
-------------r-r----~I

I\, --1'RR rlr---------
INTA. lOR. MfpjiR N-----~------~

'oc- I..
HLDA ________ t-;-___ ;-__ --1

- I"'" tHO
INTA. lOR. MElitR --------n\ '
DURING HLDA '+-___ + ___ +JJI,

_ _ .1_tDS ___ tD~. --- -- - -,-
SYSTEM BUS DURING READ ~ X

-------- -----I Ef
B0808USDURINGREAD _________ I- ___ ~ _ 'R~ ____________ _

r---'_ 'R.- I",

\ I
'wR-1 .1- -11-'wR

IOWOR MEMW ___________ ~\----~l

8080 BUS DURING WRITE

SYSTEM BUS DURING WRITE - - - - - - - - -,' < I
- 'w.-

SYSTEM BUS ENA8LE J j
'E~r ' SYSTEMBUSQUTPUTS- - - - - - - - - - - - - - - <t----> - - - - - - - - - - - - --

VOLTAGE MEASUREMENT POINTS: 00-07 (when outputs) Logic "0" = O.BV. Logic "I" = 3.0V. All other signals measured
at 1.5V.

"ADVANCED IOW/MEMW FOR 8238 ONLY.

2-56

•

•
•

•
•
•

8237 A/8237A-4/8237 A-5
HIGH PERFORMANCE

PROGRAMMABLE DMA CONTROLLER
Enable/Disable Control of Individual • High performance: Transfers up to 1.6M
DMA Requests Bytes/Second with 5 MHz 8237A·5

Four Independent DMA Channels • Directly Expandable to any Number of
Channels

Independent Autoinitialization of all • End of Process Input for Terminating
Channels Transfers

Memory·to·Memory Transfers • Software DMA Requests

• Independent Polarity Control for DREQ
Memory Block Initialization and DACK Signals

Address Increment or Decrement • Available in EXPRESS
- Standard Temperature Range

The 8237A Multimode Direct Memory Access (DMA) Controller is a peripheral interface circuit for microprocessor sys­
tems. It is designed to improve system performance by allowing external devices to directly transfer information from
the system memory. Memory-to-memory transfer capability is also provided. The 8237A offers a wide variety of pro­
grammable control features to enhance data throughput and system optimization and to allow dynamic reconfigura­
lion under program control.

The 8237A is designed to be used in conjunction with an external 8-bit address register such as the 8282. It contains
four independent channels and may be expanded to any number of channels by cascading additional controller chips.

The three basic transfer modes allow programmability of the types of DMA service by the user. Each channel can be
individually programmed to Autoinitialize ,to its original condition following an End of Process (EOP).

Each channel has a full 64K address and word count capability.

The 8237A-4 and 8237A-5 are 4 MHz and 5 MHz selected versions of the standard 3 MHz 8237A respectively.

ffiW

MEMW

A'N
COMMANO
CONTROL HRQ Vcc(+5V)

'" OB'

RESET OB'

Figure 2.

Figure 1. Block Diagram Pin Configuration

2-57

intJ
Symbol Type

I

Vee
Vss

I CLK I

CS I

RESET I

READY I

HLDA I

DREQO-DREQ3 I

DBO-DB? 1/0

8237 A/8237 A-4/8237 A-5

Table 1. Pin Description
I-----------.--~------------------~---

Name and Function

Power: + 5 volt supply.

Ground: Ground.

Clock Input: Clock Input controls
the internal operations of the
8237A and its rate of data trans·
fers. The input may be driven at up
to 3 MHz for the standard 8237A

. and up to 5 M Hz for the 8237A·5.

Chip Select: Chip Select is an ac·
tive low input used to select the
8237A as an I/O device during the
Idle cycle. This allows CPU com·
munication on the data bus.

Reset: Reset is an active high in·
put which clears the Command,
Status, Request and Temporary
registers. It also clears the
first/last fliplflop and sets the
Mask register. Following a Reset
the device is in the Idle cycle.

Ready: Ready is an input used to
extend the memory read and write
pulses from the 823?A to accom·
modate slow memories or 1/0 per·
ipheral devices. Ready must not
make transitions during its speci·
fied setuplhold time.

Hold Acknowledge: The active
high Hold Acknowledge from the
CPU indicates that it has relin·
quished control of the system
busses.

DMA Request: The DMA Requfilst
lines are individual asynchronous
channel request inputs used by pe·
ripheral circuits to obtain DMA
service. In fixed Priority, DREQO
has the highest priority arid
DREQ3 has the lowest priority. A
request is generated by activating
the DREQ line of a channel. DACK
will acknowledge the recognition
of DREQ signal. Polarity of DREQ
is programmable. Reset intializes
these lines to active high. DREQ
must be maintained until the corre·
sponding DACK goes active.

Data Bus: The Data Bus lines are
bidirectional three·stilte signals
connected to the system data bus.
The outputs are enabled in the Pro·
gram condition during the 1/0 Read
to output the contents of an Ad·
dress register, a Status register,
the Temporary register or a Word
Count register to the CPU. The out·
puts are disabled and the inputs
are read during an 1/0 Write cycle
when the CPU is programming the
8237A control registers. During
DMA cycles the most significant 8
bits of the address are output onto I the data bus to be strobed into an
external latch by ADSTB. In memo

Symbol

lOR

lOW

EOP

AO-A3

2-58

Type Name and Function

ory·to·memory operations, data
from the memory comes Into the
8237A on the data bus during the
read·from·memory transfer. In the
write·to·memory transfer, the data
bus outputs place the data into the
new memory location.

1/0 1/0 Read: 1/0 Read is a bidirec·
tional active low three·state line. In
the Idle cycle, it is an Input control
signal used by the CPU to read the
control registers. In the Active cy·
cle, it is an output control signal
used by the 8237 A to access data
from a peripheral during a DMA
Write transfer.

1/0 1/0 Write: 1/0 Write is a bidirec·
tional active low three·state line. In
the Idle cycle, it is an input control
signal used by the CPU to load in·
formation into the 8237 A. In the Ac·
tive cycle, it is an output control
signal used by the 8237 A to load
data to the peripheral during a
DMA Read transfer.

1/0 End of Process: End of Process is
an active low bidirectional signal.
Information concerning the 'com·
pletion of DMA services is avail·
able at the bidirectional EOP pin.
The 8237 A allows an external sig·
nal to terminate an active DMA
service. This is accomplished by
pulling the EOP input low with an
external EOP signal. The 8237A al·
so generates a pulse when the ter·
minal count (TC) for any channel is
reached. This generates an EOP
'!ia!!al which is output througtL!.!l.e
EOP Line. The reception of EOP,
either internal or external, will
cause the 8237 A to terminate the

I service, reset the request, and, if
Autoinitialize is enabled, to write
the base registers to the current
registers of that ,channel. The mask
bit and TC bit in the status word
will be set for the currently active
channel by EOP unless the channel
is programmed for Autoinitialize. In
that case, the mask bit remains un­
changed During memory·to·memory
transfers, EOP will be output when
the TC for channel 1 occurs. EOP
should be tied high with a pull·up
resistor if it is not used to prevent
erroneous end of process inputs.

1/0 Address: The four least significant
address lines are bidirectional
three·state signals. In the Idle cy·
cle they are inpu'ts and are used oy
the CPU to address fh-e- registe-r
to be loaded or read. In the Active
cycle they are outputs and provide
the lower 4 bits of the output
address,

inter 8237 A/8237 A-4/8237 A-5

Table 1. Pin Description (Continued)

Symbol Type Name and Function

A4·A7 0 Address: The four most significant
address lines are three·state out-
puts and provide 4 bits of address.
These lines are e~abled only during
the DMA service.

HRQ 0 Hold Request: This is the Hold Re·
quest to the CPU and Is used to reo
quest control of the system bus. If
the corresponding mask bit is
clear, the presence of any valid
DREQ causes B237A to issue the
HRQ. After HRQ goes active at
least one clock cycle (TCY) must
oecur before HLDA goes active.

DACKO·DACK3 0 DMA Acknowledge: DMA Ac-
knowledge is used to notify the in-
dividual peripherals when one has
been granted a DMA cycle. The
sense of these lines is program-
mable. Reset Initializes them to ac-
tive low.

FUNCTIONAL DESCRIPTION

The 8237A block diagram includes the major logic
blocks and all of the internal registers. The data i nter­
connection paths are also shown. Not shown are the
various control signals between the blocks. The 8237A
contains 344 bits of internal memory in the form of
registers. Figure 3 lists these registers by name and
shows the size of each. A detailed description of the
registers and their functions can be found under
Register Description.

Name Size Number

Base Address Registers 16bits 4
Base Word Count Registers 16bits 4
Current Address Registers 16 bits 4
Current Word Count Registers 16 bits 4
Temporary Address Register 16 bits 1
Temporary Word Count Register 16 bits 1
Status Register B bits 1
Command Register Bbits 1
Temporary Register Bbits 1
Mode Registers 6 bits 4
Mask Register 4 bits 1
Request Register 4 bits 1

Figure 3. 8237 A Internal Registers

The 8237 A contains three basic blocks of control logic.
The Timing Control block generates inlernal timing and
external control signals for the 8237 A. The Program
Command Control block decodes the various com­
mands given to the 8237 A by the microprocessor prior
to servicing a DMA Request. It also decodes the Mode
Control word used t9 select the type of DMA during the
servicing. The Priority Encoder block resolves priority
contention between DMA channels requesting service
simultaneously.

The Timing Control block derives internal timing from
the clock input. In 8237A systems this input will usually

Symbol Type Name and Function

AEN 0 Address Enable: Address Enable
enables the B-bit latch containing
the upper B address bits onto the
system address bus. AEN can also
be used to disable other system bus
drivers dUring DMA transfers. AEN
is active HIGH.

ADSTB 0 Address Strobe: The active high,
Address Strobe is used to strobe the
upper address byte into an external
latch.

MEMR 0 Memory Read: The Memory Read
signal is an active low three-state
output used to access data from the
selected memory location during a
DMA Read or a memory-to-memory
transfer.

MEMW 0 Memory Write: The Memory Write
IS an active low three-state output
used to write data to the selected
memory location during a DMA
Write or a memory-to-memory
transfer.

be the </>2 TTL clock from an 8224 or ClK from an
8085AH or 8284A. For 8085AH-2 systems above 3.9 MHz,
the 8085 ClK(OUT) does not satisfy 8237A-5 clock lOW
and HIGH time requirements. In this case, an external
clock should be used to drive the 8237 A·5.

2-59

DMA Operation

The 8237A is designed to operate in two major cycles.
These are called Idle and Active cycles. Each device cy­
cle is made up of a number of states. The 8237A can
assume seven separate states, each composed of one
full clock period. State I (SI) is the inactive state. It is
entered when tM 8237A has no valid DMA requests
pending. While in SI, the bMA controller is inactive but
may be in the Program Condition, being programmed by
the processor. State SO (SO) is the first state of a DMA
service. The 8237 A has requested a hold but the pro­
cessor has not yet returned an acknowledge. The 8237 A
may still be programmed until it receives HlDA from the
CPU. An acknowledge from the CPU will signal that
DMA transfers may begin. S1, S2, S3 and S4 are the
working siates of the DMA service. If more time is
needed to complete a transfer than is available with nor­
mal timing, wait states (SW) can be inserted between S2
or S3 and S4 by the use of the Ready line on the 8237A.
Note that the data is transferred directly from the I/O
device to memory (or vice versa) with lOR and MEMW (or
MEMR and lOW) being active at the same time. The data
is not read into or driven out of the 8237 A in I/O-to­
memory or memory-to-I/O DMA transfers.

Memory-to-memory transfers require a read-from and a
write-to-memory to complete each transfer. The states,
which resemble the normal working states, use two
digit numbers for identification. Eight states are re­
quired for a single transfer. The first four states (S11,
S12, S13, S14) are used for the read-from-memory half

8237A/8237~4/8237A-5

and the last four states (S21, S22, S23, S24) for the write·
to·memory half of the transfer.

IDLE CYCLE

When no channel is requesting service, the 8237A will
enter the Idle cycle and perform "SI" states. In this
cycle the 8237A will sample the DREQ lines every clock
cycle to determine if any channel Is requesting a DMA
service. The device will also sample CS, looking for an
attempt by the microprocessor to write or read the Inter·
nal registers of the 8237A. When CS Is low and HLDA is
low, the 8237A enters the Program Condition. The CPU
can now establish, change or inspect the internal deflnl·
tion of the part by reading from or writing to the internal
registers. Address lines AO-A3 are inputs to the device
and select which registers will be read or written. The
lOR and lOW lines are used to select and time reads or
writes. Due to the number and size of the internal regis·
ters, an Internal fllp·flop Is used to generate an addl·
tlonal bit of address. This bit is used to determine the
upper or lower byte of the 16·blt Address and Word
Count registers. The fllp·flop Is reset by Master Clear or
Reset. A separate software command can also reset this
fllp·flop. '

Special software commands can be executed by the
8237A In the Program Condition. These commands are
decoded as sets of addresses with the CS and lOW. The
commands do not make use of the data bus. Instruc·
tions include Clear First/Last Flip·FLop and Master
Clear.

ACTIVE CYCLE

When the 8237A is in the Idle cycle and a non·masked
channel requests a Dt.1A service, the device will output
an HRQ to the microprocessor and enter the Active cy·
cle. It is in this cycle that the DMA service will take
place, In one of four modes: \.

Single Transfer Mode - In Single Transfer mode the
device Is programmed to make one transfer only. The
word count will be decremented and the address dec·
remented or incremented following each transfer. When
the word count "rolls over", from zero to FFFFH, a Ter·
minal Count (TC) will cause an Autoinitialize if the chan·
nel has been programmed to do so.

DREQ must be held active until DACK becomes active in
order to be recognized. If DREQ Is held active through·
out the single transfer, HRQ will go inactive and release
the bus to the system. It will again go active and, upon
receipt of a new HLDA, another single transfer will be
performed, in 8080A, 8085AH, 8088, or 8086 system this
will ensure one full machine cycle execution between
DMA transfers. Details of timillg between the 8237 A and
other bus control protocols will depend upon the char·
acteristics of the microprocessor involved.

Block Transfer Mode - In Block Transfer mode the
device Is activated by DREQ to continue making trans·
fers during the service until a TC, caused by wor~unt
going to FFFFH, or an external End of Process (EOP) is
encountered. DREQ need only be hE!ld ~ctive until DACK

becomes active. Again, an Autoinitialization will occur
at the end of the service if the channel has been pro·
grammed for it.

Demand Transfer Mode - In Demand Transfer mode the
device is programmed to continue making transfers
until a TC or external EOP is encountered or until DREQ
goes inactive. Thus transfers may continue until the I/O
device has exhausted Its data capacity. After the I/O
device has had a chance to catch up, the DMA service Is
re·establlshed by means of a DREQ. During the time
between services when the microprocessor is allowed
to operate, the intermediate values of address and word
count are stored in the 8237A Current Address and Cur·
rent Word Count registers. Only an EOP can cause an
Autoinitialize at the end of the service. EOP is generated
either by TC or by an external signal.

Cascade Mode-This mode is used to cascade morethan one
8237 A together for simple system expansion. The HRQ and
HLDA signals from the additional 8237 A are connected to the
DREQ and DACK signals of a channel of the initial 8237A.
This allows the DMA requests of the additional device to
propagate through the priority network circuitry of the preced­
ing device. The priority chain is preserved and the new device
must wait for its turn to acknowledge requests. Since the
cascade channel of the initial 8237 A is used only for prior­
itizing the additional 'device, it does not output any address
or control signals of its own. These could conflict with the,
outputs of the active channel in the added device. The 8237 A
will respond to DREQ and DACK but all other outputs except
HRQ will be disabled. The ready input is ignored.

Figure 4 shows two additional devices cascaded Into an
Initial device using two of the previous channels. This
forms a two level DMA system. More 8237As could be
added at the second level by USing the remaining chan­
nels of the first level. Additional devices can also be
added by cascading Into the channels of the second
level devices, forming a third level.

2ND LEVEL

MICRO~ROCESSOR
1ST LEVEL 8237A

I-- HRQ DREQ 1- HR,Q

r--- HlDA DACK t-- HLDA

8237A

DREQ r- HRQ

DACK t-" HLOA

INITIAL DEVICE 8237A

ADDITIONAL
DEVICES

Figura' 4. Cascaded 8237As

2-60

inter 8237 A/8237 A-4/8237 A-5

TRANSFER TYPES

Each of the three active transfer modes can perform three
different types of transfers. These are Read, Write and Verify.
Write transfers move data from and 1/0 device to the memory
by activating MEMW and lOR. Read transfers move data from
memory to an 1/0 device by activating MEMR and lOW. Verify
transfers are pseudo transfers. The 8237 A operates as in
Read or Write transfers generating addresses, and ~esponding
to EOP, etc. However, the memory and 1/0 control lines all
remain inactive. The ready input is ignored in verify mode.

Memory-to-Memory-To perform block moves of data from
one memory address space to another with a minimum of
program effort and time, the 8237 A inc;.Iudes a memory-to­
memory transfer feature. Programming a bit in the Command
register selects channels 0 to 1 to operate as memory-to­
memory transfer channels. The transfer is initiated by setting
the software DREQ for channel O. The 8237 A requests a DMA
service in the normal manner. After HLDA is true, the device,
using four state transfers in Block Transfer mode, reads data
from the memory. The channel 0 Current Address register is
the source for the address used and is decremented or incre­
mented in the normal manner. The data byte read from the
memory is stored in the 8237 A internal Temporary register.
Channel 1 then performs a four-state transfer of the data from
the Temporary register to memory using the address in its
Current Address register and incrementing or decrementing it
in the normal manner. The channel 1 current Word Count is
decremented. When the word count of channel 1 goes to
FFFFH, a TC is generated causing an EOP output terminating
the service.

Channel 0 may be programmed to retain the same ad­
dress for all transfers. This allows a Single wl/lrd to be
written to a block of memory.

The 8237A will: respond to external EOP sign~ls during
memory-to-memory transfers. Data comparators in
block search schemes may use this input to terminate
the service when a match is found. The timing of.
memory-to-memory transfers is found in Figure 12.
Memory-to-memory operations can be detected as an
active AEN with no DACK outputs.

Autoinitialize-By programming a bit in the Mode register, a
channel may be set up as an Autoinitialize channel. During
Autoinitialize initialization, the original values of the Current
Address and Current Word Count registers are automatically
restored from the Base Address and Base Word count registers
of that channel following EOP. The base registers are loaded
simultaneously with the current registers by the micropro­
cessor and remain unchanged throughout the DMA service.
The mask bit is not altered when the channel is in Autoinitialize.
Following Autoinitialize the channel is ready to perform
another DMA service, without CPU intervention, as soon as a
valid DREQ is detected. In order to Autoninitialize both chan­
nels in a memory-to-memory transfer, both word counts should
be programmed identically. If interrupted externally, EOP
pulses should be applied in'both bus cycles.

Priority-The 8237 A has two types of priority encoding avail­
able as software selectable options, The first is Fixed Priority

2-61

which fixes the channels in priority order based upon the
descending value oftheir number, The channel with the lowest
priority is 3 followed by 2, 1 and the highest priority channel,
O. After the recognition of anyone channel for service, the
other channels are prevented from interferring with that ser­
vice until it is completed.

The second scheme is Rotating Priority. The last chan­
nel to get service becomes the lowest priority channel
with the others rotating accordingly.

highest

lowest

1st
Service

2nd
Service

3rd
Service

o 2-- service \3......- service
1 ~ service '\ 3 -.- request 0

2 ,0 1
3 1 2

With Rotating Priority in a single chip DMA system, any
device requesting service is guaranteed to be recog­
nized after no more than three higher priority services
have occurred. This prevents anyone channel from
monopolizing the system.

Compressed Timing - In order to achieve even greater
throughput where system characteristics permit, the
8237 A can compress the transfer time to two clOCk
cycles. From Figure 11 it can be seen that state S3 is
used to extend the access time of the read pulse. By
removing state S3, the read pulse width is made equal to
the write pulse width and a transfer consists only of
state 52 to change the address and state S4 to perform
the read/write. S1 states will still occur when A8-A 15
need updating (see Address Generation). Timing for
compressed transfers is found in Figure 14.

Address Generation - In order to reduce pin count, the
8237A multiplexes the eight higher order address bits
on the data lines. State S1 is used to output the higher
order address bits to an external latch from which they
may be placed on the address bus. The falling edge of
Address Strobe (ADSTB) is used to load these bits from
the data lines to the latch. Address Enable (AEN) is used
to enable the bits onto the address bus through a three­
state enable. The lower order address bits are output by
the 8237A directly. Lines AO-A7 should be connected to
the address bus. Figure 11 shows the time relationships
between ClK, AEN, ADSTB, DBO-DB7 and AO-A7.

During Block and Demand Transfer mode services,
which include multiple transfers, the addresses gener­
ated will be sequential. For many transfers the data held
in the external address latch will remain the same. This
data need only change when a carry or borrow from A7
to A8 takes place in the normal sequence of addresses.
To save time and speed transfers, the 8237 A executes
S1 states only when updating of A8-A15 in the latch is
necessary. This means for long services, S1 states and
Address Strobes may occur only once every 256 trans­
fers, a savings of 255 clock cycles for each 256
transfers.

8237A/8237~4/8237~5

REGISTER DESCRIPTION

Current Address Register - Each channel has a 16·bit
Current Address register. This register holds the value
of the address used during DMA transfers. The address
is automatically incremented or decremented after each
transfer and the intermediate values of the address are
stored in the Current Address register during the trans­
fer. This register is written or read by the micro­
processor in successive 8-bit bytes. It may aiso be reini­
tiallzed by an Autoinitialize back to its original value.
Autoinitialize takes place only after an EOP.

Current Word Register - Each channel has a 16-bit Cur­
rent Word Count register. This register determines the
number of transfers to be performed. The actual number
of transfers will be one more than the number pro­
grammed in the Current Word Count register (i.e., pro­
gramming a count of 100 will result in 101 transfers). The
word count is decremented after each transfer. The
intermediate value of the word count I~ stored in the reg­
ister during the transfer. When the value In the register
goes from zero to FFFFH, a TC will be generated. This
register is loaded or read In successive 8-blt bytes by
the microprocessor in the Program Condition. Follow­
ing the end of a DMA service it may also be reinltialized
by an Autoinitialization back to its original value. Auto­
Initialize can occur only when an EOP occurs. If 'it Is not
Autoinitialized, this register will have a count of FFFFH
after TC.

Base Address and Base Word Count Registers - Each
channel has a pair of Base Address and Base Word
Count registers. These 16-bit registers store the original
value of their associated current registers. During Auto­
initialize these values are used to restore the current
registers to their original values. The base registers are
written simultaneously with their corresponding current
register in 8-bit bytes in the Program Condition by the
microprocessor. These registers cannot be read by the
microprocessor.

Command Register - This 8-bit register controls the
operation of the 8237A. It is programmed by the micro­
processor in the Program Condition and is cleared by
Reset or a Master Clear Instruction. The following table
lists the function of the command bits. See Figure 6 for
address coding.

Mode Register - Each channel has a 6-bit Mode regis­
ter associated with it. When the register is being written
to by the microprocessor in the Program Condition, bits
o and 1 determine which channel Mode register Is to be
written.

Request Register - The 8237 A can respond to requests
for DMA service which are initiated by software as well
as by a DREQ. Each channel has a request bit associ­
ated with it in the 4-bit Request register. These are non­
maskable and subject to prioritization by the Priority
Encoder network. Each register bit is set or reset sepa-

Command Register
7 • 5 ~ 4 3 2 1 0 ""f--Bit Number

I I I I I I II I
Y

Y
I
\

I
I

, .. f
I

I
I
f
\

f
I

o Memory-te-memory disable
1 Memory-te-memory enable

o Channel 0 address hold disable
1 Cllannel 0 address hold enable
X II bit 0=0

o Controllet enable
1 Controller disable

o Normal timing
, 'Compressed timing
X IlbltO='

o Fixed priority
, Rotating priority

o Late write selection
1 Extended write selection
X II bit 3=1

o DREQ sense active high
, DREQ sense active low

o DACK sense active low
, DACK sense active high

Mode Register

00 Verily transler
01 Write transfer

'-----{ '0 Read transler
11 Illegal
XX If bits 6 and 7= 11

'--____ -1 0 AutOinitialization disable
1 AutOinitialization enable

'--------1 0 Address increment select
1 Address decrement select

00 Demand mode select
'--_______ -{ 01 Single mode select

10 Block mode select
11 CaScade mode select

Request Register

2-62

'--__ -I 0 Reset request bit
, Set request bit

rately under software control or is cleared upon genera­
tion of a TC or external EOP. The entire register is
cleared by a Reset. To set or reset a bit, the software
loads the proper form of the data word. See Figure 5 for
register address coding. In order to make a software re­
quest, the channel must be in Block Mode.

8237 A/8237 A-4/8237 A-5

Mask Register - Each channel has associated with it a
mask bit which can be set to disable the incoming
DREQ. Each mask bit is set when its associated channel
produces an EOP if the channel is not programmed for
Autoinitialize. Each bit of the 4-bit Mask register may
also be set or cleared separately under software control.
The entire register is also set by a Reset. This disables
all DMA requests until a clear Mask register instruction
allows them to occur. The instruction to separately set
or clear the mask bits is similar in form to that used with
the Request register. See Figure 5 for instruction ad­
dressing.

Don't Care
Select channel 0 mask bit
Select channell mask bit
Select channel 2 mask bit
Select channel 3 mask bit

~ __ --! 0 Clear mask bit
Set mask bit

All four bits of the Mask register may also be written
with a single command.

7 6 5 4 3 2 1 O~BIINumber

0 Clear channel 0 mask bit
Set channel 0 mask bit

0 Clear channell mask bit
Set channell mask bit

0 Clear channel 2 mask bit
Set channel 2 mask bit

0 Clear, channel 3 mask bit
Set channel 3 mask bit

Register Operation
Signals

CS lOR lOW A3 A2 Al AO

Command Write 0 1 0 1 0 0 0
Mode Write 0 1 0 1 0 1 1
Request Write 0 1 0 1 0 0 1
Mask SetiReset 0 1 0 1 0 1 0
Mask Write 0 1 0 1 1

"
1

Temporary Read 0 0 1 1 1 0 1
Status Read 0 0 1 1 0 0 0

Figure 5. Definition of Register Codes

Status Register - The Status register is available to be
read out of the 8237A by the microprocessor. It contains
information about the status of the devices at this point.
This information includes which channels have reached
a terminal count and which channels have pending DMA
requests. Bits 0-3 are set every time a TC is reached by
that channel or an external EOP is applied. These bits
are cleared upon Reset and on each Status Read. Bits
4-7 are set whenever their corresponding channel is
requesting service.

2-63

o ~ Bit Number
,,~--,-,--,-,--,-,

Channel 0 has reached TC
Channell has re,ached TC
Channel 2 has reached TC
Channel 3 has reached TC

Channel 0 request
Channell request
Channel 2 request
Channel 3 request

Temporary Register - The Temporary register is used
to hold data during memory-to-memory transfers. Fol­
lowing the completion of the transfers, the last word
moved can be read by the microprocessor in the Pro­
gram Condition. The Temporary register always con­
tains the last byte transferred in the previous memory­
to-memory operation, unless cleared by a Reset.

Software Commands-These are additional special software
commands which can be executed in the Program Condition.
They do not depend on any specific bit pattern on the data
bus. The three software commands are:

Clear First/Last Flip-Flop: This command is executed
prior to writing or reading new address or word count
information to the 8237A. This initializes the flip-flop
to a known state so that subsequent accesses to reg­
ister contents by the microprocessor will address
upper and lower bytes in the correct sequence.

Master Clear: This software instruction has the same
effect as the hardware Reset. The Command, Status,
Request, Temporary, and Internal First/Last Flip-Flop
registers are cleared and the Mask register is set. The
8237A will enter the Idle cycle.

Clear Mask Register: This command clears the mask
bits of all four channels, enabling them to accept
DMA requests.

Figure 6 lists the address codes for the software com­
mands:

Signals

A3 A2 A1 AO lOR lOW Operation

1 0 0 0 0 1 Read Status RegIster

1 0 0 0 1 0 Write Command RegIster

1 0 0 1 0 1 Illegal

1 0 0 1 1 0 Wnte Request Register

1 0 1 0 0 1 Illegal

1 0 1 0 1 0 Write SIngle Mask RegIster elt

1 0 , , 0 , Illegal , 0 , , 1 0 Write Mode Register

, , 0 0 0 1 Illegal

, 1 0 0 1 0 Clear Byte Pomter Fhp/Flop

, 1 0 , 0 , Read Temporary RegIster

1 , 0 , , 0 Master Clear

1 , , 0 0 , Illegal

, , , 0 , 0 Clear Mask Register

, -, , , 0 , Illegal

1 1 , 1 , 0 Wnte All Mask Register Bds

Figure 6. Software Command Codes

8237 A/8237 A-4/8237 A-5

Channel
Signals

Inlernal Fllp·Flop Regisler Operalion
CS ~OR lOW A3 A2 AI AO

0 . Base and Current Address Write 0 I 0 0 0 0 0 0
0 I 0 0 0 0 0 I

Current Address Read 0 0 I 0 0 0 0' 0
0 0 I 0 0 0 0 I

Base and Current Word Count Write 0 1 0 0 0 0 1 0
0 1 0 0 0 0 1 1

Current Word Count Read 0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 1

1 Base and Current Address Write 0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 1

Current Address Read 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 1

Base and,Current Word Count Write ,0 1 0 0 0 1 1 0
0 1 0 0 0 1 1 1

Current Word Count Read 0 0 1 0 0 1 1 0
0 0 1 0 0 1 1 1

2 Base and Current Address Write 0 1 0 0 1 0 0 0
0 1 0 0 1 0 0 1

Current Address Read 0 0 1 0 1 0 0 0
0 0 1 0 1 0 0 1

Base and Current Word Count Write 0 1 0 0 1 0 1 0
0 1 0 0 1 0 1 1

Current Word Count Read 0 0 1 0 1 0 1 0
0 0 1 0 1 0 1 1

3 Base and Current Address Write 0 1 0 0 1 1 0 0
0 1 0 0 1 1 0 1

Current Address Read 0 0 1 0 1 1 0 0
0 0 1 0 1 1 0 1

Base and Current Word Count Write 0 1 0 0 1 1 1 0
0 1 6 0 1 1 1 1

Current Word Count Read 0 0 1 0 1 1 1 0
0 0 1 0 1 1 1 1

Figure 7. Word Count and Address Register Command Codes

PROGRAMMING

The 8237A will accept programming from the host proc·
essor any time that HLDA is inactive; this is true even if
HRQ is active. The responsibility of the host is to assure
that programming and HLDA are mutually exclusive.
Note that a problem can occur if a DMA request occurs,
on an unmasked channel while the 8237A is being pro·
grammed. For instance, the CPU may be starting to
reprogram the two byte Address register of channel 1
when channel 1 receives a DMA request. If the 8237A is
enabled (bit 2 in the command register is 0) and channel
1 is unmasked, a DMA service will occur after only one
byte of the Address register has been reprogrammed.
This can be avoided by disabling the controller (setting
bit 2 in the command register) or masking the channel
before programming any other registers. Once the pro·
gramming is complete, the controller can be enabled/un·
masked. •

After power·up it is suggested that all internal locations,
especially the Mode registers, be loaded with some
valid value. This should bd done even if some channels
are unused.

2-64

Oala Bus OBO-OB7

AO-A?
A8-A15

AO-A?
A8-A15

WP-W?
W8-W15

W)O-W?
W8-W15

AO-A?
AS-A15

AO-A?
A8-A15

WO-W?
W8-W15

WO·W?
W8-W15

AO-A?
A8-A15

AO-A7
A8-A15

WO-W?
W8-W15

W)O-W?
W8-W15

AD-A?
A8-A15

AO-A?
A8-A15

WD-W?
W8-W15

W)O-W?
W8-W15

inter 8237 A/8237 A-4/8237 A-5

APPLICATION INFORMATION

Figure 8 shows a convenient method for configuring a
DMA system with the 8237A controller and an 8080AI
8085AH microprocessor system. The multi mode DMA
controller issues a HRQ to the processor whenever
there is at least one valid DMA request from a peripheral
device. When the processor replies with a HLDA signal,
the 8237A takes control of the address bus, the data bus
and the control bus. The address for the first transfer

operation comes out in two bytes - the least signifi­
cant 8 bits on the eight address outputs and the most
significant 8 bits on the data bus. The contents of the
data bus are then latched into the 8~82 8-bit latch to
complete the full 16 bits of the address bus. The 828.2 is
a high speed, 8-bit, three-state latch in a 20-pin package.
After the initial transfer takes place, the latch is updated
only after a carry or borrow is generated in the least sig­
nificant address byte. Four DMA channels are provided
when one 8237A is used.

ADDRESS BUS AO-A1S)

AO-A15

BUSEN

HLDA HLDA

HOLD HRO

CPU

CLOCK

RESET

MEMR

MEMW

lOR

lOW

DBO-DB7

~ i'"

.. ;,..

~ ~

r----- Joo,.

J
I'"

1 ~

AEN AO-A3 A4-A7 CS ADSTB

8237A .., ..,
I-

l~ I~ 8 ~ w
:5 U) @ I~

w ()
w a: '" () a: Q Q

J I ft'

SYSTEM DATA BUS

Figure 8. 8237A System Interface

2-65

DBO-
DB7

...., ,

AS-A15

OE
8282

STB

8·BIT LATCH

~ r
A .~

~ r

l~'"" BUS

7

) ,

8237 A/8237 A-4/8237 A-5

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature under Bias ..•...... O·C to 70·C
Storage Temperature•....... - 65·C to + 150·C
Voltage on any Pin with

Respect to Ground c •••••• _ 0.5 to 7V
Power Dissipation •.........•.............. 1.5 Watt

'NOTICE: Stresses above tholie listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (T A = O°C to 70°C, Vcc = 5.0V ±5%, GND = OV)

Symbol Parameter Min. Typ,(1) Max. Unit Test Conditions

VOH Output High Voltage 2.4 V IOH = -200 !LA

3.3 V IOH = -100 !LA (HRQ Only)

VOL Output LOW Voltage .45 V IOL = 2.0mA (data Bus, EOP)
IOL = 3.2mA (other outputs) (Note 8)
IOL = 2.5mA (ADSTB) (Note 8)

VIH Input HIGH Voltage 2.2 Vcc+ 0.5 V

VIL Input LOW Voltage -0.5 0.8 V.

'll Input Load Current ±10 !LA OV os VIN os Vcc

ILO Output Leakage Current ±10 !LA 0.45V os VOUT os Vcc

Icc VccSupply Current 110 130 mA TA = +25°C

130 150 mA TA=O°C

Co Output Capacitance 4 8 pF

C1 Input Capacitance 8 15 pF Ic = 1.0 MHz, Inputs = OV

ClO 110 Capacitance 10 18 pF

NOTES:
1. TYPIcal values are for T A =: 25°C, nominal supply voltage and nominal procesSing parameters
2 Input timing parameters assume transition times of 20 ns or less Waveform measurement points for both input and output signals are 2 OV for HIGH and 0 8V

for LOW, unless otherwise noted

Output loading IS 1 TTL gate plus 150pF capacitance, unless otherwise noted
The nel lOW or MEMW Pulse width for normal write will be TCY-1 00 ns and for extended write will be 2TCY-1 00 ns The net lOR or MEMR pulse width for
normal read will be 2TCY-50 ns and for compressed read will be TCY-50 ns

5. TDQ IS specified for two different output HIGH levels TDQ1 IS measured at 2 OV TDQ2 is measured at 3 3V The value for TDQ2 assumes an external 33kll
pull-up resistor connected form HRQ to Vec

6. DREQ should be held active until DACK is returned

7 DREQ and DAC~ signals may be active high or active low TII1;1tng diagrams assume the active hi~h mode

8. A revision of Ihe 8237 A is planned for shipment In April 1985. which will Improve the following characlerlstlcs
1. VIH from 2.2V to 2.0V

2 VOL from 0 45V to O.4V on all outputs Test condilion IOL = 3 2 mA
Please contact your local sales office at that time for more Information.

g. Successive read and/orwrite operations by the external processor to program or examme the controller must be timed to allow at least 600 ns for the 8237 A,
at least 500 ns for the 8237 A-4 and at least 400 ns for the 8237 A-5, as recovery time between active read or write pulses

10. EOP IS an open collector output ThiS parameter assumes the presence of a 2 2K pullup to Vee
11 Pin 5 is an input that should always be at a logic high level An Internal pull-up resistor Will establish a logic high when the pin is left floallng It is recom­

mended however. that pin 5 be lied to V CC
12 Output Loading on the Data Bus IS ITTL Gate plus 100 pF capacitance

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

2.4 :=X2.0 2oX==
0 •• > TEST POINTS < 0 ••

0.45 - -

AC TESTING INPUTS ARE ORIVENAT24V FOR A LOGIC '1"AND045VFOR
A LOGIC"O" TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC "1"
AND 0 BV FOR A LOGIC "0 .. (Note 2)

2-66

inter 8237 A/8237 A-4/8237 A-5

A.C. CHARACTERISTICS-DMA (MASTER) MODE (TA=O'C to 70'C,
Vee= +5V±5%, GND=OV)

8237A 8237A·4 8237A-5
Symbol Parameter Min. Max. Min. Max. Min. Max. Unit

TAEl AEN HIGH from ClK lOW (S1) DelayTlme 300 225 200 ns

TAET AEN lOW from ClK HIGH (SI) DelayTlme 200 150 130 ns

TAFAB ADR Active to Float Delay from ClK HIGH 150 120 90 ns

TAFC READ or WRITE Float from ClK HIGH 150 120 120 ns

TAFDB DB Active to Float Delay from ClK HIGH 250. 190 170 ns

TAHR ADR from READ HIGH Hold Time TCY-100 TCY-100 .TCY-100 ns

TAHS DB from ADSTB lOW Hold Time : 40 40 30 ns

TAHW ADR from WRITE HIGH Hold Time TCY-50 TCY-50 TCY-50 ns

DACK Valid from ClK lOW Delay Time (Note 7) 250 220 170 ns

TAK EOP HIGH from ClK HIGH Delay Time (Note 10) 250 190 170 ns

EOP LOW from CLK HIGH Delay Time i 250
I

190 170 ns

TASM ADR Stable from ClK HIGH
I

250 190 170 ns

TA&S DB to ADSTB lOW Setu p TI me 100 100 100 ns

TCH Clock High Time (Transitions,;; 1 0 ns) 120 100 80 ns

TCl Clock lOW Time (Transitions,;; 10 ns) 150 110 68 ns

TCY ClK Cycle Time 320 250 200 ns

TDCl ClK HIGH to READ orWRITE LOW Delay (Note 4) 270 200 190 ns

TDCTR . READ HIGH from ClK HIGH (S4) Delay Time
(Note 4) 270 210 190 ns

TDCTW WRITE HIGH from ClK HIGH (S4) DelayTlme
(Note 4) 200 150 130 ns

TD01 160 120 120 ns
HROValld from.ClK HIGH Delay Time (Note 5)

TDQ2 250 190 120 ns

TEPS EOP LOW from ClK lOW Setup Time 60 45 40 ns

TEPW EOP Pulse Width 300 225 220 ns

TFAAB
I--~-

ADR Float to Active Delay from ClK HIGH 250 190 170 ns

TFAC READ or WRITE Active from CLK HIGH 200 150 150 ns

TFADB DB Float to Active Delay from ClK HIGH 300 225 200 ns

THS HlDA Valid to ClK HIGH Setup Time 100 75 75 ns

TIDH Input Data from MEMR HIGH Hold Time 0 0 0 ns

TIDS Input Data to MEMR HIGH Setup Time 250 190 170 ns

TODH Output Data from MEMW HIGH Hold Time 20 20 10 ns

TODV Output Data Valid to MEMW HIGH 200 125 125 ns

TOS DR EO to ClK lOW (SI, S4) Setup Time (Note 7) 0 0 0 ns

TRH ClK to READY LOW Hold Time 20 20 20 ns

TRS READY to ClK lOW Setup Time 100 60 60 ns

TSTl ADSTB HIGH from ClK HIGH DelayTlme I 200 150 130 ns

TSTT ADSTB lOW from ClK HIGH D\,layT!m~ 140 110 90 ns

2-67

8237 A/8237 A-4/8237 A·5

A.C. CHARACTERISTICS-PERIPHERAL (SLAVE) MODE (TA = O°Cto 70°C, VCC = 5.0V ±5%,
GND = OV)

Symbol Parameter 8237A 8237A·4 8237A·5 'lJnit
Min. Max. Min. Max. Min. Max.

TAR ADR Valid or CS LOW to READ LOW 50 50 50 ns

TAW ADRValid to WRITE HIGH Setup Time 200 150 130 ns

TCW CS LOW to WRITE HIGH Setup Time 200 150 130 ns

TDW Data Valid to WRITE HIGH Setup Time 200 150 130 ns

TRA ADR or CS Hold from READ HIGH 0 0 0 ns

TRDE Data Access from READ LOW (Note 3) 200 200 140 ns

TRDF DB Float Delay from READ HIGH 20 100 20 100 0 70 ns

TRSTD Power Supply HIGH to RESET LOW Setup Time 500 500 500 ns

TRSTS RESET to First IOWR 2TCY 2TCY 2TCY ns

TRSTW RESET Pulse Width 300 300 300 ns

TRW READ Width 300 250 200 ns

TWA ADR from WRITE HIGH Hold Time 20 20 20 ns

TWC I CS HIGH from WRITE HIGH Hold Time 20 20 20 ns

TWD Data from WRITE HIGH Hold Time 30 30 30 ns

TWWS Write Width 200 200 160 ,~s

WAVEFORMS

SLAVE MODE WRITE TIMING
TCW

- j-TWC

I j (NOTE B)
TWWS

I

- -TWA
TAW

~

AO-A3 ---1 INPUT VALID

- J-TWD
TOW

DBO-DB7 ~
,
INPUT VALID ~

Figure 9. Slave Mode Write

SLAVE MODE READ TIMING

cs~ ..:;,V

AO-A3~ ADDRESS MUST BE VALID r(HM1 ,

=E' l TRW
lOR

: ~OTE9)

h TRDE

t TRDF3-

DBO-DB7

Figure 10. Slave Mode Read
DATA OUT VALID _

2-68

inter 8237 A/8237 A-4/8237 A-5

WAVEFORMS (Continued)

DMA TRANSFER TIMING

eLK

.,
~~~~~H:~~rl~~ 

.. 51 
., ., 

~ \....J ~~~~~ -jTQS r- -;r-
f1/I \\ X l\\ \ \ \' (NOTE 6) DREG 

TeH 

TOO_ F TOG_ 

i f-

HAC 

I 
THS_ -

l.LiJ S .\\\\\ \\\\ 
TAEL~I) TAET 

~ I V'f - .2!!T 

HLOA 

.EN 

TIll 1- - --TEPS 

ADSTB IF-1\ 
" 

f~f--~T' •• ~ 
TFADa r f:: rr 

I F¥ H t· - TASM - _TAFAI 

rFAA. r- r-- TAHW - t-TAHW 

D80-DI7 

I ADDRESS VALID ADDRESS VALID 

~ :..-I- -TAHA I- -TAHA 

} 1\ 
I 

OAeK 

TFAC l- I TDCL TDCTA r- ~ TOCT. - 1- _TAFe 

Ir------. --" Ir- .... 
I 

~ 
-TDCTW TDCTW 

~ 
..Jr"'""'""\ I ~- v~ 

(fDA ~ENDED WAITE) 
~ 

\ t1 ~}-~ HPW ' TAK 

\ 
\\\\\\\\\\'\. VIIIIIIIIIII 

INTIIIP 

... -
Figure 11. DMA Transfer 

2-69 



inter 8237A/8237A·4/8237~5 

WAVEFORMS (Continued) 

! 

MEMORY-TO-MEMORY TRANSFER TIMING 

AOSTB 

AO-A7 

OBO-OB7 

EXT EOP -....,....,~""T'""\ 

Figure 12. Memory·to·Memory Transfer 

READY TIMING 

elK 

TDCTW-

READY 

Figure 13. Ready 

2-70 



8237AJ8237~4/8237~5 

WAVEFORM~ (Continued) 

COMPRESSED TRANSFER TIMING 

ClK 

AO-A7 

TDCl-j--+1 

READY 

~~: ___________ TA_K_-_--"'--_~ 

EXT \TE\~oC--.L ~t 
EDP --------..,....,,~ tv 

Figure 14. Compressed Transfer 

RESET TIMING 

~c ______ J~r~i~~~~~~~~~~~~~~-T-R-ST-D-------------------_-_-_-_-_-_-_-_~-----~I~I-------------

I 
lOR OR RlW 

Figure 15. R ... t 

2-71 



8257/8257·5, 
PROGRAMMABLE DMA CONTROLLER 

• MCS-85@ Compatible 8257-5 • Single TTL Clock 

• 4·Channel DMA Controller • Single + 5V Supply 
• Priority DMA Request Logic 

• Auto Load Mode 
• Channel Inhibit Logic 

• Terminal Count and Modulo 128 
Outputs 

• Available in EXPRESS 
- Standard Temperature Range 

The Intel' 8257 is a 4-channel direct memory access (DMA) controller_ It is specifically designed to simplify the 
transfer of data at high speeds for the Intel"' microcomputer systems. Its primary function is to generate, upon a 
peripheral request, a sequential memory address which will allow the peripheral to read or write data directly to or 
from memory. Acquisition of the system bus i.n accomplished via the CPU's hold function. The 8257 has priority logic 
that resolves the peripherals requests and issues a composite hold request to the CPU. It maintains the DMA cycle 
count for each channel and outputs a control signal ·to notify the peripheral that the programmed number of DMA 
cycles is complete. Other output control signals simplify sectored data transfers. The 8257 represents a significant 
savings in component count for DMA-based microcomputer systems and greatly simplifies the transfer of data at 
high speed between peripherals and memories. 

\. 

cs-------' 

., 
" 

'EN 
AOST8 

TC :==:::'.J MARK 

Figure 1. Block. Diagram 

DRQO 

=n ., 
ORO 1 ., 
0Aci("i 

., 
ORO 2 

... 
Dm"l 

0, 

0, 

DACI( 3 

Figure 2. Pin Configuration 

2-72 



inter 8257/8257 ·5 

FUNCTIONAL DESCRIPTION 

General 

The 8257 IS a programmable, Direct Memory Acess (DMA) 
device which, when coupled with a single 8-bit latch 
provides a complete four-channel DMA controller for use in 
Intel@ microcomputer systems. After being initialized by 
software, the 8257 can transfer a block of data, containing up 
to 16,384 bytes, between 'memory and a peripheral device 
directly, without further intervention reqUired of the CPU. 
Upon receiving a DMA transfer request from an enabled 
peripheral, the 8257: 

1. Acquires control of the system bus. 

2. Acknowledges that requesting peripheral which IS 
connected to the highest Priority channel 

3. Outputs the least significant eight bits of the memory 
address onto system address lines ArrA7, outputs the 
most significant eight bits of the memory address to the 
8-bit latch via the data bus (the outputs of the latch 
should drive address lines AIf"A'5), and 

4. Generates the appropriate memory and 1/0 readl 
write control signals that cause the peripheral to 
receive or deposit a data byte directly from or to the 
addressed location in memory. 

The 8257 will retain control of the system bus and repeat 
the transfer sequence, as long as a peripheral maintains ItS 
DMA request Thus, the 8257 can transfer a block of data 
tolfrom a high speed peripheral (e g , a sector of data on a 
floppy disk) In a single "burst". When the specified 
number of data bytes have been transferred, the 8257 
activates ItS Terminal Count (TC) output, informing the 
CPU that the operation IS complete 

The 8257 offers three different modes of operation' 
(1) DMA read, which causes data to be transferred from 
memory to a peripheral, (2) DMA write, which causes 
data to be transferred from a peripheral to memory, 
and (3) DMA verify, which does not actually Involve the 
transfer of data. When an 8257 channel IS In the DMA verify 
mode, It will respond the same as described for transfer 
operations, except that no memory or 1/0 read/wnte 
control signals will be generated, thus preventing the 
transfer of data The 8257, however, will gain control of the 
sYlltem bus and will acknowledge the peripheral's DMA 
request for each DMA cycle The peripheral can use these 
acknowledge signals to enable an Internal access of each 
byte of a data block In order to execute some verification 
procedure, such as the accumulation of a CRC (Cyclic 
Redundancy Code) checkword For example, a block of 
DMA verify cycles might follow a block of DMA read cycles 
(memory to peripheral) to allow the peripheral to verify ItS 
newly acqUired data 

2-73 

Block Diagram Description 

1. DMA Channels 

The 8257 provides four separate DMA channels (labeled 
CH-O to CH-3). Each channel includes two sixteen-bit 
registers' (1) a DMA address register, and (2) a termi­
nal count register. Both registers must be initialized 
before a channel IS enabled. The DMA address register is 
loaded with the address of the first memory location to be 
accessed. The value loaded Into the low-order 14-blts of 
the terminal count register specifies the number of DMA 
cycles minus one before the Terminal Count (TC) output 
IS activated. For Instance, a terminal count of 0 would 
cause the TC output to be active in the first DMA cycle for 
that channel. In general, If N = the number of desired DMA 
cycles, load the value N-1 into the low-order 14-blts of the 
terminal count register. The most significant two bits of the 
terminal count register specify the type of DMA operation 
for that channel 

Figure 3. 8257 Block Diagram Showing DMA 
Channels 



8257/8257·5 

These two bits are not modified during a DMA cycle, but 
can be changed between DMA blocks, 

Each channel accepts a DMA Request (DROn) input and 
provides a DMA Acknowledge (DACKn) output 

(ORO O-DRO 3) 
DMA Request: The'S'e are Individual asynchronous chan­
nel request inputs used by the peripherals to obtain a DMA 
'cycle, If not in the rotating priority mode then DRO 0 has 
the highest priority and DRO 3 has the lowest. A request 
can be generated by raising the request line and holding It 
high until DMA acknowledge, For multiple DMA cycles 
(Burst Mode) the request line is held high until the DMA 
acknowledge of the last cycle arnves, 

(DACK 0 - DACK 3) 

DMA Acknowledge: An active low level on the acknowl­
edge output informs the peripheral connected to that 
channel that it has been selected for a DMA cycle, The 
DACK output acts as a "chip select" for the penpheral 
device requesting service_ This line goes active (low) 
and inactive (high) once for each byte transferred even if 
a burst of data is being transferred, 

2_ Data Bus Buffer 

This three-state, br-directional, eight bit buffer interfaces 
the 8257 to the system data bus, 

(00.07) 

Data Bus Lines: These are bl-directional three-state hnes 
When the 8257 is being programmed by the CPU, elght­
bits of data for a DMA address register. a terminal count 
register or the Mode Set register are received on the data' 
bus, When the CPU reads a DMA address register, a 
terminal count register or the Status register, the data is 
sent to the, CPU over the data bus, DUring DMA cycles 
(when the 8257 is the bus master), the 8257 Will output the 
most significant eight-bits of the memory address (from 
one of the DMA address registers) to the 8212 iatch via the 
data bus, These address bits Will be transferred at the 
beginning of the DMA cycle; the bus WI)I then be released 
to handle the memory data transfer dUring the balance of 
the DMA cycle, 

2-74 

BIT 15 BIT 14 TYPE OF DMA OPERATION 

0 0 Verily DMA Cycle 
0 1 Write DMA Cycle 
1 0 Read DMA Cycle 
1 1 (Illegal) 

0Acifl 

ORO 2 
A, 

tmn 

'" A. 

A, 

A. 

A. 
0iC'if"l 

MfMR 
M'E"MVi 

Figure 4. 8257 Block Diagram Showing Data Bus 
Buffer 



8257/8257·5 

3. ReadlWrite logic 

When the CPU is programming or reading one of the 
8257's registers (Le., when the 8257 is a "slave" device on 
the system bus), the ReadlWrite logic accepts the 110 
Read (i7OR) or I/O Write (i7OW) signal, decodes the least 
significant four address bits, (Ao-A3), and either writes 
the contents of the data bus into the addressed register 
(if I/OW is true) or places the contents of the addressed 
reJister onto the data bus (if i70R is true). 

DUring DMA cycles (I e, when the 8257 IS the bus 
"master"), the Read/Wrote logic generates the I/O read 
and memory write (DMA write cycle) or I/O Write and 
memory read (DMA read cycle) signals which control the 
data link with the peripheral that has been granted the 
DMA cycle. 

Note that during DMA transfers Non-DMA I/O devltes 
should be de-selected (disabled) uSing "AEN" signal to 
Inhibit I/O deVice decoding of the memory address as an 
erroneous deVice address. 

(I/OR) 

I/O Read' An acllve-Iow, bi-directlonal three-state lone. In 
the "slave" mode, It is an Input which allows the 8-blt 
status register or the upper/lower byte of a 16-blt DMA 
address register or terminal count register to be read. In 
the "master" mode, I/OR IS a control output which is used 
to access data from a peripheral dUring the DMA write 
cycle. 

(I/OW) 

I/O Write' An active-low, bl-dlrectional three-state line In 
the "slave" mode, It IS an Input which allows the contents 
of the data bus to be loaded onto the 8-blt mode set register 
or the upper/lower byte of a 16-blt DMA address register 
or terminal count register In the "master" mode, I/OW IS a 
control output which allows data to be output to a 
peripheral dUring a DMA read cycle 

(ClK) 

Clock Input: Generally from an Intel®8224 Clock Generator 
device. (¢2 TTL) or Intel ® 8085AH ClK output. 

(RESET) 

Reset: An asynchronous input (generally from an 8224 
or 8085 device) which disables all DMA channels by 
clearing the mode register and 3-states all control lines. 

2-75 

(Ao-A3l 

Address Lines: These least significant four address lines 
are bi-directional. In the "slave" mode they are inputs 
which select one of the registers to be read or 
programmed. In the "master" mode, they are outputs 
which constitute the least significant four bits of the 16-bit 
memory address generated by the 8257. 

Chip Select An active-low Input which enables the I/O 
Read or I/O Wrote Input when the 8257 IS being read or 
programmed In the "slave" mode In the "master" mode, 
CS is automatically disabled to prevent the chip from 
selecting Itself whole performing the DMA function 

4. Control logic 

ThiS block controls the sequence of operations dUring all 
DMA cycles by generatong the appropriate control signals 
and the 16-blt address that specifies the memory locallon 
to be accessed 

ES----' 

A. 

A, 

A. 

A, 
CONTROL 

LOGIC 
AND 

MOOE 
SH 

Figure 5. 8257 Block Diagram Showing 
Read/Write Logic Function 

o~oo 



825718257·5 

Address lines These four address lines are three-state 
outputs which constitute bits 4 through 7 of the 16-blt 
memory address generated by the 8257 dUring all DMA 
cycles 

(READY) 

Ready: This asynchronous Input is used to elongate the 
memory read and write cycles In the 8257 with wait 
states if the selected memory requires longer cycles 
READY must conform to specified setup and hold 
times 

(HRQ) 

Hold Request: This output requests control' of the 
system bus In systems with only one 8257, HRQ Will 
normally be applied to the HOLD input on the CPU HRQ 
must conform to specified setup and hold times, 

(HLDA) 

Hold Acknowledge: This input from the CPU indicates that 
the 8257 has acquired control olthe system bus. HLDA must 
remain stable during the specified set-up time. ' 

(MEMR) 

Memory Read ThiS active-low three-state output IS used 
to read data from the addressed memory location dUring 
DMA Read cycles 

(MEMW) 

Memory Write ThiS active-low three-state output IS used 
to write data Into the addressed memory location during 
DMA Write cycles. 

(ADSTB) 

Address Strobe: This output strobes the most significant 
byte of the memory address into the latch device from the 
data bus. 

(AEN) 

Address Enable ThiS output IS used to disable Ifloall the 
System Data Bus and the System Control Bus It may also 
be used to disable Ifloatl the System Address Bus by use 
of an enable on the Address Bus drivers In systems to 
inhibit non-DMA deVices from responding dUring DMA 
cycles It may be further used to Isolate the 8257 data bus 
from the System Data Bus to facilitate the transfer of the 8 
most significant DMA address bits over the 8257 data 1/0 
PinS without sublecting the System Data Bus to any 
timing constraints for the transfer When the 8257 IS used 
in an 1/0 deVice structure las opposed to memory 
mappedl,thls AEN output should be used to disable the 
selection of an 1/0 deVice when the DMA address IS on the 
address bus The 1/0 deVice selection should be 
determined by the DMA acknowledge outputs for the 4 
channels 

(Te) 

Terminal Count. ThiS output notifies the currently 
selected peripheral that the present DMA cy<;le should be 
the last cycle for thiS data block If the TC STOP bit In the 
Mode Set register IS set, the selected channel Will be 
automatically disabled at the end of that DMA cycle TC is 
activated when the 14-bit value in the selected channel's 
terminal count register equals zero. Recall that the low­
order 14-blts of the terminal count register should be 
loaded with the values (n-1), where n =the deSired number 
of the DMA cycles. 

(MARK) 

Modulo 128 Mark ThiS output notifies the selected 
peripheral that the current DMA cycle IS the 128th cycle 
Since the prevIous MARK output MARK always occurs at 
128 (and all multiples of 128) cycles from the end of the 
data block Only If the total number of DMA cycles (n) IS 
evenly dlvlsable by 128 (and the,termlnal count register 
was loaded With n-1). Will MARK occur at 128 (and each 
succeeding multiple of 128) cycles from the beginning of 
the data block 

2-76 

DROO 

OAa, 

Figure 6. 8257 Block Diagram Showing Control 
Logic and Mode Set Register 



825718257·5 

5. Mode Set Register 

When set, the various bits in the Mode Set register enable 
each of the four DMA channels, and allow four different 
options for the 8257: 

76543210 

~II~ Enables AUTOLOAD Enable, DMA Channel 0 

En~ble. EXTENDED WR'TEEMb'" DMA Ch.nn,' 2 
E .. b' .. ROTATING PR'OR'TY I En,b' .. OMA Ch,nn"3 

Enables TC STOP Enables OMA Channell 

The Mode Set register IS normally programmed by the 
CPU after the DMA address reglsterts) and terminal 
count register(s) are initialized. The Mode Set Register IS 
cleared by the RESET Input, thus disabling all optIOns, 
inhibiting all channels, and preventing bus conflicts (l)n 
power-up. A channel should not be left enabled unless ItS 
DMA address and terminal count registers contain valid 
values; otherwise, an Inadvertent DMA request (DROn) 
from a peripheral could initiate a DMA cycle that would 
destroy memory data 

The variOus optoons which can be enabled by bits In the 
Mode Set register are explained below' 

Rotating Priority Bit 4 

In the Rotating Priority Mode, the Priority of the channels 
has a circular sequence After each DMA cycle. the 
Priority of each channel changes The channel wh,ch had 
lust been serviced Will have the lowest Priority 

If the ROTATING PRIORITY bit IS not set (set to a zero), 
each DMA channel has a fixed Priority In the flxed,prlorlty 
mode, Channel 0 has the highest Priority and Channel 3 
has the lowest p'rlorlty If the ROTATING PRIORITY bit IS 
set to a one, the Priority of each channel changes after 
each DMA cycle (not each DMA request) Each channel 
moves up to the next highest Priority assignment. while 
the channel which has lust been serviced moves to the 
lowest Priority assignment 

CHANNEL'" CH-O CH-1 CH-2 CH-3 
JUST SERVICED 

Priority _ High"' CH-1 CH-2 CH-3 CH-O 
A"'gnman'. 

~ 
CH-2 CH-3 CH-O CH-1 
CH-3 CH-O CH·1 CH·2 

Lowa.' CH·O CH·1 CH-2 CH·3 

Note that rotating priority will prevent anyone channel 
from monopolizing the DMA mode; consecutive DMA 
cycles will service different channels if more than one 
channel is enabled and requesting service. There is no 
overhead penalty associated with this mode of opera· 
tion. All DMA operations began with Channel 0 initially 
assigned to the highest priority for the first DMA cycle. 

Extended Write Bit 5 

If the EXTENDED WRITE bit IS set, the duration of both the 
MEMW and IIOW signals IS extended by activating them 
earlier In the DMA cycle Data transfers Within micro­
computer systems proceed asynchronously to allow 
use of variOus types cif memory and 1/0 devices with 
different access times If a device cannot be accessed 
Within a spec,flc amount of time ,t returns a "not ready" 
indication to the 8257 that causes the 8257 to insert one or 
more walt states In ItS Internal sequencing Some devices 
are fast enough to be accessed Without the use of wait 
states, but If they generate their READY response With the 
leading edge of the IIOW or MEMW signal (which 
generally occurs late In the transfer sequence), they 
would normally cause the 8257 to enter a walt state 
because It does not receive READY In time For systems 
With these types of devices. the Extended Write option 
provides alternative timing for the 1/0 and memory write 
s'gnals which allows the devices to return an early READY 
and prevents the unnecessary occurrence of walt states In 
the 8257. thus increasing system throughput 

TC Stop Bit 6 

If the TC STOP bit IS set, a channel IS disabled (I e., ItS 
enable bit IS reset) after the Terminal Count (TC) output 
goes true, thus automatically preventing further DMA 
operation on that channel The enable b,t for that channel 
must be re-programmed to continue or begin another 
DMA operatIOn If the TC STOP bit IS not §et, the 
occurrence of the TC output has no effect on the channel 
enable bits In thiS case, It IS generally the responsibility of 
the peripheral to cease DMA requests In order to terminate 
a DMA operation 

Auto Load Bit 7 

The Auto Load mode permits Channel 2 to be used for 
repeat block or block chaining operatoons, without 
Immediate software Interventoon between blocks Chan­
nel 2 registers are Inlt,allzed as usual for the first data 
block, Channel 3 registers, however, are used to store the 
block re-Inltlallzatlon parameters (DMA starting address, 
terminal count and DMA transfer mode) After the first 
block of DMA cycles IS executed by Channel 2 (I e , after 
the TC output goes true), the parameters stored In the 
Channel 3 registers are transferred to Channel 2 dUring an 
"update" cycle Note that the TC STOP feature, desCribed 
above, has no effect on Channel 2 when the Auto Load bit 
IS set 

2-77 



8257/8257·5 

If the Auto Load bit is set, the initial parameters for 
Channel 2 are automatically duplicated in the Channel 3 
registers when Channel 2 is programmed. This permits 
repeat block operations to be set up with the programming 
of a single channel. Repeat block operations can be used 
in applications such as CRT refreshing. Channels 2 and 3 
can still be loaded with separate values if Channel 2 is 
loaded before loading Channel 3. Note that in the Auto 
Load mode, Channel 3 is still available to the user if the 
Channel 3 enable bit is set. but use of this channel will 
change thE! values to be auto loaded into Channel 2 at 
update time. All that is necessary to use the Auto Load 
feature for chaining 'operations is to reload Channel 3 
registers at the conclusion of each update cycle with the 
new parameters for the next data block transfer. 

Each timll that the 8257 enters an update cycle, the update 
flag in the status register is set and parameters in Channel 
3 are transferred to Channel 2, non-destructivelY for 
Channel 3. The actual re-initialization of Channel 2 occurs 
at the beginning of the next channel 2 DMA cycle after the 
TC cycle. This will be the first DMA cycle of the new data 
block for Channel 2. The update flag is cleared at the 
conclusion of this DMA cycle. For chaining operations. 
the update flag in the status register can be monitored by 
the CPU to determine when the re-initialization process 
has been completed so that the next block parameters can 
be safely loaded into Channel 3. 

6. Status Register 

The eight-bit status register indicates which channels 
have reached a terminal count condition and includes the 
update flag described previously. 

TC STATUS FOR CHANNEL 0 
TC STATUS FOR CHANNEL 1 

'----TC STATUS FOR CHANNEL 2 
~----TC STATUS FOR CHANNEL 3 

The TC status bits are set when the Terminal Count (TC) 
output is activated for that channel. These bits remain set 
until the status register is read or the 8257 is reset. The 
UPDATE FLAG. however. is not affected by a status 
register read operation. The UPDATE FLAG can be 
cleated by resetting the 8257. by changing to the non-auto 
load mode (Le .• by resetting the AUTO LOAD bit in the 
Mode Set register) or it can be left to clear itself at the 
completion of the update cycle. The purpose of the 
UPDATE FLAG~s to prevent the CPU from inadvertently 
skipping a data block by overwriting a starting address or 
terminal count in the Channel 3 registers before those 
parameters are properly auto-loaded into Channel 2. 

The user is cautioned against reading the TC status 
register and using this information to reenable chan­
nels that have not completed operation. Unless the 
DMA channels are inhibited a channel could reach ter· 
minal count (TC) between the status read and the mode 
write. DMA can be inhibited by a hardware gate on the 
HRQ line or by disabling channels with a mode word 
before reading the TC status .. 

_IPARAMETERSI- _IPARAMETERSI_ 
FOR BLOCK 1 I FOR BLOCK 2 _1:~:AB~~~~R:1c -I ETC -----

CHANNEL 2 UPDATE CHANNEL 2 UPDATE 

I/O WRITE 
OCCURS HERE ~ OCCURS HERE ~ 

ORo2 ------------~-- --~~~----
\.--DATABLDCK '_1 DATA BLOCK 2-l I-TDATA BLOCK 3-

TC 

UflDATE fLAG 

Figure 7. Autoload Timing 

2-78 



8257/8257·5 

OPERATIONAL SUMMARY 

Programming and Reading the 8257 Registers 
There are four pairs of "channel registers'" each pair 
consisting of a 16-bit DMA address register and a 16-blt 
terminal count register (one pair for each channel) The 
8257 also includes two "general registers". one 8-bit 
Mode Set register and one 8-bit Status register. The 
registers are loaded or read when the CPU executes a 
write or read instruction that addresses the 8257 device 
and the appropriate register within the 8257. The 8228 
generates the appropriate read or write control signal 
(generally IIOR or IIOW while the CPU places a 16-bit 
address on the system address bus, and either outputs the 
data to be written 'onto the system data bus or accepts the 
data being read from the data bus. All or some of the most 
significant 12 address bits A4-A'5 (depending on the 
systems memory, liD configuration) are usually decoded 
to produce the chip select (CS) Input to the 8257, An liD 
Write input (or Memory Write in memory mapped liD 
configurations, described below) specifies that the 
addressed register is to be programmed, while an liD 
Read Input (or Memory Read) specifies that the addressed 
register IS to be read Address bit 3 specIfies whether a 
"channel register" (A3 = 0) or the Mode Set (program 
only)/Status (read only) register (A3 = 1) IS to be accessed. 

The least significant three address bitS, Ao-A2, indicate the 
specific register to be accessed. When accessing the 
Mode Set or Status register, Ao-A2 are all zero. When 
accessing a channel register bit Ao differentiates between 
the DMA address register (Ao = 0) and the terminal count 
register (Ao = 1), while bits A, and A2 specify one of the 

8257 Register Selection 

CONTROL INPUT Cs IIOW IIOR A3 

Program Hall 01 a 0 0 1 0 
Channel Register 

Read Hall 01 a 0 1 0 0 
Channel Register 

Program Mode Set 0 0 1 1 
Register 

"Read Status Register 0 1 0 1 

four channels Because the "channel registers" are 16-
bits, two program instruction cycles are required to load 
or read an entire register. The 8257 contains a first/last 
(F/L) flip flop which toggles at the completion of each 
channel program or read operation, The F/L flip flop 
determines whether the upper or lower byte of the register 
IS to be accessed. The F/L flip flop IS reset by the RESET 
input and whenever the Mode Set register is loaded. To 
maintain proper synchronization when accessing the 
"channel registers" all channel command instruction 
operations should occur in pairs, with the lower byte of a 
register always being accessed firSt. Do not allow CS to 
clock while either IIOR or IIOW is active, as thiS Will cause 
an erroneous F/L flip flop state In systems utiliZing an 
Interrupt structure, Interrupts should be disabled prior to 
any paired programming operations to prevent an 
Interrupt from splitting them, The result of such a spilt 
would leave the F IL F IF In the wrong state This problem is 
particularly obVIOUS when other DMA channels are 
programmed by an Interrupt structure 

ADDRESS INPUTS 'BI-DIRECTIONAL DATA BUS 

REGISTER BYTE 
A3 A2 A1 Ao 

F/L 
0-, Ds Ds D4 D3 D2 D1 Do 

CH-O DMA Address LSB 0 0 0 0 0 A7 As As A4 A3 A2 A1 Ao 
MSB 0 0 0 0 1 A1S A14 A13 A12 A11 A10 Ag As 

CH-O Terminal Count LSB 0 0 0 1 0 C7 Cs Cs C4 C3 C2 C1 Co 
MSB 0 0 0 1 1 Rd Wr C13 C12 C11 C10 Cg Ca 

CH-l DMA Addres. LSB 0 0 1 0 0 
Same as Channel 0 MSB 0 0 1 0 1 

I I I 
CH-l Terminal Count LSB 0 0 1 1 0 

MSB 0 0 1 1 1 

CH-2 DMA Addre.s LSB 0 1 0 0 0 
Same as Channel 0 MSB 0 1 0 0 1 

I I I 
CH-2 Terminal Count LSB 0 1 0 1 0 

MSB 0 1 0 1 1 

'CH-3 DMA Addres. LSB 0 1 1 0 0 
MSB 0 1 1 0 1 

Same as Channel 0 

CH-3 Terminal Count LSB 0 1 1 1 0 
MSB 0 1 1 1 1 

MODE SET (Program only) - 1 0 0 0 0 AL TCS EW RP EN3 EN2 ENI ENO 

STATUS (Read only) - 1 0 0 0 0 0 0 0 UP TC3 TC2 TCI TCO 

'AO-A1S: DMA Starting Address, Co-C13:Terminal Count value (N-1), Rd and Wr: DMAVerify (00), Write (01) or Read (10) cycle selection, 
AL: Auto Load, TCS: TC STOp, EW: EXTENDED WRITE, RP: ROTATING PRIORITY, EN3-ENO: CHANNEL ENABLE MASK, UP: UPDATE 
FLAG, TC3-TCO: TERMINAL COUNT STATUS BITS. 

2-79 



inter 825718257·5 

RT' 

SI 
SAMPLE OROn LINES 
SET HRO If ORO" '" 1 

~DRQt, 

\ 

so 

1 
SAMPLE HLOA 

RESOLVE OROn PRIORITIES 

l HLDA 

S' 
PRESENT AND LATCH ,--.. UPPER ADDRESS 

PRESENT LOWER ADDRESS , 

~ 
S2 

ACTIVATE READ COMMAND 
ADVANCED WRITE COMMAND 

AND DACKn 

~ r--
S3 READY SN 

ACTIVATE WRITE COMMAND I VERIF; 

~~ 
ACTIVATE MARK ANO lC READY 

IF APPROPRIA re LINE 

~ READY + VERIFY 
'--

S4 READY 
RESET ENABLE fOR CHANNEl N If 

Te STOP AND TC ARE ACTIVE 
DEACTIVATE COMMANDS -- DEACTIVATE OACKn MARK AND TO 

OROn HLDA SAMPLE QROn AND HLOA 
RESOLVE OROn PRIORITIES 

RESET HRO IF HLOA ~ 0 OR ORO" 0 

l j.iLOA + oROn 

lORan REFERS TO ANY ORO LINE ON AN ENABLEO OMA CHANNEL 

Figure 8. DMA Operation State Diagram 

DMA OPERATION 

Single Byte Transfers 

A Single byte transfer is initiated by the I/O device rais­
ing the ORO line of one channel of the 8257. If the chan· 
nel is enabled, the 8257 will output a HRO to the CPU. 
The 8257 now waits until a HLOA is received insuring 
that the system bus is free for its use. Once HLOA is 
received the ~ line for the requesting channel is ac· 
tivated (LOW). The ~ line acts as a chip select for 
the requesting I/O device. The 8257 then generates the 

read and write commands and byte transfer occurs be­
tween the selected I/O device and memory. After the 
trans'fer is complete, the OACK line is set HIGH and the 
HRO line is set LOW to indicate to the CPU that the bus 
is now free for use. ORO must remain HIGH until OACK 
is issued to be recognized and must go LOW before S4 
of the transfer seque,nce to prevent another transfer 
from occuring. (See timing diagram.) 

Consecutive Transfers 

If more than one channel requests service simultaneous· 
Iy, the transfer will occur in the same way a burst does. 
No overhead is incurred by switching from one channel 
to another. In each S4 the ORO lines are sampled and 
the highest priority request is recognized during the 
next transfer. A burst mode transfer in a lower priority 
channel will be overridden by a higher priority request. 
Once the high priority transfer has completed control 
will return to the lower priority channel if its ORO is still 
active. No extra cycles are needed to execute this se­
quence and the HRO I'ine remains active until all ORO 
lines go LOW, 

Control Override 

The continuous OMA transfer mode described above 
can be interrupted by an external device by.lowering the 
HLOA line, After each OMA transfer the 8257 samples 
the HLOA line to insure that it is still active. If it is not 
active, the 8257 completes the current transfer, releases 
the HRO line (LOW) and returns to the idle state. If ORO 
lines are still active the 8257 will raise the HRO line in 
the third cycle and proceed normally. (See timing 
diagram.) 

Not Ready 

The 8257 has a Ready input similar to the 8080A and the 
8085AH, The Ready line is a sampled in State 3. If Ready is 
LOW the 8257 enters a waft state. Ready is sampled during 
every wait state, When Ready returns HIGH the 8257 
proceeds to State 4 to complete the transfer. Ready is used to 
interface memory of I/O devices thatcannot meet the bus set 
up times required by the 8257. 

Speed 

The 8257 uses four clock cycles to transfer a byte of 
data. No cycles are lost in the master to master transfer 
maximizing bus efficiency. A 2MHz clock input will 
allow the 8257 to transfer at a rate of 500K bytes/second. 

Memory Mapped I/O Configurations 

The 8257 can be connected to the system bus as a memory 
deVice Instead of as an I/O deVice for memory mapped I/O 
configurations by connecting the system memory control 
lines to the 8257's I/O control lioes and the system I/O 
control lines to the 8257's memory control lines 

ThiS configuration permits use of the 8080's conSiderably 
larger repertoire of memory instructions when reading or 
loading the 8257's registers. Note that With thiS 
connection, the programming of the Read (bit 15) and 
Wnte (bit 14) bits In the terminal count register Will have a 
different meaning 

2-80 



inter 825718257·5 

BIT 15 BIT 14 

MEMRD ii01i5" READ WRITE 

0 0 DMA Verify Cycle 
0 1 DMA Read Cycle 

MEMWR I/OWR 
8257 

I/O AD M'E'MA'5 

i70WR MEMWR 1 0 DMA Write Cycle 
1 1 Illegal 

Figure 9. System Interface for Memory 
Mapped I/O 

Figure 10. TC Register for Memory Mapped 
I/O Only 

SYSTEM APPLICATION EXAMPLES 

\ 

fr 
\ 

II 
\ 

Jj D 
8251 
AND 
8212 

OMA CONTROLLER 

8257 
AND 
8212 

ADDRESS BUS 

I I I 
CONTROL BUS 

1''1 flOW I I i70R I " DATA BUS 

U 11 D I U 
ORO 0 DISK 1 

OACK 0 -------
ORO 1 

DISK 2 
DACK 1 ------
OR02 

OACK 2 
DISK 3 

DRQ3 -------

DACK 3 DISK 4 

Figure 11. Floppy Disk Controller (4 Drives) 

ORO 

DACK 
8251 

USART 

MODEM 

TElEPHONE 
LINES 

D 
SYSTEM 

RAM 
MEMORY .. 

SYSTEM 
RAM 

MEMORY 

Figure 12. High-Speed Communication Controller 

2-81 

\ 

" \ 

JJ_ 



inter 8257/8257-5 

A.C. TESTING INPUT, OUTPUT WAVEFPRM A.C. TESTING LOAD CIRCUIT 

INPUT/OUTPUT 

"=X x= 2.0 2.0 > TEST POINTS < 
08 0.8 

0.45 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND a 45V FOR 
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC 1 
AND 0 8V FOR A LOGIC 0 

Tracking Parameters 

I 

DEVICE 
UNDER 

ICL~150PF TEST 

':" 

CL INCWDES JIG CAPACITANCE 

Signals labeled as Tracking Parameters (footnotes 1 and 5-7 under A.C. Specifications) are signals that follow similar 
paths through the silicon die. The propagation speed of these signals varies in the manufacturing process but the 
relationship between all these parameters is constant. The variation is less than or equal to 50 ns. 

Suppose the following timing equation is being evaluated, 

T A(MIN) + T 8(MAX) s 150 ns 

and only minimum specifications exist for T A and T B. If T A(MIN) is used, and if T A and T B are tracking parameters, 
T 8(MAX) can be taken as T 8(MIN) + 50 ns. 

TA(MIN) + (T8(MIN)- + 50 ns) s 150 ns 

Olf T A and T Bare trackl ng parameters 

WAVEFORMS-PERIPHERAL MODE 

WRITE 
___ " -TAW-- f.TWA 

CHiI'"S£UC'f 

READ 

DATA BUS __________ J~----~--~p __ 

I/OWR 

2-82 



inter 825718257 ·5 

WAVEFORMS-DMA 

CONSECUTIVE CYCLES AND BURST MODE SEQUENCE 

~ I ~ I • I ~ I g I a I Y 

CLOCK 

SI S2 I S3 Y I SI SI SI 

DR003 __ ~ __ ~+-______ ~-4 ____ -+ ____ -J~ ________ 4-____________ ~~ ____ -+ __________ __ 

HRO ________ J 

HLDA ____________ -/1 

AEN ____________ ~--Jj 

ADR 07 (LOWER ADR)- - -

DATA a 7 (UPPER ADR) __ _ 

CLOCK 

NOTE The clodo: w ..... form 1$ 

duplicated for clarity 
The 8257 requires only 
one clock mput 

ADR STB _______ " 

DACK 0 3 

MEMIRD/i'7'ORiJ_ 

READY 

Te/MARK 

SI I SI so S1 

- \._----

S2 S3 Y S1 a Y SI SI SI 

2-83 



intJ 825718257·5 

WAVEFORMS (Continued) 

CONTROL OVERRIDE SEQUENCE 

54 1 SI SI I so S1 I. S2 

CLOCK 

OROO.3 -----"\.,.,--------T------
HRO 

HLOA -------. "'"""-_____ -..11 F THS 

AEN J 
TAEl --\ t-­

J.---
''-___ -'7 

NOT READY SEQUENCE 

SOl ~ 1 S2 1 ~ I ~ 1 ~ 54 1 ~ SI 1 SI 

CLOCK 

DR003 _~ ____ --+"Io--____ _ 

= ~~~~~: :~ F I 1 1 ~ ___ _ 

REAOV _____ TR_·1~ :J.,.I-..... , .... T_RS ___ _ 

TC/MA.RK I \ 

2-84 



in1er 825718257·5 

A .. 
, 

G~" 
, 

A. AODRESS 
BUS 

~ A, 

ALE r---..!.!. STB 
00.--00, 

13 
DS2 

~ 
V" 

8212 m 
-f MD 

01,--01, OS; 

, 
AD, r- )~' , , DATA BUS 

AD, r-
V 0, 

V" .... 

~ 
~Al 

JIll 
~B, 

0, 4 ~ 
~A2 , 7 il!l\ r- MEMR 
--! B, ~ , - r- Il!II CONTROL 

~A' 
, • r- BUS 

~B3 
;!: , 

12 lOW -Wli 
~A. 

0, r- I~ 

13 B. CHIP 
DE SelECT READY 

SEL (B) 1 L "1 I· IO/Q 

HOLD :; es READY -:7 A, 
HLOA , 

~7-elK (OUT) 0, 

RESET iN r-- RESET 82575 

RESET OUT r-- - ----2...: MEMR DRDo " ORa, 

'----- ----l..: il!l\ OACKo 
2' DACKo 

- ~ MEMW ORO, 
,. 

ORO, 

"' 
----l...,: iOW OACK, 

2. 
QACK, 

ORa, 
17 

ORO, 

--!.L HRO DACK, 
,. 

DACK 2 

~ HLOA ORO] 
,. 

OR03 

OACK 1 

,. 
i5'AC'K 1 

--.2.!- elK TC '" TC 

~ RESET MARK • MARK 

AEN ADST8 

• • 
r-- j' " 

13 

DS2 CLR STB 

~ 
01, DO, 

, , 
, 8212 , 

01, 00, 

MD os; 

t l' 
Figure 13. Detailed System Interface Schematic 

2-85 



inter 8257/8257-5 

ABSOLUTE M~XIMUM RATINGS· 

Ambient Temperature Under Bias ......... O°C to 70°C 
Storage Temperature ............... -65°C to +150°C 
Voltage on Any Pin ' 

With Respect to Ground .............. -0.5V to + 7V 
Power Dissipation ............................ 1 Watt 

"NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (8257: TA = O°C to 70°C. Vee = 5.0V ±5%. GND = OV) 
'(8257-5: TA = O°C to 70°C. Vee = 5.0V ±10%. GND = OV) 

Symbol Parameter Min. Max. Unit Test Conditions 

V,L Input low Voltage -0.5 0.8 Volts 

V,H Input High Voltage 2.0 Vee+· 5 Volts 

VOL Output low Voltage 0.45 Volts IOL = 1.6 rnA 

VOH Output High Voltage 2.4 Vee Volts IOH =-150IlA for AB. 
DB and AEN 

\ IOH =-80IlA for others 

VHH HRQ Output High Voltage 3.3 Vee Volts IOH = -801lA 

Icc Vee Current Drain 120 rnA 

I,L Input leakage ±10 IlA OV '" V,N '" Vee 

IoFL Output leakage During Float ±10 IlA 0.45V '" Vour '" Vee 

CAPACITANCE (TA = 25°C; Vee = GND = OV) 

Symbol Parameter Min. Typ. Max. Unit Test Conditions 

C'N Input Capacitance 10 pF fc = lMHz 

CliO 1/0 Capacitance 20 pF Unmeasured pIns 
returned to G N 0 

2-86 



intJ 8257/8257·5 

A.C. CHARACTERISTICS-PERIPHERAL (SLAVE) MODE 
(8257: TA = O°C to 70°C, Vee = 5.0V ±5%, GND = OV) 
(8257-5: TA = O°C to 70°C, Vee = 5.0V ±10%, GND = OV) 

8080 Bus Parameters 
READ CYCLE 

8257 

Symbol Parameter Min. 

TAR Adr or CS~ Setup to RD~ 0 

TRA Adr or cst Hold from RDt 0 

TRo Data Access from R D ~ 0 

ToF D8 .... Float Delay from RDt 20 

TRR RD Width 250 

WRITE CYCLE 

8257 

Symbol Parameter Min. 

TAW Adr Setup to WR~ 20 

TWA Adr Hold from WRt 0 

Tow Data Setu p to WR t 200 

Two Data Hold from WR t 10 

Tww WR Width 200 

OTHER TIMING 

8257 

Symbol Parameter -, Min. 

TRSTW Reset Pulse Width 300 

TRSTo Power Supplyt.(Vccl Setup to Reset~ SOO 

T, Signal Rise Time 

Tf Signal Fall Time 

TRSTS Reset to First I/OWR :t 

A.C. CHARACTERISTICS-DMA (MASTER) MODE 
(8257: TA = O°C to 70°C, Vee = 5.0V ±5%, GND = OV) 
(8257-5: TA = O°C to_70°C, Vee = 5.0V ±10%, GND = OV) 

TIMING REQUIREMENTS 

Symbol Parameter 
Min. 

TCY Cycle Time (Period) 0.320 

T6 Clock Active (High) 120 

Tas DROI Setup to ClKI (SI, S4) 120 

TaH ORal Hold from HlDAI[1] 0 

THS HlDA I or ISetup to CLKI(SI, S4) [7J 100 

TRS READY Setup Time to ClKI(S3, Sw) 30 

TRH READY Hold Time from ClKI(S3, Sw) 30 

2-87 

Max. 

300 

150 

Max. 

Max. 

20 

20 

8257 

8257·5 

Min. Max. 

0 

0 

0 220 

20 120 

250 

8257·5 

Min. Max. 

20 

0 

200 

10 

200 

8257-5 

Min. Max. 

300 

500 

20 

20 

2 

Max. Min. 

4 0.320 

.8TCY SO 

120 

0 

280 100 

30 

30 

Unit Test Conditions 

ns 

ns 

ns 

ns 

ns 

Unit T est Conditions 

ns 

ns 

ns 

ns 

ns 

Unit Test Conditions 

ns 

}J.S 

ns 

ns 

tCY 

8257·5 
Unit 

Max. 

4 P.s 

.8TCY ns 

ns 

ns 

280 ns 

ns 

ns 



inter 825718257·5 

A.C. CHARACTERISTICS-DMA (MASTER) MODE 
(82S7: TA = O'C to 70'C, vcc = S.OV ±S%, GND = OV) 
(82S7-S: TA = O'C to 70'C, vcc = S.OV ±10%, GND = OV) 

TIMING RESPONSES 

Symbol Parameter. 
8257 

Min. 

Too 
HRQi or tDelay from ClKt (SI, S4) 
(measured at 2.0V) 

TOOl 
HRQi or tDelay from ClK, (SI, S4) 
(measured at 3.3V)[3] 

TAEL AENt Delay from ClKt (S1) 

TAET AENt Delay from ClKi (SI) 

TAEA Adr (AB) (Active) Delay from AENt (81)[1] 20 

TFAAB Adr ,tAB) (Active) Delay from ClK, (S1 )[2] 

TAFAB Adr (AB) (Float) Delay from ClK, (SI)[2] 

TASM Adr (AB) (Stable) Delay from ClKt (S1)[2] 

TAH Adr (AB) (Stable) Hold from ClKt (S1)[2] TASM-SO 

TAHR Adr (AB) (Valid) Hold from RDt (S1, SI)[l] 60 

TAHW Adr (AB) (Valid) Hold from Wrt (S1, SI)[l] 300 

TFAOB Adr (DB) (Active) Delay from ClKt (S1 )[2] 

TAFOB Adr (DB) (Float) Delay from ClKt (S2)[2] TSTT+20 

TASS Adr (DB) Setup to Adr Stbt (S1-S2)[1] 100 

TAHS Adr (DB) (Valid) Hold from Adr Stbt (S2)[1] 20 

TSTL Adr Stbi Delay from ClKt (S1) 

TSTT Adr Stbt Delay from ClKt (S2) 

TSW Adr Stb Width (S1-S2)[1] TCy-100 

TASC Rdt or Wr(Ext)t Delay from Adr Stb,l 
(S2)[1] 70 

TOBC 
RDt OrWR\Ext),l Delay from Adr (DB) 
(Float) (S2) 1] 20 

DACKt or tDelay from ClKt (S2, S1) and 
TAK TC/Markt Delay from ClKt (S3) and 

TC/Markt Delay from ClKt (S4)[4] 

TOCL 
ROt or Wr(Ext),l Delay from ClK, (S2j and 
Wrt Delay from ClKt (S3)[2,5] 

TOCT 
Rdt Delay from ClK,l (S1, SI) and 
wrt Delay from ClKt (S4)[2,6] 

TFAC Rd or Wr (Active) from ClKt (S1 )[2] 

TAFC RdiorWr (Active) from ClKt (S1)[2] 

TRWM Rd Width (S2-S1 or SI)[l] 2TCy+TO-SO 

TWWM WrWidth (S3-S4)[1] TCY-SO 

TWWME WR(Ext) Width (S2·S4)[1] 2TCY-SO 

NOTES: 
1. Tracking Parameter. 
2. Load = + 50 pF. 

3 .. Load = VOH = 3.3\1. 
4. ATAK < 50 ns. 

7. HLOA must remain stable during tHS. 
2-88 

8257·5 
Unit 

Max. Min. Max. 

160 160 ns 

2S0 2S0 ns 

300 300 ns 

200 200 ns 

20 ns 

2S0 2S0 ns 

1S0 1S0 ns 

2S0 2S0 ns 

TASM -SO ns 

60 ns 

300 ns 

300 300 ns 

2S0 TSTT+20 170 ns 

100 ns 

20 . ns 

200 200 ns 

140 140 ns 

TCy-100 ns 

70 ns 

20 ns 

250 2S0 ns 

200 200 ns 

200 200 ns 

300 300 ns 

1S0 1S0 ns 

2TCy+TO-SO ns 

TCY-SO ns 

2TCY-SO ns 

5. ATOCL < 50 ns. 
6. AToCT < 50 ns. 



8259AI 8259A-2 18259A-8 
PROGRAMMABLE INTERRUPT CONTROLLER 

• iAPX 86, iAPX 88 Compatible • Individual Request Mask Capability 

• MCS-80®, MCS-85® Compatible • Single + 5V Supply (No Clocks) 

• Eight-Level Priority Controller • 28-Pin Dual-In-Line Package 

• Expandable to 64 Levels • Available in EXPRESS 

• Programmable Interrupt Modes 
- Standard Temperature Range 
- Extended Temperature Range 

The Intel'" 8259A Programmable Interrupt Controller handles up to eight vectored priority interrupts for the CPU. It is 
cascadable for up to 64 vectored priority interrupts without additional circuitry. It is packaged in a 28·pin DIP, uses 
NMOS technology and requires a single + 5V supply. Circuitry is static, requiring no clock input. 

The 8259A is designed to minimize the software and real time overhead in handling multi·level priority interrupts. It has 
several modes, permitting optimization for a variety of system requirements. 

The 8259A is fully upward compatible with the Intel'" 8259. Software originally written for the 8259 Will operate the 
8259A in all 8259 equivalent modes (MCS·80/85. Non·Buffered, Edge Triggered). 

DATA CONTROL lOGIC °7-°0 BUS 
BUFFER 

Cs Vee 

Wii "0 
i'i5' iNfA 
0, IR7 

Ri5 
IRO D. IR6 
IRI 

0,. IR5 WR IR2 
D, IR4 

D, IR3 

D, IR2 

cs D, IR1 

Do IRO 

CASO INT 

CASO CAS 1 SP/EN 
CASCADE GND CAS2 

CAS 1 BUFFERI 
COMPARATOR 

CAS2-

SP/EN ~INTEANAl BUS 

Figure 1. Block Diagram Figure 2. Pin Configuration 

Intel Corporatton Assumes No Responslbllty for the Use of Any CircUitry Other Than Clrcultrv Embodied In an Intel Product No Other Circuit Patent licenses afe Implied 

©INTEL CORPORATION, 1980' 2-89 



8259A/8259A-218259A-8 

Table 1. PI!, Description 

Symbol Pin No. Type Name and Function 

Vee 28 I Supply: +5V Supply. 

GND 14 I Ground. 

C§ 1 I Chip Selact: A low on this pin enables RD and WR communication between the CPU and the 8259A. 
INTA functIons are independent of CS. 

WR 2, I Write: A low on this pin when CS is low enables the 8259A to accept command words from the CPU. 

RD 3 I Raad: A low on this pin when CS is low enables the 8259A to release status onto the data busforthe 
CPU. 

0-,-00 4-11 I/O Bidirectional Data Bus: Control, status a,nd Interrupt-vector information Is transferred via thIs bus. 

CASo-CAS2 12,13,15 I/O Cascade Lines: The CAS lines form a private 8259A bus to control a multiple 8259Astructure. These 
pins are outputs for a master 8259A and inputs for a sla~e 8259A. 

SP/EN 16 I/O Slave Program/Enable Buffer: This is a dual function pin. When In the Buffered Mode it can be used 
as an '!utput to control buffer transceivers (EN). When not in the buffered mode it is used as an input 
to designate a master (SP = 1) or slave (SP = 0). 

INT 17 0 Interrupt: This pin goes hIgh whenever a valid Interrupt request is asserted, It is used to interruptthe 
CPU, thus It IS connected to the CPl!'s interrupt pin. 

IRO-IR7 18-25 I Interrupt Requests: Asynchronous Inputs. An Interrupt request is executed by raising an IR input 
(low to high), and holding it high until it is acknowledged (Edge Triggered Mode), or Just by a high 
level on an IR input (Level Triggered Mode). 

INTA 26 I Interrupt Acknowledge: ThIS pin Is used to enable 8259A interrupt-vector data onto the data bus by 
a sequence of interrupt acknowledge pulses Issued by the CPU. 

Ao 27 I AO Address Line: This pin acts in conjunction wIth the CS, WR, and RD pins. It IS used by the 8259A 
to decipher various Command Words the CPU writes and status the CPU wishes to read. It is typically 
connected to the CPU AO'l!ddress line (Al for iAPX 86, 88). 

2-90 



inter 8259A/8259A-2/8259A-8 

FUNCTIONAL DESCRIPTION 

Interrupts in Microcomputer Systems 
Microcomputer system design requires that 1/0 devices 
such as keyboards, displays, sensors and other com· 
ponents receive servicing in an efficient manner so that 
large amounts of the total system tasks can be assumed 
by the microcomputer with little or no effect on through· 
put. 

The most common method of servicing such devices is 
the Polled approach. This is where the processor must 
test each device in sequence and in effect "ask" each 
one if it needs servicing. It is easy to see that a large por· 
tion of the main program is looping through this con· 
tinuous polling cycle and that such a method would 
have a serious, detrimental effect on system through· 
put, thus limiting the tasks that could be assumed by 
the microcomputer and reducing the cost effectiveness 
of using such devices. 

A more desirable method would be one that would allow 
the microprocessor to be executing its main program 
and only stop to service peripheral devices when it is 
told to do so by the device itself. In effect, the method 
would provide an external asynchronous input that 
would Inform the processor that it should complete 
whatever instruction that is currently being executed 
and fetch a new routine that will service the requesting 
device. Once this servicing is complete, however, the 
processor would resume exactly where it left off. 

This method is called Interrupt. It is easy to see that 
system throughput would drastically increase, and thus 
more tasks could be assumed by the microcomputer to 
further enhance its cost effectiveness. 

The Programmable Interrupt Controller (PIC) functions 
as an overall manager in an Interrupt·Driven system 
environment. It accepts requests from the peripheral 
equipment, determines which of the incoming requests 
is of the highest importance (priority), ascertains 
whether the incoming request has a higher priority value 
than the level currently being serviced, and issues an 
interrupt to the CPU based on this determination. 

Each peripheral device or structure usually has a special 
program or "routine" that is associated with its specific 
functional or operational requirements; this is referred 
to as a "service routine". The PIC, after issuing an Inter· 
rupt to the CPU, must somehow input information into 
the CPU that can "point" the Program Counter to the 
service routine associated with the requesting device. 
This "pointer" is an address In a vectoring table and will 
often be referred to, in this document, as vectoring data. 

The 8259A 
The 8259A is a device specifically deSigned for use in 
real time, interrupt driven microcomputer systems. It 
manages eight levels or requests and has built·ln fea· 
tures for expandabiiity to other 8259A's (up to 64 levels). 
It is programmed by the system's software as an 1/0 
peripheral. A selection of priority modes is available to 
the programmer so that the manner in which the reo 
quests are processed by the 8259A can be configured to 

match his system requirements. The priority modes can 
be changed or reconfigured dynamically at any time duro 
ing the main program. This means that the complete 
interrupt structure can be defined as required, based on 
the total system environment. 

CPU-DRIVEN 
MULTIPLEXOR 

CPU 
----

--r~ 
\ ~Q 

RAM ~ ~ 1/0(11 ~ 

ROM I ) ~ 1/0(2) r--

r---, 

~ 
I 

1/0 IN} 

J L ___ ...J 
V 

Figure 3a. Polled Method 

CPU .NT 

RAM 

ROM 1/01'1 

I/O 121 

I I/O{N) I 

1 1 1 _____ J 

Figure 3b. Interrupt Method 

2-91 



inter 8259A/8259A-2/8259A-8 

INTERRUPT REQUEST REGISTER (IRR) AND 
IN-SERVICE REGISTER (ISR) 

The interrupts at the IR input lines are handled by two 
registers in cascade, the Interrupt Request Register 
(IRR) and the In-Service Register (ISR). The IRR is used 
to store all the interrupt levels which are requesting ser­
vice; and the ISR is used to store all the interrupt levels 
which are being serviced. 

PRIORITY RESOLVER 

This logic block determines the priorities of the bits set 
in the IRA. The highest priority is selected and strobed 
into the corresponding bit of the ISR during INTA pulse. 

INTERRUPT MASK REGISTER (IMR) 

The IMR stores the bits which mask the interrupt lines 
to be masked. The IMR operates on the IRA. Masking of 
a higher priority input will not affect the interrupt 
request lines of lower priority. 

INT (INTERRUPT) 

This output goes directly to the CPU interrupt input. The 
VOH level on this line is designed to be fully compatible 
with the 8080A, 8085A and 8086 input levels. 

INTA (INTERRUPT ACKNOWLEDGE) 

INTA pulses will cause the 8259A to release vectoring 
information onto the data bus. The format of this data 
depends on the system mode ("PM) of the 8259A. 

DATA BUS BUFFER 

This 3-state, bidirectional 8-bit buffer is used to inter-

Figure 4a. 8259A Block Diagram 

face the 8259A to the system Data Bus. Control words ',-', 
and status information are transferred through the Data 
Bus Buffer. 

READIWRITE CONTROL LOGIC 

The function of this block is to accept OUTput com­
mands from the CPU. It contains the Initialization Com­
mand Word (ICW) registers and Operation Command 
Word (OCW) registers which store the various control 
formats for device operation. This function block also 
allows the status of the 8259A to be transferred onto the 
Data Bus. 

CS (CHIP SELECT) 

A LOW on this input enables the 8259A. No reading or 
writing of the chip will occur unless the device is 
selected. 

WR(WRITE) 

A LOW on this input enables the CPU to write control 
words (leWs and OCWs) to the 8259A. 

RD (READ) 

A LOW on this input enables the 8259A to send the 
status of the Interrupt Request Register (IRR), In Service 
Register (ISR), the Interrupt Mask Register (IMR), or. the 
Interrupt level onto the Data Bus. 

2-92 

~ If\lHRfIIAl 8US 

Figure 4b. 8259A Block Diagram 

Ao 

This input signal is used in conjunction with WR and RD 
signals to write comr;nands into the various command 
registers, as well as reading the various status registers 
of the chip. This line can be tied directly to one of the ad­
dress lines. 



8259A18259A-2/8259A-8 

THE CASCADE BUFFER/COMPARATOR 

This function block stores and compares the IDs of all 
8259A's used in the system. The associated three 1/0 
pins (CASO-2) are outputs when the 8259A is 'used as a 
master and are inputs when the 8259A is used as a 
slave. As a master, the 8259A sends the 10 of the inter· 
rupting slave device onto the CASO-2 lines. The slave 
thus selected will send its preprogrammed subroutine 
address onto the Data Bus during the next one or two 
consecutive INTA pulses. (See section "Cascading the 
8259A".) 

INTERRUPT SEQUENGE 

The powerful features of the 8259A in a microcomputer 
system are its programmability and the interrupt routine 
addressing capability. The latter allows direct or indirect 
jumping to the specific interrupt routine requested 
without any polling of the interrupting devices. The nor· 
mal sequence of events during an interrupt depends on 
the type of CPU being used. 

The events occur as follows in an MCS·80/85 system: 

1. One or more of the INTERRUPT REQUEST lines 
(IR7-0) are raised high, selling the corresponding IRR 
bit(s). 

2. The 8259A evaluates these requests, and sends an 
INT to the CPU, if appropriate. 

3. The CPU acknowledges the INT and responds with an 
INTA pulse. 

4. Upon receiving an' INTA from the CPU group, the 
highest priority ISR bit is set, and the corresponding 
IRR bit is reset. The 8259A will also release a CALL in­
struction code, (11001101) onto the 8-bit Data Bus 
through'its 07-0 pins. 

5. This CALL instruction will initiate two more INTA 
pulses to be sent to the 8259A from the CPU group. 

6. These two INTA pulses allow the 8259A to release its 
preprogrammed subroutine address onto the Data 
Bus. The lower 8-bit address is released at the first 
INTA pulse and and the higher 8-bit address is re­
leased at the second INTA pulse. 

7. This completes the 3-byte CALL instruction released 
by the 8259A. In the AEOI mode the ISR bit is reset at 
the end of the third INTA pulse. Otherwise, the ISR bit 
remains set until an appropriate EOI command is 
issued at the end of t,he interrupt sequence. 

The events occurring in an iAPX 86 system are the same 
until step 4. 

4. Upon receiving an INTA from the CPU group, the high­
est priOrity ISR bit is set and the corresponding IRR 
bit is reset. The 8259A does not drive the Data Bus 
during this cycle. 

5. The iAPX 86/10 will initiate a second INTA pulse. 
During this pulse, the 8259A releases an 8-bit pointer 
onto the Data Bus where it is read by the CPU. 

6. This completes the interrupt cycle. In the AEOI mode 
the ISR bit is reset at the end of the second INTA 
pulse. Otherwise, the ISR bit remains set until an 
appropriate EOI command is issued at the end of the 
interrupt subroutine. 

If no interrupt request is present at step 4 of either 
sequence (Le., the request was too short in duration) the 
8259A will issue an interrupt level 7. Both the vectoring 
bytes and the CAS lines will look like an interrupt level 7 
was req uested. 

2-93 

SPIE'N __ _ ~INlEflNAl8US 

Figure 4c. 8259A Block Diagram 

I 
INTERRUPT 
REQUESTS 

,Figure 5. 8259A Interface to Standard 
System Bus 



inter 8259A18259A-2/8259A-8 

INTERRUPT SEQUENCE OUTPUTS 
MCS-80®, MCS~85® 

This sequence is timed by three INTA pulses. During the 
first INTA pulse the CALL opcode is enabled onto the 
data bus. 

Content 01 First Interrupt 
Vector Byte 

07 06 05 04 03 02 01 00 

CALL CODE I 1 0 0 1 I 
During the second fIiIiA pulse the lower address of the 
appropriate service routine is enabled onto the data bus. 
When Interval = 4 bits As-A7 are programmed, while Ao­
A4 are automatically inserted by the 8259A. When Inter· 
val = 8 only As and A7 are programmed, while Ao-As are 
automatically inserted. 

IR 
07 

7 A7 
S A7 
S A7 
4 A7 
3 A7 
2 A7 
1 A7 
0 A7 

IR 
07 

7 A7 
6 A7 
S A7 
4 A7 
3 A7 
2 A7 
1 A7 
0 A7 

Content 01 Second Interrupt 
Vector Byte 

Interv.I.4 

06 05 04 03 02 
AS AS 1 1 1 
AS AS 1 1 0 

.AS AS 1 0 1 
AS AS 1 0 0 

AS AS 0 1 1 
AS AS 0 1 0 

A6 AS 0 0 1 
A6 AS 0 0 0 

InteN,I=8 

06 05 04 03 02 
A6 1 1 1 0 

A6 '1 1 0 0 

AS 1 0 1 0 

A6 1 0 0 0 

A6 0 1 1 0 

A6 0 1 0 0 

A6 0 0 1 0 

A6 0 0 0 0 

01 00 
0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

01 00 
0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

During the third INTA pulse the higher address of the 
appropriate service routine, which was programmed as 
byte 2 of the initialization sequence (As - A1s), is 
enabled onto the bus. 

07 06 
A1S A14 

Content 01 Third Interrupt 
Vector Byte 

05 04 03 02 
A13 A12 A1l A10 

iAPX 86, iAPX 88 

01 DO 

A9 AS 

iAPX 86 mode is similar to MCS-80 mode except that only 
two Interrupt Acknowledge cycles are issued by the pro­
cessor and no CALL opcode is sEmt to the processor. The 
first interrupt acknowledge cycle is similar to that of 
MCS-80, 85 systems in that the 8259A uses it to internally 
freeze the state of the interrupts for priority resolution and 
as a master it issues the interrupt code on the cascade 
lines attheend of the INTA pulse. On this first cycle it does 

not issue any data to the processor and leaves its data bus 
buffers disabled. On the second interrupt acknowledge 
cycle In iAPX 86 mode the master (or slave if so pro­
grammed) will send a byte of data to the processor with 
the acknowledged interrupt code composed as follows' 
(note the state of the ADI mode control is ignored and 
As-All are unused in iAPX 86 mode):" 

IR7 
IR6 
IR5 
IR4 
IR3 
IR2 
IRI 
IRO 

Content 01 Interrupt Vector Byte 
lor IAPX 86 System Mode 

07 OS OS 04 '03 02 
T7 T6 T5 T4 T3 1 

T7 T6 T5 T4 T3 1 

T7 TS T5 T4 T3 1 

T7 TS TS T4 T3 1 

T7 TS T5 T4 T3 0 

T7 T6 T5 T4 T3 0 

T7 T6 T5 T4 T3 0 

T7 TEl T5 T4 T3 0 

01 DO 
1 1 

1 0 

0 1 

0 0 

1 1 

1 0 

0 1 

0 0 

PROGRAMMING THE 8259A 
The 8259A accepts two types of command words gener· 
ated by the CPU: 

1. Initialization Command Words (JCWs): Before normal 
operation can begin, each 8259A in the system must 
be brought to a starting point - by a sequence of 2 to 
4 bytes timed by WR pulses. 

2. Operation Command Words (OCWs): These are the 
command words which command the 8259A to oper· 
ate in various interrupt modes. These modes are: 

2-94 

a. Fully nested mode 
b. Rotating priority mode 
c. Special mask mode 
d. Polled mode 

The OCWs can be written into the 8259A anytime after 
initialization. 

INITIALIZATION COMMAND WORDS 
(ICWS) 
GENERAL 

Whenever a command is issued with AO = 0 and D4 = 1, 
this is interpreted as Initialization Command Word 1 
(ICW1). ICW1 starts the initialization sequence during 
which the following automatically occur. 

a. The edge sense circuit is reset, which means that fol­
lowing initialization, an interrupt request (IR) input 
must make a low-to-high transition to generate an 
interrupt. 

b. The Interrupt Mask Register is cleared. 
c. IR7 input is assigned priority 7. 
d. The slave mode address is set to 7. 
e. Special Mask Mode is cleared and Status Read is set to 

IRR. 
f. If IC4=O, then all functions selected in ICW4 are set to 

zero. (Non-Buffered mode', no Auto-EOI, MCS-80, 85 
system). 

• Note: Mast~rlSlave In ICW4 IS only used in the buffered mode. 



intJ 8259A18259A-2/8259A-8 

INITIALIZATION COMMAND WORDS 1 AND 2 
(lCW1, ICW2) 

A5-A15: Page starting address of service routines. In an 
MCS 80/85 system, the 8 request levels will generate 
CALLs to 8 locations equally spaced in memory. These 
can be programmed to be spaced at intervals of 4 or 8 
memory locations, thus the 8 routines will occupy a 
page of 32 or 64 bytes, respectively. 

The address format is 2 bytes long (Ao-A15)' When the 
routine interval is 4, Ao-A4 are automatically inserted by 
the 8259A, while A5-A15 are programmed externally. 
When the routine interval is 8, Ao-A5 are automatically 
inserted by the 8259A, while As-A15 are programmed 
externally. 

The 8·byte interval will maintain compatibility with cur· 
rent software, while the 4·byte interval is best for a com· 
pact jump table. ' 

In an iAPX 86 system A1S-A11 are inserted in the five most 
significant bits of the vectoring byte and the 8259A sets 
the three least significant bits according to the interrupt 
level. A1O-AS are ignored and ADI (Address interval) has 
no effect. 

LTIM: If LTIM=1, then the 8259A will operate in the 
level Interrupt mode. Edge detect logic on the 
Interrupt inputs will be disabled. 

ADI: CALL address Interval. ADI = 1 then interval = 4; 
ADI = 0 then Interval = 8. 

SNGL: Single. Means that this Is the only 8259A In the 
system. If SNGL= 1 no ICW3 will be issued. 

IC4: If this bit Is set - ICW4 has to be read. If ICW4 
Is not needed, set IC4 = O. 

NO (SINGL = 1) 

NO (IC4 =- 0) 

INITIALIZATION COMMAND WORD 3 (ICW3) 

This word is read only when there is more than one 
8259A in the system and cascading is used, in which 
case SNGL = O. It will load the 8·bit slave register. The 
functions of this register are: 

a. In the master mode (either when SP = 1, or in buffered 
mode when M/S= 1 in ICW4) a "1" is set for each 
slave in the system. The master then will release byte 
1 of the call sequence (for MCS·80/85 system) and 
will enable the corresponding slave to release bytes 2 
and 3 (for iAPX 86 only byte 2) through the cascade 
lines. 

b. In the slave mode (either when SP = 0, or If BUF = 1 
and MIS = 0 in ICW4) bits 2-0 identify the slave. The 
slave'compares its cascade input with these bits and, 
if they are equal, bytes 2 and 3 of the call sequence (or 
just byte 2 for iAPX 86 are released by it on the Data 
Bus. 

INITIALIZATION COMMAND WORD 4 (lCW4) 

SFNM: If SFNM = 1 the special fully nested mode is 
programmed. 

BUF: If BUF = 1 the b'uffered mode is programmed, In 
buffered mode SP/EN becomes an enable output 
and the masterlslave determination is by MIS. 

MIS: If buffered mode is selected: MIS = 1 means the 
8259A is programmed to be a master, MIS = 0 
means the 8259A is programmed to be a slave. If 
BUF = 0, MIS has no function. 

AEOI: If AEOI = 1 the automatic end of interrupt mode 
is programmed. 

"PM: Microprocessor mode: I'PM = 0 sets the 8259A for 
MCS-80, 85 system operation. I'PM = 1 sets the 
8259A for iAPX 86 system operation. 

Figure 6. Initialization Sequence 

2-95 



8259A/8259A·2/8259A·8 

ICWl 

1 leW4 NEEDEO 
o ~ NO lew .. NEEDED 

1 '" SINGLE 
o = CASCADE MODE 

CALL A[,OAESS INTERVAL 
1 ~ INTERVAL OF,. 
o~ INTERVAL OF B 

1 '" LEVEL TRIGGERED MODE 
0= EDGE TRIGGERED~MODE 

A7-A5 01 INTERRUPT 
VECTOR ADDRESS 

(Mes·aO/85 MODE ONL Y) 

ICW) IMASTER DEVICE) 

A15-"8 OF INTERRUPT 
VECTOR ADDRESS 

(McsaD/85 MODE) 
T 7 - T 3 OF INTERRUPT 
VECTOR ADDRESS 

(808618088 MODE) 

NOTE 1: SLAVE 10 IS EQUAL TO THE CORRESPONDING 
MASTER IR INPUT 

1 - IF! INPUT HAS A SLAVE 
o . IR INPuT DOES NOT HAVE 

A SLAVE 

o o. 1 1 1 1 

1 "" 8086/8088 MODE 
0= MeS-SO/85 MODE 

1 AUTO EOI 
O· NORMAl EOI 

1 0 - BUFFEReD MODE/SLAVE lliEx NON BUFFERED MODE 

1 1 - BUFFERED MODE/MASTER 

1 :: SPECIAL FULLY NESTED 

'--------~-l 0 = ~gf~PECIAL FULLY 
NESTED MODE 

Figure 7. Initialization Command Word Format 

2-96 



8259A/8259A-2/8259A-8 

OPERATION COMMAND WORDS (OCWS) 
After the Initialization Command Words (ICWs) are pro­
grammed into the 8259A, the chip Is ready to accept 
Interrupt requests at its input lines. However, during the 
8259A operation, a selection of algorithms can com­
mand the 8259A to operate in various modes through 
the Operation Command Words (OCWs). 

OPERATION CONTROL WORDS (OCWs) 

oew1 
AO 07 06 05 04 03 02 01 DO 

~ I M7 M6 M5 M4 M3 M2 Ml MO I 

oeW2 

0 I R SL EOI 0 0 L2 Ll LO I 

oeW3 

0 0 ESMM SMM 0 P RR RIS I 

2-97 

OPERATION CONTROL WORD 1 (OCW1) 

OCW1 sets and clears the mask bits in the interrupt 
Mask Register (IMR). M7 - Mo represent the eight mask 
bits. M = 1 indicates the channel is masked 
(inhibited), M = 0 indicates the channel is enabled. 

OPERATION CONTROL WORD 2 (OCW2) 

R, SL, EOI - These three bits control the Rotate and 
End of Interrupt modes and combinations of the two. A 
chart of these combinations can be found on the Opera­
tion Command Word Format. 

L2 , L1, Lo-These bits determine the interrupt level acted 
upon when the SL bit is active. 

OPERATIClN CONTROL WORD 3 (OCW3) 

ESMM - Enable Special Mask Mode. When this bit is 
set to 1 it enables the SMM bit to set or reset the Special 
Mask Mode. When ESMM = 0 the SMM bit becomes a 
"don't care". 

SMM - Special Mask Mode. If ESMM = 1 and SMM = 1 
the 8259A will enter Special Mask Mode. If ESMM = 1 
and SMM = 0 the 8259A will revert to normal mask mode. 
When ESMM = 0, SMM has no effect. 



8259A/8259A-2/8259A-8 

DCW' 
0, 0, 

INTERRUPT MASK 
1 - MASK SET 
o • MASK RESET 

DCW. .. 0, D. 0, D. 0 3 0, 0, 0" 

I' " I "I EO' I • I • I L, I L, I L, I 

I 
IRLEYIlTOIE 
ACTED .... 

• , , , • • • , 
• , • , • , • , 
• • , , • • , , 
• • • • , , , , 

l r I 

, ct. r+ NON-SPECIFIC EOICOMMAND l IND OF INTERRUPT r.-r., SPeCIFIC EOI COiIWAND P,7, A01lUE ON NDN-8PECIFIC EOI COMMAND } r,-r,- , RO'WE IN AUTOMATIC EOI MODE (8E1) AUTOMATIC AO'IUION 

1010 • ROTATE .. AUTOMA'IlC EOI MODI (CLEAR) 
r,-rt , *ROTATE ON SPECIFIC EOI COMMAND l SPECIFIC R01JQ1ON r,-I;T • *8ET PRKNUTY COMIIIAND 

tIt:!: • NO OPERATION 

"LO-U:AR£U8I!D 

DCW' 

I . I 0 I'WMI SMM I • I ' I p I RR I·IS I 

I L READ RmIITER COMMAND 

0 I 1 . , 
• I • , 1 

.EAD READ 

NO ACTION IR REG ISREG 
ONNE'(T ON NEXT 

" 
RDPULSE RDPULSE 

I 1 .. POLLCOMMAHD 
D"'NO POLL COMMAND 

J 

SPECIAL MASK MODE 

• I , • , 
• I • , , 

RESET SET 
NO ACTION SPECIAL SPECIAL 

MASK MASK 

FIgure 8. OperatIon Command Word Format 

2-98 



8259A!8259A-2/8259A-8 

FULLY NESTED MODE 

This mode is entered after initialization unless another 
mode is programmed. The interrupt requests are 
ordered in priority form 0 through 7 (0 highest). When an 
interrupt is acknowledged the highest priority request is 
determined and its vector placed on the bus. Additional· 
Iy, a bit of the Interrupt Service register (ISO-7) is set. 
This bit remains set until the microprocessor issues an 
End of Interrupt (EOI) command immediately before 
returning from the service routine, or if AEOI (Automatic 
End of Interrupt) bit is set, until the trailing edge of the 
last INTA. While the IS bit is set, all furtfier interrupts of 
the same or lower priority are inhibited, while higher 
levels will generate an interrupt (which will be 
acknowledged only if the microprocessor internal Inter­
rupt enable flip-flop has been re-enabled through soft­
ware). 

After the Initialization sequence, IRO has the highest 
priority and IR7 the lowest. Priorities can be changed, as 
will be explained, In the rotating priority mode. 

END OF INTERRUPT (EOI) 

The In Service (IS) bit can be reset either automatically 
following the trailing edge of the last in sequence INTA 
pulse (when P.EOI bit in ICW1 is set) or by a command 
word that must be Issued to the 8259A before returning 
from a service routine (EOI command). An EOI command 
must be issued twice if in the Cascade mode, once for the 
master and once for the corresponding slave. 

There are two forms of EOI command: Specific and Non­
Specific. When the 825!!A is operated In modes which 
preserve the fully nested structure, it can determine 
which IS bit to reset on EOL When a Non-Specific EOI 
command is issued the 8259A will automatically reset 
the highest IS bit of those that are set, since In the 
fully nested mode the highest IS level was necessarily the 
last level acknowledged and serviced. A non-specific EOI 
can be issued with OCW2 (EOI = 1, SL = 0, R = 0). 

When a mode IS used which may disturb the fully nested 
structure, the 8259A may no longer be able to determine 
the last level acknowledged. In this case a Specific End of 
Interrupt must be issued which includes·as part onhe 
command the IS level to be-reset. A specific EOI can be is­
sued with OCW2 (EOI = 1, SL = 1, R = 0, and LO-L2 is the 
binary level of the IS bit to be reset). 

It should be noted that an IS bit that is ma'sked by an 
IMR bit will not be cleared by a non-specific EOI if the 
8259A is in the Special Mask Mode. 

AUTOMATIC END OF INTERRUPT (AEOI) MODE 

If AEOI = 1 In ICW4, then 'the 8259A will operate in AEOI 
mode continuously until reprogrammed by ICW4. In this 
mode the 8259A will automatically perform a non­
specific EOI operation at the trailing edge of the last 
interrupt acknowledge pulse (third pulse in MCS-80/85, 
second in iAPX 86). Note that from a system standpoint, 
this mode should be used only when a nested multilevel 
interrupt structure is not required within a single 8259A. 

The AEOI !TIode can only be used in a master 8259A and 
not a slave. 

2-99 

AUTOMATIC ROTATION 
(Equal Priority Devices) 

In some applications there are a number of Interrupting 
deviees of equal priority. In this mode a device, after 
being serviced, receives the lowest priority, so a device 
requesting an interrupt will have to walt, in the worst 
case until each of 7 other devices are serviced at most 
once. For example, if the priority and "In service" status 
is: 

Before Rotate (IR4 the highest priority requiring service) 

IS7 lSI IS5 1114 IS3 IS2 lSI ISO 

"IS" Status 10ltlol101010101 

Priority Status 

Lowelt Priority Hlghel~rlOrity 

1 718 1 5 1 4 1 3 1 2 1 lfo 1 

After Rota.e (lR4 was serviced, all other priorities 
rotated correspondingly) 

IS7 lSI IS5 1114 IS3 182 lSI ISO 

101 11010101010101 

Priority Status 

Highe" Priority L_e .. Priority 

1 2 1 )0 1 7EGS 4 I 31 

There are two ways to accomplish Automatic Rotation 
using OCW2, the Rotation on Non-Specific EOI Command 
(R = 1, SL = 0, EOI ,;, 1) and the Rotate in Automatic EOI 
Mode which is set by (R = 1, SL = 0, EOI = 0) and cleared 
by (R = 0, SL = 0, EOI = 0). 

SPECIFIC ROTATION 
(Specific Priority) 
The programmer can change priorities by programming 
the bottom priority and thus fixing all other priorities; 
i.e., if IR5 is programmed as the bottom priority device, 
then IR6 will have the highest one. 

The Set Priority command is issued in OCW2 where: 
R= 1, SL = 1; LO-L2lsthebinary priority level codeofthe 
bottom priority device. 

Observe that in this mode internal status is updated by 
software control during OCW2. However, it is independent 
of the End of Interrupt (EOI) command (also executed by 
OCW2). Priority changes can be executed during an EOI 
command by using the Rotate on Specific EOI command 
in OCW2 (R = 1, SL = 1, EOI = 1 and LO-L2 = IR level to 
receive bottom priority). 

INTERRUPT MASKS 

Each Interrupt Request Input can be masked Individu­
ally by the Interrupt Mask Register (IMR) programmed 
through OCW1. Each bit in the IMR masks one interrupt 
channel If It is set (1). Bit 0 masks IRO, Bit 1 masks IR1 
and so forth. Masking an IR channel does not affect the 
other channels operation. 



8259A18259A-2/8259A-8 

SPECIAL MASK MODE 

Some applications may require an interrupt service 
routine to dynamically alter the system priority struc­
ture during its execution under software control. For 
example, the routine may wish to inhibit lower priority 
requests for a portion of its execution but enable some 
of them for another portion. . 

The difficulty here is that if an Interrupt Request is 
acknowledged and an End of Interrupt command did not 
reset its IS bit (i.e., while executing a service routine), 
the 8259A would have inhibited all lower priority 
requests with no easy way for the routine to enable 
them 

That is where the Special Mask Mode comes in. In the 
special Mask Mode, when a mask bit is set in OCW1, it 
inhibits further interrupts at that level and enables inter­
rupts from al/ other levels (lower as well as higher) that 
are not masked. 

Thus, any interrupts may be selectively enabled by 
loading the mask register. 

The special Mask Mode is set by OCW3 where: 
SSMM=1, SMM=1, and cleared where SSMM=1, 
SMM=O. 

POLL COMMAND 

In this mode the INT output is not used or the micropro­
cessor internal Interrupt Enable flip-flop is reset, disabling 
its interrupt input. Service to devices is achieved by 
software using a Poll command. 

The Poll command is issued by setting P= "1" in OCW3. 
The 8259A treats the next RD pulse to the 8259A (i.e., 
RD = 0, CS = 0) as an interrupt acknowledge, sets the 
appropriate IS bit if there is a request, and reads the· 
priority level. Interrupt is frozen from WR to RD. 

The word enabled onto the data bus during ~ is: 

07 De 05 04 03 02 01 00 

I I W2 Wl wol 

WO-W2: Binary code of the highest priority level 
requesting service. 

I: Equal to a "1" if there is an interrupt. 

This mode is useful if there is a routine command com­
mon to several levels so that the Ilii1'A sequence is not 
needed (saves ROM space). Another application is to 
use the poll mode to expand the number of priority 
levels to more than 64. 

l TIM BtT 
O=EDGE 
,:: lEIJEl 

TO OTHER PAtORTY CELLS 

EDGE 
SENSE 

SET 

~LA~TC~H~+-__ + ___ +-_+ __ <l=:j:t1--;;;-;;:~;I~ SET ISA 

AEQUEST 
lA.rCH 

o OP-~-~-~M~A~SK~-+++-~r-~ 
LATCH 

c a 

MeS-SO,B.f fliTl~ 
MODE l 

nm-n: 

IAPX 86 
MODE 

I~ 
{ 

INTAn 

FREEZE ----

NOTES 

MASTEA CLEAR ACTIVE OLlrilL y DURING ICW1 

f"UZE/IS ACTIVE DURING 1N'fI'IO\NO I'OL.L. SEQUENCES ONLY 

3 TRUTH T .... LE FOR 0 LATCH 

I ~, I 
On-I I 

OPERATION 

FOllOW 
MO'O 

Figure 9. Priority Cell-Simplified Logic Diagram 

2-100 

NON 
MASKED 

"EO 

""OPlITV 
RESOlVEJlI 

CONTROL 
LOGIC 



8259A/8259A-2/8259A-8 

READING THE 8259A STATUS 

The input status of several internal registers can be read to 
update the user information on the system. The following 
registers can be read via OCW3 (IRR and ISR or OCW1 
[IMRl). 

Interrupt Request Register (IRR): 8-bit register which con­
tains the levels requesting an interrupt to be acknowl­
edged. The highest request level is reset from the IRR 
when an interrupt is acknowledged. (Not affected by IMR.) 

In-Service Register (ISR): 8-bit register which contains the 
priority levels that are being serviced. The ISR is updated 
when an End of Interrupt Command is issued. 

Interrupt Mask Register: 8-bit register which contains the 
interrupt request lines which are masked. 

The IRR can be read when. prior to the RD pulse, a Read 
Register Command is issued with OCW3 (RR = 1, RIS = 0.) 

The ISR can be read when, prior to th.e RD pulse, a Read 
Register Command is issued with OCW3(RR = 1, RIS = 1). 

There is no need to write an OCW3 before every status 
read operation, as long as the status read corresponds 
with the previous one; I.e., the 8259A "remembers" 
whether the IRR or ISR has been previously selected by 
the OCW3. This is not true when poll is used. 

After initialization the 8259A is set to IRR. 

For reading the IMR, no OCW3 is needed. The output data 
bus will contain the IMR whenever RD is active and AO =1 
(OCW1). 

Polling overrides status read when P = 1, RR = 1 in OCW3. 

IR 

INT -----+--' 

INTA -----f------~ 

LATCH" 
ARMED 

EARLIEST IR 
CAN BE REMOVED 

EDGE AND LEVEL TRIGGERED MODES 

This m<;>de is programmed using bit 3 in ICW1. 

If LTIM = '0', an interrupt request will be recognized by a 
low to high transition on an IR input. The IR input can re­
main high without generating another interrupt. 

If LTIM = '1', an interrupt request will be recognized by a 
'high' level on IR Input, and there is no need for an edge 
detection. The interrupt request must be removed before 
the EOI command is issued or the CPU interrupt is enabled 
to prevent a second interrupt from occurring. 

The priority cell diagram shows a conceptual circuit of the 
level sensitive and edge sensitive input circuitry of the 
8259A. Be sure to note that the request latch is a transpar­
e.nt D type later. 

In both the edge and level triggered modes the IR inputs 
must remain high until after the falling edge of the first 
INTA. If the IR input goes low before this time a DEFAULT 
IR7 will occur when the CPU acknowledges the interrupt. 
This can be a useful safeguard for detecting interrupts 
caused by spurious noise glitches on the IR inputs. To im­
plement this feature the IR7 routine is used for "clean up" 
simply executing a return instruction, thus ignoring the 
interrupt. If IR7 is needed for other purposes a default IR7 
can still be detected by reading the ISR. A normal IR7 
interrupt will set the corresponding ISR bit, a default IR7 
won't. If a default IR7 routine occurs during a normallR7 
routine, however, the ISR will remain set. In this case it is 
necessary to keep track of whether or not the IR7 routine 
was previously entered. If another IR7 occurs it is a 
default. 

8086/8088 8080/8085 

8086/8088 

8080/8085 

'EDGE TRIGGERED MODe ONLY 
LArCH" 
ARMED 

Figure 10. IR Triggering Timing Requirements 

2-101 



8259A/8259A-2/8259A-8 

THE SPECIAL FULLY NESTED MODE 

This mode will be used in the case of a ')Ig system 
where cascading is used, and the priority has to be con· 
served within each slave. In this case the fully nested 
mode will be programmed to the master (using ICW4). 
This mode is similar to the normal nested mode with the 
following exceptions: 

a. When an interrupt request from a certain slave is in 
service this slave is not locked out from the master's 
priority logic and further interrupt requests from 
higher priority IR's within the slave will be recognized 
by the master and will initiate interrupts to the proc· 
essor. (In the normal nested mode a slave is masked 
out when its request is in service and no higher 
requests from the same slave can be s,erviced.) 

b. When exiting the Interrupt Service routine the soft· 
ware has to check whether the interrupt serviced was 
the only one from that slave. This is done by sending 
a non·specific End of Interrupt (EOI) command to the 
slave and then reading its In·Service register and 
checking for zero. If it is empty, a non·specific EOI 
can be sent to the master too. If not, no EOI should be 
sent. 

BUFFERED MODE 

When the 8259A is used in a large system where bus 
driving buffers are required on the data bus and the cas· 
cadlng mode Is used, there exists the problem of enabl· 
Ing buffers. 

The buffered mode will structure the 8259A to send an 
enable signal on SP/EN to enable the buffers. In this 

mode, whenever the 8259A's data bus outputs are ena· 
bled, the SP/EN output becomes active. 

This modification forces the use of software program· 
ming to determine whether the 8259A is a master or a 
slave. Bit 3 in ICW4 programs the buffered mode, and bit 
2 in ICW4 determines whether it is a master or a slave. 

CASCADE MODE 
The 8259A can be easily interconnected in a system of one 
master with up to eight slaves to handle up to 64 priority 
levels. . 

The master controls the slaves through the 3 line cascade 
bus. The cascade bus acts like chip selects to the slaves 
during the INTA sequence. 

In a cascade configuration, the slave interrupt outputs are 
connected to the master interrupt request inputs. When a 
slave request line is activated and afterwards acknowl­
edged, the master will enable the corresponding slave to 
release the device routine address during bytes 2 and 3 of 
INTA. (Byte 2 only for 8086/8088). 

The cascade bus lines are normally low and will contain 
the slave address code from the trailing edge of the first 
INTA pulse to the trailing edge of the third pulse. Each 
8259A in the system must follow a separate initialization 
sequence and can be programmed to work in a different 
mode. An EOI command must be issued twice: once for 
the master and once for the corresponding slave. An 
address decoder is required to activate the Chip Select 
(CS) input of each 8259A. 

The cascade lines of the Master 8259A are activated only 
for slave inputs, non slave inputs leave the cascade line 
inactive (low). 

\ ADDRESS BuS (16) , \ 

\ CONTROL BUS \ 
INT REO 

\ OAT A BUS (8) \ 

-- - - - - -- - - -
-- - - r- -- - - -
--r- - - - -- - r- - - -

1-' I I 
cs Ao ,,00-7 INTA INT CS '0 00-7 INTA IN' CS Ao 00·7 INTA INT 

CASO CASO CASO 

82S9A CAS 1 I- I-
8259A 8259A 

SLAVE A ~lAVE e CAS 1 CAS 1 MASTER 

iTl 
CAS 2 CAS 2 

SPIEN7 6 5 • J 2 SPIEN7 6 5 4 J 2 1 0 SPIENM7 M6 M5 M4 M3 M2 Ml MO 

GrO I I I 1 1 1 G!O 11 1 1 1111 lel,l.l 1 I, ! ! 1 
1 • 5 • J 2 ] 6 5 • 3 2 1 0 • • 0 

I 
I I 

INTERRUPT REQUESTS 

Figure 11. Cascading the 8259A 

2-102 



8259A/8259A·2/8259A·8 

ABSOLUTE MAXIMUM RATINGS* 
Ambient Temperature Under Bias .......... O°C to 70°C 
Storage Temperature .............. - 65°C to + 150°C 
Voltage on Any Pin 

with Respect to Ground ............. -0.5V to + 7V 
Power Dissipation .......................... 1 Watt 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. 

D.C. CHARACTERISTICS [TA = O"C to 70"C, Vee = 5V ±5% (8259A-8), vee = 5V ±10% (8259A, 8259A-2)l 

Symbol Parameter Min. Max. Units Test Conditions 

Vil input Low Voltage -0.5 0.8 V 

VIH Input High Voltage 2.0' Vee +0.5V V 

Val Output Low Voltage 0.45 V IOl = 2.2mA 

VOH Output High Voltage 2.4 V IOH - -400p,A 

VOH(lNT) 
Interrupt Output High 3.5 V IOH = -100p,A 
Voltage 2.4 V IOH = -400p,A 

III Input Load Current -10 +10 p,A OV ,,;;VIN ,,;;Vee 

ILOl Output Leakage Current -10 +10 p,A 0.45V ,,;;VOUT ,,;;Vee 

Icc Vee Supply Current 85 mA 

ILiR IR Input Load Current 
-300 p,A VIN - 0 

10 p,A VIN = Vee 

'Note: For Extended Temperature EXPRESS V1H = 2.3V. 

CAPACITANCE (TA = 25°C; Vee = GND = OV) 

Symbol Parameter Min. Typ. Max. Unit Test Conditions 

CIN Input Capacitance 10 pF fc = 1 MHZ 

Clio I/O Capacitance 20 pF Unmeasured pins returned to Vss 

A.C. CHARACTERISTICS [TA = O°C to 70°C, Vee = 5V ±5% (8259A-8), Vee = 5V ± 10% (8259A, 8259A-2)l 

TIMING REQUIREMENTS 

Symbol Parameter 
8259A-8 8259A 8259A-2 

Units Test Conditions 
Min. Max. Min. Max. Min. Max. 

TAHRL AO/CS Setup to RD/INTAI, 50 0 0 ns 

TRHAX AO/CS Hold after RD/INTAt 5 0 0 ns 

TRLRH RD Pulse Width 420 235 160 ns 

TAHWL AO/CS Setup to WR~ 50 0 0 ns 

TWHAX AO/CS Hold after WRt 20 0 0 ns 

TWLWH WR Pulse Width 400 290 190 ns 

TDVWH Data Setup to WRt 300 240 160 ns 

TWHDX Data Hold after WRt 40 0 0 ns 

TJLJH Interrupt Request Width (Low) 100 100 100 ns See Note 1 

TCVIAL 
Cascade Setup to Second orThird 

55 55 40 ns INTAj, (Slave Only) 

End of RD to next RD 
TRHRL End of INTA to next INTA within 160 160 160 ns 

an INTA sequence only 

TWHWL End ofWR to nexlWR 190 190 190 ns 

2-103 



8259A/8259A-2/8259A-8 

A.C. CHARACTERISTICS (Continued) 

Symbol Parameter 
8259A·8 8259A 8259A·2 

Units Test Conditions 
Min. Max. Min. Max. Min. Max. 

'TCHCL 
End of Command to next Command 

500 500 500 (Not same command type) 
ns 

End of INTA sequence to next 
INTA sequence . 

• Worst case timing for TCHCL In an actual microprocessor system IS tYPically much greater than 500 ns (I.e. 8085A = 1.6I's, 

8085A·2 = 11's, 8086 = 11's, 8086·2 = 625 ns) 
NOTE: This is the low time required to clear the input latch in the edge triggered mode. 

TIMING RESPONSES 

Symbol Parameter 8259A·8 

Min. Max. 

TRLDV Data Valid from RD !lNTAI 300 

TRHDZ Data Float after RD !lNTA T 10 200 

TJHIH Interrupt Output Delay 400 

TIALCV Cascade Valid from First INTAI 
565 

(Master Only) 

TRLEL Enable Active from RD I or INTAI 160 

TRHEH Enable Inactive from ROT or INTA T 325 

TAHDV Data Valid from Stable Address 350 

TCVDV Cascade Valid to Valid· Data 300 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

'.'=X )C 2.0 2.0 > TEST POINTS < 
0.8 0.8 

045 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND 0 45V FOR 
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC 1 
AND 0 BV FOR A lOGIC 0 

WAVEFORMS 

WRITE 

Ci 

ADDRESS 

DATA IUS 

IUS 

\ 
- TAHWL -
) 

8259A 8259A·2 Units Test Conditions 
Min. Max. Min. Max. 

200 120 ns C of Data Bus= 
100 pF 

10 100 10 85 ns C of Data Bus 

350 300 ns 
Max text C = 100 pF 
Min. test C = 15 pF 

565 360 ns CINT = 100 pF 

125 100 ns CCASCADE = 100 pF 

150 150 ns 

200 200 ns 

300 200 ns 

A.C. TESTING LOAD CIRCUIT 

DEVICE 

'1CL~100PF 
UNDER 

TEST 

CL = 100 pF 
CL INCLUDES JIG CAPACITANCE 

TWLWH 

- TWHAX ~ 

K 
-TDVWH- -TWHDX 

.) r -
2-104 



8259A/8259A-2/8259A-8 

WAVEFORMS (Continued) 

READ/INTA 

ROONTA------------~ 1------TRLRH------i ,' ________ _ 

TRLEL i 

" 

TAHRL TRHAX 

CI-----...... 
ADDRESS BUS 

"" _______ J 

DATA BUS- __________ _ -_-~-~~91._ ______ T_R_HD_Z___'I_ mm 

OTHER TIMING 

All 

A=TRHRL~ 
fNfA 

\ / 
WR 

\ !F=TWHWL=1\ / 
All 

lIITA 

\ c~""~ 
Wi! 

All 
I~A 

/ 

2-105 



82S9A/8'2S9A-2/82S9A-8 

1 
WAVEFORMS (Continued) 

INTA SEQUENCE 
'R 

'NT-------' 
'NTA-----------------~ 

01-------_____ _ 

/' 

TCYDY 

-- -0--
_TCVIAL 

C02-------------________ ~----~L4-------L-----L-L--------------~-

-TIALCV---.--.-

NOTES: Interrupt output must remain HIGH at least 'until leading edge of first INTA. 
1. Cycle 1 in iAPX B6, iAPX BB systems, the Data Bus is not active. 

2-106 



inter 
8755A 18755A-2 

16,384-8IT EPROM WITH 1/0 

• 2048 Words x 8 Bits 

• Single + 5V Power Supply (Vee> 

• Directly Compatible with 808SA 
and 8088 Microprocessors 

• U.V. Erasable and Electrically 
Reprogrammable 

• Internal Address Latch 

• 2 General Purpose 8·Bit 110 Ports 

• Each 1,O Port Line Individually 
Programmable as Input or Output 

• Multiplexed Address and Data Bus 

• 40·Pin DIP 

• Available in EXPRESS 
- Standard Temperature Range 
- Extended Temperature Range 

The Intel@ 8755A is an erasable and electrically reprogrammable ROM (EPROM) and 1/0 chip to be used in the 8085AH and 
iAPX 88 microprocessor systems. The EPROM portion is organized as 2048 words by 8 bits It has a maximum access time of 
450 ns to permit use with no wait states in an 8085AH CPU. 

The 1/0 portion consists of 2 general purpose 1/0 ports. Each 1/0 port has 8 port lines, and each 1/0 port line is individually 
programmable as input or output. • 

The 8755A-2 IS a high speed selected version of the 8755A compatible with the 5 MHz 8085AH-2 and the 5 MHz iAPX 88 
microprocessor. 

ClK----' 

READV----I 

Aa--10 __ -V 

CE,----ooj 

IOiM---.J 

AlE---.J 

Ril---.J 

IOW---.J 

RESET---.J 

iOR---+I 

2K)( 8 
EPROM 

PROG/CE, 

VDD---'---' 

G 

G 

PAo-7 .... ~-~/ 

Vee (+5V) 

'----Vss (OVI 

Figure 1. Block Diagram 

ClK PB, 

PBs 

PB. 

PBa 

PB, 

PB, 

PB, 

lOW PA-, 

ALE PA, 

PA, 

AD, PA. 

AD, 

ADa PAi 

AD. PA, 

AD, PA, 

AlO 

AD, 

Vss 

Figure 2. Pin Configuration 

Intel Corporabon Assumes No Responslbllty for the Use of Any Circuitry Other Than Circuitry Embodied In an Intel Product No Other Circuit Patent Licenses are Implied 

© INTEL CORPORATION. 1980 

2-107 



8755A/8755A-2 

Table 1. Pin Description" 

Symbol Type Name and Function Symbol lYpe Name and Function 

ALE I Address latch Enable: When Address 
latch Enable goes high, ADO-7, 10/M, 

READY 0 Ready is a 3·state output controlled by 
CE" CE2, ALE and ClK. READY is forc· 

As-Hi, CE2, and CE, enter t~ address ed low when the Chip Enables are active 
latches. The signals (AD, 10/M ADs-,o, during the time ALE is high, and reo 
CE2, eEl) are latched in at the trailing mains low until the rising edge of the 
edge of ALE. next ClK. (See Figure 6c.) 

ADo-7 I Bidirectional Address/Data Bus: The 
lower 8-bits of the PROM or I/O address 
are applied to the bus lines when ALE is 
high. 

PAO-7 I/O Port A: These are general purpose I/O 
pins. Their input/output direction is de-
termined by the contents of Data Direc-
tion Register (DDR). Port A is selected for 

During an 110 cycle, Port A or B is write operations when the Chip Enables 
selected based on the latched value of are active and lOW is low and a 0 was 
ADo. IF RD or lOR is low when the latched previously latched from ADo, AD,. 
Chip Enables are active, th}e output buf-
fers present data on the bus. 

Read Operation is selected by either lOR 
low and active C~ Enables and ADo 

As-,o I Address Bus: These are the high order and AD, low, or 10/M high, RD low, active 
bits of the PROM address. They do not Chip Enables, and ADo and AD, low. 
affect 110 operations. 

PBO-7 I/O Port B: This general purpose I/O port is 
PROG/CE, I Chip Enable Inputs: CE, is active low 
CE2 and CE2 is active high. The 8755A can be 

identical to Port A except that It is 
selected by a 1 latched from ADo and a'O 

accessed only when both Chip Enables from AD,. 
are active at the time the ALE signal 
latches them up. If either Chip Enable 
input is nof active, the ADo-7 and 
READY outputs will be in a high impe-
dance state.CE, is also used as a pro-
gramming pin. (See section on 
programming.) 

IO/M I 110 Memory: If the latched 10/M IS high 
when RD is low, the output data comes 
from an I/O port. If it is low the oulput 
data comes from the PROM. 

RESET I Reset: In normal operation, an input 
high on RESET causes all pins In Ports A 
and B to assume input mode (clear DDR 
register). 

lOR I I/O Read: When the Chip Enables are 
active, a Iowan lOR will output the 
selected I/O port onto the AD bus. TOfi 
low performs the s~me functio~s the 
combination of 10/M high and RD low. 
When lOR is not used in a system, lOR 
should be tied to Vee ("1"). 

RD I Read: If the latched Chip Enables are 
active when RD goes low, the ADo-7 

Vee Power: +5 volt supply. 

output buffers are enabled and output Vss Ground: Reference. 
either the selected PROM location or I/O 
port. When both RD and lOR are high, 
the ADo-7 output buffers are 3-stated. 

Voo Power Supply: Voo is a programming 
voltage, and must be tied to Vee when 
the 8755A is being read. 

lOW I I/O Write: If the latched Chip Enables are 
active, a Iowan lOW causes the output 
port pointed to by the latched value of 
ADo to be writte'!..wlth the data on ADo-7. 

For programming, a high voltage is 
supplied with Voo = 25V, typical. (See 
section on programming.) 

The state of 10/M is ignored. 

ClK I Clock: The ClK is used to force the 
READY into its high impedan~state 
after it has been forced low by GE, low, 
CE2 high, and ALE high. 

2-108 



8755A/8755A-2 

FUNCTIONAL DESCRIPTION 
PROM Section 
The 8755A contains an 8-bit address latch which allows it 
to interface directly to MCS-48, MCS-85 and iAPX 88/10 
Microcomputers without additional hardware. 

The PROM section of the chip is addressed by the 11-bit 
address and the Chip Enables. The address, CE1 and 
CE2 are latched into the address latches on the falling 
edge of ALE. If the latched Chip Enables are active and 
10iM is low when RD goes low, the contents of the 
PROM location addressed by the latched address are 
put out on the ADO_7lines (provided that Voo is tied to 
Vee·) 

1/0 Section 
The I/O section of the chip is addressed by the latched 
value of ADo-1. Two 8-blt Data Direction Registers (DDR) 
In 8755A determine the input/output status of each pin 
in the corresponding ports. A "0" In a particular bit posi­
tIOn of a DDR signifies that the corresponding I/O port bit 
is In the Input mode A "1" In a particular bit position signi­
fies that the corresponding I/O port bit is In the output 
mode. I n this manner the I/O ports of the 8755A are bit-by­
bit programmable as Inputs or outputs. The table 
summarizes port and DDR designation. DDR's cannot be 
read. 

AD1 ADo Selection 

0 0 Port A 
0 1 Port B 
1 0 Port A Data Direction Register (DDR A) 
1 1 Port B Data Direction Register (DDR B) 

When lOW goes low and the Chip Enables are active, 
the data on the ADo_7 is written into 1/0 port selected 
by the latched value of ADo_ 1. During this operation all 
1/0 bits of the selected port are affected, regardless of 
their 1/0 mode and the state of 101M. The actual output 
level does not change until lOW returns high. (glitch free 
output) 

'A port can be read out when the latched Chip Enables are 
active and either RD goes low with 10iiVi high, or lOR goes 
low Both input and output mode bits of a selected port 
will appear on lines ADo-7. 

To clanfy the function of the I/O Ports and Data Direction 
Registers, the following diagram shows the configuration 
of one bit of PORT A and DDR A The same logic applies 
to PORT Band DDR B. 

8755A 
ONE BIT OF PORT A AND ODR A 

Do 

~ 
READ PA 

WRITE PA ~ liOW;O)e (CHIP ENABLES ACTIVE). (PORT A ADDRESS SelECTED) 
WRITE CDR A ~ liOW:O). (CHIP ENABLES ACTIVE). (OOR A AODRESS SELECTEO) 
REAO PA = {[(IOIM"l). (RD=on+ (jijR"'Dl}. (CHIP ENABLES ACTIVE). (PORT AADDRfSSSELECTED) 

NOTE WRITE PA IS NOT nUALIFIED BY 101M 

Note that hardware RESET or writing a zero to the DDR 
latch will cause the output latch's output buffer to be 
disabled, preventing the data in the Output Latch from 
being passed through to the pin. This is equivalent to 
putting the port In the Input mode. Note also that the data 
can be written to the Output Latch even though the Output 
Buffer has been disabled. This enables a port to be ini­
tialized with a value pnor to enabling the output. 

The diagram also shows that the contents of PORT A and 
PORT B can be read even when the ports are configured 
as outputs. 

TABLE 1. 8755A PROGRAMMING MODULE CROSS 
REFERENCE 

2-109 

MODULE NAME 

UPP 955 
UPP UP2(2) 
PROMP'F 975 
PROMPT 475 

NOTES: 

USE WITH 

UPP(4) 
UPP 855 
PROMPT 80/85(3) 
PROMPT 48(1) 

1. Described on p. 13-34 of 1978 Data catalog. 
2. Special adaptor socket. 
3 Described on p. 13-39 of 1978 Data Catalog. 
4 .. Described on p. 13-71 of 1978 Data catalog. 



inter 8755A/8755A-2 

ERASURE CHARACTERISTICS 
The erasure characteristics of the 8755A are such that 
erasure begins to occur when exposed to light with 
wavelengths shorter t/;lan approximately 4000 Angstroms 
(}\). It should be noted that sunlight and certain types of 
fluorescent lamps have wavelengths in the 3000-4000A 
range. Data show that constant exposure to room level 
fluorescent lighting could erase the typical 8755A in 
approximately 3 years while itwould take approximately 1 
week to cause erasure when exposed to direct sunlight. 
If the 8755A is to be exposed to these types bf lighting 
conditions for extended periods of time, opaque labels 
are available from Intel which should be placed over the 
8755 window to prevent unintentional erasure. 

The recommended erasure procedure for the 8755A is 
exposure to shortwave ultraviolet light which has a wave­
length of 2537 Angstroms (A). The integrated dose (i.e., 
UV intensity X exposure time) for erasure should be a 
minimum of 15W-sec/cm2. The erasure time with this 
dosage is approximately 15 to 20 minutes using an ultra­
violet lamp with a 12000"W/cm2 power rating. The 
8755A should be placed within one inch fro.m the lamp 
tubes during erasure. Some lamps have a filter on their 
tubes and this filter should be removed before erasure. 

PROGRAMMING 
Initially, and after each erasure, all bits of the EPROM 
portions of the 8755A are in tlie "1" state. Information is 
introduced by selectively programming "0" into the 
desired bit locations. A programmed "0" can only be 
changed to a "1" by UV erasure. 

The 8755A can be programmed on the Intel® Universal 
PROM Programmer (UPP), and the PROMPT'" 80/85 and 
PROMPT-48'" design aids. Theappropriate programming 
modules and adapters for use in programming both 
8755A's and 8755's are shown in Table 1. 

The program mode itself consists of programming a 
single address at a time, giving a single 50 msec pulse 
for every address. Generally, it is desirable to have a 
verify cycle after a program cycle for the same address 
as shown in the attached timing diagram. In the verify 
cycle (i.e., normal memory read cycle) 'VDD' should 
be at +5V. 

Preliminary timing diagrams and parameter values per­
taining to the 8755A programming operation are con­
tained in Figure 7. 

SYSTEM APPLICATIONS 
System Interface with 8085AH and iAPX 88 
A system using the 8755A can use either one of the two I/O 
Interface techniques: 

• Standard I/O 
• Memory Mapped I/O 

If a standard 1/0 technique is used, the system can use 
the feature of both CE2 and CE1. By using a combina­
tion of unused address lines A11 - 15 and the Chip 
Enable inputs, the 8085AH system can use up to 5 each 
8755A's without requiring a CE decoder. See Figure4a and 4b. 

If a memory mapped 1/0 approach is used the 8755A will 
be selected by....!he combination of both the Chip 
Enables and 101M using ADs_ 15 address lines. See 
Figure 3. 

2-110 

...---
A K As-. s 
'\J 

8085AH klDo7 
'\J 

ALE 
~ 

RD 
~ 

WR ,--
elK 1$2) 

!--
READY . !---
101M I -

- vl''' 7 I 
A/DO_7 AS_10 RD eLK 101M 

iOR ALE iiiW READY 

8755A 

Figure 3. 8755A in 8085AH System 
(Memory-Mapped 1/0) 

~ 

) 
) 

CE 



8755A/8755A-2 

iAPX 88 FIVE CHIP SYSTEM 

Figure 4 shows a five chip system containing: 

• 1.2SK Bytes RAM 
• 2K Bytes EPROM 
.381/0 Pins 
• 1 Interval Timer 
• 2 Interrupt Levels 

Vee rD1 
XI X, 

ClK 

READY 1A-RES 
8284 

RESET 

RDY1 I ',,- GND 
MANUAL 

GND RESET 

IVss) 

AS-A191--CA.c:D"'Dc.:.R_-_V"" 

/1 v. I "-
ADo-AD7"'r ADDR/OATA 1-" 

,-------- ClK I ' ~~ 

8088 

r- READY 

MN/MX 

ALE 

RST ® Ril 

VIR 

I- 101M 

Vee 

.... " 
CD 

t--Vcc 

,---

~ 

,--

r--
t-

t-

t-

t-

r--

It-
1ft­
II-t-

Vss Vee 

I I 
I--r-r-r-+~----ICE po~~ 

>-t-- ---- iNA ~IV-:Y 
Ril PORT (8) 

8155-2 B 

ALE PORT~ 
/'-..... _-'---'---'--'-__ -"\ OAT AI C (6) 

~ 
t-t-

ADDR 
IN_ 

t- --- 101M TIMER 
___ RESET OUT r---

J', 

v 

lOW 

Ril 

ALE 
PORT 

CE A 

A8~10 

8755A-2 

DATAl 
ADDR 

fA> 

101M POR~~ 
~-RESET IVY 

iOll-..J f READY Vee 

r---t--i-----t--t-"-t--- !!! LROG 
Vss Vee Voo 

t--t---t-----i iNA 

t--t-+-+---1Ril 

t--t-----i CEI 8185-2 

t--t--r-r-r----i ALE 

I--+-r-+-+~--~~. 
I--+-+-+-+~ __ ~ CE, 

Figure 4a. iAPX 88 Five Chip System Configuration 

2-111 



"T'I A8-15 

ij' 
c A" A" A" A" 

(; 
~ p- ~ - - - - -
00 ALE - - - - -..... 
en 
en 

8085AH 
AD - - - - -

)-

s· WR - - - - -
00 eLK (</12) -
0 

'" 00 , en ~ 
)-~ 

'" fJ) 

- - - - -
READY - - - - -
101M - - - - -

'< 

'" CD 
3 

~ 
Ql 
::I 
Co 
Ql 

a 
.9 T\ 7<; 7 vr' " 7 

Vee 

",7 'T\ " 7 vt" J 1_ AID" AI-OO RD_ClK 001._, 11_ A/Ooo-, AI-OO RD eLK 001l!, II A/Ooo-, AI-OO RD~LK 101M 'II' AlDoo-, A._" RD eLK 101M 'II A/DG-J 

lOR ALE lOW READY eEl lOR ALE iOW READY eE2 iOR ALE lOW READY eE2 lOR ALE row READY 1:E2 iOR 

8755A 8755A 8755A 8755A 
(2K BYTES) (2K BYTES) (2K BYTES) (2K BYTES) 

Note: Use CEl for the first 8755A in tho system, and CE2 for the other 8755A's. Permits up to 5-8755A's in a system without CE decodor_ 

~ 

A1SI v 

I" 

, v 

7 
A._oo RD eLK 101M, \ 

ALE lOW READY CEl 

8755A 
12K BYTES) 

i 

CD 
...... en 
en 
~ 
CD ...... 
en 
en :,-
N 



8755A/8755A·2 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias . 
Storage Temperature 
Voltage on Any Pin 

With Respect to Ground 
Power DIssipation 

...... O°Cto +lO°C 
-65°Cto+150°C 

. -0 5V to +7V 
. 15W 

"NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated In the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (TA = O°C to 70°, Vee = Voo = 5V ± 5%; 

Vee = VOO = 5V ±10% for 8l55A-2) 

SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS 

Vil Input Low Voltage -0.5 0.8 V Vee = 50V 

VIH Input High Voltage 2.0 Vee +O·5 V Vee = 5.0V 

VOL Output Low Voltage 0.45 V IOl = 2mA 

VOH Output High Voltage 2.4 V IOH = -400J.1A 
-

III Input Leakage 10 J.1A VSS "" VIN "" Vee 

ILO Output Leakage Current ±10 J.1A 0.45V ,.. VOUT ,.. Vee 

lee Vee Supply Current 180 rnA 

100 Voo Supply Current 30 rnA Voo = Vce 

CIN Capacitance of Input Buffer 10 pF fe = 1JLHz 

CVo Capacitance of 1/0 Buffer 15 pF fe = 1JLHz 

D.C. CHARACTERISTICS-PROGRAMMING (TA = O°Cto 70°, Vee = 5V±5%,Vss = OV, Voo=25V±1V; 
Vee = Voo = 5V ±10% for 8755A-2) 

Symbol ) Parameter Min. Typ. Max. Unit 

Voo Programming Voltage (during Write 
to EPROM) 24 25 26 V 

100 Prog Supply Current 15 30 mA 

2-113 



inter 8755A18755A.2 

A.C. CHARACTERISTICS (TA = O°C to 70°, Vee = 5V ± 5%; 

Vee = VDD = 5V ±10% for 8755A-2) 

8755A 

Symbol Parameter Min. Max. 

tCYC Clock Cycle Time 320 

T1 ClK Pulse Width 80 

T2 ClK Pulse Width 
, 

120 

tdr ClK Rise and Fall Time 30 

tAL Address to latch Set Up Time 50 

tLA Address Hold Time after latch 80 

tLC latch to READ/WRITE Control 100 

tRD Valid Data Out Delay from READ Control* 170 

tAD Address Stable to Data Out Valid** 450 

tLL latch Enable Width 100 

tRDF Data Bus Float after READ 0 100 

tCl READ/WRITE Control to latch Enable 20 

tcc READ/WRITE Control Width 250 

tow Data In to Write Set Up Trme 150 

two Data In Hold Time After WRITE 30 

twp WRITE to Port Output 400 

tpR Port Input Set Up Time 50 

tRP Port Input Hold Time to Control 50 

tRYH READY HOLD Time to Control 0 160 

tARY , ADDRESS rCEr to READY 160 

tRV Recovery Trme Between Controls 300 

tRDE READ Control to Data Bus Enable 10 

NOTE: 

CLOAD = 150pF. 
*Or TAD - (TAL + T Lel, whichever is greater. 

"Defrnes ALE to Data Out Valid rn conjunction with TAL 

8755A·2 
(Preliminary) 

Min. Max. Units 

200 ns 

40 ns 

70 ns 

30 ns 

30 ns 

45 ns 

40 ns 

140 ns 

300 ns 

70 ns 

0 85 ns 

10 ns 

200 ns 

150 ns 

10 ns 

.300 ns 

50 ns 

50 ns 

0 1.60 ns 

160 ns 

200 ns 

10 ns 

A.C. CHARACTERISTICS-PROGRAMMING (TA = 0°Ct070°, Vee = 5V±5%, Vss =OV,VDD = 25V±1V; 
vee = VDD = 5V ±10% for 8755A-2) 

, Symbol Parameter Min. Typ. Max. Unit 

tps Data Setup Time 10 ns 

tPD Data Hold Time 0 ns 

ts Prog Pulse Setup Time 2 JlS 

tH Prog Pulse Hold Time 2 JlS 

tPR Prog Pulse Rise Time 0.01 2 JlS 

tPF Prog Pulse Fall Time 0,01 2 JlS 

tPRG Prog Pulse Width 45 50 msec 

2-114 



intel' 8755A/8755A·2 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT/OUTPUT 

DEVICE 
UNDER 

~CC~150PF TEST 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND 0 45V FOR 
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC 1 
AND 0 8V FOR A LOGIC a 

WAVEFORMS 

CLOCK SPECIFICATION FOR 8755A 

PROM READ, I/O READ AND WRITE 

A8~~ ADDRESS 

101M 

tAol 

ADo7 ) ADDRESS 1>---"'0 
t tLL~ 

ALE 

I--tAC~ r---tLA~ 

- \ (PROG)/CE, 

eE, / , 
- t---tRDE 

f5Riffi 

~tLC~ _tRu 

lOW 

Please note that CE1 must remain low for the entire cycle 

-= 
CL = 150pF 
CL INCLUDES JIG CAPACITANCE 

DATA 1>-----( 

" 
~/J [II/, VII 

\ 
~ tROF -
/ 

tDW~ ~ -two 

If 
tcc··----_ 

_ tCL~ 

tRV 

2-115 

ADDRESS 

ADDRESS >-
, 

, 

IL.. 

IL.. 



8755A/8755A·2 

WAVEF:ORMS (Continued) 

I/O PORT 

A. INPUT MODE 

~OR ~~ __________ -J;1f 
~"' ----,.~ .r,,, !--{/,.'R_P ___ _ 
INPUT ~ A .... ___ _ 

DATA' - - - - - - -)( 

BUS ------- --------------------
B. OUTPUT MODE 

\ { __________ '=~X/g~~p~~FREE 
PORT 
OUTPUT _ ------------ ""--------

lOW 

WAIT STATE (READY = 0) 

2-116 



intJ 8755A18755A·2 

WAVEFORMS (Continued) 

8755A PROGRAM MODE 

FUNCTION 

1 .... 1-------- PROGRAM CYCLE ------~ ... I· ~~----VERIFY CYCLE' ---1 __ PROGRAM CYCLE 

ALE 

AlDa.7 

AB·10 

+25 

Vee 

'PS 

DATA TO BE 
PROGRAMMED 

'PO 

+5 ................................................ --f 

*VERIFY CYCLE loS A REGUL~R MEMORY READ CYCLE !WITH VOO = +5V FOR 8755A) 

2-117 

\J--



© Intel Corporation, 1979 

APPLICATION 
NOTE 

2-118 

Ap·59 

September 1979 

121500-001 



AP59 

INTRODUCTION 

The Intel 8259A is a Programmable Interrupt Controller 
(PIC) designed for use in real-time interrupt driven 
microcomputer systems. The 8259A manages eight 
levels of interrupts and has built-in features for expan­
sion up to 64 levels with additional 8259A's. Its versatile 
design allows it to be used within MCS-80, MCS-85, 
MCS-86, and MCS-88 microcomputer systems. Being 
fully programmable, the 8259A provides a wide variety of 
modes and commands to tailor 8259A interrupt process­
ing for the specific needs of the user. These modes and 
commands control a number of interrupt oriented func­
tions such as interrupt priority selection and masking of 
interrupts. The 8259A programming may be dynamically 

, changed by the software at any time, thus allowing com­
plete interrupt control throughout program execution. 

The 8259A is an enhanced, fully compatible revision of 
its predecessor, the 8259. This means the 8259A can use 
all hardware and software originally designed for the 
8259 without any changes. Furthermore, it provides ad­
ditional modes that increase its flexibility in MCS-80 
and MCS-85 systems and allow it to work in MCS-86 and 
MCS-88 systems. These modes are: 

• MCS-86/88 Mode • 
• Automatic End of Interrupt Mode 
• Level Triggered Mode 
• Special Fully Nested Mode 
• Buffered Mode 

Each of these are covered in depth further in this appli­
cation note. 

This application note was written to explain completely 
how to use the 8259A within MCS-80, MCS-85, MCS-86, 
and MCS-88 microcomputer systems. It is divided into 
five sections. The first section, "Concepts", explains 
the concepts of interrupts and presents an overview of 
how the 8259A works with each microcomputer system 
mentioned above. The second section, "Functional 
Block Diagram", describes the internal functions of the 
8259A In block diagram form and provides a detailed 
functional description of each device pin. "Operation of 
the 8259A", the third section, explains in depth the 
operation and use of each of the 8259A modes and com­
mands. For clarity of explanation, this section doesn't 
make reference to the actual programming of the 8259A. 
Instead, all programming is covered in the fourth sec­
tion, "Programming the 8259A". This section explains 
how to program the 8259A with the modes and com­
mands mentioned in the previous section. These two 
sections are referenced in Appendix A. The fifth and 
final section "Application Examples", shows the 8259A 
in three typical applications. These applications are 
fully explained with reference to both hardware and soft­
ware. 

The reader should note that some of the terminology 
used throughout this application note may differ 
slightly from existing data sheets. This is done to better 
clarify and explain the operation and programming of 
the 8259A. 

1. CONCEPTS 

In microcomputer systems there is usually a need for 
the processor to communicate with various Input/Out-

put (1/0) devices such as keyboards, displays, sensors, 
and other peripherals. From the system viewpOint, the 
processor should spend as little time as possible servic­
ing the peripherals since the time required for these 110 
chores directly affects the amount of time available for 
other tasks. In other words, the system should be 
designed so that 1/0 servicing has little or no effect on 
the total system throughput. There are two basic 
methods of handling the 1/0 chores in a system: status 
polling and interrupt servicing. 

The status poll method of 1/0 servicing essentially in­
volves having the processor "ask" each peripheral if it 
needs servicing by testing the peripheral's status line. If 
the peripheral requires service, the processor branches 
to the appropriate service routine; if not, the processor 
continues with the main program. Clearly, there are 
several problems in implementing such an approach. 
First, how often a peripheral is polled is an important 
constraint. Some idea of the "frequency-of-service" 
required by each peripheral must be known and any soft­
ware written for the system must accommodate this 
time dependence by "scheduling" when a device is 
polled. Second, there will obviously be times when a 
device is polled that is not ready for service, wasting the 
processor time that it took to do the poll. And other 
times, a ready device would have to wait until the proc­
essor "makes its rounds" before it could be serviced, 
slowing down the peripheral. 

Other problems arise when certain peripherals are more 
important than others. The only way to implement the 
"priority" of devices is to poli the high priority devices 
more frequently than lower priority ones. It may even be 
necessary to poll the high priority devices while in a low 
priority device service routine. It is easy to see that the 
polled approach can be inefficient both time-wise and 
software-wise. Overall, the polled method of 1/0 servic­
ing can have a detrimental effect on system throughput, 
thus limiting the tasks that can be performed by the 
processor. 

A more desirable approach in most systems would allow 
the processor to be executing its main program and only 
stop to service the 1/0 when told to do so by the 1/0 
itself. This is called the interrupt service method. In 
effe}:t, the device would asynchronously signal the proc­
essor when it required service. The processor would 
finish its current instruction and then vector to the 
service routine for the device requesting service. Once 
the service routine is complete, the processor would 
resume exactly where it left off. Using the interrupt ser­
vice method, no processor time is spent testing devices, 
scheduling is not needed, and priority schemes are 
readily implemented. It is easy to see that, using the in­
terrupt service approach, system throughput would in­
crease, allowing more tasks to be handled by the 
processor. 

However, to implement the interrupt service method 
between processor and peripherals, additional hardware 
is usually required. This is because, after interrupting 
the processor, the device must supply information for 
vectoring program execution. Depending on the proc­
essor used, this can be accomplished by the device tak­
ing control of the data bus and "jamming" an instruc­
tion(s) onto it. The instruction(s) then vectors the pro-

2-119 121500-001 



AP59 

gram to the proper service routine. Tl)is of course reo 
quires additional control logic for each interrupt reo 
questing device. Yet the implementation so far is only in 
the most basic form. What if certain peripherals are to 
be of higher priority than others? What if certain inter· 
rupts must be disabled while others are to be enabled? 
The possible variations go on, but they all add up to one 
theme; to provide greater flexibility using the interrupt 
service method, hardware requirements increase. 

So, we're caught in the middle. The status poll method 
. is a less desirable way of servicing 1/0 in terms of 
throughput, but its hardware requirements are minimal. 
On the other hand, the interrupt 'service method is most 
desirable in terms ,of flexibility and throughput, but 
additional hardware is required. 

The perfect situation would be to have the flexibility and 
throughput of the interrupt method in an implementa­
tion with minimal hardware requirements. The B259A 
Programmable Interrupt Controller (PIC) makes this all 
possible. 

The B259A Programmable Interrupt Controller (PIC) was 
designed to function as an overall manager of an inter· 
rupt driven system. No additional hardware is required. 
The B259A alone can handle eight prioritized interrupt 
levels, controlling the complete interface between pe­
ripherals and processor. Additional B259A's can be 
"cascaded" to increase the number of interrupt levels 
processed. A wide variety of modes and commands for 
programming the B259A give ft enough flexibility for 
almost any interrupt controlled structure. Thus, the 
B259A is the feasible answer to handling 1/0 servicing in 
microcomputer sY,stems. 

Now, before explaining exactly how to use the B259A, 
let's go over interrupt structures of the MCS·BO, MCScB5, 
MCS-B6, and MCS·BB systems, and how they interact 
with the B259A. Figure 1 shows a block diagram of the 
B259A interfacing with a standard sy~tem bus. This may 
prove useful as reference throughout the rest of the 
"Concepts" section. 

I 
INTERRUPT 
REQUESTS 

Figure 1. 8259A Interlace 10 Standard Syslem Bus 

1.1 MCS·80 -8259A OVERVIEW 

In an MCS-BO-B:;!59A interrupt configuration, as in 
Figure 2, a device may cause an interrupt by pulling one 
of the B259A's interrupt request pins (IRO-IR7) high. If 
the B259A accepts the interrupt request (this depends 
on its programmed condition), the B259A's INT (inter· 
rupt) pin will go high, driving the BOBOA's INT pin high. 

The BOBOA, can receive an interrupt request any time, 
since its INT input is asynchronous. The BOBOA, how­
ever, doesn't always have to acknowledge an interrupt 
request immediately. It can accept or disregard re­
quests under software control using the EI (Enable Inter­
rupt) or 01 (Disable Interrupt) instructions. These in· 
structions either set or reset an internal interrupt enable 
flip·flop. The output of this flip-flop c,ontrols the state of 
the INTE (Interrupt Enabled) pin. Upon reset, the BOBOA 
interrupts are disabled, making INTE low. 

At the end of each instruction cycle, the BOBOA exam­
ines the state of its INT pin. If an interrupt request is 
present and interrupts are enabled, the BOBOA enters an 
interrupt machine cycle. During the interrupt machine 
cycle the BOBOA resets the internal interrupt enable flip­
flop, disabling further interrupts until an EI instruction 
is executed. Unlike normal machine cycles, the interrupt 
machine cycle doesn't increment the program counter. 
This ensures that the B080A can return to the pre· 
interrupt program location after the interrupt is com­
pleted. The 8080A then issues an INTA (Interrupt 
Acknowledge) pulse via the 8228 System Controller ,Bus 
Driver. This INTA pulse ~ignals the 8259A that the 8080A 
is honoring the request and is ready to process the inter· 
rupt. 

The B259A can now vector program execution to the cor· 
responding service routine. This is done during a se· 
quence of the three INTA pulses from the 80BOA via the 
822B. Upon receiving the first INTA pulse the 8259A 
places the opcode for a CALL instruction on the data 
bus. This causes the contents of the program counter to 
be pushed onto the stack. In addition, the CALL instruc­
tion caus'es two more INTA pulses to be issued, allow· 
ing the 8259A to place onto the data bus the starting 
address of the corresponding service routine. This 
address is called the interrupt·vector address. The lower 
B bits (LSB) of the interrupt-vector address are released 
during the second INTA pulse and the upper B bits 
(MSB) during the third INTA pulse. Once this sequence 
is comllieted, program execution then vectors to the 
service routine at the interrupt·vector address. 

If the same registers are used by both the main program 
and the interrupt service routine, their contents should 
be saved when entering the service routine. This in­
cludes the Program Status Word (PSW) which consists 
of the accumulator and flags. The best way to do this is 
to "PUSH" each register used onto the stack. The ser· 
vice routine can then "POP" each register off the stack 
in the reverse order when it is completed. This prevents 
any ambiguous operation when returning to the main 
program. \ 

Once the service routine is completed, the main 
program may be re·entered by using a normal RET 
(Return) instruction. This will "POP" the original con· 

2-120 121500-001 



AP59 

tents of the program counter back off the stack to 
resume program execution where it ,left off. Note, that 
because interrupts are disabled during the interrupt 
acknowledge sequence, the EI instruction must be 
executed either during the service routine or the main 
program before further interrupts can be processed. 

For additional information on the 8080A interrupt struc­
ture and operation, refer to the MCS-80 User's Manual. 

1-2 MCS-85' :-8259A OVERVIEW 

An MCS-85-8259A configuration processes interrupts 
in much the same format as an MCS-80-8259A con fig-

uration. When an interrupt occurs, a sequence of three 
INTA pulses causes the 8259A to release onto the data 
bus a CALL instruction and an interrupt-vector address 
for the corresponding service routine. Other events that 
occur during the 8080A interrupt machine cycle, such as 
disabling interrupts and not incrementing the program 
counter, also occur in the 8085A interrupt acknowledge 
machine cycle. Additionally, the instructions for saving 
registers, enabling or disabling of interrupts, and return­
ing from service routines are literally the same. 

The 8085A, however, has a different interrupt hardware 
scheme as shown in Figure 3. For one, the 8085A sup­
plies Its own INTA output pin rather than using an addi-

INTE AO- 1S t------· ~ 
________ 2AD::.:D"R:=E:::ss"'e"'~:o:r----------V TO MEMORY AND 110 

___ HOLD INTI----------- • 5V 

---------

a2S9A 

8080A WR WI! 
C~ECT 

CS 8, 91 TallO 

e, e, 
8224 READY READY 

RESET RESET 

SYNC SYNC 

Figure 2. MCS·80 8259A Basic Configuration Example 

rD~ t 

TO MULTIPLEXED 
Mesas FAMilY 

t 
Xl X2 RESET elK 11l:D 

RESET IN OUT 
A8·15 

HOLD 

~ HlDA AO_7 

ROY 

HSTe 

0°0_7 

TRAP 
ALE 8282 

S08SA 010_7 
RST 75 

RST 6.5 

RST 55 Vt--ADO_7 
INTR 

INTA laiM 
W. Ali 

TO 1/0 & MEMORY 
aUALIFIED BY loiM 
~ 

I I 

ADDRESS BUS 

I!!!!! AO 

I E3 
E2 E1 A2 Al 

AO I 
OE 8205 

'" 00 01 02 03 04 Os 06 0, 

111J111 
110 SELECT 

MULTIPLEXED ADDRESS/DATA BUS 

I 
.5-

1K 

SPIEN 
AO 

a2S9A SELECT 
Os 

DO-7 

8259A 
00 

WR 
INTA 

INT CASO_2 

I 
Flgur. 3. MC5-85 8259A Basic Configuration Example 

2-121 

'K 

IRO-

IRO_ 

IR1 -
102 '--, 
103 ,.-1 
104 -
IR5 '--i 
106 -
107 '--I 

T 

A 

T 
A 

INTERRUPT 
REQUEST 
INPUTS 

o STANDARD MEMORY 
NO OTHER 1/0 

o STANDARD MEMORY 
NO OTHER 110 

INTERRUPT 
REQUEST 
INPUTS 

T o SLAVE 8259A 

121500-001 



! 

AP59 

tional chip, as the 8080A uses the 8228 System Con­
troller Bus Driver. Another hardware difference is the 
8085A has five hardware interrupt pins: INTR, RST 7.5, 
RST 6.5, RST 5.5, and TRAP. The INTR (Interrupt Request) 
pin Is the equivalent to the 8080A's INT pin. The RST 
(Restart) pins and TRAP pin are all restart Interr-upts 
which vector program execution to an individual dedi­
cated address when asserted. The important factor 
associating these interrupts is their relative priority, as 
shown below: 

TRAP 
RST 7.5 
RST 6.5 
RST 5.5 

Highest Priority, 

INTR Lowest Priority 

The INTR pin has lowest priority among the other 8085A 
hardware Interrupts. Thus, precautions to prevent inter­
rupting 8259A service routines may be necessary. This, 
of course, depends on how the 8085A Interrupts are 
being used in a particular application. Such precautions 
can be implemented, however, by masking the RST pins 
using the SIM instruction. The TRAP pin on the other 
hand Is non-maskable; all interrupt pins but TRAP can 
be controlled by the EI (Enable Interrupt) and 01 (Disable 
Interrupt) instructions., 

For a complete description of the 8085A interrupt struc­
ture, refer to the MCS-85 User's Manual. 

1.3 MCS-88188 -8259A OVERVIEW 

Operation of an MCS-86/88-8259A configuration has 
basic similarities of the MCS-80/85-8259A conflgura-

tions. That is, a device can cause an Interrupt by pulling 
'on.e of the 8259A's interrupt request pins (I RO-IR7) high. 
If the 8259A honors the request, its INT pin will go high, 
driving the 808818088's INTR pin high. Like the 8080A 
and 8085A, the INTR pin of the 8086/8088 Is asynchro­
nous, thus it can receive an interrupt any time. The 
8086/8088 can also accept or disregard requests on 
INTR unde(software control using the STI (Set Interrupt) 
or CLI (Clear Interrupt) instructions. These instructions 
set or clear the interrupf-enabled flag IF. Upon 
8086/8088 reset the IF flag is cleared, disabling external 
interrupts on INTR. Beside the I!',ITR pin, the 8086/8088 
provides an NMI (Non-Maskable Interrupt) pin. The NMI 
functions similar to the 8085A's TRAP; it can't be dis­
abled or masked. NMI has higher priority than INTR. 

Figure 4 shows an MCS-86 MAX Mode system interfac­
ing with an 8259A on the local bus. This MCS-86-8259A 
configuratibn is also representative of an MCS-88-
8259A configuration except for the data bus which is 16 
bits for 8086 and 8 bits for 8088 .. In the MCS-86 system. 
the 8259A must be on the lower 8 bits of the data bus. 
Note that the 8259A could also be interfaced on the 
system bus. 

Although there are some basic similarities, the actual 
processing of interrupts with an 8086/8088 Is different 
than an 8080A or 8085A. When an Interrupt request is 
present and interrupts are enabled, the 8086/8088 enters 
its Interrupt acknowledge machine cycle. The interrupt 
aqknowledge machine cycle pushes the flag registers 
onto the stack (as in a PUSHF instruction). It then clears 
the IF flag which disables interrupts. The contents of 

r.S;;;YS~T;;EM::-A~D=DR;;;ES;;;:S;-;.;:'U::-S -;'. "'1IIII!mi.... l~:~~ORY 
A1 

MULTIPLEXED ADDRESSIDATA BUS I/'----'-.=Y=ST"'EM"""'DA"'TA"'.=U"'. _..J.... TO MEMORY 
v--'--"'-'===""--,/ AND 110 

8259A SELECT 

NMI 

INTH 

TO SLAVE 825BA ---v 

Figure 4. MSC-88, a25IA a .. le Conllgurellon Example (8088 In Max. Mode) 

2-122 121500-001 



AP59 

both the code segment and the instruction pointer are 
then also pushed onto the stack. Thus, the stack retains 
the pre·interrupt flag status and pre·interrupt program 
location which are used to return from the service 
routine. The 8086/8088 then issues the first of two INTA 
pulses which signal the 8259A that the 8086/8088 has 
honored its interrupt request. If the 8086/8088 is used in 
its "MIN Mode" the INTA signal is available from the 
8086/8088 on its INTA pin. If the 8086/8088 is used in the 
"MAX Mode" the INTA signal is available via the 8288 
Bus Controller INTA pin. Additionally, in the "MAX 
Mode" the 8086/8088 LOCK pin goes low during the in­
terrupt acknowledge sequence. The LOCK signal can be 
used to indicate to other system bus masters not to gain 
control of the system bus during the interrupt acknowl· 
edge sequence. A "HOLD" request won't be honored 
while LOCK is low. 

The 8259A is now ready to vector program execution to 
the corresponding service routine. This is done during 
the sequence of the two INTA pulses issued by the 80861 
8088. Unlike operation with the 8080A or 8085A, the 
8259A doesn't place a CALL instruction and the starting 
address of the service routine on the data bus. Instead, 
the first INTA pulse is used only to signal the 8259A of 
the honored request. The second INTA pulse causes the 
8259A to place a single interrupt,vector byte onto the 
data bus. Not used as a direct address, this interrupt· 
vector byte pertains to one of 256 interrupt "types" sup· 
ported by the 8086/8088 memory. Program execution is 

vectored to the corresponding service routine by the 
contents of a specifie<;l interrupt type. 

All 256 interrupt types are located in absolute memory 
locations 0 through 3FFH which make up the 80861 
8088's interrupt-vector table. Each type in the interrupt· 

, vector table requires 4 bytes of memory and stores a 
code segment address and an instruction pOinter ad· 
dress. Figure 5 shows a block diagram of the interrupt· 
vector table. Locations 0 through 3FFH should be 
reserved for the interrupt·vector table alone. Further· 
more, memory locations 00 through 7FH (types 0-31) are 
reserved for use by Intel Corporation for Intel hardware 
and software products. To maintain compatibility with 
present and future Intel products, these locations 
should not be used. 

-
INTERRUPT TY~E 255 

INTERRUPT TYPE 254 

· • 
· 

INTERRUPT TYPE 2 

INTERRUPT TYPE 1 

INTERRUPTTYPE 0 

Figure 5. 8085/8088 Interrupt Vector Table 

3FFH 

3FCH 
3FBH 

3F8H 

BH 

8H 
7H 

4H 
3H 

OH 

When the 8086/8088 receives an interrupt-vector byte 
from the 8259A, it multiplies its value by four to acquire 
the address of the interrupt type. For example, if the 
interrupt·vector byte specifies type 128 (80H), the vec· 
tored address in 8086/8088 memory is 4 x 80H, which 
equals 200H. Program execution is then vectored to the 
service routine whose address is specified by the code 
segment and instruction pointer values within type 128 
located at 200H. To show how this is done, let's assume 
interrupt type 128 is to vector data to 8086/8088 memory 
location 2FF5FH. Figure 6 shows two possible ways to 
set values of the code segment and instruction pOinter 
for vectoring to location 2FF5FH. Address generation 
by the code segment and instruction pointer is ac· 
complished by an offset (they overlap). Of the total 
20·bit address capability, the code segment can desig· 
nate the upper 16 bits, the instruction pOinter can 
designate the lower 16 bits. 

CS(MSB) 

CS(LSB) 

IP(MSB) 

IP(LSB) 

CS(MSB) 
CS(LSB) 

IP(MSB) 
IP(LSB) 

-

~ 

2FH 

FOH 

DOH 
5FH 

20H 
DOH 

FFH 
5FH 

1 

1 

1 

1 

::: I TYPE 128 FOH 
FCH 

-

1~~~ I TYPE 128 
FOH 

1FCH 

1 

1 

Figure 6. Two Examples of 8086/8088 Interrupt Type 128 Vectoring 
to Location 2FF5FH 

When entering an interrupt service routine, those regis· 
ters that are mutually used between the "main program 
and service routine should be saved. The best way to do 
this is to "PUSH" each register used onto the stack im­
mediately. The service routine can then "POP" each 
register off the stack in the same order when it is com­
pleted. 

Once the service routine is completed the main program 
may be re-entered by using a IRET (Interrupt Return) in­
struction. The IRET instruction will pop the pre-interrupt 
instruction pOinter, code segment and flags off the 
stack. Thus the main program will resume where it was 
interrupted with the same flag status regardless of 
changes in the service routine. Note especially that this 
includes the state of the IF flag, thus interrupts are re­
enabled automatically when returning from the service 
routine. 

Beside external interrupt generation from the INTR pin, 
the 8086/8088 is also able to invoke interrupts by soft- . 
ware. Three interrupt instructions are provided: INT, INT 
(Type 3), and INTO. INT is a two byte instruction, the sec­
ond byte selects the interrupt type. INT (Type 3) is a one 
byte instruction which selects interrupt Type 3. INTO is 
a conditional one byte interrupt instruction which 
selects interrupt Type 4 if the OF flag (trap on overflow) 
is set. All the software interrupts vector program execu­
tion as the hardware interrupts do. 

2-123 121500-001 



.. 

AP59 

For further information on 8086/8088 interrupt operation 
and internal interrupt structure refer to the MCS-86 
User's Manual and the 8086 System Design application 
note. 

2_ 8259A FUNCTIONAL BLOCK DIAGRAM 

A block diagram of the 8259A is shown in Figure 7. As 
can be seen from this figure, the 8259A consists of eight 
major blocks: the Interrupt Request Register (IRR), the 
In-Service Register (lSR), the Interrupt Mask Register 
(IMR), the Priority Resolver (PR), the cascade buffer/ 
comparator, the data bus buffer, and logic blocks for 
control and read/write. We'll first go over the blocks 
directly related to interrupt handling, the IRR, ISR, IMR, 
PR, and the control logic. The remaining functional 
blocks are then discussed. 

2_1 INTERRUPT REGISTERS AND CONTROL LOGIC' 

Basically, interrupt requests are handled by three "cas­
caded" registers: the Interrupt Request Register (IRR) is 
use to store all the interrupt levels requesting service; 
the In-Service Register (ISR) stores all the levels which 
are being serviced; and the Interrupt Mask Register 
(IMR) stores the bits of the interrupt lines to be masked. 
The Priority Resolver (PR) looks at the IRR, ISR and IMR, 
and determines whether an INT should be issued by the 
the control logic to the processor. 

Figure 8 shows conceptually how the Interrupt Request 
(IR) input handles an interrupt request and how the 
various interrupt registers interact. The figure repre-

PIN CONFIGURATION 

cs Vee 

WR II" 
AD INTA 

0, IR7 

D. IR6 

Os 'R5 

D4 IR4 

0 3 'R3 

D, 'R2 

D, 'AI 

Do 'AO 

CASO 'NT RD 
CAS 1 SP/EN 

GND CAS2 

PIN NAMES 

sents one of eight "daisy-chained" priority cells, one for 
each IR input. 

The best way to explain the operation of the priority cell 
is to go through the sequence of internal events that 
happen when an interrupt request occurs. However, 
first, notice that the input circuitry of the priority cell 
allows for both level sensitive and edge sensitive IR in­
puts. Deciding which method to use is dependent on the 
particular application and will be discussed in more 
detail later. 

When the IR input is in an inactive state (LOW), the edge 
sense latch is set. If edge sensitive triggering is 
selected, the "Q" output of the edge sense latch will 
arm the input gate to the request latch. This input gate 
will be disarmed after the IR input goes active (HIGH) 
and the interrupt request has been acknowledged. This 
disables the input from generating any further inter­
rupts until it has returned low to re-arm the edge sense 
latch. If level sensitive triggering is selected, the "Q" 
output of the edge sense latch is rendered useless. This 
means the level of the IR input is in complete control of 
interrupt generation; the input won't be disarmed once 
acknowledged. 

When an interrupt occurs on the IR input, it propagates 
through the request latch and to the PR (assuming the 
input isn't masked). The PR looks at the incoming re­
quests and the currently in-service interrupts to ascer­
tain whether an interrupt should be issued to the proc­
essor. Let's assume that the request is the only one in­
coming and no requests are presently in service. The PR 
then causes the control logic to pull the INT line to the 
processor high. 

DATA 
BUS 

BUFFER 

BLOCK DIAGRAM 

CONTROL lOGIC 

IRO 

IR' 

lA' 
IR3 

IR4 

ro;=o;;-- DATA BUS (B'·DIRECTIONALI 
es -~~--' 

~--'-READ INPUT~~-'-'---'-'­
WII--- -wRiTEINi>UT~------'--

1\0 COMMAND SELECT ADDRESS 

CS CHIP SELECT 
CAS1-CASO CASCADE LINES --

SPfEN SLAVE PROGRAMJENABLEBUFFER 

INT INTERRUPT OUTPUT 

INTA INTERRUPT ACKNOWLEDGE INPUT 

IRO-IR7 INTERRUPT REOUEST INPUTS 
~ INTERNAL BUS 

Figure 7. 8259A Block Diagram and Pin Configuration 

2-124 121500-001 



AP59 

LTiM BIT 
0= EDGE 
1 = LEVEL 

TO OTHER PRIORITY CELLS 
CLRISR 

CLR Q ISA BIT 

SET 

~~--+-----+----l--l---<~t=ll-;;;~~;j SET ISA 

PRIORITY 
RESOLVER 

MesaD/as 
MODE 

IR -*-{;>O---+----<t..-J 

{ INTAe 
FREEZE 

I~ 
MeSSO/SS { INTA t:J=' ~ 

MODE 

FREEZE 

NOTES 

NON­
MASKED 
REO 

CONTROL 
lOGIC 

1 MASTER CLEAR ACTIVE ONLY DURING ICW1 
2 FREEZE/IS ACTIVE DURING INTAI AND POLL SEQUENCES ONLY 
3, TRUTH TABLE FOR D·LATCH 

C! 0 I Q I OPERATION 
1 01 01 FOLLOW 
a x On-1 HOLD 

Figure 8. Priority Cell 

When the processor honors the INT pulse, it sends a se­
quence of INTA pulses to the 8259A (three for 8080AI 
8085A, two for 808Ml088). During this sequence the 
state of the request latch is frozen (note the INTA-freeze 
request timing diagram). Priority is again resolved by the 
PR to determine the appropriate interrupt vectoring 
which is conveyed to the processor via the data bus. 

Immediately after the interrupt acknowledge sequence, 
the PR sets the corresponding bit in the ISR which 
simultaneously clears the edge sense latch. if edge sen­
sitive triggering is used, clearing the edge sense latch 
also disarms the request latch. This inhibits the 
possibility of a still active IR input from propagating 
through the priority cell. The IR input must return to an 
inactive state, setting the edge sense latch, before 
another interrupt request can be recognized. If level sen­
sitive triggering is used, however, clearing the edge 
sense latch has no affect on the request latch. The state 
of the request latch is entirely dependent upon the IR in­
put level. Another interrupt will be generated immedi­
ately if the IR level is left active after its ISR bit has been 
reset. An ISR bit gets reset with an End-of-Interrupt (EOI) 
command issued in the service routine. End-of­
interrupts will be covered in more detail later. 

2_2 OTHER FUNCTIONAL BLOCKS 

Data Bus Buffer 

DBO-DB7). Control words, status information, and 
interrupt-vector data are transferred through the data 
bus buffer. 

ReadlWrite Control Logic 

The function of this block is to control the programming 
of the 8259A by accepting OUTput commands from the 
processor. It also controls the releasing of status onto 
the data bus by accepting INput commands from the 
processor. The initialization and operation command 
word registers which store the various control formats 
are located in this block. The RD, WR, AO, and OS 
pins are used to control access to this block by the 
processor. 

Cascade BufferlComparator 

As mentioned earlier, multiple 8259A's can be combined 
to expand the number of interrupt levels. A master-slave 
relationship of cascaded 8259A's is used for the expan­
sion. The SP/EN and the CASO-2 pins are used for oper­
ation of this block. The cascading of 8259A's is covered 
in depth in the "Operation of the 8259A" section of this 
application note. 

2.3 PIN FUNCTIONS 

Name Pin #I 1/0 Function 

This three-state, bidirectional 8-bit buffer is used to in- Vcc 28 

14 

+ 5V supply 

Ground terface the 8259A to the processor system data bus (via GND 

2-125 121500-001 



AP59 

Name Pin # I/O Function 

WR 2 

RD 3 

D7-DO 4-11 

CASO- 12,13, 
CAS2 15 

SP/EN 16 

INT 17 

IRO- - 18-25 
IR7 

INTA 26 

AO 27 

Chip Select: A low on this pin en­
ables RD and WR communication be­
tween the CPU and the 8259A_ INTA 
functions are independent of CS_ 

Write: A low on this pin when CS is 
low enables the 8259A to accept 
command words from the CPU. 

Read: A low on this pin when CS is 
low enables the 8259A to release 
status onto the data bus for the CPU. 

1/0 Bidirectional Data Bus: Control, 
status and interrupt-vector informa­
tion is transferred via this bus. 

1/0 Cascade Lines: The CAS lines form a 
private 8259A bus to control a multi­
ple 8259A structure. These pins are 
outputs for a master 8259A and in­
puts for a slave 8259A. 

1/0 Slave Program/Enable Buffer: This is 
a dual function pin. When in tbe buf­
fered mode it can be used as an, out­
put to control buffer transceivers 
(EN). When not in the buffered mode 
it is used as an input to designate a 
master (SP = 1) or slave (SP = 0). 

o Interrupt: This pin goes high when­
ever a valid interrupt request is as­
serted. It is used to interrupt the 
CPU, thus it is connected to the 
CPU's interrupt pin. 

Interrupt Requests: Asynchronous in­
puts. An interrupt request can be 
generated by raising an IR input (low 
to high) and holding it high until it is 
acknowledged (edge triggered mode), 
or just by a high level on an IR input 
(level triggered mode). 

Interrupt Acknowledge: This pin is 
used to enable 8259A Interrupt-vector 
data onto the data bus. This is done 
by a sequence of interrupt acknowl­
edge pulses issued by the CPU. 

AO Address Line: This pin acts in con­
junction with the CS, WR, and RD 
pins. It is used by the 8259A to de­
cipher between various command 
words the CPU writes and status the 
CPU wishes to read. It is typically 
connected to the CPU AO address 
line (A 1 for 8086/8088). 

3. OPERATION OF THE 8259A 

Interrupt operation of the 8259A falls under five main 
categories: vectoring, priorities, triggering, status, and 
cascading. Each of these categories use various modes­
and commands. This section will explain the operation 
of these modes and commands. For clarity of explana­
tion, however, the actual programming of the 8259A isn't 

covered in this section but in "Programming the 8259A". 
Appendix A is provided as a cross reference between 
these two sections. 

3.1 INTERRUPT VECTORING 

Each IR input of the 8259A has an individual interrupt­
vector address in memory associated with it. Designa­
tion of each address depends upon the initial program­
ming of the 8259A. As stated earlier, the interrupt 
sequence and addressing of an MCS-80 and MCS-85 
system differs from that of an MCS-86 and MCS-88 
system. Thus, the 8259A must be initially programmed 
in either a MCS-80/85 or MCS-86/88 mode of operation to 
irisure the correct interrupt vectoring. 

MCS-80/85 Mode 

When programmed in the MCS-80/85 mode, the 8259A 
should only be used within an 8080A or an 8085A 
system. In this mode the 8080A/8085A will handle inter­
rupts in the format described in the "MCS-80-8259A or 
MCS-85-8259A Overviews." 

Upon interrupt request in the MCS-80/85 mode, the 
8259A will output to the data bus the opcode for a CALL 
instfuction and the address of the desired routine. This 
is in response to a sequence of three INTA pulses 
issued by the 8080A/8085A after the 8259A has raised 
INT high. 

The first INTA pulse to the 8259A enables the CALL 
opcode "CD H" onto the data bus. It also resolves IR pri­
orities and effects operation in the cascade mode, 

'which will be covered later. Contents of the first 
interrupt-vector byte are shown in Figure 9A. 

During the second and third INTA pulses, the 8259A 
conveys a 16-bit interrupt-vector address to the 8080AI 
8085A. The interrupt-vector addresses for all eight levels 
are selected when initially programming the 8259A. 
However, only one address is needed for programming. 
Interrupt-vector addresses of IRO-IR7 are automatically 
set at equally spaced intervals based on the one pro­
grammed address. Address intervals are user definable 
to 4 or 8 bytes apart. If the service routine for a device is 
short it may be possible to fit the entire routine within 
an 8-byte interval. Usually, though, the service routines 
require more than 8 bytes. So, a 4-byte interval is used to 
store a Jump (JMP) instruction which directs the 8080AI 
8085A to the appropriate routine. The 8-byte interval 
maintains compatibility with current 8080A/8085A 
Restart (RST) instruction software, while the 4-byte in­
terval is best for a compact jump table. If the 4-byte in­
terval is selected, then the ~259A will automatically 
insert bits AO-A4. This leaves A5-A 15 to be pro· 
grammed by the user. If the 8-byte interval is selected, 
the 8259A will automatically insert bits AO-A5. This 
leaves only A6-A 15 to be programmed by the user. 

The LSB of the interrupt-vector address is placed on the 
data bus during the second INTA pulse. Figure 9B 
shows the contents of the second interrupt-vector byte 
for both 4 and 8-byte intervals. 

The MSB of the interrupt-vector address is placed on the 
data bus during the third INTA pulse. Contents of the 
third interrupt-vector byte is shown in Figure 9C. 

2-126 
121500-001 



AP59 

01 06 05 04 03 02 01 00 

A. FIRST INTERRUPT VECTOR BYTE, MCS80/as MODE 

!nl.rnt=4 

01 .. 02 01 __ ~_ 

A' o 0 

0 ~---f-+ 

A7 A' 

2 , A7 -~--:--.+-A' ----

01 06 04 03 02 01 00 -----------
A? A6 1 , 1 0 0 0 

A' 
A7 A6 , 0 1 0 0 

.---~---- -------
A6 1 0 0 0 0 

_A_'_O __ , __ I ~ ~ 

At A6 0 1 0 0 0 0 
- --- .... _-------

~~~~_~O , 000 

A6 0 0 0 0 0 ._-'--. ------- -_._- ---

B. SECOND INTERRUPT VECTOR BYTE, Mcsaa/BS MODE

01 06 05 04 03 02 01 00

~5 I A14 I A13 I Al2 I All I AlO I A9 I A8 I
C. THIRD INTERRUPT VECTOR BYTE, MCSBa/BS MODE

Figure 9. 9A-C. Interrupt·Vector Bytes lor 8259A, MCS 80/85 Mode

MeS·S6/SS Mode

When programmed in the MCS-86/88 mode, the 8259A
should only be used within an MCS-86 or MCS-88
system. In this mode, the 8086/8088 will handle inter­
rupts in the format described earlier in the ':8259A-
8086/8088 Overview".

Upon interrupt in the MCS-86/88 mode, the 8259A will
output a single interrupt-vector byte to the data bus.
This is in response to only two INTA pulses issued by
the 8086/8088 after the 8259A has raised INT h!gh.

The first INTA pulse is used only for set-up purposes in­
ternal to the 8259A. As in the MCS-80/85 mode, this set­
up includes priority resolution and cascade mode oper­
ations which will be covered later. Unlike the MCS-80/85
mode, no CALL opcode is placed on the data bus.

The second INTA pulse is used to enable the single
interrupt-vector byte onto the data bus. The 8086/8088
uses this interrupt-vector byte to select one of 256 inter­
rupt "types" in 8086/8088 memory. Interrupt type selec­
tion for all eight IR levels is made when initially pro­
gramming the 8259A. However, reference to only one in­
terrupt type is needed for programming. The upper 5 bits
of the interrupt vector byte are user definable. The lower
3 bits are automatically inserted by the 8259A depend­
ing upon the IR level.

Contents of the interrupt·vector byte for 8086/8088 type
selection is put on the data bus during the second I NTA
pulse and is shown in Figure 10.

IR 07 06 OS 04 03 02 01 DO
7 T7 T6 T5 T4 T3 1 1 1
6 T7 T6 T5 T4 T3 1 1 0
5 T7 T6 T5 T4 T3 1 0 1
4 T7 T6 T5 T4 T3 1 0 0
3 T7 T6 T5 T4 T3 0 1 1
2 T7 T6 T5 T4 T3 0 1 0
1 T7 T6 T5 T4 T3 0 0 1
0 T7 T6 T5 T4 T3 0 0 0

Figure 10. Interrupt Vector Byte, MCS 88/88 Mode

3.2 INTERRUPT PRIORITIES

A variety of modes and commands are available for con­
trolling interrupt priorities of the 8259A. All of them are
programmable, that is, they may be changed dynamic­
ally under software control. With these modes and com­
mands, many possibilities are conceivable, giving the
user enough versatility for almost any interrupt con­
trolled application.

Fully Nested Mode

The fully nested mode of operation is a general purpose
priority mode. This mode supports a multilevel-interrupt
structure in which priority order of all eight IR inputs are
arranged from highest to lowest

Unless otherwise programmed, the fully nested mode is
entered by default upon initialization. At this time, IRO is
assigned the highest priority through IR7 the lowest.
The fully nested mode, however, is not confined to this
IR structure alone. Qnce past initialization, other IR in­
puts can be aSSigned highest priority also, keeping the
multilevel-interrupt structure of the fully nested mode.
Figure 11A-C shows some variations of the priority
structures in the fully nested mode.

IR LEVElS IR7 IRs IRS IR4IR3 IR2 IR1 IRa
PRIORITY 7 6 5 4 32 1 a --A-

IR LEVELS IR? IRG IRS IR4 IR3 IR2 IR1 IRa
PRIORITY 4 3 2 1 0 7 6 5

IR lEVELS fR7 IRS IRS IR4 1R3 IR2 IR1 IRO
PRIORITY 1 0 2_ 6 5 4 3 2

C

Figure 11. A-C. Some Variations of Priority Structure in the
Fully Nested Mode

Further explanation of the fully nested mode, in this
section, is linked with information of general 8259A in­
terrupt operations. This is done to ease explanation to
the user in both areas.

In general, when an interrupt is acknowledged, the
highest priority request is determined from the IRR (In­
terrupt Request Register). The interrupt vector is then
placed on the data bus. In addition, the corresponding
bit in the ISR (In-Service Register) is set to designate the
routine in service. This ISR bit remains set until an EOI
(End-Of-Interrupt) command is issued to the 8259A.
Ears will be explained in greater detail shortly.

In the fully nested mode, while an ISR bit is set, all fur­
ther requests of the same or lower priority are inhibited
from generating an interrupt to the microprocessor. A
higher priority request, though, can generate an inter­
rupt, thus vectoring program execution to its service
routine. Interrupts are only acknowledged, however, if
the microprocessor has previously executed an "Enable
Interrupts" instruction. This is because the interrupt
request pin on the microprocessor gets disabled auto­
matically after acknowledgement of any interrupt The
assembly language instructions used to enable inter­
rupts are "EI" for 8080Al8085A and "STI" for 8086/8088.
Interrupts can be disabled by using the instruction "DI"
for 8080A/ 8085A and "CLI" for 8086/8088. When a
routine is completed a "return" instruction is executed,
"RET" for 8080A/8085A and "IRET" for 8086/8088.

2-127 121500-001

\

AP59

Figure 12 illustrates the correct usage of interrupt
related instructions and the interaction of interrupt
levels in the fully nested mode.

Assuming the IR priority assignment for the example in
Figure 12 is IRO the highest through IR? the lowest, the
sequence is as follows. During t,he main program, IR3
makes a request. Since interrupts are enabled, the
microprocessor is vectored to'the IR3 service routine.
During the IR3 routine, IR1 asserts a request Since IR1
has higher priority than IR'3, an interrupt is generated.
However, it is not acknowledged because the micro­
processor disabled interrupts in response to the IR3 in­
terrupt The IR1 interrupt is not acknowledged until the
"Enable Interrupts" instruction is executed. Thus the
IR3 routine has a "protected" section of code over
which no interrupts (except non-maskable) are allowed.
The IR1 routine has no such "protected" section since
an "Enable Interrupts" instruction is the first one in its
service routine, Note that in this example the IR1 re­
quest must stay high until it is acknowledged. This is
covered in more depth in the "Interrupt Triggering"
section.

IR'
INTERRUPT

EI OR STI

IR1
INTER·

RUPT

IR3 SERVICE
ROUTINE

IR1 SERVICE
ROUTINE

RET OR tRET

Figura 12. Fully Nested Mode Example (MCS 80/85 or MCS 86/88 ')

What is happening to the ISR register? While in the main
program, no ISR bits are set Since there aren't any inter­
rupts in service. When the IR3 interrupt is acknowl­
edged, the ISR3 bit is set When the IR1 interrupt is
acknowledged, both the ISR1 and the ISR3 bits are set,
indicating that neither routine is complete. At this time,
only IRO could generate an interrupt since it is the only
input with a higher priority than those previously in ser­
vice. To terminate the IR1 routine, the routine must
inform the 8259A that it is complete by resetting its ISR
bit. It does this by executing an EOI command, A
"return" instruction then transfers execution back to

the IR3 routine. This allows IRO-IR2 to interrupt the IR3
routine again, since ISR3 is the highest ISR bit set. No
further interrupts occur in the example so tne EOI com­
mand resets ISR3 and the "return" instruction causes
the main program to resume at its pre-interrupt location,
ending the example.

A single 8259A is essentially always in the fully nested
mode unless certain programming conditions disturb it
The following programming conditions can cause the
8259A to go out of the high to low priority structure of
the fully nested mode.

• The automatiC EOI mode

• The special mask mode

• A slave with a master not in the special fully nested
mode

These modes will be covered in more detail later,
however, they are mentioned now so the user can be
aware of them. As long as these program conditions
aren't inacted, the fully nested mode remains undis­
turbed.

End of Interrupt

Upon completion of an interrupt service routine the
8259A needs to be notified so its ISR can be updated.
This is done to keep track of which interrupt levels are in
the process of being serviced and their relative priori­
ties. Three different End-Of-Interrupt (EOI) formats,are
available for the user. These are: the non-specific EOI
command, the specific EOI command, and the auto­
matic EOI Mode. Selection of which EOI to use is depen­
dent upon the interrupt operations the user wishes to
perform.

Non-Specific EOI Command

A non-specific EOI command sent from the microproc­
essor lets the 8259A know when a service rOl,Jtine has
been completed, without specification of. its exact inter­
rupt level. The 8259A automatically determines the inter­
rupt level and resets the correct bit in the ISA.

To take advantage of the non-specific EOI the 8259A
must be in a mode of operation in which it can predeter­
mine in-service routine levels. For this reason the non­
specific EOI command should only be used when the
most recent level acknowledged and serviced is always
the highest priority level. When the 8259A receives a
non-specific'EOI command, it simply resets the highest
priority ISR bit, thus confirming to the 8259A that the
highest priority routine of the routines in service is
finished.

The main advantage of using the non-specific EOI com­
mand is that IR level specification isn't necessary as in
the "Specific EOI Comm1!nd", covered shortly.
However, special consideration should be taken when
deciding to use the non-specific EOI. Here are two pro­
gram conditions in which it is best not lJsed:

• Using the set priority command within an interrupt'
service routine. '

• Using a special mask mode.

These conditions are covered in more detail in their own
sections, but are I isted ,here for the users reference.

2-128 121500-001

AP59

S,peciflc EOI Command

A specific EOI command sent from the microprocessor
lets the 8259A know when a service routine of a particu·
lar interrupt level is completed. Unlike a non·specific
EOI command, which automatically resets the highest
priority ISR bit, a specific EOI command specifies an
exact ISR bit to be reset. One of the eight IR levels of the
8259A can be specified in the command.

The reason the specific EOI command is needed, is to
reset the ISR bit of a completed service routine when·
ever the 8259A isn't able to automatically determine' it.
An example of this type of situation might be if the
priorities of the interrupt levels were changed during an
interrupt routine ("Specific Rotation"). In this case, if
any other routines were in service at the same time, a
non·specific EOI might reset the wrong ISR bit. Thus the
specific EOI command is the best bet in this case, or for
that matter, any time in which confusion of interrupt
priorities may exist. The specific EOI command can be
used in all conditions of 8259A operation, including
those that prohibit non-specific EOI command usage.

Automatic EOI Mode

When programmed in the automatic EOI' mode, the
microprocessor no long~r needs to issue a command to
notify the 8259A it has completed an interrupt routine.
The 8259A accomplishes this by performing a non­
specific EOI automatically at the trailing edge of the last
INTA pulse (third pulse in MCS-80/85, second in
MCS-86).

The obvious advantage of the automatic EOI mode over
the other EOI command is no command has to be
issued. In general, this simplifies programming and
lowers code requirements within interrupt routines.

However, special consideration should be taken when
deciding to use the automatic EOI mode because it.
disturbs the fully nested mode. In the automatic EOI
mode the ISR bit of a routine in service is reset right
after it's acknowledged, thus leaving no designation in
the ISR that a sevice routine is being executed. If any in­
terrupt request occurs during this time (and interrupts
are enabled) it will get serviced regardless of its priority,
low or high. The problem of "over nesting" may also
happen in this situation. "Over nesting" is when an IR
input keeps interrupting its own routine, resulting in un­
necessary stack pushes which could fill the stack in a
worst case condition. This is not usually a desired form
of operation!

So what good is the automatic EOI mode with problems
like those just covered? Well, again, like the other EOls,
selection Is dependent upon the application. If Inter­
rupts are controlled at a predetermined rate, so as not to
cause the problems mentioned above, the automatic
EOI mode works perfect just the way it Is. However, if in­
terrupts happen sporadically at an indeterminate rate,
the automatic EOI mode should only be used under the
following guideline:

• When using the automatic EOI mode with an inde­
terminate interrupt rate, the microprocessor should
keep its Interrupt request input disabled during
execution of service routines.

By dOing this, higher priority interrupt levels will be ser­
viced only after the completion of a routine in service.
This guideline restores the fully nested structure in
regards to the IRR; however, a routine in-service can't be
interrupted.

Automatic Rotation - Equal Priority

Automatic rotation of priorities serves in applications
where the interrupting devices are of equal priority,
such as communications channels. The concept is that
once a peripheral is serviced, all other equal priority
peripherals should be given a chance to be serviced
before the original peripheral Is serviced again. This is
accomplished by automatically assigning a peripheral
the lowest priority after being serviced Thus, in worst
case, the device would have to wait until all other
devices are serviced before being serviced again.

There are two methods of accomplishing automatic
rotation. One is used in conjunction with the non­
specific EOI, "rotate on non·specific EOI command".
The other is used with the automatic EOI mode, "rotate
in automatic EOI mode".

Rotate on Non-Specific EOI Command

When the rotate on non-specific EOI command is
issued, the highest ISR bit Is reset as in a normal non­
specific EOI command. After it's reset though, the cor­
responding IR level is assigned lowest priority. Other IR
priorities rotate to conform to the fully nested mode
based on the newly assigned low priority

Figures 13A and B show how the rotate on non-specific
EOI command effects the Interrupt priorities. Let's
assume the IR priorities were assigned with IRO the
highest and IR7 the lowest, as in 13A. IR6 and IR4 are
already in service but neither Is completed. Being the
higher priority routine, IR4 Is necessarily the routine
being executed. During the IR4 routine a rotate on non­
specific EOI command Is executed. When this happens,
bit 4 in the ISR is reset. IR4 then becomes the lowest
priority and IRS becomes the highest as in 13B.

IS7 IS6 ISS 184 IS3 IS2 ISl ISO
A IS~~~~W~ I 0 1 0 1 0 +=Hi BEFORE

f6 5 4 3 ,COMMAND

LOWEST PRIORITY HIGHEST PRIORITY

IS7 IS6 ISS IS4 153 152 151 ISO
ISR STATUS I 0 1 0 0 0 0 0 0 I AFTER

B PRIORITY 2 1 0 7 6 5 4 3 COMMAND

tt L-_~ r-- I
HIGHEST PRIORITY LOWEST PRIORITY

Figure 13. A-B. Rotat. on Non·speclllc EOI Command Example

Rotate in Automatic EOI Mode

The rotate in automatic EOI mode works much like the
rotate on non-specific EOI command. The main differ­
ence is that priority rotation is done automatically after

2-129 121500-001

AP59

the last INTA pulse of an interrupt request. To enter or
exit this mode a rotate-in-automatic-EOI set command
and rotate-in-automatic-EOI clear command is provided.
After that.'no commands are needed as with the normal
automatic EOI mode. However, it must be remembered,
when using any form of the automatic EOI mode, spe­
cial consideration should be taken. Thus, the guideline
for the automatic EOI mode also stands for the rotate in
automatic EOI mode.

Specific Rotation - Specific Priority

Specific rotation gives the user versatile capabilities in
interrupt controlled operations. It serves in those ap­
plications in which a specific device's interrupt priority
must be altered. As opposed to automatic rotation
which automatically sets priorities, specific rotation is
completely user controlled. That is, the user selects
which interrupt level is to receive ,lowest or highest
priority. This can be done during the main program or
within interrupt routines. Two specific rotation com­
mands are available to the user, the "set priority com­
mand" and the "rotate on specific EOI command."

Set Priority Command

The set priority command allows the programmer to
assign an IR level the lowest priority. All other interrupt
levels will conform to the fully nested mode based on
the newly assigned low priority.

An example of how the set priority command works is
shown in Figures 14A and 14B. These figures show the
status of the ISR and the relative priorities of the inter­
rupt levels before and after the set priority command.
Two interrupt routines are shown to be in service in
Figure 14A. Since IR2 is the highest priority, it is
necessarily the routine being executed. During the IR2
routine, priorities are altered so that IR5 is the highest.
This is done simply by issuing the set priority command
to the 8259A. In this case, the command specifies IR4 as
being the lowest priority. The result of this set priority
command is shown in Figure 14B. Even though IR7 now
has higher priority than IR2, it won't be acknowledged
until the IR2 routine is finished (via EOI). This is because
priorities are only resolved upon an interrupt request or
an Lnterrupt acknowledge sequence. If a higher priority
request occurs during the IR2 routine, then priorities are
resolved and the highest will be acknowledged.

157 156 ISS 154 153 152 151 ISO

A Is~~~:g~ I i ~ ~ ~ ~ ~ ~ g l C~i:~:~D

1 1
LOWEST PRIORITY HIGHEST PRIORITY

157 156 ISS 154 153 152 151 ISO

B IS~~:tril~ 11 ~ ~ ~ g ~ ~."fl ct~~~~D
~t L-----,1

HIGHEST PRIORITY LOWEST PRIORITY

Figure 14. A-B. Set Priority Command Example

When completing a service routine in which the set
. priority command is used, the correct EOI must be
issued. The non-specific EOI command shouldn't be
used in the same routine as a set priority command.
This is because the non-specific EOI command resets
the highest ISR' bit, which, when using the set priority
command, is not always the most recent routine in ser­
vice. The automatic EOI mode, on the other hand, can be
used with the set priority command. This is because it
automatically performs a non-specific EOI before the
set priority command can be issued. The specific EOI
command is the best bet in most cases when using the

. set priority command within a routine. By resetting the
specific ISR bit of a routine being completed, confusion
is eliminated.

Rotate on Specific EOI Command

The rotate on specific EOI command is literally a com­
bination of the set priority command and the specific
EOI command. Like the set priority command, a speci­
fied IR level is assigned lowest priority. Like the specific
EOI command, a specified level will be reset in the ISR.
Thus the rotate on specific EOI command accomplishes
both tasks in only one command.

If it is not necessary to change IR priorities prior to the
end of an interrupt routine, then this command is advan­
tageous. For an EOI command must be executed any­
way (unless in the automatic EOI mode), so why not do
both at the same time?

Interrupt Masking

Disabling or enabling interrupts can be done by other
means than just controlling the microprocessor's inter­
rupt request pin. The 8259A has an IMR (Interrupt Mask
Register) which enhances interrupt control capabilities.
Rather than all interrupts being disabled or enabled at
the same time, the IMR allows individual IR masking.
The IMR is an 8-bit register, bits 0-7 directly correspond
to IRO-IR7. Any IR input can be masked by writing to the
IMR and setting the appropriate bit. Likewise, any IR in­
put can be enabled by clearing the correct IMR bit.

There are various uses for masking off individual IR in­
puts. One example is when a portion of a main routine
wishes only to be interrupted by specific interrupts.
Another might be disabling higher priority interrupts for
a portion of a lower priority service routine. The possi­
bilities are many.

When an interrupt occurs while its IMR bit is set, it isn't
necessarily forgotten. For, as stated earlier, the IMR
acts only on the output of the IRR. Even with an IR input
masked it is still possible to set the IRR. Thus, when
resetting an IMR, if its IRR bit is set it will then generate
an interrupt. This is providing, of course, that other
priority factors are taken into consideration and the IR
request remains active. If the IR request is removed
before the IMR is reset, no interrupt will be acknowl­
edged.

Special Mask Mode

In various cases, it may be desirable to enable interrupts
of a lower priority than the routine in service. Or, in other
words, allow lower priority devices to generate inter­
rupts. However, in the fully nested mode, alliR levels of

2-130 121500-001

AP59

priority below the routine in service are inhibited. So
what can be done to enable them?

Well, one method couid be using an EOI command
before the actual completion of a routine in service. But
beware, doing this may cause an "over nesting" prob·
lem, similar to in the automatic EOI mode. In addition,
resetting an ISR bit is irreversible by software control,
so lower priority I R levels could only be later disabled by
setting the IMR.

A much better solution is the special mask mode. Work·
ing in conjunction with the IMR, the special mask mode
enables interrupts from all levels except the level in ser·
vice. This is done by masking the level that is in service
and then issuing the special mask mode command.
Once the special mask mqde is set, it remains in effect
until reset.

Figure 15 shows how to enable lower priority interrupts
by using the Special Mask Mode (SMM). Assume that
IRO has highest priority when the main program is inter·
rupted by IR4. In the IR4 service routine an enable inter·
rupt instruction is executed. This only allows higher
priority interrupt requests to interrupt IR4 in the normal
fully nested mode. Further in the IR4 routine, bit 4 of the
IMR is masked and the special mask mode is entered.
Priority operation is no longer in the fully nested mode.
All interrupt levels are enabled except for IR4. To leave
the special mask mode, the sequence is executed In
reverse.

IR4 SERVICE
ROUTINE

~
I MASK IR4 I

IRO-3 ENABLED
IR4-7 DISABLED

IRO-3. 5-7 ENABLED
IR4 DISABLED

IRO-3 ENABLED
IR4-7 DISABLED

Figure 15. Special Malk Macla Example (MCS 80/85 or MeS 88/88

Precautions must be taken when exiting an interrupt
service routine which has used the special mask mode.
A non·speclfic EOI command can't be used when in the
special mask mode. This is because a non·specific
won't clear an ISR bit of an interrupt which is masked
when in the special mask mode. In fact, the bit will ap·
pear Invisible. If the special mask mode is cleared
before an EOI command is issued a non·specific EOI
command can be used. This could be the case in the ex·
ample shown in Figure 15, but, to avoid any confusion
it's best to use the specific EOI whenever using the
special mask mode.

It must be remembered that the special mask mode ap·
plies to all masked levels when set. Take, for instance,
IR1 interr.upting IR4 in the previous example. If this hap·
pened while in the speCial mask mode, and the IR1
routine masked itself, all interrupts would be enabled
except IR1 and IR4 which are masked.

3.3 INTERRUPT TRIGGERING

There are two classical ways of sensing an active inter·
rupt request: a level sensitive input or an edge sensitive
input. The 8259A gives the user the capability for either
method with the edge triggered mode and the level trig·
gered mode. Selection of one of these interrupt trigger·
ing methods is done during the programmed initializa·
tion of the 8259A.

Level Triggered Mode

When in the level triggered mode the 8259A will recog·
nize any active (high) level on an IR input as an interrupt
request. If the IR input remains active after an EOI com·
manp has been issued (resetting its ISR bit), another In·
terrupt will be generated. This is providing of course, the
processor INT pin is enabled. Unless repetitious inter·
rupt generation is desired, the IR input must be brought
to an inactive state before an EOI command is issued in
its service routine. However, it must not go inactive so
soon that it disobeys the necessary timing require·
ments shown in Figure 16. Note that the request on the
IR input must remain until after the falling edge of the
first INTA pulse. If on any IR input, the request goes
inactive before the first INTA pulse, the 8259A will
respond as If IR7 was active. In any design in which
there's a possibility of this happening, the IR7 default
feature can be used as a safeguard. This can be accom·
plished by using the IR7 routine as a "clean·up routine"
which might recheck the 8259A status or merely return
program execution to its pre·lnterrupt location.

Depending upon the particular design and application,
the level triggered mode has a number of uses. For one,
it provides for repetitious interrupt generation. This is
useful in cases when a service routine needs to be con·
tinually executed until the interrupt request goes Inac·
tive. Another possible advantage of the level triggered
mode is It allows for "wire·OR'ed" Interrupt requests.
That is, a number of interrupt requests using the same
IR input. This can't be done in the edge triggered mode,
for if a device makes an interrupt request while the IR in·
put is high (from another request), its transition will be
"shadowed". Thus the 8259A won't recognize further in·
terrupt requests because its IR input is already high.
Note that when a "wire·OR'ed" scheme is used, the ac·

2-131 121500-001

AP59

IR

INT----+-J

INTA----~-----~

LATCH"
ARMED

EARLIEST IR
CAN'BE REMOVED

I

8080/8085

LATCH'
*EOGE TRIGGERED MODE ONLY ARMED

Figure 16. IR Triggering Timing Requirements

tual requesting device has to be determined by the soft·
ware in the service routine.

Caution should be taken when using the automatic EOI
mode and the level triggered mode together. Since in
the automatic EOI mode an EOI is automatically per·
formed at the end of the interrupt acknowledge se·
quence, if the processor enables interrupts while an IR
input is stili high, an interrupt will occur immediately. To
avoid this situation interrupts should be kept disabled
until the end of the service routine or until the IR input
returns low.

Edge Triggered Mode

When in the edge triggered mode, the 8259A will only
recognize interrupts if generated by an inactive (low) to
active (high) transition on an IR input. The edge trig·
gered mode incorporates an edge lockout method of
operation. This means that after the rising edge of an
interrupt request and the acknowledgement of the reo
quest, the positive level of the IR input won't generate
further interrupts on this level. The user needn't worry
about quickly removing the request after acknowledge·
ment in fear of generating further interrupts as might be
the case in the level triggered mode. Before another in·
terrupt can be generated the IR Input must return to the
inactive state.

Referring back to Figure 16, the timing requirements for
interrupt triggering is shown. Like the level triggered
mode, in the edge triggered mode the request on the IR
input must remain active until after the falling edge of
the first INTA pulse for that particular interrupt. Unlike
the level triggered mode, though, after the interrupt
request is acknowledged its IRR latch is disarmed. Only
after the IR input goes inactive will the IRR latch again
become armed, making it ready to receive another inter·
rupt request (in the level triggered mode, the I~R latch is
always armed). Because of the way the edge triggered
mode functions, it is best to use a positive level with a
negative pulse to trigger the IR requests. With this type
of input, the trailing edge of the pulse causes the inter·
rupt and the maintained positive level meets the neces·
sary timing requirements (remaining high until after the
interrupt acknowledge occurs). Note that the IR7 default

feature mentioned in the "level triggered mode" section
also works for the edge triggered mode.

Depending upon the particular design and application,
the edge triggered mode has various uses. Because of
its edge lockout operation, it is best used in those
applications where repetitious interrupt generation isn't
desired. It is also very useful in systems where the inter·
rupt request is a pulse (this should be in the form of a
negative pulse to the 8259A). Another possible advan·
tage is that it can be used with the automatic EOI mode
without the cautions in the level triggered mode. Over·
all, in most cases, the edge triggered mode simplifies
operation for the user, since the duration of the interrupt
request at a positiv€ level is not usually a factor.

3.4 INTERRUPT STATUS

By means of software control, the user can interrogate
the status of thei8259A. This allows the reading of the
internal interrupt registers, which may prove useful for
interrupt control during service routines. It also pro·
vides for a modified status poll method of device moni·
toring, by using the poll command. This, makes the
status of the internal IR inputs available to the user via
software control. The poll command offers an alterna·
tive to the interrupt vector method, especially for those
cases when more than 64 interrupts are needed.

Reading Interrupt Registers

The contents of each 8·bit interrupt register, IRR, ISR,
and IMR, can be read to update the user's program on
the present status of the 8259A. This can be a versatile
tool in the decision making process of a service routine,
giving the user more control over interrupt operations.
Before delving into the actual process of reading the
registers, let's briefly review their general descriptions:

IRR (Interrupt Specifies all interrupt levels reo
Request Register) questing service.

ISR (In·Service
Register)

IMR (Interrupt
Mask Register)

2-132

Specifies all interrupt levels
which are being serviced.

Specifies all interrupt levels that
are masked.

121500-001

AP59

To read the contents of the IRR or ISR, the user must
first issue the appropriate read register command (read
IRR or read ISR) to the 8259A. Then by applying a RD
pulse to the 8259A (an INput instruction), the contents
of the desired register can be acquired. There is no need
to issue a read register command every time the IRR or
ISR is to be read. Once a read register command is
received by the 8259A, it "remembers" which register
has been selected. Thus, all that is necessary to read
the contents of the same register more than once is the
RD pulse and the correct addressing (AO = 0, explained
in "Programming the 8259A"). Upon initialization, the
selection of registers defaults to the IRR. Some caution
should be taken when using the read register command
in a system that supports several levels of interrupts. If
the higher priority routine causes an interrupt between
the read register command and the actual Input of the
register contents, there's no guarantee that the same
register will be selected when it returns. Thus it is best
in such cases to disable interrupts during the operation.

Reading the contents of the IMR is different than read­
ing the IRR or ISR. A read register command is not
necessary when reading the IMR. This is because the
IMR can be addressed directly for both reading and
writing. Thus all that the 8259A requires for reading the
IMR is a RD pulse and the correct addressing (AO = 1,
explained in "Programming the 8259A").

Poll Command

As mentioned towards the beginning of this application
note, there are two methods of servicing peripherals:
status, polling and interrupt servicing, For most applica­
tions the interrupt service method is best. This is
because it requires the least amount of CPU time, thus
increasing system throughput. However, for certain ap­
plications, the status poll method may be desirable.

For this reason, the 8259A supports polling operations
with the poll command. As opposed to the conventional
method of pOlling, the poll command offers improved
device servicing and Increased throughput. Rather than
having the processor poll each peripheral in order to
find the actual device requiring service, the processor
polls the 8259A. This allows the use of all the previously
mentioned priority modes and commands. Additionally,
both polled and interrupt methods can be used within
the same program.

To use the poll command the processor must first have
its interrupt request pin disabled. Once the poll com­
mand is issued, the 8259A will treat the next (CS quali­
fied) RD pulse issued to it (an INput instruction) as an in­
terrupt acknowledge. It will then set the appropriate bit
in the ISR, if there was an interrupt request, and enable a
special word onto the data bus. This word shows
whether an interrupt request has occurred' and the
highest priority level requesting service. Figure 17
shows the contents of the "poll word" which is read by
the processor. Bits WO-W2 convey the binary code of
the highest priority level requesting service. Bit I deSig­
nates whether or not an interrupt request is present. If
an interrupt request is present, bit I will equal 1. If there
isn't an interrupt request at all, bit I will equal 0 and bits
WO-W2 will be set to ones. Service to the reque!!ting
device is achieved by software decoding the poll word
and branching to the appropriate service routine. Each

time the 8259A is to be polled, the poll command must
be written before reading the poll word.

The poll command is useful in various situations. For in­
stance, it's a good alternative when memory is very
limited, because an interrupt-vector table isn't needed.
Another use for the poll command is when more than 64
interrupt levels are needed (64 is the limit when cascad­
ing 8259'sj. The only limit of interrupts using the poll
command is the number of 8259's that can be addressed
in a particular system. Stili another application of the
poll command might be when the INT or INTA signals
are not available. This might be the case in a large
system where a processor on one card needs to use an
8259A on a different card. In this instance, the poll com­
mand is the only way to monitor the interrupt devices
and still take advantage of the 8259A's prioritizing
features. For those cases when the 8259A is using the
poll command only and not the interrupt method, each
8259A must receive an initialization sequence (interrupt
vector). This must be done even though the interrupt
vector features of the 8259A are not used. In this case,
the interrupt vector specified in the initialization
sequence could be a "fake".

L:!----W2W1WO

WO·W2= BINARY CODE OF HIGHEST
PRIORITY LEVEL REQUESTING SERVICE

1=1 IF AN INTERRUPT OCCURRED

Figure 17. Poll word

3_5 INTERRUPT CASCADING

As mentioned earlier, more than one 8259A can be used
to expand the priority interrupt scheme to up to 64 levels
without additional hardware. This method for expanded
interrupt capability is called "cascading". The 8259A
supports cascading operations with the cascade mode.
Additionally, the special fully nested mode and the buf­
fered mode are available for increased flexibility when
cascading 8259A's in certain applications.

Cascade Mode

When programmed in the cascade mode, basic opera­
tion consists of one 8259A acting as a master to the
others which are serving as slaves. Figure 18 shows a'
system containing a master and two slaves, providing a
total of 22 interrupt levels.

A specific hardware set-up is required to establish
operation in the cascade mode. With Figure 18 as a ref­
erence, note that the master is deSignated by a high on
the SP/EN pin, while the SP/EN pins of the slaves are
grounded (this can also be done by software, see buf­
fered mode). Additionally, the INT output pin of each,
slave is connected to an IR input pin of the master. The
CASO-2 pins for all 8259A's are paralleled. These pins
act as outputs when the 8259A is a master and as inputs
for the slaves. Servi ng as a private 8259A bus, they con­
trol which 'slave has control of the system bus for inter­
rupt vectoring operation with the processor. All other
pins are connected as in normal operation (each 8259A
receives an INTA pulse).

2-133 121500-001

AP59

ADDRESS BUS (161

CONTROL BUS

lNT REO

DATA BUS (8~

-- -- - . - --- f-- f--
-- - - -- -- I--I--
--t- - -- --- f-- f-- f----

r---
CS A, 00·7 INTAj INT CS Ao 00-7 INTA INT CS A, 00-7 INTA INT

CASO 1- CASO CASO

8259A ' CAS 1 - 8259A
CAS' CAS 1

8259A

SLAVE A SLAve B MASTER

, CAS 2 ,- CAS2 CAS2

mEN7 6 5 4, 3 2 1 0 SPlEN 7 6 5 4 3 2 1 0 iID>7rn M7 M6 M5 M4 M3 M2 Ml MO

GrO f f r 1 1 1 1 1 Jo 1 r 1 1 1 LLl.] 1 1 1 1
7 6 5 4 3 2 1 0 7 6 5 4 II! 0 5 4 3 2 1 0

1 1 ,
INTERRUPT REQUESTS

Figure 18. Cascaded 8259A'S 22 Interrupt Levels

Besides hardware set-up requirements, all 8259A's must
be software programmed to work in the cascade mode.
Programming the cascade mode is done during the in­
itialization of each 8259A. The 8259A that is selected as
masteJ must receive specification during its initializa­
tion as to which of its IR inputs are connected to a
slave's INT pin. Each slave 8259A, on the other hand,
must be designated during its initialization with an ID (0
through 7) corresponding to which of the master's IR in­
puts its INT pin is connected to. This is all necessary so
the CASO-2 pins of the masters will be able to address
each individual slave. Note that as in normal operation,
each 8259A must also be initialized to give its IR inputs
a unique interrupt vector. More detail on the necessary
programming of the cascade mode is explained in "Pro­
gramming the 8259A".

Now, with background information on both hardware
and software for the cascade mode, let's go over the
sequence of events that occur during a valid interrupt
request from a slave. Suppose a slave IR input has
received an interrupt request. Assuming this request is
higher priority than other requests and in-service levels
on the slave, the slave's INT pin is driven high. This
signals the master of the request by causing an inter­
rupt request on a designated IR pin of the master. Again,
assuming that this request to the master is higher priori­
ty than other master requests and in-service levels
(possibly from other slaves), the master's INT pin is
pulled high, interrupting the processor.

The interrupt acknowledge sequence appears to the
processor the same as the non-cascading interrupt
acknowledge sequence; however, it's different among
the 8259A's. The first INTA pulse is used by all the
8259A's for internal set-up purposes and, if in the
8080/8085 mode, the master will place the CALL opcode
on the data bus. The first INTA pulse also signals the
master to place the requesting slave's ID code on the
CAS lines. This turns control over to the slave for the
rest of the interrupt acknowledge sequence, placing the

appropriate pre-programmed interrupt vector on the
data bus, completing the interrupt request.

During the interrupt acknowledge sequence, the cor­
responding ISR bit of both the master and the slave get
set. This means two EOI commands must be issued (if
not in the automatic EOI mode), one for the master and
one for the slave.

Special consideration should be taken when mixed
interrupt requests are assigned to a master 8259A; that
is, when some of the master's IR inputs are used for
slave interrupt requests and some are used for individ­
ual interrupt requests. In this type of structure, the
master's IRO must not be used for a slave. This is
because when an IR input that isn't initialized as a slave
receives an interrupt request, the CASO-2 lines won't be
activated, thus staying in the default condition address­
ing for IRO (slave IRO). If a slave is connected to the
master's IRO when a non-slave interrupt occurs on
another master IR input, erroneous conditions may
result. Thus IRO should be the last choice when assign­
ing slaves to IR inputs.

Special Fully Nested Mode

Depending on the application, changes in the nested
structure of the cascade mode may be desired. This is
because the nested structure of a slave 8259A differs
from that of the normal fully nested mode. In the cas­
cade mode, if a slave receives a higher priority interrupt
request than one which is in service (through the same
slave), it won't be recognized by the master. This is
because the master's ISR bit is set, ignoring all requests
of equal or lower priority. Thus, in this case, the higher
priority slave interrupt won't be serviced until after the
master's ISR bit is reset by an EOI command. This is
most likely after the completion of the lower priority
routine.

If the user wishes to have a truly fully nested structure
within a slave 8259A, the special fully nested mode
should be used. The special fully nested mode is pro-

2-134 121500-001

AP59

grammed in the master only. This is done during the
master's initialization. In this mode the master will
ignore only those interrupt requests of lower priority
than the set ISR bit and will respond to all requests of
equal or higher priority. Thus if a slave receives a higher
priority request than one in service, it will be recognized.
To insure proper interrupt operation when using the
special fully nested mode, the software must determine
if any other slave interrupts are still in service before
issuing an EOI command to the master. This is done by
resetting the appropriate slave ISR bit with an EOI and
then reading its ISR. If the ISR contains all zeros, there
aren't any other interro.jJts from the slave in service and

~ an EOI command ran be sent to the master. If the ISR
isn't all zeros, a:, EOI command shouldn't be sent to the
master. Clearing the master's ISR bit with an EOr com·
mand while there are still slave interrupts in service
would allow lower priority interrupts to be recognized at
the master. An example of this process is shown in the
second application in the "Applications Examples" sec·
tion.

Buffered Mode

The buffered mode is useful in large systems where buf·
fering is required on the data bus. Although not limited
to only 8259A cascading, it's most pertinent in this use.
In the buffered mode, whenever the 8259A's data bus
output is enabled, its SP/EN pin will go low. This signal
can be used to enable data transfer through a buffer
transceiver in the required direction.

Figure 19 shows a conceptual diagram of three 8259A's
in cascade, each slave is controlling an individual 8286
8-bit bidirectional bus driver by means of the buffered
mode. Note the pull·up on the SP/EN. It is used to
enable data transfer to the 8259A for its initial program·
mingo When data transfer is to go from the 8259A to the
processor, SP/EN will go low; otherwise, it will be high.

A question should arise, however,. from the fact that the
SP/EN pin is used to designate a master from a slave;

how can it be used for both master-slave selection and
buffer control? The answer to this is the provision for
software programmable master-slave selection when in
the buffer mode. The buffered mode is selected during
each 8259A's initialization. At the same time, the user
can assign each individual 8259A as a master or slave
(see "Programming the 8259A").

4. PROGRAMMING THE 8259A

Programming the 8259A is accomplished by using two
types of command words: Initialization Command
Words (ICWs) and Operational Command Words
(OCWs). All the modes and commands explained in the
previous section, "Operation of the 8259A", are pro·
grammable using the ICWs and OCWs (see Appendix A
for cross reference). The ICWs are issued from the proc·
essor in a sequential format and are used to set-up the
8259A in an initial state of operation. The OCWs are
issued as needed to vary and control 8259A operation.

Both ICWs and OCWs are sent by the processor to the
8259A via the data bus (8259A CS = 0, WR = 0). The
8259A distinguishes between the different ICWs and
OCWs by the state of its AO pin (controlled by processor
addressing), the sequence they're issued in (ICWs only),
and some dedicated bits among the ICWs and OCWs.
Those bits which are dedicated are indicated so by fixed
values (0 or 1) in the corresponding ICW or OCW pro·
gramming formats which are covered shortly. Note,
when issuing either ICWs or OCWs, the interrupt
request pin of the processor should be disabled.

4.1 INITIALIZATION COMMAND WORDS (leWs)

Before normal operation can begin, each 8259A in a
system must be initialized by a sequence of two to four
programming bytes called ICWs (Initialization Com·
mand Words). The ICWs are used to set·up the neces·
sary conditions and modes for proper 8259A operation.

MASTER
8259A

INT INTR

Figure 19. Cascade·Buffered Mode Example

2-135 121500-001

AP59

Figure 20 shows. the initialization flow of the 8259A.
Both ICW1 and ICW2 must be issued for any form of
8259A operation. However, IGW3 and ICW4 are used
only if designated so in ICW1. Determining the' neces­
sity and use of each ICW is covered shortly in individual
groupings. Note that, once intialized, if any program­
ming changes within the ICWs are to be made, the entire
ICW sequence must be reprogrammed, not just an indi­
viduaIICW,.

Certain internal set-up conditions occur automatically
within the 8259A after the first ICW has been issued.
These are:

A. Sequencer logic is set to accept the remain'ng ICWs
as designated in ICW1.

B. The ISR (In-Service Register) and IMR (Interrupt Mask
Register) are both cleared.

C. The special mask mode is reset

D. The rotate in automatic EOI mode flip-flop is c,leared.

E. The IRR (Interrupt Request Register) is selected for
the read register command. '

F. If the IC4 bit equals 0 in ICW1, all functions in ICW4
are cleared; 8080/8085 mode is selected by default

G. The fully nested mode is entered with an initial prior­
ity assignment of IRO highest through IR7 lowest

H. The edge sense latch of each IR priority cell is
cleared, thus requiring a low to high transition to
generate an interrupt (edge triggered mode effected
o~ly).

NO (SNGL=1)

NO (IC'= 0)

Figure 20. Initialization Flow

The ICW programming format, Figure ·21, shows bit
designation and a short definition of each ICW. With the
ICW format as reference, the functions of each ICW will
now be explained individually.

,cw,

ICW31MASTER DEVICE I

1 ICW4NEEoED
o ~ NO ICW4 NEEDED

" o CASCADE MODE

CALL INTERVAL
1 ~ INTERVAL OF 4
o ~ INTERVAL OF 8

1 ~ LEVEL TRIGGERED INPUT
0" EDGE TRIGGERED INPUT

NOH 1 SU\Vf Il) I', I OU/l,L TO lHE' (.ORHfSPONlJIN(, MASI EH If{ INPUT

NOT~ 2 x INDICAl,S DON T CARr

SOME OF THE TERMINOLOGY USED MAY DIFFER SLIGHTLY FROM EXISTING 8259A
DATA SHEETS. THIS IS DONE TO BETTER CLARIFY AND EXPLAIN THE PROGRAM·
MING OF THE 8259A, THE OPERATIONAL RESULTS REMAIN THE SAME.

Figure, 21 , Initialization Command Words (ICWS) Programming Format

2-136 121500-001

AP59

ICW1 and ICW2

Issuing ICW1 and ICW2 is the minimum,amount of pro­
gramming needed for any type of 8259A operation_ The
majority of bits within these two ICWs are used to desig­
nate the interrupt vector starting address. The remain­
ing bits serve various purposes. Description of the ICW1
and ICW2 bits is as follows:

IC4: The IC4 bit is used to designate to the 8259A
whether or not ICW4 will be issued. If any of
the ICW4 operations are to be used, ICW4
must equal 1. If they aren't used, then ICW4
needn't be issued and IC4 can equal O. Note
that if IC4 = 0, the 8259A will assume operation
in the MCS-80/85 mode.

SNGL: The SNGL bit is used to designate whether or
not the 8259A is to be used alone or in the cas­
cade mode. If the cascade mode is desired,
SNGL must equal O. In doing this, the 8259A
will accept ICW3 for further cascade mode pro­
gramming. If the 8259A is to be used as the
Single 8259A within a system, the SNGL bit
must equal 1; ICW3 won't be accepted.

ADI: The ADI bit is used to specify the address in­
terval for the MCS-80/85 mode. If a 4-byte ad­
dress interval is to be used, ADI must equal 1.
For an 8-byte address interval, ADI must equal
O. The state of ADI is ignored when the 8259A
is in the MCS-86/88 mode.

LTIM:' The L TIM bit is used to select between the two
IR input triggering modes. If LTIM = 1, the level
triggered mode is selected. If LTIM = 0, the
edge triggered mode is selected.

A5-A15: The A5-A15 bits are used to select the inter­
rupt vector address when in the MCS-80/85
mode. There are two programming formats
that can be used to do this. Which one is im­
plemented depends upon the selected address
interval (AD I). If ADI is set for the 4-byte inter­
val, then the 8259A will automatically insert
AO-A4 (AO, A1 = 0 and A2, A3, A4= IRO-7).
Thus A5-A15 must be user selected by pro­
gramming the A5-A15 bits with the desired ad­
dress. If ADI is set for the 8-byte interval, then
AO-A5 are automatically inserted (AO, A1,
A2=0 and A3, A4, A5=IRO-7). This leaves·
A6-A15 to be selected by programming the
A6-A15 bits with the desired address. The
state of bit 5 is ignored in the latter format.

T3-T7: The T3-T7 bits are used to select the interrupt
type when the MCS-86/88 mode is used. The
programming of T3-T7 selects the upper 5
bits. The lower 3 bits are automatically in­
serted, corresponding to the IR level causing
the interrupt. The state of bits A5-A10 will be
ign_ored when in the MCS-86/88 mode. Estab­
lishing the actual memory address of the inter­
rupt is shown in Figure 22.

I T,I T.I T.I T.' T.I
I I

_UPPER 5 BITS OF ~11081
INTERRUPT TYPE (USER PROGRAMMED)

I I
I I

: I T21 T1 ! TO' - ~EU~~:!~~~AI~L~~~~iRTED BY 826M)

I I
I I
'T71T81 T51141T31T21 ill Tof - COMPLETEIOB6I8088 INTERRUPT TYPE

r--I r-...J

10 ! 0 I 0 I 0 IT !Ts!Ts!T4!T3!T2! r,j TolD I 0 I_MEMORY ADDRESS OF 808818088
7 INTERRUPT TYPE (TYPE x 4)

Figure 22. Establishing Memory Addre •• of 8086/8088 Interrupt Type

ICW3

The 8259A will only accept ICW3 if programmed in the
cascade mode (ICW1, SNGL=O). ICW3 Is used for
specific programming within the cascade mode. Bit
definition of ICW3 differs depending on whether the
8259A is a master or a slave. Definition of the ICW3 bits
is as follows:

SO-7
(Master):

100-102
(Slave):

ICW4

If the 8259A is a master (either when the
SP/EN pin is tied high or in the buffered
mode when MIS = 1 in ICW4), ICW3 bit defi­
nition is SO-7, corresponding to "slave 0-7".
These bits are used to establish which IR in­
puts have slaves connected to them. A 1
designates a slave, a 0 no slave. For exam­
ple, if a slave was connected to IR3, the S3
bit should be set to a 1. (SO) should be last
choice for slave designation.

If the 8259A is a slave (either when the SP/EN
pin is low or in the buffered m'ode when
MIS = 0 in ICW4), ICW3 bit definition Is used
to establish its individual identity. The 10
code of a particular slave must correspond
to the number of the masters IR input it is
connected to. For example, if a slave was
connected to IR6 of the master, the slaves
100-2 bits should be set to 100 = 0, 101 = 1,
and 102= 1.

The 8259A will only accept ICW4 if it was selected in
ICW1 (bit IC4= 1). Various modes are offered by using
ICW4. Bit definition of ICW4 is as follows:

"PM: The "PM bit allows for selection of either the
MCS-80/85 or MCS-86/88 mode. If set as a 1 the
MCS-86/88 mode is selected, if a 0, the
MCS-80/85 mode is selected.

AEOI: The AEOI bit is used to select the automatic
end of interrupt mode. If AEOI = 1, the
automatic end of interrupt mode is selected. If
AEOI = 0, it isn't selected; thus an EOI com­
mand must be used durir:Jg a service routine.

MIS: The MIS bit is used in conjunction with the buf­
fered mode. If in the buffered mode, MIS
defines whether the 8259A is a master or a
slave. When MIS is set to a 1, the 8259A
operates as the master; when MIS is 0, it
operates as a slave. If not programmed in the
buffered mode, the state of the MIS bit is
ignored.

2-137 121500-001

AP59

BUF: The BUF bit is used to designate operation in
the buffered mode, thus controlling the use of
the SP/EN pin. If BUF is set to a 1, the buffered
mode is programmed and SP/EN is used as a
transceiver enable output. If BUF is 0, the buf·
.fered mode isn't programmed and SP/EN is
used for masterlslave selection. Note if ICW4
isn't programmed, SP/EN is used for masterl
slave selection.

SFNM: The SFNM bit designates selection of the
special fully nested mode which is used in
conjunction with the cascade mode. Only the
master should be programmed in the special
fully nested mode to assure a truly fully nested
structure among the slave IR inputs. If SFNM
is set to a 1, the special fully nested mode is
selected; if SFNM is 0, it is not selected.

4.2 OPERATIONAL COMMAND WORD (OCWs)

Once initialized by the ICWs, the 8259A will most likely
be operating in the fully nested mode. At this pOint,
operation can be further controlled or modified by the
use of OCWs (Operation Command Words). Three
OCWs are available for programming various modes and
commands. Unlike the ICWs, the OCWs needn't be in
any type of sequential order. Rather, they are issued by
the processor as needed within a program.

Figure 23, the OCW programming format, shows the bit
designation and short definition of each OCW. With the
OCW format as reference, the functions of each OCW
will be explained individually.

OCW1

OCW1 is used solely for 8259A masking operations. It
provides a direct link to the IMR (Interrupt Mask Regis·
ter). The processor can write to or read from the IMR via
OCW1. The OCW1 bit definition is as follows:

MO-M7: The MO-M7 bits are used to control the mask·
ing of IR inputs. If an M bit is set to a 1, it will
mask the corresponding IR input. A 0 clears
the mask, thus enabling the IR input. These
bits convey the same meaning when being
read by the processor for status update.

OCW2

OCW2 is used for end of interrupt, automatic rotation,
and specific rotation operations. Associated commands
and modes of these operations (with the exception of
AEOI initialization), are selected using the bits of OCW2
in a combined fashion. Selection of a command or
mode should be made with the corresponding table for
OCW2 in the OCW programming format (Figure 20),
rather than on a bit by bit basis. However, for com·
pleteness of explanation, bit definition of OCW2 is as
follows:

LO-L2: The LO-L2 bits are used to designate an inter­
rupt level (0-7) to be acted upon for the opera·
tion selected by the EOI, SL, and R bits of
OCW2. The level designated will either be
used to reset a specific ISR bit or to set a
specific priority. The LO-L2 bits are enab.led or
disabled by the SL bit.

10 'I" I" 1 0 I 01 c,1 c, 1 Co I
I L IR LEVEL TO BE ACTED UPON

o 1 2 3 4 5 6 7

f--lO 1 0 1 0 1 0 1

NON SPECIFIC EOI COMMAND

"SPECIFIC eOI COMMAND

o 0 1 1 0 0 1 T

} END OF INTERRUPT

ROTATE ON NON SPECIFIC EOI COMMAND }

1 0 ROTATE IN AUTOMATIC Eor MODE ISETI AUTOMATIC ROTATION

o 0 ROTATE IN AUTOMATIC EOI MODE ICLEARI

} SPECifiC ROTATION

I 0 1 ' I"MMI '''M 1 0 1 ' I ' I '" I '"

I IL4 _____ '{"-O~:-"'ln-'-OO~MM-"TO.~~
---;-+---1----1

READ
IRRlG ISRfG
ONNE'<.T ONNf)(T
ROPULSE AD PULSE

1 - POLL COMMAND
o " NO POL L COMMAND

RESET 'in
SHCIAl SPECIAL
~ASk

SOME OF THE TERMINOLOGY USED MAY DIFFER SLIGHTLY FROM EXISTING 8259A I
DATA SHEETS. THIS IS DONE TO BETTER CLARIFY AND EXPLAIN THE PROGRAM·
MING OF THE 8259A, THE OPERATIONAL RESULTS REMAIN THE SAME.

Figure 23. Operational Command Words (OCWs) Programming Format

EOI:

SL:

R:

2-138

The EOI bit is used for all end of interrupt coin,
mands (not automatic end of interrupt mode).
If set to a 1, a form of an end of interrupt com­
mand will be executed depending on the state
of the SL and R bits. If EOI is 0, an end of inter·
rupt command won't be executed.

The SL bit is used to select a specific level for
a given operation. If SL is set to a 1, the LO-L2
bits are enabled. The operation selected by the
EOI and R bits will be executed on the
specified interrupt level. If SL is 0, the LO-L2
bits are disabled.

The R bit is used to control all 8259A rotation
operations. If the R bit is set to a 1, a form of
priority rotation will be executed depending on
the state of SL and EOI bits. If R is 0, rotation
won't be executed.

121500-001

AP59

OCW3

OCW3 is used to issue various modes and commands to
the 8259A. There are two main categories of operation
associated with OCW3: interrupt status and interrupt
masking. Bit definition of OCW3 is as follows:

RIS: The RIS bit is used to select the ISR or IRR for
the read register command. If RIS is set to 1,
ISR is selected. If RIS is 0, IRR is selected. The
state of the RIS is only honored if the RR bit is
a 1.

RR: The RR bit is used to execute the read register
command. If RR is set to a 1, the read register
command is issued and the state of RIS deter­
mines the register to be read. If RR is 0, the
read register command isn't issued.

P: The P bit is used to issue the poll command. If
P is set to a 1, the poll command is issued. If it
is 0, the poll command isn't issued. The poll
command will override a read register com·
mand if set simultaneously. '

SMM: The SMM bit is used to set the special mask
mode. If SMM is set to a 1, the special mask
mode is selected, If it is 0, it is not selected.
The state of the SMM bit is only honored if it is
enabled by the ESMM bit.

ESMM: The ESMM bit is used to enable or disable the
effect of the SMM bit. If ESMM is set to a 1,
SMM is enabled. If ESMM is 0, SMM is dis­
abled. This bit is useful to prevent interference
of mode and command selections in OCW3.

5. APPLICATION EXAMPLES

In this section, the 8259A is shown in three different ap­
plication examples. The first is an actual design imple­
mentation supporting an 8080A microprocessor system,
"Power Fail/Auto Start wit/l Battery Back-Up RAM". The
second is a conceptual example of incorporating more
than 64 interrupt levels in an 8080A or 8085A system,
"78 Level Interrupt System". The third application is a
conceptual design using an 8086 system, "Timer Con­
trolled Interrupts". Although specific microprocessor
systems are used in each example, these applications
can be applied to either MCS-80, MCS-85, MCS-86, or
MCS-88 systems, providing the necessary hardware and
software changes are made. Overall, these applications
should serve as a useful guide, illustrating the various
procedures in using the 8259A,

5.1 POWER FAIL/AUTO·START WITH BATTERY
BACK-UP RAM

The first application illustrates the 8259A used in an
8080A system, supporting a battery back-up scheme for
the RAM (Random Access Memory) in a microcomputer
system. Such a scheme is important in numerical and
process control applications. The entire microcomputer
system could be supported by a battery back-up
scheme, however, due to the large amount of current
usually required and the fact that most machinery is not
supported by an auxiliary power source, only the state
of calculations and variables usually need to be saved.
I n the event of a loss of power, if these items are not
already stored in RAM, they can be transferred there and
saved using a simple battery back-up system.

The vehicle used in this application is the Intel®
SBC·80/20 Single Board Computer. An 8259A is used in
the SBC-80/20 along with control lines helpful in imple­
menting the power-down and automatic restart se­
quence used in a battery back·up system. The SBC-80/20
also contains user·selectable jumpers which allow the
on·board RAM to be powered by a supply separate from
the supply used for the non-RAM components. Also, the
output of an undedicated latch is available to be con­
nected to the IR inputs of the 8259A (the latch is cleared
via an output port), In addition, an undedicated, buffered
input line is provided, along with an input to the RAM
decoder that will protect memory when asserted.

The additional circuitry to be described was con­
structed on an SBC-905 prototyping board. 'An SBC-635
power supply was used to power the non-RAM section
of the SBC-80/20 while an external DC supply was used
to simulate the back-up battery supplying power to the
RAM. The SBC-635 was used since it provides an open
collector ACLO output which indicates that the AC
input line voltage is below 103/206 VAC (RMS).

The following is an example of a power-down and restart
sequence that introduces the various power fail signals.

1. An AC power failure occurs and the ACLO goes high
(ACLO is pulled up by the battery supply). This indi­
cates that DC power will be reliable for at most 7.5
ms. The power fail circutry generates a Power Fail In­
terrupt (PFI) signal. This signal sets the P"R latch,
which is connected to the IRO input of the 8259A, and
sets the Power Fail Sense (PFS) latch. The state of
this latch will indicate to the processor, upon reset,
whether it is coming up from a power failur~ (warm
start) or if it is coming up initially (cold start).

2. The processor is interrupted by the 8259A when the
PFI latch is set. This pushes the pre-power-down pro­
gram counter onto the stack and calls the service
routine for the IRO input. The IRO service routine
saves the processor status and any other needed
variables. The routine should end with a HALT
instruction to minimize bus transitions.

3. After a predetermined length of time (5 ms in this ex·
ample) the power fail circuitry generates a Memory
Protect (MPRO) signal. All processing for the power
failure (including the interrupt response delays) must
be completed within this 5 ms window. The MPRO
signal ensures that spurious transitions on the sys­
tem control bus caused by power gOing down do not
alter the contents of the RAM.

4. DC power goes down.

5. AC power returns. The power-on reset circuitry on the
SBC-80/20 generates a system RESET.

6. The processor reads the state of the PFS line to
determine the appropriate start-up sequence. The
PFS latch is cleared, the MPRO signal is removed,
and the PFI latch driving IRO is cleared by the Power
Fail Sense Reset (PFSR) signal. The system then con­
tinues from the pre·power-down location for a warm
start by restoring the processor status and popping
the pre-power-down program counter off the stack.

Figure 24 illustrates this timing.

2-139 . 121500-001

AP59

POWER DOWN RESTART

ACLO \~----
'---------' 1--_/

IRO

PFS

PFSR ---+------------\I-------~

MPRD ---+---""""\

DC----+------~

"--~J
POWER UP

ROUTINE

Figure 24. Power Down Restart Timing

Figure 25 shows the block diagram for the system.
Notice that the RAM, the RAM decoder, and the power­
down circuitry are powered by the battery supply.

The schematic of the power-down circuitry and the
SBC-80120 interface is shown in Figure 26. The design is
very straightforward and uses CMOS logic to minimize
the battery current requirements. The cold start switch
is necessary to ensure that during a cold start, the PFS
line is indicating "cold start" sense (PFS high). Thus, for

a cold start, the cold start switch is depressed during
power on. After that, no further action is needed. Notice
that the PFI signal sets the on-board PFI latch. The out­
put of this latch drives the 8259A IRO input. This latch is
cleared during the restart routine by executing an OUT­
put D4H instruction. The state 01 the PFS line may be
read on the least significant data bus line (080) by exe­
cuti~g an INput D4H instruction. An 8255 port (8255 #1,
port C, bit 0) is used to control the PFSR line.

BATTERY SUPPLY

CONTROLBUS-i-i-4----~----+_~~
DATABUS-i-4------+-·---1·-*------+_--~~--~+_------·~-~------J

ADDRESSBUS~~-----~----~

Figure 25. Block Diagram of SSC 80/20 with Power Down Circuit

2-140 121500-001

AP59

COLO-j

START J.

, ,

SSC80/20

I"

'AM
DECODER

"" '"
'" LATCH

RAMCS

"-______________________ --/ 1-_____ --'-"'''-10 ~=T

Figure 26. Power Down CirculI - SBe 80/20 Inlerlace

The fully nested mode for the 8259A is used in its initial
state to ensure the IRO always has the highest priority.
The remaining IR inputs can be used for any other pur­
pose in the system. The only constraint is that the ser­
vice routines must enable interrupts as early as possi­
ble. Obviously, this is to ensure that the power-down in­
terrupt does not have to wait for service. If a rotating
priority scheme is desired, another 8259A could be
added as a slave and be programmed to operate in a
rotating mode. The master would remain in the initial
state of the fully nested mode so that the IRO still re­
mains the highest priority input.

The software to support the power-down circuitry is
shown in Figure 27. The flow for each label will be
discussed.

After any system reset, the processor starts execution
at location OOOOH (STARn. The PFS status is read and
execution is transferred to CSTART if PFS indicates a
cold start (i.e., someone is depressing the cold start
switch) or WSTART if a warm start is indicated (PFS
LOW). CSTART is the start of the user's program. The
Stack Pointers (SP) and device initialization were in­
cluded just to remind the reader that these must occur.
The first EI instruction must appear after the 8259A has
received i.ts initialization sequence. The 8259A (and
other devices) are initialized in the INIT subroutine.

When a power failure occurs, execution is vectored by
the 8259A to REGSAV by way of the jump table at
JSTART. The pre-power-down program counter is placed
on the stack. REGSAV saves the processor registers
and flags in the usual manner by pushing them onto the
stack. Other items, such as output port :>tatus, program-

mabie peripheral states, etc., are pushed onto the stack
at this time. The Stack Pointer (SP) could be pushed on­
to the stack by way of the register pair HL but the top of
the stack can exist anywhere in memory and there is no
way then of knowing where that is when in the power-up
routine. Thus, the SP is saved at a dedicated location in
RAM. It isn't really necessary to send an EOI command
to the 8259A in REGSAV since power will be removed
from the 8259A, but one is included for completeness.
The final instruction before actually losing power is a
HALT. This minimizes somewhat spurious transitions
on the various busses and lets the processor die
gracefully.

On reset, when a warm start is detected, execution is
transf,erred to WSTART. WSTART activates· PFSR by
way of the 8255 (all outputs go low then the 8255 is ini­
tialized). In the power-down circuitry, PFSR clears the
PFS latch and removes the MPRO signal which then
allows access to the RAM. WSTART also clears the PFI
latch which arms the 8259A IRO input. Then the 8259A is
re-initialized along with any other devices. The SP is
retrieved from RAM and the processor registers and
flags are restored by popping them off the stack. Inter­
rupts are then enabled. Now the power-down program
counter is on top of the stack, so ~ecuting a RETurn in­
struction transfers the processor to exactly where it left
off before the power failure.

Aside from illustrating the usefulness of the 8259A (and
the SBC-80/20) in implementing a power failure pro­
tected microcomputer system, this application should
also point out a way of preserving the processor status
when using interrupts.

2-141 121500-001

LOC OOJ

""" ..,.
,." ... ,

-_1>00' ",>!,
89930112001

-"" -Ol"

".ll'" 0I1Iltt).>E6
.... DlD<
.... COW,"
981l2ll8llJ':l ,.,'"
881(C1

""" 89191:1 ... " 801BtB
Ill!1{,C9

• "OJill
991r1>3IlfI

"'"(" """D'

0, ,
2 ,PM, 00rIN fIfD RE~IIIRT rlj, ml: 5BC. C!I.'213 ,. ,.
'!i S'1":i[1:/'I D.UlTE~
6PT5'" ,," "'" S259PORTWIlHIM=I:l

''''''" ''"
.,.. ,!USSPOPTWiltI1'l9-1

8 PflI1tT EIlI "" J255 U ~OOTm. f'@T

jl'PUC EI" IE"' ,:.Jffl t1 rou c
lli1::.1'~VE Er.u - ::;r:.TOIo.'I""rINRAI1
11JrT 'OI e11l ,1'ISI:Ilf"8't:l9MI'rPBU:.

". ". 14 ,STWTtl~ t'OINr f'f11.R ~rBl Rl5/:.T

" ".
11 ""'

,.
195TFfT 1M """ .!,'£l',Opr~jTftTU5

" "" ,t'fSION~ tUl1NC~h'"
,20 ~ l..!>lAtT .rr"..~ II(N CIA.I) ,jIART

21

".
2..!.W5TARTlOCAllCW 1+:.1"" I/IEHWAF" SII\I<'I

". ",.
;«iI6TflRT IWI ,."" .:;t;1 !;I.!~'5 11 TO fJUTruT IU)(

" OUI Pf'I1Ct a25')I..IJfTROLf'Ukr. tf~ .. Glt.$LIJI

" " .OOiPUTCOIYIfiM)JIIIt;'~I'ruI/GfJl.OWl.nUl~"'f.'o.'fH)

JO ,Q.ERI1".;I'r5Lf1TCIl

" " "" A,9lH ,~'E;lI,l(N FrS'1 tlIG!
13 OOT >PllC 13.!5511 tOl C

" 001 """ ~'l:ml'fII.IlTct!

" ""- INn .00 JNlflfUzr ElJi:.RYIIIII«l

" UlLD ::;f~fM ~t.l'IVE 51' rl10llllffl
31 "'t PUTIft.KINTU~

l8 POP ,RESTmI:9C

" POP ,RI.!.TMDE

" "" ,h'f.SrUlt.Hl.
41 POP , ... ,Resroorf1l"l.l.JSrLJtf:D
<2 " ,t:HfllLEIN~IS

43 '" ,I1r.:-fflIEI:-[)(JIrftfo'l.,lWTOPOF:;lfICI.. .. ,R[H./RN ro II
45

". 47 .INITIm.IlllrION ~OOrI/£ Hl LEfl:IT 00 0l5'J WI iJTlEf6 I.HN BE ROOtD ..
" ~INII ""

.,,, .F=L5=1.fl7~ I""
51 OUT "'" ,8259m!T IIITHfI8IIIij
52 flYl fl.Jrl ,If.iDtf.nJflflU;.lCNO!

'" OOT PI'" ,~f'«!TNITHnI=1

"

AP59

"''''

""''' ""'" iJltZSDS
88..~C5

"'""""" "'"", 8Il2E228IiI:r.l

"" """"" ""'" IJiMCltllS
918798
iJ1.98C121OS

"'"" """"" """ """"" ""'" 8U4 C§8.sE' "',.
""""'" .". ..
B11Cc;78J8

""OO

"",,,,n,
i1123COOloe
8126IJ.ID4

."" .

" " "
. reo (fN lfflIER ItllllfLIlfIrIlItS ID[

-.... _--
". 60 .)a./E;'" [000l0 IlOOTllE I'J ~'t. ~[f.li~,EI:: AI(i :THV_

". ".
6l11~G~ F'USH) ':iH ~!f'~ • P1J.r. i'Lti\f..
b4 rIM rl ;It,'J(fi.
6'5 HJSlI.. ::.H~1iE

6G PUSH e ~8("
6(Li'I ~ 81J88H LIlI ~Lr IU 1.lC1 ~F

68 C/lI.,.. ~QINlfL

CY ~l' ..f:.1M. ~I~l ~f' ,II ~tII'I

" (1 WINOl ~m"L" I([](f. OOT IN(Ul>E~' II,;F I~L;~IiE. ,',
,'1 rlV! H ~'9'1
14

" ".
001 PlliFl

19· ..
ILl

et ORG 181i1H,
S2 ~Tf:PT JIf' ~lC%'

" NO' 134 JIfI ::':.;11"»1

" NO' S6 Jtf' _'lIlIIl

" NO' 88 1ft> ~ .J NO'
sa J1'f 134!11f

" .. 92 JIf' 'Mel!
., I<IP

" " " " ". ".

,,. ,.. '"''

,tION-::rUH EO!
6~~ POIo'T WI[I, rtt='\
Hti.1 uO (iU1oli OJRf)fEfI.l~',

IN

'"
1>' ,,,

,11~ "

1ee .CClJ) S.TfIRT LtvlTl~ UX"S "roGRAI'! om:~ flFl
101.
102·
183 CSTRPT LXI ~1-'.JrSaI

184 l.1LI. INIT
m ('uT 00411

'" EI

'" "" "" '"

l~lTlt\.l2l:. ,;
I~ITU1LI.:l(VL.WTIIlttj l.i....>E
Fot,3llf'FllflllH
1.fto&U. mTE~'J.'IJfl=

Figure 27, Power Down and Restart Software

5.2 78 LEVEL INTERRUPT SYSTEM

The second application illustrates an interrupt structure
with greater than 64 levels for an 8080A or 8085A sys·
tem. In the cascade mode, the 8259A supports up to 64
levels with direct vectoring to the service routine. Ex­
tending the structure to greater than 64 levels requires
polling, using the poll command. A 78 level interrupt
structure is used as an illustration; however, the prin·
ciples apply to systems with up to 512 levels.

To implement the 78 level structure, 3 tiers of 8259A's
are used, Nine 8259A's are cascaded in the master·slave
scheme, givihg 64 levels at tier 2. Two additional
8259A's are connected, by way of the INT outputs, to
two of the 64 inputs. The 16 inputs at tier 3, combined
with the 62 remaining tier 2 inputs, give 78 total levels.
The fully nested structure Is preserved over all levels,
although direct vectoring is supplied for only the tier 2
inputs. Software is required to vector any tier 3 re·
quests, Figure 28 shows the tiered structure used In this
example. Notice that tNe tier 3 8259A's are connected to
the bottom level slave (SA7). The master-slaves are inter·
connected as shown in "Interrupt Cascading", while the
tier 3 8259A's are connected as "masters"; that is, the
SP/EN pins are pulled high and the CAS pins are left un·
connected. Since these 8259A's are only gOing to be
used with the poll command, no INTA is required, there·
fore the INTA pins are pulled high.

2-142

CAS BUS

SAOO
SAO

INTA

MO
IRO INT SP07

INTA SA10 Sii INTA SBOO

SA'

lNTA SBO

MASTER
M'

IR' INT SA'7 INT S807

SA70 SP INTA 5810

SA7

INT INTA S8l ~

SA76
M7

INT IR7
SA77

INT 5817

Figure 28. 78 Level Interrupt Structure

121500-001

AP59

The concept used to implement the 78 levels is to
directly vector to all tier 2 input service routines. If a tier
2 input contains a tier 3 8259A, the service routine for
that input will poll the tier 3 8259A and branch to the tier
3 input service routine based on the poll word read after
the poll command. Figure 29 shows how the jump table
is organized assuming a starting location of 1000H and
contiguous tables for all the tier 2 8259A's. Note that
"SA35" denotes the IR5 input of the slave connected to
the master IR3 input. Also note that for the normal tier 2
inputs, the jump table vectors the processor directly to
the service routine for that input, while for the tier 2 in­
puts with 8259A's connected to their IR inputs, the proc­
essor is vectored to a service routine (i.e., S80) which
will poll to determine the actual tier 3 input requesting
service. The polling routine utilizes the jump table start­
ing at 1200H to vector the processor to the correct tier 3
service routi ne.

Each 8259A must receive an initialization sequence
regardless of the mode. Since the tier 1 and 2 8259A's
are in cascade and the special fully nested mode is used
(covered shortly), all ICWs are reqlJired. The tier 3
8259A's don't require ICW3 or ICW4 since only polling •
will be used on them and they are connected as masters
not in the cascade mode. The initialization sequence for
each tier is shown in Figure 30. Notice that the master is
initialized with a "dummy" jump table starting at OOH
since all vectoring is done by the slaves. The tier 3
devices also receive "dummy" tables since only polling
is used on tier 3.

As explained in "Interrupt Cascading", to preserve a
truly fully nested mode within a slave, the master 8259A
should be programmed in the special fully nested mode.
This allows the master to acknowledge all interrupts at
and above the level in service disregarding only those of
lower priority. The special fully nested mode is pro­
grammed in the master only, so it only affects the im­
mediate slaves (tier 2 not tier 3). To implement a fully
nested structure among tier 3 slaves some special
housekeeping software is required in all the tier-2-with­
tier-3-slave routines. The software should simply save
the state of the tier 2 IMR, mask all the lower tier 2 inter­
rupts, then issue a specific EOI, resetting the ISR of the
tier 2 interrupt level. On completion of the routine the
IMR is restored.

Figure 31 shows an example flow and program for any
tier 2 service routine without a tier 3 8259A. FJgure 32
shows an example flow and program for any tier 2 ser­
vice routine with a tier 3 8259A. Notice the reading of the
ISR in both examples; this is done to determine whether

. or not to issue an EOI command to the master (refer to
the section on "Special Fully Nested Mode" for further
details).

LOCATION 8259 CODE COMMENTS

1000 H SAO JMP SADQ • SADa SERVICE ROUTINE

lOlC H JMP SA07 , SA07 SERVICE ROUTINE
-- ---------------

1020 H SAl JMP SAlO , SAlO SERVICE ROUTINE

103C H JMP SA17 , SA 17 SERVICE AOUTINE
--- --------

, SA20-SA67 SERVICE ROUTINES

- ----------------------

10EO H SA7 JMP SA70 • SA7a SERVICE ROUTINE

10F8 H JMP SBO • SSO POLL ROUTINE
10FC H JMP SBl · S8l POLL ROUTINE

1200 H SBO JMP SBOO • S800 SERVICE ROUTINE

121C H JMP 5801 , S807 SERVICE ROUTINE - ---- ----- --
1220 H SBl JMP S810 • S810 SERVICE ROUTINE

123C H JMP SB17 • SB17 SI;RVICE ROUTINE

Figure 29. JumlJTable Organization

INITIALIZATION SEQUENCE FOR 78 LEVEL INTERRUPT STRUCTURE

INITIALIze MASTER

MINT: MVI
OUT
MV'
OUT
MY'
OUT
MY'
OUT

A,15H
MPTA
A,OOH
MPTB
A,OFFH
MPT8
A,IOH
MPTB

; ICWI,LTM",O,4DI=1,S=O,IC4=1
; MASTER PORT AO ... 0
; ICW2, DUMMY ADDRESS
; MASTER PORT AD = 1
; JCW3, S7·SO = 1
; MASTER PORT AD = 1
; ICW4, SFNM", 1
; MASTER PORT AO = 1

~ INITIALIZE SA SLAVES - X DENOTES SLAVE 10 (SEE KEy)

SAXINT: MVI
OUT
MV'
OUT
MV'
OUT
MY'
OUT

A,.
SAXPTA
A,10H
SAXPTB
AOXH
SAXPTB
A10H
SAXPTS

; SEe KEY FaR ICW1, LTM=O, AOI=1, S=O, IC4=1
; SA"X" PORT AO=O
; ICW2. ADDRESS Msa
; SA"X" PORT AO = 1
; ICW3, SAID
; SA"X" PORT AO", 1
; ICW4,SFNM=1
; SA"X" PORT AO=1

REPEAT ABOVE FOR EACH SA SLAVE

INITIALIZE 58 SLAVES ~ X DENOTES 0 or 1 (DO SBO, REPEAT FOR S81)

5BXINT MV!
OUT
My'
OUT

A,I8H
SBXPTA
A,OOH
SBXPTB

; ICW1. LTM=O, ADI '" 1, 5=1, lC4=0
; SB"X" PORT AD = 0 ,
; ICW2, DUMMY ADDRESS
; S8"X" PORT AO:= 1

SA INITIALIZATION KEY

SA"X" a (ICW1) JUMP TABLE START (H)

0 15 1000
1 3. 1020
2 •• 1(14D
3 1. 1060
4 9' 1080
5 a. 10AD
5 D5 lOCO
7 F5 10EO

Figure 30. Initialization Sequence for 78 le.el Interrupt Structure

2-143 121500-001

AP59

; SA"X" "OUTINE • GENERAL INTERRUPT SERVICE ROUTtNE
; FOR TIER 2 ',NTERRUPTS WITHOUT TIER 3 125M

SAX PUSH D
PUSH 8
PUSH H
PUSHPSW
EI

: ,SEAVlqE AOUTtNE ODES HERE

DI
MVI
OUT
MUI
OUT
IN
ANI
JZN
MYI
OUT

SAXASA POP
pop
pop
pop .,

. RET

20.
~PTA
A,OBN
SAXPTA
SAXPTA
OFFH
SAXRSA
A,OBH
MASPTA
PSW
H
B
D

j SAVE DE
j SAve Be
• SAYE HL
, SAVE A, FUGS
• ENABLE INTERRUPTS

I DISABLE INTERRUPTS
• DCW2, NON·SPECIFIC EOI
j SA"X" PORT AU III 0
, ocwa. READ REGISTER. ISA
, SA"X" PORT 401110
• SA"X" PORT AD = 0, SA"X" ISA
I TEST FDA ZERO
, IF NOT ZEAO, RESTORE STATUS
, OCW2, NON SPECIFIC E01
• MASTER PORT AO ... O
, RESTORE A, FLAGS
: RESTO"E HL
• RESTORE Be
• RESTORE DE
• ENABLE INTERRUPTS
• RETURN

Figure 31. Example Service Routine for Tier 2 Interrupt (SA"X', without ner 3 8259A (SB"X',

• sa"X" ROUTINE. SERVICE ROUTINE FOR TIER 2
j INTERRUPTS WITH nEA 3 IUlAS

sax PUSH D I SAVE DE
PUSH I , SAVE Be
PUSH H : SAVE Hl
PUSH paw i SAVE A, FlAGS
IN SAXPTB IJ j READ SA"X"'MR
MOV D.A I I SAVE
MVI A,xXtt ; MASK SA"X" LOWER IA
OUT SAXPT. I SA"X" PORT AD '"' 1
MVI A.8XH ; OCW2 SPECIFIC EOI SA"X"
OUT SAXPTA • SA"X" PORT AD ... '
LXI H,1_H I JUMP TABLE START
MVI B.cMltt ' CLEAR a
MYI A,oe.. • OCW3. POLL COMMAND
OUT SBlCPTA ; SB"X" PORT AD-O
IN saXPTA. GET POLL WORD
ANI 07H • LIMIT TO 3 BIT$
ADD A : GET TABLE OFFSET
ADD A
MOV C,A
DAD I
EI

: OFFSET TO C
: HL HAS TAILE ADDAESS
I ENABLE INTERRUPTS

S8"X"RET ROUTINE - FOR EOI AND MASK RESTORE
AFTER SB"X" ROUTINE

SIXRET DI
MYI
OUT
MVI
OUT
'IN,
ANI
JHZ
MVI
OUT

saXRSR" MOV
OUT
PDP
POP
POP
POP
EO
RET

.....
SIXPTA
",B.
SAXPTA
saXPTA
OFFH
SIXRSR
A,20H
MABPTA
A.D
SAXPT8
PSw
H
B
D

• DISABLE INTERRUPTS
• OCW2, NON SPECIFIC EOI
, SA"X" PORT AD-O
• ocwa, READ REGISTER ISR

: :::~::~: =:~\ISA
; TEST FOR ZERO
; IF.ORESTOREIMR
: 0CW2, NON-5PEClftC EOI
: MASTER PORT AD_ 0
I RESTORE SAlOl(" IMR
, SA"X" PORT AD-1
• RESTORE A, FLAGS
, RESTORE HL
; RESTORE BC
, RESTORE IC
i RESTORE DE
; RETURN

Figure 32. Example Service Routine for Tier 2 Interrupt (SA"X") with n.r 3 8259A (SB"X',

2-1~ 121500-001

AP59

5.3 TIMER CONTROllED INTERRUPTS

In a large number of controller type microprocessor
designs, certain timing requirements must be imple·
mented throughout program execution. Such time
dependent applications include control of keyboards,
displays, CRTs, printers, and various facets of industrial
control. These examples, however, are just a few of
many designs which require device serviCing at specific
rates or generation of time delays. Trying to maintain
these timing requirements by processor control alone
can be costly in throughput and software complexity.
So, what can be done to alleviate this problem? The
answer, use the 8259A Programmable Interrupt Con·
troller and external timing to interrupt the processor for
time dependent device servicing.

This application example uses the 8259A for timer con­
trolled interrupts in an 8086 system. External timing is
done by two 8253 Programmable Interval Timers. Figure
33 shows a block diagram of the timer controlled inter·
rupt circuitry which was built on the breadboard area of
an SDK·86 (system design kit). Besides the 8259A and
the 8253's, the necessary 1/0 decoding is also shown.
The timer controlled interrupt circuitry interfaces with
the SDK·86 which serves as the vehicle of operation for
this design.

A short overview of how this application operates is as
follows. The 8253's are programmed to generate inter·
rupt requests at specific rates to a number of the 8259A
IR inputs. The 8259A processes these requests by inter­
rupting the 8086 and vectoring program execution to the
appropriate service routine. In this example, the
routines use the SDK-86 display panel to display the
number of the interrupt level being serviced. These
routines are merely for demonstration purposes to show
the necessary procedures to establish the user's own
routines in a timer controlled interrupt scheme.

Let's go over the operation starting with the actual inter·
rupt timing generation which is done by two 8253 Pro·
grammable Interval Timers (8253 #1 and 8253 #2). Each
8253 provides three individual 16-bit counters (counters

0-2) which are software programmable by the proc·
essor. Each counter has a clock input (ClK), gate input
(GATE), and an output (OUT). The output signal is based
on divisions of the clock input signal. Just how or when
the output occurs is determined by one of the 8253's six
programmable modes, a programmable 16-bit count,
and the state of the gate input.

Figure 34 shows the 8253 timing configuration used for
generating interrupts to the 8259A. The SDK·86's PClK
(peripheral clock) signal provides a 400 ns period clock
to ClKO of 8253 #1. Counter 0 is used in mode 3 (square
wave rate generator), and acts as a prescaler to provide
the clock inputs of the other counters with a 10 ms
period square wave. This 10 ms clock period made it
easy to calculate exact timings for the other counters.
Counter 2 of the 8253 #1 is used in mode 2 (rate gener·
ator), it is programmed to output a 10 ms pulse for every
200 pulses it receives (every 2 sec). The output of
counter 2 causes an interrupt on IR1 of the 8259A. All
the 8253 #2 counters are used in mode 5 (hardware trig­
gered strobe) in which the gate input initiates counter
operations. In this case the output of 8253 #1 counter 2
controls the gate of each 8253 #2 counter. When one of
the 8253 #2 counters receive the 8253 #1 counter 2 out·
put pulse on its gate, it will output a pulse (10 ms in
duration) after a certain preprogrammed number of
clock pulses have occurred. The programmed number of
clock pulses for the 8253 #2 counters is as follows: 50
pulses (0.5 sec) for counter 0, 100 pulses (1 sec) for
counter 1, and 150 pulses (1.5 sec) for counter 2. The
outputs of these counters cause interrupt requests on
IR2 through IR4 of the 8259A. Counter 1 of 8253 #1 is
used in mode 0 (interrupt on terminal count). Unlike the
other modes used which initialize operation auto­
matically or by gate triggering, mode 0 allows software
controlled counter initialization. When counter 1 of 8253

,,#1 is set during program execution, it will count 25
clocks (250 ms) and then pull its output high, causing an
interrupt request on IRO of the 8259A. Figure 35 shows
the timing generated by the 8253's which cause inter·
rupt request on the 8259A IR inputs.

EACH DEVICE Vee'" +5V, GND ;; ~

Figure 33. Timer Controlled Interrupt Circuit on SDK 86 Breadboard Area

2-145 121500-001

AP59

GATE1 f+sV

J 8253#1 II eLK1 COUNTER 1 OUT1

I MOOED I GAlEa y+5V GATE2 y+5V

I 82"" I ClK2 J 8~53#1 lOU12
COUNTERO OUT 0

MODE 3 I (10 ms) I C~UON.,r:~ 2 I GAlEO 1

CLKO _I C~~~3T~2R 0 I aUTO I MODES I ,.2
GATE1

J 8253*2 II CLK1 COUNTER 1 OUT1

I MODe 5 I GATE2

CLK2 I c~~~~~~ 2 OUT2

-I MODES

T ,.4

Figure 34. 8253 Timing Conllguration lor Timer Controlled Interrupts

8253#1 \
COUNTER 1 ,.0

u ,.,

82531#2 \ r------u
COUNTER 0 u u.-----I·,\ ,.2

c~~~~~~ 1 I\-\ -----,Ur--------,U u..----I\\ ,.3

c~a~~:~2 \\-\ ------,'U'r--------,U r S 'R4

I \ \ \ ! \ I \ ! \

250 ms PER DIVISION
(EACH SMAL.L PULSE IS 10 ms IN DURATION)

Figure 35. 8259A IR Input Signal From 8253S

There are basically two methods of timing generation
that can be used in a timer controlled interrupt struc­
ture: dependent timing and independent timing. Depen­
dent timing uses a single timing occurrence as a refer­
ence to base other timing occurrences on. On the other ~
hand, independent timing has no mutual reference be­
tween occurrences. Industrial controller type applica­
tions are more apt to use dependent timing, whereas in­
dependent timing is prone to individual device control.

Although this application uS\lsprimarily dependent tim­
ing, independent timing is also incorporated as an
example. The use of dependent timing can be seen back
in Figure 34, where timing for IA2 through IA4 uses the
lAt pulse as reference. Each one of the 8253 #2 counters
will generate an interrupt request a specific amount of
times after the IA1 interrupt request occurs. When using
the dependent method, as in this case, the IA2 through
IA4 requests must occur before the next IA1 request.
Independent timing is used to control the lAO interrupt
request. Note that its timing isn't controlled by any bf
the other IA requests, In this timer controlled interrupt
configuration the dependent timing is initially set to be
self running and the independent timing is software
initialized, However, both methods can work either way
by using the various 8253 modes to generate the same
interrupt timing.

The 8259A processes the interrupts generated by the
8253's according to how it is programmed. In this appli­
cation it is programmed to,operate in the edge triggered
mode, MCS-86/88 mode, and automatic EOI mode. In the
edge triggered mode an interrupt request on an 8259A

IA jnput becomes active on the rising edge. With this in
mind, Figure 35 shows that lAO will generate an inter­
rupt every half second and IA1 through IA4 will each
generate an interrupt every 2 seconds spaced apart at
half second intervals. Interrupt vectoring in the
MCS-86/88 mode is programmed so lAO, when activated,
will select interrupt type 72. This means IA1 will select
interrupt type 73, IA2 interrupt type 74, and so on
through IA4. Since IA5 through IA7 aren't used, they are
masked off. This prevents the possibility of any acci­
dental interrupts and rids the necessity to tie the
unused IA inputs to a steady level. Figure 36 shows the
8259A IA levels (lAO~IA4) with their corresponding inter­
rupt type in the 8086 interrupt-vector table. Type 77 in
the table is selected by a software "INT" instruction
during program execution. Each type is programmed
with the necessary, code segment and instruction
pOinter values for vectoring to the appropriate service
routine. Since the 8259A is programmed in the auto­
matic EOI Mode, it doesn't require an EOI command 1'0
designate the completion of the service routine.

TYPE 77 SOFTWARE INT

TYPE 76 I

TYPE 7S I

TYPE 74 I

TYPE 73 I

TYPE 72 I

R4j' R3 '

R2 8259A

R1

RO

Figure 38. Interrupt "Type" Designation

2-146 121500-001

AP59

As mentioned earlier, the interrupt service routines in
this application are used merely'to demonstrate the
timer controlled interrupt scheme, not to implement a
particular design. Thus a service routine simply displays
the number of its interrupting level on the SDK·86 dis·
play panel. The display panel is controlled by the 8279
Keyboard and Display Controller. It is initialized to
display "Ir" in its two left·most digits during the entire
display sequence. When an interrupt from IR1 through
IR4 occurs the corresponding routine will display its IR
number via the 8279. During each IR1 through IR4 servo
ice routine a software "INT77" insiruction is executed.
This instruction vectors pro,Qram execution to the servo
ice routine designated by type 77, which sets the 8253
counter controlling IRO so it will cause an interrupt in
250 ms. When the IRO interrupt occurs its routine will
turn off the digit displayed by the IR1 through IR4
routines. Thus each IR level (IR1-IR4) will be displayed
for 250 ms followed by a 250 ms off time caused by IRO.
Figure 37 shows the entire display sequence of the
timer controlled interrupt application.

. , I 'R1

,.", , , I I , .RO

['J'J J 2 .R2

"1' I I I I I , .RO

"1' I I 131 I , .R3

,,1, I I I I I , .RO

. , y .R4

"1' I I I I I , .RO

Figure 37. SDK Display Sequence lor Timer Conlrolled Inlerrupls
Program (Each Display Block Shown Is 250 msec
in Duration)

Now that we've covered the operation, let's move on to
the program flow and structure of the timer controlled
interrupt program. The program flow is made up of an
initialization section and six interrupt service routines.
The initialization program flow is shown in Figure 38. It
starts by initializing some of the 8086's registers for pro·
gram operation; this includes the extra segment, data
segment, stack segment, and stack pointer. Next, by
using the extra segement as reference, interrupt types
72 through 77 are set to vector interrupts to the appro·
priate routines. This is done by moving the code seg·
ment and instruction pOinter values of each service
routine into the corresponding type location. The 8253
counters are then programmed with the proper mode
and count to provide the interrupt timing mentioned
earlier. All counters with the exception of the 8253 #1,
counter 1 are fully initialized at this point and will start
counting. Counter 1 of 8253 #1 starts counting wtien its
counter is loaded during the "INTR77" service routine,
which will be covered shortly. Next, the 8259A ill issued
ICW1, ICW2, ICW4, and OCW1. The ICWs program the

8259A for the edge triggered mode, automatic EOI
mode, and the proper interrupt vectoring (IRO, type 72).
OCW1 is used to mask off the unused IR inputs
(IR5-IR7). The 8279 is then set to display "IR" on its two
left·most digits. After that the 8086 enables interrupts
and a "dummy" main program is executed to wait for in·
terrupt requests.

Figure 38. Inilializalion Program Flow for Timer Conlrolled Inlerrupls

There are six different interrupt service routines used in
the program. Five of these routines, "INTR72" through
"INTR76", are vectored to via the 8259A. Figure 39A·C
shows the program flow for all six service routines. Note
that "INTR73" through "INTR76" (IR1-IR4) basically use
the same flow. These four similar routines display the
number of its interrupting IR level on the SDK·86 display
panel. The "INTR77" routine is vectored to by software
during each of the previously mentioned routines and
sets up interrupt timing to cause the "INTR72" (IRO)
routine to be executed. The "INTR72" routine turns off
the number on the SDK·86 display panel. '

2-147

A INTERRUPT ON
8259AIRO

(INTR73-76)

B. INTERRUPT ON
8259A IR1-IR4

C. SOFTWARE INVOKED
INTERRUPT

Figure 39. A-C. Interrupts Service Routine Flow for
Timer Conlrolled Interrupts.

121500·001

..

AP59

To best explain how these service routines work, let's
assume an interrupt occurred on IR·l of the 8259A. The
associated service routine for IRl is "INTR73". Entering
"INTR73", the first thing done is saving the pre·interrupt
program status. This isn't really necessary in this pro­
gram since a "dummy'\main program is being executed;
however, it is done as an example to show the operation.
Rather than having code for saving the registers in each
separate routine, a mutual call routine, "SAVE", is used.
This routine will save the register status by pushing it
on t~e stack. The next portion of "INTR73" will display
the number of its IR level, "1", in the first digit of the
SDK-86 display panel. After that, a software INT instruc·
tion Is executed to vector program execution to the
"INTR77" service routine. the "INTR77" service routine
simply sets the 8253 #1 counter 1 to cause an interrupt
on IRO in 250 ms and then returns ,to "INTR73". Once
back in "INTR73", the pre·interrupt status Is restored by
a call routine, "RESTORE". It does the opposite of
"SAVE", returning the register status by popping it off
the stack. The "INTR73" routine then returns to the
"dummy" main program. The flow for the "INTR74"
through "INTR76" routines are the same except for the
digit location and the IR level displayed.

After 250 ms have elapsed, counter 1 of 8253 #1 makes
an interrupt request on IRO of the 8259A. This causes
the "INTR72" service routine to be executed. Since this
routine interrupts the main program, it .also uses the
"SAVE" routine to save pre·lnterrupt program status. It
then turns off the digit displaying the IR level. In the
case of the "INTR73" routine, the "1" is blanked out.
The pre-interrupt status Is then restored using the,
"RESTORE" routine and program execution returns to
the "dummy" main program.

The complete program for the timer controlled inter­
rupts application is shown In Appendix B. The program
was executed in SDK-86 RAM starting at location 0500H
(code segment = 0050, Instruction pOinter = 0).

CONCLUSION

This application note has explained the 8259A in detail
and gives three applications Illustrating the use of some
of the numerous programmable features available. It
should be evident from these discussions that the
8259A Is an extremely flexible and easily programmable
member of the Intel@ MCS-80, MCS-85, ~CS-86, and
MCS-88 families .

2-148

APPENDIX A

Thi.s table is provided merely for reference information between the "Operation of the 8259A" and "Programming the
8259A" sections of this application note. It shouldn't be used as a programming reference guide (see "Programming
the 8259A").

Operational Command
Description Words Bits

MCS-80/85 ,Mode ICW1,ICW4* IC4,I'PM*

Address Interval for MCS·80/85 Mode ICW1 ADI

Interrupt Vector Address for MCS·80/85 Mode ICW1,ICW2 A5-A15

MCS-86/88 Mode ICW1,ICW4 IC4,I'PM

Interrupt Vector Byte for MCS-86/88 Mode ICW2 T3-T7

Fully Nested Mode OCW-Default

Non-Specific EOI Command OCW2 EOI

Specific EOI Command OCW2 SEOI, EOI,
LO-L2

Automatic EOI Mode ICW1,ICW4 IC4, AEOI

Rotate On Non-Specific EOI Command OCW2 EOI

Rotate In Automatic EOI Mode OCW2 . R, SEOI, EOI

Set Priority Command OCW2 LO-L2

Rotate on Specific EOI Command OCW2 R, SEOI, EOI

Interrupt Mask Register OCW1 MO-M7

Special Mask Mode OCW3 ESMM-SMM

Level Triggered Mode ICW1 LTIM

Edge Triggered Mode ICW1 LTiM

Read Register Command, IRR OCW3 ERIS, RIS

Read Register Command, ISR OCW3 ERIS, RIS

Read IMR OCW1 MO-M7

Poll Command OCW3 P

Cascade Mode ICW1,ICW3 SNGL, SO-7,
100-2

Special Fully Nested Mode ICW1,ICW4 IC4, SFNM

Buffered Mode ICW1,ICW4 IC4, BUF,
M/S

*Only needed if ICW4 is used for purposes other than pP mode set

2-149 121500-001

APPI:NDIX 8

t1CS-86 ASSEI'IBLER TCI59A PAGe 1

ISIS-II t1CS-86 ASSCI'IBLER 111. 8 flSSEl'IBL1' OF t10DULE TCI59A
OBJECT MODUlE PLACE!) IN : F1: TCI59A. 08.J
ASSEI'IIllER INYOKED BI': :F1:A5MS6 :F1.TCI59A.SRC

LOC 08J LINE SOURCE

1 j ******************** TIMER CONTROLLEf) INTI:.RRUPTS ******""-****"'''''''****'''
2
3 i

4
5 j EXTRA SEGMENT DECLARATIONS
6
7 EXTRA SI:.UMENl
B

9120 9 ORO 12aH
9120 9491 19 TP72IP OW INTR72 j TYPE 72 INSTRUCTION POINTER
9122?m 11 TP72CS OW ? ; WPE 72 CODE SEGMENT
8124 1801 12 TPnIP DId INTR73 ; T'r'PE i'J INS1RUCTIUN POINTER
8126 ???? 13 TPnCS OW ? ; TYPE n CODE SEG/1ENr
9128 3801 14 TP74IP OW INTR74 ; TYPE 74 INSTRUCT ION POINTER
912ft ???? 1S TP741.'S OW ? ; TYPE i'4. eWE SEGMENT
812C4801 16 TP75IP I.lW INTR7S ,TYrE 75 INSTRUCTION PO INTER
912E m? 17 TP75CS OW ? ; WPE 7S CODE Sf:.Gl'lENl
8130 6001 1S lP76IP I.lW IN1R76 ; lYPE 76 INSTRUCTION POINTER
8132 ???? 19 TP76C5 DW ? .' TYPE 76 CODE SEGMENT
91347801 20 TP77IP DId INTR77 ; TYrE 77 INSTRUCTION PUINTl:.R
8B6 ???? 21 TP77CS OW ? ,T'r'PE 77 CODE SEGMENT

22
23 EXTRA ENDS
24
25 DATA SEGMENT DEClAl?.RTI ONS
26
27 DATA SEGMENT
2B

0000 ???? 29 STACK! DW ? ; YARIABlE TO SAllE t;AlL flI.lDRtSS
ilI:l02 m? 39 AXTEMP DId ? ; VARIABLE TO SAllE AX REGIS rEk
0004 ?? 31 DIGll DB ? ; VARIABLE TO SAVE SELEmD DIGIT

32
3J DAm ENl)S

. 34 ;

35 CODE SEGMENT DECLARATION
36
37 CODE SCGMENT
38 ;

39 ASSUI'IE ES: EXTRA, OS: DrlTA, CS: CODE
40
41 INITIflLI2E REGISTERS
42

0000 B80800 43 START: HOII AX,0H ; CXTRA SCGt1ENT AT 0H
0093 SEC9 44 1'1011 ES,AX
eoos 887009 45 1'10.,. AX,70H 'DATA SEGMENT AT 709H
0008 8El>B 46 MOl/ D$,fil(
090A llll7898 47 I'1OV AX,?SH ; S1 ACK SEGMENT fiT 7130H
000D SEOO 4B I'1OV SS,AX
000F BC8000 49 I'1OV SP,8aH ; STACK POINT£R AT 80H (STflCK=890H)

2-150 121500-001

APPENDIX B (continued)

MCS-86 ASSEI'IBLER TCI59A PAGE. 2

LOC OBJ LINE SOURCE

50
51 ; LOAI) INTcRRUf'l VECTOR TABLE
52

0012 B80481 ~iJ Tl'PE.S. I'IOV AX., OFfSET (INTR72> • LOAI) TYPI: i'2
0015 2CH32801 54 r10V "iP72IP, AX
9019 26SC0E2291 55 MO\I "iP72CS, CS
901E 881801 :)6 r10V AX.. OFFSET <INTR73> ,LOAD TYPE 73
9021 26A32491 57 I'lO\l TP73IP,Al(
9025 26SC9E2691 sa 1'1011 lP73CS .. I,;S
002A 883001 59 I'IOY AX, OFFSET (WTR7 4) ; LOAD PIPE 74
Il02l) 26A32atJ1 69 I'IOY TP74IP,ffX
0031 268C8E2A91 61 I'IOY lP74CS,CS
0036 884881 62 HOV AX, OFFSET (INTR75> ; LOAI) TYPE 75
0039 26A32C81 63 MOY TP75IP, AX
903D 26SC8E2E91 64 MOY Tf'7SCS .. CS
9042 BI?.6991 65 MOY AX, OFF5[1 (INTR76) ; LOAI) Tl'PE 76
0945 26A33001 66 MOil TP76IP,AX
0949 26SC9E3201 67 I10V TP76CS,CS
904E li87881 68 MOil AX.OfFSEf (lNT"'??) ; LOHD T't'PE 7"t
9951 26fm491 69 1'10'.' TPmf', AX
9955 268C0E3691 79 I'IOY IP77CS, CS

71
72 8253 INlTIALIZATION
73

985A BA8EFF 74 SETS31: 1'1011 [)X,eFF8EH ; 8203 iii CONTROL WORD
005D 8036 7S I10V AL,36H • COUNTER 0, MODE 3, BINARY
995F EE 76 OUT DX,AL
9060 B071 77 I'lO\l AL.71H .; coum!:R 1, MODE 0, BCD
9062 EE ?8 OUT DX,AL
0063 B0BS ?9 I'lO\l AL,0BSH ; COUNTER 2. MODE 2, BCD
9965 EE 80 OUT ox..AL
etJ66 BA08FF 81 1'1011 OX,0FF08H ; LOAI) COlllHER 0 (101'1S)
0069 B3AS 82 I10V AL,0A8H ,LSB
006B IT 83 OUT DX,AL
886C 8061

,
84 I'lO\l AL,61H iMSB

006E EE as OUT DX,AL
8iI6F BAOCFF 86 I'IOY DX,0FFOCH ; LOAD COUNTER 2 (2SEC)
0072 B099 87 I'IOY AL,90H ;LSIi
9974 EE 88 OUT DX,AL
007S BOO2 89 I10V AL 92H i I'ISB
9977 EE 99 OUT DX,AL
9978 BA16FF 91 SETo32: I'IOV ox, 0FF16H i 8253 12 (;ON] ROL WORD
9978 803B 92 1'1011 AL, $BH .; COLINTER 0, I'IODI: 5, BCD
11970 EE 93 OUT DX,AL
997E 1l97B 94 !'lOY AL,7BH ; COUNTER 1, MODE !), BCD
lI889 EE 95 OUT DX,AL
9081 BllBB 96 I10V AL,9BBH .' COUNTER 2, MODE 5, BCD
9983 EE 97 OUT DX,AL
9984 BA10FF 9S I10V DX,0FF19H i LOAI) COUNTER 0 C 5SU;)
9881' ~58 99 !'lOY AL, 59H iLSB
9989 EE 100 OUT DX,AL
998A B000 191 1'1011 AL,90H ;I'ISB
008C EE 192 OUT DX,AL
808D BA12FF 103 11011 Dx.. 0FF12H ;LOAD COUNTER 1 (1SE~)
9999 B0!l0 104 I'IOY AL,09H ,LSB

2-151 .121500-001

APPENDIX ~ (continued)

I1C5-86 f6SEMBLEI? TCI59A f'fIGI: . 3

lOC OBl LINE 5OI.*CE

0092 EE 105 , OUT [):~,AL

0093 Btllil 106 MO'} AL 91H .iMSB
a095 EE 107 our I)X,AL
0096 BA14fr 198 1'101/ OK.8FF14H .. LOA]) tOUNTI::R 2 (1. 5SEe)
0099 B05fl 199 MOV AL 5flH iL~B

0fl9B tE 110 OUT I)X,AL
009C Bt101 111 MOV AL,81H .. MSB
€IB9E Ef: 112 OUl OX,AL

113
114 fJ259fl INITIflllZkTION
115

009F BA08FF 116 SET59A: MOIl DK.8FFOOH .. 825% 00=0
0BA2 B£l1:.< 117 MOl{ Al,13H i lCW1-L TlM:f1. 5=1, IC4=1
f.l0A4 Ef: W3 our DK.AL
88A5 Bft!i<:Ff 119 MO~' DX.0FF02H ;8259A flO=1
OOAB B043 1211 MO'1 AL, 48H .i ICW2-INTERRlJrr TYf'1:: ;'2 (120H)
OOAA EE 121 OUT DX,Al
00AB BOO:; 12'2 MOY AL 0St-1 .i ICfl4-SFNt-1=B, Bur=0, flEOI=1, MPt-1=l
OOAD EE 123 OUT DX,AL
!lBAE 8eE0 124 MOl/ AL,0EeH ; 0CI41-MASK IRS, 6, 7 (NOT USED)
a8Bt] EE 125 our DX,AL

126
127 8279 INITIAL UflTION
128 ,

0081 BlUFF 129 -,ET79: MOV DX, OFFEAlI .. 8279 COI'1MANI.l loJORDS ftN!) STATUS
00B4 BaD0 130 MO~' AL,ooeH .. CLEAR D1SPLA'r'
OOB6 EE 131 (VJT DX,AL
a0B? EC 132 WAIT79: IN AL,DX ; ~r.D S 1 ATlJS
eaBa 00ce 133 ~ tiLl .' "[lU' BIT TO CARRY
OOBA ?2FB 134 JB WAlT79 ; JIJMP 1 F D ISf'LA'1 IS UNAIIAILABLE
OOBe 8087 135 MOV AL, 87H ;r,I61T a
eOOE EE 136 om DX,AL
000F 6AE8FF B7 MOI/ OX,0FFESH ; 8279 DATA WORD
9!JC2 6006 138 MOil ALtltolI i CHARACH:R 'I"
00(;4 EE 139 OUT DX,AL
!1OCS BAEAFF 140 ~101/ DX, aFFEAH .. 8279 COMMAND WORD
ooee B086 141 MO',' AL,86H .. DIGIT 7
OOCA EE 142 OUT DX,AL
80CB BAE8FF 143 . MOV DX,8FFE8H ; 82(9 DATA WORD
OOCE B850 144 MOI/ AL,59H ; CHARACTER "RH
OOoo·E£ 145 OUT DX,K
13001 FB 146 STJ ; ENABLE ltITERRUf'TS

147
148
149 DUMMY PROGRAM
150

0002 EBFE 151 ~'. JMP . DUMMY ; WAIT FOR INTtRRIJPT
152
153 ;

0004 A30200 154 SAllE . MOV AXTEMP, AX ; SAI/E AX
000758 155 pop AX ; POP CALL RETURN ADOOESS
0008 A30000 1~ MOil STACK1, AX ,SAllE CALL RETlJr~N ADDRl:SS
OODB A1B230 157 110V AX,AXTEMP ; RESTORE AX
00DE !le 1~ PUSH AX ; SAVE PROCESSOR STft-IIJ5
OODF 53 159 PUSH BX

2-152 121500-001

APPENDIX B (continued)

11(:5-86 A:;SEMBLER TCI59A PAGE 4

LOC OBJ LINE SOURCE

OOE0 !)1 160 PUSH CX
00E1 52 161 PUSH DX
OOE2 55 162 PUSH BP
00E3 56 163 PUSH SI
OOE4 57 164 PUSH DI
00E5 1E 165 PU5~1 DS
00E6 06 166 PUSH ES
00E7 A10f:l00 167 1'1011 AX, STACKl ,RESTORE CALL RETURN ADDRESS
00EA 50 16B PUSH AX ; PUSH CALL RE 1 URN AOORESS
00EB C3 169 RET

170 ,;

OOEC 58 171 Rl:STOR: POP AX ; POP CALL RETURN ADIII<E55
00EO A30000 172 MOV STACK1,AX ; SAVE CALL RETURN ADDRESS
001'0 07 173 POP ES ; RESTORE PROCESSOR STATUS
00Fl1F 174 POP OS
OOF2 5F 175 POP 01
001'3 5E 176 POP 51
OOF4 SD 1(7 POP BP
00F5 SA 178 POP OX
00F6 59 179 pop ex
00F7 58 180 POP BX
80F8 58 181 POP AX
00F9 A38280 182 1'1011 AXTEMP, AX ,; SAVE AX
00FG Al0000 183 i'IO'v' AX, STACK1 ; RESTORE CALL RETURN ADDRES5
~FF 50 184 PUSH A.'< ; PU5Il CALL RETURN ADDRESS
IUOO Al0200 185 1'10\1 AX, AXTEMP ,; RESTORE AX
0103 G3 186 RET

1S7
188
189 INTERRIJF'T 72, CLEAR DISPLAY, IRa 8259A
199

9194 ESCDFF 191 INTR72: CALL SAVE ,RWTINE TO SAYE PROCESSOR 51 ATUS
0197 BAEAFF 192 MOV Ol{, OFFEAH ; 827S COMMAND WORO

, 010A AOO400 193 i'IO'v' AL,OIGIT ; SELECTED LED 0 IG n
0l0D EE 194 OUT DX,AL
010£ BAESFF 195 MOil OX,0FFE8fl ; 8279 DATR
0111 B000 1% i'IO'v' AL,08H ; BLANK OUT 0 IGIT
01:8 EE 197 OUT DX,AL
0114 E805FF lSS CALL RES'IOR ,; ROUTINE TO RES10RE PROCESSOI< STfi1lJS
0117 CF 199 IRET ; RETURN FI<OM I NTERRlII'l

200
201
202 INTEkRUPT 73, IRl 8259A
203

0118 E8B9FF 204 INTR73' CALL SAllE ,; ROUTINE '10 SAVl: PROCESSOR STAlUS
911B Bf1EAFF 205 I'IOY OX,0FFEAH ,; 8279 COMMAND WORD
011£ B088 206 i'IO'v' AL,80H ; LED IIISPLA'r' DIGIT 1
0120 A20400 207 MOV DIGIT, AI.
012J E.E 208 OUT [lX,AL
0124 BAESFF 209 MOY DX,~FE8H ; 82(9 DATA
0127 B006 210 MOil AL,06H i CHARAC-,ER "1"
0129 EE 211 OUT DX,AL
012A CD4D 212 INT 77 ; lIMER DELAY FOR LED ON TIME
012!: ESBDfF 213 CALL ' RESTOR ; ROUTINE 10 RE5TORE PROCESSOR STATUS
012~ GF 214 IRET ; RETURN FROM INTERRUPT

2-153 121500-001

APPENDIX B (continued)

1ICS-86 ASSE\'IBlE~ 'fCI59A f'fIGE 5

LOC OSJ LINE, SOURCE

215
216
217 INTERRuPT 74. IIGl 825911
218

0138 E8A1FF 219 INTR74 , CALL SAVE ; ROUTINE TO SAVE f'ROCESSOR 5'1 ATUS
0m BAEAFF 220 HOY DX,0FFEAH ; 8279 Wll'lAND WORD
0B68081 221 I'IOV AL.81M ;LED DISPLAY DIGll 2
0B8 A20400 222 /IOV DIGIT. AL
0BB EE 223 OUT OX.AL
013e I*tESFF 224 l'IOII DX.0FFESH ;8279 DA1A
0EF Ii05E; 225 HOY AL.5811 ; CHARACTER "2'
8141 EE 226 OUT ' DX.AL
11142 t:D4D 22'1

,
INT n ; TlI£R DELftY FOR LI:D ON TIME

11144 E8A5FF 228 CALL Ii'ESTOF ;Ii'OUTINE TO RESTORE ~OCESSOR SlffiU!.
0147 cr 229 lRt:.l ; RETURN FROM INTERRUPl

238
231
232 1Nm'RIRT 75, IR3 8259A
233

0148 ES89FF 234 INTR75: CALL SAVE ; ROUTINE. 10 SAVE. PROCESSOR STATUS
0148 I:fftEAFr- 235 mJV DX.0FFEAH ; 8279 COI'/I'IANI) WORD
814E 8082 236 MOY AL,82H ; LED DISPLAY D!liIT 3
0150 A20408 237 l'IOII DIGIT.AL
11153 EE 238 OUT DX,AI.)

r
8154 BAESFF 239 I'IOV DX,IlFFESH ;8279 DflTA
0157 B04t 248 I'lO\l AI.,4FH ; CHARACTE:.R "3"
0159 EE. 241 OUT DX,AL
81!IA CD4D 242 INT 77 ; TII'1ER DELf\'{ FOR LED ON TIME
8151; ESSDFF 243 , CALL RESTOR ; ROUTINE 10 RES101"E PROCESSOR STATUS
015F CF 244 IRET ; RE'IURN FROM IN1EI<RUPT

245
246
247 . INTEIi'RUPT 76 • IR4 82:i9fl
248

0168 Etl71FF 249 INTR76' CALL SAYE ; ROUTINE TO SAYE PROCESSOR S 1 ATUS
8163 BAEffF 250 l'IOII . DX. IlFFEAH • ; 8279 COItlfINI) WORD
8166 8883 251 l'IOII AL,83H ; LED DISPlAY I>1Gll 4
0168 A28480 252 HOY DIGIT. AL
0168 EE 253 OUT OX.AL
016(; BAESFF 254 HOY DX. IlFFESH ; 82(9 DATA
816F B066 255 !'lOY ' AL.66H i CHARA(;T[R "4·
0171 EE 256 OUT DX,AL
0172 CD4D 257 INT 77 ; 1 mER DELAY FOR ill ON 'liME
~174 E875FF 258 CALL RESTOR ; ROUTINE TO RESTORE PROCESSOR SlATIJS
0177 CF 259 IRET ; RETlJRN FROM INlERRlJ!T

268
~

261
262 INTERRUPT 77. TIMER llELAY. SOFTWARE CONTROLLED
263

8178 BA8AFF 264 IIITR77: I'IOV DX,IlFF9AH ; LOfb COUNTER 1 8'253 11 (259 I'ISEC)
8178 8025 265 t10V ftL.25H iL!'£!
1117D EE 266 OOT DX,fIl.
817E B000 267 t10V Al.08H ; IISB
8181! EE 268 OUT DX,fIl.
0181 CF 269 IRET ; R[I URN FROI'I INTERRUPT

2-154 12150()"()()1

APPENDIX B (continued)

1ICS-86 ASSEIfJlEl1 TCI59A PfI(£ 6

LOG OBJ LINE SOlRCE

270
271
m CODE ENDS;
27~ ,
274

11000 275 END START

SYI1BOL TABLE U!.oTlNU
---- ---- ------

NftME TYPE VALUE ATTRIBUTES

??SEG . SI:.GI1ENT SIZE=98OOH PARA PUBLIC
AXTEMP V WOI1[l 0002H DATA
CODE SEGMENT SIZE=0182H PAPA
DATA SEGI1ENT S IZE=01.105H P~A
DIGIT . II BYTE 0004H [lATA
DUIt1Y . L NEAP, 00D2H CODE
EXTFA SEGMENT SIZE=013SH PARA
INTR7"Z L NEAR 0104H COLlE
INTP.7J L NEAR 9118H CODE
INm4 L NUIF 913ati CODE
INTR75 L NEAR 9148H CODE
INTI176. L NEAR 9160H CODE
INTR77 L NEAR 9178H CODE
RESTOR L NEfIF 09ECH CODE
SAVE. L NEilR 0904H CODE
SET531 L NEAA 095I*l CODE
SET532. L NEAF 09781-1 CODE
SET59A L NEAll 0991"H CODE
SET79 L NEAR 1l9B1H CODE
STACK1 II IoIOIi'D 1l8e9H ~ START. L NEAR Il8e9H
TP72CS V WOf1[I 0122H EXTRH
TP72IP II IO[l 9120H EXTRA
TP73CS. II WOR{) 0126H EXTRA
Tf'73IP. II IoIORf) 9124H EXTRA
TP74CS II WORD 012AH EXTRA
TP74IP. II WORD 0128H EXTRA
TP75CS II WORD 912EH EXIRA
TP75IP. II WORD 912CH EXTRA
TP76CS. II WOFD 01::;2H EXTRA
TP76IP II WORD 9130H EXTRA

, TP77CS. II IoIORI) 0136H EXTRA
TP77IP V IoIORI) 0134H EXTRA
TYPES L NEAR 0012H CODE
WAIT79 L NEAR 9087H CODE

f:SSEI'IIlL Y COMPLETE. NO EFRORS FruND

~

2~155 121500-001

iAPX 86, 88, ·186, 188 3
Microprocessors

iAPX 86/10
16-81T HMOS MICROPROCESSOR

8086/8086-2/8086-1

• Direct Addressing Capability 1
M Byte of Memory

• Architecture Designed for Powerful
Assembly Language and Efficient
High Level Languages.

• 14 Word, by 16·Bit Register Set with
Symmetrical Operations

• 24 Operand Addressing Modes

• Bit, Byte, Word, and Block Operation.s

• 8 and 16·Bit Signed and Unsigned

Arithmetic in Binary or Decimal
Including Multiply and Divide

• Range of Clock Rates:
5 M Hz for 8086,
8 M Hz for 8086·2,

10 MHz for 8086·1

• MULTIBUSTM System Compatible
Interface

• Available in EXPRESS
- Standard Temperature Range
- Extended Temperature Range

The Intel iAPX 86/10 high performance 16-bit CPU is available in three clock rates: 5, 8 and 10 MHz. The CPU is
implemented in N-Channel, depletion load, silicon gate technology (HMOS), and packaged in a 40-pin CerDIP package.
The iAPX 86/10 operates in both single processor and multiple processor configurations to achieve high performance
levels.

REGISTER FILE

DATA
POINTER AND

INDEX REGS
f8 WORDS}

FLAGS

BUS INTERFACE UNIT r - - ,
, RELOCATION

REGISTER FILE

6 BYTE
INSTRUCTION

QUEUE

ffi'i_r----......;:"""----,
INT
NMI- -

CONTROL & TIMING

HOlD-

HlDA---.... ... -r---.---.-r,~
i I I

eLK ReSET READY JetNIM); OND

V"

2 050 aS1

Figure 1_ iAPX 86/10 CPU Block Diagram

3-1

GND Vee
A014 A015

A16fS3

A012 A17/S4

AD11 A18/55

AD10 A19fS6

AD9 SHE/S7

ADS MNIMX

AD7 RO
AD6 ROIGTO (HOLD)

ADS RafGl1 (HlDA)

AD. LOCK (WIl)

AD3 52 (MliO)

AD2 Si (DTlR)

AD1 So (DEN)

ADO aso (ALE)

NMI aS1 (lNTA)

INTR TEST

elK READY

GND RESET

40 LEAD

Figure 2. iAPX 86/10 Pin Configuration

(

iAPX 86/10

Table 1. Pin Description

The following pin function descriptions life for iAPX 1J6 systems In either minimum or maximum mode. The "Local
Bus" In these descriptions is the direct multiplexed bus interface connection to the 8086 (without regard to additional
bus' buffers).

Symbol Pin No. Type Name and Function

AD15·ADo 2·16,39 I/O Address Data Bus: These lines constitute the time multiplexed memoryllO address (T1)
and data (T2, T3, Tw, T4) bus. Ao is analogous to BHE for the lower byte of the data bus,
pins DrDo. It is lOW during T1 when a byte is to be transferred on the lower portion of
the bus in memory or I/O operations. Eight·bit oriented devices tied to the IQwer half
would normally use Ao to condition chip select functions. (See BHE.) These lines are
active HIGH and float to 3·state OFF during interrupt acknowledge and local bus "hold
acknowledge." ,

A1g1S6, 35·38 0 Address/Status: Durir:lg T, these are the four most sign i-
A1a1S5, ficant address lines for memory operations. During I/O
A17/S4, operations these lines are lOW. During memory and I/O

A17/S4 A,eis3 Characteristics
A16/S3 operations, . status information is available on these

,Iihes during T 2, T 3> T w, and T 4. The status of the interrupt o (LOW) 0 Alternate Data

enable FLAG bit (S5l is updated at the beginning of each 0 , Stack
'(HIGH) 0 Code or None

ClK cycle. A17/S4 and A,e/S3 are encoded as shown. , , Data

This information indicates which relocation register is
86 IS 0
(LOW)

presently being used for data accessing.

These lines float to 3·state OFF during local bus "hold
acknowledge."

BHE/S7 34 0 Bus High Enable/Status: During T, the bus high enable
signal (BHE) should be used to enable data onto the
most significant,half cif the data bus, pins 0,5-08' Eight- iiHE Ao Characteristics

bit oriented devices tied to the upper half of the bus 0 0 Whole word
would normally use BHE to condition chip select func' 0 , Upper byte froml
tions. BHE'is lOW during T, for read, write, and inter- to odd address

rupt acknowledge cycles when a byte is to be transfer· , 0 Lower byte froml

red on the high portilZln of the bus. The S7 status informa· to even address

tion is available during T 2, T 3, and T 4. The signal is active
, ,. None

lOW, and floats to 3·state OFF in "hold." It is lOW duro
ing T1 for the first interrupt acknowledge cycle.

RD 32 0 Read: Read strobe indicates that the processor is performing a memory of I/O read cy-
cle, depending on the state <!!.,.the S2 pin. This signal is used to read devices which
reside on ~he 8086 local bus. RD is active lOW during T 2, T 3 and Tw of any read cycle,
and is guaranteed to remain HIGH in T2 until the 8086 local bus has floated.

This signal floats to 3-state OFF in "hold acknowledge."

READY 22 I READY: is the acknowtedgement from the addressed memory or I/O device that it will
complete the data transfer. The READY signal from memory/IO is synchronized by the
8284A Clock Generator to form READY. This signal is active HIGH. The 8086 READY in-
put is not synchronized. Correct operation is not guaranteed if the setup and hold
times are not met.

INTR 18 I Interrupt Request: is a level triggered input which is sampled during the last clock cy-
cle of each instruction to determine if the processor should enter into an interrupt
acknowfedge operation. A subroutine is vectored to via an interrupt vector lookup table
located in system memory. It can be. internally masked by software resetting the inter-
rupt enable bit. INTR is internally synchronized. This signal is active HIGH.

TEST 23 I TEST: input is examined by the "lIIIait" instruction. If the TEST input is lOW execution
continues, otherwise the processor waits in an "Idle" state. This input is synch~onized
internally during each clock cycle on the leading edge of ClK.

3-2

inter IAPX 86/10

Table 1. Pin Description (Continued)

Symbol Pin No. Type Name and Function

NMI 17 I Non·maskable Interrupt: an edge triggered input which causes a type 2 interrupt. A
subroutine is vectored to via an interrupt vector lookup table located in system
memory. NMI is not maskable internally by software. A transition from a lOW to HIGH
initiates the interrupt at the end of the current instruction. This input is internally syn·
chronized.

RESET 21 I Reset: causes the processor to immediately terminate its present activity. The signal
must be active HIGH for at least four clock cycles. It restarts execution, as described in
the Instruction Set description, when RESET returns lOW. RESET is internally syn-
chronized.

ClK 19 I Clock: provides the basic timing for the processor and bus controller. It is asymmetric
with a 33% duty cycle to provide optimized internal timing.

Vce 40 Vcc: + 5V power supply pin.

GND 1,20 Ground

MN/MX 33 I Minimum/Maximum: indicates what mode the processor is to operate In. The two
modes are discussed in the fOllowing sections.

The following pin function descriptions are for the 808618288 system in maximum mode (i.e., MNIMX = VssJ. Only the
pin functions which are unique to maximum mode are described; al/ other pin functions are as described above.

52,S" So 26-28 0 Status: active during T 4, T" and T 2 and is returned to the
passive state (1,1,1) during T3 or during Twwhen READY S2 $, So Characteristics

is HIGH. This status is used by the 8288 Bus Controller o (LOW) 0 0 Interrupt

to generate all memory and 1/0 access control signals. Acknowledge

Any change by 52, 51, or So during T 4 is used to indicate 0 0 1 Read 110 Port
0 1 0 Write 1/0 Port

the beginning of a bus cycle, and the return to the pas- o 1 , Halt

sive state in T 3 or T w Is used to indicate the end of a bus 1 (HIGH) 0 0 Code Access

cycle. 1 0 1 Read Memory , , 0 Write Memory

These signals float to 3-state OFF In "hold acknowl-
, 1 1 PasSive

edge." These status lines are encoded as shown.

Rei/GTo, 30,31 1/0 Request/Grant: pins are used by other local bus masters to 'force the processor to
Ra/GT, release the local bus at the end of the processor's current bus cycle. Each pin is

bidirectional with RQ/GTo having higher priority than RQ/GT,. RQ/GT has an internal
pull-up resistor so may be left unconnected. The request/grant.sequence is as follows
(see Figure 9):

1. A pulse of 1 ClK wide from another local bus master indicates a local bus request
("hold") to the 8086 (pulse 1).

2 .. During a T4 orT, clock cycle, a pulse 1 ClK wide from the 8086 to the requesting mBllter
(pulse 2), indicates that the 8086 has allowed the local bus to float and that it will enter
the "hold acknowledge" state at the next ClK. The CPU's bus interface unit is discon-
nected logically from the local bus during "hold acknowledge."

3. A pulse 1 ClK wide from the requesting master indicates to the 8086 (pulse 3) that
the "hold" request is about to end and that the 8086 can reclaim the local bus at the
next ClK.

Each master-master exchange of the local bus is a sequence of 3 pulses. There must . be one dead ClK cycle after each bus exchange. Pulses are active lOW .

Ifthe request is made while the CPU is performing a memory cycle, it will release the local
bus during T4 of the cycle when all the fOllowing conditions are met:

1. Request occurs on or before T2•

2. Current cycle is not the low byte of a word (on an odd address).
3. Current cycle is not the first acknowledge of an interrupt acknowledge sequence.
4. A locked Instruction is not currently executing.

-3-3

iAPX 86/10

Table 1. Pin Description (Continued)

Symbol Pin No. Type Name and Function

If the local bus is idle when the request is made the two possible events will follow:

1. Local bus will be released during the next clock.
2. A memory cycle will start within 3 clocks. Now the four rules for a currently active

memory cycle apply with condition number 1 already satisfied.

meR 29 0 LOCK: output indicates that other system bus masters are not to gain control of the
system bus while LOCK is active LOW. The LOCK signal is activated by the "LOCK"
prefix instruction and remains active until the completion of the next instruction. This
signal is active LOW, and floats to 3·state OFF in "hold acknowledge."

QS1, QSo 24,25 0 Queue Status: The queue status QS1 QSo CHARACTERISTICS
is valid during the CLKcycle o (LOW) 0 No Operation
after which the queue operation 0 1 First Byte of Op Code from Queue
is performed. 1 (HIGH) 0 Empty the Queue
QS1 and QSo provide status to 1 1 Subsequent Byte from Queue
allow external tracking of the
internal 8086 instruction queue.

The following pin function descriptions are for the BOB6 in mimmum mode (i.e., MN/MX = Vee). Only the pin functions which
are unique to minimum mode are described; all other pin functions are as described above.

MilO 28 0 Status line: logically equivalent to 82 in'the maximum mode. It is used to distinguish a
memory access from an 1/0 access. M/iO becomes valid in the T 4 preceding~ bu~ cycle
and remains valid until the final T 4 of the cycle (M = HIGH, 10 = LOW). MilO floats to
3·state OFF in local bus "hold ackn~wledge.'"

WR 29 0 Write: indicates that the processor is performing a write memory or write 1/0 cycle,
depending on the state of the M/iO signal. WR is active for T 2, T 3 and T w of any write cy·
cle. It is active LOW, and floats to 3·state OFF in local bus "hold acknowledge."

INTA 24 0 INTA is used as a read strobe for interrupt acknowledge cycles. It is active LOW during
T 2, T 3 and T w of each interrupt acknowledge cycle.

ALE 25 0 Address Latch Enable: provid'ed by the processor to latch the address into the 82821
8283 address latch. It is a HIGH pulse'active during T1 of any bus cycle: Note that ALE
is never floated.

DT/R 27 0 Data Transmit/Receive: needed in minimum system that desires to use an 8286/8287
data bus transceiver. It is used to control the direction of data flow through the
transceiver. Logically DT/R is equivalent to S1 in the maximum mode, and its timing is
the same as for M/iO. (T =HIGH, R = LOW.) This signal floats to 3·state OFF in local bus
"hold acknowledge."

DEN 26 0 Data Enable: provided as an output enable for the 8286/8287 in a minimum system
which uses the transceiver. DEN is active LOW during each memory and 1/0 access and
for INTA cycles. For a read or INTA cycle it is active from the middle of T 2 until the mid·
die of T 4, while for a write cycle it is active from the beginning of T 2 until the middle of
T4. DEN floats to 3·state OFF in local bus "hold acknowledge."

HOLD, 31, 30 110 HOLD: indicates that another master Is requesting a local bus "hold." To be acknowl·
HLDA edged, HOLD must be active HIGH. The processor receiving the "hold" request will

issue HLDA (HIGH) as an acknowledgement in the middle of a T1 clock cycle. Simul·
taneous with the issuance of HLDA the processor will float the local bus and control
lines. After HOLD is detected as being LOW, the processor will LOWer the HLDA, and
when the processor needs to run another cycle, it will again drive the local bus and
control lines.

The same rules as for RQIGT apply regarding when the local bus will be released.

HOLD is not an asynchronous input. External synchronization should be provided if the
system cannot otherwise guarantee tfle setup time.

3-4.

~

intJ IAPX 86/10

'fUNCTIONAL DESCRIPTION

GENERAL OPERATION

The internal functions of the iAPX 86/10 processor are
partitioned logically into two processing units. The first is
the Bus Interface Unit (BIU) and the second is the Exe­
cution Unit (EU) as shown in the block diagram of
Figure 1.

These units can interact directly but for the most part
perform as separate asynchronous operational process­
ors. The bus interface unit provides the functions related
to instruction fetching and queuing, operand fetch and
store, and address relocation. This unit also provides the
basic bus control. The overlap of instn,lction pre-fetching
provided by this unit serves to increase processor perfor­
mance through improved bus bandwidth utilization. Up to
6 bytes of the instruction stream can be queued while
waiting for decoding and execution.

The instruction stream queuing mechanism allows the
BIU to keep the memory utilized very efficiently: When­
ever there is space for at least 2 bytes in the queue, the
BIU will attempt a word fetch memory cycle. This greatly
reduces "dead time" on the memory bus. The queue
acts as 'a First-In-First-Out (FIFO) buffer, from which the
EU extracts instruction bytes as required. If the queue is
empty (following a branch instruction, for example), the
first byte into the queue immediately becomes available
to the EU.

The execution unit receives pre·fetched instructions
from the BIU queue and provides un·relocated operand
a.ddresses to the BIU. Memory operands are passed
through the BIU for processing by the EU, which passes
results to the BIU for storage. See the Instruction Set
description for further register set and architectural
descriptions.

Memory- Segment Register
Reference Need Used

Instructions CODE (CS)

Stack STACK (SS)

Local Data DATA (OS)

External (Global) Data EXTRA (ES)

MEMORY ORGANIZATION
The processor provides a 20-bit address to memory which
locates the byte being referenced. The memory is orga­
nized as a linear array of up to 1 million bytes, addressed
as OOOOO(H) to FFFFF(H). The memory is logically divided
into code, data, extra data, and stack segments of up to
64K bytes each, with each segment falling on 16-byte
boundaries. (See Figure 3a.)

All memory references are made relative to base
addresses contained in high speed segment registers. The
segment types were chosen based on the addressing
needs of programs. The segment register to be selected is
automatically chosen according to the rules of the follow­
ing table. All information in one ,segment type share the
same logical attributes (e.g. code or data). By structuring
memory into relocatable areas of similar characteristics
and by automatically selecting segment registers, pro­
grams are shorter, faster, and more structured.

Word (16-bit) operands can be located on even or odd
address boundaries and are thus not constrained to
even boundaries as is the case in many 16·bit com­
puters. For address and data operands, the least signifl·
cant byte of the word is stored in the lower valued
address location and the most significant byte in the
next higher address location. The BIU automatically per·
forms the proper number of memory accesses, one if
the word operand is on an even byte boundary and two if
it is on an odd byte boundary_ Except for the perfor·

, mance penalty, this double access is transparent to the
software. This performance penalty does not occur for
Instructlon fetches, only word operands.,

Physically, the memory is organized as a high bank
(D15-Del and a low bank (07-00) of 512K 8-bit bytes
addressed in parallel by the processor's address lines

A19 - A1. Byte data with even addresses is transferred on
the 07-00 bus lines while odd addressed byte data (Ao

• HIGH) is transferred on the 015-08 bus lines. The process­
or provides two enable signals, SHE and AD, to selectively

, allow reading from or writing into either an odd byte
location, even byte location, or both. The instruction
stream is fetched from memory as words and is addressed
internally by the processor to the byte level as necessary.

Segment
Selection Rule

Automatic with all instruction prefetch.

All stack pushes and pops. Memory references relative to BP
base register except data references.

Data references when: relative to stack, destination of string
operation, or explicitly overridden.

Destination of string operations: Explicitly selected using a
segment override.

3-5

" ,

intel" iAPX 86/10

..r----::J.. FFFFFH

JKBD}CODE S:GMENT
,-~~"!~ XXXXOH IB) """""'"'

SEGMENT i OF!SET w\
ERE:G:'SI;:E::F:IL:El==~~JI . _ I DATA SEGMENT

OS
ES I

I D)"""", """'"'
~OOOOOH

Figure 3a. Memory Organization

In referencing word data the BIU requires one or two
memory cycles depending on whether or not the start·
ing byte of the word is on an even or odd address,
respectively. Consequently, in referencing word oper·
ands performance can be optimized by locating data on
even address boundaries. This is an especially useful
technique for using the stack, since odd address refer·
ences to the stack may adversely affect the context
switching time for interrupt processing or task multi·
plexing.

'Certain locations in memory are reserved for specific
CPU operations (see Figure 3b.) Locations from address
FFFFOH through FFFFFH are reserved for operations
including a jump to the initial program loading routine.
Following RESET, the CPU will always begin execution
at location FFFFO: where the jump must be. Locations
OOOOOH through 003FFH are reserved for interrupt
operations. Each of the 256 possible interrupt types has
its service routine pointed to by a 4·byte pointer element

3-6

consisting of a 16·bit segment address and a 16·bit off·
set address. The pointer elements are assumed to have
been stored at the respective places in reserved memory
prior to occurrence of interrupts.

Figure 3b. Reserved Memory Locations

MINIMUM AND MAXIMUM MODES
The requirements for supporting minimum and ~aXlmul'n
iAPX 86/10 systems are sufficiently different that they
cannot be done efficiently with 40 uniquely defined
pins. Consequently, the 8086 is equipped with a strap
pin (MN/MX) which defines the system configuration.
The definition of a certain subset of the pins changes
dependent on the condition of the strap pin., When
MN/IW< pin is strapped to GND, the 8086 treats pins 24
through 31 in maximum mode. An 8288 bus controller
interprets status information coded into 80,81,82 to gen·
erate bus timing and control signals compatible with
the MULTIBUS@ architecture. When the MN/MX pin is
strapped to Vee. the 8086 generates bus control signals
itself on pins 24 through 31. as shown in parentheses in
Figure 2. Examples of minimum mode and maximum
mode systems are shown in Figure 4.

iAPX 86/10

ee rOj
8284A CLOCK MN/MX vee

GENERATOR - ClK MIlO

...... II£S - READY INTA

- RESET Ali
I I ROY WR

NO r-l-.., I
DTIR r----, I

G

I I - r---,I I WAIT
DEN

I STATE I I I r----.., I
I GENERATOR ,I 8086 CPU I I I I

I
~lE STB L ___ .J

GND~ I I
DE I I 8282

AOO-A015 rDD~
LATCH

~
AODA

A16- A19 2 OR 3
I ,

BHE r--~
I I I

I I rr-----, I
I

I L_ T ---'" I I , ~OE 8286 II I
TRANSCEIVER I DATA

: (21 : I BHE lli II 111; II L ___ Y
OPTIONAL CSOH CSOl WE 00 CE DE CS ROWR

FOR INCREASED
DATA BUS DRIVE 2142 RAM (4) 27162 PROM (2) MeS·so

PERIPHERAL
121 121

1Kx8 I 1Kx8 2K Ie 8 1 2K I(8 •

Figure 4a. Minimum Mode iAPX 86/10 Typical Configuration

o Vee rUl I
8284A MN/~ !-"-GND ClK MRDe

CLOCK ... ClK sa GENERATOR So MWTC

f-m- READY S; S; AMWC -NC

RESET S, S, 8288 lORe I ROY - DEN C~~~R lowe

ND r-1 -., ,--- Dl/A AIOWC -NC
CPU

ALE INTA

G

I WAIT I
I STATE I COCK -NC r----,
I GENERATOR I I L ___ ..l STO

I
GND- r--- o"E

8282 I
Aoo-A015

~DDR/DAr-v
LATCH

~DDR A16-A19 (2 OR 3)

BHE - r--- ...1---

-t>= T

DE
8286

TRANSCEIVER DATA

(21

BHEJliol1 J11f J1 ~

CSOH CSOL WE 00 CE DE es AD Wft

2142 RAM (4) 2716·2 PROM (2) Mes-ao
PERIPHERAL

(21 (21
1Kxs 1Kx8 2K ... 81 2K" 8

Figure 4b. Maximum Mode iAPX 86/10 Typical Configuration

3-7

iAPX 86/10

BUS OPERATION
The 86/10 has a combined address and data bus com­
monly referred to as a time multiplexed bus. This tech·
nique provides the most efficient use of pins on the
processor while permitting the use of a standard 40·lead
package. T~is "local bus" can be buffered directly and
us~d throughout the system with ad,dress latching pro·
vided on memory and I/O modules. In addition, the bus
can also be demultiplexed at the processor with a Single
set of address latches if a standard non·multiplexed bus
is desired for the system.

Each processor bus cycle consists of at'least four elK
cycles. These are referred to as T1, T2, T3 and T4 (see
Figure 5). The address is emitted from 'the processor
during T 1 and data transfer occurs on the bus during T 3
and T 4' T 2 is used primarily for changing the direction of
!tie bus during read operations. In the event that a "NOT
READY" indication is given by the addressed device,
"Wait" states (T w) are inserted between T 3 and T 4. Each
inserted "Wait" state is of the same duration as a elK
cycle. Periods can occur between 8086 bus cycles.
These are referred to as "Idle" states (TI) or inactive elK
cycles. The processor uses these cycles for internal
housekeeping.

During T1 of any bus cycle the ALE (Address latch
Enable) Signal is emitted (by either the processor or the
8288 bus controller, depending on the MN/MX strap). At
the trailing edge of this pulse, a valid address and cer·
tain status information for the cycle may be latched.

Status bits So, S1, and S2 are used, in maximum mode,
by the bus controller to identify the type of bus transac·
tion according to the following table:

S2 S; SO CHARACTERISTICS

o (LOW) 0 0 Interrupt Acknowledge
0 0 1 Read I/O
0 1 0 WriteI/O
0 1 1 Halt
1 (HIGH) 0 0 Instruction Fetch
1 0 1 Read Data from Memory
1 1 0 Write Data to Memory
1 1 1 Passive (no bus cycle)

Status bits S3 through S7 are multiplexed with high·
order address bits and the BHE Signal, and are therefore
valid during ;-2 through T4. S3 and S4 indicate which
segment register (see Instruction Set description) was
used for this bus cycle in forming the address, accord·
ing' to the following table:

S4 S3 CHARACTERISTICS
o (LOW) 0 Alternate Data (extra segment)
0 1 Stack
1 (HIGH) 0 Code or None
1 1 Data

S5 is a reflection of the PSW interrupt enable bit. S6=Oand
S7 is a spare status bit. .

110 ADDRESSING

In the 86/10, I/O operations can address up to a maximum
of 64K I/O byte registers or 32K I/O word registers. The
I/O address appears in the same format as the memory
address on' bus lines A1s-Ao. The address lines A19-A16
are zero in I/O operations. The variable I/O instructions
which use register OX as a pointer have full address capa­
bility while the direct I/O instructions directly address one
or two of the 256 I/O byte locations in page 0 of the I/O
address space.

. I/O ports are addressed in the same manner as memory
locations. Even addressed bytes are transferred on the
0rOo bus lines and odd addressed bytes on 015-08'
Care must be taken to assure that each register within
an 8·bit peripheral located on the lower portion of the
bus be addressed as even.

3-8

eLK

ADDRI
STATUS

ADDRIDATA

READY

DTiR

IAPX 86/10

, '0------- (4 + NWAlT) '" Tey ______ -<'~, ... '------ (4 + NwAITJ =Tcy ------_,'

~ n n - ~ ~ n n _ ~

\
$7-53

-----8 ___ D_A_TA_O_UT_ID_15_-D_O_' ----)--~

READY READY

WAIT WAIT

.....-- MEMORY ACCESS TIME-+-

Figure 5. Basic System Timing

3-9

inter iAPX86/10

EXTERNAL INTERFACE
PROCESSOR RESET AND INITIALIZATION
Processor initialization or start up is accomplished with
activation (HIGH) of the RESET pin. The 8086 RESET is
required to be HIGH for greater than 4 ClK cycles. The
8086 will terminate operations on the high-going edge of
RESET and will remain dormant as long as RESET is
HIGH. The low-going transition of RESET triggers an
internal reset sequence for approximately 10 ClK cycles.
After this interval the 8086 operates normally beginning.
with the instruction in absolute location FFFFOH (see
Figure 3Bl. The details of ihis operation are specified in the
Instruction Set description of the MCS-86 Family User's
Manual. The RESET input is internally synchronized to the
processor clock. At initialization the HIGH-to-LOW trans­
ition of RESET must occur no sooner than 50 /J-s after
power-up, to allow complete initialization of the 8086.

NMI may not be asserted prior to the 2nd CLK cycle fol­
lowing the end of RESET.

INTERRUPT OPERATIONS

Interrupt operations lall into two classes; software or
hardware initiated. The software initiated interrupts and
software aspects of hardware interrupts are specified in
the Instruction Set description. Hardware interrupts can
be classified as non·maskable or maskable.

Interrupts result in a transfer of control to a new pro·
gram location. A 256·element table containing address
pointers to the interrupt service program locations
resides in absolute locations 0 through 3FFH (see
Figure 3b), which are reserved for this purpose. Each
element in the table is 4 bytes in size and corresponds
to an interrupt "type". An interrupting device supplies
an 8·bit type number, during the interrupt acknowledge

sequence, which is used to "vector" through the ap·
propriate element to the new interrupt service program
location.

NON·MASKABLE INTERRUPT (NMI)
The processor provides a single non·maskable interrupt
pin (NMI) which has higher priority than the maskable in·
terrupt request pin (INTR). A typical use would be to ac·
tivate a power failure routine. The NMI Js edge-triggered
on a lOW-to-HIGH transition. The activation of this pin
causes a type 2 interrupt. (See Instruction Set descrip­
tion.)

NMI is required to have a duration in the HIGH state of
greater than two ClK cycles, but is not required to be
synchronized to the clock. Any high-going transition of
NMI is latched on-chip and will be serviced at the end of
the current instruction or between whole moves of a
block-type instruction. Worst case' response to NMI
would be for multiply, divide, and variable shift instruc­
tions. There is no specification on the occurrence of the
low-going edge; it may occur before, during, or after the
servicing of NMI. Another high-going. edge triggers
another response if it occurs after the start of the NMI
procedure. The signal must be free of logical spikes in
general and be free of bounces on the low-going edge to
avoid triggering extraneous responses.

MASKABLEINTERRUPTPNT~

The 86/10 provides a single interrupt request input (INTR)
which can be masked internally by software with the
resetting of the interrupt enable FLAG status bit. The
interrupt request Signal is level triggered. It is internally
synchronized during each clock cycle on the high-going
edge of ClK . .To be responded to, INTR must be present
(HIGH) during the clock period preceding the end of the
current instruction or the end of a whole move for a
block-type instruction. During the interrupt response
sequence further interrupts are disabled. The enable bit
is reset as part of the response to any interrupt (INTR,
NMI, software interrupt or Single-step), although the

I T, T2 TJ T4 I TI I T, I T,

A,E J\\.........------t! n'----
[oCR \ / ! I

(1

rr' ~ \ INTA \

\ ~FlOAT I I TYPE VECTOR >-i I ADo-AD,s

Figure 6. Interrupt Acknowledge Sequence

3-10

iAPX 86/10

FLAGS register which is automatically pushed onto the
stack reflects the state of the processor prior to the
interrupt. Until the old FLAGS register is restored the
enable bit will be zero unless specifically set by an
instruction.

During the response sequence (figure 6) the processor
executes two successive (back-to-back) interrupt
acknowledge cycles. The 8086 emits the LOCK signal
from T2 of the first bus cycle until T2 of the second. A
local bus "hold" request will not be honored until the
end of the second bus cycle. In the second bus cycle a
byte is fetched from the external interrupt system (e.g.,
8259A PIC) which identifies the source (type) of the
interrupt. This byte is multiplied by four and used as a
pointer into the interrupt vector lookup table. An INTR
signal left HIGH will be continually responded to within
the limitations of the enable bit and sample period. The
INTERRUPT RETURN instruction includes a FLAGS pop
which returns the status of the original interrupt enable
bit when it restores the FLAGS.

HALT
When a software "HALT" instruction is executed the
p~ocessor indicates that it is entering the "HALT" state
in one of two ways depending upon which mode is
strapped. In minimum mode, the processor issues one
ALE with no qualifying bus control signals. In Maximum
Mode, the processor issues appropriate HALT status on
828180 and the 8288 bus controller issues one ALE. The
8086 will not leave the "HALT" state when a local bus
"hold" is entered while in "HALT". In this case, the
processor reissues the HALT indicator. An interrupt
request or RESET will force the 8086 out of the "HALT"
state.

READ/MODIFY/WRITE (SEMAPHORE)
OPERATIONS VIA LOCK
The LOCK status information is provided by the proc·
essor when directly consecutive bus cycles are required
during the execution of an instruction. This provides the
processor with the capability of performing read/modify/
write operations on memory (via the Exchange Register
With Memory instruction, for example) without the

,possibility of another system bus master receiving
intervening memory cycles. This is useful in multi·
processor system configurations to accomplish "test
and set lock" operations. The LOCK signal is activated
(forced LOW) in the clock cycle following the one in
which the software "LOCK" prefix instruction is
decoded by the EU. It is deactivated at the end of the
last bus cycle of the instruction following the "LOCK"
prefix instruction. While LOCK is active a request on a
RQ/GT pin will be recorded and then honored at the end
of the LOCK.

EXTERNAL SYNCHRONIZATION VIA TEST
As an alternative to the interrupts and general I/O
capabilities, 'the 8086 provides a single software·
testable input known as the TEST signal. At any time th.e
program may execute a WAIT instruction. If at that time
the TEST signal is inactive (HIGH), program execution
becomes suspended while the processor waits for TEST

3-11

to become active. It must remai~ active for at least 5
CLK cycles. The WAIT instruction is re·executed
repeatedly until that time. This .activity does not con­
sume bus cycles. The processor remains in an idle state
while waiting. All 8086 drivers go to 3·state OFF if bus
"Hold"is entered. If interrupts are enabled, they may
occur while the processor is waiting. When this occurs
the processor fetches the WAIT instruction one extra
time, processes the interrupt, and then re·fetches and
re·executes the WAIT instruction upon returning from
the interrupt. .

BASIC SYSTEM TIMING
Typical system configurations for the processor
operating in minimum mode and in maximum mode are
shown in Figures 4a and 4b, respectively. In minimum
mode, the MN/MX pin is strapped to Vce and the proc·
essor emits bus control signals in a manner similar to
the 8085. In maximum mode, the MN/MX pin is strapped
to Vss and the processor emits coded status informa­
tion which the 8288 bus controller uses to generate
MULTIBUS compatible bus control signals. Figure 5 il·
lustrates the signal timing relationships.

AX AH AL ACCUMULATOR

BX BH BL BASE

CX CH CL COUNT

OX DH DL DATA

~~
STACK POINTER

BP BASE POINTER

51 SOURCE INDEX

DI DESTINATION INDEX

I IP I INSTRUCTION POINTER

FlAGSH I FLAGSL STATUS FlAGS

C5 CODE SEGMENT

D5 DATA SEGMENT

- 55 STACK SEGMENT

E5 EXTRA SEGMENT

Figure 7. iAPX 86/10 Register Model

SYSTEM TIMING - MINIMUM SYSTEM

The read cycle begins in T1 with the assertion of the
Address Latch Enable (ALE) signal. The trailing (low·
going) edge of this signal is used to latch the address
information, which is valid on the local bus at this time,
into the 8282/8283 latch. The BHE and Ao signals
address the low, high, or both bytes. From T1 to T4 the
M/iO signal indicates a memory or I/O operation. At T2
the address is removed from the local bus and the bus
goes to a high impedance state. The read control signal
is also ass~rted at T2. The rllad (RD) signal causes the
addressed device to enable its data bus drivers to the
local bus. Some time later valid data will be available on
the bus and the addressed device will drive the READY
line HIGH. When the processor returns the read signal

intJ iAPX 86/10

to a HIGH level, the addressed device ,will again 3-state
its bus drivers. If a transceiver (8286/8287) is required to
buffer the 8086 local bus, signals oTIA' and DEN are pro-
vided by the 8086. ' ,

A write cycle also begins with the assertion of Al.;E and
the emission of thel address. The M/iO signal is again
asserted to indicate a memory or 110 write operation. In
the T 2 immediately following the address emission the
processor emits the data to be writtell into the
addressed location. This data remains valid until the
middle of T 4' During T 2, T 3, and T w the processor asserts
the write control signal. The write (WR) signal becomes
active at the beginning of T2 as opposed to the read
which is delayed somewhat into T 2 to provide time for
the bus to float.

The BHE and Ao signals are used to select the proper
byte(s) of the memoryllO word to be read or written
according to the following table:

BHE AO CHARACTERISTICS
0 0 Whole word

0 1 Upper byte froml
to odd address

1 0 Lower byte froml
to even address

1 1 None
r

1/0 ports are addressed in the same manner as memory
location. Even addressed bytes are transferred on the
07-00 bus lines and odd addresse~ bytes on 015-08'

The basic difference between the interrupt acknowl­
edge cycle and a read cycle is that the interrupt
acknowledge signal (INTA) is asserted In place of the

read (!W) signal and the address bus is floated. (See
Figure 6.) In the second of two successive INTA cycles,
a byte of Information is read from bus lines 07-00 as
supplied by the interrupt system logic (i.e., 8259A Prior­
ity Interrupt Controller). This byte identifies the source
(type) of the interrupt. It is multiplied by four and used
as a pointer into an interrupt vector lookup table, as
described earlier.

BUS TIMING-MEDIUM SIZE SYSTEMS

For medium size systems the MN/MX pin is connected to
Vss and the 8288 Bus Controller is added to the system as
well as an 828218283 latch for latching the system address,
and a 8286/8287 transceiver to allow for bus loading
greater than the 8086 is capable of handling. Signals ALE,
DEN, and OT/R are generated by the 8288 instead of the'
processor in this configuration although their timing re­
mains relatively the same. The 8086 status outputs (52,51, ..

and So), provide type-of-cycle information and become
, 8288 inputs. This bus cycle information specifies read

(code, data, or 1/0), write (data or I/0h.interrupt acknowl­
edge, or software halt. The 8288 thus issues control
signals specifying memory read or write, I/O read or write,
or interrupt acknowledge. The 8288 provides two types of
write strobes, normal and advanced, to be applied as re­
quired. The normal write strobes have data valid at the
leading edge of write. The advanced' write strobes have
the same timing as read strobes, and hence data isn't valid
at the leading edge of write. The 8286/~287 trl!nsceiv~
receives the usual T and OE inputs from the 8288's OT/R
and DEN.

The pOinter into the interrupt vector table, which is
passed during the second INTA cycle, can derive from
an 8259A located on eitlier the local bus or the -system
bus. If the master 8259A Priority Interrupt Controller is
pOSitioned on the local bus, a TTL gate is required to
disable the 8286/8287 transceiver when reading from the
master 8259A during the interrupt acknowledge
sequence and software "poll".

3-12

iAPX 86/10

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias O·C to 70·C
Storage Temperature - 65·C to + 150·C
Voltage on Any Pin with

Respect to Ground - 1.0 to + 7V
Power Dissipation 2.5 Watt

"NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D_C. CHARACTERISTICS (8086: TA = O°C to 70°C. Vcc = 5V ± 10%)
(8086-1: TA = O°C to 70°C. Vcc = 5V ± 5%)
(8086-2: TA = O°C to 70°C. Vcc = 5V ± 5%)

Symbol Parameter

Vil Input Low Voltage

VIH Input High Voltage

VOL Output Low Voltage

VOH Output High Voltage

Icc Power Supply Current: 8086
8086-1
8086-2

III Input Leakage Current

ILO Output Leakage Current

Vel Clock Input Low Voltage

VeH Clock Input High Voltage

Capacitance of Input Buffer
CIN (All input except

ADo - AD15• RQ/GT)

CIO
Capacitance of 1/0 Buffer
(ADo-AD 15• RQ/GT)

Note. 1 V'L tested with MN/MX Pin = av.
2. V,H tested with M N/M X Pi n = 5V

MN/MX Pin is a Strap Pin

Min.

-0.5

2.0

2.4

-0.5

3.9

3-13

Max. Units Test Conditions

+0.8 V

Vce+ 0.5 V

0.45 V IOl=2.5 mA

V 10H= -400,..A

340
360 mA TA= 25°C
350

±10 IJA OV "" VIN "" Vce

±10 IJA 0.45V " VOUT " Vee

+0.6 V

Vee + 1.0 V

15 pF fc= 1 MHz

15 pF fc= 1 MHz

iAPX 86/10

A.C. CHARACTERISTICS (8086: TA = ooe to 70oe. Vcc = 5V :!: 10%)
(8086-1: TA = ooe to 70oe. Vcc = 5V :!: 5%)
(8086-2: TA" = ooe to 70oe. Vcc = 5V :!: 5%)

MINIMUM COMPLEXITY SYSTEM
TIMING REQUIREMENTS

Symbol Parameter 8086 8086·1 (Preliminary) 8086·2

Min. Max. Min. Max. Min.

TCLCL CLK Cycle Period 200 500 100 500 125

TCLCH CLKLowTime 118 53 68

TCHCL CLK High Time 69 39 44

TCH1CH2 CLK Rise Time 10 10

TCL2CL1 ClK Fall Time 10 10

TDVeL Data In Setup Time 30 5 20

TCLDX Data In Hold Time 10 10 10

TR1VCL ROY Setup Time 35 35 35

~
Into 8284A (See
Notes 1. 2)

TCLR1X ROY Hold Time 0 0 0
into 8284A (See

Notes 1. 2)

TRYHCH READY Setup 118 53 68
Time Into 8086

TCHRYX READY Hold Time 30 20 20
into 8086

TRYLCl READY Inactive to -8 -10 -8
eLK (See Note 3)

THVeH HOLD Setup Time 35 20 20

TINVCH INTR. NMI. TEST 30 15 15
Setup Time (See
Note 2)

TILIH Input Rise Time 20 20
(Except ClK)

TIHll Input Fall Time 12 12
(Except elK)

3~14

TJlst
Units Conditions

Max.

500 ns

ns

ns

10 ns From 1.0Vto
3.5V

10 ns From 3.5Vto
1.0V

ns

ns

ns

ns

ns

ns

ns

ns

ns

20 ns From O.8Vto
2.0V

12 ns From 2.0Vto
0.8V

A.C. CHARACTERISTICS (Continued)

TIMING RESPONSES

Symbol Parameter 8086

Min. Max.

TCLAV Address Valid Delay 10 110

TCLAX Address Hold Time 10

TCLAZ Address Float TCLAX 80
Delay

TlHll ALE Width TClCH-20

TCllH ALE Active Delay 80

TCHll ALE Inactive Delay 85

TlLAX Address Hold Time TCHCl-l0
to ALE Inactive

TClDV Data Valid Delay 10 110

TCHDX Data Hold Time 10

TWHDX Data Hold Time TClCH-30
AfterWR

, TCVCTV Control Active 10 110
Delay 1

TCHCTV Control Active 10 110
Delay 2

TCVCTX Control Inactive 10 110
Delay

TAZRl • Address Float to 0
READ Active

TClRl RD Active Delay 10 165

TClRH RD Inactive Delay 10 150

TRHAV RD Inactive to Next TClCl-45
Address Active

TClHAV HlDA Valid Delay 10 160

TRlRH RDWidth 2TClCl-75

TWlWH WRWidth 2TClCl-60

TAVAl Address Valid to TClCH-60
• ALE low

TOlOH Output Rise Time 20

TOHOl Output Fall Time 12

NOTES:
1. Signal at 8284A shown for reference only,

iAPX 86/10

8086-1 (Preliminary) 8086-2

Min. Max. Min.

10 5ll 10

10 10

10 40 TCLAX

TClCH-l0 TClCH-l0

40

45

TCHCl-l0 TCHCl-l0

10 50 10

10 10

TClCH-25 TClCH-30

10 50 10

10 45 10

10 50 10

0 0

10 70 10

10 ,60 10

TClCl-35 TClCl-40

10 60 10

2TClCl-40 2TClCl-50

2TClCl-35 2TClCl-40

TClCH-35 TClCH-40

20

12

2, Setup requirement for asynchronous signal only to guarantee recognition at next ClK,
3, Applies only to T2 state, (8 ns into T3),

3-15

Test
Units Conditions

Max.

60 ns

ns

50 ns

ns

50 ns

55 ns

ns

60 ns ·Cl ~ 20-100 pF

ns for all 8086 Out-
puts (In addi-,

ns tlon to 8086 self-
load)

70 ns

60 ns

i
70 ns

ns

100 ns

80 ns

ns

100 ns

ns

ns

ns

20 ns From 0,8Vto
2.0V

12 ns From 2,OVto
0,8V

inter IAPX 86/10

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT

24 ~'5_T~STPOINTS_1'5~
0.45

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1" AND 0 45V FOR
A LOGIC O· TIMING MEASUREMENTS ARE MADE AT 1 SV FOR BOTH A
LOGIC 1" AND '0"

WAVEFORMS

DEVICE

i}CL.,00 PF

UND~R
TEST

-=

CL INCLUDES JIG CAPACITANCE

MIN,MUM MODE
T1 T2 T3 Tw T.

VCHv----\ -TClC~ TCH1CH2, t--=t.='vJ~

"---Jr\..-"de "----I i\--.-J CLK (8284A Oulpul)

M/KI

ALE

RDY (828411 Inpu~
SEE NOlE4

READY (8088 Inpul)

R~AD CYCLE

(NOTE 1)

!WR, INTA = VOH)

AD,.-ADo

RD

DT/R

- TCHCTV f ~TCHCl _TClCH-

TClAY- - - rCLDV fo-' TCHDX- I TClAX- I-

BHE, A19-A18 87-53 I

TCllH-

f
TlHll-=:: .I-TllAX

TJAl

r--
I

- ---
TCHll-1 - Dc -TR1VCl

V,H ,....,

'R}\\\~~~"\\ ' \ \,,"'\~~:' " " \
V'L~ - - I-iClR1X

TRYlCl- ~

f
- h

1 - -TCHRYX

- lAVAL _
TRYHCH- -

TClAV-
TLLAX- 1--1

-TClDX-- - I:~ClAZ ~TDVCl-
TClAX

A1S-ADo
II DATA IN

~rr
FlO~~

TAZRl- TCLRH- 1- f-TRHAV

~

=~TCHCTV TClRl TRLRH

1
-TCHCTV

TCVCTV- f TCVCTX- I

3-16

inter
WAVEFORMS (Continued)

MINIMUM MODE (Continued)

ClK (8284A OulpuQ

MfiO

ALE

WRITE CYCLE

Q<OTE 1) DEN

(RD, iNTA,
DTIR= VOH)

INTA CYCLE Dl/R

(NOTES 1 & 3)

RD, WR=VOH
IJR'E=VOL)

SOFTWARE HAlT-

RD. WR. INTA ~ VOH
DT/R ~ INDETERMINATE

NOTES:

relAV

iAPX86/10

T,

INVALID ADDRESS

1. All signals switch between VOH and VOL unless otherwise specified.

SOFTWARE HALT

2. RDY is sampled near the end of T2. T3. Tw to determine if Tw machines states are to be inserted.

r-­
I

3. Two INTA cycles run back-to-back. The 8086 LOCAL ADDRIDATA BUS is floating during both INTA cycles. Control Signals shown
for second INTA cycle.

4. Signals at 8284A are shown for reference only.
5. All timing measurements are made at 1.SV unl~ss otherwise noted.

3-17

iAPX 86/10

A.C. CHARACTERISTICS

MAX MODE SYSTEM (USING 8288 BUS CONTROLLER)
TIMING REQUIREMENTS

Symbol Parameter 8086 8086-1 (Preliminary)

Min. Max. Min. Max.

TCLCL CLK Cycle Period 200 SOO 100 500

TCLCH CLKLowTime 118 53

TCHCl ClK High Time 69 39

TCH1CH2 ClK Rise Time 10 10

TCL2Cll ClK Fall Time 10 10 .

TDVCl Data in Setup Time 30 5

TClDX Data In Hold Time 10 10

TRtVCl ROY Setup Time 35 35
into 8284A (See
Notes 1, 2)

TClR1X ROY Hold Time 0 :0

into 8284A (See
Notes 1, 2)

TRYHCH READY Setup Time 118 53
into 8086

TCHRYX READY Hold Time 30 20
into 8086

TRYlCL READY Inactive to -8 -10
ClK (See Note 4)

TINVCH Setup Time for 30 15
Recognition (INTR,
NMI, TEST) (See
Note 2)

TGVCH RQ/GT Setup Time 30 12

TCHGX RQ Hold Time into 40 20
8086

TIU'H Input Rise Time 20 20
(Except ClK)

TIHll Input Fall Time 12 12
(Except ClK)

NOTES:
1. Signal at 8284A or 8288 shown for reference only.

8086-2 (Preliminary)

Min; Max.

125 SOO

68

44

10

10

20

10

35

0

68

20

-8

15

15

30

20

12

2. Setup requirement for asynchronous signal only to guarantee recognition at next elK.
3. Applies only to T3 and wait states .•
4. Applies only to T2 state (8 ns into T3).

3-18

Test
Units Conditions

ns

ns

ns

ns From 1.0Vto
3.5V

ns From 3.5Vto
1.0V

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns From 0.8)1 to
2.0V

ns From 2.0Vto
O.8V

iAPX 86/10

A.C. CHARACTERISTICS (Continued)

TIMING RESPONSES

Test
Symbol Parameter 8086 8086·1 (Preliminary) 8086·2 (Preliminary) Units Conditions

Min. Max. Min. Max. Min. Max.

TCLML Command Active 10 35 10 35 10 35 ns
Delay (See Note 1)

TCLMH Command Inactive 10 35 10 35 10 35 ns

Delay (See Note 1)

TRYHSH READY Active to 110 45 65 ns
Status Passive (See
Note 3)

TCHSV Status Active Delay 10 110 10 45 10 60 ns

TCLSH Status Inactive 10 130 10 55 10 70 ns
Delay

TCLAV Address Valid 10 110 10 50 10 60 ns

Delay

TCLAX Address Hold Time 10 10 10 ns

TCLAZ Add ress Float Delay TCLAX 80 10 40 TCLAX 50 ns

TSVLH Status Valid to ALE 15 15 15 ns

High (See Note 1)

TSVMCH Status Valid to 15 15 15 ns

MCE High (See
Note 1)

TCLLH CLK Low to ALE 15 15 15 ns
Valid (See Note 1)

TCLMCH CLK Low to MCE 15 15 15 ns
High (See Note 1)

TCHLL ALE Inactive Delay 15 15 15 ns CL = 20·100 pF
(See Note 1) for all B066 Out·

TCLMCL MCE Inactive Delay 15 15 15 ns puts (In add"

(See Note 1)
tlon to 8066 self·

load)
TCLDV Data Valid Delay 10 110 10 50 10 60 ns

TCHDX Data Hold Time 10 10 10 ns

TCVNV Control Active 5 45 5 45 5 45 ns

Delay (See Note 1)

TCVNX Control Inactive 10 45 10 45 10 45 ns
Delay (See Note 1)

TAZRL Add ress Flo~t to 0 0 0 ns

Read Active

TCLRL RD Active Delay 10 165 10 70 10 100 ns

TCLRH RD Inactive Delay 10 150 10 60 10 BO ns

TRHAV RD Inactive to TCLCL-45 TCLCL-35 TCLCL-40 ns
Next Address Active

TCHDTL Direction Control 50 50 50 ns
Active Delay (See
Note 1)

TCHDTH Direction Control 30 30 30 ns

Inactive Delay (See

Note 1)

TCLGL GT Active Delay 0 B5 0 45 0 50 ns

TCLGH GT Inactive Delay 0 85 0 45 0 50 ns

TRLRH RDWldth 2TCLCL-75 2TCLCL-40 2TCLCL-50 ns

TOLOH Output Rise Time 20 20 20 ns From O.BV to

2.0V

TOHOL Output Fall Time 12 12 12 ns From 2.0Vto
O.BV

3-19

WAVEFORMS

MAXIMUM MODE

CLK VCH;---\

VCL ...I
TCL~V~

aSO,QS,

~
s"s"SQ (EXCEPT HALT)

~

TSVLH
TClLH

1
ALE (8288 OUTPUn

SEE NOTE 5

ROY (8284A INPUT)

iAPX 86/10

~1)==\fCH1CH2~ He Tw TCLCL • r~

i'-------Jf\-~ t I . rc-----J
~TCHCL .

!--TCLCH-

TCHSV - TCLSH

------Vim fI j'(SEE NOTE 8) \

• r:::.TCLAV ~CLDV TCHOX- .t-----
TCLAX-

sHE, A19-A16 57-53 X
~- .1 TCHLl

-'
r--

I

~
i-TR1VCL

] E,~ ~ \\\\\\\\~
TRYLCL -

LTCHRYX

TYHSH- -- TCLAX!+-

TRYHCH -READ CYCLE TCLAV--i f-
-TClAZ r-i TOVCL~ f+ TCLDX---

8288 OUTPUTS

SEE NOTES 5,6

RD

DT/R

DEN

TCHDTL-i

A15-ADo

~r' TAZRL-

.1-I-- TCLRl

'\
TCLML __

'\
TCVNV-- -

t

3-20

DATA IN

. FL~=----t-
TCLRH

1
TRHAV

TRLRH 1\11 TCHDTH

TCLMH-- F;

TCVNX-- -

inter
WAVEFORMS (Continued)

MAXIMUM MODE (Continued)

elK

S;!,S1,So (EXCEPT HALT)

WRITE CYCLE

DEN

8288 OUTPUTS

SEE NOTES 5,6 AMWC OR A10WC

INTACYCLE

SOFTWARE HALT-

MWTCQR lowe

AD1S-ADo
(SEE NOTES 3 & 4)

8288 OlITPUTS

MeE!

Pll£I<

DT/R

SEE NOTES 5,61 1NTA

DEN

VCl

(DEN = VOL;JiD,MRDC,IORC,MWTC,AMWC,IOWC,AIDWC,INTA,:::: VOH)

relAV

iAPX 86/10

T, T, T, T,

Tw

TCHDX

DATA

TCVNX-

TCLMH_

-TCLMH

FLOAT

INVALID ADDRESS

~ /~---~\-------

\~.-----------. ~------

NOTES:
1. All signals switch between VOH and VOL unless otherwise specified.
2. RDY is sampled near the end of T2, T3, Tw to determine if Tw machines states are to be inserted.
3. Cascade address is valid between first and second INTA cycle.

\

\~----

r-­
I

4. Two INTA cycles run back-to-back. The 8086 LOCAL ADDR/DATA BUS is floating during both INTA cycles. Control for pointer
address is shown for second INTA cycle.

5. Signals at 8284A or 8288 are shown for reference only.
6. The issuance of the 8288 command and control signals (MRDC, MWTC, AMWC, IORC, IOWC, AIOWC, INTA and DEN) lags the

active high 8288 CEN.
7. All timing measurements are made at 1.5V unless otherwise noted.
8. Status inactive in state Just prior to T4.

3-21

iAPX 86/10

WAVEFORMS (Continued)

ASYNCHRONOUS SIGNAL RECOGNITION

NMI

INTR

TEST

NOTE 1 SETUP REQUIREMENTS FOR ASYNCHRO­
NOUS SIGNALS ONLY TO GUARANTEE RECOGNITION
AT NEXT eLK

BUS LOCK SIGNAL TIMING (MAXIMUM MODE ONLY) RESET TIMING

AnyClK CYCle---j AnyCLKCycie _I
'cc

REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLY)

AC1S-ADo
AlgIS6-A1SISl
Sz,S";,S(j
"",m<!(
BFiElS7

-- Any eLK Cycle ------r--

PreVlousgranl

1 THE COPROCESSOR MAY NOT DRIVE THE BUSES OUTSIDE THE REGION
SHOWN WITHOUT RISKING CONTENTION

HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLY)

Cl' ~~~,,"YCLES

COPROCESSOR

(SEE NOTE 1)

-: I-THVCH I ;1 I_THVCH

HOLD ~ : \,-, ____ ---;,\-___ +-___ +-____ -1

AD15-ADo,
Al91Ss-A16/S3,

~SL...MI&
OT/R, WR, DEN

r----___ --I1-------_1-t!--.Jr
LHAV

~ ____ 80~6~',.f--'f--:. ==I\~~TCL~AZ--~::f-----~
~ 1\ COPRO;ESSOR

3-22

i~ iAPX 86/10

Table 2. Instruction Set Summary

DATA TRANSFER
MOV -Mov. 76 5 4 32 1 0 76 5 43 2 1 0 16543210 76543210 'EC D!crlllllni 16543210 16 5 43 210 71543210 165432 1 0
Reglsterlm.morytoltromreglsler 1100010 cI w I mod '" ". Register/memory 1'111111 W ImodO 01 I
Immedlate!o reglsteflmemorV 111 Il 0 0" w!mod 0 0 0 ". data <lala It wI I Register ~
Immediate to r~glsler 11011 III '" I datillw 1 NEB Change sign 1'111011 w imOdO 11

Memory l(laGel/mulalor 11011} 0 DOw I addrlow add/high
CMP Camplre

Accumulalorto memOly 11010001 w I addl low add/high

Register Imemor~ to segmen! register 11 0 0 0 1 1 1 0 I mod 0 reg Reglster/memory and register 0011 10 dill .od ". Segmen! l.gl51ell0 register/memory 11 0 0 (J 11 00 IrnodOreg ". Immedlale wllh register/memory 1000005111 modI 1 1 ". datallsw 01

Immedlale wl1haccumula1Or 0011110 w datallw 1
PUSNuPlllh lAS ASCliadju$110rsubllaCl ~
Reglster/memorv 11111111 mod 110 ". DIS Oeclmajadjusttorsubtract ~
Register 01010 '" MUL Multiply lunslgnedl 11111011 w jmod 100 ,,.
Segmentreglstel ~ IMUL Integer mulllplV ISlgnedl 11111011 w ImOdl 0 1 ".

I 11111 ASCII adjusl lor multiply 11010100 00001010
PoP·P.p

DIVDlvldelunSlgnedl 11 I 1011 w mod 110 ". 110001111 ImodO 0 0 ReglsterlmemorV ,,.
IDIVlnlegprdlv,de(s,gned) 11 1 1011 w mod 111 ". Register 01011 ". 110 ASCllad(usllord'vlde 11010101 00001010

Segment register 000rel/l11
caw Convert bV1e to word 10011000

XCNG-Exchlnlll cwo Converl word to dOuble word 10011001

Reglsler/memory With register 11000011 w !mod '" ". I
Reg,ster with accumulator ~
IN"'lnpullrom

Flxellport (1110010 Wi port

Vallab(eport 11 10110 W

lOGIC
DUT-Dutputlo NOT Invert j tIl' 0 11 W I mod 010 ,,.
Fixed port 11110011 W I pOlt SHLISAL Shl1tloglcalialllhmellc lell 11101"'00 v W I mod 100 ".
Vanableport 11110111 w! SHRShlltloglcallight 1110100 v w Imodl 0 1 ". XLAT-TranslatebytetoAL 11010111 SAR SlJr1talllhmellC ught 11 I 0 1 0 0 v W Imod 111 ,I.
LEA·LoadEAtoreglSler 10001101 .od ". RoLAolalelel1 1'10100 v 'IV Imodo 0 0 ". LDS'LoadpomlertoOS 11000101 .0' ". AoRRotateught 1'10100 v w ImodO 0 1 " .
LES-LoadpolnlertoES 11000100 • od '" RClRotatethroughcarryllaglelt 110 100 v w modO 1 0 ,I.
LlItF-loadAHwlthliags 110011111 I RCRRotatethroughc;illyrtght 1 1 0 100 ~ w modO 11
BAHf-SioreAHtntollags 10011110

PUBIIF~Push flags 10011100 AN' A"'
POPf-POIlliags 110011101 I Reg Imemoryand register to either 1001000 d w !mod '"

Immed'ateto leglsterlmemory 1000000 W modI 00 ,I. datall WI

Immediate to accumulator 0010010 w data dataltw 1

TEST AndluncllDDlDlilganor.lull
ARITHMETIC Reglslerlmemory and reglsler 11000010 W I mod ". ".
ADO-Add Immediate data and register/memory 11 1 1 1 0 1 1 w ! mod 0 0 0 ,I. data datallw 1 I
Reglmemoryw!lhrejllslertoellher 000000 d w • 0' '., ,i • Immediate data and accumulator 11010100 w I data Ilw t

Immedlatetoreglsterlmemory 1000005 w modO 0 0 ". data dataltsw 01
Imm8(hateloaccumulator 0000010 w data dala ,Iw 1 OR Or

Reg Imemory and reg,sterto either 1000010 d W Imod reg~
ADC - AUwtlhCllry Immediate 10 reglstellmemory 1000000 w modO 0 I ,I. datatlw 1
RejI Imemory wIth register 10 ellher 000 I 00 d w .0' '" ". Immediate to accumulator 0000110 w data dalaltw-l
Immedlaletoreglsterlmemory 100000 s w modO t 0 ". dala data Iisw 01
Immediate 10 accumulalor 000 t 0 lOw data dalallw 1 XDR·Exclul'veor

Aeq/memory and register to either 100, 'C 0 d w Imod reg~
IIIC ~ hICnI t Immedlaleloreglster/memory ! 1000000 w ImOdll 0 ". I data II "" 1 I
Reglster/memorV 11111111 w Imodo 0 0 lim Immediate to accumula~or !O 01 tOt 0 wi data I dal. ,Iw 1

Register 01000 ". W-ASCU adlust lor add 00110111

UA .. OeetmaladlllSlloradd 00100111

SUI-Miract
Reg/memory and regl$ter to ellher 1001010 d w I mod ". ,I.
Immediate from register/memory 1 0 0 0 00 S w modI 0 t ,I ". dalall s w~OI STRING MANIPULATION

Immedlatelromaccumlliator 00101 lOw data data!lw·l REP~Repeat 1111001z

MOVS=Mo~e byte/word 1010010 w
•• 1 - BllMrICl.Hhior CMf'S=Comparehyte/woro 1010011 w

Reg Imemory and regiSter to IIll1er 00011 Od W .0' '" ,I. SCAS:Scanbyte/wold 1010111 IV

Immediate Irom reglsler/memory 100000 S w modO t t ,I. ". data Ifs w-Ot lOOS=Load bvte/wd to AL!AX 1010 II 0 w

ImmedlatetrOlllaccumulator 0001 t t 0 IV data dataliw'l STOS=Slor byle/wd Irom ALIA 1010101 w

MnemOniCs ©lntel,1978

3-23

IAPX 86/10

Table 2, Instruction Set Summary (Continued)

CONTROl TRANSFER
CAll- CIII
Direct wIthin segment
Indtrect wlthm segment

Dtrectmtersegment

Indlrectmtersegment

18543 II: 1 0
11101000

11111111

1001 1010

tl11111'

11101011

76543210

dlsp·fow

modO 1 0 rIm

oflset·low
seg-Iow

mod 0 11 Um

dlsp-Iow

JI' = UnClRdlllon'1 JUmp

Direct wrthm segment

DtreCI wlfhm segment-short

Indirect wllhm segment

Dlrectmlersegment

11111111 mod 1 0 0 rIm

11101010 of/sellow

I seg·low

Ind.rectlhtersegmenl 1'11111 !tlmod 101 rim

RET = Return Inm CALL
Wlthmsegment

Wlthm seg add,nglmmed to SP

Intersegment

11000010

11001011

Intefsegmen! addmg Immediate to S

JE/JZ=JumponeQualizero
JL/JIRE=Jump on less/not greater

P 11001010

or equal
JLEJJII",Jumpon less or equal/not

greater
JIJJIIA£"Jump on below/not above

or equal
JI£/JIA~~~~~~~ below or equall

JPJJPE=Jump on panty/panlyeven

JO .. Jumponoverllow

'JS"Jump on Sign

"lfE/.I.Z"Jump on nol equallnotzera
JlfL/JI£=Jumpan not less/greater

01110100-

01111100

01111110

011100' 0

011 10110

01111010

01110000

0111'000

01110101

01111101

data low

dala·low

dlsp

dlsp

dlsp

dlsp

dlsp

dlsp

dlsp

dlsp

dlsp

dlsp or equal

JILE/JGg~~:r~ron not less or equa" ,,10,--',--',--',--',--',--',--',--,-1 _-,',,"'-P--..J

faotlIoIa:

AL - 8-blt accumulator
, AX· 16-bit accumulator

CX • Count register
OS· Data segment
ES • Extra segment
Above/below refers to unsigned value
Greater;; more POSitive,
Less = less positive (more negative) signed values'
"Ifd = 1 then "to" reg, Ifd;; o then "from" reg

If w '" 1 then word instruction, If w '" 0 then byte instruction

If mod· 11 then rim .s treated as a REG field
If mod· 00 then OISP • 0', dlsp-Iow and dlsp-hlgh are absent

711543210

dlsphlgh

offset·hlgh

seg-hlgh

dlsp-hlgh I

olfset-hlgh

Seg-hl!lh~

data-high

data-high

.f mod· 01 then OISP • dlsp-Iow s.gn-extended to t6-bits, dlsp-hlgh IS absent
If mod· 10 then OISP = d.sp-hlgh dlsp-Iow

If rim· 000 then EA· (BX) + (51) + DlSP
If rim· 001 then EA = (BX) + (DI) + DlSP
.f rim = 010'then EA • (BP) + (51) + DlSP
If rim' 011 then EA • (BP) + (01) + DlSP
.f rim' 100 then EA • (51) + OtSP
.f rim = 101 then EA • (01) + OISP
.f rim = 110 then EA = (8P) + DlSP'
.f rim = 111 then EA • (BX) + OISP
DlSP follow. 2nd byte of instruction (Defore data If reqUired)

'except If mod· 00 and rim = tl0 then EA = dlsp-hlgh dlSp-low

MnemoOlcs©lntel,1978

16543210 11543210
JII/JAE=Jump on nol below/above

or equal
JI8E/JA-Jump on not below or

eQualfabove
JIP/JPO=Jump on nol par/parodd

JIfO=Jumpon not overflow

JI. Jump on naisign

LaOp loop CX times

LOOPZlLOOPE'loop while zero/equal
lOQPIZlLOIIPlfE Loop .,.hlle not

zero/equal
JCXZlJumpon ex zero

INT 11II1,rupt
Typespecilled

Type 3

liTO Interrupt on overllow

IRETlnterruptreturn

PROCESSOR CONTROL
CLCClearcarry

CMC Complement carry

STe Set carry

ClDCleardlrectlon

STU Set direction

CLlClearmterrupt

STI Setmterrupt

HlT Halt

WAn Wall

01110011

01110111

01111011

01110001

1011110011
11100010

11100001

11100000

1 1 10001 1

11001101

11001100

11001110

111001111

tl11110o0

1,1,10101

11111001

" 111100

1 11 1 1 101

11111010

11111011

11110100

10011011

diS!)

dlsp

diS!)

dlsp

dlsp

diS!)

dlsp

dlsp

dlsp

type

ESC Escape noeKternaldevlcel

LOCK Bus lock prefiX

11011 xxx modx x xi~

If s w = Ot then 16 bits of Immed.ate data form the operand
II • w = t t then an Immediate data byte IS sign extended to

lorm the t6-bIt operand
II v=O then "count" = " If v=1 then "count" In (CL)
x;. don't care
z IS used for string primitives for comparison with Z,F FLAG

SEGMENT OVERRtOE PREFIX

lOOt reg t t 01

REG IS assigned according to the loll oWing table

III-Bltlw -II II-Blt I. - 0)
000 AX 000 AL
001 CX OOt CL
010 OX 010 . OL
Otl 8X Otl 8L
100 SP 100 AH

,101 8P 101 CH
110 51 ItO OH
111 DI 111 BH

Seamont
00 ES
01 CS
to 55
11 OS

InstructIOns which reference the flag register file as a 16-blt object use
the symbol FLAGS to repre.enl the file

FLAGS = X X X X (OF) (OF) (IF) (TF) (SF) (ZF) X (AF) X (PF) X (CF)

3-24

iAPX 186
HIGH INTEGRATION 16-BIT MICROPROCESSOR

• Integrated Feature Set
-Enhanced 8086-2 CPU
-Clo_ck Generator
-2 Independent, High-Speed DMA

Channels
-Programmable Interrupt Controller
-3 Programmable 16-bit Timers
-Programmable Memory and

• Direct Addressing Capability to
1 MByte of Memory

• Completely Object Code Compatible
with All Existing iAPX 86, 88 Software
-10 New Instruction Types

Peripheral Chip-Select Logic
-Programmable Wait State Generator

• Complete System Development
Support
-Development Software: Assembler,

PL/M, Pascal, Fortran, and System
Utilities -Local Bus Controller

• Available In 8 MHz (80186) and cost
effective 6 MHz (80186-6) versions_

• High-Performance Processor
-2 Times the Performance of the

Standard iAPX 86
-4 MByte/Sec Bus Bandwidth

Interface

CLKOUT Vee GND

rD~ ! !
I I ExEcUTION uNiT]
X, X, I

16-BIT I
ALU I

CLOCK I
GENERATOR I 16-BIT

GENERAL I
PURPOSE I REGISTERS

-1
'r it

-In-Circuit-Emulator (l2ICETM-186)
-iRMXTM 86,88 Compatible (80130

OSF)

• High Performance Numerical
Coprocessing Capability Through
8087 Interface

INT3/1NTA1

INT2/iNm

INfl TMR OUT 1 TMR OUT 0

TMRIN t TMRIN t
Ni' INio 1 f
~

, ,
PROGRAMMABLE

TIMERS
0 1 2

MAX COUNT ~
PROGRAMMABLE REGISTERS I

INTERRUPT
CONTROLLER MAX COUNT

REGISTER A

CONTROL REGISTERS

CONTROL I I 16-BIT REGISTERS COUNT REGISTER

it {
INTERNAL BUS DRQO

ORQ1

SRDY
ARDY
~
HOLD
HLOA

=~
-~
-I----
:::~ RES

RESET '-

J U U + .-1-
PROGRAMMABLE

DMAUNIT
0 1

CHIP-SELECT 20-81T
UNIT SOURCE POINTERS

BUS INTERFACE
1~BIT ~ 2O-91T

UNIT DESTINATION
SEGMENT POINTERS

REGISTERS

6-BYTE PROGRAMMABLE I 16-BIT
CONTROL TRANSFER COUNT PREFETCH

REGISTERS I 1 QUEUE CONTROL

I IIIH
REGISTERS

111 L~~A2 l.~ ..kAtE ~ ADO- A 16/53-LOCK LCS PCS5/A1
OT/A HE/S7 AD15 A19/S6 V

MCS0-3 PCSO-4

Figure 1. iAPX 186 Block Diagram

Intel Corporation Assumes No Responsibitity for the Use of Any CirCUitry Other Than Circuitry Embodied In an Intel Product No Other CirCUit Patent Licenses are Implied
Information Contained Herein Supercedes Previously Published Specifications On These Devices From Intel OCTOBER 1984

©INTELCORPORATION,1983 3-25 ORDER NUMBER: 210451-004

iAPX 186

,

The Intel iAPX 186 (80186 part number) is a highly integrated 16-bit microprocessor. The iAPX 186 effectively
combines 15-20 of the most common iAPX 86 system components onto one. The 80186 provides two times
greater' throughput t~an the standard 5 MHz iAPX 86. The iAPX 186 is upward compatible with iAPX 86 and 88
software and adds 1 b new instruction types to the existing set.

TOP

Symbol Pin No. Type

Vee,Vee 9,43 I

Vss, Vss 26,60 I

RESET 57 0

Xl, X2 59,58 I

CLKOUT 56 0

RES 24 I

So 52

51
52

AROY
CLKOUT

RESET
X2
Xl

vss
ALElQS~

RD/QSMO
WR/QSl

BHE
A19/S6
AlB/55
A17/S4
Al61S3

BOTTOM

'~ /'
" ~ ~~~!~8~~8~S~S~o8g

PIN NO.1 MARK !i <!i <!i < !i!i> !i <!i< < < < <

Figure 2. 80186 Pinout Diagram

Table 1. 80186 Pin Description

Name and Function

System Power: + 5 volt power supply:

System Ground,

TMR IN 1
TMR IN 0
ORQl

, ORQO

Reset Output indicates that the 80186 CPU il: being reset, and can be used as a system
reset. It is active HIGH, synchronized with the processor clock, and lasts an integer
number of clock periods corresponding to the length of the m signal.

Crystal Inputs, Xl and X2, provide an external connection for a fundamental mode
parallel resonant crystal for the Internal crystal oscillator. Xl can interface to an
external clock instead of a crystal. In this case, minimize the capacitance on X2 or
drive X2 with complemented Xl. The input or oscillator frequency is internally divided
by two to generate the clock signal (CLKOUT),

Clock Output provides the system with a 50% duty cycle waveform. All device pin
timings are specified relative to CLKOUT. CLKOUT has sufficient MOS drive capabilities
for the 8087 Numeric Processor Extension.

System Reset causes the 80186 to immediately terminate its present activity, clear the
internal logic, and enter a dormant state, This signal may be asynchronous to the
80186 clock. The 80186 begins fetching instructions approximately 7 clock cycles
after m is returned HIGH. m is required to be LOW for greater than 4 clock
cycles and is internally synchronized, For proper initialization, the LOW-to-HIGH transi-
tion of RES must occur no sooner than 50 microseconds after power up. This. input
is provided with a Schmitt-trigger to facilitate power-on m generation via an RC
network. When RES occurs, the 80186 will drive the status lines to an inactive level
for one clock, and then tri-state them.

3-26 210451-004

iAPX 186

Table 1. 80186 Pin Description (Continued)

Pin
Symbol No. Type Name and Function

TEST 47 I TEST is examined by the WAIT instruction If the TEST Input is HIGH when
"WAIT" execution begins, instruction executIOn will suspend TEST will be
resampled until it goes LOW, at which time execution will resume. If interrupts
are enabled while the 80186 is waiting for TEST, interrupts will be serviced. This
input is synchronized internally.

TMR IN 0, 20 I Timer Inputs are used either as clock or control signals, depending upon the
TMR IN 1 21 I programmed timer mode. These inputs are active HIGH (or LOW-to-HIGH

transitions are counted) and Internally synchronized

TMR OUT 0, 22 a Timer outputs are used to provide single pulse or continuous waveform gener-
TMR OUT 1 23 a ation, depending upon the timer mode selected.

DRQO 18 I DMA Request IS driven HIGH by an external deVice when it desires that a
DRQ1 19 I DMA channel (Channel 0 or 1) perform a transfer. These signals are active

HIGH, level-triggered, and internally synchronized.

NMI 46 I Non-Maskable Interrupt is an edge-triggered Input which causes a type 2
interrupt. NMI is not maskable internally. A transition from a LOW to HIGH
initiates the Interrupt at the next instruction boundary NMI is latched inter-
nally. An NMI duration of one clock or more will guarantee service. This input is
internally synchronized.

INTO,INT1, 45,44 I Maskable Interrupt Requests can be requested by strobing one of these pins.
INT2/INTAO 42 I/O When configured as inputs, these pins are active HIGH. Interrupt Requests are
INT3/INTA1 41 I/O synchronized internally. INT2 and INT3 may be configured via software to

provide active-LOW interrupt-acknowledge output signals. All interrupt inputs
may be configured via software to be either edge- or level-triggered. To ensure
recognition, all interrupt requests must remain active until the interrupt is
acknowleged. When iRMX mode is selected, the function of these pins
changes (see Interrupt Controller section of this data sheet).

A19/S6, 65 a Address Bus Outputs (16-19) and Bus Cycle Status (3-6) reflect the four most
A18/S5; 66 a significant address bits during T1' These signals are active HIGH. During T2,
A17/S4, 67 a T3, TW, and T4, status information is available on these lines as encoded
A16/S3 68 a below:

I I
Low

I
High

I S6 Processor Cycle DMA Cycle

S3,S4, and S5 are defined as LOW during T2-T4'

AD15-ADO 10-17, I/O Address/Data Bus (0-15) signals constitute the time mutiplexed memory or I/O
1-8 address (T1) and data (T2, T3, Tw, and T4) bus. The bus is active HIGH. Ao is

analogous to BHE for the lower byte of the data bus, pins D7 through Do. It is
LOW during T1 when a byte is to be transferred onto the lower portion of the
bus in memory or I/O operations.

BHE/S7 64 a During T1 the Bus High Enable signal should be used to determine if data is to
be enabled onto the most significant half of the data bus, pins D15-D8. BHE is
LOW during T1 for read, write, and interrupt acknowledge cycles when a byte is
to be transferred on the higher half of the bus. The S7 status information is
ava!lable during T2, T3, and T4' S7 is logically equivalent to BHE. The signal is
active LOW, and is tristated OFF during bus HOLD.

BHE and AO Encodings

BHE Value AO Value Function

0 0 Word Transfer
0 1 Byte Transfer on upper half of data bus (D15-D8)
1 0 Byte Transfer on lower half of data bus (D7-Do)
1 1 Reserved

3-27 210451-004

iAPX 186

Table 1. 80186 Pin Description (Continued)

Pin
Symbol No. Type Name and Function

ALE/QSO 61 0 Address Latch Enable/Queue Status 0 is provided by the 80186 to latch the
address into the 8282/8283 address latches. ALE is active HIGH. Addresses are
guaranteed to be valid on the trailing edge of ALE. The ALE rising edge is
generated off the rising edge of the CLKOUT immediately preceding T1 of the
associated bus cycle. effectively ope-half clock cycle earlier than in the stan-
dard 8086. The trailing edge is generated off the CLKOUT rising edge in T1 as
in the 8086. Note that ALE is never floated.

WR/QS1 63 0 Write Strobe/Queue Status 1 indicates that the data on the bus is to be written
into a memory or an I/O device. WR is active for T2. T3. and Tw of any write
cycle. It is active LOW. and floats during "HOLD." It is driven HIGH for one clock
during Reset. and then floated. When the 80186 is in queue status mode. the
ALE/QSO and WR/QS1 pins provide information about processor/instruction
queue interaction.

QS1 QSO Queue Operation
0 0 No queue operation
0 1 First opcode byte fetched from the queue
1 1 Subsequent byte fetched from the queue
1 0 Empty the queue

RD/QSMD 62 0 Read Strobe indicates that the 80186 is performing a memory or 1/0 read cycle.
RD is active LOW for T2• T3. and Tw of any read cycle. It is guaranteed not to go
LOW in T2 until~ter the Address Bus is floated. RD is active LOW. and floats
during "HOLD." RD isdriven HIGH for one clock during Reset. and then the output
driver is floated. A weak internal pull-up mechanism on the RD line holds it HIGH
when the line is not driven. During RESET t~pin is sampled to determine
whether the 80186 should provide ALE. WRand RD. or if the Queue-Status should
be provided. RD should be connected to GND to provide Queue-Status data.

ARDY 55 I Asynchronous Ready informs the 80186 that the addressed memory space or I/O
device will. complete a data transfer. The ARDY input pin will accept an .
asynchronous input. and is active HIGH. Only the riSing edge is internally
synchronized by the 80186. This means that the falling edge of ARDY must be
synchronized to the 80186 clock. If connected to Vee. no WAIT states are inserted.
Asynchronous ready (ARDY) or synchronous ready (SRDY) must be active to
terminate a bus cycle. If unused. this 'line should be tied LOW.

--
SRDY 49 I Synchronous Ready must be synchronized externally to the 80186. The use of

SRDY provides a relaxed system-timing specification on the Ready input. This is
accomplished by eliminating the one-half clock cycle which is required for
internally re~olving the signal level when using the ARDY input. This line is active
HIGH. If this line is connected to Vee. no WAIT states are inserted. Asynchronous
ready (ARDY) or synchronous ready (SRDY) must be active before a bus cycle is
terminated. If unused. this line should be tied LOW.

LOCK 48 0 LOCK output indicates that other system bus masters are not to gain control of
the system bus while LOCK is active LOW. The LOCK Signal is requested by the
LOCK prefix instruction and is activated at the beginning of the first data cycle
associated with the instruction following the LOCK prefix. It remains active
until the completion of the instruction following the LOCK prefix. No pre-
fetches will occur while LOCK is a!,serted. LOCK is active LOW. is driven HIGH
for one clock during RESET, and then floated.

3-28

iAPX 186

Table 1. 80186 Pin Description (Continued)

Pin
Symbol No. Type Name and Function

SO,S1,S2 52-54 0 Bus cycle status SO-82 are encoded to provide bus-transaction information:

80186 Bus Cycle Status Information

S2 S1 SO Bus Cycle Initiated

0 0 0 Interrupt Acknowledge
0 0 1 Read I/O
0 1 0 Write I/O
0 1 1 Halt
1 0 0 Instruction Fetch
1 0 1 Read Data from Memory
1 1 0 Write Data to Memory
1 1 1 Passive (no bus cycle)

The status pins float during "HOLD."

S2 may be used as a logical M/IO indicator, and 81 as a DT/R indicator.
The status lines are driven HIGH for one clock during Reset, and then floated
, ntil a bus cycle begins.

HOLD (input) 50 I HOLD indicates that another bus master is requesting the local bus. The
HLDA (output) 51 0 HOLD input is active HIGH. HOLD may be asynchronous with respect to the

80186 clock. The 80186 will issue a HLDA (HIGH) in response to a HOLD
request at the end of T4 or T1. Simultaneous with the issuance of HLDA, the
80186 will float the local bus and control lines. After HOLD is detected as
being LOW, the 80186 will lower HLDA. When the 80186 needs to run
another bus cycle, it will again drive the local bus and control lines.

UCS 34 0 Upper Memory Chip Select is an active LOW output whenever a memory
reference is made to the defined upper portion (1 K-256K block) of memory.

, This line is not floated during bus HOLD. The address range activating UCS is
software programmaple.

LCS 33 0 ' Lower Memory Chip Select is active LOW whenever a memory reference is
made to the defined lower portion (1 K-256K) of memory. This line is not
floated during bus HOLD, The address range activating LCS is software
programmable.

MCSO-3 38,37,36,35 0 Mid-Range Memory Chip Select signals are active LOW when a memory
reference is made to the define~id-range portion of memory (8K-512K).
These lines are not floated during us HOLD, The address ranges activating
MCSO-3 are software programmable,

peso 25 0 Peripheral Chip Select signals 0-4 are active LOW when a reference is made to

PCSH 27,28,29,30
the defined peripheral area (64K byte I/O space). These lines are not floated

0 during bus HOLD. The address ranges activating PCSO-4 are software
programmable.

PCS5/A1 31 0 Peripheral Chip Select 5 or Latched A1 may be programmed to provide a sixth
peripheral chip select, or to provide an internally latched A1 signal. The
address range activating PCS5 is software programmable, When programmed
to provide latched A1, rather than PCS5, this pin will retain the previously
latched value of A1 during a bus HOLD. A1 is active HIGH.

PCS6/A2 32 0 Peripheral Chip Select 6 or Latched A2 may be programmed to provide a
seventh peripheral chip select, or to provide an internally latched A2 signal.
The address range activating PCS6 is softwa~ogrammable. When pro-
grammed to provide latched A2, rather than PCS6, this pin will retain the
previously latched value of A2 during a bus HOLD, A2 is active HIGH,

DT/R 40 0 Data Transmit/Receive controls th!:J direction of data flow through the external
8286/8287 data bus transceiver. When LOW, data is transferred to the 80186.
When HIGH the 80186 places write data on the data bus.

DEN 39 0 Data Enable is provided as an 8286/8287 data bus transceiver output enable, :
DEN is active LOW during each memory and I/O access. DEN is HIGH whenever I'
DT/R changes state.

3-29

inter iAPX 186

FUNCTIONAL DESCRIPTION

Introduction

The following Functional Description describes the
base architecture of the iAPX 186: This architecture
is common to the iAPX 86, 88, and 286 microproces­
sor families as well. The iAPX 186 is a very high
integration 16-bit microprocessor. It combines 15-20
of the most common microprocessor system compo­
nents onto one chip while providing twice the perfor­
mance of the standard iAPX 86. The 80186 is object
code compatible with the iAPX 86, 88 microproces­
sors and adds 10 new instruction types to the exist­
ing iAPX 86, 88 instruction set.

iAPX 186 BASE ARCHITECTURE

The iAPX 86, 88, 186, and 286 family all contain the
same basic set of registers, instructions, and
addressing modes. The 80186 processor is upward
compatible with the 8086, 8088, and 80286 CPUs.

Register Set

The 80186 base architecture has fourteen registers
as shown in Figures 3a and 3b. These registers are
grouped into the following categories.

General Registers
Eight 16-bit general purpose registers may be used to
contain arithmetic and logical operands. Four of these
(AX, BX, CX, and OX) can be used as 16-bit registers or
split into pairs of separate 8-bit registers.

16-81T
REGISTER

NAME

AH

OH

07

AL

OL

SPECIAL
REGISTER

FUNCTIONS

O} MULTIPLY/DIVIDE
1/0 INSTRUCTIONS

Segment Registers
Four 16-bit special purpose registers select, at any
given time, the segments of memory that afe immedi­
ately addressable for code, stack, and data. (For
usage, refer to Memory Organization.)

Base and Index Registers
Four of the general purpose registers may also be
used to determine offset addresses of operands in
memory. These registers may contain base ad­
dresses or indexes to particular locations within a
segment. The addressing mode selects the.specific
registers for operand and ~ddress calculations.

Status and Control Registers
Two 16-bit special purpose registers record or alter
certain aspects of the 80186 processor state. These
are the Instruction Pointer Register, which contains
the offset address of the next sequential instruction
to be executed, and the Status Word Register, which
contains status and control flag bits (see Figures 3a
and 3b).

Status Word Description

The Status Word records specific characteristics of
the result of logical and arithmetic instructions (bits
0, 2, 4, 6, 7, and 11) and controls the operation of the
80186 within a given operating mode (bits 8, 9, and
10). The Status Word Register is 16-bits wide. The
function of the Status Word bits is shown in Table 2.

15 0

OS DATA SEGMENT SELECTOR

BYTE
ADDRESSABLE
(8·81T
REGISTER
NAMES
SHOWN)

lAX

OX

CX

BX

BP

CH

BH

CL

BL

) lOOP/SHIFT/REPEAT/COUNT

} BASE REGISTERS

cs ~ CODE SEGMENT SELECTOR

S5 STACK SEGMENT SELECTOR

ES EXTRA SEGMENT SELECTOR

SEGMENT REGISTERS

SI

01

SP

15

GENERAL
REGISTERS

} INDEX REGISTERS

) STACK POINTER

15 0

F I I STATUS WORD

IP INSTRUCTION POIN,TER

STATUS AND CONTROL)
REGISTERS

Figure 3a. 80186 General Purpose Register Set

3-30 210451-004

inter IAPX 186

STATUS FLAGS

CARRY ------------------------,

PARITY -------------------,

AUXILIARYCARAY -----------------,
ZERO ------------,

CONTROL FLAGS
L-_____ TRAP FLAG

'--------- INTERRUPT ENABLE
L-_________ DIRECTION FLAG

~ INTEL RESERVED

Figure 3b. Status Word Format

Table 2. Status Word Bit Functions manipulation, control transfer, high-level instruc­
tions, and processor control. These categories are
summarizeQ in Figure 4.

Bit Name Function Position
0 CF Carry Flag-Set on high-order bit

carry or borrow; cleared otherwise
2 PF Panty Flag-Set If low-order 8 bits

of result contain an even number of
1-bits; cleared otherwise

4 AF Set on carry from or borrow to the
low order four bits of AL; cleared
otherwise

6 ZF Zero Flag-Set if result is zero;
cleared otherwise

7 SF Sign Flag-Set equal to high-order
bit of result (0 if positive, 1 if negative)

8 TF Single Step Flag-Once set, a sin-
gle step interrupt occurs after the
next instruction executes. TF IS
cleared by the single step interrupt.

9 IF Interrupt-enable Flag-When set,
maskable interrupts will cause the
CPU to transfer control to an inter-
rupt vector specified location.

10 OF Direction Flag-Causes string
instructions to auto decrement
the appropriate index register
when set. Clearing OF causes
auto increment.

11 OF Overflow Flag-Set if the signed
result cannot be expressed
within the number of bits in the
destination operand; cleared
otherwise

Instruction Set

The instruction set is divided into ~even categories:
data transfer, arithmetic, shift/rotate/logical, string

\

3-31

An 80186 instruction can reference anywhere from
zero to several operands. An operand can reside in a
register, in the instruction itself, or in memory. Spe­
cific operand addressing modes are discussed later
in this data sheet.

Memory Organization

Memory is organized in sets of segments. Each seg­
ment is a linear contiguous sequence of up to 64K
(216) 8-bit bytes. Memory is addressed using a two­
component address (a pointer) that consists of a
16-bit base segment and a 16-bit offset. The 16-bit
base values are contained in one of four internal
segment registers (code, data, stack, extra). The
physical address is calculated by shifting the baSe
value LEFT by four bits and adding the 16-bit offset
value to yield a 20~bit physical address (see Figure 5).
This allows for a 1 MByte physical address size.

All instructions that add'ress operands in memory
must specify the base segment and the 16-bit offset
value. For speed and compact instruction encoding,
the segment register used for physical address gen­
eration is implied by the addressing mode used (see
Table 3). These rules follow the way programs are
written (see Figure 6) as independent modules that
require areas for code and data, a stack, and access
to external data areas.

Special segment override instruction prefixes allow
the implicit segment register selection rules to be.
overridden for -special cases. The stack, data, and
extra segments may coincide for simple programs.

210451-004

iAPX 186

GENERAL PURPOSE MOVS Move byte or word string

MOV Move byte or word INS Input bytes or word string

PUSH Push word onto stack OUTS Output bytes or word string

POP Pop word off stack CMPS Compare byte or word string

PUSHA Push all registers on stack SCAS Scan byte o(word string

POPA Pop all registers from stack LODS Load byte or word string

XCHG Exchange byte or word STOS Store byte or word string

XLAT Translate byte REP Repeat

INPUT/OUTPUT REPE/REPZ Repeat while equal/zero

IN Input byte or word REPNE/REPNZ Repeat while not equal/not zero

OUT Output byte or word
LOGICALS

ADDRESS OBJECT
NOT "Not" byte or word

LEA Load effective address
AND "And" byte or word

LDS Load pointer using DS
OR "Inclusive or" byte or word

LES Load pointer using ES
XOR "Exclusive or" byte or word

FLAG TRANSFER TEST "Test" byte or word
LAHF Load AH register from flags SHIFTS
SAHF Store AH register in flags

SHLISAL Shift logical/arithmetic left byte or word
PUSHF Push flags onto stack

SHR Shift logical right byte or word
POPF Pop flags off stack

SAR Shift arithmetic right byte or word

ROTATES
'ADDITION ROL Rotate left byte or word

ADD Add byte or word ROR Rotate right byte or word
ADC Add byte or word with carry RCL Rotate through carry left byte or word
INC Increment byte or word by 1 RCR Rotate through carry right byte or word
AAA ASCII adjust for addition

DAA Decimal adjust for addition FLAG OPERATIONS
SUBTRACTION STC Set carry flag

SUB Subtract byte or word CLC Clear carry flag

SBB Subtract byte or word with borrow CMC Complement carry flag

DEC Decrement byte or word by 1 STD Set direction flag

NEG Negate byte or word CLD Clear direction flag

CMP Compare byte or word STI Set interrupt enable flag

AAS ASCII adjust for subtraction CLI Clear interrupt enable flag

DAS Decimal adjust for subtraction EXTERNAL SYNCHRONIZATION
MULTIPLICATION HLT Halt until interrupt or reset

MUL Multiply byte or word unsigned' WAIT Wait for TEST pin active

IMUL Integer multiply byte or word ESC Escape to extension processor

AAM ASCII adjust for multiply LOCK Lock bus during next instruction

DIVISION' NO OPERATION
DIV Divide byte or word unsigned NOP No operation

IDIV Integer divide byte or word HIGH LEVEL INSTRUCTIONS
AAD ASCII adjust for division ENTER Format stack for procedure entry

CBW Convert byte to word LEAVE Restore stack for procedure exit

CWO. Convert word to doubleword BOUND Detects values outside prescribed range

Figure 4. iAPX 186 Instruction Set 210451-004

3-32

iAPX 186

CONDITIONAL TRANSFERS UNCONDITIONAL TRANSFERS
JAlJNBE Jump If above/not below nor equal CALL Call procedure

JAE/JNB Jump if above or equal/not below RET Return from procedure

JB/JNAE Jump if below/not above nor equal JMP Jump

JBE/JNA Jump if below or equal/not above

JC Jump If carry ITERATION CONTROLS
JE/JZ Jump if equal/zero

JG/JNLE Jump if greater/not less nor equal LOOP Loop

JGE/JNL Jump if greater or equal/not less LOOPE/LOOPZ Loop if equal/zero

JLlJNGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero

JLE/JNG Jump if less or equal/not greater JCXZ Jump if register CX = 0

JNC Jump if not carry

JNE/JNZ Jump if not equal/not zero INTERRUPTS
JNO Jump if not overflow

JNP/JPO Jump if not parity/parity odd INT Interrupt

JNS Jump if not sign INTO Interrupt if overflow

JO Jump if overflow IRET Interrupt return

JP/JPE Jump if parity/parity even

JS Jump if sign

Figure 4. iAPX 186 Instruction Set (continued)

To access operands that do not reside in one of the
four immediately available segments, a full 32-bit
pointer can be used to reload both the base (seg­
ment) and offset values.

I 1 2 3 6 2 I PHYSICAL ADDRESS

!:19~-"""--!O
TO MEMORY

Figure 5. "TINo Component Address

Table 3. Segment Register Selection Rules

Memory Segment
Reference Register Implicit Segment

Needed Used Selection Rule

Instructions Code (CS) Instruction prefetch and
immediate data.

Stack Stack (SS) f.1I stack pushes and
pops; any memory refer·
ences which use BP Reg-
ister as a base register.

External Extra (ES) All string instruction
Data references which use
(Global) the 01 register as an

index.

Local Data Data (OS) All other data references.

3-33

MODULE A

r- --,
I I

~ODE
DATA

MODULE B I.:::::==r----.

PROCESS
STACK

PROCESS
DATA
BLOCK 1

PROCESsD
DATA
BLOCK 2

I I
L ___ J

MEMORY

CPU

CODE

DATA

STACK

EXTRA

SEGMENT
REGISTERS

Figure 6. Segmented Memory Helps
Structure Software

210451~004

inter iAPX186

Addressing Modes

The 80186 provides eight categories of addressing
modes to specify operands. Two addressing modes
are provided for instructions that operate on register
or immediate ope~ands:

• Register Operand Mode: The operand is located in
one of the 8- or 16-bit general registers.

• Immediate Operand Mode: The operand is in­
cluded in the instruction.

Six modes are provided to specify the location of an
operand in a memory segment. A memory operand
address consists of two 16-bit components: a seg­
ment base and an offset. The segment base is sup­
plied by a 16-bit segment register either implicity
chosen by the addressing mode or explicitly chosen
by a segment override prefix. The offset, also called
the effective address, is calculated by summing any
combination of the following three address
elements:

• the displacement (an 8- or 16-bit immediate value
contained in the instruction); .

• the base (contents of either the BX or BP base
registers); and .

• the index (contents of either .the SI or DI index
registers).

Any carry out from the 16-bit addition is ignored.
Eight-bit displacements are sign extended to 16-bit
values.

Combinations of these three address elements
define the six memory addressing modes, described
below.

• Direct Mode: The operand's offset is contained in
the instruction as an 8- or 16-bit displacement
element.

• Register Indirect Mode: The operand's offset is in
one of the registers SI, DI, BX, or BP.

• Based Mode: The operand's offset is the sum of an
8- or 16-bit displacement and the contenls of a
base register (BX or BP).

• Indexed Mode: The operand's offset is the sum of
an 8- or 16-bit displacement and the contents of an
index register (SI or DI).

• Based Indexed Mode: The operand's offset is the
sum of the ~ontents of a base register and an index
register.

• Based Indexed Mode with Displacement: The
operand's offset is the sum of a base register's
contents, an index register's contents, and an 8- 'or
16-bit displacement.

Data Types

The 80186 directly supports the following data types:

• Integer: A signed binary numeric value contained
in an 8-bit byte or a 16-bit word. All operations
assume a 2's complement representation. Signed

32- and 64-bit integers are supported using the
iAPX 186/20 NumeriC Data Processor.

• Ordinal: An unsigned binary numeric value con­
tained in an 8-bit byte or a 16-bit word.

• Pointer: A 16- or 32-bit quantity, composed of a
16-bit off,set component or a 16-bit segment base
component in addition to a 16-bit offset
component.

• String: A contiguous sequence of bytes or words.
A string may contain from 1 to 64K bytes.

• ASCII: A byte representation of alphanumeric and
control characters using the ASCII standard of
character representation.

• BCD: A byte (unpacked) representation of the de­
cimal digits 0-9.

• Packed BCD: A byte (packed) representation of
two decimal digits (0-9). One digit is stored in,each
nibble (4-bits) of the byte.

• Floating Point: A signed 32-, 64-, or 80-bit real
number representation. (FJoating point operands
are supported using·the iAF'X 186/20 Numeric Data
Processor configuration.)

. In general, individual data elements must fit within
defined segmemt limits. Figure 7 graphically
represents the data types supported by the iAPX 186.

I/O Space

The I/O space consists of 64K 8-bit or 32K 16-bit
ports. Separate instructions address the I/O space
with either an 8-bit port address, specified in the
instruction, or a 16-bit port address in the DX regis­
ter. 8-bit port addresses are zero extended such that
A1s-Aa are LOW. I/O port addresses 00F8(H) through

. OOFF(H) are reserved.

Interrupts

An interrupt transfers execution to a new program
location. The old program address (CS:IP) and ma­
chine state (Status Word) are saved on the stack to
allow resumption of the interrupted program. Inter­
rupts fall into ,three classes: hardware initiated, INT
instructions, and instruction exceptions. Hardware
initiated interrupts occur in response to an external
input and are classified as non-maskable or
maskable.

3-34 210451-004

7 0
SIGNED rrrrrrrn
BYTE~

SIGN BIT J L--....J
MAGNITUDE

7 0
UNSIGNED rrnTTTT1

BYTE L......:.......
~
MAGNITUDE

1514 +1 87 0

s~~~g II iii' i 'I ' I iii iii
SIGN BIT..J,LMSB I

MAGNITUDE

SIGNED 31 +3 +2 1615 +1 0

D~~~~~ Iii j I iii Iii I Iii i I' iii iii Iii iii i I I
SIGN BIT J ,-I L..::M=SB=------.M"'AGrnN:mITrnU;;;DE..-------'

+7 +6 +5 +4 +3 +2 +1
SIGNED 63 4847 3231 1615 0

w~~~11 I I I I
SIGN BIT J,-I'-...::M",S:::.B --'M"'A"'GUONI;r.TU"'D"'E-----J

15 +1 0

UNS~~~g I iii [' III ii' Ii, i I
,LMSB

MAGNITUDE

BINARY 7 +N 0

CODED rrnTTTT1
DECIMAL L......:.......

(BCD) DI~7~ N

7 +N 0

ASCI1~
ASCII

CHARACTERN

7 +N 0
PACKED rrrrTT"1

BCD L-L.....J
L-..J
MOST
SIGNIFICANT .DIGIT

7 +1 07 0 I iii Iii iii Ii I Ii i I
BCD BCD

DIGIT 1 DIGIT 0

7 +1 07 0 I Ii i I Ii iii iii iii I
ASCII ASCII

CHARACTER, CHARACTERo

7 +1 07 0 0

Jilllilil'illiI'l
L-..J
LEAST

SIGNIFICANT DIGIT

715 +N 0 715 +1 0715 0 0

STRING ~ 1111111111111II11

BYTE/WORD N BVTEtWORD 1 BYTEIWORD 0

31 + 3 + 2 1615 + 1 0 0

POINTER Iii iii iii iii Iii iii iii iii Iii iii I i I
I

SELECTOR OFFSET
79+9 +8 +7 +6 +5 +4 +3 +2 +1

EXPONENT MAGNITUDE

NOTE:
'SUPPORTED BY ,APX 186120 NUMERIC DATA PROCESSOR
CONF)GURATION.

Figure 7. IAPX 186 Supported Data Types

IAPX 186

3-35

Programs may cause an interrupt with an INT in­
struction. Instruction exceptions occur when an un­
usual condition, which prevents further instruction
processing, is detected while attempting to execute
an instruction. If the exception was caused by ex­
ecuting an ESC instruction with the ESC trap bit set
in the relocation register, the return instruction will
point to the ESC instruction, or to the segment over­
ride prefix immediately preceding the ESC instruc­
tion if the prefix was present. In all other cases, the
return address from an exception will point at the
instruction immediately following the instruction
causing the exception.

A table containing up to 256 pointers defines the
proper interrupt service routine for each interrupt.
Interrupts 0-31, some of which are used for instruc­
tion exceptions, are reserved. Table 4 shows the
80186 predefined types and default priority levels.
For each interrupt, an 8-bit vector must be supplied
to the 80186 which identifies the appropriate table
entry. Exceptions supply the interrupt vector inter­
nally. In addition, internal peripherals and non­
cascaded external interrupts will generate their own
vectors through the internal interrupt controller. INT
instructions contain or imply the vector and allow
access to all 256 interrupts. Maskable hardware in­
itiated interrupts supply the 8-bit vector to the CPU
during an interrupt acknowledge bus sequence.
Non-maskable hardware interrupts use a predefined
internally supplied vector.

Interrupt Sources

The 80186 can service interrupts generated by soft­
ware or hardware. The software interrupts are
generated by specific instructions (INT, ESC, unused
Op, etc.) or the results of conditions specified by
instructions (array bounds check, INTO, DIV, IDIV,
etc.). All interrupt sources are serviced by an indirect
call through an element of a vector table. This vector
table is indexed by using the interrupt vector type
(Table 4), multiplied by four. All hardware-generated
interrupts are sampled at the end of each instruction.
Thus, the software interrupts will begin service first.
Once the service routine is entered and interrupts
are enabled, any hardware source of sufficient
priority can interrupt the service routine in progress.

The software generated 80186 interrupts are
described below.

DIVIDE ERROR EXCEPTION (TYPE 0)
Generated when a DIV or IDIV instruction quotient
cannot be expressed in the number of bits in the
destination.

210451-004

iAPX 186

Table 4. 80186 Interrupt Vectors

Vector Default Related
Interrupt Name Type Priority Instructions

Divide Error 0 '1 DIV,IDIV
Exception

Single Step 1 12"2 All
Interrupt

NMI 2 1 All
Breakpoint 3 '1 INT

Interrupt
INTO Detected 4 '1 INTO

Overflow
Exception

Array Bounds 5 '1 BOUND
Exception

Unused-Opcode 6 '1 Undefined
Exception Opcodes

ESC Opcode 7 *1 *** ESC Opcodes
Exception

Timer 0 Interrupt 8 2A····
Timer 1 Interrupt 18 28****
Timer 2 Interrupt 19 2C····
Reserved 9 3
DMA 0 Interrupt 10 4
DMA 1 Interrupt 11 5
INTO Interrupt 12 6
INT1 Interrupt 13 7
INT2 Interrupt 14 8
INT3 Interrupt 15 9

NOTES:
'I. These are generated as the result o} an instruction

execution.
"2. This is handled as In the 8086.

.... 3. All three timers constitute one source of request to the
interrupt controller The Timer interrupts all have the same
default priority level with respect to all other Interrupt
sources. However, they have a defined priority ordering
amongst themselves (Priority 2A IS higher Priority than
2B.) Each Timer interrupt has a separate vector type
number.

4. Default priorities for the Interrupt sources are used only if
the user does not program each source into a unique
priority level.

"'5. An escape opcode will cause a trap only if the proper bit is
set in the peripheral control block relocation register.

SINGLE-STEP INTERRUPT (TYPE 1)
Generated after most instructions if the TF flag is set.
Interrupts will not be generated after prefix instruc­
tions (e.g., REP), instructions which modify segment
registers (e.g., POP OS), or the WAIT instruction.

NON-MASKABLE INTERRUPT -NMI (TYPE 2)
An external interrupt source which cannot be
masked.

BREAKPOINT INTERRUPT (TYPE 3)
A one-byte version of the INT instruction. It uses 12
as an index into the service routine address table
(because it is a type 3 interrupt).

INTO DETECTED OVERFLOW EXCEPTION
(TYPE 4)
Generated during an INTO instruction if the OF bit is
set.

ARRAY BOUNDS EXCEPTION (TYPE 5)
Generated during a BOUNO instruction if the array
index is outside the array bounds. The array bounds
are located in memory at a location indicated by one
of the instruction operands. The other operand indi­
cates the value of the index to be checked.

UNUSED OPCODE EXCEPTION (TYPE 6)
Generated if execution is attempted on undefined
opcodes.

ESCAPE OPCODE EXCEPTION (TYPE 7)
Generated if execution is attempted of ESC opcodes
(08H-OFH). This exception will only be generated if a
bit in the relocation register is set. The return ad­
dress 9f this exception will point to the ESC instruc­
tion causing the exception. If EJ: segment override
prefix preceded the, ESC instruction, the return ad­
dress will point to the segment override prefix.

Hardware-generated interrupts are divided into two
groups: maskable interrupts and non-maskable in­
terrupts. The 80186 provides maskable hardware in­
terrupt request pins INTO-INT3. In addition,
maskable interrupts may be generated by the 80186
integrated OMA controller and the integrated timer
unit. The vector types for these'interrupts is shown in
Table 4. Software enables these inputs by setting the
interrupt flag bit (IF) in the Status Word. The interrupt
controller is discussed in the peripheral section of
this data sheet.

Further maskable interrupts are disabled while
servicing an interrupt because the IF bit is reset as
part of the response to an interrupt or exception. The
saved Status Word will reflect the enable status of the
processor prior to the interrupt. The interrupt flag
will remain zero unless specifically set. The interrupt
return instruction restores the Status Word, thereby
restoring the original status of IF bit. If the interrupt
return re-enables interrupts, and another interrupt is
pending, the 80186 will immediately service the
highest-priority interrupt pending, I.e., no instruc­
tions of the main line program will be executed.

Non-Maskable Interrupt Request (NMI)

3-36

A non-maskable' interrupt (NMI) is also provided.
This interrupt is serviced regardless of the state of
the IF bit. A typical use of NMI would be to activate a
power failure routine. The activation of this input

210451~004

in1er iAPX 186

causes an interrupt with an internally supplied vector
value of 2. No external interrupt acknowledge se­
quence is performed. The IF bit is cleared at the
beginning of an NMI interrupt to prevent maskable
interrupts from being serviced.

Single-Step Interrupt

The 80186 has an internal interrupt that allows pro­
grams to execute one instruction at a time. It is called
the single-step interrupt and is controlled by the
single-step flag bit (TF) in the Status Word. Once this
bit is set, an internal single-step interrupt will occur
after the next instruction has been executed. The
interrupt clears the TF bit and uses an internally
supplied vector of1. The IRET instruction is used to
set the TF bit and transfer control to the next instruc­
tion to be single-stepped.

Initialization and Processor Reset

Processor initialization or startup is accomplished
by driving the RES input pin Law. RES forces the
80186 to terminate all execution and local bus ac­
tivity. No instruction or bus activity will occur as long
as RES is active. After RES becomes inactive and an
internal processing interval elapses, the 80186
begins execution with the instruction at physical lo­
cation FFFFO(H). RES also sets some registers to
predefined values as shown in Table 5.

Table 5. 80186 Initial Register State after RESET

Status Word F002(H)
Instruction Pointer OOOO(H)
Code Segment FFFF(H)
Data Segment OOOO(H)
Extra Segment OOOO(H)
Stack Segment OOOO(H)
Relocation Register 20FF(H)
UMCS FFFB(H)

iAPX 186 CLOCK GENERATOR

The iAPX 186 provides an on-chip clock generator
for both internal and external clock generation. The
clock generator features a crystal oscillator, a divide­
by-two counter, synchronous and asynchronous
ready inputs, and reset circuitry.

Oscillator

The oscillator circuit of the iAPX 186 is designed to
be used with a parallel resonant fundamental mode
crystal. This is used as the time base for the iAPX 186.
The crystal frequency selected will be double the
CPU clock frequency. Use of an LC or RC circuit is not

recommended with this oscillator. If an external oscil­
lator is used, it can be connected directly to input pin
X1 in lieu of a crystal. The output of the oscillator is
not dir~etly available outside the iAPX 186. The
recommended crystal configuration is shown in
Figure 8.

x,r-----------~

c::::J x MHz CRYSTAL

~r-----------~
80186 T 20pF

Figure 8. Recommended iAPX 186 Crystal
Configuration

16

12

The following parameters may be used for choosing a
crystal:

Temperature Range:
ESR (Equivalent Series Resistance):
Co (Shunt Capacitance of Crystal):
C1 (Load Capacitance):
Drive Level:

Clock Generator

o to 70° C
300 max

7.0 pf max
20 pf ± 2 pf

1 mw max

The iAPX 186 clock generator provides the 50% duty
cycle processor clock for the iAPX 186. It does this by
dividing the oscillator output by 2 forming the sym­
metrical clock. If an external oscillator is used, the
state of the clock generator will change on the falling
edge of the oscillator signal. The CLKOUT pin pro­
vides the processor clock signal for use outside the
iAPX 186. This may be used to drive other system
components. All timings are referenced to the output
clock.

READY Synchronization

The iAPX 186 provides both synchronous and asyn·
chronous ready inputs. Asynchronous ready syn·
chronization is accomplished by circuitry which
samples ARDY in the middle of T2, T3 and again in
the middle of each T w until ARDY is sampled
HIGH. One·half CLKOUT cycle of resolution time is
used. Full synchronization is performed only on the
rising edge of ARDY, i.e., the falling edge of ARDY
must be synchronized to the CLKOUT signal if it
will occur during T2, T3 or'rw. High·to·LOW transi·
tions of ARDY must be performed synchronously
to the CPU clock.

3-37 210451-004

iAPX 186

A second ready Input (SRDY) is provided to inter·
face with externally synchronized ready signals.
This input is sampled at the end of T2, T3 and again
at the end of each Tw until it is sampled HIGH. By
using this input rather than the asynchronous
ready Input, the half·clock cycle resolution time
penalty is eliminated.

This input must satisfy set-up and hold times to
guarantee proper operation of the circuit.

In addition, the iAPX 186, as part of the integrated
chip-select logic, has the capability to program WAIT
states for memory and peripheral blocks. This is dis­
cussed in the Chip Select/Ready Logic description.

RESET Logic
The iAPX 186 provides both a RES input pin and a
synchronized RESET pin for use with other system
components. The RES input pin on the iAPX 186 is
provided with hysteresis in order to facilitate power­
on Reset generation via an RC network. RESET is
guaranteed to remain active for at least five clocks
given a RES input of at least six clocks. RESET may
be delayed up to two and one-half clocks behind
RES.

Multiple iAPX 186 processors may be synchronized
through the RES input pin, since this input resets
both the processor and divide-by-two internal count­
er in the clock generator. In order to insure that the
divide-by-two counters all begin counting at the
same time, the active going edge of RES must satisfy
a 25 ns setup time before the falling edge of the
80186 clock input. In addition, in order to insure that
all CPUs begin executing in the same clock cycle, the
reset must satisfy a 25 ns setup time before the rising
edge of the CLKOUT signal of all the processors.

LOCAL BUS CONTROLLER
The iAPX 186 provides a local bus controller to
generate the local bus control signals. In addition, it
employs a HOLD/HLDA protocol for relinquishing
the local bus to other bus masters. It also provides
control lines that can be used to enable external
buffers and to direct the flow of data on and off the
local bus.

Memory/Peripheral Control
The iAPX 186 provides ALE, RD, and WR bus control
signals. The RD and WR signals are used to strobe
data from memory to the iAPX 186 or to strobe data
from the iAPX 186 to memory. The ALE line provides
a strobe to address latches for the multiplexed ad­
dress/data bus. The iAPX 186 local bus controller
does not provide a memory/I/O signal. If ~his is re­
quired, the user will have to use the S2 signal (which
will require external latching), make the memory and
I/O spaces nonoverlapping, or use only the in­
tegrated chip-select circuitry.

Transceiver Control
The iAPX 186 generates two control signals to be
connected to 8286/8287 transceiver chips. This capa­
bility allows the addition of transceivers for extra
buffering without adding external logic. These con­
trollines, DT!R and DEN, are generated to control the
flow of data through the transceivers. The operation
of these signals is shown in Table 6.

Table 6. Transceiver Control Signals Description

Pin Name Function

DEN (Data Enable) Enables the output drivers of
the transceivers. It is active
LOW during memory, I/O, or
INTA cycles.

DTiR (Data Transmit! Determines the direction of
Receive) travel through the transceivers.

A HIGH level directs data away
from the processor during write
operations, while a LOW level
directs data toward the proces-
sor during a read operation.

Local Bus Arbitration
The iAPX 186 uses a HOLD/HLDA system of local bus
exchange. This provides an asynchronous bus ex­
change mechanism. This means multiple masters
utilizing the same bus can operate at separate clock
frequencies. The iAPX 186 provides a single
HOLD/HLDA pair through which all other bus mas­
ters may gain control of the local bus. This requires
external circuitry to arbitrate which external device
will gain control of the bus from the iAPX 186 when
there is more than one alternate local bus master.
When the iAPX 186 relinquishes control of the local
bus, it floats DEN, RD, WR, SO-52,· LOCK, ADO­
AD15, A16-A19, BHE, and DT/R to allow another
master to drive these lines directly.

The iAPX 186 HOLD latency time, i.e., the time be­
tween HOLD request and HOLD acknowledge, is a
function of the activity occurring in the processor
when the HOLD request is received. A HOLD request
is the highest-priority activity request which the pro­
cessor may receive: higher than instruction fetching
or internal DMA cycles. However, if a DMA cycle is in
progress, the iAPX 186 will complete the transfer
before relinquishing the bus. This implies that if a
HOLD request is received just as a DMA transfer
begins, the HOLD latency time can be as great as 4
bus cycles. This will occur if a DMA word transfer
operation is taking place from an odd address to an
odd address. This is Ii total of 16 clocks or more, if
WAIT states are required. In addition, if locked trans­
fers are performed, the HOLD latency time will be
increased by the length of the locked transfer.

3-38 210451·004

iAPX 186

Local Bus Controller and Reset

Upon receipt of a RESET pulse from the RES input,
the local bus controller will perform the following
actions:
• Drive DEN, RD, and WR HIGH for one clock cycle,

then float.

NOTE:" RD is also provided with an internal pull-up
device to prevent the processor from inadvertently
entering Queue Status mode during reset.

• Drive SO-S2 to the passive state (all HIGH) and
then float.

• Drive LOCK HIGH and then float.
• Tristate ADO-15, A16-19, BHE, DT/R.
• Drive ALE LOW (ALE is never floated).
• Drive HLDA LOW.

INTERNAL PERIPHERAL INTERFACE

All the iAPX 186 integrated peripherals are con­
trolled via 16-bit registers contained within an inter­
nal 256-byte control block. This control block may be
mapped into either memory or I/O space. Internal
logic will recognize the address and respond to the
bus cycle. During bus cycles to internal registers, the
bus controller will 'signal the operation externally
(I.e., the RD, WR, status, address, qata, etc., lines will
be driven as in a normal bus cycle), but D15- 0 , SRDY,
and ARDY will be ignored. The base address of the
control block must be on an even 256-byte boundary
(I.e., the lower 8 bits of the base address are all
zeros). All of the defined registers within this control
block may be read or written by the 80186 CPU at any
time. The location of any register contained within
the 256-byte control block is determined by the cur­
rent base address of the control block.

The control block base address ·is programmed via a
16-bit relocation register contained within the con­
trol block at offset FEH from the base address of the
control block (see Figure 9). It provides the upper 12
bits of the base address of the control block. Note
that mapping the control register block into an ad­
dress range corresponding to a chip-select range is
not recommended (the chip select circuitry is dis­
cussed later in this data sheet). In addition, bit 12 of
this register determines whether the control block
will be mapped into I/O or memory space. If this bit is
1, the control block will be located in memory space,
whereas if the bit is 0, the control block will be lo­
cated in I/O space. If the control register block is
mapped into I/O space, the upper 4 bits of the base
address must be programmed as 0 (since I/O ad­
dresses are only 16 bits wide).

In addition to providing relocation inform~tion for
the control block, the relocation register contains
bits which place the interrupt controller into iRMX
mode, and cause the CPU to interrupt upon en­
countering E;SC instructions. At RESET, the reloca­
tion register is set to 20FFH. This causes the control
block to start at FFOOH in I/O space. An offset map
of the 256-byte control register block is shown in
Figure 10.

The integrated iAPX 186 peripherals operate semi­
autonomously from the CPU. Access to them for the
most part is via software read/write of the control and
data locations in the control block. Most of these
registers can be both read and written. A few
dedicated lines, such as interrupts and DMA request
provide real-time communication between the CPU
and peripherals as in a more conventional system
utilizing discrete peripheral blocks. The overall inter­
action and function of the peripheral blocks has not
substantially changed.

CHIP-SELECT/READY GENERATION
LOGIC

The iAPX 186 contains logic which provides pro­
grammable chip-select generation for both
memories and peripherals. In addition, it can be pro­
grammed to provide READY (or WAIT state) genera­
tion. It can also provide latched address bits A1 and
A2. The chip-select lines are active for all memory
and I/O cycles in their programmed areas, whether
they be generated by the CPU or by the integrated
DMA unit.

Memory Chip Selects

The iAPX 186 provides 6 memory chip select outputs
for 3 address areas: upper memory, lower memory,

. and midrange memory. One each is provided for up­
per memory and lower memory, while four are pro­
vided for midrange memory.

The range for each chip select is user-programmable
and can be set to 2K, 4K, 8K, 16K, 32K, 64K, 128K
(plus 1 K and 256K for upper and lower chip selects).
In addition, the beginning or base address of the
midrange memory chip select may also be selected.
Only one chip select may be programmed to be ac­
tive for any memory location at a time. All chip select
sizes are in bytes, whereas iAPX 186 memory is ar­
ranged in words. This means that if, for example, 16
64K x 1 memories are used, the memory block size
will be 128K, not 64K.

3-39 210451-004

iAPX 186

4

OFFSET: FEH Relocation Address Bits RI9-RS ~~-L~~ ____________________________ ~

ET = ESC Trap I No ESC Trap (1/0)
MilO = Register block located In Memory 11/0 Space (1/0)
RMX = Master Interrupt Controller mode IIRMX compatible

Interrupt Centroller mode (011)

Figure 9. Relocation Register

Relocation Register

DMA D~scriptors Channel 1

OMA Descriptors Channel 0

Chip-Select Control Registers

Timer 2 Control Registers

Timer 1 Control Registers

Timer 0 Control Registers

Interrupt Controller Registers

OFFSET

FEH

DAH

DOH

CAH

COH

ASH

AOH

66H

60H
5EH

58H
56H

50H

3EH

20H

Figure 10. Internal Register Map

Upper Memory CS

The iAPX 186 provides a chip select, called UCS, for
the top of memory. The top of memory is usually used
as the system memory because after. reset the iAPX
186 begins executing at memory location FFFFOH.

The upper limit of memory defined by this chip select
is always FFFFFH, while the lower limit is program­
mable. By programming the lower limit, the size of
the select block is also defined. Table 7 shows the
relationship between the base address selected and
the size of the memory block obtained.

3-40

Table 7. UMCS Programming Values

Starting
Address Memory UMCS Value

(Base Block (Assuming
Address) Size RO=R1 =R2=O)

FFCOO 1K FFF8H
FF800 2K FFB8H
FFOOO 4K FF38H
FEOOO 8K FE38H
FCOOO 16K FC38H
F8000 32K F838H
FOOOO 64K F038H
EOOOO 128K E038H
COOOO 256K C038H

The lower limit of this memory block is defined in the
UMCS register (see Figure 11). This register is at
offset AOH in the internal control block. The legal
values for bits 6-13 and the resulting starting ad­
dress and memory blOCk sizes are given in Table 7.
Any combination of bits 6-13 not shown in Table 7
will result in undefined operation. After reset, the
UMCS register is programmed for a 1K area. It must
be reprogrammed if a larger upper memory area is
desired.

Any internally generated 20-bit address,whose upper
16 bits are greater than or equal to UMCS (with bits
0-5 "0") will cause UCS to be activated. UMCS bits
R2-RO are used to specify READY mode for the area
of memory defined by this chip-select register, as
explained below.

Lower Memory CS

The iAPX 186 provides a chip select for low memory
called LCS. The bottom of memory contains the inter­
rupt vector table, starting at location OOOOOH.

The lower limit of memory defined by this chip select
is always OH, while the upper limit is programmable.
By programming the upper limit, the size of the
memory block is also defined. Table 8 shows the
relationship between the upper address selected and
the size of the memory block obtained.

210451-004

inter iAPX 186

Table 8. LMCS Programming Values

Memory LMCS Value
Upper Block (Assuming

Address Size RO=R1 =R2=O)

003FFH 1K 0038H
007FFH 2K 0078H
OOFFFH 4K 00F8H
01FFFH 8K 01F8H
03FFFH 16K 03F8H
07FFFH 32K 07F8H
OFFFFH 64K OFF8H
1FFFFH 128K 1FF8H
3FFFFH 256K 3FF8H

The upper limit of this memory block is defined in the
LMCS register (see Figure 12). This register is at
offset A2H in the internal control block. The legal
values for bits 6-15 and the resulting upper address
and memory block sizes are given in Table 8. Any
combination of bits 6-15 not shown in Table 8 will
result in undefined operation. After reset, the LMCS
register value is undefined. However, the LCS chip­
select line will not become active until the LMCS
register is accessed.

Any internally generated 20-bit address whose upper
16 bits are less than or equal to LMCS (with bits 0-5
"1") will cause LCS to be active. LMCS register bits
R2-RO are used to specify the READY mode for the
area of memory defined by this chip-select register.

Mid-Range Memory CS
The iAPX 186 provides four MCS lines which are
active within a user-locatable memory block. This
block can be located anywhere within the iAPX 186
1 M byte memory address space exclusive of the
areas defined by UCS and LCS. Both the base ad­
dress and size of this memory block are
programmable.

The size of the memory block defined by the mid­
range select lines, as shown in Table 9, is determined

by bits 8-14 of the MPCS register (see Figure 13) ..
This register is at location A8H in the i,nternal control
block. One and only one of bits 8-14 must be set at a
time. Unpredictable operation of the MCS lines will
otherwise occur. Each of the four chip-select lines is
active for one of the four equal contiguous divisions
of the mid-range block. Thus, if the total block size is
32K, each chip select is active for BK of memory with
MCSO being active for the first range and MCS3
being active for the last range.

The EX and MS in MPCS relate to peripheral
functionally as described in a later section.

Table 9. MPCS Programming Values

Total Block Individual MPCS Bits
Size Select Size 14-8

8K 2K 00000018
~6K 4K 00000108
32K 8K 00001008
64K 16K 00010008
128K 32K 00100008
256K 64K 01000008
512K 128K 10000008

The base address of the mid-range memory block is
defined by bits 15-9 of the MMCS register (see Fig­
ure 14). This register is at offset A6H in the internal
control block. These bits correspond to bits A19-A13
of the 20-bit memory address. Bits A12-AO of the
base address are always O. The base address may be
set at any integer multiple of the size of the total
memory block selected. For example, if the mid­
range block size is 32K (or the size of the block for
which each MCS line is active is 8K), the block could
be located at 10000H or 18000H, but not at 14000H,
since the first few integer multiples of a 32K memory
block are OH, 8000H, 10000H, 18000H, etc. After
reset, the contents of both of these registers is un­
defined. However, none of the MCS lines will be ac­
tive until both the MMCS and MPCS registers are

, accessed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 °
OFFSET: AOHI 1 I 1 I U I U I U I U I U lui u 1 u I 1 I 1 1 1 I R2 1 Rl I RO I

A19 All

Figure 11. UMCS Register

15 14 13 12 11 10 9 8 7 6 5 4 2 1 °
OFFSET: A2H LI-::0;::-l-I-=0-l..-=u:...J,.J-=U::....J.-=U::....J.J-=U::....J._U::...JJ_u::...J--'::"U ...l..,,:;,u,-LI ..:.'-1..1 ..:.1-L1 ..:.1-L1.::R2:...J,.J.::R.:..' .l.1.::RO::,.J1

A19 All

Figure 12. LMCS Register

3-41 210451-004

intel' iAPX 186

15 14 13 12 11 10 9 8 7 6 4 2 ,1 0

OFFSET: A8H I 1 I M6 I M5 I M4 I M3 I M2 I Ml I MO I EX I MS I 1 I 1 I 1 I R2 I Rl I RO I

Figure 13. MPCS Register

15

OFFSET: A6H I u I u I u I u I U ulull11111111111R21RliROI
A19 A13

Figure 14. MMCS Register

MMCS bits R2-RO specify READY mode of operation
for all mid-range chip selects. All devices in mid­
range memory must use the same number of WAIT
states.

The 512K block size for the mid-range memory chip
selects is a special case: When using 512K, the base
address would have to be at either locations OOOOOH
or 80000H. If it were to be programmed at OOOOOH
when the LCS line was programmed, there would be
an internal conflict between the LCS ready genera­
tion logic and the MCS ready generation logic .•
Likewise, if the base address were programmed at
80000H, there would be a conflict with the UCS ready
generation logic. Since the LCS chip-select line does
not become active until programmed, while the UCS
line is active at reset, the memory base can be set
only at OOOOOH. If this base address is selected:
however, the LCS range must not be programmed.

Peripheral Chip Selects

The iAPX 186 can generate chip selects for up to
seven peripheral devices. These chip selects are ac­
tive for seven contiguous blocks of 128 bytes above a
programmable base address. This base address may
be located in either memory or I/O space.

Seven CS lines called PCSO-6 are generated by the
iAPX 186. The base address is user-programmable;

however it can only be a multiple of 1 K bytes, i.e., the
least significant 10 bits of the starting address are
always O.

PCS5 and PCS6 can also be programmed to provide
latched address bits A1, A2. If so programmed, they
cannot be used as peripheral selects. These outputs
can be connected directly to the AO, A 1 pins used for
selecting internal registers of 8-bit peripheral chips.
This scheme simplifies the hardware interface be­
cause the 8-bit registers of peripherals are simply
treated as 16-bit registers located on even bound­
aries in I/O space or memory space where only the
lower 8-bits of the register are significant: the upper
8-bits are "don't cares."

The starting address of the peripheral chip-select
block is defined by the PACS register (see Figure 15).
This register is located at offset A4H in the internal
control block. Bits 15-6 of this register correspond to
bits 19-10 of the 20-bit Programmable Sase Address
(PBA) of the peripheral chip-select block. Bits 9-0 of
the PBA of the peripheral chip-select block are all
zeros. If the Chip-select block is located in I/O space,
bits 12-15 must be programmed zero, since the I/O
address is only 16 bits wide. Table 10 shows the
address range of each peripheral chip select with
respect to the PBA contained in PACS register.

15 6 5

OFFSET: A4H I u I u I u u 'I u I u u I u I u I u 1 1 I I R2 I Rl I RO I
A19 Al0

Figure 15. PACS Register

3-42 210451-004

iAPX 186

The user should program bits 15-6 to correspond to
the desired peripheral base location. PACS bits 0-2
are used to specify READY mode for PCSO-PCS3.

Table 10. PCS Address Ranges

PCS Line Active between Locations

PCSO PBA -PBA+127
PCS1 PBA+128 -PBA+255
PCS2 PBA+256 - PBA+383
PCS3 PBA+384 -PBA+511
PCS4 PBA+512-PBA+639
PCS5 PBA +640 - PBA + 767
PCS6 PBA + 768 - PBA +895

The mode of operation of the peripheral chip selects
is defined by the MPCS register (which is also used to
set the size of the mid-range memory chip-select
block, see Figure 16). This register is located at offset
A8H in the internal control block. Bit 7 is used to
select the function of PCS5 and PCS6, while bit 6 is
used to select whether the peripheral chip selects
are mapped into memory or I/O space. Table 11 de­
scribes the programming of these bits. After reset,
the contents of both the MPCS and the PACS regis­
ters are undefined, however none of the PCS lines
will be active until both of the MPCS and PACS regis­
ters are accessed.

Table 11. MS, EX Programming Values

Bit Description

MS 1 = Peripherals mapped into memory space.
0 = Peripherals mapped into I/O space.

EX 0 = 5 PCS lines. A1, A2 provided.
1 = 7 PCS lines. A1, A2 are not provided.

MPCS bits 0-2 are used to specify READY mode for
PCS4-PCS6 as outlined below.

READY Generation Logic

The iAPX 186 can generate a "READY" signal inter­
nally for each of the memory or peripheral CS lines.
The number of WAIT states to be inserted for each
peripheral or memory is programmable to provide
0-3 wait states for all accesses to the area for which
the chip select is active. In addition, the iAPX 186 may
be programmed to either ignore external READY for

each chip-select range individually or to factor exter­
nal READY with the integrated ready generator.

READY control consists of 3 bits for each CS line or
group of lines generated by the iAPX 186. The inter­
pretation of the ready bits is shown in Table 12.

Table 12. READY Bits Programming

R2 R1 RO Number of WAIT States Generated

0 0 0 o wait states, external ROY also used.
0 0 1 1 wait state inserted, external ROY also

used.
0 1 0 2 wait states inserted, external ROYaiso

used.
0 1 1 3 wait states inserted, external ROYaiso

used.
1 0 0 o wait states, external ROY ignored.
1 0 1 1 wait state inserted, external ROY

ignored.
1 1 0 2 wait states inserted, external ROY

ignored.
1 1 1 3 wait states inserted, external ROY

ignored.

The internal ready generator operates in parallel with
external READY, not in series if the external READY
is used (R2 = 0). This means, for example, if the
internal generator is set to insert two wait states, but
activity on the external READY lines will insert four
wait states, the processor will only insert four wait
states, not six. This is because the two wait states
generated by the internal generator overlapped the
first two wait states generated by the external ready
signal. Note that the external ARDYand SRDY lines
are always ignored during cycles accessing internal
peripherals.

R2-RO of each control word specifies the READY
mode for the corresponding block, with the excep~
tion of the peripheral chip selects: R2-RO of PACS
set the PCSO-3 READY mode, R2-RO of MPCS set
the PCS4-6 READY mode.

Chip Select/Ready Logic and Reset

Upon reset, the Chip-Select/Ready Logic will per­
form the following actions:

• All chip-select outputs will be driven HIGH.
• Upon leaving RESET, the UCS line will be pro­

grammed to provide chip selects to a 1 K block with
the accompanying READY control bits set at 011 to

15 14 13 12 11 10 9 8 7 6 2 1 0

OFFSET: ASH I 1 I M6 I M5 I M4 I M3 I M2 I M1 I MO I EX I MS I 1

Figure 16. MPCS Register

3-.43 210451-004

iAPX 186

allow the maximum number of internal wait states
in conjunction with external Ready consideration
(Le., UMCS resets to FFFBH).

• No other chip select or READY control registers
have any predefined values after RESET. They will
not become active until the CPU accesses their
control registers. Both the PACS and MPCS regis­
ters must be accessed before the PCS lines will
become active.

DMA CHANNELS

The 80186 DMA controller provides two independent
high-speed DMA ch.annels. Data transfers can occur
between memory and I/O spaces (e.g., Memory to
I/O) or within the same space (e.g., Memory to
Memory or I/O to I/O). Data can be transferred either
in bytes (8 bits) or in words (16 bits) to or from even or
odd addresses. Each DMA channel maintains both a
20-bit source and destination pointer which can be
optionally incremented or decremented after each
data transfer (by one or two depending on byte or
word transfers). Each data transfer consumes 2 bus
cycles (a minimum of 8 clocks), one cycle to fetch
data and the other to store data. This provides a
maximum data transfer rate of one Mword/sec or 2
MBytes/sec.

DMA Operation

Each channel has six registers in the control block
which define each channel's specific operation. The
control registers consist of a20-bit Source pointer (2
words), a 20-bit Destination pointer (2 words), a 16-
bit Transfer Counter, and a 16-bit Control Word. The
format of the DMA Control Blocks is shown in Table
13. The Transfer Count Register (TC) specifies the
number of DMA transfers to be performed. Up to 64K
byte or word transfers can be performed with auto­
matic termination. The Control Word defines the
channel's operation (see Figure 18). All registers may
be modified or altered during any DMA activity. Any
changes made to these registers will be reflected
immediately in DMA operation.

Table 13. DMA Control Block Format

Register Name

Control Word
Transfer Count
Destination Pointer (upper 4

bits)
Destination Pointer
Source Pointer (upper 4 bits
Source Pointer

DMA
CONTROL

LOGIC

TIMER REQUEST

Register Address

Ch.O Ch.1

CAH DAH
C8H D8H
C6H D6H

C4H D4H
C2H D2H
COH DOH

Figure 17. DMA Unit Block Diagram

3-44 210451-004

iAPX 186

15 14 13

MI DESTINATION
iO DEC INC

x ~ DON'T CARE.

Figure 18. DMA Control Register

DMA Channel Control Word Register

Each DMA Channel Control Word determines the
mode of operation for the particular 80186 DMA
channel. This register specifies:

• the mode of synchronization;
• whether bytes or words will be transferred;
• whether interrupts will be generated after the last

transfer;
• whether DMA activity will cease after a .pro­

grammed number of OMA cycles;
• the relative priority o~ the DMA channel with

respect to the other DMA channel;
• whether the source pointer will be incremented,

decremented, or maintained constant after each
transfer;

• whether the source pointer addresses memory or
I/O space; .

• whether the destination pointer will be incre­
mented, decremented, or maintained constant af~
ter each transfer; and

• whether the destination pointer will address
memory or I/O space.

The DMA channel control registers may be changed
while the channel is operating. However, any
changes made during operation will affect the cur­
rent DMA transfer.

DMA Control Word Bit Descriptions

S/W: Byte/Word (0/1) Transfers.

ST/STOP: Start/stop (1/0) Channel.

CHG/NOCHG: Change/Do not change (1/0)
ST/STOP bit. If this bit is set when
writing to the control word, the.
ST/STOP bit will be programmed by
the write to the control word. If this
bit is cleared when writing the con­
trol word, the ST/STOP bit will not
be altered. This bit is not stored; it
will always be a 0 on read.

3-45

INT:

TC:

SYN:
(2 bits)

Enable Interrupts to CPU on Trans­
fer Count termination.

If set, DMA will terminate when the
contents of the Transfer Count reg­
ister reach zero. The ST/STOP bit
will also be reset at this point if TC is
set. If this bit is cleared, the DMA
unit will decrement the transfer
count register for each DMA cycle,
but the DMA transfer will not stop
when the contents of the TC register
reach zero.

00 No synchronization.
NOTE: The ST bit will be cleared
automatically when the contents
of the TC register reach zero re­
gardless of the state of the TC bit.

01 Source synchronization.
10 Destination synchronization.
11 Unused.

SOURCE:INC Increment source pointer by 1 or 2
(depends on 8/W) after each
transfer.

M/iO

DEC

Source pointer is in M/IO space
(1/0r
Decrement source pointer by 1 or 2
(depends on 8/W) after each
transfer.

DEST: INC Increment destination pointer by 1
or 2 (8/W) after each transfer.

P

MOO Destination pointer is in M/IO space
(1/0).

DEC Decrement destination pointer by 1
or 2 (depending on 8/W) after each
transfer.

Channel priority-relative to other
channel.

o low priority.
1 high priority.

Channels will alternate cycles if
both set at same priority level.

210451-004

intJ IAPX 186

TDRQ

Bit 3

0: Disable DMA requests from timer
2.

1: Enable DMA requests from timer
2.

Bit 3 is not used.

If both INC and DEC are specified- for the same
pointer, the pointer will remain constant after each
cycle.

DMA Destination and Source Pointer
Registers
Each DMA channel maintains a 20-bit source and a
20-bit destination pointer. Each of these pointers
takes up two full 16-bit registers in the peripheral
control block. The lower four bits of the upper regis­
ter contain the upper four bits of the 20-bit physical
address (see Figure 18a). These pointers may be
individually incremented or decremented after each
transfer. If word transfers are performed the pointer
is incremented or decremented by two. Each pointer
may point into either memory or I/O space. Since the
DMA channels can perform transfers to or from odd
addresses, there is no restriction on values for the
pointer registers. H,igher transfer rates can be ob­
tained if all word transfers are performed to even
addresses, since this will allow data to be accessed in
a single memory access.

DMA Transfer Count Register
Each DMA channel maintains a 16·bit transfer
count register (TC). This register is decremented
after every DMA cycle, regardless of the state of
the TC bit in the DMA Control Register. If the TC bit
in the DMA control word is set or unsynchronized
transfers are programmed, however, DMA activity
will terminate when the transfer count register
reaches zero.

HIGHER
REGISTER
ADDRESS

LOWER
REGISTER
ADDRESS

xxx

A15-A12

15

xxx ~ DON'T CARE

xxx

All-AS

DMA Requests

Data transfers may be either source or destination _
synchronized, that is either the source of the data or
the destination of the data may request the data
transfer. In addition, DMA transfers may be un­
synchronized; that is, the transfer will take place
continually until the correct number of transfers has
occurred. When source or unsynchronized transfers
are performed, the DMA channel may begin another
transfer immediately after the end of a previous DMA
transfer. This allows a complete transfer to take place
every 2 bus cycles ot eight clock cycles (assuming no
wait states). No prefetching occurs when destination
synchronization is performed, however. Data will not
be fetched from the source address until the destina­
tion device signals that it is ready to receive it. When
destination synchronized transfers are requested,
the DMA controller will relinquish control of the bus
after every transfer. If no other bus activity is in­
itiated, another DMA cycle will begin after two pro­
cessor clocks. This is done to allow the destination
device time to remove its request if another transfer
is not desired. Since the DMA controller will relin­
quish the bus, the CPU can initiate a bus cycle. As a
result, a complete bus cycle will often be inserted
between destination synchronized transfers. These
lead to the maximum DMA transfer rates shown in
Table 14.

Table 14. Maximum DMA Transfer Rates

Type of
Synchronization

Selected CPU Running CPU Halted

Unsynchronized 2M Bytes/sec 2M Bytes/sec
Source Synch 2MBytes/sec 2MBytes/sec
Destination Synch 1 ,3M Bytes/sec 1,5MBytes/sec

XXX A19-A16

A7-A4 A3-AO

0

Figure 18a. DMA Memory Pointer Register Format

3-46 210451-()04

iAPX 186

DMA Acknowledge

No explicit DMA acknowledge pulse is provided.
Since both source and destination pointers are
maintained, a read from a requesting source, or a
write to a requesting destination, should be used as
the DMA acknowledge signal. Since the chip-select
lines can be programmed to be active for a given
block of memory or 110 space, and the DMA pointers
can be programmed to point to the same given block,
a chip-select line could be used to indicate a DMA
acknowledge.

DMA Priority

The DMA channels may be programmed such that
one channel is always given priority over the other, or
they may be programmed such as to alternate cycles
when both have DMA requests pending. DMA cycles
always have priority over internal CPU cycles except
between locked memory accesses or word accesses
the odd memory locations; however, an external bus
hold takes priority over an internal DMA cycle. Be­
cause an interrupt request cannot suspend a DMA
operation and the CPU cannot access memory dur­
ing a DMA cycle, interrupt latency time will suffer
during sequences of continuous DMA cycles. An
NMI request, however, will cause all internal DMA
activity to halt. This allows the CPU to quickly
respond to the NMI request.

DMA Programming

DMA cycles will occur whenever the ST/STOP bit of
the Control Register is set. If synchronized transfers

TIMER 0 TIMER 1

are programmed, a DRQ must also have been
generated. Therefore, the source and destination.
transfer pointers, and the transfer count register (if
used) must be programmed before this bit is set.

Each DMA register may be modified while the chan­
nel is operating. If the CHG/NOCHG bit is cleared
when the control register is written, the ST/STOP bit
of the control register will not be modified by the
write. If multiple channel registers are modified, it is
recommended that a LOCKED string transfer be
used to prevent a DMA transfer from occurring be­
tween updates to the channel registers.

DMA Channels and Reset

Upon ReSET, the DMA channels will perform the
following acti9ns:

• The Start/Stop bit for each channel will be reset to
STOP.

• Any transfer in progress is aborted.

TIMERS

The 80186 provides three internal 16-bit programma­
ble timers (see Figure 19). Two of these are highly
flexible and are connected to four external pins (2
per timer). They can be used to count external
events, time external events, generate nonrepetitive
waveforms, etc. The third timer is not connected to
any external pins, and is useful for real-time coding
and time delay applications. In addition, this third
timer can be used as a prescaler to the other two, or
as a DMA request source.

T1
INT.
REO.

T20UT

DMA
REO.

T2
INT.
REO.

MAX COUNT VALUE
A

TIMER 2

MAX COUNT VALUE CLOCK MAX COUNT VALUE
B B

ALL 16 BIT REGISTERS

MODE/CONTROL
WORD

INTERNAL ADDRESS/DATA BUS

MAX COUNT VALUE

Figure 19. Timer Block Diagram

3-47 210451-004

iAPX186

Timer Operation

The timers are controlled tiy 11 16-bit registers in the
internal peripheral control block. The configuration of
these registers is shown in Table 15. The count register
contains the current value of the timer. It can be read or
written at any time independent of whether the timer is
running or not. The value of this register will be
incremented for each timer event. Each of the timers is
equipped with a MAX COUNT register, which defines
the maximum count the timer will reach. After reaching
the MAX COUNT register value, the timer count value
will reset to zero during that same clock, i.e., the
maximum count value is never stored in the count
register itself. Timers 0 and 1 are, in addition, equipped
with a second MAX CO(jNT register, which enables the
timers to alternate their count between two different
MAX COUNT values programmed by the user. If a
single MAX COUNT register is used, the timer output
pin will switch LOW for a single clock, 1 clock after the
maximum count value has been reached. In the dual
MAX COUNT register mode, the ouput pin will indicate
which MAX COUNT register is currently in use, thus
allowing nearly complete freedom in selecting wave­
form duty cycles. For the timers with two MAX COUNT
registers, the RIU bit in the control register determines
which is used for the comparison.

Each timer gets serviced every fourth CPU-clock
cycle, and thus can operate at speeds up to one­
quarter the internal clock frequency (one-eighth the
crystal rate). External clocking of the timers may be
done at up to a rate of one-quarter of the internal
CPU-clock rate (2 MHz for an 8 MHz CPU clock). Due
to internal synchronization and pipelining of the
timer circuitry, a timer output may take up to 6 clocks
to respond to any individual clock or gate input.

Since the count registers and the maximum count
registers are all 16 bits wiae, 16 bits of resolution are
provided. Any Read or Write access to the ti mers will
add one wait state to the minimum four-clock bus
cycle, however. This is needed to synchronize and
coordinate the internal data flows between the inter­
nal timers and the internal bus.

The timers have several programmable options.

• All three timers can be set to halt or continue on a
terminal count.

• Timers 0 and 1 can select between internal and
external clocks, alternate between MAX COUNT
registers and be set to retrigger on external events.

• The timers may be programmed to cause an inter­
rupt on terminal count.

These options are selectable via the timer model
control word.

Timer Mode/Control Register

The mode/control register (see Figure 20) allows the
user to program the specific mode of operation or
check the current programmed status for any of the
three integrated timers.

Table 15. Timer Control Block Format

Register Offset

Register Name Tmr.O Tmr.1 Tmr.2

Mode/Control Word 56H 5EH 66H
Max Count B 54H 5CH not present

· Max Count A 52H 5AH 62H
Count Register 50H 58H 60H

15 14 13 12 11 5 4 2 1 0

EN IINH liNT 1 RIU 1 0 1····1 MC 1 RTG 1 p I EXT I ALT I CONT I

L-____________________________________ ----------------------------~

Figure 20. Timer Mode/Control Register

3-48 210451-004

intJ IAPX 186

ALT:
The ALT bit determines which of two MAX COUNT
registers is used for count comparison. If ALT = 0,
register A for that timer is always used, while if ALT =
1, the comparison will alternate between register A
and register 8 when each maximum count is
reached. This alternation allows the user to change
one MAX COUNT register while the other is being
used, and thus provides a method of generating non­
repetitive waveforms. Square waves and pulse out­
puts of any duty cycle are a subset of available
signals obtained by not changing the final count
registers. The ALT bit also determines the function of
the timer output pin. If ALT is zero, the output pin will
go LOW for one clock, the clock after the maximum
count is reached. If ALT is one, the output pin will
reflect the current MAX COUNT register being used
(0/1 for 8/ A).

CONT:
Setting the CaNT bit causes the associated timer to
run continuously, while resetting it causes the timer
to halt upon maximum count. If CaNT = 0 and ALT
=1, the timer will count to the MAX COUNTregister A
value, reset, count to the register 8 value, reset, and
halt.

EXT:
The external bit selects between internal and exter­
nal clocking for the timer. The external signal may be
asynchronous with respect to the 80186 clock. If this
bit is set, the timer will count LOW-to-HIGH trans­
itions on the input pin. If cleared, it will count an
internal clock while using the input pin for control. In
this mode, the function of the external pin is defined
by the RTG bit. The maximum input to output transi­
tion latency time may be as much as 6 clocks.
However, clock inputs may be pipelined as closely
together as every 4 clocks without losing clock
pulse,S.

P:
The prescaler bit is ignored unless internal clocking
has been selected (EXT = 0). If the P bit is a zero, the
timer will count at one-fourth the internal CPU clock
rate. If the P bit is a one, the output of timer 2 will be
used as a clock for the timer. Note that the user must
initialize and start timer 2 to obtain the prescaled
clock.

RTG:
Retrigger bit Is only active for internal clocking (EXT
= 0). In this case it determines the control function
provided by the input pin.

If RTG = 0, the input level gates the internal clock on
and off. If th~ input pin is HIGH, the timer will count; if

the input pin is Law, the timer will hold its value. As
indicated previously, the input signal may be asyn­
chronous with respect to the 80186 clock.

When RTG = 1, the input pin detects LOW-to-HIGH
transitions. The fi rst such transition starts the ti mer
running, clearing the timer value to zero on the first
clock, and then incrementing thereafter. Further
transitions on the input pin will again reset the timer
to zero, from which it will start counting up again. If
CaNT = 0, when the timer has reached maximum
count, the EN bit will be cleared, inhibiting further
timer activity.

EN:
The enable bit provides programmer control over the
timer's RUN/HALT status. When set, the timer is en­
abled to increment subject to the input pin con­
straints in the internal clock mode (discussed
previously). When cleared, the timer will be inhibited
from counting. All input pin transitions during the
time EN is zero will be ignored. If CaNT is zero, the
EN bit is automatically cleared upon maximum
count.

3-49

INH:
The inhibit bit allows for selective updating of the
enable (EN) bit. If INH is a one during the write to the
mode/control word, then the state of the EN bit will
be modified by the write. If INH is a zero during the
write, the EN bit will be unaffected by the operation.
This bit is not stored; it will always be a 0 on a read.

INT:
When set, the INT bit enables interrupts from the
timer, which will be generated on every terminal
count. If the timer is configured in dual MAX COUNT
register mode, an interrupt will be generated each
time the value in MAX COUNT register A is reached,
and each time the value in MAX COUNT register 8 is
reached. If this enable bit is cleared after the inter­
rupt request has been generated, but before a pend­
ing interrupt is-serviced, the interrupt request will
still be in force. (The request is latched in the Inter­
rupt Controller.)

MC:
The Maximum Count bit is set whenever the timer
reaches its final maximum count value. If the timer is
configured in dual MAX COUNT register mode, this
bit will be set each time the value in MAX COUNT
register A is reached, and each time the value in MAX
COUNT register 8 is reached. This bit is set regard­
less of the timer's interrupt-enable bit. The MC bit
gives the user the ability to monitor timer status
through software instead of through interrupts.
Programmer intervention is required to clear this
bit.

210451-004

IAPX 186

RIU:
The Register In Use bit indicates which MAX COUNT
register is currently being used for comparison to the
timer count value. A zero value indicates register A.
The, RIU bit cannot be written, i.e., its value is not
affected when the control register is written. It is
always cleared when the ALT bit is zero.

, Not all mode bits are provided for timer 2. Certain bits
,are hardwired as indicated below:

ALT = 0, EXT = 0, P = 0, RTG = 0, RIU = 0

Count Registers

Each of the three timers has a 16-bit count register.
The current contents of this register may be read or
written by the processor at any time. If the register is
written into while the timer is counting, the new value
will take effect in the current count cycle.

Max Count Registers

Timers 0 and 1 have two MAX COUNT registers, while
timer 2 has a single MAX COUNT register. These con­
tain the number of events the timer will count. In
timers 0 and 1, the MAX COUNT register used can
alternate between the two max count values
whenever the current maximum count is reached.
The condition which causes a timer to reset is equiv­
alent between the current count value and the max
count being used. This means that if the count is
changed to be above the max count value, or if the
max count value is changed to be below the current
value, the timer will not reset to zero, but rather will
count to its maximum value, "wrap around" to zero, 1

then count until,the max count is reached. '
~

Timers and Re~et

Upon RESET, the Timers w,1I perform the fOIlO~ing
actions:

• All EN (Enable) bits are reset preventing timer
counting.

• All SEL (Select) bits are reset to zero. This selects
MAX COUNT register A, res~lting in the Timer Out
pins going HIGH upon RES'ET.

INTERRUPT CONTROLLER

The 80186 can receive interrupts from a number of
sources, both internal and external. The internal in­
terrupt controller serves to merge these requests on
a priority basis, for individual service by the CPU.

Internal 'interrupt sources (Timers and DMA chan­
nels) can be disabled by their own control registers
or by mask bits within the interrupt controller. The
80186 interrupt controller has its own control regis­
ters that set the mode of operation for the controller.

The interrupt controller will resolve priority among
requests that are pending simultaneously. Nesting is
provided so interrupt service 'routines for lower
priority interrupts may themselves be interrupted by
higher priority interrupts. A block diagram of the
interrupt controller is shown in Figure 21.

The interrupt controller has a special iRMX 86 com­
patibility mode that allows the use of the 80186
within the iRMX 86 operating system interrupt struc­
ture. The controller is set in this mode by setting bit
14 in the peripheral control block relocation register
(see iRMX 86 Compatibility Mode section). In this
mode, the internal 80186 interrupt controller func­
tions as a "slave" controller to an external "master"
controller. Special initialization software must be in­
cluded to properly set up the 80186 interrupt control­
ler in iRMX 86 mode.

MASTER MODE OPERATION

Interrupt Controller External Interface

For external interrupt sources, five dedicated pins
are provided. One of these pins is'dedicated t/? NMI,
non-maskable interrupt. This is typically used for
power-fail interrupts, etc~ The other four pins may
function either as four interrupt input lines with inter­
nally generated interrupt vectors, as an interrupt line
and an interrupt acknowledge line (called the
"cascade mode") along with two other input lines
with internally generated interrupt vectors, or as two
interrupt input lines and two dedicated interrupt ac­
knowledge ouput lines. When the interrupt lines are
configured in cascade mode, the 80186 interrupt
controller will not generate internal interrupt
vectors.

External sources in the cascade mode use externally
generated interrupt vectors. When an interrupt is
acknowledged, two INTA cycles are initiated and the
vector is read into the 80186 on the second cycle. The
capabilitY to interface to external 8259A program­
mable interrupt controllers is thus provided when the
inputs are configured in cascade mode.

3-50 21045Hl04

iAPX 186

Interrupt Controller Modes of Operation

The basic modes of operation of the interrupt con­
troller in master mode are similar to the 8259A.
The interrupt controller responds identically to inter­
nal interrupts in all three modes: the difference is
only in the interpretation of function of the four exter­
nal interrupt pins. The interrupt controller is set into
one of these three modes by programming the cor­
rect bits in the INTO and INT1 control registers. The
modes of interrupt controller operation are as
follows:

Fully Nested Mode
When in the fully nested mode four pins are used as
direct interrupt requests. The vectors for these four
inputs are generated internally. An in-service bit is
provided for every interrupt sou rce. If a lower-priority
device requests an interrupt while the in-service bit
(IS) is set, no interrupt will be generated by the inter­
rupt controller. In addition, if another interrupt re­
quest occurs from the same interrupt source while
the inservice bit is set, no interrupt will be generated
by the interrupt controller. This allows interrupt ser­
vice routines to operate with interrupts enabled with­
out being themselves interrupted by lower-priority
interrupts. Since interrupts are enabled, higher­
priority interrupts will be serviced.

When a service routine is completed, the proper IS
bit must be reset by writing the proper pattern to the
EOI register. This is required to allow subsequent
interrupts from this interrupt source and to allow
servicing of lower-priority interrupts. An EOI com­
mand is issued at the end of the service routine just

TIMER TIMER TIMER DMA DMA

before the issuance of the return from interrupt in­
struction. If the fully nested structure has been
upheld, the next highest-priority source with its IS bit
set is then serviced.

Cascade Mode
The 80186 has four interrupt pins and two of them
have dual functions. In the fully nested mode the four
pins are used as direct interrupt inputs and the cor­
responding vectors are generated internally. In the
cascade mode, the four pins are configured into in­
terrupt input-dedicated acknowledge signal pairs.
The interconnection is shown in Figure 22. INTO is an
interrupt input interfaced to an 8259A, while
INT2/INTAO serves as the dedicated interrupt ac­
knowledge Signal to that peripheral. The same is true
for INT1 and INT3/INTA1. Each pair can selectively be
placed in the cascade or non-cascade mode by pro­
gramming the proper value into INTO and INT1 con­
trol registers. The use of the dedicated acknowledge
signals eliminates the need for the use of external
logic to generate INTA and device select signals.

The primary cascade mode allows the capability to
serve up to 128 external interrupt sources through
the use of external master and slave 8259As. Three
levels of prior.ity are created, requiring priority
resolution in the 80186 interrupt controller, the mas­
ter 8259As, and the slave 8259As. If an external inter­
rupt is serviced, one IS bit is set at each of these
levels. When the interrupt service routine is com­
pleted, up to three end-of-interrupt commands must
be issued by the programmer.

o 1 2 0 1 INTO INTl INT2 INT3 NMI

DMAO
CONTROL REG.

DMAl
CONTROL REG.

EXT. INPUT 0
CONTROL REG.

EXT. INPUT 1
CONTROL REG.

EXT. INPUT 2
CONTROL REG.

INTERRUPT
REQUEST REG.

INTERRUPT
MASK REG.

IN-SERVICE
REG.

PRIOR. LEV.
MASK REG.
INTERRUPT

STATUS REG.

Figure 21. Interrupt Controller Block Diagram

3-51 210451-004

iAiPX 186

Special Fully Nested Mode
This mode is entered by setting the SFNM bit in INTO
or INT1 control register. It enables complete nestabil­
ity with external 8259A masters. Normally, an inter­
rupt request from an interrupt source will not be
recognized unless the in-service bit for that source is
reset. If more than one interrupt source is connected
to an external interrupt controller, all of the interrupts
will be funneled through the same 80186 interrupt
request pin. As a result, if the external interrupt con­
troller receives a higher-priority interrupt, its inter­
rupt will not be recognized by the 80186 controller
until the 80186 in-service bit is reset. In special fully
nested mode, the 80186 interrupt controller will allow
interrupts from an external pin regardless of the
state of the, in-service bit for an interrupt source in
order to allow multiple interrupts from a single pin.
An in-service bit will continl,le to be set, however, to
inhibit interrupts from other lower-priority 80186 in­
terrupt sources.

Special procedures should be followed when reset­
ting IS bits at the end of interrupt service routines.
Software polling of the external master's IS register
is required to determine if there is more than one bit
set. If so, the IS bit in the 80186 remains active and
the next interrupt service routine is entered.

Operation in a Polled Environment

The controller may be used in a polled mode if inter­
rupts are undesirable. When polling, the pro'cessor
disables interrupts and then polls the interrupt con­
troller whenever it is convenient. Polling the inter­
rupt controller is accomplished by reading the Poll
Word (Figure 31). Bit 15 in the poll word indicates
to the processor that an interrupt of high enough
priority is requesting service. Bits 0-4 indicate to
the processor the type vector of the highest­
priority source requesting service. Reading the
Poll Word causes the In-Service bit of the highest­
priority source to be set.

It is desirable to be able to read the Poll Word infor­
mation without guaranteeing service of any pending
interrupt, i.e., not set the indicated in-service bit. The
80186 provides a Poll Status Word in addition to the
conventional Poll Word to allow this to be done. Poll
Word information is duplicated in the Poll Status
Word, but reading the Poll Status Word does not set
the associated in-service bit. These words are lo­
cated in two adjacent memory locations in the regis­
ter file.

Master Mode Features'

Programmable Priority
The user can program the interrupt sources into any
of eight different priority levels. The programming is
done by placing a 3-bit priority level (0-7) in the
control register of each interrupt source. (A source
with a priority level of 4 has higher priority over all
priority levels'from 5 to 7. Priority registers contain­
ing values lower than 4 have greater priority.) All
interrupt sources have preprogrammed default
priority levels (see Table 4).

If two requests with the same programmed priority
level are pending at once, the priority ordering
scheme shown in Table 4 is used. If the serviced
interrupt routine reenables interrupts, it allows other
requests to be serviced.

End-of-Interrupt Command
The end-of-interrupt (EOI) command is used by the
programmer to reset the In-Service (IS) bit when an
interrupt service routine is completed. The EOI com­
mand is issued by writing the proper pattern to the
EOI register. There are two types of EOI commands,
specific and nonspecific. The nonspecific command
does not specify which IS bit is reset. When issued,
the interrupt controller automatically resets the IS bit
of the highest priority source with an active service
routine. A specific EOI command requires that the
programmer send the interrupt vector type to the

interrupt controller indicating which source's IS bit is
to be reset. This command is used when the fully
nested structure has been disturbed or the highest
priority IS bit that was set does not belong to the
service routine in progress.

Trigger Mode
The four external interrupt pins can be programmed
in either edge- or level-trigger mode. The control
register for each external source has a level-trigger
mode (LTM) bit. All interrupt inputs are active HIGH.
In the edge sense mode or the level-trigger mode, the
interrupt request must remain active (HIGH) until the
interrupt request is acknowledged by the 80186 CPU.
In the edge-sense mode, if the level remains high
after the interrupt is acknowledged, the input is dis­
abled and no further requests will be generated. The
input level must go LOW for at least one clock cycle to
reenable the input. In the level-trigger mode, no such
provision is made: holding the interrupt input HIGH
will cause continuous interrupt requests.

3-52 210451-004

inter iAPX 186

Interrupt Vectoring
The 80186 Interrupt Controller will generate inter­
rupt vectors for the integrated OMA channels and
the integrated Timers. In addition, the Interrupt Con­
troller will generate interrupt vectors for the external
interrupt lines if they are not configured in Cascade
or Special Fully Nested Mode. The interrupt vectors
generated are fixed and cannot be changed (see
Table 4).

Interrupt Controller Registers

The Interrupt Controller register model is shown in
Figure 23. It contains 15 registers. All registers can
both be read or written unless specified otherwise.

In-Service Register
This register can be read from or written into. The
format is shown in Figure 24. It contains the In­
Service bit for each of the interrupt sources. The
In-Service bit is set to indicate that a source's service
routine is in progress. When an In-Service bit is set,
the interrupt controller will not generate interrupts to
the CPU when it receives interrupt requests ,from
devices with a lower programmed priority level. The
TMR bit is the In-Service bit for all three timers; the
00 and 01 bits are the In-Service bits for the two OMA
channels; the 10-13 are' the In-Service bits for the
external interrupt pins. The IS bit is set when the
processor acknowledges an interrupt request either
by an interrupt acknowledge or by reading the poll
register. The IS bit is reset at the end of the interrupt
service routine by an end-of-interrupt command is­
sued by the CPU.

80186
IRTII

IRTAO

Interrupt Request Register
The internal interrupt sources have interrupt request
bits inside the interrupt controller. The format of this
register is shown in Figure 24. A read from this regis­
ter yields the status of these bits. The TMR bit is the
logical OR of all timer interrupt requests. 00 and 01
are the interrupt request bits for the OMA channels.

The state of the external interrupt input pins is also
indicated. The state of the external interrupt pins is
not a stored condition inside the interrupt c'ontroller,
therefore the external interrupt bits cannot be writ­
ten. The external interrupt request bits show exactly
when an interrupt request is given to the interrupt
controller, so if edge-triggered mode is selected, the
bit in the register will be HIGH only after an inactive­
to-active transition. For internal interrupt sources,
the register bits are set when a request arrives and
are reset when the processor acknowledges the
requests.

Mask Register
This is a 16-bit register that contains a mask bit for
each interrupt source. The format for this register is
shown in Figure 24. A one in a bit position corres­
ponding to a particular source serves to mask the
source from generating interrupts. These mask bits
are 'the exact same bits which are used in the individ­
ual control registers; programming a mask bit using
the mask register will also. change this bit in the­
individual control registers, and vice versa.

INT
8259A

PIC
ffffA

Figure 22. Cascade Mode Interrupt Connection

3-53 210451-004

INT3 CONTROL REGISTER

INT2 CONTROL REGISTER .

INT1 CONTROL REGISTER

INTO CONTROL REGISTER

OMA 1 CONTROL REGISTER

OMA 0 CONTROL REGISTER

TIMER CONTROL REGISTER

, INTERRUPT STATUS REGISTER

INTERRUPT REQUEST REGISTER

IN-SERVICE REGISTER

PRIORITY MASK REGISTER

MASK REGISTER

POLL STATUS REGISTER

POLL REGISTER

EOI REGISTER

OFFSET

3EH

3CH

3AH

38H

36H

34H

32H

30H

2EH

2CH

2AH

28H

26H

24H

22H

iAPX 186

Priority Mask Register
This register is used to mask all interrupts below
particular interrupt priority levels_ The format of this
register is shown in Figure 25_ The code in the lower
three bits of this register inhibits interrupts of
priority lower (a higher priority number) than the
code specified. For example, 100 written into this
register masks interrupts of level five (101), six' (110),
and seven (111). The register is reset to seven (111)
upon RESET so all interrupts are unmasked.

Interrupt Status Register
This register contains general interrupt controller
status information. The format of this register is
shown in Figure 26. The bits in the status register
have the following functions:

DHLT: DMA Halt Transfer; setting this bit halts all
DMA transfers. It is automatically set
whenever a non-maskable interrupt occurs,
and it is reset when an IRET instruction is
executed. The purpose of this bit is to allow
prompt service of all non-maskable inter­
rupts. This bit may also be set by the CPU.

Figure 23. Interrupt Controller Registers
(Non-iRMX 86 Mode)

IRTx: These three bits represent the individual
timer interrupt request bits. These bits are
used to differentiate the timer interrupts,
since the timer IR bit in the interrupt. re­
quest register is the "OR" function of all
timer interrupt requests. Note that setting
anyone of these three bits initiates an inter­
rupt request to the interrupt controller.

15 14 10 9 7

o I 0 o 0 I 0 13 I 12 I 11 I 10 01 DO I TMR I

Figure 24. In-Service, Interrupt Request, and Mask Register Formats

15 14 2 1 0

1 o I 0 I o I PRM21 PRM1 I PRMO I

Figure 25. Priority Mask Register Format

7 2 1 0

o I 0 I 0 o I 0 IIRT2 I IRT1 I IRTO I

Figure 26. Interrupt Status Register Format

3-54 210451-004

iAPX 186

Timer, DMA 0, 1; Control Registers
These registers are the control words for all the inter­
nal interrupt sources. The format for these registers
is shown in Figure 27. The three bit positions PRO,
PR1, and PR2 represent the programmable priority
level of the interrupt source. The MSK bit inhibits
interrupt requests from the interrupt source. The
MSK bits in the individual control registers are the
exact same bits as are in the Mask Register; modify­
ing them in the individual control registers will also
modify them in the Mask Register, and vice versa.

INTO-INT3 Control Registers
These registers are the control words for the four
external input pins. Figure 28 shows the format of the
INTO and INT1 Control registers; Figure 29 shows the
format of the INT2 and INT3 Control registers. In
cascade mode or special fully nested mode, the con­
trol words for INT2 and INT3 are not used.

The bits in the various control registers are encoded
as follows:

PRO-2: Priority programming information. Highest
Priority = 000, Lowest Priority = 111

LTM: ,Level-trigger mode bit. 1 = level-triggered;
o = edge-triggered. Interrupt Input levels
are active high. In level-triggered mode, an
interrupt is generated whenever the exter­
nalline is high. In edge-triggered mode, an
interrupt will be generated only when this

15 14

I 0 0

level is preceded by an inactive-to-active
transition on the line. In both cases, the
level must remain active until the interrupt
is acknowledged.

MSK: Mask bit, 1 = mask; 0 = non mask.

C: Cascade mode bit, 1 = cascade; 0 = direct

SFNM: Special fully nested mode bit, 1 = SFNM

EOI Register
The end of the interrupt register is a command regis­

. ter which can only be written into. The format of this
register is shown in Figure 30. It initiates an EOI
command when written to by the 80186 CPU.

The bits in the EOI register are encoded as follows:

Sx: Encoded information that specifies an in­
terrupt source vector type as shown in
Table 4. For example, to reset the In-Service
bit for DMA channel 0, these bits should be
set to 01010, since the vector type for DMA
channel 0 is 10. Note that to reset the single
In-Service bit for any of the three timers, the
vector type for timer 0 (8) should be written
in this register.

4 3 2 1 0

I 0 I MSKI PR21 PR11 PRO I

Figure 27. Timer/DMA Control Register Formats

15 14 6 5 4 3 2 1 0

o I 0 I o I SFNMI c I LTM I MSK I PR2 I PR1 I PRO I

Figure 28. INTO/INT1 Control Register Formats

• 15 14 4 3 2 1 0

o I 0 I , . o I LTM I MSKI PR21 PR11 PRO I

Figure 29. INT2/INT3. Control Register Formats

3-55 210451-004

inter iAPX 186

NSPEC/: A bit that determines the type of EOI com-
SPEC mand. Nonspe9ific = 1, Specific = O.

Poll and Poll-Status Registers
These registers contain polling information. The for­
mat of these registers is shown in Figure 31. They can
only be read. Reading the Poll register constitutes a
software poll. This will set the IS bit of the highest
priority pending interrupt. Reading the poll status
register will not set the IS bit of the highest priority
pending interrupt; only the status of pending inter­
rupts will be provided.

Encoding of the Poll and Poll Status register bits are
as follows:

Sx: Encoded information that indicates the
vector type of the highest priority interrupt­
ing source. Valid only when INTREQ = 1.

INTREQ: This bit determines if an interrupt request is
present. Interrupt Request = 1; no Interrupt
Request = O.

iRMX 86 COMPATIBILITY MODE

This mode allows iRMX 86-80186 compatibility. The
interrupt model of iRMX 86 requires one master and
multiple slave 8259As in cascaded fashion. When
iRMX mode is used, the internal 80186 interrupt con­
troller will be used as a slave controller to an external
master interrupt controller. The internal 80186 re­
s,ources will be monitored through the internal inter­
rupt controller, while the external controller
functions as the system master interrupt controller.

Upon reset, the 80186 interrupt controller will be in
the non-iRMX 86 mode of operation. To set the con­
troller in the iRMX 86 mode, bit 14 of the Relocation
Register should be set.

Because of pin limitations caused by the need to
interface to an external 8259A master, the internal
interrupt controller will no longer accept external
inputs. There are however, enough 80186 interrupt
controller inputs (internally) to dedicate one to each
timer. In this mode, each timer interrupt source has
its own mask bit, IS bit, and control word.

The iRMX 86 operating system requires peripherals
to be assigned fixed priority levels. This is incom­
patible with the normal operation of the 80186 inter­
rupt controller. Therefore, the initialization software
must program the proper priority levels for each
source. The required priority levels for the internal
interrupt sources in iRMX mode are shown in Table
16.

Table 16. Internal Source Priority Level

Priority Level Interrupt Source

0 Timer 0
1 (reserved)
2 DMAO
3 DMA1
4 Timer 1
5 Timer 2

These level assignments must remain fixed in the
iRMX 86 mode of operation.

iRMX 86 Mode External Interface

The config~ration of the 80186 with respect to an
external 8259A master is shown in Figure 32. The
INTO input is used as the 80186 CPU interrupt input.
INT3 functions as an output to send the 80186 slave­
interrupt-request to one of the 8 master-PIC-inputs.

Figure 30. EOI Register Format

5 4

Figure 31. Poll Register Format

3-56 210451-004

iAPX 186

8259A
MASTER

INTA
IRO

80186 INT. IN
INT

1
IR7 --

<==REQUESTS FROM
OTHER SLAVES

80186
CASO-2

i: •
INTO

I INn SLAVE SELECT CASCADE

I
ADDRESS DECODER

INT2 e--

INT3
80186 SLAVE INTERRUPT OUTPUT

Figure 32. iRMX 86 Interrupt Controller Interconnection

Correct master-slave interface requires decoding of
the slave addresses (CASO-2). Slave 8259As do this
internally. Because of pin limitations, the 80186 slave
address will have to be decoded externally. INT1 is
used as a slave-select input. Note that the slave vec­
tor address is transferred internally, but the READY
input must be supplied externally.

INT2 is used as an acknowledge output, suitable to
drive the :NTA input of an 8259A.

Interrupt Nesting

iRMX 86 mode operation allows nesting of interrupt
requests. When an interrupt is acknowledged, the
priority logic masks off all priority levels except
those with equal or higher priority.

Vector Generation in the iRMX 86 Mode

Vector generation in iRMX mode is exactly like that of
an 8259A slave. The interrupt controller generates an
8-bit vector which the CPU multiplies by four and
uses as an address into a vector table. The significant
five bits of the vector are user-programmable while
the lower three bits are generated by the priority
logic. These bits represent the encoding of the
priority level requesting service. The significant five
bits of the vector are' programmed by writing to the
Interrupt Vector register at offset 20H.

Specific End-of-Interrupt

In iRMX mode the specific EOI command operates to
reset an in-service bit of a specific priority. The user
supplies a 3-bit priority-level value that points to an
in-service bit to be reset. The command is executed
by writing the correct value in the Specific EOI regis­
ter at offset 22H.

Interrupt Controller Registers
in the iRMX 86 Mode

All control and command registers are located inside
the internal peripheral control block. Figure 33
shows the offsets of these registers.

3-57

End-of-Interrupt Register
The end-of-interrupt register is a command register
which can only be written. The format of this register
is shown in Figure 34. It initiates an EOI command
when written by the 80186 CPU.

The bits in the EOI register are encoded as follows:

Lx: Encoded value indicating the priority of the
IS bit to be reset.

In-Service Register
This register can be read from or written into. It
contains the in-service bit for each of the internal

210451-004

inter iAPX 186

interrupt sources. The format for this register is
shown in Figure 35. Bit positions 2 and 3 cbrrespond
to the DMA channels; positions 0, 4, and 5 corre­
spond to the integral timers. The source's IS bit is set
when the processor acknowledges its interrupt re­
quest.

Interrupt Request Register
This register indicates which internal peripherals
have interrupt requests pending. The format of this
register is shown in Figure 35. The interrupt request
bits are set when a request arrives from an internal
source, and are reset when the processor acknowl­
edges the request.

Mask Register
This register contains a mask bit for each interrupt
source. The format for this register is shown in Fig­
ure 35. If the bit in this register corresponding to a
particular interrupt source is set, any interrupts from
that source will be masked. These mask bits are
exactly the same bits which are used in the individual
control registers, i.e., changing the state of a mask
bit in this register will also change the state of the
mask bit in the individual interrupt control register
corresponding to the bit.

Control Registers
These registers are the control words for all the inter­
nal interrupt sources. The format of these registers is
shown in Figure 36. Each of the timers and both of
the DMA channels have their own Control Register.

The bits of the Control Registers are encoded as
follows:

15 14 13

prx: 3-,bit encoded field indicating a priority level
for the source; hote that each source' must
be programmed at specified levels.

msk: mask bit for the priority level indicated by prx
bits.

LEVEL 5 CONTROL REGISTER
(TIMER 2)

LEVEL 4 CONTROL REGISTER
(TIMER 1)

LEVEL 3 CONTROL REGISTER
(DMA1)

LEVEL 2 CONTROL REGISTER
(DMAO)

LEVEL 0 CONTROL REGISTER
(TIMERO)

INTERRUPT STATUS REGISTER

INTERRUPT-REQUEST REGISTER

IN-SERVICE REGISTER

PRIORITY-LEVEL MASK REGISTER

MASK REGISTER

SPECIFIC EOI REGISTER

INTERRUPT VECTOR REGISTER

OFFSET

3AH

38H

36H

34H

32H

30H

2EH

2CH

2AH

28H

22H

20H

Figure 33. Interrupt Controller Registers
(iRMX 86 Mode)

Figure 34. Specific EOI Register Format

15 14 13

Figure 35. In-Service, Interrupt Request, and Mask Register Format

3-58 210451-004

iAPX 186

Interrupt Vector Register
This register provides the upper five bits of the inter­
rupt vector address. The format of this register is
shown in Figure 37. The interrupt controller itself
provides the lower three bits of the interrupt vector
as determined by the priority level of the interrupt
request.
The format of the bits in this register is:
tx: 5-bit field indicating the upper five bits of the

vector add ress.

Priority-Level Mask Register
This register indicates the lowest priority-level inter­
rupt which will be serviced.
The encoding of the bits in this register is:
mx: 3-bit encoded field indication priority-level

value. All levels of lower priority will be
masked.

Interrupt Status Register
This register is defined exactly as in Non-iRMX
Mode. (See Fig. 26.)

15 14 13

Interrupt Controller and Reset

Upon RESET, the interrupt controller will perform the
following actions:

• All SFNM bits reset to 0, implying Fully Nested
Mode.

• All PR bits in the various control registers set to 1.
This places all sources at lowest priority (level
111).

• All LTM bits reset to 0, resulting in edge-sense
mode.

• All Interrupt Service bits reset to O.
• All Interrupt Request bits reset to O.
• All MSK (Interrupt Mask) bits set to 1 (mask).

• All C (Cascade) bits reset to 0 (non-cascade).

• All PRM (Priority Mask) bits set to 1, implying no
levels masked.

• Initialized to non-iRMX 86 mode.

I : I : I : I : I : I·~H ~ H
Figure 36. Control Word Format

15 14 13

Figure 37. Interrupt Vector Register Format

I:I:I:I:I:I:H~'H
Figure 38. Priority Level Mask Register

3-59 210451-004

IAPX 186

X2

ucsr-------------------------~I

8282 OR ADDRESS
ADO- 8283!-----,

RESET
ROM

80188

ALE- STB l:lE r-AD15'-.r- F LATCH r------.,....,

~~~B~':~ I---'-I_~={,.......}...;...J 
\} 

liD 
WI! r PROGRAM 

I 
RAM 

Meiii-3 
BHE - r+ 

SRDY 
T+

5V 

ARDY 

NMI 
~ 

.. 
HOLD 

~ = LDWRAM 

D::"lI II 

I TMRINO -+5V 
( 

TMR OUT 0 , 
CLOCK = a2860R <=> e :) 8287 ....... 

DO-D7 TRANSCEIVER -v 

DEN ~-

~ dt DT/ii 
i'l:Sii 

A1 
A2 

INTO 

INT11--------------------I 

~r-----------------~ 
DRQOI--------------------I 

SERIAL T ERMINAL 
UO 

I 

DISK ~8 INTERFACE ............... 0 DISK 
HARDWARE 

Figure 39. TyplcallAPX 186 Computer 

3-60 210451-1)04 



inter iAPX 186 

16 MHz 

rD~ 
Vee X1 X2 

UCS cs 

r1 RD RESET 

UF 
ROM 

RES 

.I 8282 OR 

,----v-' 8283 ns LATCH 

STB 6E 
STB OE LOW 

ALE • -:? RAM 

LCS CS 

BHE 
WR 

/\ 

b 8282 OR ADDRE$S ADO-AD19 8283 BUS 
LATCH 

STB 6E 

~~-
80186 

STB 6E 

t t 

NMI 

~ ~ ~-----"-:; 
8286 OR 

HOLD 8287 ;> DATA BUS , TRANSCEIVER r 
~~-

t ~ DT/R 
CLKOUT CLK 

- ALE 
8288 

SO-S2 --./ 
SO-52 BUS > BUS CONTROL 
CONTROLLER COMMANDS 

,-1- --- CEN 
lOB AEN 

-:? 1 
[ 

--=> SO-S2 AEN 
8289 

CLK AR~~iER MULTIBUS ---r ARBITRATION 
PCSO SYSB/RESB 
PCS1 lOB 

L+5v LOCK LOCK RESB 

SRDY ~ ARDY I '-.J. 
XACK 

Figure 40. Typical iAPX 186 Multi-Master Bus Interface 

3-61 

r:=-

MULTI 
MAST ER 

EM SYST 
BUS 

210451~004 



inter iAPX 186 

PACKAGE 
The 80186 is housed in a 68-pin, lead less JEOEC type 
A hermetic chip carrier. Figure 41 illustrates the 
package dimensions. 

NOTE: The lOT 3M Textool 68-pin JEOEC Socket 
is required for 121CETM-186 operation. See Figure 
42 for details. 

.050 BSC 
[ TYP 

t .LD 

.039 TYP (68) PLCS [m 

, 1-lc.006 

, [ .055 
:li45 

106 m 

.066 
:o5ii 

Figure 41. 80186 JEDEC Type A Package 

3-62 210451-004 



intJ 

PC 

268-5400-50 -

iAPX 186 

.. 268-5400-00 

OARD PATTE:..:...R_N__ I 

B P'N NOl } ~~mr 
~~~r:~~~ \ \ \ +. FRONT t:J+ ~ SOCKET ++I • 

• +;*- ORIENTATION /1.1
t'+'" PIN CLR HOlE-¥+I 1.00

,,--k _
--~l+;--

-I~- CKEr ORIENTATION PIN ~'"')oo '~SO I '

I
G.
I

ALUMINUM ~I~ OPTIONAL) (HEATSINK PROVISIO

'i-• FRONT

~ FOR>g~~)~a._'i 12~4) DEVICEPADS_~71(' ~ ~TYP
SHOWN FOR !+ 7 ¥~ ++ •• (2.54) CONTACT ~ , ~ -.i.
~~i~~~~T ~- ,- '\ '\ '\;+=

. CLOSED ~

TO SCALE • + ~ > > ~).m,.. .1.l1l!. TVP

ii.~'i:i'. fl --l t+ (2.54) .015 -i Ii L 800 ----j
(0.30) b....i (20.32) UM TVP 4 PLCS

.020:=1" 8 SPCS@.100TOLNON Ace
(0.51) (2.54)

CONTACT TAIL

lete information on the eocket. se consult 3M Textool for comp n are for reference only. Plea

NOTE, Ph a' d.mens.on. show 1·~== __ ----::==:~~;::d~C;h~IP~ (C::aarrrlier Socket
- 2 Textool 68 Lea Figure 4 .

3-63

\
OPEN

210451-004

iAPX 186

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature under Bias O°C to 70°C
Storage Temperature -65°C to +150°C
Voltage on Any Pin with

Respect to Ground -1.0V to +7V
Power Dissipation 3 Watt

'NOTICE: Stresses above those listed under
"Absolute Maximum Ratings" may cause permanent
damage to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is not implied.
Exposure to absolute maximUl:n rating conditions
for extended periods may affect device reliability.

D.C. CHARACTERISTICS (TA = 0°-70°C, Vee = 5V ±10%)
Applicable to 80186 (8 MHz) and 80186·6 (6 MHz) ,

Symbol Parameter Min. Max. Units Test Conditions

v" Input Low Voltage 0.5 + 08 Volts

V,H Input High Voltage 2.0 Vee + 0.5 Volts
(All except Xl and (RES)

V,H1 Input High Voltage (RES) 3.0 Vee + 0.5 Volts

Val Output Low Voltage 0.45 Volts la ~ 2.5 mA for OO·~ "
la ~ 2.0 mA for all other outputs

r---
Volts loa ~ -400 ~A VOH Output High Voltage 2.4

Icc Power Supply Current 550 rnA Max measured at TA ~ O°C
450 TA ~ lO°C

III Input Leakage Current ±10 ~A OV < V,N < Vee

ILO Output Leakage Current ±10 ~A 0.45V < VOUT < Vee

Vela Clock Output Low 06 Volts la = 4.0 mA

VCHO Clock Output High 40 Volts loa ~ -200 ~A

Veu Clock Input Low Voltage -0.5 0.6 Volts

VCHI Clock Input High Voltage 3.9 Vce+ 1.O Volts

G'N Input Capacitance 10 pF

G ,O I/O Capacitance 20 pF

PIN TIMINGS
A.C. CHARACTERISTICS (TA = 0°_70°C, Vee = 5V ± 10%)
80186 Timing Requirements All Timings Measured At 1.5 Volts Unless Otherwise Noted.
Applicable to 80186 (8 MHz) and 80186·6 (6 MHz)

Symbol Parameter Min. Max. Units Test Conditions

T DVCL Data in Setup (ND) 20 ns

T CLDX Data in Hold (AID) 10 ns

TARYHCH Asynchronous Ready
(AREADY) active setup
time' 20 ns

TARYLCL AREADY inactive setup
time 35 ns

TCHARYX AREADY hold time 15 ns

TARYCHL Asynchronous Ready 15 ns
inactive hold time

TSRYCL Synchronous Ready
(SREADY) transition setup
time 20 ns

T CLSRY' SREADY transition hold
time 15 ns

T HVCL HOLD Setup' 25 ns

'To guarantee recognition at next clock.

3-64 210451-004

intJ
80186 Timing Requirements (Continued)

Symbol Parameter

T1NVCH INTR, NMI, TEST, TIMERIN,
Setup'

TINVCL OROO, OR01, Setup'

'To guarantee recognition at next clock.
80186 Master Interface Timing Rssponsea

IAPX 186

Min. Max. Units

25 ns

25 ns

80186 (8 MHz) 80188-6 (6 MHz)

Symbol Parameters Min. Max. Min. Max.
TCLAV Address Valid Delay 5 55 5 63

TCLAX Address Hold 10 10

TClAZ Address Aoat Delay TCLAX 35' TCLAX 44

TCHCZ Command Lines Float Delay 45 56

TCHev Command Lines Valid Delay
(after float) 55 76

TLHLL ALE Width TCLCL-35 TCLCL-35

TCHLH ALE Active Delay 35 44

TCHLL ALiE Inactive Delay 35 44

TLLAX Address Hold to ALE Inactive TCHCL-25 TCHCL-30

TCLOV Data Valid Delay 10 44 10 55

TCLDOX Data Hold Time 10 10

TWHOX Data Hold after WR TCLCL-40 TCLCL-50

TCVCTV Control Active Delay 1 10 70 10 87

TCHCTV Control Active Delay 2 10 55 10 76

TevCTX Control Inactive Delay 5 55 5 76

TCVOEX DEN Inactive Delay
(Non-Write Cycle) 10 70 10 87

TAZRL Address Aoat to RD Acllve 0 0

TCLRL RD Active Delay 10 70 10 87

TCLRH RD Inactive Delay 10 55 10 76

TRHAV RD Inactive to Address Active TCLCL-40 TCLCL-50

TCLHA~ HLDA Valid Delay 5 50 5 67

TRLRH RDWidth 2TcLCL-50 2TCLCL-50

TWLWH WRWidth 2TcLCL-40 2TCLCL-40

TAVAL Address Valid to ALE Low TCLCH-25 TCLCH-45

TCHSV Status Active Delay 10 55 10 76

TCLSH Status Inactive Delay 10 65 10 76

TCLTMV Timer Output Delay 60 75

TCLRO Reset Delay 60 75

TCHQSV Queue Status Delay 35 44

TCHO~ Status Hold Time 10 10

TAVCH Address Valid to clock high 10 10

80186 Chip-Select Timing Responses

Symbol Parameter Min. Max. Min. Max.
TCLCSV Chip-Select Active Delay 66 80

Tcxcsx Chip-Selct Hold from
Command Inactive 35 35

TCHCSX Chip-Select Inactive Delay '5 35 5 47

3-65

Test Conditions

Units 1lIat Condition.

ns CL - 20-200 pF all outputs

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns 100 pF max

ns

ns

ns

ns

Units Test Conditions

ns

ns

ns

210451...()()4

intel'

A.C. CHARACTERISTICS (Continued)

80186 ClKIN Requirements

Symbol Parameter

TCKIN ClKIN Period

TC,KHL ClKIN Fall Time

TCKLH ClKIN Rise Time

TCLC;K ClKIN'low Time

TCHCK ClKIN High Time

80186 ClKOUT Timing (200 pF load)

Symbol Parameter

TClco ClKIN to ClKOUT Skew

TCLCL ClKOUT Period

TCLCH ClKOUT low Time

TCHCL ClKOUT High Time

TCH1CH21 ClKOUT Rise Time

TCL2CLl ' ClKOUT -Fall Time

iAPX 186.

80186 (8 MHz) 80186-6 (6 MHz)

Min. Max. Min. Max. Units Test Conditions

62.5 250 83 250 ns

10 10 ns 3.5 to 1.0 volts

10 10 ns 1.0 to 3.5 volts

25 33 ns 1.5 volts

25 33 ns 1.5 volts

Min. Max. Min. Max. Units Test Conditions

50 62.5 ns

125 500 167 500 ns

1f, TCLCL-7.5 V,TCLCL-7.5 ns 1.5 volts

V, TCLCL-7.5 1f, TCLCL-7.5 ns 1.5 volts

15 15 ns 1.0 to 3.5 volts

15 15 ns 3.5 to 1. volts

3-66 210451-004

WAVEFORMS

MAJOR CYCLE TIMING

CLKOUT

BHE/57 ,

A'9/Ss-A16/S,

ALE

iAPX 186

T, T, T3 Tw

v-t-= n~'A~ r>
~ f\-----I ' .,
VCL~ =-r ~

1\ \

~
-

TC iAV- I-Tc LAX~
rCLD'
~ -- >--TCHCZ

NOTE 1
V ,"Ii;, 57-53

./1 .. ,
~~ --1----

"T,.,
.u;-::; f-/,_ ~~. '-1----

TCH

WRITE CYCLE

RQ, INTA,
DT/R ~ VOH

INTA CYCLE

RD,~~V9H
tlt1t: - VOL

AD15-ADo

AD15-ADo

DT/R

50FIYOIRE HALT-DTIR ~VOL'
RD, WR, INTA, DEN ~ VOH

PCS,
MC5
LCS,
UCS

I ... J~ I:: 1:=
Tr ;~AZ·_ 1---",~

i~5~Ao IOU· TCI:;:;;
V-

,,~v~lv-1~
1"= -- .-

f---+I TLLA: J
I- I-

J
.v.v.n I--

-+ ~_TCLAZ l-~ 1- CLDX

\
'I FLOAT A~ roon JI~

1 FLOAT

-=:f-I.I~ TCHCTV

t j..

~I
1\ -

I NOTE 2 V II
.~.~ -~ 1-1

f:J
~~

1
;: ~ ::;~

INval In annA",""

TCLAV_ :- Tr"1 1-- .. _TCLC5V TCXCSX- Jr-

3-67 210451-004

intel'

WAVEFORMS (Continued)

MAJOR CYCLE TIMING (Continued)

BHE/S7,A19/S6-A161S3

READ CYCLE

WR, INTA = YOH

NOTES:

AO'5-ADo

RD

OTfil

PCS,
MCS ----4-..,.
LCS,
UCS

iAPX 186

TCLRL 1-4---+I<<I--+-- TI~L~IH-------'-_I--l>-l

1. FOllowing a Write cycle, the Local Bus is floated by the 80186 only when the
80186 enters a "Hold Acknowledge" state.

2. INTA occurs one clock later in RMX-mode.
3. Status inactive just prior tc? T4

3-68

r--

210451-004

intel'

WAVEFORMS (Continued)

CLKOUT

LOCK

CLKOUT

~
INTO-3

TIMERIN

---- TCLAV -

iAPX 186

3-69 210451-004

inter

WAVEFORMS (Continued)

HOLD-HLDA TIMING

CLKOUT

ARDY

ARDY

CLKOUT

SRDY

CLKOUT

AD1S-ADO -----
80186

DEN-----

A19/S6-Al61S3, -----
RD, WR, 80186

BHE,----­

DT/R,

52-SO

T, T3

iAPX 186

T,

TARYLCL- ___

T,

- r-TCLAV

--
}--- 80186 __ J

~ TCHCV_

--....
)--- 80186 __ J

3-70 210451-004

intel· iAPX 186

WAVEFORMS (Continued)

TIMER ON 80186

CLKIN

TCKHL

TCH1CH2

CLKOUT
~---TCLCH----t-o.".---TCHCL--_,,-

i-------TCLCL --------1

TIMERIN

I
---./

_TINVCH

='~r-
TIMEROUT __ ~:~~~~~~~~~~~~~~~~~~~~~~~_2_-_6_CL_O_C_KS ___ ----------f---'~

80186 INSTRUCTION TIMINGS

The following instruction timings represent the mini­
mum execution time in clock cycles for each instruc­
tion. The timings given are based on the following
assumptions:

• The opcode, along with any data or displacement
required for execution of a particular instruction,
has been prefetched and resides in the queue at
the time it is needed,

• No wait states or bus HOLDS occur.

3-71

• All word-data is located on even-address
boundaries.

All jumps and calls include the time required to fetch
the opcode of the next instruction at the destination
address.

All instructions which involve memory reference can
require one (and in some cases, two) additional
clocks above the minimum timings shown. This is
due to the asynchronous nature of the handshake
between the BIU and the Execution unit.

inter

INSTRUCTION SET SUMMARY

FUNCTION

DATA TRANSFER
MOV; Move:
Register to ReglsterlMemory

Register/memory to register

Immediate to register/memory

Immediate to register

Memory to accumulator

Accumulator to memory

Register/memory to segment register

Segment register to register/memory

PUSH; Push:

FORMAT

11 000100w

11 000101w

11 1 0 0 0 1 1 w

11 01 t w reg

11 010000w

11 010001w

11 00 0 1 1 1 0

11 00 0 1 1 0 0

iAPX 186

mod reg rim

mod reg rim

modOOO rim data

data dat.,1 w ~ 1

addr-Iow addr-hlgh

addr-Iow addr-hlgh

mod 0 reg rim

mod 0 reg rim

Memory 11 1 1 1 1 1 1 1 mod 1 1 0 rim

Register 10 1 0 1 0 reg

Segment register. 10 0 0 reg 1 1 0 I
'~i~ti!i~:>::/ii:~:;;;" i!.'fi;! ,f::;:f(iI~;;;;.J~; 1r;;:Al:;:;:;·l~ ... -!lr&C:;;I)·~I):;;"k~!i'~' :7'(!~@:r:. ,::r,11 ~:>,"":i·.;'I'"l7",·.:'·:o"iIa;C· fa~'~Is""'\.It'·O :'""7"1' ,t;.

pop; Pop:
Memory

Register

Segment register

XCHG ; Exchange:
Reglsterlmemory with register

Register with accumulator

IN ; Input trom:
Fixed port

vaflable port

OUT; Output to:
Fixed port

vaflable port

XLAT ~ Translate byte to AL

LEA ~ Load EA to register

LOS ~ Load pOinter to DS

LES ~ Load pOinter to ES

LAHF ~ Load AH with flags

SAHF ~ Store AH IOta flags

PUSHF ~ Push flags

POPF ~ Pop flags

SEGMENT = Segment Override:

CS

ss
OS

ES

1100011111 modOOO rim

10 1 0 1 1 reg I
1000regllli (reg ,,01)

., . .'

11 00 0 0 1 1 wi mod reg rim

11 00 1 0 reg I

11 1 1 00 lOw I port

11 1 1 0 1 lOw I

11 1 1 001 1 w port

11 1101 11 w

11 1 0 1 0 1 1 1

11 00 0 1 1 0 1 mod reg rim

11 1 0 0 0 1 0 1 mod reg rim (mod ,,'11)

11 1000100 mod reg rim (mod ~ 11)

11 00 1 1 1 1 1

11 00 1 1 1 0

11 00 1 1 0 0

11 00 1 1 0 1

I 0 0 1 0 1 1 1 0 I
10 0 1 1 0 1 1 0 I
10 0 1 1 1 1 1 0 I
1001001101

datalfw=1

"
.ii'"

Shaded areas indicate instructions not available in iAPX 86,88 microsystems.

3-72

Clock
Cycles Comments

2/12

2/9
12-13 8/16-bit
3-4 8/16-bit

9
8

2/9
2/11

16

10

9

20

10

8

4/17

3

10

8

9
7

11

6

18

18

2
3
9

8

2'

2

2

2

210451-004

iAPX 186

INSTRUCTION SET SUMMARY (Continued)

Clock
FUNCTION FORMAT Cycles Comments

ARITHMETIC
ADD = Add:
Reg/memory with register to either 10 OOOOOdwl mod reg rim I 3/10
Immediate to register/memory 11 OOOOOswl modOOO rim I data I datalf s w = 01 I 4/16
Immediate to accumulator 10000010wl data I data Ifw 1 I 3/4 8/16-bit

ADC = Add with carry'
Reg/memory with register to either 10 00 1 0 0 d wi mod reg rim I 3/10
Immediate to register/memory 11 00000 s wi modOl0 rim I data I datalf s w _. 01 I 4/16
Immediate to accumulator 10001010wl data I datalfw=1 I 3/4 8/16-bit

INC = Increment·
Register/memory 11 111111 wi modOOO rim I 3/15
Register 10 1 0 0 0 reg I 3

SUB = Subtract
Reg/memory and register to 8lther 1001010dwi mod reg rim I 3/10
Immediate from register/memory 1100000swi mod 1 01 rim I data I datalfsw-Ol I 4/16
Immediate from accumulator 10010110wl data I datalf w= 1 I 3/4 8/16-bit

SBB = Subtract with borrow:
Reg/memory and register to either 1000110dwi mod reg rim I 3/10
Immediate from register/memory 1100000swi mod 0 11 rim I data I datalfsw=OI I 4/16
Immediate from accumulator 10 00 1 1 lOw I data I datalfw-l I 3/4 8/16-bit

DEC = Decrement:
Register/memory 11 1111 11 wi mod 0 0 1 rim I 3/15

10 I
r

3 Register 1 0 0 1 reg

CMP = Compare'
Register/memory With register 10 0 1 1 1 01 w mod reg rim I 3/10
Register With register/memory 10 0 1 1 1 00 w mod reg rim I 3/10
Immediate WIth re9l.~ter/memory 1100000sw mod 111 rim I data I datalfsw-Ol I 3/10
ImmedIate With accumulator 10 0 1 1 1 lOw data I datalfw-l I 3/4 8/16-bit
NEG = Change sign' 11 11 1 011 w mod 0 11 rim I 3
AAA=ASCII adJust for add 10 0 1 1 0 1 1 1 8
DAA = DeCimal adjust for add 10 0 1 0 0 1 1 1 4
AAS = ASCII adlustfor subtract 10 0 1 1 1 111 7
DAS = DeCimal adjust for subtract 10 0 1 0 1 1 1 1 I 4

MUl = MuJtlply (unsigned) 11 1 1 1 0 1 1 wi mod 1 00 rim I
Register-Byte 26-28
Register-Word 35-37
Memory-Byte 32-34
Memory-Word 41-43

IMUl = Integer multiply (signed) 11 1 1 1 0 1 1 wi mod 1 01 rim I
Register-Byte 25-28
Register-Word 34-37
Memory-Byte 31-34
Memory-Word 40-43

t3lM,\! , -" ·:4 ~htr%: 'eJIl!l~r: ',Ilata ,f,'?"' :.;,;,.r::
~;:~~:Z~~;J~ 't ~ y

''''''''''",..~ iC,iC'F~' "Z''"":,; 4]: -.I:: 'Z.'>,T'C' " ' '-::";' ; ,; > .. '0'" :.;: "',,',:;'.': :"

D!V = DIVide (unsigned) 11 1 1 1 0 1 1 wi mod 11 0 rim I
Register-Byte 29
Register-Word 38
Memory-Byte 35
Memory-Word 44

Shaded areas indicate instructions not available in iAPX 86,88 microsystems.

3-73

iAPX 186

INSTRUCTION SET SUMMARY (Continued)

FUNCTION

ARITHMETIC (Continued):

IDIV = Integer divide (signed)
Register-Byte
Register-Word
Memory-Byte
Memory-Word
AAM = ASCII adlust lor multiply

AAD = ASCII adjust lor divide

CBW = Convert byte to word

CWO = Convert word to double word

LOGIC
ShiWRolalelnst,ucltons:
ReglsterlMemory by 1

ReglsterlMemory by CL

~~~ilry~rit. 

AND=And: 
Reg/memory and register to either 

Immediate to register/memory 

Immediate to accumulator 

TEST = Apd function to flags, no ,esufl: 
Register/memory and register 

Immediate data and register/memory 

Immediate data and accumulator 

OR=Or: 
Reg/memory and register to either 

Immediate to register/memory 

Immediate to accumulator 

XOR = Exclusive or: 
Reg/memory and register to either 

Immediate to register/memory 

Immediate to accumulator 

NOT = Invert register/memory 

STRING MANIPULATION: 
MOVS = ~ove bytelword 

CMPS = Compare bytelword 

SCAS = Scan byte/word 

LODS = Load bytelwd to AUAX 

FORMAT 

11 1 1 1 0 1 1 w I mod 111 rim 

1110101001000010101 

1110101011000010101 

1100110001 

11 00 1 1 0 0 1 I 

11 1 0 1 0 0 0 wi· mod Tn rim I 
11 1 0 1 0 0 1 w I mod TIT rim I 

TTT Instruction 
o 0 0 RDL 
o 0 1 RDR 
o 1 0 RCL 
o 1 1 RCR 
1 0 0 SHUSAL 
1 0 1 SHR 
1 1 1 SAR 

10 01000dwi mod reg rim 

11000000wl mod 1 00 rim data 

10010010wl data dat.,lw = 1 

11 000010wl mod reg rim 

11 11 1 011 w I modOOO rim .ata 

11 010100wl data dat.,lw=1 

1000010dwi mod reg rim 

11000000wl modOOI rim data 

10000110wl data dat.,lw=1 

10 0 1 1 0 0 d w I mod reg rim 

11000000wl mod 11 0 rim data 

10011010wl data dat.,1 w = 1 

11 1 1 1 0 1 1 wi modOl0 rim 

11 010010wl 

11 01 00 1 1 wi 

11 01 0 1 1 1 wi 

11 

datallw=1 

dat.,lw= 1 

dat.,lw= 1 

dat.,lw= 1 

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems. 

3-74 

Clock 
Cycles 

44-52 

53-61 
50-58 
59-67 

19 
15 
2 

4 

2/15 
5+n/17 +n 

.. "~~+=Mn-.!1 

3/10 

4/16 

3/4 

3/10 
4/10 

3/4 

3/10 

4/16 
3/4 

3/10 

4/16 
3/4 
3 

14 
22 
15 
12 

Comments 

8/16-bit 

8116-bit 

8116-bit 

8116-bit 

210451-004 



IAPX 186 

INSTRUCTION SET SUMMARY (Continued) 

FUNCTION FORMAT 

STRING MANIPULATION (Contonued)-
Repeated by count In CX 
MOVS - Move string 11 11 1 0 0 1 11010010wl 

CMPS - Compare string 11 11 1 0 0 1 z 11 0 1 00 1 1 wi 

SCAS - Scan string 11 11 1 0 0 1 z 11 0 1 0 1 1 1 wi 

LOOS - Load string 11 11 1 0 0 1 11 0 1 0 1 lOw I 

CALL; Call 
Direct within segment 11 1 1 0 1 0 0 0 dlsp-Iow dlsp-hlgh 

Register/memory 11 111 111 1 I modOl0rm 
mdlrect within segment 
Direct mtersegment 11 00 1 1 0 1 segment offset 

segment selector 

Indirect Intersegment 11 111111 1 modOll rm (mod. II) 

JMP; Uncond,tlOnallump-
ShortJlong 11 1 , 0 , 0 , , I dlsp-Iow 

Direct within segment 11 1 , 0 1 00 I dlsp-Iow dlsp-hlgh 

Reglster/memory mdlrect within segment I 1 1'1'11 I modl00 r'm 

Direct Intersegment 11 1 1 0 1 0 1 o I segment offset 

I segment selector 

Indirect mtersegment I' '1' "" 
, I mod'OI r,m (mod Til) 

RET; Return from CALL 
Within segment 11 1 0 0 0 0 , 11 

Within seg adding Immed to SP 11 1 0 0 0 0 1 01 data-low data-high 

Intersegment 11 1 0 0 1 0 1 11 

Intersegment adding Immediate to SP 11 1 0 0 1 0 1 o I data-low data-high 

Shaded al eas indIcate InstructIons not avaIlable in iAPX 86,88 mlcrosystems 

3-75 

Clock 
Cycles 

8+8n 
5+22n 
5+15n 
6+11n 
6+9n 

~~},,; 
. '. 

15 
13/19 

23 

38 

14 
14 

11/17 

14 

26 

16 
18 
22 

25 

Comments 

210451-004 



inter IAPX 186 

INSTRUCTION SET SUMMARY (C~ntinued) 

Clock 
FUNCTION FORMAT Cycles Comments 

JE/Jl = Jump onequallZero 10 1 1 1 0 1 0 0 dlsp 4/13 JMP not 
JLlJNGE ~ Jump,on lessmot greatel 01 equal 10 1 1 1 1 1 0 0 dlSp 4/13 taken/JMP 

JLElJNG ~ Jump on less o"quaJlnot greater 10 1 1 1 1 1 1 0 dlSp taken 
4/13 

JB/JNAE ~ Jump on OOI .. /nolab"" 01 equal 10 1 1 1 0 0 1 0 dlSp 4/13 
JBElJNA ~ Jump on 001 .. 01 equalmolabove 10 1 1 1 0 1 1 0 dlSp 4/13 
JP/JPE ~ Jump on panty/panty even 10 1 1 1 1 0 1 0 dlSp 4/13 
JO ~ Jump on ""rtlo. , 101110000 dlSp 4/13 
JS~JumponSign 10 1 1 1 1 00 0 dlSp 4/13 ' 
JNElJNl ~ Jump on notequallnotzero 10 1 1 1 0 1 0 1 dlsp 4/13 
JNLlJGE ~ Jumpon not lesslgreaterorequal 10 1 1 1 1 1 0 1 dlSp 4/13 
JNLElJG ~ Jumpon not less OI,equai/grealer 10 1 1 1 1 1 1 1 dlSp 4/13 
JNB/JAE ~ Jump on nol boo./ab"" or equal 10 1 1 1 0 0 1 1 dlSp 4/13 
JNBElJA ~ Jump on not below o"quaVabove 10 1 1 1 0 1 1 1 dlSp 4/13 
JNP/JPO ~ Jump on not p~/par odd 10 1 1 1 1 0 1 1 dlSp 4/13 
JNO ~ Jump on not""rtlow 10 1 1 1 0 00 1 dlSp 4/13 
JNS ~ Jumpon not sign 10 1 1 1 1 00 1 dlSp 4/13 
JeXl ~ Jumpon ex zero 11 1 1 0 0 0 1 1 dlSp 5/15 
LOOP ~ loop ex times 11 1 1 0 0 0 1 0 dlSp 6/16 LOOP not 
LOOPZlLOOPE ~ loop_hIIe zero!equal 11 1 1 0 0 0 0 1 dlSp 6/16 taken/LOOP 
LOOPNZlLOOPNE ~ loopwhllenot zero/equal 11 1 1 0 0 0 0 0 'I dlSp 6/16 taken 

INT~lnt.rrupt: 

Type specified 11 1 0 0 1 1 0 1 I type 47 
Type 3 11 1 0 0 1 1 0 0 I 45 if INT. taken/ 
INTO ~ Interrupt on overflow 11 1 0 0 1 1 1 0 1 48/4 if INT. not 

taken 

IRET ~ Interrupt return 11 1 0 0 1 1 1 11 28 

Shiided areas indicate instructions not available in iAPX 86, 88 microsystems. 

3-76 210451-004 



IAPX 186 

INSTRUCTION SET SUMMARY (Continued) 

Clock 
FUNCTION FORMAT Cycles Comments 

PROCESSOR CONTROL 
CLC ~ Clear carry 11 1 1 1 1 00 0 2 
CMC ~ Complement carry 11 1 1 1 0 1 0 1 2 
STC ~ Set carry 11 1 1 1 1 00 1 2 
CLO ~ Clear dlreclion 11 1 1 1 1 1 0 0 2 
STO ~ Set directIOn 11 1 1 1 1 1 0 1 2 
CLI ~ Clear Interrupt 11 1 1 1 1 01 0 2 
STI ~ Set Interrupt 11 1 1 1 1 0 1 1 2 
HLT~Halt 11 1 1 1 0 1 0 0 2 
WAIT~walt 11 00 1 1 0 1 1 6 if test = 0 

LOCK ~ Bus lock prellx 11 1 1 1 0 00 0 2 

ESC ~ Processor Exte,nSlon Escape 11 101 1 TT T mod LLL rim I 
(ID LLL are opcode to processor extenSion) 

6 

Shaded areas indicate instructions not available in iAPX 86,88 microsystems. 

3-77 210451-004 



iAPX 186 

FOOTNOTES 

The effective Address (EA) of the memory operand is 
computed according to the mod and rim fields: 

if mod = 11 then rim is treated as a REG field 

if mod = 00 then OISP = 0*, disp-Iow and disp-high 

are absent 

if mod = 01 then OISP = disp-Iow sign-extended to 

16-bits, disp-high is absent 

if mod = 10 then OISP = disp-high: disp-Iow 

if rim = 000 then EA = (BX) + (SI) + OISP 

if rim = 001 then EA = (BX) + (01) + OISP 

if rim = 010 then EA = (BP) + (SI) + OISP 

if rim = 011 then EA = (BP) + (01) + OISP 

if rim = 100then EA = (SI) + OISP 

if rim = 101 then EA = (01) + OISP 

if rim = 110 then EA = (BP) + OISP* 

if rim = 111 then EA = (BX) + OISP 

OISP follows 2nd byte of instruction (before data if 
required) 

"except If mod ~ 00 and ,1m ~ 110 then EA ~ disp-high' disp-Iow. 

NOTE: 
EA CALCULATION TIME IS 4 CLOCK CYCLES FOR ALL MODES, AND IS INCLUDED 
IN THE EXECUTION TIMES GIVEN WHENEVER APPROPRIATE 

SEGMENT OVERRIDE PREFIX 

10 0 1 reg 1 1 0 I 

reg is assigned according to the following: 

Segment 
reg Register 

00 ES 
01 CS 
10 SS 
11 OS 

REG is assigned according to the following table: 

16-Bit (w = 1) 8-Bit(w = 0) 
000 AX 000 AL 

001 CX 001 CL 

010 OX 010 OL 
011 BX 011 BL 

100 SP 100 AH 

101 BP 101 CH 

110 SI 110 OH 

111 01 111 BH 

the physical addresses of all operands addressed by 
the BP register are computed using the SS segment 
register. The physical addresses of the destination op­
erands of the string primitive operations (those ad­
dressed by the 01 register) are computed using the ES 
segment, which may not be overridden. 

3-78 210451-004 



iAPX 88/10 
8-BIT HMOS MICROPROCESSOR 

8088/8088-2 
• 8·Bit Data Bus Interface 

• 16·Bit Internal Architecture 

• Direct Addressing Capability to 1 
Mbyte of Memory 

• Direct Software Compatibility with 
iAPX 86110 (8086 CPU) 

• 14·Word by 16·Bit Register Set with 
Symmetrical Operations 

• 24 Operand Addressing Modes 

• Byte, Word, and Block Operations 

• 8·Bit and 16·Bit Signed and Unsigned 
Arithmetic in Binary or Decimal, 
Including Multiply and Divide 

• Compatible with 8155·2, 8755A·2 and 
8185·2 Multiplexed Peripherals 

• Two Clock Rates: 
5 MHz for 8088 
8 MHz for 8088·2 

• Available in EXPRESS 
- Standard Temperature Range 
- Extended Temperature Range 

The Intel® iAPX 88/10 is a new generation, high performance microprocessor implemented in N-channel, depletion load, 
silicon gate technology (HMOS), and packaged in a 40-pin CerDIP package. The processor has attributes of both 8- and 
16-bit microprocessors. It is directly compatible with iAPX 86/10 software and 8080/8085 hardware and peripherals. 

MEMORY INTERFACE 

C·BUS 
MIN (MAX 1 

MODE MODE 

GND Vee 

A1' A15 
INSTRUCTION A13 A16/S3 
STREAM BYTE 

QUEUE A1. A17/S4 

A11 A18/55 

A10 A191S6 

BUS 
CS A9 SSO (HIGH) 

INTERFACE 55 A8 MNIMX 
UNIT 

05 AD7 Ali 
IP AD6 HOLD (ROIGTO) 

AD5 HlDA (RO/GT1) 

A·BUs AD. WR (LOCK) 

AD3 101M (52) 

AD. DTiR (51) 
AH AL AD1 DEN (SO) 
BH BL ADO ALE (050) 
CH CL 

DH Dl 
NMI INTA (051) 

EXECUTION 
UNIT SP INTR TEST 

BP ClK READY 

51 GND RESET 

01 FLAGS 

Figure 1. iAPX 88/10 CPU Functional Block Diagram Figure 2. iAPX 88/10 Pin Configuration 

Intel Corporatton Assumes No Rssponslbllty for the Use of Any CIrcUItry Other Than Circuitry EmbodIed 1M an Intel Product No Other ClfCUlt Patent Licenses afe Implied 

©INTEl CORPORATION, 1980 
3-79 



intJ iAPX 88/10 

Table 1. Pin Description 

The following pin function descriptions are for 8088 systems in either minimum or maximum mode. The "local bus" in 
these descriptions is the direct multiplexed bus interface connection to the 8088 (without regard to additional bus 
buffers). -

Symbol Pin No. Type Name and Function 

AD7-ADO 9-16 I/O Address Data Bus: These lines constitute the time multiplexed memory/IO 
address (Tl) and data (T2, T3, Tw, and T4) bus. These lines are active HIGH and 
float to 3-state OFF during interrupt acknowledge and local bus "hold acknowl-
edge". 

A15-A8 2-8,39 0 Address Bus: These lines provide address bits 8 through 15 for the entire bus 
cycle (T1-T4). These lines do not have to be latched by ALE to remain valid. 
A 15-A8 are active HIGH and float to 3-state OFF during interrupt acknowledge 
and local bus "h<:>ld acknowledge". 

A19/56, A18/55, 35-38 0 Address/Status: During T1, these are the four 
A17/54, A16/53 most significant address lines for memory op-

erations. During I/O operations, these lines are 
lOW. During memory and I/O operations, status 
information is available on these lines during 
T2, T3, Tw, and T 4. 56 is always low. The status of .. 53 CHARACTERISTICS 

the interrupt enable flag bit (55) is updated at O'(LOW) 0 AltemateData 
0 , Slack 

the beginning of each clock cycle. 54 and 53 are 1 (HIGHI 0 Code or None , , Data 

encoded as shown. S6Is0(LOW) 

This information indicates which segment reg-
ister is presently being used for data accessing. 

These lines float to 3-state OFF during local bus 
"hold acknowledge". 

RD 32 0 Read: Read strobe indicates that the processor is performing a memory or I/O 
read cycle, depending on the state of the 10/1VI pin or 52. This signal is used to 
read devices which reside on the 8088 local bus. RD is active lOW during T2, T3 
and Tw of any read cycle, and is guaranteed to remain HIGH in T2 until the 8088 
local bus has floated. 

This signal floats to 3-state OFF in "hold acknowledge". 

READY 22 I READY: isthe acknowledgement from the addressed memory or I/O device that 
it will complete the data transfer. The RDY Signal from memory or I/O is syn-
chronized by the 8284 clock generator to form READY. This signal is active 
HIGH. The 8088 READY input is not synchronized. Correct operation is not 
guaranteed if the set up and hold times are not met. 

INTR 18 I Interrupt Request: is a level triggered input which is sampled during the last 
clock cycle of each instruction to determine ilthe processor should enter into an 
interrupt acknowledge operation. A subroutine is vectored to via an interrupt 
vector lookup table located in system memory. It can be internally masked by 
software resetting the interrupt enable bit. INTR is internally synchronized. This 
signal is active HIGH. 

TE5T 23 I TEST: input is examine~ by the "wait for test" instruction. If the TE5T input is 
lOW, execution <?ontinues, otherwise the processor waits in an "idle" state. This 
input is synchronized internally during each clock cycle on the leading edge of 
ClK. 

NMI 17 I Non-Maskable Interrupt: is an edge triggered input which causes a type 2 
interrupt. A subroutine is vectored to via an interrupt vector lookup table located 
in system memory. NMI is not maskable internally by software. A transition from 
a lOW to HIGH initiates the interrupt at the end of the current instruction. This 
input is internally synchronized. 

3-80 



iAPX 88/10 

Table 1. Pin Description (Continued) 
.. -

Symbol Pin No. lYpe Name and Function 

RESET 21 I RESET: causes the processor to immediately terminate its present activity. The 
signal must be active HIGH for at least four clock cycles. It restarts execution, as 
described in the instruction set description, when RESET returns LOW. RESET 
is internally synchronized. 

eLK 19 I Clock: provides the basic timing for the processor and bus controller. It is 
asymmetric with a 33% duty cycle to provide optimized internal timing. 

Vee 40 Vee: is the +5V ±10% power supply pin. 

GND 1,20 GND: are the ground pins. 

MN/MX 33 I Minimum/Maximum: indicates what mode the processor is to operate in. The 
two modes are discussed in the following sections. 

The fol/owing pin function descriptions are for the 8088 minimum mode (i.e., MN/MX = Vee). Only the pin functions which 
are unique to minimum mode are described; aI/ other pin functions are as described above. 

10/M 28 0 Status Line: is an inverted maximum mode 52. It is used to distinguish a 
memory access from an I/O access. 10/M becomes valid in the T4 preceding a 
bus cycle and remains valid until the final T4 of the cycle (I/O;"'HIGH, M= LOW). 
10/M floats to 3-state OFF in local bus "hold acknowledge". 

WR 29 0 Write: strobe indicates thatthe processor is performing a write memory or write 
I/O cycle, depending on the state of the 10/M signal. WR is active for T2, T3, and 
Tw of any write cycle. It is active LOW, and floats to 3-state OFF in local bus "hold 
acknowledge" . 

INTA 24 0 INTA: is used as a read strobe for interrupt acknowledge cycles. It is active LOW 
during T2, T3, and Tw of each interrupt acknowledge cycle. 

ALE 25 0 Address Latch Enable: is provided by the processor to latch the address into 
the 8282/8283 address latch. It is a HIGH pulse active during clock low of T1 of 
any bus cycle. Note that ALE is never floated. 

DT/R 27 O. Data Transmit/Receive: is needed in a minimum system that desires to use an 
8286/8287 data bus transceiver. It is used to control the direction of data flow 
through the transceiver. Logically, DT/R is equivalent to 51 in the maximum 
mode, and its timing is the same as for 10/M (T=HIGH, R=LOW). This signal 
floats to 3-state OFF in local "hold acknowledge". 

DEN 26 a Data Enable: is provided as an output enable for the 8286/8287 In a minimum 
system which uses the transceiver. DEN is active LOW during each memory and 
I/O access, and for INTA cycles. For a read or INTA cycle, it is active from the 
middle of T2 until the middle of T4, while for a write cycle, it IS active from the 
beginning ofT2 until the middle ofT4. DEN floats to 3-state OFF during local bus 
"hold acknowledge". 

HOLD, HLDA 30,31 1,0 HOLD: indicates that another master is requesting a local bus "hold". To be 
acknowledged, HOLD must be active HIGH. The processor receiving the "hold" 
request will issue HLDA (HIGH) as an acknowledgement, in the middle of a T4 or 
TI clock cycle. Simultaneous with the issuance of HLDA the processor will float 
the local bus and control lines. After HOLD IS detected as being LOW, the 
processor lowers HLDA. and when the processor needs to run another cycle, it 
will again drive the local bus and control lines. 

Hold is not an asynchronous input. External synchronization should be 
provided if the system cannot otherwise guarantee the set up time. 

SSO 34 a Status line: is logically equivalent to SO in t~ 101M DriA I SS5 CHARACTERISTICS 

maximum mode. The combination of SSO, 10/M ;I<OGel o I 0 I ~;:~:r~ ;::"ow'"'" 
and DT/R allows the system to completely de- ~ I ~ 
code the current bus cycle status. !"OW' : i: ~:g~:~~:, : I : 

3-81 



intJ iA'PX 88/10 

Table 1. Pin Description (Continued) 

The following pin function descriptions are for the 8088,8228 system in maximum mode (i.e., MN/MX=GND.) Only the pin 
functions which are unique to maximum mode are described; all other pin functions are as described above. 

Symbol Pin No. Type 

S2, Sl, SO 26-28 0 

RQ/GTO, 
RQ/GT1 

30,31 I/O 

Name and Function 

Status: is active during clock high of T4, T1, 
and T2, and is returned to the passive state 
(1,1,1) during T3 or during Tw when READY is 
HIGH. This status is used by the 8288 bus con­
troller to generate all memory and I/O access 
control signals. Any change by S2, 51, or SO 
during T4 is used to indicate the beginning of a 
bus cycle, and the return to the passive state in 
T3 or Tw is used to indicate the end of a bus 
cycle. 

These signals float to 3-state OFF during "hold 
acknowledge". During the first clock cycle after 
RESET becomes active, these signals are active 
HIGH. After this first clock, they float to 3-state 
OFF. 

" g(LOW) 

, , 
~ (HIGH) 

, , 

" , , , , , , , , 

.. CHARACTERISTICS , Interrupt Acknowledge , Read 110 pori , 
~:\~eIIOporl , , Codeaccos. , Readmemo.y , W"tememory , PassIve 

Request/Grant: pins are used by other local bus masters to force the processor 
to release the local bus at the erid of the processor's current bus cycle. Each pin 
is bidirectional with RQ/GTO having higher priority than RQ/GT1. RQ/GT has an 
internal pull-up resistor, so may be left unconnected. The request/grant se­
quence is as follows (See Figure 8): 

1. A pulse of one CLK wide from another local bus master indicates a local bus 
request ("hold") to the 8088 (pulse 1). 

2. During a T4 or TI clock cycle, a pulse one clock wide from the 8088 to the 
requesting master (pulse 2), indicates that the 8088 has allowed the local bus 
to float and that it will enter the "hold ack~owledge" state at the next CLK. 
The CPU's bus interface unit is disconnected logically from the local bus 
during "hold acknowledge". The same rules as for HOLD/HOLDA apply as for 
when the bus is released. 

3. A pulse one CLK wide from the requesting master indicates to the 8088 (pulse 
3) that the "hold" request is about to end and that the 8088 can reclaim the 
local bus at the next CLK. The CPU then enters T4. 

Each master-master exchange of the local bus is a sequence of three pulses. 
There must be one idle CLK cycle after each bus exchange. Pulses are active 
LOW. 

If the request is made while the CPU is performing a memory cycle, it will release 
the local bus during T4 of the cycle when all the following conditions are met: 

1. Request occurs on or before T2. 
2. Current cycle is not the low bit of a word. 
3. Current cycle is not the first acknowledge of an interrupt acknowledge 

sequence. 
4. A locked instruction is not currently executing. 

If the local bus is idle when the request is made the two possible events will 
follow: 

1. Local bus will be released during the next clock. 
2. A memory cycle will start within'3 clocks. Now the four rules for a currently 

active memory cycle apply with condition number 1 already satisfied. 

3-82 



iAPX 88/10 

Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

lOCK 29 a LOCK: indicates that other system bus masters are not to gain control of the 
system bus while lOCK is active (lOW). The lOCK signal is activated by the 
"lOCK" prefix instruction and remains active until the completion of the next 
instruction. This signal is active lOW, and floats to 3-state off in "hold acknowl-
edge". 

OS1,OSO 24,25 a Queue Status: provide status to allow external 
QS1 loso CHARACTERISTICS 

tracking of the internal BOBB instruction queue. 
OllOW),! 0 No operatlo" 

.. -
o , Forst byte oj opcode from queue 

The queue status is valid during the ClK cycle ' (HIGHll 0 Empty the queue , , Subsequerll byte from queue 

after which the queue operation is performed. 

- 34 a Pin 34 is always high in the maximum mode. 

3-83 



iAPX 88/10 

FUNCTIONAL DESCRIPTION 

Memory Organization 
The processor provides a 20-bit address to memory which 
locates the byte being referenced. The memory is orga­
nized as a linear array of up to 1 million bytes, addressed 
as OOOOO(H) to FFFFF(H). The memory is logically divided 
into code, data, extra data, and stack segments of up to 
64K bytes each, with each segment falling on 16-byte 
boundaries. (See Figure 3.) 

All memory references are made relative to base 
addresses contained in high speed segment regis,ers.The 
segment types were chosen based on the addressing 
needs of programs. The segment register to be selected is 
automatically chosen according to the rules of the follow­
ing table. All information in one segment type share the 
same logical attributes (e.g. code or data). By structuring 
memory into relocatable areas of similar characteristics 
and by automatically selecting segment registers, pro­
grams are shorter, faster, and more structured. 

the next higher address location. The BIU will auto· 
matically execute two fetch or write cycles for 16·bit 
operands. 

Certain locations in memory are reserved for specific 
CPU operations. (See Figure 4) Locations from ad· 
dresses FFFFOH through FFFFFH are reserved for 
operations including a jump to the initial system initial· 
ization routine. Following RESET, the CPU will always 
begin execution at location FFFFOH where the jump 
must be located. Locations OOOOOH through 003FFH are 
reserved for interrupt operations. Four·byte, pOinters 
consisting of a 16·bit segment address and a 16·bit off· 
set address direct program flow to one of the 256 possi· 
ble interrupt service routines. The pOinter elements are 
assumed to have been stored at their respective places 
in reserved memory prior to the occurrence of inter· 
rupts. 

Minimum and Maximum Modes 

Word (16·bit) operands can be located on even or odd ad· 
dress boundaries. For address and data operands, the 
least significant byte of the word is stored in the lower 
valued address location and the most significant byte in 

The requirements for supporting minimum and maxi· 
mum 8088 systems are sufficiently different that they 
cannot be done efficiently with 40 uniquely defined 
pins. Consequently, the 8088 is equipped with a strap 
pin (MN/MX) which defines the system configuration. 
The definition of a certain subset of the pins changes, 
dependent on the condition of the strap pin. When the 
MN/MX pin is strapped to GND, the 8088 defines.pins 24 
through 31 and 34 in maximum mode. When the MN/MX 
pin is strapped to Vee, the 8088 generates bus control 
signals itself on pins 24 through 31 and 34. 

l:----:i FFFFFH 

..IKBO} CODE SEGMENT 

-----L XXXXOH 

} STACK SEGMENT 

,---'--l----I 

SEGMENT 1 
REGISTER FILE ORO f MSB 

E~~;~~~~==~Wl1\ ~;:::1E J DATA SEGMENT 
DS 
ES 

}EXTRA DATA "GMENT 

'---4_--1 
, ~OOOOOH 

Figure 3. Memory Organization 

Memory Segment Register 
Reference Need Used 

Instructions CODE (CS) 

Stack STACK (SS) 

Local Data DATA (DS) 

External (Global) Data EXTRA (ES) 

FFFFFH 
RESET BOOTSTRAP 

PROGRAM JUMP 
FFFFOH 

• 
• 

3FFH 
INTERRUPT POINTER 

FOR TYPE 255 
3FOH 

• 
7H 

INTERRUPT POINTER 
FOR TYPE 1 4H 

INTERRUPT POINTER 3H 

FOR TYPE 0 
OH 

Figure 4. Reserved Memory Locations 

Segment 
Selection Rule 

Automatic with all instruction prefetch. 

All stack pushes and pops. Memory references relative to BP 
base register except data references. 

Data references when: relative to stack, destination of string 
operation, or explicitly overridden. 

Destination of string operations: Explicitly selected using a 
segment override. 

3-84 



inter iAPX 88/10 

The minimum mode 8088 can be used with either a 
multiplexed or demultiplexed bus. The multiplexed bus 
configuration is compatible with the MCS-85™ multi­
plexed bus peripherals (8155, 8156, 8355, 8755A, and 
8185), This configuration (See Figure 5) provides the user 
with a minimum chip count system. This architecture 
provides the 8088 processing power in a highly integrated 
form. 

The demultiplexed mode requires one latch (for 64K ad· 
dressabillty) or two latches (for a full megabyte of ad­
dressing). A third latch can be used for buffering if the 
address bus loading requires it. An 8286 or 8287 trans­
ceiver can also be used if data bus buffering is required. 
(See Figure 6,) The 8088 provides DEN and DTfR to con-

trol the transceiver, and ALE to latch the addresses. 
This configuration of the minimum mode provides the 
standard demultiplexed bus structure with heavy bus 
buffering and relaxed bus timing requirements. 

The maximum mode employs the 8288 bus controller. 
(See Figure 7,) The 8288 decodes status lines SO, 81, 
and 52, and provides the system with all bus control 
signals. Moving the bus control to the 8288 provides 
better source and sink current capability to the control 
lines, and frees the 8088 pins for extended large system 
features. Hardware lock, queue status, and two requestl 
grant interfaces are provided by the 8088 in maximum 
mode. These features allow co-processors in local bus 
and remote bus configurations. 

3-85 



iAPX 88/10 

./' /'. vi' Vee ' 

I 
I Sf- eE POR~~ 

WR 

PORT~ RD B 
8'55 

"-
ALE paRT~ 
DATAl c (6) 

ADOR 

" IN_ 
IOiM TIMER 

RESET 
OUT f--. 

" iOW Aa- A19 ADDR 
v AD 

A CJ\,. ADo - AD7 ADDR/OATA ALE 

~ r--- elK !S~ PORT 
eE A 

( 

" ~= 
AS10 

8088 V - 8355 1875SA 
READY 

" MN/MX ~Vcc ./ 
DATAl 
ADDR 

rD1 - -
-y 

~ Vee ALE 101M PORT 
RESET ftc - - - RESET B 

X, X2 
eLK WR -

~c 
READY - 101M - iOR 

f-- RES I! 11 8284A 

I 
RESET - Vss Vee Voo PAOG 

G ND We 

RD 

CE: I 
8185 

ALE 

\-- es, eEl 

\-- A"Ag 

A 

ADo1 

! t 
V" V" 

~ 

Figure 5. Multiplexed Bus Configuration 

3-86 



infef iAPX 88/10 

t 
I 

GND 

r~ 
8284A 
CLOCK _ CLK 

MNIMI I-Vcc GENERATOR 
lID - READY IOJii 

_ FlESET l1li 

RD' 'l/II .... I CPU IN'fA 

DTIlI R r---:l 
1mi II 5TB I 

I 
ALE 

GN0-tt-----:- DE 8282 : 
ADD-AD, 

AI-A,. ~DDRlOAr---v (1~~~CRH3) ADDRESS 

.J 

I t INTR 

DATA 

=> Jll lJ.ll 1 n 11 
I 

WE 001 I OEII B IIIIWRI 
1\ 2142 RAM (2) 21162 PROM Mes 80 

PERIPHERAL 

V INTS:=~PT -CONTROL 

INT 

¢==='R .. ' 
-

Figure 6. Demultiplexed Bus Configuration 

o 

t r
Ul 

II284A ~ MN''''' rOND elK MADe 
CLOCK K - So MWTC GENERATQR CL So 

An r- READY S1 

I 
r- RESET s, 

RO' 
GND .... CPU 

ADo-AD1 
As-AlIl 

INT 

S; IiI!WC _NC 

S, 8288 lORe 
r-- DEN C~~~R lowe 

r---- DT/R AT6WC -NC 

ALE INTA 

r---:l 
I 

ST' I 
GNC- r--- OE 8282 I 

~DDRIOA~ 
LATCH ADDRESS 

(1,20R3) 

fJ I 

II II I I II 
I 

l 5= T 

OE 
82" 

TRANSCEIVER DATA 

F ill 1 11 lln III 
~. WE 001 I OEIIB IIIIWR ~ 2142 RAM (2) 21162 PROM Mesao 

PERIPHERAL 

V INT8:~~PT -CONTROL 

~I~' 

Figure 7. Fully Buffered System Using Bus Controller 

3-87 

\ 

--j 

, 



iAPX 88/10 

Bus Operation 
The 8088 address/data bus is broken into three parts -
the lower eight address/data bits (ADO-AD7), the middle 
eight a(ldress bits (A8-A15), and the upper four address 
bits (A16-A19). The address/data bits and tile highest 
four address bits are time multiplexed. This technique 
provides the most efficient use of pins on the proc· 
essor, permitting the use of a standard 40 lead package. 
The middle eight address bits are not multiplexed, i.e. 
they remain valid throughout each bus cycle. In addi-

tion, the bus can be demultlplexed at the processor with 
a single address latch If a stanpard, non-multiplexed 
bus is desired for the system. 

Each processor bus cycle consists of at least four elK 
cycles. These are referred to as T1, T2, T3, and T4. (See 
Figure 8>' The address is emitted from the processor 
during T1 and data transfer occurs on the bus during T3 
and T4. T2 is used primarily for changing the direction of 
the bus during read operations. In the event that a "NOT 
READY" \indicatlon. is given by the addressed device, 

1-------(4+NwAIT):oTcv------,-------(4+NwAIT) .. Tev--------j 

T, T, T3 TWAIT I T4 T1 T2 T3 

eLK 

\ 
ADDRISTATUS 

ADOR 

ADDRIDATA -----GXI... __ D_AT_A_O_UT_ID_'._DoI ____ )---<=><= 

READY 

DT/R 

MeMORY ACCESS TIME 

\------/ 

Figure 8. Basic System Timing 

3-88 



iAPX 88/10 

"wait" states (Tw) are inserted between T3 and T4. Each 
inserted "wait" state is of the same duration as a ClK 
cycle. Periods can occur between 8088 driven bus cycles. 
These are referred to as "idle" states (Ti), or inactive ClK 
cycles. The processor uses these cycles for internal 
housekeeping. 

During T1 of any bus cycle, the ALE (address latch enable) 
signal is emitted (by either the processor or the 8288 bus 
controller, depending on the MN/MX strap). At the trailing 
edge of this pulse, a valid address and certain status 
information for the cycle may be latched. 

Status bits SO, Sf, and S2 are used by the bus controller, in 
maximum mode, to identify the type of bus transaction 
according to the following table: 

S2 S; -
CHARACTERISTICS So 

o (LOW) ·0 0 Interrupt Acknowledge 
0 0 1 Read I/O 
0 1 0 Write I/O 
0 1 1 Halt 
1 (HIGH) 0 0 Instruction Fetch 
1 0 1 Read Data from Memory 
1 1 0 Write Data to Memory 
1 1 1 Passive (no bus cycle) 

Status bits S3 through S6 are multiplexed with high order 
address bits and are therefore valid during T2 through T4. 
S3 and S4 indicate which segment register was used for 
this bus cycle in forming the address according to the 
following table: 

S. S3 CHARACTERISTICS 

o (LOW) 0 Alternate Data (extra segment) 
0 1 Stack 
1 (HIGH) 0 Code or None 
1 1 Data 

S5 is a reflection of the PSW interrupt enable bit. S6 is 
always equal to O. 

I/O Addressing 

In the 8088, I/O operations can address up to a maximum 
of 64K I/O registers. The I/O address appears in the same 
format as the memory address on bus lines A15-AO. The 
address lines A19-A16 are zero in I/O operations. The vari-

'able I/O instructions, which use register DX as a pointer, 
have full address capability, while the direct I/O instruc­
tions directly address one or two of the 256 I/O byte 
locations in page 0 of the I/O address space. I/O ports are 
addressed in the same manner as memory locations. 

Designers familiar with the 8085 or upgrading an 8085 
design should note that the 8085 addresses I/O with an 
8-bit address on both halves of the 16-bit address bus. The 
8088 uses a full 16-bit address on its lower 16 address 
lines. 

EXTERNAL INTERFACE 

Processor Reset and Initialization 

Processor initialization or start up is accomplished with 
activation (HIGH) of the RESET pin. The 8088 RESET is 
required to be HIGH for greater than four clock cycles. The 
8088 will terminate operations on the high-going edge of 
RESET and will remain dorl)1ant as long as RESET is HIGH. 
The low-going transition of RESET triggers an internal 
reset sequence for approximately 7 clock cycles. After this 
interval the 8088 operates normally, beginning with the 
instruction in absolute location FFFFOH. (See Figure 4.) 
The RESET input is internally synchronized to the proces­
sor clock. At initialization, the HIGH to lOW transition of 
RESET must occur no sooner than 50 JLS after power up, to 
allow complete initialization of the 8088. 

If INTR is asserted sooner than nine clock cycles after the 
end of RESET, the processor may execute one instruction 
before responding to the interrupt. 

All 3-state outputs float to 3-state OFF during RESET. 
Status is active in the idle state for the first clock after 
RESET becomes active and then floats to 3-state OFF. 

Interrupt Operations 
Interrupt operations fall into two classes: software or 
hardware initiated. The software initiated interrupts and 
software aspects of hardware interrupts are specified in 
the instruction set description in the iAPX 88 book or the 
iAPX 86,88 User's Manual. Hardware interrupts can be 
classified as nonmaskable or maskable. 

Interrupts result in a transfer of control to a new program 
location. A 256 element table containing address pointers 
to the interrupt service program locations resides in abso­
lute locations 0 through 3FFH (see Figure 4), which are 
reserved for this purpose. Each element in the table is 4 
bytes in size and corresponds to an interrupt "type." An 
interrupting device supplies an 8-bit type number, during 
the interrupt acknowledge sequence, which is used to 
vector through the appropriate element to the new inter­
rupt service program location. 

Non-Maskable Interrupt (NMI) 

The processor provides a single non-maskable interrupt 
(NMI) pin which has higher priority than the maskable 
interrupt request (INTR) pin. A typical use would be to 
activate a power failure routine. The NMI is edge-triggered 
on a lOW to HIGH transition. The activation of this pin 
causes a type 2 interrupt. 

NMI is required to have a duration in the HIGH state of 
greater than two clock ·cycles, but is not required to ·be 
synchronized to the clock. Any higher going transition of 
NMI is latched on-chip and will be serviced at the end of 
the current instruction or between whole moves (2 bytes in 
the case of word moves) of a block type instruction. Worst 
case response to NMI would be for multiply, divide, and 
variable shift instructions. There is no specification on 
the occurrence of the low-going edge; it may occur 

3-89 



iAP)( 88/10 

before, during, or after the servIcing of NMI. 
Another high-going edge triggers another response if it 
occurs after the start of the NMI procedure. The signal 
must be free of logical spikes in general and be free of 
bounces on the 10w-gQing edge to avoid triggering ·ex­
traneous responses. 

Maskable Interrupt (INTR) 
The 8088 provides a single interrupt request input (INTR) 
which can be masked internally by software with the 
resetting of the interrupt enable (IF) flag bit. The in­
terrupt request signal is level triggered. It is internally 
synchronized during each clock cycle on the high-going 
edge of CLK. To be responded to, INTR must be present 
(HIGH) during the clock period preceding the end of the 
current instruction or the enq of a whole move for a 
block type instruction. During interrupt response se­
quence, further interrupts are disabled. The enable bit is 
reset as part of the response to any interrupt (INTR, 
NMI, software interrupt, or single step), although the 
FLAGS register which is automatically pushed onto the 
stack reflects the state of the processor prior to the in­
terrupt. Until the old FLAGS register is restored, the 
enable bit will be zero unless specifically set by an in­
struction. 

During the response sequence (See Figure 9), the proc­
essor executes two successive (back to back) interrupt 
acknowledge cycles. The 8088 emits the LOCK signal 
(maximum mode only) from T2 01 the lir!lt bus cycle until 
T2 of the second. A local bus "hold" request will not be 
honored until the end of the second bus cycle. In the 
second bus cycle, a byte is letched from the external in­
terrupt system (e.g., 8259A PIC) which identifies the 
source (type) of the interrupt. This byte is multiplied by 
four and used as a pointer into the interrupt vector 
lookup table. An INTR slgnallelt HIGH will be continual­
ly responded to within the limitations of the enable bit 

and sample period. The interrupt return instruction in­
cludes a flags pop which returns the status of the 
original interrupt enable bit when it restores the flags. 

HALT 

When a software HALT instruction is executed, the 
processor indicates that it is entering the HALT state in 
one of two ways, depending upon which mode is 
strapped. In minimum mode, the processor issues ALE, 
delayed by one clock cycle, to allow the system to latch 
the halt status. Halt status is available on 10/M, DT/R, 
and SSO. In maximum mode, the processor issues ap­
propriate HALT status on S2, S 1, and SO, and the 8288 
bus controller issues one ALE. The 8088 will not leave 
the HALT state when a local bus hold is entered while in 
HALT. In this case, the processor reissues the HALT in­
dicator at the end of the local bus hold. An interrupt re­
quest or RESET will force the 8088 out of the HALT 
state. 

Read/Modify/Write (Semaphore) Operations 
via LOCK 

The LOCK status information is provided by' the proc­
essor when consecutive bus cycles are required during 
the execution of an Instruction. This allows the proc­
essor to perform read/modify/write operations on 
memory (via the "exchange register with memory" 
instruction), without another system bus master receiv­
ing intervening memory cycles. This is useful in multi­
processor'system configurations to accomplish "test 
and set lock" operations. The ~ signal is activated 
(LOW) in the clock cycle following decoding of the 
LOCK prefix instruction. It is deactivated at the end of 
the last bus cycle of the instruction following the LOCK 
prefix. While LOCK is active, a request on a RQ/GT pin will 
be recorded, and then honored at the end of the LOCK. 

T1 I T2 f3 T4 T1 I T, T, 

ALE JlL.....--__ nL....-__ 

FLOAT 
ADo-AD, 

\'------;-__ ----'1 

Figure 9_ Interrupt Acknowledge Sequence 

3-90 



iAPX 88/10 

External Synchronization via TEST 

As an alternative to interrupts, the 8088 provides a 
single software·testable input pin (TEST). This input is 
utilized by executing a WAIT instruction. The single 
WAIT instruction is repeatedly executed until the TEST 
input goes active (LOW). The execution of WAIT does 
not consume bus cycles once the queue is full. 

If a local bus request occurs during WAIT execution, the 
8088 3-states all output drivers. If interrupts are enabled, 
the 8088 will recognize interrupts and process them. 
The WAIT instruction is then refetched, and reexecuted. 

Basic System Timing 
In minimum mbde, the MN/MX pin is strapped to Vee 
and the processor emits bus control signals compatible 
with the 8085 bus structure. In maximum mode, the 
MN/MX pin is strapped to GND and the processor emits 
coded status rnformation which the 8288 bus controller 
uses to generate MUL TIBUS compatible bus control 
signals. 

System Timing - Minimum System 
(See Figure 8J 

The read cycle begins in T1 with the assertion of the ad· 
dress latch enable (ALE) signal. The trailing (lOW going) 
edge of this signal is used to latch the address informa· 
tion, which is valid on the address/data bus (ADO-AD7) 
at this time, into the 8282/8283 latch. Address lines A8 
through A15 do not need to be latched because they reo 
main valid throughout the bus cycle. From T1 to T4 the 
101M signal indicates a memory or 110 operation. At T2 
the address is removed from the address/data bus and 
1he bus goes to a high impedance state. The~ad con· 
trol signal is also asserted at T2. The read (RD) signal 
causes the addressed device to enable its data bus 
drivers to the local bus. Some time later, valid data will 
be available on the bus and the addressed device will 
drive the READY line HIGH. When the processor returns 
the read signal to a HIGH level, the addressed device 
will again 3-state its bus drivers. If a transceiver 
(8286/8287) is required to' buffer the 8088 local bus, 
signals DT/R and DEN are provided by the 8088. 

A write cycle also begins with the assertion of ALE and 
the emission of the address. The 101M signal is again 
asserted to indicate a memory or 110 write operation. In 
T2, immediately following the address emission, the 
processor emits the data to be written into the ad· 
dressed location. 'fhis data remains valid until at least 
the middle of T4. During T2, T3, and Tw, the processor 
asserts tile write control signal. The write (WR) signal 
becomes active at the beginning of T2, as opposed to 
the read, which is delayed somewhat into T2 to provide 
time for the bus to float. 

The basiC difference between the interrupt acknowl· 
edge cycle and a read cycle is that the interrupt 
acknowledge (INTA) signal is asserted in place of the 
read (RD) signal and the address bus is floated. (See 
Figure 9J:.ln the second of two successive INTA cycles, 

3-91 

a byte of information is read from the data bus, as sup· 
plied by the interrupt system logic (i.e. 8259A priority in· 
terrupt controller). This byte identifies the source (type) 
of the interrupt. It is multiplied by four and used as a 
pOinter into the interrupt vector lookup table, as de· 
scribed earlier. 

Bus Timing - lIiIedium Complexity Systems 

(See Figure 10J 

For medium complexity systems, the M N/MX pin is con· 
nected to GND and the 8288 bus controller is added to 
the system, as well as an 8282/8283 latch for latching 
the system address, and an 8286/8287 transceiver to 
allow for bus loading greater than the 8088 is capable of 
handling. Signals ALE, BEN, and DT/R are generated by 
the 8288 instead of the processor in this configuration, 
although their timing remains relatively the same. The 
8088 status outputs (82, S1, and SO) provide type of 
cycle information and become 8288 inputs. This bus 
cycle information specifies read (code, data, or 110), 
write (data or 110), interrupt acknowledge, or software 
halt. The 8288 thus issues control signals speCifying 
:nemory read or write, 110 read or write, or interrupt 
acknowledge. The 8288 provides two types of write 
strobes, normal and advanced, to be applied as required. 
The normal write strobes have data valid at the leading 
edge of write. The advanced write strobes have the 
same timing as read strobes, and hence, data is not 
valid at the leading edge of write. The 8286/8287 trans· 
ceiver receives the usual T and OE inputs from the 
8288's DT/R and DEN outputs. 

The pointer into the interrupt vector table, which is 
passed during the second INTA cycle, can derive from 
an 8259A located on either the local bus or the system 
bus. If the master 8289A Priority Interrupt controller IS 
positioned on the local bus, a TTL gate is required to 
disable the 8286/8287 transceiver when reading from the 
master 8259A during the interrupt acknowledge se· 
quence and software "poll". 

The 8088 Compared to the 8086 

The 8088 CPU is an 8-bit processor designed around the 
8086 internal structure. Most internal functions of the 
8088 are identical to the equivalent 8086 functions. The 
8088 handles the external bus the same way the 8086 
does with the distinction of handling only 8 bits at a 
time. Sixteen·bit operands are fetched or written in two 
consecutive bus cycles. Both processors wil'l appear 
identical to the software engineer, with the exception of 
execution time. The internal register structure is iden· 
tical and all instructions have the same end result. The 
differences between the 8088 and 8086 are outlined 
below. The engineer who is unfamiliar with the 8086 is 
referred to the iAPX 86, 88 User's Manual, Chapters 2 and 
4, for function description and instruction set information. 
Internally, there are three differences between the 8088 
and the 8086. All changes are related to the 8-bit bus in· 
terface. 



iAPX 88/10 

o The queue length is 4 bytes in the 8088, whereas the 
8086 queue contains 6 bytes, or three words. The 
queue was shortened to prevent overuse of the bus by 
the BIU when prefetching instructions. This was re­
quired because of the additional time necessary to 
fetch instructions 8 bits at a time. 

o To further optimize the queue, the prefetching algo­
rithm was changed. The 8088 BIU will fetch a new in­
struction to load into the queue each time there is a 1 
byte hole (space available) in the queue. The 8086 
waits until a 2-byte space is available .. _ 

o The internal execution time of the Instruction set is 
affected by the 8-bit interface. All 16-bit fetches and 
writes fromlto memory take an additional four clock 
cycles. The CPU is also limited by the speed of in­
struction fetches. This latter problem only occurs 
when a series of simple operations occur. When the 
more sophisticated instructions of the 8088 are being 
used, the queue has time to fill and the execution pro­
ceeds as fast as the execution unit will allow. 

The 808S and 8086 are completely software compattble 
by virture of their identical execution units. Software 
that is system dependent may not be completely trans­
ferable, but software that is not system dependent will 
operate equally as well on an 8088 or an 8086. 

The hardware interface of the 8088 contains the major 
differences between the two CPUs. The pin assign­
ments are nearly identical, however, with the following 
functional changes: 

o A8-A 15 - These pins are only address outputs on the 
8088. These address lines are latched internally and 
remain valid throughout a bus cycle in a manner 
similar to the 8085 upper addr~ss lines. 

o BHE has no meaning on the 8088 and has been elimi­
nated. 

o SSO provides the SO status information in the mini­
mum mode. This output occurs on pin 34 in minimum 
mode only. DT/R, 101M, and SSO provide the complete 
bus status in minimum mode. 

o 10iM has been inverted to be compatible with the 
MCS-85 bus structure. 

,0 ALE is delayed by one clock cycle in the minimum 
mode when entering HALT, to allow the status to be 
latched with ALE. 

3-92 



iAPX 88/10 

T, T, T, T, 

ClK ---.F' I' I' 1M 

aS1, aso Y ===>-
8088 

$2, Sf, SQ / / / / / 
------
'--- ---

A191S6 - A161S3 A19-A16 S6-S3 

ALE '\ 
,-
--

8288 ROY 8284 

I 

READV 8088 
I 
I 

! 
AD7 - ADO A7 AO DATA IN 

8088 A15-AB A15-A8 

RD 

I 

Dr/R 

8288 MRDC \ 

DEN / 

Figure 10. Medium Complexity System Timing 

3-93 



iAPX 88/10 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias ......... O·C to 70·C 
Storage Temperature ............. - 65·C to + 150·C 
Voltage on Any Pin with 

Respect to Ground .................. - 1.0 to + 7V 
Power Dissipation ........................ 2.5 Watt 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera-' 
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (8088: TA = O°C to 70·C. Vee =.5V ±10%)' 
(8088-2: TA = O·C to 70·C. Vee = 5V ±5%) 

Symbol Parameter Min. 

. VIL Input Low Voltage -0.5 

VIH Input High Voltage 2.0 

VOL Output Low Voltage 

VOH Output High Voltage 2.4 

8088 
lee Power Supply Current: 8088-2 

PSOSS 

III Input Leakage Current 

ILO Output Leakage Current 

Vel Clock Input Low Voltage -0.5 

VeH Clock Input High Voltage 3.9 

Capacitance if Input Buffer 
CIN (All input except 

ADo-AD7. RQ/GT 

CIO 
Capacitance of I/O Buffer 
(ADo-AD7• RQ/GT 

• Note: For Extended Temperature EXPRESS Vce = 5V ± 5% 

Note 1: VIL tested with MN/MX Pin = OV 
VIH tested with MN/MX Pin = 5V 
MN/MX Pin is a strap Pin 

Max. 

+0.8 

Vee+0.5 

0.45 

340 
350 
250 

±10 

±10 

+0.6 

Vee+1.O 

15 

15 

Note 2: Not applicable to RQ/GTO and RQ/GT1 Pins (Pin 30 and 31) 

3-94 

Units Test Conditions 

V (See note 1) 

V (See note 1,2) 

V IOl = 2.0 mA 

V IOH = -400 /LA 

mA TA = 25·C 

/LA OV ""VIN' ""Vee 

/LA 0.45V "" Your "'" 
Vee 

V 

V 

pF fc = 1 MHz 

pF fc = 1 MHz 



iAPX 88/10 

A.C. CHARACTERISTICS (8088: TA = ODC to 70DC, Vee = 5V ±10%)* 
(8088-2: TA = ODC to 70DC, Vee = 5V ±5%) 

MININ/UM COMPLEXITY SYSTEM TIMING REQUIREMENTS 

8088 8088-2 

Symbol Parameter Min. Max. Min. 

TCLCL CLK Cycle Period 200 500 125 

TCLCH CLK LowTime 118 68 

TCHCL CLK High Time 69 44 

TCH1CH2 CLK Rise Time 10 

TCL2CL1 CLK Fall Time 10 

TDVCL Data in Setup Time 30 20 

TCLDX Data in Hold Time 10 10 

ROY Setup Time 
TR1VCL into 8284 (See 35 35 

Notes 1,2) 

ROY Hold Time 
TCLR1X into 8284 (See 0 0 

Notes 1,2) 

TRYHCH 
READY Setup 

118 68 
Time into 
8088 

TCHRYX 
READY Hold Time 

30 20 into 8088 

TRYLCL 
READY Inactive to 

-8 -8 
CLK (See Note 3) 

THVCH HOLD Setup Time 35 20 

INTR, NMI, TEST 
TlNVCH Setup Time (See 30 15 

,Note 2) 

TILIH 
Input Rise Time 

20 
(Except CLK) 

TIHIL 
Input Fall Time 

12 (Except CLK) 

*Note: For Extended Temperature EXPRESS Vcc=5V±5% 

3-95 

, 

Max. Units 
Test 

Conditions 

500 ns 

ns 

ns 

10 
From 1.0V 

ns to 3.5V 

10 
From 3.5V 

ns to 1.0V 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 
'" 

20 
From 0.8V 

ns 
to 2.0V 

12 
From 2.0V 

ns to 0.8V 



iAPX 88/10 

A.C. CHARACTERISTICS (Continued) 
TIMING RESPONSES 

8088 

Symbol Parameter Min. 

TClAV Address Valid Delay 10 

TClAX Address Hold Time 10 

TClAZ Address Float Delay TClAX 

TlHll ALE Width TClCH-20 

TCllH ALE Active Delay 

TCHll ALE Inactive Delay 

TllAX 
Address Hold Time to 

TCHCl-10 ALE Inactive 

TClDV Data Valid Delay 10 

TCHDX Data Hold Time 10 

TWHDX Data Hold Time After WR TClCH-30 

?TCVCTV Control Active Delay 1 10 

TCHCTV Control Active Delay 2 10 

TCVCTX Control Inactive Delay 10 

TAZRl 
Address Float to READ 

0 Active 

TClRl RD Active Delay 10 

TClRH RD Inactive Delay 10 

TRHAV 
RD Inactive to Next 

TClCl-45 Add ress Active 

TClHAV HLDA Valid Delay 10 

TRlRH RDWidth 2TClCl-75 

TWlWH WRWidth 2TClCl-60 

TAVAl Address Valid to ALE low TClCH-60 

TOlOH Output Rise Time 

TOHOL Output Fall Time 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

lNPUTIOUTPUT 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND 0 45V FOR 
A LOGIC 0 THE CLOCK IS DRIVEN AT 4 3V AND 025V TIMING MEASURE­
MENTS ARE MADE AT 1 5V FOR BOTH A LOGIC 1 AND 0 

8088·2 

Max. Min. Max. Units Test Conditions 

110 10 60 ns 

10 ns 

80 TClAX 50 ns 

TClCH-10 ns 

80 50 ns 

85 55 ns 

TCHCl-10 ns 

110 10 60 ns CL = 20·100 pFfor 

10 ns all 8088 Outputs 
in addition to 

TClCH-30 ns internal loads 

110 10 70 ns 

110 10 60 ns 

110 10 70 ns 

0 ns 

165 10 100 ns 

150 10 80 ns 

TClCl-40 ns 

160 10 100 ns 

2TClCl-50 ns 

2TClCl-40 ns 

TClCH-40 ns 

20 20 ns From 0.8V to 2.0V 

12 12 ns From 2.0V to O.8V 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER iJc, TEST 

100pF 

-= 

Cl INCLUDES JIG CAPACITANCE 

3-96 



iAPX 88/10 

WAVEFORMS 

BUS TIMING-MINIMUM MODE SYSTEM 

elK (8284 Output) 

IO/M,SSO 

ALE 

ROY (8284 Input) 

SEe NOTE 5 

T, T, T, Tw 

I---- TCLCL -rCH1CH2J I- --I i-- TCL2CL1 I 
VCH,,~}----1 Ir'"'"'"\ 

~ TCHCTV TCHCL \-1 

A,s -Aa (Float during INTAI 

TCLAV-- - - I=-TDV TClAX-

A'9-A16 &s-Sa 

TCLLH- f TLH~L-=: I-- T~LAX 

TCHLL-I i-- -.:1 - TR1VCl 

-TAVAL- vr \'0"""'" ~~~ ~~ :\\~ 
VIL~ --.; 

·FrClR1X 

j'~q -
f I I 

T, 

~~ 
_TCLCH~ 

TCHDX-- -

r--
/ 
----

~ ~~ 

READY (8088 Input) 

1 - -TCHRYX 

READ CYCLE 

(NOTE 1) 

(WA, im'A = VOH) 

AD7-ADo 

DT/R 

=----z- TCHCTV 

TRYHCH-

- :-TC~AZ 

AD1-ADO 

-hi TAZRL-

feLRl I 

I 
TCVCTV-

~ 

3-97 

-
TDVCL- i--TCLDX_ 

DATA IN 
FLOA::JL 

TCLRH- H -TRHAV 

f----
TRLRH ~CHCTV 

I ! 
TCVCTX- [:.1 

fJ 



intJ iAPX88/10 

WAVEFORMS (Continued) 

BUS TIMING-MINIMUM MODE SYSTEM (Continued) 

... -t" 

elK (8284 Output) 

WRITE CYCLE 
NOTE 1 

AD7-ADO 

TCHDX 

DATA OUl 

-TWHOX--
TCVCTX 

--+---r---------+,I·----r-----TWLWH--------~-I,~_+-------

INTA CYCLE 

NOTES 1,3 

(RD, WR = VOH) 

SOFTWARE HALT -

DEN,Ro,WR,INTA =0- YOH ' 

DT/RINDETERMINATE 

WR 

AOr-ADo 

DT/R 

TCVCTX-
--TCLAZ 

INVALID ADDRESS SOFTWARE HALT 

relAV 

NOTES: 1. ALL SIGNALS SWITCH BETWEEN VOH\AND VOL UNLESS OTHERWISE 
SPECIFIED. 

2. ROY IS SAMPLED NEAR THE END OF T2, Ts. Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

3. TWO lNTA CYCLES RUN BACK·YO·BACK. THE 8088 LOCAL ADDRIOATA 
BUS 1$ FLOATING DURING BOTH INTA CYCLES. CONTROL SIGNALS 
ARE SHOWN FOR THE SECOND INTA CYCLE 

4. SIGNALS AT 8284 ARE SHOWN FOR REFERENCE ONLY. 
5. ALLTIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE 

NOTED. 

3-98 



inter iAPX 88/10 

A.C. CHARACTERISTICS 

MAX MODE SYSTEM (USING 8288 BUS CONTROllER) 

TIMING REQUIREMENTS 

8088 

Symbol Parameter Min. 

TClCl ClK Cycle Period 200 

TClCH ClK low Time 118 

TCHCl ClK High Time 69 

TCH1CH2 ClK Rise Time 

TCl2Cl1 ClK Fall Time 

TDVCl Data In Setup TIme 30 

TClDX Data In Hold Time 10 

TR1VCl 
ROY Setup Time into 8284 

35 (See Notes 1, 2) 

TClR1X 
ROY Hold Time into 8284 

0 (See Notes 1, 2) 

TRYHCH 
READY Setup Time into 

118 8088 

TCHRYX READY Hold Time into 8088 30 

TRYlCl 
READY Inactive to ClK (See 

-8 Note 4) 

Setup Time for Recognition 
TlNVCH (INTR, NMI, TEST) 30 

(See Note 2) 

TGVCH RQ/GT Setup Time 30 

TCHGX RQ Hold Time into 8086 40 

TILIH 
Input RiseTime 
(Except ClK) 

1--' 
TIHll Input Fall Time (Except ClK) 

NOTES: 
1 Signal at 8284 or 8288 shown for reference only. 

Max. 

500 

10 

10 

20 

12 

8088-2 

Min. 

125 

68 

44 

20 

10 

35 

0 

68 

20 

-8 

15 

15 

30 

2. Setup requirement for asynchronous signal only to guarantee recognition at next elK. 
3. Applies only to T2 state (8 ns into T3 state). 
4. Applies only to T2 state (8 ns into T3 state). 

3-99 

Max. Units Test Conditions 

500 ns 

ns 

ns 

10 ns From 1.OV to 3.5V 

10 ns From 3.5V to 1.OV 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

20 ns From O.SV to' 2.0V 

12 ns From 2.0V to 0.8V 



A.C. CHARACTERISTICS 
TIMING RESPONSES 

Symbol Parameter 

TCLML 
Command Active Delay (See 
Note 1) 

TCLMH 
Command inactive Delay (See 
Note 1) 

TRYHSH 
READY Active to Status Passive 
(See Note 3) 

TCHSV Status Active Delay 

TCLSH Status Inactive Delay 

TCLAV Address Valid Delay 

TCLAX Address Hold Time 

TCLAZ Address Float Delay 

TSVLH 
Status Valid to ALE High (See 
Note 1) 

TSVMCH 
Status Valid to MCE High (See 
Not~ 1) 

TCLLH 
CLK Low to ALE Valid (See 
Note 1) 

TCLMCH 
CLK Low to MCE High (See 
Note 1) 

TCHLL ALE Inactive Delay (See Note 1) 

TCLMCL MCE Inactive Delay (See Note 1) 

TCLDV Data Valid Delay 

TCHDX Data Hold Time 

TCVNV 
Control Active Delay (See 
Note 1) 

TCVNX 
Control Inactive Delay (See 
Note 1) 

TAZRL Address Float to Read Active 

TCLRL RD Active Delay 

TCLRH RD Inactive Delay 

TRHAV 
RD Inactive to Next Address 
Active 

TCHDTL 
Direction Control Active Delay 
(See Note 1) 

TCHDTH 
Direction Control Inactive Delay 
(See Note 1) 

TCLGL GT Active Delay 

TCLGH GT Inactive Delay 

TRLRH RDWidth 

TOLOH Output RiseTime 

TOHOL Output Fall Time 

iAPX 88/10 

8088 8088·2 

Min. Max. Min. Max. Units Test Conditions 

10 35 10 35 ns 

10 35 10 35 ns! 

110 65 ns 

10 110 10 60 ns 

10 130 10 70 ns 

10 110 10 60 ns 

10 10 ns 

TCLAX 80 TCLAX 50 ns 

15 15 ns 

15 15 ns 

15 15 ns 

15 15 ns 

15 15 ns 

15 15 ns CL = 20-100 pF for 

10 110 10 60 ns all 8088 Outputs 
in addition to 

10 10 ns internal loads 

5 45 5 45 ns 

10 45 10 45 ns 

0 0 ns 

10 165 10 100 ns 

10 150 10 80 ns 

TCLCL-45 TCLCL-40 ns 

50 50 ns 

30 30 ns 

85 50 ns 

85 50 ns 

2TCLCL-75 2TCLCL-50 ns 

20 20 
From 0.8Vto 

ns 2.0V 

12 12 
From 2.0V to 

ns 
0.8V 

3-100 



iAPX 88/10 

WAVEFORMS 

BUS TIMING-MAXIMUM MODE T, T, 

ClK 

S2,'S1,So (EXCEPT HALT) 

lAlE (8288 OUTPUT) 

SEE NOTE 5 

ROY (8284 INPUT) 

READ CYCLE 

8288 OUTPUTS 

SEE NOTES 5,6 

AD7-ADO 

RD 

I--TClCl-TCH1CH2--! I- ---I I-TCl2Cl1 Tw 

VCH,f\. .r--\ .,r--,j r'........ ~ 
VCl...} 1\---:---1 j\---J "'--J 1\----11 L-

TClAV~ I--TCHCl I---TClCH_ 

~+--'""'"'"" 

_ TCHSV - -TClSH 

~--~---+--~---+--~~~~~---+--------0/ ;0f/;7(SEE NOTE 8) 
ll~---+---+----~--~~~~ 

\ 
\.-----

\ 

_TClAV S TCLDV TCHDX- I--
TClAX - -r-+---l--f--+----l----t----. ~ __ _ 

A19-A 16 Ss·S:3 
--~~~ ~----

TSVLH-I r-- I---- TCHLl 
TCLlH~ r.=. - .1 r-­

I ---+-,' ~----+_--+_+__+--_+----~---.J----
--j !--TR1VCL 

~§(:~~~~~~ 

TCLAV-I F 

TRYLCL_ _ 

TYHSH-t 

..... TeLAX I-- TRYHCH 

-TClAZ I-- i 

TAZRL-

----------~----~~ 

-TCHRYX 

TDVCL-~I--TCLDX~ 

DATA IN 

TCLRH 

L 
FLOAT-I 

I--+--i+-'TRHAV~ 

AD,-AD, }-W--'-FL-OA-T ---,('1' 

_____ T_cH_D_T_L_-_1 '"'""{ ~f.T~C-L+,f-R--1L+-':~~~.~~~T-R-L-RH-_-_~-_-_-_~-_-_-_..I-i'l\~\ TCHDTH 

~ ~~I--________ ~_.J 

TCLMH-
TCLML-- -

TCVNV- It--

f ____________________ -J 

TCVNX- -

3-101 



inter iAPX 88/10 

- WAVEFORMS (Continued) 

BUS TIMING-MAXIMUM T, T, T, 

MODE SYSTEM 
CLK 

Tw ~ 
VCH r--. r--. 

(USING 8288) ~ VCL f----J 1'-------/ ~" "---.J~ 
ii. 51. so (EXCEPT HALn 

WRITE CYCLE 

AD7- ADo 

DEN 

8288 OUTPIJTS 
see NOTES 5,6 AMWC OR AIOWC 

SOFTWARE 

INTA CYCLE 

A15- A8 
(SEE NOTES 3,4) 

8288 0lm'UlS 
SEE NOTE~ 5,6 

MCEI 
I'DEN 

DTIR 

INTA 

DEN 

rClAY--

FlOAT 

-
TSVMCH-

TCLMCH-

------..i!IIIIf (1M note 8) ----_. r- TCL~~j.:- - f--TCLSH TCHDX- r-~ TCLAX 

h- DATA 

fCVNV-- - TCVNX- J-

~ -TCLML TCLMH- J-

_ {TCLML - _TCLMH 

J RESERVED FOR 
\ CASCADE ADDR FLOAT FLOAT 

/{TTZ \ r--TDVCL- I-TCLDX 

1/ POINTER 

J FLO~ 
FLOAT 

t-
TCLMCL -I \ I- I r--

{r"·' 
\ I ----- / ~-

TCHDTH 

TCLML-

~ 1 
-~MH - TCVNV 

TCVNX-
HALT - (DEN.., vOL;IUj,mme,iORC,MWfC.AMWc;IOWC,~.iN"fA, DT/A = VOH. 

INVALID ADDRESS 

relAV 

~ /r---------"""T' ------­
\'----~ \._-----

NOTES: 1. ALL SIGNALS SWITCH BETWEEN YOH AND VOL UNLESS OTHERWISE 
SPECIFIED. 

2. ROY IS SAMPLED NEAR THE END OF T2, T3. Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED 

3 CASCADE ADDRESS IS VALID BETWEEN FIRST AND SECOND INTA 
CYCLES. 

4. TWO INTA CYCLES RUN BACK·TO·BACK. THE 8088 LOCAL ADDRfDATA 
BUS IS FLOATING DURING 80TH INTA CYCLES. CONTROL FOR 
POINTER ADDRESS IS SHOWN FOR SECOND INTA CYCLE. 

5. SIGNALS AT 8284 OR 8288 ARE SHOWN FOR REFERENCE ONLY. 
6. THE ISSUANCE OF THE 8288 COMMAND AND CONTROL SIGNALS 

(M1Il!C, MWTC, AMWl:, lORe, rowe, A1llWe, INTA AND DEN) LAGS THE 
ACTIVE HIGH 8288 CEN. 

7. ALL TIMING MEASUREMENTS ARE MADE AT 1.SV UNLESS OTHERWISE 
NOTED 

8, STATUS INACTIVE I~ STATE JUST PRIOR TO T" 

3-102 



WAVEFORMS (Continued) 

ASYNCHRONOUS 
SIGNAL RECOGNITION 

iAPX 88/10 

BUS LOCK SIGNAL TIMING 
(MAXIMUM MODE ONLy) 

Any elK CYCle----j Any elK Cycle _I 

NOTE 1 SETUP REQUIREMENTS FOR ASYNCHRONOUS 
SIGNALS ONLY TO GUARANTEE RECOGNITION AT NEXT elK 

CLK 

LOCK 

REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLY) 

~ 
PrevIous grant 

A19/SeA:l~ 11-----------------1 
A07-400 

~:~ ~'---------------~ 
NOTE 1 THE COPROCESSOR MAY NOT DRIVE THE BUSSES OUTSIOE1HE REGION 

SHOWN WITHOUT RISKING CONTENTION 

COPROCESSOR 

(SEE NOTE 1) 

HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLy) 

~
_'CLKCVCLE-

CLK 

_I _T"VC" (SEE NOT", 

"O'"~ 

"\~'-'" 

"'OA \--_______ -\\--__ -+---' I-r-T-ICI--'"_AV ___ --I\--___ ~{~I_, '-j"I_V ___ ---i 

I-------_--<~----_{ 1"'-fCLAZ ': J r---I 

.,.. '-_____ C_OP_R-i0~,I_~E-SS-O-R-----~ 

3-103 

I 



DATA TRANSFER 

iAPX 88/10 

iAPX 86/10, 88/10 
INSTRUCTION SET SUMMARY 

MOV MlVI 76543210 76$4321(} 7650210 1654321(1 DEC Demment 16543110 165431111 1654JlIII 16543210 

ReQ,slellmem~!yl0·tlomTeg,sle( 11oo010dwlmod reg ,1m I 
Immedlale 10 .e!l'Slerimemorv j 1 I 0 (I 0 1 1 'II I mild 0 0 0 I m I -di;ia~ ~~~Io ,I 'II 1 I 
Immed,ale 10 1~!I'S1et 11 (I 1 1 w reg I I !lala ,t 'II 1 I 
Memory 10 accumulalo, I , (I 1 0 (I (I (I w I I ~d(jr h~ 
I\tcurnulator 10 memory 1 (I 1 0 0 (I 1 'II a\ld, low add, hlqtl ] 

Reg,slerimemor, 10 segment reglsler , 0 0 0 1 1 I 0 mod 0 reg 11m 

SegmeI11reg,sterto'e9'sler,memoIV [i0001-10~~ 

PUSH PUll! 

Register/memory 

Reg,ster 

Segment register 

Register/memory 

Segmenl register 

XCHG hCblllg' 

R/!gl51erlmemory w'lh register 

ReI/'SItr wIth accumulator 

lN~lnpYI from 

FlJedp0ri 

VarrablepoTI 

OUT-OutllutiO 

fl~ed port 

VaflablepO!1 

XlUTlansfatehyleloAL 

UA-loadEA'oreglsler 

lDS Loadpomler laDS 

UI=loadpolnlerloES 

UMf~loaa AH with !lags 

IAMF SloreAHlnl0 !Jags 

PUIMF-Pushl!ags 

POI'f=Popflags 

ARITMMETIC 

ADD A~ 

Reg Imemory W'lh reglSler10 ellher 

Immed,ate 10 reg'slerlmemOI~ 

Immed'aleto accumulal01 

AUC Add wllhmt¥ 
Reg Imemory w,1h reg'SIer 10 Mhel 

Immedlalel0 reglSler/memory 

Immedlale10 acwmulalol 

I.C Incr'mllli 
Rel/tSlel/memory 

Reglsler 

W=ASCII adlusl for add 

DAA"()e(lmatadluS! for add 

lUI 1II~lr'CI 

Reg Imemorv and regl$ler lotllMer 

Immediate Irom reglsler/memory 

Immedlillefrom ilccumulalO< 

••• < IIIlItrlClwilli b1frn 

RIO Imemory and leglsler toe'Iher 

ImmedIate 110m r~lster /memory 

Imm,d,alehom accumulator 

11111111 mOd!!O~ 

01010 reg 

~ 

10001111 ,modO 0 0 ,m 

01011 reg 

~ 

11oo001lwimod leg~ 
~oregl 

li:1 100 \ 0 w I 

~ 

i 1 It 001 I w I 

10001101 mM 

I! 000101 mod 

111000100 Imod 

l' 00111 11 I 
1,00111101 

1,0011 1 001 

110011101 I 

pori ] 

r~g r m 

leg~ 
reg 1m I 

MnemonICs ©Intel, 1978 

JIIEGChanges'gn 

eMP Compare 

Reg,sle, memOly ~11(! regIster 

Immed,ale""lh reQ"lel memOly 

Immed'~le wllh ilHLlIII"lalor 

~J.6.iil~ 
~ 
11 I I 101 I w :mOdO \ I 

1001 I 10 d 1/1 I mOd reg 

100000 S 1/1 mOd 1 I 11'm 

0011110w 

AASI\SCI13dIUSIIOlsubllaCI~ 
OASDeClmal.dlusllnlsublla~1 ~ 
MUL MultIply [unslgnedl II ! 1 101 I W ImOd 100 1m 

IMUL Inlege, multIply Is,gnedl I 1 1 101 I w mod 10 I 1m 

AAM ASCII adlusl 10' mulllpl~ I I 0 I 0 I 0 0 0 0 0 0 I 0 I 0 

IIIV Olv,deluns,gnedl II 1 I lOT I '" ImOd 110 I rn:J 

'OIVlnleg~rd'vldelslgned' ~'I",lmOdllllm I 
AADASClladIUSllo,d,v.de Gl010101100001~ 
CBWConvellbylelowo.(j ~ 
CWO Conve!l worD 10 double wo'd ~O 0 t , ~ 

LOGIC 
1II0T IlIve" I 1 I 1 1 0 11 '" I~0~_O_10--I~ 
$Hl'SAL SMI IO~'(~1 ~"Ihnwtoc lelt ~-O~O~~_ ~ 1 moo! 0 0 l:nl 

SHRShlltloq'la:llq~1 ~~~ 
SAftS~dla'dhmell{""ght [2101_00;_~~ 
AIlLRolafelel1 ~OOvwmOdOOOlm 
HOM Rolale lIynt [1"1 0 I 0 0 v w mOd 0 0 1 I m 

ACL Rotate Ih'ou~n cafly flag lefl 1 I 0 I 00 v w mod 010 I'm 

ACRRolillelhloughca"y"ghl (!~~-.2_~~ 

AND And 

Regmemo,yand,eqISlelloelthe'ioo,ooodwl~ 

data I!W I 

Immea,alel0,eg,ste,memOly il0000oowimodlOO r'm 1 dala I 

Immedlille10 Jnumulalol l~~~ __ d_al~l~~ 

DR Dr 

Reg Imemo,y and leq<sler to elthel 10 0 0 0 I 0 ~ w 'I mod reg ~ 
Im"'€O,alelore~'Sle<memory &OOOOOw ImodOOl rim 1 ~ata I 

Immea,ale 10 accumulator lJii.:£O I lOw I ~ata ~j!.!iiiL;:::::C1 

lOR EI~luljve or 

ReQ Imemory and reglsler to elthel [QTl 1 0 0 d w I mod reg ~ 
Immedlatetoreglsler,memory 11000000"" Imod! 1 0 rim I 
Immed,ate10 accumulalor ~o w I I 

STRING MANIPULATION 
REP-Repeal 

MDVS=Move byte/wor~ 

CMPS"Comparebyle/word 

SCAS"Scanbyle/word 

lOOS=Load byle/wd 10 ALiAX 

STOS=';lorbVle/wdtrom Al/A 

3-104 

I I 11 ! 001 I I 
\ ~ 1 00 lOw 

10100 I 1 w 

[101011 I w I 
LiiiiiiiGJ 
~£iiJ 

dala Ifsw 01 

data ,1 w 1 I 

data 11 wI I 

data II wI I 



IAPX 88/10 

INSTRUCTION SET SUMMARY (Continued) 

COITROL TRAISFER 
CALL· COil 71'43210 71543210 

Direct wlthmsegment 1 1 101000 dl5p-IOw 

Inchrecl wlthm segment 11111111 modO 1 0 "m 
Otreclmtersegmenl 100 I 1010 offsel·low 

seglow 

Indrrectlntersegment 11111111 mod 0 11 "m 
JI' :, UaalIdIU_1 Ju.p 

Dlreci wllhm segment 11101001 Glsplow 

Direct wtthm segment-Short 11101011 drsp 

Indlfetl wlthm segment II I 1 1 1 I 1 mod t 00 "m 
Dtrect tntersegmenl 11101010 offset-low 

seglow 

Indlreclmlersegment 1'1111111Imod' 0 1 "m 
RET " III,,", 111. CALL 
Within segment 1 '1 0000 11 1 
Within seg addlnglmmedlOSP 11000010 

Inlefsegmenl 11001011 

Inler5eflment addmg Immediate to SP 11 I 0 0 1 0 1 0 I 
JE/JZ=Jumponetjuallzero 
JL/JIIE=Jump onlessfnot greater 

Of equal 
JLE/J'I~Jump on less Of equallnot-

greater 
Jl/JIAE=Jump on belowfnot abolle 

or equal 
JII/JU~~~~Co~~ below or equalf 

JPlJPf~Jumpon panty/parrtyellen 

JO=Jump on ollerllow 

JI~Jump on sign 

JIE/J!IZ=Jump on not equallnot zero 
JIL/JlE=Jump on nof lessfgrealer 

or equal 
JM.E/JI=Jump on nol less or equall 

greater 

Al :: 8-bIt accumulator 
AX • 160M accumulalor 
CX :: Count register 
OS • Oala segmenl 
ES • Extra segment 

01110100 

01 1 1 II 00 

01111110 

01110010 

o II 10 II 0 

01111010 

1011100001 
1011110001 

01110101 

01111101 

101 11 I 1 11 I 

Above/below refers to unSigned value 
Greater = more POSitive, 
less:: less pOSItive (more negallve) Signed values 
If d .. 1 then "to" reg, .f d '" 0 then "from" reg 
If VII:: 1 then word instructIOn, rf w:: 0 then byte instruction 

If mod· 11 then rim IS Irealed as a REG f!Old 

dalatow 

data low 

dlsp 

drsp 

dtsp 

drsp 

drsp 

(ItSP 

drsp 

drsp 

drsp 

drsp 

drsp 

If mod· 00 Ihen OISP • 0'. dlsp-Iow and dlsp-hlgh are absenl 

7' 5 .. 3 210 

d'SIlII.gh 

otlsethlgh 

seghlgh 

dlsphlgh 

oltselhtgh 

seghlgh 

dalatugh 

datahrgh 

If mod· 01 then OISP • dlsp-Iow sign-extended 10 16oblls. dlsp-hlgh IS absenl 
If mod· 10lhen OISP • dlsp-hlgh dlsp-Iow 

If rim' 000 then EA • (8X) • (51) .OISP 
II rim' OOllhen EA • (BX) • (01) .OISP 
If rim· DID then EA • (8P) • (51) .OISP 
If rim' 0111hen EA • (8P) • (01) • OISP 
If rim' 100 then EA • (51) • OISP 
If rim' 101 then EA • (01) • OISP 
If rim· lID Ihen EA • (8P) .0ISP· 
If rim' 1IIIhen EA • (8X) • OISP. 
OISP follows 2nd byte of ,"structlon (before dala If requIred) 

'excepllf mod· 00 and rim' lID Ihen EA· dlsp·hlgh dlsp·low 

MnemoOlcs©lntel.1978 

7.5 .. 311 0 11543210 
J.'/JAE Jump on nOI belowlabove 1011100111 dlsp or equal 
J •• E/J. Jump on not below or 1011101111 dlsp equal/above 
JI'/J,a Jump on not par/par add 011 '1011 dlsp 

JIO Jump on nol overflow 01110001 dlsp 

JIS Jump on not Sign 1011110011 cltsp ] 
lOO' Loop ex limes 11100010 dlSP 

LDDPZlLDD'E loopwhllezerQ/eQual 11100001 dlsp 
lDOl'IlllDD'IE Loop .. lIIIe 1I0t 11100000 Ilisp zero/equa" 
JCIl Jump on ex leIO 11100011 ~tSp 

INT Inll1rupl 

Tvpespecrfred I 10011 0 1 type 

Type3 11001100 

'ITO Interrupt onoverllow 11001110 

IRETlnlerluplrelurn 11001111 

PROCESSOR CONTROL 
CLCClearcarry 11111000 

CMC Complemenlcarry 11 1 10101 

STCSelcarry 11 t I II 001 I 
CLDCleardrreCl!on 11111100 

STDSeldrrectron 11 11 1 101 

CLiClearmterrupl 1 11 1 1010 

ST! Selmlerrupl 11 1 1 1011 

HLT Hall I" 1 10100 I 
WAIT Watl I' 0 011 0 11 I 
ESC Escapelloexlernaldevlcel 1"Ollxxxlm~/~ 
LOCK Bus tock prefix l:i.i:i:'OOOT] 

It s w = 01 then 16 bits of Immediate data form the operand 
If S w = 11 then an Immediate data byte IS Sign extended 10 

form Ihe 16-bII operand 
If v = 0 then "count" = 1, If v = 1 then "count" In (ell 
x = don't care 
Z IS used tor stnng pnmltlves for comparison With l.F FLAG 

SEGMENT OVERRIDE PREFIX 

10 0 1 reg 1 1 01 

REG IS aSSigned accordmg to the follOWing table 

t6-8II(. ·11 6-811 ( •• OJ 
000 AX 000 AL 
001 CX 001 Cl 
DID OX 010 Ol 
Otl BX OIl Bl 
100 SP 100 AH 
101 BP 101 CH 
lID SI 110 OH 
III 01 III BH 

Slgm,nl 

00 ES 
01 CS 
10 55 
II OS 

Instructions which reference the flag register file as a 16-bIt object use the symbol FLAGS to 
represent the hie 

FLAGS· X X X X (OF) (OF) (IF) (TF) (SF) (ZF) X (AF) X (PF) X (CF) 

3-105 



iAPX 188 
HIGH INTEGRATION 8-BIT MICROPROCESSOR 

• Integrated Feature Set 
-Enhanced 8088-2 CPU 
-Clock Generator 
-2 Independent, High-Speed DMA 

Channels 
-Programmable Interrupt Controller 
-3 Programmable 16-bit Timers 
-Programmable Memory and 

Peripheral Chip-Select Logic 
-Programmable Wait State Generator 
-Local Bus Controller 

• 8-Blt Data Bus Interface; 16-bit internal 
architecture 

• JlNaiiable in 8M Hz (80188) and cost 
effective 6 MHz (80188-6) versions 

.. High-Performance 8 MHz Processor 
-2 Times the Performance of the 

Standard iAPX 88 

INT3/iNTAl 

- 2 MByte/Sec Bus Bandwidth 
Interface 

• Completely Object Code Compatible 
with All Existing iAPX 86, 88 Software 
-10 New Instruction Types 

• Direct Addressing Capability to 
1 MByte of Memory 

• Complete System Development 
Support 
-Development Software: Assembler, 

PL/M, Pascal, Fortran, and System 
Utilities 

-In-Circuit-Emulator (ICE™ -188) 
-iRMXTM 86, 88 Compatible (80t30 

OSF) 
• High Performance Numerical 

Coprocessing Capability Through 8087 ' 
Interface 

INT2II1iIm 

INTl 
TMR OUT 1 TMR OUT 0 

rD~LKOUT TT 
NTI INto 

TMRIN t TMRIN t 
1 r 

I I .-----;;;:'1 ! EXECUTION UNIT I 

X, X, I 
l&·BIT I 
AW I PROGRAMMABLE 

INTERRUPT 
CLOCK I CONTROLLER 

GENERATOR I l&·BIT 
GENERAL I 
PURPOSE I REGISTERS CONTRO\I 

-l REGISTERS 

,I) 0 {l 
INTERNAL BUS 

J 1J 
r-

-j-oo , 

• • PROGRAMMABLE 
TIMERS 

0 1 2 

MAX COUNT ~ 
REGISTERB :... 

MAX COUNT 
REGISTER A 

CONTROL REGISTERS 

16-BIT 
COUNT REGISTER 

{ 

U + 
. .-1-

PROGRAMMABLE 
DMAUNIT 
0 1 

CHIP-SELECT 2O·BIT 
UNIT SOURCE POINTERS 

DRQO 
DRQl 

SRDY 
AROY 
Tftf 
HOLD 
HLOA 

-j-oo 
-j-oo BUS INTERFACE ~ 20·BIT 

ll1-BIT DESTINATION 

AD 
RESET 

-j-oo 

~j-oo -
UNIT 

I 
1 IN 
LOCK 

DT/I! 57 

SEGMENT POINTERS 
REGISTERS 

4-BYTE PROGRAMMABLE I 16-BIT 
PAEFETCH 

CONTROL TRANSFER COUNT 

QUEUE REGISTERS 11 CONTROL 

II I -D--U REGISTERS 

r±±- L~~A2 l~Ate ' 

RD ADO- A181S3- LCS PCSSlAl 
AD7 AlI1S& 

AI A15 -. MCSD-3 PCSO-4 

Figure 1. IAPX 188 Block Diagram 
Intel Corporation Assumes No Responslblhty for the use of Any CircUitry Other Than CirCUitry Embodied In an Intel Product No Other CirCUit Patent Licenses are Implied 
©INTEL CORI'ORATION, 1982 

3-106 
OCTOBER 1984 

OROER NUMBER: 210708-004 



iAPX 188 

The Intel iAPX 188 (80188 part number) is a highly integrated microprocessor with an 8-bit data bus interface and a 
16-bit internal architecture to give high performance. The iAPX 188 effectively combines 15-20 of the most common 
IAPX 88 system components onto one. The 80188 provides two times greater throughput than the standard 5 MHz 
IAPX 88. The IAPX 188 is upward compatible with iAPX 86 and 88 software and adds 10 new instruction types to the 
existing set. 

TOP 

Symbol Pin No. Type 

Vcc,Vcc 9,43 I 

Vss, Vss 26,60 I • 
RESET 57 0 

Xl,X2 59,58 I 

CLKOUT 56 0 

RES 24 I 

BOTTOM 

so ",,,,/-lL...JL...IUL...JUU 

51 
52 

ARDY 
CLKOUT 

RESET 
X2. 
Xl 

vss 
ALE/aSO 

RD/aSMD 
WRiaSl 

S7 
A19/S6 
Al81S5 
A17/S4 
A16/S3 

~NO.1MARK/ 

Figure 2. 80188 Pinout Diagram 

Table 1.80188 Pin Description 

Name and Function 

System Power: + 5 volt power supply. 

System Ground. 

Reset Output indicates that the 80188 CPU is being reset, and can be ulled as a system 
reset. It is active HIGH, synchronized with the processor clock, and lasts an integer 
number of clock periods corresponding to the length of the RES signal. 

Crystal Inputs, Xl imd X2, provide an external connection for a fundamental mode 
parallel resonant crystal for the internal crystal oscillator. Xl can interface to an 
external clock instead of a crystal. In this case, minimize the capacitance on X2 or 
drive X2 with complemented Xl. The input or oscillator frequency is internally divided 
by two to generate the clock signal (CLKOUT). 

Clock Output provides the system with a 50% duty cycle waveform. All device pin 
timings are specified relative to CLKOUT. CLKOUT has sufficient MOS drive capabilities 
for the 8087 Numeric Processor Extension. 

System Reset causes the 80188 to immediately terminate its present activity, clear the 
internal logic, and enter a dormant state. This signal may be asynchronous to the 
80188 clock. The 80188 begins fetching instructions approximately 7 clock cycles 
after RES is returned HIGH. RES is required to be LOW for greater than 4 clock 
cycles and is internally synchronized. For proper initialization, the LOW-to-HIGH transi-
tion of RES must occur no sooner than 50 microseconds after power up. This input 
is provided with a Schmitt-trigger to facilitate power-on RES generation via an RC 
network. When RES occurs, the 80188 will drive the status lines to an inactive level 
for one clock, and then tri-state them. 

3-107 210706-004 



iAPX188 

Table 1. 80188 Pin Description (Continued) 

Pin 
Symbol No. Type Name and Function 

TEST 47 I TEST is examined by the WAIT instruction. If the TEST Input IS HIGH when 
"WAIT" execution begins, instruction execution will suspend. TEST will be 
resampled until It goes LOW, at which time execution will resume. If Interrupts 
are enabled while the 80188 IS waiting for TEST, interrupts will be serviced This 
Input IS synchronized Internally. 

TMR IN 0, 20 I Timer Inputs are used either as clock or control signals, depending upon the 
TMR IN 1 21 I programmed timer mode. These Inputs are active HIGH (or LOW-to-HIGH 

transitions are counted) and Internally synchronized. 

TMR OUT 0, 22 a Timer outputs are used to provide single pulse or continuous waveform gener-
TMR OUT 1 23 a ation, depending upon the timer mode selected. 

DRQO 18 I DMA Request IS dnven HIGH by an external device when It desires that a 
DRQ1 19 I DMA channel (Channel a or 1) perform a transfer These signals are active 

HIGH, level-tnggered, and Internally synchronized. 

NMI 46 I Non-Maskable Interrupt IS an edge-triggered input which causes a type 2 
interrupt. NMI is not maskable internally A transition from a LOW to HIGH 
Initiates the interrupt at the next instruction boundary. NMI IS latched inter-
nally An NMI duration of.one clock or more will guarantee service. This Input is 
Internally synchronized. 

INTO,INT1, 45,44. I Maskable Interrupt Requests can be requested by strobing one of these pins. 
INT2/INTAO 42 I/O When configured as Inputs, these pins are active HIGH. Interrupt Requests are 
INT3/INTA1 41 I/O synchronized, internally. INT2 and INT3 may be configured via software to 

provide active-LOW Interrupt-acknowledge output signals. All interrupt Inputs 
may be configured via software to be either edge- or level-tnggered. To ensure 
recognition, all Interrupt requests must remain active until the Interrupt IS 
acknowleged. When iRMX mode is selected, the function of these pins 
changes (see Interrupt Controller section of this data sheet). 

A19/S6, 65-68 a Address Bus Outputs (16-19) and Bus Cycle Status (3-6) reflect the four most 
A18/S5, a significant address bits during T1' These signals are acti~e HIGH. During T2, 
A17/S4, a T3, Tw, and T4, status information IS available on these lines as encoded 
A16/S3 a below:' 

I I 
Low 

I 
High 

I ) S6 Processor Cycle DMA Cycle 

S3,S4, and S5 are defined as LOW during T2-T4' 

AD7-ADO 2,4,6,8, I/O Address/Data Bus (0-7) signals constitute the time mutiplexed memory or I/O 
11,13,15,17 address (T1) and data (T2' T3, Tw, and T4) bus. The bus is active HIGH. 

A15-A8 1,3,5,7 a Address-only Bus (8-15), containing valid address from T1-T4. The bus is active 
10,12,14,16 HIGH. 

S7 64 a This signal is always HIGH to indicate that the 80188 has an 8-bit data bus, and is 
tri-state OFF during bus HOLD. 

3-108 210706-004 



iAPX 188 

Table 1. 80188 Pin Descfiptlon (Continued) 

Pin 
Symbol No. Type Name and Function 

ALE/QSO 61 0 Address Latch Enable/Queue Status 0 IS provided by the 80188 to latch the 
address into the 8282/8283 address latches. ALE is active HIGH. Addresses are 
guaranteed to be valid on the trailing edge of ALE. The ALE rising edge IS 
generated off the rising edge of the CLKOUT immediately preceding T1 of the 
associated bus cycle. effectively one-half clock cycle earlier than in the stan-
dard 80188 The trailing edge is generated off the CLKOUT rising edge in T1 as 
in the 80188 Note that ALE is never floated. 

WFi/QS1 63 0 Write Strobe/Queue Status 1 Indicates that the data on the bus IS to be written 
Into a memory or an I/O device. WR is active for T2. T3. and Tw of any write 
cycle. It is active LOW, and floats during "HOLD." It is driven HIGH for one clock 
during Reset. and then floated. When the 80188 is in queue status mode. the 
ALE/QSO and WR/QS1 pins provide information about processor/instruction 
queue interaction. 

QS1 QSO Queue Operation 
0 0 No queue operation 
0 1 First opcode byte fetched from the queue 
1 1 Subsequent byte fetched from the queue 
1 0 Empty the queue 

RD/QSMD 62 0 Read Strobe indicates that the 80188 is performing a memory or I/O read cycle 
RD is active LOW for T 2. T 3. and T w of any read cycle. It is guaranteed not to go 
LOW in T2 until after the Address Bus is floated. RD is active LOW. and floats 
during "HOLD." RD is driven HIGH for one clock durin~ ReseUnd then the 
output driver is floated. A weak internal pull-up mechanism on the RD line holds it 
HIGH when the line is not driven. During RESET the.Qi!l is sampled to determine 
whether the 80188 should provide ALE. WR. and RD. or if the Queue-Status 
should be provided. RD should be connected to GND to provide Queue-Status 
data. 

ARDY 55 I Asynchronous Ready informs the 80188 that the addressed memory space or 
I/O device will complete a data transfer. The ARDY input pin will accept an 
asynchronous input, and is active HIGH. Only the rising edge is internally 
synchronized by the 80188. This means that the falling edge of ARDY must be 
synchronized to the 80188 clock. If connected to Vee. no WAIT states are 
inserted. Asynchronous ready (ARDY) or synchronous ready (SRDY) must be' 
active to terminate a bus cycle. If unused. this line should be tied low. 

SRDY 49 I Synchronous Ready must be synchronized externally to the 80188. The use of 
SRDY provides a relaxed system-timing specification on the Ready input. This is 
accomplished by eliminating the one-half clock cycle which is required for internally 
resolving the signal level when using the ARDY input. This line is active HIGH.llthis 
line is connected to Vee. no WAIT states are inserted. Asynchronous ready (ARDY) 
or synchronous ready (SRDY) must be active before a bus cycle is terminated. If 
unused. this lin~ should be tied low. 

LOCK 48 0 LOCK output indicates that other system bus masters are not to gain control of the 
system bus while LOCK is active LOW. The LOCK signal is requested by the LOCK 
prefix instruction and is activated at the beginning of the first data cycle associated 
with the instruction following the LOCK prefix. It remains active until the completion 
of the instruction following the LOCK prefix. No prefetches Will occur while LOCK is 
asserted. LOCK is active LOW. is driven HIGH for one clock during RESET. and 
then floated. 

3-109 210706-004 



iAPX 188 

Table 1. 80188 Pin Description (Continued) 

Pin 
Symbol No. Type Name and Function , 

SO,Sl,S2 52-54 a Bus cycle status SO-S2 are encoded to provide bus-transaction information: 

80188 Bus Cycle Status Information 

S2 Sl SO Bus Cycle Initiated 

0 0 0 Interrupt Acknowledge 
0 0 1 Read I/O 

I 0 1 0 Write I/O 
0 1 1 Halt 
1 0 0 Instruction Fetch 
1 0 1 Read Data from Memory 
1 1 0 Write Data to Memory 
1 1 1 Passive (no bus cycle) 

The status pins float during "HOLD." 

S2 may be used as a logical M/IO indicator, and 51 as a DT/R indicator. 

The status lines are driven HIGH for one clock during Reset, and then floated 
until a bus cycle begins. 

HOLD (input) 50 I HOLD indicates that another bus master is requesting the local bus. The HOLD 
HLDA (output) 51 a input is active HIGH. HOLD may be asynchronous with respect to the 80188 

clock. The 80188 will issue a HLDA in response to a HOLD request at the end of 
T4 or TI. Simultaneous with the issuance of HLDA, the 80188 will float the local 
bus and control lines. After HOLD is detected as being LOW, the 80188 will 
lower HLDA. When the 80188 needs to run another bus cycle, It will again drive 
the local bus and control lines. 

UCS 34 a Upper Memory Chip Select is an active LOW output whenever a memory 
reference is made to the defined upper portion (1 K-256K block) of memory. 
This line is not floated during bus HOLD. The address range activating UCS is 
software programmable. 

LCS 33 a Lower Memory Chip Select is active LOW whenever a memory reference IS 
made to the defined lower portion (1 K-256K) of memory. This line is not 
floated during bus HOLD. The address range activating LCS is software 
prog rammable. 

MCSO-3 38,37,36,35 a Mid-Range Memory Chip Select signals are active LOW when a memory 
reference is made to the defined mid-range portIOn of memory (8K-512K). 
These lines are not floated during bus HOLD. The address ranges activating 
MCSO-3 are software programmable. 

PCSO-4 25,27-30 a Peripheral Chip Select signals 0-4 are active LOW when a reference is made to 
the defined peripheral area (64K byte I/O space). These lines are not floated 
during bus HOLD. The address ranges activating PCSO-4 are software 
programmable. 

PCS5/Al 31 a Peripheral Chip Select 5 or Latched AI may be programmed to provide a sixth 
peripheral chip select, or to provide an Internally latched AI signal. The 
address range activating PCS5 is software programmable. When programmed 
to provide latched AI, rather than PCS5, this pin will retain the previously 
latched value of AI during a bus HOLD. AI is active HIGH. 

PCS6/A2 32 a Peripheral Chip Select 6 or Latched A2 may be programmed to provide a 
seventh peripheral chip select, or to provide an internally latched A2 signal. 
The address range activating PCS6 IS softwa~ogrammable. When pro-
grammed to provide latched A2, rather than PCS6, this pin will retain the 
previously latched value of A2 during a bus HOLD. A2 is active HIGH. 

DT/R 40 a Data Transmit/Receive controls the direction of data flow through the external 
8286/8287 data bus transceiver. When LOW, data is transferred to the 80188. 
When HIGH the 80188 places write data on the data bus. 

DEN 39 a Data Enable is provided as an 8286/8287 data bus transceiver output enable. 
DEfI!.is active LOW during each memory and I/O access. DEN is HIGH whenever 
DT/R changes state. 

3-110 210706-004 



iAPX 188 

\FUNCTIONAL DESCRIPTION 

Introduction 

The following Functional Description describes the 
base architecture of the iAPX 188. This architecture is 
common to the iAPX 86, 88, and 286 microprocessor 
families as well. The iAPX 186 is a very high integration 
8-bit microprocessor. It combines 15-20 of the most 
common microprocessor system components onto one 
chip while providing twice the performance of the 
standard iAPX 88. The 80188 is object code compatible 
with the iAPX 86,88 microprocessors and adds 10 new 
instruction types to the existing iAPX 86, 88 instruction 
set. 

iAPX 188 BASE ARCHITECTURE 

The iAPX 86, 88, 186, 188, and 286 family all contain the 
same basic set of registers, instructions and addressing 
modes. The 80188 processor is upward compatible 
with the 8086, 8088, 80186, and 80286 CPUs. 

Register Set 

The 80188 base architecture has fourteen registers 
as shown in Figures 3a and 3b. These registers are 
grouped into the following categories. 

General Registers 
Eight 16-bit general purpose registers may be used to 
contain arithmetic and logical operands. Four of these 
(AX, BX, CX, and OX) can be used as 16-bit registers or 
split into pairs of separate 8-bit registers. 

16·81T 
REGISTER 

NAME 

AH 

DH 

7 o 

AL 

DL 

SPECIAL 
REGISTER 

FUNCTIONS 

} 
MULTIPLY/DIVIDE 
IIQ INSTRUCTIONS 

Segment Registers 
Four 16-bit special purpose registers select, at any 
given time, the segments of memory that are immedi­
ately addressable for code, stack, and data. (For 
usage, refer to Memory Organization.) 

Base and Index Registers 
Four of the general purpose registers may also be 
used to determine offset addresses of operands in 
memory. These registers may contain base ad­
dresses or indexes to particular locations within a 
segment. The addressing mode selects the specific 
registers for operand and address calculations. 

Status and Control Registers 
Two 16-bit special purpose registers record or alter 
certain aspects of the 80188 processor state. These 
are the Instruction Pointer Register, which contains 
the offset address of the next sequential instruction 
to be executed, and the Status Word Register, which 
contains status and control flag bits (see Figures 3a 
and 3b). 

Status Word Description 

The Status Word records specific characteristics of 
the result of logical and arithmetic instructions (bits 
0, 2, 4, 6, 7, and 11) and controls the operation of the 
80188 within a given operating mode (bits 8, 9, and 
10). The Status Word Register is 16-bits wide. The 
function of the Status Word bits is shown in Table 2. 

" 0 

OS DATA SEGMENT SELECTOR 

BYTE 
ADDRESSABLE 
(.·BIT 
REGISTER 
NAMES 
SHOWN) 

lAX 

OX 

ex 

BX 

BP 

CH 

BH 

CL 

BL 

) LOOPISHIFTIREPEATICOUNT 

} BASE REGISTERS 

C5 ~ CODE SEGMENT SELECTOR 

55 STACK SEGMENT SELECTOR 

ES EXTRA SEGMENT SELECTOR 

SEGMENT REGISTERS 

51 

01 

SP 

" GENERAL 
REGISTERS 

} INDEX REGISTERS 

) STACK POINTER 

" 0 

F ~ ___ ----.J STATUS WORD 

IP ~ INSTRUCTION POINTER 

STATUS AND CONTROL 
ReGISTERS 

Figure 3a. 80188 General Purpose Register Set 

3-111 210706-004 



iAPX 188 

STATUS FLAGS 

CARRY ----------------­
PARITY -------"-----------

AUXILIARY CARRY ---------------, 

ZERO ------------, 

SIGN -------------, 

CONTROL FLAGS 

'------ TRAP FLAG 

'--------- INTERRUPT ENABLE 
'--_________ DIRECTION FLAG 

~ INTEL RESERVED 

Figure 3b. Status Word Format 

Table 2. Status Word Bit Functions manipulation, control transfer, high-level instruc­
tions, and processor control. These categories are 
summarized in Figure 4. 

Bit Name Function Position 
0 CF Carry Flag-Set on hlgh·order bit 

carry or borrow; cleared otherwise 
2 PF Panty Flag-Set II low·order 8 bits 

01 result contain an even number 01 
1·blts; cleared otherWise 

4 AF Set on carry Irom or borrow to the 
low order lour bits 01 AL, cleared 
otherWise 

6 ZF Zero Flag-Set II result IS zero, 
cleared otherWise 

7 SF Sign Flag-Set equal to hlgh·order 
bit 01 result (0 II positive, 1 II negative) 

8 TF Single Step Flag-Once set. a Sin-
gle step interrupt occurs after the 
next Instruction executes TF IS 
cleared by the single step Interrupt. 

9 IF Interrupt-enable Flag-When set, 
maskable Interrupts will cause the 
CPU to transler control to an inter-
rupt vector specilied location. 

10 OF Direction Flag-Causes string 
instructions to auto decrement 
the appropriate index register 
when set. Clearing OF causes 
auto increment. 

11 OF Overflow Flag-Set if the signed 
result cannpt be expressed 
within the. number of bits in the 
destination operand; cleared 
otherwise 

Instruction Set 

The instruction set is divided into seven categories: 
data transfer, arithmetic, shift/rotate/logical, string 

An 80188 instruction can reference anywhere from 
zero to several operands. An operand can reside in a 
register, in the instruction itself, or in memory. Spe­
cific operand addressing modes are discussed later 
in this data sheet. 

Memory Organization 

Memory is organized in sets of segments. Each seg­
ment is a linear contiguous sequence of up to 64K 
(216) 8-bit bytes. Memory is addressed using a two­
component address (a pointer) that consists of a 
16-bit base segment and a 16-bit offset. The 16-bit 
base values are contained in one of four internal 
segment registers (code, itata, stack, extra). The 
physical address is calculated by shifting the base 
value LEFT by four bits and adding the 16-bit offset, 
value to yield a 20-bit phYSical address (see Figure 5). 
This allows for a 1 MByte physical address size. 

All instructions that address operands in memory 
must specify the base segment and the 16-bit offset 
value. For speed and compact instruction encoding, 
the segment register used for physical address gen­
eration is implied by the addressing mode used (see 
Table 3). These rules follow the way programs are 
written (see Figure 6) as independent modules that 
require areas for code and data, a stack, and access 
to external data areas. 

Special segment override instruction prefixes allow 
the implicit segment register selection rules to be 
overridden for special cases. The stack, data, and 
extra segments may coincide for simple programs. 

3-112 210706-004 



iAPX 188 

GENERAL PURPOSE MOVS Move byte or word string 

MOV Move byte or word INS Input bytes or word string 

PUSH Push word onto stack OUTS Output bytes or word string 

POP Pop word off stack CMPS Compare byte or word string 

PUSHA Push all registers on stack SCAS Scan byte or word string 

POPA Pop all registers from stack LODS Load byte or word string 

XCHG Exchange byte or word STOS Store byte or word string 

XLAT Translate byte REP Repeat 

INPUT/OUTPUT REPE/REPZ Repeat while equal/zero 

IN Input byte or word HEPNE/REPNZ Repeat while not equal/not zero 

OUT Output byte or word 
LOGICALS 

ADDRESS OBJECT 
NOT "Not" byte or word 

LEA Load effective address 
AND "And" byte or word 

LOS Load pOinter uSing OS 
OR "Inclusive or" byte or word 

LES Load pOinter uSing ES 
XOR "Exclusive or" byte or word 

FLAG TRANSFER 
TEST "Test" byte or word 

LAHF Load AH register from flags 
SHIFTS 

SAHF Store AH register In flags 
SHUSAL Shift logical/arithmetic left byte or word 

PUSHF Push flags onto stack 
SHR Shift logical right byte or word 

POPF Pop flags off stack 
SAR Shift arithmetic right byte or word 

i 
ROTATES 

ADDITION ROL Rotate left byte or word 
ADD Add byte or word ROR Rotate right byte or word 
ADC Add byte or word with carry RCL Rotate through carry left byte or word 
INC Increment byte or word by 1 RCR Rotate through carry right byte or word 
AAA ASCII adjust for addition 

DAA DeCimal adjust for addition FLAG OPERATIONS 

SUBTRACTION STC Set carry flag 

SUB Subtract byte or word CLC Clear carry flag 

SBB Subtract byte or word with borrow CMC Complement carry flag 

DEC Decrement byte or word by 1 STD Set direction flag 

NEG Negate byte or word CLD Clear directIOn flag 

CMP Compare byte or word STI Set Interrupt enable flag 

AAS ASCII adjust for subtraction CLI Clear Interrupt enable flag 

DAS DeCimal adjust for subtraction EXTERNAL SYNCHRONIZATION 

MULTIPLICATION HLT Halt until Interrupt or reset 

MUL Multiply byte or word unsigned WAIT Walt for TEST pin active 

IMUL Integer muiliply byte or word ESC Escape to extension processor 

AAM ASCII adjust for multiply LOCK Lock bus dunng next instruction 

DIVISION NO OPERATION 

DIV DIvide byte or word unsigned NOP Nooperallon 

IDIV Integer diVide byte or word HIGH LEVEL INSTRUCTIONS 

AAD ASCII adjust for diVISion ENTER Format stack for procedure entry 

CBW Convert byte to word LEAVE Restore stack for procedure eXit 

CWO Convert word to doubleword BOUND Detects values outside preSCribed range 

Figure 4. iAPX 188 Instruction Set 

3-113 210706-004 



inter iAPX 188 

I 

."' CONDITIONAL TRANSFERS UNCONDITIONAL TRANSFERS 
JAlJNBE Jump'lf abovelnot below nor equal CALL Call procedure 

JAE/JNB Jl,!.mp If above or equal/not below RET Return from procedure 

JB/JNAE Jump If below/not above nor equal JMP Jump 

JBE/JNA Jump If below or equartnot above 

JC Jump If carry ITERATION CONTROLS 
JE/JZ Jump If equal/zero 

JG/JNLE Jump If greater/not less nor equal LOOP Loop 

JGE/JNL Jump If greater or equal/not less LOOPE/LOOPZ I Loop If equal/zero 

JLlJNGE Jump If less/not greater nor equal LOOPNE/LOOPNZ Loop If not equal/not zero 

JLE/JNG Jump If less or equal/,not greater JCXZ Jump If register CX = 0 

JNC Jump If not carry 

JNE/JNZ Jump If not equal/not zero INTERRUPTS 
JNO Jump If not overflow 

JNP/JPO Jump if not panty/panty odd INT Interrupt 

JNS Jump If not sign INTO Interrupt If overflow 

JO Jump If overflow IRET Interrupt return 

JP/JPE Jump If panty/parl,ty even 

JS Jump If sign ' \ 

Figure 4. IAPX 188 Instruction Set (continued) 

To access operands that do not reside in one of the 
four immediately available segments, a full 32-bit 
pOinter can be used to reload both the base (seg­
ment) and offset values. 

tHIFT LEFT 4 BIT51 1 2 3 4 I ~~~~ENT} 
15 0 LOGICAL I" 2 3 4 : 0 I .. ___ ..., ADDRESS 

19 t 0 I 0 0 2 2 IOFFSET 

[~~I ~o:!o ~2 ~2JI-. _~1!:5 =J 0 

15 0 

I 1 2 3 6 2 I PHVSICAl ADDRESS 

~19"---r"-~O 
TO MEMORV 

Figure 5. Two Component Address 

Table 3. Segment Register Selection Rules 

Memory Segment 
Reference Register Implicit Segment 
Needed Used Selection Rule 

Instructions Code (CS) Instruction prefetch and 
immediate data. 

Stack Stack (SS) All stack pushes and 
pops;' any memory refer-
ences which use BP Reg-
ister as ~ base register. 

External Extra (ES) All string instruction 
Data references which use 
(Global) the 01 register as an 

index. 

Local Data Data (OS) All other data references. 

3-114 

MODULE A 

r--- , 
I . I 

§OOE' 

DATA 

CODE 
MODULE B /---i-----, 

PROCESS 
STACK 

PROCESS 
DATA 
BLOCK 1 

DATA 

PROCESSD 
DATA 
BLOCK 2 

I I L ___ J 

MEMORY 

CPU 

CODE 

DATA 

STACK 

EXTRA 

SEGMENT 
REGISTERS 

Figure 6. Segmented Memory Helps 
Structure Software 

210706-004 



inter iAPX 188 

Addressing Modes 

The 80188 provides eight categories of addressing 
modes to specify operands. Two addressing modes 
are provided for instructions that operate on register 
or immediate operands: 

• Register Operand Mode: The operand is located in 
one of the 8- or 16-bit general registers. 

• Immediate Operand Mode: The operand is in­
cluded in the instruction. 

Six modes are provided to specify the location of an 
operand in a memory segment. A memory operand 
address consists of two 16-bit components: a seg­
ment base and an offset. The segment base is sup­
plied by a 16-bit segment register either implicity 
chosen by the addressing mode or explicitly chosen 
by a segment override prefix. The offset, also called 
the effective address, is calculated by summing any 
combination of the following three address 
elements: 

• the displacement (an 8- or 16-bit immediate value 
contained in the instruction); 

• the base (contents of either the BX or BP base 
registers); and 

• the index (contents of either the SI or 01 index 
registers). 

Any carry out from the 16-bit addition is ignored. 
Eight-bit displacements are sign extended to 16-bit 
values. 

Combinations of these three address elements 
define the six memory addressing modes, described 
below. 

• Direct Mode: The operand's offset is contained in 
the instruction as an 8- or 16-bit displacement 
element. 

• Register Indirect Mode: The operand's offset is in 
one of the registers SI, 01, BX, or BP. 

• Based Mode: The operand's offset is the sum of an 
8- or 16-bit displacement and the contents of a 
base register (BX or BP). 

• Indexed Mode: The operand's offset is the sum of 
an 8- or 16-bit displacement and the contents of an 
index register (SI or 01). 

• Based Indexed Mode: The operand's offset is the 
sum of the contents of a base register and an index 
register. 

• Based Indexed Mode with Displacement: The 
operand's offset is the sum of a base register's 
contents, an index register's contents, and an 8- or 
16-bit displacement. 

Data Types 

The 80188 directly supports the following data types: 

• Integer: A signed binary numeric value contained 
In an 8-bit byte or a 16-bit word. All operations 
assume a 2's complement representation. Signed 

32- and 64-bit integers are supported using the 
iAPX 188/20 Numeric Oata Processor. 

• Ordinal: An unsigned binary numeric value con­
tained in an 8-bit byte or a 16-bit word. 

• Pointer: A 16- or 32-bit quantity, composed of a 
16-bit offset component or a 16-bit segment base 
component in addition to a 16-bit offset 
component. 

• String: A contiguous sequence of bytes or words. 
A string may contain from 1 to 64K bytes. 

• ASCII: A byte representation of alphanumeric and 
control characters using the ASCII standard of 
character representation. 

• BCD: A byte (unpacked) representation of the de­
cimal digits 0-9. 

• Packed BCD: A byte (packed) representation of 
two decimal digits (0-9). One digit is stored in each 
nibble (4-bits) of the byte. 

• Floating Point: A signed 32-, 64-, or 80-bit real 
number representation. (Floating point operands 
are supported using the iAPX 188/20 Numeric Oata 
Processor configuration.) 

In general, individual data elements must fit within 
defined segment limits. Figure 7 graphically 
represents the data types supported by the iAPX 188. 

I/O Space 

The 1/0 space consists of 64K 8-bit or 32K 16-bit 
ports. Separate instructions address the ,1/0 space 
with either an 8-bit port address, specified in the 
instruction, or a 16-bit port address in the OX regis­
ter. 8-bit port addresses are zero extended such that 
A15-Aa are LOW. 110 port addresses OOF8(H) through 
OOFF(H) are reserved. 

Interrupts 

An interrupt transfers execution to a new program 
location. The old program address (CS:IP) and ma­
chine state (Status Word) are saved on the stack to 
allow resumption of the interrupted program. Inter­
rupts fall into three classes: hardware initiated, INT 
instructions, and instruction exceptions. Hardware 
initiated interrupts occur in response to an external 
input and are classified as non-maskable or 
maskable. 

3-115 210706-004 



inter 

7 0 
SIGNED ['TTTTTTTl 
BYTE~ 

SIGNBIT.J~ 

MAGNITUDE 

7 0 
UNSIGNED fTiTTTTTl 
BYTE~ 

~ 
MAGNITUDE 

1514 + 1 8 7 0 0 

s~~~g II' I I' I i I' I I ! I i I I 
SIGN BIT .J ,--I L-"M""S:'""A"'GN:;;;'T"'U""DE~-' 

SIGNED 31 + 3 + 2 16 15 + 1 0 0 

D~~~~: II i 1 11 , i II I I I i I t I i I ! I' I I I' i I r I 1 [ I 
SIGN BIT J LI L...::M",S=-B ---:cM'""AG"'N""IT"'U""DE...--------' 

+7 +6 +5 +4 +3 +2 +1 

:~~t~ n 48(' "( "j" 01 
SIGN BrT~J,t-.-:::MS:!::B:--"--'--..L---'-..!---'--' 

MAGNITUDE 

15 + 1 0 

UNS~~~g I' iii i Ii I' I 1 Iii i I 
,LMSB 

MAGNiTUDE 

BINARY 7 +N 0 
CODED fTiTTTTTl 
DECIMAL~ 

(BCD) Ol~~~ N 

7 +N. 0 

ASCIIL:] 

ASCII 
CHARACTERN 

7 +N 0 
PACKED Ii""TT'Ti"1 

BCD L-L-.J 
L-I 
MOST 
SIGNIFICANT DIGIT 

715 +N 0 

STRING L:] 

BYTe WORD N 

7 + 1 07 0 

Ittiltl! 1'111111 I 
BCD BCD 

DIGIT 1 DIGIT 0 

7 + 1 07 0 

I ' til' 1 i I" iii" I 
ASCII ASCII 

CHARACTER, CHARACTERo 

7 + 1 07 0 0 

lilll'"r'II"'1 
L-I 
LEAST 

SIGNIFICANT DIGIT 

715 + 1 0715 0 0 I II I I iii I iii I til I 
BYTe WORD 1 BYTe WORD 0 

31 +3 +2 1615 +1 0 

POINTER I' i , I' i , I i I I I' , I I' , , I ' I I (' , I r ' I I I 
1 

SELECTOR OFFSET 
79+9 +8 +7 +6 +5 +4 +3 +2 +1 

iAPX 188 

Programs may cause an interrupt with an INT in­
struction. Instruction exceptions occur when an un­
usual condition, which prevents further instruction 
processing, is detected while attempting to execute 
an instruction. If the exception was caused by ex­
ecuting an ESC instruction with the ESC trap bit'set 
in the relocation register, the return instruction will 
point to the ESC instruction, or to the segment over­
ride prefix immediately preceding the ESC instruc­
tion if the prefix was present. In all other cases, the 
return address from an exception will point at the 
instruction immediately following the instruction 
causing the exception. 

A table containing up to 256 pointers defines the 
proper interrupt service routine for each interrupt. 
Intenupts 0-31, some of which are used for instruc­
tion exceptions, are reserved. Table 4 shows the 
80188 predefined types and default priority levels. 
For each interrupt, an 8-bit vector must be supplied 
to the 80188 which identifies the appropriate table 
entry. Exceptions supply the interrupt vector inter­
nally. In addition, internal peripherals and non­
cascaded external interrupts will generate their own 
vectors through the internal interrupt controller. INT 
instructions contain or imply the vector and allow 
access to all 256 interrupts. Maskable hardware in­
itiated interrupts supply the 8-bit vector to the CPU 
during an interrupt acknowledge bus sequence. 
Non-maskable hardware interrupts use a predefined 
internally supplied vector. 

Interrupt Sources 

FL~~~T~ I[ 
SIGN BIT ...J~I-"--'--..L---'-..!---'-~-L--'-----' 

The 80188 can service interrupts generated by soft­
ware or hardware. The software interrupts are 
generated by specific instructions (INT, ESC, unused 
OP, etc.) or the results of conditions specified by 
instructions (array bounds check, INTO, DIV, IDIV, 
etc.). All interrupt sources are serviced by an indirect 

. call through an element of a vector table. This vector 
table is indexed by using the interrupt vector type 
(Table 4), multiplied by four. All hardware-generated 
interrupts are sampled at the end of each instruction. 
Thus, the software interrupts will begin service first. 
Once the service routine is entered and interrupts 
are enabled, any hardware source of sufficient 
priority can interrupt the service routine in progress. EXPONENT MAGNITUDE 

NOTE: 
'SUPPORTED BY IAPX 188/20 NUMERIC DATA PROCESSOR 

CONFIGURATION 

Figure 7. iAPX 188 Supported Data Types 

3-116 

The software generated 80188 interrupts are described 
below. 

DIVIDE ERROR EXCEPTION (TYPE 0) 
Generated when a DIV or IDIV instruction quotient 
cannot be expressed in the number of bits in the 
destination. 

210706-004 



I 

iAPX 188 

Table 4. 80188 Interrupt Vectors 

Vector Default Related 
Interrupt Name Type Priority Instructions 

DIvide Error 0 '1 DIV,IDIV 
Exception 

Single Step 1 12"2 All 
Interrupt 

NMI 2 1 All 
Breakpoint 3 '1 INT 

Interrupt 
INTO Detected 4 '1 INTO 

Overflow 
Exception 

Array Bounds 5 '1 BOUND 
Exception 

Unused-Opcode 6 '1 Undefined 
Exception Opcodes 

ESC Opcode 7 *1··· ESC Opcodes 
Exception 

Timer 0 Interrupt 8 2A···· 
Timer 1 Interrupt 18 2B···· 
Timer 2 Interrupt 19 2C···· 
Reserved 9 3 
DMA 0 Interrupt 10 4 
DMA 1 Interrupt 11 5 
INTO Interrupt 12 6 
INT1 Interrupt 13 7 
INT2 Interrupt 14 8 
INT3 Interrupt 15 9 

NOTES: 
'1 These are generated as the result of an instruction 

execution 
"2 This IS handled as In the 8088 ····3 All three timers constitute one source of request to the 

Interrupt controller The Timer Interrupts all have the same 
default priority level With respect to all other Interrupt 
sources However, they have a defined Priority ordering 
amongst themselves. (Priority 2A IS higher Priority than 
28) Each Timer Interrupt has a separate vector type 
,number 

4 Default priorities for the Interrupt sources are used only If 
the user does not program each source Into a uOlque 
Priority level . 

"'5 An escape opcode Will cause a trap only If the proper bit IS 
set In the peripheral control block relocation register 

SINGLE-STEP INTERRUPT (TYPE 1) 
Generated after most instructions if the TF flag is set. 
Interrupts will not be generated after prefix instruc­
tions (e.g., REP), instructions which modify segment 
registers (e.g., POP OS), or the WAIT instruction. 

NON-MASKABLE INTERRUPT-NMI (TYPE 2) 
An external interrupt source which cannot be 
masked. 

BREAKPOINT INTERRUPT (TYPE 3) 
A one-byte version of the INT instruction. It uses 12 
as an index into the service routine address table 
(because it is a type 3 interrupt). 

INTO DETECTED OVERFLOW EXCEPTION 
(TYPE 4) 
Generated during an INTO instruction if the OF bit is 
set. 

ARRAY BOUNDS EXCEPTION (TYPE 5) 
Generated during a BOUND instruction if the array 
index is outside the array bounds'. The array bounds 
are located in memory at a location indicated by one 
of the instruction operands. The other operand indi­
cates the value of the index to be checked. 

UNUSED OPCODE EXCEPTION (TYPE 6) 
Generated if execution is attempted on undefined 
opcodes. . 

ESCAPE OPCODE EXCEPTION (TYPE 7) 
Generated if execution is attempted of ESC opcodes 
(08H-OFH). This exception will only be generated if a 
bit in the relocation register is set. The return ad­
dress of this exception will point to the ESC instruc­
tion causmg the exception. If a segment override 
prefix preceded the ESC instruction, the return ad­
dress will point to the segment override prefix. 

Hardware-generated interrupts are divided into two 
groups: maskable interrupts and non-maskable in­
terrupts. The 80188 provides maskable hardware in­
terrupt request pins INTO-INT3. In addition, 
maskable interrupts may be generated by the 80188 
integrated OMA controller and the integrated timer 
unit. The vector types for these interrupts is shown in 
Table 4. Software enables these inputs by setting the 
interrupt flag bit (IF) in the Status Word. The interrupt 
controller is discussed in the peripheral section of 
this data sheet. 

Further maskable interrupts are disabled while 
servicing an interrupt because the IF bit is reset as 
part of the response to an interrupt or exception. The 
saved Status Word will reflect the enable status of the 
processor prior to the interrupt. The interrupt flag 
will remain zero unless specifically set. The interrupt 
return instruction restores the Status Word, thereby 
restoring the original status of IF bit. If the interrupt 
return re-enables. interrupts, and another interrupt is 
pending, the 80188 will immediately service the 
highest-priority interrupt pending, i.e., no instruc­
tions of the main line program will be executed. 

Non-Maskable Interrupt Request (NMI) 

A non-maskable interrupt (NMI) is also provided. 
This interrupt is serviced regardless of the state of 
the IF bit. A typical use of NMI would be to activate a 
power failure routine. The activation of this input 

3-117 21070S-004 



intJ , iAPX 188 

causes an interrupt with an internally supplied vector 
value of 2. No external interrupt acknowledge se­
quence is performed. The IF bit is cleared at the 
beginning of an NMI interrupt to prevent maskable 
interrupts from being serviced. 

Single-Step Interrupt 

The 80188 has an internal interrupt that allows pro­
grams to execute one instruction at a time. It is called 
the single-step interrupt and is controlled by the 
single-step flag bit (TF) in the Status Word. Once this 
bit is set, an internal single-step interrupt will occur 
after the next instruction has been executed. The 
interrupt clears the TF bit and uses an internally 
supplied vector of 1. The IRI;:T instruction is used to 
set the TF bit and transfer c6ntrol to th9 next instruc­
tion to be single-stepped. 

Initialization and Processor Reset 

Processor initialization or startup is accomplished by 
driving the RES input pin LOW. RES forces the 80188 to 
terminate all execution and local bus activity. No 
instructionor bus activity will occur as long as RES is 
active. After RES becomes inactive and an internal pro­
cessing interval elapses, the 80188 begins execution 
withthe instruction at physical location FFFFO(H). RES 
also sets some registers to predefined values as shown 
in Table 5. 

Table 5. 80188 Initial Register State after RESET 

Status WorCl F002(H) 
Instruction POinter OOOO(H) 
Code Segment FFFF(H) 
Data Segment OOOO(H) 
Extra Segment OOOO(H) 
Stack Segment OOOO(H) 
Relocation Register 20FF(H) 
UMCS FFFB(H)· 

THE 80188 COMPARED TO THE 80186 

The 80188 CPU is an 8-bit processor designed around 
the 80186 internal structure. Most internal functions of 
the 80188 are identical to the equivalent 80186 func­
tions. The 80188 handles the external bus the same 
way the 80186 does with the distinction of handling 
only 8 bits at a time. Sixteen bit operands are fetched 
or written in two consecutive bus c)/cles. Both proces­
sors will appear identical to the software engineer, 
with the exception of execution I time. The internal 
register structure is identical and ~II inst~uctions have 

j • 

the same end result. The differences between the 
80188 and 80186 are outlined below. Internally, there 
are three differences between the 80188 and the 
80186. All changes are related to the 8-bit bus interface. 

. • The queue length is 4 bytes in the 80188, whereas 
the 80186 queue contains 6 bytes, or three words. 
The queue was shortened to prevent overuse of the 
bus by the BIU when prefetching instructions. This 
was required because of the additional time neces­
sary to fetch instructions 8 bits at a time. 

• To further optimize the queue, the prefetching algo­
rithm was changed. The 80188 BI U will fetch a new 
instruction to load into the queue each time there is 
a 1-byte hole (space available) in the queue. The 
80186 waits until a 2-byte space is available. 

• The internal execution time of the instruction is 
affected by the 8-bit interface. All 16-bit fetches and 
writes fromlto memory take an additional four clock 
·cycles. The CPU may also be limited by the speed of 
instruction fetches when a series of simple opera­
tions occur. When the more sophisticated instruc­
tions of the 80188 are being used, the queue has 
time to fill and the execution proceeds as fast as the 
execution unit will allow. 

The 80188 and 80186 are completely software compat­
ible by virture of their identical execution units. Soft­
ware that is system dependent may not be completely 
transferable, but software that is not system depen­
dent will operate equally well on an 80188 or an 80186. 

The hardware interface of the 80188 contains the 
major differences between the two CPUs. The pin 
assignments are nearly identical, however, with the 
following functional changes. 
• A8-A15-These pins are only address outputs on 

the 80188. These address lines are latched internally 
and remain valid throughout a bus cycle in a manner 
similar to the 8085 upper address lines. 

• BHE has no meaning on the 80188 and has been 
eliminated. 

iAPX 188 CLOCK GENERATOR 

The iAPX 188 provides an on-chip clock generator 
for both internal and external clock generation. The' 
clock generator features a crystal oscillator, a divide­
by-two counter, synchronous and asynchronous 
ready inputs, and reset circuitry. 

3-118 210706-004 



iAPX 188 

Oscillator 

The oscillator circuit of the iAPX 188 is designed to 
be used with a parallel resonant fundamental mode 
crystal. This is used as the time base for the iAPX 186. 
The crystal frequency selected will be double the 
CPU clock frequency. Use of an LC or RC circuit is not 
recommended with this oscillator. If an external oscil­
lator is used, it can be connected directly to input pin 
X1 in lieu of a crystal. The output of the oscillator is 
not directly available outside the iAPX 188. The 
recommended crystal configuration is shown in 
Figure 8. 

--r- 20pF 

-
X, -

c5- x MHz CRYSTAL 

X, -"--r 
B01BB *20PF 

-:;-

BOl B6 (B MHz) 

B0186-6 (6 MHz) 

Figure 8_ Recommended iAPX 188 Crystal 
Configuration 

x 

16 

12 

The following parameters may be used for choosing a 
crystal: 

Temperature Range: 0 to 70°C 
ESR (Equivalent Series Resistance): 300 max 
Co (Shunt Capacitance of Crystal): 7.0 pf max 
CL (Load Capacitance): . 20 pf ± 2 pf 
Drive Level: 1 mw max 

Clock Generator 

The iAPX 188 clock generator provides the 50% duty 
cycle processor clock for the iAPX 188. It does this by 
dividing,the oscillator output by 2 forming the sym­
metrical,clock. If an external oscillator is used, the 
state of the clock generator will change on the falling 
edge of the oscillator signal. The CLKOUT pin pro­
vides the processor clock signal for use outside the 
iAPX 188., This may be used to drive other system 
components. All timings are referenced to the output 
clock, 

READY Synchronization 

The iAPX 188 provides both synchronous and asynch­
ronous ready inputs. Asynchronous ready synchroniza­
tion is accomplished by circuitry which samples ARDY 
in the middle ofT2, T3and again in the middle of each Tw 
until ARDY is sampled HIGH. One-half CLKOUT cycle 
of resolution time is used. Full synchronization is per­
formed only onthe rising edge of ARDY, i.e., the falling 
edge of ARDY must be synchronized to the CLKOUT 
signal if it will occur during T2, T3 or Tw' HIGH-to-LOW 
transitions of ARDY must be performed synchronously 
to the CPU clock. 

A second ready input (SRDY) is provided to interface 
with externally synchronized ready signals. This input is 
sampled atthe end ofT2, T3 and again atthe end of each 
Tw until it is sampled HIGH. By using this input rather 
than the asynchronous ready input, the half-clock cycle 
resolution time penalty is eliminated. 

This input must satisfy set-up and hold times to 
guarantee proper operation of the circuit. 

In addition, the iAPX 188, as part of the integrated 
Chip-select logic, has the capability to program WAIT 
states for memory and peripheral blocks. This is dis­
cussed in the Chip Select/Ready Logic description. 

RESET Logic 

The iAPX 188 provides both a RES Input pin and a 
synchronized RESET pin for use with other system 
components. The RES input pin on the iAPX 188 is 
provided with hysteresis in order to facilitate power­
on Reset generation via an RC network. RESET is 
guaranteed to remain active for at least five clocks 
given a RES input of at least six clocks. RESET may 
be delayed up to two and one-half clocks behind 
RES. 

Multiple iAPX 188 processors may be synchronized 
through the RES input pin, since this input resets 
both the processor and divide-by-two internal count­
er in the clock generator. In order to insure that the 
divide-by-two counters all begin counting at the 
same time, the active going edge of RES must satisfy 
a 25 ns setup time before the falling edge of the 
80188 clock input. In addition, in order to insure that 
all CPUs begin executing in the same clock cycle, the 
reset must satisfy a 25 ns setup time before the rising 
edge of the CLKOUT signal of all the processors. 

3-119 210706-004 



iAPX 188 

LOCAL BUS CONTROLLER 

The iAPX 188 provides a local bus controller to 
generate the local bus control signals. In addition, it 
employs a HOLD/HLDA protocol for relinquishing 
the local bus to other bus masters. It also provides 
control lines that can be used to enable external 
buffers and to direct the flow of data on and off the 
local bus. 

Memory/Peripheral Control 

The iAPX 188 provides ALE, RD, and WR bus control 
signals. The RD and WR signals are used to strobe 
data from memory to the iAPX 188 or to strobe data 
from the iAPX 188 to memory. The ALE line provides 
a strobe to address latches for the multiplexed ad­
dress/data bus. The iAPX 188 local bus controller 
does not provide a memory/I/O signal. If this is re­
quired, the user will have to use the 52 signal (which 
will require external latching), make the memory and 
I/O spaces nonoverlapping, or use only the in­
tegrated chip-select circuitry. 

Transceiver Control 

The iAPX 188 generates two control signals to be 
connected to 8286/8287 transceiver chips. This capa­
bility allows the addition of transceivers for extra 
buffering without adding external logic. These con­
trollines, DT/Fi and DEN, are generated to control the 
flow of data through the transceivers. The operation 
of these signals is shown in Table 6. 

Table 6. Transceiver Control Signals Description 

Pin Name Function -

DEN (Data,Enable) Enables the output drivers of 
the transceivers. It is active 
LOW during memory, I/O, or 
INTA cycles. 

DT/R (Data Transmit/ Determines the direction of 
Receive) travel through the transceivers. 

A HIGH level directs data away 
from the processor during write 
operations, while a LOW level 
directs data toward the proces-
sor during a read operation. 

Local Bus Arbitration 

The iAPX 188 uses a HOLD/HLDA system of local bus 
exchange. This provides an asynchronous bus ex-

change mechanism. This means multiple masters util­
izing the same bus can operate at separate clock fre­
quencies. The iAPX 188 provides a single HOLD/HLDA 
pair through which all other bus masters may gain 
control of the local bus. This requires external circuitry 
to arbitrate which external device will gain control of 
the bus from the iAPX 188 when there is more than one 
alternate local bus master. When the iAPX 188 relin­
quishes control of the local bus, it floats DEN, RD, WR, 
SO-82, LOCK, ADO-AD-15, A16-A19, S7, and DT/R to 
allow another master to drive these lines directly. 

The iAPX 188 HOLD latency time, i.e., the time be­
tween HOLD request and HOLD acknowledge, is a 
function of the activity occurring in the processor 
when the HOLD request is received. A HOLD request 
is the highest-priority activity request which the pro­
cessor may receive: higher than instruction fetching 
or internal DMA cycles. However, if a DMA cycle is in 
progress, the iAPX 188 will complete the transfer 
before relinquishing the bus. This implies that if a 
HOLD request is received just as a DMA transfer 
begins, the HOLD latency time can be as great as ,:1. 

bus cycles. This will occur if a DMA word transfer 
operation is taking place from an odd address to en 
odd address. This is a total of 16 clocks or more, if 
WAIT states are required. In addition, if locked tr8.n::J­
fers are performed, the HOLD latency time wi;1 be 
increased by the length of the locked transier. 

Local Bus Controller and Reset 

Upon receipt of a RESET pulse from the REB Inpui, 
the local bus controller will perform the followinc: 
actions: 
• Drive DEN, RD, and WR HIGH for one clock c)'ck 

then float. 

NOTE: RD is also provided with an in~2rn:_: pu,:-up 
device to prevent the processor from inadvertently 
entering Queue Status mode during reset. 

• Drive SO-S2 to the passive state (ail HIGH) and 
then float. 

• Drive LOCK HIGH and then float. 
• Tristate ADO-7, A8-19, S7, DT/Fi. 
• Drive ALE LOW (ALE is never floated). 
• Drive HLDA Law. 

3-120 210706-004 



iAPX 188 

INTERNAL PERIPHERAL INTERFACE 

All the iAPX 188 integrated peripherals are con­
trolled via 16-bit registers contained within an inter­
nal 256-byte control block. This control block may be 
mapped into either memory or I/O space. Internal 
logic will recognize the address and respond to the 
bus cycle. During bus cycles to internal registers, the 
bus controller will signal the operation externally 
(i.e., the RD, WR, status, address, data, etc., lines will 
be driven as in a normal bus cycle), but D7-0, SRDY, 
and ARDY will be ignored. The base address of the 
control block must be on an even 256-byte boundary 
(i.e., the lower 8 bits of the base address are all 
zeros). All of the defined registers within this control 
block may be read or written by the 80188 CPU at any 
time. The location of any register contained within 
the 256-byte control block is determined by the cur­
rent base address of the control block. 

The control block base address is programmed via a 
16-bit relocation register contained within the con­
trol block at offset FEH from the base address of the 
control block (see Figure 9). It provides the upper 12 
bits of the base address of the control block. Note 
that mapping the control register block into an ad­
dress range corresponding to a chip-select range is 
not recommended (the chip select circuitry is dis­
cussed later in this data sheet). In addition, bit 12 of 
this register determines whether the control block 
will be mapped into I/O or memory space. If this bit is 
1, the control block will be located in memory space, 
whereas if the bit is 0, the control block will be lo­
cated in I/O space. If the control register block is 
mapped into I/O space, the upper 4 bits of the base 
address must be programmed as 0 (since I/O ad­
dresses are only 16 bits wide). 

Whenever mapping the 188 peripheral control block to 
another location, the programming of the relocation 
register should be done with a byte write (i.e. OUT 
DX,AL). Any access to the control block is done 16 bits 
at a time. Thus, internally, the relocation register will get 
written with 16 bits of the AX register while externally, 
the BIU will run only one 8 bit bus cycle. If a word 
instruction is used (i.e. OUT DX,AX), the relocation 
register will be written on the first bus cycle. The BIU 
will then run a second bus cycle which is unnecessary. 
The address of the second bus cycle will no longer be 
within the control block (i.e. the control block was 
moved on the first cycle), and therefore, will require the 
generation of an external ready signal to complete the 
cycle. For this reason we recommend byte operations 
to the relocation register. Byte instructions may also be 
used forthe other registers in the control block and will 
eliminate half of the bus cycles required if a word 
operation had been specified. Byte operations are only 

3-121 

valid on even addresses though, and are undefined on 
odd addresses. 
In addition to providing relocation information for 
the control block, the relocation register contains 
bits which place the interrupt controller into iRMX 
mode, and cause the CPU to interrupt upon en­
countering ESC instructions. At RESET, the reloca­
tion register is set to 20FFH. This causes the control 
block to start at FFOOH in I/O space. An offset map 
of the 256-byte control register block is shown in 
Figure 10. 

The integrated iAPX 188 peripherals operate semi­
autonomously from the CPU. Access to them for the 
most part is via software read/write of the control and 
data locations in the control block. Most of these 
registers can be both read and written. A few dedicated 
lines, such as interrupts and DMA request provide real­
time communication between the CPU and peripherals 
as in a more conventional system utilizing discrete 
peripheral blocks. The overall interaction and function 
of the peripheral blocks has not substantially changed. 
The data access from/to the 256-byte internal control 
block will always be 16-bit and done in one bus cycle. 
Externally the BIU wifl still run two bus cycles for each 
16-bit operation. 

CHIP-SELECT/READY GENERATION 
LOGIC 

The iAPX 188 contains logic which provides pro­
grammable chip-select generation for both 
memories and peripherals. In addition, it can be pro­
grammed to provide READY (or WAIT state) genera­
tion. It can also provide latched address bits A1 and 
A2. The chip-select lines are active for all memory 
and I/O cycles in their programmed areas, whether 
they be generated by the CPU or by the integrated 
DMA unit. 

Memory Chip Selects 

The iAPX 188 provides 6 memory chip select outputs 
for 3 address areas: upper memory, lower memory, 
and midrange memory. One each is provided for up­
per memory and lower memory, while four are pro­
vided for midrange memory. 

The range for each chip select is user-programmable 
and can be set to 2K, 4K, 8K, 16K, 32K, 64K, 128K 
(plus 1 K and 256K for upper and lower chip selects). 
In addition, the beginning or base address of the 
midrange memory chip select may also be selected. 
Only one chip select may be programmed to be ac­
tive for any memory location at a time. All chip select 
sizes are in bytes. 

210706-004 



inter iAPX 188 

) 

OFFSET: FEH Relocation Address Bits Rl9-RS 

ET = ESC Trap I No ESC Trap (110) 
MilO = RegIster block located In Memory 1110 Space (110) 
RMX =;0 Normal Interrupt Controller mode / iRMX compatible 

Interrupt Controller mode (011) 

Figure 9. Relocation Register 

Relocallon Register 

DMA Descriptors Channell 

DMA Descriptors Channel 0 

Chip-Select Control Registers 

Timer 2 Control Registers 

Timer 1 Control Registers 

Timer 0 Control Registers 

Interrupt Controller Registers 

OFFSET 

FEH 

DAH 

DOH 

CAH 

COH 

A8H 

AOH 

66H 

60H 
SEH 

S8H 
S6H 

SOH 

3EH 

20H 

Figure 10. Internal Register Map 

Upper Memory CS 

The iAPX 188 provides a chip select, called UCS, for 
the top of memory. The top of memory is usually used 
as the system memory because after reset the iAPX 
188 begins executing at memory location FFFFOH. 

The upper limit of memory defined by this chip select 
is always FFFFFH, while the lower limit is program­
mable. By programming the lower limit, the size of 
the select block is also defined. Table 7 shows the 
relationship between the base address selected and 
the size of the memory block obtained. 

3-122 

Table 7. UMCS Programming Values 

Starting 
Address Memory UMCS Value 

(Base Block (Assuming 
Address) Size RO=R1 =R2=O) 

FFCOO 1K FFF8H 
FF800 2K FFB8H 
FFOOO 4K FF38H 
FEOOO 8K FE38H 
FCOOO 16K FC38H 
F8000 32K F838H 
FOOOO 64K F038H 
EOOOO 128K E038H 
COOOO 256K C038H 

The lower limit of this memory block is defined in the 
UMCS register (see Figure 11). This register is at 
offset AOH in the internal control block. The legal 
values for bits 6-13 and the resulting starting ad­
dress and memory block sizes are given in Table 7. 
Any combination of bits 6-13 not shown in Table 7 
will result in undefined operation. After reset, the 
UMCS register is programmed for a 1K area. It must 
be reprogrammed if a larger upper memory area is 
desired. 

Any internally generated 20-bit address whose upper 
16 bits are greater than or equal to UMCS (with bits 
0-5 "0") will cause UCS to be activated. UMCS bits 
R2-RO are used to specify READY mode for the area 
of memory defined by this chip-select register, as 
explained below. 

Lower Memory CS 

The iAPX 188 provides a chip select for low memory 
called LCS. The bottom of memory contains the inter­
rupt vector table, starting at location OOOOOH. 

The lower limit of memory defined by this chip select 
is always OH, while the upper limit is programmable. 
By programming the upper limit, the size of the 
memory block is also defined. Table 8 shows the 
relationship between the upper address selected and 
the size of the memory block obtained. 

210706-004 



inter iAPX 188 

Table 8. LMCS Programming Values 

Memory LMCS Value 
Upper Block (Assuming 

Address Size RO=Rl =R2=O) 

003FFH lK 0038H 
007FFH 2K 0078H 
OOFFFH 4K 00F8H 
01FFFH BK 01 F8H 
03FFFH 16K 03F8H 
07FFFH 32K 07F8H 
OFFFFH 64K OFF8H 
lFFFFH 128K lFF8H 
3FFFFH 256K 3FF8H 

The upper limit of this memory block is defined in the 
LMCS register (see Figure 12). This register is at 
offset A2H in the internal control block. The legal 
values for bits 6-15 and the resulting upper address 
and memory block sizes are given in Table 8. Any 
combination of bits 6-15 not shown in Table 8 will 
result in undefined operation. After reset, the LMCS 
register value is undefined. However, the LCS chip­
select line will not become active until the LMCS 
register is accessed. 

Any internally generated 20-bit address whose upper 
16 bits are less than or equal to LMCS (with bits 0-5 
"1") will cause LCS to be active. LMCS register bits 
R2-RO are used to specify the READY mode for the 
area of memory defined by this chip-select register. 

Mid-Range Memory CS 
The iAPX 188 provides four MCS lines which are 
active within a user-locatable memory block. This 
block can be located anywhere within the iAPX 188 
1 M byte memory address space exclusive of the 
areas defined by UCS and LCS. Both the base ad­
dress and size of this memory block are 
programmable. 

The size of the memory block defined by the mid­
range select lines, as shown in Table 9, is determined 

by bits 8-14 of the MPCS register (see Figure 13). 
This register is at location A8H in the internal control 
block. One and only one of bits 8-14 must be set at a 
time. Unpredictable operation of the MCS lines will 
otherwise occur. Each of the four chip-select lines is 
active for one of the four equal contiguous divisions 
of the mid-range block. Thus, if the total block size is 
32K, each chip select is active for 8K of memory with 
MCSO being active for the first range and MCS3 
bei ng active for the last range. 

The EX and MS in MPCS relate to peripheral function­
ality as described in a later section. 

Table 9. MPCS Programming Values 

Total Block Individual MPCS Bits 
Size Select Size 14-8 

8K 2K 0000001B 
16K 4K 0000010B 
32K BK 0000100B 
64K 16K 0001000B 
12BK 32K 0010000B 
256K 64K 0100000B 
512K 12BK 1000000B 

The base address of the mid-range memory block is 
defined by bits 15-9 of the MMCS register (see Fig­
ure 14). This register is at offset A6H in the internal 
control block. These bits correspond to bits A19-A13 
of the 20-bit memory address. Bits A12-AO of the 
base address are always O. The base address may be 
set at any integer multiple of the size of the total 
memory block selected. For example, if the mid­
range block size is 32K (or the size of the block for 
which each MCS line is active is 8K), the block could 
be located at 10000H or 18000H, but not at 14000H, 
since the first few integer multiples of a 32K memory 
block are OH, 8000H, 10000H, 18000H, etc. After 
reset, the contents of both of these registers is un­
defined. However, none of the MCS lines will be ac­
tive until both the MMCS and MPCS registers are 
accessed. 

15 14 13 12 11 10 9 7 2 1 D 

OFFSET: AOHI 1 I 1 U I u I u I u I u I u I u I u I 1 I 1 I 1 I R2 I Rl I RD I 
A19 All 

Figure 11. UMCS Register 

15 14 13 12 11 10 

OFFSET: A2H I 0 lou I u I u I U 

A19 

u I u I u u I 1 

All 

Figure 12. LMCS Register 

3-123 

1 I 1 

210706-004 



inter iAPX 188 

15 14 13 12 11 10 9 8 7 6 2 1 0 
OFFSET: A8H I 1 1~1~1~1~1~1~1~1~1~1 1 I 1 I 1 I R2 I Rl I RO I 

Figure 13. MPCS Register 

15 0 
OFFSET: A6HI U I u I u I u I u u I u I 1 I 1 I 1 I 1 I 1 I 1 R2 Rl I RO I 

A19 A13 

Figure 14. MMCS Register ' 

MMCS bits R2-RO specify READY mode of operation 
for all mid-range chip selects. All devices in mid­
range memory must use the same number of WAIT 
states. 

The 512K block size for the mid-range memory chip 
selects is a special case. When using 512K, the base 
address would have to be at either locations OOOOOH 
or 80000H. If it were to be programmed at OOOOOH 
when the LCS line was programmed, there would be 
an internal conflict, between the LCS ready genera­
tion logic and the MCSready generation logic. 
Likewise, if the base address were programmed at 
80000H, there would be a conflict with the UCS ready 
generation logic. Since the LCS chip-select line does 
not become active until programmed, while the UCS 
line is active at reset, the memory base can be set 
only at OOOOOH. If this base address is selected, 
however, the LCS range must not be programmed. 

Peripheral Chip SeJects 

The iAPX 188 can generate chip selects for up to 
seven peripheral devices. These chip selects are ac­
tive for seven contiguous blocks of 128 bytes above a 
programmable base address. This base address may 
be located in either memory or I/O space. 

Seven CS lines called PCSO-6 are generated by the 
iAPX 188. The base address is user-programmable; 

however it can only be a multiple of 1 K bytes, i.e., the 
least significant 10 bits of the starting address are 
alwaysO. 

PCS5 and PCS6 can also be programmed to provide 
latched address bits' A 1, A2, If so programmed, they 
cannot be used as peripheral selects. These outputs 
can be connected directly to the AO, A 1 pins used for 
selecting internal registers of 8-bit peripheral chips; 
This scheme simplifies the hardware interface be­
cause the 8-bit registers of peripherals are simply 
treated as 16-bit reg'isters located on even bound­
aries in I/O space or memory space where only the 
lower 8-bits of the register are significant: the upper 
8-bits are "don't cares." 

The starting address of the peripheral chip-select 
block is defined by the PACS register (see Figure 15). 
This register is located at offset A4H in the internal 
control block. Bits 15-6 of this register correspond to 
bits 19-10 of the 20-bit Programmable Base Address 
(PBA) of the peripheral chip-select block. Bits 9-0 of 
the PBA of the peripheral chip-select block are all 
zeros. If the chip-select block is located in I/O space, 
bits 12-15 must be programmed zero, since the I/O 
address is only 16 bits wide. Table 10 shows the 
address range of each peripheral Chip select with 
respect to the PBA contained in PACS register, 

15 0 

OFFSET: A4H LI-7u~l...:u::....J.I--='U--L...:u::....J.l--=.u...Jl~u-,-...:u::....J.I--='U--L...:u::....J.l~u::,1L.....;1-'-I-...:..l..JI~1--LI.:.:R2;;..J...;R.:.:1-L-.:.:RO;..J1 
M9 Am 

Figure 15. PACS Register 

3-124 210706-004 



iAPX 188 

The user should program bits 15-6 to correspond to 
the desired peripheral base location. PACS bits 0-2 
are used to specify READY mode for PCSO-PCS3. 

Table 10. PCS Address Ranges 

PCS Line Active between Locations 

PCSO PBA -PBA+127 
PCSI PBA+128 -PBA+255 
PCS2 PBA+256 -PBA+383 
PCS3 PBA+384 -PBA+511 
PCS4 PBA+512-PBA+639 
PCS5 PBA+640-PBA+767 
PCS6 PBA+768-PBA+895 

The mode of operation of the peripheral chip selects 
is defined by the MPCS register (which is also used to 
set the size of the mid-range memory chip-select 
block, see Figure 16). This register is located at offset 
A8H in the internal control block. Bit 7 is used to 
select the function of PCS5 and PCS6, while bit 6 is 
used to select whether the peripheral chip selects 
are mapped mto memory or I/O space. Table 11 de­
scribes the programming of these bits. After reset, 
the contents of both the MPCS and the PACS regis­
ters are undefined, however none of the PCS lines 
will be active until both of the MPCS and PACS regis­
ters are accessed.· 

Table 11. MS, EX Programming Values 

Bit Description 

MS 1 = Peripherals mapped into memory space. 
0 = Peripherals mapped into I/O space. 

EX 0 = 5 PCS lines. A1, A2 provided. 
1 = 7 PCS lines. AI, A2 are not provided. 

MPCS bits 0-2 are used to specify READY mode for 
PCS4-PCS6 as outlined below. 

READY Generation Logic 

The iAPX 188 can generate a "READY" signal inter­
nally for each of the memory or peripheral CS lines. 
The number of WAIT states to be inserted for each 
peripheral or memory is programmable to provide 
0-3 wait states for all accesses to the area for which 
the chip select is active. In addition, the iAPX 188 may 
be programmed to either ignore external READY for 

each chip-select range individually or to factor exter­
nal READY with the integrated ready generator. 

READY control consists of 3 bits for each CS line or 
group of lines generated by the iAPX 188. The inter­
pretation of the ready bits is shown in Table 12. 

Table 12. READY Bits Programming 

R2 R1 RO Number of WAIT States Generated 

0 0 0 o wait states, external ROY also used. 
0 0 1 1 wait state Inserted, external ROY also 

used. 
0 1 0 2 wait states inserted, ~xternal ROYaiso 

used. 
0 1 1 3 wait states inserted, external ROYaiso 

used. 
1 0 0 o wait states, external ROY ignored. 
1 0 1 1 walt state Inserted, external ROY 

ignored. 
1 1 0 2 wait states inserted, external ROY 

Ignored. 
1 1 1 3 walt states inserted, external ROY 

ignored. 

The internal ready generator operates in parallel with 
external READY, not in series if the external READY 
is used (R2 = 0). This means, for example, if the 
internal generator is set to insert two wait states, but 
activity on the external READY lines will insert four 
wait states, the processor will only insert four wait 
states, not six. This is because the two wait states 
generated by the internal generator overlapped the 
first two wait states generated by the external ready 
signal. Note that the external ARDYand SRDY lines 
are always ignored during cycles accessing internal 
peripherals. 

R2-RO of each control word specifies the READY 
mode for the corresponding block, with the excep­
tion of the peripheral chip selects: R2-RO of PACS 
set the PCSO-3 READY mode, R2-RO of MPCS set 
the PCS4-6 READY mode. 

Chip Select/Ready Logic and Reset 

Upon reset, the Chip-Select/Ready Logic will per­
form the following actions: 

• All chip-select outputs will be driven HIGH. 
• Upon leaving RESET, the UCS line will be pro­

grammed to provide chip selects to a 1 K block with 
the accompanying READY control bits set at 011 to 

15 14 13 12 11 10 9 S 7 6 2 1 0 

OFFSET: ASH I 1 I M6 I M5 I M4 I M3 I M2 I M1 I MO I EX I MS I 1 I 1 I 1 I R2 I R1 I RO I 

Figure 16. MPCS Register 

3-125 210706-004 



intJ iAPX 188 

allow the maximum number of internal wait states 
in conjunction with external Ready consideration 
(i.e., UMCS resets to FFFBH). 

• No other chip select or READY control registers 
have any predefined values after RESET. They will 
not become active until the CPU accesses their 
control registers. Both the PACS and MPCS regis­
ters must be accessed before the PCS lines will 
become active. 

DMA CHANNELS 

The 80188 DMA controller provides two independent 
high-speed DMA channels. Data transfers can occur 
between memory and I/O spaces (e.g., Memory to 110) 
or within the same space (e.g., Memory to Memory or 
I/O to I/O). Each DMA channel maintains both a 20-bit 
source and destination pointer which can be optionally 
incremented or decremented after each data transfer 
Each data transfer consumes 2 bus cycles (a minimum 
of 8 clocks), one cycle to fetch data and the other to 
store data. This provides a maximum data transfer rate 
of one MByte/sec. 

DMA Operation 

Each channel has six registers in the control block 
which define each channel's specific operation. The 
control registers consist of a 20-bit Source painter (2 
words), a 20-bit Destination pointer (2 words), a 16-
bit Transfer Counter, and a 16-bit Control Word. The 
format of the DMA Control Blocks is shown in Table 
13. The Transfer Count Register (TC) specifies the 
number of DMA transfers to be performed. Up to 64K 
byte transfers can be performed with automatic termi­
nation. The Control Word defi nes the channel's opera­
tion (see Figure 18). All registers may be modified or 
altered during any DMA activity. Any changes made to 
these registers will be reflected immes;iiately in DMA 
operation. 

Table 13. DMA Control Block Format 

Register Name 

Control Word 
Transfer Count 
Destination Pointer (upper 4 

bits) 
Destination Pointer 
Source Pointer (upper 4 bits 
Source Pointer 

DMA 
CONTROL 

LOGIC 

TIMER REQUEST 

I-__ ._INTERRUPT 
L.-_~-..J REQUEST 

Register Address 

Ch.O Ch.1 

CAH DAH 
C8H D8H 
C6H D6H 

C4H • D4H 
C2H D2H 
COH DOH 

Figure 17; DMA Unit Block Diagram 

3-126 
210706-004 



iAPX 188 

15 14 13 

MI DESTINATION 
iO DEC INC 

Figur~ 18. DMA Control Register 

DMA Channel Control Word Register 

Each DMA Channel Control Word determines the 
mode of operation for the particular 80188 DMA 
channel. This register specifies: 

• the mode of synchronization; 
• whether interrupts will be generated after the last 

transfer; 
• whether DMA activity will cease after a pro­

grammed number of DMA cycles; 
• the relative priority of the DMA channel with 

respect to the other DMA channel; 
• whether the source pointer will be incremented, 

decremented, or maintained constant after each 
transfer; 

• whether the source pointer addresses memory or 
I/O space; 

• whether the destination pointer will be incre­
mented, decremented, or maintained constant af­
ter each transfer; and 

• whether the destination pointer will address 
memory or I/O space. 

The DMA channel control registers may be changed 
while the channel is operating. However, any 
changes made during operation will affect the cur­
rent DMA transfer. 

DMA Control Word Bit Descriptions 

ST/STOP: Start/stop (1/0) Channel. 

CHG/NOCHG: Change/Do not change (1/0) 
ST/STOP bit. If this bit is set when 
writing to the control word, the 
ST/STOP bit will be programmed by 
the write to the control word. If this 
bit is cleared when writing the con­
trol word, the ST/STOP bit will not 
be altered. This bit is not stored; it 
will always be a 0 on read. 

INT: 

TC: 

SYN: 
(2 bits) 

Enable Interrupts to CPU on byte 
count termination. 

If set, DMA will terminate when the 
contents of the Transfer Count reg­
ister reach zero. The ST/STOP bit 
will also be reset at this point if TC is 
set. If this bit is cleared, the DMA 
unit will decrement the transfer 
count register for each DMA cycle, 
but the DMA transfer will not stop 
when the contents of the TC register 
reach zero. 

00 No synchronization. 
NOTE: The ST bit will be cleared 
automatically when the contents 
of the TC register reach zero re­
gardless of the state of the TC bit. 

01 Source synchronization. 
10 Destination synchronization. 
11 Unused. 

SOURCE:INC Increment source pointer by 1 after 
each transfer. 

M/IO 

DEC 

Source pointer is in M/IO space 
(1/0). 

Decrement source pointer by 1 after 
each transfer. 

DEST: INC Increment destination pointer by 1 
after each transfer. 

P 

3-127 

M/IO Destination pointer is in M/IO space 
(1/0). I 

DEC Decrement destination pointer by 1 
after each transfer. 

Channel priority-relative to other 
channel. 

o low priority. 
1 high priority. 

Channels will alternate cycles if 
both set at same priority level. 

210706-004 



iAPX 188 

TDRQ 

Bit 3 

0: Disable DMA requests from timer 
2. 

1: Enable DMA requests from timer 
2. 

Bit 3 is not used. 

If both INC and DEC are specified for the same 
pointer, the pointer will remain constant after each 
cycle. 

DMA Destination and Source Pointer 
Registers 

Each DMA channel maintains a 20-bit source and a 
20-bit destination pointer. Each of these pOinters takes 
up two full 16-bit registers in the peripheral control 
block. The lower four bits of the upper register contain 
the upper four bits of the 20-bit physical address (see 
Figure 18a). These pointers may be individually incre­
mented or decremented after each transfer. Each poin­
ter may point into either memory or I/O space. Since the 
DMA channels can perform transfers to or from odd 
addresses, there is no restriction on values forthe poin­
ter registers. 

DMA Transfer Count Register 

Each DMA channel maintains a 16-bit transfer count 
register (TC). This register is decremented after every 
DMA cycle, regardless of the state of the TC bit int he 
DMA Control Register. If the TC bit in the DMA control 
word is set or unsynchronized transfers are pro­
grammed, DMA activity will terminate when the transfer 
count register reaches zero. 

HIGHER 
REGISTER 
ADDRESS 

xxx xxx 

LOWER 
REGISTER 
ADDRESS 

A15-A12 A11-A8 

15 

xxx ~ DON'T CARE 

DMA Requests 

Data transfers may be either source or destination 
synchronized, that is either the source of the data or 
the destination of the data may request the data 
transfer. In addition, DMA transfers may be un­
synchronized; that is, the transfer will take place 
continually until the correct number of transfers has 
occurred. When source or unsynchronized transfers 
are performed, the DMA channel may begin another 
transfer immediately after the end of a previous DMA 
transfer. This allows a complete transfer to take place 
every 2 bus cycles or eight clock cycles (assuming no 
wait states). No prefetching occurs when destination 
synchronization is performed, however. Data will not 
be fetched from the source address until the destina­
tion device signals that it is ready to receive it. When 
destination synchronized transfers are requested, 
the DMA controller will relinquish control of the bus 
after every transfer. If no other bus activity is in­
itiated, another DMA cycle will begin after two pro­
cessor clocks. This is done to allow the destination 
device time to remove its request if another transfer 
is not desired. Since the DMA controller will relin­
quish the bus, the CPU can initiate a bus cycle. As a 
result, a complete bus cycle will often be inserted 
between destination synchronized transfers. These 
lead to the maximum DMA transfer rates shown in 
Table 14. 

Table 14. Maximum DMA Transfer Rates 

Type of I 
Synchronization 

I Selected CPU Running CPU Halted 

Unsynchronlzed 1 MBytes/sec 1 M Bytes/sec 
Source Synch 1 MBytes/sec 1 M Bytes/sec 
Destination Synch .65MBytes/sec . 75M Bytes/sec 

xxx Al9-A16 

A7-A4 A3-AO 

Figure 18a. DMA Memory Pointer Register Format 

3-128 210706·004 



iAPX 188 

DMA Acknowledge 

No explicit DMA acknowledge pulse is provided. 
Since both source and destination pointers are 
maintained, a read from a requesting source, or a 
write to a requesting destination, should be used as 
the DMA acknowledge signal. Since the chip-select 
lines can be programmed to be active for a given 
block of memory or I/O space, and the DMA pointers 
can be programmed to pOint to the same given block, 
a chip-select line could be used to indicate a DMA 
acknowledge. 

DMA Priority 

The DMA channels may be programmed such that 
one channel is always given priority over the other, or 
they may be programmed such as to alternate cycles 
when both have DMA requests pending. DMA cycles 
always have priority over internal CPU cycles except 
between locked memory accesses or word accesses 
the odd memory locations; however, an external bus 
hold takes priority over an internal DMA cycle. Be­
cause an interrupt request cannot suspend a DMA 
operation and the CPU cannot access memory dur­
ing a DMA cycle, interrupt latency time will suffer 
during sequences of continuous DMA cycles. An 
NMI request, however, will cause all internal DMA 
activity to halt. This allows the CPU to quickly 
respond to the NMI request. 

DMA Programming 

DMA cycles will occur whenever the ST/STOP bit of 
the Control Register is set. If synchronized transfers 

TIMER 0 

are programmed, a DRO must also have been 
generated. Therefore, the source and destination 
transfer pointers, and the transfer count register (if 
used) must be programmed before this bit is set. 

Each DMA register may be modified while the chan­
nel is operating. If the CHG/NOCHG bit is cleared 
when the control register is written, the ST/STOP bit 
of the control register will not be modified by the 
write. If multiple channel registers are modified, it is 
recommended that a LOCKED string transfer be 
used to prevent a DMA transfer from occurring be­
tween updates to the channel registers. 

DMA Channels and Reset 

Upon RESET, the DMA channels will perform the 
following actions: 

• The Start/Stop bit for each channel will be reset to 
STOP. 

• Any transfer in progress is aborted. 

TIMERS 

The 80188 provides three internal 16-bit programma­
ble timers (see Figure 19). Two of these are highly 
flexible and are connected to four external pins (2 
per timer). They can be used to count external 
events, time external events, generate non repetitive 
waveforms, etc. The third timer is not connected to 
any external pins, and is useful for real-time coding 
and time delay applications. In addition, this third 
timer can be used as a prescaler to the other two, or 
as a DMA request source. 

TIMER 2 

DMA 
REO. 

T2 
INT. 
REO. 

MAX COUNT VALUE CLOCK MAX COUNT VALUE MAX COUNT VALUE 
B B 

All 16 BIT REGISTERS 

MODE/CONTROL 
WORD 

INTERNAL ADDRESS/DATA BUS 

Figure 19. Timer Block Diagram 

3-129 210706-004 



iAPX 188 

Timer Operation 

The timers are controlled by 11 16-bit registers in the 
internal peripheral control block. The configuration 
of these registers is shown in Table 15. The count 
register contains the current valuE! of the timer. It can 
be read or written at any time independent of 
whether the timer is running or not. The value of this 
register will be incremented for each timer event. 
Each of the timers is equipped with a MAX COUNT 
register, which defines the maximum count the timer 
will reach. After reaching the MAX COUNT register 
value, the timer count value will reset to zero during 
that same clock, i.e., the maximum count value is 
never stored in the count register itself. Timers 0 and 
1 are, in addition, equipped with a second MAX 
COUNT register, which enables the timers to alter­
nate their count between two different MAX COUNT 
values programmed by the user. If a single MAX 
COUNT register is used, the timer output pin will 
switch LOW for a single clock, 2 clocks after the 
maximum count value has been reached. In the dual 
MAX COUNT register mode, the output pin will indi­
cate which MAX COUNT register is currently in use, 
thus allowing nearly complete freedom in selecting 
waveform duty cycles. For the timers with two MAX 
COUNT registers, the RIU bit in the control register 
determines which is used for the comparison. 

Each timer gets serviced every fourth CPU-clock 
cycle, and thus can operate at speeds up to one­
quarter the internal clock frequency (one-eighth the 
crystal rate). External clocking of the timers may be 
done at up to a rate of one-quarter of the internal 
CPU-clock rate (2 MHz for an 8 MHz CPU clock). Due 
to internal synchronization and pipelining of the 
timer circuitry, a timer output may take up to 6 clocks 
to respond to any individual clock or gate input. 

Since the count registers and the maximum count 
registers are all 16 bits wide, 16 bits of resolution are 
provided. Any Read or Write access to the timers will 
add one wait state to the minimum four-clock bus 
cycle, 1:10wever. This is needed to synchronize and 
coordinate the internal data flows between the inter­
nal timers and the internal bus. 

The timers have several programmable options. 

• All three timers can be set to halt or continue on a 
terminal count. 

• Timers 0 and 1 can select between internal and 
external clocks, alternate between MAX COUNT 
registers and be set to retriggeron external events. 

• The timers may be programmed to cause an inter­
rupt on terminal count. 

These options are selectable via the timer model 
control word. 

Timer Mode/Control Register 

The mode/control register (see Figure 20) allows the 
user to program the specific mode of operation or 
check the current programmed status for any of the 
three integrated timers. 

Table 15, Timer Control Block Format 

Register Offset 

Register Name Tmr.O Tmr.1 Tmr.2 

Mode/Control Word 56H 5EH 66H 
Max Count B 54H 5CH not present 
Max Count A 52H 5AH 62H 
Count Register 50H 58H 60H 

15 14 13 12 11 5 4 2 1 0 

EN 1 iNH INT 1 RIU 1 0 1····1 MC 1 RTG 1 P 1 EXT 1 ALT 1 caNT I 

Figure 20. Timer Mode/Control Register 

3-130 210706-004 



iAPX 188 

ALT: 
The ALT bit determines which of two MAX COUNT 
registers is used for count comparison. If ALT = 0, 
register A for that timer IS always used, while if ALT = 

1, the comparison will alternate between register A 
and register B when each maximum count is 
reached. This alternation allows the user to change 
one MAX COUNT register while the other is being 
used, and thus provides a method of generating non­
repetitive waveforms. Square waves and pulse out­
puts of any duty cycle are a subset of available 
signals obtained by not changing the final count 
registers. The ALT bit also determines the function of 
the timer output pin. If ALT is zero, the output pin will 
go LOW for one clock, the clock after the maximum 
count is reached. If ALT is one, the output pin will 
reflect the current MAX COUNT register being used 
(0/1 for B/A). 

CONT: 
Setting the CaNT bit causes the associated timer to 
run continuously, while resetting it causes the timer 
to halt upon maximum count. If CaNT = ° and ALT 
=1, the timer will count to the MAX COUNT register A 
value, reset, count to the register B value, reset, and 
halt. 

EXT: 
The external bit selects between internal and exter­
nal clocking for the timer. The external signal may be 
asynchronous with respect to the 80188 clock. If this 
bit is set, the timer will count LOW-to-HIGH trans­
itions on the input pin. If cleared, it will count an 
internal clock while using the input pin for control. In 
this mode, the function of the external pin is defined 
by the RTG bit. The maximum input to output transi­
tion latency time may be as much as 6 clocks. 
However, clock inputs may be pipelined as closely 
together as every 4 clocks without losing clock 
pulses. 

P: 
The prescaler bit is ignored unless internal' clocking 
has been selected (EXT = 0). If the P bit is a zero, the 
timer will count at one-fourth the internal CPU clock 
rate. If the P bit is a one, the output of timer 2 will be 

. used as a clock for the timer. Note that the user must 
initialize and start timer 2 to obtain the prescaled 
clock. 

RTG: 
Retrigger bit is only active for i(lternal clocking (EXT 
= 0). In this case it determines the control function 
provided by the input pin. 

If RTG = 0, the input level gates the internal clock on 
and off. If the input pin is HIGH, the timer will count, if 

3-131 

the input pin is LOW, the timE1r will hold its value. As 
indicated previously, the input signal may be asyn­
chronous with respect to the 80188 clock. 

When RTG = 1, the input pin detects LOW-to-HIGH 
transitions. The first such transition starts the timer 
running, clearing the timer value to zero on the first 
clock, and then incrementing thereafter. Further 
transitions on the input pin will again reset the timer 
to zero, from which it will start counting up again. If 
CaNT = 0, when the timer has reached maximum 
count, the EN bit will be cleared, inhibiting further 
timer activity. 

EN: 
The enable bit provides programmer control over the 
timer's RUN/HALT status. When set, the timer is en­
abled to increment subject to the input pin con­
straints in the internal. clock mode (discussed 
previously). When cleared, the timer will be inhibited 
from counting. All input pin transitions during the 
time EN is zero will be ignored. If CaNT is zero, the 
EN bit is automatically cleared upon maximum 
count. 

INH: 
The inhibit bit allows for selective updating of the 
enable (EN) bit. If INH is a one during the write to the 
mode/control word, then the state of the EN bit will 
be modified by the write. If INH is a zero during the 
write, the EN bit will be unaffected by the operation. 
This bit is not stored; it will always be a ° on a read. 

INT: 
When set, the INT bit enables interrupts from the 
timer, which will be generated on every terminal 
count. If the timer is configured in dual MAX COUNT 
register mode, an interrupt will be generated each 
time the value in MAX COUNT register A is reached, 
and each time the value in MAX COUNT register B is 
reached. If this enable bit is cleared after the inter­
rupt request has been generated, but before a pend­
ing interrupt is serviced, the interrupt request will 
still be in force. (The request is latched in the Inter­
rupt Controller.) 

MC: 

The Maximum Count bit is set whenever the timer 
reaches its final maximum count value. If the timer is 
configured in dual MAX COUNT register mode, this bit 
will be set each time the value in MAX COUNT register 
A IS reached, and each time the value in MAX COUNT 
register B is reached. This bit is set regardless of the 
timer's interrupt-enable bit. The MC bit gives the user 
the ability to monitor timer status through software 
instead of through interrupts. Programmer interven­
tion is required to clear this bit. 

210706-004 



inter iAPX 188 

RIU: 
The Register In Use bit indicates which MAX COUNT 
register is currently being used for comparison to the 
timer count value. A zero value indicates register A. 
The RIU bit cannot be written, i.e., its value is not 
affected when the control register is written. It is 
always cleared when the ALT bit is zero. 

Not all mode bits are provided for timer 2. Certain bits 
are hardwired as indicated below: 

ALT = 0, EXT = 0, P = 0, RTG = 0, RIU = 0 

" Count Registers 

Each of the three timers has a 16-bit count register. 
The current contents of this register may be read or 
written by the processor at any time. If the register is 
written into while the timer is counting, the new value 
will take effect in the current count cycle. 

Max Count Registers 

Timers 0 and 1 have two MAX COUNT registers, while 
timer 2 has a single MAX COUNT register. These con­
tain the number of events the timer will count. In 
timers 0 and 1, the MAX COUNT register used can 
alternate between the two max count values 
whenever the current maximum count is reached. 
The condition Which causes a timer to reset is equiv­
alent between the current count value and the max 
count being used. This means that if the count is 
changed to be above the max count value, or if the 
max count value is changed to be below the current 
value, the timer will not reset to zero, but rather will 
count to its maximum value, "wrap around" to zero, 
then count until the max count is reached. 

Timers and Reset 

Upon RESET, the Timers will perform the following 
actions: 

• All EN (Enable) bits are reset preventing timer 
counting. 

• All SEL (Select) bits are reset to zero. This selects 
MAX COUNT register A, resulting in the Timer Out 
pins going HIGH upon RESET. 

INTERRUPT CONTROLLER 

The 80188 can receive interrupts from a number of 
sources, both internal and external. The internal in­
terrupt controller serves to merge these requests on 
a priority basis, for individual service by the CPU. 

Internal interrupt sources (Timers and DMA chan­
nels) can be disabled by their own control registers 
or by mask bits within the interrupt controller. The 
80188 interrupt controller has its own control regis­
ters that set the mode of operation for the controller. 

The interrupt controller will resolve priority among 
requests that are pending simultaneously. Nesting is 
provided so interrupt service routines for lower 
priority interrupts may themselves be interrupted by 
higher priority interrupts. A block diagram of the 
interrupt controller is shown in Figure 21. 

3-132 

The interrupt controller has a special iRMX 86 com­
patibility mode that allows the use of the 80188 
within the iRMX 86 operating system interrupt struc­
ture. The controller is set in this mode by setting bit 
14 in the peripheral control block relocation register 
(see iRMX 86 Compatibility Mode section). In this 
mode, the internal 80188 interrupt controller func­
tions as a "slave" controller to an external "master" 
controller. Special initialization software must be in­
cluded to properly setup the 80188 interrupt control­
ler in iRMX 86 mode. 

NON-iRMX MODE OPERATION 

Interrupt Controller External Interf~ce 

For external interrupt sources, five dedicated pins 
are provided. One of these pins is dedicated to NMI, 
non-maskable interrupt. This is typically used for 
power-fail interrupts, etc. The other four pins may 
function either as four interrupt input lines with inter­
nally generated interrupt vectors, as an interrupt line 
and an interrupt acknowledge line (called the 
"cascade mode") along with two other input lines 
with internally generated interrupt vectors, or as two 
interrupt input lines and two dedicated interrupt ac­
knowledge ouput lines. When the interrupt lines are 
configured in cascade mode, the 80188 interrupt 
controller will' not generate internal interrupt 
vectors. 

External sources in the cascade mode use externally 
generated interrupt vectors. When an interrupt is 
acknowledged, two'iNTA cycles are initiated and the 
vector is read into the 80188 on the second cycle. The 
capability to interface to external 8259A program­
mable interrupt controllers is thus provided when the 
inputs are configured in cascade mode. 

210706-004 



iAPX 188 

Interrupt Controller Modes of Operation 

The basic modes of operation of the interrupt con­
troller in non-iRMX mode are similar to. the 8259A. 
The interrupt controller responds identically to inter­
nal interrupts in all three modes: the difference is 
only in the interpretation of function of the four exter­
nal interrupt pins. The interrupt controller is set into 
one of these three modes by programming the cor­
rect bits in the INTO and INT1 control registers. The 
modes of interrupt controller operation are as 
follows: 

Fully Nested Mode 
When in the fully nested mode four pins are used as 
direct interrupt requests. The vectors for these four 
inputs are generated internally. An in-service bit is 
provided for every interrupt source. If a lower-priority 
device requests an interrupt while the in-service bit 
(IS) is set, no interrupt will be generated by the inter­
rupt controller. In addition, if another interrupt re­
quest occurs from the same interrupt source while 
the inservice bit is set, no interrupt will be generated 
by the interrupt controller. This allows interrupt ser­
vice routines to operate with interrupts enabled with­
out being themselves interrupted by lower-priority 
interrupts. Since interrupts are enabled, higher­
priority interrupts will be serviced. 

When a service routine is completed, the proper IS 
bit must be reset by writing the proper pattern to the 
EOI register. This is required to allow subsequent 
interrupts from this interrupt s6urce and to allow 
servicing of lower-priority interrupts. An EOI com­
mand is issued at the end of the service routine just 

TIMER TIMER TIMER DMA 

before the issuance of the return from interrupt in..­
struction. If the fully nested structure has been 
upheld, the next highest-priority source with its IS bit 
set is then serviced. 

Cascade Mode 
The 80188 has four interrupt pins and two of them 
have dual functions. In the fully nested mode the four 
pins are used as direct interrupt inputs and the cor­
responding vectors are generated Internally. In the 
cascade mode, the four pins are configured into in­
terrupt input-dedicated acknowledge signal pairs. 
The interconnection is shown in Figure 22. INTO is an 
interrupt input interfaced to an 8259A, while 
INT2/INTAO serves as the dedicated interrupt ac­
knowledge signal to that peripheral. The same is true 
for INT1 and INT3/INTA1. Each pair can selectively be 
placed in the cascade or non-cascade mode by pro­
gramming the proper value into INTO and INT1 con­
trol registers. The use of the dedicated acknowledge 
signals eliminates the need for the use of external 
logic to generate INTA and device select signals. 

The primary cascade mode allows the capability to 
serve up to 128 external interrupt sources through 
the use of external master and slave 8259As. Three 
levels of priority are created, requiring priority 
resolution in the 80188 interrupt controller, the mas­
ter 8259As, and the slave 8259As. If an external inter­
rupt is serviced, one IS bit is set at each of these 
levels. When the interrupt service routine is com­
pleted, up to three end-of-interrupt commands must 
be issued by the programmer. 

o 1 2 1 INTO INT1 INT2 INT3 NMI 

DMAO 
CONTROL REG. 

DMA1 
CONTROL REG. 

EXT INPUT 0 
CONTROL REG. 

EXT. INPUT 1 
CONTROL REG. 

EXT. INPUT 2 
CONTROL REG. 

INTERRUPT 
PRIORITY 

RESOLVER 

INTERRUPT 
REQUEST REG. 

INTERRUPT 
MASK REG. 

IN-SERVICE 
REG. 

PRIOR. LEV. 
MASK REG. 
INTERRUPT 

STATUS REG. 

Figure 21_ Interrupt Controller Block Diagram 

3-133 210706-004 



inter iAPX 188 

Special Fully Nested Mode 
This mode is entered by setting the SFNM bit in INTO 
or INT1 control register. It enables complete nestabil­
ity with external 8259A masters. Normally, an inter­
rupt request from an interrupt source will not be 
recognized unless the in-service bit for that source is 
reset. If more than one interrupt source is connected 
to an external interrupt controller, all of the interrupts 
will be funneled through the same 80188 interrupt 
request pin. As a result, if the external interrupt con­
troller receives a higher-priority interrupt, its inter­
rupt will not be recognized by the 80188 controller 
until the 80188 in-service bit is reset. In special fully 
nested mode, the 80188 interrupt controller will allow 
interrupts from an external pin regardless of the 
state of the in-service bit for an interrupt source in 
order to allow multiple interrupts from a single pin. 
An in-service bit will continue to be set, however, to 
inhibit interrupts from other lower-priority 80188 in­
terrupt sources. 

Special procedures should be followed when reset­
ting IS bits at the end of interrupt service routines. 
Software polling of the external master's IS register 
is required to determine if there is more than one bit 
set. If so, the IS bit in the 80188 remains active and 
the. next interrupt service routine is entered. 

Operation in a Polled Environment 

The controller may be used in a polled mode if inter­
rupts are undesirable. When polling, the processor dis­
ables interrupts and then polls the interrupt controller 
whenever it is convenient. Polling the interrupt con­
troller is accomplished by reading the Poll Word (Figure 
31). Bit 15 in the poll word indicates to the processor 
that an interrupt of high enought priority is requesting 
service. Bits 0-4 indicate to the processor the type vec­
tor of the highest-priority source requesting service. 
Reading the Poll Word causes the In-Service bit of the 
highest-priority source to be set. 

It is desirable to be able to read the Poll Word infor­
mation without guaranteeing service of any pending 
interrupt, i.e., not set the indicated in-service bit. The 
80188 provides a Poll Status Word in addition to the 
conventional Poll Word to allow this to be done. Poll 
Word information is duplicated in the Poll Status 
Word, but reading the 1;>011 Status Word does not set 
the associated ih-service bit. These words are lo­
cated in two adjacent memory locations in the regis­
ter file. 

Non-iRMX Mode Features 

Programmable Priority 
The user can program the interrupt sources into any 
of eight diffetent priority levels. The programming is 
done by placing a 3-bit priority level (0-7) in the 
control register of each interrupt source. (A source 
with a priority level of 4 has higher priority over all 
priority levels from 5 to 7. Priority registers contain­
ing values lower than 4 have greater priority.) All 
interrupt sources have preprogrammed default 
priority levels (see Table 4). 

If two requests with the same programmed priority 
level are pending at once, the priority ordering 
scheme shown in Table 4 is used. If the serviced 
interrupt routine reenables interrupts, it allows other 
requests to be serviced. 

End-of-Interrupt Command 
The end-of-interrupt (EOI) command is used by the 
programmer to reset the In-Service (IS) bit when an 
interrupt service routine is completed. The EOI com­
mand is issued by writi"ng the proper pattern to the 
EOI register. There are two types of EOI commands, 
specific and. nonspecific. The nonspecific command 
does not specify which IS bit is reset. When issued, 
the interrupt controller automatically resets the IS bit 
of the highest priority source with an active service 
routine. A specific EOI command requires that the 
programmer send the interrupt vector type to the 

interrupt controller indicating which source's IS bit is 
to be reset. This command is used when the fully 
nested structure has been disturbed or the highest 
priority IS bit that was set does not belong to the 
service routine in progress. 

Trigger Mode 
The four external interrupt pins can be programmed 
in either edge- or level-trigger mode. The control 
register for each external source has a level-trigger 
mode (LTM) bit. All interrupt inputs are active HIGH. 
In the edge sense mode or the level-trigger mode, the 
interrupt request must remain active (HIGH) until the 
interrupt req uest is acknowledged by the 80188 CPU. 
In the edge-sense mode, if the level remains high 
after the interrupt is acknowledged, the input is dis­
abled and no'further requests will be generated. The 
input level must go LOW for at least ol]e clock cycle to 
reenable the input. In the level-trigger mode, no such 
provision is made: holding the interrupt input HIGH 
will cause continuous interrupt requests. 

3-134 210706-004 



iAPX 188 

Interrupt Vectoring 
The 80188 Interrupt Controller will generate inter­
rupt vectors for the integrated OMA channels and 
the integrated Timers. In addition, the Interrupt Con­
troller will generate interrupt vectors for the external 
interrupt lines if they are not configured in Cascade 
or Special Fully Nested Mode. The interrupt vectors 
generated are fixed and cannot be changed (see 
Table 4). 

Interrupt Controller Registers 

The Interrupt Controller register model is shown in 
Figure 23. It contains 15 registers. All registers can 
both be read or written unless specified otherwise. 

In-Service Register 
This register can be read from or written into. The 
format is shown in Figure 24. It contains the In­
Service bit for each' of the interrupt sources. The 
In-Service bit is set to indicate that a source's service 
routine is in progress. When an In-Service bit is set, 
the interrupt controller will not generate interrupts to 
the CPU when it receives interrupt requests from 
devices with a lower programmed priority level. The 
TMR bit is the In-Service bit for all three timers; the 
DO and 01 bits are the In-Service bits for the two OMA 
channels; the 10-13 are the In-Service bits for the 
external interrupt pins. The IS bit is set when the 
processor acknowledges an interrupt request either 
by an interrupt acknowledge or by reading. the poll 
register. The IS bit is reset at the end of the interrupt 
service routine by an end-of-interrupt command is­
sued by the CPU. 

80188 
INTO 

INTAO 

, 

Interrupt Request Register 
The internal interrupt sources have interrupt request 
bits inside the interrupt controller. The format of this 
register is shown in Figure 24. A read from this regis­
ter yields the status of these bits. The TMR bit is the 
logical OR of all timer interrupt requests. DO and 01 
are the interrupt request bits for the OMA channels. 

The state of the external interrupt input pins is also 
indicated. The state of the external interrupt pins is 
not a stored condition inside the interrupt controller, 
therefore the external interrupt bits cannot be writ­
ten. The external interrupt request bits show exactly 
when an interrupt request is given to the interrupt 
controller, so if edge-triggered mode is selected, the 
bit in the register will be HIGH only after an inactive­
to-active transition. For internal interrupt sources, 
the register bits are set when a request arrives and 
are reset when the processor acknowledges the 
requests. 

Mask Register 
This is a 16-bit register that contains a mask bit for 
each interrupt source. The format for this register is 
shown in Figure 24. A one in a bit position corres­
ponding to a particular source serves to mask the 
source from generating interrupts. These mask bits 
are the exact same bits which are used in the individ­
ual control registers; programming a mask bit using 
the mask register will also change this bit in the 
individual control registers, and vice versa. 

INT 

8259A 
PIC 

iNTA 

Figure 22. Cascade Mode Interrupt Connection 

3-135 210706-004 



INT3 CONTROL REGISTER 

INT2 CONTROL REGISTER 

INT1 CONTROL REGISTER 

INTO CONTROL REGISTER 

DMA 1 CONTROL REGISTER 

DMA 0 CONTROL REGISTER 

TIMER CONTROL REGISTER 

INTERRUPT STATUS REGISTER 

INTERRUPT REQUEST REGISTER 

IN·SERVICE REGISTER 

PRIORITY MASK REGISTER 

MASK REGISTER 

POLL STATUS REGISTER 

POLL REGISTER 

EOI REGISTER 

OFFSET 

3EH 

3CH 

3AH 

38H 

36H 

34H 

32H 

30H 

2EH 

2CH 

2AH 

28H 

26H 

24H 

22H 

Figure 23. Interrupt Controller Registers 
(Non-iRMX 86 Mode) 

15 14 10 9 

iAPX 188 

Priority Mask Register 
This register is used to mask all interrupts below 
particular interrupt priority levels. The format of this 
register is shown in Figure 25. The code in the lower 
three bits of this register inhibits interrupts of 
priority lower (a higher priority number) than the 
code specified. For example, 100 written into this 
register masks interrupts of level five (101), six (110), 
and seven (111). The register is reset to seven (111) 
upon RESET so all interrupts are unmasked. 

Interrupt Status Register 
This register contains general interrupt controller 
status information. The format of this register is 
shown in Figure 26. The bits in the status register 
have the following functions: 

DHLT: DMA Halt Transfer; setting this bit halts all 
DMA transfers. It is automatically set 
whenever a non-maskableinterrupt occurs, 
and it is reset when an IRET instruction is 
executed. The purpose of this bit is to allow 
prompt service of all non-maskable inter­
rupts. This bit may also be set by the CPU. 

IRTx: These three bits represent the individual 
timer interrupt request bits. These bits are 
used to differentiate the timer interrupts, 
since the timer IR bit in the interrupt re­
quest register is the "OR" function of all 
timer interrupt requests. Note that setting 
anyone of these three bits initiates a,n inter­
rupt request to the interrupt controller. 

o I 0 o I 0 I 0 ~ I ~ I N I w ~ DO 

Figure 24. In-Service, Interrupt Request, and Mask Register Formats 

15 14 ,3 2 1 0 

o J 0 I o I PRM21 PRM1J PRMO I 

Figure 25. Priority Mask Register Format, 

15 14 7 5 4 2 1 0 

o I 0 I 0 o I 0 IIRT2 I IRTtI IRTO I 

Figure 26. Interrupt Status Register Format 

3-136 210706-004 



iAPX 188 

Timer, DMA 0, 1; Control Registers 
These registers are the control words for all the inter­
nal interrupt sources. The format for these registers 
is shown in Figure 27. The three bit positions PRO, 
PR1, and PR2 represent the programmable priority 
level of the interrupt source. The MSK bit inhibits 
interrupt requests from the interrupt source. The 
MSK bits in the individual control registers are the 
exact same bits as are in the Mask Register; modify­
ing them In the individual control registers will also 
modify them in the Mask Register, and vice versa. 

INTO-INT3 Control Registers 
These registers are the control words for the four 
external input pins. Figure 28 shows the format of the 
INTO and INn Control registers; Figure 29 shows the 
format of the INT2 and INT3 Control registers. In 
cascade mode or special fully nested mode, the con­
trol words for INT2 and INT3 are not used. 

The bits in the various control registers are encoded 
as follows: 

PRO-2: Priority programming information. Highest 
priority = 000, lowest priority = 111. 

LTM: Level-trigger mode bit. 1 = level-triggered; 
o = edge-triggered. Interrupt Input levels 
are active high. In level-triggered mode, an 
interrupt is generated whenever the exter­
nalline is high. In edge-triggered mode, an 
interr~pt will be generated only when this 

15 14 

o 0 

level is preceded by an inactive-to-active 
transition on the line. In both cases, the 
level must remain active until the interrupt 
IS acknowledged. 

MSK: Mask bit, 1 = mask; 0 = nonmask. 

" 
C: Cascade mode bit, 1 = cascade; 0 = direct 

SFNM: Special fully nested mode bit, 1 = SFNM 

EOI Register 
The end of the interrupt register is a command regis­
ter which can only be written into. The format of this 
register IS shown in Figure 30. It initiates an EOI 
command when written to by the 80188 CPU. 

The bits in the EOI register are encoded as follows: 

Sx: Encoded information that specifies an in­
terrupt source vector type as shown in 
Table 4. For example, to reset the In-Service 
bit for DMA channel 0, these bits should be 
set to 01010, since the vector type for DMA 
channel 0 is 10. Note that to reset the single 
In-Service bit for any of the three timers, the 
vector type for timer 0 (8) should be written 
in this register. 

4 3 2 1 0 

Figure 27. Tlmer/DMA Control Register Formats 

15 14 5 4 3 2 1 0 

o I SFNMI 

Figure 28. INTO/INT1 Control Register Formats 

15 14 5 4 3 2 1 0 

o 0 o ILTMIMSKlpR21PR11pROI 

Figure 29. INT2IINT3 Control Register Formats 

3-137 210706-004 



intJ iAPX 188 

NSPEC/: A bit that determines the type of EOI com-
SPEC mand. Nonspecific = 1, Specific = O. 

Poll and Poll Status Registers 
These registers contain polling information. The for­
mat of these registers is shown in Figure 31. They can 
only be read. Reading the Poll register constitutes a 
software poll. This will set the IS bit of the highest 
priority pending interrupt. Reading the poll status 
register will not set the IS bit of the highest priority 
pending interrupt; only the status of pending inter­
rupts will be provided. 

Encoding of the Poll and Poll Status register bits are 
as follows: 

Sx: Encoded information that indicates the 
vector type of the highest priority interrupt­
ing source. Valid only when INTREQ = 1. 

INTREQ: This bit determines if an interrupt request is 
present. Interrupt Request = 1; no Interrupt 
Request = O. 

iRMX 86 COMPATIBILITY MODE 

This mode allows iRMX 86-80188 compatibility. The 
interrupt model of iRMX 86 reqUires one master and 
multiple slave 8259As in cascaded fashion. When 
iRMX mode is used, the internal'80188 interrupt con­
troller will be used as a slave controller to an external 
master interrupt controller. The internal 80188 re­
sou'rces will be monitored through the internal inter­
rupt controller, while the external controller 
functions as the system master interrupt controller. 

Upon reset, the 80188 interrupt controller will be in 
the non-iRMX 86 mode of operation. To set the con­
troller in the iRMX 86 mode, bit 14 of the Relocation 
Register should be set. 

15 14 13 

I:~bl o I 0 

Because of pin limitations caused by the need to 
interface to an external 8259A master, the internal 
interrupt controller will no longer accept external 
inputs. There are however, enough 80188 interrupt 
controller inputs (internally) to dedicate one to each 
timer. In this mode, each timer interrupt source has 
its own mask bit, IS bit, and control word. 

The iRMX 86 operating system requires peripherals 
to be assigned fixed priority levels. This is incom­
patible with the normal operation of the 80188 inter­
rupt controller. Therefore, the initialization software 
must program the proper priority levels for each 
source. The required priority levels for the internal 
interrupt sources in iRMX mode are shown ill Table 
16. 

Table 16. Internal Source Priority Level 

Pr.iority Level Interrupt Source 

0 Timer 0 
1 (reserved) 
2 OMAO 
3 OMA1 
4 Timer-1 
5 Timer 2 

These level assignments must remain fixed in the 
iRMX 86 mode of operation. 

iRMX 86 Mode External Interface 

The configuration of the 80188 with respect to an 
external 8259A master is shown in Figure 32. The 
INTO input is used as the 80188 CPU interrupt input. 
INT3 functions as an output to send the 80188, slave­
interrupt-request to one of the 8 master-PIC-inputs. 

0 

I 0 S4 S3 S2 S1 I SO I 
Figure 30. EOI Register Format 

15 14 13 5 4 0 

I:~ I 0 I 0 I 0 I 54 I 53 52 S1 I so I 
Figure 31. Poll Register Format 

3-138 210706-004 



iAPX 188 

8259A 
MASTER 

INTA 
IRO <==REQUESTS FROM 

OTHER SLAVES 

80188 INT. IN 

1 
INT 

IR7 -
80188 CASo-2 

~~ " INTO 
) 

I INn 
SLAVE SELECT CASCADE 

I ADDRESS DECODER 

INT2 -

INT3 
80188 SLAVE INTERRUPT OUTPUT 

Figure 32. iRMX 86 Interrupt Controller Interconnection 

Correct master-slave interface requires decoding of 
the slave addresses (CASO-2). Slave 8259As do this 
internally. Because of pin limitations, the 80188 slave 
address will have to be decoded externally. INT1 is 
used as a slave-select input. Note that the slave vec­
tor address is transferred internally, but the READY 
input must be supplied externally. 

INT2 is used as an acknowledge output, suitable to 
drive the INTA input of an 8259A. 

Interrupt Nesting 

iRMX 86 mode operation allows nesting of interrupt 
requests. When an interrupt is acknowledged, the 
priority logic masks off all priority levels except 
those with equal or higher priority. 

Vector Generation in the iRMX 86 Mode 

Vector generation in iRMX mode is exactly like that of 
an 8259A slave. The interrupt controller generates an 
8-bit vector which the CPU multiplies by four and 
uses as an address into a vector table. The significant 
five bits of the vector are user-programmable while 
the lower three bits are generated by the priority 
logic. These bits represent the encoding of the 
priority level requesting service. The significant five 
bits of the vector are programmed by writing to the 
Interrupt Vector register at offset 20H. 

3-139 

Specific End-of-Interrupt 

In iRMX mode the specific EOI command operates to 
reset an in-service bit ofa specific priority. The user 
supplies a 3-bit priority-level value that points to an 
in-service bit to be reset. The command is executed 
by writing the correct value in the Specific EOI regis­
ter at offset 22H. 

Interrupt Controller Registers 
in the iRMX 86 Mode 

All control and command registers are located inside 
the internal peripheral control block. Figure 33 
shows the offsets of these registers. 

End-of-Interrupt Register 
The end-of-interrupt register is a command register 
which can only be written. The format of this register 
is shown in Figure 34. It initiates an EOI command 
when written by the 80188 CPU. 

The bits in the EOI register are encoded as follows: 

Lx: Encoded value indicating the priority of the 
IS bit to be reset. 

In-Service Register 
This register can be read from or written into. It 
contains the in-service bit for each of the internal 

210706-004 



inter iAPX 188 

interrupt sources. The format for this register is 
shown in Figure 35. Bit positions 2 and 3 correspond 
to the DMA channels; positions 0, 4, and 5 corre­
spond to the integral timers. The source's IS bit is set 
when the processor acknowledges its interrupt re­
quest. 

Interrupt Request Register 
This register indicates which internal peripherals 
have interrupt requests pending. The format of this 
register is shown in Figure 35. The interrupt request 
bits are set when a request arrives from an internal 
source, and are reset when the processor acknowl­
edges the request. 

Mask Register 
This register contains a maSk bit for each interrupt 
source. The format for this register is shown in Fig­
ure 35. If the bit in this register corresponding to a 
particular interrupt source is set, any interrupts from 
that source will be masked. These mask bits are 
exactly the same bits which are used in the individual 
control registers, i.e., changing the state of a mask 
bit in this register will also change the state of the 
mask bit in the individual interrupt control register 
corresponding to the bit. 

Control Registers 
These registers are the control words for all the inter­
nal interrupt sources. The format of these registers is 
shown in Figure 36. Each of the timers and both of 
the DMA channels have their own Control Register. 

The bits of the Control Registers are encoded as 
follows: 

prx: 3-bit encodE;ld field indicating a priority l.evel 
for the source; note that each source must 
be programmed at specified levels. 

msk: mask bit for the priority level indicated by prx 
bits. 

OFFSET 

LEVEL 5 CONTROL REGISTER 
(TIMER 2) 

3AH 

LEVEL 4 CONTROL REGISTER 
(TIMER 1) 

38H 

LEVEL 3 CONTROL REGISTER 
(DMl1) 

36H 

LEVEL 2 CONTROL REGISTER 
(DMAO) 

34H 

LEVEL 0 CONTROL REGISTER 
(TIMER 0) 

32H 

INTERRUPT STATUS REGISTER 30H 

INTERRUPT REQUEST REGISTER 2EH 

IN-SERVICE REGISTER 2CH 

PRIORITY·LEVEL MASK REGISTER 2AH 

MASK REGISTER 2BH 

SPECIFIC EOI REGISTER 22H 

INTERRUPT VECTOR REGISTER 20H 

Figure 33. Interrupt Controller Registers 

(iRMX 86 Mode) 

Figure 34. Specific EOI Register Format 

15 14 13 

I I I I 
Figure 35. In-Service, Interrupt Request, and Mask Register Format 

3-140 210706-004 



inter iAPX 188 

Interrupt Vector Register 
This register provides the upper five bits of the inter­
rupt vector address. The format of this register is 
shown in Figure 37. The interrupt controller itself 
provides the lower three bits of the interrupt vector 
as determined by the priority level of the interrupt 
request. 

The format of the bits in this register is: 

tx: 5-bit field indicating the upper five bits of the 
vector address. 

Priority-Level Mask Register 
This register indicates the lowest priority-level inter­
rupt which will be serviced. 

The encoding of the bits in this register is: 

mx: 3-bit encoded field indication priority-level 
value. All levels of lower priority will be 
masked. 

Interrupt Status Register 
This register is defined exactly as in non-iRMX mode 
(see Figure 26). 

Interrupt Controller and Reset 

Upon RESET, the interrupt controller will perform the 
following actions: 

• All SFNM bits reset to 0, implying Fully Nested 
Mode. 

• All PR bits in the various control registers set to 1. 
This places all sources at lowest priority (level 
111 ). 

• All LTM bits reset to 0, resulting in edge-sense 

mode. 
• All Interrupt Service bits reset to O. 
• All Interrupt Request bits reset to O. 
• All MSK (Interrupt Mask) bits set to 1 (mask). 
• All C (Cascade) bits reset to 0 (non-cascade). 
• All PRM (Priority Mask) bits set to 1, implying no 

levels masked. 

• Initialized to non-iRMX 86 mode. 

Figure 36. Control Word Format 

Figure 37. Interrupt Vector Register Format 

Figure 38. Priority Level Mask Register 

3-141 210706-004 



intJ iAPX 188 

16 MHz 

r01 
Vee Xl X2 

f1 
-
UCS 

.---
~ 82::8~R ADDRESS 

RESET 

RES ADD-AD7, ROM 

.l 
A8-A1S I'<- f '="- ~ ALE t-- STB OE 

I ~ 1 
80188 

1 
I'm 

WR 
T 

PROGRAM 

1 RAM 

MCS0-3 

SRDY 
r*SV 

AROY 

NMI 
~ ~ 

. 
HOLD 

~ ~ 
LOW RAM 

LCS Tr 

I TMR INO t--*SV 
{ 

TMROUTO -. 
~ 

CLOCK 

8286 OR 1---+ 
K==> ~ 8287 ~ 00-07 TRANSCEIVER 

SERIAL 
, 

T T OE 

~ 
110 

~ Ft=:i ~ PCSO 

Ji.;; 
ERMINAL 

Al 
A2 

INTO I 

DISK ~8DIS INTERFACE 
INT1 HARDWARE 

K 

PCS4 
ORQO 

Figure 39. Typical iAPX 188 Computer 

3-142 210706-004 



iAPX 188 

16 MHz 

rD~ 
Vee Xl X2 

UCS CS 

n FlO RESET 

L1f 
ROM 

RES ' . 
.I 8282 OR 

r----V" 8283 
LATCH Ilb sTB OE 

STB DE lOW 

ALE • -;:- RAM 

LCS CS 

WR 

(\ 

b 8282 OR ADDRESS ADo-AD7 8283 BUS 
A8:,.A15 LATCH 

STB OE 

~~-sTB OE 
80188 f t 

NMI R '-~ 
8286 OR 

HOLD 8287 :>DATABUs 
TRANSCEIVER 

T OE 

r 
DT/R 

CLKOUT ClK 
'--- ALE 

DEN 

- 8288 
SO-S2 SO-S2 BUS BUS CONTROL 

,-----..--- CONTROLLER COMMANDS 

r-t- f----- CEN 
lOB AEN 

-;:- 1 
J 

b SO-S2 AEN 
8289 

CLK AR':I:ER 
:> ~~~Ti~~~ION ====r ./ PCSO SYSB/RESB 

PCS1 lOB 

~~5V lOCK LOCK RESB 

Fa-r~ SRDY 

AADY 
XACK 

, 

Figure 40. Typical iAPX 188 Multi·Master Bus Interface 

3-143 

~ 

MULTI 
MAST ER 

EM SYST 
BUS 

210706-004 



IAPX 188 

PACKAGE 
The 80188 is housed in a 68-pin, leadless JEOEC type 
A hermetic chip carrier. Figure 41 illustrates the 
package dimensions. 

NOTE: The lOT 3M Textool 68-pin JEOEC Socket 
is required for ICE™ operation. See Figure 42 for 
details. 

[.055 
:N5 

. Figure 41. 80188 JEDEC Type A Package 

3-144 210706-004 



inter 

PC BOARD PATTERN 

'i. .rP1N NO 1 

~:tt(tttt~ .. 
p. ~~~E~E;ATlON -::::: FRONT r 
;..:../ PIN CLR HOLE:r-:; ~ 

DEVICE PADS ~ FORI .021 OIA +. 100 
SHOWN FOR -~ --,:+(O.741~ ~-tt. (25.4) 
CONTACT, ~~J / I •. Iii I 
LOCATION ~ i ..r:1 (2' :) TYP 

~~i~-.~~T p~ ~-:JJ.)JJ 'I ~~ l 
...Q!!.----I r-- ~ .l .•• , . . .•. 1.00 

(038) IIJ 'i. -..j r-(2")TY· 

O~~ e+---(2~2)-~ 
(0.51) 8 spes" 100 TOl NON ACCUM TVP .. PLes 

CONTACT TAIL (2.") 

iAPX 188 

1210 1 
GUIDE BOSS ~ (30;3) sa~ --

3PLCS~~ r-lTrIHIDDffBa~HEJLHE4D~~~1\-' 

TEST PROBE POINT 
\ 

r -- '..--.-

SOCKET ORIENTATION PIN ~"")-

1 ~ 

ALUMINUM LID 
(HEATSINK PROVISIONS OPTIONAL) 

CLOSED ~ 

NOTE: PhYSical dimenSions shown are for reference only. Please consuU 3M Textoetl tor complete informatIOn on the socket. 

Figure 42. Textool 68 Lead Chip Carrier Socket 

3-145 

INDEX 

'l-~ FRONT 

'-.. 

\ 
OPEN 

210706-004 



inter iAPX 188 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature under Bias ..... O°C to 70°C 
Storage Temperature ........... -65°C to +150°C 
Voltage on Any Pin with 

Respect to Ground .............. -1.0V to + 7V 
Power Dissipation ........................ 3 Watt 

D.C. CHARACTERISTICS (TA ~ 0°-70°C. Vcc ~ 5V < 10%) 

Symbol Parameter Min. 

V,L Input Low Voltage - 0.5 

V,H Input High Voltage 2.0 
(All except Xl and (RES) 

V,H1 Input High Voltage (RES) 3.0 

VOL Output Low Voltage 

VOH Output High Voltage 2.4 

Icc Power Supply Current 

III Input Leakage Current 

ILO Output Leakage Current 

VCLO Clock Output Low 

VCHO Clock Output High 4.0 

VCLl Clock Input Low Voltage -0.5 

VCHI Clock Input High Voltage 3.9 

C'N Input Capacitance 

C,O I/O Capacitance 

PIN TIMINGS 

--NOTICE: Stresses above those listed under 
"Absolute Maximum Ratings" may cause permanent 
damage to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. 
Exposure to absolute maximum rating conditions 
for extended periods may affect device reliability. 

Max. Units Test Conditions 

+0:8 Volts 

Vcc + 0.5 Volts 

Vee + 0.5 Volts 

0.45 Volts la ~ 2.5 mA for SO-S2 
la = 2.0 mA for all other outputs 

Volts loa ~ -400 MA 

550 mA Max measured at TA ~ O°C 
450 TA ~ 70°C 

±10 MA OV < V,N < Vcc 

±10 MA 0.45V < Vour < Vcc 

0.6 Volts I. = 4.0 mA 

Volts loa ~ -200 MA , 
0.6 Volts 

Vcc + 1.0 Volts 
, 

10 pF 

20 pF 

A.C. CHARACTERISTICS (TA = 0°-70°C. Vee = 5V ± 10%) 

80188 Timing Requirements All Timings Measured At 1.5 Volts Unless Otherwise Noted. 

Symbol Parameter Min. Max. Units Test Conditions 

TOVCL Data in Setup (AID) 20 ns 
.--

I TCLOX Data In Hold (AID) 10 ns 
f--. 

TARYHCH Asynchronous Ready 
(AREADY) active setup 
time' 20 ns 

TARYLCL AREADY inactive setup 
time 35 ns 

TARYCHL Asynchronous Ready 15 ns 
Inactive hold time 

TCHARYX AREADY hold time 15 ns 

TSRYCL Synchronous Ready 
(SREADY) transition setup 
time , 20 ns -

TCLSRY SREADY transition hold 
time 15 ns 

THVCL HOLD Setup' 25 ns 

T,NVCH INTR. NMI. TEST. TIMERIN. 
Setup' 25 ns 

T,NVCL DRao. ORal. Setup' 25 ns 

'To guarantee recognition at next clock. 

3-146 210706-004 



iAPX 188 

A.C. CHARACTERISTICS (Continued) 

80188 Master Interface Timing Responses 

80188 (8 MHz) 80188-6 (6 MHz) 

Symbol Parameters Min. Max. Min. Max. Units Test Conditions 

TCLAV Address Valid Delay 5 55 5 63 ns CL = 20-200 pF all outputs 

TCLAX Address Hold 10 10 ns 

TCLAZ Address Float Delay TCLAX 35 TeLAX 44 ns 

TCHCZ Command Lines Float Delay 45 56 ns 

TCHCV Command Lines Valid Delay 
(after float) 55 76 ns 

TLHLL ALE Width T CLCL-35 T CLCL-35 ns 

TCHLH ALE Active Delay 35 44 ns 

TCHLl ALE Inactive Delay 35 44 ns 

TLLAX Address Hold to ALE Inactive T CHCL-25 T CHCL-3O ns 

TCLDV Data Valid Delay 10 44 10 55 ns 

T CLDOX Data Hold Time 10 10 ns 

TWHDX Data Hold after WR T CLCL-4O T CLCL-5O ns 

TCVCTV Control Active Delay 1 10 70 10 87 ns 

TCHCTV Control Active Delay 2 10 55 10 76 ns 

TCVCTX Control Inactive Delay 5 55 5 76 ns 

TCVDEX DEN Inactive Delay 
(Non-Write Cycle) 10 70 10 87 ns 

T AlRL Address Float to RD Active 0 0 ns 

TCLRL RD Active Delay 10 70 10 87 ns 

TCLRH RD Inactive Delay 10 55 10 76 ns 

TRHAV RD Inactive to Address Active T CLCL-4O T CLCL-50 ns 

T CLHAV HLDA Valid Delay 5 50 5 67 ns 

TRLRH RDWidth 2T cLcL-5O 2T CLCL-50 ns 

TWLWH WRWidth 2T CLCL-40 2T CLCL-4O ns 

TAVAl Address Valid to ALE Low T CLCH-25 T CLCH-45 ns 

TCHSV Status Active Delay 10 55 10 76 ns 

TeLsH Status Inactive Delay 10 65 10 76 ns 

T CLTMV Timer Output Delay 60 75 ns 100 pF max 

TeLRo Reset Delay 60 75 ' ns 

TeHQSV Queue Status Delay 35 44 ns 

TCHDX Status Hold Time 10 10 ' ns 

TAVCH Address Valid to clock high 10 10 ns 

80188 Chip-Select Timing Responses 

Symbol Parameter Min. Max. Min. Max. Units Test Conditions . 
TeLesv Chip-Select Active Delay 66 80 ns 

Texesx Chlp-Selct Hold from 
Command Inactive 35 35 ns 

TCHesx Chip-Select Inactive Delay 5 35 5 47 ns 

3-147 210706-004 



A.C. CHARACTERISTICS (Continued) 

80188 CLKlNRequirements 

-Symbol Parameters 

TCKIN ClKIN Period 

TCKHL ClKIN Fall Time 

TCKLH ClKIN Rise Time 

TCLCK ClKIN Low TIme 

TCHCK ClKIN High TIme 

80188 CLKOUT Timing (200 pF load) 

Symbol Parameter 

Tclco ClKIN 10 ClKOUT Skew 

TCLCL ClKOUT Period 

TCLCH ClKOUT low Time 

TCHCL ClKOUT High Time 

TCH1CH2 ClKOUT Rise Time 

TCL2CL1 CLKOUT Fall TIme 

iAPX 188 . 

80188 (8 MHz) 80188·6 (6 MHz) 

Min. Max. Min. Max. Units Test Conditions 

62.5 250 83 250 ns 

10 10 ns 3.5 to 1.0 Yolts 

10 10 ns 1.0 to 3.5 yolts 

25 33 ns 1.5 volts 
-

25 33 ns 1.5 Yolts 

Min. Mix. Min. Max. Units Test Conditions 

50 62.5 ns 

125 500 167 500 ns 

'h TCLCL-75 '/2 TCLCL-75 ns 1.5 yolts 

'h TCLCL-75 'h T CLCL-7.5 ns 1.5 volts 

15 15 ns 1.0 to 3.5 Yolts 

15 15 ns 3.5 to 1. volts 

3-148 21070&-004 



iAPX 188 

WAVEFORMS 

MAJOR CYCLE TIMING 

T, 

T ~ -T~'~~C~JAru 
~ !----- l-------r ' ~, 

_TCHS' ~ITCHCL _ 1_ 
CLKOU 

1\ 
TCI~AV ___ ' -TC~LAX~r(;LLJ'~ 

,. ",Ie,.,. S,-S3 
S, 

.-1-' u, 
~~ 

A LE 

f-7 ~TA' 

TCH~ 
~~' -

1 :LAV-- -~: ~t~~ :::: I~ 
ADI5-ADo 

T'''~': ~AO 1\ 
DATAOU' 

WRITE CYCLE 

Rjj.INTA. 

"~"-1~ -ITLLAl 

iii 
TOVCTV- -DT/R ~ VOH , .. , 

R , ....... , .. 
-

INTA CYCLE 

~ ___ TCLAZ ' II_Tn",.., 

'1 FLOAT A'~'~ 
II -=:H; TCHCTV 

1 

ADI5-ADo 

DTI 

Ri5.~~ VOH 
I:5Ht: = VOL 

SOFnYARE HALT -11!!~ ~ Vo 

A 

N 

" RD. WR. INTA. DEN ~ Vo H 

, 

~I -
, ....... _[1 TCVD!'X-

:::~ 
I 

t 
TCLAV_ 

r--\ 

"'Tci:CH 

\~. ----- ~ 
~.'::.~'::.L. 

'I 

/r- ----

.- ----
TCLAZ,_ -

TCl po;: r-
"'----- f I TCVC 
ii- ,~ 

/ -
_';CLDX 

\ 

1\ 
I FLOAT 

I ___ TCHCTV 

1-

...1 
V !j 
1--1 

~ 
~ ~ ~~ 

S 
PCS 
MC 
,LCS 
lie 

'I~ TCHC! ~X_ I-, -S 
_TCLCSV TCXCSX- -

3-149 210706-004 



iAPX 188 

WAVEFORMS (Continued) 

MAJOR CYCLE TIMING (Continued) 

CLKOUT 

~. ~~--~r-----+----+~----r----+~ 

SHE/S7.A191S8-A111/S3 

READ CYCLE 

NOTES: 

ALE 

TCHLH 

Ao,s-ADo 

pcs, 
Mel! ----I-~I 
LeI, 
UCS 

, 
TC~L~--~~--+--TRL~IH-----~--~-~ 

1. Following a Write cycle, the Local Bus is floated by the 80188 only when the 
80188 enters a "Hold Acknowledge" state. 

2 INTA occurs one clock later in RMX-mode. 
3 Status inactive just prior to T4 

3-150 

FLOAT 

r-­, 

210706-004 



inter 

WAVEFORMS (Continued) 

CLKOUT 

- TCLAV -

LOCi( 

CLKOUT 

~ 
INTO-3, 

TlMERIN,'-______ ---' 

CLKOUT 
V 

J 

iAPX 188 

TCHQSV 

\/ 
QSO, QS1 

--------------~/\~-------

3-151 

TINVCL-

210706-004 



intJ 

WAVEFORMS (Continued) 

HOLD-HLDA TIMING 

CLKOUT 

ARDY 

ARDY _____ '~ __ r~~' 

CLKOUT 

SRDY 

CLKOUT~'HVCL 
""-t--+--

HOLD 

HLDA 

AD150ADO ----
80188 

DEN----

A19/S6-A16/S3, ----
RD, WR, 80188 
H,----
DT/A, 

i2-SiI 

IAPl( :188 

TARYLCL_ 

T, 

--- ,TCLAV 

---. 
80188 __ J r-TCHCV 

---.. 
)--- 80188 __ J 

3-152 210706-004 



IAPX 188 

WAVEFORMS (Continued) 

TIMER ON 80188 

ClKIN 

TCKHl 

TCH1CH2 

dLKOUT '!<+---TCLCH·-:"'· --!-'",,"---TCHCl--_1... 

~-------TCLCl-------~ 

TINVCH 

TIMERIN 

'WW~ 

TIMEROUT __ ~:~~~~~~~~~~~~~~~~~~~~~~~_2-_6_C_LOC_K_S_" -----------r--~~ 

80188 INSTRUCTION TIMINGS 

The following instruction timings represent the mini­
mum execution time in clock cycles for each instruc­
tion. The timings given are based on the following 
assumptions: 

• The opcode, along with any data or displacement 
required for execution of a particular instruction, 
has been prefetched and resides In the queue at 
the time it is needed. 

• N'o wait states or bus HOLDS occur. 

• All' word-data is located on even-address 
boundaries. 

3-153 

All jumps and calls include the time required to fetch 
the opcod~ of the next instruction at the destination 
address. 

All instructions which involve memory reference can 
require one (and in some cases, two) additional 
clocks above the minimum timings showl1. This is 
due to the asynchronous nature of the handshak~ 
between the BIU and the Execution unit. 

210706-004 



inter IAPX 188 

INSTRUCTION SET SUMMARY 

FUNCTION FORMAT 

DATA TRANSFER 
MOY: Move: 
Reglsterto Reglster'Memory 11 0,00100wl mod reg r:rn 

Register/memory to register 11 000101wl mod reg r'm 

Immediate to register memory 11 10001 1 w I modOOO rim data I 
Immediate to register 11 01 1 w reg I data datalfw-l I 
Memory to accumulator 0100001'1 addr·low addr·hlgh 

Accumulator to memory 11 010001wl ' addr·low I addr·hlgh I 
Register/memory to segment register 11 00 0 1 1 1 0 I mod 0 reg rim I 
Segment register to register/memory 11 00 0 1 1 0 0 I mod 0 reg rim I 
PUSH: Push' 
Memory 11 1 1 1 1 1 1 1 mod 11 0 r'm 1-
RegISter 10 1 0.1 0 reg 

Segment register 10 0 0 reg 1 1 0 I 
I\ij~~~~$) ~;!MI,,~,::i)ii:W-;~~I;,';i):-<Hi~,;,i;;il;;;iJ;t;:tii:#;;;$;;;, ;1I'~l"',:1f"';:""4""t"".=r;"~;",~?""t"'*"',;""":"":@"""""'JlT€~",""~""';"";,J 

POP: Pop 
Memory 11 00 0 1 1 1 11 modOOO rim 

RegISter 10 lOt 1 reg I 
Segment register 10 00 reg 1 1 1 I (reg/Ol) 

'r_:;".~'i1:i\l,!'f1:~~;:t:;>~'.~:iG~it; 1t":a,ll"~1 J i;~, '" : .• '~,f'.',,: 

XCHG : Exchange' 
Register/memory with register 11 000011wl mod reg rim I 
Register with accumulator 11 00 1 0 reg I 
IN: Input from: 
FI""d port 11 1 1 0 \} lOw I port 

va"able port It 1 1 0 1 1 '0"", I 
OUT: Output to' 
FIXed port 11 1 1 001 1 w port 

variable port 11 1101 11 w 

XLAT c Translate byte to AL 11 1 0 1 0 1 1 1 

LEA ~ Load EA to rpglSter 11 00 0 1 1 0 1 mod reg rim 

LOS c Load pOinter to OS 11 1 0 0 0 1 0 1 mod reg rim (mod .. 11) 

LES ~ Load pOinter to ES 11 1000100 mod reg rim (mod" 11) 

LAHF - Load AH with flags 11 00 1 1 1 1 1 

SAHF - Store AH Into flags 11 001 1 1 1 0 

PUSHF = Push flags 11 00 1 1 1 0 0 

POPF - Pop Jlags 11 00 1 1 1 0 1 

SEaMErR' = Segment Overnde 

CS 100 1 0 1 1 1 0 I 
ss 10 0 1 1 0 1 1 0 I 
os 10 0 1 11 l1Q] 

dat.,f w-l 

:"~', ',: ' 

Clock 
Cycles 

2/12' 

2/9' 
12-13" 
3-4 

g" 
S" 

2/13 
2115 

20 
14 
13 

:.:' :r·,:~::'·~4,~·, 

" " 

24 
14 
12 

83, 

4/17" 

3 

10" 
S" 

9" 
7" 

15 

6 
26 

26 
2 
3 
13 
12 

2 
2 

2 
ES 10 1) 1 0 0 1 1 0 I 2 

Shaded areas indicate instructions not available in IAPX 86; 88 microsystems. 

Comments 

S/16-bit 
S/16-bit 

1'1 

'Note: Clock cycles shown for byte transfer. For word operations, add 4 clock cycles for all mem()ry transfers. 
, 3-154 210706-004 



intJ IAPX nia 

INSTRUCTION SET SUMMARY (Continued) 

Clock 
FUNCTION FORMAT Cycle. Comment. 

ARITHMmC 
ADD = Add' 
Reg/memory with register to either 10 a a a a a d W I mod reg rm I 3/10' 

Immediate to reglster'memory 11 OOOOOs,wl modOOO rm I data I datallsw-Ol I 4/16 • 

Immediate to accumulator 10 a a a a law I data I datalfw 1 I 3/4 8116-bit 

ADC = Add with Clny: 
Reg/memory with register to either 10 a a 1 a a d wi mod reg rm I 3/10' 

Immediate to reglsletlmemory 1100000swi modOl0 rm I data I datallsw-Ol I 4/16' 

Immediate to accumulator 10 0 a I 0 lOw I data I dat3llw 1 I 3/4 8116-bit 

INC = Increment: 
ReQlsteflmemory 11 11 I 1 I 1 wi modOOO rm I '3/15' 

Reglsler 10 I 0 0 0 reg I 3 

sua = Sublrllct' 
Reg/memory and reg ISler to ellher 10 0 1 0 1 0 d wi mod reg rm I 3/10' 

Immediate from register/memory 1100000swl mod I 01 rm I data I dat3llsw-Ol I 4/16" 

Immediate Irom accumulator 10 0 1 a 1 lOw I dala I dat3llw, 1 I 3/4 8116-bit 

saa = Sublrllct wilt! borraw: 
Reg/memory and register to either 10 00 1 lad wi mod reg rm I 3/10' 

/ 
Immediate Irom reglsterlmemory 1100000swi modOll rm I data I dat3llsw-Ol I 4/16" 

Immediate from accumulator 10001110wl data I dat3llw - 1 I 3/4 8116-btt 

DEC = Dlcrlment: 
Reglsterlmemory 11 111111 wi modOOI rm I 3/15" 

Register 10 1 0 0 1 reg I 3 

CMP = Comp.re: 
Reglsterlmemory with register 10 01 t 1 01 w mod reg rm I 3/10" 

RegISter Wllh reglsterlmemory 10011100w mod reg rm I 3/10' 

Immediate With register/memory 1100000sw modi I 1 rim I data I datallsw-Ol I 3/10' 

Immediate with accumulator 10 0 1'1 1 lOw data I dal3llw-l I 3/4 ' 8116-bit , 
NEG = Change sign 11 11 1 01 1 W modOll r'm I 3 

AM - ASCII adiusl lor add 10 0 1 1 0 1 1 1 8 

OM - DeCimal adlust 10,r add 10 01 0 0 1 1 1 4 

AAS - ASCII adlust lor subtract 10 a 1 1 1 1 1 1 7 

DAS = DeCimal adlust lor sublract 10 a 1 a 1 1 1 1 4 

MUL = Multiply (unsigned) 11 11 1011 wi mod 1 00 r'm I 
Register-Byte 26-28 
Register-WOrd 35-37 
Memory-Byte 32-34 
Memory-WOrd 

41-43~ 

IMUL = Integer multiply (Signed) 11 1 1 1 0 1 1 wi mod 1 01 r'm I 
Reglsler-Byte 25-28 
Register-WOrd , 

34-37 
Memory,Byte 31-34 

I Memory-WOrd 40-43' 

'''V'''U) 
DIY = D,v,de (unsigned) 11 11 1 all wi modll0 rim I 
Register-Byte 29 
Register-WOrd 38 I . , 
Memory-Byte 35 
Memory-WOrd 44" 

Shaded areas indicate instructions not available In iAPX 86, 88 mlcrosystems, 
"Note: Clock cycles shown for byte transfer, For word operations, add 4 clock cycles for all memory transfers, 

3-155 210706-004 



jAPX 188 

INSTRUCTION SET SUMMARY (Continued) 

FUNCTION 

IDIV ~ Integer divide (Signed) 
Register-Byte' 
Register-Word 
Memory-Byte 
Memory-Word 
AAM ~ ASCII adlust for multiply 

AAD ~ ASCII adlust for divide 

caw ~ Convert byte to word 

CWD - Convert word to double word 

LOGIC 
Shift/Rotate InstructIons: 
Register/Memory by 1 

RegISter/Memory by CL 

AND=And 
Reg/memory and register to either 

Immediate to register/memory 

Immediate to accurT)ulator 

TEST = And lunction to Ilags. no result-
Register/memory and register 

Immediate data and reglsterimemory 

lmmedlat~ data and accumulator 

OR=Or' 
Reg/memory and register to either 

Immediate to register/memory 

Immediate to accumulator 

XOR::;:; Exclusive or· 
Reg/memory and register to either 

Immediate to reglster,'memory 

Immediate to accumulator 

NOT co Invert register/memory 

STRING MANIPULATION' 
MDVS ~ Move byte/word 

CMPS 0 Compare byteJword 

Sr.AS 0 Scan bytOlword 

LODS ~ Load byte/wd to At/AX 

FORMAT 

11 1 1 1 0 1 1 wi mod 111 r m 

11 1 0 1 01001000010101 

11 1 0 1 o 1 0 11000010101 

11 00 1 1 0 0 o I 
11 00 1 1 0 0 1 I 

11101000wl mod TTT r m I 

11 1 0 1 0 0 1 w I mod TTT r m I 

j~ 

TTT InstructIon 
o 0 0 ROL 
o 0 1 ROR 
o 1 0 RCL 
o 1 1 RCR 
1 0 0 SHliSAL· 
1 0 1 SHR 
1 1 1 SAR 

1001000dWI mod reg r'm 

11000000wl mod 1 00 rm data 

10010010wl data datalfw-1 

11 000010wl mod reg rim 

11 11 1 01 1 wi mod 000 urn dala 

11 010100wl data data Ifw"CC 1 

1000010dWI mod reg rim 

11000000wl modOOl rim data 

10000110wl data dat"f w ~ 1 

10 o 1 1 o 0 d w I mod reg rim 

11 OOOOOOwl mod 11 0 rim data 

10 0 1 1 0 lOw I data data Ifw =- 1 

11 1 1 1 0 1 1 wi mod 0 1 0 r:m 

11 010010wl 

11 o 1 0 0 1 1 wi 

11 o 1 0 1 1 1 wi 

11 

data~ 

dat"f w 0 1 

dat"f w ~ 1 

dat"f w - 1 

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems 

. Clock 
Cycles 

44-52 

53-61 
50-58 
59-67* 

19 
15 
2 
4 

2/15* 
5+n/17+n* 

3/10' 

4/16' 
3/4 

3/10' 
4/10' 

3/4 

3/10' 

4/16' 

3/4 

3/10' 

4/16' 
3/4 
3 

14' 
22' 
15' 

12' 

Comments 

B/16-bit 

8/16-bit 

B/16-blt 

8/16-bit 

*Note: Clock cycles shown for byte transfer. For word operations, add 4 clock cycles for all memory transfers_ 

3-156 210706-004 



inter iAPX 188 

INSTRUCTION SET SUMMARY Ir,..~.i ... 

FUNCTION 

STRING MANIPULATION (Conllnued) 
Repeated by count In ex 

FORMAT 

MOVS Move string 11111001 11010010wl 

CMPS Compare string 11 1 1 1 0 0 1 l 11 

CONTROL TRANSFER 

CALL = Call· 
Direct wlthm segment 11 1 1 0 1 0 0 dlsp-Iow dlsp-hlgh 

Register memory 11 111 111 mod a lOr m 
mdlrect wlthm segment 

Direct mtersegment 11 o 0 1 1 0 1 segment offset 

segment selector 

Indirect Intersegment 11 111111 1 modOl1rm lmod = 111 

JMP = Uncond,honallump 
Short long 11 1 1 0 1 0 1 11 dlsp-Iow 

Direct within segment 11 1 0 00 1 dlsp-Iow dlsp-hlgh 

Register memory indirect within segment 11 11 1111 1 I mod100rm 

Direct Intersegment 11 o 1 o 1 o 1 segment offset 

1 segment selector 

Indirect Intersegment 11 111111 1 mod101rml (mod = 11( 

RET = Relurn Irom CALL 
Within segment 11 1 0 0 0 0 1 11 

Wlthm seg addmg Immed to SP 11 1 0 0 0 0 1 o 1 data-low data-high 

Intersegment 11 1 0 0 1 o 1 11 

Intersegment adding Immediate to SP 11 1 0 0 1 o 1 o 1 data-low data-high 

Shaded areas (ndlcate Instrucllons not availaple In lAP X 86,88 mlcrosystems. 

Clock 
Cycles 

B+Bn' 
5+22n' 

19 
17/27 

31 

54 

14 
14 

11/21 

14 

34 

20 
22 
30 
33 

Comments 

'Note: Clock cycles shown for byte transfer. For word operations, add 4 clock cycles for all memory transfers. 

3-157 210706-004 



, inter IAPX 188 

INSTRUCTION SET SUMMARY (Continued) , 0 

Clock 
FUNCTION FORMAT Cycles Comments 

JElJZ~Jumponequ'l zera 10 1 1 1 0 1 0 0 drsp 4/13 JMPnot 
JLlJNGE = Jump on less noll"'ler or equal 10 1 1 1 1 1 0 0 drsp 4/13 taken/JMP 
JLE/JNG = Jump on less or equal nol gremer 10 1 1 1 1 1 1 0 drsp taken 

4/13 
JB/JNAE = Jump on llelow nOI ,bove orequal 10 1 1 1 0 0 1 drsp 4/13 
JBElJNA= JumponlleloWorequal nolabove 10 1 1 1 0 1 1 drsp '4/13 
JP/JPE = Jump on p'rr~ p'rr~ even 10 1 1 1 1 0 1 0 drsp 4/13 
J~ = Jump on overtlo. 101110000 drsp 4/13 
JS=Jumponsrgn 10 1 1 1 1 00 0 drsp 4/13 
JNE/JNZ = Jump on notl!tlua! not zero 10 1 1 1 0 1 0 1 drsp 4/13 
JHliJGE = Jump on not less gre,ler or equal 10 1 1 1 1 1 0 1 drsp 4113 
JHLEIJG - Jump on nolless or equal grealer 10 1 1 1 1 1 1 1 drsp -4/13 
JHBIJAE = Jump on noilielow above or equal 10,1 1 1 0 0 1 1 drsp 4/13 
JHBE/JA = Jump on noilielow or equal ,bove 10 1 1 1 0 1 1 1 drsp 4/13 
JHP/JPO~ JumponnolparparOlia 10 1 1 1 1 0'1 1 drsp 4/13 
,JNO = Jump on noloverllow 10 1 1 1 0 0 0 1 drsp I 4/13 
JNS=Jumponnolsrgll 10 1 1 1 1 00 1 drsp I 4/13 
JeXl = Jump on ex zero 11 1 1 0 0 0 1 1 drsp I 5/15 
LOOP = loop ex Irmes 11 1 1 0 0 0 1 0 drsp I 6/16 LOOP nqt 
LOOPZlLOOPE = loop whrlezera equal 11 1 1 0 0 00 1 drsp L 6/16 taken/LOOP 
LOOPNZlLOOPNE - loop whrle nol zero 'Qual 11 1100000 drsp I 6/16 taken 

INT; Interrupt 
TYDe specrfred 11 1 0 0 1 1 0 1 I typo 47 
Type 3 11 1 0 0 1 l' 0 0 1 45 If INT, takenl 
INTO = Interrupt on overflow 11 1 0 0 1 1 1 0 1 48/4 If INT not 

taken 

IRET = Interrupt return 11 1 0 0 1 1 1 11 28 

Shaded areas Indicate Instructions not available In IAPX 86, 88 microsystems, 

3-158 210706-004 



intJ IAPX 188 

INSTRUCTION SET SUMMARY (Continued) 

Clock 
FUNCTION FORMAT Cycles Comments 

PROCESSOR CONTROL 
CLC 0 Clear carry 11 1 1 1 1 0 0 0 2 
CMC 0 Complement carry I' 1 1 1 0 , 0 1 2 
STC 0 Set carry 11 1 1 1 1 00 1 2 

ClD "" Clear dlrecttOn 11 11 1 1 1 0 0 2 
STO 0 Sel dlreC1IOn 11 11 1 1 1 0 1 2 
CLI 0 Clear Interrupl 11 11 1 1 0 1 0 2 
STI " Set Interrupt 11 11 1 1 0 1 1 2 
HLT 0 Halt 11 1 1 1 0 1 0 0 2 
WAIToWa.t I' 00 , 1 0 , , 6 if test = 0 
LOCK 0 Bus lock prefIX 11 1 1 1 0 00 0 2 

ESC == Processor ExtenSion Escape 11 1 0 1 1 T T T mod LLL r m I 6 
(TTT LLl are opcode to processor extensIOn) 

Shaded areas indicate instructions not available In iAPX 86, 88 microsystems. 

3-159 210706-004 



iAPX 188 

FOOTNOTES 

The effective Address (EA) of the memory operand is 
comput~d according to the mod and rim fields: 

if mod = 11 then rim is treated as a REG field 

-if mod = 00 then OISP = 0', disp-Iow and disp-high 

are absent 

If mod = 01 then OISP = disp-Iow sign-extended to 

16-bits, disp-high is absent 

if mod = 10 then OISP = dlsp-high: disp-Iow 

if rim = 000 then EA = (8X) + (SI) + OISP 

if rim = 001 then EA = (BX) + (01) + OISP 

if rim = 010 then EA = (BP) + (SI) + OISP 

if rim = 011 then EA = (BP) + (01) + OISP 

if rim = 100then EA = (SI) + OISP 

if rim = 101 then EA = (01) + OISP 

if rim = 110 then EA = (8P) + OISP' 

If rim = 111 then EA = (BX) + OISP 

OISP follows 2nd byte of instruction (before data if 
reqUired) 

'except If mod ~ 00 and rim ~ 110 then EA ~ dlsp-hlgh dlsp-Iow 

EA calculation time is4 clock cycles for all modes, and 
is included in the execution times given whenever 
appropriate. 

SEGMENT OVERRIDE PREFIX 

- 10 0 1 reg 1 1 0 I 

reg IS assigned according to the following: 

Segment 
reg Register 

00 ES 
01 CS 
10 5S 
11 OS 

REG IS assigned according to the following table: 

16-Bit(w = 1) 8-Bit(w = 0) 
000 AX 000 AL 

001 CX 001 CL 

010 OX 010 OL 
011 BX 011 BL 

100 SP 100 AH 

101 BP 101 CH 

110 SI 110 OH 

111 01 111 BH 

The physical addresses of all operands addressed by 
the BP register are computed using the SS segment 
register. The physical addresses of the destination op­
erands of the string primitive operations (those ad­
dressed by the 01 register) are computed using the ES 
segment, which may not be overridden. 

3-160 210706-004 



8089 
8 & 16-81T HMOS I/O PROCESSOR 

• High Speed DMA Capabilities Including 
I/O to Memory, Memory to I/O, Memory 
to Memory, and I/O to I/O 

• iAPX 86, 88 Compatible: Removes I/O 
Overhead from CPU in iAPX 86/11 or , 
88/11 Configuration 

• Allows Mixed Interface of 8- & 16-Bit 
Peripherals, to 8- & 16-Bit Processor 
Busses 

• 1 Mbyte Addressability 

• Memory Based Communication with 
CPU 

• Supports LOCAL or REMOTE I/O 
Processing 

• Flexible, Intelligent DMA Functions 
Including Translation, Search, Word 
Assembly/Disassembly 

• MULTI BUS Compatible System 
Interface 

• Available in EXPRESS 
- Standard Temperature Range 

The Intel® 8089 is a revolutionary concept In microprocessor input/output processing. Packaged in a 40-pln DIP package, 
the 8089 IS a high performance processor Implemented In N-channel, depletion load silicon gate technology (HMOS). The 
8089's instructlon set and capabilities are optimized for high speed, flexible and efficient I/O handling. It allows easy 
interface of Intel's 16-bit iAPX 86 and 8-bit IAPX 88 microprocessors with 8- and 16-blt peripheral,s. In the REMOTE 
configuration, the 8089 bus is user definable allOWing It to be compatible with any 8/1S-blt Intel microprocessor, interfacing 
easily to the Intel multiprocessor system bus standard MULTI BUS . 

The 8089 performs the function of an intelligent DMA controller for the Intel iAPX 86, 88 family and with its processing 
power, can remove I/O overhead from the iAPX 86 or IAPX 88. It may operate completely In parallel with a CPU, giVing 
dramatically improved performance In I/O intensive applications. The 8089 provides two I/O channels, each supporting a 
transfer rate up to 1.25 mbyte/sec at the standard clock frequency of 5 MHz Memory based communication between the 
lOP and CPU enhances system flexibility and encourages software modularity, Yielding more rehable, easier to develop 
systems. 

DMA RE01 

OMA 

DMA REQ2 

OMA 
TERMINATE2 

1/0 CHANNEL 1 

CPU 

1:"::---, 
I I 
I I 
I I 
I r-=l1 
IL~I 
L_ =--.J 

ASSEMBLYI 
OISASSEMSL y 

INSTRUCTION' 
FETCH UNIT 

Figure 1. 8089110 Processor Block Diagram 

STATUS 

ADDRESSI 
DATA 

39 .0.151015 

Al61S3 

Ali/54 

.0.18155 

AI9156 

BHE 

E"<T2 

.08. 
ORQ2 

'2 

RQ/GT 

SOl 

C. 

READY 

21 J RESET 

Figure 2. 
8089 Pin Configuration 

'ntel Corporation Assumes No Responslbilly tor the Use of Any Circuitry Other Than Circuitry Embodied 10 an Intel Product No Other ClfCUlt Patent Licenses aT. Implied 

"INTEL CORPORATION, 1980 

3-161 



8089 

._----"_,....---..-_________ T1~ • .;:,b_:I._1:...._p.ln Deecrlptlon 

Symbol 'l)pe Name and Function 

AO-AI5J 
00-015 

I/O Munlplexed AdcIre .. and Dela au.: The 
function of these lines are de"ned by the 
state of SO. !1 and ~ lines. The pins are 
floated after reset and when the bus is not 
acquired. AB-A 15 are stable on transfers to a 
physical 8-bit data bus (same bus as 8088). 
and are multiplexed with data on trensfers to 
a 16-bit physical bus. 

A1B-AI9/ 0 Addre •• and Statu.: Multiplexed most 
significant address lines and status in­
formation. The eddress lines are active only 
when addressing memory. Otherwise. the 
stetus lines are active anC\ are encoded as 
shown below. The pins are floated after reset 
and when the bus is not acquired. 
S8S5S4S3 

53-56 

BHE 0 

SO. 51. 52 0 

READY I 

1 1 0 0 DMA cycle on CHI 
1 1 0 1 DMA cycle on CH2 
1 1 1 0 Non-DMA'cycle on CHI 
1 1 1 1 Non-DMA cycle on CH2 

Bu. High Enable: The Bus High Enable is 
used to enable data 'operations on the most 
significant half of the data bus (08-015). the 
signal is active low when a byte is to be 
transferred on the upper half of the data bus. 
The pin is floated after reset and when the 
bus is not acquired. BHE does not have to be 
latched. 

Statu.: These are the status pins that define 
the lOP activity during any given cycle. They 
are encoded as shown below: 
sUUii 
o 0 0 Instruction fetch; I/O space 
o 0 1 Data fetch; I/O space 
o 1 0 Data store; I/O space 
o 1 1 Not used 
1 0 0 Instruction fetch; System Memory 
1 0 1 Data fetch; System Memory 
1 1 0 Data store; System Memroy 
1 1 1 Passive 

The status lines are utilized by the bus 
controller and bus arbiter to generate all 
memory and I/O control signals. The signals 
change during T4 if a new cycle is to be 
entered while the return to passive state in T3 
or Tw indicates the end of a cycle. The PinS 
are floated after system reset and when the 
bus is not acquired. 

Ready: The ready signal received from the 
addressed device indicates that the device is 
ready for data transfer. The signal is active 
high and is synchronized by the 8284 clock . 
generator. 

3-162 

Symbol ''I)pe 

~ 0 

RESET I 

ClK I 

CA I 

SEl I 

DRQI-2 I 

RQ/GT I/O 

\ 

SINTRI-2 0 

EXTI-2 .1 

Vee 
Vss 

Name and Function 

Lock: The lock output signal indicates to the 
bus controller that the bus is needed for more 
than one contiguous cycle. It is set via the 
channel control register. and during the TSl 
instruction. The pin floats after reset and 
when the bus is not acquired. This output Is 
active low. 

Re .. t: The receipt of a reset signal causes 
the lOP to suspend all its activities and enter 
an idle state until a channel attention is 
received. The slgn~ must be active for at 
least four clock cycl s 

Clock: Clock provides all timing needed for 
Internal lOP operation. 

Channel Attention: Gets the attention of the 
lOP. Upon the falling edge of this Signal. the 
SEl input pin is examined to determine 
Master/Slave or CH1/CH2 information. This 
input is active high. , 

Select: The first CIA received after system 
reset informs the lOP via the SEl line, whe-
ther it is a Master or Slave (0/1 for Mas-
ter/Slave respectively) and starts the in-
itialization sequence. [Juring any other CA 
the SEl line signifies the selection of 
CH1/CH2. (0/1 respectively.) 

Data Reque.t: DMA request inputs which 
signal the lOP that a peflpheral is ready to 
transfer/receive data using channels 1 or 2 
respectively. The signals must be held active 
high until the appropriate fetch/stroke is 
initiated. 

Reque.t Grant: Request Grant implements 
the communication dialogue reqUired to ar-
bitrate the use of the system bus (between 
lOP and CPU. lOCAL mode) or I/O bus when 
two lOPs share....!!'e same bus (REMOTE 
mode). The RQ/GTslgnalJ!.l!£!,ve low. An 
Internal pull-up permits RQ/GT to be left 
floating if not used. 

Signal Interrupt: Signal Interrupt outputs 
from channels 1 and 2 respectively. The 
interrupts may be sent directly to the CPU or 
through the 829M interrupt controller. They 
are used to indicate to the system the 
occurrence of user defined events. 

External Termln.te: External terminate 
Inputs for channels 1 and 2 respectively. The 
EXT signals will cause the termination of the 
current DMA transfer operation if the chan-
nel is so programmed by the channel control 
register. The signal must be held active high 
until termination is complete. 

Vonage: +5 volt power input. 

Ground. 



intJ 8089 

FUNCTIONAL DESCRIPTION 
The 8089 lOP has been designed to remove I/O proces­
sing, control and high speed transfers from the central 
processing unit. Its major capabilities include that of In­
itializing and maintaining peripheral components and 
supporting versatile DMA. This DMA function boasts 
flexible termination conditions (such as external termi­
nate, mask compare, single transfer and byte count ex­
pired). The DMA function of the 8089 lOP uses a two cy­
cle approach where the information actually flows 
through the 8089 lOP. This approach to DMA vastly sim­
plifies the bus timings and enhances compatibility with 
memory and peripherals, in addition to allowing opera­
tions to be performed on the data as it is transferred. 
Operations can incluc!e such constructs as translate, 
Where the 8089 automatically vectors through a lookup 
table and mask compare, both on the "fly". 

The 8089 is functionally compatible with Intel's iAPX 86, 88 
family. It supports any combination of 8/16-bit busses. In 
the REMOTE mode it can be used to complement other 
Intel processor families. Hardware and communication 
architecture are designed to provide simple mechanisms 
for system upgrade. 

The only direct communication between the lOP and 
CPU is handled by the Channel Attention and Interrupt 
lines. Status information, parameters and task pro­
grams are passed via blocks of shared memory, simpli­
fying hardware interface and encouraging structured 
programming. 

The 8089 can be used in applications such as file and 
buffer management in hard disk or floppy disk control. It 
can also provide for soft error recovery routines and scan 

control. CRT control, such as cursor control and auto 
scrolling, Is simplified with the 8089. Keyboard control, 
communication control and general I/O are just a few of 
the typical IIPplications for the 8089. 

Remote and Local Modes 
Shown in Figure 3 is the 8089 in a LOCAL configuration. 
THe iAPX 86 (or IAPX 88) is used in its maximum mode. The 
8089 and iAPX 86 reside on the same local bus. sharing the 
same set of system buffers. Peripherals located on the 
system bus can be addressed by either the iAPX 86 or the 
8089. The 8089 requests the use of the LOCAL bus by 
means of the RQ/GT line. This performs a similar function 
to that of HOLD and HLDA on the Intel 808SA, 8080A and 
iAPX 86 minimum mode, but is implemented on one 
physical line. When the iAPX 86 relinquishes the system 
bus, the 8089 uses the same bus control, latches and 
transceiver components to generate the system address, 
control and data lines. This mode allows a more 
economical system configuration at the expenSe of 
reduced CPU thruput due to lOP bus utilization. 

A typical REMOTE configuration IS shown in Figure 4. In 
this mode, the lOP's bus is physically separated from 
the system bus by means of system buffersilatches. The 
lOP maintains its own local bus and can operate out of 
local or system memory. The system bus interface con­
tains the following components: 

• Up to three 8282 bufferllatches to latch the address to 
the system bus. 

• Up to two 8286 devices bidirectionally buffer the 
system data bus. 

MHI~ so ell( =~======---T+-----+--------------
&Si;:==~~ ~g~ ~ He ..... .... 

CPU 

DEN TROllER iOWc 
I~ DTtR AiOWC 

ALE tNTA 

NOTE ONLY ONE LATCH IS NEEDED IF CONFIGURED WITH 8018 AND ONLY 641< 
ADDRESSING IS USED ONLY ONE TRANSCEIVER IS NEEDED IF USING A 
PHYSICAL .... n DATA IUS (I0Il) 

Figure 3_ Typical iAPX 86/11, 88/11 Configuration with 8089 In LOCAL Mode, 8088, 8086 in MAX Mode 

3-163 



intJ 8089 

• An 8288 bus cGmtrolier supplies the control signals 
necessary for buffer operation. as well as MRDC 
(Memory Read) and MWTC (Memory Write) signals. 

• An 8289 bus arbiter performs all the functions 
necessary to arbitrate the use of the system bus. This 
is used in place of the Ra/GT logic in the LOCAL 
mode. This arbiter decodes type of cycle information 
from the 8089 status lines to determine if the lOP 
desires to perform a transfer over the "common" or 
system bus. 

The peripheral devices PER1 and PER2 are supported on 
their own ciata and address bus. the 8089 communicates 
with the peripherals without affecting system bus opera­
tion. Optional buffers may be used on the local bus when 
capacitive loading conditions so dictate. 1/0 programs and 
RAM buffers may also reside on the local bus to further 

. reduce system bus utilization. 

COMMUNICATION MECHANISM 
Fundamentally, communication between the CPU and 
lOP is performed through messages prepared in shared 
memory. The CPU can cause the 8089 to execute a pro· 
gram by placing it in the 8089's memory space andlor 
directing the 8089's attention to it by asserting a hard· 
ware Channel Attention (CA) signal to the lOP, ac· 
tiy~ting the proper 1/0 channel. The SEL Pin indicates to 

~OCAL 1 MEMORY ;::: 

the lOP which channel Is being addressed. Communica­
tion from the lOP to the pnocessor can be performed In a 
similar manner via a system Interrupt (SINTR' 1,2), If the 
CPU has enabled Interrupts for this purpose. Addition· 
ally, the 8089 can store messages in memory regarding 
its status and the status of any peripherals. This com­
munication mechanism Is supported by a hierarchial 
data structure to provide a maximum amount of flexi­
bility of memory use with the added capability of handl­
ing multiple lOP's. 

Illustrated in Figure 5 Is an overview of the communica­
tion data structure hierarchy that exists for the 8089 1/0 
processor. Upon the first CA from RESET, if the lOP is 
initialized as the. BUS MASTER, 5 bytes of information are 
read into the 8089 starting at location FFFF6 (FFFF6, 
FFFF8-FFFFB) where the type of system bus (1!I-bit or B­
bit) and pointers to the system configuration block IIIre 
obtained. This is the only fixed location the 8089 accesses. 
The remaining addresses are obtained via the data struc­
ture hierarchy. The 8089 determines addresses in the 
same manner as does the iAPX 86; i.e., a 16-bit relocation 
pOinter is offset laft 4 bits and added to the 16-bit address 
offset, ot:ltaining a 2Q-bit address. Once these 2o-bit ad­
dresses are formed, thl\Y are stored as such, as all the 8089 
address registers are 20 bits long. After the system con­
figuration pointer address is formed, the 8089 lOP ac­
cesses the system configuration block. 

I 
if elk 

---------., 
~~ ID~:O 
,,- I Jt 015 DO 

) 
CPU 

SYSTEM 
BUS 

CL.~ 
READVr--­
RESEll--

EXT2 ~ 

V'--w... =l "If'---V" 

I~' 
u I 

TO ANOTHER 
IOf' 

Figure 4. Typical REMOTE Configuration 

3-164 

AEN 

-



inter 8089 

SYSTEM 
CONFIGURATION 
BLOCK 

CONTROL 
BLOCK 

CB RELOCA nON 

BUSY ccw 

I PB ADDRESS 

PB RELOCATION 

BUSY ccw 
PB ADDRESS 

__ ~::~ATI?~ 

TASK BLOCK 

1J 1 lOP TASK 

1 PROGRAM J 

LOCATION 
FFFF6 

Figure 5. Communication Data Structure ,",Ierarchy 

The System Configuration Block (SCB), used only duro 
ing startup, points to the Control Block (CB) and provides 
lOP system configuration data via the SOC byte. The 
SOC byte initializes lOP I/O bus width to 8/16, and 
defines one of two lOP RQ/GT operating modes. For 
RQ/GT mode 0, the lOP is typically initialized as SLAVE 
and has its RO/GT line tied to a MASTER CPU (typical 
LOCAL configuration). In this mode, the CPU normally 
has control of the bus, grants control to the lOP as need· 
ed, and has the bus restored to it upon lOP task comple· 
tion (lOP request-CPU grant-lOP done). For RQ/GT 
mode 1, useful only in remote mode between two lOPs, 
MASTER/SLAVE designation is used only to initialize 
bus control: from then on, each lOP requests and grants 
as the bus is needed (IOP1 request-IOP2 grant-IOP2 
request-IOPI grant). Thus, each lOP retains bus con· 
trol until the other requests it. The completion of in· 
itialization is Signalled by the lOP clearing the BUSY 
flag in the CB. This type of startup allows the user to 
have the startup pOinters in ROM with the SCB in RAM. 
Allowing the SCB to be in RAM gives the user the flex· 
ibility of being able to initialize multiple lOPs. 

The Contro/Block furnishes bus control Initialization for 
the lOP operation (CCW or Channel Control Word) and 
provides pointers to the Parameter Block or "data" 
memory for both channels 1 and 2. The CCW is retrieved 
and analyzed upon all CA's other than the first after a 
reset. The CCW byte is decoded to determine channel 
operation. 

The Parameter Block contains the address of the Task 
Block and acts as a messge center between the lOP and 
CPU. Parameters or variable information is passed from 
the CPU to its lOP in this block to customize the soft­
ware interface to the peripheral device. It is also used 
for transferring data and status information between the 
lOP and CPU. 

The Task Block contains the instructions for the respec­
tive channel. This block can reside on the local bus of 

the lOP, allowing the lOP to operate concurrently with 
the CPU, or reside in system memory. 

The advantage of this type of communication between 
the processor, lOP and peripheral, is that it allows for a 
very clean method for the operating system to handle 
I/O routines. Canned programs or "Task Blocks" allow 
for execution of general purpose I/O routines with the 
status and peripheral command information being 
passed via the Parameter Block ("data" memory). Task 
Blocks (or "program" memory) can be terminated or 
restarted by the CPU, if need be. Clearly, the flexibility 
of this communication lends itself to modularity and ap­
plicability to a large number of peripheral devices and 
upward compatibility to future end user systems and 
microprocessor families. 

Register Set 

The 8089 maintains separate registers for its two I/O channels 
as well as some common registers (see Figure 6). There are 
sufficient registers for each channel to sustain its own DMA 
transfers, and process its own instruction stream. The basic 
DMA pointer registers (GA, GB-20 bits each), can point to either 
the system bus or local bus, DMA source or destination, and 
can be autoincremented. A third register set (GC) can be used 
to allow translation during the DMA process through a lookup 
table it points to. The channel control register, which may be 
accessed only by a MOV, or MOVI instruction, determines the 
mode of the channel operation. Additionally, registers are pro­
vided for a masked compare during the data transfer and can 
be set up to act as one of the termination conditions. Other 
registers are also provided. Many of these registers can be used 
as general purpose registers during program execution, when 
the lOP is not performing DMA cycles. 

USER PROGRAMMABl( 

TA019 0 

G P ADDRESS A (GA) 

G P ADDRESS B (GB) 

G P ADDRESS C (GC) 

TASK POINTER ITP} 

........... _ 1 BIT POINTER TO EITHER 110 OR SYSTEM MEMORY SPACE 

15 0 
INDEX (IX) 

BYTE COUNT (BC) 

MASI( COMPARE (Me) 

CHANNEL CONTROL ICC) 

NON USER PROGRAMMABLE 
(ALWAYS POINTS TO SYSTEM MEMORY) 

191 P I PARAMETER POINTER (PP) 

I CHANNEL CONTROl POINTER (CP) I 

Figure 6. Register Model 

Bus Operation 
The BOB9 util,zes the same bus structure as the 
iAPX 86, B8 in their maximum mode confIgurations (see 
Figure 7). The address is tIme multiplexed with the data 
on the first 16/B lines. A16 through A19 are time multi­
plexed with four status lines S3-S6. For BOB9 cycles, S4 
and S3 determine what type of cycle (DMA versus non­
DMA) is being performed on channels 1 or 2. S5 and S6 

3-165 



are a unrque code assigned to the 8089 lOP, enabling 
the user to detect which processor is performing a bus 
cycle in a multiprocessing environment. 

The first three status lines, SO-S2, are used with an 8288 
bus controller to determine if an instruction fetch or 
data transfer is being performed in I/O or system 
memory space. 

DMA transfers require at least two bus cycles with each 
bus cycle requiring a minimum of four clock cycles. Ad· 
ditional clock cycles are allICled if walt states are re­
quired. This two cycle approach simplifies considerably 
the bus timings in burst DMA. The 8089 optimizes the 
transfer between two different bus widths by using , 
three bus cycles versus four to transfer 1 word. More 
than one read (write) is performed when mapping an 
8·bit bus onto a 16·bit bus (vice versa). For example, a 
data transfer from an 8-bit peripheral to a 16·bit physical 
location in memory is performed by first doing two 
reads, with word assembly within the lOP assembly 
register file, and then one write. 

As can be expected, the data bandwidth of the lOP is a 
function of the Physical bus width of the system and I/O 
busses. Table 2 'gives the bandwidth, latency and bus 
utilization of the 8089. The system bus is assumed to be 

$lENorE, 

16·bits wide with either an B·blt peripheral (under byte 
column) or 18-blt peripheral (word column) being shown. 

The latency refers to the worst case response time by 
the lOP to a OMA request, without the bus arbitration 
times. Notice that the word transfer allows 50% more 
bandwidth. This occurs since three bus cycles are re­
quired to map 8·blt data Into a HI·blt location, versus two 
for a 16·bit to 16·bit transfer. Note that it is possible to 
fully saturate the system bus II) the LOCAL mode 
whereas in the REMOTE mode this is reduced to a max· 
Imum of 50%. 

Table 2. Achievable 5 MHz 8089 Operations with 
a 16-Bit System Bus 

Local Remote 

Byte Word Byte Word 

Bandwidth 830 KBiS 1250 KBJS 830 KBiS 1250 KBiS 

Latency 1.0/2.4 ~sec' 1.0/2.4 ~sec' 1.0/2.4 ~sec' 1.0/2.4 ~ec' 

System Bus 
2.4 ~sec 1.6 ~sec 0.8 ~sec 0.8~ec 

PER PER PER PER 
Utilization TRANSFER TRANSFER TRANSFER TRANSFER 

-24 J'sec if interleaving with other channel and no wait states. 11'sec if 
channel IS waiting fOf request. 

\ 

"OORIOATA 
(1,'IT 

PHYSICAL BUS) 

\
-----8'--_,"",_"'",,_-001 ___ t--CX= 

I _ 
--+---\1 f:i 

iffi,iNlA '\ . 
'----~ 

i \:'\ \ 
'I W:IT 

",' \'--+-1 ---------' t--i ~I 

l- -~o_-.J I 

NOTE I IRIII ST .... U Ill, NON IIIUl TlPLElIEO) THROUGHOUT UCH TlU.NSF1R 
CYCLE .... ~ ... 'I ARE ALSO ST .... LE ON TRANSFERS TO,. PHYSICAL. en 

'"' 

\ \ , 
WAIT 

\'--__ ------1 
\'--__ --11 

Figure 7. 8089 Bus Operation 

3-166 

L 



intJ 8089 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias ......... O·C to 70·C 
Storage Temperature ............. -65·C to + 150·C 
Voltage on Any Pin with 

Respect to Ground ................. - 1.0 to + 7V 
Power Dissipation ........................ 2.5 Watt 

"NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this 
specification is not implied. Exposure to absolute maxi­
mum rating conditions for extended periods may affect 
device reliability. 

D.C. CHARACTERISTICS (TA = O°C to 70"C. Vee = SV ±10%) 

Symbol Parameter Min. Max. Units Test Conditions 

Vil Input Low Voltage -0.5 +0.8 V 

VIH Input High Voltage 2.0 VCC+ 1.0 V 

VOL Output Low Voltage 0.45 V IOl=2.0 mA 

VOH Output High Voltage 2.4 V 10H = - 400 I'A 

Icc Power Supply Current 350 mA TA=25"C 

III Input Leakage Current(1) ±10 I'A OV < VIN < Vee 

I lO Output Leakage Current ± 10 I'A 0.4SV "" Vour "" Vee 
.. ~ 

~ 

VCl Clock Input Low Voltage -0.5 +0.6 V 

VCH Clock Input High Voltage 3.9 Vcc+1.0 V 

Capacitance of Input Buffer 
C IN (All input except 15 pF fc = 1 MHz 

ADo- AD15• RQ/G'f) 

C IO 
Capacitance of 110 Buffer 

15 
(ADo - AD15• RQ/GT) 

pF fc = 1 MHz 

A.C. CHARACTERISTICS (TA = O°C to 70°C. Vee = 5V ±10%) 

8089/8086 MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) TIMiNG REQUIREMENTS 

Symbol. Parameter Min. Max. Units Tost Conditions 

TClCl ClK Cycle Period 200 500 ns 

TelCH ClK low Time ('Il TClCl) - 15 ns 

TCHCl ClK High Time ('IlTClCl)+ 2 ns 

TCH1CH2 ClK Rise Time 10 ns From 1 OV to 3 5V 

TCl2Cl1 ClK Fall Time 10 ns From 3 5V to 1 OV 

TDVCl Data In Setup Time 30 ns 
.. ---,·0-1 TClDX Data In HOld Time ns 

TR1VCl ROY Setup Time Into 8284 (See Notes 1, 2) 35 -- ns 
--I--. 

TClR1X ROY Hold Time Into 8284 (See Notes 1. 2) 0 ns 

TRYHCH READY Setup Time Into 8089 1'!;TClCl)- 15 ns 

TCHRYX READY Hold Time Into 8089 30 ns 

TRYlCl READY Inactive to ClK (See Note 4) -8 ns 
f--- -----

TINVCH Setup Time RecognitIOn (ORO 1,2 RESET, Ext 1,2) (See Note 2) 30 ns 

TGVCH ROIGT Setup Time 30 ns 

TCAHCAl CA Width 95 ns 
--f-----

TSlVCAl SEl Setup Time 75 ns 

TCAlSlX SEl Hold Time 0 
1---

ns 
-

TCHGX GT Hold Time Into 8089 40 ns 

TILIH Input RISe Time (Except ClK) 20 ns From 0 8V to 2.0V 

TtHll Input Fall Time (Except ClK) 12 ns From 2,OV to 0 BV 

3-167 



inter 8089 

A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES 

Symbol Parameter 

TClMl Command Active Delay (See'Note 1) 

TClMH Command Inactive Delay (See Note 1) 

TRYHSH READY Active to Status PaSSive (See Note 3) 

TCHSV Status Active Delay , 
TClSH Status Inactive Delay 

~ Address Valid Delay 

TClAX Address Hold Time 

~ClAZ Address Float Delay 

TSVlH Status Valid to ALE High (See Note II 
--~ ,-._-------_. __ ... 

TCllH ClK low to ALE Valid (See Nole 1) 

TCHll ALE Inactive Delay (See Note 1) 

TClDV Data Valid Delay 

TCHDX Data Hold Time 

TCVNV Control Active Delay (See Note 1) 

TCVNX Control Inactive Delay (See Note 1) 

TCHDTl Direction Control Active Delay (See Note 1) 

TCHDTH Direction Control Inactive Delay (See Note 1) 

TClGl RQ Active Delay 

TClGH RQ Inactive Delay 

TClSRV SINTR Vdlld Delay 

TOlOH Output Rise Time 

TOHOL Output Fall Time 

NO"y:ES. 1 Signal at 8284 or 8288 shown tor reference only 
2 Setup requIrement tor asynchronous sIgnal only to guarantee recognItion at next eLK 
3 Aplles onry to T3 and TW states 

Min. Max, Units 'lest Conditions 

10 35 ns Cl=80 pF 
----

10 35 ns 

110 ns 

10 110 ns 

10 130 ns 

10 110 ns 

10 ns 

TClAX 80 ns 
--

15 ns I 

15 ns CL= ISO pF 

15 ns 

10 110 ns 

10 ns 

5 45 ns 

10 '45 ns 

50 ns 

30 ns 

0 85 ns CL= lOa pF 

85 ns Note 5. CL = 30 pF 

150 ns Cl= 100 pF 

20 ns From O.SV to 2.0V 

12 ns From 2.OV to O.SV 

4 Applies only to T2 state 
5 Applies only if RQ/GT Mode 1 CL ==30pf, 27 Kn pull up to Vee 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT/OUTPUT 

::.=X=""~'""-,x= 
A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC I AND () 45V FOR 
A LOGIC 0 THE CLOCK IS DRIVEN AT 4 3VAND 02SV TIMING ME.ASURE­
MENTS ARE MADE AT 1 5V FOR BOTH A LOGIC 1 AND 0 

3-168 

DeVICE 
UNDER 

~CL=100.F TEST 

':' 

Cl -=-100pF 
CL INCLUDES JIG CAPACITANCE 



intJ 8089 

WAVEFORMS 

8089 BUS TIMING USING 8288 
I 2 TJ r. 

elK 

VCH~ 0CHICH' ·II~· TC12Cl';~_-TClCl-_ 

VCl...! ~ i'----J ~ ~ 1_ TeHDX 
reLAv---- --- TCHCl \. I 

-+---t-J)K,I~-4_--+_---t_-~r_--_t--_t---II~('sE:l~t~~ 
S2.S1.So (EXCEPT HALT) 

SEe NOTE 4 

I ALE (8'88 OUTPUT) 

1 RDV (828' INPUT) 

• READY (8089 INPUT) 

seE NOTE 7 I 
AND ABOVE AD15 ADD 

8288 OUTPUTS 

SEe NOTES 4, 5 

(8HEI 

DT/R 

DEN 

WRITE - (AD,MRDC,IORC,DTIR = VOH) 

SEE NOTE 7 I 
AND A~~ \ ADwADo 

8288 OUI'PUTS 

SEE NOTES 4,5 

DEN 

AMWC: OR A'iOWC 

_---__ TCHSV 

TClAV-

I II 
TeHon ---

TCLAV-

~ 

.. TCLSH 

c---- -----+---+-nn~~~----~- ----
W&,W' 

TRYLCl --I 

I '-+-+--:t--..J f- TCHRYX 

T1RYHSH --=1,-1----+--.. 
- TClAX - T~I _ 1'1----+---1----
-ITClAl - I r---TDVCl-- TClDX-I 

A'SAo , FLOAT t---~DA~T~A~,Nj---jJ~--:F::-l-=OJAT:--kr 
I _ JCHDTH 

TCLML-i ,,- TClMH---

\ 
TCVNV --- 1---

-' 1-TCVNX---

---TeLAX ~ 
- .. heLD I- TCHDX ---

FLOAT 

~ A1SAo 

.J DATA OUT 
NOTE 3) 

TCVNV- TCYNX- ,I 
I -- ~ l-rClMl TClMH--- r 

___ -++-__ +-__ +-__ -+ ___ -"-"'\{TClMl 
--- -TCLMH 

I 
, All SIGNAlS $WITCI'IIHWEtN Vo>< .... 0 VOl UNlESS OTHERWISE Sl'EClfl~D 

: ;g~ll~~:;~:TEEA~vr;L~ ~~~~~ET~:t;; V~~I~E~~A::::~ Tl~:~~EU~~~~~SL~~~~~~; ~~~~~~fgEcmfs TO ~u,. ANOT"~~ aus 
CVCLE Hili LOC"'l'USI$ FlOATED 8V THE ~WHEN Tke ~ ENTEASA AeOUEST BUS ACKNOI'jLEOGE STATE 

'SIGIOAL$ATUUOA82MAAESHOI'jNFOAAeFEAE"CEONlV ______ _ 

5 !~~,~~~::;HG~ G1:NE 82\111 GOMfIIAIOO AND C()NTROt. SIGNALS IMFIOC MI'jTC AMI'jC [OAC 10l'jC A,OWC '''ITA A"O DEN, LAGS THE 

6 iIot.L TlMII<IG ME"'SUJllEIoIENTS AFIE ", .. ce AT, 5~ UNLESS OTHERWISE NOrEO 
1 A, .'1 "'FIE sr.l:IlE 0 .. rRANS'E~~ 10.N~ 611 PHVSlCiI.l OA1A 6US,. A, A 

0010 T FlO.T ON A IIEAD fAOM AlII S a,1 PHYSICAl 6uS 01'1 MUll'~lE~ W,IH 

~:~lp~~x:o,~6';~l:OTII~~S~~~TS PHYSICAl 6US 'I'i11' '5 SlABlE '''000 

3-169 



intJ 

WAVEFORMS (Continued) 

ASYNCHRONOUS SIGNAL RECOGNITION 

eLK 

:,)-: 
~ 
1 SETUP REQUIREMENTS FOR ASYNCHRONOUS SIGNALS ONLY TO GUARANTEE 

RECOGNITION AT NEXT eLK 
2 ALL INPUTS EXCEPT CA ARE LATCHED ON A elK EDGE THE CA INPUT 1$ 

8089 

BUS LOCK SIGNAL TIMING AND SINTR TIMING 

1--- Any elK Cycle -! 1 ___ - Any elK Cycle --I 

CLK1-J~--~ 
--- relAV r .. - ----:TCLAV!---~ 

t:6CK 

REQUEST/GRANT SEQUENCE TIMINGS 

8089 AS SLAVE (MODE OJ 

-I rr r -1 
8089 AD OUTPUTJ L 8089 iff INPUT 

(TO MASTER) (FROM MASTER) 

.... REQ~ESTS BUS .... WAITS FI" BUS I 
8089 AS MASTER (MODE 1) 

TCHGX-+- - .-8089 FLOATS STATUS BUS 

~ -1 __ lOyeH - :--TctGL ~ -4-rel 

j8.09 FLOATS ,--
I ... AID BUS.,. 

• 019 RQ INPUT 8019 Gf OUTPUT 
(FROM CURRENT Sl.AVE) (OLO MASTER BECOMES NEW Sl.AVE) 

NEOA1IYE EDOE TRIGGERED 
3 DAD BECOMING ACTIVE OREATER THAN 30 ns AFTER THE RISiNG EDGE OF elK 

WILL GUARANTEE NON RECOGNITION UNTil THE NEXT RISING CLOCK EDGE 

GH 

f 

f---_TCLS.Vj~ 

SlNT."'I---: __ ~ 

8089 RELEASE OUTPUT 
(TO MASTER) 

8089 RELEASES 8US 

B089 AS MASTER (MODE 0) 

r .... I FLOATS AID BUS 1 __ 'TClGH 

TCHGX __ -- "'-TGVCH 

8089 RQ INPUT 
(FROM CURRENT SLAVE) 

'CPU provides active pull-up, 

- ...-TCl.Gl. 

1---F-m~~iO:J: 
8088 Gf OUTPUT 

(OLD MASTER BECOMES NEW SLA\ ) 

3-170 

TCHGX 

I 

8089 RELEASE INPUT 
(TO MASTER) 



inter 8089 

WAVEFORMS (Continued) 

EXTERNAL TERMINATE SETUP TIMING 

ClK 

EXT 1,2 :\--: __ 

SEL SETUP AND TIMING 
TCAHCAL ___ 

CA 
.TSLVCAL __ TCALSLX_. 

SEl /;;i:/; 

3-171 



intJ 8089 

8088 INSTRUCTION SET SUMMARY 

Data Transfers 
POINTER INSTRUCTIONS OPCODE 

7 o 7 0 

LPD P,M Load Pointer PPP from Addressed Location PPPO o A A 1 1 0 0 0 1'0 MM 
LPDI P,I Load Pointer PPP Immediate 4 Bytes P P P 1 000 1 o 0 0 0 1 000 
MOVPM,~ Store Contents of Pointer PPP in Addressed Location P P P 0 o A A 1 100 1 10MM 
MOVPP,M Restore Pointer P P P 0 o A A 1 1 000 11M M 

MOVE DATA OPCODE 

MOV M,M Move from Source to Destination Source- o 0 0 0 OAAW 1 001 OOMM 
Destination- o 0 0 0 o A-AW 1 100 11M M 

MOV R,M Load Register RRR from Addressed Location R R R 0 OAAW 1 000 OOMM 
MOV M,R Store Contents of Register RRR in Addressed Location R R R 0 OAAW 1 000 o 1 M M 
MOVI R Load Register RRR Immediate (Byte) Sign Extend RRR wb OOW o 0 1 1 ,0 0 0 0 
MOVI M Move Immediate to Addressed LOcation 000 wb AAW o 1 0 0 11M M 

Control Transfer 
CALLS OPCODE 

7 07 0 
·CALL Call Unconditional 11 o 0 dd AAwI100 1 1 1 M M 1 

JUMP OPCODE 

JMP Unconditional 100 dd OOW 001 0 o 000 
JZ M Jump on Zero Memory 000 dd AAW1 1 1 0 o 1 M M 
JZ R Jump on Zero Register R R R dd o 0 0 0 1 o 0 o 1 0 0 
JNZ M Jump on Non-Zero Memory 000 dd AAW1 1 1 0 OOMM 
JNZ - R Jump on Non-Zero Register R R R dd 000 o 1 0 0 o 0 0 6 
-JBT Test Bit and Jump if True B B B dd A A 0 1 0 1 1 11M M 
JNBT Test Bit and Jump if Not True B B B dd A A 0 1 0 1 1 10M M 
JMCE Mask/Compare and Jump on Equal 000 dd A A 0 1 0 1 1 o 0 M'M 
JMCNE Mask/Compare and Jump on Non-Equal 000 dd A A 0 1 0 1 1 o 1 M M 

Arithmetic and Logic Instructions 
INCREMENT,DECREMENT OPCODE 

, 7 07 0 

INC M Increment Addressed Location 000 0 OAAW 1 1 1 0 1 OMM 

INC R Increment Register R R R 0 000 0 o 0 1 1 1 000 

DEC M Decrement Addressed Location o 0 0 0 o A AW 1 1 1 0 1 1 M M 

DEC R Decrement Register R R R 0 o 0 0 0 o 0, 1 1 1 100 

3-172 



inter 8089 

Arithmetic and Logic Instructions 

ADD OPCODE 

7 o 7 0 
ADD! M,l ADD Immediate to Memory a a a wb AAW 1 100 OOMM 
ADD! A,l ADD Immediate to Aegister A R R wb OOW 10 a 1 a a a a a 
ADD M,A ADD Aegister to Memory R R R a OAAW1 1 a 1 OOMM 
ADD A,M ADD Memory to Aegister R R R a OAAW 1 a 1 a OOMM 

AND OPCODE 

ANDI M,l AND Memory with Immediate a a a wb AAW 1 1 a a 1 OMM 
ANDI A,l AND Aegister with Immediate R R R wb OOW a a 1 a 1 a a a 
AND M,A AND Memory with Register R R R a OAAW1 1 a 1 1 OMM 
AND A,M AND' Aegister with Memory R R R a OAAW 1 a 1 a 10M M 

OR OPCODE 

OAI M,l OA Memory with Immediate a a a wb AAW 1 1 a a a 1MM 
OAI A,l OR Register with Immediate R R R wb AAW a a 1 a a 100 
OR M,R OR Memory with Register R R R a OAAW 1 1 a 1 a 1MM 
OA A,M OA Register with Memory . R R R a OAAW 1 0 1 0 a 1MM 

NOT OPCODE 

NOT A Complement Aegister R R R a 00 a a a a 1 a 1 100 
NOT M Complement Memory o a a a OAAW 1 1 a 1 11M M 
NOT A,M Complement Memory, Place in Register R R R a OAAW 101 a 11M M 

Bit Manipulation and Test Instructions 

BIT MANIPULATION OPCODE 

7 07 0 

SET Set the Selected Bit IB B B a OAAol111 1 a 1 M M I 
CLR Clear the Selected B'it IB B B a OAAol1111 10M M I 

TEST OPCODE 

TSL Test and Set Lock 10 a a 1 1 A A a 11 a a 1 a 1 M M 1 

Control 

Control OPCODE 

7 07 0 
HLT Halt Channel Execution a a 1 a a a a a a 1 a a 1 a a a 
SINTR Set Interrupt Service Flip Flop a 1 a a a a a a a a a a a a a a 
NOP No Operation a a a 0 o a o 0 o 0 0 0 o 0 0 0 
XFEA Enter DMA Transfer o 1 1 0 o 0 0 0 o 0 0 0 o 000 
WID Set Source, Destination Bus Width; S,D 0 = 8, 1 = 16 1 SO 0 o 0 0 0 o 000 000 0 

3-173 



inter 8089 

'AAField in call instruction can be 00, O~; 10 only. 
"OPCODE is second byte fetched. 

All instructions consist of at least 2 bytes, while some 
Instructions may use up to 3 additional bytes to specify 
literals and displacement data. The definition of the 
various fields within each instruction is given below: 

o 7 

I R R R I w • I A A I w I OPCODe 

PPP BBB 

M M Elase Pointer Select 

00 GA 
01 GB 
10 GC 
11 PP 

RRR Register Field 

The RRR field specifies a 16-bit register to be used in 
the instruction. If GA, GB, GC or TP, are referenced by 
the RRR field, the upper 4 bits of the registers are load· 
ed with the sign bit (Bit 15). PPP registers are used as 
20·bi! address pOinters. 

RRR 

000 rO GA , 
001 rl GB 
010 r2 GC 
011 r3 . BC ; byte count 
100 r4 TP ; task block 
101 r5 IX ; index register 
110 r6 CC ; channel control (mode) 
111 r7 MC ; mask/compare 

Saa Notes 1, 2 

PPP 

000 pO GA 
001 p1 GB 
010 p2 GC 
100 P 4 TP ; task block pointer 

Note 1 Logical and anthmetlc instructions should not be used to update the 
CC register (I e -only MOV and MOVI Instructions should be used) 

2. A 20-bit register (GA. GB. GC or TP) that is initialized as a 16-bit 1/0 
space pOinter must be saved at even addresses when uSing MOVP or 
CALL instructIons 

NOTES: 

BBB Bit Select Field 

The bit select field replaces the RRR field in bit manipu­
lation instructions and is used to s~lect a bit to be oper­
ated on by those instructions. Bit 0 is the least gignlfi­
cant bit. 

wb 

01 1 byte literal 
10 2 byte (word) literal 
dd 

01 1 byte displacement 
10 2 byte (word) displacement. 

AA Field 

00 The selected pointer contains the operand 'address. 
01 The operand address is formed by adding an 8·bit, 

unsigned, offset contained in the 'instruction to the 
selected pointer. The contents of the pOinter are un· 
changed. 

10 The operand address is formed by adding the con· 
tents of the Index register to the selected pOinter. 
Both registers remain unchanged. 

11 Same as 10 except the Index register is post auto· 
incremented (by 1 for 8'bit transfer, by 2 for 16-bit 
transfer). 

W Width Field 

o The selected operand is 1 byte long. 
The selected operand is 2 bytes long. 

Addltiona,l Bytes 

OFFSET : 8-bit unsigned offset. 
SDI~P : 8/16-bit signed displacement. 

LITERAL: 8/16-bit literal. (32 bits for LDPIl. 

The order in which the above optional bytes appear in lOP 
instructions is given below: 

OFFseT I 

Offsets are treated as unsigned numbers. Literals and 
displacements are sign extended (2's complement). 

3-174 



8087 
NUMERIC DATA COPROCESSOR 

8087/8087-2/8087-1 

• High Performance Numeric Data Coprocessor 

• Adds Arithmetic, Trigonometric, Exponential, 
and Logarithmic Instructions to the Standard 
iAPX S6 and iAPX 1S6 Instruction Set For All 
Data Types 

• All 24 Addressing Modes Available with 
8086, 8088, 80186, 80188 CPUs. 

• Compatible with Proposed IEEE Floating 
Point Standard 

• CPUlSOS7 System Supports S Data Types: 
16-, 32-, 64-Bit Integers, 32-, 64-, SO-Bit 
Floating Point, and 1S-Digit BCD Operands 

• Adds S x SO-Bit Individually Addressable 
Register Stack 

• 7 Built-in Exception Handling Functions 

• MULTI BUS System Compatible Interface 

The 8087 Numeric Data Coprocessor provides the instructions and data types needed for high performance 
numeric applications, providing up to 100times the performance of a CPU alone. The 8087 is implemented in 
N-channel, depletion load, silicon gate technology (HMOS), housed in a 4o-pin package. Sixty-eight 
numeric processing instructions are added to the iAPX 86,186 instruction sets, and eight 8o-bit registers are 
added to the register set. The 8087 is compatible with the proposed IEEE Floating Point Standard. 

The two-chip numeric data processing systems are referred to as follows; 
iAPX 86/20-16-bit 8086 CPU with 8087 
iAPX 88/20-8-bit 8088 CPU with 8087 
iAPX 186/20-16-bit 80186 CPU with 8087 
iAPX 188/20-8-bit 80188 CPU with 8087 

'" 
§3'" 

Figure 1. 8087 Block Diagram 

GND 
(A14)AD14 2 

(A13) AD13 3 

(A12)AD12 4 

(All)ADll ' 
(A10)AD10 6 

(A9)AD9. ' 
(A8)ADB I 8 

8087 
NP> 

40 Vee 
39 AD15 

-, A18/S3 

37 J A171S4 

36 'A18/SS 

35 ) A19/S6 

BHE/S7 
33 ~ ROtGT1 
32 _~ INT 

- iiQmo 
30 ' He 
29 _J He 

52 

BUSY 

RESET 

Figure 2. 8087 Pin Configuration 

Intel Corporation Assumes No Reaponslbilly for the Use of Any Circuitry other Than CirCUitry Embodied In an Intel Product No Other CirCUit Patent Licenses 8'f'e Implied 

©INTEL CORPORATION, 1984 3-175 ORDER NUMBE~~~5~5~~ 



8087/8087-2/8087-1 

Table 1. 8087 Pin Description 

Symbol Type Name and Function 

AD15-ADO 1/0 Address Data; These lines constitute the time ~ultlplexed memory address (T 1) and data (T 2. T 3. T w. T 4) bus. 
AO is analogous to BHEforthe lower byte of the data bus. pins 07-00. It is lOW during T1 when a byte is 
to be transferred on the lower portion of the bus in memory operations. Eight-bit oriented devices tied 
to the lower half of the bus would normally use AO to condition chip select functions. These lines are 
active HIGH. They are input/output lines for 8087-driven bus cycles and are inputs wtiich the 8087 
monitors when the CPU is in control olthe bus. A 15-A8 do not requirean address latch in an iAPX 88/20 
or iAPX 188/20. The 8087 will supply an address for the TrT4 penod. 

A19/S6. 1/0 Address Memory: During T1 these are the four most sigmficant address lines./or memory operations. 
A18/S5. During memory operations. status information is available on these lines during T 2. T3• T w. and T 4' For 
A17/S4. 8087-controlled bus cycles. S6. S4. and S3 are reserved and currently one (HIGH). while S5 is always 
A16/83 lOW.These lines are inputs which the 8087 monitors when the CPU is in control of the bus. 

BHE/S7 1/0 Bus High Enable: During T1 the bus high enable signal (BHE) should be used to enable data onto the most 
significant half of the data bus. pins D15-D8. Eight-bit-oriented devices tied to the upper half of the bus 
would normally use BHE to condition chip select functions. BHE is lOW during T1 for read and write cycles 
when a byte is to be transferred on the high portion of the bus. The 87 status information is available during 
T 2. T 3. T w. and T 4' The signal is active LOW. 87 is an input which the 8087 monitors during the CPU-controlled 
bus cycles. 

82.81.80 1/0 Status: For 8087 -driven bus cycles. these status lines are encoded as follows: 

S2 51 SO 
o (lOW) X X Unused 
1 (HIGH) 0 0 Unused 
1 0 1 Read Memory 
1 1 0 Write Memory 
1 1 1 Passive 

Status is driven active during T4. remains valid during T1 and T2• and is returned to,lhe passive state 
(1.1.1) during T3 or during Tw when READY is HIGH. This status is used by the 8288 Bus Controller 
(or the 82188 Integrated Bus Controller with an 80186/80188 CPU) to generate all memory access 
control signals. Anychange in S2. S1. or SOduring T4 is used to indicate the beginning of a bus cycle. 
and the return to the passive state in T3 orTw is used to indicate the end of a bus cycle. These signals 
are monitored by the 8087 when the CPU is in control of the bus. 

RQ/GTO 1/0 Request/Grant: This request!grant pin is used by the 8087 to gain control of the local bus from the CPU for 
operand transfers or on behalf of another bus master. It must be connected to one of the two processor request! 
grant pins. The request grant sequence on this pin is as follows: 

1. A pulse one clock wide is passed to the CPU to indicate a local bus request by either the 8087 or the master 
connected to the 8087 RQ/GT1 pin. 

2. The 8087 waits for the grant pulse and when it is received will either initiate bus transfer activity in the clock 
cycle following the grant or pass the grant out on the RQ/GT1 pin in this clock if the initial request was for 
another bus master. 

3: The 8087 will generate a release pulse to the CPU one clock cycle after the completion olthe last 8087 bus cycle 
or on receipt of the release pulse from the bus master on RQ/GT1. 

--
For iAPX 186/188 systems. the same sequence applies except- RQ/GT signals are converted to 
appropriate HOLD. HlDA signals by the 82188 Integrated Bus Controller. ThiS is to conform with iAPX 
186/188's HOLD. HlDA bus exchange protpcol. Refer to the 82188 data sheet for further information. 

3-176 205835-003 



inter 8087/8087-2/8087-1 

Table 1. 8087 Pin Description (Continued) 

Symbol Type Name a"d Function 

RQ/GTI I/O Requesl/Grant: This request/grant pin is used by another local bus master to force the 8087 to request 
the local bus. If the 8087 is not in control of the bus when the request is made the request/grant sequence 
is passed through the 8087 on the RQ/GTO pin one cycle later. Subsequent grant and release pulses are 
also passed through the 8087 with a two and one clock delay, respectively, for resynchronization. RQ/GTt 
has an internal pullup resistor, "nd so may be left unconnected. If the 8087 has control of the bus the request/ 
grant sequence is as follows: 

1. A pulse 1 ClK wide from another local bus master indicates a local bus request to the 8087 (pulse 1). 
2 During the 8087's next T4 or T, a pulse 1 ClK wide from the 8087 to the requesting master (pulse 2) 

indicates that the 8087 has allowed the local bus to float and that it will enter the "RQ/GT acknowledge" 
state at the next ClK. The 8087's control unit is disconnected logically from the local bus during "RQ/GT 
acknowledge." 

3. A pulse 1 ClK wide from the requesting master indicates to the 8087 (pulse 3) that the "RQ/GT" request 
is about to end and that the 8087 can reclaim the local bus at the next ClK. 

Each master-master exchange of the local bus is a sequence of 3 pulses. There must be one dead ClK 
cycle after each bus exchange. Pulses are active lOW. 

For iAPX 186/186 systems, the RQ/GTI line may be connected to the 82188 Integrated Bus Controller In this case, a 
third processor with a HOLD, HlDA bus exchange system may acquire the bus from the 8087. Forthis configuration, 
RQ/GTI will only be used If the 8087 is the bus master Refer to 82188 data sheet for further information. 

QS1,QSO I QS1, OSO: QSl and QSO provide the 8087 with status to allow tracking of the CPU instruction queue. 

0$1 QSO 
o (lOW) 0 No Operation -

0 1 First Byte of Op Code from Queue 
1 (HIGH) 0 Empty the Queue 
1 1 Subsequent Byte from Queue 

INT 0 Interrupt This line IS used to Indicate that an unmasked exception has occurred during numeric instruction 
execution when 8087 interrupts are p-nabled Thissignal is typically routed to an 8259A for 8086 systems and to INTO 
for iAPX 186/186 systems INT is active HIGH 

BUSY 0 Busy: This signal indicates that the 8087 NEU is executing a numeric instruction. It is connected to the CPU's 
TEST pin to provide synchronization. In the case of an unmasked exception BUSY remains active until the 
exception is cleared. BUSY is active HIGH. 

READY I Ready: READY is the acknowledgement from the addressed memory deVice that It will complete the data transfer. 
The RDY signal from memory is synchronIZed by the 8284A Clock Generator to form READY for 8086 systems. For 
iAPX 186/188 systems, ROY is synchronized by the 82188 Integrated Bus Controller to form READY This Signal IS 
active HIGH. 

RESET I Reset: RESET causes the processor to immediately terminate its present activity. The signal must be active 
HIGH for at least four clock cycles. RESET is internally synchronized. 

ClK I Clock: The clock provides the basic timing for the processor and bus controller. It is asymmetric with a 
33% duty cycle to provide optimized internal timing. 

Vcc Power: Vcc is the +5V power supply pin. 

GND Ground: GND are the ground pins. 

NOTE: 
For the pin descriptions of the 8086, 8088, 80186 and 80188 CPU's, reference the respective data sheets (iAPX 86/10, iAPX 88/10, 
iAPX 186, iAPX 188). 

3-177 205835-003 



8087/8087-218087-1 

APPUCATION AREAS 

The 8087 provides functions meant specifically for high 
performance,numeric processing requirements. Trigo­
nometric, logarithmic, and exponential functions are 
built into the coprocessor hardware. These functions 
are essential in scientific, engineering, navigational, 
or military applications. 

The 8087 also has capabilities meant for business or 
commercial computing. An 8087 can process Binary 
Coded Decimal (BCD) numbers up to 18 digits without 
roundoff errors. It can also perform arithmetic on inte­
gers as large as 64 bits ± 1018). 

PROGRAMMING LANGUAGE SUPPORT 

Programs for the 8087 can be written in Intel's high-level 
languages for iAPX 86/88 and iAPX 186/188 Systems; 
A5M-86 (the iAPX 86,88 assembly language), PUM-86, 
FORTRAN-86, and PA5CAL-86. 

RELATED INFORMATION 

For iAPX 86/10, iAPX 88110, iAPX 186 or iAPX 188 
details, refer to the respective data sheets. For iAPX 186 
or iAPX 188 systems, also refer to the 82188 Integrated 
Bus Controller data sheet. 

FUNCTIONAL DESCRIPTION 

The 8087 Numeric Data Processor's arcHitecture is 
designed for high performance numeric computing in 
conjunction with general purpose processing. 

CPU 

The 8087 is a numeric processor extension that provides 
arithmetic and logical instruction support for a variety of 
numeric data types. It also executes numerous built-in 
transcendental functions (e.g., tangent and log func­
tions). The 8087 executes instructions as a coprocessor' 
to a maximum mode CPU. It effectively extends the 
register and instruction set of the system and adds 
several new data types as we". Figure 3 presents the 
registers of the CPU+8087. Table 2 shows the range of 
data types supported by the 8087. The 8087 is treated as 
an extension to the CPl,), providing register, data types, 
control, and instruction capabilities at the hardware 
level. At the programmers level the CPU and the 8087, 
are viewed as a single unified processor. 

System Configuration 

As a coprocessor to an 8086 or 8088, the 8087 is wired in 
para"el with the CPU as shown in Figure 4. Figure 5 
shows the iAPX 186/188 system configuration. The 
CPU's status (50-52) and queue status lilies (OSo-OSl) 
enable the 8087 to monitor and decode instructions in 
synchronization with the CPU and without any CPU 
overhead. For iAPX 1861188 systems, the queue status 
signals of the iAPX 1861188 are synchronized to 8087 
requirements by the 82188 Integrated Bus Controller. 
Once started, the 8087 can process in para"el with, and 
independent of, the host Cpu. For resynchronization, 
the 8087's BUSY signal informs the CPU that the 8087 is 
executing an instruction and the CPlJ WAIT instruction 
tests this signal to insure that the 8087 is ready to 
execute subsequent instructions. The 8087 can interrupt 
the CPU when it detects an error or exception. The 

8087 
DATA FIELD TAG FIELD 

AX 'i!5 FILE 0 I RI "l-gs:f:N~;7~8 E~X~PO;N~EN~T~8';83~===:::;S;IG;N~IFI~CAN:;:~D====~O 'iO 

ax I R2 
-a I R3r---r-------+----------------; 

DX : R.I--__ ~------+_---------------; 
SI I RS r---r--,-----+--,--------------; 
DI R8 
BP I R71----~------+----------------; 
SP I R8 L-_.L..-___ ..L..... _______ ....J 

L __ , 

I----:::-"""P :::-__ -'1' I :1 FLAGS • 
L.. ____ --, 

15 
CONTROL REGISTER 
STATUS REGISTER 

T"GWORD 

§' ... i------------fl i 

I- INSTRUCTION POINTER_ 

I- DATA POINTER -

Figure 3. CPU+8087 Architecture 

3-178 205835-003 ' 



8087/8087-2/8087-1 

8087's interrupt request line is typically routed to the 
CPU through an 8259A Programmable Interrupt Con­
troller for 8086, 8088 systems and INTO for iAPX 
186/188. 

The 8087 uses one ofthe request!grant lines of the iAPX 
86/88 architecture (typically RQ/GTO)to obtain control 
of the local bus for data transfers. The other request! 
grant line is available for general system use (for 
instance by an I/O processor in LOCAL mode). A bus 
master can also be connected to the 8087's RQ/GT1 
line. In this configuration the 8087 will pass the request! 
grant handshake signals between the CPU and the 
attached master when the 8087 is not in control of the 
bus and will relinquish the bus to the master directly 
when the 8087 is in control. In this way two additional 
masters can be configured in an iAPX 86/88 system; one 
will share the 8086 bus with the 8087 on a first come first 
served basis, and the second will be guaranteed to be 
higher in priority than the 8087. 

For iAPX 186/188 systems, RQ/GTO and RQ/GT1 are 
connected to the corresponding inputs of the 82188 

Integrated Bus Controller. Because the iAPX 186/188 
has a HOLD, HLDA bus exchange protocol, an interface 
is needed which will translate RQ/GT signals to cor­
responding HOLD, HDLA signals and visa versa. One of 
the functions of the 82188 IBC is to provide this 
translation. RQ/GTO is translated to HOLD, HLDA 
signals which are then directly connected to the iAPX 
186/188. The RQ/GT1 line is also translated into HOLD, 
HLDA signals (referred to as SYSHOLD, SYSHLDA 
Signals) by the 821881BC. This allows a third processor 
(using a HOLD, HLDA bus exchange protocol) to gain 
control of the bus. 

Unlike an iAPX 86/20 system, RQ/GT1 is only used 
when the 8087 has bus control. If the third processor 
requests the bus when the current bus master is the 
iAPX 186/188, the 82188 IBC will directly pass the 
request onto the iAPX 186/188 without going through 
the 8087. The third processor has the highest bus 
priority in the system. If the 8087 requests the bus while 
the third processor has bus control, the grant pulse will 
not be issued until the third processor releases the bus 
(using SYSHOLD). In this configuration, the third proces­
sor has the highest priority, the 8087 has the next 
highest, and the iAPX 186/188 has the lowest bus 
priority. 

Table 2. 8087 Data Types 

Data 
Range Precision 

Most Significant Byte 
Formats 

7 017 017 017 017 017 017 017 017 017 01 

--~ -

Word Integer 104 16 Bits 115 ~ Two's Complement 
i---- --

Short Integer 109 32 Bits 131 
~-

--~ Two's Complement 

r-.--
Long Integer 1018 64 Bits 163 

I Two's 
---=--=------------------~- 10 Complement 

Packed BCD 1018 18 Digits _~_D17D1L 101 Dol 

Short Real 10±38 24 Bits SI E7 EoIF1 ~ Fo Implicit 
------~- ------~ 

Long Real 10±308 53 Bits S IE10 -EoIF1 F521 Fo Implicit 
f--- ---

Temporary Real 10±4932 64 Bits ~- EJo F63[ 

j---------~--- --~-

Integer: I Real. (_1)S(2E-BIAS)(Fo;F1' .) 

Packed BCD' (-1)S(D17 Dol Sias=127 for Short Real 
1023 for Long Real 
16383 for Temp Real 

--------

3-179 205835-003 



intJ 8087/8087-218087-1 

Bus Operation 

The 8087 bus structure, operation and timing are 
identical to all other processors in the iAPX 86/88 series 
(maximum mode configuration). The address is time 
multiplexed with, ,the data on the first 16/8 lines of the 
address/data bus. A 16 through A 19 are time multiplexed 
with four status lines 83-86. 83, 84 and 86 are always 
one (HIGH) for 8087-driven bus cycles while S5 is 
always zero (LOW). When the 8087 is monitoring CPU 
bus cycles (passive mode) 86 is also monitored by the 
8087 to differentiate 8086/8088 activity from that of a 
local I/O processor or any other local bus master. (The 
8086/8088 must be the only processor on the local bus 
to drive 86 LOW). 87 is multiplexed with and has the 
same value as BHE for all 8087 bus cycles. 

The first three Stl\tus lines, 80-82, are used with an 8288 
bus controller or 82188 Integrated Bus Controller to 
determine the type of bus cycle being run: 

S2 Sf SO 
0 X X Unused 
1 0 0 Unused 
1 0 1 Memory Data Read 
1 1 0 Memory Data Write 
1 1 1 Passive (no bus 

cycle) 

Programming Interface 

The 8087 includes the' standard iAPX 86/10, 88/10 
instruction set for general data manipulation and pro­
gram control. It also includes 68 numeric instructions 
for extended precision integer, floating pOint, trigono­
metric, logarithmic, and exponential functions. 8ample 
execution times for several 8087 functions are shown in 
Table 3. Overall performance is up to 100 times that of an 
iAPX 86/10 processor for numeric instructions. 

Any instruction executed by the 8087 is the combined 
result of the, CPU and 8087 activity. The CPU and the 
8087 have specialized functions and registers providing 
fast concurrent operation. The CPU controls overall 
program execution while the 8087 uses the coprocessor 
interface to recognize and perform numeric operations. 

Table 2 lists the eight data types the 8087 supports 
and presents the format for each type. Internally, the 
8087 holds all numbers in the temporary real format. 
Load and store instructions automatically convert 
operands represented in l1Jemory as 16-, 32-, or 64-bit 
integers, 32- or 64-bit floating point numbers or 18-
digit packed BCD numbers into temporary real format 
and vice versa. The 8087 also provides the capability 
to control round off, underflow, and overflow errors 
in each calculation. 

Computations in the 8087 use th!l processor's register 
stack. These eight 80-bit registers provide the equivalent 
capacity of 20 32-bit registers. The 8087 register set 
can be accessed as a stack, with instructions operating 
on the top one or two stack elements, or as a fixed 
register set, with instructions operating on explicitly 
designat~d registers. 

Table 5 lists the 8087's instructions by class. All appear 
as ESCAPE instructions to the host. Assembly language 
programs are written in ASM-86, the iAPX 86, 88 as­
sembly language. 

Table 3. Execution Times for Selected iAPX 86/20 
Numeric Instructions and Corresponding 
IAPX 86/10 Emulation 

Floating Point 
Instruction 

Add/Su btract 
Multiply (single 

precision) 
Multiply (extended 

precision) 
Divide 
Compare 
Load (double precision) 
Store (double precision) 
Square Root 
Tangent 
Exponentiation 

3-180 

Approximate Execution 

, 
I 

Time Vts) 

IAPX 86/20 iAPX 8611 0 
(5 MHz 
Clock) Emulation 

17 1,600 

19 1,600 

27 2,100 
39 3,200 
9 1,300 
10 1,700 
21 1,200 , 
36 19,600 
90 13,000 
100 17,100 

205835-003 



intJ 8087/8087-2/8087-1 

NUMERIC PROCESSOR 
EXTENSION ARCHITECTURE 

As Shown in Figure 1, the 8087 is internally divided 
into two processing elements, the control unit (CU) 
and the numeric execution unit (NEU). The NEU exe­
cutes all numeric instructions, while the CU receives 
and decodes instructions, reads and writes memory 
operands and executes 8087 control instructions. The 
two elements are able to operate independently of one 
another, allowing the CU to maintain synchronization 

with the CPU while the NEU is busy processing a 
numeric instruction. 

Control Unit 

The CU keeps the 8087 operating in synchronization 
with its host CPU. 8087 instructions are intermixed with 
CPU instructions in a single instruction stream. The CPU 
fetches all instructions from memory; by monitoring the 
status (SO-S2, S6) emitted by the CPU, the control unit 
determines when an instruction is being fetched. The 

Figure 4. iAPX 86/20, 88/20 ~ystem Configuration 

, 

r -.., 

B284A 
CLOCK 

GENERATOR 

8259A 
PIC 

INT t-I -~-~IINTR 

eLK H---.,.-<>----iCLK ~~: 

.... __ ....J 

IAPX86 
BUS 

INTERFACE 
COMPONENTS 

MULTIMASTER 
SYSTEM 

BUS 

Figure 5. IAPX 186/20, 188120 System Configuration 

~" ...... 
W 

I 
..... 

QlI oso IIUSV IItT 

1 II .,,,,r. """" "" -
06111_091 

"" .~ 
/'-----'\ 

.... ,. 
(::j !I; "'w QS011-.:-- OSD 

W '"' ." 1AI'II;,88I,18 .~"" 
,~ 'v-I ""~-

'~r---
" .. I----- ""' 

3-181 205835-003 



8087/8087-218087-1 

CU monitors the data bus in parallel with the CPU to 
obtain instructions that pertain to the 8087. 

The CU'maintains an instruction queue that is identical 
to the queue in the host CPU. The CU automatically 
determines if the CPU is an 8086/186 or an 8088/188 
immediately after reset (by monitoring the BRE/S7 line) 
and matches its queue length accordingly. By monitor­
ing the CPU's queue status lines (OSO, OS1), the CU 
obtains and decodes instructions from the queue in 
synchronization with the CPU. 

A numeric instruction appears as an ESCAPE instruction 
to the CPU. Both the CPU and 8087 decode and execute 
the ESCAPE instruction together. The 8087 only 
recognizes the numeric instructions shown in Table 5. 
The start of a numeric operation is acomplished when 
the CPU executes the ESCAPE instruction. The instruc­
tion mayor may not identify a memory operand. 

The CPU does, however, distinguish between ESC 
instructions that reference memory and those that 
do not. If the instruction refers to a memory operand, 
the CPU ca.lculates the operand's address using any 
one of its available addressing modes, and then per­
forms a "dummy read" of the word at that location. 
(Any location within the 1 M byte address space is 
allowed.) This is a normal read cycle except th'at the 
CPU ignores the data it receives. If the ESC instruc­
tion does n<\lt contain a memory reference (e.g. an 
8087 stack operation), the CPU simply proceeds to 
the next instruction. 

An 8087 instruction can have one of three memory 
reference options; (1) not reference memory; (2) 
load an operand word from memory into the 8087; or 
(3) store an operand word from the 8087 into 
memory. If no memory reference is required, the 
8087 simply executes its instruction. If a memory 
reference is required, the CU uses a "dummy read" 
cycle initiated by the CPU to capture and save the 
address that the CPU places on the bus. If the in­
struction is a load, the CU additionally captures the 
data word when it becomes available on the local 
data bus. If data required is longer than one word, 
the CU immediately obtains the bus from the CPU 
using the requesVgrant protocol and reads the rest 
of the information in consecutive bus cycles. In a 
store operation, the CU captures and saves the store 
address as in a'ioad, and ignores the data word that 
follows in the "dummy read" cycle. When the 8087 is 
ready to perform the store, the CU obtains the bus 
from the CPU and writes the operand starting 'at the 
specified address. ' 

Numeric Execution Unit 

The NEU executes all\ instructions that involve the 
register stack; these include arithmetic, logical, 
transcendental, constant and data transfer instruc­
tions. The data path in the NEU is 84 bits wide (68 
fraction bits, 15 exponent bits and a sign bit) which 
allows internal operand transfers to be performed at 
very high speeds. 

When the NEU begins executing an instruction, it 
activates the 8087 BUSY signal. This signal can be 
used in conjunction with the CPU WAIT instruction 
to resynchronize both processors when the NEU has 
completed its current instruction. 

Register Set 

The CPU+8087 register set is shown in Figure 3. Each of 
the eight data registers in the 8087's register stack is 80 
bits and is dividecj into "fields" corresponding to the 
8087's temporary real data type. 

At a given point In time the TOP field in the control word 
identifies the c(Jrrent top-of-stack register. A "push" 
operation decrements TOP by 1 and loads a value into 
the new top 'register. A "pop" operation stores the value 
from the current top register and then increments TOP 
by 1. Like CPU stacks in memory, the 8087 register 
stack grows "down" toward lower-addressed registers. 

Instructions may address the data registers either 
implicitly or explicitly. Many instructions operate on 
the register at the top of the stack. These instruc-, 
tions implicitly address the register pointed to by the' 
TOP. Other instructions allow the programmer to 
explicitly specify the register which is to be used. 
Explicit register addressing is "top-relative." 

Status Word 

The status word shown in Figure 6 reflects the over­
all state of the 8087; it may be stored in memory and 
then inspected by CPU code. The status word is a 
16-bit register divided into fields as shown in Figure 
6. The busy bit (bit 15) indicates whether the NEU is 
either executing an instruction or has an interrupt 
request pending (B = 1), or is idle (B = 0). Several 
instructions which store and manipulate the status 
word are executed exclusively by the CU, and these 
do not set the busy bit themselves. 

3-182 205835-003 



8087/8087-2/8087-1 

I B 1 c, .1 TOP I C, 1 c, 1 C·I'R 1 X 1 PE I UE 1 OE 1 ZE 1 DEl'E J 

111IR IS set If any unmasked exception bit IS set, cleared otherwise 

(2)8ee Table 3 tor condition code Int,erpretatlOn 

(3)Top Values 
000" Register 0 IS Top of Stack 
001 " Register ~ IS Top of Stack 

111 = Register 7 IS Top of Slack 

l EXCEPTION FLAGS (1 = EXCEPTION HAS OCCURRED) 

INVALID OPERATION 

DENORMALIZED OPERAND 

ZERO DIVIDE 

OVERFLOW 

UNDERFLOW 

PRECISION 

(RESERVED) 

INTERRUPT REQUEST(l) 

CONDITION CODE(2) 

TOP OF STACK POINTER(3) 

NEU BUSY 

Figure 6. 8087 Status Word 

The four numeric condition code bits (CO-C3) are similar 
to flags in a CPU: various instructions update these bits 
to reflect the outcome of 8087 operations. The effect of 
these instructions on the condition code bits. is sum­
marized in Table 4. 

Bits 14-12 of the status word point to the 8087 regis­
ter that is the cu~rent top-of-stack (TOP) as 
described above. 

Bit 7 is the interrupt request bit. This bit is set if any 
unmasked exception bit is set and cleared other­
wise. 

Bits 5-0 are set to indicate that the NEU has 
detected an exception while executing an instruc­
tion. 

Tag Word 

The tag word marks the content of each register as 
shown in Figure 7. The principal function of the tag 
word is to optimize the 8087's performance. The tag 

word can be used, however, to interpret the contents 
of 8087 registers. 

Instruction and Data Pointers 

The instruction and data pointers (see Figure 8) are 
provided for user-written error handlers. Whenever 
the 8087 executes an NEU instruction, the CU saves 
the instruction address, the operand address (if 
present) and the instruction opcode. 8087 instruc­
tions can store this data into memory. 

3-183 

TAG VALUES 
00 = VAllO 
01 = ZERO 
10 " SPECIAL 
11 = EMPTY 

Figure 7. 8087 Tag Word 

205835-003 



8087/8087-2/8087-1 

Table 4a. '-Condition Code Interpretation 

Instruction 
C:3 C:! Type 

Compare, Test 0 0 
0 0 
1 0 
1 1 

Remainder 01 0 

U 1 

Examine 0 0 
0 

i 
0 

0 0 
0 0 
0 1 
0 1 
0 1 
0 1 
1 0 
'1 0 
1 0 
1 0 
1 1 
1 1 
1 1 
1 1 

NOTES: 
1. ST = Top of stack 
2. X = value IS not affected by Instruction 
3. U = value is undefined following instruction 
4. Qn = Quotient bit n 

Table 4b. Condition Code bterpretation after 

FPREM Instruction As a Function of 

Dividend Value 

Dividend Range Q2 Ql ,Qa 

Dividend < 2 • Modulus 
C3' C1' 00 

Dividend < 4 • Modulus C3' 0, 00 
Dividend;;. 4 • Modulus O2 0, 00 

NOTE: 

Cl 

X 
X 
X 
X 

00 

U 

0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

1. Previous value of indicated bit, not affected by FPREM 
instruction execution. ' 

3-184 

Co 

0 
1 
0 
1 

02 

U 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

15 

Interpretation 

ST > Source or 0 (FTST) 
ST < Source or 0 (FTST) 
ST = Source or 0 (FTST) 
ST is not comparable 

Complete reduction with 
three low bits of quotient 
(See Table 4b) 
Incomplete Reduction 

Valid, positive unnormalized 
Invalid, positive, exponent =0 
Valid, negative, un normalized 
Invalid, negative, exponent =0 
Valid, positive, normalized 
Infinity, positive 
Valid, negative, normalized 
Infinity, negative 
Zero, positive 
Empty 
Zero, negative 
Empty 
Invalid, positive, exponent = 0 
Empty 
Invalid, negative, exponent = 0 
Empty 

CONTROL WORD 

STATUS WORD 

TAG WORD 

INSTRUCTION POINTER (15-0) 

MEMORY 
OFFSET 

+0 

+2 

+4 

+6 

INSTRUCTION i)1 I INSTRUCTION 
POINTER (19-16) 0 OPCODE (10-0) +8 

DATA POINTER (15-0) +10 

DATA POINTER'I 
(19-16) 0 +12 

15 1211 

Flgure8. 8087 Instruction and Data Pointer 
Image in Memory 

205835-003 

\ 



inter 8087/8087-2/8087-1 

Control Word 

The 8087 provides several processing options which 
are selected by loading a word from memory into the 
control word. Figure 9 shows the format and encod­
ing of the fields in the control word. 

The low order byte of this control word configures 
8087 interrupts and e?<ception masking. Bits 5-0 of 
the control word contain individual masks for each 
of the six exceptions that the 8087 recognizes and 
bit 7 contains a general mask bit for all 8087 in­
terrupts. The high order byte of the control word 
configures the 8087 operating mode including 
precision, rounding, and infinity controls. The preci­
sion control bits (bits 9-8) can be used to set the 
8087 internal operating precision at less than the 
default of temporary real precision. This can be use­
ful in providing compatibility with earlier generation 
arithmetic processors of smaller precision than the 
8087. The rounding control bits (bits 11-10) provide 
for directed rounding and true chop as well as the 
unbiased round to nearest mode specified in the 
proposed IEEE standard. Control over closure of the 
number space at infinity is also provided (either 
affine closure, ±oo, or projective closure, 00, is treated 
as unsigned, may be specified). 

15 

Exception Handling 

The 8087 detects six different exception conditions 
that can occur during instruction execution. Any or 
all exceptions will cause an interrupt if unmasked 
and interrupts are enabled. 

If interrupts are disabled the 8087 will simply con­
tinue execution regardless of whether the host 
clears the exception. If a specific exception class is 
masked and that exception occurs, however, the 
8087 will post the exception in the status register 
and perform an on-chip default exception handling 
procedure, thereby allowing processing to continue. 
The exceptions that the 8087 detects are the 
following: 

1. INVALID OPERATION: Stack overflow, stack un­
derflow, indeterminate form (0/0, 00- 00, etc.) or 
the use of a Non-Number (NAN) as an operand. 
An exponent value is reserved and any bit pattern 
with this value in the exponent field is termed a 
Non-Number and causes this exception. If this 
exception is masked, the,808Ts default response 
is to generate a specific NAN called INDEFINITE, 
or to propagate already existing NANs as the cal­
culation resu It. 

I xxx Ilcl RC I PC I M I X IPMluMloMlzMloMIIM I 

!1JPreCISlon Control 
00= 24 bits 
01 = Reserved 
10= 53 bItS 
11:; 64 bits 

, 

(2lRoundmg Control 
00 ;; Round to Nearest or Even 
01 = Round Down (toward - .. ) 
10 = Round Up (toward + CI) 
11 = Chop (truncate toward zero) 

I 

Figure 9. 8087 Control Word 

3-185 

EXCEPTION MASKS (1 = EXCEPTION IS MASKED) 

INVALID OPERATION 

OENORMALIZEO OPERAND 

ZERO DIVIDE 

OVERFLOW 

UNDERFLOW 

PRECISION 

(RESERVED) 

INTERRUPT MASK (1 ~ INTERRUPTS ARE MASKED) 

PRECISION CONTROL(1) 

ROUNDING CONTROL'" 

INFINIT't CONTROL (0 ~, PROJECTIVE, 1 ~ AFFINE) 

(RESERVED) 

205835-003 



80871~087-2/8087-1 

2. OVERFLOW: The result is too large in magnitude 
to fit the specified format. The 8087 will generate 
an encoding for infinity if this exception is 
masked. 

3. ZERO DIVISOR: The divisor is zero while the divi~ 
dend is a non-infinite, non-zero number. Again, 
the 8087 will generate an encoding for infinity if ' 
this exception is masked. 

. . 
4. UNDERFLOW: The result is non-zero but too 

small in magnitude to fit in the specified format. If 
this exception is masked the 8087 will 
de normalize (shift right) the fraction until the ex-

ponent is in range. This process is called gradual 
underflow. 

5. DENORMALIZED OPERAND: At least one of the 
operands or the result is denormalized; it has the 
smallest exponent but a non-zero significand. 
Normal processing continues if this exception is 
masked off. 

6. INEXACT RESULT: If the true result is notexactly 
representable in the specified format, the result 
is rounded according to the rounding mode, and 
this flag is set. If this exception is masked, pro­
cessing will simply continue. 

3-186 205835-003 



inter 8087/8087-2/8087-1 

ABSOLUTE MAXIMUM RATINGS* 'NOTICE: Stresses above those listed under Absolute 

Ambient Temperature Under Bias ............ O"C to 70"C 
Storage Temperature ................. -65°C to +150"C 
Voltage on Any Pin with 

Respect to Ground .................... -1.0V to + 7V 
Power Dissipation ............................ 3.0 Watt 

Maximum Ratings may cause permanent damage to the 
device. This is a stress ratmg only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this 
specification is not implied. Exposure to absolute maxi­
mum rating conditions for extended periods may affect 
device reliability. 

D.C. CHARACTERISTICS (TA = O°C to 70"C. VCC =+5V ±5%) 

Symbol Parameter Min. Max. Units Test Conditions 

Vil Input Low Voltage -0.5 +0.8 V 

VIH Input High Voltage 2.0 VCC +0.5 V 

VOL Output Low Voltage 0.45 V IOl = 2.0 mA 

VOH Output High Voltage 2.4 V IOH = -400/loA 

ICC Power Supply Current 475 mA TA = 25°C 

III Input Leakage Current ±10 /loA OV ... VIN'" VCC 

IlO Output Leakage Current ±10 /loA 0.45V ... VOUT ... VCC 

VCl Clock Input Low Voltage -0.5 +0.6 V 

VCH Clock Input High Voltage 3.9 VCC +- 1.0 V 

CIN Capacitance of Inputs 10 pF fc = 1 MHz 

CIO Capacitance of 1/0 Buffer 
(AD0-15. A16-A19. BHE. 52-SO. 15 pF fc = 1 MHz 
RQ/GT) and CLK 

COUT Capacitance of Outputs 
BUSY,INT 10 pF fc = 1 MHz 

A.C. CHARACTERISTICS (TA = O"C to 70"C. VCC = +5V ±5%) 

TIMING REQUIREMENTS 8087 8087-2 8087-1 
(Preliminary: See Note 7) 

Symbol Parameter Min. Max. Min. Max. Min. Max. Units Test Conditions 
TClCl ClK Cycle Period 200 500 125 500 100 500 ns 

TClCH ClK low TIme 118 68 53 ns 

TCHCl ClK HIgh Time 69 44 39 ns 

TCH1CH2 ClK RIse Time 10 - 10 15 ns Flom 1 OV to 3.5V 

TCl2Cl2 ClK Fall Time 10 10 15 ns From 3.5V to 1.0V 

TDVCl Data In Setup Time 30 20 15 ns 

TClDX Data in Hold TIme 10 10 10 ns 

TRYHCH READY Setup Time 118 68 53 ns 

TCHRYX READY Hold Time 30 20 5 ns 

TRYlCl READY Inactive to ClK" - 8 - 8 -10 ns 

TGVCH RO/GT Setup Time ~O 15 8 ns 

TCHGX RO/GT Hold Time 40 30 20 ns 

TOVCl OS0-1 Setup TIme 30 30 10 ns 

TClOX OSO-1 Hold Time 10 10 5 ns 

TSACH Status ActIve Setup Time 30 30 30 ns 

TSNCl Status Inactive Setup Time 30 30 30 ns 

TILIH Input Rise TIme (Except ClK) 20 20· 20 ns From 0.8V to 2.0V 

TIHll Input Fall TIme (Except ClK) 12 12 15 ns From 2 OV to 0.8V 

"See Note 6 3-187 205835-003 



inter 8087/8087-2/8087-1 

A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES 8087 8087-2 8087-1 
(Preliminary: See Note 7) 

Symbol Parameter Min. Max. Min. Max. Min. Max. Units Test Conditions 

TCLML Command Active Delay CL = 20 -100pF 
(See Notes 1,2) 10/0 35170 10/0 35/70 10/0 35170 ns for all 8087 Outputs 

TCLMH Command Inactive Delay (in addition to 8087 

(See Notes 1,2) 10/0 35/55 10/0 35/55 10/0 35170 ns self-load) 

TRYHSH Ready Active to Status Passive 
(See Note 5) 110 65 45 ns 

TCHSV' Status ActivlJ Delay 10 110 10 60 10 45 ns 

TCLSH Status Inactive Delay 10 130 10 70 10 55 ns 

TCLAV Address Valid Delay 10 110 10 60 10 55 ns 

TCLAX Address Hold Time 10 10 10 ns 

TCLAZ Address Float Delay TCLAX 80 TCLAX 50 TCLAX 45 ns 

TSVLH Status Valid to ALE High 
(See Notes 1,2) 15/30 15/30 15/30 ns 

TCLLH CLK Low to ALE Valid 
(See Notes 1,2) 15/30 15/30 15/30 ns 

TCHLL ALE Inactive Delay 
(See Notes 1,2) 15/30 15/30 15/30 ns 

TCLDV Data Valid Delay 10 110 10 60 10 50 ns 

'rCHDX Data Hold Time 10 10 10 45 ns 

TCVNV Control Active Delay 
(See Notes 1,3) 5 45 5 45 5 45 ns 

TCVNX Control I n'active Delay 
(See Notes 1,3) 10 45 10 45 10 45 ns 

TCHBV BUSY and INT Valid Delay 10 150 10 85 10 65 ns 

TCHDTL Direction Control Active Delay 
(See Notes 1,3) 50 50 50 . ns 

TCHDTH Direction Control Inactive 
Delay (See Notes 1,3) 30 30 30 ns 

TSVDTV STATUS to DT/R Delay 
(See Notes 1,4) 0 30 0 30 0 30 ns 

TCLDTV DT/R Active Delay 
(See Notes 1,4) 0 55 0 55 0 55 ns 

TCHDNV DEN Active Delay 
(See Notes 1,4) 0 55 0 55 0 55 ns 

TCHDNX DEN Inactive Delay 
(See Notes 1,4) 5 55 5 55 5 55 ns 

TCLGL RQ/GT Active Delay 0 85 0 50 0 41 ns CL =40pF (in addition 

TCLGH RQ/GT Inactive Delay 0 85 0 50 0 45 ns to 8087 self-load) 

TOLOH Output Rise Time 20 20 15 ns From 0.8V to 2.0V 

TOHOL Output Fall Time 12 12 12 ns From 2.0V to 0.8V 

NOTES: 
1. Signal at 8284A, 8288, or 82188 shown for reference only. 
2. 8288 timing/82188 timing 
3. 8288 timing 
4. 82188 timing 
5. Applies only to T 3 and wait states 
6, Applies only to T 2 state (8ns into T 3) 
7. IMPORTANT SYSTEM CONSIDERATION: Some 8087-1 timing parameters are constrained relative to the corresponding 

8086-1 specifications. Therefore, 801l6-1 systems incorporating the 8087-1 should be designed with the 8087-1 specifications. 

3-188 205835-003 



8087/8087-2/8087-1 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT/OUTPUT 

2.4 ~5_TEST POINTS -'x= 
0.45 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1" AND 0 45V FOR 
A lOGIC '0" 

3-189 

DEVICE 
UNDER 

IJCL~100PF TEST 

CL INCLUDES JIG CAPACITANCE 

205835-003 



8087/8087-2/8087-1 

WAVEFORMS 

MASTER MODE (with 8288 references) 

ALE (8288 OUTPUT) 
(SEE NOTES 4,6) 

READY (8087 INPUT) { 
(SEE NOTE 2) 

READ CYCLE 

8288 OUTPUTS {MORT Ic

R 

(SEE NOTES 6,7) 0 

DEN 

T, T, 

_____ +-____ TC_L_M_L--~r_"Ir-
\ 

TCVNV-OO II-­

-~----+----'~ 

T, 

TCLDX 

WRITE CYCLE TCLAV !:=j TCLDV t:I __ TCHOX 

'V A -Au yr---r--O-A-T-A-O-U-T-r----t---t"-I 

8288 OUTPUTS 
(SEE NOTES 6, 7) 

NOTES: 

{AM~:: 
MWTC 

A " A LOAT 

TCVNV .... ~ TCVNX I::=j (SE1E NOTE 3) 

l-
TCLML .... TCLMHH 

11,......---1\ 
TCLML I::l 

TCLMH Dr------

1 ALL SIGNALS SWITCH BETWEEN VOL AND VOH UNLESS OTHERWISE SPECIFIED 

2 READY IS SAMPLED NEAR THE END OFT2, T3 AND TW TO DETERMINE IF TW MACHINE STATES ARE TO BE INSERTED. 

3 THE LOCAL BUS FLOATS ONLY IF THE BOB7 IS RETURNING CONTROL TO THE BOBS/BOBB 
4 ALE RISES AT LATER OF (TSVLH, TCLLH) 

5 STATUS INACTIVE IN STATE JUST PRIOR TO T4 

S SIGNALS AT B2B4A OR B2BB ARE SHOWN FOR REFERENCE ONLY. 

7 TIHE ISSUANCE OF B2BB COMMAND AND CONTROL SIGNALS (MRDC, MWTC, AMWC AND DEN) LAGS THE ACTIVE HIGH B2BB CEN 

B ALL TIMING MEASUREMENTS ARE MADE AT 1 5V UNLESS OTIHERWlSE NOTED 

3-190 205835-003 



8087/8087-2/8087-1 

WAVEFORMS (Continued) 

MASTER MODE (with 82188 references) 

CLK 

S;.s,.S;; 

ALE (82188 OUTPUT) 
(SEE NOTES 4,6) 

READY (8087 INPUT) { 
(SEE NOTE 2) 

READ CYCLE 
AD15-ADo 

~:c 
v 

VC 

TCLAV 

TSVLH'" 
TCLLH .... 

TCLAV-

TS VDTV --<0 

82188 OUTPUTS 
(SEE NOTES 6,7) 

{(SE~;rg'TE :C 
RD 

DEN 

LDTV _____ 

WRITE CYCLE 

T, T, 

~ • --.-r;k1CH2 .... 1++1 i-- TCL2CL1 
TCLCL 

Vl:--r' . ~ r--1 
~I--~CHCL I _ TCLSH _____ TCLC~~ 

Wi'i 'IJ/(SEE NOTE 5) \ 

:j ~DV ,I~ -----
TCLAX .... - TCHDX 

I BHE, An-A'I X S7-$3 '\I 
FLOAT 

c=- t:::iTCHLL 
(SEE NOTE 3) 

,..--, " 
t 

I .---
TRYLCL 

~ ---
TRrSH ... --- ..... TCHRYX 

'f 

,t:. .... 
fTLAZ=< 

TRYHCH __ 
t4--TDVCL TCLOX 

I A15-Ao DATA IN 
'\I 

FLOAT FLOAT 

I:: 1\ 

* I - T TLML - ··~TCLMH 

~HDNX -..I ~TCHDNV --,- J(:: 

TCLAV =l TCLDV =I - I_T CHDX 

AD15-ADo Y Au-Ao DATA OUT IFLOAT 

TCHDNV~ l- (SEE NOTE 
I - !::..TCHDNX 

J 82188 OUTPUTS 
(SEE NOTES 6,7) {: -- ""'-TCLML -~ __ r= TCLMH 

NOTES: 

ALL SIGNALS SWITCH BETWEEN VOL AND VDH UNLESS OTHERWISE SPECIFIED. 

READY IS SAMPLED NEAR THE END OF T2, T3 AND Tw TO DETERMINE (F T w MACHINE STATES ARE TO BE INSERTED 

THE LOCAL BUS FLOATS ONLY IF THE 8087 IS RETURNING CONTROL TO THE 80186/80188 

ALE RISES AT LATER OF (TSVLH, TCLLH) 

STATUS INACTIVE IN STATE JUST PRIOR TO T. 

SIGNALS AT 8284A OR 82188 ARE SHOWN FOR REFERENCE ONLY 

3) 

7 THE ISSUANCE OF 8288 COMMAND AND CONTROL SIGNALS (MRDC, MWTC, AMWC, AND DEN) LAGS THE ACTIVE HIGH 8288 CEN 

8 ALL TIMING MEASUREMENTS ARE MADE AT 1 SV UNLESS OTHERWISE NOTED 

9 DT/R BECOMES VALID AT THE LATER OF (TSVDTV, TCLDTV) 

3-191 205835-003 



WAVEFORMS (Continued) 

PASSIVE MODE 

ClK 

READY I IN~ 

RESET TIMING 

VCC 

ClK 

RESET 

REQUEST/GRANT 0 TIMING 

ClK 

Ra/GTo 

AD'I-ADo 
A,,tS,-"-t.lSs 
8,.1,.1, 
i!RE!S7 

_r-~~g:~ -V 

8087/8087-2/8087-1 

~4 ClK CYCLES 

CPU 

1-----.,20 ClKCYClES----i 

8087 TRACKS 
CPU ACTIVITY 

8087 READY TO 
EXECUTE INSTRUCTIONS 

NOTE THE CPU PROVIDES ACTIVE PUllUP OF ROiGTo. SEE TCLGH SPEC 

3-192 . 205835-003 



inter 8087/8087-2/8087-1 

WAVEFORMS (Continue~) 

REQUEST/GRANT, TIMING 

ClK 

AD,s-AD o 

A'9/S6-A16/S3 
82.51'50 

BHE/S7 

¥_TCl~l _TGVCH TClGl 
TCHGX 

RQ 

_________________ 8_~_7 ____ ~: ~:----------- ALTERNATE MASTER 

(SEE NOTE) 

NOTE ALTERNATE MASTER MAY NOT DRIVE THE BUSES OUTSIDE OF THE REGION 
SHOWN WITHOUT RISKING sus CONTENTION 

BUSY AND INTERRUPT TIMING 

ClK ~~-----------tf 
BUSY, INT -------------

TCHBV -------------

3-193 

8087 

205835-003 



Data Transfer 

FLO = LOAD 

IntegerlReal Memory to ST(O) 

Long Intege" Memory to ST(O) 

Temporary Real Memory to 
ST(O) r 

BCD Memory to ST(O) 

ST(,) to ST(O) 

F~T = STORE 

ST(O) to IntegerlReal Memory 

ST(O) to ST(,) -

FSTP = STORE AND POP 

ST(O) to IntegerlReal Memory 

ST(O) to Long Integer Memory 

ST(O) to Temporary Real 
Memory 

ST(O) to BCD Memory 

ST(O) to ST(,) 

FXCH = Exchange ST(,) and 
ST(O) 

Comparison 
FCOM = Compare 

IntegerlReal Memory to ST(O) 

ST(,) to ST (0) i 

FCOMP = Compare and Pop 

IntegerlReal Memory to ST(O) 

ST(,) to ST(O) 

FCOMPP = Compare ST(I) to 
ST(O) and Pop Tw,ce 

FTST = Test ST(O) 

FXAM = Exam,ne ST(O) 

MnemoniCS © Intel 1982 

8087/8087-2/8087-1 

~ble 5. 8087 Extensions to the 86/186 Instructions Sets 

1 Optional 
8,16BII 

Displacemenl 

1 MF 

I,ESCAPE MF 1 I MOD 0 0 0 RIM [ 

LI E_S_C_AP_E_l_l_l ---,1l...-M_O_D_l_0_1_R_/M-l[ = = DISP 

I ESCAPE 0 1 1 I MOD 1 0 1 RIM I = = !>I~P=, =: 
~----------~------------~-

:1 E=S=C=A=P=E==I==I==I==I==M=O=D==l==O==O===RI=M:=[ ~ ~ ~I~P ~ J 
I ESCAPE 0 0 1 1 

1 1 o 0 0 ST(,) 1 

1 ESCAPE MF 1 1 MOD 0 1 0 RIM I~ ~ ~ ~I~P ~ -: 

I ESCAPE 1 0 1 1 1 1 0 ,1 0 ST(,) 1 

1 ESCAPE MF 1 1 MOD 0 1 1 RIM [ ~ ~ ~I~P ~ J 
I ESCAPE 1 1 1 I MOD 1 1 1 RIM 1- ~ ~ ~I~P ~ : 

1 ESCAPE 0 1 l' I MOD 1 1 1 RIM [ ~ ~ ~I~P ~ ~ 

1 ESCAPE 1 1 1 1 MOD 1 1 0 RIM 1- ~ ~ '~I~ ~ T 

1 ESCAPE 1 0 1 1 1 l' 0 1 1 ST(,) 1 

I ESCAPE 0 0 1 I 1 1 0 0 1 ST(,) I 

I ESCAPE MF 0 I MOD 0 1 0 RIM 1_ ~ ~ ~I~ ~ J 
I ESCAPE 0 0 0 I 1 1 0 1 0 ST(,) 1 

Fk~s;;C,;,:A,;,:PE~M~F ~0~1 =M~O~D~O~I~I==R~/M====jI_ ~I~P = =: 
ESCAPE 0 0 0 I 1 1 0 1 1 ST(,) 

ESCAPE 1 1 0 I 1 1 0 1 1 0 0 1 

ES;CAPE }O 0 1 I 1 1 1,0 {) 1 0 0 

ESCAPE 0 0 1 I 1 1 1 0 0 1 0 1 

3-194 

Clock Counl Range 
32 Bit 32 Bit 64 Bit 
Real Inleger Real 

00 01 10 

38-56 52-60 40-60 
+Ee- +EA +EA 

60-68 +EA 

53-65 + EA 

290-310 +EA 

17-22 

16 Bil 
Inleger 

11 

46-54 
+EA 

84-90 82-92 96-104 80-90 
+EA +EA +EA +EA 

15-22 

86-92 84-94 98-106 82-92 
+EA +EA +ElA +EA ' 

94-105 +EA 

52-58 +EA 

520-540 +EA 

17-24 

10-15 

60-70 78-91 65-75 
+EA +EA +EA 

40-50 

63-73 80-93 
+EA +EA 

45-52 

45-55 

38-48 

12-23 

" 

67-77 
+EA 

72-86 
+EA 

74-88 
+EA 

205835-003 



inter 8087/8087·2/8087·1 

Table 5. 8087 Extensions to the 86/186 Instruction Sets (cant.) 

I Optional Clock Count Range 
8,16 Bit 32 Bit 32 Bit 64 Bit 16 Bit 

Constants Displacement Real Integer Real Integer 

[ MF ~ 00 01 10 11 

FLOZ ~ LOAD + 00 Into ST(O) IESCAPE 0 oYJ, 1 1 0 1 12 0:] 11-17 

FLOl ~ LOAD + 1 0 Into ST(O) I ESCAPE 0 0 1 I ' , -'-0--'-0001 15-21 

FLOPI ~ LOAD 1f mto ST(O) I ESCAPE 0 0 , I , , 1 0 , 0 , , I '6-22 

FLOL2T ~ LOAD IOg2 10 mto I ESCAPE 0 0 , I 1 , , 0 , 0 0 , I 16-22 
ST(O) 

FLOL2E ~ LOAD log2 e mto I ESCAPE ~---~Ol 15-21 
ST(O) 

0~11'0101!l 

FLOLG2 ~ LOAD 1091O 2 Into 
ST(O) I ESCAPE 0 0 1 I 1 1 1 0 1 1 0 0 I 18-24 

FLOLN2 ~ LOAD log.2 Into I ESCAPE 0 0 1 I 1 1 1 0 , 1 ~ 17-23 
ST(O) 

Arithmetic 
FAOO ~ Addition 

I I J~ 
- - ,- -

I 
IntegeriReal Memory With ST(O) ESCAPE MF 0 MOD 0 0 0 RiM DISP 90-120 108-143 95-125 102-137 

- - - -' +EA +EA +EA +EA 

ST(I) and ST(O) I ESCAPE d P 0 I 1 1 0 0 0 ST(I) ] 70-100 (Note 1) 

FSUB ~ Subtraction 

I I L - - - -, 
IntegerlReal Memory With ST(O) ESCAPE MF 0 MOD 1 0 R RIM DISi' 90-120 108-143 95-125 102-137 - - _. .J +EA + EA +EA +EA 

ST(I) and ST(O) I ESCAPE d P 0 I 1 1 1 0 R RIM I 70-100 (Note 1) 

FMUL ~ Multiplication - - - - -
IntegerlReal Memory With ST(O) I ESCAPE MF 0 I MOD 0 0 1 RIM I DISP I 110-125 130-144 112-168 124-138 

- - - -' +EA +EA +EA +EA 

ST(I) and ST(O) I ESCAPE d P 0 I 1 1 0 0 1 RIM I 90-145 (Note 1) 

FDIV = DIVISion - - - - -
IntegerlReal Memory With ST(O) I ESCAPE MF 0 I MOD 1 1 R RiM I DISP I 215-225 230-243 220-230 224-238 

- - - - -' +EA + EA +EA + EA 

ST(I) and ST(O) I ESCAPE d P 0 I 1 1 1 1 R RIM I 193-203 (Note 1) 

FSQRT ~ Square Root of ST(O) I ESCAPE 0 0 1 I 1 1 1 1 1 0 1 0 I 180-186 

FSCALE ~ Scale ST(O) by ST(l) I ESCAPE 0 0 1 I 1 1 1 1 1 1 0 1 I 32-38 

FPREM ~ Partial Remainder of I ESCAPE 0 0 1 I 1 1 1 1 1 0 0 0 I 15-190 
ST(O) -ST(l) 

FRNOINT ~ Round ST(O) to I ESCAPE 0 0 1 I 1 1 1 1 1 1 0 0 I 16-50 
Integer 

NOTE: 
1. If P= 1 then add 5 clocks. 

3-195 205835-003 



FXTRACT ~ Extract 
Components of St(O) 

FABS ~ Absolute Value of 
ST(O) 

FCHS ~ Change Sign of ST(O) 

Transcendental 
FPTAN ~ Partial Tangent of 
ST(O) 

FPATAN ~ Partial Arctangent 
of ST(O) -ST(l) 

F2XMl ~ 2STlO)_1 

FYL2X ~ Sl(l)· Log2 
ISl(O)1 

'FYL2XPl ~ Sl(l)· Log2 
[ST(O) +lJ 

Processor Control 

FINlT ~' Initialized 8087 

FENI = Enable Interrupts 

FOISI = Disable Interrupts 

FLDCW ~ Load Control Word 

FSTCW ~ Store Control Word 

FSTSW ~ Store Status Word 

FCLEX ~ Clear Exceptions 

FSTENV ~ Store Environment 

FLDENV ~ Load Environment 

FSAVE ~ Save State 

FRSTOR ~ Restore State 

FINCSTP ~ Increment Stack 
POinter 

FDECSTP ~ Decrement Stack 
POinter 

8087/8087-2/8087-1 

Thble 5. 8087 Extensions to the 86/186 Instructions Sets (cont.) 

ESCAPE 0 0 1 

ESCAPE 0 0 

ESCAPE o 

ESCAPE 0 0 1 

1 1 1 1 0 1 0 0 

o 0 0 0 1 

000 

1 1 1 1 0 0 l' 0 

Optional 
8.16 Bit 

Displacement 

____ L-______________ ~ 

ESCAPE 0 0 o 0 

ESCAPE 0 0 ,1 o 0 o 

ESCAPE o o o 

ESCAPE o o 0 

ESCAPE 0 o o 

ESCAPE o 0 0 0 

ESCAPE 0 000 

ESCAPE o MOD o RIM DISP : 

'-E_S_C_A_P_E_O_O __ '-M_O_D _____ RI_M~ ~ ~ ~I~~ ~ ~: 

'-E_SC_A_P_E ___ O_-'-_M_O_D _____ R_IM __ '--'I ~ ~ ~I~~ ~ ~ 
ESCAPE 0 1 1 o 0 0 1 0 

ESCAPE 0 0 MOD o RIM --T -DiS;; - -: 

ESCAPE 0 0 MOD o 0 RIM , __ ?I~~ _ ~ 

ESCAPE o MOD o RIM DISP : 

ESCAPE o MOD o 0 RIM 

ESCAPE 0 o 

ESCAPE 0 o o 

3-196 

Clock Coun! Range 

27-55 

10-17 

10-17 

30-540 

250-800 

310-630 

900-1100 

700-1000 

2-8 

2-8 

2-8 

7-14 + EA 

12-18 + EA 

12-18 +EA 

2-8 

40-50 + EA 

35-45 +EA 

197-207+EA 

197 -207 + EA 

6-12 

6-12 

205835-003 



8087/8087-2/8087-1 

1iIbie 5. 8081 Extensions to the 861186 Instructions Sets (conl) 

FFREE ~ Free ST(I) ESCAPE 1 0 1 I 1 1 0 0 0 ST(I) 

FHOP ~ No Operation ESCAPE0011 11 01000-y] 

FWAIT = CPU WaH for 8087 o 0 1 o 1 1 I 
on = number of limes CPU examines TEST line before 8087 lowers BUSY 

NOTES: 
1. If mod=OO then OISP=O', disp-Iow and disp-high are absent 

if mod=01 then OISP=disp-low sign-extended to 16-bits, disp-high is absent 
if mod=10 then OISP=disp-high; disp-Iow 
if mod = 11 then rim is treated as an ST(i) field 

2. if rim =000 then EA=(BX) + (SI) +OISP 
if r/m=001 then EA=(BX) + (01) +OISP 
if r/m=010 then EA=(BP) + (SI) +OISP 
If r/m=011 then EA=(BP) + (01) +OISP 
If r/m=100 then EA=(SI) + OISP 
if r/m=101 then EA=(OI) + OISP 
if r/m=110 then EA=(BP) + OISP 
if r/m=111 then EA=(BX) + OISP 

"except if mod=OOO and r/m=110 then EA =disp-high; disp-Iow. 
3. MF= Memory Format 

00-32-bit Real 
01-32-bit Integer 
10-64-bit Real 
11-16-bit Integer 

4. ST(O)= Current stack top 
ST(i) ith register below stack top 

5. d= Destination 
O-Destination is ST(O) 
1-Destination is ST(i) 

6 P= Pop 
O-No pop 
1-PopST(O) 

7. R= Reverse: When d=1 reverse the sense of R 
O-Destination (op) Source 
1-Source (op) Destination 

8. For FSQRT: -0 "" ST(O) "" +:x: 
For FSCALE: _2'5 "" ST(1) < +2'5 and ST(1) integer 

For F2XM1: 0 "" ST(O) "" 2-1 
For FYL2X: 0 < ST(O) <:x: 

-oc < ST(1) < +:x: 
For FYL2XP1: 0"" IST(O)I < (2 -V2)/2 

-oc < ST(1) < oc 
For FPTAN: 0"" ST(O) ""1T14 
For FPATAN: 0"" ST(O) < ST(1) < +oc 

3-197 

Clock Count Range 

9-16 

10-16 

3+5n' 

205835-003 



( 80130/80130-2 
. iAPX 86/30, 88/30, 186/30, 188/30 

iRMX 86 OPERATING SYSTEM PROCESSORS 

• High-Performance 2-Chip Data 
Processors Containing Operating 
System Primitives. 

• Standard iAPX 86/10, 8811 0 Instruction 
Set Plus Task Management, Interrupt 
Management, Message Passing, 
Synchronization and Memory 
Allocation Primitives 

• Fully Extendable To and Compatible With 
iRMX®86 

• Supports Five Operating System Data 

'lYpes: Jobs, Thsks, Segments, 
Mailboxes, Regions 

• 35 Operating System Primitives 
• Built-In Operating System Timers and 

Interrupt Control Logic Expandable 
From 8 to 57 Interrupts 

• 8086/80150/80150-218088/80186/80188 
Compatible At Up To 8 MHz Without 
Wait States 

• MULTIBUS® System Compatible Interface 

The Intel iAPX 86/30 and iAPX 88/30 are two-chip microprocessors offering gen~ral-purpose CPU (8086) 
instructions combined with real-time operating system support. They provide a foundation for multiprogram­
ming and multitasking applications. The iAPX 86/30 consists of an iAPX 86/10 (16-bit 8086 CPU)' and an 
Operating System Firmware (OSF) component (80130).'The 88/30 consists of the OSF and an iAPX 88/10 (8-bit 
8088 CPU). (80186 or 80188 CPUs may be used in place of the 8086 or 8088.) 

Both components of the 86/30 and 88/30 are implemented in N-channel, depletion-load, silicon-gate techno 1-
. ogy (HMOS), and are housed in 40-pin packages. The 86/30 and 88/30 provide all the functions of the iAPX86/10, 
88/10 processors plus 35 operating system primitives, hardware support for eight interrupts, a system timer, a 
delay timer and a baud rate generator. 

8284A 
CLOCK 
DRIVER 

RDY 

INTERRUPT 

BAUD RATE 
TIMER 

80130 

DELAY 
TIMER 

BUS 
INTERFACE 

CS,LlR 1-'-------' 

INTERRUPT 
REQUESTS 

_J~ 
SYSTEM 
TIMER 

IAPX 9130, 88/30 

PROGRAM 
MEMORY 

Figure 1. iAPX 86/30, 88/30 Block Diagram 

DATA 
MEMORY 

Intel Corporabon Assumes No Re.ponslbllty for the Use of Any CirCUitry Other Than Circuitry Embodied In an Intel Product No Other CirCUit Patent Licenses aye Implied 
©INTELCORPORATION,1981 . OCTOBER 1981 

210216-002 3-198 



( 

Symbol 

Vss 

A014 

AD13 

AD" 

AD11 

AD10 

AD. 

AD. 

AD7 

AD6 

ADS 

AD4 

AD3 

AD. 

AD' 

ADO 

MEMCS 

IOCS 

ClK 

Vss 

AD1S-ADo 

BHE/S7 

S2,Sl' So 

Type 

I/O 

I 

80130/80130·2 
iAPX 86/30, 88/30, 186/30, 188/30 

Vee Vss 

A015 (A'4) A014 

SHE (A'3) AD13 

IR7 (A'2) AD12 

IR6 (A11) AD11 

IRS (A'O) AD10 

IR4 (A9) AD. 

IR3 (AB) AD. 

IR. AD7 

IR' ADS 

IRO ADS 

INT AD4 

S. AD3 

51 AD. 

SO AD' 

ACK ADO 

LlR NMI 

SVSTlCK INTR 

DELAY ClK 

BAUD Vss 

Figure 2. iAPX 86/30, 88/30 Pin Configuration 

Table 1. 80130 Pin Description 

Name and Function 

Vee 

AD'S (A'S) 

A16/S3 

A17/S4 

A1B/S5 

A19/S6 

SHEiS7 (HIGH) 

MN/Mx 

Rii 

RO/GTO 

RO/GT1 

LOCK 

S2 

51 

050 

as, 

TEST 

READY 

RESET 

Address Data: These pins constitute the time multiplexed memory address (Tl) and 
data (T2' T3, TW, T4) bus. These lines are active HIGH. The address presented duringTl of 
a bus cycle will be latched internally and interpreted as an 80130 internal address if 
MEMCS or lacs is active for the invoked primitives. The 80130 pins float whenever it is 
not chip selected, and drive these pins onlyduringT2-T4 of a read cycle andTl of an INTA 
cycle. 

Bus High Enable: The 80130 uses the BHE signal from the processor to determine 
whether to respond with data on the upper or lower data pins, or both. The signal is active 
Law. BHE is latched by the 80130 on the trailing edge of ALE. It controls the80130 output 
data as shown. 

--
BHE AO 

0 0 Word on AD1S-ADo 
0 1 Upper byte on AD 1S-ADa 
1 0 Lower byte on AD7-ADO 
1 1 Upper byte on AD7-ADO 

Status: For the 80130, the status pins are used as inputs only. 80130 encoding follows: 

S2 Sl So 

0 0 0 INTA 
0 0 1 lORD 
0 1 0 IOWR 
0 1 1 Passive 
1 0 0 Instruction fetch 
1 0 1 MEMRD 
1 1 X Passive 

3-199 210216-002 



80130/80130·2 
iAPX 86/30, 88/30, 186/30, 188/30 

Table 1. 80130 Pin Description (Continued) 

Symbol Type Name and Function ( 

ClK I Clock: The system clock provides the basic timing for the processor and bus controller. 
It is asymmetric with a 33% duty cycle to provide optimized internal timing. The 80130 
uses the system clock as an input to the SYSTICK and BAUD timers and to syncllronize 
operation with the host CPU. 

INT 0 Interrupt: INT IS HIGH whenever a valid interrupt request is asserted. It is normally used 
to interrupt the CPU by connecting it to INTR. 

IRrlRo I Interrupt Requests: An Interrupt request can be generated by raising an IR input (lOW 
to HIGH) and holding it HIGH until it is acknowledged (Edge-Triggered Mode), or just by a 
HIGH level on an IR input (level-Triggered Mode). 

ACK 0 Acknowledge: This line is lOW whenever an 80130 resource is being accessed. It is also 
lOW dUring the first INTA cycle and second INTA cycle if the 80130 is supplying the 
interrupt vector infornlatlon ThiS signal can be used as a bus ready acknowledgement 
and/or bus transceiver control. 

MEMCS I Memory Chip Select: This input must be driven lOW when a kernel primitive is being 
fetched by the CPU. AD13-ADo are used to select the instruction. 

IOCS I Input/Output Chip Select: When this input is low, during an lORD or IOWR cycle, the 
801S0's kernel primitives are accessing the appropriate peripheral function as specified 
by the following table; 

BHE A3 A2 A1 Ao 

0 X X X X Passive 
X X X X 1 Passive 
X 0 1 X X Passive 
1 0 0 X 0 Interrupt Controller 
1 1 0 a a Systlck Timer 
1 1 a 1 0 Delay Counter 
1 1 1 0 0 Baud Rate Timer 
1 1 1 1 0 Timer Control 

LlR 0 local Bus Interrupt Request: This signal is lOW when the interrupt request is for a 
non-slave input or slave input programmed as being a local slave. 

Vee Power: Vee is the +5V supply pin. 

Vss Ground: Vss is the ground pin. 

SYSTICK 0 System Clock Tick: Timer 0 Output. Operating System Clock Reference. SYSTICK is 
normally wired to IR2 to implement operating system timing interrupt. 

DELAY 0 DELAY Timer: Output of timer 1. Reserved by Intel Corporation for future use. 

BAUD 0 Baud Rate Generator: 8254 Mode 3 compatible output. Output of 80130 Timer 2. 

FUNCTIONAL DESCRIPTION ment which constantly controls the telephone traffic 
in a multiphone office, file servers/disk subsystems 
controlling and coordinating multiple disks and mul­
tiple disk users, and transaction processing systems 
such as electronics funds transfer. 

The increased performance and memory space of 
iAPX 86/10 and 88/10 microprocessors have proven 
sufficient to handle most of today's Single-task or 
single-device control applications with performance 
to spare, and have led to the increased use of these 
microprocessors to control multiple tasks or devices 
in real-time. This trend has created a new challenge 
to designers-development of real-time, multitask­
ing application systems and software. Examples of 
such systems include control systems that monitor 
and react to external events in real-time, multifunc­
tion desktop and personal computers, PABX equip-

3-200 

The iAPX 86/30, 88/30 Operating System 
Processors 

The Intel iAPX 86/30, 88/30 Operating System Pro­
cessors (OSPs) were developed to help solve this 

210216-002 



8()130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

r----------------------------------~ 

I OPERATING SYSTEM UNIT I 
I I 
I 

00-7 I 
I I 
I r I 8 
I 

PROGRAMMABLE I INTERRUPT I 
I LOGIC I INTERRUPT INP UTS 

I I 
I I 
I I INTERRUPT OUT 

: CONTROL 

: 
STORE 

: ~ SYSTEM ~ SYSTEM 

TIMER 

: I 08-15 

i 
- I 

DelAY DElAY 

- TIMER 

: LE : I 
BAUD qATE BAUD RA 

: 
GENERATOR I 

I 
I I 

TE 

f--------------- ------ -- -------,-------1 
I I 
I k- I 
I --r-- CLOCK 

I 
I I I 3 ,. DATA 1'------- BUS ~ STATUS I BUFFER INTERFACE 

< Z. & AND I 4 

I ADDRESS CONTROL ~BUSCON 
ADDRESS; I LATCH 

TROL 

DATA BUS I ~ LOCAL 
I I INTERRU PT 
I CONTROL UNIT I (UFt) L __________________________________ ~ 

Figure 3. OSF Internal Block Diagram 

problem. Their goal IS to simplify the design of multi­
tasking application systems by providing a well­
defined, fully debugged set of operating system 
primitives implemented directly in the hardware, 
thereby removing the burden of designing multitask­
ing operating system primitives from the application 
programmer. 

Both the 86/30 and the 88/30 OSPs are two-chip sets 
consisting of a main processor, an 8086 or 8088 CPU, 
and the Intel 80130, Operating System Firmware 
component (OSF) (see Figure 1). The 80130 provides 
a set of multitasking kernel primitives, kernel control 
storage, and the additional support hardware, in­
cluding system timers and interrupt control, re­
quired by these primitives. From the application 
programmer's viewpoint, the OSF extends the base 
iAPX 86, 88 architecture by providing 35 operating 
system primitive instructions, and supporting five 
new system data types,' making the OSF a logical and 

easy-to-use architectural extension to iAPX 86, 88 
system designs. 

The OSP Approach 

The OSP system data types (SOTs) and primitive in­
structions allocate, manage and share low-level pro­
cessor resources in an efficient manner. For 
example, the OSP implements task context manage­
ment (managing a task state image consisting of 
both hardware register set and software control in­
formation) for either the basic 86110 context or the 
extended 86/20 (8086+8087) numerics context. The 
OSP manages the entire task state image both while 
the task is actively executing and while it is inactive. 
Tasks can be created, put to sleep for specified peri­
ods, suspended, executed to perform their func­
tions, and dynamically deleted when their functions 
are complete. 

3-201 210216-002 



80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

The Operating System Processors support event­
oriented systems designs. Each event may be pro­
cessed by an individual responding task or along 
with other closely related events in a-common task. 
External events and interrupts are processed by the 
OSP interrupt handler primitives using its bUilt-in 
interrupt controller subsystem as they occur in real­
time. The multiple tasks and the multiple events are, 
coordinated by the OSP integral scheduler whose 
preemptive, priority-based scheduling algorithm 
and system timers organize and monitor the process­
ing of every task to guarantee that events are pro­
cessed as they occur in order of relative importance. 
The 86130 also provides primitives for interta$k com­
munication (by mailboxes) and for mutual exclusion 
(by regions), essential functions for multitasking 
appl ications. 

Programming Language Support 

Programs for the OSP can be written in ASM 86/88 or 
PL/M 86/88, Intel's standard system languages for 
iAPX 86,88 systems. 

The Operating System Processor Support Package 
(iOSP 86) provides an interface library for applica­
tion programs written in any model of PL/M-86. This 
library also provides 80130 configuration and in­
itialization support as well as complete user 
documentation. 

OSF PROGRAMMING INTERFACE 
r 

The OSF provides 35 operating system kernel 
primitives which implement multitasking, interrupt 
management, free memory management, intertask 
communication and synchronization. Table 4 shows 
each primitive, and Table 5 gives the execution per­
formance of typical primitives. 

OSP primitives are executed by a combination of 
CPU and OSF (80130) activity. When an OSP primi­
tive is called by an application program task, the 
iAPX CPU registers and stacks are used to perform 
the appropriate functions and relay the results to the 
application programs. 

OSP Primitive Calling Sequences 

A standard, stack-based, calling sequence is used to 
invoke the OSF primitives. Before a primitive is 
called, its operand parameters must be pushed on 
the task stack. The SI register is loaded with the 
offset of the last parameter on the stack. The entry 
code for the primitive is loaded into AX. The primitive 
invocation call is made with a CPU software interrupt 

(Table 4). A representative ASM86 sequence for call­
ing a primitive is shown in Figure 4. In PL/M the OSP 
programmer uses a call to invoke the primitive. 

SAMPLE ASSEMBLY LANGUAGE PRIMITIVE CALL 

;PUSH PARAMETER 1 
;PUSH PARAMETER 2 

PUSH PN :PUSH PARAMETER N 
PUSH BP ;STACK CALLING CONVENTION 
MOV BP,SP 
LEA SI,SS:NUM_BYTES_PARAM , 2[BPI 

MOVAX, ENTRY CODE 
INT 184 

,$5:$1 POINTS TO FIRST 
,PARAMETER ON STACK 

,AX seTS PRIMITIVE ENTRY CODE 
;OSF INTERRUPT 

QSP PRIMITIVE INVOKED 
POP 8'P 
RET NUM_BYTES_PARAM_ ,pop PARAMETERS 

,ex CONTAINS EXCEPTION CODES 
;OL CONTAINS PARAMETER NUMBER 
, THAT CAUSED EXCEPTION (IF 
, ex IS NON ZERO) 
;AX CONTAINS WORD RETURN VALUE 
,ES:BX CONTAINS POINTER 
: RETURN VALUE 

Figure 4. ASM/86 OSP Calling Convention 

OSP Functional Description 

Each major function of the OSP is described below. 
These are: 

Job and Task Management 
Interrupt Management 
Free Memory Management 
Intertask Communication 
Intertask Synchronization 
Environmental Control 

The system data types'(or SDTs) supported by the 
OSP are capitalized in the description. A short 
description of each SDT appears in Table 2. 

JOB and TASK Management 

Each OSP JOB is a controlled environment in which 
the applications program executes and the OSF sys­
tem data types reside. Each individual application 
program is normally a separate OSP JOB, whether it 
has one initial task (the minimum) or multiple tasks. 
JOBs partition the system memory into pools. Each 
memory pool provides the storage areas in which the 
OSP will allocate TASK state images and other sys­
tem data types created by the executing TASKs, and 
free memory for TASK working space. The OSP sup­
ports multiple executing TASKs within a JOB by 
managing the resources used by each, including the 
CPU registers, NPX registers, stacks, the system data 
types, and the available free memory space pool. 

3-202 210216-002 



intJ 
\ 80130/80130-2 

iAPX 86/30, 88/30, 186/30, 188/30 

When a TASK is created, the OSP allocates memory 
(from the free memory of its JOB environment) for 
the TASK'u stack and data area and initializes the 
additional TASK attributes such as the TASK priority 
level and its error handler location. (As an option, the 
caller of CREATE TASK may assign previously 
defined stack and data areas to the TASK.) Task 
priorities are integers between 0 and 255 (the lower 
the priority number the higher the scheduling 
priority of the TASK). Generally, priorities up to 128 
will be assigned to TASKs which are to process inter­
rupts. Priorities above 128 do not cause interrupts to 
be disabled, these priorities (129 to 255) are appro­
priate for non-interrupt TASKs. If an 8087 Numerics 
Processor Extension is used, the error recovery inter­
rupt level assigned to it will have a higher priority 
than a TASK executing on it, so that error handling is 
performed correctly. 

EXECUTION STATUS 
A TASK has an execution status or execution state. 
The OSP provides five execution states: RUNNING, 
READY, ASLEEP, SUSPENDED, and ASLEEP­
SUSPENDED. 

- A TASK is RUNNING if it has control of the 
processor. 

- A TASK is READY if it is not asleep, suspended, or 
asleep-suspended. For a TASK to become the run­
ning (executing) TASK, it must be the highest 
priority TASK in the ready state. 

- A TASK is ASLEEP if it is waiting for a request to 
be granted or a timer event to occur. A TASK may 
put itself into the ASLEEP state. 

- A TASK is SUSPENDED if it is placed there by 
another TASK or if it suspends itself. A TASK may 
have multiple suspensions, the count of suspen­
sions is managed by the OSP as the TASK suspen­
sion depth. 

- A TASK is ASLEE"P-SUSPENDED if it is both 
waiting and suspended. 

TASK attributes, the CPU register values, and the 
8087 register values (if the 8087 is configured into 
the application) are maintained by the OSP in the 
TASK state image. Each TASK will have a unique 
TASK state image. 

SCHEDULING 
The OSP schedules the processor time among the 
various TASKs on the basis of priority. A TASK has an 
execution priority relative to all other TASKs in the 
system, which the OSP maintains for each TASK in its 
TASK state image. When a TASK of higher priority 
than the executing TASK becomes ready to execute, 

the OSP switches the control of the processor to the 
higher priority TASK. First, the OSP saves the outgo­
ing (lower priority) TASK's state including CPU regis­
ter values in its TASK state image. Then, it restores 
the CPU registers from the TASK state image of the 
incoming (higher priority) TASK. Finally, it causes the 
CPU to start or resume executing the higher priority 
TASK. 

TASK scheduling is performed by the OSp. The OSP's 
priority-oriented preemptive scheduler determines 
which TASK executes by comparing their relative 
priorities. The scheduler insures that the highest 
priority TASK with a status of READY will execute. A 
TASK will continue to execute until an interrupt with a 
higher priority occurs, or until it requests unavailable 
resources, for which it is willing to wait, or until it 
makes specific resources available to a higher 
priority TASK waiting for those resources. 

TASKs can become READY by receiving a message, 
receiving control, receivi'ng an interrupt, or by timing 
out. The OSP always monitors the status of all the 
TASKs (and interrupts) in the system. Preemptive 
scheduling allows the system to be responsive to the 
external environment while only devoting CPU re­
sources to TASKs with work to be performed. 

TIMED WAIT 
The OSP timer hardware facilities support timed 
waits and timeouts. Thus, in many primitives, a TASK 
can specify the length of time it is prepared to wait 
for an event to occur, for the desired resources to 
become available or for a message to be received at a 
MAILBOX. The timing interval (or System Tick) can 
be adjusted, with a lower limit of 1 millisecond. 

APPLICATION CONTROL OF TASK EXECUTION 
Programs may alter TASK execution status and 
priority dynamically. One TASK may suspend its own 
execution or the execution of another TASK for a 
period of time, then resume its execution later. Multi-' 
pie suspensions are provided. A suspended TASK 
may be suspended again. 

The eight OSP Job and TASK management primitives 
are: 

CREATE JOB 

CREATE TASK 

Partitions system resources and 
creates a TASK execution 
environment. 

Creates a TASK state image. 
Specifies the location of the 
TASK code instruction stream, 
its execution priority, and the 
other TASK attributes. 

3-203 210216-002 



inter 80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

DELETE TASK Deletes the TASK state image, 
removes the instruction stream 
from execution and deallocates 
litack resources. Does not delete 
INTERRUPT TASKS. 

SUSPEND TASK Suspends the specified TASK or, 
if already suspended, in­
crements its suspension depth 
by one. Execute state is 
SUSPEND. 

RESUME TASK Decrements the TASK suspen­
sion depth by one. If the sus­
pension depth is then zero, 
the primitive changes the task 
execution status to READY, 
or ASLEEP (if ASLEEP/ 
SUSPENDED). 

SLEEP Places the requesting TASK in 
the ASLEEP state for a specified 
number of System Ticks. (The 
TICK interval can be configured 
down to 1 millisecond.) 

SET PRIORITY Alters the priority of a TASK. 

Interrupt Management 

The OSP supports up to 256 interrupt levels or­
ganized in an interrupt vector, and up to 57 external 
interrupt sources of which one is the NMI (Non­
Maskable Interrupt). The OSP manages each inter­
rupt level independently. The OSF INTERRUPT 
SUBSYSTEM provides two mechanisms for interrupt 
management: INTERRUPT HANDLERs and INTER­
RUPT TASKs. INTERRUPT HANDLERs disable all 
maskable interrupts and should be used only for 
servicing interrupts that require little processing 
time. Within an INTERRUPT HANDLER only certain 
OSF Interrupt Management primitives (DISABLE, 
ENTER INTERRUPT, EXIT INTERRUPT, GET LEVEL, 
SIGNAL INTERRUPT) and basic CPU instructions 
can be used, other OSP primitives cannot be. The 
INTERRUPT TASK approach permits all OSP 
primitives to be issued and masks only lower priority 
interrupts. 

Work flow between an INTERRUPT HANDLER and an 
INTERRUPT TASK assigned to the same level is 
regulated with the SIGNAL IN"\ERRUPT and WAIT 
INTERRUPT primitives. The flow is asynchronous. 
When an INTERRUPT HANDLER signals an INTER­
RUPT TASK, the INTERRUPT HANDLER becomes 
immediately available to process another interrupt. 
The number of interrupts (specified for the level) the 

INTERRUPT HANDLER can queue for the INTER­
RUPT TASK can be limited to the value specified in 
the SET INTERRUPT primitive. When the INTER­
RUPT TASK is finished processing, it issues a WAIT 
,INTERRUPT primitive, and is immediately ready to 
process the queue of interrupts that the INTERRUPT 
HANDLER has built with repeated SIGNAL INTER­
RUPT primitives while the INTERRUPT TASK was 
processing. If there were no interrupts at the level, 
the queue is empty and the INTERRUPT TASK is 
SUSPENDED. See the Example (Figure 5) and Fig­
ures 6 and 7. 

OSP external INTERRUPT LEVELs are directly 
related to internal TASK scheduling priorities. The 
OSP maintains a single list of priorities including 
both tasks and INTERRUPT LEVELs. The priority of 
the executing TASK automatically determines which 
interrupts are masked. Interrupts are managed by 
INTERRUPT LEVEL number. The OSP supports eight 
levels directly and may be extended by means of 
slave 8259As to a total of 57. 

The nine Interrupt Management OSP primitives are: 

DISABLE Disables an external INTER­
RUPT LEVEL. 

ENABLE Enables an external INTER­
RUPT LEVEL. 

ENTER INTERRUPT Gives an Interrupt Handler 
its own data segment, sepa­
rate from the data segment 
of the interrupted task. 

EXIT INTERRUPT Performs an "END of INTER­
RUPT' operation. Used by 
an INTERRUPT HANDLER 
which does not invoke an IN­
TERRUPT TASK. Reenables 
interrupts, when the INTER­
RUPT HANDLER gives up 
control. 

GET LEVEL Returns the interrupt level 
number of the executing IN­
TERRUPT HANDLER. 

RESET INTERRUPT Cancels the previous as­
signment made to an 
interrupt level by SET IN­
TERRUPT primitive request. 
If an INTERRUPT TASK has 
been assigned, it is also 
deleted. The interrupt level 
is disabled. 

SET INTERRUPT Assigns an INTERRUPT 
HANDLER to an interrupt 
level and, optionally, an IN­
TERRUPT TASK. 

3-204 210216-002 



80130/80130·2 
iAPX 86/30, 88/30, 186/30, 188/30 

r CODE. EXAMPLE A INTERRUPT TASK TO KEEP TRACK OF TIME-OF-DAY 

DECLARE SECOND$COUNT BYTE, 
MINUTE$COUNT BYTE, 
HOURS$COUNT BYTE: 

TIME$TASK: PROCEDURE: 
DECLARE TIME$EXCEPT$CODE WORD: 

ACSCYCLESCOUNT=O: 
CALL RQ$SET$INTERRUPT(AC$INTERRUPT$LEVEL, 01H), 

@AC$HANDLER,O,@TIME$EXCEPT$CODE): 
CALL RQ$RESUME$TASK(INIT$TASK$TOKEN,@TIME$EXCEPT$CODE): 
DO HOUR$COUNT=O TO 23: 

DO MINUTE$COUNT=O TO 59: 
DO SECOND$COUNT=O TO 59: 

CALL RQ$WAIT$INTERRUPT(AC$INTERRUPT$lEVEl, 
@TIME$EXCEPT$CODE): 

IF SECOND$COUNT MDD 5=0 
THEN CALL PRDTECTED$CRT$OUT(BEL): 

END: r SECOND LOOP '/ 
END: r MINUTE LOOP '/ 

END: r HOUR LOOP '/ 
CALL RQ$RESET$INTERRUPT(AC$INTERRUPT$LEVEL, @TlME$EXCEPT$CODE): 
END TIME$TASK: 

/' CODE EXAMPLE B INTERRUPT HANDLER TO SUBDIVIDE A.C. SIGNAL BY 50. '/ 

DeCLARE AC$CYCLE$COUNT BYTE; 

AC$HANDLER: PROCEDURE INTERRUPT 59: 
DECLARE AC$EXCEPTSCODE WORD: 

AC$CYCLE$COUNT=AC$CYCLE$COUNT +1: 
IF AC$CYCLE$COUNT> =50 THEN DO: 

AC$CYCLE$COUNT=O: 
CALL RQ$SIGNAL$INTERRUPT(AC$INTERRUPT$LEVEL,@AC$EXCEPT$CODE): 
END: 

END AC$HANDLER: 

INTERRUPT 
HANDLER CALLS 
EXIT$INTERRUPT 

NO 

Figure 5. OSP Examples 

CONTROL RETURNS lOAN 
APPLICATION TASK 

YES 

INTERRUPT 
HANDLER CALLS 

SIGNAL$INTERRUPT 

INTERRUPT TASK 
COMPLETES INTERRUPT 

SERVICING 

Figure 6. Interrupt Handling Flowchart 

3-205 210216-002 



80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

r-----------------------------------------------------------------------------

~.[!] 
! ~~~::" O " I , 

--- J INTERRUPT ~ 
........ , TASK " 

INTERRUPT 

<D STARTS FILLING 
EMPTY BUFFER 

@ WHEN FULL, CALLS 
SIGNAL$INTERRUPT 
TO START TASK ON 
FULL BUFFER 

/ " ,/ "-/ ,_.... '\ 

/ \ 
I \ 
I _-1 

,," " , \ 
© CALLS I INTERRUPT I 

WAIT$INTERRUPT \ TASK I 
TO WAIT FOR NEXT \ I 
FULL BUFFER ............ > .... __ "'~ ---

@ PROCESSES 
FULL BUFFER 

Figure 7. Multiple Buffer Example 

SIGNAL INTERRUPT Used by an INTERRUPT 
HANDLER to activate an In­
terrupt Task. 

WAIT INTERRUPT Suspends the calling Inter­
rupt Task until the INTER­
RUPT HANDLER performs a 
SIGNAL INTERRUPT to in­
voke it. If a SIGNAL INTER­
RUPT for the task has 
occurred, it is processed. 

FREE MEMORY MANAGEMENT 

The OSP Free Memory Manager manages the 
memory pool which is allocated to each JOB for its 
execution needs. (The CREATE JOB primitive al­
locates the new JOB's memory pool from the 
memory pool of the parent JOB.) The memory pool is 
part of the JOB resources but is not yet allocated 
between the tasks of the JOB. When a TASK, MAIL­
BOX, or REGION system data type structure is 
created within that JOB, the OSP implicitly allocates 
memory for it from the JOB's memory pool, so that a 
separate call to allocate memory is not required. OSP 
primitives that use free memory management im­
plicitly include CREATE JOB, CREATE TASK, 
DELETE TASK, CREATE MAILBOX, DELETE MAIL­
BOX, CREATE REGION, and DELETE REGION. The 

CREATE SEGMENT primitive explicitly allocates a 
memory area when one is needed by the TASK. For 
example, a TASK may explicitly allocate a SEGMENT 
for use as a memory buffer. The SEGMENT length 
can be any multiple of 16 bytes between 16 bytes and 
64K bytes in length. The programmer may specify 
any number of bytes from 1 byte to 64 KB, the OSP 
will transparently round the value up to the appropri­
ate segment size. 

The two explicit memory ~lIocation/dealiocation 
primitives are: 

CREATE SEGMENT Allocates a SEGMENTof spe­
cified length (in 16-byte-long 
paragraphs) from the JOB 
Memory Pool. 

DELETE SEGMENT Deallocates the SEGMENT's 
memory area, and returns it 
to the JOB memory pool. 

Intertask Communication 

The OSP has built-in intertask synchronization and 
communication, permitting TASKs to pass and share 
information with each other. OSP MAILBOXes con­
tain control/ed handshaking facilities which guaran­
tee that a complete message will always be sent from 
a sending TASK to a reeeiving TASK. Each MAILBOX 
consists of two interlocked queues, one of TASKs 

3-206 210216-002 



intJ 80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

and the other of Messages. Four OSP primitives for 
intertask synchronization and communication are 
provided: 

CREATE MAILBOX Creates intertask message 
exchange. 

DELETE MAILBOX Deletes an intertask mes­
sage exchange. 

RECEIVE MESSAGE Calling TASK receives a mes­
sage from the MAILBOX. 

SEND MESSAGE Calling TASK sends a 
message to the MAILBOX. 

The CREATE MAILBOX primitive allocates a MAIL­
BOX for use as an information exchange between 
TASKs. The OSP will post information at the MAIL­
BOX in a FIFO (First-In First-Out) manner when a 
SEND MESSAGE instruction is issued. Similarily, a 
message is retrieved by the OSP if a TASK issues a 
RECEIVE MESSAGE primitive. The TASK which 
creates the MAILBOX may make it available to other 
TASKs to use. 

If no message is availab!e, the TASK attempting to 
receive a message may choose to wait for one or 
continue executing. 

The queue management method for the task queue 
(FIFO or PRIORITY) determines which TASK in the 
MAILBOX TASK queue will receive a message from 
the MAILBOX. The method is specified in the 
CREATE MAILBOX primitive. 

Intertask Synchronization and Mutual 
Exclusion 

Mutual exclusion is essential to multiprogramming 
and multiprocessing systems. The REGION system 
data type implements mutual exclusion. A REGION is 
represented by a queue of TASKS waiting to use a 
resource which must be accessed by only one TASK 
at a time. The OSP provides primitives to use 
REGIONs to manage mutually exclusive data and 
resources. Both critical code sections and shared 
data structures can be protected by these primitives' 
from simultaneous use by more than one task. 
REGIONs support both FIFO (First-In First-Out) or 
Priority queueing disciplines for the TASKS seeking 
to enter the REGION. The REGION SDT can also be 
used to implement software locks. 

Multiple REGIONs are allowed, and are automatically 
exited in the reverse order of entry. While in a 
REGION, a TASK cannot be suspended by itself or 
any other TASK, and thereby avoids deadlock. 

There are five OSP primitives for mutual exclusion: 

CREATE REGION Create a REGION (lock). 

SEND CONTROL Give up the REGION. 

ACCEPT CONTROL Request the REGION, but do 
not wait if it is not available. 

RECEIVE CONTROL Request a REGION, wait if 
not immediately available. 

DELETE REGION Delete a REGION. 

The OSP also provides dynamic priority adjustment 
for TASKs within priority REGIONs: If a higher­
priority TASK issues a RECEIVE CONTROL primitive, 
while a (lower-priority) TASK has the use of the same 
REGION, the lower-priority TASK will be trans­
parently, and temporarily, elevated to the waiting 
TASK's priority until it relinquishes the REGION via 
SEND CONTROL. At that point, since it is no longer 
using the critical resource, the TASK will have its 
normal priority restored. 

OSP Control Facilities 

The OSP also includes system primitives that provide 
both control and customization capabilities to a mUl­
titasking system. These primitives are used to control 
the deletion of SDTs and the recovery of free memory 
in a system, to allow interrogation of operating sys­
tem status, and to provide uniform means of adding 
user SDTs and type managers. 

DELETION CONTROL 
Deletion of each OSP system data type is explicitly 
controlled by the applications programmer by set­
ting a deletion attribute for that structure. For exam­
ple, if a SEGMENT is to be kept in memory until DMA 
activity is completed, its deletion attribute should be 
disabled. Each TASK, MAILBOX, REGION, and SEG­
MENT SDT is created with its deletion attribute en­
abled (i.e., they may be deleted). Two OSP primitives 
control the deletion attribute: ENABLE DELETION 
and DISABLE DELETION. 

ENVIRONMENTAL CONTROL 
The OSP provides inquiry and control operations 

. which help the user interrogate the application envi­
ronment and implement flexible exception handling. 
These features aid in run-time decision making and 
in application error processing and recovery. There 
are five OSP environmental control primitives. 

OS EXTENSIONS 
The OSP architecture is defined to allow new user­
defined System Data Types and the primitives to ma­
nipulate them to be added to OSP capabilities 

3-207 210216-002 



801 S0/80130·2 
iAPX 86/30, 88/30, 186/30, 188/30 

provided by the built-in System Da~a Types. The type 
managers created for the user-defined SDTs are 
called user OS extensions and are installed in the 
system by the SET OS EXTENSION primitive. Once 
installed, the functions of the type manager may be 
invoked with user primitives conforming to the OSP 
interface. For well-structured extended architec­
tures, each OS extension should support a separate 
user-defined system data type, and every OS ext~n­
sion should provide the same calling sequence and 
program interface for the user as is provided for a 
built-in SDT. The type manager for the extension 
would be written to suit the needs of the application. 
OSP interrupt vector entries (224-255) are reserved 
for user OS extensions and are not used by the OSP. 
After assigning an interrupt number to the extension, 
the extension user may then call it with the standard 
OSP call sequence (Figure 4), and the unique 
software interrupt number assigned to the 
extension. ' 

ENABLE DELETION jI.llows a specific SEGMENT, 
TASK, MAILBOX, or REGION 
SDT to be deleted. 

DISABLE DELETION 

GET TYPE 

GET TASK TOKENS 

GET EXCEPTION 
HANDLER 

SET EXCEPTION 
HANDLER 

SET OS EXTENSION 

SIGNAL EXCEPTION 

Prevents a specific SEG- . 
MENT, TASK, MAILBOX, or 
REGION SDT from being 
deleted. 

Given a token for an in­
stance of a system data type, 
returns the type code. 

Returns to the caller infor­
mation about the current 
task environment. 

Returns information about 
the calling TASK's current in­
formation handler: its ad­
dress, and when it is used. 

Provides the address and 
usage of an exception 
handler for a TASK. 

Modifies one of the interrupt 
vector entries reserved for 
OS extensions (224-255) to 
ppint to a user OS extension 
procedure. 

For use in OS extension er­
ror processing. 

EXCEPTION HANDLING 

The OSP supports exception handlers. These are 
similar to CPU exception handlers such as OVER­
FLOW and ILLEGAL OPERATION. Their purpose is to 

allow the OSP primitives,to, report parameter errors 
in primitive calls,and errors in primitive usage. Ex­
ception handling procedures are flexible and can be 
individually programmed by the application. In gen­
eral, an exception handler if called will perform one 
or more of the following functions: 

-Log the Error. 
-Delete/Suspend the Task that caused the 

exception. 
-Ignore the error, presumably because it is not 

serious. 

An EXCEPTION HANDLER is written as a procedure. 
If PLM/86 is used, the "compact," "medium" or 
"large" model of computation should be specified for 
the compilation of the program. The mode in which 
the EXCEPTION HANDLER operates may be speci­
fied in the SET EXCEPTION HANDLER primitive. The 
return information from a primitive call is shown in 
Figure 4 .. CX is used to return standard system error 
conditions. Table 7 shows a list of these conditions, 
using the default EXCEPTION HANDLER of the OSP. 

HARDWARE DESCRIPTION 

The 80130 operates in a closely coupled mode with 
the iAPX 86/10 or 88/10 CPU. The 80130 resides on 
the CPU local multiplexed bus (Figure 8). The main 
processor is always configured for maximum mode 
operation. The 80130 automatically selects oetween 
its 88/30 and 86/30 operating modes. 

The 80130 used in the 86/30 configuration, as shown 
in Figure 8 (or a similar 88/30 configuration), 
operates at both 5 and 8 MHz without requiring pro­
cessor wait states. Wait state memories are fully sup­
ported, however. The 80130 may be configured with 
both an 8087 NPX and an 8089 lOP, and provides 
full context control over the 8087. 

The 80130 (shown in Figure 3) is internally divided 
into a control unit (CU) and operating system unit 
(OSU). The OSU contains facilities for OSP kernel 
support including the system timers for scheduling 
and timing waits, and the interrupt controller for 
interrupt management support. 

iAPX 86/30, iAPX 88/30 System 
Configuration 

The 80130 is both I/O and memory mapped to the 
local CPU bus. The CPU's status SOI-S21 is 
decoded along with 10CSI (with BHE and AD3-
ADo) or MEMCSI (with AD13-ADo). The pins are 
internally latched. See Table 1 for the decoding of 
these lines. 

3-208 210216-002 



inter 80130/80130·2 
iAPX 86/30, 88/30, 186/30, 188/30 

Memory Mapping 

Address lines A19-A14 can be used to form MEMCS/ 
since the 80130's memory-mapped portion is aligned 
along a 16K-byte boundry. The 80130 can reside on 
any 16K-byte boundry excluding the highest 
(FCOOOH-FFFFFH) and lowest (00000H-003FFH). The 
80130 control store code is position-independent ex­
cept as limited above, in order to make it compatible 
with many decoding logic designs. AD13-ADo are 
decoded by the 80130's kernel control store. 

I/O Mapping 

The I/O-mapped portion of the 80130 must be aligned 
along a 16-byte boundry. Address lines A1S-A4 
should be used to form 10CS/. 

System Performance 

The approximate performance of representitive OSP 
primitives is given in Table 5. These times are shown 
for a typical iAPX 86/30 implementation with an 8 
MHz clock. These execution times are very compara­
ble to the execution times of similar functions in 
minicomputers (where available) and are an order of 
magnitude faster than previous generation 
microprocessors. 

Initialization. 

Both application system initialization and OSP­
specific initialization/configuration are required to 
use the OSp. Configuration is based on a "database" 
provided by the user to the iOSP 86 support package. 
The OSP-specific initialization and configuration in­
formation area is assigned to a user memory address 
adjacent to the 80130's memory-mapped location. 
(See Application Note 130 for further details.) The 
configuration data defines whether 8087 support is 
configured in the system, specifies if slave 8259A 
interrupt controllers are used in addition to the 
80130, and sets the operating system time base (Tick 
Interval). Also located in the configuration area are 
the exception handler control parameters, the ad­
dress location of the (separate) application system 
configuration area and fhe OSP extensions in use. 
The OSP application sY'3tem configuration area may 
be located anywhere in the user memory and must 
include the starting address of the application in­
struction code to be executed, plus the locations of 
the RAM memory blocks to be managed by the OSP 
free memory manager. Complete application system 
support and the required 80130 configuration sup­
port are provAded by the iAPX 86/30 and iAPX 88/30 
OPERATING SYSTEM PROCESSOR SUPPORT 
PACKAGE (iOSP 86). 

RAM Requirements 

The OSP manages its own interrupt vector, which is 
assigned to low RAM memory. Working RAM storage 
is required as stack space and data area. The 
memory space must be allocated in user RAM. . 

OSP interrupt vector memory locations OH-3FFH 
must be RAM based. The OSP requires 2 bytes of 
allocated RAM. The processor working storage is 
dynamically allocated from free memory. Approxi­
mately 300 bytes of stack should be allocated for 
each OSP task. 

TYPICAL SYSTEM CONFIGURATION 

Figure 8 show.s the processing cluster of a "typical" 
iAPX 86/30 or iAPX 88/30 OSP system. Not shown are 
subsystems likely to vary with the application. The 
configuration includes an 8086 (or 8088) operating in 
maximum mode, an 8284A clock generator and an 
8288 system controller. Note that the 80130 is located 
on the CPU side of any latches or transceivers. See 
Intel Application Note 130 for further details on 
configuration. 

OSP Timers 

The OSP Timers are connected to the lower half of 
the data bus and are addressed at even addresses. 
The timers are read as two successive bytes, always 
LSB followed by MSB. The MSB is always latched on 
a read operation and remains latched until read. 
Timers are not gatable. 

Baud Rate Generator 

The baud rate generator is 8254 compatible (square 
wave mode 3). Its output, BAUD, is initially high and 
remains high until the Count Register is loaded. The 
first falling edge of the clock after the Count Register 
is loaded causes the transfer of the internal counter 
to the Count Register. The output stays high for N/2 
[(N+1)/2 if N is odd] and then goes low for N/2 
[(N-1)/2 if N is odd]. On the falling edge of the clock 
which signifies the final count for the output in low 
state, the output returns to high state and the Count 
Register is transferred to the internal counter. The 
whole process is then repeated. Baud Rates are 
shown in Table 6. 

The baud rate generator is located at OCH (12), rela­
tive to the 16-byte boundary in the I/O space in which 
the 80130 component is located ("OSF" in the follow­
ing example), the timer control word is located at 

3-209 210216-002 



intJ 80130/80130·2 
iAPX 86/30, 88/30, 186/30, 188/30 

elK 

0 
CONTROL 

f- elK M 
8288 !lii_ ~ 
~ 

8086 

BHE F==il BHE A1. 
A1. LOCAL 

~RESS/O~ 8282 J-- AND 
ADDRESS SYSTEM 

t----- RESOURCES 
INTR ADO 

AD 
'--

-= 
015 

, 

" 8286 ~ , 

~- DO 

INT S2 /1. , ~ 
C- elK !lii~ 

A015 
ADO ~ 

lOCi 
DECODE b 

J 
LOGIC 

MEMes 

" AeK 
llA 
lAO r- INTERRUPT REoueSTS 
lA' 

SVSTICK ~ IR2 

Figure 8. Typical OSP Configuration 

relative address, OEH(14). Timers are addressed with 
IOCS=O. Timers 0 and 1 are assigned to the use by 
the OSp, and should not be altered by the user. 

For most baud-rate generator applications, the com­
mand byte 

OB6H Read/Write Baud-Rate Delay Value 

will be used. A typical sequence to set a baud rate 
of 9600 using a count value of 52 follows (see 
Table 6): 

MOV . AX,.OB6H 

OUT OSF+14,AX 
MOV AX, 52 
OUT OSF+12,AL 
XCHG AL,AH 
OUT OSF+12,AL 

;Prepare to Write Delay to 
Timer 3. 
;Control Word. 

;LSB written first 

;MSB written after. 

The 80130 timers are subset compatible with 8254 
timers. 

Interrupt Controller 

The Programmable Interrupt Controller (PIC), is also 
an integral unit of the 80130. Its eight input pins 
handle eight vectored priority interrupts. One of 
these pins must be used for the SYSTICK time func­
tion in timing waits, using an external connection as 
shown. During the 80130 initialization and configura­
tion sequence, each 80130 interrupt pin is individu­
ally programmed as either level or edge sensitive. 
External slave 8259A interrupt controllers can be 
used to expand the total number of OSP external 
interrupts to 57. 

In addition to standard PIC. funtions, 80130 PIC unit 
has an LlR output signal, which when low indicates 
an interrupt acknowledge cycle. LlR=O is provided to 
control the 8289 Bus Arbiter SYSB/RESB pin. This 
will avoid the need of requesting the system bus to 
acknowledge local bus non-slave interrupts. The 
user defines the interrupt system as part of the 
configuration. 

3-210 210216-002 



80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

INTERRUPT SEQUENCE 
The OSP interrupt sequence is as follows: 

1. One or more of the interrupts is set by a low-to­
high transition on edge-sensitive IR inputs or by a 
high input on level-sensitive IR inputs. 

2. The 80130 evaluates these requests, and sends an 
INT to the CPU, if appropriate. 

3. The CPU acknowledges the INT and responds 
with an interrupt acknowledge cycle which is en­
coded in 82-S0 . 

4. Upon receiving the first interrupt acknowledge 
from the CPU, the highest-priority interrupt is set 
by the 80130 and the corresponding edge detect 
latch is reset. The 80130 does not drive the ad­
dress/data bus during this bus cycle but does 
acknowledge the cycle by making ACK=O and 
sending the LlR value for the IR input being 
acknowledged. 

5. The CPU will then initiate a second interrupt ac­
knowledge cycle. During this cycle, the 80130 will 
supply the cascade address of the interrupting 
input at T1 on the bus and also release an 8-bit 
pointer onto the bus if appropriate, where it is 
read by the CPU. If the 80130 does supply the 
pointer, then ACK will be low for the cycle. This 
cycle also has the value LlR for the IR input being 
acknowledged. 

6. This completes the interrupt cycle. The ISR bit 
remains set until an appropriate EXIT INTERRUPT 
primitive (EOI command) is called at the end of 
the Interrupt Handler. 

OSP APPLICATION EXAMPLE 

Figure 5 shows an application of the OSP primitives 
to keep track of time of day in a simplified example. 
The system design uses a 60 Hz A.C. signal as a time 
base. The power supply provides a TTL-compatible 

signal which drives one of 80130 edge-triggered in­
terrupt request pins once each A.C. cycle. The Inter­
rupt Handler responds to the interrupts, keeping 
track of one second's A.C. cycles. The Interrupt Task 
counts the seconds and after a day deletes itself. In 
typical systems it might perform a data logging oper­
ation once each day. The Interrupt Handler and Inter­
ruptTask are written as separate modular programs. 

The Interrupt Handler will actually service interrupt 
59 when it occurs. It simply counts each interrupt, 
and at a count of 60 performs a SIGNAL INTERRUPT 
to notify the InterruptTask that a second has elapsed. 
The Interrupt Handler (ACS HANDLER) was assigned 
to this level by the SET INTERRUPT primitive. After 
doing this, the InterruptTask performed the Primitive 
RESUME TASK to resume the application task (IN ITS 
TASKS TOKEN). 

The main body of the task is the counting loop. The 
InterruptTask is signaled by the SIGNAL INTERRUPT 
primitive in the Interrupt Handler (at interrupt level 
ACS INTERRUPTS LEVEL). When the task is sig­
nalled by the Interrupt Handler it will execute the 
loop exactly one time, increasing the time count 
variables. Then it will execute the WAIT INTERRUPT 
primitive, and wait until awakened by the Interrupt 
Handler. Normally, the task will now wait some period 
of time for the next signal. However, since the inter­
face between the Handler and the Task is asyn­
chronous, the handler may have already queued the 
interrupt for servicing, the writer of the task does not 
have to worry about this possibility. 

At the end of the day, the task will exit the loop and 
execute RESET INTERRUPT, which disables the in­
terrupt level, and deletes the interrupt task. The OSP 
now reclaims the memory used by the Task and 
schedules another task. If an exception occurs, the 
coded value for the exception is available in TIMES 
EXCEPTS CODE after the execution of the primitive. 

A typical PL/M-86 calling sequence is illustrated by 
the call to RESET INTERRUPT shown in Figure 5. 

3-211 210216-002 



80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

Table 2. OSP System Data TYpe Summary 

Job Jobs are the means of organizing the program environment and resources. An application consists of 
one or more jobs. Each iAPX 86/30 system data type is contained in some job. Jobs are independent of 
each other, but they may share access to resources. Each job has one or more tasks, one of which is an 
initial task. Jobs are given pools of memory, and they may create subordinate offspring jobs, which 
may borrow memory from their parents. 

Task Tasks are the means by which computations are accomplished. A task is an instruction stream with its 
own execution stack and private data. Each task is part of a job and is restricted to the resources 
provided by its job. Tasks may perform general interrupt handling as well as other computational 
functions. Each task has a set of attributes, which is maintained for it by the iAPX 86/30, which 
characterize its status. These attributes are: 

its containing job 
its register context 
its priority,(0-255) 
its execution state (asleep, suspended, ready, running, asleep/suspended). 
its suspension depth 
its user-selected exception handler 
its optional 8087 extended task state 

Segment Segments are the units of memory allocation. A segment is a physically contiguous sequence of 
16-byte, 8086 paragraph-length, units. Segments are created dynamically from the free memory 
space of aJob as oneof its Tasks requests memory for its use.Asegment is deleted when it is no longer 
needed. The iAPX 86/30 maintains and manages free memory in an orderly fashion, it obtains memory 
space from the pool al?signed to the containing job of the requesting task and returns the space to the 
job memory pool (or the parent job pool) whim it is no longer needed. It does not allocate memory to 
create a segment if sufficient free memory is not available to it, in that case it returns an error 
exception code. I 

Mailbox Mailboxes are the means of intertask communication. Mailboxes are used by tasks to send and 
receive message segments. The iAPX 86/30 creates and manages two queues for each maHbox. One 
of these queues contains message segments sent to the mailbox but not yet received by any task. The 
other mailbox queue consists of tasks that are waiting to receive messages. The iAPX 86/30 operation 
assures that waiting task.s receive messages as soon as messages are available. Thus at any moment 
one or possibly both of two mailbox queues will be empty. 

Region Regions are the means of serialization and mutual exclusion. Regions are familiar as "critical code 
regions." The iAPX 86/30 region data type consists of a queue of tasks. Each task waits to execute in 
mutually exclusive code or to access a shared data region, for example to update a file record. 

Tokens The OSP interface makes use of a 16-bitTOKEN data type to identify individual OSF data structures. 
Each of these (each instance) has its own unique TOKEN. When a primitive is called, it is passed the 
TOKENs of the data structures on which it will operate. 

3-212 210216-002 



inter 80130/80130·2 
iAPX 86/30, 88/30, 186/30, 188/30 

Table 3. System Data Type Codes and Attributes 

S.D.T. Code Attributes 

Jobs 1 Tasks 
Memory Pool 
S.D.T. Directory 

Tasks 2 Priority 
Stack 
Code 
State 
Exception Handler 

Mailboxes 3 Queue of S.D.T.s 
(generally segments) 
Queue ofTasks 
waiting for S.D.T.s 

Region 5 Queue of Tasks 
waiting for mutually 
exclusive code or 
data 

Segments 6 Buffer 
Length 

Table 4. OSP Primitives 

Class 
OSP Interrupt Entry Code Parameters 

Primitive Number in AX On Caller's Stack 

J 
0 CREATE JOB 184 0100H 'See 80130 User Manual 
B 

CREATE TASK 184 0200H Priority, IP Ptr, Data Segment, Stack 

T 
Seg, Stack Size Task Information, 
ExcptPtr 

A DELETE TASK 184 0201H TASK, ExcptPtr 
S SUSPEND TASK 184 0202H TASK, ExcptPtr 
K RESUME TASK 184 0203H TASK, ExcptPtr 

SET PRIORITY 184 0209H TASK, Priority, ExcptPtr 
SLEEP 184 0204H Time Limit,ExcptPtr 

DISABLE 190 0705H Level, ExcptPtr 
I ENABLE 184 0704H Level #.. ExcptPtr 
N ENTER INTERRUPT 184 0703H Level #, ExcptPtr 
T EXIT INTERRUPT 186 NONE Level # ,ExcptPtr 
E GET LEVEL 188 0702H Level #, ExcptPtr 

.R RESET INTERRUPT 184 0706H Level #, ExcptPtr 
R SET INTERRUPT 184 0701H Level, Interrupt Task Flag Interrupt 
U Handler Ptr, Interrupt Handler DataSeg 
P ExcptPtr 
T SIGNAL INTERRUPT 185 NONE Level, ExcptPtr 

WAIT INTERRUPT 187 NONE Level, ExcptPtr 

S 
E 
G CREATE SEGMENT 184 0600H Size, ExcptPtr 
M DELETE SEGMENT 184 0603H SEGMENT, ExceptPtr 
E 
N 
T 

3-213 210216-002 



inter 80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

Table 4. asp Primitives (Continued) 

Class 
asp Interrupt Entry Code Parameters 

Primitive Number In AX On Caller's Stack 

M CREATE MAILBOX 184 0300H Mailbox flags, ExcptPtr 
A DELETE MAILBOX 184 0301H MAILBOX, ExcptPtr i 

I RECEIVE MESSAGE 184 0303H MAILBOX, Time Limit ResponsePtr, 
L ExcptPtr 
B SEND MESSAGE 184 0302H MAILBOX,Message Response, ExcptPtr 
0 ~i 

X 

R ACCEPT CONTROL 184 0504H REGION, ExcptPtr 
E CREATE REGION 184 0500H Region Flags, ExcptPtr 
G DELETE REGION 184 0501H REGION, ExcptPtr 
I RECEIVE CONTROL' 184 0503H REGION, Excp~Ptr 
0 SEND CONTROL 184 0502H ExcptPtr 
N 

E DISABLE DELETION 184 0OO1H TOKEN,ExcptPtr 
N ENABLE DELETION 184 0OO2H TOKEN,ExcptPtr V 
I GET EXCEPTION 

R HANDLER 184 0800H Ptr,ExcptPtr 

0 GET TYPE 184 OOOOH TOKEN,ExcptPtr 
N GET TASK TOKENS 184 0206H Request, ExcptPtr 
M SET EXCEPTION , 
E HANDLER 184 0801H Ptr, ExcptPtr 
N SET OS EXTENSION 184 0700H Code,lnstPtr, ExcptPtr 
T SIGNAL 
A EXCEPTION 184 0802H Exception Code, Parameter Number, 
L StackPtr,O,O,ExcptPtr 

NOTES: 
All parameters are pushed onto the OSP stack. Each parameter is one word. See Figure 3 for Call Sequence. 

Explanation of the Symbols 

JOB OSP JOB SOT Token 
TASK OSP TASK SOT Token 
REGION OSP, REGION SOT Token 
MAILBOX OSP, MAILBOX SOT Token 
SEGMENT OSP SEGMI'NT SOT Token 
TOKEN Any SOT Token 

Level 
ExcptPtr 
Message 
Ptr 
Seg 

Interrupt Level Number 
Pointer to Exception Code 
Message Token 
Pointer to Code,Stack etc. Address 
Value Loaded into appropriate Segment Register' 
Value Parameter. 

3-214 210216-002 



intJ. 80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

Table 5. OSP Primitive Performance Examples ' 

Datatype Class Primitive Execution Speed-
(microseconds) 

JOB CREATE JOB 2950 
TASK CREATE TASK (no preemption) 1360 

SEGMENT CREATE SEGMENT 700 
MAILBOX SEND MESSAGE (with task switch) 475 

SEND MESSAGE (no task switch) 265 
RECEIVE MESSAGE (task waiting) 540 
RECEIVE MESSAGE (message waiting) 260 

REGION SEND CONTROL 170 
RECEIVE CONTROL 205 

'8 MHz iAPX 86/30 asp Configuation. 

Table 6. Baud Rate Count Values (16X) 

Baud 8 MHz Count 5 MHz Count 
Rate Value Value 

300 1667 1042 
600 833 521 

1200 417 260 
2400 208 130 
4800 104 65 
9600 52 33 

3-215 210216-002 



inter 80130180130-2 
IAPX 86/30, 88/30, 186/30, 188/30 

Table 7a. Mnemonic Codes for Unavoidable Exceptlo!,s 

E$OK Exception Code Value - 0 
, the operation was successful 

E$TIME Exception Code Value - 1 
the specified time limit expired before completion of the operations was possible 

E$MEM Exception Code Value = 2 
insufficient nucleus memory is available to satisfy the request 

E$BUSY Exception Code Value = 3 
specified region is currently busy 

E$LIMIT Exception Code Value = 4 
atte"!1pted violation of a job, semaphore, or system limit 

E$CONTEXT Exception Code Value - 5 
the primitive was called in an illegal context (e.g., call to enable for an already enabled 
interrupt) 

E$EXIST Exception Code Value = 6 
a token argument does not currently refer to any object; note that the object could have 
been deleted at any time by Its owner 

- E$STATE Exception Code Value = 7 
attempted illegal state transition by a task 

E$NOT$CONFIGURED Exception Code Value = 8 
the primitive called is not configured in this system 

E$INTERRUPT$SATURATION Exception Code Value - 9 
The interrupt task on the requested level has reached its user specified saturation point 
for interrupt service requests. No further interrupts will be allowed on the level until the 
interrupt task executes a WAIT$INTERRUPT. (This error is only returned, in line, to 
interrupt handlers.) 

E$INTERRUPT$OVERFLOW Exception Code Value - 10 
The interrupt task on the requested level previously reached its saturation point and 

, caused an E$INTERRUPT$SATURATION condition. It subsequently execllted an 
ENABLE allowing further interrupts to come in and has received another SIG-
NAL$INTERRUPTcall, bringing it over its specified saturation point for interrupt service 
requests. (This error is only returned, in line, to interrupt handlers). 

Table 7b. Mnemonic Codes for Avoidable Exceptions 

E$ZERO$DIVIDE Exception Code Value - 8000H 
divide by zero interrupt occurred 

E$OVERFLOW Exception Code Value - 8001 H 
overflow interrupt occurred 

E$TYPE Exception Code Value,= 8002H 
a token argument referred to an object tha was not of required type 

E$BOUNDS Exception Code Value = 8003H 
/ an offset argument is out of segment bounds 

E$PARAM Exception Code Value = 8004H 
a (non-token,non-offset) argument has an illegal value 

E$BAD$CALL Exception Code Value = 8005H 
an entry code for which there is no corresponding primitive was passed \ 

E$ARRAY$BOUNDS - 8006H Hardware or Language has detected an array overflow 

E$NDP$ERROR Exception Code Value - 8007H 
an 8087 (Numeric data Processor) error has been detected; (the 8087 status information 
is contained in a parameter to the exception handler) 

3-216 210216-002 



80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bins ......... O'G to 70'G 
Storage Temperature ................. -65°G to 150°C 
Voltage on Any Pin With 

Respect to Ground .................. - 1.0V to + 7V 
Power Dissipation .......................... 1.0 Watts 

D.C. CHARACTERISTICS (T. = O°C to 70°C, Vee = 4.5 to 5.5V) 

Symbol Parameter Min. 

V'L 
, 

Input Low Voltage - 0.5 

V,H Input High Voltage 2.0 

VOL Output Low Voltage 

VOH Output High Voltage 2.4 

Icc Power Supply Current 

III Input Leakage Current 

ILR IR Input Load Current 

ILO Output Leakage Current 

Vcu Clock Input Low 

VCHI Clock Input High 3.9 

CIN Input Capacitance 

CIO 1/0 Capacitance 

ICLI Clock Input Leakage Current 

"NOTICE: Stresses above those listed under Absolute 
Maximum Ratings may cause permanent damage to the 
device. This is a stress rating only and functional operation 
of the device at these or any other conditions above those 
indicated in the operational sections of this specification 
is not implied. Exposure to absolute maximum rating con­
ditions for extended period may affect device reliability. 

Max. Units Test Conditions 

0.8 V 

Vcc +.5 V 

0.45 V 10L ~ 2mA 

V 10H ~ -400/LA 

200 rnA T. ~ 25 C 

10 /LA O<V,N<VCC 
10 /LA Y'N ~ Vec 

-300 !LA Y'N ~ 0 
10 /LA .45 ~ Y'N ~ Vcc 
0.6 V 

V 

10 pF 

15 pF 

10 !LA VIN ~ Vcc 
150 /LA VIN ~ 2.5V 
10 !LA VIN ~ OV 

A.C. CHARACTERISTICS (TA ~ 0-70°C, Vcc ~ 4.5-5.5 Volt, Vss ~ Ground) 

80130 80130-2 
Symbol Parameter Min. Max. Min. Max. Units Test Conditions 

TCLCL CLK Cycle Period 200 - 125 - ns 

TcLcH CLKLowTime 90 - 55 - ns 

TcHcL CLK High Time 69 2000 44 2000 ns 

TsvCH Status Active Setup Time 80 - 65 - ns 

TcHsv Status Inactive Hold Time 10 - 10 - ns 

TSHCL Status Inactive Setup Time 55 - 55 - ns 

TCLSH Status Active Hold Time 10 - 10 - ns 

TASCH Address Valid Setup Time 8 - 8 - ns 

TCLAH Address Hold Time 10 - 10 - ns 

TCSCL Chip Select Setup Time 20 - 20 - ns 

TcHcs Chip Select Hold Time 0 - 0 - ns 

TDSCL Write Data Setup Time 80 - 60 - ns 

TCHDH Write Data Hold Time 10 - 10 - ns 

TJLJH IR Low Time 100 - 100 - ns 

TCLDV Read Data Valid Delay - 140 - 105 ns CL ~ 200 pE 

TCLDH Read Data Hold Time 10 - 10 - ns 

TCLDX Read Data to Floating 10 100 10 100 ns 

TcLc• Cascade Address Delay Time - 85 - 65 ns 

3-217 210216-002 



80130/80130·2 
iAPX 86/30, 88/30, 186/30, 188/30 

A.C. CHARACTERISTICS (Continued) 

80130 8!)130·2 
Symbol Parameter Min. Max. Min. Max. Units Notes 

TClCF Cascade Addresse Hold Time 10 - 10 - ns 

T,AVE INTA Status t Acknowledge - 80 - 80 ns 

TCHEH Acknowledge Hold Time 0 - 0 - ns 

TCSAK Chip Select to ACK - 110 - 110 ns 

TSACK Status to ACK - 140 - 140 ns 

TAACK Address to ACK _ - 90 - 90 ns 

TCLCO Timer Output Delay Time - 200 - 200 ns Cl = 100pF 

TClOO1 Timer1 Output Delay Time - 200 - 200 ns Cl = 100 pF 

TJHIH INT Output Delay - 200 - 200 ns 

T'RCl IR Input Set Up 20 20 ns 

WAVEFORMS 
A.C. 

elK 

TeLOO 

~I .. 
$YSTtCK. 

DELAY. BAUO ______________ ~x~ ____ _ 
elK 

IR 

INT 

'I~ ~TJHIH 
TIRCL ----. ...-....-

3-218 210216-002 



80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

WAVEFORMS 
A.C. 

T4 T\ T2 I 

CLK 

TCHCl TeLCH I 

J \ 4 , 
-' 

_TCHSV'I 
TSVCH reLeL TCLSH --52,51, SO 

\ I / 

~I F~ 
SHE A",-A, VALID x-----

'TO I-
rcsel 

BHE, AD 

s'T 
r- TDSC~ E CYCLE 

I ADDRESS VALID 'fJtIJIX 

0' -j rTCSAK 

TAACK \ 
I 

WRIT 

AD 

A 

o CYCLE -I 

J 
REA 

FLOAT 
ADDRESS VALID 

K I 
I 

TSACK \ 
TCLCF 2ND IN TAC'fCLE 

~ 
FLOAT I~ 

-ADo <D CASCADE ADDRESS 

K 

R 

~ 

TIAVE 

I 
\ 

\ 
TIAVE J 

NOTES 
1 CASCADE ADDRESS PRESENTED ON 11.08, AD9 AND 11.010 CORRESPONDING TO CASO, CAS1 

AND CAS2 RESPECTIVELY 11.011-11.015 LINES ARE ACTIVE AND HAVE UNKNOWN VALUES ADO-AD7 
ARE TRISTATE 

2 POINTER VAlUE IS AcnVE ONLY IF POINTER IS GENERATED FROM THE 80150 AND NOT FROM 
EXTERNAL SLAVE UNIT 
ACTIVE LOW ONLY WHEN POINTER DATA 1$ BE!NG SUPPUED BY THE 80150 
LOW ONLY FOR LOCAL INTERRUPT 

3-219 

0 

T3 I 
TW 

/ 
, 

I :SHC~ 

/ 

WRITE DATA VAll 0 

I 

, 
TelOX 

reLDv ~H' 
READ DATA VALID w., 

POINTER ® 

® 

T4 

/ L-

I 

MS 

/ 

6 
I 
I 

~ 
FLOAT 

~ 

FLOAT 

I 
-11-~r;.HEH 

----1 J-- TCHEH 

210216-002 



80150/80150-2 ~IQ)W~OO©~ OOO~@OO~~'il'O~OO 

iAPX 86/50, 88/50, 186/50, 188/50 
CP/M·86 OPERATING SYSTEM PROCESSORS 

• High·Performance Two·Chip Data 
Processors Containing the Complete 
CP/M·86 Operating System 

• Memory Disk II/Iakes Possible Diskless 
CP/M·86 Systems 

• No License or Serialization Required 
• Standard On-Chip BIOS (Basic 

Input/Output System) Contains Drivers 
for 8272A, 8274, 8255A, 8251A, 7220 
Bubble Memory Controller 

• Built·in Operating System Timers and 
Interrupt Controller \ 

• BIOS Extensible with User· Supplied 
Peripheral Drivers 

• 8086/80150/80150·2/8088/80186/80188 
Compatible At Up To 8 MHz Without 

• User Intervention Points Allow Addition 
of New System Commands 

Wait States 

The Intel iAPX 86/50, 88/50, 186/50, and 188/50 are two-chip microprocessors offering general-purpose 
CPU instructions combined with the CP/M-86 operating system_ Respectively, they consist of the 8- and 
16-bit software compatible 8086, 8088, 80186, and 80188 CPU plus the 80150 CP/M-86 operating system 
extension. 
CP/M-86 is a single-user operating system designed for computers based on the Intel. iAPX 86, 88, 186, 
and 188 microprocessors. The system allows full utdization of !he one megabyte of memory available for 
application programs. The 80150 stores CP/M-86 in its 16K bytes of on-chip memory. The 80150 will run 
third-party applications software written to ruri under standard Digital Research CP/M-86. 
The 80150 is implemented in N-Channel, depletion-load, silicon-gate technology (HMOS), and is housed 
in a 40-pin package. Included on the 80150 are the CP/M-86 operating system, Version 1.1, plus hardware 
support for eight interrupts, a system timer, a delay timer, and a baud rate generator. 
*CPlM·86 IS a trade~ark of D.gltal Research, Inc 

8284A 
CLOCK 
DRIVER 

ROY 

1-------, 
I I 
I \ 8088 I 

CLOCK OR I I 8088 

I INTERRUPT STATUS I 

: I 
I 
I .----L-.._-'--__ ~ 

INTERRUPT STATUS 

I 
I 

BUS 
INTERFACE 

I 
I 

CS LlR r-----~ 

I 

BAUD RATE 
TIMER 

80150 

DELAY 
TIMER 

INTERRUPT 
REQUESTS 

_J~ 
SYSTEM 
TIMER 

,APX 86150, 88150 

PROGRAM 
MEMORY 

Figure 1_ iAPX 86/50, 88/50 Block Diagram 

DATA 
MEMORY 

The follOWing are trademarks of Intel Corporation and Its affll.ates and may be used only to Identify Intel products BXp, CREDIT. I, ICE. ICS, 1m, Inslte, Intel, INTEL. InteleVlslon, lntelhnk, 

~0~~~~'~~:: ~~:~:~~~~P~: ~~~~h~SC~~~:~~~lr~n~~~~g~lrA~~~;S~~~~~:,~~~2~~~g~~~~u~;f:~:r:~~:;;~~~U~~:~Y~~~~~~~~~;t7~~' :~~~!~~~b~~:~~:'~'t~~~~t~:r:~ 
'of Any Circuitry Other Than Circuitry Embodied In an Intel Product No Other Patent Licenses are Implied ©INTEL CORPORATION, 1982 SEPTEMBER 1982 

3-220 ORDER NUMBER: 210705-002 



80150/80150-2 
iAPX 86150, 88/50, 186/50, 188/50 

MAX I MAX I MODE MODE 
8086 8088 

V" Vee V" Vee 

A014 A015 A014 A015 

A013 BHE A013 A16153 

A012 IR7 A012 A017/54 

AD11 IR. AD11 A18/55 

A010 IRS A010 A19156 

AD. IRO AD. BHE/57 (HIGH) 

AD8 IR3 AD8 MN/Mx 

AD7 IR2 AD7 RD 
AD. IR, AD. AQ/GTO 

ADS IRO ADS RO/Gn 

AD4 INT ADO LOCK 

AD3 S2 AD3 52 

AD2 S1 AD2 51 

AD' SO AD' SO 

ADO ACK ADO aso 

MEMes LOR NMI as' 
loes SYSTICK INTR TEST 

ClK DELAY elK READV 

V" BAUD V55 RESET 

Figure 2. iAPX 86/50, 88/50 Pin Configuration 

Table 1. 80150 Pin Description 

Symbol Type Name and Function 

AD1S-ADo I/O Address Data: These pins constitute the tIme multiplexed memory address (T1) and 
data (T 2, T3, Tw, T 4) bus, These lines are active HIGH, The address presented during 
T1 of a bus cycle will be latched internally and Interpreted as an 80150 internal 
address ifMEMC8 or IOC8 is active for the Invoked primitives, The 80150 pins float 
whenever it is not chip selected, and drive these pins only during T2- T4 of a read 
cycle and T1 of an INTA cycle, 

SHE/87 I Bus High Enable: The 80150 uses the SHE SIgnal from the processor to determine 
whether to respond with data on the upper or lower data pins, or both, The signal IS 
active LOW, SHE IS latched by the 80150 on the trailing edge of ALE, It controls the 
80150 output data as shown, 

SHE Ao 
0 0 Word on AD1S-ADo 

, 

0 1 Upper byte on AD15 - ADa 
1 . 0 Lower byte on ADrADo 
1 1 Upper byte on ADrADo 

82,81,80 I Status: For the 80150, the status p,ns are used as Inputs only, 80150encoding follows 

82 8 1 80 

0 0 0 INTA 
0 0 1 lORD 
0 1 0 10WR 
0 1 1 PassIve 
1 0 0 InstructIon fetch 
1 0 1 MEMRD 
1 1 X Passive 

3-221 210705-003 



infer 80150/80150-2 . 
iAPX 86150, 88/50, 186/50, 188/50 

Table 1. 80150 Pin Description (Continued) 

Symbol Type Name and Function 

ClK I Clock: The system clock provides the basIc timing for the processor and bus controller. 
It is asymmetrrc with a 33% duty cycle to provide optimized Internal timing. The 80150 
uses the system clock as an Input to the SYSTICK and BAUD timers and to synchronize 
operation with the host CPU 

INT a Interrupt: INT is HIGH whenever a valid Interrupt request IS asserted It IS normally used 
to Interrupt the CPU by connecting it to INTR 

-~ 

IRrlRo I Interrupt Requests: An Interrupt request can be generated by raising an IR input (lOW 
to HIGH) and holding It HIGH until it IS acknowledged (Edge-Trrggered Mode). or just by a 
HIGH level on an IR input (level-Trrggered Mode) 

ACK a Acknowledge: This line is lOW whenever an 80150 resource is being accessed. It is 
also lOW during the first INTA cycle and second INTA cycle if the80150 is supplying 
the interrupt vector information. This signal can be used as a bus ready acknowl-
edgement and lor bus transceiver control. 

MEMCS I Memory Chip Select: This Input must be drrven lOW when a kernel prrmltlve IS being 
fetched by the CPU AD13-ADo are used to select the instruction. 

lacs I Input/Output Chip Select: When this input is Ibw, during an lORD or IOWR cycle, the 
80150's kernel primitives are accessing the appropriate peripheral function as speci· 
fied by the following table: 

BHE A3 A2 A1 Ao 

0 X X X X Passive 

I X X X X 1 Passive 
X 0 1 X X P<lsslve 
1 0 0 X 0 Interrupt Controller 
1 1 0 0 0 Systlck Timer 
1 1 0 1 0 Delay Counter 
1 1 1 0 0 Baud Rate Timer 
1 1 1 1 0 Timer Control 

LlR a Local Bus Interrupt Request: This signal IS lOW when the Interrupt request IS for a 
non-slave Input or slave input programmed as being a local slave. 

Vee Power: Vee IS the +5V supply pin 

Vss Ground: VSS IS the ground Pin 

SYSTICK a System Clock Tick: Timer o Output 

DELAY a DELAY Timer: Output of timer 1 

BAUD a Baud Rate O:enerato/': 8254 Mode 3 compatible output. Output of 80150 Timer 2. 

The 80150 breaks new ground in operating system 
software-on-silicon components. I't is unique 
because it is the first time that an industry­
standard personal/small business computer 
operating system is being put in silicon. The 
80150 contains Digital Research's CP/,tv1-86 
operating system, which is designed for Intel's 
line of software- and interface-compatible iAPX 
86, 88, 186, and 188 microprocessors. Since the 
entire CP/M-86 operating system is contained on 
the chip, it is now possible to design a diskless 
computer that runs proven and commonly 
available applications software. The 80150 is a 

true o'perating system extension to the host 
microprocessor, since it also integrates key 
operatfng system-related peripheral functions 
onto the chip. 

MODULAR DESIGN 
Based on a proven, modular design, the system in­
cludes the: 

• CCP: Console Command Processor 

The CCP is the human' interface to the 
operating system and performs decoding and 

3-222 210705-003 



intel 80150/80150-2 
IAPX 8&'50, 88/50, 186/50, 188/50 ~[Q)'\Il~[N']©jg n[N']IF@IRlIi"iI~li'n@[N'] 

execution of user commands. 

• BOOS: Basic Disk Operating System 

The BOOS Is the logical, Invariant portion of the 
operating system; it supports a named file 
system with a maximum of 16 logical drives, 
containing up to 8 megabytes each for a poten­
tial of 128 megabytes of on-line storage. 

• BIOS: Basic Input/Output System 

The physical, variant portion of the operating 
system, the BIOS contains the system­
dependent input/output device handlers. 

CP/M* COMPATIBILITY 
CP/M-86 files are completely compatible with 
CP/M for 8080- and 8085-based microcomputer 
systems. This simplifies the conversion of soft· 
ware developed under CP/M to take full advantage 
of iAPX 86, 88, 186, 188-based systems. 

The user will notice no significant difference be­
tween CP/M and CP/M-86. Commands such as 
DIR, TYPE, REN, and ERA respond the same way' 
in both systems. 

CP/M·86 uses the iAPX 86, 88, 186, 188 registers 
corresponding to 8080 registers for system call 
and return parameters to further simplify software 
transport. The 80150 allows application code and 
data segments to overlap, making the mixture of 
code and data that often appears in CP/M applica· 
tions acceptable to the iAPX 86, 88, 186, 188. 

Unique Capabilities of CP/M·86 In Silicon' 
1. CP/M-86 on-a-chip reduces software develop­

ment required by the system designer. It can 
change the implementation of the operating 
system into the simple inclusion of the 80150 
on the CPU board. 

As described later, the designer can either 
simply incorporate the Intel chip without the 
need for writing even a single line of additional 
code, or he can add additional device drivers by 
writing only the small amount of additional 
code required. 

2. The 80150 is the most cost·effective way to im­
plement CP/M-86 in a microcomputer. The in­
tegration of CP/M-86 with the 16K bytes of 
system memory it requires, the two boot ROMS 
required in a diskette-based CP/M-86, and the 
on-chip peripherals (interrupt controller and 
timers) lead to savings in software, parts cost, 
board space, and interconnect wiring. 

3. The reliability of the micrOCOmputer is in-

creased significantly. Since CP/M-86 is now 
always in the system as a standard hardware 
operating system, a properly functioning 
system diskette is not required. CP/M-86 in 
hardware can no longer be overwritten acciden- . 
tally by a runaway program. System reliability 
is enhanced by the decreased dependence on 
floppy disks and fewer chips and interconnec­
tions required by the highly integrated 80150. 

4. The microcomputer system boots up CP/M-86 
on power-on, rather than requiring the user to 
go through a complicated boot sequence, thus 
'Iowering the user expertise required. 

5. Diskless CP/M-based systems are now easy to 
design. Since CP/M is already in the microcom­
puter hardware, there is no need for a disk drive 
in the system if it is not desired. Without a disk 
drive, a system is more portable, simpler to use, 
less costly, and more reliable. 

6. The administrative costs associated with 
distributing CP/M-86 are eliminated. Since 
CP/M-86 is now resident on the 80150 in the 
microcomputer system, there is no end-user 
licensing required nor is there any serialization 
requirement for the 80150 (because no CP/M 
diskette is used). 

7. End-users will value having their CP/M 
operating system resident in their computer 
rather than on a diskette. They will no longer 
have to back up the operating system or have a 
diskette working properly to bring the system 
up in CP/M, increaSing their confidence in the 
integrity, reliability, and usability of the system. 

80150 FUNCTIONAL DESCRIPTION 
The 80150 is a processor extension that is fully 
compatible with the 8086, 8088, 80186, and 80188 
microprocessors. When the 80150 is combined 
with the microprocessor, the two-chip set is 
called an Operating System Processor and is 
denoted as the iAPX 86/50, 88/50,186/50, or 188/50. 
The basic system configuration is shown in 
Figure 1. The 80150 connects directly to the multi­
plexed address/data bus and runs up to 8 MHz 
without wait states. 

A. Hardware. Figure 3 is a functional diagram of 
the 80150 itself. CP/M-86 is stored in the 
16K-bytes of control store. The timers are com­
patible with the standard 8254 timer. The Inter­
rupt controller, with its eight programmable in­
terrupt inputs and one interrupt output, is 
compatible with ,the 8259A Programmable In­
terrupt Controller. External slave 8259A inter-

·CP/M IS a registered trademark of Digital Research. Inc 

3-223 210705-003 



80150/80150-2 
iAPX 86150, 88/50, 186/50, 188/50 &'[Q)WLi'iJ~©~ O[l::!]!F@rru~&''TI'O@[I::!] 

r----------------------------------~ 
I OPERATING SYSTEM UNIT j 

I I 
I 

00·7 I 
I I 
I 

'" r I 8 
I 
I PROGRA"4 MABlE 

I INTERRUPT 
I LOGIC I INTERRUPT INP UTS 

I 
I 
I INTERRUPT OUT 
I 

CONTROL I STORE 
I 
I 

l~ 
I 

~ SYSTEM 

: SYSTEM 
TIMER 

: 

~ : 08-15 

I C-
DELAY DELAY 

I TIMER 

I 
I I 
I I 
I I 
I BAUD RATE BAUD RA 
I GENERATOR I 

TE 

I I 
I I 
f------------- -~------ --- --------------1 
I I 
I K- I 
I r- CLOCK 

I 
I DATA 

I 3 
16 BUS ~ STATUS I BUFFER INTERFACE 

< ,L , & AND 

~BUSCON I ADDRESS CONTAOL 

ADDRESS I LATCH 
TROl 

DATA BUS I I 
LOCAL 

I 
~ 

I INTERAU PT 
I I CONTROL UNIT L __________________________________ ~ 

{ITR) 

Figure 3. 80150 Internal Block Diagram 

rupt controllers can be cascaded with the 
80150 to expand the total number of interrupts 
to 57. 

B. Software. Digital Research's version 1.1 of 
CP/M-86 forms the basis of the 80150. CP/M 
consists of three major parts: the Console 
Command Processor (CCP), the Basic Disk 
Operating System (BOOS), and the Basic In­
put/Output System (BIOS). Details on CP/M-86 
are provided in Digital Research's CPIM-86 
Operating System User's Guide and CP}M-86 
Operating System System Guide. 

CCP - Console Command Processor 
Tl)e CCP provi.des all of the capabilities provided 
by Digital Research's CCP. Built-in commands 
have been expanded to include capabilities nor­
mally included as transient utilities on the Digital 
Research CP/M-86 diskette. Commands are pro-

vided to format diskettes, transfer files between 
devices (based on Digital Research's Peripheral 
Interchange Program PIP), and alter and display 
I/O device and file status (based on Digital 
Research's STAT). 

Through User Intervention Points, the standard 
CP/M-86 CCP is enhanced to allow the user to add 
new built-in commands to further customize a 

. CP/M-86 system. 

BOOS - Basic Disk Operating System 
Once the CCP has parsed a command, it sends it 
to the BOOS, which performs system services 
such as managing disk directories and files. 
Some of the standard BOOS functions provide: 

3-224 

Console Status 
Console Input and Output 
List Output . 
Select Drive 
Set Track and Sector 

210705-003 



80150/80150-2 
iAPX 86150, 88/50,. 186/50,. 188/50 

Read/Write Sector 
Load Prog ram 

The BOOS in the 80150 provides the same func­
tions as the standard Digital Research CP/M-86 
BOOS. 

BIOS - Basic Input/Output System 
The BIOS contains the system-dependent I/O 
drivers. The 80150 BIOS offers two fundamental 
configuration options: 

1. A predefined configuration which supports 
minimum cost CP/M-86 microcomputer 
systems and which requires no operating 
system development by the system designer. 

2. An OEM-configurable mode, where the 
designer can choose among several drivers of-

80881808~~<U861801881-_---l 801,0 

fered on the 80150 or substitute or add any ad­
ditional device drivers of his choice. 

These two options negate the potential software­
on-silicon pitfall of inflexibility in system design. 
The OEM can customize the end system as 
desired. 

The predefined configuration offers a choice 
among several peripheral chip drivers included on 
the 80150. Drivers for the following chips are in­
cluded in the 80150 BIOS: 

8251A 

8274 

8255A 

8272A 

Universal Synchronous/ 
Asynchronous Receiver/Transmit­
ter (USART) 
Multi-Protocol Serial Controller 
(MPSC) 
Programmable Parallel Interface 
(PPI) 
Floppy Disk Controller 

7220 Bubble Memory Controller 

, 
FLOPPY DISK 

I 
8272A 

ADDRESSIDATA BUS 

8251A 8255A 

I I 
CONSOLE PRINTER 

Figure 4_ Predefined Configuration 

3-225 210705-003 



80150/80150·2 
IAPX 86150, 88/50, 186/50, 188/50 

Even in the predefined configuration, the system 
designer (or end user, if the system designer 
desires) may select parameters such as the baud 
rates for the console and printer, and the floppy 
disk size (standard 8" or 5'!." mini-floppy) and 
format (FM single density or MFM double density, 
single-sided or double-sided). 

Drivers for the 80150 on-chip timers and interrupt 
controller are also included in the BIOS. 

The 80150 takes advantage 'of the 80186 and 80188 
on-chip peripherals in an iAPX 186/50 or 188/50 
system. For example, the integrated DMA controller is 
used. Also fully utilized are the integrated memory chip 
selects and I/O chip selects. 

Since all microcomputer configurations cannot 
be anticipated, the OEM-configurable mode 
allows the system designer to use any set of 
peripheral chips desired. This configuration is 
shown in Figure 5. 

By simply changing the jump addresses in a con­
figuration table, the designer can also gain the 
flexibility of adding custom BIOS drivers for other 

peripheral chips, such as bubble memories or 
more complex CRT controllers. These drivers 
would be stored in memory external to the 80150 
itself. By providing the configurability option, the 
80150 is applicable to a far broader range of 
designs that it would be with an inflexible BIOS. 

MEMORY ORGANIZATION 
When using the predefined configuration of the 
80150 BIOS, the 80150 must be placed in the top 
16K of the address space of the microprocessor 
(starting at location FCOOOH) so that the 80150 
gains control when the microprocessor is reset. 
Upon receipt of control, the 80150 writes a con­
figuration block into the bottom of the micro­
processor's address space, which must be in 
RAM. The 80150 uses the area after the inter­
rupt vectors for system configuration information 
and scratch-pad storage. 

When using the OEM-configurable mode of the 
80150 BIOS; the 80150 is placed on any 16K boun-

FLOPPY DISK 

8088/808~~CU86/80188 t-- 80150 

I 
8272A 

ADDRESS/DATA BUS 

8251A 

I 
ASYNCHRONOUS 

COMMUNICATIONS. 
, CONSOLE. 
SERIAL PRINTER 

8255A 

I 
KEYBOARD. 

PARALLEL PRINTER 

Figure 5_ OEM Configurable System 

3-226 

8274 

I 

OTHER 
PERIPHERALS 

SYNCHRONOUS LINE. 
SERIAL PRINTER. 

CONSOLE 

210705-003 



80150/80150-2 
IAPX 86150, 88/50, 186/50, 188/50 

dary of memory except the highest (FCOOOH) or 
lowest (OOOOOH). The user writes interface code (in 
the form of a simple boot ROM) to incorporate and 
link additional features and changes into the 
standard 80150 environment. The configuration 
block may be located as desired in the address 
space, and its size may vary widely depending on 
the application. 

Memory Disk and Bubble Memories 
A unique capability offered by the 80150 is the 
Memory Disk. The Memory Disk consists of a 
block of RAM whose size can be selected by the 
designer. The Memory Disk is treated by the 
BOOS as any standard floppy disk, and is one of 
the 16 disks that CP/M can address. Thus files can 
be opened and closed, programs stored, and 

. statistics gathered on the amount of Memory Disk 
space left. 

The 80150 also contains software drivers for 7220 
bubble memory controller. Use of a bubble memory 
board as a substitute for one floppy disk drive is directly 
supported. 

elK 

52 elK 
SO 8288 

B086 

BHE 
A19 

INT ADO 

The Memory Disk opens the possibility of a por· 
table low· cost diskless microcomputer or network • 
station. Applications software can be provided in 
a number of ways: 

a. telephone lines via a modem. 
b. ROM·based software. 
c. a network. 
d. bubble memory based software. 
e. low· cost cassettes. 

TYPICAL SYSTEM CONFIGURATION 
Figure 6 shows the processing cluster of a 
"typical" iAPX 86/50 or iAPX 88/50 OSP system. 
Not shown are subsystems likely to vary with the 
application. The configuration includes an 8086 
(or 8088) operating in maximum mode, an 8284A 
clock generator and an 8288 system controller. 
Note that the 80150 is located on the CPU side of 
any latches or transceivers. 

Timers 
The Timers are connected to the lower half of the 
data bus and are addressed at even addresses. 
The timers are read as two successive bytes, 

CONTROL 

ADDRESS 

8286 
DEN 

BHE 
A19 

AO 

015 

DO 

LOCAL 
AND 

SYSTEM 
RESOURCES 

--~=i-j INTERRUPT REQUESTS 

Figure 6. Typical OSP Configuration 

3-227 210705-003 



.80150/80150-2 
iAPX 86150, 88/50, 186/50, 188/50 ~[Q)W~Il:il©~ OIl:il~@lF.l~~'iJ'O@1l:il 

always LSB followed by MSB. The MSB is always 
latched on a read operation and remains latched 
until read. Timers are not gatable. An external 
8254 Programmable Interval Timer may be added 
to the system. 

Baud Rate Generator 
The baud rate generator operates like an 8254 
(square wave mode 3). Its output, BAUD, is initially 
high and remains high until the Count Register is 
loaded. The first falling edge of the clock after the 
Count Register is loaded causes the transfer of 
the internal counter to the Count Register. The 
output stays high for N/2 [(N + 1)/2 if N is odd] and 
then goes low for N/2 [(N - 1)/2 if N is odd]. On the 
falling edge of the clock which signifies the final 
count for the output in low state, the output 
returns to high state and the Count Register is 
transferred to the internal counter. The baud rates 
·can vary from 300 to 9600 baud. 

The baud rate generator is located at OCH (12), 
relative to the 16·byte boundary in the I/O space in 
which the 80150 component is located. The timer 
control word is located at relative address, 
OEH(14). Ti mers are addressed with 10CS =0. 
Timers 0 and 1 are assigned to use by the OSP; 
and should not be altered by the user. 

The 80150 timers are subset compatible with 8254 
timers. 

I nterrupt Controller 
The Programmable Interrupt Controller (PIC), is 
also an integral unit of the 80150. Its eight input 
pins handle eight vectored priority interrupts. One 
of these pins must be used for the SYSTICK time 
function in timing waits, using an external con· 
nection as shown. During the 80150 initialization 
and configuration sequence, each 80150 interrupt 
pin is individually programmed as either level or 
edge sensitive. External slave 8259A interrupt 
controllers can be used to expand the total 
number of interrupts to 57. 

In addition to standard PIC functions, the 80150 
PIC unit has an LlR output signal, which when low 
indicates an interrupt acknowledge cycle. LlR = 0 
is provided to control the 8289 Bus Arbiter 
SYSB/RESB pin. This will avoid the need of reo 
questing the system bu~s to acknowledge local 
bus non-slave interrupts. The user defines the in­
terrupt system as part of the configuration. 

INTERRUPT SEQUENCE 
The interrupt sequence is as follows: 

1. One or more of the interrupts is set by a low· 
to-high transition on edge-sensitive IR inputs 
or by a high input on level-sensitive IR inputs. 

2. The 80150 evaluates these requests, and 
sends an INT to the CPU, if appropriate. 

3. The CPU acknowledges the INT and responds 
with an interrupt acknowledge cycle which is 
encoded in S2 - SO, 

4. Upon receiving the first interrupt acknowledge 
from the CPU, the highest-priority interrupt is 
set by the 80150 and the corresponding edge 
detect latch is reset. The 80150 does not drive 
the address/data bu~ during this bus cycle but 
does acknowledge the cycle by making 
ACK = 0 and sending the LlR value for the IR 
input being acknowledged. 

5. The CPU will then initiate a second interrupt 
acknowledge ·cycle. During this cycle, the 
80150 will supply the cascade address of the 
interrupting input at T 1 on the bus and also 
release an 8-bit poi nter onto the bus if ap­
propriate, where it is read by the CPU. If the 
80150 does supply the pOinter, then ACK will 
be low for the cycle. This cycle also has the 
value LlR for the IR input being acknowledged. 

6. This completes the interrupt cycle. The ISR bit 
remains set until an appropriate EXIT INTER­
RUPT primitive (EOI command) is called at the 
end of the Interrupt Handler. 

3-228 210705-003 



80150/80150-2 
iAPX 86150, 88/50, 186/50, 188/50 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ...•.... O'C to 70'C 
Storage Temperature ..... . -65'C to 150'C 
Voltage on Any Pin With 

Respect to Ground -1.0V to + 7V 
Power DISSipation 1 0 Watts 

D.C. CHARACTERISTICS (TA = o'C to 70'C, Vee = 4 5 to 5.5V) 

Symbol Parameter Min. 

Vil Input low Voltage - 0.5 

V,H Input High Voltage 2.0 

Val Output low Voltage 

VOH Output High Voltage 24 

Icc Power Supply Current 

III Input leakage Current 

IlA IR Input load Current 

ILO Output leakage Current 

VCLl Clock Input low 

VCHI Clock Input High 3.9 

CIN Input Capacitance 

Cia 1/0 Capacitance 

Icu Clock Input leakage Current 

·NOTICE: Stresses above those listed under Absolute 
Maximum Ratings may cause permanent damage to the 
device. This is a stress rating only and functional operation 
of the device at these or any other conditions above those 
indicated In the operational sections of this specification 
IS not implied. Exposure to absolute maximum rating con­
ditions for extended period may affect deVice reliability 

Max. "Units Test Conditions 

0.8 V 

Vcc +.5 V 
, 

0.45 V 10l = 2mA 

V 10H = -400~A 
200 mA TA = 25 C 

10 ~A 0< VIN < Vcc 

10 ~A VIN = Vcc 
-300 ~A V,N = 0 

10 ~A 45" V,N "Vcc 

0.6 V 

V 

10 pF 

15 pF 

10 ~A V,N = Vcc 
150 ~A V,N = 25V 
10 ~A V,N = OV 

A.C. CHARACTERISTICS (TA = 0-70'C, Vcc = 4.5-55 Volt, Vss = Ground) 

80150 80150-2 
Symbol Parameter Min. Max. Min. Max. Units Test Conditions 

Tclcl ClK Cycle Period 200 - 125 - ns 

TclcH ClK low Time 90 - 55 - ns 

TcHcl ClK High Time 69 2000 44 2000 ns 

TSVCH Status Active Setup Time 80 - 65 - ns 

TcHsv Status Inactive Hold Time 10 - 10 - ns 

TsHcl Status Inactive Setup Time 55 - 55 - ns 

TclsH Status Active Hold Time 10 - 10 - ns 

TASCH Address Valid Setup TIme 8 - 8 - ns 

TCLAH Address Hold Time 10 - 10 - ns 

Tcscl Chip Select Setup Time 20 - 20 - ns 

TcHcs Chip Select Hold Time 0 - 0 - ns 

TDSCl Write Data Setup Time 80 - 60 - ns 

TCHDH Write Data Hold Time 10 - 10 - ns 

TJlJH IR low Time 100 - 100 - ns 

TClDV Read Data Valid Delay - 140 - 105 ns Cl - 200 pF 

TClDH Read Data Hold Time 10 - 10 - ns 

TClDX Read Data to Floating 10 100 10 100 ns 

TclcA Cascade Address Delay Time - 85 - 65 ns 

3-229 210705-003 



80150/80150-2 
iAPX 86150, 88/50, 186/50, 188/50 &.@W&.OO©~ OOOIF@~IMI£'iiO@OO 

A.C. CHARACTERISTIC (Continued) 

80150 80150-2 

Symbol Parameter Min. Max. Min. Max. Units Notes 
TCLCF Cascade Addresse Hold Time 10 - 10 - ns 

T,AVE INTA Status t Acknowledge - 80 - 80 ns 

TCHEH Acknowledge Hold Time 0 - 0 - ns 

TCSAK Chip Select to ACK - 110 - 110 ns 

TSACK Status to ACK - 140 - 140 ns 

TAACK Address to ACK - 90 - 90 ns 

TcLoo Timer Output Delay Time - 200 - 200 ns CL = 100pF 

TCLoo1 Timer1 Output Delay Time - 200 - 200 ns CL = 100pF 

TJHIH INT Output Delay - 200 - 200 ns 

T,AcL IR Input Set Up 20 20 ns 

WAVEFORMS 

A.C. 

ClK ~ / / \ 
TCLOD 

-I 
X SVST1CK. 

DELAY. BAUD 

.R -=t TJLJH [ 

'NT 

--, TJH.H y= __ _ 

3-230 210705-003 

/ 



80150/80150-2 inter IAPX 86150, 88/50, 186/50, 188/50 

WAVEFORMS 
A.C. 

T4 TI T2 I 

elK 
II TCHCl TeLCH I 

/ . . .. --
~~ ~I 

' TCLCl 

~1 ---- - --------
52 51 5 0 

\ I 

I 
F~I ~ 
f 

BrIE A A VALID x--- --
'T' I lCSel --

SHE. AD 

"'TS 

r- rOSCL E CYCLE 
- ----, 

I ADDRESS VALID 'fJtfM.. l' --I I ....... TCSAK 

TAACK t 
I 

MEMC 

WRIT 

AD 

o CYCLE 

~I J 
REA 

FLOAT 
ADDRESS VALID 

K I 
I 

TSACK \ 
TACYCLE I-,ClCF, 2NDtN 

FLOAT I~ 
-ADo ~ CD CASCADE ADDRESS 

K 

IR 

TIAVE 

l 
\ 
\ 

TIAVE J 
NOTES 
1 CASCADE ADDRESS PRESENTED ON ADS A09 AND A010 CORRESPONDING TO CASO CASt 

AND CAS2 RESPECTIVELY A011-A01 5 LINES ARE ACTIVE AND HAVE UNKNOWN VALUES ADO-A07 
ARE TRISTATE 

2 POINTER VALUE IS ACTIVE ONLY IF POINTER IS GENERATED FROM THE 80150 AND NOT FROM 
EXTERNAL SLAVE UNIT 
ACTIVE LOWDNlY WHEN POINTER DATA IS BEING SUPPLIED BY T-HF 80150 
LOW ONLY FOR LOCAL INTERRUPT 

3-231 

I 

G> 

T3 I 
TW 

/ 
I :'He~ 

/ 

i 
I 

I 

I 
I 

WRITE DATA VALID 

TelDX 
relDV ~H~ 

READ DATA VALID 1!1 

POINTER ® 

® 

T' 

I 

r:;: 
/ 

A 
I 

I 

j~ 
fLOAT 

~ 

FLOAT 

I 
-------I r-rCHEH 

I ---v--- TCHEH 

210705-003 



828218283 
OCTAL LATCH 

• Address Latch for iAPX 86,88,186, 
188, MCS®·80, MCS·85 , MCS·48 
Famlies 

• High Output Drive Capability for 
Driving System Data Bus 

• Fully Parallel 8·Blt Data Register and 
Buffer 

• Transparent during Active Strobe 

• 3·State Outputs 

• 20·Pin Package with 0.3" Center 

• No Output Low Noise when Entering 
or Leaving High Impedance State 

• Available in EXPRESS 
- Standard Temperature Range 
- Extended Temperature Range 

The 8282 and 8283 are 8-bit bipolar latches with 3-state output buffers_ They can be used to implement latches, buffers, 
or multiplexers. The 8283 inverts the input data at its outputs while the 8282 does not. Thus, all of tbe principal periph­
eral and input/output functions of a microcomputer system can be implemented with these devices. 

1 
/' 

&--

Figure 1. Logic Diagrams Figure 2. Pin Configurations 

3-232 



intJ 

Pin 

STB 

OE 

010-017 

000-007 
(8282) 

000-5(j7 
(8283) 

8282/8283 

Table 1. Pin Description 

Description 

STROBE (Input). STB is an input control 
pulse used to strobe data at the data input 
pins (Ao-A7) into the data latches. This 
signal is active HIGH to admit Input data. 
The data is latched at the H1GH to LOW 
transition of STB. 

OUTPUT ENABLE (Input). <5E Is an input 
control signal which when active LOW 
enables the contents of the data latches 
onto the data output pin (Bo-B7). OE being 
inactive HIGH forces the output buffers to 
their high impedance state. 

DATA INPUT PINS (Input). Data presented 
at these pins satisfying setup lime reo 
qulrements when STB is strobed and 
latched into the data input latches. 

DATA OUTPUT PINS (Output). When OE is 
true, the data in the data latches Is pre-
sented as inverted (8283) or non·inverted 
(8282) data onto the data output pins. 

FUNCTIONAL DESCRIPTION 

The 8282 and 8283 octal latches are 8-bit latches with 
3-state output buffers. Data having satisfied the setup 
time requirements is latched into the data latches by 
strobing the STB line HIGH to LOW. Holding the STB 
line in its active HIGH state makes the latches appear 
transparent. Data is presented to the data output pins by 
activating the OE input line. When OE is inactive HIGH 
the output buffers are in their high impedance state. 
Enabling or disabling the output buffers will not cause 
negative·going transients to appear on the data output 
bus. 

3-233 



inter 8282/8283 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under eias ................. O·C to 70·C 
Storage Temperature ............. - 65°C to + 150°C 
All Output and Supply Voltages ........ - 0.5V to + 7V 
All Input Voltages .................. - 1.0V to + 5.5V 
Power Dissipatiol! .......................... 1 Watt 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (Vcc = 5V ±10%, TA = o·c to 700C) 

Symbol Parameter Min. Max. Units Test Conditions 

Vc Input Clamp Voltage -1 V Ic'= -5 rnA 

Icc Power Supply Current 160 rnA 

IF Forward Input Current -0.2 rnA VF = 0.45V 

IR Reverse Input Current 50 ,.A VR = 5.25V 

VOL Output low Voltage .45 V IOL = 32 rnA 

VOH Output High Voltage 2.4 V IOH = -5 rnA 

IOFF Output Off Current ±50 ,.A VOFF = 0.45 to 5.25V 

VIL Input low Voltage 0.8 V Vcc= 5.0V See Nole 1 

VIH Input High Voltage 2.0 V Vcc=5.0V See Note 1 

F= 1 MHz 
CtN Input Capacitance, 12 pF VSIAS =2.5V, Vcc=5V 

TA=25°C 
NOTE: 

1. Output loading ioL = 32 mA, IOH = -5. mA, CL = 300 pF.' 

A.C. CHARACTERISTICS (Vcc = 5V ±100/o, TA = o·c to 70·C (See Note 2) 
loading: Outputs-IOl = 32 rnA, IOH = -5 rnA, Cl = 300 pF') 

Symbol Parameter Min. Max. Units Test Conditions 

TIVOV Input to Output Delay (See Note 1) 
-Inverting 5 22 ns 
-Non·lnverting 5 30 ns 

TSHOV STe to Output Delay 
-Inverting 10 40 ns 
-Non-Inverting 10 45 ns 

TEHOZ Output Disable Time 5 18 ns 

TElOV Output Enable Time 10 30 ns 

TIVSl Inpuno STe Setup Time 0 ns 

TSLIX Input to STe Hold Time 25 ns 

TSHSl STe High Time 15 ns 

TOlOH Input, Output Rise Time 20. ns From 0.8V to 2.0V 

TOHOl Input, Output Fall Time 12 ns From 2.0V to 0.8V 

NOTE: 'CL = 200 pF for plastic 828218283. 
1. See waveforms and test load circuit on following page. 
2. For Extended Temperature EXPRESS the Preliminary Maximum Values are TIVOV = 25 vs 22, 35 vs 30; 

TSHOV = 45, 55; TEHOZ = 25; TElOV ,= 50. 

3·234 



8282/8283 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

24 -v, 5 _ TEST POINTS _, sV-
04S~ ~ 
AC TESTING. INPUTS ARE DRIVEN AT24V FOR A LOGIC "1" ANDO.45V FOR 
A LOGIC "0" TIMING MEASUREMENTS ARE MADE AT 1 5V FOR BOTH A 
LOGIC "1" AND "0" INPUT RISE AND FALL TIMES ARE MEASURED FROM 
o BV TO 2 OV AND ARE DRIVEN AT 5ns ± 2ns 

OUTPUT TEST LOAD CIRCUITS 

1.5V -

332 

OUT 0---r 300pF" 

3·STATE TO VOL 

"200 pF for plastic 8282/8283. 

1.5V 

1802 

OUTC>--

I300PF" 

3·STATE TO VOH 

3-235 

2.14V 

52.72 

OUT 0--r :iOOpF" 

SWITCHING 



intJ 828218283 

WAVEFORMS 

INPUTS 
\V \V 
/1\ /1\ 
!---TIVSL- !--TSLIX. 

V \ 
STB 

--.J TSHSL- \. 

, 
V \ 

, / 1\ -
!-TIVOV4 ---- ---t= VOH-.W 

\V 1>-------,,<1\. 
SEE NOTE 1 

VOL +.W 

!--TSHOV-

OUTPUTS 

NOTE: 1. OUTPUT MAY BE MOMENTARILY INVALID FOLLOWING THE HIGH GOING STB TRANSITION. 

2. ALL TIMING MEASUREMENTS ARE MADE AT 1.SV UNLESS OTHERWISE NOTED. 

50 50 

40 40 

~ ~ 
z 30 z s i III 
D 

20 

10 

pF LOAD pFLOAD 

Output Dele, va. Capacitance 

3-236 



8284A/8284A·1 
CLOCK GENERATOR AND DRIVER FOR 

iAPX 86, 88 PROCESSORS 

• Generates the System Clock for the 
iAPX 86, 88 Processors: 
5 MHz, 8 MHz with 8284A 
10 MHz with 8284A-1 

• Uses a Crystal or a TT.L Signal for 
Frequency Source 

• Provides Local READY and MULTIBUS® 
READY Synchronization 

• 18·Pin Package 

RES 

X1 
XTAl 

OSCillATOR 
X2 

Fie 

EFI 

CSYNC 

RDY1 

AEN1 

RDY2 
CKt 

AEN2 D Q 

FF1 

ASYNC 

0 

~3 

~284A/8284A-1 Block Diagram 

3-237 

• Single +5V Power Supply 

• Generates System Reset Output from 
Schmitt Trigger Input 

• Capable of Clock Synchronization with 
Other 8284As 

• Available in EXPRESS 
- Standard Temperature Range 
- Extended Temperature Range 

D 
RESET 

OSC 

PClK 

RDY1 

READY 

ClK 

READY 

Vee 

X2 

ASYNC 

EFI 

Fie 

OSC 

RESET 

8284A/8284A-1 Pin 
Configuration 



8284A/8284A-1 

Table 1. Pin Description 

Symbol Type Name and Function 

AEN1, I Address Enable: AEN is an active LOW 
AEN2 signal. AEN serves to qualify its respecti~e 

Bus Ready Signal (RDYI or RDY2). AENI 
validates RDYI while AEN2 validates RDY2. 
Two AEN signal inputs are useful in system 
configurations which permit the processor to 
access two Multi-Master System Busses. In 
non Multi-Master configurations the AEN 
signal inputs are tied true (LOW). 

RDY1, I Bus Ready: (Transfer Complete). ROY is an 
RDY2 active HIGH signal which is an indication from 

a device located on the system data bus that 
data has been received, or is available. RDYI 
is qualified by AENI while RDY2 is qualified 
by AEN2. 

ASYNC I Ready Synchronization Select: ASYNC is an 
input which defines the synchronization 
mode of the READY logic. When ASYNC is 
low, two stages of READY synchronization 
are provided. When ASYNC is left open 
(internal pull-up resistor is provided) or HIGH 
a single stage of READY synchronization is 
provided. 

READY 0 Ready: READY is an active HIGH signal 
which is the synchronized ROY signal input. 
READY is cleared after the guaranteed hold 
time to the processor has been met. 

Xl,X2 I Crystal In: Xl and X2 are the pins to which a 
crystal is attached. The crystal frequency is 3 
times the desired processor clock frequency. 

F/C I Frequency/Crystal Select: F/C is a strapping 
option. When strapped LOW, FIG permits the 
processor's clock to be generated by the crys-
tal. When F/Gis strapped HIGH, CLK is gener-
ated from the EFI input. 

EFI I External Frequency: When F/C is strapped 
HIGH, CLK is generated from the input fre-
quency appearing on this pin. The input 
signal is a square wave 3 times the frequency 
of the desired CLK output. 

FUNCTIONAL DESCRIPTION 

General 
The 8284A is a single chip clock generator/driver for the 
iAPX 86, 88 processors. The chip contains a crystal-con­
trolled oscillator, a divide-by-three counter, complete MULTI BUS 
"Ready" synchronization and reset logic. Refer to Figure 1 
for Block Diagram and Figure 2 for Pin Configuration. 

Oscillator 
The oscillator circuit of the 8284A is designed primarily 
for use with an external series resonant, fundamental 
mode, crystal from which the basic operating frequency 
is derived. 

The crystal frequency should be selected at three times 
the required CPU clock. XI and X2 are the two crystal 
input crystal connections. For the most stable operation 

Symbol Type Name and Function 

CLK 0 Processor Clock: CLK is the clock output 
used by the processor and all devices which 
directly connect to the processor's local bus 
(i.e., the bipolar support chips and other MOS 
devices). ClK has an output frequency which 
is Y3 of the crystal or EFI input frequency and a 
Y3 duty cycle. An output HIGH of 4.5 volts 
(Vcc= 5V) is provided on this pin to drive MOS 
devices. 

PCLK 0 Peripheral Clock: PCLK is a TTL level pe-
ripheral clock signal whose output frequency 
is Y2 that of CLK and has a 50% duty cycle. 

OSC 0 Oscillator Output: OSC is the TTL level out-
put of the internal oscillator circuitry. Its fre-
quency is equal to that of the crystal. 

RES I Reset In: RES is an active LOW signal which 
is used to generate RESET. The 8284A 
provides a Schmitt trigger input so that an RC 
connection can be used to establish the 
power-up reset of proper duration. 

RESET 0 Reset: RESET is an active HIGH signal which 
is used to resetthe 8086 family processors. Its 
timing characteristics are determined by 
RES. 

CSYNC I Clock Synchronization: CSYNC is an active 
HIGH signal which allows multiple 8284As to 
be synchronized to provide clocks that are in 
phase. When CSYNC is HIGH the internal 
counters are reset. When CSYNC goes LOW 
the internal counters are allowed to resume 
counting. CSYNC needs to be externally syn-
chronized to EFI. When using the internal os-
cillator CSYNC should be hardwired to 
ground. 

GND Ground, 

Vee Power: +5V supply. 

. of the oscillator (OSC) output circuit, two series resistors 
(Rl = R2 = 510 fl) as shown in the waveform figures are 
recommended. The output of the oscillator is buffered and 
brought out on OSC so that other system timing signals 
can be derived from this stable, crystal-controlled source. 

For systems which have a Vee ramp time'" 1 Vlms and/or 
have inherent board capacitance between XI or X2, ex­
ceeding 10 pF (not including 8284A pin capacitance), the 
two 510fl resistors should be used. This circuit provides 
optimum stability for the OSCIllator in such extreme condi­
tions. It is advisable to limit stray capacitances to less than 
10 pF on XI and X2 to minimize deviation from operating 
at the fundamental frequency. 

If EFI is used and no crystal is connected, it is recommended 
that X1 or X2 should be tied to Vcc through a 510n resistor to 
prevent the oscillator from free running which might produce 
HF noise and additional Icc current. 

3-238 



8284A/8284A-1 

Clock Generator 
The clock generator consists of a synchronous divide­
by-three counter with a special clear input that inhibits 
the counting. This clear input (CSYNC) allows the out­
put clock to be synchronized with an external event 
(such as another 8284A clock). It is necessary to syn­
chronize the CSYNC input to the EFI clock external to 
the 8284A. This is accomplished with two Schottky' flip­
flops. The counter output is a 33% duty cycle clock at 
one-third the input frequency. 

The FIG input is a strapping pin that selects either the 
crystal oscillator or the EFI input as the clock for the +3 
counter. If the EFI input is selected as the clock source, 
the oscillator section can be used independently for 
another clock source. Output is taken from OSC. 

Clock Outputs 
The ClK output is a 33% duty cycle MOS cloQk driver 
designedto drive the iAPX 86, 88 processors directly. 
PClK is a TTL level peripheral clock Signal whose out­
put frequency is V2 that of ClK. PClK has a 50% duty 
cycle. . 

Reset Logic 
The reset logic provides a Schmitt trigger input (RES) 
and a synchronizing flip-flop to generate the reset 
timing. The reset signal is synchronized to the falling 
edge of ClK. A simple RC network can be used to 
provide power-on reset by utilizing this function of the 
8284A .. 

READY Synchronization 
Two READY inputs (RDY1, RDY2) are provided to accom­
modate two Multi-Master system busses. Each input 
has a qualifier (AEN1 and AEJii2, respectively). The Am 
signals validate their respective ROY signals. If a Multi-

CLOCK 
SYNCHRONIZE >--+----H 0 Q 

Master system is not being used the A8il pin should be 
tied lOW. 

Synchronization is required for all asynchronous active­
going edges of either ROY input to guarantee that the 
ROY setup and hold times are met. Inactive-going edges 
of ROY in normally ready systems do not require syn­
chronization but must satisfy ROY setup and hold as a 
matter of proper system design. 

The ASYNC input defines two modes of READY syn­
chronization operation. 

When ASYNC is lOW, two stages of synchronization 
are provided for active READY input signals. Positive­
going asynchronous READY inputs will first be syn­
chronized to flip-flop one at the rising edge of ClK 
and then synchronized to flip-flop two at the next falling 
edge of ClK, after which time the READY output will go 
active (HIGH). Negative-going asynchronous READY in­
puts will be synchronized directly to flip-flop two at the 
falling edge of CLK, after which time the READY output 
will go i nactive. This mode of operation is intended for use 
by asynchronous (normally not ready) devices in the sys­
tem which cannot be guaranteed by design to meet the 
required ROY setup timing, TR1VCL, on each bus cycle. 

When ASYNC is high or left open, the first READY flip­
flop is bypassed in the READY synchronization logic. 
READY inputs are synchronized by flip-flop two on the 
falling edge of ClK before they are presented to the 
processor. This mode is available for synchronous 
devices that can be guaranteed to meet the required 
ROY setup time. 

ASYNC can be changed on every bus cycle to select the 
appropriate mode of synchronization for each device in 
the system. 

o 
Q 

EFI >-..... -f.>O-~> t ....... _--' 

(TO OTHER 8284As) 

Figure 3. CSYNC Synchronization 

3-239 



8284A/8284A-1 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias ................. O·C to 70·C 
Storage Temperature .............. -65·C to +150·C 
All Output and Supply Voltages ......... -0.5V to + 7V 
All Input Voltages ................... -1.0V to +5.5V 
Power Dissipation .......................... 1 Watt 

-NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (TA=O·C to 70·C, Vcc=5V± 10%) 

Symbol Parameter Min. 

IF Forward Input Current (ASYNC) 
Other Inputs 

IA Reverse Input Current (ASYNC) 
Other Inputs 

Vc Input Forward Clamp Voltage 

Icc Power Supply Current 

VIL Input lOW Voltage 

VIH Input HIGH Voltage 2.0 

VIHR Reset Input HIGH Voltage 2.6 

VOL Output lOW Voltage 

VOH Output HIGH Voltage ClK 4 
Other Outputs 2.4 

VIHA - VILA RES Input Hysteresis 0.25 

A.C_ CHARACTERISTICS (T A= O·C to 70·C, Vcc= 5V ± 10%) 

TIMING REQUIREMENTS 

Symbol Parameter Min. 

tEHEL External Frequency HIGH Time 13 

tELEH External Frequency lOW Time 13 

tELEL EFI Period 33 

XTAl Frequency 12 

tA1VCL RDY1, RDY2 Active Setup to ClK 35 

tA1 VCH RDY1, RDY2 Active Setup to ClK 35 

tA1vCL RDY1, RDY21nactive Setup to ClK 35 

tCLA1X RDY1, RDY2 Hold to ClK , 0 

tAYVCL ASYNC Setup to ClK 50 

tCLAYX ASYNC Hold to ClK 0 

tA1VA1V AEN1, AEN2 Setup to RDY1, RDY2 15 

tCLA1X AEN1, AEN2 Hold to ClK 0 

tYHEH CSYNC Setup to EFI 20 

tEHYL CSYNC Hold to EFI 10 

tYHYL CSYNCWidth 2·tELEL 

tl1HCL RES Setup to ClK 65 

tCLl1H RES Hold toClK 20 

3-240 

Max. . Units Test Conditions 

-1.3 mA VF=0.45V 
-0.5 mA VF= 0.45V 

50 ,..A VA= Vcc 
50 ,..A VA=5.25V 

-1.0 V Ic= -5mA 

162 mA 

0.8 V 

V 

V 

0.45 V 5mA 

V -1mA 
V -1mA 

V 

Max. Units Test Conditions 

ns 90%-90% VIN 

ns 10%-10% VIN 

ns (Note 1) 

25 MHz 

ns ASYNC= HIGH 

ns ASYNC=lOW 

ns 

ns 

ns 

ns 

ns .-
ns 

ns 

ns 

ns . 
ns (Note 1) 

ns (Note 1) 



8284A/8284A·1 

A.C. CHARACTERISTICS (Continued) 
TIMING RESPONSES 

Symbol Parameter Min. 8284A 

tCLCl ClK Cycle Period 125 

tCHCL ClK HIGH Time (V3 tcLcd + 2 

tCLCH ClK lOW Time (% tcLcd-15 

tCH1CH2 ClK Rise or Fall Time 
tCl2CL1 

tpHPL PClK HIGH Time tCLCL -20 

tPLPH PClK lOW Time tCLCL-20 

tRYlCL Ready InactIve to ClK (See Note 3) -6 

tRYHCH Ready Active to ClK (See Note 2) (2h tcLcd-15 

tCUl ClK to Reset Delay 

tCLPH ClK to PClK HIGH DELAY 

tCLPL ClK to PClK lOW Delay 

tOLCH OSC to ClK HIGH Delay -5 

tOlCL OSC to ClK lOW Delay 2 

tOLOH Output Rise Time (except ClK) 

tOHOl Output Fall Time (except ClK) 

NOTES: 

1. Setup and hold necessary only to guarantee recognition at next clock. 

2. Applies only to T3 and TW states. 

3. Applies only to T2 states. 

Min. 8284A-1 

100 

39 

53 

tCLCL -20 

!eLCL -20 

-8 

53 

-5 

2 

Max. Units Test Conditions 

ns 

ns 

ns 

10 ns 1.0V to 3.5V 

ns 

ns 

ns 

ns 

40 ns 

22 ns 

22 ns 

22 ns 

35 ns 

20 ns From 0.6V to 2.0V 

12 ns From 2.0V to 0.6V 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT/OUTPUT 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC "1" AND 045V 
FOR A LOGIC "0." TIMING MEASUREMENTS ARE MADE AT 1 5V FOR 
BOTH A LOGIC "1" AND "0" INPUT RISE AND FALL TIMES (MEASURED 
BETWEEN 0 av AND 2 OV) ARE 5.± 2 NS 

3-241 

- VL = 2.0BV 

RL = 3250 

DEVICE 
UNDER r-------

TEST ICC 
-= 

CL ~ 100pF FOR ClK 

CL ~ 30pF FOR READY 



WAVEFORMS 

CLOCKS AND RESET SIGNALS 

NAME 

EFI 

OSC 

C~K 0 

PCLK 0 

CSYNC I 

, 8284A/8284A-1 

RESET 0 ______ ~/~--------------~~~t= 
NOTE: A~~ TIMING MEASUREMENTS ARE MADE AT 1.5 VO~TS, UNLESS OTHERWISE NOTED. 

READY SIGNAI.S (FOR ASYNCHRONOUS DEVICES) 

C~K 

RDY1,2 

READY 

tRYHCH tRYLCL 

3-242 



intJ 8284A/8284A-1 

WAVEFORMS (Continued) 

READY SIGNALS (FOR SYNCHRONOUS DEVICES) 

elK 

RDY1,2 

READY 

IRYHCH tRVLCL 

Xl CLK I LOAD I 
24MHZD I (SEE NOTE 1) 

T X2 

FIC 
R, R2 1 

J. 
CSYNC 

- - R 

Clock High and Low Time (Using X1, X2) 

I PULSE I EFI CLK I LOAD I 
GENERATOR J I (SEE NOTE 1) 

Vee 
L FIC 

.,r- CSYNC 

-

Clock High and Low Time (Using EFI) 

3-243 



inter 

NOTES: 
1 Ct.-100pF 
2. CL=30pF 

R, R2 

8284A/8284A-1 

VCC 

nm CLK 

X1 
24MHz CJ READY 

X2 

RDY2 OSC 
FIe 
AEN2 
CSYNC 

Ready to Clock (Using X1, X2) 

hr----I EFI CLK 1----1 

F/~ 

nm 
t---"'1 RDY2 

1IDl2 
CSYNC READY'I------1 

Ready to Clock (Using EFI) 

3-244 

R, = R. = 510(1. 



8286/8287 
OCTAL BUS TRANSCEIVER 

• Data Bus Buffer Driver for iAPX 
86,88,186,188, MCS·80™, MCS·8S™, 
and MCS·48™ Families 

• High Output Drive Capability for 
Driving System Data Bus 

• Fully Parallel 8·Bit Transceivers 

• 3·State Outputs 

• 20·Pin Package with 0.3" Center 

• No Output Low Noise when Entering 
or Leaving High Impedance State 

• Available in EXPRESS 
- Standard Temperature Range 
- Extended Temperature Range 

The 8286 and 8287 are 8-bit bipolar transceivers with 3-state outputs. The 8287 inverts the Input data at its outputs 
while the 8286 does not. Thus, a wide variety of applications for buffering in microcomputer systems can be met. 

AO Vee AO Vee 
Al BO Al So 
A2 Bl A2 51 

B2 A3 ii2 
B3 A4 83 
B4 

BS 

B6 B6 
B7 OE B7 

GND T GND T 

Figure 1. Logic Diagrams Figure 2. Pin Configurations 

3-245 



8286/8287 

Table 1. Pin Description 

Symbol Type Name and Function 

T I Transmit: T is an input control signal used to control the direction of the transceivers. When HIGH, 
it configures the transceiver's Bo-B7 as outputs with Ao-A7 as inputs. T LOW configures Ao-A7 as 
the outputs with Bo-B7 serving as the inputs. 

DE I Output Enable: OE is an input control signal used to enable the appropriate output driver (as 
selected by T) onto its respective bus. This signal is active LOW. 

Ao-A7 I/O Local Bus Data Pins: These pins serve to either present data to or accept data from the processor's 
local bus depending upon the state of the T pin. 

Bo-B7(8286) 1/0 System Bus Data Pins: These pins serve to either present deta to or accept data from the system 
60-87(8287) bus depending upon the state of the T pin. 

FUNCTIONAL DESCRIPTION 

The 8286 and 8287 transceivers are 8-bit transceivers with 
high impedance outputs. With T active HIGH and OE ac­
tive LOW, data at the Ao-A7 pins is driven onto the Bo-B7 
pins. With T inactive LOW and OE active LOW, data at the 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

Bo-B7 pins is driven onto the Ao-A7 pins. No output low 
glitching will occur whenever the transceivers are enter­
ing or leaving the high impedance state. 

24 JS_TEST POINTS -'x= 
0.45 

A C TESTING INPUTS ARE DRIVEN AT2 4V FORA LOGIC "1" ANOO 45V 
FOR A LOGIC "0" THE CLOCK IS DRIVEN AT 4 3V and 025V TIMING 
MEASUREMENTS ARE MADE AT 1 5V FOR BOTH A LOGIC "1" AND "0" 
INPUT RISE AND FALL TIMES ARE 5 ± 2 NS , MEASURED BETWEEN 0 BV 
AND 2 OV 

3-246 



TEST LOAD CIRCUITS 

·200 pF for plastIc 8286/8287 

8286/8287 

2.14V 

,",~~N 
I 3OOP

F' 

SWITCHING 

B OUTPUT 

2.28V 

'"'~"" 
rl00PF 

SWITCHING 

A OUTPUT 

3-247 



inter 8286/8281 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias ................. O·C to 70·C 
Storage Temperature ............. -65·C to + 150·C 
All Output and Supply Voltages ........ - 0.5V to + 7V 
All Input Voltages ....... : .......... - 1.0V to + 5.5V 
Power Dissipation .......................... 1 Walt 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (Vee = +5V ± 1 0%, TA = O°C to 70°C) 

Symbol Parameter Min Max Units Test Conditions 

Ve Input Clamp Voltage -1 V le= -5 mA 

Icc Power Supply Current-8287 130 mA 
-8286 160 rnA 

IF Forward Input Current -0.2 mA VF=0.45V 

IR Reverse Input Current 50 ,..A VR=5.25V 

VOL Output Low Voltage -B Outputs .45 V IOl = 32 mA 
-A Outputs .45 V IOl = 16 rnA 

VOH Outpui High Voltage -B Outputs 2.4 V IOH=-5 rnA 
-A Outputs 2.4 V IOH=-1 mA 

IOFF Output Off Current IF VOFF =0.45V 
IOFF Output Off Current Itl VOFF =5.25V 

V,l Input Low Voltage -A Side 0.8 V Vee= 5.0V, See Note 1 
-B Side 0.9 V Vee= 5.0V, See Note 1 

V,H Input High Voltage 2.0 V Vee= 5.0V, See Note 1 

F= 1 MHz 
C 'N Input Capacitance 12 pF VBIAS =2.5V, Vee=5V 

TA= 25·C 

NOTE: 
1. B Outputs-IOL = 32 mA, IOH = -5 mA, Ct. = 300 pP: A Outputs-IOl = 16 mA, 10H = -1 mA, Cl = 100 pF. 

A.C. CHARACTERISTICS (Vee = +5V ±10%, TA = O°C to 70°C) (See Note 2) 

Loading: B Outputs-Iol = 32 mA, IOH = -5 mA, Cl = 300 pP 
A OutputS-IOl = 16 rnA, IOH = -1 rnA, Cl = 100 pF 

Symbol Parameter Min Max Units 

TIVOV Input to Output Delay 
Inverting 
Non-Inverting 

TEHTV TransmitlReceive Hold Time 

TTVEl Transmit/Receive Setup 

TEHOZ Output Disable Time 

TELOV Output Enable Time 

TOLOH Input, Output Rise Time 

TOHOL Input, Output Fall Time 

Cl - 200 pF for plastic 8286/8287 
NOTE: 
1. See waveforms and test load circuit on following page. 

5 22 ns 
5 30 ns 

5 ns 

10 ns 

5 18 ns 

10 30 ns 

20 ns 

12 ns 

2. For Extended Temperature EXPRESS the Preliminary Maximum Values are TIVOV = 25 vs 22, 35 vs 30; 
TEHOZ = 25; TElOV = 50. 

3-248 

Test Conditions 

(See Note 1) 

From 0.8 V to 2.0V 

From 2.0V to 8.0V 



inter 8286/8287 

WAVEFORMS 

INPUTS 
\/ 
./ \. 

V \ 
/ :\ 

I-TIVOV- - TEH02 :"":. TELOV~ 

C= VOH - 1V 

\V 
~:------

JI\. VOL + 1V 
OUTPUTS 

_TEHTV t-- TIVEL ----:----]-----

NOTE: 

1. All timing measurements are made at1.5V unless otherwise noted. 

50 

8287 

40 

200 400 

pf LOAD 

&l ., 
z 

; 
w 
Q 

50 

10 

200 

Output Delay versus Capacitance 

3-249 

400 600 600 1000 

pF LOAD 



8288 
BUS CONTROLLER 

FOR iAPX 86, 88 PROCESSORS 

• Bipolar Drive Capability • 3·State Command Output Drivers 

• Provides Advanced Commands • Conflgurable for U~e with an I/O Bus 

• Provides Wide Flexibility in System •• Facilitates Interface to One or Two 
Configurations Multl·Master Bus$es 

• Compatible with 10 MHz iAPX 86 and • Available in EXPRESS 
8 MHz iAPX 186 based systems. - Standard Temperature Range 

- Extended Temperature Range 

The Intel® 8288 Bus Controller is a 2o-pin bipolar component for use with medium-to-Iarge iAPX 86, 88 processing 
systems. The bus controller provides command and control timing generation as well as bipolar bus drive capability while 
optimizing system performance. 

A strapping option on the bus controller configures it for use with a multi-master system bus and separate 1/0 bus. 

{So- MRDC 
8086 _ STATUS ~. MWTC 108 vcc 

STATUS ~- DECODER 
S2-' COM· AMWC ClK so 

MAND MUlTIBUS™ 
SIGNAL IORC COMMAND S1 S2 
GENER· lowe, SIGNALS 
ATOR DTiR MCE/PDEN 

AIOWC 
ALE DEN 

INTA 
AEN CEN 

MRDC INTA 

{CLK- DT/R } AMWC 10RC 

CONTROL AEN-
CONTROL ADDRESS LATCH. DATA 

CONTROL SIGNAL DEN TRANSCEIVER, AND MWTC AIOWC 
INPUT CEN- LOGIC GENER· MCE/PDEN INTERRUPT CONTROL 

ATOR ALE SIGNALS GND IOWC 
108-

+5V GND 

Figure 2_ 
Figure 1. Block Diagram Pin Configuration 

3-250 



intJ 8288 

Table 1. Pin Description 

Symbol ~pe Name and Function Symbol ~pe Name and Function 

Vcc Power: +5V supply. AIOWC a Advanced I/O Write Command: The 

GND Ground. 
AIOWC issues an I/O Write Command 
earlier in the machine cycle to give I/O 

So, S" S. I Status Input Pins: These pins are the devices an early indication of a write in-
status input pins from the 8086, 8068 or struction. Its timing is the same as a read 
8089 processors. The 8288 decodes these command signal. AIOWC is active Law. 
inputs to generate command and control 
signals at the appropriate time. When 
these pins are not in use (passive) they are 
all HIGH. (See chart under Command and 

10WC a I/O Wrtte Command: This command line 
instructs an I/O device to read the data on 
the data bus. This Signal is active LOW. 

Control Logic.) 10RC a I/O Read Command: This command line 

CLK I Clock: This is a clock Signal from the 
8284 clock generator and serves to estab-
lish when command and control signals 

instructs an I/O device to drive its data 
onto the data bus. This Signal is active 
LOW. 

are generated. AMWC a Advanced Memory Write Com-

ALE a Address Latch Enable: This signal 
serves to strobe an address into the 
address latches. This signal is active HIGH 
and latching occurs on the falling (HIGH 
to LOW) transition. ALE is intended for 
use with transparent D type latches. 

mand: The AMWC issues a memory write 
command earlier in the machine cycle to 
give memory devices an early indication 
of a write instruction. Its timing is the 
same as a read command signal. AMWC is 
active LOW. 

DEN a Data Enable: This signal serves to en-
able data transceivers onto either the 
local or system data bus. This signal is 
active HIGH. 

MWTC a Memory Wrlle Command: This com-
mand line instructs the memory to record 
the data· present on the data bus. This 
signal is active LOW. 

DT/R a Data Transmit/Receive: This signal es-
tablishes the direction of data flow 
through the transceivers. A HIGH on this 
line indicates Transmit (write to I/O or 

MRDC a Memory Read Command: This com-
mand line instructs the memory to drive 
its data onto the data bus. This signal is 
active Law. 

memory) and a LOW indicates Receive INTA a Interrupt Acknowledge: This command 
(Read). line tells an interrupting device that its 

AEN I Addres. Enable: AEN enables command 
outputs of the 8288 Bus Controller at least 
115 ns after it becomes active (LOW). AEN 
going inactive immediately 3-states the 

interrupt has been acknowledged and 
that it should drive vectoring Information 
onto the data bus. ThiS Signal is active 
Law. 

command output drivers. AEN does not MCE/PDEN a This is a dual function pin. 
affect the I/O command lines If the 8288 is MCE (lOB is lied LOW): Master Cascade 
in the I/O Bus mode (lOB tied HIGH). Enable occurs during an interrupt se-

CEN I Command Enable: When this signal is 
LaWall 8288 command outputs and the 
DEN and PDEN control outputs are forced 
to their inactive state. When this signal is 
HIGH, these same outputs are enabled. 

quence and serves to read a Cascade 
Address from a master PIC (Priority Inter-
rupt Controller) onto the data bus. The 
MCE signal is active HIGH. 
PDEN (lOB Is lied HIGH): Peripheral 
Data Enable enables the data bus trans-

lOB I Input/Output Bus Mode: When the lOB is ceiver for the I/O bus that DEN performs 
strapped HIGH the 8288 functions in the for the system bus. PDEN is active Law. 
I/O Bus mode. When it is strapped LOW, 
the 8288 functions in the System Bus 
mode. (See sections on I/O Bus and Sys-
tem Bus modes). 

3-251 



inter 8288 

FUNCTIONAL DESCRIPTIOH 

Co~mand and Control Logic 
The command logic decQdes the three 8086. 8088 or 8089 
CPU status lines (so. Sl. 82) to determine what command 
Is to tHllssued. 
This chart shows the meaning of each status "word". 

52 S; SO Procenor Stille 8288 Command 

0 0 0 InterruptAcknowledae INTA 
0 0 1 Read 1/0 Port 10RC 
0 1 0 Wrlle 110 Port . 10WC,AIOWC 
0 1 1 Hall None 
1 0 0 Code Access MRDc 
-1 0 1 Read Memorv MRDC -
1 1 0 WrrteMemory MWfC,AMWC 
1 1 1 Passive None 

The command Is Issued in one of two ways dependent 
on the mode of the 8288 Bus Controller. 
1/0 BUll Mode - The 8288 Is in the 110 Bus mode if the 
lOB pin is strapped HIGH. In the 110 Bus mode ali 110 
command lines (I0RC, lOWe, AIOWe. iNTA) are always 
enabled (i.e., not dependent on ~). When an 110 com· 
Il)and is initiated by the processor, the 8288 immediately 
activates the command lines using Pi'5E'N and DTIR to 
control the 110 bus transceiver. The 110 command lines 
should not be used to control the system bus in this 
configuration because no arbitration IS present. ThiS 
mode allows one 8288 Bus Controller to handle two ex· 
ternal busses. No waiting is involved when the CPU 

c wants to gain access to the 110 bus. Normal memory ac· 
cess requires a "Bus Ready" signal (AEN LOW) before it 
will proceed. It is advantageous to use the lOB mode if 
110 or peripherals dedicated to one processor exist in a 
multl·processor system. 

System Bus Mode - The 8288 is in the System Bus mode 
if the lOB pin is strapped LOW. In this mode no command 
is Issued until 115 ns after the. AEN Line is activated 
(LOW). This mode assumes bus arbitration logic will In­
form the bus controller (on the AEiii line) when the bus is 
free for use. Both memory and 110 commands wait for bus 
arbitration. This mode Is used when only one bus exists. 
Here. both 1/0 and memory are shared by more than one 
processor. 

COMMAND OUTPUTS 
The advanced write commands are made available to In­
itiate write procedures early In the machine cycle. This 
signal can be used to prevent the processor from enter­
ing an unnecessary walt state. 

The command outputs are: 

MRi5C - Memory Read Command 
MiiiiTC - Memory Write Command 
iORC - 1/0 Read Command 
10WC - 1/0 Write Command 
AMWC - Advanced Memory Write Command 
AIOWC - Advanced 110 Write Command 
iN'i'A - Interrupt Acknowledge 

• 

INTA (Interrupt Acknowledge) acts as an 1/0 read during 
an Interrupt cycle. Its purpose Is to Inform an Inter­
rupting device that Its Interrupt is being acknowledged 
·and that it should place vectoring informatlon'onto the 
data bus. 

CONTROL OUTPUTS 
The control outputs of the 8288 are Data Enable (DEN). 
Data Transmit/Receive (DT/A) and Master Cascade 
EnablelPeripheral Data Enable (MCElPi'5E'N). The DEN 
signal determines when the external bus should be 
enabled ,onto the local bus and the DT/R determines the 
direction of data transfer. These two signals usually go 
to the chip select and directl<?n pins of a transceiver. 

The MCElPi'5E'N pi n changes function with the tw.o 
modes of the 8288. When the 8288 Is in the lOB mode 
(lOB HIGH) the I'nm signal serves as a dedicated data 
enable signal for the 1/0' or Peripheral System bus. 

INTERRUPT ACKNOWLEDGE AND MCE 
The MCE signal Is used during an Interrupt acknowl­
edge cycle if the 8288 Is in the System Bus mode (lOB 
LOW). During any interrupt sequence there are two inter-

, rupt acknowledge cycles tnat occur back to back. Our­
- ing the first interrupt cycle no data or address transfers 
take place, Logic should be provided to mask off MCE 
during this cycle. Just before the second cycle begins 
the MCE signal gates a master Priority Interrupt Con­
troller's (PIC) cascade address onto the processor's 
local bus where ALE (Address Latch Enable) strobes It 
into the address latches, On the leading edge of the 
secpnd interrupt cycle the addressed slave PIC gates an 
interrupt vector onto the system data bus where it is 
read by the processor. 

If the system contains only one PIC. the MCE signal Is 
not used, In this case the second Interrupt Acknowledge 
signal gates the Interrupt vector onto the processor bus. 

ADDRESS LATCH ENABLE AND HALT 
Address Latch Enable (ALE) occurs during each machine 
cycle and serves to strobe the current address into the 
add!!sS latches. ALE also serves to strobe the status (SO. 
S1' S:z) Into a latch for halt state decoding. 

COMMAND ENABLE 
The Command Enable (CEN) Input acts as a command 
qualifier for the 8288. If the CEN pin is high the 8288 
functions normally. If the CEN pin is pulled LOW, all 
command lines are held In their inactive state (not 
3-state). This feature can be used to implement memory 
partitioning and to eliminate address conilicts between 
system bus devices and resident bus devices. 

3-252 



inter 8288 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias .................. O°C to 70°C 
Storage Temperature ............... -6SoC to +1S00C 
All Output and Supply Voltages ......... -O.SV to + 7V 
All Input Voltages .................... -1.0V to +S.SV 
Power Dissipation ........................... 1.S watt 

*NOTlCE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. fExposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (Vee = SV ± 10%, TA = O°C to 70°C) 

Symbol. Parameter Min. Max. 

Ve Input Clamp Voltage -1 

lec Power Supply Current 230 

IF Forward Input Current -0.7 

IR Reverse Input Current SO 

VOL Output Low Voltage 
Command Outputs O.S 
Control Outputs O.S 

VOH Output High Voltage 
Command Outputs 2.4 
Control Outputs 2.4 

V1L Input Low Voltage 0:8 

V1H Input High Voltage 2.0 

IOFF Output Off Current 100 

A.C. CHARACTERISTICS (Vee = SV ± 10%, TA = O°C to 70°C)* 

TIMING REQUIREMENTS 

Symbol Parameter Min. Max. 

TCLCL CLK Cycle Period 100 

TCLCH CLK Low Time SO 

TCHCL CLK High Time 30 

TSVCH Status Active Setup Time 3S 

TCHSV Status Inactive Hold Time 10 

TSHCL Status Inactive Setup Time 3S 

TCLSH Status Active Hold Time 10 

Unit Test Conditions 

V Ie = -S mA 

mA 

mA VF = 0.4SV 

p.A VR = Vee 

V IOL = 32 mA 
V IOL = 16 mA 

V IOH = -S mA 
V IOH = -1 mA 

V 
, 

V 

p.A VOFF = 0.4 to S.2SV 

Unit Test Conditions 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

* Note: For Extended Temperature .EXPRESS the Preliminary Values are TCLCL = 125; TCLCH = 50; TCHCL = 30; 
TCVNX = 50; TC1LH, TCLMCH = 25; TSVLH, TSVMCH = 25. 

3-253 



8288 

A.C. CHARACTERISTICS (Continued) 
TIMING RESPONSES 

Symbol Parameter Min. Max. Unit 

TCVNV Control Active Delay 5 45 ns 

TCVNX Control Inactive Delay 10 45 ns 

TCLLH, ALE MCE ~ctive Delay (from CLK) 20 ns 
TCLMCH 

TMHNL Command to DEN Delay (NOTE 1) TCLCH-5 ns 

TSVLH, ALE MCE 'Active Delay (from 20 ns 
TSVMCH Status) 

TCHLL ALE Inactive Delay 4 15 ns 

TCLML Command Active Delay 10 35 ns 

TCLMH Command Inactive Delay 10 35 ns 

TCHDTL Direction Control Active Delay 50 ns 

TCHDTH Direction 'Control Inactive Delay 30 ns 

TAELCH Command Enable Time 40 ns 

TAEHCZ Command Disable Time 40 ns 

TAELCV Enable Delay Time 115 200 ns 

TAEVNV AENto DEN 20 ns 

TCEVNV CEN to DEN, PDEN 25 ns 

TCELRH CEN to Command TCLML ns 
TOLOH Output, Rise Time 20 ns 

TOHOL Output, Fall Time 12 ns 

Note 1. TMHNL IS tested with DEN Cl = 5 pF 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

2,4 ~5--TESTPOINTS_'X= 
0.45 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC "1" AND 0 45V 
FOR A LOGIC "0" THE CLOCK IS DRIVEN AT 43V AND 025V TIMING 
MEASUREMENTS ARE MADE AT' 5V FOR BOTH A LOGIC "," AND "0" 
INPUT RISE ANO'FALL TIMES ARE 5±2 NS, MEASURED BETWEEN 0 BV 
AND 2 ov 

TEST LOAD CIRCUITS-3·STATE COMMAND OUTPUT TEST LOAD 

Test Conditions 

-'--
MRDC 
IORC 10L = 
MWTC 

32mA 

IOWC 10H = 
-SmA 

INTA 

AMWC 
CL = 
300 pF 

AiOWC 

" IOL = 16 mA 
Other IOH = -1 mA 

CL = SO pF 

From O.SV to 2.0V 

From 2.0V to O.SV 

I- 'f ~ . T.o T"'" 1 .. 
OUT~ OUT~ OUT~ OUT~ OUT~ 

1 300•F . 1300PF 1 5PF 1300PF 180 •
F 

3-STATE TO HIGH 3-STATE TO LOW DEN OUTPUT 
TEST LOAD 

(TMHNLONLy) 

3-254 

COMMAND OUTPUT 
TEST LOAD 

CONTROL OUTPUT 
TEST LOAD 



inter 8288 

WAVEFORMS 

STATE _T. T, T. - - Ta 

ClK v--\ 
i---TClClR 

!--TClCH_ h L!' / 1\ / ~ 
TCHSY- I- - TSYCH - TCHCl- i-- I-TCl;,;" 

TSHCl -
\ J / 1\ \. 

ADOR WRITE CD VALID DATA VALID 
ADDRESS/DATA 

TCllH_ 

Y 
H t.-rCHLL TSYlH 

cr ALE 

-
\ 
1\ 

- i-TClMl - i-TClMl 

\ 
1\ 

- -TCYNY 

) 

) 
) / 

TCVNX-

....... 

) 
) 

!lEN (WRITE) 

i'lIDI (WRITE ) 

) 
) 

DT/R(READ 
(INTA 

MCE 

TCYNY-

~~T~--::: _.t:: 

1 IJ ---- -
Ii ~® 

TCLMCH- t-- t+-TSVMC-';-

1 ADDAE8IIDATA BUB 18 SHOWN ONLY FOR AEF£RENCE PURPOSES 

\ 

I-

V 
/ 

\ 
!\. 

TCHDTL 

\ 
-TCYNX 

2 LEADING EDGE OF ALE AND MeE 18 DETERMINED BY THE FALLING EDGE OF CUt OR STATUS GOING ACTIVE, WHICHEYEA OCCURS LAST 
3 ALL TaMING MEASUl!EMENTS AAE MADE AT 15V UNLESS SPECIFIED OTHEAWtSE. 

3-255 

T4-

1\ 
'---.l --

r-TClMH 

/ 

/ 

\ 
\ 
-, 
/ 

/ 

~ -TMHNl 

\ 

- -TCYNX 

/ 

v 
/ 

TCHDTH- I-



8288 

WAVEFORMS (Continued) 

DEN, PDEN QUALIFICATION TIMING 

CEN \V 
/1\ 

1mI \I 
I\. 

-TAEVNV-

DEN \V \V 
/1\ /1\ 

!---TCEVNV_ 

I'DDI 

ADDRESS ENABLE (AEN) TIMING (3·STATE ENABLE/DISABLE) 

OUTPUT 
COMMAND 

CEN 

\_-TAELCV_ 
1.5V 

\ 
TAELC'!I 

VOH 

1 

/' 
I 

TCElRH- -

j 

_TCELRH 

\ 
1\ 

NOTE: CEN must be low or valid prior to T2 to prevent the command from being generated. 

3-256 

\/ 
/1\ 

v 

15V 

iTAEHCZ 
-I or 1 VOH 

\,:-



82188 
INTEGRATED BUS CONTROLLER FOR 

iAPX 86, 88, 186, 188 PROCESSORS 

• Provides Flexibility in System 
Configurations 
- Supports 8087 Numerics 

Coprocessor in 80186 and 80188 
Systems 

- Provides a Low-cost Interface for 
8086, 8088 Systems to an 82586 LAN 
Coprocessor or 82730 Text 
Coprocessor 

• Facilitates Interface to one or more 
Multimaster Busses 

• Supports Multiprocessor, Local Bus 
Systems 

• Allows use of 80186, 80188 High­
Integration Features 

• 3-State, Command Output Drivers 

• Available in EXPRESS 
- Standard Temperature Range 
- Extended Temperature Range 

The 82188 Integrated Bus Controller (IBC) is a 28-pin HMOS "I.component for use with 80186, 80188, 8086 
and 8088 systems. The IBC provides command and control timing signals plus a configurable 
RQ/GT - HOLD-HLDA converter. The device may be used to interface an 8087 Numerics Coprocessor 
with an 80186 or 80188 Processor. Also, an 82586 Local Area Network (LAN) Coprocessor or 82730 Text 
Coprocessor may be interfaced to an 8086 or 8088 with the IBC. 

so 
51 
52 

QSOI vcc 
OS11 so 

OSOO 51 
RESET OS10 52 

RESET ALE CLK 

HLDA iii) AEN 

HOLD WR 
RO/GTO DEN 

SYSHOLD DT/R 
SYSHLDA AEN 

RO/GT1 ARDY CSIN 

CSOUT SRDY 
CiiN SRO OSOI 

vss CLK OS11 

SYSHOLD 
231051-1 

HLDA 

Figure 1. 
82188 Pin Configuration 

-

SRDY ARDY 

1 1 
I I 

. I STATUS READY I 
-, DECODER LOGIC J 

COMMAND I 
SIGNAL 

GENERATOR 

1 CONTROL ~ I LOGIC 
C~~~~~L I 

GENERATOR I 

I 
J CHIP SELECT LOGIC : 

I DELAY CIRCUIT I 

J BUS AC~::!~~TION I 

Figure 2. 
82188 Block Diagram 

SRO 

RD 

DEN 
DT/R 
ALE 

OSOO 

OS10 

HOLD 

SYSHLDA 

231051-2 

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent 
hcenses are implIed. Information contained herein supersedes previously published specificabons on these devices from Intel. November 1984 
@Intel Corporation, 1984. Order Number. 231051-002 

3-257 



82188 . 

PIN DESCRIPTIONS 
Symbol Pin No. Type Name and Function 

SO 27 I Status Input Pins 
Sf 26 SO-§2 correspond to the status pins of the CPU. 
§2 25 The 82188 uses the status lines to detect and 

ide~ the processor bus cycles. The 82188 decodes 
SO- to generate the command and control signals. 
SO-§2 are also used to Insert 3 wait states Into the SRO 
line during the first 25~ 80186 bus cycles after RESET. 
A HIGH input on all three lines indicates that no bus 
activity is taking place. The status Input lines contain 
weak intemal pull-up devices. 

12 Sf Iii Bus CyclelnWated 

0 0 0 interrupt acknowledge 
r 

\ 0 0 1 read 1/0 
0 1 -0 write 1/0 
0 1 1 halt 
1 0 0 instruction fetch 
1 0 1 read data from memory 
1 1 0 write data to memory 
1 1 1 , passive (no bus cycle) 

ClK 15 I CLOCK 
ClK is the clock signal generated by the CPU or clock 
generator device. ClK edges establish when signals are 
sampled and generated. 

RESET 5. I RESET 
RESET is a level triggered Signal that corresponds to 
the system reset signal. The signal initializes an intemal 
bus cycle counter, thus enabling the 82188 to insert 
intemally generated wait states into the SRO signal 
during system initialization. The 82188 mode is also 
determined during RESET. lID, Vim, and DEN are driven 
HIGH during RESET regardless of AEN. RESET is 
active HIGH. 

AEN 19 I AdClress Enable 
This signal enables the system command lines when 
active. If AEN is inactive (HIGH), lID, WR, and DEN will 
be tri-stated and ALE will be driven lOW (DT IR will not 
be effected). AEN is an asynchronous signal and is 
active lOW. 

ALE 24 0 Addre .. Latch Enable 
This signal is used to strobe an address into address 
latches. ALE is active HIGH and latch should occur on 
the HIGH to lOW transition. ALE is intended for use 
with transparent D-type latches. 

DEN 21 0 Data Enable 
This signal is used to enable data transceivers located 
on either the local or system data bus. The signal is 
active lOW. DEN is tri-stated when AEN is inactive. 

DT/R 20 0 Data TRANSMIT IRECEIVE 
This signal establishes the direction of data flow through 
the data transceivers. A HIGH on this line indicates 
TRANSMIT (write to 1/0 or memory) and a lOW 
indicates RECEIVE (Read from 1/0 or memory). 

231051-1102 

3-258 



82188 

PIN DESCRIPTIONS (Continued) 

Symbol Pin No. Type Name and Function 

Rr5 23 0 READ 
This signal instructs an 1/0 or memory device to drive its data onto 
the data bus. The RD signal is similiar to the RD signal of the 
80186(80188) in Non-Oueue-Status Mode. RD is active LOW and is 
tri-stated when AEN is inactive. 

WR 22 0 WRITE 
This signal instructs an 1/0 or memory device to record the data 
presented on the data bus. The WR signal is similiar to the WR signal 
of the 80186(80188) in f\lon-Oueue-Status Mode. WR is active LOW 
and is tri-stated when AEN is inactive. 

HOLD 7 0 HOLD 
The HOLD signal is used to request bus control from the 80186 or 
80188. The request can come from either the 8087 (RO/GTO) or 
from the third processor (SYSHOLD). The signal is active HIGH. 

HLDA 6 I HOLD Acknowledge 
80186 MODE-This line serves to translate the HLDA output of the 
80186(80188) to the appropriate signal of the device requesting the 
bus. HLDA going active (HIGH) indicates that the 80186 has 
relinquished the bus. If the requesting device is the 8087, HLDA will 
be translated into the.grant pulse of the RO/GTO line. If the 
requesting device is the optional third processor, HLDA will be I 
routed into the SYSHLDA line. 

This pin also determines the mode in which the 82188 will operate. If 
this line is HIGH during the falling edge of RESET, the 82188 will 
enter the 8086 mode. If LOW, the 82188 will enter the 80186 mode. 
For 8086 mode, this pin should be strapped to Vee. 

RQ/GTO 8 110 Request/Grant 0 
RO/GTO is connected to RO/GTO of the 8087 Numeric 
Coprocessor. When initiated by the 8087, RO/GTO will be translated 
to HOLD-HLDA to acquire the bus from the 80186(80188). This line 
is bidirectional, and is active LOW. RO/GTO has a weak internal , 
pull-up device to prevent erroneous requestl grant signals. 

RQ/GT1 11 110 Request/Grant 1 . 
80186 Mode-In 80186 Mode, RO/GT1 allows a third processor to 
take control of the local bus when the 8087 has bus control. For a 
HOLD-HLDA type th~rocessor, the 82188's RO/GT1 line should 
be connected to the RO/GT1 line of the 8087. 

·8086 MODE-In 8086 Mode, RO/GT1 is connected to either ROI 
GTO or RO/GT1 of the 8086. RO/GT1 will start its requestlgra!:!L. 
sequence when the SYSHOLD line goes active. In 8086 Mode, ROI 
GT1 is used to gain bus control from the 8086 or 8088. 

RO/GT1 is a bidirectional line and is active LOW. This line has a 
weak internal pull-up device to prevent erroneous request/grant 
signals. 

231051-002 

3-259 



82188 

PIN DESCRIPTIONS (Continued) 

Symbol Pin No. Type Name and Function 
SYSHOLD 9 I System Hold 

80186 MODE-SYSHOLD serves as a hold input for an optional third 
processor in an 80186(80188)-8087 system. If the 80186(80188) 
has bus control, SYSHOLD will be routed to HOLD to gain control of . 
the bus. If the 8087 has bus control, SYSHOLD will be translated to 
RQ/GT1 to gain control of the bus. 

8086 MODE-SYSHOLD serves as a hold input for a ~rocessor in 
an 8086 or 8088 system. SYSHOLD is translated to IGT1 of the 
82188 to allow the coprocessor to take control of the bus. 

SYSHOLD may be an asynchronous signal. 

- SYSHLDA 10 0 System Hold Acknowledge 
SYSHLDA serves as a hold acknowledge line to the processor or 
coprocessor cohnected to it. The device connected to the , 
SYSHOLD-SYSHLDA lines is allowed the bus when SYSHLDA goes 
active (HIGH). 

SRDY 17 I Synchronous Ready 
The SRDY input serves the same function as SRDY of the 
80186(80188). The 82188 combines SRDY with-ARDY to form a 
synchronized ready output signal (SRO). SRDY must be 
synchronized external to the 82188 and is active HIGH. If tied to 
Vee, SRO will remain active (HIGH) after the first 256 80186 cycles 
following RESET. If only ARDY is to be used, SRDY should be tied 
LOW. 

ARDY 18 I Asynchronous Ready 
The ARDY input serves the same function as ARDY of the 
80186(80188). ARDY may be an asynchronous input, and is active 
HIGH. Only the rising edge of ARDY is synchronized by the.82188. 
The falling edge must be synchronized external to the 82188. If 
connected to Vee, SRO will remain active (HIGH) after the first 256 
80186 bus cycles following RESET. If only SRDY is to be used, 
ARDY should be connected LOW. 

SRO 16 0 Synchronous READY Output 
. SRO provides a synchronized READY signal which may be 
interfaced directly with the SRDY of the 80186(80188) and READY 
of the 8087. The SRO signal is an accumulation of the synchronized 
ARDY signal, the SRDY signal, and the internally generated wait 
state signal. 

QSOI 1 I Queue-Status Inputs 
QS11 2 QSOI, QS11 are connected to the Queue-Status lines of 

the 80186(80188) to allow synchronization of the queue-status 
signals to 8087 timing requirements. 

QSOO 3 0 Queue-Status Outputs 
QS10 4 QSOO, QS10 are connected to the queue-status pins of 

the 8087. The signals produced meet 8087 Queue-Status input 
requirements. 

231051-002 

3-260 



inter 82188 

PIN DESCRIPTIONS (Continued) 

Symbol "In No. Type Name and Function 

CSiN 13 I =elect Input 
IN is connected to one of the Chip-select lines of the 

80186(80188). CSiN informs the 82188 that a bank select is taking 
place. The 82188 routes this signal to the chip-select output 
(CSOOf). CSiN is active LOW. This line is not used when memory 
and I/O device addresses are decoded external to the 
80186(80188). 

CSOOT 12 0 Chlp,.select Output . 
This signal is used as a ch6ISselect line for a bank of memory 
devices. It is active when IN is active or when the 8087 has bus 
control. CSOUT is active LOW. 

FUNCTIONAL DESCRIPTION 

BUS CONTROLLER 

The 82188 Integrated Bus Controller (IBC) gener­
ates system control and command signals. The sig­
nals generated are determined by the Status Decod­
ing LQ9!c . .2.he bus controller logic interprets stat~s 
lines SO-S2 to determine what type of bus cycle IS 

taking place. The appropriate signals are then gen­
erated by the Command and Control Signal Genera­
tors. 

The Address Enable (AEN) line allows the command 
and control signals to be disabled. When AEN is in­
active (HIGH), the command signals and DEN will be 
tri-stated, and ALE will be held low (DT /A will be 
uneffected). AEN inactive will allow other systems to 
take control of the bus. Control and command sig­
nals respond to a change in the AEN signal within 40 
ns. 

The command si~s consist of AD and WR. The 
82188's RD and WR signals are similiar to RD .and 
WR of the 80186(80188) in the non-Queue-Status 
Mode. These command signals do not differentiate 
between memory and I/O devices. RD and WR can 
be conditioned by S2 of the 80186(80188) to obtain 
separate signals for I/O and memory devices. 

The control commands consist of Data Enable 
(DEN), Data Transmit/Receive (DT /A), and Address 
Latch Enable (ALE). The control commands are sim­
iliar to those generated by the 80186(80188). DEN 
determines when the external bus should be en­
abled onto the local bus. DT /A determines the di­
rection of the data transfer, and ALE determines 
when the address should be strobed into the latches 
(used for demultiplexing the address bus). 

MODE SELECT 

The 82188 Integrated Bus Controller (IBC) is config­
urable. The device has two modes: 80186 Mode and 
8086 Mode. Selecting the mode of the device con­
figures the Bus Arbitration Logic (see BUS ARBI­
TRATION section for details). In 80186 Mode, the 
82188 IBC may be used as a bus controller/inter­
face device for an 80186(81088), 8087, and optional 
third processor system. In 8086 Mode, the 82188 
IBC may be used as an interface device allowing a 
maximum mode 8086(8088) to interface with a co­
processor that uses a HOLD-HLDA bus exchange 
protocol. 

The mode of the 82188 is determined during RE­
SET. If the HLDA line is LOW at the falling edge of 
RESET (as in the case whel1 tied to the HLDA line of 
the 80186 or 80188), the 82188 will enter into 80186 
Mode. If the HLDA line is HIGH at the falling edge of 
RESET, the 82188 will enter 8086 Mode. In 8086 
Mode, only the Bus Arbitration Logic is used. The 
eight pins used in 8086 Mode ar~ SYSHOLD, 
SYSHLDA,HLDA,CLK,RESET,RQ/GT1,Vcc,and 
Vss. The other pins may be left w'lconnected. 

BUS ARBITRATION 

The Bus Exchange Logic interfaces up to three sets 
of bus exchange signals: 

• HOLD-HLDA 

• SYSHOLD-SYSHLDA 

• RO/GTO (RQ/GT1) 

This logic executes translating, routing, and arbitrat­
ing functions. The logic translates HOLD-HLDA sig­
nals to RO/GT signals and RQ/GT signals to 
HOLD-HLDA signals. The logic also determines 
which set of bus exchange signals are to be inter­
faced. The mode of the 82188 and the priority of the 
devices requesting the bus determine the routing of 
the bus exchange signals. 

231051-002 

3-261 



inter 82188 

80186 MODE 

In 80186 Mode, a system may have three potential 
bus masters: the 80186 or 80188 CPU, the 8087 
Numerics Coprocessor, and a third processor (such 
as the 82586 LAN or 82730 Text Coprocessor). The 
third ...e!:ocessor may have either a HOLD-HLDA or 
RQfGT bus exchange protocol. The possible bus 
exchange signal connections and paths for 80186 
Mode are shown in Figures 3 & 4 and Tables 1 & 2, 
respectively. If no HOLD-HLDA type third processor 
is used, SYSHOLD should be tied LOW to prevent 
an erroneous SYSHOLD Signal. In 80186 mode, the 
bus priorities are: 

Highest Priority ................... Third Processor 

Second Highest Priority ..................... 8087 

Default Priority ........................... 80186 

- THREE-PROCESSOR SYSTEM OPERATION 
(HOLD-HLDA TYPE THIRD PROCESSOR) 

In the configuration shown in Figure 3, the third proc­
essor requests the bus by sending SYSHOLD HIGH. 
The 82188 will route (and translate if necessary) the 
request to the current bus master. This includes 
routing the request to HOLD if the 80186(80188) is 
the current bus master or routing and translating the 
request to RQfGT1 if the 8087 is in control of the 
bus. The third processor's request is not passed 
through the 8087 if the 80186 is the bus master (see 
Table 1). 

The 8087 requests the bus using RQfGTO. The re­
quest pulse from the 8087 will be translated and 
routed to HOLD if the 80186 is the bus master. If the 
third processor has control of the bus, the grant 
pulse to the 8087 will be delayed until the third proc­
essor relinqUishes the bus (sending SYSHOLD 
LOW). In this case, HOLD will remain HIGH during 
the third processor-to-8087 bus control transfer. The 
80186 will not be granted the bus until both coproc­
essors have released it: 

Table 1 Bus Exchange Paths (80186 Mode) (HOLD-HLDA Type 3rd Proc) 

Requesting Current Bus Master 
Device 80186 8087 3rC! Proc 

80186 nfa nfa nfa 

8087 
__ HOLD 
RQfGTO +-+ HLDA nfa nfa 

SYSHOLD HOLD SYSHOLD +-+ RQfGT1 nfa 3rd Proc +-+--
SYSHLDA HLDA SYSHLDA 

80188 82188 8087 

HOLD HOLD 

RQ/GTO RQ/GTO 

HLDA HLDA 

3RD pROC 

HLDA SYSHLDA 

RQ/GT1 RQ/GT1 

HOLD SYSHOLD 

231051-3 

Figure 3. 
Bus Exchange Signal Connections (80186 Mode) for a Three Local Processor System 

(HOLD-HLDA Type 3rd Proc) 

231051-002 

3-262 



82188 

Table 2. Bus Exchange Paths (80186 Mode) (RO/GT Type 3rd Proc) 

Requesting Current Bus Master 
Device 80186 8087 3rd Proc 

80186 n/a n/a n/a 

8087 RQ/GT ~HOLD 
o HLDA 

n/a n/a 

3rd Proc -- RQGT HOLD . RQ/GT1 ~R I TO~--
HLDA 

RQ/GT1 n/a 

80188 82188 8087 

HOLD HOLD 

HLDA HLDA 

RQ/GTO RQ/GTO 

RQ/GT1 iiQ/GT1 

~ 
SYSHOLD 

RO/GT1 f-NC 

231051-4 

. Figure 4 .. 
Bus Exchange Signal Connections (80186 Mode) for a Three Local Processor System 

(RO/GT Type 3rd Proc) 

When the bus is requested from the 80186(80188), 
a bus priority decision is made. ~This decision is 
made when the HLDA line goes active. Upon receipt 
of the HLDA signal, the highest-priority requesting 
device will be acknowledged the bus. For example, if 
the 8087 initially requested the bus, the bus will be 
granted to the third processor if SYSHOLD became 
active before HLDA was received by the 82188. In 
this case, the grant pulse to the 8087 will be delayed 
until the third processor relinquishes the bus. 

- THREE-PROCESSOR SYSTEM OPERATION 
(RQ/GT TYPE THIRD PROCESSOR) 

In the configuration shown in Figure 4, the third proc­
essor requests the bus by initia!!!!g a request! grant 
sequence with the 8087's RQ/GT1 line. The 8087 
will grant the bus if it is the current bus master or will 
pass the request on if the 80186 is the current bus 
master (see Table 2). In this configuration, the 
82188's Bus Arbitration Logic translates RQ/GTO to 
HOLD-HLDA. The 8087 provides the bus arbitration 
in this configuration. 

3-263 

8086 MODE 

The 8086 Mode allows an 8086, 8088 system to 
contain both RQ/GT and HOLD-HLDA type coproc­
essors simultaneously. In 8086 Mode, two possible 
bus masters may be interfaced by the 82188; an 
8086 or 8088 CPU and a coprocessor which uses a 
HOLD·HLDA bus exchange protocol (typically an 
82586 LAN Coprocessor or an 82730 Text Coproc­
essor). The bus exchange signal connections for 
8086 Mode are shown in Figure 5. Bus arbitration 
signals used in the 8086 Mode are: 

• RQ/GT1 

• SYSHOLD 

• SYSHLDA 

In 8086 Mode, no arbitration is necessary since only 
two devices are interfaced. The coprocessor has 
bus priority over the 8086(8088). SYSHOLD· 
SYSHLDA are routed and translated directly to RQI 
GT1. RQ/GT1 of the 82188 may be tied to either 
RQ/GTO or RQ/GT1 of the 8086(8088). 

231051-002 



"intJ 82188 

8088 82188 COPROC 

RQJGT1 ~/G'i'1 

SYSHOLD HOLD 

t SYSHLDA HLOA 
HLDA 

RQ.tGTO I-

8087 

~ RQ/GTO 

231061-5 

Figure 5. Bus Exchange Signal Connections (8086 Mode) 

QUEUE-STATUS PELA Y 

The Oueue-Status Delay logic is used to delay the 
queue-status signals from the 80186(80188) to meet 
8087 queue-status timing requirements. OSOI, OS11 
correspond to the queue-status lines of the 
80186(80188). The 82188 delays these signals by 
one clock phase. The delayed signals are interfaced 
to the 8087 queue-status lines by OSOO, OS10. 

CHIP-SELECT 

The Chip-Select Logic allows the utilization of the 
chip select circuitry of the 80186(80188). Normally. 
this circuitry could not be used in an 80186(80188)-
8087 system since the 8087 contains no chip select 
circuitry. The Chip-Select Logic contains two exter­
nal connections~~p-SeIC~dnput (~) and Chip­
Select Output ( UT). UT is active when ei­
ther ~ is active or when the 8087 has control of 
the bus. 

By using "CSOUf to select, memory containing data 
structures, no external decoding is necessary. The 
80186 may d§ain access to this memory bank 
through the IN line while the 8087 will automati­
cally obtain access when it bEicomes the bus mas­
ter. Note that this configuration limits the amount of 

. memory accessible by the 8087 to the physical 
memory bank selected by "CSOUf. Systems where' 
the 8087 must access the full 1 Megabyte address 
space must use an external decoding scheme. 

READY 

The Ready logic allows two types of Ready signals: 
a Synchronous Ready Signal (SRDY) and an Asyn­
chronous Ready Signal (ARDY). These signals are 
similiar to SRDY and ARDY of the 80186. Wait 
states will be inserted when both SRDY and ARDY 
are LOW. Inserting wait states allows slower memo­
ry 'and 110 devices to be interfaced to the 

, 80186(80188)-8087 system. 

ARDY's LOW-to-HIGH transition is synchronized to 
the CPU clock by the 82188. The 82188 samples 
ARDY at the beginning of T2. T3 and Tw until sam­
pled HIGH. Note that ARDY of the 82188 is sampled 
one phase earlier than ARDY of the 80186. ARDY's 

, falling edge must be synchronous to the CPU clock. 
ARDY allows an easy interface with devices that 
emit an asynchronous ready signal. 

The SRDY signal allows direct interface to devices 
that emit a synchronized ready signal. SRDY must 
be synchronized to the CPU clock for both of its 
transitions. SRDY is sampled in the middle of T2, T3 
and il) the middle of each Tw. An 82188· 
80186(80188)'s SRDY setup time is 30 ns'longer 
than the 80186(80188)'s SRDY setup time. SRDY 
eliminates the half-clock cycle penalty necessary for 
ARDY to be internally sychronized . 

The sychronized ready output (SRO) is the accumu­
lation of SRDY, ARDY, and the internal wait-state 

231051-002 

3-264 



82188 

generator. SRO should be connected to SRDY of 
the 80186(80188) (with 80186(80188),s ARDY tied 
LOW), and READY of the 8087. 

SRDY ARDY SRO 

0 0 0 
1 X 1 
X 1 1 

The internal wait state generator allows for synchro­
nization between the 80186(80188) and 8087 in 
80186 mode. Upon RESET, the 82188 automatically 
inserts 3 wait-states per 80186(80188) bus cycle, 
overlapped with any externally produced wait-states 
created by ARDY and SRDY. 

Since the 8087 has no provision for internal wait­
state generation, only externally created wait states 
will be effective. The 82188, upon RESET, will injec;t 
3 wait states for each of the first 256 80186(8018S) 
bus cycles onto the SRO line. This will allow the 
8087 to match the 80186(80188),s timing. 

The internally-generated wait states are overlapped 
with those produced by the SRDY and ARDY lines. 
Overlapping the injected wait states insures a mini­
mum of three wait states for the first 256 
80186(80188) bus cycles after RESET. Systems 
with a greater number of wait states will not be ef­
fected. Internal wait state generation by the 82188 
will stop on the 256th 80186(80188) bus cycle after 
RESET. To maintain sychronization between the 
80186(80188) and 8087, the following conditions 
are necessary: 

ARDY-----------------1 

C~K----------------------_; 

§Q 
S1 
52 

HLDA --------~:L.r--r 

• The 80186(80188),s control block must be map­
ped in 110 space before it is written to or read from. 

• All memory chip-select lines must be set to 0 
WAIT STATES, EXTERNAL READY ALSO USED 
within the first 256 80186(80188) bus cycles after 
RESET. 

An equivelant READY logic diagram is shown in Fig­
ure 6. 

SYSTEM CONSIDERATIONS 

In any 82188 configuration, clock compatibility must 
be considered. Depending on the device, a 50% or a 
33% duty-cycle clock is needed. For example, the 
80186 and 80188 (as well as the 82188, 82586, and 
82730) requires a 50% duty-cycle clock. The 8086, 
8088 and their 'kit' devices'(8087, 8089, 8288, and 
8289) clock requirements, on the other hand, require 
a 33% duty-cycle clock signal. The system designer 
must make sure clock requirements of all the devic­
es in the system are met. 

Figures 7 & 8 show two system configurations using 
the 82188. Figure 7 demonstrates the usage of the 
82188 in 80186 Mode where it is used to interface 
an 8087 into an 80186 system. Figure 8 demon­
strates the usage of the 82188 in 8086 Mode where 
it is used to convert the HOLO-HLOA bus exchange 
protocol of the 82586 to the RQ/GT bus exchange 
protocol of the 8086. 

SRDY 

SRO 

RESET-----------------------*----------~ 

231051-6 

Figure 6. 
Equivalent 82188 READY circuit 

231051-002 

3-265 



Cf 
N 

~ 

~ 
!!i 
~ 

! .... 
! .... 
I 
':' 
N 

~ 

i 
ell 
.4D 

i~ 
!if=" • CD 
N .... 
CD 
CD 

5' 
! .... 
CD 
CD 

I 

12MHz 

r--t ,..... 

-
"-

'---

80188 

HLDA 
HOLD 
MCfSO 

ARDY QSO 

1m 
. QS1 

SRDY 
RESETOUT 

1:LOcKOUT 

INTO 52 

TEST 
Ii 
so 

BUSY so 
INT S1 

S2 
CLK 

RESET 

RDY 
aso 
QS1 

RQ/GTO 
ROtfi1 

TOOPrlONAL 
THIRD BUS MASUR 

ft . 1 t 
ADDRESS DATA BUS 

~ '* Ilclfo Htm 

~ HLDA 
HOLD 
CSIN 

/' 

asol 
QS11 

/ 

ALE t--
I---
I--

S2 
l- Ii 

so 
CLK 
RESET 

I-
~ SRO r--

I--- 821BB 

DT/R r-
DEN r-

asoo 
QS10 

RO/GTO 
iRi/O'f1 

Vt· T T 
8087 1\ ADDRESS DATA BUS 

ARDY SRDY 

-, 

f-----t STB 

~ 74LS 
a7a r---v 
• 

f-----t DIR I-
f-----t OE 

~ 74LS 
245 

Il' . 

/ 

t 

~ 

i'" 

J 
~ 

Vi t 

N" • 

COMMAND/CONTROL 

ADDRESS 

DATA 

231051-7 

l 

= ... 
I 

"@) 
~ 
1fiiiI' 
!6 
~ 
c=o 
~ 
~ 

~ 



MN/MX Vee III 8086-1 ':" 

52 S2 
Si S1 

READY SO SO 
8288 K > COMMAND/CONTROL 

RESET ClK 

A DT/R 
CD I I ..IClK 0 
CD 
flI ... ..... 
CD 
I\) 
en 
CD RQ/GTl Vee CD 74lS 
UJ ARDY ClK ClK 373 '< 
IIJ SRDY RESET -" READY ADDRESS 

(,) ~:!! 82285 

I I 
CO 

I IIJCC N 
I\) _·c -0) ::J ... 

CO -.,j CC" 
CO -CD ::T. 

" CD 
I\) 

~ElP 9°' ... 
CD ~c~ CD DIR 
S" RESET 74LS CD 
0 READY 1\ 245 I I( ) DATA CD 
CD 
II: 
0 

nARD:_p~~/MX a. 
" ~ 

<"@J 
2& 
IiiiiI 
F 
=::0 

TO SERIAL ~ INTERFACE c:::J 

231051-8 ~ 
~ 

~ 



inter 82188 

ABSOLUTE MAXIMUM RATINGS * 

Temperature under bias 

Storage temperature 

Voltage on any pin with 
respect to GND 

O"Cto 70°C 

- 65°C to 150°C 

-1.0V to 7.0V 

Power Dissipation 0.7 Watts 

DC CHARACTE·RISTICS 
(Vee = 5V ± 10%, TA = O°C to 70°C) 

Symbol Parameter Min 

VIL Input low Voltage -0.5 

VIH Input High Voltage 2.0 

VOL Output Low Voltage 

VOH Output High Voltage 2.4 

Icc Power Supply Current 

III Input Leakage Current 

ILO Output Leakage Current 

VCLl GlK Input low Voltage -0.5 

VCHI ClK Input High Voltage 3.9 

CIN Input Capacitance 

CIO I/O Capacitance 

AC CHARACTERISTICS 
(Vee = 5V ± 10%, TA = O°C to 70°C) 

TIMING REQUIREMENTS 
Symbol Parameter 

TCLCL Clock Period 

TCLCH . Clock LOW Time 

TCHCL Clock HIGH Time 

TARYHCL ARDY Active Setup Time 

TCHARYL ARDY Hold Time 

TARYlCH ARDY Inactive Setup Time 

TSRYHCl SRDY Input S~tup Time 

TSVCH STATUS Active Setup Time 

TSXCl STATUS Inactive Setup Time 

TOIVCL OSOI, OS11 Setup Time 

THAVGV HLDA Setup Time 

TSHVCL SYSHOLD Asynchronous Setup Time 

TGVCH RO/GT Input Setup Time 

"NOTICE: Stresses above those listed under ABSO­
lUTE MAXIMUM RATINGS may cause permanent 
damage to the device. This is a stress rating only 
and functional operation of the device at these or 
any other conditions above those indicated in the 
operational sections of this specification is not im­
plied. Exposure to absolute maximum rating condi­
tions for extended periods may affect device reliability. 

Max Units TestCond. 

+0.8 volts 

Vee + 0.5 volts 

0.45 volts IOL = 2mA 

volts IOH = -400 p.A 

100 mA TA = 259C 

±10 p.A OV<VIN<VCC 

±10 p.A 0.45 < VOUT < Vec 

+0.6 volts 

Vee +1.0 volts 

10 pF 

20 pF 

Min Max Unlt~ Notes 

125 500 ns 

%TClCL-7.5 ns 

wrClCL-7.5 ns 

20 ns 9,2 

15 ns 8 

35 ns 

65,50 ns 1 

55 ns 

50 ns 

10 ns 

50 ns 

25 ns 9,2 

0 ns 6 

231051-002 

3-268 



82188 

TIMING RESPONSES 
Symbol Parameter Min Max Units 

TSVLH STATUS Valid to ALE Delay 30 ns 

TCHLL ALE Inactive Delay 30 ns 

TCLML AD, WR Active Delay 0 70 ns 

TCLMH AD, WR Inactive Delay 0 55 ns 

TSVDTV STATUS to DT fA Delay 0 30' ns 

TCLDTV DT fA Active Delay 0 55 ns 

TCHDNV DEN Active Delay 0 55 ns 

TCHDNX DEN Inactive Delay 5 55 ns 

TCLOOV 0800, OS10 Delay 5 50 ns 

TCHHV HOLD Delay 50 ns 

TCLSAV SYSHLDA Delay 50 ns 

TCLGV ROfGT Output Delay 40 ns 

TGVHV ROfGTO To HOLD Delay 50 ns 

TCLLH' ALE Active Delay 0 30 ns 

TAELCV Command Enable Delay 40 ns 

TAEHCX Command Disable Delay 40 ns 

TCHAO SAO Output Delay 5 30 ns 

TSAYHAO SAOY To SAO Delay 30 ns 

TSCICSO CSIN To -esmJf Delay 30 ns 

NOTES (applicable to both spec listing and timing diagrams): 
1. TSRYHOl = (80186's) TSRYCl + 30 ns=65 ns for 6 MHz operation and 50 ns for 8 MHz operation. 
2. Timi!!9 not tested. 
3. DT /R will be asserted to the latest of TSVDTV & TClDTV. 
4. ALE will be asserted to the latest of TSVlH & TCllH. 
5. SRO will be asserted to the latest of TCHRO & TSRYHRO. 
6. Cl = 20-100 pF 
7. Address/Data bus shown for reference only. 
8. The falling edge of ARDY must be synchronized to ClK. 
9. To guarantee recognition at next falling clock edge. 

A.C. Testing Input, Output Waveform 

INPUT/OUTPUT 

24 \ . 3E-nsT~MB-~ 
0.45 

231061-9 

A.C. Testing: Inputs are driven at 2.4V for a logic '1' 
and O.45V for a Logic '0'. 

A.C. Testing Load Circuit 

DEVICE 
UNDER 'lee TEST 

CL includes Jig Capacitance 
CL = 20-200 pF unless otherwise noted 

3-269 

Notes 

4' 

3 

3 

2,6 

6 

6 

2,6 

4 

5,6 

5 

231061-10 

231051-()02 



inter 

CLK 

ARDY 

SRDY 

SRO 

82188 

Commat;ld and Control Waveforms-80186 Mode 

T1 T2 

y£CHRO 
,TSRYHRO 

____________________ -4~ ® 

READY Tlming-80186 Mode 

3-270 

231051-12 

231051-002 



82188 

SYSHOLD-SYSHLDA to RQ/GT1 Tlmlng-80186 Mode and 8086 Mode 

231051-002 

3-271 



82188 

9 z 

SYSHOLD-SYSHLDA To HOLD-HLDA Tlmlng-80186 Mode 

231051-002 

3-272 



82188 

HOW 

HWA -1; 
-------.5/ 

THAVOV=C 

231051-15 

RQ/GTO to HOLD-HLDA Tlmlng-80186 Mode 

C~~ :: 
0801, 
0811 . =, fTCLOOV 

~:. ______ )_~r,--TA-E-LC-V---j--, r fAEHCX 
DT/R,DIR K_ )I--

CSIN ~ 
~ _________________ ~ __ '_~_TC_S_I_CSO __________ __ 

231051-16 

Queue Status, ALE, Chip Select Delay Tlmlng-80186 Mode 

231051-002 

3-273 



, ., 

inter 
8289/8289-1 
BUS ARBITER 

• Provides Multi·Master System Bus 
Protocol 

• Synchronizes IAPX 86,88 Processors 
with Multl·Master Bus 

.10MHz Version, 8289-1, Fully Compatible 
with 10MHz iAPX 86 or 8MHz iAPX 186 
Based Systems 

• Provides Simple Interface with 8288 
Bus Controller 

• Four Operating Modes for Flexible 
System Configuration 

• Compatible with Intel Bus Standard 
MULTIBUSTM 

• Provides System Bus Arbitration for 
8089 lOP in Remote Mode 

• Available in EXPRESS 
- Standard Temperature Range 
- Extended Temperature Range 

The Intel 8289 Bus Arbiter is a 2o-pin, 5-volt-only bipolar component for use with medium to large iAPX 86, 88 multi­
master/multiprocessing systems. The 8289 provides system bus arbitration for systems with multiple bus masters, such as ' 
an 8086 CPU with 8089 lOP in its REMOTE mode, while providing bipolar buffering and drive capability. 

{ 
S2 

80881808818089 
STATUS S; 

So 

ClK 

PROCESSOR CIiQLCK 
\ 

lOCK 

CONTROL RESB 

SYSB/RESB 3 

RESB 

iiCLR 
11'l1f 

Bl!ro 7 

GND 

ANYRQST 

lOB 

VCC 

so 
ClK 

USllI( 

CIiQLCK 

ANYRQST 

13 AEII 
fiiiQ 

Figure 2. Pin Diagram 

INIT I BClK 
BREQ MUlTiBUSTM 
BPRN COMMAND 
BPRO SIGNALS 

BUSY 
CBRQ 

AEN } SYSTEM 

L~=~~~=~;;;;;;':;d- SIGNALS SYSB/IIHli 

+5V 

Figure 1. Block Diagram 

GND 

{
SO 

PROCESSOR 51 
STATUS -_ 

- S2 

_ ClK 8289 

si~::~~~ - CRQLCK 
OPTIONS -. RESB 

- ANYRQST 

- iOlI 

VCC 

-INIT 
-BCiJ{ 

BREQ 

-iiPRlii 
mo 
BUSY 

MULTIBUS 
INTERFACE 

- SYSB/IIHli } SYSTEM 
AE1'i SIGNALS 

Figure 3_ Functional Pinout 

3-274 



8289/8289-1 

Table 1. Pin Description 

Symbol lYpe Neme end Function Symbol lYpe Name and Function 

Vcc Power: +5V supply ±10%. AEN 0 Address Enable: The output of the 8289 

GND Ground. Arbiter to the processor's address latches, 
to the 8288 Bus Controller and 8284A 

SO,SI,S2 I Status Input Pins: The status input pins Clock Generator. AEN serves to instruct the 
from an 8086, 8088 or 8089 processor. The Bus Controller and address latches when 
8289 decodes these pins to initiate bus re-
quest and surrender actions. (See Table 2.) 

ClK I Clock: From the 8284 clock chip and 

to tri-state their output drivers. 

SYSBI I System BuslResldent Bus: An input 
RESB signal when the arbiter is configured in the 

serves to establish when bus arbiter ac- S.R. Mode (RESs is strapped high) which 
tions are initiated. determines when the multi-master system 

lOCK I Lock: A processor generated signal which 
when activated (low) prevents the arbiter 
from surrendering the multi-mastersystem 
bus to any other bus artiter, regardless of 
its priority. 

bus is requested and multi-master system 
bus surrendering is permitted. The signal 
is intended to originate from a form of 
address-mapping circuitry, as a decoder or 
PROM attached to the resident address 

CROlCK I Common Request lock: An active low 
Signal which prevents the arbiter from sur-
rendering the multi-master system bus to 
any other bus arbiter requesting the bus 
through the CBRO input pin. 

bus. Signal transitions and gl itches are 
permitted on this pin from.pl ofT4 to.p 1 of 
T2 of the processor cycle. During the 
period from.pl ofT2 to.p 1 ofT4, only clean 
transitions are permitted on this pin (no 
glitches). If a glitch occurs, the arbiter may 

RESB I Resident Bus: A strapping option to con- capture or miss it, and the multi-master 
figure the arbiter to operate in systems hav- system bus may be requested or surren-
ing both a multi-master system bus and a dered, depending upon the state of the 
Resident Bus. Strapped high, the multi- glitch. The arbiter requests the multi-
master system bus is requested or s~ 
dered as a function of the SYSB/RESB 

master system bus in the S.R. Mode when 
the state of the SYSBfl!iES!:j pin is high and 

input pin. Strapped low, the SYSB/RESB permits the bus to be surrendered when 
input is ignored. this pin is low. 

ANYROST I Any Request: A strapping option which CBRO 1/0 Common Bus Request: An input signal 
permits the multi-master system bus to be which instructs the arbiter if there are any 
surrendered to a lower priority arbiter as if other arbiters of lower priority requesting 
it were an arbiter of higher priority (i.e., the use of the multi-master system bus. 
when a lower priority arbiter requests the 
use of the multi-master system bus, the bus The CBRO pins (open-collector output) of 
is surrendered as soon as it is possible). all the 8289 Bus Arbiters which surrender 
When ANYROST is strapped low, the bus is to the multi-master system bus upon re-
surrendered according to Table 2. If ANY- quest are connected together. 
ROST IS strapped high and CBRO is ac-
tivated, the bus is surrendered at the end of The Bus Arbiter running the current trans-
the present bus cycle. Strapping C!,!RO low fer cycle will not itself pull the CBRO line 
and ANYROST high forces the 8289 arbiter low. Any other arbiter connected to the 
to surrender the multi-master system bus CBRO hne can request the multi-master 
after each transfer cycle. Note that when system bus. The arbiter presently running 
surrender occurs BREO IS driven false the current transfer cycle drops its BREO 
(high). signal and surrenders the bus whenever 

lOB I 10 Bus: A strapping option which confi-
gures the 8289 Arbiter to operate in sys-
tems having both an 10 Bus (Peripheral 
Bus) and a multi-master system bus. The 
arbiter requests and surrenders the use of 

the proper surrender conditions exist. 
Strapping CBRO low and ANYROST high 
allows the multi-master system bus to be 
surrendered after each transfer cycle. See 
the pin definition of ANYROST. 

the mulli-master system bus as a function INIT I Initialize: An active low multi-master sys-
of the status line, 82. The mUlti-master sys-
tem bus is permitted to be surrendered 

tem bus input signal used to reset all the 
bus arbiters on the multi-master system 

while the processor is performing 10 com- bus. After initialization, no arbiters have 
mands and is requested whenever the pro- the use of the multi-master system bus. 
cessor performs a memory command. 
Interrupt cycles are assumed as coming 
from the peripheral bus and are treated as 
an 10 command. 

3-275 



intJ 8289/8289·1 

Table 1. Pin Descriptions (Continued) 

Symbol 1flIe Name and Function 

BClK I Bus Clock: The mUlti-master system bus 
clock to which all multi-master system bus 
interface signals are synchronized. 

BAEQ 0 Bus Request: An active low output signal 
I n the parallel Priority Aesolvlng Scheme 
which the arbiter activates to request the 
use of the multi-master system bus. 

BPAN I Bus Priority In: The active low signal re-
turned to the arbiter to instruct ilthat It may 
acquire the multi-master sYlltem bus on the 
next failing edge of BClK. BPAN indicates 
to the arbiter that it Is the highest priority 
requesting arbiter presently on the bus. 
The loss of BPAN instructs the arbiter that 
it has lost priority to a higher priority 
arbiter. 

FUNCTIONAL DESCRIPTION 

The 8289 Bus Arbiter operates in conjunction with the 
8288 Bus Controller to interface iAPX 86, 88 processors to 
a multi-master system bus (both the iAPX 86 and iAPX 88 
are configured in their max mode). The processor is un­
aware of the arbiter's existence and issues commands as 
though it has e~clusive use of the system bus. If the pro­
cessor does not have the use of the multi-master system 
bus, the arbiter prevents the Bus Controller (8288), the 
data transceivers and the address latches from accessing 
the system bus (e.g. all bus driver outputs are forced into 
the high impedance state). Since the command sequence 
was not issued by tlJe 8288, the system bus will appear as 
"Not Ready" and the processor will enter wait states. The 
processor will remain in Wait until the Bus Arbiter ac­
quires the use of the multi-master system bus whereupon 
the arbiter will allow the bus controller, the data transceiv­
ers, and the address latches to access the system. Typi­
cally, once the command h8!l been issued and a data 
transfer has taken place, a transfer acknowledge (XACK) 
is returned to the processor to indicate "READY" from the 
accessed slave device. The processor then completes its 
transfer cycle. Thus the arbiter serves to multiplex a pro­
cessor(or bus master) onto a multi-master system bus and 
avoid contention problems between bus masters. 

Arbitration Between Bus Masters 

In general, higher priority masters obtain the bus when a 
lower priority master completes its present transfer 
cycle. Lower priority bus masters obtain the bus when a 
higher priority master Is not accessing the system bus. 
A strapping option (ANYRaST) is provided to allow the 
arbiter to surrender the bus to a lower priority master a~ 
though It were a master of higher priority. If there are no 
other bus masters requesting the bus, the arbiter main· 
tains the bus so long as Its processor has not entered 

Symbol 1flIe Nl!me and Function 

BPRO 0 Bus Priority Out: An active low output 
signal used in the serial priority resolving 
scheme where BPAO is dalsy-chalned to 
BPAII! of the next lower priority arbiter. 

BUSY I/O Busy: An active low open collector 
multi·master system bus interface signal 
used to instruct all the arbiters on the bus 
when the multi·master system bus is avail-
able. When the multi-master system bus is 
available the highest requesting arbiter 
(determined by BPRN) seizes the bus and 
pulls BUSY lowto keep other arbiters off of 
the bus. When the arbiter is done with the 
bus, It releases the BiJSY signal, permitting 
it to go high and thereby allowing another 
arbiter to acquire the multi·master system 
bus. 

the HALT State. The arbiter will not voluntarily surrender 
the system bus and has to be forced off by another 
master's bus request, the HALT State being the only ex· 
ception. Additional strapping options permit other 
modes of operation wherein the multl·master system 
bus Is surrendered or requested under different sets of 
conditions. ' 

Priority Resolving Techniques 

fllnce there can be many bus masters on a multi·master 
system bus, some means of resolving priority between 
bus masters simultaneously requesting the bus must be 
provided. The 8289 Bus Arbiter provides several resolv· 
Ing techniques. All the techniques are based on a priori· 
ty concept that at 11 given time one bus master will have 
priority above all the rest. There are provisions for using 
parallel priority resolving techniques, serial priority 
resolving .techniques, and rotating priority techniques. 

PARALLEL PRIORITY'RESOLVING 
The parallel priority resolving technique uses a separate 
bus request line (BAEti) for each arbiter on the multi· 
master system bus, see Figure 4. Each BREa line enters 
into a priority encoder which generates the binary ad· 
dress of the highest priority BREa line which is active. 
The binary address is decoded by a decoder to select 
the corresponding BPRN (Bus. Priority In) line to be 
returned to the highest priority requesting arbiter. The 
arbiter receiving priority (BPRN true) then allows Its 
associated bus master onto the multi·master systllm 
bus as soon as it becomes available (i.e., the bus is no 
longer busy). When one bus arbiter gains priority over 
another arbiter it cannot immediately seize the bus, it 
mu~t wait until the present bus transaction is complete. 

3-276 



infer 8289/8289·1 

Upon completing its transaction the present bus occu· 
pant recognizes that it no longer has priority and sur· 
renders the bus by releasing BUSY. BUSY is an active 
low "OR" tied signal line which goes to every bus arbiter 
on the system bus. When BUSY goes inactive (high), the 
arbiter which presently h!l_s I:>.!I.S priority (BPRN true) then 

seizes the bus and pulls BUSY low to keep other arbiters 
off of the bu~. See waveform timing diagram, Figure 5. 
Note that all multl·master system bus transactions are 
synchronized to the bus clock (BClK). This allows the 
parallel priority resolving circuitry or any other priority 
resolving scheme employed to settle. 

74148 
PRIORITY 
ENCODER 

74138 
3TOB 

DECODER 

Figure 4. Parallel Priority Resolving Technique 

I HIGHER PRIORITY BUS ARBITER REQUESTS THE MULTI·MASTER SYSTEM BUS. 
2 ATTAINS PRIORITY. 

3 LOWER PRIORITY BUS ARBITER RELEASES BUSY. 

4 HIGHER PRIORITY BUS ARBITER THEN ACQUIRES THE BUS AND PULLS BUSY DOWN. 

Figure 5. Higher Priority Arbiter obtaining the Bus from a Lower Priority Arbiter 

3-277 



inter 8289/8289-1 

SERIAL PRIORITY RESOLVING 
The serial priority resolving technique eliminates the 
need for the priority encoder·decoder arrangement by 
daisy·chaining the bus arbiters together, connecting the 
higher priority bus arbiter's BPRO (Bus Priority Out) out· 
put to the BPRN of the next lower priority. See Figure 6. 

THE NUMBER OF ARBITERS THAT MAY BE DAISY-CHAINED TOGETHER IN THE 
SERIAL PRIORITY RESOLVING SCHEME IS A FUNCTION OF BCLK AND THE PROPA· 
GATION DELAY FROM ARBITER TO ARBITER. NORMALLY, AT 10 MHz ONLY 3 ARBI· 
TER MAY BE DAISY-CHAINED 

Figure 6. Serial Priority Resolving 

ROTATING PRIORITY RESOLVING 
The rotating priority resolving technique is similar to 
that of the parallel priority resolving technique except 
that priority is dynamically re·assigned. The priority en· 
coder Is replaced by a more complex circuit which roo 
tates priority between requesting arbiters thus allowing 
each arbiter an equal chance to use the multl·master 
system bus, over time. 

Which Priority Resolving Technique To 
Use 

There are advantages and disadvantages for each of the 
techniques described above. The rotating priority 
resolving techn,ique requires substantial external logic 
to implement while the serial technique uses no exter· 
nallogic but can accommodate only a limited number of 
bus arbiters before the daisy·chain propagation delay 
exceeds the multi·master's system bus clock (BCLK). 
The 'parallel priority resolving technique is in general a 
good compromise between the other two techniques. It 
allows for many arbiters to be present on the bus while 
not requiring too much logic to Implement. 

*In some system configurations It is possible for a non-1I0 Processor to 
have access to more than one Multi-Master System Bus, see 8289 
Application Note. 

8289 MODES OF OPERATION 

There are two types of processors in the iAPX 86 family. An 
Input/Output processor (the 8089 lOP) and the iAPX 86/10, 
88/10 CPUs. Consequently, there are two ba,sic operating 
modes in the 8289 bus arbiter. One, the lOB (I/O Peripheral 
Bus) mode, permits the processor access to both an I/O 
Peripheral Bus and a multi-master system bus. The sec· 
ond, the RESB (Resident Bus mode), permits the pro­
cessor to communicate over both a Resident Bus and a 
multi-master system bus. An I/O Peripheral Bus is a bus 
where all devices on that bus, including memory, are 
treated as I/O devices and are addressed by I/O com­
mands. All memory commands are directed to another 
bus, the multi·master system bus. A Resident Bus can 
issue both memory and I/O commands, but it is a distinct 
and separate bus from the multi·master system bus. The 
distinction is that the Resident Bus has only one master, 
providing full availability and being dedicated to that one 
master. 

The lOB strapping option configures the 8289 Bus Ar· 
biter into the lOB mode and the strapping option RESB 
configures it into the RESB mode. It might be noted at 
this point that if both strapping options are strapped 
false, the arbiter interfaces the processor to a multi· 
master system bus only (see Figure 7). With both op· 
tions strapped true, the arbiter interfaces the processor 
to a multi·master system bus, a Resident Bus, and an I/O 
Bus. 

In the lOB mode, the processor communicates and con· 
trois a host of peripherals over the Peripheral Bus. When 
the I/O Processor needs to communicate with system 
memory, it does so over the system memory bus. Figure 
8 shows a possible I/O Processor system configuration. 

The iAPX 86 and iAPX 88 processors can communicate 
with a Resident Bus and a multi-master system bus. Two 
bus controllers and only one Bus Arbiter would be needed 
in such a configuration as shown in Figure 9. In such a 
system configuration the processor would have access to 
memory and peripherals of both busses. Memory map­
ping techniques are applied to select which bus is to be 
accessed. The SYSB/RESB input on the arbiter serves to 
instruct the arbiter as to whether or not the system bus is 
to be accessed. The signal connected to SYSB/RESB also 
enables or disables commands from one of the bus 
controllers. 

3-278 

A summary of the modes that the 8289 has, along with 
its response to its status. lines inputs, is summarized in 
Table 2. 



8289/8289-1 

Table 2. Summary of 8289 Modes, Requesting and Relinquishing the Multi-Master System Bus 

Status Lines From lOB Mode RESB (Mode) Only lOB Mode RESB Mode 

8086 or 8088 or 8089 Only lOB = High RESB = High lOB = Low RESB = High 

52 51 So lOB = Low SYSB/RESB = High SYSB/RESB = Low SYSB/RESB = High SYSB/REsB = Low 

1/0 
0 0 0 x x x x 

COMMANDS 
0 0 1 x x x x 
0 1 0 x x x X 

HALT 0 1 1 x x x x x 

1 0 0 x x 
MEM 

0 1 
COMMANDS 

1 x x 
1 1 0 x x 

IDLE 1 1 1 x x x x x 

NOTES: 

1. X= Multi-Master System Bus IS allowed to be Surrendered. 
2. ,., = Multi-Master System Bus is Requested 

Pin Multi·Master System Bus 
Mode 

Strapping Requested·· Surrendered-

Single Bus 10B= High Whenever the processor's 
HLT + TI- CBRQ+ HPBROt Multi·Master Mode RESB= Low status lines go active 

RESB Mode Only 10B= High SYSB/J:fESij = High. (SYSB/~ = Low + TI) • 
RESB= High ACTIVE STATUS CBRQ+ HLT + HPBRQ 

lOB Mode Only 10B=Low Memory Commands 
(1/0 Status + TI) • CBRQ + 

RESB= Low HLT+ HPBRQ 

10B=Low (Memory Command),. 
((1/0 Status Commands) + 

lOB Mode RESB Mode SYSB/~ = LOW)) • CBRO 
RESB= High (SYSB/RESB= High) 

+ HPBRQt + HLT 

NOTES: 
'LOCK prevents surrender of Bus to any other arbiter, CRQLCK prevents surrender of Bus to any lower priority arbiter. 

""Except for HALT and Passive or IDLE Status. 

t HPBRQ, Higher priority Bus request or iiPRiii = 1. 
1. lOB Active Low. 
2. RESB Active High. 
3. + is read as "OR" and· as "AND." 
4. TI= Processor Idle Status 52, 51,50= 111 
5. HLT= Processor Halt Status 52,81, SO=OII 

3-279 

Single 

~ 
lOB = High 

RESB = Low 

x 

x 



-CPu 

PROCESSOR 
LOCAL BUS 

rO~ 
....... Yah T 
CLOCtC AENa~ 

C3 DTIR 

8289/8289-1 

'----'\I TRANSCEIVER SYSTEM k~================J MULTI MASTER IlItIU81 DATA 

00 -

Figure 7. Typical Medium Complexity CPU System 

..... 
CLOCK 

MUL n.IlA8TER 
SYSTEM BUS 

XACK!IIO BUSI >---- RDY1 RDY2i----------------{XACK MULTI MASTER SYSTeM 8US 

10 ¢= 
COMMAND 
BUS 

10 
ADDRESS 
BUS 

10 
DATA 
BUS 

READY 
C," 

REAOYCllC 

... , 
lOP 

.m 
BUS 

ARBITER 

K======:)MULTIMASTEA CONTROL 
BUS 

MULTI MASTER 

~~~==-==l~~~:~ND 
BUS

===:> MULTI MASTER
-~-- - SYSTEM

---- AODRESS

-t------« ~"elE BUS

K~============>MULTIMASTER SYSTEM
DATA .US

Figure 8. Typical Medium Complexity 108 System

3-280

MULTtMASTER
SYSTEM 8US

"ISIDENT BUS

8289/8289-1

o
AEN2 AEN1I>-------,

-.. ct."""
=£NT BUS--------lADV2 1-------+-------- XACK MULTI-MASTER SYSTEM 8US

SVS8IiiRJ

RESIDENT COMMAND "'====::====l
BUS \

PROM
OR

DECODER

RESIDENT ADDRESS 1----
eus \--------1

RESIDENT DATA /'--------J\J
IUS

ADDR
LATCH

828218283
(20R3)

"BY ADDING ANOTHER 8289 ARBITER AND CONNECTING ITS AEN TO THE 8218
WHOSE nH IS PRESENTLY GROUNDED, THE PROCESSOR COULD HAYE ACCESS
TO TWO MULTI MASTER BUSES

Vee

MULTI MASTER SYSTEM
COMMAND BUS

MULTI MASTER SYSTEM
ADDRESS BUS

Figure 9. 8289 Bus Arbiter Shown in System-Resident Bus Configuration

3-281

MULTI MASTER
SYSTEM 8US

8289/8289-1

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias•.. O·C to 70·C
Storage Temperature - 65·C to + 150·C
All Output and Supply Voltages - 0.5V to + 7V
All Input Voltages -1.0V to + 5.5V
Power Dissipation •........................ 1.5 Watt

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA = O°C to 70°C, Vee 1= +5V ±10%)

Symbol Parameter Min. Max. Units

Ve Input Clamp Voltage -1.0 V

IF Input Forward Current -0.5 mA

IR Reverse Input Leakage Current 60 "A

VOL Output Low Voltage
BUSY,CBRQ 0.45 V
AEN 0.45 V
BPRO,BREQ 0.45 V

VOH Output High Voltage
BUSY,CBRQ Open Collector

All Other Outputs 2.4

Icc Power Supply Current 165

V1l Input Low Voltage .8

V1H Input High Voltage 2.0

Cin Status Input Capacitance 25

Cln (Others) Input Capacitance 12

A.C. CHARACTERISTICS (Vee = +5V ±10%, TA ,;" O°C to 70°C)

TIMING REQUIREMENTS

Symbol Parameter 8289 Min. 8289·1 Min.

TCLCL CLK Cycle Period" 125 100

TCLCH CLKLowTIme 65 53

TCHCL CLK High Time 35 26

TSVCH Status Active Setup 65 55

TSHCL Status Inactive Setup 50 45

THVCH Status Active Hold 10 10

THVCL Status Inactive Hold 10 10

TBYSBL BUSYj J.-Setup to BCLKJ.- 20 20

TCBSBL CBROj J.-Setup to BCLKJ.- 20 20

TBLBL BCLK Cycle TIme 100 • 100

TBHCL BLCK High Time 30 30

TCLLL1 LOCK Inactive Hold 10 10

TCLLL2 LOCK Active Setup 40 40

TPNBL BPRNj J.- to BCLK Setup Time 15 15

TCLSR1 SYSB/RESB Setup 0 0

TCLSR2 SYSB/RESB Hold 20 20

TIVIH Initialization Pulse Width' 3TBLBL+ 3TBLBL+
3 TCLCL 3 TCLCL

3-282

V

mA

V

V

pF

pF

Max.

TCLCL-10

TCLCL·10

,65[TBLBLJ

Test Condition

Vee=4.50V, le= -5 mA

Vee = 5.50V, VF = 0.45V

Vee = 5.50, VR = 5.50

IOl=20 mA
IOl= 16 mA
IOl= 10 mA

IOH=400 "A I

Unit Test Condition

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

inter 8289/8289-1

A.C. CHARACTERISTICS (Continued)

TIMING RESPONSES

Symbol Parameter

TBLBRL BCLK to BREa Delay~ t

TBLPOH BCLK to BPROH (See Note 1)

TPNPO BPRN~ tto BPRO~ tDelay
(See Note 1)

TBLBYL BCLK to BUSY Low

TBLBYH BCLK to BUSY Float (See Note 2)

TCLAEH CLK to AEN High

TBLAEL BCLK to AEN Low

TBLCBL BCLK to CBRa Low

TRLCRH BCLK to CBRa Float (See Note 2)

TOLOH Output Rise Time

TOHOL Output Fall Time

~ t Denotes that spec applies to both transitions of the signal.

NOTES:

Min. Max. Unit Test Condition

35 ns

40 ns

25 ns

60 ns

35 ns

65 ns

40 ns

60 ns

35 ns

20 ns From 0.8V to 2.0V

12 ns From 2.0V to 0.8V

1. BCLK generates the first BPRO wherein subsequent BPRO changes lower in the chain are generated through BPRON.
2. Measured at .5V above GND.

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

2.4 =XS_TESTPOINTS -'x:=
0.45

A.C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC "1" AND a 45V
FOR A LOGIC "0" THE CLOCK IS DRIVEN AT 4 3V and 025V TIMING
MEASUREMENTS ARE MADE AT 1 5V FOA BOTH A LOGIC "1" AND "0"
INPUT RISE AND FALL TIMES (MEASURED BETWEEN 0 BV AND 2 OV) ARE
DRIVEN AT 5 ± 2 NS.

A.C. TESTING LOAD CIRCWT

DEVICE

ICL~'OOPF
UNDER

TEST

-=-
CL = 100 pF
CL INCLUDES JIG CAPACITANCE

~

3-283

intJ 8289/8289·1

WAVEFORMS

WfR
(SEE NOTE 1)

AEN
!SEE NOTE 3)

PROCESSOR eLK RELATED

IUS eLK RELATED

1IJiMi ..
(1J5Jm'1)

1I1'l10 ..
(J151IIiI #3)

ADDITIONAL NOTES:

NOTES:
1 LoCK ACTIVE CAN OCCUR DURING ANY STATE, AS lONG AS THE

RELATIONSHIPS SHOWN ABOVE WITH RESPECT TO THE ClK ARE MAINTAINED.
LoCK INACTIVE HAS NO CRITICAL TIME AND CAN BE ASYNCHRONOUS.
-GRQlCK HAS NO CRITICAL TIMING AND IS'CONSIDERED AN ASYNCHRONOUS
INPUT SIGNAL

2 GLiTCHING OF SYSB/REsB PIN IS PERMITIED DURING THIS TIME. AFTER <I> 2 OF
n, AND BEFORE <1>1 OF T4, SYSB/RESBSHOUlD BE STABLE

3 AEN lEADING EDGE IS RELATED TO BClK, TRAILING EDGE TO ClK THE
TRAILING EDGE OF AEN OCCURS AFTER BUS PRIORITY IS lOST.

The signals related to ClK are typical processor signals, and do not relate to the depicted sequence of events of the
signals referenced to BClK. The signals shown related to the BClK represent a hypothetical sequence of events for
illustration. Assume 3 bus arbiters of priorities 1, 2 and 3 configured In serial priority resolving scheme as shown In

Figure 6. Assume arbiter 1 has the bus and is holding busy low. Arbiter #2 detect~rocessor wants the bus and
pulls low BREO#2. If BPRN#2 is high (as shown), arbiter #2 will pull low CBRO line CBRO signals to the higher priority
arbiter #1 that a lower priority arbiter wants the bus [A higher priority arbiter would be granted BPRN when it makes
the bus request rather than haVing to wait for another arbiter to release the bus through cmm]." Arbiter #1 will relin­
quish the multi-master system bus when it enters a state not requiring it (see Table 1), by lowering ItS BPROHl (tied to
BPRN#2) and releasing BUSY. Arbiter #2 now sees that It has Priority from BPRN#2 being low and releases CBRO. As
soon as BUSY signifies the bus is available (high), arbiter #2 pulls BUSY low on next failing edge of BClK. Note that if
arbiter #2 didn't want the bus at the time It received priority, It would pass priority to the next lower priority arbiter by
lowering its BPRO #2 [TPNPOj.

··Note that even a higher Priority arbiter which IS acqu"lng the bus through BPAN will momentarily drop C'B'R'Q untl! It has acquired the bus

3-284

@ Intel Corporation 1979

APPLICATION
NOTE

3-285

AP·67

September 1979

ORDER NUMBER: 230792·001

8086 System Design Contents

1. INTRODUCTION

2. 8086 OVERVIEW AND BASIC SYSTEM
CONCEPTS :

A. Bus Cycle Definition
B. Address and Data Bus Concepts
C. System Data Bus Concepts
D. Multiprocessor Environment.

3. 8086 SYSTEM DETAILS ,

A. Operating Modes.,
B. Clock Generation
C. Reset
D. Ready Implementation and Timing
E. Interrupt Structure
F. Interpreting the 8086 Bus Timing Diagrams
G. Bus Control Transfer .. :

4. INTERFACING WITH 1/0

5. INTERFACING WITH MEMORIES. "

6. APPENDIX

Intet CorporatIon Assumes No ResponsibIlity for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product No Other Circuit Patent Licenses are Implied

3-286 230792-001

AP-67

1. INTRODUCTION I

The 8086 family, Intel's new series of microprocessors
and system components, offers the designer an ad·
vanced system architecture which can be structured to
satisfy a broad range of applications. The variety of
speed, configuration and component selections avail·
able within the family enables optimization of a specific
design to both cost and performance objectives. More
important however, the 8086 family concept allows the
designer to develop a family of systems providing multi·
pie levels of enhancement within a single design and a
growth path for future designs.

This application note is directed toward the implemen·
tation of the system hardware and will provide an in·
troduction to a representative sample of the systems
configurable with the 8086 CPU member of the family.
Application techniques and timing analysis will be given
to aid the deSigner in understanding the system require·
ments, advantages and limitations. Additional Ihtel
publications the reader may wish to reference are the
8086 User's Manual (9800722A), 8086 Assembly Lan·

-T,----T2-

ClK ~ ~
---'

A19/S6,Al6JS3

.J.. ADDR)

READY -
-

guage Reference Guide (9800749A), AP·28A MULTI·
BUS ™ Interfacing (98005876B), INTEL MUL TIBUS®
SPECIFICATION (9800683), AP·45 Using the 8202 Dy·
namic RAM Controller (9800809A), Ap·51 Designing
8086, 8088, 8089 Multiprocessor Systems with the 8289
Bus Arbiter and AP·59 Using the 8259A Programmable
Interrupt Controller. References to other Intel publica·
tions will be made throughout this note.

2. 8086 OVERVIEW AND BASIC SYSTEM CONCEPTS

2A. 8086 Bus Cycle Definition

The 8086 is a true 16·bit microprocessor with 16·bit in·
ternal and external data paths, one megabyte of memory
address space (2**20) and a separate 64K byte (2**16)
1/0 address space. The CPU communicates with its ex·
ternal environment via a twenty·bit time multiplexed ad·
dress, status and data bus and a command bus. To
transfer data or fetch instructions, the CPU executes a
bus cycle (Fig. 2A1). The minimum bus cycle consists of
four CPU clock cycles called T states. During the first T
state (T1), the CPU asserts an address on the twenty·bit

- ~T,JTw T.- -
v----. -, r---I -,~

STATUS y"

P<
FlOA/'---1X)r;;:OA"T r-----.x. ADDRESS A1S-Ao \ DATA IN 015-DO

1--- --- -----

READ
CYCLE

WRITE
CYCLE

RD

DTIR

DEN

DEN

DTIR

y.,

V

(

1\ V

"ADDRESS DATA OUT ~

/

Figure 2Al. Basic 8086 Bus Cycle

3-287 230792-001

AP-67

multiplexed address/data/status bus. For the second T
state (T2), the CPU removes the address from the bus
and either three·states Its outputs on the lower slxte~n
bus lines in preparation for a read cycle or asserts write
data. Data bus transceivers are enablee in either T1 or
T2 depending on the 8086 system configuration and the
direction of the transfer (into or out of the CPU). Read,
write or Interrupt acknowledge commands are always
enabled in T2. The maximum mode 8086 configuration
(to be discussed later) also provides a write command
enabled in T3 to guarantee data setup time prior to com­
mand activation.

During T2, the upper four multiplexed bus lines switch
,from address (A19·A16) to bus cycle status
(S6,S5,S4,S3). The status Information (Table 2A1) is
available primarily for diagnostic monitoring. However,
a decode of S3 and S4 could be used to select one of
four banks of memory, one assigned to each segment
register. This technique allows partitioning the memory
by segment to expand the memory addressing beyond
one megabyte. It also provides a degree of protection by
preventing erroneous write operations to one segment
from overlapping into another segment and destroying
information in that segment.

The CPU continues to provide status Information on the
upper four bus lines dl.lrlng T3 and will either continue
to assert write data or sample read data on the lower six­
teen bus lines. If the selected memory or I/O device is
not capable of transferring data at the maximum CPU
transfer rate, the device must signal the CPU "not
ready" and force the CPU to Insert additional clock
cycles (Wait states TW) after T3. The 'not ready' indica­
tion must be presented to the CPU by the start of T3.
Bus activity during TW is the same as T3. When the
selected device has had sufficient time to complete the
transfer, it asserts "Ready" and allows the CPU to con­
tinue from the TW states. The CPU will latch the data on
the bus during the last walt state or during T3 if no wait
states are requested. The bus cycle Is terminated In T4
(command lines are disabled and the selected external
device deselects from the bus), The bus cycle appears
to devices in the system as an 'asynchronous event con­
sisting of an address to select the device followed by a
read strobe or data and a write strobe. The selected
device accepts bus data during a. write cycle and drives
the desired data onto the bus during a read cycle. On ter­
mination of the command, the device latches write data
or disables its bus drivers. The only control the device
has on the bus cycle is the Insertion of wait cycles.

The 8086 CPU only executes a bus cycle when instruc­
tions or operands must be transferred to or from
memory or I/O devices. When not executing a bus cycle,
the bus Interface executes idle cycles (TI). During the
idle cycles, the CPU continues to drive status informa­
tion from the previous bus cycle on the upper address
lines. If the previous bus cycle was a write, the CPU con­
tinues to drive the write data onto the multiplexed bus
until the start of the next bus cycle. If the CPU executes
idle cycles following a read cycle, the CPU will not drive
the lower 16 bus lines until the next bus cycle is
required.

Since the CPU prefetches up to six bytes of the instruc­
tion stream for storage and execution from an internal
Instruction queue, the relationship of instruction fetch
and associated operand transfe~s may be skewed In
time and separated by additional Instruction fetch bus
cycles. In general, If an Instruction is fetched into the
8086's Internal Instruction queue, several additional in­
structions may be fetched before the instruction Is
removed from the queue and executed. If the Instrw;:tlon
being executed from the queue is a jump or other' con­
trol transfer instruction, any instructions remaining in
the queue are not executed and are discarded with no ef­
fect on the CPU's operation. The bus activity observed
during execution of a specific Instruction is dependent
on the preceding instructions but Is always deter­
ministic within the specific sequence.

Table 2A1

S3

o
S4

o Alternate (relative to the ES segment)

1 0 Stack (relative to the SS segment)

o Code/None (relative to the CS seg·
ment or a default of zero)

1 Data (relative to the OS segment)

S5 = IF (interrupt enable flag)
S6 = 0 (Indicates the 8086 Is on the bus)

2B. 8086 Address and Data Bus Concepts

Since the majority of system memories and peripherals
require a stable address for the duration of the bus
cycle, the address on the multiplexed address/data bus
during T1 should be latched and the latChed address
used to select the desired peripheral or memory loca­
tion. Since the 8086 has a 16-bit data bus, the multi­
plexed bus components of the 8085 family are not ap·
plicabh~ to the 8086 (a device on address/data bus lines
8-15 will not be able to receive the byte selection ad­
dress on lines 0-7). To demultiplex the bus (Fig. 2B1a),
the 8086 system provides an Address Latch Enable
signal (ALE) to capture the address in either the 8282 or
8283 8-bit bi-stable latches (Oiag. 2B1). The latches are
either inverting (8283) or non-inverting (8282) and have
outputs driven by three-state buffers that supply 32 mA
drive capability and can switch a 300 pF capacitive load
in 22 ns (inverting) or 30 ns (non-inverting). They prop­
agate the address through to the outputs while ALE is
high and latch the address on the falling edge of ALE.
This only delays address access and chip select
decoding by the propagation delay of the latch. The out­
puts are enabled through the low active OE input. The
demultiplexing of the multiplexed address/data bus
(Iatchings of the address from the multiplexed bus), can
be done locaily at appropriate points In the system or at
the CPU with a separate address bus distributing the ad­
dress throughout the system (Fig. 2B1b). For optimum
system performance and compatibility with multiproc­
essor and MULTIBUS™ configurations, the latter tech­
nique is strongly recommended over the first. The re­
mainder of this note will assume the bus is demul­
tiplexed at the CPU.

3-288 230792-001

8086

ADDRESS
BUS

Figure 2B1a. Demultiplexing the 8086 Bus

8086
CPU

ADDRESS BUS

DATA BUS

SEPARATE ADDRESS AND DATA BUSSES

r------.,
I I
I I
I I
I r·----~-+~ f-~----- ALE
I 8086 I CPU
I

'--.J..... ____ J\ ADDRESSJDATA

I BUS

I
I I L ______ J

MULTIPLEXED BUS WITH lOCAL ADDRESS DEMUlTIPlEXING

Figure 2B1 b.

T, T,

ClK r--"\ ,--..
---J

AP-67

--

The programmer views the 8086 memory address space
as a sequence of one million bytes in which any byte
may contain an eight bit data element and any two con·
secutive bytes may contain a 16-bit data element. There
is no constraint on byte or word addresses (boundaries).
The address space is physically implemented on a six­
teen bit data bus by dividing the address space into two
banks of up to 512K bytes (Fig. 2B2). One bank is con­
nected to the lower half of the sixteen-bit data bus (07-0)
and contains even addressed bytes (AD = 0). The other
bank is connected to the upper half of the data bus
(015-8) and contains odd addressed bytes (AO= 1). A
specific byte within each bank is selected by address
lines A19-Al. To perform byte transfers to even ad­
dresses (Fig. 2B3a), the information is transferred over
the lower half of the data bus (07-0). AD (active low) is
used to enable the bank connected to the lower half of
the data bus to participate in the transfer. Another
signal provided by the 8086, Bus High Enable (SHE), is
used to disable the bank on the upper half of the data
bus from participating in the transfer. This is necessary
to prevent a write operation to the lower bank from
destroying data in the upper bank. Since BHE is a
multiplexed signal with timing identical to the A19-A16
address lines, it also should be latched with ALE to pro­
vide a stable signal during the bus cycle. During T2
through T4, the BHE output is multiplexed with status
line S7 which is equal to BHE. To perform byte transfers
to odd addresses (Fig. 2B3b), the information is trans­
ferred over the upper half of the data bus (015-08) while
BHE (active low) enables the upper bank and AD
disables the lower bank. Directing the data transfer to
the appropriate half of the data bus and activation of
BHE and AD is performed by the 8086, transparent to the
programmer. As an example, consider loading a byte of
data into the CL register (lower half of the CX register)
from an odd addressed memory location (referenced
over the upper half of the 16-bit data bus). The data is
transferred into the 8086 over the upper 8 bits of the
data bus, automatically redirected to the lower half of
the 8086 internal 16-bit data path and stored into the CL
register. This capability also allows byte 1/0 transfers
with the AL register to be directed to 1/0 devices con­
nected to either the upper or lower half of the 16-bit data
bus.

To access even addressed sixteen bit words (two con­
secutive bytes with the least significant byte at an even

T, 'Tw T,

r---\ ,-I" r--\

--- ---
DATA IN OR OUT

~-- ~ 'j --- _X __
,...--

\ I ---ALE

,Diagram 2B1. ALE Timing

3-289 230792-001

I
I

I

I

AP-67

byte address), A 19-A 1 select the appropriate byte within
each bank and AO and BHE (active low) enable both
banks simultaneously (Fig. 2B3c). To access an odd ad­
dressed 16-bit word (Fig. 2B3d), the least significant
byte (addressed by A19-A1) is first transferred over the
upper half of the bus (odd addressed byte, upper bank,
BHE low active and AO = 1). The most significant byte is
accessed by incrementing the address (A 19-AO) which
allows A19-A1 to address the next physical word loca­
tion (remember, AO was equal to one which indicatef! a
word referenced from an odd byte boundary). A second
bus cycle is then executed to perform the transfer of the
most significant byte with the lower bank (AO is now ac­
tive low and BHE i.s high). The sequence is automatically
executed by the 8086 whenever a word transfer is ex­
ecuted to an odd address. Directing the upper and lower
bytes of the8086's internal sixteen-bit registers to the
appropriate halves of the data bus is also performed
automatically by the 8086 and is transparent to the pro·
grammer.

IA) LOGICAL ADDRESS SPACE
(8) PHYSICAL IMPLEMENTATION OF THE

ADDRESS SPACE

FFFFF

FFFFE

FFFFO
FFFFC

m
1 MEGABYTE

512K BYTES
FFFFF

FfFFD

Figure 2B2. 8086 Memory

51::K BYTES

FFFFE

FFFFC

All-A, 015-08 07-00 Ao (LOW)

Figure 2838. Even Addressed Byte Transfer

TRANSFER X + 1

.--J\ Y+l .J., Y

~(X+l);;;:; X

rv' rv'

1 "'" i'- L. .>..

1 '" 7 _I "" "7
All-A, 015-08 SHE (LOW) 07-00 Ao (HIGH)

Figure 2B3b. Odd Addressed Byte T,ansfer

A.

TRANSFER X + 1, X
r----, r----,

(X)

Ao(LOW)

Figure 2B3c. Even Addressed Word Transfer

''''I FIRST BUS CYCLE
~------~. ~------~

SHE (LOW) 07-00 Ao(HIGH)

SECOND BUS CYCLE
~--~ ~~-,

Y+l (V)

X+l

SHE (HIGH) Ao(LOW)

Figure 2B3d. Odd Addressed Word Transfer

During a byte read, the CPU floats the entire sixteerl-bit
, data bus even though data is only expected on the upper
or lower half of the data bus. As will be demonstrated
later, this action simplifies the chip select decoding re­
quirements for read only devices (ROM, EPROM). During
a byte write operation, the 8086 will drive the entire
sixteen-bit data bus. The information on the half of the
data bus not transferring data is indeterminate. These
concepts al.so apply to the 1/0 address space. Specific
examples of 1/0 and memory interfacing are considered
in the corresponding sections .

2C_ System Data Bus Concepts

When referring to the system data bus, two Implemen­
tation alternatives must be considered; (a) the multi­
plexed addressldata bus (Fig. 2C1a) and a data bus buf­
fered from the multiplexed bus by transceivers (Fig.
2C1b) ..

If memory or 1/0 devices are connected directly to the
multiplexed bus, the designer must guarantee the
devices do not corrupt the address on the bus during n.

3-290 230792-001

AP-67

MULTIPLEXED DATA BUS

8086

ALE 1-4--...... -, ADDRESS

'-____:..;AD""ccS-.:cAc::;DO'-'\ MULTIPLEXED

Figure 2Cla. Multiplexed Data Bus

BUFFERED DATA BUS

8282

ALE 1--;'--_1

Figure 2Clb. Buffered Data Bus

T1

ALE \

ADDRESS/DATA

ADDRESS

DATA

SYSTEM
BUS

T2

To avoid this, device output drivers should not be enabl·
ed by the device chip select, but should have an output
enable controlled by the system read signal (Fig. 2C2).
The 8086 timing guarantees that read is not valid until
after the address is latched by ALE (Oiag. 2C1). All Intel
peripherals, EPROM products and RAM's for microproc·
essors provide output enable or read inputs to allow
connection to the multiplexed bus.

8282's
ALE----I

WR------01

RD------01

ADDRESS BUS

MULTIPLEXED
BUS

Figure 2C2. Devices wilh Output Enables on the Multiplexed Bus

Several techniques are available for interfacing devices
without output enables to the multiplexed bus but each
introduces other restrictions or limitations. Consider
Figure 2C3 which has chip select gated with read and
write. Two problems exist with this technique. First, the
chip select access time is reduced to the read access
time, and may require a faster device if maximum
system performance (no wait states) is to be achieved
(Oiag. 2C2). Second, the designer must verify that chip
select to write setup and hold times for the device are
not violated (Oiag. 2C3). Alternate techniques can be ex·
tracted from the bus interfacing techniques given later
in this section but are subject to the associated restric·
tions. In general, the best solution is obtained with
devices having output enables.

A subsequent limitation on the multiplexed bus is the
8086's drive capability of 2.0 mA and capacitive loading
of 100 pF to guarantee the specified A.C. character·
istics. Assuming capacitive loads of 20 pF per I/O
device, 12 pF per address latch and 5·12 pF per memory
device, a system mix of three peripherals and two to
four memory devices (per bus line) are close to the
loading limit.

T3 T4

,----
,:.----

Diagram 2Cl. Relationship of ALE to READ

3-291 230792-001

AP-67

Figure 2C3, Device. without Output Enable. on the Multiplexed Bu.

AOORE .. --<'-______________ _

To satisfy the capacitive Ipading and drive requirements
of larger systems, the data bus must be buffered. The
8286 non-inverting and 8287 inverting octal transceivers
are offered as part of the 8086 family to satisfy this re­
quirement. They have three·state output buffers that
drive 32 mA on the bus interface and 10 mA on the CPU
interface and can switch capacitive loads of 300 pF at
the b.us interface and 100 pF on the CPU interface in 22
ns (8287) or 30 ns (8286). To enable and control the direc­
tion of the transceivers, the 808/l-system provides Data
ENable (DEN) and Data Transmit/Receive (DT/Ai signals
(Fig. 2Cl b). These signals provide the appropriate tim­
ing to guarantee isolation of the multiplexed bus from
the system during Tl and elimination of bus contention
with the CPU during read and write (Diag. 2C4). Although
'the memory and peripheral devices are isolated from the
CPU (Fig. 2C4), bus contention may still exist in the
system if the devices do not have an output enable con­
trol other than chip select. As an example, bus conten­
tion will exist during transition from one chip select to
another (the newly selected device begins driving the
bus before the previous device has disabled its drivers).
Another, more severe case exists during a write cycle.
From chip select to write active, a device whose outputs
are controlled only by chip select, will drive the bus
simultaneously with write data being driven through the
transceivers by the CPU (Oiag. 2C5). The same tech·
nique given for circumventing these problems on the
multiplexed bus can be applied here with the same limi­
tations.

'\
1 .

_2 __

Cs.RDiWR \

DATA

1 ACCESS TIME FOR CS GENERATED FROM ADDRESS DeCODe

2 ACCESS TIME IF CS IS GATED WITH AD/WR.

Diagram 2C2. Acce.s Time: CS Gated with RiiIWR

AOOR--<'-______________ _

WR---------~ ~

an 1 u
1 CS IS NOT VALID PRIOR TO WRITE AND BECOMES ACTIVE ONE OR TWO GATE

DELAYS LATER.

2 CS REMAINS VALtO AFTER WRITE ONE OR TWO GATE DELAYS.

Diagram 2C3. CS to WR Set·Up and Hold

One last extension to the bus implementation is a sec­
ond level of buffering to reduce the tot!).1 load seen by
devices on the system bus (Fig_ 2C5). This is typically
done for multi board systems and isolation of memory
arrays. The concerns with this configuration are the ad­
ditional delay for access and more important, control of
the second transceiver in relationship to the system bus
and the device being interfaced to the system bus.
Several techniques for controlling the transceiver are
given in Figure 2C6. This first technique (Fig. 2C6a)
simply distributes DEN and DT/R throughout the
system. DT/R is inverted to provide proper direction con­
trol for the second level transceivers. The second exam­
ple (Fig. 2C6b) provides control for devices with output
enables. RD is used to normally direct data from the
system bus to the peripheral. The buffer is selected
whenever a device on the local bus is chip selected. Bus
contention is possible on the device's local bus during a
read as the read simultaneously enables the device out­
put and changes the transceiver direction. The conten­
tion may also occur as the read is terminated.

For devices without output enables, the same technique
can be applied (Fig. 2C6c) if the chip select to the device
is conditioned by read or write. Controlling the chip
select with read/write prevents the device from driving
against the transceiver prior to the command being
received. The limitations with this technique are acces~
limited to read/write time and limited CS to write setup
and hold times.

3-292 230792-001

ADo

AD1s~ADo

1 READ AD
CYCLE

1
DT/R

DEN

AD1S"ADo

ViR
WRITE
CYCLE

DEN

Dnil

AP-67

-----Tlll~T2 __ -_T3_~T4-

- -- --------
D< ADDRESS A15~Ao I FLOAT DATA IN 015-00 X FLOAT r-- --- -----

\
- i"\

, 1\ V

ADDRESS X DATA OUT I FLOAT

V
- ---

I - _J

1 DEN IS ENABLED AFTER THE 8086 HAS FLOATED THE MULTIPLEXED BUS

2 DEI'I ENABLES THE TRANSCEIVERS EARLY IN THE CYCLE. BUT DTIR GUARANTEES
THE TRANSCEIVERS ARE IN TRANSMIT RATHER THAN RECEIVE MODE AND WILL
NOT DRIVE AGAINST THE CPU.

Diagram 2C4. Bus Transceiver Control

ADDR~~ ____________________________ _

.:~_?r--_ ----.~-)+--------

~ BUS CONTENTION ~ ..
BOTH DEVICES DRIVE _______ --< ------------------

THE BUS

Figure 2C4. Devices with Output Enables on the System Bus Diagram 2C5.

3-293 230792-001

AP-67

CPU LOCAL
BUS

SYSTEM
BUS

MEMORY/IO
LOCAL BUS

Figure 2C5. Fully Bullered System

MEMORYniO DEVICES
I \r-;:;C;;;--11

828817

Figure 2C6a. Controlling System Transceivers with DEN and DT/R

WR----------------------_,
ilI----------~--------_,

RD--------~--~--------~~~

SYSTEM / L.. ____ .J \1
DATA
BUS

Figure 2C6b. Bullerlng Devices with OEiiiO

MEMOAYIlIO
DEVICE

MEMORY/I/O
DEVICE

Figure 2C6c. Bullerlng Device. without OEiiiO and with Common
or Separate Input/Output

An alternate technique applicable to devices with and
without output enables is shown In Figure 2C6d. RD
again controls the direction of the transceiver but it Is
not enabled until a command and chip select are active.
The possibility for bus contention still exists but Is
reduced to variations in output enable vs. direction
change time for the transceiver. Full access time from
chip select is now available, but data will not be valid
prior to write and will only be held valid after write by the
delay to disable the transceiver.

e!----p------------,

8211/7

MEMORY/UO
DEVICE

Figure 2C6d. Sullerlng Devices without OEliiD and with Common
or Separate Input/Output

One last technique Is given for devices with separate In­
puts and outputs (Fig. 2C6e). Separate bus receivers and
drivers are provided rather than a single transceiver. The
receiver Is always enabled while the bus driver Is con­
trolled by RD and chip select. The only possibility for
bus contention in this system occurs as multiple
devices on each line of the local read bus are enabled
and disabled during chip selection changes.

Throughout this note, the multiplexed bus will be con­
sidered the local CPU bus and the demultlplexed ad­
dress .and buffered data bus will be the system bus. For
additional information on bus contention and the
system problems associated with It, refer to Appendix 1.

3-294 230792-001

AP-67

~~------------------------,

lI1l--qL-'/

WR--------1---------------~

SYSTEM

74504
OR

748240

DATA -1-------+-;
BUS

LOCAL WRITE BUS
o

LOCAL READ BUS

MEMORY/I/O
DEVICE

748240

Figure 2C6e. Buffering Devices without OEIRD and with Separate
Input/Output

20. Multiprocessor Environment

The 8086 architecture supports multiprocessor systems
basad on the concept of a shared system bus (Fig. 201).
All CPU's in the system communicate with each other
and share resources via thl! system bus. The bus may be
either the Intel Multibus™ system bus or an extension
of the system bus defined in the previous section. The
major addition required to the demultiplexed system
bus is arbitration logiC to control access to the system
bus. As each CPU asynchronously requests access to
the shared bus, the arbitration logic resolves priorities
and grants bus access to the highest priority CPU. Hav·
ing gained access to the bus, the CPU completes its
transfer and will either relinquish the bus or wait to be
forced to relinquish the bus. For a discussion on
Multibus™ arbitration techniques, refer to AP·28A, Intel
Multibus ™ Interfacing.

Figure 201. 8086 Family Multiprocessor System

To support a multimaster interface to the Multibus
system bus for the 8086 family, the 8289 bus arbiter is
included as part of the family. The 8289 is compatible
with the 8086's local bus and in conjunction with the
8288 bus controller, implements the Multibus protocol
for bus arbitration. The 8289 provides a variety of arbitra·
tion and prioritization techniques to allow optimization
of bus availability, throughput and utilization of shared
resources. Additional features (implemented through

strapping options) extend the configuration options
beyond a pure CPU interface to ,he multi master system
bus for access to shared resources to include concur·
rent support of a local CPU bus for private resources.
For specific configurations and additional information
on the 8289, refer to application note AP·51.

3. 8086 SYSTEM DETAILS

3A. Operating Modes

Possibly the most unique feature of the 8086 is the abili·
ty to select the base machine configuration most suited
to the application. The MN/MX Input to the 8086 Is a
strapping option which allows the deSigner to select
between two functional definitio(ls of a subset of the
8086 outputs.

MINIMUM MODE

The minimum mode 8086 (Fig. 3A1) is optimized for
small to medium (one or two boards), Single CPU
systems. Its system architecture is directed at satisfy·
ing the requirements of the lower to middle segment of
high performance 16·bit applications. The CPU main·
tains the full megabyte memory space, 64K byte 110
space and 16·bit data path. The CPU directly provides all
bus control (DT/R, DEN, ALE, M/iO), commands
(RD,WR,INTA) and a Simple CPU preemption mech·
anism (HOLD, HLDA) compatible with existing DMA
controllers.

MAXIMUM MODE

The maximum mode (Fig. 3A2) extends the system ar·
chitecture to support multiprocessor configurations,
and local instruction set extension processors (co·
processors). Through addition of the 8288 bipolar bus
controller, the 8086 outputs assigned to bus control and
commands in the minimum mode are redefined to allow
these extensions and enhance general system perform·
ance. Specifically, (1) two prioritized levels of processor
preemption (RO/GTO, RO/GT1) allow multiple proc·
essors to reside on the 8086's local bus and share its in·
terface to the system bus, (2) Oueue status (OSO,OS1) is
available to allow external devices like ICeM·86 or
special instruction set extension co·processors to track
the CPU instruction execution, (3) access control to
shared resources in multiprocessor systems is sup·
ported by a hardware bus lock mechanism and (4)
system command and configuration options are ex·
panded via ancillary devices like the 8288 bus controller
and 8289 bus arbiter.

The queue status indicates what information is being
removed from the internal queue and when the queue is
being reset due to a transfer of control (Table 3A 1): By
monitoring the SO,51,52 status lines for instructions
entering the 8086 (1,0,0 indicates code access while AO
and 'BHE indicate word or byte) and OSO, OS1 for in·
structions leaving the 8086's internal queue, it is possi·
ble to track the instruction execution. Since instruc·
tions are executed from the 8086's internal queue, the
queue status is presented each CPU clock cycle and is
not related to the bus cycle activity. This mechanism (1)
allows a co·processor to detect execution of an

3-295 230792-001

AP-67

ESCAPE instruction which directs the co-processor to
perform a specific task and (2) allows ICE-S6 to trap ex­
ecution of a specific memory location. An ex~mple of a
circuit used by ICE is given In Figure 3A3. The first up
down counter tracks the depth of the queue while the
second captures the queue depth on a match. The sec­
ond counter decrements on further fetches from the
queue until the queue is flushed or the count goes to
zero indicating execution of the match address. The
first counter decrements on fetch from the queue
(050= 1) and increments on code fetches into the

queue. Note that a normal code fetch will transfer two
bytes into the queue so two clock increments are given
to the counter (T201 and T301) unless a single byte is
loaded over the upper half of the bus (AO-P is high).
Since the execution unit (EU) is not synchronized to the
bus interface unit (BIU), a fetch from the queue can oc­
cur simultaneously with a transfer into the queue. The
exclusive-or gate driving the ENP input of the first
counter allows these simultaneous operations to cancel
each other and not modify the queue depth.

vee ~O~
~ -,~. GENERATOR

RES

T ROY

GND t

Vee rO~

~ -CLOCK
~NERATOR

RES

T RDY

GND t

MN/MX
_ ClK

MIlO
_ READY INTA

_ RESET AD
WR

DTiR

DEN

8086 CPU

ALE

ADo~AD15

A16·A19

BHE

"'-Vcc

----,
----, I

I I r----..,
I

I I I STB

I GND!! Of
1,.1 I I ~ 8282

J ~DDR/~ATA lATCH

Y 2qR 3

,---

I I
II J----:1
IL T---'I
L---'oe II

8286 I ~
OPTIONAL

FOR INCREA'SED
DATA BUS DRIVE

I TRAN~gEIVER I

Figure 3Al. Minimum Mode 8086

t
ClK

MN/MX J-GND MRDC
_ ClK

SO So MWTC

.. READY S; 51 8288 AMWC

_ RESET 52 52 BUS IORC
CTRlR

;---- DEN iOWC

8086 - DT;R AK!Wl:
CPU - ALE INTA

LoCK r- N.C.

- STB

GND OS

ADo-A015 A f" 8282

A16-A19 rDDR/DATA lATCH

V (2 OR 3)

BHE - r

I

Lt;: T

OS III 8286
TRANSCEIVER

~
(2) I~

-~ FIgure 3A2. MaxImum Mode 8086

3-296

} COMMAND
BUS

> 1 MEGABYTE
ADDRESS BUS

> l6·BIT
DATA BUS

r---
I---

r---
I---

COMMAND
BUS

-
-
-

\ 1 MEGABYTE
V ADDRESS BUS

f" l6·BIT
Y DATA BUs'

230792-001

AP .. 67

TABLE 3A1. QUEUE STATUS

QS1 QSo

o (LOW) 0 No Operation
0 1 First Byte of Op Code from Queue
1 (HIGH) 0 Empty the Queue
1 1 Subsequent Byte from Queue

The queue status is valid during the CLK cycle after
which the queue operation is performed.

To address the problem of controlling access to shared
resources, the maximum mode 8086 provides a hard·
ware LOCK output. The LOCK output is activated
through the instruction stream by, execution of the
LOCK prefix instruction. The LOCK output goes active
in the first CPU clock cycle following execution of the
prefix and remains active Yntil the clock following the
completion of the instruction following the LOCK prefix.
To provide bus access control in multiprocessor
systems, the LOCK Signal should be incorporated into
the system bus arbitration logic resident to the CPU.

During normal multiprocessor system operation, pri­
ority of the shared system bus Is determined by the ar·
bitration circuitry on a cycle by cycle basis. As each
CPU requires a transfer over the system bus, it requests
access to the bus via its resident bus arbitration logic.
When the CPU gains priority (determined by the system
bus arbitration scheme and any associated logic), it
takes control of the bus, performs its bus cycle and
either maintains bus control, voluntarily releases the
bus or is forced off the bus by the loss of priority. The
lock mechanism prevents the CPU from losing bus con·
trol (either voluntarily or by force) and guarantees a CPU
the ability to execute multiple bus cycles (during execu-

tion of the locked instruction) without intervention and
possible corruption of the data by another CPU. A
classic use of the mechanism is the 'TEST and SET,
semaphore' during which a CPU must read from a
shared memory location and return data to the location
without allowing another CPU to reference the same
location between the TEST operation (read) and the SET
operation (write). In the 8086 this is accomplished with a
locked exchange instruction.

LOCK XCHG reg, MEMORY ; reg is any register
;MEMORY is the address of the
;semaphore

The activity of the LOCK output is shown in Diagram
3A 1. Another interesting use of the LOCK for multiproc­
essor systems. is a locked block move which allows high
speed message transfer from one CPU's message buf·
fer to another.

During the locked instruction, a request for processor
preemption (RQ/GT) is recorded but not acknowledged
until completion of the locked instruction. The LOCK
has no direct affect on interrupts. As an examE.\e, a
locked HALT instruction will cause HOLD (or RQ/GT) reo
quests to be ignored but will allow the CPU to exit the
HALT state on an interrupt. In general, prefix bytes are
considered extensions of the instructions they precede.
Therefore, interrupts that occur during execution of a

, prefix are not acknowledged (assuming interrupts are
enabled) until completion of the instruction following
the prefixes (except for instructions which allow servic·
ing Interrupts during their execution, i.e., HALT, WAIT
and repeated string primitives). Note that multiple prefix
bytes may precede an instruction. As another example,
consider a 'string primitive' preceded by the repetition

.----... D>o----2~CLK

=============!r:~!-------------1-----~~------~8~LOAD
74S169

1OOl---:;-"""I
SWI-----.....:.~,/

mR _____ -"1,3

74S04

OCTO

MHtlVTE AND 1 - MATCH CONDITIONS
CLKA - CPU CLOCK
OS1, QSO - CPU QUEUE STATUS
T301, T201 - T STATES T3 and 12 (CLOCK LOW TIME_01)
SODf-S2t'R' - CPU STATUS SG-S2
C ACCESS - CODE ACCESS
OCTO - QUEUE MATCH ..
AO·P - SINGLE BYTE ON UPPER HALF OF THE 8US

~13~---CACC~

Figur. 3A3. Example Circuit to Track the 8086 Queue

3-297 230792-001

AP-67

prefix (REP) which is interruptible after each execution
of the string primitive. This holds even if the REP prefix
is combined with the lOCK prefix and prevents inter·
rupts from being locked out during a block move or
other repeated string operation. As long as the opera­
tion is not interrupted, lOCK remains active. Further in­
formation on the operation of an interrupted string
operation with multiple prefixes is presented in the sec­
tion dealing with the 8086 interrupt structure.

Three additional stah:Js lines (SO, 51, 52) are defined to
provide communications with the 8288 and 8289. The
status lines tell the 8288 when to initiate a bus cycle,
what type of command to issue and when to terminate
the bus cycle. The 8288 samples the status lines at the
beginning of each CPU clock (ClK). To initiate a bus cy­
cle, the CPU drives the status lines from the passive
state (SO, 51, 52 = 1) to one of seven possi ble command
codes (Table 3A2). This occurs on the rising edge of the
c,lock during T4 of the previous bus cycle or a TI (idle cy­
cle, no current bus activity). The 8288 detects the status
change by sampling the status lines on the high to low
transition of each clock cycle. The 8288 starts a bus cy­
cle by generating ALE and appropriate buffer direction
control in the clock cycle immediately following detec­
tion of the status change (T1). The bus transceivers and
the selected command are enabled in the next clock
cycle (T2) (or T3 for normal write commands). When the
status returns to the passive state, the 8288 will ter­
minate the command as shown in Diagram 3A2. 5ince
the CPU will not return the status to the passive state
until the 'ready' indication is received, the 8288 will
maintain active command and bus control for any
number of wait cycles. The status lines may also be
used by other processors on the 8086's local bus to
monitor bus activity and control the 8288 if they gain
control of the local bus.

CLK

QSO

LOCK

LOCK
PREFIX

BYTE FROM
QUEUE

NOP BYTE
FROM THE

QUEUE
(LOCKED NOP)

TABLE 3A2. STATUS LINE DEcODES

52 51 So

o (lOW) 0 0 > Interrupt Acknowledge
0 0 1 Read 110 Port
0 1· 0 Write 110 Port
0 1 1 Halt
1 (HIGH) 0 0 Code Access
1 0 1 Read Memory
1 1 0 Write Memory
1 1 1 Passive

The 8288 provides the bus control (DEN, DTlR, ALE) and
commands (INTA, MRDC, 10RC, MWTC, AMWC, 10WC,
AIOWC) removed from the CPU. The command structure
has separate read and write commands for memory, and
110 to provide compatibility with the Multibus command
structure.

The advanced write commands are enabled one clock
period earlier than the normal write to accommodate the
wider write pulse widths often required by peripherals
and static RAMs. The normal write provides data setup
prior to write to accommodate dynamic RAM memories
and 110 devices which strobe data on the leading edge of
write. The advanced write commands do not guarantee
that data is valid prior to the leading edge of the com­
mand. The DEN signal in the maximum mode is inverted
from the minimum mode to extend transceiver control
by allowing logical conjunction of DEN with other
signals. While not appearing to be a significant benefit
in the basic maximum mode configuration, introduction
of inter~upt control and various system configurations
will demonstrate the usefulness of qualifying DEN.
Diagram 3A3 compares the timing of the minimum and
maximum mode bus transfer commands. Although. the

"---------~~

~--------------------~ LOCKED INSTRUCTION

1 QUEUE STATUS INDICATES FIRST BYTE OF OPCODE FROM THE QUEUE.

2 THE i:OCR OUTPUT WILL GO INACTIVE BETWEEN SEPARATE LOCKED INSTRUCTIONS.

3 TWO CLOCKS ARE REQUIRED FOR DECODE OF THE LOCK PREFIX AND
ACTIVATION OF THE LOCK SIGNAL.

4 SINCE QUEUE STATUS REFLECTS THE QUEUE OPERATION IN THE PREVIOUS CLOCK
CYCLE, THE i:OCR OUTPUT ACTUALLY GOES ACTIVE COINCIDENT WITH THE START
OF THE NEXT INSTRUCTION AND REMAINS ACTIVE FOR ONE CLOCK CYCLE
FOLLOWING THE INSTRUCTION.

S IF THE INSTRUCTION FOLLOWING THE LOCK PREFIX IS NOT IN THE QUEUE, THE
LOCK OUTPUT STILL GOES ACTIVE AS SHOWN WHILE THE INSTRUCTION IS BEING
FETCHED.

6 THE BIU WILL STILL PERFORM INSTRUCTION FETCH CYCLES DURING EXECUTION
OF A LOCKED INSTRUCTIQN. THE i:OCR MERELY LOCKS THE BUS TO THIS CPU FOR
WHATEVER BUS CYCLES THE CPU PERFORMS DURING THE LOCKED INSTRUCTION.

Diagram 3A 1. 8086 Lock Activity

3-298 230792-001

AP-67

maximum mode configuration is designed for multi­
processor environments, large single CPU designs
(either Multibus systems or greater than two PC boards)
should also use the maximum mode. Since the 8288 is a
bipolar dedicated controller device, Its output drive for
the commands (32 mAl and tolerances on AC character­
istics (timing parameters and worse case delays) pro­
vide better large system performance than the minimum
mode 8086.

ClK

In addition to assuming the functions removed from the
CPU, the 8288 provides additional strapping options and
controls to support multiprocessor configurations and
peripheral devices on the CPU local bus. These capa­
bilities allow assigning resources (memory or I/O) as
shared (available on the Multibus system bus) or private
(accessible only by this CPU) to reduce contention for
access to the Multibus system bus and improve multi­
~CPU system performance. Specific configuration possi­
bilities are discussed in AP-51.

GOES INACTIVE IN THE STATE

::~ /=€~'. \
READY

ClK (8284 OUTPUT)

MN
MODE
8088

WI!

"flIiIjl!ORmJie

MX
MODE
BOS8
WITH

.lil.WmOR~

8288

MW'Tl: OR lOWe

\\\\~\~ 9
WAIT

Diagram 3A2. Status Line Activation and Termination

TCVCTV

TClMl

35 ft8 TClMl

READY

TCVCTX-

TClMH

Diagram 3A3. 8086 Minimum and Maximum Mode Command Timing

3-299

35

230792-001

AP-67

38. Clock Generation

The 8086 requires a clock signal with fast rise and fall
times (10 ns max) between low and high voltages of
- 0.5 to + 0.6 low and 3.9 to VCC + 1.0 high. The max·
imum clock frequency of the 8086 is 5 MHz and 8 MHz
for the 8086-2. Since the design of the 8086 incorporates
dynamic cells, a minimum frequency of 2 MHz is reo'
quired to retain the state of the machine. Due to the
minimum frequency requirement, single stepping or
cycling of the CPU may not be accomplished by dis­
abling the clock. The timing and voltage requirements of
the CPU clock are shown in Figure 3B1. In general, for
frequencies below the maximum, the CPU clock need
not satisfy the frequency dependent pulse width limi­
tations stated in the 8086 data sheet. The values
specified only reflect the minimllm values which must
be satisfied and are stated in terms of the maximum
clock frequency. As the clock frequency approaches the
maximum frequency of the CPU, the clock must con­
form to a 33% duty cycle to satisfy the CPU minimum
clock low and high time specifications.

500 ns MAX

Flgur.381. 8086 Clock

An optimum 33% duty cycle clock with the required
voltage levels and transition times can be obtained with
the 8284 clock generator (Fig. 392). Either an external
frequency source or a series resonant crystal may drive
the 8284. The selected source must oscillate at 3X the
desired CPU frequency. To select the crystal Inputs of
the 8284 as the frequency source for clock generation,
the Fie Input to the 8284 must be strapped to ground.
The strapping option allows selecting either the crystal
or the external frequency Input as the source for clock
generation. Although the 8284 provides an Input for a
tank circuit to accommodate overtone mode crystals,
fu ndamental mode crystals are recommended for more
accurate and stable frequency generation. When selec·
tlng a crystal for use with the 8284, the series resistance
should be as low as possible. Since other circuit com·
ponents will tend to shift the operating frequency from
resonance, the operating Impedance will typically be
higher than the specified series resistance. If the at­
tenuation of the oscillator's feedback circuit reduces
the loop gain to less tl1an one, the oscillator will fall.
Since the oscillator delays In the 8284 appear as induc·
tlve elements to the crystal, causing it to run at a fre·
quency below that of the pure series resonanc.e, a
capaCitor should be placed in series with the crystal and
the X2 input of the 8284. This capaCitor serves to cancel
this inductive element. The value of the capaCitor (CL)

must not cause the impedance of the feedback circuit to
reduce the lOOp gain below one. The impedance of the
capaCitor is a fun«tion of the operating frequency and
can be,determined from the following equation:

XCL= 1/211*F*CL

17
X, OSC

12

8284 8088 XTAL I:J

Y 18 CLK 19 elK

X,
CL

13
F/I::

Figure 382. 8284 Clock Generalor

It is recommended that the crystal series resistance
plus XCL be kept less than 1 K ohms. This capacitor also
serves to debias the crystal and prevent a DC voltage
bias from straining and perhaps damaging the crystal­
line structure. As the crystal frequency increases, the
amount of capacitance should be decreased. For exam­
ple, a 12 MHz crystal may require CL 'V 24 pF while 22
MHz may require CL'V 8 pF. If very close correlation
with the pure series resonance Is not necessary, a
nominal CL value of 12-15 pF may be used with a 15 MHz
crystal (5 MHz 8086 operation). Board layout and compo·
nent variances will affect the actual amount of induc­
tance and therefore the series capacitance required to
cancel it out (this is especially true for wire-wrapped
layouts).

Two of the many vendors which supply crystals for Intel
microprocessors are listed in Table 381 along with a list
of crystal part numbers for various frequencies which
may be of interest. For additional Information on speci­
fying crystals for Intel components refer to application
note AP-35.

TAaLE 3al. CRYSTAL VENDORS

f Parallell Crystek(l) CTS Knlght,(2
Series Corp. Inc.

15.0 MHz S CY15A MP150
18.432 S CY198* MP184*
24.0 MHz S CY24A MP240

, 'Inlel also supplies a cryslal numbered 8801 for Ihls application.

Notea: I. Address: 1000 Crystal Drive, Fort Meyers, Florida 33901
,2. Address: 400 Reimann Ave., SandWich, illinois

If a high accuracy frequency source, externally variable
frequency source or a common source for driving mUl­
tiple 8284's is desired, the External Frequency Input
(EFI) of the 8284 can be selected by strapping the FICin­
put to 5 volts through 'V1 K ohms (Fig. 383). The external
frequency source should be TIL compatible, have a
50% duty cycle and oscillate at three times the desired
CPU operating frequency. The maximum EFI frequency
the 8284 can accept is slightly above 24 MHz with
minimum clock low and high times of 13 ns. Although

3-300 230792-001

AP-67

no minimum EFI frequency is specified, it should not
violate the CPU minimum clock rate. If a common fre­
quency source is used to drive multiple 8284's
distributed throughout the system, each 8284 should be
driven by its own line from the source. To minimize
noise In the system, each line should be a twisted pair
driven by a buffer like the 74lS04 with the ground of the
twisted pair connecting the grounds of the source and
receiver. To minimize clock skew, the lines to all 8284's
should be of equal length. A simple technique for gen­
erating a master frequency source for additional 8284's
is shown in Figure 384. One 8284 with a crystal is used
to generate the desired frequency. The oscillator output
of the 8284 (OSC) equals the crystal frequency and is
used to drive the external frequency to all other 8284's
in the system.

+s

X,
i:X2

EXTERNAL 'Fie
FnEQUENCy----'=-! EFI

SOURCE

8284

ClK 1-=-__ -""'-1 ClK

8088

Figure 3B3. 8284 with External Frequency Source

I:J

Y 18

13

+s

Figure 384. External Frequency for Multiple 8284$

O~

ClK

PClK

The oscillator output Is inverted from the oscillator
Signal used to drive the CPU clock generator circuit.
Therefore, the oscillator output of one 8284 should not
drive the EFI input of a second 8284 if both are driving
clock inputs of separate CPU's that are to be syn­
chronized. The variation on EFI to ClK delay over a
range of 8284's may approach 35 to 45 ns. If, however, all
8284's are of the same package type, have the same
relative supply voltage and operate in the same tem­
perature environment, the variation will be reduced to
between 15 and 25 ns.

There are three frequency outputs from the 8284, the
oscillator (OSC) mentioned above, the system clock
(ClK) which drives the CPU, and a peripheral clock
(PClK) that runs at one half the CPU clock frequency.
The oscillator output is only driven by the crystal and is
not affected by the Fie strapping ortion. If a crystal is
not connected to the 8284 ,when the external frequency
input is used, the oscillator output is indeterminate. The
CPU clock is derived from the selected frequency
source by an internal divide by three counter. The
counter generates the 33% duty cycle clock which is op­
timum for the CPU at maximum frequency. The
peripheral clock has a 50% duty cycle and is derived
from the CPU clock. Diagram 380 shows the relation­
ship of ClK to OSC and PClK to ClK. The maximum
skew is 20 ns between OSC and ClK, and 22 ns between
ClK and PClK.

Since the state of the 8284 divide by three counter is in­
determinate at system initialization (power on), an exter­
nal sync to the counter (CSYNC) is provided to allow
synchronization of the CPU clock to an external event.
When CSYNC is brought high, the ClK and PClK out­
puts are forced high. When CSYNC returns low, the next
positive clock from the frequency source starts clock
generation. CSYNC must be active for a minimum of two
periods of the frequency source. If CSYNC is asynchro­
nous to the frequency source, the circuit in Figure 385
should be used for synchronization. The two latches
minimize the probability of a meta-stable state in the
latch driving CSYNC. The latches are clocked with the
inverse of the frequency source to guarantee the 8284
setup and hold time of CSYNC to the frequency source
(Diag. 381). If a single 8284 is to be synchronized to an
external event and an external frequency source is not
used, the oscillator output of the 8284 may be used to

Diagram 3BO. OSC ~ ClK and ClK ~ PClK Relationships

3-301 230792-001

AP-67

synchronize CSYNC (Fig. 386). Since the oscillator out­
put is inverted from the internal oscillator signal, the in­
verter in the previous example is not required. If multiple
8284's are to be synchronized, an external frequency
source must drive all 8284's·and a single CSYNC syn­
chronization circuit must drive the CSYNC input of all
8284's (Fig. 387). Since activation of CSYNC may cause
violation of CPU minimum clock low time, it should only
be enabled during reset or CPU clock high. CSYNC must
also be disabled a minimum of four CPU clocks before
the end of reset to guarantee proper CPU reset.

EXTERNAL
SYNC-----(

CONDITION
EXTERNAL

FREQUENCY

lK

TO
CSYNC
INPUT

TO
L--------------EFI

Figure 3B5. Synchronizing CSYNC with EFI

EFI

CSYNC J,
I

--J

I
I
f--TYHEH

INPUT

-MAX IS SPEC'ED TO GUARANTEE MAX 8086 CLOCK FREQUENCY

Diagram 3Bl. CSYNC Setup and Hold to EFI

OSC 12

+5
Cl

~ 18
X,

FIC

SYNC CSYNC elK 8

Figure 3B6. EFI from 8284 Oscillator

+5

Figure 387. Synchronizing Multiple 8284s

Due to the fast transitions and high drive (5 mAl of the
8284 ClK output, it may be necessary to put a 10 to 100
ohm resistor in series with the clock line to eliminate
ringing (reSistor value depending on the amount of drive
required). If multiple sources of ClK are needed with
minimum skew, ClK can be buffered by a high drive
device (74S241) with outputs tied to 5 volts through 100
ohms to guarantee VOH = 3.9 min (8086 minimum clock
input high voltage) (Fig. 388). A single 8284 should not
be used to generate the ClK for multiple CPU's that do
not share a common local (multiplexed) bus since the
8284 synchronizes ready to the CPU and can only ac­
commodate ready for a single CPU. If multiple CPU's
share a local bus, they should be driven with the same
clock to optimize transfer of bus control. Under these
circumstances, only one CPU will be using the bus for a
particular bus cycle which allows sharing a common
READY signal (Fig. 389).

+5

ClK

8284
lOOQ

100Q

Figure 3B8. Buffering the 8284 ClK Output

3-302 230792-001

AP-67

MULTIPLEXED BUS

Figure 3B9. 8086 and Co-Processor on the Local Bus Share a
Common 8284

3C. Reset

The 8086 requires a high active reset with minimum
pulse width of four CPU clocks except after power on
which requires a 50 '"'s reset pulse. Since the CPU inter­
nally synchronizes reset with the clock, the reset is in­
ternally active for up to one clock period after the exter­
nal reset. Non-Maskable Interrupts (NMI) or hold re­
quests on RQ/GT which occur during the internal reset,
are not acknowledged. A minimum mode hold request
or maximum mode RQ pulses active immediately after
the internal reset will be honored before the first in­
struction fetch.

From reset, the 8086 will condition the bus as shown in
Table 3C1. The multiplexed bus will three-state upon
detection of reset by the CPU. Other signals which
three-state will be driven to the inactive state for one
clock low interval prior to entering three-state (Fig. 3C1).
In the 'minimum mode, ALE and HLDA are driven inac­
tive and are not three-stated. In the maximum mode
RQ/GT lines are held inactive and the queue status in:
dicates no activity. The queue status will not indicate a
reset of the queue so any user defined external circuits
monitoring the queue should also be reset by the
system reset. 22K ohm pull-up resistors should be con­
nected to the CPU command and bus control lines to

CLOCK

RESET INPUT

INTERNAL RESET

BUS

guarantee the inactive state of these lines in systems
where leakage currents or bus capacitance may cause
the voltage levels to settle below the minimum high
voltage of devices in the system. In maximum mode
systems, the 8288 contains internal pull-ups on the
SO-52 inputs to maintain the inactive state for these
lines when the CPU floats the bus. The high state of the
status lines during reset causes the 8288 to treat the
reset sequence as a passive state. The condition of the
8288 outputs for the passive state are shown in Table
3C2. If the reset occurs during a bus cycle, the return of
the status lines to the passive state will terminate the
bus cycle and return the command lines to the inactive
state. Note that the 8288 does not three-state the com­
mand outputs based on the passive state of the status
lines. If the designer needs to three-state the CPU off
the bus during reset in a single CPU system, the reset
signal should also be connected to the 8288's AEN input
and the output enable of the address latches (Fig. 3C2).
This forces the command and address bus interface to
three-state while the inactive state of DEN from the 8288
three-states the transceivers on the data bus.

Table 3Ct. 8086.Bus During Reset

Signals Condition

AD15·0 Three-State
A 19.1 slS6-3 Three-State
BHE/S7 Three-State
S2/(M/IQ) Driven to "1" then three-state
S1/(DT/R) Driven to "1" then three-state
SOlD EN Driven to "1" then three-state
LOCKlWR Driven to "1" then three-state
RD Driven to "1" then three-state
INTA Driven to "1" then three-state
ALE 0
HLDA 0
RQ/GTO 1
RQ/GT1 1
QSO 0
QS1 0

t LFLOATBUS

~ DRIVE OUTPUT TO INACTIVE STATE

Figure 3Cl. 8086 Bus Conditioning on Reset

3-303 230792-001

AP-67

TABLE 3C2. 8288 OUTPUTS DURING PASSIVE MODE

ALE
DEN
DTiA
MCE/PDEN
COMMANDS

8088

o
o
1

0/1
1

Figure 3C2. Reset Disable lor Max Mode 8086 Bus Interlace

For multiple processor systems using arbitration of a
multimaster bus, the system reset should be connected
to the INIT input of the 8289 bus arbiter in addition to
the 8284 reset input (Fig. 3C3). The low active INIT input
forces all 8289 outputs to their inactive state. The inac­
tive state of the 8289 AEN output will force the 8288 to
three-state the command outputs and the address
latches to three-state the address bus Interface. DEN in­
active from the 8288 will three-state the data bus Jnter­
face. For the multimaster CPU configuration, the reset
should be common to all CPU's (8289's and 8284's) and
satisfy the maximum of either the CPU reset re­
quirements or 3 TBLBL (3 8289 bus clock times) + 3
TCLCL (3 8086 clock cycle times) to satisfy 8289 reset
requirements.

8284

RESET

RESET

8086

~ o
Figure 3C3. Reset Disable 01 lor Max Mode 8086 Bus Interlace in

Multi CPU System

If the 8288 command outputs are three-stated during
reset, the command lines should be pulled up to Vee
through 2.2K ohm resistors.

The reset signal to the 8086 can be generated by the
8284. The 8284 has a' schmitt trigger Input (RES) for
generating reset from a low active externai res'et. The
hysteresis specified in the 8284 data sheet implies that
at least .25 volts will separate the 0 and 1 switching
point of the 8284 reset input. Inputs without hysteresis
will switch from low to high and high to low at approxi­
mately the same voltage threshold. The inputs are
guaranteed to switch at specified low and high voltages
(VIL and VIH) but the actual switching point is anywhere
in-between. Since VIL min is specified at .8 volts, the
hysteresis guarantees that the reset will be active until
the input reaches at least 1.05 volts. A reset will not be
recognized until the input drops at least .25 volts below
the reset inputs VIH of 2.6 volts.

To guarantee reset from power up, the reset input must
remain below 1.05 volts for 50 microseconds after Vcc
has reached the minimum supply voltage of 4.5 volts.
The hysteresis allows the reset input to be driven by a
simple RC circuit as shown in Figure 3C4. The
calculated RC value does not include time for the power
supply to reach 4.5 volts or the charge accumulated dur­
ing this interval. Without the hysteresis, the reset out­
put might oscillate as the input voltage passes through
the switching voltage of the input. The calcuiated RC
value provides the minimum required reset period 01'50
microseconds for 8284's that switch at the 1.05 voit
level and a reset period of approximately 162 micro­
seconds for 8284's that switch at the 2.6 volt level. If
tighter tolerance between the minimum and maximum
reset times is necessary, the reset circuit shown in
Figure 3C5 might be used rather than the simple RC cir­
cuit. This circuit provides a constant current source and
a linear charge rate on the capacitor rather than the in­
verse exponential charge rate of the RC circuit. The
maximum reset period for this implementation is 124
microseconds.

3-304

+Y

RESET IN __ +-_...;1'-'-11 m
8284

t _ SO"sec
Y = 4.5

Yo = 1.05
RC ~ 188x10- 8

Figure 3C4. 8284 Reset Circuit

23079;1-001

AP-67

0,

02

Vee

RESET

R, - DETERMINES CURRENT TO CHARGE C
R2 - VALUE NOT CRITICAL ~10K

Ie = CHARGE CURRENT = V.olD, ~ 02 - T 11

IF ALL SEMICONDU~TORS ARE SILICON. Ie. ~

,~ ____ ~vee-'6

T

Figure 3C5. Constant Curren! Power·On Reset Circuit

The 8284 synchronizes the reset Input with the CPU
clock to generate the RESET signal to the CPU (Fig.
3C6). The output Is also available as a general reset to
the entire system. The reset has no effect on any clock
circuits in the 8284.

17 X, CLK 8
SYSTEM
RESET

t:l 8284
19

CLK

Y 18
X, 8086

+5 13 RESET 10 21
Fie RESET

11 RES

.I

Figure 3C6. 8086 Reset and System Reset

CLOCK

8088 READY

READY INACTIVE 8 ns

3D. Ready Implementation and Timing

As discussed previously, the ready signal is used in the
system to accommodate memory and 1/0 devices that
cannot transfer information at the maximum CPU bus
bandwidth. Ready is also used in multiprocessor
systems to force the CPU to wait for access to the
system bus or Multibus system bus. To insert a wait
state in the bus cycle, the READY signal to the CPU
must be Inactive (low) by the end of T2. To avoid inser­
tion of a wait state, READY must be active (high) within
a specified setup time prior to the positive transition
during T3. Depending on the size and characteristics of
the system, ready implementation may take one of two
approaches.

The classical ready implementation is to have the
system 'normally not ready.' When the selected device
receives the command (RD/WR/INTA) and has had suffi­
cient time to complete the command, it activates
READY to the CPU, allowing the CPU to terminate the
bus cycle. This implementation is characteristic of large
multiprocessor, Multibus systems or systems where
propagation delays, bus access delays and device char­
acteristics inherently slow down the system. For max­
imum system performance, devices that can run with no
wait states must return 'READY' within the previously
described limit. Failure to respond in time will only
result in the insertion of one or more'wait cycles.

An alternate technique is to have the system 'normally
ready.' All devices are assumed to operate at the max­
imum CPU bus bandwidth. Devices that do not meet the
requirement must disable READY by the,end of T2 to
guarantee the insertion of wait cycles. This implementa­
tion is typically applied to small single CPU systems
and reduces the logic required to control the ready
signal. Since the failure of a device requiring wait states
to disable READY by the end of T2 will result in prema­
ture termination of the bus cycle, the system timing
must be carefully analyzed when using this approach.

The 8086 has two different timing requirements on
READY depending on the system implementation. For a
'normally ready' system to insert a wait state, the
READY must be disabled within 8 ns (TRYLCL) after the
end of T2 (start of T3) (Diag. 3D1). To guarantee proper

30 ns

I--119 ns TO GUARANTEE THE
NEXT CYCLE IS T4

Diagram 3D1. Normally Ready System Inserting a 'wait State

3-305 230792-001

AP-67

operation of the 8086, the READY input must hot change
from ready to not ready during the clock low time of T3.
For a 'normally" not ready' system to avoid wait states"
READY must be active within 119 ns (TRYHCH) of the'

positive clock transition during T3 (Diag. 3D2). For both
cases, READY must satisfy a hold time of 30 ns
(TCH!;,!YX) from the T3 or TW positive clock transition.

CLOCK

8088 READY

Diagram 302. Normally Not Ready Sys em Avoiding a Wait State

ClK
8 19

ClK

CJ RESET 10 21
RESET

Y 18
X, 22

READY READY
+5 13 FIe

8284 8086

11
RES

3
AEN1

I RDY1
7 AEN2

6 RDY2

To generate a stable READY signal which satisfies the
previous setup and hold times, the 8284 provides two
separate system ready inputs (RDY1, RDY2) and a single
synchronized ready output (READY) for the CPU. The
RDY inputs are qualified with separate access enables
(AEN1,AEN2, low active) to allow selecting one of the
two ready signals (Fig. 3D1). The gated signals are
logically OR'ed and sampled at the beginning of each
ClK cycle to generate READY to the CPU (Diag. 3D3).
The sampled READY signal is valid within 8 ns (TRYlCl)
after ClK to satisfy the CPU timing requirements on
'not ready' and ready. Since READY cannot change until
the next ClK, the hold time requirements are also satis­
fied. The system ready inputs to the 8284 (RDY1,RDY2)
must be valid 35 ns (TRIVCl) before T3 and AEN must be
valid 60 ns before T3. For a system using only one RDY
input, ~associated AEN is tied to ground while the
other AEN is connected to 5 volts through "'1 K ohms
(Fig. 3D2a). If the system generates a low active ready
Signal, it can be connected to the 8284 AEN input if the
additional setup time required by the 8284 AEN input is
satisfied. In this case, the associated RDY input would
be tied high (Fig. 3D2b). Figure 301. Ready Inputs to the 8284 and Output to the 8086 ,

CLOCK

8284 READY OUT
(TO 8086)

8284 RDY SETUP

NOTE: THE 8284 DATA SHEET SPECIFIES READY OUT DELAY (TRYLCl) AS -8 ns
'BEFORE" THE END OF T, WHICH IMPLIES THE TIMING SHOWN.

Diagram 303. 8284 with 8086 Ready Timing

3-306 230792-001

AP-67

8284

+5

Figure 3D2a. Using RDY1/RDY2 10 Generale Ready

1K

+5

3 AEN1 8284

4 RDY1

~AEN2
RDY2

Figure 3D2b. Using AEN1/AEN2 10 Generale Ready

The majority of memory and peripheral devices which
fail to operate at the maximum CPU frequency typically
do not require more than one wait state. The circuit
given in Figure 3D3 is an example of a simple wait state
generator. The system ready line is driven low whenever
a device requiring one wait state is selected. The flip
flop is cleared by ALE, enabling RDY to the 8284. If no
wait states are required, the flip flop does not change. 'If
the system ready is driven low, the flip flop toggles on
the low to high clock transition of T2 to force one wait
state. The next low to high clock transition toggles the
flip flop again to indicate ready and allow completion of
the bus cycle. Further changes in the state of the flip
flop will not affect the bus cycle. The circuit allows
approximately 100 ns for chip select decode and condi·
tloning of the system ready (Diag. 3D4).

If the system is 'normally not ready,' the programmer
should not assign executable code to the last six bytes
of physical memory. Since the 8086 prefetches instruc·
tions, the CPU may attempt to access non·existent
memory when executing code at the end of physical

memory. If the access to non·existent memory fails to
enable READY, the system will be caught in an in·
definite wait.

Figure 3D3. Single Wail State Generator

3E. Interrupt Structure

The 8086 interrupt structure is based on a table of inter·
rupt vectors stored in memory locations OH through
003FFH. Each vector consists of two bytes for the in·
struction pOinter and two bytes for the code segment.
These two values combine to form the address of the in·
terrupt service routine. This allows the table to contain
up to 256 interrupt vectors which specify the starting ad·
dress of the service routines anywhere in the one mega·
byte address space of the 8086. If fewer than 256 differ·
ent interrupts are defined in the system, the user need
only allocate enough memory for the interrupt vector
table to provide the vectors for the defined interrupts.
During initial system debug, however, it may be desir·
able to assign all undefined interrupt types to a trap
'routine to detect erroneous interrupts.

Each vector is associated with an interrupt type number
which points to the vector's location in the interrupt vec·
tor table. The interrupt type number multiplied by four
gives the displacement of the first byte of the associ·
ated interrupt vector from the beginning of the table. As
an example, interrupt type number 5'points to the sixth
entry in the interrupt vector table. The contents of this
entry in the table points to the interrupt service routine
for type 5 (Fig. 3E1). This structure allows the user to
specify the memory address of each service routine by
placing the address (instruction pOinter and code seg·
ment values) in the table location provided for that type
interrupt.

Diagram 3D4.

3-307 230792-001

AP-67

INTERRUPT TYPE MEMORY

r ~U~B!.A - ,-----:::----;:-::O:.OO"'-''=;..,
• 1----;:;,---.; I

r-----r---~~--~ 004 I

I

~§'08
;-;--- ooe

01'

:--- t==~=::j 3FE :
L_~__ __~

TYPE 5 INTERRUPT
SERVICE ROUTINE

400

'--____ ..J FFFFE

INTERRUPT
VECTOR
TABLE

Figure 3El. Direction to Interrupt Service Routine through the
Interrupt Vector Table

All interrupts in the 8086 must be assigned an interrupt
type which uniquely identifies each interrupt. There are
three classes of interrupt types in the 8086; predefined
interrupt types which are issued by specific functions
within the 8086 and user defined hardware and software
interrupts. Note that any interrupt type Including the
predefined interrupts can be issued by the user's hard­
ware and/or software.

PREDEFINED INTERRUPTS

The predefined interrupt types in the 8086 are listed
, below with a brief description of how each is invoked.

When invoked, the CPU will transfer control to the
memory location specified by the vector associated
with the specific type. The user must provide the inter­
rupt service routine and initialize the interrupt vector
table with the appropriate service routine address. The
user may additionally invoke these interrupts through
hardware or software. If the preassigned function is not
used in the system, the user may assign some other
function to the associated type. However, for com­
patibility with future Intel hardware and software prod­
ucts for the 8086 family, interrupt types 0-31 should not
be assigned as user defined interrupts.

TYPE 0 - DIVIDE ERROR

This interrupt type is invoked whenever a division opera­
tion is attempted during which the quotient exceeds the
maximum value (ex. division by zero). The interrupt is
non-maskable and is entered as part of the execution of
the divide instruction. If interrupts are not reenabled by
the divide error interrupt service routine, the service
routine execution time should be included in the worst
case divide instruction execution time (primarily when
considering the longest instruction execution time and
its effect on latency to servicing hardware interrul1ts).

TYPE 1 - SINGLE STEP

This interrupt type occurs one instruction after the TF
(Trap Flag) is set in the flag register. It is used to allow
software single stepping through a sequence of code.
Single stepping is initiated by copying the flags onto the
stack, setting the TF bit on the stack and popping the
flags. The interrupt routine should be the single step
routine. The interrupt sequence saves the flags and pro­
gram,counter, then resets the TF flag to allow the Single
step routine to execute normally. To return to the
routine under test, an interrupt return restores the IP,
CS and flags with TF set. This allows the execution of
the next instruction in the program under test before
trapping back to the Single step routine. Single Step is
not masked by the IF (Interrupt Flag) bit In the flag
register.

TYPE 2 - NMI (Non-Maskable Interrupt)

This is the highest priority hardware interrupt and is
non-maskable. The input is edge triggered but is syn­
chronized with the CPU clock and must be active for two
clock cycles to guarantee recognition. The interrupt
signal may be removed prior to entry to the service
routine. Since the input must make a low to high transi­
tion to generate an interrupt, spurious tranSitions on the
input should be suppressed. If the input is normally
high, the NMI low time to guarantee triggering is two
CPU clock times. This input is typically reserved for
catastrophic failures like power failure or timeout of a
system watchdog timer.

TYPE 3 - ONE BYTE INTERRUPT

This is invoked by a special form of the software inter­
rupt instruction which requires a Single byte of code
space. Its primary use is as a breakpoint interrupt for
software debug. With full representation within a Single
bytE!, the instruction can map into the smallest instruc­
tion for absolute resolution in setting breakpoints. The
interrupt is not maskable.

TYPE 4 - INTERRUPT ON OVERFLOW

This interrupt occurs if the overflow flag (OF) is set in
the flag register and the INTO instruction is executed.
The instruction allows trapping to an overflow error ser­
vice routine. The interrupt is non-maskable.

Interrupt types 0 and 2 can occur without specific action
by the programmer (except for performing a divide for
Type 0) while types 1, 3, and 4 require a conscious act by
the programmer to generate these interrupt types. All
but type 2 are invoked through software activity and are
directly associated with a specific instruction.

USER DEFINED SOFTWARE INTERRUPTS

The user can generate an interrupt through the software
with a two byte interrupt instruction INT nn. The first
byte is the INT opcode while the second byte (nn) con­
tains the type, number of the interrupt to be performed.
The INT instruction is not maskable by the interrupt
enable flag. This instruction can be used to transfer con­
trol to routines that are dynamically relocatable and
whose location in memory is not known by the c;;tlling

3-308 230792-001

AP-67

program. This technique also saves the flags of the call­
ing program on the stack prior to transferring control.
The called procedure must return control with an inter­
rupt return (IRET) in,struction to remove the flags from
the stack and fully restore the state of the calling pro­
gram.

All interrupts invoked through software (all interrupts
discussed thus far with the exception of NMI) are not
maskable with the IF flag and initiate the transfer of
control at the end of the instruction in which they occur.
They do not initiate interrupt acknowledge bus cycles
and will disable subsequent maskable interrupts by
resetting the IF and TF flags. The interrupt vector for
these interrupt types is either implied or specified in the
instruction. Since the NMI is an asynchronous event to
the CPU, the point of recognition and initiation of the
transfer of control is similar to the maskable hardware
interrupts.

USER DEFINED HARDWARE INTERRUPTS

The maskable interrupts initiated by the system hard­
ware are activated through the INTR pin of the 8086 and
are masked by the IF bit of the status register (interrupt
flag). During the last clock cycle of each instruction, the
state of the INTR pin is sampled. The 8086 deviates from
this rule when the instruction is a MOV or POP to a seg­
ment register. For this case, the interrupts are not
sampled until completion of the following instruction.
This allows a 32-bit pOinter to be loaded to the stack
pointer registers SS and SP without the danger of an in­
terrupt occurring between the two loads. Another excep­
tion is the WAIT instruction which waits for a low active
input on the TEST pin. This instruction also continu­
ously samples the interrupt request during its execution
and allows servicing interrupts during the wait. When an
interrupt is detected, the WAIT instruction is again
fetched prior to servicing the interrupt to guarantee the
interrupt routine will return to the WAIT instruction.

UNINTERRUPTABLE INSTRUCTION SEQUENCE

MOV SS, NEW$STACK$SEGMENT
MOV SP, NEW$STACK$POINTER

Also, since prefixes are considered part of the instruc­
tion they precede, the 8086 will not sample the interrupt
line until completion of the instruction the prefix(es)
precede(s). An exception to this (othE1r than HALT or
WAIT) is the string primatives preceded by the repeat
(REP) prefix. The repeated string operations will sample
the interrupt line at the completion of each repetition.
This includes repeat string operations which include the
lock prefix. If multiple prefixes precede a repeated
string operation, and the instruction is Interrupted, only
the prefix immediately preceding the string primative is
restored. To allow correct resumption of the operation,
the following programming technique may be used:

LOCKED$BLOCK$MOVE: LOCK REP MOVS DEST, CS:SOURCE
ANDCX, CX

JNZ LOCKED$BLOCK$MOVE

The code bytes generated by the 8086 assembler for the
MOVS instruction are (in descending order): LOCK
prefix, REP prefix, Segment Override prefix and MOVS.
Upon return from the interrupt, the segment override
prefix is restored to guarantee one additional transfer is
pertormed between the correct memory locations. The
instructions following the move operation test the
repetition count value to determine if the move was
completed and return if not.

If the INTR pin is high when sampled and the IF bit is set
to enable interrupts, the 8086 executes an interrupt
acknowledge sequence. To guarantee the interrupt will
be acknowledged, the INTR input must be held active
until the interrupt acknowledge is issued by the CPU. If
the BIU is running a bus cycle when the interruptcondi­
tion is detected (as would occur if the BIU is fetching an
instruction when the current instruction completes), the

T, I T2 T3 T4 TI TI Tt I T,

ALE ~~ __ -----,n,---__
\'------------'/
\

FLOAT FLOAT

REDRIVEN BY CPU IF QUEUE IS NOT FULL

Figure 3E2. Interrupt Acknowledge Sequence

3-309 230792-001

AP-67

interrupt must be valid at the 8086 2 clock cycles prior to
T4 of the bus cycle if the next cycle is to be an interrupt
acknowledge cycle. If the 2 clock setup is not satisfied,
another pending bus cycle will be executed before the
interrupt acknowledge is issued. Ita hold request is also
pending (this might occur if an interrupt and hold re­
quest are made during execution of a locked instruc­
tion), the interrupt is serviced after the hold request is
serviced. '

The interrupt acknowledge sequence is only generated
in response to an interrupt on the 8086 INTR input. The
associated bus activity is shown in Figure 3E2. The cy­
cle consists of two INTA bus cycles separated by two
idle clock cycles. During the bus cycles the INTA com­
mand is issued rather than read. No address is provided
by the 8086 during either bus cycle (BHE and status are
valid), however, ALE is still generated and will load the
address latches with indeterminate information. This
condition requires that devices in the system do not
drive their outputs without being qualified by the Read
Command. As will be shown later, the ALE is useful in'
maximum mode systems with multiple 8259A priority in­
terrupt controllers. During the INTA bus cycles, DTiFi
and DEN are conditioned to allow the 8086 to receive a
one byte interrupt type number from the interrupt
system. The first INTA bus cycle signals an interrupt
acknowledge cycle is in progress and allows the system
to prepare to present the interrupt type number on the
next INTA bus cycle. The CPU does not capture informa­
tion on the bus during the first cycle. The type number
must be transferred to the 8086 on the lower half of the
16-bit data bus during the second cycle. This implies
that devices which present interrupt type numbers to
the 8086 must be located on the lower half of the 16-bit
data bus. The timing of the INTA bus cycles (with excep­
tion of address timing) is similar to read cycle timing.
The 8086 interrl:lpt acknowledge sequence deviates
from the form used on 8080 and 8085 in that no instruc­
tion is issued as part of the sequence. The 8080 and
8085 required either a restart or call instruction be
issued to affect the transfer of control.

In the minimum mode system, the MilO signal will be
low indicating 1/0 during the INTA bus cycles. The 8086
internal LOCK signal will be active from T2 of the first
bus cycle until T2 of the second to prevent the BIU from
honoring a hold request between the two INTA cycles.

In the maximum mode, the status lines SO-82 will re­
quest the 8288 to activate the INTA output for each cy­
dIe. The LOCK output of the 8086 will be active from T2
of the first cycle until T2 of the second to prevent the
8086 from honoring a hold request on either RQ/GT in­
put and to prevent bus arbitration logic from relinquish­
ing the bus between INTA's in multi-master systems.
The consequences of READY are identical to those for
READ and WRITE cycles,

Once the 8086 has the interrupt type number (from the
bus for hardware interrupts, from the instruction stream
for software interrupts or from the predefined can·
dition), the type number is multiplied by four to form the
displacement to the corresponding interrupt vector in
the interrupt vector table. The four bytes of the interrupt

vector are: least significant byte of the instruction
pointer, most significant byte of the instruction pointer,
least significant byte of the code segment register,
most significant byte of the code segment register. Dur­
ing the transfer of control, the CPU pushes the flags and
current code segment register and instruction pointer
onto the stack. The new code segment and instruction
painter values are loaded and the single step and inter­
rupt flags are reset. Resetting the interrupt flag disables
response to further hardware interrupts in the service
routine unless the flags are specifically re-enabled by
the service routine. The CS and IP values are read from
the interrupt vector table with data read cycles. No seg­
ment registers are used when referencing the vector
table during the interrupt context switch. The vector
displacement is added to zero to form the 20-bit address
and S4, S3 = 10 indicating no segment register selec­
tion.

The actual bus activity associated with the hardware in­
terrupt acknowledge sequence is as follows: Two inter­
rupt acknowledge bus cycles, read new IP from the in­
terrupt vector table, read new CS from the interrupt vec­
tor table, Push flags, Push old CS, Opcode fetch of the
first instruction of the interrupt service roufine, and
Push old IP. After saving the old IP, the BIU will resume
normal operation of prefetching instructions Into the
queue and servicing EU requests for operands, S5 (inter­
rupt enable flag status) will go inactive in the second
clock cycle following reading the new CS. ,
The number of clock cycles from the end of the instruc­
tion during which the interrupt occurred to the start of
interrupt routine execution is 61 clock cycles. For soft­
ware generated interrupts, the sequence of bus cycles
is the same except no interrupt acknowledge bus cycles
are executed. This reduces ihe delay to service routine
execution to 51 clocks for "!NT nn and single step, 52
clocks for INT3 and 53 clocks for INTO. The same inter­
rupt setup requirements with respect to the BIU that
were stated for the hardware interrupts also apply to the
software interrupts. If wait states are inserted by either
the memories or the device supplying the interrupt type
number, the given clock times will increase accordingly.

When considering the precedence of interrupts for
multiple simultaneous interrupts, the following guide­
lines apply: 1.INTR is the only maskable interrupt and if
detected simultaneously with other interrupts, resetting
of IF by the other interrupts will mask INTR. This causes
INTR to be the lowest priority interrupt serviced after all
other interrupts unless the other interrupt service
routines reenable interrupts. 2. Of the nonmaskable in­
terrupts (NMI, Single Step and software generated), in
general, Single Step has highest priority (will be ser­
viced first) followed by NMI, followed by the software in­
terrupts. This implies that a simultaneous NMI and
Single Step trap will cause the NMI service routine to
fo!low Single step; a simultaneous software trap and
Single Step trap will cause the software interrupt ser­
vice routine to follow single step and a simultaneous
NMI and software trap will cause the NMI service
routine to be executed followed by the software inter­
rupt service routine. An exception to this priority struc­
ture occurs if all three interrupts are pending. For this
case, transfer of control to the software interrupt ser-

3-310 230792-001

AP-67

vice routine followed by the NMI trap will cause both the
NMI and software interrupt service routines to be ex·
ecuted without single stepping. Single stepping
resumes upon execution of the instruction following the
instruction causing the software interrupt (the next in·
struction in the routine being single stepped).

If the user does not wish to single step before INTR ser·
vice routines, the single step routine need only disable
interrupts during execution of the program being single
stepped and reenable interrupts on entry to the single
step routine. Disabling the interrupts during the pro·
gram under test prevents entry into the interrupt service
routine while single step (TF = 1) is active. To prevent
single stepping before NMI service routines, the single
step routine must check the return address on the stack
forthe NMI service routine address and return control to
that routine without single step enabled. As examples,
consider Figures 3E3a and 3E3b. In 3E3a Single Step
and NMI occur simultaneously while in 3E3b, NMI, INTR
and a divide error all occur during a divide instruction
being Single stepped.

NMI

TF,IF=1

NORMAL SINGLE STEP
OPERATION

Figure 3E3a. NMI During Single Stepping and Normal Single Step
Operation

3-311

INTR

TF='
IF=1

CONTINUE TO SINGLE STEP
THE PROGRAM

Figure 3E3b. NMI, INTR, Single Step and Divide Error Simultaneous
Interrupts .

SYSTEM CONFIGURATIONS

To accommodate the INTA protocol of the maskable
hardware interrupts, the 8259A is provided as part of the
8086 family. This component is programmable to
operate in both 8080/8085 systems and 8086 systems.
The devices are cascadable in master/slave arrange·
ments to allow up to 64 interrupts in the system. Figures
3E4 and 3E5 are examples of 8259A's in minimum and
maximum mode 8086 systems. The minimum mode con·
figuration (a) shows an 8259A connected to the CPU's

230792-001

AP-67

multiplexed bus. Configuration (b) illustrates an 8259A
connected to a demultiplexed bus system. These inter·
connects are also applicable to maximum mode
systems. The configuration given for a maximum mode
system shows a master 8259A on the CPU's multiplexed
bus with additional slave 8259A's out on the buffered
system bus. This configuration demonstrates several
unique features of the maximum mode system inter·
face. If the master 8259A receives interrupts from a mix
of slave 8259A's and regular interrupting devices, the
slaves must provide the type number for devices con­
nected to them while the master provides the type
number for devices directly attached to its interrupt in­
puts. The master 8259A is programmable to determine if
an interrupt is from a direct input or a slave 8259A and
will use this information to enable or disable the data
bus transceivers (via the 'nand' function of DEN and
EN). If the master must provide the type number, it will
disable the data bus transceivers. If the slave provides
the type number, the master will enable the data bus
transceivers. The EN output is normally high to allow

the 8086/8288 to control the bus transceivers. To select
the proper slave when servicing a slave interrupt, the
master must provide a cascade address to the slave. If
the 8288 is not strapped in the 1/0 bus mode (the 8288
lOB Input connected to ground), the MCE/PDEN output
becomes a MCE or Master Cascade Enable output. This
signal is only active during INTA cycles as shown in
Figure 3E6 and enables the master 8259A's cascade ad­
dress onto the 8086's local bus during ALE. This allows
the address latches to capture the cascade address with
ALE and allows uS,e of the system address bus for
selecting the proper slave 8259A. The MCE is gated with
LOCK to minimize local bus contention between the
8086 three-stating its bus outputs and the cascade ad­
dress being enabled onto the bus. The first INTA bus cy­
cle allows the master to resolve internal priorities and
output a cascade address to be transmitted to the
slaves on the subsequent INTA bus cycle. For additional
information on the 8259A, reference application note
AP-59.

ADDRESS
~-----r-------.-r----~,-----~/BUS

IJL-------------..::..::...------"''"'-----..I\ DATA
~~----------------------------~/BUS

a.

b.

Figure 3E4. Min Mode 8086 with Master 8259A on the Local Bus and Slave 8259As on the System Bus

3-312 230792-001

AP-67

~~----~~r-------4r----+-----4r----+---~INTA

ADDRESS
~'--------r--------",-------~ro--------,/BUS

'-________________ -"'0-________ -""'-______ \ DATA

,---------------------------------------'/BUS

Figure 3E5. Max Mode 8086 with Master 8259A on the Local Bus and Slave 8259As on the System Bus

I T1 T2 T3 T4 TI T[T1 I T, T3

ALEf\'----__ ",\---In'---__
\~ ____ ___J/

FLOAT

\'---------'/ \'-----
Figure 3E6. MCE Timing to Gate 8259A CAS Address onto the 8086 Local Bus

3-313 230792-001

AP-67

3F. Int~rpretlng the 8086 Bus Timing Diagrams

At first glance, the 8086 bus timing diagrams (Diag. 3F1
min mode and Diag. 3F2 max mode) appear rather com·
plex. However, with a few words of explanation on how
to interpret them, they become a powerful tool in deter·
mining system requirements. The timing diagrams for
both the minimum and maximum modes may be divided
into six sections: (1) address and ALE timing; (2) read cy­
cle timing; (3) write cycle timing; (4) interrupt acknowl­
edge timing; (5) ready timing; and (6) HOLD/HLDA or
RQ/GT timing. Since the A.C. characteristics of the
Signals are specified relative to the CPU clock, the rela­
tionship between the majority of signals can be de­
duced by simply determining the clock cycles between
the clock edges the signals are relative to and adding or
subtracting the appropriate minimum or maximum
parameter values. One aspect of system timing not com­
pensated for in this approach is the worst case relation­
ship between minimum and maximum parameter values
(also known as tracking relationships). As an example,
consider a signal which has specified minimum and
maximum turn on and turn off delays. Depending on
device characteristics, it may not be possible for the
component to simultaneously demonstrate a maximum
turn-on and minimum turn-off delay even though worst
case analysis might imply the possibility. This argument
is characteristic of MOS devices and is therefore- ap­
plicable to the 8086 A.C. characteristics. The message
is: worst case analysis mixing minimum ood maximum
delay parameters will typically exceed the worst case
obtainable and therefore should not be subjected to fur­
ther subjective degradation to obtain worst-worst case
values. This section will provide guidelines for specific
areas of 8086 timing sensitive to tracking relationships.

A. MINIMUM MODE BUS TIMING

1. ADDRESS and ALE

The address/ALE timing relationship is important to
determine the ability to capture a valid address from the
multiplexed bus. Since the 8282 and 8283 latches cap­
ture the address on the trailing edge of ALE, the critical
timing involves the state of the address lines when ALE
terminates. If the address valid delay is assumed to be
maximum TCLAV and ALE terminates at its earliest
pOint, TCHLLmin (assuming zero minimum delay), the
address would be valid only TCLCHmin-TCLAVmax= 8
ns prior to ALE termination. This result is unrealistic in
the assumption of maximum TCLAV and minimum
TCH LL. To provide an accurate measure of the true
worst case, a separate parameter specifies the
minimum time for address valid prior to the end of ALE
(TAVAL). TAVAL = TCLCH-60 ns overrides the clock
related timings and guarantees 58 ns of address setup
to ALE termination for a 5 MHz 8086. The address is
guaranteed to remain valid beyond the end of ALE by the
TLLAX parameter. This specification overrides the rela­
tionship between TCHLL and TCLAX which might seem
to imply the address may not be valid by the end of the
latest possible ALE. TLLAX holds .for the entire address
bus. The TCLAXmin spec on the address indicates the
earliest the bus will go invalid if not restrained by a slow
ALE. TLLAX and TCLAX apply to the entire multiplexed
bus for both read and write cycles. AD15-0 is three-

stated for read cycles and immediately switched to
write data during write cycles. AD19-16 immediately
switch from address to status for both read and write
cycles. The minimum ALE pulse width is guaranteed by
TLHLLmin which takes precedence over the value ob­
tained by relating TCLLHmax and TCHLLmin.

To determine the worst case delay to valid address on a·
demultiplexed address bus, two paths must be con­
sidered: (1) delay of valid address and (2) delay to ALE.
Since the 8282 and 8283 are flow through latches, a valid
address is not transmitted to the address bus until ALE
is active. A comparison of address valid delay TCLAV­
max with ALE active delay TCLLHmax indicates TCLAV­
max is the worst case. Subtracting the latch prop­
agation delay gives the worst case address bus valid
delay from the start of the bus cycle.

2. Read Cycle Timing

Read timing consists of conditioning the bus, activating
the read command and establishing the data transceiver
enable and direction controls. DT/R is established early
in the bus cycle and requires no further consideration.
During read, the DEN signal must allow the transceivers
to propagate data to the CPU with the appropriate data
setup time and continue to do so until the required data
hold time. The DEN turn on delay allows TCLCL+
TCHCLmin - TCVCTVmax - TDVCL = 127 ns transceiver
enable time prior to valid data required by the CPU.
Since the CPU data hold time TCLDXmin and minimum
DEN turnoff delay TCVCTXmin are both 10 ns relative to
the same clock edge, the hold time is guaranteed. Addi­
tionally, DEN must disable the transceivers prior to the
CPU red riving the bus with the address for the next bus
cycle. The maximum DEN turn off delay (TCVCTXmax)
compared with the minimum delay for addresses out of
the 8086 (TCLCL+ TCLAVmin) indicates the trans­
ceivers are disabled at least 105 ns before the CPU
drives the address onto the multiplexed bus ..

If memory or I/O devices are connect.ed directly to the
multiplexed address and data bus, the TAZRL parameter
guarantees the CPU will float the bus before activating
read and allowing the selected device to drive the bus.
At the end of the bus cycle, the TRHAV parameter spec­
ifies the bus float delay the device being deselected
must satisfy to avoid contention with the CPU driving
the address for the next bus cycle. The next bus cycle
may start as soon as the cycle following T4 or any
number of clock cycles later.

The minimum delay from read active to valid data at the
CPU is 2TCLCL - TCLRLmax - TDVCL = 205 ns. The
minimum pulse width is 2TCLCL- 75 ns = 325 ns. This
specification (TRLRH) overrides the result which could
be derived from clock relative delays (2TCLCL":
TCLRLmax+ TCLRHmin).

3. Write Cycle Timing

The write cycle involves providing write data to the
system, generating the write command and controlling
data bus transceivers. The transceiver direction control
signal DT/R is conditioned to transmit at the end of each
read cycle and does not change during a write cycle.

3-314 230792-001

AP-67

This allows the transceiver enable signal DEN to be ac·
tive early in the cycle (while addresses are valid) without
corrupting the address on the multiplexed bus. The
write data and write command are both enabled from the
leading edge of T2. Comparing minimum WR active
delay TCVCTVmin with the maximum write data delay
TCLDV indicates that write data may be not valid until
100 ns after write is active. The devices in the system
should capture data on the trailing edge of the write
command rather than the leading edge to guarantee
valid data. The data from the 8086 is valid a minimum of
2TCLCL - TCLDVmax + TCVCTXmin = 300 ns before the
trailing edge of write. The minimum write pulse width is
TWLWH= 2TCLCL- 60 ns= 340 ns. The CPU maintains
valid write data TWHDX ns after write. The TWHDZ spec·
ification overrides the result derived by relaling
TCLCHmin and TCHDZmin which implies write data
may only be valid 18 ns afterWR. The 8086 floats the bus
after write only if being forced off tfle bus by a HOLD or

T,

RQ input. Otherwise, the CPU simply switches the out·
put drivers from data to address at the beginning of the
next bus cycle. As with the read cycle, the next bus cy·
cle may start in the clock cycle following T4 or any clock
cycle later.

DEN is disabled a minimum of TCLCHmin +
TCVCTXmin - TCVCTXmax = 18 ns after write to
guarantee data hold time to the selected device. Since
we are again evaluating a minimum TCVCTX with a max·
imum TCVCTX, the real minimum delay from the end of
write to transceiver disable is approximately 60 ns.

4. Interrupt Acknowledge Timing

The interrupt acknowledge sequence consists of two in·
terrupt acknowledge bus cycles as previously de·
scribed. The detailed timing of each cycle is identical to
the read cycle timing with two exceptions: command
timing and address/data bus timing.

T, T3 Tw T,

eLK (8284 OUTPUn

VCHv----\ r", r-----TCLCL--TCH1CH2-He' I
vfc h=C~ -~

MilO

ALE

RDY (8284 INPUT)

SEE NOTE 4

- TCHCTV I-- TCHCL

I\.
relAV--

,- lTcLA;:
--TCLDV

-J
SKE, A19-A1

TCLLH--- f TL1L-=: -T~LAX

TCHLL-I r--

:n~~ ~TAVAl-

+RYLCL ------

- h

r--TCLCH~

TCHDX --- -
57-53

r--
r--

I

_TR1VCl

~~~\\~ ~~~~ ~~~\\\ ~ r--TCLRIX 

1 1 
READY (8086 INPUT) - --TCHRYX 

READ CYCLE 

NOTE 1 

(WR, INTA=VOH) 
DTIR 

- TAVAL r--
:=TRYHCHl 

TCLAV~ t-- -
TLLAX-

r- - j-TCLAX TDVCL ___ 

A15-Ao DATA IN 

f{ TAZRL~ TCLRH--

-=y--rCHCTV TCLRL J. TRlRH 

I 
TCVCTV- { TCVCTX -

Figure 3F1. 8086 Bus Timing - Minimum Mode System 

3-315 

-TCLDX--

1 FLOA~--J' 
1---1 r- TRHAV 

~ 

I 
TCHCTV 

-/ 

230792-001 



CLK (8284 OUTPUT) 

WRITE CYCLE 

NOTE 1 

(i'iii, iN'fA, 
DTfll=vOH) 

INTACYCLE 
NOTES 1 "3 
Ri5', W'R=VOH 
I!m=VOL) 

M/ili 

ALE 

DTIR 

SOFTWARE HALT - (DEN = 
VOL; RD, ViR, TN'TA. DT/Fi = VOH; AD1S-ADO 

TI'S FOLLOW n, THEN NMI OR INTR 
BEGIN A NEW n. 

AD1S- ADo 

AP-67 

TCVCTX-

FLOAT 

TCVCTV-

INVALID ADDRESS 

TCLAV 

NOTES: 1. ALL SIGNALS SWITCH BETWEEN VOH AND VOl UNLESS OTHERWISE 
SPECIFIED. 

2. ROY IS SAMPLED NEAR THE END OF T2, T3, TW TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

3. BOTH INTA CYCLES RUN BACK·TO·BACK. THE 8088 LOCAL ADDRJDATA BUS IS 
FLOATING DURING THE SECOND INTA CYCLE. CONTROL SIGNALS SHOWN 
FOR SECOND INTA CYCLE. 

4. SIGNALS AT 8284 ARE SHOWN FOR REFERENCE ONLY. 
5. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE 

NOTED. 

Figure 3Fl. 8086 Bus Timing - Minimum Mode System (Con't) 

I 
3-316 230792-001 



CLK 

s"s"s, (EXCEPT HALT) 

1 
ALE (8288 OUTPUT) 

SEE NOTES 

ROY (8284 INPUT) 

READ CYCLE 

8288 OUTPUTS 

SEE NOTES 5,6 

Ro 

AP-61 

r----TCLCL-

:JHCr~ VCHr--... r\ ~n-..J 

~-TCLAV- TCHCL !--TCLCH_ , 

X 

VCL 

I--- TCHSV - -TCLSH 

-----
'1;/1;; /j /I SEE NOTE 8 \ 

'------
~ 

tTCLAV ~CLOV TCHoX~ 
TCLAX-

iHE, A19-A16 57-53 

TSVLH ~ - {TCHLL TCLLH~ 

J ' r--
I 
----

~ ~ 
!-Tr1VCL ' 

'fu~~~~~~ ~~~~~ 
TRYLCl __ -

f-

TYHSH~t - -TCHRYX -
TRYHCH- -

TCLAV~ f -TCLAZ I- I ToVCL--TCLoX-

DATA IN ~ ... ~ f(' FL~~ 
TAZRL- - TCLRH TRHAV 

./' 

TCHDTL-I - r--------- TCLRL i'\ TCHoTH 
TRLRH 

TCLML-- - \ 
TCLMH- A 

TCVNV- It-

¥ 
TCVNX-- -

Figure 3F2a. 8086 Bus Timing - Maximum Mode System (Using 8288) 

3-317 230792-001 



WRITE CYCLE 

8288 OUTPUTS 

seE NOTES 5,6 

INTACYCLE 

CLK 

Si."!i.SO (EXCEPT HAL n 

DEN 

MWfC OR iO'WC 

AD1S-ADo 
seE NOTES 3 • 4 

MCEI 
i'li£N 

DTtR 

..... 0lITPIJTS 
seE NOTES 5,6 

DEN 

Ao,,-ADo 

VCL 

AP-67 

T, 

TSYMCH 

INVAUD AOORE118 

TCLAV 

T, 

TW 

DATA 

TCLMH-

TCVNX 

TCHDX-

TCVNX--

FLOAT 

TC OX 

FLOAT 

~ /r-----~\-------
'--. ____ ..J. \. _____ _ 

NOTES: 1. ALL SIGNALS SWITCH BETWEEN VOH AND VOL UNLESS OTHERWISE 
SPECIFIED. 

2. ROY IS SAMPLED NEAR THE END OF T2. T3J Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

3. CABCADE ADDRE118 IS VAUD BElWEEN FIRBT AND SECOND INTA CYCLES. 
4. BOTH INTA CYCLES RUN BACK·T().BACK. THE 8088 LOCAL ADDRIDATA BUS IS 

FLOATING DURING THE SECOND INTA CYCLE. CONTROL FOR POINTER ADDRE118 
IS SHOWN FOR SECOND INTA CYCLE. 

5. SIGNALS AT 8284 OR 8211 ARE SHOWN FOR REFERENCE ONLY. 
I. THE ISSUANCE OF THE 8211 COMMAND AND CONTROL SIGNALS (IIImC, 

1iW'Ill, AII\'Vl:, \mm, ll!Wl:, liIOW1i, 1IITl AND DEN) LAGS THE ACTIVE HIGH 
82IICEN. 

7. ALL TIMING MEASUREMENTS ARE MADE AT 1.IV UNLESS OTHERWISE 
NOTED • 

•• STATUS INACTIVE IN STATE JUST PRIOR TO T4. 

Figure 3F2b. 8086 Bus Timing - Maximum Mode System (Using 8286) (Con'l) 

3-318 

\ 
\._---

r-­
I 

TCHDTH 

230792-001 



AP-67 

The multiplexed address/data bus floats from the begin­
ning (T1) of the INTA cycle (within TCLAZ ns). The upper 
four multiplexed address/status lines do not three-state. 
The address value on A19-A16 is indeterminate but the 
status information will be valid (S3 = 0, 84 = 0, S5 = IF, 
S6 = 0, S7 = BHE = 0). The multiplexed address/data 
lines will remain in three-state until the cycle after T4 of 
the INTA cycle. This sequence occurs for each of the 
INTA bus cycles. The interrupt type number read by the 
8086 on the second INTA bus cycle must satisfy the 
same setup and hold times required for data during a 
read cycle. 

The DEN and DT/R signals are enabled for each I NTA cy­
cle and do not remain active between the two cycles. 
Their timing for each cycle is identical to the read cycle. 

ThelNTA command has the same timing as the write 
command. It is active within 110 ns of the start of T2 pro­
viding 260 ns of access time from command to data 
valid at the 8086. The command is active a minimum of 
TCVCTXmin = 10 ns into T4 to satisfy the data hold time 
of the 8086. ThiS provides minimum INTA pulse width of 
300 ns, however taking signal delay tracking into con­
sideration gives a minimum pulse width of 340 ns. Since 
the maximum inactive delay of INTA is TCVCTXmax= 
110 ns and the CPU will not drive the bus until 15 ns 
(TCLAVmin) into the next clock cycle, 105 ns are avail­
able for interrupt devices on the local bus to float their 
outputs. If the data bus is buffered, DEN provides the 
same amount of time for local bus transceivers to three­
state their outputs. 

5. Ready Timing 

The detailed timing requirements of the 8086 ready 
signal and the system ready signal into the 8284 are 
described in Section 3D. The system ready Signal is 
typically generated from either the address decode of 
the selected device or the address decode and the com­
mand (RD, WR, INTA). For a system which is normally 
not ready, the time to generate ready from a valid ad­
dress and not insert a wait state, is 2TCLCL­
TCLAVmax - TR1 VCLmax = 255 ns. This time is avail­
able for buffer delays and address decoding to deter­
mine if the selected device does not require a wait state 
and drive the RDY line high. If wait cycles are required, 
the user hardware must provide the appropriate ready 
delay. Since the address will not change until the next 
ALE, the RDY will remain valid throughout the'cycle. If 
the system is normally ready, selected devices requiring 
wait states also have 255 ns to disable the RDY line. The 
user circuitry must delay re-enabling RDY by the ap­
propriate number of wait states. 

If the RD command is used to enable the RDY Signal, 
TCLCL- TCLRLmax- TRIVCLmax= 15 ns are available 
for external logic. If the WR command is used, TCLCL­
TCVCTVmax - TRIVCLmax = 55 ns are available. Com-

o parison of RDY control by address or command in­
dicates that address decoding provides the best timing. 
If the system is normally not ready, address decode 
alone could be used to provide RDY for devices not re­
quiring wait states while devices requiring wait states 
may use a combination of address decode and com­
mand to activate a wait state generator. If the system is 

normally ready, devices not requiring wait states do 
nothing to RDY while devices n~eding wait states 
should disable RDY via the address decode and use a 
combination of address decode and command to ac­
tivate a delay to re-enable RDY. 

If the system requires no wait states for memory and a 
fixed number of wait states for RD and WR to all I/O 
devices, the M/iO signal can be used as an early indica­
tion of the need for wait cycles. This allows a common 
circuit to control ready timing for the entire system 
without feedback of address decodes. 

6. Other Considerations 

Detailed HOLD/HLDA timing is covered in the next sec­
tion and is not examined here. One last signal con­
sideration needs to be mentioned for the minimum 
mode system. The TEST input is sampled' by the 8086 
only during execution of the WAIT instruction. The TEST 
signal should be active for a minimum of 6 clock cycles 
during the WAIT instruction to guarantee detection. 

B. MAXIMUM MODE BUS TIMING 

The maximum mode 8086 bus operations are logically 
equivalent to the minimum mode operation. Detailed 
timing analysis now involves signals generated by the 
CPU and the 8288 bus controller. The 8288 also provides 
additional control and command Signals which expand 
the flexibility of the system. 

1. ADDRESS and ALE 

In the maximum mode, the address information con­
tinues to come from the CPU while the ALE strobe is 
generated by the 8288. To determine the worst case rela­
tionships between ALE and the address, we first must 
determine 8288 ALE activation relative to the SO-52 
status from the CPU. The maximum mode timing 
diagram specifies two possible delay paths to generate 
ALE. The first is TCHSV + TSVLH measured from the ris­
ing edge of the clock cycle preceding T1. The second 
path is TCLLH measured from the start of T1. Since the 
8288 initiates a bus cycle from the status lines leaving 
the passive state (SO-52 = 1), if the 8086 is late in issuing 
the status (TCHSVmax) while the clock high time is a 
minimum (TCHCLmin), the status will not have changed 
by the start of T1 and ALE is issued TSVLH ns after the 
status changes. If the status changes prior to the begin­
ning of T1, the 8288 will not issue the ALE until TCLLH 
ns after the start of T1. The resulting worst case delay to 
enable ALE (relative to the start of T1) is TCHSVmax + 
TSVLHmax - TCHCLmin = 58 ns. Note, when calcu­
lating signal relationships, be sure to use the proper 
maximum mode values rather than equivalent minimum 
mode values. 

The trailing edge of ALE is triggered in the 8288 by the 
positive clock edge in T1 regardless of the delay to 
enable ALE. The resulting minimum ALE pulse width is 
TCLCHmax - 58 ns = 75 ns assuming TCHLL = O. 
TCLCHmax must be used since TCHCLmin was as­
sumed to derive the 58 ns ALE enable delay. The ad­
dress is guaranteed to be valid TCLCHmin + 
TCHLLmin - TCLAVmax= 8 ns prior to the trailing edge 

3-319 230792-001 



AP-67 

of ALE to capture the address in the 8282 or 8283 
latches. Again we have assumed a very conservative 
TCHLL = O. Note, since the address and ALE are driven 
by separate devices, no tracking of A.C. characteristics 
can be assumed. 

The address hold time to the latches is guaranteed by 
the address remaining valid until the end of T1 while 
ALE is disabled a maximum of '15 ns' from the positive 
clock transition in T1 (TCHCLmin - TCHLLmax = 52 ns 
address hold time). The multiplexed bus transitions 
from address to status and write data or three·state (for 
read) are identical to the minimum mode timing. Also, 
since the address valid delay (TCLAV) remains the 
critical path in establishing a valid address, the address 
access times to valid data and ready are the same as the 
minimum mode system. 

2. Read Cycle Timing 

The maximum mode system offers read signals 
generated by both the 8086 and the 8288. The 8086 RD 
output signal timing is identical to the minimum mode 
system. Since the A.C. characteristics of the read com· 
mands generated by the 8288 are significantly better 
than the 8086 output, access to devices on the demul­
tiplexed buffered system bus should use the 8288 com­
mands. The 8086 RD signal is available for devices 
which reside directly on the multiplexed bus. The 
following evaluations for read, write and interrupt 
acknowledge only consider the 8288 command timing. 

The 8288 provides separate memory and 1/0 read signals 
which conform to the same A.C. characteristics_ The 
commands are issued TCLML ns after the start of T2 
and terminate TCLMH ns after the start of T4. The 
minimum command length is 2TCLCL- TCLMLmax+ 
TCLMLmin = 375 ns. The access time to valid data at the 
CPU is 2TCLCL-TCLMLmax-TDVCLmax=335 ns. 
Since the 8288 was designed for systems with buffered 
data busses, the commands are enabled before the CPU 
has three-stated the multiplexed bus and should not be 
used with devices which reside directly on the multi­
plexed bus (to do 50 could result in bus contention dur­
ing 8086 bus float and device turn-on). 

The direction control for data bus transceivers is estab, 
lished in T1 while the transceivers are not enabled by 
DEN until the positive clock transition of T2. This pro­
vides TCLCH + TCVNVmin = 123 ns for 8086 bus float 
delay and TCHCLmin+TCLCL-TCVNVmax­
TDVCLmax = 187 ns of transceiver active to data valid at 
the CPU. Since both DEN and command are valid a mini­
mum of 10 ns into T4, the CPU data hold time TCLDX is 
guaranteed_ A maximum DEN disable of 45 ns (TCVNX 
max) guarantees the transceivers are disabled by the 
start of the next 8086 bus cycle (215 ns minimum from 
the same clock edge)_ On the positive clock transition of 
T4, DT/R is returned to transmit in preparation for a 
possible write operation on the next bus cycle. Since 
the system memory and 110 devices reside on a buffered 
system bus, they must three-state their outputs before 
the device for the next bus cycle is selected (approxi­
mately 2TCLCL) or the transceivers drive write data onto 
the bus (approximately 2TCLCL). 

3. Write Cycle Timing 

I n the maximum mode, the 8288 provides normal and ad­
vanced write commands for memory and 1/0. The ad­
vanced write commands are active a full clock cycle 
ahead of the normal write commands and have timing 
identical to the read commands. The advanced write 
pulse width is 2TCLCL- TCLMLmax+ TCLMHmin=375 
ns while the normal write pulse width is TCLCL­
TCLMLmax + TCLMHmin = 175 ns. Write data setup 
time to the selected device is a function of either the 
data valid delay from the 8086 (TCLDV) or the transceiver 
enable delay TCVNV. The worst case delay to valid write 
data is TCLDV= 110 ns minus transceiver propagation 
delays. This implies the data may not be valid until 100 
ns after the advanced write command but will be valid 
approximately TCLCL- TCLDVmax + TCLMLmin = 100 
ns prior to the leading edge of the normal write com­
mand. Data will be valid 2TCLCL- TCLDVmax+ 
TCLMHmin = 300 ns before the trailing edge of either 
write command. The data and command overlap for the 
advanced command is 300 ns while the overlap with the 
normal write command is 175 ns. The transceivers are 
disabled a minimum of TCLCHmin - TCLMHmax + 
TCVNXmin = 85 ns after the write command while the 
CPU provides valid data a minimum of TCLCHmin­
TCLMHmax + TCHDZmin = 85 ns. This guarantees write 
data hold of 85 ns after the write command. The trans­
ceivers are disabled TCLCL - TCVNXmax + 
TCHDTLmin = 155 ns (assuming TCHDTL= 0) prior to 
transceiver direction change for a subsequent read 
cycle. 

4. Interrupt Acknowledge Timing 

The maximum mode INTA sequence is logically iden­
tical to the minimum mode sequence. The transceiver 
control (DEN and DT/R) and INTA command timing of 
each interrupt acknowledge cycle is identical to the 
read cycle. As in the minimum mode system, the multi­
plexed addressldata bus will float from the leading edge 
of T1 for each INTA bus cycle and not be driven by the 
CPU until after T4 of each INTA cycle. The setup and 
hold times on the vector number for the second cycle 
are the same as data setup and hold for the read. If the 
device providing the interrupt vector number is con­
nected to the local bus, TCLCL - TCLAZmax + 
TCLMLmin = 130 ns are available from 8086 bus float to 
INTA command active. The selected device"on the local 
bus must disable the system data bus transceivers 
since DEN is still generated by the 8288. 

If the 8288 is not in the lOB (1/0 Bus) mode, the 8288 
MCE/PDEN output becomes the MCE output. This out­
put is active during each INTA cycle and overlaps the 
ALE signal during T1. The MCE is available for gating 
cascade addresses from a master 8259A onto three of 
the upper AD15-AD8 lines and allowing ALE to latch the 
cascade address into the address latches. The address 
lines may then be used to provide CAS address selec­
tion to slave 8259A's located on the system bus (refer­
ence Figure 3E5). MCE is active within 15 ns of status or 
the start of T1 for each INTA cycle. MCE should not 
enable the CAS lines onto the multiplexed bus during 
the first cycle since the CPU does not guarantee to float 

3-320 230792-001 



AP-67 

the bus until 80 ns into the first INTA cycle. The first 
MCE can be inhibited by gating MCE with LOCK. The 
8086 LOCK output is activated during T2 of the first 
cycle and disabled during T2 of the second cycle. The 
overlap of LOCK with MCE allows the first MCE to be 
masked and the second MCE to gate the cascade ad­
dress onto the local bus. Since the 8259A will not pro· 
vide a cascade address until the second cycle, no infor­
mation is lost. As with ALE, MCE is guaranteed valid 
within 58 ns of the start of T1 to allow 75 ns CAS ad­
dress setup to the trailing edge of ALE. MCE remains 
active TCHCLmin - TCHLLmax + TCLMCLmin = 52 ns 
after ALE to provide data hold time to the latches. 

If the 8288 is strapped in the lOB mode, the MCE output 
becomes PDEN and all 1/0 references are assumed to be 
devices on the local bus rather than the demultiplexed 
system bus. Since INTA cycles are considered 1/0 
cycles, all interrupts are assumed to come from the 
local system and cascade addresses are not gated onto 
the system address bus. Additionally, the DEN signal is 
not enabled since no 1/0 transfers occur on the system 
bus. If the local 1/0 bus is also buffered by transceivers, 
the PDEN signal is used to enable those transceivers. 
PDEN A.C. characteristics are identical to DEN with 
PDEN enabled for 1/0 references and DEN enabled for 
instruction or memory data references. 

5. Ready Timing 

Ready timing based on address valid timing is the same 
for maximum and minimum mode systems. The delay 
from 8288 command valid to RDY valid at the 8284 is 
TCLCL- TCLMLmax- TRIVCLmin= 130 ns. This time is 
available for external circuits to determine the need to 
insert wait states and disable RDY or enable RDY to 
avoid wait states. INTA, all read commands and ad­
vanced write commands provide this timing. The normal 
write command is not valid until after the RDY signal 
must be valid. Since both normal and advanced write 
commands are generated by the 8288 for all write 
cycles, the advanced write may be used to generate a 
RDY indication even though the selected device uses 
the normal write command. 

Since sepa~te commands are provided for memory and 
1/0, no MilO signal is specifically available as in the 
minimum mode to allow an early 'wait state required' in· 
dication for 1/0 devices. The S2 status line, however is 
logically equivalent to the MilO signal and can be used 
for this purpose. 

6. Other Considerations 

The RQ/GT timing is covered in the next section and will 
not be duplicated here. The only additional signals to be 
considered in the maximum mode are the queue status 
lines QSO, QS1. These signals are changed on the 
leading edge of each clock cycle (high to low transition) 
including idle and wait cycles (the queue status is in· 
dependent of the bus activity). External logic may sam· 
pie the lines on the low to high transition of each clock 
cycle. When sampled, the signals indicate the queue ac· 
tivity in the previous clock cycle and therefore lag the 
CPU's activity by one cycle. The TEST input require· 

3-321 

ments are identical to those stated for the minimum 
mode. 

To inform the 8288 of HALT status when a HALT instruc· 
tion is executed, the 8086 will initiate a status transition 
from passive to HALT status. The status change will 
cause the 8288 to emit an ALE pulse with an indeter­
minate address. Since no bus cycle is initiated (no com· 
mand is issued), the results of this address will not af· 
fect CPU operation (Le., no response such as READY is 
expected from the system). This allows external hard· 
ware to latch and decode all transitions in system 
status. 

3G. Bus Control Transfer (HOLD/HLDA and RQ/GT) 

The 8086 supports protocols for transferring control of 
the local bus between itself and other devices capable 
of acting as bus masters. The minimum mode config· 
uration offers a signal level handshake similar to the 
8080 and 8085 systems. The maximum mode provides 
an enhanced pulse sequence protocol designed to op­
timize utilization of CPU pins while extending the 
system configurations to two prioritized levels of alter· 
nate bus masters. These protocols are simply tech· 
niques for arbitration of control of the CPU's local bus 
and should not be confused with the need for arbitration 
of a system bus . 

• 
1. MINIMUM MODE 

The minimum mode 8086 system uses a hold request in­
put (HOLD) to the CPU and a hold acknowledge (HLDA) 
output from the CPU. To gain control of the bus, a 
device must assert HOLD to the CPU and wait for the 
HLDA before driving the bus. When the 8086 can relin· 
quish the bus, it floats the RD, WR, INTA and M/iO com­
mand lines, the DEN and DT/Rbus control lines and the 
multiplexed addressldata/status lines. The ALE signal is 
not three-stated. The CPU acknowledges the request 
with HLDA to allow the requestor to take control of the 
bus. The request6r must maintain the HOLD request ac· 
tive until it no longer requires the bus. The HOLD re­
quest to the 8086 directly affects the bus interface unit 
and only indirectly affects the execution unit. The CPU 
will continue to execute from its internal queue until 
either more instructions are needed or an operand 
transfer is required. This allows a high degree of overlap 
between CPU and auxiliary bus master operation. When 
the requestor drops the HOLD signal, the 8086 will re­
spond by dropping HLDA. The CPU will not re·drive the 
bus, command and control signals from three-state until 
it needs to perform a bus transfer. Since the 8086 may 
still be executing from its internal queue when HOLD 
drops, there may exist a period of time during which no 
device is driving the bus. To prevent the command lines 
from drifting below the minimum VIH level during the 
transition of bus control, 22K ohm pull up resistors 
should be connected to the bus command lines. The 
timing diagram in Figure 3G1 shows the handshake se· 
quence and 8086 timing to sample HOLD, float the bus, 
and enableldisable HLDA relative to the CPU clock. 

To guarantee valid system operation, the designer must 
assure that the requesting device does not assert con-

230792-001 



AP-67 

trol of the bus prior to the 8086 relinquishing control and 
that the device relinquishes control of the bus prior to 
the 8086 driving the bus. The HOLD request Into the 
8086 must be stable THVCH ns prior to the CPU's low to 
high clock transition. Since this Input is not syn­
chronized by the CPU, signals driving the HOLD input 
should be synchronized with the CPU clock to 
guarantee the setup time is not violated. Either clock 
edge may be used. The maximum delay between HLDA 
and the 8086 floating the bus is TCLAZmax­
TCLHAVmin = 70 ns. If the system 'cannot tolerate the 
70 ns overlap, HLDA active from the 8086 should be 
delayed to the device. The minimum delay for the CPU to 
drive the control bus from HOLD inactive is THVCHmln 
+ 3TCLCL= 635 ns and THVCHmin + 3TCLCL+ 
TCHCL = 701 ns to drive, the multiplexed bus. If the 
device does not satisfy these requirements, HOLD inac­
tive to the 8086 should be delayed. The delay from HLDA 
inactive to driving the busses Is TCLCL + TCLCHmln­
TCLHAVmax = 158 ns for the cont1'ol bus and 2TCLCL­
TCLHAVmax = 240 ns for the data bus. 

,1.1 Latency of H LOA to HOLD 

The decision to respond to a HOLD request is made In 
the bus interface unit. The major factors that Influence 
the decision are the current bus activity, the state of the 
LOCK signal Internal to the CPU (activated by the soft­
ware LOCK prefix) and Interrupts. 

If the LOCK is not active, an interrupt acknowledge cy­
cle Is not in progress and the BIU (Bus Interface Unit) is 
executing a T4'orTI when the HOLD request Is received, 
the minimum latency to HUlA Is: 

35 ns 
65 ns 
200 ns 
10 ns 

310 ns 

elK 

HOLD 

CONTROL 

HlDA ____ ..J 

THVCH min (Hold setup) 
TCHCL min 
TCLCL (bus float delay) 
TCLHAV min (HLDA delay) 

@ 5 MHz 

The maximum delay under these conditions is: 

34 ns 
200 ns 
82 ns 
200 ns 
'160 ns 

677 ns 

Oust missed setup time) 
delay to next sample 
TCHCL max 
TCLCL (bus float delay) 
TCLHAV max (HLDA delay) 

@ 5MHz 

If the BIU just Initiated a bus cycle when the HOLD Re­
quest was receiveq, the worst case response time is: 

34 ns 
82 ns 
7*200 
N*200 
160 ns 

1.676/As 

THVCH Oust missed) 
TCHCL max 
bus cycle execution 
N walt states/bus cycle 
TCLHAV max (HLDA delay) 

@ 5 MHz, no wait states 

Note, the 200 ns delay for just missing is included in the 
delay for bus cycle execution. If the operand transfer is 
,a word transfer to an odd byte boundary, two bus cycles 
are executed to perform the transfer. The BIU will not 
acknowledge' a HOLD request between the two bus 
cycles. This type of transfer would extend the above 
maximum latency by four additional clocks plus N addi­
tional wait states. With no wait states in the bus cycle, 
the maximum would be 2.476 microseconds. 

Although the minimum mode 8086 does not have a hard­
ware LOCK output, the software LOCK prefix may stili 
be Included In the Instruction stream. The CPU Internal­
ly reacts to the LOCK prefix as would the maximum 
mode 8086. Therefore, the LOCK does not allow a HOLD 
request to be honored until completion of the Instruc­
tion following the prefix. This allows an instruction 
which performs, more ,than one memory reference (ex. 
ADD [BX], CX; which adds CX to [BXD to execute without 
another bus master gaining control of the bus between 
memory references. Since the LOCK signal is active for 
one clock longer than the instruction execution, the 
maximum latency to HLDA is: 

Figure 3C1. HOLD/HLDA Sequence 

3-322 230792-001 



34 ns 
200 ns 
82 ns 
(M+ 1)'200 ns 
200 ns 
160 ns 

(M'200 ns)+ 876 ns 

THVCH (just miss) 
delay to next sample 
TCHCL max 
LOCK instruction execution 
set up HLDA (internal) 
TCLHAV max (HLDA delay) 

@ 5 MHz 

AP-67 

If the HOLD request is made at the beginning of an inter­
rupt acknowledge sequence, the maximum latency to 
HLDA is: 

A typical use of the HOLD/HLDA signals in the minimum 
mode 8086 system is bus control exchange with DMA 
devices like the Intel 8257-5 or 8237 DMA controllers. 
Figure 3G2 gives a general interconnect for this type of 
configuration using the 8237-2. The DMA controller 
resides on the upper half of the 8086's local bus and 
shares the A8-A 15 demultiplexing address latch of the 
8086. All registers in the 8237-2 must be assigned odd 
addresses to allow initialization and interrogation by the 
CPU over the upper half of the data bus. The 8086 
RD/WR commands must be demultiplexed to provide 
separate 1/0 and memory commands which are compati­
ble with the 8237-2 commands. The AEN control from 
the 8237-2 must disable the 8086 commands from the 
command bus, disable the address latches from the 
lower (AO-A7) and upper (A19-A16) address bus and 
select the 8237-2 address strobe (ADSTB) to the A8-A15 
address latch. If the data bus is buffered, a pull-up 
resistor on the DEN line will keep the buffers disabled. 
The DMA controller will only transfer bytes between 

34 ns 
82 ns 
2600 ns 
160 ns 

2.876 fls 

THVCH (just missed) 
TCHCL max 
13 clock cycles for INTA 
TCLHAV max 

@ 5 MHz 

1.2 Minimum Mode DMA Configuration 

Vee 

DEMULTIPLEX T MIN MODE COMMANDS 

rD~ I T EJiIAB[E -
8282 

RDIWRIIO/M 

I 8284 I BHE A19-18 _01 00 

STB 

L 8086 

T -r READY ALE -
CLK 

~ 
RESET AD150 

HOLD HLDA 

UPPER = DOr- >0-
DMA 01 

I 

ADDR -
- 8282 110 PORT 

LOADED DURING - 8237 INITIALIZATION 

--s2ii2 
74LS74 01 00 

Q 

~ CLR STB 

l~LD ,--
-

AD7·0 
--s2ii2 

_01 00 
STB 

EN 

~ -
(AO) 

0670 ·'1 - AEN lOR 
ADSTB 8237·2 lOW --HLDA MOO 

HRQ CLK 
MEMW 

4 r rESET 

Figure 3G2. DMA Using the 8237·2 

3-323 

COMMAND 
BUS 

LOCAL DATA 
BUS 

230792-001 



memory and 1/0 and requires the 1/0 devices to reside on 
an 8·bit bus derived from the 16·blt to 8·bit bus multiplex 
circuit given in Section 4. Address lines /!t.7·AO are driven 
directly by the 8237 and BHE is generat"ed by inverting 
AO.lf A19·A16 are used, they must be provided by an ad· 
ditlonal port with either a fixed value or initialized by 
software and enabled ont9 the address bus by AEN. 

Figure 3G3 gives an Interconnection for placing' the 
8257 on the system bus. By using a separate latch to 
hold the upper address from the 8257·5 and connecting 
the outputs to the address bus as shown, 16·bit DMA 
transfers are provided. In this configuration, AEN 
simultaneously enables AO and BHE to allow word 
transfers. AEN still disables the CPU interface to the 
command and address busses. 

2. MAXIMUM MODE (RQ/GT) 

The maximum mode 8086 configuration supports a sig· 
nlficantly different protocol for transferring bus control. 
When viewed with respect to the HOLD/HLDA sequence 
of the minimum mode, the protocol appears difficult to 
i"1plement externally. However, it is necessary to under· 
stand the intent of the protocol and its purpose within 
the system architecture. 

8282 
A1916 01 DO 

ALE STB 

BtiE 
OE 

cpu" 8282 
BUS AD1S-8 01 

INTERFACE DO 

STB 
(jI[ 

8282 
AD7.o 01 

DO 
STB 

OE 

DTfR 

l 

2.1 Shared System Bus (RQ/GT Altemative) 

The maximum mode RQ/GT sequence is intended to 
transfer control of the CPU local bus between the CPU 
and alternate bus masters which reside totally on the 
local bus and share the complete CPU interface to the 
system bus. The complete interface Includes the ad· 
dress latches, data transceivers, 8288 bus controller and 
8289 multi master bus arbiter. If the alternate bus' 
masters In the system do not reside directly on the 8086 
local bus, system bus arbitration is required rather than 
local CPU bus arbitration. To satisfy the need for multi· 
mallter system bus arbitration at Elach CPU's system in· 
terface, the 8289 bus arbiter should be used rather than 
the CPU RQ/GT logic. . 

To allow a device, with a simple HOLD/HLDA protocol to 
gain control ot a single CPU system bus, the circuit in 
Figure 3G4 could be used. The design Is effectively a 
simple bus arbiter which isolates the CPU from the 
system bus when an alternate bus master Issues a 
HOLD request. The output of the Circuit, Ai:N (Address 
ENable), disables the 8288 and 8284 when the 8086 in· 
dicates idle status (SO,81 ,82 = 1), LOCK is not active and 
a HOLD request is active. With AEN Inactive, the 8288 
three·states the command outputs and disables DEN 

A19-11 

A,. 

BHE 

A15-9 

A, 

A7·1 

'------' 
Ao TO GROUND AND 

r-±:-----..",:l-~=-+__:J......, UPPER BITS OF DMA ADDRESS 
HOLD ... ------! (FIXED OR REG) 

HLDA-------I~I 

CONTROLS ARE SAME AS 8-BIT 
TRANSFER CONFIGURATION WITH 
MANIPULATION OF THE DATA BUS 

Figura 303. 8086 Min System, 8257 on System Bus 16-Blt Transfers 

3-324 230792-001 



AP-67 

which three-states the data bus transceivers. AEN must 
also three-state the address latch (8282 or 8283) outputs. 
These actions remove the 8086 from the system bus and 
allow the requesting device to drive the system bus. The 
AEN signal to the 8284 disables the ready input and 
forclls a bus cycle initiated by the 8086 to wait until the 
8086 regains control of the system bus. The CPU may 
actively drive its local bus during this interval. 

The requesting device will not gain control of the bus 
during an 8086 initiated bus cycle, a locked instruction 
or an interrupt acknowledge cycle. The LOCK signal 
from the 8086 is active between INTA cycles to 
guarantee the CPU maintains control of the bus. Unlike 
the minimum mode 8086 HOLD response, this arbitra­
tion circuit allows the requestor to gain control of the 
bus between consecutive bus cycles which tran,sfer a 
word operand on an odd address boundary and are not 
locked. Depending on the characteristics of the re­
questing device, any of the 74LS74 outputs can be used 
to generate a HLDA to the device_ 

Upon completion of its bus operations, the alternate bus 
master must relinquish control of the system bus and 
drop the HOLD request. After AEN goes inactive, the ad­
dress latches and data transceivers are enabled but, if a 
CPU initiated bus cycle is pending, the 8288 will not 
drive the command bus until a minimum of 105 ns or 
maximum of 275'ns later. If the system is normally not 
ready, the 8284 AEN input may immediately be enabled 
with ready returning to the CPU when the selected 
device completes the transfer. If the system is normally 
ready, the 8284 AEN input must be delay~d long enough 
to provide access time equivalent to a normal bus cycle. 
The 74LS74 latches in the design provide a minimum of 
TCLCHrnin for the alternate device to float the system 
bus after releasing HOLD. They also provide 2TCLCL ns 
address access and 2TCLCL- TAEVCHmax ns (8288 
command enable delay) command access prior to ena­
bling 8284 ready detection. If HLDA is generated as 

_ shown in Figure 3G4, TCLCL ns are available for the 
8086 to release the bus prior to issuing HLDA while 
HLDA is dropped almost immediately upon loss of 
HOLD. 

So 
S, 
s-

lOCK 
HOLD 

ClK 

+5 

+5 

A circuit configuration for an 8257-5 using this tech­
nique to interface with a maximum mode 8086 can be 
derived from Figure 3G3. The 8257-5 has its own address 
latch for buffering the address lines A15-A8 and uses its 
AEN output to enable the latch onto the address bus. 
The maximum latency from HOLD to HLDA for this cir­
cuit is dependent on the state of the system when the 
HOLD is issued. For an idle system the maximum delay 
is the propagation delay through the nand gate and RlS 
flip-flop (TQ1) plus 2TCLCL plus TCLCHmax plus prop­
agation delay of the 74LS74 and 74LS02 (TD2). For a 
locked instruction it becomes: TD1 + TD2 + (M + 2) 
*TCLCL+ TCLCHmax where M is the number of clocks 
required for execution of the locked instruction. For the 
interrupt acknowledge cycle the latency is 
TD1 + TD2+ 9 *TCLCL+ TCLCHmax. 

2.2 Shared Local Bus (RQ/GT Usage) 

The RQ/GT protocol was developed to allow up to two i n­
struction set extension processors (co-processors) or 
other special function processors (like the 8089 I/O 
processor in local mode) to reside directly on the 8086 
local bus. Each RQ/GT pin of the 8086 supports the full 
protocol for exchange of bus control (Fig. 3G5). The se­
quence consists of a request from the alternate bus 
master to gain control of the system bus, a grant from 
the CPU to indicate the bus has been relinquished and a 
release pulse from the alternate master when done. The 
two RQ/GT pins (RQ/GTO and RQ/GT1) are prioritized 
with RQ/GTO having the highest priority. The prioritiza­
tion only occurs if requests have been received on both 
pins before a response has be,en given to either. For ex, 
ample, if a request is received on RQ/GT1 followed by a 
request on RQ/GTO prior to a grant on RQ/GT1, RQ/GTO 
will gain priority over RQ/GT1. However, if RQ/GT1 had 
already received a grant, a request on RQ/GTO must wait 
until a release pulse is received on RQ/GT1. 

The request/grant sequence interaction with the bus in­
terface unit is similar to HOLD/HLDA. The CPU con­
tinues to execute until a bus transfer for additional in­
structions or data is required. If the release pulse is 

.---------------AfN (TO 8288 & 828213'.) 

AEN' (TO 8284) 

HLDA 

Figure 3G4. Circuit to Translate HOLD into AEN Disable for Max Mode 8086 

3-325 230792-001 



Ap·67 

received before the CPU needs the bus, it will not drive 
the bus until a transfer is required. 

Upon receipt of a request pulse, the 8086 floats the 
multiplexed address, data and status bus, the SO, 51, 
and 52 status lines, the LOCK pin and' RD. This action 
does not disable the 8288 command outputs from driv­
ing the command bus and does not disable the address 
latches from driving the address bus. The 8288 contains 
internal pull-up resistors on the SO, 51, and S2 status 
lines to maintain the passive state while the 8086 out­
puts are three-state. The passive state prevents the 8288 
from initiating any commands or activating DEN to 
enable the transceivers butfering the data bus. If the 
device issuing the RQ does not use the 8288, it must 
disable the 8288 command outputs by disabling the 
8288 AEN input. Also, address latches not used by the 
requesting device must be disabled. 

GND Vee 
AD14 AD15 

AD13 A18/S3 

AD12 A17/S4 

AD11 A18iS5 

AD10 A191sa 

ADS BHElS7 

ADS MN/MX 

AD7 iiii 
ADa RQlGTO 

AD5 ROtori 
AD4 LOCK 

AD3 S2 
AD2 Si 
AD1 so 
ADO QSO 

NMI QS1 

INTR TEST 

CLK READY 

GND RESET 

Figure 3G5. 8086 RQ/GT Connections 

, THIi/lll88FLQAT8AxDx8usiiiiANOiliCii:ONftlI5EDOI! 
I THI anti .. IIIIIsnR Fl..DAT&1i.Ii.1i FROM 111 STAT! OM THIS eDGE 

: ;::=~RI!=;'f:~HT~:-mH,ANDmmtQNTHISEDIHi 
a THEIOIIREDRNUTHEADo;LlNEI 

2.3 RQ/GT Operation 

Detailed timing of the RQ/GT ,equence Is given In 
Figure 3G6. To request a transfer of bus control via the 
RQ/aT lines, the device must drive the line low for no 
more than one CPU clock Interval to generate a request 
pulse. The pulse must be synchronized with the CPU 
clock to guarantee the appropriate setup and hold 'times 
to the clock edge which samples the RQ/GT lines in the 
CPU. After Issuing a request pulse, the device must 
begin sampling for a grant pulse with the next low to 
high clock, edge. Since the 8086 can respond with a 
grant pulse in the clock cycle immediately following the 
request, the RQ/GT line may not return to the positive 
level between the request and grant pulses. Therefore 
edge triggered logic is not valid for capturing a grant 
pulse. It also Implies the circuitry which generates the 
request pulse must guarantee the request is removed In 
time to detect a grant from the CPU. After receiving the 
grant pulse, the requesting device may drive the local 
bus. Since the 8086 does not float the address and data 
bus, LOCK or RD until the high to low clock transition 
following the low to high clock transition the requestor 
uses to sample for the grant, the requestor should wait 
the float delay of the 8086 (TCLAZ) before driving the 
local bus. This precaution prevents bus contention dur­
Ing the access of bus control by the requestor. 

To return control of the bus to the 8086, the alternate 
bus master relinquishes bus control and Issues a 
release pulse on the same RQ/GT line. The 8086 may 
drive the SO-S2 status lines, RD and LOCK, three clock 
cycles after detepting the release pulse and the ad­
dress/data bus TCHCLmln ns (clock high time) after the 
status lines. The alternate bus master should be three­
stated off the local bus and have other 8086 interface 
circuits (8288 and address latches) re-enabled within the 
8086 delay to regain control of the bus. 

2.4 RQ/GT Latency 

The RQ to GT latency for a single RQ/GT line is similar 
to the HOLD to HLDA latency. The cases given for the 
minimum mode 8088 also apply to the maximum mode. 
For each case the delay from RQ detection by the CPU 
to GT detection by the requestor is: 

(HOLD to HLDA delay)- (THVCH + TCHCL+ TCLHAV) 

Flg~re 3G6. Request/Grant Sequence 

3-326 230792-001 



AP-67 

This gives a clock cycle maximum delay for an Idle bus 
interface. All other cases are the minimum mode result 
minus 476 ns. If the 8086 has previously issued a grant 
on one of the RQ/GT lines, a request on the other RQ/GT 
line will not receive a grant until the first device releases 
the interface with a release pulse on its RQ/GT line. The 
delay from release on one RQ/GT line to a grant on the 
other is typically one clock period as shown in Figure 
3G7. Occasionally the delay from a release on RQ/GT1 

CHANNEL 0 TO 1 

CLOCK 

to a grant on RQ/GTO will take two clock cycles and is a 
function of a pending request for transfer of control 
from the execution unit. The latency from request to 
grant when the interface is under control of a bus 
master on the other RQ/GT line is a function of the other 
bus master. The protocol embodies no mechanism for 
the CPU to force an alternate bus master off the bus. A 
watchdog timer should be used to prevent an errant 
alternate bus master from 'hanging' the system. 

RQIGTO "----I RELEASE 

RQIGT1 "----I GRANT 

CHANNEL 1 TO 0 

CLOCK 

RO/GT1 "----I RELEASE 

RQIGTO \'-____ / GRANT 

OR 

\ / GRANT 

Figure 3G7. Channel TranSler Delay 

3-327 230792-001 



AP-67 

2.5 RQ/GT to HOLD/HLDA Conversion 

A circuit for tran·slating a HOLD/HLDA hand-shake se­
quence into a RQ/GT pulse sequence is given in Figure 
3G8. After receiving the grant pulse, the HLDA is ena­
bled TCHCLmin ns before the CPU has three-stated the 
bus. If the requesting circuit drives the bus within 20 ns 

of HLDA, it may be desirable to delay the acknowledge 
one clock period. The H LOA is dropped no later than one 
clock period after HOLD is disabled. The HLDA also 
drops at the beginning of the release pulse to provide 
2TCLCL + TCLCH for the requestor to relinquish control 
of the status lines and 3TCLCL to float the remaining 
signals. 

ClOCK--------------------------------------, 

A 

741578 74802 
fr--rH J Q t-~----~-...., 

HOLD 

ClK 
a 

ClR 

741578 

»-t-..,--H J Q 

ClK 

K ClR a 

RE5ET-----------------------------------" 

88.3 MIN---1 

ClK 

HLDR 

A 

Figure 3G88. HOLD/HLD~iiQIGr Conversion Circuit 

r- -1 r-44.6MIN -I [.- DATA BUS FLOATS 

RQ 

HLDA ~ 
--------------------------~I 

Figure 3G8b. HOLDIHLDA--C_Q/GT Conversion Timing 

3-328 

74502 

+5 

R 

74LS04 

HlDA 

230792-001 



AP-67 

4. INTERFACING WITH 110 

The 8086 is capable of interfacing with 8· and 16·bit 110 
devices using either 110 instructions or memory mapped 
110. The 110 instructions allow the 110 devices to reside 
in a separate 110 address space while memory mapped 
110 allows the full power of the Instruction set to be 
used for 110 operations. Up to 64K bytes of 110 mapped 
110 may be defined in an 8086 system. To the program· 
mer, the separate 110 address space is only accessible 
with INPUT and OUTPUT commands which transfer data 
between 110 devices and the AX (for 16·bit data trans· 
fers) or AL (for 8·bit data transfers) register. The first 256 
bytes of the 110 space (0 to 255) are directly addressable 
by the 110 instructions while the entire 64K is accessible 
via register indirect addressing through the OX register. 
The later technique is particularly desirable for service 
procedures that handle more than one device by allow· 
ing the desired device address to be passed to the pro· 
cedure as a parameter. 110 devices may be connected to 
the local CPU bus or the buffered system bus. 

4A. Elght·Blt 110 

Eight·bit I/O devices may be connected to either the up· 
per or lower half of the data bus. Assigning an equal 
number of devices to the upper and lower halves of the 
bus will distribute the bus loading. If a device is con· 
nected to the upper half of the data bus, all 110 ad· 
dresses assigned to the device must be odd (AO= 1). If 
the device is on the lower half of the bus, its addresses 
must be even (AO = 0). The address assignment directs 
the eight·bit transfer to the upper (odd byte address) or 
lower (even byte address) half of the sixteen·bit data 
bus. Since AO will always be·a one or zero for a specific 
device, AO cannot be used as an address input to select 
registers within a specific device. If a device on the 
upper half of the bus and one on the lower half are 
assigned addresses that differ only in AO (adjacent odd 
and even addresses), AO and SHE must be conditions of 
chip select decode to prevent a write to one device from 
erroneously performing a write to the other. Several 
techniques for generating 110 device chip selects are 
given in Figure 4A 1. 

The first technique (a) uses separate 8205's to generate 
chip selects for odd and even addressed byte periph· 
erals. If a word transfer is performed to an even ad· 
dressed device, the adjacent odd addressed I/O device 
is also selected. This allows accessing the devices in· 
dividually with byte transfers or simultaneously as a 
16·bit device with word transfers. Figure 4A1(b) restricts 
the chip selects to byte transfers, however a word 
transfer to an odd address will cause the 8086 to run two 
byte transfers that the decode technique will not detect. 
The third technique simply uses a single 8205 to 
generate odd and even device selects for byte transfers 
and will only select the even addressed eight·bit device 
on a word transfer to an even address. 

If greater than 256 bytes of the 110 space or memory 
mapped 110 is used, additional decoding beyond what is 
shown In the examples may be necessary. This can be 
done with additional TTL, 8205's or bipolar PROMs (In· 
tel's 3605A). The bipolar PROMs are slightly slower than 
multiple levels of TTL (50 ns vs 30 to 40 ns for TTL) but 

provide full decoding in a single package and allow in· 
serting a new PROM to reconfigure the system 110 map 
without circuit board or wiring modifications (Fig. 4A2). 

ADDRESS 

BHe--+-oj 

(0) 

(b) 

(e) 

EVEN ADDRESSED 
WORD OR BYTE 
PERIPHERALS 

000 ADDRESSED 
BYTe PERIPHERALS 

EVEN ADDRESSED 
BYTE PERIPHERALS 

000 ADDRESSED 
BYTE PERIPHERALS 

Figure 4A 1. Techniques tor 110 Device Chip Selects 

CSl 0, n 
10 

CS2 12 0, 
Au 02 13 
A, 

380. 01 14 A, A·l 
A, A. 

1. 

A, Ao 16 
A, 

Ao A, 17 

Figure 4A2. Bipolar PROM Decodor 

One last technique for interfacing with eight·blt periph· 
erals is considered in Figure 4A3. The sixteen·bit data 
bus is multiplexed onto an eight·bit bus to accom· 
modate byte oriented DMA or block transfers to memory 
mapped eight·bit 110. Devices connected to this inter· 
face may be assigned a sequence of odd and even ad· 
dresses rather than all odd or even. 

3-329 230792-001 



AP-67 

~--r.~--------~ 

I~BIT I 
A...J'--__ J\ a·Blt 

D:~~ 1 (L __ ~-L.LJ\ 
BHE 

PERIPHERAL 
CS .. 

PERIPHERAL 
DATA BUS 

Figure 4A3. 16· 10 8·Bil Bus Conversion 

4B. Sixteen· Bit 110 

For obvious reasons of efficient bus utilization and /lim· 
plicity of device selection, sixteen·bit 110 devices should 
be assigned even addresses. To guarantee the device Is 
selecte:! only for word operations, AO and BHE should 
be conditions of chip select code (Fig. 4B1). 

ADDRESS -----'hI "0·2 O. 

"0 -----+-01 E; 8205 1 
lIfE E; 

E3 07 

EVEN ADDRESSED 
WORD PERIPHERALS 

Figure 4B1. Sixleen·BilllO Decode 

4C. General Design Considerations 

MINIMAX, MEMORY 110 MAPPED AND LINEAR SELECT 

Since the minimum mode 8086 has common read and 
write commands for memory and 1/0, if the memory and 
1/0 address spaces overlap, the chip selects must be 
qualified by MilO to determine which address space the 
devices are assigned to. This restriction on chip select 
decoding can be removed if the 1/0· and memory ad· 
dresses in the system do not overlap and are properly 
decoded; all 1/0 is memory mapped; or RD, WR and M/iO 
are decoded to provide separate memory and 1/0 
readlwrite commands (Fig. 4C1). The 8288 bus controller 
in the maximum mode 8086 system generates separate 
1/0 and mernory comma[1ds in place of a M/iO signal. An 
1/0 device is assigned to the 1/0 space or memory space 
(memory mapped 1/0) by connection of either 1/0· or 
memory command lines to the command inputs of the 
device. To allow overlap of the memory and 1/0 address 
space, the device must not respond to chip select alone 
but must require a combination of chip select and a read 
or write command. 

74L802 74LS368 

lOR iffi -~=+=L)o-----t;><>--

DEFINED EN~:~: _______________ +--...J 

NOTE: IF IT IS NOT NECESSARY TO THREE·STATE THE COMMAND LINES, A 
DECODER (8205 OR 745138) COULD BE USED. THE 74LS257 IS NOT 
RECOMMENDED SINCE THE OUTPUTS MAY EXPERIENCE VOLTAGE 
SPIKES WHEN ENTERING OR LEAVING THREE·STATE. 

Figure 4Cl. Decoding Memory and 11.0 lUi and WR Commands lor 
Minimum Mode 8086 Syslems 

Linear select techniques (Fig. 4C2) for 110 devices can 
only be used with devices that either reside in the 1/0 ad· 
dress space or require more than one active chip select 
(at least one low active and one high active). Devices 
with a single chip select input cannot use linear select If 
they are memory mapped. This is due to the assignment 
of memory address space FFFFFOH·FFFFFFH to reset 
startup and memory space 00000H·003FFH to interrupt 
vectors. 

(al SEPARATE 110 COMMANDS 

ADDRESSI{]S LINES) (j! 
;1115 1115 110 DEVICE 

W1\ W1\ 

(b) MULTIPLE CHIP SELECTS 

Figure 4C2. Linear Selecllor 110 

4D. Determf~lng 1/0 Device Compatibility 

This section presents a set of A.C. characteristics which 
represent the timing of the asynchronous bus interface 
of the 8086. The equations are expressed in terms of the 
CPU clock (when applicable) and are derived for 
minimum and maximum modes of the 8086. They repre· 
sent the bus characteristics at the CPU. 

The results can be used to determine 1/0 device reo 
quirements for operation on a single CPU local bus or 
buffered system bus. These values are. not applicable to 

3-330 230792-001 



AP-67 

a Multibus system bus interface. The requirements for a 
Multibus system DUS are available in the Multibus inter­
face specification. 

A list of bus parameters, their definition and how they 
relate to the A.C. characteristics of Intel peripherals are 
given in Table 401. Cycle dependent values of the 
parameters are given in Table 402. For each equation, if 
more than one signal path is involved, the equation 
reflects the worst case path. 

ex. TAVRL(address valid before read active) = 
(1) Address from CPU to RO active 

(or) 
(2) ALE (to enable the address through the 

address latches) to RO active 

The worst case delay path is (1). 

For the maximum mode 8086 configurations, TAVWLA, 
TWLWHA and TWLCLA are relative to the advanced 
write signal while TAVWL, TWLWH and TWLCL are 
relative to the normal write signal. 

,TABLE 401. PARAMETERS FOR PERIPHERAL COMPATIBILITY 

TAVRL - Address stable before RO leading edge 
TRHAX - Address hold after RO trailing edge 
TRLRH ~ Read pulse width 
TRLOV - Read to data valid delay 
TRHOZ - Read trailing edge to data floating 
TAVOV - Address to valid data delay 
TRLRL - Read cycle time 
TAVWL- Address valid before write leading edge 
TAVWLA - Address valid before advanced wnte 
TWHAX - Address hold after write trailing edge 
TWLWH - Wnte pulse width 
TWLWHA - Advanced write pulse width 
TOVWH - Data set up to write trailing edge 
TWHDX - Data hold from write trailing edge 
TWLCL - Write recovery time 
TWLCLA - Advanced write recovery time 
TSVRL - Chip select stable before RO leading edge 
TRHSX - Chip select hold after RO trailing edge 
TSLDV - Chip select to data valid delay 
TSVWL - Chip select stable before WR leading edge 
TWHSX - Chip select hold after WR trailing edge 
TSVWLA - Chip select stable before advanced write 

(TAR) 
(TRA) 
(TRR) 
(TRO) 
(TO F) 
(TAD) 

(TRCYC) 
(TAW) 
(TAW) 
(TWA) 

(TWW) 
(TWW) 
(TOW) 
(TWO) 
(TRV) 
(TRV) 
(TAR) 
(TRA) 
(TRO) 
(TAW) 
(TWA) 
(TAW) 

Symbols In parentheses are equivalent parameters specified for 
Intel penpherals 

In the given list of equations, TWHOXB is the data hold 
time from the trailing edge of write for the minimum 
mode with a buffered data bus. For this equation, 
TCVCTX cannot be a minimum for data hold and a max­
imum for write inactive. The maximum difference is 50 
ns giving the result TCLCH-50. If the reader wishes to 
verify the equations or derive others, refer to Section 3F 
for assistance with interpreting the 8086 bus timing 
diagrams. 

Figure 401 shows four representative configurations 
and the compatible Intel peripherals (including wait 
states if required) for e'ach configuration are given in 
Table 403. Configuration 1 and 2 are minimum mode 
demultiplexed bus 8086 systems without (1) and with (2) 
data bus transceivers. Configurations 3 and 4 are max­
imum mode systems with one (3) and two (4) levels of ad­
dress and data buffering. The last configuration is 
characteristic of a multi-board system with bus buffers 
on each board. The 5 MHz parameter values for these 
configurations are given in Table 404 and ~emonstrate 

the relaxed device requirements for even a large com­
plex configuration. The analysis assumes all com­
ponents are exhibiting the specified worst case param­
eter values and are under the corresponding tem­
perature, voltage and capacitive load conditions. If the 
capacitive loading on the 8282/83 or 8286/87 is less than 
the maximum, graphs of delay vs. capacitive loading in 
the respective data sheets should be used to determine 
the appropriate delay values. 

3-331 

TABLE 402. CYCLE DEPENDENT PARAMETER REQUIREMENTS 
FOR PERIPHERALS 

(8) Minimum Mode 

TAVRL= TCLCL+ TCLRLmln- TCLAVmax= TCLCL-100 
TRHAX= TCLCL- TCLRHmax+ TCLLHmln=TCLCL-150 
TRLRH =2TCLCL- 60= 2TCLCL- 60 
TRLDV = 2TCLCL- TCLRLmax - TOVCLmin = 2TCLCL - '195 
TRHOZ= TRHAVmin = 155 ns 
TAVDV= 3TCLCL- TDVCLmln- TCLAVmax= 3TCLCL-140 
TRLRL = 4TCLCL = 4TCLCL 
TAVWL= TCLCL+ TCVCTVmin- TCLAVmax=TCLCL-100 
TWHAX= TCLCL+ TCLLHmln- TCVCTXmax= TCLCL-110 
TWLWH = 2TCLCL- 40= 2TCLCL- 40 
TOVWH = 2TCLCL+ TCVCTXmin- TCLOVmax= 2TCLCL-100 
TWHOX = TWHDZmln = 89 
TWLCL= 4TCLCL= 4TCLCL 
TWHOXB=TCLCHmln+(- TCVCTXmax+ TCVCTXmln)= 

TCLCHmin - 50 

Note Delays relative to chip select are a function of the chip select 
decode technique used and are equal to· equivalent delay 
from address- chip select decode delay. 

(b) Maximum Mode 

TAVRL= TCLCL+ TCLMLmin- TCLAVmax = TCLCL-100 
TRHAX= TCLCL- TCLMHmax + TCLLHmin = TCLCL- 40 
TRLRH = 2TCLCL- TCLMLmax + TCLMHmln= 2TCLCL- 25 
TRLOV = 2TCLCL - TCLMLmax - TDVCLmln = 2TCLCL - 65 
TRHOZ= TRHAVmin = 155 
TAVOV= 3TCLCL- TOVCLmln- TCLAVmax= 3TCLCL-140 
TRLRL= 4TCLCL= 4TCLCL 
TAVWLA= TAVRL= TCLCL-100 
TAVWL= TAVRL+ TCLCL= 2TCLCL-100 
TWHAX = TRHAX = TCLCL - 40 
TWLWHA= TRLRH = 2TCLCL- 25 
TWLWH = TRLRH - TCLCL= TCLCL- 25 
TOVWH =2TCLCL+ TCLMHmln - TCLDVmax= 2TCLCL-100 
TWHOX = TCLCHmln - TCLMHmax + TCHOZmln = TCLCHmln - 30 
TWLCL= 3TCLCL= 3T~LCL 
TWLCLA = 4TCLCL= 4TCLCL 

TABLE 403. COMPATIBLE PERIPHERALS (5 MHz 8086) 

Configuration 

Minimum Mode Maximum Mode 

Unbuffered Buffered Buffered Fully Buffered 

8251A v 1W v v 
8253·5 v 1W v v 
8255A·5 v 1W "" "" 8257·5 v 1W "" v 
8259A v v v "" 8271 v 1W v v 
8273 v 1W v v 
8275 v 1W v v 
8279·5 v 1W "" v 
8041A" v 1W v v 
8741A ".. 1W v ".. 

8291 v v "" ".. 

"Includes other Intel peripherals based on the 8041A (I.e., 8292, 8294, 
8295) 

",.. Implies full operation with no walt states 

W implies the number of walt states reqUired 

230792-001 



TABLE 404. PERIPHERAL REQUIREMENTS FOR.FULL SPEED" 
OPERATION WITH 5 MHz 8086 

Configuration 

Minimum Mode Maximum Mode 

Unbuffered Buffered Buffe.',td Fully Buffered 

TAVRL 70 72 70 58 
TRHAX 57 27 169 141 
TRLRH 340 320 375 347 
TRLDV 205 150 305 261 
lRHDZ 155 158 382 360 
TAVDV 430 400 400 372 
TRLRL 800 770 800 772 
TAVWL 70 72 270 258 
TAVWLA - - 70 58 
TWHAX 97 67 169 141 
TWLWH 360 340 175 147 
TWLWHA - - 375 347 
TDVWH 300 339 ·270 258 
TWHDX 88 15 95 13 
TWLCL 800 772 600 572 
TWLCLA - - 800 772 
TSVRL 52 54 52 40 
TRHSX 50 50 171 143 
TSLDV 412 382 382 354 
TSVWL 52 54 252 240 
TWHSX 90 90 171 143 
TSVWLA - - 52 40 

- Not applicable. 

8. MINIMUM MODE 

AP-67 

Peripheral compatibility is determined from the equa­
tions given for the CPU by modifying them to account 
for additional delays from address latches and data 
transceivers in the configuration. Once the system con­
figuration is selected, the system requirements can be 
determined at the peripheral interface and used to 
evaluate compatibility of the peripheral to the system. 
During this process, two areas must be considered. 
First, cah the device operate at maximum bus band­
width and if not, how many wait states are required. Sec­
ond, are there any problems that cannot be resolved by 
wait states. 

Examples of the first are TRLRH (read pulse width) and 
TRLDV (read access or RD active to output data valid). 
Consider address access time (valid address to valid 
data) for the maximum mode fully buffered configura­
tion. 

TAVDV = 3TCYC - 140 ns - address latch delay 
address buffer delay - chip seleot decode delay - 2 
transceiver delays 

Assuming inverting latches, buffers and trans­
ceivers with 22 ns max delays (8283, 8287) and a 
bipolar PROM decode with 50 ns delay, the result 
is: 

TAVDV=322 ns @ 5 MHz 

b MINIMUM MODE BUFFERED DATA AND COMMAND BUSSES 

Figure 401. 8086 System Configurations 

3-332 230792-001 



AP-67 

c MAXIMUM MODE BUFFERED DATA BUS 

elK 

8284 

NOTE FOR OPTIMUM PERFORMANCE WITH INTEL PERIPHERALS, AiOW (ADVANCED 
WRITE) SHOULD BE USED 

d MAXIMUM MODE DOUBLE BUFFERED SYSTEM 

8284 

Figure 401. 8086 System Configurations (Con't) 

The result gives the address to data valid delay required 
at the peripheral (in this configuration) to satisfy zero 
wait state CPU access time. If the maximum delay 
specified for the peripheral is less than the result, this 
parameter is compatible with zero wait state CPU opera· 
tion. If not, wait states must be inserted until TAVDV + n 
* TCYC (n is the number of wait states) is greater than 
the peripherals maximum delay. If several parameters 
require wait states, either the largest number required 
should always be used or different transfer cycles can 
insert the maximum number required for that cycle. 

The second area of concern includes TAVRL (address 
set up to read) and TWHDX (data hold after write). 
Incompatibilities in this area cannot be resolved by the 
insertion of wait states and may require either addi· 

3-333 

tional hardware, slowing down the CPU (if the parameter 
is related to the clock) or not using the device. 

As an example consider address valid prior to advanced 
write low (TAVWLA) for the maximum mode fully buf· 
fered system. 

TAVWLA = TCYC - 100 ns - address latch delay -
address buffer delay - chip select decode delay + 
write buffer delay (minimum) 

Assuming inverting latches and buffers with 22 ns 
delay (8283, 8287) and an 8205 address decoder with 
18 ns delay 

TAVWLA=38 ns which is the time a 5 MHz 8086 
system provides 

230792-001 



AP-67 

4E. 1/0 Examples 

1. Consider an Interrupt driven procedure for handling 
multiple communication lines. On receiving an interrupt 
from one of the lines, the Invoked procedure polls the 
lines (reading the status of each) to determine which 
line to service. The procedure does not enable lines but' 
simply services input and output requests until the 
associated output buffer is empty (for output requests) 
or until an Input line is terminated (for the example only' 
EOT Is considered). On detection of the terminate condl· 
tlon, the routine will disable the line. It is 'assumed that 
other routines will fill a lines output buffer and enable 
the device to request output or empty the input buffer 
and enable the device to Input additional characters. 

The routine begins operation by loadfng CX with a count 
of the number of lines In the system and OX with the I/O 
address of the first line. The 1/0 addresses are assigned 
as shown In Figure 4E1 with 8251A's as the 1/0 devices. 
The status of each line Is read to determine if it needs 
service. If yes, the appropriate routine Is called to input 
or output a character. After servicing the line or if no 
service Is needed, CX Is decremented and OX is in­
cremented to test the next line. After all lines have been 
tested and serviced, the routine terminates. If all inter­
rupts from the lines are OR'd together, only one inter­
rupt is used for all lines. If tM Interrupt Is input to the 
CPU through an 8259A interrupt controller, the 8259A 
should be programmed in the level triggered mode to 
guarantee all line Interrupts are serviced. 

To service either an Input or output request, the called 
routine transfers OX to ax, and shifts ax to form the off­
set for this device into the table of input or output buf­
fers. The first entry in the buffer is an index to the next 
character position in the buffer and Is loaded into the 81 
register. By specifying the base address of the table of 

015-8 \r-------------, 

D,,,, ,, __ ":;><:--____ ---:::""'"" __ -, 

DEVICES ARE CONNECTED TO THE UPPER AND 
LOWER HALVES OF THE DATA BUS, 

ADDRESS 

o 
1 
2 
3 
4 
5 
8 
7 

ETC. 

DEVICE 0 
DEVICE 1 
DEVICE 0 
DEVICE 1 
DEVICE 2 
DEVICE 3 
DEVICE 2 
DEVICE 3 

DATA 
DATA 
CONTROUSTATUS 
CONTROUSTATUS 
DATA 
DATA 
CONTROUSTATUS 
CONTROUSTATUS 

buffers as a displacement Into the data segment, the 
base + index + displacement addressing mode allows 
direct access to the appropriate memory location. 8086 
code for part of this example Is shown in Figure 4E2. 

2. As a second example, consider using memory 
mapped I/O and the 8086 string prlmative instructions to 
perform block transfers between memory and I/O. By 
assigning a block of the memory' address space 
(equivalent in size to the maximum block to be trans­
ferred to the I/O device) and decoding this address 
space to generate the 1/0 device's chip select, the block 
transfer capability Is easily implemented. Figure 4E3 
gives an interconnect for 16-bit I/O devices while Figure 
4E4 Incorporates the 16-blt bus to 8-blt bus multiplexing 
scheme to support 8-bit 1/0 devices. A code example to 
perform such a''transfer Is shown In Figure 4E5. 

; THts CODE DEMONSTRATES TESTING DEVICE 
; STATUS FOR SERVICE, CONSTRUCTING THE 
; APPROPRIATE UNE BUFFER ADDRESS FOR INPUT 
• AND OUTPUT AND SERVICING AN INPUT 
; REQUEST 

MASK EOU OFFFDH 
CHECK_STATUS: INPUT AL, OX 

MOV AH.AL 
; GET 8261A STATUS. 

TEST 
JZ 
CALL 
TEST 
JZ 
CALL 
TEST 
JZ 

AH. READ_OfLWRITLSTATUS 
NEXT-'O 
ADDRESS 
AH. READ STATUS 
WRITILSEHVICE 
READ 
AH, WRITE STATUS 
NEXLJO 

WHlrLSERVICE. CALL 
NEXT_IO. DEC 

JNC 
AND 
ADD 
OR 
JMP 

WRITE 
CX 
EXIT 
DX.MASK 
DX. 3 
DX._ 
CHECLSTATUS 

; TEST IF DONE. 
; YES. RESTORE. RETURN. 
; REMOVE A1 AND 
i INCREMENT ADDRESS. 
; SELECT STATUS FOR 
; NEXT INPUT. 

ADDRESS' AND DX.MASJ< 
BH,DL 

; SELECT DATA. 

READ' 

MOV 
INC 
SHR 
XOR 
RET 

BH 
BH 
BL, BL 

INPUT AL. DX 

; CONSTRUCT BUFFER 
; DISPLACEMENT FOR 
; THJS DEVICE. 
; ax IS THE DISPLACEMENT. 

; READ CHARACTER. 
MOV 81, READJUFFERS [BlCI 
MOV READ_BUFFERS [IX + sq, AL 
INC READJUFFERS [BlCI 
CMPAL,EOT 

; GET CHARACTER POINTER. 
; STORE CHARACTER. 
; INCR CHARACTER POJNTER. 
i END OF TRANSMISSION? 

JNZ CONT_READ 
CALL DISABLE READ 
CONT_READ: RET 

; YES. DISABLE RECEIVER. 
; SEND MESSAGE THAT INPUT 
; IS READY. 

Figure 4E2. 

BIPOLAR 
PROM 

1/0 CHIP SELECT 

lS· 
BIT 
1/0 

TRANSFER 256 BYTE BLOCKS TO THE 1/0 DEVICE 

THE ADDRESS SPACE ASSIGNED TO THE 1/0 DEVICE IS 

A,. 
FROM t.- BASE 
THRU i+-BASE =*=8 A7 ~ 

ADDRESS 0', 
ADDRESS 1', 

MEMORY DATA NEED NOT BE ALIGNED TO EVEN ADDRESS BOUNDARIES 
1/0 TRANSFERS MUST BE WORD TRANSFERS TO EVEN ADDRESS BOUNDARIES 

Figure 4El. Dev[ce Assignment Figure 4E3. Block Transf.r 10 16·BIII/O Using 8086 Siring Primallves 

3-334 230792-001 



AP-67 

A198'-___ ----, 

0158 \,-,--__ ,/ 

3605 
A·1 

CHIP SELECT 

CS 

8·BIT 
DATA 1/0 

DEVICE 

_+----'1 ) 
ADDRESS ASSIGNMENT SAME AS PREVIOUS EXAMPLE. 16·BIT BUS IS 
MULTIPLEXED ONTO AN 8·BIT PERIPHERAL BUS. 

Figure 4E4. Block Transfer 10 8·Bit I/O Using 8086 Siring Primalives 

; DEFINE THE 1/0 ADDRESS SPACE 
1/0 SEGMENT 
ORG BLOCK_ADDRESS 

I/O_BLOCK, OW 128 DUP (?) 
1/0 ENDS 

; ASSUME THE DATA IS FROM THE CURRENT 
; DATA SEGMENT 

CLD ; OF = FORWARD 
LES 01, I/O_BLOCKJDDRESS ; 1/0 BLOCK ADDRESS 

MOV CX, BLOCLLENGTH 
MOV SI, SOURCEJDDRESS 

; CONTAINS THE ADDRESS 
; OF 110 BLOCK 

number the device can accept, leaving the remaining ad­
dress lines for chip enable/select decoding. To connect 
the devices directly to the multiplexed bus, they must 
have output enables. The output enable is also 
necessary to avoid bus contention in other configura­
tions. Figure 5A1 shows the bus connections for ROM 
and EPROM memories. No special decode techniques 
are required for generating chip enables/selects. Each 
valid decode selects one device on the upper and lower 
halves of bus to allow byte and word access. Byte ac­
cess is achieved by reading the full word onto the bus 
with the 8086 only accepting the desired byte. For the 
minimum mode 8086, if RD, WR and M/iO are not decod­
ed to form separate commands for memory and I/O, and 
the I/O space overlaps the memory space assigned to 
the EPROM/ROM then M/iO (high active) must be a con­
dition of chip enable/select decode. The output enable 
is controlled by the system memory read signal. 

HIGH BAN~E(~-----------, 

ADDRESS _____ -, 

CONTROL 

DATA 

MOVS 110 BLOCK ; PERFORM WORD TRANSFERS 

; END CODE EXAMPLE 

NOTE THE CODE IS CAPABLE OF PERFORMING BYTE TRANSFERS BY 
CHANGING THE 110 BLOCK DEFINITION FROM 128 WORD TO 256 BYTES 

Figure 4ES. Code for Block Transfers 

5. INTERFACING WITH MEMORIES 

Figure 5.1 is a general block diagram of an 8086 
memory. The basic characteristics of the diagram are 
the partitioning of the 16-bit word memory into high and 
low 8-bit banks on the upper and lower halves of the 
data bus and inclusion of BHE and AD in the selection of 
the banks. Specific implementations depend on the type 
of memory and the system configuratiorf. 

SA. ROM and EPROM 

The easiest devices to interface to the system are ROM 
and EPROM. Their byte format provides a simple bus in­
terface and since they are read only devices, AO and 
BHE need not be included in their chip enable/select 
decoding (chip enable is similar to chip select but addi­
tionally determines if the device is in active or standby 
power mode). The address lines connected to the 
devices start with A1 and continue up to the maximum 

3-335 

SEL:;~~~~ _________ ~ 

Figure 5.1. 8086 Memory Array 

CHIP SELECT ----.,....----ct CE 

0815 \r---,----.-i 

A112 ____ " 

iiO----H 

00-1 r-__ -r ___ -l 00.7 

'----OICE 

NOTe Ao AND SHE ARE NOT USED. 

Figure SAl. EPROMIROM Bus Inlerface 

230792-001 



AP-67 

Static ROM's and EPROM's have only four parameters 
to evaluate when determining their compatibility to the 
system. The parameters, equations and evaluation tech­
'niques given in the I/O section are also applicable to 
these devices. The relationship of parameters is given in 
Table 5A1. TACC and TCE are related to the same equa­
tion and differ only by the delay associated with the chip 

, enable/select decoder. As an example, consider a 2716 
EPROM memory residing on the multiplexed bus of a 
minimum mode configuration: 

TACC = 3TCLCL-140- address bufferdelay= 430 ns 
(8282 = 30 ns max delay) 

TCE = TACC - decoder delay = 412 ns 
(8205 decoder delay= 18 ns) 

TOE = 2TCLCL - 195 = 205 ns 

TDF= =155ns 

TABLE SAl. EPROM/ROM PARAMETERS 

TOE - Output Enable to Valid Data'" TRLDV 
TACC - Address to Valid Data'" TAVDV 
TCE - Chip Enable to Valid Data'" TSLDV 
TDF - Output Enable High to Output Float'" TRHDZ 

The results are the times the system configuration re­
quires of the component for full speed compatibility 
with the system. Comparing these times with 2716 
parameter limits indicates the 2716-2 will work with no 
wait states while the 2716 will require one walt state. 
Table 5A2 demonstrates EPROM/ROM compatibility for 
the configurations presented in the I/O section. Before 
designing a ROM or EPROM memory system, refer to 
AP-30 for additional information on design techniques 
that give the system an upgrade path from 16K'to 32K 
and 64K devices. 

TABLE 5A2. COMPA~IBLE EPROM/ROM (5 MHz 8086) 

Configuration 

Minimum Mode Maximum Mode 

Unbuffered Buffered Buffered Fully Buffered 

2716·1 .. .. .. .. 
2716·2 .. 1W 1W 1W 
2732 1W 1W 1W 1W 
2332 .. .. .. .. 
2364 .. .. .. .. 
58. Static RAM 

Interfacing static RAM to the system introduces several 
new requirements to the memory design. AO and BHE 
must be included in the chip select/chip enable 
decoding of the devices and write timing must be con­
sidered In the compatibility analysis. 

For each device, the data bus connections must be 
restricted to either the upper or lower half of the data 
bus. Devices like the 2114 or 2142 must not straddle the' 
upper and lower halves of the data bus (Fig. 5B1). To 
allow selecting 'either the upper byte, lower byte or full 
16-bit word for a write operation, BHE must be a condi­
tion of decode for selecting the upper byte and AO must 
be a condition of decode for selecting the lower byte. 
Figure 5B2 gives several selection techniques for 

devices with single chip selects and no output enables 
(2114, 2141, 2147). Figure 5B3 gives selection tech­
niques for devices with chip selects and output enables. 

cs 
cs 

ADDRESS 

WR--~ 

0, 

0, 

00 
0, 

Figure SB1. Incorrect Connection of 2142 Acros. Byte Boundarle. 

The first group requires inclusion of AO and BHE: to 
decode or enable the chip selects. Since these 
memories do not have output enables, read and write 
are used as enabies for chip select generation to pre­
vent bus contention. If read and write are not used to 
enable the chip selects, devices with common input/out· 
put pins (like the 2114) will be subjected to severe bus 
contention between chip select and write active. For 
devices with separate input/output lines (like 2141, 
2147), the outputs can be externally buffered with the 
buffer enable controlled by read. This solution will only 
allow bus contention between memory devices In the ar­
ray during chip select transition periods. These tech­
niques are considered in more detail in Section 2C. 

For devices with output enables (2142), write may be 
gated with BHE and AO to provide upper and lower bank 
write strobes. This simplifies chip select decoding by 
eliminating BHE and AO as a condition of decode. 
Although both devices are selected during a byte write 
operation, only ~>ne will receive a write strobe. No bus 
contention will exist during the write since a read com­
mand must be issued to enable the memory output 
drivers. . 

If multiple chip selects are available at the device, SHE 
and AO may directly control device selection. This 
allows normal chip select decoding of the address 
space and direct connection of the read and write com· 
mands to the devices. Alternately, the multiple chip 
select Inputs of the device could directly decode the ad· 
dress space (linear select) and be combined with the 
separate write strobe technique to minimize the control 
circuitry needed to generate chip selects. 

As with the EPROM's and ROM's, if separate commands 
are not provided for memory and I/O in the minimum 
mod.e 8086 and the address spaces overlap, M/iO (high 
active) must be a condition of chip select decode. Also, 
the address lines connected to the memory devices 
must start with A 1 rather than AO. 

3-336 230792-001 



ADDRESS '--____ , 

Ao-----"1 

BHE ----H---<l\ 00 

M/iO OR 8205 : 
ADDITIONAL ----...,f----<l\E, 0, 

ADDRESS 

18) 

ADDR '---,.--r-,/ 

LOW BANK' 
CHIP SELeCTS 

HIGH BANK 
CHIP SELECTS 

LOW BANK 
CHIP SELECT 

Ap ... 67 

A1Q-1 _______ ---, 

RD-----------~ 

"o--<f"" ....... 
WR~r-..... .-

2142's 

1:>-..... -----qCSbS2 

(a) HIGH AND LOW BANK WRITE STROBES 

2142's 

HIGH BANK A10.1-----------·\ 
CHIP SELECT 

Ao--------------
BHE---------(~b)~--" 

SHE----...... ~ 

Ao-----l~ 

iiii 
WR 
MliO-----..., 

Ie) 

AODR 

Ao 

iiii 
WR 

MliO ------t-+----t 
SHE ----r----qCSI 

t-----<l\CS2 

Id) 

CHIP SELECTS 
IHIGH AND LOW FOR 
FOUR GROUPS) 

+5 

LOW BANK 
CHIP SELECTS 

HIGH BANK 
CHIP SELECTS 

iiii----~--__, 

WR-------,-, 
AO-------~ 

iiilE------t------<lj CSbS2 

CS---------~----------~ 

Ib) "0 AND iiHE AS DIRECT CHIP SELECT INPUTS 

A10.1 _______ -, 

iiii--------j 

"0--"--" 
WR--1,_-' 
BHE--·· ..... _ 

2142's 

A,,------..... -t---~CSbs2 

A,.---------4-------' 
(c) LINEAR CHIP SELECT USED WITH HIGH 

AND LOW BANK WRITE STROBES 

0",. 

Figure 5B2, Generating Chlp Selects lor Devices without Output' Figure 5B3, Chip Selection lor Oavlcas with Output Enables 
Enable. 

3-337 230792-001 



AP-67 

For analysis of RAM compatibility, the write timing 
parameters listed in Table 5B1 may also need to be con· 
sldered (dependlng-,on the RAM device being consld· 
ered). The CPU clock relative timing is given in Table 
582. The equations specify the device requirements at 
the CPU and provide a base for determining device reo 
qulrements in other configurations. As an example con· 
sider the write timing requirements of a 2142 in a max· 

, Imum mode buffered 8086 system (Figure 5B4). The 
2142 write parameters that must be analyzed are TWA 
advanced write pulse width, TWR write release time, 
TDWA data to write time overlap and TDH data hold 
from write time. 

TWA=2TCLCL- TCLMLmalC+ TCLMHmln=375 ns. 
TWR = 2TCLCL- TCLMHmax + TCLLHmln + TSHOVmln = 170 ns. 
TDWA= 2TCLCL- TCLDVmax + TCLMHmln - TIVOVmax = 265 ns. 
TDH = TCLCH - TCLMHmax + TCHDXmln + TIVOVmln = 95 ns. 

TABLE 5Bl. TYPICAL WRITE TIMING PARAMETERS 

TW - Write Pulse Width 
TWR - Write Release (Address Hold From End of Write) 
TOW - Data and Wilte Pulse Overlap 
TDH - Data Hold From End of Wrote 
TAW - Address Valid to End of Write 
TCW - Chip Select to End of Write 
TASW - Address Valid to Beginning of Write 

TABLE 5B2. CYCLE DEPENDENT WRITE PARAMETERS 
FOR RAM MEMORIES 

(a> Minimum Mode 

TW=TWLWH=2TCLCL-60=340 ns 
TWR = TCLCL- TCVCTXmax + TCLLHmln = 90 ns 
TOW = 2TCLCL - TCLDVmax + TCVCTXmin = 300 ns 
TDH=TWHDX=88 ns 
TAW=3TCLCL- TCLAVmax+ TCVCTXmin .. SOO ns 
TCW = TAW - Chip Select Decode 
TASW = TCLCL- TCLAVmax+ TCVCTXmln = 100 ns 

(b) Maximum Mode 

TW = TCLCL- TCLMLmax + TCLMHmin= 175 ns 
TWR = TCLCL - TCLMHmax + TCLLHmin = 165 ns 
TDW=TW= 175 ns 
TDH=TCLCHm,n- TCLMHmax+ TCHDXmin=93 ns 
TAW=3TCLCL- TCLAVmax+ TCLMHmln=SOO ns 
TCW=TAW-Chip Select Decode 
TASW=2TCLCL-TCLAVmax+ TCLMLmln=3OO ns 
TWA'=TW+ TCLCL=375 ns 
TDWA'=2TCLCL- TCLDVmax+ TCLMHmln=300 ns 
TASWA' = TASW- TCLCL= 100 ns 

• Relative to Advanced Write, 

Comparing these results with the 2142 family Indicates 
the standard 2142 write timing is fully compatible with 
this 8086 configuration. Read timing analysis is also 
necessary to completely determine compatibility of the 
devices. 

sc. Dynamic RAM 

Dynamic RAM Is perhaps the most complex device to 
design Into a system. To relieve the engineer of most of 
this burden, Intel provides the 8202 dynamic RAM con· 
troller as part of the 8086 family of peripheral devices. 
This section will discuss using the 8202 with the 8086 to 
build a dynamic memory system for an 8086 system. For 

additional Information on the 8202, refer to the 8202 
data sheet (9800873) and application note Ap·45 lJsing 
the 8202 Dynamic RAM Controller (9800809A). 

Figure 5B4. Sample Configuration lor Compatibility Analysis Example 

S.C.1 Standard 8086·8202 Interconnect 

Figure 5.C.1.1 shows a standard Interconnection for an 
8202 into an 8086 system. The configuration accom· 
modates 64K words (128K bytes) of dynamic RAM ad· 
dressabje as words or bytes. To access the RAM, the 
8086 Initiates a bus cycle with an address that selects 
the 8202 (via PCS) and the appropriate transfer com· 
mand (MRDC or MWTC). If the 8202 is not performing a 
refresh cycle, the access starts Immediately, otherwise, 
the 8086 must wait for completion of the refresh. XACK 
from the 8202 Is conn'ected to the 8284 ROY input to 
force the CPU to walt until the RAM cycle Is completed 
before the CPU can terminate the bus cycle. This effec· 
tlvely synchronizes the asynchronous events of refresh 
and CPU bus cycles: The normal write command 
(MWTC) is used rather than the advanced command 
(AMWC) to guarantee the data Is valid at the dynamic 
RAMS before the write command is issued. The gating 
of WE" with AO and BFiE provides selective write strobes 
to the upper and lower banks of memory to allow byte 
and word write operations. The logic which generates 
the strobe for the data latches allows read data to prop· 
agate to the system as soon as the data Is available and 
latches the data on the trailing edge of CAS. 

DETAILED TIMING 

Read Cycle 

For no walt state operation, the 8086 requires data to be 
valid from MRDC in: 

2TCLCL- TCLML- TDVCL- buffer delays = 291 ns. 

Since the 8202 Is CAS access limited, we need only ex· 
amine CAs access time. The 8202/2118 guarantees data 
valid from 8202 RD low to be: 

(tph + 3tp +'100 ns) 8202 TCC delay + TCAC for the 2118 J 

3-338 230792-001 



AP-67 

HIGH BYTE 
WRITE 8287 uycBHE XCEIVER 

I .. 
I 

2118 

Figure SCI.I. S MHz 808618202/128K Byte System - Double Data, Control and Address Buffering (Note: Bus driver on 8202 Is not needed if less 
than 64K byles are used) 

For a 25 MHz 8202 and 2118-3, we get 297 ns which is in­
sufficient for no walt state operation. If only 64K bytes 
are accessed, the 8202 requires only (tph + 3tp + 85 ns) 
giving 282 ns access and no walt states required. Refer 
to Figure 5.C.l.2 and 5C.l.3 for timing information on 
the 8202 and 2118. 

Write Cycle 

An important consideration for dynamic RAM write 
cycles is to guarantee data to the RAM is valid when 
both CAS and WE are active. For the 2118, if WE is valid 
prior to CAS, the data setup Is to CAS and if CAS is valid 
before WE (as would occur during a read modify write 
cycle) the data setup time is to WE. For the 8202, the WR 
to CAS delay Is analyzed to determine the data setup 
time to CAS inherently provided by the 8202 command 
to RAS/CAS timing. The minimum delay from WR to 
CAS is: 

TCCmin = tph + 2tp + 25 = 127 ns @ 25 MHz 

Subtracting buffer delays and data setup at the 2118, 
we have 83 ns to generate valid data after the write 
command is issued by th$ CPU (in this case the 8288). 
Since the 8086 will not guarantee valid data until 
TCLAVmax-TCLMLmin=100 ns from the advanced 

3-339 

write signal, the normal write signal is used. The normal 
write MWTC guarantees data is valid 100 ns before it is 
active. The worst case write pulse width is approximate­
ly 175 ns which is sufficient for all 2118's. 

Synchronization 

To force the 8086 to wait during refresh the XACK or 
SACK lines must be returned to the 8284 ready input. 
The maximum delay from RO to SACK (if the 8202 is not 
performing refresh) is TAC = tp + 40 = 80 ns. To prevent 
a walt state at the 8086, ROY must be valid at the 8284 
TCLCHmin - TCLMLmax - TR1VCLmax = 48 ns after 
the command is active. This implies that under worst 
case conditions, one wait state will be inserted for every 
read cycle. Since MWTC does not occur until one clock 
later, -two wait states may be inserted for writes. 

The XACK from command delay will assert ROY TCC + 
TCX = (tph + 3tp + 100)+ (5tp + 20) = 460 ns after the 
command. This will tYPically insert one or two wait 
states. 

Unless 2118-3's are used in 64K byte or less memories, 
SACK must not be used since it does not guarantee a 
wait state. From the previous access time analysis we 
saw that other configurations required a wait state. 

230792-001 



IpH 

XlCLK 

- lac ~,P----. -----, 
RDORW R \ 

~leA I IeHs-;----
Iec 

S , 11---1Aeo
-

- .... ~ I-' .. A , 

'(rELAY I 
" ONLYj 

I 
AO·A 

-, lRAH t.-
- 1-\ 

X • ROW ADDR 

- f-J 
-I lAse l-

S 

!-leA--! ________ 

-
K 

>CAe K 

WE \WE-V 
FOR A RD eye 

OH 
LE) 

\ 

-

-I IwC,.s I-

AP-67 

r----------------------

lAP 

t 
IRO_ 

IRSH 

COL ADDR 

leAH 

, .1 

ICAS - IeKj-
- ,"eH ------------, r , \ I 

tACK- I-

£ 
lex Ixw-J 

Iww r----------
f . 'j 

ICWH 

Figure SC1.2. 8202 Timing Information 

3-340 

L __ 

1'--

I-

230792-001 



AP-67 

A.C. CHARACTERISTICS 
TA= o·c to 70·C, VCC= 5V ± 10% 

Measurements made with respect to RAS,- RAS4, CAS, 
WE, OUTo- OUT6 are at 2.4V and 0.8V. All other pins are 
measured at 1.5V. 

Loading: 

64 Devices 

Symbol 

tp 

tAC 

tAAH 

tASA 

tCAH 

tASC 

tACO 

twcs 

tASH 

tCAS 

tRP 

tWCH 

tREF 

tCR 

tcc 

tRFR 

tAS 

tCA 

tCK 

tKCH 

tsc 

tcx 

tACK 

txw 

tLL 

tCHS 

tww 

tAL 

tLA 

tpL 

tpH 

. tpH 

Noles: 

CL= 30 pF 
CL= 320 pF 
CL=230pF 
CL=450 pF 
CL=640 pF 

Parameter 

Clock (Internal/External) Period (See Note 1) 

Memory Cycle Time 

Row Address Hold Time 

Row Address Setup Time 

Column Address Hold Time 

Column Address Setup Time 

RAS to CAS Delay Time 

WE Setup to CAS 

RAS Hold Time 

CAS Pulse Width 

RAS Precharge Time (See Note 2) 

WE Hold Time to CAS 

Internally G~nerated Refresh to Refresh Time 
64 Cycle 
128 Cycle 

RD, WR to RAS Delay 

RD, WR to CAS Delay 

REFRQ to RAS Delay 

Ao-A,s to RD, WR Setup Time (See Note 4) 

RD, WR to SACK leading Edge 

RD, WR to XACK, SACK Trailing Edge Delay 

RD, WR Inactive Hold to SACK Trailing Edge 

RD, WR, PCS to X/ClK Setup Time (See Note 3) 

CAS to XACK Time 

XACK leading Edge to CAS Trailing Edge Time 

XACK Pulse Width 

REFRQ Pulse Width 

RD, WR, PCS Active Hold to RAS 

WR to WE Propagation Delay 

S, to ALE Setup Time 

S, to ALE Hold Time 

External Clock low Time 

External Clock High Time 

External Clock High Time for VCC= 5V ± 5% 

1. tp minimum determines maximum oscillator frequency. 

Min Max Units 

40 54 ns 

10 tp- 30 12 tp ns 

tp-10 ns 

tpH ns 

5 tp ns 

tp-35 ns 

2 tp- 10 2 tp+45 ns 

tp-40 ns 

5 tp-30 ns 

5 tp-30 ns 

4 tp-30 ns 

5 tp-35 ns 

548 tp 576 tp ns 
264 tp 288 tp ns 

tpH+ 30 tpH + tp+ 75 ns 

tpH+2tp+25 tpH + 3 tp+ 100 ns 

1.5 tp+ 30 2.5 tp+ 100 ns 

0 ns 

tp+ 40 ns 

30 ns 

10 ns 

15 ns 

5 tp- 40 5 tp+ 20 ns 

10 ns 

2 tp-25 ns 

20 ns 

0 ns 

8 50 ns 

40 ns 

2 tp+40 ns 
. 15 ns 

22 ns 

18 ns 

tp maximum determines mtnlmum frequenqyJg mamtain 2 ms refresh rate and tRP minimum. 
2. To achieve the minimum time between the RA-S- of a memory cycle and the ~ of a refresh cycle, such as a transparent refresh, REFRQ should be 

pulsed in the previous memory cycle. , 
3. tsc is not required for proper operation which is in agreement with the other specs, but can be used to synchronize external signals with XlCLK if it is 

desired. ' 
4. If tAS is less than 0 then the only impact is that tASR decreases by a corresponding amount. 

Figure SC1.2. 8202 Timing Information (Con't) 

3-341 230792-001 



AP-67 

READ CYCLE 

v" 
iiii 

VIL 

". J 

"AS r---"'---! 
GY 
~ V 

v,. 
CAS 

VIL 

@ IcRP-j ..... r-... ·i 
' .. 0 .... 

I CD \\\\ leAs 

® 

v,. 
ADDRESSES 

VIL 

1"" 
IA. 

r-fAAH-! --I"'. - -, ... --:--
~ ROW I K. ~ COLUMN K ADDRESS ADDRESS 

V,. 
·1 ... · -- tRCH- 1- 0 

W. 
VIL ®~ \ 

IeAC 

'RA. ~toFF 
VOH 

DoUT 
VOL 

HIGH IMPEDANCE@)}----V-.-Ll-D----i® 

--------~~~~~--------------------®~.~ ___ D_M_._O_U_T ____ ~ 

WRITE CYCLE 

V,. 

m 
VIL 

'" 1---, .. --1 '.AS 
<D ® l/ 

V,. 

@ tcRP1 Ie •• i '·'"i ' .. 0 'RS. 
eAS 

VIL 

V,. 

ADDRESSES 

VIL 

V,. 

W. 
VIL 

V,. 

DIN 

VIL 

VOH 

DoUT 
VOL 

I <D \\\' 'CAS 
® 

1 IA .. -IRAH-i -I .... 
IA. -- _tCAH_ 

~<D ROW X ){ COLUMN K . ® ADDRESS ADDRESS 

'RWL 

IeWL 
_twcs-, ___ twe"=--:! / 

®\ OW. I-

OW" f---<!) ID8- _tOH~ 

X<D ® 

IDHR 

HIGH IMPEDANCE 

NOTES 1,2 VIH MIN AND VIL MAX ARE REFERENCE LEVELS FOR MEASURING TIMING OF 
INPUT SIGNALS 

3,4 YOH MIN AND VOL MAX ARE REFERENCE LEVELS FDA MEASURING TIMING 
OFDoUT 

5. toFF IS MEASURED TO lOUT < IIOLI _ _ 
I. los AND tOH ARE REFERENCED TO CAS OR WE, WHICHEVER OCCURS LAST 
t tRCH IS REFERENCED TO THE TRAILING EDGE OF rn OR An, WHICHEVER 

OCCURS FIRST 
8 IeRP REQUIREMENT IS ONLY APPLICABLE FOR RAi5tCAS CYCLES' 

~:c:~:: ::c~g: ~~':-J =E (I e., FOR SYSTEMS WHERE ru HAS 

Figure 5C1.3. 2118 Family Timing 

3-342 

II 

K 

230792-o01~ 



AP-67 

A.C. CHARACTERISTICSI1,2,31 
TA=O°C to 70°C, VOO= 5V", 10%, VSS= OV, unless otherwise noted. 

READ, WRITE, READ·MODIFY·WRITE AND REFRESH CYCLES 

2118·3 2118-4 2118·7 

Symbol Parameter Min. Max. Min. Max. Min. Max. Unll Noles 

tRAC Access Time From RAS 100 120 150 ns 4,5 

tCAC Access Time from CAS 55 65 80 ns 4,5,6 

tREF Time Between Refresh 2 2 2 ms 

tRP RAS Precharge Time 110 120 135 ns 

tCPN CAS Precharge Time (non·page cycles) 50 55 70 ns 

tCRP CAS to RAS Precharge Time 0 0 0 ns 

tRco RAS to CAS Delay Time 25 45 25 55 25 70 ns 7 

IRSH RAS Hold Time 70 85 105 ns 

IcSH CAS Hold Time 100 120 165 ns 

tASR Row Address Set·Up Time 0 0 0 ns 

tRAH Row Address Hold Time 15 15 15 ns 

tAse Column Address Set·Up Time 0 0 0 ns 

tCAH Column Address Hold Time 15 15 20 ns 

tAR Column Address Hold Time to RAS 60 70 90 ns 

IT TranSition Time (Rise and Fall) 3 50 3 50 3 50 ns 8 

tOFF Output Buffer Turn Off Delay 0 45 0 50 0 60 ns 

READ AND REFRESH CYCLES 

TRC Random Read Cycle Time 235 270 320 ns 

tRAS RAS Pulse Width 115 10000 140 10000 175 10000 ns 

tCAS CAS Pulse Width 55 10000 65 10000 95 10000 ns 

tRcs Read Command Set·Up Time 0 0 0 ns 

tRCH Read Command Hold Time 0 0 0 ns 

WRITE CYCLE 

tRC Random Write Cycle Time 235 270 320 ns 

tRAS RAS Pulse Width 115 10000 140 10000 175 10000 ns 

tCAS CAS Pulse Width 55 10000 65 10000 95 10000 ns 

twcs Write Command Set-Up Time 0 0 0 ns 9 

tWCH Write Command Hold Time 25 30 45 ns 

tWCR Write Command Hold Time, to RAS 70 85 115 ns 

twp Write Command Pulse Width 25 30 50 ns 

tRWL Write Command to RAS Lead Time 60 65 110 ns 

tCWL Write Command to CAS Lead Time 45 50 100 ns 

tos Data-In Set-Up Time 0 0 0 ns 

tOH Data-In Hold Time 25 30 45 ns 

tOHR Data-In Hold Time, to RAS 70 85 115 ns 

READ·MODIFY·WRITE CYCLE 

tRWC Read-Modify-Write Cycle Time 285 320 410 ns 

tRRW RMW Cycle RAS Pulse Width 165 10000 190 10000 265, 10000 ns 

ICRW RMW Cycle CAS Pulse Width 105 10000 120 10000 185 10000 ns 

tRWO RAS to WE Delay 100 120 150 ns 9 

tcwo CAS to WE Delay 55 65 80 ns 9 

NOTES \ 
All voltages referenced to V 58 I _ 

Eight cycles are required after power·up or prolonged penods (greater than 2 ms) of RAS inactivity before proper device operation IS achieved Any 8 cycles which perform 

1~e~hh:~:C~~~~~~~e :Z;~~I: rTU:~~~ 
Assume that tRCD " tACO (max) If tACO IS greater than tRCD (max) then tRAC will increase by the amount that tRCD exceeds tRCD (max) 
Load = 2 TIL loads and 100 pF 
Assumes tRCD ;;r. tRCD (max) 
tRCD (max) IS speClfle'<Las a reference POint o(lly, If tRCD IS less than tRCD (max) access time IS tRAC' If tRCD IS greater than tRCD (max) access time IS tRCD + tCAC 
IT IS measured between VIH (min) and VIL (max) 
twes, leWD and IRWD are specified as reference POints only If twcs ;;r. twes (min) the cycle IS an early write cycle and the data out pm will remain high Impedance 
throughout the entire cycle If leWD ;lI tewD (min,) and IRWD ;lI tRWD (min,), the cycle IS a read-modlfy-wrlte cycle and the data out will contam the data read from the 
selected address If neither of the above conditions IS satisfied, the condition of the data out IS indeterminate 

Figure SC1.3. 2118 Family Timing (Con'l) 

3-343 230792-001 



S.C.2 Enhanced Operation 

Two problems are evident from the previous investiga· 
tion: 

1) SACK timing from command will not allow reliable 
operation while XACK is not active early enough to pre· 
vent wait states. 

2) iJ"he normal write command required to guarantee 
data setup is not enabled until the CPU has sampled 
READY thereby forcing multiple wait states during write 
operations. 

The first problem could be resolved if an early command 
could be generated that would guarantee SACK was 

+5 

PRE 

valid when READY was sampled and SACK to data valid 
satisfied the CPU requirements. Figure 5.C.2.1 Is a cir· 
cuit which provides an early read command derived from 
the maximum mode status. The early command Is en­
abled from the trailing edge of ALE and disabled on the 
trailing edge of the normal command. The command 
provides an additional TCHCLmin - TCHLLmax + 
TCLMLmax - circuit delays = 53 ns of access time and 
time to generate ROY from the early command. If we go 
back to our previous equations, early command to valid 
data at the CPU is now: 

TCHCLmin - TCHLLmax + 2TCLCL - TDVCLmax - buf· 
fer and circuit delays = 333 ns 

80-----+,0 Q t---;;----r~ 

ALE J 

EARLY RD 

3 C~4LS74Q 6 

CLR 

s,---+--+:=t 

80---+--+"'1 
ALE-·D><>-+--+=-t 

MRDC 1 
MWTC 2 

~+----,1.,1 C~4LS74 Q 8 

CLR 

'-__ ----'13 

r----
~--------------------------~ 

Figure 5C2.1. Early Read and W~te Command Generation 

3-344 23079:1-001 



AP-67 

We can now use the slowest 2118 which gives 8202 and 
2118 access of 320 ns. Early command to RDY timing is 
TCLCL- TCHLLmax - circuit delays - TR1VCLmax = 
115 ns and provides 35 ns of margin beyond the 8202 
command to SACK delay. 

The write timing of the 8202 and write data valid timing 
of the 8086 do not allow use of an early write command. 
However, if the 8202 clock is reduced from 25 MHz to 20 
MHz and WE to the RAM's is gated with CAS, the ad­
vanced write command (AMWC) may be used. At 20 MHz 
the minimum command to CAS delay is 148 ns while the 
maximum data valid delay is 144 ns. 

The reduced 8202 clock frequency still satisfies no wait 
state read operation from early read and will insert no 
more than one wait state for write (assuming no conflict 
with refresh). 20 MHz 8202 operation will however re­
quire using the 2118-4 to satisfy read access time. 

Note that slowing the 8202 to 22.2 MHz guarantees valid 
data within 10 ns after CAS and allows using the 2118-7. 
Since this analysis is totally based on worst case 
minimum and maximum delays, the designer should 
evaluate the timing requirements of his specific im­
plementation. 

It should be noted that the 8202 SACK is equivalent to 
XACK timing if the cycle being executed was delayed by 

3-345 

refresh. Delaying SACK until XACK time causes the 
CPU to enter wait states until the cycle is completed. If 
the cycle is a read cycle, the XACK timing guarantees 
data is valid at the CPU before RDY is issued to the CPU. 

The use of the early command signals also solves a 
proble~ not mentioned previously. The cycle rate of the 
8202 @ 20 MHz requires that commands (from leading 
edge to leading edge) be separated by a minimum of 695 
ns. The maximum mode 8086 however may issue a read 
command 600 ns after the normal write command. For 
the early read command and advanced write command, 
725 ns are guaranteed between commands. 

EARLY RO--" AD 
8202 

AMWC iNA WE <---.......... ---... 
CASr--T--<.J._ 

WE TO RAMS 

"----CAS 

Figure 5C2.2. Delayed Write to Dynamic RAMs 

230792-001 



AP-67 

APPENDIX I 
,BUS CONTENTION AND ITS EFFECT ON SYSTEM INTEGRITY 

SYSTEM ARCHITECTURE 

As higher performance microprocessors have become 
available, the architecture of microprocessor systems 
has been evolving, again placing demands on memory, ' 
For many years, system designers have been plagued 
with the problem of bus contention when connecting 
multiple memories to a common data bus, There have 
been various schemes for avoiding the problem, but 
device manufacturers have been unable to design inter­
nal circuits that would guarantee that one memory 
device would be "off" the bus before another device 
was selected. With small memories (512x8 and 1 Kx8), it 
has been traditional to connect all the system address 
lines together and utilize the difference between tACC 
and tco to perform a decode to select the correct device 
(as shown in Figure 1). 

Figure 1. Single Control Line Architecture 

With the 1702A, the chip select to output delay was only 
100 ns shorter than the address access time; or to state 
it another way, the tACC time was 1000 ns while the tco 
time was 900 ns. The 1702A tACC performance of 1000 ns 
was suitable for the 4004 series microprocessors, but 
the 8080 processor required that the corresponding 
numbers be reduced to tACC= 450 ns and tco= 120 ns. 
This allowed a substantial improvement in performance 
over, the 4004 series of microprocessors, but placed a 
substantial burden on the memory. The 2708 was 
developed to be compatible with the 8080 both in ac­
cess time and power supply requirements. A portion of 
each 8080 machine cycle time had to be devoted to the 
architecture of the system decoding scheme used. This 
devoted portion of the machine cycle included the time 
required for the system controller (8224) to perform its 
function before the actual decode process could begin. 

Let's pause here and examine the actual decode 
scheme that was used so we can understand how the 
control functions that a memory device requires are 
related to system architecture. 

The 2708 can be used to illustrate the problem of having 
a single control Une. The 2708 has only one read control 

function, chip select (CS), which is very fast (tco= 120 
ns) with respect to the overall access time (tACC= 450 
ns) of the 2708. It is this time difference (330 ns) that is 
used to perform the decode function, as illustrated in 
Figure 2. The scheme works well and does not limit 
system performance, but it does lead to the possibility 
of bus contention. 

I tACC I 
ADDRESS ==:x I 

I { CS 

DATA OUT i_o;'i~I,J~~ 
Figure 2. Single Line Control Architecture 

BUS CONTENTION 

There are actually two problems with the scheme 
described in the previous section. First, if one device in 
a multiple memory system has a relatively long deselect 
time, and a relatively fast decoder is used, it would be 
possible to have another device selected at the same 

-time. If the two devices thus selected were reading op­
pOSite data; that is, device number one reading a HIGH 
and device number two reading a LOW, the output tran­
sistors of the two memory devices would effectively pro­
duce a short circuit, as Figure 3 illustrates. In this case, 
the current path is from Vcc on device number one to 
GND on device number two. This current is limited only 
by the "on" impedance of the MaS output transistors 
and can reach levels in excess of 200 mA per device, If 
the MaS transistors have a lot of "extra" margin, the 
current is usually not destructive; however, an instan­
taneous load of 400 mA can produce "glitches" on the 
Vcc supply-glitches large enough to cause standard 
TTL devices to drop bits or otherwise malfunction, thus 
causing incorrect address decode or generation. 

The second problem with a single control line scheme is 
more subtle. As previously mentioned, there is only one 
control function available on the 2'708 and any decoding 
scheme must use it out of necessity, In addition, any in­
advertent changes in the state of the high order address 
lines that are inputs to the decoder will cause a cnange 
in the device that is selected. The result is the same as 
before-bus contention, only from a different source. 
The deselected device, cannot get "off" the bus before 
the selected one is "on" the bus as the addresses rapid­
ly change state. One approach to solving this problem 
would be to deSign (and specify as a maximum) devices 

3-346 230792-001 ., 



AP-67 

with tOF time less than tco time, thereby assuring that if 
one device is selected while another is simultaneously 
being deselected, there would be some small (20 ns) 
margin. Even with this solution, the user would not be 
protected from devices which have very fast tco times 
(tco is specified as a maximum). 

2708='-----, 
Vee I 

I 

DN1 I 
I 
I 
I 

Vss I 
_______ .J 

OR 
TIE 

DATA 
BUS 

r----270S::! 
I Vee 

I 
I 
I 

I 
I 
I 
I Vss L ______ _ 

RESULTS OF IMPROPER TIMING WHEN OR TYING MULTIPLE 
MEMORIES. 

Figure 3. Results of Improper Timing when OR Tying Multiple 
Memories 

The only sure solution appears to be the use of an exter­
nal bus driver/transceiver that has an independent 
enable function. Then that function, not the "device 
selecting function," or addresses, could control the 
flow of data "on" and "off" the bus, and any contention 
problems would be confined to a particular card or area 
of a large card. In fact, many systems are implemented 
that way-the use of bus drivers is not at all uncommon 
in large systems where the drive requirements of long, 
highly capacitive interconnecting lines must be taken 
into consideration-it also may be the reason why more 
system designers were not aware of the bus contention 
problem until they took a previously large (multicard) 
system and, using an advanced micorprocessor and 
higher density memory devices, combined them all on 
one card, thereby eliminating the requirement for the 
bus drivers, but experiencing the problem of bus con­
tention as described above. 

THE MICROPROCESSOR/MEMORY INTERFACE 

From the foregoing discussion, it becomes clear that 
some new concepts, both with regard to architecture 
and performance are required. A new generation of two 
control line devices is called for with general require­
ments as listed below: 

1. Capability to control the data "on" and "off" the 
system bus, independent of the device selecting func­
tion identified above. 

2. Access time compatible with the high performance 
microprocessors that are currently available. 

Now let's examine the system architecture that is re­
quired to implement the two line control and prevent 
bus contention. This is shown in the form of a timing 
diagram (Figure 4). As before, addresses are used to 

generate the unique device selecting function, but a 
separate and independent Output Enable (OE) control is 
now used to gate data "on" and "off" the system data 
bus. With this scheme, bus contention is completely 
eliminated as the processor determines the time during 
which data must be present on the bus and then 
releases the bus by way of the Output Enable line, thus 
freeing the bus for use by other devices, either 
memories or peripheral devices. This type of architec· 
ture can be easily accomplished if the memory devices 
have two control functions, and the system is im· 
plemented according to the block diagram shown in 
Figure 5. It differs from the previous block diagram 
(shown in Figure 1) in that the control bus, which is con­
nected to all memory Output Enable pins, provides 
separate and independent control over the data bus. In 
this way, the microprocessor is always in control of the 
system; while in the previous system, the microproc· 
essor passed control to the particular memory device 
and then waited for data to become available. Another 
way to look at it is, with a single control line the sytem is 
always asynchronous with respect to microprocessor/ 
memory communications. By using two control lines, 
the memory is synchronized to the processor. 

3-347 

ADDRESS -V V----" ____ A-

SELECTION 

OUTPUT 
ENABLE 

D~G~ -------~(\-__ __'}r----

Figure 4. Two Control Line Architecture 

Figure 5. Two Control Line Architecture 

230792-001 



©INTEL CORPORATION, 1982 

APPLICATION 
NOTE 

3-348 

AP-123 

March 1982 

MARCH 1982 
ORDER NUMBER: 210355-001 



Graphic CRT Design 
Using the Intel 8089 

Contents 

INTRODUCTION 

OVERVIEW OF CRT GRAPHIC SYSTEMS ..... . 

Typical Design Technique ... -............... . 
Performance Requirements ................ . 
System Bottlenecks ........................ . 

OVERVIEW OF THE 8089 .................... . 

Architectural Overview ..................... . 
System Configurations ..................... . 
Software Interface ......................... . 
Timing Details ............................ . 

GRAPHIC CRT SYSTEM DESIGN ............. . 

System Partitioning ........................ . 
8086/8089 Software Interface ............... . 
8089 Display Hardware Interface ............ . 
8089 Display Functions Software ........... . 
System Performance ...................... . 

CONCLUSIONS ............................. . 

APPENDIX A 

APPENDIX B 

3-349 210355-001 



AP-123 

INTRODUCTION ( 

The purpose of this application note is to provide the reader 
with the conceptual tools and factual information needed to 
apply the Intel 8089 to graphic CRT de~ign. Particular 
attention will be paid to the requirements of high-resolution, 
color graphic applications, since these tend to require higher 
performance than those which do not use color. 

The Intel 8089 is a microprocessor system which contains an 
8086 CPU and an 8089 Input! Output Processor. In the 
graphic CRT application, the 8089 performs DMA transfers 
from the display memory to the CRT controller, and also 
serves as a CPU for functions such as keyboard polling and 
initialization of the CRT controller chips. The DMA 
transfers are done in such a manner that they do not tie up the 
system bus. 

The system is organized so that the 8086 and the 8089 
can perform concurrent processing on separate buses. 
Using the inherent ability of the 8089 to execute pro­
grams in its own I/O space, the 8086 can successfully 
delegate many of the chores that have specifically to do 
with the CRT display and keyboard, thus reducing the 
8086'8 processing overhead. For these reasons, the ca­
pabilities of the 8086 as a CPU can be more fully utilized 
to perform calculations dealing with the material to be 
displayed. Thus, more complex types of displays can be 
undertaken, and the terminal will also be more 
interactive. 

CAT TERMINAL 
SERIAL INPUT LINE 

CAT TERMINAL 
PARALLEL INPUT/OUTPUT 

LINES 

This application note is presented in five sections: 

1. Introduction 

2. Overview of Graphic CRT Systems 

3. Overview of the 8089 

4. Graphic CRT System Design 

5. Conclusions 

Section 2 discusses typical CRT designs, shows how per­
formance requirements increase when the capability for color 
graphics is included, and explains' some of the system 
bottlenecks that can arise. Section 3 describes the capabilities 
of the 8089, which can be brought to bear to resolve these 
bottlenecks. Section 4 gives detailed information for a color 
graphic CRT system using the Intel 8089 (8086 and 8089). 

The reader may obtain useful background information 
on the 8086 and 8089 from iAPX 86,88 User's Manual. 
It would also be helpful to read the data sheets on the 
8086,8089,2118 Dynamic RAM, 8202 Dynamic Ram 
Controller, 8275 CRT Controller, 8279 
Keyboard/Display Interface, and 2732A EPROM. 

OVERVIEW OF CRT GRAPHIC SYSTEMS 

Typical Design Technique 

A typical microprocessor-based CRT terminal i~ shown 
in block diagram form in Figure I. The terminal consists 

CHARACTER 
GENERATOR ROM 

POWER 
SUPPLY 

Figure 1. Typical CRT Terminal Block Diagram 

3-350 210355-001 



AP-123 

of a CRT monitor, monitor electronics, a CRT control­
ler and character generator ROM, display memory, a 
DMA device, a central processor and associated pro­
gram memory, a keyboard and keyboard interface, and 
serial and/or parallel communication devices. 

The primary function of the non-graphic CRT controller 
is to refresh the display. It does this by controlling the 
periodic transfer of information from display memory 
to the CRT screen, with the help of the DMA device. 
The central processing unit (CPU) coordinates the 
transfer of information to and from the external 
devices. When information from an external device is 
received by the terminal, the CPU performs character 
recognition and handling functions, display memory 
management functions, and cursor control functions. 
The CPU also interrogates the keyboard interface 
device. If a key depression is detected, the ASCII char­
acter representing that key is sent to the display 
memory and/or an external.device. 

The design shown in Figure 1 could be implemented 
using Intel LSI products. The CPU could be an 8085, 
the DMA device an 8237 A DMA controller, the CRT 
controller an 8275, the character generator ROM a 
2708, program memory ROM a 2716, display memory 
2114s (2K x 8), and the keyboard interface an 8279 
keyboard controller. These choices would result in a 

CRT terminal capable of displaying 25 lines of text 
containing 80 characters each. 

As the design is upgraded to add color and graphics 
capability, performance requirements increase accord­
ingly. The components most likely to require changing 
are the CPU, the DMA device, the CRT controller, and 
the display memory. Thus, it is desiral;>le at this point to 
examine the operation of these components in more 
detail to provide a foundation for graphic system opera­
tion. Later we shall give a specific example of a more 
complex display, and examine the performance re­
quirements imposed. Figure 2 is a block diagram show­
ing only those components involved with the 
non-graphic CRT refresh function, with more detail 
provided regarding the connecting signal lines. 

The refresh function proceeds as follows. The 8275, 
having been programmed to the specific screen format, 
generates a series ofDMA request signals to the 8237 A. 
This results in the transfer of a row of characters from 
display memory to one of two row buffers within the 
8275. From this row buffer, the characters are sent, via 
lines CCO-CC6, to the character generator ROM. The 
dot timing and interface circuitry is then utilized to 
convert the parallel output data from the character 
generator ROM into serial signals for the video input of 
the CRT. 

DISPLAY 
IIEMORY 

!J 
{ SYSTEliauS ( 

~ liE "0 
lOW ~7 
IIEIIW WR 
iOii iiii 
Cii Cii 
HRO IRO 
HACK 

ORO LC~3 
1237A VIDEO SIGNAL 
OIIA CHARACTER 

CONTROLLER OACK GENERATOR 

1275 CC~. DOT HORIZONTAL SYNC 

CRT TilliNG 
CONTROLLER ANO VERTICAL SYNC 

CCLI( INTERFACE 

INTENSITY 

VIDEO CONTROLS 

Figure 2. Components Involved in the CRT Refresh Function 

3-351 210355-001 



) 

AP-123 

1st 2nd 3rd 4th 5th 6th 7th 
Character Character Character, Character Character Character Charscter ---:.-----00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0 

First Line of a Character Row 

1st 2nd 3rd 4th 5th 6th 7th 
Character Character Character Character Character Character Character -------8~~~~~88:~8g8:gg:~~~~888gg8ggB:~~~~g8~~~~~gg:gB8:g 

Second Line of a Character Row 

1st 2nd 3rd 4th 5th 6th 7th 
Character Character Character Character Character Character Character -------00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0 

0.0000.00 •• 000.0080000000000000.000.00.000.00.000.0 
OWODOO.OOWOODO.OO.ODDODOODDOOOOWODO.OO.OOO.OO.ooowo 

Third Lme of a Character Row 

1st 2nd 3rd 4th 5th 6th 7th 
Character Character Character Character Character Character Character -------"-----00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0 

o.oooo.oO •• ooo.Qo.OOOOOODOOOOOO.ooo.oo.oOO.OO.ooo.O 
O.ODOO.OO.0.OO.CO.000000D0000008000.00.000.00.000.0 
0.0000.00.0000.00 •••• 0000000000 •••• 000.000.00.0.0.0 
0.0000800.00.0.00.00000000'00000.0.0000.000.00.0.0.0 
O.OOOO.OO.OOO •• CO.OOOOOODOOOOOO.OO.ODO.OOO.OO.O.O.O 
00 •••• 000.0000.00 ••••• 000000000.00.0000 ••• 0000.0.00 

Seventh Line of a Character Row 

Figure 3. Character Row Display 

The character rows are displayed on the CRT one line at 
a time. Line count signals LCO-LC3 are applied to the 
character generator ROM by the 8275, to specify the 
specific line count within the row of characters. This 
display process is shown in Figure 3, using a seven-line 
character for purposes of illustration. The entire pro­
cess is repeated for each row of characters in the 
display. 

ters, with no color or graphic capability, has been as­
sumed. Such a screen can be represented by 80 x 25 = 

2000 bytes of data. If the screen is refreshed 60 times 
per second, then a total of 120,000 bytes will need to be 
transferred each second from display memory to the 
8275 CRT controller. This figure is well within the capa­
bility of the 8237 A DMA controller, even allowing for 
vertical retrace time and other overhead. In this appli­
cation then, both the display memory and the system 
bus remain available to the system CPU most of the 
time, and no bottleneck occurs because of the DMA 
transfer process. 

At the beginning ofthe last display row, the 8275 issues 
an interrupt request via the IRQ output line. This inter­
rupt output is normally connected to the interrupt input 
of the system CPU. The interrupt causes the CPU to 
execute an interrupt service subroutine.- This sub­
routine typically reinitializes the DMA controller 
parameters for the next display refresh cycle, polls the 
system keyboard controller, and executes other appro­
priate functions. 

Performance Requirements 

In the example we have discussed thus far, a display 
consisting of 25 rows, each containing 80 text charac-

The situation is quite different when a high-resolution, 
color graphics capability is desired. The performance 
requirements are obviously much greater. To derive a 
quantitative requirement it is necessary to choose, even 
if somewhat arbitrarily, a specific display method and 
screen format. The display method chosen for the sys­
tem described in this application note is called the 
virtual-bit mapping technique. When this technique is 
used, the graphic material to be displayed is haqdled on 
a character basis. Figure 4 shows the structure of the 
text and graphic characters used. The text character is a 

3-352 210355-001 



AP-123 

7 x 5 character in an 8 x 5 matrix. The graphic character 
is a 4 x 5 matrix. 

The size of a graphic character is the same as the size of 
a text character. In addition, the text characters may be 
in color. The resolution (horizontal) for a graphic char­
acter is twice as coarse as the dot spacing for a text 
character. One of eight colors may be selected for fore­
ground and for background within a particular 
character. 

Figure 5 shows how the display character can be speci­
fied using four bytes. The first byte determines whether 
the character is a text character or a graphic character, 
and specifies the colors for foreground and back­
ground. If it is a text character, the second byte 
specifies the character with a seven-bit ASCII code, and 

(AI TEXT CHARACTER 
REPRESENTING THE LETTER A. 

LINE COUNT (LCO-LC21 

000 

001 

010 

011 

100 

the remaining two bytes are not used. If it is a graphics 
character, the second, third, and fourth bytes contain 
the color specification for each of the twenty distinct 
picture elements (pixels) within the character. Use of 
the foreground color is indicated by a one in the respec­
tive bit position, while a zero specifies use of the back­
ground color. 

The screen format chosen has 80 characters per row 
and 48 rows. Thus the resolution (in terms of picture 
elements) is 640 x 480 for text characters and 320 x 240 
for graphic characters. AJull screen contains 80 x 48 = 

3840 characters. Thus, a single frame ofthe display can 
be represented by 3840 x 4 = 15,360 bytes. If the screen 
were updated 60 times per second, the CRT refresh 
function would require a DMA transfer rate of 15,360 x 
60 = 921,600 bytes per second. 

COL3 COL2 COL 1 COLO 

I I I I ROW A 
I I I 

I I I I 
I 

ROWB 

I I I I 
I I I ROWC 

I I I I 
I I I I ROWD 

I I I I 
I I I 

ROWE 

(B) GRAPHIC CHARACTER 

Figure 4. Character Structure 

'-----r-" ~ 
I I 
I I I BACKGROUND COLOR (1 of 8) 

I 
FOREGROUND COLOR (1 of 8) 

MODE-O == ALPHANUMERICS 
1 = GRAPHICS 

COLOR CODE 
000 
001 
010 
011 
100 
101 
110 
111 

(a) Byte 0 

COLOR 
iiTcK 
RED 
GREEN 
YELLOW 
BWE 
MAGENTA 
CYAN 
WHITE 

Figure 5. Display Character ~pecification 

3-353 210355-001 



MODE"" 1 

AP-123 

06 05 04 D. 02 0' DO 

~~ _______________ 'y-~ ____________ --JI 

7 BIT ASCII 

, RB2 RBO RA. 

ROW B GRAPHICS 

(b) Byte' 

RA2 RA1 RAO 

ROW A GRAPHICS 

1 = FOREGROUND COLOR 
o ~ BACKGROUND COLOR 

NOTE: RB1 IS INTENTIONALLV MOVED TO BVTE 3 SUCH THAT REPRESENTATION OF A BLANK 
CHAAACTER FOR EITHER TEXT OR GRAPHIC IS THE SAME. 

RC2 RC1 RCO R83 

~ \.'---~ ........ ----..... /'--' 
I ROW B GRAPHICS 

I 
I 
I 
I 

ROW 0 GRAPHICS 

ROW C GRAPHICS 

(c) Byte 2 

RB, , RE. , RE2 RE' , REO , RD.' RD2' 

'-----"~---.""---_/ ~. 
I ROW 0 GRAPHICS 

I 
I 
I 
I 

ROW B GRAPHICS 

ROW E GRAPHICS 

(d) Byte 3 

Figure 5. Displ~y Character Specification (Cont.) 

3-354 210355-001 



AP-123 

System Bottlenecks 

It can be seen from the above calculation that nearly 
one megabyte of data must be transferred per second to 
effect the CRT refresh function alone. Even with the 
fastest available DMA controllers, this represents the 
major part of the bandwidth for such devices. When the 
design shown in Figure 1 is used, the system bus must 
also be used by the CRT terminal processor for such 
functions as keyboard polling and communication with 
external devices. In addition, any changes made to the 
material being displayed would require use of the sys­
tem bus for the purpose of storing. the new material in 
the display memory, and possibly also for access to 
system memory during the calculation process. It is 
easy to see, therefore, that severe bottlenecks can oc­
cur in terms of system bus utilization. Problems involv­
ing bus contention could also be difficult to resolve. 
Display underruns could become difficult or impossible 
to avoid in some cases, such as when graphics com­
putations require excessive use of the system bus. 

The situation can be improved substantially if provision 
is made for concurrent processing. One CPU can be 
doing calculations on the material to be displayed, 
while another CPU can be managing the CRT terminal 
functions and the 110 devices simultaneously. Local 
buses can be used for access to the respective program 
memories, with the system bus used only for transfer of 
new display data and for communication between the 
two processors. 

The Intel 8089 offers a convenient and economical way of 
implementing this mUltiprocessing approach. In particular, 
the 8089 has unique capabilities that simplify the design 
process. 

OVERVIEW OF THE 8089 

Architectural Overview 

The 8089 Input/Output Processor is a complete 110 
management system on a single chip. It contains two 
independent 110 channels, each of which has the capa­
bilities of a CPU combined with a programmable DMA 
controller. 

The DMA functions are somewhat more flexible than 
those of most DMA controllers. For example, a con­
ventional DMA controller transfers data between an 
110 device and a memory. The 8089 DMA function can 
operate between one memory and another, between a 
memory and an 1/0 device, or between one 110 device 
and another. Any device (110 or memory) can physi­
cally reside on the system bus or on the 1/0 bus. The bus 

width for the source and destination need not be the 
same. If the source, for example, is a 16-bit device, 
while the destination is an 8-bit device, the 8089 will 
disassemble the 16-bit word automatically as part of the 
DMA transfer process. The transfer can be synchro­
nized by the source, by the destination, or it can be free 
running. The 8089 can effect data transfers at rates up to 
1.25 megabytes when a 5 MHz clock is used. 

Unlike most DMA controllers, the 8089 uses a two­
cycle approach to DMA transfer. A fetch cycle reads 
the data from the source into the 8089, and a store cycle 
writes the data from the 8089 to the destination. This 
two-cycle approach enablj:s the 8089 to perform opera­
tions on the data being transferred. Typical of such 
operations are translating bytes from one code to an­
other (for example, EBCDIC to ASCII) or comparing 
data bytes to a search value. 

A variety of conditions can be specified for terminating 
DMA transfers, including single cycle, byte count (up 
to 64K) , external event, and data-dependent condi­
tions, such as the outcome of a masked compare 
operation. 

The CPU in each channel can execute programs in the 
system space (from a memory on the system bus) or in 
the 110 space (from a memory on a separate 110 bus). 
Thus, complete channel programs can be run by the 
8089 without tying up the system bus or interfering with 
the operation of the system CPU. Figure 6 is a simpli­
fied block diagram of the 8089, showing how the 8089 
interfaces with these two buses. 

The programs that the 8089 executes may be preexisting 
programs stored in ROM or EPROM, or they may be 
programs prepared for the 8089 by the system CPU. In 
the latter case, the programs are typically in modular 
form, contained in "task blocks" that the system CPU 
places in a memory location accessible to the 8089. 
During normal operation, the system CPU then directs 
the 8089 to the various task blocks, according to which 
programs are to be executed. The details of how this is 
done are given below under Software Interface. 

The 8089 has an addressing capability of 64K bytes in 
the 110 space, and thus can support multiple per­
ipherals, as illustrated in Figure 7. In the system space, 
the 8089 supports I-megabyte addressing, and is di­
rectly compatible with the 8086 or 8088, and with Intel's 
Multibus. The 8089 operates from a single +5V power 
source, and is housed in a standard 40-pin, dual in-line 
package. The instruction set for the 8089 lOP is specifi­
cally designed and optimized for 1/0 processing and 
control. In addition to being able to execute DMA 

3-355 210355-001 



AP-123 

HOST CPU 

SYSTEM BUS 

EXT' 
CPU 

"CHANNEL 1" DAQ. 

SINTR1 

CA 

SEL 

SINTR2 

CPU EXT2 
"CHANNEL 2" .. DAQ2 

LOCAL VO BUS AND MEMORY 

PERIPHERALS 

Figure 6. Simplified Block Diagram of the 8089 

transfers under a wide variety of operating conditions, 
the 8089 can perform logic operations, bit manipula­
tions, and elementary arithmetic operations on the data 
being transferred. A variety of addressing modes may 
be used, including register indirect, index auto incre­
ment, immediate offset, immediate literal, and indexed. 

The register set for the 8089 is shown in Figure 8. Each 
channel lias an independent set of these registers, not 

accessible to the other channel. Table 1 gives a brief 
summary of how these registers are used during a pro­
gram execution or during a DMA transfer. Four of the 
registers can contain memory addresses which refer to 
either the system space or the 110 space. These regis­
ters each have an associated tag bit. Tag = 0 refers to the 
system space and tag = 1 refers to the 110 space. More 
details on how the registers are used are given below as 
part of the Software Interface section. 

3-356 210355-001 



AP-123 

8088/ 
8086 
CPU 

DRQ2,EXT2 

8089 
lOP DRQ1, EXT1 

8275 
CRT 

CONTROLLER 

8271 
FLOPPY 

DISK 
CONTROLLER 

8279 
KEYBOARD 

CONTROLLER 

Figure 7. 1/0 System with Multiple Peripherals 

USER PROGRAMMABl£ 

TAG 19 

G P ADDRESS A (GA) 

G P ADDRESS B (GB) 

G P ADDRESS C (GC) 

TASK POINTER (TP) 

__ 1-BIT POINTER TO EITHER 110 OR SYSTEM MEMORY SPACE 

J 

15 0 

INDEX (IX) 

BYTe COUNT (BC) 

MASK COMPARE (Me) 

I. CHANNEL CONTROL (CC) 

NON USER PROGRAMMABLE 
(ALWAYS POINTS TO SYSTEM MEMORy) 

L'·_J ________ ~~~~~~~ ______ ~O~ I PARAMETER POINTER (PP) r 
CHANNEL CONTROL POINTER (CP) 

Figure 8. 8089 Register Set 

System Configurations 

The hardware relationship between the host CPU and 
the 8089 can take one of two basic forms--local con­
figuration or remote configuration, In local configura­
tion (Figure 9) the lOP shares the system bus interface 

\ 
logic with the host CPU, They reside on the same bus, 
sharing the same system address buffers, data buffers, 
and bus timing and control logic, The 8089 requests the 
use of the bus by activating the request/grant line to the 
host CPU, When the host relinquishes the bus, the lOP 
uses all the same hardware, and the host CPU is re­
stricted from accessing the bus until the 8089 returns 
control of the bus to the host CPU. 

The local configuration is a very economical configura­
tion in terms of hardware cost, but it does not allow 
concurrent processing, and thus it is not able to really 
take advantage of the 8089's capabilities for indepen­
dent operation. In the local configuration, the 8089 acts 
as a local DMA controller for the CPU, providing en­
hanced DMA capabilities and I-megabyte addressing. 

3-357 

For applications such as the color graphics terminal, 
where system bus utilization (and other overhead) due 
to I/O processing would clearly be excessive in the local 
configuration, it is far more desirable to use the remote 
configuration, illustrated in Figure 10. The two proces­
sors both access VIe system bus, but each may have its 
own local bus in addition. Each of the processors may 
execute programs from memory on its own local bus, or 

210355-001 



Program 
Register Size Access 

GA 20 Update 

GB 20 Update 

GC 20 Update 

TP 20 Update 

PP 20 Reference 

IX 16 Update 

BC 16 Update 

MC 16 Update 

CC 16 Update 

System 
or 1/0 

Pointer 

Either 

Either 

Either 

Either 

System 

N/A 

N/A 

N/A 

N/A 

AP-123 

Table 1. Channel Register Summary 

Use by Channel Programs Use In DMA Transfers 

General, base Source/destination pointer 

General, base Source/destination pointer 

General, base Translate table pointer 

Procedure return, instruction pointer Adjusted to reflect cause of termination 

Base 

General, auto-increment 

General 

General, masked compare 

Restricted use recommended 

BUS 
CONTROLLER 

LATCHESf 
TRANSCEIVERS 

N/A 

N/A 

Byte counter 

Masked compare 

Defines transfer options 

PERIPHERAL ., 

SYSTEM MEMORY 

PERIPHERAL 
"P2 

Figure 9. CPU and lOP in Local Configuration 

3-358 210355-001 



intJ AP-123 

Figure 10. CPU and lOP in Remote Configuration 

on the shared system bus. This creates a much more 
flexible arrangement. Concurrent processing may be 
used, and it is not necessary to synchronize the proces­
sors. An 8086, for example, may run at 8 or 10 MHz 
while the 8089 operates at 5 MHz. The specific terminal 
design described later in this application note makes 
use of one additional technique to further decouple the 
operation of the two processors. This is a dual-port 
RAM, which is located between the system bus and the 
8089, and serves as display memory and as storage for 
the task blocks created by the 8086 CPU. Details on 
how this dual-port RAM operates are given below in the 
sections describing the terminal design itself. 

Software Interface 

Although the 8089 is an intelligent device which hasla 
great deal of ability to function independently when 
managing the course of I/O operations, it typically 
operates under the overall supervision ofthe host CPU. 

Figure 11 illustrates the method of communication be­
tween the CPU and the lOP. The CPU communicates 
to the lOP by placing messages in memory and activat­
ing the lOP's channel attention (CA) input. The lOP 
communicates to the CPU by placing messages in sys­
tem memory and making an interrupt request on one of 
its system interrupt request (SINTR-l or SINTR-2) 
outputs. 

The messages in memory take the form of linked 
blocks. These blocks are of the following five types: 

1. System Configuration Pointer (SCP) 

2. System Configuration Block (SCB) 

3. Channel Control Block (CCB) 

4. Parameter Block (PB) 

5. Task Block (TB) 

The SCP and SCB blocks are used by the CPU (only 
after reset) to initialize the 8089. The CCB, PB and TB 
blocks are used when the CPU wishes to instruct the 

3-359 210355-001 



Ap·123 

CHANNEL ATTENTION 

MESSAGES 
CPU IN lOP 

MEMORY 

INTERRUPT 

Figure 11. CPU/lOP Communication 

lOP to perform a particular sequence of operations. 
Figure 12 shows these five blocks and how they are 
linked. The SCp, SCB, CB, and PB must be in memory 
which is accessible from both the CPU and 8089 (either 
system memory or for this application note, dual-port 
!l\emory). The TB may be in either system or 8089 local , 
memory. 

The system configuration pointer is always found at the 
same location (FFFF6) in the system memory. The first 
time channel attention is activated (after an lOP reset) 
the 8089 reads the system configuration pointer from 
this location. The SYSBUS field contains only one sig­
nificant bit (Bit 0), designated by the letterW. If W = 0, 
the system bus is an 8-bit bus. W = I denotes a 16-bit 
system bus. The lOP first assumes an 8-bit bus and 
reads the SYSBUS field. It stores the information as to 
the physical width of the system bus, then immediately 
uses this information in the process effetching the next 
four bytes, which contain the address of the system 
configuration block. 

The addresses used to link blocks are standard iAPX 86, 
88 pointer variables, each occupying two word loca­
tions in system memory. The lower-addres~ed word 
contains an offset, which is added to the segment base 
value (left-shifted four places) found in the upper­
addressed word to derive the complete 20-bit physical 
address in system memory. If the block is in an 1/0 
memory (as a task block might be), only the offset value 
is used. 

After thus deriving the address of the system configura­
tion block, the lOP reads this block, starting with the 
system operation command (SOC) field. Bit 1 of the 
SOC field specifies the request/grant mode (used in 

3-360 

local configuration or in multiple-lOP systems). Bit 0 
specifies the 110 bus width (designated I). When I = 0, 
the 110 bus is an 8-bit bus. I = 1 denotes a 16-bit1l0 bus. 
The lOP then proceeds to read the double-word pointer 
to the channel control block, converts it to the 20-bit 
physical address, and stores it in an internal register 
(the channel control pointer register). This register is 
loaded only during initialization and is not available to 
channel programs. For this reason the channel control 
block cannot be moved unless the lOP is reset and 
reinitialized. 

The initialization is complete when the channel control 
pointer has been stored. The lOP indicates this by clear­
ing the busy flag in the channell control block (which 
must be set by the host CPU before the initialization 
sequence began). The host CPU can monitor this flag to 
determine when initialization is complete, and then to 
initialize any other 8089s in the system. 

It is the responsibility of the host CPU to make sure that 
the SCP and SCB have the proper contents before 
issuing the channel attention (CA) that begins the in­
itialization sequence. After initialization, the host CPU 
must also assure that the channel control block (CCB), 
parameter block (PB), and task block (TB) all have the 
proper contents, before issuing a subsequent CA. 

The CA may be issued in the form of an 110 write 
command to the address of the lOP on the Multibus. 
Figure 13 shows a typical decoding circuit for this write 
command. The lOP actually occupies two consecutive 
address locations on this bus, because the AO line is tied 
to the select (SEL) input of the 8089. A zero on the SEL 
line specifies lOP channel 1 for the impending opera­
tion, while a one specifies lOP channel 2. 

210355-001 



TB 

TB 

........ 

T 

Ap·123 

• I SYSBUS FFFF8 
SYSTEM 

f' I SCB ADDRESS FFFF8 CONFIGURATION 
POINTER 

L- SCB RELOCATION FFFFA 

I SOC 

INITIALIZATION SYSTEM 

r- CB ADDRESS CONFIGURATION 

L....- ca' RELOCATION 
BLOCK 

"- BUSY I CCW 

I PB ADDRESS }_R""~'_" CHANNEL 1 

L- PB RELOCATION 

} ~""'" BUSY I CCW 

PB ADDRESS 

PB RELOCATION 

I 

ADDRESS 

"m1 RELOCATION W 
lOP TASK 

PROGRAM 
~ ..... PARAMETER BLOCK 

T T 
Figure 12. Linked Block Communication Structure 

.7----; 

.6-----1 

.5----; 
•• -----1":""'\ 
.3----~';,I 

.2---...... ; 

iCiWl: -------...... :::::.1 
Ao----------

PORT FC=CHANNEL 1 CA 
PORT FD=CHANNEL 2 CA 

c. 

RESET 

1 
T 

Figure 13. Chan~el Attention Decoding Circuit 

reads the channel command word (CCW). It then sets 
or clears the busy flag (FFH = set, OOH = clear). The 
encoding of the channel command word is shown in 
Figure 14. The CCW provides the lOP with a functional 
command (START in 110 space, HALT, etc.) and 
specifies some of the operating conditions, such as 
interrupt handling, bus load limit, or priority relative to 
the other channel. If the CPU is instructing the lOP to 
execute a program, it is at this point that the CPU 
specifies, via the CCW, whether the instructions are to 
be fetched from the system space or from the 8089's 110 
space. Refer to iAPX 86,88 User's Manual for specific 
details on the setting and clearing ofthe busy flag and on 
CCW specifications. 

The channel control block has a section for each chan­
nel. When the CA is received, the lOP goes to the 
section corresponding to the selected channel, and 

3-361 

After the CCW has been read, the lOP reads (if appro­
priate to the command) the address of the parameter 
block associated with the impending operation, and 
stores the translated address (from the two-word seg­
ment and offset pair to the 20-bit physical address) in 

210355-001 



,AP-123 

7 0 

I P I 0 I B I I~F I CF 

CF COMMAND FIELD 
000 UPDATE PSW 
001 START CHANNEL PROGRAM LOCATED IN 1/0 SPACE. 
010 (RESERVED) 
011 START CHANNEL PROGRAM LOCATED IN SYSTEM SPACE. 
100 (RESERVED) 
101 RESUME SUSPENDED CHANNEL OPERATION 
110 SUSPEND CHANNEL OPERATION 

, 111 HALT CHANNEL OPERATION 

ICF INTERRUPT CONTROL FIELD 
00 IGNORE, NO EFFECT ON INTERRUPTS. 
01 REMOVE INTERRUPT REQUEST; INTERRUPT IS ACKNOWLEDGED. 
10 ENABLE INTERRUPTS. 
11 DISABLE INTERRUPTS. 

B BUS LOAD LIMIT 
o NO BUS LOAD LIMIT 
1 BUS LOAD LIMIT 

P PRIORITY BIT 

Figure 14. Channel Command Word Encoding 

the parameter pointer (PP) register. PP is another regis­
ter which is not programmable by the channel program. 
The lOP then goes to this location in system memory, 
and fetches the address of the task block itself. The task 
block contains the actual program to be executed, while 
the parameter block contains parameters to be used by 
that program. 

Except for the first two words, which contain the task 
block address, the parameter block format is up to the 
discretion of the user. Similarly, the task block may 
have any format whatsoever, as long as the lOP can 
execute the program. The parameter block is always in 
system memory, but the task block may be either in 
system memory or in I/O (local) memory. 

The host CPU may prepare as many parameter­
block/task-block sets as it wishes. An individual set is 
then activated for execution by placing its parameter 
block pointer in the desired channel's control block, 
loading the appropriate channel control word, and issu­
ing a CA to that channel. 

The registers shown in Figure 8 store (in addition to 
pointer variables) various flags and parameters associ­
ated with the lOP's operation: Some of these registers 
are loaded automatically with information fetched dur­
ing the initialization sequence or during channel atten­
tion processing. Others must be set by executing a 
program using instructions from the lOP's instruction 
set that are specifically designed for loading these 
registers. 

Channel programs (task blocks) are written in ASM-89, 
the 8089 assembly language. About 50 basic instruc­
tions are available. The lOP instruction set contains 
some instructions similar to those found in CPUs, and 
also other instructions specifically tailored to I/O oper­
ations. Data transfer, simple arithmetic, logical, and 
address manipulation operations are available. Uncon­
ditional jump and call instructions are provided so that 
channel programs can link to each other. An individual 
register or even a single bit may be set or cleared with a 
single instruction. Other instructions specify condi­
tional jumps, initiate DMA transfers, perform sema­
phore operations, and issue interrupt requests to the 
CPU. 

A channel program typically ends by posting the result 
of an operation to a field supplied in the parameter 
block, then interrupting the CPU (if interrupts are en­
abled) and halting. When the channel halts, its associ­
ated BUSY flag is cleared in the channel control block. 
The CPU can poll this flag (as an alternative to being 
interrupted) to determine when the operation ha~ been 
completed. 

Timing Details 

The basic bus timing relationships for the 8089 are 
identical to those of the 8086 or 8088, in that all cycles 
consist of four states (assuming no wait states), and use 
the same time-multiplexing technique for the ad­
dress/data lines. The address (and ALE signal from the 

3-362 210355-001 



AP-123 

ClK 

S2-SO S2-SO ACTIVE 52-SO INACTIVE \... __ _ 

ADDRESS/STATUS =~~J----{ A1~A16 X S6-S3 ~ ~~~A-____________ ~ 

BHE = ~ ~ =f-----{L_1Iiii!_H_E _LOW_F_D_R _DA_TA"'ah .... RA .... E N .... ,8"'fs-cER"'.3!Lr_H_IG_H_-Q_R_DE_R--Ir-

ADDRESS/DATA 
(AD1S-ADO) A15-AO DATA IN 

015-00 

'ALE -F\~ __________ _ 
*MORC or ·IORC 

-- T' ------, r-
*DT/R __ ~' '---_________ ~, 

-DEN 
--------------~ 

'8288 BUS CONTROllER OUTPUTS 

Figure 15, Read Bus Cycle 

8288 bus controller) is output during state Tl for either a 
read or write cycle, During state T2 for a read cycle 
(Figure 15) the address/data lines are floated. During 
state T2 for a write cycle (Figure 16) data is output on 
these lines. During state T3, the write data is main­
tained or the read data is sampled. The bus cycle is 
concluded in state. T4. 

Figure 17 shows some details on the wait state timing 
and Figure 18 shows the RESET-CA initialization 
timing. 

During DMA transfers, the transfer cycle may be 
synchronized by either the source or the destination. 
Figure 19 (source-synchronized transfers) and Figure 
20 (destination-synchronized transfers) show the 
relationships among the basic clock cycles, the DRQ 
signals, and the DACK signals. 

The 8089 does not have a DACK output signal. Rather, 
it uses· the more general process of issuing a command 
(for example, 110 read or write) to an address on the 110 
bus. This command is then hardware decoded to obtain 

3-363 

a chip select signal for the addressed device. This 
method enables the 8089 to relate to a variety of 110 
devices in a very flexible manner. 

Figures 19 and 20 also show how the 8089 inserts idle 
clocks to accommodate various DRQ latency condi­
tions. If maximum efficiency (transfer rate) is desired, it 
is usually possible to remove this latency by techniques 
such as generating an early DRQ. Another possibility is 
to use the unsynchronized DMA transfer mode (DRQ is 
not examined) and to use the READY signal for 
synchronizing transfers. The early DRQ technique will 
be discussed later .. 

GRAPHIC CRT SYSTEM DESIGN 

Having examined the requirements for graphic CRT 
systems in general, and having also discussed the capa­
bilities of the 8089, we can now proceed to describe a 
specific graphic CRT design using the 8089. 

In this design. the system CPU is an 8086. Thus. the entire 
system is called an Intel 8089. 

210355-001 



~AP-123 

ClK 

52-SO S2-SO ACTIVE 52-SO INACTIVE L ~ ~ = 

ADDRESS/STATUS = = ~ ~ }--{ A19-A16 Y 

iHE = = ~ ~}--{,-_BH_E_LDW __ FO_R_D_A ... ~~,-,T .... ~ ... W,-,1S",1..",~",lD_N_H_IG_iAl_R_DE_R-Jl-­

= ~ ~ ~ :>----{'-_A_15--_AO_J1iX'---__ D_A_~A_D_U_T_D_15--_oo __ ___'l--
ADDRESS/DATA 

(AD15__AOO) 

'AlE ~'---_____________ _ 

,Ai,iWC DR 'AIDWC 

*MWTC OR -lowe 

-DEN 
---, , 
___ -',~ ____ ....J 

'8288 BUS CDNTRDllER OUTPUTS 

Figure 16. Write Bus Cycle 

ONE BUS CYCLE ' 

ClK ~ 
ROY INPUT 

READY 
OUTPUT 

TR1VCl'-.lI_R1VCl-.J1++I ~TClR1X" 

va V/1 
READY NOT READY fREADY 

'*REFER TO THE 8284A CLOCK GENERATOR/DRIVER 
SHEET FOR TIMING INFORMATION 

Figure 17. Wait-State Timing 
(Synchronous ROY Input) 

ClK~ 

RESET MUST BE ACTIVE \ 
FOR FIVE CLOCK !-. ----:----

CYCLES I 1 eLK MIN I ... . 
CA ----------'. .I~CA , 

- - - - - - - - -' 1 elK MIN :LL/.. RECOGNIZED 

Figure 18. Reset and Channel Attention Timing 

System Partitioning 

The 8086 and 8089 are arranged in the remote configura­
tion. This assures that concurrent processing can occur. 
As mentioned earlier, an additional step is taken to 
further decrease system bus utilization for I/O-related 
processes. This step is the inclusion in the system of a 
dual-port RAM, located between the system bus and 
the 8089~ This qual-port RAM contains the display 
memory and also contains the linked message blocks 
used for communication between the 8086 and the 8089. 

The system configuration then becomes that shown in 
Figure 21. The dual-port RAM becomes the only data 
path between the 8086 and the 8089. Access to this 
memory is time-shared between the 8086 and the 8089, 
with the 8089 taking less than 50% of the total time 
available. Since the 8089 does not access the system 
bus, the host system can enjoy complete freedom to 
allocate its resources between its own local bus and the 
system bus. The CPU and the lOP can operate 
asynchronously, with the 8086 running on an 8 MHz 
clock and the 8089 on a 5 MHz clock. 

The division of responsibility between the 8086 and the 
8089 is then very clearly defined. The 8086 initializes the 
8089 and specifies the task parameters, storing them in 

3-364 210355"()01 



AP-123 

TRANSFER CYCLE 

1~:'-_T-,------~:~:T~e~H~.~u~S~e~ye~l=:~-------~--~:I~:.--T-,-------s~T~:~R~E~.~us~e~y~C~lE~~---------T-4-:~1 

', .... ORO HOLD .... I-.. 0 IDLE ~I~ 2 IDLE ~l....- 410LE 
FROM READ I--CLOCKS 1 CLOCkS 1 1-- CLOCKS 1 

(FROM 110 DE~~CQ~:"') --------------.,\:~.,.\U.,.\:\:\.1.\...,J..\~\:\\U3~_....!./_r_-__ -_-_-_-:_R_~_F_~_R_:_E-_XT_~_R_:-_N_::_E_;;_e_;_el_;_-_-__ -_-__ -_-_ 

OAeK~ (DECODED 
1/0 ADDRESS) 

NOTES 

VALID 110 ADDRESS 

PRESENT \'--------
1) INDICATES THE NUMBER OF IDLE CLOCKS INSERTED AFTER T4 OF THE STORE CYCLE BEFORE THE NEXT TRANSFER CYCLE 

BEGINS IF DRO IS RECEIVED BEFORE THE RISING EDGE OF ClK IN THE CURRENT FETCH CYCLE, THE NEXT FETCH BEGINS 
IMMEDIATELY AFTER THE CURRENT STORE 

2) IF THE 8089 IS IDLE WHEN DRO IS RECOGNIZED, FOUR OR FIVE MORE IDLE ClOCO< CYCLES OCCUR BEFORE THE 
ASSOCIATED TRANSFER CYCLE BEGINS (DRO IS lATCHED ON THE RISING EDGE OF ClK ) 

3) TO PREVENT THE START OF THE NEXT TRANSFER CYCLE, DRO MUST BE BROUGHT lOW BY THE RISING EDGE OF ClK IN T4 
OF THE CURRENT FETCH (FOR B/B~W SOURCE SYNCHRONIZED AND W~B/B DESTINATION SYNCHRONIZED IT MUST BE 

, lOW BY THE RISING EDG~ OF ClK IN THE FOURTH ClOCK'OF THE CURRENT BUS CYCLE INCLUDING WAIT STATES) 

Figure 19. Source-Synchronized Transfer Cycle 

TRANSFER CYCLE 1 .. .. 
FETCH BUS CYCLE 1 1 FETCH BUS CYCLE 2 2 

elK 

2 IDLE 4 IDLE 

DRQ 4 

(FROM 110 DEVICE) 

ORa HOLD FROM.-I----J .. _I_ CLOCKS;'I .. CLOCKS3..,1" 
ADVANCED WRITE ,-....... --I 1 

~\\m5 r :a-:O:-N:T:A::R -7---------...\,,\...,..,.,.,\,\ "\\U-..J\ IL-,.i -_--
o. -

IDLE 
CLOCKS 3 

L OACK 
(DECODED 110 AODRES_S_) ______ J 

VALID I/O \ 
ADDRESS PRESENT L-. _______________ ...J 

NOTES 
1) FIRST DMA FETCH CYCLE OCCURS IMMEDIATELY AFTER THE lAST TASK PROGRAM INSTRUCTION IS EXECUTED 
2) FETCH CYCLE 2 BEGINS IMMEDIATELY AFTER STORE CYCLE 1 
3) INDICATES THE NUMBER OF IDLE CLOCKS INSERTED AFTER T4 OF THE FETCH BEFORE STORE CYCLE 2 BEGINS IF ORO IS 

RECEIVED BEFORE THE RISING EDGE OF ClK IN THE CURRENT STORE CYCLE, THE NEXT STORE BEGINS IMMEDIATELY 
AFTER THE NEXT FETCH 

4) IF THE 8089 IS IDLE WHEN ORO IS RECOGNIZED, FOUR OR FIVE MORE IDLE CLOCK CYCLES OCCUR BEFORE THE 
ASSOCIATED STORE CYCLE BEGINS (ORO IS lATCHED ON THE RISING EDGE OF ClK ) 

5) TO PREVENT THE NEXT STORE CYCLE FROM OCCURRING, DRO MUST BE BROUGHT lOW BY THE RISING EDGE OF ClK IN T4 
OF THE CURRENT STORE (FOR B/B~W SOURCE SYNCHRONIZED AND W~B/B DESTINATION SYNCHRONIZED, IT MUST BE 
lOW BY THE RISING EDGE OF ClK IN THE FOURTH CLOCK OF THE CURRENT STORE CYCLE INCLUDING WAIT STATES) 

Figure 20. Destination-Synchronized Transfer Cycle 

3-365 
210355-001 



AP·123 

32K BYTE 

~ 
8289 

2732A-2 - CPU ~ r-- BUS 

EPROM ARBITER 

8K BYTE RESIDENT ~I MULTI BUS TM, 
2141-4 - BUS INTER- -SRAM FACE INTERFACE 

~.--1 
8259 

INTERRUPT ... 
CONTROLLER z 

w 
C .. 
iii U> " W " 9 a: ., 

CPU 

8K BYTE 32K BYTE 

2732A 2118-12 

EPROM DRAM 

: 
2K BYTE LOCAL DUAL-PORT 

2~14AL-3 - ~ 110 BUS - - MEMORY 

SRAM INTERFACE CONTROL 

8279 0 KyaO/DISPLAY - ~ lOP 
CONTROLLER 

g 
... .. 

U> ::E 
" w 
9 " In ., 

4·8275 > 
U> 

CRT - ;I 
CONTROLLERS "u> 

9i1 

, 
PERIPHERAL CONTROLLER 

Figure 21. Remote Configuration with Dual-Port RAM 

3-366 
210355-001 



AP-123 

the dual-port RAM. In many cases, the 8086 also pre­
pares the task programs and stores them in the dual­
port RAM, from which they may be downloaded to a 
memory on the 8089's 110 bus. The 8089 executes the 
task programs (from the dual-port RAM or from a local 
memory on the 110 bus), while the 8086 simultaneously 
executes other control or application programs. The. 
application programs may encompass a wide variety of 
operations, but they will always generate the display 
characters and store them in the dual-port RAM. The 
8089 returns status to the 8086 when task program 
execution has been completed. 

BOOTSTRAP LOADER 
OPERATING SYSTEM 

APPLICATION PROGRAMS 

DISPLAY BUFFER 
PROGRAM STORAGE 
(DOWNLINE LOADED) 

NON-VOLATILE DATA 
STORAGE 

INTERRUPT VECTOR TABLE 
STACK 

SCAATCHPAD 

~ 

~ 

2732A-2 
EPROM 

2118-12 

DUA~POAT 

DYNAMIC RAM 

. 21'. 
EEPROM 

2141·" 
CPU LOCAL 

MEMORY 

FFFFF 

}--
FlOG. 

- }-."~ 
FOOOO 

;..~ 

OFFFF } 11K BYTES 

01000 

= 
01FFF 

}.~ 
00000 

Figures 22 and 23 show the manner in which the 
memories are organized. Figure 22, which shows the 
memory configuration for the 8086, should be taken as 
an example, since many different configurations are 
possible, according to the user's application. Figure 23 
shows the memory configuration for the 8089, given the 
particular choices made for the application discussed in 
this note. Of the memories shown in Figure 22, the 2141 
static RAMs and the 2732A EPROMs are located on the 
8086's local bus, while the 2816.EEPROM and the 2118 
dual-port RAM are interfaced to the Multibus. The 2816 
is a non-volatile read/write memory equivalent in its 
storage capacity to the 2716 EPROM. Figure 22. CPU Memory Organization 

2 PAGES 
DISPLAY 
BUFFER 

SYSTEMS ..... CE 

...---------, FFFFF 

2118·12 
DYNAMIC RAM 

1-..,.-------jFlOOO 

12K BYTES 

,.~ 

T 
VOPORTS 

l 
CHANNEL 
PROGRAM 

SCRATCH 
..... D 

Figure 23. lOP Memory Organization 

3-367 

VOSPACE 

KEYBOARD 

OACK 

ClKENA 

CRT CONTROLLER , 

CRT CONTROLLER 2 

2732A 
EPROM 

2"4Al-3 
RAM 

....1""" 

caoo 

AOOO 

8000 

1000 

4000 

2000 
07FF 

0000 

210355-001 



AP-123 

8086/8089 Software Interface 

Comparing Figures 22 and 23, it can be seen that the 
2118 dynamic RAM appears in the memory con­
figurations for both the 8086 and the 8089. In the 8086's 
system space, this memory occupies addresses FOOOO 
through F7FFF, while in the 8089's system space, its 
address range is F8000 through FFFFR 

Figure 24 shows the organization of the dual-port 
RAM. The addresses given are those seen by the 8089. 
The display data (for the CRT refresh function) is con­
tained in the two largest blocks-Display Page 0 and 
Display Page 1. Each page contains 15K bytes, enough 
to refresh a color graphic screen containing 48 rows of 
80 characters each. In typical operation, the 8086 and 
the 8089 both access the same page of display data. In 
special cases, such as animated displays, the 8089 per­
forms repetitive DMA transfers from one of these 
pages, while the 8086 is generating new display material 
and storing it in the other page. The display page pointer 
(DSPLY JG--PTR) in the parameter block specifies 
which of these pages is to be displayed at any given 
time. This pointer may be changed by the 8086, or by a 
command from the terminal keyboard. 

The Command Buffer is a 256-byte area set aside for 
transferring ASCII characters from the 8086 to the 
8089. It is like a second keyboard, scanned by the 8089. 
It takes precedence over any real keyboard activity. 
The COM_8086 flag in the parameter b.lock is used to 
indicate when there are entries in the command block 
area. 

The EEPROM Buffer is a 256-byte area used in connec­
tion with the non-volatile EEPROM memory, an op­
tional memory which may be located on the Multibus. 
One use of such a memory would be to store ASCII 
strings, which could then be recalled by the 8086 upon 
recognition of special keyboard control code 
sequences. ' 

The Keyboard Buffer/is a 256-brte area which serves as 
a storage area for ASCII characters entered from the 
terminal keyboard. When this buffer becomes full, or 
when a return is entered at the keyboard, an end-of-file 
byte is placed after the last entered character, and the 
keyboard buffer full (KBD_BUFJULL) flag is set in 
the parameter block. This prevents the 8089 from pro­
cessing any more inputs from the keyboard, until the 
8086 resets KBD--I3UFJULL. 

The Spare blocks total lK (1024) bytes, and may be 
used for any purpose, according to the user's 
application. 

LINKED lOP CONTROL BLOCKS 

FFFFF 

} 256BYTES 

FFFOO 

SPARE 

FFEFF 

}m~ 
FFCOO 
FFBFF 

DISPLAY PAGE 1 15K BYTES 

KEYBOARD BUFFER 

FCOOO 

) 256BYTES 
FBFFF 

FBFDO 

EEPROM BUFFER 

FBEFF 

} 256BYTES 

FBEOO 

COMMAND BUFFER 

FBDFF 

} ;56BYTES 

FBODO 

SPARE 

FBCFF 

) 256BYTES 

FBCOO 
FBBFF 

DISPLAY PAGE 0 15K BYTES 

FIOOO 

Figure 24. Organization of the Dual-Port RAM 

The Linked lOP Control Blocks are those which have 
been discussed above, as part of the 8089 overview. The 
specific memory locations are as shown in Figure 25. 
Note that there is only one parameter block, and no task 
blocks present. Only one task block is used in this 
application, and it is stored in the 2732A EPROMs on 
the 8089's 1/0 bus. 

3-368 210355-001 



AP·123 

FFFFF 

} 4BVTES 

FFFFC 

SPARE 

FFFFB 

} 6 BYTES 

FFFFS 

SYSTEM CONFIGURATION 
POINTER 

FFFF5 

} BBYTES 

FFFFO 

SYSTEM CONFIGURATION 
BLOCK 

FFFEF 

} .. ~. 
FFFEO 

CHANNEL CONTROL BLOCK' 

FFFDF 

PARAMETER BLOCK 224 BYTES 

FFFOO 

Figure 25. Organization of the Linked 
lOP Control Blocks Area 

As mentioned earlier, the structure of the parameter 
block is very flexible. Only the first four bytes are fixed 
(because of the 8089's requirements). These four bytes 
contain the address of the task block. The remaining 
space in the parameter block may be defined by the 
user. The following list shows the parameter block 
structure that is used in support of the channel program 
contained in the 2732A EPROMs on the 8089's 110 bus. 

TP_LSW DW 
TP-MSD DW 
EEP-INH DB 
EEP_BUF_FULL DB 
EEP-RECALL DB 
COL-CH-INH DB 
KBD-INH DB 
KBD_BUF-FULL DB 

COM-8086 
COLOR 
STR-PTIL8086 
BACICCOL-SW 
MON..:.JNH 
DSPLYJGJTR 
SCROLLREQ 

MON_HOM 
MON_END 
MON_LMARG 
MON-RMARG 
KBD_BUFJTR 

DB 
DB 
DW 
DB 
DB 
DB 
DB 

DW 
DW 
DW 
DW 
DW 

In the above table, DB represents a one-byte quantity, 
and DW represents a two-byte quantity. 

TP _LSW and TP _MSD are the two words making up 
the task pointer. However, since in this application the 
task program is in the 1/0 space, only the least­
significant word (LSW) is fetched. 

EEP -INH, when not equal to zero, indicates that the 
EEPROM buffer is closed to keystrokes or 8086 ASCII 
commands. 

EEP_BUF_FULL, when not equal to zero, indicates 
that the EEPROM buffer is full. 

EEP _RECALL, when not equal to zero, indicates that 
the 8089 is recalling the contents of an EEPROM buffer 
area. 

COL_CH-INH, when not equal to zero, inhibits the 
color control keys on the keyboard. 

KBD_INH, when not equal to zero, inhibits the pro­
cessing of keystrokes (entered at the keyboard) by the 
8089. Up to 6 keystrokes may be saved in the keyboard 
controller and may be processed later. 

KBD_BUFJULL, when not equal to zero, indicates 
that a new line of keyboard data needs to be processed 
by the 8086. The 8089 sets KBD-BUF _FULL equal to 

, -1 when the return key is pressed. The 8086 resets 
KBD_BUF_FULL to zero after it has read this data. 

3-369 

COM-8086, when not equal to zero, indicates that 
there are ASCII commands in the command buffer 
areas of dual-port RAM that need to be processed by 
the 8089. 

COLOR determines the foreground and background 
colors to be used in connection with ASCII characters 
entered at the keyboard, or sent by the 8086 via the 
command buffer area. In the COLOR byte, bits BO-B2 
determine the background color, while B3-B5 deter­
mine the foreground color. The following code is used: 

000 Black 
001 Red 
010 Green 
011 Yellow 
100 Blue 
101 Magenta 
110 Cyan 
111 White 

STR-PTIL8086 is a two-byte quantity that serves as 
an offset address for the ASCII characters in the com­
mand buffer. 

210355-001 



Ap .. 123 

BACIC.COLSW determines whether the 8089 color 
control keys will alter the foreground or the back­
ground portions of the COLOR byte. If BACK­
_CQL_SW,equals zero, the foreground color is 
altered. If BACLcOLSW is not equal to zero, the 
background color is altered. 

MON_INH, when not equal to zero, suspends DMA 
transfers by the 8089 from display memory to the 8275s. 
When M6N----INH is cleared, DMA will resume. 

DSPLYJG-PTR determines which of the two display 
pages will be used to refresh the CRT. If DSPLY_­
PG_PTR equals zero, page 0 will be displayed. If 
DSPLY _PG-PTR does not equal zero, page 1 will be 
displayed. 

SCROLL-REQ is set by the 8089 to indicate to the 8086 
that the cursor is at the bottom of the page, and that key 
entry/command processing has been halted, pending a 
display'memory scroll operation. When the 8086 has 
performed this operation, it clears SCROLL-REQ. 

MON_HOM, MOK_END, MON_LMARG, and 
MON_RMARG specify, respectively, the upper, lower, 
left, and right boundaries of the region on the screen in 
which keyboard entries will be displayed. 

KBD-BUF-PTR is a two-byte quantity that serves as 
an address for the ASCII characters in the keyboard 
buffer. 

Note that a number of these parameters support op­
tions (e.g., EEPROM buffer) and are not critical to the 
graphic operation described in this application note. 

8089 Display Hardware Interface 

This section describes the hardware of the peripheral 
processing module (PPM), which includes everything 
between the system bus and the CRT display/keyboard 
unit. The overall organization of the PPM is as shown in 
Figure 21. The dual-port RAM can be accessed from 
either the system bus otthe 8089's local bus. The 8089 is 
said to be operating in the system space when it is 
accessing the dual-port 'RAM, and in the I/O space 
when it is accessing devices on the I/O bus. Included on 
the I/O bus are four 8275 CRT controllers, an 8279-5 
keyboard controller, two 2732A EPROMs, which are 
used to hold channel programs, and four 2114 static 
RAMs, which are used as scratch-pad RAM for the 
8089. 

As explained above (under OVERVIEW OF CRT 
GRAPHIC SYSTEMS, Performance Requirements), 
four bytes are used to specify ,each 'character in the 

display. The first byte determines whether the character 
is a text character or a graphic character, and specifies 
the colors for foreground <;md background. If it is a text 
character, the second byte specifies the character with 
a seven-bit ASCII code, and the remaining two bytes 
are not used. If it is a graphics character, the second, 
third, and fourth bytes contain the color specification 
for each ofthe twenty distinct picture elements (pixels) 
within the character. Use of the foreground color is 
indicated by a one in the respective bit position, while a 
zero specifies use of the background color. 

The structure of the display characters and the formats 
of the individual bytes are shown in Figures 4 and 5. 

The four 8275 CRT controllers on the 8089's I/O bus are 
used to process the four bytes comprising each charac­
ter. Since the 8089 can transfer two bytes at a time in 
DMA mode, the four bytes are transferred in two 
stages. In the first stage, the 8089 fetches the first two 
bytes from the dual-port RAM, and transfers these two 
bytes into the first pair of CRT controllers. In the 
second stage, the 8089 fetches the second two bytes 
from the dual-port RAM, and transfers these two bytes 
into the second pair of CRT controllers. This process is 
repeated 80 times to transfer the 80 characters making 
up each row in the display. 

The distinction between text and graphic characters is 
entirely transparent 4> the 8089. Four bytes are trans­
ferred in every case, even though the text information 
only requires two bytes per character. 

We shall now examine the hardware schematics in 
detail, to see how the various functions of the PPM are 
implemented. Figure 26 shows the 8089 lOP and its 
associated bus controller. At the top left are the inputs 
through which the 8089 is controlled. The DRQF signal 
(detailed later) is the DMA request that initiates the 
transfer of two bytes from the lOP to two of the four 
CRT controllers. DRQF comes from the 8275s via a 
one-shot, and is connected to the DRQ 1 input of the 
8089. 

IRQ is an interrupt request that comes from the 8275s. 
It is activated after an entire screen's video information 
has been transferred from the dual-port RAM to the 
8275s: IRQ is connected to the EXT 1 input ofthe 8089. 
It is necessary to program the 8089 to terminate the 
DMA transfer on an external event, in order for this 
signal to be effective. 

CA is the channel attention signal. Upon receipt of CA, 
the 8089 reads the channel control word (CCW) from 
the dual-port RAM. From the CCW, the 8089 deter­
mines the nature of the operation assigned to it by the 

3-370 
210355-001 



AP·123 

DRQF 
IAQ 
CA 

Am 
ADY 
AST 

. -.!f":: 8 

31 OROl 
33 EXT1 
23 

CA 
24 

SEL 
22 
21 

ADY 
AST 

AD/DO 16 

A1/D1 15 
"2/02 14 
"3/D3 13 
"4/04 12 
AS/OS 11 
A&lOB 10 
A71D7 9 
AalD6 8 
A8I09 7 

1910 12 

381 8 

18 ft 11 
9 

2 7 

"DIDO-A 151015 
A19156. iiii "'6IS3-

52 

AiOWC 
~ 
~ 
IIim 

ClK iilIl5i! 
A101D10 8 Vcc~ lOB 

13 iOR 
A11/011 : 

15 
CEN 

14 
iiiTi.(A 

( 4 
EADI/O) 

A12/D12 m DTIlf 
",3/D'3 3 5 

"LE 
A14/014 2 16 DEN 
A15/015 39 "48 17 IImi 

A1&183 38 8288 

A17I84 37 ("v 
"18/85 36 P1 

A19/5& 35 

~: 
SO 27 

51 28 fWL iii A3 
A29 

r--1! $INTR.1 17 41 
SINTR.2 18 42 

6089 

CLK ...r 

Figure 26. 8089 I/O Processor and 8288 Bus Controller 

, 8086. CA is derived by hardware decoding of an I/O 
write command made by the 8086 to address OOH or 
address OIH on the Multibus. The lowest-order bit of 
this address is used to specify whether channel 1 or 
channel 2 of the lOP is to be selected, and is connected 
to the 8089's SEL input. In this application, the DMA 
transfers are always performed by channel 1. 

RDY is the ready signal that comes from the 8202 
dynamic RAM controller, and is synchronized by the 
8284A clock generator. RDY is low whenever the 8086 
is accessing the dual-port RAM. The RDY signal is used 
to establish a master/slave relationship between the 
8086 and the 8089, with the 8086 as the master. As 
mentioned earlier, the 8089 accesses the dual·port 
RAM about 50% of the time during DMA transfers. It 
can be seen, referring to Figure 20, that ifno idle clocks 
occur, the lOP will access the dual-port RAM during 
the four clock times of the DMA·fetch bus cycle, and 
will access the I/O bus during the four clock times of the 
OMA-store bus cycle. While the 8089 is doing the store 
operation, the 8086 can access the dual-port RAM. 
Once the 8086 has gained this access, the ROY signal 
will remain low until the 8086 is finished. The 8089 waits 
for ROY to go high before making a subsequent fetch. 

3-371 

At 5 MHz, the 8089 requires 3.2 microseconds (16 clock 
cycles) to transfer the four bytes representing a graphic 
character from the display memory to the four 8275s, 
assuming that no wait states have been inserted be­
cause of the 8086's access to the dual-port RAM, or 
because of dynamic RAM refresh functions. A com­
plete row, consisting of 80 characters, requires 80 x 3.2 
= 256 microseconds. The time allowed to complete the 
transfer of one row must be less than the time it takes to 
display that row on the screen. This latter time is equal 
to 1/50 of the total screen update time, or 1/3000 of a 
second (333 microseconds). Comparing the two figures 
(256 vs 333), it can be seen that there are 77 microsec­
onds available for such wait states. It is the responsibil­
ity of the software designer to control the 8086's access 
to dual-port RAM in such a mannner that the added 
wait states do not total more than 77 microseconds in 
any span of 333 microseconds. Otherwise, underruns 
may occur and the CRT screen will be blanked. See 
System Performance (below) for further discussion on 
this effect. 

RST is the lOP reset signal, which comes from the 
8284A clock generator. The first CA after RST causes 
the lOP to access address FFFF6 in the dual-port 
RAM, in order to read the system configuration pointer. 

210355-001 



AP-123 

Outputs from the lOP are the time-multiplexed address and 
data lines, BHE( (bus high enable), status line SO, SI, and S2, 
a~d the system interrupt request lines, SINTR -I and SINTR-
2. The interrupt lines go directly to the MULTIBUS, and 
from there they become inputs to the 8086's 8259 A interrupt 
controller. 

Figure 27 shows the 110 address latches and decoder, 
and the circuitry used to generate the DACKI signals 
for the CRT controllers. The lOP status bit S2 indicates 
whether the lOP is accessing the 110 space or the sys­
tem space. Latched by ALE (address latch enable), S21 
generates 10 and 101. 10 and 101. are used to indicate 
that the 8089 is not accessing dual-port RAM. 101 goes 
to the dual-port RAM controller. 

ALE 
AOIDO-AI51DI5 

RST 
3 

"49 
11 STa 

I DIO DOO 
A1/D1 2 DII 

DOl 
A2ID2 3 DI2 
A3ID3 4 DI3 D02 

A4ID4 5 DI4 D03 

A5ID5 6 DI5 D04 

A6ID6 7 DI6 DOS 

A7ID7 8 DI7 D06 

~ 
OE D07 

8262 

A66 

11 
ABlD8 • 
A9/09 2 
A101D10 • 

.Al1,Dl1 4 
12 5 

AI3/D •• 6 
A140147 
AI51DI58 

~ 6262 

Vee" 

4 

2 A20 5 
D Q 

~ 
74LS74 6 

• 2 
Ii 

A'9 

1" 
4 

A19 

19 
18 
17 
16 
15 
14 
'3 
'2 

19 
18 
17 
16 
15 
.4 
.3 
.2 

The DACKI signals are generated in the following 
manner: 

1. Both 8275 pairs are accessed by the 8089 (DMA 
mode) via port AOOOH. 

2. Hardware is used to select one pair of CRT con­
trollers (bytes 0 aJ;ld I or bytes 2 and 3). 

3. As the 8089 reads (DMA) the word from the dual­
port memory, address bit I (SAl) is' latched with 
the memory read command (MRDC/). 

4. When SAl = 0, DACK 11 is activated. 

5. When SAl = I, DACK 21 is activated. 

6. In this manner the 8089 performs alternating 
writes (DMA) to the 8275 pairs. 

10A0-10A15 

A25 
10A'3 • AO 

f 
15 

10A14 2 14 10 

f0A1S 
A. IDE 3 A2 •• 

.2 T ., 
11 T 

ClK 
6 E. i 

10 
CRT r I E2 7 KEY 

E1 
6205 

Vee 

SA'~ 4 A2' 
.0 ~DA 9 

.2 D A20 Q 
5-~ 

MiiDcr-JI 
~DA 74lS74 

Q 8 
_~ 8 

""""or;;- .0 A2' 

iii 

10 

Figure 27. Address Latches, Decoders, and DACK Generator 

3-372 210355-001 



AP-123 

Figure 28 shows the bus transceivers used between the 
8089 and the I/O bus, and also shows the 2732 
EPROMs. 

Figure 29 shows the 2K bytes of 2114 static RAM on 
the I/O bus, which are used as scratch-pad RAM for 
the 8089. 

Figure 30 shows the 8279-5 keyboard controller, and 
also shows the 8284A clock generator that produces the 
CLK, RDY, and RST signals for the 8089. For more 
information on interfacing the 8279-5 to the keyboard 
(Cherry Electrical Products B70-05AB), refer to the 
8279/8279-5 data sheet and application noteAP-32, CRT 
Terminal Design Using the Intel 8275 and 8279. 

IOAo-IOA15 

DT/R 

AO/OO-A15/015 

1'CiEPRiiM 

" 1 

2 

~ I'---"-
t---+ 
~ 
r-----.!.. 
r---!-

9 

" 1 

~ 3 -----. 
----.!.. 
----+-----+------.L 

9 

A18 
1 

--./ 

T 
AD 

Al 

A2 
A3 
AO 

A. 

A6 
A7 

OE 

3 

A.O 

BO 
,. 

Bl 18 

B2 
17 

B3 
,. 

BO 
1S 

B. 
10 

13 
B6 

12 
B~ 

8286 

A31 ,. 
18 

17 

16 

" 10 
13 

12 

8286 

Figure 31 shows the clock generator for the character 
timing and dot timing. The character clock frequency (C 
CLK) is 118 of the dot clock frequency (D CLK), 10.8 
MHz. Also shown in Figure 31 is a 9602 one-shot used 
to generate the video sync pulses. 

Figure 32 shows the CRT Controllers #0 and # 1. Bit 6 
of Byte 0 determines whether the display character is 
text or graphic. If Bit 6 is low, the character is a text 
character, and Byte 1 is used to address the 2732A 
character generator ROM. Bytes 2 and 3 are ignored. 
The line count outputs LCO-LC3 of an 8275 (any 8275 
can be used, since they are all synchronized) are also 
applied to the character generator to perform the line 
select function. 

IODO-IOD1S 

A07 

,'8 

eE 
9 1000 10A1 8 

AD 00 10 1001 10A2 7 A1 0, 
10A3 B ~ 

11 1002 
A2 13 IOD3 10AO S Do A3 

10 1004 10AS 0 

3 
AO O. ,. 10DS IOA6 

2 
AS O. 16 1006 10A7 A6 Ds 

IOA8 1 Or 
17 1007 

A7 
IOA9 23 

A8 
IOA10 22 

AS 
10A11 19 A10 
10A12 21 

A" 
2732A 

OE 

120 

118 

IOA1 8 
Ce • 1008 

IOA2 7 10 1009 

IOA3 6 11 10010 

IOA4 • 13 10D11 

lOA' 4 10 10012 

IOA6 3 A6' 
1S 10013 

IOA7 2 16 10014 

IOA8 1 17 10015 

IOA9 23 

IOA10 22 

IDA" 19 

IOA12 21 
2732A 
0-

, 12D 

Figure 28. Bus Transceivers and EPROMs on I/O-Bus 

3-373 
210355-001 



10A1-10A1 0 

12 __ 

~_----.J ," lOA 

iOiWi 
13 

1.2 

~11 
13~ 

1.21 

I 

• 
7 

• 
3 
2 

1 
17 

11 
15 

~ 
r----!-
I---t 
~ 
t-----! 
~ 
~ 18 

~ 

A~·123 

A2I 

AD 
,. 10DD 5 

~01 
1001 ~ 1.1 ~02 

13 

1.2 V03 12 IOD2 t----.!.. 
1.3 V04 

11 10Dl ~ 
M ~ 

r-..--!. AI 
AI ~ 
1.7 ~ 
AI 21.AL·3 

~ AI 

WE CS 

10 1 8 

14 10Dl ~ 
13 IODI ~ 
12 IOD10 ~ 
11 IOD11 4 

~ 
~ 
~ 

All ~ 
~ 
~ 

214'41.1.-3 

10 I I 

Figure 29. Static RAMs on 1/0 Bus 

3-374 

,. 1OD4 

13 I0OI 
12 JODI 
11 IOD7 

AU 

21141.1.-3 

WE Ci 

10 I • 

/ 

,. 10D12 

13 IOD13 ., 12 IOD1. 
11 10015 

A7. 

2144A1.-3 

10 I 
81 

IODD-10D15 

210355-001 



1000-10015 

10RC 
IOWC 

OARO 

A-­

~ 

IOAl 

1000 12 

1001 13 
1002 14 

1003 15 
1004 18 

1005 17 
1005 18 

1007 19 

10 
11 

22 

21 

~ 
,...!. 

Vee 

~ 

~ 
A4 IN914 4 ~ 560K 

14 i5: 11 

5 6~110n ::!: 
t~F 

l...-7 A3 

-454 4 
SACK 

6 
10 

7 
M BRW 

"1i 
"i ....,:. 

AP-123 

A17 
38 RlO 

OBO RlO 39 Rll 
OBl RLl 

RL2 1 RU 
OB2 2 RU 
OB3 RL3 • RU 
OB4 RL4 

8 RLS 
OB5 Rl5 

7 RLI 
Rl6 OB6 8 Rl7 

OB7 Rl7 

-F-RO 
WR STRB 

STa 

CS ~ 
~ AD 

RESET ~ 
ClK 

8279-5 

510 

15MHz 510 

1Di 
16 117 

A37 
iiSi' 

10 
RST 

ClK 
8 

RDY1 ROY 
5 

ROY2 

AEN2 

AENi Fli: 
CSYNC 

8284A 

Figure 30. Keyboard Controller and Clock Generator 

3-375 

~ 

43 
44 
45 
48 

47 

48 
41 
50 

53 

r-- 51 

I-- 52 

--- 69 
~ 80 

--
RST 

ClK 

RO Y 

210355-001 



13 

INTVTRC 

VCC*1 

510 

21.' MHz 510 

12 osc 

1'.15 

F/f 
CSYNC 

8284A 

9602 

Vee· 

AP-123 

..--------... ----- CCLK 

r-------~-------------_+----------- LDCHAA 

1'.21 
185163 

15 

f 1. 
CUi 1 

L-__ --..,. _____ .... ___ Vcc' 

A2 

1'.1 

DCLK 

P2 

HRTC _________________________________________ -J 

Figure 31. Character Clock Generator and Video Sync Pulse 

3-376 210355-001 



~ 

~ ; 

CCLK 

1ODO-IOD15 

iOiiC 
AiiiWC 

iOA1 
Ciffi 

iiACK1 
GCCLK 

OCLK -, 
OCLK 

LDCiiiiI 

RYV 

, 

2 A5 
11 

3 

~cu 2 10lI0 12 FGR 2 1A OBO ceo ~ 10 5 1QD1 13 FGG 5 IY ., CC1 10 2Q 1B 
1QQ2 14 

DBa CC2 ~2D 3D 7 FQ8 11 2A 
1000 15 CC2 ~ 3D A11 4Q 10 BQR a 2Y DBa 211 IGD4 ,. 

GB4 CC4 I 27 11 4D 12 BGQ • 
10 SA lOGS 17 

DBa CC5 ~ 50 sa 15 - 3a IODI ,. 
DBa CCI ~)4 ID 74LS1741G 

"* 4A 3Y 
1OD7 18 CLK 13 

DB7 r' 1" 4B • iiii S 4Y 
10 Wii 15 o _ 
21 Ycc* 

AD 
74157 22 as 

• DACK DAD 

5 

30 CCLK 

f LPEN 31 

A13 1AD 

1275 

CRT CONTROLLER #0 

T 
I,. 7 

4 A4 FE 
v 

10DS 12 23 Or . 17 FBO 
:: H DH ceo 

24 3 AS 1008 13 Oe ,. FB1 
10010 

CC1 
25 2 M 

G 
14 CC2 D. 

15 FB2 11 F 
1QD11 15 21 1 A7 14 FB3 

': E 
CC3 0. 10012 ,. 

27 23M 13 FB4 
10013 17 

CC4 
21 22 AI 0" 4 0 A40 

11 FBS 
10014 18 CC5 21 18 A10 0.. 10 Faa 3 C 

CC8 0, 
FB7 

B 
10015 19 4 00 

, ! A • LeO 
3 ~A1 Ycc'- Imr 

10 LC1 
2 LC1 6 A2 f CLKINH 21 LC2 

r-1- t LC2 5 AI 2732A 
LC3 SRIN 

22 8 AD A28 7nS1 .. 
6 r A11

-

Lii 
30 DE 

15 

f CFIT ~20 
A14 CONTROLLER 

8275 #1 

- ---- --

Figure 32. CRT Controllers, Color Muniplexer, and Character Generator 

4 RED 

7 -
• BLUE 

~ 

13 1 AI 

pu;-

PI 

~ 

54 

II 

II 

h 
DRQ1 

cao-caa 

iRAPHMODE 

l.CO-LC2 

, 
'_Fa7 

• ! 
~ 



AP-123 

For each character, the foreground and background 
color bits are output from Byte 0 and latched into the 
74LS174, from which they are applied to the input of the 
74LS157 multiplexer. Selection between foreground 
and ba~kground is done by the output of the 74LSl66 
parallel-to-serial converter, which operates from either 
the text or graphic character generator, as appropriate. 
The roles of foreground and background color may be 
reversed by the RVV (reverse, video) signal from the 
8275, which is exclusive-ORed with this color select 
output. 

Since the RBG (red-blue-green) inputs of the color 
monitor (Aydin Controls 8039D) are AC coupled, 
return-to-zero type outputs are needed to pass these 
signals through the input stages. This is provided by 
strobing the gate input of the 74LS157 multiplexer with 
the D CLK (dot clock) signal. By varying the duty cycle 
of the D CLK, the user can produce many different 

10110-1001' ""'" 12 -ceo 22 
1001 13 24 

081 cel 
IOD2 

,. H 
oa2 CC2 - " - CC3 21 

1004 11 CC4 
27 -IODI 17 085 CCI 
21 

IODS ,. 
OBI CCI 

21 
1007 11 • 

I oa7 

r!-lORe RO 
A'IIiR 10 

WR f-!-
il!ii' 21 

AO r-
e1I'i'i' 22 

ca 
DACKi • OACK 

GCCLI< 2D cell< 
~N 

shades of color. The D CLK signal is ORed with the VSP 
(video suppress) si8'nlll from the 8275, to produce com­
plete video blanking when desired. 

Figure 33 shows the CRT Controllers #2 and #3, the 
decoder for the line select function, and latches for the 
video control signals. CRT controllers #2 and #3 are 
operational in graphics mode only. Synchronization of 
the two pairs of CRT controllers is discussed in the 8089 
Display Functions Software section. 

Figure 34 shows the tri-state butTers used to handle the 
color information within a graphic character. The 
decoded line count outputs (ROW O/-ROW 4/) are used 
to select which butTer is enabled onto the bus. The 
butTer A36, enabled by the GRAPH MODE sigllal, is 
used to "double up" the four graphic cells to produce 
eight (horizontal) dot inputs to the shift register (Figure 
32). 

C87 CI7-C8ft 
C8I 
C8I 

, 
C810 
C811 DRQI 
C812 
C811 

1 ....... 1 

-----J i5iiQ 

10~ 

AM 

CAl f AI. CONTROLLER 117' #2 

OROI Al7 

LCD-LC~ 
LCD 1 AO ~ 11 iiiiWo 
LC1 2 AI iii 

,. 
iiiiii1 LC2 3 At " GRAPHMDDE 1i2 RIiiiii I ' ! 

12 iiOWi 
11 iiiiWi 

I ...!!-
IODS 12 22 ca,. f' + I 13 24 ca15 • II 2-. , KIDIo ,. H call Ii 

10011 15 21 7 
I2DI 

1DD12 11 '27 C811 
10013 17 21 call 74175 

10014 18 21 CB2D 
10015 11 

-'41 
2 

I • 10 

~ 
RVV 

IG 
10 

10 
2Q 

7 

21 50 
~ 

VIP 

22 31 HlRC • 35 3D 
3D r:- I-M-

2D 7 15 

f • r=- 40 
4Q 

>JL 
INT~RC 

I 1275 CLI< 
A .. I CLR 

CCu( 
CAl CONTROLLER #3 l' , 

Vee· 

\ 

Figure 33. CRT Controller., Line Decoder, and Video Control Signal Latch 

3-378 210355-001 



C80-C820 

'iiCiYo 

iiOW1 

GRAPH MODE 

10 

cao 
C81 

C8. 
ca. 
C8. 
cno 
CBs 

C87 

CBI 
C8. 

C810 
CB11 

C812 
C813 

C814 
Cl15 

C81. 
ca17 
C81. 
C819 

Ap·123 

A73 
580 sao 2 lAl lVl 11 2 

• lA. 
,. S81 

SB1 ~ IV. • 1 58. 

• lA3 IV. 
" 5" 

SB2 L7, 11 lA' IV' 
.Al ,Vl " sao 

la 
2.\' 

7 S81 ~ .V. 583 ,. 
• Aa s S8. , . 

17 .va a S8a L..!! .A. .V. A36 
74lS!44 74LS244 
lG 2G 

y, 118 ']'" 
• 8 

A7 

• 1. S80 

• ,. S81 

• " S8. 

• I. S" 
11 • S80 ,. 7 S81 ,. A54 • S8. 
17 • S83 

74LS244 

l' r 18 

• 18 S80 

• ,. 581 

• " 58. 
8 " S8a 

11 • , 
13 c+-
15 A55 • 

--!!. • 
74LS244 

yl r 

Figure 34. Trl·State Buffers for Graphic Color Information 

3-379 

18 F80 Fao-,. F81 
FB7 

I. F8. 
I. F83 

• F84~ 
7 FB. 

FBI 
3 F87 

210355-001 



AP-123 

The block diagram in Figure 35 shows how the text 
characters are processed. The following statements ap­
ply to Figure 35: 

1. Byte 0, Bit 6 = 0 indicates text mode. 

2. The six color signals from CRT Controller #0 
(three foreground and three background) are 
latched and transmitted to the multiplexer. 

3. The seven character output signals and the three 
line count signals from CRT Controller #1 are 
transmitted, to the text character generator. 

CRT 
. CONTROLLER LATCH 

#0 CCCI-CCIi 6 

U75 75LS174 

CRT cco-c:cs 7 TEXT 
CONTROLLER CHARACTER 

#1 GENERATOR 

LC»-LC2 3 

U75 2732A 

4. The eight output signals from the text character 
generator are transmitted to the parallel-ta-serial 
converter. 

5. The serial, horizontal dot data is transmitted to. 
the multiplexer and selects foreground (dot data 
bit = 0) or background (dot data bit = 1) color 
signals. 

6. The red, blue, and green color signals are trans­
mitted to the color monitor .. 

7. CRT Controllers #2 and #3 are not operational in 
text mode. 

MULTIPLEXER r-- RED 

FOREGROUND. BACKGROUND 6 

r-- aWE 

COLOR SELECT 
74LS157 r-- GREEN 

SEIlIAL HORIZO NTAL 
DOT DATA 

j 

PARALLELTO 
SERIAL 

8 CONVERTER 
/, 

74LS166 

Figure 35. Processing of Text Characters 

3-380 210355-001 



AP-123 

The block diagram in Figure 36 shows how graphic 
characters are processed. The following statements ap­
ply to Figure 36: 

I. Byte 0, Bit 6 = I indicates graphic mode. 

2. The six color signals from CRT Controller #0 
(three foreground and three background) are 
latched and transmitted to the mUltiplexer. 

3. The three line count signals from CRT Controller 
# I are transmitted to a one-of-eight decoder 
which generates five row select signals (ROW 0-
ROW 4). 

4. The twenty pixel signals from CRT Controllers 
#1, #2, and #3 are transmitted to three octal 
buffers. 

CRT 
lATCH CONTROLLER 

•• ceo-ccs 6 

8275 74LS174 

CRT LCO-LC2 DECODER ROW. 

CONTROLLER (1 OF 8) 

*' • ROW 1 

8275 
---, 8205 I--

6 

CRT BUFFER 
CONTROLLER 

~ .. • 
8275 74LS244 

ROW' 

ROW. 

+ 
CRT 

~ 
BUFFER 

CONTROLLER .. • 
8275 74LS244 

ROW" 

+ 
BUFFER 

" 

74LS244 

5. The four pixel signals of the selected row (based 
on the row select signals) are transmitted to an­
other octal buffer. 

6. The octal buffer converts these four bits to eight 
bits by duplicating each signal. Thus, output bits 0 
and I are equal, 2 and 3 are equal, etc. 

7. The eight output signals of the octal buffer are 
transmitted to the parallel-to-serial converter. 

8. The serial, horizontal dot data is transmitted to 
the multiplexer and selects foreground (dot data 
bit = 0) or background (dot data bit = 1) color 
signals. 

9. The red, blue, and green color signals are trans­
mitted to the color monitor. 

MULTIPLEXER '-- RED 

FOREGROUND & BACKGROUND 6 - BLUE 

COLOR SELetCT 

74LS157 - GREEN 

SERIAL HO AIZONTAL 
ooTDATA 

~ 
BUFFER PARALLElTO 

SERIAL 

• • CONVERTER 

~ 
---f+-

74LS244 74LS166 

• 
'--f--' 

~ 

Figure 36. ProceSSing of Graphic Characters 

3-381 210355-001 



Ap·123 

Figure 37 shows the circuit used to synchronize the 
8275s, and also the circuit used to generate the DRQF 
signal. As mentioned earlier (see Figure 20), if the 8089 
were to wait for a subsequent DRQ signal from the 
8275s, some clock cycles would be allocated to idle 
clocks, and the DMA transfer would become less effi-

IIlI'f ------4r---, 

10DO 

CLiffii 
iOWc 

CCLK 

Vee 

DiiQ 

Vee· 

ORQl 

DRQ2 

ALi 

Vee· 

A7 

UK SOpF 

12 

11 

A2 

10 

Vee· 

cient. To preclude this, the circuit shown in Figure 37 
generates a surrogate (early) DRQ signal, DRQF, using 
a one-shot triggered by the trailing edge ofDRQ (DRQ 1 
AND DRQ 2). The one-shat times out prior to the rising 
edge of eLK in T4 of the DMA's store bus cycle. 

GCCLK 

Vee· 

DRQF 

10 

SCSTRB 

Figure 37. Circuits to Synchronize CRT Controllers and Generate DRQF 

3-382 
210355-001 



AP·123 

Figure 38 shows the relationship between the individual 
DRQ signals from the 8275s and the DRQF signal that is 
sent to the 8089. DRQ 1 is the data request representing 
the 8275s #0 and # I, while DRQ 2 similarly represents 
the 8275s #2 and #3. The DACK 1/ and DACK 2/ 
signals (along with AIOWC/) are used to deactivate 
DRQ 1 and DRQ 2, respectively. 

FETCH 

T2 I 13 

BYTES OAND 1 

STORE 

I T4 I Tl I T2 

Figure 39 shows the multiplexer used to control writing 
of data to the dual-port RAM. When 10 and SWTC/ are 
both low, the 8089 data is gated to the dual-port RAM. 
When BDSELI and SWTC/ are both low, the 8086 data 
is gated to the dual-port RAM. BDSELI may be active 
only when the 8089 is in the I/O space. Note that the 
address range for the dual-port RAM is F8000-FFFFF 
as seen by the 8089, and FOOOO-F7FFF as seen by the 
8086. 

BYTES 2 AND 3 

STORE 

T2 I T~ 

ORal 
(FADM 8215 #0 and #1) 

'-----flJ - - - - - - - - - - - - - - --

DR02 
(FROM 8275 #2 AND #3) 

Q 
(FROM 9602) 

DROF 
(TO 8089 ORal INPUT) 

DAcK1 
(TO 8275 #0 AND #1) 

'iiAcK2 
(TO 8275 #2 AND #3) 

AiOWc 
(FROM 8288) 

- - - - - - "LAST TRANSFER 

Figure 38. Derivation of DRQF Signal 

3-383 210355-001 



~ 

~ 

! 

ADii15' 
AO/DO-Al51015 

10 

SVifC 

iOWC 
MiiDC 
MwiC 
iORc 

iD"SiL 
$wiC 

A3 

./ 

1 -"""'- 3 

• ., A22 

I""' ~ A70 

A4 

~ 22 SC STRB ~ 8T8 
"iACK 

19 1 010 DOD ~ SiffiC 
20 2 011 DOl ~ SWTC ., L.± DI. 002 .2!..- SiOii ~~CA ~ 

5 014 lK S-~ 11 10 

'-------.!... DIS ,. I 
cA. 5V A22 .. 

004 14 
DOS 

I To..!.. FE ~ 5V 

8282 lK 

I 
Di-DiS 

Vee·+- T A72 11 
T A35 

iii AO ii 
,. WSDO Vee" AOiOO 1 19 WSDO 

73 AO SO 
lIi 2 

AI 
18 WSD1 A1/01 2 AI Bl 

18 WSD1 
74 Bl 
71 D' 3 

A. B. 
17 WSD. A2ID2 3 

A' B. U WSD2 

7' 
In 4 

A. Ba 16 WSD. A3ID3 4 
A. B. 

16 .~D. 

69 154 5 A4 U 
15 WSD4 A4I04 S 

A4 
15 WSD4 

~. 6 
B4 

AS is 
,. WSDS ,AS/05 • AS B5 

14 WSDS 
70 

D6 7 
A6 .. 13 WSDI ABlD6 ~ A6 

8& 13 WSD6 
67 

D7 8 
A7 B7 I. WSD7 A7/D7 12 WSD? 

68 A7 B7 

.--!-- DE 8287 
9 

Oe 8286 

Vee" 
11 

Yee" 11 

Do r-;-- A71 19 WSDe A8/D6 1 A53 19 WSD8 
65 • 

2 18 WSDI AtlD9 • 18 WSDS .. D9 

63 
Dl0 • 17 WSD10 A101010 3 17 WSD10 

1m • 18 WSD11 A11/D11 • 16 WSD11 
64 

5 15 WSD12 012 AU/D12 5 15 WSD12 
61 

Dl. 6 " WSDt3 A131013 6 14 WSD13 
62 

01. 7 I. WSD1. A14/014 7 '" 13 WSD14 
59 1115 8 12 WSDts A151D15 8 12 WSD1S 
50 

9 
8287 • 8286 

l.--
~ 

A22 

==ifY-10 

Figure 39. Multiplexer for Writing to Dual-Port RAM 

9 8 13 
10 A18 
~ 

AI. 12 
MBRW 

WSDO-WSD15 

~ 
l' ... 
~ 



AP·123 

Figure 40 shows the demultiplexer used to control read­
ing of data from the dual-port RAM. The internal trans­
fer acknowledge (SACK!) signal from the dynamic 
RAM controller latches this data. If MRDC/ is active, 
the data is then gated to the 8089. IfBD ENA! is active, 
the data is gated to the Multibus for transmission to the 
8086. 

1NT"XAc'K 
ASDO-RSD1S 

-

RSDO 

RlI01 
RSD2 
RSD3 

RSD4 
RSDS 

RSOS 
RSD7 

RSOS 
RSD9 

RS010 
RS011 

RSD12 
RSD13 

RSD1. 
RSD1S 

11 
1 

• • • 
S 

• 
7 

8 

• 

11 
1 

• • • 
S 
8 

7 

8 

• 

A34 
STa ,. AOIOO 
DID DOD 

18 Al/Dl 
011 001 

17 
01' DO. A2/D. 

01' DO. 
,. A3JD3 

01. D04 15 A4/D4 

DIS OOS " ASIDS 

" A6/D6 
01. 00. ,. 1.7/07 
017 007 

OE 
8.82 

AS. 
" "BIDS 
18 AIID9 
17 A1OJ010 

16 "'1/011 
15 "'2/D12 
14 .,31013 

" A14/014 ,. Al5/015 

8.82 

Figure 41 shows the multiplexer for the address inputs 
to,the dual-port RAM. If the 10 signal is high, the 
address on the Multibus is gated into the dual-port 
RAM. If 10 is low, the address from the 8089 is gated 
into the dual-port RAM. 

11 A.' 
STa 

RSDO 1 000 DID 
RSOl • 011 001 
RSD2 • DO. 01. 
RSD3 • D03 01. 
RSD' S 

01. DO. 
RSDS • DOs DIS 
RSD6 7 

01. 60i 
RSD1 8 017 Do7 • OE 

8283 

11 
AG8 

1 
R50S • 
RSD9 • 
RS010 • 
RSD1l • 
RSD12 • 
RSD13 7 

RSD1. 8 
RS01S 9 

828. 

,. 
18 

17 ,. 
lS 

" 
" ,. 

" 18 

17 ,. 
lS 

14 ,. 
" 

DO 
iii 
D' 

Pi 
D4 
05 

D. 
07 

58 
09 
ii10 
0" 
Iffi 
1m 
Dl"-

D1S 

AOIDO-A 151015 
8089 BUS 

Do-Dii 
MULTIBUS 

Figure 40. Demultiplexer for Reading from Dual-Port RAM 

3-385 210355-001 



AP·123 

AD-A 11.I!HE 
ALE 

SAD-SA11 ,BHEN 
P1 

r- A3 

A6Ro VCC*+ T 
1051 11 STBA32 ~ :: AD -= 11 SAO 

DID DOO 
,. SAO 

Aijjff 2 
101 ~ 

18 ~'- 101 2 DI1 DD1 18 SA1 

55 ~ 
3 

102 
17 SA2 A2 3 

DI2 DD2 
4 

~ 
16 SA3 A3 • ,. SA3 

1= 5 
103 

15 SA4 10"- ~ 
DI3 D03 

15 SA< 
104 DI4 DO< 

milS JI = 14 SA5 AS 6 DIS 
,. SA5 

I: AS DDS . ADiii 

~ 
13 SA6. A6 7 

DI6 Doe 
13 SA6 

AlIIii 8 
A6 12 SA7 107 8 12 SA; 

152 9 
107 

I 
DI7 D07 107 

OE i!! 
8287 9282 

VCC*+ 1050 11 1033 

I:: ~ 
19 SA8 108 1 19 SA8 

18 SA9 A9 2 18 5109 

1 :: 

3 SA10 1010 3 SA10 

~ 
4 . .!II sllJ~ 1011 • .16 SA1: 

•• 5 ·15 &1012 1012 5 15 f!AJ!. 

'5 
6 ,. SA13 ,1013 6 51013 

7 13 5101' 101,' 7 13 SA1. 

:! ... ~ 8 12 SA1' A .. • SA15 

9 9 

8287 8292 

VCC'..!j- 1087 JJ. 1010 

:: 19 SA18 1016 1 18 SA18 
2 -,!.SA.!.7.. 101; 2 18 SA1; 

1= 
3 1Z SA",- A1.8 3 17 SA18 

t-' 18 SA19 A19 4 16 SA19 

127 l- S 15 BHEN 

BH~ 
15 BH!t! 

\ 

A7 

l.r 
9 9 

9287 8282 

iO 

10 

Figure 41. Multiplexer for Address Inputs to Dual-Port RAM 

3-386 210355-001 



AP-123 

Figure 42 shows the 8202 dynamic RAM controller. The 
inputs SAO-SA19 come from the multiplexer shown in 
Figure 41. The dynamic RAM controller generates the 
control signals (shown at the right of the page) for 
operating the dynamic RAM. 

Figures 43 and 44 show the dynamic RAM itself. 

1K 

8089 Display Functions Software 

The 8089 display functions software consists of a single 
program which is executed by the 8089 on a continuous 
basis. This program performs the following functions: 

Initialization for the 8089 itself and for the CRT con­
trollers and the keyboard controller. 

24 MHz 680 

H(] 
36 137 

SAo-SA19 
SA1 0 

ALO 0uT0 
7 0uT0 

8 
0 

SA2 AL1 Oiffi 
9 OUT1 

SA3 10 ffirfi 
11 OUT2 

AL2 
13 I5"UT3 SA4 12 0uT3 

SAS 
AL3 

15 OUT4 14 AU i5iffi 
SAO 16 

ALS OuTs 17 OUTS 

SA? 18 
ALB 0Uri 19 i5Iffii 

SA8 5 
AHO 

SA9 4 CAS 
27 

. SA10 3 
AH1 CA 

AH2 
21 SA11 2 

RASO 
SA12 1 

AH3 RA 

SA13 
AH4 

39 
We 

28 
SA14 38 

AHS WE 
AH6 

32 XAcK 2. 
Rli IN 

31 
ViR 

SA16 

ill 

A9 A1. 
SA 

12 A12 
11 33 PCS 13 

~ 
P1 

9 8 80 ( ~ 30 A22 A4 
81 SACK 13 11 

~ REFRQ/ 12 . 

ALE 

I 
~ 1 2 XACK L 82n.4 O.C. 

10 

BD 

1 AS 

~ 
1 3 

J f BD 

- .~ 2"'--' 

SA19 

Si1i 
A24 

Figure 42. Dynamic RAM Controller 

3-387 210355-001 



i 

!::1 
8 

~ 

OUTIH)I 

We 
SAO 

AS 

5 

t--L 
r--!-
.~ 

f'---!!.. 
~ 
~ 

4 

15 
3 

~ 

t'--
~ 
~ 
~ 
r----
'--

AD A42 

A1 

A2 2-A3 DtN WSDO 

A4 

AS 

~f-' ,06 DoUT 'RSDO 

RAS 

CAS 

WE 
2118-12 

A46 

fwSo. 

i----' 
R504 

2118-12 

WSOO-WS07 

RSDO-RSD7 

A43 A44 A45 r-- r-- ,---
l.--- l.--- ,---
I--- l.--- ,---
l.--- --' WSD1 I--- r---- WSD2 ,--- -- WSD3 

I--- V-- ,---

l.--- l.--- ,---
I--- >-- RSDt V-- r- RSD2 ,--- ~ RSD3 

I---
2118·12 2118·12 2118-12 

~. 

]! 
~ 

,--- A60 V-- A61 V-- A62 

i--- V-- V--
>--- V-- r---

~7 :.-- iWsii's V-- ~D6 r---
>--- l.--- V--
i--- V-- V--

I--:.-- I·RSOs V-- i----' V--
RS06 RSD7 

2118·12 2118-12 2118-12 

.. 

Figure 43. Dynamic RAM (Low Data Byte) 



~ 

~ 

I 

OUTG-OUTI 

iWi 
CA 

WE 
iiiEN 

AS 

~ 
10 

A63 
'--
r--
~ f---' 
'--
'--
'-- f--i-' 

2118~12 

'-- A79 

r--
r--
r-- ~ 

~ 
~ 

'---- -
2118-12 

,.-- A64 ,..-- A77 
,.-- r--
r-- r--
,.-- r---- ,..--
,.-- >---
,.-- r--
,.-- r- ,---

2118·12 2118-12 

r-- ABO -- A81 

>--- r--
r-- >---
>--- f---' ~ 
,--- l---
~ ~ 
r-- f-------' l---

2118-12 2118-12 

Figure 44. Dynamic RAM (High Data Byte) 

,..-- A78 
,..--
,..--

~ ,..--
,..--
,..--

- r-

2118-12 

r- A82 

Lr--
r-

--' ,..--
,..--
,..--

---' ,..--

2118-12 

~ 

-

t--"" 

!----

WSD8-WSDIS 

RSDB-ASD15 

:I> 
]! 
I\) 
W 



Ap·123 

The transfer instruction which causes the DMA 
transfer of the CRT refresh data to begin. 

Polling routines for the keyboard and the command 
buffer. 

Figure 45 is a simplified flowchart showing the relation­
ships among these three main functions. The program 
begins upon receipt of the second CA (channel atten­
tion) following an lOP reset. After the initialization 
processes have been completed, the program loops 
continuously, alternating between DMA transfer and 
polling processes. There are 48 rows of characters on 
the screen. The polling processes are carried out during 
the vertical retrace time, .which is the equivalent of 2 
rows. Thus, it is easy to see that the DMA process uses 
up 96% of the 8089's time, leaving 4% for the polling 
processes. 

CA 

~ 
INITIALIZATION 

CRT 
REFRESH 

(OMAJ 

POLLING 

Figure 45. Channel Program Simplified Flowchart 

As mentioned earlier, the channel program is stored in 
the 2732A EPROMs on the 1/0 bus. Figure 23 (above) 
shows the address assignments for devices on the 110 
bus. The 2732As occupy addresses 2000-3FFR The 
8089 also uses a scratch-pad static RAM (2K bytes at 

addresses 0000-07FF). The CRT controllers are ac­
cessed by using addresses 4000 and 6000 on the 110 
bus. Address 6000 is "CRT Controller I" and actually 
refers to the first pair of 8275s. Address 4000 is "CRT 
Controller 2," the second pairof8275s. Address 8000 is 
a clock enable address. Write commands to this address 
enable or disable the GC clock, which is the character 
clock for the 8275s. Address AOOO is decoded to pro­
duce the DACK signal for the 8275s. Address COOO is 
the address of the keyboard controller. 

The exact manner in which the channel program ex­
ecutes depends on the flag settings and parameter 
values in the parameter block. 

Appendix A is a flowchart for the complete channel 
program. Appendix B is the corresponding ASM-89 
assembly language listing. In the paragraphs to follow, a 
general overview of the channel program is given. The 
reader may refer to the flowchart and listing if a more 
detailed description is desired. 

The first CA after lOP reset causes the 8089 to fetch the 
system configuration pointer (SCP) and system configu­
ration block (SCB) from dual-port memory. These 
blocks contain certain very basic system-level informa­
tion for the 8089, as explained above under Overview of 
the 8089. 

The next CA causes the channel program to begin ex­
ecution (at the point marked START on the flowchart). 
The initialization portion of the channel program con­
sists of the following operations: 

Start and initialize the 8275 CRT controllers. 

Initialize the 8279 keyboard controller. 

Initialize the dual-port variables (parameter block). 

Synchronize the 8275 CRT controllers. 

To initialize and synchronize the 8275s, the channel 
program performs the following operations: 

Enable the GC CLK to the 8275s by writing OIH to 
110 port address 8000H. 

Send the Reset command to the 8275s, followed by 
the four screen format parameters (all commands 
sent to the 8275s are sent first to the pair of 8275s at 
address 6000H and then repeated for the second pair 
of 8275s at address 4000H). 

Send the Preset Counters command to the 8275s. 

Disable the GC CLK by writing OOH to address 
8000H. 

Send the Start Display command to the 8275s. 

Enable the GC CLK again by writing OIH to address 
8000H. The 8275s are now initialized and 
synchronized. 

3-390 210355-001 
( 



AP-123 

After the initializations have been completed, the chan­
nel program enters its main loop. The 8089 channel 
control register is loaded to specify the following DMA 
conditions: 

Data traJ?sfer from memory to I/O port. 

Destination-synchronized transfer. 

GA register pointing to data source. 

Termination on external event. 

Termination offset = O. 

The source for the DMA transfer (display page 0 or 1) is 
then selected according to the value of DSPLY_­
PG-PTR (the display page pointer initialized by the 
host CPU) in the parameter block. The CRT character 
clock is then started and the DMA transfer begins. 
When the entire screen has been refreshed, the 8275s 
activate the 8089's EXT input. 

The 8089 then executes the SINTR instruction, Which 
causes an interrupt to be sent to the 8086 (SINTR-lline 
on the Multibus), to notify the 8086 that the page trans­
fer has been completed. The 8089 then reads the CRT 
controller status registers which causes the IRQ signal 
(from the 8275s to the 8089) to be reset. 

The channel program then begins the polling process 
which checks for ASCII commands from the 8086 (in 
the command buffer) and also for key depressions at the 
keyboard. In addition to the alphanumeric characters, 

. the channel program recognizes the following control 
characters: ' 

Character Code Description 

CNTRL-A Ql Monitor Inhibit 
CNTRL-B 02 Monitor Uninhibit 
CNTRL-C 03 EEPROM Inhibit 
CNTRL-D 04 EEPROM Uninhibit 
CNTRL-E 05 Turn on EEPROM Buffer 
CNTRL-F 06 Display Page 0 
CNTRL-G 07 Display Page 1 
CNTRL-H 08 Backspace 
CNTRL-I 09 TAB (Every 8 Characters) 
CNTRL-J OA Linefeed 
CNTRL-K OB EEPROM Buffer Off 
CNTRL-L OC Erase Page 
CNTRL-M OD Carriage Return 
CNTRL-N OE Set Background Color 
CNTRL-O OF Set Foreground Color 
CNTRL-P 10 Set Color to Black 
CNTRL-Q 11 Set Color to Red 
CNTRL-R 12 Set Color to Green 
CNTRL-S 13 Set Color to Yellow 
CNTRL-T 14 Set Color to Blue 
CNTRL-U 15 Set Color to Magenta 
CNTRL-V 16 Set Color to Cyan 

3-391 

CNTRL-W 17 Set Color to White 
CNTRL-X 18 Abort Line 
CNTRL-Y 19 Cursor Right 
CNTRL-Z lA Cursor Down and Left 
CNTRL- IE Cursor Up 
CNTRL-I lC Cursor Home 
CNTRL-DEL IF Recall EEPROM Buffer 

The first four commands listed above are not recog­
nized if they originate from the physical keyboard, but 
are recognized if they appear as ASCII commands in 
the command buffer (that is, if they come from the 
8086). Refer to the flowchart (Appendix A) for more 
details on how the channel program responds to the 
control characters: 

System Performance 

The 8089 performs DMA transfers on 921,600 bytes of 
display data per second. In addition, the 8089 executes 
a polling routine (described above) during the vertical 
retrace time (the equivalent of two display rows). The 
DMA transfer (for a single frame) takes 16.000 millisec­
onds. This leaves .667 milliseconds for the polling 
routine to execute, out of. a total of l/60-second CRT 
refresh period. The program listed in Appendix B takes 
about 300 microseconds to execute, approximately half 
the available time. When the polling process is finished, 
the channel program goes back to DMA mode, and 
waits for the first DRQ signal from the 8275s . 

While the polling routine is executing, the 8089 makes 
most of its memory accesses in the I/O space, and the 
dual-port RAM is available to the 8086. When the 8089 
returns to the DMA routine, however, it hangs the 
dual-port RAM while waiting for DRQ. This occurs 
because the fetch from the dual-port RAM deactivates 
the 10 signal which locks out the 8086 from the dual­
port RAM. The 10 signal is then not activated until 
DRQ is received and the data is written to the CRT 
controllers. This can adversely affect system through­
put. Therefore, if it is desired to increase the. 8086's 
access to the dual-port RAM during this period, the 
user should insert NOPs into the channel program so 
that it spends more time in the I/O space before return­
ing to DMA. 

The 8086 may also access dual-port RAM during the 
DMA transfer. The dual-port RAM is available to the 
8086 on approximately a 50% duty cycle (during the 
store portion of the DMA transfer cycle). The 8089's 
store cycle.is 800 nanoseconds long (assuming a 5 MHz 
clock). The 8086's access to dual-port RAM (assuming 
an 8 MHz clock) takes 500 nanoseconds. However, 
since the two processors operate asynchronously, the 
8086 may begin its access at any point during the 8089's 

210355-001 



AP·123 

DMA store cycle. Since the 8086 is the master relative 
to the dual-port RAM, the ready signal for the 8089's 
next fetch operation will not be generated until the 8086 
is through. Thus, on occasion, the 8089 will have to 
wait. 

Each row of characters requires 256 microseconds of 
DMA transfer time if no such wait states occur. The 
repetition rate for rows of characters is 333 microsec­
onds (1/3000 second). Thus, the accumulated wait 
states due to the 8086's access to dual-port RAM may 
total 77 microseconds before any underrun occurs. The 
8086 programs should be written in such a manner that 
the added wait states do not total 77 microseconds 
during anyone period of 333 microseconds. The most 
important single factor in assuring this is to avoid mak­
ing long burst transfers to or from the dual-port RAM. 
If an underrun does occur, the entire screen will be 
blanked until the beginning of the next frame. 

Aside from the shared access to dual-port RAM, the 
two processors may operate concurrently with no coor­
dination necessary. Operations performed by the 8086 
(such as numeric processing of display data) may be 
programmed without regard to the o:verhead associated 
with lOP operations. 

Conclusions 

This application note has demonstrated that a high-perfor­
mance, color-graphic CRT terminal can be Gonveniently built 
using the Intel 8089 microprocessor system, This system 
utilizes a high-performance 8086 CPU operating at 8 MHz 
and an 8089 I/O processor operating at 5 MHz. 

In particular, the unique abilities of the 8089 lend them­
selves to the graphic CRT application by enabling a true 
multiprocessing approach to be used. The following list 
summarizes the capabilities used in this specific design: 

High-speed DMA transfers (up to 1.25 mega­
bytes/second) without wait states. 

Capabilities of a CPU and a DMA controller in a 
single 40-pin package. 

Support of concurrent operation for the system CPU 
and the 110 processor. Ability to access memory and 
address devices on both a system bus and a separate 
110 bus. 

Flexible, memory-based communications between 
the 110 processor and the system CPU. 

Capability for I-megabyte addressing in the system 
space. 

Capability for 16-bit DMA transfer, with external 
event termination. 

Support of modular, subsystem development effort 
due to the simple software interface (memory-based 
communications, plus channel attention and inter­
rupt signals) and the simple hardware interface (CA, 
SEL, and SINTR lines). 

The following 8089 capabilities were not used in the 
design described in this note, but may be useful in other 
graphic CRT systems or 110 proce,ssing systems: 

Two channels, each of which may execute instruc­
tions and perform DMA transfers. 

Bit manipUlation instructions. 

Support of both 8-bit and 16-bit bus width in the 
system space and in the 110 space. 

Enhanced DMA capabilities, including: 

Translation (e.g., ASCII to EBCDIC code). 

Termination on masked compare. 

Word assembly/disassembly (8-bit word to/from 16-
bit w<;>rd). 

Memory-to-memory or 1I0-to-II0 transfer. 

Synchronization on source, destination, or neither. 

3-392 
210355-001 



APPENDIX AlAP-123 

INITIALIZATION AND MAIN LOOP 

( STAP-r ) 

--,...------' 

+ 
START 

AND INITIALIZE 8275 
CRT CONTROLLERS 

CHANGEDMA 
SOURCE POINTER 

TO DISPLAY PAGE 1 

3-393 

SET UP CURSOR 
POSITION IN 82751 

STRINCL86 

CLEAR 8011 
COMMAND STRING 

POINTER 

CLEAR_. 
COMMAND STRING 

POINTER 

n STRIN<L16 

V 

INCREMENT lOll 
CDMMAND STRING 

POINTER 

GELCOM 

CURSOILUPDATE 

210355-001 



GET KEY FROM 3279 
AND SAVE IT 

INCREMENT EEPROM 
BUFFER PTR 

APPENDIX AlAP-123 

KEY AND COMMAND DECODE 

SAYEASCII 
CHARACTER FOR 
EEPROM BUFFER 

RECAll 

CURSOR-UPDATE 

CHAR-OUT 

r---
CNTRl·A 

1 CNTRl.B 
I CNTRl-C 

LC~R::.o _ 

01H 
,02H 
03H 
04H 

MONITOR INHIBIT 
MONITOR UNINHIBIT 
EEPROM INHIBIT 
EEPROM UNINHIBIT 

CURSOR-UPDATE 

3-394 

06H 
, 07H 

rC';;:R~ -
I CNTRl-G 

CNTRL.'M 
CNTRl·H 

ODH CHAR-CR 
08H BACILSPACE 

CNTRl.o-P to eNTRL-
W 10H-17H 
CNTRL-N OEH 

_ I CNTRL-O OFH 

I ~:~:~~ ~~~ 
CNTRL-DEl 1FH 
CNTRL-2 09H 
CNTRL-l OCH 
CNTAL·X 18H 
CNTl-l 1CH 
CNTl·L\ 1EH 
CNTRL-J OAH 

I ~:~:~:~ ::~ 1 __ _ 

COLOR-KEY 
CNTRLN 
CNTRl-o 
CNTRl·E 
CNTRL-K 
EEP_DUMP 
CURSOR-TAB 
ERASE-PAGE 
CNTRLX 
CURSOR-HOME 
UP_CURSOR 
DWN-CURSOR 
RIGHT_CURSOR 
BACILDOWN 

210355-001 



INHIBIT THE 1089 
FROM DMA 

OPERATIONS 

AESUME NORMAL 
8089 TO 8275 

OM" OPERATIONS 

INHIBIT EEPROM 
CONTROL WORDS 

AND THEIR 
OPERATION 

CURSOR-UPDATE 

UNINHIBIT 
EEPROM OPERATION 

CURSOR-UPDATE 

APPENDIX A/AP-123 

CONTROL KEY OPERATIONS 

SET DUAL·PORT 
DSPLY_PCl-PTR TO 

PAOE 0 FOR OMA 

SET DUAL·PORT 
DSPLY_PCLPTR TO 

I PAGE 1 FOR OMA 

SET THE 
BACILCOLSW 

YARIABLETO 
FOREGROUND 

3-395 

CLEAR EEPROM 
BUFFER PTR 

AND UNINHIBIT 
EEPROM OPERATION 

CURSOLUPDATE 

INSERT EEPROM 
BUFFER EOF AND 
FLAG 1088 WITH 
EEP_BUF_FULL 

FLAG 1088 BY 
SETTING 

EEP_RECALL 
TOOFFH 

INTR·16IDMILLP) 

210355-001 



APPEND'IX AlAP·123 

CONTROL KEY OPERATIONS 

BTRI' ...... WTOA 
COLOR FRO .. 0-7 

UPDATE 
FOREGROUND 
SEcnONOF 
COLOR BYTE 

BACK-GROUND 

BTRI' ...... WTO 
A COLOR I'ROIII 0-7 

ANDIHIFT 
LEFT, BITS 

UPDATE 
BACKGROUND 
SEcnONOF 
COLOR BYTE 

CURSOILUPDATE 

SIGNALIGII 
THAT 1ME KEYBOARD 

BUFFER IS FULL 

3-396 210355-001 



APPENDIX AlAP·123 

CONTROL KEY OPERATIONS 

DECREMENT 
UNE-CNT TO PUT 

CURSOR UP 
ONE SPACE 

r----' 
...J' SAVE KEYSTROKE I 

- - FOR EEPROM I 
I ANDIOII I L ____ ..J 

KEY_EEP_EXIT 

INCREMEN~ 

LINE-CNTTO 
PERFORM UNEFEED 

r-----.., 
I SAVE KEYSTROKE I 

- - ~ FOR EEPROM I 

INCREMENT 
CHARACTER COUNT 

TO MOVE 
CURSOR TO RIGHT 

lANDI_ I L. _____ J 

r - ---.., 
I I 

- - -I SAVE KEYSTROKE I 
I I 

DECREMENT 
CHARACTER COUNT 

AND INCREMENT 
LINE COUNTER 

KEY_EEP_EXIT 

3-397 

L _____ .J 

SET CHARACTER 
COUNT TO 
THELE" 
MARGIN 

CLEAR KEY_RD 
FUU FLAG AND 

KEYBOARO 
BUFFER POINTER 

210355-001 



APPENDIX A/AP-123 

CONTROL KEY OPERATIONS 

CLEAR KEYBOARD 
INHIBIT AND CLEAR 
BCROLL REQUEBT 

SET CHARACTER AND 
UNE COUNTERS TO 

UPPER LEFT 
WINDOW BOUNDARIEB 

CURSOILUPDATE 

3:-398 

DECREMENT 
CHARACTER 

COUNTER 

DECREMENT 
KEYBOARD BUFFER 

POINTER 

210355-001 



APPENDIX AlAP-123 

SUPPORT SUBROUTINES 

POINT AT DUAL·PORT 
PAGE 0 OR PAGE 1 

BY USING 
DSPLY_PG.-PTR 

CALCULATE DISPLAY 
PAGE ADDRESS 

USING CHARACTER 
AND LINE COUNT 

SAVE ASCII CODE AND 
COLOR IN THE 
DISPLAY PAGE 

INCREMENT 
CHARACTER 

COUNTER 

SET SCROLL ReQUEST 
FLAG AND INHIBIT 

THE KEYBOARD 

NO 

3-399 

SAVE CHARACTER IN 
KEY BUFFER AND 
INCREMENT KEY 
BUFFER POINTER 

210355-001 



APPENDIX AJAP·123 

SUPPORT SUBROUTINES 

DECREMENT EEPRDM 
BUFFER POINTER 
AND SET BUFFER 

FULL FLAG 

3-400 210355-001 



APPENDIX B/AP-123 

8089 MACRO ASSEMBLER 

ISIS-II 8089 MACRO ASSEMBLER X202 ASSEMBLY OF MODULE N89 
OBJECT MODULE PLACED IN :Fl:N89.0BJ 
ASSEMBLER INVOKED BY: :F2:ASM89 :F1:N89.SRC 

1 
2 ; 
3 ; 
4 
5 
6 
7 
8 

8089 DUMB TERMINAL PROGRAM 

B.K.NELSON 

STARTED: 4/30/80 
LAST CHANGE: 8/12/80 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

THIS PROGRAM INITIALIZES FOUR 8275 CRT CONTROLLERS AND A 
8279 KEYBOARD CONTROLLER. ASCII INFORMATION FLOW MAY FOLLOW 
THESE PATHS: 

KEYBOARD 
KEYBOARD 
KEYBOARD 
8086 
EEPROM 
EEPROM 
EEPROM 

COMMAND CODES ARE: 
21 ; K E 
22 i- -

23 ;- -
24 ;- -
25 ;- -
26 ;- -
27 ;- -
28 ;- -
29 ;0 X 
30 ;X X 
31 ; X X 
32 ;X -
33 ;X X 
34 ;X X 
35 ;X X 
36 ;X X 
37 ;X X 
38 ;X X 
39 ;X X 
40 ;X X 
41 ;X X 
42 ;X X 
43 ;X X 
44 ; X X 
45 ;0 X 
46 ;X X 
47 ;X X 
48 ;X X 
49 ;X X 
50 ;- -
51 

CNTRL·-A 
CNTRL-B 
CNTRL-C 
CNTRL-D 
CNTRL-E 
CNTRL-F 
CNTRL-G 
CNTRL-H 
CNTRL-I 
CNTRL-J 
CNTRL-K 
CNTRL-L 
CNTRL-M 
CNTRL-N 
CNTRL-O 
CNTRL-P 
CNTRL-Q 
CNTRL-R 
CNTRL-S 
CNTRL-T 
CNTRL-U 
CNTRL-V 
CNTRL-W 
CNTRL-X 
CNTRL-Y 
CNTRL-Z 
CNTRL-·~· 

CNTRL-\ 
CNTRL-DEL 

TO 
TO 
TO 
TO 
TO 
TO 
TO 

0086 COMMAND INTERPRETER 
8086 EEPROM ROUTINE 
MONITOR 
MONITOR 
8086 COMMAND INTERPRETER 
8086 EEPROM ROUTINE 
I"IONITOR 

MONITOR INHIBIT 
MONITOR UNINHIBIT 
EEPROM INHIB IT 
EEPROM UNINHIBIT 
TURN ON EEPROM BUFFER 
DISPLAY PAGE 0 SELECTED 
DISPLAY PAGE 1 SELECTED 
BACKSPACE (CURSOR LEFT) 
TAB (EVERY 8 CHARACTERS) 
LINEFEED (CURSOR DOWN) 
TURN EEPROM BUFFER OFF 
ERASE PA<~E 

CARRIAGE RETURN 
TURN OFF BACKGROUND/FOREGROUND* 
TURN ON BACKGROUND/FOREGROUND* 
SET COLOR TO BLACK 
SET COLOR TO RED 
GREEN 
YELLOW 
BLUE 
MAGENTA 
CYAN 
WHITE 
ABORT LINE 
MOVE CURSOR RIGHT 
MOVE CURSOR DOWN AND LEFT 
MOVE GURSOR UP 
HOME CURSOR 
RECALL EEPROM BUFFER 

3-401 210355-001 



APPENDIX B/AP-123 

LINE SOURCE 

52 
53 

54 

55 
56 
57 
58 
59 
60 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 

THE TWO COLUMNS ASSOCIATED WITH EACH CONTROL KEY REPRESENT THI 
-E 

APPROPRIATE KEYBOARD AND EEPROM BUFFER ACTION CONNECTED WITH 1 
-THAT 

KEY. 
KEYSTROKE NOT STORED IN BUFFER 

X KEYSTROKE STORED IN BUFFER 
o OPERATION PERFORMED ON BUFFER 

A CHARACTER IS STORED IN THE EEPROM BUFFER ONLY IF THE OPERATI 
-ION 

WAS PERFORMED ON THE MONITOH. 
DUMBTERM SEGMENT 

8275 REGISTERS 

CRT_REGS, 
CRT_PARAM: 
CRT _COM_STAT: 

CRT_REGS 

STRUC 
DW 
OW 
ENDS 

8279 REGISTERS 

KYBD_REGS 
KBD_DATA: 
KBD_COM_STAT: 

KYBD_REGS 

STRUC 
OW 
DW 
ENDS 

1 
1 

1 
1 

8086/8089 COMMON FLAGS 

DP_RAM_FLAGS 
TP _LSW: 
TP _MSD: 
EEP INH: 
EEP _BUF yULL: 
EEP _RECALL: 
COL_CH INH: 
KBD INH: 
KBD_BUF _FULL: 

STRUC 
OW 
OW 
DB 
DB 
DB 
DB 
DB 
DB 

COM_8086: DB 
COLOR: DB 
STR_PTR_8086: DW 
BACK_COL_SW: DB 
MON_INH: DB 
DSPLY_PG_PTR: DB 
SCROLL_REG: DB 
NEW_CHAR_FLAG: 
NEW_CHAR: 

MON_HOM: 
MON_END: 
MON_LMARG: 
MON_RMARG: 

DW 
DW 
DW 
DW 

1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
DB 
DB 

.. 
1 
1 
1 
1 

3-402 

1 
1 

210355-001 



APPENDIX B/AP-123 

LINE SOURCE 
106 "'BD._DUF _.PTR DW 
107 E2_MON INH 013 
108 , 
109 DP _RAM .. FLAGS ENDS 
110 
111 , DISPLAY CHARACTER STRUCTURE 
112 
113 CHAR_DEF STRUC 
114 COLOR_MODE. . DB 1 
115 ASCI I _GRAPH1. DB 1 
116 GRAPH_2AND3. DB 1 
117 GRAPH_ 4AND5' DB 1 
118 CHAR_DEF ENDS 
119 
120 PRIVATE 8089 FLAGS 
121 
122 STAT_RAM_FLAGS STRUC 
123 STACK: DW 1 
124 STACK_MSD. DW 1 
125 DW 1 
126 DW 1 
127 EEP _BUF _PTR: DW 1 
128 
129 
130 LINE_CNT: DW 1 
131 CHAR_CNT: DW 1 
132 
133 
134 ASC I I: DB 1 
135 ASCI I_TEMP: DB 1 
136 CURSOR Xl: DB 1 
137 CURSOR_.X2: DB 1 
138 CURSOR_VI. DB 1 
139 CURSOR_Y2: DB 1 
140 
141 
142 LINE_TEMP: DW 1 
143 CHAR_TEMP: DW 1 
144 PAGE INDEX: OW 1 
145 STAT._RAM]LAGS ENDS 
146 
147 ADDRESS EQUATES 
148 
149 STAT_RAM EQU OOOOOH 
150 CRT! EQU 06000H 
151 CRT2 EQU 04000H 
152 CLK_EN EQU 08000H 
153 CRT_DATA EQU OAOOOH 
154 KYBD EQU OCOOOH 
155 
156 
157 DSPLY_PAGEO '. EQU OF8000H 
158 DSPLY_PAGEI EQU OFCOOOH 
159 COM_BUF EQU OFBDOOH 
160 EEP_BUF EQU OFBEOOH 
161 KEY_BUF EQU OFBFOOH 
162 DP _PB EGU OFFFOOIi 

3-403 210355-001 



LINE 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 

SOURCE 

DATA/COMMAND 

EOF 
CRT RSl 
CRT_PARAMl 
CRT_PARAM2 
CRT]ARAM3 
CRT_PARAM4 
CRT_CURSOR 
CRT_CNTR 
START_DISP 
END .... DISP _PG 
KBD_STR_SET 
KBD_PRG_CLK 
KBDJIFO_RD 

APPENDIX B/AP-123 

EGUATES 

EGU OFFH 
Eau OOOH 
EGU 04F4FH 
EGU 06F6FH 
E'au 04444H 
Eau 00606H 
EQU OB080H 
EGU OEOEOH 
EGU 02020H 
EGU 15360 
EGU 006H 
EGU 034H 
EGU 050H 

179 i************************************************* 
180 i*********** INITIALIZATION ******************** 
181 i *************************,************************ 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208. 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 

TURN ON THE CRT CHARACTER CLOCK AND RESET THE 
CRT CONTROLLERS 

START: 
MOVI GB,CLK_EN 
MOVI [GBJ,001H 
MOVI GB,CRT1 
MOVI GC,CRT2 
MOVI [GCJ. CRT_COM STAT, CRT RST 
MOVI [GBJ. CRT,_COM_STAT, CRT_ .. RST 

SUPPLY THE FOUR PARAMETER BYTES THAT SPECIFY 
80X48 CHARACTERS, TRANSPARENT ATTRIBUTES, AND 
A BLINKING UNDERLINE CURSOR 

Movr 
MOVI 
MOVI 
MOVI 
MOVI 
MOVI 
MOVI 
MOVI 

[GB],CRT_PARAMl 
[GBJ, CRT_PARAM2 
[GBJ,CRT_PARAM3 
CGBJ,CRT_PARAM4 
[GCJ,CRT_PARAMI 
[GCJ,CRT_PARAM2 
[GCJ,CRT]ARAM3 
[GC], CRT .. Y'ARAM4 

SET CURSOR TO UPPER LEFT CORNER OF MONITOR 

MOVI [GCJ. CRT _COM_STAT, CRT .. _CURSOR 
MOVI [GCJ,OOOH 
MOVI [GCJ,OOOH 
MOVI [GB). CRT _COM_STAT, CRT __ CURSOR 
MOVI [GBJ,OOOH 
MOVI [GBJ,OOOH 

SYNCHRONIZE 8275 CLUSTER BY RESETTING COUNTERS 

MDVI 
MOVI 

[GCJ,CRT_COM_STAT,CRT_CNTR 
[GBJ.CRT_COM_STAT,CRT_CNTR 

3-404 210355 .. 001 



APPENDIX B/AP-123 

LINE SOURCE 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 

, 

; 

MOVI Gc, STAT _.RAM 
MOVBI [GCJ.CURSOR Xi,OOOH -
MOVEI [GeJ. CURSOR X2,OOOH -
MOVBI [GC]. CURSOR Y.l,OOOH .-
MOVBI [GCJ. CURSOR Y2,OOOH -

INITIALIZE 8279 (A,EYBOARD CONTROLLER 

MOVI 
MOVI 
MOVI 
MOVI 

INITIALI ZE 

MOVI 
LPDI 
MOVI 
MOVI 

MOVBI 
MOVBI 
MOVBI 
MOVBI 
MOVBI 
MOVBI 
MOVBI 
MOVBI 
MOVBI 
MOVBI 
MOVBI 
MOVBI 
MOVBI 
MOVI 
MOVI 
MOVI 
MOVI 

GB,KYBD 
[GBJ. KBD._COM STAT, KBD 
[GB].KBD _COM_STAT,KBD 
[GBJ.KBD_COM_STAT,KBD 

8089 FLAGS 

GC,STAT_RAM 
GA,DP _PB 
[GC ]. LI NE __ CNT, OOOH 
[GC]. CHAR _CNT,OOOH 

[GA].EEP_INH,OFFH 
[GA] .'EEP _BUF _FULL, OOH 
[GA].EEP_RECALL,OOH 
[GAJ.KBD_INH,OOH 
[GA J. KBD _BUF _FULL, OOH 
[GA]. COM._8086, OOH 
[GAJ.COLOR,038H 
[GA J. BACK30L __ SW, OOH 
[GAJ.COL_CH_INH,OOH 
[GAJ.SCROLL_REG,OOH 
[GAJ. DSPLY PG PTR,OOH 
[GA].MON_INH,QOH 
[GAJ.E2_MON_INH,0 
CGAJ.MON_HOM,OOH 
CGAJ.MON_END,048 
[GAJ.MON_RMARG,080 
[GAJ.MON_LMARG,OOH 

INITIALIZE 8089 POINTER 

MOVI [GC].EEP BUF_PTR,OOH 
MOVI [GAJ. STR._PTR._8086, OOH 
MOVI CGAJ.KBD_BUF_PTR,OOOH 

STR SET 
.. _PRG .. _CLK 
_FIFO._RD 

;************************************************** 
;*********** EXECUTIVE **************************. 
;************************************************** 

DMA SET-UP 

LOAD CHANNEL CONTROL REGISTER TO SPECIFY: 
MEMORY TO PORT 
SYNCHRO ON DEST 
GA POINTS TO SOURCE 
TERMINATE ON EXT 
TERMINATION OFFSET=O 

3-405 210355-001 



I._INE 
277 
278 
279 
280 
281 
282 
283 
284 
285 

APPENDIX B/AP-123 

SOURCE 
MOVI GC,CLK _EN 
MOVt [GC],OOH ; I I\iH I Il I r CHAR CLOCK 

DMA 

; ON 8;;'7!:i 
l"IOVI GC,CRT1 
MOVI [GC] CRT COM STI\T, START -. -
MOVI GC,CRT2 
MOVI [GC]. C,RT - COM _STAT,START 

_LP: 
MOVI CC,05120H 

SETUP DESTINATION AND THEN 
SOURCE ACCORDING TO DISPLAY PAGE 
POINTER 

GB, CRT .. DATA 
GA,DSPLY]AGEO 
GC, DP _PB 

TO 

DISP 

DISP 

MOVI 
LPDI 
LPDI 
JZB 
LPDI 

CGC]. DSPLY_PG .. PTR, SOURCE .... OK 
GA, DSPLY._PAGE1 

SOURCE_OK: 

SYNCHRONIZE 

286 ; 
287 
288 
289 
290 
291 
292' 
293 
294 
295 
296 
297 

298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 

JNZB 
-ITED 

[GCl. MON_INH, DMA .. BYPASS ; IF THE MONITOR IS INHIBI 

; BYPASS THE DMA 

309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 

JNZB 
MOVI 

[GC]. E2_MON INH, DMA.BYPASS_1 
GC,CLK_EN 

START CRT CHARACTER CLOCK AND BEGIN DMA 

XFER 
MOVI 
SINTR 

[GC],01H 

SIGNAL THE 8086 THAT END OF FRAME HAS OCCURED AND THE UPDATINI 
-G OF THE 

INTERRUPT DRIVEN SECONDS COUNTER MAY BEGIN 

READ CRT STATUS REGISTERS IN ORDER TO RESET IRG 

MOVI 
MOV 
MOVI 
MOV 
JMP 

DMA_BYPASS_1 : 
MOVI 

E2_WAIT_LOOP: 
MOVI 

E2_INNER_LOOP: 
DEC 
JNZ 
DEC 
JNZ 

DMA_BYPASS: 

GC, CRT! 
GA, CGC].CRT_COM STAT 
GC,CRT2 
GB, CGC]. CRT _COM .. _STAT 
DMA._BYPASS 

GC, 120 

GI3,300 

GI3 
GBIE2_INNER LOOP 
GC 
GC,E2_WAIT_LOOP 

CHECK FOR STRING FROM 8086 
IT HAS PRIORITY OVER KEYBOARD 

3·406 210355-001 



APPENDIX B/AP-123 

LINE SOURCE 
332 
333 LPDI GC,DP_PB 
334 JNZB [GC ]. COM __ 8086, GTR I NG __ 86 
335 ; 

CHECK 8279 KYED STATUS 

GB,KYBD MOVI 
MOVE 
ANDI 
LJNZ 

GA, [GE]. KED_COM STAT 
GA,OFH 
GA,READ_KYBD 

UPDATE THE CURSOR POSITION 

i KEY DOWN 

CURSOR_UPDATE: 
LPDI GC,DP_PB 

CHECK FOR 86 COMMAND CHARACTER MODE AND PROCESS 
THE NEXT BYTE 

JZB [GC]. COM_8086, COM._STR BYPASS 
INC [GCJ.STR_PTR_8086 
JMP GET_COM 

COM_STR_BYPASS: 
MOVI GB,CRTl 
MOVI GC,STAT_RAM 
MOV I [GB J. CRT __ COM_STAT, CRT CURSOR \ 

336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 
354 
355 
356 
357 
358 
359 
360 
361 
362 
363 
364 
365 
366 
367 
368 
369 
370 
371 
372 
373 
374 
375 
376 
377 
378 
379 
380 
381 
382 
383 
384 
385 
386 
387 
388 

MOVB GA, [GCJ.CHAR_CNT iSET UP FOR X POSITION 
MOVB [GC].CURSOR_X1,GA iCURSOR OUTPUT 
MOVB [GCJ.CURSOR_X2,GA iBY DOUBLING UP 
MOVB 9A, [GCJ.LINE_CNT 
MOVB [GCJ.CURSOR_Yl,GA ; SAME FOR Y POSITION 
MOVB [GCJ.CURSOR_Y2,GA 
MOV [GBl, [GCl.CURSOR_Xl 
MOV [GE], [GC].CURSOR_Yl 
MOVI GB,CRT2 ;DO IT FOR ALL 
MOVI [GB]. CRT._.COM_STAT , CRT_CURSOR 
MOV [GB], [GCJ.CURSOR_Xl ; CONTROLLERS 
MOV [GB), [GCl. CURSOR_Yl 

JMP 
STRING_86: 

MOVI 
GET_COM: 

MOV 
LPDI 

[GCJ.STR_PTR_8086,00H 

IX, [GC). STR]TR .. _8086 
GB,COM_BUF 

GET NEXT COMMAND CHARACTER FROM THE 8086 
AND SAVE IT AS A KEYSTROKE 

MOVB 
LPDI 
MOVB 
LPDI 
MOVI 
MOVB 

GA, [GB+IXJ 
GC,COM_BUF 
GA, [GB + IXl 
GC, DP _PB 
GB,STAT_RAM 
[GB ]. ASC I L GA 

i***TEST CODE**** 
; *** 
; *** 

CHECK FOR END OF COMMAND STRING 

3-407 210355-001 



LINE SOURCE 
389 MOVI MC,OFFFFH 
390 JMCNE [GB]. ASC I I, COM __ CNT 
391 

END OF COMMAND STRING-RESET COMMAND FLAG 

MOVBI 
JMP 

READ_KYBD: 

[GCJ.COM_8086,00H 
CURSOR_UPDATE 

TEMPORARY GET CHAR ROIJTINE 

JNZB 
JNZB 

[GC]. KBD_INH, CURSOR .. UPDATE 
[GC J. KBD._BUF _FULL, CURSOR ___ UPDATE 

IF THE KEYBOARD IS INHIBITED OR THE BUFFER FULL, 
DONT READ THE 8279 

COM_CNT: 

MOVB GA, [GBj.KBD_.DATA 
NOT GA 
ANDI GA,007FH 
MOVB 
MOVBI 
MOVI 
MOVIr 

LPDI 
MOVI 

[GCJ.NEW_CHAR,GA 
[GCJ. NEW._CHAR_FLAG, 1 
GB,STAT_RAM 
[GBl. ASCII,GA 

GB, DP _PB 
GC,STAT,...:RAM 

j SAVE KEYSTROKE 

392 ; 
393 
394 
395 
396 
397 
398 
399 
400 
401 
402 
403 
404 
405 
406 
407 
408 
409 
410 
411 
412 
413 
414 
415 
416 
417 
418 

CHECK FOR FIRST CHARACTER AFTER CNTRL-DEL, THIS CHARACTER WILL 
BE PLACED IN EEP_RECALL AND USED FOR SELECTING WHICH EEP BUFFI 

-ER 
419 
420 
421 

422 

423 

424 
425 
426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 
439 
440 
441 

IS TO BE RECALLED 

MOVB 
- SET 

ANDI 
-CTER 

GA, [GBl.EEP_RECALL 

GA,007FH 

j IF MSB OF EEP_RECALL lSI 

jUSE PRESENT ASCII CHARAI 

JZ JAS INDEX FOR EEPROM RECI 
--ALL 

MOVB 
MOVB 
JMP 

NO_RECALL: 

GA, [GCl.ASCII 
[GBl.EEP_RECALL,GA 
CURSOR_UPDATE 

CHECK FOR FIRST CHARACTER AFTER CNTRL E . 
THIS CHARACTER WILL BE PLACED IN THE 
EEPROM BUFFER AND NOT PROCESSED 

JNZB [GBJ.EEP INH,EEP BYPASS 
JNZ [GCl.,EEP :=BUF _PTR:-EEP _BYPASS 

INSERT ASCII CHARACTER 

MOV IX, [GCJ.EEP_BUF PTR 
MOVB GA, [GCl.ASCII 
LPDI GB,EEP_BUF 
MOVB [GB+IXJ,GA 

3-408 210355-001 



APPENDIX B/AP·123 

LINE SOURCE 
442 INC 
443 JMP 
444 EEP _BYPASS: 
445 

[GC]. EEP __ BUF __ PTR 
CURSOR_UPDATE 

446 ; 
447 

CHECK FOR NON CONTROL CHARACTER 

448 
449 
450 
451 
452 
453 
454 
455 
456 
457 
458 
459 
460 
461 
462 
463 
464 
465 
466 
467 
468 
469 
470 
471 
472 
473 
474 
475 
476 
477 
478 
479 
480 
481 
482 
483 
484 
485 
486 
487 
488 
489 
490 
491 
492 
493 
494 
495 
496 
497 
498 

MOVI 
LJMCNE 

MC,06000H 
[GCJ.ASCII.CHAR_pUT 

i********************************************************* 
;*************** CONTROL KEY DECODE ********************** 
;********************************************************* 

LOOK FOR 8086 COMMAND STRING SO CERTAIN 
COMMANDS WILL NOT BE AVAILABLE FROM 
KEYBOARD 

JZB [GB]. COM_8086, NOT _CNTRLG 

CHECK FOR MONITOR INHIBIT 
(CNTRL-A) 

MOVI 
JMCNE 
MOVBI 
JMP 

NOT _CNTRLA: 

MC.07FOIH 
[GCJ.ASCII.NOT_CNTRLA 
[GBJ.MON_INH.OFFH 
CURSOR_UPDATE 

CHECK FOR MONITOR UNINHIBIT 
(CNTRL.-B) 

MOVI 
JMCNE 
MOVBI 
JMP 

NOT_CNTRLB: 
NOT _CNTRLC : 
NOT_CNTRLD: 

MC,07F02H 
[GC].ASCII.NOT_CNTRLB 
CGBJ.MON_INH.OOH 
CURSOR_UPDATE 

CHECK FOR SET DISPLAY PAGE 0 
(CNTRL.-F) 

MOVI 
JMCNE 
MOVBI 
JMP 

NOT_CNTRLF: 

MC,07F06H 
[GC]. ASCI I, NOT __ CNTRLF 
CGBJ.DSPLY_PG_PTR.OOH 
CURSOR_UPDATE 

CHECK FOR SET DISPLAY PAGE 1 
(CNTRL-G) 

MOVI 
JMCNE 
MOVBI 
JMP 

NOT _CNTRLG: 

MC,07F07H 
[GC]. ASCI 1. NOT._CNTRLG 
CGBJ.DSPLY_PG_PTR.OFFH 
CURSOR_UPDATE 

3-409 

'II 

210355-001 



APPENDIX B/AP·123 

LINE SOURCr:: 
499, THE FOLLOWING CONTROL COl1MANDS ARE 
500 AVAILABLE THROUGH THE 8089 KEYBOARD 
501 
502 
503 
504 
505 
506 
507 
508 
509 
510 
511 
512 

LOOK FOR CARRIAGE RETURN 

MOVI 
LJMCE 

I"IC,07FODH 
[GCl, ASCII,CHAR CR 

LOOK FOR BACKSPACE 

MOVI 
LJMCE 

MC,07FOBH 
[GC), ASCII, BACK .. _SPACE 

513 LOOK FOR COLOR CONTROL KEYS 
514 '; CNTRL-P THRU CNTRL-W 
515 
516 
517 
518 
519 
520 
521 
522 
523 
524 
525 
526 
527 
528 
529 
530 
531 
532, ; 
533 
534 
535 
536 
5:37 
538 
539 
540 
541 
542 
543 
544 
545 
546 
547 
548 
549 
550 
~51 
552 
553 
554 
555 

MC,07810H MOVI 
LJMCE [GC J. ASC I I, COLOR __ KEY 

CHECK FOR SET BACKGROUND COLOR FLAG 
(CNTRL-N) 

MC,07FOEH MOV!. 
LJMCE [GC). ASCII,CNTRL_N 

CHECK FOR SET FOREGROUND COLOR 
(CNTRL-O) 
MOVI MC,07FOFH 
LJMCE [GCJ.ASCII,CNTRL_O 

CHECK FOR EEPROM BUFFER RECALL 
(CNTRL-DEL) 
MOVI MC,07F1FH 
LJMCE [GCJ.ASCII,EEP_DUMP 

LOOK FOR TAB 
(CNTRL-I) 

MC,07F09H MOVI 
LJMCE [GC). ASC I I. CURSOR __ TAB 

LOOK FOR ERASE PAGE 
(CNTRL-L) 

MOVI 
LJMCE 

MC,07FOCH 
[GC).ASCII,ERASE_PAGE 

LOOK FOR CANCEL LINE 
(CNTRL-X) 

MOVI 
LJMCE 

MC,07F18H 
[GCJ.ASCII,CNTRL_X 

LOOK FOR ~OME, THE CURSOR 
3-410 210355-001 



APPENDIX B/AP-123 

LINE SOURCE 
556 (CNTRL \) 
557 
558 
559 
560 

MOVI 
LJMCE 

I"IC,07FICH 
[GC], ASC I I, CURGOR._HOI'IE 

561 ; 
562 

LOOK FOR UP 
(CNTRL 
I"IOVI 
LJMCE 

CURSOR 
") 

MC,07F1EH 563 
564 
565 
566 
567 
568 
569 
570 
571 
572 
573 
574 
575 
576 
577 
578 
579 
580 
581 
582 
583 
584 
585 
586 
587 
588 
589 
590 
591 
592 
593 
594 
595 
596 
597 
598 
599 
600 
601 
602 
603 
604 
605 
606 
607 
608 
609 
610 
611 
612 

[GC J ASC I I, UP __ CURSOR 

LOOK FOR DOWN CURSOR 
(CNTRL J) 

MOVI 
LJMCE 

MC,07FOAH 
[GCJ, ASCII,DWN CURSOR 

. LOOK FOR RIGHT CUR SOR 
(CNTRL"'Y) 

MOVI 
LJMCE 

MC,07F19H 
[GCJ,ASCII,RIGHT_CURSOR 

LOOK FOR DOWN AND LEFT CURSOR 
(CNTRL-Z) 

MOVI 
LJMCE 

MC,07FIAH 
CGCJ,ASCII,BACK_DoWN 

ALL OTHER KEY INPUTS ARE IGNORED 

JMP CURSOR_UPDATE 
;************************************************** 
;************* CONTROL SEGMENTS ***************** 
;************************************************** 

SET THE COLOR BACKGROUND/FOREGROUND* FLAG TO 
BACKGROUND (0) 

CNTRL_N: 
MOVI 
LPDI 

GB,STAT_RAM 
GC, DP _PB 

CHECK FOR MONITOR OR COLOR CHANGE INHIBITED 

JNZB 
MoVBI 

KEEP _BF: 
LJMP 

[GC], COL_CH_INH, KEEP._BF 
[GC], BACK_COL .. SW, OOH 

SET THE COLOR BACKGROUND/FOREGROUND* FLAG 
TO FOREGROUND 

CNTRL_O: 
MoVI 
LPDI 

GB,STAT_RAM 
GC, DP _PB 

3-411 210355·001 



APPENDIX B/AP-123 

LINE SIJUliCE 

613 
614 
615 
616 
617 
618 
619 
620 
621 
622 
623 
624 
625 
626 
627 
628 
629 
630 
631 
632 
633 
634 
635 
636 
637 
638 
639 
640 
641 
642 
643 
644 
645 
646 
647 
648 
649 
650 
651 
652 
653 
654 
655 
656 
657 
658 

659 

660 
661 
662 
663 
664 
665 
666 
667 

CHECK FOR MONITOR OR COLOR CHANGE INtlIEITED 

JNZB 
MOVEI 

KEEP._BF2: 
LJMP 

[GC J. COL_CH I Nfl, KEEP __ BF;2 
[GC]. BACK .. _COL_ SW, OFFH 

TURN ON THE EEPROM BUFFER 
(CNTRL E) 

THIS ROUTINE INITIALIZES THE EEPROM BUFFER 
POINTER 

CNTRL_E: 
MOVI 
LPDI 
LJNZB 
MOVBI 
MOVI 
MOVBI 
JMP 

GB,STAT_RAM 
GC,DP_PB 
(GCJ.EEP_BUF_FULL,CURSOR UPDATE 
[GCJ.EEP_BUF_FULL,OOH i******** 
[GBJ. EEP_BUF_PTR,OOH 
[GCJ.EEP_INH,OOH 
CURSOR_UPDATE 

TURN THE EEPROM BUFFER OFF 

CNTRL_K: 
MOVI 
LPDI 
LCALL 
MOVBI 
MOVBI 
MOV 
LPDI 

GB,STAT_RAM 
GC, DP _PB 
[GBJ,KEY_BUF_UPDATE 
CGCJ.EEP_BUF_FULL,OFFH 
[GCl: EEP _INH, OFFH 
IX, [GBJ. EEP __ BUF._.PTR 
GA, EEP _BUF 

INSERT END OF FILE MARKER 

MOVBI 
INC 
JMP 

[GA+IXJ,OFFH 
[GB J. EEP _BUF YTR 
CURSOR_UPDATE 

DUMP EEPROM BUFFER 0-9 

EEP _DUMP: 
GB,STAT_RAM 
GC,DP_PB 

MOVI 
LPD;[ 
LPDI 
MOVBI 

GC, DP _PB 
(GCJ.EEP_RECALL,OFFH ; SET FLAG TO ALL ONES, BI 

-UT IT 

- NEXT 

JMP 
CHAR_OUT: 

MOVI 
LCALL 

GB,STAT_RAM 
C GB J, CHAR_ TO_MON 

PASS KEYSTROKES·TO 8086 
3-412 

iWILL BE REPLACED BY THEI 

i ASC II CHARACTER 

210355-001 



APPENDIX B/AP-123 

LINE SOURCE 
668 
669 KEY_EEP_EXIT. 
670 
671 
672 
673 
674 
675 
676 
677 
678 
679 
680 
681 
682 
683 
684 
685 

686 
687 
688 
689 
690 
691 
692 
693 
694 
695 
696 
697 
698 
699 
700 
701 
702 
703 
704 
705 
706 
707 
708 
709 
710 
711 
712 
713 
714 
715 
716 
717 
718 
719 
720 
721 
722 
723 

MOVI 
LCALL 

EEP _UP _EXIT: 

CHAR_CR: 

MOVI 
LCALL 
JMP 

MOVI 
LCALL 

GB,STAT_RAM 
(GB l, KEY _BUF _.UPDATE 

GB,STAT_RAM 
[GB l, EEP __ BUF __ UPDA TE 
CURSOR_UPDATE 

GB,STAT_RAM 
[GB], CR_UPDATE 

SET KEYBOARD AND EEPROM BUFr-ER FULL 
FLAGS IF NOT INHIBITED 

GB,STAT_RAM 
GC, DP _PB 

MOVI 
LPDI 
JNZB [GCl. COM_8086, CURSOR __ UPDATE i IF IN 8086 COMMI 

-AND 
; MODE, DONT ALTER 
; KEYBOARD STATUS 

EEP _CHK: 

MOVI 
LCALL 
MOVBI 

JMP 

GB,STAT_RAM 
[GBJ,KEY_BUF_UPDATE 
[GC]. KBD_BUF _FULL, OFFH ; **-11'*** 

ALTER BACKGROUND OR FOREGROUND COLOR ACCORDING 
TO THE 3 LEAST SIGNIFICANT BITS OF THE INPUT 
KEY AND THE STATUS OF THE EACKGROUND/FOREGROUND* 
FLAG. 

COLOR_KEY: 
MOVI 
LPDI 
LCALL 
LCALL 
LJNZE 
MOVB 

GB,STAT_RAM 
GC, DP _PB 
[GBl,EEP_BUF_UPDATE 
[GBl,KEY_BUF_UPDATE 
[GCl. COL_CH __ INH, CURSOR __ UPDATE 
GA, [GCJ.EACK_COL_SW 

CHECK E/F* FLAG 

JNZ GA,BACK_GROUND 
MOVB GA, [GBl.ASCII 
ANDI GA,07H 
MOV [GBl.ASCII,GA 
MOVE GA, [GC].COLOR 
ANDI GA,038H 

OR INPUT COLOR INTO FOREGROUND SECTION OF COLOR BYTE 

ORB 
MOVE 
JMP 

BACK_GROUND: 
MOVE 
ADD 

GA, [GBl.ASCII 
(GCl.COLOR,GA 
CURSOR_UPDATE 

GA, [GEl. ASCII 
GA, [GBl. ASCI I 

3-413 210355-001 



APPENDIX B/AP·123 

LINE SOURCE 
724 ADD 

ADD 
MOVB 
ADD 

GA, [GEl]. ASC rI 
GA, [GEl]. ASCII 725 

726 
727 
728 

(GBJ. ASCII __ .TEMP, CA 
GA, [GEl]. ASCII. 'TEMP 

729 SHIFT INPUT COLOR OVSR AND OR IT I,,!TO 'THE BACKGROUND 
730 SECTION OF THE COLOR BYTE 
731 
732 
733 
734 
735 
736 
737 
738 
739 
740 
741 
742 
743 
744 
745 
746 
747 
748 
749 
750 
751 
752 
753 
754 
755 
756 
757 
758 
759 
760 
761 
762 
763 
764 
765 
766 
767 
768 
769 
770 
771 
772 
773 
774 

ANDI 
MOV 
MOVB 
ANDI 
ORB 
MOVB 
JMP 

TAB ROUTINE 

GA,038H 
[GB ]. ASC I I, GA 
GA, (GCJ. COLOR 
GA,047H 
GA, [GBJ. ASCII 
(GCJ.COLOR,GA 
CURSOR_UPDATE 

THIS ROUTINE MOVES THE CURSOR TO THE NEXT 
COLUMN WHOSE NUMBER IS A MULTIPLE OF 8. 

CURSOR_TAB: 
MOVI 
LCALL 
LCALL 
LPDI 

GB,STAT_RAM 
[GB], EEP __ BUF __ UPDATE 
CGB],KEY_BUF_UPDATE 
GC, DP __ PB 

CHECK FOR CHARACTER COUNT BEING A 
MULTIPLE OF EIGHT (3 LSB = 0) 

PLACE BLANK ON THE SCREEN 

MOVBI 
LCALL 
MOV 
ANDI 
LJZ 
JZB 
JMP 

(GB]. ASC I J, 020H 
(GBJ,CHAR_TO_MON 
GA, EGBJ.CHAR_CNT 
GA,07H 
GA,CURSOR_UPDATE 
[GCJ.SCROLL_REQ,TAB CNT 
CURSOR_UPDATE 

ERASE PAGE ROUTINE 

THIS ROUTINE ERASES THE PAGE FROM THE CURRENT 
CURSOR POSITION. IT ENDS WITH THE CURSOR AT 
THE HOME POSITION. 

UP CURSOR ROUTINE 

775 UP_CURSOR: 
. GB, BTAT _RA'M 
GC, DP _PB 

776 MOVI 
777 LPDI 
778 MOV 
779 NOT 

IX, [GCl.MON_HOM 
IX ; CHECK FOR UPPER BOUNDARY 

780 AND IX, [GBJ. LINE_CNT 

3-414 210355-001 



LINE SOURCE 
781 
782 
783 
784 

LJZ 
DEC 
JMP 

APPENDIX B/AP-123 

IX, CURSOR_UPDATE 
[GE 1. LINE_.CNT 
KEY _EEP ._EX IT 

785, LINE FEED (DOWN CURSOR) 
786 , 
787 DWN3URSOR. 
788 MOVI 
789 LPDI 
790 MOV 
791 INC 
792 NOT 
793 AND 

-OVE 
LJZ 
INC 
JMP 

GE, STAT _RAM 
GC, DP._PB 
IX, [GB]. LINE._CNT 
IX 
IX 
IX, [GCl.MON_END 

IX. CURSOR._UPDATE:: 
[GB J. LI NE_CNT 
KEY _EEP._EX IT 

794 
795 
796 
797 
798 
799 
800 
801 
802 
803 

MOVE CURSOR RIGHT 

804 
805 
806 
807 
808 
809 
810 
811 
812 
813 
814 
815 
816 

817 
818 

RIGHT _CURSOR: 

-ER 

MOVI 
LPDI 
MOV 

INC 
NOT 
AND 
LJZ 
INC 
JMP 

BACK_DOWN: 
MOVI 
LPDI 
MOV 
INC 
NOT 
AND 

-OVE 
LJZ 
MOV 

-RGIN , 
NOT 
AND 
LJZ 
INC 
DEC 
JMP 

GB.STAT_RAM 
GC, DP _PB 
IX, [GB]. CHAR_CNT 

IX 
IX 
IX. [GCl.MON_RMARG 
I X, CURSOR_UPDATE 
[GBl.CHAR_CNT 
KEY_EEP_EXIT 

GB.STAT_RAM 
GC, DP _PB 
IX, [GBl.LINE_CNT 
IX 
IX 
IX. [GCl.MON_END 

IX. CURSOR_.UPDATE 
IX. [GCl.MON_LMARG 

IX 
IX. [GBl.CHAR_CNT 
IX. CURSOR_UPDATE 
[GBl. LINE_CNT 
[GBl. CHAR_CNT 
KEY_EEP_EXIT 

CANCEL THE PRESENT LINE 

CNTRL_X: 
GB,STAT_RAM 
GC. DP _PB 

iCOMPARE PRESENT LINE 
iCOUNT + 1 TO BOTTOM 
i MARGIN 
i If.' EQUAL ABORT CURSOR MI 

i MOVE OK 

iCOMPARE PRESENT CHARACTI 

iCOUNT + 1 TO RIGHT 
i MARGIN 
i IF EQUAL ABORT 
iCURSOR MOVE 
i MOV OK 

iCOMPARE PRESENT LINE 
iCOUNT + 1 TO BOTTOM 
i MARGIN 
i IF EQUAL ABORT CURSOR MI 

i IF CURSOR IS AT LEFT MAl 

iABORT CURSOR MOVE 819 
820 
821 
822 
823 
824 
825 
826 
827 
828 
829 
830 
831 
832 
833 

MOVI 
LPDI 
MOV [GBl. CHAR_CNT. [GCl. MON._LMARG 

RESET THE KEYBOARD BUFFER POINTER 
3-415 210355-001 



SOURCE 

MOVBI 
I"!DV I 
JMP 

ERASE_PAGE: 
MOVI 
LCALL 
LCALL 
LPDI 

APPENDIX B/AP-123 

[GC]. KED. _BUF.'y\JLL OOH 
[GC]. KBD_ .. EUF __ PTR. OOH 
KEY .. _EEP _EX I T 

GE, STAT _RAI"! 
[GBJ, EEP .. _BUF .. _UPDATE 
[GBJ. KEY ... BUF._.UPDATE 
GC, DP _.PB 

STORE BLANKS ON THE SCREEN 

MOVBI 
ERASE_CNT: 

LCALL 
JZB 
JMP 

[GBJ. ASCII, 020H 

[GB], CHAR_.TO._MON 
[GC J. SCROLL_.REG, ERASE .. CNT 
CH_NTR 

HOME THE CURSOR 

MOVI 
LCALL 
LCALL 

LPDI 
MOVBI 
MOVBI 
MOV 
MOV 
JMP 

GB,STAT_RAM 
[GBJ,EEP_BUF_UPDATE 
[GB J, KEY _BUF._UPDATE 

GC. DP _PB 
[GCJ.KBD INH.OOH 
[GCJ. SCROLL~REG, 001-1 
[GBJ. CHAR_CNT. [GCl. MON __ LMARG 
[GB]. LINE_CNT. [GCl. MON .. _HOM 
CURSOR_UPDATE 

PERFORM BACK-SPACE BY DECREMENTING THE DISPLAY 
PAGE POINTER, KEYBOARD POINTER. EEPROM POINTER. 
AND CURSOR POSITION 

BACK_SPACE: . 
GB.STAT_RAM 
GC. DP _PB 

LINE 
834 
835 
836 
837 
838 
839 
840 
841 
842 
843 
844· ; 
845 
846 
847 
848 
849 
850 
851 
852 
853 
854 
855 
856 
857 
858 
859 
860 
861 
862 
863 
864 
865 
866 
867 
868 
869 
870 
871 
872 
873 
874 
875 
876 
877 
878 
879 
880 
881 
882 
883 
884 
885 
886 
887 
888 
889 
890 

MOVI 
LPDI 
MOV 
NOT 
AND 
LJZ 
DEC 

IX. [GCJ.MON_LMARG 
IX 

; IF CURSOR IS AT LEFT 
; MARGIN ABORT BACKSPACE 

IX. [GBJ.CHAR_CNT 
IX. CURSOR_UPDATE 
[GBl. CHAR_.CNT 

DO BACKSPACE IF MONITOR NOT INHIBITED AND CURSOR IS 
NOT AT THE BEGINNING OF A LINE 

KYBD_UPDATE: 
LJNZB 

IF KEY BUFFER. POINTER IS ZERO. DONT BACKSPACE IT 

JZ 
DEC 

EEP _EXIT: 
MOVI 

[GC]. KBD_BUF ]TR. EEP __ EXIT 
(GC]. KBD._BUF _PTR 

GB. STAT_RAM 
3-416 210355-001 



APPENDIX B/AP-123 

LINE SOURCE 
891 JMP 

i*******************************************-******* 
.*************** SUBROUTINES ********************* 

89c'"! 
893 
894 
895 
896 
897 
898 
899 
900 
901 
902 
903 
904 
905 
906 
907 
908 
909 
910 
911 
912 
913 
914 
915 
916 
917 
918 
919 
920 
921 
922 
923 
924 
925 
926 
927 
928 
929 
930 
931 
932 
933 
934 
935 
936 
937 • 
938 
939 
940 
941 
942 
943 
944 
945 
946 
947 

i******************~******************************** 
CHAR_TO_.MON. 

SET UP DISPLAY PAGE POINTER AND INDEX 

LPDI GB,DSPLY PAGEO 
LPDI GC.bp_PB-
JZ [GC1. DSPLY _PG._PTR. PTR __ OK' 
LPDI GB.DSPLY_PAGEl 

COMPUTE 80XLINE_CNT 

MOVI 
MOV 
ADD 
ADD 
ADD 
ADD 
MOV 
ADD 
MOV 
ADD 
MOV 
ADD 
MOV 
ADD 

GC.STAT_RAM 
GA, [GCJ.LINE_CNT 
GA. [GCJ.LINE_CNT 
GA. [GCJ.LINE_CNT 
GA. [GC]. LINE __ .CNT 
GA, [GCJ. LINE_CNT 
[GCJ. LINE __ TEMP. GA 
GA. [GCJ.LINE_TEMP 
[GCJ.LINE_TEMP.GA 
GA. [GCJ.LINE_TEMP 
[GCJ.LINE_TEMP.GA 
GA. [GCJ.LINE_TEMP 
[GCJ. LINE_JEMP. GA 
GA. [GCJ.LINE_TEMP 

MEMORY POINTER = DISPLAY PAGE POINTER + 

2 X :5 

4 X 5 

8 X 5 

16 X 5 

4X (80XLI NE __ CNT + CHAR._CNTl 

ADD GA. [GCJ.CHAR_CNT 
MOV [GCJ.LINE_TEMP.GA 
ADD GA. [GCJ.LINE_TEMP 
ADD GA. [GCJ.LINE_TEMP 
ADD GA. [GCJ.LINE_TEMP 
MOV [GCJ.PAGE_INDEX.GA 
ADD GB. [GCJ.PAGE INDEX 

SAVE ASCII CODE IN DISPLAY PAGE 

MOVB [GBJ.ASCII_GRAPH1. [GCJ.ASCII 

SAVE BACKGROUND AND FOREGROUND COLOR IN 
DISPLAY PAGE 

LPDI 
MOVB 

GC.DP_PB 
[GBl.COLOR_MODE. [GeJ.COLOR 

CLEAR OTHER 2 DISPLAY PAGE BYTES 

MOVBI 
MOVBI 

[GBl.GRAPH 2AND3.00H 
[GBJ.GRAPH:::4AND5.00H 

3-417 210355-001 



SOURCE LINE 
948 
949 
950 

INCREMENT X CURSOR POSITION AND CHARAC1ER POINTER. 
CHECK FOR RIGHT MARGIN OVERkUN 

951 MOV! 
952 INC 
953 MOV 
954 NOT 
955 MOV 
~956 AND 
957 JNZ 
958 CR_UPDATE: 

GB.STAT_RAM 
[GB 1. CHAR_CNT 
[GD J. CHAR .. .TEMP. [GB l. CHAR 
[GBJ.CHAR_TEMP 
GA. [GC·]. MON_RMARG 
GA. [GEl. CHAR_TEMP 
GA. MaN_UPDATE .. FIN 

CNT 

959 IF RIGHT MARGIN WAS EXCEEDED. MOVE CHARACTER COUNT 
960 TO LEFT MARGIN AND INCREMENT LINE COUNT AND Y CURSOR 
961 j' POSITION 
962 LPDI GC. DP _PB 

GB.STAT_RAM 
[GBJ. LINE_CNT . 

963 MOVI 
964 INC 
965 MOV [GB J. CHAR_.CNT. [GC J. MON .. LMARG 
966 
967 
968 
969 
970 
971 
972 
973 
974 
975 
976 
977 
978 
979 
980 
981 
982 
983 
984 
985 
986 
987 
988 
989 
990 
991 
992 
993 
994 
995 
996 
997 
998 
999 

1000 
1001 
1002 
1003 
1004 

CHECK IF LINE COU"!T WENT PAST. BOTTOM OF SCREEN 

MOV 
NOT 
MOV 
AND 
JNZ 

[GBl.LINE_TEMP, [GDJ.LINE. CNT 
[GBl. LINE TEMP 
GA. [GBl.LiNE_TEMP 
GA. [GCl.MON END 
GA. MON_UPDATE.FIN 

LINE COUNT EXCE·EDED BOTTOM MARGIN .. · 
SET SCROLL FLAG 
AND KEYBOARD INHIBIT AND DECREMENT L-INE COUNT 

MOVBI 
MOVBI 
DEC 

MON_UPDATE_FIN: 

[GCl. SCROLL_REG. OFF'H . 
[GCJ.KBD_INH.OFFH i**** 
[GBJ. LINE_CNT 

RETURN TO CALLING ROUTINE 

MOVI 
LPDI 
MOVP 

GB. STAT~RAM 
GC.DP_PB 
TP. [GEl 

KEYBOARD BUFFER SUBROUTINE 

TRANSFER THE ASCII CHARACTERS OBTAINED FROM THE 
8279 CONTROL~ER INTO A BUFFER FOR LATER 
PROCESSING BY THE 8086. I 

KEY _BUF _UPDATE: 
LPDI 
MOVI 

GC.DP_PB 
GB.STAT_RAM 

BYPASS IF BUFFER FVLL 

JNZB [GCl.KBD BUF-FULL,KBU_RETURN 

BYPASS IF 8086 COMMAND MODE 
3-418 

( 

210355-001 



APPENDIX B/AP-123 

LINE SOURCE 
1005 , 
1006 
1007 
1008 
1009 
1010 
1011 
1012 
1013 
1014 
1015 
1016 
1017 
1018 
1019 
1020 
1021 
1022 
1023 
1024 
1025 
1026 
1027 
1028 
1029 
1030 
1031 
1032 
1033 
1034 
1035 
1036 
1037 
1038 
1039 
1040 
1041 
1042 
1043 
1044 
1045 
1046 
1047 
1048 
1049 
1050 
1051 
1052 
1053 
1054 
1055 
1056 
1057 

JNZB [GC] COM_8086, KBU _RETURN 

XFER THE CHARACTER 

MOV 
LPDI 

IX, [GC] KBD .Bur PTR 
GA,I-\.EY.BUF 

MOVB [GA+IX], [GB].ASCII 
INC rGCJ. KBD_BUF . .F'TR 
MOV GA, (GC]. KBD_BUF PTR 
ANDI GA,OFFOOH 
JZ GA,KBU_RETURN 

POINTER OVERRUN-SET BUFFER FULL FLAG 

DEC E GC]. KBD._BUF]TR 
MOVBI 
MOVBI 

KBU_RETURN: 

EGC]. KBD_BUF _FULL. OFFH 
[GA+IX],OFFH ;SET END OF BUFFER MARKER 

MOVP TP, [GB] 

EEPROM BUFFER SUBROUTINE 

THIS ROUTINE TRANSFERS THE ASCII CHARACTERS OBTAINED 
FROM THE 8279 CONTROL.LER INTO THE DUAL PORT EEPROM BUFFER 

EEP _BUF._.UPDATE: 
MOVI GB,'STAT _RAM 
LPDI GC, DP _PB 

CHECK FOR BUFFER FULL FLAG OR EEPROM INHIBITED 

JNZB [GC].EEP_INH,EBU_RETURN 
JNZB [GC]. EEP ._BUF _FULL, EBU .. _RETURN 

XFER THE CHARACTER 

MOV IX, EGBJ. EEP _BUF .. PTR 
LPDI GA,EEP_BUF 
MOVB EGA+IX], [GBJ.ASCII 
INC EGBJ.EEP_BUF_PTR 
MOV GA, [GBJ. EEF\....BUF .. PTR 
ANDI GA,OFFOOH 
JZ GA,EBU_RETURN 

POINTER OVERRUN-SET BUFFER FULL FLAG 

DEC 
MOVBI 

EBU_RETURN: 
MOVP 

DUMBTERM 

[GB]. EEP _BUF ]TR 
EGC].EEP_BUF_FULL,OFFH 

TP, EGB] 
ENDS 
END 

3-419 210355·001 



APPLICATION 
NOTE 

3-420 

Ap·113 

February 1981 

207865-001 



Ap·113 

INTRODUCTION 

This is an application note on using numerics in Intel's 
iAPX 86 or· iAPX 88 microprocessor family. The nu­
merics implemented in the family provide instruction 
level support for high-precision integer and floating 
point data types with arithmetic operations like add, 
subtract, multiply, divide, square root, power, log and 
trigonometrics. These features are provided by members 
of the iAPX 86 or iAPX 88 family called numeric data 
processors. 

Rather than concentrate on a narrow, specific applica­
tion, the topics covered in this application note were 
chosen for generality across many applications. The 
goal is to provide sufficient background inforination so 
that software and hardware engineers can quickly move 
beyond needs specific to the numeric data processor and 
concentrate on the special needs of their application. 
The material is structured to allow quick identification 
of relevant material without reading all the material 
leading up to that point. Everyone should read the in­
troduction to establish terminology and a basic 
background. 

IAPX 86,88 BASE 

The numeric data processor is based on an 8088 or 8086 
microprocessor. The 8086 and 8088 are general purpose 
microprocessors, designed for general data processing 
applications. General applications need fast, efficient 
data movement and program control instructions. Ac­
tual arithmetic on data values is simple in general appli­
cations. The 8086 and 8088 fulfill these needs in a low 
cost, effective manner. 

However, some applications need more powerful arith­
metic instructions and data types than a general pUrpose 
data processor provides. The real world deals in frac­
tional values and requires arithmetic operations like 
square root, sine, and logarithms. Integer data types 
and their operations like add, subtract, multiply, and 
divide may not meet the needs for accuracy, speed, and 
ease of use. 

Such functions are not simple or inexpensive. The 
general data processor does not provide these features 
due to their cost to other less-complex applications that 
do not need such features. A special processor is're­
quired, one which is easy to use and has a high level of 
support in hardware and software. 

The numeric data processor provides these features. It 
supports the data types and operations needed and 
allows use of all the current hardware and software sup­
port for the iAPX 86/10 and 88/10 microprocessors. 

The iAPX 86 and iAPX 88 provide two imple­
mentations of a numeric data processor. Each offers 
different tradeoffs in performance, memory size, and 
cost.' . 

3-421 

One alternative uses a special hardware component, the 
8087 numeric processor extension, while the other is 
based on software, the 8087 emulator. Both component 
and software emulator add the extra numerics data 
types and operations to the 8086 or 8088. 

The component and its software emulator are com-
pletely compatible. . 

Nomenclature 

Table one shows several possible configurations 
of the iAPX 86 and iAPX 88 microprocessor family. 
The choice of configuration will be decided by the 
needs of the application for cost and performance 
in the areas of general data processing, numerics, 
and 110 processing. The combination of an 8086 or 
8088 with an 8087 is called an iAPX 86/20 or 88/20 
numeric data processor. For applications requir­
ing high 110 bandwidths and numeric perfor­
mance, a combination of 8086, 8087 and 8089 is an 
iAPX 86/21 numerics and I/O data pr~ssor. The 
same system with an 8088 CPU for smaller size 
and lower cost, due to the smaller 8-bit wide 
system data bus, is referred to as an iAPX 88/21. 
Each 8089 in the system is designated in the units 
digit of the system designation. The term 86/2X or 
88/2X refers to a numeric data processor with any 
number of 8089s. 

Throughout this application note, I will use the 
terms NDP, numeric data .processor, 86/2X, and 
88/2X synonymously. Numeric processor exten­
sion and NPX are also synonymous for the func­
tions of either the 8087 component or 8087 
emulator. The term numeric instruction or 
numeric data type refers to an instruction or data 
type made available by the NPX. The term host will 
refer to either the 8086 or 8088 microprocessor. 

Table 1. Components Used In IIAPX 88,88 
Configurations 

System Name 8086 8087 8088 8089 

iAPX 86/10 1 
iAPX 86/11 1 1 
iAPX 86/12 1 2 
iAPX 86/20 1 1 
iAPX 86121 1 1 1 
iAPX 86/22 1 1 2 

iAPX 88/10 1 
iAPX 88/11 1 1 
iAPX 88/12 1 2 
iAPX 88/20 1 1 
iAPX 88121 1 1 1 
iAPX 88/22 1 1 2 

207865-001 



Ap·113 

NPX OVERVIEW 

The 8087 is a coprocessor extension available to 
iAPX 86/1X or iAPX 88/1X maximum mode 
microprocessor systems. (See page 7). The 8087 
adds hardware support for floating point and ex­
tended precision integer data types, registers, and 
instructions. Figure I shows the register set 
available to the NDP. On the next page, the seven 
data types available to numeric instructions are 
listed (Fig 2). Each data type has a load and store 
instruction. Independent of whether an 8087 or its 
emulator are used, the registers and 'data types all 
appear the same to the programmer. 

All the numeric instructions and data types of the NPX 
are used by the programmer in the same manner as the 
general data types and instructions of th; host. 

The numeric data formats and arithmetic operations 
provided by the 8087 conform to the proposed IEEE 
Microprocessor Floating Point Standard. All the pro­
posed IEEE floating point standard algorithms, excep­
tion detection, exception handling, infinity arithmetic 
and rounding controls are implemented. l 

The numeric registers of the NPX are provided for fast, 
easy reference to values needed in numeric calculations. 
All numeric values kept in the NPX register file are held 
in the 80-bit temporary real floating point format which 
is the same as the 80-bit temporary real data type. 

All data types are converted to the 80-bit register file 
format when used by the NPX. Load and store instruc­
tions, automatically convert between the memory 
operand data type and the register file format for all 
numeric data types. The numeric load instruction 
specifies the format in which the memory operand is ex­
pected and which addressing mode to use. 

All host base registers, index registers, segment 
registers, and addressing modes are available for 
locating numeric operands. In the same manner, the 
store instruction also specifies which data type to use 
and where the value is located when stored into 
memory. 

Selecting Numeric Data Types 

As figure 2 shows, the numeric data types are of dif­
ferent lengths and domains (real or integer). Each 
numeric data type is provided for a specific function, 
they are: 

16-bit word integers -Index values, loop counts, 
and small program control 
values 

l"An Implementation Guide to a Proposed Standard for Floating 
Point" by Jerome Coonen in Computer, Jan. 1980 or the Oct. 1979, 

32-bit short integers 

64-bit long integers 

18-digit packed 
decimal 

32-bit short real 

64-bit long real 

80-bit temporary 
real 

-Large integer general 
computation 

-Extended range integer 
computation 

-Commercial and decimal 
conversion arithmetic 

-Reduced range and 
accuracy is traded for 
reduced memory require­
ments 

-Recommended floating 
point variable type 

-Format for intermediate 
or high precision calcu­
lations 

Referencing memory data types in the NDP is not 
restricted to load and store instructions. Some arith­
metic operations can specify a memory operand in one 
of four possible data types. The numeric instructions 
compare, add, subtract, subtract reversed, multiply, 
divide, and divide reversed can specify a memory 
operand to be either a 16-bit integer, 32-bit integer, 
32-bit real, or 64-bit real value. As with the load and 
store operations, the arithmetic instruction specifies the 
address and expected format of the memory operand. 

The remaining arithmetic operations: square root, 
modulus, tangent, arctangent, logarithm, exponentiate, 
scale power, and extract power use only register 
operands. 

15 FILE 0 79 NPX STACK 0 

:~ 
Rl EXPONENT SIGNIFICANO 
R2 

CX R3 

OX R4 
SI R5 

01 R6 
BP R7 

SP R8 

I IP I NPXSTATUS 

FLAGS NPXMOOE 

I 

~~ I I 
issue of ACM SIGNUM, for more information on the standard, Figure 1. NDP Register Set for iAPX 86/20, 88/20 

3-422 207865-001 



Ap·113 

The register set of the host and 8087 are in separate 
componerits. Direct transfer of values between the two 
register sets in one instruction is not possible. To trans­
fer values between the host and numeric register sets, 
the value must first pass through memory. The memory 
format of a 16-bit short integer used by the NPX is iden­
tical to that of the host, ensuring fast, easy transfers. 

Since an 8086 or 8088 does not provide single instruc­
tion support for the remaining numeric data types, host 
programs reading or writing these data types must con­
form to the bit and byte ordering established by the 
NPX. 

Writing programs using numeric instructions is as sim­
ple as with the host's instructions. The numeric instruc­
tions are simply placed in line with the host's instruc­
tions. They are executed in the same order as they ap­
pear in the instruction stream. Numeric instructions 
follow the same form as the host instructions. Figure 2 
shows the ASM 86/88 representations for different 
numeric instructions and their similarity to host instruc­
tions. 

FILO 
FIAPO 
FAOO 

DATA 
FORMATS 

WORD INTEGER 

SHORT INTEGER 

LONG INTEGER 

PACKED BC~ 

SHORT REAL 

LONG REAL 

TEMPORARY REAL 

RANGE 

10" 

10· 

10'9 

10'8 

10~38 

10: 308 

10: 4932 

PRECISION 

16 BITS 

32 BITS 

64 BITS 

180lGIT8 

24 BITS 

53 BITS 

64 BITS 

VALUE 
TABLE [BX] 
ST,ST(1) 

MOST SIGNIFICANT BYTE 

7 01 7 017 

115 101 

131 

I" 

S I - 10 " 0161 

S IE7 EoIF1 

S IE10 Eot F, 

S IE14 Eo I Fo 

INTEGER: 1 
PACKED BCD: (-1)5(0" .•• Do) 

01 7 

8087 EMULATOR OVERVIEW 

The NDP has two basic implementations, an 8087 com­
ponent or with its software emulator (E8087). The deci­
sion to use the emulator or component has no effect on 
programs at the source level. At the source level, all in­
structions, data types, and features are used the same 
way. 

The emulator requires all numeric instruction opcodes 
to be replaced with an interrupt instruction. This 
replacement is performed by the LlNK86 program. In­
terrupt vectors in the host's interrupt vector table will 
point to numeric instruction emulation routines in the 
8087 software emulator. 

When using the 8087 emulator, the linker changes all the 
2-byte wait-escape, nop-escape, wait-segment override, 
or nop-segment override sequences generated by an 
assembler or compiler for the 8087 component with a 
2-byte interrupt instruction. Any remaining bytes of the 
numeric instruction are left unchanged. 

01 7 017 017 °l7 017 oJr ~. 

TWO'S COMPLEMENT 

101 TWO'S COMPLEMENT 

101 
TWO'S 

COMPLEMENT 

101 DoJ 

F231 Fo IMPLICIT 

Fs2 1 Fo IMPLICIT 

Fa31 

REAL: (_1)5(2<·8'05) (Fo.F, ... ) 
BIAS = 127 FOR SHORT REAL 

1023 FOR LONG REAL 
16383 FOR TEMP REAL 

Figure 2. NPX Data Types 

3-423 207865-001 



Ap·113 

When the host encounters numeric and emulated in­
struction, it will execute the software interrupt instruc­
tion formed by the linker. The interrupt vector table will 
direct the host to the proper, entry point in the 8087 
emulator. Using the interrupt return address and CPU 
register set, the host will decode any remaining part of 
the numeric instruction, perform the indicated opera­
tion, then return to the next instruction following the 
,emulated numeric instruction. 

One copy of the 8087 emulator can be shared by all pro­
grams in the host. 

The decision to use the 8087 or software emulator is 
made at link time, when all software modules are 
brought together. Depending on whether an 8087 or its 
software emulator is used, a different group of library 
modules are included for linking wit!! the program. 

If the 8087 component is used, the libraries do not add 
any code to the program, they just satisfy external refer­
ences made by the assembler or compiler. Using the 
emulator will not increase the size of individual modu­
les; however, other modules requiring about 16K bytes 
that implement the emulator will be automatically 
added. 

Selecting between the emulator or the 8087 can be very 
easy. Different versions of submit files performing the 
link operation 'can be used to specify the different set of 
library modules needed. Figure 3 shows an example of 
two different submit files for the same program using 
the NPX with an 8087 or the 8087 emulator. 

iSBC 337™ MUL TIMODULETM Overview 

80B7 BASED LINK/LOCATE COMMANDS 

LlI'lKB6 :F1:PROG.OBJ, IO.LlB, BOB7.LlB TO 
:F1:PROG.LNK 

LOCB6 :F1:PROG.LNK TO :F1:PROG 

SOFTWARE EMULATOR BASED 
LINK/LOCATE COMMANDS 

LlNK86 :F1:PROG.OBJ, IO.LlB, EBOB7.UB, 
EBOB7 TO :F1:PROG.LNK 

LOC86 :F1:PROG.LNK TO :F1:PROG 

Figure 3. Submit File Example 

ISBC 337T .. MULTIMODULETM BOARD 

I 
BOARD OPTIONAL SOLDER 

(iSBC 86112ATIoI) MOUNt 

80871NT 
CONNECTOR 

The benefits of the NPX are not limited to systems 
which left board space for the 8087 component or mem­
ory space for its software emulator. Any maximum 
mode iAPX 86/lX or iAPX 88/1X system can be up­
graded to a numeric processor. The iSBC 337 MUL­
TIMODULE is designed for just this function. The 
iSBC 337 provides a socket for the host microprocessor 
and an 8087. A 4O-pin plug is provided on the underside 
of the 337 to plug into the original host's socket, as 
shown in Figure 4. Two other pins on the underside of 
the MULTIMODULE allow easy connection to the 
8087 INT and RQ/GTI pins. 

Figure 4. MULTIMODULETM Math Mounting Scheme 

3-424 207865-001 



Ap·113 

CONSTRUCTING AN iAPX 86/2X OR iAPX 
88/2X SYSTEM 

• r-------------------------------------------------

This section will describe how to design a micropro­
cessor system with the 8087 component. The discussion 
will center around hardware issues. However, some of 
the hardware decisions must be made based upon how 
the software will use the NPX. To better understand 
how the 8087 operates as a local bus master, we.shall 
cover how the coprocessor interface works later in this 
section. 

Wiring up the 8087 

The 8087 can be designed into any 86/1X or 88/IX 
system operating in maximum mode. Such a system 
would be designated an 8612X or 8812X. Figure 5 shows 
the local bus interconnections for an iAPX 86120 (or 
iAPX 88120) system. The 8087 shares the maximum 
mode host's multiplexed address/data bus, status sig­
nals, queue status signals, ready status signal, clock and 
reset signal. Two dedicated signals, BUSY and INT, in­
form the host of current 8087 status. The 10K pull-down 
resistor on the BUSY signal ensures the host will always 
see a "not busy" status if an 8087 is not installed. 

Adding the 8087 to your design has a minor effect on 
hardware timing. The 8087 has the exact same timing 
and equivalent DC and AC drive characteristics as a 
host or lOP on the local bus. All the local bus logic, 
such as clock, ready, and interface logic is shared. 

The 8087 adds 15 pF to the total capacitive loading on 
the shared address/data and status signals. Like the 
8086 or 8088, the 8087 can drive a total of 100 pF 
capacitive load above its own self load and sink 2.0 rnA 
DC current on these pins. This AC and DC drive is suf­
ficient for an 86121 system with two sets of data 
transceivers, address latches, and bus controllers for 
two separate busses, an on-board bus and an off-board 
MUL TIBUSTM using the 8289 bus arbiter. 

Later in this section, what to do with the 8087 INT and 
RQ/GT pins, is covered. 

It is possible to leave a prewired 4O-pin socket on the 
board for the 8087. Adding the 8087 to such a system is 
as easy as just plugging it in. If a program attempts to 
execute any numeric instructions without the 8087 in­
stalled, they will be simply treated as NOP instructions 
by the host. Software can test for the existence of the 
8087 by initializing it and then storing the control word. 
The program of Figure 6 illustrates this technique. 

3-425 

~Iu .. z - .. 1$ ~ 
Q :: 

~ 8284A ~ .. 
RD'12 ~ 
----; u .... ., 

~ 
w .. w 
a: S! 

~ 
,. 
Q 

i:l ~ 
a: 

8282 

~ 

~ ., ~ ., .. '" .., .. ~ .. ~ ., '" <> - '" .., '!I~I~L ..,..,..,..,.., - --LS 
'---

8282 

8088~o:3o~P_;_ 
QOOOOOOO 



~ 
~ 

~ 

~ 

.. 
zz 
00 
ani 

~l! ..... cr. , , 
!!.~ 

~~ . , 
~2. :1 
.;!. 

s'! 
§! 
i§ 
~ . ... 
3i 

Ai0 14 005 ti,) 015 6 - 6 AUll 

A9 13 006 016 7 7 AC10 ! 
AS 12 007 017 8 ADS 

10E 1~8 II: :: 
... 

A7 19 
A6 18 

AL-!! 
A4 16 
A3 15 
A2 14 

A1 13 

AO 12 

000 
001 

002 

003 
004 

005 

00. 
007 

OE 

I 
015 19 80 

014 18 B1 

013 17 82 

012 16 83 
011 15 B4 

010 14 85 

09-1,! 86 
D8~ 87 

OE 

9 r 

11 10 AD6 II "ADS 
12 AD4 

13 AD3 

~A02 S2~8 
,-;;- A01 _ 51 27 

16 ADO RQI - 26 r=- 051 aso GTO 8USYSO 

~ ~~llllllllllllllllllllll 
'" I I 

zCD 

~~ -... 

" 

MI 
M 2 

~ 3 
~ 4 
AA 5 

~ . 
~ 7 
U 8 

T 

24 251 31 23 

~10K 

241 251 301 23 
35 aS1 aso RQ/Gfi 'fES'f 

RESET 121 I I I 

A19/S6 

36 A18/55 (SSO) BHEfS7 ~ I I I 
37 A17/S4 READY 22 I 

38 A16fS3 

3: AD1S(A15) 
IiIi c~g: I I I 

~I~ III I I -= AD14(A14) 

: >:~~~:~i. 
5 AD11(A11) _ 

• A010(A10) :!::!: ,...----J 
7 AD9(A9) CO CD NMI 17 NMI 
8 AD8(A8) .S!! CD INTR 18 INTR 

AEN 

H :~ :~ ~ 1: AD7 ,~ +5V MCE 

~ 82 A2 3 11 :~: -=-~ 83 CD A3 4 12 A 4 2 6 1 10· 20b J 

) 

~ B4 ~ A4 5 13 A~3 eLK AEN 108 GNO Vee CEN MCEI 

~ 85 0) AS 6 14 AD2 52 2~ 18 52 CD = ~ 
~ 86 A6 7 15 AD1 51 21 3 51 N lowe 11 ~ 
~ 87 A7 • ,. ADO so 26 " so ~ >--~ 
-- - OE T Vee GND GNDMN/Mi' AIOWC ~ 

ALE DT/R DEN MRDC MWfC AMWC iNfAl 
51 41 1.1 71 ,I .1 141 '1 111 40l il :ror-'" I 

+5V ~ 

.A 
"'f 

~II~II~II~I 

l> 
"tI 
~ ..... 
Co) 



AP·113 

WHAT IS THE iAPX 86, 88 
COPROCESSOR INTERFACE? 
The idea of a coprocessor is based on the observation 
that hardware specially designed for a function is the 
fastest, smallest, and cheapest implementation. But, it is 
too expensive to incorporate all desired functions in 
general purpose hardware. Few applications could use 
all the functions. To build fast, small, economical sys­
tems, we need some way to mix and match components 
supporting specialized functions. 

Purpose of the Coprocessor' Interface 
The coprocessor interface of the general purpose 8086 
or 8088 microprocessor provides a way to attach special­
ized hardware in a simple, elegant, and efficient man­
ner. Because the coprocessor hardware is specialized, it 
can perform its job much faster than any general pur­
pose CPU of similar size and cost. The coprocessor 
interface simply requires connection to the host's local 
address/data, status, clock, ready, reset, test and re­
quest/grant signals. Being attached to the host's local 
bus gives the coprocessor access to all memory and 110 
resources available to the host. 

The coprocessor is independent of system configura­
tion. Using the local bus as the connection point to the 
host isolates the coprocessor from the partil;:ular system 
configuration, since the timing and function of local bus 
signals are fixed. 

Software's View of the Coprocessor 
The coprocessor interface allows specialized hardware 
to appear as an integral part of the host's architecture 
controlled by the host with special instructions. When 
the host encounters these special instructions, both the 
host and coprocessor recognize them and work together 
to perform the desired function. No status polling loops 
or command stuffing sequences are required by soft­
ware to operate the coprocessor. 

More information is available to a coprocessor than 
simply an instructio.n opcode and a signal to begin exe-

cution. The host's coprocessor interface can read a 
value from memory, or identify a region of memory the 
coprocessor should use while performing its function. 
All the addressing modes of the host are available to 
identify memory based operands to the coprocessor. 

Concurrent Execution of Host and 
Coprocessor 
After the coprocessor has started its operation, the host 
may continue on with the program, executing it in par­
allel while the coprocessor performs the function started 
earlier. The parallel operation of the coprocessor does 
not normally affect that of the host unless the copro­
cessor must reference memory or I/O-based operands. 
When the host releases the local bus to the coprocessor, 
the host may continue to execute from its internal in­
struction queue. However, the host must stop when it 
also needs the local bus currently in use by the copro­
cessor. Except for the stolen memory cycle, the opera­
tion of the coprocessor is transparent to the host. 

This parallel operation of host and coprocessor is called 
concurrent execution. Concurrent execution of instruc­
tions requires less total time then a strictly sequential 
execution would. System performance will be higher 
with concurrent execution of instructions between the 
host and coprocessor. 

SYNCHRONIZATION 

In exchange for the higher system performance made 
available by concurrent execution, programs must pro­
vide what is called synchronization between the host 
and coprocessor. Synchronization is necessary whenever 
the host and coprocessor must use information available 
from the other. Synchronization involves either the host 
or coprocessor waiting for the other to finish an opera­
tion currently in progress. Since the host executes the 
program, and has program control instructions like 
jumps, it is given responsibility for synchronization. To 
meet this need, a special host instruction exists to syn­
chronize host operation with a coprocessor. 

Test for the existence of an 8087 in the system. This code will always recognize an 8087 
independent of the TEST pin usage on the host. No deadlock is possible. Using the 8087 
emulator will not change the function of this code since ESC instructions are used. The word 
variable control is used for communication between the 8087 and the host. Note: if an 8087 is 
present, it will be initialized. Register ax is not transparent across this code. 

ESC 
XOR 
MOV 
ESC 
OR 
JZ 

28, bx 
ax, ax 
control, ax 
15, control 
ax, control 
no_8087 

FNINIT if 8087 is present. The contents of bx is irrelevant 
These two instructions insert delay while the 8087 initializes itself 
Clear intial control word value 
FNSTCW if 8087 is present 
Control = 03ffh if 8087 present 
Jump if no 8087 is present 

Figure 6. Test for Existence of an 8087 

3-427 207865-001 



AP·113 

The host coprocessor synchronization instruction, 
called "WAIT", uses the TEST pin of the host. The 
coprocessor can signal that it is still busy to the host via 
this pin. Whenever the host .executes a wait instruction, 
it will stop program execution while the TEST input is 
active. When the TEST pin becomes inactive, the host 
will resume program execution with the next instruction 
following the WAIT. While waiting on the TEST pin, 
the host can be interrupted at 5 clock intervals; how­
ever, after the TEST pin becomes inactive, the host will 
immediately execute the next instruction, ignoring any 
pending interrupts between the WAIT aIid following 
instruction. . 

COPROCESSOR CONTROL 

The host has the responsibility for overall program con­
trol. Coprocessor operation is initiated by special in­
structions encountered by the host. These instructions 
are called "ESCAPE" instructions. When the host en~ 
counters an ESCAPE instruction, the coprocessor is 
expected to perform the action indicated by the instruc­
tion. There are 576 different ESCAPE instructions, 
allowing the coprocessor to perform many different 
actions. 

The host's coprocessor interface requires the copro­
cessor to recognize when the host has encountered an 
ESCAPE instruction. Whenever the host begins execut­
ing a new instruction, the coprocessor must look to see 
if it is an ESCAPE instruction. Since only the host 
fetches instructions and executes them, the coprocessor 
must monitor the instructions being executed by the 
host. 

Host Queue Tracking 
The host can fetch an instruction at a variable length 
time before the host executes the instruction. This is a 
characteristic of the instruction queue of an 8086 or 
8088 microprocessor. An instruction queue allows pre­
fetching instructions during times when the local bus 

S2 S1 SO Function QS1 

0 0 0 Interrupt Acknowledge 0 

0 0 1 Read I/O Port 0 

0 1 0 Write I/O Port 1 

0 1 1 Halt 1 

1 0 0 Code Fetch 

1 0 1 Read .Data Memory 

1 1 0 Write Data Memory 

1 1 1 Idle 

would be otherwise idle. The end benefit is faster execu­
tion time of host instructions for a given memory band­
width. 

The host does not externally indicate which instruction 
it is currently executing. Instead, the host indicates 
when it fetches an instruction and when, some time 
later, an opcode byte is decoded and executed. To iden­
tify the actual instruction the host fetched from its 
queue, the coprocessor must also maintain an instruc· 
tion stream identical to the host's. 

Instructions can be fetched in byte or word increments, 
depending on the type of host and the destination ad­
dress of jump instructions executed by the host. When 
the host has filled its queue, it stops prefetching instruc­
tions. Instructions are removed from the queue a byte at 
a time for decoding and execution. When a jump oc­
curs, the queue is emptied. The coprocessor follows 
these actions in the host by monitoring the host's bus 
status, queue status, and data bus signals. Figure 7 
shows how the bus status signals and queue status 
signals are encoded. 

IGNORING 1/0 PROCESSORS 

The host is not the 'only local bus master capable of 
fetching instructions. An Intel 8089 lOP can generate 
instruction fetches on the local bus in the course of exe­
cuting a channel program in system memory. In this 
case, the status signals S2, SI, and SO generated by the 
lOP are identical to those of the host. The coprocessor 
must not interpret these instruction prefetches as going 
to the host's instruction queue. This problem is solved 
with a status signal called S6. The S6 signal identifies 
when the local bus is being used by the host. When the 
host is the local bus master, S6 = 0 during T2 and T3 of 
the memory cycle. All other bus masters must set S6 = 1 
during T2 and T3 of their instruction prefetch cycles. 
Any coprocessor must ignore activity on the local bus 
when S6= 1. 

QSO Host Function Coprocessor Activity 

0 No Operation No Queue Activity 

1 First Byte Decode Opcode Byte 

0 Empty Queue Empty Queue 

1 Subsequent Byte Flush Byte or if 2nd 

Byte of Escape 

Decode it 

Figure 7. 

3-428 207865-001 



Ap·113 

DECODING ESCAPE INSTRUCTIONS 

To recognize ESCAPE instructions, the coprocessor 
must examine all instructions executed by the host. 
When the host fetches an instruction llyte from its inter­
nal queue, the coprocessor must do likewise. 

The queue status state, fetch opcode byte, identifies 
when an opcode byte is being examined by the host. At 
the same time, the coprocessor will check if the byte fet­
ched from its internal instruction queue is an ESCAPE 
opcode. If the instruction is not an ESCAPE, the 
coprocessor will ignore it. The queue status signals for 
fetch subsequent byte and flush queue let the 
coprocessor track the host's queue without knowledge 
of the length and function of host instructions and ad­
dressing modes. 

Escape Instruction Encoding 

All ESCAPE instructions start with the high-order 
5-bits of the instruction being 11011. They have two 
basic forms. The non-memory form, listed here, in­
itiates some activity in the coprocessor using the nine 
available bits of the ESCAPE instruction to indicate 
which function to perform. 

MOD 

I 11 I 1 I I I I I I I 

Memory reference forms of the ESCAPE instruction, 
shown in Figure 8, allow the host to point out a memory 
operand to the coprocessor using any host memory ad­
dressing mode. Six bits are available in the memory 
reference form to identify what to do with the memory 
operand. Of course, the coprocessor may not recognize 
all possible ESCAPE instructions, in which case it will 
simply ignore them. 

Memory reference forms of ESCAPE instructions are 
identified by bits 7 and 6 of the byte following the 
ESCAPE opcode. These two bits are the MOD field of 
the 8086 or 8088 effective address calculation byte. 

They, together with the R/M field, bits 2 through 0, 
determine the addressing mode and how many subse­
quent bytes remain in the instruction. 

Host's Response to an E~cape Instruction 

The host performs one of two possible actions when 
encountering an ESCAPE instruction: do nothing or 
calculate an effective address and read a word value 
beginning at that address. The host ignores the value of 
the word read. ESCAPE instructions change no regis­
ters in the host other than advancing IP. So, if there is 
no coprocessor, or the coprocessor ignores the ESCAPE 
instruction, the ESCAPE instruction is effectively a 
NOP to the host. Other than calculating a memory ad­
dress and reading a word of memory, the host makes no 
other assumptions regarding coprocessor activity. 

The memory reference ESCAPE instructions have two 
purposes: identify a memory operand and for certain in­
structions, transfer a word from memory to the 
coprocessor. 

COPROCESSOR INTERFACE TO MEMORY 

The design of a coprocessor is considerably simplified if 
it only requires reading memory values of 16 bits or less. 
The host can perform all the reads with the coprocessor 
latching the value as it appears on the data bus at the 
end of T3 during the memory read cycle. The copro­
cessor need never become a local bus master to read or 
write additional information. 

If the coprocessor must write information to memory, 
or deal with data values longer than one word, then it 
must save the memory address and be able to become a 
local bus master. The read operation performed by the 
host in the course of executing the ESCAPE instruction 
places the 2O-bit physical address of the operand on the 
address/data pins during T1 of the memory cycle. At 
this time the coprocessor can latch the address. If the 
coprocessor instruction also requires reading a value, it 
will appear on the data bus during T3 of the memory 
read. All other memory bytes are addressed relative to 
this starting physical address. 

MOD RIM 16·blt direct displacement 
11111011111 I I 1°1 0 1 I 111111°1 I I I I I I I I I I I I I I I I 

'15 '14 '13 '12 '11 '10 '9 '8 '7 '6 '5 '4 '3 '2 '1 '0 D15 D14 D13 D12 D11 D10 Dg D8 D7 D6 D5 D4 D3 D2 D1 DO 

MOD RIM 16·blt displacement 
11111 ° 111111 I 111 ° I I I I I I I I I I I I I I 1 I I I I I I I I 

'15 '14 '13 '12 '11 '10 '9 '8 '7 '6 '5 '4 '3 '2 '1 '0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 DS D4 D3 D2 D1 DO • MOD RIM a·blt displacement 
11111011111 I I 1°1 1 1 I I I I I I I I I I I I I I 

'15· 114 '13 112 111 '10 '9 '8 17 IS 15 14 13 '2 '1 10 07 06 05 04 03 02 01 DO 

MOD RIM 

11111011111 I I 1°1°1 I I I I I I 
'15 '14 '13 '12 '11 '10 '9 '8 '7 '6 '5 '4 '3 '2 '1 '0 

Figure 8. Memory Reference Escape Instrucllon Forms 

3-429 207865-001 



AP·113 

Whether the coprocessor becomes a bus master or not, 
if the coprocessor has memory reference instruction 
forms, it must be able to identify the memory'read per­
formed by the host in the course of executing an 
ESCAPE instruction. 

Identifying the memory read is straightforward, requir-
ing all the following conditions to be met: ' 

1) A MOD value of 00, 01, or 10 in the second byte 
of the ESCAPE instruction executed by the host. 

2) This is the first data read memory cycle performed 
by the host after it encountered the ESCAPE in­
struction. In particular, the bus status signals 
S2-SO will be 101 and S6 will be O. 

The coprocessor must continue to track the instruction 
queue of the host while it calculates the memory address 
and reads the memory value. This is simply a matter of 
following the fetch su~sequent byte status commands 
occurring on the queue status pins. 

HOST PROCESSOR DIFFERENCES 
I 

A coprocessor must be aware of the bus characteristics 
of the host processor. This determines how the host will 
read the word operand of a memory reference ESCAPE 
instruction. If the host is an 8088, it will always perform 
two byte reads at sequential addresses. But if the host is 
an 8086, it can either perform a single word read or two 
byte reads to sequential addresses. 

The 8086 places no restrictions on the alignment 'of 
word operands in memory. It will automatically per­
form two byte operations for word operands starting at 
an odd address. The two operations are necessary since 
the two bytes of the operand exist in two different mem­
ory words. The coprocessor should be able to accept the 
two possible methods of reading a word value on the 
8086. 

A coprocessor can determine whether the 8086 will per­
form one or two memory cycles as part of the current 
ESCAPE instruction execution. The ADO pin during TI 
of the first memory read by the host tells if this is the 
only read to be performed as part of the ESCAPE in­
struction. If this pin is a 1 during Tl of the memory 
cycle, the 8086 will immediately follow this memory 
read cycle with another one at the next byte address. 

Coprocessor Interface Summary 
The host ESCAPE instructions, coprocessor interface, 
and WAIT instruction allow easy extension of the host's 
architecture with specialized processors. The 8087 is 
such a processor, extending the host's architecture as 
seen by the programmer. The specialized hardware pro­
vided by the 8087 can greatly improve system perfor­
mance economically in terms of both hardware and 
software for numerics applications. 

The next section examines how the 8087 uses the 
coprocessor interface of the 8086 or 8088. 

8087 COPROCESSOR OPERATION 
The 8086 or 8088 ESCAPE instructions provide 64 
memory reference opcodes and 512 non-memory refer­
ence opcodes. The 8087 uses 57 of the memory reference 
forms and 406 of the non-memory reference forms. Fig­
ure 9 shows the ESCAPE instructions not used by the 
8087. 

11 1 1°1 1 1 1 1 I' 1 11 1 1 I 1 1 I I I 
'is '14 '13 '12 '11 '10 '8 '8 "7 '8 '5 '4 '3 '2 '1 '0 

110 19 IS 15 14 13 12 11 10 Available codas 

0 0 1 0 1 0 0 0 1 1 
0 0' 1 0 1 0 0 1 - 2 
0 0 1 0 1 0 1 -- 4 
0 0 1 1 0 0 0 1 - 2 
0 0 1 1 0 0 1 1 - 2 
0 0 1 1 0 1 1 1 -1 1 
0 0 1 1 1 0 1 0 1 1 
0 0 1 1 1 1 0 1 1 1 
0 0 1 1 1 1 1- 1 - 2 
0 1 1 1 0 0 1 0 1 1 
0 1 1 1 0 0 1 1 - 2 
0 1 1 1 0 1 --- 8 
0 1 1 1 1 -- .. -- 18 
1 0 1 1 ----- 32 
1 1 1 1 0 0 0 0 1 1 
1 1 1 1 0 0 O· 1 0 1 
1 1 1 1 0 0 1-- 4 
1 1 1 1 0 1--- 8' 
1 1 1 1 1 ---- 18 --

105 total 

Available Non·Memory Reference Escape Instructions 

. MOD RIM 

11 1 1°1 1 11 1 I I I I I I I I 1 1 
'15 '14 '13 '12 '11 '10 '9 '8 '7 '8 '5 '4 '3 '2 '1 '0 

110 19 IS 15 14 13 
0 0 1 0 0 1 
0 1 1 0 0 1 
0 1.1 1 0 0 
0 1 1 1 1 0 
1 0 1 0 0 1 
1 0 1 1 0 1 
1 1 1 0 0 1 

Available Memory ~ference Escape Instructions 

Figure 9. 

3-430 207865-001 \ 



AP·113 

Using the 8087 With Custom 
Coprocessors 
Custom coprocessors, a designer may care to develop, 
should limit their use pf ESCAPE instructions to those 
not used by the 8087 to prevent ambiguity about 
whether anyone ESCAPE instruction is intended for a 
numerics or other custom coprocessor. Using any 
escape instruction for a custom coprocessor may con­
flict with opcodes chosen for future Intel coprocessors. 

Operation of an 8087 together with other custom co­
processors is possible under the following constraints: 

1) All 8087 errors are masked. The 8087 will update its 
opcode and instruction address registers for the un­
used opcodes. Unused memory reference instruc­
tions will also update the operand address value. 
Such changes in the 8087 make software-defined 
error handling impossible. 

2) If the coprocessors provide a BUSY signal, they must 
be ORed together for connection to the host TEST 
pin. When the host executes a WAIT instruction, it 
does not know which coprocessor will be affected by 
the following ESCAPE instruction. In general, all 
coprocessors must be idle before executing the 
ESCAPE instruction. 

Operand Addressing by the 8087 
The 8087 has seven different memory operand formats. 
Six of them are longer than one 'word. All are an even 
number of bytes in length and are addressed by the host 
at the lowest address word. 

When the host executes a memory reference ESCAPE 
instruction intended to cause a read operation by the 
8087, the host always reads the low-order word of any 
8087 memory operand. The 8087 will save the address 
and data read. To read any subsequent words of the 
operand, the 8087 must become a local bus master. 

When the 8087 has the local bus, it increments the 2O-bit 
physical address it saved to address the remaining words 
of the operand. 

When the ESCAPE instruction is intended to cause a 
write operation by the 8087, the 8087 will save the ad­
dress but ignore the data read. Eventually, it will get 
control of the local bus, then perform successive write, 
increment address operations writing the entire data 
value. 

8087 OPERATION IN IAPX 86,88 SYSTEMS 
The 8087 will work with either an 8086 or 8088 host. 
The identity of the host determines the width of the 
local bus path. The 8087 will identify the host and 
adjust its use of the data bus accordingly; 8 bits for an 
8088 or 16 bits for an 8086. No strapping options are 
required by the 8087; host identification is automatic. 

The 8087 identifies the host each time the host and 8087 
are reset via the RESET pin. After the reset signal goes 
inactive, the host will begin instruction execution at 
memory address FFFFOI6. 

If the host is an 8086 it will perform a word read at that 
address; an 8088 will perform a byte read. 

The 8087 monitors pin 34 on the first memory cycle 
after power up. If an 8086 host is used, pin 34 will be the 
BHE signal, which will be low for that memory cycle. 
For an 8088 host, pin 34 will be the SSO signal, which 
will be high during Tl of the ftrst memory cycle. Based 
on this signal, the 8087 will then configure' its data bus 
width to match that of the host local bus. 

For 88/2X systems, pin 34 of the 8087 may be tied to 
Vee if not connected to the 8088 SSO pin. 

The' width of the data bus and alignment of data oper­
ands has no effect, except for execution time and num­
ber of memory cycles performed, on 8087 instructions. 
A numeric program will always produce the same results 
on an 8612X or 8812X with any operand alignment. All 
numeric operands have the same relative byte orderings 
independent of the host and starting address. 

The byte alignment of memory operands can affect the 
performance of programs executing on an 86/2X. If a . 
word operand, or any numeric operand, starts on an 
odd-byte address, more memory cycles are required to 
access the operand than if the operand started on an 
even address. The extra memory cycles will lower system 
performance. 

The 86/2X will attempt to minimize the number of extra 
memory cycles required for odd-aligned operands. In 
these cases, the 8087 will perform first a byte operation, 
then a series of word operations, and finally a byte 
operation. 

3-431 

88/2X instruction timings are independent of operand 
alignment, since byte operations are always performed. 
However, it is recommended to align numeric operands 
on even boundaries for maximum performance in case 
the program is transported to an 8612X. 

207865-001 



r---

r+ 

riD~ 
READY 

8284A 
ClK 

CLOCK 
GENERATOR 

RESET 

SylEM 
READY 

'-

-

AP·113 

ClK 
1..1 ~ 

AID I 

I~ r 
8088 

READY ~ (3)8282 
ADDRESS 

----v 
~ 

LATCHES 

RESET STATUS hi ... 1-' 
imJM1 as TDT STB 

""" 
,.. 

II IRl/QTli as BUSY 
;L- ~ ,L--.J. 8286 

DATA AID 
'r- hi r-" \j 

TRANSCEIVER 

READY 

8087 T OE 

ClK 

M 
RESET STATUS 'nI RO/GT1 

I 

'--

.l~ 

RQ/GT ,fL- ---l\ RESET • 
AID 

'r -V 
8089 

READY 
DTIIi 

- ALE DEN -

---l\ " 
8288 

STATUS STATUS 
ClK V BUS 

CONTROllER 

ClK 

Figure 10. IAPX 88121 

3-432 

r--
I 

.., 
I 
I ! ADDRESS 

.===1 

DATA ~ 

-V 

ICOMMAN~sl 

I ,): 
I I 
ISYSTEMI 
I BUS I L __ .J 

207865-001 



Ap·113 

RQIGT CONNECTION 

Two decisions must be made when connecting the 8087 
to a system. The first is how to interconnect the RQ/GT 
signals of all local bus masters. The RQ/GT decision af­
fects the response time to service local bus requests from 
other local bus masters, such as an 8089 lOP or other 
coprocessor. The interrupt connection affects the 
response time to service an interrupt request and how 
user-interrupt handlers are written. The implications of 
how these pins are connected concern both the hardware 
designer and programmer and must be understood by 
both. 

The RQ/GT issue can be broken into three general cate­
gories, depending on system configuration: 86120 or 
88/20, 86/21 or 88121, and 86122 or 88122. Remote 
operation of an lOP is not effected by the 8087 RQ/GT 
connection. 

iAPX 86120, 88120 

For an 86120 or 88120 just connect the RQ/GTO pin of 
the 8087 to RQ/GTl of the host (see Figure S), and skip 
forward to the interrupt discussion on page IS. 

iAPX 86121, 88121 

For an 86121 or 88121, connect RQ/GTO of the 8087 to 
RQ/GTI of the host, connect RQ/GT of the 8089 to 
RQ/GTl of the 8087 (see Figure 10, page 12), and skip 
forward to the interrupt discussion on page 15. 

The RQ/GTl pin of the 8087 exists to provide one 1/0 
processor with a low maximum wait time for the local 
bus. The maximum wait times to gain control of the 
local bus for a device attached to RQ/GTl of an 8087 
for an 8086 or 8088 host are shown in Table 2. These 
numbers are all dependent on when the host will release 
the local bus to the 8087. 

As Table 2 implies, three factors determine when the 
host will release the local bus: 

I) What type of host is there, an 8086 or 8088? 

2) What is the current instruction being executed? 

3) How is the lock prefix being used? 

An 8086 host will not release the local bus between the 
two consecutive byte operations performed for odd­
aligned word operands. The 8088, in contrast, will never 
release the local bus between the two bytes of a word 
transfer, independent of its byte alignment. 

Host operations such as acknowledging an interrupt will 
not release the local bus for several bus cycles. 

Using a lock prefix in front of a host instruction 
prevents the host from releasing the local bus during the 
execution of that instruction. 

8087 RQIGT Function 

The presence of the 8087 in the RQ/GT path from the 
lOP to the host has little effect on the maximum wait 
time seen by the lOP when requesting the local bus. The 
8087 adds two clocks of delay to the basic time required 
by the host. This low delay is achieved due to a preemp­
tive protocol implemented by the 8087 on RQ/GTl. 

The 8087 always gives higher priority to a request for 
the local bus from a device attached to its RQ/GTl pin 
than to a request generated internally by the 8087. If the 
8087 currently owns the local bus and a request is made 
to its RQ/GTl pin, the 8087 will finish the current 
memory cycle and release the local bus to the requestor. 
If the request from the devices arrives when the 8087 
does not own the local bus. then the 8087 will pass the 
request on to the host via its RQ/GTO pin. 

Table 2. Worst Case Local Bus Request Wait Times in Clocks 
I 

System No Locked 
Configuration Instructions 

iAPX 86121 
even aligned words 151 

iAPX 86121 
odd aligned words 151 

iAPX 88121 151 

Notes: 1. Add two clocks for each wait state inserted per bus cycle 
2. Add four clocks for each wait state inserted per bus cycle 
• Execution time of longest locked instruction 

Only Locked Other Locked 
Exchange Instructions 

351 max (lSI' *) 

432 max (432, *j 

432 max (432, *j 

3-433 207865-001 



AP·113 

/ 

I!L-READY 
AID 

I~ --V 
8089 - ClK (IOPAl 

-l\ ,.. RESET 
STATUS ---y 

RQ/GT 

SYSTEM 

REtY 

IA -1\ Iii RQ/GlO 
READY READY 

AIDF-v ~ 

~l\ 8284A STATUS 

IV ClK ClK 8086 

r---CLOCK as 
GENERATOR r---

RESET RESET 
J!Q/GTf 'fEST t-

~Dr-l ~ 
--V 

Ra/GTO BUSY 
READY r-

. Vi-
8087 ~Ir-

t-t- ClK AfD~ r-v 
~ r-- RESET STATUS ~ 
IV J!Q/GTf 

~ 

RO/GT 

~ READY 
AID 

\r--yI 
- 8089 
~ t- ClK (lOPS) 

~ 

"- RESET 
STATUS 

Figure 11. iAPX 86/22 System 

3-434 

~ ADDRESS 
LATCHES 

• (3) 8282 

STB 

~ 

l\ DATA 
TRANSCEIVERS 

V (2)8286 

T OE 

! 
ALE DT/I! DEN 

8288 
STATUS 

BUS CONTROllER 
ClK 

I 
'ADDRESS 

~ , 
.1 
1 

VI; : 

I 
I 
1 
I 
1 DATA 

~ 
1 

",I 
I 
I 
1 
ICOMMAN OS , 
~ , 

ISYSTE 

L.!U! 

, , 
M' , 
.J 

207865-001 



Ap·113 

IAPX 86/22, 88122 
An 86122 system offers two alternates regarding to 
which lOP to connect an I/O device. Each lOP will of­
fer a different maximum delay time to servide an I/O re­
quest. (See Fig. 11) 

The second 8089 (lOPA) must use the RQ/OTO pin of 
the host. With two lOPs the designer must decide which 
lOP services which 110 devices, determined by the max­
imum wait time allowed between when an I/O device re­
quests lOP service and the lOP can respond. The max­
imum service delay times of the two lOPs can be very 
different. It makes little difference which of the two 
host RQ/OT pins are used. 

The different wait times are due to the non-preemptive 
nature of bus grants between the two host RQ/OT pins. 
No communication of a need to use the local bus is 
possible between lOP A and the 8087/IOPB combina­
tion. Any request for the local bus by the 10PA must 
wait in the worst case for the host, 8087, and 10PB to 
finish their longest sequence of memory cycles. 10PB 
must wait in the worst case for the host and 10PA to 
finish their longest sequence of memory cycles. The 
8087 has little effect on the maximum wait time of 
10PB. 

DELAY EFFECTS OF THE 8087 

The delay effects of the 8087 on 10PA can be signifi­
cant. When executing special instructions (FSA VE, 
FNSA VE, FRSTOR), the 8087 can perform SO or 96 
consecutive memory cycles with an 8086 or 8088 host, 
respectively. These instructions do not affect response 
time to local bus requests seen by an 10PB. 

If the 8087 is performing a series of memory cycles while 
executing these instructions, and 10PB requests the 
local bus, the 8087 will stop its current memory activity, 
then release the local bus to 10PB. 

The 8087 cannot release the bus to lOP A since it cannot 
know that 10PA wants to use the local bus, like it can 
for IOPB. 

REDUCING 8087 DELAY E~FECTS 

For 86122 or 88122 systems requiring lower maximum 
wait times for lOP A. it is possible to reduce the worst 
case bus usage of the 8087. If three 8087 instructions are 
never executed; namely FSA VE, FNSA VE, or 
FRSTOR, the maximum number of consecutive mem­
ory cycles performed by the 8087 is 10 or 16 for an 8086 
or 8088 host respectively. The function of these instruc­
tions can be emulated with other 8087 instructions. 

Appendix B shows an example of how these three in­
structions can be emulated. This improvment does have 
a cost, in the increased execution time of 427 or 747 ad-

ditional clocks for an 8086 or 8088 respectively, for the 
equivalent save and restore operations. These opera­
tions appear in ·time-critical context-switching functions 
of an operating system or interrupt handler. This tech­
nique has no affect on the maximum wait time seen by 
10PB or wait time seen by 10PA due to 10PB. 

Which lOP to connect to which I/O device in an 86122 
or 88/22 system will depend on how quiCkly an 110 re­
quest by the device must be serviced by the lOP. This 
maximum time must be greater than the sum of the 
maximum delay of the lOP and the maximum wait time 
to gain control of the local bus by the lOP. 

If neither lOP offers a fast enough response time, con­
sider remote operation of the lOP. 

8087 INT Connection 
The next decision in adding the 8087 to an 8086 or 8088 
system is where to attach the INT signal of the 8087. 
The INT pin of the 8087 provides an external indication 
of software-selected numeric errors. The numeric pro­
gram will stop until something is done about the error. 
Deciding where to connect the INT signal can have im­
portant consequences on other interrupt handlers. 

WHAT ARE NUMERIC ERRORS? 

A numeric error occurs in the NPX whenever an opera­
tion is attempted with invalid operands or attempts to 
produce a result which cannot be represented. If an in­
correct or questionable operation is attempted by a pro­
gram, the NPX will always indicate the event. Examples 
of errors on the NPX are: 1/0, square root of - 1, and 
reading from an empty register. For a detailed descrip­
tion of when the 8087 detects a numeric error, refer to 
the Numerics Supplement. (See Lit. Ret). 

WHAT TO DO ABOUT NUMERIC ERRORS 

Two possible courses of action are possible when a 
numeric error occurs. The NPX can itself handle the 
error, allowing numeric program execution to continue 
undisturbed, or software in the host can handle the 
error. To have the 8087 handle a numeric error, set its 
associated mask bit in the NPX control word. Each 
numeric error may be individually masked. 

The NPX has a default fixup action defined for all pos­
sible numeric errors when they are masked. The default 
actions were carefully selected for their generality and 
safety. 

For example, the default fixup for the precision error is 
to round the result using the rounding rules currently in 
effect. If the invalid error is masked, the NPX will 
generate a special value called indefinite as the result of 
any invalid operation. 

3-435 207865-001 

\ 



AP·113 

NUMERIC ERRORS (CON'T) 

Any arithmetic operation with an indefinite operand 
will always generate an indefinite result. In this manner, 
the result of the original invalid operation will pro­
pagate throughout the program wherever it is used. 

When a questionable operation such as multiplying an 
urtnormal value by a normal value occurs, the NPX will 
signal this occurrence by generating an unnormal result. 

The required response by host software to a numeric 
error will depend on the application. The needs of each 
application must be understood when deciding on how 
to treat numeric errors. There are three attitudes 
towards a numeric error: 

I) No response required. Let the NPX perform the 
default fixup. 

2) Stop everything, something terrible has happened! 

3) Oh, not again! But don't disrupt doing something 
more important. 

SIMPLE ERROR HANDLING 

Some very simple applications may mask all of the 
numeric errors. In this simple case, the 8087 INT signal 
may be left unconnected since the 8087 will never assert 
this signal. If any numeric errors are detected during the 
course of executing the program, the NPX will generate 
a safe result. It is sufficient to test the final results of the 
calculation to see if they are valid. 

Special values like not-a-number (NAN), infinity, in­
definite, denormals, and unnormals indicate the type 
and severity of earlier invalid or questionable opera­
tions. 

SEVERE ERROR HANDLING 

For dedicated applications, programs should not gener­
ate or use any invalid operands. Furthermore, all num­
bers should be in range. An operand or result outside 
this range indicates a severe fault iIi, the system. This 
situation may arise due to invalid input values, program 
error, or hardware faults. The integrity of the program 
and hardware is in question, and immediate action is re­
quired. 

In this case, the INT signal can be used to interrupt the 
program currently running. Such an interrupt would be 
of high priority. The interrupt handler responsible for 
numeric errors might perform system integrity tests and 
then restart the system at a known, safe state. The 
handler would not normally return to the point of errpr. 

Unmasked numeric errors are very useful for testing 
programs. Correct use of synchronization, (Page 21), 
allows the programmer to find out exactly what 
operands, instruction, and memory values caused the 
error. Once testing has finished, an error then becomes 
much more serious. 

The 8086 Family Numerics Supplement recommends 
masking all errors except invalid. (See Lit. Ref.). In this 
case the NPX will safely handle such errors as 
underflow, overflow, or divide by zero. Only truly ques­
tionable operations will disturb the numerics program 
execution. 

An example of how infinities and divide by zero can be 
harmless occurs when calculating the parallel resistance 
of several values with the standard formula (Figure 12). 
If RI becomes zero, the circuit resistance becomes O. 
With divide by zero and precision masked, the NPX will 
produce the correct result. 

NUMERIC EXCEPTION HANDLING 

For some applications; a numeric error may not indicate 
a severe problem. The numeric error can indicate that a 
hardware resource has been exhausted, and the software 
must provide more. These cases are called exceptions 
since they do not normally arise. 

Special host software will handle numeric error excep­
tions when they infrequently occur. In these cases, 
numeric exceptions are expected to be recoverable 
although not requiring immediate service by the host. In 
effect, these exceptions extend the functionality of the 
NDP. Examples of extensiorts are: normalized only 
arithmetic, extending the register stl!-ck to memory, or 
tracing special data values. 

3-436 

Equivalent resistance = 

R, 

1 . 1 1 
-+-+­
R1 R2 R3 

Figure 12. Infinity Arithmetic Example 

207865-001 



AP·113 

HOST INTERRUPT OVERVIEW 

The host has only two possible interrupt inputs, a non­
maskable interrupt (NMI) and a maskable interrupt 
(INTR). Attaching the 8087 INT pin to the NMI input is 
not recommended. The following problems arise: NMI 
cannot be masked, it is usually reserved for more impor­
tant functions like sanity timers or loss of power signal, 
and Intel supplied software for the NDP will not sup­
port NMI interrupts. The INTR input pf the host allows 
interrupt masking in the CPU, using an Intel 8259A 
Programmable Interrupt Controller (PIC) to resolve 
mUltiple interrupts, and has Intel support. 

NUMERIC INTERRUPT CHARACTERISTICS 

Numeric error interrupts are different from regular in­
struction error interrupts like divide by. zero. Numeric 
interrupts from the 8087 can occur long after the 
ESCAPE instruction that started the failing operation. 
For example, after starting a numeric mUltiply opera­
tion, the host may respond to an external interrupt and 
be in the process of servicing it when the 8087 detects an 
overflow error. In this case the interrupt is a result of 
some earlier, unrelated program. 

From the point of view of the currently executing inter­
rupt handler, numeric interrupts can come from only 
two sources: the current handler or a lower priority pro­
gram. 

To explicitly disable numeric interrupts, it is recom­
mended that numeric interrupts be disabled at the 8087. 
The code example of Figure 13 shows how to disable 
any pending numeric interrupts then reenable them at 
the end of the handler. This code example can be safely 
placed in any routine which must prevent numeric inter­
rupts from occurring. Note that the ESCAPE instruc­
tions act as NOPs if an 8087 is not present in the system. 
It is not recommended to use numeric mnemonics since 
they may be converted to emulator calls, which run 
comparatively slow, if the 8087 emulator used. 

Interrupt systems have specific functions like fast 
response to external events or periodic execution of 
system routines. Adding an 8087 interrupt should not 
effect these functions. Desirable goals of any 8087 inter­
rupt configuration are: 

- Hide numeric interrupts from interrupt handlers that 
don't use the 8087. Since they didn't cause the 
numeric interrupt why should they be interrupted? 

- Avoid adding code to interrupt handlers that don't 
use the 8087 to prevent interruption by the 8087. 

- Allow other higher priority interrupts to be serviced 
while executing a numeric exception handler. 

- Provide numeric exception handling for interrupt 
service routines which use the 8087. 

- Avoid deadlock as described in a later section 
(page 24) 

Disable any possible numeric interrupt from the 8087. This code is safe to place in any 
procedure. If an 8087 is not present, the ESCAPE instructions will act as· nops. These 
instructions are not affected by the TEST pin of the host. Using the 8087 emulator will not 
convert these instructions into interrupts. A word variable, called control, is required to hold 
the 8087 control word. Control must not be changed until it is reloaded into the 8087. 

, 
ESC 15, control 
NOP 
NOP 
ESC 28,cx 

(FNSTCW) Save current 8087 control word 
Delay while 8087 saves current control 
register value 
(FNDISI) Disable any 8087 interrupts 
Set IEM bit in 8087 control register 
The contents of cx is irrelevant 
Interrupts can now be enabled 

(Your Code Here) 

Reenable any pending interrupts in the 8087. This instruction does not disturb any 8087 instruction 
currently in progress since all it does is change the IEM bit in the control register. 

TEST control,80H 
JNZ $+4 
ESC 28,ax 

Look at IEM bit 
If IEM = 1 skip FNENI 
(FNENI) reenable 8087 interrupts 

Figure 13. Inhibit/Enable 8087 Interrupts 

3-437 207865-001 



AP·113 

Recommended Interrupt Configurations 

Five categories cover most uses of the 8087 interrupt in 
fixed priority interrupt systems. For each category, an 
interrupt configuration is suggested based on the goals 
mentioned above. 

1. All errors on the 8087 are always masked. 
Numeric interrupts are not possible. Leave the 
8087 INT signal unconnected. 

2. The 8087 is the only interrupt in the system. Con­
nect tlie 8087 INT signal directly to the host's 
INTR input. (See Figure 14 on page i9). A bus 
driver supplies interrupt vector 1016 for com­
patibility with Intel supplied software. 

3. The 8087 interrupt is a stop everything event. 
Choose a high priority interrupt input that will ter­
minate all numerics related activity. This is a 
special case since the interrupt handler may never 
return to the point of interruption (i.e. reset the 
system and restart rather than attempt to continue 
operation). 

4. Numeric exceptions or numeric programming er­
rors are expected and all interrupt handlers either 
don't use the 8087 or only use it with all errors 
masked. Use the lowest priority interrupt input, 
The 8087 interrupt handler should allow further 
interrupts by higher priority events. The PIC's 
priority system will automatically prevent the 8087 
from disturbing other interrupts without adding 
extra code to them. 

3-438 

5. Case 4 holds except that interrupt handlers may 
also generate numeric interrupts. Connect the 8087 
INT signal to multiple interrupt inputs. One input 
would still be the lowest priority input as in case 4. 
Interrupt handlers that may generate a numeric in­
terrupt will require another 8087 INT connection 
to the next highest priority interrupt. Normally the 
higher priority numeric interrupt inputs would be 
masked and the low priority numeric interrupt 
enabled. The higher priority interrupt input would 
be unmasked only when servicing an interrupt 
which requires 8087 exception handling. 

All of these configurations hide the 8087 from all inter­
rupt handlers which do not use the 8087. Only those in­
terrupt handlers that use the 8087 are required to per­
form any special 8087 related interrupt control ac­
tivities. 

A conflict can arise between the desired PIC interrupt 
input and the required interrupt vector of 1016 for com­
patibility with Intel software for numeric interrupts. A 
simple solution is to use more than one interrupt vector 
for numeric interrupts, all pointing at the same 8087 in­
terrupt handler. Design the numeric interrupt handler 
such that it need not know what the interrupt vector was 
(i.e. don't use ,specific EOI commands). 

If an interrupt system uses rotating interrupt priorities, 
it will not matter which interrupt input is used. 

207865-001 



r--m~ 
8284A - READY 

,- RESET 
CLOCK 

GENERATOR 

r- elK 

READY 
AID 

~ r- STATUS 
RESET 

8086 
INTR 

i- elK 
TEST 

RQ/GT1 OS 

f ~J,. 
RQIGIO OS 

BUSY 

'--- -- READY 

INT 

- -- RESET 8087 
AID 

"- elK 
STATUS 

Ap·113 

~ 

-V 

SYSTEM READY 

~ h ;1-~ 
~ V -< ::'lI -V 

I---

l-
T 

8286 I I- = OE 

V 
VECTOR 

~ 

ALE -

~ h 8288 DTIA 
BUS 

H V CONTROLLER 

INTA 

h ] 
STATUS y-------y V DEN 

elK 

Figure 14. iAPX 86/20 With Numerics Interrupt Only 

3-439 

(318282 
ADDRESS 
LATCHES 

STB 

• 

(218286 
DATA 

TRANSCEIVERS 

T OE 

r-- , , I ADDRESS~ 

FV 
Vi 

I 
I 
I 
I 

,11 DATA h 

\[1 V 
ISYSTEM 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

L~U~ ...J 

207865-001 



AP·113 

GETTING STARTED IN SOFTWARE 

Now we are ready to run numeric programs. Developing 
numeric software will be a new experience to some pro· 
grammers. This section of the application note is aimed 
at describing the programming environment and pro­
viding programming guidelines for the NPX. The term 
NPX is used to emphasize that no distinction is made 
between the 8087 component or an emulated 8087. 

Two major areas of numeric software can be identified: 
systems software and applications software. Products 
such as iRMXThI 86 provide system software as an off­
the-shelf product. Some applications use specially 
developed systems software optimized to their needs. 

Whether the system software is specially tailored or 
common, they share issues such as using concurrency, 
maintaining synchronization between the host and 8087, 
and establishing programming conventions. Appli­
cations software directly performs the functions of the 
application. All applications will be concerned with ini­
tialization and general programming rules for the NPX. 
Systems software will be more concerned with context 
switching, use of the NPX by interrupt handlers, and 
numeric exception handlers. 

How to Initialize the NPX 
The first action required by the NPX is initialization. 
This places the NPX in a known state, unaffected by 
other activity performed earlier. This initialization is 
similar to that caused by the RESET signal of the 8087. 
All the error masks are set, all registers are tagged 
empty, the TOP field is set to 0, default rounding, pre­
cision, and infinity controls are set. The 8087 emulator 
requires more initialization than the component. Before 
the emulator may be used, all its interrupt vectors must 
be set to point to the correct entry points within the 
emulator. 

To provide compatibility between the emulator and 
component in this special case, a call to an external pro­
cedure should be used before the first numeric instruc­
tion. In ASM86 the programmer must call the external 
function INIT87. (Fig. 15). For PLM86, the 
programmer must call the built-in function 
INIT$REAUMA THSUNIT. PLM86 will' call INIT87 
when executing the INIT$REAUMA THSUNIT built­
in function. 

The function supplied for INIT87 will be different, 
depending on whether the emulator library, called 
EB087.LlB, or component library, called 8087.LIB, 
were used at link time. INIT87 will execute either an 
FNINIT instruction for the 8087 or initialize the 8087 
emulator interrupt vectors, as appropriate. 

Concurrency Overview 
With the NPX initialized, the next step in writing a 
numeric program is learning about concurrent execution 
within the NDP. 

Concurrency is a special feature of the 8087, allowing it 
and the host to simultaneously execute different instruc­
tions. The 8087 emulator does not provide concurrency 
since it is implemented by the host. 

The benefit of cpncurrency to an application is higher 
performance. All Intel high level languages automatic­
ally provide for a~d manage concurrency in the NDP. 
However, in exchange for the added performance, the 
assembly language programmer must understand and 
manage some areas of concurrency. This section is for 
the assembly language programmer or well-informed, 
high level language programmer. 

Whether the 8087 emulator or component is used, care 
should be taken by the assembly language programmer 
to follow the rules described below regarding synchro­
nization. Otherwise, the program may not function cor­
rectly with current or future alternatives for implement­
ing the NDP. 

Concurrency is possible in the NDP because both the 
host and 8087 have separate arithmetic and control 
units. The host and coprocessor automatically decide 
who will perform any single instruction. The existence 
of the 8087 as a separate unit is not normally apparent. 

Numeric instructions, which will be executed by the 
8087, are simply placed in line with the instructions for 
the host. Numeric instructions are executed in the same 
order as they are encountered by the host in its instruc­
tion stream. Since operations performed by the 3087 
generally require more time than operatiuns performed 
by the host, the host can execute several of its instruc­
tions while the 8087 performs one numedc operation. 

r-----------------------------__ -----.----, 

3-440 

IN PLM86: 
CALL INIT$REAL$MATH$UNIT; 

IN ASM86: 
EXTRN 

• 
• 
• 
• 

CALL 

INIT87:FAR 

INIT87 

Figure .15. 8087 Initialization 

I 

207865-001 



Ap·113 

MANAGING CONCURRENCY 

Concurrent execution of the host and 8087 is easy to 
establish and maintain. The activities of numeric pro­
grams can be split into two major areas: program con­
trol and arithmetic. The program control part performs 
activities like deciding what functions to perform, calcu­
lating addresses of numeric operands, and loop control. 
The arithmetic part simply performs the adds, sub­
tracts, multiplies, and other operations on the numeric 
operands. The NPX and host are designed to handle 
these two parts separately and efficiently. 

Managing concurrency is necessary because the arithme­
tic and control areas must converge to a well-defined 
state when starting another numeric operation. A well­
defined state means all previous arithmetic and control 
operations are complete and valid. 

Normally, the host waits for the 8087 to finish the cur­
rent numeric operation before starting another. This 
waiting is called synchronization. 

Managing concurrent execution of the 8087 involves 
three types of synchronization: instruction, data, and 
error. Instruction and error synchronization are 
automatically provided by the compiler or assembler. 
Data synchronization must be provided by the assembly 
language progarnmer or compiler. 

Instruction Synchronization 

Instruction synchronization is required because the 8087 
can only perform one numeric operation at a time. Be­
fore any numeric operation is started, the 8087 must 
have completed all activity from previous instructions. 

The WAIT instruction on the host lets it wait for the 
8087 to finish all numeric activity before starting an­
other numeric instruction. The assembler automatically 
provides for instruction synchronization since aWAIT 
instruction is part of most numeric instructions. A 
WAIT instruction requires 1 byte code space and 2.5 
clocks average execution time overhead. 

Instruction synchronization as provided by the assem­
bler or a compiler allows concurrent operation in the 
NDP. An execution time comparison of NDP concur­
rency and non-concurrency is illustrated in Figure 16. 
The non-concurrent program places aWAIT instruction 
immediately after a multiply instruction ESCAPE in­
struction. The 8087 must complete the mUltiply opera­
tion before the host executes the MOV instruction on 
statement 2. In contrast, the concurrent example allows 
the host to calculate the effective address of the next 
operand while the 8087 performs the mUltiply. The ex­
ecution time of the concurrent technique is the longest 
of the host's execution time from line 2 to 5 and the ex­
ecution time of the 8087 for a mUltiply instruction. The 
execution time of the non-concurrent example is the 
sum of the execution times of statements 1 to 5. 

This code macro defines two instructions which do not allow any concurrency of execution with 
the host. A register version and memory version of the instruction is shown. It is assumed that the 
8087 is always idle from the previous instruction. Allow space for emulator fixups. 

R233 Record RF6:2, Mid3:3, RF7:3 

CodeMacro NCMUl dst:T, src:F 
RNfix OOOB 
R233 (11 B, 001 B, src) 
RWfix 
EndM 

CodeMacro NCMUl memop:Mq 
RNfixM 100B, memop 
ModRM 001 B, memop 
RWfix 
EndM 

Statement 

1 
2 
3 
4 

5 

Concurrent 

FMUl st(O), st(1) 
MOV ax, size A 
MUl index 
MOV bx, ax 
FMUl A [bx] 

Figure 16. Concurrent Versus Non·Concurrent Program 

3-441 

Non Concurrent 

NCMUl st(O), st(1) 
MOV ax, size A 
MUl index 
MOV bx, ax 
NCMUl A [bx] 

207865-001 



AP-113 

Data Synchronization 
Managing concurrency requires synchronizing data ref­
erences by the host and 8087. 

Figure 17 shows four possible cases of the host and 8087 
sharing a memory value. The second two cases require 
the FW AIT instruction shown for data synchronization. 
In the first two cases, the -host will finish with the 
operand I before the 8087 can reference it. The 
coprocessor interface guarantees this. In the second two 
cases, the host must wait for the 8087 to finish with the 
memory operand before proceeding to reuse it. The 
FW AIT instruction in case 3 forces the host to wait for 
the 8087 to read I before changing it. In case 4, the 
FW AIT prevents the host from reading I before the 
8087 sets its value. 

Obviously, the programmer must recognize any form of 
the two cases shown above which require explicit data 
synchronization. Data synchronization is not a concern 
when the host and 8087 are using different memory 
operands during th~ course of one numeric instruction. 
Figure 16 shows such an example of the host performing 

, activity umelated to the current numeric instruction 
being executed by the 8087. Correct recognition of these 
cases by the programmer is the price to be paid for pro­
viding concurrency at the assembly language level. 

Automatic Data Synchronization 
Two methods exist to avoid the need for manual recog­
nition of when data synchronization is needed: use a 
high level language which will automatically establish 
concurrency and manage it, or sacrifice some perfor­
mance for automatic data synchronization by the as­
sembler. 

When a high level language is not adequate, the 
assembler can' be changed to always place aWAIT in­
struction after the ESCAPE instruction. Figure 18 
shows an example of how to change the ASM86 code 
macro for the FIST instruction to automatically place 
an FW AIT instruction after the ESCAPE instruction. 
The lack of any possible concurrent execution between 
the host and 8087 while the FIST instruction is executing 
is the price paid for automatic data synchronization. 

An explicit FW AIT instruction for data synchroniza­
tion, can be eliminated by using a subsequent numeric 
instruction. After this subsequent instruction has 
started execution, all memory references in earlier 
.numeric instructions are complete. Reaching the next 
'host instruction after the synchronizing numeric instruc­
tion indicates previous numeric operands in memory are 
available. 

The data synchronization purpose of any FWAITor 
numeric instruction must be well documented. Other­
wise, a change to' the program at a later time may 
remove the synchronizing numeric instruction, causing 
program failure, as: 

3-442 

FISTP 
FMUL 
MOV AX, I ; I is safe to use 

Case 1: Case 3: 
MOV 1,1 
FILD I 

FILD 
FWAIT 
MOV 1,5 

Case 2: Case 4: 

, 

MOV AX, I 
FISTP I 

FISTP 
FWAIT 
MOV 

Figure 17. Data Exchange Example 

AX,I 

This is a code macro to redefine the FIST 
instruction to prevent any concurrency 
while the instruction runs. A wait 
instruction is placed immediately after the 
escape to ensure the store is done 
before the program may continue. This 
code macro will work with the 8087 
emulator, automatically replacing the­
wait escape with a nop. 

CodeMacro FIST memop: Mw 
RfixM 111 B, memop 
ModRM 010B, memop 
RWfix 
EndM 

Figure 18. Non·Concurrent FIST Instruction 
Code Macro 

207865-001 



Ap·113 

DATA SYNCHRONIZATION RULES EXCEPTIONS 

There are five exceptions to the above rules for data syn­
chro~tion. The 8087 automatically provides data syn­
chronization for these cases. They are necessary to 
avoid deadlock (described on page 24). The instructions 
FSTSW IFNSTSW, FSTCW IFNSTCW, FLDCW, 
FRSTOR, and FLDENV do not require any waiting by 
the host before it may read or modify the referenced 
memory location. 

The 8087 provides the data synchronization by prevent­
ing the host from gaining control of the local bus while 
these instructions execute. If the host cannot gain con­
trol of the local bus, it cannot change a value before the 
8087 reads it, or read a value before the 8087 writes into 
it. 

The coprocessor interface guarantees that, when the 
host executes one of these instructions, the 8087 will 
immediately request the local bus from the host. This 
request is timed such that, when the host finishes the 
read operation identifying the memory operand, it will 
always grant the local bus to the 8087 before the host 
may use the local bus for a data reference while execut­
ing a subsequent instruction. The 8087 will not release 
the local bus to the host until it has finished executing 
the numeric instruction. 

Error Synchronization 
Numeric errors can occur on almost .any numeric in­
struction at any time during its execution. Page IS 
describes how a numeric error may have many inter­
pretations, depending on the application. Since the re­
sponse to a numeric error will depend on the applica­
tion, this section covers topics common to all uses of the 
NPX. We will review why error synchronization is need­
ed and how it is provi~ed. 

Concurrent execution of the host and 8087 requires syn­
chronization for errors just like data references and 
numeric instructions. In fact, the synchronization re­
quired for data and instructions automatically provides 
error synchronization. 

However, incorrect data or instruction synchronization 
may not cause a problem until a numeric error occurs. A 
further complication is that a programmer may not ex­
pect his numeric program to cause numeric errors, but 
in some systems they may regularly happen. To better 
understand these points, let's look at what can happen 
when the NPX detects an error. 

ERROR SYNCHRONIZATION FOR EXTENSIONS 

The NPX can provide a default fixup for all numeric 
errors. A program can mask each individual error type 
to indicate that the NPX should generate a safe, reason­
able result. The default error fixup activity is simply 
treated as part of the instruction which caused the error. 
No external indication of the error will be given. A flag 
in the numeric status register will be set to-indicate that 
an error was detected, but no information regarding 
where or when will be available. 

If the NPX performs its default action for all errors, 
then error synchronization is never exercised. But this is 
no reason to ignore error synchronization. 

Another alternative exists to the NPX default fixup of 
an error. If the default NPX response to numeric errors 
is not desired, the host can implement any form of re­
covery desired for any numeric error detectable by the 
NPX. When a numeric error is unmasked, and the error 
occurs, the NPX will stop further execution of the 
numeric instruction. The 8087 will signal this event on 
the INT pin, while the 8087 emulator will cause inter­
rupt 1016 to occur. The 8087 INT signal is normally con­
nected to the host's interrupt system. Refer to page 18 
for further discussion on wiring the 8087 INT pin. 

Interrupting the host is a request from the NPX for 
help. The fact that the error was unmasked indicates -­
that further numeric program execution under the arith­
metic and programming rules of the NPX is unreason­
able. Error synchronization serves to insure the NDP is 
in a well defined state after an unmasked numeric error 
occured. Without It well defined state, it is impossible to 
figure out why the error occured. 

Allowing a correct analysis of the error is the heart of 
error synchronization. 

NDP ERROR STATES' 

If concurrent execution is allowed, the state of the host 
when it recognizes the 'interrupt is undefined. The host 
may have changed many of its internal registers and be 
executing a totelly different program by the time it is in­
terrupted. To handle this situation, the NPX has special 
registers updated at the start of each numeric instruction 
to describe the state of the numeric program when the 
failed instruction was attempted. (See Lit. Ref. p. iii) 

Besides programmer comfort, a well-defined state is im­
portant for error recovery routines. They can change the 
arithmetic and programming rules of the 8087. These 
changes may redefine the default rDmp from an error, 
change the appearance of the NPX to the progralnmer, 
or change how arithmetic is defined on the NPX. 

3-443 207865-001 



AP·113 

EXTENSION EXAMPLES 

A change to an error response might be to automatically 
normalize all denormals loaded from memory. A 
change in appearance might be extending the register 
stack to memory to provide an "infinite" numoer of 
numeric registers. The arithmetic of the 8087 can be 
changed to automatically extend the precision and range 
of variables when exceeded. All these functions can be 
implemented on the NPX via numeric errors and 
associated recovery routines in a manner transparent to 
the programmer. 

Without correct error synchronization, numeric 
subroutines will not work correctly in the above situa­
tions. 

Incorrect Error Synchronization 

An example of how some instructions written without 
error synchronization will work initially, but fail when 
moved into a new environment is: 

FILD 
INC 
FSQRT 

COUNT 
COUNT 

Three instructions are shown to load an integer, calcu­
late its square root, then increll.lent the integer. The 
coprocessor interface of the 8087 and synchronous ex­
ecution of the 8087 emulator will allow this program to 
execute correctly when no errors occur on the FILD in­
struction. 

But, this situation changes if the numeric register stack 
is extended to memory on an 8087. To extend the NPX 
stack to memory, the invalid error is unmasked. A push 
to a full 'register or pop from an empty register will 
cause an invalid error. The recovery routine for the er­
ror must recognize this situation, fllmp the stack, then 
perform the original operation. 

The recovery routine will not work correctly in the ex­
ample. The problem is that there is no guarantee that 
COUNT will not be incremented before the 8087 can in­
terrupt the host. If COUNT is incremented before the 
interrupt, the recovery routine will load a value of 
COUNT one too large, probably causing the program to 
fu~ . 

Error Synchronization and WAITs 

Error synchronization relies on the WAIT instructions 
required by instruction and data synchronization and 
the INT and BUSY signals of the 8087. When an un­
masked error occurs in the 8087, it asserts the BUSY 
and INT signals. The INT signal is to interrupt the host, 
while the BUSY signal prevents the host from destroy­
ing the current numeric context. 

The BUSY signal will never go inactive during a numeric 
instruction which asse~ts INT. 

The WAIT instructions supplied for instruction syn­
chroni~tion prevent the host from starting another 
numeric instruction until the current error is serviced. In 
a like manner, the WAIT instructions required for data 
synchronization prevent the host from prematurely 
readinl! a value not yet stored, by the 8087, or over­
writing a value not yet read by the 8087. 

The host has two, responsibilities when handling 
numeric errors. I.) It must not disturb the numeric con­
text when an error is detected, and 2.) it must clear the 
numeric error and attempt recovery from t~e error. The 
recovery program invoked by the numeric error may 
resume program execution after proper fixup, display 
the state of the NDP for programmer action, or simply 
abort the program. In any case, the host must do 
something with the 8087. With the INT and BUSY 
signals active, the 8087 cannot perform any useful 
work. Special instructions exist for controlling the 8087 
when in this state. Later, an example is given of how to 
save the state of the NPX with an error pending. (See 
page 29) , 

Deadlock 
An undesirable situation may r~sult if the host cannot 
be interrupted by the 8087 when asserting INT. This sit­
uation, called deadlock, occurs if the interrupt path 

, from the 8087 to the host is broken. 

The 8087 BUSY signal prevents the host from executing 
further instructions (for instruction or data syn­
chronization) while the 8087 waits for the host to service 
the exception. The host is waiting for the 8087 to finish 
the current numeric operation. Both the host and 8087 
are waiting on each other. This situation is stable unless 
the host is interrupted by some other event. 

DeadlOCK has varying affects on the NDP's perfor­
mance. If no other interrupts in the'system are possible, 
the NDP will wait forever. If other interrupts can arise, 
then the NDP can perform other functions, but the af­
fected numeric program will remain "frozen". 

SOLVING DEADLOCK 

Finding the break in the interrupt path is simple. Look 
for disabled interrupts in the following places: masked 
interrupt enable in the host, explicitly masked interrupt 
request in the interrupt controller, implicitly masked in­
terrupt request in the interrupt controller due to a higher 
priority interrupt in service, or other gate functions, 
usually in TTL, on the host interrupt signal. 

3-444 207865-001 



Ap·113 

DEADLOCK AVOIDANCE 

Application programmers should not be concerned with 
deadlock. Normally, applications programs run with 
unmasked· numeric errors able to interrupt them. Dead­
lock is not possible in this case. Traditionally, systems 
software or interrupt handlers may run with numeric in­
terrupts disabled. Deadlock prevention lies in this do­
main. The golden rule to abide by is: "Never wait on the 
8087 if an unmasked error is possible and the 8087 inter­
rupt path may be broken." 

Error Synchronization Summary 

In summary, error synchronization involves protecting 
the state of the 8087 after an exception. Although not all 
applications may initially require error synchronization, 
it is just good programming practice to follow the rules. 
The advantage of being a "good" numerics program­
mer is generality of your program so it can work in 
other, more general environments. 

Summary 
Synchronization is the price for concurrency in the 
NDP. Intel high level language compilers will auto­
matically provide concurrency and manage it with syn­
chronization. The assembly language programmer can 
choose between using concurrency or not. Placing a 
WAIT instruction immediately after any numeric in­
struction will prevent concurrency and avoid synchro­
nization concerns. 

The rules given above are complete and allow concur­
rency to be used to full advantage. 

Synchronization and the Emulator 
The above discussion on synchronization takes on 
special meaning with the 8087 emulator. The 8087 emu­
lator does not allow any concurrency. All numeric 
operand memory references, error tests, and wait for 
instruction completion occur within the emulator. As a 
result, programs which do not provide proper instruc­
tion, data, or error synchronization may work with the 
8087 emulator while failing on the component. 

Correct programs for the 8087 work correctly on the 
emulator. 

Special Control Instructions of the NPX 
The special control instructions of the NPX: FNINIT, 
FNSAVE,FNSTENV,FRSTOR,FLDENV,FLDCW, 
FNSTSW, FNSTCW, FNCLEX, FNENI, and FNDISI 
remove some of the synchronization requirements men­
tioned earlier. They are discussed here since they repre­
sent exceptions to the rules mentioned on page 21. 

The instructions FNINIT, FNSA VE, FNSTENV, 
FNSTSW, FNCLEX, FNENI, and FNDISI do not wait 

for the current numeric instruction to finish before they 
execute. Of these instructions, FNINIT, FNSTSW, 
FNCLEX, FNENI and FNDISI will produce different 
results, depending on when they are executed relative to 
the current numeric instruction. 

For example, FNCLEX will cause a different status 
value to result from a concurrent arithmetic operation, 
depending on whether is is executed before or after the 
error status bits are updated at the end of the arithmetic 
operation. The intended use of FNCLEX is to clear a 
known error status bit which has caused BUSY to be 
asserted, avoiding deadlock. 

FNSTSW will safely, without deadlock, report the busy 
and error status of the NPX independent of the NDP in­
terrupt status. 

FNINIT, FNENI, and FNDISI are used to place the 
NPX into a known state independent of its current 
state. FNDISI will prevent an unmasked error from 
asserting BUSY without disturbing the current error 
status bits. Appendix A shows an example of using 
FNDISI. 

The instructions FNSA VE and FNSTENV provide spe­
cial functions. They allow saving the state,of the NPX in 
a single instruction when host interrupts are disabled. 

Several host and numeric instructions are necessary to 
save the NPX status if the interrupt status of the host is 
unknown. Appendix A and B show examples of saving 
the NPX state. As the Numerics Supplement explains, 
host interrupts must always be disabled when executing 
FNSAVE or FNSTENV. 

The seven instructions FSTSW IFNSTSW, FSTCW I 
FNSTCW, FLDCW, FLDENV, and FRSTOR do not 
require explicit WAIT instructions for data synchro­
nization. All of these instructions are used to interrogate 
or control the numeric context. 

Data synchronization for these instructions is 
automatically provided by the coprocessor interface. 
The 8087 will take exclusive control of the memory bus, 
preventing the host from interfering with the data values 
before the 8087 can read them. Eliminating the need for 
aWAIT instruction avoids potential deadlock pro-

. blems. 

The three load instructions FLDCW, FLDENV, and 
FRSTOR can unmask a numeric error, activating the 
8087 BUSY signal. Such an error was the result of a 
previous numeric instruction and is not related to any 
fault in the instruction. 

Data synchronization is automatically provided since 
the host's interrupts are usually disabled in context swit­
ching or interrupt handling, deadlock might result if the 
host executed aWAIT instruction with its interrupts 
disabled after these instructions. After the host inter­
rupts are enabled, an interrupt will occur if an unmask­
ed error was pending. 

3-445 207865-001 



Ap·113 

PROGRAMMING TECHNIQUES 

The NPX provides a stack-oriented register set with 
stack-oriented instructions for numeric operands. These 
registers and instructions are optimized for numeric 
programs. For many programmers, these are new re­
sources with new programming options available. 

Using Numeric Registers and 
Instructions 
The register and instruction set of the NDP is optimized 
for the needs of numeric and general purpose programs. 
The host CPU provides the instructions and data types 
needed for general purpose data processing, while the 
8087 provides the data types and instructions for 
numeric processing. 

The instructions and data types recognized by the 8087 
are different from the CPU because numeric program 
requirements are different from those of general pur­
pose programs. Numeric programs have long arithmetic 
expressions where a few temporary values are used in a 
few statements. Within these statements, a single value 
may be referenced many times. Due to the time involved 
to transfer values between registers and memory, a 
significant' speed optimization is possible by keeping 
numbers in the NPX register rlie. 

In contrast, a general data processor is more concerned 
with addressing data in simple expressions and testing 
the results. Temporary values, constant across several 
instructions, are not as common nor is the penalty as 
large for placing them in memory.As a result it is 
simpler for compilers and programmers to manage 
memory based values. 

MAIN_PROGRAM: 

FLO A 
FAOO ST, ST(1) 
CALL SUBROUTINE 
FSTP B 

SUBROUTINE: 

FLO 
FSQRT 
FAOO 
FMULP 
RET 

ST 

C 
ST(1), ST 

NPX Register Usage 

The eight numeric registers in the NDP are stack ori­
ented. All numeric registers are addressed relative to a 
value called the TOP pointer, defined in the NDP status 
register. A register address given in an instruction is ad­
ded to the TOP value to form the internal absolute ad­
dress. Relative addressing of numeric registers has ad­
vantages analogous to those of relative addressing of 
memory operands. 

Two modes are availa~le for addressing the numeric 
registers. The first mode implicitly uses the top and op­
tional next element on the stack for operands. This 
mode does not require any addressing bits in a numeric 
instruction. Special purpose instructions use this mode 
since full addressing flexibiiity is not required. 

The other addressing mode allows any' other stack ele­
ment to be used together with the top of stack register. 
The top of stack or the other register may be specified as 
the destination. Most two-operand arithmetic instruc­
tions allow this addressing mode. Short, easy to develop 
numeric programs are the result. 

Just as relative addressing of memory operands avoids 
concerns with memory allocation in other parts of a 
program, top relative register addressing allows registers 
to be used without regard for numeric register assign­
ments in other parts of the program. 

STACK RELATIVE ADDRESSING' EXAMPLE 

Consider an example of a main program calling a 
subroutine,~ each using register addressing independent 
of the other. (Fig. 19) By using different values of the 
TOP field, different software can use the same relative 
register addresses as other parts of the program, but 
refer to different physical registers. 

Argument is in ST(O) 

ST(O) = ST(1) = Argument 
Main program ST(1) is 
safe in ST(2) here 

Figure 19. Stack Relative Addressing Example 

3-446 207865-001 



Ap·113 

Of course, there is a limit to any physical resource. The 
NDP has eight numeric registers. Normally, program· 
mers must ensure a maximum of eight values are pushed 
on the numeric register stack at any time. For time­
critical inner loops of real-time applications, eight regis­
ters should contain all the values needed. 

REGISTER STACK EXTENSION 

This hardware limitation can be hidden by software. 
Software can provide "virtual" numeric registers, ex­
panding the register stack size to 6000 or more. 

The numeric register stack can be extended into memory 
via unmasked numeric invalid errors which cause an in­
terrupt on stack overflow or underflow. The interrupt 
handler for the invalid error would manage a memory 
image of the numeric stack copying values into and out 
of memory as needed. 

The NPX will contain all the necessary information to 
identify the error, failing instruction, required registers, 
and destination register. After correcting for the missing 
hardware resource, the original numeric operation 
could be repeated. Either the original numeriC>instruc­
tion could be single stepped or the affect of the instruc­
tion emulated by a composite of table-based numeric in­
structions executed by the error handler. 

With proper data, error, and instruction synchroniza­
tion, the activity of the error handler will be transparent 
to programs. This type of extension to the NDP allows 
programs to push and pop numeric registers without 
regard for their usage by other subroutiIles. 

Programming Conventions 
With a better understanding of the stack registers, let's 
consider some useful programming conventions. Fol­
lowing these conventions ensures compatibility with 
Intel support software and high level language calling 
conventions. 

1) If the numeric registers are not extended to' 
memory, the programmer must ensure that the 
number of temporary values left in the NPX stack 
and those registers used by the caller does not exceed 
8. Values can be stored to memory to provide enough 
free NPX registers. 

2) Pass the first seven numeric parameters to a subrou­
tine in the numeric stack registers. Any extra param­
eters can be passed on the host's stack. Push the 
values on the register or memory stack in left to right 
order. If the subroutine does not need to allocate any 
more numeric registers, it can execute solely out of 
the numeric register stack. The eighth register can be 
used for arithmetic operations. All parameters 
should be 'popped off when the subroutine com­
pletes. 

3) Return all numeric values on the numeric stack. The 
caller may now take advantage of the extended preci­
sion and flexible store modes of the NDP. 

4) Finish all memory reads or writes by the NPX before 
exiting any subroutine. This guarantees correct data 
and error synchronization. A numeric operation 
based solely on register contents is safe to leave run­
ning on subroutine exit. 

5) The operating mode of the NDP should be transpar­
ent across any subroutine. The operating mode is 
defined by the control word of the NDP. If the sub­
routine needs to use a different numeric operating 
mode than that of the caller, the subroutine should 
first save the current control word, set the new oper­
ating mode, then restore the original control word 
when completed. 

PROGRAMMING EXAMPLES 

The last section of this application note will discuss five 
programming examples. These examples were picked to 
illustrate NDP programming techniques and commonly 
used functions. All have been coded, assembled, and 
tested. However, no guarantees are made regarding 
their correctness. 

The programming examples are: saving numeric 
context switching, save numeric context without 
FSA VE/FNSA VE, converting ASCII to floating point, 
converting floating point to ASCII, and trigonometric 
functions. Each example is listed in a different appendix 
with a detailed written description in the following text. 
The source code is available in machine readable form 
from the Intel Insite User's Library, "Interactive 8087 
Instruction Interpreter," catalog item AA20. 

The examples provide some basic functions needed to 
get started with the numeric data processor. They work 
with either the 8087 or the 8087 emulator with no source 
changes. 

The context switching examples are needed for 
operating systems or interrupt handlers which may use 
numeric instructions and operands. Converting between 
floating point and decimal ASCII will be needed to in­
put or output numbers in easy to read form. The trigo­
nometric examples help you get started with sine or 
cosine functions and can serve as a basis for optimiza­
tions if the angle arguments always fall into a restricted 
range. 

3-447 207865-001 



Ap·113 

APPENDIX A 

OVERVIEW,--

Appendix A shows deadlock-free examples of numeric 
context switching. Numeric context switching is re­
quired by interrupt handlers which use the NPX and 
operating system context switchers. Context switching 
consists of two basic functions, save the numeric con­
text and restore it. These. functions must work indepen­
dent of the current state of the NPX. 

Two versions of the context save function are shown. 
They use different versions of the save context instruc­
tion. The FNSA VEfFSA VE instructions do all the work 
of saving the numeric context. The state of host inter­
rupts will decide which instruction to use. 

USing FNSAVE 
The FNSA VE instruction is intended to save the NPX 
context when host interrupts are disabled. The host does 
not have to wait for the 8087 to finish its current opera­
tion before starting this operation. Eliminating the in­
struction synchronization wait avoids any potential 
deadlock. 

The 8087 Bus Interface Unit (BIU) will save this instruc­
tion when encountered by the host and hold it until the 
8087 Floating point Execution Unit (FEU) finishes its 
current operation. When the FEU becomes idle, the 
BIU will start the FEU executing the save context opera~ 
tion. 

The host can execute other non.:numeric instructions 
after the FNSA VE while the BIU waits for the FEU to 
finish its current operation. The code starting at 
NOjNL..NPX~AVE shows how to use the 
FNSA VE instruction. 

When executing the FNSA VE instruction,. host inter­
rupts must be disabled to avoid recursions of the in­
struction. The 8087 BIU can hold only one FNSA VE in­
struction at a time. If host interrupts were not disabled, 
another host interrupt might cause a second FNSA VE 
instruction to be executed, destroying the previous one 
saved in the 8087 BIU. 

It is not recommended to explicitly disable host inter­
rupts just to exFCute an FNSA VE instruction. In 
general, such an operation may not be the best course of 
action or even be allowed. 

If host interrupts are enabled during the NPX context 
save function, it is recommended to use the FSA VE in­
struction as shown by the code starting at NP~A VE. 
This example will always work, free of deadlock, in-
dependent of the NDP interrupt state. " 

Using FSAVE 

The FSA VE instruction performs the same operation as 
FNSA VE but it uses standard instruction synchroniza­
tion. The host will wait for the FEU to be idle before 
initiating the save operation. Since the host ignores all 
interrupts between completing a WAIT instruction and 
starting the. following ESCAPE instruftion, the FEU is 
ready to immediately accept the operation (since it is not 
signalling BUSY). No recursion of the save context 
operation in the BIU is possible. However, deadlock 
must be considered since the host executes a WAIT in­
struction. 

To avoid deadlock when using the FSA VE instruction, 
the 8087 must be prevented from signalling BUSY when 
an unmasked error exists. 

The Interrupt Enable Mask (IBM) bit in the NPX con­
trol word provides this function. When IEM = I, the 
8087 will not signal BUSY or INT if an unmasked error 
exists. The NPX instruction FNDISI will set the IEM in­
dependent of any pending errors without causing 
deadlock or any other errors. Using the FNDISI and 
FSA VE instructions together with a few other glue in­
structions allows a general NPX context save function. 

Standard data and instruction synchronization is re­
quired after executing the FNSA VEIFSA VE instruc­
tion. The wait instruction following an FNSA VEl 
FSA VE instruction is always safe since all NPX errors 
will be masked as part of the instruction execution. 
Deadlock is not possible since the 8087 will eventually 
signal not busy, allowing the host to continue on. 

PLACING THE SAVE CONTEXT FUNCTIQN 

Deciding on where to ;save the NPX context in an inter­
rupt handler or context switcher is dependent on 
whether interrupts can be enabled inside the function. 
Since interrupt latency is measured in terms of the max­
imum time interrupts are disabled, the maximum wait I 

time of the host at the data synchronizing wait instruc­
tion after the FNSA VE or the FSA VE instruction is im­
portant if host interrupts are disabled while waiting. 

The wait time will be the maximum single instruction 
execution time of the 8087 plus the execution time of the 
save operation. This maximum time will be approxi­
mately 1300 or 1500 clocks, depending on whether the 
host is an 8086 or 8088, respectively. The actual time 
will depend on how much concurrency of execution bet­
ween the host and 8087 is provided. The greater the 
concurrency, the lesser the maximum wait time will be. 

207865-001 



AP·113 

If host interrupts can be enabled during the context save 
function, it is recommended to use the FSA VE instruc· 
tion for saving the numeric context in the interruptable 
section. The FSA VE instruction allows instruction and 
data synchronizing waits to be interruptable. This 
technique removes the maximum execution time of 8087 
instructions from system interrupt latency time con­
siderations. 

Using FRSTOR 
Restoring the numeric context with FRSTOR does not 
require a data synchronizing wait afterwards since the 
8087 automatically prevents the host from interfering 
with the memory load operation. 

The code starting with NPXJESTORE illustrates the 
restore operation. Error synchronization is not 
necessary since the FRSTOR instruction itself does not 
cause errors, but the previous state of the NPX may in­
dicate an error. 

It is recommended to delay starting the numeric save 
function as long as possible to maintain the maximum 
amount of concurrent execution between the host and 
the 8087. If further numeric instructions are executed after the 

FRSTOR, and the error state of the new NPX context is 
unknown, deadlock may occur if numeric exceptions 
cannot interrupt the host. 

NP>Lsave 

General purpose save of NPX context. This function will work independent of the interrupt state of 
the NDP. Deadlock can not occur. 47 words of memory are required by the variable save_area. 
Register ax is not transparent across this code. 

NP>L..save: 
FNSTCW 
NOP 
FNDISI 
MOV 
FSAVE 

FWAIT 
MOV 

ax, save_area 
save_area 

Save IEM bit status 
Delay while 8087 saves control register 
Disable 8087 BUSY signal 
Get original control word 
Save NPX context, the host can be safely interrupted while 
waiting for the 8087 to finish. Deadlock is not possible since 
IEM = 1.Wait for save to finish. Put original control word into 
NPX context-area_ All done 

Save the NPX context with host interrupts disabled. No deadlock is possible. 47 words of memory 
are required by the variable save_area_ 

nO_inLNP>L..save: 
FNSAVE save_area 
FWAIT 

NP>Lrestore 

Save NPX context. Wait for save to finish, no deadlock 
is possible. Interrupts may be enabled now, all done 

Restore the NPX context saved earlier. No deadlock is possible if no further numeric instructions 
are executed until the 8087 numeric error interrupt is enabled_ The variable save_area is assumed 
to hold an NPX context saved earlier. It must be 47 words long. 

N P>L..restore: 

FRSTOR Load new NPX context 

3-449 207865-001 



AP·113 

APPENDIX B 

OVERVIEW 

Appendix B shows alternative techniques for switching 
the numeric context without using the FSA VEl 
FNSA VE or FRS TOR instructions. These alternative 
techniques are slower than those of Appendix A but 
they reduce the worst case continuous local bus usage of 
the 8087. 

Only an iAPX 86122 or iAPX 88122 could derive any 
benefit from this alternative. By replacing all 
FSA VE/FNSA VE instructions in the system, the worst 
case local bus usage of the 8087 will be 10 or 16 con­
secutive memory cycles for an 8086 or 8088 host, respec­
tively. 

Instead of saving and loading the entire numeric context 
in one long series of memory transfers, these routines 
use the FSTENV IFNSTENV IFLDENV instructions 
and separate numeric register load/store instructions. 
Using separate load/store instructions for the numeric 
registers forces the 8087 to release the local bus after 
each numeric load/store instruction. The longest series 
of back-to-back memory transfers required by these 
instructions are 8/12 memory cycles for an 8086 or 8088 
host, respectively. In contrast, the FSA VEl 
FNSA VE/FRSTOR instructions perform 50/94 back­
to-back memory cycles for an 8086 or 8088 -host. 

Compatibility With FSAVE/FNSAVE 

This function produces a context area of the same for­
mat produced by FSA VE/FNSA VE instructions. Other 
software modules expecting such a format will not be 
affected. All the same interrupt and deadlock considera­
tions of FSA VE and FNSA VE also apply to FSTENV 
and FNSTENV. Except for the fact that the numeric 
environment is 7 words rather than the 47 words of the 
numeric context, all the discussion of Appendix A also 
applies here. 

The state of the NPX registers must be saved in memory 
in the same format as the FSA VB/FNSA VB instruc­
tions." The program example starting at the label 
SMALL..-.-BLOCK~PX_SA VE illustrates a software 
loop that will store their contents into memory in the 
same top relative order as that of FSAVE/FNSAVE. 

To save the registers with FSTP instructions, they must 
be tagged valid, zero, or special. This function will force 
all the registers to be tagged valid, independent of their 
contents or old tag, and then save them. No problems 
will arise if the tag value conflicts with the register's 
content for the FSTP instruction. Saving empty regis­
ters insures compatibility with the FSA VE/FNSA VB in­
structions. After saving all the numeric registers, they 
will all be tagged empty, the" same as if an 
FSA VE/FNSA VE instruction had been executed. 

Compatibility With FRSTOR 

Restoring the numeric context reverses the procedure 
described above, as shown by the code starting at 
SMALL_BLOCK_NP"-.RESTORE.AlI eight regis­
sters are reloaded in the reverse order. With each 
register load, a tag value will be assigned to each 
register. The tags assigned by the register load does not 
matter since the tag word will be overwritten when the 
environment is reloaded later with FLDENV. 

Two assumptions are required for correct operation of 
the restore function: all numeric registers must be empty 
and the TOP field must be the same as that in the con­
text being restored. These assumptions will be satisfied 
if a matched set of pushes and pops were performed bet­
ween saving the numeric context and reloading it. 

If these assumptions cannot be met, then the code exam­
ple starting at NPX_CLEAN shows how to force all the 
NPX registers empty and set the TOP field of the status 
word. 

3.-450 207865-001 



Ap·113 

smalLblocLN P><-save 

Save the NPX context independent of NDP interrupt state. Avoid using the FSAVE instruction to 
limit the worst case memory bus usage of the 8087. The NPX context area formed will appear the 
same as if an FSAVE instruction had written into it. The variable save_area will hold the NPX 
context and must be 47 words long. The registers ax, bx, and cx will not be transparent. 

small_block_N PX_save: 
FNSTCW save_area 
NOP 
FNDISI 
MOV 
MOV 
XOR 

ax, save_area 
cx, 8 
bx, bx 

FSTENV save_area 
FWAIT 
XCHG save_area + 4, bx 
FLDENV save_area 
MOV 
MOV 
XOR 

save_area, ax 
save_area + 4, bx 
bx, bx 

reg_store_loop: 
FSTP saved_reg [bx] 
ADD bx, type saved_reg 
LOOP reg_store_loop 

Save current IEM bit 
Delay while 8087 saves control register 
Disable 8087 BUSY signal 
Get original control word 
Set numeric register count 
Tag field value for stamping all registers as valid 
Save NPX environment 

; Walt for the store to complete 
; Get original tag value and set new tag value 
; Force all register tags as valid. BUSY is still masked. No data 
; synchronization needed. Put original control word into NPX 
; environment. Put original tag word into NPX environment 

Set initial register index 

Save register 
Bump pointer to next register 

; All done 

; Force the NPX into a clean state with TOP matching the TOP field stored in the NPX context and all 
; numeric registers tagged empty. Save_area must be the NPX environment saved earlier. 
; Temp_env is a 7 word temporary area used to build a prototype NPX environment. Register ax will 
; not be transparent. 

NPX_clean: 
FINIT 
MOV 
AND 
FSTENV 

FWAIT 

ax, save_area + 2 
ax, 3800H 
temp_env 

OR temp_env + 2, ax 
FLDENV temp_env 

Put NPX into known state 
Get original status word 
Mask out the top field 
Format a temporary environment area with all registers 
stamped empty and TOP field = O. 

; Wait for the store to finish. 
Put in the desired TOP value. 
Setup new NPX environment. 
Now enter smaILblock_NPX_restore. 

3-451 207865-001 



Ap·113 

smalLbloclLNP>Lrestore 

Restore the NPX context without using the FRSTOR instruction. Assume the NPX context is in the 
same form as that created by an FSAVElFNSAVE instruction, all the registers are empty, and that 
the TOP field of the NPX matches the TOP field of the NPX context. The variable save_area must 
be an NPX context save area, 47 words 10f'g. The registers bx and cx will not be transparent. 

small_blocLNPLrestore: 
MOV cX,8 
MOV bx, type saved_reg*7 

Set register count 
Starting offset of ST(7) 

reg_load_loop: 

FLO saved_reg [bx] Get the register 
SUB bx, type saved_reg Bump pOinter to next register 
LOOP reg_load_loQp 
FLOENV save_area Restore NPX context 

All done 

APPENDIX C 

OVERVIEW 

Appendix C shows how floating point values can be 
converted to decimal ASCII character strings. The func­
tion can be called from PLM/86, PASCAL/86, FOR­
TRAN/86, or ASM/86 functions. 

Shortness, speed, and accuracy were chosen rather than 
providing the maximum number of significant digits 
possible. An attempt is made to keep integers in their 
own domain to avoid unnecessary conversion errors. 

Using the extended precision real number format, this 
routine achieves a worst case accuracy of three units in 
the 16th decimal position for a non-integer value or in­
tegers greater than lOIS. This is double precision ac­
curacy. With values having decimal exponents less than 
100 in magnitude, the accuracy is one unit in the 17th 
decimal position. 

Higher precision can be achieved with greater care in 
programming, larger program size, and lower perfor­
mance. 

Function Partitioning 
Three separate modules implement the conversion. 
Most of the work of the conversion is done in the mod­
ule FLOATING_TO.-ASCII. The other modules are 
provided separately since they have a more' general use. 
One of them, GET -.POWER_tO, is also used by the 
ASCII to floating point conversion routine. The other 
small module, TOS_ST A TUS, will identify what, if 
anything, is in the top of the numeric register stack. 

Exception Considerations 

Care is taken inside the function to avoid generating ex­
ceptions. Any possible numeric value will be accepted. 
The only exceptions possible would occur if insufficient 
space exists on the numeri~ register stack. 

The value passed in the numeric stack is checked for ex­
istence, type (NAN or infinity), and status (unnormal, 
denormal, zero, sign). The string size is tested for a 
minimum and maximum value. If the top of the register 
stack is empty, or the string size is too small, the func­
tion will return with an error code. 

Overflow and underflow is avoided inside the function 
for very large or very small numbers. 

Special Instructions 

The functions demonstrate the operatIon of several 
numeric instructions, different data types, and precision 
control. Shown are instructions for automatic conver­
sion to BCD, calculating the value of 10 raised to an in­
teger value, establishing and maintaining concurrency, 
data synchronization, and use of directed rounding on 
the NPX. 

Without the extended precision data type and built-in 
exponential function, the double precision accuracy Ofl 
this function could not be attained with the size and 
speed of the shown example. 

The function relies on the numeric BCD data type for 
conversion from binary floating point to decimal. It is 

3-452 207865-001 



Ap·113 

not difficult to unpack the BCD digits into separate 
ASCII decimal digits. The major work involves scaling 
the floating point value to the comparatively limited 
range of BCD values. To print a 9·digit result requires 
accurately scaling the given value to an integer between 
lOS and 109• For example, the number +0.123456789 
requires a scaling factor of 109 to produce the value 
+ 123456789.0 which can be stored in 9 BCD digits. The 
scale factor must be an exact power of 10 to avoid to 
changing any of the printed digit values. 

These routines should exactly convert all values exactly 
representable in decimal in the field size given. Integer 
values which fit in the given string size, will not be 
scaled, but directly stored into the BCD form. Non· 
integer values exactly representable in decimal within 
the string size limits will also be exactly converted. For 
example, 0.125 is exactly representable in binary or 

., decimal. To convert this floating point value to decimal, 
the scaling factor will be 1000, resulting in 125. When 
scaling a value, the function must keep track of where 
the decimal point lies in the final decimal value. 

DESCRIPTION OF OPERATION 

Converting a floating point number to decimal ASCII 
takes three major steps: identifying the magnitude of 
the number, scaling it for the BCD data type, and con­
verting the BCD data type to a decimal ASCII string. 

Identifying the magnitude of the result requires finding 
the value X such that the number is represented by 
1*IOX, where 1.0 < = 1< 10.0. Scaling the number re­
quires multiplying it by a scaling factor lOS, such that 
the result is an integer requiring no more decimal digits 
than provided for in the ASCII string. 

Once scaled, the numeric rounding modes and BCD 
conversion put the number in a form easy to convert to 
decimal ASCII by host software. 

Implementing each of these three steps requires atten­
tion to detail. To begin with, not all floating point 
values have a numeric meaning. Values such as infinity, 
indefinite, or Not A Number (NAN) may be en­
countered by the conversion routine. The conversion 
routine should recognize these values and identify them 
uniquely. 

Special cases of numeric values also exist. Denormals, 
unnormals, and pseudo zero all have a numeric value 
but should be recognized since all of them indicate that 
precision was lost during some earlier calculations. 

Once it has been determined that the number has a 
numeric value, and it is normalized setting appropriate 
unnorrnal flags, the value must be scaled to the BCD 
range. 

Scaling the Value 

To scale the number, its magnitude must be determined. 
It is sufficient to calculate the magnitude to an accuracy 
of 1 unit, or within a factor of 10 of the given value. 
After scaling the number, a check will be made to see if 
the result falls in the range expected. If not, the result 
can be adjusted one decimal order of magnitude up or 
down. The adjustment test after the scaling is necessary 
due to inevitable inaccuracies in the scaling value. 

Since the magnitude estimate need only be close, a fast 
technique is used. The magnitude is estimated by multi­
plying the power of 2, the unbiased floating point expo­
nent, associated with the number by loglO2. Rounding 
the result to lID integer will produce an estimate of suffi­
cient accuracy. Ignoring the fraction value can in­
troduce a maximum error of 0.32 in the result. 

Using the magnitude of the value and size of the number 
string, the scaling factor can be calculated. Calculating 
the scaling factor is the most inaccurate operation of the 
conversion process. The relation IOX=2**(X*log210) is 
used for this function. The exponentiate instruction 
(F2XM1) will be used. 

Due to restrictions on the range of values allowed by the 
F2XM I instruction, the power of 2 value will be split in­
to integer and fraction components. The relation 
2**(1 + F) = 2**1 * 2**F allows using the FSCALE in­
struction to recombine the 2**F value, calculated 
through F2XMI, and the 2**1 part. 

Inaccuracy in Scaling 
The inaccuracy of these operations arises because of the 
trailing zeroes placed into the fraction value when strip­
ping off the integer valued bits. For each integer valued 
bit in the power of 2 value separated from the fraction 
bits, one bit of precision is lost in the fraction field due 
to the zero fill occurring in the least significant bits. 

Up to 14 bits may be lost in the fraction since the largest 
allowed floating point exponent value is 214-1. 

AVOIDING UNDERFLOW AND OVERFLOW 

The fraction and exponent fields of the number are sep­
arated to avoid underflow and overflow in calculating 
the scaling values. For example, to scale 10- 4932 to 108 

requires a scaling factor of 104950 which cannot be rep­
resented by the NPX. 

By separating the exponent and fraction, the scaling 
operation involves adding the exponents separate from 
multiplying the fractions. The exponent arithmetic will 
involve small integers, all easily represented by the 
NPX. 

3-453 207865-001 



AP·113 

FINAL ADJUSTMENTS Output Format 
It is possible that the power function (GeLPower_lO) 
could produce a scaling value such that it forms a scaled 
result larger than the ASCII field could allow. 
For example, scaling 9.999999999999999ge4900 
by l.OOOOOOOOOOOOOOOlOe-4883 would produce 
1.OOOOOOOOOOOOOOOe18. The scale factor is within the 
accuracy of the NDP and the result is within the conver­
sion accuracy, but it cannot be represented in BCD for­
mat. This is why there is a post-scaling test on the 
magnitude of the result. The result can be multiplied or 
divided by 10, depending on whether the result was too 
small or too large, respectively. 

For maximum flexibility in output formats, the position 
of the decimal point is indicated by a binary integer 
called the power value. If the power value is zero, then 
the decimal point is assumed to be at the right of the 
right-most digit. Power values greater than zero indicate 
how many trailing zeroes. are not shown. For each unit 
below zero, move the decimal point to the left in the 
string. 

The last step of the conversion is storing the result in 
BCD and indicating where the decimal point lies. The 
BCD string is then unpacked into ASCII decimal char­
acters. The ASCII sign is set corresponding to the sign 
of the original value. 

LINE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

SOURCE 

$title(Convert a floating point number to ASCII) 
name floating to ascii 
public floating-to-ascii 
extrn get_power_18:near,tos_status:near 

This subroutine will convert the floating point number in the 
top of the 8~87 stack to an ASCII string and separate power of 10 
scaling value (in binary)_ The maximum width of the ASCII string 
formed is controlled by a parameter which must be > 1. Unnormal values, 
denormal values, and psuedo zeroes will be correctly converted. 
A returned value will indicate how many binary bits of 
precision were lost in an unnormal or denormal value. The maqnitude 
(in terms of binary power) of a psuedo zero will also be indicated. 
Integers less than 10**18 in magnitude are accurately converted if the 
destination ASCII string field is wide enough to hold all the 
digits. Otherwise the value is converted to scientific notation. 

The status of the conversion is identified by the return value, 
it can be: 

o conversion complete, string size is defined 
1 invalid arguments 
2 exact integer conversion, string size is defined 
3 indefinite 
4 + NAN (Not A Number) 
5 - NAN 
6 + Infinity 
7 - Infinity 
8 psuedo zero found, string_size is defined 

The PLM/86 calling convention is: 

floating to ascii: 
procedure (number,denormal ptr,string ptr,size ptr,field size, 

power-ptr) word external; - - -
declare (denormal ptr,string ptr,power ptr,size ptr) pointer; 
declare field size word, strIng size based size-ptr word; 
declare number real; - -
declare denormal integer based denormal ptr; 
declare power integer based power ptr; -
end floating_to_ascii; -

The floating point value is expected to be on the top of the NPX 
stack. This subroutine expects 3 free entries o~ the NPX stack and 
will pop the passed value off when done. The generated ASCII string 
will have a leading character either '-' or '+' indicating the sign 
of the value. 'l'he ASCII decimal digits will immediately follow. 
The numeric value of the ASCII str.ing is (ASCII STRING.)*10**POWER. 

3-454 207865-001 



49 
50 
51 
52 
53 
54 
55 
56 
57 
~8 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
14 
15 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 

119 

AP-113 

It the given number was zero, the ASCII string will contain a siqn 
and a single zero chacter. The value string size indicates the total 
length of the ASCII string including the sign character. String(liJ) will 
always hold the sign. It is possible for string size to be less than 
field size. This occurs for zeroes or integer values. A psuedo zero 
will return a special return code. The denormal count will indicate 
the power of two originally associated with the value. The power of 
ten and ASCII string will be as if the value was an ordinary zero. 

This subroutine is accurate up to a maximum of 18 decimal digits for 
integers. Integer values will have a decimal power of zero associated 
with them. For non integers, the result will be accurate to within 2 
decimal digits of the 16th decimal place (double precision). The 
exponentiate instruction is also used for scalinq the value into the 
range acceptable for the BCD data type. The roundinq mode in effect 
on entry to the subroutine is used for the conversion. 

The followinq registers are not transparent: 

ax bx cx dx si di flags 

Define the stack layout. 

bp_save 
es save 
return ptr 
power ptr 
field-size 
size ptr 
string ptr 
denormal_ptr 

parms_size 
& 

equ 
equ 
equ 
equ 
equ 
egu 
equ 
equ 

equ 

word ptr [bpJ 
bp save + size bp_save 
es-save + size es save 
return ptr + size-return ptr 
power-ptr + size power ptr 
field size + size fiela size 
size ptr + size size ptr 
string_ptr + size string_ptr 

size power ptr + size field size + size size ptr + 
size strinq_ptr + size nenormal_ptr 

Define constants used 

BCD DIGITS 
WORD bIZE 
BCD irIZE 
MINUS 
NAN 
INFINITY 
INDEFINITE 
PSUEDO ZERO 
INVAL1D 
ZERO 
DENORMAL 
UNNORMAL 
NORMAL 
EXACT 

equ 
equ 
equ 
egu 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 

18 
2 
1~ 

1 
4 
6 
3 
8 
-2 
-4 
-6 
-8 
o 
2 

Number of digits in hcd value 

Define return values 
The exact values chosen here are 
important. They must correspond to 
the possihle return values and be in 
the same numeric order as tested by 
the proqram. 

Define layout of temporary storage area. 

status 
power two 
power-ten 
bcd value 
bcd-byte 
fraction 

local size 
& -

stack 

stack 

equ 
equ 
equ 
equ 
equ 
equ 

equ 

word ptr [bp-WORD bIZE) 
status - WORD bIZE 
power two - WORD bIZE 
tbyte-ptr power ten - BCD bIZE 
byte ptr bcd value 
bcd val ue -

size status + size power_two + size power_ten 
+ size bcd value 

Allocate stack space for the temporaries so the stack will be big enough 

segment stack .'stack· 
db (10cal_size+6) dup (?) 

ends 

3-455 207865-001 



inter AP-113 

128 
121 
122 
123 
124 
125' 
126 
127 
128 
129 
130 
131 
132 
133 
134 

13 :, 

136 

137 

138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
169 
161 
162 
163 
164 
165 
166 
167 
168 
169 
178 
171 
172 
173 
174 
175 
176 
177 
178 
179 
188 

cgroup 
code 

const10 

group 
segment 
assume 
extrn 

code 
public 'code' 
cs:cgroup 
power _table:qword 

Constants used by this function. 

even 
dw 

; Optimize 'for 16 bits 
; Adjustment value for too big BCD 

.Convert the C3,C2,C1,C0 encoding from tos status into meanin7ful bIt 
flags and values. 

status table db 

call 
mov 
mov 
cmp 
jne 

'.J()R~~L, I'IFINITY, NOR"IAL + MINllS, INFINITY + MINUS, 

ZERO, INVALID, ZERO + MINUS, INVALID, 

DENORMAL, INVALID, DENORMAL + MINUS, INVALID 

tos status 
bx,ax 
al,status tab1e[bxj 
aI, INVALID 
not_empty 

Look at status of ST(0) 
Get descriptor trom table 

Look for empty ST(0) 

~T(0) IS empty! Return the status value. 

Remove infinity from stack and exit. 
; 
found_infinity: 

fstp 
jmp 

st (9) 
short ex i t_proc 

OK to leave fstp runninq 

String space is too small! Return invalid code. 

small_string: 

mov a1,INVALID 

mov 
pop 
pop 
ret 

sp,bp 
bp 
es 
parms_size 

Free stack space 
Restore registers 

ST(II IS NAN or indefinite. Store the value in memory and look 
at the ~raction field to separate indefinite ~rom an ordinary NAN. 

NAN_Of_indefinite: 

fstp 
test 
hait 
jz 

fraction 
aI,MINUS 

Remove value from stack for examination 
Look at sign bit 
Insure store is done 

e.xltyroc Can't be indefinite If positive 

3-456 207865-001 



181 
182 
183 
184 
185 
186 
187 
1~8 

189 
190 
I'll 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
2.,3 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
22fi 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
24fi 
247 
248 
249 
250 
251 
252 
253 
254 

wov 
sub 
or 
or 
or 
jnz 

mov 
jmp 

AP-113 

bx,0C000H 
bx,word ptr fraction+6 
bx,~ord ptr fraction+4 
bx,word ptr fraction+2 
bx,word ptr fraction 
exit_proc 

al,INDEFINITE 
exit_proc 

Match against upper 16 bits of fraction 
Compare bits 63-48 
Bits 32-47 must be zero 
Bits 31-16 must be zero 
Bits l5~0 must be zero 

Set return value for indefinite value 

Allocate stack space for local variables and establish parameter 
addressibility. 

not empty: -

size - ok: 

push es Save working register 
push bp 
mov bp,sp Establish stack addressibility 
sub sp,local size -
mov cx,field -size Check for enough string space 
cmp cx,2 
j 1 small strinq 

dec cx Adjust for sign character 
cmp cX,RCD DIGITS 
jbe size ok 

See if string is too large for BCD 

mov cx,BCD DIGITS Else set maximum string size 

cmp ill,INFINITY Look for infinity 
jge found_infinity Return status value for + or - info 

cmp al,NAN Look for NAN or INDEFINITE 
jge NAN or indefinite -

Set default return values and check that the number is normalized. 

fabs 

mov 
xor 
mov 
mov 
mov 
mov 
cmp 

dx,ax 
ax,ax 
di ,denormal ptr 
word ptr [di] ,ax 
bx,power ptr 
word ptr-[bx] ,ax 
dl,ZERO 

Use positive value only 
sign bit in al has trua sign of value 
Save return vaiue for later 
Form 0 constant 
Zero denormal count 

Zero power of ten value 

Test for zero 
< jae c real zero Skip power code if value is zero 

cmp 
jae 

fxtract 
cmp 
jb 

sub 

d 1 ,DENORMAL 
found_denormal 

d 1, UNNORMAL 
normal value 

dl,UNNORMAL-NORMAL 

Look for a denormal value 
Handle it specially 

Separate exponent from siqnificand 
Test for unnormal value 

; Return normal status with correct sign 

Normalize the fraction, adjust the power of two in STIll and set 
the denormal count value. 

Assert: 0 <= ST(!'!) < 1.0 

ndl Load constant to normalize fraction 

normalize fraction: 

fadd st (1) ,st 
fsub 
fxtract 

fxch 

3-457 

Set integer bit in fraction 
Form normalized fraction in ST(9) 
Power of two field will be neqative 
of denormal count 
Put denormal count in ST(9) 

207865-001 



inter 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 

, 

fillt 
faddp 

neg 
jnz 

word ptr [di] 
st(2),st 

word ptr [dil 
not_psuedo_zero 

AP-113 

Put negative of denorma1 count in memory 
Form correct power of two in stell 
OK to use word ptr [di] now 
Form positive denormal count 

A psuedo zero will appear as an unnormal number. When attempting 
to normalize it, the resultant fraction field will be zero. Performing 
an fxtract on zero will yield a zero exponent value. 

fxch 
fistp 

sub 
jmp 

word ptr [di] 

dl,NORMAL-PSUEDO ZERO 
convert_inteqer -

Put power of two value in st(ll) 
Set denormal count to power of two value 
Word ptr [di] is not used by convert 
integer, OK to leave runninq 
Set return value savinq the sign bit 
Put zero value into me~ory 

The number is a real zero, set the return value and setup for 
conversion to BCD. 

sub 
jmp 

dr, ZERO-NORMAL 
convert _i nteger 

Convert status to normal value 
Treat the zero as an integer 

The number is a denormal. FXTRACT will not work correctly in this 
case. To correctly separate the exponent and fraction, add a fixed 
constant to the exponent to guarantee the result is not a denormal. 

found_denormal: 

1 

fldl 
fxch 
fprem 

fxtract 

Prepare to bump exponent 

Force denormal to smallest representable 
extended real format exponent 
This will work correctly now 

The power of the original denormal value has been safely isolated. 
Check if the fraction value is an unnor~al. 

fxam 
fstsw 
fxch 
fxch 
sub 
test 
jz 

fstp 

status 

st(2) 
dl,DENOHMAL-NORMAL 
status,4400H 
normalize fraction 

st (0) 

See if the fraction is an unnormal 
Save status for later 
Put exponent in ST(0) 
Put 1.0 into ST(0), exponent in ST(2) 
Return normal status with correct sign 
See if C3=C2=0 impling unnormal or NAN 
Jump if fraction is an unnormal 

Remove unnecessary l.~ from st(ll) 

Calculate the decimal magnitude associated with this number to 
within one order. This error will always be inevitable due to 
rounding and lost precision. As a result, we will deliberately fail 
to consider the LOG10 of the fraction value in calculating the order. 
Since the fraction will always be 1 (= F ( 2, its LOG10 will not change 
the basic accuracy of the function. To get the detimal order of magnitude, 
simply multiply the power of two by LOG10(2) and truncate the result to 
an integer. 

normal value: 
not~psuedo_zero: 

fstp 
fist 
fldlg2 

fmul 
fistp 

fraction 
power_two 

power _ten 

Save the fraction field for later use 
Save power of two 
Get LOG10 (2) 
Power two is now safe to use 
Form LOG10(of exponent of number) 
Any rounding mode will work here 

Check if the magnitUde of the number rules out treating it as 
an integer. 

CX has the maximum number of decimal digits allowed. 

3-458 207865-001 



328 
329 
33e 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 
354 
355 
356 
357 
358 
359 
360 
361 
362 
363 
364 
365 
366 
367 
3<;8 
369 
37e 
371 
372 
373 
j74 
375 
37h 
377 
378 
379 
3110 
381 
382 
383 
384 
385 
3-86 
387 
388 
389 
390 
391 
392 
393 
394 
395 
396 
397 
398 
399 

4"" 
4"1 

, 

fwa it 
mov 
sub 
ja 

ax,power_ten 
ax,cx 
adjust_result 

AP-113 

Wait for power ten to be valid 
Get power of ten of value 
Form scaling factor necessary in ax 
Jump if number will not fit 

The number is between and l"**(field_size). 
Test if it is an integer. 

fild power two 
mov si ,dx -
sub dl,NORMAL-EXACT 
fld fraction 
fscale 
fst stell 
frndint 
fcomp 
fstsw status 
test status,4000H 
jnz convert_integer 

fstp st(0) 
mov dx,si 

Restore original number 
Save return value 
Convert to exact return value 

Form full value, this is safe here 
Copy value for compare 
Test it its an integer 
Compare values 
Save status 
C3=1 implies it was an integer 

Remove non integer value 
Restore original return value 

Scale the number to within the range allowed by the BCD format. 
The scaling operation should produce a number within one decimal order 
of magnitude of the largest decimal number representable within the 
given string width. 

The scaling power ot ten value is in ax. 

adjust result: 

mov 
neg 

call 

fld 
fmul 
mov 
shl 
shl 
shl 
fild 
faddp 
fscale 
fstp 

word ptr [bxJ ,ax 
ax 

get _power_ 10 

fraction 

si,ex 
si ,1 
si,l 
s i ,1 
power_two 
st(2) ,st 

stell 

Set initial power ot ten return value 
Subtract one for each order of 
magnitude the value is scaled by 
Scalinq factor is returned as exponent 
and fraction 
Get fraction 
Comoine fractions 
Form power of ten of the maximum 
BCD value to fit in the string 
Index in si 

Combine powers of two 

Form full value, exponent was safe 
Remove exponent 

Test the adjusted value against a table of exact powers of ten. 
The combined errors of the maqnitude estimate and power function can 
result in a value one order of magnitude too small or too large to fit 
correctly in the BCD field. To handle this problem, pretest the 
adjusted value, if it is too small or large, then adjust it by ten and 
adjust the power ot ten value. 

testyower: 

feom 

fstsw 
test 
jnz 

fidiv 
and 
inc 
jmp 

test - for_small: 

fcom 
fstsw 

power _table [si) +type power table; Compare against exact power 
entry. Use the next entry since ex 
has been decremented by one 

status 
status,4HHlH 
test -for_small 

constl!! 
dl,not EXACT 
word ptr [bx) 
short in _range 

power_table lsi I 
status 

3-459 

No wait is necessary 
If C3 = CII = " then too big 

Else adjust value 
Remove exact flag 
Adjust power of ten value 
Convert the value to a BCD integer 

Test relative size 
No wait is necessary 

207865-001 



411J2 
403 
411J4 
4I!J5 
411J6 
411J7' 
4118 
411J9 
4111 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425 
426 
427 
428 
429 
430 
431 
432 
433 
43 t 
1<" 

"::V 
'37 
43r. 
439-
441') 
441 
442 
443 
444 
445 
446 
447 
448 
449 
450 
451 
452 
453 
454 
455 
456 
457 
458 
459 
460 
461 
462 
463 
464 
465 
466 
467 
468 
469 
4711J 
471 
472 
473 
474 

test 
jz 

fimul 
dec 

inJ~nge: 

frndint 

status,lllllJH 
. in_range 

constlllJ 
word ptr [bxj 

AP-113 

If CIIJ = IIJ then stlllJ) )= lower bound 
Convert the value to a BCD integer 

Adjust value into range 
Adjust power of ten value 

; Form integer value 

Assert: IIJ <= TOS <= 999,999,999,999,999,999 
The TOS number will be exactly rep~esentable in 18 digit BCD format. 

convert_inteqer: 

fbstp Store as BCD format number 

While the store BCD runs, setup registers for the conversion to 
ASCII. 

si ,BCD SIZE-2 
cx ,lIfII4h 

Initial BCD index value 
Set slitft count and mask 

mov 
mov 
mov 
mov 
mov 
mov 
cld 
mov 
test 
jz 

bx,l 
di,string ptr 
ax,ds -

Set initial size of ASCII field for siqn 
Get address of start of ASCII string 
Copy ds to es 

es,ax 

aI, 1+' 
dl,MINUS 
positive_result 

JT'IOV aI, • -' 

Y("~itive r(l~'111t: 

C;t0Sr. 

~nd 
fwa it 

ol,not MINUS 

Register usaqe: 

Set autoincrement mode 
Clear sign field 
Look for aeqative value 

Pll~P q~rin~ rnint~r nast pinn 
Turn off siqn bit 
Walt tor fbstp to finish 

ah: BCD byte value in use 
"1:' ASCII character value 
ox: Return vAlue 
ch: RCD mask = I'Jfh 
cl: BCD shift count = 4 
hx: ASClI string field wioth 
si: BCD field index 
eli: ASCII strinq field pointer 
ds,es: ASCII string seqment base 

Remove leading zeroes from the number. 
; 
skip_leading_zeroes: 

mov ah,bcd 
mov al,ah 
shr alJcl 
and al,ch 

_byte[sij Get BC,D byte 
Copy value 
Get high order digit 
Set zero flag 

jnz enter odd Exit loop if leading non zero found 

mov al,ah 
and al,ch 
jnz enter _even 

dec si 
jns skip_leading _zeroes 

'1'he significand was- all zeroes. 

mov 
stosb 
inc 
jmp 

aI, '11lJ' 

bx 
short exit_with_value 

3-460 

Get BCD byte again 
Get low order digit 
Exit loop'if non zero digit found 

Decrement BCD index 

Set initial zero 

Bump string length 

207865-001 



inter 
475 
476 
477 
478 
479 
480 
481 
482 
483 
484 
485 
486 
487 
488 
489 
490 
491 
492 
493 
494 
495 
496 
497 
498 
499 
'!>00 
501 
502 
503 
504 
!>05 
506 
507 
508 
509 
510 
511 

AP-113 

NOW expand the BCD string into digit per byte values 0-9. 
, 
dieli t_loop: 

mov 
mov 
shr 

enter odd: 

add 
stosb 
mov 
and 
inc 

enter even: -
add 
stosb 
inc 
dec 
jns 

ah ,bcd_byte [si I 
al,ah 
al,cl 

aI, '0 I 

al,ah 
al,ch 
bx 

al,'" I 

bx 
si 
digit_loop 

Get BCD byte 

Get high order digit 

Convert to ASCII 
Put digit into ASCII string area 
Get low order digit 

Bump field size counter 

Convert to ASCII 
Put digit into ASCII area 
Bump field size counter 
~o to next BCD byte 

Conversion complete. Set the string size and remainder. 
, 
exit_with value: 

mov 
mov 
mov 
jmp 

di,size ptr 
word ptr [di] ,bx 
ax,dx 
exi t_proc 

floating to ascii endp 
ends 
end 

code -

Set return value 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

LINE 

1 
2 
3 
4 
5 
6 
7 
8 
!i 

10 
11 
12 
13 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

SOURCE 

~title(Calculate the value of l0**ax) 

stack 

This subroutine will calculate the value of l0**ax. 
All 8086 registers are transparent and the value is returned on 
the TOS as two numbers, exponent in STIll and fraction in ST(I'l). 
The exponent value can be larger than the maximum representable 
exponent. Three stack entries are used. 

name get power 10 
public get=power~10,power table 

segment stack 'stack' 
dw 4 dup (1) Allocate space on the stack 

stack 

cgroup 
code 

ends 

group code 
segment public 'code' 
assume cs:cgroup 

Use exact values from- 1.0 to le18. 

power table 
even 
dq 1.",lel,1e2,1e3 

3-461 

Optimize 16 bit access 

207865-001 



24 

25 

26 

27 

28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
4" 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

AP-113 

dq le4,le5,le6,le7 

dq le8,le9,le10,lell 

dq le12,le13,le14,le15 

dq le16,le17,le18 

proc 

cmp ax,18 
ja out_of_range 

push bx 
mov bx,ax 
shl bx,l 
shl bx,l 
shl bx,l 
fld power table[bx] 
pop bx-
fxtract 
ret 

Test fer" (= ax < 19 

Get working index register 
Form table index 

Get exact value 
Restore register value 
Separate power an~ fraction 
OK to leave fxtract running 

Calculate the value using the exponentiate instruction. 
The following relations are used: 

l0**x = 2**(log2(10)*x) 
2**(1+F) 2**1 * 2**F 
if st(l) = I and st(") = 2**F then fscale produces 2**(1+F) 

fldl2t 
push 
mov 
push 
push 
fimul 
fnstcw 

mov 
and 
or 
xchg 

fldl 
fchs 
fld 
fldcw 
frndint 
mov 
fldcw 

bp 
bp,sp 
ax 
ax 
word ptr [bp-2] 
word ptr [bp-4] 

ax,word ptr [bp-4) 
aX,not 0C00H 
ax,04""H 
aX,word ptr [bp-4) 

st(l) 
word ptr [bp-4) 

word ptr [bp-4),ax 
word ptr [bp-4) 

3-462 

TOS = LOG2 (Hll) 
Establish stack addressibility 

Put power (P) in memory 
Allocate space for status 
TOS,X = LOG2/10)*P = LOG2(l"**P) 
Get current control word 
Control word is a static value 
Get control word. no wait necessary 
Mask off current rounding field 
Set round to negative infinity 
Put new control word in memory 
old control word is in ax 
Set TOS = -1.0 

Copy power value in base t~o 
Set new control word value 
TOS = I: -inf < I (= X, I is an integer 
Restore original rounding control 

207865-001 



72 fxch 
73 pop 
74 fsub 
75 pop 
76 fscale 
77 f2xml 
78 pop 
79 fsubr 
80 fmul 
81 ret 
82 
83 qet_power_ 10 
84 code 
85 

st(2) 
ax 
st,st (2) 
ax 

bp 

st,st(ll) 

endp 
ends 
end 

AP-113 

TOS ~ x, ST(l) = -1.0, ST(2) 
Remove oriqinal control word 
TOS,F = X-I: 0 <~ TOS < 1.0 
Restore power of ten 
TOS ~ F/2: 0 <= TOS < 0.5 
TOS = 2**(F/2) - 1.0 
Restore stack 
Form 2** (F/2) 
Form 2**F 
OK to leave fmu1 runninq 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

1 
2 
3 
4 
5 
6 
7 
8 
9 

II! 
11 
12 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
31'l 
31 
32 
33 
34 
35 
36 
37 
38 

GOlHIO: 

$title(Determine TOS reqister contents) 

stack 

stack 

cgroup 
code 

This subroutine will return a value from 0-15 in ax correspondinq 
to the contents of 8087 TOS. All registers are transparent and no 
errors are possihle. The return value corresponds to c3,c2,cl,cll 
of FXAM instruction. 

name tos status 
public tos-status 

segment stack 'stack' 
dw 3 dup (?) 

ends 

group code 

Allocate space on the stack 

tos _status 

segment public 'code' 
assume cs:cqroup 
proc 

fxam 
push 
push 
mov 
fstsw 
pop 
pop 
mov 
and 
shr 
shr 
shr 
or 
mov 
ret 

tos status 
code 

ax 
bp 
bp,sp 
word ptr [bp+21 
bp 
ax 
al,ah 
aX,4""7h 
ah,l 
ah,1 
ah,1 
al,ah 
ah,0 

endp 
ends 
end 

Get reqister contents status 
Allocate space for status value 
Establish stack addressibility 

Put tos status in memory 
Restore reqisters 
Get status value, no wait necessary 
Put bit 10-8 into bits 2-0 
Mask out bits c3,c2,cl,c0 
Put bit c3 into bit 11 

Put c3 into hit 3 
Clear return ~alue 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

3-463 207865-001 



AP·113 

APPENDIX D 

OVERVIEW 

Appendix D shows a function for converting ASCII 
input strings into floating point values. The returned 
value can be used by PLM/86, PASCALl86, FOR­
TRAN/86, or ASM/86. The routine will accept a' num­
ber in ASCII of standard FORTRAN formats. Up to 18 
decimal digits are accepted and the conversiqn accuracy 
is the same as for converting in the other direction. 
Greater accuracy can also be achieved with similar 
tradeoffs, as mentioned earlier. 

code simply determines the meaning of each character 
encountered. Two separate number inputs must be rec­
ognized, mantissa and exponent values. Performing the 
numerics operations is very straightforward. 

The length of the number string is determined first to 
allow building a BCD number from low digits to high 
digits. This technique guarantees that an integerwill be 
converted to its exact BCD integer equivalent. 

If the number is a floating point value, then the digit 
string can be scaled appropriately. If a decimal point oc-' 
curs within the string, the scale factor must be decreased 
by one for each digit the decimal point is moved to the 
right. This factor must be added to any exponent value 
specified in the number. 

Description of Operation 

Converting from ASCII to floating point is less complex 
numerically than going from floating point to ASCII. It 
consists of four basic steps: determine the size in deci­
mal digits of the number, build a BCD value corre­
sponding to the number string if the decimal point were 
at the far right, calculate the exponent value, and scale 
the BCD value. The first three steps are performed by 
the host software, The fourth step is mainly performed 
by numeric operations. 

ACCURACY CONSIDERATIONS 

All the same considerations for converting floating 
point to ASCII apply to calculating the scaling filctOr. 
The accuracy of the scale factor determines the accuracy 
of the result. 

The exponents and fractions are again kept separate to 
prevent overflows or underflows during the scaling 
operations. 

The complexity in this function arises due to the flexible 
nature of the input values it will recognize. Most of the 

LINE 

1 
2 
3 
4 
5 
6 
7 
8 
\I 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

SOURCE 

Stitle(ASCII to floating point conversion)' 

Define the publicly known names. 

name 
public 
extrn 

ascii to floating 
ascii-to-floating 
get-power_ll!l:near 

This function will convert an ASCII character string to a floating 
point representation. Character strings in integer or scientific form 
will be accepted. The allowed format is: 

[+,-j [digit(s)1 [.1 [digit(s)] [E,e) [+,-) [digit(s)} 

Where a digit must have been encountered before the exponent 
indicator IE' or'e'.. If a 1+', '_I, or I. I was encountered, then at 
least one digit must exist before the optional exponent field. A value 
will always be returned in the BA8? stack. In case of invalid numbers, 
values like indefinite or infinity will be retur,ned. 

The first character not fitting within the format will terminate the 
conversion. The address of the terminating character will be returne~ 
by this.subroutine. 

The result will be left on the top of the NPX stack. This 
subroutine expects 3 free NPX stack reqisters. The sign of the result 
will correspond to any sign characters in the ASCII string. The rounding 
mode in effect at the time the subroutine was ~alled will be used for 
the conversion from h,se 10 to base 2. Up to 18 significant decimal 
digits may appear in the number. Leari~~ 7~rne~, rr~i]jnn 7ArOp.s, or 
exponent riQits ro not count towards the 18 riiQit maximum. Integers 
or exactly representable decimal numbers of 18 digits or less will be 
exactly converted. The technique used constructs a BCD number 

3-464 207865-001 

.. 



34 
35 
36 
37 
38 
39 
411 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
~l 

52 
53 
54 
55 
~6 

57 
58 
59 

• 60 
61 
1i2 
63 
64 
65 
li6 
67 
68 
69 
711 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
91'1 
91 
92 
93 
94 
95 
96 
97 
98 
99 

101'1 
1111 
192 
1113 
1Il4 
IllS 
1116 
1"7 

AP-113 

representing the siqnificant ASCII digits of the string with the decimal 
point removed. 

An attempt is made to exactly convert relatively small inteqers or 
small fractions. ror example the values: .1'16125, 1234567891'112345li78, 
le17, 1.23456e5, and 125e-3 will be exactly converted to floating point. 

The exponentiate instruction is used to scale the generated BCD vaslue 
to very large or very small numbers. The basic accuracy of this function 
determines the accuracy of this subroutine. For very large or very small 
numbers, the accuracy of this function is 2 units in the llith decimal 
place or double precision. The ranqe of decimal powers accepted is 
11'1-*-4930 to 11'1**4931'1. 

The PLM/86 calling format is: 

ascii to floating: 

ax 

- procedure (string ptr,end ptr,status ptr) real external; 
declare (string ptr,end ptr,status ptr) pointer; 
declare end based end ptr pointer;-
declare status based status ptr word; 
end; 

The status value has Ii possible states: 

9 A number was found. 
1 No number was found, return indefinite. 
2 Exponent was expected but none found, return indefinite • 
3 Too many digits were found, return indefinite. 
4 Exponent was too biq, return a siqned infinity. 

The following registers are used by this subroutine: 

bx ex dx si di 

Define constants. 

LOW EXPONENT 
HIGH EXPONENT 
WORD-bIZE 

equ 
equ 
equ 
equ 

-4931l 
4931'1 
2 

Smallest allowed power of 10 
Largest allowed power of III 

BCD bIZE III 

Define the parameter layouts involved: 

hp save 
return ptr 
status -ptr 
end ptr 
strTngytr 

equ 
equ 
equ 
equ 
equ 

equ 

word ptr [bp] 
bp save + size bp save 
return ptr + size-return ptr 
status-ptr + size status-ptr 
endytr + size end_ptr -

size status_ptr + size endytr + size string_ptr 

Define the local variable data layouts 

power ten 
bed form 

local size 

equ 
equ 

equ 

word ptr [bp- WORD SIZE] ; power of ten value 
tbyte ptr power_ten - BCD_SIZE; BCD representation 

size power_ten + size bcd_form 

Define common expressions used 

bed byte 
bcd-count 
bcd-sign 
bCd:S ign _ bi t 

equ 
equ 
equ 
equ 

byte ptr bed form 
(type(bcd form)-1)*2 
byte ptr bed form + 9 
811H -

Current byte in the BCD form 
Number of digits in BCD form 
Address of BCD sign byte 

Define return values. 
; 
NUMBER FOUND equ 
NO NUMBER equ 
NO-EXPONENT equ 
TOO MANY DIGITS equ 
EXPONENT-TOO BIG equ 

Il 
1 
2 
3 
4 

3-465 

Number was found 
No number was found 
No exponent was found when expected 
Too many digits were found 
Exponent was too big 

207865-001 



inter AP-113 

108 
U9 
110 
III 
112 

113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
14fi 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 

AI-locate stack space to insure enough exists at run time. 
, 
stack segment stack • st'ack' 

db (local _size+4) dup (?) 

stack ends 

cgroup group code 
code segment public 'code' 

assume cs:cgroup 

Define some of the possible return values. 

Optimize 16 bit access 
indefinite 
infinity 

even 
dd 
dd 

0FFCI!01H10R 
07FF80"'00R 

Single precision real for indefinite 
Single precision real for +infinity 

ascii to_floating proc 

fldz 
push 
mov 
sub 

bp 
bp,sp 
sp,local size 

Prepare to zero BCD value 
Save callers stack environment 
Establ i sh stack addressi bili ty 
Allocate space for local variables 

Get any leading sign character to form initial BCD template. 

mov 
xor 
cld 

si ,string ptr 
dx,dx -

Get starting address of the number 
Set initial decimal digit count 
Set auto increment mone 

Register usage: 

all Current character value being examined 
cx: Digit count before the necimal point 
dx: Total digit count 
si: Pointer to character string 

Look for an initial sign and skip it if found. 

lodsb 
cmp 
jz 

aI, '+ I 
scan_leading diqits 

Get first character 
Look for a siqn 

cmp 
jnz 

al, ,_I 
enter_leading_digits If not "-" test current character 

fchs Set TOS = -0 

< 
Count tbe number of digits appearing before an optional decimal point. 

scan_leading_digits: 

lodsb 

call 
jnc 

test digit 
scan~leading_digits 

Get next character 

; Test for digit and bump counter 

Look for a possible decimal point and start fbstp operation. 
Tbe fbstp zeroes out the BCD value and sets the correct sign. 

fbstp 
mov. 
cmp 
jnz 

bcd form 
cx,dx 

Set initial sign and value of BCD number 
Save count of digits before decimal point 

a1,' . I 

test_for_digits 

Count the number of digits appearing after the decimal point. 

lodsb Look at next character 

3-466 207865-001 



188 
181 
182 
183 
184 
185 
186 
187 
188 
189 
191'1 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
21'15 
206 
207 
208 
209 
211'1 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
241'1 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 

call 
jnc 

AP-113 

test digit 
scan:trai1ing_digits 

Test for digit and bump counter 

There must be at least one digit counted at this point. 

dec 
or 
jz 

si 
dx,dx 

Put si back on terminating character 
Test digit count 

push 
dec 

no _number found 

si 
si 

Jump if no digits were found 

Save pointer to terminator 
Backup pointer to last digit 

Check that the number will fit in the 18 digit BCD format. 
CX becomes the initial scaling factor to account for the implied 
decimal point. 

sub cX,dx For each digit to the right of the 
decimal point, subtract one from the 
initial scaling power 

neg dx Use negative digit count so the 
test_digit routine can count <Ix up 
to zero 

cmp dX,-bcd count ; See if too many digits found 
jb test for unneeded _digi ts 

Setup initial register values for scanning the number rioht to left 
while building the BCD-value in memory. 

form_bcd value: 

std Set autodecrement mode 
Set initial power of ten 
Clea( BCD number index 
Set digit shift count 
Ensure BCD store is done 

, 

mov 
xor 
mov 
fwa i t 
jmp 

power ten,cx 
di ,di-
cl,4 

No digits were encountered before testing for the exponent. 
Restore the string pointer and return an indefinite value. 

mov 
fld 

aX,NO NUMBER 
indefTnite 

jmp exit 

Set return status 
Return an indefinite numeric value 

Test for a number of the form ???00001'1. 

test_terminating_point: 

lodsb 
cmp 
jz 

inc 
jmp 

al,· . . 
enter_power_zeroes 

si 
short enter_power_zeroes 

Get last character 
Look for decimal point 
Skip forward if found 

Else bump pointer back 

Too many decimal digits encountered. Attempt to remov,e leading and 
trailing digits to bring the total int~ the bounds of the BCD format. 

test_for _unneeded_digi ts: 

std 
or 

jz 

dec 

cx,cx 

test_terminating_point 

dx 

Set autodecrement mode 
See if any digits appeared to the 
right of the decimal point 
Jump if none exist 

Adjust digit counter for loop 

Scan backwards from the right skipping trailing zeroes. 
If the end of the number is encountered, dx=0, the string consists of 
all zeroes I 

3-467 207865-001 



254 
255 
256 
257 
t58 
259 
2611 
261 
262 
263 
264 
265 
266 
267 
268 
269 
2711 
271 
272 
273 
274 
275 
276 
277 
278 
279 
2811 
281 
282 
283 
284 
285 
286 
287 
288 
289 
2911 
291 
292 
293 
294 
295 
296 
297 
298 
299 
3011 
301 
3112 
303 
304 
305 
3116 
3117 
308 
309 
311l 
311 
312 
313 
314 
315 
316 
317 
318 
319 
3211 
321 
322 
323 
324 
325 
326 
'327 

AP-113 

; 
skip_t~ailing_zeroes: 

{nc 
jz 

lodsb 
inc 
cmp 
jz 

dec 
cmp 
jnz 

dec 

dx 
look~for_exponent 

cx 
ai, '""' 
skip_trailing_zeroes 

cx 
a1, '.' 
scan_leading_zeroes 

dx 

Bump digit count 
Jump if string of zeroes found I 

Get next character 
Bump power value for each trail ing 
zero dropped 

Adjust power counter from loop 
Look for decimal point 
Skip forward if none found 

Adjust counter for the de~imal point 

The string is of the form: ,????8II1Il1I1I1ll1l 
See if any zeroes exist to the left of the decimal point. 

; 
enter_power_zeroes: 

dec dx 

skip_power_zeroes: 

inc dx 
jz look_for_exponent 

lodsb 
inc cx 
cmp . ai, 'II' 
jz sklp-power_zeroes 

dec cx 

Adjust diqit counter for loop 

Bump diqit count 

Get next character 
Bump power value for each trailinq 

I zero dropped 

Adjust power counter from loop 

, , Scan the leading digits from the left to see if they are zeroes. 

lea 
cld 
mov 
lodsb 

di,byte ptr [si+l) 

sl,stringjltr 

cmp ai, ,+, 
je skip_leading_zeroes 

cmp al,'-' 
jne enter_leading_zeroes 

Save new end of number pointer 
Set auto Increment mode 
Set pointer to the start 
Look for sign character 

Drop leading zeroes. None of them affect the power value in cx. 
We are guarenteed at least one non zero digit to terminate the loop. 

; 
skip_leading_zeroes: 

lodsb 

inc 
cmp 
jz 

dec 
cmp 
jnz 

dx 
ai, 'II' 
skip_leading_zeroes 

dx 
ai,'. · 
test_digi t_count' 

Number is of the form 1Il1ll1ll.???? 

Get next character 

Bump digit count 
Look for a zero 

Adjust digit count from loop 
Look tor 1I11l1l.??? form 

Drop all leading zeroes with no effect on the power value. 
; 
skip_middle zeroes: 

inc 
lodsb 

dx 

3-468 

Remove the digit 
Get next character 

207865-001 



inter 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
3411 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 
354 
355 
356 
357 
358 
359 
360 
361 
362 
363 
364 
365 
366 
367 
368 
369 
370 
?71 
372 
373 
374 
375 
376 
377 
378 
379 
380 
381 
382 
383 
384 
385 
386 
387 
388 
389 
391l 
391 
392 
393 
394 
395 
396 
397 
398 
399 
401l 
4111 

AP-113 

cmp aI, 'Il' 
jz Skip~iddle_zeroes 

dec dx ; Adjust digit count from loop 

All superflou~ zeroes are removed. Check if all IS well now. . 
test_digit_count: 

cmp dx,-bcd count 
jb too_manY_digits_found 

mov 
jmp 

fld 
mov 
pop 
jmp 

si,di 
form_bcd_val ue 

indefinite 
aX,TOO MANY DIGITS 
si - -
exit 

Restore string pointer 

Set return numeric value 
Set return" flag 
Get last address 

Build BCD form of the decimal ASCII string from right to left with 
trailing zeroes and decimal point removed. Note that the only non 
digit possible is a decimal point which can be safely ignored. 
Test digit will correctly count d~ back towards zero to terminate 
the BCD build function. 

; 
get_digi t_loop: 

lodsb 
call 
jc 

shl 
or 
mov 
inc 
or 
jz 

test digit 
get _dig it_loop 

al,cl 
ah,al 
bcd byte [dij ,ah 
di -
dx,dx 
look_for_exponent 

enter _digi t_loor: 

lO<1sh 
call test diq it 

enter_digit_loop jc 

mov 

ah,al 
dX,dx 
get_digit_loop 

bcd_byteldil,ah 

Look tor an exponent indicator. 
; 
look_for_exponent: 

pop 
cld 
mov 
lodsb 
cmp 
je 

si 

aI, tel 

exponent_found 

cmp aI, 'E' 
jne convert 

Get next character 
Check if digit and bump digit count 
Skip the decimal point if found 

Put digit into high nibble 
Form BCD byte in ah 
Put into BCD strinq 
Bump BCD pointer 
Check if dIgit is availabl~ 

G~t n~xt Chnr?~t~r 

Check If diqit 
Skip the decimal point 

Save digit 
Check If digit is available 

Save last odd digit 

Restore string pointer 
Set auto increment direction 
Get current power of ten 
Get next character 
Look for exponynt indication 

An exponent is expected, get its numeric value. 
; 
exponent_found: 

~odsb 
xor 
mov 

di ,di 
cx,di 

3-469 

,Get next character 
Clear power var"iable 
Clear exponent sign flag and digit flag 

207865-001 



492 
403 
4114 
405 
406 
407 
408 
409 
410 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425 
426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 
439 
440 
441 
442 
443 
444 
445 
446 
447 
448 
449 
450 
451 
452 
453 
454 
455 
456 
457 
458 
459 
460 
461 
462 
463 
464 
465 
466 
467 
468 
469 
470 
471 
472 
473 
474 
475 

• 
cmp 
je 

cmp 
jne 

aI, '+' 
skip_power_sign 

a1, '-' 
enter_pover_1oop 

AP-113 

The exponent is negative. 

inc ch 

Test for positive sign 

Test for negative sign 

Set exponent sign flag 

skip_power_sign: 
, 

Register usaqe: 

al: 
bx: 
chI 
cl: 
dx: 
si: 
d i: 

exponent chara'cter beinq examined 
return value 
exponent sign flag Il positive, 1 negative 
digit flag " no digits found, 1 digits found 
not usable since lest digit increments it 
string pointer -
binary value of exponent 

Scan off exponent digits until a "non-diqit is encountered. 

power _loop: 

lodsb Get next character 

mov 
call 
jc 

mov 
sal 
add 
sal 
sal 
add 
cmp 
jna 

ah,0 
test digit 
form:power_value 

Clear ah since ax is added to later 
Test tor a digit 
Exit loop if not 

cl,l Set power digit flag 
di,l old*2 
ax,di old*2+diqit 
di ,l old*4 
di ,l old*8 
di ,ax ; old*lll+digit , 
di,HIGH EXPONENT+bcd_count; Check if exponent 
power_loop 

is too biq 

The exponent is too large. 

exponent overflow: 

mov 
fld 
test 
jz 

fchs 
jmp 

ax,EXPONENT TOO BIG 
infinity -
bcd sign,bcd sign bit 
exit --

short exit 

No exponent was found. 

dec 
mov 
fld 
jmp 

si 
ax,NO EXPONENT 
indefinite 
short exit 

Set return value 
Return infinity 
Return correctly signed infinity 
Jump if not 

Return -infinity 

Put si back on terminating character 
Set return value 
Set number to return 

The string examination is complete. Form the corr~t power of ten. 
; 
form_power value: 

dec 

rcr 
jnc 

neg 

si 

ch,l 
positive_exponent 

di 

3-470 

Backup string pointer to terminating 
character 
Test exponent sign flag 

Force exponent negative 

207865-001 



476 
477 
478 
479 
480 
481 
482 
483 
484 
485 
486 
487 
488 
489 
490 
491 
492 
493 
494 
495 
496 
497 
498 
499 
500 
501 
592 
503 
504 
505 
5136 
5137 
5138 
509 
510 
511 
512 
513 
514 
515 
516 
517 
518 
519 
5213 
521 
522 
523 
524 
525 
526 
527 
528 
529 
530 
531 
532 
533 
534 
535 
536 
537 
538 
539 
540 
541 
542 
543 
544 
545 
546 
547 

AP-113 

positive_exponent: 

, 
convert: 

rcr 
jnc 

add 
cmp 
js 

cl,l 
no_exponent_found 

di,power ten 
di ,LOW EXPONENT 
exponent_overflow 

cmp di,HIGH EXPONENT 
jg exponen~overflow 

inc si 

Test exponent digit flag 
If zero then no exponent digits were 
found 
Form the final power of ten value 
Check if the value is in range 
Jump if exponent is too small 

; Adjust string pointer 

Convert the base 10 number to base i. 
Note: l0**exp = 2**(exp*10g2(10» 

di has binary power of ten value to scale the BCD value with. 

dec 
mov 
or 
js 

si 
ax,di 
ax,ax 
get_negative_power 

8ump string pointer back to last character 
Set power of ten to calculate 
Test for positive or negative value 

Scale the BCD value by a value >= 1. 

call 
fbld 
fmul 

get power Hl 
bcd:form -

jmp short done 

Get the adjustment power of ten 
Get the digits to use 
Form converged result 

Calculate a power of ten value> 1 then divide the BCD value with 
it. This technique is more exact than multiplying the 8CD value by 
a fraction since no negative power of ten can be exactly represented 
in binary floating point. Using this technique will guarentee exact 
conversfon of values like .5 and .0625. 

get negative_power: 

done: 

exit: 

neg 
call 
fbld 
fdivr 
fxch 
fchs 
fxch 

ax 
get power 10 
bcd:=form -

All done, set return values. 

fscale 
mov ax,NUMBER FOUND 
fstp stell -

di,status ptr 
word ptr Tdil,ax 
di ,end ptr 
word ptr [dil,si 
sp,bp 
bp 

Force positive power 
Get the adjustment power of ten 
Get the digits to use 
Divide fractions 
Negate scale factor 

Update exponent of the result 
Set return value 
Remove the scale factor 

Set status of the conversion 

Set ending string address 

Deallocate local storage area 
Restore caller's environment 

mov 
mov 
mov 
mov 
mov 
pop 
fwait 
ret 

Insure all loads from memory are done 

Test if the character in al is an ASCII digit. 
If so then convert to binary, bump cx, and clear the carry flag. 
Else leave as is and set the carry flag. 

3-471 207865-001 



AP·113 

548 
549 
550 
551 
552 
553 
554 
555 
556 
557 
558 
559 
560 
561 
562 
563 
564 
565 
566 
567 
568 
569 
570 

, 
test_digit: 

cmp 
ja 

cmp 
jb 

aI, '9 I 

not_digi t 

al,' g. 
not_digit 

Character is a digit. 

inc dx 
sub al,'0' 
ret 

Character is not a digit 
, 
not digit: 

- stc 
ret 

ascii to floating endp 
code - - ends 

end 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

See if a digit 

Bump digit count 
Convert to binary and clear carry flag 

Leave as is and set the carry flag 

APPENDIX E 

OVERVIEW 
Appendix E contains three trigonometric functions for 
sine, cosine, and tangent. All accept a valid angle argu­
ment between - 262 and + 262. They may be called from 
PLM/86, PASCALl86, FORTRAN/86 or ASM/86 
functions. 

They use the partial tangent instruction together with 
trigonometric identities to calculate the result. They are 
accurate to within 16 units of the low 4 bits of an ex­
tended precision value. The functions are coded for 
speed and small size, with tradeoffs available for greater 
accuracy. 

FPTAN and FPREM 
These trigonometric functions use the FPT AN instruc­
tion of the NPX. FPTAN requires that the angle argu­
ment be between 0 and P'I/4 radians, 0 to 45 degrees. 
The FPREM instruction is used to reduce the argument 
down to this range. The low three quotient bits set by 
FPREM identify which octant the original angle was in. 

One FPREM instruction iteration can reduce angles of 
1018 radians or less in magnitude to P1I4! Larger values 
can be reduced, but the meaning of the result is ques­
tionable since any errors in the least significant bits of 
that value represent changes of 45 degrees or more in the 
reduced angle. 

Cosine Uses Sine Code 
To save code space, the cosine function uses most of the 
sine function code. The relation sin (IAI + PI12) = 
cos(A) is used to convert the cosine argument into a sine 

argument. Adding PI12 to the angle is performed by 
adding 0102 to the FPREM quotient bits identifying the 
argument's octant. 

It would be very inaccurate to add PI12 to the cosine 
argument if it was very much different from PII2. 

Depending on which octant the argument falls in, a dif­
ferent relation will be used in the sine apd tangent func­
tions. The program listings show which relations are 
used. 

For the tangent function, the ratio produced by FPTAN 
will be directly evaluated. The sine function will use 
either a sine or cosine relation depending on which oc­
tant the angle fell into. On exit these functions will nor­
mally leave a divide instruction in progress to maintain 
concurrency. 

If the input angles are of a restricted range, such as from 
o to 45 degrees, then considerable optimization is pos­
sible since full angle reduction and octant identification 
is not necessary. 

All three functions begin by looking at the value given 
to them. Not a number' (NAN), infinity, or empty regis­
ters must be specially treated. Unnormals need to be 
converted to normal values before the FPT AN instruc­
tion will work correctly. Denormals will be converted to 
very small unnormals which do work correctly for the 
FPT AN instruction. The sign of the angle is saved to 
control the sign of the result. 

Within the functions, close attention was paid to main­
tain concurrent execution of the 8087 and host. The 
concurrent execution will effectively hide the execution 
time of the decision logic used in the'program. 

3-472 207865-001 



LINE 

1 
2 
3 
4 
5 
6 +1 
7 
8 
9 

111 
11 
12 
13 
14 
15 
16 
17 
18 
19 
211 
21 
22 
23 
24 
25 
26 
27 
28 
29 
311 
31 
32 
33 
34 
35 ~ 

36 
37 
38 
39 
48 
41 
42 
43 
44 
45 
46 
47 
48 
49 
58 
51 
52 
53 
54 
55 
56 
57 
58 
S9 
68 
61 
62 
63 
64 

"6S 
66 
67 
68 
69 
78 
71 
72 

Ap·113 

SOURCE 

$tit1e(8187 Trignometric Functions) 

public 
name 

sine,cosine,tangent 
trig_functions 

$include (:fl:8187.anc) 

Define 8187 word packing in the environment area. 

cw 87 , , , 
sw 87 , , , 
tw 87 , 
low_ip_87 

high_ip_op_87 

low_op_87 

high_op_87 

environment_87 
env87 cw 
env87-sw 
env87-tw 
env87-low ip 
env87nip-op 
env87-low-op 
env87-hop­
environment_87 

record res871:3,infinity control:1,rounding control:2, 
precision control:2,error enable:l,res872:l, 
precision-mask:l,underflow mask:l,overflow mask:l, 
zero_divlde_mask:l,denormaf_mask:l,invalid:mask:l 

record busy:l,cond3:I,top:3,cond2:I,condl:l,condll:l, 
error-pending:l,res873:l,precision error:l, 
underflow error:l,overflow error:l;zero divide error:l, 
denormal_error:l,invalid_error:l - -

record reg7 tag:2,reg6 tag:2,regS tag:2,req4 taq:2, 
reg3:tag:2,reg2:taq:2,reql:tag:2,req8:taq:2 

record low_ip:16 

record hi_ip:4,res874:l,opcode_87:l1 

record low_op:16 

record hi_op:4,resB7S:12 

struc 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
ends 

? 
? 
? 
? 
? 
? 
? 

81187 environemnt layout 

Define 81187 related constants. 
; 
TOP_VALUE_INC 

VALID TAG 
ZERO TAG 
SPECrAL TAG 
EMPTY TAG 
REGISTER MASK 

equ 

equ 
equ 
equ 
equ 
equ 

sw 87 <8,8,l,I,8,8,~,Il,Il,Il,0,1l,0,0> 

o 
1 
2 
3 
7 

I Tag register values 

Define local variable areas. 
; 
stack 

local_area 
sw1 
local_area 

stack 

code 

segment stack 'stack' 

struc 
dw 
ends 

db 
ends 

? 8087 status value 

size local_area+4 Allocate stack space 

segm~nt public 'code' 
assume cs:code,ss:stack 

Define local constants. 
; 
status equ [bpJ.swl 8087 status value location 

even 

dt 3FFEC98FDAA22168C235R PI/4 

3-473 207865-001 



inter 
73 
74 
75 
76 
77 
78 
79 
811 
81 
82 
83 
84 
85 
86 
87 
88 
89 
911 
91 
92 
93 
94 
95 
96 
97 
98 
99 

11111 
1111 
1112 
1113 
1114 
1115 
1116 
1117 
1118 
1119 
110 
III 
112 ' 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
1311 
131 
132 
133 
134 
135 
136 
137 
138 
139 
1411 
141 
142 
143 
144 
145 

AP-113 

indefinite dd II FFCIIl0 II I!JIIR Indefinite special value 

. 

This subroutine calculates the sine or cosine of the angle, given in 
radians. The angle is in ST(II), the returned value will be in ST(II). 
The result is accurate to within 7 units of the least significant three 
bits of the NPX extended real format. The PLM/86 definition is: 

sine: procedure (angle) real external; 
declare angle real; 
end sine; 

cosine: procedure (angle) real external; 
declare angle real; 
end cosine; 

Three stack registers are required. The result of the function is 
defined as follows for the following arguments: 

angle 

valid or unnormal less than 2**62 in magnitude 
zero 
denormal 
valid or unnormal greater than 2**62 
infinity 
NAN 
empty 

result 

correct value 
II or 1 
correct denormal 
indefinite 
indefinite 
NAN 
empty 

This function is based on the NPX fptan instruction. The fptan 
instructioh will only work with an angle of from 0 to PI/4. With this 
instruction, the sine or cosine of angles from 0 to PI/4 can be accurately 
calculated. The technique used by this routine can calculate a general 
sine or cosine by using one of four possib1e'operations: 

Let R = lang1e mod PI/41 
5 = -lor 1, according to the sign of the angle 

1) sin(R) 2) cos(R) 3) sin(PI/4-R) 4) cos(PI/4-R) 

The choice of the relation and the sign of the result follows the 
decision table shown below based on the octant the anqle falls in: 

octant sine cosine 

0 5*1 2 
1 ,5*4 3 
2 5*2 -1*1 
3 5*3 -1*4 
4 -5*1 -1*2 
5 -5*4 -1*3 
6 -5*2 1 
7 -5*3 4 

Angle to sine function is a zero or unnorma1. 

sine zero_unnormal: 

fstp 
jnz 

stIll 
enter_sine_normalize 

Angle is a zero. 

pop 
ret 

bp 

Angle is an unnormal. 
; 
enter_sine_normalize: 

3-474 

Remove PI/4 
Jump if angle is unnormal 

Return the zero as the result 

207865-001 



inter 

.~6 
147 
148 
149 
lSI 
151 
152 
153 
154 
155 
156 
157 
158 
159 
169 
161 
162 
163 
164 
165 
166 
167 
168 
169 
1711 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
21111 
2111 
2112 
293 
204 
2115 
206 
2117 
298 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 

call 
jmp 

normalize value 
short enter_sine 

AP-113 

cosine proc Entry point to cosine 

sine: 

fxam 
push 
sub 
mov 
fstsw 
fld 
mov 
pop 
lahf 
jc 

bp 
sp,size local_area 
bp,sp 
status 
pi quarter 
cl-;"l 
ax 

funnyyarameter 

Look at the value 
Establish stack addressibility 
Allocate stack space for status 

Store status value 
Setup for angle reduce 
Signal cosine function 
Get status value 
ZF = C3, PF = C2, CF = Clil 
Jump if parameter is 
empty, NAN, or infinity 

Angle is unnormal, normal, zero, denormal. 

fxch 
jpe enter sine 

Angle is an unnormal or zero. 

fstp 
jnz 

st (1) 
enter sine normalize 

Angle is a zero. cos(9) = 1.0 

fstp 
pop 
fldl 
ret 

st (II) 
bp 

st(Il) angle, stell = PI/4 
Jump if normal or denormal 

Remove PI/4 

Remove " 
Restore stack 
Return 1 

All work is done as a sine function. By adding PI/2 to the angle 
a cosine is converted to a sine. Of course the angle addition is not 
done to the argument but rather to the program looic control values. 

fxam 
push 
sub 
mov 
fstsw 
fld 
pop 
lahf 
jc 

bp 
sp,size local_area 
bp,sp 
status 
pi_quarter 
ax 

funny _parameter 

Entry point for sine function 

Look at the parameter 
Establish stack addressibility 
Allocate local space 

Look at fxam status 
Get PI/4 value 
Get fxam status 
CF = CIl, PF = C2, ZF = C3 
Jump if empty, NAN, or infinity 

Angle is unnormal, normal, zero, or denormal. 

fxch 
mov 
jpo 

cl,9 
sine_zero_unnormal 

STell = PI/4, st(ll) angle 
Signal sine 
Jump if zero or unnormal 

ST(II) 1S either a normal or denormal value. Both will work. 
Use the fprem instruction to accurately reduce the range of the given 
angle to within III and PI/4 in magnitude. If fprem cannot reduce the 
angle in one shot, the angle is too big to be meaningful, > 2**62 
radians. 'Any roundoff error in the calculation of the angle given 
could completely change the result of this function. It is safest to 
call this very rare case an error. 

enter sine: 

fprem 

mov 
fstsw 

sp,bp 
status 

3-475 

Reduce angle 
Note that fprem will force a 
denormal to a very small unnormal 
Fptan of a very small unnormal 
will be the same very small 
unnormal, which is correct. 
Allocate stack space for status 
rhack if renuction WAS COMplete 

207865-001 



inter 

, 

pop 
test 
jnz 

AP-113 

bx 
bh,high(mask cond2) 
ang1e_too_big 

Quotient in C0,C3,C1 
Get fprem status 

, sin (2*N*PI+x) - sin (x) 

Set sign flags and test 'for which eighth of the revolution the 
angle fell into. 

Assert: -PI/4 < st(l) < PI/4 

~abs 

or 
jz 

cl,cl 
sine_select 

Force the argument positive 
condl bit in bx holds the sign 
Test for sine or cosine function 
Jump if sine function 

This is a cosine function. Ignore the original sign of the angle 
and add a quarter revolution to the octant id from the fprem instruction. 
cos (A) • sin(A+PI/2) and cos(IAI) • cos(A) 

and 
or 

add 
mov 
rcl 
xor 

ah,not high(mask condl) 
bh,high(mask busy) 

bh,high(mask cond3) 
al,1 
al,l 
bh,al 

Turn off sign of argument 
Prepare to add III to C0,C3,C1 
status value in ax 
Set busy bit so carry out from 
C3 will go into the carry flag 
Extract carry flag 
Put carry flag in low bit 
Add carry to CI not chanqing 
Cl flag , 

See if the argument should be reversed, depending on the octant in 
which the argument 'fell during fprem. 

sine_select: 

test 
jz 

bh,high(mask cond1) 
no_sine_reverse 

Angle was in octants 1,3,5,7. 

fsub 
jmp 

Angle was in octants 0,2,4,6. 

Reverse angle if Cl = 1 

I Invert sense of rotation 
o < arg <- PI/4 

Test for a zero argument since f~tan will not work if st(lI) • 0 , 
no_sine":reverse: 

ftst 
mov 
fstsw 
fstp 
pop\ 
test 
jnz 

sp,bp 
status 
st(l) 
cx 
ch,high(mask cond3) 
sine_argument_zero 

Test for zero angle 
Allocate stack space 
cond3 • I if st(0) = 0 
Remove PI/4 
Get ftst status 
If C3-1, argument is zero 

220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
2511J 
251 
252 
253 
254 
255 
256 
257 
258 
259 
2&0 
261 
262 
263 
264 
2&5 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
2811J 
281 
282 
283 
284 
285 
286 
287 
288 
289 
2911J 
291 
292 
293 

. ; 
Assert: 0 < st(0) <- PI/4 

; 
do_sine_fptan: 

fptan 

after_sine_fptan: 

pop 
test 
jpo 

bp ; 
bh,high(mask cond3 + mask condl); 
X numerator 

TAN ST(I) • ST(l)/ST(I) - Y/X 

Restore stack 
Look at octant angle fell into 
Calculate cosine for octants 
1.2,5,6 

Calculate the sine of the argument. 
sin (A) • tan(A)/sqrt(l+tan(A)**2) if tan (A) • Y/X then 
sin (A) = Y/sqrt(X*X + y*y) 

fld 
jmp 

st(l) 
short finish_sine, 

3-476 

Copy Y value 
Put Y value in numerator 

20786~1 



294 
295 
296 
297 
298 
299 
31111 
31ll 
3112 
3113 
3114 
3115 
3116 
3117 
3118 
3119 
3lll 
311 
312 
313 
314 
315 
316 
317 
318 
319 
321l 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
351l 
351 
352 
353 
354 
355 
356 
357 
358 
359 
361l 
361 
362 
363 
364 
365 
366 

AP-113 

The top of the stack is either NAN, infinity, or empty. 
; 
funnyyarameter: 

fstp 
jz 

jpo 

st(ll) Remove PI/4 
return _empty Return empty if no parm 

return NAN Jump if st(Il) is NAN 

st(Il) is infinity. Return an indefinite value. 

fprem ; STIll can be anything 

return NAN: 
return:empty: 

pop 
ret 

bp 

Simulate fptan with st(ll) Il 

sine_argument zero: 

fldl 
jmp after sine_fptan 

Restore stack 
Ok to leave fprem running 

; Simulate tan(ll) 
; Return the zero value 

The angle was too large. Remove the modulus and dividend from the 
stack and return an indefinite result. 

; 
angle_too_big: 

fcompp 
fld indefinite 
pop bp 
fwa i t 
ret 

Calculate the cosine of ' the argument. 
cos (A) 1/sqrt(1+tan(A)**2) if tan (A) 
cos (A) = X/sqrt(X*X + y*y) 

, 
X numerator: 

fld 
fxch 

finish sine: 

fmul 
fxch 
fmul 
fadd 
fsqrt 

st(ll) 
st(2) 

st,st(ll) 

st,st(ll) 

Pop two values from the stack 
Return indefinite 
Restore stack 
Wait for load to finish 

Y/X then 

Copy X value 
Put X in numerator 

Form X*X + y*y 

st (0) X*X + y*y 
st(ll) = sqrt(X*X + y*y) 

Form the sign of the ,result. The two conditions are the Cl flag from 
FXAM in bh an~ the Cil flag from fprem in ah. . • 

and 
and 
or 
jpe 

fchs 

positive_sine: 

fdiv 
ret 

cosine endp 

bh,high(mask condll) 
ah,high(mask condl) 
bh,ah 
positive_sine 

3-477 

Look at the fprem C9 flag 
Look at the fxam Cl flag 
Even number of flags cancel 
Two negatives make a positive 

Force result negative 

Form final result 
Ok to leave fdiv running 

207865-001 



367 
368 
369 
371l 
371 
372 
373 
374 
375 
376 
377 
378 
379 
38(1) 
381 
382 
,383 
384 
385 
386 
387 
388 
389 
39(1) 
391 
392 
393 
394 
395 
396 
397 
398 
399 
400 
401 
402 
403 
404 
405 
406 
407 
408 
409 
410 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425 
426 
4"27 
428 
429 
4311 
431 
432 
433 
434 
435 
436 
437 
438 
439 
4411 

. 

AP-113 

This function will calculate the tangent of an angle. 
The angle, in radians is passed in ST(Il), the tangent is returned 
in ST(Il). The tangent is calculated to an accuracy of 4 units in the 
least three significant bits of an extended real format number. The 
PLM/86 calling format is: 

tangent: procedure (angle) real external; 
declare angle real; 
end tangent; 

Two stack registers are used. The result of the tangent function is 
defined for the following cases: 

angle result 

valid or unnormal < 2**62 in magnitude 
II 
denormal 
valid or unnormal ~ 2**62 in magnitude 
NAN 
infinity 
empty 

The tangent instruction uses the fptan instruction. 
relations are used: 

Let R = langle MOD PI/41 
S = -lor 1 depending on the sign of the angle 

correct value 
II 
correct denormal 
indefini te 
NAN 
indefinite 
empty 

Four possible 

1) tan(R) 2) tan (PI/4-R) 3) l/tan (R) 4) 1/tan(PI/4-R) 

The following table is used to decide which relation to use depen9ing 
on in which octant the angle fell. 

octant 

o 
1 
2 
3 
4 
5 
6 
7 

relation 

5*1 
5*4 

-5*3 
-S*2 

5*1 
5*4 

-S*3 
-S*2 

tangent proc 

fxam 
push 
sub 
mov 
fstsw 
fld 
pop 
lahf 

bp 
sp,size local_area 
bp,sp 
status 
pi _quarter 
ax 

jc funny_parameter 

Look at the parameter 
Establish stack addressibility 
Allocate local variable space 

Get fxam status 
Get PI/4 

CF = CIl, PF C2, ZF C3 

Angle is unnormal. normal, zero. or denormal. 

fxch 
jpe 

; st(ll) = angle. stIll 

Angle is either an normal or denormal •. 
Reduce the angle to the range -PI/4 < result < PI/4. 

PI/4 

If fpre~ cannot perform this operation in one try, the magnitude of th~ 
angle must be > 2**62. 5uch an angle is so large that any rounding 
errors could make a very large difference in the reduced angle. 
It is safest to call this very rare case an error. 

fprem Quotient in CIl,C3.Cl 
Convert denormals into unnormals 

3-478 207865-001 



inter 

; 

mov 
fstsw 

pop 
test 
jnz 

sp,bp 
status 

bx 

AP-113 

bh,high(mask cond2) 
angle_too_big 

See if the angle must be reversed. 

Assert: -PI/4 < st(II) < PI/4 

fabs 

test 
jz 

bh,high(mask condl) 
no tan reverse 

Allocate stack spce 
Quotient identifies octant 
original angle fell into 
tan(PI*N+x) = tan(x) 
Test for complete reduction 
Exit if angle was too big 

~ <= st(II) < PI/4 
Cl in bx has the sign flag 
must be reversed 

Angle fell in octants 1,3,5,7. Reverse it, subtract it from PI/4. 

fsub Reverse angle 
jmp short do_tangent 

Angle is either zero or an unnormal. 

tan zero unnormal: 

no tan -

fstp 
jz 

stIll 
tan_angIe_zero 

Angle is an unnormal. 

call normalize value 
jmp tan normar 

pop 
ret 

bp 

Remove PI/4 

Restore stack 

Angle fell in octants 11,2,4,6. Test for st(~) II, fptan won't work. 

reverse: 

ftst 
mov 
fstsw 
fstp 
pop 
test 
jnz 

sp,bp 
status 
stIll 
cx 
ch,hiqh(mask 
tan _zero 

cond3) 

Test for zero angle 
Allocate stack space 
C3 = 1 if st(II) = II 
Remove PI/4 
Get ftst status 

441 
442 
443 
444 
445 
446 
447 
448 
449 
4511 
451 
452 
453, 
454 
455 
456 
457 
458 
459 
4611 
461 
462 
463 
464 
465 
466 
467 
468 
469 
4711 
471 
472 
473 
474 
475 
476 
477 
478 
479 
4811 
481 
482 
483 
484 
485 
486 
487 
488 
489 
4911 
491 
492 
493 
494 
495 
496 
497 
498 
499 
51111 
5111 
5112 
5113 
5114 
5115 
5116 
5117 
5118 
5119 
5111 
511 
512 
513 

do tangent: -
fptan tan ST(II) ST( 1) /ST (II) 

a fter _tangent: 

Decide on the order of the operands and their sign for the divide 
operation while the fptan instruction is working. 

pop bp Restore stack 
mov al,bh . Get a copy of fprem C3 flag 
and ax,mask condl + hiqh(mask cond3) ; Examine fprem C3 flag and 

; Extract Cl flag 
test bh,high(mask condl + mask cond3); Use reverse divide if in 

octants 1,2,5,6 
jpo reverse_divide Notel parity works on low 

8 bits only! 

Angle was in octants 11,3,4,7. 
Test for the sign of the result. Two negatives cancel. 

or al,ah 
jpe positive_divide 

3-479 207865-001 



514 
515 
516 
517 
518 
519 
520 
521 
522 
523 
524 
525 
526 
527 
528 
529 
530 
531 
532 
533 
534 
535 
536 
537 
538 
539 
540 
541 
542 
543 
544 
545 
546 
547 
548 
549 
55e 
551 
552 
553 
554 
555 
556 
557 
558 
559 
560 
561 

fchs 

positive_divide: 

fdiv 
ret 

fldl 
jmp after_tangent 

Angle was in octants 1,2,5,6. 
Set the correct sign of the result. 

reverse divide: 

or al,ah 
jpe positive_r_divide 

Force result negative 

Form result 
Ok to leave fdiv running 

Force 1/0 tan(PI/2) 

fchs Force result negative 

positive_r_divide: 

fdivr 
ret 

tangent endp 

Form reciprocal of result 
Ok to leave fdiv running 

This funct'on will normalize the value in st(0). 
Then PI/4 is placed into stIll. 

normalize value: 

fabs 
fxtract 
fldl 
fadd stell ,st 
fsub 
fscale 
fstp st (l) 
fld pi _quarter 
fxch 
ret 

code ends 
end 

Force value positive 
o (= st(l!) ( 1 
Get normalize bit 
Normalize fraction 
Restore original value 
Form original normalized 
Remove scale factor 
Get PI/4 

value 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

3-480 207865-001 



intJ 

© INTEL CORPORATION, 1982 

APPLICATION 
NOTE 

3-481 

Ap·143 

March 1982 

Order Number 210383-001 



AP-143 

INTRODUCTION 

As the performance of microcomputers has improved, 
the types of functions performed by these microcom­
puters have grown. One application filled by these 
machines has been to perform typical "adding 
machine" type calculations, balancing ledgers, etc. This 
type of machine has come to be called a "small business 
computer." To bea true business computer, however, 
the types of operations performed by these machines 
need to be expanded beyond simple "balance the 
books" types of operations. There are many algorithms 
that have been impractical for these small business com­
puters because the number of calculations required by 
the algorithms and the performance available from 
these machines did not make them feasible. Such opera­
tions were available only on large mainframe or mini­
computers. With the introduction of the iAPX 86/20, a 
microcomputer can finally perform these types of 
calculations at a cost level appropriate to small business 
co~puters. 

The iAPX 86120 features the Intel 8086 with the 8087 
numerics co-processor. This combination allows for 
high-performance, high-precision numeric calculations. 
Many types of operations require this performance to 
provide accurate results in a reasonable amount of time. 
This increased performance will also be particularly 
welcome in the interactive user environment typically 
found in small business computers. It is very frustrating 
to wait many seconds or even minutes after hitting 
"return" for the computer to 'generate results. ' 

In general, if there are many methods to solving a 
" business computer problem, the method requiring the 

largest number or calculations will provide the best 
results. In many applications, approximate methods 
have been used because the speed of the hardware (or 
the cost of the computer time) did not allow a more ex­
act method to be used. Because of the high performance 
of the iAPX 86120, these numeric intensive methods 

, may now be used in small business computer software. 

The types of calculations demonstrated in this note are: 

• Interest and Annuities. These calculations require 
the use of floating point multiplication, division, 
exponentiation and logarithms. These calculations 
are used to determine the present or future value 
of certain types of funds. 

• Restocking, These iterative calculations require 
extensive use of floating point multiplication and 
division. They are used to determine the optimum 
restocking times for a given item when the set-up 
charges, holding costs and demand for the item 
are known or can be estimated. 

• Linear Programming. These calculations require 
extensive use of floating point multiplication and 
division. One of many applications for linear pro­
gramming is the determination of optimum pro­
duction quantities of diverse products when the 
quantities of their various constituents are both 
overlapping and limited. 

iAPX 86/20 HARDWARE OVERVIEW 

The iAPX 86/20 is a 16-bit microprocessor based on the 
Intel 8086 CPU. The 8086 CPU features eight internal 
general-purpose 16-bit registers, memory segmentation, 
and many other features allowing for efficient code 
generation from high-level language compilers. When 
augmented with the 8087, it becomes a vehicle for high­
speed numerics processing. The 8087 adds eight 80-bit 
internal floating point registers, and a floating point 
arithmetic logic unit (ALU) which can speed floating 
point Qperations up to 100 times over o!her software 
floating point simulators or emulators. 

The 8086 and 8087 execute a single instruction stream. 
The 8087 monitors this stream for numeric instructions. 
When a numeric instruction is decoded, the 8086 
generates any needed memory addresses for the 8087. 
The 8087 then begins instruction execution automat­
ically. No other software interface is required, unlike 
other floating point processors currently available 
where, for example, the main processor must explicitly 
write the floating point numbers and commands into the 
floating point unit. The 8086 then continues to execute 
non-numeric instructions until another 8087 instruction 
is encountered, whereupon it must wait for the 8087 to 
complete'the previous numeric instruction. The over­
lapped 8086 and 8087 processing is known as concur­
rency; Under ideal conditions, it effectively doubles the 
throughput of the processor. However, even when a 
steady stream of numeric instructions is being executed 
(meaning there is no concurrency), the numeric per­
formance of the 8087 ALU is much greater than that of 
the 8086 alone. 

The "hardware interface between the 8086 and the 8087 is 
equally simple. Hardware handshaking is performed 
through two sets of pjps. The RQ/GT pin is used when 
the 8087 needs to transfer operands, status, or control 
information to or from memory. Because the 8087 can 
transfer information to and from memory independent 
of the 8086, it must be able to become the "bus 
master," that is, the processor with read and write con­
trol of all the address, data and status lines. Only one 
unit is permitted to have control of these lines at a time; 
chaos would exist otherwise, like four people talking at 
once with each trying to understand the others. 

3-482 210383-001 



AP-143 

The TEST IBUSY pin is used to manage the concur­
rency mentioned above. Whenever the 8087 is executing 
an instruction, it sets the BUSY pin on high. A single 
8086 instruction (the WAIT instruction) tests the state 
of this pin. If this pin is high, the WAIT instruction will 
cause the 8086 to wait until the pin ~ returned to low. 
Therefore, to insure that the 8086 does not attempt to 
fetch a 'numeric instruction while the 8087 is still work­
ing on a previous numeric instruction, the WAIT in­
struction needs to be executed. The 8086/87/88 
assembler, in addition to a:ll Intel compilers, auto­
matically inserts this WAIT instruction before most 
numeric instructions. Software polling can be used to 
determine the state of the BUSY pin if hardware hand­
shaking is not desired. 

Most other lines (address, status, etc.) are connected 
directly in parallel between the 8086 and the 8087. An 
exception to this is the 8087 interrupt pin which must be 
routed to an external interrupt controller. An example 
iAPX 86120 system is shown in Figure 1. A more com­
plete discussion of both the handshaking protocol be­
tween the 8086 and the 8087 and the internal operation 
of the 8087 can be found in the application note Getting 
Started With the Numeric Data Processor, AP-l13 by 
Bill Rash, or by consulting the numerics section of the 
July 1981 iAPX 86,88 Users Manual. 

r -, 

I INT I INTR 

8259A 

I PIC I - 808618088 
ClK CPU 

L IRn J r- RaJGT1 --

In addition to the 8087 hardware, the 8086 is also sup­
ported by Intel compilers for both Pascal and FOR­
TRAN. Code generated by these compilers can easily be 
combined with code generated from the other compiler, 
from the Intel 8086/87 188 macro assembler or the Intel 
PL/M compiler. In addition, these compilers produce' 
in line code for the 8087 when numeric operations are 
required. By producing in line code rather than calls to 
floating point routines, the software overhead of an un­
necessary procedure call and return is eliminated. The 
combination of both hardware co-processors and soft­
ware support for the iAPX 86120 provides for greater 
performance of both the end product, and its develop­
ment effort. 

ROUTINES IMPLEMENTED 

All routines implemented in this application note were 
written entirely in either Pascal 86 or FORTRAN 86. In 
addition, a FORTRAN program available from IMSL I 
for use in solving linear programs was used. In each 

IIMSL, Inc., Sixth Floor-NBC Building, 7500 Bellaire 
Boulevard, Houston, Texas, 77036. (713) 722-1927. 

jLJ 
\r 

OSO OS1 TEST 

~ 
8086 

FAMilY .A 

t t t BUS K SYSTEM BUS 

!"II' INTERFACE 
OSO OS1 COMPONENTS V BUSY '\j 

8284A L.., RaJGTO 
CLOCK 

;t-GENERATOR II) 

ClK ClK 
8087 

'y-
:::> 

I NDP OJ ... 
<C 

INT 8 .... 

I 
RaJGT1 

-J-I 
I I RQJGT 

-, 
I I I ,1-
L -,ClK 

8089 

~'r--lOP 

I I 
L- - - .-J 

Figure 1. Typical 86/20 System 

3-483 210383-001 



AP-143 

case, the routine was executed using a 5 MHz iAPX 
86/20 on an iSBC86/12 board contained within an Intel 
Intellec™ Series III development sys~em. The programs 
can be executed on any iAPX 86/20 (or iAPX 88/20) 
with sufficient memory, however. In general, the 
memory requirements for the programs were not 
substantial. Source listings for all routines written for 
this note are located in the appendix. 

All routines were run using both the 8087 and the 8087 
software emulator. The 8087 software emulator is a 
software package ~xactIy emulating the internal opera­
tion of the 8087 using 8086 instructions. When' the 
emulator is used, an 8087 is not required. The emulator 
is a software product available from Intel as part of the 
8087 support library. The performance of the 8087 
hardware is much better than that of the software 
emulator, as one would expect from a specialized floating 
point unit. 

In some routines, values are quoted for the various data 
formats supported by the 8087. For real numbers, these 
formats are short real, long real, and temporary real. 
The differences among the three are in the number of 
bits allocated to represent a given floating point 
number. 

In all real numbers, the data is split into three fields: the 
sign bit, the exponent field and the mantissa field. The 
sign bit indicates whether the number is positive or 
negative. The exponent and mantissa together provide 
the value of the number,: the exponent providing the 
power of two of the number, and the mantissa pro­
viding the "normalized" value of the number. A "nor­
malized" number is one which always lies within 'a cer­
tain range~,By dividing a number by a certain power of 
two, most numbers can be made to lie between the 

SHORT REAL S SIGNIFICAND 

Il 

LONG REAL I S I BIASED I EXPONENT 

83 52CIl 

TEMPORARY REAL lsi BIASED 51 EXPONENT 

79 84 83 1 

to!~N BIT (Q • POSInVE L 1 • NEQ~TIVE) 
" • POSITION OF IMPL ARY POINT 

numbers I and 2. The power of two by which the 
number must be divided to fit within this range is the 
exponent of the number, and the result of this division is 
the mantissa. This type of operation will not work on all 
numbers (for e'fample, no matter what one divides zero 
by, the result is a1):Yays zero), so the number system must 
allow for these certain "special cases." 

As the size of the exponent grows, the range of numbers 
representable also grows, that is, larger and smaller 
numbers may be represented. As the size of the mantissa 
grows, the resolution of the points within this range 
grows. This means the distance bet':Veen any two adja­
cent numbers decreases, or, to put it another way, finer 
detail may be represented. Short real numbers provide 
eight exponent bits and 23 significand or mantissa bits. 
Long real numbers provide II exponent bits and 52 
significand bits. Temporary real numbers provide IS ex­
ponent bits and 63 significand bits. These data formats 
are shown in Figure 2. Thus, of the three data formats 
implemented, short real provides the least amount of \ 
precision, while temporary real provides the greatest 
amount of precision. These levels of precision represent 
only the external mode of storage for the numbers; in­
side the 8087 all numbers are represented in temporary 
real precision. Numbers are automatically converted 
into the temporary real precision when they are loaded 
into the 8087. In addition to real format numbers, the 
8087 automatically converts to and from external 
variables stored as 16, 32 or 64-bit integers, or 80-bit 
binary coded decimal (BCD) numbers. 

Memory requirements also increase as precision in­
creases. Whereas a short real number requires only four 
bytes of storage (32 bits), a long real number requires 
eight bytes (64 bits) and a temporary real number 10 

SIGNIFICAND 

o 

SIGNIFICAND 

I = INTEGER BIT OF NO; STORED IN TEMPORARY REAL, 
IMPLICIT IN SH NQ REAL 

EXPONENT BIAS (NOR VALUES): 
SHORT REAL: 127 
LONG REAL: 1023 FF 
TEMPORARY REAL: 18383 (3FFFHI 

Figure 2. Data Formats 

,3-484 210383-001 



AP-143 

bytes (80 bits)! In many floating point processors, pro­
cessing time also increases dramatically as precision is 
increased, making this another consideration in the 
choice of precision to be used by a routine. The'dif­
ferences in 8087 processing time among short real, long 
real and temporary real numbers is relatively insignifi­
cant, however. This makes the choice of which precision 
to use in an iAPX 86120 system a function only of 
memory limitations and preci~ion requirements. 

Interest 

Routines were written to calculate the final value of a 
fund when given the annual interest and the present 
value. Although the calculations required to generate in­
dividual interest values are rather short, the additional 
precision of the iAPX~86120 can be used to generate 
better results. In addition, if a large number of interest 
calculations are to be performed (or if an interest rate 
type of calculation is used as part of an iterative model), 
the speed of the single interest rate calculation is impor­
tant, as it will be performed very many times. 

It is assumed that the interest will be compounded daily, 
which requires the calculation of the yearly effective 
rate. This value, which is the equivalent annual interest 
rate when interest is compounded daily, is determined 
by the following formula: 

yer = (1 + (,_--,-__ »np - 1 
np 

Where: 

• yer is the yearly effective rate 

• i is the annual interest rate 

• np is the number of compounding periods per 
annum 

Once the yer is determined, the final value of the fund 
can be determined by: 

Jv = (1 + yer) * pv 

Where: 

• pv is the present value 

• fv is the future value 

Results were obtained using short real, long real, and 
temporary real precision numbers when 

• ir is set to 10070 (0.1) 

• np is set to 365 (for daily compounding) 

• pv is set to $2,000,000 

The results are shown in Table 1. 

Table 1. Interest Rate Calculation Results 

yer Final value 

Short real 10.514070 $2,210,287.50 
Long real 10.516070 $2,210,311.57 
Temp real 10.516070 $2,210,311.57 

The times required to calculate these results using FOR­
TRAN 86 with both the 8087 and the 8087 emulator are 
shown in Table 2. 

Table 2. Interest Rate Calculation Times 

8087 Emulator 

Short real 1.052 ms 100.4 ms 
Long real 1.058 ms 100.7 ms 
Temp real 1.041 ms 100.8 ms 

The difference in the final value between the short real 
and long real precision in this simple calculation is 
$24.07. Although the difference between short and long 
real precision results shown here is small, this difference 
would be signficant if the principal was larger, or if the 
period over which the interest was calculated was longer 
than a single year. Hence, the long real precision 
capability of the'8087 can provide most accurate results. 
Indeed, since the error calculated between the long real 
precision and temporary real precision results is in the 
thousandths of cents, the long real results are exactly 
correct, to the penny. Note that temporary real format 
allows for approximately 18 decimal digits of precision 
and the full precision of the numbers used in the calcula­
tion is not printed in the above table. 

Annuities 

Values for a frequently used type of annuity were 
calculated, using routines written in both FORTRAN 
and Pascal. An annuity is a type of fund which gathers 
interest at the same time the principal is changing. A 
mortgage is a type of annuity in which the principal is 
decreasing, whereas "the sinking fund" implemented 
here is a type of annuity in which the principal is 
increasing. In both cases, the interest is added to the 
principal. 

THE SINKING FUND 

The "sinking fund" could be characterized by an in­
dividual retirement account (IRA). In this fund, a fixed 
amount is placed in a savings fund each period. This 
fund also earns a certain amount of interest per period. 
The problem, then, is to calculate the final value of the 

3-485 210383-001 



AP·143 

fund (after a certain number of periods). The example 
given calculates the value after 20 years of a fund in 
which payments of $1000 are made each month. The 
annual interest rate is given at 121110 (0.12), but the in­
terest is compounded daily. 

The first step in solving the problem is to determine the 
interest rate per month. This is done in a similar manner 
to the way the effective annual rate is calculated; 
however, the number of compounding periods is set to 
the number of days in a month, rather than the number 
of days in a year. Once this is done, the final value of 

. the annuity is determined by: 

«1 + irp)np - 1) Iv = pmt*--,--''-:----­
irp 

Where: 

• fv is the final value 

• pmt is the amount placed in the fund each period 

• irp is the interest rate per period 

• np is the number of periods 

The short, long and temporary real precision results are 
shown in Table 3. 

Table 3. Annuity Calculation Results 

Tot Contrib Final value Rate/period 

Short $240,000 $997,103.25 1.0051110 
Loog $240,000 $997;048.51 1.0051110 
Temp $240,000 $997,046.51 1.005070 

The times required to calculate these results using FOR­
TRAN 86 with both the 8087 and the 8087 emulator are 
shown in Table 4. Notice that although the most signifi­
cant four digits of the interest rates per period shown 
are the same, the final value using short real precision 
calculations is inaccurate by $56.74. compared to the 
final value using long or temporary real calculations. 

Table 4. Annuity Calculation Times 

8087 Emulator 

Short real 2.121 ms 222 ms 
Long real 2.139 ms 229 ms 
Temp real 2.106 ms 232 ms 

Restocking Algorithms 

A restocking algorithm determines when a company 
should replenish its stock of raw goods which make up 
its products. A restocking algorithm can be used to 
determine the restocking pattern if: 

• the demand fQr the given product can be predicted 

• carrying costs from month to month are known 
and fixed 

• no shortages are allowed 

• lead times are known and fixed 

There are three methods commonly used to determine 
the restocking pattern: 

1) the Fixed Economic Order Quantity (EOQ) 

2) the Silver-Meal heuristic 

3) the Wagner-Whitin method 

Of the three, the Wagner-Whitin method is guaranteed 
to provide the optional restocking pattern, while the 
Silver-Meal heuristic may provide a good approxima­
tion to this pattern. The fixed Economic Order Quantity 
will not provide good results when the demand pattern 
is highly variable. Both the Wagner-Whitin method and 
the Silver-Meal heuristic are iterative methods in which 
many options are evaluated before the final restocking 
pattern is determined. 

THE FIXED ECONOMIC ORDER QUANTITY 

The simple Economic Order Quantity method may be 
used to select the number of items to be restocked at a 
time if the demand is constant. This number is deter­
mined by: 

EQU=V 2AD 
vr 

Where: 

• A is the set-up cost 

• D is the average demand for the period 

• v is the variable demand cost per item 

• r is the holding cost per item 

As this method does not provide for period to period 
variability in demand, if this demand is variable, the 
performance of the method will obviously suffer. Its 
only advantage is simplicity. 

THE SILVER·MEAL HEURISTIC 

The Silver-Meal heuristic will provide an approxim~tion 
to the optimal restocking pattern determined by the 
Wagner-Whitin method. It has been used rather than 
the Wagner-Whitin in application where better results 
were required than those supplied by the EOQ method, 
but where the available computing resources did not 
allow the use of the Wagner-Whitin method. This 

3·486 210383-001 



AP-143 

method begins with the first month to be considered, 
then calculates the total replenishment and holding costs 
for this month, and a certain number of following 
months. As the number of months increases, the set-up 
charge per unit will decrease as it is distributed over 
more units. Also, however, as the number of units in­
creases, the holding costs will increase. At a certain 
point, the holding costs will begin to increase at a 
greater rate than the set-up cost per unit falls. At this 

. point, a "local minimum" of the replenishment cost 
function will have been realized. The heuristic stops 
here, and begins the process again with the following 
month until all the months of the period have been con­
sidered. This method may not provide the optimal solu­
tion, since it provides only a local minimum, rather than 
a global minimum. The cost function is not guaranteed 
to continue to rise once it has begun to rise. This means 
that the restocking cost may actually fall to a lower level 
after an initial rise. This method requires much fewer 
cost calculations than the Wagner-Whitin method, 
however. 

THE WA,pNER·WHITIN METHOD 

The Wagner-Whitin method is the most computationally 
intensive method to be discussed. It also is guaranteed 
to produce the optimal results. It is an application of 
"dynamic programming." It starts with the last month 
of the period, determining in inverse order the optimal 
replenishment pattern for the given month if the inven­
tory is assumed zero at the start of the month. It does 
this by calculating the replenishment cost for the given 
month and a number of subsequent months along with 
the holding costs for the stock replenished in the given 
'month but carried over. The replenishment cost is the 
sum of the set-up charges and the per unit cost times the 
number of units acquired. The holding cost is the 
number of units held but not consumed in a given 
month. The total stocking costs for this option can then 
be determined by adding the replenishment cost, the 
holding cost and the optimal restocking cost for the 
month following the last one restocked in this iteration 
(since we have started from the last month of the period, 
the optimal restocking cost has already been determined 
for all months following the month being considered). 
The optimal restocking cost for the last month of the 
period is the restocking cost for that month alone. For 
example, if we are trying to determine the optimal 
restocking pattern from January through December of a 
year, the determination of the optimal restocking pat­
tern for June might begin like this,: 

1) Determining restocking cost (startup cost, per part 
cost, etc.) for June alone. 

2) Determine the holding costs (if June alone is being 
restocked, the holding cost will be zero). 

3-487 

3) Determine the total cost of this option. This will be 
the restocking cost determined in (1) added to the, 
holding costs determined in (i) added to the op­
timal restocking cost from zero initial inventory 
determined previously (using this algorithm) for 
July. 

4) Loop back to (1). However this time, restock for 
June and July, calculate the holding cost for the 
July stock, and use the optimal restocking cost 
from zero initial inventory for August. 

This will continue until starting with June, requirements 
for the balance of the year are being restocked. As the 
algorithm continues, the cost of each new restocking 
period (that month and the number of months following 
it being restocked) for a particular month is compared 
with a previously determined minimum cost. If it is less, 
a new minimum cost has been determined, and this 
restocking pattern will replace the old one as the optimal 
restocking pattern for the month. As should be ap­
parent, a "horizon" in which the stock will be known to 
go to zero must be determined in order for this 
algorithm to be used. While this may at first seem 
unrealistic, one can see that in any month where the de­
mand for the product is relatively high, the stock will be 
allowed to go to zero, as the holding cost to that month 
will surpass the benefit in the restocking cost if the re­
quirements were restocked in the previous month. 

OVERALL PERFORMANCE CONSIDERATIONS 

Generally, the better an algorithm is in determining an 
objective function, the greater the computer perform­
ance required to execute the algorithm. This is true here, 
with the most numeric intensive solution guaranteed to 
realize the optimal solution to the problem, whereas the 
simpler solutions will only provide approximations to 
this solution. A more complete explanation of these 
three methods can be found in Peterson and Silver2. 

EXAMPLE RESTOCKING PROBLEM. 

Routines were written in Pascal to show possible im­
plementations of the Wagner-Whitin and Silver-Meal 
heuristic. The EOQ method's results were solved by 
hand and programmable calculator. The following 
example ~as used to demonstrate the results of these 
methods in solving a general stock management 
problem: 

A company manufactures video games in 
which a ROM programmed microcomputer 

2peterson, Rein, and Edward A. Silver, Decision Systems For 
Inventory Management And Production Planning, John 
Wiley & Sons, New York, 1979, pp 308-321. 

210383-001 



Ap·143 

is used. The manufacturer ,from which the, 
company buys this microcomputer has an in­
itial ROM set-up charge of $3000, with the 
cost per part varying from $20 in quantities 
of less than 500, $17.50 in quantities from 
500 to 5000, and $15 in larger quantities. The 
holding cost is determined to be $0.40 per 
part. The company barely missed the 
Christmas rush with its introduction, but has 
determined that the monthly demand for the 
next two years will be: 

Month Demand Month Demand 

January 500 July 3500 
February 1500 August 2500 
March 2500 September 5000 
April 2000 October 7500 
May 2000 November 9500 
June 1000 December 10000 

How should the company restock the 
microcomputers? 

The first problem that mus,t be solved (when using the 
Wagner-Whitin method) is the horizon to which the 
stock will be replenished. The criterion to be used is that 
the final month should be a month in which the demand 
in the subsequent month' is relatively high. Choosing 
December as the final month would not produce the 
best results, as the requirements for January are low. 
Looking at the demand function, it can be seen that the 
requirements for September are relatively high, so 
August would be a good choice as the horizon month. It 
is assumed that the demand for the second year will be 
similar to the demand predicted for the first year. This 

,allows extending the period of calculation beyond the 
first year up to the chosen horizon month. Given the 
total demand function, the part cost, the holoing cost, 
and the startup cost, the problem may be plugged into 
the Wagner-Whitin, Silver-Meal and Economic Order 
Quantity methods, and the results calculated. 

Using the EOQ with this demand function yields: 

• Dis 3150 

• A is 3000 

• v is $15.00 

• r is 0.0229 

3-488 

This leads to an EOQ of 7418. 

The results obtained from the Wagner-Whitin method, 
the Silver-Meal heuristic and the EOQ are shown in 
Table 5. The performance difference between the 
methods is apparent. Although using the Silver-Meal 
heuristic would save the business $12,949 over using the 
EOQ method, using the Wagner-Whitin method would 
save the business almost $25,000 over using the EOQ 
(surely below the cost of a small business computer!). 
The effect on the performance of the Silver-Meal' 
heuristic of choosing a local minimum rather than a 
global minimum can be seen especially in the first few 
months in which it replenishes stock 5 times vs. 3 times 
for the Wagner-Whitin method. It should also be noted 
that the execution time of the Silver-Meal heuristic using 
the emulator is still greater than the execution time of 
the Wagner-Whitin method when the 8087 is used (and 
the execution time of the EOQ on the hand calculator 
was much greater than the execution time of either of 
the two iAPX 86120 programs!). These results are also 
interesting when one realizes that until now the 
Economic Order Quantity method has been the most 
commonly used method of scheduling stocking intervals. 

Linear Programming 

Linear programming methods are very powerful ways 
of finding the optimal solution to operations problems. 
For example, if a number of different products can be 
made from a combination of limited' resources as ex­
pressed by a set of equations, a linear program can be 
set up to determine the optimal number of each end 
product to make in order that a certain objective func­
tion is maximized. This objective function can be prac· 
tically anything if it is a linear function-for example, 
insuring that profit is maximized, that the use of a cer­
tain facility is maximized, t.hat shipping costs are 
minimized, etc. Various software packages are available 
on the market to solve linear programs. The package 
which was used in this example consisted of a set of 
FORTRAN subroutines available from IMSL3• To use 
the routines a FORTRAN program is written to set up 
the appropriate input arrays and call the routine. They 
could very easily be integrated into a friendly interactive 
user environment, where the increased performance of 
the 8087 would be especially apparent and welcomed. 

3IMSL, Inc. 

210383-001 



AP·143 

Table 5. Restocking Algorithm Results 

Wagner·Whltln Method SlIver·Meal Heuristic Economic Order Quantity 

Month Number Optimal Number 
to Restock Cost to Restock 

I 6500 $985,200 500 
2 • 1500 
3 • 7500 
4 • • 
5 6500 $879,700 • 
6 · • 
7 • 6000 
8 7500 $776,000 · 9 • 5000 

10 7500 $658,500 7500 
II 9500 $543,000 9500 
12 12000 $397,500 19500 
13 · • 
14 · • 
15 7500 $213,100 · 16 · • 
17 • • 
18 • · 19 6000 $94,000 6000 
20 • • 

Total Hold Costs: $16,200 
Replenishment Costs: $24,000 
Times Replenished: 8 
Total Cost: $985,200 

Time to calculate above values: 
Using 8087: 310 ms 
Using emulator: 22.98 seconds 

THE SIMPLEX METHOD 

The simplex method is an algorithm which may be used 
to solve linear programs. The problem is specified to the 
routine as an objective function (of a certain number of 
"products") and a set of constraints on the constituents 
of these products. The objective function specifies 
exactly how the products are combined to derive the 
objective function. The constraints specify how each of 
the constituents are combined to make up each of the 
products, and also specify the limits imposed on these 
various constituents. 

The set of constraints is usually set up as a two­
dimensional matrix, while the objective function is set 
up as a vector. The combination of the objective func­
tion and the set of constraining equations is known as 
the input tableau. The constraining equations may have 
both inequality relations (we must use less than 1000 
eggs) and equality relations (we must use exactly 1000 
eggs). The method itself requires all inequality relations 
to be converted to equality relations. This is done 
through the addition of "slack" and "surplus" 

3-489 

Optimal Number Optimal 
Cost to Restock Cost 

$996,600 7418 $1,009,549 
$984,850 • 
$995,600 • 

• 
7418 $888,810 

$836,500 • 
7418 $769,137 

$742,500 • 
$664,500 7418 $651,464 
$549,000 14836 $536,525 
$403,500 7418 $308,182 · • 

7418 $189,600 
• 
• 
• 

$94,000 3656 $67,980 
• 

$19,600 $31,409 
$27,000 $24,000 

9 8 
$996,600 $1,009,549 

20ms 
I. 91 seconds 

variables, so called beacuse they fill up the slack or take 
up the surplus in an inequality relationship. Through 
many iterations, the method automatically reduces the 
inequality constraints in the original problem to equality 
constraints through the addition of these slack and 
surplus variables. "Artificial" variables are then added 
to the equation to form an initial set of basic variables 
or bases. This basis forms a feasible solution to the 
problem, although this solution is non-optimal. The 
object, however, is to find the optimal solution to the 
problem (the solution that optimizes the objective func­
tion). This initial form is called the canonical form. It 
transforms the original set of constraint equations and 
the objective function by the addition of artificial, slack 
and surplus variables. 

After the problem has been set into canonical form, 
phase I of the problem is ready to begin. In this phase, 
"pivoting" is performed on the constraint variable 
matrix until all the coefficients on the modified objec­
tive function are less than zero. This pivoting operation 
is v~ry similar to gaussian elimination. A certain 
variable in a certain row and column of the matrix is 

210383-001 



'. 

AP-143, 

divided by itself to become 1. Subsequently, every other 
variable in that row must be divided by this variable. All 
other v.ariables in the column containing this variable 
are then eliminated by multiplying the variable set to 
one by the negative of the variable to be eliminated and 
then adding the result of this multiplication to the 
number being eliminated, In order for the matrix to re­
main valid, this operation must be performed on all 
other columns of the matrix as well, which leads to !l 
large number of multiplies and divides. 

Once phase I is complete, phase II must be initiated. 
This phase is required if any of the artificial variables re­
main in the solution as a basis. Through another round 
of pivoting, the remaining artificial variables are re­
moved from the solution. What finally comes out is the 
optimal mix of the input variables so the objective func­
tion is maximized. A more complete description of both 
.the simplex method and the revised simplex method can 
be found in Bradley, Hax, and Magnanti4 • 

ROUTINE IMPLEMENTED 

The linear program used in this example is the IMSL' 
routine "ZX3LP." This routine is the so-called "easy­
to-use" linear program solver. It solves the linear pro­
gram' using the revised simplex method. On output, it 
provides not only the solution to the problem, but also 
what is called the dual solution. The dual solution gives 
information about how the solution could be enhanced. 
The objective function is input to the routine as a'vec­
tor, while the constraining equations are input to the 
routine as a matrix. Both inequality and equality con­
straining equations may be used; the routine will 
automatically insert slack and surplus variables. The 
outputs of the routine are two vectors containing the 
"pri,mal" solution a.nd the dual solution. The routine 
also calculates the optimal value of the objective func­
tion. The version of the routine used was originally 
developed for t~e IBM 370/3033 mainframe computer. 
It required no modifications to run on the iAPX 86120 
using FORTRAN 86. 

EXAMPLE PROBLEM 

The following problem was input to the linear program 
routine: 

A small cookie company has four different 
products: chocolate chip cookies without 
walnuts, chocolate chip cookies with 

4Stephen P. 'Bradley, Hax, Arnoldo C., and Magnanti, 
Thomas L, Applied Mathematical ~rogramming, Addison­
Wesley, Reading, Massachusetts, 1977. 

'IMSL, Inc. 
( 

walnuts, brownies without walnuts, and 
brownies with walnuts. The recipes for the 
four are: 

Chocolate Chip Cookies Brownies 
4 eggs 2 eggs , 

¥3 cup shortening 
I cup sugar 
1 cup brown sugar 
I tsp. vanilla 
2 \4 cup flour 
I tsp. baking soda 

I tsp. salt 
12 oz. chocolate chips \ 

(1 Yz cup walnuts) 
0.15 hour oven time 
0.25 hr mix time (w/o nuts) 
0.45 hr mix time (w/nuts) 

¥3 cup shortening 
2 cups sugar 

I tsp: vanilla 
I \4 cup flour 

I tsp. baking powder 
I tsp. salt 

4 oz baking chocolate 
('13 cup walnuts) 
0.5 hour oven time 
0.25 hr mix time (w/o nuts) 
0.45,hr mix time (w/nuts) 

The available amounts of many of the ingre­
dients have been set previously by contract 
and may not be altered. They are: 

3-490 

Item Quantity 

eggs 1000 
sugar 600 cups 

brown sugar 20 cups 
baking chocolate 700 oz. 

flour 600 subs 
baking soda 150 tsp. 

baking powder 150 tsp. 
chocolate chips 1500 oz. 

walnuts 125 cups 
oven time 560 hours 

mixing time 750 hours 

The amount of profit made for each type 
cookie is: 

Cookie Type Profit per Batch 

chocolate chip wlo $0.85 
chocolate chip with $0.95 

brownies wlo $1.10 
brownies with $1.25 

It is assumed that the cookie company can 
sell everything that it makes. How many of 
each kind of cookie should the company. 
make in order that the profit is maximized? 

The problem was set up into the input tableau. The 
objective function is: 

y= .8S*X. + .95*X2 + 1.1*X3 + 1.25*X4 

210383-001 



AP·143 

Table 6. Example Problem Input Tableau 

2X, + 2X2 + 4X, + 4X4 = 1000 (eggs) 
X, + X2 + 2X, + 2 X4 = 600 (sll8ar) 
X, + X2 = 200 (b. sll8ar) 

4X, + 4X4 = 700 (b. choc) 
2.2S X, + 2.2S X2 + 1.2S X, + 1.2S X4 = 600 (flour) 

X, + X2 = ISO (b. soda) 
X, + X4 = ISO (b. powder) 

12X, + 12 X2 = ISOO (c. chips) 
.S X2 + .6S X4 = 115 (walnuts) 

.ISX, + .IS X2 + .S X, + .S X4 = S60 (oven lime) 

.2S X, + .4S X2 + .2S X, + .4S X4 = 7SO (mix lime) 

Where the variable XI is the number of batches of 
chocolate chip cookies without nuts, X2 is the number 
of batches of chocolate chip cookies with nuts, X3 is the 
number of batches of brownies without nuts, and X4 is 
the number of batches of brownies with nuts. The input 
tableau is shown in Table 6. These were put into the 
proper input matricies of the ZX3LP program, and the 
following results were generated: 

profit 
batches of choc chips wlo 
batches of choc chips with 
batches of brownies wi 0 

batches of brownies with 

$299.25 
70 
55 
o 

150 

In addition, the dual solution shows that the single in­
gredient most limiting the profit of the cookie company 
is the availability of baking powder, and that for every 
additional unit (teaspoon) of baking powder available, 
the profit of the company will increase 1.12 cents. 

The calculation times are: 

with 8087 
with emulator 
with PDPll/45 
with IBM 30336 

1.01 seconds 
46.78 seconds 
0.7 seconds 
0.07 seconds 

6Non-Intel computers used were a PDP III 4S mini-computer 
with 2S6K MOS RAM, and a FPII-B floating point unit run­
ning the UNIX operating system during a period of light load. 
The program was compiled using the UNIX F77 FORTRAN 
compiler, and an IBM 370/3033 mainframe computer run­
ning the VM/CMS operating system during a period of 
medium load (the program, however, did not get swapped 
out of memory during execution). The IBM FORTRAN G 
compiler was used. 

3-491 

The results show that the performance of the iAPX 
86/20 is close to the performance ofthe mini-computer. 
In addition, the performance is only a little more than 
an order of magnitude below the performance of the 
IBM mainframe, a "maxi" computer with an execution 
rate of 5 MIPS, and a CPU/hour cost of around $8001 
A comparison of results between the iAPX 86/20 and 
the emulator verifies the speed of the 8087 is required to 
provide results in a reasonable period of time. The 
power and ease of use of this type of sophisticated 
numerical method combined with an "electronic 
worksheet" type of program could be a major advance 
in the "state of the art" of small business machine soft­
ware. 

CONCLUSIONS 

The types of routines demonstrated in this note show 
that there are many classes of numeric intensive soft­
ware which are (or should be) commonly used in every­
day business operations. With the introduction of the 
iAPX 86120, these types of applications are finally 
within the performance limits of microcomputers selling 
for a fraction of the cost of the previously required 
mini- or maxi-computers. In addition, the availability 
of both Pascal and FORTRAN compilers for the iAPX 
86/20 eases the problem of software generation and 
availability for the processor. Because of the portable 
nature of these high-level languages, a minimum of ef­
fort is required to generate or to port software to the 
iAPX 86120 from 'existing systems. With this kind of 
numeric intensive software support, the 8087 will be an 
essential part of the next generation of small business 
computers. 

210383-001 



AP-143 

APPENDIX A Contents 

Interest rate calculation routine 
in FORTRAN ....................... . 

Annuity calculation' routine 
in Passal ......... : .................. . 

Annuity calculation routine 
in FORTRAN ......................... . 

Silver-Meal heuristic calculation 
routine in Pascal ................... . 

Wagner-Whitin method calculation 
routine in Pascal ................... . 

Linear programming routine 
in FORTRAN ....................... . 

3-492 210383-001 



FORTRAN-86 COMPILER 
:F6:INTST.FOR 

SERIES-III FORTRAN-86 COMPILER X023 
COMPILER INVOKED BY: FORT86.86 :F6:INTST.FOR 

1 
2 
3 
4 
5 

c 
c this program provides the yearly effective rate(double and 
c single precision) and final value when the interest rate 
c (ir), the number of compounding periods (np), 
c the present value (pv) are specified. 
c 

c 

real pv,ir,fv,yer 
real*8 fvd,yerd 
tempreal fvt,yert 
integer*2 np,csv 
integer*4 count,rtimer 

c $2,000,000., at an interest rate of 10% with daily compounding for 1 year 
c 

6 
7 
8 

9 
10 
11 

12 
13 

14 
15 

16 
17 

18 
19 

20 
21 

22 
23 
24 
25 
26 

c 

pv=2000000. 
ir=.l 
np=365 

c set rounding control to single precision 
c 

c 

c 

call stcw87(csv) 
csv=csv .and. #fcffh 
call ldcw87(csv) 

yer=(l+(ir/np»**np - 1 
fv=(l + yer)*pv 

c set rounding control to double precision 
c 

c 

c 

csv=csv .or. #200h 
call ldcw87(csv) 

yerd=(l+(ir/np»**np - 1 
fvd=(l + yerd)*pv 

c set rounding control to temp real precision 
c 

c 

c 

csv=csv .or. #lOOh 
call ldcw87(csv) 

yert=(l+(ir/np»**np - 1 
fvt=(l + yert)*pv 

c print results 
c 

print *,'single prec~s~on: yer=',yer,'fv=',fv 
print *.'double prec~s~on: yer='.yerd.'fv='.fvd 
print *.'temp real precision: yer='.yert.'fv='.fvt 
stop 
end 

3-493 210383-001 



SERIES-III Pascal-86, VI-I 

Source File: :F1:MiNPl.PAS 
Object File: :F1:ANNPl.OBJ 
Co.ntrols Specified: CODE. 

AP-143 

SOURCE TEXT: :Fl:ANNP1.PAS 
(* ANNUITIES: type 1, the sinking fund 
* if one were to place $1000 a month into a savings fund which 
.* earns 12% per annum, compounded daily, what will be the value 
* of the fund after 20 years??? 
*) 

module annuity; 
public eel; 

function mqery2x(y,x: real):real; 
program annuity(input,output); 

var 

(* tak.es y to the x *) 

ir, (* the annual interest rate *) 
fv, (* the final value *) 
pmt, (* the amount of the payment *) 
irp: (* the interest rate per period *) 

real; 
np: (*.the number of periods *) 

integer; 

begin 
(* insert calculation values *) 

ir := 0.12; 
pm't : = 1000; 

np := 12 * 20; (* 20 years of months *) 

(* calculate the effective interest rate per period *) 
irp r= mqery2x((1+(ir/365.0».365.0/12.0)-I; 

(* effective monthly rate *) 
(* calculate the future value *) 

fv := pmt * (mqery2x((1+irp),np)-1)/irp; 

(* ptint results *) 
writeln('the effective monthly rate is',irp:18) 
write1n('the future value of the annuity is',fv 
writeln('the total contribution to the annuity 

12: 2); 
s',np*pmt:12:2); 

end. 

3-494 210383-001 



AP·143 

FORTRAN-86 COMPILER 
: Fl : ANNUl. FOR 

SERIES-III FORTRAN-86 COMPILER X~23 
COMPILER INVOKED BY: FORT86.86 :Fl:ANNUl.FOR 

1 
L 
3 

.4 
~ 

6 
7 

8 

9 
l~ 
11 

12 

13 

14 
15 
16 
17 
18 
19 

2~ 

21 

22 

23 

24 

c 
c ANNUITIES: type 1, the sinking fund 
~ if you place in a savings fund $l~~~.~~ a month, and it 
c earns an interest rate of 12% per annum compounded daily~ 
c what will be the value of the fund after 20 years? 
c 

c 

real ir,pv,fv,pmt,irp 
real*8 tvd,irpd 
tempreal fvt,irpt 
integer*2 cwv 
integer np 

ir = .12 
pmt = 1~~0. 

c the number of periods is the number of months in 2~ years! (one period 
c is one month 
c 

np = 2~*12 
c 
c set t,he 8~B7 to single precision mode 
c 

c 

call stcw87 (cwv) 
cwv=cwv .and. #fcffh 
call Idcw87 (cwv) 

c tirst calculate the effective interest rate per period 
c 

irp = (l+(ir/365.))**(365.!"l2.) - 1 
c 
c then calculate the future value 
c 

c 

8~~ 
8~1 
c 

fv = pmt * «1 +irp)**np - l)/irp 

print *,'single precision values:' 
prlnt *,'the effective rate per month is',irp 
write (6,8~~) fv 
write(6,8~1)np*pmt 
format('the future value of the annuity is' ,f18.2) 
format('the total contribution to the annuity is' ,f18.2) 

c set the 8~87 to double precision mode 
c 

c 

cwv=cwv .or. #2~0h 

call Idcw87(cwv) 

c first calculate the effective interest rate per period 
c 

irpd = (l+(ir/365.)) ** (365d0/12d~) - 1 
c 
c then calculate the future value 
c 

fvd = pmt * «1 +irpd)**np - l)/irpd 
c 

print -,'double precision values:' 

3-495 210383-001 



AP·143 

FORTRAN-86 COMPILER 
: Fl :ANNUL FOR 

25 
26 
27 

28 
29 

30 

31 

32 
33 
34 
35 
36 
37 

c 

print *,'the effective rate per month is',irpd 
write (6,8111'1) fvd 
write(6,801)np*pmt 

c set the 8087 to temp real precision mode 
c 

c 

cwv=cwv .or. #100h 
call Idcw87(cwv) 

c first calculate the effective interest rate per period 
c 

irpt = (1+(ir/365.))**(365t0/12t0) - 1 
c 
c then calculate the future value 
c 

c 
fvt = pmt * «1 +irpt)**np - l)/irpt 

print *,'temp real precision values:' 
print *,'the effective rate per m~nth is',irpt 
write(6,800)fvt 
write(6,801)np*pmt 
stop 
end 

3-496 . 21038~1 



SERIES-III Pascal-a6, Vl.l 

Source File: :F6:SMCT.PAS 
Object File: :F6:SMCT.OBJ 
Controls Specified: <none>. 

SOURCE TEXT: :F6:SMCT.PAS 

AP·143 

(* This is going to try to find the optimal replacement cost 
* for a rather variable demand product over 20 months, when 
* the demand is known, an example could be a video game, using 
* a single chip ROM programmed microcomputer with an initial set 
* up charge of $3000.00, demand varies a lot with peak in october 
* and november(for Christmas), droops in may(vacations), etc. 
* The cost per part varies from $20.00 per part up to 500, 
* $17.50 per part from 500 to 5000, and $15.00 above 5,000. 
* The Sliver-Meal heuristic is going to be used. 
*) 

module silver meal; 
public timers; 

function rtimer:integer; 
procedure stimer; 

program silver meal(input,output); 
const -

var 

months = 20; 
monthspl = 21; 
setupcost = 3000.0; 
holdcost = 0.4; 
real large = 1.0e10; 
rea1l"argei = 32000; 

,rep1: (* first time stock goes to 0 for a given month *) 
array[l •• months] of integer; 

tomake, (* the number of boxes to make in a month *) 
require: (* number of boxes required in a given month *) 

array[1 •• monthsp1] of real; 
, trcut, 
ho1dcostv: (* holding costs *) 

array[l •• months] of real; 
cost, (* calculated cost in a given situation *) 
cost1, (* production cost *) 
cost2, (* holding cost *) 
tota1cost, (* the total cost of it all *) 
1astcost, (* used in determining the total cost *) 
tota1ho1dcost: (* the total hold cost *) 

real; 
i, j,k: (* 

integer; 
totcnt, 
ho1dcnt: 

real; 
count: 

integer; 

begin 
require[l] := 
require[2] := 
require[3] := 
require[4] := 

/ 

counters *) 

(* accumulated number of boxes in a batch *) 
(* number of boxed holding *) 

(* the 10 ms count *) 

500; 
1500; 
2500; 
2000; 

3-497 210~3-001 



AP·143 

SOURCE. TEXT: :F6:SMCT.PAS 
require[5] := 2000; 
require[6] := 1000; 
require[7] := 3500; 
require[8] := 2500; 
require[9] := 5000; 
require[lO] := 7500; 
require[ll] := 9500; 
require[12] := 10000; 
require[13] := 500; 
require[14] := 1500; 
require[15] := 2500; 
require[16] := 2000; 
require[17] := 2000; 
require[18] := 1000; 
requiref19] := 3500; 
require[20] := 2500; (* stop here, because the next m~nth is much 

higher can assume will restock then *) 
require[monthspl] := reallargei; 

stimer; (* start the timer *) 

i := 1; 
while i <= months do begin 

trcut[i] := reallarge; 
totcnt := 0; 

(* i is the month working on *) 

j := i; 
while j <= monthspl do begin 

totcnt := totcnt + require[j]; 

end; 
end; 

if totcnt < 500 then costl := 20.0 * totcnt 
else if totcnt < 5000 then costl := 17.5 * totcnt 
else costl := 15.0 * totcnt; 
cost2' := 0.0; 
holdcnt := totcnt; 
for k := i to j - 1 do begin 

holdcnt := holdcnt - require[k]; 
cost2 := cost2 + holdcnt * holdcost; 

end; 
cost := (setupcost + cost2 + costl)/(j - i + 1); 
if cost < trcut[i] then begin 

end 

trcut[i] := cost; 
tomake[i] := totcnt; 
holdcostv[i] := cost2; 

else begin 
repl Ci] : = j; 
i := j; 
j := monthspl; 

end; 
j := j + 1; 

count := rtimer: 
j := 1; 

3-498 210383·001 



AP·143 

SERIES-III Pascal-86, Vl.l 

SOURCE TEXT: :F6:SMCT.PAS 
writeln('month restock# optimal cost per period'); 
totalcost := 0; 
for i := 1 to months do begin 

if i = j then begin 
write( i: 5, ' , ,tomake[i] :6, ' , ,trcut[i]: 10: 2) : 

end. 

end~ 

writeln(' * restocking now'); 
j : = repl [ j ] ; 
lastcost := trcut[i]; 
totalcost := totalcost + lastcost; 

end 
else begin 

end; 

totalcost := total cost + lastcost; 
writeln(i:5); 

i := I; 
j := 0; 
totalholdcost := 0.0; 
while i <= months do begin 

totalholdcost := totalholdcost + holdcostv[i]; 
j:=j+l; 
i := repl[i]; 

end; 
writeln('the total hold cost is' ,totalholdcost:12:2); 
writeln('stock gets replenished' ,j:4,' times'); 
writeln('replenishment cost is' ,j*setupcost:12:2); 
writeln('the total cost thingy is' ,totalcost); 
writeln('the 10 ms count is ',count); 

Summary Information: 

PROCEDURE 
SILVER MEAL 

OFFSET CODE SIZE DATA SIZE STACK SIZE 
0108H 05F7H 1527D 01ACH 428D OOOEH 14D 

Total 06FFH 1791D 01ACH 428D 0042H 66D 

135 Lines Read. 
o Errors Detected. 

41% Utilization of Memory. 

3-499 210383-001 



SERIES-III Pascal-86, Vl.l 

Source file: :F6:WAGCT.PAS 
Object File: :F6:WAGCT.OBJ 
Controls Specified: <none>. 

AP·143 

SOURCE TEXT: :F6:WAGCT.PAS 
(* This is going to try to find the optimal replacement cost 
* for a rather'variable demand product over 20 months, when 
* the demand is known, an example could be a video game, using 
* a single chip ROM programmed microcomputer with an initial set 
* up charge of $3000.00, demand varies a lot with peak in october 
* and november(for Christmas), droops in may(vacations), etc. 
* The cost per part varies from $20.00 per part up to 500, 

" * $17.50 per part from 500 to 5000, and $15.00 above 5,000. 
*) 

module wag withl 
public timersl 

function rtimer:integerl 
procedure stimerl 

program wag with(input,output)1 
const -

months = 201 

(* mask set up charge *) 
monthspl = 211 
setupcost = 3000.001 
holdcost = 0.41 
reallarge 1.Oe91 

(* cost 'per part of maintaining inventory *) 

var 
require, (* number of chips requir~d in a given month *) 
tomake: (* the number of chips to make in a month *) 

array[l .• months] of reall 
repl: (* first time stock goes to 0 for a given month *) 

array[l .. months] of integer 1 
optwz: (* optimum cost for a given month with zero stock 

to start with *) 
array[l .. monthspl] of reall 

holdcostv: (* holding costs *) 
array[l .. months] of reall 

cost, (* calculated cost in a given situation *) 
costl, (* production cost *) 
cost2, (* holding cost *) 
totalcost, (* the total cost of it all *) 
totalholdcost: (* the total hold cost *) 

real: 
i(I j ,k: 

integer: 
totcnt, 
holdcnt: 

reall 
count: 

integer 1 

(* counters *) 

(* accumulated number'of chips in a batch *) 
(* number of boxed holding *) 

(* 10 ms count *) 

begin 
optwz[monthspl] := 01 
requ~re[l] := 5001 
require[2] := 15001 
require[3] := 25001 
require[4] := 20001 

3-500 210383·001 



AP-143 

SERIES-III Pascal-86, Vl.l 

SOURCE TEXT: :F6:WAGCT.PAS 
require[5] := 2000: 
require[6] := 1000: 
require[7] := 3500: 
require[8] := 2500: 
require[9] := 5000: 
require[lO] := 7500: 
require[ll] := 9500: 
require[12] := 10000: 
require[13] := 500: 
require[14] := 1500: 
require[15] := 2500: 
require[16] := 2000: 
require[17] := 2000: 
require[18] := 1000: 
require[19] := 3500: 
require[20] := 2500: (* stop here, because the next month is much 

higher can assume will restock then *) 

stimer~ 

for i := months downto 1 do begin (* i is the month working on *) 
optwz[i] := reallarge: 
totcnt := 0: 
for j := i to months do begin (* is the option working on *) 

totcnt := totcnt + require[j]: 
costl := setupcost+optwz[j+l]: 
if totcnt <= 500 then costl := cost 1 + 20.0*totcnt 
else if totcnt <= 5000 then costl := cost1 + 17.5*totcnt 
else cost1 := cost1 + 15.0*totcnt: 

end: 

cost2 := 0.0: 
ho1dcnt := totcnt: 
for k := i to j - 1 do begin 

end: 

holdcnt := ho1dcnt - require[k]: 
cost2 := cost2 + ho1dcnt * holdcost: 

cost := cost1 + cost2: 
if cost < optwz[i] then begin 

optwz[i] := cost: 

end: 
end: 

repl[i] := j + 1: 
tomake[i] := totcnt: 
ho1dcostv[i] := cost2: 

count := rtimer: 

j := 1: 
writeln('month restock# optimal cost'): 
for i := 1 to months do begin 

write(i: 5, ' , ,tomake[i]:6, ' , ,optwz[i] :10: 2): 
if i = j then begin 

writeln(' * restocking now'): 
j : = repl[ j] : 

end 
else write1n: 

end: 

3-501 210383-001 



AP·143 

SERIES-III Pascal-86, Vl.l 

SOURCE TEXT: :F6:WAGCT.PAS 
i := l; 

end. 

j := 0; 
totalholdcost := 0.0; 
while i <= months do begin 

totalholdcost := totalholdcost + holdcostv[i]; 
j := j + 1; 
i := repl[i]; 

end; 
writeln('the total hold cost is',totalholdcost:l2:2); 
writeln('stock gets replenished',j:4,' times'); 
writeln('replenishment cost is' ,j*setupcost:l2:2); 
writeln('the 10 ms count is ',count); 

Summary Information: 

PROCEDURE 
WAG WITH 

OFFSET CODE SIZE DATA SIZE STACK SIZE 
00E5H 0576H l398D OlASH 424D OOOEH l4D 

Total 065BH 1627D 01A8H 424D 0042H 66D 

119 Lines Read. 
o Errors Detected. 

41% Utilization of Memory. 

3-502 210383·001 



AP·143 

FORTRAN-86 COMPILER 
:Fl:COOKIE.FOR 

SERIES-III FORTRAN-B6 COMPILER X023 
COMPILER INVOKED BY: FORT86.86 :Fl:COOKIE.FOR 

1 
2 
3 

4 

5 
6 

7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
IB 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

c 
c this routine will solve a linear problem using the IMSL fortran 
c library. the IMSL routine used is "zx3lp" which solves the problem 
c using the revised simplex method. 
c 

c 
c 
c 
c 
c 
c 

BOO 
100 

200 

* 
* 
* 

integer ia,n,ml,m2,iw(37),ier 
real*8 a(13,4),b(13),c(4),rw(206),psol(11),dsol(13),s 
integer*4 rtimer,count 

data a/2.,1.,1.,0.,2.25,1.,0.,12.,0., .15,.25,0.,0., 
2 . , 1 . , 1 . , ° . ,2. 25, 1 • , ° . , 12 . , .5, . 15, .45, ° . , 0. , 
4.,2.,0.,4.,~.25,0.,1.,0.,0.,.5,.25,0.,0., 

4. ,2. ,0. ,4. ,1.25,0. ,1. ,0., .65, .5, .45,0. ,0./ 

data b/lOOO. ,600. ,200.,700. ,600. ,150. ,150. ,1500. ,125. ,560.,750. ,0. ,0./ 
data c/.85,.95,1.10,1.25/ 

n is the number of variables 
ml is the number of inequality constraints 
m2 is the number of equality constraints 
ia is the declared number of columns of a 

ml = 11 
m2 = 0 
n = 4 
ia = 13 

print *, 'the input tableau:' 
do 100 i=1,ia-2 
write(6,BOO)a(i,1) ,a(i,2) ,a(i,3) ,a(i,4) ,b(i) 
format(4flO.4,' <= ',flO.4) 
continue 

call stimer 
call zx3lp(a,ia,b,c,n,ml,m2,s,psol,dsol,rw,iw,ier) 
count = rtimer() 

print *,'ier = f,ier 
print *, 'the final value of the objective function(profit!) is:' ,s 
print *,'batches of chocolate chip w/o walnuts: ',psol(l) 
print *,'batches of chocolate chip with walnuts:' ,psol(2) 
print *,'batches of brownies without walnuts:' ,psol(3) 
print *, 'batches of brownies with walnuts: ',psol(4) 
print *, 'the dual solutions follow:' 
do 200 i=1,ia-2 
print *,1 var ' ,i, I = ',dsol(i) 
continue 
print *,'the calculation time here (in seconds .•. ) is: ',count/lOO. 
stop 
end 

3-503 



@ INTEL CORPORATION, 1982 

APPLICATION 
NOTE 

3-504 

Ap·144 
~I 

October 1983 

Order Number 210384-001 



AP-144 

INTRODUCTION 

As the performance of microcomputers has improved, 
these machines have been used in many applications. 
With the introduction of 16-bit microprocessors (along 
with the associated CPU enhancements, especially the 
integer multiply instruction) the operations required to 
manipulate graphic representations of three­
dimensional objects were made easier. Only integer 
values could be used to define figures, however, because 
only integer multiplies were supported in hardware. 
While software floating point routines existed, the speed 
at which a general purpose microprocessor could ex­
ecute even the simplest floating point operation preclud­
ed the use of these routines because of the number of 
floating point operations which must be performed to 
manipulate all but the simplest of objects. 

The lack of high performance floating point math or the 
restriction of using only integer representations severely 
limits the types and sizes of objects that can be defined. 
Imagine limiting everything in the universe to be less 
than 32,000 millimeters long, high, or wide! This limita­
tion could severely impact any system that is used to 
model real world objects. An example of such an ap­
plication is a Computer Aided Design (CAD) system. If 
real or floating point numbers are used, however, prac­
tically any object can be defined (after all, there are only 
9,397,728,000,000,000,000 millimeters in a light year(!), 
well within the range of floating point numbers). Witb 
the introduction of the iAPX 86120, the performance 
required to execute the requisite operations on floating 
point representations of three-dimensional figures has 
finally been achieved in a microprocessor solution, at a 
microprocessor price. 

The iAPX 86/20 features the Intel 8086 with the 8087 
numerics co-processor. This combination allows for 
high performance, high precision numeric operations. 
This performance is especially important in the graphics 
routines implemented in this note because of the large 
number of floating point operations performed for each 
line drawn. In addition, the precision is required to 
maintain the image quality of the represented figures. 

This application note shows the fundamental com­
ponents of a three-dimensional graphics package. As 
stated before, if the objects are to be described in real 
size, floating point values must be used. Since the opera­
tions performed require many multiplies and divides, a 
high performance floating point arithmetic unit is a 
must. Note that the operations to be performed by this 
software are not those of a "bit map" controller: single 
chip devices performing this specialized task are or will 
soon be available. Because they are special-purpose 
devices, they can also execute this task quickly, 
offloading the task from the general purpose 

3-505 

microprocessor allowing the processor to perform other 
work in parallel. In addition, since the size of the 
memory used in a bit-mapped controller is constrained 
(one could hardly have unlimited memory for the 
refresh map), only integer math is required. This 
graphics package is a much higher level type of routine, 
where the inputs are three-dimensional line drawing 
commands (which could be fed into a bit map con­
troller). 

The three-dimensional graphics package implemented 
in this note allows for the entry of three-dimensional 
figures, the manipulation of these figures, the setting of 
the viewer's location, the size of the picture to be seen, 
and the position of the picture on the graphics output 
device. Along the way, it performs perspective transfor­
mations, window clipping and projection. All figures 
are defined using floating point numbers. Thus, any 
figure may be defined "real size" without pre-scaling. 
This means that the size of the figure defined within the 
package may be the actual size of the object, i.e. the size 
of the object is not arbitrarily limited by the machine, 
whether the object be a sub-nuclear particle, or a 
cellestial body. 

iAPX 86/20 HARDWARE OVERVIEW 

The iAPX 86120 is a 16-bit microprocessor based on the 
Intel 8086 CPU. The 8086 CPU features eight internal 
general purpose 16-bit registers, memory segmentation, 
and many other features allowing for compact, efficient 
code generation from high-level language compilers. 
When augmented with the 8087, it becomes a vehicle for 
high-speed numerics processing. The 8087 adds eight 
80-bit internal floating point registers, and a floating 
point arithmetic logic unit (ALU) which can speed 
floating point operations by up to'100 times over other 
software floating point simulators or emulators. 

The 8086 and 8087 execute a single instruction stream. 
The 8087 monitors this stream for numeric instructions. 
When a numeric instruction is decoded, the 8086 
generates any needed memory addresses for the 8087. 
The 8087 then begins instruction execution automatical­
ly. No other software interface is required, unlike other 
floating point processors currently available where, for 
example, the main processor must explicitly write the 
floating point numbers and commands into the floating 
point unit. The 8086 then continues to execute non­
numeric instructions until another 8087 instruction is 
encountered, whereupon it must wait for the 8087 to 
complete the previous numeric instruction. The parallel 
8086 and 8087 processing is known as concurrency. 
Under ideal conditions, it effectively doubles the 
throughput of the processor. However, even when a 
steady stream of numeric insructions is being executed 
(meaning there is no concurrency), the numeric perfor-

AFN-02185A 



Ap·144 

mance of the 8087 ALU is much greater than that of the. 
8086 alone. 

The hardware interface between the 8086 and the 8087 is 
equally simple. Hardware handshaking is performed 
through two sets of pins. The RQ/GT pin is used when 
the 8087 needs to transfer operands, status, or control 
information to or from memory. Because the 8087 can 
access memory independently of the 8086, it must be 
able to become the "bus master," that is, the processor 
with read and write control of all the address, data and 
status lines. 

The TEST I BUSY pin is used to manage the concurren­
cy mentioned above. Whenever the 8087 is executing an 
instruction, it sets the BUSY pin high. A single 8086 in­
struction (the WAIT instru~tion) tests the state of this 
pin. If this pin is high, the WAIT instruction will cause 
the 8086 to wait until the pin is returned low. Therefore, 
to Insure that the 8086 does not attempt to fetch a 
numeric instruction while the 8087 is still working on a 
previous numeric instruction, the WAIT instruction 
needs to precede most numeric instructions (the only 
class of instructions which do not need to be prece<,led 
by a WAIT instruction are those which access the con­
trol registers of the 8087). The 8086/87/88 assembler, 
in addition to all INTEL compilers, automatically in­
serts this WAIT instruction before most numeric in­
structions. Software polling can be used to determine 
the state of the BUSY pin if the hardware handshaking 

r -, 

I INT I INTR 

8259A 

I PIC I - 8086/8088 
ClK • CPU 

ROIGT1 

is not desired. 

Most other lines (address, status, etc.) are conn~ed 
directly in parallel between the 8086 and the 8087. An 
exception to this is the 8087 interrupt pin. This signal 
must be routed to an external interrupt controller. An 
example iAPX 86120 system is shown in Figure 1. A 
more complete discussion of both the handshaking pro­
tocol between the 8086 and the 8087 and the internal 
operation of the .8087 can be found in the application 
note Getting Started With the Numeric Data Processor, 
Ap Note #113 by Bill Rash, or by consulting the 
numerics section of the July 1981 iAPX 86, 88 Users 
Manual. 

In addition to the 8087 hardware, the 8086 is also sup­
ported by Intel compilers for both Pascal and FOR­
TRAN. Code generated by these compilers can easily be 
combined with code generated from the other compiler, 
from t!J.e Intel 8086/87/88 macro assembler, or the In­
tel PLiM compiler. In addition, these compilers pro­
duce in-line code for the 8087 when numeric operations 
are required. By producing in-line code rather than calls 
to floating point routines, the software overhead of an 
unnecessary procedure call and return is eliminated. 

The combination of both hardware co-processors and 
software support for the iAPX 86/20 provid.es for 
greater performance of the end product, and a quicker, 
easier development effort. . 

.;U 
\r-

L ~n_J r-
QSO QS1 TeST 

~ 
8086 

A " FAMilY 

t t t BUS SYSTEM BUS 

IV' INTERFACE \ QSO QS1 BUSY COMPONENTS V 
8284A '-- ROIGTO I CLOCK 

k= OENERATOR .. 
ClK ClK 

8087 :::I 

T NOP 01 ... 
~ 

INT 9 
I 

ROIOT1 

-1-
I 

I 
I r RQ/GT I 

I I . I . 
,1_ 

L 
- ~ClK 

8089 

~'r--lOP 

I . I 
I.- - - . ...l 

Figure 1. Example 86/20 System 

3-506 210384-001 



AP-144 

THREE·DIMENSIONAL GRAPHICS 
FUNDAMENTALS 

The charter in life of a three-dimensional graphics 
package is to take a three-dimensional rendering of an 
object and to transform it such that it can be accurately 
represented on the two-dimensional surface of a 
graphics output device. To fulfill these requirements, 
the graphics package 'must: 

• AUow for the entry of three-dimensional data. 
Since all figures inside the package are represented 
as a series of points in three-dimensional space, 
there must be a way of entering these figures into 
the computer. 

• Perform the current transformation. This 
transformation rotates, translates and scales the 
three-dimensional object throughout three­
dimensional space. Example rotates, translates 
and scales are shown in Figures 2-11. In all 
diagrams, the first coordinate indicated is X, the 
second Y, the third Z. The viewpoint is the loca­
tion of the viewer in three-dimensional space in 
relationship to an arbitrarily chosen but consistent 
origin. 

Translations are movements of the object in three­
dimensional space. Example translations are 
shown in Figures 3-5. Figure 3 shows a translation 
of two units in the pius Z direction. Since the view­
point is ten units up along the Z axis, this moves 
the cube one-fifth the distance toward the viewer, 
or in other words, the cube seems to get larger. 
Figure 4 shows the same cube translated two units 
in the plus X direction. Since the cube is four units 
on a side, this moves the cube such that the viewer 
is looking straight down one side of the cube. The 
viewer is also looking straight down a side in 
Figure 5. 

Rotations are movements of the object in three­
dimensional space about the three-coordinate 
axis: X, Y, and Z. The rotation of the object must 
specify both the magnitude of the rotation, and 
the axis about which the rotation must take place. 
Example rotates are shown in Figures 6-8. Figure 
6 shows the cube rotated 45 degrees about the Z 
axis. Since the viewpoint is straight up the Z axis, 
the cube is seen to keep its same face towards the 
viewer. Figure 7 shows the cube rotated 45 degrees 
about the X axis. Here, the cube no longer shows 
the same face it has previously. The face previous­
ly turned directly toward the viewer has been 
rotated such that the edge between this face and 
another face is immediately before the viewer. The 
same is also shown in the rotation about the Y axis 
in Figure 8. 

3-507 

Scaling is the mUltiplication of all coordinates of 
the points defining a figure by a constant number 
such that the object becomes larger or smaller. Ex­
ample scales are shown in Figures 9-11. This scal­
ing need not be uniformly performed for all 
dimensions of an object. If, for example, the Z 
coordinates of a cube are all scaled to be twice as 
large as they originally were, the image shown in 
Figure 9 would be produced. Notice here that the 
X and Y coordinates have not been altered; only 
the Z coordinates are twice as large as they 
originally were, or alternatively, the front and 
back of the cube are closer and farther away from 
the viewer than in the original, unaltered cube. 
Figure 10 shows this same operation being per­
formed on the X coordinates, while Figure 11 
shows this operation being performed on Y co­
ordinates. 

Figure 2. 2 x 2 x 2 Cube Centered at (0,0,0) 
Viewed from (0,0,10) 

Figure 3. Same Cube and Viewpoint, + 2 Z 
Translation 

210384-001 



AP-144 

Figure 4. Same Cube, Viewpoint, + 2 X Trenslate Figure 5. Same Cube, Viewpoint, + 2 Y Translate 

B 
Figure 8. Same Cube, Viewpoint, 45 Degree Figure 7. Same Cube, Viewpoint, 45 Degree 

Rotation About Z Rotation About X . 

3-508 210384-001 



AP·144 

Figure 8. Same Cube, Viewpoint, 45 degree Figure 9. Same Cube, Viewpont 2 x Scale of Z 
Rotation About Y 

r\ / 

" ./ 

....- ....... 

1I " 
Figure 10. Same Cube, Viewpoint, 2 x Scale of X Figure 11. Same Cube, Viewpoint, 2 x Scale of Y 

3.509 210384-001 



Ap·144 

'\ / 

V '" 
Figure 12. 2 x 2 x 2 Cube Centered at (0,0,0) Viewed from (0,0,10) Then from (10,10,0) 

• Perform the viewing transformation. This 
transformation moves and rotates the three 
dimensional figure according to the viewer's loca­
tion and orientation (the direction the viewer is 
facing) in space. An example of changing the view 
location is shown in Figure 12. Again, this loca­
tion, or viewpoint, is the viewer's location with 
relation to an arbitrarily chosen origin. 

• Perform Z-clipping on the three-dimensional 
data. This insures that only data in front of the 
viewer are displayed. In addition, it allows that 
objects beyond a certain distance from the viewer 
will not be displayed. 

• Project the three-dimensional data onto a two 
dimensional surface. The objects must be pro­
jected onto a two-dimensional surface according 
to the laws of perspective. By changing the 
"vanishing point," interesting effects are also 
possible. An example of this is shown in Figure 13. 
Here, the first figure shows exaggerated perspec­
tive (that is, the difference in perceived size be­
tween the front face and the back face of the cube 
is exaggerated), where the second figure shows the 
object with subdued perspective (the difference in 
the perceived sizes of the front and back faces is 
much less than in the first figure). Exaggerated 
perspective is generated for objects close to the 
viewer, while subdued perspective is generated for 
objects distant from the viewer. Note that the 
same figure, with the same dimensions, is shown 
in both figures; only the perspective values have 
been changed. 

• Perform X-Y clipping on the projected data. This 
cuts off lines in the projected data extending 
beyond the specified "window." 

• Perform the window to viewport transformation. 
This takes the two-dimensional projected values 
and scales them according to the relative sizes of 

. the "window" and th~ "viewport." . 

The "window" describes the size of the viewer's portal 
into the data, whereas the "viewport" describes the size 
and position of this portal on the graphics output 
device. Whereas the window's size is determined by the 
size of the input data, the viewport size is determined by 
the physical characteristics of the graphics display 
device. For example, the viewport coordinates of a cer­
tain CRT display may be constrained to be between O' 
and 1023 in both the X and Y dimensions, whereas the 
window limits are determined only by the maximum size 
of numbers the computer can store. Thus, for maximum 
generality and utility, floating point numbers must be 
used to represent the three-dimensional figures. 

A good reference to the techniques used in this three­
dimensional graphics implementation can be found in 
Newman and Sproull i • 

3-510 

i Newman, William M. and Robert F. Sproull, Principles of 
Interactive Computer Graphics, McGraw-Hill Book Com­
pany, New York, 1979. 

210384-001 



Ap-144 

Figure 13. Example Cube Shown with Exaggerated Perspective, then with Subdued Perspective 

IMPLEMENTATION 

Three·dimensional graphics systems can be split into 
three functional modules: the input hardware, the pro· 
cessing hardware, and the output hardware. The 
graphics software is executed by the processing hard· 
ware and is used to receive figure definitions from the 
input hardware, store them in one form or another, and 
maniplJlate them such that they can be displayed on the 
output' hardware. 

Input hardware can range from the common typewriter 
keyboard to sophisticated three· dimensional input 
devices. Output hardware can range from a plotter to a 
storage tube terminal to a bit-mapped raster scan 
display or a vector drawing CRT. 

The processing hardware can range from general pur­
pose minicomputers to very fast, specialized graphics 
processing hardware. General purpose computers are 
used because they allow applications programs to be 
written in higher level languages. Specialized hardware 
is sometimes employed when very fast manipulations 
are required, such as in t~e real time graphics applica­
tions found in flight simulators. This specialized hard­
ware can be used to perform whole matrix transforma­
tions. Many applications do not require figures to be 
drawn real time (on the order of one complete picture 
every 1130 sec), however, and can be satisfied by the 
performancetof the general purpose computer alone. A 
typical application which is satisfied by these latter re-

3-511 

quirements is a Computer Aided Design (CAD) system. 
However, since these graphics systems often exist in an) 
interactive environment, picture processing delays 
greater than a few seconds for simple figures, or greater 
than a few minutes for very complex figures cannot be 
tolerated. Because of these processing requirements, a 
mini-computer with a hardware floating point unit has 
been required to drive these graphics systems. However, 
with the introduction of the 8087, the floating point 
processing performance required by these systems can 
finally be met in a microcomputer solution. 

The microcomputer system used in this three­
dimensional graphics application is a general purpose 
microcomputer embodied in the iAPX 86/12 board 
found in an Intel Intellec4l' Series III development 
system. All routines 'implemented in this application 
note were written entirely in FORTRAN using the Intel 
FORTRAN 86 compiler. Any iAPX 86/20 (or iAPX 
88120) with enough memory can be used to execute the 
programs, however. The amount of memory required 
depends on the number and complexity of the figures to 
be displayed., The source code for all routines used in 
this note are given in the appendix. 

210384-001 



AP-144 

337 
muilimodule 

86112 board 

Figure 14. Computer System Used in This Graphics Implementation 

The graphics output device used was a HP 7225A flat 
bed plotter. Communications were performed using the 
RS232 serial link on the 86/12 board. The communica­
tions speed of the line to the plotter was 600 baud. 
Because of the number of lines drawn in the more com­

. plex figures, the physical characteristics of the plotter, 
and the communications line speed,' the amount of time 
required to draw a large picture was a function of the 
plotter speed, not the execution speed of the iAPX 
86/20. As a result, all times quoted in this note do not 
reflect the plotting time. Only the time up to placing the 
ASCII character into the buffer of a serial communica­
tions chip is included for all machines quoted. Higher 
speed graphics display devices (which are not limited by 
the physical characteristics of plotters) can use the speed 
of the iAPX 86120 to full advantage. 

The graphics input device used was the standard 
alphanumeric keyboard attached to the development 
system. This allows entry of figures, as well as control 
of the graphics system. Input can also be fetched from 
disk storage, however, to allow for greater speed in 
defining large figures. A block diagram of the hardware 
system used in this implementation is shown in Figure 
14. 

All routines were run using both the 8087 and the 8087 
software emu)ator. The 8087 software emulator is a 
software package exactly emulating the internal opera­
tion of the 8087 using 8086 instructions. When the 
emulator is used, an 8087 is not required. The emulator 
is a software product available from Intel as part of the 
8087 support library. The performance of the 8087 
hardware is much better than that of the software 
emulator, as one would expect from a specialized hard­
ware floating point unit. 

The 8087 supports various data formats. For real 
numbers, these formats are short real (or single preci­
sion), long real (or double precision), and temporary 
real (or extended precision). The differences among the 

three are in the number of bits allocated to represent a 
given floating point number. 

In all real numbers, the data is split into three fields: the 
sign bit, the exponent field and the mantissa field. The 
sign bit shows whether the number is positive or 
negative. The exponent and mantissa together provide 
the value of the number: the exponent providing the 
power of two of the number, and the mantissa pro­
viding the "normalized" value of the number. 

A "no;f1llalized" number is one that always lies within a 
certain range. By dividing a number by a certain power 
of two, most numbers can be made to lie between the 
numbers 1 and 2. The power of two by which the 
number must be divided to fit within this range is the ex­
ponent of the number, and the result Of this division is 
the mantissa. This type of operation will not work on all 
numbers (for example, no matter what one divides zero 
by, the result is always zero), so the nUlJlber system must 
allow for these certain "special cases." ' 

As the size of the exponent grows, the range of numbers 
representable also grows, that is, larger and . smaller 
numbers may be represented. As the size of the mantissa 
grows, the resolution of the points within this range 
grows. This means the distance between any two adja­
cent numbers decreases,.or, to put it another way, finer 
detail may be represented. Short real numbers provide 8 
exponent bits and 23 significand or mantissa bits. Long 
real numbers provide 11 exponent bits and 52 signifi­
cand bits. Temporary real numbers provide 15 exponent 
bits and 64 significand bits. These data formats are 
shown in Figure 15. Thus, of the three 'data formats im­
plemented, short real provides the least amount of 
precision, while temporary real provides the. greatest 
amount of precision. These levels of precision represent 
only the external mode of storage for the numbers; in­
side the 8087 all numbers are represented to temporary 
real precision. Numbers are automatically converted in­
to the temporary real precision when they are loaded in-

3-512 
210384-001 



AP-144 

SIGNIFICAND 

" 
LONG REAL I S I BIASED I SIGNIFICAND EXPONENT 

83 52\: 
" 

TEMPORARY REAL 
lSi 

BI,ASED fil SIGNIFICAND EXPONENT 

79 84 83 1 

NOTES: 

~ = =:m.~;I=:~Ji'~:R:~~J~ 
I _ INTEGER BIT OF SlONIF1CAND; STORED IN TEMPORARY REAL, 

IMPLICIT IN SHORT AND LONG REAL 
EXPONENT BIAS (NORMALIZED VALUES) 

SHORT REAL" 127 (7FH) 
LONG REAL 1023 (3FFH) 
TEMPORARY REAL: 16383 (3FFFH) 

Figure 15. Floating Point Data Fonnats 

to the 8087. In addition to real format numbers, the 
8087 automatically converts to and from external 
variables stored as 16, 32 or 64-bit integers, or 80-bit 
binary coded decimal (BCD) numbers. 

Memory requirements also increase as precision in­
creases. Whereas a short real number requires only four 
bytes of storage (32 bits), a long real number requires 
eight bytes (64 bits) and a temporary real number ten 
bytes (80 bits). In many floating point processors, pro­
cessing time also increases dramatically as precision is 
increased, making this another consideration in the 
choice of precision to be used by a routine. The dif­
ferences in 8087 processing time among_short real, long 
real and temporary real numbers are insignificant com­
pared to the processing time, however, since all opera­
tions are performed to the internal 80-bit precision. This 
makes the choice of which precision to use in an iAPX 
86/20 system a function only of memory limitations 
and precision requirements. 

Double precision numbers were chosen for this graphics 
implementation because they allow a very wide range of 
numbers to be represented with high precision. This is 
important, since the package allows the user to magnify 
small parts of defined figures. Without the precision 
gained by using double precision numbers, the image of 
the object could easily be distorted under such scrutiny. 

3-513 

Three-Dimensional Figure Description 
and User Interface 

The graphics user interface implemented in this note is 
both functional and simple. It does not require the use 
of specialized three-dimensional input hardware. All in­
put data is keyed in through the keyboard. 

The package allows for definition of figures for future 
use within the' graphics package. This feature could be 
useful in generating multiple views of a certain object. It 
requires that the object be "defined" at the beginning 
of the session, but then allows the user to view the ob­
ject from any location, with any rotation, scale, or 
translation. 

Commands to the graphics package consist of a set of 
alphanumeric commands followed by the necessary 
numeric constants. To enter commands to the graphics 
package, one enters an alphanumeric command en­
closed within the single quotes followed by the ap­
propriate numeric arguments. The maximum number of 
arguments required by any command is six. If less than 
six arguments are entered -on a line, the line must be ter­
minated by the 'I' character, however. These re­
quirements (having the command enclosed within single 
quotes, explicitly terminating the line) are a result of us­
ing the list-directed input format of FORTRAN. 

AFN-02185A 



AP-144 

The commands recognized by the graphics processor 
are: 

comment argl. This command instructs the 
graphics processor to ignore the next argl lines. 
This can be used to insert comments within the 
graphics commands. 

define argl. This command instructs the graphics 
processor that the next N lines (up to the enddef 
command) are to be entered into an internal buf­
fer for future reference as figure argl. The 
graphics commands are not interpreted, i.e. they 
do not cause figures to be drawn as they are 
)entered. In this way, three-dimensional objects 
may be defined, or to put it another way, placed 
into an internal display list. Up to ten objects may 
be defined using the current version of the pro­
gram. This may be increased to the limits of 
available memory. Currently there is in:ternal 
storage space for up to SOO total graphics com­
mands. These may be spread in any combination 
among the ten figures. This number may also be 
modified to reflect memory restrictions. 

enddef. This command terminates a figure defini­
tion, and returns control back to the main 
graphics processor. 

call argl. This command causes the graphics pro­
cessor to fetch graphics commands from the inter­
nal buffer of the previously defined figure number 
argl. 

line argl arg2 arg3 arg4 arg5 arg6. This command 
causes a line to be drawn in three-dimensional 
space from the point argl, arg2, arg3 to the point 
arg4, arg5, arg6. The current object rotation, ob­
ject scale, object translation, viewer location, win­
dow, and viewport are used. 

plot argl arg2 arg3 arg4. This command causes a 
line to be drawn from the endpoint of the last line 
plotted to the point argl, arg2, arg3 using the 
"pencode" arg4. The current pen codes supported 
are '2' (indicating that a solid line is to be drawn), 
and '3' (indicating that no line i,s to be drawn; this 
is used only to change the location of the plot 
head). Additional pencodes could be implemented 
allowing for dashed lines, dotted lines, etc. 

ident. This command causes the "current" matrix 
to be set to the identify matrix. This causes all 
rotates to be set to zero, all translates to be set to 
the origin, and all scales to be set to one. 

push. This command causes the current matrix to 
be pushed onto a 10 location matrix stack. The 
current matrix is not altered. 

3-514 

pop. This command causes the matrix stack to be 
popped into the current matrix. 

rotate argl arg2 arg3. This command causes the 
viewer's perception of the three-dimensional 
figure to be rotated around the X, Y, and Z axjs 
byargl, arg2 and arg3. The angles are in degrees. 
The definition of an obiect is not altered. 

translate argl arg2 arg3. This command causes the 
viewer's perception of the three-dimensional 
figure to be translated in the X, Y, and Z direc­
tions by argl, arg2 and arg3. Again, the definition 
of an object is not altered. 

scale argl arg2 arg3. This command causes the 
viewer's perception -of the three-dimensional 
figure to be scaled in the X, Y and Z directions by 
argl, arg2, and arg3. 

window argl arg2. This command sets up the win­
dow parameters. These parameters determine the 
visible side to side portion of the projected images. 
This amounts to placing an infinitely tall pyramid 
within three-dimensional space with the viewing 
location located at its aPex (looking down). All 
objects within this pyramid will be visible; all ob­
jects outside this pyramid will nqt be visible. 

viewport argl arg2 arg3 arg4. This command sets 
up the viewport parameters. These parameters 
determine the size and location of the above win­
dow on the plotter surface. The center of the area 
on the plotter surface is giv~n by argl, arg2 with 
the X and Yhalf sizes given by arg3, arg4. The 
plotter is assumed to have an X dimension be­
tween 0 and 12, and a Y dimension between 0 and 
10. The translation to the dimensions the plotter 
recognizes is done in a lower level plotter interface 
routine. By performing this task in a lower level of 
software, the package is maae more general. 

viewpoint argl arg2 arg3 arg4 arg5 arg6. This 
command sets up the "viewing" transformation. 
argl, arg2, arg3 represent the location of the 
viewer in three-dimensional space, while arg4, 
arg5, arg6 represent the "Iookat" location in 
three-dimensional space. Together they form a 
vector pointing to the area to be viewed whose 
length determines the perspective variables (only 
single point perspective is currently implemented). 

210384-001 



AP-144 

zclip argJ arg2. This command sets up the 
"Z·clipping" parameters. These determine the 
visible distance in front of the viewer. ArgJ 
specifies the near boundary of the viewing area 
while arg2 specifies the far boundary of the area. 
Together with the window command, it defines a 
solid delimiting the visible objects from the not· 
visible objects. 

cube argJ arg2 arg3 arg4 arg5 arg6. This com· 
mand draws a cube centered at argJ, arg2, arg3 
with half·widths of arg4, arg5 and arg6. 

arrow. This command draws an arrow from 
(0,0,0) to (1,0,0). 

pyramid argJ arg2 arg3 arg4 arg5 arg6. This com· 
mand draws a four·sided pyramid whose base is 
centered at argJ, arg2, arg3 and whose half·widths 
are arg4, arg5, arg6. The X half·width arg4 is used 
as the height of the pyramid. 

current. This command prints the current matrix 
on the terminal. 

priDtdef. This command prints the definition of 
the given figure. 

startt. This command starts the 10 ms timer on the 
iSBC 86/12 board. 

readt. This command stops the 10 ms timer on the 
iSBC 86/12 board and prints the 10 ms count on 
the terminal. 

end. This command stops execution of the 
graphics package, prints the total numbers of 
points plotted and "success!!!" on the terminal, 
and returns control back to ISIS. 

Internal Operation of the Package 

All internal operations are performed using 1 by 4 or 4 
by 4 double precision real matrices. Points are defined 
in 1 by 4 double precision vectors where the first three 
coordinates are used to hold the X, Y and Z location of 
the point. The fourth location is always set to one, and 
is used when the point is projected onto a two· 
dimensional plane. In most cases, the routine perform· 
ing the task, outlined is named the same thing as the 
name of the task outlined (within the six· character limit 
imposed by FORTRAN). The order the routines are 
described is roughly the order a line would encounter 
them on its way from existing as a three· dimensional en· 
tity inside the machine to a line drawn on the bed of a 
plotter. All routine names are set in boldface. 

3-515 

THE CURRENT TRANSFORMATION 

If each object were to be modified whenever a translate, 
rotate, or scale were to be performed, performance of 
the package could be quite slow. In addition, the 
original definition of the figure would be lost (although 
not irreversibly). If there were a method of performing 
these three operations at a single time, allowing the 
original definition of an object to remain unaltered, 
both the performance and ease of use of the graphics 
package would be enhanced. 

One way in which these operations can be combined is 
by u$ing what is called the "current" matrix. The cur· 
rent matrix is a 4 by 4 double precision real matrix. It 
numerically represents any combination of rotates, 
translates and scales in any order. The matrix is 
multiplied by each 1 by 4 point definition vector on its 
way to being plotted. The result of this multiplication is 
a point that has been rotated, scaled, and translated the 
proper amount. If this matrix is the identity matrix, the 
point will pass through unaltered. Thus, the identity 
matrix represents no scaling, translating, and rotating. 
This multiplication is performed in the routine pline 
lines 20 and 21. -

When a rotate, scale, or translate command is inter­
preted, the current matrix is multiplied by another 4 by 
4 matrix representing only this transformation. Since 
matrix mUltiplication is not commutative, the order 
these operations are performed in is preserved. This is 
important, because, for example, a rotate before a 
translate is not the same as a rotate after a translate 
because all rotations are performed pivoting around the 
origin (see Figure 16). Initially, the current matrix is set 
to the identity matrix. The first operation is performed 
relative to state of the current matrix immediately 
preceding the operation. 

Parameters are set up into the current matrix through 
the rotate, scale, translate, ident, push, and pop opera­
tions. Each name describes the function of the opera­
tion performed. The routines performing these tasks (in 
order) are: rotate, scale, transI, Ident, pusb, and pop. 
Ideot is included to allow all rotates and translates to be 
set to zero and all scales to be set to one. The pusb and 
pop operations are ,included in order that figures may 
save the state of the current matrix, while subsequently 
performing operations altering it. This is important 
when a large figure is defined as a set of parts, each of 
which may merely be rotations, etc., of a simpler list of 
parts. 

210384-001 



AP-144 

Figure 16. Example Cube Viewed from (0,0,10) FIrSt Rotated then Translated then Translated then Rotated. 

Before an object can be plotted, the viewpoint of the 
viewer must be known. This information provides the 
location of the viewer in three-dimensional space, and 
the direction the viewer is pointing. It is incorporated in­
to the 4 by 4 "view" matrix. It is another rotation per­
formed on the object in order that it is viewed from the 
proper viewing angle. All points are passed through the 
view matrix after they are passed through the current 
matrix. What comes out of these two transformations is 
a set of points located in the proper relative positions in 
three-dimensional space when the figure is rotated, 
translated, and scaled by the operations performed on 
the current matrix, and is also rotated properly by the 
operations set in the view matrix. 

The view matrix is set up by the viewpoint command. 
This command will place in the view matrix the proper 
rotations in order that the image of the object will be 
correct. The routine performing this task is the viewpn 
routine. 

Z·CLlPPING. 

All points passed through the current and view matrices 
are located at their proper locatio~s in three­
dimensional space. How~verl' only a portion of this 
space is' visible to the viewer. Specifically, objects 
behind the viewer will not be visible. Every point of an 
object has been mapped to the viewer's space, however, 
including those behind the viewer. These "invisible" 
points are removed by an operation called 

·3-516 

"Z-clipping." Simply, it examines the Z parameter of 
every point being considered and determines if it is in 
front of the viewer. In addition, cine may not wish to 
display lines a great distance from the viewer. These 
lines may be removed by a similar process. The only 
complication of clipping is the action performed if only 
part of the line is visible. In this instance, the point 
where the line leaves the visible area must be calculated. 
The method used to calculate this point in this ini­
plementation is the method of "like triangles." 

The Z-clipping parameters are set through the com­
mand zclip in the routine zclip. The arguments to this 
command are used to determine the visible distance in 
front of the viewer. The 'first' argument sets the 
minimum distance in front of the viewer before any line 
will be visible. Legal values for this parameter are 
anything greater than zero. The 'Second argument sets 
the far distance beyond which no lines will be visible. 
Any value larger than the first argument may be used 
for this parameter. The clipping itself is performed in 
the routine zclipp. 

210384-001 



AP-144 

PROJECTION 

Projection maps the three-dimensional points previous­
ly encountered and projects them onto a two­
dimensional plane. Only single-point perspective is cur­
rently supported in the package. Here, the projection is 
performed by using the Z parameter to modify the X 
and Y parameters. As the points get more distant, their 
deviation from the center of the picture should get 
smaller, if the X an_d Y parameters remain constant. 
Most people are aware of this effect. For example, if 
you look down a set of railroad tracks, the rails seem to 
converge, even though the distance between the rails is 
constant (see Figure 17). Two or three-point perspective 
would be easy to implement; all one must do is generate 
the projected X and Y parameters by using the non­
projected X and Y parameters in addition to using the Z 
parameter. 

This. projection is performed in the graphics package by 
multiplying the 1 by 4 point location vector by a 4 by 4 
"projection" matrix. This matrix is simply the identity 
matrix except the perspective value is placed in location 
(3,4) of the matrix. 

Figure 17. Two Rails, Vanishing into the Distance 

This value is calculated from the viewpoint parameters. 
After the matrix multiply, the only element modified in 
the 1 by 4 point definition vector is the last one (the one 
which is supposed to have the value of one). After the 
multiplication, this location will contain the number 
representing the modification which must be performed 
on the X and Y parameters of the vector to exhibit the 
projection. When this vector is "normalized," the point 
will have been projected using the rules of single-point 

perspective. This normalization is performed by 
dividing every element in the vector by the last element 
of the vector. Thus, the Z element of the original vector 
has modified the X and Y elements. If two or three­
point perspective is desired, one must only place 
perspective values in locations (1,4) and (2,4) of the pro­
jection matrix; all subsequent processing will be iden­
tical. The routines performing these operations are: 
viewpn (sets up vanishing point for perspective), projct 
(sets up the projection matrix, and performs the 
perspective multiplication), and rtorm (normalizes the 
vector). 

x·y CLIPPING 

Once the data is projected onto a two-dimensional 
plane, X-Y clipping must be performed. This operation 
could also be performed on the three-dimensional data, 
but by deferring it until after the data have been pro­
jected, the calculations required are simpler. This is not 
true for Z-clipping, since once the data are projected 
onto a plane, the Z parameter is no longer in its original 
form. 

3-517 

X-Y clipping is performed by comparing X and Y 
parameters with the window values set up by the win­
dow command. This comparison is a bit more com­
plicated than the comparison required by Z clipping, 
however as two clipping parameters are involved. 
There ar~ nine possible regions in which each endpoint 
of a line ·may reside. For example, some of these regions 
are: within the X and Y window regions, less than the X 
window region but within the Y region, less than the X 
region and less than the Y region, etc. If one or both of 
the endpoints of the line are within the visible region, 
then at least part of the line will be visible. Also, even if 
neither of the endpoints of the line is in the visible 
region, part of the line may still be visible. One must 
therefore determine whether any part of this line would 
be visible. A simple way of performing the task is to 
assign a bit of a word for each of less than and greater 
than the X and Y window limits. This requires four bits. 
The value of the X and Y parameters are then each com­
pared with the window limits. If the value exceeds the 
limit of the window, the corresponding bit of this point 
descriptor is set. After this "code" has been determined 
for both of the points, the codes for two endpoints are 
bit-wise ANDed together (an extension to FORTRAN 
77 available in FORTRAN 86 allows this operation). If 
the result of this ANDing is zero, then part of the line 
would be visible. If, however, it is not zero, then the en­
tire line lies outside the visible area. If only part of the 
line is visible, then the point where it leaves the visible 
area must be calculated. The point where the line leaves 
the viewing area is calculated using the same "like 
triangle" method used when Z-clipping is performed. 

210384-001 



AP-144 

The routines performing these operations are wtovp 
(calls the xyclip routine with the proper parameters), 
xyclip (performs the actual clipping), code (returns the 
binary code for the point position in relation to the win· 
dow), and ppush (calculates the point at which line 
leaves the visible area). 

WINDOW TO VIEWPORT TRANSFORMATION 

Finally, after the points have been processed through all 
of the above, comes their day of glory. Because the lines 
have been clipped, they are constrained to be within the 
given window. Remember, however, that the values for 
this window are in "real world" units. These sizes could 
be measured in inches or miles. These are not generally 
suitable for plotting on a graphics output device. In 
order for the "window" to be displayed on the graphics 
output device, one more transformation must be per­
formed: the window to viewport transformation. A 
viewport represents a physical location and size on the 
graphics output device. The viewport command sets up 
the appropriate parameters for this transformation. It 
requires four arguments, which allow the viewport to be 
moved around the graphics display surface, and allow 
the' size of the viewport to be set. Notice that the 
viewport and the window are not constrained to the 
same aspect ratios, that is, the ratios between the ver­
tical sizes and the horizontal sizes of the window and 
viewport need not be the same. If these ratios are not the 
same, the figures will be distorted. Performing this 
transformation is simply a matter of scaling the win­
dowed values to fill the viewport. The code performing 
this transformation is contained within the wtovp 
routine. 

PLOTTER INTERFACE 

This graphics package was written to interface to a 
Hewlett-Packard 7225A flat bed plotter. Communica­
tions were performed through an RS232 serial link at 
600 baud. Physically, this is done using the 8251 serial 
controller on the iSBC® 86/12 board inside the Intellec@ 
Series III. The plotter has a smart interface. The com­
mands it accepts are in ASCII, and are on the level of 
"lower the pen," and "draw a line from the current pen 
position to another pen position." The routines per­
forming these operations are plot (deter,mines the 
characters needing to be sent to the plotter), ponum 
(converts a floating point number to an ASCII represen­
tation of the integer value of the truncated floating 
point number), putout (handles the interface to the 8251 
serial controller chip) and plots (initializes the baud rate 
generator and 8251 serial controller chip on the iSBC® 
86/12 board). 

PERFORMANCE MEASUREMENTS 

The above'routines were compiled using the Intel FOR­
TRAN 86 compiler and exeucted on an Intellec@ Series 
III development system. The 8086 hardware consists of 
an Intel iSBC® 86/12 board with the 8087 in the 
iSBC® 337 card. The iAPX 86/20 (the 8086 with the 
8087) operate with a clock frequency of 5 MHz. The on 
board memory (64K DRAM) inserts between one and 
three wait states per memory fetch. In addition, owing 
to the size of the memory arrays, the program size, and 
the memory reguirements of the Series III, off board 
memory was required to run the program. 

The times shown in the table do not show the plotting 
time; only the time to generate the output that would be 
sent to the plotter is given. This is because the physical 
speed limitation of the plotter used would not allow the 
iAPX 86/20 system to produce the plotting commands 
at its maximum computational speed. The plotter re­
quired approximately half an hour to 45 minutes to ac­
tually draw the second demonstration picture. 

For each line plotted, five 1 by 4 times 4 by 4 matrix 
multiplies must be performed along with a non-trivial 
amount of other floating point operations, such as 
divides and compares. For example, when clipping is 
performed, the line endpoint values must be compared 
to the clipping parameters. If only part of the line is visi­
ble, then the point the line leaves the visible area must be 
calculated. This requires twelve additional floating 
point operations. Another example is in the window to 
viewport transformation. For each line drawn, four 
floating point multiplies, four floating point divides, 
and four floating point adds must be performed. 

In addition, whenever the rotation, Scale, translation or 
viewpoint is changed, 4 by 4 matrix multiplies must be 
performed. In addition, various trigonometric routines, 
such as sines and cosines, must be performed to set up 
the rotation parameters into the matrix. 

The performance measurements are given in Table 1. 

Table 1. Performance Measurements 

Picture Number 
One Two 

number of points in picture 117 9131 
number of points actually plotted 117 6114 
execution time of the 86/2O(sec) 2.84 188 
execution time of the 86 with 87 144.77 9801 

emulator(sec) 
exection time of PDP11145(sec)2 1.7 120 

2A PDPll/45 mini-computer with 256K MOS RAM, and a 
FPll-B floating point unit running the UNIX operating 
system during a period of light load. The program was com­

, piled using the UNIX F77 FORTRAN compiler. 

3-518 , 210384-001 



AP-144 

Figure 18. Demonstration Picture 1 

The results show that the performance of the iAPX 
86120 is close to the performance of the mini-computer. 
The figures drawn are shown in Figure 17 for Picture 1 
and Figure 18 for Picture 2. The graphics commands re­
quired to generate Picture 1 are given in Appendix B. 
Picture 2 shows three views of a single shuttle. (Hint: 
you are looking out the window of one of the shuttles!) 
The shuttle is defined only once in the input data. 
Another point to notice is that each shuttle is a con­
glomeration of parts. For example, the shuttle wing is 
defined only once in input data. Tp.e complete shuttle 

contains two views of this same wing, translated and 
rotated to attach to the appropriate location on the 
fuselage of the shuttle itself. The engine nozzles take 
this same approach a bit further. The complete nozzle is 
defined only once, and is attached in three places on 
each shuttle. In addition, each nozzle is made up of 
replications of the same circle scaled and translated 
through space. Each circle is, in turn, composed of four 
views of one quarter-circle, each rotated a proper 
amount to form one complete circle. 

3-519 210384-001 



AP-144 

Figure 19. Demonstration Picture 2 

CONCLUSIONS 

The routines demonstrated in this note show that the 
types of operations required to manipulate and display a 
three-dimensional figure on a two-dimensional surface 
are far from trivial, involving very many floating point 
operations. With the introduction of the iAPX 86120, 
the floating point performance required by this type of 
application is finally within the performance limits of 
microcomputers selling for a fraction of the cost of the 
previously required mini- or maxi-computers. Examples 
of systems in which this performance is required are 

Computer Aided Design (CAD) or Computer Aided 
Manufacturing (CAM) systems. In addition, the 
availability of a full ANSI 77 standard FORTRAN com­
piler (FORTRAN 86) for the iAPX 86120 enhances the 
production or transportation of existing software to the 
machine. This combination of high performance hard­
ware with high performance software allows the iAPX 
86120 to fill applications never before filled by a 
microprocessor. 

3-520 210384-001 



AP-144 

APPENDIX A Contents 

Main Routine 
get 
proc 
ident 
defn 
printd 
call it 
printm 
pline 
pplot 
push 
pop 
rotate 
transl 
pscale 
window 
viewpr 
viewpn 
zclip 
zclipp 

''''.' projct 
norm 
wtovp 
xyclip 
code 
ppush 
copym 
mplot 
cube 
arrow 
pyrmd 
mmult4 
mmult1 
plot 
ponum 
plots 
putout 
wastet 

3-521 210384-001 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
,11 

12 
lJ 
14 
15 
16 
17 
18 
19 
20 

21 

22 

23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

38 

3~ 
40 
41 
42 

AP-144 

c 
c this is the main routine of the graphics program. basically 
c it sets up default parameters for the rest of the routines, then 
c enters an infinite loop, alternatively fe~ching lines from the input 
c (using routine getl) and sending them to be prqcessed qy the graphics 
c processor (proc) 
c 

common /windoe/wxh,wyh 
common /viewp/vxh,vyh,vxc,vyc 
real*8 wxh,wyh,vxh,vyh,vxc,vyc 
common /matrix/currm,view,curp 
real*8 currm(4,4),view(4,4),curp(4) 
common /clip/hither,yon,dee 
real*8 hither,yon,dee 
common /stacks/stackp,sspace 
real*8 sspace(10,4,4) 
integer stackp 
common /defns/dargl,darg2,darg3,darg4,darg5,darg6,darg7,entry,tailp,ends 
character*lO dargl(500) 

c 

c 

c 

C 

c 
c 

c 

real*8 darg2(500),darg3(500) ,darg4(500) ,darg5(500),darg6(500) ,darg7(500) 
integer entry(lO),enqs(lO) 
integer tailp 
common /cstack/cnum,cnump 
integer cnum(lO),cnump 
common /penpos/xpos,ypos,pcount 
real*8 xpos,ypos 
integer*4 pcount 

initialize the plotting package 
call plots 

set 

initialize the stack pointer 
stackp if 1 

up a few defaults 
wxh 10. 
wyh 10. 
vxh 5. 
vyh 5. 
vxc 5. 
vyc 5. 
hither = l. 
yon = 100. 
dee = 10. 
tailp = 1 
cnump = 1 
xpos = -i. 
ypos = -l. 
pcount = 0 
print * , 'GRAPHICS program entered! ! ! I 

initialize the current matrix 

call ident(currm) 

c and process all the input lines 
c 
100 call getl 

call proc 
goto 100 
end 

3-522 210384-001 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

43 
44 
45 
46 

47 
48 
49 
50 
51 
52 
53 
54 

c 
c 
c 
c 
c 
c 

55 

56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 

c 
c 
c 
c 

67 
68 
69 100 
'70 
71 
72 800 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 

AP·144 

getl(line) 

fetches the next line from the input file, and grabs the first 7 
things from it, the first being an alpha command contained within 
(') and the rest being numbers. If less than 6 number are input 
the input line must be terminated by a (I) in order for the 
read statement to be correctly interpreted. The arguments are then 

placed in the common block "args". When the 'end' command is 
encountered, "success" is printed on the terminal, and the 
graphics program terminates. 

subroutine get 1 
common /args/argl,arg2,arg3,arg4,arg5,arg6,arg7 
character*lO argl 
real*8 arg2,arg3,arg4,arg5,arg6,arg7 

read (5,*)argl,arg2,arg3,arg4,arg5,arg6,arg7 
if(argl .eq. 'end') then 

endif 
return 
end 

proc 

call plot(0.,O.,999) 
print ., 'success!!1' 
stop 

proc() does all the processing for a line. It gets its arguments 
from the common block args, and does it's thing 

subroutine proc 

common /matrix/currm,view,curp 
real*8 currm(4,4),view(4,4),curp(4) 
common /args/argl,arg2,arg3,arg4,argS,arg6,arg7 
character*lO argl 
real*8 arg2,arg3,arg4,arg5,arg6,arg7 
common /clip/hither,yon,dee 
real*8 hither,yon,dee 
common /cstac~/cnum,cnump 
integer cnum(lO),cnump 
integer i 
integer*4 rtimer,countt 

determine the command entered (HUGE if-then-else if-,etc) and 
call the appropriate routine with the correct' arguments 

if(argl .eq. 'comment') then 
i = 1 
read(5,800) 
i = i + 1 
if(i .le. int(arg2» got a 100 
format(al) 

else if(argl .eq. 'define') then 
i = int(arg2) 
call defn (i) 
call printd(i) 

else if(argl .eq. 'call') then 
cnum(cnump) = int(arg2) 
cnump = cnump + 1 
if(cnump .gt. 10) then 

endif 

print *, 'call nesting level too deep, sorry' 
cnump = 10 

call callit(cnum(cnump - l),cnump - 1) 
cnump = cnump - I 

else if(argl .eq. 'line') then 

3-523 210384-001 



87 
8B 
89 
90 
91 
92 
93 
94 
95 
96 
97 
9B 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
III 
112 
113 
114 
115 
116 
117 
11B 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 

130 
131 

c 
c 
c 
c 
c 

132 
133 
134 

135 
136 
137 
138 100 
139 
140 
141 110 
142 
143 

else 

else 

else 

else 

else 

else 

else 

else 

else 

else 

else 

else 

else 

else 

else 

else 

else 

else 

AP-144 

call pline(arg2,arg3,arg4,arg5,arg6,arg7,2} 
if(argl .eq. 'plot'} then 

i = int(arg5} 
call pplot(arg2,arg3,arg4,i} 

if(argl .eq. 'ident'} then 
call ident(currm} 

if(argl .eq. 'push'} then 
call push(currm} 

if(argl .eq. 'pop'} then 
call pop(currm} 

if(argl .eq. 'rotate') then 
call rotate(arg2,arg3,arg4,currm} 

if(argl .eq. 'translate'} then 
call transl(arq2,arg3,arg4,currm} 

if(argl .eq. 'scale') then 
call pscale(arg2,arg3,arg4,currm) 

if(argl .eq. 'window'} then 
call window(arg2,arg3) 

if(argl .eq. 'viewport'} then 
call viewpr(arg2,arg3,arg4,arg5) 

if(argl .eq. 'viewpoint'} then 
call viewpn(arg2,arg3,arg4,arg5,arg6,arg7) 

if(argl .eq. 'zclip') then 
call zclip(arg2,arg3} 

if(argl .eq. 'cube'} then 
call cube(arg2,arg3,arg4,arg5,arg6,arg7) 

if(argl .eq. 'arrow') then 
call arrow 

if(argl .eq. 'pyramid'} then 
call pyrmd(arg2,arg3,ar~4,arg5,arg6,arg7) 

if(argl .eq. 'current'} then 
call printm(currm} 

if(argl .eq. 'printdef'} then 
i = int(arg2) 
call printd(i) 

if(argl .eq. 'startt'} then 
call stimer 

if(argl .eq. 'readt') then 
countt = rtimer(} 
print *, 'the time (in seconds) from the last startt is:' ,countt/IOO. 

else 
print *, 'error, command' ,argl, 'unknown' 

endif 

return 
end 

ident(matrx) 

ident(} sets the given 4 X 4 matrix to the identity matrix. 

subroutine ident(matrx} 
real*B rnatrx(4,4} 
integer i,j 

do 100 i=I,4 
. do 100 j=1,4 

matrx (i, j ) O. 
continue 
do 110 i=I,4 

matrx(i,il 1-
continue' 
return 
end 

3-524 210384-001 



c 
c 
c 
c 
c 
c 
c 
c 

144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 

155 
156 

157 100 
c 
c 
c 

158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 150 
178 
179 
180 800 
181 
182 
183 

AP-144 

subroutine defn(number) defines figure number. the defined figure 
is contained in a large common block "defns" which contains 
enough space for a total of 500 commands. comments are not 
stored along with the define commands to save space. the variables 
entry and ends contain the starting and ending indexes of the 
10 possible defined figures 

subroutine defn(number) 
integer number 
common /defns/darg1.darg2.darg3.darg4.darg5.darg6.darg7.entry.tailp.ends 
character*10 darg1(500) 
real*8 darg2(500).darg3(500).darg4(500).darg5(500).darg6(500).darg7(500) 
integer entry(10).ends(10) 
integer tailp 
common /args/arg1.arg2.arg3.arg4.arg5.arg6.arg7 
character*10 arg1 
rea1*B arg2.arg3.arg4.arg5.arg6.arg7 
integer i ' 

entry(number) = tailp 
print *. 'start of define is at'.tai1p 

call get 1 

check for terminate of define 

if(arg1 .eq. 'enddef') then 
ends (number) = tailp 
print *.'end of figure define is at' .tailp 
return 

else if(arg1 .ne. 'comment') then 
dargl(tailp) arg1 
darg2(tailp) arg2 
darg3(tailp) arg3 
darg4(tailp) arg4 
darg5(tailp) arg5 
darg6(tailp) arg6 
darg7(tai1p) arg7 

else 

endif 
goto 100 
end 

tailp = tai1p + 1 
if(tai1p .gt. 500) then 

print *.'define memory overrun!!!' 
tailp = 500 

endif 

i = 1 
read(5.BOO) 
i = i + 1 
if(i .1e. int(arg2» goto 150 
format(al) 

3-525 210384-001 



c 
c 
c 

1B4 
1B5 
1B6 
1B7 
1BB 
1B9 
190 
191 

192 
193 100 
194 
195 BOO 
196 
197 
19B 

c 
c 
c 
c 
c 

199 
200 
201 
202 
203 
204 
205 
206 
207 
20B 
209 

210 
211 100 
212 
213 
214 
215 
216 
217 
21B 
219 
220 
221 
222 

c 
c 
c 
c 

" 223 
224 
225 

226 
227 
22B 100 
229 BOO 
230 
231 

AP-144 

subroutine printd(number) prints the defined figure commands 

subroutine printd(number) 
integer number 
common /defns/darg1,darg2,darg3,darg4,darg5,darg6,darg7,entry,tai1p,ends 
character* 10 darg1'( 500) 
rea1*B darg2(500) ,darg3(500),darg4(500),darg5(500) ,darg6(500) ,darg7(500) 
integer entry(10),ends(10) 
integer tai1p 
integer i 

i = entry(number) 
if(i .eq. ends(number» return 
write(6,800)darg1(i),darg2(i),darg3(i),darg4(i),darg5(i),darg6(i),darg7(i) 
format(a10,6f11.4) 
i = i + 1 
goto 100 
end 

subroutine ca11it(rtumber,nest) causes the defined figure number to 
be input to the graphics processor, nesting level must be provided 
to allow pseudo-recursive type calls ••• 

subroutine ca11it(number,nest) 
integer number, nest 
common /defns/darg1,darg2,darg3,darg4,darg5,darg6,darg7,entry,tai1p,ends 
character*10 darg1(500) 
rea1*8 darg2(500) ,darg3(500) ,darg4(500) ,darg5(500) ,darg6(500) ,darg7(500) 
integer entry(10),ends(10) 
integer tai1p 
common /args/arg1,arg2,arg3,arg4,arg5,arg6,arg7 
character*10 arg1 
rea1*8 arg2,arg3,arg4,arg5,arg6,arg7 
integer i(10) 

i(nest) = entry(number) 
if(i(nest) .eq. ends(number» return 
arg1 darg1(i(nest» 
arg2 darg2(i(nest» 
arg3 darg3(i(nest» 
arg4 darg4(i(nest» 
arg5 darg5(i(nest» 
arg6 darg6(i(nest» 
arg7 darg7(i(nest» 
call proc 
i(nest) = i(nest) + 1 
goto 100 
end 

printm(matrx) 

printm prints out the given 4x4 double precision matrix 

subroutine printm(matrx) 
rea1*B matrx(4,4) 
integer i 

do 100 i=l,4 
write(6,800)matrx(i,l),matrx(i,2),matrx(i,3),matrx(i,4) 

continue 
format ( 4f15. 4) 
return 
end 

3-526 210384-001 



c 
c 
c 
c 
c 
c 

1 
2 
3 
4 
5 
6 
7 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
Ie} 

c 
c 
c 

20 
21 
22 
23 

c 
• c 

c 
24 
75 

c 
c 
c 

26 
n 

c 
c 
c 

28 
29 200 
30 

AP-144 

pline(x,y,z,a,b,c,s) 
\ 

pline() draws a line from (x,y,z) to (a,b,c) with pencode s, using 
the current window, viewpoint, viewport, etc. 

subroutine pline(x,y,z,a,b,c,s) 
real*R x,y,z,a,b,c 
integer s 
common /matrix/currm,view,curp 
real*A currm(4,4),view(4,4),curp(4) 
logical zclipp,junk 
real*A tmpf(4),tmpt(4) 

tmpf(l) = x 
tmpf( ::1) y 
tmpf(3) z 
tmpf(4) 1. 
tmpt(l ) a 
tmpt(2) b 
tmpt(3) c 
tmpt(4) 1. 
curp(l ) a 
curp(2) b 
curp(3) = c 
curp(4) 1. 

perform translations, and viewing translation 

call mmultl(tmpf,currm,tmpf) 
call mmultl(tmpt,currm,tmpt) 
call mmultl(tmpf,view,tmpf) 
call mmultl(tmpt,view,tmpt) 

perform zclipping on both points .•• 

if(zclipp(tmpf,tmpt).eq .. false.) goto 200 
junk=zclipp(tmpt,tmpf) 

project the vector into ?-D 

call projct(tmpf) 
call projct(tmpt) 

do x/y clipping, the window to viewport transform, and plot the vector 

call wtovp(tmpf,tmpt,s) 
return 
end 

3-527 210384-001 



c 
c 
c 
c 
c 
c 
c 

31 
3? 
33 
34 
35 

36 
37 
38 

c 
c 
c 
c 
c 
c 
c 

39 
40 
41 
42 
43 

44 
45 
46 
47 
48 
49 
~O 
51 

c 
c 
c 
c 
c 
c 

52 
51 
54 
55 
56 

57 
58 
59 
60 
61 
62 
63 
64 
65 

AP-144 

pplot(x,y,z,t) 

plot a line from the current position to (x,y,z) using pencode t. 
Basically, sets up a call to pline' from the current position 
to the new position using the appropriate pencode. 

subroutine pplot(x,y,z,t) 
real*q x,y,z 
integer t 
common /matrix/currm,view,curp 
real*8 currm(4,4),view(4,4),curp(4) 

call plinelcurp(1),curp(2),curp(3),x,y,z,t) 
return 
end 

pushlmatrix) 

push() pushes the given matrix onto the matrix stack, checks 
for stack overflow, and won't let youl III Does not alter the 
current matrix. 

subroutine push(matrix) 
real*8 matrix,sspace(4,4,10) 
integer stackp 
dimension matrix(4,4) 
common /stacks/stackp,sspace 

if(stackp .gt. 10) then 
print *, 'stacK overflow' 
return 

end if 
call copym(sspace(l,l,stackp),matrix) 
stackp=stackp+l 
return 
end 

pop(matrix) 

pop() pops the top of stack into the given matrix. Checks for 
stack underflow, and again won't let you do it!!I! 

subroutine pop(matrix) 
real*R matrix,sspace(4,4,10) 
integer stackp 
dimension matrix(4,4) 
common /stacks/stackp,sspace 

stackp=stackp-l 
if(stackp .It. 1) then 

print *, 'stack underflow' 
sta"kp = 1 
return 

end if 
call copym(matrix,sspace(l,l,stackp» 
return ' 
end 

3-528 210384-001 



c 
c 
c 
c 
c 
c 
c 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 

12 
13 
14 
15 
16 

17 

18 
19 
20 
21 
22 

23 

24 
25 

c 
c 
c 
c 
c 
c 

26 
27 
28 

29 
30 

31 
32 
33 
34 

35 

36 
37 

AP-144 

rotate(x,y,z,matrix) 

rotate() pre-concatenates the given (x,y,z) rotation, to the 
supplied matrix(usually the current matrix). x,y,z are given 

in degrees. 

subroutine rotate(x,y,z,matrix) 
real*B x,y,z,matrix 
dimension matrix(4,4) 
real*8 tmp 
dimension tmp(4,4) 

call ident(tmp) 
tmp(2,2) cos(x * 0.01745329) 
tmp( 3,3) tmp( 2,2) 
tmp(2,3) sin(x * 0.01745329) 
tmp(3,2) - tmp(2,3) 

call mmult4(tmp,matrix,matrix) 

call ident(tmp) 
tmp(l,l) cos(y * 0.01745329) 
tmp(3,3) tmp(l,l) 
tmp(3,1) sin(y * 0.01745329) 
tmp(1,3) - tmp(3,1) 

call mmult4(tmp,matrix,m~trix) 

call ident(tmp) 
tmp(l,l) cos(z * 0.01745329) 
tmp ( 2, 2 ) tmp ( 1, 1) 
tmp(1,2) sin(z * 0.01745329) 
tmp(2,1) - tmp(1,2) 

call mmult4(tmp,matrix,matrix) 

return 
end 

translate( X, y., z, matrix) 

translate() pre-concatenates the given tranlation (x,y,z) to the 
given matrix(usually the current matrix). 

subroutine transl(x,y,z,matrix) 
real*8 x,y,z,matrix 
dimension matrix(4,4) 

real*8 tmp 
dimension tmp(4,4) 

call ident(tmp) 
tmp(4,1) x 
tmp(4,2) = y 
tmp(4,3) = z 

call'mmult4(tmp,matrix,matrix) 

return 
end 

3-529 210384-001 



c 
c 
c 
c 
c 
c 

38 
39 
40 

41 
42 

43 
44 
45 
46 

47 

48 
49 

c 
c 
c 
c 
c 
c 

50 
51 
52 
53 

54 
55 
56 
57 

c 
58 
59 
60 
61 

62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 

AP-144 

pscale(x,y,z,matrix) 

pscale pre-concatenates the given scaling (x,y,z) onto the 
given matrix_ 

subroutine pscale(x,y,z,matrix) 
real*8 x,y,z,rnatrix 
dimension matrix(4,4) 

real*8 tmp 
dimension tmp(4,4) 

call ident(tmp) 
tmp(l,l) = x 
tmp(2,2) y 
tmp(3,3) = z 

call mmult4(tmp,matrix,matrix) 

return 
end 

window(a,b) viewport(a,b,c,d) 

these two routines set up the global variables according to the 
given parameters_ 

subroutine window(a,b) 
real*8 a,b 
reaP'8 wxh,wyh 
common /windoe/wxh,wyh 

wxh = a 
wyh = b 
return 
end 

subroutine viewpr(a,b,c,d) 
real*8 a,b,c,d 
real*8 vxh,vyh,vxc,vyc 
Common /viewp/vxh,vyh,vxc,vyc 

vxc a 
vyc b 
vxh c 
vyh d 
call mplot(vxc - vxh;vyc - vyh,3) 
call mplot(vxc + vxh,vyc - vyh,2) 
call mplot(vxc + vxh,vyc + vyh,2) 
call mplot(vxc - vxh,vyc + vyh,2) 
call mplot(vxc - vxh,vyc - vyh,2) 
return 
~nd 

3-530 210384-001 



c 
c 
c 
c 
c 
c 
c 

1 
2 

3 
4 
5 
6 
7 
8 

c 
c 
c 

9 
c 
c 
c 

10 
c 
c 
c 

11 
12 
13 
14 
15 
16 
17 
18 
19 

20 

21 
22 
23 
24 
25 
26 

27 

28 
29 
30 
31 
32 
33 
34 

35 

36 
37 
38 

AP-144 

viewpoint(a,b,c,d,e,f) 

viewpoint sets up the viewing transformation for the given 
to and from points---the eye position is (a,b,c) the lookat 
position is (d,e,f). 

subroutine viewpn(a,b,c,d,e,f) 
real*8 a,b,c,d,e,f 

real*8 angle 
real*8 tmp(4,4),tmpp(4) 
common /matrix/currm,view,curp 
real*8 currm(4,4),view(4,4),curp(4) 
common /clip/hither,yon,dee 
real*8 hither,yon,dee 

initialize the viewing transformation 

call ident(view) 

move lookat position to origin 

call transl(-d,-e,-f,view) 

rotate view matrix per the lookat angle 

a = a - d 
b .. b - e 
c = c - f 
angle - atan2(a,c) 
call ident(tmp) 
tmp(l,l) = cos(angle) 
tmp(3,3) .. tmp(l,l) 
tmp(3,l) = sin(angle) 
tmp(l,3) = - tmp(3,l) 

call mmult4(view,tmp,view) 

angle = atan2(b,sqrtia*a + c*c» 
call ident(tmp) 
tmp(2,2) = cos(angle) 
tmp(3,3) tmp(2,2) 
tmp(2,3) sin(angle) 
tmp(3,2) - tmp(2,3) 

call mmult4(view,tmp,view) 

a a + d 
b b + e 
c - c + f 
tmpp(l) a 
tmpp(2) b 
tmpp(3) .. c 
tmpp(4) 1. 

call mmultl(tmpp,view,tmpp) 

dee" tmpp(3) 
return 
end 

3-531 210384-001 



c 
c 
c 
c 
c 
c 
c 
c 

39 
40 
41 
42 

43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 

c 
c 
c 
c 
c 
c 
c 
c 

55 
56 
57 
58 

59 

60 
61 

62 

63 
64 
65 
66 

c 
c 
c 
c 

67 

68 

69 
70 
71 
72 
73 
74 
75 

AP-144 

zclip(a,b) 

zclip() sets up the global clipping parameters, a is the hither, 
b the yon, does not allow the hither plane to be behind the 
viewer, nor does it allow the yon to be between the viewer 
and the hither. 

subroutine zclip(a,b) 
real*8 a,b 
real*8 hither,yon,dee 
common /clip/hither,yon,dee 

if(a .It. 0) then 

end.if 

print *, 'bad hither parameter' 
a = a 

if(b .It. a) then 
print *, 'bad yon parameter' 
b = a + 100 

end if 
hither = a 
yon = b 
return 
end 

zclipping(vectl,vect2) 

zclipping() performs the zclipping on vectl using the global 
zclipping parameters. Modifies ONLY vectl, returns true if 
a portion of the vector indicated by (clipped)vectl and vect2 
will be visible in the scene. 

logical function zclipp(vectl,vect2) 
real*8 vectl(4),vect2(4) 
common /clip/hither,yon,dee 
real*8 hither,yon,dee 

real*8 htr,yn 

htr = dee - hither 
yn = dee - yon 

zclipp = .true. 

if(vectl(3) .gt. htr) then 
if(vect2(3) .gt. htr) then 

zclipp = .false. 
else 

you must modify the x and y parameters (according to like triangles) 
when the z parameter is modified!11 

end if 

vectl(l) (vectl(l) - vect2(1»*«htr - vect2(3»/ 
(vectl(3) - vect2(3») + vect2(1) 

vectl(2) (vectl(2) - vect2(2»*«htr - vect2(3»/ 
(vectl(3) - vect2(3») + vect2(2) 

vectl ( 3 ) htr 
zclipp = .true. 

else i~.(vectl(3) .It. yn) then 
if(vect2(3) .!t. yn) then 

zclipp = .false. 
else 

3-532 210384-001 



76 

*' 77 

* 78 
79 
80 
81 
82 
83 

c 
c 
c 
c 
c 
c 

1 
2 
3 
4 
5 

6 

7 
8 
9 

10 
11 

12 
13 
14 
15 

c 
c 
c 
c 
c 
c 

16 
17 

18 
19 
20 
21 
22 
23 

AP-1~4 

vectl(1 ) 

vectl (2) 

(vect2(1) - vectl(l»*«yn - vectl(3»/ 
(vect2(3) - vectl(3») + vectl(l) 
(vect2(2) - vectl(2»*«yn - vectl(3»/ 
(vect2(3) - vectl(3») + vectl(2) 

vectl(3) yn 
zclipp = .true. 

end if 
return 
end 

end if 

projct(vector) 

projct() projects the given vector to a point in 2-D space using 
the global "dee" parameter, for single point perspective. 

sUbroutine projct(vector) 
real*8 vector(4) 
common /clip/hither,yon,dee 
real*8 hither,yon,dee 
real*8 tmp(4,4) 

call ident(tmp) 

if(dee .ne. 0) then 
tmp(3,4) 1 / dee 

else 
tmp(3,4) - 1000000000. 

endif 

call mmultl(vector,tmp,vector) 
call norm(vector) 
return 
end 

norm(vector) 

norm() normalizes the given vector. 

subroutine norm(vector) 
real*8 vector(4) 

vector(l) 
vector(2) 
vector(3) 
vector(4) 
return 
end 

vector(l) 
vector(2) 
vector(3) 

= 1. 

/ vector(4) 
I vector(4) 
/ vector(4) 

3-533 210384-001 



24 
2"5 
26 
27 
28 
29 
30 
31 
32 

33 
34 
35 

36 
37 
38 

39 
40 
41 
42 

43 
44 
45 

46 
47 
48 
49 

50 
51 
52 
53 

54 
55 

c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
C 

C 

C 

100 

105 

Ap·144 

wtovp(from,to,pencode) 

wtovp( ) takes the projected from and to points, and: 
1: does x/y clipping on the window 
2: does the window to viewport translation 
3: plots the transformed points onto the device 

subroutine wtovp(from,to,pencde) 
real*8 from(4),to(4) 
integer pencde 
common /windoe/wxh,wyh 
real*8 wxh,wyh 
common /viewp/vxh,vyh,vxc,vyc 
real*8 vxh,vyh,vxc,vyc 
logical xyclip 
real*8 xp,yp 

if(xyclip(from,to» then 
xp (from(l» * vxh / wxh + vxc 
yp = (from(2» * vyh / wyh + vyc 

call mplot(xp,yp,3) 
xp (to(l» * vxh / wxh + vxc 
yp = (to(2» * vyh / wyh + vyc 

call mplot(xp,yp,pencde) 
endif 
return 
end 

xyclip(from,to) 

xyclip() performs the x/y clipping on both the from and t 
vectors in the window cooridinates. Returnes false if 
none of the vector would be visible. 

logical function xyclip(from,to) 
real*8 from(4),to(4) 
integer*2 cf,ct 

xyclip = .false. 
call code(from,cf) 
call code(to,ct) 

if«cf .and. ct) .ne. 0) goto 105 

if(cf .ne. 0) call ppush(cf,from,to) 
if(ct .ne. 0) call ppush(ct,to,from) 

if«cf + ct) .ne. 0) goto 100 
xyclip = .true. 

return 
end 

3-534 210384·001 



c 
c 
c 
c 
c 
c 

1 
2 
3 
4 
5 
6 

7 

8 
9 

10 
11 
12 
13 
14 
15 

c 
c 
c 
c 
c 
c 
c 

16 
17 
18 
19 
20 

21 

22 

* 23 
24 
25 

26 

* 27 
28 
29 

30 

* 31 
32 
33 

34 

* 35 
36 
37 
38 

AP-144 

code(vector, flag) 

code() returns the binary code in flag for vector indicating 
it's position relative to the window, 

subroutine code(vector,flag) 
real*8 vector(4) 
integer flag 
common jwindoejwxh,wyh 
real*8 wxh,wyh 
real*8 tmp 

flag = 0 

tmp = vector(l) 
if(tmp .It. - wxh) flag = 1 
if(tmp .gt. wxh) flag = flag + 2 
tmp = vector(2) 
if(tmp .It. -wyh) flag = flag + 4 
if(tmp .gt. wyh) flag = flag + 8 
return 
end 

ppush(flag,to, from) 

ppush() pushes "to" towards "from" according to flag, which 
contains the code returned by code(). used to insure that the 

line exits the window at the correct point 

subroutine ppush(flag,to,from) 
real*8 to(4),from(4) 
integer flag 
common jwindoejwxh,wyh 
real*8 wxh,wyh 

if( (flag .and. 1) .ne. 0) then 

to(2) «-wxh - from(l» 
j(to(l) - from(1»)*(to(2) - from(2» + from(2) 

to(l) -wxh 
endif 
if«flag .and. 2) .ne. 0) then 

endif 

to(2) 

to(l) 

«wxh - from(l» 
j(to(l) - from(1»)*(to(2) - from(2» + from(2) 
wxh 

if«flag .and. 4) .ne. 0) then 

endif 

to(l) 

to(2) 

«-wyh - from(2» 
j(to(2) - from(2»)*(to(1) - from(l» + from(l) 
-wyh 

if«flag .anll. 8) .ne. 0) then 

endif 
return 
end 

to(l) 

to(2) 

«wyh - from(2» 
j(to(2) - from(2»)*(to(1) - from(l» + from(l) 
wyh 

3-535 210384-001 



c 
c 
c 
c 
c 

39 
40 

41 

42 
43 
44 100 
45 
46 

c 
c 
c 
c 
c 
c 
c 

47 
48 
49 

50 
51 
52 

'c 
c 
c 
c 
c 
c 

1 
2 

3 
4 
S 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

AP-144 

copym(dst,src) 

copym() copies the src 4X4 matrix to the dst 4X4 matri~. 

subroutine copym(dst,src) 
real*8 dst(16),src(16) 

integer i 

do 100 i 1,16 
dst(i) = src(i) 
continue 
return 
end 

mplot(argl,arg2,arg3) 

mplo't() calls plot with argl,arg2,arg3. inserted as another level 
of indirection in order to allow the actual plot commands to be 
written to a file, etc. 

subroutine mplot(argl,arg2,arg3) 
real*8 argl,arg2 
integer arg3 

call plot(argl,arg2,arg3) 
return 
end 

cube(argl,arg2,arg3,arg4,arg5,arg6) 

cube() generates a cube centered at (argl,arg2,arg3) with 
arg4,arg5.arg6 as it's half widths 

subroutine cube(argl,arg2,arg3,arg4,argS,arg6) 
real*8 argl,arg2,arg3,arg4,argS,arg6 

call pline{argl-arg4,arg2-argS,arg3-arg6.argl+arg4,arg2-arg5.arg3-arg6,2) 
call pplot(argl+arg4,arg2+argS,arg3-arg6,2) 
call pplot(argl-arg4,arg2+arg5,arg3-arg6,2) 
call pplot{argl-arg4,arg2-arg5,arg3-arg6,2) 
call pplot(argl-arg4,arg2-argS.arg3+arg6,2) 
call pplot(argl+arg4,arg2-argS,arg3+arg6,2) 
call pplot(argl+arg4,arg2+argS,arg3+arg6.2) 
call pplot(argl-arg4,arg2+arg5,arg3+arg6,2) 
call pplot{argl-arg4,arg2-arg5,arg3+arg6,2) 
call pline{argl+arg4,arg2-arg5,arg3-arg6,argl+arg4,arg2-arg5,arg3+arg6,2) 
call pline{argl+arg4,arg2+arg5,arg3-arg6,argl+arg4,arg2+arg5,arg3+arg6,2) 
call pline{argl-arg4,arg2+arg5.arg3-arg6,argl-arg4,arg2+argS,arg3+arg6,2) 
return 
end 

3-536 210384-001 



c 
c 
c 
c 
c 
c 

17 

18 
19 
20 
21 
22 
23 
24 

c 
c 
c 
c 
c 
c 
c 

25 
26 

27 

28 
29 
30 
31 

32 
33 
34 
35 
36 
37 
38 

Ap·144 

arrow( ) 

arrow() draws a sort-of arrow from (0,0,0) to (1,0,0) 

subroutine arrow() 

call p1ine(0.,0.,0.,1.,0.,0.,2) 
call p1ine(1. ,0. ,0., .8, .2,0.,2) 
call pline(I.,0.,0.,.8,0.,.2,2) 
call pline(I.,0.,0.,.8,-.2,0.,2) 
call pline(1.,O.,O.,.8,O.,-.2,2) 
return 
end 

pyrmd(argl,arg2,arg3,arg4,arg5,arg6) 

pyrmd() draws a pyramid with the center of it's base at 
(argl,arg2,arg3) and half x,y,z widths of arg4,arg5,arg6. 
The height is the x half width. 

subroutine pyrmd(argl,arg2,arg3,arg4,arg5,arg6) 
real*8 argl,arg2,arg3,arg4,arg5,arg6 

real*8 height 

call pline(argl-arg4,arg2-arg5,arg3-arg6,argl+arg4,arg2-arg5,arg3-arg6,2) 
call pplot(argl+arg4,arg2+arg5,arg3-arg6,2) 
call pplot(argl-arg4,arg2+arg5,arg3-arg6,2) 
call pplot(argl-arg4,arg2-arg5,arg3-arg6,2) 

height = arg4 - argl 
call pline(argl-arg4,arg2-arg5,arg3-arg6,argl,arg2,arg3+height,2) 
call pline(argl+arg4,arg2-arg5,arg3-arg6,argl,arg2,arg3+height,2) 
call pline(argl-arg4,arg2+arg5,arg3-arg6,argl,arg2,arg3+height,2) 
call pline(argl+arg4,arg2+arg5,arg3-arg6,argl,arg2,arg3+height,2) 
return 
end 

3-537 210384-001 



c 
c 
c 
c 
c 
c 
c 
c 
c 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 
11 110 
12 
13 100 
14 
15 
16 
17 120 
18 
19 

c 
c 
c 
c 
c 
c 
c 
c 
c 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 110 
30 
31 100 
32 
33 
34 120 
35 
36 

Ap·144 

subroutine mmu1t4(mp1,mp2,mpr) 

subroutine mmu1t4 multiplies the mp1 4x4 matrix 
and multiplies it by the mp2 4x4 matrix. the result is 
placed in the mpr 4x4 matrix. internal results are placed 
in a temporary matrix, then copied over in order that one of 
the operands may be used as the destination matrix 

subroutine mmu1t4(mp1,mp2,mpr) 
rea1*8 mp1(4,4),mp2(4,4),mpr(4,4) 
rea1*8 acc 
real*8 temp(4,4) 
integer i,j,k 

do 100 i=1,4 
do 100 j=1,4 

acc = O. 
do 110 k=1,4 

acc acc + mpl(i,k)*mp2(k,j) 
continue 
temp(i,j) acc 

continue 
do 120 i=1,4 

do 120 j=1,4 
mpr(i,j) temp(i,j) 

continue 
return 
end 

subroutine mmultl(mp1,mp2,mpr) 

subroutine mmu1tl multiplies the mp1 4 position vector 
by the mp2 4x4 matrix. _the result is put in the mpr 4 
position vector. results are calculated into a temporary 
vector, then copied over so that the mpl vector may be used 
as the destination of the result 

subroutine mmu1t1(mp1,mp2,mpr) 
real*8 mp1(4),mp2(4,4),mpr(4) 
rea1*8 acc 
real*8 temp(4) 
integeri,j,k 

do 100 j=1,4 
acc = O. 
do 110 k=1,4 

acc = acc + mp1(k)*mp2(k,j) 
continue 
temp(j) = acc 

continue 
do 120 i=1,4 
mpr(i) = temp(i) 
continue 
return 
end 

3-538 210384·001 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

1 
2 
3 
4 
5 
6 

7 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

AP·144 

subroutine plot(x,y,penc) 

subroutine plot plots a line from the current pen position to 
the given pen position using the pencode given. The possible 
pen codes are: 

2: pen down 
3: pen up 
999: terminate plotting 

the actual interface described here if for the serial port on the 
iSBC 86/12a board connected to an HP7225A flat bed plotter. no 
handshaking is done. 

subroutine plot(x,y,penc) 
real*8 x,y 
integer penc 
common /penpos/xpos,ypos,pcount 
real*8 xpos,ypos 
integer*4 pcount 

pcount = pcount + 1 

if(penc .eq. 999) then 
call putout( 'p') 
call putout('U') 
call putout('~ ') 

endif 

print *, 'the number of points plotted is:' ,pcount 
goto 200 

if«xpos.eq.x).and.(ypos.eq.y» then 

else 

if(penc .eq. 2) then 
call putout('P') 
call putout('D') 
call putout('~') 
call putout('P') 
call putout('U') 
call putout('~') 

else 
goto 200 

endif 

if(penc .eq. 3 ) then 
call putout ( 'P' ) 
call putout ( 'U') 

else if(penc .eq. 2) then 
call putout ( 'p' ) 
call putout ( , D' ) 

else 
call putout ( 'P' ) 
call putout ( 'U') 
call putout ( , ~ , ) 
goto 200 

endif 

3·539 210384-001 



39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 200 
52 

c 
c 
c 
c 
c 
c 
c 
c 

53 
54 
55 
56 
57 
58 

59 
60 
61 
62 
63 
64 
65 
'66 
67 
68 
69 
70 
71 
72 
73 100 
74 
75 
76 

-end if 
xpos = x 
ypos .. y 
return 
end 

Ap·144 

call putout(';') 
call putout('p') 
call putout('A') 
if(x .gt. 12) x - 12 
call ponum(x) 
call putout(',') 
if(y .gt. 10) y - 10 
call ponum(y) 
call putout(';') 

subroutine ponum(number) 

subroutine ponum takes the given double precision real number, 
truncates it to integer, then runs the resultant integer out 
the iSBC 86/l2a serial port. leading zeros are suppressed. 
the maximum number is 99999111 

subroutine ponum(number) 
real*8 number 
character lookup(9) 
logical flag 
integer multip(5) 
integer work 

data lookup/Ill, '2',13','4', '5',16' ,'7','S','9'/ 
data multip/lOOOO,lOOO,lOO,lO,ll 
flag = • falSe. 
if(number .It. 0) number" O. 
number = number * 800. 
do 100 i .. 1,5 
work = aint(number 1 real(multip(i») 
if(work .eq. 0) then 

el'se 

endif 

if(flag) call putout('O') 

call putout(lookup(work» 
flag ... true. 

number .. number - work * multip(i) 
continue 
if(.not. flag) call putout('O') 
return 
end 

r 

3-540 210384-001 



c 
c 
c 
c 
c 
c 
c 
c 

77 
78 
79 

80 
81 
82 
83 
84 

85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 

c 
c 
c 
c 
c 
c 
c 

96 
97 
98 

99 100 
100 
101 

102 
103 
104 

c 
c 
c 
c 
c 
c 

105 
106 
107 

AP·144 

subroutine plots 

subroutine plots initialized the iSBC86/l2 board baud rate 
generator(really part of the 8253 timer) and serial line. 
the given numbers will set it up for 600 baud, 8 bits, no 
parity 

subroutine plots 
common /penpos/xpos,ypos 
real*8 xpos,ypos 

xpos 
ypos 
call 
call 
call 

10000. 
10000. 

output(#Od6h,intl(#Ob6h» 
output(#Od4h,intl(#80h» 
output(#Od4h,intl(0» 

calloutput(#Odah,intl(#72h» 
call wastet 
call output(#Odah,intl(#25h» 
call wastet 
calloutput(#Odah,intl(#62h» 
call wastet 
call output(#Odah,intl(#Oceh» 
call wastet 
calloutput(#Odah,intl(#27h» 
return 
end 

subroutine putout(c) 

subroutine putout puts the character given out on the iSBC 86/12 
board serial line (checks for transmitter empty, loops on not empty, 
on empty puts out the character) 

subroutine putout(c) 
character c 
integer· 1 status 

call input(#Odah,status) 
status = status .and. 4 

if(status .eq. 0) goto 100 

calloutput(#Od8h,intl(ichar(c») 
return 
end 

subroutine wastet 

subroutine wastet wastes a little bit of time while the 8253 gets 
its act together 

subrou~ine wastet 
return 
end 

3-541 210384-001 



APPENDIX B 

run : f5:graph 
'define' 1 / 
'viewport' ?.5 2.5 ~ 2 / 
'viewpoint ' 10 10 IO f) 0 0 I 
, windo\/' l() lrl I 
'cube' () () () /. 2 ~ / 
'viewport' 7.5 2.5 ? '2 / 
I rotate I 15 15 IS / 
'cub(" () 'l () ? /. ;> / 
I vie\..,port I '.5 7.'i 2 '2 / 
'id~nt' I 
'vlp.wpoint' 10 0 0 0 (l 0 I 
'cub~' 0 () 0 2 ? '- / 
'viewport' 7.S 7.5 2 '1 / 
'roti'tte' 3() 30 3() / 
'cube' 0 () () :2 ? 2 I 
I en(lrief' I 
'call' I / 
I end I I 

3-542 210384-001 



© INTEL CORPORATION, 1983 

APPLICATION 
NOTE 

3-543 

AP-186 

March 1983 

ORDER NUMBErR: 210973-003 



AP-186 

1. INTRODUCTION 

As state of the art technology has increased the number 
of transistors possible on a single integrated circuit, 
these devices have attained new, higher levels of both 
performance and functionality. Riding this crest are the 
Intel 80186 and 80286 microprocessors. While the 
80286 has added memory protection and management 
to the basic 8086 architecture, the 80186 has integrated 
six separate functional blocks into a single device. 

The purpose of this note is to explain, through example, 
the use of the 80186 with various peripheral and mem­
ory devices. Because the 80186 integrates a DMA unit, 
timer unit, interrupt controller unit, bus controller unit 
and chip select and ready generation unit with the CPU 

on a single chip (see Figure 1), system construction is 
simplified since many of the peripheral interfaces are in­
tegrated onto the device. 

The 80186 family actually consists of two processors: the 
80186 and 80188. The only difference between the two 
processors is that the 80186 maintains a 16-bit external 
!lata bus while the 80188 has an 8-bit external data bus. 
Internally, they both implement the same processor with 
the same integrated peripheral components. Thus, ex­
cept where noted, all 80186 information in this note also 
applies to the 80188. The implications of having an 8-bit 
external data bus on the 80188 are explicitly noted in ap­
pendix I. Any parametric values included in this note are 
taken from the iAPX 186 Advance Information data 
sheet, and pertain to 8Mhz devices. 

INT3IINTAI 

SRDY 
ARDY 

TEST 
HOLD 
tiLDA 

liES 
RESET 

- .. 
- .. 
- .. 
- .. 
::: .. ... 

INT2IIIiITAO 

CLKOUT Vee GND INn TMR OUT 1 TMR OUT 0 

rD~ !! NTI INi"' 
TMR I~ t TMR IN t 

1 1 
I I 'EXECUTION uNiTJ ! ! t t 

PROGRAMMABLE 

X, X, 
TIMERS 

I 0 1 2 
16·BIT I MAX COUNT BS:S 
AW I PROGRAMMABLE REGISTER B :-. 

CLOCK I 
INTERRUPT 

MAX COUNT CONTROLLER 
GENERATOR I REGISTER A 

16·BIT 
GENERAL I CONTROL REGISTERS 
PURPOSE I REGISTERS CONTROL,] 16·BIT 

.J REGISTERS COUNT REGISTER 

) {( {' 
INTERNAL BUS 

J U U r .--DRQO 
DRQl 

CHIP-SELECT 
UNIT 

BUS INTERFACE 
UNIT I&-BIT 

SEGMENT 
REGISTERS 

&-BYTE PROGRAMMABLE I 
CONTROL 

PREFETCH REGISTERS 
QUEUE 

I I I I 
DEN 1-1 

LOCK 
llLH 
RD ADO-' AI6/S3-

u!sl 
LCS 

DTIFI BHE/S7 AD15 AI91S6 

Figure 1. 80186 Block Diagram 

3-544 

PROGRAMMABLE 
DMAUNIT 
o 1 

2O·BIT 
SOURCE POINTERS 

~ 2O·BIT 
DESTINATION 

POINTERS 

16·BIT 
TRANSFER COUNT 

Il 
CONTROL 

REGISTERS 

!.L PCS6IA2 

PCS5IAI 

210973-003 



inter AP-186 

2. OVERVIEW OF THE 80186 

2.1 The CPU 

The 80186 CPU shares a common base architecture 
with the 8086, 8088 and 80286. It is completely object 
code compatible with the 8086/88. This architecture 
features four 16-bit general purpose registers (AX,BX, 
CX,DX) which may be used as operands in most arith­
metic operations in either 8 or 16 bit units. It also fea­
tures four 16-bit "pointer" registers (SI,DI,BP,SP) 
which may be used both in arithmetic operations and in 
accessing memory based variables. Four 16-bit segment 
registers (CS,DS,SS,ES) are provided' allowing simple 
memory partitioning to aid construction of modular pro­
grams. Finally, it has a 16-bit instruction pointer and a 
16-bit status register. 

Physical memory addresses are generated by the 80186 
identically to the 8086. The 16-bit segment value is left 
shifted 4 bits and then is added to an offset value which 
is derived from combinations of the pointer registers, the 
instruction pointer, and immediate values (see Figure 
2). Any carry out of this addition is ignored. The result 
of this addition is a 20-bit physical address which is pre­
sented to the system memory. 

The 80186 has a 16-bit ALU which performs 8 or 16-bit 
arithmetic and logical operations. It provides for data 
movement among registers, memory and I/O space. In 
addition, the CPU allows for high speed data transfer 
from one area of memory to another using string move 
instructions, and to or from an I/O port and memory us­
ing block I/O instructions. Finally, the CPU provides a 

\ 

I" 
I' 

SEGMENT VALUE I 

OFFSET 

PHYSICAL ADDRESS I 
I· 

wealth of conditional branch and other control 
instructions . 

. In the 80186, as in the 8086, instruction fetching and in­
struction execution are performed by separate units: the 
bus interface unit and the execution unit, respectively. 
The 80186 also has a 6-byte prefetch queue as does the 
8086. The 80188 has a 4-byte prefetch queue as does the 
8088. As a program is executing, opcodes are fetched 
from memory by the bus interface unit and placed in this 
queue. Whenever the execution unit requires another in­
struction, it takes it out of the queue. Effective processor 
throughput is increased by adding this queue, since the 
bus interface unit may continue to fetch instructions 
while the execution unit executes a long instruction. 
Then, when the CPU completes this instruction, it does 
not have to wait for another instruction to be fetched 
from memory. 

2.2 80186 CPU Enhancements 
Although the 80186 is completely object code compati­
ble with the 8086, most of the 8086 instructions require 
fewer clock cycles to execute on the 80186 than on the 
8086 because of hardware enhancements in the bus in­
terface unit and the execution unit. In addition, the 
80186 provides many new instructions which simplify 
assembly language programming, enhance the perfor­
mance of high level language implementations, and re­
duce object code sizes for the 80186. These new 
instructions are also included in the 80286. A complete 
description of the architecture and instruction execution 
of the 80186 can be found in volume I of the 
iAPX86/186 users manual. The algorithms for the new 
instructions are also given in appendix H of this note. 

16 BITS -I 
16 BITS 'I 

I 
+ 

= 
I 

20 BITS -I 

Figure 2. Physical Address GeDeration in the 80186 

3-545 210973-003 



AP-186 

2.3 DMA Unit 

The 80186 includes a DMA unit which provides two 
high speed DMA channels. This DMA unit will perform 
transfers to or from any combination of I/O space and 
memory space in either byte or word units. Every DMA 
cycle requires two to four bus cycles, one or two to fetch 
the data to an internal register, and one or two to deposit 
the data. This allows word data to be located on odd 
boundaries, or byte data to be moved from odd locations 
to even locations. This is normally difficult, since odd 
data bytes are transferred on the upper 8 data bits of the 
l6-bit data bus, while even data bytes are transferred on 
the lower 8 data bits of the data bus. 

Each DMA channel maintains independent 20-bit 
source and destination pointers which are used to access 
the source and destination of the data transferred. Each 
of these pointers may independently address either I/O 
or memory space. After each DMA cycle, the pointers 
may be independently incremented, decremented, or 
maintained constant. Each DMA channel also.main­
tains a transfer count which may be used to terminate a 
series of DMA transfers after a pre-programmed num-
ber of transfers. ' 

2.4 Timers 

The 80186 includes a timer unit which contains 3 inde­
pendent J6-bit timer/counters. Two of these timers can 
be used to count external events, to provide waveforms 
derived from either the CPU clock or an external clock 
of any duty cycle, or to interrupt th'e CPU after a speci­
fied number of timer "events." The third timer counts 
only CPU clocks and can be used to interrupt the CPU 
after a programmable number of CPU clocks, to give a 
count pulse to either or both of the other two timers after 
a programmable number of CPU clocks, or to give a 
DMA request pulse to the integrated DMA unit after a 
programmable number of CPU clocks. 

2.5 Interrupt Controller 

The 80186 includes an interrupt controller. This control­
ler arbitrates interrupt requests between all internal and 
external sources. It can be directly cascaded as the mas­
ter to two external 8259A interrupt controllers. In addi­
tion, it can be configured as a slave controller to an 
external interrupt controller to allow complete compati­
bility with an 80130, 80150, and the iRMX@ 86 operat­
ing system. 

2.6 Clock Generator 

80186 system timing derives. The CPU clock is external­
ly available, and all timing parameters are referenced to 
this externally available signal. The clock generator also 
provides ready synchronization for the prOCessor. 

2.7 Chip Select and Ready Generation Unit 

The 80186 includes integrated chip select logic which 
can be used to enable memory or peripheral devices. Six 
output lines are used for memory addressing and seven 
output lines are used for peripheral addressing. 

The memory chip select lines are split into 3 groups for 
sliparately addressing the major memory areas in a typi­
cal 8086 system: upper memory for reset ROM, lower 
memory for interrupt vectors, and mid-range memory 
for program memory. The size of each of these regions is 
user programmable. The starting location and ending 
location of lower memory and upper memory are fixed 
at OOOOOH and FFFFFH respectively; the starting loca­
tion of the mid-range memory is user programmable. 

Each Of the seven peripheral select lines address one of 
seven contiguous 128 byte blocks above a programmable 
base address. This base address can be located in either 
memory or I/O space in order that peripheral devices 
may be I/O or memory mapped. 

Each of the programmed chip select areas has associated 
with it a set of programmable ready bits. These ready 
bits control an integrated wait state generator. This al­
lows a programmable number of wait states (0 to' 3) to 
be automatically inserted whenever an access is made to 
the area of memory associated with the chip select area. 
In addition, each set of ready bits includes a bit which 
determines whether the external ready signals (ARDY 
and SRDY) will be used, or whether they will be ignored 
(i.e., the bus cycle will terminate even though a ready 
has not been returned on the external pins). There are 5 
total sets of ready bits which allow independent ready 
generation for each of upper memory, lower memory, 
mid-range memory, peripheral devices 0-3 and peripher­
al devices 4-6. 

2.8 Integrated Peripheral AcceSSing 

The integrated peripheral and chip select circuitry is 
controlled by sets of l6-bit registers accessed using stan­
dard input, output, or memory access instructions. 
These peripheral control registers are all located within 
a 256 byte block which can be placed in either memory 

The 80186 includes a clock generator and crystal oscilla- or I/O ,space. Because they are accessed exactly as if 
tor. The crystal oscillator can be used with a parallel res- they were external devices, no new instruction types are 
onant, fundamental mode crystal at 2X the desired CPU required to access and control the integrated peripher-
clock speed (i.e., 16 MHz for an 8 MHz 80186), or with also For more information concerning the interfacing 
an external oscillator also at 2X the CPU clock. The out- and accessing of the integrated 80186 peripherals not in-
put of the oscillator is internally divided by two to pro- ' cluded in this note, please consult the 80186 data sheet, 
vide the 50% duty cycle CPU clock from which all or volume II of the iAPX86/186'users manual. 

3-546 210973-003 



AP·186 

3. USING THE 80186 

3.1 Bus Interfacing to the 80186 

3.1.1 OVERVIEW 

The 80186 bus structure is very similar to the 8086 bus 
structure. It includes a multiplexed address/data bus, 
along with various control and status lines (see Table 1). 
Each bus cycle requires a minimum of 4 CPU clock cy· 
cles along with any number of wait states required to ac­
commodate the speed access limitations of external 
memory or peripheral devices. The bus cycles initiated 
by the 80186 CPU are identical to the bus cycles initiat­
ed by the 80186 integrated DMA unit. 

In the following discussion, all timing values given are 
for an 8 MHz 80186. Future speed selections of the part 
may have different values for the various parameters. 

Each clock cycle of the 80186 bus cycle is called a "T" 
state, and are numbered sequentially T I, T2, T3, Tw and 
T4• Additional idle T states (Ti ) can occur between T4 
and TI when the processor requires no bus activity (in­
struction fetches, memory writes, I/O reads, etc.). The 
ready signals control the number or wait states (Tw) in­
serted in each bus cycle. This number can vary from 0 to 
positive infinity. 

LINES 

1,or 

T. T, 

~1 
"""1---' 

01 

I (LOW 

I PHASE) 

I 

02 

(HIGH 

PHASE) 

L 
Figure 3. T-state in the 80186 

The beginning of a T state is signaled by a high to low 
transition of the CPU clock. Each T state is divided into 
two phases, phase 1 (or the low phase) and phase 2 (or 
the high phase) which occur during the low and high lev­
els of the CPU clock respectively (see Figure 3). 

Different types of bus activity occur for all of the T­
states (see Figure 4). Address generation information 
occurs during T I, data generation during T2, T3, Tw and 

• T3 .T. 

DATA 

LINES 

ADDRESS! "T----n.~~~~ y----r-----+!--.J 
CONTROL ..,-----1"""---__n. 
SIGNALS 

(RD,WR) I' 

Figure 4. Example Bus Cycle of the 80186 

Table 1. 80186 Bus Signals 

Function Signal Name 

address/data ADO-AD15 
address/status A 16 /S3-A 19-56,BHE/S7 
co-processor control TEST 
local bus arbitration HOLD,HLDA 
local bus control ALE,RD,WR,DT /R,i5EN 
multi-master bus LOCK 
ready (wait) interface SRDY,ARDY 
status information SO-S2 

3-547 210873-003 



AP-186 

T 4' The beginning of a bus cycle is signaled by the status 
lines of the processor going from a passive state (all 
high) to an active state in the middle of the T-state im­
mediately before TI (either a T4 or a TJ Because infor­
mation concerning an impending bus cycle occurs 
during the T-state immediately before the first T-state of 
the cycle itself, two different types of T 4 and T; can be 
generated: one where the T state is immediately fol­
lowed by a bus cycle, and one where the T state is imme­
diatly followed by an idle T state. 

During the first type of T 4 or T;, status information con­
cerning the impending bus cycle is generated for the bus 
cycle immediately to follow. This information will be 
available no later than tCHSV (55ns) after the low-to­
high transition of the 80186 clock in the middle of the T 
state. During the second type of T 4 or T; the status out­
puts remain inactive (high), since no bus cycle is to be 
started. This means that the decision per the nature of a 
T 4 or T; state (Le., whether it is immediately followed by 
a T; or a T I) is decided at the beginning of the T-state 
immediately preceding the T4 or T; (see Figure 5). This 
has consequences for the bus latency time (see section 
3.3.2 on bus latency). 

3.1.2 PHYSICAL ADDRESS GENERATION 

Physical addresses are generated by the 80186 during T 1 

of a bus cycle. Since the address and data lines are mul­
tiplexed on the same set of pins, addresses must be 

T. or 

latched duri~g TI if they are required to remain stable 
for the duration of the bus cycle. To facilitate latching of 
the physical address, the 80186 generates an active high 
ALE (Address Latch Enable) signal which can be di­
rectly connected to a transparent latch's strobe input. 

Figure 6 illustrates the physical address generation pa­
rameters of the 80186. Addresses are guaranteed valid 
no greater then tCLAV (44ns) after the beginning ofT1, 

and remain valid at least tCLAX (IOns) after the end of 
T I' The ALE signal is driven high in the middle of the T 
state (either T4 or T;) immediately preceding TI and is 
driven low in the middle of T I' no sooner than tAVAL (30 
ns) after addresses become valid. This parameter 
(tAVAL) is required to satisfy the address latch set-up 
times of address valid until strobe inactive. Addresses 
remain stable on the address/data bus at least tLLAX (30 
ns) after ALE goes inactive to satisfy address latch hold 
times of strobe inactive to address invalid. 

Because ALE goes high long before addresses become 
valid, the delay through the address latches will be chief­
ly the propagation delay through the latch rather than 
the delay from the latch strobe, which is typically longer 
than the propagation delay. For the Intel 8282 latch, this 
parameter is t,vov> the input valid to output valid'tlelay 
when strobe is held active (high). Note that the 80186 
drives ALE high one full clock phase earlier than the 
8086 or the 8288 bus controller, and keeps it high 
throughout the 8086 or 8288 ALE high time (Le., the 
80186 ALE pulse is wider). 

Tw 1 T. , 
DeciSion No bus actIVity required, 
Idle bus cycles will be Inserted 

I 

CLOCK 

OUT 1 

I 
1 

STATUS 
ACTIVE I INACTIVE 
STATUS 'I STATUS 

INFO T.or 1 

Tw 
I 

,T. I T, 
Dec!s'On Another bus cycle Imme<l!ately 

CLOCK 

OUT 

STATUS 

LINES 

ACTIVE 
STATUS 

required-no Idle, bus cycles 

1 

ACTIVE 
STATUS 

Figure 5. Active-Inactive Status Transitions in the 80186 

3-548 210973-003 



CLOCK 

OUT 

ALE 

T,OR 

T, 

AO-A19 ------i--t--' 

NOTES: 

AP-186 

T, 

1. tCHlH: Clock high to ALE high=35 ns max 
2. tclAV: Clock low to address valid=44 ns max 

3. tCHll: ClOCK high to ALE low=35 ns max 
4. tclAX: Clock low to address invalid (address hold from clock low)= 10 ns 

min 
5. tlLAX: ALE low to address invalid (address hold from ALE)=30 ns min 
6. tAVAl: Address valid to ALE low (address setup to ALE)=30 ns min 

Figure 6. Address Generation Timing of the 80186 , 

A typical circuit for latching physical addresses is shown 
in Figure 7. This circuit uses 3 8282 transparent octal 
non-inverting latches to demultiplex all 20 address bits 
provided by the 80186. Typically, the upper 4 address 
bits are used only to select among various memory cOm­
ponents or subsystems, so when the integrated chip se-

lects (see section 8) are used, these upper bits need not 
be latched. The worst case address generation time from 
the beginning of T 1 (including address latch propaga­
tion time (t[vov) of the Intel 8282) for the circuit is: 

186 SIGNALS 

A16-

A19 

AD8-

AD15 

ADO­

AD7 

ALE 

/4 
/ 

/8 
/ 

8 

/ 

8282 

I 

STB 

r--- OE 

8282 

I 

STB 

-- OE 

8282 

I 

STB 

-- OE 

-

0 

0 

0 

tCLAV (44ns) + t[VOV (30ns) = 74ns 

LATCHED ADDRESS 
SIGNALS 

L4 
A16-A19 

/ 

/8 
/ A8-A15 

AO·A7 
/8 

/ 

Figure 7. Demultiplexing the Address Bus of the 80186 

3-549 210973-Q03 



AP-186 

Many memory or peripheral devices may not require ad­
dresses to remain stable throughout a data transfer. Ex­
amples of these are the 80130 and 80150 operating 
system firmware chips, and the 2186 8K x 8 iRAM. If a 
system is constructed wholly with these types of devices, 
addresses need not be latched. In addition, two of the pe­

,ripheral chip select outputs of the 80186 may be config­
ured to provide latched Al and A2 outputs for 
peripheral register selects in a system which does not de­
multiplex the address/data bus. 

One more signal is generated by the 80186 to address 
memory: BHE (Bus High Enable). This signal, along 
with AO, is used to enable byte devices connected to ei­
ther or both halves (bytes) of the 16-bit data bus (see 
section 3.1.3 on data bus operation section). Because AO 
is used only to enable devices onto the lower half of the 
data bus, memory chip address inputs are usually driven 
by address bits AI-AI9, NOT AO-AI9. This provides 
S12K unique word addresses, or 1 M unique BYTE 
addresses. 

Of course, BHE is not present on the 8 bit 80188. All 
data transfers occur on the 8 bits of the data bus. 

3.1.3 80186 DATA BUS OPERATION 

Throughout T2, TJ, Two and T4 of a bus cycle the multi­
plexed address/data bus becomes a 16-bit data bus. 
Data transfers on this bus may be either in bytes or in 
words. All memory is byte addressable, that is, the upper 
and lower byte of a 16-bit word each have a unique byte 
address by which they may be individually accessed, 
even though they share a common word address (see 
Figure 3-6). 

All bytes with even addresses (AO = 0) reside on the 
lower 8 bits of the data bus, while all bytes with odd ad­
dresses (AO = 1) reside on the upper 8 bits of the data 
bus. Whenever a~ess is made to only the even byte, 
AO is driven low, BHE is driven high, and the data trans­
fer occurs on 00-07 of the data bus. Whenever an ac-

cess is made to only the odd byte, BHE is driven low, AO 
is driven high, and the data transfer occurs on D8-DI5 
of the data bus. Finally, if Ii word access is performed to 
an even address, both AO and BHE are driven low and 
the data transfer occurs on 00-015. 

Word accesses are made to the addressed byte and to the 
next higher numbered byte. If a word access is per­
formed to an odd address, two byte accesses must be per­
formed, the first to access the odd byte at the first word 
address on 08-015, the second to access the even byte 
at the next sequential word address on 00-07. For ex­
ample, in Figure 8, byte 0 and byte 1 can be individually 
accessed (read or written) in two separate bus cycles 
(byte accesses) to byte addresses 0 and 1 at word address 
O. They may also be accessed together in a single bus cy­
cle (word access) to word address O. However, if a word 
access is made to address I, two bus cycles will be re­
quired, the first to access byte 1 at word address 0 (note 
byte 0 will not be accessed), and the second to access 
byte 2 at word address 2 (note byte 3 will not be ac­
cessed). This is why all word data should be located at 
even addresses to maximize processor performance. 

When byte reads are made, the data returned on the half 
of the data bus not being accessed is ignored. When byte 
writes are made, the data driven on the half of the data 
bus not being written is indeterminate. 

3.1.4 80188 DATA BUS OPERATION 

Because the 80188 externally has only an8 bit data bus, 
the above discussion about upper and lower bytes of the 
data bus does not apply to the 80188. No performance 
improvement will occur if word data is placed on even 
boundaries in memory space. All word accesses require 
two bus cycles, the first to access the lower byte of the 
word; the second to access the upper byte of the word. 

Any 80188 access to the integrated peripherals must be 
done 16 bits at a time: thus in this special case, a word 
access will occur in a single bus ~ycle in the 80188. The 

r.:18-BITS~ 
8 aITS-\-8 alTS 

WORD ADDRESS I 
4 5 4 IHM--2 3 2 

0 0 

IN aYTE FIELD 

D8- DO- 80188 SIGNAL 
D15 D7 CONNECTIONS 

Figure 8. Physical Memory Byte/Word Addressing in the 80186 

210873-003 



AP-186 

external data bus will record only a single byte being 
transferred, however. 

3.1.5 GENERAL DATA BUS OPERATION 

Because of the bus drive capabilities of the 80186 
(200pF, sinking 2mA, sourcing 400uA, roughly twice 
that of the 8086), this bus may not require additional 
buffering in many small systems. If data buffers are not 
used in the system, care should be taken not to allow bus 
contention between the 80186 and the devices directly 
connected to the 80186 data bus. Since the 80186 floats 
the address/data bus before activating any command 
lines, the only requirement on a directly connected de­
vice is that it floats its output drivers after a read BE­
FORE the 80186 begins to drive address information for 
the next bus cycle. T~arameter of interest here is the 
minimum time from RD inactive until addresses active 
for the next bus cycle (tRHAV) which has a minimum val­
ue of 85ns. If the memory or peripheral device cannot 
disable its output drivers in this time, data buffers will 
be required to prevent both the 80186 and the peripheral 
or memory device from driving these lines concurrently. 
Note, this parameter is unaffected by the addition of 
wait states. Data buffers solve this problem because 
their output float times are typically much faster than 
the 80186 required minimum. 

If buffers are required, the 80186 provides a DEN (Data 
ENable) and DT /R (Data Transmit/Receive) s!gnals 
to simplify buffer interfacing. The DEN and DT /R sig-

80188 SIGNAL 

AD8·D15 

DEN 

BUFFERED 

DEVICES 

SELECT 

ADO· AD7 

DT/A 

S 
L8 

~ 
J " ./ ,...... 

8 

nals are activated during all bus cycles, whether or not 
the cycle addresses buffered devices. The DEN signal is 
driven low whenever the processor is either ready to re­
ceive data (during a read) or when the processor is ready 
to send data (during a write) (that is, any time during an 
active bus cycle when address information is not being 
generated on the address/data pins). Inmost systems, 
the DEN signal should NOT be directly connected to 
the OE input of buffers, since unbuffered devices (or 
other buffers) may be directly connected to the proces­
sor's address/data pins. If DEN were directly connected 
to several buffers, contention would occur during read 
cycles, as many devices attempt to drive the processor 
bus. Rather, it should be a factor (along with the chip se­
lects for buffered devices) in generating the output en­
able input of a bi-directional buffer. 

The DT /R signal determines the direction of data prop­
agation through the bi- directional bus buffers. It is high 
whenever data is being driven out from the processor, 
and is low whenever data is being read into the processor. 
Unlike the DEN signal, it may be directly connected to 
bus buffers, since this signal does not usually directly en­
able the output drivers of the buffer. An example data 
bus subsystem supporting both buffered and unbuffered 
devices is shown in Figure 9. Note that the A side of the 
8286 buffer is connected to the 80186, the B side to the 
external device. The B side of the buffer has greater 
drive capacity than the A side (since it is meant to drive 
much greater loads). The DT /R signal can directly 
drive the T (transmit) signal of the buffer, since it has 
the correct polarity for this configuration. 

8286 
A 

OE B 

T 

8288 

A 

OE B 

T 

L.8 
/ 

L8 
/ 

/8 

, /8 

, 

D8· 

AD15 

DO· 

D7 

BUFFERED 

DATA 

BUS 

UNBUFFERED 

} DATA 

BUS 

Figure 9. Example 80186 Buffered/Unbuffered Data Bus 

3-551 210973-003 
I 



inter AP-186 

CLOCK 
OUT 

ADO· -----I.) 

AD15 ~~~j;-j"--=-t~-+-LA-:::A-l----

1.lcLAZ: Clock low until address lIoat=35 ns max 
2. tCLRL: Clock low until RD active = 70 ns max 
3. tAZRL: Address float until RD active = 0 ns min 
4. tOVCL: Data valid until clock low (data input set·up time) = 20 ns.,min" 
5. tCLDX: Clock low until data invalid (data input hold time from clock) = 10 

nsmin" 
6. tCLRH: Clock low unlil RD high = 10 ns min 
7. tRHAV: RD high until addresses valid = 85 ns min 
8. tRHOX: Read high until data invalid (data input hold from RD) = O. ns min" 
• Input requirements of 80186, all others are output characteristics 

Figure 10. Read Cycle Timing of the 80186 

3.1.6 CONTROL SIGNALS 

The 80186 direc.!!LE!:ovides the control signals RD, 
WR, LOCK and TEST. In addition, the 80186 provides 
the status signals SO-S2 and S6 from which all other re­
quired bus control signals can be generated. 

3.1.6.1 RD and WR 

The RD and WR sis!!.als strobe data to or from memory 
or I/O space. The RD signal is driven low off the begin­
?ing of T 2' and is driven high off the beginning 00:.. dur­
mg all memory and I/O reads (see Figure 10). RD will 
not become active until the 80186 has ceased driving ad­
dress information on the address/data bus. Data is sam­
pled into the processor at the beginning of T4. RD will 
not go inactive until the processor's data hold time 
(lOns) has been satisfied. 

LATCH 

52 ------.tD 

ALE ------+I STB 

Note that the 80186 does not provide separate I/O and 
memory RD signals. If separate I/O read and memory 
read.!!gnals are required, they can be synthesized using 
the S2 signal (which is low for all I/O ~ations and 
high for all memory operations) and the RD signal (see 
Figure 1!1. It should be noted that if this approach is 
used, the S2 signal will require latching, since the S2 sig­
nal (like SO and S I) goes t.Q..!.passive state well before 
the beginning ofT4 (where RD goes inactive). IfS2 was 
directly u~ed for this purpose, the type of read command 
(I/O or memory) could change just before T4 as S2 goes 
to the passive state (high). The status signals may be 
latched using ALE in an identical fashion as is used to 
latch the address signals (often using the spare bits in 
the address latches). 

Often the lack of a seperate I/O and memory RD signal 

RD ------------------------~4_~ 

Figure 11. Generating I/O and Memory Read Signals from the 80186 

3-552 210973-003 



AP-186 

is not important in an 80186 system. Each of the 80186 
chip select signals will respond on only one of memory or 
I/O accesses (the memory chip selects respond only to 
accesses memory space; the peripheral chip selects can 
respond to accesses in either I/O or memory space, at 
programmer option). Thus, the chip select signal en­
ables the external device only during accesses to the 
proper address in the proper space. 

The WR signal is also driven low off the beginni!!.&2f T 2 

and driven high off the beginning ofT4• Like the RD sig­
nal, the WR signal is active for all memory and I/O 
writes, and also like the RD signal, separate I/O and 
memory writes may b~nerated using the latched S2 
signal along with the WR signal (see Figure 12). More 

T, 

ADO-

importantly, however, is the active going edge of write. 
At the time WR makes its active (high to low) transi­
tion, valid write data is NOT present on the data bus. 
This has consequences when using this signal as a write 
enable signal for DRAMs and iRAMs since both of 
these devices require that the write data be stable on the 
data bus at the time of the inactive to active transition of 
the WE signal. In DRAM applications, this problem is 
solved by a DRAM controller (such as the Intel 8207 or 
8203). while with iRAMs this problem may be solved by 
placing cross-coupled NAND gates between the CPU 
and the iRAMs on the WR line (see fture 13). This 
will delay the active going edge of the WR signal to the 
iRAMs by a clock phase, allowing valid data to be driv­
en onto the data bus. 

T, T. 

AD15 ... ~=-~~J~ ______ ~~~ __ -fr-____ ~~I~~~ __ _ 

WR 

I I 

1. tClOV: Clock low until data valid = 44 ns max 
2. tCVCTV : Clock low until WR active ~ 70 ns max 
3. tcvCTX: Clock low until WR inactive = 55 ns max 
4. tClOOX: Clock high until data Invalid = 10 ns max 

5. WR inactive until data invalid = tCLCL min - tCVCTX + tClOOX 

= 125 - 55 + 10 

= 80 ns 

Figure 12. Write Cycle Timing of the 80186 

CLKOUT --------~r-~ 

DELAYED 

WRITE 

(DATA VALID 

ON LEADING EDGE) 

Figure 13. Synthesizing Delayed Write from the 80186 

3-553 
210973-003 



inter AP-186 

3.1.6.2 Queue Status Signals 

If the RD line is externally grounded during reset and 
remains grounded during processor operation, the 
80186 will~er "queue status" mode. When in this 
mode, the WR and ALE signals J:>ecome queue status 
outputs, reflecting the status of the internal prefetch 
queue during each clock cycle. These signals are pro­
vided to allow a processor extension (such as the Intel 
8087 floating point processor) to track execution of in­
structions within the 80186. The interpretation of QSO 
(ALE) and QSl (WR) are given in Table 2. These sig­
nals change on the high-to-Iow clock transition, one 
clock phase earlier than on the 8086. Note that since ex­
ecution unit operation is independent of bus interface 
unit operation, queue status lines may change in any T 
state. 

Table 2. 80186 Queue Status 

QS1 QSO Interpretation 

0 0 no operation 

0 1 first byte of instruction taken 
from queue 

1 0 queue was reinitialized 

1 I subsequent byte of instruction 
taken from queue 

Since the ALE, RD, and WR signals are not directly 
available from the 80186 when it is configured in queue 
status mode, these signals must be derived from the sta­
tus lines SO-S2 using an external 8288 bus controller 
(see below). To prevent the 80186 from accidentally en­
tering queue status mode during reset, the RD line is in­
ternally provided with a weak pullup device. RD is the 
ONLY three-state or input pin on the 80186 which is 
supplied with a pullup or pUlldown device. 

3.1.6.3 Status Lines 

The 80186 provides 3 status outputs which are used to 
indicate the type of bus cycle currently being executed. 
These signals go from an inactive state (all high) to one 
of seven possible active states during the T state immedi­
ately preceding T] of a bus cycle (see Figure 5). The pos­
sible status line encodings and their interpretations are 
given in Table 3. The stafus lines are driven to their inac­
tive state in the T state (T3 or Tw) immediately preced­
ing T 4 of the current bus cycle. 

The status lines may be directly connected to an 8288 
bus controller, which can be used to provide local bus 
control signals or multi-bus control signals (see Figure 
14). Use of the 8288 bus controller does not preclude the 
'use of the 80186 generated RD, WR and ALE signals, 
however. The 80186 directly generated signals may be 
used to provide local bus control signals, while an 8288 is 
used to provide multi-bus control signals, for example. 

80186 

,3 8288 
SO-52 / SO'52 

BUS CONTROL 

CLOCK 
SIGNALS 

OUT ClK 

Figure 14. 80186/8288 Bus Controller 
Interconnection 

Table 3. 80186 Status Line Interpretation 

S2 S1 SIJ Operation 

0 0 0 interrupt acknowledge 
0 0 1 read I/O 
0 1 0 write I/O 
0 1 1 halt 
1 0 0 instruction fetch 
1 0 1 read memory 
1 1 0 write memory 
1 1 1 passive 

The 80186 provides two additional status signals: S6 
and S7. S7 is equivalent to BHE (see section 3.1.2) and 
appears on the same pin as BHE. BHE/S7 changes 
state, reflecting the bus cycle about to b~ run, in the mid­
dle of the T state (T4 or T) immediately preceding T] of 
the bus cycle. This means that BHE/S7 does not need to 
be latched, i.e., it may be used directly as the BHE sig­
nal. S6 provides information concerning the unit gener­
ating the bus cycle. It is time multiplexed with A19, and 
is available during T 2' T 3' T 4 and Tw' In the 8086 family, 
all central processors (e.g., the 8086, 8088 and 8087) 

, drive this line low, while all I/O processors (e.g., 8089) 
drive this line high during their respective bus cycles. 
Following this scheme, the 80186 drives this line low 
whenever the bus cycle is generated by the 80186 CPU, 
but drives it high when the bus cycle is generated by the 
integrated 80186 DMA unit. This allows external de­
vices to distinguish between bus cycles fetching data for 
the CPU from those transfering data for the DMA unit. 

Three other status signals are available on the 8086 but 
not on the 80186. They are S3, S4, and S5. Taken to­
gether, S3 and S4 indicate the segment register from 
which the current physical address derives. S5 indicates 
the state of the interrupt flip-flop. On the 80186, these 
signals will ALWAYS be low. 

3.1.6.4 TEST and LOCK 

Finally, the 80186 provides a TEST input and a LOCK 
output. The TEST input is used in conjunction with the 

3-554 210973-003 



AP-186 

processor WAIT instruction. It is typically driven by a 
processor extension (like the 8087) to indicate whether 
it is busy. Then, by executing the WAIT (or FWAIT) in­
struction, the central processor may be forced to tempo­
rarily suspend program execution until the processor 
extension indicates that it is idle by driving the TEST 
line low. 

The LOCK output is driven low whenever the data cy­
cles of a LOCKED instruction are executed. A 
LOCKED instruction is generated whenever the LOCK 
prefix occurs immediately before an instruction. The 
LOCK prefix is active for the single instruction immedi­
ately following the LOCK prefix. This signal is used to 
indicate to a bus arbiter (e.g., the 8289) that a series of 
locked data transfers is occurring. The bus arbiter 
should under no circumstances release the bus while 
locked transfers are occurring. The 80186 will not rec­
ognize a bus HOLD, nor will it allow DMA cycles to be 
run by the integrated DMA controller during locked 
data transfers. LOCKED transfers are used in multi­
processor systems to access memory based semaphore 
variables which control access to shared system re­
sources (see AP-I06, "Multiprogramming with the 
iAPX88 and iAPX86 Microsystems," by George Alexy 
(Sept. 1980». 

On the 80186, the LOCK signal will go active during T} 
of the first DATA cycle of the locked transfer. It is driv­
en inactive 3 T-states after the beginning of the last 
DATA cycle of the locked transfer. On the 8086, the 
LOCK signal is activated immediately after the LOCK 
prefix is executed. The LOCK prefix may be executed 
well before the processor is prepared to perform the 
locked data transfer. This has the unfortunate conse­
quence of activating the LOCK signal before the first 
LOCKED data cycle is performed. Since LOCK is ac­
tive before the processor requires the bus for the data 
transfer, opcode pre-fetching can be LOCKED. Howev­
er, since the 80186 does not activate the LOCK signal 
until the processor is ready to actually perform the 
locked transfer, locked pre-fetching will not occur with 
the 80186. 

Note that the LOCK signal does not remain active until 
the ehd of the last data cycle of the locked transfer. This 
may cause problems in some systems if, for example, the 
processor requests memory access from a dual ported 
RAM array and is denied immediate access (because of 
a DRAM refresh cycle, for example). When the proces­
sor finally is able to gain access to the RAM array, it 
may have already dropped its LOCK signal, thus allow­
ing the dual port controller to give the other port access 
to the RAM array instead. An example circuit which 
can be used to hold LOCK active until a RDY has been 
received by the 80186 is shown in Figure 15. 

3.1.7 HALT TIMING 

A HALT bus cycle is used to signal the world that the 

80186 CPU has executed a HLT instruction. It differs 
from a normal bus cycle in two important ways. 

b-::-_-L.Jb--e..--- LOCK 

Figure 15. Circuit Holding Lock Active Until 
RUdy is Returned 

The first way in which a HALT bus cycle differs from a 
normal bus cycle is tha t since the processor is entering a 
halted state, none of the control lines (RD or WR) will 
be driven active. Address and data information will not 
be driven by the processor, and no data will be returned. 
The second way a HALT bus cycle differs from a normal 
bus cycle is that the SO-S2 status lines go to their passive 
state (all high) during T 2 of the bus cycle, well before 
they go to their passive state during a normal bus cycle. 

'Like a normal bus cycle, however, ALE is driven active. 
Since no valid address information is present, the infor­
mation strobed into the address latches should be ig­
nored. This ALE pulse can be used, however, to latch the 
HALT status from the SO-S2 status lines. 

The processor being halted does not interfere with the 
operation of any of the 80186 integrated peripheral 
units. This means that if a DMA transfer is pending 
while the processor is halted, the bus cycles associated 
with the DMA transfer will run. In fact, DMA latency 
time will improve while the processor is halted because 
the DMA unit will not be contending with the processor 
for access to the 80186 bus (see section 4.4.1). 

3.1.8 8288 AND 8289 INTERFACING 

The 8288 and 8289 are the bus controller and multi­
master bus arbitration devices used with the 8086 and 
8088. Because the 80186 bus is similar to the 8086 bus, 
they can be directly used with the 80186. Figure 16 
shows an 80186 interconnection to these two devices. 

The 8288 bus co!!!roller generates control signals (RD, 
WR, ALE, DT fR, DEN, etc.) for an 8086 maximum 
mode system. It derives its information by decoding sta­
tus lines SO-S2 of the processor. Because the 80186 and 
the 8086 drive the same status information on these 
lines, the 80186 can be directly connected to the 8288 
just as in an 8086 system. Using the 8288 with the 80186 
does not prevent using the 80186 control signals directly. 
Many systems require both local bus control signals and 
system bus control signals. In this type of system, the 
80186 lines could be used as the local signals, with the 

3-555 210973-003 



Ap·186 

80186 

TO MULTI-MASTER BUS 

ADDRESS LATCHES. 

DATA BUFFERS 

8288 
Slj-t--_.j SO- ALE 
S2 S2 DEN 

DT/R 

CLOCKOUT H-f-.j CLK 

Figure 16. 80186/8288/8289 Interconnection 

8288 lines used as the system signals. Note that in an 
80186 system, the 8288 generated ALE pulse occurs lat­
er than that of the 80186 itself. In many multimaster 
bus systems, the 8288 ALE pulse should be used to 
strobe the addresses into the system bus address latches 
to insure that the address hold times are met. 

The 8289 bus arbiter arbitrates the use of a multi-mas­
ter system bus among various devices each of which can 
become theJ!.uLmaster. This component also decodes 
status lines SO-S2 of the processor directly to determine 
when the system bus is required. When the system bus is 
required, the 8289 forces the processor to wait until it 

ARDY 

has acquired control of the bus, then it allows the proces­
sor to drive address, data and control information onto 
the system bus. The system determines when it requires 
system bus resources by an address decode. Whenever 
the address being driven coincides with the address of an 
on-board resource, the system bus is not required and 
thus will not be requested. The circuit shown factors the 
80186 chip select lines to determine when the system bus 
should be requested, or when the 80186 request can be 
satisfied using a local resource. 

3.1.9 READY INTERFACING 

The 80186 provides two ready lines, a synchronous 
ready (SRDY) line and an asynchronous ready 
(ARDY) line. These lines signal the processor to insert 
wait states (Tw) into a CPU bus cycle. This allows slower 
devices to respond to CPU service requests (reads or 
writes). Wait states will only be inserted when both 
ARDYand SRDY are low, i.e., only one of ARDY or 
SRDY need be active to terminate a bus cycle. Any 
number of wait states may be inserted into a bus cycle. 
The 80186 will ignore the RDY inputs during any ac­
cesses·to the integrated peripheral registers, and to any 
area where the chip select ready bits indicate that the 
external ready should be ignored. 

The timing required by the two RDY lines is different. 
The ARDY line is meant to be used with asynchronous 
ready inputs. Thus, inputs to this line will be internally 
synchronized to the CPU clock before being presented to 
the processor. The synchronization circuitry used with 
the ARD Y line is shown in Figure 17. Figure 18A and 
18B show valid and invalid transitions of the ARDY line 
(and subsequent wait state insertion). The first flip-flop 
is used to "resolve" the asynchronous transition of the 
ARDY line. It will achieve a definite level (either high 
or low) before its output is latched into the second flip-

INPUT ,-------- 80186 ---------;-1 

. I 
I I 
I D Q ...,(i)",,1 ---IL...J----
I 
Icc 

I CPU 

I CLOCK-L ________ _ 

FROM SYNCHRONOUS 
READY 

'1 . Asynchronous Resolution Flip Flop 
2. Ready Latch Flip Flop 

_ __ ...J 

TO BUS 
INTERFACE 

UNIT 

NOTE: The second flip-flop is not actually in the circuit. It is drawn here only 
to show the functional equivalent of the interface to the BIU. 

Figure 17.' Asynchronous Ready Circuitry 9f the 80186 

3-556 210973-003 



AP·186 

flop for presentation to the CPU. When latched high, it 
allows the ~el present on the AROY line to pass direct­
ly to the CPU; when latched low, it forces not ready to be 
presented to the CPU (see Appendix B for 80186 syn­
chronizer information). 

With this scheme, notice that only the active going edge 
of the AROY signal is synchronized. Once the synchro­
nization flip-flop has sampled high, the AROY input di­
rectly drives the ROY flip-flop. Since inputs to this 
ROY flip-flop must satisfy certain setup and hold times, 
it is important that these setup and hold times (tARYLCL 
= 35ns and tCHARYX = IS ns respectively) be satisfied 

by any inactive going transition of the AROY line. The 
reason AROY is implemented in this manner is to allow 
a slow device the greatest amount of time to respond 
with a not ready after it has been selected. In a normally 
ready system, a slow device must respond with a not 
ready quickly after it has been selected to prevent the 
processor from continuing and accessing invalid data 
from the slow device. By implementing AROY in the 
above fashion, the slow device has an additional clock 
phase to respond with a not ready. 

If ROY is sampled active into the ROY flip-flop at the 
beginning of T3 or Tw (meaning that AROY was sam-

1. No set-up or hold times required 
2. tcLARvx: Clock low to ARDY inactive (ARDY active hold time) = 15 ns min 

: T, : T. : _ Tw : T. 

CLOCK~ OUT 

CD g?g? 
ARDY 

.I.I.I.l.I.l.l.l.l.l.l.l.lL----'~WJJII 

1. tARYHCH: ~RDY valid until clock high (ARDY inactive set-up time to clock 
high) = 20 ns min 

2. No set-up or hold time required ONLY if Gl is guaranteed 
3. tcLARYX: Clock low to ARDY inactive (ARDY active hold time) = 15 ns min 

~ : ~ : ~ : ~ 

CLOCK~ OUT CD 
0~ 

ARDY 
.w.w.l.W.l.l..I.I.I.L...---I 

1. tARYLCL: ARDY low to clock low (ARDY inactive set-up time to clock low) = 

35 ns min 
must be satisfied since synchronizing FLIP-FLOP has sampled 
active 

2. tARYHCH: ARDY high to clock high (ARDY active set-up time) = 20 ns min 
must be satisfied ONLY to guarantee recognition at the next clock 
(Le. to guarantee synchronizing FLIP-FLOP will sample ARDY 
active) 

3. tCLARYX: Clock low to ARDY inactive (ARDY active hold time) = ~ 5 ns 

Figure 18A. Valid ARDY Transitions 

3-557 210973-003 



CLOCK 
OUT 

ARDY 

Ap·186 

I T, T. I 

~ I I I I 
I I I 
I I I I 
I , I I 

I I I I 

CD LESS THAN 35 ns 

CLOCK 
OUT 

ARDY ~ 0¥0~ 
I I I I 
I I I I 
I I I I 

1 . Less than 20 ns 
2. Less than 35 ns 

Figure 18B. Invalid ARDY Transitions 

pled high into the synchronization flip-flop in the middle 
of a T state, and has remained high until the beginning 
of the next T state), that T state will be immediately fol­
lowed by T4• If RDY is sampled low into the RDY flip­
flop at the beginning of T3 or Tw (meaning that either 
ARDY was sampled low into the synchronization flip­
flop OR that ARDY was sampled high into the synchro­
nization flip-flop, but has subsequently changed to low 
before the ARDY setup time) that T state will be imme-

Again, for ARDY to force wait states to be inserted, 
SRDY must be driven low, since they are internally 
ORed together to form the processor RDY signaL· 

~iately followed by a wait state (Tw)' Any asynchronous 
transition on the ARDY line not occurring during the 
above times, that is, when the processor is not "looking 
at" the ready lines, will not cause CPU malfunction. 

T, 

The synchronous ready (SRDY) line requires that ALL 
transitions on this line during T 2' T 3 or Tw satisfy a cer­
tain setup and hold time (tSRYCL = 35 ns and tcLSRY = 
15 ns respectively). If these requirements are not met, 
the CPU will not function properly. Valid transitions on 
this line, and subsequent wait state insertion is shown in 
Figure 19. The processor looks at this line at the begin­
ning of each T 3 and Tw' If the line is sampled active at 
the beginning of either of these two cycles, that cycle will 

I 
I 

CLOCK 
OUT 

SRDY ~ ~ 
1. Decision: Not ready. T-state will be followed by a wait state 
2. Decision: Ready. T-state will not be followed by a wait state 
3. tSRYCl: Synchronous ready stable until clock low (SRDY set-up 

time) = 35 ns min 
4. tClSRY: 

Clock low until synchronous ready transition (SRDY hold time) = 
15 ns min 

Figure 19. Valid SRDY transitions on the 80186 

3-558 210973-003 



AP-186 

be immediately followed by T 4' On the other hand, if the 
line is sampled inactive at the beginning of either of 
these two cycles, that cycle will be followed by a Tw' Any 
asynchronous transition on the SRDY line not occurring 
at the beginning ofT3 or Two that is, when the processor 
is not "looking at" the ready lines will not cause CPU 
malfunction. 

3.1.10 BUS PERFORMANCE ISSUES 

Bus cycles occur sequentially, but do not necessarily 
come immediately one after another, that is the bus may 
remain idle for several T states (T) between each bus 
access initiated by the 80186. This occurs whenever the 
80186 internal queue is full and no read/write cycles are 
being requested by the execution unit or integrated 
DMA unit. The reader should recall that a separate 
unit, the bus interface unit, fetches opcodes (including 
immediate data) from memory; while the execution unit 
actually executes the pre-fetched instructions. The num­
ber of clock cycles required to execute an 80186 instruc­
tion vary from 2 clock cycles for a register to register 
move to 67 clock cycles for an integer divide. 

If a program contains many long instructions, program 
execution will be CPU limited, that is, the instruction 
queue will be constantly filled. Thus, the execution unit 
does not need to wait for an instruction to be fetched. If a 
program contains mainly short instructions or data 
move instructions, the execution will be bus limited. 
Here, the execution unit will be required to wait often 
for an instruction to be fetched before it continues its op­
eration. Programs illustrating this effect and perfor­
mance degradation of each with the addition of wait 
states are given in appendix G. 

All instruction fetches are word (l6-bit) fetches from 
even addresses unless the fetch occurs as a result of a 
jump to an odd location. This maximizes the utilization 

of each bus cycle used for instruction fetching, since 
each fetch will access two bytes of information. It is also 
good programming practice to locate all word data at 
even locations, so that both bytes of the word may be ac­
cessed in a single bus cycle (see discussion on data bus 
interfacing for further information, section 3.1.3 of this 
note). 

Although the amount of bus utilization, i.e., the percent­
age of bus time used by the 80186 for instruction fetch­
ing and execution required for top performance will vary 
considera bly from one program to another, a typical in­
struction mix on the 80186 will require greater bus utili­
zation than the 8086. This is caused by the higher 
performance execution unit requiring instructions from 
the prefetch queue at a greater rate. This also means 
that the effect of wait states is more pronounced in an 
80186 system than iIi an 8086 system. In all but a few 
cases, however, the performance degradation incurred 
by adding a wait state is less than might be expected be­
cause instruction fetching and execution are performed 
by separate units. 

3.2 Example Memory Systems 
3.2.1 2764 INTERFACE 
With the above knowledge of the 80186 bus, various 
memory interfaces may be generated. One of the sim­
plest of these is the example EPROM interface shown in 
Figure 20. 

The addresses are latched using the address generation 
circuit shown earlier. Note that the AO line ,of each 
EPROM is connected to the Al address line from the 
80186, NOT the AO line. Remember, AO only signals a 
data transfer on the lower 8 bits of the 16-bit data bus! 
The EPROM outputs are connected directly!Q.!he ad­
dress/data in2!!!§ of the 80186, and the 80186 RD signal 
is used as the OE for the EPROMs. 

2764 2764 

A13 
A1 

RD 

ADO-AD7 

AD8-AD15 

CE L.....o. CE 
13 /13 A12 

~ 
A12 

/ AO AO 

OE r- OE 
00-07 00-07 

t 
/8 I 

/ 8 

, 

Figure 20. Example 2764/80186 Interface 

3-559 210973-003 



inter AP·186 

The chip enable of the EPROM is driven directly by the 
chip select output of the 80186 (see section 8). In this 
configuration, the access time calculation for the 
EPROMsare: 
time from 
address: (3 + N)*tcLCL -tcLAV - tNov(8282) - tevcL 

= 375 + (N * 125) - 44 - 30 - 20 

= 281 + (N * 125) ns 
time from 
chip select: (3 + N)*tCLCL - tCLCSV - tevcL 

= 375 + (N * 125) - 66 - 20 

= 289 + (N * 125) ns 

time from 
RD (OE): (2 + N)tCLCL - tCLRL - tevcL 

where: 

= 250 + (N * 125) - 70 - 20 

= 160 + '(N * 125) ns 

tCLAV = time from clock low in Tl until addresses 
are valid 

tCLCL = clock period of processor 

tlVOV = time from input valid of 8282 until output 
valid of 8282 

CLKOUT ---.;;;::-:---:--r-b----r-'" 
LCS 

tevcL = 186 data valid input setup time until clock 
low time of T 4 

tCLCSV = time from clock low in T 1 until chip selects 
are valid 

tCLRL = time from clock low in T 2 until RD goes low 

N = number of wait states inserted 

Thus, for 0 wait state operation, 250ns EPROMs must 
be used. The only significant ~ameter not included 
above is tRHAV> the time from RD inactive (high) until 
tlle 80186 begins driving address information. This pa­
rameter is 85ns, which meets the 2764-25 (250ns speed 
selection) output float time of 85ns. If slower EPROMs 
are used, a discrete data buffer MUST be inserted be­
tween the EPROM data lines and the address/data bus, 
since these devices may continue to drive data informa­
tion on the multiplexed address/data bus when the 
80186 begins to drive address information for the next 
bus cycle. 

3.2.2 2186 INTERFACE 

An example interface between the 80186 and 2186 
iRAMs is shown in Figure 21. This memory component 
is almost an ideal match with the 80186, because of its 
large integration, and its not requiring address latching. 

,\ 

BHE ----------------------------+-------------------L-" 
AO -------------------------------L~ 

CLKOUT --.~---1-"\..\___..r__ 
WR 

2186 2186 

CE CE 

WE WE 

RD OE OE 
4.7K 

AO-A12 AO,A12 

ARDY 

ADO- ___________________________________ AD~1~3~~ ______ ~~~----_+~~----~ 
AD15 

Figure 21. Example 2186/80186 Interface 

3-560 210973-003 



Ap·186 

The 2186 internally is a dynamic RAM integrated with 
refresh and control circuitry. It operates in two modes, 
pulse mode and late cycle mode. Pulse mode is entered if 
the CE signal is low to the device a maximum of 130ns, 
and requires the command input (RO or WE) to go ac­
tive within 90ns after CEo Because of these require­
ments, interfacing the 80186 to the 2186 in pulse mode 
would be difficult. Instead, the late cycle mode is used. 
This affords a much simpler interface with no loss of 
performance. The iRAM automatically selects between 
these modes by the nature of the control signals. 

The 2186 is a leading edge triggered device. This means 
that address and data information are strobed into the 
device on the active going (high to lo~..transition of the 
command signal. This requires both CE and WR be de­
liyed until the address and data driven by the 80186 are 
guaranteed stable. Figure 21 shows a simple circuit 
which can pe used to perform this function. Note that 
ALE CANNOT be used to delay CE if addresses are not 
latched externally, because this would violate the ad­
dress hold time required by the 2186 (30ns). 

Because the 2186s are RAMs, data bus enables (BHE 
and AO, see previous section) MUST be used to factor 
either the chip enables or write enables of the lower and 
upper bytes of the 16-bit RAM memory system. If this is 
not done, all memory writes, including single byte 
writes, will write to both the upper and lower bytes of the 
memory system. The exampl~stem shown uses BHE 
and AO as factors to the 2186 CEo This may be done, be­
cause both of these signals (AO and BHE) are valid 
when the address information is valid from the 80186. 

The 2186 requires a certain amount of recovery time be­
tween its chip enable going inactive and its chip enable 
going active insure proper operation. For a "normal" cy­
cle (a read or write), this time is tEHEL = 40ns. This 
means that the 80186 chip select lines will go inactive 
soon enough at the end of a bus cycle to provide the re­
quired recovery time even if two consecutive accesses are 
made to the iRAMs. If the 2186 CE is asserted without a 
command signal (WE or OE), a "False Memory Cycle" 
(FMC) will be generated. Whenever a FMC is generat­
ed, the recovery time is much longer; another memory 
cycle must not be initiated for 200ns. As a result, if the 
memory system will generate FMCs, CE must be taken 
away in the middle of the T state (T 3 or Tw) immediately 
preceding T 4 to insure two consecutive cycles to the 
iRAM will not violate this parameter. Status going pas­
sive (all high) can be used for this purpose. These lines 
will all go high during the first phase of the next to last T 
state (either T3 or Tw) of a bus cycle (see section 3.1.5). 

Finally, since it is a dynamic device, the 2186 requires 
refresh cycles to maintain data integrity. The circuitry 
to generate these refresh cycles is integrated within the 
2186. Because of this, the 2186 has a ready line which is 
used to suspend processor operation if a processor RAM 

3-561 

access coincides with an internally generated refresh cy­
cle. This is an open collector output, allowing many of 
them to be wire-OR'ed together, since more than one de­
vice may be accessed at at time. These lines are also nor­
mally ready, which means that they will be high 
whenever the 2186 is not being accessed, i.e., they will 
only be driven low if a processor request coincides with 
an internal refresh cycle. Thus, the ready lines from the 
iRAM must be factored into the 80186 ROY circuit 
only during accesses to the iRAM itself. Since the 2186 
refresh logic operates asynchronously to the 80186, this 
ROY line must be synchronized for proper operation 
with the 80186, either by the integrated ready synchro­
nizer or by an external circuit. The example circuit uses 
the integrated synchronizer associated with the AROY 
processor input. 

The ready lines of the 2186 are active unless a processor 
access coincides with an internal refresh cycle. These 
lines must go inactive soon enough after a cycle is re­
quested to insert wait states into the data c~. The 
2186 will drive this line low within 50ns after CE is re­
ceived, which is early enough to force the 80186 to insert 
wait states if they are required. The primary concern 
here is that the AROY line be driven not active before 
its setup time in the middle of T 2' This is required by the 
nature of the asynchronous ready synchronization cir­
cuitry of the 80186. Since the ROY pulse of the 2186 
may be as narrow as 50ns; if ready was returned after 
the first stage of the synchronizer, and subsequently 
changed state within the ready setup and hold time of 
the high to low going edge of the CPU clock at the end of 
T2, improper operation may occur (see section 3.1.6}. 

The example interface shown has a zero wait state RAM 
read access time from CE of: 

where: 

3 * tCLCL - tCLCSV - (TTL delay) - tDvCL 
= 375 - 66 - 30 - 20 ns 

= 259 ns 

tCLCL = CPU clock cycle time 

tCLCSV = time from clock low in T 1 until chip selects 
are valid 

tDVCL = 80186 data in setup time before clock low in 
T4 

The data valid delay from OE active is less than lOOns, 
and is therefore not an access time limiter in this inter­
face. Additionally, the 2186 data float time from RO in­
active is less than the 85ns 80186 imposed maximum. 
The CE generation circuit shown in Figure 21 provides 
an address setup time of at least 11 ns, and an address 
hold time of at least 35ns (assuming a maximum two 
level TTL delay of less than 30ns). 

210973-003 



Ap·186 

Write cycle address setup and hold times an: identical to 
the read cycle times. The circuit shown provides at least 
Ilns write data setup and -lOOns data hold time from 
WE, easily meeting the Ons setup and 40ns hold times 
required by the 2186. 

For more information concerning 2186 timing and in­
terfacing, please consult the 2186 data sheet, or the ap­
plication note AP-132, "Designing Memory Systems 
with the 8Kx8 iRAM" by John Fallin and William 
Righter (June 1982). 

3.2.3 8203 DRAM INTERFACE 

An example 8203/DRAM interface is shown in Figure 
22. The 8203 provides all required DRAM control sig­
nals, address multiplexing, and refresh generation. In 
this circuit, the 8203 is configured to, interface with 64K 
DRAMs. 

MCS1 

MCSO 

A17·A1 

AROY 

AOO·AD15 

J ~ 

~ 

1~ , 

.--

=ni 

P"-

-
P"- I-'-

'---

'-

All 8203 cycles are generated off control signals (RD 
and WR) provided by the 80186. These signals will not 
go active until T 2 of the bus cycle. In addition, since the 
8203 clock (generated by the internal crystal oscillator 
of the 8203) is asynchronous to the 80186 clock, all 
memory requests by the 80186 must be synchronized to 
the 8203 before the cycle will be run. To minimize this 
synchronization time, the 8203 should be used with the 
highest speed crystal that will maintain DRAM com­
patibility. Even if a 25 MHz crystal is used (the maxi­
mum allowed by the 8203) two wait states will be 
required by the example circuit when using 150ns 
DRAMs with an 8 MHz 80186, three wait states if 
200ns DRAMs are used (see timing analysis, Figure 
23). 

The entire RAM array controlled by the 8203 can be se­
lected by one or a group of the 80 )86 provided chip se­
lects. These chip selects can also be used to insert the 
wait states required by the interface. I 

u-
220 220 

8203 J 
SEL WR UPPER LOWER 

BYTE WE BYTEW'E 
AO' 
A16, 
eo 

WE r--
SACK DRAMS, 

XACK 
RD 

1 
/.. 

010:15 
8282 000·15 

000·7 

OE 010·7 I--
STB 

8282 

000·7 

OE 010·7 -
STB 

Figure 22. Example 8203/DRAM/80186 Interface 

3-562 210973-003 



AP-186 

T, T, 

186 ____ -+~,.;;..., 
RD 

8203 --------------"t---___, 
RAS 

8203 ------i--------i--...... ~_+___, 
CAS 

RAM ~~~""~mmmmmmmmmmmmmmmmmmmm""~~'r----+-----------

DATA ~~~~~~~~~~~~~~~~~~~\f---+~---------

LATCH ~""rrri~~mm~""""""~~~mm~""""""~~~r~~------
DATA ~~~~~~~~~~~~"¥~~~~~~~u~_-+ ____ __ 

1. tCLEL: Clock low until read low = 70 ns max 
2. tCR: Command active until RAS = 150 ns max' 
3. tcc: Command active until CAS = 245 ns max' 
4. 'cAC: Access time from CAS = 85 ns max 
5. tISOU: I nput to output delay = 30 ns max 

CD & ® are 186 specs 
® & @ are 8203 specs 
@ is a 2164A-15 spec 
@ is on 8282 spec 

6. tOVCL: Data valid to clock low (data in set up) = 20 ns min 'Assumes 25MHz 
8203 operation Total Access Time = 70 + 245 +85 +30 +20 = 450 ns (3.6 T-states) 

Figure 23. 8203/2164A-15 Access Time Calculation 

Since the 8203 is operating asynchronously to the 
80186, the RDY output of the 8203 (used to suspend 
processor operation when a processor DRAM request 
coincides with a DRAM refresh cycle) must be synchro­
nized to the 80186. The 80186 ARDY line is used to pro­
vide the necessary ready synchronization. The 8203 
ready outputs operate in a normally not ready mode, 
that is, they are only driven active when an 8203 cycle is 
being executed, and a refresh cycle is not being run. This 
is fundamentally different than the normally ready 
mode used.2Y...!!!.e 2186 iRAMs (see previous section). 
The 8203 SACK signal is presented to the 80186 only 
when the DRAM is being accessed. Notice that the 
SACK output of the 8203 is used, rather than the 
XACK output. Since the 80186 will insert at least one 
full CPU clock cycle between the time RDY is sampled 
active, and the time data must be present on the data 
bus, using the XACK signal would'insert unnecessary 
additional wait states, since it does not indicate ready 
until valid data is available from the memory. 

For more information about 8203jDRAM interfacing 
and timing, please consult the 8203 data sheet, or 
AP97A, "Interfacing Dynamic RAM to iAPX86j88 

Systems Using the Intel 8202A and 8203" by Brad May 
(April 1982). 

3.2.4 8207 DRAM INTERFACE 

The 8207 advanced dual-port DRAM controller pro­
vides a high performance DRAM memory interface 
specifically for 80186 or 80286 microcomputer systems. 
This controller provides all address multiplexing and 
DRAM refresh circuitry. In addition, it synchronizes 
and arbitrates memory requests from two different ports 
(e.g., an 80186 and a Multibus), allowing the two ports 
to share memory. Finally, the 8207 provides a simple in­
terface to the 8206 error detection and correction chip. 

The simplest 8207 (and also the highest performance) 
interface is shown in Figure 24. This shows the 80186 
connected to an 8207 using the 8207 slow cycle, synchro­
nous status interface. In this mode, the 8207 decodes the 
type of cycle to be run directly from the status lines of 
the 80186. In addition, since the 8207 CLOCKIN is 
driven by the CLOCKOUT of the 80186, any perfor­
mance degradation caused by required memory request 
synchronization between the 80186 and the 8207 is not 
present. Finally, the entire memory array driven by the 

3-563 210973-003 



AP-186 

8207 may be selected using one or a group of the 80186 
memory chip selects, as in the 8203 interface above. 

80186 6207 

ClKOUT ClK 

so WR 
+ 

U Sf RD PCTC 

5 

S2 PCTl 

lMCS PE 
AACK 

SRDY -4 I 

Figure 24. 80186/8207/DRAM Interface 

The 8207 AACK signal may be used to generate a syn­
chronous ready signal to the 80186 in the above inter­
face. Since dynamic memory periodically requires 
refreshing, 80186 access cycles may occur simulta­
neously with an 8207 generated refresh cycle. When this 
occurs, the 8207 will hold the AACK line high until the 
processor initiated access is run (note, the sense of this 
line is reversed with respect to the 80186 SRDY input). 
This. signal should be factored with the DRAM (8207) 
select input and used to drive the SRDY line of the 
80186. Remember that only one of SRDY and ARDY 
needs to be active for a bus cycle to be terminated. If 
asynchronous devices (e.g., a Multibus interface) are 
connected to the ARDY line with the 8207 connected to 
the SRDY line, care must be taken in design of the ready 
circuit such that only one of the ROY lines is driven ac­
tive at a time to prevent premature termination of the 
bus cycle. 

3.3 HOLD/HLDA Interface 

The 80186 employs a HOLD/HLDA bus exchange pro­
tocol. This protocol allows other asynchronous bus mas­
ter devices (i.e., ones which drive address, data, and 
control information on the bus) to gain control of the bus 
to perform bus cycles (memory or I/O reads or writes). 

3.3.1 HOLD RESPONSE 

In the HOLD/HLDA protocol, a device requiring bus 
control (e.g., an external DMA device) raises the 
HOLD line. In response to this HOLD request, the 
80186 will raise its HLDA line after it has finished its 
current bus activity. When the external device is finished 
with the bus, it drops its bus HOLD request. The 80186 
responds by dropping its HLDA line and resuming bus 
operation. 

When the 80186 recognizes a bus hold by driving 
HLDA high, it will float many of its signals (see Figure 
25). ADO - AD15 (address/data 0 - 15) and DEN (data 
enable) are floated within tCLAZ (35ns) after the same 
clock edge that HLDA is driven active. A16-A19 (ad­
dresU6 - 19), RD, WR, BHE (B~Hi.8..h Enable), 
DT /R (Data Transmit/Receive) and SO - S2 (status 0-
2) are floated within tCHCZ (45ns) after the clock edge 
immediately before the clock edge on which HLDA 
comes active. 

CLOCK 

OUT 

T.OR T, 

HOLD --....:....-----,''-::+------"---

HlDA --";---1'-/0---"" 

AD15-ADO 

DEN --------r------J 
A16-A19 

RD,WR,BHE 

DT/R,SO-S2 __ -;-_oJ 

Figure 25. Signal Float/HLDA Timing of tl)e 80186 

Only the above mentioned signals are floated during bus 
HOLD. Of the signals not floated by the 80186, some 
have to do with peripheral functionality (e.g., Tm·rOut). 
Many others either directly or indirectly control bus de­
vices. These signals are ALE (Address Latch Enable, 
see section 3.1.2) and all the chip select lines (UCS, 
LCS, MCSO-3, and PCSO-6). The designer must be 
aware that the chip select circuitry does not look at, ex­
ternally generated addresses (see section 10 for a discus­
sion of the chip select logic). Thus, for memory or 
peripheral devices which are addressed by external bus 
master devices, discrete chip select and ready generation 
logic must be used. 

3.3.2 HOLD/HLDA TIMING AND BUS LATENCY 

The time required between HOLD going active and the 
80186 driving HLDA active is known as bus latency. 
Many factors affect this latency, including synchroniza­
tion delays, bus cycle times, locked transfer times and 
interrupt acknowledge cycles. 

The HOLD request line is internally synchronized by 
the 80186, and may therefore be an asynchronous sig­
nal. To guarantee recognition on a certain clock edge, it 
must satisfy a certain setup and hold time to the falling 

3-564 210973-003 



AP-186 

edge of the CPU clc~k A full CPU clock cycle is re­
quired for this synchronization, that is, the internal 
HOLD signal is not presented to the internal bus arbi­
tration circuitry until one full clock cycle after it is 
latched from the HOLD input (see Appendix B for a dis-

cuss ion of 80186 synchronizers). If the bus is idle, 
HLDA will follow HOLD by two CPU clock cycles plus 
a small amount of setup and propagation delay time. 
The first clock cycle synchronizes the input; the second 
signals the internal circuitry to initiate a bus hold. (see 
Figure 26). 

T, T, 

HOLD 

HLDA 

1. tHVCL: Hold valid until clock low = 25 ns min 

Many factors influence the number of clock cycles be­
tween a HOLD request and a HLDA. These may make 
bus latency longer than the best case shown above. 'Per­
haps the most important factor is that the 801\86 will not 
relinquish the local bus until the bus is idle. An idle bus 
occurs whenever the 80186 is not performing any bus 
transfers. As stated in section 3.1.1, when the bus is idle, 
the 80186 generates idle T-states. The bus can become 
idle only at the end of a bus cycle. Thus, the 80186 can 
recognize HOLD only after the end of its current bus cy­
cle. The 80186 will normally insert no T j states between 
T 4 and T I of the next bus cycle if it requires any bus ac­
tivity (e.g., instruction fetches or I/O reads). However, 
the 80186 may not have an immediate need for the bus 
after a bus cycle, and will insert T j states independent of 
the HOLD input (see section 3.1.7). 

2. tCLHAV: Clock low until HLDA active = 50 ns max 

Figure 26. 80186 Idle Bus Hold/HLDA Timing 
When the HOLD request is active, the 80186 will be 

CLOCK 
OUT 

HOLD 

HLDA 

T, 

1. DecIsion: No additional internal bus cycles required, idle T-states will be 
Inserted after T 4 

2. Greater than 25 ns (tHvCLl 
3. Less than 50 ns (tCLHAVl 
4. HOLD request internally synchronized 

CLOCK 
OUT 

HOLD 

I T3 0R I 
I Tw I T. I T, 

~l 
I I I 
I I I 

HLDA ------------------------------------------
1. Decision: Additional internal bus cycles required. no idle T-states will be 

Inserted. Hold not active soon enough to force idle T-states 
2. Greater than 25 ns (tHVCLl: not required since it will not get recognized 

anyway 
3. HOLD request internally synchronized 

Figure 27. HOLD/HLDA Timing in the 80186 

3-565 210973-003 



AP-186 

CLOCK 
OUT 

HOLD ,. ., 
I I 
I I 

HLDA 

1. HOLD request internally synchronized 
2. Decision: HOLD request active, idle t-states will be inserted at end of 

current bus cycle 
3. Greater than 25 ns 
4. Less than 50 ns 

Figure 27A.HOLD/HLDA Timing in the 80186 

forced to proceed from T 4 to T j in order that the bus may 
be relinquished. HOLD must go active 3 T-states before 
the end of a bus cycle to force the 80186 to insert idle T­
states after T 4 (one to synchronize the request, and one 
to signal the 80186 that T4 of the bus cycle will be fol­
lowed by idle T-states, see section 3.1.1). After the bus 
cycle has ended, the bus hold will be immediately ac­
knowledged. If, however, the 80186 has already deter­
mined that an idle T-state will follow T 4 of the current 
bus cycle, HOLD need go active only 2 T-states before 
the end of a bus cycle to force the 80186 to relinquish the 
bus at the end of the current bus cycle. This is because 
the external HOLD request is not required to force the 
generation of idle T-states. Figure 27 graphically por­
,trays the scenarios depicted above, 

An external HOLD has higher priority than both the 
80186 CPU or integrated DMA unit. However, an exter­
nal HOLD will not separate the two cycles needed to 
perform a word access when the word accessed is located 
at an odd location (see section 3.1.3). In addition, an ex­
ternal HOLD will not separate the two-to-four bus ~y­
cles required to perform a DMA transfer using the 
integrated controller. Each of these factors will add ad­
ditional bus cycle times to the bus latency of the 80186. 

Another factor influencing bus latency time is locked 
transfers. Whenever a locked transfer is occurring, the 
80186 will not recognize external HOLDs (nor will it 
recognize internal DMA bus requests). Locked, trans­
fers are programmed by preceding an instruction with 
the LOCK prefix. Any transfers generated by such a ' 
prefixed instruction will be locked, and will not be sepa­
rated by any external bus requesting device. String in­
structions may be locked. Since string transfers may 

require thousands of bus cycles, bus latency time will 
suffer if they are locked. 

The final factor affecting bus latency time is interrupt 
acknowledge cycles. When an external interrupt con­
troller is used, or if the integrated interrupt controller is 
used in iRMX 86 mode (see section 4.4.1) the 80186 will 
run two interrupt acknowledge cycles back to back. 
These cycles are automatically "locked" and will never 
be separated by any bus HOLD, either internal or exter­
nal. See section 6.5 on interrupt acknowledge timing for 
more information concerning interrupt acknowledge 
timing. 

3.3.3 COMING OUT OF HOLD 
After the 80186 recognizes that the HOLD input has 
gone inactive, it will drop its HLDA line in a single 
clock. Figure 28 shows this timing. The 80186 will insert 
only two T j after HLDA has gone inactive, assuming 
that the 80186 has' internal bus cycles to run. During the 
last T" status information will go active concerning the 
"bus cycle about to be run (see section 3.1.1). If the 
80186 has no pending bus activity, it will maintain all 
lines floating (high impedance) until the last T j before it 
begins its first bus cycle after the HOLD. 

3.4 Differences Between the 8086 bus and 
the 80186 Bus 

The 80186 bus was defined to be upward compatible 
with the 8086 bus. As a result, the 8086 bus interface 
components (the 8288 bus controller and the 8289 bus 
arbiter) may be used directly with the 80186. There are 
a few significant differences between the two processors 
which should be considered. 

3-566 210973-003 



AP-186 

CLOCK 

OUT 

HOLD ~--'" 

HLDA ----~----"*"\ 

ADo-AD15 

~----""'~""''''''~'''''''''''''''~''''';-~L-......... 
A18/53-A19/S8 

RD,WR,BHE -----:------:-----~-~ 
DT/R,SO-Sl --i---_ .... 

1. HOLD internally synchronized 
2. Greater than 25 ns 
3. Less than 50 ns 
4. Lines come out of float only if a bus cycle is pending 

Figure 28_ 80188 Coming out of Hold 

CPU Duty Cycle and Clock Generator 

The 80186 employs an integrated clock generator which 
provides a 50% duty cycle CPU clock (1/2 of the time it 
is high, the other 1/2 of the time it is low). This is differ­
ent that the 8086, which employs an external clock gen­
erator (the 8284A) with a: 33% duty cycle CPU clock 
(1/3 of the time it is high, the other 2/3 of the time, it is 
low). These differences manifest themselves as follows: 

I) No oscillator output is available from the 80186, 
as it is available from the 8284A clock generator. 

2) The 80186 does not provide a PCLK (50% duty 
cycle, 1/2 CPU clock frequency) output as does 
the 82&4A. 

3) The clock low phase of the 8.0186 is narrower, 
and the clock high phase is wider than on the 
same speed 8086. 

4) The 80186 does not internally factor AEN with 
RDY. This means that if both RDY inputs 
(ARDY and SRDY) are used, external logic 
must be used to prevent the RDY not connected 
to a certain device from being driven active dur­
ing an access to this device (remember, only one 
RDY input needs to be active to terminate a bus 
cycle, see section 3.1.6). ' 

5) The 80186 concurrently provides both a single 
asynchronous ready input and a single synchro-
nous ready input, while the 8284A provides ei-

ther two synchronous ready inputs or two 
asynchronous ready inputs as a user strapable 
option. 

6) The CLOCKOUT (CPU clock output signal) 
drive capacity of the 80186 is less than the CPU 
clock drive capacity of the 8284A. This means 
that not as many high speed devices (e.g., 
Schottky TTL flip-flops) may be connected to 
this signal as can be used with the 8284A clock 
output. 

7) The crystal or external oscillator used by the 
80186 is twice the CPU clock frequency, while 
the crystal or external oscillator used with the 
8284A is three times the CPU clock frequency. 

Local Bus Controller and Control Signals 

The 80186 simultaneously provides both local bus con­
troller outputs (RD, Wlh..ALE, DEN and DT/R) and 
status outputs (SO, SI, S2) for use with the 8288 bus 
controller. This is different from the 8086 where the lo­
cal bus controller outputs (generated only in min mode) 
are sacrificed if status outputs ( generated only in max 
mode) are desired. These differences will manifest 
themselves in 8086 systems and 80186 systems as 
follows: 

1) Because the 80186 can simultaneously provide 
local bus control signals and status outputs, 
many systems supporting both a system bus (e.g., 

3-567 210973-003 



Ap·186 

a Multibus®) and a local bus will not require two 
separate external bus controllers, that is, the 
80186 bus control signals may be used to control 
the local bus while the 80186 status signals are 
concurrently connected to the 8288 bus control­
ler to drive the control signals of the system bus, 

2) The ALEsignal of the 80186 goes active a clock 
phase earlier on the 80186 then on the 8086 or 
8288. This minimizes address propagation time 
through the address latches, since typically the 
delay time through these latches from inputs val­
id is less than the propagation delay from the 
strobe input active. 

3) The 80186 RD input must be tied low to provide 
queue status outputs from the 80186 (see Figure 
29). When so s~ped into "queue status mode," 
the ALE and WR outputs provide queue status 
information. Notice that this queue status infor­
mation is available one clock phase earlier from 
the 80186 than from the 8086 (see Figure 30). 

80186 

aso ALE 

aS1 WR 

~ 
RD 

Figure 29. Generating Queue Status Information 
from t,he 80186 

HOLD/HLDA vs. RQ/GT 

As discussed earlier, the 80186.uses a HOLD/HLDA 
type of protocol for exchanging bus mastership (like the 
8086 in min mode) rather than the RQ/GT protocol 
used by the 8086 in max mode. This allows compatiblity 
with Intel's the new generation of high performance/ 
high integration bus master peripheral devices (for ex-

CLOCK 

OUT 

ample the 82586 Ethernet· controller or 82730 high 
performance CRT controller /text coprocessor). 

Status Information 

The 80186 does not provide S3-S5 status information. 
On the 8086, S3 and S4 provide information regarding 
the segment register used to generate the physical ad­
dress of the currently executing bus cycle. S5 provides 
information concerning the state of the interrupt enable 
flip-flop. These status bits are always low on the 80186. 

Status signal S6 is used to indicate whether the current 
bus cycle is initiated by either the CPU or a DMA de­
vice. Subsequently, it- is always low on the 8086. On the 
80186, it is low whenever the current bus cycle is initiat­
ed by the 80186 CPU, and is high when the current bus 
cycle is initiated by the 80186 integrated DMA unit. 

Bus Drive 

The 80186 output drivers will' drive 200pF loads. This is 
double that of the 8086 (lOOpF). This allows larger sys­
tems to be constructed without the need for bus buffers. 
It also means that it is very important to provide good 
grounds to the 80186, since its large drivers can dis­
charge its outputs very quickly causing large current 
transients on the 80186 ground pins. 

Misc. 

The 80186 does not provide early and late write signals, 
as does. the 8288 bus controller. The WR signal generat­
ed by the 80186 corresponds to the early write signal of 
the 8288. This means that data is not stable on the ad­
dress/data bus when this signal is driven active. 

The 80186 also does not provide differentiated I/O and 
memory read and write command signals. If these sig­
nals are desired, an external 8288 bus controller may be 
used, or the S2 signal may be used to synthesize differ­
entiated commands (see section 3.1.4). 

"Ethernet is a registered trademark of Xerox Corp. 

166 ----....:.----..:........,-h)'-J+:.;;...~ ... ,.:.....;~~--

as _------~------~~--~r~~----~_;.....,-----

6066 -----;.-----i-----~,r_--~:"\I'---as __________ ~ ______ ~ ______ ~~ ____ _ 

1. 80186 changes queue status off falling edge of ClK 
2.8086 changes queue status off rising edge of ClK 

Figure 30. 80186 and 8086 Queue Status Generation 

3-568 210973-003 



AP-186 

4. DMA UNIT INTERFACING 
The 80186 includes a DMA unit which provides two in­
dependent high speed DMA channels. These channels 
operate independently of the CPU, and drive all inte­
grated bus interface components (bus controller, chip se­
lects, etc.) exactly as the CPU (see Figure 31). This 
means that bus cycles initiated by the DMA unit are ex­
actly the same as bus cycles initiated by the CPU (ex­
cept that S6 = I during all DMA initiated cycles, see 
section 3.1). Thus interfacing with the DMA unit itself 
is very simple, since except for the addition of the DMA 
request connection, it is exactly the same as interfacing 
to the CPU. 

EXTERNAL ADDRESS/DATA, 

CONTROL, CHIP SELECTS, 
ETC. 

BUS INTERFACE 

& 

CHIP SELECT CIRCUITRY 

DMA 

REQUESTS 

Figure 31. 80186 CPU/DMA Channel 
Internal Model 

4.1 DMA Features 

Each of the two DMA channels provides the following 
features: 

Independent 20-bit source and destination pointers 
which are used to access the I/O or memory location 
from which data will be fetched or to which data will 
be deposited 

Programmable auto-increment, auto-decrement or 
neither of the source and destination pointers after 
each DMA transfer 

Programmable termination of DMA activity after a 
certain number of DMA transfers 

Programmable CPU interruption at DMA termina­
tion 

Byte or word DMA transfers to or from even or odd 
memory or I/O addresses 

Programmable generation of DMA requests by: 

I) the source of the data 

2) the destination of the data 

3) timer 2 (see section 5) 

4) the DMA unit itself (continuous DMA requests) 

4.2 DMA Unit Programming 

Each of the two DMA channels contains a number of 
registers which are used to control channel operation. 
These registers are included in the 80186 integrated pe­
ripheral control block (see appendix A). These registers 
include the source and destination pointer registers, the 
transfer count register and the control register. The lay­
out and interpretation of the bits in these registers is giv­
en in Figure 32. 

The 20-bit source and destination pointers allow access 
to the complete I Mbyte address space of the 80186, and 
that all 20 bits are affected by the auto-increment or 
auto-decrement unit of the DMA (Le., the DMA 
channels address the full I Mbyte address space of the 
80186 as a flat, linear array without segments). When 
addressing I/O space, the upper 4 bits of the DMA 
pointer registers should be programmed to be O. If they 
are not programmed 0, then the programmed value 
(greater than 64K in I/O space) will be driven onto the 
address bus (an. area of I/O space not accessable to the 
CPU). The data transfer will occur correctly, however. 

After every DMA transfer the 16-bit DMA transfer 
count register it is decremented by I, whether a byte 
transfer or a word transfer has occurred. If the TC bit in 
the DMA control register is set, the DMA ST /STOP 
bit (see below) will be cleared when this register goes to 
0, causing all DMA activity to cease. A transfer count of 
zero allows 65536 (216) transfers. 

The DMA control register (see Figure 33) contains bits 
which control various channel characteristics, including 
for each of the data source and destination whether the 
pointer points to memory or I/O space, or whether the 
pointer will be incremented, decremented or left alone 
after each DMA transfer. It also contains a bit which se­
lects between byte or word transfers. Two synchroniza­
tion bits are used to determine the source of the DMA 
requests (see section 4.7). The TC bit determines wheth­
er DMA activity will cease after a programmed number 
of DMA transfers, and the INT bit is used to enable in­
terrupts to the processor when this has occurred (note 
that an interrupt will not be generated to the CPU when 
the transfer count register reaches zero unless both the 
INT bit and the TC bit are set). 

The control register also contains a start/stop 
(ST /STOP) bit. This bit is used to enable DMA 
transfers. Whenever this bit is set, the channel is 

3-569 210973-003 



AP-186 

OFFSET 

DEH 
DCH 
DAH 

D8H 
D6H 

D4H 
D2H 

DOH 
CEH 

CCH 

CAH 
C8H 

C6H 

C4H 

C2H 
COH 

15 

15 

15 

15 

15 

15 

(1) CONTROL REGISTER LAYOUT: 

x 

X 

x 

X 

X 

I I I I 

X 

I I I I 

x 

X 

X 

I I I xl I I 
0 

i19 16 

0 

119 16 
0 

X 

I I I xl I I 
0 

X 119 16 

0 
X 119 16 

0 

CONTROL WORD 

TRANSFER COUNT 

DESTINATION POINTER 

SOURCE POINTER CHANNEL 1 t 
CHANNELOl 

CONTROL WORD 
TRANSFER COUNT 

DESTINATION POINTER 

SOURCE POINTER 

DESTINATION SOURCE ---­SYNCHRONIZATION 

Figure 32. 80186 DMA Register Layout 

Figure 33. DMA ContrQI Register 

"armed," that is, a DMA transfer will occur whenever a 
• DMA request is made to the channel. If this bit is 

cleared, no DMA transfers will be performed by the 
channel. A companion bit, the CHG/NOCHG bit, 
allows the contents of the DMA control register to be 
changed without modifying the state of the start/stop 
bit. The ST /STOP bit will only be modified if the 
CHG/NOCHG bit is also set during the write to the 
DMA control register. The CHG/NOCHG bit is 
write only. It will always be read back as a O. Because 
J:>MA transfers could occur immediately after the 
ST /STOP bit is set, it should c;mly be set only after all 
other DMA controller registers have been programmed. 
This bit is automatically cleared when the transfer count 
register reaches zero and the TC bit in the DMA control 
register is set, or when the transfer count register 
reaches zero and unsynchronized DMA transfers are 
programmed. 

All DMA unit programming registers are directly 
accessable by the CPU. This means the CPU can, for ex­
ample, modify the DMA source pointer register after 
137 DMA transfers have occurred, and have the new 
pointer value used for the l38th DMA transfer. If more 
than one register in the DMA channel is being modified 
at any time that a DMA request may be generated and 
the DMA channel is enabled (the ST/STOP bit in the 
control register is set), the register programming values 
should be placed in memory locations and moved into 
the DMA registers using a locked string move instruc­
tion. This will prevent a DMA transfer from occurring 
after only half of the register values have changed. The 
above also holds true if a read/modify/write type of op­
eration is being performed (e.g., ANDing off bits in a 
pointer register in a single AND instruction to a pointer 
register mapped into memory space). 

3-570 210973-003 



AP-186 

CLOCK ' : Tn : 

OUT~ 

DRQ~ 
ADO- --~----H 

I 
I 

I I 
\ I 

I I 
I ~

I 

: CD I 

I I ~~--~~----~-----------
I~ CD : CD: 0: 

I 
AD15 --+----H 

\ I I I 
I 

RD --..:..----~ :\ 
I ~~----~----~--~ 

/ I 
I 

I I 

:\ If 
I I 

1. Source address 
2. Source data 
3. Destination address 
4. Destination data 

NOTE: Wait states are Inserted by the bus condition during the bus cycle, not by the DMA controller 

Figure 34. Example DMA Transfer Cycle on the 80186 

4.3 DMA Transfers 
Every D MA transfer in the 80186 consists of two inde­
pendent bus cycles, the fetch cycle and the deposit cycle 
(see Figure 34). During the fetch cycle, the byte or word 
data is accessed from memory or I/O space using the ad­
dress in the source pointer register. The data accessed is 

. placed in an internal temporary register, which is not ac­
cessible to the CPU. During the deposit cycle, the byte 
or word data in this internal register is placed in memory 
or I/O space using the address in the destination pointer 
register. These two bus cycles will not be separated by 
bus HOLD or by the other DMA channel, and one will 
never be run without the other except when the CPU is 
RESET. Notice that the bus cycles run by the DMA 
unit are exactly the same as memory or I/O bus cycles 
run by the CPU. The only difference between the two is 
the state of the S6 status line (which is multiplexed on 
the AI9line): on all CPU initiated bus cycles, this status 
line will be driven low; on all DMA initiated bus cycles, 
this status line will be driven high. 

4.4 DMA Requests 

Each DMA channel has a single DMA request line by 
which an external device may request a DMA transfer. 
The synchronization bits in the DMA control register 
determine whether this line is interpreted to be connect­
ed to the source of the DMA data or the destination of 
the DMA data. All transfer requests on this line are syn­
chronized to the CPU clock before being presented to in-

ternal DMA logic. This means that any asynchronous 
transitions of the DMA request line will not cause the 
DMA channel to malfunction. In addition to external 
requests, DMA requests may be generated whenever the 
internal timer 2 times out, or continuously by program­
ming the synchronization bits in the DMA control regis­
ter to call for unsynchronized DMA transfers: . 

4.4.1 DMA REQUEST TIMING AND LATENCY 

Before any DMA request can be generated, the 80186 
internal bus must be granted to the D MA unit. A certain 
amount of time is required for the CPU to grant this in­
ternal bus to the DMA unit. The time between a DMA 
request being issued and the DMA transfer being run is 
known as DMA latency. Many of the issues concerning 
DMA latency are the same as those concerning bus la­
tency (see section 3.3.2). The only important difference 
is that external HOLD always has bus priority over an 
internal DMA transfer. Thus, the latency time of an in­
ternal DMA cycle will suffer during an external bus 
HOLD. 

Each DMA channel has a programmed priority relative 
to the other DMA channel. Both channels may be pro­
grammed to be the same priority, or one may be pro­
grammed to be of higher priority than the other channel. 
If both channels are active, DMA latency will suffer on 
the lower priority channel. If both channels are active 
and both channels are of the same programmed priority, 
DMA transfer cycles will alternate between the two 
channels (i.e., the first channel will perform a fetch and 

3-571 210973-003 



Ap·186 

T.or 

T.or T.or 

: T.or Taor, T.Or 

1 T, or T. or T. or liT 
1 1 1 1 I' 
1 Twor 1 Twor 1 Tw or 1 T.or i of OM A . 
1 T, 1 T, 1 T, 1 T, 1 CYCLE 

DRQ ~ 
I 1 1 1 I 
1 I. .1 1 I 
1 1 CD 1 1 1 
1 1 1 1 1 
I' .1 1 1 I 
1 Q) 1 1 1 I 

1. tORCCl = DMA request to clock low = 25 Jls min to guarantee recognition 
2. Synchronizer resolution time 
3. DMA unit priority arbitration. etc. time 
4. Bus Interfa~e Unit latches DMA request and decides to run DMA cycle 

Figure 35. DMA Request Timing on the 80"186 '(showing minimum response time to request) 

deposit, followed by a fetch and deposit. by the second 
channel, etc). 

The minimum timing required to generate'a DMA cycle 
is shown in Figure 35. Note that the minimum time from 
DRQ becoming active until the beginning of the first 
DMA. cycle is 4 CPU clock cycles, that is, a DMA re­
quest IS sampled 4 clock cycles before the beginning of a 
bus cycle to determine if any DMA activity will be re­
quired. This time is independent of the number of wait 
staters inserted in the bus cycle. The mal(imum DMA la­
tency is a function of other processor activity (see 
above). . 

80186 

ADDR. 

LATCH 

A6 

Also notice that if ORQ is sampled active at 1 in Figure 
35, the DMA cycle will be executed, even if the DMA 
request goes inactive before the beginning of the first 
~MA cyc~e. This does not mean that the DMA request 
IS latched mto the processor such that any transition on 
the D~A request line will cause a DMA cycle eventual­
ly. QUIte the contrary, DMA request must be active at a 
certain time before the end of a bus cycle for the DMA . 
request to be recognized by the processor. If the DMA 
request line goes inactive before that window, then no 
DMA cycle~ will be rim. 

DMADEVICE 

ALE~----------------------~ 
ACKNOWLEDGE 

PCs0t-------------4-----.J CHIP SEL 

DRQO~---------------~~DMAREQUEST 

Figure 36. DMA Acknowledge Synthesis from the 80186 

3-572 ,210973-003 



AP-186 

4.5 DMA Acknowledge 

The 80186 generates no explicit DMA acknowledge sig­
nal. Instead, the 80186 performs a read or write directly 
to the DMA requesting device. If required, a DMA ac­
knowledge signal can be generated by a decode of an ad­
dress, or by merely using one of the PCS lines (see 
Figure 36). Note ALE must be used to factor the DACK 
because addresses are not guaranteed stable when chip 
selects go active. This is required because if the address 
is not stable when the PCS goes active, glitches can 
occur at the output of the DACK generation circuitry as 
the address lines change state. Once ALE has gone low, 
the addresses are guaranteed to have been stable for at 
least tAvAL (30ns). 

4.6 Internally Generated DMA Requests 

There are two types in internally synchronized DMA 
transfers, that is, transfe~ initiated by a unit integrated 
in the 80186. These two types are transfers in which the 
DMA request is generated by timer 2, or where DMA 
request is generated by the DMA channel itself. 

The DMA channel can be programmed such that when­
ever timer 2 reaches its maximum count, a DMA re­
quest will be generated. This feature is selected by 
setting the TDRQ bit in the DMA channel control regis­
ter. A DMA request generated in this manner will be 
latched in the DMA controller, so that once the timer re­
quest has been generated, it cannot be cleared except by 
running the DMA cycle or by clearing the TDRQ bits in 
both DMA control registers. Before any DMA requests 
are generated in this mode, timer 2 must be initiated and 
enabled. 

A timer requested DMA cycle being run by either DMA 
channel will reset the timer request. Thus, if both chan­
nels are using it to request a DMA cycle, only one DMA 
channel will execute a transfer for every timeout of tim­
er 2. Another implication of having a single bit timer 
DMA request latch in the DMA controller is that if an­
other timer 2 timeout occurs before a DMA channel has 
a chance to run a DMA transfer, the first request will be 
lost, i.e., only a single DMA transfer will occur, even 
though the timer has timed out twice. 

The DMA channel can also be programmed to provide 
its own DMA requests. In this mode, DMA transfer cy­
cles will be run continuously at the maximum bus band­
width, one after the other until the preprogrammed 
number of DMA transfers (in the DMA transfer count 
register) have occurred. This mode is selected by pro­
gramming the synchronization bits in the DMA control 
register for unsynchronized transfers. Note that in this 
mode, the DMA controller will monopolize the CPU 
bus, i.e., the CPU will not be able to perform opcode 
fetching, memory operations, etc., while the DMA 
transfers are occurring. Also notice that the DMA will 
only perforIll th,e number of transfers indicated in the 

maximum count register regardless of the state of the 
TC bit in the DMA control register. 

4.7 Externally Synchronized DMA 
Transfers 

There are two types of externally synchronized DMA 
transfers, that is, DMA transfers which are requested by 
an external device rather than by integrated timer 2 or 
by the DMA channel itself (in unsynchronized trans­
fers). These are source synchronized and destination 
synchronized transfers. These modes are selected by 
programming the synchronization bits in the DMA 
channel control register. The only difference between 
the two is the time at which the DMA request pin is sam­
pled to determine if another DMA transfer is immedi­
ately required after the currently executing DMA 
transfer. On source synchronized transfers, this is done 
such that two source synchronized DMA transfers may 
occur one immediately after the other, while on destina­
tion synchronized transfers a certain amount of idle 
time is automatically inserted between two DMA trans­
fers to allow time for the DMA requesting device to 
drive its DMA request inactive. 

4.7.1 SOURCE'SYNCHRONlZED 
DMA TRANSFERS 

In a source synchronized DMA transfer, the source of 
the DMA data requests the DMA cycle. An example of 
this would be a floppy disk read from the disk to main 
memory. In this type of transfer, the device requesting 
the transfer is read during the fetch cycle of the DMA 
transfer. Since it takes 4 CPU clock cycles from the time 
DMA request is sampled to the time the DMA transfer 
is actually begun, and a bus cycle takes a minimum of 4 
clock cycles, the earliest time the D MA request pin will 
be sampled for another DMA transfer will be at the be­
ginning of the deposit cycle of a DMA transfer. This al­
lows over 3 CPU clock cycles between the time the 
DMA requesting device receives an acknowledge to its 
D MA request (around the beginning of T 2 of the D MA 
fetch cycle), and the time it must drive this request inac­
tive (assuming no wait states) to insure that another 
DMA transfer is not performed if it is not desired (see 
Figure 37). 

4.7.2 DESTINATION SYNCHRONIZED 
DMA TRANSFERS 

In tlestination synchronized DMA transfers, the desti­
nation of the DMA data requests the DMA transfer. An 
example of this would be a floppy disk write from main 
memory to the disk. In this type of transfer, the device 
requesting the transfer is written during the deposit cy­
cle of the DMA transfer. This causes a problem, since 
the DMA requesting device will not receive notification 
of the DMA cycle being run until 3 clock cycles before 
the end of the DMA transfer (if no wait states are being 

3-573 210973-003 



AP-186 

FETCH CYCLE DEPOSIT CYCLE 

T, T, T, T2 T, T, 

DRO _....,.... __ .L... __ ~_~--\ 

80186 DECISION: 

1. Current DMA source synchronized transfer will not be immediately 
followed by another DMA transfer 

DEPOSIT CYCLE 

T, T, : T, : Tw 

DRO _..I-__ .L... __ L--=~--., 

80186 Decision: 

T, T, T, 

NEXT 

DMA 

TRANSFER 

T, 

1. Current DMA destination synchronized transfer will be followed 
immediately by another DMA transfer . 

Figure 37. Source & Destination Synchronized DMA Request Timing 

inserted into the deposit cycle of the DMA transfer) and 
it takes' 4 clock cycles to determine whether another 
DMA cycle should be run immediately following the 
current DMA transfer. To get around this problem, the 
DMA unit will relinquish the CPU bus after each desti­
nation synchronized DMA transfer for at least 2 CPU 
clock cycles to allow' the DMA requesting device time to 
drop its DMA request if it does not immediately desire 
another immediate DMA transfer. When the bus is re­
linquished by the DMA unit, the CPU may resume bus 
operation (e.g., instruction fetching, memory or I/O 
reads or writes, etc.) Thus, typically, a CPU initiated 
bus cycle will be inserted between each destination syn­
chronized DMA transfer. If no CPU bus activity is re­
quired, however (and none can be guaranteed), the 
DMA unit will insert only 2 CPU clock cycles between 
the deposit cycle of one DMA transfer and the fetch cy­
cle of the next D MA transfer. This means tha t the D MA 
destination requesting device must drop its DMA re­
quest at least two clock cycles before the end of the de­
posit cycle regardless of the number of wait states 
inserted into the bus cycle. Figure 37 shows the DMA 
request going away too late to prevent the immediate 
generation of another DMA transfer. Any wait states in­
serted in the deposit cycle of the DMA transfer will 

lengthen the amount of time from the beginning of the 
deposit cycle to the time DMA will be sampled for an­
other DMA transfer. Thus, if the amount oftime a de­
vice requires to drop its DMA request after receiving a 
DMA acknowledge from the 80186 is longer than the 0 
wait state 80186 maximum (100 ns), wait states can be 
inserted into the DMA cycle to lengthen the amount of 
time the device has to drop its DMA request after receiv­
ing theDMA acknowledge. Table 4 shows the amount of 
time between the beginning of T 2 and the time D MA re-

. quest is sampled as wait states are inserted in the DMA 
deposit cycle. 

Table 4. DMA Request Inactive Timing 

Max Time(ns) 
Number of For DRQ Inactive 
Wait States From Start of T 2 

0 100 

1 225 

2 350 

3 475 

3-574 210973-003 



AP-186 

DMA FETCH CYCLE 

ORQ 
(ALWAYS 

HIGH) 

NMI / I- 01-CD CD 
I 
I 

OHLT ! 

(INTERNAL 
REGISTER 

BIT) 

1. DMA request synchronization 
2. Decision: Will DMA cycle be run? 

Answer: No DMA request is active but DHLT is set 
(from NMI request) 

3. NMI synchronization time 

DMA DEPOSIT CYCLE 

I I 
I. ..I 
I Q) CD I 

·1 

/ 

4. Logic delay time from synchronized NMI until DHLT set (note: DHLT is in 
the interrupt control status register) 

Figure 38. NMI and DMA Interaction 

4.8 DMA Halt and NMI 

Whenever a Non-Maskable Interrupt is received by the 
80186, all DMA activity will be suspended after the end 
of the current DMA transfer. This is performed by the 
NMI automatically setting the DMA Halt (DHLT) bit 
in the interrupt controller status register (see section 
6.3.7). The timing of NMI required to prevent a DMA 
cycle from occurring is shown in Figure 38. After the 
NMI has been serviced, the DHLT bit should be cleared 
by the programmer, and DMA activity will resume ex­
actly where it left off, Le., none of the DMA registers 
will have been modified. The DMA Halt bit is not auto­
matically reset after the NMI has been serviced. It is 
automatically reset by the IRET instruction. This DMA 
halt bit may also be set by the programmer to prevent 
DMA activity during any critical section of code. 

4.9 Example DMA Interfaces 

4.9.1 8272 FLOPPY DISK INTERFACE 

An example DMA Interface to the 8272 Floppy Disk 
Controller is shown in Figure 39. This shows how a typi­
cal DMA device can be interfaced to the 80186. An ex­
ample floppy disk software driver for this interface is 
given in Appendix C. 

The data lines of the 8272 are connected, through buff­
ers, to the 80186 ADO-AD7 lines. The buffers are re­
quired because the 8272 will not float its output drivers 
quickly enough to prevent contention with the 80186 
driven address information after a read from the 8272 
(see section 3.1.3). 

DMA acknowledge for the 8272 is driven by an address 
decode within the region assigned to PCS2. If 
PCS2 is assigned to be active between I/O locations 
OSOOH and OS7FH, then an access to I/O location 
OSOOH will enable only the chip select, while an access to 
I/O location OS10H will enable both the chip select and 
the DMA acknowledge. Remember, ALE must be fac­
tored into the DACK generation logic because addresses 
are not guaranteed stable when the chip selects become 
active. If ALE were not used, the DACK generation cir­
cuitry could glitch as address output changed state while 
the chip select was active. . 

Notice that the TC line of the 8272 is driven by a very 
similar circuit as the one generating DACK (except for 
the reversed sense ofthe output!). This line is used to ter­
minate an 8272 command before the command has com­
pleted execution. Thus, the TC input to the 8272 is 
software driven in this case. Another method of driving 
the TC input would be to connect the DACK signal to 
one of the 80186 timers, and program the timer to out-

3-575 210973-003 



"nt_l® 111'e' ' AP-186 

DRO ,r- D or-- D 
oj 

7474 7474 

ex CL C. CL 

1 I DRO 

CLKOUT H> CLK 

PCS2 CS 
A 

ALE D- DACK 

ADDR 
LATCH 8272 

tP- TC M FLOPPY 

DISK 

NTERFACE AO 

DATA 
DBO-

AD7-ADO / aUF-
DB7 8 

FER 
8'-

RD RD 

WR WR 

RESET RESET 

C. = 7474 CLOCK INPUT 

CL = 7474 CLEAR INPUT 

Figure 39. Example 8272/80186 DMA Interface 

put a pulse to the 8272 after a certain number of DMA 
cycles have been run (see next section for 80186 timer 
information). 

The above discussion assumed that a single 80186 
PCS line is free to generate all 8272 select, signals. If 
more than' one ch.!JL!.elect is free, however, different 
80186 generated PCS lines could be used for each 
function. For example, PCS2 could be used to select 
the 8272, PCS3 could be used to drive the DACK line 
of the 8272, etc. 

DMA requests are delayed by two clock periods in going 
from the 8272 to the 80186. This is require.!!..Qy the 8272 
tRQR (time from DMA request to DMA RD going ac­
tive) spec of 800ns min. This requires 6.4 80186 CPU 

clock cycles (at 8 MHz), well beyond the 5 minimum 
provided by the 80186 (4 clock cycles to the beginning of 
the D MA bus cychl to the beginning ofT 2 of the D MA 
bus cycle where RD will go active). The two flip-flops 
add two complete CPU clock cycles to this response 
time. 

DMA request will go away 200ns after DACK is pre­
sented to the 8272. During a DMA write cycle (i.e., a 
destination synchronized transfer), this is not soon 
enough to prevent the immediate generation of another 
DMA transfer if no wait states are inserted in the depos­
it cycle to the 8272. Therefore, atleast 1 wait state is re­
quired by this interface, regardless of the data access 
parameters of the 8272. 

3-576 210973-003 



AP-186 

4.9.2 8274 SERIAL 
COMMUNICATION INTERFACE 

An example 8274 synchronous/asynchronous serial 
chip/80l86 DMA interface is shown in Figure 40. The 
8274 interface is even simpler than the 8272 interface, 
since it does not require the generation of a DMA ac­
knowledge signal, and the 8274 doe.'! not require the 
length of time between a DMA request and the DMA 
read or write cycle that the 8272 does. An example serial 
driver using the 8274 in DMA mode with the 80186 is 
given in Appendix C. 

8274 
DRQO TxDRQ. 

DRQ1 RxDRQ. 

ADDR / 
r--- LATCH 2/ 

AO,A1 

lV 
A" 8288 

ADO·AD7 
A./ 

DATA / DBD-DB7 
8/ BUFFER (rf 

RD RD 

WR WR 

RESET RESET 

Figure 40. Example 8274/80186 DMA Interface 

The data lines ofthe 8274 are connected through buffers 
to the 80186 ADO-AD7lines. Again, these are required 
not because of bus drive problems, but because the 8274 
will not float its drivers before the 80186 will begin driv­
ing address information on its address/data bus. If both 
the 8274 and the 8272 are included in the same 80186 
system, they could share the same data bus buffer (as 
could any other peripheral devices in the system). 

The 8274 does not require a DMA acknowledge signal. 
The first read from or write to the data register of the 
8274 after the 8274 generates the DMA request signal 
will clear the DMA request. The time between when the 
control signal (RD or WR) becomes active and 
when the 8274 will drop its DMA request during a 
DMAwrite is 150ns, which will require at least one wait 
state be inserted into the DMA write cycle for proper op­
eration of the interfacll. 

5. TIMER UNIT INTERFACING 
The 80186 includes a timer unit which provides three in­
dependent 16-bit timers. These timers operate indepen­
dently of the CPU. Two of these have input and output 
pins allowing counting of external events and generation 
of arbitrary waveforms. The third timer can be used as a 
timer, as a prescaler for the other two timers, or as a 
DMA request source. 

5.1 Timer Operation 
The internal timer unit on the 80186 could be modeled 
by a single counter element, time multiplexed to three 
register banks, each of which contains different control 
'and count values. These register banks are, in turn, dual 
ported between the counter element and the 80186 CPU 
(see Figure 41). Figure 42 shows the timer element se­
quencing, and the subsequent constraints on input and 
output signals. If the CPU modifies one ofthe timer reg­
isters, this change will affect the counter element the 
next time that register is presented to the counter ele­
ment. There is no connection between the sequencing of 
the counter element through the timer register banks 
and the Bus Interface Unit's sequencing through T­
states. Timer operation and bus interface operation are 
completely asynchronous. 

5.2 Timer Registers 
Each timer is controlled by a block of registers (see Fig­
ure 43). Each of these registers can be read or written 
whether or not the timer is operating. All processor ac­
cesses to these registers are synchronized to all counter 
element accesses to these registers, meaning that one 
will never read a count register in which only half of the 
bits have been modified. Because of this synchroniza­
tion, one wait state is alftomatically inserted into any ac­
cess to the timer registers. Unlike the DMA unit, 
locking accesses to timer registers will not prevent the 
timer's counter element from accessing the timer 
registers. 

Each timer has a 16-bit count register. This register is 
incremented for each timer event. A timer event can be a 
low-to-high transition on the external pin (for timers 0 
and I), a CPU clock transition (divided by 4 because of 
the counter element multiplexing), or a time out of timer 
2 (for timers 0 and 1). Because the count register is 16 
bits wide, up to 65536 (216) timer events can be counted 
by a single timer/couRter. This register can be both read 
or written whether the timer is or is not operating. 

Each timer includes a maximum count register. When­
ever the timer count register is equal to the maximum 
count register, the count register will be reset to zero, 
that is, the maximum count value will never be stored in 
the count register. This maximum count value may be 
written while the timer is operating. A maximum count 

3-577 210973-003 



"1m _I® I I-e- AP-1.86 

TIMER IN 
o 

TIMER IN 
1 

TIMER OUT 
o 

TIMER OUT 
1 

CPU 

1. Timer in 0 resolution time 
2. Timer in 1 resolution time 

DMA 

REQUEST 

To T, 
IN IN 

Figure 41. 80186 Timer Model 

TI~ER 1 

SERVICED 

TIMER 2 

SERVICED 

3. Modified count value written into 80186 timer 0 count register 
4. Modified count value written into 80186 timer 1 count register 

DEAD 

TIMER 0 

SERVICED 

Figure 42. 80186 Counter Element Multiplexing and Timer Input Synchronization 

3-578 210973-003 



AP-186 

COUNT REGISTER 

OFFSET 

SOH 
52H 
54H 
56H 

58H 

SAH 

5CH 

5EH 

60H 

62H 

64H 

66H 

------------
MAX COUNT REGISTER A 

TIMER 0 ------------
MAX COUNT REGISTER B 

- CONTROL REGISTER-d) - - --

COUNT REGISTER ------------
MAX COUNT REGISTER A 

TIMER 1 ------------
MAX COUNT REGISTER B 

- CONTROL REGISTER -(i) - - - -
COUNT REGISTER ------------
MAX COUNT REGISTER 

TIMER 2 ------------X X X 
- CONTROL REGISTER-aT - - - -

CD CONTROL REGISTER LAYOUT 

15 o 

Figure 43. 80186 Timer Register Layout 

value of 0 implies a maximum count of 65536, a maxi­
mum count value of 1 implies a maximum count of 1, 
etc. The user should be aware that only equivalence be­
tween the count value and the maximum count register 
value is checked, that is, the count value will not be 
cleared if the value in the count register is greater than 
the value in-the maximum count register. This could only 
occur by programmer intervention, either by setting the 
value in the count register greater than the value in the 
maximum count register, or by setting the value in the 
maximum count register to be less than the value in the 
count register. If this is programmed, the timer will 
count to the maximum possible count (FFFFH), incre­
ment to 0, then count up to the value in the maximum 
count register. The TC bit in the timer control register 
will not be set when the counter overflows to 0, nor will 
an interrupt be generated from the timer unit. 

Timers 0 and 1 each contain an additional maximum 
count register.-When both maximum count registers are 
used, the timer will first count up to the value in maxi­
mum count register A, reset to 'zero, count up to the val­
ue in maximum count register B, and reset to zero again. 
The ALTernate bit in the timer control register deter­
mines whether one or both maximum count registers are 
used. If this bit is low, only maximum count register A is 
used; maximum count register B is ignored. If it is high, 
both maximum count register A and maximum count 
register B are used. The RIU (register in use) bit in tile 
timer control register indicates which maximum count 
register is currently being used. This bit is 0 when maxi­
mum count register A is being used, 1 when maximum 
count register B is being used. This RIU bit is read only. 
It is unaffected by any write to the timer control register. 
It will always be read 0 in single maximum count regis-

ter mode (since only maximum count register A will be 
used). 

Each timer can generate an interrupt whenever the tim­
er count value reaches a maximum count value. That is, 
an interrupt can be generated whenever the value in 
maximum count register A is reached, and whenever the 
value in maximum count register B is reached. In addi­
tion, the MC (maximum count) bit in the timer control 
register is set whenever the timer count reaches a maxi­
mum count value. This bit is never automatically 
cleared, i.e., programmer intervention is required to 
clear this bit. If a timer generates a second interrupt re­
quest before. the first interrupt request has been ser­
viced, the first interrupt request to the CPU will be lost. 

Each timer has an ENable bit in the timer control regis­
ter. This bit is used to enable the timer to count. The tim­
er will count timer events only when this bit is set. Any 
timer events occurring when this bit is reset are ignored. 
Any write to the timer control register will modify the 
ENable bit only if the INHibit bit is also set. The timer 
ENable bit will not be modified by a write to the timer 
control register if the INHibit bit is not set. The INHibit 
bit in the timer control register allows selective updating 
of the timer ENable bit. The value of the INHibit bit is 
not stored in a write to the timer control register; it will 
always be read as a 1. 

Each timer has a CONTinuous bit in the timer control 
register. If this bit is cleared, the timer ENable bit will 
be automatically cleared at the end of each timing cycle. 
If a single maximum count register is used, the end of a 
timing cycle occurs when the count value resets to zero 
after reaching the value in maximum count register A. If 
dual maximum count registers are used, the end of a 

3-579 210973-003 



Ap·186 

timing'cycle occurs when the count value resets to zero 
after reaching the value in maximum count register B. If 
the CONTinuous bit is set, the ENable bit in the timer 
control register will never be automatically'reset. Thus, 
after each timing cycle, another timing cycle will auto­
matically begin. For example, in single maximum count 
register mode, the timer will count up to the value in 
maximum count register A, reset to zero, count up to the 
value in maximum count register A, reset to zero, ad in­
finitum. In dual maximum count register mode, the tim­
er will count up the the value in maximum count register 
A, reset to zero, count up the value in maximum count 
register B', reset to zero, count up to the value in maxi­
mum count register A, reset to zero, et cetera. 

5.3 Timer Events 
Each timer counts timer events. All timers can use a 
transition of the CPU clock as an event. Because of the 
counter element multiplexing, the timer-count value will 
be incremented every fourth CPU clock. For timer 2, 
this is the only timer event which can be used. For timers 
o and I, this event is selected by clearing the EXTernal 
and Prescaler bits in the timer control register. 

Timers 0 and 1 can use timer 2 reaching its maximum 
count as a timer event. This is selected by clearing the 
EXTernal bit and setting the Prescaler bit in the timer 
control register. When this is done, the timer will incre­
ment whenever timer 2 resets to zero having reached its 
own maximum count. Note that timer 2 must be initial­
ized and running for the other timer's value to be 
incremented. 

Timers 0 and 1 can also be programmed to count low-to­
high transitions on the external input pin. Each transi­
tion on the external pin is synchronized to the 80186 
clock before it is presented to the timer circuitry, and 
may, therefore, be asynchronous (see Appendix.B for in­
formation on 80186 synchronizers). The timer counts 
transitions on the input pin: the input value must go low, 
then go high to cause the timer to increment. Any transi­
tion on this line is latched. If a transition occurs when a 
timer is not being serviced by the counter element, the 
transition on the input line will be remembered so that 
when the timer does get serviced, the input transition 
will be counted. Because of the counter element multi­
plexing, the maximum rate at which the timer can count 
is 1/4 of the CPU clock rate (2 MHz with an 8 MHz 
CPU clock). ' 

5.4 Timer Input Pin Operation 
Timers 0 and 1 each have individual timer input pins. 
Alliow-to-high transitions on these input pins are syn­
chronized, latched, and presented to the counter element 
when the particular timer is being serviced by the 
counter element. 

Signals on this input can affect timer operation in three 
different ways. The manner in which the pin signals are 
used is determined by the EXTernal and RTG (retrig-

ger) bits in ~he timer control register. If the EXTernal 
bit is set, transitions on the input pin will cause the timer 
count value to increment if the timer is enabled (the EN­
able bit in the timer control register is set). Thus, the 
timer counts external events. If the EXTernal bit is 
cleared, all· timer increments are caused by either the 
CPU clock or by timer 2 timing out. In this mode, the 
RTG bit determines whether the input pin will enable 
timer operation, or whether it 'will retrigger timer 
operation. 

If the EXTernal bit is low and the R TG bit is also low, 
the timer will count internal timer events only when the 
timer input pin is high and the ENable' bit in the timer 
control register is set. Note that in this mode, the pin is 
level sensitive, not edge sensitive. A low-to-high transi~ 
tion on the timer input pin is not required to enable timer 
operation. If the input is tied high, the timer will be con­
tinually enabled. The timer enable input signal is com­
pletely independent of the ENable bit in the timer 
control register: both must be high for the timer to 
count. Example uses for the timer in this mode would be 
a real time clock or a baud rate generator. 

If the EXTernal bit is low and the RTG bit is high, the 
timer will act as a digital one-shot. In this mode, every 
low-to-high transition on the timer input pin will cause 
the timer to reset to zero. If the timer is enabled (i.e., the 
ENable bit in the timer control register is set) timer op­
eration will begin (the timer will count CPU clock tran­
sitions or timer 2 timeouts). Timer operation will cease 
at the end of a timer cycle, that is, when the value in ~he 
maximum count register A is reached and the timer 
count value resets to zero (in single maximum count reg­
ister mode, remember that the maximum count value is 
never stored in the timer count register) or when the val­
ue in maximum count register B is reached and the. timer 
count value resets to zero (in dual maximum count regis­
ter mode). If another low-to-high transition occurs on 
the input pin before the end of the timer cycle, the timer 
will reset to zero and begin the timing cycle again re­
gardless of the state of the CONTinuous bit in the timer 
control register the RIU bit will not be changed by the 
input transition. If the CONTinuous bit in the timer 
control register is cleared, the timer ENable bit will 
automatically be cleared at the end of the timer cycle. 
This means that any additional transitions on the input 
pin will be ignored by the timer. If the CONTinuous bit 
in the timer control register is set, the timer will reset to 
zero and begin another timing cycle for every low-to­
high transition on the input pin, regardless of whether 
the timer had reached the end of a timer cycle, because 
the timer ENable bit would not have been cleared at the 
end of the timing cycle. The timer will also continue 
counting at the end of a timer cycle, whether or not an­
other transition has occurred on the input pin. An exam­
ple use of the timer in this mode is an alarm clock time 
out signal or interr~pt. 

3-580 
l 

210973-003 



AP-186 

5.5 Timer Output Pin Operation 

Timers 0 and 1 each contain a single timer output pin. 
This pin can perform two functions at programmer op­
tion. The first is a single pulse indicating the end of a 
timing cycle. The second is a level indicating the maxi­
mum count register currently being used. The timer out­
puts operate as outlined below whether internal or 
external clocking of the timer is used. If external clock­
ing is used, however, the user should remember that the 
time between an external transition on the timer input 
pin and the time this transition is reflected in the timer 
out pin will vary depending on when the input transition 
occurs relative to the timer's being serviced by the 
counter element. 

When the timer is in single maximum count register 
mode (the ALTernate bit in the timer control register is 
cleared) the timer output pin will go low for a single 
CPU clock the clock after the timer is serviced by the 
counter element where maximum count is reached (see 
Figure 44). This mode is useful when using the timer as 

TIMER 0 SERVICED 

a baud rate generator. 

When the timer is programmed in dual maximum count 
register mode (the ALTernate bit in the timer control 
register is set), the timer output pin indicates which 
maximum count register is being used. It is low if maxi­
mum count register B is being used for the current 
count, high if maximum count register A is being used. 
If the tiIl\er is programmed in continuous mode (the 
CONTinuous bit in the timer control register is set), this 
pin could generate a waveform of any duty cycle. For ex­
ample, if maximum count register A contained 10 and 
maximum count register B contained 20, a 33% duty cy­
cle waveform would be generated. 

5.6 Sample 80186 Timer Applications 

The 80186 timers can be used for almost any application 
for which a discrete timer circuit would be used. These 
include real time clocks, baud rate generators, or event 
counters. 

INTERNAL ---------""\1-----+---------
COUNT 
VALUE 

TMR OUT --------------i"1 
PIN 

Figure 44. 80186 Timer Out Signal 

80186 
+ 5V 

+5V r-- TMRINol 
TIMER 

TMR IN 1 
0 

'---

TMROUTO TxC } SERIAL 
RxC CONTROLLER 

TMR OUT 1 

TMR INO 

Figure 45. 80186 Real Time Clock Figure 46. 80186 Baud Rate Generator 

3-581 210973-003 



AP-186 

80186 0 
JL 0 

3GLIGHT 
TMR INO 0 ~ 

Figure 47. 

5.6.1 80186 TIMER REAL TIME CLOCK 

The sample program in appendix D shows the 80186 
timer being used with the 80186 CPU to form a real 
time clock. In this implementation, timer 2 is pro­
grammed to provide an interrupt to the CPU every milli­
second. The CPU then increments memory based clock 
variables. 

5.6.2 80186 TIMER BAUD RATE GENERATOR 

The 80186 timers can also be used as baud rate gener­
ators for serial communication controllers (e.g., the 
8274). Figure 46 shows this simple connection, and the 

TIMER TIMER TIMER 

code to program the timer as a baud rate generator is in­
cluded in appendix D. 

5.6.3 80186 TIMER EVENT COUNTER 

The 80186 timer can be used to count events. Figure 47 
shows a hypothetical set up in which the 80186 timer 
will count the interruptions ill a light source. The num­
ber of interruptions can be read directly from the count 
register of the timer, since the timer counts up, i.e., each 
interruption in the light source will cause the timer 
count value to increase. The code to set up the 80186 
timer in this mode is included in appendix D. 

o 1 2 INTO INT1 INT2 INT3 NMI 

TIMER 
CONTROL REG. 

DMAO 
CONTROL REG. 

DMA 1 
CONTROL REG. 

INTERRUPT 
REQUEST REG. 

INTERRUPT 
MASK REG. 

IN-SERVICE 
REG. 

EXT. INPUT 0 
CONTROL REG. 

INTERRUPT 
PRIORITY 
RESOLVER 

PRIOR. LEV. 
MASK REG. 
INTERRUPT 

STATUS REG. 
EXT. INPUT 1 

CONTROL REG. 

EXT. INPUT 2 
CONTROL REG. 

INTERRUPT 
REQUEST TO 
PROCESSOR 

INTERNAL ADDRESS/DATA BUS 

Figure 48. 80186 Interrupt Controller Block Diagram 

3-582 210973-003 



AP-186 

6. 80186 INTERRUPT CONTROLLER 
INTERFACING 

The 80186 contains an integrated interrupt controller. 
This unit performs tasks of the interrupt controller in a 
typical system. These include synchronization of inter­
rupt requests, priortization of interrupt requests, and re­
quest type vectoring in response to a CPU interrupt 
acknowledge. It can be a master to two external 8259A 
interrupt controllers or can be a slave to an external in­
terrupt controller to allow compatibility with the iRMX 
86 operating system, and the 80130/80150 operating 
system firmware chips. 

6.1 Interrupt Controller Model 

The integrated interrupt controller block diagram is 
shown in Figure 48. It contains registers and a control 
element. Four inputs are provided for external interfac­
ing to the interrupt controller. Their functions change 
according to the programmed mode of the interrupt con­
troller. Like the other 80186 integrated peripheral regis­
ters, the interrupt controller registers are available for 
CPU reading or writing at any time. 

6.2 Interrupt Controller Operation 

The interrupt controller operates in two major modes, 
non-iRMX 86 mode (referred to henceforth as master 
mode), and iRMX 86 mode. In master mode the inte­
grated controller acts as the master interrupt controller 
for the system, while in iRMX 86 mode the controller 

operates as a slave to an external interrupt controller 
which operates as the master interrupt controller for the 
system. Some of the interrupt controller registers and in-

, terrupt controller pins change definition between these 
two modes, but the basic charter and function of the in­
terrupt controller remains fundamentally the same. The 
difference is when in master mode, the interrupt control­
ler presents its interrupt input directly to the 80186 
CPU, while in iRMX 86 mode the interrupt controller 
presents its interrupt input to an external controller 
(which then presents its interrupt input to the 80186 
CPU). Placing the interrupt controller in iRMX 86 
mode is done by setting the iRMX mode bit in the pe­
ripheral control block pointer (see appendix A). 

6.3 Interrupt Controller Registers 

The interrupt controller has a number of registers which 
are used to control its operation (see Figure 49). Some of 
these change their function between the two major 
modes of the interrupt controller (master and iRMX 86 
mode). The differences are indicated in the following 
section. If not indicated, the function and implementa­
tion of the registers is the same in the two basic modes of 
operation of the interrupt controller. The method of in­
teraction among the various interrupt controller regis­
ters is shown in the flowcharts in Figures 57 and 58. 

6.3.1. CONTROL REGISTERS 

Each source of interrupt to the 80186 has a control regis­
ter in the internal controller. These registers contain 

MASTER MODE OFFSET ADDRESS ,RMX86N Mode 

INT3 CONTROL REGISTER 

INT2 CONTROL REGISTER 

INn CONTROL REGISTER -----------------------
INTO CONTROL REGISTER 

DMA1 CONTROL REGISTER 

DMAO CONTROL REGISTER -----------------------
TIMER CONTROL REGISTER 

INTERRUPT CONTROLLER STATUS REGISTER 

INTERRUPT REQUEST REGISTER 

IN-SERVICE REGISTER 

PRIORITY MASK REGISTER -----------------------
MASK REGISTER 

POLL STATUS REGISTER 

POLL REGISTER 

EOI REGISTER -----------0-----------

3EH CD 

3CH ===========0=========== 3AH TIMER 2 CONTROL REGISTER 

38H TIMER 1 CONTROL REGISTER 

36H 

34H 

32H 

30H 

2EH 

2CH 

2AH 

28H 

26H 

24H 

22H 

20H 

DMA1 CONTROL REGISTER 

DMAO CONTROL REGISTER 

TIMER 0 CONTROL REGISTER 

INTERRUPT CONTROLLER STATUS REGISTER 

INTERRUPT REQUEST REGISTER 

IN SERVICE REGISTER -----------------------PRIORITY MASK REGISTER 

MASK REGISTER 

===========$=========== SPECIFIC EOI REGISTER -----------------------
INTERRUPT VECTOR REGISTER 

1. Unsupported in this mode: values written mayor may not be stored 

Figure 49. 80186 Interrupt Controller Registers 

3-583 210973-003 



AP-186 

15 o en t SPECIAL CAS- LEVEL 
I I FULLY MASK 

0 NESTED CADE TRIG. PRIORITY BITS 

BIT 0 MODE 0 MOD~CD 
BIT I : 

1. This bit present only in INTO-INT3 control registers 
2. These bits present only in INTO-INT1 control register 

Figure 50_ Interrupt Controller Control Register 

15 MASTER MODE o 15 iRMXN 86 MODE 0 

x x x x x 

Figure 51. 80186 Interrupt Controller In-Service, Interrupt Request and Mask Register Format 

three bits which select one of eight different interrupt 
priority levels for the interrupt device (0 is highest prior­
ity, 7 is lowest priority), and a mask bit to enable the in­
terrupt (see Figure 50). When the mask bit is low, the 
interrupt is enabled, when it is high, the interrupt is 
masked. 

There are seven control registers in the 80186 integrated 
interrupt controller. In master mode, four of these serve 
the external interrupt inputs, one each for the two DMA 
channels, and one for the collective timer interrupts. In 
iRMX 86 mode, the external interrupt inputs are not 
used, so each timer can have its own individual control 
register. 

6.3.2 REQUEST REGISTER 

6.3.3 MASK REGISTER AND PRIORITY 
MASK REGISTER 

The interrupt controller contains a mask register (see 
Figure 51). This register contains a mask bit for each in­
terrupt source associated with an interrupt control regis­
ter. The bit for an interrupt source in the mask register is 
identically the same bit as is provided in the interrupt 
control register: modifying a mask bit in the control reg­
ister will also modify it in the mask register, and vice 
versa. 

The interrupt controller also contains a priority mask 
register (see Figure 52). This register contains three bits 
which indicate the lowest priority an interrupt may have 
that will cause an interrupt acknowledge. Interrupts 
received which have a lower priority will be effectively 
masked off. Upon reset this register is set to the lowest 
priority of 7 to enable all interrupts of any priority. This 
register may be read or written. 

15 o 
x x x 

Figure 52. 80186 Interrupt Controller Priority 
Mask Register Format 

The interrupt controller includes an interrupt request 
register (see Figure 51). This register contains seven ac­
tive bits, one for each interrupt control register. When­
ever an interrupt request is made by the interrupt source 
associated with a specific control register, the bit in in­
terrupt request register is set, regardless if the interrupt 
is enabled, or if it is of sufficient priority to cause a pro­
cessor interrupt. The bits in this register which are asso­
ciated with integrated peripheral devices (the DMA and 
timer units) can be read or written, while the bits in this 
register which are associated with the external interrupt 
pins can only be read (values written to them are not 
stored). These interrupt request bits are automatically 
cleared when the interrupt is acknowledged. 

6.3.4 IN-SERVICE REGISTER 

3-584 

The interrupt controller contains an in-service register 
(see Figure 51). A bit in the in-service register is associ­
ated with each interrupt control register so that when an 
interrupt request by the device associated with the con-

210973-003 



AP-1S6 

trol register is acknowledged by the processor (either by 
the processor running the interrupt acknowledge or by 
the processor reading the interrupt poll register) the bit 
is set. The bit is reset when the CPU issues an End Of 
Interrupt to the interrupt controller. This register may 
be both read and written, i.e., the CPU may set in-ser­
vice bits without an interrupt ever occurring, or may re­
set them without using the EOI function of the interrupt 
controller. 

6.3.5 POLL AND POLL STATUS REGISTERS 

The interrupt controller contains both a poll register and 
a poll status register (see Figure 53). Both of these regis­
ters contain the same information. They have a single bit 
to indicate an interrupt is pending. This bit is set if an 
interrupt of sufficient priority has been received. It is 
automatically cleared when the interrupt is acknowl­
edged. If (and only if) an interrupt is pending, they also 
contain information as to the interrupt type of the high­
est priority interrupt pending. 

15 

x x x 
SO-S4 = interrupt type 

Figure 53. 80186 Poll & Poll Status 
Register Format 

o 

Reading the poll register will acknowledge the pending 
interrupt to the interrupt controller just as if the proces-

15 MASTER MODE o 

J;SPEC'x SO-S4 = Interrupt type 

sor had acknowledged the interrupt through interrupt 
acknowledge cycles. The processor will not actually run 
any interrupt acknowledge cycles, and will not vector 
through a location in the interrupt vector table. Only the 
interrupt request, in-service and priority mask registers 
in the interrupt controller are set appropriately. Reading 
the poll status register will merely transmit the status of 
the polling bits without modifying any of the other inter­
rupt controller registers. These registers are read only: 
data written to them is not stored. These registers are 
not supported in iRMX 86 mode. The state of the bits in 
these registers in iRMX 86 mode is not defined. 

6.3.6 END OF INTERRUPT REGISTER 

The mterrupt controller contains an End Of Interrupt 
register (see Figure 54). The programmer issues an End 
Of Interrupt to the controller by writing to this register. 
After receiving the End Of Interrupt, the interrupt 
controller automatically resets the in-service bit for the 
interrupt. The value of the word written to this register 
determines whether the End Of Interrupt is specific or 
non-specific. A non-specific End Of Interrupt is specified 
by setting the non-specific bit in the word written to the 
End Of Interrupt register. In a non-specific End Of 
Interrupt, the in-service bit of the highest priority interrupt 
set is automatically cleared, while a specific End Of 
Interrupt allows the in-service bit cleared to be explicitly 
specified. The in-service bit is reset whether the bit 'Was set 
by an interrupt acknowledge or if it was set by the CPU 
writing the bit directly to the in-service register. If the 

15 iRMX86 MODE o 

x x x x x 
LO-L2 = interrupt priority level 

Figure 54. 80186 End of Intenupt Register Format 

I I x x x 
15r DHLT 

x 
o 

x 

Figure 55. 80186 Interrupt Status Register Format 

15 o 
x x x 

Figure 56. 80186 Interrupt Vector Register Format (IRMX 86 mode only) 

3-585 
210973-003 



AP-186 

highest priority interrupt is reset, the pnonty mask 
register bits will change to reflect the,next lowest priority 
interrupt to be serviced. If a less than highest priority 
interrupt in-service bit is reset, the priority mask register 
bits will not be modified (because the highest priority 
interrupt being serviced has not c:hanged). Only the 
specific EO! is supported in iRMX 86 mode. This register 
is write only: data written is not stored and cannot be 
read back. 

6.3.7 INTERRUPT STATUS REGISTER 

The interrupt controller also contains an interrupt status 
register (see Figure 55). This register contains four sig­
nificant bits. There are three bits used to show which 
timer is causing an interrupt. This is required because in 
master mode, the timers share a single interrupt control 
register. A bit in this register is set to indicate which tim­
er has generated an interrupt. The bit associated with a 
timer is automatically cleared after the interrupt re­
quest for the timer is acknowledged. More than one of 
these bits may be set at a time. The fourth bit in the in­
terrupt status register is the DMA halt bit. When set, 
this bit prevents any DMA activity. It is automatically 
set whenever a NMI is received by the interrupt control­
ler. It can also be set explicitly by the programmer. This 
bit is automatically cleared whenever the IRET instruc­
tion is executed. All significant bits in this register are 
read/write. 

6.3.8 INTERRUPT VECTOR REGISTER 

Finally, in iRMX 86 mode only, the interrupt controller 
contains an interrupt vector register (see Figure 56). 
This register is used to specify the 5 most significant bits 
of the interrupt type vector placed on the CPU bus in re­
sponse to an interrupt acknowledgement (the lower 3 
significant bits of the interrupt type are determined by 
the priority level of the device causing the interrupt in 
iRMX 86 mode). 

6.4 Interrupt Sources 

The 80"'86 interrupt controller receives and arbitrates 
among many different interrupt request sources, both 
internal and external. Each interrupt source may be pro­
grammed to be a different priority level in the interrupt 
controller. An interrupt request generation flow chart is 
shown in Figure 57. Such a flowchart would be followed 
independently by each interrupt source. 

6.4.1 INTERNAL INTERRUPT SOURCES 

The internal interrupt sources are the three timers and 
the two D MA channels. An int~rrupt from each of these 
interrupt sources is latched in the interrupt controller, so 
that if the condition causing the interrupt is cleared in 
the originating integrated peripheral device, the inter­
rupt request will remain pending in the interrupt con­
troller. The state of the pending interrupt can be 
obtained by reading the interrupt request register of the 

interrupt controller. For all internal interrupts, the 
latched interrupt request can be reset by the processor 
by writing to the interrupt request register. Note that all 
timers share a common bit in the interrupt request regis­
ter in master mode. The interrupt controller status regis­
ter may be read to determine which timer is actually 
causing the interrupt request in this mode. Each timer 
has a unique interrupt vector (see section 6.5.1). Thus 
polling is not required to determine which timer has 
caused the interrupt in the interrupt service routine. 
Also, because the timers share a common interrupt con­
trol register, they are placed at a common priority level 
as referenced to all other interrupt devices. Among 
themselves they have a fixed priority, with timer 0 as the 
highest priority timer and timer 2 as the lowest priority 
timer. 

6.4.2 EXTERNAL INTERRUPT SOURCES 

The 80186 interrupt controller will accept external in­
terrupt requests only when it is programmed in master 
mode. In this mode, the external pins associated with the 
interrupt controller may serve either as direct interrupt 
inputs, or as cascaded interrupt inputs from other inter­
rupt controllers as a programmed option. These options 
are selected by programming the C and SFNM bits in 
the INTO and INTI control registers (see Figure 50). 

When programmed as direct interrupt inputs, the four 
interrupt inputs are each controlled by an individual in­
terrupt control register. As stated earlier, these registers 
contain 3 bits which select the priority level for the inter­
rupt and a single bit which enables the interrupt source 
to the processor. In addition each of these control regis­
ters contains a bit which selects either edge or level trig­
gered mode for the interrupt input. When edge triggered 
mode is selected, a low-to-high transition must occur on 

. the interrupt input before an interrupt is generated, 
while in level triggered mode, only a high level needs to 
be maintained to generate an interrupt. In edge trig~ 
gered mode, the input must remain low at least 1 clock 
cycle before the input is "re-armed." In both modes, the 
interrupt level must remain high until the interrupt is 
acknowledged, i.e., the interrupt request is not latched 
in the interrupt controller. The status of the interrupt in­
put can be shown by reading the interrupt request regis­
ter. Each of the external pins has a bit in this register 
which indicates an interrupt request on the particular 
pin. Note that since interrupt requests on these inputs 
are not latched by the interrupt controller, if the external 
input goes inactive, the interrupt request (and also the 
bit in the interrupt request register) will also go inactive 
(low). Also, if the interrupt input is in edge triggered 
mode, a low-to-high transition on the input pin must oc­
cur before the interrupt request bit will be set in the in­
terrupt request register. 

If the C (Cascade) bit of the INTO or INTI control reg­
isters are set, the interrupt input is cascaded to an exter­
nal interrupt controller. In this mode, whenever the 

3-586 210973-00~ 



AP-186 

Figure 57. 80186lnterrupt.Request Sequencing 

interrupt presented to the INTO or INTI line is ac­
knowledged, the integrated interrupt controller will not 
provide the interrupt type for the interrupt. Instead, two 
INTA bus cycles will be run, with the INT2 and INT3 
lines providing the interrupt acknowledge pulses for the 
INTO and the INTI interrupt requests respectively. IN­
TO/INT2 and INTI/INT3 may be individually pro­
grammed into cascade mode. This allows 128 
individually vectored interrupt sources if two banks of 9 
external interrupt controllers each are used. 

6.4.3 iRMX'" 86 MODE INTERRUPT SOURCES 

When the interrupt controller is configured in iRMX 86 
mode, the integrated interrupt controller accepts inter-

rupt requests only from the integrated peripherals. Any 
external interrupt requests must go through an external 
interrupt controller. This external interrupt controller 
requests interrupt service directly from the 80186 CPU 
through the INTO line on the 80186, In this mode, the 
function of this line is not affected by the integrated in­
terrupt controller. In addition, in iRMX 86 mode the in­
tegrated interrupt controller must request interrupt 
service through this external interrupt controller. This 
interrupt request is made on the INT3 line (see section 
6.7.4 on external interrupt connections). 

6.5 Interrupt Response 
The 80186 can respond to an interrupt in two different 
ways. The first will occur if the internal controller is pro-

3-587 210973-003 



AP-186 

GENERATE INTA 
CYCLES FOR 

EXTERNAL 
INTERRUPT 

CONTROLLER 

YES 

PROVIDE HIGHEST 
PRIORITY INTERRUPT 

VECTOR ON 
INTERNAL BUS 

1. Before actual interrupt ackno'wledge is run by CPU 

WAIT FOR NEXT 
INTERRUPT 

ACKNOWLEDGE 

PLACE INTERRUPT 
TYPE ON INTERNAL ri\ 

BUS DURING SECOND \.!I 
INTACYCLE 

2. Two interrupt acknowledge cycles will be run, the interrupt type is read by 
the CPU on the second cycle 

3. Interrupt acknowledge cycles will not be run, the interrupt vector address is 
placed on an internal bus and is not available outside the processor 

4. Interrupt type is not driven on external bus in iRMX86 mode 

Figure 58. 80186 Interrupt Acknowledge Sequencing 

viding the interrupt vector information with the control­
ler in master mode. The second will occur if the CPU 
reads interrupt type information from an external inter­
rupt controller or if the interrupt controller is in iRMX 
86 mode. In both of these instances the interrupt vector 
information driven by the 80186 integrated interrupt 
controller is not available outside the 80186 
microprocessor. 

In each interrupt mode, when the integrated interrupt 
controller receives an interrupt response, the interrupt 
controller will automatically set the in-service bit and 
reset the interrupt request bit in the integrated controller. 
In addition, unless the interrupt control register for the 
interrupt is set in Special Fully Nested Mode, the 
interrupt controller will prevent any interrupts from 
occurring from the same interrupt line until the in-service 
bit for that line has been cleared. 

6.5.1 INTERNAL VECTORING, MASTER MODE 

In master mode, the interrupt types associated with all 
the interrupt sources are fixed and unalterable. These 
interrupt types are given in Table 5. In response to an in­
ternal CPU interrupt acknowledge the interrupt con­
troller will generate the vector address rather than the 
interrupt type. On the 80186 (like the 8086) the inter­
rupt vector address is the interrupt type multiplied by 4. 
This speeds interrupt response. 

In master mode, the integrated interrupt controller is 
the master interrupt controller of the system. As a re­
sult, no external interrupt controller need know when 
the integrated controller is providing an interrupt vector, 
nor when the interrupt acknowledge is taking place. As a 
restilt, no interrupt acknowledge bus cycles will be gen­
erated. The first external indication that an interrupt 
has been acknowledged will be the processor reading the 
interrupt vector from the interrupt vector table in low 
memory. 

3-588 



AP-186 

Table 5. 80186 Interrupt Vector Types 

Interrupt Vector Default 
Name Type Priority 

timer 0 8 Oa 
timer I 18 Ob 
timer 2 19 Oc 
DMAO 10 2 
DMAI 11 3 
INTO 12 4 
INT I \3 5 
INT 2 14 6 
INT 3 15 7 

Because the two interrupt acknowledge cycles are not 
run, and the interrupt vector address does not need be be 
calculated, interrupt response to an internally vectored 
interrupt is 42 clock cycles, which is faster then the in­
terrupt response when external vectoring is required, or 
if the interrupt controller is run in iRMX 86 mode. 

If two interrupts of the same programmed priority occur, 
the default priority scheme (as shown in table 5) is used. 

T, T, 

CLKOUT 

6.5.2 INTERNAL VECTORING, iRMX'" 86 MODE 

In iRMX 86 mode, the interrupt types associated with 
the various interrupt sources are alterable. The upper 5 
most significant bits are taken from the interrupt vector 
register, and the lower 3 significant bits are taken from 
the priority level of the device causing the interrupt. Be­
cause the interrupt type, rather than the interrupt vector 
address, is given by the interrupt controller in this mode 
the interrupt vector address must be calculated by the 
CPU before servicing the interrupt. 

In iRMX 86 mode, the integrated interrupt controller 
will present the interrupt type to the CPU in response to 
the two interrupt acknowledge bus cycles run by the pro­
cessor. During the first interrupt acknowledge cycle, the 
external master interrupt controller determines which 
slave interrupt controller will be allowed to place its in­
terru pt vector on the microprocessor bus. During the 
second interrupt acknowledge cycle, the processor reads 
the interrupt vector from its bus. Thus, these two inter- . 
rupt acknowledge cycles must be run, since the integrat­
ed controller will present the interrupt type information 
only when the external interrupt controller signals the 
integrated controller that it has the highest pending in­
terrupt request (see Figure 59). The 80186 samples the 

T, T, T, T, 

1 1 

S~S2 ------~------~------~:-r----+-------+-------+----,-+-------+:------~I~~~--------
1 1 1 1 1 1 

INTE RUPT ACKNOWLEDGE INTERRUPT ACKNOWLEDGE 
INTO ______ ~------~------~------_+------_+------_+------_+'------_+'-----~'~~~~-----

(HIGH) 

INT3 ------~------~------~------~------~------_r------_r------_r------~f_---~-----­
(HIGH) 

~~----~-'j~----~----~----~----~----~----~~~~;-
CAS CD 80186 SLAVE ENABLE C SCADE ADDRESS FROM 8259A 

------~------~---,\-~------~'------~:------~' -------'~---~'~---~'------~---.~--

SLAVE -------+-------+---~ 
1 

SELECT CD 1 
1 , 

- 1 1 

;/ INTA ~I..._--' __ -'-_--'...J :\ 
1 

LOCK4 

I'---~----~---+----~----~---+----~ 
/ 

I , 
1 'I 

1. SLAVE SELECT = INT1 
2. INTA = INT2 
3. Driven by external interrupt controller 
4, SLAVE SELECT must be driven before Phase 2 of T 2 of the second INTA 
, QYQ!L---

5, SLAVE SELECT read by 80186 

1 

Figure 59. 80186 iRMX-86 Mode Interrupt Acknowledge Timing 

3-589 

I 

210973-003 



AP-186 

so- S2 

INTA 

ADO-AD7 -~--~--~--~--~--~--~-__ :-i. __ ~_.1j-i-

I 
I I 

INTERRUPT TYPE 
(FROM EXTERNAL 

CONTROLLER) 

Figure 60. 80186 Cascaded Interrupt Acknowledge Timing 

SLAVE SELECT line during the falling edge of the 
clock at the beginning of T 3 of the second interrupt ac­
knowledge cycle. This input must be stable 20ns before 
and IOns after this edge. 

These two interrupt acknowledge cycles will be run back 
to back, and will be LOCKED with the LOCK output 
active (meaning that DMA requests and HOLD re­
quests will not be honored until both cycles have been 
run). Note that the two interrupt acknowledge cycles 
will always be separated by two idle T states, and that 
wait states will be inserted into the interrupt acknowl­
edge cycle if a ready is not returned by the processor bus 
interface. The two idle T states are inserted to allow 
compatibility with the timing requirements of an exter­
nal 8259A interrupt controller. 

Because the interrupt acknowledge cycles must be run in 
iRMX 86 mode, even for internally generated vectors, 
and the integrated controller presents an interrupt type 
rather than a vector address, the interrupt response time 
here is the same as if an externally vectored interrupt 
was required, namely 55 CPU clocks. 

6.5.3 EXTERNAL VECTORING 

External interrupt vectoring occurs whenever the 80186 
interrupt controller is placed in cascade mode, special 
fully nested mode, or iRMX 86 mode (and the integrat­
ed controller is not enabled by the external master inter­
rupt controller). In this mode, the 80186 generates two 
interrupt acknowledge cycles, reading the interrupt type 

off the lower 8 bits of the address/data bus on the second 
interrupt acknowledge cycle (see Figure 60). This inter­
rupt response is exactly the same as the 8086, so that the 
8259A interrupt controller can be used exactly as it 
would in an 8086 system. Notice that the two interrupt 
acknowledge cycles are LOCKED, and that two idle T­
states are always inserted between the two interrupt ac­
knowledge bus cycles, and that wait states will be 
inserted in the interrupt acknowledge cycle if a ready is 
not returned to the processor. Also notice that the 80186 
provides two interrupt acknowledge signals, one for in­
terrupts signaled by the INTO line, and one for inter­
rupts signaled by the INTI line (on the INT2/INTAO 
and INT3/INTAI lines, respectively). These two inter­
rupt acknowledge signals are mutually exclusive. Inter­
r~t acknowledge status will be driven on the status lines 
(SO-S2) when either INT2/INTAO or INn/ 
INTAI signal an interrupt acknowledge. 

6.6 Interrupt Controller External 
Connections 

The four interrupt signals can be programmably config­
ured ,into 3 major options. These are direct interrupt in­
puts (with the integrated controller providing' the 
interrupt vector), cascaded (with an external interrupt 
controller providing the interrupt vector), or iRMX 86 
mode. In all these modes, any interrupt presented to the 
external lines must remain set until the interrupt is 
acknowledged. 

3-590 210973-003 



\ 

AP·186 

6.6.1 DIRECT INPUT MODE 

When the Cascade mode bits are cleared, the interrupt 
input lines are configured as direct interrupt input lines 
(see Figure 61). In this mode an interrupt source (e.g., 
an 8272 floppy disk controller) may be directly connect­
ed to the interrupt input line. Whenever an interrupt is 
received on the input line, the integrated controller will 
do nothing unless the interrupt is enabled, and it is the 
highest priority pending interrupt. At this time, the in­
terrupt controller will present the interrupt to the CPU 
and wait for an interrupt acknowledge. When the ac­
knowledge occurs, it will present the interrupt vector ad­
dress to the CPU. In this mode, the CPU will not run any 
interrupt acknowledge cycles. 

INTERRUPT 

SOURCES . 
, 

80186 

INTO 

INT1 

INT2 

INT3 

Figure 61. 80186 Non-Cascaded 
Interrupt Connection 

These lines can be individually programmed in either 
edge or level triggered mode using their respective con­
trol registers. In edge triggered mode, a low-to-high 
transition must occur before the Interrupt will be gener­
ated to the CPU, while in level triggered mode, only a 
high level must be present on the input for an interrupt 
to be generated. In edge trigger mode, the interrupt in­
put must also be low for at least I CPU clock cycle to 
insure recognition. In both modes, the interrupt input 
must remain active until acknowledged. 

6.6.2 CASCADE MODE 

When the Cascade mode bit is set and the SFNM bit is 
cleared, the interrupt input lines are configured in cas­
cade mode. In this mode, the interrupt input line is 
paired with an interrupt acknowledge line. The INT2/ 
INTAO and INT3/INTAllines are dual purpose; they 
can function as direct input lines, or they can function as 
interrupt acknowledge outputs. INT2/INTAO provides 
the interrupt acknowledge for an INTO input, and 
INT3/INTAI provides the interrupt acknowledge for 
an INTI input. Figure 62 shows this connection. 

When programmed in this mode, in response to an inter­
rupt request on the INTO line, the 80186 will provide 
two interrupt acknowle~ses. These pulses will be 
provided on the INT2/INTAO line, and will also be re­
flected by interrupt acknowledge status being generated 

3-591 

on the SO-S2 status lines. On the second pulse, the inter­
rupt type will be read in. The 80186 externally vectored 
interrupt response is covered in more detail in section 
6.5. 

8259A 80186 

INT INTO 

INTA INT2 

8259A 

INT INT1 

INTA INT3 

Figure 62. 80186 Cascade and SpeCial Fully 
Nested Mode Interface 

INTO/INT2/INTAOand INTI/INT3/INTAI maybe 
individually programmed into interrupt re­
quest/acknowledge pairs, or programmed as direct in­
puts. This means that INTO/INT2/INTAO may be 
programmed as an interrupt/acknowledge pair, while 
INTI and INT3/INTAI each provide separate inter­
nally vectored interrupt inputs. 

When an interrupt is received on a cascaded interrupt, 
the priority mask bits and the in-service bits in the par­
ticular interrupt control register will be set into the in­
terrupt controller's mask and priority mask registers. 
This will prevent the controller from generating an 
80186 CPU interrupt request from a lower priority in­
terrupt. Also, since the in-service bit is set, any subse­
quent interrupt requests on the particular interrupt 
input line will not cause the integrated interrupt control­
ler to generate an interrupt request to the 80186 CPU. 
This means that if the external interrupt controller re­
ceives a higher priority interrupt request on one of its in­
terrupt request lines and presents it to the 80186 
interrupt request line, it will not subsequently be pre­
sented to the 80186 CPU by the integrated interrupt 
controller until the in-service bit for the interrupt line 
has been cleared. 

6.6.3 SPECIAL FULLY NESTED MODE 

When both the Cascade mode bit and the SFNM bit are 
set, the interrupt input lines are configured in Special 
Fully Nested Mode. The external interface in this mode 
is exactly as in Cascade Mode. The only difference is in 
the conditions allowing an interrupt from the external 
interrupt controller to the integrated interrupt control­
ler to interrupt the 80186 CPU. 

When an interrupt is received from a special fully nested 

210973-003 



inter AP-186 

mode interrupt line, it will interrupt the 80186 CPU if it 
is the highest priority interrupt pending regardless of the 
state of the in-service bit for the interrupt source in the 
interrupt controller. When an interrupt is acknowledged 
from a special fully nested mode interrupt line, the pri­
oritytmask bits and the in-service bits in the particular 
interrupt control register will be set into the interrupt 
controller's in-service and priority mask registers. This 
will prevent the interrupt controller from generating an 
80186 CPU interrupt request from a lower priority in­
terrupt. Unlike cascade mode, however, the interrupt 
controller will not prevent additional interrupt requests 
generated by the same external interrupt controller 
from interrupting the 80186 CPU. This means that if 
the external (cascaded) interrupt controller receives a 
higher priority interrupt request on one of its interrupt 
request lines and presents it to the integrated control­
ler's interrupt request line, it may cause an interrupt to 
be generated to the 80186 CPU, regardless of the state 
of the in-service bit for the interrupt line. 
If the SFNM mode bit is set and the Cascade mode bit is 
not also set, the controller will provide internal interrupt 
vectoring. It will also ignore the state of the in-service bit 
in determining whether to present an interrupt request 
to the CPU. In other words, it will use the SFNM condi­
tions of interrupt generation with an internally vectored 
interrupt response, i.e., if the interrupt pending is the 
highest priority type pending, it will cause a CPU inter­
rupt regardless of the state of the in-service bit for the 
interrupt. ' 

6.6.4 iRMX™ 86 MODE 

When the RMX bit in the peripheral relocation register' 
is set, the interrupt controller is set into iRMX 86 mode. 

80186 .--. 
ARDY 'U , 

INTO 

INT2 

INTl 

INT3 

ADO-AD7 

RD 

WR 

PCSA 

In this mode, all four interrupt controller input lines are 
used to perform the necessary handshaking with the ex­
ternal master interrupt controller. Figure 63 shows the 
hardware configuration of the 80186 interrupt lines 
with an external controller in iRMX 86 mode. 

80186 8259A 

INTO INT -INT2 INTA 

~> 
. CASCADE 

INTl ADDR. 
DECODE 

INT3 

Figure 63. 80186 iAMX86 Mode Interface 

Because the integrated interrupt controller is a slave 
controller, it must be able to generate an interrupt input 
for an external interrupt controller. It also'must be sig­
naled when it has the highest priority pending interrupt 
to know when to place its interrupt vector on the bus. 
These two signals are provided by thdNT3/Slave In­
terrupt Output and INTI /Slave Select lines, respective­
ly. The external master interrupt controller must be able 
to interrupt the 80186 CPU, and needs to know when the 
interru~est is acknowledged. The INTO and 
INT2/INTAO lines provide these two functions. 

8259A-2 

INT 

INTA 

DO-D7 

RD 

WR SP 
CS 

t 

OTHERARD 

/ 

8" 

+5V 

U 

Y 

10 

EXTERNAL 

INTERRUPTS 

Figure 64_ 80186/8259A Interrupt Cascading 

3-592 
210973-003 



inter AP-186 

6.7 Example 8259A/Cascade Mode 
Interface 

Figure 64 shows the 80186 and 8259A in cascade inter­
rupt mode. The code to initialize the 80186 interrupt 
controller is given in Appendix E. Notice that an "inter­
rupt ready" signal must be returned to the 80186 to pre­
vent the generation of wait states in response to the 
interrupt acknowledge cycles. In this configuration the 
INTO and INT2 lines are used as direct interrupt input 
lines. Thus, this configuration provides 10 external in­
terrupt lines: 2 provided by the 80186 interrupt control­
ler itself, and 8 from the external 8259A. Also, the 
8259A is configured as a master interrupt controller. It 
will only receive interrupt acknowledge pulses in re­
sponse to an interrupt it has generated. It may be cas­
caded again to up to 8 additional 8259As (each of which 
would be configured in slave mode). 

6.8 Example 80130 iRMX™ 86 Mode 
Interface 

Figure 65 shows the 80186 and 80130 connected in 
iRMX 86 mode. In this mode, the 80130 interrupt con­
troller is the master interrupt controller of the system. 

80186 

ALE ADDR 

r- lATCH 

2 6 
80130 

ADO-AD15 ADO-AD15 , 
ClK ClK 

MMCS2 MEMCS 
IRO-

PCS3 IOCS IR7 

SO-52 
/3 

SO-52 ,-

BHE BHE 
INT 

INTO J 
INT3 

The 80186 generates an interrupt request to the 80130 
interrupt controller when one of the 80186 integrated 
peripherals has created an interrupt condition, and that 
condition is sufficient to generate an interrupt from the 
80186 integrated interrupt controller. Note that the 
80130 decodes the interrupt acknowledge status directly 
from the 80186 status lines; thus, the INT2/INTAO 
line of the 80186 need not be connected to the 80130. 
Figure 65 uses this interrupt acknowledge signal to en­
able the cascade address decoder. The 80130 drives the 
cascade address on AD8-ADIO during TI of the second 
interrupt acknowledge cycle. This cascade address is 
latched into the system address latches, and if the proper 
cascade address is decoded by the 8205 decoder, the 
80186 INTl/SLAVE SELECT line will be driven ac­
tive, enabling the 80186 integrated interrupt controller 
to place its interrupt vector on the internal bus. The code 
to configure the 80186 into iRMX 86 mode is presented 
in appendix E. 

6.9 Interrupt Latency 

Interrupt latency time is the time from when the 80186 
receives the interrupt to the time it begins to respond to 
the interrupt. This is different from interrupt response 

2 2 
/ / 

.. ' 

+5 

,-

AO-A15 

V3 A8-A 10 

INTERRUPT 

REQUESTS 

8205 U 
E2 E3 

INT2 El 

INT1 7 

Figure 65. 80186/80130 iRMX86 Mode Interface 

;3-593 210973-003 



AP-186 

time, which is the time from when the processor actually 
begins processing the interrupt to when it actually ex­
ecutes the first instruction of the interrupt service rou­
tine. The factors affecting interrupt latency are the 
instruction being executed and the state of the interrupt 
enable flip-flop. 

Interrupts will be acknowledged only if the interrupt en­
able flip-flop in the CPU is set. Thus, interrupt latency 
will be very long indeed if interrupts are never enabled 
by the processor! 

When interrupts are enabled in the CPU, the interrupt 
latency is a function of the instructions being executed. 
Only repeated instructions will be interrupted before be­
ing completed, and those only between their respective 
iterations. This means that the interrupt latency time 
could be as long as 69 CPU clocks, which is the time it 
takes the processor to execute an integer divide instruc­
tion (with a segment override prefix, see below), the 
longest single instruction on the 80186. 

Other factors can affect interrupt latency. An interrupt 
will not be, accepted between the execution of a prefix 
(such as segment override prefixes and lock prefixes) 
and the instruction. In addition, an interrupt will not be 
accepted between an instruction which modifies any of 
the segment registers and the instruction immediately 
following the instruction. This is required to allow the 
stack to be changed. If the interrupt were accepted, the 
return address from the interrupt would be placed on a 
stack which was not valid (the Stack Segment register 
would have been modified but the Stack Pointer register 
would not have been). Finally, an interrupt will not be 
accepted between the execution of the WAIT instruction 
and the instruction immediately following it if the TEST 
input is fictive. If the WAIT sees the TEST input in­
active, however, the interrupt will be accepted, and the 
WAIT will be re-executed after the interrupt return. 
This is required, since the WAIT is used to prevent ex­
ecution by the 80186 of an 8087 instruction while the 
8087 is busy. 

x, 
x, 

7. CLOCK GENERATOR 

The 80186 includes a clock: generator which generates 
the main clock signal for aU 80186 integrated compo­
nents, and all CPU synchronous devices in the 80186 
system. This clock generator includes a crystal oscilla­
tor, divide by two counter, reset circuitry, and ready gen­
eration logic. A block diagr.am of the clock generator is 
shown in Figure 66. 

7.1 Crystal Oscillator 

The 80186 crystal oscillator is a parallel resonant, 
Pierce oscillator. It was designed to be used as shown in 
Figure 67. The capacitor values shown are approximate. 
As the crystal frequency drops, they should be in­
creased, so that at the 4 MHz minimum crystal frequen­
cy supported by the 80186 they take on a value of 30pF. 
The output of this oscillator is not directly available out­
side the 80186. 

The following parameters may be used for choosing a 
crystal: 

Temperature Range: 
ESR (Equivalent Series Resistance): 
Co (Shunt Capacitance of Crystal): 
C1 (Load Capacitance): 
Drive Level: 

80186 
x, r-----~~-----, 

x, t-------1 

I2~F 

o to 70° C 
30n max 

7.0 pf max 
20 pf ± 2 pf 

I mw max 

Figure 67. 80186 Crystal Connection 

CPU CLOCK & 

CLOCKOUT 

ARDY -------~_Ir_;;;~-, CPU 

READY 
SRDY -------It.::==~ 

FiR ---------1 
CPU RESET 

& 

RESET OUTPUT 

Figure 66. 80186 Clock Generator Block Diagram 

3-594 210973-003 



AP-186 

EFI 

CLKOUT 

Figure 68. 80186 Clock Generator Reset 

7.2 Using an External Oscillator 
An external oscillator may be used with the 80186. The 
external frequency input (EFI) signal is connected di­
rectly to the X 1 input of the oscillator. X2 should be left 
open. This oscillator input is used to drive an internal di­
vide-by-two counter to generate the CPU clock signal, 
so the external frequency input can be of practically any 
duty cycle, so long as the minimum high and low times 
for the signal (as stated in the data sheet) are met. 

7.3 Clock Generator 
The output of the crystal oscillator (or the external fre­
quency input) drives a divide by two circuit which gener­
ates a 50% duty cycle clock for the 80186 system. All 
80186 timing is referenced to this signal, which is avail­
able on the CLKOUT pin of the 80186. This signal win 
change state on the high-to-low transition of the EFI 
signal. 

7.4 Ready Generation 
The clock generator also includes the circuitry required 
for ready generation. Interfacing to the SRDY and 
ARDY inputs this provides is covered in section 3.1.6. 

7.5 Reset 
The 80186 clock generator also provides a synchronized 
reset signal for the system. This signal is generated from 
the reset input (RES) to the 80186. The clock generator 
synchronizes this signal to the clockout signal. 

The reset input signal also resets the divide-by-two 
counter. A one clock cycle internal clear pulse is gener­
ated when the RES input signal first goes active. This 
clear pulse goes active beginning on the first low-to-high 
transition of the X 1 input after RES goes active, and 
goes inactive on the next low-to-high transition of the X 1 
input. In order to insure that the clear pulse is generated 
on the next EFI cycle, the RES input signal must satisfy 
a 25ns setup time to the high-to-low EFI input signal 
(see Figure 68). During this clear, clockout will be high. 
On the next high-to-low transition of XI, clockout will 
go low, and will change state on every subsequent high­
to-low transition of EFI. 

The reset signal presented to the rest of the 80186, and 
also the signal present on the RESET output pin of the 
80186 is synchronized by the high-to-low transition of 
the clockout signal of the 80186. This signal remains ac­
tive as long as the RES input also remains active. After 
the RES input goes inactive, the 80186 will begin to 
fetch its first instruction (at memory location FFFFOH) 
after 61/2 CPU clock cycles (Le., Tl of the first instruc­
tion fetch will occur 61/2 clock cycles later). To ins"ure 
that the RESET output will go inactive on the next CPU 
clock cycle, the inactive going edge of the RES input 
must satisfy certain hold and setup times to the low-to­
high edge of the clockout signal of the 80186 (see Figure 
69). 

RESET -----------,,1.. __ _ 

Figure 69. 80186 Coming out of Reset 

8. CHIP SELECTS 
The 80186 includes a chip select unit which generates 
hardware chip select signals for memory and I/O ac­
cesses generated by the 80186 CPU and DMA units. 
This unit is programmable such that it can be used to 
fulfill the chip select requirements (in terms of memory 
device or bank size and speed) of most small and medi­
um sized 80186 systems. 

The chip selects are driven only for internally generated 
bus cycles. Any cycles generated by an external unit 
(e.g., an external DMA controller) will not cause the 
chip selects to go active. Thus, any external bus masters 
must be responsible for their own chip select generation. 
Also, during a bus HOLD, the 80186 does not float the 
chip select lines. Therefore, logic must be included to en­
able the devices which the external bus master wishes to 
access (see Figure 70). 

3-595 210973-003 



inter AP-186 

80186 CHIP SELECT~ _ MEMORY or I/O 
E ... X .. T ... E .. RN .. A .. L·L"Y"GCPEN ... E"'R .. A"'T ... ED..-C"'HwIP....-..;SE ... L·E"'C"'T ~ DEVICE CHIP SELECT 

Figure 70. 80186/External Chip Select/Device Chip Select Generation 

8.1 Memory Chip Selects 

The 80186 provides six discrete chip select lines which 
are meant to be connected to memory components in an 
80186 system. These signals are named UCS, LCS, 
and MCSO-3 for Upper Memory Chip Select, Lower 
Memory Chip Select and Midrange Memory Chip Se­
lects 0-3. They are meant (but not limited) to be con­
nected to the three major areas of the 80186 system 
memory (see Figure 71). 

MCS3 { 

MCS2 {. 

MCS1 { 

MCSO { 

FFFFF 

STARTUP 

ROM 

---
PROGRAM 

MEMORY 
---

---

INTERRUPT 

VECTOR 

TABLE 
0 

Figure 71. 80186 Memory Areas & Chip Selects 

As could be guessed by their names, upper memory, low­
er memory, and mid-range memory chip selects are de­
signed to address upper, lower, and middle areas of 
memory in an 80186 srtem. The upper limit of UCS 
and the lower limit of CS are fixed at FFFFFH and 
OOOOOH in memory space, respectively. The other limit 
of these is set by the memory size programmed into the 
control register for the chip select line. Mid-range mem­
ory allows both the base address and the block size of the 
memory area to be programmed. The only limitation is 
that the base address must be programmed to be an inte­
ger multiple of the total block size. For example, if the 
block size was 128K bytes (4 32K byte chunks) the base 
address could be 0 or 20000H, but not 10000H.' 

The memory chip selects are controlled by 4 registers in 
the peripheral control block (see Figure 72). These in­
clude I each for UCS and LCS, the values of which de­
termine the size of the memory blocks addressed by 
these two lines. The other two registers are used to con­
trol the size and base address of the mid-range memory 
block. 

On reset, only UCS is active. It is programmed by reset 
to be active for the top I K memory block, to insert 3 wait 
states to all memory fetches, and to factor external 
ready for every memory fetch (see section 8.3 for more 
information on internal ready generation). All other 
chip select registers assume indeterminate states after 
reset, but none of the other chip select lines will be active 
until all necessary registers for a signal have been ac­
cessed (not necessarily written, a read to an uninitialized 
register will enable the chip select function controlled by 
that register). 

8.2 Peripheral Chip Selects 

The 80186 provides seven discrete. chip select lines 
which are meant to be connected to peripheral compo­
nents in an 80186 system. These signals are named 
PCSO-6. Each of these lines is active for one of seven 
contiguous 128 byte areas in memory or I/O space 
above a programmed base address. 

The peripheral chip selects are controlled by two regis­
ters in the internal peripheral control block (see Figure 
72). These registers allow the base address of the periph­
erals to be set, and allow the peripherals to be mapped 
into memory or I/O space. Both of these registers must 
be accessed before any of the peripheral chip selects will 
become active. 

A bit in the MPCS register allows PCS5 and PCS6 
to become latched Al and A2 outputs. When this option 
is selected, PCS5 and PCS6 will reflect the state of Al 
and A2 throughout a bus cycle. These are provided to al­
low external peripheral register selection in a system in 
which the addresses are not latched. Upon reset, these 
lines are driven high. They will only reflect Al and A2 
after both PACS and MPCS have been accessed (and 
are programmed to provide Al and A2!). 

8.3 Ready Generation 

The 80186 includes a ready generation unit. This unit 
generates an internal ready signal for all accesses to 
memory or I/O areas to which the chip select circuitry of 
the 80186 responds. 

3-596 210973-003 



inter AP-186 

OFFSET: 

AOH UPPER MEMORY SIZE CD UMCS 

A2H LOWER MEMORY SIZE CD LMCS 

A4H 

A6H 

PERIPHERAL CHIP SELECT BASE ADDRESS CD PACS 

MMCS 

MPCS 

MID·RANGE MEMORY BASE ADDRESS CD 
A8H MID·RANGE MEMORY SIZE I ~ I ~ I CD 

1. Upper memory ready bits 
2. Lower memory ready bits 
3. PCSO-PCS3 ready bits 
4. Mid·range memory ready bits 
5. PCS4-PCS6 ready bits 
6. MS: 1 = Peripherals active in memory space 

o = Peripherals active in I/O space 
EX:1 = 7 PCS lines 
0= PCS5 = A1, PCS6 = A2 

Not all bits of every field are used 

Figure 72. 80186 Chip Select Control Registers 

:or each ready g.eneration area, 0-3 wait states may be 
mserted by the mternal unit. Table 6 shows how the 
ready c??trol bits should be programmed to provide this. 
In addItIOn, the ready generation circuit may be pro­
gramme~ to ignore the state of the external ready (i.e., 
only the Internal ready circuit will be used) or to factor 
the state of the external ready (i.e., a ready will be re­
turned to the processor only after both the internal ready 
circuit has gone ready and the external ready has gone 
ready). Some kind of circuit must be included to gener­
ate an external ready, however, since upon reset the 
ready generator is programmed to factor external ready 
to all accesses to the top 1 K byte memory block. If a 
ready was not returned on one of the external ready lines 
(ARDYor SRDY) the processor would wait forever to 
fetch its first instruction. 

Table 6. 80186 Wait State Programming 

R2 R1 RO Number of Wait States 

0 0 0 o + external ready 
0 0 I I + external ready 
0 I 0 2 + external ready 
0 I I 3 + external ready 
I 0 0 o (no external ready required) 
I 0 I 1 (no external ready required) 
I I 0 2 (no external ready required) 
I I I 3 (no external ready required) 

8.4 Examples of Chip Select Usage 

M~ny exampl.es of the use of the chip select lines are giv­
en m the bus mterface section of this note (section 3.2). 
These examples show how simple it is to use the chip se­
lect function provided by the 80186. The key point to re­
member when using the chip select function is that they 
are only activated during bus cycles generated by the 
80186 CPU or DMA units. When another master has 
the bus, it must generate its own chip select function. In 
addition, whenever the bus is given by the 80186 to an 
external master (through the HOLD/ HLDA arrange· 
ment) the 80186 does NOT float the chip select lines. 

8.5 Overlapping Chip Select Areas 

Generally, the chip selects of the 80186 should not be 
programmed such that any two areas overlap. In addi­
tion, none of the programmed chip select areas should 
overlap any of the locations of the integrated 256-byte 
control register block. The consequences of doing this 
are: 

Whenever two chip select lines are programmed to 
respond to the same area, both will be activated dur­
ing any access to that area. When this is done, the 
ready bits for both areas must be programmed to the 
same value. If this is not done, the processor response 
to an access in this area is indeterminate. 

If any of the chip select areas overlap the integrated 
256·byte control register block, the timing on the 

3-597 210973·003 



inter AP-186 

chip select line is altered. As always, any values re­
turned on the external bus from this access are ig­
nored. 

9. SOFTWARE IN AN 80186 SYSTEM 

Since the 80186 is object code compatible with the 8086 
and 8088, the software in an 80186 system is very simi­
lar to that in an 8086 system. Because of the hardware 
chip select functions, however, a certain amount of ini­
tialization code must be included when using those func­
tions on the 80186. 

9.1 System Initialization in an 
80186 System 

Most programmable components of a computer system 
must be initialized before they are used. This is also true 
for the 80186. The 80186 includes circuitry which di­
rectly affects the ability of the system to address mem­
ory and I/O devices, namely the chip select circuitry. 
This circuitry must be initialized before the memory 
areas and peripheral devices addressed by the chip select 
signals are used. 

Upon reset, the UMCS register is programmed to be ac­
tive for all memory fetches within the top 1 K byte of 
memory space. It is also programmed to insert three 
wait states to all memory accesses within this space. If 
the hardware chip selects are used, they must be pro­
grammed before the processor leaves this 1 K byte area 
of memory. If a jump to an area for which the chips are 
not selected occurs, the microcomputer system will 
cease to operate (since the processor will fetch garbage 
from the data bus). Appendix F shows a typical initial­
ization sequence for the 80186 chip select unit. 

Once the chip selects have been properly initialized, the 
rest of the 80186 system may be initialized much like an 
8086 system. For example, the interrupt vector table 
might get set up, the interrupt controller initialized, a 
serial I/O channel initialized, and the main program be­
gun. Note that the integrated peripherals included in the 
80186 do not share the same programming model as the 
standard Intel peripherals used to implement these 
functions in a typical 8086 system, i.e., different values 
must be programmed into different registers to achieve 
the same function using the integrated peripperals. Ap­
pendix F shows a typical initialization sequence for an 
interrupt driven system using the 80186 interrupt 
controller. 

9.2 Initialization for iRMXTM 86 System 

Using the iRMX 86 operating system with the 80186 re­
quires an external 8259A and an external 8253/4 or al­
ternatively an external 80130 OSF component. These 
are required because the operating system is interrupt 
driven, and expects the interrupt controller and timers to 
have the register model -of these external devices. This 

model is not the same as is implemented by the 80186. 
Because of this, the 80186 interrupt controller must be 
placed in iRMX 86 mode after reset. This initialization 
can be done at any time after reset before jump to the 
root task of iRMX 86 System is actually performed. If 
need be, a small section of code which initializes both 
the 80186 chip selects and the 80186 interrupt controller 
can be inserted between the reset vector loca tion and the 
beginning of iRMX 86 System (see Figure 73). In this 
case, upon reset, the processor would jump to the 80186 
initialization code, and when this has been completed, 
would jump to the iRMX 86 initialization code (in the 
root task). It is "important that the 80186 hardware be 
initialized before iRMX 86 operation is begun, since 
some of the resources addressed by the 80186 system 
may not be initialized properly by iRMX 86 System if 
the initialization is done in the reverse manner. 

8086 80186 

FFFF:O 

Figure 73. iRMX-86 Initialization with 
8086 & 80186 

9.3 Instruction Execution Differences 
Between the 8086 and 80186 

There are a few instruction execution differences be­
tween the 8086 and the 80186. These differences are: 

Undefined Opcodes: 

When the opcodes 63H,64H,65H,66H,67H,F1H, 
FEH XX111XXXB and FFH XX111XXXB 
are executed, the 80186 will execute an illegal in­
struction exception, interrupt type 6. The 8086 
will ignore the opcode. 

OFH opcode: 

When the opcode OFH is encountered, the 8086 
will execute a POP CS, while the 80186 will ex­
ecute an illegal instruction exception, interrupt 
type 6. 

Word Write at Offset FFFFH: 

When a word write is performed at offset 
FFFFH in a segment, the 8086 will write one 
byte at offset FFFFH, and the other at offset 0, 
while the 80186 will write one byte at offset 

3-598 210973-003 



AP-186 

FFFFH, and the other at offset 10000H (one 
byte beyond the end of the segment). One byte 
segment underflow will also occur (on the 80186) 
if a stack PUSH is executed and the Stack Point­
er contains the value 1. 

Shift/Rotate by Value Greater Then 31: 

Before the 80186 performs a shift or rotate by a 
value (either in the CL register, or by an immedi­
ate value) it ANDs the value with 1 FH, limiting 
the number of bits rotated to less than 32. The 
8086 does not do this. 

LOCK prefix: 

The 8086 activates its LOCK signal immediately 
after executing the LOCK prefix. The 80186 
does not activate the LOCK signal until the pro­
cessor is ready to begin the data cycles associated 
with the LOCKed instruction. 

Interrupted String Move Instructions: 

If an 8086 is interrupted during the execution of 
a repeated string move instruction, the return 
value it will push on the stack will point to the 
last prefix instruction before the string move in­
struction. If the instruction had more than one 
prefix (e.g., a segment override prefix in addition 
to the repeat prefix), it will not be re-executed 
upon returning from the interrupt. The 80186 
will push the value of the first prefix to the re­
pea ted instruction, so long as prefixes are not re­
peated, allowing the string instruction to 
properly resume. 

Conditions causing divide error with an integer 
divide: 

The 8086 will cause a divide error whenever the 
absolute value of the quotient is greater then 
7FFFH (for word operations) or if the absolute 
value of the quotient is greater than 7FH (for 
byte operations). The 80186 has expanded the 
range of negative numbers allowed as a quotient 

by 1 to include 8000H and 80H. These numbers 
represent the most negative numbers representa­
ble using 2's complement arithmetic (equaling 
- 32768 and -128 in decimal, respectively). 

ESCOpcode: 

The 80186 may be programmed to cause an in­
terrupt type 7 whenever an ESCape instruction 
(used for co-processors like the 8087) is execut­
ed. The 8086 has no such provision. Before the 
80186 performs this trap, it must be pro­
grammed to do so. 

These differences can be used to determine whether the 
program is being executed on an 8086 or an 80186. 
Probably the safest execution difference to use for this 
purpose is the difference in multiple bit shifts. For exam­
ple, if a mUltiple bit shift is programmed where the shift 
count (stored in the CL register!) is 33, the 8086 will 
shift the value 33 bits, whereas the 80186 will shift it 
only a single bit. 

In addition to the instruction execution differences not­
ed above, the 80186 includes a number of new instruc­
tion types, which simplify assembly language 
programming of the processor, and enhance the perfor­
mance of higher level languages running on the proces­
sor. These new instructions are covered in depth in the 
8086/80186 users manual and in appendix H of this 
note. 

10. CONCLUSIONS 
The 80186 is a glittering example of state-of-the art in­
tegrated circuit technology applied to make the job of 
the microprocessor system designer simpler and faster. 
Because many of the required peripherals and their in­
terfaces have been cast in silicon, and because of the 
timing and drive latitudes provided by the part, the de­
signer is free to concentrate on other issues of system de­
sign. As a result, systems designed around the 80186 
allow applications where no other processor has been 
able to provide the necessary performance at a compara­
ble size or cost. 

3-599 210973-003 



AP-186 

APPENDIX A: PERIPHERAL CONTROL 
BLOCK 
All the integrated peripherals within the 80186 micro­
processor are controlled by sets of registers contained 
within an integrated peripheral control block. The regis­
ters are physically located within the peripheral devices 
they control, but are addressed as a single block of regis­
ters. This set of registers fills 256 contiguous bytes and 
can be located beginning on any 256 byte boundary of 
the 80186 memory or I/O space. A map of these regis­
ters is shown in Figure A-I. 

A.1 Setting the Base Location of the 
Peripheral Control Block 

In addition to the control registers for each of the inte­
grated 80186 peripheral devices, the peripheral control 

block contains the peripheral control block relocation 
register. This register allows the peripheral control block 
to be re-located 'on any 256 byt~ boundary within the 
processor's memory or I/O space. Figure A-2 shows the 
layout of this register. 

This register is located at offset FEH within the periph­
eral control block. Since it is itself contained within the 
peripheral control block, any time the location of the pe­
ripheral control block is moved, the location of the relo­
cation register will also move. 

In addition to the peripheral control Qlock relocation in­
formation, the relocation register contains two addition­
al bits. One is used to set the interrupt controller into 
iRMX86 compatibility mode. The other is used to force 
the processor to trap whenever an ESCape (coprocessor) 
instruction is encountered. 

OFFSET 

, Relocation Register FEH 

/ 

DMA Descriptors Channel 1 

DMA Descriptors Channel 0 

Chip-Select Control Registers 

Timer 2 Control Registers 

Timer 1 Control Registers 

Timer 0 Control Registers 

Interrupt Controller Registers 

DAH 

DOH 

CAH 

COH 

ASH 

AOH 

66H 

60H 
5EH 

58H 
56H 

SOH 

3EH 

20H 

Figure A-1. 80186 Integrated Peripheral Control BI~ck 

3:'600 210973-003 



AP-186 

11 10 9 8 7 6 5 4 3 2 o 
OFFSET: FEHL:~~~-=-i~:L __________ ~R~el~o~ca~t~io_n_A~d_d_re_S_S_B_it_S_R_1_9_-R_8 ____________ ~ 

= ESC Trap I No ESC Trap (1/0) ET 
MIlO 
RMX 

= Register block located in Memory 11/0 Space (1/0) 
= Master Interrupt Controller mode/lRMX compatible 

Interrupt Controller mode (011) 

Figure A-2. 80186 Relocation Register Layout 

Because the relocation register is contained within the 
peripheral control block, upon reset the relocation regis­
ter is automatically programmed with the value 20FFH. 
This means that the peripheral control block will be lo­
cated at the very top (FFOOH to FFFFH) of I/O space. 
Thus, after reset the relocation register will be located at 
word location FFFEH in I/O space. 

If the user wished to locate the peripheral control block 
starting at memory location 10000H he would program. 
the peripheral control register with the value IIOOH. By 
doing this, he would move all registers within the inte­
grated peripheral control block to memory locations 
lOOOOH to lOOFFH. Note that since the relocation reg­
ister is contained within the peripheral control block, it 
too would move to word location lOOFEH in memory 
space. 

I 
Whenever mapping the 188 peripheral control block to 
another location, the programming of the relocation 
register should be done with a byte write (i.e. OUT 
OX,AL). Any access to the control block is done 16 bits at 
a time. Thus, internally, the relocation register will get 
written with 16 bits of the AX register while externally, the 
BI U will run only one 8 bit bus cycle. If a word Instruction 
is used (i.e. OUT OX,A~), the relocation register will be 
written on the first bus cycle. The BIU will then run a 
'second bus cycle which is unnecessary. The address of the 
second bus cycle will no longer be within the control block 
(i.e. the control block was moved on the first cycle), and 
therefore, will require the generation of an external ready 
signal to complete the cycle,For this reason we recommend 
byte operations to the relocation register. Byte instructions 
may also be used for the other registers in the control 
block and will eliminate half of the bus cycles required if a 
word operation had been specified. Byte operations are 
only valid on even addresses though, and are undefined on 
odd addresses'. 

3-601 

A.2 Peripheral Control Block Registers 
Each of the integrated peripherals' control and status 
registers are located at a fixed location above the pro­
grammed base location of the peripheral control block. 
There are many locations within the peripheral control 
block which are not assigned to any peripheral. If a write 
is made to any of these locations, the bus cycle will be 
run, but the value will not be stored in any internalloca­
tion. This means that if a subsequent read is made to the 
same location, the value written will not be read back. 

The processor will run an external bus cycle for any 
memory or I/O cycle which accesses a location within 
the integrated control block. This means that the ad­
dress, data, and control information will be driven on the 
80186 external pins just as if a "normal" bus cycle had 
been run. Any information returned by an external de­
vice will be ignored, however, even if the access was to a 
location which does not correspond to any of the inte­
grated penpheral control registers. The above is also true 
for the 80188, except that the word access made to the 
integrated registers will be performed in a single bus cycle 
internally, while externally, the BIU runs two bus cycles. 

The processor internally generates a ready signal when­
ever any of the integrated peripherals are accessed; thus 
any external ready signals are ignored whenever an ac­
cess is made to any location within the integrated pe­
ripheral register control block. This ready will also be 
returned if an access is made to a location within the 256 
byte area of the periperal control block which does not 
correspond to any integrated peripheral control register. 
The processor will insert 0 wait states to any access with­
in the integrated peripheral control block except for ac­
cesses to the timer registers. ANY access to the timer 
control and counting registers will incur I wait state. 
This wait state is required to properly multiplex proces­
sor and counter element accesses to the timer control 
registers. 

210973-003 



, . 

inter AP-186 

All accesses made to the integrated peripheral control 
block will be WORD accesses. Any write to the integrated 
registers will modify all 16 bits of the register, whether the 
opcode specified a byte write or a word write. A byte read 
from an even location should cause no problems, but the 
qata returned when a byte read is performed from an odd 
address within the peripheral control block is undefined. 
This is true both for the 80186 AND the 80188. As stated 
above, even though the 80188 has an external 8 bit data 
bus, internally it is still a 16 bit machine. Thus, the word 
~ccesses performed to the integrated registers by the 80188 
will each occur in a single bus cycle internally while 
externally the BIU runs two bus cycles. 

APPENDIX B: 80186 SYNCHRONIZATION 
INFORMATION 

Many input signals to the 80186 are asynchronous, that 
is, a specified set up or hold time is not required to insure 
proper functioning of the device. Associated with each of 
these inputs is a synchronizer which samples this exter­
nal asynchronous signal, and synchronizes it to the in­
ternal 80186 clock. 

B.1 Why Synchronizers Are Required 

Every data latch requires a certain set up and hold time 
in order to operate properly. At a certain window within 
the specified set up and hold time, the part will actually 
try to latch the data. If the input makes a transition 
within this window, the output will not attain a stable 
state within the given output delay time. The size of this 
sampling window is typically much smaller than the ac­
tual window specified by the data sheet, however part to 
part variation could move this window around within the 
specified window in the data sheet. 

Even if the input to a data latch makes a transition while 
a data latch is attempting to latch this input, the output 
of the latch will attain a stable state after a certain 
amount of time, typically much longer than the. normal 
strobe to output delay time. Figure B-1 shows a normal 
input to output strobed transition and one in which the 
input signal makes a transition during the latch's sample 
window. In order to synchronize an asynchronous signal, 
all one needs to do is to sample the signal into one data 
latch, wait a certain amount of time, then latch it into a 
second data latch. Since the time between the strobe into 
the first data latch and the strobe into the second data 
latch allows the first data latch to attain a steady state 
(or to resolve the asynchronous signal), the second data 
latch will be pre~ented with an input signal which satis­
fies any set up and hold time requirements it may have. 

STROBE / 
INPUT ---S""E"',,"".U""P-T""IM""E..I· HOLD TIME 

·rr ACTUAL SAMPLING INSTANT 

_ __ ....;JII} INVALID 1 
INPUT ~ 

RESPONSE -------1. RESOLUTION TIME _I 
VALID~ 
INPUT 

RESPONSE _______ -..J/ 

Figure B-1. Valid & Invalid Latch Input 
Transitions & Responses 

Thus, the output of this second latch is a synchronous 
signal with respect to its strobe input. 

A synchronization failure can occur if the synchronizer 
fails to resolve the asynchronous transition within the 
time between the two latch's strobe signals. The rate of 
failure is determined by the actual size of the sampling 
window of the data latch, and by the amount of time be­
tween the strobe signals of the two latches. Obviously, as 
the sampling window gets smaller, the number of times 
an asynchronous transition will occur during the sam­
pling window will drop. In additi<>i1, however, a smaller 
sampling window is also indicative of a faster resolution 
time for an input transition which manages to fall within 
the sampling window. 

B.2 80186 Synchronizets 

The 80186 contains synchronizers on the RES, 
TEST, TmrInO-I, DRQO-I, NMI, INTO-3, ARDY, and 
HOLD input lines. Each of these synchronizers use the 
two stage synchronization technique described above 
(with some minor modifications for the ARDY line, see 
section 3.1.6). The sampling window of the latches is de­
signed to be in the tens of pico-seconds, and should allow 
operation of the synchronizers with a mean time be­
tween failures of over 30 years assuming continuous 
operation. 

3-602 210973-003 



'Im _I® 
•• ~ AP.-186 

APPENDIX C: 80186 EXAMPLE DMA INTERFACE CODE 

$modl86 
name 

This file contains an example procedure which initializes the 80186 DMA 
controller to perform the DMA transfers between the 80186 system the the 
8272 Floppy Disk Controller (FDC). It assumes that the 80186 
peripheral control block has not been moved from its reset location. 

argl 
arg2 
arg3 
DMA_FROM_LOWER 
DMA..FROM_UPPER 
DMA_TO_LOWER 
DMA..TO_UPPER 
DMA_COUNT 
DMA..CONTROL 
DMA.. TO_DlSK.CONTROL 

FDC_DMA 
FDCDATA 
FDCSTATUS 

cgroup 

equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 

equ 
equ 
equ 

group 

word ptr [BP + 4] 
word ptr [BP + 6] 
word ptr [BP + 8] 
OFFCOh 
OFFC2h 
OFFC4h 
OFFC6h 
OFFC8h 
OFFCAh 
01486h 

OA046h 

6B8h 
688h 
680h 

code 

DMA register locations 

destination synchronization 
source to memory, incremented 
destination to 1/0 
no terminal count 
byte transfers 

source synchroniza tion 
source to 1/0 
destination to memory, incr 
no terminal count 
byte transfers 
FDC DMA address 
FDC data register 
FDC status register 

code segment public 'code' 
public seLdma_ 
assume cs:cgroup 

seLdma (offset,to) programs the DMA channel to point one side to the 

seLdma_ 

disk DMA address, and the other to memory pointed to by ds:offset. If 
'to' = 0 then will be a transfer from disk to memory; if 
'to' = I then will be a transfer from memory to disk. The parameters to 
the routine are passed on the stack. 

proc near 
enter 0,0 
push AX 
push BX 
push DX 
test arg2,1 

jz from..disk 
performing a transfer from memory to the disk controller 

mov 
rol 

AX,DS 
AX,4 

3-603 

set stack addressability 
save registers used 

check to see direction of 
transfer 

get the segment value 
gen the upper 4 bits of the 
physical address in the lower 4 
bits of the register 

210973-003 



AP-186 

moy BX,AX saye the result. .. 
moy DX,DMA.FROM_VPPER prgm the upper 4 bits of the 
out DX,AX DMA source register 
and AX,OFFFOh form the lower 16 bits of the 

physical address 
add AX,argl add the offset 
moy DX,DMA.FROM_LOWER prgm the lower 16 bits of the 
out DX,AX DMA source register 
jnc no_carry_from check for carry out of addition 
inc BX if carry out, then need to adj 
moy AX,BX the upper 4 bits of the pointer 
moy DX,DMA.FROM_VPPER 
out DX,AX 

no_carry_from: 
< moy AX,FDCDMA prgm the low 16 bits of the DMA 

moy DX,DMA.TO_LOWER destina tion register 
out DX,AX 
xor AX,AX zero the up 4 bits of the DMA 
moy DX,DMA.TO_VPPER destination register 
out DX,AX I 

moy AX,DMA.TO_DISK.CONTROL; prgm the DMA ctl reg 
moy DX,DMA.CONTROL note: DMA may begin immediatly 
out DX,AX after this word is output 
pop DX 
pop BX 
pop AX 
leaye 
ret 

from_disk: 

performing a transfer from the disk to memory 

moy AX,DS 
rol A~,4 
moy DX,DMA.TO_VPPER 
out DX,AX 
moy BX,AX 
and AX,OFFFOh 
add AX,argl 
moy DX,DMA.TO_LOWER 
out - DX,AX 
jnc no_carry_to 
inc BX 
moy AX,BX 
moy DX,DMA.TO_VPPER 
out DX,AX 

no_carry_to: 
moy AX,FDCDMA 

moy DX,DMA.FROM_LOWER 
out DX,AX 
xor AX,AX 
moy DX,DMA.FROM_VPPER 
out DX,AX 
moy AX,DMA.FROM_DISK.CONTROL 
moy DX,DMA.CONTROL 

3-604 210973-003 



AP-186 

out DX,AX 
pop DX 
pop BX 
pop AX 
leave 
ret 

seLdma_ endp 

code ends 
end 

3-605 210973-003 



inter AP-186 

APPENDIX D: 80186 EXAMPLE TIMER INTERFACE CODE 

$modl86 
name example_80 I 86_timer _code 

this file contains example 80186 timer routines. The first routine 

argl 
arg2 
arg3 
timer_2int 

sets up the timer and interrupt controller to cause the timer 
to generate an interrupt every 10 milliseconds, and to service 
interrupt to implement a real time clock. Timer 2 is used in ' 
this example because no input or output signals are required. 
The code example assumes that the peripheral COnirol block has 
not been moved from its reset location (FFOO·FFFF in I/O space). 

equ word ptr [BP + 4] 
equ word ptr [BP + 6] 
equ word ptr [BP + 8] 
equ 19 

timer_2control equ OFF66h 
timer .2malLcti equ OFF62h 
timednLcti equ OFF32h 
eoi.register equ OFF22h 
interrupLstat equ OFF30h 

data segment 
public hour_,minute_,second_,msec_ 

msec_ db ? 
hour_ db ? 
minute_ db ? 
second_ db ? 
data ends 

cgroup group code 
dgroup group data 

code segment 
public seUime_ 
assume cs:code,ds:dgroup 

, 
seUime(hour,minute,second) sets the time variables, initializes the 

80186 timer2 to provide interrupts every 10 milliseconds, and 
programs the interrupt vector for timer 2. 

seUime_ proc near 
enter 0,0 
push AX 
push OX 
push SI 
push OS 

xor AX,AX 

mov OS,AX 

mov SI,4 * timer2..int 

3-606 

timer 2 has vector type 19 

interrupt controller regs 

public 'data' 

public 'code' 

set stack addressability 
save registers used 

set the interrupt vector 
the timers have unique 
interrupt 
vectors even though they share 
the same control register 

210973-003 



inter AP-186 

mov os: lSI] ,offset timer_2JnterrupLroutine 
inc SI 
inc SI 
mov OS:[SI],CS 
pop OS 

mov AX,argl set the time values 
mov hour_,AL 
mov AX,arg2 
mov minute_,AL 
mov AX,arg3 
mov second.,AL 
mov msec_,O 

mov OX,timer2..malLctl set the max count value 
mov AX,20000 10 ms /500 ns (timer 2 counts 

at 1/4 the CPU clock rate) 
out OX,AX 
mov OX,timer2..control set the control word 
mov AX, 111 000000000000 1 b enable counting 

generate interrupts on TC 
continuous counting 

out OX,AX 

mov OX,timerinLctl 'set up the interrupt controller 
mov AX,OOOOb unmask interrupts 

highest priority interrupt 
out OX,AX 
sti enable processor interrupts 

pop SI 
pop OX 
pop AX 
leave 
ret 

seUime_ endp 

timer2JnterrupLroutine proc far 
push AX 
push OX 

cmp msec_,99 see if one second has passed 
jae bump..second if above or equal... 
inc msec_ 
jmp reseLinLctl 

bump..second: 
mov mscc-,O reset millisecond 
cmp second.,59 see if one minute has passed 
jae bumpJIlinute 
inc second_ 
jmp reseLinLctl 

bump_minute: 
mov second.,O 
cmp minute_,59 see if one hour has passed 
jae bumpJtour 
inc minute_ 
jmp reseLinLctl 

3-607 210973-003 



bump.hour: 

reseLhour: 

reseLinLctl: 

timer2.interrupLroutine 
code 

$modl86 
name 

mov 
cmp 
jae 
inc 
jmp 

AP-186 

minute.,O 
hour., 12 
reseLhour 
hour. 
reseLin Lctl 

mov hour., I 

mov 
mov 
out 

pop 
pop 
iret 
endp 
ends 
end 

OX,eoLregister 
AX,8000h 
OX,AX 

OX 
AX 

example.80 I 86.baud.code 

this file contains example 80186 timer routines. The second routine 
sets up the timer as a baud rate generator. In this mode, 
Timer I is used to continually output pulses with a period of 
6.S usec for use with a serial controller at 9600 baud , 
programmed in divide by 16 mode (the actual period required 
for 9600 baud is 6.S1 usec). This assumes that the 80186 is 
running at 8 MHz. The code example also assumes that the 
peripheral control block has not been moved from its reset 
location (FFOO·FFFF in I/O space). 

timer Lcontrol 
timer LmalLcnt 

equ OFFSEh 
equ OFFSAh 

see if 12 hours have passed 

non·specific end of interrupt 

code segment public 'code' 
assume cs:code 

seLbaudO initializes the 80186 timer! as a baud rate generator for 
a serial port running at 9600 baud 

seLbaud. proc near 
push ·AX 
push OX 

mov OX,timerLmalLcnt 
mov AX, 13 
out OX,AX 
mov OX,timerLcontrol 
mov AX, 11 0000000000000 1 b 

out OX,AX 

pop OX 
pop AX 

3-608 

save registers used 

set the max count value 
SOOns * 13 = 6.S usec 

set the control word 
enable counting 
no interrupt on TC 
continuous counting 
single max count register 

210973·003 



seLbaud. 
code 

$modl86 
name 

ret 
endp 
ends 
end 

AP-186 

example_80 I 86_counLcode 

this file contains example 80186 timer routines. The third routine 
sets up the timer as an external event counter. In this mode, 
Timer I is used to count transitions on its input pin. After 
the timer has been set up by the routine, the number of 
events counted can be directly read from the timer count 
register at location FF58H in I/O space. The timer will 
count a maximum of 65535 timer events before wrapping 
around to zero. This code examRle also assumes that the 
peripheral control block has not been moved from its reset 
location (FFOO-FFFF in I/O space). 

timer Lcontrol equ OFF5Eh 
timer Lmax..cnt equ OFF5Ah 
timerLcnLreg equ OFF58H 

code segment 
assume cs:code 

seLcountO initializes the 80186 timer! as an event counter 

seLcounL proc near 
pu&h AX 
push DX 

mov DX,timerLmax..cnt 
mov AX,O 

out DX,AX 
mov DX,timer Lcpntrol 
mov AX,! 100000000000 I 0 I b 

out DX,AX 

xor AX,AX 
mov DX,timerLcnLreg 
out DX,AX 

pop DX 
pop AX 
ret 

seLcounL endp 
code ends 

end 

3-609 

public 'code' 

save registers used 

set the max count value 
allows the timer to count 
all the way to FFFFH 

set the control word 
enable counting 
no interrupt on TC 
continuous counting 
single max count register 
external clocking 

zero AX 
and zero the count in the timer 
count register 

210973-003 



AP-186 

APPENDIX E: 80186 EXAMPLE 
INTERRUPT CONTROLLER INTERFACE 
CODE 

$mod186 
name example_80 186jnterrupLcode 

This routine configures the 80186 interrupt controller to provide 
two cascaded interrupt inputs (through an external 8259A 
interrupt controller on pins INTO/INT2) and two direct 
interrupt inputs (on pins INTI and INn). The default priority 
levels are used. Because of this, the priority level programmed 
into the control register is set the 111, the level all 
interrupts are programmed to at reset. 

intO,control 
inLmask 

equ 
equ 

OFF38H 
OFF28H 

cede 

seLinL 

seLinL 
code 

$mod186 
name 

segment 
assume CS:code 
proc near 
push OX 
push AX 

mov AX,0100111B 

mov OX,intO_control 
out OX,AX 

mov AX,01001101B 

mov OX,inLmask 
out OX, AX 
pop AX 
pop OX 
ret 
endp 
ends 
end 

example_80 186jnterrupLcode 

This routine configures the 80186 interrupt controller into iRMX 86 
mode. This code does not initialize anyofthe 80186 
integrated peripheral control registers, nor does it initialiie 
the external 8259A or 80130 interrupt controller. 

{ 

relocation_reg equ OFFFEH 

code segment 
assume CS:code 

seUmx_ proc near 
push OX 
push AX 

mov OX,relocation_reg 
in AX,OX 
or AX,O 1 OOOOOOOOOOOOOOB 
out OX,AX 

3~61O 

public 'code' 

cascade mode 
interrupt unmasked 

now unmask the other external 
interrupts 

public 'code' 

read old contents of register 
set the RMX mode bit 

210973-003 



AP·186 

pop AX 
pop DX 
ret 

seLrmlL endp 
code ends 

end 

3-611 210973-003 



inter AP-186 

APPENDIX F: 80186/8086 EXAMPLE 
SYSTEM INITIALIZATION CODE 

name 

This file contains a system initialization routine for the 80186 
or the 8086. The code determines whether it is running on 
an 80186 or an 8086, and ifit is running on an 80186, it 
initializes the integrated chip select registers. 

restart segment at 

This is the processor reset address at OFFFFOH 

org 0 
jmp far ptr initialize 

restart ends 

extrn monitor:far 
iniLhw segment at 

assume CS:iniLhw 

This segment initializes the chip selects. It must be located in the 
top lK to insure that the ROM remains selected in the 80186 

system until the proper size of the select area can be programmed. 

UMCS_reg equ OFFAOH 
LMCS_reg equ OFFA2H 
PACS_reg equ OFFA4H 
MPCS_reg equ OFFA8H 
UMCS_value equ OF038H 
LMCS_value equ 07F8H 
PACS_value equ 007EH 
MPCS_value equ 8lB8H 

initialize proc far 
mov AX,2 
mov CL,33 
shr AX,CL 
test AX,1 
jz noL80186 

mov OX,UMCSJeg 
mov AX,UMCS_value 
out OX,AX 

mov OX,LMCS_reg 
mov AX,LMCS_value 
out OX,AX 

mov OX,PACSJeg 

mov AX,PACS_value 
out OX,AX 

3-612 

OFFFFh 

OFFFOh 

chip select register locations 

64K, no wait states 
32K, no wait states 
peripheral base at 400H, 2 ws 
PCS5 and 6 supplies, 
peripherals in I/O space 

determine if this is an 
, 8086 or an 80186 (checks 

to see if the multiple bit 
shift value was ANOed) 

program the UMCS register 

program the LMCS register 

set up the peripheral chip 
selects (note the mid-range 
memory chip selects are not 
needed in this system, and 
are thus not initialized 

210973-003 



mov 
mov 
out 

AP-186 

DX,MPCS_reg 
AX,MPCS_value 
DX,AX 

Now that the chip selects are all set up, the main program of the 
computer may be executed. 

noL80186: 

initialize 
iniLhw 

jmp 
endp 
ends 
end 

far ptr monitor 

3-613 210973-003 



inter AP-186 

APPENDIX G: 80186 WAIT STATE 
PERFORMANCE 

Because the 80186 contains seperate bus interface and 
execution units, the actual performance of the processor 
will not degrade at a constant rate as wait states are add­
ed to the memory cycle time from the processor. The ac­
tual rate of pefformace degradation will depend on the 
type and mix of instructions actually encountered in the 
user's program. 

Shown below are two 80186 assembly language pro­
grams, and the actual execution time for the two pro­
grams as wait states are added to the memory system of 
the processor. These programs show the two extremes to 
which wait states will or will not effect system perfor­
mance as wait states are introduced. 

Program 1 is very memory intensive. It performs many 
memory reads and writes using the more extensive mem­
ory addressing modes of the processor (which also take a 
greater number of bytes in the opcode for the instruc­
tion). As a result, the eX!;lcution unit must constantly 
wait for the bus interface unit to fetch and perform the 
memory cycles to allow it to continue. Thus, the execu­
tion time of this type of routine will grow quickly as wait 
states are added, since the execution time is almost total­
ly limited to the speed at which the processor can run bus 
cycles. 

Note also that this program execution times calculated 
by merely summing up the number of clock cycles given 
in the data sheet will typically be less than the actual 
number of clock cycles actually required to run the pro­
gram. This is because the numbers quoted in the data 
sheet assume that the opcode bytes have been prefetched 
and reside in the 80186 prefetch queue for immediate 
access by the execution unit. If the execution unit cannot 

$modl86 

access the opcode bytes immediatly upon request, dead 
clock cycles will be inserted in which the execution unit 
will remain idle, thus increasing the number of clock cy­
cles required to complete execution of the program. 

On the other hand, program 2 is more CPU intensive. It 
performs many integer multiplies, during which time 
the bus interface unit can fill up the instruction pre­
fetch queue in parallel with the execution unit perform­
ing the multiply. In this program, the bus interface unit 
can perform bus operations faster than the execution 
unit actually requires them to be run. In this case, the 
performance degradation is much less as wait states are 
added to the memory interface. The execution time of 
this program is closer to the number of clock cycles cal­
culated by adding the number of cycles per instruction 
because the execution unit does not have to wait for the 
bus interface unit to place an opcode byte in the prefetch 
queue as often. Thus, fewer clock cycles are wasted by 
the execution unit laying idle for want of instructions. 
Table G-I lists the execution times measured for these 
two programs as wait states were introduced with the 
80186 running at 8 MHz. 

Table G-1 

Program 1 Program 2 
# of Exec Exec 
Wait Time Perf Time Perf 

States (~sec) Degr (~sec) Degr 

0 505 294 

I 595 18% 311 6% 

2 669 12% 337 8% 

3 752 12% 347 3% 

name example_waiLstate_performance 

This file contains two programs which demonstrate the 80186 performance 
degradation as wait states are inserted. Program I performs a 
transformation between two types of characters sets, then copies 

cgroup 
dgroup 
data 

the transformed characters back to the original buffer (which is 64 
bytes long. Program 2 performs the same type of transformation, however 
instead of performing a table lookup, it multiplies each number in the 
original 32 word buffer by a constant (3, note the use of the integer 
immediate multiply instruction). Program "nothing" is used to measure 
the call and return times from the driver program only. 

group code 
group data 
segment public 'data' 

3-614 210973-003 



inter AP-186 

Ltable db 256 dup (7) 
Lstring db 64 dup (7) 
IILarray dw 32 dup (7) 
data ends 

code segment public 'code' 
assume eS:cgroup,DS:dgroup 
public bench_I,bench..2,nothing..,waiLstate_,seUimer_ 

bench..l proc near 
push SI ; save registers used 
push ex 
push, BX 
push AX 

mov eX,64 ; translate 64 bytes 
mov SI,O 
mov BH,O 

loop_back: 
mov BL,Lstring[SIJ get the byte 
mov AL,Ltable[BXJ translate byte 
mov Lstring [SIJ,AL and store it 
inc SI increment index 
loop loop_back do the next byte 

pop AX 
pop BX 
pop ex 
pop SI 
ret 

bench_l endp 

bench..2 proc near 
push AX save registers used 
push SI 
push ex 

mov eX,32 multiply 32 numbers 
mov Sl,offset IILarray 

loop_back-2: 
AX,word ptr [SI],3 imul immediate multiply 

mov word ptr [SIJ,AX 
inc SI 
inc SI 
loop loop-back-2 

pop ex 
pop SI 
pop AX 
ret 

bench..2. endp 

3-615 210973-003 



nothing. 

nothing. 

proc 
ret 
endp 

AP-186 

near 

waiLstate(n) sets the 80186 LMCS register to the number of wait states 
(0 to 3) indicated by the parameter n (which is passed on the stack). 
No other bits of the LMCS register are modified. 

wait-state. proc near 
enter 0,0 
push AX 
push BX 
push DX 

mov BX,word ptr [BP + 4] 
mov DX,OFFA2h 

contents 
in AX,DX 

and AX,OFFFCh 
and BX,3 
or AX,BX 
out DX,AX 

pop DX 
pop BX 
pop AX 
leave 
ret 

waiLstate. endp 

seuimerO initializes the 80186 timers to count microseconds. Timer 2 
is set up as a prescaler to timer 0, the microsecond count can be read 

directly out of the timer 0 count register at location FF50H in I/O 
space. 

seUimer. proc near 
push AX 
push DX 

mov DX,Off66h 
mov AX,4000h 
out DX,AX 

mov DX,Off50h 
mov AX,O 
out DX,AX 

mov DX,Off52h 
mov AX,O 
out DX,AX 

3-616 

set up stack frame 
save registers used 

get argument 
get current LMCS register 

and off existing ready bits 
insure ws count is good 
adjust the ready bits 
and write to LMCS 

tear down stack frame 

stop timer 2 

clear timer 0 count 

timer 0 counts up to 65535 

210973-003 



AP-186 

moy OX,Off56h enable timer 0 
moy AX,OcOO9h 
out OX,AX 

moy OX,Off60h clear timer 2 count 
moy AX,O 
out OX,AX 

moy OX,Off62h set maximum count of timer 2 
moy AX,2 
out OX,AX 

moy OX,Off66h re-enable timer 2 
moy AX,OcOOlh 
out OX,AX 

pop OX 
pop AX 
ret 

seLtimer_ endp 
code ends 

end 

3-617 
210973-003 



inter AP-186 

APPENDIX H: 80186 NEW INSTRUCTIONS 

The 80186 performs many additional instructions to 
those of the 8086. These instructions appear shaded in 
the instruction set summary at the back of the 80186 
data sheet. This appendix explains the operation of these 
new instructions. In order to use these new instructions 
with the 8086/186 assembler, the "$mod186" switch 
must be given to the assembler. This can be done by plac­
ing the line: "$modI86" at the beginning of the assem­
bly language file. 

PUSH immediate 

This instruction allows immediate data to be pushed 
onto the processor stack. The data can be either an im­
mediate byte or an immediate word. If the data is a byte, 
it will be sign extended to a word before it is pushed onto 
the stack (since all stack operations are word 
opera tions). 

PUSHA, POPA 

These instructions allow all of the general purpose 
80186 registers to be saved on the stack, or restored from 
the stack. The registers saved by this instruction (in the 
order they are pushed onto the stack) are AX, CX, DX, 
BX, SP, BP, SI, and DI. The SP value pushed onto the 
stack is the value of the register before the first PUSH 
(AX) is performed; the value popped for the SP register 
is ignored. 

This instruction does not save any of the segment regis­
ters (CS, DS, SS, ES), the instruction pointer (lP), the 
flag register, or any of the integrated peripheral 
registers. 

IMUL by an immediate value 

This instruction allows a value to be multiplied by an im­
mediate ·value. The result of this operation is 16 bits 
long. One operand for this instruction is obtained using 
one of the 80186 addressing modes (meaning it can be in 
a register or in memory). The immediate value can be 
either a byte or a word, but will be sign extended if it is a. 
byte. The 16-bit result of the mUltiplication can btl 
placed in any of the 80186 general purpose or pointer 
registers. 

This instruction requires three operands: the register in 
which the result is to be placed. the immediate value, 
and the second operand. Again, this second operand can 
be any of the 80186 general purpose registers or a speci-. 
fied memory location. 

shifts/rotates by an immediate value 

The 80186 can perform multiple bit shifts or rotates 
where the number of bits to be shifted is specified by an 

immediate value. This is different from the 8086, where 
only a single bit shift can be performed, or a multiple 
shift can be perf0rmed where the number of bits to be 
shifted is specified in the CL register. 

All of the shift/rotate instructions of the 80186 allow 
the number of bits shifted· to be specified by an immedi­
ate value. Like all multiple bit shift operations per­
formed by the 80186, the number of bits shifted is the 
number of bits specified modulus 32 (Le. the mal\imum 
number of bits shifted by the 80186 multiple bit shifts is 
31). 

These instructions require two operands: the operand to 
be shifted (which may be a register or a memory location 
specified by any of the 80186 addressing modes) and the 
number of bits to be shifted. 

block input/output 

The 80 18~ adds two new input/output instructions: INS 
and OUTS. These instructions perform block input or 
output operations. They operate similarly to the string 
mov.e instructions of the processor. 

The INS instruction performs block input from an I/O 
port to memory. The I/O address is specified by the DX 
register; the memory location is pointed to by the DI reg­
ister. After the operation is performed, the DI register is 
adjusted by I (if a byte input is specified) or by 2 (if a 
word input is specified). The adjustment is either an in­
crement or a decrement, as determined by the Direction 
bit in the flag register of the processor. The ES segment 
register is used for memory addressing, and cannot be 
overridden. When preceeded by a REPeat prefix, this in­
struction allows blocks of data to be moved from an I/O 
address to a block of memory Note that the I/O address 
in the DX register is not modified by this operation. 

The OUTS instruction performs block output from 
memory to an I/O port. The I/O address is specified by 
the DX register; the memory location is pointed to by the 
SI register. After the operation is performed, the SI reg­
ister is adjusted by I (if a byte output is specified) or by 
2 (if a word output is specified). The adjustment is either 
an increment or a decrement, as determined by the Di­
rection bit in the flag register of the processor. The DS 
segment register is used for memory addressing, but can 
be overridden by using a segment override prefix. When 
preceeded by a REPeat prefix, this instruction allows 
blocks of data to be moved from a block of memory to an 
I/O address. Again note that the I/O address in the DX 
register is not modified by this operation. 

Like the string move instruction, these two instructions 
require two operands to specify whether word or byte op­
erations are to take place. Additionally, this determina­
tion can be supplied by the mnemonic itself by adding a 
"B"·or "W" to the basic mnemonic, for example: 
lNSB ; perform byte input 
REP OUTSW ; perform word block output 

3-618 210973-003 



AP-186 

BOUND 

The 80186 supplies a BOUND instruction to facilitate 
bound checking of arrays. In this instruction, the calcu­
lated index into the array is placed in one of the general 
purpose registers of the 80186. Located in two adjacent 
word memory locations are the lower and upper bounds 
for the array index. The BOUND instruction compares 
the register contents to the memory locations, and if the 
value in the register is not between the values in the 
memory locations, an interrupt type 5 is generated. The 
comparisons performed are SIGNED comparisons. A 
register value equal to either the upper bound or the low­
er bound will not cause an interrupt. 

This instruction requires two arguments: the register in 
which the calculated array index is placed, and the word 
memory location which contains the lower bound of the 
array (which can be specified by any of the 80186 mem­
ory addressing modes). The memory location containing 
the upper bound of the array must follow immediatly the 
memory location containing the lower bound of the 
array. 

ENTER and LEAVE 

The 80186 contains two instructions which are used to 
build and tear down stack frames of higher level, block 
structured languages. The instruction used to build 
these stack frames is the ENTER instruction. The algo­
rithm for this instruction is: 

PUSH BP 

if level = 0 then 
BP:= SP; 

/ * save the previous frame 
pointer * / 

else tempi := SP; 1* save current frame pointer 
*/ 

? 

BP~ BEFORI: 

SP--

I 

temp2 : = level - I; 
do while temp2 > 0 1* copy down previous 

BP:= BP- 2; 
PUSH [BP]; 

BP:= tempi; 
PUSH BP; 

1* in the save area * / 
SP:= SP - disp; 

1* local variables * / 

frame * / 
1* pointers * / 

/* put current level 
pointer */ 

1* create space on the 
for * / 

level 

frame 

stack 

Figure H-I shows the layout of the stack before and 
after this operation. 

This instruction requires two operands: the first value 
(disp) specifies the number of bytes the local variables of 
this routine require. This is an unsigned value and can be 
as large as 65535. The second value (level) is an un­
signed value which specifies the level of the procedure. It 
can be as great as 255. 

The 80186 includes the LEAVE instruction to tear down 
stack frames built up by the ENTER instruction. As can 
be seen from the layout of the stack left by the ENTER 
instruction, this involves only moving the contents of the 
BP register to the SP register, and popping the old BP 
value from the stack. 

Neither the ENTER nor the LEAVE instructions save 
any of the 80186 general purpose registers. If they must 
be saved, this must be done in addition to the ENTER 
and the LEAVE. In addition, the LEAVE instruction 
does not perform a return from a subroutine. If this is 
desired, the LEAVE il).struction must be explicitly fol­
lowed by the RET instruction. 

AFTER 

BP_ OLDBP f--

OLD FRAME 

PTRS. 

CURRENT FRAME -PTR 

LOCAL 

VARIABLE 

SP-
AREA 

Figure ,H-1. ENTER Instruction Stack Frame 

3-619 210973-003 



AP-186 

APPENDIX I: 80186/80188 DIFFERENCES 

The 80188 is exactly like the 80186, except it has an 8 bit 
external bus. It shares the 'same execution unit, timers, 
peripheral control block, interrupt controller, chip se­
lect, and DMA logic. The differences between the two 
caused by the narrower data bus are: 

The 80188 has a 4 byte prefetch queue, rather than 
the 6 byte prefetch queue present on the 80186. The 
reason for this is since the 80188 fetches opcodes one 
byte at a time, the number of bus cycles required to 
fill the smaller queue of the 80188 is actually greater 
than the number of bus cycles required to fill the 
queue of the 80186. As a result, a smaller queue is 
required to prevent an inordinate number of bus cy­
cles being wasted by prefetching opcodes to be dis­
carded during a jump. 

AD8-ADI5 on the 80186 are transformed to A8-
A15 on the 80188. Valid address information is pre­
sent on t~ese lines throughout the bus cycle of the 
80188. Valid address information is not guaranteed 
on these lines during idle T states. 

BHE/S7 is always defined HIGH by the 80188, 
since the upper half of the data bus is non-existant. 

The DMA controller. of the 80188 only performs 
byte transfers. The B/W bit in the DMA control 
word is ignored. 

Execution times for many memory access instruc­
tions are increased because the memory access must 
be funnelled through a narrower data bus. The 
80188 also will be more bus limited than the 80186 
(that is, the execution unit will be required to wait 
for the opcode information to be fetched more often) 
because the data bus is narrower. The execution time 
within the processor, however, has not changed be­
tween the 80186 and the 80188. 

Another important point is that the 80188 internally is a 
16-bit machine. This means that any access to the inte­
grated peripheral registers of the 80188 will be done in 
16-bit chunks, NOT in 8-bit chunks. All internal periph­
eral registers are still 16-bits wide, and only a single read 
or write is required to access the registers. When an ac­
cess is made to the internal registers, only a single bus 
cycle will be run, and only the lower 8-bits of the written 
data will be driven on the external bus. All accesses to 
registers within the integrated peripheral block must be 
WORD accesses. 

3-620 210973-003 



iAPX286 
Microprocessors 

4 





• 
• 

• 

• 

• 

iAPX 286/1 0 £@'I§£~©~ O~IF@IRl~£'jj'O@~ 

HIGH PERFORMANCE MICROPROCESSOR 
WITH MEMORY MANAGEMENT AND PROTECTION 

(80286-8, 80286-6, 80286-4) 

High Performance • Optional Processor Extension: 
Processor (Up to six times iAPX 86) -iAPX 286/20 High Performance 8o-bit 
Large Address Space: Numeric Data Processor 
-16-Megabytes Physical 
-1 Gigabyte Virtual per Task • Complete System Development 
Integrated Memory Management, Four- Support: 
Level Memory Protection and Support -Development Software: Assembler, 
for Virtual Memory and Operating PUM, Pascal, FORTRAN, and System 
Systems Utilities 
Two iAPX 86 Upward Compatible -In-Circuit-Emulator (ICE ™ -286) 
Operating Modes: 
-iAPX 86 Real Address Mode • High Bandwidth Bus Interface 
-Protected Virtual Address Mode (8 Mega~yte/Sec) 
Range of clock rates 
-8 MHz for 80286-8 • Available in EXPRESS: -6 MHz for 80286-6 -Standard Temperature Range 
-4 MHz for 80286-4 

The IAPX 286/10 (80286 part number) is an advanced, high-performance microprocessor with specially optimized 
capabilities for multiple user and multi-tasking systems. The 80286 has built-in memory protection that supports 
operating system and task isolation as well as program and data privacy within tasks. An 8 MHz iAPX 286/10 provides 
up to six times greater throughout than the standard 5 MHz IAPX 86/10. The 80286 includes memory management 
capabilities that map up to 230 (one gigabyte) of virtual address space per task into 224 bytes (16 megabytes) 
of physical memory. 

The iAPX 286 is upward compatible with iAPX 86 and 88 software. Using iAPX 86 real address mode, the 80286 is 
object code compatible with existing iAPX 86, 88 software. In protected virtual address mode, the 80286 is source 
code compatible with iAPX 86, 88 software and may require upgrading to use virtlJal addresses supported by the 
80286's integrated memory management and protection mechanism. Both modes operate at full 80286 performance 
and execute a superset of the iAPX 86 and 88's instructions. 

The 80286 provides special operations to support the efficient implementation and execution of operating systems. 
For example, one instruction can end execution of one task, save its state, switch to a new task, load its state, and 
start execution of the new task. The 80286 also supports virtual memory systems by providing a segment-not-present 
exception and restartable instructions. 

~ADDRESSUNl'r(AU) - - --- - - - - - - - - - - - - - -, 
I 
I 
I 
I 

I 
I 

I 
I 
I 
I L __ 

A23 - Ao. 
SHE. MilO 

PEACK 
I-~-PEREQ 

'----i+~~-REAOY. HOLD 

S1, so, COD,I~fTA 
lOcK, HLDA 

I RESET 
I elK 
I ~ 

~ ~E~u:!'I~N~~T.!.E~ __ '--_-_-_-_-_'r_r_.-:r"'..-----:-:--L2~~L==..J Vee 
L-~~~~~~~~~~~Ff~~~~~~~~-~~~~~~~~~~~~~~~~CAP 

Figure 1. 80286 Internal Block Diagram 

The follOWing are trademarks of Intel Corporation and tts affltlstesand may be used only to Identify Intel products exp, CREDIT, I, ICE, ICS, 1m, InSlte, Intel, INTEl,lnteleVISlon, Intelhnk, 

~~e~:~~,~~~~: ~~~~:~~~~~p~: ~~~~h~S!~~:~~~;~n~~~~~;R~~~;s~~~;~~~~~~~2~e~,a~g~~~~u~:C:~::~~;:;:;~~~u~~:~Y~'e~~~;~~~~t~~~' :~~~.~~~~~b~~:p~~~:i;t~~~~t~:r:~ 
of Any CIrcuItry Other Than CIrcuItry EmbodIed In an Intel Product No Other Patent llcenSf'lS are Implied ©INTEl CORPORATION, 1983 NOVEMBER 1983 

4-1 ORDER NUMBER: 210253-007 



IAPX 286/10 

Component,Pad View-As viewed from 
underside of component when mounted on 
the board. 

P.C: Board View-As viewed from the 
component side of the P.C. board. 

.. 
A, 

A, 

eLK 
Vee 

RESET 

PINHO 1 MARK 

, 
" " " 

:~. ~ 
I:T~ ~ 
NUl ' 
Vss 

PEREQ 

HOLD 

HLDA 
eolllllM 

MI11l 
~ 

, 
, 
" " 
" " 

l 

l.JL...JL..JLJL.JLJL.JULJLJLJLJLJ UL.JU c: 

r11r lrlrlnrlrlr lr lnr lr lrlrl rlrl r 

.. 
A, 

A, 

eLK 

Vee 
RESET 

A, 

A" 

NOTE: N.C. pads must not be connected. 

Figure 2. 80286 Pin Configuration 

Table 1. Pin Description 
The following pin function descriptions are for the 80286 microprocessor: 

Symbol ~pe Name and Function 

elK I System Clock provides the fundamental timing for IAPX 286 systems. It is divided by two inside 
the 80286 to generate the processor clock. The internal dlvlde-by-two circuitry can 
be synchronized to an external clock generator by a lOW to HIGH transition on the RESET 
Input. 

015-00 I/O Data Bus inputs data during memory. I/O. and interrupt acknowledge read cycles; outputs data 
during memory and I/O write cycles. The data bus is active HIGH and floats to '3-state OFF during 
bus hold acknowledge. 

A23-Ao 0 Address Bus outputs physioal memory and I/O port addresses. AD is LOW when data is to be 
transferred on pins 07-0. A23-A16 are lOW during I/O transfers. The address bus is active HIGH 
and floats to 3-state OFF during bus hold acknowledge. 

BHE 0 Bus High Enable indicates transfer of data on the upper byte of the data bus. DI5:::a:...Eight-bit 
oriented devices ~igne<!..!Q..the upper byte of the data bus would normally use BHE to con-
dition chip select functions. BHE is active lOW and floats to 3-state OFF during bus hold acknowledge. 

BHE and AO Encodlngs 
BHEValue NJV.lue Function 

0 0 Word transfer 
0 1 Byte transfer on upper half of data bus (ol5-a) 
1 0 , Byte transfer on lower haH of data bus (07-0) 

'1 1 Reserved 

4-2 210253-007 



iAPX 286/10 

Table 1. Pin Description (Cont.) 

Symbol Type Name and Function 

81,80 a Bus Cycle Status indicates initiation of a bus cycle and, along with MfTO and COD{Il'iITA, defines 
the type of bus cycle. The bus is in a T s state whenever one or both are LOW. 'Sl and SU are 
active LOW and float to 3-state OFF during bus hold acknowledge. 

80286 Bus Cycle Status Definition 
COD/INTA MilO S1 SO Bus cycle initiated 
o (LOW) 0 0 0 Interrupt acknowledge 
0 0 0 1 Reserved 
0 0 1 0 Reserved 
0 0 1 1 None. not a status cycle 
0 1 0 0 IF A 1 = 1 then halt. else shutdown 
0 1 0 1 Memory data read 
0 1 1 0 Memory data wnte 
0 1 1 1 None, not a status cycle 
1 (HIGH) 0 0 0 Reserved 
1 0 0 1 110 read 
1 • 0 1 0 II0wnte 
1 0 1 1 None. not a status cycle 
1 1 0 0 Reserved 
1 1 0 1 Memory Instruction read 
1 1 1 0 Reserved 
1 1 1 1 None, not a status cycle 

MilO a Memory/lO Select distinguishes memory access from 1/0 access. If HIGH during T s, a memory 
cycle or a haltlshutdown cycle is in progress. If LOW, an 1/0 cycle or an interrupt acknowledge cycle 
is in progress. M/iO floats to 3-state OFF during bus hold acknowledge. 

COD/INTA a Codellnterrupt Acknowledge distinguishes instruction fetch ,cycles from memory data read cycles. 
Also distinguishes interrupt acknowledge cycles from 1/0 cycles. COD/INTA floats to 3-state OFF 
during bus hold acknowledge. Its timing is the same as M/iO. 

LOCK 0 Bus Lock indicates that other system bus masters are not to gain control of the system bus following 
the current bus cycle. The LOCK signal may be activated explicitly by the "LOCK" instruction prefix 
or automatically by 80286 hardware during memory XCHG instructions, interrupt acknowledge, or 
descriptor table access. LOCK is active LOW and floats to 3-state OFF during bus hold acknowledge. 

READY I Bus Ready terminates a bus cycle. Bus cycles are extended without limit until terminated by READY 
LOW. READY is an active LOW synchronous input requiring setup and hold times relative to the 
system clock be met for correct operation. READY is ignored during bus hold acknowledge. 

HOLD I Bus Hold Request and Hold Acknowledge control ownership of the 80286 local bus. The HOLD 
HLDA a input allows another local bus master to request control of the local bus. When control is granted, the 

80286 will float its bus drivers to 3-state OFF and then activate HLDA, thus entering the bus hold 
acknowledge condition. The local bus will remain granted to the requesting master until HOLD 
becomes inactive which results in the 80286 deactivating HLDA and regaining control of the local 
bus. This terminates the bus hold acknowledge condition. HOLD may be asynchronous to the system 
clock. These signals are active HIGH 

INTR I Interrupt Request requests the 80286 to suspend its current program execution and service a 
pending external request. Interrupt requests are masked whenever the interrupt enable bit in the 
flag word is cleared. When the 80286 responds to an interrupt request, it performs two interrupt 
acknowledge bus cycles to read an 8-bit interrupt vector that identifies the source of the interrupt. To 
assure program interruption, INTR must remain active until tlie first interrupt acknowledge cycle is 
completed. INTR is sampled at the beginning of each processor cycle and must be active HIGH at 
least two processor cycles before the current instruction ends in order to interrupt before the next 
instruction. INTR is level sensitive, active HIGH, and may be asynchronous to the system clock. 

NMI I Non-maskable Interrupt Request interrupts the 80286 with an internally supplied vector value of 
2. No interrupt acknowledge cycles are performed. The interrupt enable bit in the 80286 flag word 
does not affect this input. The NMI input is active HIGH, may be asynchronous to the system clock, 
and is edge triggered after internal synchronization. For proper recognition, the input must have 
been previously LOW for at least four system clock cycles and remain HIGH for at least four system 
clock cycles. 

4-3 210253-007 



iAPX 286/10 

Table 1 Pin Description (Cont ) 
Symbol Type Name and Function 

PEREQ I , Processor Extension Operand Request and Acknowledge extend the memory management and protection I 
PEACK 0 capabilities of the 80286 to processor extensions. The PEREO input requests the 80286 to perform a data, 

operand transfer for a processor extension. The meR" output signals the processor extension when the, 
requested operand is being transferred. PEREO is active HIGH and floats to 3-state OFF during bus hold I 
acknowledge. meR" may be asynchronous to the system clock. meR" is active LOW. 

BUSY I Processor Extension Busy and Error indicate the operating condition of a processor extension 
ERROR I to the 80286. An activ!! stJS'I' input stops 80286 program execution on WAIT and some ESC 

instructions until stJS'I' becomes inactive (HIGH). The 80286 may be interrupted while waiting 
for stJS'I' to become inactive. An active "ER"FmR input causes the 80286 to perform a processor 
extension interrupt when executing WAIT or some ESC instructions. These inputs are active 
LOW and may be asynchronous to the system clock. 

RESET I System Reset clears the internal logic of the 80286 and is active HIGH. The 80286 may be re-
initialized at any time with a LOW to HIGH transition on RESET which remains active for more than 
16 system clock cycles. During RESET active, the output pins of the 80286 enter the state shown 
below: 

80286 Pin State During Reset 
Pin Value Pin Names 

1 (HIGH) SO, S1. PEACK. A23-AO. BHE. LOCK 
o (LOW) MIlO, COO/INTA. HLOA 
3·stateOFF 015-0 0 

Operation of the 80286 begins after a HIGH to LOW transition on RESET. The HIGH to LOW transi-
tion of RESET must be synchronous to the system clock. Approximately 50 system clock cycles are 
required by the 80286 for internal initializations before the first bus cycle to fetch code from the 
power-on execution address is performed. 

A LOW to HIGH transition of RESET synchronous to the system clock will end a processor' 
cycle at the second HIGH to LOW transition of the system clock. The LOW to HIGH transition 
of RESET may be asynchronous to the system clock; however, in this case it cannot be prede-
termined which phase of the processor clock will occur during the next system clock period. 
Synchronous LOW to HIGH transitions of RESET are required only for systems where the 
processor clock must be phase synchronous to another clock. 

VSS I System Ground: 0 Volts. 

Vce I System Power: + 5 Volt Power Supply. 

CAP I Substrate Filter Capacitor: a'0.047fLf ± 20% 12V capacitor must be connected between this pin 
and ground. This capacitor filters the output of the Internal substrate bias generator. A maximum DC 
leakage current of 1 fLa is allowed through the capacitor. 

For correct operation of the 80286, the substrate bias generator must charge this capacitor to its 
operating voltage. The capacitor chargeup time is 5 milliseconds (max.) after Vee and CLK reach 
their speCified AC and DC parameters. RESET may be applied to prevent spurious activity by the 
CPU during this time. After this time, the 80286 processor clock can be phase synchronized to 
another clock by pulsing RESET LOW synchronous to the system clock. 

4-4 210253-007 



iAPX 286/10 

FUNCTIONAL DESCRIPTION 
Introduction 
The 80286 is an advanced, high-performance micro­
processor with specially optimized capabilities for mUl­
tiple user and multi-tasking systems. Depending on the 
application, the 80286's performance is up to six times 
faster than the standard 5 MHz 8086's, while providing , 
complete upward software compatibility with Intel's iAPX 
86, 88, and 186 family of CPU's. 

The 80286 operates in two modes: iAPX 86 real address 
mode and protected virtual address mode. Both modes 
execute a superset of the iAPX 86 and 88 instruction set. 

In iAPX 86 real address mode programs use real ad­
dresses with up to one megabyte of address space. Pro­
grams use virtual addresses in protected virtual address 
mode, also called protected mode. In protected mode, 
the 80286 CPU automatically maps 1 gigabyte of virtual 
addresses per task into a 16 megabyte real address 
space. This mode also provides memory p~otection to 
isolate the operating system and ensure privacy of each 
tasks' programs and data. Both modes provide the same 
base instruction set, registers, and addressing modes. 

The following Functional Description describes first, the 
base 80286 architecture common to both modes, sec­
ond, iAPX 86 real address mode, and third, protected 
mode. 

iAPX 286/10 BASE ARCHITECTURE 

The iAPX 86,88,186, and 286 CPU family all contain 
the same basic set of registers, instructions, and ad­
dressing modes. The 80286 processor is upward com­
patible with the 8086, 8088, and 80186 CPU's. 

16-BIT 
REGISTER 

NAME 

AH 

DH 

07 

AL 

DL 

SPECIAL 
REGISTER 

FUNCTIONS 

O} MULTIPLY/DIVIDE 
110 INSTRUCTIONS 

Register Set 
The 80286 base architecture has fifteen registers as 
shown in Figure 3. These registers are grouped into the 
following four categories: 

General Registers: Eight 16-bit general purpose reg­
isters used to contain arithmetic and logical operands. 
Four of these (AX, BX, CX, and OX) can be used either 
in their entirety as 16-bit words or split into pairs of sep­
arate 8-bit registers. 

Segment Registers: Four 16-bit special purpose reg­
isters select, at any given time, the segments of memory 
that are immediately addressable for code, stack, and 
data. (For usage, refer to Memory Organization) 

Base and Index Registers: Four of the general pur­
pose registers may also be used to determine offset ad­
dresses of operands in memory. These registers may 
contain base addresses or indexes to particular loca­
tions within a segment. The· addressing mode deter­
mines the specific registers used for operand address 
calculations. 

Status and Control Registers: The 3 16-bit special 
purpose registers in figure 3A record or control cer­
tain aspects of the 80286 processor state including 
the Instruction Pointer, which contains the offset 
address of the next sequential instruction to be 
executed. 

15 0 

DS DATA SEGMENT SELECTOR 

BYTE 
ADDRESSABLE 
(a-BIT 
REGISTER 
NAMES 
SHOWN) 

1
: 
ex 

BX 

BP 

CH 

BH 

CL 

BL 

) LOOP/SHIFT/REPEAT COUNT 

} BASE REGISTERS 

CS ~ CODE SEGMENT SELECTOR 

SS STACK SEGMENT SELECTOR 

ES EXTRA SEGMENT SELECTOR 

SEGMENT REGISTERS 

SI 

D I 

SP 

15 

GENERAL 
REGISTERS 

} INDEX REGISTERS 

) STACK POINTER 

15 0 

F§FLAGS 
IP INSTRUCTION POINTER 

MSW MACHINE STATUS WORD 

STATUS AND CONTROL 
REGISTERS 

Figure 3. Register Set 

4-5 210253-007 



\ 

IAPX 286/10 

STATUS FLAGS' 

CARRY -----------------------, 
PARITY -------------------, 

AUXILIARY CARRY ---------------, 

ZERO =========~I 

CONTROL FLAGS. 
'------- TRAP FLAG 

'----'"------ INTERRUPT ENABLE 
'---------- DIRECTION FLAG 

SPECIAL FIELDS. 

'--------------- VOPRIVILEDELEVEL 
'----------------- NESTEDTASKFLAG 

~ INTEL RESERVED 
PROCE~SOR EXTENSION EMULA~ED -----' 

MONITOR PROCESSOR EXTENSION _____ --' 

PROTECTtON ENABLE ---------' 

Figure 3a. Status and Control Register Bit Functions 

Flags Word Description 
The Flags word (Flags) records specific characteristics 
of the result of logical and arithmetic instructions (bits 0, 
2, 4, 6, 7, and 11) and controls the operation of the 80286 
within a given operating mode (bits 8 and 9). Flags is a 
16-bit register. The function of the flag bits is given in 
Table 2. 

Instructiol'! Set 
The instruction set is divided into seven categories: data 
transfer, arithmetic, shift/rotate/logical, string manipula­
tion, control transfer, high level instructions, and pro­
cessor control. These categories are summarized in 
Figure 4. 

An 80286 instruction can reference zero, one, or two 
operands; where an operand resides in a register, in the 
instruction itself, or in memory. Zero-operand instruc­
tions (e.g. NOP and HLT) are usually qne byte long. One­
operand instructions (e.g. INC and DEC) are usually two 
bytes long but some are encoded in only one byte. One­
operand instructions may reference a register or mem­
ory location. Two-operand instructions permit the follow­
ing six types of instruction operations: 

" -Register to Register 
-Memory to Register 
-Immediate to Register 
-Memory to Memory 
-Register to Memory 
-Immediate to Memory 

4-6 

Table 2. Flags Word Bit Functions 

Bit Name Function Position 
0 CF Carry Flag-Set on high-order bit 

carry or borrow; cleared otherwise 

2 PF Parity Flag-Set if low-order 8 bits 
of result contain an even number of 
1-bits; cleared otherwise 

4 AF Set on carry from or borrow to the 
low order four bits of AL; cleared 
otherwise 0" 

6 ZF Zero Flag-Set if result is zero; 
cleared otherwise 

7 SF Sign Flag-Set equal to high-order 
bit of result (0 if positive, 1 if negative) 

11 OF Overflow Flag-Set if resu~ is a too-
large pusitive number or a too-small 
negative number (excluding sign-bit) 
to fit in destination operand; cleared 
otherwise 

8 TF Single Step Flag-Once set, a sin-
\ gle step interrupt occurs after the 

next instruction executes. TF is 
cleared by the single step interrupt. 

9 IF Interrupt-enable Flag-When set, 
maskable interrupts will cause the 
CPU to transfer control to an inter-
rupt vector specified location. 

10 DF Direction Flag-Causes string 
instructions to auto decrement, 
the approprlat.e Index registers 
when set. Clearing DF causes 
auto Increment. 

210253-007 



iAPX 286/10 

Two-operand instructions (e.g. MOV and ADD) are usu­

ally three to six bytes long. Memory to memory opera­
tions are provided by a special class of string instructions 

requiring one to three bytes. For detailed instruction for­
mats and encodings refer to the instruction set summary 
at the end of this document. 

For detailed operation and usage of each instruction, see 
Appendix of iAPX 286 Programmer's Reference Manual 
(Order No. 210498) 

GENERAL PURPOSE 
MOV Move byte or word 

PUSH Push word onto stack 

POP Pop word off stack 

PUSHA Push all registers on stack 

paPA Pop all registers from stack 

XCHG Exchange byte or word 

XLAT Translate byte 

INPUT/OUTPUT 
IN Input byte or word 

OUT Output byte or word 

ADDRESS OBJECT 
LEA Load effective address 

LDS Load pOinter using DS 

LES Load pOinter using ES 

FLAG TRANSFER 
LAHF Load AH register from flags 

SAHF Store AH register in flags 

PUSHF Push flags onto stack 

POPF Pop flags off stack 

Figure 4a. Data Transfer Instructions 

MOVS Move byte or word string 

INS Input bytes or word string 

OUTS Output bytes or word string 

CMPS Compare byte or word string 

SCAS Scan byte or word string 

LaDS Load byte or word string 

STOS Store byte or word string 

REP Repeat 

REPE/REPZ Repeat while equal/zero 

REPNE/REPNZ Repeat while not equal/not zero 

Figure 4c. String Instructions 

4-7 

ADDITION 
ADD Add byte or word 

ADC Add byte or word with carry 

INC Increment byte or word by 1 

AAA ASCII adjust for add ilion 

DAA Decimal adjust for addition 

SUBTRACTION 
SUB Subtract byte or word 

SBB Subtract byte or word with borrow 

DEC Decrement byte or word by 1 

NEG Negate byte or word 

CMP Compare byte or word 

AAS ASCII adjust for subtraction 

DAS Decimal adjust for subtraction 

MULTIPLICATION 
MUL Multiply byte or word unsigned 

IMUL Integer multiply byte or word 

AAM ASCII adjust for multiply 

DIVISION 
DIV Divide byte or word unsigned 

IDIV Integer divide· byte or word 

AAD ASCII adjustfor diVision 

CBW Convert byte to word 

CWD Convert word to doubleword 

Figure 4b. Arithmetic Instructions 

LOGICALS 
NOT "Not" byte or word 

AND "And" byte or word 

OR "Inclusive or" byte or word 

XOR "Exclusive or" byte or word 

TEST "Test" byte or word 

SHIFTS 
SHUSAL Shift logical/arithmetic left byte or word 

SHR Shift logical right byte or word 

SAR Shift arithmetic right byte or word 

ROTATES 
ROL Rotate left byte or word 

ROR Rotate right byte or word 

RCL Rotate through carry left byte or word 

RCR Rotate through carry right byte or word 

Figure 4d. Shift/Rotate/Logical Instructions 

210253-007 



iAPX 286/10 

CONOITIONAL TRANSFERS UNCONOITIONAL TRANSFERS 
JAlJNBE Jump if above/not below nor equal CALL Call procedure 

JAE/JNB Jump if above or equal/not below RET Return from procedure 

JB/JNAE Jump if below/not above nor equal JMP Jump 

JBE/JNA Jump if below or equal/not above 

JC Jump if carry ITERATION CONTROLS 
JE/JZ Jump if equal/zero 

JG/JNLE Jump if greater/not less nor equal LOOP Loop 

JGE/JNL Jump if greater or equal/not less LOOPE/LOOPZ Loop if equal/zero 

JLlJNGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero 

JLE/JNG Jump if less or equal/not greater JCXZ Jump if register CX = 0 

JNC Jump if riot carry 

JNE/JNZ Jump if not equal/not zero INTERRUPTS 
JNO Jump if not overflow 

JNP/JPO Jump if not parity/parity odd INT Interrupt 

JNS Jump if not sign INTO Interrupt if overflow 

JO Jump if overflow IRET Interrupt return 

JP/JPE Jump if parity/parity even 

JS Jump if sign 

Figure 4e. Program Transfer Instructions 

FLAG OPERATIONS 
STC Set carry flag 

CLC Clear carry flag 

CMC Complement carry flag 

STD Set direction flag 

CLD Clear direction flag 

STI Set interrupt enable flag 

CLI Clear interrupt enable flag 

EXTERNAL SYNCHRONIZATION 
HLT Halt until interrupt or reset 

WAIT Wait for BUSY not active • 
ESC Escape to extension processor 

LOCK Lock bus during next instruction 

NO OPERATION 
NOP No operation 

EXECUTION ENVIRONMENT CONTROL 
LMSW I Load machine status word 

SMSW I Store machine status word 

Figure 41. Processor Control Instructions 

ENTER Format stack for procedure entry 
LEAVE Restore stack for procedure exit 
BOUND Detects values outside prescribed range 

Figure 4g. HighLevellnstructions 

4-8 

Memory Organization 
Memory is organized as sets of variable length seg­
ments. Each segment is a linear contiguous sequence 
of up to 64K (216) S-bit bytes. Memory is addressed us­
ing a two-component address (a pointer) that consists 
of a 16-bit segment selector, and a 16-bit offset. The 
segment selector indicates the desired segment in 
memory. The offset component indicates the desired byte 
address within the segment. 

I 
31 

32·BIT POINTER -
SEGMENT I OFFSET I 

1615 0 

I 

;, 

OPERAND 
SELECTED 

~ ... 
'V 'V 

MEMORY 

SELECTED 
SEGMENT 

Figure 5. Two Component Address 

210253-007 



iAPX 286/10 

Table 3. Segment Register Selection Rules 

Memory Segment Register Implicit Segment 
Reference Needed Used Selection Rule 

Instructions Code (CS) Automatic with instruction prefetch 
Stack Stack (SS) All stack pushes and pops. Any memory reference which uses BP as a 

base register. 
Local Data Data (DS) All data references except when relative to stack or string destination 
External (Global) Data Extra (ES) Alternate data segment and destination of string operation 

All instructions that address operands in memory must 
specify the segment and the offset. For speed and com­
pact instruction encoding, segment selectors are usu­
ally stored in the high speed segment registers. An 
instruction need specify only the desired segment reg­
ister and an offset in order to address a memory operand. 

Most instructions need not explicitly specify which seg­
ment register is used. The correct segment register is 
automatically chosen according to the rules of Table 3. 
These rules follow the way programs are written (see 
Figure 6) as independent modules that require areas for 
code and data, a stack, and access to external data areas. 

Special segment override instruction prefixes allow 
the implicit segment register selection rules to be 
overridden for special cases. The stack, data, and 
extra segments may coincide for simple programs. 
To access operands not residing in one of the four 
immediately available segments, a full 32-bit pOinter 
or a new segment selector must be loaded. 

Addressing Modes 
The 80286 provides a total of eight addressing modes 
for instructions to specify operands. Two addressing 
modes are provided for instructions that operate on reg­
ister or immediate operands: 

Register Operand Mode: The operand is located in 
one of the 8 or 16-bit general registers. 

Immediate Operand Mode. The operand is included 
in the instruction. 

Six modes are provided to specify the location of an op­
erand in a memory segment. A memory operand ad­
dress consists of two 16-bit components: segment 
selector and offset. The segment selector is supplied by 
a segment register either implicitly chosen by the ad­
dressing mode or explicitly chosen by a segment over­
rid.e prefix. The offset is calculated by summing any 
combination of the following three address elements: 

the displacement (an 8 or 16-bit immediate value 
contained in the instruction) 

the base (contents of either the BX or BP base 
registers) 

the index (contents of either the SI or DI index registers) 

4-9 

MODULE A 

MODULEB 

PROCESS 
STACK 

PROCESS 
DATA 
BLOCK 1 

r-- -, 
I I 

§ODE 

DATA 

CODE 

DATA 

I I 
I I 

I I 
I I 

PROCESSD 
DATA 
BLOCK 2 

I I 
L ___ J 

MEMORY 

CPU 

L CODE 

L- DATA 

Ii 
STACK 

EXTRA 

SEGMENT 
REGISTERS 

Figure 6. Segmented Memory Helps 
Structure Software 

Any carry out from the 16-bit addition is ignored. Eight­
bit displacements are sign extended to 16-bit values. 

Combinations of these three address elements define 
the six memory addressing modes, described below. 

Direct Mode: The operand's offset is contained in the 
instruction as an 8 or 16-bit displacement element. 

Register Indirect Mode: The operand's offset is in one 
ofthe registers SI, DI, BX, or BP. 

Based ~ode: The operand's offset is the sum of an 8 or 
16-bit displacement and the contents of a base register 
(BXorBP). 

210253-007 



IAPX 286/10 

Indexed Mode: The operand's offset is the sum of an 8 
or 16-bit displacement and the contents of an index reg­
ister (SI or 01). 

Based Indexed Mode: The operand's offset is the sum 
of the contents of a base register and an index register. 

Based Indexed Mode with Displacement: The oper­
and's offset is the sum of a base register's contents, an 
index register's contents, and an 8 or 16-bit displacement. 

Data Types 
The 80286 directly supports the following data types: 

Integer: 

Ordinal: 

Pointer: 

A signed binary numeric value con­
tained in an 8-bit byte or a 16-bit word. 
All operations assume a 2's comple­
ment representation. Signed 32 and 64-
bit integers are supported using the iAPX 
286/20 Numeric Data Processor. 

An unsigned binary numeric value con­
tained in an 8-bit byte or 16-bit word. 

A 32-bit quantity, composed of a seg­
ment selector component and an offset 
component. Each component is a 16-bit 
word. 

String: A contiguous sequence of bytes or 
words. A string may contain from 1 byte 
to 64K bytes. 

ASCII: A byte representation of alphanumeric 
and control characters using the ASCII 
standard of character representation. 

BCD: A byte (unpacked) representation of the 
decimal digits 0-9. 

Packed BCD: A byte (packed) representation of two 
decimal digits 0-9 storing one digit in 
each nibble of the byte. 

Floating Point: A signed 32, 64, or SO-bit real number 
representation. (Floating point operands 
are supported using the iAPX 286/20 
Numeric Processor configuration.) 

Figure 7 graphically represents the data types sup­
ported by the iAPX 286. 

I/O Space 
The 1/0 space consists of 64K S-bit or 32K 16-bit ports. 
1/0 instructions address the 1/0 space with either an 8-
bit port address, specified in the instruction, or a 16-bit 
port address in the OX register. S-bit port addresses are 
zero extended such that A15-AS are LOW. 1/0 port ad­
dresses 00F8(H) through OOFF(H) are reserved. 

4-10 

7 • 
SIGNED rTTTTTTTl 

BYTE l.L..!....-J 
SIGN BIT j L--..J 

MAGNITUDE 

7 • 
UNSIGNED rrrrrrnl 

BYTE L.....:.-...J 
C!!L...J 
MAGNITUDE 

1514 +1 87 0 0 

s~~~g II " I ' " I " , I Ii , I 
SIGN BIT ~ L.' L..:M"i~rn;;N""IT;:;1Urn;DE"'--...J 

SIGNED 31 +3 +2 1615 +1 0 

D~~~~~ Iii iii i i III iii iii iii Iii iii iii iii I 
SIGN BITj ,I-MSB , 

MAGNITUDE 

+7 +6 +5 +4 +3 +2 +1 
SIGNED 63 48 47 32 31 1615 • 
w~~A~1I I [ I I I 

SIGN BITJ,L.L..::M::;;SB:....._--::M~AG:::cN::::IT""UD:::E,....-----' 

15 +1 0 

UNs~=g I i', iii iii' iii i i j I 
,LMSB 

MAGNITUDE 

BINARY 7 +N 0 
CODED rrrrrrnl 

DECIMAL L.....:.-...J 
(BCD) .DI:f N 

7 +N 0 

ASCII~ 
ASCII 

CHARACTER. 

7 +N 0 
PACKED Ii'TTT'TTI1 

BCD L-..L-.J 
1-.....1 
MOST 
SIGNIFICANT DIGIT 

7/15 +N 0 

STRING~ ••• 

BYTEIWORDN 

7 +1 07 0 

1'"1'11)1111"11 
BCD BCD 

DIGIT 1 DIGIT 0 

7 +1 01 0 0 

)i1ilill)'!ljli') 
ASCII ASCII 

CHARACTER, CHARACTER. 

7 +1 07 0 0 

)11111111'''11111 
1-.....1 
LEAST 

SIGNIFICANT DIGIT 

7115 +1 01115 0 0 

)"llill!,"jI") 
BYTEIWORD 1 BYTEIWORD 0 

31 +3 +2 1615 +1 0 

POIN1]:R (' i I I' i ') iii I iii I" iii i I )' I iii iii 
SELECTOR OFFSET 

79+9 +8 +7 +6 +5 +4 +3 +2 +1 

EXPONENT MAGNITUDE 

·Supported by IAPX 288120 Numertc Data Proceseor Configuration 

o • 

Figure 7_ iAPX 286 Supported Data Types 

210253-007 



inter iAPX 286/10 

Table 4 Interrupt Vector Assignments 

Interrupt Related 
Does Return Address 

Function Point to Instruction 
Number Instructions . Causing Exception? 

Divide error exception 

Single step interrupt 

NMI interrupt 

Breakpoint interrupt 

INTO detected overflow exception 

BOUND range exceeded exception 

Invalid opcode exception 
Processor extension not available exception 

Intel reserved-do not use 
Processor extension error interrupt 
Intel reserved-do not use 

User defined 

Interrupts 
An interrupt transfers execution to a new program loca­
tion. The old program address (CS:IP) and machine state 
(Flags) are saved on the stack to allow resumption 
of the. interrupted program. Interrupts fall into three 
classes: hardware initiated, INT instructions, and instruc­
tion exceptions. Hardware initiated interrupts occur 
in response to an external input and are classified 
as non-maskable or maskable. Programs may cause 
an interrupt with an INT instruction. Instruction excep­
tions occur when an unusual condition, which pre­
vents further instruction processing, is detected while 
attempting to execute an instruction. The return ad­
dress from an exception will always point at the in­
struction causing the exception and include any leading 
instruction prefixes. 

A table containing up to 256 pointers defines the proper 
interrupt service routine for each interrupt. Interrupts 0-
31, some of which are used for instruction exceptions, 
are reserved. For each interrupt, an 8-bit vector must be 
supplied to the 80286 which identifies the appropriate 
table entry. Exceptions supply the interrupt vector inter­
nally. INT instructions contain or imply the vector and 
allow access to all 256 interrupts. Maskable hardware 
initiated interrupts supply the 8-bit vector to the CPU 
during an interrupt acknowledge bus sequence. Non­
maskable hargware interrupts use a predefined inter­
nally supplied vector. 

MASKABLE INTERRUPT (INTR) 

The 80286 provides a maskable hardware interrupt re­
quest pin, INTR. Software enables this input by setting 

0 DIV,IDIV Yes 

1 All 

2 INT 2 or NMI pin 

3 INT 3 
, 

4 INTO No 

5 BOUND Yes 

6 Any undefined opcode Yes 

7 ESC or WAIT Yes 

8-15 

16 ESC or WAIT 
17-31 

32-255 

4-11 ~ 

the interrupt flag bit (IF) in the flag word. All 224 user­
defined Interrupt sources can share this input, yet they 
can retain separate interrupt handlers. An 8-bit vector 
read by the CPU during the interrupt acknowledge se­
quence (discussed in System Interface section) identi­
fies the source of the interrupt. 

Further maskable interrupts are disabled while servic­
ing an interrupt by resetting the IF but as part of the 
response to an interrupt or exception. The saved flag 
word will reflect the enable status of the processor prior 
to the interrupt. Until the flag word is restored to the flag 
register, the interrupt flag will be zero unless specifically 
set. The interrupt return instruction includes restoring 
the flag word, thereby restoring the original status of IF. 

NON-MASKABLE INTERRUPT REQUEST (NMI) 

A non-maskable interrupt input (NMI) is also provided. 
NMI has higher priority than INTR. A typical use of NMI 
would be to activate a power failure routine. The activa­
tion of this input causes an interrupt with an internally 
supplied vector value of 2. No external interrupt ac­
knowledge sequence is performed. 

While executing the NMI servicing procedure, the 80286 
will service neither further NMI requests, INTR re­
quests, nor the processor extension segment overrun 
interrupt until an interrupt return (IRET) instruction is ex­
ecuted or the CPU is reset. If NMI occurs while currently 
servicing an NMI, its presence will be saved for servic­
ing after executing the first IRET instruction. IF is cleared 
at the beginning of an NMI interrupt to inhibit INTR 
interrupts. 

210253-007 



iAPX 286/10 

SINGLE STEP INTERRUPT 

The 80286 has an internal interrupt tbat allows pro­
grams to execute one instruction at a time. It is called the 
single step interrupt and is controlled by the single step 
flag bit (TF) in the flag word. Once this bit is set, an inter­
nal single step interrupt will occur after the next instruc­
tion has been executed. The interrupt clears the TF bit 
and uses an internally supplied vector of 1. The IRET 
instruction is used to set the TF bit and transfer control 
to the next instruction to be single 'stepped. 

Interrupt Priorities 
When simultaneous interrupt requests occur, they are 
processed in a fixed order as shown in Table 5. Interrupt 
processing involves saving the flags, return address, and 
setting CS:IP to pOint at the first instruction of the inter­
rupt handler. If other interrupts remain enabled they are 
processed before the first instruction of the current in­
terrupt handler is executed. The last interrupt processed 
is therefore the first one serviced. 

Table 5 Interrupt Processing Order 

Order Interrupt 

1 Instruction exception 

2 Single step 

3 NMI 

4 Processor extension segment overrun 

5 INTR 

6 INT instruction 

Initialization and Processor Reset 
Processor initialization or start up is accomplished by 
driving the RESET input pin HIGH. RESET forces the 
80286 to terminate all execution and local bus activity. 
No instruction or bus activity will occur as long as RE­
SET is active. After RESET becomes inactive and an 
internal processing interval elapses, the 80286 begins 
execution in real address mode with the instruction at 
physical location FFFFFO(H). RESET also sets some 
registers to predefined values as shown as shown in 
Table 6. 

Table 6. 80286 Initial Register State after RESET 

Flag word 0002(H) 
Machine Status Word FFFO(H) 
Instruction pOinter FFFO(H) 
Code segment FOOO(H) 
Data segment OOOO(H) 
Extra segment OOOO(H) 
Stack segment OOOO(H) 

Machine Status Word Description 
The machine status word (MSW) records when a task 
switch takes place and controls the operating mode of 
the 80286. It is a 16-bit register of which the lower four 
bits are used. One bit places the CPU into protected 
mode, while the other three bits, as shown in Table 7, , 
control the processor extension interface. After RESET, 
this register contains FFFO(H) which places the 80286 
in iAPX 86 real address mode. 

Table 7. MSW Bit Functions 

Bit Name Function 
Position 

0 PE .Erotected mode ~nable places the 
80286 into protected mode and can 
not be cleared except by RESET. 

1 MP ~onitor Qrocessor extension al-
lows WAIT instructions to cause a 
processor extension not present 
exception (number 7). 

2 EM Emulate processor extension 
Causes a processor extension not 
present exception (number 7) on 
ESC instructions to allow emulat-
ing a processor extension. 

3 TS Task switched indicates the next 
lristruction using a processor ex-
tension will cause exception 7, al-
lowing software to test whether the 
current processor extension con-
tlilxt belongs to the current task. 

The LMSW and SMSW instructions can load and store 
the MSW in real address mode. The recommended use 
of TS, EM, and MP is shown in Table 8. 

Table 8. Recommended MSW Encodings For Processor Extension Control 

Instructions 
TS MP EM Recommended Use Causing 

EXc8j)tion 7 

0 0 0 Initial encoding after RESET. iAPX 286 operation is identical to None 
iAPX 86,88. 

0 0 1 No processor extension is available. Software will emulate its function. ESC 

1 0 1 No processor extension is available. Software will emulate its function. The current ESC 
processor extension context may belong to another task. 

0 1 0 A processor extension exists. None 

1 1 0 A processor extension exists. The current processor extension context may belong to ESC or 
another ta-sk: Ihe -Exception 7· 6n WAIT 'allows software to test for an error pending WAIT 
from a previous processor exfension operation, 

4-12 210253-007 



iAPX 286/10 

Halt 
The HLT instruction stops program execution and pre­
vents the CPU from using the local bus until restarted. 
Either NMI, INTR with IF = 1, or RESET will force the 
80286 out of halt. If interrupted, the saved CS:IP will 
point to the next instruction after the HLT. 

iAPX 86 REAL ADDRESS MODE 
The 80286 executes a fully upward-compatible superset 
of the 8086 instruction set in real address mode. In real 
address mode the 80286 is object code compatible with 
8086 and 8088 software. The real address mode archi­
tecture (registers and addressing modes) is exactly as 
described in the iAPX 286/10 Sase Architecture section 
of this Functional Description. 

Memory Size 
Physical memory is a contiguous array of up to 
1,048,576 bytes (one megabyte) addressed by pins 
Ao through A19 and SHE. A20 through A23 may be 
ignored. 

Memory Addressing 
In real address mode physical memory is a contiguous 
array of up to 1,048,576 bytres (one megabyte) addressed 
by pins Ao through A19 and BRE. A20 through A23 may be 
ignored. 

The selector portion of a pointer is interpreted as the 
upper 16 bits of a 20-bit segment address. The lower 
four bits of the 20-bit segment address are always zero. 
Segment addresses, therefore, begin on multiples of 16 
bytes. See Figure 8 for a graphic representation of ad­
dress formation. 

All segments in real address mode are 64K bytes in size 
and may be read, written, or executed. An exception or 
interrupt can occur if data operands or instructions at­
tempt to wrap around the end of a segment (e.g. a word 
with its low order byte at offset FFFF(H) and its high 
order byte at offset OOOO(H)). If, in real address mode, 
the information contained in a segment does not use the 
full 64K bytes, the unused end of the segment may be 
overlayed by another segment to reduce physical mem­
.ory requirements. 

Reserved Memory Locations 
The 80286 reserves two fixed areas of memory in real 
address mode (see Figure 9); system initialization area 
and interrupt table area. Locations from addresses 
FFFFO(H) thorugh FFFFF(H) are reserved for system 
initialization. Initial execution begins at location FFFFO(H). 
Locations OOOOO(H) through 003FF(H) are reserved for 
interrupt vectors. 

4-13 

15 0 

10000 I OFFSET I OFFSET ... _-'" ______ .....a ADDRESS 

19 

1---1"--.... 

20-BIT PHYSICAL 
MEMORY ADDRESS 

SEGMENT 
ADDRESS 

Figure 8. iAPX 86 Real Address Mode Address 
Calculation 

~~ 

~~ 

RESET BOOTSTRAP 
PROGRAM JUMP 

· · · 
INTERRUPT POINTER 

FOR VECTOR 255 

· · · 
INTERRUPT POINTER 

FOR VECTOR 1 

INTERRUPT POINTER 
FOR VECTOR 0 

FFFFFH 

FFFFOH 

~~ 
3FFH 

3FCH 

~~ 
7H 

4H 
3H 

OH 

INITIAL CS:IP VALUE IS FOOO:FFFO. 

Figure 9. iAPX 86 Real Address Mode Initially 
Reserved Memory Locations 

210253-007 



IAPX 286/10 

Table 9 Real Address Mode Addressing Interrupts 

Function Interrupt Related Return Address 
Number Instructions Before Instruction? 

Interrupt table limit too small exception 8 INT vector is not within table limit Yes 
Processor extension segment overrun 9 ESC with memory operand extend- No 

interrupt ing beyond offset FFFF(H) 
Segment overrun exception 13 Word memory reference with offset Yes 

= FFFF(H) or an attemptto exe-
cute past the end of a segment 

Interrupts 
Table 9 shows the interrupt vectors reserved for excep­
tions and interrupts which indicate an addressing error. 
The exceptions leave the CPU in the state existing be­
fore attempting to execute the failing instruction (except 
for PUSH, POP, PUSHA, or paPA). Refer to the next 
section on protected mode initialization for a discussion 
on exception 8. 

Protected M9de Initialization 
To prepare the 80286 for protected mode, the LlDT in­
structionis used to load the 24-bit interrupt table base 
and 16-bit limit for the protected mode interrupt table. 
This instruction can also set a base and limit for the in­
terrupt vector table in real address mode. After reset, 
the interrupt table base is initialized to OOOOOO(H) and 
its size set to 03FF(H). These values are compatible 
with iAPX 86, 88 software. LlDT should only be exe­
cuted in preparation for protected mode. 

Shutdown 
Shutdown occurs when a severe error is detected that 
prevents further instruction processing by the CPU. 
Shutdown and halt are externally signalled via a halt bus 
operation. They can be distinguished by A1 HIGH for halt 
and A1 LOW for shutdown. In real address mode, shut­
down can occur under two conditions: 

• Exceptions 8 or 13 happen and the lOT limit does not 
include the interrupt vector. 

• A CALL INT or PUSH instruction attempts to wrap 
around the stack segment when SP is not even. 

An NMI input can bring the CPU out of shutdown if the 
lOT limit is at least OOOF(H) andSP is greater than 
0005(H), otherwise shutdown can only be exited via the 
RESET input. 

4-14 

PROTECTED VIRTUAL ADDRESS MODE 
The 80286 executes a fully upward-compatible superset 
of the 8086 instruction set in protected virtual address 
mode (protected mode). Protected mode also provides 
memory management and protection mechanisms and 
associated instructions. 

The 80286 enters protected virtual address mode from 
real address mode by setting the PE (Protection En­
able) bit of the machine status word with the Load Ma­
chine Status Word (LMSW) instruction. Protected mode 
offers extended physical and virtual memory address 
space, memory protection mechanisms, and new oper­
ations to support operating systems and virtual memory. 

All registers, instructions, and addressing modes de­
scribed in the iAPX 286/10 Base Architecture section of 
this Functional Description remain the same. Programs 
for the iAPX 86, 88, 186, and real address mode 80286 
can be run in protected mode; however, embedded con­
stants for segment selectors are different. 

Memory Size 
The protected mode 80286 provides a 1 gigabyte virtual 
address space per task mapped into a 16 megabyte 
physical address space defined by the address pins A23-
Ao and SHE. The virtual address space may be larger 
than the physical address space since any use of an 
address that does not map to a physical memory loca­
tion will cause a restartable exception. 

Memory AddressiAg 
As in real address mode, protected mode uses 32-bit 
pointers, conSisting of 16-bit selector and offset com­
ponents. The selector, however, specifies an index into 
a memory resident table rather than the upper 16-bits of 
a real memory address. The 24-bit base address of the 

210253-007 



iAPX 286/10 

desired segment is obtained from the tables in memory. 
The 16-bit offset is added to the segment base address 
to form the physical address as shown in Figure 10. The 
tables are automatically referenced by the CPU when­
ever a segment register is loaded with a selector. All 
iAPX 286 instructions which load a segment register will 
reference the memory based tables without additional 
software. The memory based tables contain 8 byte val­
ues called descriptors. 

DESCRIPTORS 

Descriptors define the use of memory. Special types of 
descriptors also define new functions for transfer of con­
trol and task switching. The 80286 has segment de­
scriptors for code, stack and data segments, and system 
control descriptors for special system data segments and 
control transfer operations. Descriptor accesses are 
performed as locked bus operations to assure descrip­
tor integrity in multi-processor systems. 

L 

CPU 

MEMORY 
OPERAND 

DESCRIPTOR TABLE 

CODE AND DATA SEGMENT DESCRIPTORS (S = 1) 

Besides segment base addresses, code and data de­
scriptors contain other segment attributes including 
segment size (1 to 64K bytes), access rights (read only, 
read/write, execute only, and execute/read). and pres­
ence in memory (for virtual memory systems) (See Fig­
ure 11). Any segment usage violating a segment attribute 
indicated by the segment descriptor will prevent the 
memory cycle and cause an exception or interrupt. 

Code or Data Segment Descriptor 

ACCESS 
AIGHTSBYTE 

+7 

+5 

+3 

07 

INTEL RESERVED' 

~ DP~sl TYPE lj BASE23_16 

BASE15_0 

+6 

+4 

+2 SEGMENT I ~~~~~I~OR 
~----~---+~~ +1 lIM1Tl5-0 

15 87 

Figure 10. Protected Mode Memory Addressing -Must be set to 0 for compatablllty with IAPX 386. 

Access Rights Byte Definition 

Bit 
Name Function 

Position 

7 Present (P) P = 1 Segment is mapped into physical memory. 
P=O No mapping to physical memory exists, base and limit are not used. 

6-5 Descriptor Privilege Segment privilege attribute used in privilege tests. 
Level (DPL) 

4 Segment Descrip- S = 1 Code or Data (includes stacks) segment descriptor 
tor (S) S-O System Segment Descriptor or Gate Descriptor 

3 Executable (E) E=O Data segment descriptor type is: J" 2 Expansion Direc- ED = 0 Expand up segment, offsets must be ::s limit. Data 
tion (ED) ED = 1 Expand down segment, offsets must be > limit. Segment 

(5 = 1, 1 Writeable (W) W = 0 Data segment may not be written into. 
E = 0) W= 1 Data segment may be written into. 

3 Executable (E) E = 1 Cod, Sogmoo' ""'"""e ,po ;" J ' 
2 Conforming (C) C = 1 Code segment may only be executed when CPL 2:: DPL ~Ode t 

and CPL remains unchanged. egmen 

R=O (5 - 1 1 Readable (R) Code segment may not be read. E =- 1)' 
R = 1 Code segment may be read. • . 

0 Accessed (A) A=O Segment has not been accessed. 
A = 1 Segment selector has been loaded into segment register or used 

by selector test instructions. 

Figure 11. Code and Data Seg'T'ent Descriptor Formats 

4-15 210253-007 



iAPX 286/10 

Code and data (including stack data) are stored in two 
types of segments: code segments and data segments. 
Both types are identified and defined by segment descrip­
tors (S = 1). Code segments are identified by the execu­
table (E) bit setto 1 in the descriptor access rights byte. The 
access rights byte of both code and data segment descrip­
tor types have three fields in common: present (P) bit, 
Descriptor Privilege Level (DPL), and accessed (A) bit. 
If P = 0, any attempted use of this segment will cause 
a not-present exception. DPL specifies the privilege level 
of the segment descriptor. DPL controls when the descrip­
tor may be used by a task (refer to privilege discussion 
below). The A bit shows whether the segment has been 
previously accessed for usage profiling, a necessity for 
virtual memory systems. The CPU will always set this bit 
when accessing the descriptor. 

Data segments (S = 1, E = 0) may be either read-only or 
read-write as controlled by the W bit of the access rights 
byte. Read-only (W = 0) data segments may not be writ­
ten into. Data'segments may grow in two directions, as 
determined by the Expansion Direction (ED) bit: up­
wards (ED = 0) for data segments, and downwards 
(ED = 1) for a segment containing a stack, The limit field 
for a data segment descriptor is interpreted differently 
depending on the ED bit (see Figure 11), . 

A code segment (S = 1, E = 1) may be execute-only 
or execute/read as determined by the Readable (R) 
bit. Code segments may never be written into and 
execute-only code segments (R=O) may not be read. 
A code segment may also have an attribute called 
conforming (C). A conforming code segment may be 
shared by programs that execute at different privi­
lege levels. The DPL of a conforming code segment 
defines the range of privilege levels at which the 
segment may be executed (refer to privilege discus­
sion below). The limit field identifies the last byte of 
a code segment. " 

SYSTEM SEGMENT DESCRIPTORS (S = 0, TYPE = 1-3) 

In addition to code and data segment descriptors, the pro­
tected mode 80286 defines System Segment Descriptors, 
These descriptors define special system data segments 
which contain a table of descriptors (Local Descriptor 
Table Descriptor) or segments which contain the execu­
tion state of a task (Task State Segment Descriptor). 

Figure 12 gives the formats for the special system data 
segment descriptors. The descriptors contain a 24-bit 
base address of the segment and a 16-bit limit. The 
access byte defines the type of descriptor, its state and 
privilege level. The descriptor contents are valid and the 
segment is in physical memory if P = 1. If P = 0, the 
segment is not valid. The DPL field is only used in Task 
State S,egment descriptors and indicates the privilege 
level at which the descriptor may be used (see Privilege). 
Since the Local Descriptor Table descriptor may only be 
used by a special privileged instruction, the DPL field is 
not used. Bit 4 of the access byte is 0 to indicate that it 

4-16 

System Segment Descriptor 

o 7 

+7 INTEL RESERVED' +6 

+5 +p+1 TYtE, I BASE23-16 +4 

+3 BASE15-0 +2 

+1 L1M1T15-0 

15 8 7 

• MUlt be •• t to 0 for compatablllty with lAPX 386. 

System Segment Descriptor Fields 

Name Value Description 

TYPE 1 !\vailable Task State Segment (TSS) 
2 Local Descriptor Table 
3 §.i,!§y Task State Segment (TSS) 

P 0 Descriptor contents are not valid 
1 Descriptor contents are valid 

DPL 0-3 Descriptor Privilege Level 

BASE 24-bit Base Address of special system data 
number segment in real memory 

LIMIT 16-bit Offset of last byte in segment 
number 

Figure 12. System Segment Descriptor Format 

is a system cClntrol descriptor. The type field specifies 
the descriptor type as indicated in Figure 12. 

GATE DESCRIPTORS (S = 0, TYPE = 4-7) 
Gates are used to control access to entry points within 
the target code segment. The gate descriptors 'are call 
gates, task ;gates, interrupt gates and !@Q gates. Gates 
provide a level of indirection between the source and 
destination of the control transfer, This indirection allows 
the CPU to automatically perform protection checks and 
control entry point of the destination. Call gates are used 
to change privilege levels (see Privilege), task gates are 
used to perform a task switch, and interrUpt and trap 
gates are used to specify interrupt service routines. The 
interrupt gate disables interrupts (resets IF) while the 
trap gate does not. 

Figure 13 shows the format of the gate descriptors. The 
descriptor contains a destination pointer that points to 
the descriptor of the target segment and the entry point 
offset. The destination selector in an interrupt gate, trap 
gate, and call gate must refer to a code segment de­
scriptor. These gate descriptors contain the entry point 
to prevent a program from constructing and using an 
illegal entry point. Task gates may only refer to a task 
state segment. Since task gates invoke a task switch, 
the destination offset is not used in the task gate. 

Exception 13 is generated when the gate is used if a 
destination selector does not refer to the correct de-

210253-007 



iAPX 286/10 

Gate Descriptor 

.7 

+7 INTEL RESERVED' +6 

+5 +PLIOI TYPE Ix x xl ~g:r .... +4 

+3 DESTINAnON SELECTOR,s-. Ix x +2 

+1 DESTINATION OFFSET '5-0 

15 87 

*Mult ba HI to 0 tor compltlbility with IAPX 388. (X I. don't care) 

Gate Descriptor Fields 
Name value Description 

4 -Call Gate 

TYPE 5 -Task Gate 
6 -Interrupt Gate 
7 -Trap Gate 

P 0 -Descriptor Contents are not 
valid 

1 -Descriptor Contents are 
valid 

DPL 0-3 Descriptor Privilege Level 
WORD Number of words to copy 
COUNT 0-31 from callers stack to called 

procedures stack. Only used 
with call gate. 
Selector to the target code 

DESTINATION 16-bit segment (Call, Interrupt or 

SELECTOR selector Trap Gate) 
Selector to the target task 
state segment (Task Gate) 

DESTINATION 16-bit Entry pOint within the target 
OFFSET offset code segment 

Figure 13. Gate Descriptor Format 

scriptor type. The word count field is used in the call gate 
descriptor to indicate the number of parameters (0-31 
words) to be automatically copied from the caller's stack 
to the stack of the called routine when a control transfer 
changes privilege levels. The word count field is not used 
by any other gate descriptor. 

The access byte format is the same for all gate descrip­
tors. P = 1 indicates that the gate contents are valid. P 
= 0 indicates the contents are not valid and causes ex-

ception 11 if referenced. DPL is the descriptor privilege 
level and specifies when this descriptor may be used by 
a task (refer to privilege discussion below). Bit 4 must 
equal 0 to indicate a system control descriptor. The type 
field specifies the descriptor type as indicated in Figure 
13. 

SEGMENT DESCRIPTOR CACHE REGISTERS 

A segment descriptor cache register is assigned to each 
of the four segment registers (es. 55, OS, ES). Segment 
descriptors are automatically loaded (cached) into a seg­
ment descriptor cache register (Figure 14) whenever the 
associated segment register is loaded with a selector. 
Only segment descriptors may be loaded into segment 
descriptor cache registers. Once loaded, all references 
to that segment of memory use the cached descriptor 
information instead of reaccessing the descriptor. The 
descriptor cache registers are not visible to programs. 
No instructions exist to store their contents. They only 
change when a segment register is loaded. 

SELECTOR FIELDS 

A protected mode selector has three fields: descriptor 
entry index, local or global descriptor table indicator (TI), 
and selector privilege (RPL) as shown in Figure 15. These 
fields select one'of two memory based tables of descrip­
tors, select the appropriate table entry and allow high­
speed testing of the selector's privilege attribute (refer 
to privilege discussion below). 

SELECTOR 

II INDEX 
! ! , , ! 

15 3 2 1 0 

BITS NAME FUNCTION 

1-0 REQUESTED INDICATES SELECTOR PRIVILEGE 
PRIVILEGE LEVEL DESIRED 
LEVEL 
(RPL) 

2 TABLE TI = ° USE GLOBAL DESCRIPTOR TABLE 
INDICATOR (GDT) 
(TI) TI = 1 USE LOCAL DESCRIPTOR TABLE 

(LDT) 

15-3 INDEX SELECT DESCRIPTOR ENTRY IN TABLE 

Figure 15. SeleCtor Fields 

PROGRAM VISIBLE r---------PRoGR~~~~;---------, 

I ACCess _ f 
I RIGHTS SEGMENT PHYSICAL BASE ADDRESS SEGMENT SIZE I SEGMENT SELECTORS 

~~ill I : 
15 0 147 4039 1615 

SEGMENT REGISTERS I SEGMENT DESCRIPTOR CACHE REGISTERS I 
(LOADED BY PROGRAM) L ______ (~~~~L:~~~ ~ C~ ________ j 

Figure 14. Descriptor Cache Registers 

4-17 210253-007 



iAPX 286/10 

/ LOCAL AND GLOBAL DESCRIPTOR TABLES 

Two tables of descriptors, called descriptor tables, con­
tain all descriptors accessible by a task at any given time. 
A descriptor table is a linear array of up to 8192 descrip­
tors. The upper 13 bits of the selector value are an index 
into a descriptor table, Each table has a 24-bit base reg­
ister to locate the descriptor table in physical memory 
and a 16-bit limit register that confine descriptor access 
to the defined limits of the table as shown in Figure 16. A 
restartable exception (13) will occur if an attempt is made 
to reference a descriptor outside the table limits. 

One table, called the Global Descriptor Table (GOT), 
contains descriptors available to all tasks. The other ta­
ble, called the Local Descriptor Table (LOT), contains 
descriptors that can be private to a task. Each task may 
have its own private LOT. The GOT may contain all de­
scriptor types except interrupt and trap descriptors. The 
LOT may contain only segment, task gate, and call gate 
descriptors. A segment cannot be accessed by a ta~k if 
its segment descriptor does not exist in either descriptor 
table at the time of access. 

'V MEMORY 'V 
CPU 

~~~ 
l CURRE~T LOT

Figure 16. Local and Global Descriptor
Table Definition

The LGDT and LLDT instructions load the base and limit
of the global and local descriptor tables. LGDT and LLDT
are privileged, i.e. they may only be executed by trusted
programs operating at level O. The LGDT instruction loads
a six byte field containing the 16-bit table limit and 24-bit
physical base address of the Global Descriptor Table as
shown in Figure 17. The LDT instruction loads a selector
which refers to a Local Descriptor Table descriptor con­
taining the base address and limit for an LDT, as shown
in Figure 12.

07

+5 INTEL RESERVED' 1 BASE23_16 +4

+3 BASE15_0 +2

+1 LIMITl5-0

15 8 7

.. Must be set to 0 for compatability with IAPX 386.

Figure 17. Global Descriptor Table and Interrupt
Descriptor Table Data Type

INTERRUPT DESCRIPTOR TABLE

The protected mode 80286 has a third descriptor table,
called the Interrupt Descriptor Table (IDT) (see Figure
18), used to define up to 256 interrupts. It may contain
only task gates, interrupt gates and trap gates. The IDT
(Interrupt Descriptor Table) has a 24-bit physical base
and 16-bit limit register in the CPU. The privileged LlDT
instruction loads these registers with a six byte value of
identical form to that of the LGDT instruction (see Figure
17 and Protected Mode Initialization).

,~ u
15 0

~
I lOT BASE

23 0

'" MEMORY 'V r

GATE FOR
INTERRUPT #n

GATE FOR
INTERRUPT #n·1

· · · GATE FOR
INTERRUPT #1

GATE FOR
INTERRUPT #0

~ 'V

INTERRUPT
DESCRIPTOR
TABLE
(lOT)

Figure 18. Interrupt Descriptor Table Definition

References to lOT entries are made via INT instruc­
tions, external interrupt vectors, or exceptions. The lOT
must be at least 256 bytes in size to allocate space for
all reserved interrupts.

Privilege
The 80286 has a four-level hierarchical privilege system
which controls the use of privileged instructions and ac­
cess to descriptors (and their associated segments) within
a task. Four-level privilege, as shown in Figure 19, is an
extension of the user/supervisor mode commonly found
in minicomputers. The privilege levels are numbered 0
through 3. Level 0 is the most privileged level. Privilege

4-18 210253-007

iAPX 286/10

CPU
ENFORCED
SOFTWARE
INTERFACES

HIGH SPEED
OPERATING
SYSTEM
INTERFACE

NOTE: PL BECOMES NUMERICALLY LOWER AS PRIVILEGE LEVEL
INCREASES

Figure 19. Hierarchical Privilege Levels

levels provide protection within a task. (Tasks are isolated
by providing private LDT's for each task.) Operating
system routines, interrupt handlers, and other system soft­
ware can be included and protected within the virtual
address space of each task using the four levels of privi­
lege. Each task in the system has a separate stack for
each of its privilege levels.

Tasks, descriptors, and selectors have a privilege level
attribute that determines whether the descriptor may be
used. Task privilege effects the use of instructions and
descriptors. Descriptor and selector privilege only effect
access to the descriptor.

TASK PRIVILEGE

A task always executes at one of the four privilege
levels. The task privilege level at any specific instant
is called the Current Privilege Level (CPL) and is
defined by the lower two bits of the CS register. CPL
cannot change during execution in a single code seg­
ment. A task's CPL may only be changed by control
transfers through gate descriptors to a new code
segment (See Control Transfer). Tasks begin executing
at the CPL value specified by the code segment selec­
tor within TSS when the task is initiated via a task
switch operation (See Figure 20). A task executing at
Level 0 can access all data segments defined in the
GDT and the task's LDT and is considered the most
trusted level. A task executing a Level 3 has the most
restricted access to data and is considered the least
trusted level.

DESCRIPTOR PRIVILEGE
Descriptor privilege is specified by the Descriptor Privi-

lege Level (DPL) field of the descriptor access byte. DPL
specifies the least trusted task privilege level (CPL) at
which a task may access the descriptor. Descriptors with
DPt = 0 are the most protected. Only tasks executing
at privilege level 0 (CPL = 0) may access them. De­
scriptors with DPL = 3 are the least protected (I.e. have
the least restricted access) since tasks can access them
when CPL = 0,1,2, or 3. This rule applies to all descrip­
tors, except LDT descriptors.

SELECTOR PRIVILEGE
Selector privilege is specified by the Aequested Privi­
lege Level (APL) field in the least significant two bits of a
selector. Selector APL may establish a less trusted priv­
ilege level than the current privilege level for the use of a
selector. This level is called the task's effective privilege
level (EPL). APL can only reduce the scope of a task's
access to data with this selector. A task's effective privi­
lege is the numeric maximum of APL and CPL. A selec­
tor with APL = 0 imposes no additional restriction on its
use while a selE.lotor with APL = 3 can only refer to seg­
ments at privilege Level 3 regardless of the task's CPL.
APL is generally used to verify that pointer parameters
passed to a more trusted procedure are not allowed to
use data at a more privileged level than the caller (refer
to pointer testing instructions).

Descriptor Access and Privilege Validation
Determining the ability of a task to access a segment
involves the type of segment to be accessed, the in­
struction used, the type of descriptor used and CPL,
APL, and DPL. The two basic types of segment ac­
cesses are control transfer (selectors loaded into CS)
and data (selectors loaded into DS, ES or SS).

DATA SEGMENT ACCESS

Instructions that load selectors into DS and ES must
refer to a data segment descriptor or readable code seg­
ment descriptor. The CPL of the task and the APL of the
selector must be the same as or more privileged (nu­
merically equal to or lower than) than the descriptor DPL.
In general, a task can only access data segments at the
same or less privileged levels than the CPL or APL

. (whichever is numerically higher) to prevent a program
from accessing data it cannot be trusted to use.

An exception to the rule is a readable conforming code
segment. This type of code segment can be read from
any privilege level.

If the privilege checks fail (e.g. DPL is numerically less
than the maximum of CPL and APL) or an incorrect type
of descriptor is referenced (e.g. gate descriptor or exe­
cute only code segment) exception 13 occurs. If the seg­
ment is not present, exception 11 is generated.

4-19 21025~-007

iAPX 286/10

Instructions that load selectors into SS must referlo data
segment descriptors for writable data segments. The
descriptor privilege (DPL) and RPL must equal CPL. All
other descriptor types or a privilege level violation will
cause exception 13. A not present fault causes excep­
tion 12.

CONTROL TRANSFER

Four types of control transfer can occur when a selector
i) loaded into CS by a control transfer operation (see
Table 10). Each transfer type can only occur if the oper­
ation which loaded the selector references the correct
descriptor type. Any violation of these descriptor usage
Plies (e.g. JMPthrough a call gate or RETtoa Task State
~ egment) will c~use exception 13.

1 he ability to reference a descriptor for control transfer
if, also subject to rules of privilege. A CALL or JUMP
instruction may only reference a code segment descrip­
tor with DPL equal to the task CPL or a conforming seg­
ment with DPL of equal or greater privilege than CPL.
The RPL of the selector used to reference the code de­
scriptor must have as much privilege as CPL.

RET and IRET instructions may only reference code
segment descriptors with descriptor privilege equal to or
less privileged than the task CPL. The selector loaded
into CS is the return address from the stack. After the
return, the selector RPL is the task's new CPL. If CPL
changes, the old stack pointer is popped after the return
address.

When a JMP or CALL references a Task State Segment
descriptor, the descriptor DPL must be the same or less
privileged than the task's CPL. Reference to a valid Task

State Segment descriptor causes a task switch (see Task
Switch Operation). Reference to a Task State Segment
descriptor at a more privileged level than the task's CPL
generates exception 13.

When an instruction or interrupt references a gate de­
scriptor, the gate DPL must have the same or less privi­
lege than the task CPL. If DPL is at a more privileged
level than CPL, exception 13 occurs. lithe destination
selector contained in the gate references a code seg­
ment descriptor, the code segment descriptor DPL must
be the same or more privileged than the task CPL. If not,
Exception 13is issued. After the control transfer, the
code segment descriptors DPL is the task's new CPL. If
the destination selector in the gate references a task
state segment, a task switch is automatically performed
(see Task Swit?h Operation).

The privilege rules on control transfer require:

-JMP or CALL direct to a code segment (code seg­
ment descriptor) can only be to a conforming segment
with DPL of equal or greater privilege than CPL or a
non-conforming segment at the same privilege level.

-interrupts within the task or calls that may change
privilege levels, can only transfer control through a
gate at the same or a less privileged level than CPL to
a code segment at the same or more privileged level
than CPL.

-return instructions that don't switch tasks can only re­
turn control to a code segment at the same or less
privileged level.

-task switch can be performed by a call, jump or inter­
rupt which references either a task gate or task state
segment at the same or less privileged level.

Table 10. Descriptor Types Used for Control Transfer

Control Transfer Types

Intersegment within the same privilege level

Intersegment to the same or higher privilege level Interrupt
within task may change CPL.

Intersegment to a lower privilege level (changes task CPL)

Task Switch

,
NT (Nested Task bit of flag word) = 0

"NT (Nested Task bit of flag word) = 1

Operation Types

JMP, CALL, RET, IRET'

CALL

Interrupt Instruction,
Exception, External
Interrupt

RET,IRET'

CALL,JMP

CALL,JMP

IRET"
Interrupt Instruction,
Exception, External
Interrupt

4-20

Descriptor Descriptor
Referenced Table

Code Segment GOT/LOT

Call Gate GOT/LOT

Trap or lOT
Interrupt
Gate

Code Segment GOT/LOT

Task State GOT
Segment

Task Gate GOT/LOT

Task Gate lOT

210253-007

iAPX 286/10

PRIVILEGE LEVEL CHANGES

Any control transfer that changes CPL within the task,
causes a change of stacks as part of the operation. Initial
values of SS:SP for privilege levels 0, 1, and 2 are kept
in the task state segment (refer to Task Switch Opera­
tion). During a JMP or CALL control transfer, the new
stack pointer is loaded into the SS and SP registers and
the previous stack pointer is pushed onto the new stack.

When returning to the original privilege level, its stack is
restored as part of the RET or IRET instruction opera­
tion. For subroutine calls that pass parameters on the
stack and cross privilege levels, a fixed number of words,
as specified in the gate, are copied from the previous
stack to the current stack. The inter-segment RET in­
struction with a stack adjustment value will correctly re­
store the previous stack pointer upon return.

Protection
The 80286 includes mechanisms to protect critical in­
structions that affect the CPU execution state (e.g. HLT)
and code or data segments from improper usage. These
protection mechanisms are grouped into three forms:

Restricted usage of segments (e.g. no write allowed
to read-only data segments). The only segments
available for use are defined by descriptors in the Lo­
cal Descriptor Table (LOT) and Global Descriptor Ta­
ble(GDT).

Restricted access to segments via the rules of privi­
lege and descriptor usage.

Privileged instructions or operations that may only be
executed at certain privilege levels as determined by
the CPL and I/O Privilege Level (IOPL). The 10PL is
defined by bits 14 and 13 of the flag word.

These checks are performed for all instructions and can
be split into three categories: segment load checks (Ta­
ble 11), operand reference checks (Table 12). and privi­
leged instruction checks (Table 13). Any violation of the
rules shown will result in an exception. A not-present
exception related to the stack segment causes excep­
tion 12.

The IRET and POPF instructions do not perform some of
their defined functions if CPL is not of sufficient privilege
(numerically small enough). Precisely these are:

• The IF bit is not changed if CPL > 10PL.

• The IOPL field of the flag word is not changed if CPL > O.

No exceptions or other indication are given when these
conditions occur.

4-21

Table 11
Segment Register Load Checks

Error Description Exception
Number

Descriptor table limit exceeded 13

Segment descriptor not-present I1or12

PriVilege rules violated 13

Invalid descriptor/segment type seg-
ment register load:

-Read only data segment load to
SS

-Special control descriptor load to
DS, ES,SS 13

-Execute only segment load to
DS, ES,SS

-Data pegment load to CS
-Read/Execute code segment

10adtoSS

Table 12 Operand Reference Checks

Error Description Exception
Number

Write Into code segment 13
Read from execute-only code
segment 13
Write to read-only data segment 13
Segment limit exceeded' 120r13

Note 1: Carry out In offset calculations IS Ignored.

Table 13. Privileged Instruction Checks

Error Description
Exception
Number

CPL + 0 when executing the following
instructions: 13

LlDT, LLDT, LGDT, LTR, LMSW,
CTS,HLT

CPL> IOPL when executing the fol-
lowing Instructions: " 13

INS, IN, OUTS, OUT, STI, CLI,
LOCK

EXCEPTIONS

The 80286 detects several types of exceptions and inter­
rupts, in protected mode (see Table 14). Most are restart­
able after the exceptional condition is removed. Interrupt
handlers for most exceptions can read an error code,
pushed on the stack after the return address, that identi­
fies the selector involved (O if none). The return address
normally pOints to the failing instruction, including all
leading prefixes. For a processor extension segment over­
run exception, the return address will not point at the
ESC instruction that caused the exception; however, the
processor extension registers may contain the address
of the failing instruction.

210253-007

iAPX 286/10

Table 14 Protected Mode Exceptions

Return Always Error
Interrupt

Function
Address Restart- Code Vector At Failing able? on Stack?

Instruction?
8 Double exception detected Yes N02 Yes
9 Processor extension segment overrun No N02 No

10 Invalid task state segment Yes Yes Yes
11 Segment not present Yes Yes Yes
12 Stack segment overrun or stack segment not present Yes Yes1 Yes
13 General protection Yes N02 Yes

NOTE 1: When a PUSHA or POPA instruction attempts to wrap around the stack segment, the machine state after the
exception will not be restartable because stack segment wrap around is not permitted. This condition is identified
by the value of the saved SP being eigher OOOO(H), 0001 (H), FFFE(H), or FFFF(H).

NOTE 2: These exceptions indicate a violation to privilege rules or usage rules has occurred. Restart is generally not
attempted under those conditions.

" These exceptions indicate a violation to privilege rules
or usage rules has occurred. Restart is generally not
attempted under those conditions.

All these checks are performed for all instructions and
can be split into three categories: segment load checks
(Table 11), operand reference cheCks (Table 12), and
privileged instruction checks (Table 13). Any violation
of the rules shown will result in an exception. A
not-present exception causes exception 11 0(12 and
is restartable.

Special Operations
TASK SWITCH OPERATION

The 80286 provides a built-in task switch operation which
saves the entire 80286 execution state (registers, ad­
dress space, and a link to the previous task), loads a
new execution state, and commences execution in the
new task. Like gates, the task switch operation is in­
voked by executing an inter-segment JMP or CALL in­
struction which refers to a Task State Segment (TSS) or
task gate descriptor in the GOT or LOT. An INT n instruc­
tion, exception, or external interrupt may also invoke the
task switch operation by selecting a task gate descriptor
in the associated lOT descriptor entry.

The TSS descriptor pOints at a segment (see Figure 20)
containing the entire 80286 execution state while a
task gate descriptor contains a TSS selector. The limit
field of the descriptor must be >002B(H).

Each task must have a TSS associated with it. The cur­
rent TSS is identified by a special register in the 80286
called the Task Register (TR). This register contains a
selector referring to the task state segment descriptor
that defines the current TSS. A hidden base and limit
register associated with TR are loaded whenever TR is
loaded with a new selector.

The IRET instruction is used to return control to the
task that called the current task or was interrupted.
Bit 14 iii the flag egister is called the Nested Task (NT)
bit. It controls the function of the IRET instruction. If
NT = 0, the IRET instruction performs the regular cur­
rent task return by popping values off the stack; when

NT = 1, IRET performs a task switch operation back
to the previous task.

When a CALL, JMP, or INT instruction initiates a task
switch, the old and new TSS will be marked busy and
the back link field of the new TSS set to the old TSS
selector. The NT bit of the new task is set by CALL or
INT initiated task switches. An interrupt that does not
cause a task switch will clear NT. NT may also be set
or cleared by POPF or IRET instructions.

The task state segment is marked busy by changing
the descriptor type field from Type 1 to Type 3. Use
of a selector that references a busy task state segment
causes Exception 13.

PROCESSOR EXTENSION CONTEXT SWITCHING

The context of a processor extension (such as the 80287
numerics processor) is not changed by the task switch
operation. A processor extension context need only be
changed when a different task attempts to use the pro­
cessor extension (which still contains the context of a
previous task). The 80286 detects the first use of a pro­
cessor extension after a task switch by causing the pro­
cessor extension not present exception (7). The interrupt
handler may then decide whether a context change is
necessary.

Whenever the 80286 switches tasks, it sets the Task
Switched (TS) bit of the MSW. TS indicates that a pro­
cessdr extension context may belong to a different task
than the current one. The processor extension not pres­
ent exception (7) will occur when attempting to execute
an ESC or WAIT instruction if TS = 1 and a processor
extension is present (MP = 1 in MSW). .

POINTER TESTING INSTRUCTIONS

The iAPX 286 provides several instruqtions to speed
pOinter testing and consistency checks for maintain­
ing system integrity (see Table 15). These instruc­
tions use the memory management hardware to
verify that a selector value refers to an appropriate
segment without risking an exception. A condition
flag (ZF) indicates whether use of the selector or
segment will cause an exception.

4-22 210253-007

CPU

TASK REGISTER

TRD---

,. • r---------.,
I PROGRAM INVISIBLE I
I ,. • I
I I H I

LIMIT

: I BASE

I 23 • I L ___ --- --'

\

,

SYSTEM
~ SEGMENT

DESCRIPTOR

~

TASK
STATE
SEGMENT

IAPX 286/10

';J

INTEL RESERVED

pJrI+yp~1 BASE23-16

BASE15--G

UMIT15-0

:

15 0

TASK LOT SELECTOR

DSSELECTOR

SSSELECTOR

CSSELECTOR

ESSELECTOR

DI

SI

BP

SP

BX

DX

CX

AX

FLAG WORD

IP (ENTRY POINT)

SSFOR CPL 2

SP FORCPL2

SS FOR CPL 1

SP FOR CPL 1 ..
SSFORCPLO

SPFORCPLO

BACK LINK SELECTOR TO TSS

,

TYPE DESCRIPTION

1 AN AVAILABLE TASK STATE
SEGMENT. MAY BE USED AS
THE DESTINATION OF A TASK
SWITCH OPERATION.

3 A BUSY TASK STATE SEGMENT
CANNOT BE USED AS THE
DESnNATION OF A TASK
SWITCH.

BYTE
OFFSET

4

40 P DESCRIPTION

3
1 BASE AND LIMIT FIELDS ARE VALID

0 SEGMENT IS NOT PRESENT IN
3 MEMORY. BASE AND LIMIT ARE NOT

DEFINED
3

3

3

28 CURRENT
TASK

26 STATE

2

2

2

1

1

1

1

1

INITIAL
STACKS
FOR CPL 0.1.2

Fihure 20. Task State Segment and TSS Registers

4-23 210253-007

iAPX 286/10

Table 15. 80286 Pointer rest Instructions

Instruction Operands Function
ARPl Selector, Adjust Requested Privi-

Register lege Level: adjusts the RPL
of the selector to the nu-
meric.maximum of current
selector RPl value and the
RPL value in the register.
Set zero flag if sel!!ctor RPL
was changed by ARPL.

VERR Selector VERify for Read: sets the
zero flag if the segment reo
ferred to by the selector can
be read.

VERW Selector VE Rify for Write: sets the
zero flag if the segment re-
ferred to by the selector can
be written.

lSL Register, load Segment Umit: reads
Selector the segment limit into the

register if privilege rules and
descriptor type allow. Set
zero flag if successful.

LAR Register, Load Access Rights: reads
Selector the descriptor access rights

byte into the register if priv·
ilege rules allow. Set zero
flag if successful.

DOUBLE FAULT AND SHUTDOWN

If two separate exceptions are detected during a single
instruction execution, the 80286 performs the double
fault exception (8). If an exception occurs during pro­
cessing of the double fault exception, the 82086 will en­
ter shutdown. During shutdown no further instructions
or exceptions are processed. Either NMI (CPU remains
in protected mode) or RESET (CPU exits protected mode)
can force the 80286 out of shutdown. Shutdown is exter­
nally signalled via a HALT bus operation with A1 HIGH.

PROTECTED MODE INITIALIZATION

The 80286 initially executes in real address mode
after RESET. To allow initialization code to be placed
at the top of physical memory, A23-20 will be HIGH
when the 80286 performs memory references
relative to the CS register until CS is changed. A23•20
will' be zero for references to the OS, ES, or SS
segments. Changing CS in real address mode will
force A23•20 LOW whenever CS is used again. The
initial CS:IP value of FOOO:FFFO provides 64K bytes
of code space for initialization code without chang­
ingCS.

Protected mode operation requires several regis­
ters to be initialized. The GOT and lOT base regis­
ters must refer to a valid GOT and lOT. After
executing the LMSW instruction to set PE, the 80286
must immediately execute an intra-segment JMP
instruction to clear the instruction queue of instruc­
tions decoded in real address mode.

To force the 80286 CPU registers to match the initial
protected mode slate assumed by software, execute
a JMP instruction with a selector referring to the
initial TSS used in the system. This will load the task
register, local descriptor table register, segment
registers and initial general register state. The TR
should point at a valid TSS since any task switch
operation involves saving the current task state.

SYSTEM INTERFACE
The 80286 system interface appears in two forms: a
local bus and a system bus. The local bus consists of
address, data, status, and control signals at the pins of
the CPU. A system bus is any buffered version of the
local bus. A system bus may also differ from the local
bus in terms of coding of status and control lines and/or
timing and loading of signals. The iAPX 286 family in­
cludes several devices to generate standard system
buses such as the IEEE 796 standard Multibus T ••

Bus Interface Signals and Timing
The iAPX 286 microsystem local bus interfaces the 80286
to local memory and I/O components. The interface has'
24 addre!is lines, 16 data lines, and 8 status and control
signals.

The 80286 CPU, 82284 clock generator, 82288 bus
controller, 82289 bus arbiter, 8286/7 transceivers,
and 8282/3 latches provide a buffered and decoded
system bus interface. The 82284 generates the
system clock and synchronizes READY and RESET.
The 82288 converts bus operation status encoded
by the 80286 into command and bus control signals.
The 82289 bus arbiter generates Multibus bus
arbitration signals. These components can provide
the timing and electrical power drive levels required
for most system bus interfaces including the Multibus.

Physical Memory and 1/0 Interface
. A maximum of 16 megabytes of physical memory can

be addressed in protected mode. One megabyte can be
addressed in real address mode. Memory is accessible
as bytes or words. Words consist of any two consecutive
bytes addressed with the least significant byte stored in
the lowest address.

4-24

Byte transfers occur on either half ofthe 16·bit local data
bus. Even bytes are accessed over 07-0 while odd bytes
are transferred over 0 15- 8, Even·addressed words are
transferred over 0 15-0 in one bus cycle, while odd·ad·
dressed words require two bus operations. The first
.transfers data on 0 15-8, and the second transfers data
on 07-0. Both byte data transfers occur automatically,
transparent to software.

Two bus signals, Ao and SHE, control transfers over the
lower and upper halves of the data bus. Even address

210253-007

iAPX 286/10

byte transfers are indicated by Ao lOW and BRE HIGH.
Odd address byte transfers are indicated by Ao HIGH
and BRE lOW. Bot" Ao and BRE are lOW for even ad­
dress word transfers.

The I/O address space contains 64K addresses in both
modes. The 110 space is accessible as either bytes or
words, as is memory. Byte wide peripheral devices may
be attached to either the upper or lower byte of the data
bus. Byte-wide I/O devices attached to the upper data
byte '(015-8) are accessed with odd I/O addresses. De­
vices on the lower data byte are accessed with even I/O
addresses. An interrupt controller such as Intel's 8259A
must be connected to the lower data byte (07-0) for proper
return of the interrupt vector.

Bus Operation
The 80286 uses a double frequency system clock (ClK
input) to control bus timing. All signals on the local bus
are measured relative to the system ClK input. The CPU
divides the system clock by 2 to produce the internal
processor clock, which determines bus state. Each pro­
cessor clock is composed of two system clock cycles
named phase 1 and phase 2. The 82284 clock generator
output (PClK) identifies the next phase of the processor
clock. (See Figure 21.)

ClK

ONE PROCESSOR CLOCK CYCLE

_ ONE SYSTEM----.J
ClKCYClE -------"l

PClKY \'--__ ...Jv
Figure 21. System and Processor

Clock Relationships

Six types of bus operations-are supported; memory read,
memory write, I/O read, I/O write, interrupt acknowl­
edge, and halt/shutdown. Data can be transferred at a
maximum rate of one word per two processor clock cycles.

The iAPX 286 bus has three basic states: idle (Til. send
status (T s), and perform command (T d. The 80286 CPU
also has a fourth local bus state called hold (T h). Thin­
dicates that the 80286 has surrendered control of the
local bus to another bus master in response to a HOLD
request. '

Each bus state is one processor clock long. Figure 22
shows the four 80286 local bus states and allowed
transitions.

RESET

Figure 22. 80286 Bus States

Bus States
The idle (Ti) state indicates that no data transfers are
in progress or requested. The first active state T s is
signaled by status line S1 or SO going lOW and identi­
fying phase 1 of the processor clock. During T s, the
command encoding, the address, and data (for a write
operation) are available on the 80286 output pins. The
82288 bus controler decodes the status signals and
generates Multibus compatible read/write command
and local transceiver control signals. .

After T s' the perform command (T cl state is entered.
Memory or I/O devices respond to the bus operation
during T c, either transferring read data to the CPU or
accepting write data. T c states may be repeated as
often as necessary to assure sufficient time for the
memory or I/O device to respond. The REAOY signal
determines whether T c is repeated. A repeated T c
state is called a wait state.

During hold (T h), the 80286 will float all address, data,
and status output pins enabling another bus master
to use the local bus. The 80286 HOLD input signal
is used to place the 80286 into the T h state. The
80286 HlDA output signal indicates that the CPU has
entered Th.

Pipelined Addressing
The 80286 uses a local bus interface with pipelined
timing to allow as much time as possible for data
access. Pipelined timing allows a new bus operation
to be initiated every two processor cycles, while allow­
ing each individual bus operation to last for three
processor cycles.

4-25

The timing of the address outputs is pipelined such that
the address of the next bus operation becomes available
during the current bus operation. Or in other words, the
first clock of the next bus operation is overlapped with
the'last clock of the current bus operation. Therefore,
address decode and routing logic can operate in ad-

210253-007

;

iAPX 286/10

TI F READ BUS CYCLE N -I" READ BUS CYCLE N +1~.
Ts~'- --Tc~~Ts-----------'l ____ c

., I Q I ~ I. ~ I Q ~ I Q

0 15 - "" - - --- - -- - - - -- - - - - - - - - - - - - --c:::::>- ------------ -----cJ-
VALID READ VALID REAO

DATA (N) DATA (N + 1)

PlPELlNING: VALID ADDRESS (N + 1) AVAILABLE IN LAST PHASE OF BUS CYCLE (N).

Figure 23. Basic Bus Cycle

vance of the next bus operation. External address latches
may hold the address stable for the entire bus operation,
and provide additional AC and DC buffering.

The 80286 does not maintain the address of the current
bus operation during all T c states. Instead, the address
for the next bus operation may be emitted during phase
2 of any T c. The address remains valid during phase 1
of the first T c to guarantee hold time, relative to ALE, for
the address latch inputs.

Bus Control Signals
The 82288 bus controller provides control signals; ad­
dress latch enable (ALE). ReadlWrite commands, data
transmit/receive (DT/R) , and data enable (DEN) that
control the address latches, data transceivers, write en­
able, and output enable for memory and 110 systems.

The Address Latch Enable (ALE) output determines when
the address may be latched. ALE provides at least one
system CLK period of address hold time from the end of
the previous bus operation until the address for the ne~t
bus operation appears at the latch outputs. This address
hold time is required to support Multibus® and common
memory systems.

The data bus transceivers are controlled by 82288 out­
puts Data Enable (DEN) and Data Transmit/Receive (DT/
R). DEN enables the data transceivers; while DT/R con­
trols transceiver direction. DEN and DT/R are timed to
prevent bus contention between the bus master, data
bus transceivers, and system data bus tranceivers.

4-26

Command Timing Controls
Two system timing customization options, command ex­
tension and command delay, are provided on the iAPX
286 local bus.

Command extension allows additional time for external
devices to respond to a command and is analogous to
inserting wait states on the 8086. External logic can con­
trol the duration of any bus operation such that the op­
eration is only as long as necessary. The READ? input
signal can extend any bus operation for as long as
necessary.

Command delay allows an increase of address or write
data setup time to system bus command active for any
bus operation by delaying when the system bus com­
mand becomes active. Command delay is controlled by
the 82288 CMDLY input. After Ts , the bus controller
samples CMDLY at each failing edge of CLK. If CMDLY
is HIGH, the 82288 will not activate the command signal.
When CMDLY is LOW, the 82288 will activatathe com­
mand signal. After the command becomes active, the
CMDLY input is not sampled.

When a command is delayed, the available response
time from command active to return read data or accept
write data is less. To customize system bus timing, an
address decoder can determine which bus operations
require delaying the command. The CMDLY input does
not affect the timing of ALE, DEN, or DT/R.

210253-007

iAPX 286/10

1-------- READ BUS CYCLE N -1---------I-!----- READ BUS CYCLE N----.I

elK

PRoe ---..,
elK

S:1 • SO

ALE ___ .J

A~ADV

~ AD COMMAND

EX'
CMDLY ___ --'

~ RD COMMAND
EX 2

CMDlY

Figure 24. CMDlY Controls the leading Edge of Command Signal.

Figure 24 illustrates four uses of CMDlY. Example 1
shows delaying the read command two system ClKs for
cycle N-1 and no delay for cycle N, and example 2 shows
delaying the read command one system ClK for cycle
N-1 and one system ClKdelayfo~ cycle N.

Bus Cycle lermination
At maximum transfer rates, the iAPX 286 bus alternates
between the status and command states. The bus status
signals become inactive after Ts so that they may cor­
rectly signal the start of the next bus operation after the
completion of the current cycle. No external indication of
T c exists on the iAPX 286 local bus. The bus master and
bus controller enter T c directly after Ts and continue ex­
ecuting T c cycles l:mtil terminated by REAJ:5'i'.

READY Operation
The current bus master and 82288 bus controller ter­
minate each bus operation simultaneously to achieve
maximum bus operation bandwidth. Both are informed
in advance by READY active (open-collector output
from 82284) which identifies the last T c cycle of the

current bus operation. The bus master and bus con­
troller must see the same sense of the READY signal,
thereby requiring REA[)? be synchronous to the
system clock.
Synchronous Ready
The 82284 clock generator provides READY synchro­
nization from both synchronous and asynchronous
sources (see Figure 25). The synchronous ready input
(SRlJ'Y) of the clock generator is sampled with the falling
edge of ClK at the end of phase 1 of each T c' The state
of SRlJ'Y is then broadcast to the bus master and bus
controller via the READY output line.

Asynchronous Ready

Many systems have devices or subsystems that are
asynchronous to the system clock. As a result, their
ready outputs cannot be guaranteed to meet the 82284
~ setup and hold time requirements. But the
82284 asynchronous ready input (AR'Ijy) is designed
to accept such signals. The i\fIDY input is sampled at
the beginning of each T c cycle by 82284 synchroniza­
tion logic. This provides one system ClK cycle time to
resolve its value before broadcasting it to the bus
master and bus controller.

4-27 210253-007

iAPX 286/10

• ' MEMORY CYCLE N - 1 .1. MEMORY CYCLE N ·1
--Ts--------.l~Tc-------. 4-------1S-------'I"""--TC-------'I-4------Tc-------'

I d>2 I dot I d>2 dJ1 I <b2 dJ1 I <t>2 <.1>1 I 4>2

elK

PROCCLK

A23 - Ao
---------------7~

FIEAllY (SEE NOTE 1.) (SEE NOTE 2.)

-~~
(SEE NOTE 3.)

NOTES:
1. SRDYEN IS active low
2. If SRDYEN IS high, the state of SRDY will not effect READY
3. ARDYEN is active low

Figure 25. Synchronous and Asynchronous Ready

ARDY or ARDYEN must be HIGH at the end of T s.
ARDv cannot be used to terminate bus cycle with
no wait states.

Each ready input of the 82284 has an enable pin
(SRDYEN and ARDYEN) to select whether the current
bus operation will be terminated by the synchronous or
asynchronous ready. Either of the ready inputs may ter­
minate a bus operation. These enable inputs are active
low and have the same timing as their respective ready
inputs. Address decode logic usually selects whether
the current bus operation should be terminated by ARDY
orS"RDY.

Data Bus Control
Figures 26, 27, and 28 show how the DT/R, DEN, data
bus, and address signals operate for different combina­
tions of read, write, and idle bus operations. DT/R goes
active (LOW) for a read operaton. DT/R remains HIGH
before, during, and between write operations.

4-28

The data bus is driven with write data during the second
phase of T s. The delay in write data timing allows the
read data drivers, from a previous read cycle, sufficient
time to enter 3-state OFF before the 80286 CPU begins
driving the local data bus for write operations. Write data
will always remain valid for one system clock past the
last T c to provide sufficient hold time for Multibus or other
similar memory or 1/0 systems. During write-read or write­
idle sequences the data bus enters 3-state OFF during
the second phase of the processor cycle after the last
T c. In a write-write sequence the data bus does not enter
3-state OFF between T c and Ts.

Bus Usage
The 80286 local bus may be used for several functions:
instruction data transfers, data transfers by other bus
masters, instnJction fetching, processor extension data
transfers, interrupt acknowledge, and halt/shutdown. This
section describes local bus activities which have special
signals or requirements.

210253-007

IAPX 286/10

1- READ BUS CYCLE -I' WRITE BUS CYCLE ~
--TI~4-----Ts---'-4--Tc~ 4-----Ts--"""-Tc---T,

1,1>2 J>'10I41".11<1>2 ,MI.J4Id>11.J4 'b11~
ClK

AZ3 - Ao

SO. S1

MRDC

MWTC

DEN --------+----J't

DTR

Figure 26. Back to Back Read-Write Cycles

WRITE CYCLE READ CYCLE

eLK

D1S-Do ---------- VAUD WRITE DATA

DEN

DTIR

Figure 27. Back to Back Write-Read Cycles

4-29 210253-007

iAPX 286/10

WH ________________ ~ __ ___

DTfR

Figure 28. Back to Back Write-Write Cycles

HOLD and HLDA
HOLD and HLDA allow another bus master to gain con­
trol of the local bus by placing the 80286 bus into the T h

state. The sequence of events required to pass control
between the 80286 and another local bus master are
shown in Figure 29.

In this example, the 80286 is initially in the T h state as
signaled by HLDA being active. Upon leaving T h, as sig­
naled by HLDA going inactive, a write operation is started.
During the write operation another local bus master re­
quests the local bus from the 80286 as shown by the
HOLD signal. After completing the write operation, the
80286 performs one Tj bus cycle, to guarantee write data
hold time, then enters T h as signaled by HLDA going
active.

The CMDLY signal and.ARO"? ready are used to start
and stop the write bus command, respectively. Note that
S'RD'i" must be inactive or disabled by SRDYEN to guar­
antee ARO"? will terminate the cycle.

Instruction Fetching
The 80286 Bus Unit (BU) will fetch instructions ahead of
the current instruction being executed. This activity is

. called prefetching. It occurs when the local bus would
otherwise be idle and obeys the following rules:

4-30

A prefetch bus operation starts when at least two bytes
of the 6-byte prefetch queue are empty.

The prefetcher normally performs word prefetches in­
dependent of the byte alignment of the code segment
base in physical memory.

The prefetcher will perform only a byte code fetch op­
eration for control transfers to an instruction beginning
on a numerically odd physical address.

Prefetching stops whenever a control transfer or HLT
instruction is decoded by the IU and placed into the
instruction queue.

In real address mode, the prefetcher may fetch up
to 6 bytes beyond the last control transfer or HL T
instruction in a code segment.

In protected mode, the prefetcher will never cause a
segment overrun exception. The prefetcher stops at
the last physical memory word of the code segment.
Exception 13 will occur if the program attempts to ex­
ecute beyond the last full instruction in the code
segment.

If the last byte of a code segment appears on an even
physical memory address, the prefetcher will read the
next physical byte of memory (perform a word code
fetch). The value of this byte is ignored and any at­
tempt to execute it causes exception 13.

210253-007

NOTES:

iAPX 286/10

BUS HOLD

. .' WRITE CYCLE

I
BUS HOLD ACKNOWLEDGE I

BUS CYCLE TYPE TH I TH I TH Ts Te I Tc

.1 1.2 .1 1.2 .' 1.2 .1 I </2 I </1 I .2 </1 I .2
Tc I T,

q,1 I 4>2 r/!1 I ,p2

I
ACKNOWLED~E

¢1 ~H 4>2 I
CLK

HOLD

HLDA

r-_______________ lS:.E~~~ .. }2....

Au - Ao

MIlO, ----------------
COD/INTA

(SEE NOTE 2)

~~~~~t»»---------
(SEE NOTE 3) 

BHE, LOCK ------------------·~==t~~==J~7]~ffi7]~~~tZ~tB~---------

D" - DO ------------------------:(I.. _______ VA_L_'D ______ --'-"»t---------

!:E~~'<@&I~~,,&JW'#$Jd 
NOT READY NOT READY 

MWTC 

VOH -----------------------------------------------------------------
DTiIi 

DEN ,'-----
ALE _______________________ ~~~ ______________________________ __ 

TS - STATUS CYCLE 
Te -- COMMAND CYCLE 

1 Status hnes are not dnven by 80286, yet remain high due to pullup resistors In 82288 and 82289 dunng HOLD state 

2 Address, M/iO and COD/INTA may start floating dunng any TC depending on when Internal 80286 bus arbiter deCides to release bus to 
external HOLD The float starts In·4>2 of TC 

3 SHE and LOCK may start floating after the end of any TC depending on when Internal 80286 bus arbiter deCides to release bus to external 
HOLD The float starts In 4>1 of TC 

4 The minimum HOLD to HLDA time IS shown MaXimum IS one T H longer 

5 The earliest HOLD time IS shown It Will always allow a subsequent memory cycle If pending IS shown 

6 The minimum HOLD to HLDA time IS shown MaXimum IS a function of the Instruction, type of bus cycle and other machine status (I e , 
Interrupts, Walts, Lock, etc) 

7 Asynchronous ready allows termination of the cycle. Synchronous ready does not Signal ready In thiS example Synchronous ready state 
IS Ignored after ready IS Signaled via the asynChronous Input 

Figure 29. Multibus Write Terminated by Asynchronous Ready with Bus Hold 

4 -31 210253-007 



iAPX 286/10 

Processor Extension Transfers 
The processor extension interface uses 1/0 port 
addresses 00F8(H), OOFA(H), and OOFC(H) which are 
part of the 1/0 port address range reserved by Intel. 
An ESC instruction with Machine Status Word bits 
EM = 0 and TS = 0 will perform 1/0 bus operations to 
one or more of these 1/0 port addresses independent 
of the value of 10PL and CPL. 

ESC instructions with memory references enable the . 
CPU to accept PEREa inputs for processor extension 
operand transfers. The CPU will determine the operand 
starting address and read/write status of the instruction. 
For each operand transfer, two or three bus operations 
are performed, one word transfer with I/O port address 
OOFA(H) and one or two bus operations with memory. 
Three hus operations are required for each word oper­
and aligned on an odd byte address. 

Interrupt Acknowledge Sequence 
Figure 30 illustrates an interrupt acknowledge sequence 
performed by the 80286 in response to an INTR input. 
An interrupt acknowledge sequence consists of two 
INTA bus operations. The first allows a master 8259A 
Programmable Interrupt Controller (PIC) to determine 
which if any of its slaves should return the interrupt 
vector. An eight bit vector is read on 00-07 of the 
80286 during the second INTA bus operation to select 
an interrupt handler routine from the interrupt table. 

The Master Cascade Enable (MCE) Signal of the 82288 
is used to enable the cascade address drivers, during 
INTA bus operations (See Figure 30), onto the local ad­
dress bus for distribution to slave interrupt controllers via 
the system address bus. The 80286 emits the ITJCK 
~ignal (active LOW) during Ts of the first INTA bus oper­
ation. A local bus "hold" request will not be honored until 
the end of the second INTA bus operation. 

Three idle processor clocks are provided by the 80286 
between INTA bus operations to allow for the minimum 
INTA to INTA time and CAS (cascade address) out delay 
of the 8259A. The second INTA bus operation must al­
ways have at least one extra Testate added via logic 
controlling READ'? A23-AO are in'3-state OFF until after 
the first Tc state of the second INTA bus operation. This 
prevents bus contention between the cascade address 
drivers and CPU address drivers. The extra Testate al­
lows time for the 80286 to resume driving th"e address 
lines for subsequent bus operations. 

4-32 

Local Bus Usage Priorities 
The 80286 local bus is shared among several internal 
units and external HOLD requests. In case of simulta­
neous requests, their relative priorities are: 

(Highest) Any transfers which assert ITJCK either ex­
plicitly (via the LOCK instruction prefix) or 
implicitly (Le. segment descriptor access, 
interrupt acknowledge sequence, or an 
XCHG with memory). 

The second of the two byte bus operations 
required for an odd aligned word operand. 

The second or third cycle of a processor 
extension data transfer. 

Local bus request via HOLD input. 

Processor extension data operand transfer 
via PEREa input. 

Data transfer performed by EU as part of an 
instruction. 

(Lowest) An instruction prefetch request from BU. The 
EU will inhibit prefetching two processor 

. clocks in advance of any data transfers to 
minimize waiting by EU for a prefetch to finish. 

Halt or Shutdown Cycles 
The 80286 externally indicates halt or shutdown condi­
tions as a bus operation. These conditions occur due to 
a HLT instruction or multiple protection exceptions while 
attempting to execute one instruction. A halt or shut­
down bus operation is signalled when Sl, "SO and COD/ 
ll'iITA are Low and MOO is HIGH. A1 HIGH indicates 
halt, and A1 LOW indicates shutdown. The 82288 bus 
controller does not issue ALE, nor is READ'? required to 
terminate a halt or shutdown bus operation. 

During halt or shutdown, the 80286 may service PEREa 
or HOLD requests. A processor extension segment 
overrun exception during shutdown will inhibit further 
service of PEREa. Either NMI or RESET will force the 
80286 out of either halt or shutdown. An INTR, if inter­
rupts are enabled, or a processor extension segment 
overrun exception will also force the 80286 out of halt. 

210253-007 



iAPX 286/10 

BUS CYCLE TYPE I T C 
<1>1 1.1>2 

I"""---INTA CYCLE 1 ~I 1-4---'NTA CYCLE 2-----"1 
~ ~ ~ ~ ~ ~ ~. ~ ~ ~ 

.bl I c/fl. ! ,)" I 1/>2 I 1/1' 1,1,2 4>1 I c/fl. I <1>1 I clfJ.l </11 I cIfJ. <1>' I <Ill 1<1>11 <b2 I <1>1 I c/fl. ,I,' I.ill I 
CLK 

MlI~, COOIINTl 

liliE »»»»)}- ------- --- -< ..... __ DO_N'_T C_AR_E _---J}- - -- - - - - - - - -c= 
(SEE NOTE 1) 

015 - Do ':"WeV~~'i:~E > -------0--- --- --- -- --- - - ----- {VECTOR}- - -
ON 07·00 

(SEE NOTE 2 ) (SEE NOTE 3.) 

IIEADV S\\\\\\ 1l111/01/R/I \\\\\\ IIOVllIIOVIIllOlll107IIII1OO/l \\\\\\ mmz 
NOT READY READY NOT READY REAOY 

lIlT.{ \ / \ ~ 

MCE f\ f\ 

I ALE n n 
DTf" \ / \ I 

DEN / \ / '---

NOTES: 
1. Data is ignored. 

2. First INTA cycle should have at least one walt state Inserted to meet 8259A minimum INTA pulse width. 

3 Second INTA cycle must have at least one wait state inserted since the CPU Will not drive A23 - Ao, BHE, and [QCj( until after the first 
TCstate. 

The CPU Imposed one/clock delay prevents bus cQntention between cascade address buffer being disabled by MCE + and address 
outputs. 

Without the wait state, the 80286 address will not be valid for a memory cycle started Immediately after the second INTA cycle. The 
8259A also requires one wait state for minimum INTA pulse Width, 

4. [QCj( is active for the first INTA cycle to prevent the 82289 from releasing the bus between INTA cycles in a multi·master system. 

5. Azl - Ao exits 3·state OFF during <P2 of the second T C in the INTA cycle. 

Figure 30. Interrupt Acknowledge Sequence 

4-33 210253-007 



Vee 
Vee 

~it ~ 
I 

91011 rl rD1 ±5% 

[~ X, X, 

RESET ~~-4--+I RES ~~ 

AEN 

Ms 

CMDLY" 

so 

•• 

iAPX 286/10 

MRDe 

MWTC 

IORC 
lowe 
INTA 

ALE 
MCE 

I--------~ MEMORY READ 

1----------_ MEMORY WRITE 

I---~o------_ IDREAD 

I----h------ I,.QWRITE 

I----H ....... ----- INTERRUPT ACKNOWLEDGE 

,..----, c::= I -- PClK 
READY 1--+-1f-+---I READY DEN 1-----, r­

I r 
...J I 

- - --..I t- ... ADVANCED MEMORY 

eLK T CLK82288 BU~T'R --=-
: CONTROllER ~ 

_ - EFI 

- ~ FC 

_ -.....I DECODE t- ....... AND I 0 CHIP SELECTS 

r - l' I (OPTIONAL) I . 

I r.~ 1 

SVNC READV -- SRDV RESET '1 ,', J M t _ J :, ~ ~ 
ENABLE _______ SRDVEN. ,r- I I 

ASYNC READY ~ ARDY I I RESET M 10 I I I '----' SrB 

J I L ____ ..I 

_J . ....c:::=;=]1 
ENABLE __ ARDVEN I I lOCK ~ I I I ~ 

~~~~~ I I L.,ClK CODINTA _-I II -=:?" DE 
~ ADDRESS BUS

8282 GENERATOR I I r--. READY 1--,-1 ---lLL-'-LL-'-LL_"-

\' V
C
:

C ~ : : ~ ~~ A23-
A0 I-"-; -,.-,--..--r-rl ~--;~..----r---v' ~~~~8~

l' , _______ ~IIII-NMI SHE

.. I r----- __ J I II- HOLD I ,..-___ ...,
,. I I r - - -11-, -- HlDA I CASo-,

20KO
Ao_

1 I I ' I I I ERROR I
J. I I I 1. BUSV INTR INT

L--1i-t-t 1 -,- - - - T T + - PEACK I INTA

CS _ CHIP SELECT

III r--------.PEREO CAP~ WR
I I ' -1 I 1 I
1,11111'---1 80286 -;-r RD
, I I I I I 1 r- - -=-J CPU ~ + SP'EN

I I I I I 1 I r 0,,-00 = L <== IRO- IR7
I I : : I : I : I I ~ 1

r _U_I_I_LdJJJ __ , 1
I ,- -- - - __ J

80287
I PROCESSOR l- 1.... - - -
I EXTENSION I' " - - -
I (OPTIONAL) I
1.. ____________ .J

~ Do-~~~9A
INTERRUPT

CONTROLLER

f---- OE

~ 8!~6
8287

TRANS­
CEIVER

'--------+IT

~DATA
~BUS

Figure 31. Basic iAPX 286 System Configuration

SYSTEM CONFIGURATIONS

The versatile bus structure of the iAPX 286 microsys­
tem, with a full complement of support chips, allows flex­
ible configuration of a wide range of systems. The basic
configuration, show'1 in Figure 31, is similar to an iAPX
86 maximum mode system. It includes the CPU plus an
8259A interrupt controller, 82284 clock generator, and
the 82288 Bus Controller. The iAPX 86 latches (8282
and 8283) and transceivers (8286 and 8287) may be
used in an iAPX 286 microsystem.

As indicated by the dashed lines in Figure 31, the ability
to add processor extensions is an integral feature of iAPX
286 microsystems. The processor extension interface
allows external hardware to perform special functions
and transfer data concurrent with CPU execution of other
instructions. Full system integrity is maintained because
the 80286 supervises all data transfers and instruction
execution for the processor extension.

The iAPX 286/20 numeric data processor which in­
cludes the 80287 numeric processor extension (NPX)

4-34

uses this interface. The iAPX 286/20 has alf the instruc­
tions and data types of an iAPX 86/20 or iAPX 88/20.
The 80287 NPX can perform numeric calculations and
data transfers concurrently with CPU program execu­
tion. Numerics code and data have the same integrity as
all other information protected by the iAPX 286 protec­
tion mechanism.

The 80286 can overlap c.hip select decoding and ad­
dress propagation during the data transfer for the pre­
vious bus operation. This information is latched into the
8282/3's by ALE during the middle of a T s cycle. The
latched chip select and address information remains
stable during the bus .operation while the next cycles
address is being decode,d and propagated into the sys­
tem. Decode logic can be implemented with a high speed
bipolar PROM.

The optional decode logic shown in Figure 31 takes ad­
vantage of the overlap between address and data of the
80286 bus cycle to generate advanced memory and 10-
select signals. This minimizes system performance

211l253-007

9100
±S%

iAPX 286/10

Vee

2OKr"-++-t~--l::::TRESB S~~I~;==)
~~:~vs BREa r--- MUlTiBUS -----=: GRQlCK BPRQ I===: BUS ARBITRATION

~ $0 BPRN ~

~ 51 BUSY f.----
'----+-H--h>--l READY caRD f.----

r*' elK LOCK 1-
ri--H-+-f-l AEN M 10 f---

82289 SLOCK r-- -
BUS ARBITER

'-+~H-+-f.j AEN MB MRDe f-H------H--- MEMORV READ

I ,D t I IORC JDREAD R=--lnh MWTC MEMORY WRITE

lowe 10 WRITE

AES

X2 x, INTA INTERRUPT ACKNOWLEDGE

" -:=-1!o::~4-~ :~ f4t----1H-+-f·1 :~ ;~: ~=tt===tl=t==~-+~
I READY READY DEN - -_ PCLK

_ _ EFI elK H-~-+-H.j CL~2288 BU~T R -

--= F C I CONTROLLER
-::!:- I CM:JLY M 10

SYNC READY -- SROV RESET r-t,'H-+-IH---'l ~ f r-
ENABLE -- SROYEN I I ---.L _ r=:=-- ~

ASYNC READY -- AROY I I RESET M 10 _

ENABLE -- ARDVEN STB t=;=)
'I
I
J

20K!! f

I I LOCK - __ DE l.....- ADDRESS BUS

Vee ~~~~~ I I ~ elK coo INTA ---, ~-
GENERATOR I I ~ READY ~t-=~=:=~=:=:;:~~~ I I ~ S1 An Ao ' 8283

'I~SO I I~~ r-------11 II I~NMI BHEr.I-+H-+t-=I
_______ J I(I-;-HOLD

II i--l-I-I-,-HLDA I /'--CAS01

I ! ! " ERROR I
1 I 1 I " BUSY INTR 1----+-+-++-f------1 '"'

- _ - -11 - J....,.. _1_ - -, "I II PEACK I INTA

I 1. r - - - -- -!...,. PEREa CAPI:;:h WA
1111II JI' I '--___ ----I

I I I r - I B0286 IT AD
I I 1 I I I I" _J I CPU 1- •l\- SP EN ,...;1---
I I I I I I : 1 I r -! I 0" Do I - L --v' Do ~;59A v--- IRo >R,

1llllllilllllr..J I INTERRUPT

r' ___ I_I __ I_'_'_t_,-+~ __ ...J CONTROLLER

I 80287 r------ ~

: ~~~~~~g: k'l- - - _ OE

I (OPTIONAL) : -r - - .- ~ ~
L ________ -.J '-------r------y/I T~!~S ~ OATA BUS

'.-cs _ CHIP SELECT

CEIVER
T

Figure 32. Multibus System Bus Interface

degradation caused by address propogation and de­
code delays. In addition to selecting memory and 110,
the advanced selects may be used with configurations
supporting local and system buses to enable-the appro­
priate bus interface for each bus cycle. The COD/Tf\JTA
and MIlO signals are applied to the decode logic to dis­
tinguish between interrupt, 110, code and data bus cycles.

connected to its CMDlY input to delay the start of com­
mands one system ClK as required to meet Multibus
address and write data setup times. This arrangement
will add at least one extra Testate to each bus operation
which uses the Multibus.

By adding the 82289 bus arbiter chip the 80286 provides
a Multibus system bus interface as shown in Figure 32.
The ALE output of the 82288 for the Multibus bus is

A second 82288 bus controller and additional latches
and transceivers could be added to the local bus of Fig­
ure 32. This configuration allows the 80286 to support
an on-board bus for local memory and peripherals, and
the Multibus for system bus interfacing.

4-35 210253-007

IAPX 286/10

OATAD15 - Do

80286
CPU elK

STATUS SO. ii. M/iO

DECODE

8286

DATA

DRAM
2118,2164

8287

MULTIBUS SELECT

XACK

MULTIBUS
COMMAND

(MADe, iiWfc)

lOCAL
SELECT '-----1 t-"-----;S;;;:;El"'EC=T

'-----ADDRESS

ADDRESS AZ3 - Ao. SHE, LOCK

Figure 33. IAPX 286 System Configuration with Dual-Ported Memory

Figure 33 shows the addition of dual ported dynamic
memory between the Multibus system bus and the iAPX
286 local bus. The dual port interface is provided by the
8207 Dual Port DRAM Controller. The 8207 runs syn­
chronously with the CPU to maximize throughput for lo­
cal memory references. It also arbitrates between
requests from the local and system buses and performs

functions such as refresh, initialization of RAM, and read! \
modify/write cycles. The 8207 combined with the 8206
Error Checking and Correction memory controller pro­
vide for single bit error correction. The dual-ported
memory can be combined with a standard Multibus sys­
tem bus interface to maximize performance and protec­
tion in multiprocessor system configurations.

Table 16.80286 Systems Recommended Pull up Resistor Values

80286 Pin and Name Pullup Value Purpose

4-81
5-50 20KO ± 10% Pull 50, 'ST, and PEACK inactive during 80286 hold periods
6-PEACK
53-ERROR 20KO ±.10% Pull ERROR and BUSY inactive when 80287 not present

(or temporarily removed from socket)
54-BUSY

63-READY 9100 ± 5% Pull READY inactive within required minimum time (CL = 150pF,
!as 7mA)

4-36 210253-007

iAPX 286/10

PACKAGE
The 80286 is packaged in a 68-pin, leadless JEDEC
type A hermetic lead less chip carrier. Figure 34 illus­
trates the package, and Figure 2 shows the pinout.

050

H:
.800

('0.3')

. I (O~~:)l L_
PIN NO. 18

iPlNNO.35

.0
PINNO.1

960
(24.38)

PIN NO. 52

960
('4.38)

~PIN NO 1 MARK

I (' ~9) ----l F 094

066 1 (1.68)

130
(3.30)

INCHES
(MILLIMETERS)

Figure 34. JEDEC Type A Package

ABSOLUTE MAXIMUM RATINGS·

AmbientTemperature Under Bias O°C to 70"C

Storage Temperature. - 65°C to + 150°C

Voltage on Any Pin with
Respect to Ground -1.0 to + 7V

Power Dissipation 3.3 Watt

'NOTICE: Stresses above those listed under "Absolute Max­
imum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operation of the de­
vice at these or any other conditions above those indicated in
the operational sections of this specification is not Implied.
Exposure to absolute maximum rating conditions for ex­
tended periods may affect device reliability.

D.C. CHARACTERISTICS (TA = ooe to 70oe, Vee = 5V, ±5%)

4MHz 6MHz 8MHz

-4 -4 -6 -6 -8 -8
Sym Parameter Min Max Min Max Min Max Unit Test Condition

VIL Input lOW Voltage -.5 .8 -.5 .8 -.5 .8 V

VIH Input HIGH Voltage 2.0 Vee +.5 2.0 Vee +.5 2.0 Vee + .5 V

VILe ClK Input lOW Voltage -.5 .6 -.5 .6 -.5 .6 V

VI He ClK Input HIGH Voltage 3.8 Vee +.5 3.8 Vee + .5 3.8 Vee +.5 V

VOL Output lOW Voltage .45 .45 .45 V IOL = 2.0mA

VOH Output HIGH Voltage 2.4 2.4 2.4 V IOH = -400JlA

III Input leakage Current +-10 +-10 +-10 JlA OV-::;VIN-::;Vee

IlL Input sustaining Current on
BUSY and ERROR pins 30 500 30 500 30 500 JlA VIN = OV

ILO Output leakage Current +-10 +-10 +-10 JlA 45V-::;Vour-::;Vee

ILO Output leakage Current +-1 +-1 +-1 mA OV-::;Vour<.45V

lee Supply Current (turn on, O°C) 600 600 600 rnA Note 1

NOTE 1: Low temperature IS worst case 4-37 210253-007

iAPX 286/10

D.C. CHARACTERISTICS (continued) (TA = DOC to 7DOC, Vcc = 5V, ±5%)

4 MHz 6MHz SMHz

-4 -4 -6 -6 -S -S
Sym Parameter Min Max Min Max Min Max Unit Test Condition

CCLK ClK Input Capacitance 20 20 20 pF Fc = 1MHz

CIN Other Input Capacitance 10 10 10 pF Fc = 1MHz

Co Input/Output Capacitance 20 20 20 pF Fc=1MHz

NOTE 1: Low temperature IS worst case

A.C. CHARACTERISTICS (TA = 0 °G to 55°C, Vcc = 5V, ± 5%)
AC timings are referenced to O.SV and 2.0V points of signals as illustrated in datasheet waveforms, unles~
otherwise noted.

4MHz 6MHz SMHz

-4 -4 -6 -6 -S -S
Sym Parameter Min Max Min Max Min Max Unit Test Condition

1 System Clock (ClK) Period 124 250 83 250 62 250 ns

2 System Clock (ClK) lOW Time 30 210 ,20 225 15 225 ns at 1,OV

3 System Clock (ClK) HIGH Time 40 220 25 230 25 235 ns at 3,6V

17 System Clock (ClK) Rise Time 10 10 10 ns 1 OV to 3 6V

18 System Clock (ClK) Fall Time 10 10 10 ns 3,6V to 1 OV

4 Asynch Inputs Setup Time 40 30 20 ns Note 1

5 Asynch, Inputs Hold Time 40 30 20 ns Note 1

6 RESET Setup Time 40 33 28 ns

7 RESET Hold Time 5 5 5 ns

8 Read Data Setup Time 30 20 10 ns

9 Read Data Hold Time 8 8 8 ns

10 READY Setup Time 75 50 38 ns

11 READY Hold Time 50 35 25 ns

12 Status/PEACK Valid Delay 1 80 1 55 1 40 ns Note 2 Note3

13 Address Valid Delay 1 120 1 80 1 60 ns Note 2 Note 3

14 Wri,te Data Valid Delay 0 100 0 65 0 50 ns Note 2 Note 3

15 Address/Status/Data Float Delay 0 120 0 80 0 50 ns Note 2 Note 4

16 HlDA Valid Delay 0 120 0 80 0 50 ns Note 2 Note 3

NOTE 1: Asychronous Inputs are INTR, NMI, HOLD, PEREQ, ERROR, AND BUSY This speCification IS given only for testing purposes, to
assure recognition at a speCific elK edge

NOTE 2: Delay from 0 8V on Ihe ClK, to 0 8V or 2 OV or float on the output as appropriate for valid or floating condition

NOTE 3: Ouput load CL = 100pF

NOTE 4: Float condition occurs when output current IS less than ILO In magnitude

4-38 210253-007

DEVICE
OUTPUT

IAPX 286/10

NOTE 9: AC Test loading on Outputs

4.0V

ClKINPUT

O.45V

I

NOTE 6: AC Drive and Measurement POints - ClK Input

4.0V

ClK INPUT

O.45V --------

OTHER
DEVICE
INPUT

2.4V

DEVICE
OUTPUT

1.0V

tHOLD

tDELAY ---~

2.0V

O.BV

NOTE 7. AC Setup, Hold and Delay Time Measurement - General

4-39 210253-007

"m.;..lt!>
I. '-e-
A.C. CHARACTERISTICS (Cont.)

82284 Timing Requirements

Symbol Parameter

11 SRDY/SRDYEN setup time

12 SRDY ISRDYEN hold time

13 ARDY/ARDYEN setup time

14 ARDY/ARDYEN hold time

19 PClK delay

iAPX 286/10

82284-6

Min. Max.

25

0
5

30

0 45

NOTE: These times are gIVen for testtng purposes to assure a predetermined acton

82288 Timing Requirements
82288-6

Symbol Parameter Min. Max.
12 CMDl Y setup time 25
13 CMDlT hold time 0
30 Command delaylCommand Inactive 3 30

From ClK II
29 Command Active 3 40

16 ALE active delay 3 25
17 ALE inactive delay 35
19 DT IR read active delay 40

22 DT IR read inactive delay f5 45
20 DEN read active delay 10 50
21 DEN read inactive delay 3 40
23 DEN write active delay 35
24 DEN write inactive delay 3 35

82284-8

Min. Max. Units Test Conditions

15 ns

0 ns

0 ns See note 1
16 ns See note 1

CL = 75pF
0 45 ns IOL = 5 ma

IOH=-1ma

82288-8

Min. Max. Units Test Conditions
20 ns
0 ns
3 2Q CL - 300 pF max

ns IOL = 32 ma max
3 .2.0 IOH = 5 ma max

3 1.5: ns
20 ns

0 20 ns

10 40 ns CL=150pF
10 40 ns IOL = 16 ma max
3 ~ ns IOH = -1 ma max

30 ns
3 30 ns

NOTE 1: Asychronous Inputs are INTR, NMI, HOLD, PEREQ, ERROR, AND BUSY This specificatIOn IS given only for testing purposes, to
assure recognitIOn at a specific elK edge

4-40 210253-007

iAPX 286/10

WAVEFORMS

MAJOR CYCL~ TIMING

READ
BUS CYCLE TYPE

eLK

S1 • so

AZ3-AO 7'rTT7"T7CrTT77'l"Ti'm,I,...+---l---+---I. ~;"'I:r-+---+---+----+"'''''''' ,...1---+----
M,IO, COOIINTA CLi.£.I..<..u...<J..L"-"-':J..I..I...I.t.'I'-+ __ -l ___ + __ -{'""-LUII'-!-__ -+ ___ +-__ -+f\L.Lf.I.f'-+-__ -+-':.... __

BHE,lOCK LLJ.:J..I..LLi...u...:J..I..LLJ.:J..I..LLi...u...LLi.J..1..,'I'-t ___ + ______ -r'(.LLi.I..VN-___ +-__ -+ ___ +.r~ __ +-_.::.... __

L

PCLK

ALE

CMDLY

MW"fC

i:
1;1

MRDC

DT'R

DEN

4-41 210253-007

· ~.®
I. ''6'

WAVEFORMS (Continued)

80286 ASYNCHRONOUS INPUT SIGNAL TIMING

BUS CYCLE TYPE

ClK

PCLK
(SEE NOTE 1.)

INTR,NMI
HOLb,PEREQ
(SEE NOTE 2.) J../.,j'..LL.I..I..I.'t'-LlJI'---1-Jl""'''''-L..L..lCLIJ..

ERROR,BUSY
(SEE NOTE 2.) J../.,j"l'_+.IJ"'..LL.I..I..I.~''-__ J'.I..I..I.''

iAPX 286/10

80286 RESET INPUT TIMING AND
SUBSEQUENT PROCESSOR CYCLE;PHASE

elK

RESET

ClK

RESET

NOTES:
NOTE 1: When RESET meets the setup time shown, the next ClK

will start or repeat </>2 of a processor cycle.
1. PClK indicates which processor cycle phase will occur on the

next ClK. PClK may not Indicate the correct phase until the first
bus cycle IS performed.

2. These Inputs are asynchronous. The setup and hold times shown
assure recognitio.n for testing purposes.

EXITING AND ENTERING HOLD

BUS CYCLE TYPE

ClK

HLOA ----+::::,,1

BHE,LOCK
A23 - lAo (SEE NOTE 5.)

M/ID, ~,-----------
COO/INTA

. (SEE NOTE 6.) 0 15 - Do ________ ' ________________ _

~[PClK .
-----'

NOTES:

(SEE NOTE 4.)

I "-'>..>..~~)-.::....::.:;="'-'~

1 These signals may not be dnven by the 80286 dUring the time shown. The worst case in terms of latest float time IS shown
2 The data bus Will be driven as shown If the last cycle before TI in the diagram was a write T C.
3 The 80286 floats Its status pms dUring T H External20Ko reSistors keep these signals high (see Table 16).
4 For HOLD request set up to HLDA. refer to Figure 29.
5 SHE and lOCK are driven at thiS time but Will not become valid until T S
6 The data bus will remain in 3-state OFF If a read cycle IS performed

4-42 210253-007

iAPX 286/10

WAVEFORMS (Continued)

80286 PEREQ/PEACK TIMING FOR ONE TRANSFER ONLY

BUS CYCLE TYPE

ClK

A23 - AO

MilO
CODJINTA

PEACK

PEREQ

ASSUMING WORD·ALlGNED MEMORY OPERAND. IF ODD ALIGNED, 80286 TRANSFERS TO/FROM MEMORY BYTE·AT·A·TIME WITH TWO MEMORY CYCLES.

NOTES:
1. PEACK always goes active during the first bus operation of a processor extension data operand transfer sequence. The first bus operation

Will be either a memory read at operand address or 1/0 read at port address OOFA(H)

2. To prevent a second processor extension data operand transfer, the worst case maximum time (Shown above) IS. 3X G) -@max
-0 m,n . The actual, configuration dependent, maximum time IS' 3X G) -@max-0m,n + A X 2 XG).
A is the number of extra T c states added to either the first or second bus operation of the processor extension data operand transfer
sequence.

INITIAL 80286 PIN STATE DURING RESET

BUS CYCLE TYPE

ClK

RESET
AT lEAST

16 ClK PERIODS

UNKNOWN

UNKNOWN
SHE

MilO
UNKNOWN

COD/INTA

LOCK UNKNOWN

DATA ------5S---------

IF HOLD IS NOT ACTIVE (SEE NOTE 4).
HLDA UNKNOWN

NOTES:
1 Setup time for RESET '[may be violated with the consideration that 01 of the processor clock may begin one system elK period later
2 Setup and hold times for RESET c must be met for proper operation, but RESET 1 may occur dUring ,,1 or ",2
3 The data bus IS only guaranteed to be In 3·state OFF at the time shown
4 HOLD IS acknowledged dUring RESET, causing HlDA to go active and the appropriate PinS to float If HOLD remains active while RESET goes

Inactive, the 80286 remains In HOLD state and Will not perform any bus accesses until HOLD IS de-actlVlated

4-43 210253-007

iAPX 286/10
I

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTES BYTES

r-'"T"T.,...;-nT""':;"r--TTT"'..";""";"'r'-r'-I --- - ---.,. -- -- -- -"'T - - - --- --y-- ------.,

I I I
LOW DISP/DATA I HIGH DISP/DATA I LOW DATA I HIGH DATA

'--_.,...;-_......,,...,.. ~---' - ______ - ______ • ___ - - - _~ __ - ____ ..I

REGISTER OPERAND/REGISTERS TO USE IN OFFSET CALCULATIO~

'---- REGISTER OPERAND/EXTENSION OF OPCODE
'------ REGISTER MODE/MEMORY MODE WITH DISPLACEMENT LENGTH

'------- WORD/BYTE OPERATION
'-------- DIRECTION IS TO REGISTER/DIRECTION IS FROM REGISTER

'----------- OPERATION (INSTRUCTION) CODE

A. SHORT OPCODE FORMAT EXAMPLE

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTES

B. LONG OPCODE FORMAT EXAMPLE

Figure 35. 80286 Instruction Format Examples

80286 INSTRUCTION SET SUMMARY
Instruction Timing Notes
The instruction clock counts listed below establish the
maximum execution rate of the 80286. With no delays in
bus cycles, the actual clock count of an 80286 program
will average 5% more than the calculated clock count,
due to instruction sequences which execute faster than
they can be fetched from memory.

To calculate elapsed times for instruction sequences,
multiply the sum of all instruction clock counts, as listed
in the table below, by the processor clock period. An 8
MHz processor clock has a clock period of 125 nanosec­
onds and requires an 80286 system clock (CLK input) of
16 MHz.

Instruction Clock Count Assumptions
1. The instruction has been prefetched, decoded, and

is ready for execution. Control transfer instruction clock
counts include all time required to fetch, decode, and
prepare the next instruction for execution.

2. Bus cycles do not require wait states.

3. There are no processor extension data transfer or
local bus HOLD requests.

4. No exceptions occur during instruction execution.

4-44

Instruction Set Summary Notes
Addressing displacements selected by the MOD field
are not shown. If necessary they appear after the in­
struction fields shown.

Above/below refers to unsigned value

Greater refers to positive signed value

Less refers to less positive (more negative) signed values

if d = 1 then to register; if d = 0 then from register

if w = 1 then word instruction; if w = 0 then byte
instruction

if s = 0 then 16-bit immediate data form the operand

if s = 1 then an immediate data byte is sign-extended
to form the 16-bit operand

x don't care

z used for string primitives for comparison with ZF
FLAG

If two clock counts are given, the smaller refers to a reg­
ister operand and the larger refers to a memory operand

• = add one clock if offset calculation requires sum-
ming 3 elements

n = number of times repeated

m = number of bytes of code in next instruction

Level (L)-Lexical nesting level of the procedure

210253-007

iAPX 286/10

The following comments describe possible exceptions,
side effects, and allowed usage for instructions in both
operating modes of the 80286.

REAL ADDRESS MODE ONLY

1. This is a protected mode instruction. Attempted ex­
ecution in real address mode will result in an unde­
fined opcode exception (6).

2. A segment overrun exception (13) will occur if a word
operand r~ference at offset FFFF(H) is attempted.

3. This instruction may be executed in real address
mode to initialize the CPU for protected mode.

4. The IOPL and NT fields will remain O.

5. Processor extension segment overrun interrupt (9)
will occur if the operand exceeds the segment limit.

EITHER MODE

6. An exception may occur, depending on the value of
the operand.

7. IT>CK is automatically asserted regardless of the
presence or absence of the LOCK instruction prefix.

8. LOCK does not remain active between all operand
transfers.

PROTECTED VIRTUAL ADDRESS MODE ONLY

9. A general protection exception (13) will occur if the
memory operand can not be used due to either a
segment limit or access rights violation. If a stack
segment limit is violated, a stack segment overrun
exception (12) occurs.

10. For segment load operations, the CPL, RPL, and
OPL must agree with privilege rules to avoid an ex­
ception. The segment must be present to avoid a

4-45

not-present exception (11). If the SS register is the
destination, and a segment not-present violation
occurs, a stack exception (12) occurs.

11. All segment descriptor accesses in the GOT or LOT
made by this instruction will automatically assert
IDCK to maintain descriptor integrity in mUltipro­
cessor systems.

12. JMP, CALL, INT, RET, IRET instructions referring to
another code segment will cause a general protec­
tion exception (13) if any privilege rule is violated.

13. A general protection exception (13) occurs if CPL
oF O.

14. A general protection exception (13) occurs if
CPL> IOPL.

15. The IF field of the flag word is not updated if
CPL > IOPL. The IOPL field is updated ... only if
CPL = O.

16. Any violation of privilege rules as applied to the se­
lector operand do not cause a protection exception;
rather, the instruction does not return a result and
the zero flag is cleared.

17. If the starting address ·of the memory operand vio­
lates a segment limit, or an invalid access is at­
tempted, a general protection exception (13) will
occur before the ESC instruction is executed. A stack
segment overrun exception (12) will occur if the stack
limit is violated by the operand's starting address. If
a segment limit is violated during an attempted data
transfer then a processor extension segment over­
run exception (9) occurs.

18. The destination of an INT, JMP, CALL, RET or
IRET instruction must be in the defined limit of
a code segment or a general protection excep­
tion (13) will occur.

210253-007

iAPX 286/10

80286 INSTRUCTION SET SUMMARY ""
CLOCK COUNT COMMENTS
Real Protected Real Protected

FUNCTION FORMAT Address Virtual Address Virtual
Mode Address Mode Address

Mode Mode

DATA TRANSFER
MOY = Move:
Reglsterto ReglsterlMemory 11 000100w mod reg, rim 2,3' 2,3' 2 9

ReglSterlmemory to register 11 OOOtOlw mod reg rim 2,5' 2,5' 2 9

Immediate to reglSterlmemory 11 1000 1 1 w mod 000 rim data I datalfw=1 I 2,3' 2,3' 2 9

Immediate to regIster 11 01 1 W reg data datalfw= 1 I 2 2

Memory to accumulator 11 010000w addr-Iow addr-hlgh I 5 5 t 9

Accumulator to memory 11 010001w addr-Iow addr-hlgh I 3 3 2 9

Reglsterlmemory to segment regISter 11 0001110 mod 0 reg rim 2,5' 17,19' 2 9,10,11

Segment regISter to reglSterlmemory 11 0001100 mod 0 reg rim , 2,3' 2,3' 2 9

PUSH = Push:
Memory 11 111111 1 I modll0 rim I 5' 5' 2 9

RegISter 10 1 0 1 0 reg I 3 3 2 9

Segment regISter 1000 reg 110 1 3 3 2 9

~.lmmdl!f' ,,' '" ~Io nOlO's 01 ,daIa I dala1t,t'" ° I '$; 3 .,2 ' 9 ','

PUIIM .. I'Ushldl 100't (HI 00 ~ I ~ ~, '" ,11 ' , 17 a '" 9,,,

POP = Pop:
Memory 11 00 0 1 11 11 modOOO rim I 5' 5' 2 9

RegISter 10 1 0 1 1 reg I 5 5 2 9

Segment regISter 10 00 reg 1 1 11 (reg ,,01) 5 20 2 9,10,11

IiOPA '" P1lj) All; " ! <", 10 l11HlOil 1 I ,> 19 19 2 j

XCHG = Exchange:
Reglsterlmemory with regISter 11 000011 wi mod reg rim I 3,5' 3,5' 2,7 7,9

RegISter with accumulator 11 00 1 0 reg I 3 3

IN = Input lrom:
Fixed port, 11 110010wl port I 5 5 14

vanable port 11 1 1 0 1 lOw I 5 5 14

OUT = Outputlo:
Fixed port 11 110D11w port I 3 3 14

vanable port 11 110111w 3 3 14

XLAT = Translate byte to AL 11 1 0 1 0 11 1 5 5 9

LEA = Load EA to "eglSter 11 0,0,01101 mod reg rim I 3' 3'

LOS = Load pointer to OS 11 1 0, 0, 0, 1 0, 1 mod reg rim I (mod'" 11) r 21' 2 9,10,,11

LES = Load pomter to ES 11 10,0,0,10,0, mod reg rim I (mod'" 11) r 21' 2 9,10,,11

LAHF = Load AH With flags 11 0, 0, 11 1 1 1 2 2

SAHF = Store AH Into flags 11 0,0,11110, 2 2

PUSHF = Push flags 11 0, 0, 1 1 1 0, 0, 3 3 2 9

POPF = Pop flags 11 0,0,11'101 5 5 2,4 9,15

Shaded areas indicate instructions not aval able in iAPX 86,88 microsystelT)s,

4-46 210253-007

iAPX 286/10

80286 INSTRUCTION SET SUMMARY (Continued)
CLOCK COUNT COMMENTS
Real Prolecled Real Protected

FUNCTION FORMAT Address Virtual Address Virtual
Mode Address Mode Address

Mode Mode

ARITHMETIC
ADD = Add:
Reglmemory with regISter to either 1000000dwi mod reg rim I 2,7' 2,7" 2 9

Immediate to register/memory 1100000swl modOOO rim I data I datallsw=OI I 3,7' 3,7" 2 9

Immediate to accumulator 10000010wl data I data Ilw= 1 I 3 3

ADC = Add with carry:
Reglmemory with regISter to either 10 0 0 1 0 0 d w I mod reg rim I 2,7' 2,7" 2 9

Immediate to register/memory 1100000swi modO 1 0 rim I data I datallsw=OI I 3,7' 3,7" 2 9

Immediate to accumulator 10001010wl data I data Ilw= 1 I 3 3

INC = Increment:
ReglSterlmemory 11 111111 wi modOOO rim I 2,7" 2,7" 2 9

RegISter 10 1 0 0 0 reg I 2 2

SUB = Subtract:
Reglmemory and regISter to either 1001010dwi mod reg rim I 2,7' 2,7" 2 9

Immediate lrom reglSterlmemory 1100000swl mod 101 rim I data I datallsw=OI I 3,7" 3,7" 2 9

Immediate from accumulator 10 0 1 o t lOw I data I datalfw=1 I 3 3

SBB = Subtract with borrow:
Reglmemory and regISter to either 10 00110dwl mod reg rim I 2,7' 2,7' 2 9

Immediate from register/memory 1100000swl mod 0 11 rim I data I datallsw=OI I 3,7' 3,7' 2 9

Immediate from accumulator IOOO1110wl data I datallw=1 I 3 3

DEC = Decrement:
ReglSterlmemory 11 111111 wi modOOl rim I 2,7' 2,7' 2 9

RegISter 10 1 0 0 1 reg I 2 2

CMP=Compare'
ReglSterlmemory with regISter 10 0 1 1 1 0 1 wi mod reg rim I 2,6' 2,6' 2 9

RegISter with reglSterlmemory 10011100wl mod reg rim I 2,7" 2,7' 2 9

Immediate with reglSterlmemory 1100000swi mod 111 rim I data I datallsw=OI I 3,6' 3,6' 2 9

Immediate with accumulator 10 01 1 1 lOw I data I datall W= 1 I 3 3

NEG = Change Sign 11 11 1 01 1 wi mod 0 11 rim I 2 7' 2 7

AM = ASCII adlust lor add 10 0 1 1 0 1 1 11 3 3

DAA= DeCimal adlust lor add 10 0 1 0 0 1 1 11 3 3

AAS = ASCII adjust lorsubtract 10 0 1 1 1 1 1 11 3 3

DAS = D~clmal adlust lor subtract 10 o 1 0 1 1 1 11 3 3

MUL = Multiply (unSigned) 11 1 1 1 0 1 1 wi mod 1 00 rim I
Register-Byte 13 13
Register-Word 21 21
Memory-Byte 16' 16' 2 9
Memory-Word 24' 24' 2 9

IMUL = Integer multiply (Signed) 11 1 1 1 0 1 1 wi mod 1 01 rim I
RegISter-Byte 13 13
RegISter-Word 21 21
Memory-Byte 16' 16' 2 9
Memory-Word 24' 24' 2 9

, 1MUl= Integer Immediate multiply c/o U 0,1 Os 11 mod!!!l rim I data
($igftod) I datajls=O J 21,24' 21,24* 2 9

DlV = D,v,de (unSigned) 11 1 1 1 0 1 1 wi mod 11 0 rim I
RegISter-Byte 14 14 6 6
RegISter-Word 22 22 6 6
Memory-Byte 17' 17" 2,6 6,9
Memory-Word 25' 25' 2,6 6,9

Shaded areas Indicate instructions not available in IAPX 86, 88 microsystems.

4-47 210253-007

iAPX 286/10

80286 INSTRUCTION SEt SUMMARY (Continued)

FUNCTION

ARITHMETIC (Continued):

IDIV ~ Integer divide (Signed)
Register-Byte
Register-Word
Memory-Byte
Memory-Word
AAM ~ ASCII adlust for multiply

AAD ~ ASCII adjust for divide

caw ~ Convert byte to word

CWD ~ Convert word to double word

LOGIC
ShiftlRotate Instructions'
ReglsterlMemory by 1

ReglsterlMemory by CL

'1le!llmrlMemory by'COUrrt

AND=And:
Reglmemory and register to either

Immediate to register/memory

Immediate to accumulator

TEST = And function to flags, no result:
Reglsterlmemory and register

Immediate data and reglsterlmemory

Immediate data and accumulator

OR=Or:
Reg/memory and register to either

Immediate to reglsterlmemory

Immediate to accumulator

XOR = Exclusive or:
Reglmemory and register to either

Immediate to register/memory

Immediate to accumulator

NOT ~ Invert reglster/memory

STRING MANIPULATION:
!IIOVS ~ Move bytelword

CMPS ~ Compare bytelword

SCAS ~ Scan byte/word

LODS ~ Load bytelwd to AUAX

STOS ~ Stor bytelwd from AUA

.~ It\gut byte/yIIllfumo}(pelf
OUT$"' O\Ifput ~l1imito Ox~' ' ,

FORMAT

11 1 1 1 01 1 wi mod 111 rim

11 10101001000010101

11 101()'1011000010101

11 00 1 1 00 0 I
11 00 1 1 00 1 I

11 1 0 1 000 w I mod m rim I
11 1 0 1 001 w I mod m rim I

11 1 000 D(} wI
TTT Instruction

o 0 0 ROL
o 0 1 ROR
o 1 0 RCL
o 1 1 RCR
1 0 0 SHUSAL
1 0 1 SHR
1 1 1 SAR

1001000dwi mod reg rim

11000000wl mod 1 00 rim data

IOO10010wl data dat.,fw ~ 1

11 0OOO10wl mod reg rim

11 11 1 011 wi modOOO rim data

11 010100wl data dat"fw~ 1

IOOOO10dwi mod reg rim

11000000wl modOOl rim data

10000110wl data data\fw~ 1

IOO1100dwi mod reg rim

11000000wl mod 1 t 0 rim data

10011010wl data data\fw~ 1

11 1 1 1 0 1 1 wi modOl0 rim

11 010010wl

11 01 00 1 1 wi

11 01 0 1 1 1 wi

dataifw~1

dat.,f w~ 1

data\fw~1

data\fw~1

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

4-48

CLOCK COUNT
Real

Address
Mode

17
25
20'
28'
16

14

2

2,7"

5+',8+,'

2,7"

3,7'

2,S'

3,S'

3

2,7'

3,7'

2,7'

3,7'

2,7'

Protected
Virtual

Address
Mode

17
25
20'
28'
16

14

2,7'

5+',8+,'

2,7'

3,7"

3

2,S'

3,S'

2,7'

3,7'

3

2,7'

3,7'

3

2,7'

COMMENTS
Real Protected

Address Virtual
Mode Address

Mode

6 6
6 6

2,6 6,9
2,S 6,9

210253-007

iAPX 286/10

80286 INSTRUCTION SET SUMMARY (Continued) -
CLOCK COUNT COMMENTS

Real Protected Real Protected

FUNCTION FORMAT Address Virtual Address Virtual
Mode Address Mode Address

Mode Mode
STRING MANIPULATION (Continued):
Repeated by count In CX
MOVS ~ Move string 11 11 1 0 0 1 0 11010010wl 5+4n 5+4n 2 9

CMPS ~ Compare string 11 11 1 0 0 1 z 11 0 1 00 1 1 wi 5+9n 5+9n 2,8 8,9·

SCAS ~ Scan string 11 1 1 1 0 0 1 z 11 0 1 0 1 1 1 wi 5+8n 5+8n 2,8 8,9

LOOS ~ Load string 11 1 1 1 0 0 1 0 11 0 1 0 1 lOw I 5+4n 5+4n 2,8 8,9

STOS ~ Store string 11 1 1 1 0 0 1 o 11010101wl 4+3n 4+3n 2,8 8,9

::=~:)1 11 t'O 0 lD 10,' , ;:~:\1i~N:~ "',~'t:~ J~::; t ;:.'2\(r;~\~~~(",' \
'11H1Ul l,~l11Wl' ,'+AtI '<.sWf4n ' ')j:::,: . ,:

CONTROL TRANSFER

CALL~Call:

DIrect wlthm segment 11 1 1 0 1 00 0 I dlsp-Iow I dlsp-hlgh I 7+m 7+m 2 18

ReQlster/memory 11 111111 1 I mod 0 10 rim I 7+m,ll+m' 7+m,11+m' 2,8 8,9,18
indirect Within segment
Direct mtersegment 11 o 0 1 1 0 1 0 I segment offset I 13+m 2il+m 2 11,12,18

I segment selector I
Protected Mode Only (Direct intersegment):

Via call gate to same privilege level 41+m 8,11,12,18
Via call gate to different privilege level, no parameters 82+m 8,11,12,18
Via call gate to different privilege level, x parameters Bti+4x+m 8,11,12,18

V,aTSS l77+m 8,11,12,18

Via task gate 182+m 8,11,12,18

Indirect tntersegment 11 11 11111 I mod 0 11 rim I (mod" 11) 16+m 29+m' 2 8,9,11,12,18

Protected Mode Only (Indirect intersegment):
Via call gate to same privilege level 44+m' 8,9,11,12,18

Via call gate to different privilege level, no parameters 83+m' 8,9,11,12,18
Via call gate to different privilege level, x parameters 90+4>+m' 8,9,11,12,18
VIaTSS 180+m' 8,9,11,12,18
Via task gate 185+m' 8,9,11,12,18

JMP ~ Unconditional jump:
Short/long 11 1 1 0 1 0 1 1 I dlsp-Iow I 7+m 7+JI1 18

Direct Within segment 11 1 1 0 1 00 1 I dlsp-Iow I dlsp-high I 7+m 7+m 18

Reglsterlmemory ",direct Within segment I 1 111111 1 I mod 1 00 rim I 7+m,ll+m' 7+m,ll+m' 2 9,18

Direct ",tersegment 11 1 1 0 1 0 1 o I segment offset I 11 +m 23+m 11,12,18

I segment selector I
Protected Mode Only (Direct intersegment):

Via call gate to same privilege level . 38+m 8,11,12,18

Via TSS 175+m 8,11,12,18

Via task gate 180+m 8,11,12,18

Indirect intersegment 11 1111111 I mod 1 01 rim I (mod" 11) 15+m' 26+m' 2 8,9,11,12,18

Protected Mode Only (Indirect Intersegment):
Via call gate to same privilege level 41+m' 8,9,11,12,18
VIaTSS 178+m' 8,9,11,12,18
Via task gate 183+m' 8,9,11,12,18

RET ; Return from CALL:
Within segment 11 1 0 0 0 0 1 1 I 11+m 11+m 2 8,9,18

Within seg adding immed to SP 11 1 0 0 0 0 1 01 data-low I data-high I II+m 11+m 2 8,9,18

Intersegment 11 1 0 0 1 0 1 11 15+m 25+m 2 8,9,11,12,18

Intersegment adding immediate to SP 11 1 0 0 1 0 1 o I data-low I data-high I 15+m 2 8,9,11,12,18 .
Protected Mode Only (RET):

To different privilege level 55+m 9,11,12,18

Shaded areas indicate instructions not available in iAPX 86,88 microsystems_

4-49 210253-007

I . "l1teIe IAPl;(286/10 ~@W~OO©I§ OOO[F@ffi1[M)~ii'O@OO

80286 INSTRUCTION SET ..
Re.1 Reel Protected

FUNCTION FORMAT Addn.s Addn81 VlrlUal
Made Mode Addn81

MOde

JElJZ=JumponequaJ/l8ro 10 11.1 01 0 0 disp 7+mor3 7+mor3 18
J'{JNGE = Jumpon IessIootgrealerorequ~ 10 11 1 1 1 0 0 dlsp 7+mor3 7+mor3 18
JLElJNG =Jumpon less orequallnotgrealer 10 11 1 1 1 1 0 disp 7+mor3 7+mor3 18
JBlJNAE = Jump onbeioo/notaboYe orequ~ 10 11 1 001 0 dlsp 7+mor3 7+mor3 18
JBElJNA= JumponbelOOOlequalJnotabove 10 1 1 1 01 1 0 dlsp 7+mor3 7+mor3 18
JP/JPE= JllnponpantylpantyMII 10 11 1 1 01 0 dlsp 7+mor3 7+mor3 18
JO = Jump onoverlllw 10 1 1 1 0 0 0 0 disp 7+mor3 7+mor3 18
JS=JumpooslJi 10 1 1 1 1 00 0 dlsp 7+mor3 7+mor3 18
JNElJNZ = Jumpon notequaVnot18ro 10 1 1 1 01'0 1 dlsp 7+mor3 7+mor3 18
JNLlJGE = Jumpon notlesslgreaterorequal 10 11 1 1 1 0 1 dlsp 7+mor3 7+mor3 18

JNLElJG = Jumpon notlessorlQlllilgrealer 10 11 1 1 1 1 1 disp 7+mor3 7+mor3 18

JNB/JAE =Jumpoo notbelowlaboveorequal 10 11 1 001 1 I disp 7+mor3 7+mor3 18

JNBElJA= Jumponnotbeloworequallabove 10 11 1 01 1 1 dlsp 7+mor3 7+mor3 18

JNP/JPO = Jump oonotparlparlidd 10 11 1 1 01 1 dlsp 7+mor3 7+mor3 18

JNO=.ltlnponnotoverlow 10 11 1 000 1 dlsp 7+mor3 7+mor3 18

JNS=Jumponnot~gn 10 1 1 1 1 00 1 dlsp 7+mor3 7+mor3 18

LOOP = loo!i CX1Jmes 11 1 1 0 0 0 1 0 dlsp 8+mor4 8+mor4 18

LOOPZlLOOPE = loopWhiezeroiequai 11 1 1 0 0 0 0 1 disp 8+mor4 8+mor4 18

LOOPllZlLOOPNE = ~ MIle not zero/equal 11 HOOOOO disp 8+mor4 8+mor4 18

JC:XZ = Jump 00 CX zero 11 11 0001 1 drsp 8+mor4 8+mor4 18.

2,&· 8.!1 .J.8 $,9
2,8 1/,'
U .8.9

INT= Intel'fllpt
Type specified 11 1001 1 0 1 I type 23+m 2,7,8

lYpe3 11 1001 1 0 0 I 23"tm 2,7,8

INTO = Inlerrupl on overflow 11 1001 1 1 0 I 2l+mor3 2,6,8
(3dno (3dno

Pnlecled Made Only: Ilttrrupti InIlmrpfj

Via interrupt or lrap gate to same privilege level 4O+m 7,8,11,12,18
Via interrupt ortrap gate to 111 different privilege level 78+m 7,8,11,12,18
Via Task Gate 167+m 7,8,11,12,18

IRET = Interrupt return 11 1001 11 11 17+m 31+m 2,4 8,9,11,12,15,18

PnIIecIe. Mode Only:
To different privilege level 55+m 8,9,11,12,15,18
To dlfferenllesk (NT = 1) 169+m 8,9,11,12,18

Wlttt.lt

Shaded areas indicate instructions not available in iAPX 86,88 microsystems.

.,

4-50 210253-007

80286 INSTRUCTION SET SUMMARY

FUNCTION

PROCESSOR CONTROL
CLC = Clear carry

CMC = Complement carry

sre = Set carry

CLD = Clear direction

sm = Set direction

CLI = Clear Interrupt

STt = Set interrupt

HLT=Halt

WAIT = wait

LOCK = Bus lock prefix

ESC = Processor Extension Escape

FORMAT

11 1 1 1 1 00 0 I
11 1 1 1 01 0 1 I
11 1 1 1 1 00 1 I
11 1 1 1 1 1 0 0 I
11 1 1 1 1 1 0 1 I
11 1 1 1 1 0 1 0 I
11 1 1 1 1 0 1 1 I
11 1 1 1 0 1 0 0 I
11 00 1 1 0 1 1 I
11 1 1 1 0 0 0 0 I

iAPX 286/10

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

4-51

Real
Address

Mode

Protected
Vtrtuat

Addres.
Mode

9-20'

Reel
Address

Mode

5,8

Protected
Vlrt •• 1
Addre ••
Mode

14

14

13

14

8,17

, 9.13
il

$,13

il

9,11,13

9

9.11.13

9

9.t3
9

9,11.16

9,11,1.

8,9
9,11,16

9,lf.18

210253-007

iAPX 286/10

The effective Address (EA) of the memory operand is
computed according to the mod and rim fields:

if mod = 11 then rim is treated as a REG field

if mod = 00 then OISP = 0', disp-Iow and disp-high

are absent

if mod = 01 then OISP = disp-Iow sign-extended to

16-bits, disp-high is absent

if mod = 10 then OISP = disp-high: disp-Iow

if rim = 000 then EA = (BX) + (SI) + OISP

if rim = 001 then EA = (BX) + (01) + OISP

if rim = 010 then EA = (BP) + (SI) + OISP

if rim = 011 then EA = (BP) + (01) + OISP

if rim = 100 then EA = (SI) + OISP

if rim = 101 then EA = (01) + OISP

if rim = 110 then EA = (BP) + OISP'

if rim = 111 then EA = (BX) + OISP

OISP follows 2nd byte of instruction (before data if
required)

'except if mod = 00 and rim = 110then EA = disp-hlgh.dlsp-Iow.

SEGMENT OVERRIDE PREFIX

10 0 1 reg 1 1 01

reg is assigned according to.the following:

reg
Segment
Register

00 ES
01 CS
10 SS
11 OS

REG is assigned according to the following table:

16-Bit (w = 1) a-Bit (w ;= 0)
000 AX 000 AL

001 CX

010 OX
011 BX

100 SP

101 BP

110 SI

111 01

001 CL

010 OL

011 BL

100 AH

101 CH

110 OH

111 BH

The physical addresses of all operands addressed by
the BP register are computed using the SS segment
register. The physical addresses of the destination op­
erands of the string primitive operations (those ad­
dressed by the 01 register) are computed using the ES

, segment, which may not be overridden.

4-52 210253-007

268-5400-51

PC BOARD PATTERN
~ .rPINNOl

~~1!~"t:~~~~ +0

~ ~E~;rATION .r+I FRONT
i% PIN ClR HOlE~ •

DEVICE PADS ! + /" FOR I .021 OIA + 00

SHOWN FOR -V7+1 (O.74)-r.1-Ii. ~54)
CONTACT F)- I'
LOCATION ~ ! /+I ;:) TVP

~~~~~~T ~~>-»»»~-!- t 
..:!1! ii ..... ~ •••••••• 1.00 

(0.31)., ti L Ii. ~ 1+ (2.54) TVP 
o .100 ----l .oaa :-:J (20.32) 

(0.51) I SPCS. ~ TOl NON ACCUM TVP 4 PlCS 

CONTACT TAil (2.54) 

IAPX 286/10 

268-5400-00 \0 

GUIDE BOSS 
3 PLes 

TEST PROBE POINT 

.342 
(8 .• 1) ;;:7.--! t ~JL~_ 
.100 :.~) TVP 5 PlCS 

(2.54) 

'\ 

J ------+I'f;---
-'tSOCKET LIENTATION PIN q'" 

I ~ 

~ 
I 

ALUMINUM LID 
(HEATSINK PROVISIONS OPTIONAL) 

Ii. 

Figure 36. Textool 68 Lead Chip Carrier Socket 

4 ... 53 

INDEX 

Ii.-.FRONT 

\ 
OPEN 

210253-007 



80287 
80-Bit HMOS 

NUMERIC PROCESSOR EXTENSION 
80287-3 

• High Performance 80-Bit Internal 
Architecture 

• Implements Proposed IEEE Floating 
Point Standard 754 

• Expands iAPX 286/10 Datatypes to 
Include 32-, 64-, 80-Bit Floating Point, 
32-, 64-Bit Integers and 18-Digit BCD 
Operands 

• Object Code Compatible with 8087 

• BUilt-in Exception Handling 

• Operates in Both Real and Protected 
Mode iAPX 286 Systems 

• Protected Mode Operation Completely 
Conforms to the iAPX 286 Memory 
Management and Protection 
Mechanisms 

• Directly Extends iAPX 286/10 Instruction 
Set to Trigonometric, Logarithmic, 
Exponential and Arithmetic Instructions 
for All Datatypes 

• 8x80-Bit, Individually Addressable, 
Numeric Register Stack 

• Available in EXPRESS-Standard 
Temperature Range 

The Intel® 80287 is a high performance numerics processor extension that extends the iAPX 286/10 
architecture with floating point, extended integer and BCD data types. The iAPX 286/20 computing system 
(80286 with 80287) fully conforms to the proposed IEEE Floating Point Standard. Using a numerics 
oriented architecture, the 80287 adds over fifty mnemonics to the iAPX 286/20 instruction set, making the 
iAPX 286/20 a complete solution for high performance numeric processing. The 80287 is implemented in 
N-channel, depletion load, silicon gate technology (HMOS) and packaged in a 40-pin ceramic package. 
The iAPX 286/20 is object code compatible with the iAPX 86/20 and iAPX 88/20. 

8US INTERFACE UNIT NUMERIC EXECUTION UNIT 
T~~~--" 

- --~ "'"""""" 

~ ,", 

_ ~ _ L ______ ~-_ .~BI~~ _-~ _____ ~ ~ 

Figure 1. 80287 Block Diagram 

READY 

So CKM 
COD/INTA HLDA 

N.C. 4 CLK286 

DI. PEACK 

DI' RESET 

Ni'S1 
NPS2 

Vee CLK 

Vss CMD1 

Vss 
DID CMDO 
N.C. NPWR 

D9 NPRD 

ERROR 
D7 BUSY 
De PEREa 

DS DO 
D. 

D. D2 

NOTE: 
N.C. PINS MUST NOT BE CONNECTED. 

Figure 2. 80287 Pin Configuration 

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit 
Patent Licenses are Implied. January 1985 
© INTEL CORPORATION, 1983. Order Number: 210920-003 

4-54 



80287 

Table 1. 80287 Pin Description 

Symbols Type Name and Function 

ClK I Clock input: this clock provides the basic timing for internal 80287 opera-
tions. Special MOS level inputs are required. The 82284 or 8284A ClK 
outputs are compatible to this input. 

CKM I Clock Mode signal: indicates whether ClK input is to be divided by 3 or 
used directly. A HIGH input will cause ClK to be used directly. This input 
may be connected to Vcc or Vss as appropriate. This input must be either 
HIGH or lOW 20 ClK cycles before RESET goes lOW. 

RESET I System Reset: causes the 80287 to immediately terminate its present ac-
tivity and enter a dormant state. RESET is required to be HIGH for more than 
480287 ClK cycles. For proper initialization t~e HIGH-lOW transition must 
occur no sooner than 50 f.Ls after Vee and ClK meet their D.C. and A.C. 
specifications. 

015-00 I/O Data: 16-bit bidirectional data bus. Inputs to these pins may be applied 
asynchronous to the 80287 clock. 

BUSY 0 Busy status: asserted by the 80287 to indicate that it is currently executing 
a command. 

ERROR 0 Error status: reflects the ES bit of the status word. This signal indicates 
that an unmasked error condition exists. 

PEREa 0 Processor Extension Data Channel operand transfer request: a HIGH on 
this output indicates that the 80287 is ready to transfer data. PEREa will be 
disabled upon assertion of PEACK or upon actual data transfer, whichever 
occurs first, if no more transfers are required. 

PEACK I Processor Extension Data Channel operand transfer ACKnowledge: ack-
nowledges that the request signal (PEREa) has been recognized. Will 
cause the request (PEREa) to be withdrawn in case there are no more 
transfers required. PEACK may be asynchronous to the 80287 clock. 

NPRD I Numeric Processor Read: Enables transfer of data from the 80287. This 
input may be asynchronous to the 80287 clock. 

NPWR I Numeric Processor Write: Enables transfer of data to the 80287. This input 
may be asynchronous to the 80287 clock. 

NPS1, NPS2 I Numeric Processor Selects: indicate the CPU is performing an ESCAPE instruc-
tion. Concurrent assertion of these signals (i.e., NPSl is lOW and NPS2 is 
HIGH) enables the 80287 to perform floating point instructions. No data trans-
fers involving the 80287 will occur unless the device is selected via these 
lines. These inputs may be asynchronous to the 80287 clock. 

CMD1, CMDO I Command lines: These, along with select inputs, allow the CPU to direct the 
operation of the 80287-
These inputs may be asynchronous to' the 80287 clock. 

4-55 210920-003 



80287 

Table 1. 80287 Pin Description (cont.) 

Symbols Type Name and Function 

ClK286 I CPU Clock: This input provides a sampling edge for the 80287 inputs S1, SO, 
COD/INTA, READY, and HlDA. It must be connected to the 80286 ClK input. 

S1,SO I Status: These inputs must be connected to the corresponding 80286 pins. 
COD/INTA 

HlDA I Hold Acknowledge: This input informs the 80287 when the 80286 controls 
the local bus. It must be connected to the 80286 HlDA output. 

READY I Ready: The end of a bus cycle is signaled by this input. It must be connected 
to the 80286 READY input. 

VSS I System ground, both pins must be connected to ground. 

Vee I +5V supply 

FUNCTIONAL DESCRIPTION effectively extends the register and instruction set 
of an iAPX 286/10 system for existing iAPX 286 
data types and adds several new data types as well. 
Figure 3 presents the program visible register 
model of the iAPX 286/20. Essen~ially, the 80287 
can be treated as an additional resource or an 
extension to the iAPX 286/10 that can be used as a 
single unified system, the iAPX 286/20. 

The 80287 Numeric Processor Extension (NPX) 
provides arithmetic instructions for a variety of 
numeric data types in iAPX 286/20 systems. It also 
executes numerous built-in transcendental func­
tions (e.g., tangent and log functions). The 80287 
executes instructions in parallel with a 80286. It 

80286 

15 FILE: o I 79 78 

AX I R1 SIGN EXPONENT 
I BX R2 

CX I 
R3 

OX I 
R4 

51 I 
RS 

01 I 
RS 

BP I R7 
SP I R8 

I 
15 

L __ , 

o I 

I IP I : FLAGS 

15 

L ____ -., 

0 I 

;11 1 

I 
I 
I 
I 

80287 
STACK: 

64 63 

SIGNIFICAND 

15 

CONTROL REGISTER 

STATUS REGISTER 

TAG WORD 

I- INSTRUCTION POINTER -

I- DATA POINTER -

Figure 3. iAPX 286/20 Architecture 

4-56 

TAG FIELD 
0 1 0 

o 

210920-003 



80287 

The 80287 has two operating modes similar to the 
two modes of the 80286. When reset, 80287 is in 
the real address mode. It can be placed in the 
protected virtual address mode by executing .the 
SETPM ESC instruction. The 80287 cannot be 
switched back to the real address mode except by 
reset. In the real address mode, the iAPX 286/20 is 
completely software compatible with iAPX 86/20, 
88/20. 

Once in protected mode, all references to memory 
for numerics data or status information, obey the 
iAPX 286 memory management and protection 
rules giving a fully protected extension of the 
80286 CPU. In the protected mode, iAPX 286/20 
numerics software is also completely compatible 
with iAPX 86/20 and iAPX 88/20. 

SYSTEM CONFIGURATION 
As a processor extension to an 80286, the 80287 
can be connected to the CPU as shown in Figure 4. 
The data channel control Signals (PEREQ, 
PEACK), the BUSY Signal and the NPRD, NPWR 
signals, allow the NPX to receive instructions and 
data from the CPU. When in the protected mode, all 
information received by the NPX is validated by the 
80286 memory management and protection unit. 
Once started, the 80287 can process in parallel 
with and independent of the host CPU, When the 
NPX detects an error or exception, it will indicate 
this to the CPU by asserting the ERROR signal. 

The NPX uses the processor extension request and 
acknowledge pins of the 80286 CPU to implement 
data transfers with memory under the protection 
model of the CPU. The full virtual and physical 
address space of the 80286 is available. Data for 
the 80287 in memory is addressed and represented 
in the same manner as for an 8087. 

The 80287 can operate either directly from the CPU 
clock or with a dedicated clock. Foroperation with 
the CPU clock (CKM=O), the 80287 works at one­
third the frequency of the system clock (i.e., for an 
8 MHz 80286, the 16 MHz system clock is divided 
down to 5.3 MHz). The 80287 provides a capability 
to internally divide the CPU clock by three to pro­
duce the required internal clock (33% duty cycle). 
To use a higher performance 80287 (8 MHz), an 
8284A clock driver and appropriate crystal may be 
used to directly drive the 80287 with a 1/3 duty 
cycle clock on the ClK input (CKM=1). 

4-57 

HARDWARE INTERFACE 
Communication of instructions and data operands 
between the 80286 and 80287 is handled by the 
CMDO, CMD1, NPS1, NPS2, NJ5Ii[), and NJ5WR sig­
nals. lID port addresses 00F8H, OOFAH, and OOFCH 
are used by the 80286 for this communication. When 
any of these addresses are used, the NJ5S1 input 
must be lOW and NPS2 input HIGH. The IUIiC and 
inWC outputs of the 82288 identify 110 space trans­
fers (see Figure 4). CMDOshould be connected to 
latched 80286 A 1 and CMD1 should be connected to 
latched 80286 A2. The ST, 50, COD/JNTA,REAOY, 
HlDA, and ClK pins of the 80286 are connected to 
the same named pins on the 80287. 

I/O ports 00F8H to OOFFH are reserved for the 
80286/80287 interface. To guarantee correct oper­
ation of the 80287, programs must not perform any 
I/O operations to these ports. 

The PEREQ, PEACK, BUSY, and ERROR signals of 
the 80287 are connected to the same-named 80286 
input. The data pins 0.1 the 80287 should be directly 
connected to the 80286 data bus. Note that all bus 
drivers connected to the 80286 local bus must be 
inhibited when the 80286 reads from the 80287. 
The use of COD/INTA and M/ra in the decoder 
prevents INTA bus cycles from disabling the data 
transceivers. 

PROGRAMMING INTERFACE 
Table 2 lists the seven data types the 80287 sup­
ports and presents the format for each type. These 
values are stored in memory with the least signifi­
cant digits at the lowest memory address. Pro­
grams retrieve these values by generating the 
lowest address. All values should start at even 
addresses for maximum system performance. 

Internally the 80287 holds all numbers in the tem­
porary real format. load instructions automati­
cally convert operands represented in memory as 
16-, 32-, or 64~bit integers, 32- or 64-bit floating 
point number or 18-digit packed BCD numbers 
into temporary real format. Store instructions per­
form the reverse type conversion. 

80287 computations use the processor's register 
stack. These eight 80-bit registers provide the 
equivalent capacity of 40 16-bit registers. The 
80287 register set can be accessed as a stack, with 

210920-003 



inter 80287 

Vee 

20Kn 

RESET 
;; 

Vee 

a iiEADv 
82284 ClK -

"L:.- Si -
20Kn <;.' 20Kn 

So 

iiEADv 

~ 
I ADDRESS 

A'5-Ao 
'-~f-I RESET 

~--~~'::'--+-----~~~;~~~~~~~~~I<~~~~~[~~~~~~~!C~~~~<~-

~~~~--~~~ 
~~"",+-+-~~ClK ClK

Si ~H""""+-I---+-+-I 81 80286

So t-t-I-++-I--t-+--I So D,s-Do --M/iO t-t-I-++-r.-t-+--I M/iO

I- EFiRoR PEREa '-

82288 ~ BUSY PEACK ~
, COD/iN'i'A HlDA A2 A1 AO E1

r--- E2 8205

DEN _ I....,;E:;:3~ __ ..;;G,f_ ...

~4-~1 r-----~
DT/R

ALE
iOWC IORC

1-C-+--I--_----IICl:

~ra
COD/INTA HlDA

'---t-H RESET PEACK - ~

'---t-i-l READY PEREa - <>----I-I--1HOE

D D

a a

'-+---+-+--181 D,s-Do -DATA 8:6
t---I-+-I ClK286 T =>

'---+--++-1 So 80287 t------------------r-r-......-t 8287

'-----+----+-+-1 NPRD NPS2 -Vee -

'-------I--~~-iNPWR NPS1t---------~
~ ERROR CMD1 t-------------'

~ BUSY CMDOt---------------~
ClK CKM

r----,
:r:--, , /
C' 8284A ------<>' :i:_J , L ___ -'

Figure 4, iAPX 286/20 System Configuration

4-58 210920-003

$0287

Table 2. 80287 Datatype Representation in Memory

Most Significant Byte HIGHEST ADDRESSED BYTE
Data

Formats
Range Precision

017 017 017 017 017 017 017 017 017 01 7

Word Integer 104 16 Bits I (TWO'S
COMPLEMENT)

15 0

Short Integer 109 32 Bits I (TWO'S
COMPLEMENT)

31 0

.Long Integer 1019 64 Bits I (TWO'S
COMPLEMENT)

63 0

MAGNITUDE
Packed BCD 1018 18 Digits sl x I d17 d 1b d 15 d 14 d 13 d 12 d 11 dlO d 9 dB d 7 d, d s d, d J d 2 d,

79 72

Short Real 10±38 24 Bits ;1 BIASED I
5 EXPONENT SIGNIFICAND I
31 23'- I. 0

Long Real 10±308 53 Bits sl BIASED I SIGNIFICAND I EXPONENT

63 52'- 0 I.

BIASED Temporary Real 10±4932 64 Bits sl EXPONENT hl SIGNIFICAND

NOTES:
(1) S = Sign bit (0 = positive, 1 = negative)
(2) dn = Decimal digit (two per byte)

79

(3) X = Bits have no significance; 8087 ignores when load­
ing, zeros when storing.

(4) • = Position of implicit binary point
(5) I = Integer bit of significand; stored in temporary real,

implicit in short and long real

instructions operating on the top one or two stack
elements, or as a fixed register set, with instruc­
tions operating on explicitly designated registers.

Table 6 lists the 80287's instructions by class. No
special programming tools are necessary to use
the 80287 since all new instructions and data types
are directly supported by the iAPX 286 assembler

4-59

64 63"

(6) Exponent Bias (normalized values):
Short Real: 127 (7FH)
Long Real: 1023 (3FFH)
Temporary Real: 16383 (3FFFH)

(7) Packed BCD: (-l)s(D17 ... 00)

(8) Real: (-1)S(2E-BIAS)(Fo F1 ...)

and appropriate high level languages. All iAPX
86/88 development tools which support the 8087
can also be used to develop software for the iAPX
286/20 in real address mode.

Table 3 gives the execution times of some typical
numeric instructions.

210920-003

do I
0

I
0

80287

Table 3. Execution Time for Selected 80287 Instructions

Floating Point Instruction

Add/Subtract

Multiply (single precision)

Multiply (extended precision)

Divide

Compare

Load (double precision)

Store (double precision)

Square Root

Tangent

Exponentiation

SOFTWARE INTERFACE
The iAPX 286/20 is programmed as a single pro­
cessor. All communication between the 80286 and
the 80287 is transparent to software. The CPU au­
tomatically controls the 80287 whenever a numeric
instruction is executed. All memory addressing
modes, physical memory, and virtual memory of .
the CPU are avail~ble for use by the NPX.

Since the NPX operates in parallel with the CPU,
any errors detected by the NPX may be reported
after the CPU has executed the ESCAPE instruc­
tion which caused it. To allow identification of the
failing numeric instruction, the NPX contains two
pointer registers which identify the address of the
failing numeric instruction and the numeric
memory operand if appropriate for the instruction
encountering this error.

INTERRUPT DESCRIPTION

Several interrupts of the iAPX 286 are used to
report exceptional conditions while executing
numeric programs in either real or protecteq
mode. The interrupts and their functions are
shown in Table 4. .

4-60

Approximate Execution
Time (J.Ls)

80287
(5 MHz Operation)

14/18

19

27

39

9

10

21

36

90

100

PROCESSOR ARCHITECTURE
As shown in Figure 1, the NPX is internally divided
into two processing elements, the bus interface
unit (BIU) and the numeric execution unit (NEU).
The NEU executes all numeric instructions, while
the BIU receives and decodes instructions,' re­
quests operand transfers to and from memory and
executes processor control instructions. The two
units are able to operate independently of one
another allowing the BIU to maintain asynchro­
nous communication with the CPU while the NEU
is busy processing a numeric instruction.

BUS INTERFACE UNIT
The BIU decodes the ESC instruction executed by the
CPU. If the ESC code defines a math instruction, the
BIU transmits the formatted instruction to the NEU. If
the ESC code defines an administrative instruction,
the BIU executes it independently of the NEU. The
parallel operation of the NPX with the CPU is normally
transparant to the user. The BIU generates the BOSY
and ERROR signals for 80826/80287 processor syn­
chronization and error notification, respectively.

The 80287 executes a single numeric instruction at
a time. When executing most ESC instructions, the

210920-003

80287

Table 4. 80286 Interrupt Vectors Reserved for NPX

Interrupt Number Interrupt Function

7 An ESC instruction was encountered when EM or TS of the 80286 MSW was set.
EM=1 indicates that software emulation of the instruction is required. When TS is
set, either an ESC or WAIT instruction will cause interrupt 7. This indicates that the
current NPX context may not belong to the current task.

9 The second or subsequent words of a numeric operand in memory exceeded a
segment's limit. This interrupt occurs after executing an ESC instruction. The saved
return address will not point at the numeric instruction causing this interrupt. After
processing the addressing error, the iAPX 286 program can be restarted at the
return address with IRET. The address of the failing numeric instruction and
numeric operand are saved in the 80287. An interrupt handler for this interruptmust
execute FNINIT before any other ESC or WAIT instruction.

13 The starting address of a numeric operand is not in the segment's limit. The return
address will point at the ESC instruction, including prefixes, causing this error. The
80287 has not executed this instruction. The instruction and data address in 80287
refer to a previous, correctly executed, instruction.

16 The previous numeric instruction caused an unmasked numeric error. The address
of the faulty numeric instruction or numeric data operand is stored in the 80287.
Only ESC or WAIT instructions can cause this interrupt. The 80286 return address
will point at a WAIT or ESC instruction, including prefixes, which may be restarted
after clearing the error condition in the NPX.

80286 tests the eosY pin and waits until the 80287
indicates that it is not busy before initiating the com­
mand. Once initiated, the 80286 continues program
execution while the 80287 executes the ESC instruc­
tion. In iAPX 86/20 systems, this synchronization is
achieved by placing a WAIT instruction before an ESC
instruction. For most ESC instructions, the iAPX 286/20
does not require a WAIT instruction before the ESC
opcode. However, the iAPX 286/20 will operate cor­
rectly with these WAIT instructions. In all cases, a WAIT
or ESC instruction should be inserted after any 80287
store to memory (except FSTSW and FSTCW) or load
from memory (except FLDENV or FRSTOR) before the
80286 reads or changes the value to be sure the
numeric value has already been written or read by
the NPX.

Data transfers between memory and the 80287,
when needed, are controlled by the PEREQ
PEACK, NPRD, NPWR, NPS1, NPS2 signals. The
80286 does the actual data transfer with memory
through its processor extension data channel.
Numeric data transfers with memory performed by
the 80286 use the same timing as any other bus

4-61

cycle. Control signals for the 80287 are generated
by the 80826 as shown in Figure 4, and meet the
timing requirements shown in the AC require­
ments section.

NUMERIC EXECUTION UNIT
The NEU executes all instructions that involve the
register stack; these include arithmetic, logical, tran­
scendental, constant and data transfer instructions.
The data path in the NEU is 84 bits wide (68 signifi­
cand bits, 15 exponent bits and a sign bit) which
allows internal operand transfers to be performed at
very high speeds.

When the NEU begins executing an instruction, it
activates the BIU BUSY signal. This signal is used
in conjunction with the CPU WAIT instruction or
automatically with most of the ESC instructions to
synchronize both processors.

REGISTER SET
The 80287 register set is shown in Figure 5. Each of
the eight data registers in the 8087's register stack

210920-003

"n+_I®
. III-e- 80287

_ DATA FIELD TAG FIELD

~~79~r7~8~~~~6~4r6~3 __ ~~~==~~ ____ -10 1 0
SIGN EXPONENT SIGNIFICAND

15 o
CONTROL REGISTER
STATUS REGISTER

TAG WORD

r- INSTRUCTION POINTER -

t- DATA POINTER -

Figure 5. 80287 Register Set

is 80 bits wide and is divided into "fields" corre­
sponding to the NPX's temporary real data type.

At a given point in time the TOP field in the status
word identifies the current top-of-stack register. A
"push" operation decrements TOP by 1 and loadsa
value into the new top register. A "pop" operation
stores the value from the current top register and
then increments TOP by 1. Like 80286 Stacks in
memory, the 80287 register stack grows "down"
toward lower-addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the TOP of the stack. These instructions
implicitly address the register pointed by the TOP.
Other instructions allow the programmer to explicitly
specify the register which is to be used. T\1is explicit
register addressing is also "top-relative."

STATUS WORD
The 16-bit status word (in the status register)
shown in Figure 6 reflects the overall state of the
80287. It may be read and inspected by CPU code.
The busy bit (bit 15) indicates whether the NEU is
executing an instruction (B = 1) or is idle (B = 0).

4-62

The instructions FSTSW, FSTSW AX, FSTENV, and
FSAVE which store the status word are executed
exclusively by the BIU and do not set the busy bit
themselves or require the Busy bit be cleared in
order to be executed.

The four numeric condition code bits (CO-C3) are
similar to the flags in a CPU: instructions that perform
arithmetic operations update these bits to reflect the
outcome of NPX operations. The effect of these
instructions on the condition code bits is summarized
in T~bles 5a and 5b.

Bits 14-12 of the status word pOint to the 80287 regis­
ter that is the current top-of-stack (TOP) as described
above. Figure 6 shows the six error flags in bits 5-0 of
the status word. Bits 5-0 are set to indicate that the
NEU has detected an exception while executing an
instruction. The section on exception handling explains
how they are set and used.

Bit 7 is the error summary status bit. This bit is set il
any unmasked exception bit is set and cleared other­
wise. II this bit is set, the ERROR signal is asserted.

210920-003 I

"nt_I'" 111'eII ' 80287

15 o

I B 1c..1 TOP ICd C, ICoIESI X IPEluEloElzEIDEI rEI .
I EXCE PTION FLAGS (1 ~ EXCEPTION HAS OCCURRED)

INVALID OPERATION'

DENORMALIZED OPERAND'

ZERO DIVIDE'

OVERFLOW'

UNDERFLOW'

PRECISION'

(RESE RVED)

ERRO R SUM!IIARY STATUS!')

1TI01i! COD.:'2) COND

TOP

NEU

OF STACK POINTER(3)

BUSY

g:ES IS SET IF ANY UNMASKED EXCEPTION BIT IS SET, CLEARED OTHERWISE.
(3)~g~ ~~~b~~ FOR CONDITION CODE INTERPRETATION.

000 ~ Register 0 is Top of Stack
001 ~ Register 1 is Top of Stack

"
" 111 ~ Register 7 Is Top of Stack

"For definitions, see the section on exception handling

Figure 6. 80287 Status Word

TAG WORD

The tag word marks the content of each register as
shown in Figure 7. The principal function of the tag
word is to optimize the NPX's performance. The eight
two-bit tags in the tag word can be used, however, to
interpret the contents of 80287 registers.

INSTRUCTION AND DATA POINTERS

The instruction and data pointers (See Figures 8a
and 8b) are provided for user-written error hand­
lers. Whenever the 80287 executes a new instruc­
tion, the BIU saves the instruction address, the
operand address (If present) and the instruction
opcode. 80287 instructions can store this data into
memory.

The instruction and data pointers appear in one of
two formats depending on the operating mode of
the 80287. In real mode, these values are the 20-bit
physical address and 11-bit opcode formatted like
the 8087. In protected mode, these values are the
32-bit virtual addresses used by the program

4-63

which executed an ESC instruction. The same
FLDENV/FSTENV/FSAVE/FRSTOR instructions as
those of the 8087 are used to transfer these values
between the 80287 registers and memory.

The saved instruction address in the 80287 will
point at any prefixes which preceded the instruc­
tion. This is different than in the 8087 which only
pointed at the ESCAPE instruction opcode.

CONTROL WORD

The NPX provides several processing options
which are selected by loading a word from memory
into the control word. Figure 9 shows the format
and encoding of fields in the control word.

The low order byte of this control word configures
the 80287 error and exception masking. Bits 5-0 of
the control word contain individual masks for each
of the six exceptions that the 80287 recognizes.
The high order byte of the control word configures
the 80287 operating mode including precision,

210920-003

80287

Table Sa. Condition Code Interpretation

Instruction
Cs ~ Type

Compare, Test 0 0
0 0
1 0
1 1

Remainder 01 0

U '1

Examine 0 0
0 0
0 0
0 0
0 "- 1
0

,
1

0 1
0 1
1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1

NOTES:
1. ST = Top of stack
2. X = value is not affected by instruction
3. U = value is undefined following instruction
4. Qn = Quotient bit n

Table 5b. Condition Code Interpretation after
FPREM Instruction As a Function of

Dividend Value

Dividend Range ~ Q1 00
Dividend < 2 • Modulus Ca C1 00
Dividend < 4 • Modulus Ca 01 00
Dividend ~ 4 • Modulus 02 01 00

NOTE:

C1

X
X
X
X

00

U

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

1. Previous value of indicated bit, not affected by FPREM
instruction execution.

Co Interpretation

0 ST > Source or 0 (FTST)
1 ST < Source or 0 (FTST)
0 ST = Source or 0 (FTST)
1 ST is not comparable

~ Complete reduction with
three low bits of quotient
(See Table 5b)

U Incomplete Reduction

0 Valid, positive unnormalized
1 Invalid, positive, exponent =0
0 Valid, negative, un normalized
1 Invalid"negative, exponent =0
0 Valid, positive, normalized ,
1 Infinity, positive
0 Valid, negative, normalized
1 Infinity, negative
0 Zero, positive
1 Empty
0 Zero, negative
1 Empty
0 Invalid, positive, exponent = 0
1 Empty
0 Invalid, negative, exponent = 0
1 Empty

rounding, and infinity control. The precision con­
trol bits (bits 9-8) can be used to set the 80287
internal operating precision at less than the
default of temporary real (80-bit) precision. This
can be useful in providing compatibility with the
early generation arithmetic processors of smaller
precision than the 80287. The rounding control
bits (bits 11-10) provide for directed rounding and
true chop as well as the unbiased round to nearest
even mode specified in the IEEE standard. Control
over closure of the number space at infinity is also
provided (either affine closure: ± 00, or projective
closure: 00, is treated as unsigned, may be
specifieCl).

4-64 210920-003

inter 80287

NOTE: The index i of tag(i) is not top-relative. A program
typically uses the "top" field of Status Word to deter­
mine which tag(i) field refers to logical top of stack.

TAG VALUES:
00 = VALID
01 = ZERO
10 = INVALID or INFINITY
11 = EMPTY

Figure 7. 80287 Tag Word

MEMORY OFFSET

15 o

CONTROL WORD +0

STATUS WORD +2

TAG WORD +4

IPOFFSET +6

CS SELECTOR +8

DATA OPERAND OFFSET +10

DATA OPERAND SELECTOR +12

Figure 8a. Protected Mode 80287 Instruction and Data Pointer Image in Memory

EXCEPTION HANDLING

The 80287 detects six different exception conditions
that can occur during instruction execution. Any or
all exceptions will cause the assertion of external
El1RCJR" signal and ES bit of the Status Word if the
appropriate exception masks are not set.

The exceptions that the 80287 detects and the 'default'
procedures that will be carried out if the exception is
masked, are as follows:

Invalid Operation: Stack overflow, stack underflow,
indeterminate form (0/0, 00, - 00, etc) or the use of a
Non-Number (NAN) as an operand. An exponent value
of all ones and non-zero significand is reserved to
identify NANs. If this exception is masked, the 80287
default response is to generate a specific NAN called

4-65

INDEFINITE, or to propagate already existing NANs
as the calculation result.

Overflow: The result is too large in magnitude to
fit the specified format. The 80287 will generate an
encoding for infinity if this exception is masked.

Zero Divisor: The divisor is zero while the divi­
dend is a non-infinite, non-zero number. Again, the
80287 will generate an encodjng for infinity if this
exception is masked.

Underflow: The result is non-zero but too small in
magnitude to fit in the specified format. If this
exception is masked the 82087 will denormalize
(shift right) the fraction until the exponent is in
range. The process is called gradual underflow.

210920-003

16

80287

15

CONTROL WORD

STATUS WORD

TAG WORD

INSTRUCTION POINTER (1!>-0)

INSTRUCTION ;)1 1 INSTRUCTION
POINTER (19-16) 0 OPCODE (10-0)

DATA POINTER (1!>-0)

DATA POINTER I
(19-16) 0

15 1211

o

o

MEMORY
OFFSET

+0

+2

+4

+6

+8

+10

+12

Figure 8b. Real Mode 80287 Instruction and Data POinter Image in Memory

o
IxxxllclRCl PC 1 xl xjPMlu~oMlzMIDt.1IMJ

11)PRECISION CONTROL
00 = 24 BITS (SHORT REAL)
01 = RESERVED
10 = 53 BITS (LONG REAL)
'1 = 64 BITS (TEMP REAL)

I

(2)ROUNDING CONTROL
00 : ROUND TO NEAREST OR EVEN
01 : ROUND DOWN (TOWARD -x)
10 : ROUND UP (TOWARD +x)
11 : CHOP (TRUNCATE TOWARD ZERO)

EXCEPTION MASKS (1: EXCEPTION IS MASKED)

INVALID OPERATION

DENORMALIZED OPERAND

ZERO DIVIDE

OVERFLOW

UNDERFLOW
PRECISION

(RESERVED)

(RESERVED)

PRECISION CONTROL 11)

RpUNDING CONTROLI2)

INFINITY CONTROL (0 : PROJECTIVE, 1 : AFFINE)

(RESERVED)

Figure 9. 80287 Control Word

4-66 210920-003

80287

Denormallzed Operand: At least one of the
operands is...denormalized; it has the smallest ex­
ponent but a non-zero significand. Normal pro­
cessing continues if this exception is masked off.

Inexact Result: The true result is not exactly repre­
sentable in the specified format, the result is rounded
according to the rounding mode, and this flag is set.
If this exception is masked, processing will simply
continue.

If the error is not masked, the corresponding error
bi! and the error status bit (ES) in the control word
will be set, and the ERROR output signal will be
asserted. If the CPU attempts to execute another
ESC or WAIT instruction, exception 7 will occur.

The error condition must be resolved via an inter­
rupt service routine. The 80287 saves the address
of the floating point instruction causing the error
as well as the address of the lowest memory loca­
tion of any memory operand required by that
instruction.

iAPX 86/20 COMPATIBILITY:
iAPX 286/20 supports portability of iAPX 86/20
programs when it is in the real address mode.
However, because of differences in the numeric
error handing techniques, error handling routines
may need to be changed. The differences between
an iAPX 286/20 and iAPX 86/20 are:

1. The NPX error signal does not pass through an
interrupt controller (8087 INT signal does).

4-67

Therefore, any interrupt controller oriented in­
structions for the iAPX 86/20 may have to be
deleted.

2. Interrupt vector 16 must point at the numeric
error handler routine.

3. The saved floating point instruction address in
the 80287 includes any leading prefixes before
the ESCAPE opcode. The corresponding saved
address of the 8087 does not include leading
prefixes.

4. In protected mode, the format of the saved in­
struction and operand pointers is different than
for the 8087. The instruction opcode is not
saved-it must be read from memory if needed.

5. Interrupt 7 will occur when executing ESC in­
structions with eitherTS or EM of MSW=1.lfTS
of MSW=1 then WAIT will also cause interrupt
7. An interrupt handler should be added to han­
dle this situation.

6. Interrupt 9 will occur if the second or subse­
quent words of a floating point operand fall
outside a segment's size. Interrupt 13 will occur
if the starting address of a numeric operand
falls outside a segment's size. An interrupt
handler should be added to report these pro­
gramming errors.

In the protected mode, iAPX 86/20 application
code can be directly ported via recompilation if the
286 memory protection rules are not violated.

210920-003

80287

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias .. O·C to 70·C
Storage Temperature -65·C to +150·C
Voltage on Any Pin with
Respect to Ground -1.0 to +7V
Power Dissipation 3.0 Watt

·NOT/CE: Stresses above those listed under Ab­
solute Maximum Ratings may cause permanent
damage to the device. This is a stress rating only
and functional operation of the device at these or
any other conditions above those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended petiods may affect device
reliability.

D.C. CHARACTERISTICS TA = O°C to 70°C, Vee = 5V, +1-5%
5 MHz

Symbol Parameter -3 Min -3 max Unit Test Conditions

V1l Input lOW Voltage -.5 .8 V
0

VIH Input HIGH Voltage 2.0 Vcc +.5 V

VllC Clock Input lOW Voltage ,
CKM=1: -.5 .8 V
CKM=O: -.5 .6 V

VIHC Clock Input HIGH Voltage
CKM=1: 2.0 Vee + 1 V
CKM=O: 3.8 Vcc +1 V

VOL Output lOW Voltage .45 V IOL =3.0 rnA

VOH Output HIGH Voltage 2.4 V IOH = -400 iJ,A

III Input leakage Current ±10 ,.,.A OV ::sV1N ::sVcc

ILO Output leakage Current ±10 iJ,A .45V ::s VOUT ::s Vee

Icc Power Supply Current 600 rnA

CIN Input Capacitance 10 pF Fc= 1 MHz

Co InpuVOutput Capacitance 20 pF Fc= 1 MHz
(00-015)

CCLK ClK Capacitance 12 pF Fc= 1 MHz

4-68. 210920-003

80287

A.C. CHARACTERISTICS (T A = O°C to 70°C, Vee + 5V,=/-5%)
TIMING REQUIREMENTS
A.C. timings are referenced to O.BV and 2.0V points on signals unless otherwise noted.

5 MHz 8 MHz

Symbol Parameter ·3 Min -3 max Min max Unit

TCLCL ClK Period
CKM=l: 200 500 125 500 ns
CKM=O: 62.5 166 62.5 166 ns

TCLCH ClKlOWTime
CKM=l: 118 343 68 343 ns
CKM=O: 15 146 15 146 ns

TCHCL ClK HIGH Time
CKM=l: 69 230 43 230 ns
CKM=O: 20 151 20 151 ns

TCH1CH2 ClK Rise Time 10 10 ns

TCL2CL1 ClK Fall Time 10 10 ns

TOVWH Data Setup to iii'PWfi Inactive 75 75 ns

TWHOX Data Hold from ~ Inactive 30 15 ns

TWLWH'
TRLRH JiIPWR, 'fiII5R[j Active Time. 95 90 ns

TAVRL, Command Valid to ~ or
TAVWL 'fiII5R[j Active 0 0 ns

TMHRL Minimum Delay from PEREQ
Active to 'fiII5R[j Active 130 130 ns

TKLKH J5EACK Active Time 85 85 ns

TKHKL ~ Inactive Time 250 250 ns

TKHCH ~ Inactive to ~, 'fiII5R[j
Inactive 50 40 ns

TCHKL 'NPWR, 'fiII5R[j Inactive to ~
Active ·30 -30 ns

TWHAX, Command Hold from ~,
TRHAX 'fiII5R[j Inactive 30 30 ns

TKLCL J5EACK Active Setup to ~,
'fiII5R[j Active 50 40 ns

T2CLCL ClK286 Period 62.5 62.5 ns

T2CLCH ClK286 lOW Time 15 15 ns

T2CHCL ClK286 HIGH Time 20 20 ns

T2SVCL SO, 'Sl Setup Time to ClK286 22 22 ns

T2CLSH SO, 'Sl Hold Time from CLK286 0 0 ns

4-69

Test Conditions

At 0.8V
AtO.6V

At2.0V
At3.8V

1.0V to 3.6V if CKM = 1

3.6V to 1.0V If CKM = 1

AtO.8V

At 0.8V

At2.0V

At 0.8V

At 2.0V

210920·003

A.C. CHARACTERISTICS, continued
TIMING REQUIREMENTS

80287

5 MHz

Sym Parameter . -3 Min -3 Max

TCIVCL COO/INTA Setup Time to ClK286

TCLCIH COO/INTA Hold Time from ClK286

TRVCL REAOY Setup Time to ClK286

TCLRH REAOY Hold Time from ClK286

THVCL HlOA Setup Time to ClK286

TCLHH HlOA Hold Time from ClK286

T1vCL NPWR, NPRO to ClK Setup Time

TCLIH NPWR, NPRO from ClK Hold Time

TRSCL RESET to ClK Setup Time

TCLRS RESET from ClK Hold Time

A.C. CHARACTERISTICS,
TIMING RESPONSES

Sym Parameter

TRHQZ NPRO Inactive to Oata Float

TRLQV NPRO Active to Oata Valid

TILBH ERROR Active to BUSY Inactive

TwLBV NPWR Active to BUSY Active

TKLML PEACK Active to PEREQ Inactive

TCMDI Command Inactive Time
Write-to-Write
Read-to-Read
Write-to-Read
Read-to-Write

TRHQH Data Hold from NPRO Inactive

NOTES:

0 ,

0

38.5

25

0

0

70

45

.20

20

5MHz

-3 Min -3 Max

37.5

60

100

100

127

95
250
·105
95

5

8 MHz

Min Max Unit Test Conditions

0 ns

0 ns

38.5 ns

25 ns

0 ns

0 ns

70 ns NOTE 1

45 ns NOTE 1

20 ns NOTE 1

20 ns NOTE 1

8MHz

Min Max Unit Test Condition

35 ns NOTE 2

60 ns NOTE 3

100 ns NOTE 4

100 ns NOTE 5

127 ns NOTE 6

95 ns At 2.0V
325 ns At 2.0V
95 ns At 2.0V
95 ns At 2.0V

5 ns NOTE 7

1. This is an asynchronous input This specification is given for testing purposes only, to assure
recognition at a specific ClK edge.

2. Float condition occurs when output current is less than ILO on 00-015.
3. 00-015 loading: Cl = 100pF
4. BUSY loading: Cl = 100pF
5. BUSY loading: Cl = 100pF
6. On last data transfer of numeric instruction.
4. 00-015 loading: Cl = 100pF

4-70 210920-003

ClK
INPUT

4.0V
2.4V

0.4SV CKM = 0
0.2V CKM = 1

80287

CKM =0
CKM =1

NOTE 8: AC Drive and Measurement Points - ClK Input

4.0V
2.4V

0.4SV
O.45V

CKM=O
CKM = 1

CKM =0
CKM = 1

1.0V CKM =0
0.8V CKM = 1

tHOLO

3.6V CKM = 0
2.0V CKM = 1

CKM=O
CKM =1

2'4VmFT~m OTHER 2.0V
DEVICE
INPUT

DEVICE
OUTPUT

tOELAY ----I

2.0V

O.8V

NOTE 9: AC Setup. Hold and Delay Time Measurement - General

DEVICE
OUTPUT

NOTE 10: AC Test loading on Outputs

4-71 210920-003

inter 80287

WAVEFORMS I(cont.)

DATA TRANSFER TIMING (INmATED BY 80286)

CMDO CMD1
Nm,NPS2

NPRD

) VALID

_TRLRH TRHAX

~~VRL; ,v -- TRHQZ_
_ TRLQV I- _TRHQH_

I ILL-'Y DATA OUT 1\

TAVWL'-
\.\.\.\. VALID 1/ .. __ TWLW_ ..

TWHAX -

\ -, I{
TDVWH TWHDX -

l(
..

-

-

) = ~ DATA MAY CHANGE DATA MAY CHANGE DATA IN
VALID

- TWLBN ---
BUSY ~J --4--

DATA CHANNEL TIMING (INITIATED BY 80287)

C~CMD1---1~
NI':;l,NPS2 J---J--.:r

---l
TAVWL -TAVRL

'\

VALID

- TRHAX -TWHAX

,t

)
DATA
TRANSFER
FROM
80287

I DATA
TRANSFER
TO
80287

\ .. TCMDI_
_TMHRL _TCLML_

TCHKL

TKLCL_ - ~ r-.. TKLML_' -TKHCH --- __ TKHKL ___

S ------------- i }f- ~

.- "--
_---I
PEACK

.. TKLKH ..

4-72 210920-003

80287

WAVEFORMS (cont.)

ERROR OUTPUT TIMING

BUSy ____ , r"'~d'
ERROR ~

80286 STATUS TIMING

..

NOTES:
1. This input transition occu rs before T5.
2. This input transition occurs after Te.

4-73 210920-003

WAVEFORMS

ClK
(IFCKM = 1)

RESET

ClK
(IFCKM = 1)

NPRD,
NPWR

RESET

80287

(Reset, iiiPWR, NPiIDare inpulsasynchronoustoCLk TIming requlremenlsonthispage

are given fortesting purposes only, to assure recognition at a specific ClK edge.)

ClK, RESET TIMING (CKM = 1)

f/J 1 f/J2 f/J 1 f/J2

\. ~

TOC," __ • TNCO.,.

ClK, NPRD, NPWR TIMING (CKM = 1)

1/)1 1/)2

I
1/)1 f/J2

~ ~

- T~" ~!TNCO.-
\\\\\\\\\

ClK, RESET TIMING (CKM = 0)

d::--------1!

NOTE: Reset must meet timing shown to guarantee known phase of internal..;- 3 circuit

CLK, NPRD, NPWR TIMING (CKM = 0)

I

\\\\\\\\\\\

4-74
210920-003

Data Transfer

I
FLO ~ LOAD

Integer/Real Memory to ST(O)

Long Integer Memory to ST(O)

Temporary Real Memory to
ST(O)

BCD Memory to ST(O)

ST(I) to ST(O)

FST ~ STORE

ST(O) to Integer/Real Memory

ST(O) to ST(I)

FSTP ~ STORE AND POP

ST(O) to Integer/Real Memory

ST(O) to Long Integer Memory

ST(O) to Temporary Real
Memory

ST(O) to BCD Memory

ST(O) to STi'l

FXCH ~ Exchange ST(I) and
ST(O)

Comparison

FCOM ~ Compare

Integer/Real Memory to ST(O)

ST(i) to ST (0)

FCOMP ~ Compare and Pop

Integer/Real Memory to ST(O)

ST(I) to ST(O)

FCOMPP ~ Compare ST(I) to
ST(O) and Pop TWice

FTST ~ Test ST(O)

FXAM ~ Examine ST(O)

Mnemonlcs@lnteI1982

80287

Table 6. 80287 Extensions to the 80286 Instruction Set

I Optional Clock Count Range
8,16 Bit 32 Bit 32 Bit 64 Bit 16 Bit

Displacement Real Integer Real Integer

1 MF

1 ESCAPE MF 1 1 MOD 0 0 0 R/M 1_

LI E_S_C_A_P_E __ l_l_l--LI_M_O_D_l __ 0_1_R_/M---..J[= =

I ESCAPE 0 1 1 I MOD 1 0 1 R/M r
1 ESCAPE 1 1 1 1

1 ESCAPE 0 0 1 1

MOD 1 0 0 R/M [~ ~ ~I~P ~ J
1 1 0 0 0 ST(ll 1

1 ESCAPE MF 1 1 MOD 0 1 0 R/M 1- = = ~I~P= -:

I ESCAPE 1 0 1 1 1 1 0 1 ~

~I E=S=C=A=P=E==M=F==I~I=M=O=D=O==I=I=R=/=M~I:_ ~ ~ ~I~P ~ J
LI E_S_C_A_P_E __ l_1_'I--LI_M_O_D_l __ 1_1_R_/M--lI_ ~ ~ ~I~P ~ J
=1 E=S=C=A=P=E===O==I==I==I==M=O=D==I===I==I==R=/M=:::1~ ~ ~ ~I~~ J
1 ESCAPE 1 1 1 1 MOD 1 1 0 R/M 1_ ~ ~ '~I~ ~ 1
~======~=======:
1 ESCAPE 1 0 1 1 1 1 0 1 1 ST(I) 1

I ESCAPE 0 0 1 I 1 1 0 0 1 ST(i) I

LIE_S_C_A_P_E __ M_F __ 0--,I_M_O_D_0 __ l_0_~_M~I_- ~ ~ DISP

I ESCAPE 0 0 0 I 1 1 0 1 0 STi'l I

:=1 E=S=C=A=P=E==M=F==0=tI=M=O=D=O==1 =1=R=/M===lI_ ~I~P = =:
1 ESCAPE 0 0 0 1 1 1 0 1 1 STi'l 1

I ESCAPE 1 1 0 I 1 1 0 1 1 0 0 1 I
I ESCAPE 0 0 1 I 1 1 1 0 0 1 0 0 I

I ESCAPE 0 0 1 I 1 1 1 0 0 1 0 1 I

4-75

00 01 10 11

38-56 52-60 40-60 46-54

60-68

53-65

290-310

17-22

84-90 82-92 96-104 80-90

15-22

86-92 84-94 98-106 82-92

94-105

52-58

520-540

17-24

10-15

60-70 78-91 65-75 72-86

40-50

63-73 80-93 67-77 74-88

45-52

45-55

38-48

12-23

210920-003

80287

Tab,le 6. 80287 Extensions to the 80286 Instruction Set (cont.)

I Optional Clock Count Range
8,16 Bit 32 Bit 32 Bit 64 Bit 16 Bit

Constants Displacement Real Integer Real Integer

I MF ~ 00 01 10 11

FLDZ ~ LOAD + 0 0 Into ST(O) I ESCAPE 0 0 1 I 1 1 1 0 1 1 1 0 I 11-17

FLD1 ~ LOAD + 1 0 Into ST(O) I ESCAPE 0 0 1 I 1 1 1 0 1 0 0 0 I 15-21

FLDPI ~ LOAD" into ST(O) I 'ESCAPE 0 0 1 I 1 1 1 0 1 0 1 1 I 16-22

FLDL2T ~ LOAD log2 10 Into I ESCAPE 0 0 1 I 1 1 1 0 1 0 0 1 I 16-22
ST(O)

FLDL2E ~ LOAD log2 e Into I ESCAPE 0 0 1 I 1 1 1 0 1 0 1 0 I 15-21
ST(O)

FLDLG2 ~ LOAD log, 0 2 Into
ST(O) I ESCAPE 0 0 1 I 1 1 1 0 1 1 0 0 I 18-24

FLDLN2 ~ LOAD 10ge2 Into I ESCAPE 0 0 1 I 1 1 1 0 1 1 0 1 I 17-23
ST(O)

Arithmetic

FADD ~ Aadition

I I [- - -
IntegerlReal Memory with ST(O) ESCAPE MF 0 MOD 0 0 0 RIM DISP

I
90-120 108-143 95-125 102-137 - - - -'

ST(i) and ST(O) I ESCAF!E d P 0 I 1 1 0 0 0 ST(i) I 70-100 (Note 1)

FSUB ~ Subtraction

I I L - - - -,
IntegerlReal Memory with ST(O) ESCAPE MF 0 MOD 1 0 R RIM DISP 90-120 108-143 95-125 102-137 - - - _,

ST(i) and ST(O) I ESCAPE d P 0 I 1 1 1 0 R RIM I 70-100 (Note 1)

FMUL ~ Multiplication - - - -
IntegerlReal Memory with ST(O)

1
ESCAPE MF 0

1
MOD 0 0 1 RIM 1- DISP I 110-125 130-144 112-168 124-138

-,- -'

I I I
,

ST(i) and ST(O) ESCAPE d P 0 t 1 0 0 1 RIM 90-145 (Note 1)

FDIV ~ Division - - -
IntegerlReal Memory with ST(O) I ESCAPE MF 0 I MOD 1 1 R RIM [DISP

-,
215-225 230-243 220-230 224-238 - - - -'

ST(I) and ST(O) I ESCAPE d P 0 I 1 1 1 1 R RIM I 193-203 (Note 1)

FSQRT ~ Square Root of ST(O)
1

ESCAPE 0 0 1
1

1 1 1 1 1 0 1 0 I 180-186

FSCALE ~ Scale ST(O) by ST(I) I ESCAPE 0 0 1 I 1 1 1 1 1 1 0 1 I 32-38

FPREM ~ Partial Remainder of I ESCAPE 0 0 1 I 1 1 1 1 1 0 0 0 I 15-190
ST(O) -ST(l)

FRNDINT ~ Round ST(O) to I ESCAPE 0 0 1 I 1 1 1 1 1 1 0 0 I 16-50
Integer

NOTE:
1. If P= 1 then add 5 clocks.

4-76 210920-003

80287

Table 6. 80287 Extensions to the 80286 Instruction Set (cont.)

FXTRACT ~ Extract
Components of St(O)

FABS = Absolute Value of
ST(O)

FCHS ~ Change Sign of ST(O)

Transcendental

FPTAN '=' Partial Tangent of
ST(O)

FPATAN ~ Partral Arctangent
of ST(O) -ST(1)

F2XMl ~ 2STlOI _l

FYL2X ~ ST(l)' Log2
[ST(O))

FYL2XPl ~ ST(l)' Log2
[ST(O) +11

Processor Control

FINIT ~ Initialize NPX

FSETPM ~ Enter Protected
Mode

FSTSW AX ~ Store Contr~1
Word

FLDCW ~ Load Control Word

FSTCW ~ Store Control Word

FSTSW ~ Store Status Word

FCLEX ~ Clear Exceptions

FSTENV ~ Store Environment

ESCAPE 0 0 1

ESCAPE o 1

ESCAPE o 1

ESCAPE 0 0 1

ESCAPE o 1

ESCAPE o 1

ESCAPE 0 0 1

ESCAPE 0 0

ESCAPE 0

ESCAPE 0 1

ESCAPE 1 1

ESCAPE o

1 1 1 1 0 1 0 0

1 1 1 0 0 0 0 1

1 1 0 0 0

1 1 1 1 0 0 1 0

1 1 o 1 1

o

1 1 1 1 0 0 0 1

1 1

o

1 1 o

o 0

MOD o RIM

Optional
8,16 Bit

Displacement

DISP :

L-E_S_C_A_P_E __ O_--'L-M_O_D _____ R_I_M~ _ ~ ~I~~ ~ ~:

L-E_S_C_A_P_E __ 0 __ 1_ ---'-_M_O_D ____ R~ _ ~ ~I~~ ~ J
ESCAPE 0 1 1 1 ° o 1 °

DISP : L-__________ ~ ______________ ~ ______ _ ESCAPE RIM ° MOD

FLDENV ~ Load Environment li_S_C_A_P_E_O_O __ L-M_O_D ____ O_R_I_M_-----' DISP :

FSAVE ~ Save State

FRSTOR ~ Restore State

FINCSTP ~ Increment Stack
Pomter

FDECSTP ~ Decrement Stack
Pomter

L-E_S_C_A_P_E __ O __ L-M_O_D ___ O __ R/_M __ ..JI- - Disp - :

'--E_S_C_A_P_E __ O __ '--M_O_D __ O_O __ R/_M_----'I_ ~ ~~~ = J

ESCAPE ° ° 6

ESCAPE 0 0 1 1 1 0 1 1 0

4-77

Clock Count Range

27-55

10-17

10-17

30-540

250-800

310-630

900-1100

700-1000

2-8

2-8

10-16

7-14

12-18

12-18

2-8

40-50

35-45

205-215

205-215

6-12

6-12

210920-003

80287

Table 6. 80287 Extensions to the 80286 Instruction Set (cont.)

FFREE = Free ST(i) ESCAPE 1 0 1 I 1 1 0 0 0 ST(I)

FNOP = No Operation ESCAPE 0 0 1 I 1 1 0 1 0 0 0 0

NOTES:
1. if mod=OO then DISP=O', disp-Iow and disp-high are absent

if mod=Ol then DISP=disp-low sign-extended to 16-bits, disp-high is absent
if mod=10 then DISP=disp-high; disp-Iow
if mod=ll then rim is treated as an ST(i) field

2. if r/m=OOO then EA=(BX) + (51) +DISP
if r/m=OOl then EA=(BX) + (01) +DISP
if r/m=010 then EA=(BP) + (51) +DISP
if r/m=Oll then EA=(BP) + (01) +DISP
if r/m=100 then EA=(SI) + DISP
if r/m=101 then EA=(DI) + DISP
if r/m=110 then EA=(BP) + DISP
if r/m=lll then EA=(BX) + DISP

'except if mod=OOO and r/m=110 then EA =disp-high; disp-Iow.
3. MF= Memory Format

00-32-bit Real
01-32-bit Integer
10-64-bit Real
11-16-bit Integer

4. ST(O) = Current stack top
ST(i) ith register below stack top

5. d= Destination
O-Destination is ST(O)
I-Destination is ST(i)

6. P= Pop
O-No pop
I-POP ST(O)

7. R= Reverse: When d",l reverse the sense of R
" O-Destination (op) Source

I-Source (op) Destination
8. For FSQRT: -0 .;; ST(O) .;; +00

For FSCALE: _215 .;; ST(l) < +215 and ST(l) integer
For F2XM1: 0.;; ST(O).;; 2-1

For FYL2X: 0 < ST(O) <00
-00 < ST(l) < + 00

For FYL2XP1: 0.;; IST(O)I < (2 -\1'2)/2
-00 < ST(l) < 00

For FPTAN: 0.;; ST(O) ';;1T/4
For FPATAN: 0.;; ST(O) < ST(l) < +00

9. ESCAPE bit pattern is 11011.

4-78

Clock Count Range

9-16

10-16 '

210920-003

82258
Advanced DMA Controller

Architectural Overview

June 1984

@INTEL CORPORATION. 1984 4-79 Order Number: 230606-002

82258 OVERVIEW

INTRODUCTION

As the processing of microprocessor based systems grows,
it is increasingly necessary to have support components
which relieve the processor from jobs like data movement,
peripheral control, etc., and leave it to do what it can do
best-data processing. Among the support components
necessary is a DMA (Direct Memory Access) controller.
A DMA controller must match the performance and archi­
tectural needs of the processor it supports to optimize the
performance.

The 82258 is a 16-bit DMA controller designed primarily
to meet the needs of systems based on the 80286 and 80186
processors. The 80286 is the fastest 16-bit processor avail­
able commercially with more than five times the through­
put of the standard 8086. The 80186, on the other hand,
integrates the functions of a CPU board (CPU, Clock,
DMA, Interrupt Control, Timer Counter, Chip Select) on
one chip, replacing 15-20 IC's. The 82258 is designed to
support this level of performance and integration by offer­
ing features generally found only in mainframe computer
systems.

FEATURES

• 8 MBytes/ second transfer rate in 8 MHz iAPX 286
Systems

• 4 independent channels-each channel having its
own set of registers and control lines

• Multiplexor channel operation for up to 32 I/O
subchannels

• 16 MByte physical addressing range
• Block size (byte count) up to 16 MBytes
• Command chaining
• Data chaining
• Adaptive bus interface for

- 80286
- 80186
- 80188
-8086
- 8088 processors

• Automatic assembly-disassembly for dissimilar bus
widths

• "On the fly" compare, verify and trdnsiate operations
duringDMA

• Single and double bus cycle transfers
• Local (with CPU) and remote (stand-alone) modes

of operation

FLEXIBLE BUS INTERFACE

Although the 82258 is primarily designed for the 80286,
it fits equally well in 8086, 8088, 80188, and 80186 based
systems. This is possible because of its adaptive bus inter­
face. The logic level on a specific pin on RESET configures
the bus interface of the 82258 for the 80286 (demultiplexed)
bus, or for the 80186 or minimum mode' 8086 (multi­
plexed)"bus, with all the necessary signals and timing. In
the 8086 mode, the 82258 can have RQ/ GT signals for the
maximum mode 8086 or 8088. This adaptive bus interface
makes it very easy to use the 82258 in different processor
systems. It is possible to select 8- or l6-bit wide bus
operations by software. Figure I shows the pin configu­
ration of the 82258 in the 286 and 186 modes.

The high performance (8 MB/sec) pipelined bus of the 286
allows the 82258 to provide maximum performance. This
bus enables the 80286 and the 82258 to read or write a word
(16 bits) in 250 ns, when operating at 8 MHz. Therefore,
in the 286 mode, the 82258 can achieve data transfer rates
of 8 MBytes/ second. In the 186 and 8086 mode, the data
transfer rate is4 MBytes/ second, since each buscycJe is4
clocks or 500 ns at 8 MHz.

The 82258 has four (4) independent channels. Each chan­
nel has three (3) dedicated pins; DREQ (DMA request),
DACK (DMA acknowledge) and EOD (End ofDMA). See
Figure 2. A peripheral generates request for DMA over the
DREQ line. DACK is sent by the 82258 to the peripheral,
indicating that a data transfer operation can begin. EOD
is used by the 82258 to generate an interrupt on the com­
pletion of a DMA operation. The EOD line can also be
used by a peripheral to terminate the DMA.

4-80 230606-002

CLK

RESET

DREQ 3

DREQ 0

<

82258 OVERVIEW

HOLD HLDA

HOLD HLDA
CLK

A?3 RESET

Ail
A?

Ail DR~Q 3

D15
DREQ 0

DO
DA~K 3

BHE 82258

M/iO DACK 0 (IN 186 MODE) 82258
(IN 286 MODE)

S1
SO EO~ 3 <==> READY

EODO

CS

AD
WR

Vas Vas Vee Vee

Vas Vas Vee Vee

Figure 1. 82258

82258

CH.O

CH.1 8259A

DREQ -------
PERIPHERAL CH.2

EOD INTERRUPT
CONTROLLER DACK CONTROLLER

• ~ CH.3 • ~

~ i'-

:, 'IIi ~ • ,
BUS

Figure 2. Each Channel with 3 line Interface

4-81

A19/86

A16/S3
A!5

Ail
A7

Ad
A~15

ADO
BHE

S2
Sf
SO
SREADY
AREADY

ALE
DT/A
i5Ef.I

RD
WR

>

230606-002

82258 OVERVIEW

MULTIPLEXOR CHANNEL

For supporting a large number of relatively slow equip­
ment (e.g. 9600 baud) like CRT terminals and line printers
etc., channel 3 of the 82258 can be programmed to be a
multiplexor channel. In this mode channel 3 can service
up to 32 subchannel request lines. The multiplexor net­
work is implemented using 8259A interrupt controllers.
The multiplexor channel has two modes of operation:

a) Byte or Word Multiplex Operation: In this case the
channel is enabled for another device after each byte or
word transfer. The maximum cumulative data rate for
multiplexor channel in this mode is approximately 275 K
byte per second.

•
•
•

<

IOREQ

UPTO
32 REQUEST

LINES
MULTI- IOACK

PLEXOR

b) Block Multiplex Operation: Here the channel IS

enabled for another device only after transfer of complete
data block. The actual block transfer is carried out at a
rate of 4M Byte/sec (maximum).

Each individual device can be programmed into its own
operating mode so various combinations of bytejword
and block mUltiplex are possible. Each device on the
multiplexor channel has its own program. Command
chaining is supported on the multiplexor channel. Single
cycle transfers are not allowed on the multiplexor
channel.

> CH.O

HOLD

HLDA
CH.1 T

0
82258

C
P

CH.2 U

CH.3

MULTIPLEXOR CONSISTS OF ONE
OR MORE 8259A
(INTERRUPT CONTROLLER)

Figure 3. Multiplexor Channel Configuration

4-82 230606-002

intel" 82258 OVERVIEW

TRANSFER IN 1 OR 2 BUS CYCLES

The 82258 is capable of doing single cycle and two cycle
data transfers. See Figure 4. In a single cycle transfer, the
data is transferred between a peripheral and memory (in
either direction) in a single bus cycle. Single cycle transfers
provide the maximum DMA throughput. In a two cycle
operation, the data is read by the 82258 using a normal bus
operation before sending it out to the destination using a
normal bus operation.

The 82258 can do "on the fly" operations like translate and
compare during a two cycle transfer. The data being trans­
rerred can be compared with a given pattern (mask-compare)
and the DMA transfer can be optionally stopped on encoun­
tering that pattern. The 82258 supports this mask-compare
operation on 8- and 16-bit patterns. The data can also be

, translated on the fly before sending it to the destination.
Data can be transferred from one memory region to another
in a two cycle transfer mode-this is not possible with single
cycle transfer. Another feature of two cycle transfer is
automatic assembly/ disassem\lly of data. This means that
data can be read as one word (16 bits) and written as

• SINGLE

two bytes or vice versa. Automatic assembly/disassembly
is very often desirable when using 8-bit wide peripherals
in a 16-bit system. When writing data to the 8-bit periph­
eral from memory, data could be retched as a 16-bit word
and written out as two 8-bit bytes. The reverse is true for
reading data out of an 8-bit peripheral. This feature saves
time and reduces the number of bus cycles to transfer a
given block of data.

FAST CHANNEL SWITCHING

For high speed DMA controllers with multiple channels,
it is very important to minimize overhead for switching from
one channel to another. The 82258 imposes no performance
penalty for switching channels. Therefore, the maximum
cumulative transfer rate of an 82258 is 8 MBytes/ second
even if multiple channels are used. The priority of dif­
ferent channels can be programmed to be fixed or
rotating. It is also possible to have a combination of the
two, i.e., channels 0 and I, having higher priority than
channels 2 and 3, and rotating priority within each pair.
The channel with the highest priority gets processed first
when multiple channels have to be serviced at the same
time .

MEMORY PERIPHERAL

82258

• DOUBLE

MEMORY PERIPHERAL

82258

ADVANTAGE:

"SPEED-
1 BUS CYCLEITRANSFER

ADVANTAGE:

"'ON THE FLY"
• MASK/COMPARE
• TRANSLATE
• VERIFY

"MEM. TO MEM.
TRANSFERS

"DISSIMILAR BUS
WIDTH SUPPORT

Figure 4. Single/double cycle transfer

4-83 230606-002

82258 OVERVIEW

16 MBYTE ADDRESSING

Being the D MA controller for the 80286, the 82258 sup­
ports an address range of 16 MBytes in memory and I/O
space. Thus, the source and destination pointers for a
DMA are each twenty-four bits long. The 82258 can
transfer data blocks as big as 16 M Bytes. That is, the byte
count for the transfet is also twenty-four bits long.

Figure 5 shows the user visible registers of the 82258. A set
of five registers, called the General Registers, is used for
all four channels. There is a set of channel registers for
each of the four channels. The mode register is written
first after reset and describes the 82258 environment-bus
widths, priorities, etc. The General Command Register
(GCR) is used to start and stop the DMA transfer on dif­
ferent channels. The General Status Register (GSR)
shows the status of all four channels: i.e., if the channel is
running, if an interrupt is pending, etc. The General Burst
Register (GBR) and the General Delay Register (GDR)

GCR

GSR

GMR

15

are used to specify the bus load which is permissible for
the 82258.

MEMORY BASED COMMANDS

The 82258 and the CPU communicate via memory based
commands. All relevant data (parameters) for DMA
transfer is written by the CPU in a "cOJ;nmand block" in
memory which is accessible to the CPU and the 82258. See
Figure 6. the command pointer on the 82258 is loaded
with the based address of the command block by the CPU.
After getting a start channel command from the CPU, the
82258 loads the contents of the command block into its
registers and starts the D MA. After completing operation
on Ii command block, the 82258 writes back the channel
status in the command block in memory. Optionally,
source pointer, destination pointer and byte counter
register may also be written out to the command block.
Although all channel registers are user accessible, they
need to be directly accessed only for diagnostic purposes.

o
COMMAND

STATUS

MODE

GBR l BURST

GDR l DELAY

7 o
GENERAL REGISTERS

CPR

SPR

DPR

TTPR

LPR

BCR

CCR

CHANNEL REGISTERS (4 SETS: 1 PER CHANNEL)

23

COMMAND POINTER

SOURCE POINTER

DESTINTATION POINTER

TRANSLATE TABLE POINTER

LIST POINTER
,

BYTE COUNT

CHANNEL COMMAND

MASKR MASK

COMPR COMPARE

DAR ASSEMBLY

15 CSR L CHANNEL STATUS

7

Figure 5. 82258 Register Set

4-84

o

o

230606-002

inter 82258 OVERVIEW

ON
CHIP h3 COMMAND POINTER

IN MEMORY T 15 TYPE 1 COMMAND

lII: SOURCE POINTER u
9 -0- I ID
Q
Z DESTINATION POINTER CC
::&
::& -0- I 0
u
Ii:
0

BYTE C,OUNT

:I: -0- I UI

t CHANNEL STATUS

COMMAND EXTENSION
0
iii MASK z
w
t<
w

COMPARE

lII:
TRANSLATE POINTER U

9
m -0- I ..L

CHANNEL COMMAND BLOCK

Figure 6. Command Block

COMMAND CHAINING

It is possible to have command blocks in a chain as shown
in Figure 7. After completing one block, the 82258 starts
processing the next block automatically, This is called
command chaining. It is therefore possible to execute a
sequence of different types of DMAs without CPU inter­
vention. Besides standard DMA command blocks, there
are special command blocks which execute unconditional
~d conditional branching (depending on the type of
DMA termination), and (un) conditional stop. Condi­
tional command chaining offers tremendous flexibility
since it is possible to do conditional DMA processing
with a degree of flexibility previously found only in
microprocessors.

The shortest and simplest DMA implementation consists
of a normal command block followed by a "SlOP" com­
mand block. A simple auto-reload DMA can be imple­
mented with a DMA command block followed by a JUMP
to top command block. More complex structures are also
easily implemented. See Figure 8.

DMA #1

DMA #2

CONDITIONAL
JUMP

STOP

0

)
0

DMA #3

STOP

Figure I Command Chaining

4-85

82258 OVERVIEW .

DMA

STOP

A) SIMPLEST DMA OPERATION

(r
I

DMA

~ I--J-U-M-P-

DMA
#1

B) AUTO-RELOAD DMA

JUMP IF
~ "CONDITION"
~ MET

"CONDITION" =
MASK COMPARE HIT

OR
EXTERNAL TERMINATE

OR r-----,

DMA
#2

DMA
#3

STOP

BYTE COUNT END

STOP
C) CONDITIONAL DMA OPERATION

Figure 8. Complexities In Command Chaining

DATA CHAINING

Very often it is necessary tp collect data from different
data blocks and send it out to a peripheral. This can be
done very efficiently by data chaining. Figure 9 shows an
example of data chaining. Each block on the right consists -
of byte count, data pointer and link pointer. As soon as
the data from block 1 has been sent out to the destination,
the next data block is located through the link pointer and
is sent out. This process continues until.a zero is encoun­
tered in the byte count field. The big advantage here is that
the data blocks can be included, removed, or their
sequence altered dynamically, allowing the CPU to
manipulate the link pointers. Data chaining can be used
for serial data communications controllers where differ­
ent blocks represent-different types of information (e.g.,
header, address, tail, etc.). Such linking of data blocks can
also be implemented using command chaining. Using

(

command blocks for data chaining is comparatively
slower because the whole command block must be loaded
befo~ the DMA can start.

Another form of data chaining called list chaining (as
opposed to "linked list" data chainin described above) is
still faster. It is illustrated in Figure 10. In this case, there
is only one list containing details on all the data blocks to
be chained. The latency of going from one data block to
the next is of the order of 1 microsecond. List chaining is
preferred to linked list chaining when speed of going to the
next block is of prime importance. Linked list chaining offers
greater flexibility, however.

Data chaining enables "gathering" of data from various data
blocks to one destination and "scattering" of data from one
source to several data blocks.

4-86 230606-002

I

82258 OVERVIEW

COMMAND POINTER

TYPE 1 COMMAND

LINK POINTER

DESTINATION POINTER

NOT USED

CHANNEL STATUS

DATA
BLOCK
#2

DATA
BLOCK
#3

ON CHIP

IN MEMORY

BYTE COUNT

DATA POINTER

LINKED LISTS

Figure 9. Data Chaining (Linked List)

COMMAND POINTER

ON CHIP

IN MEMORY

TYPE 1 COMMAND

SOURCE POINTER

CHAIN LIST POINTER ..
BYTE COUNT

NOT USED DATA POINTER

CHANNEL STATUS -0- I
BYTE COUNT

CHANNEL COMMAND BLOCK DATA POINTER

-0- I
BYTE COUNT

DATA POINTER

-0-

DATA CHAIN LIST

Figure 10. Data Chaining (List Chaining)

4-87 230606-002

82258 OVERVIEW

VERIFY

Verification of data read from the peripheral is also an often
required function. It is like a block-compare operation. See
Figure II. A byte (or word) read from peripheral and a
memory block are compared. The transfer can be halted
if a mismatch occurs. It is very useful to compare the data
on a disk sector with a memory block.

The "verify and save" mode of the 82258 also supports a
simultaneous data transfer (in single cycle mode) followed
by a verify. Here the byte (or word) being transferred is
read by the 82258, saved in memory, and then compared
with another byte/word fetched from memory.

CHANNEL COMMANDS

The channel commands are contained III the channel com­
mand block (Figure 5). Up to 22 bits are used to specify
the command. There are two types of channel commands:

• Type I: tor data movement
• Type 2: for command chaining control

Type 1 command bits contain information on:
a. Source and destination bus width
b. If source and/or destination address should be incre­

mented or decremented or kept constant during the
transfer

c. If source/destination is in memory or I/O space
d. If data chaining (list or linked list) is to be pertormed
e. If the data transfer is synchronized (source or

destination)
f. If an "on the fly" match operatIon and lor translate

operation has to be pertormed
g. If a verify operation has to be performed

For certain type I transfers which, for example, do not use
"on the fly" match, translate or venfy feature, the com­
mand is only 16 bits long and only a short command block
is necessary (Figure 6).

Type 2 command blocks are 6 bytes long of which the first
2 bytes form the command and the rest is either a relative
displacement or an absolute address for the JUMP opera­
tion. There are two basic type 2 commands:

I. JUMP-conditional and non-conditional
2. STOP-conditional and non-conditional

The conditional case tests for either of the four condition
bits which are altered at the termination of any DMA
operation:

• Termination due to byte count being zero
• Termination due to mask-compare
• Termination due to external terminate
• Verify operation resulting in mismatch

It is thus possible to JUMP or STOP further execution of
commands based on any of these conditions and option­
ally generate EOD or an interrupt signal.

A combination of type 1 and 2 commands gives the 82258
a high degree of "programmability". It can thus execute quite
complex algonthms with a fairly low demand tor CPU
service.

82258;::--80286 SYSTEM
Figure 12 shows the 82258 in an 80286 system. As
descnbed earlier, it is tailored to fit not only in an 80286
system but also in 8086, 8088, 80186, and 80188 systems.
The 80286 can synchronously access the DMA controller
through status lines. The 82258 and 80286 share the same
local bus and support components, 82284, 82288, 82289,
and 8287 and 8283. The bus arbitration between the 82258
and 80286 is done through HOLD and HOLDA lines.
The protocol ensures that only one of them possesses the
bus at any time.

REMOTE MODE

To achieve a yet higher throughput it is imperative that both
the processor and the DMA controller possess a private bus.
This is called the remote mode of operation for the 82258
and is illustrated in Figure 13. When operating in the
remote mode, the 82258 can work in parallel with the
main processor (which may also possess its own private
bus) accessing resources on the resident bus most of the
time. Only for communication with the processor does the
82258 have to access the system bus. The registers of the
82258 are always accessible to the processor over the
system bus. In addition to achieving a higher throughput
due to parallel processing, remote mode is also preferred

4-88 230606-002

82258 OVERVIEW

• VERIFY

MEMORY

• VERIFY AND SAVE

MEMORY
B

82258

MEMORY
A

PERIPHERAL

DATA READ
FROM PERIPHERAL
AND COMPARED
WITH THAT
FROM MEMORY

PERIPHERAL

82258

DATA TRANSFERRED FROM
PERIPHERAL TO MEMORY A
IN SINGLE CYCLE MODE
AND SIMULTANEOUSLY
COMPARED WITH THAT IN
MEMORY B

Figure 11. Verify Operation

for good system partitioning. For example, subsystem
dealing with winchester and floppy disk could be put
separately on a board with the 82258, sufficient resident
memory, and the necessary controllers.

PROTECTION ISSUE

The 80286 is a processor with memory management and
protection functions on-chip. The 82258 does not directly
support the protected virtual addressing mechanism of the
80286. This doe~ not hurt the protection, since the 80286
has to program the ADMA with real (physical) addresses
for source, destination and other pointers. These' real

addresses are, as such, generated through the protection
mechanism of the 80286 and are hence checked against pro­
tection violation. Normally, an 110 utility routine is pro­
vided by the Operating System to service the 82258. No
direct user access should be allowed to the 82258 from lower
privilege levels. The OS utility converts the virtual addresses
to real addresses when programming the 82258.

IMPLEMENTATION

The 82258 will be implemented in Intel's HMOS II
process technology and packaged in a 68-pin JEDEC
type A leadless chip carrier.

4-89 230606-002

82258 OVERVIEW

rD~
,......

READY ~
82284

I'" INPUT

80286
STATUS

L- CONTROL
82289

~

CLOCK
III READY f--- :::>

RESET III
~ :i!

~
COMMAND w

82288
III
>
III

HOLD HOLDA
MilO

~ SO_1 ADDRESS
ADDR. r 8283 7 >

24

82258

DACK 0-3 (l-

DATA
DREQ 0-3 DATA 8287 }

16

Figure 12. 82258 in 80286 SY8tem

4-90 230606-002

inter 82258 OVERVIEW

-'

.A.

< , RESIDENT BUS

"I i'
r--

'< ~

BUS
INTERfACE

,

~ ~ BUS A

~ INTERfACE
~ ADDRESS r

v -.. Ul
::;)

82258 DATA ID

DREQ STATUS ::E
w

0-3 ...
DACK Ul

>-
0-3 J ADDR. I

Ul
.A.

SELECT f
~

PROCESSOR A.
BOARD v --y

~

Figure 13. 82258 In Remote or Stand-Alone Configuration

4-91 230606-002

82284
CLOCK GENERATOR AND READY INTERFACE

FOR iAPX 286 PROCESSORS
(82284, 82284-6)

• Generates System Clock for iAPX 286
Processors

• Uses Crystal or TTL Signal for Frequency
Source

• Provides Local READY and Multibus*
READY Synchronization

• 18-pin Package

• Single + 5V Power Supply

• Generates System Reset Output from
Schmitt Trigger Input

• Available in EXPRESS
- Standard Temperature Range
- Extended Temperature Range

The 82284 is a clock generator/driver which proviQes clock signals for iAPX 286 processors and support compo­
nents. It also contains logic to supply READY to the CPU from either asynchronous or synchronous sources and
synchronous RESET from an asynchronous input with hysteresis.

RESET

fJ
SYNCHRONIZER

x1_1--r=-l
X21IL=-J
EFI--t-------'

FIC -+----------'

ARDYEN -+---<>1'"""'\
ARDY -t--d...J

SRDYEN -+-~~

SRDY -t---d...J

S1 -+--<11"-'"
so -+--<:11._

Figure 1. 82284 Block Diagram

* Multibus is a patented bus of Intel

RESET

ClK

READY

PClK

ARDY VCC

SRDY 2 ARDYEN
SRDYEN 3 S1

READY 4 SO
EFI 5 82284 N.C.
F/C 6 PClK

X1 7 RESET
X2 8 RES

GND 9 ClK

Figure 2.
82284 Pin Configuration

Intel Corporation Assumes No Responsibility for the Wae of Any Circuitry Other Than CircUItry Embodied In an Intel Product No Other ClrCUlt Patent Licenses are Imphed

OJ INTEL CORPORATION 1982 4-92
January 1985

ORDER NUMBER' 210453-003

82284

Table 1. Pin Description

The following pin function descriptions are for the 82284 clock generator.

Symbol Type Name and Function

ClK a System Clock is the signal used by the processor and support devices which must be synchro-
nous with the processor. The frequency of the ClK output has twice the desired internal pro-
cessor clock frequency. ClK can drive both TTL and MaS level inputs.

F/C I Fr~quency/Crystal Select is a strapping option to select the source for th~ ClK output. When
F/C is strapped lOW, the internal crystal oscillator drives ClK. When Fie is strapped HIGH,
the EFI input drives the ClK output.

X1, X2 I Crystal In are the pins to which a parallel resonant fundamental mode crystal is attached for
the internal oscillator. When FIG is lOW, the internal oscillator will drive the ClK output at the
crystal frequency. The crystal frequency must be twice the desired internal processor clock
frequency.

EFI I External Frequency In drives ClK when the F/C input is strapped HIGH. The EFI input fre-
quency must be twice the desired internal processor clock frequency.

PClK a Peripheral Clock is an output which provides a SO% duty cycle clock with 112 the frequency of
ClK. PlCK will be in phase with the internal processor clock following the first bus cycle after
the processor has been reset.

ARDYEN I Asynchronous Ready Enable is an active lOW input which qualifies the ARDY input.
ARDYEN selects ARDY as the source of ready for the current bus cycle. Inputs to ARDYEN
may be applied asynchronously to ClK. Setup and hold times are given to assure a guaranteed
response to synchronous Inputs.

ARDY I Asynchronous Ready is an active lOW input used to terminate the current bus cycle. The
ARDY input is qualified by ARDYEN. Inputs to ARDY may be applied asynchronously to ClK.
Setup and hold times are given to assure aguaranteed response to synchronous inputs.

SRDYEN I Synchronous Ready Enable is an active lOW input which qualifies SRDY. SRDYEN selects
SRDY as the source for READY to the CPU for the current bus cycle. Setup and hold times
must be satisfied for proper operation.

SRDY I Synchronous Ready is an active lOW input used to terminate the current bus cycle. The SRDY
Input IS qualified by the SRDYEN input. Setup and hold times must be satisfied for proper oper-
ation.

READY a Ready IS an active lOW output which ~nals~ current bus cycle is to be completed. The
SRDY, SRDYEN, ARDY, ARDYEN, S1, SO and RES inputs control READY as explained later in
the READY generator section. READY is an open collector output requiring an external 300
ohm pullup resistor.

SO,S1 I Status inputs prepare the 82284 for a subsequent bus cycle. SO and S1 synchronize PClK to
the internal processor clock and control READY. These inputs have pullup resistors to keep
them HIGH if nothing is driving them. Setup and hold times must be satisfied for proper oper-
ation.

RESET a Reset is an active HIGH output which is derived from the RES input. RESET is used to force the
system into an initial state. When RESET is active, READY will be active (lOW).

RES I Reset In is an active lOW input which generates the system reset signal RESET. Si~s to
RES may be applied asynchronously to ClK. A Schmitt trigger input is provided on RES, so
that an RC circuit can be used to provide a time delay. Setup and hold times are given to assure
a guaranteed response to synchronous inputs.

Vee System Power: +SV power supply

GND System Ground: 0 volts

FUNCTIONAL DESCRIPTION ready synchronization logic and system reset genera­
tion logic.

Introduction

The 82284 generates the clock, ready, and reset sig­
nals required for iAPX 286 processors and support
components. The 82284 is packaged in an 18-pin DIP
and contains a crystal controlled oscillator, MOS
clock generator, peripheral clock generator, Multibus

4-93

Clock Generator _

The elK output provides the basic timing control for
an iAPX 286 system. elK has output characteristics
sufficient to drive MOS devices. elK is generated by
either an internal crystal oscillator or an external
source as selected by the Fie strapping option. When

210453-003

82284

Ftc is 'lOW, the crystal oscillator drives the ClK out"
put. When Ftc is HIGH, the EFI input drives the ClK
output.

The 82284 provides a second clock output (PClK) for
peripheral devices. PClK is' ClK divided by two.
PClK has a duty cycle of 50% and TTL output drive
characteristics. PClK is normally synchronized to the
internal processor clock.

After reset, the PClK signal may be out of phase with
the internal processor clock. The 'Sf and 'SO signals of
the first bus cycle are used to synchronize PClK to
the internal processor clock. The phase of the PClK
output changes by extending its HIGH time beyond
one system clock (see waveforms). PClK is forced
HIGH whenever either 'SO or Sf were active (lOW) for
the two previous ClK cycles. PClK continues to os­
cillate when both 'SO and Sf are HIGH.

Since the phase of the internal processor clock will
not change except during reset, the phase of PClK
will not change except during the first bus cycle after
reset.

Oscillator

The oscillator circuit of the 82284 is a linear Pierce os­
cillator which requires an external parallel resonant,
fundamental mode, crystal. The output of the oscilla­
tor is internally buffered. The crystal frequency cho­
sen should be twice the required internal processor
clock frequency. The crystal should have a typical
load capacitance of 32 pF.

X1 and X2 are the oscillator crystal connections. For
stable operation of the oscillator, two loading capacitors
are recommended, as shown in Table 2. The sum of
the board capacitance and loading capacitance should
equal the values shown. It is advisable to limit stray
board capacitances (not including the effect of the
loading capacitors or crystal capacitance) to less than
10 pF between the X1 and X2 pines. Decouple Vee and
GND as close to the 82284 as possible.

CLK 1-'1.:..0 --I ClK
Vee ,APX286

CPU or D
r-........ --'i8 X2 82284 '9!~OI c~::O~~k

. __ 4

SEE TABLE
2 FOR

CAIW:ITOR
VALUES

READY h,;: Il!:R~'i!A~D~Y_.-J I
,18

DECOUPLING I CAPlACI10R

Figure 3. Recommended Crystal and RElDV
Connections

Reset Operation

The reset logic provides the RESET output to force
the system into a known, initial state. When the RES
input is active (lOW), the RESET output becomes ac­
tive (HIGH). RES is synchronized internally at the fail­
ing edge of ClK before generating the RESET output
(see waveforms). Synchronization of the RES
input introduces a one or two ClK delay before affect­
ing the RESET output.

At power up, a system does not have have a stable Vce
and ClK. To prevent spurious activity, RES should be
asserted until Vcc and ClK stabilize at their operating
values. iAPX 286 processors and support components
also require their 'RESET inputs be HIGH a minimum of
16 C,lK cycles. An RC network, as shown in Figure 4,
will keep RES lOW long' enough to satisfy both needs.

4-94

Vee

82284 '

Figure 4. lYPical RC RES Timing Circuit

A Schmitt trigger input with hysteresis on RES as­
sures a single transition of RESET.with an RC circuit
on RES. The hysteresis separates the' input voltage
level at which the circuit output switches between
HIGH to lOW from the input voltage level at which the
circuit output switches between lOW to HIGH. The
RES HIGH to lOW input transition voltage is lower
than the RES lOW to HIGH input transition voltage.
As long as the slope of the RES input voltage remains
in the same direction (increasing or decreasing)
around the RES input transition voltage, .the RESET
output will make a single transition.

Ready Operation

The 82284 accepts two ready sources for the system
ready signal which terminates the current bus cycle.
Either a synchronous (SRDY) or asynchronous ready
(AROY) source may be used. Each ready input has an
enable (SRDYEN and ARDYEN) for selecting the type
of ready source required to terminate the current bus
cycle. An address decoder would normally select one
of the enable inputs ..

210453-003

intJ 82284

READY is enabled (lOW), if either SRDY +
SRDYEN = 0 or ARDY + ARDYEN = 0 when sam­
pled by the 82284 READY generation logic. READY
will remain active for at least two ClK cycles.

The READY output has an open-collector driver allowing
other ready circuits to be wire or'ed with it, as shown in
Figure 3. The READY signal of an iAPX 286 system
requires an external 910 ohm ± 5% pull-up resistor. To
force the READ? Signal inactive (HIGH) at the start of a
bus cycle, the READY output floats when either S1 or SO
are sampled lOW at the falling edge of ClK. Two system
clock periods are allowed for the pull-up resistor to pull
the READY signal to V1H• When RESET is active, READY
is forced active one ClK later (see waveforms).

Figure 5 illustrates the operation of SRDY and

SRDYEN. These inputs are sampled on the falling
edge of ClK when S1 and SO are inactive and PClK is
HIGH. READY is forced active when both SRDY and
SRDYEN are sampled as lOW.

Rgure 6 shows the operation of ARDY and ARlJYEiiI.
These inputs are sampled by an internal synchronizer
at each falling edge of ClK. The output ·of the synchro­
nizer is then sampled when PClK is HIGH. If the syn­
chronizer resolved both the ARDY and ARl:i"Yrn have
been resolved as active, the SRDY and SRDYEN inputs
are ignored. Either ARDY or ARDYEN must be HIGH at
end of T s (see figure 6).

READY remains active until either 51 or SO are sam­
pl~d LOW, or the ready inputs are sampled as inac­
tive.

Table 2. 82284 Crystal Loading Capacitance Values

Crystal Frequency C1 Capacitance C2 Capacitance
(pin 7) (pin 8)

1 to 8 MHz 60 pF 40 pF
8 to 16MHz 25 pF 15 pF

NOTE: Capacitance values must include stray board capacitance.

T,

ClK

PClK

READY -----___ ,

Figure 5. Synchronous Ready Operation

4-95 210453-003

82284

Ts

elK

PClK

READY ________l

Figure 6. Asynchronous Ready Operation

ABSOLUTE MAXIMUM RATINGS"

Temperature Under Bias ooe to 700 e

Storage Temperature -6Soe to + 1S0oe

All Output and Supply Voltages -O.SV to + 7V

AlllnputVoltages -1.0Vto +S.SV

Power Dissipation 1 Watt

*Notice: Stresses above those listed under "Absolute
Maxmum Ratings" may cause permanent damage to
the device. This is a stress rating only and functional
operation of the device at these or any other condi­
tions above those indicated in the operational sec­
tions of this specification is not implied. Exposure to
absolute maximum rating conditions for extended
periods may affect device reliability.

D.C. CHARACTERISTICS (TA = ooe to 7ooe, Vee = SV, ± 5%)

6 MHz 8 MHz

-6 -6 -8 -8
Sym Parameter Min Max Min Max Unit Test Condition

V1L Input lOW Voltage .8 8 V

V1H Input HIGH Voltage 20 2.0 V

V1HR RES and EFI Input HIGH Voltage 2.6 26 V

VHYS RES Input hysteresis 0.25 0.25 V

VOL RESET. PClK Output lOW Voltage 45 45 V IOL -5mA

VOH RESET. PClK Output HIGH Voltage 24 2.4 V IOH - -1mA

VOLR ~, Output lOW Voltage .45 .45 V IOL =7mA

VOLe ClK Output lOW Voltage 45 45 V IOL =5mA

VoHe ClK Output HIGH Voltage 4.0 40 V IOH - -8001lA
-

Ve Input Forward Clamp Voltage -1.0 -10 V le=-5mA

iF Forward Input Current - 5 -.5 mA VF~ 45V

IR Reverse Input Current 50 50 uA VR-Vee

Icc Power Supply Current 145 145 mA

C1 Input Capacitance 10 10 pF Fe=1MHz

4-96 210453-003

82284

A.C. CHARACTERISTICS (TA = D·C to 7D·C, vee = 5V, ± 5%)
AC timings are referenced to O.SV and 2.0V points of signals as Illustrated In datasheet waveforms, unless otherwise
noted.

6MHz SMHz

-6 -6 -S -S
Sym Parameter Min Max Min Max Unit Test Condition

1 EFI to ClK Delay 35 30 ns at 1.5V Note 1

2 EFI lOW Time 40 25 ns at 1 5V Note 1 Note 7

3 EFI HIGH Time 35 25 ns at 1.5V Note 1 Note 7

4 ClK Penod 83 500 62 500 ns

5 ClK lOW Time 20 15 ns at 1.0V Note 1 Note 2,8

6 ClK HIGH Time 25 25 ns at 3.6V Note 1 Note 2,8

7 ClK Rise Time 10 10 ns 1.0V to 3.6V Note 1

8 ClK Fall Time 10 10 ns 3.6V to 1.0V Note 1

9 Status Setup Time 28 22 ns Note 1

10 Status Hold Time 1 1 ns Note 1

11 SRDY or SRDYEN Setup Time 25 15 ns Note 1

12 SRDY or SRDYEN Hold Time 0 0 ns Note 1

13 ARDY or ARDYEN Setup Time 5 0 ns Note 1 Note 3

14 ARDY or ARDYEN Hold Time 30 30 ns Note 1 Note 3

15 RES Setup Time 25 20 ns Note 1 Note 3

16 RES Hold Time 10 10 ns Note 1 Note 3

17 READY Inactive Delay 5 5 ns at 0.8V Note 4

18 READY Active Delay 0 33 0 24 ns at 0.8V Note 4

19 PClK Delay 0 45 0 45 ns Note 5

20 RESET Delay 5 50 5 34 ns NoteS

21 PClK lOW Time t4-20 t4-20 ns Note 5 Note 6

22 PClK HIGH Time t4-20 t4-20 ns Note 5 Note 6

NOTE 1: ClK loading. CL = 150pF.

NOTE 2: With the internal crystal oscillator uSing recommended crystal and capacitive loading, or with the EFI input meeting
specifications t2, and t3 Use a parallel-resonant, fundamental mode crystal. The recommended crystal loading for
ClK frequencies of8-16MHz are 25pF from pin X1 to ground, and 15pF from pin X2 to ground. These recommended
values are ± 5pF and include all stray capacitance, Decouple Vee and GND as close to the 82284 as possible.

NOTE 3: This is an asynchronous input. This specification is given for testing purposes only, to assure recognition at specific
ClKedge.

NOTE 4: READY loading: IOL = 7mA, CL = 150pF. In system application, use 910 ohm ±5% pull up resistor to meet 80286,
80286-6 and 80286-4 timing requirements.

NOTE 5: PClK and RESET loading: CL = 75pF. PClK also has 750 ohm pullup.

NOTE 6: t4 refers to any allowable ClK period.

NOTE 7: When driving the 82284 with EFI, provide minimum EFI HIGH and lOW times as follows:

ClK Output Frequency: 8MHz 12MHz 16MHz
ClK ClK ClK"

Min. required EFI HIGH time 52ns 35ns 25ns

Min. required EFI lOW time 52ns 40ns 25ns

At ClK frequencies above 12MHz, ClK output HIGH and lOW times are guaranteed only when using crystal with
recommended capacitive loading per Table 2, not when dnvlng componentfrom EFI All features ofthe 82284 remain
functional whether EFI or crystal is used to drive the 82284.

NOTE S: When using crystal (with recommended capacitive loading per Table 2) appropriate for speed of 80286, ClK output
HIGH and lOW times guaranteed to meet 80286 requirements.

4-97 '210453-003

OA5Y

EFI ~rtv. and M __ PoInIo

I

~
AY

1.SY 1.SY

NOTE 9:

82284
eLK

OUTPUT

DEVICE
INPUT

82284

1.:/

NOTE 11. AC Setup. HOld and Delay Tome Measurement - General

Ycc vq
Q
j. ~

75Oohm~ 9100hm~
» ...

peLK READY
output output

-1 1~~t

-
NOTE 12. AC Test Loading on Outputs

4-98

\; 1.DY

NOTE 10:

0_ 0
outputs l

~I

210453-003

Waveforms

82284

CLK as a Function of EFI

EFI

CLK

NOTE: The EFllnput lOW and HIGH times as shown are required to
guarentee the elK lOW and HIGH times shown.

RESET and READY Timing as a Function of RES
with S1 and SO HIGH

NOTE 1: This IS an asynchronous input. The setup and hold times
shown are required to guarantee the response shown.

NOTE 2: Tie 910 ohm ""5% pullup resistor to the READY output

READY and PCLK Timing with RES HIGH

NOTE 1: This is an asynchronous input. The setup and hold times
shown are reqUired to guarantee the response shown.

NOTE 2: Tie 910 ohm ±5'10 pullup resistor to the READY output

4-99 210453-003

82288
BUS CONTROLLER

FOR iAPX 286 PROCESSORS
(82288-8, 82288-6)

• Provides Commands and Control for
Local and System Bus

• Offers Wide Flexibility in System
Configurations

• Flexible Command Timing

• Optional Multibus· Compatible
Timing

• Control Drivers with 16 ma IOL and
3·State Command Drivers with
32 ma IOL

• Single + 5V Supply

The Intel 82288 Bus Controller is a 20-pin HMOS component for use in iAPX 286 microsystems. The bus
controller provides command and control outputs with flexible timing options. Separate command out­
puts are used for memory and I/O devices. The data bus is controlled with separate data enable and direc­
tion control signals.

Two modes of operation are possible via a strapping option: Multibus compatible bus cycles, and high
speed bus cycles.

3-STATE
COMMAND
OUTPUTS

[

STATU;

51
M/iO

r;:D=~T=lo=T~=~=R::;---;::::cg=L~=~=P~=c~=D::;' :~:~]
Mii5C
MWi'C

ClK-+--i
CONTROL

INPUTS

CEN/AEN

CENl

CMDlY

REAiiY

MB

Figure 1_ 82288 Block Diagram

*Multibus is a patented bus of Intel.

READY VCC

ClK So

51 M/iO

MCE DTiA"

ALE DEN

MB CEN/AEN

CMDlY CENl

MRDC INTA

MWTC IORC

GND IOWC

Figure 2. 88228 Pin Configuration

Intel Corporation Assumes No Responsibility for the Use of Any C)rcultry Other Than Circuitry Embodied In an Intel Product No Other Circuit Patent Licenses are Implied

©INTELCORPORATION,1982 4-100
January 1985

ORDER NUMBER: 210471-004

inter 82288

Table 1. Pin Description

The following pin function descriptions are for the 82288 bus controller.

Symbol Type Name and Function

ClK I System Clock provides the basic timing control for the 82288 in an iAPX 286 micro-
system. Its frequency is twice the internal processor clock frequency. The falling edge

, of this input signal establishes when inputs are sampled and command and control
outputs change.

SO, S1 I Bus Cycle Status starts a bus cycle and, along with MilO, defines the type of bus cycle.
These inputs are active lOW. A bus cycle is started when either S1 or SO is sampled
lOW at the falling edge of ClK. Setup and hold times must be me1 for proper operation.

iAPX 286 Bus Cycle Status Definition

MilO S1 SO Type of Bus Cycle

0 0 0 Interrupt acknowledge
0 0 1 I/O Read
0 t 0 I/O Write
0 1 1 None; idle
1 0 0 Halt or shutdown
1 0 1 Memory read
1 1 0 Memory write
1 1 1 None, idle

MIlO I Memory or I/O Select determines whether the current bus cycle is in the memory space or 110
space. When LOW, the current bus cycle is in the 110 space. Setup and hold times must be met
for proper operation.

MB I Multibus Mode Select determines timing of the command and control outputs. When HIGH,
the bus controller operates with Multibus-compatible timings. When LOW, the bus controller
optimizes the command and control output timing for short bus cycles. The function of the
CEN/AEN input pin is selected by this signal. This input is typically a strapping option and not
dynamically changed.

CENL I Command Enable Latched is a bus controller select signal which enables the bus controller to
respond to the current bus cycle being initiated. CENL is an active HIGH input latched internally
at the end of each T s cycle. CENl is used to select the appropriate bus controller for each bus
cycle in a system where the CPU has more than one bus it can use. This input may be connected
to Vcc to select this 82288 for all transfers. No control inputs affect CENL. Setup and hold times
must be met for proper operation.

CMDLY I Command Delay allows delaying the start of a command. CMDLY is an active HIGH input. If sampled
HIGH, the command output is not activiated and CMDLY is again sampled at the next eLK cycle.
When sampled LOW the selected command is enabled. If READY is detected LOW before the
command output is activated, the 82288 will terminate the bus cycle, even if no command was
issued. Setup and hold times must be satisfied for proper operation. This input may be connected
to GND if no delays are required before starting a command. This input has no effect on 82288
control outputs.

READY I READY indicates the end of the current bus cycle. READY is an active LOW input. Multibus mode
requires at least one wait state to allow the command outputs to become active. READY must be
LOW during reset, to force the 82288 into the idle state. Setup and hold times must be met for
proper operation. The 82284 drives READY LOW during RESET.

4-1Q1 210471-004

inter 82288

Table 2. Command and Control Outputs for Each Type of Bus Cycle

Type of MIlO S1 SO
Bus Cycle

Interrupt Acknowledge 0 0 0
I/O Read 0 0 1

I/O Write 0 1 0

None; idle 0 1 1

Halt/Shutdown 1 0 0

Memory Read 1 0 1
Memory Write 1 1 0
None; idle 1 1 1

Operating Modes
Two types of buses are supported by the 82288:
Multibus and non·Multlbus. When the MB input is
strapped HIGH, Multibus timing is used. In
Multibus mode, the 82288 delays command and
data activation to meet IEEE-796 requirements on
address to command active and write data to com­
mand active setup timing. Multibus mode requires
at least one wait state in the bus cycle since the
command outputs are delayed. The non-Multi bus
mode does not delay any outputs and does not re­
quire wait states. The MB input affects the timing
of the command and DEN outputs.

Command and Control Outputs
The type of bus cycle performed by the local bus
master is encoded in the M/iO, S1, and SO inputs.
Different command and control outputs are ac­
tivated depending on the type of bus cycle. Table 2
indicates the cycle decode done by the 82288 and
the effect on command, DT/R, ALE, DEN, and MCE
outputs.

Command DT/R ALE, DEN MCE
Activated State. Issued? Issued?

INTA LOW YES YES

10RC LOW YES NO

10WC HIGH YES NO

None HIGH NO NO

None HIGH NO NO

MRDC LOW YES NO

MWTC HIGH YES NO

None HIGH NO NO

Bus cycles come in three forms: read, write, and
halt. Read bus cycles Include memory read, I/O
read, and interrupt acknowledge. The timing of the
associated read command outputs (MRDC, 10RC,
and INTA), control outputs (ALE, DEN, DT/R) and
control inputs (CEN/AEiii, CENL, CMDLY, MB, and
READY) are identical for all read bus cycles. Read
cycles differ only in which command output is ac­
tivated. The MCE control output is only asserted
dl!ring interrupt acknowledge cycles.

Write bus cycles activate different control and
command outputs with different timing than read
bus cycles. Memory write and I/O write are write
bus cycles whose timing for command outputs
(MWi'C and iO"IiV"e), control outputs (ALE, DEN,
DT/R) and control inputs (CEN/AEN, CENL, CMDLY,
MB, and READY) are Identical. They differ only in
which command output is activated.

Halt bus cycles are different because no command
or control output is activated. All control Inputs are
ignored until the next bus cycle Is started via S1
and SO.

4-102 210471-()04

inter ;' 82288

Table 1. Pin Description (Cont.)

Symbol Type Name and Function

CEN/AEN I Command Enable/Address Enable controls the command and DEN outputs of the bus
controller. CEN/AEN inputs may be asynchronous to CLK. Setup and hold times are
given to assure a guaranteed response to synchronous inputs. This input may be con-
nected to VCC or GND.

When MB is HIGH this pin has the AEN function. AEN is an active LOW input which in-
dicates that the CPU has been granted use of a shared bus and the bus controller com-
mand outputs may exit 3-state OFF and become inactive (HIGH). AElii HIGH indicates
that the CPU does not have control of the shared bus and forces the command outputs
into 3-state OFF and DEN inacti~OW). AEN would normally be controlled by an
82289 bus arbiter which activates A N when that arbiter owns the bus to which the bus
controller is attached.

When MB is LOW this pin has the CEN function. CEN is an unlatched active HIGH input which
allows the bus controller to activate its command and DEN outputs. With MB LOW, CEN LOW
forces the command and DEN outputs inactive but does not tristate them.

ALE 0 Address Latch Enable controls the address latches used to hold an address stable dur-
ing a bus cycle. This control output is active HIGH. ALE will not be issued for the halt
bus cycle and is not affected by any of the control inputs_

MCE 0 Master Cascade Enable signals that a cascade address from a master 8259A interrupt
controller may be placed onto the CPU address bus for latching by the address latches
under ALE control. The CPU's addreSs bus may then be used to broadcast the cascade
address to slave interrupt controllers so only one of them will respond to the interrupt
acknowledge cycle. This control output is active HIGH. MCE is only active during inter-
rupt acknowledge cycles and is not affected by any control input. Using MCE to enable
cascade address drivers requires latches which save the cascade address on the falling
edge of ALE.

DEN 0 Data Enable controls when data transceivers connected to the local data bus should
be enabled. DEN is an active HIGH control output. DEN is delayed for write cycles in
the Multibus mode.

DTIR 0 Data Transmit/Receive establishes the direction of data flow to or from the local data
bus. When HIGH, this control output indicates that a write bus cycle i~being performed.
A LOW indicates a read bus cycle. DEN is always inactive when DTIR changes states.
This output is HIGH when no bus cycle is active. DTiR is not affected by any of the con-
trol inputs.

10WC 0 1/0 Write Command instructs an I/O device to read the data on the data bus. This com-
mand output is active LOW. The MB and CMDLY inputs control when this output
becomes active. READY controls when it becomes inactive.

10RC 0 I/O Read Command instructs an I/O device to place data onto the data bus. This com-
mand output is active LOW. The MB and CMDL Y Inputs control when thiS output
becomes active. READY controls when it becomes inactive.

MWTC 0 Memory Write Command instructs a memory device to read the data on the data bus.
T\his command output is active LOW. The MB and CMDL Y inputs control when this out-
put becomes active. READY controls when it becomes inactive.

MRDC 0 Memory Read Command instructs the memory device to place data onto the data bus.
This command output Js active LOW. The MB and CMDL Y inputs control when this out-
put becomes active. READY controls when it becomes inactive.

INTA 0 Interrupt Acknowledge tells an interrupting device that its interrupt request is being
acknowledged. This command output is active LOW. The MB and CMDLY inputs con-
trol when this output becomes active. READY controls when it becomes inactive.

VCC System Power: + 5V power supply

GND System Ground: 0 volts

4-103 210471-004

82288

FUNCTIONAL DESCRIPTION
Introduction
The 82288 bus controller is used in iAPX 286
systems to provide address latch control, data
transceiver control, and standard level-type com­
mand outputs. The command outputs are timed
and have sufficient drive capabilities for large TTL
buses and meet all IEEE-796 requirements for
Multibus. A special Multibus mode is provided to
statlsfy all address/data setup and hold time re­
quirements. Command timing may be tailored to
special needs via a CMDlY input to determine the
start of a command and READY to determine the
end of a command.

Connection to multiple buses are supported with
a latched enable input (CENl). An address
decoder can determine, which, if any, bus con­
troller should be enabled for the bus cycle. This
input is latched to allow an address decoder to
take full advantage of the pipelined timing on the
iAPX 286 local bus.

Buses shared by several bus controllers are sup­
ported. An AEN input prevents the bus controller

VeH
ClK

Vel

82284 PClK
(FOR REFERENCE) __ I-J

from driving the shared bus command and data
signals except when enabled by an external bus
arbiter such as the 82289.

Separate DEN and DT/R outputs control the data
transceivers for all buses. Bus contention is
eliminated by disabling DEN before changing
DT/R. The DEN timing allows sufficient time for
tristate bus drivers to enter 3-state OFF before
enabling other drivers onto the same bus.

The term CPU refers to any iAPX 286 processor or
iAPX 286 support component which ,may become
an iAPX 286 local bus master and thereby drive the
82288 status inputs.

Processor Cycle Definition
Any CPU which drives the local bus uses an internal
clock which is one half the frequency of the system
clock (ClK) (see Figure 3). Knowledge of the phase
of the local bus master internal clock is required for
proper operation of the iAPX 286 local bus. The local
bus master informs the bus controller of its internal
clock phase when it asserts the status signals. Status
signals are always asserted beginning in Phase 1 of
the local bus master's internal clock,

Figure 3. ClK Relationship to the Processor Clock and Bus T·States

4-104 210471-004

inter 82288

Bus State Definition
The 82288 bus controller has three bus states (see
Figure 4): Idle m Status (TS> and Command (Te>.
Each bus state Is two ClK cycles long. Bus state
phases correspond to the internal CPU processor
clock phases.

The TI bus state occurs when no bus cycle is cur­
rently active on the IAPX 286 local bus. This state
may be repeated indefinitely. When control of the
local bus is being passed between masters, the
bus remains in the TI state.

READY .
NEW CYCLE

Figure 4. 82288 Bus States

VCH
ClK

VeL

iI.iii V,._""""\
FROM
CPU VOL

Bus Cycle Definition
The 51 and SO inputs signal the start of a bus cy­
cle. When either input becomes lOW, a bus cycle
is started. The Ts bus state is defined to be the two
ClK cycles during which either S1 or SO are active
(see Figure 5). These inputs are sampled by the
82288 at every falling edge of ClK. When either S'i
or SO are sampled lOW, the next ClK cycle is con­
sidered the second phase of the internal CPU clock
cycle.

The local bus enters the Te bus state after the Ts
state. The shortest bus cycle may have one Ts state
and one Testate. longer bus cycles are formed by
repeating T e states. A repeated T e bus state is
called a walt state.

The READY Input determines whether the current
Te bus state is to be repeated. The RI:AuY input
has the same timing and effect for all bus cycles.
READY is sampled at the end of each T e bus state
to see if it is active. If sampled HIGH, the Te bus
state Is repeated. This is called inserting a wait
state. The control and command outputs do not
change during walt states.

When READY is sampled lOW, the current bus cy­
cle is terminated. Note that the bus controller may
enter the Ts bus state directly from Te if the status
lines are sampled active at the next falling edge of
ClK.

Figure 5. Bus Cycle Definition

4-105 210471-004

82288

Figures 6-10 show the basic command and control
,output timing for read and write bus cycles. Halt
bus cycles are not shown since they activate no
outputs. The basic idle-read-idle and idle-write-idle
bus cycles are shown. The signal label CMD
represents the appropriate command output for
the bus cycle. For Figures 6-10, the CMDL Y input is
connected to GND and CENL to Vee. The effects of
CENL and CMDLY are described later in the sec­
tion on control inputs.

Figures 6, 7 and 8 show non-Multibus cycles. MB is
connected to GND while CEN is connected to Vee'
Figure 6 shows a read cycle with no wait states while
Figure 7 shows a write cycle with one wait state, The
"FlEADY input is shown to illustrate how wait states
are added,

T,

f-o---READ BUS CYCLE

I Ts I Tc 'I T,

ClK

AlE ____ ---'

DEN ______ +---'

DTfR

CMD -------"r-\

Figure 6. Idle· Read· Idle Bus Cycles with MB = 0

WRITE BUS CYCLE ::j
Tc ~WAIT~:ATE I T, T, Ts

elK

ALE ____ -¥

DEN ____ --'

VOH
DTiR -------f------+------Jr-------

Figure 7. Idle·Wrlte·ldle Bus Cycles with MB = 0

4-106 210471-004

intJ 82288

Bus cycles can occur back to back with no T, bus
states between T e and T s. Back to back cycles do
not affect the timing of the command and control
outputs. Command and control outputs always
reach the states shown for the same clock edge
(within Ts, Te, or following bus state) of a bus cycle.

A special case in control timing occurs for back to
back write cycles with MB = O. In this case, DT/R
and DEN remain HIGH between the bus cycles (see
Figure 8). The command and ALE output timing
does not change.

Figures 9 and 10 show a Multibus cycle with
MB=1. AEN and CMDLY are connected to GND.
The effects of CMDLY and AEN are described later
in the section on control inputs. Figure 9 shows a
read cycle with one wait state and Figure 10 shows
a write cycle with two wait states. The second wait
state of the write cycle is shown only for example
purposes and is not required. The READY input is
shown to illustrate how wait states are added.

T, Ts

ClK

AlE ____ --'

OEN _______ +--rJ

OT/II --------;-,\

CMO

Tc

1ST WRITE CYCLE + 2ND WRITE CYCLE

Tc I Ts I Tc

ClK

OE~OH --+---------+

VOH
OT/ii ---+----------j-

CMD ___ --'

Figure 8. Write·Write Bus Cycles with MB = 0

Tc T,

Figure 9. Idle·Read·ldle Bus Cycles with MB = 1

4-107 210471-004

inter 82288

ClK

j§'i.§ii
j

T, T.

AlE _____ ..J

DEN ________ -'

To To T,

CMD-----------~-~

Figure 10. Idle·Wrlte·ldle Bus Cycles with MB = 1

The MB control input affects the timing of the com­
mand and DEN outputs. These outputs are
automatically delayed in Multibus mode to satisfy
three requirements:

1) 50 ns minimum setup time for valid address
before any command output becomes active.

2) 50 ns minimum setup time for'valid write data
before any write command output -becomes ac­
tive.

3)65 ns maximum time from when any read com­
mand becomes inactive until the slave's read
data drivers reach 3-state OFF.

Three signal transitions are delayed by MB = 1 as
compared to MB=O:

1) The HIGH to lOW transition of the' read com­
mand outputs (IORC, MRDe, and INTA) are
delayed one ClK cycle.

2) The HIGH to lOW transition of the write com­
mand outputs (IOWC and MWTC) are delayed
two ClK cycles.

3) The lOW to HIGH transition of DEN for write
cycles is delayed one ClK cycle.

Back to back bus cycles with MB = 1 do not
change the timing of any of the command or con­
trol outputs. DEN always becomes inactive be­
tween bus cycles with MB= 1.

Except for a halt or shutdown bus cycle, ALE will
be issued during the second half of Ts for any bus
cycle. ALE becomes inactive at the end of the Ts
to allow latching the address to keep it stable dur­
ing the entire bus cycle. The address outputs may
change during Phase 2 of any Tc bus state. ALE is
not affected by any control input.

Figure 11 shows how MCE is timed during inter­
rupt acknowledge (INTA) bus cycles. MCE is one
ClK cycle longer than ALE to hold the cascade
address from a master 8259A valid after the failing
edge of ALE. With the exception of the MCE con­
trol output, an INTA bus cycle is Identical in tim­
ing to a read bus cycle. MCE is not affected by any
control input.

4-108 210471-004

intJ 82288

T, T, Tc

ClK

ALE ____ '\--'

MCE _____ _

Figure 11. MCE Operation for an INTA Bus Cycle

Control Inputs
The control inputs can alter the basic timing of
command outputs, allow interfacing to multiple
buses, and share a bus between different
masters. For many iAPX 286 systems, each CPU
will have more than one bus which may be used to
perform a bus cycle. Normally, a CPU will only
have one bus controller active for each bus cycle.
Some buses may be shared by more than one CPU
(Le. Multibus) requiring only one of them use the
bus at a time.

Systems with multiple and shared buses use two
control input signals of the 82288 bus controller,
CENL and AEN (see Figure 12). CENL enables the
bus controller to control the current bus cycle.
The AEN input prevents a bus controller from driv·
ing its command outputs. AEN HIGH means that
another bus controller may be driving the shared
bus.

In Figure 12, two buses are shown: a local bus and
a Multibus. Only one bus is used for each CPU bus
cycle. The CENL inputs of the bus controllers
select which bus controller is to perform ·the bus
cycle. An address decoder determines which bus
to use for each bus cycle. The 82288 connected to
the shared Multibus must be selected by CENL
and be given access to the Multibus by AEN
before it will begin a Multibus operation.

CENL must be sampled HIGH at the end of the Ts
bus state (see waveforms) to enable the bus con­
troller to activate its command and control out­
puts. If sampled LOW the commands and DEN
will not go active and DT/R will remain HIGH. The
bus controller will ignore the CMDLY, CEN, and
READY inputs until another bus cycle is started
via 51 and SO. Since an address decoder is com­
monly used to identify which bus is required for
each bus cycle, CENL is latched to avoid the need
for latching its input.

The CENL input can affect the DEN control out­
put. When MB = 0, DEN normally becomes active
during Phase 2 of Ts in write bus cycles. This tran­
sition occurs before CENL is sampled. If CENL is.
sampled LOW, the DEN output will be forced LOW
during Tc as shown in the timing waveforms.

When MB = 1, CEN/AEN becomes AEN. AEN con­
trols when the bus controller command outputs
enter and exit 3-state OFF. AEN is intended to be
driven by a bus arbiter, like the 82289, which
assures only one bus controller is driving the
shared bus at any time. When AEN makes a LOW
to HIGH transition, the command outputs im­
mediately enter 3-state OFF and DEN is forced in­
active. An inactive DEN should force the local
data transceivers connected to the shared data
bus into 3-state OFF (see Figure 12). The LOW to
HIGH transition of AEN should only occur during
T, or Ts bus states.

The HIGH to LOW transition of AEN signals that
the bus controller may now drive the shared bus
command Signals. Since a bus cycle may be ac·
tive or be in the process of starting, AEN can
become active during any T-state. AEN LOW im­
mediately allows DEN to go to the appropriate
state. Three CLK edges later, the command out­
puts will go active (see timing waveforms). The
Multibus requires this delay for the address and
data to be valid on the bus before the commands
become active.

When M B = 0, CEN/AEN becomes CEN. CEN is an
asynchronous input which immediately affects
the command and DEN outputs. When CEN
makes a HIGH to LOW transition, the commands

4-109 210471-004

inter 82288

and DEN are immediately forced inactive. When
CEN makes a LOW to HIGH transition, the com·
mands and DEN outputs immediately go to the
appropriate state (see timing waveforms). READY
must still become active to terminate a bus cycle
if CEN remains LOW for a selected bus controller
(CENL was latched HIGH).

rD~
X1 X2

READY
SRDY ARiiY

82284 ARDYEN SRDffi

CMD

ADDRESS
DATA

<=
READY

CMD 82288 ClK

MliO
51,So

CENl

MB CEN

t +!v

ADDRESS

DECODER

n
II
A2So0

F ClK READY 51.S0

~

~

MilO
so
§1

ClK READY MilO
51,So

80286

Some memory or I/O systems may require more
address or write data setup time to command ac·
tive than provided by the basic command output
timing. To provide flexible command timing, the
CMDLY input can delay the activation of com·
mand outputs. The CM DL Y input must be
sampled LOW to activate the command outputs.
CMDL Y does not affect the control outputs ALE,
MCE, DEN, and DTiR.

XACK

9100 ±S%

READY COMM ANDS

ClK 82288
CMD

MiiO DEN ~ S1.So
DTIR ,.. CENl ALE

MB AEN

Jv
t

READY AEN

ClK 82289 CON TROl

MliO CNTl

S1.So

SYSIRESB

/Si-ii= ,....,
20KO / +5V L ADD RESS

8283

V~

1.1
/Tm

DATA

D, .. I-- ----'\) 8287

V
-

Figure 12. System Use of AEN arid CENL

4-110 210471-004

82288

CMDl Y is first sampled on the falling edge of the
ClK ending Ts. If sampled HIGH, the command
output is not activated, and CMDl Y is again
sampled on the next falling edge of ClK. Once
sampled lOW, the proper command output
becomes active immediately if MB = O. If MB = 1,
the proper command goes active no earlier than
shown in Figures 9 and 10.

READY can terminate a bus cycle before CMDlY
allows a command to be issued. In this case no
commands are issued and the bus controller will
deactivate DEN and DT/R in the same manner as if
a command had been issued.

Waveforms Discussion
The waveforms show the timing relationships of in·
puts and outputs and do not show all possible tran·

sitions of all Signals in all modes. Instead, all
signal timing relationships are shown via the
general cases. Special cases are shown when
needed. The waveforms provide some functional
descriptions of the 82288; however, most func­
tional descriptions are provided in Figures 5
through 11.

To find the timing specification for a Signal transi­
tion in a particular mode, first look for a special
case in the waveforms. If no special case applies,
then use a timing specifi'cation for the same or
related function In another mode.

4-111 210471-004

intJ 82288

ABSOLUTE MAXIMUM RATINGS·
Ambient Temperature Under Bias O°C to 70°C
Storage Temperature -65°C to + 150°C
Voltage on Any Pin with

Respect to G N D - O.5V to + 7V
Power Dissipation 1 Watt

• NOTICE: Stresses above those listed under "Ab­
solute Maximum Ratings" may cause permanent
damage to the device. This is a stress rating only
and functional operation of the device at these or
any other conditions above those indicated in the
operational sections of this specification is not im­
plied. Exposure to absolute maximum rating condi­
tions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA ~ ooe to 7ooe, vcc ~ 5V, ± 5%)

6 MHz

-6 -6
Symbol Parameter Min_ Max.

VIL Input lOW Voltage -.5 .8

Vi}:{ Input HIGH Voltage 20 Vcc +.5

VILC ClK Input lOW Voltage -.5 .6

VIHC ClK Input HIGH Voltage 3.8 Vcc +.5

VOL Output lOW Voltage
Command Outputs .45
Control Outputs .45

VOH Output HIGH Voltage
Command Outputs 2.4
Control Outputs 2.4

IF Input Current (80 and 81 inputs) -.5

IlL Input leakage current (all
other inputs) ±10

ILO Output leakage Current ±10

Icc Power Supply Current 120

CCLK ClK Input Capacitance 12

CI Input Capacitance 10

Co Input/Output Capacitance 20

NOTE: 1: Command Outputs are INTA, IORC, IOWC, MRDC, MWRC.
2. Control Outputs are DT IR, DEN, ALE and MCE.

4-112

8 MHz

-8 -8
Min. Max. Units Test Conditions

-5 .8 V

2.0 Vcc +.5 V

-.5 .6 V

3.8 Vcc +.5 V

.45 V IOL ~ 32 mA Note 1
45 V IOL ~ 16mA Note 2

2.4 V IOH ~ -5mA Note 1
2.4 V IOH ~ -lmANote2

-.5 mA VI ~ .45V

±10 ~A OV :5 VI IN :5 Vce

± 10 ~A .45V :5 VOUT :5 Vcc

120 mA

12 pF Fc ~ 1 MHz

10 pF Fc ~ 1 MHz

20 pF Fc ~ 1 MHz

210471-004

inter 82288

A.C. CHARACTERISTICS
(TA ~ OOG to 70oG, Vcc ~ 5V, ± 5%)
AG timings are referenced to O.BV and 2.0V points of signals as illustrated in data sheet waveforms, unless otherwise noted

6 MHz 8 MHz

-6 -6 -8 -8
Sym Parameter Min. Max. Min. Max. Unit Test Condition

1 CLK Period 83 250 62 250 ns

2 CLK HIGH Time 25 230 20 235 ns al36V

3 CLKLOWT,me 20 225 15 230 ns all0V

4 CLK Rise Time 10 10 ns 1 OV 10 3 6V

5 CLK Fall Time ,
10 10 ns 36Vlol0V

6 MilO and Status Setup Time 28 22 ns

7 MilO and Status Hold Time 1 1 ns

8 CENL Setup Time 30 20 ns

9 CENL Hold Time 1 1 ns

10 READY Setup Time 50 38 ns

11 READY Hold Time 35 25 ns

12 CMDLY Setup Time 25 20 ns

13 CMDLY Hold Time 1 1 ns

14 AEN Setup Time 25 20 ns Note 3

15 AEN Hold Time 0 0 ns Note 3

16 ALE, MCE Active Delay from CLK 3 25 3 20 ns Note 4

17 ALE, MCE Inactive Delay from CLK 35 25 ns Note 4

18 DEN (Write) Inactive from CENL 35 35 ns Note 4

19 DT IR LOW from CLK 40 25 ns Note 4

20 DEN (Read) Active from DT IR 5 50 5 35 ns Note 4

21 DEN (Read) Inactive Diy from CLK 3 40 3 35 ns Nole 4

22 DT IR HIGH from DEN Inactive 5 45 5 35 ns Note 4

23 DEN (Write) Active Delay from CLK 35 30 ns Note 4

24 DEN (Wrile) Inactive Diy from CLK 3 35 3 30 ns Note 4

25 DEN Inactive from CEN 40 30 ns Note 4

26 DEN Active from CEN 35 30 ns Note 4

27 DT IR HIGH from CLK

(when CEN 0 LOW) 50 35 ns Note 4

28 DEN Active from AEN 35 30 ns Note 4

29 CMD Active Delay from CLK 3 40 3 25 ns Nole5

30 CMD Inactive Delay from CLK 3 30 3 25 ns Note 5

31 CMD Inactive from CEN 35 25 ns Note 5

32 CMD Active from CEN 45 25 ns Nole 5

33 CMD Inactive Enable from AEN 40 40 ns Note 5

34 CMD Float Oelay from AEN 40 40 ns Note 6

35 MB Setup Time 25 20 ns

36 MB Hold Time 0 0 ns

37 Command Inacllve Enable
fromMBI 40 40 ns Nole 5

38 Command Floal Time from MBI 40 40 ns Note 6

39 DEN Inacllve from MBI 40 30 ns Nole 4

40 DEN Active from MBI 35 30 ns Note 4

NOTE: 3 AEN IS an asynchronous Input ThiS specification IS for testing purposes only, to assure recognition at a specific

CLK edge

4 Control oulput load CI = 150pF

5 Command' oulpulload CI = 300pF

6 Float conditIOn occurs when output current IS less then ILO In magnitude

4-113 210471-004

inter 82288

4.0V

O.4SV

NOTE 7: AC Drive and Measurement Points - ClK Input

4.0V

CLKINPUT

1.OV

O.45V

'HOLD

2.4V

OTHER
DEVICE
:INPUT

O.8V
O.45V

'DELAY

2.0V

DEVICE
OUTPUT

O.8V

NOTE 8: AC Setup, Hold and Delay Time Measurement - General

DEVICE
OUTPUT

NOTE 9: AC Test loading on Outputs

4-114 210471-004

inter 82288

WAVEFORMS

ClK CHARACTERISTICS

CLK

STATUS, ALE, MCE, CHARACTERISTICS

1+---- Ta -----t ---

CLK

M/iO,S1,Sii ---t=liLI+<

ALE ______ ~

MCE ______ ---J

CENL, CMDlY, DEN CHARACTERISTICS WITH MB=O AND CEN=1 DURING WRITE CYCLE

CLK

DEN ____ +-J

CENL

4-115 210471-004

inter 82288

WAVEFORMS (Continued)

READ CYCLE CHARACTERISTICS WITH MB = 0 AND CEN = 1

TS---+/-O-----

ClK

CMDlY

DTiii"----+-'=\

DEN __ -+=--,

CMD----+-'\

CENl

WRITE CYCLE CHARACTERISTICS WITH MB = 0 AND CEN = 1

ClK

DEN ______ -'

VOH---------H---+--,..---j/-----t----­
DT/A

CMDlY

CENl

4-116 210471-004

intJ 82288

WAVEFORMS (Continued)

CEN CHARACTERISTICS WITH MB = O'

ClK

CEN

DEN

CMD

DT/R ___________ II ___ +./

ill CHARACTERISTICS WITH MB = 1

ClK

AEN

DEN ___ .J

NOTE 1: AEN is an asynchronous input. AEN setup and hold time is specified to guarantee the response shown In the waveforms.

4-117 210471-004

82289
BUS ARBITER

FOR iAPX 286 PROCESSOR FAMILY

• Supports Multi-master System Bus
Arbitration Protocol

• Synchronizes 80286 Processor with Multl­
master Bus

• Compatible With Intel Bus Standard
Multibus®* (IEEE 796 Standard)

• Three Modes of Bus Release Operation for
Flexible System Configuration

• Supports Parallel, Serial, and Rotating
Priority Resolving Schemes

• Available in EXPRESS - Standard
Temperature Range

The Intel 82289 Bus Arbiter is a 5-Volt, 20-pin HMOS III component for use in multiple bus master iAPX 286
systems. The 82289 provides a compact solution to system bus arbitration for the 80286 CPU.

The complete IEEE 796 Standard bus arbitration protocol is supported. Three modes of bus release operation
support a number of bus usage models.

STATUS lSO#/HOLD
INPUTS Sl#

M/IO#

LOCAL
SYSTEM r REA~~~

CONTROL LOCK#
ALWAYS #/CBQLCK #

-I-
-f-
-f-
-I-
-I-

SYl' SB/~E::E~
AEN#

PROCESSOR
INTERFACE

STATE
MACHINE

MULTIBUS
INTERFACE'

STATE
~ACHINE

BUS REQUEST
AND

RELEASE
LOGIC

'1
M/IO# Vee

READY# Sl#
SYSB/RESB# 3 Soo/HOlD

RESET ClK
BCLK# LOCK#

INIT# 6 ALWAYS#
BREQ# 7 lLOCK# I CBQLCK#

BPRO# AEN#

BPRN# CBRQ#
GND BUSY#

INDICATES FUNCTION IS ACTIVE LOW

I-
I-
I-
l-
I-
~

l lOCK#

I-

MULTIBUS

BREQ# INTERFACE

BPRN# SIGNALS

BPRO#

BClK#

CBRQ# r--' -BUSY#

INIT#

Figure 1. 82289 Block Diagram Figure 2. 82289 Pin Diagram

Intel Corporation Assumes No Responslblltyforthe Useof Any CircUitry Other Than Circuitry Embodied In an Intel Product No Other CirCUit
, Patent Licenses are Implied Information Contained Herein Supercedes Previously Published SpeCifications of These DeVices from Intel

©INTEl CORPORATION 1984 4-118 ORD~R NUMBER 231095-002

'82289

Table 1. 82289 Pin Definition

Symbol Pin(s) Type Name and Function

ClK 17 I SYSTEM CLOCK accepts the ClK signal from the 82284 Clock
Generator chip as the timing reference for the bus arbiter and
processor interface signals,

SO#/HOLD 18 I STATUS INPUT SO# or HOLD is either the SO# status signal from
80286 or the HOLD signal from some other bus master, The function of
this input is established during the processor reset of the 82289 Bus
Arbiter. The 80286 SO# pin meets the setup and hold time requirements
of this pin.

The SO# pin function is selected by forcing this input high during the
falling edgeof processor reset. If the 82289 is used to support an 80286
processor, the SO# output of the processor will be high during reset.

In supporting the 80286 processor, the 82289 decodes the SO# pin
together with the other status input pins, S1# and M/IO#, to determine
the beginning of a processor bus cycle and initiate bus request and
surrender actions.

The HOLD function of the SO#/HOlD pin is selected by holding this
input low during the falling edge of processor reset. When supporting
a bus master other than 80286, the 82289 monitors the HOLD signal to

I-
initiate bus request and surrender actions.

sm. M/IO# 19, 1 I STATUS INPUTS are the status input signal pins from the 80286
processor. The arbiter decodes these inputs together with SO#/HOlD
input to initiate bus request and surrender actions. A bus cycle is
started when either S1# or SO# is sampled lOW at the falling edge of
ClK. The 80286 S1# and M/IO# pins meet the setup and hold time
requirements of these pins. ,
80286 Bus Cycle Status Encoding

M/IO# S1# SO#/HOLD Type 01 Bus Cycle
0 0 0 Interrupt acknowledge
0 0 1 I/O Read
0 1 0 I/O Write
0 1 1 None; bus idle
1 0 0 Halt or shutdown
1 0 1 Memory read
1 1 0 Memory write
1 1 1 None; bus idle

When supporting the HOLD output of another bus master, the S1# and
M/IO# pins must be held HIGH during Ts, the Status Cycle, for proper
operation.

SYSB/RESB# 3 I SYSTEM BUS/RESIDENT BUS# is an Input signal which determines
when the multi-master system bus is required for the current bus cycle.
The signal can originate from address mapping circuitry such as a
decoder or PROM attached to the processor address and status pins.
The arbiter will request or retain control of the multi-master system bus
when the SYSB/RESB# pin is sampled HIGH at the end of the Ts bus
state.

During an interrupt acknowledge cycle, this input is sampled on every
falling edge of ClK starting at the end of .the Ts state until either
SYSB/RESB# is sampled HIGH or the bus cycle is terminated by the
READY# signal. Setup and hold times for this pin must be met for
proper operation.

4-119 231095-002

82289

Table 1. 82289 Pin Definition (continued)

Symbol Pines) Type Name and Function

READY# 2 I READY# is an active-lOW signal which indicates the end of the bus
cycle. The 80286 halt or shutdown cycle does not require READY# to
terminate the bus cycle. Setup and hold times for this pin must be met
for proper operation.

lOCK# 16 I LOCK # is a processor-generated signal which when asserted (lOW)
prevents the arbiter from surrendering the multi-master system bus to
ariy other bus arbiter, regardless of its priority. lOCK# is sampled by
the arbiter at the end of the Ts (status) bus state. Setup and hold times
for this pin must be met for proper operation. --- --

AlWAYS#/ 15 I ALWAYS RELEASE# or COMMON BUS REQUEST LOCK# can be
CBQlCK# programmed at processor reset to be either the ALWAYS RELEASE

(AlWAYS#) strapping option or the COMMON BUS REQUEST lOCK
(CBQlCK#) control input. Setup and hold times for this pin must be
met for proper programming.

When this pin is lOW during the falling edge of processor reset
(AlWAYS# option) the arbiter is programmed to surrender the multi-
master system bus after each bus transfer cycle. The 82289 will remain
in the ALWAYS RELEASE mode until it is reprogrammed during the
next processor reset.

The bus arbiter is programmed to support the COMMON BUS
REQUEST lOCK function by forcing this input pin HIGH during the
falling edge of the processor reset.

CBQlCK# itself is an activeclOW signal which when active prevents
the arbiter from surrendering the multi-master system bus to ,a
common bus request through the CBRQ# input pin.

RESET 4 I PROCESSOR RESET is an active-HIGH i"nput synchronous to the
system clock (ClK). RESET is the processor initialization ofthe arbiter
to release the mUlti-master bus and clear any pending request.

INIT# 6 I INITIALlZE# is an active-low Multibus signal used to reset all arbiters
on the Multlbus system. It will cause the release of the multi-master
bus, but will not clear the pending bus master request so that the
arbiter can again request the multi-master bus. No arbiters have the
use of the multi-master bus Immediately after initialization. INIT# is an
asynchronous signal to ClK.

BClK# 5 I BUS CLOCK# is the multi-master system bus clock to which the
multi-master bus interface signalsare synchronized. BClK# can be
asynchronous to ClK.

BREQ# 7 a BUS REQUEST# is an active-lOW output signal used in the parallel
and rotating priority resolving schemes. The arbiter activates BREQ#
to request the use of the multi-master system bus. The arbiter holds
BREQ# active as long as it is requesting or has possession of the
multi-master system bus.

CBRQ# 12 I/O COMMON BUS REQUEST# is a Multibus signal that indicates when
(open- an arbiter is requesting the Multibus. This pin is an open-drain
drain) input/output requiring an external pullup resistor.

As an input CBRQ# indicates that another arbiter is requesting the
multi-master system bus. The input function of this pin is enabled by
the CBQlCK# signal. Setup and hold times forthis pin must be met for
proper operation.

As an output CBRQ# is asserted to indicate that this arbiter is
requesting the Multibus. The arbiter pulls CBRQ# low when it issues a
BREQ#. The arbiter release CBRQ# when it obtains the Multibus.

4-120 231095-002

inter 82289

Table 1. 82289 Pin Definition (continued)

Symbol Pin(s) Type Name and Function

BPRN# 9 I BUS PRIORITY IN# is an active-low input indicating that this arbiter
has the highest priority of any arbiter requesting the system bus.
BPRN# HIGH signals the arbiter that a higher priority arbiter is
requesting or has possession of the system bus. Setup and hold times
for this pin must be met for proper operation.

BPRO# 8 0 BUS PRIORITY OUT# is an active-low output signal used in the serial
priority resolving scheme. BRPO# is connected to BPRN# of the next
lower priority to ,grant or revoke priority from that arbiter. --

BUSY# 11 I/O BUSY# is a Multibus signal which is asserted when the system bus
(open- is in use.
drain)

BUSY# is an open drain input/outp'ut requiring an external pullup
resistor.

As an input BUSY# asserted indicates when the Multibus is in use.
Setup and hold times must be met for proper operation,

As an output BUSY# is asserted to signal when this arbiter has taken
control of the Multibus.

AEN# 13 0 ADDRESS ENABLE# is the output of the arbiter which goes directly to
the processor's address latches, the 82288 Bus Controller and the
82284 Clock Generator. AEN# asserted causes the bus controller and
address latches to enable their output drivers. AEN# also drives the
clock generator ARDYEN# input to enable its asynchronous ready
input (ARDY#).

AEN# can also be used as an active-lOW Hold Acknowledge to a bus
master other than 80286. It signals to the bus master that control of the
system bus has been relinquished when AEN# is inactive (HIGH).

Note that AEN# goes active relative to BClK# and goes inactive
relative to ClK.

llOCK# 14 0 LEVEL LOCK# is an active-low output signal decoded from processor
lOCK# signal. llOCK# can be used as Multibus lOCK# when
buffered with a tri-state buffer enabled by the AEN# Signal. llOCK#
will be cleared by RESET but not by INIT#.

Vee 20 I +5 volts supply voltage

GND 10 I Ground

FUNCTIONAL DESCRIPTION determine which bus cycles require the system bus
and to resolve priorities of simultaneous requests
for control of the system bus. The 82289 Bus Arbiter in conj unction with the 82288

Bus Controller and the 82284 Clock Generator
interfaces the 80286 processor or some other bus
master to a multi-master system bus. The arbiter
multiplexes a processor onto a multi-master system
bus. It avoids contention with other bus masters.

The 82289 has two separate state machines which
communicate through bus request and release
logic. The processor interface state machine is
synchronou~ with the local system clock (ClK) and
the multi-master system bus interface state machine
is synchronous with the bus clock (BClK#).

The 82289 performs all signalling to request, obtain,
and release the system bus. External logic is used to

4-121

82289 with 80286

In an iAPX 286 system using ar:1 82289 Bus Arbiter,
the 80286 processor is unaware of the arbiter's
existence and issues cammands as though it had
exclusive use of the multi-master system bus such
as Multibus'", If the processor cycle requires
Multibus access, the arbiter requests control of the
Multibus. Until the request is granted the 82289
keeps AEN# disabled to prevent the 82288 Bus
Controller and the address latches from accessing
the Multibus. AEN# inactive also disasserts the

231095-002

inter 82289

asynchronous ready enable (ARDYEN#) input of
the 82284 clock chip so that the system bus will
appear a;s "NOT READY" to the 80286 processor.

Once the 82289 Bus Arbiter ha acquired the bus, it
will assert AEN# allowing the 82288 Bus Controller
and the address latches to access the system bus
and asserting the ARDYEN# input of the 82284
Clock chip.

Typically, once the data transfer command has been
issued by the 82288 and the data transfer has taken
place, a transfer acknowledge (XACK#) signal is
returned to the processor on the multi-master
system bus to indicate "Ready" from the accessed
slave device. The processor remains in a series of
"Wait States" (Repeated Tc states) unitl the ad­
dressed device responds with XACK# asserted
signal to the 82284 ARDY# input and the 82284
asserts READY# to the processor. The processor
then completes its bus cycle.

82289 with other Bus Masters

When supporting other bus masters, the SO#/HOlD
and READY# pins of the bus arbiter can be connected
to the 'Hold' pin of that master. The inverted AEN#
signal from the 82289 can be used as the hold
acknowledg~ (HlDA) input forthe other bus master.

The bus master sends a HOLD signal to the bus
arbiter when it needs the system bus for a memory
access. If the arbiter currently controls the system
bus, AEN# will be active. Otherwise, AEN# will be
inactive and the arbiter will request control of the
system bus. The bus master will have to wait until
the 82289 has asserted AEN# (lOW), before it starts
its bus cycle.

When the bus master no longer requires the Multibus
it will have to inactivate the HOLD signal. The arbiter
interprets the Multibus access as a single bus cycle
which is terminated by HOLD going inactive (lOW).
Thus the arbiter will not release the Multibus to any
other bus master during a bus access cycle.

Processor Cycle Definition

Any iAPX 286 system which gains access to the
Multibus through the 82289 Bus Arbiter uses an
internal clock which is one half the frequency of the
system clock (ClK) (see figure 3). Knowledge ofthe
phase of the local bus master internal clock is
required for proper 82289 control of the iAPX 286
interface to Multibus. The local bus master informs
the bus arbiter of its internal clock p'hase when it
asserts the status signals. The 80286 SO# and S1#
status signals are always first asserted in phase 1 of
the local bus master's internal clock.

ClK ~ONE SYSTEM _ I
ClKCYClE-J

PClKY ' ___ --:1

Figure 3: elK Relationship to Internal Processor
Phase, and Bus T-States

Bus State Definition

The 82289 Bus Arbiter has three processor bus
states (see figure 4): Idle (TI), Status (T s), Command
(T d. Each bus state is two ClK cycles long. Bus
state phases correspond to the internal CPU pro­
cessor clock phases.

RE~DY

NEW ,CYCLE

Figure 4: 82289 Pr~essor, Bus States

231095-002

82289

Bus Cycle Definition

The S1# and SO# status inputs are sampled by the
82289 on the falling edge of elK and signal the start
of a bus cycle by going active (lOW). The T s bus
state is defined to be the two elK cycles during
which either S1# or SO# is active (see figure 5).
When either S1# or SO# is sampled lOW, the next
elK cycle is considered the second phase of the
associated processor clock cycle.

The arbiter enters the T c bus state after the T s state.
The shortest bus cycle may have one T s state and
one Testate. longer bus cycles are formed by
repeating T c states. A repeated T c bus state is
called a wait state.

VCH

ClK
VCl

51.SO VIH ---"" J
FROM
cpu Vil

The READY# input determines whether the current
T c bus state is to be repeated. The READY# input
has the same timing and effect for all bus cycles.
READY# is sampled at the end of each T c bus state
to see if it is active. If sampled HIGH, the T c bus
state is repeated. This is called inserting a wait state.

When READY# is sampled lOW, the current bus
cycle is terminated. Note that the bus arbiter may
enter the T s bus state directly from T c if the status
lines are sampled active (l.:OW) at the next falling
edge of elK (see Figure 5). If neither of the status
lines are sample.d active at that time the 82289 will
enter the TI bus state. The TI bus state will be
repeated until the status inputs are sampled active.

!!I!I !ll!11J

Figure 5: 80286 Bus Cycle Definition (without wait states)

Arbitration Between Bus Masters

The Multibus protocol allows multiple processing
elements to compete with each other to access
common system resources. Since the local 80286
processor does not have exclusive use of the system
bus, if the Multibus is "BUSY" the 80286 processor
will have to wait before it can access the system bus.

The 82289 Bus Arbiter provides an integrated
solution for controlling access to a mUlti-master
system bus. The bus arbiter allows both higher and
lower priority bus masters to acquire the system bus
depending on which release mode is used. In
general, higher priority masters obtain the bus
immediately after any lower priority master com­
pletes its present transfer cycle. lower priority bus
masters obtain the bus when a higher priority
master is not accessing the system bus or the
proper surrender conditions exist. The 82289 handles

4-123

this arbitration in a manner completely transparent
to the bus master (e.g. 80286 processor).

At the end of each transfer, the arbiter may retain or
release the system bus. This decision is controlled
by the processor state, bus arbitration inputs and
arbiter strapping options. (See Releasing The
Multibus, ahead).

Priority Resolving Techniques

Some means of resolving priority between bus
masters requesting the multi-master bus simulta­
neously must be provided. The 82289 Bus Arbiter
supports parallel, serial, and rotating system bus
priority resolving techniques. All of these techniques
are based on the concept that at a given time, one
bus master will have priority above all the others.

231095-002

82289

BCLK ________________________ -'

o HIGHER PRIORITY BUS ARBITER REQUESTS THE MULTI-MASTER SYSTEM BUS. o ATTAINS PRIORITY. (DOES NOT YET OWN BUS) o LOWER PRIORITY BUS ARBITER RELEASES BUSY.

o HIGHER PRIORITY BUS ARBITER THEN ACQUIRES THE BUS AND PULLS iiiJSVLOW.

Figure 6: Bus Exchange Timing For The Multibus

An individual arbiter is the highest priority arbiter
requesting the Multibus when its BPRN# input is
asserted (LOW). The highest priority· requesting
arbiter cannot immediately seize the system bus. It
must wait until the present bus transaction is
completed. Upon completing itscurrenttransaction
the present bus owner surrenders the bus by releas­
ing BUSY#.

BUSY# is an active-low 'Wired-OR' Multibus signal
which goes to every bus arbiter on the system bus.
When BUSY# goes inactive, the arbiter which has
requested the system bus, and presently has bus
priority (BPRN# LOW), seizes the bus by pullIng
BUSY# LOW (See waveform in Figure 6).

The generation of a multi-master bus request
(BREQ#) is controlled by the type of bus cycle and
the SYSB/RESB# input. Whenever the processor
signals the status for memory read, memory write,
1(0 read, I/O write or interrupt acknowledge cycle,
and SYSB/RESB# is HIGH at the end of Ts, a bus
request is generated.

When the status inputs indicate'an interrupt acknow­
ledge bus cycle, tne arbiter allows external logic to
decide (through the SYSB/RESB# input) whether
the interrupt acknowledge cycle should use the
Multibus.

Figure 7 shows how SYSB/RESB# is repeatedly
sampled until it is sampled HIGH or the bus cycle is
terminated. If the bus cycle is completed (READY#
is sampled LOW) before SYSB/RESB# is sampled
HIGH, the arbiter will not request the Multibus.

The 82289 bus Arbiter does not generate a separate
BREQ# for each bus cycle. Instead the 82289
generates BREQ# when it requests the bus and
holds BREQ# active during the time that it has
possession of the bus. Note that all multi-master
system bus requests (via BREQ#) are synchronized
to the system bus clock (BCLK#).

Parallel Priority Resolving Technique

The parallel priority resolving technique requires a.
separate bus request line (BREQ#) for each arbiter
on the multi-master system bus (see Figure 8). Each
BREQ# line enters a priority encoder which gener­
ates the binary address of the highest priority
BREQ# line currently active. The binary address is
decoded to select the BPRN# line corresponding to
the highest priority arbiter requesting the bus. In a
parallel schem'e, the BPRO# output is not used.

The arbiter receiving priority (BPRN# LOW) then
allows its associated bus master onto the multi­
master system bus as soon as the bus becomes
available (i.e., the bus is no longer busy). Any
number of bus masters may be acomodated in this
way, limited only by the complexity of the external
priority resolving circuitry. SU,ch circuitry must
resolve the priority within one BCLK# period.

Serial Priority Resolving Technique

The serial priority resolving technique eliminates
the need for the priority circuitry of the parallel
technique by daisy-chaining the bus arbiters to­
gether, that is, connecting the higher priority

4-124 231095-002

82289

arbiter's BPRO# output to the BPRN# of the next
lower priority arbiter (see Figure 9). The highest
priority bus arbiter would have its BPRN# tied LOW
in this configuration, signifying to the arbiter that it
always has the highest priority when requesting the
system bus. In a serial scheme, the BREQ# output is
not used.

Since arbitration must be resolved within one
BCLK# period the number of arbiters connected

Ts Tc

ClK [

SO#/HOlDoS1# [

together in the senal priority is limited by arbiter
BPRN# to BPRO# propagation delay (18 ns). For a
10 MHz Multibus BCLK#, five 82289 Bus Arbiters
may be connected together in senal configuration.

Maximum number of chained-priority devices =

BCLK# period

BPRN# to BPRO# delay

Tc TC

Figure 7: Bus Request Timing During an Interrupt Acknowledge Cycle

+vcc

74148
PRIORITY

4 ENCODER

Figure 8: Parallel Priority Resolving Technique

4-125

1

74138 ~
3T08

DECODER 4

231095-002

)~ 82289

+Vcc

: BUSY

Figure 9: Connections for Serial Priority Resolving Technique

BPRN#[~~~.f-'----""f~f-' ______ _

BPRO#[~~~'~_-f/F. \>-____ _

BREQ# [---__J/.f-' ----_/.f-' -----,r·;.--J+-\-\\ ... F_. ____ -DT-'Jr------

l THE LOCAL J ~ THE LOCAL ~
80286 REQUESTS 80286 NO LONGER
THE MULTIBUS NEEDS THE MULTIBU

Note: Events A through F described above.

Figure 10: Serial Priority Bus Behavior

When using the serial priority resolving scheme, a
higher priority arbiter (for example, arbiter 2, Figure
9) passes priority to the next lower priority arbiter
(arbiter 3) by asserting its BPRO# signal (LOW).
This asserts BPRN# of next arbiter (arbiter 3) as
shown in Figure 10-a & 1(}'b. An arbiter's BPRO# is

bring its BPRO# inactive if its BPRN# goes inactive
(from arbiter 2), thereby passing the loss of bus
priority on to tre lower priority arbiters (e.g. arbiter
4) as shown in Figure 10-d.

Rotating Priority Resolving Technique

asserted if the arbiter has priority (BPRN# is The rotating priority resolving technique is similar
asserted) but is not accessing or requesting the to the parallel priority resolving technique except
system bus (as indicated by BREQ# inactive as that priority is dynamically re-assigned. The priority
shown in Figure 10-c and 10-e for arbiter 3). encoder is replaced by a more complex circuit
Whenever a higher priority arbiter (arbiter 3) issues which rotates priority between requesting arbiters,
a bus request its BPRO# goes inactive causing the thus allowing each arbiter an equal chance to use
next lower priority arbiter (arbiter 4) to lose its bus the multi-master system bus over a given period of
priority (Figure 10-f). Any arbiter (arbiter 3) will also time.

I

(4-126 231095-002

82289

Selecting the Appropriate Priority
Resolving Technique

The choice of a priority resolving technique involves
a tradeoff between external logic complexity and
ease of Multibus access for the different bus mas­
ters in the system. The rotating priority resolving
technique requires a substantial amount of external
logic, but guarantees all the bus masters an equal
opportunity to access the system bus. The serial
priority resolving technique uses no external logic
but has fixed bus master priority levels and can
accommodate only a limited number of bus arbiters.
The parallel priority resolving technique is in general
a compromise between the other two techniques.
(For example parallel priority configuration in Fig. 8
allows up to eight arbiters to be present on the
Multibus, with fixed priority levels, while not requir­
ing a large amount of complex external logic to
implement.)

Releasing the Multibus

Following a data transfer cycle on the Multibus, the
82289 Bus Arbiter can either retain control of the
system bus or release the bus for use by some other
bus master. The 82289 can operate in one of three
modes, defining different conditions under which
the arbiter relinquishes control of the multi-master
system bus. These release modes are described in
Table 2.

Conditions under which the Bus
Release Arbiter releases the system bus
Mode (unless cycles are LOCKed)

Mode 1 The Bus Arbiter always releases the
bus at the end of each transfer cycle

Mode 2 The Bus Arbiter retains the bus until:

• a higher-priority bus master re-
quests the bus, driving BPRN#
HIGH

• a lower-priority bus master requests
the bus by pulling CBRQ# LOW

Mode 3 The Bus Arbiter retains the bus until:

• a higher-priority bus master re-
quests the bus, driving BPRN#
HIGH. (CBRQ# LOW ignored)

Table 2: 82289 Release Modes

If the arbiter was programmed to operate in the
Always Release mode (Mode 1) during the previous
reset, it will surrender the Multibus after each
complete transfer cycle. If the arbiter is not in the
Always Release mode, it will not surrender the bus
until the local 80286 processor enters a halt state,

the arbiter is forced off of the bus by the loss of
BPRN# (Mode 2 or 3), or by a common bus request
when the CBRQ# input is enabled by the CBQLCK#
input (Mode 2).

CBRQ# can save the bus exchange overhead in
many cases. If CBRQ# is high, it indicates to the bus
master that no other master is requesting the bus
and therefore the present bus master can retain the
bus. Without CBRQ#, only BPRN# indicates whether
or not another master IS requesting the bus and, that
only if the other master is of higher priority. Between
the master's bus transfer cycles, in order to allow
lower priority masters to take the bus if they need it,
the master must give up the bus. At the start of the
master's next transfer cycle, the bus must be
regained. If no other master has the bus, this can
take approximately two BCLK# periods. To avoid
this overhead of unnecessarily giving up and regain­
ing the bus when no other masters need it, CBRQ#
is extremely useful. Any master that wants but does
not have the bus, must assert CBRQ# (LOW). If
CBRQ# line is not asserted the bus does not haveto
be released, thereby eliminating the delay of
regaining the bus at the start of the next cycle.

The LOQK# input to the arbiter can be used to over­
ride any of the conditions shown in Table 2. While
LOCK# is asserted, the arbiter will not surrender
control of the Multibus to any other requesting arbi­
ter. Note that the arbiter will surrender the Multibus
(synchronous to BCLK#) either in response to
RESET or INIT# signals independent of the current
release mode or the state of the arbiter inputs.

The three bus release modes have the same opera­
tion when supporting either the 80286 processor or
some other bus master.

Selecting the Appropriate Release Mode

The choice of which release mode to use may affect
the bus utilization of the individual subsystems, and
the system as a whole. Mode dependent perfor­
mance variations are due to the bus acquisition/
release overhead. The effect of these acquire and
release times on system bus efficiency is illustrated
in Figure 11.

An isolated transfer on the multi-master system bus
is depicted in Figure 11-a. Figure 11-b shows utiliza­
tion for the bus arbiter operating in Mode 1. The
arbiter must request and release the system bus for
each transfer cycle. Lower priority arbiters have
easy access to the system bus, but overall bus effi­
ciency is low. Bus utilization for a bus arbiter operat­
ing in Mode 2 or 3 is shown in Figure 11-c. In this
situation the arbiter acquires the bus once for a
sequence of transfers. The arbiter retains the bus
until forced off by another bus master's request as
defined in Table 2

4-127 231095-002

inter 82289

A,

B,

C,

Figure 11: Effects of Bus Contention on Bus Efficiency

The three release modes of the 82289 allow the
designer to optimize the system use of the Multibus,

Configuring the 82289 Release Mode

The 82289 Bus Arbiter can be configured in any of
its three bus release modes without additional

822889

RESET----IRESET

MODEl

822889

RESET

hardware, the 82289 can also be configured to
switch between Mode 2 and Mode 3 under software
control of the 80286 processor, requiring that a
parallel port or addressable latch be used to drive
the ALWAYS#/CBQLCK# input pin of the 82289 (see
Figure 12),

822889

RESET ---tRESET

vcc _____ ~/~

MODE 2

822889

RESET-_-----I

MODE3 $ PARALLEL
1/0 OR

DATA ADDRESSABLE
LATCH

D
C

ENABLE '"--...... C.t----MULTIBUS BCLK

SELECTABLE BETWEEN MODES 2 AND 3

* WHEN HIGH THE 82289 IS IN MODE 2;
WHEN LOW THE 82289 IS IN MODE 3,

Figure 12: 82289 Release Mode Configurations

4-128 231095-002

82289

Asserting the LOCK# Signal

Independent of the particular release mode of the
82289 Bus Arbiter, the 80286 processor can assert a
lOCK# signal synchronously to ClK to prevent the
arbiter from releasing the Multibus. This software­
controlled lOCK# signal prevents the 82289 from
surrendering the system bus to any other bus mas­
ter, whether that bus master is of higher or lower
priority. The lOCK# signal is typically used for
implementing software semaphores for shared re­
sources or for' critical processes that must run in
real-time.

The 82289 llOCK# output is the Multibus signal
asserted during all bus cycles which are locked
together. The llOCK# is set or reset depending on
processor lOCK# at the end of the Ts cycle. The
llOCK# will delay going inactive until the termina­
tion of the current transfer cycle.

The 82289 will continue to assert the llOCK# sig­
nal, retaining. control ofthe Multibus, until the end of
the first 'unlOCKed' 80286 bus cycle (80286 dis­
ables its lOCK# output on the last bus cycle indicat­
ing that no future locked cycles are needed). While
the lOCK# signal will force the arbiter presently in
control to hold the system bus, it cannot force
another arbiter to surrender the bus any earlier than
it normally would.

The llOCK# signal from the 82289 must be con-

nected to a tri-state buffer in orderto drive the Multi­
bus lOCK# signal. This tri-state buffer should be
enabled by the AEN# signal from the arbiter going
active.

82289 Reset and Initialization

The 82289 Bus Arbiter provides the RESET and
INIT# pins for initialization. RESET is a ClK syn­
chronous signal from the 80286 processor and
INIT# is an asynchronous signal on the multi­
master system bus. By having RESET pin high or
INIT# pin low, the BREQ#, BUSY#, and AEN# output
pins will all be cleared and become inactive. RESET
will also clear the llOCK# signal. Unlike RESET,
INIT# will not clear any pending bus request; the
bus request would be asserted after the INIT# signal
goes inactive.
~ I

Note that when the 82289 is initialized by the RESET
input it does not wait until the end of the current bus
cycle to reset. Any bus cycle in process when
RESET goes active will be aborted by the arbiter.
Although the INIT# signal will also interrupt an
active bus cycle, the arbiter can request the Multi­
bus and complete the bus cycle when INIT# goes
inactive.

As mentioned in the Table 1 Pin Description and
Figure 12, the functions of the SO#/HOlD pin and
the release mode (AlWAYS#/CBQlCK# pin) are
programmed at the falling edge of RESET

4-129 231095-002

82289

Ycc Ycc
XACKI

"'0
ADDRESS
DECODE

RELEASE

"'0 MODE

.'" 1

SYS8IAESB . am
RESET INIT

Al.WAYS/
BREO

CIOLeK -~
SO/HOLD imi .,

iiiiIV - eBRO
CLK LOcK ;-Am MIlO
RESET

uaakLOCK

ocue.
INITIf 1-BUS

CBRCH ARBITRATION

... ..
BU8ARBlTER

Ycc

CENJAE~B IOi!ii
iiWI'C
iliiiC

I/lWE
~itttF1~~~~i~"MDAY .. AD.

MEMORY WRITI'

liD READ'
110 WRiTe' 10kn -SO ALE .,

Mct!

~t~=tS=~~l--'NTERRUPTACKNowL£Dal!' .,
READY DEN I- r-
eLX -l-

UDS BUS
CONTROLLER

PCLK READY

EA
eLK

we

A,

CMDLY 1111. "., t-SRDY RESET -SRDY!!N
AiiDv .. '" MilO !

!
82214 I elK umR -

Vee GE~'f~~R I II!iDv COOlINTA ""'!

ARDYEN --STB
III p.. ADDRESS BUS

, ! 4+ 1r Au-Aotl:=::!:!:::::~:::;;~~:>~ Jf~

~: : I' I"'" ~MI H-' --++t+t-{.I\..I.-.:..~ =-, _____________ ..1 I I i-.;. HOLD I

2OKO L;>2::===~!~:-~-::-;--:-:-:-~-;::-:--:--:-j-i-H~' ~':' tt' ~ _ !
I I iii:i'W INTA: ~~ tNT

L-------------t+ .. ~ "t--i---.. --.LH+ PlACK I iNTi

! ! ! ! I rt------,-tt1- PEREO CAP ~ I ~=====t: . I::::: I ... -_..... f : : = iT ~ SP EN
! : ! ! ! : I i r--J

: I °0.°,5 :* [--..
! ! ! ! ! ! ! ! ! f-;: .. J i ~ Do·~ I2I8A

r_iiJ_l_i_l..i_!_J_l_~' ________ _ ___ J =="
! PRO'=SOR ------ I . _ -;--: rJ'::I~= ~-.. -...... r-
L_~ ____ ~ __ ~ _____ ~ _____ J ~ =

I

"I-ea f.- CHIP SELECT

<:::::> DATA.US

-
Schematic 1: TypicallAPX 286 Subsystem MULTIBUS Interface

4-130 231095-002

82289

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature
Under Bias•... O°C to 70°C

Storage Temperature -65°C to +150°C
Voltage on Any Pin With

Respect to GND ., -0.5V to + 7V
Power Dissipation 1 Watt

Electrical Characteristics and Waveforms

"Notice: Stresses above those listed under ':4bsolute
Maximum Ratings" may cause permanent damage
to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is not implied.
Exposure to absolute maximum rating conditions
for extended periods may affect device reliability.

D.C. Characteristics (TA = 0° to 70°C, Vee = 5V ± 5%)

Preliminary

Symbol Parameter Min. Max. Units Test Conditions

VIL Input low Voltage -0.5 .8 V

VIH Input High Voltage 2.0 Vee + 0.5 V

VILe ClK Input low Voltage -0.5 .6 V

VIHe ClK Input High Voltage 3.8 Vee + 1.0 V

Output low Voltage:

VOL
BUSY#, CBRQ# .45 V IOL = 32mA
BPRO#,BREQ#,AEN# .45 V IOL = 16mA
llOCK# .45 V IOL = 5mA

VOH Output High Voltage 2.4 V IOH = 400llA

III Input leakage Current ±10 IlA 0.45V:O;; VIN :0;; Vee
±1 mA OV:5; VIN < 0.45V

ILO Output leakage Current ±10 IlA 0.45V:O;; VOUT:O;; Vee

Icc Power Supply Current 120 mA

CeLK ClK, BClK# Input Capacitance 12 pF Fe = 1 MHz

CIN Input Capacitance 10 pF Fe = 1 MHz

Co Input/Output Capacitance 20 pF Fe = 1 MHz

4-131 231095-002

82289

A.C. Characteristics ,(,TA = DOC to 70°C, Vee = 5V ± 5%)
ACtimings are referenced to 0 8V and 2,OV points of signals as Illustrated in datasheet waveforms, unless
otherwise noted,

Sym

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
j-----.

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

NOTES:
NOTE 1.
NOTE 2
NOTE 3
NOTE 4
NOTE 5
NOTE 6
NOTE?
NOTES

NOTE 9

Parameter

ClK Cycle Period

ClK low Time

ClK High Time

CLiS Rise/Fail Time

BClK# Cycle Time

BClK# High/low Time

SO#/HOlD, S1#, M/IO# Setup

SO#/HOLD, S1#, M/IO# Hold

READY# Setup

READY# Hold Time

LOCK#, SYSB/RESB# Setup Time

LOCK#, SYSB/RESB# Hold Time

RESET Setup Time

RESET Hold Time

RESET ACTIVE Pulse Width

INIT# Setup Time

INIT# Hold Time
. -~--~~-.--.,---

INIT# Active Pulse Width

BUSY#, BPRN#, CBRQ#,
CBQLCK#/AlWAYS# Setup
to BCLK# (or to RESET)

BUSY#, BPRN#, CBRQ#,
CBQLCK#/ALWAYS# Hold ,
to BClK# (or to RESET)

BCLK# to BREQ# Delay

BCLK# to BPRO# Delay

BPRN# to BPRO# Delay

BClK# to BUSY# Active Delay

BCLK# to BUSY# Float Delay

BCLK# to CBRQ# Active Delay

BCLK# to CBRQ# Float Delay

BCLK to AEN# Active Delay

ClK to AEN# Inactive Delay

CLK to LLOCK# Delay

RESET to LLOCK# Delay

ClKto BClK# Setup Time

BREQ# load CL = 60pF
BPRO# load CL = 60pF
BUSY# load CL = 300pF

Preliminary Preliminary
6MHz 8MHz

Min. Max. Min. Max.

83 t5+ 62 t5+
50 50

20 225 15 230

25 230 20 235

10 10

100 oc 100 00

30 30

28 22

1 1

50 38

35 25

28 20

1 1

28 20

1 1

16 16

45 45

1 1

3(t1) 3(t1)
+3(t14) +3(t14)

20 20

1 1

30 30

35 35

25 25

1 60 1 60

35 35

55 55

35 35

1 25 1 25

3 25 3 25

20 20

35 35

38 38

Float condition occurs when output current IS less that 1LO In magnitude
CBRQ# load CL = 300pF
AEN# load CL = 150pF
llOCK# load CL = 60pF

Shown
Test in

Unit Conditions Figure

ns 13

ns at 1,0 V 13

ns at 36 V 13

hS 10 to 3 6 V 13

ns 13

ns 13

ns 13

ns 13

ns 13

ns 13

ns 13, 18

ns 13, 18

ns 19

ns 19

CLKs
,

19

ns Note 9 20

flS Note 9 20

20
ns

ns 13, 15, 21

ns 13,15,21

ns Note 1 13, 14

ns Note 2 17

ns Note 2 17

ns Note 3 13

ns Note 4 13, 14

'ns Note 5 13

ns Note 4 13, 20

ns Note 6 13

ns Note 6 13, 14

ns Note 7 18

ns Note 7 19

ns Note 8 13, 16,20

In actual use, ClK and BClK# are usually asynchronous to each other However, for component tesllng
purposes, this specification IS reqUIred to assure signal recognition at specific ClK and BClK# edges
INIT# IS asynchronous to ClK and to BCLK# However for component tesllng purposes, this specification IS

required to assure signal recognition at specific elK and BCLK# edges

4-132 231095-002

inter

4.0V
(2.4V)

CLKINPUT
(BCLK # INPUT)

82289

NOTE 10: AC Drive and Measurement Points - ClK Input (BClK# Input)

4.0V
(2.4V)

CLKINPUT

(BCLK# INPUT)

O.4SV -----___ -+_'-_____ ..J

(O.4SV)

OTHER
DEVICE
INPUT

2.4V

DEVICE
OUTPUT

tDELAY -----I

2.0V

O.SV

NOTE 11: AC Setup, Hold and Delay Time Measurement - General

DEVICE
OUTPUT

NOTE 12: AC Test loading on Outputs

4-133 231095-002

inter 82289

Wavefonns

The waveforms (Figure 13-21) show the timing
relationships of the inputs and the outputs and do
not show all possible transitions of all signals in all
modes. Instead, all signal timing relationships are
shown via the general cases. Special cases are
shown when needed.

To find the timing specification for a signal transition
in a particular mode, first look for a special case in
the waveforms. If no special case applies, then use a
timing specification for the same or related function
in another mode.

The 82289 Bus Arbiter serves as an interface
between the iAPX 286 subsystem which operates
synchronous to the ClK signal and Multibus which
operates synchronous to BClK# signal. ClK and
BClK# generally operate asynchronously to each
other and at different frequencies. Thus, the exact

Ts Tc

<1>1 <1>2 <1>1 <1>2

ClK [

SO#/HOloeS1# [

M/IO# [

REAOY# [

lOCK#, [
SYSB/RESB#

BClK# [

BREQ# [

BPRN# [

BUSY# [

CBRQ# [

AEN# [

<1>1

clock period in which an input synchronous to one
clock will cause a response synchronous to the
other clock depends on the relative phase and
frequency of ClK and BClK# at the time the inputis
sensed. .

One strict relation between ClK and BClK# must
be maintained for proper Multibus arbitration. If the
ClK period is too long relative to BClK# period (t1
greater than t5 + SOns), another arbiter could gain
control of the system bus before this arbiter has
released AEN# synchronous to its ClK. This situa­
tion arises since the release of AEN# is synch ronous
to the next falling ClK edge after the processor
cycle ends but the release of BREQ# and BUSY# is
synchronous to the next falling BClK# edge after
the processor cycle ends. In practice, any ClK
frequency greater than 6.66MHz (ie. 80286 processor
speeds greater than 3.33MHz) will avoid conflict
with a 10MHz BClK#. Therefore all 80286 speed
selections are Multibus compatible.

Tc Tc

<1>2 <1>1 <1>2 <1>1. <1>2 <1>1

'ONlY FOR 82289 TEST PURPOSES

Figure 13: Multibus Acquisition and Always-Release Operation

4-134 231095-002

inter

CLK [

SO#/I:tOLDeS1# [

TS Tc

82289

TC Ts TC

M/IO# [7Zl2)C===:t~?Zl2?ZZZrzz~W7Zl2?Z22?Zl2Cll2~x:::=~=:::t:J(~~7Zl27Zl2tzl2?Zl2~

READY# [ZZZ;m7Zl2?lZ.1?lZ.1~cz?z?ZZ2i7Zl27T-I~~~_-4-....J.qzz~m~7Zl2?Z22?Zl2'1lJ"-I"""\'iZ:;

SYSB/~~~~:' [?Zl2?Zl2?ZZZwrl.....,~?Zl2~~WW7Zl2?Z22?Z22C4?2?Zl2?ZZZ~7Zl2~?Z22?Z22?Z22?Zl2:zz~W~

BCLK# [

BPRN# [~?Zl2?Zl2?Zl2:zz:zz~~-~~?Z22?Z22?Z22?Zl2?Zl2:zz:zzW~?Z22?Z22?Z22?Zl2?Zl2:zzWW7Zl2~

BUSY# [-------------------1-+-'

BREQ# [-------------------1-+-'
AEN# [___________________ ~

·ONLY FOR 82289 TEST PURPOSES

Figure 14: Multibus Release due to BPRN# Inactive

4-135 231095-002

82289

T5 TC Tc T5 Tc

<1>1 <1>2 <1>1 <1>2 <1>1 <1>2 <1>1 <1>2 <1>1

CLK [

SO#/HOLoeS1# [

M/IO# [

REAOY# [

LOCK#, [
SYSB/RESB#

BCLK# [

BPRN# [

CBRO# [

CRQLCK# [

BREQ# [

BUSY# [

AEN# [

'ONLY FOR 82289 TEST PURPOSES

Figure 15: Multibus Release due to CBRQ# Active

4-136 231095-002

inter

ClK [

SO#/HOlDeS1# [

BClK# [

BREQ# [

BREQ# [

82289

T8 Tc Tc TC

4>1 4>2 4>1 4>2 4>1 4>2 4>1 4>2 4>1 4>2

·ONlY FOR 82289 TEST PURPOSES

Figure 16: Multibus Acquisition During 80286 INTA Cycles

'f ,r/

THE lOCAL
80286 REQUESTS
THE MUlTIBUS

Figure 17: BPRN# to BPRO# Timing Relationship

4-137

THE lOCAL
80286 NO LONGER

NEEDS THE MUlTIBUS

231095-002

inter

CLK [

lLOCK# [
(FROM 82289)

ClK .c
RESET [

AEN# [

BCLK# [

BUSY# [

BREQ# [

CBRQI! [

lLOCKII [

4>1

82289

TS TC TS Tc

4>2 4>1 4>2 4>1 4>2 4>1 4>2 4>1 4>2

Figure 18: 80286 LOCK# and 82289 LLOCK# Relationship

Tx

4>2 4>1 <1>2 4>1 4>2 <1>1 <1>2 4>1

·FOR 82289.TEST PURPOSES ONLY

Figure 19: RESET Active Pulse

4-138 231095-002

82289

ClK [

INIT# [

AEN# [ZZZZZZZZZZZZ~~~~~~~r--------------------t---------

BClK# [

BUSY# [ZZ~~~~~~~ZZZZZZZZ~~r----------------------------

BREQ# [ZZ~~~ZZ~ZZZZ~~~~~~r----------------------------

~ CBRO# [Wli I///II//$)/;///)//J///II/I///II//// Ii//I@

llOCK# [ZI!I////)IiII//)//(I//I//)IiI/(@/jllOCK# IS UNAFFECTED BY INIT#7I/I/I///;//)//;IIiII)IiI/IJ;jJjjffi

"FOR 82289 TEST PURPOSES ONLY

Figure 20: INIT# Active Pulse

Figure 21: Programming the Always-Release/Common-Bus-Request-Release Option

4-139 231095-002

inter
ALABAMA

Intel Corp
50t5 Bradford Drive
SUite 2
Huntsville 35805
Tel (205) 830·4010

ARIZONA

Intel Corp
11225 N 28th Dnve
SUite 2140
PhoeniX 85029
Tel (602) 869-4980

Intel Corp
1161 N EI Dorado Place
SUite 301
Tucson 85715
Tel (602) 299-6815

CALIFORNIA

Intel Corp
21515 Vanowen Street
SUite 116
Canoga Park 91303
Tel (StS) 704-8500

Intel Corp
2250 E Impenal Highway
SUite 218
EI Segundo 90245
Tel (213) 640·6040

Intel Corp
1010 Hurley Way
SUite 300
Sacramento 95825
Tel (9t6) 929.4078

Intel Corp
4350 Executive Dnve
SUite 150
San Diego 92111
(619) 452-5880

Intel Corp·
2000 East 4th Street
SUite 100
Santa Ana 92705
Tel (714) 835-9642
TWX 910-595-1114

Intel Corp·
1350 Shorebird Way
Mt View 94043
Tel (415) 96S-S0an
TWX 910-339-9279
910-338-0255

COLORADO

Intel Corp
4445 Northpark Drive
SUite 100
Colorado Sprmgs 80907
Tel (303) 594-6622

Intel Corp·
650 S Cherry Street
SUite 720
Denver 80222
Tel (303) 321-8086
TWX 910-931-2289

CONNECTICUT

Intel Corp
26 Mill Plain Road
Danbury 06810
Tel (203) 748-3130
TWX 710-456-1199

EMC Corp
222 Summer Street
Stamford 06901
Tel (203) 327-2934

FLORIDA

Intel Corp
242 N Westmonte Drive
SUite 105
Altamonte Springs 32714
Tel (305) 869·5588

\~66 CS~ 62nd Street
SUite 104
Ft Lauderdale 33309
Tel (305) 771-0600
TWX 510-956-9407

DOMESTIC SALES OFFICES

FLORIDA (Conl'd)

Intel Corp
11300 4th Street South
SUite 170
St Petersburg 33702
Tel (813) 577-2413

GEORGIA

Intel Corp
3280 POinte Parkway
SUite 200
Norcross 30092
Tel (404} 449_0541

ILUNOIS

Inlel Corp"
2550 Gulf Road
SUite 815
Rotling Meadows 60008

~X (3~f6_6~~~5~~~0
INOLANA

Intel Corp
8777 Purdue Road
SUite 125
indianapolis 46268
Tel (317) 875-0623

IOWA

Intel Corp

~J30An~te~~d~e~~m8rlve N E
Cedar Rapids 52402
Tel (319) 393-5510

KANSAS

Inlel Corp
8400 W 110th Sireet
SUite 170
Overland Park 66210
Tel (913) 642-8080

LOUISIANA

Industrial Digital Systems Corp
Tel (504) 899-1654

MARYLAND

Intel Corp·
7321 Parkway Drive South
SUite C
Hanover 21076
Tel (301) 796-7500
TWX 710-862-1944

Intel Corp
7833 Walker Drive
Greenbelt 20770
Tel (301) 441-1020

MASSACHUSEn5

Intel Corp·
27 Industnal Avenue
Chelmsford 01824
Tel (617) 256-1800
TWX 710-343-6333

MICHIGAN

Intel Corp
7071 Orchard Lake Road
SUite 100
West Bloomfield 48033
Tel (313) 851-8096

MINNESOTA

Intel Corp
3500 W 80th Street
SUite 360
Bloommgton 55431
Tel (612) 835-6722
TWX 910-576-2867

MISSOURI

Intel Corp
4203 Earth City Expressway
SUite 131
Earth City 63045
Tel (314) 291·1990

NEW JERSEY

~!~~ta~o~a:a III
Raritan Center
EdISon 08837
Tel (201) 225~3000
TWX 710-480-6238

NEW MEXICO

Intel Corp
8500 Menual Boulevard N E
SUite B 295

~~~ut~~~ue29~~~b~6 
NEW YORK 

Intel Corp· 
300 Vanderbilt Motor Parkway 

~:luPF~6~e 21~:ggoo 
TWX 510-227-6236 

Intel Corp 
SUite 2B Hollowbrook Park 
15 Myers Comers Road 
Wappmger Falls 12590 
Tel (914) 297-6161 
'TWX 510-248-0060 

Intel Corp· 
211 White Spruce Boulevard 
Rochester 14623 
Tel {l16} 424-1050 
'TWX 510-253-7391 

~4~~U~~3rngs Road 
Syracuse 13206 
Tel (315) 463-8592 
TWX 710-541-0554 

~31~ua~tt~ford_Vlctor Road 
Victor 14564 
Tel (716) 924-9101 
TWX 510-254-8542 

NORTH CAROLINA 

Intel Corp 
2700 Wyclrfl Road 
SUite 102 
Raleigh 27607 
Tel (919) 781-8022 

OHIO 

Intel Corp" 
6500 Poe Avenue 
Dayton 45414 
Tel (513) 890-5350 
TWX 810-450-2528 

Intel Corp· 

~fi~~:~~:~~~~2d2B~~~~var~0 300 

~X (2~~6_4~~~9~~~6 
OKLAHOMA 

Intel Corp 
4157 S Harvard Avenue 
SUite 123 
Tulsa 74135 
Tel (918) 749·8688 

OREGON 

Intel Corp 
10700 S W Beaverton 
Hillsdale Highway 
SUite 22 
Beaverton 97005 
Tel (503) 641-8086 
TWX 910-467-8741 

PENNSYLVANIA 

Inlel Corp" 
455 Pennsylvania Avenue 
Fort Washington 19034 
Tel (215) 641-1000 
TWX 510·661-2077 

Intel Corp· 
400 Penn Center Boulevard 
SUite 610 
Pittsburgh 15235 
Tel (412) 823-4970 

PENNSYLVANIA (Cont'd) 

QED ElectroniCS 
139 T erwood Road 
Willow Grove 19090 
Tel (215) 657-5600 

TEXAS 
Intel Corp· 
12300 Ford Road 
SUite 380 
Dallas 75234 
Tel (214) 241-8087 
TWX 910·860-5617 

Intel Corp" 
7322 SW Freeway 
SUIte 1490 
Houston 77074 
Tel (713) 988·8086 
n,JX 910-881-2490 

Industrial Digital Systems Corp 
5925 Sovereign 
SUIte 101 
Houston 77036 
Tel (713)988-9421 

~lt~1 ~oAnderson Lane 
SUIte 314 
Austm 78752 
Tel (512) 454-3628 

UTAH 

Intel Corp 
5201 Green Street 
SUIte 290 

~:11t ~~~i ~6~.8~~~23 
VIRGINIA 

Intel Corp 
1603 Santa Rosa Road 
SUIte 109 
Richmond 23288 
Tel (804) 282-5668 

WASHINGTON 

Inlel Corp 
110 110th Avenue N E 
SUIte 510 
Bellevue 98004 
Tel (206) 453·8086 
TWX 910-443-3002 

Intel Corp 
408 N Mullan Road 
SUite 102 
Spokane 99206 
Tel (509) 928-8086 

WISCONSIN 

Intel Corp 
450 N Sunnyslope Road 
SUite 130 
Chancellory Park I 
Brookfield 53005 
Tel (414) 784-8087 

CANADA 
ONTARIO 

Intel Semiconductor of Canada, Ltd 
SUite 202, Bell Mews 
39 Highway 7 
Nepean K2H 8R2 
Tel (613) 829·9714 
TELEX 053-4115 

Inlel Semiconductor of Canada, Ltd 
190 Attwell Drive 
SUite SOD 
Rexdale M9W 6H8 
Tel (416) 675-2105 
TELEX 06983574 

QUEBEC 

Intel Semiconductor of Canada, Ltd 
3860 Cote Vertu Rd 
SUIte 210 
St Laurent H4R lV4 
Tel (514) 334-0560 
TELEX 05-824172 

"Field Appllca\lon Location 



AI,.ABAMA 

tArrow Electronics, Inc 
3611 Memonal Parkway So 
HuntSVille 35801 
Tel (205) 882"2730 

tHamllton/Avnet Electronics 
4940 Research Drive 
HuntSVille 35805 
Tel (205) 83n21O 
TWX 810-726-2162 

tPloneer ElectrOniCS 
1207 Pulnam Drive N W 
HuntSVille 35805 
Tel (205) 837·9300 
TWX 810·726-2197 

ARIZONA 

tHamllton/Avnet ElectrOnics 
505 S Madison Drive 
Tempe 85281 

~X (6~1~_9~~~o~'ijl 

~W~e NDISJ~~~tI1~e~~~up 
PhoeniX 85021 
Tel (602) 249-2232 
TWX 910-951·4282 

CAUFORNIA 

tArrow ElectrOniCS, Inc 
521 Weddell Drive 
SunnYVale 94086 
Tel (408) 745-6600 
TWX 910-339-9371 

tArrow ElectroniCS, Inc 
19748 Dearborn Street 
Chatsworth 91311 

~ (2J~L~~~Jg~g 
Arrow ElectroniCS, Inc 
2961 Dow Avenue 
T ustrn 92680 
Tel, (714) 838-5422 
TWX 910·595·2860 

tAvnet ElectroniCs 
350 McCormick Avenue 
Costa Mesa 92626 
Tel (714) 754-6051 
TWX 910-595-1928 

IHamltton/Avnet Etectronlcs 
175 Bordeaux Dnve 

Sunnyvale 94086 
Tel (408) 743-3300 
TWX 910-339-9332 

tHamllton/Avnet Electronics 
4545 Vlewndge Avenue 
San Diego 92123 
Tel (619) 571-7500 
TWX 910-595-2638 

tHamllton/Avnet ElectroniCS 
20501 Plummer Street 
Chatsworth 91311 
Tel (213) 700-6271 
TWX 910·494-2207 

tHamliton/Avnet Electronics 
4103 Northgate Boulevard 
Sacramento 95834 
Tel (916) 920-3150 

Hamllton/Avnet Electronics 
3002 G Street 
Ontano 91311 
Tel (714) 989-9411 

Hamllton/ Avnet ElectrOniCs 
19515 So Vermont Avenue 
Torrance 90502 
Tel (213) 615-3913 
TWX 910-349-6263 

tHamllton Electro Sales 

bOu1~~r ~Ity w~g~~3'0n Boulevard 

t~x (2J~6_3~~~6~~~8 
tHamllton Electro Sales 
3170 Pullman Street 
Costa Mesa 92626 
Tel (714) 641-4150 
TWX 910·595-2638 

Hamilton Electro Sales 
9650 De Soto Avenue 
Chatsworth 91311 
Tel (818) 700-6500 

Klerullf ElectroniCS, Inc 
1180 Murphy Avenue 
San Jose 95131 
Tel (408) 947-3471 
TWX 910-379-6430 

DOMESTIC DISTRIBUTORS 

CALIFORNIA (Cont'd) 

Klerulff ElectrOnics, Inc 
14101 Franklin Avenue 
Tustin 92680 
Tel (714) 731-5711 
TWX 910-595-2599 

Klerulff ElectroniCs, Inc 
5650 Jltlson Avenue 
Commerce 90040 
Tel (213) 725·0325 
TWX 910-580-3106 

tWyle Dlstnbutlon Group 
124 Maryland Street 
EI Segundo 90245 
Tel (213) 322-8100 
TWX 910-348-7140 or 7111 

tWyle 'Distribution Group 
17872 Cowan Avenue 
Irvine 92714 
Tel (714) 843-9953 
TWX 910-595-1572 

tWyle Distribution Group 
11151 Sun Center Dnve 
Rancho Cordova 95670 
Tel (916) 638-5282 

tWyle Dlstnbutlon Group 
9525 Chesapeake Dnve 
San Diego 92123 ' 
Tel (619) 565-9171 
TWX 910-335-1590 

tWyle Dlstnbutlon Group 
3000 Bowers Avenue 
Santa <Clara 95051 
Tel (408) 727-2500 
TWX 910-338-0296 

Wyle Military 
17810 Telfer Avenue 
Irvine 92750 
Tel (714) 851·9958 
TWX 310-371-9127 

r;~~2 S~~'~~s Chlca 

~~lntl(~lt~) :5;~g~5f2649 
TWX 910-595-2642 

COLORADO 

tWyle Dlstnbuilon Group 
451 E 124th Avenue 
Thornton 80241 
Tef (303) 457-9953 
TWX 910-936-0770 

tHamllton/ Avnet ElectrOniCS 
8765 E Orchard Road 
SUite 708 
Englewood 80111 
Tel (303) 740-1017 
TWX 910-935-0787 

CONNECTICUT 

tArrow ElectroniCS, Inc 
12 Beaumont Road 
Wallingford 06492 
Tel (203) 265-7741 
TWX 710-476-0162 

tHamliton/ Avnet ElectrOniCs 
Commerce Induslnal Park 
Commerce Dnve 
Danbury 06810 
Tel (203) 797-2800 
TWX 710-456-9974 

tPloneer Northeast ElectrOniCS 
112 Mam Street 
Norwalk 06851 
Tel (203) 853-1515 
TWX 710-468-3373 

FLORIDA 

tArrow ElectroniCs, Inc 
1001 N W 62nd Street 
SUite 108 
Ft Lauderdale 33309 
Tel (305) 776-7790 
TWX 510-955·9456 

tArrow ElectroniCS, Jnc 
1530 Bottlebrush Dnve N E 
Palm Bay 32905 
Tel (305) 725-1480 
TWX 510-959-6337 

tHamllton/ Avnet Electronics 
6801 N W 15th Way 
Ft Lauderdale 33309 
Tel (305) 971-2900 
TWX 510·956-3097 

tHamllton/Avnet ElectroniCs 
3197 Tech Drive North 
8t Petersbur9 33702 
Tel (813) 576-3930 
TWX 810-863-0374 

FLORIDA (Cont'd) 

Hamllton/Avnel ElectrOniCS 

~~ier~a~r~S~192Boutevard 
Tel (305) 628·3888 
TWX 810-853-0322 

tPloneer ElectrOnics 
221 N Lake Boulevard 
SUite 412 
Alia Monte 8pnngs 32701 
Tel (305) 834-9090 
TWX 810-853·0284 

tPtoneer ElectrOniCs 
1500 62nd Street N W 
SUite 506 
Ft Lauderdale 33309 
Tel {305} 771-7520 
TWX 51O~955-9653 

GEORGIA 

tArrow ElectroniCs, Inc 
2979 Paofllc Drwe 
Norcross 30071 
Tel (404) 449·8252 
TWX 810-766·0439 

tHamllton/ Avnet ElectroniCs 
5825 0 Peachtree Corners 
Norcross 30092 
Tel (404) 447-7500 
TWX 810-766-0432 

tPloneer Electronlcs 
5835B Peachtree Corners E 
Norcross 30092 
Norcross 30092 
Tel (404) 448-1711 
TWX 810-766-4515 

ILUNOtS 

tArrow ElectroniCs, Inc 
2000 E Alonqum Street 
Schaumberg 60195 
Tel (312) 397-3440 
TWX 910-291-3544 

tHamllton/Avnet ElectrOniCs 
1130 Thorndale Avenue 
BensenVille 60106 
Tel (312) 860-7780 
TWX 910"227-0060 

tPloneer Electromcs 
1551 Carmen Dnve 
Elk Grove VIl!age 60007 
TeJ (312) 437-9680 
TWX 910-222-1834 

INDtANA 

tArrow ElectrOniCS, Inc 
2718 Rand Road 
IndianapoliS 46241 
(317) 243-9353 
ffiX 810·341-3119 

tHamllton/ Avnet 'Electronics 
485 Gradle Drive 
Carmel 46032 
Tel {317} 844-9333 
TWX 810-260-3966 

tPloneer ElectrOniCs 
6408 Castleplace Dnve 
IndianapoliS 46250 

~ {3Jf6_2~~;~~~0 
KANSAS 

~~f91~~~:7~e~o~~ctronlcs 
Overland Park 66215 
Tel (913) 888-8900 
TWX 910·743·0005 

MARYLAND 

Arrow ElectrOniCS, Inc 
8300 Gultord Road #H 
Rlvels Center 
Columbia 21046 
Tel (301) 995-0003 
TWX 710-236-9005 

tHamllton/ Avnet ElectroniCs 
6822 Oak Hall Lane 
Columbia 21045 
Tel (301) 995-3500 
TWX 710-862-1861 

r~o~~a l~d~~t71~(96nvc;;rporatlon 
Galthersbur9 20877 
Tel (301) 948-4350 
TWX_ 710-828-9702 

tPloneer Electromcs 
9100 Gaither Road 
Gaithersburg 20877 
Tel (301) 948·0710 
TWX 710-828-0545 

MASSACHUSEnB 

tArrow Electronics, Inc 
1 Arrow Drive 
Woburn 01801 
Tel {617} 933-8130 
1WX 710-393-6770 

tHamllion/Avnet ElectrOniCS 
50 Tower Office Park 
Woburn 01801 
Tel (617) 935-9700 
TWX 710-393-0382 

tPloneer Northeast Electronics 
44 Hartwell Avenue 
Lexmgton 02173 

~ (6g6_3~~~:1~0 

MICHIGAN 

tArrow Electrofllcs, Inc 
3810 VarSity Drrve 
Ann Arbor 48104 
Tel (313) 971-8220 
TWX 810-223-6020 

tPloneer Electronics 
13485 Siamford 
LIVOnia 48150 
Tel (313) 525-1800 
TWX 810.242-3271 

tHamllion/Avnet Electronics 
32487 Schoolcraft Road 
LIVOnia 48150 

~X (3J~6.2~~84.,j~ 
tHamllton/Avnet Electronics 
2215 29th Street S E 
Space A5 
Grand Rapids 49508 
Tel (616) 243-8805 
TWX 810-273-6921 

MINNESOTA 

tArrow ElectronICs, Inc 
5230 W 73rd Street 
Edma 55435 
Tel (612) 830-1800 
TWX 910-576-3125 

tHamlllon! Avnet ElectroniCs 
10300 Bren Road East 
Minnetonka 55343 

~X (6?j{0)9~~gmo 
tPloneer ElectrOniCs 
10203 Bren Road Easl 
Minnetonka 55343 
Tel (612) 935-5444 
TWX 910-576~2738 

MISSOURI 

tArrow ElectroniCs, Inc 
2380 Schuetz 
St LoUIS 63141 
Tel (314) 567-6888 
TWX 910_764_0882 

tHamllion/Avnet Electronics 
13743 Shoreline Court 
Earth City 63045 
Tel (314) 344-1200 
fflX 910·762-0684 

NEW HAMPSHIRE 

tArrow ElectroniCs, Inc 
1 Pen meter Road 
Manchester 03103 
Tel (603) 668-6968 
TWX 710-220-1684 

NEW JERSEY 

tArrow ElectroniCS, Inc 
6000 Lmcoln East 
Marlton 08053 
Tel (215) 928-1800 
TWX 710-897-0829 

tArrow ElectroniCs, Inc 
2 Industnal Road 
Fairfield 07006 
Tel (201) 575-5300 
1WX 710-998-2206 

tHamllton/ Avnet Electronics 
1 Keystone Avenue 
Bldg 36 
Cherry HIli 08003 
Tel (609) 424-0110 
1WX 710-940-0262 

tHamtlton/Avnet ElectronICs 
10 Industnal 
Fairfield 07006 
Tel (201) 575-3390 
TWX 710:734-4388 

tMlcrocomputer System Techmcal Demonstrator Centers 



NEW JERSEY (Cont'd) 

tPloneer Northeast ElectrOniCS 
45 Route 46 
Plnebrook 07058 
Tel (201) 575-3510 
TWX 710-734-4382 

tMTI Systems Sales 
383 Route 46 W 
Fairfield 07006 
Tel (201) 227-5552 

NEW MEXICO 

tAlliance Electronics Inc 
11030 Cochiti S E 
Albuquerque 87123 
Tel (505) 292-3360 
TWX 91O-989-tI51 

tHamllton/ Avne! Electronics 
2524 Baylor Drive S E 
Albuquerque 87106 
Tel (505) 765-1500 
TWX 910-989·0614 

NEW YORK 

tArrow Electronics, irlc 
25 Hub Drive 
Melville 11735 
Tel (516) 694-6800 
TWX 510-224-6126 

tArrow ElectroniCS, Inc 
3000 South Winton Road 
Rochester 14623 
Tel (716) 275-0300 
TWX 510-253-4766 

tArrow Electronics, Inc 
ll05 Maltage Drive 
liverpool 13088 
Tel (315) 652-1000 
TWX 710-545-0230 

tArrow ElectroniCS. Inc 
20 Oser Avenue 
Hauppauge 11788 
Tel (516) 231-1000 
TWX 510-227-6623 

tHamllton/ Avnet Electronics 
333 Metro Park 
Rochester 14623 
Tel (716) 475-9130 
TWX 510-253-5470 

tHamllton/ Avnet Electronics 
16 Corporate Circle 
E Syracuse 13057 
Tel (315) 437-2641 
TWX 710-541-1560 

tHamllton/ Avnet ElectrOniCs 
5 Hub Drive 
Melville, long Island 11747 
Tel (516) 454-6000 
TWX 510-224-6166 

tPloneer Northeast ElectrOnics 
1806 Vestal Parkway East 
Vestal 13850 
Tei (607) 748-8211 
TWX 510-252-0893 

tPloneer Northeast ElectrOnics 
60 Crossway Park West 
Woodbury, long Island 11797 
Tel (516) 921-8700 
TWX 510-221-2184 

tPloneer Northeast Electronics 
840 Fairport Park 14450 
Tei (716) 381-7070 
TWX 510-253-7001 

tMTI Systems Sales 
38 Harbor Park Drive 
PO Box 271 
Port Washington 11050 
Tel (516) 621-6200 
TWX 510-223-0846 

DOMESTIC DISTRIBUTORS 

NORTH CAROLINA 

tArrow ElectrOniCs, Inc 
5240 Greendalry Road 

~:llel~~19r~~t3132 
TWX 510-928-1856 

tHamllton/Avnet ElectroniCS 
3510 Sprmg Forest Drive 
Raleigh 27604 
Tel (919) 878-0819 
TWX 510-928-1836 

tPloneer Electronics 
9801 A-Southern Pine Boulevard 
Charlotte 28210 
Tel (704) 524-8188 
TWX 810-621-0366 

OHIO 

tArrow ElectrOniCs, Inc 
7620 McEwen Road 
Centerville 45459 
Tel (513) 435-5563 
TWX 810-459-1611 

tArrow ElectrOnics, Inc 
6238 Cochran Road 
Solon 44139 
Tel (216) 248-3990 
TWX 810-427-9409 

tHamllton/ Avnet ElectrOniCS 
954 Senate Drive 
Dayton 45459 
Tel (513) 433-0610 
TWX 810-450-2531 

tHamlllon/Avnet ElectroniCS 
4588 Emery Industrial Parkway 

fe~rr(~~~}lIe83~~3~~~ 44128 
TWX 810-427-9452 

tProneer Electromcs 
4433 Interpolnt Boulevard 
Dayton 45424 
Tel (513) 236-9900 
TWX 810-459-1622 

tPloneer ElectrOnics 
4800 E 131st Street 
Cleveland 44105 
Tel (216) 587-3600 
TWX 810-422-2211 

OKLAHOMA 

tArrow ElectroniCs, Inc 
4719 S Memorial Dnve 
Tulsa 74145 
Tel (918) 665-7700 

OREGON 

tAlmac Electronics Corporation 
8022 S W Nimbus, Bldg 7 
Beaverton 97005 
Tel (503) 641-9070 
TWX 910-467·8743 

tHamllton/Avnet ElectrOniCS 
6024 S W Jean Road 
Bldg C, SUite 10 
lake Oswego 97034 
Tel (503) 635-7848 
TWX 910-455-8179 

PENNSYLVANIA 

tArrow Electronics, Inc 
650 Seco Road 
Monroeville 15146 
Tel (412) 856-7000 

tPloneer Electronics 
259 Kappa Drive 
Pittsburgh 15238 
Tei (412) 782-2300 
TWX 710-795-3122 

PENNSYLVANIA (Cont'd) 

tPloneer ElectroOiCS 
261 Grbralter Road 
Horsham 19044 
Tel (215) 674-4000 
TWX 510-665-6ll8 

TEXAS 

tArrow ElectroniCs, Inc 
3220 Commander Dnve 
Carrollton 75006 
Tel (214) 380-6464 
TWX 910-860-5377 

tArrow Electronics, Inc 
10899 Klnghurst 
SUite 100 
Houston ll099 
Tel (713) 530-4700 
TWX 910-880-4439 

tArrow ElectrOnics, Inc 
2227 W Braker lane 
Austin 78758 
Tel (512) 835-4180 
TWX 910-874-1348 

tHamllton/ Avnet Electrollics 
2401 Rutland 
Austin 78757 
Tel (512) 837-8911 
TWX 910-874-1319 

tHamllton! Avnet Electronics 
2111 W Walnut Hrll lane 
Irving 75062 
Tel (214) 659·4100 
TWX 910-860-5929 

tHamllton/ Avnet Electronics 
8750 West Park 
Hosuton ll063 
Tel (713) 780-1771 
TWX 910-881-5523 

tPloneer Electronics 
9901 Burnet Road 
Austin 78758 
Tel (512) 835-4000 
TWX 910-874-1323 

tPloneer Electronics 

b3~I~Os ~5ijl: Road 
Tel (214) 386-7300 
TWX 910-850-5563 

tPloneer Eleclronlcs 
5853 POint West Dnve 
Houston 77036 
Tel (713) 988-5555 
TWX 910-881-1606 

UTAH 

tHamlltori/ Avnet Electronics 
1585 West 2100 South 
Salt Lake City 84119 
Tel (801) 972-2800 
TWX 910-925-4018 

Wyle Dlstrlbullon Group 
1959 South 4130 West, Unrl B 
Salt lake City 84104 
Tel (801) 974-9953 

WASHINGTON 

tAlmac ElectroniCS Corporation 
14360 S E Eastgate Way 
Bellevue 98007 
Tel (206) 643-9992 
TWX 910-444-2067 

tArrow ElectroniCs, Inc 
14320 N E 21st Street 
Bellevue 98007 
Tel (206) 643-4800 
TWX 910·444-2017 

tHamllton/Avnet Electronics 
14212 N E 21st Street 
Bellevue 98005 
Tel (206) 453-5874 
TWX 910·443-2469 

WISCONSIN 

tArrow Electronics, Inc 
430 W Rausson Avenue 
Oakcreek 53154 
Tei (414) 764-6600 
TWX 910-262-1193 

tHamllton/ Avnet Electronics 
2975 Moorland Road 
New Berlin 53151 
Tel (414) 784-4510 
TWX 910-262·1182 

CANADA 
ALBERTA 

tHamllton! Avnet ElectrOniCs 
2816 21st Street N E 
Calgary T2E 6Z2 
Tel (403) 230-3586 
TWX 03-827-642 

Zentronlcs 
Bay No 1 
3300 14th Avenue N E 
Calgary T2A 6J4 
Tel (403) 272·1021 

BRITISH COWMBIA 

ZentronlCs 
108-11400 Bridgeport Road 
Richmond V6X 1T2 
Tel (604) 273-5575 
TWX 04-5077-89 

MANITOBA 

Zenlronlcs 
590 Berry Streel 
Winnipeg R3H OSI 
Tel (204) 775-8661 

ONTARIO 

Hamllton/ Avnet ElectroniCs 
6845 Rexwood Road 
UOitS G & H 
Mlsslssauga l4V lR2 
Tel (416) 677-7432 
TWX 610-492-8867 

Hamllton/ Avnet Electronics 
210 Colonnade Road South 
Nepean K2E 715 
Tel (613) 226-1700 
TWX 05-349-71 

Zentronlcs 
8 Tilbury Court 
Brampton l6T 3T4 
Tel (416) 451-9600 
TWX 06-976-78 

Zentronrcs 
564/10 Weber Street North 
Waterloo N2l 5C6 
Tel (519) 884-5700 

Zentronlcs 
155 Colonnade Road 
Unit 17 
Nepean K2E 7Kl 
Tel (613) 225-8840 
TWX 06-976-78 

QUEBEC 

Hamilton! Avnet ElectrOnics 
2670 Sabourin Street 
St laurent H4S 1M2 
Tel (514) 331-6443 
TWX 610-421-3731 

Zentronlcs 
505 locke Street 
St laurent H4T lX7 
Tel (514) 735-5361 
TWX 05-827-535 

tMlcrocomputer System Technical Demonstrator Centers 



BELGIUM 

Inlel Corporation S A 
Pare Seny 
Rue du Moulin a Papler 51 
BOlte 1 
8·1160 Brussels 
Tel (02)661 07 11 
TELEX 24814 

DENMARK 

Intel Denmark A/S· 
GlenteveJ 61 . 3rd Floor 
DK·2400 Copenhagen 
Tel (01) 19 80 33 
TELEX 19567 

FINLAND 

Inlel Finland OY 
Hameenlte 103 
SF - 00550 Helsinki 55 
Tel 0/716 955 
TELEX 123 332 

FRANCE 

Intel Corporation, S A R l • 
5 Place de la Balance 
Silic 223 

re~2?01~u~~ ged~1 
TELEX 270475 

EUROPEAN SALES OFFICES 

FRANCE (Cont'd) 

Intel CorporatIOn, S A R l 
Immeuble BBC 
4 Qual des Elrolts 
69005 lyon 
Tel (7) 842 40 89 
TELEX 305153 

WEST GERMANY 

Intel Semiconductor GmbH· 
Seldlslrasse 27 
0-8000 Munchen 2 
Tel (89) 53891 
TELEX 05-23177 INTl D 

Intel Semiconductor GmbH· 
Malnzer Strasse 75 
0-6200 WI9sbaden 1 
Tel (6121) 70 08 74 
TELEX 04186183 INTW 0 

Intel Semiconductor GmbH 
8rueckslrasse 61 
7012 Fellbach 
Stuttgart 

i~lEf'~2~:82~0 I~¥S 0 

Intel Semlconduclor GmbH· 
Hohenzollern Strasse 5· 
3000 Hannover 1 
Tel (511) 34 40 81 
TELEX 923625 INTH D 

ISRAEL 

Inlel Semiconductor Ltd· 
PO Box 1659 

~~tfa4/524~ 
TELEX 46511 

ITALY 

NETHERLANDS 

Inlel Semiconductor Nederland 8 V • 
Alexanderpoort BUilding 
Marten Meesweg 93 
3068 Rotterdam 
Tel (10) 21 23 77 
TELEX 22283 

NORWAY 

~ ~~~2A/S 
Hvamv&len 4 
N-2013 

¥~Ielt(~) 742 420 
TELEX 18018 

SPAIN 

Inlel Ibena 
calle Zurnaran 28 
Madnd 04 
Tel (34) 1410 40 04 
TELEX 46880 

SWEDEN 

Intel Sweden A B • 

g~17~~~n S;~a 
Tel (08) 734 01 00 
TELEX 12261 

SWITZERLAND 

Intel Semtconductor A G • 
Talackerstrasse 17 ' 
8152 Glattbrugg postfach 
CH-8065 Zurich 
Tel (01) 829 29 77 
TELEX 57989 ICH CH 

UNITED KINGDOII 

Intel Corporation (U K) Ltd· 
5 Hospital Street 
Nantwlch, Cheshire CW5 5RE 
Tel (0270) 626 560 
TELEX 36620 

Intel Corporation (U K) ltd· 
Pipers Way 
SWlndon, Wiltshire SN3 lAJ 
Tel (0793) 488 388 
TElEX 444447 INT SWN 

-Flek:! Application location 

EUROPEAN DISTRIBUTORS/REPRESENTATIVES 

AUSTRIA 

Bacher Etektromsche Geraele GmbH 
Rotemuehlgasse 26 
A 1120 Vienna 
Tel (222) 83 56 48 
TELEX 11532 BASAT A 

BELGIUM 

tnelco Belgium SA 
Ave des CroIx de Guerre 94 
B1120 Brussels 
Tet (02) 216 01 60 
TELEX 25441 

DENMARK 

lIT MulllKomponenl A/S 
Naverland 29 
OK-2600 Gloskrup 
Tel (02) 45 66 45 
TX 33355 

FINLAND 

~lk~!~U~~IC 2:B A 
SF-00210 
HelSinki 21 
Tet (0) 692 60 22 
TELEX 124 224 Ftron SF 

FRANCE 

Genenm 
Z I de Courtaboeul 
Avenue de la Baltlque 
91943 Les Uhs Cedex-B P 88 
Tel (1) 907 78 78 
TELEX F691700 

~6~mX~en~: Jean-Jaures 
94600 Cholsy.Le-Rol 
Tel (1) 853 12 00 
TELEX 260967 

Metrologle 
la Tour d' Asnleres 
4, Avenue laurent Cely 
92606-Asmeres 
Tel (1) 790 62 40 
TELEX 611-448 

Tekelec Alilromc 
Cite des Bruyeres 
Rue Carle Vernet 8 P 2 
92310 Sevres 
Tet (1) 534 75 35 
TELEX 204552 

WEST GERMANY 

ElectronIC 2000 VertTiebs A G 
Slahlgrubernng 12 
0·8000 MuniCh 82 
Tel (89) 42 00 10 
TELEX 522561 EIEe D 

Jermyn GmbH 
Posifach 1180 
Schulstrasse 84 
0-6277 Bad Camberg 
Tel (06434) 231 
TELEX 484426 JEAM D 

CES Computer ElectroniCS Systems 
GmbH 
Gutenbergstrssse 4 
2359 Henstedl-Ulzburg 
Tel (04193) 4026 
TELEX 2180260 

Melrologle GmbH 
Hansastrasse 15 
8000 MUOlCh 21 
Tel (89) 57 30 84 
TELEX D 5213189 

Proelectron Vertnebs GmbH 
Max Planck Strasse 1-3 
6072 Drelelch bel Frankfurt 
Tel (6103) 33564 
TELEX 417983 

IRELAND 

Micro Marketln9 
Glenageary OHlce Park 

g~en~~~:x 
Tet (1) 85 62 88 
TELEX 31584 

ISRAEL 

Eastrontcs ltd 
11 Rozanls Street 
PO Box 39300 
Tel AVIV 61390 
Tel (3) 47 51 51 
TELEX 33638 

ITALY 

Eledra 3S SPA 
Vlale Etvezla, 18 
I 20154 Milano 
Tei (2) 34 97 51 
TELEX 332332 

ITALY (Confd) 

InteSI 
Mllenohon Pal E/5 
20090 Assago 
Milano 
Tel (02) 82470 
TELEX 311351 

NETHERLANDS 

Kontng & Hartman 

~~e7;~ 1~220 
2544 EN's Gravenhage 
Tel 31 (70) 210101 
TELEX 31528 

NORWAY 

Nordlsk Elektronlc (Norge) A/S 
Postofflce 80)( 122 

f3~~dS~~~~:~d 4 
Tel (2) 846 210 
TElEX 17546 

PORTUGAL 

Oltram 
Componenles E Electronlca lDA 
~l00~I~;:~ombarda, 133 

Tel (19) 545 313 
TELEX 14182 Sneks-P 

SPAIN 

Interlace SA 
Av Pompeu Fabra 12 
08024 Barcelona 
Tel (3) 219 80 11 
TELEX 51508 

lIT SESA 
Miguel Angel 21, 6 PISO 
Madrid 10 
Tel (34) 14 1954 00 
TELEX 27461 

SWEDEN 

AB Gosta Backstrom 
Box 12009 
Alstroemergatan 22 
S-10221 Stockholm 12 
Tel (8) 541 080 
TELEX 10135 

Nordfsk Electromk AS 
Box 27301 
Sandhamnsgatan 71 
S·10254 Stockholm 
Tel (8) 635 040 
TELEX 10547 

SWEDEN (Cont'd) 

Telko AB 
~~dsI~devagen 1 

S-161 26 Bromma 
Tel (8) 98 08 20 
TELEX 11941 

SWITZERLAND 

Industrade AG 
Herhslrasse 31 
CH·8304 Waillse!!en 
Tel (01) 830 50 40 
TELEX 56788 INOEl CH 

UNITED KINGDOM 

Bytech lid 
Untt 57 
london Road 
Earley, Reading 
Berkshire 
Tel (0734) 61031 
TELEX 848215 

Comway Mlcrosystems ltd 
Markel Street 
UK-Brackne!!, Berkshire 

i~LE~4 i:i~61 55333 

Jerfllyn IndustTies 
Vestry Estate 
Sevenoaks, Kent 
Tel (0732) 450144 
TELEX 95142 

MEOl 
Easl lane Road 

~?:1e~~m~~§ 7PP 

i~LE~190J88i~307 
Rapid Recal!, ltd 
Rapid House/Denmark SI 
High W£combe 
~:rkS(049~la~~ ~rll1 2ER 
TELEX 837931 

YUGOSLAVIA 

H A Mlcroelectrontcs Enterprises 
PO Box 5604 
San Jose, Caltfornta 95150 
Tel 408/978-8000 
TELEX 278-559 



AUSTRALIA 

Intel Australia Ply Ltd' 
(Mailing Address) 
PO Bo)( 571 
North Sydney NSW, 2065 

(ShiPPing Address) 
Spectrum BUilding 
200 Pacific Highway 
Level 6 
Crows Nest, NSW, 2089 
Tel 011-61,2·957·2744 
TELEX 790-20097 
FAX 011-61-2·923-2632 

HONG KONG 

tntel Semiconductor Ltd' 
1701·3/1720 Connaught Centre 
1 Connaught Road 
Tel 011-852·5·215311 
TWX 60410 ITLHK 

INTERNATIONAL SALES OFFICES 

JAPAN 

Intel Japan KK 
5-6 Tokodal, Toyosalo-machl 
Tsukuba-gun, Ibarakl-ken 300-26 
Tel 029747·8511 
TELEX 03656-160 

Intel Japan K K' 
2-1-15 Naka-machl 
Atsugl, Kanagawa 243 
Tel 0462-23-3511 

Inlel Japan K K ° 
2-51-2 KOJlma-cho 
Chofu, Tokyo 182 
Tel 0424-88-3151 

Intel Japan K K ° 
2-69 Hon-cho 
Kumagaya, Saltarna 360 
Tel 0485-24-6871 

JAPAN (Conl'd) 

Intet Japan K K' 
2-4-1 Terauchl 
Toyonaka, Osaka 560 
Tel 06-863-1091 

Intel Japan K K 
1·5-1 Marunouchl 
Chlyoda-ku, Tokyo 100 
Tel 03-201-3621 

Inlel Japan K K' 
1·23-9 Shlnmacnl 
Selagaya-ku, Tokyo 154 
Tel 03-426-2231 

Intel Japan K K ° 
Mitsul-Seimel Musashl-Kosugl Elldg 
915 Shlnmaruko, Nakahara-ku 
Kawasakl-Shl, Kanagawa 211 
Tel 044-733-7011 

JAPAN (Conl'd) 

Intel Japan K K 
1-1 Shlbahon-cho 
Mlshlma-shl 
Shlzuoka-Ken 411 
Tel 0559-72-4121 

SINGAPORE 

Intel Semiconductor Ltd 
101 Thomson Road 
21-06 Goldhlll Square 
Singapore 1130 
Tei 011-65-2507811 
TWX RS 39921 
CABLE INTELSGP 

°Fleld Application Location 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 

ARGENTINA 

VLC S RL 
Sarmiento 1630, 1 PISO 
1042 Buenos Aires 
Tel 011-54-1·35-1201/9242 
TELEX 17575 EDARG 

Agent 
SOlme)( International Corporation 
15 Park Row, Room #1730 
New York, New York 10038 
Tel (212) 406-3052 
Ann Gaslon Briones 

AUSTRALIA 

Total ElectroniCs 
(Mailing Address) 
Private Bag 250 
Burwood, Victoria 3125 

(ShiPPing Address) 
9 Harker Street 
Burwood 
Victoria 3125 
Tel 011-61-3-288-4044 
TELEX AA 31261 

Total ElectroniCS 
PO Bo)( 139 
Artarmon, NSW 2064 
Tei 011-61-02-438-1855 
TELEX 26297 

BRAZIL 

Icolron SA 
05110 Av Mutlnga 3650-6 Andar 
Plriluba Sao Paulo 
Tel 011-55-11-833-2572 
TELEX 1122274 ICOTBR 

CHILE 

DIN 
(Mailing Address) 
Av VIC, MacKenna 204 
Casilia 6055 

i:ttl~~~_56_2_277_564 
TELEX 352-0003 

(ShiPPing Address) 
Al02 Greenville Center 
3801 Kennen Pike 
Wilmington, Delaware 19807 

HONG KONG 

Novel PreCIsion Machmery Co, Ltd 
Flat 0 20 Kingsford Ind Bldg 
Phase 1 26 Kwal Hel Street NT 
Tel 011-852-5-0-223222 
TWX 39114 JINMI HX 

Schmidt & Co Ltd 
18/F Great Eagle Centre 
Wanchal 
Tel 011-852-5-833-0222 
TWX 74766 SCHMC HK 

INDIA 

MlcronlC DeVices 
65 ARUN Complex 
DVGRoad 
Basavan Gudl 
Bangalore 560004 
Tel 011-91-812-600-631 
TELEX 011-5947 MDEV 

MlcroniC DeVices 
104/109C Nlrmal Industrial Estate 
Sian (E) 
Bombay 400022 
Tel 011-91·22-48-61-70 
TELEX 011-71447 MDEV IN 

MlcrofllC DeVices 
R-694 New RaJinder Nager 
New Deihl 110060 

Ramlak Internallonal, Inc (Agent) 
465 S Mathilda Avenue 
SUite 302 
Sunnyvale, CA 94086 
Tel (408) 733-8767 

S & S Corporation 
(Mailing Address) 
PO Bo)( 1185 
Mauldin, South Carolina 29657 

(Shipping Address) 
308 Green Drive 
liberty, South Carolina 29657 

JAPAN 

Asahl ElectroniCS Co Ltd 
KMM Bldg Room 407 
2-14-1 Asano, Kokuraklta-Ku 
Kitakyushu City 802 
Tel (093) 511-6471 
TELEX AECKY 7t26·16 

JAPAN (Conl'd) 

Hamllton-Avnet Electronics Japan Ltd 
YU and YOU Bldg 1-5-7 Hondome­
Cho 
Nlhonbashl Chuo-Ku, Tokyo 103 
Tel (03) 662·9911 
TELEX 2523774 

Ryoyo Electnc Corporation 
Konwa Bldg 
1-12-22, TsuklJI 
Chuo-Ku, Tokyo 104 
Tel (03) 543-7711/541-7311 

Tokyo Electron Ltd 
Shlnjuku Nomura Bldg 
26-2 Nlshl-ShlnJuku 1-Chome 
Shlnjuku-Ku, Tokyo 160 
Tel (03) 343-4411 
TELEX 232-2220 LABTEL J 

KOREA 

J-TEK Corporation 
2nd Floor, Government PenSion Bldg 
24·3, YOido-Dong 
Youngdungpo-Ku 
Seoul 150 
Tel 011-82-2-782-8039 
TELEX KODIGIT K25299 

Karam Digital USA (Agent) 
14066 East Firestone Boulevard 

r:lnte(7f:) ~~9~~~64 CA 90670 
TWX 194715 KORAM DIGIT LSA 

NEW ZEALAND 

McLean Information Technology Ltd 
459 Kyber Pass Road, Newmarket, 
PO Bo)( 9464, Newmarket 
Auckland I, New Zealand 
Tel 011,64-9-501,219,501-801,587-
037 
TELEX NZ21570 THERMAL 

PAKISTAN 

Computer Applications Ltd 
7D GIZfI Boulevard 
Defense 
Karachl-46 
Tel 011-92-21-530-306/7 
TELEX 24434 GAFAR PK 

PAKISTAN (Conl'd) 

Honzon Tramlng Co, Inc (Agent) 
1 Lafayene Center 
t120 20th Street NW 
SUite 530 

~ish(~5~n'8g~90~0036 
TWX 248890 HORN 

SINGAPORE 

General Engineers Corporation Ply 
LId 
UrlIfs 1003-1008 Block 3 
10th Floor PSA Multi Storey Comple)( 
Telok Blangahl Paslr 
Pan Jang 
Singapore 5 
Tel 011-65-271-3163 
TELEX RS23987 GENERCO 
CABLE GENERRCORP 

SOUTH AFRICA 

Electronic BUilding Elements, Ply Ltd 
P 0 80~ 4609 
Pretoria' 0001 
Tel 011-27-12-46-9221 
TELEX 3-22786 SA 
TELEGRAM ELBILEM 

TAIWAN 

Mltac Corporation 
3rd Floor #75, SectIOn 4 
Nankmg East Road 
Taipei 
Tel 011-886-2-771,0940, 0941 
TELEX 11942 TAIAUTO 

Mectel International, Inc (Agent) 
3385 VISO Court 
Santa Clara, CA 95050 
Tel (408) 988-4513 
TWX 910-338-2201 
FAX 408-980-9742 

YUGOSLAVIA 

H R Microelectronics Enterprises 
PO Bo)( 5604 
San Jose, California 95150 
Tel (408) 978-8000 
TELEX 278-559 

°FleldApphcalionLocalion 



-
'''''' Corp :':150~=3Way 
~(4Jf~3~~~ 
910-338-0255 

~~rp41h Street 
Suite 110 
Bania Ana 92705 

~(7d~~Wl 

~C~ DrIve 
SUIte 150 

t" (tf4~:ao 
'''''' Corp 5530 N Corbin Avenue 
SLIde 120 
Tarzana 91356 
Tel (213) 708..Q333 -­=~ Cherry 
Suite 720 
Denver 80222 

~(:W,~~!= 
CONNICTICUT 

k':"~aIn_ 
f:~)06fJ~-3130 
fLOOIIDA 

~~ "rr& 82nd SIteeI 
Sultll 104 
Ft Laudeldale 33309 
~(3:J.e~= 

DOMESTIC SERVICE OFFICES 

-I~~p-s ... 200 
....... 30002 
Tel (404) 441·1171 

I~ 

".., Corp 
2550 Golf Road 
Su" 815 

~"I!tl~~n:-
TWX 910-253-1825 

.-
, .... Corp 
B400 W 110th Street 
Bulle 170 
Overland Park 66210 
Tel (913) 642-8080 

IIMYLAIID 
In11II Corp 
5th FJooi ProducI $8N1ce 
7833 Walker Drive 
Greenball 20770 
Tel (301) 441.1020 --'''''' Corp 27 Indu .... 18.1 Aver."e 
ChHnsIord 01824 

~16i~=-.e1s: 

--~, ~ Lake Road 
Bulle 100 
West 9IoomfIekI 48033 
Tel (313) 851-8905 _, 
~nlel Corp. = ~.:r City Expressway 

~(3~:r =,5 -­In18I Corp 
385 Sylvan Awnle 
~.'lM832 
TWX 710-991-8593 

=...,CorJ:... " _eo.... 
edISOn 08817 
Tal (201) 22l>3OOO 

~ CAIIOUNA 

~r::a ~ MeadowvIew Road 
Suite 206 
Greensboro 27407 
Tel (919) 294-1541 

,OHIO 

~~InlrdBldg 
SUl1e 305 
~-z'r22BouleYard 
~(2:~~= 
, .... Corp ........ 
~,:rJ:o.5360 

~ c:G Sarn Young Parkway 
HtlIIboto 97123 
TBI (503) SSI·aoao 
~V_ 

Cen1er ......... 
W 
15235 
354-1540 

_ __ 
Intel Corp 
110 1101h Avenue N E 
SuIte 510 
"""""" 98004 Tel 1-800-525-5580 
TWX 91().443-3002 -~r;' ~,Iope Road _'30 
BrookfIeld 53005 
Tel (4t4) 784-8067 




