

To order Intel Literature write or call:

I ntel Literature Sales
p.o. Box 58130

LITERATURE

Santa Clara, CA 95052-8\30

Intel Literature Sales:
(800) 548-4725
Other Inquiries:
(800) 538-1876

Use the order blank on the facing page or call our Toll Free Number listed above to order literature.
Remember to add your local sales tax and a 10% handling charge for U.S. customers, 200/,:, for Canadian
customers.

1986 HANDBOOKS

Product Line handbooks contain data sheets, application notes, article reprints and other design
information.

*PRICE IN
NAME ORDER NUMBER U.S. DOLLARS

COMPLETE SET OF 9 HANDBOOKS 231003 $120.00
Get a 30% discount off the retail price of $171.00

MEMORY COMPONENTS HANDBOOK 210830 $18.00

MICROCOMMUNICATIONS HANDBOOK 231658 $18.00

MICRO CONTROLLER HANDBOOK 210918 $18.00

MICROSYSTEM COMPONENTS HANDBOOK 230843 $25.00
Microprocessor and peripherals (2 Volume Set)

DEVELOPMENT SYSTEMS HANDBOOK 210940 $18.00

OEM SYSTEMS HANDBOOK 210941 $18.00

SOFTWARE HANDBOOK 230786 $18.00

MILITARY HANDBOOK 210461 $18.00

QUALITy/RELIABILITY HANDBOOK 210997 $20.00

PRODUCT GUIDE 210846 No charge
Overview of Intel's complete product lines

LITERATURE GUIDE 210620 No charge
Listing of Intel Literature

INTEL PACKAGING SPECIFICATIONS 231369 No charge
Listing of Packaging types, number of leads,
and dimensions

*These prices are for the U. S. and Canada only. In Europe and other international locations, please
contact your local Intel Sales Office or Distributor for literature prices.

inter
u.s. LITERATURE ORDER FORM

NAME: __ ~ ________ ___

COMPANY:

ADDRESS: __ __

CITY: _______________________________ STATE: ___ ~ZIP: ___ _

COUNTRY:

PHONE NO.: (_________________________ ___

ORDER NO.

L-[.L-[-L--l...--L-...l--' - [1

I-! [,----"--'-'--....J - [1 1 1

~[~I ~~-DTJ
L..-I ,---I l...-l...-'---'----.J - LLD
<--[,--I '--'--'---'---' - [1 [1

L..-[,---I l...-l...-'---'----.J - [1 1 [
<--I L--['--'--'---'---' - [[[1

Add appropriate postage
and handling to subtotal
10% U.S.
20% Canada
~---------~
Allow 2-4 weeks for delivery

TITLE QTY. PRICE TOTAL

__ x __

__ .x __

__ x __

__ x __

__ x __

___ x __

__ x __

Subtotal _____ _

Your Local Sales Tax _______ __

-------... Postage & Handling ________ __

Total _____ __

Pay by Visa, MasterCard, Check or Money Order, payable to I ntel Books. Purchase Orders
have a $50.00 minimum
o Visa 0 MasterCard Expiration Date _______ _
Account No. _______________________________________ _

Signature: ___ ----------------------__ ------------------

Mail To: Intel Literature Sales
P.O. Box 58130
Santa Clara, CA
95052-8130

Customers outside the U.S. and Canada should con­
tact the local I ntel Sales Office or Distributor listed
in the back of most I ntelliterature.

Call Toll Free: (800) 548-4725 for phone orders

Prices good until 12/31/86.

Source HB

Mail To: Intel Literature Sales
PO. Box 58130
Santa Clara, CA 95052-8130

inter

MICROSYSTEM
COMPONENTS HANDBOOK

1986

About Our Cover:
The design on our front cover is an abstract portrayal of the unlimited interface linking

options available with Intel microsystem components. Intel microprocessors and
associated peripherals are the building blocks which provide total systems development
solutions. Intel's superior technology, reliability and support provides easier solutions to

specific development problems. Thereby, cutting "time-to-market" and creating a greater
market share.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which
may appear in this document nor does it make a commitment to update the information contained herein.

I ntel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BITBUS, COMMputer, CREDIT, Data Pipeline, GENIUS, i, ~ ICE,
iCEL, iCS, iDBp, iDIS, !'ICE, iLBX, im, iMDDX" iMMX, Insite, Intei, intel,
intelBOS, Intelevision, inteligent Identifier, inteligent Programming, Intellec,
Intellink, iOSp, iPDS, iPSC, iRMX, iSBC, iSBX, iSDM, iSXM, KEPROM, Library
Manager, MCS, Megachassis, MICROMAINFRAME, MULTI BUS, MULTI­
CHANNEL, MULTIMODULE, ONCE, OpenNET, Plug-A-Bubble, PROMPT,
Promware, QUEST, QueX, Ripplemode, RMX/80, RUPI, Seamless, SLD, UPI,
and VLSiCEL, and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or
UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of
Mohawk Data Sciences Corporation.

'MULTI BUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
• Literature Distribution
Mail Stop SC6-59
3065 Bowers Avenue
Santa Clara, CA 95051

©INTEl CORPORATION 1985

NUMERIC INDEX

CHAPTER 1
OVERVIEW

Table of Contents
vi

Introduction 1-1

CHAPTER'2
8080, 8085 MICROPROCESSORS

DATA SHEETS
8080A/8080A-1/8080A-2 8-Bit N-Channel Microprocessor 2-1
8085AH!8085AH-2/8085AH-1 8-Bit HMOS Microprocessor 2-10
8155H/8156H/8155H-2/8156H-2 2048-Bit Static HMOS RAM with I/O Ports and Timer 2-26
8185/8185-2 1024 x 8-Bit Static RAM for MCS®-85 2-38
8224 Clock Generator and Driver for 8080A CPU 2-43
8228/8238 System Controller and Bus Driver for 8080A CPU 2-48
8237A/8237A-4/8237A-5 High Performance Programmable DMA Controller............. 2-52
82C37A-5 CHMOS High Performance Programmable DMA Controller.................. 2-67
8257/8257-5 Programmable DMA Controller .. 2-78
8259A/8259A-2/8259A-8 Programmable Interrupt Controller 2-95
82C59A-2 CHMOS Programmable Interrupt Controller.. 2-113
8755A/8755A-2 16, 384-Bit EPROM with I/O .. 2-133

APPLICATION NOTES
AP-59 Using the 8259A Programmable Interrupt Controller 2-144

CHAPTER 3
8086, 8088, 80186, 80188 MICROPROCESSCORS

DATA SHEETS
808616-Bit HMOS Microprocessor................................. 3-1
80C86/80C86-2 16-Bit CHMOS Microprocessor 3-25
80186 High Integration 16-Bit Microprocessor .. 3-52
iAPX 88/10 8-Bit HMOS Microprocessor ... 3-106
80C88/80C88-2 8-Bit CHMOS Microprocessor 3-133
80188 High Integration 8-Bit Microprocessor ... 3-162
8087/8087-2/8087-1 Numeric Data Coprocessor 3-218
8282/8283 Octal Latch ... 3-241
8284A/8284A-1 Clock Generator and Driver for iAPX 86, 88 Processors 3-246
82C84A/82C84A-5 CHMOS Clock Generator and Driver for 80C86, 80C88 Processors ... 3-254
8286/8287 Octal Bus Transceiver .. 3-263
8288 Bus Controller for iAPX 86, 88 Processors 3-268
82C88 CHMOS Bus Controller for 80C86, 80C88 Processors 3-275
82188 Integrated Bus Controller for iAPX 86, 88, 186, 188 Processors ..•................ 3-283
8289/8289-1 Bus Arbiter .. 3-299

APPLICATION NOTES
AP-67 8086 System Design ... 3-310
AP-113 Getting Started with the Numeric Data Processor 3-373
AP-186 Introduction to the 80186 .. 3-435

CHAPTER 4
80286 MICROPROCESSORS

DATA SHEETS
iAPX 286/10 High Performance Microprocessor

with Memory Management and Protection ... 4-1
80287 80-Bit HMOS Numeric Processor Extension 4-56
82258 Advanced Direct Memory Access Coprocessor 4-82
82284 Clock Generator and Ready Interface for iAPX 286 Processors 4-139
82288 Bus Controller for iAPX 286 Processors .. 4-148
82289 Bus Arbiter for iAPX 286 Processor Family 4-167

CHAPTER 5
80386 MICROPROCESSORS

DATA SHEETS
80386 High Performance Microprocessor with Integrated Memory Management. 5-1
82384 Clock Generator and Reset Interface for 80386 Processors 5-2

iii

-VOLUME 2-

CHAPTER 6
MEMORY CONTROLLERS

DATA SHEETS
8202A Dynamic RAM Controller .. 6-1
8203 64K Dynamic RAM Controller............................. 6-15
8206/8206-2 Error Detection and Correction Unit 6-30
8207 Dual-Port Dynamic RAM Controller .. 6-52
8208 Dynamic RAM Controller .. 6-98
82C08 CHMOS Dynamic RAM Controller .. 6-121

USERS MANUAL
Introduction 6-151
Programming the 8207 ... 6-152
RAM Interface " " " 6-157
Microprocessor Interfaces. 6-166
8207 with ECC (8206) .. 6-174
Appendix ... 6-177

APPLICATION NOTES
AP-97A Interfacing Dynamic RAM to iAPX 86/88 Using the 8202A & 8203 6-181
AP-141 8203/8206/2164A Memory Design .. 6-217
AP-167 Interfacing the 8207 Dynamic RAM Controller to the iAPX 186 6-223
AP-168 Interfacing the 8207 Advanced Dynamic RAM Controller to the iAPX 286 6-228

ARTICLE REPRINTS
AR-364 FAE News 1/84 "8208 with 186" .. 6-235
AR-231 Dynamic RAM Controller Orchestrates Memory Systems. .. 6-246

SUPPORT PERIPHERALS
DATA SHEETS

8231 A Arithmetic Processing Unit ... 6-253
8253/8253-5 Programmable Interval Timer ... 6-263
8254 Programmable Interval Timer .. 6-274
82C54 CHMOS Programmable Interval Timer•........... 6-290
8255A/8255A-5 Programmable Peripheral Interface 6-307
82C55A CHMOS Programmable Peripheral Interface 6-328
8256AH Multifunction Microprocessor Support Controller 6-351
8279/8279-5 Programmable Keyboard/Display Interface " , 6-374

APPLICATION NOTES
AP-153 Designing with the 8256 ... 6-386
AP-183 8256AH Application Note 6-461

FLOPPY DISK CONTROLLERS
DATA SHEETS

8272A Single/Double Density Floppy Disk Controller 6-478
APPLICATION NOTES

AP-116 An Intelligent Data Base System Using the 8272 6-497
AP-121 Software Design and Implementation of Floppy Disk Systems 6-538

HARD DISK CONTROLLERS
DATA SHEETS

82062 Winchester Disk Controller ... 6-608
82064 Winchester Disk Controller with On-Chip Error Detection and Correction 6-635

APPLICATION NOTES
AP-182 Multimode Winchester Controller Using the 82062 6-667

UNIVERSAL PERIPHERAL INTERFACE SLAVE MICRO CONTROLLERS
DATA SHEETS

UPI-452 Slave Microcontroller (8051) .. 6-729
UPI-41 8-Bit Slave Microcontroller .. 6-768
UPI-42 8-Bit Slave Microcontroller .. 6-780
8243 MCS-48 Input/Output Expander ... 6-799

iv

UPI-41/42 USERS MANUAL
Introduction ... 6-805
Functional Description ... 6-810
Instruction Set .. 6-827
Single-Step, Programming, and Power-Down Modes 6-854
System Operation ... , 6-859
Applications , ... 6-865
AP-161 or 61 Complex Peripheral Control with the UPI-42 6-939
AP-90 An 8741 A/8041 A Digital Cassette Controller 6-995

APPLICATION NOTES
Applications Using the 8042 UPI'" Microcontroller , 6-1003

SYSTEM SUPPORT
ICE-42 8042 In-Circuit Emulator .. 6-1007
MCS-48 Diskette-Based Software Support Package , 6-1015
iUP-200/iUP-201 Universal PROM Programmers , 6-1017

CHAPTER 7
ALPHANUMERIC TERMINAL CONTROLLERS

DATA SHEETS
8275H Programmable CRT Controller , ,........... 7-1
8276H Small System CRT Controller ., ,...................................... 7-25

APPLICATION NOTES
AP-62 A Low Cost CRT Terminal Using the 8275 ,.................. 7-42

ARTICLE REPRINTS
AR-178 A Low Cost CRT Terminal Does More with Less

GRAPHICS DISPLAY PRODUCTS
DATA SHEETS

7-84

82720 Graphics Display Controller .. 7-91
ARTICLE REPRINTS

AR-255 Dedicated VLSI Chip Lightens Graphic Display Design Load , ... ,.. ... 7-128
AR-298 Graphics Chip Makes Low Cost High Resolution, Color Displays Possible , 7-136

TEXT PROCESSING PRODUCTS
DATA SHEETS

82730 Text Coprocessor , , , , 7-143
ARCHITECTURAL OVERVIEW

The 82786 CHMOS Graphics Coprocessor ,... 7-187
ARTICLE REPRINTS

AR-305 Text Coprocessor Brings Quality to CRT Displays , , 7-205
AR-297 VLSI Coprocessor Delivers High Quality Displays , , 7-213
AR-296 Mighty Chips , ,..... 7-216

CHAPTER 8
ERASABLE/PROGRAMMABLE LOGIC DEVICES

DATA SHEETS
5C121 1200 Gate CHMOS H-Series Eraseable/Programmable Logic Device 8-1
5C060 600 Gate CHMOS H-Series Erasable/Programmable Logic Device ,...... 8-15

v

Numeric Index
5C121 1200 Gate CHMOS H-Series Eraseable/Programmable Logic Device 8-1
5C060 600 Gate CHMOS H-Series Eraseable/Programmable Logic Device 8-15
80186 (iAPX 186) High Integration 16-Bit Microprocessor 3-52, 3-435
80188 (iAPX 188) High Integration 8-Bit Microprocessor 3-162
80286 (iAPX 286/10) High Performance Microprocessor with Memory Management

and Protection .. 4-1, 6-228, 6-247
80287 80-Bit HMOS Numeric Processor Extension4-56
80386 High Performance Microprocessor with Integrated Memory Management 5-1
8041A/8641A/8741A Universal Peripheral Interface
8-Bit Slave Micro Controller ... 6-768, 6-805, 6-994
8042/8742 Universal Peripheral Interface
8-Bit Slave Micro Controller 6-780, 6-805, 6-939, 6-1002, 6-1006
80452/83452/87452 Universal Peripheral Interface 8-Bit Slave Micro Controller ... 6-729, 6-805
8080A/8080A-1/8080A-2, 8-Bit N-Channel Microprocessor 2-1
8085AH/8085AH-2/8085AH-1 8-Bit HMOS Microprocessors 2-10
8086 (iAPX 86/10) 16-Bit HMOS Microprocessor 3-1,3-310,6-181
80C86/80C86-2 16-Bit Microprocessor .. 3~25
8087/8087-2/8087-1 Numeric Data Coprocessor 3-218, 3-373
8088 (iAPX 88/10) 8-Bit HMOS Microprocessor 3-106, 6-181
BOC88/80C88-2 8-Bit CHMOS Microprocessor 3-133
8155H/8156H/8155H-2/8156H-2 2048-Bit Static HMOS RAM with I/O Ports and Timer 2-26
8185/8185-2 1024 x 8-Bit Static RAM for MCS®-85 2-38
8202A Dynamic RAM Controller ... 6-1, 6-181
8203 64K Dynamic RAM Controller 6-15,6-181,6-217
8205 High Speed 1 out of 8 Binary Decoder
8206 Error Detection and Correction Unit 6-30, 6-217, 6-247
82062 Winchester Disk Controller .. 6-608, 6-667
82064 Winchester Disk Controller with On-Chip Error Detection and Correction 6-635
8207 Dual-Port Dynamic RAM Controller 6-52. 6-150, 6-223, 6-228, 6-247
8208 Dynamic RAM Controller .. 6-98, 6-235
82C08 Dynamic RAM Controller ... 6-121
82188 Integrated Bus Controller for iAPX 86, 88, 186, 188 Processors 3-283
8224 Clock Generator And Driver for 8080A CPU 2-43
82258 Advanced Di rect Memory Access Coprocessor 4-82
8228/8238 System Controller and Bus Driver for 8080A CPU 2-48
82284 Clock Generator and Ready Interface for iAPX 286 Processors 4-139
82288 Bus Controller for iAPX 286 Processors 4-148

,82289 Bus Arbiter for iAPX 286 Processor Family 4-167
8231A Arithmetic Processing Unit .. 6-253
8237A/8237A-4/8237A-5 High Performance Programmable DMA Controller 2-52
82C37A-5 CHMOS High Performance Programmable DMA Controller 2-67
82384 Clock Generator And Reset Interface for 80386 Processors 5-2
8243 MCS-48 Input/Output Expander ... 6-799, 6-805

vi

8253/8253-5 Programmable Interval Timer .. 6-263
8254 Programmable Interval Timer ... 6-274
82C54 CHMOS Programmable Interval Timer 6-290
8255A/8255A-5 Programmable Peripheral Interface 6-307
82C55A CHMOS Programmable Peripheral Interface 6-328
8256AH Multifunction Microprocessor Support Controller 6-357, 6-386, 6-461
8257/8257-5 Programmable DMA Controller ... 2-78
8259A/8259A-2/8259A-8 Programmable Interrupt Controller 2-95, 2-144
82C59A-2 CHMOS Programmable Interrupt Controller 2-113
8272A Single/Double Density Floppy Disk Controller 6-478, 6-497, 6-538
82720 Graphics Display Controller 7-91, 7-128, 7-136, 7-205, 7-213, 7-216
82730 Text Coprocessor 7-136,7-143,7-205,7--213,7-216
8275H Programmable CRT Controller ... 7-1,7-42
8276H Small System CRT Controller ... 7-25, 7-84
82786 .. 7-187
8279/8279-5 Programmable Keyboard/Display Interface 6-374
8282/8283 Octal Latch .. 3-241
8284A/8284A-1 Clock Generator and Driver for iAPX 86, 88 Processors 3-246
82C84A/82C84A-5 CHMOS Clock Generator And Driver
For 80C86, 80C88 Processors .. 3-254
8286/8287 Octal Bus Transceiver 3-263
8288 Bus Controller for iAPX 86, 88 Processors 3-268
82C88 CHMOS Bus Controller for 80C86, 80C88 Processors 3-275
8289/8989-1 Bus Arbiter ... 3-299
8755A/8755A-2 16,384-Bit EPROM with I/O ... 2-133

vii

CUSTOMER SUPPORT

CUSTOMER SUPPORT

Customer Support is Intel's complete support service that provides Intel customers with Customer
Training, Software Support and Hardware Support.

After a customer purchases any system hardware or software product, service and support become
major factors in determining whether that product will continue to meet a customer's expectations.
Such support requires an international support organization and a breadth of programs to meet a
variety of customer needs. Intel's extensive customer support includes factory repair services as well as
worldwide field service offices providing hardware repair services, software support services and
customer training classes.

HARDWARE SUPPORT

Hardware Support Services provides maintenance on Intel supported products at board and system
level. Both field and factory services are offered. Services include several types of field maintenance
agreements, installation and warranty services, hourly contracted services (factory return for repair) and
specially negotiated support agreements for system integrators and large volume end-users having
unique service requirements. For more information contact your local Intel Sales Office.

SOFTWARE SUPPORT

Software Support Service provides maintenance on software packages via software support contracts
which include subscription services, information phone support, and updates. Consulting services can
be arranged for on-site assistance at the customer's location for both short-term and long-term needs.
For complex products such as NDS II or FICE, orientation/ installation packages are available
through membership in Insite User's Library, where customer-submitted programs are catalogued and
made available for a minimum fee to members. For more information contact your local Intel Sales
Office.

CUSTOMER TRAINING

Customer Training provides workshops at customer sites (by agreement) and on a regularly scheduled
basis at Intel's facilities. Intel offers a breadth of workshops on microprocessors, operating systems and
programming languages, etc. For more information on these classes contact the Training Center nearest
you.

TRAINING CENTER LOCATIONS

To obtain a complete catalog of our workshops, call the nearest Training Center in your area.

Boston (617) 692-1000 London (0793) 696-000
Chicago (312) 310-5700 Munich (089) 5389-1
San Francisco (415) 940-7800 Paris (01) 687-22-21
Washington, D.C. (301) 474-2878 Stockholm (468) 734-01-00
Israel (972) 349-491-099 Milan 39-2-82-44-071
Tokyo 03-437-6611 Benelux (Rotterdam) (10) 21-23-77
Osaka (Call Tokyo) 03-437-6611 Copenhagen (I) 198-033
Toronto, Canada (416) 675-2105 Hong Kong 5-215311-7

viii

Overview 1

OVERVIEW

INTRODUCTION

Intel microprocessors and peripherals provide a complete
solution in increasingly complex application environ­
ments. Quite often, a single peripheral device will replace
anywhere from 20 to 100 TTL devices (and the associated
design time that goes with them).

Built-in functions and standard Intel microprocessor!
peripheral interface deliver very real time and perfor­
mance advantages to the designer of microprocessor­
based systems.

REDUCED TIME TO MARKET

When you can purchase an off-the-shelf solution that
replaces a number of discrete devices, you're also replac­
ing all the design, testing. and debug lime that goes with
them.

INCREASED RELIABILITY

At Intel, the rate offailure for devices is carefully tracked.
Highest reliability is a tangible goal that translates to
higher reliability for your product, reduced downtime,
and reduced repair costs. And as more and more
functions are intergrated on a single VLSI device, the
resulting system requires less power, produces less heat,
and requires fewer mechanical connections --again re­
sulting in greater system reliability.

LOWER PRODUCTION COST

By minimi7ing design time, increasing reliability, and

replacing numerous parts, microprocessor and peripheral
solutions can contribute dramatically to lower product
costs.

HIGHER SYSTEM PERFORMANCE

Intel microprocessors and peripherals provide the highest
system performance for the demands of today's (and
tomorrow's) microprocessor-based applications. For exam­
ple, the 80386 32 bit offers the highest performance for
multitasking, multiuser systems. Inters peripheral pro­
ducts have been designed with the future in mind. They
support all of Intel's 8, 16 and 32 bit processors.

HOW TO USE THE GUIDE

The following application guide illustrates the range of
microprocessors and peripherals that can be used for the
applictions in the vertical column of the left. The
peripherals are grouped by the I/O function they control.
CRT datacommunication, universal (user programmable),
mass storage dynamic RA M controllers, and CPU! bus
support.

An "X" in a horizontal application row indicates a
potential peripheral or CPU, depending upon the features
desired. For example, a conversational terminal could
use either of the three display controllers, depending
upon features like the number of characters per row or
font capability. A "Y" indicates a likely candidate, for
example, the 8272A Floppy Disk Controller in a small
business computer.

The Intel microprocessor and peripherals family provides
a broad range of time-saving, high performance solutions.

1-1

inter Intel's Microsystem Components Kit Solution

!ill .n ~ FLOPPY DISK

tV d£ "JJ"" ~_2~_~_:_R_O_L __ --I

,--_D_Y_NA_M_'_C_R_A_M_ .. I*
MEMORY
SUPPORT
8203
8206
8207
8208/82C08

ROM/EPROM

CPU SUPPORT
8231A
8254/82C54
825S/82C55
8256AH
8294A

LOCAL AREA
NETWORKING

82501
82502
82586
82588

CPU
8086
8088
80186
80188
80286

GLOBAL
COMMUNICATIONS

8251A
8273/73-4
8274
82530-530-6
8044/8344/8744

L-

HA_RD_DIS_K ----I •. ~L_L--I
CONTROL
82062
82064

SPECIAL
PERIPHERAL
CONTROL
UPI" 8041A
UPI" 8042
UPI" 8741A
UPI" 8742

HARD COpy
CONTROL
UPI" 8042/8742

KEYBOARD
CONTROL

8279-5
UPI'" 8041A
UPI" 8042
UPI'" 8741A
UPI'" 8742

CRT
CONTROL
8275
8276
82720
82730

INSTRUMENTATION
BUS (GPIB)
8291
8292

~
-~

• / f%ZEJIEf WB\

Get Your Kit Together!

©Intel 1985 1-2
September 1985

Order Number: 230664-004

~ ,
w

APPLICATION

PERIPHERALS
Printers
Plotters
Keyboards

MASS STORAGE
Hard Disk
Mini Winchester
Tape
Cassette
Floppy/Mini

COMMUNICATIONS
PBX
LANS
Modems
Bisync
SOLC/HOLe
Serial Backplane
Central Office
Network Control

OFFICE/BUS
Copier/FAX
Word processor
Typewriter
Electronic Mail
Transaction System
Data Entry

COMPUTERS
SM Bus Computer
PC
Portable PC
Home Computer

APPLICATION CHART

POTENTIAL APPLICATION X-TYPICAL APPLICATION Y

MICROPROCESSORS DISPLAY DATA COMMUNICATIONS UPI DISK

:,. N
0

:"1"'1
. '" ~ N ...
'" 0 CD

CD '" II> ~I~ <t
~ 0 <t < a, to co CD CD in 0 . 0 '" co CD co co co '" '" ~ '" ... 0; '" co co ... '" '" CD

co co ;:; ~ '" II> II> II> II> g ~1~ 0
0 0 0 0 N N N N N N N N N N N
co co 00 co 00 co co co co <XI CD c:o co co co co

DRAM CONTROL SUPPORT

'" a, en ... '" 0
~

II> II> :I: N u U <t co
M j... a, ~ ~ ~

CD ... II> '" '" 0 0 0 0 II> II> II>
N N N N '" N N N ., co co co 00 co co co

MICROPROCe:SSORS DISPLAY DATA COMMUNICATIONS UPI DISK DRAM CONTROL SUPPORT

~
N
C)

II)

APPLICATION
. ~ !!? ~ N Co en ~ Ci, N CD C) .. II) ..

CD .. ~ II) C) () II) II) :r N .. --- "' "' C) Co .. CD CD

"' --- --- () ()

"' ~ CD CD CD iii
C) 0 .

~ --- N . ;.. . --- ---CD CD ~ CD CD N ..,
~

.., .. 0; '" CD CD N N CD '" CD CD .. II) CD ...
CD CD ~ N II) II) II) C) C) C) 0 C) II) II) II) ..
C) C) C) C) C) N N N N N N N '" N N C) C) N N N N N N N N N N
CD ... CD CD CD CI) CD

TERMINALS
~ "

Conversational
Graphics CRT Y 5. Y Y 'y X X X X X)()(X J:(y ,Y)(
Editing

X , y Y X ·x 'X -X X X Intelligent ,,~- X Y Y X
Videotex - . ,.
Printing, Laser, Impact X))()(X)(X X ·X X ,~)(.y Y
Portable

,"'l '

iNDUSTRIAL AUTO
Robotics
Network X X .X)(X X ·X X X Y X X
Numeric Control 'x "

Process Control X X X Y, ...)(.'1. X X X Y X)(X X X X
~ Instrumentation i' ~ J[

.&. Aviation/Navigation X X X X X X X X
INDUSTRIAUDATA ACQ,

Laboratory Instrumentation
)(V

,
Source Data Y.. X X X
Auto Test
Medical 'X' X Y X X 'y X Y)()()(.. X)(,
Test Instrumentation '.

y#~
Security X Y X)(Y X X X X X

COMMERCIAL DATA
PROCESSING

POS Terminal
.,

Financial Transfer)(X:. Y X X X X X V 'X X .X. ..)(X
Automatic Teller

X ""I §0

Document Processing X X X Y X X X X X X)(
WORKSTATIONS ,

Office
Engineering X X Y .)(. Y Y X)()(X 'X 'X y Y X)(X X X ~'(..)(
CAD j

MINI MAINFRAME
Processor & Control Store
Database Subsystems X Y •. X X X X' X
I/O Subsystem " ,
Comm, Subsystem X y Y X)(X)(X X

-_ .. _--- --

'Single Source Product

8080, 8085
Microprocessors

2

SOSOAISOSA .. 1/S0S0A-2
S-BIT N-CHANNEL MICROPROCESSOR

• TTL Drive Capability
• 2 J.lS (-1:1.3 J.lS, -2:1.5 J.lS) Instruction

Cycle

• Powerful Problem Solving Instruction
Set

• 6 General Purpose Registers and an
Accumulator

• 16-Bit Program Counter for Directly
Addressing up to 64K Bytes of
Memory

• 16-Bit Stack Pointer and Stack
Manipulation Instructions for Rapid
Switching of the Program Environment

• Decimal, Binary, and Double Precision
Arithmetic

• Ability to Provide Priority Vectored
Interrupts

• 512 Directly Addressed 1/0 Ports

• Available in EXPRESS
- Standard Temperature Range

• Available in 40-Lead Cerdip and Plastic
Packages
(See Packaging Spec, Order #231369)

The Intel® 8080A is a complete 8-bit parallel central processing unit (CPU). It is fabricated on a single LSI chip using
Intel's n-channel silicon gate MOS process. This offers the user a high performance solution to control and processing
applications.

The 8080A contains 6 8-bit general purpose working registers and an accumulator. The 6 general purpose registers may be
addressed individually or in pairs providing both single and double precision operators. Arithmetic and logical instructions
set or reset 4 testable flags. A fifth flag provides decimal arithmetic operation.

The 8080A has an external stack feature wherein any portion of memory may be used as a last inlfirst out stack to
storelretrieve the contents of the accumulator, flags, program counter, and all of the 6 general purpose registers. The 16-bit
stack pointer controls the addressing of this external stack. This stack gives the 8080A the ability to easily handle multiple
level priority interrupts by rapidly storing and restoring processor status. It also provides almost unlimited subroutine
nesting.

This microprocessor has been designed to simplify systems design. Separate 16-line address and 8-line bidirectional data
busses are used to facilitate easy interface to memory and 1/0. Signals to control the interface to memory and 1/0 are
provided directly by the 8080A. Ultimate control of the address and data busses resides with the HOLD signal. It provides
the ability to suspend processor operation and force the address and data busses into a high impedance state. This permits
OR-tying these busses with other controlling devices for (DMA) direct memory access or multi-processor oPeration.
NOTE:
The 8080A is functionally and electrically compatible with the Intel® 8080.

°1 0 0
BIDIRECTIONAL

OATA BUS

Figure 1. Block Diagram

2-1

40 A"

39 A"
38 A"
37

36

35

34 A,

33

32 A,

8OBOA 31 A5

30

29 A,

28

27 A,

26 A,

25 A,

24 WAIT

23 READY

22 '-',

21 HLDA

Figure 2. Pin Configuration

8080A/8080A·1/8080A·2

Table 1. Pin Description

Symbol Type Name and Function ~
-

A15-AO 0 Address Bus: The address bus provides the address to memory (up to 64K 8-bit words) or denotes the I/O
device number for up to 256 input and 256 output devices. Ao is the least significant address bit.

DrDo I/O DalaBus: The data bus provides bi-directional communication betweeen the CPU, memory, and I/O
devices for instructions and data transfers. Also, during the first clock cycle of each machine cycle, the
aOSOA outputs a status word on the data bus that describes the current machine cycle. Do is the least
significant bit.

SYNC 0 Synchronizing Signal: The SYNC pin provides a signal to indicate the beginning of each machine cycle.

DBIN 0 Data Bus In: The DBIN signal indicates to external circuits that the data bus is in the input mode. This
signal should be used to enable the gating of data onto the aOaOA data bus from memory or I/O.

READY I Ready: The READY signal indicates to the aOaOA that valid memory or input data is available on the aOaOA
data bus. This signal is used to synchronize the CPU with slower memory or I/O devices. If after sending
an address out the aOaOA does not receive a READY input, the aOaOAwili enter a WAITstate for as long as
the READY line is low. READY can also be used to single step the CPU.

WAIT 0 Wail: The WAIT signal acknowledges that the CPU is in a WAIT state.

WR 0 Wrile: The WR signal is used for memory WRITE or I/O output control. The data on the data bus is stable
while the WR signal is active low (WR ~ 0).

HOLD I Hold: The HOLD signal requests the CPU to enter the HOLD state. The HOLD state allows an external
device to gain control of the aOSOA address and data bus as soon as the S080A has completed its use of
these busses for the current machine cycle. It is recognized under the following conditions:
• the CPU is in the HALT state.
• the CPU is in the T2 or TW state and the READY signal is active, As a result of entering the HOLD state

the CPU ADDRESS BUS (A1S-Ao) and DATA BUS (DrDo) will be in their high impedance state. The CPU
acknowledges its state with the HOLD ACKNOWLEDGE (HLDA) pin.

HLDA 0 Hold Acknowledge: The HLDA signal appears in response tothe HOLD signal and indicates that the data
and address bus will go to the high impedance state. The HLDA signal begins at:
• T3 for READ memory or input.
• The Clock Period following T3 for WRITE memory or OUTPUT operation.
In either case, the HLDA signal appears after the rising edge of <1>2.

INTE 0 Interrupt Enable: Indicates the content of the internal interrupt enable flip/flop. This flip/flop may be set
or reset by the Enable and Disable Interrupt instructions and inhibits interrupts from being accepted by
the CPU when it is reset. It is automatically reset (disabling further interrupts) at time Tl of the instruction
fetch cycle (Ml) when an interrupt is accepted and is also reset by the RESET signal.

INT I Interrupt Request: The CPU recognizes an interrupt request on this line at the end of the current
instruction or while halted. If the CPU is in the HOLD state or if the Interrupt Enable flip/flop is reset it will
not honor the request.

RESET1 I Reset: While the RESET signal is activated, the content of the program counter is cleared, After RESET,
the program will start at location 0 in memory. The INTE and HLDA flip/flops are also reset. Note that the
flags, accumulator, stack pOinter, and registers are not cleared.

Vss Ground: Reference.

VDD Power: +12 ±5% Volts.

Vee Power: +5 ±5'% Volts.

i Vaa I Power: - 5 ± 5% Volts.

<1>1, <1>2 Clock Phases: 2 externally supplied clock phases. (non TTL compatible)
I

2-2

8080A/8080A-1/8080A-2

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias
Storage Temperature -65°C to +150°C
All Input or Output Voltages

With Respect to VBB -0.3V to +20V

Vcc, VOO and Vss With Respect to VBB -0.3V to +20V
Power Dissipation 1.5W

"NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in tile operational sections of this
specification is not implied. Exposure to absolute maxi­
mum rating conditions for extended periods may affect
device reliability.

D.C. CHARACTERISTICS (TA = ooe to 70oe, VDO = +12V ±5%,

Vee = +5V ±5%, vss = -5V ±5%, vss =OV; unless otherwise noted)

SymbO~ Parameter Min. Typ. Max.

V'lC I Clock I nput Low Voltage I Vss-l Vss+O.S

V,HC I Clock Input High Voltage I 9.0 Voo +1

V,l
I

Input Low Voltage -I Vss-1 Vss+O.S i I

V,H
,

Input High Voltage 3.3 Vcc +1 I
VOL Output Low Voltage 0.45 I +----

I VOH Output High Voltage I 3.7 I

1 IOOIAV) Avg. Power Supply Current (Voo) ~O 70 i
Icc (AV) Avg. Power Supply Current (Vcc) 60 SO I

Iss (AVI Avg. Power Supply Current (VBS) .01 1

I'l I nput Leakage ±10
-

t
ICL Clock Leakage ±10

I

IOl Data Bus Leakage in Input Mode
I

-100

I
-2.0

I I
IFl I Address and Data Bus Leakage T---'

I
+10

I
During HOLD

I
·100

i I

CAPACITANCE (TA = 25°C, Vce = VDD =VSS = av, VSB = -5V)
-- --

Symbol Parameter Typ. Max. Unit Test Condition

C<t> Clock Capacitance 17 25 pf fc = 1 MHz

C'N I nput Capacitance 6 10 pf Unmeasured Pins

COUT Output Capacitance 10 20 pf Returned to Vss

NOTES:

1. The RESET signal must be active for a minimum of 3 clock cycles.
2. ,;1 supply / ,; T A = -0.45%(' c.

2-3

Unit Test Condition

V

V

V

V

V } 10 l ~ 1.9mA on all outputs,
10H = -150IlA. V

mA

mA
} Operation

rnA
I T Cy = .48llsec

IlA 1 Vss ,,;; Y'N ,,;; Vcc

IlA I Vss ,,;; VClOCK ,,;; Voo

MAl
mA I

Vss ";;V,N ";;Vss +0.8V

Vss+0.8V";;VIN";;VCC

/lA
I V AOOR/DATA = VCC

I V AOOR/OATA = Vss + 0.45V

1.5

: I

,o~
i I

0.5 0.'----,--'2:':-5----+:':50,-----+-='7.5

AMBIENT TEMPERATURE (ee)

Typical Supply Current vs.
Temperature, Normalized(2)

intel' 8080A/8080A-1/8080-2

A.C. CHARACTERISTICS (8080A) (TA = ooe to 7oo e. VDD = +12V ±5%. Vee = +5V ±5%.
VBB = -5V ±5%. Vss = OV; unless otherwise noted)

-1 -1 -2 -2
Symbol Parameter Min. Max. Min. Max. Min. Max. Unit Test Condition

tCy[3J Clock Period 0.48 2.0 0.32 2.0 0.38 2.0 psec

tp tf Clock Rise and Fall Time 0 50 0 25 0 50 nsee

t., </>, Pulse Width 60 50 60 nsee

'.2 </>2 Pulse Width 220 145 175 nsee

to, Delay </>, to </>2 0 0 0 nsee

tD2 Delay </>2 to </>, 70 60 70 nsee

too Delay </>, to </>2 Leading Edges 80 60 70 nsee

tOA Address Output Delay From ¢2 200 150 175 nsee
CL = 100 pF

too Data Output Delay From ¢2 200 180 200 nsee

'DC Signal Output Delay From </>, or </>2 (SYNC. WR, WAIT, HLDA) 120 110 120 nsee
CL = 50 pF

tOF DBIN Delay From </>2 25 140 25 130 25 140 osee

to,lt l Delay for Input Bus to Enter Input Mode tOF tDF tDF nsee

t081 Data Setup Time During ¢J1 and DBrN 30 10 20 nsee

tDS2 Data Setup Time to ¢2 During DBIN 150 120 130 nsee

tOH (1) Data Holt time From 1/>2 and OarN [1J [1J [lJ nsee

t'E INTE Output Delay From </>2 200 200 200 nsee CL = 50 pF

tRS READY Setup Time During (/)2 120 90 90 nsee

tHS HOLD Setup Time During ¢2 140 120 120 nsee

t,s INT Setup Time During ¢J2 120 100 100 nsee

tH Hold Time From </>2 (READY. INT, HOLD) 0 a a nsee

tFD Delay to Float During Hold (Address and Data Bus) 120 120 120 nsee

tAW Address Stable Prior to WR [5J [5J [5J nsee

tow Output Data Stable Prior to WR [6J [6J [6J nsee

two Output Data Stable From WR [7J [71 [7] nsee

tWA Address Stable From WR [7J [7J [7] nsee

tHF HLOA to Float Delay [8J [8J [8J nsee

tWF WR to Float Delay [9J [9J [9J nsee

tAH Address Hold Time After DBrN During HLDA -20 -20 -20 nsec

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER

~C'~100PF TEST

-=
CL -", 100pF
Cl INCLUDES JIG CAPACITANCE

2-"4

8080A/8080A·1/8080A·2

WAVEFORMS

·-·1'0' 1--
~--~"~I _' __ ~(\~ ____ ~(\~ ____ ~

I

A15,Ao ________ ~''--_-_X
l----tDA--~i

i- t DO -_I --..I tOI 1----

- ------,-:-1. -----y-------'--! :: D7,DO ~.,...
I I IDATA OUT i

I ~-::;i~ ___ I-~---~-i
SYNC ________ .'-1 ,-'}_ .; J~:.---..:..::.--L---t:--+----+--t--+I-f----I,--I
DBIN I t I

VoIR
----~,~-'oc- ,:.: .,t I.'

----------- I, 'DCr-- _l..; -1;.---+--1

RE.ADY .! =W'
WAIT -_-_-_-_-_-_-_-_-_-_-_-_______________ -_,,,_,_"~~::.:: _ --~ • ..:.!I-.:..II~-_-_+II· -oJ! ,",_':::'1 .oc~i i

'DC· 1- ',: !_. . 1 ,

HOLD __ -_~

HLDA

------------------------~--------------------------------~--I
INT ___ -_~

Ilsl--=I,:

INTE

NOTE:
Timing measurements are made at the following reference voltages: CLOCK "1" = B.OV,
"0" = 1.0V; INPUTS "1" = 3.3V, "0" = O.BV; OUTPUTS "1" = 2.0V, "0" = O.BV.

2-5

'H-il--

8080AJ8080A·1 18080A·2

WAVEFORMS (Continued)

" j(\ f\ , ·'----.....Ii '-----
1

"

:.,.-~-.. JC---i-- ---r::
, -~---I two

SYNC

OBIN

READY

WAIT

HOLD J-

HLDA

INT

INTE

NOTES: (Parenthesis gives -1, -2 specifications, respectively)

2-6

1. Data input should be enabled with DBIN status. No bus con­
flict can then occur and data hold time is assured.
10H = 50 ns or tOF, whichever is less.

2. ICY = t03 + t r.p2 +""2 + tf.p2 + t02 + tr.p1 ;. 480 ns (- 1 :320
ns, - 2:380 ns).

TYPICAL L> OUTPUT DELAY VS. L> CAPACITANCE

-,.
~
0
f-
::>
i=
::>
0
<1

+10

-10

...\ CAPACITANCE (pf)

(CACTUAL - CSPECJ

3. The following are relevant when interfacing the 8080A to
devices having VIH = 3.3V:
a) Maximum output rise time from .BV to 3.3V = 100ns@CL
= SPEC.
b) Output delay when measured to 3.0V = SPEC +60ns@ CL
= SPEC.
c) If CL = SPEC, add .6ns!pF if CL > CSPEC, subtract .3nsipF
(from modified delay) if CL < CSPEC.

4. tAW = 2 tCY- t03 - tr.p2 -- 140 ns (- 1 :110 ns, - 2:130 ns).
5. tow = tCY - t03 - Ir.p2 - 170 ns (- 1 :150 ns, - 2:170 ns).
6. If not HLDA, two = tWA = t03 + tr.p2 + 10 ns. If HLDA, two

= tWA = tWF'
7. tHF = t03 + tr.p2 -50 ns).
8. tWF = t03 + tr.p2 - 10ns.
9. Data in must be stable for this period during DBIN T 3'

Both tOS1 and tOS2 must be satisfied.
10. Ready signal must be stable for this period during T 2 or Tw.

(Must be externally synChronized.)
11. Hold signal must be stable for this period during T2 or Tw

when entering hold mode, and during T3, T4, Ts and TWH
when in hold mode. (External synchronization is not re­
quired.)

12. Interrupt signal must be stable during this period of the last
clock cycle of any instruction in order to be recognized on the
following instruction. (External synchronization is not re-
quired.) ,

13. This timing diagram shows timing relationships only; it does
not represent any spe~ific machine cycle,

80S0A/SOSA-1/S0S0A-2

INSTRUCTION SET

The accumulator group instructions include arithmetic and
logical operators with direct, indirect, and immediate ad·
dressing modes.

Move, load, and store instruction groups provide the ability
to move either 8 or 16 bits of data between memory, the
six working registers and the accumulator using direct, in·
direct, and immediate addressing modes.

The ability to branch to different portions of the program
is provided with jump, jump conditional, and computed
jumps. Also the ability to call to and return from sub·
routines is provided both conditionally and unconditionally.
The RESTART (or single byte call instruction) is useful for
interrupt vector operation.

Double precision operators such as stack manipulation and
double add instructions extend both the arithmetic and
interrupt handling capability of the 8080A. The ability to

Data and Instruction Formats

increment and decrement memory, the six general registers
and the accumulator is provided as well as extended incre·
ment and decrement instructions to operate on the register
pairs and stack pointer. Further capability is provided by
the ability to rotate the accumulator I~ft or right"through
or around the carry bit.

Input and output may be accomplished using memory
addresses as 1/0 ports or the directly addressed I/O
provided for in the 8080A instruction set.

The following special instruction group completes the
8080A instruction set: the NOP instruction, HALT to
stop processor execution and the DAA instructions
provide decimal arithmetic capability. STC allows the
carry flag to be directly set, and the CMC instruction
allows it to be complemented. CMA complements the
contents of the accumulator and XCHG exchanges
the contents of two 16-bit register pairs directly.

Data in the 8080A is stored in the form of8-bit binary integers. All data transfers to the system data bus will be
in the same format.

The program instructions may be one, two, or three bytes in length. Multiple byte instructions must be stored
in successive words in program memory. The instruction formats then depend on the particular operation
executed.

One Byte Instructions TYPICAL INSTRUCTIONS

I D7 D6 D5 D4 03 O2 D1 Do I OP CODE Register to register, memory refer·
ence, arithmetic or logical, rotate,
return, push, pop, enable or disable
I nterrupt instructions

Two Byte Instructions

1 0 7 06 05 0 4 03 O2 0 1 Do I OP CODE

107 0 6 0 5 04 0 3 D2 0 1 Do I OPERAND Immediate mode or I/O instructions

Three Byte Instructions

1 0 7 06 0 5 04 03 1)2 0 1 Do I OP CODE Jump, call or direct load and store

1 0 7 06 0 5 04 03 O2 0 1 Do I LOW ADDRESSOR OPERAND 1
instructions

li? 06 0 5 04 03 O2 0 1 Do I HIGH ADDRESSOR OPERAND 2

For the 8080A a logic "1" is defined as a high level and a logic "0" is defined as a low level.

2-7

inter 8080Al8080A·1/8080A·2

Table 2. Instruction Set Summary

Clock Clock
Instruction COde [1J Operations Cycles Instruction Code [IJ Operations Cycles

Mnemonic 0-, D6 Ds D4 Da D2 01 Do Description [2J Mnemonic 0-, D6 Ds D4 D3 D2 Dl 00 Description [2J

MOVE, LOAD, AND STORE JPO i 1 1 0 0 0 1 0 Jump on parity odd 10
MOVr1,r2 0 1 D D D S S S Move register to register 5 PCHL 1 1 1 0 1 0 0 1 H & L .to program 5
MOVI\iI,r 0 1 1 1 0 S S S Move register to counter

memory 7 CALL
MOVr,M 0 1 D D D 1 1 0 Move memory to regis-- CALL 1 1 0 0 1 1 0 1 Call unconditional 17

ter 7 CC 1 1 0 1 1 1 0 0 Call on carry 11/17
MVI r 0 0 D D D 1 1 0 Move immediate regis- CNC 1 1 0 1 0 1 0 0 Call- on no carry 11/17

ter 7 CZ 1 1 0 0 1 1 a 0 Call on zero 11/17
MVIM 0 0 1 1 0 1 1 0 Move immediate CNZ 1 1 0 0 0 1 0 0 Call on no zero 11/17

memory 10 CP 1 1 1 1 0 1 0 0 Call on positive 11/17
LXI B 0 0 0 0 0 0 0 1 Load immediate register 10 CM 1 1 1 1 1 1 0 0 Call on minus 11117

PairB & C CPE 1 1 1 0 1 1 0 O. Call' on parity even 11/17
LXI D 0 0 0 1 0 0 0 1 Load immediate register 10 CPO 1 1 1 0 0 1 0 0 Call on parity odd 11/17

PairD& E RETURN
LXI H 0 0 1 0 0 0 0 1 load immediate register 10 RET 1 1 0 0 1 0 0 1 Return 10

PairH& L RC 1 1 0 1 1 0 0 0 Return on carry 5/11
STAXB 0 0 0 0 0 0 1 0 Store A indirect 7 RNC 1 1 0 1 0 0 0 0 Retu rn on no carry 5/11
STAXD 0 0 0 1 0 0 1 0 Store A indirect 7 RZ 1 1 0 0 1 0 0 0 Return on zero 5/11
LDAX B 0 0 0 0 1 0 1 0 Load A indirect 7 RNZ 1 1 0 0 0 0 0 0 Return on no zero 5111
LDAXD 0 0 0 1 1 0 1 0 Load A indirect 7 RP 1 1 1 1 0 0 0 0 Return on positive 5/11
STA 0 0 1 1 0 0 1 0 Store A direct 13 RM 1 1 1 1 1 0 0 0 Return on minus 5/11
LOA 0 0 1 1 1 0 1 0 Load A direct 13 RPE 1 1 1 0 1 0 0 0 Return on parity even 5/11
SHLD 0 0 1 0 0 0 1 0 Store H & L direct 16 RPO 1 1 1 0 0 0 0 0 Return on parity odd 5/11
LHLD 0 0 1 0 1 0 1 0 Load H & L direct 16 RESTART
XCHG 1 1 1 0 1 0 1 1 Exchange D & E, H & L 4 RST 1 1 A A A 1 1 1 Restart 11

Registers INCREMENT AND DECREMENT
STACKOPS INRr 0 0 0 D D 1 0 0 Increment register 5
PUSH B 1 1 0 0 0 1 0 1 Push register Pair B & 11 DCRr 0 0 D D 0 1 0 1 Decrement register 5

C on stack INRM 0 0 1 1 0 1 0 0 Increment memory 10
PUSH D 1 1 0 1 0 1 a 1 Push register Pair D & 11 DCRM 0 0 1 1 0 1 0 1 Decrement memory 10

E on stack INXB 0 0 0 0 0 0 1 1 Increment B & C 5
PUSH H 1 1 1 0 0 1 0 1 Push register Pair H & 11 registers

L on stack INXD 0 0 0 1 0 0 1 1 Increment 0 & E 5
PUSH 1 1 1 1 0 1 0 1 Push A and Flags 11 registers
PSW on stack INXH 0 0 1 0 0 0 1 1 Increment H & L 5
POPB 1 1 0 0 0 0 0 1 Pop register Pair B & 10 registers

C off stack DCXB 0 0 0 0 1 0 1 1 Decrement B & C 5
POPD 1 1 0 1 0 0 0 1 Pop register Pai r D & 10 DCXD 0 0 0 1 1 0 1 1 Decrement 0 & E 5

E off stack DCXH 0 0 1 0 1 0 1 1 Decrement H & L 5
POPH 1 1 1 0 0 0 0 1 Pop register Pair H & 10 ADD

Loft stack ADOr 1 0 0 0 0 S S S Add register to A 4
POP PSW 1 1 1 1 0 0 0 1 Pop A and Flags 10 ADCr 1 0 0 0 1 S S S Add register to A 4

off stack with carry
XTHL 1 1 1 0 0 0 1 1 Exchange top of 18 ADDM 1 0 0 0 0 1 1 0 Add memory to A 7

stack, H & L ADCM 1 0 0 0 1 1 1 0 Add memory to A 7
SPHL 1 1 1 1 1 0 0 1 H & L to stack pOinter 5 with carry
LXI SP 0 0 1 1 0 0 0 1 Load immediate stack 10 ADI 1 1 0 0 0 1 1 0 Add immediate to A 7

pOinter ACI 1 1 0 0 1 1 1 0 Add immediate to A 7
INXSP 0 0 1 1 0 0 1 1 Increment stack poi nter 5 with carry
DCXSP 0 0 1 1 1 0 1 1 Decrement stack 5 DAOB 0 0 0 0 1 0 0 1 AddB&CtoH&L 10

pOinter DADO 0 0 0 1 1 0 0 1 AddD&EtoH&L 10
JUMP DADH 0 0 1 0 1 0 0 1 AddH&LtoH&L 10
JMP 1 1 0 0 0 0 1 1 Jump unconditional 10 DADSP 0 0 1 1 1 0 0 1 Add stack pointer to 10
JC 1 1 0 1 1 0 1 0 Jump on carry 10 H&L
JNC 1 1 0 1 0 0 1 0 Jump on no carry 10
JZ 1 1 0 0 1 0 1 0 Jump on zero 10
JNZ 1 1 0 0 0 0 1 0 Jump on no zero 10
JP 1 1 1 1 0 0 1 0 Jump on positive 10
JM 1 1 1 1 1 0 1 0 Jump' on minus 10
JPE 1 1 1 0 1 0 1 0 Jump on parity even 10

2-8

8080A/8080A·1/8080A·2

Summary of Processor Instructions (Cont.)

Clock
Instruction Code [1J Operations Cycles Instruction Code {11

Mnemonic 07 06 05 04 03 02 01 DO Description l2J Mnemonic D7 06 05 04 03 02 01 0

SUBTRACT ROTATE
SUBr 1 0 0 1 0 S S S Subtract register 4 RLC 0

from A RRC 0
SBBr 1 0 0 1 1 S S S Subtract register from 4 RAL 0

A with borrow
SU8M 1 0 0 1 0 1 1 0 Subtract memory 7 RAR 0

from A
S88M 1 0 0 1 1 1 1 0 Subtract memory from 7 SPECIALS

A with borrow
SUI 1 1 0 1 0 1 1 0 Subtract immediate 7

from A
SBI 1 1 0 1 1 ,1 1 0 Subtract immediate 7

CMA

l~ STC
CMC
DM

from A with borrow INPUT/OUTPUT
LOGICAL IN
ANAr 1 0 1 0 0 S S S And register with A 4 OUT
XRAr 1 0 1 0 1 S S S Exclusive Or register 4 CONTROL

with A EI
ORAr 1 0 1 1 0 S S S Or register with A 4 DI
CMPr 1 0 1 1 1 S S S Compare register with A 4 Nap
ANAM 1 0 1 0 0 1 1 0 And memory with A 7 HLT
XRAM 1 0 1 0 1 1 1 0 Exclusive Or memory 7

with A
DRAM 1 a 1 1 0 1 1 0 Or memory with A 7
CMPM 1 0 1 1 1 1 t 0 Compare memory with

A l
ANI 1 1 1 0 0 1 1 0 And immediate with A 7
XRI 1 1 1 0 1 1 1 0 Exclusive Or immediate 7

with A
ORI 1 1 1 1 0 1 1 o lor immediate with A 7
CPI 1 1 1 1 1 1 1 o Compare immediate 7

jwithA

NOTES:
1. DDD or SSS: 8~OOO, C~001, D~010, E~Ol1, H~100, L~101, Memory~ 110, A~111.

2. Two possible cycle times (6/12) indicate instruction cycles dependent on condition flags.

*AU mnemonics copyright ©Intel Corporation 1977

2·9

1
1

1
1
0
0

0 0 0 0 1 1 1
0 0 0 1 1 1 1
0 0 1 0 1 1 1

0 0 1 1 1 1 1

0 1 0 1 1 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
0 1 0 0 1 1 1

1 0 1 1 0 1 1
1 0 1 0 0 1 1

1 1 1 1 0 1 1
1 1 1 0 0 1 1
0 0 0 0 0 0 0
1 1 1 0 1 1 0

Clock
Operations Cycles
Description [2]

Rotate A left 4
Rotate A right 4
Rotate A left through 4
carry
Rotate A right through 4
carry

Complement A 4
Set carry 4
Complement carry 4
Decimal adjust A 4

Input 10
Output 10

Enable Interrupts 4

Disable Interrupt 4
No-operation 4
Halt 7

I
I
I
[

I

I
I

I I

8085AH/8085AH-2!8085AH-1
8-BIT HMOS MICROPROCESSORS

• Single +5V Power Supply with 10%
Voltage Margins

• 3 MHz, 5 MHz and 6 MHz Selections '
Available

• 20% Lower Power Consumption than
8085A for 3 MHz and 5 MHz

• 1.3 /LS Instruction Cycle (8085AH); O.S
/LS (SOS5AH-2); 0.67 /Ls (SOS5AH-1)

• 100% Software Compatible with SOSOA

• On-Chip Clock Generator (with
External Crystal, LC or RC Network)

• On-Chip System Controller; Advanced
Cycle Status Information Available for
Large System Control

• Four Vectored Interrupt Inputs (One is
Non-Maskable) Plus an
SOSOA-Compatible Interrupt

• Serial In/Serial Out Port
• Decimal, Binary and Double Precision

Arithmetic
• Direct Addressing Capability to 64K

Bytes of Memory
• Available in 40-Lead Cerdip and Plastic

Packages
(See Packaging Spec, Order #231369)

The Intel® 8085AH is a complete 8 bit parallel Central Processing Unit (CPU) implemented in N-channel, depletion
load, silicon gate technology (HMOS), Its instruction set is 100% software compatible with the 8080A microproces­
sor, and it is deSigned to improve the present 8080A's performance by higher system speed. Its high level of system
integration allows a minimum system of three IC's [8085AH (CPU), 8156H (RAM/IO) and 8755A (EPROM/lOll while
maintaining total system expandability. The 8085AH-2 and 8085AH-1 are faster versions of the 8085 AH.

The 8085AH incorporates all of the features that the 8224 (clock generator) and 8228 (system controller) provided for
the 8080A, thereby offering a higher level of system integration.

The 8085AH uses a multiplexed data bus. The address is split between the 8 bit address bus and the 8 bit data bus.
The on-chip address latches of 8155H/8156H/8755A memory products allow a direct interface with the 8085AH.

" "

, "'-;1 eEG
o 181

'" H 181 l 181 REGISTER

"G j REG REG ARRAY

STACK POINTER

11$1
PROGRAM COUNTER

!NCREMENTERIDECREMENTER
ADDRESS LATCH 1161

Figure 1. 8085AH CPU Functional Block Diagram

AOrADo
ADORESS/DATA aus

x, Vee
x, HOLD

RESET OUT 3 HLDA
SOD 4 elK (OUT)

RESET IN
READY

RST 7.5 IOiM

RST 6.5 S,
RST 5.5 Ri5

INTR WR

JNTA ALE

ADO So
AD, A15
AD, A'4
AD3 A13
AD4 A12
AD5 A11
AD, AlO
AD, Ag

A,

Figure 2. 8085AH Pin
Configuration

Intel Corporation Assumes No Responsibilty for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses afe Implied.

~INTEL CORPORATION, 1981. 2-10

inter

Symbol

As-A,s

ADO_7 r=---
I

ALE

I

I I I '0- ',- "'"'0'1
I I
! I

I

RD

WR

Type

0

8085AH/8085AH-2/8085AH-1

Table 1. Pin Description

Name a n·de-~Fu-n-ct'--io-n ----

Address Bu
8 bits of the
8 bits of th

s: The most 'i9mficant
memory address or the
e I/O address, 3-stated

during Hold and Halt modes and
ET. I during RES

~----

Symbol
r---
READY

Type

I

Name and Function

Ready: If READY is high during a
read or write cycle, it indicates that
the memory or peripheral is ready to
send or receive data. If READY is
low, the cpu will wait an integral

Lower 8 bits ear"""" (or I/O addre

Address/Data Bus:
of the memory address
ss) appear on the bus

rst clock cycle (T state)
cycle. It then becomes
during the second and
yeles.

during the fl
of a machine
the data bus

number of clock cycles for READY
I to go high before completing the

i"occ-r-'
read or write cycle. READY must
conform to specified setup and hold
times.

Hold: Indicates that another master

0

0

0

0

I
I
I

I

third clock e

Address La
during the fi

tch Enable: It occurs
rst clock state of a ma­
nd enables the address chine cycle a,

to get latche d into the on-chip latch
of peripherals. The falling edge of
ALE is set to guarantee
Iwld times for the address

setup and
informa­
ALE can

he status

3-stated. I

tlon. The falling edge of
also be used to strobe t
information. ALE is never

Machine Cycle Status:

101M S,
0 0
0 1
1 0
1 1
0 1
1 1

a
X
X

So
1
0
1
0
1
·1

0
X
X

Status
Memory
Memory
I/O write
I/O read
Opcode

write
read

felch
Interrupt
Acknowl edge
Halt
Hold
Reset

= 3-state (high impe dance)
X =- unspecified

I

I

I
S1 can be used as an advar Iced R/IN i

become I
machine I
oughout

status. 10/M, SO and S,
valid at the beginning of a
cycle and remain stable thr
the cycle. The falling edg e of ALE

state of I may be used to latch the
these lines.

Read Control: A low leve -I
indicates the selected me
1/0 device IS to be read and
Data Bus is available for the data ~:~:~~I
transfer, 3-stated during H old and

SET. Halt modes and during RE

Write Control: A low level on WR ,
taBus is
elected
ta is set
WR.3-

indicates the data on the Da
to be written into the s
memory or 1/0 location. Da
up at the trailing edge of
stated during Hold and Hal t modes
and dUring RESET.

2-11

is requesting the use of the address
and data buses. The cpu, upon
receiving the hold request, will

I relinquish the use of the bus as

I soon as the completion of the cur-
I
I rent bus transfer. Internal process-

ing can continue. The ·processor
can regain the bus only after the

I I
HOLD is removed. When the HOLD
is acknowledged, the Address,
Data RD, WR, and 101M lines are
3-stated.

HLDA 0 Hold Acknowledge: Indicates that
the cpu has received the HOLD re-
quest and that it will relinquish the
bus in the next clock cycle. HLDA
goes low after the Hold request is
removed. The cpu takes the bus one
half clock cycle after HLDA goes

i low.

iNTR I

I
Interrupt Request: Is used as a
general purpose interrupt It is
sampled only during the next to the
last clock cycle of an instruction

I
and during Hold and Halt states. If it
is active, the Program Counter (PC)

I will be inhibited from incrementing
and an INTA will be issued. During
this cycle a RESTART or CALL in-
struction can be inserted to jump to
the interrupt service routine. The
INTR is enabled and disabled by
software. It is disabled by Reset and
immediately after an Interrupt is ac-
cepted.

iNTA 0 Interrupt Acknowledge: Is used in-
stea~of (and has the same timing
as) RD during the Instruction cycle
after an INTR is accepted. It can be
used to activate an 8259A Interrupt

I chip or some other interrupt port

I RST 5 5 I Restart Interrupts: These three 10-

RST 6 5 puts have the same timing as INTR

I RST 7 5 except they cause an internal j Jj~~':~" '0 "' "",om,,,,,,,, L .. , """" " '"- '"W". ;, ordered as shown in Table 2. These
Interrupts have a higher priority
than INTR. In addition, they may be
Individually masked out using the
SIM instruction.

8085AH/8085AH-2/8085AH-1

Table 1. Pin Description (Continued)
r--------r-----r--------------------~

Symbol Type Name and Function Symbol Type Name and Function

TRAP

RESET IN

Name

TRAP

RST 7.5

RST 6.5

RST 5.5

INTR

NOTES:

I Trap: Trap interrupt is a non­
maskable RESTART interrupt. It is
recognized at the same time as
INTR or RST 5.5-7.5. It is unaffected
by any mask or Interrupt Enable. It
has the highest priority of any inter­
rupt. (See Table 2.)

RESET OUT a ReselOul: Reset Out indicates cpu

Reset In: Sets the Program
Counter to zero and resets the Inter­
rupt Enable and HlDA flip-flops.
The data and address buses and the
control lines are 3-stated during
RESET and because of the asyn­
chronous nature of RESET, the pro­
cessor's internal registers and flags
may be altered by RESET with un­
predictable results. RESET IN is a
Schmitt-triggered input, allowing
connection to an R-C network for
power-on RESET delay (see Figure
3). Upon power-up, RESET IN must
remain low for at least 10 ms after
minimum Vee has been reached.
For proper reset operation after the
power-up duration, RESET IN
should be kept Iowa minimum of
three clock periods. The CPU is held
in the reset condition as long as
RESET IN is applied.

X1, X2

ClK

SID

SOD

Vee

Vss

I

a

I

a

is being reset. Can be used
as a system reset. The signal is
synchronized to the processor
clock and lasts an integral number
of clock periods.

X1 and X2: Are connected to a
crystal, Le, or RC network to drive
the internal clock generator. X1 can
also be an external clock input from
a logic gate. The input frequency is
divided by 2 to give the processor's
internal operating frequency.

Clock: Clock output for use as a sys-
tem clock. The period of ClK is
twice the x1, X2 input period.

Seriallnpul Dala Line: The data on
this line is loaded into accumulator
bit 7 whenever a RIM instruction is
executed.

Serial Oulput Data Line: The out-
put SOD is set or reset as specified
by the SIM instruction.

Power: +5 volt supply.

Ground: Reference.

Table 2. Interrupt Priority, Restart Address, and Sensitivity

Address Branched To (1)
Priority When Interrupt Occurs Type Trigger

1 24H Rising edge AND high level until sampled.

2 3CH Rising edge! latched).

3 34H High level until sampled.

4 2CH High level until sampled.

5 See Note (2). High level until sampled.

1. The processor pushes the PC on the stack before branching to the indicated address.
2. The address branched to depends on the instruction provided to the cpu when the interrupt is acknowledged.

Vee 0 L~ f
I~
c,

TYPICAL POWER-ON RESET RC VAWES'
R, ;75KIl
C, =1"F
'VAWES MAY HAVE TO VARY DUE TO
APPLIED POWER SUPPLY RAMP UP TIME.

Figure 3. Power-On Reset Circuit

2-12

inter 8085AH/8085AH-2/8085AH-1

FUNCTIONAL DESCRIPTION

The 8085AH is a complete 8-bit parallel central pro­
cessor. It is designed with N-channel, depletion load,
silicon gate technology (HMOS), and requires a single
+5 volt supply. Its basic clock speed is3 MHz (8085AH),
5 MHz (8085AH-2), or 6 MHz (8085AH-1), thus improv­
ing on the present 8080A's performance with higher
system speed. Also it is designed to fit into a minimum
system of three lC's: The CPU (8085AH), a RAM/IO
(8156H), and an EPROM/IO chip (8755A).

The 8085AH has twelve addressable 8-bit registers.
Four of them can function only as two 16-bit register
pairs. Six others can be used interchangeably as
8-bit registers or as 16-bit register pairs. The 8085AH
register set is as follows:

Mnemonic Register Contents

ACC or A Accumulator 8 bits

PC Program Counter 16-bit address

BC,DE,HL General-Purpose 8 bits x 6 or
Registers; data 16 bits x 3
pointer (HL)

SP Stack Pointer 16-bit address

Flags or F Flag Register 5 flags (8-bit space)

The 8085AH uses a multiplexed Data Bus. The
address is split between the higher 8-bit Address
Bus and the lower 8-bit Address/Data Bus. During
the first T state (clock cycle) of a machine cycle the
low order address is sent out on the Address/Data
bus. These lower 8 bits may be latched externally by
the Address Latch Enable signal (ALE). During the
rest of the machine cycle the data bus is used for
memory or I/O data.

The 8085AH provides RD, WR, So, S1, and 101M
signals for bus control. An Interrupt Acknowledge
signal (INTA) is also provided. HOLD and all Inter­
rupts are synchronized with the processor's internal
clock. The 8085AH also provides Serial Input Data
(SID) and Serial Output Data (SOD) lines for simple
serial interface.

In addition to these features, the 8085AH has three
maskable, vector interrupt pins, one nonmaskable
TRAP interrupt, and a bus vectored interrupt, INTR.

INTERRUPT AND SERIAL I/O

The 8085AH has 5 interrupt inputs: INTR, RST 5.5,
RST 6.5, RST 7.5, and TRAP. INTR is identical in
function to the 8080A INT. Each of the three RE­
START inputs, 5.5, 6.5, and 7.5, has a programmable
mask. TRAP is also a RESTART interrupt but it is
nonmaskable.

2-13

The three maskable interrupts cause the internal
execution of RESTART (saving the program counter
in the stack and branching to the RESTART address)
if the interrupts are enabled and if the interrupt mask
is not set. The nonmaskable TRAP causes the inter­
nal execution of a RESTART vector independent
of the state of the interrupt enable or masks. (See
Table 2.)

There are two different types of inputs in the restart
interrupts. RST 5.5 and RST 6.5 are high leve/­
sensitive like INTR (and INT on the 8080) and are
recognized with the same timing as INTR. RST 7.5 is
rising edge-sensitive.

For RST 7.5, only a pulse is required to set an inter­
nal flip-flop which generates the internal interrupt
request (a normally high level signal with a low
going pulse is recommended for highest system
noise immunity). The RST 7.5 request flip-flop
remains set until the request is serviced. Then
it is reset automatically. This flip-flop may also be
reset by using the SIM instruction or by issuing a
RESET IN to the 8085AH. The RST 7.5 internal flip­
flop will be set by a pulse on the RST 7.5 pin even
when the RST 7.5 interrupt is masked out.

The status of the three RST interrupt masks can only
be affected by the SIM instruction and RESET IN.
(See SIM, Chapter 5 of the MCS-80/85 User's
Manual.)

The interrupts are arranged in a fixed priority that
determines which interrupt is to be recognized if
more than one is pending as follows: TRAP­
highest priority, RST 7.5, RST 6.5, RST 5.5, INTR­
lowest priority. This priority scheme does not take
into account the priority of a routine that was started
by a higher priority interrupt. RST 5.5 can interrupt
an RST 7.5 routine if the interrupts are re-enabled
before the end of the RST 7.5 routine.

The TRAP interrupt is useful for catastrophic events
such as power failure or bus error. The TRAP input is
recognized just as any other interrupt but has the
highest priority. It is not affected by any flag or mask.
The TRAP input is both edge and level sensitive. The
TRAP input must go high and remain high until it is
acknowledged. It will not be recognized again until it
goes low, then high again. This avoids any false
triggering due to noise or logic glitches. Figure 4
illustrates the TRAP interrupt request circuitry
within the 8085AH. Note that the servicing of any
interrupt (TRAP, RST 7.5, RST 6.5, RST 5.5, INTR)
disables all future interrupts (exceptTRAPs) until an
EI instruction is executed.

SOS5AH/SOS5AH-2/S0S5AH-1

EXTERNAL
TRAP
INTERRUPT
REQUEST

INSIDE THE
8085AH

TRAP

SCHMITT
TRIGGER

RESET

+5V D elK

I

D
F/F

INTERNAL TRAP F.F
TRAP

ACKNOWLEDGE

Figure 4. TRAP and RESET IN Circuit

The TRAP interrupt is special in that it disables inter­
rupts, but preserves the previous interrupt enable
status. Performing the first RIM instruction follow­
ing a TRAP interrupt allows you to determine
whether interrupts were enabled or disabled prior to
the TRAP. All subsequent RIM instructions provide
cu rrent interrupt enable status. Performi ng a RI M
instruction following INTR, or RST 5.5-7.5 will
provide current Interrupt Enable status, revealing
that Interrupts are disabled. See the description of
the RIM instruction in the MCS-80/85 Family User's
Manual.

The serial I/O system is also controlled by the RIM
and SIMinstructions. SID is read by RIM, and SIM
sets the SOD data.

DRIVING THE X1 AND X2 INPUTS

You may drive the clock inputs of the 8085AH,
8085AH-2, or 8085AH-1 with a crystal, an LC tuned
circuit, an RC network, or an external clock source.
The crystal frequency must be at least 1 MHz, and
must be twice the desired internal clock frequency;
hence, the B085AH is operated with a 6 MHz crystal
(for 3 MHz clock), the B085AH-2 operated with a 10
MHz crystal (for 5 MHz clock), and the B085AH-1 can
be operated with a 12 MHz crystal (for 6 MHz clock).
If a crystal is used, it must have the following
characteristics:

Parallel resonance at twice the clock frequency
desired
CL (load capacitance) ,,;; 30 pF
Cs (shunt capacitance) ,,;; 7 pF
Rs (equivalent shunt resistance) ,,;; 75 Ohms
Drive level: 10 mW
Frequency tolerance: ± .005% (suggested)

Note the use of the 20 pF capacitor between X2 and
ground. This capacitor is required with crystal fre­
quencies below 4 MHz to assure oscillator startup at
the correct frequency. A parallel-resonant LC circuit
may be used as the frequency-determining network
for the 8085AH, providing that its frequency
tolerance of approximately ± 1 0% is acceptable. The
components are chosen from the formula:

f = ----'-----

To minimize variations in frequency, it is recom­
mended that you choose a value for Cext that is at
least twice that of Cin!, or 30 pF. The use of an LC
circuit is not recommended for frequencies higher
than approximately 5 MHz.

An RC circuit may be used as the frequency­
determining network forthe 8085AH if maintaining a
precise clock frequency is of no importance. Var­
iations in the on-chip timing generation can cause a
wide variation in frequency when using the RC
mode. Its advantage is its low component cost. The
driving frequency generated by the circuit shown is
approximately 3 MHz. It is not recommended that
frequencies greatly higher or lower than this be
attempted.

Figure 5 shows the recommended clock driver cir­
cuits. Note in D and E that pullup resistors are re­
quired to assure that the high level voltage of the
input is at least 4V and maximum low level voltage
of O.BV.

For driving frequencies up to and including 6 MHz
you may supply the driving signal to Xl and leave X2
open-circuited (Figure 5D). If the driving frequency
is from 6 MHz to 12 MHz, stability of the clock
generator will be improved by driving both Xl and X2
with a push-pull source (Figure 5E). To prevent
self-oscillation of the 80B5AH, be sure that X2 is not
coupled back to Xl through the driving circuit.

2-14

8085AH/8085AH-2/8085AH-1

X, 8085AH ---,
I

I C'NT
.J.. ~ 15pF
-r

I

2 X i
'---'---+-----i 2 ___ -.J

'20 pF CAPACITORS REQUIRED FOR
CRYSTAL FREQUENCY ~ 4 MHz ONLY.

a. Quartz Crystal Clock Driver

b. LC Tuned Circuit Clock Driver

,.---.,......---tr X, 1 '1

I
20pF - 6K

2
'--__ -tr X2

'-

c. RC Circuit Clock Driver

8085AH

+5V

4700
TO

1KIl

'X2 lEFT FLOATING

LOW TIME> 60 ns

1 x,

X2

d. 1-6 MHz Input Frequency External Clock
Driver Circuit

+5V

LOW TIME> 40 ns

»-+-47_00...-:../_--1 x,

4700

e. 1-12 MHz Input Frequency External Clock
Driver Circuit

Figure 5. Clock Driver Circuits

GENERATING AN 8085AH WAIT STATE

If your system requirements are such that slow
memories or peripheral devices are being used, the
circuit shown in Figure 6 may be used to insert one
WAIT state in each 8085AH machine cycle.

The D flip-flops should be chosen so that
• ClK is rising edge-triggered
• CLEAR is low-level active.

2-15

r----------------------------------l

CLEAR
ALEO--___ eLK

"D"
FfF

+5V~D
o

6085AH
CLKOUTPUT* ~TO -lcLK I I 6085AH

··0·· I READY
F IF I

'AlE AND elK (OUT) SHOULD BE BUFFERED IF elK INPUT OF LATCH
EXCEEDS BOB5AH 10l OR IOH.

Figure 6. Generation of a Wait State for 8085AH
CPU

8085AH/8085AH-2/8085AH-1

-Y-..
AB-15 --I'- .. --,)

~O-7 ----------=>
ALE ;> -

8085AH RD -
WR

101M
- T-----"VV¥-

elK
- c-
-

RESET OUl -
READY - I

I

I I I
I

I. I.
I TIMER AD

7~:~' 7~.~ CEjl~/JAlE RDi(},CLK
I

RESET I IN WR RD ALE ~ CE " 07
101M , RSTIRDY

T~~~R _

8156H
[RAM + I/O + COUNTERITIMER] 8755A [EPROM + 1/0]

~NOTE OPTIONAL CONNECTION BB B B B
Figure 8. MCS-85® Minimum System (Memory Mapped I/O)

- x, x, RESET IN
TRAP HOLD -- RST7 HLDA r--- RST6 SOD r--- RST5 B085AH SID_ - INTR S, r--- INTA

RESET s,r--ADDR/ OUT
AODR DATA ALE R5 iNA 101M ROY elK

"'ul
-

~ 1\

)
V

(16)

.-
>--f-.

0DI II T

IO/M (CS)

WR

R1S

DATA

STANDARD
MEMORY

ADDR (CS)

elK

RESET

101M (CS) I/O paR

WR

R1S

DATA

TS,
LS

~
STANDARD

I/O

ADDR

Vee

Vee

v"

Figure 9. MCS-85® System (Using Standard Memories)

2-16

Vee

Vee

Vee

SOS5AH/SOS5AH-2/S0S5AH-1

As in the 8080, the READY line is used to extend the
read and write pulse lengths so that the 8085AH can
be used with slow memory. HOLD causes the CPU to
relinquish the bus when it is through with it by float­
ing the Address and Data Buses.

SYSTEM INTERFACE

The 8085AH family includes memory components,
which are directly compatible to the 8085AH CPU. For
example, a system consisting of the three chips,
8085AH, 8156H, and 8755A will have the following
features:

• 2K Bytes EPROM
• 256 Bytes RAM
• 1 Timer/Counter
• 4 8-bit I/O Ports
• 1 6-bit 1/0 Port
• 4 Interrupt Levels
• Serial In/Serial Out Ports

This minimum system, using the standard I/O tech­
nique is as shown in Figure 7.

In addition to standard I/O, the memory mapped I/O
offers an efficient I/O addressing technique. With
this technique, an area of memory address space is
assigned for I/O address, thereby, using the memory
address for I/O manipulation. Figure 8 shows the
system configuration of Memory Mapped I/O using
8085AH.

The 8085AH CPU can also interface with the standard
memory that does not have the multiplexed address/
data bus. It will require a simple 8-bit latch as shown in
Figure 9.

2-17

rD~
Vss Vee

! ! I
- TRAP

X, X, RESET IN

I-HOLD - RSH,S HLDA f-- RSf6,5
8085AH souf-- RST5,5 SID f.--- INTR S'r-- 1NTA RESET S'r-AODR/ OUT

ADDR DATA ALE RD WR 101M ROY elK

J':Ht
v" Vee

~ POR:~

II
WR ~ __ PORT (8)
RD 8156H B

ALE 'O"'~
DATAl C {61

ADOA

IN

I

101M TIMER -
~. l-t-- RESET OUT I"-
~

;----
lOW

RD

ALE
PORT W H- e< A

~~ A8-1D

8755A
DATAl
ADDR

101M PORT

~ ~-+-r- RESET B

- RD' Vcc

U
I r- elK 16R-1

vs! vt }PD LOG
v"

Vcc

'v

"NOTE OPTIONAL CONNECTION

L.... ________ • ___________________________ __

Figure 7. 8085AH Minimum System (Standard I/O
Technique)

SOS5AH/SOS5AH-2is085AH-1

BASIC SYSTEM TIMING

The 8085AH has a multiplexed Data Bus. ALE is used
as a strobe to sample the lower 8-bits of address on
the Data Bus. Figure 10 shows an instruction fetch,
memory read and I/O write cycle (as would occur
during processing of the OUT instruction). Note that
during the I/O write and read cycle that the I/O port
address is copied on both the upper and lower half
of the address.

There are seven possible types of machine cycles.
Which of these seven takes place is defined by the
status of the three status lines (lOlf\i1, S1, So) and the
three control signals (RD, WR, and INTA). (See Table
3.) The status lines can be used as advanced con­
trols (for device selection, for example), since they
become active at the T1 state, at the outset of each
machine cycle. Control lines RD and WR become
active later, at the time when the transfer of data is to
take place, so are used as command lines.

A machine cycle normally consists of three T states,
with the exception of OPCODE FETCH, which nor­
mally has either four or six T states (unless WAIT or
HOLD states are forced by the receipt of READY or
HOLD inputs). Any T state must be one of ten'
possible states, shown in Table 4.

I T,

M,

elK

Ag -A'5 PCH (HIGH ORDER ADDRESS)

ADO_7

ALE

AD

WR

l_ 101M

STATUS S1S0 (FETCH)

Table 3. 8085AH Machine Cycle Chart

MACHINE CYCLE

~l
CONTROL

--'-0 1 1

RD WR
--------~------------

QPCODE FETCH (OF) 0 1
MEMORY READ (MR) o 1 0 0 1
MEMORY WRITE (MW) o 0 1 1 0
I/O READ (lOR) 1 1 0 0 1
I/O WRITE {lOW) 1 0 1 1 0
ACKNOWLEDGE
OF INTR (I~JA) 1 1 1 1 1
BUS IDLE (131): DAD 0 1 0 1 1

ACK. OF

L RST,TRAP 1 1 1 1 1
HALT TS 0 0 TS TS

Table 4. 8085AH Machine State Chart

Machine 1----,-,

,
I lOt

'TRESET! X TS

II T HALT i 0 i TS TS TS TS

THOlD ~~._T_S~_T_S __ T_S_~_l_·S __

0'" Logic "0"
1 '" Logic "1"

rs '" High Impedance
x '" Unspecified

* ALE not generated during 2nd and 3rd machine cycies of Ot\D Instruction,

t IO!M -"- 1 during T 4-TS of INA machine cycle.

"',

~ T2 T3 : T ,

I

(PC + llH 10 PORT

10 (READI Q1WRITF 11

Figure 10. 8085AH Basic System Timing

2-18

INTA

1
1
1

1

1

0
1

1

1

8085AH/8085AH-218085AH-1

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias O'C to 70°C
Storage Temperature .. ,.. ., .. -65'C to +150'C
Voltage on Any Pin

With Respect to Ground ,.,. -0,5V to + 7V
Power Dissipation 1,.5 Watt

D.C. CHARACTERISTICS

"NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

8085AH,8085AH-2: (TA = O'C to 70'C, VCC = 5V ±10%, Vss =OV; unless otherwise specified)"
8085AH-1: (TA = O°C to 70'C, Vcc = 5V ±5%, Vss = OV; unless otherwise specified)

I

Symbol Parameter Min. Max.

VIL Input low Voltage -0.5 +0.8

VIH j- Input High Voltage 2.0 VCC +0.5

VOL I Output low Voltage 0.45

VOH I Output High Voltage 2.4 I

I 135
!

Icc I Power Supply Current
200

-~-----t Input leakage ±10

ILO Output leakage ±10
-"

VILR Input low level, RESET -0.5 +0.8

VIHR Input High level, RESET 2.4 VCC +0.5

VHY Hysteresis, RESET 0.15

A.C. CHARACTERISTICS
8085AH,8085AH-2: (TA = O'C to 70'C, Vcc = 5V ±10%, Vss = OV)"
8085AH-1: (TA = DoC to 70'C, Vec = 5V ±5%, Vss = OV)

8085AH[2]

Symbol Parameter
(Final)

Min. Max.

tCYC elK Cycle Period 320 2000

tl ClK low Time (Standard ClK loading) 80

12 ClK High Time (Standard ClK loading) 120

tr , tf ClK Rise and Fall Time 30

tXKR Xl Rising to ClK Rising 20 120

tXKF Xl Rising to ClK Falling 20 150

tAC AS-15 Valid to leading Edge of Control[l] 270

tACL AO-7 Valid to leading Edge of Control 240

tAD AO-15 Valid to Valid Data In 575

tAFR
Address Float After leading Edge of

0
READ (INTA)

tAL Aa-15 Valid Before Trailing Edge of ALE [1] 115

Units

V

V

V

V

mA

rnA

!LA

!LA

V
1

V
I

V

8085AH-2[2]
(Final)

Min. Max.

200 2000

40

70

30

20 100

20 110

115

115

350

0

i 50l--

"Note: For Extended Temperature EXPRESS use M8085AH Electricals Parameters.

2-19

Test Conditions

IOL = 2mA

IOH = - 4OO!LA

8085AH,8085AH-2

8085AH-1 (Preliminary)

0"" VIN "" VCC

0.45V "" VOUT "" VCC

--

8085AH-1

Un'" 1

(Preliminary)

Min. Max.

167 2000 ns

20 ns

50 ns

30 ns

20 100 ns

20 110 ns

70 ns

60 ns

225 ns

0 ns

I I
r---"

25 ns

8085AH/8085AH-2/8085AH-1

A.C. CHARACTERISTICS (Continued)

8085AH[2J 8085AH-2[2J 8085AH-1

Symbol Parameter (Final) (Final) (Preliminary)
Units

Min. Max. Min. Max. Min. Max.

tAll Ao-7 Valid Before Trailing Edge of ALE 90 50 25 ns

tARY READY Valid from Address Valid 220 100 40 ns

tCA Address (As-1s) Valid After Control 120 60 30 ns

t(,c
Width of Control Low (RD, WR, INTA)

400 230 150 ns
Edge of ALE

tCl
Trailing Edge of Control to Leading Edge

50 25 0 ns
of ALE

tow Data Valid to Trailing Edge of WRITE 420 230 140 ns

tHABE HLDA to Bus Enable 210 150 150 ns

tHABF Bus Float After HLDA 210 150 150 ns

tHACK HLDA Valid to Trailing Edge of CLK 110 40 0 ns

tHOH HOLD Hold Time 0 0 0 ns

tHOS HOLD Setup Time to Trailing Edge of CLK 170 120 120 ns

tlNH INTR Hold Time 0 0 0 ns

tiNS
INTR, RST, and TRAP Setup Time to 160 150 150 ns
Falling Edge of CLK

tlA Address Hold Time After ALE 100 50 20 ns

tlC
Trailing Edge of ALE to Leading Edge

130 60 25 ns
of Control

tlCK ALE low During CLK High 100 50 15 ns

tLOR ALE to Valid Data During Read 460 270 175 ns

tLOW ALE to Valid Data During Write 200 140 110 ns

tll ALE Width 140 80 50 ns

tlRY ALE to READY Stable 110 30 10 ns

tRAE
Trailing Edge of READ to Re-Enabling

150 90 50 ns
of Address

tRO READ (or INTA) to Valid Data 300 150 75 ns

tRV
Control Trailing Edge to leading Edge

400 220 160 ns
of Next Control

tROH Data Hold Time After m:A15 iiiITA 0 0 0 ns

tRYH READY Hold Time 0 0 5 ns

tAYS
READY Setup Time to Leading Edge

110 100 100 ns
of ClK

two Data Valid After Trailing Edge of WRITE 100 60 30 ns

tWOL lEADING Edge of WRITE to Data Valid 40 20 30 ns

2-20

808SAH/808SAH-2J808SAH-1

NOTES:
1. Aa-A15 address Specs apply IO/M, SO' and Sl except Ae-A15

are undefined during T4 - T6 of OF cycle whereas IO/M, SO, and
Sl are stable.

3. For all output timing where CL of 150 pF use the following
correction factors:

25 pF '" CL < 150 pF: -0.10 ns/pF
150 pF < CL '" 300 pF: +0.30 ns/pF

4. Output timings are measured with purely capacitive load. 2. Test Conditions: teye = 320 ns (8085AH)/200 ns (8085AH-2);/
167 ns (8085AH-l); CL = 150 pF. 5. To calculate timing specifications at other values of teye use

Table 5.

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/oUTPUT

"J x= 2.0 2.0 > TEST POINTS <
0.8 O.B

0.45

A,C. TESTING. INPUTS ARC DRIVEN AT 2 4V FOR A LOGIC l' AND0.45V FOR
A LOGIC 0 'TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC "1
AND Q.BV FOR A lOGIC 0

A.C. TESTING LOAD CIRCUIT

1-
DEVICE
UNDER

TEST

CL = 150 pF

Ie, c 150pF

CL INCLUDES JIG CAPACITANCE

Table 5. Bus Timing Specification as a TCYC Dependent

Symbol 8085AH 8085AH-2 8085AH-1
--

tAL (1/2) T - 45 (1/2) T - 50 (1/2) T - 58 Minimum

tlA (1/2) T - 60 (1/2) T - 50 (1/2) T - 63 Minimum

tll (1/2) T - 20 (1/2) T - 20 (1/2) T - 33 Minimum

tlCK (1/2) T - 60 (1/2) T - 50 (1/2) T - 68 Minimum

tlC (1/2) T- 30 (1/2) T - 40 (1/2) T - 58 Minimum

tAO (5/2 + N) T - 225 (5/2 + N) T - 150 (5/2 + N)T -192 Maximum

tRO (3/2 + N)T - 180 (3/2 + N)T -150 (3/2 + N)T -175 Maximum

tRAE (1/2) T- 10 (1/2)T -10 (1/2) T - 33 Minimum

tCA (1/2) T - 40 (1/2) T - 40 (1/2) T - 53 Minimum

tow (3/2 + N) T - 60 (3/2 + N) T - 70 (3/2 + N) T - 110 Minimum

two (1/2) T - 60 (1/2) T - 40 (1/2) T - 53 Minimum

tcc (3/2 + N) T - 80 (3/2 + N) T - 70 (3/2 + N)T -100 Minimum
I

tCl (1/2)T - 110 (1/2) T - 75 (1/2) T - 83 Minimum

tARY (3/2) T - 260 (3/2) T - 200 (3/2)T - 210 Maximum

tHACK (1/2) T - 50 (1/2) T - 60 (1/2) T - 83 Minimum

tHABF (1/2) T + 50 (1/2) T + 50 (1/2) T + 67 Maximum

tHABE (1/2) T + 50 (1/2) T + 50 (1/2) T + 67 Maximum

tAC (2/2) T - 50 (2/2) T - 85 (2/2)T - 97 Minimum
--

t1 (1/2) T - 80 (1/2) T - 60 (1/2) T - 63 Minimum

t2 (1/2) T - 40 (1/2) T - 30 (1/2) T - 33 Minimum

tRY (3/2) T - 80 (3/2) T - 80 (3/2) T - 90 Minimum

tLOR (4/2) T - 180 (4/2) T- 130 (4/2) T - 159 Maximum
~-

NOTE: N is equal to the total WAIT states. T = teye.

2-21

I

8085AH/8085AH-218085AH-1

WAVEFORMS (Continued)

READ OPERATION WITH WAIT CYCLE (TYPICAL) - SAME READY TIMING APPLIES
TO WRITE

T,

t\s-A15

-£~--+---------+---------~I~----------+-~~----

ADO.Ao-,~4-__ +==:.....-r--1<{L _____ -\II--_{fLfL4-"'::::=:2-H'

AD/lNTA

READY

NOTE 1

INTERRUPT AND HOLD

--- BUS FLOATING" --------1
ALE

RD-----------r--........ ~---------....,

HOLD

\·~t:H I
HLDA t

-----------'H-.-CK tHABF
*IO/M" IS ALSO FLOATING DURING THIS TIME,

2-22

8085AH/8085AH-218085AH-1

Table 6. Instruction Set Summary

1 Instruction Code Operations
f-!",nemonlc 07 06 Os 04 03 02 0, Do Description

Instruction Code Operations
Mnemonic 07 06 0 5 04 03 O2 0 , Do Description

MOVE, LOAD, AND STORE CZ 1 1 0 a 1 1 a a Call on zero

MOVr1 r2 0 1 0 0 0 S S S Move register to register
MOVM.r 0 1 1 1 0 S S S Move register to memory
MOVr.M 0 1 D D D 1 1 0 Move memory to register
MVI r 0 0 0 D 0 1 1 0 Move immediate register
MVI M 0 0 1 1 0 1 1 0 Move immediate memory
LXI B 0 0 0 0 0 0 0 1 Load immediate register

Pair B & C
LXI 0 0 0 0 1 0 0 0 1 Load immediate register

Pair 0 & E
LXI H 0 0 1 0 0 0 0 1 Load immediate register

Pair H & L
STAX B 0 0 0 0 0 0 1 0 Store A indirect
STAX D 0 0 0 1 0 0 1 0 Store A indirect
LDAX B 0 0 0 0 1 0 1 0 Load A indirect
LDAX D 0 0 0 1 1 0 1 0 Load A i nd i reet

CNZ 1 1 a a a 1 a a CaB on no zero
CP 1 1 1 1 a 1 0 a Call on positive
CM 1 1 1 1 1 1 a a Calion minus
CPE 1 1 1 0 1 1 a a Calion parity even
CPO 1 1 1 0 a 1 0 0 Call on pari tv odd
RETURN
RET 1 1 a a 1 a a 1 Return
RC 1 1 a 1 1 a a a Return on carry
RNC 1 1 a 1 0 a a a Return on no carry
RZ 1 1 a a 1 a 0 a Return on zero
RNZ 1 1 0 0 a a 0 a Return on no zero
RP 1 1 1 1 0 a a a Return on positive
RM 1 1 1 1 1 0 a 0 Return on minus
RPE 1 1 1 0 1 a a a Return on parity even
RPO 1 1 1 a a a a 0 Return on parity odd

STA 0 0 1 1 0 0 1 0 Store A direct
LDA 0 0 1 1 1 0 1 0 Load A direct

RESTART
RST 1 1 A A A 1 1 1 Restart

SHLD a 0 1 0 a a 1 0 Store H & L direct
LHLD a a 1 a 1 a 1 a Load H & L direct
XCHG 1 1 1 a 1 a 1 1 Exchange D & E. H & L

Registers
STACK OPS
PUSH B 1 1 0 a a 1 0 1 Push register Pair B &

C on stack

INPUT/OUTPUT
IN I ~ 1 a 1 1 a 1 1 Input
OUT 1 0 1 a a 1 1 Output

INCREMENT AND DECREMENT
INR r a a 0 0 D 1 0 a Increment register
OCR r a a D D D 1 0 1 Decrement register
INR M a a 1 1 a 1 a a Increment memory

PUSH D 1 1 0 1 0 1 a 1 Push register Pair 0 &
E on stack

DCR M a 0 1 1 a 1 a 1 Decrement memory
INX B 0 a a a a a 1 1 Increment 8 & C

PUSH H 1 1 1 a a 1 a 1 Push register Pair H &
L on stack

registers
INX D a 0 a 1 0 a 1 1 Increment D & E

PUSH PSW 1 1 1 1 a 1 a 1 Push A and Flags
on stack

POP B 1 1 0 a a a 0 1 Pop register Pair B &
C off stack

registers
INX H I: a 1 a 0 a 1 1 Increment H & l

registers
DCX B a 0 a 1 a 1 1 Decrement B & C

POP 0 1 1 a 1 a a a 1 Pop register Pair 0 &
E off stack

DCXD a a a 1 1 a 1 1 Decrement 0 & E
DCX H C a 1 a 1 0 1 1 Decrement H & L

POP H 1 1 1 a a a a 1 Pop register Pair H &
L off stack

ADD
ADD r 1 a a a a S S S Add register to A

POP PSW 1 1 1 1 a a a 1 Pop A and Flags
off stack

ADCr 1 a a a 1 S S S Add register to A
with carry

XTHL 1 1 1 a 0 a 1 1 Exchange top of
stack. H & L

SPHL 1 1 1 1 1 a a 1 H & L to stack pOinter
LXI SP a a 1 1 a 0 a 1 Load immediate stack

pointer
INX SP 0 0 1 1 a a 1 1 Increment stack pointer
DCX SP a a 1 1 1 a 1 1 Decrement stack

pointer
JUMP
JMP 1 1 a a 0 a 1 1 Jump unconditional
JC 1 1 a 1 1 a 1 a Jump on carry

ADDM 1 a C a a 1 1 a Add memory to A
ADC,M 1 a 0 0 1 1 1 a Add memory to A

with carry
ADI 1 1 a a a 1 1 0 Add immediate to A
ACI 1 1 0 a 1 1 1 a Add immediate to A

with carry
DAD B a a a a 1 a a 1 AddB&CtoH&L
DAD D a a a 1 1 a a 1 AddD&EtoH&L
DAD H a 0 1 0 1 a a 1 AddH&LtoH&L
DADSP 0 a 1 1 1 a a 1 Add stack pointer to

H&L

JNC 1 1 0 1 a 0 1 a Jump on no carry
JZ 1 1 a a 1 a 1 a Jump on zero
JNZ 1 1 a a a a 1 a Jump on no zero
JP 1 1 1 1 a 0 1 a Jump on positive
JM 1 1 1 1 1 a 1 a Jump on minus
JPE 1 1 1 a 1 a 1 a Jump on parity even
JPO 1 1 1 0 a a 1 a Jump on parity odd
PCHL 1 1 1 a 1 a a 1 H & l to program

counter

SUBTRACT
SUB r 1 0 a 1 a S S S Subtract register

from A
SBB r 1 a a 1 1 S S S Subtract register from

A with borrow
SUB M 1 a a 1 a 1 1 a Subtract memory

from A
SBB M 1 a a 1 1 1 1 0 Subtract memory from

A with borrow

CALL SUI 1 1 a 1 a 1 1 0 Subtract immediate

CALL 1 1 a a 1 1 a 1 Call unconditional from A

CC 1 1 a 1 1 1 0 a Callan carry SBI 1 1 a 1 1 1 1 a Subtract immediate
CNC 1 1 a 1 0 1 a a Call on no carry from A with borrow

2-23

8085AH/8085AH-218085AH-1

Table 6. Instruction Set Summary (Continued)

Instruction Code Operations Instruction-Code Operations
Mnemonic 0-, 06 Os 04 0 3 02 0, Do. Description Mnemonic 07 06 Os 04 03 02 0, Do Oescrlplion

LOGICAL SPECIALS
ANA r 1 0 1 0 0 S S S And register with A CMA 0 0 1 0 1 1 1 1 Complement
XRA r 1 0 1 0 1 S S S Exclusive OR register A

with A STC 0 0 1 1 0 1 1 1 Set carry
ORA r 1 0 1 1 0 S S S OR register with A CMC 0 0 1 1 1 1 1 1 Complement
CMPr 1 0 1 1 1 S S S Com'pare register with A carry
ANAM , 0 1 0 0 1 1 0 And memory with A DAA '0 0 1 0 0 1 1 1 Decimal adjust A
XRAM 1 0 1 0 1 1 1 0 Exclusive OR memory CONTROL

with A EI 1 1 1 1 1 0 1 1 Enable Interrupts
ORAM 1 0 1 1 0 1 1 0 OR memory with A DI 1 1 1 1 0 0 1 1 Disable Interrupt
CMPM 1 0 1 1 1 1 1 0 Compare NOP 0 0 0 0 0 0 0 0 No-operation

memory with A HLT 0 1 1 1 0 1 1 0 Halt
ANI 1 1 1 0 0 1 1 0 And immediate with A
XRI 1 1 1 0 1 1 1 0 Exclusive OR immediate

with A
ORI 1 1 1 1 0 1 1 0 OR immediate with A

NEW B085AH !'NSTRUCTIONS
RIM 0 0 1 0 O· 0 0 0 Read Interrupt Mask
SIM 0 0 1 1 0 0 0 0 Set Interrupt Mask

CPI 1 1 1 1 1 1 1 0 Compare immediate
with A

ROTATE
RLC 0 0 0 0 0 1 1 1 Rotate A left

RRC 0 0 0 0 1 1 1 1 Rotate A right
RAL 0 0 0 1 0 1 1 1 Rotate A left through

carry
RAR 0 0 0 1 1 1 1 1 Rotate A right through

carry

NOTES:
1. DDS or SSS: B 000, COOl, DOlO, EO", H 100, L 101, Memory 110, A l1L
2. Two possible cycle times (6/12) indicate instruction cycles dependent on condition flags.

'All mnemonics copyrighted ©Intel Corporation 1976,

2-24

WAVEFORMS

CLOCK

Xl INPUT

elK
OUTPUT

READ

WRITE

HOLD

elK

HOLD

HlDA

I

ALE

RD/INTA

eLK

)

)

i-
ALE J

WR

T,

8085AH/8085AH·2/8085AH·1

l~t1-~ I
~~~-- tCYC ---~~---

--- tXKF ~

T, T, T,

\'---'

I _---tee ~I _____ ~
~_IAC--_l

T, T,

ADORESS

r- -- tLDW-_

ADDRESS }

- 'ee -~~- '" ~f.-'WDe
_tAC_III_

~t"~~
--tAC~-~

T3

\ /

~DW

T, ,---,

X
i'eA-1

DATA OUT X
I-two-I

I
tee ---_ t I t Cl ----"

THOLO T HOLD

/ \ /

T,

\

t 1\
H-=HDH ~ I

t HDS rtHACK-

.1;..- t HABF - ~ -1 I
I~- tHABf

BUS (ADDRESS, CONTROLS) ~I ~
2-25

T,

•
•
•
•
•
•

8155H/8156H/8155H-2/8156H-2
2048-BIT STATIC HMOS RAM
WITH I/O PORTS AND TIMER

Single +5V Power Supply with 10% • 1 Programmable 6-Bit I/O Port
Voltage Margins • Programmable 14-Bit Binary Counter!
30% Lower Power Consumption than Timer
the 8155 and 8156 • Compatible with 8085AH and 8088 CPU
256 Word x 8 Bits
Completely Static Operation • Multiplexed Address and Data Bus

Internal Address Latch • Available in EXPRESS
2 Programmable 8-Bit I/O Ports - Standard Temperature Range

- Extended Temperature Range

The Intel® 8l55H and 8l56H are RAM and 1/0 chips implemented in N-Channel, depletion load, silicon gate technology
(HMOS), to be used in the 8085AH and 8088 microprocessor systems. The RAM portion is designed with 2048 static cells
organized as 256 x 8. They have a maximum access time of 400 ns to permit use with no wait states in 8085AH CPU.The
8155H-2 and 8156H-2 have maximum access times of 330 ns for use with the 8085AH-2 and the 5 MHz 8088 CPU.

The I/O portion consists of three general purpose I/O ports. One of the three ports can be programmed to be status
pins, thus allowing the other two ports to operate in handshake mode.

A 14-bit programmable counter/timer is also included on chip to provide either a square wave or terminal count pulse
for the CPU system depending on timer mode.

PC, Vee

PC, PC,

IOiM

G ADo 7 256 X 8

TIMER IN PC,

RESET PCo
PCs PB,

TIMER OUT PB 6
ST ATIC

RAM

G
*

ALL

101M PBs

CE OR CE* PB,

RD PB,

WR PB,

RD

WR

G RESET TIMER

ALE PB,

- ADo PBo

AD, PA,

AD, PAG

AD, PAs

TIMERCLK~ ~veel'5VI
TlMEROIT'f- Vss (OV)

AD, PA,

ADs PA 3

AD, PA,

AD, PA,

*8155H/8155H~2 = EE, 8156H/8156H~2 = CE Vss PAo

Figure 1. Block Diagram Figure 2. Pin Configuration

Intel Corporation Assumes No Responsibilty for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses ale Implied.
© INTEL CORPORATION, 1981, 2-26

8155H/8156H/8155H-2/8156H-2

Table 1. Pin Description ------- --_._---
Name and Funclion

the 8085AH to initialize the system (connect to 8085AH RESET OUT). Input
1--R-s-':-Sm-E-~o-I---t-T-y,-,p-e- Gset::~I~ep~ovid::Y

chip and initializes the three 1/0 ports to input mode. The width of RESET : high on thIs line resets the
I pulse should typically be two 8085AH clock cycle times.

-AD~_;--' --iio 'I--~~:~::~:~~~S~~i:t~~:~r
address can be either fort

---~---

dresslData lines that interface with the CPU lower 8-bit Address/Data Bus.
d into the address latch inside the 8155H/56H on the falling edge of ALE. The
he memory section orthe 110 section depending on the 101M input. The 8-bit
the chip or read from the chip, depending on the WR or RD input signal.

--_. -----_.
5H, this pin is BE and is ACTIVE LOW. On the 8t56H, this pin is CE and is

Ri5 r Read Conlrol: Input lOW 0

IS low the RAM content WII
n thiS line With the Chip Enabie active enables and ADO_7 buffers. If 101M pin
I be read out to the AD bus. OtherWise the content of the selected I/O port or

~or C_E-t-r-1i' -E;?jf~;~ w~~t::ei:~:

___ 11_com~nd,s~tus re~~~
WR I Wrile Conlrol: Input low 0

--ALE- --=1--1- h:~::~sb;~~c~~~~~e ~

will be read to the AD bus.
-~-----.. -
n thiS line With the Chip Enable active causes the data on the AddresslData
M or I/O por~and command/status register, depending on 101M.

his control signal latches both the address on the ADo_7 lines and the state
of the Chip Enable and 10 1M Into the chip at the falling edge of ALE

--10;1;:,----- I' i7oM;.mory: Selects Olem

-"'0-"" r ,,0 I ",", n'ew" "" ",,'''10' """OW, 0 ''"' ,"eI~"""""",, "wle"" " """,,,"m,"o
the command register.

PBO_7(8) 1/0, Pori B: These 8 pins are general purpose 1(0 pins. The Inlout direction is selected by programming
I the command register

r--PC~-:;(6) I;()+-poric-:-These 6 pin~-~~;;-functlon a~' either input port, output port, or as control signals for PA and PB.

I Programming IS done through the command register. When PCO-5 are used as control signals, they
will prOVide the follow!Og'

ory if low and 1/0 and commandlstatus registers if high.

I PCo - A INTR (Port A Interrupt)

I
PC, - ABF (Port A Buffer Ful!)
PC2 -- A STB (Port A Strobe)

I PC3 - B INTR (Port B Interrupt)
I I PC4 - B BF (Port B Buffer Full)

TlME-RlN-1-.. -' ~~;;,:;;",::i,: ~:'::'(.'""'''
~.E.R (SU-=-+ __ ~ Timer Oulput: This output can be either a square wave or a pulse, depending on the timer_m_o_d_e_. ___ -1

[-~; t----~~~~~-; ~~~0~_~~fg~c:~ ___ -_-_-_~~~~~~~~~~~~--_-_-._.-. ---------------1

FUNCTIONAL DESCRIPTION

The 8155H/8156H contains the following:

• 2k Sit Static RAM organized as 256 x 8
• Two 8-bit 1/0 ports; PA & PS and one 6-bit 1/0 port i PC,
• 14-blt timer-counter

The 101M 10lMemory Select pin selects either the five

registers ! Command. Status, PAo-? PSO-7, PCo-·s or
the memory' RAM portion.

The 8-bit address on the Address/Data lines, Chip Enable
input CE or CE, and 10iM are all latched on-ch,p at the
falling edge of ALE.

I
I
I
I
I
I
I
I
I
I
I
L ____ _

I
I
I
I
I
I
I
I
I
I
I _________ J

Figure 3. 8155H/8156H Internal Registers

2-27

8155H/8156H/8155H-2/8156H-2

CE(81S5H) \ V '\
OR

CE(B156H) / 1\ /

101M \ V \

X ADDRESS
J X DATA VALID
\

Al E

Ali OR W R

NOTE: FOR DETAILED TIMING INFORMATION, SEE FIGURE 12 AND A.C. CHARACTERISTICS.

Figure 4. 8155H/8156H On-Board Memory Read/Write Cycle

PROGRAMMING OF THE
COMMAND REGISTER
The command register consists of eight latches. Four
bits 10-31 define the mode of the ports, two bits 14-51
enable or disable the interrupt from port C when it acts
as control port, and the last two bits 16-71 are forthe timer.

The command register contents can be altered at any
time by using the I/O address XXXXXOOO during a WRITE
operation with the Chip Enable active and 101M = 1. The
meaning of each bit of the command byte is defined in
Figure 5, The contents of the command register may
never be read.

READING THE STATUS REGISTER
The status register consists of seven latches, one for each
bit; six 10-51 for the status of the ports and one 16, for the
status of the ti mer.

The status of the timer and the I/O section can be polled
by reading the Status Register (Address XXXXXOOO).
Status word format is shown in Figure 6. Note that you
may never write to the status register since the command
register shares the same I/O address and the command
register is selected when a write to that address is issued.

2-28

5 3 0

ITM' TMd IEBI tEAl pc,l PC11 PB I PA I
"-. __ 1

I
IL_ll l~ DEFINES PA"7 l 0 - INPUT

L~ DEFINES PBa_7 J 1 '" OUTPUT

I OO"'ALTl
I '1'" ALT 2

---~---.... DEFINES PCO_5 1(. 01 '" ALT 3

_ 10=ALT4

. ___ ~ ENABLE PORT A -l
INTERRUPT ~ 1 " ENABLE

~~ _______________ ~~EBRL:U~~RT B J 0" DISA~lE

, 00 = NOP - DO NOT AFFECT COUNTER I OPERATION

I
01" STOP·- NOP IF TIMER HAS NOT STARTED;

STOP COUNTING IF THE TIMER IS
RUNNING

10'" STOP AFTER TC - STOP IMMEDIATELY
L-....- - -i AFTER PA ESENT TC IS REACHED {NOP

- TIMER COMMAND: IF TIMER HAS NOT STARTED)

l! 11 -= START ~- LOAD MODE 'AND CNT LENGTH
AND START IMMEDIATELY AFTER
LOAD!NG (IF TIMER IS NOT PRESENTLY
RUNNING). IF TIMER IS RUNNING, START
THE NEW MODE AND CNT LENGTH
IMMEDIATELY AFTER PRESENT Te
IS REACHED.

Figure 5. Command Register Bit Assignment

8155H/8156H/8155H-2/8156H-2

----- PORT A INTERRUPT REQUEST

PORT A BUFFER FULL/EMPTY
(INPUT/OUTPUT)

PORT A INTERRUPT ENABLE

PORT B INTERRUPT REQUEST

PORT B BUFFER FULl/EMPTY
IINPUT/OUTPUl)

PORT H INTERRUPT ENABLED

TIMER INTERRUPT (THIS BIT
IS LATCHED HIGH WHEN
TERMINAL COUNT IS
REACHED, AND IS RESET TO
lOW UPON READING OF THE
C/S REGISTER AND BY
HARDWARE RESET).

Figure 6. Status Register Bit Assignment

INPUT/OUTPUT SECTION
The I/O section of the 8155H/8156H consists of five regis­
ters: (See Figure 7.)

• CommandlStatus Register (CIS) - Both registers are
assigned the address XXXXXOOO. The CIS address
serves the dual purpose.

When the CIS registers are selected during WRITE
operation, a command is written into the command
register. The contents of this register are not accessible
through !rle pins.

When the CIS (XXXXXOOO: is selected during a READ
operation, the status information of the 1/0 ports and
the timer becomes available on the ADo-? lines.

• PA Register - This register can be programmed to be
either input or output ports depending on the status of
the contents of the CIS Register. Also depending on
the command, this port can operate in either the basic
mode or the strobed mode (See timing diagram,. The
1/0 pins assigned in relation to this register are PAo-?
The address of this register is XXXXX001.

• PB Register - This register functions the same as PA
Register. The I/O pins assigned are P80-7. The address
of this register is XXXXX010.

• PC Register - This register has the address XXXXX011
and contains only 6 bits. The 6 bits can be program­
med to be either input ports, output ports or as control
signals for PA and PB by properly programming the
AD2 and AD3 bits of the CIS register.

When PCO-5 is used as a control port, 3 bits are
assigned for Port A and 3 for Port B. The first bit is an

2-29

interrupt that the 8155H sends out. The second is an
output signal indicating whether the buffer is full or
empty, and the third is an input pin to accept a strobe
for the strobed input mode. (See Table 2.)

When the 'c' port is programmed to either AL T3 or AL T4,
the control signals for PA and PB are initialized as follows:

CONTROL INPUT MODE OUTPUT MODE

BF Low Low

INTR Low High

STB Input Control Input Control

~- ----... ~,- ~
I/O ADDRESSi-

SELECTION

A71 A6rs A4 A3 A2 A1 AO -;II x x x x 0 0 0 Inten,al Comrnand Status Rcqlster I

X X X X X 0 a 1 Gp.neral Purpoc:e I 0 Port A I

I
X ill X X X 0 • 0 General Purpose I 0 Port B I
~ ~ ~ ~ ; 0 :~2_~r~e~:nb~~:I;~IP~:~ ~'o~~tr Control

Lx X X X X High 6 b ts of Tllner Count and 2 bits I
_1--'----"-__ ~..l0l T,me, Mode _________ -'.

X. Don"! Care

t: IIOAddress must be qualified by CE = 1 (8156H) or a = 0 (8155H) and 101M = 1 in

order to select the appropriate register.

Figure 7. 110 Port and Timer Addressing Scheme

Figure 8 shows how I/O PORTS A and B are structured
within the 8155H and 8156H:

8155H/8156H
ONE BIT OF PORT A OR P\"t!qT B

NOTES:

(2) SIMPLE INPUT MULTIPLEXER
(1) OUTPUT MODE }

(31 STROBED INPUT CONTROL

STB

(4) '" 1 FOR OUTPUT MODE
'" 0 FOR INPUT MODE

READ PORT'" (lO/M"'1). (RD",O). (CE ACTIVE). (PORT ADDRESS SELECTED)
WRITE PORT'" (lO/M"'1). (VVR"'O). (CE ACTIVE). (PORT ADDRESS SELECTED)

Figure 8. 8155HI8156H Port Functions

8155H/8156H/8155H-218156H-2

Table 2. Port Control Assignment

Pin ALT 1 ALT 2 ALT 3 ALT 4

PCO Input Port Output Port A INTR (Port A Interrupt) A INTR (Port A Interrupt)
PCl Input Port Output Port A BF (Port A Buffer Full) A BF (Port A Buffer Full)
PC2 Input Port Output Port A STB (Port A Strobe) A STB (Port A Strobe)
PC3 Input Port Output Port
PC4 Input Port Output Port
PC5 Input Port Output Port

Note in the diagram that when the 1/0 ports are programmed
to be output ports, the contents of the output ports can still
be read by a READ operation when appropriately addressed.

The outputs of the 8155H/8156H are "glitch-free" meaning
that you can write a "1" to a bit position that was previsouly
"1" and the level at the output pin will not change.

Note also that the output latch is cleared when the port
enters the input mode. The output latch cannot be loaded by
writing to the port if the port is in the input mode. The result
is that each time a port mode is changed from input to output,
the output pins witll go low. When the 8155H/56H is RESET,
the output latches are all cleared and all 3 ports enter the
input mode.

When inthe ALT 1 or ALT 2 modes, the bits of PORT Care
structured like the diagram above in the simple input or
output mode, respectively.

Reading from an input port with nothing connected to the
pins will provide unpredictable results.

Figure 9 shows how the 8155H/8156H I/O ports might be
configured in a typical MCS-85 system.

TO 8085AH AST INPUT

PORT A OUTPUT PORT A 1
A INTR (SIGNALS DATA RECEIVED)

··--1""""""M""~"" } A STB (ACKNOWL DATA RECEIVED) TO/FROM

PORT C If! B STB (LOADS PORT B LATCH) PERIPHERAL

B SF (SIGNALS BUFFER IS FUll) INTERFACE

B INTR (SIGNALS BUFFER I
REAOY FOR READING) 1

PORTS INPUT TO INPUT PORT (OPTIONAL)

TO B085AH RST INPUT

Figure 9. Example: Command Register = 00111001

Output Port B INTR (Port B Interrupt)
Output Port B BF (Port B Buffer Full I
Output Port B STB (Port B Strobe) .

TIMER SECTION

The time is a 14-bit down-counter that counts the TIMER IN
pulses and provides either a square wave or pulse when
terminal count (TC) is reached.

The timer has the I/O address XXXXX100 for the low order
byte of the register and the 1/0 address XXXXX101 for the
high order byte of the register. (See Figure 7).

To program the timer, the COUNT LENGTH REG is loaded
first, one byte at a time, by selecting the timer addresses.
Bits 0-13 of the high order count register will specify the
length of the next count and bits 14-15 of the high order
register will specify the timer output mode (see Figure 10).
The value loaded into the count length register can have any
value from 2H through 3FFFH in Bits 0-13.

5 4 2 1 0

(~

TIMER'MODE MSB OF C~T LENGTH

6 5 4 3 o

LSB OF C~T LENGTH

Figure 10. Timer Format

There are four modes to choose from: M2 and Ml define
the timer mode, as shown in Figure 11.

MODE
BITS

M2 M,

o

TIMER OUT WAVEFORMS:

START TERMINAL (TERMINAL)
COUNT COUNT COUNT

I I I
1. SINGLE

SQUARE WAVE

2. CONTINUOUS
SQUARE WAVE

3. SINGLE
PULSE ON
TERMINAL COUNT

4. CONTINUOUS
PULSES

~-----------

~----------

u
Figure 11. Timer Modes

2-30

8155H/8156H/8155H-2/8156H-2

Bits 6-7 ITM2 and TM11 of command register contents
are used to start and stop the counter. There are four
commands to choose from:

TM2 TM1

o 0 Nap - Do not affect counter operation.

o STOP - Nap if timer has not started;
stop counting if the timer is running.

o STOP AFTER TC - Stop immediately
after present TC is reached (Nap if timer
has not started)

START - Load mode and CNT length
and start immediately after loading lif
timer is not presently running!. If timer
is running, start the new mode and CNT
length immediately after present TC is
reached.

Note that while the counter is counting, you may load a
new count and mode into the count length registers.
Before the new count and mode will be used by the
counter, you must issue a START command to the
counter. This applies even though you may only want to
change the count and use the previous mode.

In case of an odd-numbered count, the first half-cycle
of the squarewave output, which is high, is one count
longer than the second (low! half-cycle, as shown in
Figure 12.

I
I

~

~J - · 1--
NOTE [) AND 4 REFER TO THE NUMBER OF CLOCKS IN THAT TIME PERIOD

Figure 12. Asymmetrical Square-Wave Output
Resulting from Count of 9

2-31

The counter in the 8155H is not initialized to any particular
mode or count when hardware RESET occurs, but RESET
does stop the counting. Therefore, counting cannot begin
following RESET until a START command is issued via the
CIS register.

Please note that the timer circuit on the 8155H/8156H chip
is designed to be a square-wave timer, not an event
counter. To achieve this, it counts down by twos twice
in completing one cycle. Thus, its registers do not con­
tain values directly representing the number of TIMER IN
pulses received. You cannot load an initial value of 1 into
the count register and cause the timer to operate, as its
terminal count value is 10 I,binary! or 2 (decimal!. (For
the detection of single pulses, it is suggested that one
of the hardware interrupt pins on the 8085AH be used.)
After the timer has started counting down, the values
residing in the count registers can be used to calculate
the actual number of TIMER IN pulses required to com­
plete the timer cycle if desired. To obtain the remaining
count, perform the following operations in order:

1. Stop the count

2. Read in the 16-bit value from the count length registers

3. Reset the upper two mode bits

4. Reset the carry and rotate right one position all 16 bits
through carry

5. If carry is set, add 1/2 of the full original count (1/2 full
count - 1 if full count is odd!.

Note: If you started with an odd count and you read the
count length register before the third count pulse occurs,
you will not be able to discern whether one or two counts
has occurred. Regardless of this, the 8155H/56H always
counts out the right number of pulses in generating the
TIMER OUT waveforms.

8155H/8156H/8155H-218156H-2

808SA MINIMUM SYSTEM CONFIGURATION

Figure 13a shows a minimum system using three chips,
containing:

• 256 Bytes RAM
• 2K Bytes EPROM
• 38110 Pins
• 1 Interval Timer
• 4 Interrupt Levels

8085 MINIMUM SYSTEM CONFIGURATION

A8-15

/I
ADO·7

~LE
8085AH RO

WR

101M

eLK

RESET OUT

READY

TIMER
RESET IN WARD ALE eE "- 7 101M "-

~
'---+l LATCHES J

Tg~;R _ G ~~ I
I

CONTROL
256 x 8

RAM

8156H ~ I

~~-~~
B B B

r-- r
r--
r--
,--
r--
r--
r--

AB-
7~~

_10/
Ri'lliOW

A10 CE iiii ALE

8755A IEPROM + 1IOl

B B
Figure 13a. 8085AH Minimum System Configuration (Memory Mapped I/O)

2-32

-
Vee

eLK RS ROY

8155H/8156H/8155H-2/8156H-2

8088 FIVE CHIP SYSTEM • 38110 Pins

Figure 13b shows a five chip system containing: • 1 Interval Timer

• 1.25K Bytes RAM • 2 Interrupt levels

• 2K Bytes EPROM

{; t V5S Vee
I I j

~~-
I

~ POR1W 4- -~WR W
AD PORT (8)

8155H-2 B

~. ALE PORT W
V-LL DATAl c (6)

IYiT-r
AODR

.-+---- IN -
Ii! j

101M TIMER

[: I I r-- RESET OUT -
I ' I

As-A19 ~---- " I I I ~ lOW
~"----v -

RD

V AODR/oATA
- "-o ~ ADr 1

W \-~
ALE

PORT

CE A

1.l, ~ - "" .,;:::
~,. GND
.~~ 'MANUAL

RESET GND
(Vss)

'-- ---~ AS_10
DBB ,-

:lTrrr~ Y 8155A-2

MNlfv'--X ~VCC
DATAl

I AODA

ALE 1--------1 H
v

W
I-- i--

101M PORT

2) RD :----------. i-- I-- I >---- RESET B

WA 1--------- c--
I I READY Vee

101M f-------- ,- fOR ..J

~ '--
I 1 t ! LpROG I ' -- I--~- - t-~ Vss Vee VDD

I

WR

AD

i -- CE,
8185-2

....

ALE

\ I-- C$,

,H-- CE,

1-1-- ---- --- As. A9

ADo_7

! I
Vss Vee

, ;,.

Figure 13b. 8088 Five Chip System Configuration

2-33

inter 8155H/8156H/8155H-2/8156H-2

ABSOLUTE MAXIMUM RATINGS*

TemperatureUnderBias 0°Cto+70°C
Storage Temperature , -65°C to +150°C
Voltage on Any Pin

With Respect to Ground -0.5V to +7V
Power Dissipation 1.5W

'NOTlCE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this
specification is not implied. Exposure to absolute maxi­
mum rating conditions for extended periods may affect
device reliability

D.C. CHARACTERISTICS (fA = OOG to 70oe, Vee = 5V ± 10%)

Symbol Parameter Min. Max. Units Test Conditions

VIL Input low Voltage -0.5 0.8 V

VIH Input High Voltage 2.0 Vcc+O·5 V

VOL Output low Voltage 0.45 V IOL = 2rnA

VOH Output High Voltage 2.4 V IOH = -400J.lA

IlL I n put lea kage ±10 J.lA OV ~ VIN ~ Vee

ILO Output leakage Current ±10 J.lA 0.45V « VOUT « Vec

Icc Vec Supply Current 125 mA

IldCE) Chip Enable leakage
8155H +100 /lA OV ~ VIN ~ Vee

L 8156H -100 /lA

A.C. CHARACTERISTICS (fA = ooe to 70oe, Vee = 5V ±10%)

8155H/8156H 8155H-2/8156H-2

Symbol Parameter Min. Max. Min. Max. Units

tAL Address to latch Set Up Time 50 30 ns
1---

tLA Address Hold Time after latch 80 30 ns

tLc latch to R EAD!WR ITE Control 100 40 ns

tRO Valid Data Out Delay from READ Control 170 140 ns

tLO latch to Data Out Valid 350 270 ns
- --

tAD Address Stable to Data Out Valid 400 330 ns

ILL latch Enable Width 100 70 ns

tROF Data Bus Float After READ 0 100 0 80 ns
- I

tCl R EADIWR IT E Control to latch Enable 20 10 ns

tce R EADIWR ITE Control Width 250 200 ns

tow Data In to WR ITE Set Up Time 150 100 ns
-.

two Data In Hold Time After WR ITE 25 25 ns

tRv Recovery Time 8etween Controls 300 20Q ns _.
twp WR ITE to Port Output 400 300 ns

tpR Port In put Setup Time 70 50 ns

tRP Port Input Hold Time 50 10 ns ----
tSBF Strobe to Buffer Full 400 300 ns

tss Strobe Width 200 150 ns

tRBE READ to Buffer Empty 400 300 ns

tSI Strobe to I NTR On 400 300 ns

2-34

8155H/8156H/8155H·2/8156H·2

A.C. CHARACTERISTICS (Continued) (TA = O°C to 70°C. Vee = 5V "'10%)

8155H/8156H 8155H-2/8156H-2

Symbol Parameter Min. Max. Min. Max. Units

tRDI READ to INTR Off 400 300 ns

tpss Port Setu p Time to Strobe Strobe 50 0 ns

tpHS Port Hold Time After Strobe 120 100 ns

tSBE Strobe to Buffer Empty 400 300 ns

tWBF WR ITE to Buffer Full 400 300 ns

tWI WRITE to INTR Off 400 300 ns

tTL TIMER-IN to TIMER-aliT Low 400 300 ns

tTH TIMER-IN to TIMER-OUT High 400 300 ns

tRDE Data Bus E.nable from R E.AD Control 10 10 ns

t1 TIMER-IN Low Time 80 40 ns
1-------1---

t2 TIMER-IN High Time 120 70 ns

tWT WRITE to TIMER-IN 360 200 ns
(for writes which start counting)

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT

24

045 =x:: > TEST POINTS < ::)C
A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND 045V FOR
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 OV FOA A LOGIC 1
AND 08V FOR A LOGIC 0

DEVICE
UNDER

TEST

CL = 150pF

r-~ I
IC~-150PF

CL INCLUDES JIG CAPACITANCE L-____________ _

WAVEFORMS

CE(8155

--

\ H)

READ

Oil

CE (8156 HI Jr 1\ /
10/ M \ V \

tAD

7) ADDRESS j DATA VALID ~ Ii:::..
--tAl-_ --tLA--

AL E / '\ :/
--tLL--

__ tRDE_ _tRDF_

\--tRO-~ /

---tLC--
_tCL-- I

---tcc--- ---tRV---

RD

tLD

2-35

8155H/8156H/8155H-2/8156H-2

WAVEFORMS (Continued)

WRITE

CE (8155H) \ V \
OR

CE(8156H) / ~i\ /
10/M \ -,V \

ADo_7 ~ ADDRESS K ~ DATA VALID K
ALE

r-- tAL ~I 1-- tLA -

1- tLL -11- t LC ~I
-tDw-ll-tCL-

-tWD '~I
\'VA / I\-!.-- tcc--

'WT f.---- tRV-

TIMER IN

STROBED INPUT

8F

. STROBE

INTR

2-36

inter 8155H/8156H/8155H-2/8156H-2

WAVEFORMS (Continued)

STROBED_O_U_T_P_U_T ________ ...J} \ ~.

BF ___ ~-7

STROBE tWBF--1'~---I ~r I~~
ir----

INTR

OUTPUT DATA
TO PORT

BASIC INPUT

RD -----,\1_ '" t-·.;...1 ---
J'-' __ ---J{

~~------~~
INPUT -----'"1'----------"--

DATA BUS· ~ = = = = = ~ ________ _
TIMER OUTPUT COUNTDOWN FROM 5 TO 1

LOAD COUNHR FROM elf, -------I
2 I '

BASIC OUTPUT

·DATA BUS TIMING IS SHOWN IN FIGURE 7

TIMER IN I

_____ ...-___ .--_____ "_"_-_-·_'_.....;.... __ -+1 1:----
TIMER ouf \ INOTE 11 / 1\ ! I
IPULSE! "- ___ J _'H~T"~-

flMER om
{SOUARE WAVE I \ :NOTE 11 "

'- ________ ..J

NOTE 1 THE TIMER OUTPUT ISPERIODIC IF IN AN AUTOMATIC
RELOAD MODE 1M! MODE BIT: 1)

I~--

-----i 'TO<~-

inter
8185/8185-2

1024 x 8-BIT STATIC RAM FOR MCS-85@

• Multiplexed Address and Data Bus

• Directly Compatible with 8085AH
and iAPX 88 Microprocessors

• Low Operating Power Dissipation

• Low Standby Power Dissipation

• Single +5V Supply

• High Density 18-Pin Package

The Intel@ 8185 is an 8192-bit static random access memory (RAM) organized as 1024 words by 8-bits using N-channel
Silicon-Gate MOS technology. The multiplexed address and data bus allows the 8185 to interface directly to the 8085A and
iAPX 88 microprocessors to provide a maximum level of system integration.

The low standby power dissipation minimizes system power requirements when the 8185 is disabled.

The 8185-2 is a high-speed selected version of the 8185 that is compatible with the 5 MHz 8085AH-2 and the 5 MHz iAPX 88.

CS
CE,
CE2

R/W RD LOGIC
WR

ALE

l

ADo-AD-,
t-. DATA 1Kx8

BUS RAM

--V BUFFER MEMORY
ARRAY

X-YDECODE

t-.
ADDRESS U :::..

~ LATCH r-----' A6. Ag
ALE

Figure 1. Block Diagram

ADO

AD,

AD2

AD3

AD,

ADs

ADs

AD7

Vss

ADo-AD-,
A6, Ag
CS
CE,
CE2
ALE
WA

Vee

RD

WR

ALE

es

CE,

CE2

Ag

A6

ADDRESS/DATA LINES
ADDRESS LINES
CHIP SELECT
CHIP ENABLE (101M)
CHIP ENABLE
ADDRESS LATCH ENABLE
WRITE ENABLE

Figure 2_ Pin Configuration

Intel Corporation Assumes No Responsibilty for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses al. Implied.

© INTEL CORPORATION. 1980 2-38

8185/8185-2

FUNCTIONAL DESCRIPTION
The 8185 has been designed to provide for direct interface
to the multiplexed bus structure and bus timing of the
8085A microprocessor.

At the beginning of an 8185 memory access cycle, the 8-
bit address on ADo-7, As and Ag, and the status of GEl and
GE2 are all latched internally in the8185 by the falling edge
of ALE. If the latched status of both GEl and GE2 are
active, the 8185 powers itself up, but no action occurs until
the GS line goes low and the appropriate RD orWR control
signal input is activated.

The GS input is not latched by the 8185 in order to allow
the maximum amount of time for address decoding in
selecting the 8185 chip. Maximum power consumption
savings will occur, however, only when GEl and GE2 are
activated selectively to power down the 8185 when it is not
in use. A possible connection would beto wire the 8085A's
10iM line to the 8185's GEl input, thereby keeping the
8185 powered down during 1/0 and interrupt cycles.

Table 1.
Truth Table for

Power Down and Function Enable

CEl CE2 CS (CS·)[2J 8185 Status

1 X X 0 Power Down and
Function Disable[l J

X 0 X 0 Power Down and
Function Disable[l]

0 1 1 0 Powered Up and
Function Disable[l]

0 1 0 1 Powered Up and
Enabled

NOTES:
X: Don't Care.
1: Function Disable implies Data Bus in high impedance state

and not writi ng.
2: CS' = (GEl = 0) • (CE2 = 1) • (CS = 0)

CS· = 1 signifies all chip enables and chip select active

Table 2.
Truth Table for

Control and Data Bus Pin Status

ADo_7 During Data -
(CS·) RD WR Portion of Cycle 8185 Function

0 X X Hi-Impedance No Function

1 0 1 Data from Memory Read

1 1 0 Data to Memory Write

1 1 1 Hi-Impedance Reading, but not'
Driving Data Bus

NOTE:
X: Don't Care.

2-39

Vss Vee

I I I
x, X, RESET IN r-TRAP HOLD

RST7,S HLDA I-
RST6,5 B085A SOD I--
RST5,5 S'D I--
INTR S,r--

RESET INTA ADDA/ OUT Sol--

ADOR DATA ALE AD WR 101M ROY eLK

v" T ,., ,., I
I~- ~ POR~W

WR ~ _ PORT (8)
RD 81 56 B

ALE PORT~
"- DATA/ C (6)

ADD A

IN

I
IO/M TIMER r= RESET OUT

-
lOW

AD

ALE

~ PORT

I~e- CE A

== Aa_l0

V 8755A
DATAl
ADOR

101M

~ PORT

RESET B

ROY

>-- elK

. t t t 1.
Vss Vee VPD PROG

I I
I

WR

AD

CE, 8185
ALE

/-- CS,CE2

f-- AB,Ag
A.

ADO_7

t vL Vss

V V

Figure 3, 8185 in an MCS-85 System

4 Chips:
2K Bytes EPROM
1.25K Bytes RAM
38110 Lines
1 CounterlTimer
2 Serial 1/0 Lines
5 Interrupt Inputs

inter 8185/8185-2

iAPX 88 FIVE CHIP SYSTEM:

• 1 .25 K Bytes RAM
• 2K Bytes EPROM
• 381/0 Pins
• 1 Internal Timer
• 2 Interrupt Levels

1

Vss Vee

I I
~r- ~ POR!W

>----_WR W
Ail POR~ (8)

8155--2

• ALE PORT W
DATAl C (6)

AODA

Vee

{4
I ~ OND

MANUAL
GNO RESET

(Vss)

I

IN_

r--:-J I i

101M TIMER

RESET
OUT t--

I
lOW

A,-A19 ADDR ~

ADo-ADI~RIDATA I
Ail

ALE

~ ,--- ClK " I PORT

t; CE A

I
AS_l0

8088 -V

rOil Ii
READY 8155A-2

MN/MX r-Vcc DATAl
ADDR

ALE ,- I-- 101M PORT W RST@ RO r- r-r- ~.-- RESET B
X, X, 0 I

IVR r- Vee elK I=-J r READY
READY 101M r- iOR -1

RES
8284A

.~
r- III LROG

RESET I-- Vss Vee Voo

ROY1 Vee

I
\VA

Ail

CD eel 8185-2
ALE

It- iSS.

~t- CE,

'I-t- As. A9

AOO_7

1 L v's

j

Figure 4. iAPX 88 Five Chip System Configuration

2-40

8185/8185-2

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias 0° C to +70° C
Storage Temperature -65°C to +150°C
Voltage on Any Pin

with Respect to Ground -0.5V to +7V
Power Dissipation 1.5W

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA = O°C to 70°C, Vee = 5V ± 5%)

Symbol Parameter Min. Max. Units Test Conditions

VIL Input Low Voltage -0.5 0.8 V

VIH Input High Voltage 2.0 Vee+0.5 V

VOL Output Low Voltage 0.45 V IOL = 2mA

VOH Output High Voltage 2.4 IOH = - 400J.'A

IlL Input Leakage ±10 IJ.A OV ,,;VIN ,,;VCC

ILO Output Leakage Current ±10 IJ.A 0.45V :;; VOUT :;; Vee

Icc Vee Supply Current
Powered Up 100 mA

Powered Down 35 mA

A.C. CHARACTERISTICS (TA = O°C to 70°C, Vee = 5V ± 5%)

8185 8185-2

Symbol Parameter Min. Max. Min. Max. Units

tAL Address to Latch Set Up Time 50 30 ns

tLA Address Hold Time After Latch 80 30 ns

tLC Latch to READ/WRITE Control 100 40 ns

tRO Valid Data Out Delay from READ Control 170 140 ns

tLO ALE to Data Out Valid 300 200 ns

tLL Latch Enable Width 100 70 ns

tROF Data Bus Float After READ 0 100 0 80 ns

tCL READ/WRITE Control to Latch Enable 20 10 ns

tcc READ/WRITE Control Width 250 200 ns

tow Data In to WRITE Set Up Time 150 150 ns

two Data In Hold Time After WRITE 20 20 ns

tsc Chip Select Set Up to Control Line 10 10 ns

tcs Chip Select Hold Time After Control 10 10 ns

tALCE Chip Enable Set Up to ALE Falling 30 10 ns

tLACE Chip Enable Hold Time After ALE 50 30 ns

2-41

inter 8185/8185-2

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT

u=x x= 2.0 2.0 ? TEST POINTS <
0.8 0.8

0.45

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC "1" ANDO.4SV FOR
A LOGIC "0." TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A LOGIC ''1''
AND O.8V FOR A LOGIC "0."

WAVEFORM

ALE

(CE1"'O).

(eE2'"1)

ADO-AD7
(As, Agi

ADO-AD7

\~------'/~-
(SELECTED)

2-42

OEVICE
UNDER

IfCL~150PF TEST

CL "'" 150pF
CL INCLUDES JIG CAPACITANCE

(READ CYCLE)

--tcc--~

(WRITE CYCLE)

---"K-
(DESELECTED)

..

..

..

.. ..

8224
CLOCK GENERATOR AND DRIVER

FOR 8080A CPU

Single Chip Clock Generator/Driver for .. Crystal Controlled for Stable System
8080A CPU Operation

Power-Up Reset for CPU .. Reduces System Package Count

Ready Synchronizing Flip-Flop .. Available in EXPRESS
Advanced Status Strobe - Standard Temperature Range

Oscillator Output for External System .. Available in 16-Lead Cerdip Package
Timing (See Packaging Spec, Order #231369)

The Intel® 8224 is a single chip clock generator/driver for the 8080A CPU. It is controlled by a crystal, selected by the designer
to meet a variety of system speed requirements.

Also included are circuits to provide power-up reset, advance status strobe, and synchronization of ready.

The 8224 provides the designer with a significant reduction of packages used to generate clocks and timing for BOBOA.

XTAL1=S ~ OSCILLATO: --osc
XTAL' - L __ .,.....-l.

TANK

[I> SYNC ----+---1--'

IT> iITSiN--[>
SCHMITT

INPUT

~ RDV1N----H

--RESET [I>

1----- READV~

Figure 1. Block Diagram

X!~-c-~==r. (CONNECTIONS I
XTAL 2 \ FOR CRYSTAL

"- -- .- . ~--~-------.---
TANK ,USEDWITHOVEATONEXTAL,

--------·'·~·t--·---"·--------'________"1

osc I OSCILLATOR OUTPUT I
'.'~(~~_~_' __ ._ ¢2 elK (.T .. ~_L LE':. L .. ~._ ._j

Vee +5V
i VOD --- ---:;:-:f2v- ---- .. ----

IGNo-- i 0;;·----- -- ,.------.1

Figure 2. Pin Configuration

2-43

8224

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias O°C to 70°C
Storage Temperature _65°C to 150°C
Supply Voltage, Vee -O.5V to +7V
Supply Voltage, Voo -0.5V to +13.5V
Input Voltage -l.SV to +7V
Output Current 100mA

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA = O°C to 70°C, VCC = +5.0V :±:S%, Voo =.+12V :±:S%)

Limits
Symbol Parameter Min. Typ. Max.

IF Input Current Loading -.25

IR Input Leakage Current 10

Ve Input Forward Clamp Voltage 1.0

VIL Input "Low" Voltage .8

V1H Input "High" Voltage 2.6
2.0

VIWVIL RESIN Input Hysteresis .25

VOL Output "Low" Voltage .45

.45

VOH Output "High" Voltage
¢, , ¢2 9.4
READY, RESET 3.6
All Other Outputs 2.4

lec Power Supply Current 115

100 Power Supply Current 12

Note: 1. For crystal frequencies of 18 MHz connect 5100 registers between theX1lnput and ground as
well as the X2 Input and ground to prevent oscillation at harmonic frequencies.

Crystal Requirements

Tolerance: 0.005% at 0°C-70°C
Resonance: Series (Fundamental)'
Load Capacitance: 20-35 pF
Equivalent Resistance: 75-20 ohms
Power Dissipation (Min): 4 mW

·With tank circuit use 3rd overtone mode.

2-44

Units Test Conditions

mA VF ~ .45V

!J.A VR ~ 5.25V

V Ie ~ -5mA

V Vee ~ 5.0V

V Reset Input
All Other Inputs

V Vee = 5.0V

V (¢',¢2), Ready, Reset, STSTB
IOL =2.5mA

V All Other Outputs
IOL = 15mA

V IOH ~ -100!J.A
V IOH ~ -100!J.A
V IOH = -lmA

mA

mA

irl~' 8224

A.C. CHARACTERISTICS (Vee = +5.0V ±5%, voo = +12.0V ±5%, TA = O°C to 70°C)

Limits Test
Symbol Parameter Min. Typ. Max. Units Conditions

4p1 1>, Pulse Width 2tcy _ 20ns
9

t<P2 1>2 Pulse Width 5tcy _ 35ns
9

t01 1>, to 1>2 Delay 0 ns

t02 1>2 to 1>, Delay 2tcy _ 14ns GL = 20pF to 50pF
9

t03 1>, to 1>2 Delay
2tcy 2tcy + 20ns

9 9

tR 1>, and 1>2 Rise Time 20
-

tF 1>, and <P2 Fall Time 20 I

to<P2 1>2 to 1>2 (TTL) Delay -5 +15 ns 1>2TTL,Cl=30 I
I I I I

R,=300n I R2=600n

I toss 1>2 to STSTB Delay 6tcy _ 30ns 6tcy
9 9

I
I _.

STSTB,Cl=15pF I tpw STSTB Pulse Width tcy _ 15ns
9 R, = 2K

tORS
RDYIN Setup Time to 5Ons-~ R2 = 4K I
Status Strobe 9 I
RDYIN Hold Time 4tcy

I tORH
After STSTB 9

tOR
RDYINor RESINto 4tcy _ 25ns Ready & Reset

1>2 Delay 9 Gl=10pF

I
R1=2K
R2=4K

--
tCLK GlK Period tcy

9

f max
Maximum Oscillating

27 MHz
Frequency

Gin Input Capacitance 8 pF VcC=+5.0V
Voo=+12V

VBIAS=2.5V
f=l MHz

2-45

inter 8224

A.C. CHARACTERISTICS (Continued) (For ICY = 488.28 ns) (TA = O°C 10 70°C, VOO = +5V ±5%,
VOO = +12V ±5%)

Limits
Symbol Parameter Min. Typ. Max. Units Test Conditions

tq,1 <1>1 Pulse Width 89 ns

l
tcy=488.28ns

t<t>2 <1>2 Pulse Width 236 ns

t01 Delay <1>1 to <1>2 0 ns
-'----

t02 Delay <1>2 to 1>1 95 ns r- 1>1 & 1>2 Loaded to

t03 Delay 1>1 to 1>2 Leading Edges 109 129 ns
CL = 20 to 50pF

--
tr Output Rise Time 20 ns

tf Output Fall Time 20 ns

toss <1>2 to STSTB Delay 296 326 ns

to<t>2 <1>2 to <1>2 (TTL) Delay -5 +15 ns

tpw Status Strobe Pu Ise Width 40 ns
Ready & Reset Loaded

tORS RDYIN SetupTimetoSTSTB -167 ns to 2mA/l0pF

tORH RDYIN Hold Time after STSTB 217 ns All measurements

tOR READY or RESET 192 ns referenced to 1.5 V

to <1>2 Delay
unless specified
otherwise.

fMAX Oscillator Frequency 18.432 MHz

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT

u=x:)C 2.0 ' 2.0 > TEST POINTS < '
0.8 0.8

0.45

A.C. TESTING, INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC "1" AND O.4SV FOR
A LOGIC "0." TIMING MEASUREMENTS ARE MADE AT2.0V FORA LOGIC "1"
AND O.BV FOR A LOGIC "0" (UNLESS OTHERWISE NOTED).

2-46

DEVICE
UNDER

TEST

""\ Vee

R,

CL INCLUDES'JIG CAPACITANCE

8224

WAVEFORMS

¢,_'JAr-~'F -- _-----<cv -0"
~~~3~~' I r----------------~ _ 

" ~3 - t----';,----
--------------~I 

I \---------"1--J1 SYNC 
(FROM SOMA) 

-=;R"'--! --~-.. _---~___r_'D" -. _-+--''''-1_ 
STSTB 'DRS--l_ LJ 

I ~------- --- tDRH ------------1 
"\1,--------,1, - -- - - - - - - - - - - - - - - - - - - - - - - - - -

ADYIN OR R~SIN 

- - - - - - - - - - - - - '1'--------+----------------
1--~tDR--

- - - - - - - - - - - - - - - - - - -,~----+------------
READvour 

RESET OUT t---------------------------------
VOLTAGE MEASUREMENT POINTS: <Pl, <P2 logic "0" ~ 1.0V, logic "1" ~ B.OV. All other signals measured at 1.5V. 

CLOCK HIGH AND LOW TIME (USING X1, X2) 

X1 elK 
18MHz 0 =r 

X2 

R, R2 

~ "::" 

2-47 



8228/8238 
SYSTEM CONTROLLER AND BUS DRIVER 

FOR 8080A CPU 

• Single Chip System Control for MCS-
80® Systems 

• Built-In Bidirectional Bus Driver for 
Data Bus Isolation 

• Allows the Use of Multiple Byte 
Instructions (e.g. CALL) for Interrupt 
Acknowledge 

• Reduces System Package Count 

• User Selected Single Level Interrupt 
Vector (RST 7) 

• 8283 Has Advanced IOW/MEMW for 
large System Timing Control 

.. Available in EXPRESS 
- Standard Temperature Range 

• Available in 28-lead Cerdip and Plastic 
Packages 
(See Packaging Spec, Order #231369) 

The Intel® 8228 is a single chip system controller and bus driver for MCS-80. It generates all signals required to 
directly interface MCS-80 family RAM, ROM, and I/O components. 

A bidirectional bus driver is included to provide high system TTL fan-out. It also provides isolation of the 8080 
data bus from memory and 1/0. This allows for the optimization of control signals, enabling the systems 
designer to use slower memory and I/O. The isolation of the bus driver also provides for enhanced system 
noise immunity. 

A user selected single level interrupt vector (RST 7) is provided to simplify real time, interrupt driven, small 
system requirements. The 8228 also generates the correct control signals to allow the use of multiple byte 
instructions (e.g., CALL) in response to an interrupt acknowledge by the 8080A. This feature permits large, 
interrupt driven systems to have an unlimited number of interrupt levels. 

The 8228 is designed to support a wide variety of system bus structures and also reduce system package count 
for cost effective, reliable design of the MCS-80 systems. 
Note: The speclflcallons for the 322813238 are Identical with Ihose for the 822818238 

CPU 
DATA 
BUS 

DO_ D,_ D,_ -DBl 
-DBz 

°3-" D,_ D,_ 
0,­D,-

-DBol = g:: J SYSTEM DATA BUS 

-DBs 
-OB7 

I CDRIVE. CONTROL 

I~L __ _ 
~--STATUS 

--_ LATCH 

srSTe __________ -' 

DBIN -------------1 
~-----.----------~ HLDA _______ ~ 

GATING 
ARRAY 

-- m-M'A 

- !mlW 

-- iiURN 

0700 

087·080 

IIOR 

I/OW 

MEMR 

MEMW 

~ 

SrsTS 

HLOA 

WR 

DB IN 

DB4 

D. 

DB7 

D7 

DB3 

D3 

DB2 

D2 

DB' 

OND 

OAT A BUS 18080 SIDe) 

DATA 8US 'SYSTEM SIDE) 

110 READ 

1/0 WRITE 
MEMORY REAO 

MEMORY WRITE 

OBIN (FROM 8080) 

.-

tNTA 

HLOA ... 
BUSEN 
STSTB 

INTERRUPT ACKNOWLEDGE 

8US ENABLE INPUT 

STATUSSTAOBE IFROM 8224) 

Vee +5V 
~~O~V~O~LT~S---------~ 
~~--------.-----

Figure 1. Block Diagram Figure 2. Pin Configuration 
------------------~----------~------------

2-48 



8228/8238 

ABSOLUTE MAXIMUM RATINGS* 

Temperature Under Bias .............. -O·C to 70·C 
Storage Temperature .............. -65·C to 150·C 
Supply Voltage, Vee ................. - 0.5V to + 7V 
Input Voltage ....................... -1.5Vto +7V 
Output Current ........................... 100 mA 

-NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not limited. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D_C_ CHARACTERISTICS (TA = O°C to 70°C, Vee = 5V ±5%) 

Limits 
Symbol Parameter Min. Typ.[1] Max. Unit Test Conditions 

Ve Input Clamp Voltage. All Inputs .75 -1.0 V Vce;4.75V; Ic=-5mA 

IF I nput Load Current, 
STSTB 500 fJ.A Vce;5.25V 

D2& D6 750 fJ.A VF=0.45V 
I 
I Do, D" D4, Ds, fJ.A 

& D7 250 

All Other Inputs 250 fJ.A 

IA Input Leakage Current 
, STSTB 100 fJ.A Vee=5.25V 

DBo-DB7 20 fJ.A VA =5.25V 

All Other Inputs 100 fJ.A 

VTH Input Threshold Voltage, All Inputs 0.8 2.0 V Vec=5V 

Icc Power Supply Current 140 190 mA Vec=5.25V 

VOL Output Low Voltage, 

Do-D7 .45 V Vec=4.75V; IOL =2mA 

All Other Outputs .45 V 10L = 10mA 

VOH Output High Voltage, 

Do-D7 3.6 3.8 V Vec=4.75V; IOW-10fJ.A 

All Other Outputs 2.4 V 10H = -lmA 

los Short Circuit Current, All Outputs 15 90 mA Vce=5V 

10(off) Off State Output Current, 
All Control Outputs 100 fJ.A Vce=5.25V; Vo =5.25 

-100 IJ-A Vo=.45V 
--

liNT I NT A Current 5 mA (See INTA Test Circuit) 
---

Note1: Typk:al values are for T A = 250 C and nominal supply voltages. 

2-49 



8228/8238 

CAPACITANCE (VSIAS = 2.SV, Vee = S.OV, TA = 2S0C, f = 1 MHz) 

This parameter is periodically sampled and not 100% tested, 

Limits 

Symbol Parameter Min. Typ,£11 Max. Unit 
--

CIN I nput Capacitance 8 12 pF --
COUT 

Output Capacitance 
7 15 pF 

Control Signals 

I/O 
I/O Capacitance 

8 15 pF 
(D or DB) 

~-

A.C. CHARACTERISTICS (TA = O°C to 70°C, Vee = sv ±S%) 

I Limits 
Symbol I Parameter Min. Max. 

tpw i Width of Status Strobe 22 I ns 

! S T · SID D 8 ~:~--F-~-~--tss i etup Ime, tatus nputs 0- 7 
1--------41---- ~ -~-----

tSH i Hold Time, Status Inputs Do-D7 5 ___ +-ns ______ __ 

toe I Delay from STSTB to any Control Signal 20 60 i ns CL ~ l00pF 

Units Condition 

tAA Delay from DBIN to Control Outputs 30 I ns CL ~ 100pF 

tAE Delay from DBIN to Enable_/_D_isa_b._I_e_8_0_8_0_B_u_S ___ ~ ____ ~-I __ _+-4-5--il--~~-L ~3~ 
tAD Delay from System Bus to 8080 Bus during Read 30 ns CL ~ 25pF 

~~--r-------~~--------------------------r~--4---4---4-~---
tWA Delay from WR to Control Outputs ---+ 5 45 I ns CL ~ 100pF 

_~WE. ---i'~~ay to Enable System Bus DBo-DB7 after STSTB -----------t-----+---.--+----+--=-----I 
two Delay from 8080 Bus Do-D7 to System Bus I 

30 I ns CL = 100pF 

ns CL = 100pF 

~------~-i-- DBo-DB7 during Write _ . ____________ ~_. ___ _+--5----'f__--+-

h
~--+. Delay from System Bus Enab .. le to System Bus ~Bo-_~~2. __________ _ 

__ tH.t=> ____ l---_~LDA ~~ead Status Outputs_ -------~+---+__-....,f__-~__t----__I 
_lOS ____ +___ Set~£l_ Tim~ Sy~t:rn.!_"~In~uts to H LDA 10 

I tOH I Hold Time, System Bus Inputs to HLDA 20 

40 

30 ns CL = 100pF 

25 ns 

ns 
-------c-----------

ns CL = 100pF 

+12V 

A.C. TESTING LOAD CIRCUIT 

lKO±10% 

-,- Vee 

R, 

OEVICE 8228 
UNDER eel TEST 

R, 

-= -= 23 
INTA p----------------' 

For Oo-Oy: R, = 4KO, R2 = 000, 
CL = 25pF. For illl other outputs: 
R, = 5000, R2 = 1 KO, eL o. 100pF. 

INTA Test Circuit (for RST 7) 

2-S0 



8228/8238 

WAVEFORM 

., 
·2-----' 

STATUS'STROBE ---------;llpW,V-~--------------, 

80800ATABUS _______ /)K~_t_1~-~~--------------------------------
IS~ 1-= - IS~-=..J 

\ 
OBIN -------------r--r---~I IRR i':::. 

iNn. lOA. MEMR -------------N1 \N------t----------'.1, 
loc- I. .r------------~ 

HLOA --------t--r----t----~. 1:- IHO 

~Jt.'J-g~&~MR --------h\ ..J1r---"-=-----------------

SYSTEM BUS DURING READ 

8080 BUS DURING READ 

YiR 

lOW OR NfEMW 

8080 BUS DURING WRITE 

SYSTEM BUS DURING WRITE 

SYSTEM 8US OUTPUTS 

I . 1-105 - _IO~ ____________ _ ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: = ~IRO, 1- b IRE - - - - - - - - - - - - -

---------r-:~~ --------------
\ 1 

IWR -I . 1- -11:- IWR 

-----------4 \~ ________ __'ll 

--------~ 1:1-

j'~I----------------< >--------------

VOLTAGE MEASUREMENT POINTS: 0 0-0, (when outputs) Logic "0" = O.BV. Logic "1" = 3.0V. All other signals measured 
at 1.5V. 

'ADVANCED fOW/MEMWFOR 8283 ONLY. 

2-51 



8237A/8237A-4/8237A-5 
HIGH PERFORMANCE 

PROGRAMMABLE DMA CONTROLLER 
• Enable/Disable Control of Individual 

DMA Requests 

• Four Independent DMA Channels 

• Independent Autoinitialization of all 
Channels 

• Memory-to-Memory Transfers 

• Memory Block Initialization 

• Address Increment or Decrement 

• Directly Expandable to any Number of 
Channels 

• End of Process Input for Terminating 
Transfers 

• Software DMA Requests 

• Independent Polarity Control for DREQ 
and DACK Signals 

• Available in EXPRESS 
- Standard Temperature Range 

• High performance: Transfers up to 1.6M 
Bytes/Second with 5 MHz 8237A-5 

• Available in 40-Lead Cerdip and 
Plastic Packages 
(See Packaging Spec, Order #231369) 

The 8237A Multimode Direct Memory Access (DMA) Controller is a peripheral interface circuit for microprocessor sys­
tems. It is designed to improve system performance by allowing external devices to directly transfer information from 
the system memory. Memory-to-memory transfer capability is also provided. The 8237A otlers a·wide variety of pro­
grammable control features to enhance data throughput and system optimization and to allow dynamic reconfigura­
tion under program control. 

The 8237A is designed to be used in conjunction with an external 8-bit address register such as the 8282. It contains 
four independent channels and may be expanded to any number of channels by cascading additional controller chips. 

The three basic transfer modes allow programmability of the types of DMA service by the user. Each channel can be 
individually programmed to Autoinitialize to its original condition following an End of Process (EOP). 

Each channel has a full 64K address and word count capability. 

The 8237A-4 and 8237A-5 are 4 MHz and 5 MHz selected versions of the standard 3 MHz 8237A respectively. 

"'" 
co 

MEMW 

..... 
MEMW 

"" Vcc(+5V) 

TOW os DBD 

CCK DB> 

RESET 0.B2 

Figure 2. 

Figure 1. Block Diagram Pin Configuration 

2-52 



! 

intel' 8237 A/8237 A-4/8237 A-5 

Table 1. Pin Description 

Symbol 
.-----~-.---,--------------­

Name and FunClio~ Type 
-------+--'-'--+---- ~ 

Vee 

Vss 
ClK I 

CS I 

Power: + 5 volt supply. 

Ground: Ground. 

Clock Inpul: Clock Input controls 
the internal operations of tile 
8237A and its rate of data trans­
fers. The input may be driven at up 
to 3 M Hz for the standard 8237A 
and up to 5 MHz for the 8237A-5. 

Chip Select: Chip Select is an ac­
tive low input used to select the 
8237A as an 1/0 device during the 
Idle cycle. This allows CPU com­
munication on the data bus. 

1------+---- -----.-.. -------.... ----------
RESET I 

READY I 

Reset: Reset is an active high in· 
put which clears the Command, 
Status, Request and Temporary 
registers. It also clears the 
flrstllast fliplflop and sets the 

I, Mask register. Following a Reset 
the device ;s in the Idle cycle. 

--
Ready: Ready is an input used to 
extend the memory read and write 
pulses from the 8237A to accom­
modate slow mernories or 1/0 per· 
ipheral devices. Ready must not 
rnake transitions during its speci· 

f-______ i-_--.je-I_ie_d_setu p/ho Id ti rne. 
-~ 

HlDA I Hold Acknowledge: The active 
high Hold Acknowledge from the 

! CPU indicates that it has relin­
quished control of the system 
busses. 

1----------+----1----------_._-_._-
DREQO-DREQ3 I DMA Request: The DMA Request 

lines are individual asynchronous 
channel request inputs used by pe· 
ripheral circu its to obtain DMA 
service. In fixed Priority, DREQO 
has the highest priority and 
DREQ3 has the lowest priority. A 
request is generated by activating 

I the DREQ line of a channel. DACK 
will acknowledge the recognition 
of DREQ signal. Polarity of DREQ 
is prograrnrnable. Reset intializes 
these lines to active high. DREQ 
must be maintained until the corre-

f-______ i-__ -je-s...:p __ o_nd~~~A~_K g~~activ_e_. __ _ 

DBO-DB7 110 Data Bus: The Data Bus lines are 
bidirectional three-state signals 
connected to the system data bus. 
The outputs are enabled in the Pro· 
gram condition during the 110 Read 
to output the contents of an Ad­
dress register, a Status register, 
the Temporary register or a Word 
Count register to the CPU. The out­
puts are disabled and the inputs 
are read during an 1/0 Write cycle 
when the CPU is programming the 
8237 A control registers. During 
DMA cycles the most significant 8 
bits of the address are output onto 

1 1 
the data bus to be strobed into an 1 

L-____________ ~ ____ ~ex __ t_e_rn_a_I __ la.t_c __ h __ b~ AD_~~_~ 

r 
Type Name and Function 

1 
ory·to-memory operalions, dala I 
from Ihe memory comes into the 
8237A on Ihe dala bus during It,e 
read-from-memory transfer. In Ihe 
wrile-Io·memory Iransfer, Ihe data 
bus out puis place the data into the 
new memory location. 

lOR 1/0 110 Read, 1/0 Read is a bidirec-
tional active low three-state line. In 
the Idle cycle, it is an input control 
signal used by the CPU to read the, 
conlrol registers. In the Aclive cy-I 
cle, it is an output control signal 
used by the 8237 A to access data I 
from a peripheral during a DMA 
Wrile transfer. 

lOW 110 1/0 Write: 1/0 Wrile is a bidir;;1 
tional active low three-state line. In I 

I 

I the Idle cycle. it is an input control 

I signal used by the CPU to load in-I 
formation into the 8237A. In the Ac-
tive cycle, it is an output control' 

.
••. ~ 'signal used by the 8237A to load I 

data to the peripheral durin~a' 
DMA Read transfer. 

I-c=E=O=P~--- II-o-f....=.E':':nd:':-=-o'-',c:.p=ro=-c-'-e:':s=-sc:.: '-'E=n'-'d-o-f-p-,-ocess is 

an aclive low bidirectional signal. 
Information concerning the com­
pletion of DMA services is avail­
able at the bidirectional EOP pin. 

I The 8237A allows an external sig­
nal to terminate an active DMA 
service. This is accomplished by 
pulling the EOP input low with an 
external EOP signal. The 8237A al­
so generates a pulse when the ter­
minal count (TC) for any channel is 
reached. This generates an EOP 
~al which is output througl)J,b~ 
EOP Line. The reception of EOP, 
either internal or external, will 
cause the 8237 A to terminate the 
service, reset the request, and, if 
Autoinitialize is enabled, to write 
the base registers to the current 
registers of that channel. The mask 
bit and TC bit in the status word 
will be set for the currently active 
channel by EOP unless the channel 
is programmed for Autoinitialize. In 
:that case, the mask bit remains un-, 
changed. During memory-to· memory 
transfers, EOP will be output when 
the TC for channel 1 occurs. EOP 
should be tied high with a pull·up 
resistor if it is not used to prevent 

___ l-_-t_e_r_ro_n_e_ous end of process inputs. 

rAo--A3 110 Address: The lour least significant I'" address lines are bidirectional 

I 
three-state Signals. In the Idle cy· 
cle they are inputs and are used by 
the CPU to address the register 

, . to be ,loaded or read. In the Active iii cycle they are outputs and provide 
I I I the lower 4 bits of the output 
I . address. I 
~ _________ ---1 __ ~ _____ . ________ -------l 

2-53 



in1er 8237 A/8237 A-4/8237 A-5 

Table 1. Pin Description (Continued) 

Symbol Type Name and Function 

A4 .. A7 0 Address: The four most significant 
address lines are three·state out-
puts and provide 4 bits of address. 
These lines are enabled only during 
the DMA service. 

HRQ 0 Hold Request: This is the Hold Re· 
quest to the CPU and is used to reo 
quest control of the system bus. If 
the corresponding mask bit is 
clear, the presence of any valid 
DREO causes 8237A to issue the 
HRO. 

DACKO-DACK3 0 DMA Acknowledge: DMA Ac-
knowledge is used to notify the in-
dividual peripherals when one has 
been granted a DMA cycle. The 
sense of these lines is program-
mable. Reset initializes them to ac-
tive low. 

FUNCTIONAL DESCRIPTION 

The 8237A block diagram includes the major logic 
blocks and all of the internal registers. The data inter· 
connection paths are also shown. Not shown are the 
various control signals between the blocks. The 8237A 
contains 344 bits of internal memory in the form of 
registers. Figure 3 lists these registers by name and 
shows the size of each. A detailed description of the 
registers and thei r functions can be found under 
Register Description. 

Name Size Number 

Base Address Registers 16bits 4 
Base Word Count Registers 16bits 4 
Current Address Registers 16bits 4 
Current Word Count Registers 16 bits 4 
Temporary Address Register 16bits I 
Temporary Word Count Register 16bits I 
Status Register Bbits I 
Command Register Bbits I 
Temporary Register Bbits I 
Mode Registers 6bits 4 
Mask Register 4bits I 
Request Register 4bits I 

Figure 3. 8237A Internal Registers 

The 8237A contains three, basic blocks of control logic. 
The Timing Control block generates internal timing and 
external control signals for the 8237A. The Program 
Command Control block' decodes the various com­
mands given to the 8237A by the microprocessor prior 
to servicing a DMA Request. It also decodes the Mode 
Control word used to select the type of DMA during the 
servicing. The Priority Encoder block resolves priority 
contention between DMA channels requesting service 
simultaneously. 

The Timing Control block derives internal timing from 
the clock input. In 8237A systems this input will usually 

Symbol Type Name and Function 

AEN 0 Address Enable: Address Enable 
enables the 6-bit latch conlaining 
the upper 6 address bits onto the 
system address bus. AEN can also 
be used to disable other system bus 
drivers during DMA transfers. AEN 
is active HIGH. 

ADSTB 0 Address Strobe: The active high, 
Address Strobe is used to strobe the 
upper address byte into an external 
latch. 

MEMR 0 Memory Read: The Memory Read 
signal is an active low three-state 
output used to access data from the 
selected memory location during a 
DMA Read or a memory-to-memory 
transfer. 

MEMW 0 Memory Write: The Memory Write 
is an active low th ree-sta,te output 
used to write data to the selected 
memory location during a DMA 
Write or a memory-Io-memory 
transfer. 

be the q,2 TTL clock from an 8224 or ClK from an 
8085AH or 8284A. For 8085AH-2 systems above 3.9 MHz, 
the 8085 ClK(OUT) does not satisfy 8237A-5 clock lOW 
and HIGH time requirements. In this case, an external 
clock should be used to drive the 8237A-5. 

DMA Operation 

The 8237A is designed to operate in two major cycles. 
These are cal.led Idle and Active cycles. Each device cy­
cle is made up of a number of states. The 8237A can 
assume seven separate states, each composed of one 
full clock period. State I (SI) is the inactive state. It is 
entered when the 8237A has no valid DMA requests 
pending. While in SI, the DMA controller is inactive but 
may be in the Program Condition, being programmed by 
the processor. State SO (SO) is the first state of a DMA 
service. The 8237A has requested a hold but' the pro· 
cessor has not yet returned an acknowledge. The 8237A 
may still be programmed until it receives HlDA from the 
CPU. An acknowledge from the CPU will signal that 
DMA transfers may begin. S1, S2, S3 and S4 are the 
working states of the DMA service. If more time is 
needed to complete a transfer than is available with nor· 
mal timing, wait states (SW) can be inserted between S2 
or S3 and S4 by the use of the Ready line on the 8237A. 
Note that the data is transferred directly from the I/O 
device to memory (or vice versa) with lOR and M EMW (or 
MEMR and lOW) being active at the same time. The data 
is not read into or driven out of the 8237A in I/O·to­
memory or memory·to-IIO DMA transfers. 

2-54 

Memory·to-memory transfers require a read-from and a 
write-to·memory to complete each transfer. The states, 
which resemble the normal working states, use two 
digit numbers for identification. Eight states are re­
quired for a single transfer. The first four states (S11, 
S12, S13, S14) are used for the read·from-memory half 



inter 8237 A/8237 A-4/8237 A-5 

and the last four states (S21, S22, S23, S24) for the write­
to-memory half of the transfer. 

IDLE CYCLE 

When no channel is requesting service, the 8237A will 
enter the Idle cycle and perform "SI" states. Ln this 
cycle the 8237A will sample the DREQlines every clock 
cycle to determine if any channel is requesting a DMA 
service. The device will also sample CS, looking for an 
attempt by the microprocessor to write or read the inter­
nal registers of the 8237A. When CS is low and HLDA is 
low, the 8237 A enters the Program Condition. The CPU 
can now establish, change or inspect the internal defini­
tion of the part by reading from or writing to the internal 
registers. Address lines AO-A3 are inputs to the device 
and select which registers will be read or written. The 
lOR and lOW lines are used to select and time reads or 
writes. Due to the number and size of the internal regis­
ters, an internal flip-flop is used to generate an addi­
tional bit of address. This bit is used to determine the 
upper or lower byte of the 16-bit Address and Word 
Count registers. The flip-flop is reset by Master Clear or 
Reset. A separate software command can also reset this 
flip-flop. 

Special software commands can be executed by the 
8237A in the Program Condition. These commands are 
decoded as sets of addresses with the CS and lOW. The 
commands do not make use of the data bus. Instruc­
tions inClude Clear First/Last Flip-FLop and Master 
Clear. 

ACTIVE CYCLE 

When the 8237A is in the Idle cycle and a non-masked 
channel requests aDMA service, the device will output 
an HRQ to the microprocessor and enter the Active cy­
cle. It is in this cycle that the DMA service will take 
place, in one of four modes: 

Single Transfer Mode - In Single Transfer mode the 
device is programmed to make one transfer only. The 
word count will be decremented and the address dec­
remented or incremented following each transfer. When 
the word count "rolls over" from zero to FFFFH, a Ter­
minal Count (TC) will cause an Autoinitialize if the chan­
nel has been programmed to do so. 

DREQ must be held active until DACK becomes active in 
order to be recognized. If DREQ is held active through­
out the single transfer, HRQ will go inactive and release 
the bus to the system. It will again go active and, upon 
receipt of a new HLDA, another single transfer will be 
performed, in 8080A, 8085AH, 8088, or 8086 system this 
will ensure one full machine cycle execution between 
DMA transfers. Details of timing between the 8237A and 
other bus control protocols will depend upon the char­
acteristics of the microprocessor involved. 

Block Transfer Mode - In Block Transfer mode the 
device is activated by DREQ to continue making trans­
fers during the service until a TC, caused by word count 
going to FFFFH, or an external End of Process (EOP) is 
encountered. DREQ need only be held active until DACK 

becomes active. Again, an Autoinitialization will occur 
at the end of the service if the channel has been pro­
grammed for it. 

Demand Transfer Mode - In Demand Transfer mode the 
device is programmed to continue making transfers 
until a TC or external EOP is encountered or until DREQ 
goes inactive. Thus transfers may continue until the 110 
device has exhausted its data capacity. After the 110 
device has had a chance to catch up, the DMA service is 
re-established by means of a DREQ. During the time 
between services when the microprocessor is allowed 
to operate, the intermediate values of address and word 
count are stored in the 8237A Current Address and Cur­
rent Word Count registers. Only an EOP can cause an 
Autoinitialize at the end of the service. EOP is generated 
either by TC or by an external signal. 

Cascade Mode-This mode is used to cascade morethan one 
8237 A together for simple system expansion. The HRQ and 
HLDA signals from the additional 8237 A are connected to the 
DREQ and DACK signals of a channel of the initial 8237 A. 
This allows the DMA requests of the additional device to 
propagate through the priority network circuitry of the preced­
ing device. The priority chain is preserved and the new device 
must wait for its turn to acknowledge requests. Since the 
cascade channel of the initial 8237 A is used only for prior­
itizing the additional device, it does not output any address 
or control signals of its own. These could conflict with the 
outputs of the active channel in the added device. The 8237 A 
will respond to DREQ and DACK but all other outputs except 
HRQ will be disabled. The ready input is ignored. 

Figure 4 shows two additional devices cascaded into an 
initial device using two of the previous channels. This 
forms a two level DMA system. More 8237As could be 
added at the second level by using the remaining chan­
nels of the first level. Additional devices can also be 
added by cascading into the channels of the second 
level devices, forming a third level. 

2ND lEVEL 

MICROPROCESSOR 
1ST LEVEL 8237A 

-- HRQ aREa 1- HRQ 

t-- HLDA DACK I---- HLOA 

8237"-

OREQ 1- HRQ 

DACK f-- HlDA 

INITIAL DEVICE 8237"-

ADDITIONAL 
DEVICES 

Figure 4_ Cascaded 8237As 

2-55 



inter 8237 A/8237 A-4/8237 A-5 

TRANSFER TYPES 

Each of the three active transfer modes can perform three 
different types of transfers. These are Read, Write and Verify. 
Write transfers move data from and I/O device to the memory 
by activating MEMW and iOR. Read transfers move data from 
memory to an I/O device by activating MEMR and lOW. Verify 
transfers are pseudo transfers. The 8237 A operates as in 
Read or Write transfers generating addresses, and responding 
to EOP, etc. However, the memory and I/O control lines all 
remain inactive. The ready input is ignored in verify mode. 

Memory-to-Memory-To perform block moves of data from 
one memory address space to another with a minimum of 
program effort and time, the 8237A includes a memory-to­
memory transfer feature. Programming a bit in the Command 
register selects channels 0 to 1 to operate as memory-to­
memory transfer channels. The transfer is initiated by setting 
the software DREQ for channel O. The 8237 A requests a DMA 
service in the normal manner. After 'HlDA is true, the device, 
using four state transfers in Block Transfer mode, reads data 
from the memory. The channel 0 Current Address register is 
the source for the address used and is decremented or incre­
mented in the normal manner. The data byte read from the 
memory is stored in the 8237 A internal Temporary register. 
Channell then performs a four-state transfer of the data from 
the Temporary register to memory using the address in its 
Current Address register and incrementing or decrementing it 
in the normal manner. The channel 1 current Word Count is 
decremented. When the word count of channel 1 goes to 
FFFFH, a TC is generated causing an EOP output terminating 
the service. 

Channel 0 may be programmed to retain the same ad­
dress for all transfers. This allows a single word to be 
written to a block of memory. 

The 8237A will respond to external EOP Signals during 
memory-to-memory transfers. Data comparators in 
block search schemes may use this input to terminate 
the service when a match is found. The timing of 
memory-to-memory transfers is found in Figure 12. 
Memory-to-memory operations can be detected as an 
active AEN with no DACK outputs. 

Autoinitialize-By programming a bit in the Mode register, a 
ichannel may be set up as an Autoinitialize channel. During 
jAutoinitialize initialization, the original values of the Current 
Address and Current Word Count registers are automatically 
restored from the Base Address and Base Word count register:. 
of that channel following EOP. The base registers are loaded 

. simultaneously with the current registers by the micropro­
cessor and remain unchanged throughout the DMA service. 
The mask bit is not altered when the channel is in Autoinitialize. 
Following Autoinitialize the channel is ready to perform 
another DMA service, without CPU intervention, as soon as a 
valid DREQ is detected. In order to Autoninitialize both chan­
nels in a memory-to-memory transfer, both word counts should 
be programmed identically. If interrupted externally, EOP 
pulses should be applied in both bus cycles. 

Priority-The 8237 A has two types of priority encoding avail­
able as software selectable options. The first is Fixed Priority 

which fixes the channels in priority order based upon the 
descending value of their number. The channel with the lowest 
priority is 3 followed by 2, 1 and the highest priority channel, 
O. After the recognition of anyone channel for service, the 
other channels are prevented from interferring with that ser­
vice until it is completed. 

The second scheme is Rotating Priority. The last chan­
nel to get service becomes the lowest priority channel 
with the others rotating accordingly. 

highest 

lowest 

lsi 
Service 

2nd 
Service 

3rd 
Service 

o 2 ..- service \3 -..- service 
, 1..- service \ 3 ~ request 0 

2 ,0 1 
3 1 2 

With Rotating Priority in a single chip DMA system, any 
device requesting service is guaranteed to be recog­
nized after no more than three higher priority services 
have occurred. This prevents anyone channel from 
monopolizing the system. 

Compressed Timing - In order to achieve even greater 
throughput where system characteristics permit, the 
8237A can compress the transfer time to two clock 
cycles. From Figure 11 it can be seen that state S3 is 
used to extend the access time of the read pulse. By 
removing state S3, the read pulse width is made equal to 
the write pulse width and a transfer consists only of 
state 82 to change the address and state 84 to perform 
the read/write. Sl states will still occur when A8-A15 
need updating (see Address Generation). Timing for 
compressed transfers is found in Figure 14. 

Address Generation - In order to reduce pin count, the 
8237A multiplexes the eight higher order address bits 
on the data lines. State Sl is used to output the higher 
order address bits to an external latch from which they 
may be placed on the address bus. The falling edge of 
Address Strobe (ADSTB) is used to load these bits from 
the data lines to the latch. Address Enable (AEN) is used 
to enable the bits onto the address bus through a three­
state enable. The lower order address bits are output by 
the 8237A directly. Lines AO-A7 should be connected to 
the address bus. Figure 11 shows the time relationships 
between ClK, AEN, ADSTB, DBO-DB7 and AO-A7. 

During Block and Demand Transfer mode services, 
which include multiple transfers, the addresses gener­
ated will be sequential. For many transfers the data held 
in the external address latch will remain the same. This 
data need only change when a carry or borrow from A7 
to A8 takes place in the normal sequence of addresses. 
To save time and speed transfers, the 8237A executes 
S1 states only when updating of A8-A15 in the latch is 
necessary. This means for long services, Sl states and 
Address Strobes may occur only once every 256 trans­
fers, a· savi ngs of 255 clock cycles for each 256 
transfers. 

2-56 



8237 A/8237 A-4/8237 A-5 

REGISTER DESCRIPTION 

Current Address Register - Each channel has a 16-bit 
Current Address register. This register holds the value 
of the address used during DMA transfers. The address 
is automatically incremented or decremented after each 
transfer and the intermediate values of the address are 
stored in the Current Address register during the trans­
fer. This register is written or read by the micro­
processor in successive 8-bit bytes. It may also be reini­
tialized by an Autoinitialize back to its original value. 
Autoinitialize takes place only after an EOP. 

Current Word Register - Each channel has a 16-bit Cur­
rent Word Count register. This register determines the 
number of transfers to be performed. The actual number 
of transfers will be one more than the number pro­
grammed in the Current Word Count register (I.e., pro­
gramming a count of 100 will result in 101 transfers). The 
word count is decremented after each transfer. The 
intermediate value of the word count is stored in the reg­
ister during the transfer. When the value in the register 
goes from zero to FFFFH, a TC will be generated. This 
register is loaded or read in successive B-bit bytes by 
the microprocessor in the Program Condition. Follow­
ing the end of a DMA service it may also be reinitialized 
by an Autoinitialization back to its original value. Auto­
initialize can occur only when an EOP occurs. If it is not 
Autoinitialized, this register will have a count of FFFFH 
after TC. 

Base Address and Base Word Count Registers - Each 
channel has a pair of Base Address and Base Word 
Count registers. These 16-bit registers store the original 
value of their associated current registers. During Auto­
initialize these values are used to restore the current 
registers to their original values. The base registers are 
written simultaneously with their corresponding current 
register in 8-bit bytes in the Program Condition by the 
microprocessor. These registers cannot be read by the 
microprocessor. 

Command Register - This 8-bit register controls the 
operation of the 8237A. It is programmed by the micro­
processor in the Program Condition and is cleared by 
Reset or a Master Clear instruction. The following table 
lists the function of the command bits. See Figure 6'for 
address coding. 

Mode Register - Each channel has a 6-bit Mode regis­
ter associated with it. When the register is being written 
to by the microprocessor in the Program Condition, bits 
o and 1 determine which channel Mode register is to be 
written. . 

Request Register - The 8237A can respond to requests 
for DMA service which are initiated by software as well 
as by a DREQ. Each channel has a request bit associ­
ated with it in the 4-bit Request register. These are non­
maskable and subject to prioritization by the Priority 
Encoder network. Each register bit is set or reset sepa-

2-57 

Command Register 
7654321 o _Bit Number 

I I I I I I I I I 
Y 

-{ 
f 
I 

r 
I 
I 
I 

r 
I 

.1 
I 

f 
I 

Mode Register 

o Memory-tOomemory disable 
Memory-ta-memory enable 

o Channel 0 address hold disable 
1 Channel 0 address hold enable 
X IfbitO=O 

o Controller enable 
1 Controller disable 

o Normal timing 
1 Compressed timing 
X If bit 0=1 

o Fixed priority 
1 Rotating priority 

o Late write selection 
1 Extended write selection 
X If bit 3=1 

o DREQ sense active high 
DREQ sense active low 

o DACK sense active low 
1 DACK sense active high 

7 6 5 4 3 2 1 0 ___ BII Number 

I I I I I I I -- ~~l1 

I 
I 

f 
I 

J 
l 

Request Register 

00 Channel 0 select 
01 Channell select 
10 Channel 2 select 
11 Channel 3 select 

00 Verify transler 
01 Write transfer 
10 Read transfer 
11 Illegal 
XX If bits 6 and 7 = 11 

o Autoinitialization disable 
1 AutOinitialization enable 

o Address increment select 
1 Address decrement select 

00 Demand mode select 
01 Single mode select 
10 BloCk mode select 
11 Cascade mode select 

7 6 5 4 3 2 1 0 ___ Bit Number 

Select channel a 
Don't Care Select channel 1 

Select channel 2 
Select channel 3 

Reset request bit 
1 Set requesl bit 

rately under software control or is cleared upon genera­
tion of a TC or external EOP. The entire register is 
cleared by a Reset. To set or reset a bit, the software 
loads the proper form of the data word. See Figure 5 for 
register address coding, In order to make a software re­
quest, the channel must be in Block Mode. 



8237 A/8237 A-4/8237 A-5 

Mask Register - Each channel has associated with it a 
mask bit which can be set to disable the incoming 
DREQ. Each mask bit is set when its associated channel 
produces an EOP if the channel is not programmed for 
Autoinitialize. Each bit of the 4-bit Mask register may 
also be set or cleared separately under software control. 
The entire register is also set by a Reset. This disables 
all DMA requests until a clear Mask register instruction 
allows them to occur. The instruction to separately set 
or clear the mask bits is similar in form to that used with 
the Request register. See Figure 5 for instruction ad­
dressing. 

,-.--,-'--,,--,.,--,--'-,ro,- Bit Number 

Don't Care 
Select channel 0 mask bit 
Select channell mask bit 
Select channel 2 mask bit 
Select channel 3 mask bit 

Clear mask bit 
Set mask bit 

All four bits of the Mask register may also be written 
with a single command. 

7 6 5 4 3 2 1 O_BItNumber 

Reglste. 

Command 
Mode 
Request 
Mask 
Mask 
Temporary 
Status 

o Clear channel 0 mask bit 
Set channel 0 mask bit 

Clear channell mask bit 
Set channell mask bit 

'----l 0 Clear channel 2 mask bit 
Set channel 2 mask bit 

Operation 
Signals 

CS lOR lOW A3 A2 Al 

Write 0 1 0 1 0 0 
Write 0 1 0 1 0 1 
Write 0 1 0 1 0 0 
Sell Reset 0 1 0 1 0 1 
Write 0 1 0 1 1 1 
Read 0 0 1 1 1 0 
Read 0 0 1 1 0 0 

Figure 5. Definition of Register Codes 

AO 

0 
1 
1 
0 
1 
1 
0 

Status Register - The Status register is available to be 
read out of the 8237A by the microprocessor. It contains 
information about the status of the devices at this point. 
This information includes which channels have reached 
a terminal count and which channels have pending DMA 
requests. Bits 0-3 are set every time a TC is reached by 
that channel or an external EOP is applied. These bits 
are cleared upon Reset and on each Status Read. Bits 
4-7 are set whenever their corresponding channel is 
requesting service. 

2-58 

7 6 5 4 3 2 1 O_BItNumber 

ll_Llll.11J 

1 l 
Channel 0 has reached TC 
Channel 1 has reached TC 
Channel 2 has reached TC 
Channel 3 has reached TC 

Channel 0 request 
Channell request 

1 Channel 2 request 
1 Channel 3 request 

Temporary Register - The Temporary register is used 
to hold data during memory-to-memory transfers. Fol­
lowing the completion of the transfers, the last word 
moved can be read by the microprocessor in the Pro­
gram Condition. The Temporary register always con­
tains the last byte transferred in the previous memory­
to-memory operation, unless cleared by a Reset. 

Software Commands-These are additional special software 
commands which can be executed in the Program Condition. 
They do not depend on any specific bit pattern on the data 
bus. The three software commands are: 

Clear First/Last Flip-Flop: This command is executed 
prior to writing or reading new address or word count 
information to the 8237A. This initializes the flip-flop 
to a known state so that subsequent accesses to reg­
ister contents by the microprocessor will address 
upper and lower bytes in the correct sequence. 

Master Clear: This software instruction has the same 
effect as the hardware Reset. The Command, Status, 
Request, Temporary, and Internal FirstlLast Flip-Flop 
registers are cleared and the Mask register is set. The 
8237A will enter the Idle cycle. 

Clear Mask Register: This command clears the mask 
bits of all four channels, enabling them to accept 
DMA requests. 

Figure 6 lists the address codes for the software com­
mands: 

Signaia 

A' A2 Al AO lOR lOW Operation 

1 0 0 0 0 1 Read Status Register 

1 0 0 0 1 0 Write Command Register 

1 0 0 1 0 1 Illegal 

1 0 0 1 1 0 Write Request Register 

1 0 1 0 0 1 Illegal 

1 0 1 0 1 0 Write Single Mask Register Bit 

1 0 1 1 0 1 Illegal 

1 0 1 1 1 0 Write Mode Register 

1 1 0 0 0 1 Illegal 

1 1 0 0 1 0 Clear Byte Pointer Flip/Flop 

1 1 0 1 0 1 Read Temporary Register 

1 1 0 1 1 0 Master Clear 

1 1 1 0 0 1 Illegal 

1 1 1 0 1 0 Clear Mask Register 

1 1 1 1 0 1 Illegal 

1 1 1 1 1 0 Write All Mask Regjs~er Bits 

Figure 6. Software Command Codes 



8237 A/8237 A-4/8237 A-5 

Channel Register Operation 
Signals 

Internal Fllp·Flop 
CS lOR lOW A3 A2 At AO 

0 Base and Current Address Write 0 , 0 0 0 0 0 0 
0 , 0 0 0 0 0 , 

Current Address Read 0 0 , 0 0 0 0 0 
0 0 , 0 0 0 0 , 

Base and Current Word Count Write 0 , 0 0 0 0 , 0 
0 , 0 0 0 0 , , 

Current Word Count Read 0 0 , 0 0 0 1 0 
0 0 , 0 0 0 , , 

, Base and Current Address Write 0 , 0 0 0 , 0 0 
0 , 0 0 0 , 0 , 

Current Address Read 0 0 , 0 0 , 0 0 
0 0 , 0 0 , 0 , 

Base and Current Word Count Write 0 , 0 0 0 , , 0 
0 , 0 0 0 , , , 

Current Word Count Read 0 0 , 0 0 , , 0 
0 a , 0 0 , , , 

2 Base and Current Address Write 0 , 0 0 , 0 0 0 
0 , 0 0 , 0 0 , 

Current Address Read 0 0 , 0 , 0 0 0 
0 0 , 0 , 0 0 , 

Base and Current Word Count Write 0 , 0 0 , 0 1 0 
0 , 0 0 , 0 , , 

Current Word Count Read 0 0 , 0 , 0 , 0 
0 0 , 0 , 0 , , 

3 Base and Current Address Write 0 , 0 0 , , 0 0 

I 
0 , 0 0 1 , 0 , 

Current Address Read 0 0 , 0 , , 0 0 

w""lL: 
, 0 , , 0 , 

Base and Current Word Count 

I 
0 0 , , , 0 

o , 0 0 , , , , 
Current Word Count Read 0 0 , 0 , , , 0 

I o 0 , 0 , , , , 
Figure 7. Word Count and Address Register Command Codes 

PROGRAMMING 

The 8237A will accept programming from the host proc· 
essor any time that HLDA is inactive; this is true even if 
HRQ is active. The responsibility of the host is to assure 
that programming and HLDA are mutually exclusive. 
Note that a problem can occur if a DMA request occurs, 
on an unmasked channel while the 8237A is being pro­
grammed. For instance, the CPU may be starting to 
reprogram the two byte Acjdress register of channel 1 
when channel 1 receives a DMA request. If the 8237A is 
enabled (bit 2 in the command register is 0) and channel 
1 is unmasked, a DMA service will occur after only one 
byte of the Address register has been reprogrammed. 
This can be avoided by disabling the controller (setting 
bit 2 in the command register) or masking the channel 
before programming any other registers. Once the pro­
gramming is complete, the controller can be enabled/un­
masked. 

After power-up it is suggested that all internal locations, 
especially the Mode registers, be loaded with some 
valid value. This should be done even if some channels 
are unused. 

2-59 

Data Bus DBO-DB7 

AO-A? 
AB-A'5 

AO-A? 
AS-A'5 

WO-W? 
WB-W'5 

WO-W? 
WB-W'5 

AO-A? 
A8-A'5 

AO-A? 
AS-A' 5 

WO-W? 
W8-W'5 

WO·W7 
W8-W'5 

--
AO-A? 
A8-A'5 

AO-A? 
AS-A,5 

WO-W7 

I W8-W'5 

WO-W? 
W8-W'5 --
AO-A? 
AS-A,5 

AO-A? 
A8-A'5 

WO-W? 
W8-W'5 

WO-W? 

L __ V'J~I,\'~~ ____ 



inter 8237 A/8237A-4/8237 A-5 

APPLICATION INFORMATION 

Figure 8 shows a convenient method for configuring a 
DMA system with the 8237A controller and an 8080AI 
8085AH microprocessor system. The multimode DMA 
controller issues a HRQ to the processor whenever 
there is at least one valid DMA request from a peripheral 
device. When the processor replies with a HLDA signal, 
the 8237 A takes control of the address bus, the data bus 
and the control bus. The address for the first transfer 

operation comes out in two bytes '- the least signifi­
cant 8 bits on the eight address outputs and the most 
significant 8 bits on the data bus_ The contents of the 
data bus are then latched into the 8282 8-bit latch to 
complete the full 16 bits of the address bus. The 8282 is 
a high speed, 8-bit, three-state latch in a 20-pin package. 
After the initial transfer. takes place, the latch is updated 
only after a carry or borrow is generated in the least sig­
nificant address byte. Four DMA channels are provided 
when one 8237A is used. 

ADDRESS BUS AO-AIS 

AO-AIS 
BUSEN 

HLDA HLDA 

HOLD HRQ 

CPU 

CLOCK 

RESET 

MEMR 

MEMW 

lOR 

lOW 

080-087 

-" ... 

... ;.-

-" ... -" 

j---- _ ..... 

I 
..... 

... ;.- 1 
AEN AO-A3 A4-A7 CS ADSTB 

8237A 

~ 
~ 

t-

I~ Ii ~ w a 
~ '" I~ ~ 

w " w a: is " a: 0 

! J 1414 

SYSTEM DATA BUS 

Figure 8_ 8237A System Interface 

2-60 

DBO-
DB7 

.., r 

A8~A15 

OE 
8282 

STB 

8·BITLATCH 

~ f'" 

A ..II 

~ y 

1-" BUS 

... 7 .}.. 

, 



inter 8237 A/8237 A-4/8237 A-5 

ABSOLUTE MAXIMUM RATINGS· 

AmbientTemperature under Bias ......... O·C to 70·C 
Storage Temperature ............. -65·Cto + 150·C 
Voltage on any Pin with 

Respect to Ground .................... - 0.5 to 7V 
Power Dissipation ......................... 1.5 Watt 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (T A = ODC to 70°C, Vcc = 5.0V ±5%, GND = OV) 

Symbol Parameter Min. I Typ.(1) Max. Unit Test Conditions 

VOH Output High Voltage 2.4 V IOH = -200 flA 

3.3 V IOH = -100 11A (HF1Q Only) _.-r--.----' r----- r---------'--'-' 
VOL Output LOW Voltage I 40 V IOL = 2.0mA (data Bus. E 

~ 
OP) 
s) IOL = 3.2mA (other output 

IOL = 2.5mA (ADSTB) (Not e 8) 

VIH Input HIGH Voltage 2.0 Vcc+O,5 V (Note 8) 

VIL Input LOW Voltage 

I 
-0.5 0.8 V 

-- -----r-----r----" 
III Input Load Current "'10 iJ.A OV s VIN <C Vcc 

ILO Output Leakage Current 10 flA r--0.45V s VOUT S Vcc , --
Icc VccSupply Current 110 130 mA TA = +25°C 

130 150 rnA TA = DoC 

Co Output Capacitance 4 8 pF 

C1 Input CapaCitance 8 15 pF Ic = 1.0 MHz, Inputs OV 

ClO 1/0 Capacitance 10 18 pF 
,---

NOTES: 
1. Typical values are for TA = 25 c C, nominal supply voltage and nominal processing parameters. 

2. Input timing parameters assume transition times fo 20 ns or less. Waveform measurement points for both input and output signals are 2.0V for HIGH 
and O.8V for LOW, unless otherwise noted. 

3. Output loading is 1 TTL gate plus 150pF capacitance, un,less otherwise noted 

4. The net lOW or MEMW Pulse width for normal write will be TCY-100 ns and for extended write will be 2TCY-100 ns. The net lOR or MEMR puise 
width for normal read will be 2TCY-50 ns and for comoressed read will be TCY-50 ns 

5. TOO is specified for two different output HIGH levels. T001 is measured at 2.0V. TDQ2 is measured at 3.3V. The value for TDQ2 assumes an 
external 3.3KO pull-up resistor connected from HRQ to Vee. 

6. DREO should be held active until DACK is returned. 

DREQ and DACK signals may be active high or active low. Timing diagrams assume the active high mode. 

8. The values of VOL and V1H nave been changed from the 1985 specification to allow more design margin 

9. Successive read andlor write operations by the external processor to program or examine the controller must be timed to allow at least 600 ns for the 
8237 A, at least 500 ns forthe 8237A-4 and at least 400 ns for the 8237 A-5, as recovery time between active read orwrite pulses. The same recovery time is 
needed between an active read or write pulse followed by a DMA transfer 

10. EOP is an open collector output. This parameter assumes the presence of a 2.2K pullup to Vcc. 

11 Pin 5 is an input that should always be at a logic high level. An internal pull-up resistor will establish a logic high wilen the pin is left floating it IS 

recommended however, that pin 5 be tied to Vee 

12. Output Loading on the Data Bus is ITTL Gate plus 100pF capacitance 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUTIOUTPUT I 
:~=X::>~M,"'< :c 
A,C, TESTING: INPUTS ARt::: DRIVEN AT 2.4V FOR A LOGIC 1" .A.ND 0 45V FOR 
A LOGIC '0." TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A lOGIC 1 
AND Q,BV FOR A LOGIC "0, ' lNote 2) 

2-61 



inter 8237 A/8237 A-4/8237 A-5 

A.C. CHARACTERISTICS-DMA (MASTER) MODE (TA=O'C to 70'C, 
Vee= +5V:l:5%, GND=OV) 

8237A 8237A-4 8237A-5 
Symbol Parameter Min. Max. Min. Max. Min. Max. Unit 

TAEl AEN HIGH from ClK lOW (Sl) Delay Time 300 225 200 ns 

TAET AEN lOW from ClK HIGH (SI). Delay Time 200 150 130 ns 

TAFAB ADR Active to Float Delay from ClK HIGH 150 120 90 ns 

TAFC READ or WRITE Float from ClK HIGH 150 120 120 ns 

TAFDB DB Active to Float Delay from ClK HIGH 250 190 170 ns 

TAHR ADR from READ HIGH Hold Time TCY-l00 TCY-l00 .rCY-l00 ns 

TAHS DB from ADSTB lOW Hold Time 40 40 30 ns 

TAHW ADR from WRITE HIGH Hold Time TCY-50 TCY-50 TCY-50 ns 

DACK Valid from ClK lOW Delay Time (Note 7) 250 220 170 ns 

TAK EOf5 HIGH from elK HIGH Delay Time (Note 10) 250 190 170 ns 

EOP lOW from elK HIGH Delay Time i 250 190 170 ns 

TASM ADR Stable from ClK HIGH ! 250 190 170 ns 

TA&S DB to ADSTB lOW Setup Time 100 100 100 ns 

TCH Clock High Time (Transitions", 10 ns) 120 100 80 ns 

TCl Clock lOW Time (Transitions'" 10 ns) 150 110 68 ns 

TCY ClK Cycle Time 320 250 200 ns 

TOCL ClK HIGH to READ or WRITE lOW Delay (Note 4) 270 200 190 ns 

TOCTR READ HIGH from ClK HIGH (S4) Delay Time I 

(Note 4) I 270 210 190 ns 

TOCTW WRITE HIGH from ClK HIGH (S4) Delay Time 
{Note 4) 200 150 130 ns 

TOOl 160 120 120 ns 
HRO Valid from elK HIGH Delay Time (Note 5) 

TOO2 250 190 120 ns 

TEPS EOP lOW from ClK lOW Setup Time 60 45 40 ns 

TEPW EOP Pulse Width 300 225 220 ns 

TFAAB ADR Float to Active Delay from ClK HIGH 250 190 170 ns 

TFAC READ or WRITE Active from ClK HIGH 200 150 150 ns 

TFADB DB Float to Active Delay from ClK HIGH 300 225 200 ns 

THS HlDA Valid to ClK HIGH Setup Time 100 75 75 ns 

TIDH Input Data from MEMR HIGH Hold Time 0 0 0 ns 

TIDS Input Data to MEMR HIGH Setup Time 250 190 170 ns 

TODH Output Data from MEMW HIGH Hold Time 20 20 10 ns 

TODV Output Data Valid to MEMW HIGH 200 125 125 ns 

TOS DREO to ClK LOW (SI, S4) Setup Time (Note 7) 0 0 0 ns 

TRH ClK to READY lOW HOldTime 20 20 20 ns 

TRS READY to ClK lOW Setup Time 100 60 60 ns 

TSTl ADSTB HIGH from ClK HIGH Delay Time 200 150 130 ns 

TSTT ADSTB lOW from ClK HIGH Delay Time 140 110 90 ns 

2-62 



8237 A/8237 A-4/8237 A-5 

A.C. CHARACTERISTICS-PERIPHERAL (SLAVE) MODE (TA = O°C to 70°C, VCC = 5.0V ±5%, 
GND = OV) 

Symbol Parameter 8237A 8237A·4 8237A-S 'Unit 
Min. Max. Min. Max. Min. Max. 

TAR ADRValid or CS LOW to READ LOW 50 50 50 ns 

TAW ADR Valid to WRITE HIGH Setup Time 200 150 130 ns 

TCW CS LOW to WRITE HIGH Setup Time 200 150 130 ns 

TDW Data Valid to WRITE HIGH Se1up Time 200 150 130 ns 

TRA ADR or CS Hold from READ HIGH 0 0 0 ns 

TRDE Data Access from READ LOW (Note 12) 200 200 140 ns 

TRDF DB Float Delay from READ HIGH 20 100 20 100 0 70 ns 

TRSTD Power Supply HIGH to RESET LOW Setup Time 500 500 500 ns 

TRSTS RESET to First IOWR 2TCY 2TCY 2TCY ns 

TRSTW RESET Pulse Width 300 300 300 ns 

TRW READWidth 300 250 200 ns 

TWA ADR from WRITE HIGH Hold Time 20 20 20 os 

TWC CS HIGH from WRITE HIGH Hold Time 20 20 20 ns 

TWD Data from WRITE HIGH Hold Time 30 30 30 ns 

TWWS Write Width 200 200 160 Q~ 

WAVEFORMS 

SLAVE MODE WRITE TIMING 

- TCW 

.i 
- ~TWC 

I j (NOTE 9) 
TWWS 

I 

- -TWA 
TAW 

AO-A3 =:J INPUT VALID 

- -TWO 
TOW 

OBO-DB7 =>- INPUT VALID K 
Figure 9. Slave Mode Write 

SLAVE MODE READ TIMING 

AO-A3 ~~ ___ ~-------A-D-DR-E-SS-M-U-S-T-B-E-VA-L-ID-----------~K~ ______ __ 

I--TAR_1 t RA 
_ ------------TRW __________ (NOTES) 

lOR 

-----------------------------------
r--------- TRDE ---------1 TRDF 

DBO-DB7 -----------------________ ~ DATA OUT VALID 
Figure 10. Slave Mode Read 

2-63 



8237 A/8237 A-4/8237 A-5 

WAVEFORMS (Continued) 

DMA TRANSFER TIMING 

elK~' I • I· · ~rlrltrttt~:A~ ~\.f · ~ 
=- I, I -1':-'"- -'" ----~ f__o> 

OREO I----+-+-+-+-+---t-"\'-,\"yml:; \,-7'''l.l \,~,\:\'-,-S'"""~S,,~~(rNO_TE_6)-+-+-+-___ _ 

HRO . TOO_ FI---++-+--+--+--+--+--+--+i -+---+II-TOO---hil'fl---+i ____ _ 

THS __ - 'i 

":~ ,/LLJ ''''-b1-+--+-! _+-' -t-I +--+1_-+----+--+~_\AETh~ \ \ \ \ \ \ \ 
-----1',f-----{V' -1 25'T Iii I 'I 1'-, ---

TSTLI-~ T I-r i I 

TFA08 ~f~~r-~l+~liH-S ---t-t-'--I--+-I, -+-+~-AK;+------
080-087 -----\"I-----+~~~SJtTA:F08 

TFAASr--r I I I I r TAHW 

- I·~TAFAB 

1-

AOMA7 -.----\.,I------+-K:!=jAD~DR~ESS~VA~"D!t:!)tj,~A~DDR~.SS~VA~"Dt1!1----:--
-f- ·TAHR r-TAHR 

DACK j 
TFACf--- I TOCl TOCTR ~ TDCTR I-- ___ ___ TAFC 

iOR, •• MR. ____ -\,I-------'fIr-------..-, ~ r-,}--___ _ 

~--+-K ~-+--r; 
~ TDeTW 7OCTWI-

"I--~~--f-~'~~ORE-~'.NDEDWRITV ~~~ 
iOW_ MEMW 

----,---\ 

,..-------
TEPWH _f=-~_f 

~~-----~\\-------~\~~~~\~~~~\~~~\~~l rlllllllilifl 

INT~ 

Figure 11. DMA Transfer 

2-64 



inter 8237 A/8237 A-4/8237 A-5 

WAVEFORMS (Continued) 

MEMORY-TO-MEMORY TRANSFER TIMING 

ADSTB 

AO-A7 

DBO-DB7 

Figure 12. Memory·lo·Memory Transfer 

READY TIMING 

elK 

Toel 

roel 

READY 

EXTENDED~ 
WRITE T~~H ~II~~ ~ ~'"' 

~\\rT""'~r..-\r"t"""\\ \r"t"""\'r""r'\\\ mt 
Figure 13. Ready 

2-65 



intJ 8237 A/8237 A-4/8237 A-5 

WAVEFORMS (Continued) 

COMPRESSED TRANSFER TIMING 

Figure 14. Compressed Transfer 

RESET TIMING 

~c ______ ~~ri~~~~~~~~~~~~~~~-T-R-'T-D-_-_-_-_-_-_-_-_--__ -_-_-_-_-_-_-_-------~I,~'--------------

_______ ~F. ___ TRST_W~== 
RESET . 

IOROR lOW 

Figure 15. Reset 

2-66 



• 
• 
• 
• 
• 
• 
• 
• 

82C37A-5 
CHMOS HIGH PERFORMANCE 

PROGRAMMABLE DMA CONTROLLER 
Pin Compatible with NMOS 8237 A-5 • Directly Expandable to any Number of 

Enable/Disable Control of Individual Channels 

DMA Requests • End of Process Input for Terminating 

Four Independent DMA Channels Transfers 

Independent Autoinitialization of all • Software DMA Requests 

Channels • Independent Polarity Control for DREQ 

Memory-to-Memory Transfers and DACK Signals 

Memory Block Initialization • Will Be Available in 40-Lead Plastic DIP 
and 44-Lead PLCC Packages 

Address Increment or Decrement (See Packaging Spec., Order #231369) 

High performance: 5 MHz Speed 
Transfers up to 1.6 MBytes/Second 

The Intel B2C37A-5 Multimode Direct Memory Access (DMA) Controller is a CHMOS peripheral interface 
circuit for microprocessor systems. It is designed to improve system performance by allowing external devices 
to directly transfer information from the system memory. Memory-to-memory transfer capability is also provid­
ed. The B2C37 A-5 offers a wide variety of programmable control features to enhance data throughput and 
system optimization and to allow dynamic reconfiguration under program control. 

The B2C37 A-5 is designed to be used in conjunction with an external 8-bit address register. It contains four 
independent channels and may be expanded to any number of channels by cascading additional controller 
chips. 

The three basic transfer modes allow programmability of the types of DMA service by the user. Each channel 
can be individually programmed to Autoinitialize to its original condition following an End of Process (EOP). 

Each channel has a full 64K address and word count capability. 

The 82C37 A-5 will not be available from Intel until 2nd half 1986. 

CLOCK; 

.eN 

Figure 1. Block Diagram 

COMMAND 
CONTROL 

tl08UFFER 

080-087 

231202-1 

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product No other circuit patent 
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. November 1985 
@ Intel Corporation, 1985 2-67 Order Number: 231202-002 



inter 82C37A-5 

lOR A7 

lOW A6 

MEMR AS 

MEMW A4 

(NOTE 11) ~ 

READY A3 

HlDA A2 

ADST8 Al 

AEN AD 

HRO VCc(+ 5V) 

OS DBD 

ClK 081 

RESET DB2 

DACK2 DB3 

DACK3 084 

DREQ3 DACKD 

DREQ2 DACKl 

DREQl DBS 

DREQD DB6 

(GND) V" DB7 

231202-2 

Figure 2a. 8237 A 
40-Lead DIP Configuration 

b 
u I~ I~ ..: 

I~ I~ ..... CD -t Is .., oJ) 

'" z ::f ..: ..: ..: ..: 

NC A3 
NC A2 

HlDA A1 
ADSTB AO 

AEN vee 
HRQ DBO 

cs DB1 

ClK DB2 
RESET DB3 

DACK2 DB4 

NC NC 

... ... N (; 0 0 ..... CD oJ) ;;;: 0 

'" 0 0 0 z m m m '" u ..., .., ..., ..., C,!) 0 0 0 u u 
..: De De '" '" ..: ..: 
0 0 0 0 0 0 0 

231202-10 
Figure 2b. 8237 A 

44-Lead PLCC Pin Configuration 

2-68 



82C37A-5 

Table 1. Pin Description 

Symbol Type Name and Function 

Vee POWER: + 5 volt supply. 

VSS GROUND: Ground. 

ClK I CLOCK INPUT: Clock Input controls the internal operations of the 
82C37 A-5 and its rate of data transfers. The input may be driven at 
up to 5 MHz for the 82C37 A-5. 

CS I CHIP SELECT: Chip Select is an active low input used to select the 
82C37A-5 as an 110 device during the Idle cycle. This allows CPU 
communication on the data bus. 

RESET I RESET: Reset is an active high input which clears the Command, 
Status, Request and Temporary registers. It also clears the first/last 
flip-flop and sets the Mask register. Following a Reset the device is 
in the Idle cycle. 

READY I READY: Ready is an input used to extend the memory read and 
write pulses from the 82C37 A-5 to accommodate slow memories or 
I/O peripheral devices. Ready must not make transitions during its 
specified setup/hold time. 

HlDA I HOLD ACKNOWLEDGE: The active high Hold Acknowledge from 
the CPU indicates that it has relinquished control of the system 
busses. 

DREQO-DREQ3 I DMA REQUEST: The DMA Request lines are individual 
asynchronous channel request inputs used by peripheral circuits to 
obtain DMA service. In fixed Priority, DREQO has the highest priority 
and DREQ3 has the lowest priority. A request is generated by 
activating the DREQ line of a channel. DACK will acknowledge the 
recognition of DREQ signal. Polarity of DREQ is programmable. 
Reset initializes these lines to active high. DREQ must be 
maintained until the corresponding DACK goes active. 

DBO-DB7 I/O DATA BUS: The Data Bus lines are bidirectional three-state signals 
connected to the system data bus. The outputs are enabled in the 
Program condition during the I/O Read to output the contents of an 
Address register, a Status register, the Temporary register or a 
Word Count register to the CPU. The outputs are disabled and the 
inputs are read during an I/O Write cycle when the CPU is 
programming the 82C37 A-5 control registers. During DMA cycles 
the most significant 8 bits of the address are output onto the data 
bus to be strobed into an external latch by ADSTB. In memory-to-
memory operations, data from the memory comes into the 
82C37 A-5 on the data bus during the read-from-memory transfer. In 
the write-to-memory transfer, the data bus outputs place the data 
into the new memory location. 

lOR I/O 1/0 READ: I/O Read is a bidirectional active low three-state line. In 
the Idle cycle, it is an input control signal used by the CPU to read 
the control registers. In the Active cycle, it is an output control signal 
used by the 82C37 A-5 to access data from a peripheral during a 
DMA Write transfer. 

lOW I/O 1/0 WRITE: I/O Write is a bidirectional active low three-state line. 
In the Idle cycle, it is an input control signal used by the CPU to load 
information into the 82C37A-5. In the Active cycle, it is an output 
control signal used by the 82C37 A-5 to load data to the peripheral 
during a DMA Read transfer. 

2-69 



82C37A-5 

Table 1. Pin Description (Continued) 

Symbol Type Name and Function 

EOP 1/0 END OF PROCESS: End of Process is an active low bidirectional 
signal. Information concerning the completion of DMA services is 
available at the bidirectional EOP pin. The 82C37 A-5 allows an 
external signal to terminate an active DMA service. This is 
accomplished by pulling the EOP input low with an external EOP 
signal. The 82C37 A-5 also generates a pulse when the terminal 
count (TC) for any channel is reached. This generates an EOP 
signal which is output through the EOP Line. The reception of EOP, 
either internal or external, will cause the 82C37A-5 to terminate the 
service, reset the request, and, if Autoinitialize is enabled, to write 
the base registers to the current registers of that channel. The mask 
bit and TC bit in the status word will be set for the currently active 
channel by EOP unless the channel is programmed for 
Autoinitialize. In that case, the mask bit remains unchanged. During 
memory-to-memory transfers, EOP will be output when the TC for 
channel 1 occurs. EOP should be tied high with a pull-up resistor if it 
is not used to prevent erroneous end of process inputs. 

AO-A3 1/0 ADDRESS: The four least significant address lines are bidirectional 
three-state signals. In the Idle cycle they are inputs and are used by 
the CPU to address the register to be loaded or read. In the Active 
cycle they are outputs and provide the lower 4 bits of the output 
address. 

A4-A7 0 ADDRESS: The four most significant address lines are three-state 
outputs and provide 4 bits of address. These lines are enabled only 
during the DMA service. 

HRQ 0 HOLD REQUEST: This is the Hold Request to the CPU and is used 
to request control of the system bus. If the corresponding mask bit 
is clear, the presence of any valid DREQ causes 82C37 A-5 to issue 
the HRQ. After HRQ goes active at least one clock cycle (TCY) 
must occur before HLDA goes active. 

DACKO-DACK3 0 DMA ACKNOWLEDGE: DMA Acknowledge is used to notify the 
individual peripherals when one has been granted a DMA cycle. The 
sense of these lines is programmable. Reset initializes them to 
active low. 

AEN 0 ADDRESS ENABLE: Address Enable enables the 8-bit latch 
containing the upper 8 address bits onto the system address bus. 
AEN can also be used to disable other system bus drivers during 
DMA transfers. AEN is active HIGH. 

ADSTB 0 ADDRESS STROBE: The active high, Address Strobe is used to 
strobe the upper address byte into an external latch. 

MEMR 0 MEMORY READ: The Memory Read signal is an active low three-
state output used to access data from the selected memory 
location during a DMA Read or a memory-to-memory transfer. 

MEMW 0 MEMORY WRITE: The Memory Write is an active low three-state 
output used to write data to the selected memory location during a 
DMA Write or a memory-to-memory transfer. 

2-70 



inter 82C37A-5 

FUNCTIONAL DESCRIPTION 

The 82C37 A-5 block diagram includes the major log­
ic blocks and all of the internal registers. The data 
interconnection paths are also shown. Not shown 
are the various control signals between the blocks. 
The 82C37 A-5 contains 344 bits of internal memory 
in the form of registers. Figure 3 lists these registers 
by name and shows the size of each. A detailed 
description of the registers and their functions can 
be found under Register Description. 

Name Size Number 

Base Address Registers 16 bits 4 
Base Word Count Registers 16 bits 4 
Current Address Registers 16 bits 4 
Current Word Count Registers 16 bits 4 
Temporary Address Register 16 bits 1 
Temporary Word Count Register 16 bits 1 
Status Register B bits 1 
Command Register 8 bits 1 
Temporary Register 8 bits 1 
Mode Registers 6 bits 4 
Mask Register 4 bits 1 
Request Register 4 bits 1 

Figure 3. 82C37A-51nternal Registers 

The 82C37 A-5 contains three basic blocks of control 
logic. The Timing Control block generates internal 
timing and external control signals for the 82C37 A-5. 
The Program Command Control block decodes the 
various commands given to the 82C37 A-5 by the mi­
croprocessor prior to servicing a DMA Request. It 
also decodes the Mode Control word used to select 
the type of DMA during the servicing. The Priority 
Encoder block resolves priority contention between 
DMA channels requesting service simultaneously. 

The Timing Control block derives internal timing 
from the clock input. In 82C37A-5 systems this input 
will usually be the </>2 TTL clock from an 8224 or 
ClK from an 8085AH or 82C84A. For 8085AH-2 
systems above 3.9 MHz, the 8085 ClK(OUT) does 
not satisfy 82C37A-5 clock lOW and HIGH time re­
quirements. In this case, an external clock should be 
used to drive the 82C37 A-5. 

DMA Operation 

The 82C37 A-5 is designed to operate in two major 
cycles. These are called Idle and Active cycles. 
Each device cycle is made up of a number of states. 
The 82C37 A-5 can assume seven separate states, 
each composed of orie full clock period. State 1 (S1) 
is the inactive state. It is entered when the 
82C37 A-5 has no valid DMA requests pending. 
While in S1, the DMA controller is inactive but may 
be in the Program Condition, being programmed by 
the processor. State SO (SO) is the first state of a 
DMA service. The 82C37 A-5 has requested a hold 
but the processor has not yet returned an acknowl-

2-71 

edge. The 82C37 A-5 may still be programmed until it 
receives HlDA from the CPU. An acknowledge from 
the CPU will signal that DMA transfers may begin. 
S1, S2, S3 and S4 are the working states of the 
DMA service. If more time is needed to complete a 
transfer than is available with normal timing, wait 
states (SW) can be inserted between S2 or S3 and 
S4 by the use of the Ready line on the 82C37 A-5. 
Note that the data is transferred directly from the 
I/O device to memory (or vice versa) with lOR and 
MEMW (or MEMR and lOW) being active at the 
same time. The data is not read into or driven out of 
the 82C37A-5 in I/O-to-memory or memory-to-I/O 
DMA translers. 

Memory-to-memory transfers require a read-from 
and a write-to-memory to complete each transfer. 
The states, which resemble the normal working 
states, use two digit numbers for identification. Eight 
states are required for a single transfer. The first four 
states (S11, S12, S13, S14) are used for the read­
from-memory half and the last four states (S21 , S22, 
S23, S24) for the write-to-memory half of the transfer. 

IDLE CYCLE 

When no channel is requesting service, the 
82C37 A-5 will enter the Idle cycle and perform "S1" 
states. In this cycle the 82C37A-5 will sample the 
DREQ lines every clock cycle to determine if any 
channel is requesting a DMA service. The device will 
also sample CS, looking for an attempt by the micro­
processor to write or read the internal registers of 
the 82C37A-5. When CS is low and HlDA is low, the 
82C37 A-5 enters the Program Condition. The CPU 
can now establish, change or inspect the internal 
definition of the part by reading from or writing to the 
internal registers. Address lines AO-A3 are inputs to 
the device and select which registers will be read or 
written. The lOR and lOW lines are used to select 
and time reads or writes. Due to the number and size 
of the internal registers, an internal flip-flop is used 
to generate an additional bit of address. This bit is 
used to determine the upper or lower byte of the 16-
bit Address and Word Count registers. The flip-flop 
is reset by Master Clear or Reset. A separate soft­
ware command can also reset this flip-flop. 

Special software commands can be executed by the 
82C37 A-5 in the Program Condition. These com­
mands are decoded as sets of addresses with the 
CS and lOW. The commands do not make use of 
the data bus. Instructions include Clear First/last 
Flip-Flop and Master Clear. 

ACTIVE CYCLE 

When the 82C37 A-5 is in the Idle cycle and a non­
masked channel requests a DMA service, the device 



82C37A-5 

will output an HRQ to the microprocessor and enter 
the Active cycle. It is in this cycle that the DMA serv­
ice will take place, in one of four modes: 

Single Transfer Mode - In Single Transfer mode 
the device is programmed to make one transfer only. 
The word count will be decremented and the ad­
dress decremented or incremented following each 
transfer. When the word count "rolls over" from zero 
to FFFFH, a Terminal Count (TC) will cause an Auto­
initialize if the channel has been programmed to do 
so. 

DREQ must be held active until DACK becomes ac­
tive in order to be recognized. If DREQ is held active 
throughout the single transfer, HRQ will go inactive 
and release the bus to the system. It will again go 
active and, upon receipt of a new HLDA, another 
single transfer will be performed, in 8080A, 808SAH, 
80C88, or 80C86 system this will ensure one full ma­
chine cycle execution between DMA transfers. De­
tails of timing between the 82C37A-S and other bus 
control protocols will depend upon the characteris­
tics of the microprocessor involved. 

Block Transfer Mode - In Block Transfer mode 
the device is activated by DREQ to continue making 
transfers during the service until a TC, caused by 
word count going to FFFFH, or an external End of 
Process (EOP) is encountered. DREQ need only be 
held active until DACK becomes active. Again, an 
Autoinitialization will occur at the end of the service 
if the channel has been programmed for it. 

Demand Transfer Mode - In Demand Transfer 
mode the device is programmed to continue making 
transfers until a TC or external EOP is encountered 
or until DREQ goes inactive. Thus transfers may 
continue until the I/O device has exhausted its data 
capacity. After the I/O device has had a chance to 
catch up, the DMA service is re-established by 
means of a DREQ. During the time between services 
when the microprocessor is allowed to operate, the 
intermediate values of address and word count are 
.stored in the 82C37 A-S Current Address and Current 
Word Count. registers. Only an EOP can cause an 
Autoinitialize at the end of the service. EOP is gener­
ated either by TC or by an external signal. 

Cascade Mode - This mode is used to cascade 
more than one 82C37 A-S together for simple system 
expansion. The HRQ and HLDA signals from the ad­
ditional 82C37A-S are connected to the DREQ and 
DACKsignals of a channel of the initial 82C37A-S. 
This allows the DMA requests of the additional de­
vice to propagate through the priority network cir­
cuitry of the preceding device. The priority chain is 
preserved and the new device must wait for its turn 
to acknowledge requests. Since the cascade chan­
nel of the initial 82C37 A-S is used only for prioritizing 
the additional device, it does not output any address 

2-72 

or control signals of its own. These could conflict 
with the outputs of the active channel in the added 
device. The 82C37 A-S will respond to DREO and 
DACK but all other outputs except HRQ will be dis­
abled. The ready input is ignored. . 

Figure 4 shows two additional devices cascaded into 
an initial device using two of the previous channels. 
This forms a two level DMA system. More 
82C37 A-Ss could be added at the second level by 
using the remaining channels of the first level. Addi­
tional devices can also be added by cascading into 
the channels of the second level devices, forming a 
third level. 

2ND LEVEL 

MICROPROCESSOR 
1ST LEVEL 

82C37A·S 

-- HRO DREQ -- HRO 

r--- HLDA DACK J---- HLDA 

82C37A·5 

DREQ 1- HRO 

DACK J---- HLDA 

INITIAL. D~VICE 
82C37A-S 

ADDITIONAL 
DEVICES 

231202-3 

Figure 4. Cascaded 82C37A-5s 

TRANSFER TYPES 

Each of the three active transfer modes can perform 
three different types of transfers. These are Read, 
Write and Verify. Write transfers move data from and 
I/O device to the memory by activating MEMW and 
lOR. Read transfers move data from memory to an 
1/0 device by activating MEMR and lOW. Verify 
transfers are pseudo transfers. The 82C37 A-S oper­
ates as in Read or Write transfers generating ad­
dresses, and responding to EOP, etc. However, the 
memory and I/O control lines all remain inactive. 
The ready input is ignored in verity mode. 

Memory-to-Memory -To perform block moves of 
data from one memory address space to another 
with a minimum of program effort and time, the 
82C37 A-S includes a memory-to-memory transfer 
feature. Programming a bit in the Command register 
selects channels 0 to 1 to operate as memory-to­
memory transfer channels. The transfer is initiated 
by setting the software DREO for channel O. The 



82C37A·5 

82C37 A-5 requests a DMA service in the normal 
manner. After HlDA is true, the device, using four 
state transfers in Block Transfer mode, reads data 
frOm the memory. The channel 0 Current Address 
register is the source for the address used and is 
decremented or incremented in the normal manner. 
The data byte read from the memory is stored in the 
82C37A-5 internal Temporary register. Channel 1 
then performs a four-state transfer of the data from 
the Temporary register to memory using the address 
in its Current Address register and incrementing or 
decrementing it in the normal manner. The channel 
1 current Word Count is decremented. When the 
word count of channel...!...9.oes to FFFFH, a TC is 
generated causing an EOP output terminating the 
service. 

Channel 0 may be programmed to retain the same 
address for all transfers. This allows a single word to 
be written to a block of memory. 

The 82C37 A-5 will respond to external EOP signals 
during memory-to-memory transfers. Data compara­
tors in block search schemes may use this input to 
terminate the service when a match is found. The 
timing of memory-to-memory transfers is found in 
Figure 12. Memory-to-memory operations can be 
detected as an active AEN with no DACK outputs. 

Autoinitialize - By programming a bit in the Mode 
register, a channel may be set up as an Autoinitialize 
channel. During Autoinitialize initialization, the origi­
nal values of the Current Address and Current Word 
Count registers are automatically restored from the 
Base Address and Base Word count registers of that 
channel following EOP. The base registers are load­
ed simultaneously with the current registers by the 
microprocessor and remain unchanged throughout 
the DMA service. The mask bit is not altered when 
the channel is in Autoinitialize. Following Autoinitial­
ize the channel is ready to perform another DMA 
service, without CPU intervention, as soon as a valid 
DREQ is detected. In order to Autoinitialize both 
channels in a memory-to-memory transfer, both 
word counts should be programmed identically. If in­
terrupted externally, EOP pulses should be applied 
in both bus cycles. 

Priority - The 82C37 A-5 has two types of priority 
encoding available as software selectable options. 
The first is Fixed Priority which fixes the channels in 
priority order based upon the descending value of 
their number. The channel with the lowest priority is 
3 followed by 2, 1 and the highest priority channel, O. 
After the recognition of anyone channel for service, 
the other channels are prevented from interfering 
with that service until it is completed. 

The second scheme is Rotating Priority. The last 
channel to get service becomes the lowest priority 
channel with the others rotating accordingly. 

2-73 

highest 

lowest 

10t 
S.,.I •• 

2nd 
S<trY1 •• 

3rd 
5.,.1 •• 

o 2 ..- service \3..- service 
1..-service, 3.-request 0 

2 ,0 1 
3 1 2 

231202-4 

With Rotating Priority in a single chip DMA system, 
any device requesting service is guaranteed to be 
recognized after no more than three higher priority 
services have occurred. This prevents anyone 
channel from monopolizing the system. 

Compressed Ti'ming - In order to achieve even 
greater throughput where system characteristics 
permit, the 82C37 A-5 can compress the transfer 
time to two clock cycles. From Figure 11 it can be 
seen that state S3 is used to extend the access time 
of the read pulse. By removing state S3, the read 
pulse width is made equal to the write pulse width 
and a transfer consists only of state S2 to change 
the address and state S4 to perform the read/write. 
S1 states will still occur when A8-A15 need updat­
ing (see Address Generation). Timing for com­
pressed transfers is found in Figure 14. 

Address Generation - In order to reduce pin 
count, the 82C37A-5 multiplexes the eight higher or­
der address bits on the data lines. State S 1 is used 
to output the higher order address bits to an external 
latch from which they may be placed on the address 
bus. The falling edge of Address Strobe (ADSTB) is 
used to load these bits from the data lines to the 
latch. Address Enable (AEN) is used to enable the 
bits onto the address bus through a three-state en­
able. The lower order address bits are output by the 
82C37A-5 directly. Lines AO-A7 should be connect­
ed to the address bus. Figure 11 shows the time 
relationships between ClK, AEN, ADSTB, DBO­
DB7 and AO-A7. 

During Block and Demand Transfer mode services, 
which include multiple transfers, the addresses gen­
erated will be sequential. For many transfers the 
data held in the external address latch will remain 
the same. This data need only change when a carry 
or borrow from A7 to A8 takes place in the normal 
sequence of addresses. To save time and speed 
transfers, the 82C37A-5 executes 81 states only 
when updating of A8-A 15 in the latch is necessary. 
This means for long serviCes, S 1 states and Address 
Strobes may occur only once every 256 transfers, a 
savings of 255 clock cycles for each 256 transfers. 

REGISTER DESCRIPTION 

Current Address Register - Each channel has a 
16-bit Current Address register. This register holds 



inter 82C37A-5 

the value of the address used during DMA transfers. 
The address is automatically incremented or decre­
mented after each transfer and the intermediate val­
ues of the address are stored in the Current Address 
register during the transfer. This register is written or 
read by the microprocessor in successive 8-bit 
bytes. It may also be reinitialized by an Autoinitialize 
back to its original value. Autoinitialize takes place 
only after an EOP. 

Current Word Register - Each channel has a 16-
bit Current Word Count register. This register deter­
mines the number of transfers to be performed. The 
actual number of transfers will be one more than the 
number programmed in the Current Word Count reg­
ister (i.e., programming a count of 100 will result in 
101 transfers). The word count is decremented after 
each transfer. The intermediate value of the word 
count is stored in the register during the transfer. 
When the value in the register goes from zero to 
FFFFH, a TC will be generated. This register is load­
ed or read in successive 8-bit bytes by the micro­
processor in the Program Condition. Following the 
end of a DMA service it may also be reinitialized by 
an Autoinitialization back to its original value. Auto­
initialize can occur only when an EOP occurs. If it is 
not Autoinitialized, this register will have a count of 
FFFFH after TC. 

Base Address and Base Word Count Registers 
- Each channel has a pair of Base Address and 
Base Word Count registers. These 16-bit registers 
store the original value of their associated current 
registers. During Autoinitialize these values are used 
to restore the current registers to their original val­
ues. The base registers are written simultaneously 
with their corresponding current register in 8-bit 
bytes in the Program Condition by the microproces­
sor. These registers cannot be read by the micro­
processor. 

Command Register - This 8-bit register controls 
the operation of the 82C37 A-5. It is programmed by 
the microprocessor in the Program Condition and is 
cleared by Reset or a Master Clear instruction. The 
following table lists the function of the command 
bits. See Figure 6 for address coding. 

Mode Register - Each channel has a 6-bit Mode 
register associated with it. When the register is being 
written to by the microprocessor in the Program 
Condition, bits 0 and 1 determine which channel 
Mode register is to be written. 

Request Register - The 82C37 A-5 can respond to 
requests for DMA service which are initiated by soft­
ware as well as by a DREQ. Each channel has a 
request bit associated with it in the 4-bit Request 
register. These are non-maskable and subject to pri­
oritization by the Priority Encoder network. Each 

register bit is set or reset separately under software 
control or is cleared upon generation of a TC or ex­
ternal EOP. The entire register is cleared by a Reset. 
To set or reset a bit, the software loads the proper 
form of the data word. See Figure 5 for register ad-

2-74 

Command Register 
7 8 5 4 3 2 1 0 _BII Number 

I I I I " I I I 
Y 

-{ 
I 
I 

I 
\ 

I 
I 

f 
I 
I 

Mode Register 

o Memory-ta-memory disable 
1 Memory~to-memory enable 

o Channel 0 address hold disable 
1 Channel 0 address hold enable 
X Ifbil0=0 

o Conlroller enable 
1 Controller disable 

o Normal timing 
1 Compressed timing 
X If bil0=1 

o Fixed priority 
1 Rolating priority 

o Late write selection 
1 Extended write selection 
X If bit 3=1 

o DREQ sense active high 
1 CAEQ sense active low 

o OACK sense active low 
1 DACK sense active high 

7 8 5 4 3 2 1 0 _BII Number 

I I I I I I I I 
-,-- -r-L{ 00 Channel 0 select 

01 Channell select 
10 Channel 2 select 
11 Channel 3 select 

Request Register 

I 

f 
l 

00 Verify transfer 
01 Write transfer 
10 Read transfer 
11 Illegal 
XX Ifbits6and7=11 

o Autoinitialization disable 
1 Autoinitialization enable 

o Address increment select 
1 Address decrement select 

00 Demand mode select 
01 Single mode select 
10 ~Iock mode select 
11 Cascade mode select 

'------I 0 Reset request bit 
1 Set request bit 

231202-5 



inter 82C37A-5 

dress coding. In order to make a software request, 
the channel must be in Block Mode. 

Mask Register - Each channel has associated 
with it a mask bit which can be set to disable the 
incoming DREQ. Each mask bit is set when its asso­
ciated channel produces an EOP if the channel is 
not programmed for Autoinitialize. Each bit of the 4-
bit Mask register may also be set or cleared sepa­
rately under software control. The entire register is 
also set by a Reset. This disables all DMA requests 
until a clear Mask register instruction allows them to 
occur. The instruction to separately set or clear the 
mask bits is similar in form to that used with the 
Request register. See Figure 5 for instruction ad­
dressing. 

7 6 5 4 3 2 1 0 _ Bit Number 

I I I I I I I 

231202-6 

All four bits of the Mask register may also be written 
with a single command. 

Register 

Command 
Mode 
Request 
Mask 
Mask 
Temporary 
Status 

a Clear channel 0 mask bit 
1 Set channel 0 mask bit 

o Clear channel 1 mask bit 
1 Set channel 1 mask bit 

Clear channel 2 mask bit 
Set channei 2 ma.sk bit 

'------{ ~ ;~~a~h~~~:~~ ~:~s~i~it 
231202-7 

Operation 
Signals 

CS lOR lOW A3 A2 A1 

Write 0 1 0 1 0 0 
Write 0 1 0 1 0 1 
Write 0 1 0 1 0 0 
Set/Reset 0 1 0 1 0 1 
Write 0 1 0 1 1 1 
Read 0 0 1 1 1 0 
Read 0 0 1 1 0 0 

Figure 5. Definition of Register Codes 

AO 

0 
1 
1 
0 
1 
1 
0 

2-75 

Status Register - The Status register is available 
to be read out of the 82C37 A·5 by the microproces­
sor. It contains information about the status of the 
devices at this point. This information includes which 
channels have reached a terminal count and which 
channels have pending DMA requests. Bits 0-3 are 
set every time a TC is reached by that channel or an 
external EOP is applied. These bits are cleared upon 
Reset and on each Status Read. Bits 4-7 are set 
whenever their corresponding channel is requesting 
service. 

1 Channel 0 has reached Te 
Channel 1 has reached Te 
Channel 2 has reached Te 
Channel 3 has reached TC 

~: 
1 

Channel a request 
Channel 1 request 
Channel 2 request 
Channel 3 request 

231202-8 

Temporary Register - The Temporary register is 
used to hold data during memory-to-memory trans­
fers. Following the completion of the transfers, the 
last word moved can be read by the microprocessor 
in the Program Condition. The Temporary register 
always contains the last byte transferred in the previ­
ous memory-to-memory operation, unless cleared 
by a Reset. 

Software Commands - These are additional spe­
cial software commands which can be executed in 
the Program Condition. They do not depend on any 
specific bit pattern on the data bus. The three soft­
ware commands are: 

Clear First/Last Flip-Flop: This command is exe­
cuted prior to writing or reading new address or 
word count information to the 82C37 A-5. This ini­
tializes the flip-flop to a known state so that subse­
quent accesses to register contents by the micro­
processor will address upper and lower bytes in 
the correct sequence. 

Master Clear: This software instruction has the 
same effect as the hardware Reset. The Com­
mand, Status, Request, Temporary, and Internal 
First/Last Flip-Flop registers are cleared and the 
Mask register is set. The 82C37 A-5 will enter the 
Idle cycle. 

Clear Mask Register: This command clears the 
mask bits of all four channels, enabling them to 
accept DMA requests. 



82C37A·5 

Figure 6 lists the address codes for the software 
commands: 

PROGRAMMING 

Signals 

A3 A2 A1 AO 

1 0 0 0 

1 0 0 0 

1 0 0 1 

1 0 0 1 

1 0 1 0 

1 0 1 0 

1 0 1 1 

1 0 1 1 

1 1 0 0 

1 1 0 0 

1 1 0 1 

1 1 0 1 

1 1 1 0 

1 1 1 0 

1 1 1 1 

1 1 1 1 

lOR lOW 
0 1 

1 0 

0 1 

1 0 

0 1 

1 0 

0 1 

1 0 

0 1 

1 0 

0 1 

1 0 

0 1 

1 0 

0 1 

1 0 

Operation 

Read Status Register 

Write Command Register 

Illegal 

Write Request Register 

Illegal 

Write Single Mask Register Bit 

Illegal 

Write Mode Register 

Illegal 

Clear Byte Pointer Flip-Flop 

Read Temporary Register 

Master Clear 

Illegal 

Clear Mask Register 

Illegal 

Write All Mask Register Bits 

The 82C37 A·5 will accept programming from the 
host processor any time that HLDA is inactive; this is 
true even if HRQ is active. The responsibility of the 
host is to assure that programming and HLDA are 
mutually exclusive. Note that a problem can occur if 
a DMA request occurs, on an unmasked channel 
while the 82C37 A·5 is being programmed. For in· 
stance, the CPU may be starting to reprogram the 
two byte Address register of channel 1 when chan· 
nel 1 receives a DMA request. If the 82C37 A·5 is 
enabled (bit 2 in the command register is 0) and 
channel 1 is unmasked, a DMA service will occur 
after only one byte of the Address register has been 
reprogrammed_ This can be avoided by disabling the 
controller (setting bit 2 in the command register) or 
masking the channel before programming any other 
registers. Once the programming is complete, the 
controller can be enabled/unmasked. 

Figure 6. Software Command Codes 

Channel Register Operation 
Signals 

Internal Flip-Flop Data Bus DBO-DB7 
CS lOR lOW A3 A2 A1 AO 

0 Base and Current Address Write 0 1 0 0 0 0 0 0 AO-A7 
0 1 0 0 0 0 0 1 A8-A15 

Current Address Read 0 0 1 0 0 0 0 0 AO-A7 
0 0 1 0 0 0 0 1 A8-A15 

Base and Current Word Count Write 0 1 0 0 0 0 1 0 WO-W7 
0 1 0 0 0 0 1 1 W8-W15 

Current Word Count Read 0 0 1 0 0 0 1 0 WO-W7 
0 0 1 0 0 0 1 1 W8-W15 

1 Base and Current Address Write 0 1 0 0 0 1 0 0 AO-A7 
0 1 0 0 0 1 0 1 A8-A15 

Current Address Read 0 0 1 0 0 1 0 0 AO-A7 
0 0 1 0 0 1 0 1 A8-A15 

Base and Current Word Count Write 0 1 0 0 0 1 1 0 WO-W7 
0 1 0 0 0 1 1 1 W8-W15 

Current Word Count Read 0 0 1 0 0 1 1 0 WO-W7 
0 0 1 0 0 1 1 1 W8-W15 

2 Base and Current Address Write 0 1 0 0 1 0 0 0 AO-A7 
0 1 0 0 1 0 0 1 A8-A15 

Current Address Read 0 0 1 0 1 0 0 0 AO-A7 
0 0 1 0 1 0 0 1 A8-A15 

Base and Current Word Count Write 0 1 0 0 1 0 1 0 WO-W7 
0 1 0 0 1 0 1 1 W8-W15 

Current Word Count Read 0 0 1 0 1 0 1 0 WO-W7 
0 0 1 0 1 0 1 1 W8-W15 

3 Base and Current Address Write 0 1 0 0 1 1 0 0 AO-A7 
0 1 0 0 1 1 0 1 A8-A15 

Current Address Read 0 0 1 0 1 1 0 0 AO-A7 
0 0 1 0 1 1 0 1 A8-A15 

Base and Current Word Count Write 0 1 0 0 1 1 1 0 WO-W7 
0 1 0 0 1 1 1 1 W8-W15 

Current Word Count Read 0 0 1 0 1 1 1 0 WO-W7 
0 0 1 0 1 1 1 1 W8-W15 

Figure 7. Word Count and Address Register Command Codes 

2-76 



inter 82C37A-5 

After power-up it is suggested that all internal loca­
tions, especially the Mode registers, be loaded with 
some valid value. This should be done even if some 
channels are unused. 

APPLICATION INFORMATION 

Figure 8 shows a convenient method for configuring 
a DMA system with the 82C37 A-5 controller and an 
8080Al8085AH microprocessor system. The multi­
mode DMA controller issues a HRQ to the processor 
whenever there is at least one valid DMA request 

from a peripheral device. When the processor re­
plies with a HLDA signal, the 82C37A-5 takes con­
trol of the address bus, the data bus and the control 
bus. The address for the first transfer operation 
comes out in two bytes - the least significant 8 bits 
on the eight address outputs and the most signifi­
cant 8 bits on the data bus. The contents of the data 
bus are then latched into the 8-bit latch to complete 
the full 16 bits of the address bus. After the initial 
transfer takes place, the latch is updated only after a 
carry or borrow is generated in the least Significant 
address byte. Four DMA channels are provided 
when one 82C37 A-5 is used. 

ADDRESS BUS AO-A1 5 ) 
r- r 

A8-A15 

,...-- .... 1il 

I 
..... 

8·BIT LATCH 

I 
STB 

AO-A15 'EN AO-A3 A4-A1 cs ADSTB .< ",.. 
BUSEN r--

A 
HLDA HlOA 82C37A-5 OBO-

~ ~ OB7 
... ]; I; g i1 ~ y 

HOLD HRQ w 
'" ~ 12 I~ 

w " ~ " .. 
" c c 

CPU 

1 [ +41' CLOCK 

RESET 

MEMR 

- )00._' MEMW 

iOR BUS 

KiW 

DBO-DB7 

.< ",.. 

" >-- .. 
SYSTEM DATA BUS 

231202-9 

Figure 8. 82C37A-5 System Interface 

2-77 



8257/8257·5 
PROGRAMMABLE DMA CONTROLLER 

• MCS-85® Compatible 8257-5 

• 4·Channel DMA Controller 

• Priority DMA Request logic 

• Channel Inhibit logic 

• Terminal Count and Modulo 128 
Outputs 

• Single TTl Clock 

• Single + 5V Supply 

• Auto load Mode 

• Available in EXPRESS 
- Standard Temperature Range 

• Available in 4D-Lead Cerdip and 
Plastic Package. 

(See Packaging Spec, Order #231369) 

The Intel' 8257 is a 4·channel direct memory access (DMA) controller. It is specifically designed to simplify the 
transfer of data at high speeds for the Intel'" microcomputer systems. Its primary function is to generate, upon a 
peripheral request, a sequential memory address which will allow the peripheral to read or write data directly to or 
from memory. Acquisition of the system bus in accomplished via the CPU's hold function. The 8257 has priority logic 
that resolves the peripherals requests and issues a composite hold request to the CPU. It maintains the DMA cycle 
count for each channel and outputs a control signal .to notify the peripheral that the programmed number of DMA 
cycles is complete. Other output control Signals simplify sectored data transfers. The 8257 represents a significant 
savings in component count for DMA·based microcomputer systems and greatly simplifies the transfer of data at 
high speed between peripherals and memories. 

DATA 
BUS 

BUFFER 

READI 
WAITE 
lOGIC 

05-----' 

A. 

A, 

A, 
A, 

'EN 

AOSTB 

TC===:'.J 
Figure 1. Block Diagram 

ORO 0 

ORO 1 

ORO 2 

Figure 2. Pin Configuration 

2-78 



inter 825718257·5 

FUNCTIONAL DESCRIPTION 

General 

The 8257 is a programmable, Direct Memory Acess (DMA) 
device which, when coupled with a single 8-bit latch 
provides a complete four-channel DMA controller for use in 
Intel® microcomputer systems. After being initialized by 
software, the 8257 can transfer a block of data, containing up 
to 16,384 bytes, between memory and a peripheral device 
directly, without further intervention required of the CPU. 
Upon receiving a DMA transfer request from an enabled 
peripheral, the 8257: 

1. Acquires control of the system bus. 

2. Acknowledges that requesting peripheral which is 
connected to the highest priority channel. 

3. Outputs the least significant eight bits of the memory 
address onto system address lines ArrAy, outputs the 
most significant eight bits of the memory address to the 
8-bit latch via the data bus (the outputs of the latch 
should drive address lines A"A'5), and 

4. Generates the appropriate memory and I/O read/ 
write control signals that cause the peripheral to 
receive or deposit a data byte directly from or to the 
addressed location in memory. 

The 8257 will retain control of the system bus and repeat 
the transfer sequence, as long as a peripheral maintains its 
DMA request. Thus, the 8257 can transfer a block of data 
to/from a high speed peripheral (e.g., a sector of data on a 
floppy disk) in a single "burst". When the specified 
number of data bytes have been transferred, the 8257 
activates its Terminal Count (TC) output, informing the 
CPU that the operation is complete. 

The 8257 offers three different modes of operation: 
(1) DMA read, which causes data to be transferred from 
memory to a peripheral; (2) DMA write, which causes 
data to be transferred from a peripheral to memory; 
and (3) DMA verify, which does not actually involve the 
transfer of data. When an 8257 channel is in the DMA verify 
mode, it will respond the same as described for transfer 
opera!ions, except that no memory or I/O read/write 
control signals will be generated, thus preventing the 
transfer of data. The 8257, however, will gain control of the 
system bus and will acknowledge the peripheral's DMA 
request for each DMA cycle. The peripheral can use these 
acknowledge signals to enable an internal access of each 
byte of a data block in order to execute some verification 
procedure, such as the accumulation of a CRC (Cyclic 
Redundancy Code) checkword. For example, a block of 
DMA verify cycles might follow a block of DMA read cycles 
(memory to peripheral) to allow the peripheral to verify its 
newly acquired data. 

2-79 

Block Diagram Description 

1. DMA Channels 

The 8257 provides four separate DMA channels (labeled 
CH-O to CH-3). Each channel includes two sixteen-bit 
registers (1) a DMA address register, and (2) a termi­
nal count register. Both registers must be initialized 
before a channel is enabled. The DMA address register is 
loaded with the address of the first memory location to be 
accessed. The value loaded into the low-order 14-bits of 
the terminal count register specifies the number of DMA 
cycles minus one before the Terminal Count (TC) output 
is activated. For instance, a terminal count of 0 would 
cause the TC output to be active in the first DMA cycle for 
that channel. In general, if N = the number of desired DMA 
cycles, load the value N-1 into the low-order 14-bits of the 
terminal count register. The most significant two bits of the 
terminal count register specify the type of DMA operation 
for that channel. 

11Ow __ 

'.--
" ',--
" 

'. 
" '. 
" CONHWL 

LOGIC; 
OND 

,""ODE 
so 

'" 

Figure 3. 8257 Block Diagram Showing DMA 
Channels 



inter 8257/8257·5 

These two bits are not modified during a OMA cycle, but 
can be changed between OMA blocks. 

Each channel accepts a OMA Request (OROn) input and 
provides a OMA Acknowledge (OACKn) output. 

(ORO O-ORO 3) 

OMA Request: These are individual asynchronous chan­
nel request inputs used by the peripherals to obtain a OMA 
cycle. If not in the rotating priority mode then ORO 0 has 
the highest priority and ORO 3 has the lowest. A request 
can be generated by raising the request line and holding it 
high until OMA acknowledge. For multiple OMA cycles 
(Burst Mode) the request line is held high until the OMA 
acknowledge of the last cycle arrives. 

(DACK 0 - DACK 3) 

DMA Acknowledge: An active low level on the acknowl· 
edge output informs the peripheral connected to that 
channel that it has been selected for a DMA cycle. The 
DACK output acts as a "chip select" for the peripheral 
device requesting service. This line goes active (low) 
and inactive (high) once for each byte transferred even if 
a burst of data is being transferred. 

2. Data Bus Buffer 

This three-state, br-directional, eight bit buffer interfaces 
the 8257 to the system data bus. 

(00-D7) 

Data Bus Lines: These are bi-directional three-state lines. 
When the 8257 is being programmed by the CPU, eight­
bits of data for a DMA address register, a terminal count 
register or the Mode Set register are received on the data 
bus. When the CPU reads a DMA address register, a 
terminal count register or the Status register, the data is 
sent to the CPU over the data bus. During OMA cycles 
(when the 8257 is the bus master), the 8257 will output the 
most significant eight-bits of the memory address (from 
one of the DMA address registers) to the 82121atch via the 
data bus. These address bits will be transferred at the 
beginning of the DMA cycle; the bus will then be released 
to handle the memory data transfer during the balance of 
the DMA cycle. 

2-80 

BIT 15 BIT 14 TYPE OF DMA OPERATION 

0 0 Verify DMA Cycle 
0 1 Write DMA Cycle 
1 0 Read DMA Cycle , 1 (Illegal) 

0,00 

tiACif"lj 

ORO 1 

0Acn 

'0 
A, 

A, 

A, 

"""" 
1'S 

'. 
A, 

ORO 3 

A. 

A, 
6AcifJ 

MiMR 
ME'MW 

ADST8 

Figure 4. 8257 Block Diagram Showing Data Bus 
Buffer 



8257/8257·5 

3. ReadlWrite logic 

When the CPU is programming or reading one of the 
8257"s registers (Le., when the 8257 is a "slave" device on 
the system bus), the Read/Write Logic accepts the I/O 
Read (i/OR) or I/O Write (iR5W) signal, decodes the least 
significant four address bits, (Ao·A3), and either writes 
the contents of the data bus into the addressed register 
(if I/OW is true) or places the contents of the addressed 
register onto the data bus (it i70R is true). 

During DMA cycles (i.e., when the 8257 is the bus 
"'master"'), the ReadlWrite Logic generates the 1/0 read 
and memory write (DMA write cycle) or 1/0 Write and 
memory read (DMA read cycle) signals which control the 
data link with the peripheral that has been granted the 
DMA cycle. 

Note that during DMA transfers Non-DMA 1/0 devices 
should be de-selected (disabled) using "'AEN"' signal to 
inhibit 1/0 device decoding of the memory address as an 
erroneous device address. 

(I/OR) 

110 Read: An active-low, bi-directional three-state line. In 
the "'slave" mode, it is an input which allows the 8-bit 
status register or the upperllower byte of a 16-bit DMA 
address register or terminal count register to be read. In 
the "'master" mode. IIOR IS a control output which is used 
to access data from a peripheral during the DMA write 
cycle. 

(I/OW) 

1/0 Write: An active-low, bi-directional three-state line. In 
the "slave"' mode. it is an input which allows the contents 
of the data bus to be loaded into the 8-bit mode set register 
or the upperllower byte of a 16-bit DMA address register 
or terminal count register. In the "'master" mode. IIOW IS a 
control output which allows data to be output to a 
peripheral during a DMA read cycle. 

(elK) 

Clock Input: Generally from an Intel® 8224 Clock Generator 
device. (</12 TTL) or Intel ® 8085AH CLK output. 

(RESET) 

Reset: An asynchronous input (generally from an 8224 
or 8085 device) which disables all DMA channels by 
clearing the mode register and 3·states all control lines. 

2-81 

(Ao-AJl 

Address Lines: These least significant four address lines 
are bi-directional. In the "slave" mode they are inputs 
which select one of the registers to be read or 
programmed. In the "master" mode, they are outputs 
which constitute the least significant four bits of the 16-bit 
memory address generated by the 8257. 

(CS) 

Chip Select: An active-low input which enables the I/O 
Read or 1/0 Write input when the 8257 is being read or 
programmed in the "slave" mode. In the "master" mode, 
CS is automatically disabled to prevent the chip from 
selecting itself while performing the DMA function. 

4. Control Logic 

This block controls the sequence of operations during all 
DMA cycles by generating the appropriate control signals 
and the 16-bit address that specifies the memory location 
to be accessed. 

Figure 5. 8257 Block Diagram Showing 
Read/Write Logic Function 



8257/8257·5 

(A4-A7) 

Address Lines: These four address lines are three-state 
outputs which constitute bits 4 through 7 of the 16-bit 
memory address generated by the 8257 during all DMA 
cycles. 

(READY) 

Ready: This asynchronous input is used to elongate the 
memory read and write cycles in the 8257 with wait 
states if the selected memory requires longer cycles. 
READY must conform to specified setup and hold 
times. 

(HRQ) 

Hold Request: This output requests control of the 
system bus. In systems with only one 8257, HRQ will 
normally be applied to the HOLD input on the CPU. HRQ 
must conform to specified setup and hold times. 

(HLDA) 

Hold Acknowledge: This input from the CPU indicates that 
the 8257 has acquired control of the system bus. HLDA must 
remain stable during the specified set-up time. 

Memory Read: This active-low three-state output is used 
to read data from the addressed memory location dUring 
DMA Read cycles. 

Memory Write: This active-low three-state output is used 
to write data into the addressed memory location dUring 

DMA Write cycles. 

(ADSTB) 

Address Strobe:. This output strobes the most significant 
byte of the memoryaddress into the latch device from the 
data bus. 

(AEN) 

Address Enable: This output is used to disable Ifloatl the 
System Data Bus and the System Control Bus. It may also 
be used to disable Ifloatl the System Address Bus by use 
of an enable on the Address Bus drivers in systems to 
inhibit non-DMA deVices from responding 'during DMA 
cycles. It may be further used to Isolate the 8257 data bus 
from the System Data Bus to facilitate the transfer of the 8 
most significant DMA address bits over the 8257 data 1/0 
pins without subjecting the System Data Bus to any 
timing constraints for the transfer. When the 8257 is used 
In an 1/0 deVice structure las opposed to memory 
mappedl, this AEN output should be used to disable the 
selection of an 1/0 device when the OMA address is on the 
address bus. The 1/0 device selection should be 
determined by the DMA acknowledge outputs for the 4 
channels. 

(Te) 

Terminal Count: This output notifies the currently 
selected peripheral that the present OMA cycle should be 
the last cycle for this data block. If the TC STOP bit in the 
Mode Set register is set, the selected channel will be 
automatically disabled at the end of that DMA cycle. TC is 
activated when the 14-bit value in the selected channel's 
terminal count register equals zero. Recall that the low­
order 14-bils of the terminal count register should be 
loaded with the values (n-1). where n =thedesired number 
of the DMA cycles. 

(MARK) 

Modulo 128 Mark: This output notifies the selected 
peripheral that the clment DMA cycle is the 128th cycle 
since the previous MARK output. MARK always occurs at 
128 (and all multiples of 128) cycles from the end of the 
data block Only if the total number of DMA cycles (n) is 
evenly divisable by 128 (and the terminal count register 
was loaded with n-1). will MARK occur at 128 (and each 
succeeding multiple of 128) cycles from the beginning of 
the data block 

2-82 

CH·O ORao 

6ACili 

ORO 1 

c5'A'Cil 

ORO 2 

6ACK1 

Figure 6. 8257 Block Diagram Showing Control 
Logic and Mode Set Register 



825718257·5 

5. Mode Set Register 

When set, the various bits in the Mode Set register enable 
each of the four DMA channels, and allow four different 
options for the 8257: 

"-Lfrjl I leI 
I L Enables DMA Cnannel 0 

--~ ~~:~::: ~~: ~~:~~:: ; 
L-. ____ ~ __ Enables DMA Channel 3 

The Mode Set register is normally programmed by the 
CPU after the DMA address register(si and terminal 
count register(s) are initialized The Mode Set Register is 
cleared by the RESET input, thus disabling all options, 
inhibiting all channels, and preventing bus conflicts on 
power-up. A channel should not be left enabled unless its 
DMA address and terminal count registers contain valid 
values; otherwise, an inadvertent DMA request (DROn) 
from a peripheral could initiate a DMA cycle that would 
destroy memory data. 

The various options which can be enabled by bits in the 
Mode Set register are explained below: 

Rotating Priority Bit 4 

In the Rotating Priority Mode, the priority of the channels 
has a circular sequence After each DMA cycle. the 
priority of each channel changes. The channel which had 
just been serviced will have the lowest priOrity 

If the ROTATING PRIORITY bit IS not set (set to a zero). 
each DMA channel has a fixed priority. In the fixed Priority 
mode, Channel 0 has the highest priOrity and Channel 3 
has the lowest priOrity. If the ROTATING PRIORITY bit IS 

set to a one, the priority of each channel changes after 
each DMA cycle (not each DMA request). Each channel 
moves up to the next highest priority assignment. while 
the channel which has just been serviced moves to the 
lowest priority assignment· 

CHANNEL __ CH-O CH-1 CH·2 CH·3 
JUST SERVICED 

Priority _ Highest CH-1 CH-2 CH-3 CH-O 
Assignments ; CH-2 CH-3 CH-O CH-1 

CH-3 CH-O CH-1 CH-2 
Lowes' CH-O CH-1 CH-2 CH-3 

Note that rotating priority will prevent anyone channel 
from monopolizing the DMA mode; consecutive DMA 
cycles will service different channels if more than one 
channel is enabled and requesting service. There is no 
overhead penalty associated with this mode of opera­
tion. All DMA operations began with Channel 0 initially 
assigned to the highest priority for the first DMA cycle. 

Extended Write Bit 5 

If the EXTENDED WRITE bit IS set, the duration of both the 
MEMW and IIOW signals is extended by activating them 
earlier in the DMA cycle. Data transfers within micro­
computer systems proceed asynchronously to allow 
use of various types of memory and 1/0 devices with 
different access times. If a deVice cannot be accessed 
within a specific amount of time it returns a "not ready" 
indication to the 8257 that causes the 8257 to insert one or 
more wait states in its internal sequencing. Some devices 
are fast enough to be accessed without the use of wait 
states, but if they generate their READY response with the 
leading edge of the IIOW or MEMW signal (which 
generally occurs late in the transfer sequence), they 
would normally cause the 8257 to enter a wait state 
because it does not receive READY in time. For systems 
with these types of deVices, the Extended Write option 
provides alternative timing for the 1/0 and memory write 
signals which allows the deVices to return an early READY 
and prevents the unnecessary occurrence of wail states in 
the 8257. thus Increasing system throughput. 

Te Stop Bit 6 

If the TC STOP bit is set, a channel is disabled (i.e., its 
enable bit is reset) after the Terminal Count (TC) output 
goes true, thus automatically preventing further DMA 
operation on that channel. The enable bit for that channel 
must be re-programmed to continue or beglfl another 
DMA operation. If the TC STOP bit IS not set, the 
occurrence of the TC output has no effect on the channel 
enable bits. In this case, it is generally the responsibility of 
the peripheral to cease DMA requests in order to terminate 
a DMA operation. 

Auto Load Bit 7 

The Auto Load mode permits Channel 2 to be used for 
repeat block or block chainlflg operations, without 
immediate software intervention between blocks. Chan­
nel 2 registers are initialized as usual for the first data 
block; Channel 3 registers, however, are used to store the 
block re-Iflitialization parameters (DMA starting address, 
terminal count and DMA transfer mode). After the first 
block of DMA cycles IS executed by Channel 2 (i.e., after 
the TC output goes true), the parameters stored in the 
Channel 3 registers are transferred to Channel 2 during an 
"update" cycle. Note that the TC STOP feature, described 
above, has no effect on Channel 2 when the Auto Load bit 
IS set. 

2-83 



8257/8257·5 

If the Auto Load bit is set, the initial parameters for 
Channel 2 are automatically duplicated in the Channel 3 
registers when Channel 2 is programmed. This permits 
repeat block operations to be set up with the programming 
of a single channel. Repeat block operations can be used 
in applications such as CRT refreshing. Channels 2 and 3 
can still be loaded with separate values if Channel 2 is 
loaded before loading Channel 3. Note that in the Auto 
Load mode, Channel 3 is still available to the user if the 
Channel 3 enable bit is set, but use of this channel will 
change the values to be auto loaded into Channel 2 at 
update time. All that is necessary to use the Auto Load 
feature for chaining operations is to reload Channel 3 
registers at the conclusion of each update cycle with the 
new parameters for the next data block transfer. 

Each tim" that the 8257 enters an update cycle. the update 
flag in the status' register is set and parameters in Channel 
3 are transferred to Channel 2, non-destructively for 
Channel 3. The actual re-initialization of Channel 2 occurs 
at the beginning of the next channel 2 DMA cycle after the 
TC cycle. This will be the first DMA cycle of the new data 
block for Channel 2. The update flag is cleared at the 
conclusion of this DMA cycle. For chaining operations. 
the update flag in the status register can be monitored by 
the CPU to determine when the re-initialization process 
has been completed so that the next block parameters can 
be safely loaded into Channel 3. 

6. Status Register 

The eight-bit status register indicates which channels 
have reached a terminal count condition and includes the 
update flag described previously. 

Te STATliS FOR CHANNel 0 
Te STATUS FDA CHANNEll 

L~===::TC STATUS FOR CHANNEL 2 
Te STATUS FOR CHANNEL 3 

The TC status bits are set when the Terminal Count (TC) 
output is activated for that channel. These bits remain set 
until the status register is read or the 8257 is reset. The 
UPDATE FLAG, however, is not affected by a status 
register read operation. The UPDATE FLAG can be 
cleared by resetting the 8257. by changing to the non-auto 
load mode (i.e., by resetting the AUTO LOAD bit in the 
Mode Set register) or it can be left to clear itself at the 
completion of the update cycle. The purpose of the 
UPDATE FLAG is to prevent the CPU from inadvertently 
skipping a data block by overwriting a starting address or 
terminal count in the Channel 3 registers before those 
parameters are properly auto-loaded into Channel 2. 

The user is cautioned against reading the TC status 
register and using this information to reenable chan­
nels that have not completed operation. Unless the 
DMA channels are inhibited a channel could reach ter­
minal count (TCI between the status read and the mode 
write. DMA can be inhibited by a hardware gate on the 
HRC line or by disabling channels with a mode word 
before reading the TC status. 

_IPARAMETERS!- _IPARAMETERSI_, 
FOR BLOCK 1 I FOR BLOCK 2 

CHAHNE l2 UPDATE 
OCCURS HERE 

_IPARAMETERS," -IETC----FOR BLOCK 3 
CHANNEL 2 UPDATE 

OCCURS HERE ~ 
I/O WRITE 

OR02 --JUUUUL4\-----
DATABlOCK2-! 1DATABlOCK3-

I 
TC 

UPDATE FLAG 

Figure 7. Autoload Timing 

2-84 



inter 8257/8257·5 

OPERATIONAL SUMMARY 

Programming and Reading the 8257 Registers 
There are four pairs of "channel registers": each pair 
consisting of a 16-bit DMA address register and a 16-bit 
terminal count register (one pair for each channel). The 
8257 also includes two "general registers": one 8-bit 
Mode Set register and one 8-bit Status register. The 
registers are loaded or read when the CPU executes a 
write or read instruction that addresses the 8257 device 
and the appropriate register within the 8257. The 8228 
generates the appropriate read or write control signal 
(generally IIOR or IIOW while the CPU places a 16-bit 
address on the system address bus, and either outputs the 
data to be written onto the system data bus or accepts the 
data being read from the data bus. Allor some of the most 
significant 12 address bits A4-AI' (depending on the 
systems memory, 1/0 configuration) are usually decoded 
to produce the chip select (CS) input to the 8257. An 1/0 
Write input (or Memory Write in memory mapped 1/0 
configurations, described below) specifies that the 
addressed register is to be programmed, while an 1/0 
Read input (or Memory Read) specifies that the addressed 
register is to be read. Address bit 3 specifies whether a 
"channel register" (A, = 0) or the Mode Set (program 
only)/Status (read only) register (A3 = 1) is to be accessed. 

The least significant three address bits, Ao-A" indicate the 
specific register to be accessed. When accessing the 
Mode Set or Status register, Ao-A2 are all zero. When 
accessing a channel register bit Ao differentiates between 
the DMA address register (Ao = 0) and the terminal count 
register (Ao = 1), while bits AI and A, specify one of the 

8257 Register Selection 

CONTROL INPUT Cs I/OW 1I0R A3 

Program Hall of a 0 0 1 0 
Channel Reglsler 

Read Hall of a 0 1 0 0 
Channel Register 

Program Mode Set 0 0 1 1 
Register ---

Read Status Register 0 1 0 1 

four channels. Because the "channel registers" are 16-
bits, two program instruction cycles are required to load 
or read an entire register. The 8257 contains a first/last 
(F/L) flip flop which toggles at the completion of each 
channel program or read operation. The F/L flip flop 
determines whether the upper or lower byte of the register 
is to be accessed. The F/L flip flop is reset by the RESET 
input and whenever the Mode Set register is loaded. To 
maintain proper synchronization when accessing the 
"channel registers" all channel command instruction 
operations should occur in pairs, with the lower byte of a 
register always being accessed first. Do not allow CS to 
clock while either IIOR or (jOW is active, as this will cause 
an erroneous F/L flip flop state. In systems utilizing an 
interrupt structure, interrupts should be disabled prior to 
any paired programming operations to prevent an 
interrupt from splitting them. The result of such a split 
would leave the F/L F/F in the wrong state. This problem is 
particularly obvious when other DMA channels are 
programmed by an interrupt structure. 

ADDRESS INPUTS 'BI-DIRECTIONAL DATA BUS 

REGISTER BYTE 
A3 A2 A, Ao 

FIL 
07 Os 05 04 03 02 01 Do 

CH-O DMA Address LSB 0 0 0 0 0 A7 AS As ~ A3 A2 A1 Ao 
MSB 0 0 0 0 1 A1S A14 A13 A'2 An A10 Ag As 

CH-O Terminal Count LSB 0 0 0 1 0 C7 Cs Cs C4 C3 C2 C1 Co 
MSB 0 0 0 1 1 Rd Wr C13 C12 Cn C10 Cg Ca 

CH-1 DMA Addr.s. LSB 0 0 1 0 0 
Same as Channel 0 

MSB 0 0 1 0 1 

I I I 
CH-1 Terminal Count LSB 0 0 1 1 0 

MSB 0 0 1 1 1 

CH-2 DMA Addre •• LSB 0 1 0 0 0 
MSB 0 1 0 0 1 

Same as Channel 0 

CH-2 Terminal Count LSB 0 1 0 1 0 

I I I MSB 0 1 0 1 1 

CH-3 DMA Address LSB 0 1 1 0 0 
MSB 0 1 1 0 1 

Same as Channel 0 

CH-3 Terminal Count LSB 0 1 1 1 0 
MSB 0 1 1 1 1 

MODE SET (Program onty) - 1 0 0 0 0 AL TCS EW RP EN3 EN2 EN1 ENO 

STATUS (Read only) - 1 0 0 0 0 0 0 0 UP TC3 TC2 TCl TeO 
-

• Ao-A,5: DMA Starting Address, CO-C ,3 : Terminal Count value (N-l), Rd and Wr: DMAVerify (00), Write (01) or Read (10) cycle selection, 
AL: Auto Load, TCS: TC STOp, EW: EXTENDED WRITE, RP: ROTATING PRIORITY, EN3-ENO: CHANNEL ENABLE MASK, UP: UPDATE 
FLAG, TC3-TCO: TERMINAL COUNT STATUS BITS. 

2-85 



825718257·5 

RTT 

51 
SAMPLE ORQn LINES 
SET HAO IF OROn '" 1 

lORon 

SO 

1 
SAMPLE HlOA 

RESOL VE OROn PRIORITIES 

l HLOA 

51 
PRESENT AND LATCH ,..- UPPER ADDRESS 

PRESENT LOWER ADDRESS 

~ 
52 

ACTIVATE READ COMMAND 
ADVANCED WRITE COMMAND 

AND DACKn 

~ 
r-

SJ READV SW 
ACTIVATE WRITE COMMAND 

""''' -~ ACTIVATE MARK AND Te r----- READV 
IF APPROPRIArE LINE 

~ READY + VERIFY 
'--

54 READY 

RESET ENABLE FOR CHANNEl N IF 
Te STOP AND Te ARE ACTIVE 

DROrt; 
DEACTIVATE COMMANDS 

DEACTIVATE DACKn, MARK AND TO 
SAMPLE OROn AND HlDA 

RESOLve OROn PRIORITIES 
RESET HAO IF HlOA '" DOR ORO ~ 0 

l HlOA + oROn 

1 DROn REFERS TO ANY ORO LINE ON AN ENABLED DMA CHANNEL. 

Figure 8. DMA Operation State Diagram 

DMA OPERATION 

Single Byte Transfers 

A single byte transfer is initiated by the I/O device rais­
ing the ORO line of one channel of the 8257. If the chan­
nel is enabled, the 8257 will output a HRO to the CPU. 
The 8257 now waits until a HLOA is received insuring 
that the system bus is free for its use. Once HLOA is 
received the ~ line for the requesting channel is ac­
tivated (LOW). The i5ACK line acts as a chip select for 
the requesting I/O device. The 8257 then generates the 

read and write commands and byte transfer occurs be­
tween the selected I/O device and memory. After the 
trans'fer is complete, the OACK line is set HIGH and the 
HRO line is set LOW to i"ndicate to the CPU that the bus 
is now free for use. ORO must remain HIGH until DACK 
is issued to be recognized and must go LOW before 54 
of the transfer sequence to prevent another transfer 
from occuring. (See timing diagram.) 

Consecutive Transfers 

If more than one channel requests service simultaneous­
ly, the transfer will occur in the same way a burst does. 
No overhead is incurred by switching from one channel 
to another. In each 54 the ORO lines are sampled and 
the highest priority request is recognized during the 
next transfer. A burst mode transfer in a lower priority 
channel will be,overridden by a higher priority request. 
Once the high priority transfer has completed control 
will return to the lower priority channel if its ORO is still 
active. No extra cycles are needed to execute this se­
quence and the HAO line remains active until all ORO 
lines go LOW. 

Control Override 

The continuous OMA transfer mode described above 
can be interrupted by an external device by lowering the 
HLOA line. After each DMA transfer the 8257 samples 
the HLOA line to insure that it is still active. If it is not 
active, the 8257 completes the current transfer, releases 
the HRO line (LOW) and returns to the idle state. If DRO 
lines are still active the 8257 will raise the HRO line in 
the third cycle and proceed normally. (See timing 
diagram.) 

Not Ready 

The 8257 has a Ready input similar to the 8080A and the 
8085AH. The Ready line is a sampled in State 3. If Ready is 
LOW the 8257 enters a wait state. Ready is sampled during 
every wait state. When Ready returns HIGH the 8257 
proceeds to State 4 to complete the transfer. Ready is used to 
interface memory of 1/0 devices that cannot meet the bus set 
up times required by the 8257. 

Speed 

The 8257 uses four clock cycles to transfer a byte of 
data. No cycles are lost in the master to master transfer 
maximizing bus efficiency. A 2MHz clock input will 
allow the 8257 to transfer at a rate of 500K bytes/second. 

Memory Mapped I/O Configurations 

The 8257 can be connected to the system bus as a memory 
device instead of as an 1/0 device for memory mapped 1/0 
configurations by connecting the system memory control 
lines to the 8257"s 1/0 control lines and the system 1/0 
control lines to the 8257"s memory control lines. 

This configuration permits use of the 8080'5 considerably 
larger repertoire of memory instructions when reading or 
loading the 8257"5 registers, Note that with this 
connection. the programming of the Read (bit 15) and 
Write (bit 14) bits in the terminal count register will have a 
different meaning: 

2-86 



MEMAD i75'Ri5" 
MEMWR f7'6"W'R 

8257 
I70RD MEM1ffi 
liOWR MEMWR 

Figure 9. System Interface for Memory 
Mapped I/O 

8257/8257·5 

BIT 15 BIT 14 
READ WRITE 

0 0 DMA Verify Cycle 
0 1 DMA Read Cycle 
1 0 DMA Write Cycle 
1 1 Illegal 

Figure 10. TC Register for Memory Mapped 
I/O Only 

SYSTEM APPLICATION EXAMPLES 

\ 

(I' 
\ 

U 
\ 

U D 
8257 
AND 
8212 

OMA CONTROLLER 

8257 
AND 
8212 

ADDRESS BUS 

I I I 
CONTROL BUS 

1'1 ,JOWl ! I70R I II 
DATA BUS 

U 11 D I IJ 
J" 

ORO 0 DISK 1 

DACK 0 -------
ORO 1 

DISK 2 
DACK 1 ------
OR02 

DACK 2 
DISK 3 

ORO 3 ------

DACK 3 DISK 4 

Figure 11. Floppy Disk Controller (4 Drives) 

ORO 

OACK 
8251 

USART 

MODEM 

TElEPHONE 
LINES 

D 
SYSTEM 

RAM 
MEMORY 

SYSTEM 
RAM 

MEMORY 

Figure 12. High-Speed Communication Controller 

2-87 

==::J 

\ 

I I 
\ 

~J 



A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT/OUTPUT 

>OJ x= 2.0 2.0 . > TEST PO~NT$ < . 
0.8 0.8 

0.45 

A.C. TESTING: INPUTS AHL DAIVrN AT2.4V FOR A LOGIC ··1'· AND0.45V FOF-j 
A lOGIC "0:" TIMING MI ASUREMENTS ARE MADE AT 2.0V FOR A lOGIC I 
AND O.BV FOR A lO(il(: 0 

~-
Tracking Parameters 

DEVICE 

~CL~l50PF 
UNDER 

TEST 

CL INCLUDES JIG CAPACITANCE 

Signals labeled as Tracking Parameters (footnotes 1 and 5-7 under A.C. Specifications) are signals that follow similar 
paths through the silicon die. The propagation speed of these signals varies in the manufacturing procesS but the 
rolationship between all these parameters is constant. The variation is less than or equal to 50 ns. 

Suppose the following timing equation is being evaluated, 

T ",MIN) + T B(MAX) S 150 ns 

and e>nly minimum specifications exist for T A and T B. If T ",MIN) is used, and if T A and T B are tracking parameters, 
T ~MAX) can be taken as T B(MIN) + 50 ns. 

T A(MIN) + (T B(MIN) * + 50 ns) sl50 ns 

*If T A and T B are tracking parameters 

WAVEFORMS-PERIPHERAL MODE 

WRITE 
___ ... -TAW-

READ 

DATA BUS ______ ....J '-___ ...... ___ >1'''_ 

IIOWA 

RESET 

RESET 

--t..J_ T •• TO---1 
vccJ"" " 

2-88 



inter 825718257 ·5 

WAVEFORMS-DMA 

CONSECUTIVE CYCLES AND BURST MODE SEQUENCE 

51 I 51 I SO I 51 I 52 I 54 51 52 I 53 54 I 51 51 51 

CLOCK 

DRa03 __ ~ __ ~+-______ rP~ ____ ~ ____ -J~ ________ +-____________ ~-4 ____ -+ __________ __ 

-1-F--T __ DO--++--+-_+--_-+-_---t _____ TO __ O ~r-
HRO ___ oJ' +---l------------

HlDA ___________ -JI 

AEN ____________ ;-__ "'1 

ADA 0·7 ~LOWER ADAI_ - _ 

DATAO 7 (UPPER ADR) __ _ 

CLOCK 

NOTE: The clock waveform Is 
duplicated far clarity. 
The 8257 requires only 
one clock Input. 

ADA STB ______ f 

DACK 03 

MEM/RD/I.'O RD_ 

MEM/WRfllO WR-

READY 

TCIMARK 

51 so 51 

- \._----

TWWMe-

S2 53 54 51 52 53 54 51 51 51 

2-89 



inter 8257/8257·5 

WAVEFORMS (Continued) 

CONTROL OVERRIDE SEQUENCE 

I 51 I 52 ! S3 I S4 I 51 I 51 ! so : 51 I 52 

CLOCK 

------,.,+---------,[,- - - ---
ORO 0-3 

HRC 

~! THS 

HLDA 

TAEL --- r-
AEN .J \ T 

I NOT READY SEQUENCE 

so I 5W I S4 j 51 i 51 I 51 

CLOCK 

ORQ 0-3 

---T~----~-----+_-

QAcKlfJ 

MEMRD/IORD -----

READY 

~ -TRS __________ ~~-----J-' \~ ______ _ 
TC/M,A.RK I \ 

2-90 



8257/8257·5 

A" , 
~A" 

, 

A, ADDRESS 
BUS 

r- ·0 

ALE f---!.! STB 
DO, 00, 

" 052 

~ 
V" 

8212 
tIl\ 

f MD 
01,--01, Osi 

, 
AD, 

I- "- D, 
, , DATA SUS , 

AD, l- V 
V" 

Do 

a08. 

~ 
.-2. A, 

Ali 
---! B, 

0, 4 Inm 
~AJ , 7 1m< I- MEMR 
--.! 8 2 ~ , 

• !rn.Wi 
r- f01'I CONTROL 

~A' ~ 
• 

I- !rn.Wi aus 
~BJ " lOW 

I-Viii 
~ .. 0, IWi 

'3 B4 CHIP 

6E SELECT READY 

SEL (8) 1 ~ "1 I' IO/Q 

HOLD 

~ 
C, READY 

0, '0-
HLDA , 

, 
~,r--elK (OU-T] Do 

REm iN r--- RESET 8257·5 

RESET OUT f-- '-- r---L< MEMR DADo 
,. 

ORo., 

~ iOl\ DACt<o 
25 I DACK o -

'--- c---!-< MEMW ORO, 
,. 

ORO, 

"'7 .---L,; .ow -- 24 
DACK, DACK, 

" DR01 ORO, 

~ HRO DACK 7 " DACK 2 

~ HlOA OROl 
_'6_· ____ 

ORal 

OA6<1 
15 DACK) 

12 
CLK TC 

3. TC -----2l.. RESET MARK 5 MARK 

AEN AOSTB 

, 8 

~ ,I 
" " I 
052 ClR ST. 

D ~ 
01, DO, 

8212 
01, DO, 

MD 0S1 

l' l' 
Figure 13. Detailed System Interface Schematic 

2-91 



8257/8257-5 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias ......... O°C to 70°C 
Storage Temperature ............... -65°C to +150°C 
Voltage on Any Pin 

With Respect to Ground .............. -0.5V to + 7V 
Power Dissipation ............................ 1 Watt 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (8257: TA = O°C to 70°C, Vee = 5.0V ±5%, GND = OV) 
(8257-5: TA = O°C to 70°C, Vee = 5.0V ±10%, GND = OV) 

Symbol Parameter Min. Max. Unit Test Conditions 

VIL Input Low Voltage -0.5 O.S Volts 

VIH Input High Voltage 2.0 Vee+· 5 Volts 

VOL Output Low Voltage 0.45 Volts IOL = 1.6 mA 

VO H Output High Voltage 2.4 Vee Volts IOH =-150J.lA for AB, 
DB and AEN 
IOH=-SOJ.lA for others 

VHH HRQ Output High Voltage 3.3 Vee Volts IOH = -SOJ.lA 

Icc Vee Current Drain 120 mA 
-

IlL Input Leakage ±lO J.lA OV,";: VIN ", Vee 

IOFL Output Leakage During Float ±10 J.lA 0.45V ", VOUT ", Vee 

CAPACITANCE (TA = 25°C; Vee = GND = OV) 

Symbol Parameter Min. Typ. Max. Unit Test Conditions 

CIN Input Capacitance 10 pF fc = 1 MHz 

CliO 1/0 Capacitance 20 pF Unmeasured pins 
returned to GND 

2-92 



inter 8257/8257·5 

A.C. CHARACTERISTICS-PERIPHERAL (SLAVE) MODE 
(8257: TA = O°C to 70°C, VCC = 5.0V ±5%, GND = OV) 
(8257-5: TA = O°C to 70°C, VCC = 5.0V ±10%, GND = OV) 

8080 Bus Parameters 

READ CYCLE 
~---~-----------------------~.-------~------~---~-----~ 

8257 8257-5 I 
I 

Symbol Parameter Min. Max. Min. Max, Unit Test Conditions 
r---.-+---------------- .. ----+---+-----+---- ---- ------1--------+--------1 

TAR Adr or CS,j, Setup to RD,j, 0 a ns 

TRA Adr or cst Hold from RDt 0 a ns 
-------------r----+----~---~------r----+_------__1 

TRO Data Access from RDI I 0 300 a 220 ns 

r-~--:-:---+-~-~-:-F-i;--:h-t _D_e~y_from ~_~t __ .'_ --=~+--1-5-0-+-2-2500- __ 1_2_0_-+_~-:-t--- _____ -= 
WRITE CYCLE 

! 
------

Unit T Test -condition~ 8257 8257-5 

Symbol Parameter Min. Max. Min. Max. 

TAW Adr Setup to WR,j, 20 20 ns 
-- f-------------

TWA Adr Hold from WRt a ° ns 
-- -- 1-----------

Tow Data Setup to WR t 200 200 ns 
---- -

Two 10 10 ns :ti: Hold from WRt -- -- -----I--------~ 

l~~_~_ Tww WR Width 200 ns 
-----------------

OTHER TIMING 
--,-------

I 8257 

Symbol Parameter t--:--:---rw Min. Max. 

30_°_1 
TRSTW Reset Pulse Width 

TRSTO Power Supplyt (Vee) Setup to Resetl 

_~± __ 20 _ Tr Signal Rise Time 

Tf Signal Fall Time 

~±= TRSTS Reset to First I/OWR 

A.C. CHARACTERISTICS-DMA (MASTER) MODE 
(8257: TA = O°C to 70°C, VCC = 5_0V ±5%, GND = OV) 
(8257-5: TA = O°C to 70°C, VCC = 5.0V ±10%, GND = OV) 

TIMING REQUIREMENTS 

8257 
Symbol Parameter 

Min. 

Tey Cycle Time (Period) 0.320 

To Clock Active (High) 120 

Tos DRQt Setup to ClK! (51, 54) 120 

TOH DRQI Hold from HlDAt[l] 0 

THS HLDA t or ISetup to ClKI(SI, 54) [7] 100 

T AS READY Setup Time to ClKt(S3, Sw) 30 

TAH READY Hold Time from ClKt(S3, Sw) 30 

2-93 

8257-5 

Min. Max. Unit Test Cond ition s I 
----~- -- -_.-_.---------

300 ns 
. --- -- ---- I--- -- -.--.. - -- ----

500 IlS - r--------------

20 ns 
------ ----- r--- --------~. -------

20 ns 
r------- -----

~~---=---2 

----
8257·5 

Unit 
Max. Min. Max. 

4 0.320 4 P.s 

.8TCY 80 .STCY ns 

120 ns 

0 ns 

280 100 280 ns 

30 ns I 
30 ns 



8257/8257·5 

A.C. CHARACTERISTICS-DMA (MASTER) MODE 
(8257: TA = O°C to 70°C, Vee = 5.0V ±5%, GND = OV) 
(8257-5: TA = O°C to 70°C, Vee = 5.0V ±10%, GND = OV) 

TIMING RESPONSES 

I 
8257 

Symbol Parameter 
Min. 

Too 
HRQt or t Delay from elKt (81, 84) 
(measured at 2.0V) 

TOOl 
HRQi od Delay from ClKt (81, 84) 

, (measured at 3.3V)[3] 

TAEL AENt Delay from ClKt (81) 

TAET AENt Delay from ClKt (81) 

TAEA Adr (AB) (Active) Delay from AENt (81)[1] 20 

TFAAB Adr (AB) (Active) Delay from ClKi (81)[2] I 

TAFAB Adr (AB) (Float) Delay from ClKi (81)[2] 

TASM Adr (AB) (Stable) Delay from ClKt (S1 P] 
TAH Adr (AB) (8table) Hold from ClKt (81)[2] TASM-50 

TAHR Adr (AB) (Valid) Hold from ROt (81, SI)[l] 60 

TAHW Adr (AB) (Valid) Hold from Wrt (S1, 81)[1] 300 

TFAOB Adr (DB) (Active) Delay from ClKt (81)[2] 

TAFDB Adr (DB) (Float) Delay from ClKt (82)[2] TSTT+20 

TASS Adr (DB) Setup to Adr 8tb I (S1-S2)[1] 100 

TAHS ' Adr (DB) (Valid) Hold from Adr Stbt (S2)[1] ..., 20 

TSTL I Adr Stbt De[ay from ClKi (81) 

TSTT Adr Stbt Delay from ClKt (82) 

TSW Adr Stb Width (S1-82)[1] Tey-100 

TASe Rdt or Wr(Ext)t Delay from Adr Stbt 
(S2)[1] 25 

TOBC 
ROt or WR~Ext)t Delay from Adr (DB) 
(Float) (82) 1] -10 

DACKtor tDelay from ClKt (S2, S1) and 
TAK TC/Markt Delay from ClKt (S3) and 

TC/Markt Delay from ClKt (84)[4] 

TOCL 
ROt or Wr(Ext)t Delay from ClKt (S2) and 
Wrt Delay from ClKi (83)[2,5] 

TOCT 
Rd ! Delay from ClK I (81, SI) and 
Wr ! Delay from ClK ! (84) [2.6J 

TFAC Rd orWr (Active) from ClKi (S1)[2] 

TAFC Rd orWr (Float) from ClKt {S1)[2] 

TRWM Rd Width {S2-81 or 81)[1] 2TCy+TO-50 

TWWM WrWidth (83-84)[1] TCy-50 

TWWME WR(Ext) Width (82-84)[1] 2TCy-50 

NOTES: 
1. Tracking Parameter. 3. Load = VOH = 3.3V. 
2. Load = + 50 pF. 4. ~TAK < 50 ns. 
7. HLOA must remain stable during tHS. 

2-94 

8257-5 I 

Unit 
Max. Min. Max. 

160 160 ns 

250 250 ns 

300 300 ns 

200 200 ns 

20 ns 

250 250 ns 

150 150 ns 

250 250 ns 

TASM-50 ns 

60 ns 

300 ns 

300 300 ns 

250 TSTT+20 170 ns 

100 ns 

20 ns 

200 200 ns I 

140 140 ns 

Tey-100 ns 

25 ns 

-10 ns 

250 250 ns 

200 200 ns 

200 200 ns 

300 300 ns 

150 150 ns 

2TCy+TO-50 ns 

TCy-50 ns 

2TCy-50 ns 

5. ~T Del < 50 ns. 
6. ~TDCT < 50 ns. 



8259A/8259A-2/8259A-8 
PROGRAMMABLE INTERRUPT CONTROLLER 

• iAPX 86, iAPX 88 Compatible • Individual Request Mask Capability 

• MCS-80®, MCS-85® Compatible • Single + 5V Supply (No Clocks) 

• Eight·level Priority Controller • 28·Pin Dual·ln·line Package 

• Expandable to 64 levels • Available in EXPRESS 

• Programmable Interrupt Modes 
- Standard Temperature Range 
- Extended Temperature Range 

The Intel'" 8259A Programmable Interrupt Controller handles up to eight vectored priority interrupts for the CPU. It is 
cascadable for up to 64 vectored priority interrupts without additional circuitry. It is packaged in a 28-pin DIP, uses 
NMOS technology and requires a single + 5V supply. Circuitry is static, requiring no clock input. 

The 8259A is designed to minimize the software and real time overhead in handling multi·level priority interrupts. It has 
several modes, permitting optimization for a variety of system requirements. 

The 8259A is fully upward compatible with the Intel'" 8259. Software originally written for the 8259 will operate the 
8259A in all 8259 equivalent modes (MCS·80/85, Non·Buffered, Edge Triggered). 

iNTA INT 
I 

DATA --.-!-, CONTROL lOGIC 
°1-0 0 BUS 

BUFFER 

Cs Vee 

iVA Ao 
ill INTA 

0., IA7 

AD 
IRO D. IA6 
IR' 

WR- READ! 0, IA5 
WRITE 

D. IRO 
lOGIC 

Ao-~ IR' D) IA3 

0, IA2 

cs IR7 0, lA' 

Do lAO 

CASO INT 

CASO CAS 1 SP/EN 

CASCADE GND CAS 2 
CAS 1 BUFFERI 

COMPARATOR 

CAS 2 

SPIEN ~ INTfANAL BUS 

Figure 1. Block Diagram Figure 2. Pin Configuration 

Intel Corporation Assumes No Responsibilty fur the Use of Any CircuItry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses 81'e Implied 

")INTEL CORPORATION, 1980 2-95 



8259A!8259A-2/8259A-8 

Table 1. Pin Description 

Symbol Pin No. Type Name and Function 

Vee 28 I Supply: +5V Supply. 

GND 14 I Ground. 

CS 1 I Chip Select: A low on this pin enables RD and WR communication between the CPU and the 8259A. 
INTA functions are indepe'1dent of CS. 

WR 2 I Write: A low on this pin when CS is low enables the 8259A to accept command words from the CPU. 

RD 3 I Read: A low on this pin when CS is low enables the 8259A to release status onto the data bus forthe 
CPU. 

DrDo 4-11 I/O Bidirectional Data Bus: Control, status and interrupt-vector information is transferred via this bus. 

CASo-CAS2 12,13,15 I/O Cescade Lines: The CAS lines form a private 8259A bus to control a multiple 8259A structure. These 
pins are outputs for a master 8259A and inputs for a slave 8259A. 

SP/EN 16 110 Slave Program/Enable Buffer: This is a dual function pin. When in the Buffered Mode it can be used 
as an output to control buffer transceivers (~N). When not in the buffered mode it is used as an input 
to designate a master (SP = 1) or slave (SP = 0). 

INT 17 0 Interrupt: This pin goes high whenever a valid interrupt request is asserted. It is used to interrupt the 
CPU, thus it is connected to the CPU's interrupt pin. 

IRo-IR7 18-25 I Interrupt Requests: Asynchronous inputs. An interrupt request is executed by raising an IR input 
(low to high), and holding it high until it is acknowledged (Edge Triggered Mode), or just by a high 
level on an IR input (Level Triggered Mode). 

INTA 26 I Interrupt Acknowledge: This pin is used to enable 8259A interrupt-vector data onto the data bus by 
a sequence of interrupt acknowledge pulses issued by the CPU. 

Ao 27 I AO Address Line: This pin acts in conjunction with the CS, WR, and RD pins. It is used by the 8259A 
to decipher various Command Words the CPU writes and status the CPU wishes to read. It is typically 
connected to the CPU AO address line (A1 for iAPX 86, 88). 

2-96 



8259A18259A-2/8259A-8 

FUNCTIONAL DESCRIPTION 

Interrupts in Microcomputer Systems 
Microcomputer system design requires that 1/0 devices 
such as keyboards, displays, sensors and other com· 
ponents receive servicing in an efficient manner so that 
large amounts of the total system tasks can be assumed 
by the microcomputer with little or no effect on through· 
put. 

The most common method of servicing such devices is 
the Polled approach. This is where the processor must 
test each device in sequence and in effect "ask" each 
one if it needs servicing. It is easy to see that a large por· 
tion of the main program is looping through this con· 
tinuous polling cycle and that such a method would 
have a serious, detrimental effect on system through· 
put, thus limiting the tasks that could be assumed by 
the microcomputer and reducing the cost effectiveness 
of using such devices. 

A more desirable method would be one that would allow 
the microprocessor to be executing its main program 
and only stop to service peripheral devices when it is 
told to do so by the device itself. In effect, the method 
would provide an external asynchronous input that 
would inform the processor that it should complete 
whatever instruction that is currently being executed 
and fetch a new routine that will service the requesting 
device. Once this servicing is complete, however, the 
processor would resume exactly where it left off. 

This method is called Interrupt. It is easy to see that 
system throughput would drastically increase, and thus 
more tasks could be assumed by the microcomputer to 
further enhance its cost effectiveness. 

The Programmable Interrupt Controller (PIC) functions 
as an overall manager in an Interrupt·Driven system 
environment. It accepts requests from the peripheral 
equipment, determines which of the incoming requests 
is of the highest importance (priority), ascertains 
whether the incoming request has a higher priority value 
than the level currently being serviced, and issues an 
interrupt to the CPU based on this determination. 

Each peripheral device or structure usually has a special 
program or "routine" that is associated with its specific 
functional or operational requirements; this is referred 
to as a "service routine". The PIC, after issuing an Inter· 
rupt to the CPU, must somehow input information into 
the CPU that can "point" the Program Counter to the 
service routine associated with the requesting device. 
This "pointer" is an address in a vectoring table and will 
often be referred to, in this document, as vectoring data. 

The 8259A 
The 8259A is a device specifically designed for use in 
real time, interrupt driven microcomputer systems. It 
manages eight levels or requests and has built·in fea· 
tures for expandability to other 8259A's (up to 64 levels). 
It is programmed by the system's software as an I/O 
peripheral. A selection of priority modes is available to 
the programmer so that the manner in which the reo 
quests are processed by the 8259A can be configured to 

match his system requirements. The priority modes can 
be changed or reconfigured dynamically at any time duro 
ing the main program. This means that the complete 
interrupt structure can be defined as required, based on 
the total system environment. 

RAM 

ROM 

2-97 

RAM 

ROM 

CPU 

1/0(1) 

I/O 121 

liO(N) 

I I L ___ ...J 

CPU-ORIVEN 
MULTIPLEXOR 

--"' , 

Figure 3a. Polled Method 

CPU INT 

PIC 

I/Oll) 

I/O(2) 

I 110 IN) I 

1 I 1 _____ J 

Figure 3b. Interrupt Method 



inter 8259A/8259A-2/8259A-8 

INTERRUPT REQUEST REGISTER (IRR) AND 
IN·SERVICE REGISTER (ISR) 

The interrupts at the IR input lines are handled by two 
registers in cascade, the Interrupt Request Register 
(IRR) and the In·Service Register (ISR). The IRR is used 
to store all the interrupt levels which are requesting ser­
vice; and the ISR is used to store all the interrupt levels 
which are being serviced. 

PRIORITY RESOLVER 

This logic block determines the priorities of the bits set 
in the IRR. The highest priority is selected and strobed 
into the corresponding bit of the ISR during INTA pulse. 

INTERRUPT MASK REGISTER (IMR) 

The IMA stores the bits which mask the interrupt lines 
to be masked. The IMR operates on the IRR. Masking of 
a higher priority input will not affect the interrupt 
request lines of lower priority. 

INT (INTERRUPT) 

This output goes directly to the CPU interrupt input. The 
VOH level on this line is designed to be fully compatible 
with the 8080A, 8085A and 8086 input levels. 

INTA (INTERRUPT ACKNOWLEDGE) 

INTA pulses will cause the 8259A to release vectoring 
information onto the data bus. The format of this data 
depends on the system mode (!-,PM) of the 8259A. 

DATA BUS BUFFER 

This 3-state, bidirectional 8-bit buffer is used to inter­
face the 8259A to the system Data Bus. Control words 
and status information are transferred through the Data 
Bus Buffer. 

READ/WRITE CONTROL LOGIC 

The function of this block is to accept OUTput com­
mands from the CPU. It contains the Initialization Com­
mand Word (ICW) registers and Operation Command 
Word (OCW) registers which store the various control 
formats for device operation. This function block also 
allows the status of the 8259A to be transferred onto the 
Data Bus. 

CS (CHIP SELECT) 

A LOW on this input enables the 8259A. No reading or 
writing of the chip will occur unless the device is 
selected. 

WR (WRITE) 

A LOW on this input enables the CPU to write control 
words (ICWs and OCWs) to the 8259A. 

RD (READ) 

A LOW on this input enables the 8259A to send the 
status of the Interrupt Request Register (IRR), In Service 
Register (ISA), the Interrupt Mask Register (IMA), or the 
Interrupt level onto the Data Bus. 

,---------------------------.-----

~ 
'INHFlNAl8US 

Figure 4a. 8259A Block Diagram 

Figure 4b. 8259A Block Diagram 

Ao 

This input signal is used in conjunction with WA and RD 
signals to write commands into the various command 
registers, as well as reading the various status registers 
of the chip. This line can be lied directly to one of the ad­
dress lines. 

2-98 



inter 8259A18259A-2/8259A-8 

THE CASCADE BUFFER/COMPARATOR 

This function block stores and compares the IDs of all 
8259A's used in the system. The associated three I/O 
pins (CASO-2) are outputs when the 8259A is used as a 
master and are inputs when the 8259A is used as a 
slave. As a master, the 8259A sends the 10 of the inter­
rupting slave device onto the CASO-2 lines. The slave 
thus selected will send its preprogrammed subroutine 
address onto the Data Bus during the next one or two 
consecutive INTA pulses. (See section "Cascading the 
8259A".) 

INTERRUPT SEQUENCE 

The powerful features of the 8259A in a microcomputer 
system are its programmability and the interrupt routine 
addressing capability. The latter allows direct or indirect 
jumping to the specific interrupt routine requested 
without any polling of the interrupting devices. The nor­
mal sequence of events during an interrupt depends on 
the type of CPU being used. 

The events occur as follows in an MCS-80/85 system: 

1. One or more of the INTERRUPT REQUEST lines 
(IR7-0) are raised high, setting the corresponding IRR 
bit(s). 

2. The 8259A evaluates these requests, and sends an 
INT to the CPU, if appropriate. 

3. The CPU acknowledges the INT and responds with an 
INTA pulse. 

4. Upon receiving an INTA from the CPU group, the 
highest priority ISR bit is set, and the corresponding 
IRR bit is reset. The 8259A will also release a CALL in­
struction code (11001101) onto the 8-bit Data Bus 
through its 07-0 pins. 

5. This CALL instruction will initiate two more INTA 
pulses to be sent to the 8259A from the CPU group. 

6. These two INTA pulses allow the 8259A to release its 
preprogrammed subroutine address onto the Data 
Bus. The lower 8-bit address is released at the first 
INTA pulse and and the higher 8-blt address is re­
leased at the second INTA pulse. 

7. This completes the 3-byte CALL instruction released 
by the 8259A. In the AEOI mode the ISR bit is reset at 
the end of the third INTA pulse. Otherwise, the ISR bit 
remains set until an appropriate EOI command is 
issued at the end of the interrupt sequence. 

The events occurring in an iAPX 86 system are the same 
until step 4. 

4. Upon receiving an INTA from the CPU group, the high­
est priority ISR bit is set and the corresponding IRR 
bit is reset. The 8259A does not drive the Data Bus 
during this cycle. 

5. The iAPX 86/10 will initiate a second INTA pulse. 
During this pulse, the 8259A releases an 8-bit pOinter 
onto the Data Bus where it is read by the CPU. 

6. This completes the interrupt cycle. In the AEOI mode 
the ISR bit is reset at the end of the second INTA 
pulse. Otherwise, the ISR bit remains set until an 
appropriate EOI command is issued at the end of the 
interrupt subroutine. 

2-99 

If no interrupt request is present at step 4 of either 
sequence (i.e., the request was too short in duration) the 
8259A will issue an interrupt level 7. Both the vectoring 
bytes and the CAS lines will look like an interrupt level 7 
was requested. 

~ 'NTERNAl BUS 

Figure 4c. 8259A Block Diagram 

ENABLE BUFFER 

AD WR INT INT A 

I 
INTERRUPT 
REQUESTS 

Figure 5_ 8259A Interface to Standard 
System Bus 



inter 8259A/8259A-2/8259A-8 

INTERRUPT SEQUENCE OUTPUTS 
MCS-80®, MCS-85® 

This sequence is timed by three INTA pulses. During the 
first INTA pulse the CALL opcode is enabled onlo Ihe 
data bus. 

Content 01 First Interrupt 
Vector Byte 

07 06 05 04 03 02 01 DO 

CALL CODE I 1 a a 1 I 
During the second INTA pulse the lower address of the 
appropriate service routine is enabled onto the data bus. 
When Interval = 4 bits As-A7 are programmed, while Aa­
A4 are automatically inserted by the 8259A. When Inter· 
val = 8 only As and A7 are programmed, while Aa-As are 
automatically inserted. 

IR 

07 

7 A7 

6 A7 

S A7 

4 A7 

3 A7 

2 A7 

1 A7 

a A7 

--~ 

IR 

07 

7 A7 

6 A7 

S A7 

4 A7 

3 A7 

2 A7 

1 A7 

0 A7 

Content of Second Interrupt 
Vector Byte 

Inte .. al= 4 

06 05 04 03 02 

A6 A5 1 1 1 

A6 AS 1 1 0 

A6 AS 1 a 1 

A6 AS 1 a a 
A6 AS a 1 1 

A6 AS a 1 a 
A6 AS a a 1 

A6 AS a a a 

Inle .. al =8 

06 05 04 03 02 

A6 1 1 1 a 
A6 1 1 a a 
A6 1 a 1 a 
A6 1 0 0 0 

A6 a 1 1 () 
A6 0 1 0 0 

AS 0 0 1 0 

AS 0 0 0 0 

01 DO 

a 0 

0 a 
a a 
a a 
a a 
a 0 

a a 
a a 

--
01 -~ 0 

a a 
"-a a 
a a 
0 0 

0 a 
a 0 

~-

0 0 

During the third INTA pulse the higher address of the 
appropriate service routine, which was programmed as 
byte 2 of the initialization sequence (As - A l 5l, is 
enabled onto the bus. 

07 06 

A14 

Content of Third Interrupt 
Vector Byte 

05 04 03 02 

A13 A12 All Ala 

iAPX 86, iAPX 88 

01 DO 

A9 A8 

iAPX 86 mode is Similar to MCS-80 mode except that only 
two Interrupt Acknowledge cycles are issued by the pro­
cessor and no CALL opcode is sent to the processor. The 
first interrupt acknowledge cycle is similar to that of 
MCS-80, 85 systems in that the 8259A uses it to internally 
freeze the state of the interrupts for priority resolution and 
as a master it issues the interrupt code on the cascade 
lines at the end of the INTA pulse. On this first cycle it does 

not issue any data to the processor and leaves its data bus 
buffers disabled. On the second interrupt acknowledge 
cycle in iAPX 86 mode the master (or slave if so pro­
grammed) will send a byte of data to the processor with 
the acknowledged interrupt code composed as'follows 
(note the state of the ADI mode control is ignored and 
As-Al1 are unused in iAPX 86 mode): 

IA7 

lAS 

IA5 

IA4 

IA3 

IA2 

IRI 

lAO 

Content of I nterrupt Vector Byte 
for iAPX 86 System Mode 

07 06 05 04 03 02 

T7 TS T5 T4 T3 1 

T7 TS T5 T4 T3 1 

T7 TS T5 T4 T3 1 

T7 T6 T5 T4 T3 1 

T7 TS TS T4 T3 a 
T7 T6 T5 T4 T3 0 

T7 T6 T5 T4 T3 a 
T7 T6 T5 T4 T3 0 

PROGRAMMING THE 8259A 

01 DO 

1 1 

1 a 
0 I 

0 0 

1 1 

I 0 

0 1 

0 0 

The 8259A accepts two types of command words gener· 
ated by the CPU: 

,. Initialization Command Words (lCWs): Before normal 
operation can begin, each 8259A in the system must 
be brought to a starting point - by a sequence of 2 to 
4 bytes timed by WR pulses, 

2. Operation Command Words (OCWs): These are the 
command words which command the 8259A to oper· 
ate in various interrupt modes. These modes are: 

a. Fully nested mode 
b. Rotating priority mode 
c. Special mask mode 
d. Polled mode 

The OCWs can be written into the 8259A anytime after 
initialization. 

INITIALIZATION COMMAND WORDS 
(ICWS) 
GENERAL 

Whenever a command is issued with AO = 0 and D4 = 1, 
this is interpreted as Initialization Command Word 1 
(ICW1). ICW1 starts the initialization sequence during 
which the following automatically occur. 

a. The edge sense circuit is reset, which means that fol­
lowing initialization, an interrupt request (IR) input 
must make a low-to-high transition to generate an 
interrupt. 

b. The Interrupt Mask Register is Cleared. 
c. IR7 input is assigned priority 7. 
d. The slave mode address is set to 7. 
e. Special Mask Mode is cleared and Status Read is set to 

IRR. 
f. If IC4=O, then all functions selected in ICW4 are set to 

zero. (Non-Buffered mode', no Auto-EOI, MCS-80,85 
system). 

-Note: MasterfSlave in ICW4 is only used in the buffered mode. 

2-100 



8259A/8259A-2/8259A-8 

INITIALIZATION COMMAND WORDS 1 AND 2 
(ICW1, ICW2) 

As-A1S: Page starting address of service routines. In an 
MCS 80/85 system, the 8 request levels will generate 
CALLs to 8 locations equally spaced in memory. These 
can be programmed to be spaced at intervals of 4 or 8 
memory locations, thus the 8 routines will occupy a 
page of 32 or 64 bytes, respectively. 

The address format is 2 bytes long (Ao-A1S)' When the 
routine interval is 4, Ao-A4 are automatically inserted by 
the 8259A, while As-A1S are programmed externally. 
When the routine interval is 8, Ao-As are automatically 
inserted by the 8259A, while As-A1S are programmed 
externally. 

The 8·byte interval will maintain compatibility with cur· 
rent software, while the 4·byte interval is best for a com· 
pact jump table. 

In an iAPX 86 system A1S-A11 are inserted in the five most 
significant bits of the vectoring byte and the 8259A sets 
the three least significant bits according to the interrupt 
level. A1O-AS are ignored and ADI (Address interval) has 
no effect. 

LTIM: If LTIM=1, then the 8259A will operate in the 
level interrupt mode. Edge detect logic on the 
interrupt inputs will be disabled. 

ADI: CALL address interval. ADI = 1 then interval = 4; 
ADI = 0 then interval = 8. 

SNGL: Single. Means that this is the only 8259A in the 
system. If SNGL= 1 no ICW3 will be issued. 

IC4: If this bit Is set - ICW4 has to be read. If ICW4 
is not needed, set IC4 = O. 

NO (SINGl. = 1) 

NO (IC4·~ 0) 

INITIALIZATION COMMAND WORD 3 (ICW3) 

This word is read only when there is more than one 
8259A in the system and cascading is used, in which 
case SNGL = O. It will load .the 8-bit slave register. The 
functions of this register are: 

a. In the master mode (either when SP = 1, or in buffered 
mode when MIS = 1 in ICW4) a "1" is set for each 
slave in the system. The master then will release byte 
1 of the call sequence (for MCS-80/85 system) and 
will enable the corresponding slave to release bytes 2 
and 3 (for iAPX 86 only byte 2) through the cascade 
lines. 

b. In the slave mode (either when SP = 0, or if BUF = 1 
and MIS = 0 in ICW4) bits 2-0 identify the slave. The 
slave compares its cascade input with these bits and, 
if they are equal, bytes 2 and 3 of the call sequence (or 
just byte 2 for iAPX 86 are released by it on the Data 
Bus. 

INITIALIZATION COMMAND WORD 4 (ICW4) 

SFNM: If SFNM = 1 the speCial fully nested mode is 
programmed. 

BUF: If BUF = 1 the b'uffered mode is programmed. In 
buffered mode SPIEN becomes an enable output 
and the masterlslave determination is by MIS. 

MIS: If buffered mode is selected: MIS = 1 means the 
8259A is programmed to be a master, MIS = 0 
means the 8259A is programmed to be a slave. If 
BUF = 0, MIS has no function. 

AEOI: If AEOI = 1 the automatic end of interrupt mode 
is programmed. 

",PM: Microprocessor mode: !-,PM = 0 sets the 8259A for 
MCS-80, 85 system operation, !-,PM = 1 sets the 
8259A for iAPX 86 system operation. 

Figure 6. Initialization Sequence 

2-101 



A, 0, 0, 

A, 0, 

A, 0, 

8259A!8259A-2/8259A-8 

ICW' 

'" 0, 0] 0, 0, n" 

• lew. NEEDED 
0" NO leW4 NEEDED 

1 == SINGLE 
.0 '" CASCADE MODE 

CAll A[,DAESS INHRVAL 
1 - INTERVAL OF'-

L_ 0" INTERVAL OF 8 

\ '" LEVEL TRIGGERED MODE 
o '" EDGE TRIGGERED MODE 

A7-A5 01 INTERRUPT 
VECTOR ADDRESS 

(MCS-80i85 MODE ONl Y) 

ICW' 

0, 0, 

A 15-AS OF INTERRUPT 
VECTOR ADDRESS 

(MCS80i85 MODE) 
T 7- T 3 OF INTERRUPT 

leWllMASTER DEVICE) VECTOR ADDRESS 

0, 

ICW31SlAVE DEVICE I 

(8086/8088 MODE) 

- IA INPUT HAS A SLAVE 
IR INPUT DOES NOT HAVE 
A SLAVE 

1 '" 808618088 MODE 
0'" MCS·80185 MODE 

1 AUTO EOI 
o NOR~AL EOI 

EIlmX NQN BUfFERED MODE 
,- --0 BUfFERED MODE/SLAVE 
,. 1 - BUFFERED MODE/MASTER 

NOTE 1: SLAVE 10 IS EQUAL TO THE CORRESPONDING 
MASTER IR INPUT. 

1 = SPECIAL FULLY NESTED 

'----------\ 0 = ~gf~PEC1AL FULLY 
NESTED MODe 

Figure 7. Initialization Command Word Format 

2-102 



8259A/8259A-2/8259A-8 

OPERATION COMMAND WORDS (OCWs) 
After the Initialization Command Words (ICWs) are pro­
grammed into the 8259A, the chip is ready to accept 
Interrupt requests at its input lines. However, during the 
8259A operation, a selection of algorithms can com­
mand the 8259A to operate in various modes through 
the Operation Command Words (OCWs). 

OPERATION CONTROL WORDS (OCWs) 

OCWI 

AO 07 06 05 04 03 02 01 DO 

[i] I M7 M6 M5 M4 M3 M2 Ml MO I 

OCW2 

~ EOI 0 

OCW3 

o ESMM SMM 0 P RR RIS I 

2-103 

OPERATION CONTROL WORD 1 (OCW1) 

OCW1 sets and clears the mask bits in the interrupt 
Mask Register (IMR). M7 - Mo represent the eight mask 
bits. M = 1 indicates the channel is masked 
(inhibited), M = 0 indicates the channel is enabled. 

OPERATION CONTROL WORD 2 (OCW2) 

R, SL, EOI - These three bits control the Rotate and 
End of Interrupt modes and combinations of the two. A 
chart of these combinations can be found on the Opera­
tion Command Word Format. 

L2 , L1 , Lo-These bits determine the interrupt level acted 
upon when the SL bit is active. 

OPERATION CONTROL WORD 3 (OCW3) 

ESMM - Enable Special Mask Mode. When this bit is 
set to 1 it enables the SMM bit to set or reset the Special 
Mask Mode. When ESMM = 0 the SMM bit becomes a 
"don't care". 

SMM - Special Mask Mode. If ESMM = 1 and SMM = 1 
the 8259A will enter Special Mask Mode. If ESMM = 1 
and SMM = 0 the 8259A will revert to normal mask mode. 
When ESMM = 0, SMM has no effect. 



8259A/8259A-2/8259A-8 

DCW2 

AO 01 Db Dt; 0'4 03 02 01 Do 

1 0 " j SL j EOI j 0 i 0 j L, j L,j LO I 

I 
IR LEVEL TO BE 
ACTED UPON 

0 , , 3 4 , , 7 

0 , 0 , 0 , 0 , 
0 0 , , 0 0 , , 
0 0 0 0 , , , , 

I r-
et- ~ NON-SPECIFIC EOICOMMANO } ~~~ END OF INTERRUPT 

~-+-+ 
SP£CIFlC EOI COMMAND 

r-2-~~ ROTATE ON NOH.SPECtFIC EOI COMMAND } ~";-I+ ROTATE IN AUTOMATIC EOI MODE (SEl) AUTOMATIC ROTATION 

~r+r;-
ROTATE IN AUTOMATIC EOI MODe (ClEAR) 

'ROTATE ON SPECIFIC EOI COMMAND } SPECIFIC ROTATION f-;-f-;-f-o 'SET PRIORITY COMMAND 

b:!::!:tt NO OPERATION 

"L()'U ARE USED 

Oew7 

An 07 [.16 f\; D4 03 02 01 Do 

I 0 I 0 I"MMI SMM j 0 I ' I p I RR I "" I 

I I Lr- READ REGISTER COMMAND 

0 I , 0 , 
0 I 0 , , 

I READ READ 
IA REG ISREG NO ACTION ON NE'(T ON NEXT 
A'DPULSE RDPUlSE 

1~POLLCOMMAND 
O~ NO POLL COMMAND 

SPECIAL MASK MODE 

0 I , 0 , 
0 I 0 , , 

RESET SET 
NO ACTION SPECIAL SPECIAL 

MASt( MASK 

Figure 8. Operation Command Word Format 

2-104 



8259A/8259A-2/8259A-8 

FULLY NESTED MODE 

This mode is entered after initialization unless another 
mode is programmed. The interrupt requests are 
ordered in priority form ° through 7 (0 highest). When an 
interrupt is acknowledged the highest priority request is 
determined and its vector placed on the bus. Additional" 
Iy, a bit of the Interrupt Service register (ISO-7) is set. 
This bit remains set until the microprocessor issues an 
End of Interrupt (EOI) command immediately before 
returning from the service routine, or if AEOI (Automatic 
End of Interrupt) bit is set, until the trailing edge of the 
last INTA. While the IS bit is set, all further interrupts of 
the same or lower priority are inhibited, while higher 
levels will generate an interrupt (which will be 
acknowledged only if the microprocessor internal Inter­
rupt enable flip-flop has been re-enabled through soft­
ware). 

After the initialization sequence, IRO has the highest 
priority and IR7 the lowest. Priorities can be changed, as 
will be explained, in the rotating priority mode. 

END OF INTERRUPT (EOI) 

The In Service (IS) bit can be reset either automatically 
following the trailing edge of the last in sequence INTA 
pulse (when t\EOI bit in ICWI is set) or by a command 
word that must be issued to the 8259A before returning 
from a service routine (EOI command). An EOI command 
must be issued twice if in the Cascade mode, once for the 
master and once for the corresponding slave. 

There are two forms of EOI command: Specific and Non­
Specific. When the 8259A is operated in modes which 
preserve the fully nested structure, it can determine 
which IS bit to reset on EO!. When a Non-Specific EOI 
command is issued the 8259A will automatically reset 
the highest IS bit of those that are set, since in the 
fully nested mode the highest IS level was necessarily the 
last level acknowledged and serviced. A non-specific EOI 
can be issued with OCW2 (EOI = 1 ,SL = 0, R = 0). 

When a mode is used which may disturb the fully nested 
structure, the 8259A may no longer be able to determine 
the last level acknowledged. In this case a Specific End of 
Interrupt must be issued which includes as part of the 
command the IS level to be reset. A specific EOI can be is­
sued with OCW2 (EOI = 1, SL = 1, R = 0, and LO-L2 is the 
binary level of the IS bit to be reset). 

It should be noted that an IS bit that is masked by an 
IMR bit will not be cleared by a non-specific EOI if the 
8259A is in the Special Mask Mode. 

AUTOMATIC END OF INTERRUPT (AEOI) MODE 

If AEOI = 1 in ICW4, then the 8259A will operate in AEOI 
mode continuously until reprogrammed by ICW4. In this 
mode the 8259A will automatically perform a non­
specific EOI operation at the trailing edge of the last 
interrupt acknowledge pulse (third pulse in MCS-80/85, 
second in iAPX 86). Note that from a system standpoint, 
this mode should be used only when a nested multilevel 
interrupt structure is not required within a single 8259A. 

The AEOI mode can only be used in a master 8259A and 
not a slave. 

AUTOMATIC ROTATION 
(Equal Priority Devices) 

In some applications there are a number of interrupting 
devices of equal priority. in this mode a device, after 
being serviced, receives the lowest priority, so a device 
requesting an interrupt will have to wait, in the worst 
case until each of 7 other devices are serviced at most 
once. For example, if the priority and "in service" status 
is: 

Before Rotate (IR4 the highest priority requiring service) 

IS7 IBe ISS Is.! 153 152 151 ISO 

"IS" Slatus CililO[1[0[O[0[0[ 

low •• t Priority Hlghelt Priority 

Priority Status L~_71~6JI_5~[~~1_3~1_2~ 

Alter Rotate (IR4 was serviced, all other priorities 
rotated correspondingly) 

157 lBe ISS 154 153 152 151 ISO 

"IS" Status [OJ> [ilo I 0 I 0 [ 0 1 0 [ 

Priori Iy Status 

Hlgh •• t PrIority Low •• t Priority 

12 1110 [ 7fir1i~ 
There are two ways to accomplish Automatic Rotation 
using OCW2, the Rotation on Non-Specific EOI Command 
(R = 1, SL = 0, EOI = 1) and the Rotate in Automatic EOI 
Mode which is set by (R = 1, SL = 0, EOI = 0) and cleared 
by (R = 0, SL = 0, EOI = 0). 

SPECIFIC ROTATION 
(Specific Priority) 
The programmer can change priorities by programming 
the bottom priority and thus fixing all other priorities; 
i.e., if IR5 is programmed as the bottom priority device, 
then IR6 will have the highest one. 

The Set Priority command is issued in OCW2 where: 
R = 1, SL = 1; LO-L2 is the binary priority level code of the 
bottom priority device. 

Observe that in this mode internal status is updated by 
software control during OCW2. However, it is independent 
of the End of Interrupt (EOI) command (also executed by 
OCW2). Priority changes can be executed during an EOI 
command by using the Rotate on Specific EOI command 
in OCW2 (R = 1, SL = 1, EOI = 1 and LO-L2 = IR level to 
receive bottom priority). 

INTERRUPT MASKS 

Each Interrupt Request input can be masked individu­
ally by the Interrupt Mask Register (IMR) programmed 
through OCW1. Each bit in the IMR masks one interrupt 
channel if it is set (1). Bit 0 masks IRO, Bit 1 masks IRI 
and so forth. Masking an IR channel does not affect the 
other channels operation. 

2-105 



8259A18259A-2!8259A-8 

SPECIAL MASK MODE 

Some applications may require an interrupt service 
routine to dynamically alter the system priority struc· 
ture during its execution· under software control. For 
example, the routine may wish to inhibit lower priority 
requests for a portion of its execution but enable some 
of them for another portion. 

The difficulty here is that if an Interrupt Request is 
acknowledged and an End of Interrupt command did not 
reset its IS bit (Le., while executing a service routine), 
the 8259A would have inhibited all lower priority 
requests with no easy way for the routine to enable 
them 

That is where the Special Mask Mode comes in. In the 
special Mask Mode, when a mask bit is set in OCW1, it 
inhibits further interrupts at that level and enables inter· 
rupts from al/ other levels (lower as well as higher) that 
are not masked. 

Thus, any interrupts may be selectively enabled by 
loading the mask register. 

The special Mask Mode is set by OCW3 where: 
SSMM=l, SMM=l, and cleared where SSMM=l, 
SMM=O. 

POLL COMMAND 

In this mode the INT output is not used or the micropro­
cessor internal Interrupt Enable flip-flop is reset, disabling 
its interrupt input. Service to devices is achieved by 
software using a Poll command. 

The Poll command is issued by setting P = "1" in OCW3. 
The 8259A treats the next RD pulse to the 8259A (I.e., 
RD = 0, CS = 0) as an interrupt acknowledge, sets the 
appropriate IS bit if there is a reQue~ and~ads the 
priority level. Interrupt is frozen from WR to RD. 

The word enabled onto the data bus during Rl5 is: 

07 D8 05 04 03 02 01 DO 

I I W2 WI ~ 
WO-W2: Binary code of the highest priority level 

requesting service. 
I: Equal to a "1" if there is an interrupt. 

This mode is useful if there is a routine command com· 
mon to several levels so that the iNiA sequence is not 
needed (saves ROM space). Another application is to 
use the poll mode to expand the number of priority 
levels to more than 64. 

lTlM BIT 
0", EDGE 
1 = lEVel 

TO OTMEA "AIORTY CElLS 

II 
I 
I 

-- CLAtSIIl 

CLA a "R!lIT 

SET 

~~-+---t----+----i---<:- t:ttl~=~-;;-11 SET ISA 

NON 
MASKED 

",a 

I'AIDAITY 
RESOLVER 

-~CONTROl --I lOGIC 

Mcs-so,as\IlinB MODE 

mrn INTERNAL 
.-H-f-~-----<>---- DATA sus 

IAPX 86 
MODE 

c 
u 

; { ;;;;TAn 
FREEZE ,----

NOTES 

1. MASTER CLEAR ACTIVE ONl V DURING ICWl 

2 ,IU(2E/IS .... CTlVE DURING iNT41 .... Ni) POll SEQUENCES ONl y 

1. rRUTH r .... u FOA D·LATCH 

I a ' a::~ 1 I 
OPu.,ATlON 

FOLLOW 
HOLO 

Figure 9. Priority Cell-Simplified Logic Diagram 

2-106 



intet' 8259A/8259A-2/8259A-8 

READING THE 8259A STATUS 

The inputstatus of several internal registers can be read to 
update the user information on the system. The following 
registers can be read via OCW3 (IRR and ISR or OCW1 
[IMR1). 

Interrupt Request Register (IRR): 8-bit register which con­
tains the levels requesting an interrupt to be acknowl­
edged. The highest request level is reset from the IRR 
when an interrupt is acknowledged. (Not affected by IMR.) 

In-Service Register (ISR): 8-bit register which contains the 
priority levels that are being serviced. The ISR is updated 
when an End of Interrupt Command is issued. 

Interrupt Mask Register: 8-bit register which contains the 
interrupt request lines which are masked. 

The IRR can be read when, prior to the RD pulse, a Read 
Register Command is issued with OCW3 (RR = 1, RIS = 0.) 

The ISR can be read when, prior to the RD pulse, a Read 
Register Command is issued with OCW3 (RR = 1, RIS = 1). 

There is no need to write an OCW3 before every status 
read operation, as long as the status read corresponds 
with the previous one; i.e., the 8259A "remembers" 
whether the IRR or ISR has been previously selected by 
the OCW3. This is not true when poll is used. 

After initialization the 8259A is set to IRR. 

For reading the IMR, no OCW3 is needed. The output data 
bus will contain the IMR whenever RD is active and AO =1 
(OCW1). 

Polling overrides status read when P = 1, RR = 1 in OCW3. 

IR 

EDGE AND LEVEL TRIGGERED MODES 

This mode is programmed using bit 3 in ICW1. 

If L TIM = '0', an interrupt request will be recognized by a 
low to high transition on an IR input. The IR input can re­
main highwilhout generating another interrupt. 

If LTIM = '1', an interrupt request will be recognized by a 
'high' level on IR Input, and there is no need for an edge 
detection. The interrupt request must be removed before 
the EOI command is issued or the CPU interrupt is enabled 
to prevent a second interrupt from occurring. 

The priority cell diagram shows a conceptual circuit of the 
level sensitive and edge sensitive input circuitry of the 
8259A. Be sure to note that the request latch is a transpar­
ent D type latch. 

In both the edge and level triggered modes the IR inputs 
must remain high until after the falling edge of the first 
INTA. If the IR input goes low before this time a DEFAULT 
IR7 will occur when the CPU acknowledges the interrupt. 
This can be a useful safeguard for detecting interrupts 
caused by spurious noise glitches on the IR inputs. To im­
plement this feature the IR7 routine is used for "clean up" 
simply executing a return instruction, thus ignoring the 
interrupt. If IR7 is needed for other purposes a default IR7 
can still be detected by reading the ISR. A normal IR7 
interrupt will set the corresponding ISR bit, a default IR7 
won·t. If a default IR7 routine occurs during a normal IR7 
routine, however, the ISR will remain set. In this case it is 
necessary to keep track of whether or not the I R7 routine 
was previously entered. If another IR7 occurs it is a 
default. 

8086/8088 --=~ r----------r---------T--------~ 

INT -------t-J 

INTA -----r-------___. 

LATCH' 
ARMED 

EARLIEST IR 
CAN BE REMOVED 

8086/8088 

8080/8085 

·EDGE TRIGGERED MODE ONLY 

Figure 10_ IR Triggering Timing Requirements 

2-107 

LATCH' 
ARMED 



inter 8259A}8259A-2/8259A-8 

THE SPECIAL FUllY NESTED MODE 

This mode will be used In the case of a 019 system 
where cascading is used, and the priority has to be con­
served within each slave_ in this case the fully nested 
mode will be programmed to the master (using ICW4). 
This mode is similar to the normal nested mode with the 
following exceptions: 

a. When an interrupt request from a certain slave is in 
service this slave is not locked out from the master's 
priority logic and further interrupt requests from 
higher priority IR's within the slave will be recognized 
by the master and will initiate interrupts to the proc­
essor. (In the normal nested mode a slave is masked 
out when its request is in service and no nigher 
req.uests from the same slave can be serviced.) 

b. When exiting the Interrupt Service routine the soft­
ware has to check whether the interrupt serviced was 
the only one from that slave. This is done by sending 
a non-specific End of Interrupt (EOI) command to the 
slave and then reading its in-Service register and 
checking for zero. If it is empty, a non-specific EOI 
can be sent to the master too. If not, no EOI should be 
sent. 

BUFFERED MODE 

When the 8259A is used in a large system where bus 
driving buffers are required on the data bus and the cas­
cading mode is used, there exists the problem of enabl­
ing buffers. 

The buffered mode will structure the 8259A to send an 
enable signal on SP/EN to enable the buffers. In this 

mode, whenever the 8259A's data bus outputs are ena­
bled, the SP/EN output becomes active. 

This modification forces the use of software program­
ming to determine whether the 8259A is a master or a 
slave. Bit 3 in ICW4 programs the buffered mode, and bit 
2 in ICW4 determine.s whether it is a master or a slave. 

CASCADE MODE 
The 8259A can be easily interconnected in a system of one 
master with up to eight slaves to handle up to 64 priority 
levels. 

The master controls the slaves through the 31ine cascade 
bus. The cascade bus acts like chip selects to the slaves 
during the INTA sequence. 

In a cascade configuration, the slave interrupt outputs are 
connected to the master interrupt request inputs. When a 
slave request line is activated and afterwards acknowl­
edged, the master will enable the corresponding slave to 
release the device routine address during bytes 2 and 3 of 
INTA. (Byte 2 only for 8086/8088). 

The cascade bus lines are normally low and will contain 
the slave address code from the trailing edge of the first 
INTA pulse to the trailing edge of the third pulse. Each 
8259A in the system must follow a separate initialization 
sequence and can be programmed to work in a different 
mode. An EOI command must be issued twice: once for 
the master and once for the corresponding slave. An 
address decoder is required to activate the Chip Select 
(CS) input of each 8259A. 

The cascade lines of the Master 8259A are activated only 
for slave inputs, non slave inputs leave the cascade line 
inactive (low). 

---------- - --- - . - --------

~i~------~~AO=ORES=S.US~I1·,-------:~:-----~\1 
L CONTROL BUS 

I [ i [ [I 
DATA BUS (8t 

I 
- 1--- ,--
~-- ~-

-r----IOf--~-:..<:-~....::,,:...r...l.r_..=-~fr - _e--- c---

cs Ao 00·7 INTA INT CS A.o DO 7 INTA CASO 1- f--
8259A 

SLAVE A CAS'I- r--
8259A 

SLAVE B 

0-1 I II II i 
r-t-+- 1 I ~J ~~ I 

IN r 1 cs Ao 00-7 INl A INT 

CASO _ CASO 

6259A 
CAS 11--.... t+-~ CAS 1 MASTER 

II [ I iii rrl Ij j I i Ii iTI~J~i:rriJi'i 
==:====~~====~I======== ~ 

INTERRUPT REOUESTS 

Figure 11. Cascading the 8259A 

2-108 



8259A/8259A·2/8259A·8 

ABSOLUTE MAXIMUM RATINGS· 
Ambient Temperature Under Bias .......... o'c to 70'C 
Storage Temperature .............. -65'C to + 150'C 
Voltage on Any Pin 

with Respect to Ground ............. - 0.5V to + 7V 
Power Dissipation .......................... 1 Watt 

"NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. 

D.C. CHARACTERISTICS [TA = O'C to 70'C, Vee = 5V ±5% (8259A-8). Vee = 5V ± 1 0% (8259A, 8259A-2)l 

Symbol Parameter Min. Max. Units Test Conditions 

VIL Input Low Voltage -0.5 0.8 V 

VIH Input High Voltage 2.0" Vee +0.5V V 

VOL Output Low Voltage 0.45 V IOL = 2.2mA 

VOH Output High Voltage 2.4 V IOH - -400/LA 

Interrupt Output High 3.5 V IOH - -100/LA 
VOH(INT) Voltage 2.4 V IOH = -400/LA 

III Input Load Current -10 +10 /LA OV ,;VIN .;Vee 

ILOL Output Leakage Current -10 +10 /LA 0.45V ,;VOUT .;Vee 

lee Vee Supply Current 85 mA 

ILiR IR Input Load Current 
-300 /LA VIN = 0 

10 /LA VIN - Vee 

'Note: For Extended Temperature EXPRESS V'H = 2.3V. 

CAPACITANCE (TA = 25'C; Vee = GND = OV) 

Symbol Parameter Min. Typ. Max. Unit Test Conditions 

CIN Input Capacitance 10 pF fc = 1 MHZ 

Clio I/O Capacitance 20 pF Unmeasured pins returned to Vss 

A.C. CHARACTERISTICS [TA = DoC to 70'C, Vee = 5V ±5% (8259A-8), Vee 5V ± 10% (8259A, 8259A-2)1 

TIMING REQUIREMENTS 

Symbol Parameter 
8259A-8 8259A 8259A-2 

Units Test Conditions 
Min. Max. Min. Max. Min. Max. 

TAHRL AOICS Setup to RDIINTAj, 50 0 0 ns 

TRHAX AOICS Hold after RDllNTAt 5 0 0 ns 

TRLRH RD Pulse Width 420 235 160 ns 

TAHWL AOICS Setup to WR1 50 0 0 ns 

TWHAX AOICS Hold after WRt 20 0 0 ns 

TWLWH WR Pulse Width 400 290 190 ns 

TDVWH Data Setup to WRt 300 240 160 ns 

TWHDX Data Hold afterWRt 40 0 0 ns 

TJLJH Interrupt Request Width (Low) 100 100 100 ns See Note 1 

TCVIAL 
Cascade Setup to Second orThird 

55 55 40 ns 
INTA1 (Slave Only) 

End of RD to next RD 
TRHRL End of INTA to next INTA within 160 160 160 ns 

an INTA sel1uence only --1 TWHWL End of WR to next WR 190 190 190 ns 

2-109 



8259A/8259A-2/8259A-8 

A.C. CHARACTERISTICS (Continued) 

Symbol Parameter 
8259A·8 8259A 8259A·2 

Units Test Conditions 
Min. Max. Min. Max. Min. Max. 

'TCHCL 
End of Command to next Command 

500 500 500 
(Not same command type) 

ns 

End of INTA sequence to next 

I INTA sequence. 

'Worst case timing for TCHCL in an actual microprocessor system is typically much greater than 500 ns (i.e. 8085A = 1.6,.s, 
8085A·2 = 1,.s, 8086 = l,.s, 8086·2 = 625 ns) 

NOTE: This is the low time required to clear the input latch in the edge triggered mode. 

TIMING RESPONSES 

Symbol Parameter 
8259A-8 8259A 8259A-2 

Units Test Conditions 

Min. Max. Min. Max. Min. Max. 

TRLDV Data Valid from RD/INTAj 300 200 120 ns C of Data Bus= 
100pF 

TRHDZ Data Float atter RD/INTA1 10 200 10 100 10 85 ns C of Data Bus 

TJHIH Interrupt Output Delay 400 350 300 ns 
Max text C = 100 pF 
Min. test C = 15 pF 

TIALCV 
Cascade Valid from First INTAI 

565 565 360 ns C'NT = 100 pF 
(Master Only) 

TRLEL Enable Active from RD I or INTAI 160 125 100 ns CCASCADE = 100 pF 

TRHEH Enable Inactive from RD1 or INTA1 325 150 150 ns 

TAHDV Data Valid from Stable Address 350 200 200 ns 

TCVDV Cascade Valid to Valid Data 300 300 200 ns 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT/OUTPUT 

2.0 2.0 DEVICE u=x )C ? TEST POINTS < 
O.B 0.8 

0.45 

UNDER 

lCL~100PF TEST 

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC 1" AND OASV FOR 
A lOGIC "0," TIMING MEASUREMENTS ARE MADE AT 2.QV FOR A LOGIC 1 
AND a.8V FOR A lOGIC' 0 .. 

WAVEFORMS 

-= 
CL = 100pF 
CL INCLUDES JIG CAPACITANCE 

WRITE -~~~TWLWH~-_ 

cs 
ADDRESS 

DATA BUS 

-
BUS ) 

\ 
TAHWL --

2-110 

- TWHAX I-

K 
-TDYWH- !--TWHDX 

) r -



8259A/8259A-2/8259A-8 

WAVEFORMS (Continued) 

READ/INTA 

ROONTA----------~ 
I------TRLRH-----oj ,, _________ _ 

CI-----'"""'" 
ADDRESS BUS 

Ao------J 

TRLEl 

TRHAX 

DATA BUS- ________ -: __ ~_-~-::~=~'_ ______________ ...... } m_u 

OTHER TIMING 

lUi 

t=TRHRL=4\ INTA 

\ / 
WR 

\ !l=TWHWL~ / 
RO 

iNllI 

\ Cre~,~ 
Wli 

RO 
INTA 

/ Wli 

2-111 



8259A/8259A-2/8259A-8 

WAVEFORMS (Continued) 

INTA SEQUENCE 
IR 

INT------J 

IHT.-----------~ 

08-----_______ _ 

TCVDV 
CO·2------------_____ -4~ ____ ~~ ______ ~ ____ _L~ ____________ ~L__ 

-TIAlCV~ 

NOTES: Interrupt output must remain HIGH at least until leading edge of first INTA 
1. Cycle 1 in iAPX 86, iAPX 88 systems, the Data Bus is not active. 

2-112 



82C59A-2 
CHMOS Programmable Interrupt Controller 

II Pin Compatible with NMOS 8259A-2 II 80C86/88 and 8080/85/86/88 

II Eight-Level Priority Controller Compatible 

II Expandable to 64 levels II Fully Static Design 

II Programmable Interrupt Modes II Single 5V Power Supply 

II Low Standby Power-10 fLA II Will Be Avaiiable in 28-Lead Plastic DIP 
and 28-Lead PLCC Packages 

II Individual Request Mask Capability (See Packaging Spec., Order #231369) 

The Intel 82C59A-2 is a high performance CHMOS Version of the NMOS 8259A-2 Priority Interrupt Controller. 
The 82C59A is designed to relieve the system CPU from the task of polling in a multi-level priority interrupt 
system. The high speed and industry standard configuration of the 82C59A-2, make it compatible with micro­
processors such as the 80C86/88, 8086/88 and 8080/85. 

The 82C59A-2 can handle up to 8 vectored priority interrupts for the CPU and is cascadable to 64 without 
additional circuitry. It is designed to minimize the software and real time overhead in handling mUlti-level 
priority interrupts. Two modes of operation make the 82C59A-2 optimal for a variety of system requirements. 
Static CHMOS circuit design, requiring no clock input, insures low operating power. It is packaged in a 28-pin 
plastic DIP. 

RD 

We 

A a 

DATA 
BUS 

BUffER 

cs-__ ...J 

CAS 0 +---II' 
CASCADE 

CAS ,.....-.. BUFFER/ 
COMPARATOR 

CAS2 <4--+ 

SP/fti_--...J 

INT 

INTERNAL BUS 

Figure 1. Block Diagram 

+-IRO 
+-IRl 

+-iR-4 
...... IR5 

+-11<6 

+-IR7 

231201-1 

06 

05 

D4 

03 

02 

01 

DO 

E 
WR "0 
AD INTA 

D, IR7 

0, IR6 

l\; IR5 

D. IR. 

D, IR3 

IR2 

0, IRl 

00 IRO 

CASO INT 

CAS 1 SPIEN 
GND CAS 2 

231201-2 

Figure 2a. 28-Lead DIP 
Configuration 

IR7 

IR6 

IRS 

IR4 

IR3 

IR2 

IR1 

231201-23 

Figure 2b. 28-Lead PLCC 
Configuration 

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent 
licenses are implied. InfDrmation contained herein supersedes previously published specifications Dn these devices from Intel. November 1985 
© Intel CorpDration, 1985 Order Number: 231201·002 

2-113 



82C59A-2 

Table 1. Pin Description 

Symbol Pin No. Type Name and Function 

Vee 28 I SUPPLY: + 5V Supply. 

GND 14 I GROUND. 

CS 1 I CHIP SELECT: A low on this pin enables RD and WR 
communication between the CPU and the 82C59A-2. I NT A 
functions are independent of CS. 

WR 2 I WRITE: A low on this pin when CS is low enables the 
82C59A-2 to accept command words from the CPU. 

RD 3 I READ: A low on this pin when CS is low enables the 
82C59A-2 to release status onto the data bus for the CPU. 

Dy-Do 4-11 1/0 BIDIRECTIONAL DATA BUS: Control, status and interrupt-
vector information is transferred via this bus. 

CASo-CAS2 12,13,15 1/0 CASCADE LINES: The CAS lines form a private 82C59A-2 
bus to control a multiple 82C59A-2 structure. These pins are 
outputs for a master 82C59A-2 and inputs for a slave 
82C59A-2. 

SP/EN 16 110 SLAVE PROGRAMIENABLE BUFFER: This is a dual 
function pin. When in the Buffered Mode it can be used as an 
output to control buffer transceivers (EN). When not in the 
buffered mode it is used as an input to deSignate a master (SP 
= 1) or slave (SP = 0). 

INT 17 0 INTERRUPT: This pin goes high whenever a valid interrupt 
request is asserted. It is used to interrupt the CPU, thus it is 
connected to the CPU's interrupt pin. 

IRo-IR7 18-25 I INTERRUPT REQUESTS: Asynchronous inputs. An interrupt 
request is executed by raising an IR input (low to high), and 
holding it high until it is acknowledged (Edge Triggered Mode), 
or just by a high level on an IR input (Level Triggered Mode). 
Internal pull-up resistors are implemented on IRO-7. 

INTA 26 I INTERRUPT ACKNOWLEDGE: This pin is used to enable 
82C59A-2 interrupt-vector data onto the data bus by a 
sequence of interrupt acknowledge pulses issued by the CPU. 

Ao 27 I AO ADDRESS LINE: This pin acts in conjunction with the CS, 
WR, and RD pins. It is used by the 82C59A-2 to decipher 
various Command Words the CPU writes and status the CPU 
wishes to read. It is typically connected to the CPU AO 
address line (A 1 for 80C86, 80C88). 

2-114 



82C59A-2 

FUNCTIONAL DESCRIPTION 

Interrupts in Microcomputer Systems 

Microcomputer system design requires that liD de­
vices such as keyboards, displays, sensors and oth­
er components receive servicing in an efficient man­
ner so that large amounts of the total system tasks 
can be assumed by the microcomputer with little or 
no effect on throughput. 

The most common method of servicing such devic­
es is the Polled approach. This is where the proces­
sor must test each device in sequence and in effect 
"ask" each one if it needs servicing. It is easy to see 
that a large portion of the main program is looping 
through this continuous polling cycle and that such a 
method would have a serious, detrimental effect on 
system throughput, thus limiting the tasks that could 
be assumed by the microcomputer and reducing the 
cost effectiveness of using such devices. 

A more desirable method would be one that would 
allow the microprocessor to be executing its main 
program and only stop to service peripheral devices 
when it is told to do so by the device itself. In effect, 
the method would provide an external asynchronous 
input that would inform the processor that it should 
complete whatever instruction that is currently being 
executed and fetch a new routine that will service 
the requesting device. Once this servicing is com­
plete, however, the processor would resume exactly 
where it left off. 

This method is called Interrupt. It is easy to see that 
system throughput would drastically increase, and 
thus more tasks could be assumed by the micro­
computer to further enhance its cost effectiveness. 

The Programmable Interrupt Controller (PIC) func­
tions as an overall manager in an Interrupt-Driven 
system environment. It accepts requests from the 
peripheral equipment, determines which of the in­
coming requests is of the highest importance (priori­
ty), ascertains whether the incoming request has a 
higher priority value than the level currently being 
serviced, and issues an interrupt to the CPU based 
on this determination. 

Each peripheral device or structure usually has a 
special program or "routine" that is associated with 
its specific functional or operational requirements; 
this is referred to as a "service routine". The PIC, 
after issuing an Interrupt to the CPU, must somehow 
input information into the CPU that can "point" the 
Program Counter to the service routine associated 
with the requesting device. This "pointer" is an ad­
dress in a vectoring table and will often be referred 
to, in this document, as vectoring data. 

The 82C59A-2 

The 82C59A-2 is a device specifically designed for 
use in real time, interrupt driven microcomputer sys-

CPU 

RAM 

ROM 

'fO!1) 

110m 

CPU-DRIVEN 
MULTIPLEXOR 

--~ , 

r---,U I I 
110 IN) 

I I 
L ___ ...J I 

231201~3 J 
Figure 3a. Polled Method 

231201-4 

Figure 3b. Interrupt Method 

2-115 



inter 82C59A·2 

tems. It manages eight levels or requests and has 
built-in features for expandability to other 
82C59A-2's (up to 64 levels). It is programmed by 
the system's software as an 1/0 peripheral. A selec­
tion of priority modes is available to the programmer 
so that the manner in which the requests are proc­
essed by the 82C59A-2 can be configured to match 
system requirements. The priority modes can be 
changed or reconfigured dynamically at any time 
during the main program. This means that the com­
plete interrupt structure can be defined as required, 
based on the total system environment. 

INTERRUPT REQUEST REGISTER (IRR) AND 
IN·SERVICE REGISTER (ISR) 

The interrupts at the IR input lines are handled by 
two registers in cascade, the Interrupt Request Reg­
ister (IRR) and the In-Service Register (ISR). The 
IRR is used to store all the interrupt levels which are 
requesting service; and the ISR is used to store all 
the interrupt levels which are being serviced. 

PRIORITY RESOLVER 

This logic block determines the priorities of the bits 
set in the IRA. The highest priority is selected and 
strobed into the corresponding bit of the ISR during 
INTA pulse. 

INTERRUPT MASK REGISTER (IMR) 

The IMR stores the bits which mask the interrupt 
lines to be masked. The IMR operates on the IRA. 
Masking of a higher priority input will not affect the 
interrupt request lines of lower priority. 

INT (INTERRUPT) 

This output goes directly to the CPU interrupt input. 
The VOH level on this line is designed to be fully 
compatible with the 8080A, 8085A, 80C88 and 
80C86 input levels. 

INTA (INTERRUPT ACKNOWLEDGE) 

INTA pulses will cause the 82C59A-2 to release vec­
toring information onto the data bus. The format of 
this data depends on the system mode (,...,PM) of the 
82C59A-2. 

DATA BUS BUFFER 

This 3-state, bidirectional 8-bit buffer is used to inter­
face the 82C59A-2 to the system Data Bus. Control 
words and status information are transferred 
through the Data Bus Buffer. 

READ/WRITE CONTROL LOGIC 

The function of this block is to accept OUTput com­
mands from the CPU. It contains the Initialization 
Command Word (ICW) registers and Operation 
Command Word (OCW) registers which store the 
various control formats for device operation. This 
function block also allows the status of the 
82C59A-2 to be transferred onto the Data Bus. 

CS (CHIP SELECT) 

A LOW on this input enables the 82C59A-2. No 
reading or writing of the chip will occur unless the 
device is selected. 

WR (WRITE) 

A LOW on this input enables the CPU to write con­
trol words (ICWs and OCWs) to the 82C59A-2. 

RD (READ) 

A LOW on this input enables the 82C59A-2 to send 
the status of the Interrupt Request Register (IRR), In 
Service Register (ISR), the Interrupt Mask Register 
(IMR), or the Interrupt level onto the Data Bus. 

AO . 

This input signal is used in conjunction with WR and 
RD signals to write commands into the various com­
mand registers, as well as reading the various status 
registers of the chip. This line can be tied directly to 
one of the address lines. 

THE CASCADE BUFFER/COMPARATOR 

This function block stores and compares the IDs of 
all 82C59A-2's used in the system. The associated 
three I/O pins (CASO-2) are outputs when the 
82C59A-2 is used as a master and are inputs when 
the 82C59A-2 is used as a slave. As a master, the 
82C59A-2 sends the 10 of the interrupting slave de­
vice onto the CASO-2 lines. The slave thus selected 
will send its preprogrammed subroutine address 
onto the Data Bus during the next one or two con­
secutive INTA pulses. (See section "Cascading the 
82C59A-2".) 

2-116 



82C59A-2 

INTERRUPT SEQUENCE 

The powerful features of the 82C59A-2 in a micro­
computer system are its programmability and the in­
terrupt routine addressing capability. The latter al-

lows direct or indirect jumping to the specific inter­
rupt routine requested without any polling of the in­
terrupting devices. The normal sequence of events 
during an interrupt depends on the type of CPU be­
ing used. 

DATA 
BUS 

BUffER 

cs-__ -' 

CASO 

CAS1 

CAS2 

sMN'------' 

iNi"A 
I 

CONTROL lOOK: 

~fHTEAfIIAI. 8uS 

Figure 4. 82C59A-2 Block Diagram 

CASCADE { 
LINES 

SLAVE PROGRESS / INTERRUPT REQUESTS 
ENABLE SUFFER 

"" 

231201-8 

Figure 5. 82C59A-2 Interface to Standard System Bus 

2-117 

231201-5 



82C59A-2 

The events occur as follows in an MCS-80/85 sys­
tem: 

1. One or more of the INTERRUPT REQUEST Lines 
(IR7-0) are raised high, setting the corresponding 
IRR bit(s). 

2. The 82C59A-2 evaluates these requests, and 
sends an INT to the CPU, if appropriate. 

3. The CPU acknowledges the INT and responds 
with an INT A pulse. 

4. Upon receiving an INTA from the CPU group, the 
highest priority ISR bit is set, and the correspond­
ing IRR bit is reset. The 82C59A-2 will also re­
lease a CALL instruction code (11001101) onto 
the 8-bit Data Bus through its D7 -0 pins. 

5. This CALL instruction will initiate two more INTA 
pulses to be sent to the 82C59A-2 from the CPU 
group. 

6. These two INTA pulses allow the 82C59A-2 to 
release its preprogrammed subroutine address 
onto the Data Bus. The lower 8-bit address is re­
leased at the first INTA pulse and the higher 8-bit 
address is released at the second INTA pulse. 

7. This completes the 3-byte CALL instruction re­
leased by the 82C59A-2. In the AEOI mode the 
ISR bit is reset at the end of the third INTA pulse. 
Otherwise, the ISA bit remains set until an appro­
priate EOI command is issued at the end of the 
interrupt sequence. 

The events occurring· in an 80C86 system are the 
same until step 4. 

4. Upon receiving an INTA from the CPU group, the 
highest priority ISR bit is set and the correspond­
ing IRR bit is reset. The 82C59A-2 does not drive 
the Data Bus during this cycle. 

5. The 80C86 will initiate a second INTA pulse. Dur­
ing this pulse, the 82C59A-2 releases an 8-bit 
pointer onto the Data Bus where it is read by the 
CPU. 

6. This completes the interrupt cycle. In the AEOI 
mode the ISR bit is reset at the end of the second 
INTA pulse. Otherwise, the ISR bit remains set 
until an appropriate EOI command is issued at the 
end of the interrupt subroutine. 

If no interrupt is present at step 4 of either sequence 
(i.e., the request was too short in duration) the 
82C59A-2 will issue an interrupt level 7. Both the 
vectoring bytes and the CAS lines will look like an 
interrupt level 7 was requested. 

INTERRUPT SEQUENCE OUTPUTS 

MCS®-80, MCS-85 

This sequence is timed by three INT A pulses. During 
the first INT A pulse the CALL opcode is enabled 
onto the data bus. 

Content of First Interrupt 
Vector Byte 

07 06 05 04 03 02 01 DO 

CALL CODE I 1 0 0 0 1 I 
~----------------------~ 

During the second INTA pulse the lower address of 
the appropriate service routine is enabled onto the 
data bus. When Interval = 4 bits A5-A7 are pro­
grammed, while Ao-A4 are automatically inserted by 
the 82C59A-2. When Interval = 8 only A6 and A7 
are programmed, while Ao-A5 are automatically in­
serted. 

IR 

D7 

7 A7 

6 A7 

5 A7 

4 A7 

3 A7 

2 A7 

1 A7 

0 A7 

IR 

D7 

7 A7 

6 A7 

5 A7 

4 A7 

3 A7 

2 A7 

1 A7 

0 A7 

Content of Second Interrupt 
Vector Byte 

Interval = 4 

D6 D5 D4 D3 D2 

A6 A5 1 1 1 

A6 A5 1 1 0 

A6 A5 1 0 1 

A6 A5 1 0 0 

A6 A5 0 1 1 

A6 A5 0 1 0 

A6 A5 0 0 1 

A6 A5 0 0 0 

Interval = 8 

06 05 04 03 02 

A6 1 1 1 0 

A6 1 1 0 0 

A6 1 0 1 0 

A6 1 0 0 0 

A6 0 1 1 0 

A6 0 1 0 0 

A6 0 0 1 0 

A6 0 0 0 0 

D1 DO 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

01 00 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

During the third INTA pulse the higher address of the 
appropriate service routine, which was programmed 
as byte 2 of the initialization sequence (As - A15), is 
enabled onto the bus. 

2-118 



inter 82C59A-2 

Content of Third Interrupt 
Vector Byte 

D7 D6 D5 D4 D3 D2 D1 DO 

I A151 A141 A131 A12 I A11 I A10 I A91 A81 

80C86, 80C88 

80C86, 80C88 mode is similar to MCS-80 mode ex­
cept that only two Interrupt Acknowledge cycles are 
issued by the processor and no CALL opcode is 
sent to the processor. The first interrupt acknowl­
edge cycle is similar to that of MCS-80, 85 systems 
in that the 82C59A-2 uses it to internally freeze the 
state of the interrupts for priority resolution and as a 
master it issues the interrupt code on the cascade 
lines at the end of the INTA pulse. On this first cycle 
it does not issue any data to the processor and 
leaves its data bus buffers disabled. On the second 
interrupt acknowledge cycle in 80C86, 80C88 mode 
the master (or slave if so programmed) will send a 
byte of data to the processor with the acknowledged 
interrupt code composed as follows (note the state 
of the ADI mode control is ignored and A5-A11 are 
unused in 80C86, 80C88 mode): 

IR7 

IR6 

IR5 

IR4 

IR3 

IR2 

IR1 

IRO 

Content of Interrupt Vector Byte 
for SOCS6, SOCSS System Mode 

D7 D6 D5 D4 D3 D2 D1 

T7 T6 T5 T4 T3 1 1 

T7 T6 T5 T4 T3 1 1 

T7 T6 T5 T4 T3 1 0 

T7 T6 T5 T4 T3 1 0 

T7 T6 T5 T4 T3 0 1 

T7 T6 T5 T4 T3 0 1 

T7 T6 T5 T4 T3 0 0 

T7 T6 T5 T4 T3 0 0 

PROGRAMMING THE 82C59A-2 

DO 

1 

0 

1 

0 

1 

0 

1 

0 

The 82C59A-2 accepts two types of command 
words generated by the CPU: 

1. Initialization Command Words (ICWs): Before nor­
mal operation can begin, each 82C59A-2 in the 
system must be brought to a startin~int - by a 
sequence of 2 to 4 bytes timed by WR pulses. 

2. Operation Command Words (OCWs): These are 
the command words which command the 
82C59A-2 to operate in various interrupt modes. 
These modes are: 

a. Fully nested mode 

b. Rotating priority mode 

2-119 

c. Special mask mode 

d. Polled mode 

The OCWs can be written into the 82C59A-2 any­
time after initialization. 

INITIALIZATION COMMAND WORDS 
(lCWS) 

GENERAL 

Whenever a command is issued with AO = 0 and 04 
= 1, this is interpreted as Initialization Command 
Word 1 (ICW1). ICW1 starts the initialization se­
quence during which the following automatically oc­
cur. 

a. The edge sense circuit is reset, which means that 
following initialization, an interrupt request (IR) in­
put must make a low-to-high transition to gener­
ate an interrupt. 

b. The Interrupt Mask Register is cleared. 

c. IR7 input is assigned priority 7. 

d. The slave mode address is set to 7. 

e. Special Mask Mode is cleared and Status Read is 
set to IRR. 

f. If IC4 = 0, then all functions selected in ICW4 are 
set to zero. (Non-Buffered mode', no Auto-EOI, 
MCS-80, 85 system). 

'NOTE: 
Master/Slave in ICW4 is only used in the buffered 
mode. 

INITIALIZATION COMMAND WORDS 1 AND 2 
(ICW1,ICW2) 

A5-A15: Page starting address of service routines. 
In an MCS 80/85 system, the 8 request levels will 
generate CALLs to 8 locations equally spaced in 
memory. These can be programmed to be spaced 
at intervals of 4 or 8 memory locations, thus the 
8 routines will occupy a page of 32 or 64 bytes, 
respectively. 

The address format is 2 bytes long (Ao-A15l. When 
the routine interval is 4, Ao-A4 are automatically in­
serted by the 82C59A-2, while A5-A15 are pro­
grammed externally. When the routine interval is 8, 
Ao-A5 are automatically inserted by the 82C59A-2, 
while As-A15 are programmed externally. 

The 8-byte interval will maintain compatibility with 
current software, while the 4-byte interval is best for 
a compact jump table. 

In an 80C86, 80C88 system A15-A11 are inserted in 
the five most significant bits of the vectoring 



82C59A-2 

byte and the 82C59A-2 sets the three least signifi­
cant bits according to the interrupt level. A1O-AS are 
ignored and ADI (Address Interval) has no effect: 

L TIM: If L TIM = 1, then the 82C59A-2 will operate 
in the level interrupt mode. Edge detect logic 
on the interrupt inputs will be disabled. 

ADI: CALL address interval. ADI = 1 then inter­
val = 4; ADI = 0 then interval = 8. 

SNGL: Single. Means that this is the only 82C59A-2 
in the system. If SNGL = 1 no ICW3 will.be 
issued. 

IC4: If this bit is set - ICW4 has to be read. If 
ICW4 is not needed, set IC4 = O. 

INITIALIZATION COMMAND WORD 3 (ICW3) 

This word is read only when there is more than one 
82C59A-2 in the system and cascading is used, in 
which case SNGL = O. It will load the 8-bit slave 
register. The functions of this register are: 

a. In the master mode (either when SP = 1, or in 
buffered mode when MIS = 1 in ICW4) a "1" is 
set for each slave in the system. The master then 
will release byte 1 of the call sequence (for MCS-
80/85 system) and will enable the corresponding 
slave to release bytes 2 and 3 (for 80C86, 80C88 
only byte 2) through the cascade lines. 

NO (SINOL ~ 1) 

NO (IC" ~ 0) 

b. In the slave mode (either when SP = 0, or if BUF 
= 1 and MIS = 0 in ICW4) bits 2-0 identify the 
slave. The slave compares its cascade input with 
these bits and, if they are equal, bytes 2 and 3 of 
the call sequence (or just byte 2 for 80C86, 
80C88 are released by it on the Data Bus. 

INITIALIZATION COMMAND WORD 4 (ICW4) 
SFNM: If SFNM = 1 the special fully nested mode 

is programmed. 

BUF: If BUF = 1 the buffered mode is pro­
grammed. In buffered mode SP/EN be­
comes an enable output and the masterl 
slave determination is by MIS. 

MIS: If buffered mode is selected: MIS = 1 
means the 82C59A-2 is programmed to be a 
master, MIS = 0 means the 82C59A-2 is 
programmed to be a slave. If BUF = 0, MIS 
has no function. 

AEOI: If AEOI = 1 the automatic end of interrupt 
mode is programmed. 

JLPM: Microprocessor mode: JLPM = 0 sets the 
82C59A-2 for MCS-80, 85 system operation, 
JLPM = 1 sets the 82C59A-2 for 80C86 sys­
tem operation. 

231201-9 

Figure 6. Initialization Sequence 

2-120 



NOTE: 

82C59A-2 

1 = ICW4 NEEDED 
0= NO ICW. NEEDED 

1 = SINGLE 
0= CASCADE MODE 

CALL ADDRESS INTERVAL 
1 := INTERVAL OF' 4 
o ;: INTERVAL OF 8 

1 = LEVEL TR!GGERED MODE 
o ;: EDGE TRIGGERED MODE 

A7 .. AS OF' INTERRUPT 
VECTOR ADDRESS 

(MCS-80! 85 MODE ONLY) 

A'5 - A8 OF INTERRUPT 
VECTOR ADDRESS 

("CS-80! 85 "ODE ONLY) 
T 7 - T 3 OF INTERRUPT 

VECTOR ADDRESS 
(80C8S! 80C8B "ODE) 

ICW3 (SLAVE DEVICE) 

~ ~ ~ ~ ~ ~ ~ ~ ~ 

lew"" 

SLAVE ID(I) 

01234557 

o 1 0 , 0 1 0 , 

o 0 1 1 0 0 1 1 

o 0 0 0 , 1 1 1 

, ;: 80C86 / 80C88 MOOE 
0= MCS-BO! 85 MODE 

1 = AUTO EOI 
0= NORMAL E01 

1 0 BUffERED MODE / SLA.VE Em3x NON"BUFFERED MODE 

1 1 BUFFERED MODE / MASTER 

1 = SPECIAL fULLY NESTED MODE 
'------------i0=NOT SPECIAL FUllY NESTED 

"ODE 

Slave ID is equal to the corresponding master IR input. 

Figure 7. Initialization Command Word Format 

2-121 

231201-10 



82C59A-2 

OPERATION COMMAND WORDS 
(OCWs) 

After the initialization Command Words (ICWs) are 
programmed into the 82C59A-2, the chip is ready to 
accept interrupt requests at its input lines. However, 
during the 82C59A-2 operation, a selection of algo­
rithms can command the 82C59A-2 to operate in 
various modes through the Operation Command 
Words (OCWs). 

OPERATION CONTROL WORDS (OCWs) 

OCW1 
AO D7 D6 D5 D4 D3 D2 D1 DO 

~ IM7 M6 M5 M4 M3 M2 M1 Mol 

OCW2 

R SL EOI 0 0 L2 L 1 LO I 

OCW3 

10 ESMM SMM 0 P RR RIS I 

OPERATION CONTROL WORD 1 (OCW1) 

OCW1 sets and clears the mask bits in the interrupt 
Mask Register (IMR). M7 - Mo represent the eight 
mask bits. M = 1 indicates the channel is masked 
(inhibited), M = 0 indicates the channel is enabled. 

OPERATION CONTROL WORD 2 (OCW2) 

R, SL, EOI - These three bits control the Rotate 
and End of Interrupt modes and combinations of the 
two. A chart of these combinations can be found on 
the Operation Command Word Format. 

L2, L1, Lo-These bits determine the interrupt level 
acted upon when the SL bit is active. 

OPERATION CONTROL WORD 3 (OCW3) 

ESMM - Enable Special Mask Mode. When this bit 
is set to 1 it enables the SMM bit to set or reset the 
Special Mask Mode. When ESMM = ° the SMM bit 
becomes a "don't care". 

SMM - Special Mask Mode. If ESMM = 1 and 
SMM = 1 the 82C59A-2 will enter Special Mask 
Mode. If ESMM = 1 and SMM = ° the 82C59A-2 
will revert to normal mask mode. When ESMM = 0, 
SMM has no effect. 

FULLY NESTED MODE 

This mode is entered after initialization unless anoth­
er mode is programmed. The interrupt requests are 
ordered in priority form 0 through 7 (0 highest). 
When an interrupt is acknowledged the highest pri­
ority request is determined and its vector placed on 
the bus. Additionally, a bit of the Interrupt Service 
register (ISO-7) is set. This bit remains set until the 
microprocessor issues an End of Interrupt (EOI) 
command immediately before returning from the 
service routine, or if AEOI (Automatic. End of Inter­
rupt) bit is set, until the trailing edge of the last INTA. 
While the IS bit is set, all further interrupts of the 
same or lower priority are inhibited, while higher lev­
els will generate an interrupt (which will be acknowl­
edged only if the microprocessor internal interrupt 
enable flip-flop has been re-enabled through soft­
ware). 

After the initialization sequence, IRO has the highest 
priority and IR7 the lowest. Priorities can be 
changed, as will be explained, in the rotating priority 
mode. 

END OF INTERRUPT (EOI) 

The In Service (IS) bit can be reset either automati­
cally following the trailing edge of the last in se­
quence INTA pulse (when AEOI bit in ICW4 is set) or 
by a command word that must be issued to the 
82C59A-2 before returning from a service routine 
(EO I command). An EOI command must be issued 
twice if in the Cascade mode, once for the master 
and once for the corresponding slave. 

There are two forms of EOI command: Specific and 
Non-Specific. When the 82C59A-2 is operated in 
modes which preserve the fully nested structure, it 
can determine which IS bit to reset on EOL When a 
Non-Specific EOI command is issued the 82C59A-2 
will automatically reset the highest IS bit of those 
that are set, since in the fully nested mode the high­
est IS level was necessarily the last level acknowl­
edged and serviced. A non-specific EOI can be is­
sued with OCW2 (EOI = 1, SL = 0, R = 0). 

When a mode is used which may disturb the fully 
nested structure, the 82C59A-2 may no longer be 
able to determine the last level acknowledged. In 
this case a Specific End of Interrupt must be issued 
which includes as part of the command the IS level 
to be reset. A specific EOI can be issued with OCW2 
(EOI = 1, SL = 1, R = 0, and LO-L2 is the binary 
level of the IS bit to be reset). 

It should be noted that an IS bit that is masked by an 
IMR bit will not be cleared by a non-specific EOI if 
the 82C59A-2 is in the Special Mask Mode. 

2-122 



82C59A-2 

OCW1 

AO 07 06 05 04 03 O2 0 , DO 

1 I M7 M6 M5 M4 M3 M2 M' "0 

OCW2 

AO 07 06 05 04 03 O2 0 , DO 

I 0 I H 1 SL 1 EOI j 0 I 0 I L 2 I L, I L 0 I 
IR LEVEL TO BE 

ACTED UPON 

o , 2 3 4 5 6 7 
~ 0 , o , o , o , 

o 0 , , o 0 , , 
o 0 0 o , 1 , , 

0 o , NON SPECIFIC EOI COMMAND 
} END OF INTERRUPT ro r,-r,- SPECIFIC EOI COMMAND r,- tor;- ROTATE ON NON-SPECIFIC EOI COMMAND 

} AUTOMATIC ROTATION r,- toto ROTATE IN AUTOMATIC EOI MODE(SET) 
ro roto ROTATE IN AUTOMATIC EOI MODE(CLEAR) 
r,- r,-r,- ·ROTATE ON SPECIFIC EOI COMMAND 

} SPECIFIC ROTATION r,- r,-to ·SET PRIORITY COMMAND 
ro ftto NO OPERATION ............... 

·LO - L2 ARE USED 

OCW3 

~ ~ ~ ~ ~ ~ ~ ~ ~ 

I 0 I 0 I ESM" I SMMJ 0 J 'J P I RR I RIS I 

I L READ REGISTER COMMANO 

0 I , 0 , 
0 ~ 0 , , 

READ IR READ IS 

NO ACTION 
REG ON REG ON 
NEXT RD NEXT RD 

PULSE PULSE 

1 = POLL COMMAND 
0= NO POLL COMMAND 

SPECIAL MASK MODE 

0 ~ 1 0 , 
0 I 0 , , 

RESET SET 
NO ACTION SPECIAL SPECIAL 

MASK MASK 

231201-11 

Figure 8. Operation Command Word Format 

2-123 



82C59A-2 

AUTOMATIC END OF INTERRUPT (AEOI) MODE 

If AEOI = 1 in ICW4, then the 82C59A-2will operate 
in AEOI mode continuously until reprogrammed by 
ICW4. In this mode the 82C59A-2 will. automatically 
perform a non-specific EOI operation at the trailing 
edge of the last interrupt acknowledge pulse (third 
pulse in MCS-80/85, second in SOCS6/88). Note 
that from a system standpoint, this mode should be 
used only when a nested multilevel interrupt struc­
ture is not required within a single 82C59A. 

The AEOI mode can only be used in a master 
82C59A and not a slave. 

AUTOMATIC ROTATION 

(Equal Priority Devices) 

In some applications there are a number of interrupt­
ing devices of equal priority. In this mode a device, 
after being serviced, receives the lowest priority, so 
a device requesting an interrupt will have to wait, in 
the worst case until each of 7 other devices are 
serviced at most once. For example, if the priority 
and "in service" status is: 

Before Rotate (IR4 the highest priority requiring 
service) 

IS7 IS6 ISS IS4 IS3 IS2 lSi ISO 

"IS" Status I 0 I 1 I 0 I I 0 I 0 I 0 I 0 I 
Lowest Highest 
Priority Priority 

J,. J,. 

Priority Status I 7 I 6 I 5 I 4 I 3 I 2 11 I 0 I 
After Rotate (IR4 was serviced, all other priorities 
rotated correspondingly) 

IS7 IS6 ISS IS4 IS3 IS2 IS1 ISO 

"IS" Status I 0 I 1 I 0 I 0 I 0 I 0 I 0 [OJ 

Highest Lowest 
Priority Priority 

J,. J,. 

There are two ways to accomplish Automatic Rota­
tion using OCW2, the Rotation on Non-Specific EOI 
Command (R = 1, SL = 0, EOI = 1) and the Ro-

tate in Automatic EOI Mode which is set by (R = 1, 
SL = 0, EOI = 0) and cleared by (R = 0, SL = 0, 
EOI = 0). 

SPECIFIC ROTATION 

(Specific Priority) 

The programmer can change priorities by program­
ming the bottom priority and thus fixing all other pri­
orities; I.e., if IR5 is programmed as the bottom prior­
ity device, then IR6 will have the highest one. 

The Set Priority command is issued in OCW2 where: 
R = 1, SL = 1; LO-L2 is the binary priority level 
code of the bottom priority device. 

Observe that in this mode internal status is updated 
by software control during OCW2. However, it is in­
dependent of the End of Interrupt (EOI) command 
(also executed by OCW2). Priority changes can be 
executed during an EOI command by using the Ro­
tate on Specific EOI command in OCW2 (R = 1, SL 
= 1, EOI = 1 and LO-L2 = IR level to receive 
bottom priority): 

INTERRUPT MASKS 

Each Interrupt Request input can be masked individ­
ually by the Interrupt Mask Register (IMRl pro­
grammed through OCW1. Each bit in the IMR masks 
one interrupt channel if it is set (1). Bit 0 masks IRO, 
Bit 1 masks IR1 and so forth. Masking an IR channel 
does not affect the other channels operation. 

SPECIAL MASK MODE 

Some applications may require an interrupt service 
routine to dynamically alter the system priority struc­
ture during its execution under software control. For 
example, the routine may wish to inhibit lower priori­
ty requests for a portion of its execution but enable 
some of them for another portion. 

The difficulty here is that if an interrupt Request is 
acknowledged and an End of Interrupt command did 
not reset its IS bit (I.e., while executing a service 
routine), the 82C59A-2 would have inhibited all lower 
priority requests with no easy way for the routine to 
enable them. 

That is where the Special Mask Mode comes in. In 
the speeial Mask Mode, when a mask bit is set in 
OCW1, it inhibits further interrupts at that level and 
enables interrupts from all other levels (lower as well 
as higher) that are not masked. 

2-124 



inter 82C59A-2 

Thus, any interrupts may be selectivity enabled by 
loading the mask register. 

The special Mask Mode is set by OCW3 where: 
SSMM = 1, SMM = 1, and cleared where SSMM = 
1, SMM = O. 

POLL COMMAND 

In this mode the INT output is not used or the micro­
processor internal Interrupt Enable flip-flop is reset, 
disabling its interrupt input. Service to devices is 
achieved by software using a Poll command. 

The Poll command is issued by setting P = "1" in 
OCW3. The 82C59A-2 treats the next RD pulse to 
the 82C59A-2 (Le., RD = 0, CS = 0) as an interrupt 
acknowledge, sets the appropriate IS bit if there is a 

request, and reads the priority level. Interrupt is fro­
zen from WR to RD. 

The word enabled onto the data bus during RD is: 
07 06 05 04 03 02 01 DO 

W2 W1 WOJ 
WO-W2: 

Binary code of the highest priority level requesting 
service. 

1: Equal to a "1" if there is an interrupt. 

This mode is useful if there is a routine command 
common to several levels so that the INTA se­
quence is not needed (saves ROM space). Another 
application is to use the poll mode to expand the 
number of priority levels to more than 64. 

LTIM BIT 
0= EDGE TO OTHER PRIORITY CELLS CLR ISR 

1 = LEVEL 

EDGE 
SENSE 
LATCH 

REQUEST 
LATCH 

CLR 

Q!~~--~--------~H-----~ 
IR 

MCS-'SO.8S{ INTA~ 
MODE FREEZE~ 

SOCS6/S0CBS{ INTA~ 
MODE FREEZE~ 

I~ 

NOTES: 

" Ul ... ,. '" ...J 
U 

'" ~ 
Ul ... ,. 

1. Master Clear active only during ICW1 

Q 

2. Freeze/ is active during INTA/and poll sequences only 
3. Truth Table for D-Latch 

c 
1 
o 

OPERATION 

FOLLOW 
HOLD 

Figure 9. Priority Cell-Simplified Logic Diagram 

2-125 

ISR BIT 

SET ISR 
PRIORITY 
RESOLVER 

CONTROL 
LOGIC 

NON 
MASKED 
REQ 

231201-12 



82C59A-2 

READING THE 82C59A-2 STATUS 

The input status of several internal registers can be 
read to update the user information on the system. 
The following registers can be read via OCW3 (IRR 
and ISRor OCW1 [lMA)). 

Interrupt Request Register (IRR): 8-bit register which 
contains the levels requesting an interrupt to be ac­
knowledged. The highest request level is reset from 
the IAA when an interrupt is acknowledged. (Not af­
fected by IMA). 

In-Service Register (ISR): 8-bit register which con­
tains the priority levels that are being serviced. The 
ISA is updated when an End of Interrupt Command 
is issued.· 

Interrupt Mask Register. 8-bit register which con­
tains the interrupt request lines which are masked. 

The IRA can be read when, prior to the AD pulse, a 
Aead Aegister Command is issued with OCW3 (AA 
= 1, AIS = 0.) 

The ISA can be read when, prior to the AD pulse, a 
Aead Aegister Command is issued with OCW3 (AA 
= 1, AIS = 1): 

There is no need to write an OCW3 before every 
status read operation, as long as the status read 
corresponds with the previous one; i.e., the 
82C59A-2 "remembers" whether the IAA or ISA has 
been previously selected by the OCW3. This is not 
true when poll is used. 

After initialization the 82C59A-2 is set to IAA. 

For reading the IMA, no OCW3 is needed. The out­
put data bus will contain the IMA whenever AD is 
active and AO = 1 (OCW1). 

Polling overrides status read when P = 1, AR = 1 
in OCW3. 

I. 

INT ----+---' 

INTA ----1-----"'"" 

LATCH" 
ARMED 

EARLIEST IR 
CAN IE REMOVED 

EDGE AND LEVEL TRIGGERED MODES 

This mode is programmed using bit 3 in ICW1. 

If LTIM = '0', an interrupt request will be recognized 
by a low to high transition on an IA input. The IA 
input can remain high without generating another in­
terrupt. 

If LTIM = '1', an interrupt request will be recognized 
by a 'high' level on IA Input, and there is no need for 
an edge detection. The interrupt request must be 
removed before the EOI command is issued or the 
CPU interrupt is enabled to prevent a second inter­
rupt from occurring. 

The priority cell diagram shows a conceptual circuit 
of the level sensitive and edge sensitive input circuit­
ry of the 82C59A-2. Be sure to note that the request 
latch is a transparent D type latch. 

In both the edge and level triggered modes the IR 
inputs must remain high until after the falling edge of 
the first INTA. If the IA input goes low before this 
time a DEFAULT IA7 will occur when the CPU ac­
knowledges the interrupt. This can be a useful safe­
guard for detecting interrupts caused by spurious 
noise glitches on thelA inputs. To implement this 
feature the IA7routine is used for "clean up" simply 
executing a return instruction, thus ignoring the inter­
rupt. If IA7 is needed for other purposes a default 
IA7 can still be detected by reading the ISA. A nor­
mallA7 interrupt will set the corresponding ISA bit, a 
default IA7 won't. If a default IR7 routine occurs dur­
ing a normal IA7 routine, however, the ISA will re­
main set. In this case it is necessary to keep track of 
whether or not the IA7 routine was previously en­
tered. If another IA7 occurs it is a default. 

IOCII/IOC" 8080/1015 

lOCH/lOCH 

801D/IOIS 

"EDGE TRIGOERED MODE ONLY 
LATCH' 
ARMED 231201-13 

Figure 10. IR Triggering Timing Requirements 

2-126 



82C59A-2 

THE SPECIAL FULLY NESTED MODE 

This mode will be used in the case of a big system 
where cascading is used, and the priority has to be 
conserved within each slave. In this case the fully 
nested mode will be programmed to the master (us­
ing ICW4). This mode is similar to the normal nested 
mode with the following exceptions: 

a. When an interrupt request from a certain slave is 
in service this slave is not locked out from the 
master's priority logic and further interrupt re­
quests from higher priority IR's within the slave 
will be recognized by the master and will initiate 
interrupts to the processor. (In the normal nestled 
mode a slave is masked out when its request is in 
service and no higher requests from the same 
slave can be serviced.) 

b. When exiting the Interrupt Service routine the 
software has to check whether the interrupt serv­
iced was the only one from that slave. This is 
done by sending a non-specific End of Interrupt 
(EOI) command to the slave and then reading its 
I n-Service register and checking for zero. If it is 
empty, a non-specific EOI can be sent to the mas­
ter too. If not, no EOI should be sent. 

BUFFERED MODE 

When the 82C59A-2 is used in a large system where 
bus driving buffers are required on the data bus and 
the cascading mode is used, there exists the prob­
lem of enabling buffers. 

The buffered mode will structure the 82C59A-2 to 
send an enable signal on SP/EN to enable the buff­
ers. In this mode, whenever the 82C59A-2's data 
bus outputs are enabled, the SP/EN output be­
comes active. 

This modification forces the use of software pro­
gramming to determine whether the 82C59A-2 is a 
master or a slave. Bit 3 in ICW4 programs the buff­
ered mode, and bit 2 in ICW3 determines whether it 
is a master or a slave. 

CASCADE MODE 

The 82C59A-2 can be easily interconnected in a 
system of one master with up to eight slaves to han­
dle up to 64 priority levels. 

The master controls the slaves through the 3 line 
cascade bus. The cascade bus acts like chip selects 
to the slaves during the INTA sequence. 

In a cascade configuration, the slave interrupt out­
puts are connected to the master interrupt request 
inputs. When a slave request line is activated and 
afterwards acknowledged, the master will enable the 
corresponding slave to release the device routine 
address during bytes 2 and 3 of INT A. (Byte 2 only 
for 80C86/80C88). 

The cascade bus lines are normally low and will con­
tain the slave address code from the trailing edge of 
the first INTA pulse to the trailing edge of the third 
pulse. Each 82C59A-2 in the system must follow a 
separate initialization sequence and can be pro­
grammed to work in a different mode. An EOI com­
mand must be issued twice: once for the master and 
once for the corresponding slave. An address de­
coder is required to activate the Chip Select (CS) 
input of each 82C59A-2. 

The cascade lines of the Master 82C59A-2 are acti­
vated only for slave inputs, non slave inputs leave 
the cascade line inactive (low). 

A.ODAESS 8US (lfiJ 

- -
- -
- -

cs 

\ 

- - -

-1 
-

-

... 00·7 INT.&. 

lacPA-a 
ILA'" 

-- -
~- -

~- -- -

1-' 
, .. 

(ASO -
CAS 1 -

CONTROL sus 

OA1A 8US 1'1 

PCOIA-I ........ 

I 

CAS '1---+.-++-i 

I 
\ 

I 

1 
cs ... 

CASO 

CAS 1 

[!illill 
CAS 2 I---++-i CAS 2 

I 
INTERRuPT REQUESTS 

Figure 11. Cascading the 82C59A-2 

2-127 

lINT RfO 

I 
i 

I 
00·7 INTA .. , 
12C1IA-a 
IlASTER 

231201-14 



82C59A-2 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias ...... O°C to 70°C 

Storage Temperature .......... - 65°C to + 150°C 

Supply Voltage (w.r.t. ground) ........ -0.5 to 7.0V 

Input Voltage (w.r.t. ground) ... -0.5 to Vee + 0.5V 

Output Voltage (w.r.t. ground) .. -0.5 to Vee + 0.5V 

Power Dissipation ....................... 0.9 Watt 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOT/CE' Specifications contained within the 
following tables are subject to change. 

D.C. CHARACTERISTICS T A = O°C to 70°C, Vee = 5V ± 10% 

Symbol Parameter Min Max Units Test Conditions 

lees Standby Supply Current 10 /LA VIN = VeeorGND 
AUIR = Vee 
Outputs Unloaded 
Vee = 5.5V 

lee Operating Supply Current 5 mA (Note) 

VIH Input High Voltage 2.2 Vee + 0.5 V 

VIL Input Low Voltage -0.5 0.8 V 

VOL Output Low Voltage 0.4 V IOL = 2.5 mA 

VOH Output High Voltage 3.0 V IOH = -2.5 mA 
Vee -0.4 IOH = -100/LA 

III Input Leakage Current ± 1.0 /LA OV s VIN s Vee 

ILO Output Leakage Current ±10 /LA OV s VOUT s Vee 

ILiR IR Input Leakage Current -300 /LA VIN = 0 
+10 VIN = Vee 

NOTE: 
Repeated data input with 80e86-2 timings. 

CAPACITANCE TA = 25°C; Vee = GND = OV 

Symbol Parameter Min Max Units Test Conditions 

CIN Input Capacitance 7 pF fc = 1 MHz 

CliO 110 Capacitance 20 pF Unmeasured pins at GND 

COUT Output Capacitance 15 pF 

2-128 



82C59A-2 

A.C. CHARACTERISTICS TA = 0·Ct070·C. vcc = 5V ±10% 

TIMING REQUIREMENTS 

Symbol Parameter 
82C59A·2 

Units Test Conditions 
Min Max 

TAHRL AO/CS Setup to RDIINTA,J, 10 ns 

TRHAX AO/CS Hold after RD/INTA i 5 ns 

TRLRH RD/INTA Pulse Width 160 ns 

TAHWL AO/CS Setup to WR ,J, 0 ns 

TWHAX AO/CS Hold after WR i 0 ns 

TWLWH WR Pulse Width 190 ns 

TDVWH Data Setup to WR i 160 ns 

TWHDX Data Hold after WR i 0 ns 

TJLJH Interrupt Request Width (Low) 100 ns (See Note) 

TCVIAL Cascade Setup to Second or Third 40 ns 
INTA,J, (Slave Only) 

TRHRL End of RD to next RD 160 ns 
End of INTA to next INTA within 
an INTA sequence only 

TWHWL End of WR to next WR 190 ns 

*TCHCL End of Command to next Command 400 ns 
(Not same command type) 
End of INTA sequence to next 
INTA sequence. 

'Worst case timing for TCHCL In an actual microprocessor system IS tYPically much greater than 400 ns (I.e. BOB5A = 1.6 
"'S, BOB5-A2 = 1 "'S, BOCB6 = 1 "'S, BOCB6-2 = 625 ns) 

NOTE: 
This is the low time required to clear the input latch in the edge triggered mode. 

2-129 



82C59A-2 

TIMING RESPONSES 

Symbol Parameter 
8259A·2 

Units Test Conditions" 
Min Max 

TRLDV Data Valid from RD/1NTA J.. 120 ns 1 

TRHDZ Data Float after RD/INTA t 10 85 ns 2 

TJHIH Interrupt Output Delay 300 ns 1 

TIALCV Cascade Valid from First INTA J.. 360 ns 1 
(Master Only) 

TRLEL Enable Active from RD J.. or INTA J.. 110 ns 1 

TRHEH Enable Inactive from RD t or INTA t 150 ns 1 

TAHDV Data Valid from Stable Address 200 ns 1 

TCVDV Cascade Valid to Valid Data 200 ns 1 

• 'Test Condition Definition Table 

TEST CONDITION V1 R1 R2 C1 

1 1.7V 5230, OPEN 100 pf 
2 4.5V 1.8 ko' 1.8 ko' 39 pf 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

Vt 

INPUT OUTPUT 

VIH+O.4V~ ~2.4V 
VIL - O.4V -.:A _____ 7'I:- O.4SV OUTPUT TEST POINT ht 

231201-15 

A.C. Tesling: All inpul signals musl switch between VIL - O.4V 
and VIH + O.4V. Input Rise and Fall Times must be <:; 15 ns. All 
timing measurements are made at 2.4V and 0.45V. 

WAVEFORMS 

WRITE 
WR----______________ , 

TAHWL -

FROM 
DEVICE UNDER TEST 

'Includes Stray and 
Jig Capacitance 

R2 I Ct' 

- -

a----------__ _. ~----t_--------------_Hr_~ r-------
ADOIIE ... U. 

~ ____________ J ,----~--------------H_~ ~-------

DATA.US 

2-130 

231201-16 

231201-17 



intJ 82C59A-2 

WAVEFORMS (Continued) 

READ/INTA 

- TIIILEL 

_ TRHAX 

a----------------____ ~ ~_r------------------------------------~,I r-----------
"DD~£la lUI 

Ao-------' 

~ !ALD' =1 TRHDZ f ~ TAHDY--- ------

DAT"IUS--------- ---------- '--______ ~ ------

231201-18 

~---------------------------------------------------------~ 

OTHER TIMING 

~----,\, ______ l ~ _ II-TRHRL-j\I... ______ 1 
WA---~ 

\~-----,t=TWHWL-=1\~--,/ 
jjjj 

~---~\'--------~ 
I L"oc,=)"-------'/~ AD 

I!ITA WR 

231201-19 

2-131 



82C59A·2 

WAVEFORMS (Continued) 

INTA SEQUENCE 

IR ......, r- TJHIH 

INT_~_TJL_JH_..J;lI!-_C_._ •• --~-~C: 
INTA ------"'" 

DB •••••••••••••• 

C02-----------~----~------~--------~-

NOTES: 
Interrupt output must remain HIGH at least until leading edge of first INTA. 
t. Gycle 1 in SOGSS and SOGSS systems, the Data Bus is not active. 

2-132 

231201-20 



inter 
8755A/8755A-2 

16,384-8IT EPROM WITH 1/0 

• 2048 Words x 8 Bits 

• Single + 5V Power Supply (Vee> 

• Directly Compatible with 808SA 
and 8088 Microprocessors 

• U.V. Erasable and Electrically 
Reprogrammable 

• Internal Address Latch 

• 2 General Purpose 8·Bit 110 Ports 

• Each 110 Port Line Individually 
Programmable as Input or Output 

• Multiplexed Address and Data Bus 

• 40·Pin DIP 

• Available in EXPRESS 
- Standard Temperature Range 
- Extended Temperature Range 

The Intel® 8755A is an erasable and electrically reprogrammable ROM (EPROM) and I/O chip to be used in the 8085AH and 
iAPX 88 microprocessor systems. The EPROM portion is organized as 2048 words by 8 bits. It has a maximum access time of 
450 ns to permit use with no wait states in an 8085AH CPU. 

The 1/0 portion consists of 2 general purpose 1/0 ports. Each 1/0 port has 8 port lines, and each 1/0 port line is individually 
programmable as input or output. 

The 8755A-2 is a high speed selected version of the 8755A compatible with the 5 MHz 8085AH-2 and tlH' " Mill II\I'X IHI 

microprocessor. 

eLK-----, 

eE,----I 

10IM----I 

AlE----I 

REi----I 

10W----I 

RESET----I 

iOR----I 

2K x 8 
EPROM 

PROG/CE 1 

VDD-----' 

~VCCI+5VI 
Vss IOV) 

Figure 1. Block Diagram 

PROG AND CE1 

CE, 

elK 

RESET 

VDD 

READY 

IO/M 
i6R 
REi 

lOW 

ALE 

ADD 

AD, 

AD, 

AD, PA, 

AD, PA, 

ADs PAD 

AD, AlO 

AD, A, 

Vss 

Figure 2. Pin Configuration 

Inlel Corporation Assumes No Responsibilty for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses Sf'e Implied. 

©INTEL CORPORATION. 1980 

2-133 



8755A/8755A-2 

Table 1. Pin Description 

Symbol Type Name and Function Symbol Type Name and Function 

ALE I Address Latch Enable: When Address 
latch Enable goes high, ADo-7, 101M, 

READY 0 Ready is a 3·state output controlled by 
CE1, CE2, ALE and ClK. READY is forc-

As-10, CE2, and CE, enter t~ addr3ss ed low when the Ch ip Enables are active 
latches. The signals (AD, 101M ADa_1o, during the time ALE is high. and re-
CE2, CE, ) are latched in at the trailing mains low until the rising edge of the 
edge of ALE. next ClK. (See Figure 6c.) 

ADO-7 I Bidirectional Address/Data Bus: The 
lower 8-bits of the PROM or 1/0 address 
are applied to the bus lines when ALE is 
high. 

PAO-7 I/O Port A: These are general purpose 1/0 
pins. Their input/output direction is de-
termined by the contents of Data Direc-
tion Register(DDR). Port A is selected for 

During an 1/0 cycle, Port A or B is write operations when the Chip Enables 
selected based on the latched value of are active and lOW is low and a 0 was 
ADo. IF RD or lOR is low when the latched previously latched from ADo, AD,. 
Chip Enables are active. the output buf-
fers present data on the bus. 

Read Operation is selected by either lOR 
low and active ChJp Enables and ADo 

Ae-10 I Address Bus: These are the high order and AD, low, or 101M high, RD low, active 
bits of the PROM address. They do not Chip Enables, and ADo and AD, low. 
affect 1/0 operations. 

PBO-7 1/0 Port B: This general purpose 1/0 port is 
PROG/CE, I Chip Enl!ble Inpuls: CE, is active low identical to Port A except that it is 
CE2 and CE2 is active high. The 8755A can be selected by a 1 latched from ADo and a 0 

accessed only when both Chip Enables from AD, . 
are active at the time the ALE signal 
latches them up. If either Chip Enable 
input is not active, the ADO-7 and 
READY outp~ will be in a high impe-
dance state.CE, is also used as a pro-

RESET I Reset: In normal operation, an input 
high on RESET causes all pins in Ports A 
and B to assume input mode (clear DDR 
register). 

gramming pin. (See section on lOR I 1/0 Read: When the Chip Enables are 
programming.) active, a Iowan lOR will output the 

101M I 1/0 Memory: If the latched 101M is high 
when RD is low. the output data comes 
from an 110 port. If it is low the output 
data comes from the PROM. 

selected, I/O port onto the AD bus. lOR 
low performs the s~me functio~s the 
combination of 101M high and RD low. 
When lOR is not used in a system, lOR 
should be tied to Vee ("1 "). 

RD I Read: If the 'latched Chip Enables are 
active when RD goes low, the ADo-7 

Vee Power: +5 volt supply. 

output buffers are enabled and output Vss Ground: Reference. 
either the selected PROM location or 1/0 
port. When both RD and lOR are high, 
the ADo-7 output buffers are 3-stated. 

Voo Power Supply: Voo is a programming 
voltage. and must be lied to Vee when 
the 8755A is being read. 

lOW I 1/0 Write: If the latched Chip Enables are 
active, a Iowan lOW causes the output 
port painted to by the latched value of 
ADo to be written with the dataon ADo-7' 
The state of 101M is ignored. 

For programming, a high voltage is 
supplied with Voo = 25V, typical. (See 
section on programming.) 

ClK I Clock: The ClK is used to force the 
READY inlo its high impedan~state 
after it has been forced low byoCE, low, 
CE2 high. and ALE high. 

2-134 



inter 8755A/8755A-2 

FUNCTIONAL DESCRIPTION 
PROM Section 
The 8755A contains an 8-bit address latch which allows it 
to interface directly to MCS-48, MCS-85 and iAPX 88/10 
Microcomputers without additional hardware. 

The PROM section of the chip is addressed by the 11-bit 
address and the Chip Enables. The address, CE1 and 
CE2 are latched into the address latches on the falling 
edge of ALE. If the latched Chip Enables are active and 
10iM is low when RD goes low, the contents of the 
PROM location addressed by the latched address are 
put out on the ADO_7lines (provided that Voo is tied to 
Vcc.) 

1/0 Section 
The 1/0 section of the chip is addressed by the latched 
value of ADo-1. Two 8-bit Data Direction Registers iDDR) 
in 8755A determine the input/output status of each pin 
in the corresponding ports. A "0" in a particular bit posi­
tion of a DDR signifies that the corresponding 1/0 port bi 
is in the input mode. A "1 ,. in a particular bit position signi­
fies that the corresponding 1/0 port bit is in the output 
mode. In this manner the 1/0 ports of the 8755A are bit-by­
bit programmable as inputs or outputs. The table 
summarizes port and DDR designation. DDR's cannot be 
read. 

AD1 ADo Selection 

0 0 Port A 
0 1 Port B 
1 0 Port A Data Direction Register \DDR A) 
1 1 Port B Data Direction Register iDDR B) 

When lOW goes low and the Chip Enables ar~ active, 
the data on the ADo_7 is written into 1/0 port selected 
by the latched value of ADo_ 1. During this operation all 
I/O bits of the selected port are affected, regardless of 
their 1/0 mode and the state of 101M. The actual output 
level does not change until lOW returns high. (glitch free 
output) 

A port can be read out when the latched Chip Enables are 
active and either RDgoes low with 101M high, or lOR goes 
low. Both input and output mode bits of a selected port 
will appear on lines ADo-l. 

To clarify the function of the 1/0 Ports and Data Direction 
Registers, the following diagram shows the configuration 
of one bit of PORT A and DDR A. The same logic applies 
to PORT Band DDR B. 

2-135 

8755A 
ONE BIT OF PORT A AND DDR A 

WRITE ODR A 

Do 

~ 
READ PA 

WRITE PA ~ (iOW"o~. (CHIP ENABLES ACTIVE) • (PORT A. ADDRESS SElECTED) 
WRtTE ODR A = (iow"O). (CHIP ENABlESACTIVEj_ (DoR A AODRESS SELECTED) 
REAO PA = {[(IO/M:l). (ftD=OI] + (iOR=OI}. (CHIP ENABLES ACTIVE). (PORT AADORESSSElECTEOI 

NOTE: WRITE PA IS NOT QUALIFIED BY 101M. 

Note that hardware RESET or writing a zero to the u~R 
latch will cause the output latch's output buffer to be 
disabled, preventing the data in the Output Latch from 
being passed through to the pin. This is equivalent to 
putting the port in the input mode. Note also that the data 
can be written to the Output Latch even though the Output 
Buffer has been disabled. This enables a port to be ini­
tialized with a value prior to enabling the output. 

The diagram also shows that the contents of PORT A and 
PORT B can be read even when the ports are configured 
as outputs. 

TABLE 1. 8755A PROGRAMMING MODULE CROSS 
REFERENCE 

MODULE NAME 

UPP 955 
UPP UP2(2) 
PROMPT 975 
PROMPT 475 

NOTES: 

USE WITH 

UPP(4) 
UPP 855 
PROMPT 80/85(3) 
PROMPT 48(1) 

1. Described on p. 13-34 of 1978 Data Catalog. 
2. Special adaptor socket. 
3. Described on p. 13-39 of 1978 Data Catalog. 
4. Described on p. 13-71 of 1978 Data Catalog. 



8755A18755A-2 

ERASURE CHARACTERISTICS 
The erasure characteristics of the 8755A are such that 
erasure begins. to . occur when exposed to light with 
wavelengths shorter than approximately 4000 Angstroms 
(A). It should be noted that sunlight and certain types of 
fluorescent lamps have wavelengths in the 3000-4000A 
range. Data show that constant exposure to room level 
fluorescent lighting could erase the typical 8755A in 
approximately 3 years while itwould take approximately 1 
week to cause erasure when exposed to direct sunlight. 
If the 8755A is to be exposed to these types of lighting 
conditions for extended periods of time, opaque labels 
are available from Intel which should be placed over the 
8755 window to prevent unintentional erasure. 

The recommended erasure procedure for the 8755A is 
exposure to shortwave ultraviolet light which has a wave­
length of 2537 Angstroms (A). The integrated dose (Le., 
UV intensity X exposure time) for erasure should be a 
minimum of 15W-sec/cm2. The erasure time with this 
dosage is approximately 15 to 20 minutes using an ultra­
vioiet lamp with a 12000/LW/cm2 power rating. The 
8755A should be placed within one inch from the lamp 
tubes during erasure. Some lamps have a filter on their 
tubes and this filter should be removed before erasure. 

PROGRAMMING 
Initially, and after each erasure, all bits of the EPROM 
portions of the8755A are in the "1" state. Information is 
introduced by selectively programming "0" into' the 
desired bit locations. A pmgrammed "0" can only be 
changed to a "1" by UV erasure. 

The 8755A can be programmed on the Intel® Universal 
PROM Programmer (UPP), and the PROMPT'" 80/85 and 
PROMPT-48'· design aids. The appropriate programming 
modules and adapters for use in programming both 
8755A's and 8755'sare shown in Table 1. 

The program mode itself consists of programming a 
single address at a time, giving a single 50 msec pulse 
for every address. Generally, it is desirable to have a 
verify cycle after a program cycle for the same address 
as shown in the attached timing diagram. In the verify 
cycle (Le., normal memory read cycle) 'VDD' should 
be at +5V. 

Preliminary timing diagrams and parameter values per­
taining to the 8755A programming operation are con­
tained in Figure 7. 

2-136 

SYSTEM APPLICATIONS 
System Interface with 8085AH and iAPX 88 
A system using the 8755A can use either one of the two I/O 
Interface techniques: 

• Standard I/O 
• Memory Mapped I/O 

If a standard I/O technique is used, the system can use 
the feature of both CE2 and CE1. By using a combina­
tion of unused address lines A l1 - 15 and the Chip 
Enable inputs, the 8085AH system can use up to 5 each 
8755A's without requiring a CE decoder. See Figure 4a and 4b. 

If a memory mapped I/O approach is used the 8755A wi" 
be selected by..!he combination of both the Chip 
Enables and 101M using AD8- 15 address lines. See 
Figure 3. 

-
A 

A8-15 

~ 
8085AH ADO_7 

" ALE 
I--RD 

WR 
I--
I--

elK 1,,2) 
I--

READY 
I--

101M 
V I--

t 

'--- t'" ,." 7 I '-../ 
A/DO_1 A8_1D RD elK 101M 

iDA ALE ii!W READY 

8755A 

Figure 3. 8755A in 8085AH System 
(Memory-Mapped I/O) 

:> 
> 

CE 



8755A/8755A·2 

iAPX 88 FIVE CHIP SYSTEM 

Figure 4 shows a five chip system containing: 

• 1.2SK Bytes RAM 
• 2K Bytes EPROM 
• 38 I/O Pins 
• 1 Interval Timer 
• 2 Interrupt Levels 

Vee 

MNIMXt--VcC 

RST @ 

ALE t---~~~~-I 

AD ------ --- --

WA t--- ~- ~~ 

101M /--~~~~-, 

F 
I 

I 

r-~ 

r-

It-
il-l-
'I-r-

~ 

~+-+--~--..jWR 

I +---+---+-+---4 R5 

I 
-

+---+---~--l eE, 
8185-2 

-+-+-+--+---~_l ALE r 
-

f--+-+---+---+---+--~--l cs. 
f--+-+---+---+---+-----l c E, 

t---+-+-+--t----j----~_l Ae, Ag 

/~~~-~~----~ ADo_, 

J 1 
Vss Vee 

'7' 7' 

Figure 4a. iAPX 88 Five Chip System Configuration 

2-137 



~ c 
iii 
"" !7 
co 
-.j 
en 8085 AH 

~ 
:;' 

~ 
co 
~ 

'" en 
0> l> 

~ 
II> 
;-
3 

~ 
::I 
Q. .. 
a. 
9 

A8_15 ~ 
" A" A" A" A" A,S . V 

A "-
Al°0-7 

r- r- - - ) 
" r-
ALE r-- I- - - I-
R5 

l- I- - - I-
WA 

l- I- - - I-
elK (¢l21 

l- I- - - t--
READY 

l- I- - - t--
101M r-- t-- - - r--

T\ ~ 7 
v" :. , 7 T" " :. ~r '7 :. v" '7, 7 f r 

I~ 
AlOO_1 A~," RD.....'lK 101M -, 11_ AID .. , A .. " RD elK 101M 'II. AID .. , A .. " RD elK IDiM 'II AID .. , A .. " RD CL::J t AlD

", A .. " RD ClK 101M "~ 
ALE lOW READV CE 1 lOR ALE rnw READY eE2 iiiii . ALE ii:fW READY eEl iiiR ALE ilii READY eE2 lOR ALE iOW READY eE 2 

8755A 8755A 8755A 8755A 875SA 
(2K BVTES) . 12K BYTES) 12K BYTES) 12K BYTES) (2K BYTES) 

--_ .. --_ .. - --- ._-

Note: Use Ce 1 for the first 8755A in the system. and CE2 for the other 8755A's. Permits up to 5-8755A's in a system without CE decoder. 

l 

co ..... 
en en 

t ..... 
en 

~ 
I\,) 



8755A/8755A·2 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias 
Storage Temperature 
Voltage on Any Pin 

With Respectto Ground 
Power Dissipation 

aceto +70 o e 
-65' e to + lSD' e 

... -0.5V to +7V 
1.5W 

*NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (TA = O°C to 70°, Vee = VDD = 5V ± 5%; 

Vee = VDD = 5V ±10% for 8755A-2) 

SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS 

VIL Input Low Voltage -0.5 0.8 V Vee ~ 5.0V 
--

VIH Input High Voltage 2.0 Vee+0.5 V Vee ~ 5.0V 

VOL Output Low Voltage 0.45 V IOL ~ 2mA 

VOH Output High Voltage 2.4 V IOH ~ -400J..1A 

111- Input Leakage 10 J..1A Vss "" VIN "" Vee ._-

ILO Output Leakage Current -:':10 J..1A O.4SV "" VOUT s Vee 
. ---

Icc Vee Supply Current 180 mA 
-- - ---

IDD VDD Supply Current 30 mA VDD = Vee 

CIN Capacitance of Input Buffer 10 pF fe = 1fLHz 

CI/o Capacitance of I/O Buffer 15 pF fC = 1fLHz 

D.C. CHARACTERISTICS-PROGRAMMING (TA = 0°Cto70°, Vee = 5V± 5%,Vss=ov, VDD =25V ±1V; 
Vee = VDD = 5V ±10% for 8755A-2) 

Symbol Parameter Min. Typ. Max. Unit 

Voo Programming Voltage (during Write 
to EPROM) 24 25 26 V 

laD Prog Supply Current 15 30 mA 

2-139 



A.C. CHARACTERISTICS 

8755A18755A·2 

(TA = O°C to 700
, Vee = 5V ± 5%; 

Vee = VDD = 5V ±10% for 8755A-2) 

8755A 

Symbol Parameter Min. Max. 

tcye Clock Cycle Time 320 

Tl CLK Pulse Width 80 

T2 CLK Pulse Width 120 

tf.lr CLK Rise and Fall Time 30 
-- -----f---

tAL Address to Latch Set Up Time 50 

tlA Address Hold Time after Latch 80 

tlC Latch to READ/WRITE Control 100 

tRO Valid Data Out Delay from READ Control' 170 

tAD Address Stable to Data Out Valid" 450 

tll Latch Enable Width 100 

tRoF Data Bus Float after READ 0 100 
--_ .. _---

tCl READ/WRITE Control to Latch Enable 20 

tcc READ/WRITE Control Width 250 

tow Data In to Write Set Up Time 150 

two Data In Hold Time After WRITE 30 

twp WRITE to Port Output 400 

tPR Port Input Set Up Time 50 

tRP Port Input Hold Time to Control 50 

tRYH READY HOLD Time to Control 0 160 

tARY ADDRESS rCEI to READY 160 

tRv Recovery Time Between Controls 300 

tRDE READ Control to Data Bus Enable 10 

NOTE: 
eLOAO = 150pF. 

'Or TAO - (TAL + TLd. whichever is greater. 

"Defines ALE to Data Out Valid in conjunction with TAL' 

8755A·2 
(Preliminary) 

Min. Max. Units 

200 ns 

40 ns 

70 ns 

30 ns 

30 ns I 
45 ns 

40 ns 

140 ns 

300 ns 

70 ns 

0 85 ns 

10 ns 

200 ns 

150 ns 

10 ns 

300 ns 

50 ns 

50 ns 

0 160 ns 

160 ns 

200 ns 

10 ns 

A.C. CHARACTERISTICS- PROGRAMMING (TA = o°C to 70°, Vee = 5V ± 5%, VSS =OV, VDD = 25V ±lV; 
Vee = VDD = 5V ±10% for 8755A-2) 

Symbol Parameter Min. Typ. Max. Unit 

tps Data Setup Time 10 ns 

tpD Data Hold Time 0 ns 

ts Prog Pulse Setup Time 2 /lS 

tH Prog Pulse Hold Time 2 /lS 

tPR Prog Pulse Rise Time 0.01 2 /lS 

tpF Prog Pulse Fall Time 0.01 2 /lS 

tPRG Prog Pulse Width 45 50 msec 

2-140 



inter 8755A18755A·2 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT/OUTPUT 

A,C TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC "1 AND OA5V FOR 
A LOGIC 0" TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A LOGIC 1 
AND Q.BV FOR A LOGIC "0 

WAVEFORMS 

CLOCK SPECIFICATION FOR 8755A 

PROM READ, 1/0 READ AND WRITE 

A8~~ ADDRESS l( 
101M 

tAD 

~ .1 

--~D ADO'~ ADDRESS 

I r tLl- , 
ALE . ~ ! 

~tAL~ rtLA~ 
(PROG)/GE l \ i 

i 
CE, J r \ 

I - f--- tRDE i 

iDA R5 ! 

~tLC~ ~tRU 
lOW 

l" 

Please note that GEl must remain low for the entire cycle 

2-141 

DEVICE 
UNDER 

i}CL 01 50 PF TEST 

-= 
CL ", 150 pF 
CL INCLUDES JIG CAPACITANCE 

-----,-

ADDRESS 

DATA ~----< ADDRESS >-
,; 

¥IJ V/~ VII 

! \ 
~ tRDF 1--

j }-
tow _____ !+----,two i I 

I iL-
tcc-----~ '~ I 

~-tRV~~ 

I 



8755A/8755A·2 

WAVEFORMS (Continued) 

1/0 PORT 

A. INPUT MODE 

\F-' _-J! 
~:J,::=X -I '.. =x,..tR

_
P 
___ _ 

DATA' - - - - - - -)< 
BUS 

------- -------------------
B. OUTPUT MODE 

\ f . I GLITCH FREE 
'wP ~+'----J / OUTPUT 

6~~~UT = = = = = = = = = == ~x------
~~~A' = = = = = y _______ -'X"" ____ _ 

WAIT STATE (READY = 0)

eLK

ALE

~---------rJi
l~tRYH

2-142

inter 8755A18755A·2

WAVEFORMS (Continued)

8755A PROGRAM MODE

FUNCTION t-------- PROGRAM CYCLE ----------; .. ~I· .0----- VERIFY CYCLE" --1_ PROGRAM CYCLE

ALE

A/DO_7
DATA TO BE

PROGRAMMED

tpo

PROGICE, Ji
-tPs~

ts
+25

VOD

+5------------------------{

•

L~-

\J--
~VER1FY CYCLE IS A REGULAR MEMORY READ CYCLE IWITH VOO" +5V FOR 8755A)

2-143

©Intel Corporation, 1979

APPLICATION
NOTE

2-144

Ap·59

September 1979

121500-001

AP59

INTRODUCTION

The Intel 8259A is a Programmable Interrupt Controller
(PIC) designed for use in real-time interrupt driven
microcomputer systems. The 8259A manages eight
levels of interrupts and has built-in features for expan­
sion up to 64 levels with additional 8259A's. Its versatile
design allows it to be used within MCS-80, MCS-85,
MCS-86, and MCS-88 microcomputer systems. Being
fully programmable, the 8259A provides a wide variety of
modes and commands to tailor 8259A interrupt process­
ing for the specific needs of the user. These modes and
commands control a number of interrupt oriented func­
tions such as interrupt priority selection and masking of
interrupts. The 8259A programming may be dynamically
changed by the software at any time, thus al lowing com­
plete interrupt control throughout program execution.

The 8259A is an enhanced, fully compatible revision of
its predecessor, the 8259. This means the 8259A can use
all hardware and software originally designed for the
8259 without any changes. Furthermore, it provides ad­
ditional modes that increase its flexibility in MCS-80
and MCS-85 systems and allow it to work in MCS-86 and
MCS-88 systems. These modes are:

• MCS-86/88 Mode
• Automatic End of Interrupt Mode
• Level Triggered Mode
• Special Fully Nested Mode
• Buffered Mode

Each of these are covered in depth further in this appli­
cation note.

This application note was written to explain completely
how to use the 8259A within MCS-80, MCS-85, MCS-86,
and MCS-88 microcomputer systems. It is divided into
five sections. The first section, "Concepts", explains
the concepts of interrupts and presents an overview of
how the 8259A works with each microcomputer system
mentioned above. The second section, "Functional
Block Diagram", describes the internal functions of the
8259A in block diagram form and provides a detailed
functional description of each device pin. "Operation of
the 8259A", the third section, explains in depth the
operation and use of each of the 8259A modes and com­
mands. For clarity of explanation, this section doesn't
make reference to the actual programming of the 8259A.
Instead, all programming is covered in the fourth sec­
tion, "Programming the 8259A". This section explains
how to program the 8259A with the modes and com­
mands mentioned in the previous section. These two
sections are referenced in Appendix A. The fifth and
final section "Application Examples", shows the 8259A
in three typical applications. These' applications are
fully explained with reference to both hardware and soft­
ware.

The reader should note that some of the terminology
used throughout this application note may differ
slightly from existing data sheets. This is done to better
clarify and explain the operation and programming of
the 8259A.

1. CONCEPTS

In microcomputer systems there is usually a need for
the processor to communicate with various Input/Out-

2-145

put (110) devices such as keyboards, displays, sensors,
and other peripherals. From the system viewpoint, the
processor should spend as little time as possible servic­
ing the peripherals since the time required for these 110
chores directly affects the amount of time available for
other tasks. In other words, the system should be
designed so that 110 servicing has little or no effect on
the total system throughput. There are two basic
methods of handling the 110 chores in a system: status
polling and interrupt servicing.

The status poll method of 110 servicing essentially in·
volves having the processor "ask" each peripheral if it
needs servicing by testing the peripheral's status line. If
the peripheral requires service, the processor branches
to the appropriate service routi ne; if not, the processor
continues with the main program. Clearly, there are
several problems in implementing such an approach.
First, how often a peripheral is polled is an important
constraint. Some idea of the "frequency-of-service"
required by each peripheral must be known and any soft­
ware written for the system must accommodate this
time dependence by "scheduling" when a device is
polled. Second, there will obviously be times when a
device is polled that is not ready for service, wasting the
processor time that it took to do the poll. And other
times, a ready device would have to wait until the proc­
essor "makes its rounds" before it could be serviced,
slowing down the peripheral.

Other problems arise when certain peripherals are more
important than others. The only way to implement the
"priority" of devices is to poll the high priority devices
more frequently than lower priority ones. It may even be
necessary to poll the high priority devices while in a low
priority device service routine. It is easy to see that the
polled approach can be inefficient both time-wise and
software-wise. Overall, the polled method of 110 servic­
ing can have a detrimental effect on system throughput,
thus limiting the tasks that can be performed by the
processor.

A more desirable approach in most systems would allow
the processor to be executing its main program and only
stop to service the 110 when told to do so by the 110
itself. This is called the interrupt service method. In
effect, the device would asynchronously Signal the proc­
essor when it required service. The processor would
finish its current instruction and then vector to the
service routine for the device requesting service. Once
the service routine is complete, the processor would
resume exactly where it left off. USing the interrupt ser­
vice method, no processor time is spent testing devices,
scheduling is not needed, and priority schemes are
readily implemented. It is easy to see that, using the in­
terrupt service approach, system throughput would in­
crease, allowing ,more tasks to be handled by the
processor.

However, to implement the interrupt service method
between processor and peripherals, additional hardware
is usually required. This is because, after interrupting
the processor, the device must supply information for
vectoring program execution. Depending on the proc­
essor used, this can be accomplished by the device tak­
ing control of the data bus and "jamming" an instruc­
tion(s) onto it. The instruction(s) then vectors the pro-

121500-001

AP59

gram to the proper service routine. This of course reo
quires additional control logic for each interrupt re­
questing device. Yet the implementation so far is only in
the most basic form. What if certain peripherals are to
be of higher priority than others? What if certain inter·
rupts must "e disabled while others are to be enabled?
The possible variations go on, but they all add up to one
theme; to provide greater flexibility using the interrupt
service method, hardware requirements increase.

So, we're caught in the middle. The status poll method
is a less desirable way of servicing I/O in terms of
throughput, but its hardware requirements are minimal.
On the other hand, the interrupt service method is most
desirable in terms of flexibility and throughput, but
additional hardware is required.

The perfect situation would be to have the flexibility and
throughput of the interrupt method in an implementa·
tion with minimal hardware requirements. The 8259A
Programmable Interrupt Controller (PIC) makes this all
possible.

The 8259A Programmable Interrupt Controller (PIC) was
designed to function as an overall manager of an inter·
rupt driven system. No additional hardware is' required.
The 8259A alone can handle eight prioritized interrupt
levels, controlling the complete interface between pe·
ripherals and processor. Additional 8259A's can be
"cascaded" to increase the number of interrupt levels
processed. A wide variety of modes and commands for
programming the 8259A give it enough flexibility for
almost any interrupt controlled structure. Thus, the
8259A is the feasible answer to handling I/O servicing in
microcomputer systems.

Now, before explaining exactly how to use the 8259A,
let's go over interrupt structures of the MCS-80, MCS·85,
MCS·86, and MCS·88 systems, and how they interact
with the 8259A. Figure 1 shows a block diagram of the
8259A interfacing with a standard system bus. This may
prove useful as reference throughout the rest of the
"Concepts" section.

[CONTROL BUS

______ I I I'TFFw ! INT I ",TA

[____ ---'D'-Ac,:TA ____ B:.:U,:.S __ ~~-~~-~-~--------'

AD WR INT INTA

8259A

SLAVE I
1,

I
PROGIENABlE INTERRUPT

BUFFER REQUESTS

Figure 1. 8259A Interface to Standard System Bus

1.1 MCS·80 -8259A OVERVIEW

In an MCS-80-8259A interrupt configuration, as. in
Figure 2, a device may cause an interrupt by pulling one
of the 8259A's interrupt request pins (IRO-IR7) high. If
the 8259A accepts the interrupt request (this depends
on its programmed condition), the 8259A's INT (inter·
rupt) pin will go high, driving the 8080A's INT pin high.

The 8080A can receive an interrupt request any time,
since its INT input is asynchronous. The 8080A, how·
ever, doesn't always have to acknowledge an interrupt
request immediately. It can accept or disregard reo
quests under software control using the EI (Enable Inter·
rupt) or 01 (Disable Interrupt) instructions. These in­
structions either set or reset an internal interrupt enable
flip·flop. The output of this flip·flop controls the state of
the INTE (Interrupt Enabled) pin. Upon reset, the 8080A
interrupts are disabled, making INTE low.

At the end of each instruction cycle, the 8080A exam­
ines the state of its INT pin. If an interrupt request is
present and interrupts are enabled, the 8080A enters an
interrupt machine cycle. During the interrupt machine
cycle the 8080Aresets the internal interrupt enable flip­
flop, disabling further interrupts until an EI instruction
is executed. Unlike normal machine cycles, the interrupt
machine cycle doesn't increment the program counter.
This ensures that the a080A can return to the pre­
interrupt program location after the interrupt is com·
pleted. The 8080A then issues an INTA (Interrupt
Acknowledge) pulse via the 8228 System Controller Bus
Driver. This INTA pulse signals the 8259A that the 8080A
is honoring the request and is ready to process the inter·
rupt.

The 8259A can now vector program execution to the cor­
responding service routine. This is done during a se·
quence of the three INTA pulses from the 8080A via the
8228. Upon receiving the first INTA pulse the 8259A
places the opcode for a CALL instruction on the data
bus. This causes the contents of the program counter to
be pushed onto the stack. In addition, the CALL instruc­
tion causes two more INTA pulses to be issued, allow·
ing the 8259A to place onto the data bus the starting
address of the corresponding service routine. This
address is called the interrupt·vector address. The lower
8 bits (LSB) of the interrupt-vector address are released
during the second INTA pulse and the upper 8 bits
(MSB) during the third INTA pulse. Once this sequence
is completed, program execution then vectors to the
service routine at the interrupt·vector address.

2-146

If the same registers are used by both the main program
and the interrupt service routine, their contents should
be saved when entering the service routine. This in·
cludes the Program Status Word (PSW) which consists
of the accumulator and flags. The best way to do this is
to "PUSH" each register used onto the stack. The ser·
vice routine can then "POP" each register off the stack
in the reverse order when it is completed. This prevents
any ambiguous operation when returning to the main
program.

Once the service routine is completed, the main
program may be re·entered by using a normal RET
(Return) instruction. This will "POP" the original con-

121500-001

AP59

tents of the program counter back off the stack to
resume program execution where it left off. Note, that
because interrupts are disabled during the interrupt
acknowledge sequence, the EI instruction must be
executed either during the service routine or the main
program before further interrupts can be processed.

For addition":'] information on the 8080A interrupt struc·
ture and opetation, refer to the MCS·80 User's Manual.

1.2 MeS·85 -8259A OVERVIEW

An MCS·85-8259A configuration processes interrupts
in much the same format as an MCS·80-8259A config-

uration. When an interrupt occurs, a sequence of three
INTA pulses causes the 8259A to release onto the data
bus a CALL instruction and an interrupt,vector address
for the corresponding service routine. Other events that
occur during the 8080A interrupt machine cycle, such as
disabling interrupts and not incrementing the program
counter, also occur in the 8085A interrupt acknowledge
machine cycle. Additionally, the instructions for saving
registers, enabling or disabling of interrupts, and return­
ing from service routines are literally the same.

The 8085A, however, has a different interrupt hardware
scheme as shown in Figure 3. For one, the 8085A sup­
plies its own INTA output pin rather than using an add i-

INTE AO-151---------"CA-=Dc:DROCE"'S-=S-=B"'US=---------~' TO MEMORY AND 1/0

Ao

HOLD INTI------------, +5V

80BDA

1K 8259A

C~ECT

cs

8224 READY READY 8228

RESET RESET

SYNC m== MEMW

'-------'
'-------------------~

SYNC

TO MEMORY TO SLAVE 8259AS

'---------""'" TO MEMORY AND 110

--

_rDh I

Figure 2. MCS·80 8259A Basic Configuration Example

TO MULTIPLEXED
Mesas FAMILY

I
X1 X2 REseT elK 'DD

RESET IN OUT
A8·15 ADDRESS BUS

HOLD n!l!!! HLDA AO_7

~

AO

ROY _I DOH 1 E3

E2 E1 A2 A1

ADI TRAP
ALE STe 8282 OE 8205

BOSSA DlO-7 -=- 00 0, 02 03 04 05 06 0,
RST 7.5

RST 6.5 ! ! lJlll
RST 5.5

~
110 SELECT

ADo_7 MULTIPLEXED ADDRESS/DATA BUS
INTR V

INTA laiM +5'
ViR eo

1K

SPIEN
AO IRO -TO 110 & MEMORY 8259A SELECT -

QUALIFIED BY laiM cs IR1 -
IT 00_7

IR2 I-
L 8259A IR3 I-

RD IR4 I-
WR IR5 I-
INTA IR6 I-
INT

CASO_2
IR7 I-

I~

Figure 3. MCS-85 8259A Baalc Configuration Example

2-147

TO STANDARD MEMORY
AND OTHER 110

TO STANDARD MEMORY
AND OTHER 110

1 INTERRUPT

j REQUEST
INPUTS

TO SLAVE 8259A

121500-001

AP59

tional chip, as the BOBOA uses the B22B System Con­
troller Bus Driver. Another hardware difference is the
BOB5A has five hardware interrupt pins: INTR, RST 7.5,
RST 6.5, RST 5.5, and TRAP. The INTR (Interrupt Request)
pin is the equivalent to the BOBOA's INT pin. The RST
(Restart) pins and TRAP pin are all restart interrupts
which vector program execution to an individual dedi­
cated address when asserted. The important factor
associating these interrupts is their relative priority, as
shown below:

TRAP Highest Priority
RST 7.5
RST 6.5
RST 5.5
I NTR Lowest Priority

The INTR pin has lowest priority among the other BOB5A
hardware interrupts. Thus, precautions to prevent inter­
rupting B259A service routines may be necessary. This,
of course, depends on how the 8085A interrupts are
being used in a particular application. Such precautions
can be implemented, however, by masking the RST pins
using the SIM instruction. The TRAP pin on the other
hand is non-maskable; all interrupt pins but TRAP can
be controlled by the EI (Enabie I nterrupt) and DI (Disable
Interrupt) instructions.

For a complete description of the 8085A interrupt struc­
ture, refer to the MCS-85 User's Manual.

1.3 MeS·86/88 -8259A OVERVIEW

Operation of an MCS-86/B8-B259A configuration has
basic similarities of the MCS-80/B5-B259A configura-

lions. That is, a device can cause an interrupt by pulling
one of the B259A's interrupt request pins (IRO-IR7) high.
If the 8259Ahonors the request, its INTpin will go high,
driving the 8086/80B8's INTR pin high. Like the B080A
and 8085A, the I NTR pi n of the B086/8088 is asynchro­
nous, thus it can receive an interrupt any time. The
80B6/B088 can also accept or disregard requests on
INTR under software control using the STI (Set Interrupt)
or CLI (Clear Interrupt) instructions. These instructions
set or clear the interrupt-enabled flag IF. Upon
8086/8088 reset the IF flag is cleared, disabling external
interrupts on INTR. Beside the INTR pin, the 8086/80B8
provides an NMI (Non-Maskable Interrupt) pin. The NMI
functions similar to the 8085A's TRAP; it can't be dis­
abled or masked. NMI has higher priority than INTR.

Figure 4 shows an MCS-86 MAX Mode system interfac­
ing with an 8259A on the local bus. This MCS-86-8259A
configuration is also representative of an MCS-88-
8259A configuration except for the data bus which is 16
bits for 8086 and 8 bits for 8088. I n the MeS-86 system
the 8259A must be on the lower 8 bits of the data bus.
Note that the 8259A could also be interfaced on the
system bus.

Although there are some basic similarities, the actual
processing of interrupts with an 808618088 is different
than an 8080A or 8085A. When an interrupt request is
present and interrupts are enabled, the 8086/8088 enters
its interrupt acknowledge machine cycle. The interrupt
acknowledge machine cycle pushes the flag registers
onto the stack (as in a PUSHF instruction). It then clears
the IF flag whicll disables interrupts. The contents of

= , ,---------------'.,
SYSTEM ADDRESS BUS & BHE> TO MEMORY

,-----:=---.,..l F 1
1
- 9 [~;:.'8~OO-7

A16·" ~ __ J
ADo_1SI------'M"'U"'LT'."IP-C"E':::XED ADDRESS/DATA BUS

_'K_r-1I
i
-=---

1 1-8259A SELECT

I_~- NMI so:-; STATUS ~ sO:; CEN j "'--'--C""S~IR""'O ~ I
INTR IR1 __ _

---r.~-- elK 8288 DEN IR, -L - '"' - ,.m"""

.':~l- ~~~~ _ ~;. _. :~~ _I ~.:;~'
CASO_2

r~w-'-- AND I/O

I"
I

..-/L~STEM DATA BUS--=) TO MEMORY '--_---' __ r------- AND I/O

r MNIMX

~
LOCK

~~TOSLAVE(l259A

Figure 4. MSC-8S, 8259A Basic Configuration Example (8086 In Max. Mode)

2-148 121500-001

AP59

both the code segment and the instruction pOinter are
then also pushed onto the stack. Thus, the stack retains
the pre-interrupt flag status and pre-interrupt program
location which are used to return from the service
routine. The 8086/8088 then issues the first of two INTA
pulses which signal the 8259A that the 8086/8088 has
honored its interrupt request. If the 8086/8088 is used in
its "MIN Mode" the INTA signal is available from the
8086/8088 on its INTA pin. If the 8086/8088 is used in the
"MAX Mode" the INTA signal is available via the 8288
Bus Controller INTA pin. Additionally, in the "MAX
Mode" the 8086/8088 LOCK pin goes low during the in­
terrupt acknowledge sequence. The LOCK signal can be
used to indicate to other system bus masters not to gain
control of the system bus during the interrupt acknowl­
edge sequence. A "HOLD" request won't be honored
while LOCK is low.

The 8259A is now ready to vector program execution to
the corresponding service routine. This is done during
the sequence of the two INTA pulses issued by the 80861
8088. Unlike operation with the 8080A or 8085A, the
8259A doesn't place a CALL instruction and the starting
address of the service routine on the data bus. Instead,
the first INTA pulse is used only to signal the 8259A of
the honored request. The second IN~A pulse causes the
8259A to place a single interrupt-vector byte onto the
data bus. Not used as a direct address, this interrupt­
vector byte pertains to one of 256 interrupt "types" sup­
ported by the 8086/8088 memory. Program execution is
vectored to the corresponding service routine by the
contents of a specified interrupt type.

All 256 interrupt types are located in absolute memory
locations 0 through 3FFH which make up the 80861
8088's interrupt-vector table. Each type in the interrupt­
vector table requires 4 bytes of memory and stores a
code segment address and an instruction pointer ad­
dress. Figure 5 shows a block diagram of the interrupt­
vector table. Locations 0 through 3FFH should be
reserved for the interrupt-vector table alone. Further­
more, memory locations 00 through 7FH (types 0-31) are
reserved for use by Intel Corporation for Intel hardware
and software products. To maintain compatibility with
present and future Intel products, these locations
should not be used.

- -
INTERRUPT TYPE 255

INTERRUPT TYPE 254

· · · --
INTERRUPT TYPE 2

INTERRUPT TYPE 1

INTERRUPT TYPE 0

Figure 5. BOB6/BOBB Interrupt Vector Table

3FFH

3FCH
3FBH

3F8H

BH

8H
7H

4H
3H

OH

2-149

When the 8086/8088 receives an interrupt-vector byte
from the 8259A, it multiplies its value by four to acquire
the address of the interrupt type. For example, if the
interrupt-vector byte specifies type 12B (80H), the vec­
tored address in 8086/8088 memory is 4 x 80H, which
equals 200H. Program execution is then vectored to the
service routine whose address is specified by the code
segment and instruction pOinter values within type 128
located at 200H. To show how this is done, let's assume
interrupt type 128 is to vector data to B086/8088 memory
location 2FF5FH. Figure 6 shows two possible ways to
set values of the code segment and instruction pointer
for vectoring to location 2FF5FH. Address generation
by the code segment and instruction pointer is ac­
complished by an offset (they overlap). Of the total
20-bit address capability, the code segment can desig­
nate the upper 16 bits, the instruction pointer can
designate the lower 16 bits.

CS(MSB)

CS(LSB)

'P(MSB)
'P(lSB)

-

-

2FH

FOH

OOH

5FH

-
1

1

1

1

FFH

FEH

FDH

FCH

~S;~::: t======~~~;~======~::~~ I TYPE128

'P(LSB) ~~ ____ lFCH

Figure 6. Two Examples of 808618088 Interrupt Type 128 Vectoring
to Location 2FF5FH

When entering an interrupt service routine, those regis­
ters that are mutually used between the main program
and service routine should be saved. The best way to do
this is to "PUSH" each register used onto the stack im­
mediately. The service routine can then "POP" each
register off the stack in the same order when it is com­
pleted.

Once the service routine is completed the main program
may be re-entered by using a IRET (Interrupt Return) in­
struction. The IRET instruction will pop the pre-interrupt
instruction pointer, code segment and flags off the
stack. Thus the main program will resume where it was
interrupted with the same flag status regardless of
changes in the service routine. Note especially that this
includes the state of the IF flag, thus interrupts are re­
enabled automatically when returning from the service
routine.

Beside external interrupt generation from the INTR pin,
the 8086/8088 is also able to invoke interrupts by soft­
ware. Three interrupt instructions are provided: INT, INT
(Type 3), and INTO. INT is a two byte instruction, the sec­
ond byte selects the interrupt type. INT (Type 3) is a one
byte instruction which selects interrupt Type 3. INTO is
a conditional one byte interrupt instruction which
selects interrupt Type 4 if the OF flag (trap on overflow)
is set. All the software interrupts vector program execu­
tion as the hardware interrupts do.

121500-001

AP59

For further information on 8086/8088 interrupt operation
and internal interrupt structure refer to the MeS-86
User's Manual and the 8086 System Design application
note.

2. 8259A FUNCTIONAL BLOCK DIAGRAM

A block diagram of the 8259A is shown in Figure 7. As
can be seen from this figure, the 8259A consists of eight
major blocks: the Interrupt Request Register (lRR), the
In-Service Register (ISR), the Interrupt Mask Register
(IMR), the Priority Resolver (PR), the cascade buffer/
comparator, the data bus buffer, and logic blocks for
control and read/write. We'll first go over the blocks
directly related to interrupt handling, the IRR, ISR, IMR,
PR, and the control logic. The remaining functional
blocks are then discussed.

2_1 INTERRUPT REGISTERS AND CONTROL LOGIC

Basically, interrupt requests are handled by three "cas­
caded" registers: the Interrupt Request Register (IRR) is
use to store all the interrupt levels requesting service;
the In-Service Register (ISR) stores all the levels which
are being serviced; and the Interrupt Mask Register
(IMRl stores the bits of the interrupt lines to be masked.
The Priority Resolver (PR) looks at the IRR, ISR and IMR,
and determines whether an INT should be issued by the
the control logic to the processor.

Figure 8 shows conceptually how the Interrupt Request
(IR) input handles an interrupt request and how the
various interrupt registers interact. The figure repre-

PIN CONFIGURATION

cs Vee

WR .."
AD INTA

0, IR1

0, IR6

Os IRS

0, JR4

0 3 IR3

O2 IR2

0, IRl

Do IRO

CASO INT RD

CAS 1 SP/EN

GND CAS 2

PIN NAMES

sents one of eight "daisy-chained" priority cells, one for
each IR input.

The.best way to explain the operation of the priority cell
is to go through the sequence of internal events that
happen when an interrupt request occurs. However,
first, notice that the input circuitry of the priority cell
allows for both level sensitive and edge sensitive IR in·
puts. Deciding which method to use is dependent on the
particular application and will be discussed in more
detail later.

When theiR input is in an inactive state (LOW), the edge
sense latch is set. If edge sensitive triggering is
selected, the "Q" output of the edge sense latch will
arm the input gate to the request latch. This input gate
will be disarmed after the IR input goes active (HIGH)
and the interrupt request has been acknowledged. This
disables the input from generating any further inter­
rupts until it has returned low to re-arm the edge sense
latch. If level sensitive triggering is selected, the "Q"
output of the edge sense latch is rendered useless. This
means the !evel of the fR input is in complete control of
interrupt generation; the Input won't be disarmed once
acknowledged.

When an interrupt occurs on the IR input, it propagates
through the request latch and to the PR (assuming the
input isn't masked). The PR looks at the incoming re­
quests and the currently in-service interrupts to ascer·
tain whether an interrupt should be issued to the proc­
essor. Let's assume that the request is the only one in­
coming and no requests are presently in service. The PR
then causes the control logic to pull the INT line to the
processor high.

DATA
BUS

BUFFER

BLOCK DIAGRAM

05-----'
~DJL_~ ___ ~~TA BUS ISI·DIRECTIONAL)

RD READ INPUT
WFl----WAITE IN~--~---

~- COMMAND-SELECT A~DRess--

CS CHIP SELECT CA,Sl

~ CASCADE LINES

SP/EN SLAVE PROGRAM/ENABLE ~~

lNT INTERRUPT OUTPUT

'tNrA --mTERRUPT AcKNOWLEDGE INPUT SP/EN ___ --'

~-IR7 INTERRUPT REQUEST INPUTS

Figure 7. 8259A Block Diagram and Pin Configuration

2-150 121500-001

AP59

LTIM BIT
0::: EDGE
1 = lEVEL

TO OTHER PRIORITY CELLS
CLR !SR

ISA BIT

r-_-r-__ -r __ "_r---__ r---_-<'I'---t-+---------lSETISR PRIORITY
RESOLVER

{friifAJ MesaO/85 ('
MODE

FREEZE -\I

i~ ,w { INfA~l~
MODE

FREEZE

REOUESI
LATCH

MesaSI88 0-' I

NOTES

"' '"

NON­
MASKED
REO

-I\ CONTROL
~) LOGIC

1. MASTER CLEAR ACTIVE ONLY DURING !CW1
2. FREEZE/IS ACT!VE DURING fNTAI AND POLL SEQUENCES ONLY
3. TRUTH TABLE FOR D·LATCH

ti~ti°PERATION 1 '?,i) ~ 01 FOLLOW
OX, On-1 HOLD

Figure 8. Priority Cell

When the processor honors the I NT pu Ise, it sends a se­
quence of INTA pulses to the 8259A (three for 8080A/
8085A, two for 8086/8088). During this sequence the
state of the request latch is frozen (note the INTA-freeze
request timing diagram)_ Priority is again resolved by the
PR to determine the appropriate interrupt vectoring
which is conveyed to the processor via the data bus_

Immediately after the interrupt acknowledge sequence,
the PR sets the ccrresponding bit in the ISR which
simultaneously clears the edge sense latch_ if edge sen­
sitive triggering is used, clearing the edge sense latch
also disarms the request latch. This inhibits the
possibility of a still active IR input from propagating
through the priority cell. The IR input must return to an
inactive state, setting the edge sense latch, before
another interrupt request can be recognized. If level sen­
sitive triggering is used, however, clearing the edge
sense latch has no affect on the request latch_ The state
of the request latch is entirely dependent upon the IR in­
put level. Another interrupt will be generated immedi­
ately if the IR level is left active after its ISR bit has been
reset. An ISR bit gets reset with an End-of-Interrupt (EOI)
command issued in the service routine_ End-of­
interrupts will be covered in more detail later.

2.2 OTHER FUNCTIONAL BLOCKS

Data Bus Buffer

This three-state, bidirectional 8-bit buffer is used to in­
terface the 8259A to the processor system data bus (via

2-151

DBO-OB7). Control words, status information, and
interrupt-vector data are transferred through the data
bus buffer.

Read/Write Control Logic

The function of this block is to control the programming
of the 8259A by accepting OUTput commands from the
processor_ It also controls the releasing of status onto
the data bus by accepting INput commands from the
processor_ The initialization and operation command
word registers which store the various control formats
are located in this block. The RD, WR, AO, and CB
pins are used to control access to this block by the
processor_

Cascade Buffer/Comparator

As mentioned earlier, multiple 8259A's can be combined
to expand the number of interrupt levels_ A master-slave
relationship of cascaded 8259A's is used for the expan­
sion_ The SPiEN and the CASO-2 pins are used for oper­
ation of this block_ The cascading of 8259A's is covered
in depth in the "Operation of the 8259A" section of this
application note.

2_3 PIN FUNCTIONS

Name Pin # I/O Function

Vee
GNO

28

14

+ 5V supply

Ground

121500-001

AP59

Name Pin # 1/0 Function

2

3

07-00 4-11

CASO- 12,13,
CAS2 15

Chip Select: A low on this pin en­
ables RD and WR communication be­
tween the CPU and the 8259A. INTA
functions are independent of CS.

Write: A low on this pin when CS is
low enables the 8259A to accept
command words from the CPU.

Read: A low on this pin when CS is
low enables the 8259A to release
status onto the data bus for the CPU.

110 Bidirectional Data Bus: Control,
status and interrupt,vector informa­
tion is transferred via this bus.

110 Cascade Lines: The CAS lines form a
private 8259A bus to control a multi­
ple 8259A structure. These pins are
outputs for a master 8259A and in­
puts for a slave 8259A.

SP/EN 16 110 Slave ProgramlEnable Buffer: This is
a dual function pin. When in the buf­
fered mode it can be used as an out­
put to control buffer transceivers
(EN). When not in the buffered mode
it is used as an input to designate a
master ~= 1) or slave (SP=O).

INT 17 0 Interrupt: This pin goes high when-
ever a valid interrupt request is as­
serted. It is used to interrupt the
CPU, thus it is connected to the
CPU's interrupt pin.

IRO- 18-25 I Interrupt Requests: Asynchronous in-
IR7 puts. An interrupt request can be

generated by raising an IR input (low
to high) and holding it high until it is
acknowledged (edge triggered mode),
or just by a high level on an IR input
(level triggered mode).

INTA 26 Interrupt Acknowledge: This pin is
used to enable 8259A interrupt-vector
data onto the data bus. This is done
by a sequence of interrupt acknowl­
edge pulses issued by the CPU.

AO 27 AO Address Line: This pin acts in con­
junction with the CS, WR, and RD
pins. It is used by the 8259A to de­
cipher between various command
words the CPU writes and status the
CPU wishes to read. It is typically
connected to the CPU AO address
line (A1 for 8086/8088).

3. OPERATION OF THE 8259A

Interrupt operation of the 8259A falls under five main
categories: vectoring, priorities, triggering, status, and
cascading. Each of these categories use various modes
and commands. This section will explain the operation
of these modes and commands. For clarity of explana­
tion, however, the actual programming of the 8259A isn't

2-152

covered in this section but in "Programming the 8259A".
Appendix A is provided as a cross reference between
these two sections.

3.1 INTERRUPT VECTORING

Each IR input of the 8259A has an individual interrupt­
vector address in memory associated with it. Designa­
tion of each address depends upon the initial program­
ming of the 8259A. As stated earlier, the interrupt
sequence and addressing of an MCS-80 and MCS-85
system differs from that of an MCS-86 and MCS-88
system. Thus, the 8259A must be initially programmed
in either a MCS-80/85 or MCS-86/88 mode of operation to
insure the correct interrupt vectoring.

MCS-80185™ Mode

When programmed in the MCS-80/85 mode, the 8259A
should only be used within an 8080A or an 8085A
system. In this mode the 8080A/8085A will handle inter­
rupts in the format described in the "MCS-80-8259A or
MCS-85-8259A Overviews."

Upon interrupt request in the MCS-80/85 mode, the
8259A will output to the data bus the opcode for a CALL
instruction and the address of the desired routine. This
is in response to a sequence of three INTA pulses
issued by the 8080A/8085A after the 8259A has raised
INT high.

The first INTA pulse to the 8259A enables the CALL
opcode "CDH" onto the data bus. It also resolves IR pri­
orities and effects operation in the cascade mode,
which will be covered later. Contents of the first
interrupt-vector byte are shown in Figure 9A.

During the second and third INTA pulses, the 8259A
conveys a 16-bit interrupt-vector address to the 8080AI
8085A. The interrupt-vector addresses for all eight levels
are selected when Initially programming the 8259A.
However, only one address is needed for programming.
Interrupt-vector addresses of IRO-IR7 are automatically
set at equally spaced intervals based on the one pro­
grammed address. Address intervals are user definable
to 4 or 8 bytes apart. If the service routine for a device is
short it may be possible to fit the entire routine within
an 8-byte interval. Usually, though, the service routines
require more than 8 bytes. So, a 4-byte interval is used to
store a Jump (JMP) instruction which directs the 8080AI
8085A to the appropriate routine. The 8-byte interval
maintains compatibility with current 8080A/8085A
Restart (RST) instruction software, while the 4-byte in­
terval is best for a compact jump table. If the 4-byte in­
terval is selected, then the 8259A will automatically
insert bits AO-A4. This leaves A5-A15 to be pro·
grammed by the user. If the 8-byte interval is selected,
the 8259A will automatically insert bits AO-A5. This
leaves only A6-A15 to be programmed by the user.

The LSB of the interrupt-vector address is placed on the
data bus during the second INTA pulse. Figure 9B
shows the contents of the second interrupt-vector byte
for both 4 and 8-byte intervals.

The MSB of the interrupt-vector address is placed on the
data bus during the third INTA pulse. Contents of the
third interrupt-vector byte is shown in Figure 9C.

121500-001

AP59

07 06 D!; 04 03 02 01 DO

CALL CODf

A. FIRST INTERRUPT VECTOR BYTE, Messo/ss MODE

,. --,-----
~~

07 06

--<---- -~

---'::.---1

B. SECOND INTERRUPT VECTOR BYTE, MeS80/85 MODE

c. THIRD INTERRUPT VECTOR BYTE, Messo/ss MODE

Figure 9, 9A-C, Inlerrupl,Veclor Byles lor 8259A, MCS 80185 Mode

MCS·86/88 Mode

When programmed in the MCS-8B/88 mode, the 8259A
should only be used within an MCS-S6 or MeS-88
system, In this mode, the 8086/8088 will handle inter­
rupts in the format described earlier in the "8259A-
8086/8088 Overview",

Upon interrupt in the MeS-86/88 mode, the 8259A will
output a single interrupt-vector byte to If-'e data bus,
This is in response to only two INTA pulses issued by
the 8086/8088 after the 8259A has laised INT high,

The first INTA pulse is used only for set-up purposes in­
ternal to the 8259A_ As in the MeS-80/85 mode, this set­
up includes priority resolu lion and cascade mode oper­
ations which will be covered later. Unlike the MeS-80/85
mode, no CALL opcooe is placed on the data bus,

The second INTA pulse is used to enable the single
interrupt-vector byte onto the data bus, The 8086/8088
uses this interrupt-vector byte to select one of 256 inter­
rupt "types" in 8086/8088 memory, Interrupt type selec­
tion for all eight IR levels is made when initially pro­
gramming the 8259A. However, reference to only one in­
terrupt type is needed for programming, The upper 5 bits
of the interrupt vector byte are user definable, The lower
3 bits are automatically inserted by the 8259A depend­
ing upon the IR level.

Contents of the interrupt-vector byte for 8086/8088 type
selection is put on the data bus during the second INTA
pulse and is shown in Figure 10,

f
-c._._c. _c __ - c_ -- -------

L~~I' ·~t--~ ~~ -~ {1- ~~ --~V--i?11
6 I T7 :6 To T4 T3 1 1 0 I
5 1 T7 Hi TS T 4 T3 1 0 1 I

1

4 T? T6 TS T4 T3 1 0 0 I
3 : T? T6 TS T.1 T3 0 1 1 ,_
2 : T7 16 T5 T4 f3 0 1 0
I -I T7 16 f5 T 4 :8 0 0 I!

L~ __ ~f _r!LI~_J_4 T0 ___ Q_ Q .QJ

Figura 10. Interrupt Voclor Byte, MCS 88/88 ™ Mode

2-153

3.2 INTERRUPT PRIORITIES

A variety of modes and commands are available for con·
trolling interrupt priorities of the 8259A. All of them are
programmable, that is, they may be changed dynamic·
ally under software control. With these modes and com­
mands, many possibilities are conceivable, giving the
user enough versatility for almost any interrupt con­
trolled application.

Fully Nested Mode

The fully nested mode of operation is a general purpose
priority mode, This mode supports a multilevel-interrupt
structure in which priority order of all eight IR inputs are
arranged from highest to lowest.

Unless otherwise programmed, the fully nested mode is
entered by default upon initialization. At this time, IRO is
assigned the highest priority through IR7 the lowest.
The fully nested mode, however, is no! confined to this
IR structure alone, Once past initialization, other IR in­
puts can be assigned highest priority also, keeping the
multilevel·interrupt structure of the fully nested mode,
Figure 11A-C shows some variations of the priority
structures in the fully nested mode,

'~~,~VR~i~ ~r~!_~~1~5T~~~~~2 1~1 ~~
B

IR LEVELS [!~! .~fl6 fA5·-I~-4Jl{3~LR21fuB~J
PRIORITY !-----.L __ 9_ . .7 __ ~ __ ~_-.:t __ 3 __ ?-.J

C

Figure 11. A-C. Some Variations of Priority Structure in the
Fully Nested Mode

Further explanation of the fully nested mode, in this
section, is linked with information of general 8259A in­
terrupt operations, This is done to ease explanation to
the user in both areas.

In general, when an interrupt is acknowledged, the
highest priority request is determined from the IRR (In­
terrupt Request Register). The interrupt vector is then
placed on the data bus, In addition, the corresponding
bit in the ISR (In-Service Register) is set to designate the
routine in service, This ISR bit remains set until an EOI
(End-Of·lnterrupt) command is issued to the 8259A,
EOI's will be explained in greater detail shortly.

In the fully nested mode, while an ISR bit is set, all fur­
ther requests of the same or lower priority are inhibited
from generating an interrupt to the microprocessor, A
higher priority request, though, can generate an inter­
rupt, thus vectoring program execution to its service
routine, Interrupts are only acknowledged, however, if
the microprocessor has previously executed an "Enable
Interrupts" instruction. This is because the interrupt
request pin on the microprocessor gets disabled auto­
matically after acknowledgement of any interrupt The
assembly language instructions used to enable inter·
rupts are "EI" for 8080A/8085A and "STI" for 8086/8088,
Interrupts can be disabled by using the instruction "01"
for 8080AI 8085A and "CLI" for 8086/8088. When a
routine is completed a "return" instruction is executed,
"RET" for 8080A/8085A and "IRET" for 8086/8088.

121500-001

AP59

Figure 12 illustrates the correct usage of interrupt
related instructions and the interaction of interrupt
levels in the fully nested mode.

Assuming the IR priority assignment for the example in
Figure 12 is IRO the highest through IR7 the lowest, the
sequence is as follows. During the main program, IR3
makes a request. Since interrupts are enabled, the
microprocessor is vectored to the IR3 service routine.
During the IR3 routine, IR1 asserts a request. Since IR1
has higher priority than IR3, an interrupt is generated.
However, it is not acknowledged because the micro·
processor disabled interrupts in response to the IR3 in·
terrupt. The IR1 interrupt is not acknowledged until the
"Enable Interrupts" instruction is executed. Thus the
IR3 routine has a "protected" section of code over
which no interrupts (except non-maskable) are allowed.
The IR1 routine has no such "protected" section since
an ';Enable Interrupts" instruction is the first one in its
service routine. Note that in this example the IR1 re­
quest must stay high until it is acknowledged. This is
covered in more depth in the "Interrupt Triggering"
section.

IR3
INTERRUPT

EI OR 511

IR1
INTER·

RUPT

IR3 SERVICE
ROUTINE

RET OR IRET

Figure 12. Fully Nesled Made Example (MCS 80185

IR1 SERVICE
ROUTINE

RET OR IRET

or MCS 88/88)

What is happening to the ISR register? While in the main
program, no ISR bits are set since there aren't any inter­
rupts in service. When the IR3 interrupt is acknowl·
edged, the ISR3 bit is set. When the IR1 interrupt is
acknowledged, both the ISR1 and the ISR3bits are set,
indicating that neither routine is complete. At this time,
only IRO could generate an interrupt since it is the only
input with a higher priority than those previously in ser­
vice. To terminate the IR1 routine, the routine must
inform the 8259A that it is complete by resetting its ISR
bit. It does this by executing an EOI command. A
"return" instruction then transfers execution back to

the IR3 routine. This allows IRO-IR2 to interrupt the IR3
routine again, since ISR3 is the highest ISR bit set. No
further interrupts occur in the example so the EOI com­
mand resets ISR3 and the "return" instruction causes
the main program to resume at its pre-interrupt location,
ending the example.

A single 8259A is essentially always in the fully nested
mode unless certain programming conditions disturb it.
The following programming conditions can cause the
8259A to go out of the high to low priority structure of
the fully nested mode.

• The automatic EOI mode

• The special mask mode

• A slave with a master not in the special fully nested
mode

These modes will be covered in more detail later,
however, they are mentioned now so the user can be
aware of them. As long as these program conditions
aren't inacted, the fully nested mode remains undis­
turbed.

End of Interrupt

Upon completion of an interrupt service routine the
8259A needs to be notified so its ISR can be updated.
This is done to keep track of which interrupt levels are in
the process of being serviced and their relative priori­
ties. Three different End-Of-Interrupt (EOI) formats are
available for the user. These are: the non-specific EOI
command, the specific EOI command, and the auto­
matic EOI Mode. Selection of which EOI to use is depen·
dent upon the interrupt operations the user wishes to
perform.

Non-Specific EOI Command

A non-specific EOI command sent from the microproc­
essor lets the 8259A know when a service routine has
been completed, without specification of its exact inter­
rupt level. The 8259A automatically determines the inter­
rupt level and resets the correct bit in the ISR.

To take advantage of the non-specific EOI the 8259A
must be in a mode of operation in which it can predeter­
mine in-service routine levels. For this reason the non­
specific EOI command should only be used when the
most recent level acknowledged and serviced is always
the highest priority level. When the 8259A receives a
non-specific EOI command, it simply resets the highest
priority ISR bit, thus confirming to the 8259A that the
highest priority routine of the routines in service is
finished.

The main advantage of using the non-specific EOI com­
mand is that IR level specification isn't necessary as in
the "Specific EOI Command", covered shortly.
However, special consideration should be taken when
deciding to use the non-specific EO!. Here are two pro­
gram conditions in which it is best not used:

• Using the set priority command within an interrupt
service routine.

• Using a special mask mode.

These conditions are covered in more detail in their own
sections, but are listed here for the users reference.

2-154 121500-001

AP59

Specific EOI Command

A specific EOI command sent from the microprocessor
lets the 8259A know when a service routine of a particu­
lar interrupt level is completed. Unlike a non-specific
EOI command, which automatically resets the highest
priority ISR bit, a specific EOI command specifies an
exact ISR bit to be reset. One of the eight IR levels of the
8259A can be specified in the command.

The reason the specific EOI command is needed, is to
reset the ISR bit of a completed service routine when­
ever the 8259A isn't able to automatically determine it.
An example of this type of situation might be if the
priorities of the interrupt levels were changed during an
interrupt routine ("Specific Rotation"). In this case, if
any other routines were in service at the same time, a
non-specific EOI might reset the wrong ISR bit. Thus the
specific EOI command is the best bet in this case, or for
that matter, any time in which confusion of interrupt
priorities may exist. The specific EOI command can be
used in all conditions of 8259A operation, including
those that prohibit non-specific EOI command usage.

Automatic EOI Mode

When programmed in the automatic EOI mode, the
microprocessor no longer needs to issue a command to
notify the 8259A it has completed an interrupt routine.
The 8259A accomplishes this by performing a non­
specific EOI automatically at the trailing edge of the last
INTA pulse (third pulse in MCS-8Q/85, second in
MCS-86).

The obvious advantage of the automatic EOI mode over
the other EOI command is no command has to be
issued. In general, this simplifies programming and
lowers code requirements within interrupt routines.

However, special consideration should be taken when
deciding to use the automatic EOI mode because it
disturbs the fully nested mode. In the automatic EOI
mode the ISR bit of a routine in service is reset right
after it's acknowledged, thus leaving no designation in
the ISR that a sevice routine is being executed. If any in­
terrupt request occurs during this time (and interrupts
are enabled) it will get serviced regardless of its priority,
low or high. The problem of "over nesting" may also
happen in this situation. "Over nesting" is when an IR
input keeps interrupting its own routine, resulting in un­
necessary stack pushes which could fill the stack in a
worst case condition. This is not usually a desired form
of operation!

So what good is the automatic EOI mode with problems
like those just covered? Well, again, like the other EOls,
selection is dependent upon the application. If inter­
rupts are controlled at a predetermined rate, so as not to
cause the problems mentioned above, the automatic
EOI mode works perfect just the way it is. However, if in­
terrupts happen sporadically at an indeterminate rate,
the automatic EOI mode should only be used under the
following guideline:

• When using the automatic EOI mode with an inde­
terminate interrupt rate, the microprocessor should
keep its interrupt request input disabled during
execution of service routines.

2-155

By doing this, higher priority interrupt levels will be ser­
viced only after the completion. of a routine in service.
This guideline restores the fully nested structure in
regards to the IRR; however, a routine in-service can't be
interrupted.

Automatic Rotation - Equal Priority

Automatic rotation of priorities serves in applications
where the interrupting devices are of equal priority,
such as communications channels. The concept is that
once a peripheral is serviced, all other equal priority
peripherals should be given a chance to be serviced
before the original peripheral is serviced again. This is
accomplished by automatically assigning a peripheral
the lowest priority after being serviced Thus, in worst
case, the device would have to wait until all other
devices are serviced before being serviced again.

There are two methods of accomplishing automatic
rotation. One is used in conjunction with the non­
specific EOI, "rotate on non-specific EOI command".
The other is used with the automatic EOI mode, "rotate
in automatic EOI mode".

Rotate on Non-Specific EOI Command

When the rotate on non-specific EOI command is
issued, the highest ISR bit is reset as in a normal non­
specific EOI command. After it's reset though, the cor­
responding IR level is assigned lowest priority. Other IR
priorities rotate to conform to the fully nested mode
based on the newly assigned low priority

Figures 13A and B show how the rotate on non-specific
EOI command effects the interrupt priorities. Let's
assume the IR priorities were assigned with IRQ the
highest and IR7 the lowest, as in 13A. IR6 and IR4 are
already in service but neither is completed. Being the
higher priority routine, IR4 is necessarily the routine
being executed. During the IR4 routine a rotate on non­
specific EOI command is executed. When this happens,
bit 4 in the ISR is reset. IR4 then becomes the lowest
priority and IR5 becomes the highest as in 13B.

187 IS6 ISS 154 IS3 152 151 ISO
ISR STATUS 1010-1----0--0-°-11 BEFORE

A PRIORITY IT~'::"'T __ ~ _____ ~~ 0 COMMAND
I ,

I
LOWEST PRIORITY HIGHEST PRIORITY

157 156 ISS 154 153 152 181 ISO

IS~~~~J~~ ELI_I~r~~r;-~1-·"~·~-j ct~~~RND
I--~j L----l

HIGHEST PRIORITY LOWEST PRIORITY

Figure 13. A-B. Rotate on Non-specific EOI Command Example

Rotate in Automatic EOI Mode

The rotate in automatic EOI mode works much like the
rotate on non-specific EOI command. The main differ­
ence is that priority rotation is done automatically after

121500-001

AP59

the last INTA pulse of an interrupt request. To enter or
exit this mode a rotate-in-automatic-EOI set command
and rotate-in-automatic-EOI clear command is provided.
After that, no commands are needed as with the normal
automatic EOI mode. However, it must be remembered,
when using any form of the automatic EOI mode, spe­
cial consideration should be taken. Thus, the guideline
for the automatic EOI mode also stands for the rotate in
automatic EOI mode.

Specific Rotation - Specific Priority

Specific rotation gives the user versatile capabilities in
interrupt controlled operations. It serves in those ap­
plications in which a specific device's interrupt priority
must be altered. As opposed to automatic rotation
which automatically sets priorities, specific rotation is
completely user controlled. That is, the user selects
which interrupt level is to receive lowest or highest
priority. This can be done during the main program or
within interrupt routines. Two specific rotation com­
mands are available to the user, the "set priority com­
mand" and the "rotate on specific EOI command."

Set Priority Command

The set priority command allows the programmer to
assign an IR level the lowest priority. All other interrupt
levels will conform to the fully nested mode based on
the newly assigned low priority.

An example of how the set priority command works is
shown in Figures 14A and 14B. These figures show the
status of the ISR and the relative priorities of the inter­
rupt levels before and after the set priority command.
Two interrupt routines are shown to be in service in
Figure 14A. Since IR2 is the highest priority, it is
necessarily the routine being executed. During the IR2
routine, priorities are altered so that IR5 is the highest.
This is done simply by issuing the set priority command
to the 8259A. In this case, the command specifies IR4 as
being the lowest priority. The result of this set priqrity
command is shown in Figure 14B. Even though IR7 now
has higher priority than IR2, it won't be acknowledged
until the IR2 routine is finished (via EOI). This is because
priorities are only resolved upon an interrupt request or
an interrupt acknowledge sequence. If a higher priority
request occurs during the IR2 routine, then priorities are
resolved and the highest will be acknowledged.

IS7 156 ISS 154 IS3 182 151 ISO

R ~ ~ ~ ~ i ~ -fl C~~~:~D
1

!

I
lOWEST PRIORITY HIGHEST PRIORITY

157 ISS ISS 184 153 1$2 151 ISO
ISR STATUS ~o 0 0 1 o~ AFTER

PRIORITY 1~ __ L. 0 7 6 5 4 3! COMMAND

r--l L----~I
HIGHEST PRIORITY LOWEST PRIORITY

Figure 14. A-B. Set Priority Command Example

2-156

When completing a service routine in which the set
priority command is used, the correct EOI must be
issued. The non-specific EOI command shouldn't be
used in the same routine as a set priority command.
This is because the non-specific EOI command resets
the highest ISR bit, which, when using the set priority
command, is not always the most recent routine in ser­
vice. The automatic EOI mode, on the other hand, can be
used with the set priority command. This is because it
automatically performs a non-specific EOI before the
set priority command can be issued. The specific EOI
command is the best bet in most cases when using the
set priority command within a routine. By resetting the
specific ISR bit of a routine being completed, confusion
is eliminated.

Rotate on Specific EOI Command

The rotate on specific EOI command is literally a com­
bination of the set priority command and the specific
EOI command. Like the set priority command, a speci­
fied IR level is assigned lowest priority. Like the specific
EOI command, a specified level will be reset in the ISR.
Thus the rotate on specific EOI command accomplishes
both tasks in only one command.

If it is not necessary to change IR priorities prior to the
end of an interrupt routine, then this command is advan­
tageous. For an EOI command must be executed any­
way (unless in the automatic EOI mode), so why not do
both at the same time?

Interrupt Masking

Disabling or enabling interrupts can be done by other
means than just controlling the microprocessor's inter­
rupt request pin. The 8259A has an IMR (Interrupt Mask
Register) which enhances interrupt control capabilities.
Rather than all interrupts being disabled or enabled at
the same time, the IMR allows individual IR masking.
The IMR is an 8-bit register, bits 0-7 directly correspond
to IRO-IR7. Any IR input can be masked by writing to the
IMR and setting the appropriate bit. Likewise, any IR in­
put can be enabled by clearing the correct IMR bit.

There are various uses for masking off individual IR in­
puts. One example is when a portion of a main routine
wishes only to be interrupted by specific interrupts.
Another might be disabling higher priority interrupts for
a portion of a lower priority service routi ne. The possi­
bilities are many.

When an interrupt occurs while its IMR bit is set, it isn't
necessarily forgotten. For, as stated earlier, the IMR
acts only on the output of the IRR. Even with an IR input
masked it is still possible to set the IRR. Thus, when
resetting an IMR, if its IRR bit is set it will then generate
an interrupt. This is providing, of course, that other
priority factors are taken into consideration and the IR
request remains active. If the IR request is removed
before the IMR is reset, no interrupt will be acknowl­
edged.

Special Mask Mode

In various cases, it may be desirable to enable interrupts
of a lower priority than the routine in service. Or, in other
words, allow lower priority devices to generate inter­
rupts. However, in the fully neste.d mode, a'li IR levels of

121500-001

AP59

priority below the routine in service are inhibited. So
what can be done to enable them?

Well, one method could be using an EOI command
before the actual completion of a routine in service. But
beware, doing this may cause an "over nesting" prob­
lem, similar to in the automatic EOI mode. In addition,
resetting an ISR bit is irreversible by software control,
so lower priority IR levels could only be later disabled by
setting the IMR.

A much better solution is the special mask mode. Work­
ing in conjunction with the IMR, the special maSK mode
enables interrupts from all levels except the level in ser­
vice. This is done by masking the level that is in service
and then issuing the special mask mode command.
Once the special mask mode is set, it remains in effect
until reset.

Figure 15 shows how to enable lower priority interrupts
by using the Special Mask Mode (SMM). Assume that
IRO has highest priority when the main program is inter­
rupted by IR4. In the IR4 service routine an enable inter­
rupt instruction is executed. This only allows higher
priority interrupt requests to interrupt IR4 in the normal
fully nested mode. Further in the IR4 routine, bit 4 of the
IMR is masked and the special mask mode is entered.
Priority operation is no longer in the fully nested mode.
All interrupt levels are enabled except for IR4. To leave
the special mask mode, the sequence is executed in
reverse.

MAiN PROGRAM

EJ OR STt

IR4 ___

IR4 SERVICE
ROUTINE

EI OR STI

MASK IR4

SET SMM

RESET SMM

IRO-3 ENABLED
IR4-7 DISABLED

IRO-3, 5-7 ENABLED
tR4 DISABLED

tRO-3 ENABLED
lR4-7 DISABLED

Figure 15. Special Mask Mode Example (MCS 80/85 or MCS 88/88

Precautions must be taken when exiting an interrupt
service routine which has used the special mask mode.
A non-specific EOI command can't be used when in the
special mask mode. This is because a non-specific
won't clear an ISR bit of an interrupt which is masked
when in the special mask mode. In fact, the bit will ap­
pear invisible. If the special mask mode is cleared
before an EOI command is issued a non-specific EOI
command can be used. This could be the case in the ex­
ample shown in Figure 15, but, to avoid any confusion
it's best to use the specific EOI whenever using the
special mask mode.

I! must be remembered that the special mask mode ap­
plies to all masked levels when set. Take, for instance,
IR1 interrupting IR4 in the previous example. If this hap­
pened while in the special mask mode, and the IR1
routine masked itself, all interrupts would be enabled
except IR1 and IR4 which are masked.

3_3 INTERRUPT TRIGGERING

There are two classical ways of sensing an active inter­
rupt request: a level sensitive input or an edge sensitive
input. The 8259A gives the user the capability for either
method with the edge triggered mode and the level trig­
gered mode. Selection of one of these interrupt trigger­
ing methods is done during the programmed initializa­
tion of the 8259A.

Level Triggered Mode

When in the level triggered mode the 8259A will recog­
nize any active (high) level on an IR input as an interrupt
request. If the IR input remains active after an EOI com­
mand has been issued (resetting its ISR bit), another in­
terrupt will be generated. This is providing of course, the
processor INT pin is enabled. Unless repetitious inter­
rupt generation is desired, the IR input must be brought
to an inactive state before an EOI command is issued in
its service routine. However, it must not go inactive so
soon that it disobeys the necessary timing require­
ments shown in Figure 16. Note that the request on the
IR input must remain until after the falling edge of the
first INTA pulse. If on any IR input, the request goes
inactive before the first INTA pulse, the 8259A will
respond as if IR7 was active. In any deSign in which
there's a possibility of this happening, the IR7 default
feature can be used as a safeguard. This can be accom­
plished by using the IR7 routine as a "clean-up routine"
which might recheck the 8259A status or merely return
program execution to its pre-interrupt location.

Depending upon the particular design and application,
the level triggered mode has a number of uses. For one,
it provides for repetitious interrupt generation. This is
useful in cases when a service routine needs to be con­
tinually executed until the interrupt request goes inac­
tive. Another possible advantage of the level triggered
mode is it allows for "wire,OR'ed" interrupt requests.
That is, a number of interrupt requests using the same
IR input. This can't be done in the edge triggered mode,
for if a device makes an interrupt request while the IR in­
put is high (from another request), its transition will be
"shadowed". Thus the 8259A won't recognize further in­
terrupt requests because its IR input is already high.
Note that when a "wire-OR'ed" scheme is used, the ac-

2-157 121500-001

AP59

IR\J

I
INT----+-'

INTA-----~-------~

LATCH"
ARMED

EARLIEST IR
CAN BE REMOVED

LATCW
'EDGE TRIGGERED MODE ONLY ARMED

Figure 16. IR Triggering Timing Requirements

tual requesting device has to be determined by the soft·
ware in the service routine.

Caution should be taken when using the automatic EOI
mode and the level triggered mode together. Since in
the automatic EOI mode an EOI is automatically per·
formed at the end of the interrupt acknowledge se·
quence, if the processor enables interrupts while an IR
input is still high, an interrupt will occur immediately. To
avoid this situation interrupts should be kept disabled
until the end of the service routine or until the IR input
returns low.

Edge Triggered Mode

When in the edge triggered mode, the 8259A will only
recognize interrupts if generated by an inactive (low) to
active (high) transition on an IR input. The edge trig­
gered mode incorporates an edge lockout method of
operation. This means that after the rising edge of an
interrupt request and the acknowledgement of the re­
quest, the positive level of the IR input won't generate
further interrupts on this level. The user needn't worry
about quickly removing the request after acknowledge­
ment in fear of generating further interrupts as might be
the case in the level triggered mode. Before another in­
terrupt can be generated the IR input must return to the
inactive state.

Referring back to Figure 16, the timing requirements for
interrupt triggering is shown. Like the level triggered
mode, in the edge triggered mode the request on the IR
input must remain active until after the falling edge of
the first INTA pulse for that particular interrupt. Unlike
the level triggered mode, though, after the interrupt
request is acknowledged its IRR latch is disarmed. Only
after the IR input goes inactive will the IRR latch again
become armed, making it ready to receive another inter­
rupt request (in the level triggered mode, the IRR latch is
always armed). Because of the way the edge triggered
mode functions, it is best to use a positive level with a
negative pulse to trigger the IR requests. With this type
of input, the trailing edge of the pulse causes the inter­
rupt and the maintained positive level meets the neces­
sary timing requirements (remaining high until after the
interrupt acknowledge occurs). Note that the IR7 default

feature mentioned in the "level triggered mode" section
also works for the edge triggered mode.

Depending upon the particular design and application,
the edge triggered mode has various uses. Because of
its edge lockout operation, it is best used in those
applications where repetitious interrupt generation isn't
desired. It is also very useful in systems where the inter­
rupt request is a pulse (this should be in the form of a
negative pulse to the 8259A). Another possible advan­
tage is that it can be used with the automatic EOI mode
without the cautions in the level triggered mode. Over­
all, in most cases, the edge triggered mode simplifies
operation for the user, since the duration of the interrupt
request at a positive level is not usually a factor.

3.4 INTERRUPT STATUS

By means of software control, the user can interrogate
the status of the 8259A. This allows the reading of the
internal interrupt registers, which may prove useful for
interrupt control during service routines. It also pro­
vides for a modified status poll method of device moni­
toring, by using the poll command. This makes the
status of the internal IR inputs available to the user via
software control. The poll command offers an alterna­
tive to the interrupt vector method, especially for those
cases when more than 64 interrupts are needed.

Reading Interrupt Registers

The contents of each 8-bit interrupt register, IRR, ISR,
and IMR, can be read to update the user's program on
the present status of the 8259A. This can be a versatile
tool in the decision making process of a service routine,
giving the user more control over interrupt operations.
Before delving into the actual process of reading the
registers, let's briefly review their general descriptions:

IRR (Interrupt Specifies all interrupt levels re-
Request Register) questing service.

ISR (In-Service Specifies all interrupt levels
Register) which are being serviced.

IMR (Interrupt
Mask Register)

Specifies all interrupt levels that
are masked.

2-158 121500-001

AP59

To read the contents of the IRR or ISR, the user must
first issue the appropriate read register command (read
IRR or read ISR) to the 8259A. Then by applying a RD
pulse to the 8259A (an INput instruction), the contents
of the desired register can be acquired. There is no need
to issue a read register command every time the IRR or
ISR is to be read. Once a read register command is
received by the 8259A, it "remembers" which register
has been selected. Thus, all that is necessary to read
the contents of the same register more than once is the
RD pulse and the correct addressing (AO = 0, explained
in "Programming the 8259A"). Upon initialization, the
selection of registers defaults to the IRR. Some caution
should be taken when using the read register command
in a system that supports several levels of interrupts. If
the higher priority routine causes an interrupt between
the read register command and the actual input of the
register contents, there's no guarantee that the same
register will be selected when it returns. Thus it is best
in such cases to disable interrupts during the operation.

Reading the contents of the IMR is different than read·
ing the IRR or ISR. A read register command is not
necessary when reading ihe IMR This is because the
IMR can be addressed directly for both reading and
writing. Thus ail that the 8259A requires for reading the
IMR is a RD pulse and the correct addressing (AO= 1,
explained in "Programming the 8259A").

Poll Command

As mentioned towards the beginning of this application
note, there are two methods of servicing peripherals;
status polling and interrupt servicing. For most applica·
tions the interrupt service method is best. This is
because it requires Ihe least amount of CPU time, thus
increasing system throughput. However, for certain ap·
plications, the status poll method may be desirable.

For this reason, the 8259A supports polling operations
with the pol! command. As opposed to the conventional
method of polling, the poll command offers improved
device servicing and increased throughput. Rather than
having the processor poll each peripheral in order to
find the actual device requiring service, the processor
polls the 8259A. This allows the use of all the previously
mentioned priority modes and commands. Additionally,
both polled and interrupt methods can be used within
the same program.

To use the poll command the processor must first have
its interrupt request pin disabled. Once the poll com·
mand is issued, the 8259A will treat the next (CS quali·
fied) RD pulse issued to it (an INput instruction) as an in·
terrupt acknowledge. It will then set the appropriate bit
in the ISR, if there was an interrupt request, and enable a
special word onto the data bus. This word shows
whether an interrupt request has occurred and the
highest priority level requesting service. Figure 17
shows the contents of the "poll word" which is read by
the processor. Bits WO-W2 convey the binary code of
the highest priority level requesting service. Bit.! desig·
nates whether or not an interrupt request is present. If
an interrupt request is present, bit I will equal 1. If there
isn't an interrupt request at all, bit I will equal 0 and bits
WO-W2 will be set to ones. Service to the requesting
device is achieved by software decoding the poll word
and branching to the appropriate service routine. Each

time the 8259A is to be polled, the poll command must
be written before reading the poll word.

The poll command is useful in various situations. For in·
stance, it's a good alternative when memory is very
limited, because an interrupt·vector table isn't needed.
Another use for the poll command is when more than 64
interrupt levels are needed (64 is the limit when cascad·
ing 8259's). The only limit of interrupts using the poll
command is the number of 8259's that can be addressed
in a particular system. Still another application of the
poll command might be when the INT or INTA signals
are not avaiiable. This might be the case in a large
system where a processor on one card needs to use an
8259A on a different card. In this instance, the poll com·
mand is the only way to monitor the interrupt devices
and still take advantage of the 8259A's prioritizing
features. For those cases when the 8259A is using the
poll command only and not the interrupt method, each
8259A must receive an initialization sequence (interrupt
vector). This must be done even though the interrupt
vector features of the 8259A are not used. In this case,
the interrupt vector specified in the initialization
sequence could be a "fake".

Ili·l-i-:-lw~

I LE WO·W2 = BINARY CODE OF HIGHEST
·L' PRIORITY LEVEL REQUESTING SERViCE

~-~~ r = 1 IF AN iNTERRUPT OCCURRED

Figur.17. Poll Word

3.5 INTERRUPT CASCADING

As mentioned earlier, more than one 8259A can be used
to expand the priority interrupt scheme to up to 64 levels
without additional hardware. This method for expanded
interrupt capability is called "cascading". The 8259A
supports cascading operations with the cascade mode.
Additionally, the special fully nested mode and the buf·
fered mode are available for increased flexibility when
cascading 8259A's in certain applications.

Cascade Mode

When programmed in the cascade mode, basic opera·
tion consists of one 8259A acting as a master to the
others which are serving as slaves. Figure 18 shows a
system containing a master and two slaves, providing a
total of 22 interrupt levels.

A specific hardware set·up is required to establish
operation in the cascade mode. With Figure 18 as a ref·
erence, note that the master is deSignated by a high on
the SP/EN pin, while the SP/EN pins of the slaves are
grounded (this can also be done by software, see buf·
fered mode). Additionally, the INT output pin of each
slave is connected to an IR input pin of the master. The
CASO-2 pins for all 8259A's are paralleled. These pins
act as outputs when the 8259A is a master and as inputs
for the slaves. Serving as a private 8259A bus, they con·
trol which slave has control of the system bus for inter·
rupt vectoring operation with the processor. All other
pins are connected as in normal operation (each 8259A
receives an INTA pulse).

2-159 121500-001

AP59

-[ADDRESS BUS (16!

\ CONTROL BUS

r tNT REO

DATA BUS (8) J

--- -- \- - - l-

I ~-=--=t -- - 1- -- - r--
~- -- - \--- - r-- -

j I I_I I I
Cs A, 00-7 JNTA INT U CS Ao 00-7 rNTA INT CS A, 00-7 lNTA INT

C".SO - CASO CAS a
8259A 8259A 8259A

SLAVE A
CAS 1 - SLAVE B CAS 1 CASl MASTER

CAS2 - CAS2 CAS2

SPlEN7 6 5 4 3 2 1 0 Sfi7EN 7 6 5 4 3 2 1 0 WEN M7 M6 M5 M4 M3 M2 Ml MO

11 f 1 1 1
I

1 1 G!D 1 1 1 I 1 1 1 1 I lettl!),! 1 1 I
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 1 0

\
--

\
I

INTERRUPT REQUESTS

Figure 18. Cascaded 8259A'S 22 Interrupt Le.els

Besides hardware set-up requirements, all 8259A's must
be software programmed to work in the cascade mode.
Programming the cascade mode is done during the in·
itialization of each 8259A. The 8259A that is selected as
master must receive specification during its initializa­
tion as to which oi its IR inputs are connected to a
slave's INT pin. Each slave 8259A, on the other hand,
must be designated during its initialization with an ID (0
through 7) corresponding to which of the master's IR in­
puts its INT pin is connected to. This is all necessary so
the CASO-2 pins of the masters will be able to address
each individual slave. Note that as in normal operation,
each 8259A must also be initialized to give its IR inputs
a unique interrupt vector. More detail on the necessary
programming of the cascade mode is explained in "Pro­
gramming the 8259A".

Now, with background information on both hardware
and software for the cascade mode, let's go over the
sequence of events that occur during a valid interrupt
request from a slave. Suppose a slave IR input has
received an interrupt request. Assuming this request is
higher priority than other requests and in-service levels
on the slave, the slave's INT pin is driven high. This
signals the master of the request by causing an inter­
rupt request on a designated IR pin of the master. Again,
assuming that this request to the master is higher priori·
ty than other master requests and in-service levels
(possibly from other slaves), the master's INT pin is
pulled high, interrupting the processor.

The interrupt acknowledge sequence appears to the
processor the same as the non-cascading interrupt
acknowledge sequence; however, it's different among
the 8259A's. The first INTA pulse is used by all the
8259A's for internal set-up purposes and, if in the
8080/8085 mode, the master will place the CALL opcode
on the data bus. The first INTA pulse also signals the
master to place the requesting slave's ID code on the
CAS lines. This turns control over to the slave for the
rest of the interrupt acknowledge sequence, placing the

appropriate pre-programmed interrupt vector on the
data bus, completing the interrupt request.

During the interrupt acknowledge sequence, the cor­
responding ISR bit of both the master and the slave get
set. This means two EOI commands must be issued (if
not in the automatic EOI mode), one for the master and
one for the slave.

Special consideration should be taken when mixed
interrupt requests are assigned to a master 8259A; that
is, when some of the master's IR inputs are used for
slave interrupt requests and some are used for individ·
ual interrupt requests. In this type of structure, the
master's IRO must not be used for a slave. This is
because when an IR input that isn't initialized as a slave
receives an interrupt request, the CASO-2Iines won't be
activated, thus staying in the default condition address·
ing for IRO (slave IRO). If a slave is connected to the
master's IRO when a non-Slave interrupt occurs on
another master IR input, erroneous conditions may
result. Thus IRO should be the last choice when assign­
ing slaves to IR inputs.

Special Fully Nested Mode

Depending on the application, changes in the nested
structure of the cascade mode may be desired. This is
because the nested structure of a slave 8259A differs
from that of the normal fully nested mode. In the cas­
cade mode, if a slave receives a higher priority interrupt
request than one which is in service (through the same
slave), it won't be recognized by the master. This is
because the master's ISR bit is set, ignoring all requests
of equal or lower priority. Thus, in this case, the higher
priority slave interrupt won't be serviced until after the
master's ISR bit is reset by an EOI command. This is
most likely after the completion of the lower priority
routine.

If the user wishes to have a truly fully nested structure
within a slave 8259A, the special fully nested mode
should be used. The special fully nested mode is pro-

2-160 121500-001

AP59

grammed in the master only. This is done during the
master's initialization. In this mode the master will
ignore only those interrupt requests of lower priority
than the set ISR bit and will respond to all requests of
equal or higher priority. Thus if a slave receives a higher
priority request than one in service, it will be recognized.
To insure proper interrupt operation when using the
special fully nested mode, the software must determine
if any other slave interrupts are still in service before
issuing an EOI command to the master. This is done by
resetting the appropriate slave ISR bit with an EOI and
then reading its ISR. If the ISR contains all zeros, there
aren't any other interrupts from the slave in service and
an EOI command can be sent to the master. If the ISR
isn't all zeros, an EOI command shouldn't be sent to the
master. Clearing the master's ISR bit with an EOI com­
mand while tllere are still slave interrupts in service
would allow lower priority interrupts to be recognized at
the master. An example of this process is shown in the
second application in the "Applications Examples" sec­
tion.

Buffered Mode

The buffered mode is useful in large systems where buf­
fering is required on the data bus. Although not limited
to only 8259A cascading, it's most pertinent in this use.
In the buffered mode, whenever the 8259A's data bus
output is enabled, its SP/EN pin will go low. This signal
can be used to enable data transfer through a buffer
transceiver in the required direction.

Figure 19 shows a conceptual diagram of three 8259A's
in cascade, each slave is controlling an individual 8286
8-bit bidirectional bus driver by means of the buffered
mode. Note the pull-up on the SP/EN. It is used to
enable data transfer to the 8259A for its initial program­
ming. When data transfer is to go from the 8259A to the
processor, SP/EN will go low; otherwise, it will be high.

A question should arise, however, from the fact that the
SP/EN pin is used to deSignate a master from a slave;

00-7

SLAVE
8259A

INTA tNT

SLAVE
8259A

how can it be used for both master-slave selection and
buffer control? The answer to this is the provision for
software programmable master-slave selection when in
the buffer mode. The buffered mode is selected during
each 8259A's Initialization. At the same time, the user
can assign each individual 8259A as a master or slave
(see "Programming the 8259A").

4. PROGRAMMING THE 8259A

Programming the 8259A is accomplished by using two
types of command words: Initialization Command
Words (ICWs) and Operational Command Words
(OCWs). All the modes and commands explained in the
previous section, "Operation of the 8259A", are pro­
grammable using the ICWs and OCWs (see Appendix A
for cross reference). The ICWs are issued from the proc­
essor in a sequential format and are used to set-up the
8259A in an initial state of operation. The OCWs are
issued as needed to vary and control 8259A operation.

Both ICWs and OCWs are sent by the processor to the
8259A via the data bus (8259A CS = 0, WR = 0). The
8259A distinguishes between the different leWs and
OCWs by the state of its AD pin (controlled by processor
addressing), the sequence they're issued in (ICWs only),
and some dedicated bits among the JeWs and OCWs.
Those bits which are dedicated are indicated so by fixed
values (0 or 1) in the corresponding ICW or OCW pro­
gramming formats which are covered shortly. Note,
when issuing either ICWs or oews, the interrupt
request pin of the processor should be disabled.

4.1 INITIALIZATION COMMAND WORDS (leWs)

Before normal operation can begin, each 8259A in a
system must be initialized by a sequence of two to four
programming bytes called JCWs (Initialization Com·
mand Words). The JCWs are used to set-up the neces­
sary conditions and modes for proper 8259A operation

f-------DEN

MASTER
8259A INT lNTR

Figure 19. Cascade·Buffered Mode Example

2-161 121500-001

AP59

Figure 20 shows the initialization flow of the 8259A.
Both ICW1 and ICW2 must be issued for any form of
8259A operation. However, ICW3 and ICW4 are used
only if designated so in ICW1. Determining the neces·
sity and use of each ICW is covered shortly in individual
groupings. Note that, once intialized, if any program·
ming changes within the ICWs are to be made, the entire
ICW sequence must be reprogrammed, not just an indio
viduallCW.

Certain internal set·up conditions occur automatically
within the 8259A after the first ICW has been issued.
These are:

A. Sequencer logic is set to accept the remain'.ng ICWs
as deSignated in ICW1.

B. The ISR (In·Service Register) and IMR (interrupt Mask
Register) are both cleared.

C. The special mask mode is reset.

D. The rotate in automatic EOI mode flip·flop is cleared.

E. The IRR (Interrupt Request Register) is selected for
the read register command.

F. If the IC4 bit equals 0 in ICW1, all functions in ICW4
are cleared; 8080/8085 mode is selected by default.

G. The fully nested mode is entered with an initial prior·
ity assignment of IRO highest through IRl lowest.

H. The edge sense latch of each IR priority cell is
cleared, thus requiring a low to high transition to
generate an interrupt (edge triggered mode effected
only).

NO ISNGL=1)

NOlle4=O)

Figure 20. Initialization Flow

The ICW programming format, Figure 21, shows bit
designation and a short definition of each ICW. With the
ICW format as reference, the functions of each ICW will
now be explained individually.

,cw,

ICW) jMASTEA Of VICE)

1· ICW4 NEEDED
D ~ NO ICW4 NEEDED

SINGLE
CASCADE MODE

CALL INTERVAL
1 ~ INTERVAL OF 4
O~INTERVALOF8

,. LEVEL TRIGGERED INPUT
0= EDGE TRIGGERED INPUT

SLAVE 1011

NO f[1 SLAVE ID IS EOUAL TO TH~ COflRESPONDING M/\,STEFl I Ii INPUT
NOTE 2 X INDICI\l ES "DON'T CAKf

SOME OF THE TERMINOLOGY USEO MAY DIFFER SLIGHTLY FROM EXISTING 8259A
DATA SHEETS. THIS IS DONE TO BETTER CL.ARIFY AND EXPLAIN THE PROGRAM·
MING OF THE 8259A, THE OPERATIONAL RESULTS REMAIN THE _SA_M_E_. ___ -"

Figure 21. Initialization Command Words (lCWS) Programming Format

2-162 121500-001

AP59

ICW1 and ICW2

Issuing ICW1 and ICW2 is the minimum amount of pro­
gramming needed for any type of 8259A operation. The
majority of bits within these two ICWsare used to desig­
nate the interrupt vector starting address. The remain­
ing bits serve various purposes. Description of the ICW1
and ICW2 bits is as follows:

IC4: The IC4 bit is used to designate to the 8259A
whether or not ICW4 will be issued. If any of
the ICW4 operations are to be used, ICW4
must equal 1. If they aren't used, then ICW4
needn't be issued and IC4 can equal O. Note
that if IC4 = 0, the 8259A will assume operation
in the MCS-80/85 mode.

SNGL: The SNGL bit is used to designate whether or
not the 8259A is to be used alone or in the cas­
cade mode. If the cascade mode is desired,
SNGL must equal O. In dOing this, the 8259A
will accept ICW3 for further cascade mode pro­
gramming. If the 8259A is to be used as the
single 8259A within a system, the SNGL bit
must equal 1; ICW3 won't be accepted.

ADI: The ADI bit is used to specify the address in­
terval for the MCS-80/85 mode. If a 4-byte ad­
dress interval is to be used, ADI must equal 1.
For an 8-byte address interval, ADI must equal
O. The state of ADI is ignored when the 8259A
is in the MCS-86/88 mode.

LTIM: The LTIM bit is used to select between the two
I R input triggeri ng modes. If L TI M = 1, the level
triggered mode is selected. If LTIM = 0, the
edge triggered mode is selected.

A5-A15: The A5-A15 bits are used to select the inter­
rupt vector address when in the MCS-80/85
mode. There are two programming formats
that can be used to do this. Which one is im­
plemented depends upon the selected address
interval (ADI). If ADI is set for the 4-byte inter­
val, then the 8259A will automatically insert
AO-A4 (AO, A1=0 and A2, A3, A4=IRO-7).
Thus A5-A15 must be user selected by pro­
gramming the A5-A15 bits with the desired ad­
dress. If ADI is set for the 8-byte interval, then
AO-A5 are automatically inserted (AO, A1,
A2 = 0 and A3, A4, A5 = IRO-7). This leaves
A6-A15 to be selected by programming the
A6-A 15 bits with the desired address. The
state of bit 5 is ignored in the latter format.

T3-T7: The T3-T7 bits are used to select the interrupt
type when the MCS-86/88 mode is used. The
programming of T3-T7 selects the upper 5
bits. The lower 3 bits are automatically in­
serted, corresponding to the IR level causing
the interrupt. The state of bits A5-A10 will be
ignored when in the MCS-86/88 mode. Estab­
lishing the actual memory address of the inter­
rupt is shown in Figure 22.

2-163

I+.IT,IT.IT,I
I I

_UPPER 5 BITS OF 808618088
INTERRUPT TYPE (USER PROGRAMMED)

I I
I I

: IT2IT1!ro' _~EU~~~:~~ci"A~L~~~~~RTED BY 8259A)

I I
I I
I h I T6 \ Ts I T41 T31 T21 Tll Tol -- COMPLETE 1108618088 INTERRUPT TYPE
I I

r-........I r--l

10 10 I 0 I 0 \T71 16] T51T41 T31T21 Tl1 Tol 0 1 0 1_ ~~~~~Jp~D~yRp~S(~~:E8~:~'8088

Figura 22. Establishing Memory Addres. of 8086/8088 Interrupt Type

ICW3

The 8259A will only accept ICW3 if programmed in the
cascade mode (lCW1, SNGL=O). ICW3 is used for
specific programming within the cascade mode. Bit
definition of ICW3 differs depending on whether the
8259A is a master or a slave. Definition of the ICW3 bits
is as follows:

SO-7 If the 8259A is a master (either when the
(Master): SP/EN pin is tied high or in the buffered

mode when M/S= 1 in ICW4), ICW3 bit defi­
nition is SO-7, corresponding to "slave 0-7".
These bits are used to establish which IR in­
puts have slaves connected to them. A 1
designates a slave, a 0 no slave. For exam­
ple, if a slave was connected to IR3, the S3
bit should be set to a 1. (SO) should be last
choice for slave designation.

100-102 If the 8259A is a slave (either when the SP/EN
(Slave): pin is low or in the buffered mode when

MIS = 0 in ICW4), ICW3 bit definition is used
to establish its individual identity. The 10
code of a particular slave must correspond
to the number of the masters IR input it is
connected to. For example, if a slave was
connected to IR6 of the master, the slaves
100-2 bits should be set to 100 = 0, 1D1 = 1,
and 102= 1.

ICW4

The 8259A will only accept ICW4 if it was selected in
ICW1 (bit IC4= 1). Various modes are offered by using
ICW4. Bit definition of ICW4 is as follows:

!,PM: The !,PM bit allows for selection of either the
MCS-80/85 or MCS-86/88 mode. If set as a 1 the
MCS-86/88 mode is selected, if a 0, the
MCS-80/85 mode is selected.

AEOI: The AEOI bit is used to select the automatic
end of interrupt mode. If AEOI = 1, the
automatic end of interrupt mode is selected. If
AEOI = 0, it isn't selected; thus an EOI com­
mand must be used during a service routine.

MIS: The MIS bit is used in conjunction with the buf­
fered mode. If in the buffered mode, MIS
defines whether the 8259A is a master or a
slave. When MIS is set to a 1, the 8259A
operates as the master; when MIS is 0, it
operates as a slave. If not programmed in the
buffered mode, the state of the MIS bit is
ignored.

121500-001

AP59

BUF:

SFNM:

The BUF bit is used to designate operation in
the buffered mode, thus controlling the use of
the SP/EN pin. If BUF is set to a 1, the buffered
mode is programmed and SP/EN is used as a
transceiver enable output. If BUF is 0, the buf­
fered mode isn't programmed and SP/EN is
used for master/slave selection. Note if ICW4
isn't programmed, SP/EN is used for master/
slave selection.

The SFNM bit designates selection of the
special fully nested mode which is used in
conjunction with the cascade mode. Only the
master should be programmed in the special
fully nested mode to assure a truly fully nested
structure among the slave IR inputs. If SFNM
is set to a 1, the special fully nested mode is
selected; if SFNM is 0, it is not selected.

4_2 OPERATIONAL COMMAND WORD (OCWs)

Once initialized by the ICWs, the 8259A will most likely
be operating in the fully nested mode. At this pOint,
operation can be further controlled or modified by the
use of OCWs (Operation Command Words). Three
OCWs are available for programming various modes and
commands. Unlike the ICWs, the OCWs needn't be in
any type of sequential order. Rather, they are issued by
the processor as needed within a program.

Figure 23, the OCW programming format, shows the bit
designation and short definition of each OCW. With the
OCW format as reference, the functions of each OCW
will be explained individually.

OCW1

OCW1 is used solely for 8259A masking operations. It
provides a direct link to the IMR (Interrupt Mask Regis­
ter). The processor can write to or read from the IMR via
OCW1. The OCW1 bit definition is as follows:

MO-M7: The MO-M7 bits are used to control the mask­
ing of IR inputs. If an M bit is set to a 1, it will
mask the corresponding IR input. A 0 clears
the mask, thus enabling the IR input. These
bits convey the same meaning when being
read by the processor for status update.

OCW2

OCW2 is used for end of interrupt, automatic rotation,
and specific rotation operations. Associated commands
and modes of these operations (with the exception of
AEOI initialization), are selected using the bits of OCW2
in a combined fashion. Selection of a command or
mode should be made with the corresponding table for
OCW2 in the OCW programming format (Figure 20),
rather than on a bit by bit basis. However, for com­
pleteness of explanation, bit definition of OCW2 is as
follows:

LO-L2: The LO-L2 bits are used to designate an inter­
rupt level (0-7) to be acted upon for the opera­
tion selected by the EOI, SL, and R bits of
OCW2. The level designated will either be
used to reset a specific ISR bit or to set a
specific priority. The LO- L2 bits are enabled or
disabled by the SL bit.

I L IRLEVELTOB~ACTEDUPDN

o 1234S_~
r----t0 1 <) 1 0 ,JOJ1]

00110;_fH

NON SPECIFIC fOl COMMAND'

"SPECIFIC EOICOMMAND
} rNDOFINHRRUI'T

ROTATE ON NON SPECIFIC Eor COMMA~D }

ROTATf IN AUTOMATIC EOI ~'ODE Isn! AI' rOMATIC ROTATION

ROTATE IN AUTOMATIC 1001 \lODE ICi fAR'

} SPECIFIC ROTATION

II REAU R(GIST~'l COMMAND

'-+--_I---;--r-;-~-~

1 POLLU)\lMAND
o NOPO[LGDMIVIAND

RfSET SET
SPECIAL SPECIAL

MASK MASI(

----~---------------------ill:.l SOME OF THE TERMINOLOGY USED MAY DIFFER SLIGHTLY FROM EXISTING 8259A
DATA SHEETS. THIS IS DONE TO BETTER CLARIFY AND EXPLAIN THE PROGRAM·
MING OF THE 8259A, THE OPERATIONAL RESULTS REMAIN THE SAME.

---~----------- _."-_._-_._-----------------'

Figure 23. Operational Command Words (OCWs) Programming Format

EOI:

SL:

R:

2-164

The EOI bit is used for all end of interrupt com­
mands (not automatic end of interrupt mode).
If set to a 1, a form of an end of interrupt com­
mand will be executed depending on the state
of the SL and R bits. If EOI is 0, an end of inter­
rupt command won't be executed.

The SL bit is used to select a specific level for
a given operation. If SL is set to a 1, the LO-L2
bits are enabled. The operation selected by the
EOI and R bits will be executed on the
specified interrupt level. If SL is 0, the LO-L2
bits are disabled.

The R bit is used to control all 8259A rotation
operations. If the R bit is set to a 1, a form of
priority rotation will be executed depending on
the state of SL and EOI bits. If R is 0, rotation
won't be executed.

121500-001

AP59

OCW3

OCW3 is used to issue various modes and commands to
the 8259A. There are two main categories of operation
associated with OCW3: interrupt status and interrupt
masking. Bit definition of OCW3 is as follows:

RIS: The RIS bit is used to select the ISR or IRR for
the read register command. If RIS is set to 1,
ISR is selected. If RIS is 0, IRR is selected. The
state of the RIS is only honored if the RR bit is
a 1.

RR: The RR bit is used to execute the read register
command. If RR is set to a 1, the read register
command is issued and the state of RIS deter·
mines the register to be read. If RR is 0, the
read register command isn't issued.

P: The P bit is used to issue the poll command. If
P is set to a 1, the poll command is issued. If it
is 0, the poll command isn't issued. The poll
command will override a read register com·
mand if set simultaneously.

SMM: The SMM bit is used to set the special mask
mode. If SM M is set to a 1, the special mask
mode is selected. If it is 0, it is not selected.
The state of the SMM bit is only honored if it is
enabled by the ESM M bii.

ESMM: The ESMM bit is used to enable or disable the
effect of the SMM bit. If ESMM is set to a 1,
SMM is enabled. If ESMM is 0, SMM is dis·
abled. This bit is useful to prevent interference
of mode and command selections in OCW3.

5. APPLICATION EXAMPLES

In this section, the 8259A is shown in three different ap­
plication examples. The first is an actual design imple­
mentation supporting an 8080A microprocessor system,
"Power Fail/Auto Start with Battery Back-Up RAM". The
second is a conceptual example of incorporating more
than 64 interrupt levels in an 8080A or 8085A system,
"78 Level Interrupt System". The third application is a
conceptual design using an 8086 system, "Timer Con­
trolled Interrupts". Although specific microprocessor
systems are used in each example, these applications
can be applied to either MCS-80, MCS-85, MCS-86, or
MCS-88 systems, providing the necessary hardware and
software changes are made. Overall, these applications
should serve as a useful guide, illustrating the various
procedures in using the 8259A.

5.1 POWER FAIL/AUTO-START WITH BATTERY
BACK·UP RAM

The first application illustrates the 8259A used in an
8080A system, supporting a battery back-up scheme for
the RAM (Random Access Memory) in a microcomputer
system. Such a scheme is important in numerical and
process control applications. The entire microcomputer
system could be supported by a battery back-up
scheme, however, due to the large amount of current
usually required and the fact that most machinery is not
supported by an auxiliary power source, only the state
of calculations and variables usually need to be saved.
In the event of a loss of power, if these items are not
already stored in RAM, they can be transferred there and
saved using a simple battery back-up system.

The vehicle used in this application is the Intel®
SBC-80/20 Single Board Computer. An 8259A is used in
the SBC-80/20 along with control lines helpful in imple­
menting the power-down and automatic restart se­
quence used in a battery back-up system. The SBC-80/20
also contains user-selectable jumpers which allow the
on-board RAM to be powered by a supply separate from
the supply used for the non-RAM components. Also, the
output of an undedicated latch is available to be con­
nected to the IR inputs of the 8259A (the latch is cleared
via an output port). In addition, an undedicated, buffered
input line is provided, along with an input to the RAM
decoder that will protect memory when asserted.

The additional circuitry to be described was con­
structed on an SBC-905 prototyping board. An SBC-635
power supply was used to power the non-RAM section
of the SBC-80/20 while an external DC supply was used
to simulate the back-up battery supplying power to the
RAM. The SBC-635 was used since it provides an open
collector ACLO output which indicates that the AC
input line voltage is below 103/206 VAC (RMS).

The following is an example of a power-down and restart
sequence that introduces the various power fail signals.

1. An AC power failure occurs and the ACLO goes high
(ACLO is pulled up by the battery supply). This indi­
cates that DC power will be reliable for at most 7.5
ms. The power fail circutry generates a Power Fail In­
terrupt (PFI) Signal. This signal sets the "PFI latch,
which is connected to the IRQ input of the 8259A, and
sets the Power Fail Sense (PFS) latch. The state of
this latch will indicate to the processor, upon reset,
whether it is coming up from a power failure (warm
start) or if it is coming up initially (cold start).

2. The processor is interrupted by the 8259A when the
PFI latch is set. This pushes the pre-power-down pro­
gram counter onto the stack and calls the service
routine for the IRa input. The IRa service routine
saves the processor status and any other needed
variables. The routine should end with a HALT
instruction to minimize bus transitions.

3. After a predetermined length of time (5 ms in this ex­
ample) the power fail circuitry generates a Memory
Protect (MPRO) signal. All processing for the power
failure (including the interrupt response delays) must
be completed within this 5 ms window. The MPRO
signal ensures that spurious transitions on the sys­
tem control bus caused by power going down do not
alter the contents of the RAM.

4. DC power goes down.

5. AC power returns. The power-on reset circuitry on the
SBC-80/20 generates a system RESET.

6. The processor reads the state of the PFS line to
determine the appropriate start-up sequence. The
PFS latch is cleared, the M PRO signal is removed,
and the PFI latch driving IRa is cleared by the Power
Fail Sense Reset (PFSR) signal. The system then con­
tinues from the pre-power-down location for a warm
start by restoring the processor status and popping
the pre-power-down program counter off the stack.

Figure 24 illustrates this timing.

2-165 121500-001

AP59

POWER DOWN RESTART

ACLO \'-----
PFt

'---------''r--~/
IRO

PFSR------~I------------------~~--------------­

MPRO -+. ----,
OC --+-r~ ________ 5m'~ :1

~-15m'mi"=\'--__\.J
POWER UP

ROUTINE

Figure 24. Power Down Restart Timing

Figure 25 shows the block diagram for the system.
Notice that the RAM, the RAM decoder, and the power·
down circuitry are powered by the battery supply.

The schematic of the power·down circuitry and the
SBC·80/20 interface is shown in Figure 26. The design is
very straightforward and uses CMOS logic to minimize
the battery current requirements. The cold start switch
is necessary to ensure that during a cold start, the PFS
line is indicating "cold start" sense (PFS high). Thus, for

a cold start, the cold start switch is depressed during
power on. After that, no further action is needed. Notice
that the PFI signal sets the on·board PFI latch. The out·
put of this latch drives the 8259A IRO input. This latch is
cleared during the restart routine by executing an OUT·
put 04H instruction. The state of the PFS line may be
read on the least significant data bus line (OBO) by exe·
cuting an INput 04H instruction. An 8255 port (8255 #1
port C, bit 0) is used to control the PFSR line. '

BATTERY SUPPLY

COLD
fSTART

CONTROLBUS-i-+~----+_--~-+~----+_---+--~~+_----~~~--~
DATABUS-i-4----~-+_-~~--------+_--~----~+_------~~----~

ADDRESS BUS ~>-----

Figure 25. Block Diagram of SBC 80/20 with Power Down Circuit

2-166 121500-001

AP59

I

I
I
I

I"

SBcaO/2Q

1---~I>---l>CLK

''"

8259

'" LATCH

-----------~---~

'" ----\'" 1-____ --'-''''''-10 ~~T

Figure 26. Power Down Circuit - SBC 80/20 Interface

The fully nested mode for the 8259A is used in its initial
state to ensure the IRO always has the highest priority.
The remaining IR inputs can be used for any other pur­
pose in the system. The only constraint is that the ser­
vice routines must enable interrupts as early as possi­
ble. Obviously, this is to ensure that the power-down in­
terrupt does not have to wait for service. If a rotating
priority scheme is desired, another 8259A could be
added as a slave and be programmed to operate in a
rotating mode. The master would remain in the initial
state of the fully nested mode so that the IRQ still re­
mains the highest priority input.

The software to support the power-down circuitry is
shown in Figure 27. The flow for each label will be
discussed.

After any system reset, the processor starts execution
at location OOOQH (START). The PFS status is read and
execution is transferred to CSTART if PFS indicates a
cold start (i.e., someone is depressing the cold start
switch) or WSTART if a warm start is indicated (PFS
LOW). CSTART is the start of the user's program. The
Stack Pointers (SP) and device initialization were in­
cluded just to remind the reader that these must occur.
The first EI instruction must appear after the 8259A has
received its initialization sequence. The 8259A (and
other devices) are initialized in the INIT subroutine.

When a power failure occurs, execution is vectored by
the 8259A to REGSAV by way of the jump table at
JSTART. The pre-power-down program counter is placed
on the stack. REGSAV saves the processor registers
and flags in the usual manner by pushing them onto the
stack. Other items, such as output port status, program-

mabie peripheral states, etc., are pushed onto the stack
at this time. The Stack Pointer (SP) could be pushed on­
to the stack by way of the register pair HL but the top of
the stack can exist anywhere in memory and there is no
way then of knowing where that is when in the power-up
routine. Thus, the SP is saved at a dedicated location in
RAM. It isn't really necessary to send an EOI command
to the 8259A in REGSAV since power will be removed
from the 8259A, but one is included for completeness.
The final instruction before actually losing power is a
HALT. This minimizes somewhat spurious transitions
on the various busses and lets the processor die
gracefully.

On reset, when a warm start is detected, execution is
transferred to WSTART. WSTART activates PFSR by
way of the 8255 (all outputs go low then the 8255 is ini­
tialized). In the power-down circuitry, PFSR clears the
PFS latch and removes the MPRO signal which then
allows access to the RAM. WSTART also clears the PFI
latch which arms the 8259A IRQ input. Then the 8259A is
re-initialized along with any other devices. The SP is
retrieved from RAM and the processor registers and
flags are restored by popping them off the stack. Inter­
rupts are then enabled. Now the power-down program
counter is on top of the stack, so executing a RETurn in­
struction transfers the processor to exactly where it left
off before the power failure.

Aside from illustrating the usefulness of the 8259A (and
the SBC-80/20) in implementing a power failure pro­
tected microcomputer system, this application should
also point out a way of preserving the processor status
when using interrupts_

2-167 121500-001

LOC :JBJ

~e~e
00(181)8[14

<le1:l21F
130tC DA2~01

0006 ~[S(I

0139:, ~3E7

",!j(jfl';[01

i,ffilClCD.JEr,
i.1OOEV3[!4

'Ii!' arm
~f116 F9
013liCl
0018D1
0019[1
00lAH
aelSf'D
\l~iL

<l1:I1D ~W
tl0iFDJDA
0021][01
~r,2] DJDB

[Q!)RTlS

Lull @Q,lfl r-'o .. r WI1H fl~o:\;l

;'1'T598 lOU OOSI< ,,:!~'')~ raPT ~ll!: f)B:l

E>J \lUI, ,:::255 .1 lljflTROL ,'OPT , tOl} ~E6H ,~255 '1 P,}f'T " 1~ wSP",'E EGlJ s80'JH ,.r ,;TO~;i(;E IN F'FI~'1

11 JrT U)U 011' N58 uF JUM~' i8~Lt

12
~3 '
14 ,'::,TI;PTlIl~G I'IJI~H ~Frl~ s "lEN ~lSH
1)

1f..
1;'
i85TilRT IN
l'
2~ JC
21,
22

w~mRT ~'dI H, 8~f:

,'4

:,5
~G

40
41
4~'

43

" 45·
ole

Ol)r rrlll'J

OllTPIJT COMi'1~Nl) 11HH:.:;.
,CLEf"II<'S 1'1'5 LI,TCII

OUT I'~IIC

our ~D4H

C8LL iNIl
UILD :.f'~~VE

SPilL
["Jf'

r':JF'
POP
POP
II
PEl

,I.F'DPr::;iSTHTU5
,t'F~/ [IN I'U'I G~Pf..""

lilt]~ c.jlD ~rf\F'T

Sil1ll1

S~I '-:~~5 H TO uiJTrUT MOOE
,.QNT'-'ilL ~IJkr i'GE.S

l,tlP)IIE S~ FPilf" PP.M
; f'~T lNTli ,.C'
RE~TORE Be
RLSTOREDE
'lsrllf'lliL
rE5rur~ f: ,U:; ~"LfI~~
[NI1BLE lNiE~'P:NIS

,I'RC "PO~£I.:- DO,IN 1"'; llrl TOP OF ;IA(~

~E1URN ro 11

4? lNlTli1LI~'1:flON ,~OIJTiNE If I LEiIST VO 02,)~ Blll UTl1EfI5 CJ-IN B[RllOH'
48.
49
:i~ INII !VI H,W:
51 uUT PT59fl
52 M'II H,Jrj
5s 0", f'r59!l

AP59

~026 .'J
~O27" ['J
01;1;:8[15
W2?:~

1;1021'1 21~lJee
~<t2D

~02E

~tt":l 3[20
~3~ [1:['1':
003'576

'100
~100 C32639
~mee
(J104CW33S
e187ee
!JiBS G2!!J8
1;110000
01~1.:::-:mm

aU\!-"00
~11il C3403~

illnee
1tl14l'J50.!S
1111;'00
&l18CJ6I'I38
~11r. 00
811CC?0S$
011r 0~

~120 3180O:F
012]Cb1ll00
0126 ~M
~128 ~C

,HI)[) flN\' I;THH INJ1lflLILRTIUN~ f~RE

8f;t

'1 O;;'G

~2 JNP
:)3 /fUP
14 J11f'

NOP
iM!
NO!"

NOP

~8 J1'!f-'
91 NO'
92 ,TMr

93 N"
S4 JI·1p
,~~ NOP
91. .TMP
97 .Jf

'" COLD ~TRRT LUU'lTlI~ltl 5 1"RDGRAI1 E~TEriS f:lPt
101
1~2

1~3 CSTI;Jn LYI SI-,3f"SClft

104 l'IU IN,! lrHTJI1LLL L~~.E

1IJ5 UUT I)t!4:i ,lS~1 f'fI

106 El U~~~LL

137
11)8 prOGRAl-l ~E·<t

100

11' END ['ONE

Figure 21. Power Down and Restart Software

5.2 78 LEVEL INTERRUPT SYSTEM

The second application illustrates an interrupt structure
with greater than 64 levels for an 8080A or 8085A sys·
tem. In the cascade mode, the 8259A supports up to 64
levels with direct vectoring to the service routine. Ex­
tending the structure to greater than 64 levels requires
polling, using the poll command. A 78 level interrupt
structure is used as an illustration; however, the prin·
ciples apply to systems with up to 512 levels.

To implement the 78 level structure, 3 tiers of 8259A's
are used. Nine 8259A's are cascaded in the master·slave
scheme, giving 64 levels at tier 2. Two additional
8259A's are connected, by way of the I NT outputs, to
two of the 64 inputs. The 16 inputs at tier 3, combined
with the 62 remaining tier 2 inputs, give 78 total levels.
The fully nested structure is preserved over all levels,
although direct vectoring is supplied for only the tier 2
inputs. Software is required to vector any tier 3 reo
quests. Figure 28 shows the tiered structure used in this
example. Notice that the tier 3 8259A's are connected to
the bottom level slave (SA7). The master·slaves are inter·
connected as shown in "Interrupt Cascading", while the
tier 3 8259A's are connected as "masters"; that is, the
SP/EN pins are pulled high and the CAS pins are left un·
connected. Since these 8259A's are only going to be
used with the poll command, no INTA is required, there·
fore the INTA pins are pulled high.

2-168

CASB~O

'I ~iNTA
IRO

_ INTA

MASTER

IR1

INT

IR7

M1

M7

I

SA1

INTA

INT

SA7

____ INTA

INT

SAOO

SP07

- SA10 SP INTA SBOO

SSO

SA17 INT SB07

SA70 SP INTA S810

SB1

SA76
SA77

INT SB17

Figure 28. 78 Level Interrupt Structure

121500-001

AP59

The concept used to implement the 78 levels is to
directly vector to all tier 2 input service routines. If a tier
2 input contains a tier 3 8259A, the service routine for
that input will poll the tier 3 8259A and branch to the tier
3 input service routine based on the poll word read after
the poll command. Figure 29 shows how the jump table
is organized assuming a starting location of 1000H and
contiguous tables for all the tier 2 8259A's. Note that
"SA35" denotes the IR5 input of the slave connected to
the master IR3 input. Also note that for the normal tier 2
inputs, the jump table vectors the processor directly to
the service routine for that input, while for the tier 2 in­
puts with 8259A's connected to their IR inputs, the proc­
essor is vectored to a service routine (i.e., SBO) which
will poll to determine the actual tier 3 input requesting
service. The polling routine utilizes the jump table start­
ing at 1200H to vector the processor to the correct tier 3
service routine.

Each 8259A must receive an initialization sequence
regardless of the mode. Since the tier 1 and 2 8259A's
are in cascade and the special fully nested mode is used
(covered shortly), all ICWs are required. The tier 3
8259A's don't require ICW3 or ICW4 since only polling
will be used on them and they are connected as masters
not in the cascade mode. The initialization sequence for
each tier is shown in Figure 30. Notice that the master is
initialized with a "dummy" jump table starting at OOH
since all vectoring is done by the slaves. The tier 3
devices also receive "dummy" tables since only polling
is used on tier 3.

As explained in "Interrupt Cascading", to preserve a
truly fully nested mode within a slave, the master 8259A
should be programmed in the special fully nested mode.
This allows the master to acknowledge all interrupts at
and above the level in service disregarding only those of
lower priority. The special fully nested mode is pro­
grammed in the master only, so it only affects the im­
mediate slaves (tier 2 not tier 3). To implement a fully
nested structure among tier 3 slaves some special
housekeeping software is required in all the tier-2-with­
tier-3-slave routines. The software should simply save
the state of the tier 2 IMR, mask all the lower tier 2 inter­
rupts, then issue a specific EOI, resetting the ISR of the
tier 2 interrupt level. On completion of the routine the
IMR is restored.

Figure 31 shows an example flow and program for any
tier 2 service routine without a tier 3 8259A. Figure 32
shows an example flow and program for any tier 2 ser­
vice routine with a tier 3 8259A. Notice the reading of the
ISR in both examples; this is done to determine whether
or not to issue an EOI command to the master (refer to
the section on "Special Fully Nested Mode" for further
details).

2-169

LOCATION 825~ CODE COMMENTS

1000 H SAO JMP SAGO ; SAGO SERVICE POUTINE

101C H JMP SA07 , SA07 SERVICE ROUTINe

1020 H SAl JMP SAlO ; SAW SERVICE ROUTINE

103C H JMP SA17 SA17 SERVICE ROUTINf-

; SA20- SAG7 SERVICE ROUTIN[CS

lOEO H SA7 JMP SA70 . SA70 SERVICE ROUT INf'

10F8 H JMP SBO , sso POLL RQUTINf
10FC H JMP S8l ; S8l POLL ROUTIf\:F

1200 H SBO JMP S800 ; S800 SERVICE ROUTINE-

121C H JMP S807 S807 SERVICE ROUTINE:

1220 H 501 JMP S810 ; SS10 SERVICE ROUTINC

123C H JMP 5817 ; S817 SERVice ROUTINf:

Figure 29. Jump Table Organization

INITIALIZATION SEQUENCE FOR 78 LEVEL INTERRUPT STRUCTURE

INITIAliZE MASTER

MINT: MVI
OUT
MVI
OUT
MVI
OUT
MVI
DU'T

A,15H
MPTA
A,DOH
MPTB
A,OFFH
MPTB
A,IOH
MPTB

; ICWI,LTM::O,ADI=1,S~O,jC4""1
; MASTER PORT AO:= a
; ICW2, DUMMY ADDRESS
: MASTER PORT AO:: 1
; ICW3,57·80=1
, MASTER PORT AD =: 1
; tCW4, SFNM = 1
. MASTER PORT AO=i

; INITIALIZE SA SLAVES - X DENOTES SLAVE ID (SEE KEY)

SAXINT: MVI
OUT
MVI
OUT
MVI
OUT
MVI
OUT

A.,
SAXPTA
A,10H
SAXPTB
AOXH
SAXPTB
Al0H
SAXPTB

; SEE KEY FOR ICW1. LTM==O. ADI=l, S::::O.IC4==1
; SA"X" PORT AD:= 0
: ICW2. ADDRESS MSB
; SA"X" PORT AD:= 1
; ICW3, SA iD
; SA"X" PORT AD = !
; ICW4, SFNM = 1
; SA"X" PORT AD =.1

REPEAT ABOVE FOR EACH SA SLAVE

INITIALIZE SB SLAVES - X DENOTES D or 1 (DO S80. REPEAT FOR S81)

SBXINT MVI
OUT
MVI

A.16H
SBXPTA
A,DOH

; ICW1, LTM=O, ADI=l. S=1.IC4=O
; SB'"X" PORT AO",Q
; ICW2, DUMMY ADDRESS

OUT SBXPTB ; SB"X" PORT AQ '= 1

~~~~~~~~~~_~_~_~N--KE_Y 

SA"X" , a (ICW1) 

I---~----- ---I -~; 
2 55 
3 75 
4 95 
5 85 
5 OS 
7 F5 

JUMP TABLE START (H) 
--- 1000 

1020 
1040 
1060 
1080 
lOAD 
lOCO 
lOEO 

Figure 30. Initialization Sequence for 78 Level Interrupt Structure 

121500-001 



AP59 

; SA"X" ROUTINE - GENERAL INTERRUPT SERVICE ROUTINE 
; FOR TIER 2 INTERRUPTS WITHOUT TIER 3 8259A 

SAX: PUSH D 
PUSH B 
PUSH H 
PUSH PSW 
EI 

; SERVICE ROUTINE GOES HERE ., 
MYI 
OUT 
MUI 
OUT 
IN 
ANI 
JZN 
MYI 
OUT 

SAXRSR: POP 
POP 
POP 
POP 
EI 
RET 

20, 
SAXPTA 
A,OSH 
SAXPTA 
SAXPTA 
OFFH 
SAXRSR 
A,OSH 
MASPTA 
PSW 
H 

• • 

; SAve DE 
; SAVE Be 
; SAVE HL 
; SAVE A, FLAGS 
; ENABLE INTERRUPTS 

; DISABLE INTERRUPTS 
; OCW2, NON·SPECIFIC EOI 
; SA"X" PORT AO", 0 
; OCW3, READ REGISTER, ISR 
; SA"X" PORT AO=O 
; SA"X" PORT AO=O, SA"X" ISR 
; TEST FOR ZERO 
; IF NOT ZERO, RESTORE STATUS 
; OCW2, NON·SPECIFIC EOI 
; MASTER PORT AO=O 
; RESTORE A, FLAGS 
; RESTORE HL 
; RESTORE Be 
; RESTORE DE 
; ENABLE INTERRUPTS 
; RETURN 

Figure 31. Example Service Routine for Tier 2 Interrupt (SA"X") without Tier 3 8259A (SB"X") 

; SB"X" ROUTINE - SERVICE ROUTINE FOR TIER 2 
; INTERRUPTS WITH TIER 3 8259AS 

SBX: PUSH 0 ; SAVE DE 
PUSH B ; SAVE BC 
PUSH H ; SAVE Hl 
PUSH PSW ; SAVE A, flAGS 
IN SAXPTB; READ SA"X" IMR 
MOV O,A ; SAVE 
MVI A,XXH ; MASK SA"X" LOWER IR 
'OUT SAXPTB : SA"X" PQRT AO=1 
MVI A,eXH ; CCW2 SPECIFIC ECI SA"X" 
CUT SAXPTA ; SA"X" PCRT AO"'1 
lXI H,1200H : JUMP TABLE START 
MVI 8,00H ; CLEAR B 
MVI A,OCH : CCW3, PCll CCMMAND 
CUT SBXPTA ; SB"X" PCRT AO",O 
IN SBXPTA; GET PCll WCRD 
ANI 01H ; LIMIT TC 3 BITS 
ADD A ; GET TABLE 'OFFSET 
ADD A 
MCV C,A 
DAD B 
EI 

; 'OFFSET T'O C 
; HL HAS TABLE ADDRESS 
; ENABLE INTERRUPTS 

; SB"X"RET RCUTINE ~ FCR ECI AND MASK REST'ORE 
; AFTER S8"X" RCUTINE 

SBXRET 01 
MYI 
OUT 
MYI 
OUT 
IN 
ANI 
JNZ 
MYI 
OUT 

SBXRSR: MOV 
OUT 
POP 
POP 
POP 
POP 
EI 
RET 

A,20H 
SBXPTA 
A,OBH 
SAXPTA 
SBXPTA 
OFFH 
SBXRSR 
A,20H 
MASPTA 
A •• 
SAXPTB 
PSW 
H 

• • 

; DISABLE INTERRUPTS 
; OCW2, NON SPECIFIC EDt 
; SA"X" PORT AO=O 
; OCW3, READ REGISTER ISR 
; SA"X" PORT AO.:O 
; SA"X" PORT AO=O, ISR 
; TEST FOR ZERO 
; IF*O RESTORE IMR 
; OCW2, NON-SPECIFIC EOI 
; MASTER PCRT AO=O 
; RESTCRE SA"X" IMR 
; SA"X" PORT AO=l 
; RESTCRE A, FLAGS 
; RESTORE HL 
; RESTORE BC 
; RESTCRE Be 
; RESTORE DE 
; RETURN 

Figure 32. Example Service Routine for Tier 2 Interrupt (SA "X") with Tier 3 8259A (SB"X") 

2-170 121500-001 



AP59 

5.3 TIMER CONTROLLED INTERRUPTS 

In a large number of controller type microprocessor 
designs, certain timing requirements must be imple· 
mented throughout program execution. Such time 
dependent applications include control of keyboards, 
displays, CRTs, printers, and various facets of industrial 
control. These examples, however, are just a few of 
many designs which require device servicing at specific 
rates or generation of time delays. Trying to maintain 
these timing requirements by processor control alone 
can be costly in throughput and software complexity. 
So, what can be done to alleviate this problem? The 
answer, use the 8259A Programmable Interrupt Con· 
troller and external timing to interrupt the processor for 
time dependent device servicing. 

This application example uses the 8259A for timer con· 
trolled interrupts in an 8086 system. External timing is 
done by two 8253 Programmable Interval Timers. Figure 
33 shows a block diagram of the timer controlled inter· 
rupt circuitry which was built on the breadboard area of 
an SDK·86 (system design kit). Besides the 8259A and 
the 8253's, the necessary I/O decoding is also shown. 
The timer controlled interrupt circuitry interfaces with 
the SDK·86 which serves as the vehicle of operation for 
this design. 

A short overview of how this application operates is as 
follows. The 8253's are programmed to generate inter· 
rupt requests at specific rates to a number of the 8259A 
IR inputs. The 8259A processes these requests by inter· 
rupting the 8086 and vectoring program execution to the 
appropriate service routine. In this example, the 
routines use the SDK·86 display panel to display the 
number of the interrupt level being serviced. These 
routines are merely for demonstration purposes to show 
the necessary procedures to establish the user's own 
routines in a timer controlled interrupt scheme. 

Let's go over the operation starting with the actual inter­
rupt timing generation which is done by two 8253 Pro· 
grammable Interval Timers (8253 #1 and 8253 #2). Each 
8253 provides three individual 16·bit counters (counters 

CONTROL BUS 

0-2) which are software programmable by the proc· 
essor. Each counter has a clock input (CLK), gate input 
(GATE), and an output (OUT). The output signal is based 
on divisions of the clock input signal. Just how or when 
the output occurs is determined by one of the 8253's six 
programmable modes, a programmable 16·bit count, 
and the state of the gate input. 

Figure 34 shows the 8253 timing configuration used for 
generating interrupts to the 8259A. The SDK·86's PCLK 
(peripheral clock) signal provides a 400 ns period clock 
to CLKO of 8253 #1. Counter 0 is used in mode 3 (square 
wave rate generator), and acts as a prescaler to provide 
the clock inputs of the other counters with a 10 ms 
period square wave. This 10 ms clock period made it 
easy to calculate exact timings for the other counters. 
Counter 2 of the 8253 #1 is used in mode 2 (rate gener· 
ator), it is programmed to output a 10 ms pulse for every 
200 pulses it receives (every 2 sec). The output of 
counter 2 causes an interrupt on IR1 of the 8259A. All 
the 8253 #2 counters are used in mode 5 (hardware trig· 
gered strobe) in which the gate input initiates counter 
operations. In this case the output of 8253 #1 counter 2 
controls the gate of each 8253 #2 counter. When one of 
the 8253 #2 counters receive the 8253 #1 counter 2 out· 
put pulse on its gate, it will output a pulse (10 ms in 
duration) after a certain preprogrammed number of 
clock pulses have occurred. The programmed number of 
clock pulses for the 8253 #2 counters is as follows: 50 
pulses (0.5 sec) for counter 0, 100 pulses (1 sec) for 
counter 1, and 150 pulses (1.5 sec) for counter 2. The 
outputs of these counters cause interrupt requests on 
IR2 through IR4 of the 8259A. Counter 1 of 8253 #1 is 
used in mode 0 (interrupt on terminal count). Unlike the 
other modes used which initialize operation auto· 
maticallyor by gate triggering, mode 0 allows software 
controlled counter initialization. When counter 1 of 8253 
#1 is set during program execution, it will count 25 
clocks (250 ms) and then pull its output high, causing an 
interrupt request on IRO of the 8259A. Figure 35 shows 
the timing generated by the 8253's which cause inter· 
rupt request on the 8259A IR inputs. 

\ 
PCLK RDI IWR ~IWR INTA INrt RD! IVoiR 

ADDRESS BUS (20) 

I I Ail I" I I Ail I" I I A11 M/IOIA15\A14IA13jA12IA111A.101 A91 A8\ A71 AS\ AS A4 A3 

DATA BUS itS) 

jj~ll lj~ll j l~~ l Illllllll"U 

I-~-h-RD WR AO A1 RD WR AD A1 RD WR AO 

I CLK2 

&f 
CLK2 INT 

'- CLKO eLK1 eLK1 L........-" INTA 

8253 OUTO CLKO 8253 

E2J 
+5V~ 

GATE2 " ---- GATE2 
#2 OUT2 --lA' 8259A 

GATE1 OU12 ~ 0---.--00 GATEl OUTl ~------- IRS SPIE'N ----<l+5V TI- I 
GATED OUTl - GATED t------- IR2 

.3_ 
I Os cs 8205 

-----IRt -°0 A2 

1-°' A1 

lAO 
0, AD 

Os 

t 
EACH DEVICE Vee= +5V, GND = ~ 

Figure 33. Timer Controlled Interrupt Circuit on SDK 86 Breadboard Area 

2-171 121500·001 



AP59 

Figure 34. 8253 Timing Configuration for Timer Controlled Interrupts 

82531t1 \ 
COUNTER 1 IRO 

u u IRI 

8253#2 \~ 
COUNTER 0 u U,.-----;I,\ ,.2 

c~~~~:~ 1 I\-' ----..,Ur--------,Ur-------'U----;\ lA' 

c~G~~~~ 2 1\-', --------,U u r l
'R4 

I ! ! ! I ! I I I : I I I i I ! ! , ! I ! .J 
250 ms PER DIVISION 

(EACH SMALL PULSE IS 10 ms IN DURATION) 

Figure 35. 8259A IR Input Signal From 8253S 

There are basically two methods of timing generation 
that can be used in a timer controlled interrupt struc­
ture: dependent timing and independent timing. Depen­
dent timing uses a single timing occurrence as a refer­
ence to base other timing occurrences on. On the other 
hand, independent timing has no mutual reference be­
tween occurrences. Industrial controller type applica­
tions are more apt to use dependent timing, whereas in­
dependent timing is prone to individual device control. 

Although this application uses primarily dependent tim­
ing, independent timing is also incorporated as an 
example. The use of dependent timing can be seen back 
in Figure 34, where timing for IR2 through IR4 uses the 
I R1 pu Ise as reference. Each one of the 8253 #2 counters 
will generate an interrupt request a specific amount of 
times after the IR1 interrupt request occurs. When using 
the dependent method, as in this case, the IR2 through 
IR4 requests must occur before the next IR1 request. 
Independent timing is used to control the IRO interrupt 
request. Note that its timing isn't controlled by any of 
the other IR requests. In this timer controlled interrupt 
configuration the dependent timing is initially set to be 
self running and the independent timing is software 
initialized. However, both methods can work either way 
by using the various 8253 modes to generate the same 
interrupt timing. 

The 8259A processes the interrupts generated by the 
8253's according to how it is programmed. In this appli­
cation it is programmed to operate in the edge triggered 
mode, MCS-86188 mode, and automatic EOI mode. In the 
edge triggered mode an interrupt request on an 8259A 

IR input becomes active on the rising edge. With this in 
mind, Figure 35 shows that IRO will generate an inter­
rupt every half second and IR1 through IR4 will each 
generate an interrupt every 2 seconds spaced apart at 
half second intervals. Interrupt vectoring in the 
MCS-86188 mode is programmed so IRO, when activated, 
will select interrupt type 72. This means IR1 will select 
interrupt type 73, IR2 interrupt type 74, and so or. 
through IR4. Since IR5 through IR7 aren't used, they are 
masked off. This prevents the possibility of any acci· 
dental interrupts and rids the necessity to tie the 
unused IR inputs to a steady level. Figure 36 srlOWS the 
8259A IR levels (IRO-IR4) with their corresponding inter­
rupt type in the 8086 interrupt-vector table. Type 77 in 
the table is selected by a software "INT" instruction 
during program execution. Each type is programmed 
with the necessary code segment and instruction 
pOinter values for vectoring to the appropriate service 
routine. Since the 8259A is programmed in the auto­
matic EOI Mode, it doesn't require an EOI command to 
deSignate the completion of the service routine. 

TYPE 77 SOFTWARE INT 

TYPE 76 I 

TYPE 75 I 

TYPE 74 I 

TYPE 73 I 

TYPE 72 I 

R41 R3 

R2 8259A 

Ri 

RO 

-
Figure 36. Interrupt "Type" Designation 

2-172 121500-001 



AP59 

As mentioned earlier, the interrupt service routines in 
this application are used merely to demonstrate the 
timer controlled interrupt scheme, not to implement a 
particular design. Thus a service routine simply displays 
the number of its interrupting level on the SDK-86 dis­
play panel. The display panel is controlled by the 8279 
Keyboard and Display Controller. It is initialized to 
display "Ir" in its two left-most digits during the entire 
display sequence. When an interrupt from IR1 through 
IR4 occurs the corresponding routine will display its IR 
number via the 8279. During each IR1 through IR4 serv­
ice routine a software "INT77" instruction is executed. 
This instruction vectors program execution to the serv­
ice routine designated by type 77, which sets the 8253 
counter controlling IRO so it will cause an interrupt in 
250 ms. When the IRO interrupt occurs its routine will 
turn off the digit displayed by the IR1 through IR4 
routines. Thus each IR level (IR1-IR4) will be displayed 
for 250 ms followed by a 250 ms off time caused by IRO. 
Figure 37 shows the entire display sequence of the 
timer controlled interrupt application. 

I , I IR1 

111'1 I I I I I IRO 

I , 2 IR2 

1' 1'1 I I I I I IRO 

1' 1'1 I 1,/1 I I IR3 

1' 1'1 I I I I I IRO 

111'1 I CJ I I I I IR4 

Lit 'J. j L 1 J J IRO 

Figure 37. SDK Display Sequence tor Timer Controlled Interrupts 
Program (Each Display Block Shown is 250 msec 
in Duration) 

Now that we've covered the operation, let's move on to 
the program flow and structure of the timer controlled 
interrupt program. The program flow is made up of an 
initialization section and six interrupt service routines. 
The initialization program flow is shown in Figure 38. It 
starts by initializing some of the 8086's registers for pro­
gram operation; this includes the extra segment, data 
segment, stack segment, and stack pointer. Next, by 
using the extra segement as reference, interrupt types 
72 through 77 are set to vector interrupts to the appro­
priate routines. This is done by moving the code seg­
ment and instruction painter values of each service 
routine into the corresponding type location. The 8253 
counters are then programmed with the proper mode 
and count to provide the interrupt timing mentioned 
earlier. All cou nters with the exception of the 8253 #1, 
counter 1 are fully initialized at this point and will start 
counting. Counter 1 of 8253 #1 starts counting when its 
counter is loaded during the "INTR77" service routine, 
which will be covered shortly. Next, the 8259A is issued 
ICW1, ICW2, ICW4, and OCW1. The ICWs program the 

8259A for the edge triggered mode, automatic EOI 
mode, and the proper interrupt vectoring (lRO, type 72). 
OCW1 is used to mask off the unused IR inputs 
(IR5-IR7). The 8279 is then set to display "IR" on its two 
left-most digits. After that the 8086 enables interrupts 
and a "dummy" main program is executed to wait for in­
terrupt requests. 

Figure 38. Initialization Program Flow for Timer Controlled Interrupts 

There are six different interrupt service routines used in 
the program. Five of these routines, "INTR72" through 
"INTR76", are vectored to via the 8259A. Figure 39A-C 
shows the program flow for all six service routines. Note 
that "INTR73" through "INTR76" (IR1-IR4) basically use 
the same flow. These four similar routines display the 
number of its interrupting IR level on the SDK-86 display 
panel. The "INTR77" routine is vectored to by software 
during each of the previously mentioned routines and 
sets up interrupt timing to cause the "INTR72" (IRO) 
routine to be executed. The "INTR72" routine turns off 
the number on the SDK-86 display panel. 

A. INTERRUPT ON 
8259AIRO 

( INTR73-76 ) ( INTR77 ) 

RETURN 

B. INTERRUPT ON 
82S9A IR1-IR4 

C. SOFTWARE INVOKED 
INTERRUPT 

Figure 39. A-C. Interrupts Service Routine Flow for 
Timer Controlled Interrupts. 

2-173 121500-001 



AP59 

To best explain how these service routines work, let's 
assume an interrupt occurred on IR1 of the 8259A, The 
associated service routine for IR1 is "INTR73". Entering 
"INTR73", the first thing done is saving the pre-interrupt 
program status. This isn't really necessary in this pro­
gram since a "dummy" main program is being executed; 
however, it is done as an example to show the operation. 
Rather than having code for saving the registers in each 
separate routine, a mutual call routine, "SAVE", is used, 
This routine will save the register status by pushing it 
on the stack. The next portion of "INTR73" will display 
the number of its IR level, "1", in the first digit of the 
SDK-86 display panel. After that, a software INT instruc­
tion is executed to vector program execution to the 
"INTR77" service routine. The "INTR77" service routine 
simply sets the 8253 #1 counter 1 to cause an interrupt 
on IRO in 250 ms and then returns to "INTR73". Once 
back in "INTR73", the pre-interrupt status is restored by 
a call routine, "RESTORE". It does the opposite of 
"SAVE", returning the register status by popping it off 
the stack. The "INTR73" routine then returns to the 
"dummy " main program. The flow for the "INTR74" 
through "INTR76" routines are the same except for the 
digit location and the IR level displayed. 

After 250 ms have elapsed, counter 1 of 8253 #1 makes 
an interrupt request on IRO of the 8259A. This causes 
the "INTR72" service routine to be executed. Since this 
routine interrupts the main program, it also uses the 
"SAVE" routine to save pre-interrupt program status. It 
then turns off the digit displaying the IR level. In the 
case of the "INTR73" routine, the "1" is blanked out. 
The pre-interrupt status is then restored using the 
"RESTORE" routine and program execution returns to 
the "dummy" main program. 

The complete program for the timer controlled inter­
rupts application is shown in Appendix B. The program 
was executed in SDK·86 RAM starting at location 0500H 
(code segment: 0050, instruction pointer= 0). 

CONCLUSION 

This application note has explained the 8259A in detail 
and gives three applications illustrating the use of some 
of the numerous programmable features available. It 
should be evident from these discussions that the 
8259A is an extremely flexible and easily programmable 
member of the Intel® MeS-80, MeS-85, MeS-86, and 
MeS-88 families. 

2-174 



APPENDIX A 

This table is provided merely for reference information between the "Operation of the 8259A" and "Programming the 
8259A" sections of this application note. It shouldn't be used as a programming reference guide (see "Programming 
the 8259A"). 

Operational Command 
Description Words Bits 

MCS-80/85 Mode ICW1,ICW4· IC4,I'PM· 

Address Interval for MCS-80/85 Mode ICW1 ADI 

Interrupt Vector Address for MCS-80/85 Mode ICW1,ICW2 A5-A15 

MCS-86/88 Mode ICW1,ICW4 IC4,I'PM 

Interrupt Vector Byte for MCS-86/88 Mode ICW2 T3-T7 

Fully Nested Mode OCW-Default 

Non-Specific EOI Command OCW2 EOI 

Specific EOI Command OCW2 SEal, EOI, 
LO-L2 

Automatic EOI Mode ICW1,ICW4 IC4, AEOI 

Rotate On Non-Specific EOI Command OCW2 EOI 

Rotate In Automatic EOI Mode OCW2 R, SEOI, EOI 

Set Priority Command OCW2 LO-L2 

Rotate on Specific EOI Command OCW2 R, SEal, EOI 

Interrupt Mask Register OCW1 MO-M7 

Special Mask Mode OCW3 ESMM-SMM 

Level Triggered Mode ICW1 LTIM 

Edge Triggered Mode ICW1 LTIM 

Read Register Command, IRR OCW3 ERIS, RIS 

Read Register Command, ISR OCW3 ERIS, RIS 

Read IMR OCW1 MO-M7 

Poll Command OCW3 P 

Cascade Mode ICW1,ICW3 SNGL, SO-7, 
100-2 

Special Fully Nested Mode ICW1,ICW4 IC4, SFNM 

Buffered Mode ICW1,ICW4 IC4, BUF, 
MIS 

·Only needed if ICW4 is used for purposes other than ttP mode set. 

2-175 121500-001 



APPENDIX B 

MCS-86 ASSEMBLER TCI59A 

ISIS-II MCS-8G ASSCMBlER 111. a fiSSEMBL', OF MODULE TCI59A 
OBJECT MODULE PLACED IN :Fi:1CIS9A.OOJ 
ASSEMBLER INVOKED BY: : Fl: ASl1S6 F1: TCI59A. SRC 

LOG OBJ LINE SOIJRCE 

1 ; *"'***************"'** TIMER CONTROLLED INTI:RRUPTS ******************* 
2 

4 
5 ; EXTRA SEGMENT DECLARATIONS 
6 
7 EXTRA SHlMEN'1 
8 

012£1 9 ORG 120H 
0126 0401 113 TP72lP OW INTR72 ; TYPE 72 INSTRUCTION POINTER 
0122 ???? 11 TP72CS OW ? ; T't'PE 72 CODE SEGMENT 
13124 18131 12 TPlJIP ow INTR7? ; WPE 7? INS1 RUCTION POINTER 
0126 ???? B TP73CS DW ? ; TYPE i'3 CODE SE.GMEN"f 
0128 3001 14 TP74IF' DI4 INTR74 ; WF'E 74 INSTRUC1ION POINTER 
312fi 'J??? 15 TP74CS DW ? ; T't'PE i' 4 CODE SEGMENT 
e12C 48131 16 TP75IF' 1M INTR75 ; Tl'rE 7S INSTRUCTION POINTER 
012E ???? 17 TP75CS DW ? ; T't'PE ,'5 CODE SE:GMEN1 
e130 60tJ1 18 TP76IP 1M IN1R76 i lYPE 76 INSTRUCTION POINTER 
8132 ???? 19 TP76CS DW ? .; TYPE 76 CODE SEGMENT 
0134 7801 213 TP77lP DW INTR77 ; TYPE 77 INSTRIJCTION P(JINTI::.R 
0B6 ')?'I? 21 TP77CS I)W ? ,TYPE 77 CODE SEGMENl 

22 
23 EXTRA ENDS 
24 
25 DATA SEGMENT DECLARATI ONS 
26 
27 DATA SEGMENT 
28 

0000 'Yln 29 STACK1 DW ? .' liAR I ABLE TO SAllE GALL AODRlSS 
0002 "??'I 313 AXTEMI' DW ? ; VARIABLE. TO SAllE AX REGI~ lE~ 
0004 ?? 31 DIGIT DB ? .: IIARIABLE TO SAVE SE.LEC1W DIGIT 

32 
3:3 DAm ErlDS 
14 
35 CODE SEGMENT DECLARATION 
36 
37 CODE SEGMENT 
38 
39 ASSUME E5: EXTRA, DS: DrlTA., CS: CODE 
40 
41 IN I TI flU 2E REG IS TERS 
42 ; 

0000 880008 4:1 START: MOil AX., (lH .' lXTRA SEGMENT AT 0H 
013133 SEC13 44 MOl! ES,AX 
130"'5 B87001-) 45 MOil AX,70H ,DATA SEGMENT AT ?013H 
0008 8EDS 46 MOil DS,AX 
909ft 1:\(;:78130 47 MOil AX, iSH , 51 ACK SEGMENl AT 780H 
0000 SED0 48 MOil SSI A~~ 
000F B(:8000 49 MOil SP,8aH ; 5TflCK POINTER AT 80H (STflCK=8OOIl> 

2-176 

PAGE: 1 

121500-D01 



APPEN DIX B (continued) 

MC5-86 ASSEMBlER TCI59A F'fIGt 2 

LOC OBJ LINE SOURCE 

50 
51 LOAD 1 NTERRUPl VECTOR TABLE 
52 

00120013481 o"} T'(PES: MfN AX, onSET (lNTR72) 'LOAD wp~ l2 
0015 2CA32001 54 MOil IP721~', AX 
0019 268C0E22al 55 MOV "fP72CS, CS 
£I£I1E 8318131 ~6 MOV fiii., OFFSET (INTR73J i LOAD Tl'PE 73 
8821 26A324131 57 MOV TP7]!P,AX 
0025 268C0E2601 58 MOV TP7:;(:S, CS 
802A 883001 59 MO',' AX, OFFSET (HHR74) ,LOAD TYPE 74 
w:,.'O 26fB2801 613 MOl! TP74 IP., fiX 
0031 268ceE2A01 61 MOil TP74CS, CS 
0036 884301 62 MOV Ai(, OFFSET (I NTR75) 'LOAD WPE 75 
efG9 26A32C81 63 [1011 TP7~,If', AX 
e03D 268C0E2EfJl 64 MOil T~75CS., CS 
0042 886001 65 MOV A:{,OFFS[I ( INTR76) ,LOAD TYPE 76 
9B45 26AI5001 66 [1011 TP76IP, A:~ 
Be4 9 26SCBE3201 67 MOI/ TP76CS., CS 
13e4E 1:<87831 68 MOil AX, OFFSET (INTR77) i lOHD T'r'PE 7;' 
3051 261133401 69 I'IOV [P77IP, AX 
3355 268C0E363i 70 WJV IP77CS, [:5 

71 
~~ 825] INITlALlZATlON .e:. 
n 

oo:,fj BA0EFF 74 5ET5H: MOV D:~, eFF0EH ; 8253 lI1 CONTROL WORr, 
005D B0J6 75 MOV i'lL 36H ; COUNTER 0, t10DE 3, BINARY 
885F EE 76 OUT DX, AL 
8360 B071 n MOV AL liH .; COUNTtR 1, t10DE 0, SCI) 

0062 EE 78 OUT D;~,AL 

0063 BBBS 79 MOV AL IilB5H i COUNTER 2., MOOE 2, BCI) 

0065 EE 80 our D:~, AL 
0066 BA08FF 81 MOV DX, BFF08H ,LOAD GOLINTER 0 (113r15) 
0069 BOAS 82 MOV AL BA8H ,iLS8 
0068 E[ 8J OUT DX, AL 
006C 8061 84 MO\l AL61H ;['158 
!le6E EE 85 OUT [lX, Al 
006F BA0CFF 86 t1011 [)X,0FFf)CH ; LUAD COIJNl E~: :;; (2S~G) 
91372 saw 87 MOV AL@0H ;LS8 
9a74 EE 88 OUT [lX, AL 
01375 13002 89 M!)V AL@2H iM5B 
0077 EE 90 OUT DX,AL 
0078 BA16FF 31 SET~32: MfJV [l~i, 0FF16H i 8253 #2 CON·, ROL WORD 
tl07B 8338 92 MOV AL. i8H ; COUNTER 0, MONo. 5,8CD 
~(71) EE 93 OUT DX,AL 
007E icl@78 94 MOV AL 78H i COUNTER 1, 110£)(: ::" 8CD 
0080 EE 95 OUT DK, Al 
0fJ81 BOBB 96 MOV AL..@BBH ,COUNTER 2, MI)[lE 5, BCD 
'.1883 EE 97 OUT OX' AL 
t1084 BA10FF 98 ~10V DK, OFF 1€lH .' LOAD COl'NTER f.1 (5~(;) 
0081 Base 99 I'IOY AL.. 50H .,lSB 
fJ089 EE H10 our D;i, AL 
0081l 8300 itl1 MOV AL00H ; r1SB 
008C EE 102 OIJI I)X, AL 
308D E.'.A12FF 103 MOV DX, OFF12H i LOAD COUNTER 1 (bEU 
0090 00013 104 MOil AL 013H .;LSB 

2-177 121500-001 



APPENDIX B (continued) 

MC5-B6 AS5El'1BlER TCI59A PfQ J 

LOC OBJ LINE SOURCE 

0092 EE 185 OUT DX,AL 
0093 B081 106 1'101/ AL,91H ; I'IS8 
0095 EE 197 OUT DX,AL 
00% BAl4FF 1138 I'IOV DX,9FFl4H ; LOAD COUNTER 2 (1. 5SEC) 
0099 oose 199 I'IOV AL,S9H .'L!>B 
0098 EE 110 OUT DX,AL 
009C 8001 111 1'10\1 AL,81H ;f15B 
009E EE 112 OUT DX, AL 

113 i 

114 8259A INITIALIZATION 
115 

009F BA09FF 116 5ET59A: I'IOV DX,0FFOOH ; 8259A A9=0 
aOO2 B013 117 1'101/ AL,BH 0' lCWi-L TIM=8, S=1, IC4=1 
8004 EE 113 OUT DX,AL 
e6A.5 BA02FF 119 1'1011 DX, eFF92H ; 3259A r.0=1 
OOAB B048 120 1'10"1 AL, 4BH ; ICW2-INTERRUPT TYPE 72 (120H) 
89AA EE 121 OUT DX,AL 
08AB B003 122 I'IOY AL, e:>H 0; ICW4-SFNI'I=0, BUr=0, REO 1=1, f'lPM=l 
OOAD EE 121 OUT DX,AL 
OOAE B0Ea 124 1'1011 AL,8E0H 0; OCW1-f'lASK IRS, 6, 7 (NOT USED) 
ooea EE 125 OUT DX,AL 

126 
127 8279 INITIALIZATION 
128 ; 

0081 BAEAFF 129 SEl79: 1'10\1 DX,0FFEAH ; 8279 COHf'lANl) WORDS fiND 5TATUS 
99134 8000 130 1'1011 AL900H ; CLEAR D1SPLAI' 
09136 EE 131 OUT DX,AL 
OOB7 EC 132 WAIT79: IN AL,DX ; READ Sl AIUS 
89138 D@ce 133 ROL AL,1 ; "W" BIT TO CARRY 
80BA 72FB 134 IB WAIT79 ; JUf'IP IF D ISPLA'I IS UNAIIAI LABLE 
OOBC OOS7 135 ' MOil AL, 87H i DIGlT 8 
89BE EE 136 OUT DX,AL 
eeSF BAE8FF 137 1'1011 DX,9FFEBH ; 3279 DATA WORD 
BOC2 0006 133 tIDY AL,06H 0' CHARACTER "1" 
OOC4 EE B9 OUT DX,AL 
OOC5 BAEAFF 149 nov DX,0FFEAH ; 8279 COMt1AND WORD 
90GB Bil86 141 MOil AL,86H ; DIGIT 7 
ooCA EE 142 OUT DX., AL 
OOCB BAE8FF 143 1'10'.' [lX,0FFE8H ; 82(9 DATA WORD 
OOCE Be50 144 1'1011 AL,50H 0' CHARACTER URN 
0@D0 EE 145 OUT DX,AL 
€Ioo1 FB 146 STI ; ENABLE INTERRUPTS 

147 
148 
149 DUMf'l1' PROGRAM 
150 

OOD2 ESFE 151 DUf1MI' : JMP DIJt1f1I' ; WAIT FOR INTERRUPT 
152 
'153 ; 

0004 AJ020@ 154 SAVE: I'IOV AXTEMP, AX ; SAVE AX 
ooD7 58 155 POP AX ; POP CALL RETURN ADDRES5 
0008 A30000 156 I'IOV STACH, AX ; SAVE CALL RETURN ADDR£:SS 
OOOB A102B0 157 I'IOV AX, AXT[f'IP ; RESTORE AX 
00DE 58 1SS PUSH AX ; SAVE PROCESSOR STATUS 
OOOF 53 159 PUSH ex 

2-178 121500-001 



APPEN DIX B (continued) 

MCS-86 A~SEI'1BLER TCI59A PAGE 4 

LOC OBJ LINE SOURCE 

ooEB Jl 169 PUSH CX 
OOEl 52 161 PUSH DX 
00E2 55 162 PUSH BP 
a0E3 56 163 PUSH SI 
00E4 57 164 PUSH Dl 
00E5 lE 165 PUSH DS 
00E6 96 166 PUSH ES 
00E7 Aloo00 167 MOV AX,STACK1 .; RESTORE CALL RETURN ADDRESS 
OOEA 50 168 PUSH AX ; PU'"~ CALL REl URN AliORESS 
OOEB C3 169 RET 

170 
~JEC 58 171 RESTOR: flOP AX ; POP CALL RI'. TURN ADDRESS 
OOED A30000 172 MOl/ STACK!, AX ; SAVE CfllL RETURN ADDRESS 
09F0 07 173 pop ES ; RESTORE PROCESSOR STATUS 
09FllF 174 POP DS 
OOF2 SF 175 pop DI 
B0FS 5E 176 POP 51 
e0F4 5D 1i? POP BP 
00F5 SA 178 POP DX 
ooF6 59 179 POP ex 
ooF7 5B 189 POP BX 
00F8 58 lBl POP AX 
09F9 A3920e 182 MOV AXTEMP, AX ; SAVE AX 
ooFC A1800B 183 I'10Il AX, STACK1 ; RESTORE CALL RETURN ADDRESS 
0f.lFF 5e 184 PUSH AX ; PUSH CALL RETURN ADDRESS 
IUOO A10200 185 MOil AX, AXTEMP .; RESTORE AX 
aitG C 186 RET 

1S7 
188 
189 INTERRUPT 72, CLEAR DISPLAY, IR0 3259A 
199 

0104 E8COFF 191 INTR72: CAll SAVE ; ROliTI NE TO SAIlI'. PROCESSOR 51 ATlJS 
13107 BAEAFF 192 ~10V O::,OFFEAH ; 827?, COMMAND WORD 
tll€JA A00400 191 MOV Al, DIGIT .: SEL~CTED LED DIG 11 
tlHlD EE 194 OUT DX,Al 
alOE BAE3FF 195 MOil DK,OFFE8H .; 8279 C,ATA 
0111 B000 196 MOil AL!l0H ; BLANK OUT DIGIT 
!llE EE 197 OUT DX, ill 
13114 E8D5FF l~B CAll RES10R .; ROUT! NE TO RES10RE PROCESSOk STfflUS 
0117 CF 199 IRET ; RETURN FI;OI'1 INTERRUI'l 

200 
201 
202 I NTERRIJPT ?S, IRl 8259A 
2tl] 

B11S E3B9FF 204 INTR73: CALL SAVE ; ROUT! NE 10 SAllE PROCESSOR S TAlUS 
011B BnEAFF 205 MOil DX,9FFEAH .; 3279 COMMAND WORD 
OUE BOStl 206 MOil AL, S0H ; lED IJISPLAY DIGIT 1 
B12tl A204tltl 207 MOil DIGlT, AL 
0123 1:£ 200 OUT (lX, Al 
tl124 BAEfH 2119 MOil DX,iHEBH ; S2"19 DATA 
0127 8006 21@ MOil AL 06H ; CHARA(;',ER "1" 
0129 EE 211 OUT DX,AL 
e12A eND 212 INT 77 ; 1 I MER DElA'~ FOR LED ON TItiE 
~12C E8BDfF 215 CALL RESTOR ; ROUT! NE 10 RESTORE PROGI:5SOR STATUS 
e12~ CF 214 lRET ; RETURN FROM I Nl ERRUPT 

2-179 121500-001 



APPENDIX B (continued) 

t'lCS-86 ASSEMBLER TCI59A f'AGE 5 

LOC OBJ LINE SOliRCE 

215 
216 
217 INTERRUPT 74, IR2 8259A 
218 

9139 E8A1FF 219 INTR74: CKL SAllE ; ROUTINE TO SAVE PROI'..ESSOR 51 AlliS 
9133 BAEAFF 229 f'tOlI DX,9FFEAH ; 8279 C()I'tI'1ANl) WORD 
QB6 B981 221 MOIl Al,81H ; LED DISPLAY DIGIl 2 
0138 A2!l409 222 f'tOy DIGIT, Al 
9BB EE 223 ooT DX,AL 
B1le BfiE8FF 224 1'1011 DX,9FFESH ;8279 DA1A 
913F B05B 225 MOIl Al,5Bll j CHARACTER "2" 
9141 EE 226 OI.IT I)X,K 
8142 CD4D 227 INT 77 ; TlI'IER DELftY FOR LtD ON TIME 
9144 E8A5FF 228 CAlL RESTOR ; ROUTINE TO RESTORE PROCESSOR SfATUS 
0147 CF 229 IRET ; RETURN FROM INTERRUPT 

239 
:m 
232 INTERRUPT 75, IR3 8259A 
233 

0148 E889FF 234 INTR75: CAlL SAVE j ROUTINE TO SAVE PROCESSOR STATIJS 
014B BAEAFf' 235 f't(\\I DX,0FFEAH ; 8279 COI1t1ANI) WORD 
014E B982 236 f'tOlI Al,82H ; LED D I SPLAY WilT 3 
0150 A20490 237 MOil DIGIT, AL 
!'I153 EE 238 OUT DX,AL 
0154 BAE8FF 239 MOil [lX,9FFESH ;8279 DATA 
0157 B04~ 249 I'IOV AL4FH ; CHARACTER' "3" 
9159 EE 241 OUT DX,AL 
01;A C[l4D 242 INT 77 ; TIMER DELftY FOR LED ON TIME 
0151~ E8.'.lDFF 24::5 CAlL RESTOR ; ROUTINE TO RESTORE PROCESSOR STATUS 
ei5F CF 244 IRET ; REIlIRN FROM INl EI<RUPT 

245 
246 
247 ; INTERRUPT 76, IR4 82S9A 
248 

0160 E871FF 249 INTR76: CALL SAVE ; ROUT! NE TO SAVE PROCESSOR S 1 ATUS 
3163 BAEAFF 250 PlOV DX,3FFEAH ; 8279 COI'II'IAND WORD 
0166 898:$ 251 f'tOV ALS3H ,: LED DISPLfl'r' lllGIT 4 
9168 A20490 252 MOil [lIGIT, Al 
@168 EE 253 OUT [lX,Al 
016C BAESFF 254 MOil DX,9FFESH ;82,9 [lATA 
816F B066 255 1'101/ Al .• 66H ; CHARAt:TE.R "4" 
em EE 256 OUT [lX,AL 
Bi72 Cll4D 257 INT 77 ; TIMER DELAV FOR LE.I> ON "I1ME 
0174 E87SFF 258 CAlL RESTOR ,: ROUTINE TO RESTORE PROCESSOR Sl flTUS 
0177 CF 259 IRET ; RETlJRN FROM IN! ERRlIPT 

2613 ; 

261 
262 ; INTERRlIPT 77 .. TIPlER lIELA'r', SOFTWARE CONTROlLED 
263 

eli'S BA0AFF 264 HlTR?7: f'tOli DX .. 0FF0AH ; LOfil) COUNTER 1 8253 111 (250 !'15m 
0178 B!l25 265 I'IOIJ AL25H ;L~B 

li170 EE 266 OUT DX,Al 
a17E 8000 267 MOil Al,00H ; PISS 
01S~1 EE 268 OUT [lx.. AL 
0181 CF 269 IRET ; REWRN FROM INTERRUPT 

2-180 '121500-001 



APPENDIX B (continued) 

1'ICS-B6 ASSEI'IBLER TCI59A PA(;£ 6 

LOC OBJ LINE SOURCE 

270 
271 
272 CODE ENDS; 
".,., ,.::. ; 

274 
0090 275 END 5TART 

SYI1BOL TABLE LISTING 
-- ---- ----

NffME TYPE VALUE ATTRIBUTES 

'?SEG . SEGMENT SIZE =OOOOH PARA PUBLIC 
AXTEMP II WORD BOO2H DATA 
CODE. SEGMENT SIZE=01S2H PARA 
DATA. SEGMENT SIZE =0B05H PARA 
DIGIT II BYTE 8004H DATA 
DUMMY. L NEAR 00D2H GODE 
EXTRA. SEGMENT 5IZE=0138H PARA 
INTR72 L NEAR B104H CODE 
WTRE L NEAR B118H CODE 
INTR74. L NE.AR 0130H CODE 
INTR75. L NEAR B148H CODE 
INTR76. L NEAR B160H CODE 
INTR77 L NEAR 0l78H CODE 
RESTOR L NEAR OOECH CODE 
SAllE. L NEflR OOD4H CODE 
SETS31 L NEAR B!:lSAH CODE 
SET532. L NERR 007SH CODE 
5ET59A L NEAR BB9rH CODE 
5ET79 L NEAR BBB1H CODE 
STACK!. II WORD 0000H DATA 
STRRT . L NEAR BB!:l0H CODE 
TP72CS II WORD 0122H EXTRfi 
TP72IP \I WORD 0120H EXTRfl 
TP71CS. II WORD !l126H EXTRA 
TF'73IP. V WORD 0124H EXTRA 
TP74C5 II WORD 8l2AH EXTRA 
TP74IP. V WORD 0128fi EXTRA 
TP75C5 1/ WORr, 012EH EXTRA 
TP75IP. II WORD 012CH EXTRA 
TP76CS. II WORD OE2H EXTRA 
TP76lP II WORD 0130H EXTRA 
TP77CS. V WORD 0B6H EXTRA 
Tf'77IP. II "'ORO 0B4H EXTRA 
TYPES L NEAR 0012H CODE 
WAIT79. L NEAR B!:lB7H CODE 

f:SSEMBL Y COMPLETE.. NO ERRORS FOUND 

2-181 121500-001 





8086, 8088, 80186, 80188 3 
Microprocessors 





8086 
16-BIT HMOS MICROPROCESSOR 

8086/8086-2/8086-1 * 

• Direct Addressing Capability 1 Arithmetic in Binary or Decimal 
M Byte of Memory Including Multiply and Divide 

• Architecture Designed for Powerful • Range of Clock Rates: 

Assembly Language and Efficient 5 MHz for 8086, 

High Level Languages. 8 MHz for 8086·2, 
10 MHz for 8086·1 

• 14 Word, by 16·Bit Register Set with • MULTIBUS® System Compatible 
Symmetrical Operations Interface 

• 24 Operand Addressing Modes • Available in EXPRESS 
- Standard Temperature Range 

• Bit, Byte, Word, and Block Operations - Extended Temperature Range 

• Available in 40-Lead Cerdip and Plastic 

• 8 and 16·Bit Signed and Unsigned Package 
(See Packaging Spec, Order #231369) 

The Intel 8086 high performance 16-bit CPU is available in three clock rates: 5, 8 and 10 MHz. The CPU is implemented in 
N-Channel, depletion load, silicon gate technology (HMOS), and packaged in a 4o-pin CERDIP or plastic package. The 8086 
operates in both single processor and multiple processor configurations to achieve high performance levels. 

'Changes from the 1985 handbook specification have been made for the 8088-1. See A.C. Characteristics TGVCH and TCLGL. 

EXECUTION UNIT BUS INTERFACE UNIT .. , 
RELOCATION 

REGISTER FilE REGISTER FILE 

SEGMENT 
OATA REGISTERS 

POINTER, AND ANO 
INDEX REGS INSTAUCTION 
(8 WORQSI POINTER 

(5 WORDSI 

r-":::":::'-'--fi'"HEIS, 

ROIGTQ;~) 
HOlO-----

BUS 
INTERFACE 

UNIT 

6·BYTE 
INSTRUCTION 

QUEUE 

CONTROL & TIMING 

HlOA---- '---"---"--r---.--~ 

: I 
RESET READY MNIMX 

A,!joISti 

, 
3 " OTllttITN,AlE 

'1 aSo,QS, 

3 S2.S"So 

Figure 1. 8086 CPU Block Diagram 

GND Vee 
A014 AD15 

AD13 A161S3 

AD12 A17/54 

AD11 A18/55 

AOtO A191S6 

AD9 BHE/S7 

ADS MNIMX 

AD7 AD 
AD6 AOIGTO (HOlOj 

ADS RbIGTi (HLDA) 

AD_ LOCK (WRI 

AD3 52 (MIlO) 

A02 iii (DTfR) 

AD1 So (DENI 

ADO aso IALE) 

NMI aS1 (INTA} 

INTR TEST 

elK READY 

GND RESET 

40 LEAD 

Figure 2. 8086 Pin Configuration 

3-1 



inter 8086 

Table 1. Pin Description 

The following pin function descriptions are for 8086 systems in either minimum or maximum mode. The "Local Bus" in these 
descriptions is the direct multiplexed bus interface connection to the 8086 (without regard to additional bus buffers). 

Symbol Pin No. Type Name and Function 

AD'5-ADo 2-16,39 1/0 Address Data Bus: These lines constitute the time multiplexed memoryllO address (T,) 
and data (T2, T3, Tw, T4) bus. Ao is analogous to SHE for the lower byte of the data bus, 
pins 01'00, It is lOW during T, when a byte is to be transferred on the lower portion of 
the bus in memory or 1/0 operations. Eight-bit oriented devices tied to the lower half 
would normally use Ao to condition chip select functions. (See SHE.) These lines are 
active HIGH and float to 3-state OFF during interrupt acknowledge and local bus "hold 
acknowledge." 

A,g1S6' 35-38 a Address/Status: During T 1 these are the four most signi-
A'B/S5, ficant address lines for memory operations. During 1/0 
A' 7/S4, operations these lines are lOW. During memory and 110 

A17/S4 A,slS3 Characteristics 
A,s1S3 operations, status information is available on these 

lines during T 2, T 3, T w, and T 4. The status of the interrupt o (LOW) 0 Alternate Data 

enable FLAG bit (Ss) is updated at the beginning of each 0 1 Stack 
'(HIGH) 0 Code or None 

ClK cycle. A ,7/S4 and A,slS3 are encoded as shown. 1 1 Data 

This information indicates which relocation register is 
$6 is 0 

(LOW) 

presently being used for data accessing. --

These lines float to 3-state OFF during local bus "hold 
acknowledge." ._-

SHE/S7 34 a Bus High Enable/Status: During T 1 the bus high enable 
signal (SHE) should be used to enable data onto the 
most significant half of the data bus, pins D'5-DS. Eight- "HE An Characteristics 

bit oriented devices tied to the upper half of the bus --
0 0 Whole word 

would normally use SHE to condition chip select func- 0 1 Upper byte froml 
tions. SHE is lOW during T, for read, write, and inter- to odd address 

rupt acknowledge cycles when a byte is to be transfer- 1 0 Lower byte from! 

red on the high portion of the bus. The 57 status informa- to even address 

1 1 None 
tion is available during T 2, T 3, and T 4. The.signal is active -" ".~ 

lOW, and floats to 3-state OFF in "hold." It is lOW dur-
ing T, for the first interrupt acknowledge cycle. 

--= 
RD 32 a Read: Read strobe indicates that the processor is performing a memory of 1/0 read cy-

cle, depending on the state of the 52 pin. This signal is used to read devices which 
reside on the 8086 local bus. RD is active lOW during T2, T3 and Tw of any read cycle, 
and is guaranteed to remain HIGH in T2 until the 8086 local bus has floated. 

This signal floats to 3-state OFF in "hold acknowledge." 

READY 22 I READY: is the acknowledgement from the addressed memory or 1/0 device that it will 
complete the data transfer. The READY signal from memoryllO is synchronized by the 
8284A Clock Generator to form READY. This signal is active HIGH. The 8086 READY in-
put is not synchronized. Correct operation is not guaranteed if the setup and hold 
times are not met. 

INTR 18 I Interrupt Request: is a level triggered input which is sampled during the last clock cy-
cle of each instruction to determine if the processor should enter into an interrupt 
acknowledge operation. A subroutine is vectored to via an interrupt vector lookup table 
located in system memory. It can be internally masked by software resetting the inter-
rupt enable bit. INTR is internally synchronized. This signal is active HIGH. 

TEST 23 I TEST: input is examined by the "Wait" instruction. If the TEST input is lOW execution 
continues, otherwise the processor waits in an "Idle" state. This input is synchronized 
internally during each clock cycle on the leading edge of CLI<. 

3-2 



8086 

Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

NMI 17 I Non·maskable interrupt: an edge triggered input which causes a type 2 interrupt. A 
subroutine is vectored to via an interrupt vector lookup table located in system 
memory. NMI is not maskable internally by software. A transition from a lOW to HIGH 
initiates the interrupt at the end of the current instruction. This input is internally syn-
chronized. 

--
RESET 21 I Reset: causes the processor to immediately terminate its present activity. The signal 

must be active HIGH for at least four clock cycles. It restarts execution, as described in 
the Instruction Set description, when RESET returns lOW. RESET is internally syn-
chronized. 

--
ClK 19 I Clock: provides the basic timing for the processor and bus controller. It is asymmetric 

with a 33% duty cycle to provide optimized internal timing. 

Vcc 40 Vee: + 5V power supply pin. 

GND 1,20 Ground 
-~ 

MN/MX 33 I Minimum/Maximum: indicates what mode the processor is to operate in. The two 
modes are discussed in the following sections. 

The following pin function descriptions are for the 8086/8288 system in maximum mode (i.e., MN/Mx = V ssJ. Only the 
pin functions which are unique to maximum mode are described; all other pin functions are as described above. 

S2, S" So 26-28 a 

RQ/GTo, 30,31 I/O 
RQ/GT, 

Status: active during T 4, T" and T 2 and is returned to the 
passive state (1,1,1) during T 3 or during T w when READY 52 S1 So Chara CI~~ 
is HIGH. This status is used by the 8288 Bus Controller I 0 (LOW) 0 

to generate all memory and I/O access control signals. 
Any change by 5;,5;, or SO during T4 is used to indicate ' 0 0 

0 , 
the beginning of a bus cycle, and the return to the pas- o 1 

sive state in T 3 or Tw is used to indicate the end of a bus 1 (HIGH) 0 

cycle. 1 0 
1 1 

These signals float to 3-state OFF in "hold acknowl-
1 , 

edge." These status lines are encoded as shown. 

0 Interr cp, 
Ackn owledge , Read 

0 Write , '-Jalt 
() Code 

1 I Read 

01 W",e 
1 Pass I 

110 PNt 
110 Port 

AeCA" I 
Mernory 

Memory 

Request/Grant: pins are used by other local bus masters to force the proce 
release the local bus at the end of the processor's current bus cycle. Each 

ssar to 
pin is 

nternal 
follows 

bidirectional with RQ/GTo having higher priority than RO/GT,. RO/GT has an i 
pull·up resistor so may be left unconnected. The request/grant sequence is as 
(see Figure 9): 

1. A pulse of 1 ClK wide from another local bus master indicates a local bus r equest 
("hold") to the 8086 (pulse 1). 

2. During a T4 orTI clock cycle, a pulse 1 ClK wide from the 8086 to the requesting master 
II enter 

discon-
(pulse 2), indicates that the 8086 has allowed the local bus to float and that it wi 
the "hold acknowledge" state at the next ClK. The CPU's bus interface unit is 
nected logically from the local bus during "hold acknowledge." 

3. A pulse 1 ClK wide from the requesting master indicates to the 8086 (pulse 3) that 
s at the the "hold" request is about to end and that the 8086 can reclaim the local bu 

next ClK. 

Each master·master exchange of the local bus is a sequence of 3 pulses. Ther e must 
be one dead ClK cycle after each bus exchange. Pulses are active lOW. 

If the request is made while the CPU is performing a memory cycle, it will release t he local 
bus during T4 of the cycle when all the following conditions are met: 

1. Request occurs on or before T2 . 

2. Current cycle is not the low byte of a word (on an odd address). 
3. Current cycle is not the first acknowledge of an interrupt acknowledge seq uence. 
4. A locked instruction is not currently executing. 

3-3 



inter 8086 

Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

If the local bus is idle when the request is made the two possible events will follow: 

1. Local bus will be released during the next clock. 
2. A memory cycle will start within 3 clocks. Now the four rules for a currently active 

memory cycle apply with condition number 1 already satisfied. 

LOCK 29 0 LOCK: output indicates that other system bus masters are not to gain control of the 
system bus while LOCK is active LOW. The LOCK signal is activated by the "LOCK" 
prefix instruction and remains active until the completion of the next instruction. This 
signal is active LOW, and floats to 3-slate OFF in "hold acknowledge." 

QS1, QSo 24, 25 0 Queue Status: The queue status QS1 QSo CHARACTERISTICS 
is valid during the CLK cycle o (LOW) 0 No Operation 
after which the queue operation 0 1 First Byte of Op Code from Queue 
is performed. 1 (HIGH) 0 Empty the Queue 
QS1 and QSo provide status to 1 1 Subsequent Byte from Queue 
allow external tracking of the 
internal 8086 instruction queue. 

The following pin function descriptions are for the 8086 in minimum mode (i.e., MN/MX ~ Vee!- Only the pin functions which 
are unique to minimum mode are described; all other pin functions are as described above. 

MilO 28 a Status line: logically equivalent to S2 in the maximum mode. It is used to distinguish a 
memory access from an I/O access. M/iO becomes valid in the T 4 preceding a bus cycle 
and remains valid until the final T4 of the cycle (M = HIGH, 10 = LOW). M/iO floats to 
3·state OFF in local bus "hold acknowledge." 

WR 29 0 Write: indicates that the processor is performing a write memory or write I/O cycle, 
depending on the state of the M/iO signal. WR is active for T 2, T 3 and T waf any write cy-
cle. It is active LOW, and floats to 3-state OFF in local bus "hold acknowledge." 

INTA 24 0 INTA is used as a read strobe for interrupt acknowledge cycles. It is active LOW during 
T 2, T3 and Tw of each interrupt acknowledge cycle. 

---~----

ALE 25 0 Address Latch Enable: provided by the processor to latch the address into the 82821 
8283 address latch. It is a HIGH pulse active during T1 of any bus cycle. Note that ALE 
is never floated. 

-------------
DT/R 27 0 Data Transmit/Receive: needed in minimum system that desires to use an 8286/8287 

data bus transceiver. It is used 10 control the direction of data flow through the 
transceiver. Logically DT/R is equivalent to ~ in the maximum mode, and its timing is 
the same as for M/iO. (T = HIGH, R = LOW.) This signal floats to 3-state OFF in local bus 
"hold acknowledge." 

DEN 26 0 Data Enable: provided as an output enable for the 8286/8287 in a minimum system 
which uses the transceiver. DEN is active LOW during each memory and I/O access and 
for INTA cycles. For a read or INTA cycle it is active from the middle of T 2 until the mid-
dle of T4, while for a write cycle it is active from the beginning of T 2 until the middle of 
T4. DEN floats to 3-state OFF in local bus "hold acknowledge." 

HOLD, 31,30 I/O HOLD: indicates that another master is requesting a local bus "hold." To be acknowl-
HLDA edged, HOLD must be active HIGH. The processor receiving the "hold" request will 

issue HLDA (HIGH) as an acknowledgement in the middle of a T1 clock cycle. Simul-
taneous with the issuance of HLDA the processor will float the local bus and control 
lines. After HOLD is detected as being LOW, the processor will LOWer the HLDA, and 
when the processor needs to run another cycle, it will again drive the local bus and 
control lineso 

The same rules as for RQIGT apply regarding when the local bus will be released. 

HOLD is not an asynchronous input. External synchronization should be provided if the 
system cannot otherwise guarantee the setup time. 

3-4 



FUNCTIONAL DESCRIPTION 

GENERAL OPERATION 

The internal functions of the 8086 processor are partitioned 
logically into two processing units. The first is the Bus 
Interface Unit (BIU) and the second is the Execution Unit 
(EU) as shown in the block diagram of Figure 1. 

8086 

These units can interact directly but for the most part 
perform as separate asynchronous operational process­
ors. The bus interface unit provides the functions related 
to instruction fetching and queuing, operand fetch and 
store, and address relocation. This unit also provides the 
basic bus control. The overlap of instruction pre-fetching 
provided by this unit serves to increase processor perfor­
mance through improved bus bandwidth utilization. Up to 
6 bytes of the instruction stream can be queued while 
waiting for decoding and execution. 

The instruction stream queuing mechanism allows the 
BIU to keep the memory utilized very efficiently. When· 
ever there is space for at least 2 bytes in the queue, the 
BIU will attempt a word fetch memory cycle. This greatly 
reduces "dead time" on the memory bus. The queue 
acts as a First-ln-First·Out (FIFO) buffer, from which the 
EU extracts instruction bytes as required. If the queue is 
empty (following a branch instruction, for example), the 
first byte into the queue immediately becomes available 
to the EU. 

The execution unit receives pre-fetched instructions 
from the BtU queue and provides un·relocated operand 
addresses to the BIU. Memory operands are passed 
through the BIU for processing by the EU, which passes 
results to the BIU for storage. See the Instruction Set 
description for further register set and architectural 
descriptions. 

Memory Segment Register 
Reference Need Used 

MEMORY ORGANIZATION 
The processor provides a 20-bit address to memory which 
locates the byte being referenced. The memory is orga­
nized as a linear array of up to 1 million bytes, addressed 
as OOOOO(H) to FFFFF(H). The memory is logically divided 
into code, data, extra data, and stack segments of up to 
64K bytes each, with each segment falling on 16-byte 
boundaries. (See Figure 3a.) 

All memory references are made relative to base 
addresses contained in high speed segment registers. The 
segment types were chosen based on the addressing 
needs of programs. The segment register to be selected is 
automatically chosen according to the rules of the follow­
ing table. All information in one segment type share the 
same logical attributes (e.g. code or data). By structuring 
memory into relocatable areas of similar characteristics 
and by automatically selecting segment registers, pro­
grams are shorter, faster, and more structured. 

Word (16-bit) operands can be located on even or odd 
address boundaries and are thus not constrained to 
even boundaries as is the case in many 16·bit com· 
puters. For address and data operands, the least signifi· 
cant byte of the word is stored in the lower val ued 
address location and the most Significant byte In trw 
next higher address location. The BtU automatically per 
forms the proper number of memory accesses, one If 
the word operand is on an even byte boundary and two if 
it is on an odd byte boundary. Except for the perfor­
mance penalty, this double access is transparent to the 
software. This performance penalty does not occur for 
instruction fetches, only word operands. 

Physically, the memory is organized as a high bank 
(0'5-08) and a low bank (Dr Do) of 512K 8-bit bytes 
addressed in parallel by the processor's address lines 

A19 - A1. Byte data with even addresses is transferred on 
the 07-00 bus lines while odd addressed byte data !Ao 
HIGH) is transferred on the 015-08 bus lines. The process­
or provides two enable signals, SHE and Ao, to selectively 
allow reading from or writing into either an odd byte 
location, even byte location, or both. The instruction 
stream is fetched from memory as words and is addressed 
internally by the processor to the byte level as necessary. 

Segment 
Selection Rule 

Instructions ,CODE (CS) Automatic with all instruction prefetch. 

Stack STACK (55) All stack pushes and pops. Memory refe rences relative to BP 
base register except data references. 

Local Data DATA (OS) Data references when: relative to stack, desti nation of stri ng 
operation, or explicitly overridden. -. 

External (Global) Data EXTRA (ES) Destination of string operations: Explic itly selected using a 
segment override. 

3-5 



8086 

...r---:J.. FFFFF H 

.rD} CODE SEGMENT 

~ XXXXOH 

I.· i~}STACKSEGMENT 
I + OFFSET 

i 

"':\'il:'~":t- . J __ tl}OATASEGMENT 

ES I 

LDl"'" "" .0 •• " 

~OOOOOH 

Figure 3a. Memory Organization 

In referencing word data the BIU requires one or two 
memory cycles depending on whether or not the start· 
ing byte of the word is on an even or odd address, 
respectively. Consequently, in referencing word oper· 
ands performance can be optimized by locating data on 
even address boundaries. This is an especially useful 
technique for using the stack, since odd address refer· 
ences to the stack may adversely affect the context 
switching time for interrupt processing or task multi· 
plexing. 

Certain locations in memory are reserved for specific 
CPU operations (see Figure 3b.) Locations from address 
FFFFOH through FFFFFH are reserved for operations 
including a jump to the initial program loading routine. 
Following RESET, the CPU will always begin execution 
at location FFFFOH where the jump must be. Locations 
OOOOOH through 003FFH are reserved for interrupt 
operations. Each of the 256 possible interrupt types has 
its service routine pointed to by a 4-byte pointer element 

3-6 

consisting of a 16-bit segment address and a 16-bit off· 
set address. The pOinter elements are assumed to have 
been stored at the respective places in reserved memory 
prior to occurrence of interrupts. 

RESET BOOTSTRAP 
PROGRAM JUMP 

1 
INTERRUPT POINTER 

FOR TYPE 255 

INTERRUPT POINTER 
FOR TYPE 1 

INTERRUPT POINTER 
FOR TYPE 0 

FFFFFH 

FFFFOH 

3FFH 

3FCH 

7H 

4H 
3H 

OH 

Figure 3b. Reserved Memory Locations 

MINIMUM AND MAXIMUM MODES 
The requirements for supporting minimum and maximum 
8086 systems are sufficiently different that they cannot b!l 
done efficiently with 40 uniquely defined pins. Consequently, 
the 8086 is equipped with a strap pin (MN/MX) which defines 
the system configuration. The definition of a certain subset 
of the pins changes dependent on the condition of the strap 
pin. When MN/MX pin is strapped to GND, the 8086 treats 
pins 24 through 31 in maximum mode. An 8~88_ blJ.B 
controller interprets status information coded into So, S2, S2 
to generate bus timing and control signals compatible with 
the MULTIBUS® architecture. When the MN/MX pin is 
strapped to Vee, the 8086 generates bus control signals itself 
on pins 24 through 31, as shown in parentheses in Figure 2. 
Examples of minimum mode and maximum mode systems 
are shown in Figure 4. 



8284ACLOCK 
GENERATOR I- ClK 

r-- lIE f- READY 
I- RESET I ROY 

GNO r-l--, 

8086 

MNIMX Vee 

MI~IO;~--------------------------------------------------------------------~I 

INTA~-------------------------------------------------------------------~' 

RD~---------------------------------------~l------------~'----------l~-~ 
m~------~------~lH----~I----hl~1 

DENt- -- -- -, I I I WAIT I 
I STATE I 
I GENERATOR I 
L ___ ..J 

DTJFir- -- -- -, I: 1'1 

I I r-----, I 
8086 CPU I~==::::;-l I I I 

I I r- II I:, ALE 1------ ---rr- STB : I 

GNO~ DE 8282 I I i 1 I 

GND r-
I WAIT 
I STATE 
I GENERATOR I 
L ___ ..J 

ADo-AD 15 AAUDDRIDATA ;A;~~ I ~tL--=--=-I::;-;::'------=----=----_::=:=-----,=KApiDDD)c"-C_ =====!;::::=~~=::::jii 
A"~~'~ ~~ ~ ~--=--r+~ ~_ll I I I I, 

'-___ --' ~ : i I 

l ~I : ~ -: -=--=---, i 
L -- --1 0, 8286 I I 

----. TRANSCEIVER I C::::::::=:~=::94YE:::::~=~:::::=::::=~=~=:=~~=:j 
I (2) II 
I I BHE 

L ___ I r±l~~~ 
OPTIONAL 

FOR INCREASED 
DATA BUS DRIVE 2142 RAM (4) 

12) (2) 
1Kx6 1Kx8 

2716·2 PROM (2) 

2K)( 8 2K ,,8 

Figure 4a. Minimum Mode 8086 Typical Configuration 

8086 
CPU 

GND 

s,~---------I 

elK M"Roc 
S, MWTC 

s; AMWC 

S, 8288 IORC 

DEN BUS 
CTRLA lowe 

OliFf AtOWC 

ALE INTA 

---:-] 

8286 
TRANSCEIVER 

(2) 

I 
I 

N.C. 

N.C. 

2142 RAM (4) 

12) 
lKx8 

(2) 
11<x8 

r---=-t: 
, I 

I 

_J ___ L 

2716·2 PROM (2l 

2K I< 8 2K)( 8 

Figure 4b. Maximum Mode 8086 Typical Configuration 

3-7 

Mes-ao 
PERIPHERAL 

JL 
! II :; 

1~1L 
Mes·ao 

PERIPHERAL 



8086 

BUS OPERATION 

The 8086 has a combined address and data bus commonly 
referred to as a time multiplexed bus. This technique pro­
vides the most efficient use of pins on the processor while 
permitting the use of a standard 4D-Iead package. This "local 
bus" can be buffered directly and used throughout the system 
with address latching provided on memory and I/O modules. 
! n addition, the bus can also be demultiplexed at the 
processor with a single set of address latches if a standard 
non-multiplexed bus is desired for the system. 

Each processor bus cycle consists of at least four ClK 
cycles. These are referred to as T" T 2, T 3 and T 4 (see 
Figure 5). The address is emitted from the processor 
during T, and data transfer occurs on the bus during T 3 
and T 4. T 2 is used primarily for changing the direction of 
the bus during read operations. In the event that a "NOT 
READY" indication is given by the addressed device, 
"Wait" states (T w) are inserted between T 3 and T 4. Each 
inserted "Wait" state is of the same duration as a ClK 
cycle. Periods can occur between 8086 bus cycles. 
These are referred to as "Idle" states (TI) or inactive ClK 
cycles. The processor uses these cycles for internal 
housekeeping. 

During T, of any bus cycle the ALE (Address latch 
Enable) signal is emitted (by either the processor or the 
8288 bus controller, depending on the MN/MX strap). At 
the trailing edge of this pulse, a valid address and cer· 
tain status information for the cycle may be latched. 

Status bits So, S" and S2 are used, in maximum mode, 
by the bus controller to identify the type of bus transac· 
tion according to the following table: 

52 S, So CHARACTERISTICS 

o (LOW) 0 0 Interrupt Acknowledge 
0 0 1 Read 110 
0 1 0 Write 110 
0 1 1 Halt 
1 (HIGH) 0 0 Instruction Fetch 
1 0 1 Read Data from Memory 
1 1 0 Write Data to Memory 
1 1 1 Passive (no bus cycle) 

3-8 

Status bits S3 through S7 are multiplexed with high· 
order address bits and the SHE Signal, and are therefore 
valid during T 2 through T 4. S3 and S4 indicate which 
segment register (see Instruction Set description) was 
used for this bus cycle in forming the address, accord· 
ing to the following table: 

S4 S3 CHARACTERISTICS 
o (LOW) 0 Alternate Data (extra segment) 
0 1 Stack 
1 (HIGH) 0 Code or None 
1 1 Data 

Ss is a reflection of the PSW interrupt enable bit. S6=0 and 
87 is a spare status bit. 

I/O ADDRESSING 

In the 8086, I/O operations can address up to a maximum of 
64K I/O byte registers or 32K I/O word registers. The I/O 
address appears in the same format as the memory address 
on bus lines A1S-Ao. The address lines A'9-A'6 are zero in I/O 
operations. The variable I/O instructions which use register 
DX as a pointer have full address capability while the direct 
I/O instructions directly address one or two of the 256 I/O 
byte locations in page 0 of the I/O address space. 

I/O ports are addressed in the same manner as memory 
locations. Even addressed bytes are transferred on the 
DrDo bus lines and odd addressed bytes on D1s-Da. 
Care must be taken to assure that each register within 
an 8·bit peripheral located on the lower portion of the 
bus be addressed as even. 



inter 

elK 

ADOR! 
STATUS 

ADOR/DATA 

READY 

OTIA 

8086 

,,0------ 14 + NWA!TJ = Tey ------~ • .fl .. ------ (4 + NWAIT) = Tey ------_'1 
T, T2 T3 TWAIT T4 T1 T2 T3 TWAIT T4 

''---
87-S3 

-----8 ___ D_A_TA_O_UT_'D_"_-O_O_' _--J't -~ 

READY READY 

WAIT WAIT 

1-MEMORY ACCESS TIME----+ 

\'--_--J/ 

Figure 5. Basic System Timing 

3-9 



8086 

EXTERNAL INTERFACE 
PROCESSOR RESET AND INITIALIZATION 

Processor initialization or start up is accomplished with 
activation (HIGH) of the RESET pin. The 8086 RESET is 
required to be HIGH for greater than 4 elK cycles. The 
8086 will terminate operations on the high-going edge of 
RESET and will remain dormant as long as RESET is 
HIGH. The low-going transition of RESET triggers an 
internal reset sequence for approximately 10 elK cycles. 
After this interval the 8086 operates normally beginning 
with the instruction in absolute location FFFFOH (see 
Figure 3Bl. The details of this operation are specified in the 
Instruction Set description of the MeS-86 Family User's 
Manual. The RESET input is internally synchronized tothe 
processor clock. At initialization the HIGH-to-lOW trans­
ition of RESET must occur no sooner than 50 p,s after 
power-up, to allow complete initialization of the 8086. 

NMI may not be asserted prior to the 2nd elK cycle fol­
lowing the end of RESET. 

INTERRUPT OPERATIONS 

Interrupt operations fall into two classes; software or 
hardware initiated. The software initiated interrupts and 
software aspects of hardware interrupts are specified in 
the Instruction Set description. Hardware interrupts can 
be classified as non-maskable or maskable. 

Interrupts result in a transfer of control to a new pro­
gram location. A 256-element table containing address 
pointers to the interrupt service program locations 
resides in absolute locations 0 through 3FFH (see 
Figure 3b), which are reserved for this purpose. Each 
element in the table is 4 bytes in size and corresponds 
to an interrupt "type". An interrupting device supplies 
an 8-bit type number, during the interrupt acknowledge 

sequence, which is used to "vector" through the ap­
propriate element to the new interrupt service program 
location. 

NON·MASKABLE INTERRUPT (NMI) 

The processor provides a single non-maskable interrupt 
pin (NMI) which has higher priority than the maskable in­
terrupt request pin (INTR). A typical use would be to ac­
tivate a power failure routine. The NMI is edge-triggered 
on a lOW-to-HIGH transition. The activation of this pin 
causes a type 2 interrupt. (See Instruction Set descrip­
tion.) 

NMI is required to have a duration in the HIGH state of 
greater than two elK cycles, but is not required to be 
synchronized to the clock. Any high-going transition of 
NMI is latched on-chip and will be serviced at the end of 
the current instruction or between whole moves of a 
block-type instruction. Worst case response to NMI 
would be for multiply, divide, and variable shift instruc­
tions. There is no specification on the occurre'nce of the 
low-going edge; it may occur before, during, or after the 
servicing of NMI. Another high-going edge triggers 
another response if it occurs after the start of the NMI 
procedure. The signal must be free of logical spikes in 
general and be free of bounces on the low-going edge to 
avoid triggering extraneous responses. 

MASKABLEINTERRUPTONT~ 

The 8086 provides a single interrupt request input (INTR) 
which can be masked internally by software with the 
resetting of the interrupt enable FLAG status bit. The 
interrupt request signal is level triggered. It is internally 
synchronized during each clock cycle on the high-going 
edge of elK. To be responded to, INTR must be present 
(HIGH) during the clock period preceding the end of the 
current instruction or the end of a whole move for a 
block-type instruction. During the interrupt response 
sequence further interrupts are disabled. The enable bit 
is reset as part of the response to any interrupt (INTR, 
NMI, software interrupt or single-step), although the 

I T, T2 T3 T4 I TI I T, I T2 TJ 

ALE £\ _____ -------,/ F'L-._' __ 
LOCK \ r I I 

I ( 

rr' ~ \ INTA \ 

\ ~FLOAT I' (I TYPE VECTOR >-ADo-AOt~ 

Figure 6. Interrupt Acknowledge Sequence 

3-10 



8086 

FLAGS register which is automatically pushed onto the 
stack reflects the state of the processor prior to the 
interrupt. Until the old FLAGS register is restored the 
enable bit will be zero unless specifically set by an 
instruction. 

During the response sequence (figure 6) the processor 
executes two successive (back-to-back) interrupt 
acknowledge cycles. The 8086 emits the LOCK signal 
from T 2 of the first bus cycle until T 2 of the second. A 
local bus "hold" request will not be honored until the 
end of the second bus cycle. In the second bus cycle a 
byte is fetched from the external interrupt system (e.g., 
8259A PIC) which identifies the source (type) of the 
interrupt. This byte is multiplied by four and used as a 
pointer into the interrupt vector lookup table. An INTR 
signal left HIGH will be continually responded to within 
the limitations of the enable bit and sample period. The 
INTERRUPT RETURN instruction includes a FLAGS pop 
which returns the status of the original interrupt enable 
bit when it restores the FLAGS. 

HALT 
When a software "HALT" instruction is executed the 
processor indicates that it is entering the "HALT" state 
in one of two ways depending upon which mode is 
strapped. In minimum mode, the processor issues one 
ALE with no qualifying bus control signals. In Maximum 
Mode, the processor issues appropriate HALT status on 
828,50 and the 8288 bus controller issues one ALE. The 
8086 will not leave the "HALT" state when a local bus 
"hold" is entered while in "HALT". In this case, the 
processor reissues the HALT indicator. An interrupt 
request or RESET will force the 8086 out of the "HALT" 
state. 

READ/MODIFY/WRITE (SEMAPHORE) 
OPERATIONS VIA LOCK 
The LOCK status information is provided by the proc­
essor when directly consecutive bus cycles are required 
during the execution of an instruction. This provides the 
processor with the capability of performing read/modifyl 
write operations on memory (via the Exchange Register 
With Memory instruction, for example) without the 
possibility of another system bus master receiving 
intervening memory cycles. This is useful in multi­
processor system configurations to accomplish "test 
and set lock" operations. The LOCK signal is activated 
(forced LOW) in the clock cycle following the one in 
which the software "LOCK" prefix instruction is 
decoded by the EU. It is deactivated at the end of the 
last bus cycle of the instruction following the "LOCK" 
prefix instruction. While LOCK is active a request on a 
RQ/GT pin will be recorded and then honored at the end 
of the LOCK. 

EXTERNAL SYNCHRONIZATION VIA TEST 
As an alternative to the interrupts and general I/O 
capabilities, the 8086 provides a single software­
testable input known as the TEST signal. At any time the 
program may execute a WAIT instruction. If at that time 
the TEST signal is inactive (HIGH), program execution 
becomes suspended while the processor waits for TEST 

to become active_ It must remain active for at least 5 
CLK cycles. The WAIT instruction is re-executed 
repeatedly until that time. This activity does not con­
sume bus cycles. The processor remains in an idle state 
while waiting. All 8086 drivers go to 3-state OFF if bus 
"Hold"is entered. If interrupts are enabled, they may 
occur while the processor is waiting. When this occurs 
the processor fetches the WAIT instruction one extra 
time, processes the interrupt, and then re-fetches and 
re-executes the WAIT instruction upon returning from 
the interrupt. 

BASIC SYSTEM TIMING 
Typical system configurations for the processor 
operating in minimum mode and in maximum mode are 
shown in Figures 4a and 4b, respectively. In minimum 
mode, the MN/MX pin is strapped to Vee and the proc­
essor emits bus control signals in a manner similar to 
the 8085. In maximum mode, the MN/MX pin is strapped 
to Vss and the processor emits coded status informa­
tion which the 8288 bus controller uses to generate 
MULTIBUS compatible bus control signals. Figure 5 il­
lustrates the signal timing relationships. 

3-11 

AX 

ax 
ex 
ox 

-1 

rl 
~ 

AH 
BH 

CH 

OH 

SP 

8P 

51 

01 

IP 

FLAGSH I 
CS 

DS 

55 

ES 

AL 

BL 

CL 

DL 

FLAGSL I 

ACCUMULATOR 

BASE 

COUNT 

DATA 

STACK POINTER 

BASE POINTER 

SOURCE INDEX 

DESTINATION INDEX 

INSTRUCTION POINTER 

STATUS flAGS 

CODe SEGMENT 

DATA SEGMENT 

STACK SEGMENT 

EXTRA SEGMENT 

Figure 7. 8086 Register Model 

SYSTEM TIMING - MINIMUM SYSTEM 
The read cycle begins in T, with the assertion of the 
Address Latch Enable (ALE) signal. The trailing (low­
going) edge of this signal is used to latch the address 
information, which is valid on the local bus at this time, 
into the 8282/8283 latch. The BHE and Ao signals 
address the low, high, or both bytes. From T, to T4 the 
Mira signal indicates a memory or I/O operation. At T2 
the address is removed from the local bus and the bus 
goes to a high impedance state. The read control signal 
is also asserted at T 2. The read (RD) signal causes the 
addressed device to enable its data bus drivers to the 
local bus. Some time later valid data will be available on 
the bus and the addressed device will drive the READY 
line HIGH. When the processor returns the read signal 



8086 

to a HIGH level, the addressed device will again 3·state 
its bus drivers. If a transceiver (8286/8287) is required to 
buffer the 8086 local bus, signals oTiA" and DEN are pro· 
vided by the 8086. 

A write cycle also begins with the assertion of ALE and 
the emission of the address. The M/iO signal is again 
asserted to indicate a memory or 110 write operation. In 
the T2 immediately following the address emission the 
processor emits the data to be written into the 
addressed location. This data remains valid until Ihe 
middle of T 4. During T 2, T 3, and T w the processor asserts 
the write control signal. The write (WR) signal becomes 
active at the beginning of T 2 as opposed to the read 
which is delayed somewhat into T 210 provide time for 
the bus 10 float. 

The BHE and Ao signals are used 10 select the proper 
byle(s) of Ihe memoryliO word 10 be read or written 
according to the following table: 

BHE AO CHARACTERISTICS 
0 0 Whole word 

0 1 Upper byte froml 
to odd address 

1 0 Lower byte froml 
to even address 

1 1 None 

110 ports are addressed in the same manner as memory 
location. Even addressed bytes are transferred on the 
0 7-00 bus lines and odd addressed bytes on 0 15-08, 

The basic difference between the interrupt acknowl· 
edge cycle and a read cycle is that the interrupt 
acknowledge signal (INTA) is asserted in place of the 

read (M) signal and the address bus is floated. (See 
Figure 6.) In the second of two successive INTA cycles, 
a byte of information is read from bus lines 07-00 as 
supplied by the interrupt system logic (i.e., 8259A Prior· 
ity Interrupt Controller). This byte identifies the source 
(type) of the interrupt. It is multiplied by four and used 
as a pointer into an interrupt vector lookup table, as 
described earlier. 

BUS TIMING-MEDIUM SIZE SYSTEMS 

For medium size systems the MN/MX pin is connected to 
Vss and the 8288 Bus Controller is added to the system as 
well as an 8282/8283 latch for latching the system address, 
and a 8286/8287 transceiver to allow for bus loading 
greater than the 8086 is capable of handling. Signals ALE, 
DEN, and OT/Fi are generated by the 8288 instead of the 
processor in this configuration although their timing re­
mains relatively the same. The 8086 status outputs (82,8" 
and So) provide type-ol-cycle information and become 
8288 inputs. This bus cycle information specifies read 
(code, data, or I/O), write (data or I/O), interrupt acknowl­
edge, or software halt. The 8288 thus issues control 
signals specifying memory read or write, I/O read or write, 
or interrupt acknowledge. The 8288 provides two types of 
write strobes, normal and advanced, to be applied as re­
quired. The normal write strobes have data valid at the 
leading edge of write. The advanced write strobes have 
the same timing as read strobes, and hence data isn't valid 
at the leading edge of write. The 8286/8287 transceiver 
receives the usual T and OE inputs from the 8288's OT/R 
and DEN. 

The pointer into the interrupt vector table, which is 
passed during the second INTA cycle, can derive from 
an 8259A located on either the local bus or the system 
bus. If the master 8259A Priority Interrupt Controller is 
positioned on the lOCal bus, a TTL gate is required to 
disable the 8286/8287 transceiver when reading from the 
master 8259A during the interrupt acknowledge 
sequence and software "poll". 

3-12 



8086 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ......... O·C to 70·C 
Storage Temperature.. . . . ..... - 65·C to + 150·C 
Voltage on Any Pin with 

Respect to Ground .................. - 1.0 to + 7V 
Power Dissipation ........................ 2.5 Watt 

"NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (8086: TA = O'C to 70°C, Vee = 5V ± 10%) 
(8086-1: TA = O°C to 70°C, Vee = 5V ± 5%) 
(8086-2: TA = O°C to 70°C, Vee = 5V ± 5%) 

Symbol Parameter Min. Max. Units Test Conditions 
---_. 

Vil Input Low Voltage -0.5 +0.8 V 
--

VIH Input High Voltage 2.0 Vee+ 0.5 V 

VOL Output Low Voltage 0.45 V IOl=2.5 mA 

VOH Output High Voltage 2.4 V 10H= -400 ",A 

lee Power Supply Current: 8086 340 
8086-1 360 mA TA =25'C 
8086-2 350 

III Input Leakage Current ±10 ",A OV '" VIN '" Vee 

ILO Output Leakage Current ±10 ",A 0.45V .. VOUT " Vee -
Vel Clock Input Low Voltage -0.5 +0.6 V 

VeH Clock Input High Voltage 3.9 Vee + 1.0 V 

Capacitance of Input Buffer 
GIN (All input except 15 pF fe= 1 MHz 

ADo - AD15, RQ/GT) 

C,O 
Capacitance of 110 Buffer 15 pF fe= 1 MHz 
(ADo - AD 15, RQ/GT) 

Note: 1. V'L tested with MN/MX Pin = av. 
2. V,H tested with MN/MX Pin = 5V. 

MNIMX Pin is a Strap Pin. 

3-13 



i~ 8086 

A.C. CHARACTERISTICS (8086: TA = ooe to 700 e Vcc = 5V ± 10%) 
(8086-1: TA = ooe to 70oe, Vcc = 5V ± 5%) 
(8086-2: TA = ooe to 70oe, Vcc = 5V ± 5%) 

MINIMUM COMPLEXITY SYSTEM 
TIMING REQUIREMENTS 

Symbol Parameter 8086 8086-1 8086-2 

Min. Max. Min. Max. Min. 

TCLCL ClK Cycle Period 200 500 100 500 125 

TCLCH ClKLowTime 118 53 68 

TCHCl ClK High Time 69 39 44 

TCH1CH2 ClK Aise Time 10 10 

TCL2CLl ClK Fall Time 10 10 

TDVCl Data in Setup Time 30 5 20 

TClDX Data in Hold Time 10 10 10 

TAlVCl ADY Setup Time 35 35 35 
into 8284A (See 
Notes 1, 2) 

TClA1X ADY Hold Time 0 0 0 
into 8284A (See 

Notes 1, 2) 

TAYHCH AEADYSetup 118 53 68 
Time into 8086 

TCHAYX AEADYHold Time 30 20 20 
inlo8086 

TAYlCL AEADY Inactive to -8 -10 -8 
ClK (See Note 3) 

THVCH HOLD Setup Time 35 20 20 

TINVCH INTA, NMI, TEST 30 15 15 
Setup Time (See 
Note 2) 

TILIH Input Aise Time 20 20 

1---
(Except ClK) 

TIHll Input Fall Time 12 12 
(Except ClK) 

3-14 

Units 
Tug 

Conditions 

Max. 1 500 ns 

ns f 

ns 

10 ns From 1.0Vto 
3.5V 

10 ns From 3.5Vto , 
1.0V 

ns 

ns 

ns 

ns 
I 
I 

ns I 

ns I 

ns 
I 
I 

j 
ns 

ns 

20 ns From O.BV to 
2.0V 

From 2.0V to -] 12 ns 
O.BV 



inter 8086 

A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES 

[~- Test 
Parameter 8086 8086·1 8088·2 Units Conditions 

~ Min. Max. Min. Max. Min. Max. 

TCLAV Address Valid Delay 10 110 10 50 10 60 ns 

TCLAX Address Hold Time 10 10 10 ns 
~-

TCLAZ Address Float TCLAX 80 10 40 TCLAX 50 ns 

---~ 

r-Delay 

TlHll ALE Width TClCH-20 TCLCH-10 TClCH-10 ns --
TCLlH ALE Active Delay 80 40 50 ns 

TCHll ALE Inactive Delay 85 45 55 ns 
~-- c---

TlLAX Address Hold Time TCHCL-10 TCHCl-10 TCHCl-10 ns 
to ALE Inactive 

TClDV Data Valid Delay 10 110 10 50 10 60 ns ·Cl ~ 20-100 pF 

TCHDX Data Hold Time 10 10 10 ns 
for all 8086 Out-
puts (In addi-

TWHDX Data Hold Time TClCH-30 TClCH-25 TClCH-30 ns tion to 8086 self-
AfterWR load) 

TCVCTV Control Active 10 110 10 50 10 70 ns 

~-
Delay 1 

TCHCTV Control Active 10 110 10 45 10 60 ns 

----
~Delay 2 i 

TCVCTX Control Inactive 10 110 10 50 10 70 ns 

l..Eelay 
~---

TAZRl Address Float to 0 0 0 ns 
READ Active 

TCLRl RD Active Delay 10 165 10 70 10 100 ns 
---
TClRH RD Inactive Delay 10 150 10 60 10 80 ns 

TRHAV RD Inactive to Next TClCl-45 TClCl-35 TCLCl-40 ns 
Address Active I 

TClHAV HLDA Valid Delay 10 160 10 60 10 100 ns 

TRlRH RDWidth 2TClCl-75 2TClCl-40 2TClCl-50 ns 

~~!I WRWidih 2TCLCL-60 2TCLCL-35 2TCLCl-40 ns 

i TAVAL 1 Address Valid to TCLCH-60 TClCH-35 TClCH-40 ns 

I ALE Low 

i TOLo;-rO~tPut Rise Time 20 20 20 ns From O.BVto 

I 2.0V 

TOHOL Output Fall Time 12 12 12 ns From 2.0V to 
O.SV 

NOTES: 
1. Signal at 8284A shown for reference only. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next elK. 
3. Applies only to T2 state. (8 ns into T3). 

3-15 



A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

24 ~5_ TEST POINTS _'.5X==:. 

0.45 

A C TESTING: INPUTS ARE DRIVEN AT 2.4V FOA A LOGIC "1" AND 0.45V FOR 
A LOGIC 0." TIMING MEASUREMENTS ARE MADE AT l.5V FOR BOTH A 
LOGIC -'1" AND "0." 

WAVEFORMS 

MINIMUM MODE 

ClK (8284,.. Output) 

M/Ri 

ALE 

ROY (8284A Input) 
SEE NOTE 4 

READY (8086 Input) 

READ CYCLE 

(NOTE 1) 

(WR, INTA = VOH) 

AD 

DT/A 

8086 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 

'1CL~100PF TEST 

CL INCLUDES JIG CAPACITANCE 

, 

3-16 



inter 
WAVEFORMS (Continued) 

MINIMUM MODE (Continued) 

elK (8284A Output) 

MIlO 

ALE 

AD1S-ADo 

WRITE CYCLE 

DTift= VOH) 
(RO~:;: ,) 1 

rTCLAZ 

--1----1----.1 
AD,s-ADo 

lNTA CYCLE OT/A 

(NOTES 1 & 3) 

RD, W'R=VOH 
fi'Rl'=VoLl 

SOnwARE HALT-

RD, WR, INTA ;; YOH 

DTIR ~ INDETERMINATE 

NOTES: 

DEN 

reLAV 

8086 

T, 

INVALID ADDRESS 

1. All signals switch between VOH and VOL unless otherwise specified. 

T, 

SOFTWARE HALT 

2. RDY is sampled near the end of T2. Ta. Tw to determine if Tw machines states are to be inserted. 
3. Two INTA cycles run back-to-back. The 8086 LOCAL ADDR/DATA BUS is floating during both INTA cycles. Control signals shown 

for second INTA cycle. 
4. Signals at 8284A are shown for reference only. 
5. All timing measurements are made at 1.5V unless otherwise noted. 

3-17 



8086 

A.C. CHARACTERISTICS 

MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) 
TIMING REQUIREMENTS 

Symbol Parameter 8088 8086-1 

Min. Max. Min. 

TClCl ClK Cycle Period 200 500 100 

TClCH ClK low Time 118 53 

TCHCl ClK High Time 69 39 

TCH1CH2 elK Rise Time 10 

TCl2Cl1 ClK Fall Time 10 

TDVCl Data in Setup Time 30 5 

TClDX Data In Hold Time 10 10 

TR1VCl RDY Setup Time 35 35 
into 8284A (See 
Notes 1, 2) 

TClR1X RDY Hold Time 0 0 
into 8284A (See 
Notes 1,?) 

TRYHCH READY Setup Time 118 53 
into 8086 

TCHRYX READY Hold Time 30 20 
into 8086 

TRYlCl READY Inactive to -8 -10 
ClK (See Note 4) 

TINVCH Setup Time for 30 15 
Recognition (INTR, 
NMI, TEST) (See 
Note 2) 

TGVCH ROIGT Setup Time 30 15 
(See Note 5) 

TCHGX RQ Hold Time into 40 20 
8086 

TILIH Input Rise Time 20 
(Except ClK) 

TIHll Input Fall Time 12 
(Except ClK) 

NOTES: 
1. Signal at 8284A or 8288 shown for reference only. 

Max. 

500 

10 

10 

20 

12 

2. Setup requirement for asynchronous signal only to guarantee recognition at next ClK. 
3. Applies only to T3 and wait states. 
4. Applies only to T2 state (8 ns into T3). 
5. Change from 1985 Handbook. 

3-18 

--
Test 

8086·2 Units Conditions 

Min. Max. 

125 500 ns 

68 ns 

44 ns 

10 ns From 1.0Vto 

I 
3.5V 

10 ns From 3.SV to 

1.0V 

20 ns 

10 ns 

35 ns 

0 ns 

68 ns 

20 ns 

-8 ns 

15 ns 

15 ns 

30 ns 

20 ns From O.SVto 
2.0V 

12 ns From 2.0Vto 
0.8V 



inter 
A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES 
,---

Symbol Parameter 8086 

Min. Max. 

TCLML Command Active 10 35 
Delay (See Note 1) 

TCLMH Command Inactive 10 35 
Delay (See Note 1) 

TRYHSH READY Active to 110 
Status Passive (See 
Note 3) 

TCHSV Status Active Delay 10 110 

TCLSH Status Inactive 10 130 
Delay 

TCLAV Address Valid 10 110 
Delay 

TCLAX Address Hold Time 10 

TCLAZ Address Float Delay TCLAX 80 

TSVLH Status Valid to ALE 15 
High (See Note 1) 

TSVMCH Status Valid to 15 
MCE High (See 
Note 1) 

TCLLH CLK Low to ALE 15 
Valid (See Note 1) 

TCLMCH CLK Low to MCE 15 
High (See Note 1) 

I 
TCHLL ALE Inactive Delay 15 

I (See Note 1) 

TCLMCL ~~! ~:~t~~e Delay i 15 

TCLDV Data Valid Delay 10 110 

TCHDX Data Hold Time 10 

TCVNV Control Active 5 45 
Delay (See Note 1) 

TCVNX Control Inactive 10 45 
Delay (See Note 1) 

TAZRL 
I 

Address Float to 0 

Read Active 

TCLRL AD Active Delay 10 165 

TCLRH RD Inactiv~ Delay 10 150 

TRHAV RD Inactive to TCLCL- 45 
Next Address Active 

TCHDTL Direction Control 50 
Active Delay (See 
Note 1) 

TCHDTH Direction Control 30 
Inactive Delay (See 

Note 1) 

TCLGL GT Active Delay 0 85 
(See Note 5) 

TCLGH GT Inactive Delay 0 85 

TRLRH RDWidth 2TCLCL-75 

TDLOH Output Rise Time 20 

TOHOL Output Fall Time 12 

8086 

Test 
8086-1 8086-2 Units Conditions 

Min. Max. Min. Max. 

10 35 10 35 ns 

10 35 10 35 ns 

-~- --
45 65 ns 

10 45 10 60 ns 

10 55 10 70 ns 

10 50 10 60 ns 

10 10 ns 

10 40 TCLAX 50 ns 

I 15 15 ns 

15 15 ns 

15 15 ns 

15 15 ns 

15 15 ns CL ~ 20-100 pF 
for all 8086 Out· 

1----1-----
puts (In addi-15 15 ns 
tion to 8086 self-
load) 

10 50 10 60 ns 

10 10 ns 
---
5 45 5 45 ns 

10 45 10 45 ns 

0 0 ns 

10 70 10 100 ns 

10 60 10 80 ns 

TCLCL-35 TCLCL-40 ns 

50 50 ns 

30 30 ns 

0 38 0 50 ns 

0 45 0 50 ns 

2TCLCL-40 2TCLCL-50 ns 

20 20 ns From 0.8V to 
2.0V 

12 12 ns From 2.0Vto 
0.8V 

3-19 



WAVEFORMS 

MAXIMUM MODE 

eLK 

VCL 

aSO,QS1 

s.;,S1,SQ (EXCEPT HAL 1) 

jALE (8288 OUTPUn 

SEE NOTE 5 

RDY (8284A INPUT) 

READ CYCLE 

RD 

DT/R 

8288 OUTPUTS 

SEE NOTES 5,6 
MRDCOR fO"RC 

DEN 

8086 

T, T, 

r--
I 

TCHDTL-I 

3-20 



WAVEFORMS (Continued) 

MAXIMUM MODE (Continued) 

ClK 

S;,s"So (EXCEPT HALT) 

WRITECVCLE 

DEN 

8288 OUTPUTS 

SEE NOTES 5,6 AMoNC OR AIOWC 

INTACVCLE 

MWTC OR lowe 

AD1S-ADo 
(SEE NOTES 3 & 4) 

8266 OUTPUTS 

SEE NOTES 5,6 

MCEI 
PDEN 

OT/R 

INTA 

DEN 

FLOAT 

TClMCH---

8086 

T, T, T, 

Tw 

DATA 

TCLMH--i 

FLOAT , 

i--rOvcL------1 
i---l--\-+---=< POINTER 

TClML--- ,--
---T----~. //'\, 

T. 

\ 

,-----
TCHOX-

TCVNX--! r 
'\ 

FLOAT 
, . 
I--TCLDX 

r-­
I 

rTCHDTH 

SOFTWARE HALT- TCVNX--- i-
(DEN = VOL;Rb,MRlK:,tORC,MWTC,AMWC,IOWC,AIOWC,INTA, = VOH) 

INVALID ADDRESS 

NOTES: 
1. All signals switch between VOH and VOL unless otherwise specilied. 
2. ROY is sampled near the end of T2, Ta, Tw to determine il Tw machines states are to be inserted. 
3. Cascade address is valid between lirst and second INTA cycle. 
4. Two INTA cycles run back-to-back. The 8086 LOCAL AD DR/DATA BUS is floating during both INTA cycles. Control lor pointer 

address is shown lor second INTA cycle. 
5. Signals at 8284A or 8288 are shown lor reference only. 
6. The issuance 01 the 8288 command and control signals (MRDC, MWTC, AMWC, IORC, IOWC, AiQWc, INTA and DEN) lags the 

active high 8288 CEN. 
7. All timing measurements are made at 1.SV unless otherwise noted. 
8. Status inactive in state just prior to T4. 

3-21 



8086 

WAVEFORMS (Continued) 

ASYNCHRONOUS SIGNAL RECOGNITION 

INTR 

NOTE: " SETUP REQUIREMENTS FOR ASYNCHRO­
NOUS S!GNALS ONL Y TO GUARANTEE RECOGNITtQN 
AT NEXT eLK 

BUS LOCK SIGNAL TIMING (MAXIMUM MODE ONLY) RESET TIMING 

r-Any ClK CYCle-~ __ 

CLK\ / VCC ~ I 

J~ -~TCLAVr ~ 
~4 ell( CYCLES 

REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLY) 

!... Any ClK Cycle .!. ' 0 ClK Cycle- ~I 

·'~,mCL 
~ TClGl;~ .... TelOH 

, , 
Pre.;ou"grallt .---' 1-- TelAZ 

PULSE 3 
COPROCESSOR 

I RELEASE 

(SEe NOTE 1) 

1, THE COPROCESSOR MAY NOT DRIVE THE aUSES OUTSIDE THE REGION 
SHOWN WITHOUT RISKING CONTENTION 

HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLY) 
I---~, ~ 1 ClK CYClE-~ I 1"'- -- 1 OR 2 CYCLES --I 

m~JL~~~ 
-~ I ~ i"THVCH I I 

HOLD~ I \ ,I 
.~ !- TCLHAV ' 1_ TCLHAV 

~--~~~~TCLA~Z ~'~~~ 
8086:: J:,-~ ___ C_OP-i'O~ __ ESS_O' ___ ..J) ~ 

3-22 



DATATRAHSFER 
MOV Mon 

~CHG hchange 

Peqlst~1 with acrwmulalOr 

11II=I~pul !rum 

F"edpor' 

Va"abl~ port 

OUT=OutPIJ1H 

FIXeCPor! 

Var,ablepo;r 

XlATTransoJlebylttcAL 

LEA LOde E:A '0 'eQ.,t~1 

LIlSLodCpolllterlOOS 

LESLoadpornterloES 

UHf-load Ai" Wlt~ Ilags 

UHf Slor~ AH Into 'lags 

PUSHF-Pusl1llaQ5 

PDI'FPooflags 

ARITHMETIC 

ADD Add: 

Re91mernory 1'II'lh regISter 10 tIH-,er 

Immed,ale 10 fe~lste"me!llOr\, 

Immedliltetc accumulator 

ADC Add with cur, 
Reg !memory with reglste·to ellhe' 

Immedl~le 10 reQlslerlmemo'\' 

ImmedlatetQ accumulator 

lie - Incremlnt' 
AeOlslerlmemory 

Reglsler 

AAA-ASCII ad)ust lor add 

DU-O~clmal adjust lor add 

SUB Sublrlct: 
Re~ /m~mory and rcglsler to elthe' 

!mmed,ale from reg Isler 'mrmory 

Immed,alefrom accumulator 

Mnemonics ©Intel, 1978 

8086 

Table 2. Instruction Set Summary 

I 6 5 4 3 {' I 0 I 6 5 4 ~ 2 I Q 7 5 5 4 3 ~ I a DEC Decrement 

CMF Compare: 

AASASCl'adIJ'llp".bl'arl 

OAS Oec,,~al ~r.,uq irr ",tllracl 

'" 
cew 
ewe 

AND And. 

DR Or 

XOR Excluslvenr 

STRING MANIPULATION 

MOVS-Movp liyllllWLJlrl 

CMPS-Co,n~d" lJyl~:w"'d 

SCA.S~SL un blleiword 

lOOS·LO:lrll)y!e'wU 10 AL·AX 

STOS~S!m 1"1,. w~ jL'''' AI ,A 

3-23 

5543210 76543ll(l 



8086 

Table 2. Instruction Set Summary (Continued) 

CONTROL TRANSFER 
CAll Call: 76543210 76543 2J 0 76543210 

Uirectwlthirl segment 

Indirect wlthm segment 

Dlrecllnlersegmenl 

[T1101~~1;;:;; __ I dlsp-hlghJ 

Liiii 11 1 (1~~_1 0 rim] 

[~~±IT oltset·low I ~ 
L seg-Iow --=r seg-hlgh I 

Indirect Intersegmenl 1111 1 1 1 ljJ mod ~~~~J 

JMP ~ Unconditional Jump· 

Drrect w,thl~ segme~t 

Direct W,rr.II·, segment·short 

Indirect within segment 

D'rec! Intersegme~t 

IndlreCl'r,terseglllenf 

footnotn; 

AL = 8-bit accumulator 
AX 16-biI accumulator 
ex 0' Count register 
OS"" Data segment 
ES "" Extra segment 
Above/below refers '0 unsigned value 
Greater'" more positive: 
less less positive (more negative) signed values 
if d :. 1 then "to·' reg, it d '" 0 then "trom" feg 
if w -= 1 then word instruction; If w " 0 then byte instruction 

if mod =0 11 then rim IS treated as a REG field 
if mod", 00 then DISP =' 0*. d!sp-Iow and disp-high are absent 
if mod"" 01 then OISP '" disp-Iow sign-extended to 16-bits, disp·high IS absent 
if mod'" 10 then OISP '" disp-high: dlsp-Iow 

if rim ~ 000 then EA ~ (BX) , (51) , OISP 
if rim ~ 001 then EA ~ (BX) , (01). OISP 
if rim ".010 then EA (BP). (51) , OISP 
if rim ~ 011 then EA ~ (BP) , (01) • OISP 
If rim ~ 100 then EA ~ (51) .0ISP 
if rim ~ tOt then EA " (01) , OISP 
if rim ~ 110 then EA ~ (BP) • OISP' 
it rim· 111 then EA • (BXI .0ISP 
OISP follows 2nd byte of instruction (before Clata jf required) 

-except jf mod'" 00 and rim eo 110 then EA eo disp-high: disp-Iow 

Mnemonics© Intel, 1978 

JN8/JAE Jump on not below/above 
or equal 

JNBfiJA'Jump on nol belOW or 
equal/above 

JNP/JPO=Jump on not par/par odd 

JNO Jump on not over11aw 

JNS Jump all not sign 

lOOP loop ex times 

lOOPlILOOPE-loop 
LOOPNZiLOOPNf Loop 

zero!eQuill 
JeXl Jump on ex Lera 

INT Interrupt 

lypespecilled 

Type 3 

INTO Intenupl on overllow 

IRETlnterruptreturn 

PROCESSUR CONTROL 
elC Clear carry 

CMC Complement carry 

src Set carry 

eLD Clear O,rectlon 

sm Set direction 

Cli Clear mterrupl 

STI Set Interrupt 

HlT Halt 

WAIT Walt 

ESC Escape 110 external devlcel 

LOCK Bus lOCk prefix 

76543 21 0 7654321 0 

~1 1 100~~ 
~11011l dlsp J 
liiiii~iil __ d~ 
~OOQU==~ 
~11 displ 
11 ,. 1 000 1 0 1 disp I 

li:' 100001 I dlsp ] 

L! II? 0 il 0 0 

Q_C~OO~O~~~'~-~~~ 

if s:w=Ol then 16 bits of Immediate data form the operand 
if s:w = 11 then an immediate data byte is sign extended to 

form the 16-bit operand. 
If v = 0 then' ·count" = 1: if v = 1 then "count" in (eL) 

x:.: don·' care 
Z IS used lor string pflmitlves for comparison With Z,F FLAG 

SEGMENT OVERRIDE PREFIX 

10 0 I reg 1 1 01 

REG is assigned according to the follOWing table 

16-BIt Iw 11 6-81t Iw 0) 
000 AX 000 AL 
001 CX 001 CL 
010 DX 010 DL 
011 BX 011 Bl 
100 SP 100 AH 
101 BP 101 CH 
110 51 110 OH 
111 01 111 BH 

Segment 
00 ES 
01 CS 
10 SS 
11 OS 

Ins,tructions which reference the flag register file as a 16·bit object use 
the symbol FLAGS to represent the file: 

FLAGS· X: X:X X: (OF) (OF). (I FI: (TF) (SFI : (ZF)· X: (AF):X: (PFIX(C F) 

3-24 



80C86/80C86-2 
16-Bit CHMOS Microprocessor 

• Pin-for-Pin and Functionally Compatible • Architecture Designed for Powerful 
to Industry Standard HMOS 8086 Assembly Language and Efficient High 

• Fully Static Design with Frequency Level Languages 

Range from D.C. to: • 24 Operand Addressing Modes 
- 5 MHz for 80C86 • Byte, Word and Block Operations 
- 8 MHz for 80C86-2 

Low Power Operation • 8 and 16-Bit Signed and Unsigned • Arithmetic 
-Operating Icc = 10 mA/MHz - Binary or Decimal 
- Standby Iccs = 500 /-LA max - Multiply and Divide 

• Bus-Hold Circuitry Eliminates Pull-Up • Will Be Available in 40-Lead Plastic DIP 
Resistors and 44-Lead PLCC Packages 

• Direct Addressing Capability of (See Packaging Spec", Order # 231369) 

1 MByte of Memory 

The Intel 80G86 is a high performance, CHMOS version of the industry standard HMOS 8086 16·bit GPU" It is 
available in 5 MHz clock rate and will be available in 8 MHz clock rate in the 1 st half of 1986, The 80G86 offers 
two modes of operation: MINimum for small systems and MAXimum for larger applications such as multi· 
processing. It is available in 40·pin DIP and will be available in 44-pin plastic leaded chip carrier (PLGC) 
package in the 1 sl quarter of 1986. 

~f~OC"'TION 
REGIS1ERFllt. 

"--'""L_ !iHE/S, 
",.",s, 

.,elS, 

231200-1 

Figure 1. 80C86 
CPU Block Diagram 

GHD 1 

",. 
MODE 

BHE.'S1 

iID 
31 Rci/G"To (HOLD) 

RalGT1 (HLOA) 

LOCK (WR) 

(M'iO) 

Si (DT.ih 

So (DEN) 

050 (ALE) 

as, (iNTi) 

READY 

231200-2 

Figure 2a. 80C86 
40-Lead DIP Configuration 

65" 3 Z 14443424140 

o 

socas 
CPu 

1819202122232425262728 

231200-3 

Figure 2b. 80C86 
44-Lead PLCC Configuration 

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent 
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. November 1985 
© Intel Corporation, 1985 3-25 Order Number: 231200·002 



80C86/80C86-2 

Table 1. Pin Description 

The following pin function descriptions are for 80C86 systems in either minimum or maximum mode. The 
"Local Bus" in these descriptions is the direct multiplexed bus interface connection to the 80C86 (without 
regard to additional bus buffers). 

Symbol Pin No. Type Name and Function 

AD1S-ADo 2-16,39 1/0 ADDRESS DATA BUS: These lines constitute the time multiplexed 
memoryllO address (T·1) and data (T 2, T 3, T w, T 4) bus. Ao is 
analogous to SHE for the lower byte of the data bus, pins DrDo. It 
is lOW during T 1 when a byte is to be transferred on the lower 
portion of the bus in memory or I/O operations. Eight-bit oriented 
devices tied to the lower half would normally use Ao to condition 
chip select functions. (See SHE.) These lines are active HIGH and 
float to 3-state OFF(1) during interrupt acknowledge and local bus 
"hold acknowledge." 

A19/S6, 35-38 0 ADDRESS/STATUS: During T 1 these are the four most significant 

A18/SS, address lines for memory operations. During I/O operations 

A17/S4, these lines are lOW. During memory and I/O operations, 

A16/S3 status information is available on these lines during T 2, T 3, T w, 
and T 4. The status of the interrupt enable FLAG bit (S5) is updated 
at the beginning of each ClK cycle. A17/S4 and A16/S3 are 
encoded as shown. 

This information indicates which relocation register is presently 
being used for data accessing. 

These lines float to 3-state OFF(1) during local bus "hold 
acknowledge.' , 

A17/S4 A16/S3 Characteristics 

o (lOW) 0 Alternate Data 
0 1 Stack 
1 (HIGH) 0 Code or None 
1 1 Data 

S6 isO 
(lOW) 

SHE/S7 34 0 BUS HIGH ENABLE/STATUS: DuringT1 the bus high enable signal 
(SHE) should be used to enable data onto the most significant half 
of the data bus, pins D1S-D8. Eight-bit oriented devices tied to the 
upper half of the bus would normally use SHE to condition chip 
select functions. SHE is lOW during T 1 for read, write, and interrupt 
acknowledge cycles when a byte is to be transferred on the high 
portion of the bus. The S7 status information is available during T2, 

T 3, and T 4. The signal is active lOW, and floats to 3-state OFF(1) in 
"hold." It is lOW during T 1 for the first interrupt acknowledge cycle. 

BHE Ao Characteristics 

0 0 Whole word 
0 1 Upper byte froml 

to odd address 
1 0 lower byte froml 

to even address 
1 1 None 

3-26 



intJ 80C86/80C86-2 

Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

RD 32 0 READ: Read strobe indicates that the processor is performing a 
memory of 110 read cycle, depending on the state of the S2 pin. 
This signal is used to read devices which reside on the 80C86 local 
bus. RD is active lOW during T 2, T 3 and T w of any read cycle, and 
is guaranteed to remain HIGH in T 2 until the 80C86 local bus has 
floated. 

This floats to 3-state OFF in "hold acknowledge." 

READY 22 I READY: is the acknowledgement from the addressed memory or 
1/0 device that it will complete the data transfer. The READY signal 
from memoryllO is synchronized by the 82C84A Clock Generator 
to form READY. This signal is active HIGH. The 80C86 READY 
input is not synchronized. Correct operation is not guaranteed if the 
setup and hold times are not met. 

INTR 18 I INTERRUPT REQUEST: is a level triggered input which is sampled 
during the last clock cycle of each instruction to determine if the 
processor should enter into an interrupt acknowledge operation. A 
subroutine is vectored to via an interrupt vector lookup table 
located in system memory. It can be internally masked by software 
resetting the interrupt enable bit. INTR is internally synchronized. 
ThiS sigf'81 is 8"tivp HIGH 

TEST 23 I TEST: input is examined by the "Wait" instruction. If the TEST input 
is lOW execution continues, otherwise the processor waits in an 
"Idle" state. This input is synchronized internally during each clock 
cycle on the leading edge of ClK. 

NMI 17 I NON-MASKABLE INTERRUPT: an edge triggered input which 
causes a type 2 interrupt. A subroutine is vectored to via an 
interrupt vector lookup table located in system memory. NMI is not 
maskable internally by software. A transition from a lOW to HIGH 
initiates the interrupt at the end of the current instruction. This input 
is internally synchronized. 

RESET 21 I RESET: causes the processor to immediately terminate its present 
activity. The signal must be active HIGH for at least four clock 
cycles. It restarts execution, as described in the Instruction Set 
description, when RESET returns lOW. RESET is internally 
synchronized. 

ClK 19 I CLOCK: provides the basic timing for the processor and bus 
controller. It is asymmetric with a 33% duty cycle to provide 
optimized internal timing. 

Vee 40 Vee: + 5V power supply pin. 

GND 1,20 GROUND: Both must be connected. 

MN/MX 33 I MINIMUM/MAXIMUM: indicates what mode the processor is to 
operate in. The two modes are discussed in the following sections. 

3-27 



SOCS6/S0CS6-2 

Table 1. Pin Description (Continued) 

The fol/owing pin function descriptions are for the 80C86182C88 system in maximum mode (i.e., 
MNIMX= Vssl. Only the pin functions which are unique to maximum mode are described; a/l other pin func­
tions are as described above. 

Symbol Pin No. Type Name and Function 

S2, Sl, So 2S-2B 0 STATUS: active during T 4, T1, and T 2 and is returned to the passive 
state (1,1,1) during T 3 or during T w when READY is HIGH. This 
status is used by the B2CBB Bus Controller to generate all memory 
and 1/0 access control signals. Any change by S2, Sl, So during T 4 
is used to indicate the beginning of a bus cycle, and the return to the 
passive state in T 3 or T w is used to indicate the end of a bus cycle. 

These signals float to 3-state OFF(l) in "hold acknowledge." These 
status lines are encoded as shown. 

S2 Sl So Characteristics 

o (lOW) 0 0 Interrupt 
Acknowledge 

0 0 1 Read 1/0 Port 
0 1 0 Write I/O Port 
0 1 1 Halt 
1 (HIGH) 0 0 Code Access 
1 0 1 Read Memory 
1 1 0 Write Memory 
1 1 1 Passive 

RQ/GTo 30,31 1/0 REQUEST IGRANT: pins are used by other local bus masters to 
RQ/GT1' force the processor to release the local bus at the end of the 

processor's current bus cycle. Each pin is bidirectional with RQ/GT 0 

having higher priority than RQ/GT1. RQ/GT has an internal pull-up 
resistor so may be left unconnected. The request/grant sequence is 
as follows (see timing diagram): 

1. A pulse of 1 ClK wide from another local bus master indicates a 
local bus request ("hold") to the BOCBS (pulse 1). 
2. During aT 4 or T 1 clock cycle, a pulse 1 ClK wide from the BOCB6 
to the requesting master (pulse 2), indicates that the BOCB6 has 
allowed the local bus to float and that it will enter the "hold 
acknowledge" state at the next ClK. The CPU's bus interface unit is 
disconnected logically from the local bus during "hold 
acknowledge. " 
3. A pulse 1 ClK wide from the requesting master indicates to the 
BOCB6 (pulse 3) that the "hold" request is about to end and that 
BOCB6 can reclaim the local bus at the next ClK. 

Each master-master exchange of the local bus is a sequence of 3 
pulses. There must be one dead ClK cycle after each bus exchange. 
Pulses are active lOW. 

If the request is made while the CPU is performing a memory cycle, it 
will release the local bus during T 4 of the cycle when all the following 
conditions are met: 

1. Request occurs on or before T 2. 
2. Current cycle isnot the low byte of a word (on an odd address). 
3. Current cycle is not the first acknowledge of an interrupt 
acknowledge sequence. 
4. A locked instruction is not currently executing. 

3-28 



inter SOCS6/S0CS6-2 

Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

If the local bus is idle when the request is made the two possible 
events will follow: 

1. Local bus will be released during the next clock. 
2. A memory cycle will start within 3 clocks. Now the four rules for a 
currently active memory cycle apply with condition number 1 already 
satisfied. 

LOCK 29 0 LOCK: output indicates that other system bus masters are not to gain 
control of the system bus while LOCK is active LOW. The LOCK 
Signal is activated by the "LOCK" prefix instruction and remains 
active until the completion of the next instruction. This signal is active 
LOW, and floats to 3-state OFF(1) in "hold acknowledge." 

QS1, QSo 24,25 0 QUEUE STATUS: The queue status is valid during the CLK cycle 
after which the queue operation is performed. 

I QS1 and QSo provide status to allow external tracking of the internal 

I 80C86 instruction queue. 
_. 

QS1 QSo Characteristics 

o (LOW) 0 No Operation 
0 1 First Byte of Op Code from Queue 
1 H.JIr;,~\ () ;:: n,.",h, + 0 f"), ,.0 ,p, . \' .......... " 

The fol/owing pin function descriptions are for the 80C86 in minimum mode (i.e., MNIMX= Vee). Only the pin 
functions which are unique to minimum mode are described; aI/ other pin functions are described above. 

MilO 28 0 STATUS LINE: logically equivalent to S2 in the maximum mode. It 
is used to distinguish a memory access from an 1/0 access. MilO 
becomes valid in the T 4 preceding a bus cycle and remains valid 
until the final T 4 of the cycle (M = HIGH, 10 = LOW). MilO floats to 
3-state OFF(1) in local bus "hold acknowledge." 

WR 29 0 WRITE: indicates that the processor is performing a write memory 
or write 1/0 cycle, depending on the state of the MilO signal. WR is 
active for T 2, T 3 and T w of any write cycle. It is active LOW, and 
floats to 3-state OFF(1) in local bus "hold acknowledge." 

INTA 24 0 INTA is used as a read strobe for interrupt acknowledge cycles. It is 
active LOW during T 2, T 3 and T w of each interrupt acknowledge 
cycle. 

ALE 25 0 ADDRESS LATCH ENABLE: provided by the processor to latch 
the address into an address latch. It is a HIGH pulse active during 
T 1 of any bus cycle. Note that ALE is never floated. 

DT/R 27 0 DATA TRANSMIT/RECEIVE: needed in minimum system that 
desires to use a data bus transceiver. It is used to control the 
direction of data flow through the transceiver. Logically DT IA is 
equivalent to S1 in the maximum mode, and its timing is the same 
as for MilO. (T= HIGH, R = LOW.) This signal floats to 3-state 
OFF(1) in local bus "hold acknowledge." 

3-29 



SOCS6/S0CS6-2 

Table 1 Pin Description (Continued) 

Symbol Pin No. Type· Name and Function 

DEN 26 0 OAT A ENABLE: provided as an output enable for the transceiver in 
a minimum system which uses the transceiver. DEN is active LOW 

I 
during each memory and 1/0 access and for INTA cycles. For a 
read or INTA cycle it is active from the middle of T 2 until the middle 
of T 4, while for a write cycle it is active from the beginning of T 2 
until the middle of T 4. DEN floats to 3-state OFF(1) in local bus 
"hold acknowledge." 

HOLD, 31,30 I/O HOLD: indicates that another master is requesting a local bus 
HLDA "hold." To be acknowledged, HOLD must be active HIGH. The 

processor receiving the "hold" request will issue HLDA (HIGH) as 
an acknowledgement in the middle of a T 1 clock cycle. 
Simultaneous with the issuance of HLDA the processor will float 
the local bus and control lines, After HOLD is detected as being 
LOW, the processor will LOWer the HLDA, and when the processor 
needs to run another cycle, it will again drive the local bus and 
control lines. 
The same rules as for RQ/GT apply regarding when the local bus 
will be released. 
HOLD is not an asynchronous input. External synchronization 
should be provided if the system cannot otherwise guarantee the 
setup time. 

NOTE: 
1. See the section on Bus Hold Circuitry. 

FUNCTIONAL DESCRIPTION 

STATIC OPERATION 

All BOCB6 circuitry is of statiC design. Internal regis­
ters, counters and latches are static and require no 
refresh as with dynamic circuit design. This elimi­
nates the minimum operating frequency restriction 
placed on other microprocessors. The CMOS BOCB6 
can operate from DC to the appropriate upper fre­
quency limit. The processor clock may be stopped in 
either state (high/low) and held there indefinitely. 
This type of operation is especially useful for system 
debug or power critical applications. 

The BOCB6 can be single stepped using only the 
CPU clock. This state can be mdintained as long as 
is necessary. Single step clock operation allows sim­
ple interface circuitry to provide critical information 
for bringing up your system. 

Static design also allows very low frequency opera­
tion (down to DC). In a power critical situation, this 
can provide extremely low power operation since 
BOCB6 power dissipation is directly related to operat­
ing frequency. As the system frequency is reduced, 
so is the operating power until, ultimately, at a DC 
input frequency, the BOCB6 power requirement is the 
standby current (500 p.A maximum). 

3-30 

INTERNAL ARCHITECTURE 

The internal functions of the BOCB6 processor are 
partitioned logically into two processing units. The 
first is the Bus Interface Unit (BIU) and the second is 
the Execution Unit (EU) as shown in the block dia­
gram of Figure 1. 

These units can interact directly but for the most 
part perform as separate asynchronous operational 
processors. The bus interface unit provides the func­
tions related to instruction fetching and queuing, op­
erand fetch and store, and address relocation. This 
unit also provides the basic bus control. The overlap 
of instruction pre-fetching provided by this Unit 
serves to increase processor performance through 
improved bus bandwidth utilization. Up to ? byte.s. of 
the instruction stream can be queued while waiting 
for decoding and execution. 

The· instruction stream queuing mechanism allows 
the BIU to keep the memory utilized very efficiently. 
Whenever there is space for at least 2 bytes in the 
queue, the BiU will attempt a word fetch memory 
cycle. This greatly reduces "dead time" on the 
memory bus. The queue acts as a First-in-First Out 
(FIFO) buffer, from which the EU extracts instruction 
bytes as required. If the queue is empty (following a 
branch instruction, for example), the first byte into 
the queue immediately becomes available to the EU. 



inter 80C86/80C86·2 

Memory Segment Register Segment 
Reference Need Used Selection Rule 

Instructions CODE (CS) Automatic with all instruction prefetch. 

Stack STACK (SS) All stack pushes and pops. Memory references relative to BP 
base register except data references. 

Local Data DATA (OS) Data references when: relative to stack, destination of string 
operation, or explicitly overridden. 

External (Global) Data EXTRA (ES) Destination of string operations: Explicitly selected using a 
segment override. 

The execution units receives pre-fetched instruc­
tions from the BIU queue and provides un-relocated 
operand addresses to the BIU. Memory operands 
are passed through the BIU for processing by the 
EU, which passes results to the BIU for storage. See 
the Instruction Set description for further register set 
and architectural descriptions. 

MEMORY ORGANIZATION 

The processor provides a 20-bit address to memory 
which locates the byte being referenced. The memo­
ry is oraanized as a linear array of UP to 1 million 
bytes, addressed as OOOOO(H) to FFFFF(H). The 
memory is logically divided into code, data, extra 
data, and stack segments of up to 64k bytes each, 
with each segment falling on 16-byte boundaries. 
(See Figure 3a.) 

~FFFFFH ID-64 KB } CODE SEGMENT 

XXXXOH r--' 

-
+ O+SET 

} STACK SEGMENT 

-SEGMENT 
REGISTER FILE 1 DATA SEGMENT 

-
1 EXTRA DATA SEGMENT 

~OOOOOH 

231200-4 

Figure 3a. Memory Organization 

3-31 

All memory references are made relative to base ad­
dresses contained in high speed segment registers. 
The segment types were chosen based on the ad­
dressing needs of programs. The segment register 
to be selected is automatically chosen according to 
the rules of the following table. All information in one 
segment type share the same logical attributes (e.g. 
code or data). By structuring memory into relocat­
able areas of similar characteristics and by automati­
cally selecting segment registers, programs are 
shorter, faster, and more structured. 

Word (16-bit) operands can be located on even or 
udd ack.koss bOiJiIGa.ii3s aiid ai'€; thus j';0t Cvii~ 

strained to even boundaries as is the case in many 
16-bit computers. For address and data operands, 
the least significant byte of the word is stored in the 
lower valued address location and the most signifi­
cant byte in the next higher address location. The 
BIU automatically performs the proper number of 
memory accesses, one if the word operand is on an 
even byte boundary and two if it is on an odd byte 
boundary. Except for the performance penalty, this 
double access is transparent to the software. This 
performance penalty does not occur for instruction 
fetches, only word operands. 

Physically, the memory is organized as a high bank 
(015-08) and a low bank (07-00) of 512k 8-bit 
bytes addressed in parallel by the processor's ad­
dress lines. 

A19-A1. Byte data with even addresses is trans· 
ferred on the 07"00 bus lines while odd addressed 
byte data (Ao HIGH) is transferred on the 015-08 
bus lines. The processor provides two enable sig­
nals, SHE and Ao, to selectively allow reading from 
or writing into either an odd byte location, even byte 
location, or both. The instruction stream is letched 
from memory as words and is addressed internally 
by the processor to the byte level as necessary. 

In referencing word data the BIU requires one or two 
memory cycles depending on whether or not the 
starting byte of the word is on an even or odd ad­
dress, respectively. Consequently, in referencing 



intJ 80C86/80C86-2 

word operands performance can be optimized by lo­
cating data on even address boundaries. This is an 
especially useful technique for using the stack, since 
odd address references to the stack may adversely 
affect the context switching time for interrupt proc­
essing or task mUltiplexing. 

Certain locations in memory are reserved for specific 
CPU operations (see Figure 3b.) locations from ad­
dress FFFFOH through FFFFFH are reserved for op­
erations including a jump to the initial program load­
ing routine. Following RESET, the CPU will always 
begin execution at location FFFFOH where the jump 
must be. locations OOOOOH through 003FFH are re­
served for interrupt operations. Each of the 256 pos­
sible interrupt types has its service routine pointed to 
by a 4-byte pointer element consisting of a 16-bit 
segment address and a 16-bit offset address. The 
pointer elements are assumed to have been stored 
at the respective places in reserved memory prior to 
occurrence of interrupts. 

FFFFFH 
RESET BOOTSTRAP 

PROGRAM JUMP 
FFFFOH 

3FFH 
INTERRUPT POINTER 

FOR TYPE 255 
3FCH 

· · · 7H 
INTERRUPT POINTER 

FOR TYPE 1 4H 

INTERRUPT POINTER 
3H 

FOR TYPE 0 
OH 

231200-5 

Figure 3b. Reserved Memory Locations 

MINIMUM AND MAXIMUM MODES 

The requirements for supporting minimum and maxi­
mum 80C86 systems are sufficiently different that 
they cannot be done efficiently with 40 uniquely de­
.fined pins. Consequently, the 80C86 is equipped 
with a strap pin (MN/MX) which defines the system 
configuration. The definition of a certain subset of 
the pins changes dependent on the condition of the 
strap pin. When MN/MX pin is strapped to GND, the 
80C86 treats pins 24 through 31 in maximum mode. 
An 82C88 bus controller interprets status informa­
tion coded into 50, 51, 52 to generate bus timing and 
control signals compatible with the MUl TIBUS® ar­
chitecture. When the MN/MX pin is strapped to Vee, 
the 80C86 generates bus control signals itself on 
pins 24 through 31, as shown in parentheses in Fig­
ure 2. Examples of minimum mode and maximum 
mode systems are shown in Figure 4. 

BUS OPERATION 

The 80C86 has a combined address and data bus 
commonly referred to as a time multiplexed bus. 
This technique provides the most efficient use of 
pins on the processor while permitting the use of a 
standard 40-lead package. This "local bus" can be 
buffered directly and used throughout the system 
with address latching provided on memory and 1/0 
modules. In addition, the bus can also be demulti­
plexed at the processor with a single set of address 
latches if a standard non-multiplexed bus is desired 
for the system. 

Each processor bus cycle consists of at least four 
ClK cycles. These are referred to as T 1, T 2, T 3 and 
T 4 (see Figure 5). The address is emitted from the 
processor during T 1 and data transfer occurs on the 
bus during T 3 and T 4. T 2 is used primarily for chang­
ing the direction of the bus during read operations. In 
the event that a "NOT READY" indication is given 
by the addressed device, "Wait" states (T w) are in­
serted between T 3 and T 4. Each inserted "Wait" 
state is of the same duration as a ClK cycle. Periods 
can occur between 80C86 bus cycles. These are 
referred to as "Idle" states (T1) or inactive ClK cy­
cles. The processor uses these cycles for internal 
housekeeping. 

During T 1 of any bus cycle the ALE (Address latch 
Enable) signal is emitted (by either the processor or 
the 82C88 bus controller, depending on the MN/MX 
strap). At the trailing edge of this pulse, a valid ad­
dress and certain status information for the cycle 
may be latched. 

3-32 



intJ 

82C84A 
CLOCK ....... r+ eLK r-. READY 

r- RESET T ROY 

GND .-_1_.., 
I WAIT I 

80C86/80C86-2 

MIN/M"X 

MI~r-----------------------------------------------------------------­
fm.r---------------------------------------------------------------___ 
~r-------------------------------------f_----------~--------f_-----
WAr-----------------------------------f_t_----------~--------t_._ 

II STATE I 
I GENERATOA I 80C86 CPU 

L ___ ..J 

cc rDl 

OPTIONAL 
FOR INCREASED 
DATA BUS DAIVE 51C67 SRAM(4) 

2~2! 8 I 2~2! 8 

27C64 EPROM(2) 

2K II B ! 2K II a 

Figure 4a. Minimum Mode iAPX 80C86 Typical Configuration 

82CXX 
PERIPHERAL 

DEVICE 

2312UO-6 

GE~OA ~ eLK 

- m r- READY 

MNIIIDt--GNO 

sof----------lso 
s; s, 

eLK iiRjj(; 

MwTer---------·~-+----------_r-------------; 
AMWC!--N,C 

r- RESET I RDY 

GND r- 1 -., 
I WAIT I 
I STATE I 
I OENERA TOR I 
L ___ .J 

-cPU 

rna: t-- N C 

ce De 

51C87 SAAM(4) 270&4 EPROM(2) 

121 (2) 
ZKII 2Kd .:.a IK •• 

Figure 4b. Maximum Mode 80C86 Typical Configuration 

3-33 

I2CJO< 
PERIPHERAL 

DEVICE 

231200-7 



inter SOCS6/S0CS6-2 

14 + NWAITI '" ley -----'1-. _____ 14 + NWAITI '" Tey -----"1', 
T2 T3 TWAIT I T. Tl T2 T3 TWAIT 1 T. 

elK 

ADDRI 
STATUS 

AODR/DATA 

READY 

oliA' 

READY 

WAIT 

__ MEMORY ACCESS TIME ~ 

\ ........ -

-----8 ___ 0_AT_A_O_"T_'0_"_-0_"_--,> -a=. 

READY 

WAIT 

\'------</ 
231200-8 

Figure 5. Basic System Timing 

Status bits So, S1, and 52 are used, in maximum 
mode, by the bus controller to identify the type of 
bus transaction according to the following table: 

S2 S1 So Characteristics 

o (LOW) 0 0 Interrupt Acknowledge 
0 0 1 Read I/O 
0 1 0 Write I/O 
0 1 1 Halt 
1 (HIGH) 0 0 Instruction Fetch 
1 0 1 Read Data from Memory 
1 1 0 Write Data to Memory 
1 1 1 Passive (no bus cycle) 

Status bits S3 through S7 are multiplexed with high­
order address bits and the SHE signal, and are 

therefore valid during T 2 through T 4. S3 and S4 indi­
cate which segment register (see Instruction Set de­
scription) was used for this bus cycle in forming the 
address, according to the following table: 

3-34 

S4 S3 Characteristics 

o (LOW) 0 Alternate Data (extra segment) 
0 1 Stack 
1 (HIGH) 0 Code or None 
1 1 Data 

S5 is a reflection of the PSW interrupt enable bit. 
S6 = 0 and S7 is a spare status bit. 



80C86/80C86-2 

1/0 ADDRESSING 

In the SOGS6, 1/0 operations can address up to a 
maximum of 64k 1/0 byte registers or 32k 1/0 word 
registers. The 1/0 address appears in the same for­
mat as the memory address on bus lines A15-AO' 
The address lines A19-A16 are zero in 1/0 opera­
tions. The variable 1/0 instructions which use regis­
ter OX as a pointer have full address capability while 
the direct 1/0 instructions directly address one or 
two of the 256 1/0 byte locations in page 0 of the 
1/0 address space. 

1/0 ports are addressed in the same manner as 
memory locations. Even addressed bytes are trans­
ferred on the 07-00 bus lines and odd addressed 
bytes on 015-08' Gare must be taken to assure that 
each register within an S-bit peripheral located on 
the lower portion of the bus be addressed as even. 

EXTERNAL INTERFACE 

PROCESSOR RESET AND INITIALIZATION 

Processor initialization or start up is accomplished 
'Nith activ'ltion (HIGH) (If the RESET pin ThE'I'IOG86 
RESET is required to be HIGH for greater than 4 
GlK cycles. The SOGS6 will terminate operations on 
the high-going edge of RESET and will remain dor­
mant as long as RESET is HIGH. The low-going 
transition of RESET triggers an internal reset se-

"PULL·UP/PULL·DOWN" 

Input Buffer exists only on 110 pins 

EXTERNAL 
PIN 

Figure 6a. Bus hold circuitry pin 2·16, 34·39. 

quence for approximately 10 GlK cycles. After this 
interval the BOGS6 operates normally beginning with 
the instruction in absolute location FFFFOH (see Fig­
ure 3b). The details of this operation are specified in 
the Instruction Set description of the MGS®-S6 Fam­
ily User's Manual. The RESET input is internally syn­
chronized to the processor clock. At initialization the 
HIGH-to-lOW transition of RESET must occur no 
sooner than 50 f-Ls after power-up, to allow complete 
initialization of the BOGS6. 

NMI may not be asserted prior to the 2nd GlK cycle 
following the end of RESET. 

BUS HOLD CIRCUITRY 

To avoid high current conditions caused by floating 
inputs to GMOS devices and eliminate the need for 
pull-upl down resistors, "bus-hold" circuitry has 
been used on the SOGS6 pins 2-16, 26-32, and 34-
39 (Figures 6a, 6b), These circuits will maintain the 
last valid logic state if no driving source is present 
(Le. an unconnected pin or a driving source which 
goes to a high impedance state). To overdrive the 
"bus hold" circuits, an external driver must be capa­
ble of supplying 350 f-LA minimum sink or source cur­
rer:t at vand !~put \/o!tage !sve!s. S!~~e thj~ "b!..!~ 

hold" circuitry is active and not a "resistive" type 
element, the associated power supply current is 
negligible and power dissipation is significantly re­
duced when compared to the use of passive pull-up 
resistors. 

3-35 

"PULL-UP" 

Input Buffer exists only on 110 pins 

EXTERNAL 
PIN 

Figure 6b. Bus hold circuitry pin 26·32. 



80C86/80C86-2 

INTERRUPT OPERATIONS 

Interrupt operations fall into two classes; software or 
hardware initiated. The software initiated interrupts 
and software aspects of hardware interrupts are 
specified in the Instruction Set description. Hard­
ware interrupts can be classified as non-maskable or 
maskable. 

I nterrupts result in a transfer of control to a new pro­
gram location. A 256-element table containing ad­
dress pointers to the interrupt service program loca­
tions resides in absolute locations a through 3FFH 
(see Figure 3b), which are reserved for this purpose. 
Each element in the table is 4 bytes in size and cor­
responds to an interrupt "type". An interrupting de­
vice supplies an S-bit type number, during the inter­
rupt acknowledge sequence, which is used to "vec­
tor" through the appropriate element to the new in­
terrupt service program location. 

NON·MASKABLE INTERRUPT (NMI) 

The processor provides a single non-maskable inter­
rupt pin (NMI) which has higher priority than the 
maskable interrupt request pin (INTR). A typical use 
would be to activate a power failure routine. The 
NMI is edge-triggered on a lOW-to-HIGH transition. 
The activation of this pin causes a type 2 interrupt. 
(See Instruction Set description.) NMI is required to 
have a duration in the HIGH state of greater than 
two ClK cycles, but is not required to be synchro­
nized to the clock. Any high-going transition of NMI 
is latched on-chip and will be serviced at the end of 
the current instruction or between whole moves of a 
block-type instruction. Worst case response to NMI 
would be for multiply, divide and variable shift in­
structions. There is no specification on the occur­
rence of the low-going edge; it may occur before, 
during, or after the servicing of NMI. Another high­
going edge triggers another response if it occurs af-

ter the start of the NMI procedure. The signal mUj>t 
be free of logical spikes in general and be free of 
bounces on the low-going edge to avoid triggering 
extraneous responses. 

MASKABLE INTERRUPT (INTR) 

The SOCS6 provides a single interrupt request input 
(INTR) which can be masked internally by software 
with the resetting of the interrupt enable FLAG 
status bit. The interrupt request Signal is level trig~ 
gered. It is internally synchronized during each clock 
cycle on the high-going edge of ClK. To be re­
sponded to, INTR must be present (HIGH) during 
the clock period preceding the end of the current 
instruction or the end of a whole move for a block­
type instruction. During the interrupt response se­
quence further interrupts are disabled. The enable 
bit is reset as part of the response to any interrupt 
(INTR, NMI, software interrupt or single-step), al­
though the FLAGS register which is automatically 
pushed onto the stack reflects the state of the proc­
essor prior to the interrupt. Until the old FLAGS reg­
ister is restored the enable .bit will be zero unless 
specifically set by an instruction. 

During the response sequence (Figure 7) the proc­
essor executes two successive (back-to-back) inter­
rupt acknowledge cycles. The SOCS6 emits the 
lOCK signal from T 2 of the first bus cycle until T 2 of 
the second. A local bus "hold" request will not be 
honored until the end of the second bus cycle. In the 
second bus cycle a byte is fetched from the external 
interrupt system (e.g., S2C59 PIC) which identifies 
the source (type) of the interrupt. This byte is multi­
plied by four and used as a pointer into the interrupt 
vector lookup table. An INTR signal left HIGH will be 
continually responded to within the limitations of the 
enable bit and sample period. The INTERRUPT RE­
TURN instruction includes a FLAGS pop whichre­
turns the status of the original interrupt enable bit 
when it restores the FLAGS. 

3-36 



intJ SOCS6/S0CS6-2 

LOCK \ / 
~. ____________ ~I ~I ______ J 

INTA \ ... _____ .....J( j 

~ '\ 
ADO.AD1S' FLOAT ()-J~' ------------\1 joo'j -----1 TYPE VECTOR 

231200-9 

Figure 7. Interrupt Acknowledge Sequence 

HALT 

When a software "HALT" instruction is executed the 
proc9s~o~ ,~djca!es the! It ~~ 9nter~~~ the uH.A,L T" 
state in one of two ways depending upon which 
mode is strapped, In minimum mode, the processor 
issues one ALE with no qualifying bus control sig­
nals. In Maximum Mode, the processor issues ap­
propriate HALT status on 52, 51 and 50 and the 
82C88 bus controller issues one ALE. The 80C86 
will not leave the "HALT" state when a local bus 
"hold" is entered while in "HALT". In this case, the 
processor reissues the HALT indicator. An interrupt 
request or RESET will force the 80C86 out of the 
"HALT" state. 

READ/MODIFY/WRITE (SEMAPHORE) 
OPERATIONS VIA LOCK 

The LOCK status information is provided by the 
processor when directly consecutive bus cycles are 
required during the execution of an instruction. This 
provides the processor with the capability of per­
forming read/modify/write operations on memory 
(via the Exchange Register With Memory instruction, 
for example) without the possibility of another sys· 
tem bus master receiving intervening memory cy· 
cles. This is useful in mutliprocessor system configu· 
rations to accomplish "test and set lock" operations. 
The LOCK signal is activated (forced LOW) in the 
clock cycle following the one in which the software 
"LOCK" prefix instruction is decoded by the EU. It is 
deactivated at the end of the last bus cycle of the 
instruction following the "LOCK" prefix instruction. 
While LOCK is active a request on a RQ/GT pin will 
be recorded and then honored at the end of the 
LOCK. 

EXTERNAL SYNCHRONIZATION VIA TEST 

As an alternative to the interrupts and general I/O 
ca.pe.b!!!ties. the BOC86 pro\f!des a s!!1g!e scf!'-A.le.r~­
testable input known as the TEST signal. At any time 
the program may execute a WAIT instruction. If at 
that time the TEST signal is inactive (HIGH), pro­
gram execution becomes suspended while the proc· 
essor waits for TEST to become active. It must re­
main active for at least 5 CLK cycles. The WAIT in­
struction is re-executed repeatedly until that time. 
This activity does not consume bus cycles. The 
processor remains in an idle state while waiting. All 
80C86 drivers go to 3-state OFF if bus "Hold" is 
entered. If interrupts are enabled, they may occur 
while the processor is waiting. When this occurs the 
processor fetches the WAIT instruction one extra 
time, processes the interrupt, and then re-fetches 
and re-executes the WAIT instruction upon returning 
from the interrupt. 

BASIC SYSTEM TIMING 

Typical system configurations for the processor op­
erating in minimum mode and in maximum mode are 
shown in Figures 4a and 4b, respectively. In mini­
mum mode, the MN/MX pin is strapped to Vee and 
the processor emits bus control signals in a manner 
similar to the 8085. In maximum mode, the MN/MX 
pin is strapped to Vss and the processor emits cod­
ed status information which the 82C88 bus control­
ler uses to generate MUL TISUS compatible bus 
control signals. Figure 5 illustrates the signal timing 
relationships. 

3-37 



SOCS6/S0CS6-2 

AX 

BX 

CX 

OX 

AH 

BH 

CH 

OH 

AL 

BL 

CL 

OL 

ACCUMULATOR 

BASE 

COUNT 

OATA 

STACK POINTER 

BASE POINTER 

SOURCE INDEX 

DESTINATION INDEX 

INSTRUCTION POINTER 

STATUS FLAGS 

CODE SEGMENT 

DATA SEGMENT 

STACK SEGMENT 

EXTRA SEGMENT 

231200-10 

Figure S. iAPX SOCS6 Register Model 

SYSTEM TIMING-MINIMUM SYSTEM 

The read cycle begins in T 1 with the assertion of the 
Address Latch Enable (ALE) signal. The trailing (Iow­
going) edge of this signal is used to latch the ad­
dress information, which is valid on the local bus at 
this time, into a latch. The BHE and Ao signals ad­
dress the low, high, or both bytes. From T 1 to T 4 the 
MilO Signal indicates a memory or 1/0 operation. At 
T 2 the address is removed from the local bus and 
the bus goes to a high impedance state. The read 
control signal is also asserted at T 2. The read (RD) 
signal causes the addressed device to enable its 
data bus drivers to the local bus. Some time later 
valid data will be available on the bus and the ad­
dressed device will drive the READY line HIGH. 
When the processor returns the read Signal to a 
HIGH level, the addressed device will again 3-state 
its bus drivers. If a transceiver is required to buffer 
the 80C86 local bus, signals DT /Fi and DEN are pro­
vided by the 80C86. 

A write cycle also begins with the assertion of ALE 
and the emission of the address. The MilO signal is 
again asserted to indicate a memory or 1/0 write 
operation. In the T 2 rmmediately following the ad­
dress emission the processor emits the data to be 
written into the addressed location. This data re­
mains valid until the middle of T 4. During T 2, T 3, and 
T w the processor asserts the writ~ control sign~1. 
The write (WR) signal becomes active at the begin­
ning of T 2 as opposed to the read which is delayed 
somewhat into T 2 to provide time for the bus to float. 

The BHE and Ao signals are used to select the prop­
er byte(s) of the memoryliO word to be read or writ­
ten according to the following table: 

BHE AO Characteristics 
0 0 Whole word 
0 ,1 Upper byte froml 

to odd address 
1 a Lower byte froml 

to even address 
1 1 None 

1/0 ports are addressed in the same manner as 
memory location. Even addressed bytes are trans­
ferred on the DrDo bus lines and odd addressed 
bytes on D15-D8' 

The basic difference between the interrupt acknowl~ 
edge cycle and a read cycle is that t~e interrupt ac­
knowl~e Signal (INTA) is asserted In pl~ce of the 
read (RD) signal and the address bus IS float~d. 
(See Figure 7.) In the second of two successive 
INTA cycles, a byte of information is read from bus 
lines DrDo as supplied by the interrupt system lo~­
ic (I.e., 82C59A Priority Interrupt Co~troller). Th!s 
byte identifies the source (type) of the Interrupt. .It IS 
multiplied by four and used as a pointer into an inter­
rupt vector lookup table, as described earlier. 

BUS TIMING-MEDIUM SIZE SYSTEMS 

For medium size systems the MN/MX pin is con~ 
nected to Vss and the 82C88 Bus Controller is add­
ed to the system as well as a latch for latching the 
system address, and a transceiver to allow for bus 
loading greater than the 80C86 is .s:apable of han­
dling. Signals ALE, DEN, and DT IR are generated 
by the 82C88 instead of the processor in this config­
uration although their timing remai~s r~atively !,tle 
same. The 80C86 status outputs (82, S1, and 80) 
provide type-of-cycle information a~d bec~~e 
82C88 inputs. This bus cycle information specifies 
read (code, data, or 110), write (data or 110), inter­
rupt acknowledge, or software halt. The 82C88 thus 
issues control signals specifying memory read or 
write, 1/0 read or write, or interrupt acknowledge. 
The 82C88 provides two types of write strobes, nor­
mal and advanced, to be applied as required. The 
normal write strobes have data valid at the leading 
edge of write. The advanced write strobes have. th~ 
same timing as read strobes, and hence data Isn t 
valid at the leading edge of write. The transceiver 
receives the usual T and OE inputs from the 82C88 
DT /Fi and DEN. 

The pointer into the interrupt vector table, which is 
passed during the second INTA cycle, can denve 
from an 82C59A located on either the local bus or 
the system bus. If the master 82C59A Priority Inter­
rupt Controller is positioned on the local bus, a TIL 
gate .is required to disable the tr~nsceiv~r when 
reading from the master 82C59A dunng the Interrupt 
acknowledge sequence and software "poll". 

3-38 



80C86/80C86-2 

ABSOLUTE MAXIMUM RATINGS* 

Supply Voltage 
(With respect to ground) ........... -0,5 to 8.0V 

Input Voltage Applied 
(w,r.t. ground) . , , , , . , , , . , . , - 2.0 to Vee + 0,5V 

Output Voltage Applied 
(w,r.t. ground) """""'" -0.5 to Vee + 0.5V 

Power Dissipation .... , , , , , , . , . , , , ' .. , , . ' . , .1 ,OW 

Storage Temperature. , , , , , .. , . , , . _. 65'e to 150'e 

Ambient Temperature Under Bias , , , . , ,Qoe to 70°C 

* Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOTICE Specifications contained within the 
fol/owing tables are subject to change. 

D.C. CHARACTERISTICS (80e86: TA = Qoe to 70ce, Vee = 5V ± 10%) 
(8Qe86-2: TA = Qoe to 70°C, Vee = 5V ±5%) 

Symbol Parameter Min Max Units Test Conditions 

Vil Input low Voltage "0,5 +0,8 V 

VIH Input High Voltage 2.0 Vee + 0.5 V {Note 6) 
(All input except 
RO/GTO, RO/GT, MN/MX) 

Val Output low Voltage 0.4 V IOl = 2,5 mA 

VOH Output High Voltage 3,0 V IOH = -2.5mA 
Vee- O,4 IOH = -100/l-A 

lee Power Supply Current 10 mA/MHz Vil = GND, VIH = Vee 
T A = 25"C, Vee = 5,5V 

Ices Standby Supply Current , ! 750 /l-A Vee = 5,5V Ready = High 

+S,,"dby S",,1y "",,'"' 
I vlN (max) = vee or Gi'lu 

Outputs Unloaded 
ClK = GND or Vee (Note 7) 

Ices 2.5 mA Vee = 5.5V Ready = low 
VIN(max) = Vee or GND 
Outputs Unloaded (Note 7) 
ClK = GND or Vee 

III Input leakage Current ±1.0 /l-A OV,:; VIN':; Vec 

ISHl I nput leakage Current 50 300 /LA VIN = O.SV 
(Bus Hold low) (Note 1) 

ISHH Input leakage Current -50 -300 ILA VIN = 3,OV 
(Bus Hold High) (Note 2) 

ISHlO Bus Hold low Overdrive 350 /LA (Note 4) 

ISHHO Bus Hold High Overdrive -350 /LA (Note 5) 

ILO Output leakage Current ±10 /LA OV ,:; VOUT ,:; Vee 

VCl Clock Input Low Voltage -0,5 +O,B V 

VeH Clock Input High Voltage Vee-O.B Vee+ 0,5 V 

CIN Capacitance of Input Buffer 5 pF (Note 3) 
(All input except 
ADo-AD15, RO/GT) 

CIO Capacitance of 1/0 Buffer 20 pF (Note 3) 
(ADo-AD15, RO/GT) 

COUT Output Capacitance 15 pF (Note 3) 

NOTES: 
1. Test condition is to lower VIN to GND and then raise VIN to O,BV on pins 2-16 and 34-39. 
2, Test condition is to raise VIN to Vee and then lower VIN to 3,OV on pins 2-16,26-32, and 34-39, 
3. Characterization conditions are a) Frequency = 1 MHz; b) Unmeasured pins at GND; c) VIN at + 5,OV or GND. 
4, An external driver must source at least ISHlO to switch this node from LOW to HIGH, 
5. An external driver must sink at least ISHHO to switch this node from HIGH to lOW, 
6, VIH for MN/MX is 2.5V, 
7, This spec may improve to 500 /l-A during 19B6, 

3-39 



SOCS6/S0CS6-2 

A.C. CHARACTERISTICS (80C86: T A = O·C to 70·C, Vee = 5V ± 10%) 
(80C86-2: T A = O·C to 70·C, Vee = 5V ± 5 %) 

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS 

Symbol Parameter 
80C86 80C86-2 

Units 
Min Max Min Max 

TClCl ClK Cycle Period 200 D.C. 125 D.C. ns 

TClCH ClKlowTime 118 68 ns 

TCHCl ClK High Time 69 44 ns 

TCH1CH2 ClK Rise Time 10 10 ns 

TCl2Cl1 ClK Fall Time 10 10 ns 

TDVCl Data in Setup Time 30 20 ns 

TCLDX Data in Hold Time 10 10 ns 

TR1VCl ROY Setup Time 35 35 ns 
into 82C84A (See 
Notes 1,2) 

TClR1X ROY Hold Time 0 0 ns 
into 82C84A 
(See Notes 1, 2) 

TRYHCH READY Setup 118 68 ns 
Time into 80C86 

TCHRYX READY Hold Time 30 20 ns 
into 80C86 

TRYlCl READY Inactive to -8 -8 ns 
ClK (See Note 3) 

THVCH HOLD Setup Time 35 20 ns 

TINVCH INTR, NMI, TEST 30 15 ns 
Setup Time (See 
Note 2) 

TILIH Input Rise Time 15 15 ns 
(Except ClK) 

TIHll Input Fall Time 15 15 ns 
(Except ClK) 

3-40 

Test 
Conditions 

From 1.0V to 3.5V 

From 3.5V to 1.0V 

CL =20-100 pF 

From 0.8V to 2.0V 

From 2.0V to 0.8V 



80C86/80C86-2 

A.C. CHARACTERISTICS (Continued) 

Timing Responses 

Symbol Parameter 
80C86 80C86-2 

Units 
Test 

Min Max Min Max Conditions 

TClAV Address Valid Delay 10 110 10 60 ns 

TClAX Address Hold Time 10 10 ns 

TClAZ Address Float TClAX 80 TClAX 50 ns 
Delay 

TlHll ALE Width TClCH-20 TClCH-10 ns 

TCllH ALE Active Delay 80 50 ns 

TCHlL ALE Inactive Delay 85 55 ns 

TllAX Address Hold Time TCHCl-10 TCHCl-10 ns 
to ALE Inactive 

TClDV Data Valid Delay 10 110 10 60 ns 'Cl =20-100 pF 

TCHDX Data Hold Time 10 10 ns for all BOC86 Out· 
puts (in addition I 

TWHDX Data Hold Time TClCH-30 TClCH-30 ns to 80C86 self· load) 
AfterWR I 

TCVCTV Control Active 10 110 10 70 ns I 
Delay 1 I 

TCHCTV Control Active 10 110 10 60 ns 
Delay 2 

TCVCTX Control Inactive 10 110 10 70 ns 
Delay 

TAZRl Address Float to 0 0 ns 
READ Active 

TClRl RD Active Delay 10 165 10 100 ns 

TClRH RD Inactive Delay 10 150 10 80 ns 

TRHAV RD Inactive to Next TClCl-45 TClCl-40 ns 
Address Active 

TClHAV HlDA Valid Delay 10 160 10 100 ns 

TRlRH RDWidth 2TClCl-75 2TClCl-50 ns 

TWlWH WRWidth 2TClCl-60 2TClCl-40 ns 

TAVAl Address Valid to TClCH-60 TClCH-40 ns 
ALE low 

TOlOH Output Rise Time 15 15 ns FromO.8Vto 
(Note 4) 2.0V 

TOHOL Output Fall Time 15 15 ns From 2.0Vto 
(Note 4) 0.8V 

NOTES: 
1. Signal at 82C84A shown for reference only. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next ClK. 
3. Applies only to T2 state. (8 ns into T3). 
4. Characterization only. 

3-41 



intJ 80C86/80C86-2 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

VIH +O.4V-y v: 
VOL - 0.4V --.l'\1.... -----____ ~ 

231200-11 

A.C. Testing inputs are driven at VIH + O.4V for a logic "1" and 
Vll - O.4V for a logic "0". The clock is driven at VCH + O.4Vand 
VCl - O.4V. Timing measurements are made at 2.0V and O.SV. 

WAVEFORMS 

MINIMUM MODE 

A.C. TESTING LOAD CIRCUIT 

CL Includes Jig Capacitance 

11 2 3 W .. 

231200-12 

CUC II2Cl4AOutputj:v--'I J\----If' TCLC~~CH1CH]HC~~IL-Jn-
-=.; TCHeTV r--- TCHCL r-- TCLCH ~ 

MIlO 

TCLAV- '- - TCLOVI-- TCHDX_ i-
,- TCLAX~ ~ ,.-__ _ 

TCLLH- J TLHJ:L-=: 

ALE .J 
1---TLLAX r-­

I 

-t---t-'TCHLL!!YAL -'-I----+oc---+---+---+----t---~- ---
V,H _ - TR1VCL 

ROY,Iact4A Input) .1 
see NOTE 4 VIL - _~ I._~O::C:-;LR:-!,'::'X--+----t------

READ CYCLE 

(NOTE 11 

(WlI, iIiTA. VOH) 

TRYLCL- .-

-h 

---- TCHRYX 

~ TAVAL TRyHCH----
TLLAX·_ 

I- -
ADn-ADo 

::;CLAZ t---TDVCL--!-TCLDX_ 
r-TCLAX I r--

A,,-ADo )--+==-1. V DATA IN JI".:;;;: .. -'i 

'-----T-AtZ-RL-_
J -:r '''""- ~rH-_T_:~_:_:_~T __ ~_ 

~~l~-------+-JI 

DT/A '::~TCHCTV TCLRLI----t-t--l-r--TRLRH---+---Il [TCHCTV 

~---------T-CV-C-T-V-_i-~--t------T-C-VC-T-X-_-r--;t--J 

'--_____ ..J 

TCLAV-

AD 

231200-13 

3-42 



inter 
WAVEFORMS (Continued) 

MINIMUM MODE (Continued) 

eLK (12al4A OUtput) 

M/iO 

ALE 

SOCS6/S0CS6-2 

TLlAX 

DATA OUT 

7 I T, 

~ 

I ADwADo 

WRITE CYCLE -t---r----""\I 
(NOTE 1) 1 DEN 

(RD. iNTi, 
DT(R ""VOH) 

WR , 

INTA CYCLE DllR 

(NOTES 1 & 3) 

RD, WJi "'YOH 
IRr=VoLl 

SOFTWARE HALT-

RD, WR, INTA "" YOH 

DT/R " INDETERMINATE 

NOTES: 

DEN 

·--TWLWH ---11-+-----
TCVCTx-I' f 1_ 

~TOVCl-
'--TCLAZ 

POINTER I 

TCVCTX~ 

~ 'j( INVALID ADDRESS SOFTWARE HALT 

TCLAv=:j "~----
231200-14 

1. All timing measurements are made at O.BV and 2.0V. 
2. RDY is sampled near the end of T 2, T 3. T w to determine if T w machines states are to be inserted. 
3. Two INTA cycles run back-to-back. The BOCB6 LOCAL ADDR/DATA BUS is floating during both INTA cycles. Control 
Signals shown for second INTA cycle. 
4. Signals at 82CB4A are shown for reference only. 

3-43 



SOCS6/S0CS6-2 

A.C. CHARACTERISTICS 

MAX MODE SYSTEM (USING 82C88 BUS CONTROLLER) 
TIMING REQUIREMENTS 

Symbol Parameter 
80C86 

Min Max 

TClCl ClK Cycle Period 200 D.C. 

TClCH ClK low Time 118 

TCHCl ClK High Time 69 

TCH1CH2 ClK Rise Time 10 

TCl2Cl1 ClK Fall Time 10 

TDVCl Data in Setup Time 30 

TClDX Data in Hold Time 10 

TR1VCl ROY Setup Time 35 
into 82C84A 
(Notes 1, 2) 

TClR1X ROY Hold Time 0 
into 82C84A 
(Notes 1, 2) 

TRYHCH READY Setup 118 
Time into 80C86 

TCHRYX READY Hold Time 30 
into 80C86 

TRYlCl READY Inactive to -8 
ClK (Note 4) 

TINVCH Setup Time for 30 
Recognition (INTR, 
NMI, TEST) 
(Note 2) 

TGVCH RQ/GT Setup Time 30 

TCHGX RQ Hold Time into 40 
80C86 

TILIH Input Rise Time 15 
(Except ClK) (Note 5) 

TIHll Input Fall Time 15 
(Except ClK) (Note 5) 

3-44 

80C86·2 

Min Max 

125 D.C. 

68 

44 

10 

10 

20 

10 

35 

0 

68 

20 

-8 

15 

15 

30 

15 

15 

Units 
Test 

Conditions 

ns 

ns 

ns 

ns From 1.0Vto 
3.5V 

ns From 3.5Vto 
1.0V 

ns 

ns 

ns 

ns CL = 20-100 pF 

ns 

ns 

ns 

ns 

ns 

ns 

ns From 0.8Vto 
2.0V 

ns From 2.0Vto 
0.8V 



SOCS6/S0CS6-2 

A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES 

Symbol Parameter 
80C86 80C86-2 

Units 
Test 

Min Max Min Max Conditions 

TClMl Command Active 5 35 5 35 ns 
Delay (Note 1) 

TClMH Command Inactive 5 35 5 35 ns 
Delay (Note 1) 

TRYHSH READY Active to 110 65 ns 
Status Passive 
(Note 3) 

TCHSV Status Active Delay 10 110 10 60 ns 

TClSH Status Inactive 10 130 10 70 ns 
Delay 

TClAV Address Valid 10 110 10 60 ns 
Delay 

TClAX Address Hold Time 10 10 ns 

TClAZ Address Float Delay TClAX 80 TClAX 50 ns 

TSVlH Status Valid to ALE 20 I 20 ns 
High (Note 1) I 

TSVMCH Status Valid to 30 30 ns CL =20-100 pF 
MCE High for all 80C86 Out-
(Note 1) puts (in addition 

TCllH ClK low to ALE 20 20 ns to 80C86 self-load) 

Valid (Note 1) 

TClMCH ClK low to MCE 25 25 ns 
High (Note 1) 

TCHll ALE Inactive Delay 4 25 4 25 ns 
(Note 1) 

TClDV Data Valid Delay 10 110 10 60 ns 

TCHDX Data Hold Time 10 10 ns 

TCVNV Control Active 5 45 5 45 ns 
Delay (Note 1) 

TCVNX Control Inactive 10 45 10 45 ns 
Delay (Note 1) 

TAZRl Address Float to 0 0 ns 
Read Active 

TClRl RD Active Delay 10 165 10 100 ns 

TClRH RD Inactive Delay 10 150 10 80 ns 

3-45 



inter 80C86/80C86·2 

A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES (Continued) 

Symbol Parameter 
80C86 80C86·2 

Units 
Test 

Min Max Min Max Conditions 

TRHAV RD Inactive to TCLCL-45 TCLCL-40 ns 
Next Address Active 

TCHDTL Direction Control 50 50 ns 
Active Delay 
(Note 1) Cl =20-100 pF 

TCHDTH Direction Control 30 30 ns for all 80C86 Out-

Inactive Delay puts (in addition 

(Note 1) to 80C86 self-load) 

TCLGL GT Active Delay 0 85 0 50 ns 

TCLGH GT Inactive Delay 0 85 0 50 ns 

TRLRH RDWidth 2TCLCL-75 2TCLCL-50 ns 

TOLOH Output Rise Time 15 15 ns From 0.8Vto 
2.0V 

TOHOL Output Fall Time 15 15 ns From 2.0Vto 
0.8V 

NOTES: 
1. Signal at 82C84A or 82C88 shown for reference only. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next ClK. 
3. Applies only to T3 and wait states. 
4. Applies only to T2 state (8 ns into T3). 
5. Characterization only. 

3-46 



intJ 80C86/80C86-2 

WAVEFORMS 

MAXIMUM MODE 

T, T, 
I 

T, T. 

CLK 
VCH r--\ 

I-- _~CH'CH2---j H i-TCL2CL1 Tw 
TCLCh I r-.. ,----,r'""\-VCL 

uSo.as, 

S2,'SI,~ (EXCEPT HAI.T) 

I ALE el2CII 01lTPUT) 

SEE NOTE 51 
RDY el2C14 INPUT) 

READY elOC .. INPUT) 

'2C .. OUTPUTI 
SEe NOTES 5,6 

RD 

DTIA 

DEN 

..J 
TCLAV~ 

[\-..J '---.J -t ~TCHCL _TCLCH_ 

----.: TCHSV - TClSH 

,/// V; .. ;jeSE' NOTE 7) 

- .\:-TCLAV ~CLDV TCHDX-
rCLAX - ' 

X 8HE, A"-A,, 51-53 

lSVlH - .r- TCHLl 
TCllH-

\ i 

=tx: 
-TR1VCl 

1rcLR1X 
.. 

TR~ -I I 
I - i 

I I -
_TCHRYX 

TFl:YHSH_! _ 

-TCLAXI~ I I 
TRYHCH --

TCi,.AV--

f 
--TCL.AZ - t=.'DVCL-

TeL OX __ I 

A\s-ADo (lATA IN 
FLOAT /'" 

TAZRl- k11/ TCLRH 

l I 

TCHDTL ,--I f~~"\'" TRLRH '\1 
i I 

TClMl-- .1- I TClMH .. 
\ 

'\ I F7 
TCVNV-I o-

j( 

TCIJNX --- -

3-47 

------\ t-----
r--

I ---
\\:.\\\ 

FL~:J-
TRHAV 

TCHDTH 

231200-15 



inter 80C86/80C86-2 

WAVEFORMS (Continued) 

MAXIMUM MODE (Continued) 

T, T, T 3 T. 

WRITE CYCLE 

AD15-ADo 

DEN 

82C8S OUTPUTS 
SEE NOTES 5,6 AMWC OR AIOWC 

MWTC OR lowe 

INTA CYCLE 

AD15-ADo 
(SEE NOTES 3 & 4) FLOAT 

FLOAT 

I 
MCEI ~~ __________ ~-+-+ __ -J 

PDEN TCLMCH TCHDTH 
DT/A ---+";"--";"-",1 

82C88 OUTPUTS 
SEE NOTES 5,6 INTA 

DEN 
TCVNX 

SOFTWARE HALT -
(DEN = VoL;RD,MRDC,IORC,MWTC,AMWC, 

fOYlC,AIOWC,lNfA, = VOH) AD 15-AD-.--+-'\ I 
TC~L~A-V--~-'I'-----------------

INVALID ADDRESS 

::---\ ,'"-------...... , ... - - - -
S"5,,S. '-______ \ _ __ • 

231200-16 
----------------------------------------------------------------~ 

NOTES: 
1. All timing measurements are made at 2.0V and O.8V. 
2. RDY is sampled near the end of T 2, T 3, Tw to determine ij Tw machines states are to be inserted. 
3. Cascade address is valid between first and second INTA cycle. 
4. Two INTA cycles run back-to-back. The 80C86 LOCAL ADDR/DATA BUS is floating during both INTA cycles. Control for 
pointer address is shown for second INTA cycle. 
5. Signals at 82C84A or 82C88 are shown for reference only. 
6. The issuance of the 82C88 command and control signals (MRDC, MWTC, AMWC, IORC, IOWC, AIOWC, INTA and DEN) 
lags the active high 82C88 CEN. 
7. Status inactive in state just prior to T 4. 

3-48 



SOCS6/S0CS6-2 

WAVEFORMS (Continued) 

ASYNCHRONOUS SIGNAL RECOGNITION 

ClK\ /\ 

NMI} :3fL n':;;-;:~., 
INTR SIGNAL : 

"TEST 
231200-17 

NOTE: Setup requirements for asynchronous signals only to guarantee recognition at next elK, 

BUS LOCK SIGNAL TIMING 
(MAXIMUM MODE ONLY) 

f-IANY ClK CY~ f-£ANY ClK CY~E 

elK 

TClAY r- f TCLA~ 
lOCK--X 

" r 

231200-18 

RESET TIMING 

REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLY) 

"D,s-ADo 
Al,IS6·A,~/S3 

~,~~ ----------
SHE/5 7 

;::. eLK CYCLES 

231200-19 

80C86 

231200-20 

NOTE: The coprocessor may not drive the buses outside the region shown without risking contention, 

3-49 



inter SOCS6/S0CS6-2 

WAVEFORMS (Continued) 

HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLY) 

~ 1 ClK CYCLE 

"::~---+< 
HlDA 

RD, BOCH COPROCESSOR 

A015wADO' ',JTCLAZ 
A1g1S,oA16/S3, .. , ------- : 

liHiyS" MIlO, , ,1_-----, 
DT lA, WR, DEN 

Table 2. Instruction Set Summary 

DATA TMNIf£R OlCo.cr-t: 
MOY ....... , 

:::.~: ;-OOOIOd. "..,1",' =:J : ....... 

!i~I~~I~~~~~~~~~= ~Imemory 1frIrIIIodiIH!O~ 10"w"'ll cw~ 

.......".,.1Oac:c~mulltor 1010000. 1ICIdf..,... A~I~.""'f~ 

AocumuilllOflO~ fIddr-higll. Irnmtdllhlwilh~I.......or,o 
F\egiIIerI~!o~~"" mod 0 "'II "m 1"""*'MI14Iwi~_umul.1Ot 

.a.Ga~: 

~1"*""'Y'"*""'IIII1'" 
Rt!Io ...... "'''"1IfII1>iaIor 

1N.lnpullfom 

.LAT .. l, ....... byletoAL 

LU..I.oIdEAto~ 

LOt .. Lompa;nI .. !Oos 

LES .. l<*IPOIn..,to ES 

LAM'" I.oIdAH'MIt!1I9 

SAItF.~AJoflnto~. ....,.,..P ... bija 

PQIIf' .. "-'Pbvo 

[,'·1111111 
OIOIOr-si 

OCONg.'0 

O'Ollreg 

! :: :::::: I 

.00.1,00 

L!iiiiiICJ 

1IICI(I ° 'lIII ,,'" ...... ASCllllClju.tfo'...tI!fllCl 

_rwgrhl'! 

_'-sI.hI'! 

madreg./m 

DMo...llI'IIl~Ju~fo<lUbtf..:1 

IlIA Mullip/y(""''lilMd1 
IllULlnr.g.rmul!iplyl!09*l) 

AAII ASCI! idlY" lor mu~opIy 

OIVO .. odeluIIIIQMCI) 

IOIYl~d", .. ( .. gnedl 

.lAO ASCII .0",. tor dIMde 

c.wCon-.r1~.to_d 

C'MJ eonv.n -...ore! ~O douIM WOld 

IHLJIALSh;lIlogIoatl.,;tl1_leII 

IHftSnolllciglClllr9f11 

.... S/II~ Wllhrn«lc nvtU 

flCMRoIlt40"""l 

IIClRatllettlrougllCl'f'//'-IJleft 

N:fIRo!wtllfOll9ll ClffYfIIIII1 

Reglm'''''''Yand~.to~ 

l~hlregiIt4o.hMmory 

1'"_~'hlKCU,"ulUor 

TUTAndtul1Ctiorlto ...... no"""'": 

OICOINg 

mod reg rim 

--".;(,elll''''' 

~I-.-yano:l~ r==tTOO-G~·~'~ -] 

231200-21 

"-II'-'-Y"""'~"'!O~ 

Im ...... 14I1O~rl........af'\' 

Immed_toaccumYlato< 

mod reg '1m 

_OOO,/m 

ItrImt<MtIIdIt1Iand~,in'*I>Oryll.11011 .. lmadooo~_"", I 
,"",*,,11fIdI11U1>dKCum\lla!Of [_.!.-~.~~.£..!....:c::::;... '-==r ~ 

loDe .. AdoI ...... -.y: RIogimImoIy_"',tc_ 
l ........ iIU.lOregi_lmtft'IOry 

1mmedi8I&101ICC~ 

... """......., -A.U. .. ASCllIldjullIoI'IICIcI 

OAA"o.c."*!ldjIlllIOf_ 

~.I~and~tc~ 

"""'-'-"","Ng-~ 

~1tGI'I~ 

_ .. "*"-t ........... 

RtIg,llI'IIO'!IOIyand~""O"'" 

tm ....... ffom' .... tmemory 

1~IrOm«>eum<ll.1O< 

[.-000100d" 

.. [ 1000001 .. 

OIOOOreg 

ffi""'· 1 00000 ... 

Cllilir 100000l''' 

IIIOdreg,'m 

_'0.,/m 

FI-sI,I.-yano:lf-sli_IO_ 

1m,,*,~lO~/rnen'IOf'/ 

1,""*,0IIfI10 loCCumull1Of 

"'-;,/I't\trr'Ior;_ .... IO .. tt. 

Immed.a4.1OrtIIII'Ilf/mtmofy 

I.,......, •• 10 KCumulalO< 

1IOYI""'-byIIIwofd 

CMI'I.ComPII .. ~ 

tcAS.bn~_ 

LODa .. I.o.d Dl'1l1wd 'Q /illAX 

alOl .. SWbyte/Wdtrom /ill" 

3-50 

dI1t1~,! .... , 

dItI't".,~ 

~~";~-l 
1000000 .. 

231200-22 



inter SOCS6/S0CS6-2 

Table 2. Instruction Set Summary (Continued) 

CONTROL TRANSFER 
CALL. Call: 11' 4 3 21 0 11543:1 1 0' 

Oir~1 "",,!ttl,1'I ..... m.nl disp.~ diap-hlgh :oJ JNlIJAE JLlmp on riot billow/above 
or equal 

Indirect wi!htn Mgmen\ modOtOrim JNaEJJA Jump Of\ 1'101 below or 
equIUabo\I, 

DirK! ,"I" ..... mlnl 1 0' 0 1 1 0' 1 0 oHm-low offset-high JNP/JIPO .. Jump on 1'101 pa,.lpe, odd 

=J - seg-high JNO .. Jump on not OIIer1tO'll< 

1nc!1'1tC1 inllf""iilmlHlt ~.'1111 ~.oI_'~ JNS Jump on not SIgn 

MP '" UneondttloNl Jump lOOP Loop ex lim" 

0;'-'<:1 Within "gmlnl 1'-' 10 \ 00l~'P-IOW --~sp-h!~:l LOOPZlLOOPf. LOOP wh,ll Zlro/equll 

DirK! With," NOrnenl-short 1 1 \ 0 1 0 1 1 d, .. 
LOOPNVlOOPNE Loop wilde 1101 

Zlro/equal 

Indirec! within segment 11111111 modlOa./m 

oflM'-hi;hl 

JCXZ Jump on ex n'll 

DirtICl int.rwgmlnt L 11101010 o" .. t-Iow 

~ .. sea-hi h INT IMerr\tPt 

'ndinK! In!ersegment modlOlrlm Type sJ*:ifoMl 

RET .. R.tum from CALL Ty~l 

Wilhln~m"nt INTO" Intamlpt on overflo ..... 

Wllhin Mg_ adding imrn..:! 10 SF> data-high UtET In'"rrupt ,atum 

Inlt'H'gmanl , 100101 1 

Inl"segm"nt lidding Imm..:!"!,, to SF> t 1001010 dl'a-tow dala-nlgh 1 
JEIJZ .. Jump on .-qual/zaro d~ PROCESSOR CONTROL 
JUJNGE .. Jump on l .. sJrml gre,,'" 

0<' .-qu,,' 0' I 1 1 100 diap ClC Ctur carry 

JLElJNG ,. Jump on less or uqLlallnot 
greater I 0111"'01 di~ I CMC Compla",.nt carry 

JB/JNAE .. Jump on below/root above 
or equal 

JllElJNA '" Jump on below or equal! 
rlOt .boYa 

JPfJPE '" JLlmp on pafltylPlilrity even 

JO • Jump on ov,rflow 

JS • JLlmp on 'Ig" 
JNEfJNZ • Jump on nol eqLlallnGt zero 
JNUJGE ,. Jump 01'1 "at I""gr."'ar 

or aqu,1 
JNLEfJG • Jump on rlOl I .. , or equ,1J 

grealer 

Footnotaa: 

AL - 8-bit ~umulalor 
AX .. 16-bit accLlmul.,OI' 
CX 5 Count regil'" 
OS ~ Data segment 
ES ~ Extre MgrTlltnl 
AbovllJiMlow raler, to u",~nld value. 
Grealer ~ more poll live; 

I 0'" 0 0 1 0 

I 01 1 101 1 0 

t 01 1 1 10'0 

011 10000 

0'1 1 1 000 

011 10' 0' 

01111101 

01 1 1 1 1 1 1 

L ... ~ less pMitlve (more "agatlval signed val~a 
lid" 11~n "to·' '.g, ltd ~ Ot"'" "lfom·· 'eg 
~ 'It .. 1 lM~ WOfd in'l'UC1ion, If 'II ~ C tI"4" byl. '''-'\lClIOr\ 

J 
8TC S .. carry 

diap a..O Clear direction 

disp ~ 8To Sat direction 

(liSP I 
eLI Clea. Inte ..... pl 

d, .. 8TI Set interrupt 

"" HLT H,II 

di"p WAITW'it 

disp ESC Esc,,~ (to aJ;larn,,1 davic" 

~ LOCK Bu, lock prelix 

ill'w ~ 01 then 16 bila of Immedlalfl data lorm the O~,.nd 
il , 'III' ~ 11 lhen an immecliat, dal. byte is sign e"'tended 10 

lorm tha 16-bit operand 
il v ~ 0 Ihen "coun"· '" I, ,f ~ '" 1 than ··COUlIl" In {Cl, 

Z il used lor 'Iring primitivllS 1m compa"SOfl wllh ZF FLAG 
SEGMENT OVERRiDE PREFtX 

I 00 \reg 11 0 ! 
REG " assigned according to the IOllowing table 

if mod .. 11 the" rim IS treated as a REG flald ~!.! i-tMi (.·01 ....... 
il mod - 00 tnan OISP ~ 0-. dil~How and disp-high are abMnt 
If mod ~ 01 than O'SP ~ dlsp-Iow Ilgn-tlX!ended 10 16-bits, dlap-high II abIB"t 
If mod ~ 10 than OISP .. dilp-hlgh- diap-Iow 

if rim'" 000 than EA ~ (9X, + (SI) + OISP 
if rim .. 001 then EA ~ (eX) + (01, ... OISP 
il rim" 010 than EA .. (BP) + (SO + DlSP 
if rim'" 01 I tha" EA ~ (BP) + (01) .. OISI" 
if rim" 100 IMn EA .. (51) .. DlSP 
il rim" 101 lhan fA "' (01) .. DISP 

000 
001 
010 
011 
100 
101 
'10 
111 

AX 
e, 
OX 
ax 
SP 
ap 
51 
01 

OOO""AL 00 ES 
001 el 01 es 
010 Dl 10 5S 
011 Bl 11 os 
100 AM ,,, eH 

DH 
aH 

7'543210 

01 1 lOCI' 1 

~11 
0' 1 1 1 0 1 1 

01 1 tOO 01 

0111100'1 

1 1 100010 

1 1 1 00000 

Q~o_~_~~=r 

1 1001 101 

1 '1001 100 

~0_11_'1 

~000 
1 1 11 0 1 0 1 

11 III 001 

1 1 11 1 100 

11 I 1 1 010 

II 1 1 101 , 

1 1 1 '0100 

00 1 11 

Luo I ~~ 
LL!:LliQiiJ 

il rim .. 110 Ihan EA - (BP)" DISp· 
ol rim - lfl than fA '" (BX)" DISP 
OISP follows 2nd bY'a 01 irlltrliCllOr"l (belore dati il required) 

In'lr~lIon, which (e' .. anc, In. flag register lile as a lfl.-M oblect us. 
lhe symbol FLAGS to r"preMnl the hie 

'ucapC if mod .. 00 "nd rim" 1 10 tha" EA ~ dllp-hl{lh: dllp-Io ..... 

"MOV CS. R«I. 1 Memory no! allow«!. 

Mnamol"lIc, Inlel. 1918 

FLAGS" X:X:)(:X.(OF):(DF):(IF):(TF) (SFj'(ZF,:X:,AF) X:(PF):X:(CFI 

3-51 

11$43210 -d, .. =::J 
disp 

disp 

dilP 

d". 

"" d, .. 

-~-

~" 

~..!..!-'!_!!!!L..... 

231200-23 



80186 
HIGH INTEGRATION 16-BIT MICROPROCESSOR 

• Integrated Feature Set 
- Enhanced 8086-2 CPU 
- Clock Generator 
- 2 Independent, High-Speed DMA 

Channels 
- Programmable Interrupt Controller 
- 3 Programmable 16-bit Timers 
- Programmable Memory and 

Peripheral Chip-Select Logic 

• Direct Addressing Capability to 1 
MByte of Memory and 64 KByte I/O 

• Completely Object Code Compatible 
with All Existing 8086, 8088 Software 
-10 New Instruction Types 

• Complete System Development 
Support 

- Programmable Wait State Generator 
- Development Software; Assembler, 

PL/M, Pascal, Fortan, and System 
Utilities - Local Bus Controller 

• Available in 12.5 MHz (80186-12), 
10 MHz (80186-10) and 8 MHz (80186) 
Versions 

• High-Performance Processor 
- At 8 MHz provides 2 times the 

Performance of the Standard 8086 
- 4 MByte/Sec Bus Bandwidth 

Interface @ 8 MHz 
- 6.25 MByte/Sec Bus Bandwidth 

Interface @ 12.5 MHz 

rD~LKOUT TT 
W- ExecUTION UNiTJ 

I 
16·81T I 

ALU I 
CLOCK I 

GENERATOR I 16·BIT 

I GENERAL I 
PURPOSE I REGISTERS 

..J 
(1 n 

-In-Circuit-Emulator (12ICETM-186) 

• High Performance Numerical 
Coprocessing Capability Through 8087 
Interface 

• Available in 68 Pin: 
- Plastic Leaded Chip Carrier (PLCC) 
- Ceramic Pin Grid Array (PGA) 
- Ceramic Leadless Chip Carrier (LCe) 
(See Packaging Spec, Order'" 231369) 

INT3/INTA1 

INTZlIRm 

T 
TMR OUT 1 TMR OUT 0 

Nr' TMR IN t TMR IN t 
INITO 

J Y , l t + 
PROGRAMMABLE 

TIMERS 
0 1 2 

~:~,~~~:;: ~ PROGRAMMABLE 
INTERRUPT 

MAX COUNT CONTROLLER 
REGISTER A 

CONTROL REGISTERS 

CONTROL, I IS·BIT REGISTERS COUNT REGISTER 

0 { 
INTERNAL BUS DROOl 

DRQ1 

SRDY 
AROY 
fEff 
HOLD 
HLDA 

lin 
RESET 

=~ -r---r--
':r---

,} U U t r-
PROGRAMMABLE 

DMAUNIT 
0 1 

CHIP·SELECT 20-81T 
UNIT SOURCE POINTERS 

BUS INTERFACE ~ 2O-81T 
UNIT 16-81T DESTINATION SEGMENT 

REGISTERS 'I POINTERS 
&-BYTE PROGRAMMABLE 16~BIT 

PAEFETCH R~~~J:eo,.lS TRANSFER COUNT 
QUEUE 1 CONTROL 

I I IIH 
fifl REGiSTERS 

l~ l~Ate ucs_ L J:SflA2 
LOCK RD ADG- A161S3- LCS PCSSlA1 

DTII! iHE!S7 AD15 "9/86 

210451-1 

Figure 1.80186 Block Diagram 

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Inlel product. No other circuit patent 
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. November 1985 
® Intel Corporation, 1985 3-52 Order Number: 210451-006 



80186 

The Intel 80186 is a highly integrated 16·bit microprocessor. The 80186 effectively combines 15-20 of the 
most common 8086 system components onto one. The 80186 provides two times greater throughput than the 
standard 5 MHz 8086. The 80186 is upward compatible with 8086 and 8088 software and adds 10 new 
instruction types to the existing set. 

" 

so 

" 

Top 

o 

Leadless Chip Carrier 

Pin Grid Array 
PINS FACING DOWN 

@@J@@@@@@@ 
@@@@@@@@@@~ 
~@ @@ 
@© @@ 
@@ @@ 
@(@ @@ 
@@ @@ 
O@l @@ 
@@ @@ 
@l00®®@@@@@@ 

00®0®tlY@@@ 

Plastic Leaded Chip Carrier 
Bottom 

1819202122252425262728293031323334 

Figure 2. 80186 Pinout Diagrams 

3·53 

210451-2 

210451-3 

210451-19 



80186 

Table 1.80186 Pin Description 

Symbol Pin No. Type Name and Function 

Vee,Vee 9,43 I System Power: + 5 volt power supply. 

Vss,Vss 26,60 I System Ground. 

RESET 57 0 Reset Output indicates that the 80186 CPU is being reset, and can 
be used as a system reset. It is active HIGH, synchronized with the 
processor clock, and lasts an integer number of clock periods 
corresponding to the length of the RES signal. 

X1,X2 59,58 I Crystal Inputs, X1 and X2, provide an external connection for a 
fundamental mode parallel resonant crystal for the internal crystal 
oscillator. X1 can interface to an external clock instead of a crystal. 
In this case, minimize the capacitance on X2 or drive X2 with 
complemented X1. The input or oscillator frequency is internally 
divided by two to generate the clock signal (CLKOUT). 

CLKOUT 56 0 Clock Output provides the system with a 50% duty cycle waveform. 
All device pin timings are specified relative to CLKOUT. CLKOUT 
has sufficient MOS drive capabilities for the 8087 Numeric 
Processor Extension. 

RES 24 I System Reset causes the 80186 to immediately terminate its 
I present activity, clear the internal logic, and enter a dormant state. 

This signal may be asynchronous to the 80186 clock. The 801 ~ 
begins fetching instructions approximately 7 clock cycles after RES 
is returned HIGH. RES is required to be LOW for greater than 4 
clock cycles and is internally synchronized. For proper initialization, 
the LOW-to-HIGH transition of RES must occur no sooner than 50 
microseconds after power uf). This input is provided with a Schmitt-
trigger to facilitate power-on RES generation via an RC network. 
When RES occurs, the 80186 will drive the status lines to an 
inactive level for one clock, and then tri-statethem. 

TEST 47 I TEST is examined by the WAIT instruction. If the TEST input is 
HIGH when "WAIT" execution begins, instruction execution will 
suspend. TEST will be resampled until it goes LOW, at which time 
execution will resume. If interrupts are enabled while the 80186 is 
waiting for TEST, interrupts will be serviced. This input is 
synchronized internally. 

TMR INO, 20 I Timer Inputs are used either as clock or control signals, depending 
TMR IN 1 21 I upon the programmed timer mode. These inputs are active HIGH 

(or LOW-to-HIGH transitions are counted) and internally 
synchronized. 

TMROUTO, 22 0 Timer outputs are used to provide single pulse or continous 
TMR OUT 1 23 0 waveform generation, depending upon the timer mode selected. 

DRQO 18 I DMA Request is driven HIGH by an external device when it desires 
DRQ1 19 I that a DMA channel (Channel 0 or 1) perform a transfer. These 

signals are active HIGH, level-triggered, and internally 
synchronized. 

NMI 46 I Non-Maskable Interrupt is an edge-triggered input which causes a 
type 2 interrupt. NMI is not maskable internally. A transition from a 
LOW toHIGH initiates the interrupt at the next instruction boundary. 
NMI is latched internally. An NMI duration of one clock or more will 
guarantee service. This input is internally synchronized. 

INTO,INT1 45,44 I Maskable Interrupt Requests can be requested by strobing one of 
INT2/INTAO 42 I/O these pins. When configured as inputs, these pins are active HIGH. 
INT3/INTA1 41 I/O Interrupt Requests are synchronized internally. INT2 and INT3 may 

be configured via software to provide active-LOW interrupt-
acknowledge output signals. All interrupt inputs may be configured 
via software to be either edge- or level-triggered. To ensure 
recognition, all interrupt requests must remain active until the 
interrupt is acknowledged. When iRMX mode is selected, the 
function of these pins changes (see Interrupt Controller section of 
this data sheet). 

3-54 



Symbol 

A19/S6, 
A18/S5, 
A17/S4, 
A16/S3 

A015-AOO 

BHE/S7 

ALE/QSO 

WR/QS1 

80186 

Table 1.80186 Pin Description (Continued) 

Pin No. 

65 
66 
67 
68 

Type 

a 
a 
a 
a 

10-17, I/O 
1-8 

64 a 

61 a 

63 a 

Name and Function 

Address Bus Outputs (16-19) and Bus Cycle Status (3-6) reflect the 
four most significant address bits during T 1. These signals are active 
HIGH. Ouring T 2, T 3, T w, and T 4, status information is available on 
these lines as encoded below: 

I Low I High 

S6 I Processor Cycle I OMACycle 

S3, S4, and S5 are defined as LOW during T 2-T 4. 

Address/Oata Bus (0-15) signals constitute the time multiplexed 
memory or I/O address (T 1) and data (T 2, T 3, T w, and T 4) bus. The 
bus is active HIGH. Ao is analogous to BHE for the lower byte of the 
data bus, pins 07 through 00. It is LOW during T 1 when a byte is to 
be transferred onto the lower portion of the bus in memory or I/O 
operations. 

Ouring T 1 the Bus High Enable signal should be used to determine if 
data is to be enabled onto the most significant half of the data bus; 
pins 015-08. BHE is LOW during T1 for read, write, and interrupt 
acknowledge cycles when a byte is to be transferred on the higher 
half of the bus. The S7 status information is available during T 2, T 3, 
and T 4. S7 is logically equivalent to BHE. The signal is active LOW, 
and is tristated OFF during bus HaLO. 

BHE and AO Encodings 

onE Value AU vclllue 

o 0 Word Transfer 
o 1 Byte Transfer on upper half of 

data bus (015-08) 
1 0 Byte Transfer on lower half of 

data bus (Oy-Ool 
1 1 Reserved 

Address Latch Enable/Queue Status 0 is provided by the 80186 to 
latch the address into the 8282/8283 address latches. ALE is active 
HIGH. Addresses are guaranteed to be valid on the trailing edge of 
ALE. The ALE rising edge is generated off the rising edge of the 
CLKOUT immediately preceding T 1 of the associated bus cycle, 
effectively one-half clock cycle earlier than in the standard 8086. The 
trailing edge is generated off the CLKOUT rising edge in T 1 as in the 
8086. Note that ALE is never floated. 

Write Strobe/Queue Status 1 indicates that the data on the bus is to 
be written into a memory or an I/O device. WR is active for T 2, T 3, 
and T w of any write cycle. It is active LOW, and floats during 
"HaLO." It is driven HIGH for one clock during Reset, and then 
floated. When the 80186 is in queue status mode, the ALE/QSO and 
WR/QS1 pins provide information about processor/instruction 
queue interaction. 

QS1 QSO Queue Operation 

0 0 No queue operation 
0 1 First opcode byte fetched from 

the queue 
1 1 Subsequent byte fetched from 

the queue 
1 0 Empty the queue 

3-55 



80186 

Table 1.80186 Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

RD/QSMD 62 0 Read Strobe indicates that the 80186 is performing a memory or I/O 
read cycle. RD is active LOW for T 2, T 3, and T waf any read cycle. It 
is guaranteed not to go LOW in T 2 until after the Address Bus is 
floated. RD is active LOW, and floats during "HOLD". RD is driven 
HIGH for one clock during Reset, and then the output driver is 
floated. A weak internal pull-up mechanism of the AD line holds it 
HIGH when the line is not driven. During RESET the pin is sampled 
to determine whether the 80186 should provide ALE, WR and RD, or 
if the Queue-Status should be provided. RD should be connected to 
GND to provide Queue-Status data. 

ARDY 55 I Asynchronous Ready informs the 80186 that the addressed memory 
space or 110 device will complete a data transfer. The ARDY input 
pin will accept an asynchronous input, and is active HIGH. Only the 
rising edge is internally synchronized by the 80186. This means that 
the falling edge of ARDY must be synchronized to the 80186 clock. If 
connected to Vee, no WAIT states are inserted. Asynchronous ready 
(ARDY) or synchronous ready (SRDY) must be active to terminate a 
bus cycle. If unused, this line should be tied LOW. 

SRDY 49 I Synchronous Ready must be synchronized externally to the 80186. 
The use of SRDY provides a relaxed system-timing specification on 
the Ready input. This is accomplished by eliminating the one-half 
clock cycle which is required for internally resolving the signal level 
when using the ARDY input. This line is active HIGH. If this line is 
connected to Vee, no WAIT states are inserted. Asynchronous ready 
(ARDY) or synchronous ready (SRDY) must be active before a bus 
cycle is terminated. If unused, this line should be tied LOW. 

LOCK 48 0 LOCK output indicates that other system bus masters are not to gain 
control of the system bus while LOCK is active LOW. The LOCK 
signal is requested by the LOCK prefix instruction and is activated at 
the beginning of the first data cycle associated with the instruction 
following the LOCK prefix. It remains active until the completion of 
the instruction following the LOCK prefix. No prefetches will occur 
while LOCK is asserted. When executing more than one LOCK 
instruction, always make sure there are 6 bytes of code between the 
end of the first LOCK instruction and the start of the second LOCK 
instruction. LOCK is active LOW, is driven HIGH for one clock during 
RESET, and then floated. 

SO, S1, S2 52-54 0 Bus cycle status SO-S2 are encoded to provide bus-transaction 
information: 

80186 Bus Cycle Status Information 

S2 S1 SO Bus Cycle Initiated 

0 0 0 Interrupt Acknowledge 
0 0 1 Read I/O 
0 1 0 Write I/O 
0 1 1 Halt 
1 0 0 Instruction Fetch 
1 0 1 Read Data from Memory 
1 1 0 Write Data to Memory 
1 1 1 Passive (no bus cycle) 

The status pins float during "HO!:,D." 
S2 may be used as a logical M/IO indicator, and S1 as a DT /A 
indicator. 
The status lines are driven HIGH for one clock during Reset, and 
then floated until a bus cycle begins. 

3-56 



80186 

Table 1.80186 Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

HOLD (input) 50 I HOLD indicates that another bus master is requesting the local bus. 
HLDA (output) 51 0 The HOLD input is active HIGH. HOLD may be asynchronous with 

respect to the 80186 clock. The 80186 will issue a HLDA (HIGH) in 
response to a HOLD request at the end of T 4 or T 1. Simultaneous 
with the issuance of H LOA, the 80186 will float the local bus and 
control lines. After HOLD is detected as being LOW, the 80186 will 
lower HLDA. When the 80186 needs to run another bus cycle, it will 
again drive the local bus and control lines. 

UCS 34 0 Upper Memory Chip Select is an active LOW output whenever a 
memory reference is made to the defined upper portion (1 K-256K 
block) of memory. This line is not floated during bus HOLD. The 
address range activating UCS is software programmable. 

LCS 33 0 Lower Memory Chip Select is active LOW whenever a memory 
reference is made to the defined lower portion (1 K-256K) of 
memory. This line is not floated during bus HOLD. The address 
range activating LCS is software programmable. 

MCSO-3 38,37,36,35 0 Mid-Range Memory Chip Select signals are active LOW when a 
memory reference is made to the defined mid-range portion of 
memory (8K-512K). These lines are not floated during bus HOLD. 
The address ranges activating MCSO-3 are software 
programmable. 

PCSO 25 0 Peripheral Chip Select signals 0-4 are active LOW when a 
reference is made to the defined oerioheral area 164K bvte 1/0 

PCS1-4 27,28,29,30 a space). These lines are not floated during bus HOLD. The address 
ranges activating PCSO-4 are software programmable. 

PCS5/A1 31 a Peripheral Chip Select 5 or Latched. A 1 may be programmed to 
provide a sixth peripheral chip select, or to provide an internally 
latched Ai signal. The address range activating PCS5 is software 
programmable. When programmed to provide latched. A 1, rather 
than PCS5, this pin will retain the previously latched value of Ai 
during a bus HOLD. Ai is active HIGH. 

PCS6/A2 

I 

82 a Peripheral Chip Select 6 or Latched A2 may be programmed to 
provide a seventh peripheral chip select, or to provide an internally 
latched A2 Signal. The address range activating PCS6 is software 
programmable. When programmed to provide latched A2, rather 
than PCS6, this pin will retain the previously latched value of A2 
during a bus HOLD. A2 is active HIGH. 

DT/R 40 a Data Transmit/Receive controls the direction of data flow through 
the external 8286/8287 data bus transceiver. When LOW, data is 
transferred to the 80186. When HIGH the 80186 places write data 
on the data bus. 

DEN 39 a Data Enable is provided as an 8286/8287 data bus transceiver 
output enable. DEN is active LOW during each memory and I/O 
access. DEN is HIGH whenever DT fA changes state. 

3-57 



inter 80186 

FUNCTIONAL DESCRIPTION 

Introduction 

The following Functional Description describes the 
base architecture of the 80186. This architecture is 
common to the 8086, 8088, and 80286 microproces­
sor families as well. The 80186 is a very high inte­
gration 16-bit microprocessor. It combines 15-20 of 
the most common microprocessor system compo­
nents onto one chip while providing twice the per­
formance of the standard 8086. The 80186 is object 
code compatible with the 8086/8088 microproces­
sors and adds 10 new instruction types to the exist­
ing 8086/8088 instruction set. 

80186 BASE ARCHITECTURE 

The 8086, 8088, 80186, and 80286 family all contain 
the same basic set of registers, instructions, and ad­
dressing modes. The 80186 processor is upward 
compatible with the 8086, 8088, and 80286 CPUs. 

Register Set 

The 80186 base architecture has fourteen registers 
as shown in Figures 3a and 3b. These registers are 
grouped into the following categories. 

General Registers 

Eight 16-bit general purpose registers may be used 
to contain arithmetic and logical operands. Four of 
these (AX, BX, CX, and DX) can be used as 16-bit 
registers or split into pairs of separate 8-bit registers. 

BYTE 
ADDRESSABLE 
(8-BIT 
AEG!STER 
NAMES 
SHOWN) 

16·BIT 
REGISTER 

NAME 

X 

X 

X 

X 

[; 
P 

S I 

D I 

P 

15 

o 7 

AH AL 

DH DL 

CH CL 

BH BL 

GENERAL 
REGISTERS 

SPECIAL 
REGISTEA 
FUNCTIONS 

MULTIPLY IDIVIDE 
lID INSTRUCTIONS 

LOOP/SHIFT/REPEAT/COUNT 

BASE REGISTERS 

INDEX REGISTERS 

8T ACK POINTER 

Segment Registers 

Four 16-bit .special purpose registers select, at any 
given time, the segments of memory that are imme­
diately addressable for code, stack, and data. (For 
usage, refer to Memory Organization.) 

Base and Index Registers 

Four of the general purpose registers may also be 
used to determine offset addresses of operands in 
memory. These registers may contain base address­
es or indexes to particular locations within a seg­
ment. The addressing mode selects the specific reg­
isters for operand and address calculations. 

Status and Control Registers 

Two 16-bit special purpose registers record or alter 
certain aspects of the 80186 processor state. These 
are the Instruction Pointer Register, which contains 
the offset address of the next sequential instruction 
to be executed, and the Status Word Register, which 
contains status and control flag bits (see Figures 3a 
and 3b). 

Status Word Description 

The Status Word records specific characteristics of 
the result of logical and arithmetic instructions (bits 
0, 2, 4, 6, 7, and 11) and controls the operation of 
the 80186 within a given operating mode (bits 8, 9, 
and 10). The Status Word R.egister is 16-bits wide. 
The function of the Status Word bits is shown in 
Table 2. 

CS 

DS 

SS 

ES 

15 

~ 
15 

SEGMENT REGISTERS 

8T ATUS AND CONTROL 
REGISTERS 

CODE SEGMENT SELECTOR 

OAT A SEGMENT SELECTOR 

STACK SEGMENT SELECTOR 

EXTRA SEGMENT SELECTOR 

STATUS WORD 

INSTRUCTION POINTER 

Figure 3a. 80186 General Purpose Register Set 

3-58 



80186 

STATUS fLAGS 
CARAY ---_________________ ----, 

PARITY --------_________ ~ 

AUXILIARY CARRY ----------___ _ 

ZERO =========::;-1 

~ INTEL RESERVEO 

CONTROL FLAGS· 

'------- TRAP FLAG 

'-------- INTERRUPT ENABLE 

'--------- DIRECTION FLAG 

Figure 3b. Status Word Format 

210451-4 

Table 2. Status Word Bit Functions Instruction Set 
Bit 

Name 
Position 

0 CF 

2 

I 

PF 

4 AF 

6 ZF 

7 SF 

8 TF 

9 IF 

10 DF 

11 OF 

Function 

Carry Flag-Set on high-order 
bit carry or borrow; cleared 
otherwise 

Parity Flag-Set if low-order 8 
bits of result contain an even 
.." If"'\"'\hnll" "f 1 _I,itc-· ""~t:),"""Q.rI .............. ""'; .... , ............ , ............... '"" ..... 

otherwise 

Set on carry from or borrow to 
the low order four bits of AL; 
cleared otherwise 

Zero Flag-Set if result is zero; 
cleared otherwise 

Sign Flag-Set equal to high-
order bit of result (0 if positive, 
1 if negative) 

Single Step Flag-Once set, a 
single step interrupt occurs 
after the next instruction 
executes. TF is cleared by the 
single step interrupt. 

Interrupt-enable Flag-When 
set, maskable interrupts will 
cause the CPU to transfer 
control to an interrupt vector 
specified location. 

Direction Flag-Causes string 
instructions to auto decrement 
the appropriate index register 
when set. Clearing DF causes 
auto increment. 

Overflow Flag-Set if the 
signed result cannot be 
expressed within the number 
of bits in the riestination 
operand; cleared otherwise 

The instruction set is divided into seven categories: 
data transfer, arithmetic, shiftlrotatellogical, string 
manipulation, control transfer, high-level instruc­
tions, and processor control. These categories are 
summarized in Figure 4. 

An 80186 instruction can reference anywhere from 
zero to several operands. An operand can reside in 
d j'eQlsi:~i·, III lhe ii-lstnJctior. i~3t;:i, VI in ili6mviY. Gpc;~ 
cific operand addressing modes are discussed later 
in this data sheet. 

Memory Organization 

Memory is organized in sets of segments. Each seg­
ment is a linear contiguous sequence of up to 64K 
(216) 8-bit bytes. Memory is addressed using a two­
component address (a pointer) that consists of a 16-
bit base segment and a 16-bit offset. The 16-bit 
base values are contained in one of four internal 
segment register (code, data, stack, extra). The 
physical address is calculated by shifting the base 
value LEFT by four bits and adding the 16-bit offset 
value to yield a 20-bit physical address (see Figure 
5). This allows for a 1 MByte physical address size. 

All instructions that address operands in memory 
must specify the base segment and the 16-bit offset 
value. For speed and compact instruction encoding, 
the segment register used for physical address gen­
eration is implied by the addressing mode used (see 
Table 3). These rules follow the way programs are 
written (see Figure 6) as independent modules that 
require areas for code and data, a stack, and access 
to external data areas. 

Special segment override instruction prefixes allow 
the implicit segment register selection rules to be 
overridden for special cases. The stack, data, and 
extra segments may coincide for simple programs. 

3-59 



80186 

GENERAL PURPOSE MOVS Move byte or word string 

MOV Move byte or word INS Input bytes or word string 
PUSH Push word onto stack OUTS Output bytes or word string 
POP Pop word off stack 

CMPS Compare byte or word string 
PUSHA Push all registers on stack 

SCAS Scan byte or word string 
POPA Pop all registers from stack 

LODS Load byte or word string 
XCHG Exchange byte or word 

STOS Store byte or word string 
XLAT Translate byte 

INPUT IOUTPUT REP Repeat 

IN Input byte or word REPE/REPZ Repeat while equal/zero 

OUT Output byte or word REPNE/REPNZ Repeat while not equal/not zero 

ADDRESS OBJECT LOGICALS 

LEA Load effective address NOT "Not" byte or word 

AND "And" byte or word 
LDS Load pointer using OS 

OR "Inclusive or" byte or word 
LES Load pointer using ES 

XOR "Exclusive or" byte or word 
FLAG TRANSFER 

TEST "Test" byte or word 
LAHF Load AH register from flags SHIFTS 
SAHF Store AH register in flags SHL/SAL Shift logical! arithmetic left byte or word 

PUSHF Push flags onto stack SHR Shift logical right byte or word 

POPF Pop flags off stack SAR Shift arithmetic right byte or word 

ADDITION ROTATES 

ADD Add byte or word ROL Rotate left byte or word 

ADC Add byte or word with carry ROR Rotate right byte or word 

RCL Rotate through carry left byte or word 
INC I ncremen! byte or word by 1 

RCR Rotate through carry right byte or word 
AAA ASCII adjust for addition 

FLAG OPERATIONS 
DAA Decimal adjust for addition 

STC Set carry flag 
SUBTRACTION 

CLC Clear carry flag 
SUB Subtract byte or word 

CMC Complement carry flag 
SBB Subtract byte or word with borrow 

STD Set direction flag 
DEC Decrement byte or word by 1 

CLD Clear direction flag 
NEG Negate byte or word 

STI Set interrupt enable flag 
CMP Compare byte or word 

CLI Clear interrupt enable flag 
AAS ASCII adjust for subtraction 

EXTERNAL SYNCHRONIZATION 
DAS Decimal adjust for subtraction 

HLT Halt until interrupt or reset 
MULTIPLICATION 

WAIT Wait for TEST pin active 
MUL Multiply byte or word unsigned 

ESC Escape to extension processor 
IMUL Integer multiply byte or word 

LOCK Lock bus during next instruction 
AAM ASCII adjust for multiply .. 

NO OPERATION 
DIVISION 

NOP No operation 
DIV Divide byte or word unsigned 

HIGH LEVEL INSTRUCTIONS 
IDIV Integer divide byte or word 

ENTER Format stack for procedure entry 
AAD ASCII adjust for division 

LEAVE Restore stack for procedure exit 
CBW Convert byte to word 

BOUND Detects values outside prescribed range 
CWD Convert word to doubleword 

Figure 4. 80186 Instruction Set 

3-60 



inter 80186 

CONDITIONAL TRANSFERS JO Jump if overflow 

JA/JNBE Jump if above/not below nor equal JP/JPE Jump if parity/parity even 

JAE/JNB Jump if above or equal/not below JS Jump if sign 

JB/JNAE Jump if below/not above nor equal UNCONDITIONAL TRANSFERS 

JBE/JNA Jump if below or equal/not above CALL Call procedure 

JC Jump if carry RET Return from procedure 

JE/JZ Jump if equal/zero JMP Jump 

JG/JNLE Jump if greater/not less nor equal ITERATION CONTROLS 

JGE/JNL Jump if greater or equal/not less LOOP Loop 

JLlJNGE Jump if less/not greater nor equal LOOPE/LOOPZ Loop if equal/zero 

JLE/JNG Jump if less or equal/not greater LOOPNE/LOOPNZ Loop if not equal/not zero 

JNC Jump if not carry JCXZ Jump if register CX = 0 

JNE/JNZ Jump if not equal/not zero 

I 
INTERRUPTS 

JNO Jump if not overflow INT Interrupt 

JNP/JPO Jump if not parity/parity odd INTO Interrupt if overflow 

JNS Jump if not sign IRET Interrupt return 

Figure 4. 80186 Instruction Set (Continued) 

To access operands that do not reside in one of the 
four immediately available segments, a full 32-bit 
pcj~!er ce.~ be ~~,9C !() ~~!~=-d ~c!h !~e beee !eeg~ 
ment) and offset values. 

IHIFT LEFT 4 BITS I 1 2 J 4 I ;~~~ENT} 
.---....l..-r-, 15 0 LOGICAL I 1 2 3 4 J (l I ...-__ ---, ADDRESS 

19 t 0 I 0 0 2 2 IOFFSET 

[~I 0 0 2 21.. 15 0 

15 0 

11 2 J 6 

19 

2 I PHYSICAL ADDRESS 

o 
TO MEMORY 210451-5 

Figure 5. Two Component Address 

Table 3. Segment Register Selection Rules 

Memory Segment Implicit Segment Reference Register 
Needed Used Selection Rule 

Instructions Code (CS) Instruction prefetch and 
immediate data. 

Stack Stack (SS) All stack pushes and 
pops; any memory 
references which use BP 
Register as a base 
register. 

External Extra (ES) All string instruction 
Data references which use 
(Global) the 01 register as an 

index. 
Local Data Data (OS) All other data references. 

3-61 

r - --, 
I I 

MODULE _I CODE I 
DATA 

MODULE e I---t-..., 

PROCESS 
STACK 

PROCESS 
DATA 
BLOCK 1 

PROCEssD DATA 
BLOCK 2 

I I 
L ___ J 

MEMORY 

CPU 

CODE 

DATA 

STACK 

EXTRA 

SEGMENT 
REGISTERS 

210451-6 

Figure 6. Segmented Memory Helps 
Structure Software 



80186 

Addressing Modes 

The 80186 provides eight categories of addressing 
modes to specify operands. Two addressing modes 
are provided for instructions that operate on register 
or immediate operands: 

• Register Operand Mode: The operand is located 
in one of the 8· or 16·bit general registers. 

• Immediate Operand Mode: The operand is in· 
cluded in the instruction. 

Six modes are provided to specify the location of an 
operand in a memory segment. A memory operand 
address consists of two 16·bit components: a seg· 
ment base and an offset. The segment base is sup· 
plied by a 16·bit segment register either implicitly 
chosen by the addressing mode or explicitly chosen 
by a segment override prefix. The offset, also called 
the effective address, is calculated by summing any 
combination of the following three address ele· 
ments: 

• the displacement (an 8· or 16·bit immediate value 
contained in the instruction); 

• the base (contents of either the BX or BP base 
registers); and 

• the index (contents of either the SI or 01 index 
registers). 

Any carry out from the 16·bit addition is ignored. 
Eight·bit displacements are sign extended to 16·bit 
values. 

Combinations of these three address elements de· 
fine the six memory addressing modes, described 
below. 

• Direct Mode: The operand's offset is contained in 
the instruction as an 8· or 16·bit displacement el· 
ement. 

• Register Indirect Mode: The operand's offset is in 
one of the registers SI, 01, BX, or BP. 

• Based Mode: The operand's offset is the sum of 
an 8· or 16·bit displacement and the contents of 
a base register (BX or BP). 

• Indexed Mode: The operand's offset is the sum 
of an 8· or 16·bit displacement and the contents 
of an index register (SI or DI). 

• Based Indexed Mode: The operand's offset is the 
sum of the contents of a base register and an 
Index register. 

• Based indexed Mode with Displacement: The op· 
erand's offset is the sum of a base register's con· 
tents, an index register's contents, and an 8· or 
16·bit displacement. 

3-62 

Data Types 

The 80186 directly supports the following data 
types: 

• Integer: A signed binary numeric value contained 
in an 8·bit byte or a 16·bit word. All operations 
assume a 2's complement representation. 
Signed 32· and 64·bit integers are supported us· 
ing the 80186/20 Numeric Data Processor. 

• Ordinal.' An unsigned binary numeric value con· 
tained in an 8·bit byte or a 16·bit word. 

• Pointer: A 16· or 32·bit quantity, composed of a 
16·bit offset component or a 16·bit segment base 
component in addition to a 16·bit offset compo· 
nent. 

• String: A contiguous sequence of bytes or words. 
A string may contain from 1 to 64K bytes. 

• ASCII: A byte representation of alphanumeric and 
control characters using the ASCII standard of 
character representation. 

• BCD: A byte (unpacked) representation of the 
decimal digits 0-9. 

• Packed BCD: A byte (packed) representation of 
two decimal digits (0-9). One digit is stored in 
each nibble (4·bits) of the byte. 

• Floating Point: A signed 32·. 64·, or 80·bit real 
number representation. (Floating point operands 
are supported using the 80186/20 Numeric Data 
Processor configuration.) 

In general, individual data elements must fit within 
defined segment limits. Figure 7 graphically repre· 
sents the data types supported by the 80186. 

1/0 Space 

The I/O space consists of 64K 8·bit or 32K 16·bit 
ports. Separate instructions address the I/O space 
with either an 8·bit port address, specified in the in· 
struction, or a 16·bit port address in the OX register. 
8·bit port addresses are zero extended such that 
A15-Aa are LOW. I/O port addresses 00F8(H) 
through OOFF(H) are reserved. 

Interrupts 

An interrupt transfers execution to a new program 
location. The old program address (CS:IP) and ma· 
chine state (Status Word) are saved on the stack to 
allow resumption of the interrupted program. Inter· . 
rupts fall into three classes: hardware initiated, INT 
instructions, and instruction exceptions. Hardware 
initiated interrupts occur in response to an external 
input and are classified as non·maskable or maska· 
ble. 



80186 

, 
SIGNED rfTTTTTTl 
B'ITE~ 

SIGI'.t BIT L--J 
MAGNITUDE 

, , 
''''SIGNED rrrrrrrrl 
BYTE~ 

~ 
MAGNITUDE 

15 ,~ ... 1 B 7 0 0 

s~~~g [ Iii lit iii iii' I i I 
SIGN BIT LI' .:::;MS;;:;:A""GN,,"ITWUD,,,--1 

SIGNED 31 .3 .2 1615 .. 1 0 0 

D~~:~~ ryrrt i II f i ! I r i I! Iii i i 'I iii I:J 
SIGNBIT-~ ____ _ 

MAGNITUDE 

+7 +6 +5 +4 ..-3 .. 2 -+1 0 
SIGNED 63 484' 12'1 1615 

W~~A~ II I' r I 
SIGN BIT J~B _---1 

MAGNITUDE 

15 +1 0 

UNS~~~~g I ' 1 ! I ' iii iii 11 i I I 
,L MSB 

MAGNITUDE 

BINARY 7 +N 0 

CODfD rrrrrrrrl 
OECIMAl~ 

(BCD) Ol~~~ N 

7 +1 07 0 0 

Iliijiiil'i'I"II 
BCD BCD 

DIGIT 1 DIGIT 0 

1 +1 07 0 0 7 -N 0 

ITIT1"TTn 
"'~\"II~ 

ililliiiililtlifl 
," I . I • I 

ASCU 
CHARACTERN 

7 +N 0 
PACKED rrrrrrrrl 

BCD LL.J 
L--J 
MOST 
SIGNIFICANT DIGIT 

ASCII ASCII 
CHARACTER, CHARACTERO 

I ... 1 07 0 0 

liii Ilillllllllll 
L..-J 
LEAST 

51GNIFICANT DIGIT 

7 1~ + N 0 7 15 + 1 G 7 15 0 0 

STR!NG~ '" f iii lliiliiillllJ 
BYTE WORD N BYTE WOAD 1 BYTE WORO 0 

31 +3 +2 1615 +1 0 0 

POINT'R I' iii i = I : iii iii Iii Ii' , I ' i , I ' " I 
79 +9 ->-8 +7 .. 6 ... 5 .. 4 +3 .. 2 +1 0 0 

FL~~~~1~ II 
SIGN BIT _u., -,...J'P-ON-,J..NT--''--''--'-M-AG.J.NI-Tu-o,L--'--2J..l 0-4...J;j'l_7 

NOTE: 
'Supported by 80186/20 Numeric Data Processor 
Configuration. 

Figure 7.80186 Supported Data Types 

Programs may cause an interrupt with an INT in­
struction. Instruction exceptions occur when an un­
usual condition, which prevents further instruction 
processing, is detected while attempting to execute 
an instruction. If the exception was caused by exe­
cuting an ESC instruction with the ESC trap bit set in 
the relocation register, the return instruction will 
point to the ESC instruction, or to the segment over­
ride prefix immediately preceding the ESC instruc­
tion if the prefix was present. In all other cases, the 

3-63 

return address from an exception will point at the 
instruction immediately following the instruction 
causing the exception. 

A table containing up to 256 pointers defines the 
proper interrupt service routine for each interrupt. In­
terrupts 0-31, some of which are used for instruc­
tion exceptions, are reserved. Table 4 shows the 
80186 predefined types and default priority levels. 
For each interrupt, an 8-bit vector must be supplied 
to the 80186 which identifies the appropriate table 
entry. Exceptions supply the interrupt vector inter­
nally. In addition, internal peripherals and noncas­
caded external interrupts will generate their own 
vectors through the internal interrupt controller. INT 
instructions contain or imply the vector and allow 
access to all 256 interrupts. Maskable hardware ini­
tiated interrupts supply the 8-bit vector to the CPU 
during an interrupt acknowledge bus sequence. 
Non-maskable hardware interrupts use a predefined 
internally supplied vector. 

Interrupt Sources 
The 80186 can service interrupts generated by soft­
ware or hardware. The software interrupts are gen-
- .. - .. ~ ...... h~, ........ ..,. .... ;:.,:; ..... ;..,. ..... +;>"., .... +."' ......... (I"'-IT r::c.r' 11/'"\llcari 
viat~U uy ..;;1...,"" .... 111 ... J.loJ .................. ' ..... ,""" __ ...... , .............. __ .... 

OP, etc.) or the results of conditions specified by 
instructions (array bounds check, INTO, DIV, IDIV, 
etc.). All interrupt sources are serviced by an indirect 
call through an element of a vector table. This vector 
table is indexed by using the interrupt vector type 
(Table 4), multiplied by four. All hardware-genl9rated 
interrupts are sampled at the end of each instruc­
tion. Thus, the software interrupts will begin service 
first. Once the service routine is entered and inter­
rupts are enabled, any hardware source of sufficient 
priority can interrupt the service routine in progress. 

The software generated 80186 interrupts are de­
scribed below. 

DIVIDE ERROR EXCEPTION (TYPE 0) 

Generated when a DIV or IDIV instruction quotient 
cannot be expressed in the number of bits in the 
destination. 

SINGLE-STEP INTERRUPT (TYPE 1) 

Generated after most instructions if the TF flag is 
set. Interrupts will not be generated after prefix in­
structions (e.g., REP), instructions which modify seg­
ment registers (e.g., POP OS). or the WAIT instruc­
tion. 

NON-MASKABLE INTERRUPT -NMI (TYPE 2) 

An external interrupt source which cannot be 
masked. 



80186 

Table 4. 80186 Interrupt Vectors 

Interrupt Vector Default Related 
Name Type Priority Instructions 

Divide Error 0 '1 DIY, IDlY 
Exception 

Single Step 1 12"2 All 
Interrupt 

NMI 2 1 All 
Breakpoint 3 '1 INT 

Interrupt 
INTO Detected 4 '1 INTO 

Overflow 
Exception 

Array Bounds 5 '1 BOUND 
Exception 

Unused-Opcode 6 '1 Undefined 
Exception Opcodes 

ESCOpcode 7 *1*** ESCOpcodes 
Exception 

Timer 0 Interrupt 8 2A···· 
Timer 1 Interrupt 18 2B···· 
Timer 2 Interrupt 19 2C···· 
Reserved 9 3 
DMA 0 Interrupt 10 4 
DMA 1 Interrupt 11 5 
INTO Interrupt 12 6 
INTi Interrupt 13 7 
INT2 Interrupt 14 8 
INT3 Interrupt 15 9 

NOTES: 
"1. These are generated as the result of an instruction exe­
cution . 
• *2. This is handled as in the 8086. 
• ···3.AII three ti(l1ers constitute one source of request to 
the interrupt controller. The Timer interrupts all have the 
same default priority level with respect to all other interrupt 
sources. However, they have a defined priority ordering 
amongst themselves. (Priority 2A is higher priority than 2B.) 
Each Timer interrupt has a separate vector type number. 
4. Default priorities for the interrupt sources are used only if 
the user does not program each source into a unique prior­
ity level. 
•• *5. An escape opcode will cause a trap only if the proper 
bit is set in the peripheral control block relocation register. 

BREAKPOINT INTERRUPT (TYPE 3) 

A one-byte version of the INT instruction. It uses 12 
as an index into the service routine address table 
(because it is a type 3 interrupt). 

INTO DETECTED OVERFLOW EXCEPTION 
(TYPE4) 

Generated during an INTO instruction if the OF bit is 
set. 

ARRAY BOUNDS EXCEPTION (TYPE 5) 

Generated during a BOUND instruction if the array 
index is outside the array bounds. The array bounds 
are located in memory at a location indicated by one 
of the instruction operands. The other operand indi­
cates the value of the index to be checked. 

UNUSED OPCODE EXCEPTION (TYPE 6) 

Generated if execution is attempted on undefined 
opcodes. 

ESCAPE OPCODE EXCEPTION (TYPE 7) 

Generated if execution is attempted of ESC opcodes 
(D8H-DFH). This exception will only be generated if 
a bit in the relocation register is set. The return ad­
dress of this exception will point to the ESC instruc­
tion causing the exception. If a segment override 
prefix preceded the ESC instruction, the return ad­
dress will point to the segment override prefix. 

Hardware-generated interrupts are divided into two 
groups: maskable interrupts and non-maskable in­
terrupts. The 80186 provides maskable hardware in­
terrupt request pins INTO-INT3. In addition, maska­
ble interrupts may be generated by the 80186 inte­
grated DMA controller and the integrated timer unit. 
The vector types for these interrupts is shown in Ta­
ble 4. Software enables these inputs by setting the 
interrupt flag bit (IF) in the Status Word. The inter­
rupt controller is discussed in the peripheral section 
of this data sheet. 

Further maskable interrupts are disabled while serv­
icing an interrupt because the IF bit is reset as part 
of the response to an interrupt or exception. The 
saved Status Word will reflect the enable status of 
the processor prior to the interrupt. The interrupt flag 
will remain zero unless specifically set. The interrupt 
return instruction restores the Status Word, thereby 
restoring the original status of IF bit. If the interrupt 
return re-enables interrupts, and another interrupt is 
pending, the 80186 will immediately service the 
highest-priority interrupt pending, i.e., no instructions 
of the main line program will be executed. 

Non-Maskable Interrupt Request (NMI) 

A non-maskable interrupt (NMI) is also provided. 
This interrupt is serviced regardless of the state of 
the IF bit. A typiciI.I use of NMI would be to activate a 
power failure routine. The activation of this input 
causes an interrupt with an internally supplied vector 
value of 2. No external interrupt acknowledge se­
quence is performed. The IF bit is cleared at the 
beginning of an NMI interrupt to prevent maskable 
interrupts from being serviced. 

3-64 



intJ 80186 

Single-Step Interrupt 

The 80186 has an internal interrupt that allows pro­
grams to execute one instruction at a time. It is 
called the single-step interrupt and is controlled by 
the single-step flag bit (TF) in the Status Word. Once 
this bit is set, an internal single-step interrupt will 
occur after the next instruction has been executed. 
The interrupt clears the TF bit and uses an internally 
supplied vector of 1. The IRET instruction is used to 
set the TF bit and transfer control to the next instruc­
tion to be single-stepped. 

Initialization and Processor Reset 

Processor initialization or startup is accomplished by 
driving the RES input pin LOW. RES forces the 
80186 to terminate all execution and local bus activi­
ty. No instruction or bus activity will occur as long as 
RES is active. After RES becomes inactive and an 
internal processing interval elapses, the 80186 be­
gins execution with the instruction at physical loca­
tion FFFFO(H). RES also sets some registers to pre­
defined values as shown in Table 5. 

Table 5. 80186 Initial Register State after RESET 

Status Word F002(H) 
Instruction Pointer OOOO(H) 
Code Segment FFFF(H) 
Data Segment OOOO(H) 
Extra Segment OOOO(H) 
Stack Segment OOOO(H) 
Relocation Register 20FF(H) 
UMCS FFFB(H) 

80186 CLOCK GENERATOR 

The 80186 provides an on-chip clock generator for 
both internal and external clock generation. The 
clock generator features a crystal oscillator, a divide­
by-two counter, synchronous and asynchronous 
ready inputs, and reset circuitry. 

Oscillator 

The oscillator circuit of the 80186 is designed to be 
used with a parallel resonant fundamental mode 
crystal. This is used as the time base for the 80186. 
The crystal frequency selected will be double the 
CPU clock frequency. Use of an LC or RC circuit is 
not recommended with this oscillator. If an external 
oscillator is used, it can be connected directly to in­
put pin X1 in lieu of a crystal. The output of the oscil­
lator is not directly available outside the 80186. The 
recommended crystal configuration is shown in Fig­
ure 8. 

T 20pF 
x, 

5 x MH~RYSTAL 
x, ~ 

80186 1= 20pF 

210451-8 

x 

80186·12 (12.5 MHz) 25 

80186·10 (10 MHz) 20 

80186 (8 MHz) 16 

Figure 8. Recommended 80186 
Crystal Configuration 

The following parameters may be used for choosing 
a crystal: 

Temperature Range: 
ESR (Equivalent Series Resistance): 
Co (Shunt Capacitance of Crystal): 
C1 (Load Capacitance): 
Drive Level: 

o to 70"C 
300 max 

7.0 pf max 
20pf±2pf 

1 mw max 

The 80186 clock generator provides the 50% duty 
cycle processor clock for the 80186. It does this by 
dividing the oscillator output by 2 forming the sym­
metrical clock. If an external oscillator is used, the 
state of the clock generator will change on the fail­
ing edge of the oscillator signal. The CLKOUT pin 
provides the processor clock signal for use outside 
the 80186. This may be used to drive other system 
components. All timings are referenced to the output 
clock. 

READY Synchronization 

The 80186 provides both synchronous and asyn­
chronous ready inputs. Asynchronous ready syn­
chronization is accomplished by circuitry which sam­
ples ARDY in the middle of T 2, T 3 and again in the 
middle of each T w until ARDY is sampled HIGH. 
One-half CLKOUT cycle of resolution time is used. 
Full synchronization is performed only on the rising 
edge of ARDY, i.e., the falling edge of ARDY must 
be synchronized to the CLKOUT signal if it will occur 
during T 2, T 3, or T w. High-to-LOW transitions of 
ARDY must be performed synchronously to the CPU 
clock. 

3-65 

A second ready input (SRDY)is provided to inter­
face with externally synchronized ready signals. This 
input is sampled at the end of T 2, T 3 and again at 
the end of each T w until it is sampled HIGH. By 
using this input rather than the asynchronous ready 
input, the half-clock cycle resolution time penalty is 
eliminated. 



inter 80186 

This input must satisfy set-up and hold times to guar­
antee proper operation of the circuit. 

In addition, the 80186, as part of the integrated chip­
select logic, has the capability to program WAIT 
states for memory and peripheral blocks. This is dis­
cussed in the Chip Select/Ready Logic description. 

RESET Logic 

The 80186 provides both a RES input pin and a syn­
chronized RESET pin for use with other system 
components. The RES input pin on the 80186 is pro­
vided with hysteresis in order to facilitate power-on 
Reset generation via an RC network. RESET is 
guaranteed to remain active for at least five clocks 
given a RES input of at least six clocks. RESET may 
be delayed up to two and one-half clocks behind 
RES. 

Multiple 80186 processors may be synchronized 
through the RES input pin, since this input resets 
both the processor and divide-by-two internal coun­
ter in the clock generator. In order to insure that the 
divide-by-two counters all begin counting at the 
same time, the active going edge of RES must satis­
fy a 25 ns setup time before the falling edge of the 
80186 clock input. In addition, in order to insure that 
all CPUs begin executing in the same clock cycle, 
the reset must satisfy a 25 ns setup time before the 
rising edge of the CLKOUT signal of all the proces­
sors. 

LOCAL BUS CONTROLLER 

The 80186 provides a local bus controller to gener­
ate the local bus control signals. In addition, it em­
ploys a HOLD/HLDA protocol for relinquishing the 
local bus to other bus masters. It also provides con­
trol lines that can be used to enable external buffers 
and to direct the flow of data on and off the local 
bus. 

Memory/Peripheral Control 

The 80186 provides ALE, RD, and WR bus control 
signals. The RD and WR signals are used to strobe 
data from memory to the 80186 or to strobe data 
from the 80186 to memory. The ALE line provides a 
strobe to address latches for the multiplexed ad­
dress/data bus. The 80186 local bus controller does 
not provide a memory/l/O Signal. If this is required, 
the user will have to use the S2 signal (which will 
require external latching), make the memory and 1/0 
spaces nonoverlapping, or use only the integrated 
chip-select circuitry. 

Transceiver Control 

The 80186 generates two control Signals to be con­
nected to 8286/8287 transceiver chips. This capa­
bility allows the addition of transceivers for extra 
buffering with~t add.!!:!9....external logic. These con­
trollines, DTIR and DEN, are generated to control 
the flow of data through the transceivers. The opera­
tion of these signals is shown in Table 6. 

Table 6. Transceiver Control Signals Description 

Pin Name Function 

DEN (Data Enable) Enables the output 
drivers of the 
transceivers. It is active 
LOW during memory, 
110, or INTA cycles. 

DT /R' (Data Transmit/ Determines the direction 
Receive) of travel through the 

transceivers. A HIGH 
level directs data away 
from the processor 
during write operations, 
while a LOW level directs 
data toward the 
processor during a read 
operation. 

Local Bus Arbitration 

The 80186 uses a HOLD/HLDA system of local bus 
exchange. This provides an asynchronous bus ex­
change mechanism. This means multiple masters 
utilizing the same bus can operate at separate clock 
frequencies. The 80186 provides a single HOLDI 
HLDA pair through which all other bus masters may 
gain control of the local bus. This requires external 
circuitry to arbitrate which external device will gain 
control of the bus from the 80186 when there is 
more than one alternate local bus master. When the 
80186 relinquishes control of the local bus, it floats 
DEN, RD, WR, SO-S2, LOCK, ADO-AD15, 
A16-A19, SHE, and DT/R to allow another master 
to drive these lines directly. 

The 80186 HOLD latency time, i.e., the time be­
tween HOLD request and HOLD acknowledge, is a 
function of the activity occurring in the processor 
when the HOLD request is received. A HOLD re­
quest is the highest-priority activity request which 
the processor may receive: higher than instruction 
fetching or internal DMA cycles. However, if a DMA 
cycle is in progress, the 80186 will complete the 
transfer before relinquisiJing the bus. This implies 
that if a HOLD request is received just as a DMA 
transfer begins, the HOLD latency time can be as 
great as 4 bus cycles. This will occur if a DMA word 
transfer operation is taking place from an odd ad-

3-66 



inter 80186 

dress to an odd address. This is a total of 16 clocks 
or more, if WAIT states are required. In addition, if 
locked transfers are performed, the HOLD latency 
time will be increased by the length of the locked 
transfer. 

Local Bus Controller and Reset 

Upon receipt of a RESET pulse from the RES input, 
the local bus controller will perform the following ac­
tion: 

• Drive DEN, RD, and WR HIGH for one clock cy­
cle, then float. 

NOTE: 
RD is also provided with an internal pull-up device 
to prevent the processor from inadvertently enter­
ing Queue Status mode during reset. 

• Drive SO-S2 to the passive state (all HIGH) and 
then float. 

• Drive LOCK HIGH and then float. 

• TRISTATE ADO-15, A16-19, SHE, DT/R. 

• Drive ALE LOW (ALE is never floated). 

• Drive HLDA LOW. 

INTERNAL PERIPHERAL INTERFACE 

All the 80186 integrated peripherals are controlled 
via 16-bit registers contained within an internal 256-
byte control block. This control block may be 
mapped into either memory or 110 space. Internal 
logic will recognize the address and respond to the 
bus cycle. During bus cycles to internal registers, the 
bus controller will signal the operation externally 
(Le., the RD, WR, status, address, data, etc., lines 
will be driven as in a normal bus cycle), but D15-0, 
SRDY, and ARDY will be ignored. The base address 
of the control block must be on an even 256-byte 
boundary (i.e., the lower 8 bits of the base address 
are all zeros). All of the defined registers within this 
control block may be read or written by the 80186 
CPU at any time. The location of any register con­
tained within the 256-byte control block is deter­
mined by the current base address of the control 
block. 

The control block base address is programmed via a 
16-bit relocation register contained within the control 
block at offset FEH from the base address of the 
control block (see Figure 9). It provides the upper 12 
bits of the base address of the control block. The 
control block is effectively an internal chip select 
range and must abide by all the rules concerning 
chip selects (the chip select circuitry is discussed 
later in this data sheet). Any access to the 256 bytes 
of the control block activates an internal chip select. 

Other chip selects may overlap the control block 
only if they are programmed to zero wait states and 
ignore external ready. In addition, bit 12 of this regis­
ter determines whether the control block will be 
mapped into 110 or memory space. If this bit is 1, the 
control block will be located in memory space, 
whereas if the bit is 0, the control block will be locat­
ed in 110 space. If the control register block is 
mapped into 110 space, the upper 4 bits of the base 
address must be programmed as 0 (since I/O ad­
dresses are only 16 bits wide). 

In addition to providing relocation information for the 
control block, the relocation register contains bits 
which place the interrupt controller into iRMX mode, 
and cause the CPU to interrupt upon encountering 
ESC instructions. At RESET, the relocation register 
is set to 20FFH. This causes the control block to 
start at FFOOH in 110 space. An offset map of the 
256-byte control register block is shown in Figure 
10. 

The integrated 80186 peripherals operate semi-au­
tonomously from the CPU. Access to them for the 
most part is via software read/write of the control 
block. Most of these registers can be both read and 
""rittArt A fAW rlArli,.,"'tArllinA~. ~Ildl "''' int"rnl!'t~ "'nrl 
DMA request provide real-time communication be­
tween the CPU and peripherals as in a more con­
ventional system utilizing discrete peripheral blocks. 
The overall interaction and function of the peripheral 
blocks has not substantially changed. 

CHIP-SELECT IREADY GENERATION 
LOGIC 

The 80186 contains logic which provides program­
mable chip-select generation for both memories and 
peripherals. In addition, it can be programmed to 
provide READY (or WAIT state) generation. It can 
also povide latched address bits A 1 and A2. The 
chip-select lines are active for all memory and I/O 
cycles in their programmed areas, whether they be 
generated by the CPU or by the integrated DMA unit. 

Memory Chip Selects 

The 80186 provides 6 memory chip select outputs 
for 3 address areas; upper memory, lower memory, 
and midrange memory. One each is provided for up­
per memory and lower memory, while four are pro­
vided for midrange memory. 

The range for each chip select is user-programma­
ble and can be set to 2K, 4K, 8K, 16K, 32K, 64K, 
128K (plus 1 K and 256K for upper and lower chip 
selects). In addition, the beginning or base address 

3-67 



80186 

15 14 13 12 11 10 9 8 76 4 3 2 o 
OFFSET: FEH ! ET !RMX! X !MIIO! Relocalion Address Bits R19-R8 

ET = ESC Trap / No ESC Trap (1/0) 
MilO = Register block located in Memory 1110 Space (1/0) 
RMX = Master Interrupt Controlier mode IIRMX compatible Interrupt Controlier(O/I) 

Interrupt Controlier mode (011) 

Figure 9. Relocation Register 

Relocation Register 

DMA Descriptors Channel 1 

DMA Descriptors Channel 0 

Chip-Select Control Registers 

Time 2 Control Registers 

Time 1 Control Registers 

Time 0 Control Registers 

Interrupt Controlier Registers 

OFFSET 

FEH 

DAH 

DOH 

CAH 

COH 

ASH 

AOH 

66H 

60H 

5EH 

58H 

56H 

50H 

3EH 

20H 

Figure 10. Internal Register Map 

of the midrange memory chip select may also be 
selected. Only one chip select may be programmed 
to be active for any memory location at a time. All 
chip select sizes are in bytes, whereas 80186 mem­
ory is arranged in words. This means that if, for ex­
ample, 16 64K x 1 memories are used, the memory 
block size will be 128K, not 64K. 

Upper Memory CS 

The 80186 provides a chip select, called UCS, for 
the top of memory. The top of memory is usually 
used as the system memory because after reset the 
80186 begins executing at memory location 
FFFFOH. 

The upper limit of memory defined by this chip select 
is always FFFFFH, while the lower limit is program­
mable. By programming the lower limit, the size of 
the select block is also defined. Table 7 shows the 
relationship between the base address selected and 
the size of the memory block obtained. 

Table 7. UMCS Programming Values 

Starting 
Memory UMCSValue 

Address 
(Base 

Block (Assuming 

Address) 
Size RO=R1=R2=0) 

FFCOO 1K FFF8H 
FF800 2K FFB8H 
FFOOO 4K FF38H 
FEOOO 8K FE38H 
FCOOO 16K FC38H 
F8000 32K F838H 
FOOOO 64K F038H 
EOOOO 128K E038H 
COOOO 256K C038H 

The lower limit of this memory block is defined in the 
UMCS register (see Figure 11). This register is at 
offset AOH in the internal control block. The legal 
values for bits 6-13 and the resulting starting ad­
dress and memory block sizes are given in Table 7. 
Any combination of bits 6-13 not shown in Table 7 
will result in undefined operation. After reset, the 
UMCS register is programmed for a 1 K area. It must 
be reprogrammed if a larger upper memory area is 
desired. 

Any internally generated 20-bit address whose up­
per 16 bits are greater than or equal to UMCS (with 
bits 0-5 "0") will cause UCS to be activated. UMCS 
bits R2-RO are used to specify READY mode for the 
area of memory defined by this chip-select register, 
as explained below. 

Lower Memory CS 

The 80186 provides a chip select for low memory 
called LCS. The bottom of memory contains the in­
terrupt vector table, starting at location OOOOOH. 

3-68 



80186 

The lower limit of memory defined by this chip select 
is always OH, while the upper limit is programmable. 
8y programming the upper limit, the size of the 
memory block is also defined. Table 8 shows the 
relationship between the upper address selected 
and the size of the memory block obtained. 

Table 8. LMCS Programming Values 

Upper 
Memory LMCS Value 

Address 
Block (Assuming 
Size RO= R1 = R2= 0) 

003FFH 1K 0038H 
007FFH 2K 0078H 
OOFFFH 4K 00F8H 
01FFFH 8K 01F8H 
03FFFH 16K 03F8H 
07FFFH 32K 07F8H 
OFFFFH 64K OFF8H 
1FFFFH 128K 1FF8H 
3FFFFH 256K 3FF8H 

The upper limit of this memory block is defined in the 
LMCS register (see Figure 12). This register is at 
offset A2H in the internal control block. The legal 
\!C!II.!"~ fnr hit" 1'>-1 <; <=Inri th" r"",lltinn IlnnAr ",drlrA"" 

and memory block sizes are given Tn T~ble 8. Any 
combination of bits 6-15 not shown in Table 8 will 
result in undefined operation. After reset, the LMCS 
register value is undefined. However, the LCS chip­
select line will not become active until the LMCS 
register is accessed. 

Any internally generated 20-bit address whose up­
per 16 bits are less than or equal to LMCS (with bits 
0-5 "1") will cause LCS to be active. LMCS register 
bits R2-RO are used to specify the READY mode for 
the area of memory defined by this chip·select regis­
ter. 

Mid-Range Memory CS 

The 80186 provides four MCS lines which are active 
within a user-locatable memory block. This block 
can be located anywhere within the 80186 1 M byte 
memory address space exclusive of the areas de­
fined by UCS and LCS. 80th the base ad-

15 14 13 12 11 10 

OFFSET: AOH I 1 I 1 I u I u I u u 
A19 

9 

u 

dress and size of this memory block are programma­
ble. 

The size of the memory block defined by the mid­
range select lines, as shown in Table 9, is deter­
mined by bits 8-14 of the MPCS register (see Figure 
13). This register is at location A8H in the internal 
control block. One and only one of bits 8-14 must 
be set at a time. Unpredictable operation of the MCS 
lines will otherwise occur. Each of the four chip-se­
lect lines is active for one of the four equal contigu­
ous divisions of the mid-range block. Thus, if the to­
tal block size is 32K, each chip select is active for 8K 
of memory with MCSO being active for the first range 
and MCS3 being active for the last range. 

The EX and MS in MPCS relate to peripheral func­
tionally as described in a later section. 

Table 9. MPCS Programming Values 

Total Block 
Size 

8K 
16K 
32K 
64K 

128K 
256K 
512K 

I 

Individual 
Select Size 

2K 
4K 
8K 

16K 
32K 
64K 
128K 

MPCS Bits 
14-8 

00000018 
00000108 
00001008 
00010008 

00100008 J 
01000008 
10000008 

The base address of the mid-range memory block is 
defined by bits 15-9 of the MMCS register (see Fig­
ure 14). This register is at offset A6H in the internal 
control block. These bits correspond to bits 
A 19 - A 13 of the 20-bit memory address. 8its 
A 12-AO of the base address are always O. The base 
address may be set at any integer multiple of the 
size of the total memory block selected. For exam­
ple, if the mid-range block size is 32K (or the size of 
the block for which each MCS line is active is 8K), 
the block could be located at 10000H or 18000H, 
but not at 14000H, since the first few integer multi­
ples of a 32K memory block are OH, 8000H, 
10000H, 18000H, etc. After reset, the contents of 
both of these registers is undefined. However, none 
of the MCS lines will be active until both the MMCS 
and MPCS registers are accessed. 

8 7 6 5 4 3 2 0 

u u u I 1 I 1 1 I R2 I R1 I RO I 
A11 

Figure 11. UMCS Register 

15 14 13 12 11 10 9 8 7 6 5 4 2 1 0 

OFFSET: A2HO I 0 u I u I u I u I u LJ U u I 1 1 I 1 I R2 I R1 I RO I 
A19 A11 

Figure 12. LMCS Register 

3-69 



80186 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

OFFSET: ASH I 1 I Me I M5 I M4 I M3 I M2 I Ml I MO I EX I MS I 1 I 1 I 1 I R2 I Rl I RD I 

Figure 13. MPCS Register 

15 9 3 0 
OFFSET: A6H [U I u I u I u I u I u I u I 1 I 1 I 1 I 1 1 I 1 I R2 I Rl I RO I 

A19 A13 

Figure 14. MMCS Register 

MMCS bits R2-RO specify READY mode of opera­
tion for all mid-range chip selects. All devices in mid­
range memory must use the same number of WAIT 
states. 

The 5i2K block size for the mid-range memory chip 
selects is a special case. When using 5i2K, the 
base address would have to be at either locations 
OOOOOH or 80000H. If it were to be programmed at 
OOOOOH when the LCS line was programmed, there 
would be an internal conflict between the LCS ready 
generation logic and the MCS ready generation log­
ic. Likewise, if the base address were programmed 
at 80000H, there would be a conflict with the UCS 
ready generation logic. Since the LCS chip-select 
line does not become active until programmed, while 
the UCS line is active at reset, the memory base can 
be set only at OOOOOH. If this base address is select­
ed, however, the LCS range must not be pro­
grammed. 

Peripheral Chip Selects 

The 80186 can generate chip selects for up to seven 
peripheral devices. These chip selects are active for 
seven contiguous blocks of 128 bytes above a pro­
grammable base address. This base address may 
be located in e.ither memory or 1/0 space. 

Seven CS lines called PCSO-6 are generated by the 
80186. The base address is user-programmable; 

however it can only be a multiple of 1 K bytes, i.e., 
the least significant 10 bits of the starting address 
are always O. 

PCS5 and PCS6 can also be programmed to provide 
latched address bits Ai, A2. If so programmed, they 
cannot be used as peripheral selects. These outputs 
can be connected directly to the AO, Ai pins used 
for selecting internal registers of 8-bit peripheral 
chips. This scheme simplifies the hardware interface 
because the 8-bit registers of peripherals are simply 
treated as i6-bit registers located on even bounda­
ries in 1/0 space or memory space where only the 
lower 8-bits of the register are significant: the upper 
8-bits are "don't cares." 

The starting address of the peripheral chip-select 
block is defined by the PACS register (see Figure 
15). This 'register is located at offset A4H in the inter­
nal control block. Bits 15-6 of this register corre­
spond to bits 19-10 of the 20-bit Programmable 
Base Address (PBA) of the peripheral chip-select 
block. Bits 9-0 of the PBA of the peripheral chip-se­
lect block are all zeros. If the chip-select block is 
located in 1/0 space, bits 12-15 must be pro­
grammed zero, since the 1/0 address is only 16 bits 
wide. Table 10 shows the address range of each 
peripheral chip select with respect to the PBA con­
tained in PACS register. 

15 6 5 3 0 

OFFSET: A4H I u I u I u I u I u I u I u I u u I u I 1 1 I 1 I R2 I Rl I RO I 
A19 A1D 

Figure 15. PACS Register 

3-70 



80186 

The user should program bits 15-6 to correspond to 
the desired peripheral base location. PACS bits 0-2 
are used to specify READY mode for PSCO-PCS3. 

Table 10. PCS Address Ranges 

PCS Line Active between Locations 

PCSO PBA -PBA+ 127 
PCS1 PBA + 128-PBA + 255 
PCS2 PBA + 256-PBA + 383 
PCS3 PBA + 384-PBA + 511 
PCS4 PBA + 512-PBA + 639 
PCS5 PBA + 640-PBA + 767 
PCS6 PBA + 768-PBA + 895 

The mode of operation of the peripheral chip selects 
is defined by the MPCS register (which is also used 
to set the size of the mid-range memory chip-select 
block, see Figure 16). This register is located at off­
set A8H in the internal control block. Bit 7 is used to 
select the function of PCS5 and PCS6, while bit 6 is 
used to select whether the peripheral chip selects 
are mapped into memory or 110 space. Table 11 
describes the programming of these bits. After reset, 
the contents of both the MPCS and the PACS regis­
ters are undefined, however none of the PCS lines 
will be active until both ot the Mf-'C::; ana t-'AC;8 reg­
isters are accessed. 

Table 11. MS, EX Programming Values 

Bit Description 

MS 1 = Peripherals mapped into memory space. 
o = Peripherals mapped into liD space. 

EX o = 5 PCS lines. A 1, A2 provided. 
1 = 7 PCS lines. A 1, A2 are not provided. 

MPCS bits 0-2 are used to specify READY mode for 
PCS4-PCS6 as outlined below. 

READY Generation Logic 

The 80186 can generate a "READY" si.9.!:!.al internal­
ly for each of the memory or peripheral CS lines. The 
number of WAIT states to be inserted for each pe­
ripheral or memory is programmable to provide 0-3 
wait states for all accesses to the area for which the 
chip select is active. In addition, the 80186 may be 
programmed to either ignore external READY for 
each chip-select range individually or to factor exter­
nal READY with the integrated ready generator. 

READY control consists of 3 bits for each CS line or 
group of lines generated by the 80186. The interpre­
tation of the ready bits is shown in Table 12. 

3-71 

Table 12. READY Bits Programming 

R2 R1 RO Number of WAIT States Generated 

0 0 0 o wait states, external ROY 
also used. 

0 0 1 1 wait state inserted, external RDY 
also used. 

0 1 0 2 wait states inserted, external RDY 
also used. 

0 1 1 3 wait states inserted, external RDY 
also used. 

1 0 0 o wait states. external ROY 
I ignored. 

1 0 I 1 1 wait state inserted, external RDY 
ignored. 

1 1 0 2 wait states inserted, external RDY 
ignored. 

1 1 1 3 wait states inserted, external RDY 
ignored. 

The internal ready generator operates in parallel 
with external READY, not in series if the external 
READY is used (R2 = 0). This means, for example, 
if the internal generator is set to insert two wait 
states, but activity on the external READY lines will 
insert four wait states, the processor will only insert 
fOllr lAi':1it ~t"t,,". nnt c:iv Thic: ic: hA,",,,iJC:A thA two wait 
states generated by the internal generator over­
lapped the first two wait states generated by the ex­
ternal ready signal. Note that the external ARDY and 
SRDY lines are always ignored during cycles ac­
cessing internal peripherals. 

R2-RO of each control word specifies the READY 
mode for the corresponding block, with the excep­
tion of the peripheral chip selects: R2-RO of PACS 
set the PCSO-3 READY mode, R2-RO of MPCS set 
the PCS4-6 READY mode. 

Chip Select/Ready Logic and Reset 

Upon reset, the Chip-Select/Ready Logic will per­
form the following actions: 

• All chip-select outputs will be driven HIGH. 

• Upon leaving RESET, the UCS line will be pro­
grammed to provide chip selects to a 1 K block 
with the accompanying READY control bits set at 
011 to allow the maximum number of internal wait 
states in conjunction with external Ready consid­
eration (I.e., UMCS resets to FFFBH). 

• No other chip select or READY control registers 
have any predefined values after RESET. They 
will not become active until the CPU accesses 
their control registers. Both the PACS and MPCS 
registers must be accessed before the PCS lines 
will become active. 



80186 

15 14 13 12 11 10 9 S 7 6 5 4 3 2 1 0 

OFFSET: ASH I 1 I M6 I M5 I M4 I M3 I M2 I M1 I MO I EX I MS I 1 I 1 I 1 I R2 I R1 I RO I 

Figure 16. MPCS Register 

DMA CHANNELS 

The 80186 DMA controller provides two indepen­
dent high-speed DMA channels. Data transfers can 
occur between memory and I/O spaces (e.g., Mem­
ory to I/O) or within the same space (e.g., Memory 
to Memory or 1/0 to 110). Data can be transferred 
either in bytes (8 bits) or in words (16 bits) to or from 
even or odd addresses. Each DMA channel main­
tains both a 20-bit source and destination pointer 
which can be optionally incremented or decrement­
ed after each data transfer (by one or two depending 
on byte or word transfers). Each data transfer con­
sumes 2 bus cycles (a minimum of 8 clocks), one 
cycle to fetch data and the other to store data. This 
provides a maximum data transfer rate of one 
Mword/sec or 2 MBytes/sec. 

DMA Operation 

Each channel has six registers in the control block 
which define each channel's specific operation. The 
control registers consist of a 20-bit Source pointer (2 

words), a 20-bit destination pointer (2 words), a 16-
bit Transfer Counter, and a 16-bit Control Word. The 
format of the DMA Control Blocks is shown in Table 
13. The Transfer Count Register (TC) specifies the 
number of DMA transfers to be performed. Up to 
64K byte or word transfers can be performed with 
automatic termination. The Control Word defines the 
channel's operation (see Figure 18). All registers 
may be modified or altered during any DMA activity. 
Any changes made to these registers will be reflect­
ed immediately in DMA operation. 

Table 13. DMA Control Block Format 

Register Name 

Control Word 
Transfer Count 
Destination Pointer (upper 4 

bits) 
Destination Pointer 
Source Pointer (upper 4 bits) 
Source Pointer 

TIMER REQUEST 

OMA 
CONTROL 

LOGIC 
INTERRUPT 
REQUEST 

Register Address 

Ch.O Ch.1 

CAH DAH 
C8H D8H 
C6H D6H 

C4H D4H 
C2H D2H 
COH DOH 

210451-9 

Figure 17. DMA Unit Block Diagram 

3-72 



inter 80186 

15 14 13 12 11 10 

MI DESTINATION MI SOURCE 
iO DEC INC iO DEC INC 
x = DON'T CARE. 

Figure 18. DMA Control Register 

DMA Channel Control Word Register 

Each DMA Channel Control Word determines the 
mode of operation for the particular 81086 DMA 
channel. This register specifies: 

• the mode of synchronization; 
• whether bytes or words will be transferred; 

• whether interrupts will be generated after the last 
transfer; 

• whether DMA activity will cease after a pro­
grammed number of DMA cycles; 

• the relative priority of the DMA channel with re­
spect to the other DMA channel; 

• whether the source pointer will be incremented, 
decremented, or maintained constant after each 
transfer; 

• whether the source pointer addresses memory or 
1/0 space; 

• whether the destination pointer will be increment­
ed, decremented, or maintained constant after 
each transfer; and 

• whether the destination pointer will address 
memory or 1/0 space. 

The DMA channel control registers may be changed 
while the channel is operating. However, any chang­
es made during operation will affect the current DMA 
transfer. 

DMA Control Word Bit Descriptions 
S/W: 

ST/STOP: 

Byte/Word (011) Transfers. 

Startlstop (1/0) Channel. 

CHG/NOCHG: Change/Do not change (1/0) 
ST ISTOP bit. If this bit is set when 
writi~ the control word, the 
ST ISTOP bit will be programmed 
by the write to the control word. If 
this bit is cleared when writing the 
control word, the ST ISTOP bit will 
not be altered. This bit is not 
stored; it will always be a 0 on 
read. 

INT: Enable Interrupts to CPU on 
Transfer Count termination. 

3-73 

TC: 

SYN 

(2 bits) 

If set, DMA will terminate when the 
contents of the Transfer Count regis­
ter reach zero. The ST ISTOP bit will 
also be reset at this pOint if TC is set. 
If this bit is cleared, the DMA unit will 
decrement the transfer count register 
for each DMA cycle, but the DMA 
transfer will not stop when the con­
tents of the TC register reach zero. 

00 No synchronization. 

NOTE: The ST bit will be cleared 
automatically when the contents 
of the TC register reach zero re­
gardless of the state of the TC bit. 

01 Source synchronization. 

10 Destination synchronization. 
11 U!"'IJSAri 

SOURCE:INC Increment source pointer by 1 or 2 
(depends on S/W) after each trans­
fer. 

MilO Source pointer is in MilO space (1/0). 

DEC Decrement source pointer by 1 or 2 
(depends on S/W) after each trans­
fer. 

DEST: INC Increment destination pointer byl or 

P 

TDRQ 

2 (S/W) after each transfer. 

MilO Destination pointer is in MilO space 
(1/0). 

DEC Decrement destination pointer by 1 
or 2 (depending on S/W) after each 
transfer. 

Channel priority-relative to other 
channel. 

o low priority. 

1 high priority. 

Channels will alternate cycles if both 
set at same priority level. 

0: Disable DMA requests from 
timer 2. 

1: Enable DMA requests from 
timer 2. 

Bit 3 Bit 3 is not used. 

If both INC and DEC are specified for the same 
pointer, the pointer will remain constant after each 
cycle. 



intJ 80186 

DMA Destination and Source Pointer 
Registers 

Each DMA channel maintains a 20-bit source and a 
20-bit destination pointer. Each of these pointers 
takes up two full 16-bit registers in the peripheral 
control block. The lower four bits of the upper regis­
ter contain the upper four bits of the 20-bit physical 
address (see Figure 18a). These pointers may be 
individually incremented or decremented after each 
transfer. If word transfers are performed the pointer 
is incremented or decremented by two. Each pOinter 
may point into either memory or I/O space. Since 
the DMA channels can perform transfers to or from 
odd addresses, there is no restriction on values for 
the pointer registers. Higher transfer rates can be 
obtained if all word transfers are performed to even 
addresses, since this will allow data to be accessed 

. in a single memory access. 

DMA Transfer Count Register 

Each DMA channel maintains a 16-bit transfer count 
register (TC). This register is decremented after ev­
ery DMA cycle, regardless of the state of the TC bit 
in the DMA Control Register. If the TC bit in the DMA 
control word is set or unsynchronized transfers are 
programmed, however, DMA activity will terminate 
when the transfer count register reaches zero. 

DMA Requests 

Data transfers may be either source or destination 
synchronized, that is either the source of the data or 

HIGHER 
REGISTER 
ADDRESS 

LOWER 
REGISTER 
ADDRESS 

xxx 

A15-A12 

15 

the destination of the data may request the data 
transfer. In addition, DMA transfers may be unsyn­
chronized; that is, the transfer will take place contin­
ually until the correct number of transfers has oc­
curred. When source or unsynchronized transfers 
are performed, the DMA channel may begin another 
transfer immediately after the end of a previous 
DMA transfer. This allows a complete transfer to 
take place every 2 bus cycles or eight clock cycles 
(assuming no wait states). No prefetching occurs 
when destination synchronization is performed, how­
ever. Data will not be fetched from the source ad­
dress until the destination device signals that it is 
ready to receive it. When destination synchronized 
transfers are requested, the DMA controller will re­
linquish control of the bus after every transfer. If no 
other bus activity is initiated, another DMA cycle will 
begin after two processor clocks. This is done to 
allow the destination device time to remove its re­
quest if another transfer is not desired. Since the 
DMA controller will relinquish the bus, the CPU can 
initiate a bus cycle. As a result, a complete bus cycle 
will often be inserted between destination synchro­
nized transfers. These lead to the maximum DMA 
transfer rates shown in Table 14. 

Table 14. Maximum DMA Transfer Rates 

Type of 
Synchronization CPU Running CPU Halted 

Selected 

Unsynchronized 2MBytes/sec 2M Bytes/sec 
Source Synch 2M Bytes/sec 2M Bytes/sec 
Destination Synch 1.3MBytes/sec 1.5MByte/sec 

xxx xxx A19-A16 

A11-A8 A7-A4 A3-AO 

o 

xxx ~ DON'T CARE 

Figure 18a. DMA Memory Pointer Register Format 

3-74 



inter 80186 

DMA Acknowledge 

No explicit DMA acknowledge pulse is provided. 
Since both source and destination pointers are 
maintained, a read from a requesting source, or a 
write to a requesting destination, should be used as 
the DMA acknowledge signal. Since the chip-select 
lines can be programmed to be active for a given 
block of memory or I/O space, and the DMA point­
ers can be programmed to point to the same given 
block, a chip-select line could be used to indicate a 
DMA acknowledge. 

DMA Priority 

The DMA channels may be programmed such that 
one channel is always given priority over the other, 
or they may be programmed such as to alternate 
cycles when both have DMA requests pending. DMA 
cycles always have priority over internal CPU cycles 
except between locked memory accesses or word 
accesses the odd memory locations; however, an 
external bus hold takes priority over an internal DMA 
cycle. Because an interrupt request cannot suspend 
a DMA operation and the CPU cannot access mem­
""! rh.rinc; A nMA "'y..,I"'. interrl'pt IFJIAnr.y time will 
suffer during sequences of continuous DMA cycles. 
An NMI request, however, will cause all internal 
DMA activity to halt. This allows the CPU to quickly 
respond to the NMI request. 

DMA Programming 

DMA cycles will occur whenever the ST /STOP bit of 
the Control Register is set. If synchronized transfers 

TIMER 0 

are programmed, a DRO must also have been gen­
erated. Therefore the source and destination trans­
fer pointers, and the transfer count register (if used) 
must be programmed before this bit is set. 

Each DMA register may be modified while the chan­
nel is operating. If the CHGINOCHG bit is cleared 
when the control register is written, the ST /STOP bit 
of the control register will not be modified by the 
write. If multiple channel registers are modified, it is 
recommended that a LOCKED string transfer be 
used to prevent a DMA transfer from occurring be­
tween updates to the channel registers. 

DMA Channels and Reset 

Upon RESET, the DMA channels will perform the 
following actions: 

• The Start/Stop bit for each channel will be reset 
to STOP. 

• Any transfer in progress is aborted. 

TIMERS 

I;-It: 8vioG p~\)"vlue5 ~iI;~6 ir.tc:.rilo.: ~S-t;i! tJiogiar.i­
mabie timers (see Figure 19). Two of these are high­
ly flexible and are connected to four external pins (2 
per timer). They can be used to count external 
events, time external events, generate nonrepetitive 
waveforms, etc. The third timer is not connected to 
any external pins, and is useful for real-time coding 
and time delay applications. In addition, this third 
timer can be used as a prescaler to the other two, or 
as a DMA request source. 

TIMER 2 

DMA 
REO. 

T2 
INT. 
REO. 

MAX COUNT VALUE CLOCK MAX COUNT VALUE MAX COUNT VALUE 
B B 

ALL 16 BIT REGISTERS 

MODE/CONTROL 
WORD 

INTERNAL ADDRESS/DATA BUS 

Figure 19. Timer Block Diagram 

3-75 

210451-10 



inter 80186 

Timer Operation 

The timers are controlled by 11 16-bit registers in 
the internal peripheral control block. The configura­
tion of these registers is shown in Table 15. The 
count register contains the current value of the tim­
er. It can be read or written at any time independent 
of whether the timer is running or not. The value of 
this register will be incremented for each timer 
event. Each of the timers is equipped with a MAX 
COUNT register, which defines the maximum count 
the timer will reach. After reaching the MAX COUNT 
register value, the timer count value will reset to zero 
during that same clock, i.e., the maximum count val­
ue is never stored in the count register itself. Timers 
o and 1 are, in addition, equipped with a second 
MAX COUNT register, which enables the timers to 
alternate their count between two different MAX 
COUNT values programmed by the user. If a single 
MAX COUNT register is used, the timer output pin 
will switch LOW for a single clock, 1 clock after the 
maximum count value has been reached. In the dual 
MAX COUNT register mode, the output pin will indi­
cate which MAX COUNT register is currently in use, 
thus allowing nearly complete freedom in selecting 
waveform duty cycles. For the timers with two MAX 
COUNT registers, the RIU bit in the control register 
determines which is used for the comparison. 

Each timer gets serviced every fourth CPU-clock cy­
cle, and thus can operate at speeds up to one-quar­
ter the internal clock frequency (one-eighth the crys­
tal rate). External clocking of the timers may be done 
at up to a rate of one-quarter of the internal CPU­
clock rate (2 MHz for an 8 MHz CPU clock). Due to 
internal synchronization and pipelining of the timer 
circuitry, a timer output may take up to 6 clocks to 
respond to any individual clock or gate input. 

15 14 13 12 11 
EN INH INT RIU o 

Since the count registers and the maximum count 
registers are all 16 bits wide, 16 bits of resolution are 
provided. Any Read or Write access to the timers will 
add one wait state to the minimum four-clock bus 
cycle, however. This is needed to synchronize and 
coordinate the internal data flows between the inter­
nal timers and the internal bus. 

The timers have several programmable options. 

• All three timers can be set to halt or continue on 
a terminal count. 

• Timers 0 and 1 can select between internal and 
external clocks, alternate between MAX COUNT 
registers and be set to retrigger on external 
events. 

• The timers may be programmed to cause an in­
terrupt on terminal count. 

These options are selectable via the timer model 
control word. 

Timer Mode/Control Register 

The mode/control register (see Figure 20) allows 
the user to program the specific mode of operation 
or check the current programmed status for any of 
the three integrated timers. 

Table 15. Timer Control Block Format 

Register Name 
Register Offset 

Tmr.O Tmr.1 Tmr.2 

Mode/Control Word 56H 5EH 66H 
Max Count B 54H 5GH not present 
Max Count A 52H 5AH 62H 
Count Register 50H 58H 60H 

5 4 3 2 1 0 
MC RTG p EXT ALT I CONT I 

Figure 20. Timer Mode/Control Register 

3-76 



80186 

ALT: 

The AL T bit determines which of two MAX COUNT 
registers is used for count comparison. If AL T = 0, 
register A for that timer is always used, while if AL T 
= 1, the comparison will alternate between register 
A and register B when each maximum count is 
reached, This alternation allows the user to change 
one MAX COUNT register while the other is being 
used, and thus provides a method of generating 
non-repetitive waveforms. Square waves and pulse 
outputs of any duty cycle are a subset of available 
signals obtained by not changing the final count reg­
isters. The AL T bit also determines the function of 
the timer output pin. If AL T is zero, the output pin will 
go LOW for one clock, the clock after the maximum 
count is reached. If AL T is one, the output pin will 
reflect the current MAX COUNT register being used 
(0/1 for B/ A). 

CONT: 

Setting the CONT bit causes the associated timer to 
run continuously, while resetting it causes the timer 
to halt upon maximum count. If COUNT = 0 and 
AL T = 1, the timer will count to the MAX COUNT 
register JA_ \!2.!~e, ~~s,e!j '=0l~~t ~0 th'? !'~gi'i:~JAr R V~hIA, 

reset, and halt. 

EXT: 

The external bit selects between internal and exter­
nal clocking for the timer. The external signal may 
be asynchronous with respect to the 80186 clock. 
If this bit is set, the timer will count LOW-to-HIGH 
transitions on the input pin. If cleared, it will count an 
internal clock while using the input pin for control. In 
this mode, the function of the external pin is defined 
by the RTG bit. The maximum input to output tran­
sition latency time may be as much as 6 clocks. 
However, clock inputs may be pipelined as closely 
together as every 4 clocks without losing clock puls­
es. 

P: 

The prescaler bit is ignored unless internal clocking 
has been selected (EXT = 0). If the P bit is a zero, 
the timer will count at one-fourth the internal CPU 
clock rate. If the P bit is a one, the output of timer 2 
will be used as a clock for the timer. Note that the 
user must initialize and start timer 2 to obtain the 
pre scaled clock. 

RTG: 

Retrigger bit is only active for internal clocking (EXT 
= 0). In this case it determines the control function 
provided by the input pin. 

3-77 

If RTG = 0, the input level gates the internal clock 
on and off. If the input pin is HIGH, the timer will 
count; if the input pin is LOW, the timer will hold its 
value. As indicated previously, the input signal may 
be asynchronous with respect to the 80186 clock. 

When RTG = 1, the input pin detects LOW-to-HIGH 
transitions. The first such transition starts the timer 
running, clearing the timer value to zero on the first 
clock, and then incrementing thereafter. Further 
transitions on the input pin will again reset the timer 
to zero, from which it will start counting up again. If 
CONT = 0, when the timer has reached maximum 
count, the EN bit will be cleared, inhibiting further 
timer activity. 

EN: 

The enable bit provides programmer control over 
the timer's RUN/HALT status. When set, the timer is 
enabled to increment subject to the input pin con­
straints in the internal clock mode (discussed previ­
ously). When cleared, the timer will be inhibited from 
counting. All input pin transistions during the time EN 
is zero will be ignored. If CONT is zero, the EN bit is 
automatically cleared upon maximum count. 

INH: 

The inhibit bit allows for selective updating of the 
enable (EN) bit. If INH is a one during the write to the 
mode/control word, then the state of the EN bit will 
be modified by the write. If INH is a zero during the 
write, the EN bit will be unaffected by the 
operation.This bit is not stored; it will always be a 0 
on a read. 

INT: 

When set, the INT bit enables interrupts from the 
timer, which will be generated on every terminal 
count. If the timer is configured in dual MAX COUNT 
register mode, an interrupt will be generated each 
time the value in MAX COUNT register A is reached, 
and each time the value in MAX COUNT register B is 
reached. If this enable bit is cleared after the inter­
rupt request has been generated, but before a pend­
ing interrupt is serviced, the interrupt request will still 
be in force. (The request is iatched in the Interrupt 
Controller). 

MC: 

The Maximum Count bit is set whenever the timer 
reaches its final maximum count value. If the timer is 
configured in dual MAX COUNT register mode, this 
bit will be set each time the value in MAX COUNT 
register A is reached, and each time the value in 
MAX COUNT register B is reached. This bit is set 



80186 

regardless of the timer's interrupt-enable bit. The 
MC bit gives the user the ability to monitor timer 
status through software instead of through inter­
rupts. 

Programmer intervention is required to clear this bit. 

RIU: 

The Register In Use bit indicates which MAX 
COUNT register is currently being used for compari­
son to the timer count value. A zero value indicates 
register A. The RIU bit cannot be written, i.e., its 
value is not affected when the control register is writ­
ten. It is always cleared when the AL T bit is zero. 

Not all mode bits are provided for timer 2. Certain 
bits are hardwired as indicated below: 

Al T = 0, EXT = 0, P = 0, RTG = 0, RIU = ° 

Count Registers 

Each of the three timers has a 16-bit count register. 
The current contents of this register may be read or 
written by the processor at any time. If the register is 
written into while the timer is counting, the new value 
will take effect in the current count cycle. 

Max Count Registers 

Timers 0 and 1 have two MAX COUNT registers, 
while timer 2 has a single MAX COUNT register. 
These contain the number of events the timer will 
count. In timers 0 and 1, the MAX COUNT register 
used can alternate between the two max count val­
ues whenever the current maximum count is 
reached. The condition which causes a timer to re­
set is equivalent between the current count value 
and the max count being used. This means that if 
the count is changed to be above the max count 
value, or if the max count value is changed to be 
below the current value, the timer will not reset to 
zero, but rather will count to its maximum value, 
"wrap around" to zero, then count until the max 
count is reached. 

Timers and Reset 

Upon RESET, the Timers will perform the following 
actions: 

• All EN (Enable) bits are reset preventing timer 
counting. 

• All SEL (Select) bits are reset to zero. This se­
lects MAX COUNT register A, resulting in the 
Timer Out pins going HIGH upon RESET. 

INTERRUPT CONTROLLER 

The 80186 can receive interrupts from a number of 
sources, both internal and external. The internal in­
terrupt controller serves to merge these requests on 
a priority basis, for individual service by the CPU. 

Internal interrupt sources (Timers and DMA chan­
nels) can be disabled by their own control registers 
or by mask bits within the interrupt controller. The 
80186 interrupt controller has its own control regis­
ter that set the mode of operation for the controller. 

The interrupt controller will resolve priority among 
requests that are pending simultaneously. Nesting is 
provided so interrupt service routines for lower priori­
ty interrupts may themselves be interrupted by high­
er priority interrupts. A block diagram of the interrupt 
controller is shown in Figure 21. 

The interrupt controller has a special iRMX 86 com­
patibility mode that allows the use of the 80186 with­
in the iRMX 86 operating system interrupt structure. 
The conroller is set in this mode by setting bit 14 in 
the peripheral control block relocation register (see 
iRMX 86 Compatibility Mode section). In this mode, 
the internal 80186 interrupt controller functions as a 
"slave" controller to an external "master" controller. 
Special initialization software must be included to 
properly set up the 80186 interrupt controller in 
iRMX 86 mode. 

MASTER MODE OPERATION 

Interrupt Controller External Interface 

For external interrupt sources, five dedicated pins 
are provided. One of these pins is dedicated to NMI, 
non-maskable interrupt. This is typically used for 
power-fail interrupts, etc. The other four pins may 
function either as four interrupt input lines with inter­
nally generated interrupt vectors, as an interrupt line 
and an interrupt acknowledge line (called the "cas­
cade mode") along with two other input lines with 
internally generated interrupt vectors, or as two in­
terrupt input lines and two dedicated interrupt ac­
knowledge output lines. When the interrupt lines are 
configured in cascade mode, the 80186 interrupt 
controller will not generate internal interrupt vectors. 

External sources in the cascade mode use external­
ly generated interrupt vectors. When an interrupt is 
acknowledged, two INTA cycles are initiated and the 
vector is read into the 80186 on the second cycle. 
The capability to interface to external 8259A pro­
grammable interrupt controllers is thus provided 
when the inputs are configured in cascade mode. 

3-78 



80186 

Interrupt Controller Modes of 
Operation 

The basic modes of operation of the interrupt con­
troiler in master mode are similar to the 8259A. The 
interrupt controller responds indentically to internal 
interrupts in all three modes: the difference is only in 
the interpretation of function of the four external in­
terrupt pins. The interrupt controller is set into one of 
these three modes by programming the correct bits 
in the INTO and INT1 control registers. The modes of 
interrupt controller operation are as follows: 

Fully Nested Mode 

When in the fully nested mode four pins are used as 
direct interrupt requests. The vectors for these four 
inputs are generated internally. An in-service bit is 
provided for every interrupt source. If a lower-priority 
device requests an interrupt while the in service bit 
(IS) is set, no interrupt will be generated by the inter­
rupt controller. In addition, if another interrupt re­
quest occurs from the same interrupt source while 
the in-service bit is set, no interrupt will be generated 
by the interrupt control!er. This allows interrupt serv­
ice routines to operate with interrupts enabled with­
out oeing Themseives imerrupieu l'Y i\)wer-priuriiy j,,­
terrupts. Since interrupts are enabled, higher-priority 
interrupts will be serviced. 

When a service routine is completed, the proper IS 
bit must be reset by writing the proper pattern to the 
EOI register. This is required to allow subsequent 
interrupts from this interrupt source and to allow 
servicing of lower-priority interrupts. An EOI com­
mand is issued at the end of the service routine just 
before the issuance of the return from interrupt in-

struction. If the fully nested structure has been up­
held, the next highest-priority source with its IS bit 
set is then serviced. 

Cascade Mode 

The 80186 has four interrupt pins and two of them 
have dual functions. In the fully nested mode the 
four pins are used as direct interrupt inputs and the 
corresponding vectors are generated internally. In 
the cascade mode, the four pins are configured into 
interrupt input-dedicated acknowledge signal pairs. 
The interconnection is shown in Figure 22. INTO is 
an interrupt input interfaced to an 8259A, while 
INT2/1NTAO serves as the dedicated interrupt ac­
knowledge signal to that peripheral. The same is 
true for INT1 and INT3/1NTA1. Each pair can selec­
tively be placed in the cascade or non-cascade 
mode by programming the proper value into INTO 
and INT1 control registers. The use of the dedicated 
acknowledge signals eliminates the need for the use 
of external logic to generate INTA and device select 
Signals. 

The primary cascade mode allows the capability to 
serve up to 128 external interrupt sources through 
t!le use c f external r'Ylaster anr! slav'" A25flA~. Three 
levels of priority are created, requiring priority resolu­
tion in the 80186 interrupt controller, the master 
8259As, and the slave 8259As. If an external inter­
rupt is serviced, one IS bit is set at each of these 
levels. When the interrupt service routine is complet­
ed, up to three end-of-interrupt commands must be 
issued by the programmer. 

----------------------------------------------------~ 

TIMER TIMER TIMER 
o 1 2 

'( 

DMAO 
CONTROL REG. 

DMAl 
CONTROL REG. 

EXT. INPUT 0 
CONTROL REG. 

EXT. INPUT 1 
CONTROL REG. 

EXT.INPUT2 
CONTROL REG • 

DMA 
1 INTO INTI INT2 iNT3 NMI 

INTERRUPT 
pRrORITY 
RESOLVER 

INTERRUPT 
REQUEST REG. 

INTERRUPT 
MASK REG. 

IN·SERVICE 
REG. 

PRIOR. LEI! 
MASK REG. 

L 210451-11 

. _. ____ -------l 

Figure 21. Interrupt Controller Block Diagram 

3-79 



80186 

Special Fully Nested Mode 

This mode is entered by setting the SFNM bit in 
INTO or INT1 control register. It enables complete 
nestability with external 8259A masters. Normally, 
an interrupt request from an interrupt source will not 
be recognized unless the in-service bit for that 
source is reset. If more than one interrupt source is 
connected to an external interrupt controller, all of 
the interrupts will be funneled through the same 
80186 interrupt request pin. As a result, if the exter­
nal interrupt controller receives a higher-priority in­
terrupt, its interrupt will not be recognized by the 
80186 controller until the 80186 in-service bit is re­
set. In special fully nested mode, the 80186 interrupt 
controller will allow interrupts from an external pin 
regardless of the state of the in-service bit for an 
interrupt source in order to allow multiple interrupts 
from a single pin. An in-service bit will continue to be 
set, however, to inhibit interrupts from other lower­
priority 80186 interrupt sources. 

Special procedures should be followed when reset­
ting IS bits at the end of interrupt service routines. 
Software polling of the external master's IS register 
is required to determine if there is more than one bit 
set. If so, the IS bit in the 80186 remains active and 
the next interrupt service routine is entered. 

Operation in a Polled Environment 

The controller may be used in a polled mode if inter­
rupts are undesirable. When polling, the processor 
disables interrupts and then polls the interrupt con­
troller whenever it is convenient. Polling the interrupt 
controller is accomplished by reading the Poll Word 
(Figure 31). Bit 15 in the poll word indicates to the 
processor that an interrupt of high enough priority is 
requesting service. Bits 0-4 indicate to the proces­
sor the type vector of the highest-priority source re­
questing service. Reading the Poll Word causes the 
In-Service bit of the highest priority source to be set. 

It is desirable to be able to read the Poll Word infor­
mation without guaranteeing service of any pending 
interrupt, i.e., not set the indicated in-service bit. The 
80186 provides a Poll Status Word in addition to the 
conventional Poll Word to allow this to be done. Poll 
Word information is duplicated in the Poll Status 
Word, but reading the Poll Status Word does not set 
the associated in-service bit. These words are locat­
ed in two adjacent memory locations in the register 
file. 

3-80 

Master Mode Features 

Programmable Priority 

The user can program the interrupt sources into any 
of eight different priority levels. The programming is 
done by placing a 3-bit priority level (0-7) in the con­
trol register of each interrupt source. (A source with 
a priority level of 4 has higher priority over all priority 
levels from 5 to 7. Priority registers containing values 
lower than 4 have greater priority). All interrupt 
sources have preprogrammed default priority levels 
(see Table 4). 

If two requests with the same programmed priority 
level are pending at once, the priority ordering 
scheme shown in Table 4 is used. If the serviced 
interrupt routine reenables interrupts, it allows other 
requests to be serviced. 

End-of-Interrupt Command 

The end-of-interrupt (EOI) command is used by the 
programmer to reset the In-Service (IS) bit when an 
interrupt service routine is completed. The EOI com­
mand is issued by writing the proper pattern to the 
EOI register. There are two types of EOr commands, 
specific.and nonspecific. The nonspecific command 
does not specify which IS bit is reset. When issued, 
the interrupt controller automatically resets the IS bit 
of the highest priority source with an active service 
routine. A specific EOI command requires that the 
programmer send the interrupt vector type to the in­
terrupt controller indicating which source's IS bit is 
to be reset. This command is used when the fully 
nested structure has been disturbed or the highest 
priority IS bit that was set does not belong to the 
service routine in progress. 

Trigger Mode 

The four external interrupt pins can be programmed 
in either edge- or level-trigger mode. The control 
register for each external source has a level-trigger 
mode (L TM) bit. All interrupt inputs are active HIGH. 
In the edge sense mode or the level-trigger mode, 
the interrupt request must remain active (HIGH) until 
the interrupt request is acknowledged by the 80186 
CPU. In the edge-sense mode, if the level remains 
high after the interrupt is acknowledged, the input is 
disabled and no further requests will be generated. 
The input level must go LOW for at least one clock 
cycle to reenable the input. In the level-trigger mode, 
no such provision is made: holding the interrupt input 
HIGH will cause continuous interrupt requests. 



intJ 80186 

Interrupt Vectoring 

The 80186 Interrupt Controller will generate interrupt 
vectors for the integrated OMA channels and the in­
tegrated Timers. In addition, the Interrupt Controller 
will generate interrupt vectors for the external inter­
rupt lines if they are not configured in Cascade or 
Special Fully Nested Mode. The interrupt vectors 
generated are fixed and cannot be changed (see Ta­
ble 4). 

Interrupt Controller Registers 

The Interrupt Controller register model is shown in 
Figure 23. It contains 15 registers. All registers can 
both be read or written unless specified otherwise. 

In-Service Register 

This register can be read from or written into. The 
format is shown in Figure 24. It contains the In-Serv­
ice bit for each of the interrupt sources. The In-Serv­
ice bit is set to indicate that a source's service rou­
tine is in progress. When an In-Service bit is set, the 
interrupt controller will not generate interrupts to the 
CPU when it receives interrupt requests from devic­
es with a lower programmed priority level. The TMR 
bit is the In-Service bit for all three timers; the 00 
and 01 bits are the In-Service bits for the two OMA 
channels; the 10-13 are the In-Service bits for the 
external interrupt pins. The IS bit is set when the 
processor acknowledges an interrupt request either 
by an interrupt acknowledge or by reading the poll 
register. The IS bit is reset at the end of the interrupt 
service routine by an end-of-interrupt command is­
sued by the CPU. 

80186 
IRTlI 

INTAO 

Interrupt Request Register 

The internal interrupt sources have interrupt request 
bits inside the interrupt controller. The format of this 
register is shown in Figure 24. A read from this regis­
ter yields the status of these bits. The TMR bit is the 
logical OR of all timer interrupt requests. DO and 01 
are the interrupt request bits for the OMA channels. 

The state of the external interrupt input pins is also 
indicated. The state of the external interrupt pins is 
not a stored condition inside the interrupt controller, 
therefore the external interrupt bits cannot be writ­
ten. The external interrupt request bits show exactly 
when an interrupt request is given to the interrupt 
controller, so if edge-triggered mode is selected, the 
bit in the register will be HIGH only after an inactive­
to-active transition. For internal interrupt sources, 
the register bits are set when a request arrives and 
are reset when the processor acknowledges the re­
quests. 

Mask Register 

This is a i6-bit register that contains a mask bit for 
each interrupt source. The format for this register is 
shown in Fiqure 24. A one in a bit position corre­
sponding to a particular source serves to mask the 
source from generating interrupts. These mask bits 
are the exact same bits which are used in the indi­
vidual control registers; programming a mask bit us­
ing the mask register will also change this bit in the 
individual control registers, and vice versa. 

INT 

8259A 
PIC 

IRTA 

210451-12 

Figure 22. Cascade Mode Interrupt Connection 

3-81 



intJ 

INT3 CONTROL REGISTER 

INT2 CONTROL REGISTER 

INT1 CONTROL REGISTER 

INTO CONTROL REGISTER 

OMA 1 CONTROL REGISTER 

OMA 0 CONTROL REGISTER 

TIMER CONTROL REGISTER 

INTERRUPT STATUS REGISTER 

INTERRUPT REQUEST REGISTER 

IN-SERVICE REGISTER 

PRIORITY MASK REGISTER 

MASK REGISTER 

POLL STATUS REGISTER 

POLL REGISTER 

EOI REGISTER 

OFFSET 

3EH 

3CH 

3AH 

38H 

36H 

34H 

32H 

30H 

2EH 

2CH 

2AH 

28H 

26H 

24H 

22H 

Figure 23. Interrupt Controller Registers 
(Non-iRMXTM 86 Mode) 

15 14 10 9 

80186 

8 

Priority Mask Register 

This register is used to mask all interrupts below par­
ticular interrupt priority levels. The format of this reg­
ister is shown in Figure 25. The code in the lower 
three bits of this register inhibits interrupts of priority 
lower (a higher priority number) than the code speci­
fied. For example, 100 written into this register 
masks interrupts of level five (101), six (110), and 
seven (111). The register is reset to seven (111) 
upon RESET so all interrupts are unmasked. 

Interrupt Status Register 

This register contains general interrupt controller 
status information. The format of this register is 
shown in Figure 26. The bits in the status register 
have the following functions: 

DHL T: DMA Halt Transfer; setting this bit halts all 
DMA transfers. It is automatically set when­
ever a non-maskable interrupt occurs, and it 
is reset when an IRET instruction is execut­
ed. The purpose of this bit is to allow prompt 
service of all non-maskable interrupts. This 
bit may also be set by the CPU. 

IRTx: These three bits represent the individual tim­
er interrupt request bits. These bits are used 
to differentiate the timer interrupts, since the 
timer IR bit in the interrupt request register is 
the "OR" function of all timer interrupt re­
quest. Note that setting anyone of these 
three bits initiates an interrupt request to the 
interrupt controller. 

7 6 5 4 3 2 1 0 

I 0 o I • • I 0 I 0 I 0 I 13 12 I 11 10 I 01 00 

Figure 24. In-Service, Interrupt Request, and Mask Register Formats 

15 14 3 2 1 0 
I 0 0 I • • I 

Figure 25. Priority Mask Register Format 

15 14 765 43210 

10HLTI 0 I • o I 0 I 0 o I 0 IIRT2 IIRT1 IIRTO I 

Figure 26. Interrupt Status Register Format 

3-82 



80186 

Timer, DMA 0, 1; Control Register 

These registers are the control words for all the in­
ternal interrupt sources. The format for these regis­
ters is shown in Figure 27. The three bit positions 
PRO, PR1, and PR2 represent the programmable pri­
ority level of the interrupt source. The MSK bit inhib­
its interrupt requests from the interrupt source. The 
MSK bits in the individual control registers are the 
exact same bits as are in the Mask Register; modify­
ing them in the individual control registers will also 
modify them in the Mask Register, and vice versa. 

INTO-INT3 Control Registers 

These registers are the control words for the four 
external input pins. Figure 28 shows the format of 
the INTO and INT1 Control registers; Figure 29 
shows the format of the INT2 and INT3 Control reg­
isters. In cascade mode or special fully nested 
mode, the control words for INT2 and INT3 are not 
used. 

The bits in the various control registers are encoded 
as follows: 

PRO-2: Priority programming information. Highest 
PriorilY = 000, i...owe~i Priority - iIi 

L TM: Level-trigger mode bit. 1 = level-triggered; 
o = edge-triggered. Interrupt Input levels 
are active high. In level-triggered mode, an 
interrupt is generated whenever the exter­
nal line is high. In edge-triggered mode, an 
interrupt will be generated only when this 

15 14 

I 0 I 0 I • 

level is proceded by an inactive-to-active 
transition on the line. In both cases, the 
level must remain active until the interrupt 
is acknowledged. 

MSK: Mask bit, 1 = mask; 0 = non-mask. 

C: Cascade mode bit, 1 = cascade; 0 = di­
rect 

SFNM: Special fully nested mode bit, 1 = SFNM 

EOI Register 

The end of the interrupt register is a command regis­
ter which can only be written into. The format of this 
register is shown in Figure 30. It initiates an EOI 
command when written to by the 80186 CPU. 

The bits in the EOI register are encoded as follows: 

Sx: Encoded information that specifies an in­
terrupt source vector type as shown in Ta­
ble 4. For example, to reset the In-Service 
bit for DMA channel 0, these bits should be 
set to 01010, since the vector type for DMA 
channel 0 is 10. Note that to reset the sin­
gle In-Service bit for any of the three tim­
ers, the vector type for timer 0 (8) should 

43210 

I 0 I MSK I PR2 I PRl I PRO I 

Figure 27. Timer/DMA Control Registers Formats 

15 14 76543210 
o 0 I • o ISFNMI c I LTM I MSK I PR2 I PRl I PRO I 

Figure 28. INTOIINT1 Control Register Formats 

15 14 5 4 3 2 1 0 

o 0 I • I 0 I L TM I MSK I PR2 I PRl I PRO I 

Figure 29. INT211NT3 Control Register Formats 

3-83 



80186 

NSPEC/: A bit that determines the type of EOI com-
SPEC mand. Nonspecific = 1, Specific = O. 

Poll and Poll Status Registers 

These registers contain polling information. The for­
mat of Ihese registers is shown in Figure 31. They 
can only be read. Reading the Poll register consti­
tutes a software poll. This will set the IS bit of the 
highest priority pending interrupt. Reading the poll 
status register will not set the IS bit of the highest 
priority pending interrupt; only the status of pending 
interrupts will be provided. 

Encoding of the Poll and Poll Status register bits are 
as follows: 

Sx: Encoded information that indicates the 
vector type of the highest priority inter­
rupting source. Valid only when INTREQ 
= 1. 

INTREQ: This bit determines if an interrupt request 
is present. Interrupt Request = 1; no In­
terrupt Request = O. 

iRMXTM 86 COMPATIBILITY MODE 

!his mode allows iRMX 86-80186 compatibility. The 
Interrupt model of iRMX 86 requires one master and 
multiple slave 82S9As in cascaded fashion. When 
iRMX mode is used, the internal 80186 interrupt con­
troller will be used as a slave controller to an exter­
nal master interrupt controller. The internal 80186 
resources will be monitored through the internal in­
terrupt controlier, while the external controller func­
tions as the system master interrupt controller. 

Upon reset, the 80186 interrupt controller will be in 
the non-iRMX 86 mode of operation. To set the con­
troller in the iRMX 86 mode, bit 14 of the Relocation 
Register should be set. 

15 14 13 

I SPEC/ I 0 0 
NSPEG 

Because of pin limitations caused by the need to 
~nterface to an exter.nal 82S9A master, the internal 
Interrupt controller Will no longer accept external in­
puts. There are however, enough 80186 interrupt 
controller inputs (internally) to dedicate one to each 
timer. In this mode, each timer interrupt source has 
its own mask bit, IS bit, and control word. 

The iRMX 86 operating system requires peripherals 
to be .assigned fixed priority levels. This is incompati­
ble With the normal operation of the 80186 interrupt 
controller. Therefore, the initialization software must 
program the proper priority levels for each source. 
The req~ir~d priority levels for the internal interrupt 
sources In IRMX mode are shown in Table 16 .. 

Table 16. Internal Source Priority Level 

Priority Level Interrupt Source 

0 Timer 0 
1 (reserved) 
2 DMAO 
3 DMA1 
4 Timer 1 
S Timer 2 

These level assignments must remain fixed in the 
iRMX 86 mode of operation. 

iRMXTM 86 Mode External Interface 

The configuration of the 80186 with respect to an 
external 82S9A master is shown in Figure 32. The 
INTO input is used as the 80186 CPU interrupt input. 
INT3 functions as an output to send the 80186 
slave-interrupt-request to one of the 8 master-PIC­
inputs. 

5 4 3 2 0 

0 S4 S3 S2 S1 so 

Figure 30. EOI Register Format 

15 14 13 5 4 3 2 0 

I ~~61 0 0 0 S4 S3 S2 S1 so 

Figure 31. Poll Register Format 

3-84 



inter 80186 

B2S9A 
MASTER <==REQUESTS FROM 

OTHER SLAVES 
INTA 

IRO 

B01B6 INT. IN 
INT 

1 -IR7 

801B6 
CASO-2 

1; ~ 

INTO 

SLAVE SELECT J CASCADE 
iNfi 

l 
ADDRESS DECODER 

INT2 t-

INT3 
BOl86 SLAVE INTERRUPT OUTPUT 

210451-13 

Figure 32. iRMXTM 86 Interrupt Controller Interconnection 

Correct master-slave interface requires decoding of 
the slave addresses (CASO-2). Slave 8259As do this 
internally. Because of pin limitations, the 80186 
slave address will have to be decoded externally. 
INT1 is used as a slave-select input. Note that the 
slave vector address is transferred internally, but the 
READY input must be supplied externally. 

INT2 is used as an acknowledge output, suitable to 
drive the INTA input of an 8259A. 

Interrupt Nesting 

iRMX 86 mode operation allows nesting of interrupt 
requests. When an interrupt is acknowledged, the 
priority logic masks off all priority levels except those 
with equal or higher priority. 

Vector Generation in the iRMXTM 86 
Mode 

Vector generation in iRMX mode is exactly like that 
of an 8259A slave. The interrupt controller gener­
ates an 8-bit vector which the CPU multiplies by four 
and uses as an address into a vector table. The sig­
nificant five bits of the vector are user-programma­
ble while the lower three bits are generated by the 
priority logic. These bits represent the encoding of 
the priority level requesting service. The significant 
five bits of the vector are programmed by writing to 
the Interrupt Vector register at offset 20H. 

3-85 

Specific End-of-Interrupt 

In iRMX mode the specific EOI command operates 
to reset an in-service bit of a specific priority. The 
user supplies a 3-bit priority-level value that points to 
an in-service bit to be reset. The command is exe­
cuted by writing the correct value In the Specific EOi 
register at offset 22H. 

Interrupt Controller Registers 
in the iRMXTM 86 Mode 

All control and command registers are located inside 
the internal peripheral control block. Figure 33 
shows the offsets of these registers. 

End-of-Interrupt Register 

The end-of-interrupt register is a command register 
which can only be written. The format of this register 
is shown in Figure 34. It initiates an EOI command 
when written by the 80186 CPU. 

The bits in the EOI register are encoded as follows: 

Lx: Encoded value indicating the priority of the IS 
bit to be reset. 



80186 

In-Service Register 

This register can be read from or written into. It con· 
tains the in·service bit for each of the internal inter· 
rupt sources. The format for this register is shown in 
Figure 35. Bit positions 2 and 3 correspond to the 
DMA 'channels; positions 0, 4, and 5 correspond to 
the integral timers. The source's IS bit is set when 
the processor acknowledges its interrupt request. 

Interrupt Request Register 

This register indicates which internal peripherals 
have interrupt requests pending. The format of this 
register is shown in Figure 35. The interrupt request 
bits are set when a request arrives from an internal 
source, and are reset when the processor acknowl· 
edges the request. 

Mask Register 

The register contains a mask bit for each interrupt 
source. The format for this register is shown in Fig· 
ure 35. If the bit in this register corresponding to a 
particular interrupt source is set, any interrupts from 
that source will be masked. These mask bits are ex· 
actly the same bits which are used in the individual 
control registers, i.e., changing the state of a mask 
bit in this register will also change the state of the 
mask bit in the individual interrupt control register 
corresponding to the bit. 

Control Registers 

These registers are the control words for all the in· 
ternal interrupt sources. The format of these regis· 
ters is shown in Figure 36. Each of the timers and 
both of the DMA channels have their own Control 
Register. 

The bits of the Control Registers are encoded as 
follows: 

15 14 13 8 

~ 0 a I 0 I . . I 0 I 

prx: 3·bit encoded field indicating a priority level 
for the source; note that each source must be 
programmed at specified levels. 

msk: mask bit for the priority level indicated by prx 
bits. 

7 
a I 

LEVEL 5 CONTROL REGISTER 
(TIMER 2) 

LEVEL 4 CONTROL REGISTER 
(TIMER 1) 

LEVEL 3 CONTROL REGISTER 
(OMA1) 

LEVEL 2 CONTROL REGISTER 
(OMAO) 

LEVEL 0 CONTROL REGISTER 
(TIMER 0) 

INTERRUPT STATUS REGISTER 

INTERRUPT·REQUEST REGISTER 

IN·SERVICE REGISTER 

PRIORITY·LEVEL MASK REGISTER 

MASK REGISTER 

SPECIFIC EOI REGISTER 

INTERRUPT VECTOR REGISTER 

OFFSET 

3AH 

38H 

3SH 

34H 

32H 

SOH 

2EH 

2CH 

2AH 

28H 

22H 

20H 

Figure 33. Interrupt Controller Registers 
(iRMXTM 86 Mode) 

6 5 4 3 2 0 
0 I 0 I a I 0 L2 Ll La 

Figure 34. Specific EOI Register Format 

15 14 13 8 7 6 5 4 3 2 1 0 

I 0 0 a I . . I a I a 0 ! TMR21 TMR11 01 00 0=r±§Q) 

Figure 35. In-Service, Interrupt Request, and Mask Register Format 

3-86 



80186 

Interrupt Vector Register 

This register provides the upper five bits of the inter­
rupt vector address. The format of this register is 
shown in Figure 37. The interrupt controller itself 
provides the lower three bits of the interrupt vector 
as determined by the priority level of the interrupt 
request. 

The format of the bits in this register is: 

tx: 5-bit field indicating the upper five bits of the 
vector address. 

Priority-Level Mask Register 

This register indicates the lowest priority-level inter­
rupt which will be serviced. 

The encoding of the bits in this register is: 

mx: 3-bit encoded field indication priority-level val­
ue. All levels of lower priority will be masked. 

Interrupt Status Register 

This register is defined exactly as in Non-iRMX 
Mode. (See Fig. 26.) 

15 14 13 8 
0 0 0 I · · I 0 I 

Interrupt Controller and Reset 

Upon RESET, the interrupt controller will perform 
the following actions: 

• All SFNM bits reset to 0, implying Fully Nested 
Mode. 

• All PR bits in the various control registers set to 1. 
This places all sources at lowest priority (level 
111 ). 

• All L TM bits reset to 0, resulting in edge-sense 
mode. 

• All Interrupt Service bits reset to O. 

• All Interrupt Request bits reset to O. 

• All MSK (Interrupt Mask) bits set to 1 (mask). 

7 
0 

• All C (Cascade) bits reset to 0 (non-cascade). 

• All PRM (Priority Mask) bits set to 1, implying no 
levels masked. 

• Initialized to non-iRMX 86 mode. 

6 5 4 3 2 1 0 
0 I 0 I 0 I MSK I PR2 I PRl I PRO I 

Figure 3S. Control Word Format 

15 14 13 8 7 6 5 4 3 2 0 

I 0 0 I 0 I · · I 0 I 14 I 13 I 12 I 11 to I 0 I 0 I 0 I 

Figure 37. Interrupt Vector Register Format 

15 14 13 8 7 6 5 4 3 2 0 

I 0 0 0 I · · I 0 I 0 I 0 I 0 I 0 I 0 I m2 ml mO 

Figure 38. Priority Level Mask Register 

3-87 



inter 80186 

16 MHz r01 
Xl X2 

UCS 
~ 

RESET 8282 OR ADDRESS 
RES -" 8283 --' ROM 

ADO-
AD15 'v- F LATCH -
ALE - 5Ta OE 

I ~ { 
80186 

\. 
no 

WI\ r PROGRAM 
RAM 

MCSD--3 
BHE - ~ 

SRDY T,+5V 
ARDY 

NMI 

* -r-
HOLD 

~ - LOW RAM 

~ II 

TMRINO I--+SV 
( 

TMROUTO • 
~ 

CLOCK 

8286 OR 

~ ~ 
8287 ~ 00-07 TRANSCEIVER 

DEN 

~ Pt 
SERIAL T 

110 
DT/R 

~~ 
ERMINAL 

~ 
Al 
A2 

INTO I 

f::=>8 D1S 
DISK 

INTERFACE 
INTI HARDWARE 

K 

P"CS4 
DRQO 

210451-14 

Figure 39. Typical 80186 Computer 

3-88 



inter 

Vee 

r1 
~ 

16 MHz 

rD~ 
Xl X2 

UCS 

Rii 

RES 

ALE 

lCS 

BHE 
Wi! 

ADO-ADI9 

80188 

NMI 

HOLD 

ClKOUT 

SO-52 

PCSO 
PCSl 

i:OCK 

SRDY 

ARDY 

R 

----'----f 

80186 

CS 
RESET 

JF 
ROM ¢ 

8282 OR 

,--,/ 8283 

LS lATCH 

STa 6E 
ST8 OE lOW 

• -;:- RAM 

CS 

(~ 

b 8282 OR 
8283 

lATCH 

STB 6E 

~~-STB OE 
f t 

I 

I LL 8288 OR rl 
8287 

TRANSCEIVER 

-ri-~-

i :u DT/R 
ClK 

"--- ALE 
_ 8288 

SO-52 BUS 
I""" CONTROLLER 

r+- I---- CEN 
lOB AEN 

-;:- 1 
I I E so- s2 AEN 

8289 
BUS 

ClK ARBITER 

SYSBIIIES!i 

lOB 

L+5V LOCK RESB 

~ADDRESS 
-v BUS 

I 
DATA BUS 

> BUS CONTROL 
COMMANDS 

> ~~~T~=~~ION 

MULTI 
MAST ER 

EM SYST 
BUS 

~ I "'-.,J 
XACK 

210451-15 

Figure 40. Typical 80186 Multi-Master Bus Interface 

3-89 



inter 80186 

PACKAGE 

The 80186 is available in two 68 pin hermetic pack­
ages. They are the JEDEC type A lead less chip car­
rier and the JEDEC type CG pin grid array. Figures 
41 A and 41 B illustrate the package dimensions. 

I 

NOTE: 
The IDT 3M Textool 68-pin JEDEC Socket is re­
quired for 121CETM 186 operation. See Figure 42 for 
details. 

.050 8SC 
[ TYP 

tW 

[m TYP (18) PLCS 

f 
He.ool 

210451-16 

Figure 41A. 80186 JEDEC Type A Package 

SWAGED PIN 
STANDOFF 

(4 PLACES) 

010 TYP 
(I.He) 

PIN 1 10 

I... 1.000 REF-----.j 

S8-Lead Ceramic Pin Grid Array 
Package Type CG 

210451-17 

2!Q. ~ STANDOFF 
040 (1.016) 

210451-18 

Figure 41 B. Ceramic Pin Grid Array Package Type CG 

3-90 



PC BOARD PATTERN 

~ .r'INN01 

•. ~~1:~~l;l;l;l;.~ 
f% ~fE~EJATION.r.I FRn·, 

+ PIN ClR HOLEn • 
DEVICE PADS i7j FORI .021 DIA.r+I 

SHOWN FOR ~E.!-7+(ffi'- 0l-Ii (~iO:) 
CONTACT J+j I <' •• ," 

LOCATION "-.~ I /+I ~TYP 

~~~~.~~' ~<;~~~~~~~?l~ I 
.015 .'~'ii.""ii'ii'ii'. 00 ".",-j ti L ~ ~ hhi; TTP

.o~:J (~------l
(0.11) • SPCS • .J.!!!tTOL NON ACCUM TVP" PLes

CONTACT TA'L (2.141

210451-20

NOTE:

80186

GUIDE .oss
3 Ples

- i~;~) $Q--­

~

I

J,

+ ~r-·
I \.SOCKET ORIENTATION PIN ~~

I -

ALUMINUM LID
iHEATSINK PROVISIONS OPTIONAL)

INDEX

ct-~ FRONT

\
OPEN

Phy~ir.l\1 dimensions shown are for reference onlv. Please consult 3M Textool for complete information on the socket.

Figure 42. Textool 68 Lead Chip Carrier Socket

GQQ \:vww
~ (;;;\(;;;0 0
\E) \V \V \'Ji)

Q~
~W
~O
\EJ'JD
r;;:;\(;-;;i\
~\V
r:V~;\
\JV~
~G
8\JV

OOGOO
W~W~W
r:~r::\(~O®S1 fs:\
~~~~ u ~ 

Qf,;\ 
~8 
00 
\E)\!i} 
r::\f~~ 
\iV\V 
00 
QD~ 
QQ 
8\Ji7 
00 
QD~ 

®.R ®.R ~@ INO IN! A17/S4 Al8/S5 
20 21 67 66 

QOaaaOOf.::\r:::V--:;;;\O 
~~8\2)~@~888~ 

r:;;;v;::\ 0 Q t::;V:::-" Q (::::\(:::~ 
\lV8\7V'0V\V0808 

Bottom View (Pins FaCing Up) 

Figure 43. Pin Grid Array, PLCC and LCC Socket Pinout 

3-91 

210451-22 



inter 80186 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature under Bias ...... o·C to 70·C 

Case Temperature under Bias ...... O·C to + 11 O·C 

Storage Temperature .......... -65·C to + 150·C 

Voltage on any Pin with 
Respect to Ground .............. -1.0V to + 7V 

Power Dissipation ........................ 3 Watt 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICS (TA = O·Cto +70·C, Tc = O·Cto +110·C, Vcc = 5V ±10%) 
Applicable to 80186 (8 MHz), 80186-10 (10 MHz), and 80186-12 (12.5 MHz) 

Symbol Parameter Min Max Units Test Conditions 

V,L Input Low Voltage 0.5 +0.8 Volts 

V,H Input High Voltage 2.0 Vcc + 0.5 Volts 
(All except X1 and (RES) 

V,Hl Input High Voltage (RES) 3.0 Vcc + 0.5 Volts 

VOL Output Low Voltage 0.45 Volts la = 2.5 mA for SO-52 
la = 2.0 mA for all other outputs 

VOH Output High Voltage 2.4 Volts loa = -400/LA 

ICC Power Supply Current 550 mA TA = O·C - Max measured at T C 
450 A = 70· 

III Input Leakage Current ±10 /LA OV < V,N < Vee 

ILO Output Leakage Current ±10 /LA 0.45V < VOUT < Vcc 

VCLO Clock Output Low 0.6 Volts la = 4.0mA 

VCHO Clock Output High 4.0 Volts loa = -200/LA 

VCLl Clock Input Low Voltage -0.5 0.6 Volts 

VCHI Clock Input High Voltage 3.9 Vcc + 1.0 Volts 

C'N Input CapaCitance 10 pF 

C,O 1/0 Capacitance 20 pF 

3-92 



inter 80186 

PIN TIMINGS 

A.C. CHARACTERISTICS (TA = O°Clo +70°C, TC = O°Clo +110°C, VCC = 5V ±10%) 
80186 Timing Requirements All Timings Measured At 1 5 Volts Unless Otherwise Noted 

80186 80186-10 
80186-12 

(8 MHz) (10 MHz) 
(12.5 MHz) 

Symbol Parameter Preliminary Units 

Min Max Min Max Min Max 

TDVCl Data in Setup (AID) 20 15 15 ns 

TCLDX Data in Hold (AID) 10 8 8 ns 

TARYHCH Asynchronous Ready 20 15 15 ns 
(AREADY) active setup 
time' 

TARYLCL AREADY inactive setup 35 25 25 ns 
time 

TCHARYX AREADY hold time 15 15 15 ns 

TARYCHL Asynchronous Ready 15 15 15 ns 
inactive hold time 

TSRYCL Synchronous Ready 20 20 20 ns 
(SREADY) transition 
setup time 

TCLSRY SREADY tranSition 15 15 15 ns 
hold time +--25 THVGL : ICLD SGt:...:p* ?n 20 ns 

TINVCH INTR, NMI, TEST, 25 25 25 ns 
TIMERIN, Setup' 

TINVCL DROO, DR01, Setup' 25 20 20 ns 

80186 Master Interface Timing Responses 

TCLAV Address Valid Delay 5 55 5 50 4 33 ns 

TCLAX Address Hold 10 10 8 ns 

TCLAZ Address Float Delay TCLAX 35 TCLAX 30 8 25 ns 

TCHCZ Command Lines 45 40 33 ns 
Float Delay -

TCHCV Command Lines Valid 55 45 37 ns 
Delay (after float) 

TLHLL ALE Width TCLCL - 35 TCLCL --30 TCLCL -30 ns 

TCHLH ALE Active Delay 35 30 25 ns 

TCHLL ALE Inactive Delay 35 30 25 ns 

TLLAX Address Hold to TCHCL -25 TCHCL -20 TCHCL -15 ns 
ALE Inactive 

TCLDV Data Valid Delay 10 44 10 40 8 33 ns 

TCLDOX Data Hold Time 10 10 8 ns 

TWHDX Data Hold after WR TCLCL-40 TCLCL -34 TCLCL -20 ns 

TcVCTV Control Active Delay 1 10 70 5 56 8 47 ns 

TCHCTV Control Active Delay 2 10 55 10 44 8 37 ns 

TCVCTX Control Inactive Delay 5 55 5 44 4 37 ns 

TCVDEX DEN Inactive Delay 10 70 10 56 8 47 ns 
(Non-Write Cycle) 

'To guarantee recognition at next clock. 

3-93 

Test 
Conditions 

CL = 20-200 pF 
all outputs 
(exceptT CLTMV) 
@8& 10 MHz 
CL =20-100 pF 
all outputs @ 
12.5 MHz 



80186 

PIN TIMINGS (Continued) 

A.C. CHARACTERISTICS (TA = O·Cto +70·C, TC = O·Cto +110·C, VCC = 5V ±10%)(Continued) 
80186 Master Interface Timing Responses (Continued) 

80186 80186-10 
80186-12 

(8 MHz) (10 MHz) 
(12.5 MHz) Test 

Symbol Parameter Preliminary Units Conditions 
Min Max Min Max Min Max 

TAZRL Address Float to 0 0 0 ns 
RDAct;ve 

TCLRL R1) Active Delay 10 70 10 56 8 47 ns 

TCLRH R1) Inactive Delay 10 55 10 44 8 37 ns 

TRHAV RD Inactive to TCLCL -40 TCLCL -40 TCLCL -20 ns 
Address Active 

TCLHAV HLDA Valid Delay 5 50 5 40 4 33 ns 

TRLRH RDWidth 2TCLCL -50 2TCLCL -46 2TcLCL -40 ns 

TWLWH WRWidth 2TCLCL -40 2TCLCL -34 2TCLCL -30 ns 

TAVAL Address Valid to TCLCH-25 TCLCH-19 TCLCH-15 ns 
ALE Low 

TCHSV Status Active Delay 10 55 10 45 8 35 ns 

TCLSH Status Inactive Delay 10 65 10 50 8 35 ns 

TCLTMV Timer Output Delay 60 48 40 ns 100 pF max 
@8&10MHz 

TCLRO Reset Delay 60 48 40 ns 

TCHQSV Queue Status Delay 35 28 23 ns 

TCHDX Status Hold Time 10 10 8 ns 

TAVCH Address Valid to 10 10 8 ns 
Clock High 

TCLLV LOCK Valid/Invalid 5 65 5 60 5 55 ns 
Delay 

80186 Chip-Select Timing Responses 

TCLCSV Chip·Select 66 45 33 ns 
Active Delay 

Tcxcsx Chip·Select Hold from 35 35 29 ns 
Command Inactive 

TCHCSX Chip-Select 5 35 5 32 4 23 ns 
Inactive Delay 

80186 ClKIN Requirements 

TCKIN CLKIN Period 62.5 250 50 250 40 250 ns 

TCKHL CLKIN Fall Time 10 10 8 ns 3.5 to 1.0V 

TCKLH CLKIN Rise Time 10 10 8 ns 1.0 to 3.5V 

TCLCK CLKIN Low Time 25 20 15 ns 1.5V 

TCHCK CLKIN High Time 25 20 15 ns 1.5V 

80186 CLKOUT Timing (200 pF load) 

TCICO CLKINto 50 25 21 ns 
CLKOUTSkew 

TCLCL CLKOUT Peiod 125 500 100 500 80 500 ns 

TCLCH CLKOUT Low Time % TCLCL -7.5 % TCLCL -6.0 % TCLCL -6.0 ns 1.5V 

TCHCL CLKOUT High Time % TCLCL -7.5 % TCLCL -6.0 % TCLCL -6.0 ns 1.5V 

TCH1CH2 CLKOUT Rise Time 15 12 10 ns 1.0 to 3.5V 

TCL2CLI CLKOUT Fall Time 15 12 10 ns 3.5 to 1.0V 

3-94 



80186 

WAVEFORMS 

MAJOR CYCLE TIMING 

VCH 

~ 

CLKOUT ~ ~';-,[j9t:::1S .~ 
~ '''I~ 1-VCl I·~·I f--ITCHCL --,' 

WRIT~CYCLE ! 
RD.INTA, 

DT/Ii "VOH I 
l 

BHE/S7, 

A,,/So-A,,/5, 

ALE 

TCI ,AV_ 

-ur:;: TCH -t 
TCLAV--

AD15-AOo 
T' 

-

\ 
'I_T1 ~LAX::: 

,"W' 
~ 

V ... n., 

-' I .. " ~~ 
~TA\;AI 

_l: ~t~ I::: I:: 
:~5~AO 

,~.~ .. -- ir 'TL~_ 

a .... ' _ i-

r-

\. - '-~~~~ 

57-5, 
'I 

/r-r---

T<LAZ __ -
DATAOU' TCI ~ r-

"'= -- ]2~ 
~v'~ 

,"~"n 

J 
TCVcnc- -

-' CLDX ~ ____ TCLAZ i/T,oYCL 
\ 

.1\ FLOAT A ~'"'' FLOAT 

~-{ 
TCHCTV "\ I--TCHCTV 

1-
INTA CYCLE 

DT/A 

SOFWARE HALT-DT/R "VOLo 
RD, WR, INTA, DEN "VOH 

pcs, 
MCS 
LCS, 
UCS 

~I -
TCVCT" _fr:j 

;:~ I 

*-
INVALID ADDRESS 

TCLAV_ 

- k_TCLC5V 

3-95 

~ 

Vv 
TCVDEX- 1-/ 

r; 
:: ~ ::; 

TCHC~X_ 1-
TCXCSX- -

210451-23 



inter 80186 

WAVEFORMS (Continued) 

MAJOR CYCLE TIMING (Continued) 

TCH1CH2 

CLKOUT 

52·So --~--~.-----+---~------t----+--~~~~~------r-----------

BHE/S7,A19/S6-Al6JS3 

READ CYCLE 

NOTES: 

ALE 

AD1S -ADo 

DT/R 

pcs, 
MaI---+", 
[cs, 
ucs 

210451-24 

1. Following a Write cycle, the Local Bus is floated by the 80186 only when the 80186 enters a "Hold Acknowledge" 
state. 
2. INTA occurs one clock later in RMX-mode. 
3. Status inactive just prior to T 4. 

3-96 



WAVEFORMS (Continued) 

CLKOUT 

CLKOUT 

~ 
INTO·3 

TIMERIN 

- TCLLV-

TINVCH 

80186 

3-97 

~ 
DRQO~ DRQ1 

TINVCL 

210451-25 



WAVEFORMS (Continued) 

HOLD-HLDA TIMING 

T, 

CLKOUT 

ARDY 

_
__ ~---J Ir= ,-~ 

ARDY A 

ClKOUT 

SRDY 

CLKOUT 

HlDA 

ADl5-ADO -----
80186 

DEN----

A191S6-Al61S3, ----
liD, WIi, 80186 
BHE,----
DTIII, 

52-SO 

T, 

80186 

T, 

TARYLCl_ __ 

..- ,TClAY 

--~ 
)--- 80186 __ oJ r TCHCY 

--, 
}--- 80186 __ oJ 

210451-26 

3-98 



80186 

WAVEFORMS (Continued) 

TIMER ON 80186 

4-----TCKIN~'- TCLCK---+ 

CLKIN 

TCKHL~ -4-TCKLH TCHCK 

TCH1CH2- _TCL2Cl1 

CLKOUT TC'CO-i 
'I.---TCLCH--+O-,I4---TCHCL--__ 

I_------TCLCL ------.1 

't----
-TINVCH I 

TlMEAIN 

_ TCLTMV 1_ 
TIMEAOUT 1-------------2--6 CLOCKS V-
-------+----~ 

80186 INSTRUCTION TIMINGS 

The following instruction timings represent the mini­
mum execution time in clock cycles for each instruc­
tion. The timings given are based on the following 
assumptions: 

• The opcode, along with any data or displacement 
required for execution of a particular instruction, 
has been prefetched and resides in the queue at 
the time it is needed. 

• No wait states or bus HOLDS occur. 

210451-27 

• All word-data is located on even-address bound­
aries. 

All jumps and calls include the time required to fetch 
the opcode of the next instruction at the destination 
address. 

All instructions which involve memory reference can 
require one (and in some cases, two) additional 
clocks above the minimum timings shown. This is 
due to the asynchronous nature of the handshake 
between the BIU and the Execution unit. 

3-99 



INSTRUCTION SET SUMMARY 

Function 

to RegisterlMemory 

to register 

10 register I memory 

to register 

to memory 

to segment register 

register to register I memory 

register 

POP = Pop: 

Memory 

Register 

Segmenl register 

j".,niQ·",,'m.,m ... ~ with register 

= Translate byte to AL 

= Load EA to register 

= Load pointer to DS 

= Load pOinter to ES 

= Load AH with flags 

= Store AH into flags 

= Push flags 

= Pop flags 

1000100w 

1000101w 

11000 II w 

1011wreg 

1010000w 

1010001 w 

10001110 

10001100 

1 1 1 1 1 1 1 1 

01010reg 

[oooregilo 

I 
I 

I 
I 
I 
I 
I 
I 

10001111 

01011 reg 

000re9111 

1000011w 

10010re9 

1110010w 

1110110w 

1110011w 

1110111 w 

11010111 

10001101 

11000101 

11000100 

I 1001 1 1 11 I 
I 10011110 I 
I 10011100 I 
I 10011101 I 

80186 

Format 

mod reg rim 

mod reg rim 

madOOO rim data 

data dataifw=1 

addr-Iow addr-high 

addr-Iow addr-high 

mod 0 reg ~ 

mod 0 reg rim I 

mOdl~ 

modOOO rim 

(reg"'OI) 

mod reg rim 

port 

port I 

mod reg r/~ 
mod reg rim (mod"'! 1) 

mod reg rim (mod"'ll) 

Shaded areas indicate instructions not available in 8086, 8088 microsystems. 

3-100 

dataifw=1 

2/12 

2/9 

12-13 

3-4 

9 

8 

2/9 

2/11 

16 

10 

9 

20 

10 

8 

4/17 

3 

10 

8 

9 

11 

6 

18 

18 

2 

9 

8 

Commenta 

8/16-bit 

8/t6-bit 



80186 

INSTRUCTION SET SUMMARY (Continued) 

Function Format 
Clock 

Comments 
Cycles 

DATA TRANSFER (Continued) 
SEGMENT ~ Segment Override: 

CS I 00101110 I 2 

SS I 0011011U 2 

OS I 00111110 I 2 

ES I 00100110 I 2 

ARITHMETIC 
ADD ~ Add: 

Reg/memory with register to either lJ>OOOOOdW I mod reg rIm I 3/10 

Immediate to register/memory I 100000sw I mod 0 0 0 rIm I data I dataifsw~01 I 4/16 

Immediate to accumulator I 0000010w I data I datalfW~~ 3/4 B/16-bit 

ADC ~ Add with carry: 

Reg/memory with register to either I 000100dw I mod reg rIm I 3/10 

Immediate to register/memory I 100000sw I modOl0,/m I data I data If s w~OI I 4/16 

Immediate to accumulator I 0001010w I data I datailw~1 I 3/4 B/16-bit 

INC ~ Increment: 

Register/memory I l111111w I mod 0 0 0 rIm I 3/15 

Register I 01000reg I 3 

G;;:'; ~ SIU"'~~C;U,.l. 

Reg/memory and register to either IoOl010dw I mod reg rIm I 3/10 

Immediate from register/memory I 100000sw I mod 101 '/m I data I data if s w~01 I 4/16 

Immediate from accumulator I 0010110w I data I dataifw=1 I 3/4 B/16-bit 

SBB ~ Subtract with borrow: 

Reg/memory and register to either I 000110dw I mod reg rIm I 3/10 

Immediate from register/memory I 100000sw I modOll rIm I data I datailsw~OI I 4/16 

Immediate from accumulator I 0001110w I data I datailw=1 I 3/4 B/16-bit 

DEC ~ Decrement 

Register/memory I 1111111 w I modOO 1 rim I 3/15 

Register I 01001 reg I 3 

CMP ~ Compare: 

Register/memory with register I 0011101 w mod reg rIm I 3/10 

Register with register/memory I 0011100w mod reg rIm I 3/10 

Immediate with register/memory I 100000sw mod 111 rIm I data I datailsw=OI I 3/10 

tmmediate with accumulator I 0011110w data I data ilw= 1 I 3/4 B/16-bit 

NEG = Change sign I 1111011 w mOdO~ 3 

AAA = ASCII adjust lor add I 00110111 I B 

DAA = Decimal adjust for add I 00100111 I 4 

AAS = ASCII adjust for subtract I 00111111 I 7 

DAS = Decimal adjust for subtract I 00101111 I 4 

MUL = Multiply (unsigned): I 1111011 w I mod 100 rIm I 
Register-Byte 26-2B 
Register-Word 35-37 
Memory-Byte 32-34 
Memory-Word 41-43 

Shaded areas Indicate Instructions not available In 8086, 8088 mlcrosystems. 

3-101 



80186 

INSTRUCTION SET SUMMARY (Continued) 

Function Format Comments 

(Continued) 

= Integer multiply (signed): I 1 1 1 1 01 1 w mod 1 0 1 rIm 

1111011 w mod 110 rIm 

29 
38 
35 
44 

I 1111011 w mod 111 rIm 

44-52 
53-61 
50-58 
59-67 

11010100 00001010 19 

11010101 00001010 15 

= Convert byte to word 10011000 2 

= Convert word to double word 10011001 4 

Instructions: 

by 1 1101000w modTTTr/m 2/15 

byCL 1101001w mod TTT rIm 5+n/17+n 

TTT Instruction 
000 ROL 
001 ROR 
010 RCL 
all RCR 
100 SHL/SAL 
101 SHR 
1 1 1 SAR 

and register to either 001000dw mod reg rIm 3/10 

to register I memory 1000000w mod 100 rIm data data ifw= 1 4/16 

0010010w data dataifw=1 3/4 8/1S-bit 

= And function to flags, no result: 

and register I 1000010w mod reg rIm 3/10 

data and register I memory I 1111011 w modOOO rIm data dataifw=1 4/10 

I 1010100w data dataifw=1 3/4 8/16-bit 

and register to either I 000010dw mod reg rIm 3/10 

1000000w mod 00 I rim data dataifw=1 4/16 

OOOOllOw data dataifw=1 3/4 8/16-bit 

Shaded areas indicate instructions not available in 8086, 8088 microsystems. 

3-102 



inter 80186 

INSTRUCTION SET SUMMARY (Continued) 

Function 

LOGIC (Continued) 
XOR ~ Exclusive or: 

Reglmemory and register to either 

Immediate to registerlmemory 

Immediate to accumulator 

NOT ~ Invert registerlmemory 

STRING MANIPULATION 

MOYS ~ Move bytelword 

CMPS ~ Compare bytelword 

SCAS ~ Scan bytelword 

LODS ~ Load bytelwd to ALAX 

Repeated by count in CX 

MOYS ~ Move string 

eMFS - CU~(jtJCtII;;l' ~ir;[I!::I 

SCAS ~ Scan string 

LODS ~ Load string 

CONTROL TRANSFER 

CALL ~ Call: 

Direct within segment 

Registerlmemory 
indirect within segment 

Direct intersegment 

Indirect intersegment 

JMP ~ Unconditional jump: 

Shortllong 

Direct within segment 

Register I memory 
indirect within segment 

Direct intersegment 

Indirect intersegment I 

Format 

001100dw mod reg rlm~ 
1000000w mod 110 rim data 

0011010w data data ifw~ 1 

1111011 w modOl0r/m 

1010010w 

1010011 w 

1010111 w 

1010110w 

11110010 1010010w 

; • I I v v 1 ? I V • V V I j W 

1 1 1 1001 z 1010111 w 

11110 0 10 1010110w 

11101000 disp-Iow disp-high 

11111111 mod 0 10 rim 

10011010 segment offset 

segment selector 

11111111 mod 0 11 rim I (mod * 11) 

11101011 disp-Iow 

11101001 disp-Iow disp-high 

11111111 mod 100 rim 

11101010 segment offset 

segment selector 

11111111 mod 1 0 1 rim I (mod * 11) 

Shaded areas indicate instructions not available in 8086, 8088 microsystems. 

3-103 

Clock 
Comments 

Cycles 

3110 

dataifw~1 4116 

314 Bl16-bit 

3 

14 

22 

15 

12 

8+8n 

~ , .::.."-,, 

5+15n 

6+11n 

15 

13/19 

23 

38 

14 

14 

11/17 

14 

26 



inter 80186 

INSTRUCTION SET SUMMARY (Continued) 

Function Format Comments 

11000011 16 

seg add",~ '",med to SP 11000010 data-low data-high 18 

11001011 22 

adding immediate to SP 11001010 data-low data-high 25 

01110100 disp 4/13 JMP not 

~ Jump on less/not greater or equal 01111100 disp 4/13 
taken/JMP 

taken 

~ Jump on less or equallnot greater 01111110 disp 4/13 

~ Jump on below/not above or equal 01110010 disp 4/13 

~ Jump on below or equallnot above 01110110 disp 4/13 

~ Jump on parity/parity even 01111010 disp 4/13 

01110000 disp 4/13 

01111000 disp 4/13 

~ Jump on not equal/not zero 01110101 disp 4/13 

~ Jump on not less/greater or equal 01111101 disp 4/13 

~ Jump on not less or equal/greater 01111111 disp 4/13 

~ Jump on not below/above or equal 01110011 disp 4/13 

~ Jump on not below or equal/above 01110111 disp 4/13 

~ Jump on not par/par odd 01111011 disp 4/13 

[01110001 disp 4/13 

101111001 disp 4/13 

~ Jump on ex zero 111 ooe 11 disp 5/15 

~ Loop ex times 11100010 disp 6/16 LOOP not 

~ Loop while zero/equal 11100001 disp 6/16 
taken/LOOP 

taken 

11001101 type 47 

11001100 45 if INT, taken/ 

11001110 48/4 
iflNT, not 

taken 

28 

Shaded areas indicate instructions not available in 8086. 8088 microsystems. 

3-104 



80186 

INSTRUCTION SET SUMMARY (Continued) 

Function Format 
Clock 

Comments 
Cycles 

PROCESSOR CONTROL 

CLC = Clear carry I 11111000 I 2 

CMC = Complement carry I 11110101 I 2 

STC '" Set carry I 11111001 I 2 

CLO = Clear direction I 11111100 I 2 

STO = Set direction ~1111101 I 2 

Cli = Clear interrupt I 1 1 1 1 1010 I 2 

STI = Set interrupt I 11111011 I 2 

HLT = Halt I 11110100 I 2 

WAIT = Wait I 10011011 I 6 if test = 0 

LOCK = Bus lock prefix I 11110000 I 2 

ESC = Processor Extension Escape I 11011 TTT I mod LLL rIm I 6 

(TTT LLL are opcode to processor extension) 

Shaded areas indicate instructions not available in 8086, 8088 microsystems. 

3-105 



• 
• 
• 

• 
• 

• 
• 

iAPX 88/10 
8-BIT HMOS MICROPROCESSOR 

8088/8088-2 
8-Bit Data Bus Interface 

16-Blt Internal Architecture 

Direct Addressing Capability to 1 
Mbyte of Memory 

Direct Software Compatibility with 
iAPX 86110 (8086 CPU) 

14-Word by 16·Bit Register Set with 
Symmetrical Operations 

24 Operand Addressing Modes 

Byte, Word, and Block Operations 

• 8-Bit and 16-Bit Signed and Unsigned 
Arithmetic in Binary or Decimal, 
Including Multiply and Divide 

• Compatible with 8155-2, 8755A-2 and 
8185·2 Multiplexed Peripherals 

• Two Clock Rates: 
5 M Hz for 8088 
8 MHz for 8088-2 

• Available in EXPRESS 
- Standard Temperature Range 
- Extended Temperature Range 

The Intel® iAPX 88/10 is a new generation, high performance microprocessor implemented in N-channel, depletion load, 
silicon gate technology (HMOS), and packaged in a 40-pin CerDIP package. The processor has attributes of both 8- and 
16-bit microprocessors. It is directly compatible with iAPX 86/10 software and 8080/8085 hardware and peripherals. 

C·BUS 
MIN 

[MAX 1 
MODE MODE 

GND Vee 

A1' A15 
INSTRUCTION A13 A16/S3 
STREAM BYTE 

OUEUE A12 A171S4 

All A18/S5 

A10 A19/56 

BUS A9 SSO (HIGH) 

INTERFACE SS A8 MN/MX 
UNIT 

DS AD AD7 

IP ADS HOLD (RQ/GTO) 

ADS HLDA (RO/GT1) 

A·BUS AD4 WR (LOCK) 

AD3 101M (52) 

AD2 DTill (51) 

AH AL AD1 !!EN (so) 
BH BL ADO ALE (OSO) 
CH CL 

iNfA DH DL 
NMI (OS1) 

EXECUTION 
UNIT SP INTR TEST 

BP ClK READY 

SI GND RESET 

01 FLAGS 

Figure 1. iAPX 88/10 CPU Functional Block Diagram Figure 2. iAPX 88/10 Pin Configuration 

Intel Corporation Assumes No Responsibilty for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent licenses are Implied. 

©INTEl CORPORATION, 1980 

3-106 



iAPX 88/10 

Table 1. Pin Description 

The following pin function descriptions are for 8088 systems in either minimum or maximum mode. The "local bus" in 
these descriptions is the direct multiplexed bus interface connection to the BOBB (without regard to additional bus 
buffers). 

Symbol Pin No. Type Name and Function 

AD7-ADO 9-16 I/O Address Data Bus: These lines constitute the time multiplexed memory/IO 
address (Tl) and data (T2, T3, Tw, and T4) bus. These lines are active HIGH and 
float to 3-state OFF during interrupt acknowledge and local bus "hold acknowl-
edge". 

A15-A8 2-8,39 0 Address Bus: These lines provide address bits 8 through 15 for the entire bus 
cycle (Tl-T4). These lines do not have to be latched by ALE to remain valid. 
A15-A8 are active HIGH and float to 3-state OFF during interrupt acknowledge 
and local bus "hold acknowledge". 

A19/S6, A18/S5, 35-38 0 Address/Status: During n, these are the four 
A17/S4, A16/S3 most significant address lines for memory op-

erations. During I/O operations, these lines are 
LOW. During memory and I/O operations, status 
information is available on these lines during 
T2, T3, Tw, and T4. S6 is always low. The status of r~ __ ~ __ ~~~~~TERISTl~~ 
the interrupt enable flag bit (35) is updated at 0' , 
the beginning of each clock cycle. 34 and 33 are (HIGHI 1 0 i , 

t I Data 

encoded as shown. S6Is0(LQW) 

This information indicates which segment reg-
!~t,?r i~ !=m:::ll~~ntly hp,ioO lI~fHi for rl~t~ ::t~r.A~Ring_ 

These lines float to 3-state OFF during local bus 
"hold acknowledge". 

RD 32 0 Read: Read strobe indicates that the processor is performing a memory or I/O 
read cycle, depending on the state of the 10/M pin or 32. This signal is used to 
read devices which reside on the 8088 local bus. RD is active lOW during T2, T3 
and Tw of any read cycle, and is guaranteed to remain HIGH in T2 until the 8088 
local bus has floated. 

This signal floats to 3-state OFF' in "hold acknowledge". 

READY 22 I READY: is the acknowledgement from the addressed memory or I/O device that 
it will complete the data transfer. The ROY signal from memory or I/O is syn-
chronized by the 8284 clock generator to form READY. This signal is active 
HIGH. The 8088 READY input is not synchronized. Correct operation is not 
guaranteed if the set up and hold times are not met. 

INTR 18 I Interrupt Request: is a level triggered input which is sampled during the last 
clock cycle of each instruction to determine if the processor should enter into an 
interrupt acknowledge operation. A subroutine is vectored to via an interrupt 
vector lookup table located in system memory. It can be internally masked by 
software resetting the interrupt enable bit. INTR is internally synchronized. This 
signal is active HIGH. 

TEST 23 I TEST: input is examined by the "wait for test" instruction. If the TEST input is 
lOW, execution continues, otherwise the processor waits in an "idle" state. This 
input is synchronized internally during each clock cycle on the leading edge of 
ClK. 

NMI 17 I Non-Maskable Interrupt: is an edge triggered input which causes a type 2 
interrupt. A subroutine is vectored to via an interrupt vector lookup table located 
in system memory. NMI is not maskable internally by software. A transition from 

I 
a lOW to HIGH initiates the interrupt at the end of the current instruction. This 
input is internally synchronized. 

3-107 

, 

I 



iAPX 88/10 

Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and Function I 
RESET 21 I RESET: causes the processor to immediately terminate its present activity. The 

signal must be active HIGH for at least four clock cycles. It restarts execution, as 
described in the instruction set description, when RESET returns LOW. RESET 
is internally synchronized. 

eLK 19 I Clock: provides the basic timing for the processor and bus controller. It is 
asymmetric with a 33% duty cycle to provide optimized internal timing. 

Vee 40 Vee: is the +5V ±10% power supply pin. 

GND 1,20 GND: are the ground pins. 

MN/MX 33 I Minimum/Maximum: indicates what mode the processor is to operate in. The 
two modes are discussed in the following sections. 

The fa I/o wing pin function descriptions are for the 8088 minimum mode (i.e., MNIMX = VecJ. Only the pin functions which 
are unique to minimum mode are described; all other pin functions are as described above. 

101M 28 0 Status Line: is an inverted maximum mode S2. It is used to distinguish a 
memory access from an 1/0 access. 101M becomes valid in the T4 preceding a 
bus cycle and remains valid until the final T4 of the cycle (I/O=HIGH, M=LOW). 
101M floats to 3-state OFF in local bus "hold acknowledge". 

WR 29 a Write: strobe indicates that the processor is performing a write memory or write 
I/O cycle, depending on the state of the 101M signal. WR is active for T2, T3, and 
Tw of any write cycle. It is active LOW, and floats to 3-state OFF in local bus" hold 
acknowledge" . 

INTA 24 a INTA: is used as a read strobe for interrupt acknowledge cycles. It is active LOW 
during T2, T3, and Tw of each interrupt acknowledge cycle. 

ALE 25 a Address Latch Enable: is provided by the processor to latch the address into 
the 8282/8283 address latch. It is a HIGH pulse active during clock low of T1 of 
any bus cycle. Note that ALE is never floated. 

DT/R 27 a Data Transmit/Receive: is needed in a minimum system that desires to use an 
8286/8287 data bus transceiver. It is used to control the direction of data flow 
through the transceiver. Logically, DT/R is equivalent to 51 in the maximum 
mode, and its timing is the same as for 101M (T=HIGH, R=LOW). This Signal 
floats to 3-state OFF in local "hold acknowledge". 

DEN 26 a Data Enable: is provided as an output enable for the 8286/8287 in a minimum 
system which uses the transceiver. DEN is active LOW during each memory and 
1/0 access, and for INTA cycles. For a read or INTA cycle, it is active from the 
middle of T2 until the middle of T4, while for a write cycle, it is active from the 
beginning of T2 until the middle ofT4. DEN floats to 3-state OFF during local bus 
"hold acknowledge". 

HOLD,HLDA 30,31 1,0 HOLD: indicates that another master is requesting a local bus "hold". To be 
acknowledged, HOLD must be active HIGH. The processor receiving the "hold" 
request will issue HLDA (HIGH) as an acknowledgement, in the middle of a T4 or 
TI clock cycle. Simultaneous with the issuance of HLDA the processor will float 
the local bus and control lines. After HOLD is detected as being LOW, the 
processor lowers HLDA, and when the processor needs to run another cycle, it 
will again drive the local bus and control lines. 

Hold is not an asynchronous input. External synchronization should be 
provided if the system cannot otherwise guarantee the set up time. 

SSO 34 0 Status line: is logically equivalent to SO in th~ 101M DTiR ~ CHARACTERISTICS 

maximum mode. The combination of SSO, 101M :'"""' 0 I 0 

;~:~~~!i 0 , 
and DT/R allows the system to completely de- , 0 , , 
code the current bus cycle status. ~(COWI 0 0 "":' 0 , , 0 I,'"'' , , 

3-108 



iAPX 88/10 

Table 1. Pin Description (Continued) 

The following pin function descriptions are for the 8088, 8228 system in maximum mode (i,e., MNIMX=GNO.) Only the pin 
functions which are unique to maximum mode are described; all other pin functions are as described above. 

Symbol Pin No, Type 

S2, Sl, SO 26-28 o 

RQ/GTO, 30, 31 I/O 
RQ/GT1 

Name and Function 

Status: is active during clock high of T4, T1, 
and T2, and is returned to the passive state 
(1,1,1) during T3 or during Tw when READY is 
HIGH. This status is used by the 8288 bus con-
troller to generate all memory and I/O access 
control signals. Any change by S2, 51, or SO 
during T4 is used to indicate the beginning of a 
bus -::ycle, and the return to the passive state in 
T3 or Tw is used to indicate the end of a bus 
cycle. 

These signals float to 3-state OFF during "hold 
acknowledge". During the first clock cycle after 
RESET becomes active, these signals are active 
HIGH. After this first clock, they float to 3-state 
OFF. 

Request/Grant: pins are used by other local bus masters to force the processor 
to release the local bus at the end of the processor's currenl bus cycle. Each pin 
is bidirectional with RQ/GTO having higher priority than RQ/GT1. RQ/GT has an 
internal pull-up resistor, so may be left unconnected. The request/grant se-

1. A pulse of one ClK wide from another local bus master indicates a local bus 
request ("hold") to the 8088 (pulse 1). 

2. During a T4 or TI clock cycle, a pulse one clock wide from the 8088 to the 
requesting master (pulse 2), indicates that the 8088 has allowed the local bus 
to float and that it will enter the "hold acknowledge" state at the next ClK. 
The CPU's bus interface unit is disconnected logically from the local bus 
du ring" hold acknowledge". The same rules as for HOLD/HOLDA apply as for 
when the bus is released. 

3. A pulse one ClK wide from the requesting master indicates to the 8088 (pulse 
3) that the "hold" request is about to end and that the 8088 can reclaim the 
local bus at the next ClK. The CPU then enters T4. 

Each master-master exchange of the local bus is a sequence of three pulses. 
There must be one idle elK cycle after each bus exchange. Pulses are active 
lOW. 

If the request is made while the CPU is performing a memory cycle, it will release 
the local bus during T4 of the cycle when all the following conditions are met: 

1. Request occurs on or before T2. 
2. Current cycle is not the low bit of a word. 
3. Current cycle is not the first acknowledge of an interrupt acknowledge 

sequence. 
4. A locked instruction is not currently executing. 

If the local bus is idle when the request is made the two possible events will 
follow: 

1. local bus will be released during the next clock. 
2. A memory cycle will start within 3 clocks. Now the four rules for a currently 

active memory cycle apply with condition number 1 already satisfied. 

3-109 



inter iAPX 88/10 

Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

lOCK 29 a LOCK: indicates that other system bus maste~ not to gain control of the 
system bus while lOCK is active (lOW). The lOCK signal is activated by the 
"lOCK" prefix instruction and remains active until the completion of the next 
instruction. This signal is active lOW, and floats to 3-state off in "hold acknowl-
edge", 

OS1, QSO 24, 25 a Queue Status: provide status to allow external 
aSl I eso I CHARACTERISTICS 

tracking 01 the internal 8088 instruction queue. ~ (LOWI I ~ I ~,~_~~e~all~n 
The queue status is valid during the ClK cycle 1 (HIGH) I 0 ; ~~~:~t~:~{~e~e, 

, ,"0"' , .' i 'by'" 
after which the queue operation is performed. 

- 34 a Pin 34 is always high in the maximum mode. 

3-110 



inter iAPX 88/10 

FUNCTIONAL DESCRIPTION 

Memory Organization 
The processor provides a 20-bit address to memory which 
locates the byte being referenced. The memory is orga­
nized as a linear array of up to 1 million bytes, addressed 
as OOOOO(H) to FFFFF(H). The memory is logically divided 
into code, data, extra data, and stack segments of up to 
64K bytes each, with each segment falling on 16-byte 
boundaries. (See Figure 3.) 

All memory references are made relative to base 
addresses contained in high speed segment registers. The 
segment types were chosen based on the addressing 
needs of programs. The segment register to be selected is 
automatically chosen according to the rules of the follow­
ing table. All information in one segment type share the 
same logical attributes (e.g. code or data). By structuring 
memory into relocatable areas of similar characteristics 
and by automatically selecting segment registers, pro­
grams are shorter, faster, and more structured. 

Word (16-bit) operands can be located on even or odd ad­
dress boundaries. For address and data operands, the 
least significant byte of the word is stored in the lower 
valued address I?cation and the most significant byte in 

I 

I 

SEGMENT 'I· 
REGISTER FILE i WORD { ~:: 

E=I~I!=3§~ BYTE 

) DATA SEGMENT 

i 0) "'".o'" 'CO"'", 

~OOOOOH 

Figure 3. Memory Organization 

Memory Segment Register 
Reference Need Used 

the next higher address location. The BIU will auto· 
matically execute two fetch or write cycles for 16-bit 
operands. 

Certain locations in memory are reserved for specific 
CPU operations. (See Figure 4.1 Locations from ad­
dresses FFFFOH through FFFFFH are reserved for 
operations including a jump to the initial system initial· 
ization routine. Following RESET, the CPU will always 
begin execution at location FFFFOH where the jump 
must be located. Locations OOOOOH through 003FFH are 
reserved for interrupt operations. Four-byte pointers 
consisting of a 16·bit segment address and a 16-bit off· 
set address direct program flow to one of the 256 possi· 
ble interrupt service routines. The pOinter elements are 
assumed to have been stored at their respective places 
in reserved memory prior to the occurrence of inter­
rupts. 

Minimum and Maximum Modes 
The requirements for supporting minimum and maxi­
mum 8088 systems are sufficiently different that they 
cannot be done efficiently with 40 uniquely defined 
pins. Consequently, the 8088 is equipped with a strap 
pin (MN/MX) which defines the system configuration. 
The definition 01 a certain subset of the pins changes, 
dependent on the condition of the strap pin. When the 
MN/MX pin is strapped to GND, the 8088 defines pins 24 
tnrougn 31 and 34 In maximum mode. When me i\iiNIi\iiX 
pin is strapped to Vee, the 8088 generates bus control 
signals itself on pins 24 through 31 and 34. 

r-----------~ FFFFFH 
RESET BOOTSTRAP 

~ __ ......:Pc:R",O:.::G"RA:::M,,-J~U:::M,,-P ___ -l FFFFOH 

• 

~----------,--~ 3FFH 
INTERRUPT POINTER 

~ ___ --,F:..:0:.cR:..:T.:..YP:..:E:.:2=55:""' __ ---l 3FOH 

1-------------l7H 
INTERRUPT POINTER 

~ ___ ......:FO,,-R:..:T:..:Y:..:PE:""" ___ ---l4H 
INTERRUPT POINTER 3H 

~ ___ ......:FO:::R:..:T~Y:..:PE:::O~ ___ ~OH 

Figure 4. Reserved Memory Locations 

Segment 
Selection Rule 

Instructions CODE (CS) Automatic with all instruction prefetch. 

Stack STACK (55) All stack pushes and pops. Memory references relative to BP 
base register except data references. 

Local Data DATA (OS) Data references when: relative to stack, destination of string 
operation, or explicitly overridden. 

--------
External (Global) Data EXTRA (ES) Destination of string operations: Explicitly selected using a 

segment override. 

3-111 



iAPX 88/10 

The minimum mode 8088 can be used with either a 
multiplexed or demultiplexed bus. The multiplexed bus 
configuration is compatible with the MCS-85™ multi­
plexed bus peripherals (8155, 8156, 8355, 8755A, and 
8185), This configuration (See Figure 5) provides the user 
with a minimum chip count system. This architecture 
provides the 8088 processing power in a highly integrated 
form. 

The demultiplexedmode requires one latch (for 64K ad­
dressability) or two latches (for a full megabyte of ad­
dressing). A third latch can be used for buffering if the 
address bus loading requires it. An 8286 or 8287 trans­
ceiver can also be used if data bus buffering is required. 
(See Figure 6,) The 8088 provides DEN and DT/R to con-

trol the transceiver, and ALE to latch the addresses. 
This configuration of the minimum mode provides the 
standard demultiplexed bus structure with heavy bus 
buffering and relaxed bus timing requirements. 

The maximum mode employs the 8288 bus controller. 
(See Figure 7,) The 8288 decodes status lines SO, 51, 
and S2, and provides the system with all bus control 
signals. Moving the bus control to the 8288 provides 
better source and sink current capability to the control 
lines, and frees the 8088 pins for extended large system 
features. Hardware lock, queue status, and two request! 
grant interfaces are provided by the 8088 in maximum 
mode. These features allow co-processors in local bus 
and remote bus configurations. 

3-112 



iAPX 88/10 

Aa- A 191-_/1_A::::D:::D:.:.R ___ ,V/ 

A.Do - A07 ADDR/DATA ~ 
r-- elK l"'rr-"'=~-' \ ~ 

8088 

r-- READY 

MNIMX r--Vcc 

I~ 

Vee t-bJ1 ALE ~------I f-
~f------I x, x, I r RESET 

1-- RE:~: 1---1=' I IO~; I 
RES 

8284A I RESET 1--. --------

eND 

--

-
-

I rt­

IS-i-

, , 

T T 
POR:~ 
POR~~ WR 

~+--l--+~-~---leE 

RD 
8155 ~ 

AlF PORT~ 
DATA: C 161 

AD DR 

IN_ ...--+---- (DiM TIMER 

.-___ RESET Durl--

~-l---l----Ilow 

~-l--l---l---~~ 

~+--l--l-+--~ ALE 

AB 10 

-V 8355 t8755A 

/,--L-L-L-L-1 __ ~ DATA' 

ADDA 

e­
f-+-

IDiM ~ 
~---lAESET POR~~ 

t--+-+--~ We 
~-l--l-+---~~ 

+--l----~ eEl 8185 
+-+-+++----1 ALE 

I--+-+-+---jf.-~---lc;cs, eEl 

v 

Vee 

iOR --1 

Figure 5. Multiplexed Bus Configuration 

3-113 



intJ 

r D rUi 
8284A 
CLOCK 

GENERATOR 
RES 

I ROY 

GNO 

iAPX 88/10 

INTR 

l-------------------1'NT 

Figure 6. Demultiplexed Bus Configuration 

I 
MNIMX GNO eLK MRDe 

CLK SOr----~s. MWTC 

READY S; s;- AMWC -NC 

RESET S;r---~-- 52 ~~: IOR~ ---._-_ .... _ .. ·--~'···r·-
~ DEN CTRLR lowe .... r-- DT/R AIOWC -N,C : ! 

CPU 
~ ALE INTA ! 

I I r--- I 
L-. STS 

GND- r---- 6E 8282 I : AOO-A07 
Iy----AODRIOA~ 

LATCH 

~-. Aa-Alll (l,20R3) 

I i 
II 

r------ -- r----j 

'NT 

1 
p= T 

OE 
8286 Li TRANSCEIVER 

I ill 1 li l 1rJ Illl F I 
I 

WED'II o·ws 'Ow, I ~ 2142 RAM (2) 2716·2 PROM MCS·80 
PERIPHERAL 

1 V iNTe::~~PT 1-L CONTROL 

'---
<i===IRO-7 

Figure 7. Fully Buffered System Using Bus Controller 

3-114 



inter iAPX 88/10 

Bus Operation 
The 8088 address/data bus is broken into three parts -
the lower eight addreS5/data bits (ADO-AD?), the middle 
eight address bits (A8-A15), and the upper four address 
bits (A16-A19). The address/data bits and the highest 
four address bits are time multiplexed. This technique 
provides the most efficient use of pins on the proc­
essor, permitting the use of a standard 40 lead package. 
The middle eight address bits are not multiplexed, i.e. 
they remain valid throughout each bus cycle. In addi· 

tion, the bus can be demultiplexed at the processor with 
a single address latch if a standard, non-multiplexed 
bus is desired for the system. 

Each processor bus cycle consists of at least four elK 
cycles. These are referred to as T1, T2, T3, and T4. (See 
Figure 81. The address is emitted from the processor 
during T1 and data transfer occurs on the bus during T3 
and T4. T2 is used primarily for changing the direction of 
the bus during read operations. In the event that a "NOT 
READY" indication is given by the addressed device, 

T, 

(4+ NWAITI:TCV------I- ---- (4+ NWAIT).,TCy------

T2 T3 TWAIT T4 1, T2 T3 TWAIT I T4 

elK 

GOES INACTIVE IN THE STATE 

AlE-1'\ n"/"//~~RTOT' 
'-------------- ~~.. \ 

0,"0 \~_---'-'-'-'-§u!'_'_'__'_'_'wr( / umJl1 \'---
ADDRISTATUS =P~ ____ s._,._s, ______ ~~ _____ S_,.s_' _____ x= 

ADOR 

ADDAIDATA -----8~ __ D_A_TA_O_U_T(_D,_.D_O) __ ~>--_cc 

READY 

OTIR 

--MEMORY ACCESS TlME-

\'-----_---11 

Figure 8. Basic System Timing 

3-115 



iAPX 8.8/10 

"wait" states (Tw) are inserted between T3 and T4. Each 
inserted "wait" state is of the same duration as a ClK 
cycle. Periods can occur between 8088 driven bus cycles. 
These are referred to as "idle" states (Ti), or inactive ClK 
cycles. The processor uses these cycles for internal 
housekeeping. 

DuringTl of any bus cycle, the ALE (address latch enable) 
signal is emitted (by either the processor or the 8288 bus 
controller, depending on the MN/MX strap). At the trailing 
edge of this pulse, a valid address and certain status 
information for the cycle may be latched. 

Status bits SO, S1, and S2 are used by the bus controller, in 
maximum mode, to identify the type of bus transaction 
according to the following table: 

5; S; S~ CHARACTERISTICS 

o (LOW) 0 0 Interrupt Acknowledge 
0 0 1 Read 110 
0 1 0 Write I/O 
0 1 1 Halt 
1 (HIGH) 0 0 Instruction Fetch 
1 0 1 Read Data from Memory 
1 1 0 Write Data to Memory 
1 1 1 Passive (no bus cycle) 

Status bits S3 through S6 are multiplexed with high order 
address bits and are therefore valid during T2 through T4. 
S3 and S4 indicate which segment register was used for 
this bus cycle in forming the address according to the 
following table: 

s. S3 CHARACTERISTICS 

o (LOW) 0 Alternate Data (extra segment) 
0 1 Stack 
1 (HIGH) 0 Code or None 
1 1 Data 

S5 is a reflection of the PSW interrupt enable bit. S6 is 
always equal to O. 

I/O Addressing 

In the 808B, I/O operations can address up to a maximum 
of 64K I/O registers. The I/O address appears in the same 
format as the memory address on bus lines A15-AO. The 
address lines A19-A16 are zero in I/O operations. The vari­
able I/O instructions, which use register DX as a pOinter, 
have full address capability, while the direct I/O instruc­
tions directly address one .or two of the .256 I/O,o}'le 
locations in page 0 of the I/O address space. I/O ports are 
addressed in the same manner as memory locations. 

Designers familiar with the 8085 or upgrading an 8085 
design should note that the 8085 addresses I/O with an 
8-bit address on both halves of the 16-bit address bus. The 
8088 uses a full 16-bit address on its lower 16 address 
lines. 

EXTERNAL INTERFACE 

Processor Reset and Initialization 

Processor initialization or start up is accomplished with 
activation (HIGH) of the RESET pin. The 8088 RESET is 
required to be HIGH for greater than four clock cycles. The 
8088 will terminate operations on the high-going edge of 
RESET and will remain dormant as long as RESET is HIGH. 
The low-going transition of RESET triggerll an internal 
reset sequence for approximately 7 clock cycles. After this 
interval the 808B operates normally, begitllofllng wi·tTI' ~e 
instruction in absolute location FFFFOH. (See Figure 4.) 
The RESET input is internally synchronized to the proces­
sor clock. At initialization, the HIGH to lOW transition of 
RESET must occur no sooner than 50 ,""S after power up, to 
allow complete initialization of the 8088. 

I! INTR is asserted sooner than nine clock cycles after the 
end of RESET, the processor may execute one instruction 
before responding to the interrupt. 

All 3-state outputs float to 3-state OFF during RESET. 
Status is active in the idle state for the first clock after 
RESET becomes active and then floats to 3-state OFF. 

Interrupt Operations 
Interrupt operations fall into two classes: software or 
hardware initiated. The software initiated interrupts and 
software aspects of hardware interrupts are specified in 
the instruction set description in the iAPX 88 book or the 
iAPX 86,88 User's Manual. Hardware interrupts can be 
classified asnonmaskable or maskable. 

Interrupts result in a transfer of control to a new program 
location. A 256 element table containing address pointers 
to the interrupt service program locations resides in abso­
lute locations 0 through 3FFH (see Figure 4), which are 
reserved for this purpose. Each element in the table is 4 
bytes in size and corresponds to an interrupt "type." An 
interrupting device supplies an 8-bit type number, during 
the interrupt acknowledge sequence, which is used to 
vector through the appropriate element to the new inter­
rupt service program location. 

Non-Maskable Interrupt (NMI) 

The processor provides a single non-maskable interrupt 
(NMI) pin which has higher priority than the maskable 
interrupt request (INTR) pin. A typical llse would be to 
activate a power failure routine. The NMI is edge-triggered 
on a lOW to HIGH transition. The activation of this pin 
causes a type 2 interrupt. 

NMI is required to have a duration in the HIGH state of 
greater than two clock "cydes, but i$ not requireiflcr'be 
synchronized to the clock. Any higher going transition of 
NMI is latched on-chip and will be serviced at the end of 
the current instruction or between whole moves (2 bytes in 
the case of word moves) of a block type instruction. Worst 
case response to NMI would be for multiply, divide, and 
variable shift instrucHions. There is no specification on 
the occurrence of the low-going edge; it may occur 

3-116 



iAPX 88/10 

before, during, or after the servIcing of NMI. 
Another high-going edge triggers another response if it 
occurs after the start of the NMI procedure. The signal 
must be free of logical spikes in general and be free of 
bounces on the low-going edge to avoid triggering ex­
traneous responses. 

Maskable Interrupt (INTR) 
The 8088 provides a single interrupt request input (lNTR) 
which can be masked internally by software with the 
resetting of the interrupt enable (IF) flag bit. The in­
terrupt request signal is level triggered. It is internally 
synchronized during each clock cycle on the high-going 
edge of CLK. To be responded to, INTR must be present 
(HIGH) during the clock period preceding the end of the 
current instruction or the en~ of a whole move for a 
block type instruction. During interrupt response se· 
quence, further interrupts are disabled. The enable bit is 
reset as part of the response to any interrupt (INTR, 
NMI, software interrupt, or single step), although the 
FLAGS register which is automatically pushed onto the 
slack reflects the state of the processor prior to the in· 
terrupt. Until the old FLAGS register is restored, the 
enable bit will be zero unless specifically set by an in-
struction. . 

During the response sequence (See Figure 9), the proc­
essor executes two successive (back to back) interrupt 
acknowledge cycles. The 8088 emits the LOCK signal 
(maximum mode only) fiOm T2 of the first bus cycle until 
T2 of the second. A local bus "hold" request will not be 
honored until the end of the second bus cycle. In the 
second bus cycle, a byte is fetched from the external in­
terrupt system (e.g., 8259A PIC) which identifies the 
source (type) of the interrupt. This byte is multiplied by 
four and used as a pOinter into the interrupt vector 
lookup table. An INTR signal left HIGH will be continual· 
Iy responded to within the limitations of the enable bit 

and sample period. The interrupt return instruction in· 
cludes a flags pop which returns the status of the 
original interrupt enable bit when it restores the flags. 

HALT 
When a software HALT instruction is executed, the 
processor indicates that it is entering the HALT state in 
one of two ways, depending upon which mode is 
strapped. In minimum mode, the processor issues ALE, 
delayed by one clock cycle, to allow the system to latch 
the halt status. Halt status is available on 101M, DTIR, 
and 550. In maximum mode, the processor issues ap· 
propriate HALT status on 52, 51, and SO, and the 8288 
bus controller issues one ALE. The 8088 will not leave 
the HALT state when a local bus hold is entered while in 
HALT. In this case, the processor reissues the HALT in· 
dicator at the end of the local bus hold. An interrupt reo 
quest or RESET will force the 8088 out of the HALT 
state. 

Read/Modify/Write (Semaphore) Operations 
via LOCK 

The LOCK status information is provided by the proc­
essor when consecutive bus cycles are required during 
the execution of an instruction. This allows the proc­
essor to perform reaO/modifyiwrite operaiiu,,>; 0" 

memory (via the "exchange register with memory" 
instruction), without another system bus master receiv­
ing intervening memory cycles. This is useful in multi­
processor system configurations to accomplish "test 
and set lock" operations. The TI5e"R signal is activated 
(LOW) in the clock cycle following decoding of the 
LOCK prefix instruction. It is deactivated at the end of 
the last bus ·cycle of the instruction following the LOCK 
prefix. While LOCK is active, a request on a RQ/C3T pin will 
be recorded, and then honored at the end of the LOCK. 

I T1 T2 T3 T4 T1 I T, 

ALEJ\'----__ n~ __ 

FLOAT 
ADo-AIlr 

\\....-___ 1 

Figure 9. Interrupt Acknowledge Sequence 

3-117 



iAPX88/10 

External Synchronization via TEST 

As an alternative to interrupts, the 8088 provides a 
single software-testable input pin (TESn- This Input is 
utilized by executing a WAIT instruction. The single 
WAIT instruction Is repeatedly executed until the ~ 
input goes active (LOW). The execution of WAIT does 
not consume bus cycles once the queue Is full. 

If a local bus request occurs during WAIT execution, the 
80883-states all output drivers. If Interrupts are enabled, 
the 8088 will rlilcognlze Interrupts and process them. 
The WAIT instruction is then refetched, and reexecuted. 

Basic System Timing 

In minimum mode, the MN/MX pin is strapped to Vee 
and the processor emits bus control signals compatible 
with the 8085 bus structure. In maximum mode, the 
MN/MX pin is strapped to GND and the processor emits 
coded status information which the 8288 bus controller 
uses to generate MULTIBUS compatible bus control 
signals. 

System Timing - Minimum System 
(See Figure 8,) 

The read cycle begins In T1 with the assertion of the ad­
dress latch enable (ALE) signal. The trailing (lOW gOing) 
edge of this signal is used to latch the address informa­
tion, which is valid on the address/data bus (ADO-AD7) 
at this time, into the 8282/8283 latch. Address lines A8 
through A15 do not need to be latched because they re­
main valid throughout the bus cycle. From T1 to T4 the 
101M signal indicates a memory or I/O operation. At T2 
the address is removed from the addressldata bus and 
the bus goes to a high impedance state. The read con­
trol signai is also asserted at T2. The read (RD) signal 
causes the addressed device to enable its data bus 
drivers to the local bus. Some time later, valid data will 
be available on 'the bus and the addressed device will 
drive the READY line HIGH. When the processor returns 
the read signal to a HIGH level, the addressed device 
will again 3-state its bus drivers. If a transceiver 
(8286/8287) 1s re~d to buffer the 8088 local bus, 
signals DT/R and DEN are provided by the 8088. 

A write cycle also begins with. the assertion of ALE and 
the emission of the address. The 101M signal is. again 
asserted to indicate a memory or I/O write operation. In 
T2, immediately following the address emission, the 
processor emits the data to be written into the ad­
dressed location. This data remains valid until at least 
the middle of T4. During T2, T3, and Tw, the processor 
asserts tile write control signal. The write (WR) signal 
becomes active at the, beginning of T2, as opposed to 
the read, which is delayed somewhat into T2 to provide 
time for the bus to float. 

The basic difference between the interrupt acknowl­
edge cycle and a read cycle is that the interrupt 
acknowledge (INTA) Signal is asserted in place of the 
read (RD) signal and the address bus is floated. (See 
Figure 9,):. In the second of two successive INTA cycles, 

a byte of information is read from the data bus, as sup­
plied by the interrupt system logic (i.e. 8259A priority in­
terrupt.controller). This byte identifies the source (type) 
of the interrupt. It is multiplied by four and used as a 
pointer into the interrupt vector lookup table, as de­
scribed earlier. 

Bus Timing - Medium Complexity Systems 

(See Figure 10,) 

For medium complexity systems, the MN/MX pin is con­
nected to GND and the 8288 bus controller is added to 
the system, as well as an 8282/8283 latch for latching 
the system address, and an 8286/8287 transceiver to 
allow for bus loading greater than the 8088 is capable of 
handling. Signals ALE, i5"EN, and DTiR are generated by 
the 8288 instead of the processor in this configuration, 
although their timing remains relatively the same. The 
8088 status outputs (52, S1, and SO) provide type of 
cycle information and become 8288 inputs. This bus 
cycle information specifies read (code, data, or I/O), 
write (data or I/O), interrupt acknowledge, or software 
halt. The 8288 thus issues control signals speCifying 
memory read' or write, I/O read or write, or interrupt 
acknowledge. The 8288 provides two types of write 
strobes, normal and advanced, to be applied as required. 
The normal write strobes have data valid at the leading 
edge of write. The advanced write strobes have the 
same timing as read strobes, and hence, data is not 
valid at the leading edge of write. The 8286/8287 trans­
ceiver receives the usual T and OE inputs from the 
8288's DT/R and DEN outputs. 

The .pointer into the interrupt vector table, which is 
passed during the second INTA cycle, can derive from 
an 8259A located on either the local bus or the system 
bus. If the master 8289A priority interrupt controller is 
positioned on the local bus, a TTL gate is required to 
disable the 8286/8287 transceiver when reading from the 
master 8259A during the interrupt acknowledge se­
quence and software "poll" 

The 8088 Compared to the 8086 

The 8088 CPU is an 8-bit processor designed around the 
8086 Internal structure. Most internal functions of the 
8088 are identical to the equivalent 8086 functions. The 
8088 handles the external bus the same way the 8086 
does with the distinction of handling only 8 bits at a 
time. Sixteen-bit operands are fetched or written in two 
consecutive bus cycles. Both processors will appear 
identical to the software engineer, with the exception of 
execution time. The internal register structure is iden­
tical and all instructions have the same end result The 
differences between the 8088 and 8086 are outlined 
below. The engineer who is unfamiliar with the 8086 is 
referred to the iAPX 86, 88 User's Manual, Chapters 2 and 
4, for function description and instruction set information. 
Internally, there are three differences between the 8088 
and the 8086. All changes are related to the 8-bit bus in­
terface. 

3-118 



iAPX 88/10 

o The queue length is 4 bytes in the 8088, whereas the 
8086 queue contains 6 bytes, or three words. The 
queue was shortened to prevent overuse of the bus by 
the BIU when prefetching instructions. This was re­
quired because of the additional time necessary to 
fetch instructions 8 bits at a time. 

o To further optimize the queue, the prefetching algo­
rithm was changed. The 8088 BIU will fetch a new in­
struction to load into the queue each time there is a 1 
byte hole (space available) in the queue. The 808'3 
waits until a 2-byte space is available. 

o The internal execution time of the instruction set is 
affected by the 8·bit interface. All 16-bit fetches and 
writes fromllo memory take an additional four clock 
cycles. The CPU is also limited by the speed of in­
struction fetches. This latter problem only occurs 
when a series of simple operations occur. When the 
more sophisticated instructions of the 8088 are being 
used, the queue has time to fill and the execution pro­
ceeds as fast as the execution unit will allow. 

The 8088 and 8086 are completely software compatible 
by virture of their identical execution units. Software 
that is system dependent may not be completely trans­
ferable, but sof.tware that is not system dependent will 
operate equally as well on an 8088 or an 8086. 

3-119 

The hardware interface of the 8088 contains the major 
differences between the two CPUs. The pin assign­
ments are nearly identical, however, with the following 
functional changes: 

o A8-A 15 - These pins are only address outputs on the 
8088. These address lines are latched internally and 
remain valid throughout a bus cycle in a manner 
similar to the 8085 upper address lines. 

o BHE has no meaning on the 8088 and has been elimi­
nated. 

o SSO provides the SO status information in the mini­
mum mode. This output occurs on pin 34 in minimum 
mode only. DT/R, 101M, and SSO provide the complete 
bus status in minimum mode. 

o 101M has been inverted to be compatible with the 
MCS-85 bus structure. 

• ALE is delayed by one clock cycle in the minimum 
mode when entering HALT, to allow the status to be 
latched with ALE. 



iAPX 88/10 

T, T, T, T, 

ClK --.r- r I H-, 

Q51,a50 Y V-
8088 

52,51, SO I I I I I ,- - ----
\,..,-----

A19/S6- A161S3 A19-A16 56-53 

I 
I 

ALE '\ 
,-
--

B2BB ROY 8284 
! 

READY B088 I 
I 

A07-ADO A7-AO DATA IN 

80BB A15-AS A15 - A8 

, 
I 

RD 
I 
I 

DT/R 

B28B MRDC \. 

DEN / 

Figure 10. Medium Complexity System Timing 

3-120 



inter iAPX 88/10 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ......... O·C to 70'C 
Storage Temperature ............. - 65·C to + 150·C 
Voltage on Any Pin with 

Respect to Ground .................. - 1.0 to + 7V 
Power Dissipation ........................ 2.5 Watt 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (8088: TA = O'C to 70·C, Vee = 5V ±10%)' 
(8088-2: TA = O'C to 70'C, Vee = 5V ±5%) 

Symbol Parameter Min. 

Vil Input Low Voltage -0.5 

VIH Input High Voltage 2.0 

VOL Output LowVoltage 

VOH Output High Voltage 2.4 

8088 
Icc Power Supply Current: 8088-2 

PSOSS 

III Input Leakage Current 

ILO Output Leakage Current 

v~~ Clock Input Low Voltage -0.5 

VCH Clock Input High Voltage 3.9 

Capacitance if Input Buffer 
CIN (All input except 

ADo-AD7' RQ/GT 

CIO 
Capacitance of 1/0 Buffer 
(ADo-AD7' RQ/GT 

• Note: For Extended Temperature EXPRESS Vee = 5V ± 5% 

Note 1: VIL tested with MN/MX Pin = OV 
VIH tested with MN/MX Pin = 5V 
MN/MX Pin is a strap Pin 

Max. 

+0.8 

VCC+ 0.5 

0.45 

340 
350 
250 

±10 

±10 

+0.6 

Vcc+1.0 

15 

15 

Note 2: Not applicable to RQ/GTO and RQ/GT1 Pins (Pin 30 and 31) 

3-121 

Units Test Conditions 

V (See note 1) 

V (See note 1,2) 

V IOl = 2.0 mA 

V IOH = -400/.LA 

mA TA = 25'C 

/.LA OV,,;;VIN";;VCC 

/.LA 
0.45V ,,;; Your "" 
Vec 

V 

V 

pF fc = 1 MHz 

pF fc = 1 MHz 



iAPX 88/10 

A.C. CHARACTERISTICS (8088: TA = O°C to 70°C. Vee = 5V ±10%)' 
(8088-2: TA = O°C to 70°C. Vee = 5V ±5%) 

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS 

8088 8088·2 

Symbol Parameter Min. Max. Min. 

TClCl: ClK Cycle Period 200 500 125 

TClCH ClK low Time 118 68 

TCHCl ClK High Time 69 44 

TCH1CH2 ClK Rise Time 10 

TCl2Cl1 ClK Fall Time 10 

TDVCl Data in Setup Time 30 20 

TCLDX Data in Hold Time 10 10 

RDY Setup Time 
TR1VCl into 82B4 (See 35 35 

Notes 1. 2) 

RDY Hold Time 
TClR1X into B284 (See 0 0 

Notes 1. 2) 

TRYHCH 
READY Setup 118 68 
Time into 
BOB8 

TCHRYX 
READY Hold Time 

30 20 into BOB8 

TRYlCl 
READY Inactive to 

-B -8 
ClK (See Note 3) 

THVCH HOLD Setup Time 35 20 

INTR. NMI. TEST 
TINVCH Setup Time (See 30 15 

Note 2) 

TILIH 
Input Rise Time 20 
(Except ClK) 

TIHll 
Input Fall Time 

12 (Except ClK) 

• Note: For Extended Temperature EXPRESS Vee = 5V ± 5% 

3-122 

Max. Units 
Test 

Conditions 

500 ns 

ns 

ns 

From 1.0V 
10 ns to 3.5V 

10 
From 3.5V 

ns to 1.0V 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

20 
From O.BV 

ns 
to 2.0V 

12 
From 2.0V 

ns to O.BV 



inter iAPX 88/10 

A.C. CHARACTERISTICS (Continued) 
TIMING RESPONSES 

8088 

Symbol Parameter Min. 

TCLAV Address Valid Delay 10 

TCLAX Address Hold Time 10 

TCLAZ Address Float Delay TCLAX 

TLHLL ALE Width TCLCH-20 

TCLLH ALE Active Delay 

TCHLL ALE Inactive Delay 

TLLAX 
Address Hold Time to 

TCHCL-10 ALE Inactive 

TCLDV Data Valid Delay 10 

TCHDX Data Hold Time 10 

TWHDX .Data Hold Time AfterWR TCLCH-30 

TCVCTV Control Active Delay 1 10 

TCHCTV Control Active Delay 2 10 

TCVCTX Control Inactive Delay 10 

TAZRL 
Address Float to READ 

0 Active 

TCLRL RD Active Delay 10 

TCLRH RD Inactive Delay 10 

TRHAV 
RD Inactive to Next 

TCLCL-45 
Address Active 

TCLHAV HLDAValid Delay 10 

TRLRH RDWidth 2TCLCL-75 

TWLWH WRWidth 2TCLCL-60 

TAVAL AddressValid to ALE Low TCLCH-60 

TOLOH Output Rise Time 

TOHOL Output Fall Time 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

2.4 JS ___ TEST POINTS -'x== 
0.45 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND 0 45V FOR 
A LOGIC 0 THE CLOCK IS DRIVEN AT 4 3V ANO 025V TIMING MEASURE" 
MENTS ARE MADE AT 1 5V FOR BOTH A LOGIC 1 AND 0 

8088-2 

Max. Min. Max. Units Test Conditions 

110 10 60 ns 

10 ns 

80 TCLAX 50 ns 

TCLCH-10 ns 

80 50 ns 

85 55 ns 

TCHCL-10 ns 

110 10 60 ns CL = 20-100 pF for 

10 ns all SOSS Outputs 
in addition to 

TCLCH-30 ns internal loads 

110 10 70 ns 

110 10 60 ns 

110 10 70 ns 

0 ns 

165 10 100 ns 

150 10 SO ns 

TCLCL-40 ns 

160 10 100 ns 

2TCLCL-50 ns 

2TCLCL-40 ns 

TCLCH-40 ns 

20 20 ns From O.SV to 2.0V 

12 12 ns From 2.0V to O.BV 

A.C. TESTING LOAD CIRCUIT 

DEVICE 'Icc UNDER 
TEST 

100 pF 

"::" 

CL INCLUDES JIG CAPACITANCE 

3-123 



iAPX 88/10 

WAVEFORMS 

BUS TIMING-MINIMUM MODE SYSTEM 

elK (8284 Output) 

IO/M,SSo 

ALE 

ROY (8284 Input) 
SEE NOTES 

READY (8088 Input) 

READ CYCLE 

(NOTE 1) 

(\YR, INl'A=VOH) 
DT/A 

T, T2 T3 TW T4 

VCH r--\'r---TCLCL~TCH1CH2-1 HCrl~ r\-
.t. ~i'--J. ~ 
- TCHCTV TCHCL I-TCLCH ~ 

I 
A1S - As (Float during INTA) 

TCLAV- - -TCLAX- ~TDV TCHDX- -
A19~A16 Ss-S;, 

TCLLH- f TLHLL-:::::: !-T~LAX r--

TCHLL-I 

,~---
I-

:r~~l-i~~t~ +.TAVAL-
~ r - !-TCLR1X 

.:::'')-
I - -TCHRYX 

TRYHCH 1 -I - r-TCLAZ TDVCL_ -TCLDX-

"D7-AOo DATA IN 

H FLOA:J-
TAZRL- TClRH- r--' !--TRHAV 

~ 

-=Y-TCHCTV TCLRL TRLRH TCHCTV 

I I 
TCVCTV- f TCVCTX- 1:./ 

}J 

3-124 



intJ iAPX 88/10 

WAVEFORMS (Continued) 

BUS TIMING-MINIMUM MODE SYSTEM (Continued) 

eLK (8284 Output) 

WRITE CYCLE 
NOTE 1 

INTA CYCLE 
NOH:::' 1,;' 

{RD, "WR=VOH) 

SOFTWARE HALT -

DEN,RD,WR,INTA =- VOH 

DT/R INDETERMINATE 

AD7-ADO 

DEN 

DT/R 

-TeLAZ 

TCHCTV 

INVALID ADDRESS SOFTWARE HALT 

relAY 

NOTES: 1. ALL SIGNALS SWITCH BETweEN YOH AND VOL UNLESS OTHERWISE 
SPECIFIED. 

2. RDY IS SAMPLED NEAR THE END OF 12, T3, Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

3. TWO INTA CYCLES RUN BACK·TO·BACK. THE 8088 LOCAL ADORIDATA 
BUS IS FLOATING DURING BOTH INTA CYCLES. CONTROL SIGNALS 
ARE SHOWN FOR THE SECOND INTA CYCLE 

4. SIGNALS AT 8284 ARE SHOWN FOR REFERENCE ONLY. 
5. ALL TIMING MEASUREMENTS ARE MADE AT 1.SV UNLESS OTHERWISE 

NOTED. 

3-125 



iAPX 88/10 

A.C. CHARACTERISTICS 

MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) 

TIMING REQUIREMENTS 

8088 

Symbol Parameter Min. 

TCLCl ClK Cycle Period 200 

TClCH ClK low Time 118 

TCHCl ClK High Time 69 

TCH1CH2 ClK Rise Time 

TCl2Cl1 ClK Fall Time 

TDVCl Data In Setup Time 30 

TClDX Data In Hold Time 10 

TR1VCl 
ROY Setup Time into 8284 

35 (See Notes 1, 2) 

TClR1X 
ROY Hold Time into 8284 

0 (See Notes 1, 2) 

TRYHCH 
READY Setup Time into 

118 8088 

TCHRYX READY Hold Time into 8088 30 

TRYlCl 
READY Inactive to ClK (See 

-8 Note 4) 

Setup Time for Recognition 
TINVCH (INTR, NMI, TEST) 30 

(See Note 2) 

TGVCH RQ/GT Setup Time 30 

TCHGX RQ Hold Time into 8086 40 

~'LlH 
Input Rise Time 
(Except ClK) 

TIHll Input Fall Time (Except ClK) 

NOTES: 
1. Signal at 8284 or 8288 shown for reference only. 

Max. 

500 

10 

10 

20 

12 

8088·2 

Min. 

125 

68 

44 

20 

10 

35 

0 

68 

20 

-8 

15 

15 

30 

2. Setup requirement for asynchronous signal only to guarantee recognition at next elK. 
3. Applies only to T2 state (8 ns into T3 state). 
4. Applies only 10 T2 state (8 ns into T3 state). 

3-126 

._-

Max. Units Test Conditions 

500 ns 

ns 

ns 

10 ns From 1.0V to 3.5V 

10 ns From 3.5V to 1.0V 

ns 

ns 

ns 

ns 

ns 

ns 
--
ns 

ns 

ns 

ns 

I 
20 ns From 0.8V tei 2.0\'1 

12 ns From 2,OV to 0.8V 



A.C. CHARACTERISTICS 
TIMING RESPONSES 

Symbol Parameter 

TClMl 
Command Active Deiay (See 

f-~ 
Note 1) 

TClMH 
Command Inactive Delay (See 
Note 1) 

READY Active to Status Passive 
TRYHSH (See Note 3) 

TCHSV Status Active Delay 

TClSH Status Inactive Delay 

TClAV Address Valid Delay 

TClAX Address Hold Time 

TClAZ Address Float Delay 

TSVlH 
Status Valid to ALE High (See 
Note 1) 

TSVMCH 
Status Valid to MCE High (See 
Note 1) 

I TCllH 
ClK low to ALE Valid (See 
Note 1\ 

TClMCH 
ClK low to MCE High (See 
Note 1) 

TCHll ALE Inactive Delay (See Note 1) 
f-----
TClMCl MCE Inactive Delay (See Note 1) 

TClDV Data Valid Delay 

TCHDX Data Hold Time 

I Control Active Delay (See 
TCVNV Note 1) 

f-----

TCVNX 
Control Inactive Delay (See 
Note 1) 

c---

TAZRl Address Float to Read Active 
-------~.-,--.-- -

TClRl RD Active Delay 

TClRH RD Inactive Delay 

TRHAV 
RD Inactive to Next Address 
Active 

TCHDTL 
Direction Control Active Delay 
(See Note 1) 

TCHDTH 
Direction Control Inactive Delay 
(See Note 1) 

c-------,---------~-
TCLGL GT Active Delay 

TCLGH GT Inactive Delay 

TRLRH RDWidth 

TOLOH Output Rise Time 
.--

TOHOL Output Fall Time 
L--

iAPX 88/10 

8088 

Min. Max. 

10 35 

10 35 

110 

10 110 

10 130 

10 110 

10 

TClAX 80 

15 

15 

15 
-~-

15 

15 

15 

10 110 

10 

5 45 

10 45 

0 

10 165 

10 150 

TClCl-45 

50 

30 

85 
--
85 

2TClCL-75 

20 

12 

3-127 

8088-2 

Min. Max. Units Test Conditions 

1 
10 35 ns 

-

10 35 ns 
I 

I 
65 ns I 

10 60 ns 

I 10 70 ns 

10 60 ns I 10 ns 

TClAX 50 ns 

15 ns 

15 n~ 
I 

I 
15 ns I I I 

15 i1 15 ns 

15 ns CL = 20-100 pF for 

10 60 -----, all 8088 0 utputs ns 
in addition to 

10 ., ns internal loads 

5 45 ns 

10 45 ns 
--r-~ 

0 ns 

10 I 100 ns 

10 80 ns 

TClCL-40 ns 

50 ns 

30 ns 

50 ns 1----0'[ -~-!'n ns 

2TCLCL -50 ~ '. ns 

20 
From 0.8V to 

ns 2.0V 

I ~2-
-- I-----~---~-

From -.t..OV to 
ns O.BV I 



inter 

WAVEFORMS 

BUS TIMING-MAXIMUM MODE 

CLK 

s"s"SQ (EXCEPT HALT) 

jALE (8288 OUTPUn 

SEE NOTE 5 

ROY (8284 INPUT) 

VCH" 

. .J VCL 

TCLAV-

:...--:-. 

-
TSVlH 
TCLLH+ 

IAPX 88/10 

T, T, T, 

-TCLCL-TCH1CH2-\ t----! t-- TCL2CL1 Tw 

r-\ ~ r~ i'----I~ ,~ '----J '-----' 

£- - TCHCL r-TCLCH-

TCHSV - • TCLSH 
------

WI/;; W(SEE NOTE 8) \ \.._----
Au- A8 

""-T(f~nx_ =fCLOV 

TCHOX- -
A19'A16 1Is-S;, 

- ( TCHLL 
I 

I r--
I 
----

M: 
-TR1VCL 

~ .;\\ \\\~~~ 
TRYlCl_ -

- -TCHRYX 

TYHSH-f -
-. TeLAX .... TRYHCH .1 -READ CYCLE TCLAV-i 

£ -TCLAZ c... I ~OVCL--I-TCLOX-

AD 

oTlii 

8288 OUTPUTS 1 Milli1: OR RlJIC 
SEE NOTES 5,8 

DEN 

TCHOTL-I 

- {" TAZRL- t--

V 
r- I---- TCLRl 

TCLML- .-

TCVNV- ir-
f{ 

3-128 

~ 
DATA IN 

FL~~' 
TCLRH TRHAV 

\1 TCHOTH 
TRLRH 

TCLMH-

--1 

TCVNX- -



intJ 
WAVEFORMS (Continued) 

BUS TIMING-MAXIMUM 
MODE SYSTEM 
(USING 8288) 

elK 

82.8"1. so (EXCEPT HALT) 

WRITE CYCLE 

AD7 -ADo 

DEN 

8288 0lJYlIUTS 
seE NOTES 5,6 AMWC OR AIOWC 

SOFTWARE 

INTA CYCLE 

A15- A8 
(SEE NOTES 3,4) 

8288 0U'TPtJTS 
SEE NOTES 5,6 

MeE! 
I'l5EN 

OTIA 

INTA 

DEN 

vel 

FLOAT 

TSVMCH 

I 

[I 

iAPX 88/10 

TCYNX--

TClMH 

_TCLMH 

HALT - (DEN"" vOL;i!m,fllIDC,RmC,MWTC,AMWC,TOWC,AiOWC.lNfA.DT/Ji = YOH. 

J r ,NVALID ADDRESS 

TelAV==! ~!.'::--
~ /r------..\-------

\'-. __ ---..J \. _____ _ 

NOTES: 1. ALL SIGNALS SWITCH BETWEEN YOH AND VOL UNLESS OTHERWISE 
SPECIFIED. 

2. ROY IS SAMPLED NEAR THE END OF T2, T3, Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

3. CASCADE ADDRESS IS VALID BETWEEN FIRST AND SECOND INTA 
CYCLES. 

4. TWO INTA CYCLES RUN BACK·TO·BACK. THE B088 LOCAL ADDRIDATA 
BUS IS FLOATING DURING BOTH INTA CYCLES. CONTROL FOR 
POINTER ADDRESS IS SHOWN FOR SECOND INTA CYCLE. 

5. SIGNALS AT 8284 OR 8288 ARE SHOWN FOR REFERENCE ONLY. 
6. THE ISSUANCE OF THE 8288 COMMAND AND CONTROL SIGNALS 

(1lAl!e, MWTC, JJKWe, =, RlWC, lmlWC, INTl\ AND DEN) lAaS THE 
ACTIVE HIGH 8288 CEN. 

7. All TIMING MEASUREMENTS ARE MADE AT 1.SV UNLESS OTHERWISE 
NOTED. 

8. STATUS INACTIVE IN STATE JUST PRIOR TO T4• 

3-129 

I-­
I 



intJ 

WAVEFORMS (Continued) 

ASYNCHRONOUS 
SIGNAL RECOGNITION 

NOTe: 1. SETUP REQUIREMENTS FOR ASYNCHRONOUS 
SIGNALS ONLY TO GUARANTEE RECOGNITION AT NEXT elK 

iAPX 88/10 

BUS LOCK SIGNAL TIMING 
(MAXIMUM MODE ONLy) 

~rA"YCLKCY'~--.!.. __ 
elK ~ 

--JTCLAV.-

REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLY) 

Previous granl 
A1IISeA:1~!: 1-' _______________ ..; 

Ao,-AOo .... 
:,j:~ 1-1---------------..; 

NOTE: 1. THE COPROCESSOR MAY NOT DRIVE THE BUSSES OUTSIDE THE REGION 
SHOWN WITHOUT RISKING CONTENTION. 

COPROCESSOR 

(SEE NOTE 1) 

HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLY) 

Cl> \ ~' 'CLK CYCLE_ 

~I_THVC~ ,see NOre" 
HOlO~ . 

.ri-'ORZCYCLES 

,~-'-~ 
i·r-TC\\-lH_AV __ ....,\~CT 

:~~~~~~~~~~~~8-osa_-_-_-:_-\-I,\-:_-_-_-_-_-_-I:-JI .. _r'T.;:;Cl:::A=-Z----CO-P-Ro~;:I-'S-S-OR-----~J-f--€---80-.. ~1 

3-130 



inter iAPX 88/10 

iAPX 86/10, 88/10 
INSTRUCTION SET SUMMARY 

DATA TRANSFER 
MOV .'VI 765(3210 16543210 16HJ110 16543210 

Reg'ste"memo(~ toilrorn regrsler §Ii-'IO d 'II I mod reg ~ 

ImmedIate 10 'eqlslelimemo,V 1110001 I'll I mod 0 0 0 ,'m I 
ImmedIate II) 'eg'~le' 11 0 t I 'II rt9 I I 
Memory to accumulalor I , 0 I 0 0 0 0 'II , addr·low I 
Accumuialor 10 memorv II 0 , 000 I w I ~ddr low f 

RegISter ,'memG"/ 10 legmenl reQ.Sler ~_o 1 ___ 1 1 ~ I mod 0 reg rim I 
SeQm""1 reg,sler IV re9'51~r ,memo'Y [T 0 0 0 ,-- ,. 0 0 I mo(j 0 ~ 

PUSH PUI" 

Reglster/memar, 

Rf9'Sler 

Segment register 

POP Pop 

Regls1er 

Seqment regrsfer 

XCN' helllngi 

AegtSlerlmemOf~ .... ,\h register 

Aeglsle' wtlhaccum"laIO' 

IN-Input from 

frxedporl 

Va"ablepor! 

OUT -, OulP~! 10 

f"eopor! 

Vanableport 

UAT-Translale ~v!e to AL 

lfA-LoadEAtoreglsler 

lOS-Load pOlnlerW OS 

LES-loadp(IInterloES 

I.ANF~Load AH wllh flaqs 

UNF-Slore AH ,"'0 flags 

'UlNF"Push!laQs 

'O'F-P!:lpUaqs 

ARITHMETIC 

,1,011 Add 

1 0 0 0 1\'-l~I;;;-~d 0 0 o;-~_] 

01011 reg 

~ 

11000011wlm~ 

~~ 

i'l 0 00 11 0 1 Imo~ rpg n~ 

),1000101]moo re9~J 
II-l-00010olmM~ 

~ 
~ 
~ 
~ 

~;~~:::o:: r:~t':I~~~::e~~~'lelther F'~~.~E~~~j 
ImmedIate 10 accumulator 

ADC Add wllhcltry 

~;:~;o::O:: r:~t':I~:~,;~e~~~"elther F'~*~E~~'0-.i 
Immedoaleto accumulalur 

IIiC IlItrlm.nl 

Ae~'Sle"memor~ 

Reg,sler 

W-ASCII~dwsttoradd 

OA_"Decomal adlUSI !or add 

lua IulllrlCl 

Reg Imemory andreglsler!o e,!ner 

Immed,ate Irom regrs!erimemorv 

Immediate trom accumulator 

III - IubirlCl with bllnw 

000 I 10 d .. I mOd reg rim I 

'Ia!~ I' , ~' 01 i 

~glmemoryandregls1erloe.lntr 

Immed,ale trom r~oslerlmemory 

Immedrale!romaccumulal0r 

IOOOOOs .. mOdOl1 r~~~-~~~...'~ 
LDi 1 1 lOw I dal, __ l,. '!..~~_~ __ ~~J 

MnemOniCS ©lnt€l, 1978 

ofC lIter.mlnl 

Regrsterlmemory 

IUB Chaogesrgn 

CMP Cornp.re 

AeglSIPr 'memor y anll 'eg'~ter 

ImmfOIJte '111m 'eql~le' memory 

us IlSCliadjustlor,unt,aCl 

DAS DeCImal aO,us! 10' sunlraCI 

MUl MultlplV lunSlgnedl 

IMUl Inleger mulhOlv Is'gnedl 

UM ASClla~luST lor muillpiv 

DIYO",delun5Iqnedo 

IOIVlnlegprdlv,dei"gnedl 

UOASCllaa,USI!ord'Oide 

caw Cnnvfrl byle 10 word 

CWO Conve<l ,"ord 10 douole,"ord 

lOGIC 

16&43210 7H0210 76543210 7650210 

11111111 .. lmOd_~Ot ','~J 

~ 
ITll1011w:moaOI~ 

lOOT 1 10 d" 'II I mod ,eg .im 

1I0Tlnve'l 

SMliSAl S~'I! 10gicoi ~"'hmeiIC leI! p:~~~re~I:~ 
SNRShrtlioqlt.al"qnt 

SAIl S~,1t ~"Inm~llr "g~I 

ADlAotaltlefi 

ftORAotJTerrqnl 

RClRotatelnrougM(arryllagle1t 

RCRAolalelhrQugncarrvtiglli 

AND Ami 

Reg .-memQ'y and reglsler 10 e,Ihe' 

.mmeI1,ate 10 legl\ter'memor~ 

Immedl.Jle 10 accun1LJlato< 

Oft Dr 

Aegimemolyand'eg.stertoelther ~~';o-----;;Y"-~ 
Immedla!e In leg,sle,.-memory U~ 000 0 ~.?dO 0 I ~ dala data LI '" 1 I 
Immed,aTeIQa(CLJmulaTor ~oo~" r" d~ 

STRING MAlIPUlAnON 
REI"=R~j)n! 

MO\lS=Move b~I~lword 

CMPS·Comparebvl~lworri 

SCAS~S<;an b~I~lword 

lOOS=Load bVleiwd to ALiAX 

STOS=~!Or bvleiwd hom ALIA 

3-131 



inter iAPX 88/10 

INSTRUCTION SET SUMMARY (Continued) 

CONTROL TRANSFER 
CAU ~CIII, 1155.3210 185 .. 3 2 I 0 

Oire<:twllhlnsegmenl 11101000 !lIsp-low 

IndIrect wllhms8gment 11111111 modO 1 0 "m 
D,rectmtersegment 10011010 offsel-Iow 

seq-low 

Indlrectlnlersegment 11111111 mod 0 11 ,1m 

JM'~, Uncondlllllftli Jump: 

O.recl wlthm Sfgmenl 11 1 0 1 001 dlsp-Iow 

Dlrectwtthln segment-shOrl 11101011 .;liSp 

Indlreclwllllmsegmenl 11111111 mod 1 00 ,1m 

Dlrec'm'ersegmenl 11101010 onsel-Iow 

I seg-Iow 
InOlrec'mtersegmenl I' "11111 !mOd 1 0 1 rim 

RET ~ IIIhIm I,.. CAll, 
Wlthmsegment 

W.thm seo addmg Immed to SP 

Intersegment 

Intersegment adding Immediate to SP 

JE/JI~Jump on eQual/lero 
JL/J.8E~Jump on less/not greater 

or equal 
JLE/JII~Jump on less orequallnol 

greater 
JIIJIIAE~Jump on below/not above 

or equal 
J.E/JU;~~~Co~~ below or equal/ 

JP/JH:~Jump on paflty/panly even 

JO:Jumpon overflow 

J'~Jump on Sign 

JH/JIZ'Jump on not equal/nOllero 
JIL/J8E<Jumpon not less/grealer 

or equal 
JIU/JII~Jump on nolless or equal! 

greater 

At '" 8-bit accumulator 
AX '" l~bit accumulator 
ex '" Count register 
OS ~ Data segment 
ES '" Extra segment 

11000011 

11000010 

111001011l 

11 001010 

01110100 

01111100 

01 1 1 1 11 0 

\01110010\ 

01110110 

01111010 

~ool 
1011110001 

01110101 

01111101 

101 11 111\1 

Above/below refers to unsigned value_ 
Greater :0 more positive; 
Less'" less positive (more negative) Signed values 
if d '" 1 then "to" reg; If d '" 0 then "from" reg 
if w '" 1 then word instruction; if w '" 0 then byte Instruction 

i1 mod'" 11 then rim is treated as a REG field 

data-low 

dala-Iow 

d,s~ 

dlsp 

d!sp 

dlsp 

d!sp 

diSP 

dlsp 

dlsp 

dlsp 

dlsp 

dlsp 

If mod ~ 00 then DISP ~ 0·, dlsp-/ow and dlSp-hlgh are absent 

71543210 
dlsp·hlgh 

oUset-tllgfl 

seq-high 

dlsp-hlgh 

offset·hlgh 

~!g-hlgh J 

data high 

data-h'9 h 

if mod = Ot th,n O/SP ~ dlsp-/ow Sign-extended to 16-bits, dlsp-high IS absenl 
if mod = 10 th,n O/SP = disp-high: disp-Iow 

if rim = 000 then EA = (BX) • (51) • OISP 
if r 1m ~ 001 th,n EA ~ (BX) • (01) • DISP 
If r 1m ~ 010 th,n EA = (BP) • (51) • O/SP 
if rim ~ 011 th,n EA ~ (BP) • (0/) • OISP 
If rim ~ 100 then EA ~ (5/) • O/SP 
il rim = 101 then EA ~ (01) • O/SP 
if rim ~ 110 then EA = (BP) • O/SP· 
If rim = 111 th,n EA ~ (BX) • O/SP 
O/SP follows 2nd byte 01 instruction (belore data if required) 

• .. cept if mod ~ 00 and rim ~ 110 th,n EA ~ disp-high: dlsp-/ow. 

Mnemonlcs©lnte/,1978 

765.321 0 765.3210 
JIII/JAE Jump on not below/above 

or-equal 
JIIIE/JA Jump on not below or 

equal/above 
JIP/JPO Jump on not par/par odd 

.Ilia-Jump Ofl not overflow 

.IllS Jump on not sign 

LOOP LoopCX times 

LOOPZllOOPE Loop while lero/eQual 
LOOPlZlLDOPIE Loop ""hlle not 

zero/equit' 
Jtxz Jump on CX lero 

tNT InllrruPI 

Typespecillea 

TypeJ 

11110 Interrupt Of! o~erllow 

IRETfTlterruplrelurn 

PROCESSOR CONTROL 
CLCClearcarry 

CMt Complemef!t carry 

S1CSetcarry 

elDCleardlfeC!lon 

STDSeldlfecllon 

eLi Clear Interrupt 

sri Set Intenupt 

MLT Hal! 

01110011 

01 11 0 1 1 1 

01111001 

11100010 

1 11 0 0001 

11100000 

1tl00Dl1 

11001101 

11001100 

11001110 

1"00 1'111 I' 

11111000 

1 11 10101 

11111001 

1 1 11 1 100 

1 1 1 11 101 

1 111 11010 i 
liiiiiliiJ 
111110100 I 

dlsp 

dlSp 

dlsp 

dlsp 

dlsp 

d!sp 

lype 

WAlT Walt 

Ese Escape Ito external dev'cel 

LOCK Bus lock prefl~ 

110011 0 11 ! 
111011KK¥o~lffi] 

~oYJ 

Ii s:w = 01 then 16 bits of Immediate data form the operand 
Ii s. w = 11 then an immediate data byte IS sign extended to 

form the 16·bit operand 
if v = 0 then "count" = 1: if v = 1 then "count" in (Cl) 
x = don't care 
Z IS used lor stnng primitives for comparison with IJ FLAG 

SEGMENT OVERRIDE PREFIX 

10 0 1 reg 1 1 01 

REG IS assigned according to the following table 

16-81t (w ~ 11 
000 AX 
001 CX 
010 OX 
011 BX 
100 SP 
101 BP 
110 5/ 
111 01 

6-811 (w ~ 01 
000 AL 
001 CL 
010 OL 
011 BL 
100 AH 
101 CH 
110 OH 
ltl BH 

Seament 
00 ES 
01 CS 
10 55 
11 OS 

Instructions which reference the flag register file as a 16--bit object use the symbol FlAGS to 
represent the file-

FLAGS ~ X:X:X:X:IOF):(DF) :(IF): ITF) :(SF) :IZF):X:IAF) XjPF): X:ICF) 

3-132 



intJ 
80C88/80C88-2 

8-BIT CHMOS MICROPROCESSOR 

• Pln-for-Pln and Functionally Compatible • Direct Addressing Capability of 1 
to Industry Standard HMOS 8088 MByte of Memory 

• Direct Software Compatibility with • Architecture Designed for Powerful 
80C86, 8086, 8088 Assembly Language and Efficient High 

• Fully Static Design with Frequency Level Languages 

Range from D.C. to: • 24 Operand Addressing Modes 
- 5 MHz for 80C88 • Byte, Word and Block Operations 
- 8 MHz for 80C88-2 

Low Power Operation • 8 and 16-Bit Signed and Unsigned • Arithmetic 
- Operating Icc = 10 mA/MHz - Binary or Decimal 
- Standby IcCs = 500 J.LA max - Multiply and Divide 

• Bus-Hold Circuitry Eliminates Pull-Up • Will be Available in 40-Lead Plastic DIP 
Resistors and 44-Lead PLCC Packages 

(See Packaging Spec., Order #231369) 

The Intel 80C88 is a high performance, CHMOS version of the industry standard HMOS 8088 8-bit CPU. The 
processor has attributes of both 8 and 16-bit microprocessors. It is available in 5 MHz clock rate and will be 
available in 8 MHz clock rate in 1 st half of 1986. The 80C88 offers two modes of operation: MINimum for small 
systems and MAXimum for larger applications such as multi-processing. It is available in 40·pin DIP and will be 
CtVC1iiCtui~ in 44-,..,in tJIClsti0 if:Cided C,lliJ earlie. (PLCC, pac~ag~ in i st \:juait6i of 1 ses. 

231197-1 

Figure 1. iAPX 80C88 CPU 
Functional Block Diagram 

ONO 

AIO 

A9 

AD' 
ADS 

AD' 
A03 

ONO '-__ .....r 

.'N 
MODE 

V" 

AIS 

A16153 

.,8/55 

A191S& 

ill 
MNliiX 

Ill> 
HOLD 

HLOA 

"" 101M 

DTiJi 

l5fN 
ALE ...,. 
fro 
READY 

RESET 

[ MAX I 
MODE 

(HIGH) 

(~I~rfth 

I~m) 

(~) 

(52] 

(sit 
,so, 
(OSO) 

(OS1) 

231197-2 

Figure 2a. 80C88 
40-Lead 

DIP Configuration 

65432144434241.40 

o 

socas 
CPU 

1819202122232425262728 

NC 

A19/S6 

550 

RD 

HOLD 

HLOA 

WR 

"I" 
OT/R 

DEN 

231197-3 

Figure 2b. 80C88 44-Lead 
PLCC Configuration 

Inlel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent 
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. November 1985 
@ Intel Corporation, 1985 Order Number: 231197·002 

3-133 



inter 80C88/80C88-2 

Table 1. Pin Description 

The following pin function descriptions are for 80C88 systems in either minimum or maximum mode. The 
"local bus" in these descriptions is the direct multiplexed bus interface connection to the 80C88 (without 
regard to additional bus buffers). 

Symbol Pin No. Type Name and Function 

AD7-ADO 9-16 I/O ADDRESS DATA BUS: These lines constitute the time 
multiplexed memory/IO address (T1) and data (T2, T3, Tw, and 
T4) bus. These lines are active HIGH and float to 3-state OFF(1) 
during interrupt acknowledge and local bus "hold acknowledge". 

A15-A8 2-8,39 0 ADDRESS BUS: These lines provide address bits 8 through 15 for 
the entire bus cycle (T1-T4). These lines do not have to be 
latched by ALE to remain valid. A 15-A8 are active HIGH and float 
to 3-state OFF(1) during interrupt acknowledge and local bus 
"hold acknowledge". 

A 19/56, A 18/S5, 35-38 0 ADDRESS/STATUS: During T1, these are the four most 
A17/S4, A16/S3 significant address lines for memory operations. During I/O 

operations, these lines are LOW. During memory and I/O 
operations, status information is available on these lines during 
T2, T3, Tw, and T4. S6 is always low. The status of the interrupt 
enable flag bit (S5) is updated at the beginning of each clock 
cycle. S4 and S3 are encoded as shown. 

This information indicates which segment register is presently 
being used for data accessing. 

These lines float to 3-state OFF(1) during local bus "hold 
acknowledge" . 

54 53 CHARACTERISTICS 

O(LOW) 0 Alternate Data 
0 1 Stack 
1(HIGH) 0 Code or None 
1 1 Data 
S6isO(LOW) 

RD 32 0 READ: Read strobe indicates that the processor is performing a 
memory or 1/0 read cycle, depending on the state of the 10/M pin 
or S2. This signal is used to read devices which reside on the 
80C88 local bus. RD is active LOW during T2, T3 and Tw of any 
read cycle, and is guaranteed to remain HIGH in T2 until the 
80C88 local bus has floated. 

This signal floats to 3-state OFF(1) in "hold acknowledge". 

READY 22 I READY: is the acknowledgement from the addressed memory or 
I/O device that it will complete the data transfer. The RDY signal 
from memory or I/O is synchronized by the 82C84A clock 
generator to form READY. This signal is active HIGH. The 80C88 
READY input is not synchronized. Correct operation is not 
guaranteed if the set up and hold times are not met. 

3-134 



intJ SOCSS/SOCSS-2 

Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

INTR 18 I INTERRUPT REQUEST: is a level triggered input which is sampled 
during the last clock cycle of each instruction to determine if the 
processor should enter into an interrupt acknowledge operation. A 
subroutine is vectored to via an interrupt vector lookup table located 
in system memory. It can be internally masked by software resetting 
the interrupt enable bit. INTR is internally synchronized. This signal is 
active HIGH. 

TEST 23 I TEST: input is examined by the "wait for test" instruction. If the 
TEST input is lOW, execution continues, otherwise the processor 
waits in an "idle" state. This input is synchronized internally during 
each clock cycle on the leading edge of ClK. 

NMI 17 I NON-MASKABLE INTERRUPT: is an edge triggered input which 
causes a type 2 interrupt. A subroutine is vectored to via an interrupt 
vector lookup table located in system memory. NMI is not maskable 
internally by software. A transition from a lOW to HIGH initiates the 
interrupt at the end of the current instruction. This input is internally 
synchronized. 

RESET 21 I RESET: causes the processor to immediately terminate its present 
activity. The signal must be active HIGH for at least four clock cycles. 
It restarts execution, as described in the instruction set description, 
when RESET returns LOW. RESET IS Internaiiy syncnronlzed. 

ClK 19 I CLOCK: provides the basic timing for the processor and bus 
controller. It is asymmetric with a 33% duty cycle to provide 
optimized internal timing. 

Vee 40 Vee: is the + 5V ± 10% power supply pin. 

GND 1,20 GND: are the ground pins. Both must be connected. 

MN/MX 33 I MINIMUM/MAXIMUM: indicates what mode the processor is to 
operate in. The two modes are discussed in the following sections. 

The fol/owing pin function descriptions are for the 80G88 minimum mode (i.e., MNIMX = Vee). Only the pin 
functions which are unique to minimum mode are described; ali other pin functions are as described above. 

101M 28 0 STATUS LINE: is an inverted maximum mode 52. It is used to 
distinguish a memory access from an 1/0 access. 101M becomes 
valid in the T 4 preceding a bus cycle and remains valid untii the final 
T4 of the cycle (1/0 = HIGH, M = lOW). 101M floats to 3-state 
OFF(1) in local bus "hold acknowledge". 

WR 29 0 WRITE: strobe indicates that the processor is performing a write 
memory or write 1/0 cycle, depending on the state of the 101M 
signal. WR is active for T2, T3, and Tw of any write cycle. It is active 
lOW, and floats to 3·state OFF(1) in local bus "hold acknowledge". 

INTA 24 0 INTA: is used as a read strobe for interrupt acknowledge cycles. It is 
active lOW during T2, T3, and Tw of each interrupt acknowledge 
cycle. 

3-135 



80C88/80C88·2 

Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

ALE 25 0 ADDRESS LATCH ENABLE: is provided by the processor to latch 
the address into an address latch. It is a HIGH pulse active during 
clock low of T1 of any bus cycle. Note that ALE is never floated. 

DT/R 27 0 DATA TRANSMIT/RECEIVE: is needed in a minimum system that 
desires to use a data bus transceiver. It is used to control the 
direction of data flow through the transceiver. Logically, DT /Fi is 
equivalent to S1 in the maximum mode, and its timing is the same as 
for 101M (T = HIGH, R = LOW). This signal floats to 3-state OFF(l) 
in local "hold acknowledge". 

DEN 26 0 DATA ENABLE: is provided as an output enable for the transceiver 
in a minimum system which uses the transceiver. DEN is active LOW 
during each memory and 1/0 access, and for INTA cycles. For a read 
or INTA cycle, it is active from the middle of T2 until the middle of T4, 
while for a write cycle, it is active from the beginning of T2 until the 
middle of T4. DEN floats to 3-state OFF(l) during local bus "hold 
acknowledge" . 

HOLD, HLDA 30,31 1,0 HOLD: indicates that another master is requesting a local bus 
"hold". To be acknowledged, HOLD must be active HIGH. The 
processor receiving the "hold" request will issue HLDA (HIGH) as an 
acknowledgement, in the middle of a T4 or T1 clock cycle. 
Simultaneous with the issuance of HLDA the processor will float the 
local bus and control lines. After HOLD is detected as being LOW, 
the processor lowers HLDA, and when the processor needs to run 
another cycle, it will again drive the local bus and control lines. 

Hold is not an asynchronous input. External synchronization should 
be provided if the system cannot otherwise guarantee the set up 
time. 

SSO 34 0 STATUS LINE: is logically equivalent to SO in the maximum mode. 
The combination of SSO, 101M and DT /Fi allows the system to 
completely decode the current bus cycle status. 

IO/M DT/R SSO CHARACTERISTICS 

1 (HIGH) 0 0 Interrupt Acknowledge 
1 0 1 Read 1/0 port 
1 1 0 Write 1/0 port 
1 1 1 Halt 
O(LOW) 0 0 Code access 
0 0 1 Read memory 
0 1 0 Write memory 
0 1 1 Passive 

3-136 



inter SOCSS/SOCSS-2 

Table 1. Pin Description (Continued) 

The fol/owing pin function descriptions are for the 80C88182C88 system in maximum mode (i.e., 
MNIMX = GND.) Only the pin functions which are unique to maximum mode are described; aI/ other pin 
functions are as described above. 

Symbol Pin No. Type Name and Function 

82,81,80 26-28 0 STATUS: is active during clock high of T 4, T1, and T2, and is 
returned to the passive state (1,1,1) during T3 or during Tw when 
READY is HIGH. This status is used by the 82C88 bus controller to 
generate all memory and I/O access control Signals. Any change by 
82, 81, or 80 during T 4 is used to indicate the beginning of a bus 
cycle, and the return to the passive state in T3 or Tw is used to 
indicate the end of a bus cycle. 

These signals float to 3-state OFF(1) during "hold acknowledge". 
During the first clock cycle after RESET becomes active, these 
signals are active HIGH. After this first clock, they float to 3-state 
OFF. 

S2 S1 SO CHARACTERISTICS 

O(lOW) 0 0 Interrupt Acknowledge 
0 0 1 Read I/O port 
0 1 0 Write 1/0 port 
0 1 1 Halt 
1(HIGH) 0 0 Code access 
1 0 1 Read memory 
1 1 0 Write memory 
1 1 1 Passive 

RQ/GTO, 30,31 I/O REQUEST IGRANT: pins are used by other local bus masters to 
RQ/GT1 force the processor to release the local bus at the end of the 

processor's current bus cycle. Each pin is bidirectional with RQ/GTO 
having higher priority than RQ/GT1. RQ/GT has an internal pull-up 
resistor, so may be left unconnected. The request/grant sequence is 
as follows (see timing diagram): 

1. A pulse of one ClK wide from another local bus master indicates a 
local bus request ("hold") to the BOC8B (pulse 1). 

2. During a T 4 or T1 clock cycle, a pulse one clock wide from the 
80CBB to the requesting master (pulse 2), indicates that the BOCBB 
has allowed the local bus to float and that it will enter the "hold 
acknowledge" state at the next ClK. The CPU's bus interface unit is 
disconnected logically from the local bus during "hold 
acknowledge". The same rules as for HOLD/HOLDA apply as for 
when the bus is released. 

3. A pulse one ClK wide from the requesting master indicates to the 
BOCBB (pulse 3) that the "hold" request is about to end and that the 
BOCB8 can reclaim the local bus at the next ClK. The CPU then 
enters T4. 

3-137 



80C88/80C88-2 

Table 1. Pin Descriptions (Continued) 

Symbol Pin No. Type Name and Function 

RO/GTO, 30,31 1/0 Each master·master exchange of the local bus is a sequence of 
RO/GT1 three pulses. There must be one idle CLK cycle after each bus 

exchange. Pulses are active LOW. 

If the request is made while the CPU is performing a memory cycle, 
it will release the local bus during T4 of the cycle when all the 
following conditions are met: 

1. Request occurs on or before T2. 
2. Current cycle is not the low bit of a word. 
3. Current cycle is not the first acknowledge of an interrupt 
acknowledge sequence. 
4. A locked instruction.is not currently executing. 

If the local bus is idle when the request is made the two possible 
events will follow: 

1. Local bus will be released during the next clock. 
2. A memory cycle will start within 3 clocks. Now the four rules for a 
currently active memory cycle apply with condition number 1 
already satisfied. 

LOCK 29 a LOCK: indicates that other system bus masters are not to gain 
control of the system bus while LOCK is active (LOW). The LOCK 
signal is activated by the "LOCK" prefix instruction and remains 
active until the completion of the next instruction. This signal is 
active LOW, and floats to 3-state OFF(1) in "hold acknowledge". 

OS1,OSO 24,25 a QUEUE STATUS: provide status to allow external tracking ofthe 
internal 80C88 instruction queue. 

The queue status is valid during the CLK cycle after which the 
queue operation is performed. 

QS1 QSO CHARACTERISTICS 

O(LOW) 0 No operation 
0 1 First byte of opcode from queue 
1(HIGH) 0 Empty the queue 
1 1 Subsequent byte from queue 

- 34 a Pin 34 is always high in the maximum mode. 

NOTE: 
1. See the section on Bus Hold Circuitry. 

3-138 



inter 80C88/80C88-2 

FUNCTIONAL DESCRIPTION 

STATIC OPERATION 

All SOCSS Circuitry is of static design. Internal regis­
ters, counters and latches are static and require no 
refresh as with dynamic circuit design. This elimi­
nates the minimum operating frequency restriction 
placed on other microprocessors. The CMOS SOCSS 
can operate from DC to the appropriate upper fr~­
quency limit. The processor clock may be. stop.p~d In 
either state (high/low) and held there indefinitely. 
This type of operation is especially useful for system 
debug or power critical applications. 

The SOCSS can be single stepped using only the 
CPU clock. This state can be maintained as long as 
is necessary. Single step clock operation allows sim­
ple interface circuitry to provide critical information 
for bringing up your system. 

Static design also allows very low frequency opera­
tion (down to DC). In a power critical situ~tion, .this 
can provide extremely low power operation since 
SOCSS power dissipation is directly related to operat­
ing frequency. As the system frequency is reduced, 
so is the opeiating pO'V'IGr UriW ~Itimato!y, at 3 DC 
input frequency, the SOCSS power requirement is the 
standby current (500 !LA maximum). 

~FFFFFH 

T 
64 KB } CODE SEGMENT 

r--~-M-- XXXXOH 

r-"+F=~} STACK SEGMENT 
+ OFFseT 

SEGMENT (} 

~R~E~GI~STIER~~FIL~E~g~=WlO_R_D f:~L;~;E~ DATA SEGMENT 

} EXTRA OAT A SEGMENT 

'--+1--; 
L........;I" OOOOOH 

231197-4 

Figure 3. Memory Organization 

MEMORY ORGANIZATION 

The processor provides a 20-bit address to memory 
which locates the byte being referenced. The memo­
ry is organized as a linear array of up to 1 million 
bytes, addressed as OOOOO(H) to FFFFF(H). The 
memory is .logically divided into code, data, extra 
data, and stack segments of up to 64K bytes e~ch, 
with each segment falling on 16-byte boundanes. 
(See Figure 3.) 

All memory references are made relative to base ad­
dresses contained in high speed segment registers. 
The segment types were chosen based on the ad­
dreSSing needs of programs. The segment re.gister 
to be selected is automatically chosen according to 
the rules of the following table. All information in one 
segment type share the same logical attributes (e.g. 
code or data). By structuring memory into relocat­
able areas of similar characteristics and byautomati­
cally selecting segment registers, programs are 
shorter, faster, and more structured. 

Word (16-bit) operands can be located on even or 
odd address boundaries. For address and data oper­
ands, the least significant byte of the word is stored 
in the lower valued address location and the most 
Significant byte In the next higner address iocati~n. 
The BIU will automatically execute two fetch or wnte 
cycles for 16-bit operands. 

Certain locations in memory are reserved for specific 
CPU operations. (See Figure 4.) Locations from ad­
dresses FFFFOH through FFFFFH are reserved for 
operations including a jump to the initial system 

3-139 

I 
RESET BOOTSTRAP 

PROGRAM JUMP 

1 • · • 
~" 

INTERRUPT POINTER 
fOR TYPE 255 

· · • 
-" INTERRUPT POINTER 

FOR TVPE 1 

f- ~- INTERRUPTPOINTER"-

FOR TYPE 0 

FFFFFH 

FFFFOH 

3FFH 

3FOH 

7H 

4H 
3H 

OH 

231197-5 

Figure 4. Reserved Memory Locations 



80C88/80C88-2 

Memory Segment Register Segment 
Reference Need Used Selection Rule 

Instructions CODE (CS) Automatic with all instruction prefetch. 

Stack STACK (SS) 
All stack pushes and pops. Memory references relative to BP 
base register except data references. 

Local Data DATA (OS) 
Data references when: relative to stack, destination of string 
operation, or explicitly overridden. 

External (Global) Data EXTRA (ES) 
Destination of string operations: Explicitly selected using a 
segment override. 

initialization routine. Following RESET, the CPU will 
always begin execution at location FFFFOH where 
the jump must be located. Locations OOOOOH 
through 003FFH are reserved for interrupt opera­
tions. Four-byte pointers consisting of a 16-bit seg­
ment address and a 16-bit offset address direct pro­
gram flow to one of the 256 possible interrupt serv­
ice routines. The pointer elements are assumed to 
have been stored at their respective places in re­
served memory prior to the occurrence of interrupts. 

MINIMUM AND MAXIMUM MODES 

The requirements for supporting minimum and maxi­
mum 80C88 systems are sufficiently different that 
they cannot be done efficiently with 40 uniquely de­
fined pins. Consequently, the 80C88 is equipped 
with a strap pin (MN/MX) which defines the system 
configuration. The definition of a certain subset of 
the pins changes, dependent on the condition of the 
strap pin. When the MNfMX pin is strapped to GND, 
the 80C88 defines pins 24 thro..!:![h 31 and 34 in 
maximum mode. When the MNfMX pin is strapped 
to Vee, the 80C88 generates bus control signals it­
self on pins 24 through 31 and 34. 

The minimum mode 80C88 can be used with either a 
multiplexed or demultiplexed bus. The multiplexed 
bus configuration is compatible with the MCS®-85 

multiplexed bus peripherals (8155, 8156, 8355, 
8755A, and 8185). This configuration (See Figure 5) 
provides the user with a minimum chip count sys­
tem. This architecture provides the 80C88 process­
ing power in a highly integrated form. 

The demultiplexed mode requires one latch (for 64k 
addressability) or two latches (for a full megabyte of 
addressing). A third latch can be used for buffering if 
the address bus loading requires it. A transceiver 
can also be used if data bus buffering is require~ 
(See Figure 6.) The 80C88 provides DEN and DT fR 
to control the transceiver, and ALE to latch the ad­
dresses. This configuration of the minimum mode 
provides the standard demultiplexed bus structure 
with heavy bus buffering and relaxed bus timing re­
quirements. 

The maximum mode employs the 82C88 bus con­
troller. (See Figure 7.) The 82C88 decodes status 
lines SO, S1, and S2, and provides the system with 
all bus control signals. Moving the bus control to the 
82C88 provides better source and sink current capa­
bility to the control lines, and frees the 80C88 pins 
for extended large system features. Hardware lock, 
queue status, and two request/grant interfaces are 
provided by the 80C88 in maximum mode. These 
features allow co-processors in local bus and re­
mote bus configurations. 

3-140 



80C88/80C88-2 

A"A" I----tA~D~DR~_J1 . ' ~ 
- --- ADo'AD,I)..-"AD""D"'R""/D-AT"'A~ ::'J 
.-- ClK 'f --:.. 

80C88 

~ RDY 

MNIJiii j--Vcc 

I-­
III--

I rfi1 r~ 
t -RES ~~~~ 

AlEJ------I 

iiDl------i 
WR 

101M t------i 

r 82C84A -r- RESI--~---------~ I--

GND 

v v 

l" r 
~++_+_+_+---..~CE POR! ~ 

WR IfVv PORT II'm 
"'-I-++--+lIRiUio 8155 B ~ 

"'-I--I-++--+l~AlE PORT ~ 
i DATAl C~ 
., , ADDR IN I+-

101M TIMER L--.. "'---1" RESET OUT,--.. 

..... +-+---~ iOW 

.... +--I-+---.. iUi 

ALE ~ PORAT (8 
I--f--f--f--+--+---~CE 
1-.I-l1......I.--L..-L. __ .I\I ~ 
1--.--.--.-...... ...,.... __ -./1 AI ,10 

I i ~ 835518755A 
II'-.L-L.-I-L-L._--I~I 

, 101M PORT 1M "'---1" RESET B~ 

J.1ft 
V •• Vee VDD PROG 

... -+--+---~ WR 

"'+-+-I---"Rii 

.... +---~ CE, 8185 

"'+-+--1--1---" ALE 

~+++++--~CS. CE, 

I--f--f--f--+--+---~ AI' A, 

1'v--r--r--r--.--.----v'I AD .. , 

., , "-rr-,....-J 1 
Vss Vee 

'V '-.>' ' " 
231197-6 

Figure 5. Multiplexed Bus Configuration 

3-141 



inter 80C88/80C88·2 

elK MNiUi Vee 

READY IOIM~============~:r:====~:r:====r:===i:;::: RESET AD 

aoca8 wn 
CPU 

~r--------------------t----~r---------~t--------+------~~ 

'NTO 

DT/R ... 
I---++-~ 

ADDRESS 

'---------------------I'N' 

Figure 6. Demultiplexed Bus Configuration 

MHIUX GNO . """" 
S; S; MWTC 
0; 0; AMwC NC 
s; S; 8:~a iilRe 

OEN CTALI'! iWc 
BOcal DT/Iii "lOWe NC 
CPU 

'N' 

Figure 7. Fully Buffered System Using Bus Controller 

3-142 

231197-7 

231197-8 



SOCSS/SOCSS-2 

Bus Operation 

The BOGBB address/data bus is broken into three 
parts-the lower eight address/data bits (ADO-AD?), 
the middle eight address bits (AB-A 15), and the up­
per four address bits (A 16-A 19). The address/data 
bits and the highest four address bits are time multi­
plexed. This technique provides the most efficient 
use of pins on the processor, permitting the use of a 
standard 40 lead package. The middle eight address 
bits are not multiplexed, i.e. they remain valid 
throughout each bus cycle. In addition, the bus can 
be demultiplexed at the processor with a single ad­
dress latch if a standard, non-multiplexed bus is de­
sired for the system. 

Each processor bus cycle consists of at least four 
GlK cycles. These are referred to as T1, T2, T3, and 
T4. (See Figure 8). The address is emitted from the 
processor during T1 and data transfer occurs on the 
bus during T3 and T 4. T2 is used primarily for chang­
ing the direction of the bus during read operations. In 
the event that a "NOT READY" indication is given 
by the addressed device, "wait" states (Tw) are in­
serted between T3 and T 4. Each inserted "wait" 
state is of the same duration as a GlK cycle. Periods 
can occur between BOGBB driven bus cycles. These 
are referred to as "idle" states (Ti), or inactive GlK 
cycles. The processor uses these cycles for internal 
housekeeping. 

i------(4+NWAIT1,.TCy-----+----~(4+NwAlT).TCy 1 
T. 12 13 T."IT I r" T2 T3 I T.l,n I T4 

elK r\J\J\J"L. 
GOES INACTIVE IN THE STATE 

ALE ~ nJ._...-------""-__ -_~_ST_P._'~ ... R-TO-T·----fL 

~~------- \ 
~.s, L ///m//// L._..I..tiI.J/ul/J..J..J..J...JuIU \'----

.DDRISTATUS~'-----S-'··-'O_----~'-----OS-'--S,----->C 
I 

AODA 

ADORIDATA -----~~ __ DA_T._O_UT_'D_,.~_._~)_-~ 
\ 

.,.DY I 

I
I I 

DT/A \\--1--0 ---t-o _I 

~ I-.-.~,--J j 
L 

\'----_/ 

\'-------'/ 
231197-9 

Figure 8. Basic System Timing 

3-143 



inter 80C88/80C88-2 

During T1 of any bus cycle, the ALE (address latch 
enable) signal is emitted (by either the processor or 
the 82C88 bus controller, depending on the MN/MX 
strap). At the trailing edge of this pulse, a valid ad­
dress and certain status information for the cycle 
may be latched. 

Status bits SO, S1, and S2 are used by the bus con­
troller, in maximum mode, to identify the type of bus 
transaction according to the following table: 

S2 S1 So CHARACTERISTICS 

o (LOW) 0 0 Interrupt Acknowledge 
0 0 1 Read I/O 
0 1 0 Write 110 
0 1 1 Halt 
1 (HIGH) 0 0 Instruction Fetch 
1 0 1 Read Data from Memory 
1 1 0 Write Data to Memory 
1 1 1 Passive (no bus cycle) 

Status bits S3 through S6 are multiplexed with high 
order address bits and are therefore valid during T2 
through T4. S3 and S4 indicate which segment reg­
ister was used for this bus cycle in forming the ad­
dress according to the following table: 

S4 S3 CHARACTERISTICS 

o (LOW) 0 Alternate Data (extra segment) 
0 1 Stack 
1 (HIGH) 0 Code or None 
1 1 Data 

S5 is a reflection of the PSW interrupt enable bit. S6 
is always equal to O. 

I/O ADDRESSING 

In the 80C88, 110 operations can address up to a 
maximum of 64k I/O registers. The I/O address ap­
pears in the same format as the memory address on 

bus lines A15-AO. The address lines A19-A16 are 
zero in I/O operations. The variable liD instructions, 
which use register OX as a pointer, have full address 
capability, while the direct I/O instructions directly 
address one or two of the 256 I/O byte locations in 
page 0 of the 110 address space. I/O ports are ad­
dressed in the same manner as memory locations. 

Designers familiar with the 8085 or upgrading an 
8085 design should note that the 8085 addresses 
I/O with an 8-bit address on both. halves of the 16-
bit address bus. The 80C88 uses a full 16-bit ad­
dress on its lower 16 address lines. 

EXTERNAL INTERFACE 

PROCESSOR RESET AND INITIALIZATION 

Processor initialization or start up is accomplished 
with activation (HIGH) of the RESET pin. The 80C88 
RESET is required to be HIGH for greater than four 
clock cycles. The 80C88 will terminate operations 
on the high-going edge of RESET and will remain 
dormant as long as RESET is HIGH. The low-going 
transition of RESET triggers an internal reset se­
quence for approximately 7 clock cycles. After this 
interval the 80C88 operates normally, beginning with 
the instruction in absolute location FFFFOH. (See 
Figure 4.) The RESET input is internally synchro­
nized to the processor clock. At initialization, the 
HIGH to LOW transition of RESET must occur no 
sooner than 50 J.ts after power up, to allow complete 
initialization of the 80C88. 

If INTR is asserted sooner than nine clock cycles 
after the end of RESET, the processor may execute 
one instruction before responding to the interrupt. 

All 3-state outputs float to 3-state OFF during RE­
SET. Status is active in the idle state for the first 
clock after RESET becomes active and then floats 
to 3-state OFF. 

3-144 



80C88/80C88-2 

BUS HOLD CIRCUITRY 

To avoid high current conditions caused by floating 
inputs to CMOS devices and to eliminate the need 
for pull-up/down resistors, "bus-hold" circuitry has 
been used on the 80C88 pins 2-16,26-32, and 34-
39 (Figure 9a, 9b). These circuits will maintain the 
last valid logic state if no driving source is pres~nt 
(i.e. an unconnected pin or a driving source. which 
goes to a high impedance state). To overdnve the 
"bus hold" circuits, an external driver must be capa­
ble of supplying 350 /LA minimum sink or source cur­
rent at valid input voltage levels. Since this "bus 
hold" circuitry is active and not a "resistive" type 
element, the associated power supply current is 

negligible and power dissipation is significantly re­
duced when compared to the use of passive pull-up 
resistors. 

INTERRUPT OPERATIONS 

Interrupt operations fall into two classes: software or 
hardware initiated. The software initiated interrupts 
and software aspects of hardware interrupts are 
specified in the instruction set description in the 
iAPX 88 book or the iAPX 86,88 User's Manual. 
Hardware interrupts can be classified as nonmaska­
ble or maskable. 

"Pull·Up/PulI·Down" 

Input buffer exists only on liD pins 

EXTERNAL 
PIN 

Figure 9a. Bus hold circuitry pin 2-16, 35-39. 

"Pull-Up" 

Input buffer exists only on liD pins 

EXTERNAL 
PIN 

Figure 9b. Bus hold circuitry pin 26-32, 34. 

3-145 

231197-24 

231197-25 



80C88/80C88-2 

Interrupts result in a transfer of control to a new pro­
gram location. A 256 element table containing ad­
dress pointers to the interrupt service program loca­
tions resides in absolute locations 0 through 3FFH 
(See Figure 4), which are reserved for this purpose. 
Each element in the table is 4 bytes in size and cor­
responds to an interrupt "type." An interrupting de­
vice supplies an S-bit type number, during the inter­
rupt acknowledge sequence, which is used to vector 
through the appropriate element to the new interrupt 
service program location. 

NON-MASKABLE INTERRUPT (NMI) 

The processor provides a single non-maskable inter­
rupt (NMI) pin which has higher priority than the 
maskable interrupt request (INTR) pin. A typical use 
would be to activate a power failure routine. The 
NMI is edge-triggered on a lOW to HIGH transition. 
The activation of this pin causes a type 2 interrupt. 

NMI is required to have a duration in the HIGH state 
of greater than two clock cycles, but is not required 
to be synchronized to the clock. Any higher going 
transition of NMI is latched on-chip and will be serv­
iced at the end of the current instruction or between 
whole moves (2 bytes in the case of word moves) of 
a block type instruction. Worst case response to 
NMI would be for multiply, divide, and variable shift 
instructions. There is no specification on the occur­
rence of the low-going edge; it may occur before, 
during, or after the servicing of NMI. Another high­
going edge triggers another response if it occurs af­
ter the start of the NMI procedure. The signal must 

T, T. 

be free of logical spikes in general and be free of 
bounces on the low-going edge to avoid triggering 
extraneous responses. 

MASKABLE INTERRUPT (INTR) 

The SOCSS provides a single interrupt request input 
(INTR) which can be masked internally by software 
with the resetting of the interrupt enable (IF) flag bit. 
The interrupt request signal is level triggered. It is 
internally synchronized during each clock cycle on 
the high-going edge of ClK. To be responded to, 
INTR must be present (HIGH) during the clock peri­
od preceding the end of the current instruction or the 
end of a whole move for a block type instruction. 
During interrupt response sequence, further inter­
rupts are disabled. The enable bit is reset as part of 
the response to any interrupt (INTR, NMI, software 
interrupt, or single step), although the FLAGS regis­
ter which is automatically pushed onto the stack re­
flects the state of the processor prior to the inter­
rupt. Until the old FLAGS register is restored, the 
enable bit will be zero unless specifically set by an 
instruction. 

During the response sequence (See Figure 10), the 
processor executes two successive (back to back) 
interrupt acknowledge cycles. The SOCSS emits the 
lOCK signal (maximum mode only) from T2 of the 
first bus cycle until T2 of the second. A local bus 
"hold" request will not be honored until the end of 
the second bus cycle. In the second bus cycle, a 

T, I T, T, T. 

n 
/ ~ \I...--___ ----J 

/ ~ \ \ TYPE VECTOR >- 231197-10 

~ \ 
'-----_....1 

~FLOAT ADo-AD, 

Figure 10. Interrupt Acknowledge Sequence 

3-146 



80C88/80C88-2 

byte is fetched from the external interrupt system 
(e.g., 82C59A PIC) which identifies the source (type) 
of the interrupt. This byte is multiplied by four and 
used as a pointer into the interrupt vector lookup 
table. An INTR signal left HIGH will be continually 
responded to within the limitations of the enable bit 
and sample period. The interrupt return instruction 
includes a flags pop which returns the status of the 
original interrupt enable bit when it restores the 
flags. 

HALT 

When a software HALT instruction is executed, the 
processor indicates that it is entering the HALT state 
in one of two ways, depending upon which mode is 
strapped. In minimum mode, the processor issues 
ALE, delayed by one clock cycle, to allow the sys­
tem to latch the halt status. Halt status is available 
on 10/~1, DT lA, and SSO. In maximum mode, the 
processor issues appropriate HALT status on S2, 
S1, and SO, and the 82C88 bus controller issues one 
ALE. The 80C88 will not leave the HALT state when 
a local bus hold is entered while in HALT. In this 
case, the processor reissues the HALT indicator at 
the end of the local bus hold. An interrupt reauest or 
RESET will force the 80C88 out of the HALT state. 

READ/MODIFY /WRITE (SEMAPHORE) 
OPERATIONS VIA LOCK 

The LOCK status information is provided by the 
processor when consecutive bus cycles are required 
during the execution of an instruction. This allows 
the processor to perform read/modify/write opera­
tions on memory (via the "exchange register with 
memory" instruction), without another system bus 
master receiving intervening memory cycles. This is 
useful in multiprocessor system configurations to ac­
complish "test and set lock" operations. The LOCK 
signal is activated (LOW) in the clock cycle following 
decoding of the LOCK prefix instruction. It is deacti­
vated at the end of the last bus cycle of the instruc­
tion following the LOCK prefix. While LOCK is active, 
a request on a RQ/GT pin will be recorded, and then 
honored at the end of the LOCK. 

EXTERNAL SYNCHRONIZATION VIA TEST 

As an alternative to interrupts, the 80C88 provides a 
single software-testable input pin (TEST). This input 
is utilized by executing a WAIT instruction. The sin­
gle WAIT instruction is repeatedly executed until the 
TEST input goes active (LOW). The execution of 
WAIT does not consume bus cycles once the queue 
is full. 

If a local bus request occurs during WAIT execution, 
the 80C88 3-states all output drivers. If interrupts are 
enabled, the 80C88 will recognize interrupts and 
process them. The WAIT instruction is then re­
fetched, and reexecuted. 

BASIC SYSTEM TIMING 

In minimum mode, the MN/MX pin is strapped to 
Vee and the processor emits bus control signals 
compatible with the 8085 bus structure. In maximum 
mode, the MN/MX pin is strapped to GND and the 
processor emits coded status information which the 
82C88 bus controller uses to generate MUL TIBUS 
compatible bus control signals. 

System Timing - Minimum System 

(See Figure 8.) 

The read cycle begins in T1 with the assertion of the 
address latch enable (ALE) signal. The trailing (low 
going) edge of this signal is used to latch the ad­
dress information, which is valid on the address/ 
data bus (ADO-AD7) at this time, into a latch. Ad­
dress lines A8 through A 15 do not need to be 
latched because mey remain valia throughout the 
bus cycle. From T1 to T 4 the 10/M signal indicates a 
memory or I/O operation. At T2 the address is re­
moved from the address/data bus and the bus goes 
to a high impedance state. The read control signal is 
also asserted at T2. The read (RD) signal causes the 
addressed device to enable its data bus drivers to 
the local bus. Some time later, valid data will be 
available on the bus and the addressed device will 
drive the READY line HIGH. When the processor 
returns the read signal to a HIGH level, the ad­
dressed device will again 3-state its bus drivers. If a 
transceiver is required to buffer the 80C88 local bus, 
signals DT IA and DEN are provided by the 80C88. 

A write cycle also begins with the assertion of ALE 
and the emission of the address. The 10/M signal is 
again asserted to indicate a memory or I/O write 
operation. In T2, immediately following the address 
emission, the processor emits the data to be written 
into the addressed location. This data remains valid 
until at least the middle of T 4. During T2, T3, and 
T w, the processor asserts the write control signal. 
The write (WR) signal becomes active at the begin­
ning of T2, as opposed to the read, which is delayed 
somewhat into T2 to provide time for the bus to 
float. 

3-147 



SOCSS/SOCSS-2 

The basic difference between the interrupt acknowl­
edge cycle and a read cycle is that the interrupt ac­
knowl~e (INTA) signal is asserted in place of the 
read (RD) signal and the address bus is floated. 
(See Figure 10.) In the second of two successive 
INTA cycles, a byte of information is read from the 
data bus, as supplied by the interrupt system logic 
(i.e. S2C59A priority interrupt controller). This byte 
identifies the source (type) of the interrupt. It is multi­
plied by four and used as a pointer into the interrupt 
vector lookup table, as described earlier. 

BUS TIMING - MEDIUM COMPLEXITY 
SYSTEMS 

(See Figure 11.) 

For medium complexity systems, the MN/MX pin is 
connected to GND and the S2CSS bus controller is 
added to the system, as well as a latch for latching 
the system address, and a transceiver to allow for 
bus loading greater thaA the SOCSS is capable of 
handling. Signals ALE, DEN, and DT /R' are generat­
ed by the S2CSS instead of the processor in this 
configuration, although their timing remains relatively 
the same. The SOCSS status outputs (52, 51, and 
SO) provide type of cycle information and become 
S2CSS inputs. This bus cycle information specifies 
read (code, data, or I/O), write (data or I/O), inter­
rupt acknowledge, or software halt. The S2CSS thus 
issues control signals specifying memory read or 
write, I/O read or write, or interrupt acknowledge. 
The S2CSS provides two types of write strobes, nor­
mal and advanced, to be applied as required. The 
normal write strobes have data valid at the leading 
edge of write. The advanced write strobes have the 
same timing as read strobes, and hence, data is not 
valid at the leading edge of write. The transceiver 
receives the usual T and OE inputs from the 
S2CSS's DT /R and DEN outputs. 

The pointer into the interrupt vector table, which is 
passed during the second INTA cycle, can derive 
from an S2C59A located on either the local bus or 
the system bus. If the master S2C59A priority inter­
rupt controller is positioned on the local bus, a TIL 
gate is required to disable the transceiver when 
reading from the master S2C59A during the interrupt 
acknowledge sequence and software "poll". 

THE 80C88 COMPARED TO THE 80C86 

The SOCSS CPU is an S-bit processor designed 
around the SOCS6 internal structure. Most internal 
functions of the SOCSS are identical to the equiva-

lent SOCS6 functions. The SOCSS handles the exter­
nal bus the same way the SOCS6 does with the dis­
tinction of handling only S bits at a time. Sixteen-bit 
operands are fetched or written in two consecutive 
bus cycles. Both processors will appear identical to 
the software engineer, with the exception of execu­
tion time. The internal register structure is identical 
and all instructions have the same end result. The 
differences between the SOCSS and SOCS6 are out­
lined below. The engineer who is unfamiliar with the 
BOCS6 is referred to the iAPX S6, 8S User's Manual, 
Chapters 2 and 4, for function description and in­
struction set information. Internally, there are three 
differences between the SOC88 and the SOC86. All 
changes are related to the 8-bit bus interface. 

• The queue length is 4 bytes in the 80CS8, where­
as the 80C86 queue contains 6 bytes, or three 
words. The queue was shortened to prevent 
overuse of the bus by the BIU when prefetching 
instructions. This was required because of the 
additional time necessary to fetch instructions S 
bits at a time. 

• To further optimize the queue, the prefetching al­
gorithm was changed. The 80C88 BIU will fetch a 
new instruction to load into the queue each time 
there is a 1 byte hole (space available) in the 
queue. The 80C86 waits until a 2-byte space is 
available. 

• The internal execution time of the instruction set 
is affected by the 8-bit interface. All 16-bit fetches 
and writes from/to memory take an additional 
four clock cycles. The CPU is also limited by the 
speed of instruction fetches. This latter problem 
only occurs when a series of simple operations 
occur. When the more sophisticated instructions 
of the SOC88 are being used, the queue has time 
to fill and the execution proceeds as fast as the 
execution unit will allow. 

The SOCS8 and SOC86 are completely software 
compatible by virture of their identical execution 
units. Software that is system dependent may not be 
completely transferable, but software that is not sys­
tem dependent will operate equally as well on an 
SOC8S or an 80C86. 

The hardware interface of the 80C88 contains the 
major differences between the two CPUs. The pin 
assignments are nearly identical, however with the 
following functional changes: 

3-14B 

• A8-A 15 - These pins are only address outputs 
on the SOCB8. These address lines are latched 
internally and remain valid throughout a bus cycle 
in a manner similar to the S085 upper address 
lines. 



intJ BOCBB/BOCBB-2 

• SHE has no meaning on the SOCSS and has been 
eliminated. 

• SSO provides the SO status information in the 
minimum mode. This output occurs on pin 34 in 
minimum mode only. DT /A". 101M, and SSO pro­
vide the complete bus status in minimum mode. 

T, 

ClK ~ r' 

QS1, QSO X 

80C88 

S2, S1, SO 

A 19/56·A 16/S3 X A19·A16 

r ALE " 
82C88 tROY 82C84A 

ROY 80C88 

A07-AOO A7-AO 

80C88 A 15-A8 X 

RO 

OT/R 

'" 
82C88 MROC 

'" 
DEN 

• 101M has been inverted to be compatible with the 
MCS-85 bus structure. 

• ALE is delayed by one clock cycle in the mini­
mum mode when entering HALT, to allow the 
status to be latched with ALE. 

T2 T3 T. 

r' ;., 

X X X 

fffff '-:---_. 
'-----

X S6-S3 JC. 
r-... .:.._. 

X 

X 

DATA IN 

A15-A8 A-

'" / 

/ 

/ 

/ '" 
231197-11 

Figure 11. Medium Complexity System Timing 

3-149 



inter 80C88/80C88-2 

ABSOLUTE MAXIMUM RATINGS* 

Supply Voltage 
(With respect to ground) ........... -0.5 to 8.0V 

Input Voltage Applied 
(w.r.t. ground) ............. -2.0 to Vee + 0.5V 

Output Voltage Applied 
(w.r.t. ground) ............. -0.5 to Vee + O.SV 

Power Dissipation .......................... 1.0W 

• Notice: Stresses above those listed under ':Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

Storage Temperature .......... -6S'e to + 150'e NOTICE Specifications contained within the 
Ambient Temperature Under Bias .... o'e to + 70'e following tables are subject to change. 

D.C. CHARACTERISTICS (80e88: T A = o'e to 70'e, Vee = 5V ± 10%) 
(80e88-2: T A = o'e to 70'e, Vee = SV ± S %) 

Symbol Parameter Min Max Units Test Conditions 

Vil Input low Voltage -0.5 +0.8 V 

Input High Voltage 
VIH (All input except 2.0 Vee+ 0.5 V (Note 6) 

RQ/GTO, RQ/GT1 MN/MX) 

VOL Output low Voltage 0.4 V IOl = 2.5 mA 

VOH Output High Voltage 
3.0 

V 
IOH = -2.5mA 

Vee- O.4 IOH = -100,...A 

Icc Power Supply Current 10 mA/MHz T A = 25'C, Vee = 5.5V 
Vil = GND, VIH = Vee 

VIN(max) = Vee or GND 

Ices Standby Supply Current 750 ,...A 
Vee = 5.5V Ready = High 
Outputs Unloaded 
ClK = GND or Vee (Note 7) 

Vee = 5.5V Ready = low 

Ices Standby Supply Current 2.5 mA 
VIN (max) = Vee or GND 
Outputs Unloaded 
ClK = GNDorVee(Note7) 

III Input leakage Current ± 1.0 ,...A OVsVINsVee 

ISHl 
Input leakage Current 

50 300 ,...A 
VIN = 0.8V 

(Bus Hold Low) (Note 1) 

ISHH 
Input Leakage Current 

-50 -300 ,...A 
VIN = 3.0V 

(Bus Hold High) (Note 2) 

ISHlO Bus Hold Low Overdrive 350 ,...A (Note 4) 

ISHHO Bus Hold High Overdrive -350 ,...A (Note 5) 

ILO Output leakage Current ±10 ,...A OSVOUTsVee 

Vel Clock Input low Voltage --0.5 +0.8 V 

VeH Clock Input High Voltage Vee- 0.8 Vee+ 0.5 V 

Capacitance of Input Buffer 
CIN (All input except 5 pF (Note 3) 

ADo-AD? RQ/GT) 

CIO 
Capacitance of 1/0 Buffer 

20 pF (Note 3) 
(ADo-AD? RQ/Gn 

COUT Output Capacitance 15 pF (Note 3) 

NOTES: 
1. Test condition is to lower VIN to GND and then raise VIN to 0.8V on pins 2-16, and 35·39. 
2. Test condition is to raise VIN to Vee and then lower VIN to 3.0V on pins 2-16,26·32, and 34·39. 
3. Characterization conditions are a) Frequency = 1 MHz, b) Unmeasured pins at GND 

c) VIN at + 5.0V or GND. 
4. An external driver must source at least ISHlO to switch this node from lOW to HIGH. 
5. An external driver must sink at least ISHHO to switch this node from HIGH to LOW. 
6. VIH for MN/MX is 2.5V. 
7. This spec may improve to 500 ,...A during 1986. 

3-150 



80C88/80C88-2 

A.C. CHARACTERISTICS (80C88: TA = O°C to 70°C, VCC = 5V ± 10%) 
(80C88-2: TA = O°C to 70°C, VCC = 5V ±5%) 

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS 

80C88 80C88-2 

Symbol Parameter Min Max Min Max Units 
i---

TClCl ClK Cycle Period 200 D.C. 125 D.C. ns 

TClCH ClK low Time 118 68 ns 

TCHCl ClK High Time 69 44 ns 

TCH1CH2 ClK Rise Time 10 10 ns 

TCl2Cl1 ClK Fall Time 10 10 ns 

TDVCl Data in Setup Time 30 20 ns 

TClDX Data in Hold Time 10 10 ns 

ROY Setup Time 
TR1VCl into 82C84A 35 35 ns 

(Notes i, 2) 

I 

Nul" Muiti ,iflle 
TClR1X into 82C84A 0 0 ns 

(Notes 1, 2) 

TRYHCH 
READY Setup 

118 68 ns 
Time into 80C88 

TCHRYX 
READY Hold Time 

30 20 
into 80C88 

ns 

TRYlCl 
READY Inactive to 

-8 -8 
ClK (Note 3) 

ns 

THVCH HOLD Setup Time 35 20 ns 

INTR, NMI, TEST 
TINVCH Setup Time 30 15 ns 

(Note 2) 

TILIH 
Input Rise Time 

15 15 
(Except ClK) (Note 4) 

ns 

TIHll 
Input Fall Time 

15 15 
(Except ClK) (Note 4) 

ns 

NOTES: 
1. Signal at B2CB4A or B2C8B shown for reference only. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next ClK. 
3. Applies only to T2 state (B ns into T3 state). 
4. Characterization only. 

3-151 

Test 
Conditions 

From 1.0V 
to 3.5V 

From 3.5V 
to 1.0V 

Cl = 20-100 pF 

FromO.8V 
to 2.0V 

From2.0V 
to 0.8V 



inter 80C88/80C88-2 

A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES 

80C88 

Symbol Parameter Min 

TCLAV Address Valid Delay 10 

TCLAX Address Hold Time 10 

TCLAZ Address Float Delay TCLAX 

TLHLL ALE Width TCLCH-20 

TCLLH ALE Active Delay 

TCHLL ALE Inactive Delay 

TLLAX 
Address Hold Time to 

TCHCL-25 
ALE Inactive 

TCLDV Data Valid Delay 10 

TCHDX Data Hold Time 10 

TWHDX Data Hold Time TCLCH-30 AfterWR 

TCVCTV Control Active Delay 1 10 

TCHCTV Control Active Delay 2 10 

TCVCTX Control Inactive Delay 10 

TAZRL 
Address Float to READ 0 
Active 

TCLRL RD Active Delay 10 

TCLRH RD Inactive Delay 10 

TRHAV 
RD Inactive to Next 

TCLCL-45 Address Active 

TCLHAV HLDA Valid Delay 10 

TRLRH RD Width 2TCLCL-75 

TWLWH WRWidth 2TCLCL-60 

TAVAL Address Valid to ALE Low TCLCH-60 

TOLOH Output Rise Time (Note 1) 

TOHOL Output Fall Time (Note 1) 

NOTE: 
1. Characterization only. 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

Input/Output 

VIH + D.4V -V ~ 

VIL-D.4V~~. -------~ 
231197-12 

AC. Testing inputs are driven at VIH + OAV for a logic "1" and 
Vil - DAV for a logic "0". The clock is driven at VCH + DAVand 
VCl - OAV. Timing measurements are made at 2.0V and O.SV. 

80C88-2 

Max Min Max Units Test 
Conditions 

110 10 60 ns 

10 ns 

BO TCLAX 50 ns 

TCLCH-10 ns 

BO 50 ns 

B5 55 ns 

TCHCL-25 ns 

110 10 60 ns 

10 ns 

TCLCH-30 ns CL = 20-100 pF 

110 10 70 ns for all BOCBB 
Outputs in addition 

110 10 60 ns to internal loads 

110 10 70 ns 

0 ns 

165 10 100 ns 

150 10 BO ns 

TCLCL-40 ns 

160 10 100 ns 

2TCLCL-50 ns 

2TCLCL-40 ns 

TCLCH-40 ns 

15 15 ns From O.BV to 2.0V 

15 15 ns From 2.0V to O.BV 

A.C. TESTING LOAD CIRCUIT . 

I DEVICE 
UNDER 

TEST 
100 pF 

Cl Includes Jig Capacitance 

231197-13 

3-152 



80C88/80C88-2 

WAVEFORMS 

BUS TIMING - MINIMUM MODE SYSTEM 

T1 T2 T3 Tw T4 

oCLK (loeM. Output) 

YCHv---'li--TCLCL~-OH r- TCL2CLlr'~ rL-
~~ ~~ 

101M, SSO 

ALE 

ROY (I2CU" Input) 

SeE NOTE f 

READY (IOC" Input) 

READ CYCLE 

(NOTE 1) 

(WR, TATi.. VOH) 

AD, - ADo 

DllR 

....:; TCHCTV TCHCL i- felCH_ 

A'5-A, (FIOILt during INTA) 

TClAV- - ~T LDY 
TCHDX-TeLAX -

A' 9-Alll a.·So 

TCLlH- y TlHjL-= ~TlLAX 

TCHll_1 I-- -TR1VCL 

I"''' . 
YIH~~ ~; I \~< \\ 
VIL& _ 

!-TCLR1X 

tR~ - I 
I 

I I I - -TCHRYX 

TRYHCH -- TCLAZ TDYCL_ !-TCLDX-

ADr-ADo DATA IN c:r TAZRL~ TCLRH- -' 

"'-
-=~TCHCTY TCLRL TRLRH----r--

I I 
TCYCTV_I f TCVCTX- / 

3-153 

-
r--

I 
----

~ 

FLOA:.J' 
-YRHAY 

i::.TCHCTV 

! 

231197-14 



80C88/80C88-2 

WAVEFORMS (Continued) 

BUS TIMING - MINIMUM MODE SYSTEM (Continued) 

elK (82C&4A Output) 

WRITE CYCLE 
N'OTE 1 

T, 

DATA OUT 

TCVCTX 

--~--~----------~I----~---TWlWH------~--lr--~--------­
WIi 

INTA CYCLE 
NOTES 1,3 

(l\li. WIi=VOH) 

SOFTWARE HALT -

DE'N,RD,WR,iN'fA "" YOH 

DT/Ii" INDETERMINATE 

NOTES: 

AD1-ADo 

DTfR 

ADT-ADo 

TCVCTX-

INVALID ADDRESS SOFTWARE HALT 

TCLAY 

1. All output timing measurements are made at O.8V and 2.0V unless otherwise noted. 
2. RDY is sampled near the end of T2. T3. Tw to determine if Tw machines states are to be inserted. 

231197-15 

3. Two INTA Cycles run back-to-back. The 80C88 local ADDR/Data bus is floating during both INTA Cycles. Control 
signals are shown for the second INT A cycle. 
4. Signals at 82C84A are shown for reference only. 

3-154 



SOCSS/SOCSS-2 

A.C. CHARACTERISTICS 

MAX MODE SYSTEM (USING 82C88 BUS CONTROLLER) 
TIMING REQUIREMENTS 

80C88 

Symbol Parameter Min Max 

TClCl ClK Cycle Period 200 D.C. 

TClCH ClK low Time 118 

TCHCl ClK High Time 69 

TCH1CH2 ClK Rise Time 10 

TCl2Cl1 ClK Fall Time 10 

TDVCl Data In Setup Time 30 

TClDX Data In Hold Time 10 

TR1VCl 
ROY Setup Time into 82C84 

35 
(See Notes 1, 2) 

TClR1X 
ROY Hold Time into 82C84 

0 
(See Notes 1, 2) 

TRYHCH 
READY Setup Time into 

118 
BOCB8 

TCHRYX Ri::AuY noiu Tinlt: irli.u aOCBa 3e 

TRYlCl 
READY Inactive to ClK (See 

-8 
Note 4) 

Setup Time for Recognition 
TINVCH (lNTR, NMI, TEST) 30 

(See Note 2) 

TGVCH RQ/GT Setup Time 30 

TCHGX RQ Hold Time into 80C88 40 

TILIH 
Input Rise Time 

15 
(Except ClK) (Note 5) 

TIHll Input Fall Time (Except elK) 15 
(Note 5) 

NOTES: 
1. Signal at 82C84A or 82C88 shown for reference only. 

80C88-2 

Min Max 

125 D.C. 

68 

44 

10 

10 

20 

10 

35 

0 

68 

nn 
c;v 

-8 

15 

15 

30 

15 

15 

2. Setup requir~ment for asynchronous signal only to guarantee recognition at next ClK. 
3. Applies only to T3 and wait states (8 ns into T3 state). 
4. Applies only to T2 state (8 ns into T3 state). 
5. Characterization only. 

3-155 

Units Test Conditions 

ns 

ns 

ns 

ns From 1.0V to 3.5V 

ns From 3.5V to 1.0V 

ns 

ns 

ns 

ns 

ns 
Cl = 20 -100 pF 

"'" 
ns 

ns 

ns 

ns 

ns From 0.8V to 2.0V 

ns From 2.0V to 0.8V 



inter BOCBB/BOCBB-2 

A.C. CHARACTERISTICS 

TIMING RESPONSES 

80C88 80C88·2 

Symbol Parameter Min Max Min Max Units Test Conditions 

TCLML 
Command Active Delay 

5 35 5 35 ns (Note 1) 

TCLMH 
Command Inactive Delay 

5 35 5 35 ns (Note 1) 

TAYHSH 
AEADY Active to Status Passive 

110 65 ns (Note 3) 

TCHSV Status Active Delay 10 110 10 60 ns 

TCLSH Status Inactive Delay 10 130 10 70 ns 

TCLAV Address Valid Delay 10 110 10 60 ns 

TCLAX Address Hold Time 10 10 ns 

TCLAZ Address Float Delay TCLAX 80 TCLAX 50 ns 

TSVLH Status Valid to ALE High 
20 20 ns (Note 1) 

TSVMCH Status Valid to MCE High 
30 30 ns (Note 1) 

TCLLH CLK Low to ALE Valid 
,20 20 ns (Note 1) 

TCLMCH 
CLK Low to MCE High 

25 25 ns (Note 1) 

TCHLL ALE Inactive Delay (Note 1) 4 25 4 25 ns 

TCLDV Data Valid Delay 10 110 10 60 ns 

TCHDX Data Hold Time 10 10 ns CL = 20-100pFfor 

TCVNV Control Active Delay all 80C88 Outputs 

(Note 1) 5 45 5 45 ns in addition to 

Control Inactive Delay 
internal loads 

TCVNX 
(Note 1) 10 45 10 45 ns 

TAZAL Address Float to Read Active 0 0 ns 

TCLAL AD Active Delay 10 165 10 100 ns 

TCLAH AD Inactive Delay 10 150 10 80 ns 

TAHAV AD Inactive to Next Address 
Active TCLCL-45 TCLCL-40 ns 

TCHDTL Direction Control Active Delay 
50 50 ns (Note 1) 

TCHDTH Direction Control Inactive Delay 
30 30 ns (Note 1) 

TCLGL GT Active Delay 0 85 0 50 ns 

TCLGH GT Inactive Delay 0 85 0 50 ns 

TALAH AD Width 2TCLCL-75 2TCLCL-50 ns 

TOLOH Output Aise Time 15 15 ns From 0.8Vto 
2.0V 

TOHOL Output Fall Time 15 15 ns 
From 2.0Vto 
O.8V 

3-156 



intJ 
WAVEFORMS 

BUS TIMING-MAXIMUM MODE 

CLK 

aSo,as, 

!:2:s";,Sj) (EXCEPT HAL n 

SEE NOTE 5 

IAlE (12e .. OUTPUT) 

1 ADY (12el' INPUT) 

READY (lOCH INPUT) 

VCH,r--\ 

VCL .J 
TCLAV-

i---

-
lSVlH 
TellH 

80C88/80C88-2 

T, T, T, 

!---- TCLCl - .. ~CHICH2~I=r~ r--\ ~n-£-TCHCl I- TCLCH-

TCHSV .- I- TCLSH 
I 

W;,% W(SEE NOTE 7) 
,------

\ 
'------

Als-Aa 

_rCLAV f..--~I_TCLOV TCHOX'- I-
reLAX --

I A'9"A'6 1 5o.s, 

- { TCHll ,--
I 
----

- -TR1VCL 

I I 
~ ~ w-~ ~ ~TClR1X 

7~·.':"~:" ~ 
, i-- ' I 

-TCHRYX 

TRYHSH -I -
- TelAX ~ TRYHCH -

READ CYCLE 
TClAV---1 

F 
---TCLAZ - .. ~~-TovCL--I-TCLDx-

,2Cse OUTPUTS 

SEE NOTES 5,6 

ADt-ADo 

RO 

oriA: 

iilIl!COR= 

DEN 

TCHoTL-1 

"D1-ADo "'"\ FLOAT /[\ DATA IN 

TAZRl---- vh/ TelRH 

-1------ TCLRl 
TRLAH 

TClMl_ ~ 

TCLMH -I 

TCVNV- "-

~ 
TCVNX --

3-157 

I. 

FL~~ 
TRHAV 

i\\ f-- 1CH01H , 

- \ 

~ 

231197-16 



80C88/80C88-2 

WAVEFORMS (Continued) 

BUS TIMING - MAXIMUM MODE SYSTEM (USING 82C88) 

ClK 
VCl 

5,. 5,. So (EXCEPT HALT) 

WRITE CYCLE 

82C88 
OUTPUTS 

SEE 
NOTES 5.6 

INTA CYCLE 

AD7-ADo 

DEN 

AMWC 
OR AIOWC 

MWTC 
OR IOWC 

A'5-A• 
(SEE NOTES 3.4) 

AD7-ADo 

MeEt 
PDEN 

DTiR 

82C88 OUTPUTS 
SEE NOTES 5,6 INTA 

DEN 

SOFTWARE 

T, T, 

HALT - (DEN = VOL: RD. MRDC. "iORC.·MWTC. AMWc.IOWc. AiOWc.INTA.DTtR = VOH' 

AD7-ADo. A'5-A• J r INVALID ADDRESS 

TCLAV::::j of 
5,.5,,50 

~ jr-----"'('\ ----..... ___ ..J , ___ _ 

NOTES: 
1. All output timing measurements are made at O.8V and 2.0V unless otherwise noted .. 
2. ROY is sampled near the end of T 2, T 3, T w to determine if T W machines states are to be inserted. 
3. Cascade address is valid between first and second INTA cycles. 

231197-17 

4. Two INTA cycles run back-to-back. The 80CS8 local ADDR/Data bus is floating during both INTA cycles. Control for 
pointer address is shown for second INT A cycle. 
5. Signals at 82C84A or 82CS8 are shown for reference only. 
6. The issuance of the 82C88 command and control signals (MRDC, MWTC, AMWC, IORC, IOWC, AIOWC, INTA and 
DEN) lags the active high 82C88 CEN. 
7. Status inactive in state just prior to T 4. 

3-158 



inter SOCSS/SOCSS-2 

WAVEFORMS (Continued) 

ASYNCHRONOUS SIGNAL RECOGNITION 

NMI 

INTR 

CLK~ 

r '."' r--: __ x_i-_'-__ TlN_VC_" (_s .. _nO'--\81 

231197-18 

NOTE: Setup requirements lor asynchronous signals 
only to guarantee recognition at next elK, 

BUS LOCK SIGNAL TIMING 
(MAXIMUM MODE ONLY) 

2NY ClK CYCL~l __ '"' I~NY elK CYC~ 

CLK--{ ; L.J 
TCLA~J'--;:-f -I TClAV 

LOCK 

231197-19 

REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLY) 

231197-20 

NOTE: The coprocessor may not drive the busses outside the region shown without risking contention. 

HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLY) 

I::': 1 eLK CYCL£-

m~ 
-I [_-THVCH 

HOLD~ 

r- -1 OR 2 CYCLES =1 

~JL~ 
-.1 i.......-THVCH I I 

I I 

I \r-I -+j-----; 
1-- TClHAV 1-- TCLHAV 

i r-------~r----------\' 1 ~ [' 

\------\\-----+--/ I : I 

~ ________ -I~ __ -_'-I. ·-TCLAZ 

COPRO;/---:ESSOR _~ 
231197-21 

3-159 



80C88/80C88-2 

80C86/80C88 

INSTRUCTION SET SUMMARY 
MOY • ....,.: --- !ili~~li~~~~~F~~~'1 ............. IO~ modO 00 ,"" 

~IO~ 1011..... 

MtInor)to.cc:","~ ~........,. 

AocumuIeIorIO"*'*l' addr.r.ltiJh 
........ /~IDMgmIIIII...,·· modOo-e./m 

s.ur->!'~IO~'"*-Y modO .. " ... 

OIC~: -'­... -
MHCnane- ... 

CW~: 

RIfIIIIo''--Y- ..... 
Immedi .. """ ..... '-"ory 

1mmediIIM_""' ............. 
AM ASCII 8CIj..., lor ...rMtaeI 

."..~ ..... ~..-IGr...,u,f.:1 

..... ~(u~ ----,-...... --... ---JCQIG.~: 

~""-'YwiI~~ 

Rl9ll*wI1tI..:C,,",U'-

*.Inputlrom 

Fl •• por1 

V"~po!1 

OUT .. o..CPUIIO· 

Fi...:lport 

VuiIbIeopo!1 

lILA'. T ...... Motr,1.IOAL 

LU..LOaidlAto~ 

L.DI .. t.o.d..,..,. ... 100S 

LaI. l.I>IdpaitlllolOES 

LA*' .. ~AHVI!Ih_ 

IA*' • SIore AM into ft. 
",.....PLflh/18g1 

...... ~ftl9' 

ARtTHMETtC 
ADO. Md: 

""',imllmO!Y'Irith~IlI.t1Mf 

l",mIId'" '" f4IIIiIM.'-V 
ImmlldlM8lO""'IHIIW~ 

loDe. MIl ..... .....,: 

fIeGIOMmOr/wlItI .... to .... , 

lmllllCl~.toregll~ 

Imrl'ltdlMelO_ulllOI 

Atgjllt.'memooy -AU. .. ASCII ..... lor Idd 

DM.DllQlmAlllG/WllOflOiS 

-.~: 
r:c.o.l~"'Id""'tol'lltl .. 
Immldialllfom .. iIIM'-'Y 
IrIIIMdiIIttolrorn_1imuIMDr 

_.luIIhcrIwlllllIon'oII 

1'IIsI.""'"*Ylnd~"IO"'" 
ImmtCl ... ItonI .... ,rMIIIOIy 

1~"Ircm.ccwmIlll1Ol' 

r-"'·"l1' 
010' 0 ... ". 

[TIIj0ll. 
10010,",!! 

I 
1110010 .. 

1110110. 

11-' IDOl' .. 

OOOOOOdw 

0000010. 

1o-00100d .. 

00110111 

DOIOIOci. 

100000t. 
00'\ 011 O. 

1000001'" 
0001110. 

mocI'eQ'im 

mocINi'1n'I 

mod'.;"m 
mod ... /m 

mocIr-../m 

modreg"m 

modO I ° rim ... 

1lI0II01111111 ... 

..a.IL In .... mulllplylllglled) 

AAIIASClladjullforlftulllply 

DI'~(u~ 

1DIV~~{1igMcI) 

AM) ASCII -tjlllll for dMcM 

c:.wComoe<1'Y1eIll~ 

CWOCo!w.lwgnlto~wo«I 

"""­
IHlJSALShiflIogicllU8l'ilt1"*"='-" 
_ShIft logiCal rlghl 

...... 6NfI~riClhl 

M)fIRIuho.1gh1 

1ICI.~lhroughcarryn.a1llfl 

1IICII~lhrouglooany. 

Rte·llMmOr'flnct~IlI""" 

lm",....lOrwgIICef~ 

Im1llldlllle101ICeI/III\IIato 

Rte-"'-'Y 1M ~ 111 eIIhe, 

Im"*'QIO .... /IIIemOrf 
Irnmedlateto lOCullllMtor 

~,/lIlImOI)'and"""to.m..r 

~ICI~~ 

1IIII'IeII1IIe to *>C\llllYIaIOr 

flIP. RtpMl 

MOVI_ Mo¥ebylelWon:l 

c:.tI_eomp. .. bytWWord 

ICAI_ScI/I~ 

LOCII_I.OIdIlJWWClICIIIJJAX 

'TOI_Slcr~lromIlJJA 

3-160 

1101011 

" . 

1000000W 

1000000w 

1010010W 

fIIDIi,..'lm 

modi 00 '1m -

231197-22 



inter 80C88/80C88-2 

INSTRUCTION SET SUMMARY (Continued) 

CONTROL TRANSFER 

CALL = Call: 

Direct within segment 

Indirect within segment 

Direct Inte/segment 

IndireCI 'ntersegmerl! 

JMP '" Uncondlllonel Jump 

Direct within segm&nl 

Direct wlthm segment·short 

Indirect wlth,n segment 

Direct mlarsegment 

Indirect 'ntersegment 

RET =: Return from CALL: 

With'" $egment 

Wnhln seg addmg Immed to SP 

Inlersegment 

Intersegment adding Immediate to SP 

JEIJZ "" Jump on equal/zero 
JUJHGE "" Jump on lesslnot greater 

or equal 
JlEIJNG = Jump on less or equal/not 

greater 

JBIJNAe = Jump on below/no! above 
Of equal 

Jeff,INA '" Jump on below or equall 
not above 

JP/JPE :: Jump on parity/parity even 

JO '" Jump on overflow 

JS '" Jump on sign 

JNE/JNZ = Jump on not equal/not zero 
JNLlJGE '" Jump on not less/greater 

or equal 
JNLE/JG = Jump on not less or equall 

greater 

Footn01es: 

AL = S-b!t accumulator 
AX ~ 16-blt accumulator 
ex ~ Count register 
OS " Data segment 
ES = ExIra segment 
Above/oelow refers to lInslgned vallie 
Greater = more poSitive 

~ 1 1 1 , mod 0 1 0 rim 

[1O"~IIOIO 

Less = less pOSItive (more negative) sLgned values 
lid c 1 Ihe~ 'to" leg II d ~ 0 then -Irom' feg 
'I w" , then word ,nSHuttlon If w = 0 ther, byte "'structlon 

if mod II then rim IS treated as a REG field 
If mod = 00 then OISP ~ 0", dlsp-Iow and dlsp-hlgh are absent 
If mod '" 01 then OISP = dlsp-Iow Slgn-exlended to 16-bltS, dlsp-hlgh IS absent 
it mod = ~O then DISP ::lISp-high dl~p-Iow 

It rim = 000 then EA = (eX) + (51) + Ot5P 
It rim = 001 then EA ~ (aX) + (01] ~ DISP 
if rim'" 010 then EA '" (BP) + (51) + DI5P 
II rim = OIl then EA = (ap) + {Oil + OISP 
If rim = 100 then EA = (SI) + OISP 
if 11m '" 101 then EA = (Oil + OISP 
if rim'" lID then EA '" (ap) + OISP' 
If rim = 111 then EA '" (BX) + DISP 
OISP tollows 2nd byte of Instruction (befDre data if reqUlled) 

"except it mod = 00 and rim" 110 then EA ~ disp-hlgh dlsp-Iow 

··MOV es, REG/MEMORY not allOWed 
Mnemon,cs Inlel. 1978 

tNT Intel'nlpl 

Type speCified 

Type 3 

INTO'" Interrupt on overflOW 

tRET In1errupt return 

PROCESSOR CONTROL 

CloC Clear carry 

CMC Complement carry 

STC Sel carry 

CLD Clear d,recliOn 

STO Set direction 

Cli Clear Inler'upt 

S11 Set Interrupt 

HLT Halt 

ESC Escape (to 8Klernal deVice) 

LOCK Bus loc~ prefiX 

If s w = 01 then 16 bitS of Immediate data form the operand 
il S'W = 11 then an Immediate data byte IS sign extended to 

form the 16-bit operand 
if v = 0 then "count" = 1, It v = I then "count" In (el) 
K = don't care 
Z IS lIsed for stnng primitives for comparison with ZF FLAG 
SEGMENT OVERRIO£ PREFIX 

[i!:0.iLiiJ 
REG IS aSSigned according 10 the followlIlg table 

16-81t (w = lJ 
0QciAX-

001 ex 
010 0), 

011 BX 
100 SP 
101 BP 
110 SI 

D' 

8·bltlw = OJ 
~ 

001 Cl 
O'iO Ol 
011 Bl 
100 AH 
101 CH 
110 DH 

BH 

Segment 

""ODES 
01 CS 
10 55 
11 DS 

Instructions which reference lhe flag register hIe as a lG-bl! object use 
the symbol FLAGS tD represent the lile 

FLAGS ~ XXX'X (OF)-(DF):(lF)"(TF) (SF),(ZF),X_IAF)'X,(PF)'x'(CF) 

3-161 

231197-23 



• 

• 
• 

80188 
HIGH INTEGRATION 8-BIT MICROPROCESSOR 

Integrated Feature Set • 8-Bit Data Bus Interface; 16-Bit Internal 
- Enhanced 8088-2 CPU Architecture 
- Clock Generator • Completely Object Code Compatible 
- 2 Independent, High-Speed DMA with All Existing iAPX 86, 88 Software 

Channels -10 New Instruction Types 
- Programmable Interrupt Controller 
- 3 Programmable 16-Bit Timers • Direct Addressing Capability to 
- Programmable Memory and 1 MByte of Memory and 64 KByte I/O 

Peripheral Chip-Select Logic • Complete System Development 
- Programmable Wait State Generator Support 
- Local Bus Controller - Development Software; Assembler, 
Available in 10 MHz (80188-10) and PL/M, Pascal, Fortran, and System 

Utilities 8 MHz (80188) Versions 

High-Performance 8 MHz Processor 
-In-Circuit-Emulator (ICETM-188) 

- At 8 MHz Provides 2 Times the • High Performance Numerical 
Performance of the Standard 80188 Coprocessing Capability Through 8087 

- 2 MByte/Sec Bus Bandwidth Interface 
Interface @8 MHz • Available in 68 Pin: 

- 2.5 MByte/Sec Bus Bandwidth - Ceramic Leadless Chip Carrier (LCC) 
Interface @ 10 MHz - Ceramic Pin Grid Array (PGA) 

SRDV-_ 
ARDV-_ 
fES'f-_ 
HOlD--

H~:: 
RESET_ 

- Plastic Leaded Chip Carrier (PLCC) 

ClKOUT Vee GND 

rD~ t ~ ~ 
I l.l 

CLOCK 
GENERATOR 

:eXECUTION UN"l 

16·BIT 
AlU 

I 
I 
I 
I 

16.81T I 
GENERAL I 
PURPOSE I 

REGISTERS ..J 

1'-----_0 

(See Packaging Spec., Order #231369) 

fNT3/INTAl 

INT2/1NTAO 

PROGRAMMABLE 
INTERRUPT 

CONTROLLER 

CONTROL \ 
REGISTERS I 

r 

TMR OUT 1 TMR OUT 0 

TMR IN, TMR IN t 
l.1 I 
t t 

PROGRAMMABLE 
TIMERS 

o , 2 

::~I;~EURNJ ~ 
MAX COUNT 
REGISTER A 

CONTROL REGISTERS 

16-81T 
COUNT REGISTER 

INTERNAL BUS u J u r----~DRQO 
~ r-r-DRQ1 

'-:P=RO"'G=RA7:M""M""AS"'L-;:-'E 
OMAUNIT o , 

CHIP.SELECT 2O·81T 
UNIT SOURCE POINTERS 

BUS INTERFACE 
UNIT 

, .. 81T L") 2O-81T 
SEGMENT ... DESTINATION 

1 

_10:' 
LOCK 

OTIR 

REGISTERS I POINTERS 
4-BYTE PROGRAMMABLE 16·BIT 

PREFETCH RCE~~J~R~ TRANSFER COUNT 

QUEUE l CONTROL 

11,. .IRAJLE iU Lf-----_---i'-rr
1

---r'1---r-1--rT'-r'1 AEGISTERS 

~~ <) _ y_ ucs _ 1 .!:S6IA2 
AD ADO- All/53· LCS PCS5IA1 

$7 AD7 !!9~~ 
MCSO-3 PCSG-4 

Figure 1. 80188 Block Diagram 
210706-1 

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent 
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. November 1985 
@ Intel Corporation, 1985 Order Number: 210706..(J06 

3-162 



inter 80188 

The Intel 80188 is a highly integrated microprocessor with an 8-bit data bus interface and a 16-bit internal 
architecture to give high performance. The 80188 effectively combines 15-20 of the most common 8088 
system components onto one. The 80188 provides two times greater throughput than the standard 5 MHz 
8088. The 80188 is upward compatible with 8086 and 8088 software and adds 10 new instruction types to the 
existing set. 

Leadless Chip Carrier 
TOP BOTTOM 

PINS FACING UP 

TOP 

I~l~ 
~9~lal~i~~u~~~lzl~I~I~I~ 
fi~g~z!~~!!6~~~~~ 

~ 52) ~_.,~JL.L ,L.l -- '.,,-
~s _ 

... ucs 
, LC5 51 ' 

S2~ 
ARDY ~ 

CLKOUT ; 
RESET ' 

X2 
XI 

Vss 
ALElQSO 

ROIQ5MD 
WRJQSl 

57 
Al9/S6 
A181S5 
A17/54 

: PCS6fA2 
: PCSSlAl 
r PCS4 
; PC53 
; PCS2 
~ PCS1 
;:: Vss 
::- peso 
~ RES 

TMROUT 1 
TMR DUTO 

TMRIN 1 
: TMRINO 
;., OROt 

Al61S3 ;1" l' ,0" H','C l' 1r " 
18 ORaD 

~ ~ ~~.~"~N~U-MQNm-·8 
PIN NO. 1 MARK~ c5lc <cC ~:C~~c~c!i!C ~ oil( C 

Pin Grid Array 
PINS FACING DOWN 

@@>@@@@@l@@ 
@@@@@@@@@@@ 
@@ @@ 
@@ @@ 
@@ @l@ 

@l(§ @@ 

@l@l @@ 
O@ @@ 
@li@ @@ 
@l®0®®@@@@@@ 

CD0®0®@@@@ 

Plastic Leaded Chip Carrier 
BOTTOM 

18,92021 222324 2S 26 27 28 29 30 31 323334 

Figure 2. 80188 Pinout Diagram 

3-163 

210706-2 

210706-3 

210706-27 



inter 80188 

Table 1.80188 Pin Description 

Symbol Pin No. Type Name and Function 

Vee, Vee 9,43 I SYSTEM POWER: + 5 volt power supply. 

Vss, Vss 26,60 I SYSTEM GROUND 

RESET 57 0 RESET OUTPUT: I ndicates that the 80188 CPU is being reset, and 
can be used as a system reset. It is active HIGH, synchronized with 
the processor clock, and lasts an inte~er number of clock periods 
corresponding to the length of the RE Signal. 

X1, X2 59,58 I CRYSTAL INPUTS: X1 and X2 provide an external connection for 
a fundamental mode parallel resonant crystal for the internal crystal 
oscillator. X1 can interface to an external clock instead of a crystal. 
In this case, minimize the capacitance on X2 or drive X2 with 
complemented X1. The input or oscillator frequency is internally 
divided by two to generate the clock Signal (CLKOUT). 

CLKOUT 56 0 CLOCK OUTPUT: Provides the system with a 50% duty cycle 
waveform. All device pin timings are specified relative to CLKOUT. 
CLKOUT has sufficient MOS drive capabilities for the 8087 Numeric 
Processor Extension. 

RES 24 I SYSTEM RESET: Causes the 80188 to immediately terminate its 
present activity, clear the internal logic, and enter a dormant state. 
This Signal may be asynchronous to the 80188 clock. The 801~ 
begins fetching instructions approximately 7 clock cycles after RES 
is returned HIGH. RES is required to be LOW for greater than 4 
clock cycles and is internally sy-nchronized. For proper initialization, 
the LOW-to-HIGH transition of RES must occur no sooner than 50 
microseconds after power ull. This input is provided with a Schmitt-
trigger to facilitate power-on RES generation via an RC network. 
When RES occurs, the 80188 will drive the status lines to an 
inactive level for one clock, and then tri-state them. 

TEST 47 I TEST: Is examined by the WAIT instruction. If the TEST input is 
HIGH when "WAIT" execution begins, instruction execution will 
suspend. TEST will be resampled until it goes LOW, at which time 
execution will resume. If interrupts are enabled while the 80188 is 
waiting for TEST, interrupts will be serviced. This input is 
synchronized internally. 

TMR INO, 20 I TIMER INPUTS: Are used either as clock or control signals, 
TMR IN 1 21 I depending upon the programmed timer mode. These inputs are 

active HIGH (or LOW-to-HIGH transitions are counted) and 
internally synchronized. 

TMROUTO, 22 0 TIMER OUTPUTS: Are used to provide single pulse or continuous 
TMROUT1 23 0 waveform generation, depending upon the timer mode selected. 

DROO, 18 I DMA REQUEST: Is driven HIGH by an external device when it 
DR01 19 I desires that a DMA channel (Channel 0 or 1) perform a transfer. 

These Signals are active HIGH, level-triggered, and internally 
synchronized. 

NMI 46 I NON·MASKABLE INTERRUPT: Is an edge-triggered input which 
causes a type 2 interrupt. NMI is not maskable internally. A 
transition from a LOW to HIGH initiates the interrupt at the next 
instruction boundary. NMI is latched internally. An NMI duration of 
one clock or more will guarantee service. This input is internally 
synchronized. 

3-164 



inter 80188 

Table 1.80188 Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

INTO,INT1, 45,44 I MASKABLE INTERRUPT REQUESTS: Can be requested by 
I NT211NTAO, 42 I/O strobing one of these pins. When configured as inputs, these pins 
INT3/INTA1 41 I/O are active HIGH. Interrupt Requests are synchronized internally. 

INT2 and INT3 may be configured via software to provide active-
LOW interrupt-acknowledge output signals. All interrupt inputs may 
be configured via software to be either edge- or level-triggered. To 
ensure recognition, all interrupt requests must remain active until 
the interrupt is acknowledged. When iRMX mode is selected, the 
function of these pins changes (see Interrupt Controller section of 
this data sheet). 

A19/S6, 65 0 ADDRESS BUS OUTPUTS (16-19) and BUS CYCLE STATUS (3-
A18/S5, 66 0 6): Reflect the four most significant address bits during T 1. These 
A17/S4, 67 0 Signals are active HIGH. During T 2, T 3, T w, and T 4, status 
A16/S3 68 0 information is available on these lines as encoded below: 

Low High 

S6 Processor Cycle DMACycle 

S3, S4, and S5 are defined as LOW during T 2-T 4. 

AD7-ADO 2,4,6,8 I/O ADDRESS/DATA BUS (0-7): Signals constitute the time 
11, 13, 15, 17 multiplexed memory or I/O address (T 1) and data (T 2, T 3, T w, and 

T 4) bus. The bus is active HIGH. 

A15-A8 1,3,5,7 0 ADDRESS-ONLY BUS (8-15): Containing valid address from Tj-T4' 
10,12,14,16 The bus is active HIGH. 

--

S7 64 0 This signal is always HIGH to indicate that the 80188 has an 8-bit 
data bus, and is tri-state OFF during bus HOLD. 

ALE/QSO 61 0 ADDRESS LATCH ENABLE/QUEUE STATUS 0: Is provided by the 
80188 to latch the address into the 8282/8283 address latches. 
ALE is active HIGH. Addresses are guaranteed to be valid on the 
trailing edge of ALE. The ALE rising edge is generated off the rising 
edge of the CLKOUT immediately preceding T 1 of the associated 
bus cycle, effectively one-half clock cycle earlier than in the 
standard 8088. The trailing edge is generated off the CLKOUT rising 
edge in T 1 as in the 8088. Note that ALE is never floated. 

WR/QS1 63 0 WRITE STROBE/QUEUE STATUS 1: Indicates that the data on the 
bus is to be written into a memory or an 110 device. WR is active for 
T 2, T 3, and T w of any write cycle. It is active LOW, and floats during 
"HOLD." It is driven HIGH for one clock during Reset, and then 
floated. When the 80188 is in queue status mode, the ALE/QSO and 
WR/QS1 pins provide information about processor/instruction 
queue interaction. 

QS1 QSO Queue Operation 

0 0 No Queue Operation 
0 1 First Opcode Byte Fetched 

from the Queue 
1 1 Subsequent Byte Fetched 

from the Queue 
1 0 Empty the Queue 

3-165 



inter 80188 

Table 1.80188 Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

RD/QSMD 62 0 READ STROBE: Indicates that the 80188 is performing a memory or 
1/0 read cycle. RD is active LOW for T 2, T 3, and T w of any read 
cycle. It is guaranteed not to go LOW in T 2 until after the Address 
Bus is floated. RD is active LOW, and floats during "HOLD". RD is 
driven HIGH for one clock during Reset, and then the output driver is 
floated. A weak internal pull-up mechanism on the RD line holds it 
HIGH when the line is not driven. During RESET the pin is sampled 
to determine whether the 80188 should provide ALE, WR, and RD, or 
if the Queue-Status should be provided. RD should be connected to 
GND to provide Queue-Status data. 

ARDY 55 I ASYNCHRONOUS READY: Informs the 80188 that the addressed 
memory space or 110 device will complete a data transfer. The 
ARDY input pin will accept an asynchronous input, and is active 
HIGH. Only the rising edge is internally synchronized by the 80188. 
This means that the falling edge of ARDY must be synchronized to 
the 80188 clock. If connected to Vee, no WAIT states are inserted. 
Asynchronous ready (ARDY) or synchronous ready (SRDY) must be 
active to terminate a bus cycle. If unused, this line should be tied 
LOW. 

SRDY 49 I SYNCHRONOUS READY: Must be synchronized externally to the 
80188. The use of SRDY provides a relaxed system-timing 
specification on the Ready input. This is accomplished by eliminating 
the one-half clock cycle which is required for internally resolving the 
signal level when using the ARDY input. This line is active HIGH. If 
this line is connected to Vee, no WAIT states are inserted. 
Asynchronous ready (ARDY) or synchronous ready (SRDY) must be 
active before a bus cycle is terminated. If unused, this line should be 
tied LOW. 

LOCK 48 0 LOCK: Output indicates that other system bus masters are not to 
gain control of the system bus while LOCK is active LOW. The LOCK 
signal is requested by the LOCK prefix instruction and is activated at 
the beginning of the first data cycle associated with the instruction 
following the LOCK prefix. It remains active until the completion of 
the instruction following the LOCK prefix. No prefetches will occur 
while LOCK is asserted. When executing more than one LOCK 
instruction, always make sure there are 6 bytes of code between the 
end of the first LOCK instruction and the start of the second LOCK 
instruction. LOCK is active LOW, is driven HIGH for one clock during 
RESET, and then floated. 

SO, S1, S2 52-54' 0 BUS CYCLE STATUS SO-S2: Are encoded to provide bus-
transaction information: 

80188 Bus Cycle Status Information 

S2 S1 SO Bus Cycle Initiated 

0 0 0 Interrupt Acknowledge 
0 0 1 Read 110 
0 1 0 Write I/O 
0 1 1 Halt 
1 0 0 I nstruction Fetch 
1 0 1 Read Data from Memory 
1 1 0 Write Data to Memory 
1 1 1 Passive (no bus cycle) 

The status pins float during "HO!:p." 
S2 may be used as a logical MilO indicator, and S1 as a DT /Fi 
indicator. 
The status lines are driven HIGH for one clock during Reset, and 
then floated until a bus cycle begins. 

3-166 



80188 

Table 1.80188 Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

HOLD (input) 50 I HOLD: Indicates that another bus master is requesting the local 
HLDA (output) 51 a bus. The HOLD input is active HIGH. HOLD may be asynchronous 

with respect to the 80188 clock. The 80188 will issue a HLDA in 
response to a HOLD request at the end of T 4 or TI. Simultaneous 
with the issuance of HLDA, the 80188 will float the local bus and 
control lines. After HOLD is detected as being LOW, the 80188 will 
lower HLDA. When the 80188 needs to run another bus cycle, it will 
again drive the local bus and control lines. 

UCS 34 a UPPER MEMORY CHIP SELECT: Is an active LOW output 
whenever a memory reference is made to the defined upper portion 
(1 K-256K block) of memory. This line is not floated during bus 
HOLD. The address range activating UCS is software 
programmabl~. 

LCS 33 a LOWER MEMORY CHIP SELECT: Is active LOW whenever a 
memory reference is made to the defined lower portion (1 K-256K) 
of memory. This line is not floated during bus HOLD. The address 
range activating LCS is software programmable. 

MCSO-3 38,37,36,35 a MID-RANGE MEMORY CHIP SELECT SIGNALS: Are active LOW 
wheo , memo", """0" ;, mad, to 'h, del;oed m;d-,,"!I' po",oo I 
of memory (8K-512K). These lines are not floated during bus 
HOLD. The address ranges activating MCSO-3 are software 

I programmable. 
--- - -- - , ,... • ". _~. _OR" _ • ...,. __ " ",OAO ___ "~ •• _.~ •• 

t"V;:'U-4 LO, LI-.:JU U I"'t:Nll"'nt:I'IAL ,,1'111'" :»t:Lt:1.. I :»1I.:mIAL:» \/-<+; ..... rtl acilvtl LUVV Wlltlrl 
a reference is made to the defined peripheral area (64K byte I/O 
space). These lines are not floated during bus HOLD. The address 
ranges activating PCSO-4 are software programmable. 

PCS5/A1 31 a PERIPHERAL CHIP SELECT 5 or LATCHED Ai: May be 
programmed to provide a sixth peripheral chip select, or to provide 
an internally latched A 1 signal. The address range activating PCS5 
is software programmable. When programmed to provide latched 
A 1, rather than PCS5, this pin will retain the previously latched value 
of A1 during a bus HOLD. Ai is active HIGH. 

PCS6/A2 32 a PERIPHERAL CHIP SELECT 6 or LATCHED A2: May be 

I 
programmed to provide a seventh peripheral chip select, or to 
provide an internally latched A2 signal. The address range 
activating peS6 is software programmable. When programmed to 
provide latched A2, rather than PCS6, this pin will retain the 
previously latched value of A2 during a bus HOLD. A2 is active 
HIGH. 

DT/R 40 a DATA TRANSMIT/RECEIVE: Controls the direction of data flow 
through the external 8286/8287 data bus transceiver. When LOW, 
data is transferred to the 80188. When HIGH the 80188 places write 
data on the data bus. 

DEN 39 a DATA ENABLE: Is provided as an 8286/8287 data bus transceiver 
output enable. DEN is active LOW dl!!:ing each memory and I/O 
access. DEN is HIGH whenever DT /R changes state. 

3-167 



inter 80188 

FUNCTIONAL DESCRIPTION 

Introduction 

The following Functional Description describes the 
base architecture of the 80188. This architecture is 
common to the 8086, 8088 and 80286 microproces­
sor families as well. The 80188 is a very high inte­
gration 8-bit microprocessor. It combines 15-20 of 
the most common microprocessor system compo­
nents onto one chip while providing twice the per­
formance of the standard 8088. The 80188 is object 
code compatible with the 8086, 8088 microproces­
sors and adds 10 new instruction types to the exist­
ing 8086, 8088 instruction set. 

80188 BASE ARCHITECTURE 

The 8086, 8088, 80186, 80188 and 80286 family all 
contain the same basic set of registers, instructions, 
and addressing modes. The 80188 processor is up­
ward compatible with the 8086, 8088, 80186, and 
80286 CPUs. 

Register Set 

The 80188 base architecture has fourteen registers 
as shown in Figures 3a and 3b. These registers are 
grouped into the following categories. 

GENERAL REGISTERS 

Eight 16-bit general purpose registers may be used 
to contain arithmetic and logical operands. Four of 
these (AX, BX, CX, and DX) can be used as 16-bit 
registers or split into pairs of separate 8-bit registers. 

BYTE 
ADDRESSABLE 
18·BIT 
REGISTER 
NAMES 
SHOWN) 

16·BIT 
REGISTER 

NAME 

\ 

AX 

OX 

CX 

BX 

BP 

I 

o I 

SP 

15 

o 7 

AH AL 

DH DL 

CH CL 

BH BL 

GENERAL 
REGISTERS 

SPECIAL 
REGISTER 
FUNCTIONS 

MULTIPLY IDIVIDE 
110 INSTRUCTIONS 

lOOP/SHIFT {REPEAT ICOUNT 

BASE REGISTERS 

INDEX REGISTERS 

STACK POINTER 

SEGMENT REGISTERS 

Four 16-bit special purpose registers select, at any 
given time, the segments of memory that are imme­
diately addressable for code, stack, and data. (For 
usage, refer to Memory Organization.) 

BASE AND INDEX REGISTERS 

Four of the general purpose registers may also be 
used to determine offset addresses of operands in 
memory. These registers may contain base address­
es or indexes to particular locations within a seg­
ment. The addressing mode selects the specific reg­
isters for operand and address calculations. 

STATUS AND CONTROL REGISTERS 

Two 16-bit special purpose registers record or alter 
certain aspects of the 80188 processor state. These 
are the Instruction Pointer Register, which contains 
the offset address of the next sequential instruction 
to be executed, and the Status Word Register, which 
contains status and control flag bits (see Figures 3a 
and 3b). 

STATUS WORD DESCRIPTION 

The Status Word records specific characteristics of 
the result of logical and arithmetic instructions (bits 
0, 2, 4, 6, 7, and 11) and controls the operation of 
the 80188 within a given operating mode (bits 8, 9, 
and 10). The Status Word Register is 16-bits wide. 
The function of the Status Word bits is shown in 
Table 2. 

15 

CS 

~ 
CODE SEGMENT SELECTOR 

OS DATA SEGMENT SELECTOR 

SS STACK SEGMENT SELECTOR 

ES EXTRA SEGMENT SELECTOR 

SEGMENT REGISTERS 

15 

F 

I 
STATUS WORD 

IP INSTRUCTION POINTER 

STATUS AND CONTROL 
REGISTERS 

Figure 3a. 80188 General Purpose Register Set 

3-168 



inter 80188 

STATUS FLAGS 

CARRV 

PARITY -~-----.----------~~ 

AUXILIARV CARRY -~-~.­

ZEAO----­

SIGN -----------, 

CONTROL FLAGS 

'-------~ TRAP FLAG 

~ INTEL RESERVED 

Figure 3b. Status Word Format 

INTERRUPT ENABLE:. 

DIRECTION FLAG 

210706-4 

Table 2. Status Word Bit Functions Instruction Set 
Bit 

Name 
Position 

0 CF 

2 PF 

4 AF 

6 ZF 

7 SF 

8 TF 

9 IF 

10 OF 

11 OF 

Function 

Carry Flag-Set on high-order 
bit carry or borrow; cleared 
otherwise 

Parity Flag-Set if low-order 
A hit!': nf rp.!':lllt r.nntAin an p.ven 
number of 1-bits; cleared 
otherwise 

Set on carry from or borrow to 
the low order four bits of AL; 
cleared otherwise 

Zero Flag-Set if result is zero; 
cleared otherwise 

Sign Flag-Set equal to high-
order bit of result (0 if positive, 
1 if negative) 

Single Step Flag-Once set, a 
single step interrupt occurs 
after the next instruction 
executes. TF is cleared by the 
single step interrupt. 

Interrupt-Enable Flag-When 
set, maskable interrupts will 
cause the CPU to transfer 
control to an interrupt vector 
specified location. 

Direction Flag-Causes string 
instructions to auto decrement 
the appropriate index register 
when set. Clearing OF causes 
auto increment. 

Overflow Flag-Set if the 
signed result cannot be 
expressed within the number 
of bits in the destination 
operand; cleared otherwise 

The instruction set is divided into seven categories: 
data transfer, arithmetic, shift/rotate/logical, string 
manipulation, control transfer, high-level instruc­
tions, and processor control. These categories are 
summarized in Figure 4. 

An 80188 instruction can reference anywhere from 
"7n,,,,,, +" C:-~\I~I""!Io1 nnor~nnC! An nno\"'e.nn ("':&n roe.ino in 
-""' ................. ....,,,-" ... ,., ... 1""" ................... " •• , '--1""-'---- -,-" .. _-"-- " 
a register, in the instruction itself, or in memory. Spe­
cific operand addressing modes are discussed later 
in this data sheet. 

Memory Organization 

Memory is organized in sets of segments. Each seg­
ment is a linear contiguous sequence of up to 64K 
(216) S-bit bytes. Memory is addressed using a two­
component address (a pointer) that consists of a 16-
bit base segment and a 16-bit offset. The 16-bit 
base values are contained in one of four internal 
segment registers (code, data, stack, extra). The 
physical address is calculated by shifting the base 
value LEFT by four bits and adding the 16-bit offset 
value to yield a 20-bit physical address (see Figure 
5). This allows for a 1 MByte physical address size. 

All instructions that address operands in memory 
must specify the base segment and the 16-bit offset 
value. For speed and compact instruction encoding, 
the segment register used for physical address gen­
eration is implied by the addressing mode used (see 
Table 3). These rules follow the way programs are 
written (see Figure 6) as independent modules that 
require areas for code and data, a stack, and access 
to external data areas. 

Special segment override instruction prefixes allow 
the implicit segment register selection rules to be 
overridden for special cases. The stack, data, and 
extra segments may coincide for simple programs. 

3-169 



inter 80188 

GENERAL PURPOSE MOVS Move byte or word string 

MOV Move byte or word INS Input bytes or word string 
PUSH Push word onto stack OUTS Output bytes or word string 
POP Pop word off stack 

CMPS Compare byte or word string 
PUSHA Push all registers on stack 

SCAS Scan byte or word string 
POPA Pop all registers from stack 

LODS Load byte or word string 
XCHG Exchange byte or word 

XLAT Translate byte 
sros Store byte or word string 

INPUT/OUTPUT REP Repeat 

IN Input byte or word REPE/REPZ Repeat while equal/zero 

OUT Output byte or word REPNE/REPNZ Repeat while not equal/not zero 

ADDRESS OBJECT LOGICALS 

LEA Load effective address NOT "Not" byte or word 

LDS Load pointer using DS AND "And" byte or word 

LES Load pointer using ES 
OR "Inclusive or" byte or word 

XOR "Exclusive or" byte or word 
FLAG TRANSFER 

TEST "Test" byte or word 
LAHF Load AH register from flags 

SHIFTS 
SAHF Store AH register in flags 

SHLISAL Shift logical/ arithmetic left byte or word 
PUSHF Push flags onto stack SHR Shift logical right byte or word 
POPF Pop flags off stack SAR Shift arithmetic right byte or word 

ADDITION ROTATES 
ADD Add byte or word ROL Rotate left byte or word 

ADC Add byte or word with carry ROR Rotate right byte or word 

INC Increment byte or word by 1 RCL Rotate through carry left byte or word 

AAA ASCII adjust for addition RCR Rotate through carry right byte or word 

DAA Decimal adjust for addition FLAG OPERATIONS 

SUBTRACTION STC Set carry flag 

SUB Subtract byte or word CLC Clear carry flag 

SBB Subtract byte or word with borrow CMC Complement carry flag 

DEC Decrement byte or word by 1 STD Set direction flag 

NEG Negate byte or word CLD Clear direction flag 

CMP Compare byte or word STI Set interrupt enable flag 

AAS ASCII adjust for subtraction CLI Clear interrupt enable flag 

DAS Decimal adjust for subtraction EXTERNAL SYNCHRONIZATION 

MULTIPLICATION HLT Halt until interrupt or reset 

MUL Multiply byte or word unsigned WAIT Wait for TEST pin active 

IMUL Integer multiply byte or word ESC Escape to extension processor 

AAM ASCII adjust for multiply LOCK Lock bus during next instruction 

DIVISION NO OPERATION 

DIV Divide byte or word unsigned NOP No operation 

IDIV Integer divide byte or word HIGH LEVEL INSTRUCTIONS 

AAD ASCII adjust for division ENTER Format stack for procedure entry 

CBW Convert byte to word LEAVE Restore stack for procedure exit 

CWD Convert word to doubleword BOUND Detects values outside prescribed range 

Figure 4. 80188 Instruction Set 

3-170 



80188 

CONDITIONAL TRANSFERS JO Jump if overflow 

JAlJNBE Jump if above/not below nor equal JP/JPE Jump if parity/parity even 

JAE/JNB Jump if above or equal/not below JS Jump if sign 

JB/JNAE Jump if below/not above nor equal UNCONDITIONAL TRANSFERS 

JBE/JNA Jump if below or equal/not above CALL Call procedure 

JC Jump if carry RET Return from procedure 

JE/JZ Jump if equal/zero JMP Jump 

JG/JNLE Jump if greater/not less nor equal ITERATION CONTROLS 

JGE/JNL Jump if greater or equal/not less LOOP Loop 

JLlJNGE Jump if less/not greater nor equal LOOPE/LOOPZ Loop if equal/zero 

JLE/JNG Jump if less or equal/not greater LOOPNE/LOOPNZ Loop if not equal/not zero 

JNC Jump if not carry JCXZ Jump if register CX = 0 

JNE/JNZ Jump if not equal/not zero INTERRUPTS 

JNO Jump if not overflow INT Interrupt 

JNP/JPO Jump if not parity/parity odd INTO Interrupt if overflow 

JNS Jump if not sign IRET Interrupt return 

Figure 4. 80188 Instruction Set (Continued) 

To access operands that do not reside in one of the 
four immediately available segments, a full 32-bit 
PUi(I'Lt:ii" Call b6 US~~ tv re:oCid both th~ bQ:;~ ~:;O~ 
ment) and offset values. 

.SHIFT LEFT 481T51 , , 3 , ISEOMEN' } SASE 

1 : 01 " 
o LOGICAL , , 3 , ADDRESS 

1 )OFFSEl 

" t 0 
00 , , 

[.1 0 ,I, " 0 

" 0 

I , , '! PHYSICAL ADDRESS 

" 
TOMEMORY 210706-5 

Figure 5. Two Component Address 

Table 3. Segment Register Selection Rules 

Memory Segment Implicit Segment Reference Register Selection Rule Needed Used 

Instructions Code (CS) Instruction prefetch and 
immediate data. 

Stack Stack (SS) All stack pushes and 
pops; any memory 
references which use BP 
Register as a base 
register. 

External Extra (ES) All string instruction 
Data references which use 
(Global) the 01 register as an 

index. 
Local Data Data (OS) All other data references. 

3-171 

MODULE A 

r---' 
I 

~ODE 
DATA 

MOOULE 8 1-----1--, 

PROCESS 
STACK 

PROCESS 
DATA 
BLOCK 1 

PROCESS 0 
DATA 
BLOCK 2 

I I 
l ___ J 

MEMORY 

CPU 

COOE 

DATA 

STACK 

EXTRA 

SEGMENT 
REGISTERS 

210706-6 

Figure 6. Segmented Memory Helps 
Structure Software 



80188 

Addressing Modes 

The 80188 provides eight categories of addressing 
modes to specify operands. Two addressing modes 
are provided for instructions that operate on register 
or immediate operands: 

• Register Operand Mode: The operand is located 
in one of the 8- or 16-bit general registers. 

• Immediate Operand Mode: The operand is in­
cluded in the instruction. 

Six modes are provided to specify the location of an 
operand in a memory segment. A memory operand 
address consists of two i6-bit components: a seg­
ment base and an offset. The segment base is sup­
plied by a 16-bit segment register either implicitly 
chosen by the addressing mode or explicitly chosen 
by a segment override prefix. The offset, also called 
the effective address, is calculated by summing any 
combination of the following three address ele­
ments: 

• the displacement (an 8- or i6-bit immediate value 
contained in the instruction); 

• the base (contents of either the BX or BP base 
registers); and 

• the index (contents of either the SI or 01 index 
registers). 

Any carry out from the 16-bit addition is ignored. 
Eight-bit displacements are sign extended to i6-bit 
values. 

Combinations of these three address elements de­
fine the six memory addressing modes, described 
below. 

• Direct Mode: The operand's offset is contained in 
the instruction as an 8- or i6-bit displacement el­
ement. 

• Register Indirect Mode: The operand's offset is in 
one of the registers SI, 01, BX, or BP. 

• Based Mode: The operand's offset is the sum of 
an 8- or i6-bit displacement and the contents of 
a base register (8X or BP). 

• Indexed Mode: The operand's offset is the sum 
of an 8- or i6-bit displacement and the contents 
of an index register (SI or 01). 

• Based Indexed Mode: The operand's offset is the 
sum of the contents of a base register and an 
index register. 

• Based Indexed Mode with Displacement: The op­
erand's offset is the sum of a base register's con­
tents, an index register's contents, and an 8- or 
16-bit displacement. 

Data Types 

The . 80188 directly supports the following data 
types: 

• Integer: A signed binary numeric value contained 
in an 8-bit byte or a 16-bit word. All operations 
assume a 2's complement representation. 
Signed 32- and 64-bit integers are supported us­
ing the 80188/20 Numeric Oata Processor. 

• Ordinal' An unsigned binary numeric value con­
tained in an 8-bit byte or a 16-bit word. 

e Pointer: A 16- or 32-bit quantity, composed of a 
i6-bit offset component or a i6-bit segment base 
component in addition to a 16-bit offset compo­
nent. 

• String: A contiguous sequence of bytes or words. 
A string may contain from 1 to 64K bytes. 

• ASCII: A byte representation of alphanumeric and 
control characters using the ASCII standard of 
character representation. 

• BCD: A byte (unpacked) representation of the 
decimal digits 0-9. 

• Packed BCD: A byte (packed) representation of 
two decimal digits (0-9). One digit is stored in 
each nibble (4-bits) of the byte. 

• Floating Point: A signed 32-, 64-, or 80-bit real 
number representation. (Floating point operands 
are supported using the 80188/20 Numeric Oata 
Processor configuration.) 

In general, individual data elements must fit within 
defined segment limits. Figure 7 graphically repre­
sents the data types supported by the 80188. 

1/0 Space 

The 1/0 space consists of 64K 8-bit or 32K 16-bit 
ports. Separate instructions address the 1/0 space 
with either an 8-bit port address, specified in the in­
struction, or a 16-bit port address in the OX register. 
8-bit port addresses are zero extended such that 
A15-Aa are LOW. 1/0 port addresses 00F8(H) 
through OOFF(H) are reserved. 

Interrupts 

An interrupt transfers execution to a new program 
location. The old program address (CS:IP) and ma­
chine state (Status Word) are saved on the stack to 
allow resumption of the interrupted program. Inter­
rupts fall into three classes: hardware initiated, INT 
instructions, and instruction excepti6ns. Hardware 
initiated interrupts occur in response to an external 
input and are classified as non-maskable or mask­
able. 

3-172 



inter 80188 

, , 
SIGNED I1'TT'fTTTl 
BYTE~ 

SIGN BIT 'l--J 
MAGNITUDE 

, , 
UNSIGNED fTTTTTTTl 

BYTE L...:....--I 
~ 
MAGNITUDE 

1~ 14 ... 1 8 7 0 Il 

s~6~g II i 1 ! ' 1 j 11 i , I' f , I 
SIGN BIT J LI '..::M::;:S:;'AG~N'""T",UruDE~---' 

SIGNED 31 ... J ·2 Hi'~ + 1 0 0 

D~b:~: II if I II I Iii I I' Ii I" , I ' i I I" , I ' 1 t I 
SIGN BIT J ~"--M"'A"'G~NI"'TU'"D"'"E----~ 

+7 +6 +5 +4 +3 +2 +1 

:~~~~ 6~li-,.::!::-_481L.."_1..---J1211..."--..JI..---J'611..."--..J"-'--J°1 
SIGN BIT J ... , ' -"M-"S."---::M"'AG"'N""T"'UD"'E~------' 

15 -+ 1 0 

UNS~~~g I f if Iii I Ii' I II I r I 
,~-MSB 

MAGNITUDE 

BiNARY 7 + N 0 

CODED fTTTTTTTl 
DECiMAL L-.:.--J 

(BCD) o,~~f N 

1 +N 0 

ASCII~ 
ASCII 

CHARACTERN 

7 +N 0 
PACKEO~ 

BCD L-..-...J 
I...--..J 
MOST 
SIGNIFICANT DIG!T 

715 +N 0 

STRING~ - •• 

BYTE WORD N 

7 -+- 1 a 7 0 

l"II'''lilll"11 
BCD BCD 

DIGIT 1 DIGIT 0 

7 -+- 1 07 0 0 

III lIt iii i II I i Ii I 
ASCII ASCII 

CHARACTER, CHARACTERo 

7 ... 1 07 0 0 

l'filil'lii'I'''1 
I...--..J 
LEAST 

SIGNIFICANT DIGIT 

715 -+- 1 0715 a 0 

I' II I!"I'''I!1i I 
BYTE WORD 1 ByrE WORD 0 

31 +3 +2 1615 +1 0 

POINTER I' ill iii I' i , I' , iii iiI iii Iii i j iii I 
I 

SELECTOR OFFSET 
19+9 +8 +7 ... 6 ... , +4 +'.\ +2 +1 

Fl~~~T~ 1/ 
SIGN SIT ..J~, _'-........ --..JI..-........ --..J"-.--JI...--..J"-.--JI...--..J"-...J 

EXPONENT MAGNITUDE 

210706-7 

NOTE: 
'Supported By 80188/20 Numeric Data Processor 
Configurati0.n. 

Figure 7. 80188 Supported Data Types 

Programs may cause an interrupt with an INT in­
struction. Instruction exceptions occur when an un­
usual condition, which prevents further instruction 
processing, is detected while attempting to execute 
an instruction. If the exception was caused by exe­
cuting an ESC instruction with the ESC trap bit set in 
the relocation register, the return instruction will 
point to the ESC instruction, or to the segment over­
ride prefix immediately preceding the ESC instruc­
tion if the prefix was present. In all other cases, the 

return address from an exception will point at the 
instruction immediately following the instruction 
causing the exception. 

A table containing up to 256 pOinters defines the 
proper interrupt service routine for each interrupt. In­
terrupts 0-31, some of which are used for instruc­
tion exceptions, are reserved. Table 4 shows the 
80188 predefined types and default priority levels. 
For each interrupt, an 8-bit vector must be supplied 
to the 80188 which identifies the appropriate table 
entry. Exceptions supply the interrupt vector inter­
nally. In addition, internal peripherals and non cas­
caded external interrupts will generate their own 
vectors through the internal interrupt controller. INT 
instructions contain or imply the vector and allow 
access to all 256 interrupts. Maskable hardware ini­
tiated interrupts supply the 8-bit vector to the CPU 
during an interrupt acknowledge bus sequence. 
Non-maskable hardware interrupts use a predefined 
internally supplied vector. 

Interrupt Sources 

The 80188 can service interrupts generated by soft­
ware or hardware. The software interrupts are gen­
erated by specific instructions (INT, ESC, unused 
OP, etc.) or the results of conditions specified by 
instructions (array bounds check, INTO, DIV, IDIV, 
etc.). All interrupt sources are serviced by an indirect 
call through an element of a vector table. This vector 
table is indexed by using the interrupt vector type 
(Table 4), multiplied by four. All hardware-generated 
interrupts are sampled at the end of each instruc­
tion. Thus, the software interrupts will begin service 
first. Once the service routine is entered and inter­
rupts are enabled, any hardware source of sufficient 
priority can interrupt the service routine in progress. 

The software generated 80188 interrupts are de­
scribed below. 

DIVIDE ERROR EXCEPTION (TYPE 0) 

Generated when a DIV or IDIV instruction quotient 
cannot be expressed in the number of bits in the 
destination. 

SINGLE-STEP INTERRUPT (TYPE 1) 

Generated after most instructions if the TF flag is 
set. Interrupts will not be generated after prefix in­
structions (e.g., REP), instructions which modify seg­
ment registers (e.g., POP OS), or the WAIT instruc­
tion. 

NON-MASKABLE INTERRUPT -NMI (TYPE 2) 

An external interrupt source which cannot be 
masked. 

3-173 



80188 

Table 4. 80188 Interrupt Vectors 

Interrupt Vector Default Related 
Name Type Priority Instructions 

Divide Error 0 *1 DIV.IDIV 
Exception 

Single Step 1 12*'2 All 
Interrupt 

NMI 2 1 All 
Breakpoint 3 *1 INT 

Interrupt 
INTO Detected 4 *1 INTO 

Overflow 
Exception 

Array Bounds 5 *1 BOUND 
Exception 

Unused-Opcode 6 '1 Undefined 
Exception Opcodes 

ESCOpcode 7 *1 *** ESCOpcodes 
Exception 

Timer 0 Interrupt 8 2A···· 
Timer 1 Interrupt 18 ,2B···· 
Timer 2 Interrupt 19 2C···· 
Reserved 9 3 
DMA 0 Interrupt 10 4 
DMA 1 Interrupt 11 5 
INTO Interrupt 12 6 
INTi Interrupt 13 7 
INT2 Interrupt 14 8 
INT3 Interrupt 

, 
15 9 

NOTES: 
*1. These are generated as the result of an instruction exe­
cution. 
"2. This is handled as in the 6066, 
"* *3. All t~ree timers constitute one source of request to 
the interrupt controller. The Timer Interrupts all have the 
same default priority level with respect to all other interrupt 
sources. However. they have a defined priority ordering 
amongst themselves. (Priority 2A is higher priority than 2B.) 
Each Timer Interrupt has a separate vector type number. 
4. Default priorities for the interrupt sources are used only if 
the user does not program each source into a unique prior­
ity level. 
"'5. An escape opcode will cause a trap only if the proper 
bit is set in the peripheral control block relocation register. 

BREAKPOINT INTERRUPT (TYPE 3) 

A one-byte version of the INT instruction. It uses 12 
as an index into the service routine address table 
(because it is a type 3 interrupt). 

INTO DETECTED OVERFLOW EXCEPTION 
(TYPE 4) 

Generated during an INTO instruction if the OF bit is 
set. 

ARRAY BOUNDS EXCEPTION (TYPE 5) 

Generated during a BOUND instruction if the array 
index is outside the array bounds. The array bounds 
are located in memory at a location indicated by one 
of the instruction operands. The other operand indi­
cates the value of the index to be checked. 

UNUSED OPCODE EXCEPTION (TYPE 6) 

Generated if execution is attempted on undefined 
opcodes. 

ESCAPE OPCODE EXCEPTION (TYPE 7) 

Generated if execution is attempted of ESC opcodes 
(D8H-DFH). This exception will only be generated if 
a bit in the relocation register is set. The return ad­
dress of this exception will point to the ESC instruc­
tion causing the exception. If a segment override 
prefix preceded the ESC instruction. the return ad­
dress will point to the segment override prefix. 

Hardware-generated interrupts are divided into two 
groups: maskable interrupts and non-maskable in­
terrupts. The 80188 provides maskable hardware in­
terrupt request pins INTO-INT3. In addition. mask­
able interrupts may be generated by the 80188 inte­
grated DMA controller and the integrated timer unit. 
The vector types for these interrupts are shown in 
Table 4. Software enables these inputs by setting 
the Interrupt Flag bit (IF) in the Status Word. The 
interrupt controller is discussed in the peripheral 
section of this data sheet. 

Further maskable interrupts are disabled while serv­
icing an interrupt because the IF bit is reset as part 
of the response to an interrupt or exception. The 
saved Status Word will reflect the enable status of 
the processor prior to the interrupt. The interrupt flag 
will remain zero unless specifically set. The interrupt 
return instruction restores the Status Word. thereby 
restoring the original status of IF bit. If the interrupt 
return re-enables interrupts, and another interrupt is 
pending. the 80188 will immediately service the 
highest-priority interrupt pending, I.e .• no instructions 
of the main line program will be executed. 

Non-Maskable Interrupt Request (NMI) 

A non-maskable interrupt (NMI) is also provided. 
This interrupt is serviced regardless of the state of 
the IF bit. A typical use of NMI wOloJld be to activate a 
power failure routine. The activation of this input 
causes an interrupt with an internally supplied vector 
value of 2. No external interrupt acknowledge se­
quence is performed. The IF bit is cleared at the 
beginning of an NMI interrupt to prevent maskable 
interrupts from being serviced. 

3-174 



80188 

Single-Step Interrupt 

The 80188 has an internal interrupt that allows pro­
grams to execute one instruction at a time. It is 
called the single-step interrupt and is controlled by 
the single-step flag bit (TF) in the Status Word. Once 
this bit is set, an internal single-step interrupt will 
occur after the next instruction has been executed. 
The interrupt clears the TF bit and uses an internally 
supplied vector of 1. The IRET instruction is used to 
set the TF bit and transfer control to the next instruc­
tion to be single-stepped. 

Initialization and Processor Reset 

Processor initialization or startup is accomplished by 
driving the RES input pin LOW. RES forces the 
80188 to terminate all execution and local bus activi­
~o instruction or bus activity will occur as long as 
RES is active. After RES becomes inactive and an 
internal processing interval elapses, the 80188 be­
gins execution with the instruction at physical loca­
tion FFFFO(H). RES also sets some registers to pre­
defined values as shown in Table 5. 

Table 5. 80188 Initial Register State after RESET 

Status Word F002(H) 
Instruction Pointer OOOO(H) 
Code Segment FFFF(H) 
Data Segment OOOO(H) 
Extra Segment OOOO(H) 
Stack Segment OOOO(H) 
Relocation Register 20FF(H) 
UMCS FFFB(H) 

THE 80188 COMPARED TO 
THE 80186 

The 80188 CPU is an B-bit processor designed 
around the 80186 internal structure. Most internal 
functions of the 80188 are identical to the equivalent 
80186 functions. The 80188 handles the external 
bus the same way the 80186 does with the distinc­
tion of handling only 8 bits at a time. Sixteen bit op­
erands are fetched or written in two consecutive bus 
cycles. Both processors will appear identical to the 

software engineer, with the exception of execution 
time. The internal register structure is identical and 
all instructions have the same end result. The differ­
ences between the 80188 and the 80186 are out­
lined below. Internally, there are three differences 
between the 80188 and the 80186. All changes are 
related to the 8-bit bus interface. 

• The queue length is 4 bytes in the 80188, where­
as the 80186 queue contains 6 bytes, or three 
words. The queue was shortened to prevent 
overuse of the bus by the BIU when prefetching 
instructions. This was required because of the 
additional time necessary to fetch instructions 8 
bits at a time. 

• To further optimize the queue, the prefetching al­
gorithm was changed. The 80188 BIU will fetch a 
new instruction to load into the queue each time 
there is a i-byte hole (space available) in the 
queue. The 80186 waits until a 2-byte space is 
available. 

• The internal execution time of the instruction is 
affected by the 8-bit interface. All 16-bit fetches 
and writes from/to memory take an additional 
four clock cycles. The CPU may also be limited 
by the speed of instruction fetches when a series 
of simple operations occur. When the more so­
phisticated instructions of the 80188 are being 
used, the queue has time to fill and the execution 
proceeds as fast as the execution unit will allow. 

The 80188 and 80186 are completely software com­
patible by virtue of their identical execution units. 
Software that is system dependent may not be com­
pletely transferable, but software that is not system 
dependent will operate equally well on an 80188 or 
an 80186. 

The hardware interface of the 80188 contains the 
major differences between the two CPUs. The pin 
assignments are nearly identical, however, with the 
following functional changes. 

3-175 

• A8-A 15-These pins are only address outputs 
on the 80188. These address lines are latched 
internally and remain valid throughout a bus cycle 
in a manner similar to the 8085 upper address 
lines. 

• BHE has no meaning on the 80188 and has been 
eliminated. 



80188 

80188 Clock Generator 

The 80188 provides an on-chip clock generator for 
both internal and external clock generation. The 
clock generator features a crystal oscillator, a divide­
by-two counter, synchronous and asynchronous 
ready inputs, and reset circuitry. 

Oscillator 

The oscillator circuit of the 80188 is designed to be 
used with a parallel resonant· fundamental mode 
crystal. This is used as the time base for the 80188. 
The crystal frequency selected will be double the 
CPU clock frequency. Use of an LC or RC circuit is 
not recommended with this oscillator. If an external 
oscillator is used, it can be connected directly to in­
put pin X1 in lieu of a crystal. The output of the oscil­
lator is not directly available outside the 80188. The 
recommended crystal configuration is shown in Fig­
ure 8. 

x, r-------l 
c:::::J • MHz CRYSTAL 

x,I--------I 
80188 

80188·10 (10 MHz) 

80188 (8 MHz) 

210706-8 

Figure 8. Recommended 80188 
Crystal Configuration 

The following parameters may be used for choosing 
a crystal: 

Temperature Range: 0 to 70°C 
ESR (Equivalent Series Resistance): 30n max 
Co (Shunt Capacitance of Crystal): 7.0 pf max 
CL (Load Capacitance): 20 pf ± 2 pf 
Drive Level: 1 mW max 

Clock Generator 

The 80188 clock generator provides the 50% duty 
cycle processor clock for the 80188. It does this by 
dividing the oscillator output by 2 forming the sym­
metrical clock. If an external oscillator is used, the 
~tate of. the clock generator will change on the fail­
Ing edge of the oscillator signal. The CLKOUT pin 
provides the processor clock signal for use outside 

the 80188. This may be used to drive other system 
components. All timings are referenced to the output 
clock. 

READY Synchronization 

The 80188 provides both synchronous and asyn­
chronous ready inputs. Asynchronous ready syn­
chronization is accomplished by circuitry which sam­
pl~s ARDY in the middle of T 2, T 3 and again in the 
middle of each T w until ARDY is sampled HIGH. 
One-half CLKOUT cycle of resolution time is used. 
Full synchronization is performed only on the rising 
edge of ARDY, i.e., the falling edge of ARDY must 
be synchronized to the CLKOUT Signal if it will occur 
during T 2, T 3, or T w. HIGH-to-LOW transitions of 
ARDY must be performed synchronously to the CPU 
clock. 

A second ready input (SRDY) is provided to inter­
face with externally synchronized ready signals. This 
input is sampled at the end of T 2, T 3 and again at 
the end of each T w until it is sampled HIGH. By 
~sing this input rather than the asynchronous ready 
Input, the half-clock cycle resolution time penalty is 
eliminated. 

This input must satisfy set-up and hold times to guar­
antee proper operation of the circuit. 

In addition, the 80188, as part of the integrated chip­
select logic, has the capability to program WAIT 
states for memory and peripheral blocks. This is dis­
cussed in the Chip Select/Ready Logic description. 

RESET Logic 

The 80188 provides both a RES input pin and a syn­
chronized RESET pin for use with other system 
components. The RES input pin on the 80188 is pro­
vided with hysteresis in order to facilitate power-on 
Reset generation via an RC network. RESET is 
guaranteed to remain active for at least five clocks 
given a RES input of at least six clocks. RESET may 
be delayed up to two and one-half clocks behind 
RES. 

Multiple 801 ~rocessors may be synchronized 
through the RES input pin, since this input resets 
both the processor and divide-by-two internal count­
er in the clock generator. In order to insure that the 
divide-by-two counters all begin counting at the 
same time, the active going edge of RES must satis­
fy a 25 ns setup time before the falling edge of the 

3-176 



80188 

80188 clock input. In addition, in order to insure that 
all CPUs begin executing in the same clock cycle, 
the reset must satisfy a 25 ns setup time before the 
rising edge of the CLKOUT signal of all the proces­
sors. 

LOCAL BUS CONTROLLER 

The 80188 provides a local bus controller to gener­
ate the local bus control signals. In addition, it em­
ploys a HOLD/HLDA protocol for relinquishing the 
local bus to other bus masters. It also provides con­
trol lines that can be used to enable external buffers 
and to direct the flow of data on and off the local 
bus. 

Memory/Peripheral Control 

The 80188 provides ALE, RD, and WR bus control 
signals. The RD and WR signals are used to strobe 
data from memory to the 80188 or to strobe data 
from the 80188 to memory. The ALE line provides a 
strobe to address latches for the multiplexed ad­
dress/ data bus. The 80188 local bus controller does 
not provide a memory/I/O signal. If this is required, 
the user will have to use the 52 signal (which will 
require external latching), make the memory and 1/0 
spaces nonoverlapping, or use only the integrated 
chip-select circuitry. 

Transceiver Control 

The 80188 generates two control signals to be con­
nected to 8286/8287 transceiver chips. This capa­
bility allows the addition of transceivers for extra 
buffering with~t add.!!.!£Lexternal logic. These con­
trol lines, DT IR and DEN, are generated to control 
the flow of data through the transceivers. The opera­
tion of these signals is shown in Table 6. 

Table 6. Transceiver Control Signals Description 

Pin Name Function 

DEN (Data Enable) Enables the output 
drivers of the 
transceivers. It is active 
LOW during memory, 

DT IR (Data Transmit! 
1/0, or INTA cycles. 
Determines the direction 

Receive) of travel through the 
transceivers. A HIGH 
level directs data away 
from the processor 
during write operations, 
while a LOW level directs 
data toward the 
processor during a read 
operation. 

Local Bus Arbitration 

The 80188 uses a HOLD/HLDA system of local bus 
exchange. This provides an asynchronous bus ex­
change mechanism. This means multiple masters 
utilizing the same bus can operate at separate clock 
frequencies. The 80188 provides a single HOLD! 
HLDA pair through which all other bus masters may 
gain control of the local bus. This requires external 
circuitry to arbitrate which external device will gain 
control of the bus from the 80188 when there is 
more than one alternate local bus master. When 
the 80188 relinquishes control of the local bus, it 
floats DEN, RD, WR, SO-52, LOCK, ADO-AD15, 
A16-A19, 57, and DT/R to allow another master to 
drive these lines directly. 

The 80188 HOLD latency time, i.e., the time be­
tween HOLD request and HOLD acknowledge, is a 
function of the activity occurring in the processor 
when the HOLD request is received. A HOLD re­
quest is the highest-priority activity request which 
the processor may receive: higher than instruction 
fetching or internal DMA cycles. However, if a DMA 
cycle is in progress, the 80188 will complete the 
transfer before relinquishing the bus. This implies 
that if a HOLD request is received just as a DMA 
transfer begins, the HOLD latency time can be as 
great as 4 bus cycles. This will occur if a DMA word 
transfer operation is taking place from an odd ad­
dress to an odd address. This is a total of 16 clocks 
or more, if WAIT states are required. In addition, if 
locked transfers are performed, the HOLD latency 
time will be increased by the length of the locked 
transfer. 

Local Bus Controller and Reset 

Upon receipt of a RESET pulse from the RES input, 
the local bus controller wil! perform the following ac­
tions: 

• Drive DEN, RD, and WR HIGH for one clock cy­
cle, then float. 

NOTE: 
RD is also provided with an internal pull-up device 
to prevent the processor from inadvertently enter­
ing Queue Status mode during reset. 

• Drive SO-52 to the passive state (all HIGH) and 
then float. 

• Drive LOCK HIGH and then float. 

• Float ADO-7, A8-19, 57, DT/R. 
• Drive ALE LOW (ALE is never floated). 

• Drive HLDA LOW. 

3-177 



80188 

INTERNAL PERIPHERAL INTERFACE 

All the 80188 integrated peripherals are controlled 
via 16-bit registers contained within an internal 256-
byte control block. This control block may be 
mapped into either memory or 110 space. Internal 
logic will recognize the address and respond to the 
bus cycle. During bus cycles to internal registers, the 
bus controller will signal the operation externally 
(Le., the RD, WR, status, address, data, etc., lines 
will be driven as in a normal bus cycle), but D7-0, 
SRDY, and ARDY will be ignored. The base address 
of the control block must be on an even 256-byte 
boundary (Le., the lower 8 bits of the base address 
are all zeros). All of the defined registers within this 
control block may be read or written by the 80188 
CPU at any time. The location of any register con­
tained within the 256-byte control block is deter­
mined by the current base address of the control 
block. 

The control block base address is programmed via a 
16-bit relocation register contained within the control 
block at offset FEH from the base address of the 
control block (see Figure 9). It provides the upper 12 
bits of the base address of the control block. Note 
that mapping the control register block into an ad­
dress range corresponding to a chip-select range is 
not recommended (the chip select circuitry is dis­
cussed later in this data sheet. In addition, bit 12 of 
this register determines whether the control block 
will be mapped into I/O or memory space. If this bit 
is 1, the control block will be located in memory 
space, whereas if the bit is 0, the control block will 
be located in I/O space. If the control register block 
is mapped into 110 space, the upper 4 bits of the 
base address must be programmed as 0 (since I/O 
addresses are only 16 bits wide). 

Whenever mapping the 188 peripheral control block 
to another location, the programming of the reloca­
tion register should be done with a byte write (Le. 
OUT DX,AL). Any access to the control block is 
done 16 bits at a time. Thus, internally, the reloca­
tion register will get written with 16 bits of the AX 
register while externally, the BIU will run only one 8 
bit bus cycle. If a word instruction is used (Le. OUT 
DX,AX), the relocation register will be written on the 
first bus cycle. The BIU will then run a second bus 
cycle which is unnecessary. The address of the sec­
ond bus cycle will no longer be within the control 
block (i.e. the control block was moved on the first 
cycle), and therefore, will require the generation of 
an external ready signal to complete the cycle. For 
this reason we recommend byte operations to the 
relocation register. Byte instructions may also be 
used for the other registers in the control block 

and will eliminate half of the bus cycles required if a 
word operation had been specified. Byte operations 
are only valid on even addresses though, and are 
undefined on odd addresses. 

In addition to providing relocation information for the 
control block, the relocation register contains bits 
which place the interrupt controller into iRMX mode, 
and cause the CPU to interrupt upon encountering 
ESC instructions. At RESET, the relocation register 
is set to 20FFH. This causes the control block to 
start at FFOOH in I/O space. An offset map of the 
256-byte control register block is shown in Figure 
10. 

The integrated 80188 peripherals operate semi-au­
tonomously from the CPU. Access to them for the 
most part is via software read/write of the control 
and data locations in the control block. Most of 
these registers can be both read and written. A few 
dedicated lines, such as interrupts and DMA request 
provide real-time communication between the CPU 
and peripherals as in a more conventional system 
utilizing discrete peripheral blocks. The overall inter­
action and function of .the peripheral blocks has not 
substantially changed. The data access from/to the 
256-byte internal control block will always be 16-bit 
and done in one bus cycle. Externally the BIU will 
still run two bus cycles for each 16-bit operation. 

CHIP-SELECT/READY GENERATION 
LOGIC 

The 80188 contains logic which provides program­
mable chip-select generation for both memories and 
peripherals. In addition, it can be programmed to 
provide READY (or WAIT state) generation. It can 
also provide latched address bits A 1 and A2. The 
chip-select lines are active for all memory and I/O 
cycles in their programmed areas, whether they be 
generated by the CPU or by the integrated DMA unit. 

Memory Chip Selects 

The 80188 provides 6 memory chip select outputs 
for 3 address areas: upper memory, lower memory, 
and midrange memory. One each is provided for up­
per memory and lower memory, while four are pro­
vided for midrange memory. 

The range for each chip select is user-programma­
ble and can be set to 2K, 4K, 8K, 16K, 32K, 64K, 
128K (plus 1 K and 256K for upper and lower chip 
selects). In addition, the beginning or base address 

3-178 



inter 80188 

15 14 13 12 11 10 9 B 7 6 5 4 2 0 
OFFSET: FEH I ET I RMXI X IMliol Reloca1ion Address Bits R19-RB 

ET ~ ESC Trap I No ESC Trap (1/0) 
MilO ~ Register block located in Memory I liD Space (1/0) 
RMX ~ Master Interrupt Controller mode liRMX compatible 

Interrupt Controller mode (011) 

Figure 9. Relocation Register 

Relocation Register 

DMA Descriptors Channel 1 

DMA Descriptors Channel 0 

Chip-Select Control Registers 

Timer 2 Control Registers 

Timer 1 Control Registers 

Timer 0 Control Registers 

Interrupt Controller Registers 

OFFSET 

FEH 

DAH 

DOH 

CAH 

COH 

ABH 

AOH 

66H 

60H 

5EH 

5BH 

56H 

50H 

3EH 

20H 

Figure 10. Internal Register Map 

of the midrange memory chip select may also be 
selected. Only one chip select may be programmed 
to be active for any memory location at a time. All 
chip select sizes are in bytes. 

Upper Memory CS 

The 80188 provides a chip select, called UCS, for 
the top of memory. The top of memory is usually 
used as the system memory because after reset the 
80188 begins executing at memory location 
FFFFOH. 

The upper limit of memory defined by this chip select 
is always FFFFFH, while the lower limit is program­
mable. By programming the lower limit, the size of 
the select block is also defined. Table 7 shows the 
relationship between the base address selected and 
the size of the memory block obtained. 

Table 7. UMCS Programming Values 

Starting 
Memory UMCSValue 

Address 
(Base 

Block (Assuming 

Address) 
Size RO= R1 = R2= 0) 

FFCOO 1K FFF8H 
FF800 2K FFB8H 
FFOOO 4K FF38H 
FEOOO 8K FE38H 
FCOOO 16K FC38H 
F8000 32K F838H 
FOOOO 64K F038H 
EOOOO 128K E038H 
cocoa 256K C038H 

The lower limit of this memory block is defined in the 
UMCS register (see Figure 11). This register is at 
offset AOH in the internal control block. The legal 
values for bits 6-13 and the resulting starting ad­
dress and memory block sizes are given in Table 7. 
Any combination of bits 6-13 not shown in Table 7 
will result in undefined operation. After reset, the 
UMCS register is programmed for a 1 K area. It must 
be reprogrammed if a larger upper memory area is 
desired. 

Any internally generated 20-bit address whose up­
per 16 bits are greater than or equal to UMCS (with 
bits 0-5 "0") will cause UCS to be activated. UMCS 
bits R2-RO are used to specify READY mode for the 
area of memory defined by this chip-select register, 
as explained below. 

Lower Memory CS 

The 80188 provides a chip select for low memory 
called LCS. The bottom of memory contains the in­
terrupt vector table, starting at location OOOOOH. 

3-179 



intJ 80188 

The lower limit of memory defined by this chip select 
is always OH, while the upper limit is programmable. 
8y programming the upper limit, the size of the 
memory block is also defined. Table 8 shows the 
relationship between the upper address selected 
and the size of the memory block obtained. 

Table 8. LMCS Programming Values 

Upper 
Memory LMCSValue 

Address 
Block (Assuming 
Size RO=R1=R2=O) 

003FFH 1K 0038H 
007FFH 2K 0078H 
OOFFFH 4K 00F8H 
01FFFH 8K 01F8H 
03FFFH 16K 03F8H 
07FFFH 32K 07F8H 
OFFFFH 64K OFF8H 
1FFFFH 128K 1FF8H 
3FFFFH 256K 3FF8H 

The upper limit of this memory block is defined in the 
LMCS register (see Figure 12). This register is at 
offset A2H in the internal control block. The legal 
values for bits 6-15 and the resulting upper address 
and memory block sizes are given in Table 8. Any 
combination of bits 6-15 not shown in Table 8 will 
result in undefined operation. After reset, the LMCS 
register value is undefined. However, the LCS chip­
select line will not become active until the LMCS 
register is accessed. 

Any internally generated 20-bit address whose up­
per 16 bits are less than or equal to LMCS (with bits 
0-5 "1") will cause LCS to be active. LMCS register 
bits R2-RO are used to specify the READY mode for 
the area of memory defined by this chip-select regis­
ter. 

Mid-Range Memory CS 

The 80188 provides four MCS lines which are active 
within a user-locatable memory block. This block 
can be located anywhere within the 80188 1 M byte 
memory address space exclusive of the areas de­
fined by UCS and LCS. 80th the base ad-

15 14 13 12 11 10 

OFFSET: AOH I 1 I 1 U I u I u I u I 
A19 

9 

u 

dress and size of this memory block are programma­
ble. 

The size of the memory block defined by the mid­
range select lines, as shown in Table 9, is deter­
mined by bits 8-14 of the MPCS register (see Figure 
13). This register is at location A8H in the internal 
control block. One and only one of bits 8-14 must 
be set at a time. Unpredictable operation of the MCS 
lines will otherwise occur. Each of the four chip-se­
lect lines is active for one of the four equal contigu­
ous divisions of the mid-range block. Thus, if the to­
tal block size is 32K, each chip select is active for 8K 
of memory with MCSO being active for the first range 
and MCS3 being active for the last range. 

The EX and MS in MPCS relate to peripheral func­
tionality as described in a later section. 

Table 9. MPCS Programming Values 

Total Block Individual MPCSBits 
Size Select Size 14-8 

8K 2K 00000018 
16K 4K 00000108 
32K 8K 00001008 
64K 16K 00010008 
128K 32K 00100008 
256K 64K 01000008 
512K 128K 10000008 

The base address of the mid-range memory block is 
defined by bits 15-9 of the MMCS register (see Fig­
ure 14). This register is at offset A6H in the internal 
control block. These bits correspond to bits 
A 19-A 13 of the 20-bit memory address. 8its 
A 12-AO of the base address are always O. The base 
address may be set at any integer multiple of the 
size of the total memory block selected. For exam­
ple, if the mid-range block size is 32K (or the size of 
the block for which each MCS line is active is 8K), 
the block could be located at 10000H or 18000H, 
but not at 14000H, since the first few integer multi­
ples of a 32K memory block are OH, 8000H, 
10000H, 18000H, etc. After reset, the contents of 
both of these registers is undefined. However, none 
of the MCS lines will be active until both the MMCS 
and MPCS registers are accessed. 

B 7 6 5 4 3 2 1 0 

u u u I 1 1 I 1 I R2 I R1 I RO I 
A11 

Figure 11. UMCS Register 

15 14 13 12 11 10 . 9 8 7 6 4 3 2 1 0 

OFFSET: A2H I 0 I 0 I u I u I u I u I u u u u I 1 1 I 1 I R2 I R1 I RO I 
A19 A11 

Figure 12. LMCS Register 

3-180 



inter 80188 

15 14 13 12 11 10 9 8 7 6 5 4 2 1 0 

OFFSET: A8H I 1 I M6 I M5 I M4 I M3 I M2 I M1 I MO I EX I MS I 1 I 1 I 1 I R2 I R1 I RO I 

Figure 13. MPCS Register 

15 9 o 
OFFSET: A6H I u I u I u I u I u I u I u 1 I 1 1 I 1 I 1 I 1 I R2 I R1 I RO I 

A19 A13 

Figure 14. MMCS Register 

MMCS bits R2-RO specify READY mode of opera· 
tion for all mid-range chip selects. All devices in mid­
range memory must use the same number of WAIT 
states. 

The 512K block size for the mid-range memory chip 
selects is a special case. When using 512K, the 
base address would have to be at either locations 
OOOOOH or 80000H. If it were to be programmed at 
OOOOOH when the LCS line was programmed, there 
would be an internal conflict between the LCS ready 
generation logic and the MCS ready generation log­
ic. Likewise, if the base address were programmed 
at 80000H, there would be a conflict with the UCS 
ready generation logic. Since the LCS chip-select 
line does not become active until programmed, while 
the UCS line is active at reset, the memory base can 
be set only at OOOOOH. If this base address is select­
ed,however, the LCS range must not be pro­
grammed. 

Peripheral Chip Selects 

The 80188 can generate chip selects for up to seven 
peripheral devices. These chip selects are active for 
seven contiguous blocks of 128 bytes above a pro­
grammable base address. This base address may 
be located in either memory or 110 space. 

Seven CS lines called PCSO-6 are generated by the 
80188. The base address is user-programmable; 

however it can only be a multiple of 1 K bytes, i.e., 
the least significant 10 bits of the starting address 
are always O. 

PCS5 and PCS6 can also be programmed to provide 
latched address bits A 1, A2. If so programmed, they 
cannot be used as peripheral selects. These outputs 
can be connected directly to the AO, A 1 pins used 
for selecting internal registers of 8-bit peripheral 
chips. This scheme simplifies the hardware interface 
because the 8-bit registers of peripherals are simply 
treated as 16-bit registers located on even bounda­
ries in 1/0 space or memory space where only the 
lower 8-bits of the register are significant: the upper 
8-bits are "don't cares." 

The starting address of the peripheral chip-select 
block is defined by the PACS register (see Figure 
15). This register is located at offset A4H in the inter­
nal control block. Bits 15-6 of this register corre­
spond to bits 19-10 of the 20-bit Programmable 
Base Address (PBA) of the peripheral chip-select 
block. Bits 9-0 of the PBA of the peripheral chip-se­
lect block are all zeros. If the Chip-select block is 
located in 1/0 space, bits 12-15 must be pro­
grammed zero, since the 110 address is only 16 bits 
wide. Table 10 shows the address range of each 
peripheral chip select with respect to the PBA con­
tained in PACS register. 

15 6 5 0 

OFFSET: A4H I u I u I u I u I u I u I u I u I u I u I 1 I 1 I 1 I R2 I R1 I RO I 
A19 A10 

Figure 15. PACS Register 

3-181 



80188 

The user should program bits 15-6 to correspond to 
the desired peripheral base location. PACS bits 0-2 
are used to specify READY mode for PSCO-PCS3. 

Table 10. PCS Address Ranges 

PCS Line Active between Locations 

PCSO PBA -PBA+127 
PCS1 PBA + 128-PBA + 255 
PCS2 PBA + 256-PBA + 383 
PCS3 PBA + 384-PBA + 511 
PCS4 PBA + 512-PBA + 639 
PCS5 PBA + 640-PBA + 767 
PCS6 PBA + 768-PBA + 895 

The mode of operation of the peripheral chip selects 
is defined by the MPCS register (which is also used 
to set the size of the mid-range memory chip-select 
block, see Figure 16). This register is located at off­
set A8H in the internal control block. Bit 7 is used to 
select the function of PCS5 and PCS6, while bit 6 is 
used to select whether the peripheral chip selects 
are mapped into memory or 1/0 space. Table 11 
describes the programming of these bits. After reset, 
the contents of both the MPCS and the PACS regis· 
ters are undefined, however none of the PCS lines 
will be active until both of the MPCS and PACS reg­
isters are accessed. 

Table 11 MS EX Programming Values , 
Bit Description 

MS 1 = Peripherals mapped into memory space. 
o = Peripherals mapped into 110 space. 

EX o = 5 PCS lines. A 1, A2 provided. 
1 = 7 PCS lines. Ai, A2 are not provided. 

MPCS bits 0-2 are used to specify READY mode for 
PCS4-PCS6 as outlined below. 

READY Generation Logic 

The 80188 can generate a "READY" s~al internal­
ly for each of the memory or peripheral CS lines. The 
number of WAIT states to be inserted for each pe­
ripheral or memory is programmable to provide 0-3 
wait states for all accesses to the area for which the 
chip select is active. In addition, the 80188 may be 
programmed to either ignore external READY for 
each chip-select range individually or to factor exter­
nal READY with the integrated ready generator. 

READY control consists of 3 bits for each CS line or 
group of lines generated by the 80188. The interpre­
tation of the ready bits is shown in Table 12. 

Table 12. READY Bits Programming 

R2 R1 RO Number of WAIT States Generated 

0 0 0 o wait states, external RDY 
also used. 

0 0 1 1 wait state inserted, external RDY 
also used. 

0 1 0 2 wait states inserted, external RDY 
also used. 

0 1 1 3 wait states inserted, external RDY 
also used. 

1 0 0 o wait states, external RDY 
ignored. 

1 0 1 1 wait state inserted, external ROY 
ignored. 

1 1 0 2 wait states inserted, external ROY 
ignored. 

1 1 1 3 wait states inserted, external RDY 
ignored. 

The internal ready generator operates in parallel 
with external READY, not in series if the external 
READY is used (R2 = 0). This means, for example, 
if the internal generator is set to insert two wait 
states, but activity on the external READY lines will 
insert four wait states, the processor will only insert 
four wait states, not six. This is because the two wait 
states generated by the internal generator over­
lapped the first two wait states generated by the ex­
ternal ready signal. Note that the external ARDY and 
SRDY lines are always ignored during cycles ac­
cessing internal peripherals. 

R2-RO of each control word specifies the READY 
mode for the corresponding block, with the excep­
tion of the peripheral chip selects: R2-RO of PACS 
set the PCSO-3 READY mode, R2-RO of MPCS set 
the PCS4-6 READY mode. 

Chip Select/Ready Logic and Reset 

Upon reset, the Chip-Select/Ready Logic will per­
form the following actions: 

• All chip-select outputs will be driven HIGH. 

• Upon leaving RESET, the UCS line will be pro­
grammed to provide chip selects to a 1 K block 
with the accompanying READY control bits set at 
011 to allow the maximum number of internal wait 
states in conjunction with external Ready consid­
eration (Le., UMCS resets to FFFBH). 

• No other chip select or READY control registers 
have any predefined values after RESET. They 
will not become active until the CPU accesses 
their control registers. Both the PACS and MPCS 
registers must be accessed before the PCS lines 
will become active. 

3-182 



80188 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
OFFSET: A8H I I M6 I M5 I M4 I M3 I M2 I M1 I MO I EX I MS I 1 I 1 I 1 A2 I A1 I AO I 

Figure 16. MPCS Register 

DMA Channels 

The 80188 DMA controller provides two indepen· 
dent high-speed DMA channels. Data transfers can 
occur between memory and I/O spaces (e.g., Mem­
ory to I/O) or within the same space (e.g., Memory 
to Memory or I/O to I/O). Each DMA channel main­
tains both a 20-bit source and destination pointer 
which can be optionally incremented or decrement­
ed after each data transfer. Each data transfer con­
sumes 2 bus cycles (a minimum of 8 clocks), one 
cycle to fetch data and the other to store data. This 
provides a data transfer rate of one MByte!sec at 
8 MHz. 

DMA Operation 

Each channel has six registers in the control block 
which define each channel's specific operation. The 
control registers consist of a 20-bit Source pointer (2 
words), a 20-bit Destination pointer (2 words), a 16-
bit Transfer Counter, and a 16-bit Control Word. 

The format of the DMA Control Blocks is shown in 
Table 13. The Transfer Count Register (TC) speci­
fies the number of DMA transfers to be performed. 
Up to 64K byte transfers can be performed with au­
tomatic termination. The Control Word defines the 
channel's operation (see Figure 18). All registers 
may be modified or altered during any DMA activity. 
Any changes made to these registers will be reflect­
ed immediately in DMA operation. 

Table 13. DMA Control Block Format 

Register Name 

Control Word 
Transfer Count 
Destination Pointer (upper 4 

bits) 
Destination Pointer 
Source Pointer (upper 4 bits) 
Source Pointer 

TIMER REQUEST 

DMA 
CONTROL 

LOGIC 

L_-,.,:_J-------INTERRUPT 
REOUEST 

Register Address 

Ch.O Ch.1 

CAH DAH 
C8H D8H 
C6H D6H 

C4H D4H 
C2H D2H 
COH DOH 

210706-9 

Figure 17. DMA Unit Block Diagram 

3-183 



inter 80188 

15 14 13 12 11 10 

MI DESTINATION MI SOURCE 
iO DEC INC iO DEC INC 

x = Don't Care 

Figure 18. DMA Control Register 

DMA Channel Control Word Register 

Each DMA Channel Control Word determines the 
mode of operation for the particular 80188 DMA 
channel. This register specifies: 

• the mode of synchronization; 

• whether interrupts will be generated after the last 
transfer; 

• whether DMA activity will cease after a pro­
grammed number of DMA cycles; 

• the relative priority of the DMA channel with re­
spect to the other DMA channel; 

• whether the source pointer will be incremented, 
decremented, or maintained constant after each 
transfer; 

• whether the source pointer addresses memory or 
1/0 space; 

• whether the destination pointer will be increment­
ed, decremented, or maintained constant after 
each transfer; and . 

• whether the destination pOinter will address 
memory or I/O space. 

The DMA channel control registers may be changed 
while the channel is operating. However, any chang­
es made during operation will affect the current DMA 
transfer. 

DMA Control Word Bit Descriptions 
ST/STOP: Startlstop (1/0) Channel. 

CHGINOCHG: Change/Do not change (1/0) 
ST ISTOP bit. If this bit is set when 
writi~ the control word, the 
ST ISTOP bit will be programmed 
by the write to the control word. If 
this bit is cleared when writing the 
control word, the ST ISTOP bit will 
not be altered. This bit is not 
stored; it will always be a 0 on 
read. 

INT: Enable Interrupts to CPU on byte 
count termination. 

TC: 

SYN: 

(2 bits) 

If set, DMA will terminate when the 
contents of the Transfer Count regis­
ter reaches zero. The ST ISTOP bit 
will also be reset at this point if TC is 
set. If this bit is cleared, the DMA unit 
will decrement the transfer count reg­
ister for each DMA cycle, but the 
DMA transfer will not stop when the 
contents of the TC register reaches 
zero. 

00 No synchronization. 

NOTE: 

The ST bit will be cleared automati­
cally when the contents of the TC 
register reaches zero regardless of 
the state of the TC bit. 

01 Source synchronization. 

10 Destination synchronization. 

11 Unused. 

SOURCE:INC Increment source pointer by 1 after 
each transfer. 

MilO Source pOinter is in MilO space (1 10). 

DEC Decrement source pointer by 1 after 
each transfer. 

DEST: INC Increment destination pointer by 1 af-

P 

TDRQ 

ter each transfer. 

MilO Destination pOinter is in MilO space 
(1/0). 

DEC Decrement destination pointer by 1 
after each transfer. 

Channel priority-relative to other 
channel. 

o low priority. 

1 high priority. 

Channels will alternate cycles if both 
set at same priority level. 

0: Disable DMA requests from timer 
2. 

1: Enable DMA requests from timer 
2. 

Bit 3 Bit 3 is not used. 

If both INC and DEC are specified for the same 
pointer, the pointer will remain constant after each 
cycle. 

3-184 



80188 

DMA Destination and Source Pointer 
Registers 

Each DMA channel maintains a 20-bit source and a 
20-bit destination pointer. Each of these pOinters 
takes up two full 16-bit registers in the peripheral 
control block. The lower four bits of the upper regis­
ter contain the upper four bits of the 20-bit physical 
address (see Figure 18a). These pointers may be 
individually incremented or decremented after each 
transfer. Each pointer may point into either memory 
or 1/0 space. Since the DMA channels can perform 
transfers to or from odd addresses, there is no re­
striction on values for the pointer registers. 

DMA Transfer Count Register 

Each DMA channel maintains a 16-bit transfer count 
register (TC). This register is decremented after ev­
ery DMA cycle, regardless of the state of the TC bit 
in the DMA Control Register. If the TC bit in the DMA 
control word is set or unsynchronized transfers are 
programmed, DMA activity will terminate when the 
transfer count register reaches zero. 

DMA Requests 

Data transfers may be either source or destination 
synchronized, that is either the source of the data or 
the destination of the data may request the data 
transfer. In addition, DMA transfers may be unsyn-

HIGHER 
REGISTER 
ADDRESS 

LOWER 
REGISTER 
ADDRESS 

xxx 

A1S-AI2 

15 

XXX = Don't Care 

chronized; that is, the transfer will take place contin­
ually until the correct number of transfers has oc­
curred. When source or unsynchronized transfers 
are performed, the DMA channel may begin another 
transfer immediately after the end of a previous 
DMA transfer. This allows a complete transfer to 
take place every 2 bus cycles or eight clock cycles 
(assuming no wait states). No prefetching occurs 
when destination synchronization is performed, how­
ever. Data will not be fetched from the source ad­
dress until the destination device signals that it is 
ready to receive it. When destination synchronized 
transfers are requested, the DMA controller will re­
linquish control of the bus after every transfer. If no 
other bus activity is initiated, another DMA cycle will 
begin after two processor clocks. This is done to 
allow the destination device time to remove its re­
quest if another transfer is not desired. Since the 
DMA controller will relinquish the bus, the CPU can 
initiate a bus cycle. As a result, a complete bus cycle 
will often be inserted between destination synchro­
nized transfers. These lead to the maximum DMA 
transfer rates shown in Table 14. 

Table 14. Maximum DMA Transfer Rates 

Type of 
Synchronization CPU Running CPU Halted 

Selected 

Unsynchronized 1 MBytes/sec 1 MBytes/sec 
Source Synch 1 MBytes/sec 1 MBytes/sec 
Destination Synch 0.65 MBytes/sec 0.75 MBytes/sec 

XXX XXX A19-A16 

All-AS A7-A4 A3-AO 

o 

Figure 18a. DMA Memory Pointer Register Format 

3-185 



80188 

DMA Acknowledge 

No explicit DMA acknowledge pulse is provided. 
Since both source and destination pointers are 
maintained, a read from a requesting source, or a 
write to a requesting destination, should be used as 
the DMA acknowledge signal. Since the chip-select 
lines can be programmed to be active for a given 
block of memory or I/O space, and the DMA point­
ers can be programmed to point to the same given 
block, a chip-select line could be used to indicate a 
DMA acknowledge. 

DMA Priority 

The DMA channels may be programmed such that 
one channel is always given priority over the other, 
or they may be programmed such as to alternate 
cycles when both have DMA requests pending. DMA 
cycles always have priority over internal CPU cycles 
except between locked memory accesses or word 
accesses the odd memory locations; however, an 
external bus hold takes priority over an internal DMA 
cycle. Because an interrupt request cannot suspend 
a DMA operation and the CPU cannot access mem­
ory during a DMA cycle, interrupt latency time will 
suffer during sequences of continuous DMA cycles. 
An NMI request, however, will cause all internal 
DMA activity to halt This allows the CPU to quickly 
respond to the NMI request. 

DMA Programming 

DMA cycles will occur whenever the ST /STOP bit of 
the Control Register is set. If synchronized transfers 

TIMER 0 

are programmed, a DRO must also have been gen­
erated. Therefore, the source and destination trans­
fer pointers, and the transfer count register (if used) 
must be programmed before this bit is set. 

Each DMA register may be modified while the chan­
nel is operating. If the CHG/NOCHG bit is cleared 
when the control register is written, the ST /STOP bit 
of the control register will not be modified by the 
write. If multiple channel registers are modified, it is 
recommended that a LOCKED string transfer be 
used to prevent a DMA transfer from occurring be­
tween updates to the channel registers. 

DMA Channels and Reset 

Upon RESET, the DMA channels will perform the 
following actions: 

• The Start/Stop bit for each channel will be reset 
to STOP. 

• Any transfer in progress is aborted. 

TIMERS 

The 80188 provides three internal 16-bit program­
mable timers (see Figure 19). Two of these are high­
ly flexible and are connected to four external pins (2 
per timer). They can be used to count external 
events, time external events, generate nonrepetitive 
waveforms, etc. The third timer is not connected to 
any external pins, and is useful for real-time coding 
and time delay applications. In addition, this third 
timer can be used as a prescaler to the other two, or 
as a DMA request source. 

TIMER 2 

DMA 
REO. 

T2 
INT. 
REO. 

MAX COUNT VALUE CLOCK MAX COUNT VALUE MAX COUNT VALUE 
B B 

ALL 16 BIT REGISTERS 

MODE/CONTROL 
WORD 

INTERNAL ADDRESS/DATA BUS 

Figure 19. Timer Block Diagram 

3-186 

210706-10 



80188 

Timer Operation 

The timers are controlled by 11 16-bit registers in 
the internal peripheral control block. The configura­
tion of these registers is shown in Table 15. The 
count register contains the current value of the tim­
er. It can be read or written at any time independent 
of whether the timer is running or not. The value of 
this register will be incremented for each timer 
event. Each of the timers is equipped with a MAX 
COUNT register, which defines the maximum count 
the timer will reach. After reaching the MAX COUNT 
register value, the timer count value will reset to zero 
during that same clock, i.e., the maximum count val­
ue is never stored in the count register itself. Timers 
o and 1 are, in addition, equipped with a second 
MAX COUNT register, which enables the timers to 
alternate their count between two different MAX 
COUNT values programmed by the user. If a single 
MAX COUNT register is used, the timer output pin 
will switch LOW for a single clock, 2 clocks after the 
maximum count value has been reached. In the dual 
MAX COUNT register mode, the output pin will indi­
cate which MAX COUNT register is currently in use, 
thus allowing nearly complete freedom in selecting 
waveform duty cycles. For the timers with two MAX 
COUNT registers, the RIU bit in the control register 
determines which is used for the comparison. 

Each timer gets serviced every fourth CPU-clock cy­
cle, and thus can operate at speeds up to one-quar­
ter the internal clock frequency (one-eighth the crys­
tal rate). External clocking of the timers may be done 
at up to a rate of one-quarter of the internal CPU­
clock rate (2 MHz for an 8 MHz CPU clock). Due to 
internal synchronization and pipelining of the timer 
circuitry, a timer output may take up to 6 clocks to 
respond to any individual clock or gate input. 

15 14 13 12 11 
EN INH INT RIU o 

Since the count registers and the maximum count 
registers are all 16 bits wide, 16 bits of resolution are 
provided. Any Read or Write acc;ess to the timers will 
add one wait state to the minimum four-clock bus 
cycle, however. This is needed to synchronize and 
coordinate the internal data flows between the inter­
nal timers and the internal bus. 

The timers have several programmable options. 

• All three timers can be set to halt or continue on 
a terminal count. 

• Timers 0 and 1 can select between internal and 
external clocks, alternate between MAX COUNT 
registers and be set to retrigger on external 
events. 

• The timers may be programmed to cause an in­
terrupt on terminal count. 

These options are selectable via the timer model 
control word. 

Timer Mode/Control Register 

The mode/control register (see Figure 20) allows 
the user to program the specific mode of operation 
or check the current programmed status for any of 
the three integrated timers. 

Table 15. Timer Control Block Format 

Register Name 
Register Offset 

Tmr.O Tmr.1 Tmr.2 

Mode/Control Word 56H 5EH 66H 
Max Count B 54H 5CH not present 
Max Count A 52H 5AH 62H 
Count Register 50H 58H 60H 

5 4 3 2 o 
MC RTG p EXT ALT I CONT I 

Figure 20. Timer Mode/Control Register 

3-187 



80188 

ALT 

The AL T bit determines which of two MAX COUNT 
registers is used for count comparison. If AL T = 0, 
register A for that timer is always used, while if 
AL T = 1, the comparison will alternate between reg­
ister A and register B when each maximum count is 
reached. This alternation allows the user to change 
one MAX COUNT register while the other is being 
used, and thus provides a method of generating 
non-repetitive waveforms. Square waves and pulse 
outputs of any duty cycle are a subset of available 
signals obtained by not changing the final count reg­
isters. The AL T bit also determines the function of 
the timer output pin. If AL T is zero, the output pin will 
go LOW for one clock, the clock after the maximum 
count is reached. If AL T is one, the output pin will 
reflect the current MAX COUNT register being used 
(0/1 for B/ A). 

CONT 

Setting the CONT bit causes the associated timer to 
run continuously, while resetting it causes the timer 
to halt upon maximum count. If CONT = 0 and AL T 
= 1, the timer will count to the MAX COUNT register 
A value, reset, count to the register B value, reset, 
and halt. 

EXT 

The external bit selects between internal and exter­
nal clocking for the timer. The external signal may 
be asynchronous with respect to the 80188 clock. 
If this bit is set, the timer will count LOW-to-HIGH 
transitions on the input pin. If cleared, it will count an 
internal clOCk while using the input pin for control. In 
this mode, the function of the external pin is defined 
by the RTG bit. The maximum input to output tran­
sition latency time may be as much as 6 clocks. 
However, clock inputs may be pipelined as closely 
together as every 4 clocks without losing clock puls­
es. 

p 

The prescaler bit is ignored unless internal clocking 
has been selected (EXT = 0). If the P bit is a zero, 
the timer will count at one-fourth the internal CPU 
clock rate. If the P bit is a one, the output of timer 2 
will be used as a clock for the timer. Note that the 
user must initialize and start timer 2 to obtain the 
prescaled clock. 

RTG 

Retrigger bit is only active for internal clocking 
(EXT = 0). In this case it determines the control 
function provided by the input pin. 

If RTG = 0, the input level gates the internal clock 
on and off. If the input pin is HIGH, the timer will 
count; if the input pin is LOW, the timer will hold its 
value. As indicated previously, the input signal may 
be asynchronous with respect to the 80188 clock. 

When RTG = 1, the input pin detects LOW-to-HIGH 
transitions. The first such transition starts the timer 
running, clearing the timer value to zero on the first 
clock, and then incrementing thereafter. Further 
transitions on the input pin will again reset the timer 
to zero, from which it will start counting up again. If 
CONT = 0, when the timer has reached maximum 
count, the EN bit will be cleared, inhibiting further 
timer activity. 

EN 

The enable bit provides programmer control over 
the timer's RUN/HALT status. When set, the timer is 
enabled to increment subject to the input pin con­
straints in the internal clock mode (discussed previ­
ously). When cleared, the timer will be inhibited from 
counting. All input pin transitions during the time EN 
is zero will be ignored. If CONT is zero, the EN bit is 
automatically cleared upon maximum count. 

INH 

The inhibit bit allows for selective updating of the 
enable (EN) bit. If INH is a one during the write to the 
mode/control word, then the state of the EN bit will 
be modified by the write. If INH is a zero during the 
write, the EN bit will be unaffected by the operation. 
This bit is not stored; it will always be a 0 on a read. 

INT 

When set, the INT bit enables interrupts from the 
timer, which will be generated on every terminal 
count. If the timer is configured in dual MAX COUNT 
register mode, an interrupt will be generated each 
time the value in MAX COUNT register A is reached, 
and each time the value in MAX COUNT register B is 
reached. If this enable bit is cleared after the inter­
rupt request has been generated, but before a pend­
ing interrupt is serviced, the interrupt request will still 
be in force. (The request is latched in the Interrupt 
Controller.) 

MC 

The Maximum Count bit is set whenever the timer 
reaches its final maximum count value. If the timer is 
configured in dual MAX COUNT register mode, this 
bit will be set each time the value in MAX COUNT 
register A is reached, and each time the value in 
MAX COUNT register B is reached. This bit is set 

3-188 



inter 80188 

regardless of the timer's interrupt-enable bit. The 
MC bit gives the user the ability to monitor timer 
status through software instead of through inter­
rupts. Programmer intervention is required to clear 
this bit. 

RIU 

The Register In Use bit indicates which MAX 
COUNT register is currently being used for compari­
son to the timer count value. A zero value indicates 
register A. The RIU bit cannot be written, i.e., its 
value is not affected when the control register is writ­
ten. It is always cleared when the AL T bit is :Zero. 

Not all mode bits are provided for timer 2. Certain 
bits are hardwired as indicated below: 

AL T = 0, EXT = 0, P = 0, RTG = 0, RIU = ° 

Count Registers 

Each of the three timers has a 16-bit count register. 
The current contents of this register may be read or 
written by the processor at any time. If the register is 
written into while the timer is counting, the new value 
will take effect in the current count cycle. 

Max Count Registers 

Timers 0 and 1 have two MAX COUNT registers, 
while timer 2 has a single MAX COUNT register. 
These contain the number of events the timer will 
count. In timers 0 and 1, the MAX COUNT register 
used can alternate between the two max count val­
ues whenever the current maximum count is 
reached. The condition which causes a timer to re­
set is equivalent between the current count value 
and the max count being used. This means that if 
the count is changed to be above the max count 
value, or if the max count value is changed to be 
below the current value, the timer will not reset to 
zero, but rather will count to its maximum value, 
"wrap around" to zero, then count until the max 
count is reached. 

Timers and Reset 

Upon RESET, the Timers will perform the following 
actions: 

• All EN (Enable) bits are reset preventing timer 
counting. 

• All SEL (Select) bits are reset to zero. This se­
lects MAX COUNT register A, resulting in the 
Timer Out pins going HIGH upon RESET. 

INTERRUPT CONTROLLER 

The 80188 can receive interrupts from a number of 
sources, both internal and external. The internal in­
terrupt controller serves to merge these requests on 
a priority basis, for individual service by the CPU. 

Internal interrupt sources (Timers and DMA chan­
nels) can be disabled by their own control registers 
or by mask bits within the interrupt controller. The 
80188 interrupt controller has its own control regis­
ter that set the mode of operation for the controller. 

The interrupt controller will resolve priority among 
requests that are pending simultaneously. Nesting is 
provided so interrupt service routines for lower priori­
ty interrupts may themselves be interrupted by high­
er priority interrupts. A block diagram of the interrupt 
controller is shown in Figure 21. 

The interrupt controller has a special iRMX 86 com­
patibility mode that allows the use of the 80188 with­
in the iRMX 86 operating system interrupt structure. 
The controller is set in this mode by setting bit 14 in 
the peripheral control block relocation register (see 
iRMX 86 Compatibility Mode section). In this mode, 
the internal 80188 interrupt controller functions as a 
"slave" controller to an external "master" controller. 
Special initialization software must be included to 
properly set up the 80188 interrupt controller in 
iRMX 86 mode. 

NON-iRMXTM MODE OPERATION 

Interrupt Controller External Interface 

For external interrupt sources, five dedicated pins 
are provided. One of these pins is dedicated to NMI, 
non-maskable interrupt. This is typically used for 
power-fail interrupts, etc. The other four pins may 
function either as four interrupt input lines with inter­
nally generated interrupt vectors, as an interrupt line 
and an interrupt acknowledge line (called the "cas­
cade mode") along with two other input lines with 
internally generated interrupt vectors, or as two in­
terrupt input lines and two dedicated interrupt ac­
knowledge output lines. When the interrupt lines are 
configured in cascade mode, the 80188 interrupt 
controller will not generate internal interrupt vectors. 

External sources in the cascade mode use external­
ly generated interrupt vectors. When an interrupt is 
acknowledged, two INTA cycles are initiated and the 
vector is read into the 80188 on the second cycle. 
The capability to interface to external 8259A pro­
grammable interrupt controllers is thus provided 
when the inputs are configured in cascade mode. 

3-189 



inter 80188 

Interrupt Controller Modes of 
Operation 

The basic modes of operation of the interrupt con­
troller in non-iRMXTM mode are similar to the 8259A. 
The interrupt controlier responds indenticallyto in­
ternal interrupts in all three modes: the difference is 
only in the interpretation of function of the four exter­
nal interrupt pins. The interrupt controller is set into 
one of these three modes by programming the cor­
rect bits in the INTO and INT1 control registers. The 
modes of interrupt controiler operation are as fol­
lows: 

FULLY NESTED MODE 

When in the fully nested mode four pins are used as 
direct interrupt requests. The vectors for these four 
inputs are generated internally. An in-service bit is 
provided for every interrupt source. If a lower-priority 
device requests an interrupt while the in-service bit 
(IS) is set, no interrupt will be generated by the inter­
rupt controller. In addition, if another interrupt re­
quest occurs from the same interrupt source while 
the in-service bit is set, no interrupt will be generated 
by the interrupt controller. This allows interrupt serv­
ice routines to operate with interrupts enabled with­
out being themselves interrupted by lower-priority in­
terrupts. Since interrupts are enabled, higher-priority 
interrupts will be serviced. 

When a service routine is completed, the proper IS 
bit must be reset by writing the proper pattern to the 
EOI register. This is required to allow subsequent 
interrupts from this interrupt source and to allow 
servicing of lower-priority interrupts. An EOI com-

TIMER TIMER TIMER DMA 
o 1 2 0 

OMAO 
CONTROL REG. 

mand is issued at the end of the service routine just 
before the issuance of the return from interrupt in­
struction. If the fully nested structure has been up­
held, the next highest-priority source with its IS bit 
set is then serviced. 

CASCADE MODE 

The 80188 has four interrupt pins and two of them 
have dual functions. In the fully nested mode the 
four pins are used as direct interrupt inputs and the 
corresponding vectors are generated internally. In 
the cascade mode, the four pins are configured into 
interrupt input-dedicated acknowledge signal pairs. 
The interconnection is shown in Figure 22. INTO is 
an interrupt input interfaced to an 8259A. while 
INT2/1NTAO serves as the dedicated interrupt ac­
knowledge signal to thil~ipheral. The same is 
true for INTI and INT3/1NTA 1. Each pair can selec­
tively be placed in the cascade or non-cascade 
mode by programming the proper value into INTO 
and INT1 control registers. The use of the dedicated 
acknowledge signals eliminates the need for the use 
of external logiC to generate INTA and device select 
signals. 

The primary cascade mode allows the capability to 
serve up to 128 external interrupt sources through 
the use of external master and slave 8259As. Three 
levels of priority are created, requiring priority resolu­
tion in the 80188 interrupt controller, the master 
8259As, and the slave 8259As. If an external inter­
rupt is serviced, one IS bit is set at each of these 
levels. When the interrupt service routine is complet­
ed, up to three end-of-interrupt commands must be 
issued by the programmer. 

INTERRUPT 
REQUEST REG. 

INTERRUPT 
MASK REG. 

IN·SERVICE 
REG. 

DMAl 
CONTROL REG. 

EXT. INPUT 0 
CONTROL REG. 

INTERRUPT 
PRIORITY 
RESOLVER 

PRIOR. LEY. 
MASK REG. 

EXT. INPUT 1 
CONTROL REG. 

EXT. INPUT 2 
CONTROL REG. 

Figure 21. Interrupt Controller Block Diagram 

3-190 

210706-11 



80188 

SPECIAL FULLY NESTED MODE 

This mode is entered by setting the SFNM bit in 
INTO or INT1 control register. It enables complete 
nestability with external 8259A masters. Normally, 
an interrupt request from an interrupt source will not 
be recognized unless the in-service bit for that 
source is reset. If more than one interrupt source is 
connected to an external interrupt controller, all of 
the interrupts will be funneled through the same 
80188 interrupt request pin. As a result, if the exter­
nal interrupt controller receives a higher-priority in­
terrupt, its interrupt will not be recognized by the 
80188 controller until the 80188 in-service bit is re­
set. In special fully nested mode, the 80188 interrupt 
controller will allow interrupts from an external pin 
regardless of the state of the in-service bit for an 
interrupt source in order to allow multiple interrupts 
from a single pin. An in-service bit will continue to be 
set, however, to inhibit interrupts from other lower­
priority 80188 interrupt sources. 

Special procedures should be followed when reset­
ting IS bits at the end of interrupt service routines. 
Software polling of the external master's IS register 
is required to determine if there is more than one bit 
set. If so, the IS bit in the 80188 remains active and 
the next interrupt service routine is entered. 

Operation in a Polled Environment 

The controller may be used in a polled mode if inter­
rupts are undesirable. When polling, the processor 
disables interrupts and then polls the interrupt con­
trolier whenever it is convenient. Polling the interrupt 
controller is accomplished by reading the Poll Word 
(Figure 31). Bit 15 in the poll word indicates to the 
processor that an interrupt of high enough priority is 
requesting service. Bits 0-4 indicate to the proces­
sor the type vector of the highest-priority source re­
questing service. Reading the Pol! Word causes the 
In-Service bit of the highest priority source to be set. 

It is desirable to be able to read the Poll Word infor­
mation without guaranteeing service of any pending 
interrupt, Le., not set the indicated in-service bit. The 
80188 provides a Poll Status Word in addition to the 
conventional Poll Word to allow this to be done. Poll 
Word information is duplicated in the Poll Status 
Word, but reading the Poll Status Word does not set 
the associated in-service bit. These words are locat­
ed in two adjacent memory locations in the register 
file. 

3-191 

Non-iRMXTM Mode Features 

PROGRAMMABLE PRIORITY 

The user can program the interrupt sources into any 
of eight different priority levels. The programming is 
done by placing a 3-bit priority level (0-7) in the con­
trol register of each interrupt source. (A source with 
a priority level 01 4 has higher priority over all priority 
levels from 5 to 7. Priority registers containing values 
lower than 4 have greater priority). All interrupt 
sources have preprogrammed default priority levels 
(see Table 4). 

If two requests with the same programmed priority 
level are pending at once, the priority ordering 
scheme shown in Table 4 is used. If the serviced 
interrupt routine reenables interrupts, it allows other 
requests to be serviced. 

END-Of-INTERRUPT COMMAND 

The end-ol-interrupt (EOI) command is used by the 
programmer to reset the In-Service (IS) bit when an 
interrupt service routine is completed. The EOI com­
mand is issued by writing the proper pattern to the 
EOI register. There are two types 01 EOI commands, 
specific and nonspecific. The nonspecific command 
does not specify which IS bit is reset. When issued, 
the interrupt controller automatically resets the IS bit 
of the highest priority source with an active service 
routine. A specific EOI command requires that the 
programmer send the interrupt vector type to the in­
terrupt controller indicating which source's IS bit is 
to be reset. This command is used when the fully 
nested structure has been disturbed or the highest 
priority IS bit that was set does not belong to the 
service routine in progress. 

TRIGGER MODE 

The lour external interrupt pins can be programmed 
in either edge- or level-trigger mode. The control 
register for each external source has a level-trigger 
mode (L TM) bit. All interrupt inputs are active HIGH. 
In the edge sense mode or the level-trigger mode, 
the interrupt request must remain active (HIGH) until 
the interrupt request is acknowledged by the 80188 
CPU. In the edge-sense mode, if the level remains 
high after the interrupt is acknowledged, the input is 
disabled and no further requests will be generated. 
The input level must go LOW for at least one clock 
cycle to reenable the input. In the level-trigger mode, 
no such provision is made: holding the interrupt input 
HIGH will cause continuous interrupt requests. 



inter 80188 

INTERRUPT VECTORING 

The 80188 Interrupt Controller will generate interrupt 
vectors for the integrated DMA channels and the in­
tegrated. Timers. In addition, the Interrupt Controller 
will generate interrupt vectors for the external inter­
rupt lines if they are not configured in Cascade or 
Special Fully Nested Mode. The interrupt vectors 
generated are fixed and cannot be changed (see Ta­
ble 4). 

Interrupt Controller Registers 

The Interrupt Controller register model is shown in 
Figure 23. It Contains 15 registers. All registers can 
both be read or written unless specified otherwise. 

IN-SERVICE REGISTER 

This register can be read from or written into. The 
format is shown in Figure .24. It contains the In-Serv­
ice bit for each of the interrupt sources. The In-Serv­
ice bit is set to indicate that a source's service rou~ 
tine is in progress. When an In-Service bit isset, the 
interrupt controller will not generate interrupts to the 
CPU when it receives interrupt requests from devic­
es with a lower programmed priority level. The TMR 
bit is the In-Service bit for all three timers; the DO 
and 01 bits are the In-Service bits for the two DMA 
channels; the 10-13 are the In-Service bits for the 
external interrupt pins. The IS bit is set when the 
processor acknowledges an interrupt request either 
by an interrupt acknowledge or by reading the poll 
register. The IS bit is reset at the end of the interrupt 
service routine by an end-of-interrupt command is­
sued by the CPU. 

80188 
rtmI 

fNTAlj 

INTERRUPT REQUEST REGISTER 

The internal interrupt sources have interrupt request 
bits inside the interrupt controller. The format of this 
register is shown in Figure 24. A read from this regis­
ter yields the status of these bits. The TMR bit is the 
logical OR of all timer interrupt requests. DO and 01 
are the interrupt request bits for the DMA channels. 

The state of the external interrupt input pins is also 
indicated. The state of the external interrupt pins is 
not a stored condition inside the interrupt controller, 
therefore the external interrupt bits cannot be writ­
ten. The external interrupt request bits show exactly 
when an interrupt request is given to the interrupt 
controller, so if edge-triggered mode is selected, the 
bit in the register will be HIGH only after an inactive­
to-active transition. For internal interrupt sources, 
the register bits are set when a request arrives and 
are reset when the processor acknowledges the re­
quests. 

MASK REGISTER 

This is a 16-bit register that contains a mask bit for 
each interrupt source. The format for this register is 
shOWn in Figure 24. A one in a bit position corre­
sponding to a particular source serves to mask the 
source from generating interrupts. These mask bits 
are the exact same bits which are used in the indi­
vidual control registers; programming a mask bit us­
ing the mask register will also change this bit in the 
individual control registers, and vice versa. 

\NT 

8259A 
PIC 

IliITA 

210706-12 

Figure 22. Cascade Mode Interrupt Connection 

3-192 



INT3 CONTROL REGISTER 

INT2 CONTROL REGISTER 

INT1 CONTROL REGISTER 

INTO CONTROL REGISTER 

DMA 1 CONTROL REGISTER 

DMA 0 CONTROL REGISTER 

TIMER CONTROL REGISTER 

INTERRUPT STATUS REGISTER 

INTERRUPT REQUEST REGISTER 

IN-SERVICE REGISTER 

PRIORITY MASK REGISTER 

MASK REGISTER 

POLL STATUS REGISTER 

POLL REGISTER 

EOI REGISTER 

OFFSET 

3EH 

3CH 

3AH 

3SH 

36H 

34H 

32H 

30H 

2EH 

2CH 

2AH 

2SH 

26H 

24H 

22H 

Figure 23. Interrupt Controller Registers 
(Non-iRMXTM 86 Mode) 

15 14 10 9 

80188 

8 

PRIORITY MASK REGISTER 

This register is used to mask all interrupts below par­
ticular interrupt priority levels. The format of this reg­
ister is shown in Figure 25. The code in the lower 
three bits of this register inhibits interrupts of priority 
lower (a higher priority number) than the code speci­
fied. For example. 100 written into this register 
masks interrupts of level five (101). six (110). and 
seven (111). The register is reset to seven (111) 
upon RESET so all interrupts are unmasked. 

INTERRUPT STATUS REGISTER 

This register contains general interrupt controller 
status information. The format of this register is 
shown in Figure 26. The bits in the status register 
have the following functions: 

DHL T: DMA Halt Transfer; setting this bit halts all 
DMA transfers. It is automatically set when­
ever a non-maskable interrupt occurs. and it 
is reset when an IRET instruction is execut­
ed. The purpose of this bit is to allow prompt 
service of all non-maskable interrupts. This 
bit may also be set by the CPU. 

IRTx: These three bits represent the individual tim­
er interrupt request bits. These bits are used 
to differentiate the timer interrupts. since the 
timer IR bit in the interrupt request register is 
the "OR" function of all timer interrupt re­
quests. Note that setting anyone of these 
three bits initiates an interrupt request to the 
interrupt controller. 

7 6 5 4 3 2 o 
I 0 o I • • I 0 I 0 I 0 I 13 I 12 I 11 10 I 01 00 o I TMR I 

Figure 24. In-Service, Interrupt Request, and Mask Register Formats 

15 14 3 2 1 0 
I 0 0 I • 

Figure 25. Priority Mask Register Format 

15 14 7 6 5 4 3 2 1 0 
10HLTI 0 I • • I 0 I 0 I 0 I 0 I 0 IIRT2 IIRT1 IIRTO I 

Figure 26. Interrupt Status Register Format 

3-193 



inter 80188 

TIMER, DMA 0,1; CONTROL REGISTERS 

These registers are the control words for all the in­
ternal interrupt sources. The format for these regis­
ters is shown in Figure 27. The three bit positions 
PRO, PR1, and PR2 represent the programmable pri­
ority level of the interrupt source. The MSK bit inhib­
its interrupt requests from the interrupt source. The 
MSK bits in the individual control registers are the 
exact same bit1S as are in the MliSk Register; modify­
ing them in the individual control registers will also 
modify them in the Mask Register, and vice versa. 

INTO-INT3 CONTROL REGISTERS 

These registers are the control words for the four 
external input pins. Figure 28 shows the format of 
the INTO and INn Control registers; Figure 29 
shows the format of the INT2 and INT3 Control reg­
isters. In cascade mode or special fully nested 
mode, the control words for INT2 and INT3 are not 
used. 

The bits in the various control registers are encoded 
as follows: . 

PRO-2: Priority programming information. Highest 
priority = 000, lowest priority = 111. 

L TM: Level-trigger mode bit. 1=level-trig­
gered; 0 = edge-triggered. Interrupt Input 
levels are active high. In level-triggered 
mode, an interrupt is generated whenever 
the external line is high. In edge-triggered 
mode, an interrupt will be generated only 

15 14 

1 0 0 1 • 

MSK: 

C: 

SFNM: 

when this level is preceded by an inac­
tive-to-active transition on the line. In both 
cases, the level must remain active until 
the interrupt is acknowledged. 

Mask bit, 1 = mask; 0 = non-mask. 

Cascade mode bit, 1 = cascade; 0 = di­
rect. 

Special fully nested mode bit, 1 = SFNM. 

EOI REGISTER 

The end of the interrupt register is a command regis­
ter which can only be written into. The format of this 
register is shown in Figure 30. It initiates an EOI 
command when written to by the 80188 CPU. 

The bits in the EOI register are encoded as follows: 

Sx: Encoded information that specifies an in­
terrupt source vector type as shown in 
Table 4. For example, to reset the In­
Service bit for DMA channel 0, these bits 
should be set to 01010, since the vector 
type for DMA channel 0 is 10. Note that to 
reset the single In-Service bit for any of 
the three timers, the vector type for timer 
o (8) should be written in this register. 

NSPEC/: A bit that determines the type of EOI com-
SPEC mand. Nonspecific = 1, Specific = o. 

43210 
• 1 0 1 MSK 1 PR2 1 PRl 1 PRO 1 

Figure 27. Timer/DMA Control Register Formats 

15 14 7 6 5 432 1 0 
1 0 0 1 • • 1 0 ISFNMI c 1 LTM .1 MSK 1 PR21 PRl 1 PRO I 

Figure 28. INTOilNT1 Control Register Formats 

15 14 5 4 3 2 1 0 
o 0 1 • • 1 0 I LTM I MSK I PR2 I PRl I PRO I 

Figure 29. INT2/1NT3 Control Register Formats 

3-194 



inter 80188 

POLL AND POLL STATUS REGISTERS 

These registers contain polling information. The for­
mat of these registers is shown in Figure 31. They 
can only be read. Reading the Poll register consti­
tutes a software poll. This will set the IS bit of the 
highest priority pending interrupt. Reading the poll 
status register will not set the IS bit of the highest 
priority pending interrupt; only the status of pending 
interrupts will be provided. 

Encoding of the Poll and Poll Status register bits are 
as follows: 

Sx: Encoded information that indicates the 
vector type of the highest priority inter­
rupting source. Valid only when INTREO 
= 1. 

INTREO: This bit determines if an interrupt request 
is present. Interrupt Request = 1; no In­
terrupt Request = O. 

iRMXTM 86 COMPATIBILITY MODE 

This mode allows iRMX 86-80188 compatibility. The 
interrupt model of iRMX 86 requires one master and 
multiple slave 8259As in cascaded fashion. When 
iRMX mode is used, the internal 80188 interrupt con­
troller will be used as a slave controller to an exter­
nal master interrupt controller. The internal 80188 
resources will be monitored through the internal in­
terrupt controller, while the external controller func­
tions as the system master interrupt controller. 

Upon reset, the 80188 interrupt controller will be in 
the non-iRMX 86 mode of operation. To set the con­
troller in the iRMX 86 mode, bit 14 of the Relocation 
Register should be set. 

15 14 13 

I~~~~~I 0 I 0 I . 

Because of pin limitations caused by the need to 
interface to an external 8259A master, the internal 
interrupt controller will no longer accept external in­
puts. There are however, enough 80188 interrupt 
controller inputs (internally) to dedicate one to each 
timer. In this mode, each timer interrupt source has 
its own mask bit, IS bit, and control word. 

The iRMX 86 operating system requires peripherals 
to be aSSigned fixed priority levels. This is incompati­
ble with the normal operation of the 80188 interrupt 
controller. Therefore, the initialization software must 
program the proper priority levels for each source. 
The required priority levels for the internal interrupt 
sources in iRMX mode are shown in Table 16. 

Table 16. Internal Source Priority Level 

Priority Level Interrupt Source 

0 Timer 0 
1 (reserved) 
2 DMAO 
3 DMA 1 
4 Timer 1 
5 Timer 2 

These level assignments must remain fixed in the 
iRMX 86 mode of operation. 

iRMXTM 86 Mode External Interface 

The configuration of the 80188 with respect to an 
external 8259A master is shown in Figure 32. The 
INTO input is used as the 80188 CPU interrupt input. 
INT3 functions as an output to send the 80188 
slave-interrupt-request to one of the 8 master-PIC­
inputs. 

5 4 3 2 0 . I 0 I S4 S3 S2 S1 so 

Figure 30. EOI Register Format 

15 14 13 5 4 3 0 

I:blolol· . I 0 I 54 S3 S2 S1 so 

Figure 31. Poll Register Format 

3-195 



80188 

82S9A 
MASTER 

INTA IRO <==REQUESTSFROM 
OTHER SLAVES 

80188 INT. IN 
INT 

1 
IR7 -

80188 CASO-2 

~ 
~ 

INTO 

ffffi SLAVE SELECT J CASCADE I ADDRESS DECODER 

INT2 f--

INTl 
80188 SLAVE INTERRUPT OUTPUT 

210706-13 

Figure 32. iRMXTM 86 Interrupt Controller Interconnection 

Correct master-slave interface requires decoding of 
the slave addresses (CASO-2). Slave 8259As do 
this internally. Because of pin limitations, the 80188 
slave address will have to be decoded externally. 
INTl is used as a slave-select input. Note that the 
slave vector address is transferred internally, but the 
READY input must be supplied externally. 

INT2 is used as an acknowledge output, suitable to 
drive the INTA input of an 8259A. 

Interrupt Nesting 

iRMX 86 mode operation allows nesting of interrupt 
requests. When an interrupt is acknowledged, the 
priority logic masks off all priority levels except those 
with equal or higher priority. 

Vector Generation in the 
iRMXTM 86 Mode 

Vector generation in iRMX mode is exactly like that 
of an 8259A slave. The interrupt controller gener­
ates an 8-bit vector which the CPU multiplies by four 
and uses as an.address into a vector table. The sig­
nificant five bits of the vector are user-programma­
ble while the lower three bits are generated by the 
priority logic. These bits represent the encoding of 
the priority level requesting service. The significant 
five bits of the vector are programmed by writing to 
the Interrupt Vector register at offset 20H. 

Specific End-of-Interrupt 

In iRMX mode the specific EOI command operates 
to reset an in-service bit of a specific priority. The 
user supplies a 3-bit priority-level value that points to 
an in-service bit to be reset. The command is exe­
cuted by writing the correct value in the Specific EOI 
register at offset 22H. 

Interrupt Controller Registers 
in the iRMXTM 86 Mode 

All control and command registers are located inside 
the internal peripheral control block. Figure 33 
shows the offsets of these registers. 

END-OF-INTERRUPT REGISTER 

The end-of-interrupt register is a command register 
which can only be written. The format of this register 
is shown in Figure 34. It initiates an EOI command 
when written by the 80188 CPU. 

The bits in the EOI register are encoded as follows: 

Lx: Encoded value indicating the priority of the IS 
bit to be reset. 

3-196 



inter 80188 

IN-SERVICE REGISTER 

This register can be read from or written into. It con­
tains the in-service bit for each of the internal inter­
rupt sources. The format for this register is shown in 
Figure 35. Bit positions 2 and 3 correspond to the 
DMA channels; positions 0, 4, and 5 correspond to 
the integral timers. The source's IS bit is set when 
the processor acknowledges its interrupt request. 

INTERRUPT REQUEST REGISTER 

This register indicates which internal peripherals 
have interrupt requests pending. The format of this 
register is shown in Figure 35. The interrupt request 
bits are set when a request arrives from an internal 
source, and are reset when the processor acknowl­
edges the request. 

MASK REGISTER 

The register contains a mask bit for each interrupt 
source. The format for this register is shown in Fig­
ure 35. If the bit in this register corresponding to a 
particular interrupt source is set, any interrupts from 
that source will be masked. These mask bits are ex­
actly the same bits which are used in the individual 
control registers, i.e., changing the state of a mask 
bit in this register will also change the state of the 
mask bit in the individual interrupt control register 
corresponding to the bit. 

CONTROL REGISTERS 

These registers are the control words for all the in­
ternal interrupt sources. The format of these regis­
ters is shown in Figure 36. Each of the timers and 
both of the DMA channels have their own Control 
Register. 

15 14 13 8 
0 0 0 I . . I 0 I 

The bits of the Control Registers are encoded as 
follows: 

prx: 3-bit encoded field indicating a priority level 
for the source; note that each source must be 
programmed at specified levels. 

msk: mask bit for the priority level indicated by pr x 
bits. 

7 
0 

LEVEL 5 CONTROL REGISTER 
(TIMER 2) 

LEVEL 4 CONTROL REGISTER 
(TIMER 1) 

LEVEL 3 CONTROL REGISTER 
(DMA1) 

LEVEL 2 CONTROL REGISTER 
(DMAO) 

LEVEL 0 CONTROL REGISTER 
(TIMER 0) 

INTERRUPT STATUS REGISTER 

INTERRUPT REQUEST REGISTER 

IN·SERVICE REGISTER 

PRIORITY· LEVEL MASK REGISTER 

MASK REGISTER 

SPECIFIC EOI REGISTER 

INTERRUPT VECTOR REGISTER 

OFFSET 

3AH 

38H 

36H 

34H 

32H 

30H 

2EH 

2CH 

2AH 

28H 

22H 

20H 

Figure 33. Interrupt Controller Registers 

(iRMXTM 86 Mode) 

6 5 4 3 2 0 
0 I 0 I 0 I 0 I L2 L1 LO 

Figure 34. Specific EOI Register Format 

15 14 13 8 7 6 5 4 3 2 0 

I 0 0 I 0 I . . I 0 I 0 I 0 ITMR21TMR11 D1 DO 0 ITMROI 

Figure 35. In-Service, Interrupt Request, and Mask Register Format 

3-197 



inter 80188 

INTERRUPT VECTOR REGISTER 

This register provides the upper five bits of the inter­
rupt vector address. The format of this register is 
shown in Figure 37. The interrupt controller itself 
provides the lower three bits of the interrupt vector 
as determined by the priority level of the interrupt 
request. 

The format of the bits in this register is: 

tx: 5-bit field indicating the upper five bits of the 
vector address. 

PRIORITY·LEVEL MASK REGISTER 

This register indicates the lowest priority-level inter­
rupt which will be serviced. 

The encoding of the bits in this register is: 

mx: 3-bit encoded field indication priority-level val­
ue. All levels of lower priority will be masked. 

INTERRUPT STATUS REGISTER 

This register is defined exactly as in non-iRMX mode 
(See Figure 26). 

Interrupt Controller and Reset 

Upon RESET, the interrupt controller will perform 
the following actions: 

• All SFNM bits reset to 0, implying Fully Nested 
Mode. 

• All PR bits in the various control registers set to 1. 
This places all sources at lowest priority (level 
111 ). 

• All L TM bits reset to 0, resulting in edge-sense 
mode. 

• All Interrupt Service bits reset to O. 

• All Interrupt Request bits reset to O. 

• All MSK (Interrupt Mask) bits set to 1 (mask). 

• All C (Cascade) bits reset to 0 (non-cascade). 

• All PAM (Priority Mask) bits set to 1, implying no 
levels masked. 

• Initialized to non-iAMX 86 mode. 

15 14 13 876 5 43210 
I 0 0 0 I • • I 0 I 0 I 0 I 0 o I MSK I PR2 I PRl I PRO I 

Figure 36. Control Word Format 

15 14 13 8 7 6 5 4 3 2 1 0 
0 0 I 0 I . · I 0 I 14 I 13 I 12 I 11 to I 0 I 0 0 I 

Figure 37. Interrupt Vector Register Format 

15 14 13 8 7 6 5 4 3 2 0 

I 0 0 0 I . · I 0 I 0 I 0 I 0 I 0 I 0 I m2 ml mO I 

Figure 3S.Priorlty Level Mask Register 

3-198 



Vee 
x, 

.l 

80188 

X2 

UCSr----------------------------~.1 

8282 OR AODRESS 
AD()'A01.~ 8283 Lt----'---'~~~=~ 

A8.A'Sf',r f LATCH r:--

80'88 

ALE~ ~. 

~ 

1m I----__.j 
WR 1-________ """ 

SRDVty SV 

ARDY 

NMlh 

HOLOn 
~ 1---------""" 

TMR INO ......... · 5V 

TMR OUT 0 1---------""" 

I 

RESET 
ROM 

PROGRAM 
RAM 

LOW RAM 

• 
8286 OR 

~ 8281 
,.,/ TRANSCEIVER k=>~; 

T oe 
DTIII L f..---.J mor:r=::t r 

A' ~========~~~I 

SERIAL 
110 

"2 f---I-.--i -----< 1---1t-'L~--.J 
INTO f--++-__.j f--- _---.1 

1 1_,--_1 __ ~ ___ ---')-=-~rI-L---' 

TERMINAL 

~ DISK K=>8 INTERFACE 0 OISK 
INT'I-----------------------1 
PCS4-----------------------~·~1 

DRao~----------------------.j 

HARDWARE 

Figure 39. Typical 80188 Computer 

3-199 

210706-14 



Vee 

f1 
J 

16MHz 

r-1D~ 
Xl X2 

UCS 

AD 

m 

ALE 

LCS 

\Vii 

AOG-A07 
A8·A15 

80188 

NMI 

HOLD 

CLKOUT 

SO-52 

PCSO 
PCSl 

COCK 

SROY 

AADV 

80188 

CS 
RESET K=-

UF 
ROM 

8282 OR 

-----./ 8283 ns LATCH 

STB 6E 
ST. OE LOW 

• -;:- RAM 

b 8282 OR 
8283 

LATCH 

STB 6E 

'"Wi=r STB 01 
f t 

=t '----". 
8286 OR 

8287 
TRANSCEIVER 

T OE 

1 
OT/R 

CLK 

- ALE 
DEN 

8288 
SO-52 BUS 

r-" CONTROLLER 

,..- r- CEN 
lOB AEN 

-;:- 1 
[ 

~ SO-S2 AEN 
8289 

~ ClK ARa,::~ER 
~ '\ SVSBRESB ./ 

lOB 

lOCK RESB 

==<r~~ -·0 

CS 

IL-

>~~RESS 

DATA BUS 

BUS CONTROL 
COMMANDS 

/'-- 1 -> MULTIBUS 
~~ ARBITRATION 

1... 5V : 

I 
XACK 

MULTI 
MAST EA 

EM SYST 
BUS 

210706-15 

Figure 40. Typical 80188 Multi-Master Bus Interface 

3-200 



80188 

PACKAGE 

The 80188 is available in two 68 pin hermetic pack­
ages. They are the JEDEC type A leadless chip car­
rier and the JEDEC type CG pin grid array. Figures 
41 A and 41 B illustrate the package dimensions. 

NOTE: 
The IDT 3M Textool 68-pin JEDEC Socket is re­
quired for 121CETM 188 operation. See Figure 42 for 
details. 

r------------------------------------------------------.-----------.--------~ 

,050 sse 
[ TVP 

tLD 

,039 TVP (68) PlCS 

-~ 
f 

Figure 41A. 80188 JEDEC Type A Package 

210706-16 

S8,-Lead Ceramic Pin Grid Array I, 
Package Type CG , I 

SWAGED PIN 
STANDOFF 

\4Pt.ACES) 

010 TYP 
ll778! 

1------- : :~: :~: ~~~l -----..; 

Figure 41B. Ceramic Pin Grid Array Package Type CG 

3-201 

210706-17 

~~STANOOI'F 
040 11.016) 

210706-18 

I 



inter 
PC BOARD PATTERN 

~ ;-PINN01 

~~1:~~~~~~r.1' i7-': :fE~e;ATION /+1 FRONT 
.. PIN ClR HOLE.,.,...--;J • 

DEVICE PADS ~ FOAl .a28 DIA..,r:;J 
SHOWN FOR -F/7+(O.'4,-n-ct. ..!.:2!!. 
CONTACT F./ I .r:iI (2~.4) 
LOCA'nON ~ I ".-:;J ~TYP 

~g~~-.~~T ~~>_~~~~~~~-;-) 
.01' ...... ~.ii.ii.ii.L. 1.00 

~'''I'1 t:i L ~ -I r-tfii)TYP 
.o~=r ,::zt--l 

(0.11) • SPcseJ1!!tTOL NON ACCUM TVP .. PLCS 

CONTACT TAIL (2.14, 

210706-19 

NOTE: 

80188 

OUIDE 80SS 
3PLes 

- (;:';:,50--­
~ 

ALUMINUM LID 
(HEATStNK PROVISIONS OPTIONAL) 

INDEX 

~-~FRONT 

\ 
OPEN 

Physical dimensions shown are for reference only. Please consult 3M Textool for complete information on the socket. 

Figure 42. Textool 68 Lead Chip Carrier Socket 

(i)@w G)@(i)@@ 
@@@)@ @@@@®@ 
@® @® 
G~ 00 
\JV'\D 'E) '\l9 

®® GDG) 
G)® ~G) 
@@ ~~ 
@t.tRTMR@G0 DUTO DUT1 1.19/56 S7 

22 23 65 64 

~~ 00 \JV \JV '(V \]/ 

@@00@@GGGG@ 
o c'\or:;;\(::\f"::;\(:;\(:~ a 
\E}\:iV\lV\.V'V\V\V~~ 

Bottom View (Pins Facing Up) 

Figure 43. Pin Grid Array, PLCC, and LCC Socket Pinout 

3-202 

210706-21 



80188 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature under Bias .... O·C to + 70·C 

Case Temperature under Bias ...... O·C to + 11 O·C 

Storage Temperature .......... - 65·C to + 150·C 

Voltage on any Pin with 
Respect to Ground .............. -1.0V to + 7V 

Power Dissipation ........................ 3 Watt 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICS (TA = O·Cto +70·C, Tc = O·Cto +110·C, Vcc = 5V ±10%) 
Applicable to 80188 (8 MHz), and 80188-10 (10 MHz) 

Symbol Parameter Min Max Units Test Conditions 

VIL Input Low Voltage 0.5 +0.8 V 

VIH Input High Voltage 2.0 Vcc + 0.5 V 
(All except X1 and RES) 

VIH1 Input High Voltage (RES) 3.0 VCC + 0.5 V 

VOL Output Low Voltage 0.45 V la = 2.5 mA for SO-S2 
la = 2.0 mA for all other outputs 

VOH Output High Voltage 2.4 V loa = -400 p..A 

Icc Power Supply Current 550 mA T = O·C 
- Max measured at T A C 
450 A = 70· 

lu Input Leakage Current ±10 /LA OV < VIN < Vcc 

ILO Output Leakage Current ±10 /LA 0.45V < VOUT < Vcc 

VCLO Clock Output Low 0.6 V la = 4.0mA 

VCHO Clock Output High 4.0 V loa = - 200 /LA 

Vcu Clock Input Low Voltage -0.5 0.6 V 

VCHI Clock Input High Voltage 3.9 Vcc + 1.0 V 

CIN Input Capacitance 10 pF 

CIO 110 Capacitance 20 pF 

3-203 



intJ 80188 

PIN TIMINGS 

A.C. CHARACTERISTICS(TA = O°Cto + 70°C, TC = O°Cto +1WC, Vcc = 5V ±10%) 
80188 Timing Requirements All Timings Measured At 1 5 Volts Unless Otherwise Noted 

80188 80188·10 
Test 

Symbol Parameter (8 MHz) (10 MHz) Units 
Conditions 

Min Max Min Max 

TOVCL Data in Setup (AID) 20 15 ns 

TCLDX Data in Hold (AID) 10 8 ns 

TARYHCH Asynchronous Ready 20 15 ns 
(AREADY) active setup 
time" 

TARYLCL AREADY inactive setup 35 25 ns 
time 

TCHARYX AREADY hold time 15 15 ns 

TARYCHL Asynchronous Ready 15 15 ns 
inactive hold time 

TSRYCL Synchronous Ready 20 20 ns 
(SREADY) transition 
setup time 

TCLSRY SREADY transition 15 15 ns 
hold time 

THVCL HOLD Setup" 25 20 ns 

TINVCH INTR, NMI, TEST, 25 25 ns 
TIMER IN, Setup" 

TINVCL DRQO, DRQ1, Setup' 25 20 ns 

80188 Master Interlace Timing Responses 

TCLAV Address Valid Delay 5 55 5 50 ns 

TCLAX Address Hold 10 10 ns 

TCLAZ Address Float Delay TCLAX 35 TCLAX 30 ns 

TCHCZ Command Lines 45 40 ns 
Float Delay 

TCHCV Command Lines Valid 55 45 ns 
Delay (after float) 

hHLL ALE Width TCLCL -35 TCLCL -30 ns 

TCHLH ALE Active Delay 35 30 ns 
CL = 20-200 pF 

TCHLL ALE Inactive Delay 35 30 ns all outputs (except T CLTMV) 

TLLAX Address Hold to TCHCL -25 TCHCL -20 ns @8&10MHz 

ALE Inactive 

TCLDV Data Valid Delay 10 44 10 40 ns 

TCLDOX Data Hold Time 10 10 ns 

TWHDX Data Hold after WR TCLCL -40 TCLCL -34 ns 

TcVCTV Control Active Delay 1 10 70 5 56 ns 

TCHCTV Control Active Delay 2 10 55 10 44 ns 

TCVCTX Control Inactive Delay 5 55 5 44 ns 

TCVOEX DEN Inactive Delay 10 70 10 56 ns 
(Non·Write Cycle) 

.. 
"To guarantee recognition at next clock . 

3-204 



80188 

PIN TIMINGS (Continued) 

A.C. CHARACTERISTICS 
(T A = O·C to + 70·C, T C = O·C to + 11 O·C, V CC = 5V ± 10%) (Continued) 

80188 Master Interface Timing Responses (Continued) 

80188 80188-10 
Symbol Parameter (8 MHz) (10 MHz) 

Min Max Min 

TAZRL Address Float to 0 0 
RDActive 

TCLRL RD Active Delay 10 70 10 

TCLRH RD Inactive Delay 10 55 10 

TRHAV RD Inactive to TCLCL -40 TCLCL -40 
Address Active 

TCLHAV HlDA Valid Delay 5 50 5 

TRLRH RDWidth 2TCLCL -50 2TCLCL -46 

TWLWH WRWidth 2TCLCL -40 2TCLCL -34 

TAVAL Address Valid to TCLCH -25 TCLCH -19 
A.lE low 

TCHSV Status Active Delay 10 55 10 

TCLSH Status Inactive Delay 10 65 10 

TCLTMV Timer Output Delay 60 

TCLRO Reset Delay 60 

TCHQSV Queue Status Delay 35 

TCHDX Status Hold Time 10 10 

TAVCH Address Valid to 10 10 
Clock High 

TCLLV lOCK Valid/Invalid 5 65 5 
Delay 

80188 Chip-Select Timing Responses 

TCLCSV Chip-Select 66 
Active Delay 

Tcxcsx Chip-Select Hold from 35 35 
Command Inactive 

TCHCSX Chip-Select 5 35 5 
Inactive Delay 

80188 CLKIN Requirements 

TCKIN ClKIN Period 62.5 250 50 

TCKHL ClKIN Fall Time 10 

TCKLH ClKIN Rise Time 10 

TCLCK ClKIN low Time 25 20 

TCHCK elKIN High Time 25 20 

80188 CLKOUT Timing (200 pF load) 

TCICO ClKINto 50 
ClKOUTSkew 

TCLCL ClKOUT Period 125 500 100 

TCLCH ClKOUT low Time '12 T CLCL - 7.5 '12 T CLCL - 6.0 

TCHCL ClKOUT High Time '12 TCLCL -7.5 '12 T CLCL - 6.0 

TCH1CH2 ClKOUT Rise Time 15 

TCL2CL1 ClKOUT Fall Time 15 

3-205 

Test 
Units 

Conditions 
Max 

ns 

56 ns 

44 ns 

ns 

40 ns 

ns 

ns 

ns 

45 ns 

50 ns 

48 ns 100 pF max 

48 ns 

28 ns 

ns 

ns 

60 ns 

45 ns 

ns 

32 ns 

250 ns 

10 ns 3.5 to 1.0V 

10 ns 1.0 to 3.5V 

ns 1.5V 

ns 1.5V 

25 ns 

500 ns 

ns 1.5V 

ns 1.5V 

12 ns 1.0t03.5V 

12 ns 3.5 to 1.0V 



inter 
WAVEFORMS 

Major Cycle Timing 

WRITE CYCLE 

RD,INTA, 
DT/R:VOH 

INTA CYCLE 

RD,WR,=VOH 

CLK OUT 

S7' 

A19/SS-A16/S3 

A15-A8 

ALE 

DT/R 

DEN 

SOFTWARE HALT-DT!R=VOl' 

Ro,WR,INTA,DEN=VOH 

PCS, 
MCS 
LCS1 
UCS 

80188 

''"''"~ 1----< ~ .---TCLCL---. 1-
~ ~ n ~ 

----J TCHSV ~ TCHCL ~ (NOTE 3)~ '--
VCl I ~ r-ITClSH I IClCH. _ Uu 

'\ IYIIIIII# , , . ---
TClAV I+- ~ TCLOV 

1- TCHCZ 
TCLAX ~ NOTE 1 

A19-A16 57_53 -
TCLAV l+- I- TCHCZ 

NOTE 1 

) A15-A8(FLOAT DURING INTA) ~ 

TLHLL TLLAX 
I .. -- --.-
I TAVAL 

, , 
~I --- .-.-

TCHLH 
TClAV I+- :: TCIDV 

TCLAZ I-
TCLAX TCLOOX I-

K A7-AO '( DATA OUT 
, K: TWHDX TAVCH -- r-- --. TlLAX 

Tcv6rx .!fE1 TCVCTV -:-1 
'\ 

TCVCTV 

X 
TWLWH-- --

TCVCTX ---
TCLDX ~ 

=1TClAZ TDVCLI;::;;; 

FLOAT A"'"'" FLOAT 

TCHCTV ::::1 \ hTCHCTV 

\ I 
TCVCTV 

~ 
J ) 

~ / 
TCVCTV-Q TCVDEX 1--. 

~'l 
,~ , 1-

12!< TCLCSV 

INVALID ADDRESS 

TCLAV TCXCSX~ TCHCSX 

210706-22 

3-206 



intJ 
WAVEFORMS (Continued) 

(Continued) 

CLKOUT 

BHE/S7,A19/S6-A161S3 

REAOCYCLE 

NOTES: 

ALE 

lCHLH 

Ao,-AOO 

RO 

oliFi 

pcs, 
t.leS ----+~ 
LCS, 
ucs 

80188 

210706-23 

1. Following a Write cycle, the Local Bus is floated by the 80188 orily when the 801 SS enters a "Hold Acknowledge" 
state. 
2. INTA occurs one clock later in RMX-mode. 
3. Status inactive just prior to T 4. 

3-207 



WAVEFORMS (Continued) 

ClKOUT 

,r;+. 
INTo-~ 

TIMeRIN 

- TelLV 

-----~ 

80188 

210706-24 

3-208 



WAVEFORMS (Continued) 

Hold-Hlda Timin 

CLKOUT 

ARDY 

ARDY 

CLKOUT 

SRDY 

ClKOUT 

HLDA 

A,,-Aa ___ _ 

AD,-ADo 
80188 

15m----

A191S6-A161S3, ---­
lIrJ, WIi. 80188 

S7,----

DT/R, 

52-SO 

80188 

_TCLAZ 

__ .J 

--'" 
)--- __ J -(" 

--------'-----'~ 

3-209 

T, 

.. -f1--!\-
, I 

\ 

TCHCY r-
I-TClAY 

I 

80188 

80188 

210706-25 



80188 

WAVEFORMS (Continued) 

Timer On 80188 

ClKIN 

TCKHl 

TCH1CH2-

ClKOUT 'i.--TClCHI--+-,j4--- TCHCl--~\... 

!--------TClCl-------1 

TIMERIN 

I 
--.../ 

_TINVCH 

TClTMV 1-

TIMEROUT __ ~:======================__2_-_6C_lOC_K_S _______ ----+-~r 

80188 INSTRUCTION TIMINGS 

The following instruction timings represent the mini­
mum execution time in clock cycles for each instruc­
tion. The timings given are based on the following 
assumptions: 

• The opcode, along with any data or displacement 
required for .execution of a particular instruction, 
has been prefetched and resides in the queue at 
the time it is needed. 

• No wait states or bus HOLDS occur. 

210706-26 

• All word-data is located on even-address bound­
aries. 

All jumps and calls include the time required to fetch 
the opcode of the next instruction at the destination 
address. 

All instructions which involve memory reference can 
require one (and in some cases, two) additional 
clocks above the minimum timings shown. This is 
due to the asynchronous nature of the handshake 
between the BIU and the Execution unit. 

3-210 



80188 

INSTRUCTION SET SUMMARY 

Function Format 
Clock 

Comments 
Cycles 

DATA TRANSFER 
MOV = Move: 

Register to register I memory I 1000100w I mod reg rIm I 2/12' 

Register I memory to register I 1000101w I mod reg rIm I 2/9' 

Immediate to registerlmemory I 1100011 w I mod 000 rIm I data I data if w= 1 I 12/13' B/16-bit 

I mmediate to register I 1011 w reg I data I data ifw= 1 I 3/4 B/16-bit 

Memory to accumulator I 1010000w I addr-Iow I addr-high I 9' 

Accumulator to memory I 1010001w I addr-Iow I addr-high I B' 

Register I memory to segment register I 10001110 I mod 0 reg rIm I 2/13 

Segment register to register I memory I 10001100 I mod 0 reg rIm I 2/15 

PUSH = Push: 

Memory I 11111111 I mod 110 rim I 20 

Register I 01010reg I 14 

Segment register I 000regll0 I 13 

tm~tl! I 0110fO.sO ;·1 data I dat$cifs~O I 14 
i 

~7PU$n~11 
'.." ~ "1 01.160~()O I 68 

pOP = Pop: 

Memory I 10001111 I mod 0 0 0 rim I 24 

Register I 01011 reg I 14 

Segment register I OOOreglll I (reg"'OI) 12 

,. 
~Ab, .. l>Qp All " ,', t OJ 10.0001 I 83 

XCHG = Exchange: 

Register I memory with register I 1000011w I mod reg rim I 4/17' 

Register with accumulator I 10010reg I 3 

IN = Input from: 

Fixed port 1110010w I port I 10' 

Variable port 1110110w I 8' 

OUT = Output to: 

Fixed port 1110011 w I port I 9' 

Variable port 1110111 w I 7' 

XLAT = Translate byte to AL 11010111 I 15 

LEA = Load EA to register 10001101 I mod reg rim I 6 

LOS = Load pOinter to OS 11000101 I mod reg rIm I (mod"'ll) 26 

LES = Load pointer to ES 11000100 I mod reg rIm I (mod"'ll) 26 

LAHF = Load AH with flags 10011111 I 2 

SAHF = Store AH into flags 10011110 I 3 

PUSHF = Push flags 10011100 I 13 

Shaded areas indicate instru tions not available in 8086, 8088 microsystems. 
'Note: Clock cycles shown for byte transfer. For word operations, add 4 clock cycles for all memory transfers. 

3-211 



intJ 80188 

INSTRUCTION SET SUMMARY (Continued) 

Function Format 
Clock 

Comments 
Cycles 

DATA TRANSFER (Continued) 

POPF = Pop flags I 10011101 I 12 

SEGMENT = Segment Override: 

CS I 00101110 I 2 

SS I 00110110 I 2 

OS I 00111110 I 2 

ES I 00100110 I 2 

ARITHMETIC 
ADD = Add: 

Reg/memory with register to either I OOOOOOdw I mod reg rIm I 3/10' 

Immediate to register/memory I 100000sw I modOOO rIm I data I data if s w=OI I 4/16' 

Immediate to accumulator I 0OOOO10w I data I data ifw= 1 I 3/4 8/16-bit 

ADC = Add with carry: 

Reg/memory with register to either I 0OO100dw I mod reg rIm I 3/10' 

Immediate to register/memory I 100000sw I modO 10 rIm I data I data if s w=OI I 4/16' 

Immediate to accumulator 10001010W I data I dataifw=1 I 3/4 8/16-bit 

INC = Increment: 

Registerlmemory I 1111111w I mod 0 0 0 rIm I 3/15' 

Register I o 1 0 0 0 reg.-J 3 

SUB = Subtract: 

Reglmemory and register to either I 001010dw I mod reg rIm I 3/10' 

Immediate from register/memory I 100000sw I mod 1 0 1 rIm I data I data if sw=o1l 4/16' 

Immediate from accumulator I 0010110w I data I dataifw=1 I 3/4 8/16-bit 

SBB = Subtract with borrow: 

Reg/memory and register to either I 0OO110dw I mod reg rIm I 3/10' 

Immediate from register/memory I 100000sw I modO 11 rIm I data I data if s W= 01 I 4/16' 

Immediate from accumulator I 0001110w I data I dataifw=1 I 3/4 81 I 6-bit 

DEC = Decrement: 

Register/memory r-;-;11111W I mod 0 0 1 rIm I 3/15' 

Register I 01001re9 I 3 

CMP = Compare: 

Registerlmemory with register 0011101 w I mod reg rim I 3/10' 

Register with register/memory 0011100w I mod reg rim I 3/10' 

Immediate with register/memory 100000sw I mod 11 1 rIm I data I data if s W= 01 I 3/10' 

Immediate with accumulator 0011110w I data I dataifw=1 I 3/4 8/16-bit 

NEG = Change sign 1111011 w I modO 11 rIm I 3 

AAA = ASCII adjust for add 001101 I 1 I 8 

DAA = Decimal adjust for add 0010011 I I 4 

AAS = ASCII adjust lor subtract I 0011111 i I 7 

DAS = Decimal adjust for subtract I 00101111 I 4 

Shaded areas indicate instructions not available in 8086, 8088 microsystems. 
'Note: Clock cycles shown for byte transfer. For word operations, add 4 clock cycles for all memory transfers. 

3-212 



infef 80188 

INSTRUCTION SET SUMMARY (Continued) 

Function Format 

I 1 1 1 101 1 w mod 100 rIm 

1 1 1 1 01 1 w mod 1 01 rIm 

111 101 1 w mod 1 1 1 rIm 

~ ASCII adjust for multiply 11010100 00001010 

~ ASCII adjust for divide 11010101 00001010 

~ Convert byte to word 10011000 

~ Convert word to double word 1 0 0 1 1 0 0 1 

1101000w mod TIT rIm 

TIT Instruction 
000 ROL 
001 ROR 
010 RCL 
011 RCR 
100 SHLISAL 
101 SHR 
111 SAR 

IRe,a/nlemlorv and register to either 001000dw mod reg rIm 

to register I memory 1000000w mod 100 rIm data dataifw~1 

to accumulator 

Shaded areas indicate instructions not available in 8086, 8088 microsystems. 

26-28 
35-37 
32-34 
41-43' 

25-28 
34-37 
31-34 

29 
38 

"35 
44' 

44-52 
53-61 
50-58 
59-67' 

19 

15 

2 

4 

2/15 

5+n/17+n 

3/10' 

4/16' 

3/4 

Comments 

8/16-bit 

'Note: Clock cycles shown for byte transfer. For word operations, add 4 clock cycles for all memory transfers. 

3-213 



intJ 80188 

INSTRUCTION SET SUMMARY (Continued) 

Function 

= And function to flags, no result: 

and register 

data and register I memory 

data and accumulator 

'''.,~ !."~".n", and register to either 

IImme,jial,. In registerlmemory 

= Compare byte/word 

= Scan byte/word 

= Load byte/wd to ALI AX 

= Compare string 

= Scan string 

= Load Siring 

I 
I 
I 

Format 

1000010w mod reg rIm 

1111011 w modOOO rIm data 

1010100w data dataifw=1 

000010dw mod reg rIm 

1000000w mod 0 01 rIm data 

0000110w data dataifw=1 

001100dw mod reg rIm 

1000000w mod 110 rIm data 

0011010w data dataifw=1 

1111011 w mod 0 10 rIm 

1010010w 

1010011 w 

1010111 w 

1010110w 

11 I 10010 1010010w 

1111001 z 1010011w 

1111001 z 1010111 w 

11 110010 1010110W] 

dataifw=1 

dataifw=1 

Shaded areas indicate instructions not available in 8086, 8088 microsystems_ 

Comments 

3/10' 

4/10' 

3/4 S/IS-bit 

3/4 81 1 S-bit 

3/10' 

4/1S' 

3/4 8/lS-bit 

14' 

22' 

IS' 

12' 

8+8n' 

5+ 22n' 

5+ ISn' 

6+11n' 

'Note: Clock cycles shown for byte transfer. For word operations, add 4 clock cycles for all memory transfers. 

3-214 



inter 80188 

INSTRUCTION SET SUMMARY (Continued) 

Function Format 
Clock 

Comments 
Cycles 

CONTROL TRANSFER 

CALL ~ Call: 

Direct within segment I 11101000 I disp-Iow I disp-high I 19 

Register/memory I 11111111 I mod 010 rim I 17/27 
indirect within segment 

Direct intersegment I 10011010 I segment offset I 31 

I segment selecto, I 
Indirect intersegment I 11111111 I mod 011 rim I (mod * 11) 54 

JMP ~ Unconditional lump: 

Short/long I 11101011 I disp-Iow I 14 

Direct within segment I 11101001 I disp-Iow I disp-high I 14 

Register/memory I 11111·111 I mod 1 00 rim I 11/21 
indirect within segment 

Direct intersegment I 11101010 segment offset I 14 

segment selector I 
Indirect intersegment I 11111111 mod 101 rim I (mod * 11) 34 

RET ~ Return from CALL: 

Within segment 11000011 20 

Within seg adding immed to SP 11000010 data-low I data-high I 22 

Intersegment 11001011 I 30 

Intersegment adding immediate to SP 11001010 I data-low I data-high I 33 

JE/JZ ~ Jump on equal/zero 01110100 I disp I 4/13 JMP not 

JL/JNGE ~ Jump on less/not greater or equal I 01111100 disp I 4/13 
taken/JMP 

taken 

JLE/JNG ~ Jump on less or equal/not greater I 01111110 disp I 4/13 

JBI JNAE ~ Jump on below/not above or equal I 01110010 disp I 4/13 

JBE/JNA ~ Jump on below or equal/not above I 01110110 disp I 4/13 

JP/JPE ~ Jump on parity/parity even I 01111010 disp I 4/13 

JO ~ Jump on overflow I 01110000 disp I 4/13 

JS ~ Jump on sign I 01111000 disp I 4/13 

JNE/JNZ ~ Jump on not equal/not zero I 01110101 I disp I 4/13 

JNL/J~E ~ Jump on not less/greater or equal I 01111101 I disp I 4/13 

JNLE/JG ~ Jump on not less or equal/greater I 01111111 I disp I 4/13 

JNB/JAE ~ Jump on not below/above or equal I 01110011 I disp I 4/13 

JNBE/JA ~ Jump on not below or equal/above I 01110111 I disp I 4/13 

JNP/JPO ~ Jump on not par/par odd I 01111011 I disp I 4/13 

Shaded areas indicate instructions not available in 8086, 8088 microsystems. 
• Note: Clock cycles shown for byte transfer. For word operations, add 4 clock cycles for all memory transfers_ 

3-215 



inter 80188 

INSTRUCTION SET SUMMARY (Continued) 

Function 

= Jump on CX zero 

= Loop CX times 

= Loop while zerol equal 

= Interrupt on overflow 

= Interrupt return 

CONTROL 

= Clear carry 

= Complement carry 

= Set carry 

= Clear direction 

= Set direction 

= Clear interrupt 

= Set interrupt 

= Wait 

= Bus lock prelix 

= Processor Extension Escape 

Format 

01110001 disp 

01111001 disp 

11100011 disp 

11100010 disp 

11100001 disp 

11001101 type 

11001100 

11001110 

11111000 

11110101 

111 11001 

11111100 

11 111 101 

11111010 

1111 1011 

11110100 

10011011 

11110000 

Shaded areas indicate instructions not available in 8086, 8088 microsystems. 

4/13 

4/13 

5/15 

6/16 

6/16 

47 

45 

48/4 

28 

2 

2 

2 

2 

2 

2 

2 

2 

6 

2 

6 

Commenta 

LOOP not 
takenlLoop 

taken 

il INT. takenl 
illNT.not 

taken 

iltest = 0 

·Note: Clock cycles shown for byte transfer. For word operations, add 4 clock cycles for all memory transfers. 

3-216 



intJ 80188 

FOOTNOTES 
The Effective Address (EA) of the memory operand 
is computed according to the mod and rIm fields: 

if mod = 11 then rIm is treated as a REG field 

if mod = 00 then OISP = 0', disp-Iow and disp-high are 
absent 

if mod = 01 then OISP = disp-Iow sign-extended to 
16-bits, disp-high is absent 

if mod = 10 then OISP = disp-high: disp-Iow 

if rIm = 000 then EA = (BX) + (SI) + OISP 

if rIm = 001 then EA = (BX) + (01) + OISP 

if rIm = 010 then EA = (BP) + (SI) + OISP 

if rIm = 011 then EA = (BP) + (01) + OISP 

if rIm = 100 then EA = (SI) + OISP 

if rIm = 101 then EA = (01) + OISP 

if rIm = 110 then EA = (BP) + OISP' 

if rIm = 111 then EA = (BX) + OISP 

OISP follows 2nd byte of instruction (before data if 
required) 

'except if mod = 00 and rIm = 110 then EA = 
disp-high: disp-Iow. 

EA calculation time is 4 clock cycles for all modes, 
and is included in the execution times given whenev­
er appropriate. 

Segment Override Prefix 

I 0 0 1 reg 1 1 0 I 
reg is assigned according to the following: 

reg 

00 
01 
10 
11 

Segment 
Register 

ES 
CS 
SS 
OS 

REG is assigned according to the following table: 

16-Bit (w = 1) 
000 AX 
001 CX 
0100X 
011 BX 
100 SP 
101 BP 
110 SI 
111 01 

a-Bit(w = 0) 
OOOAL 
001 CL 
0100L 
011 BL 
100AH 
101 CH 
1100H 
111 BH 

The physical addresses of all operands addressed 
by the BP register are computed using the SS seg­
ment register. The physical addresses of the desti­
nation operands of the string primitive operations 
(those addressed by the 01 register) are computed 
using the ES segment, which may not be overridden. 

3-217 



8087 
NUMERIC DATA COPROCESSOR 

8087/8087-2/8087-1 

• High Performance Numeric Data Coprocessor 

• Adds Arithmetic, Trigcmometric, 
Exponential, and Logarithmic Instruc­
tions to the Standard 8086 and 80186 
Instruction Set for All Data Types 

• CPu/8087 Supports 7 Data Types: 16-, 
32-, 64-Bit Integers, 32-, 64-, 80-Bit 
Floating Point, and 18-Digit BCD 
Operands 

• All 24 Addressing Modes Available with 
8086,8088, 80186, 80188 CPUs. 

• Compatible with IEEE Floating Point 
Standard 754 

• Available in 5 MHz (8087), 8 MHz (8087-2) 
and 10 MHz (8087-1): 8 MHz 80186 system 
operation supported with the 8087-1. 

• Adds 8 x 80-Bit Individually Addressable 
Register Stack 

• 7 Built-in Exception Handling Functions 

• MULTIBUS® System Compatible Interface 

The 8087 Numeric Data Coprocessor provies the instructions and data types needed for high performance 
numeric numeric applications, providing up to 100 times the performance of a CPU alone. The 8087 is 
implemented in N-channel, depletion load, silicon gate technology (HMOS III), housed in a 40-pin 
package. Sixty-eight numeric processing instructions are added to the 8086, 80186 instruction sets. and 
eight 8D-bit registers are added to the register set. The 8087 is compatible with the IEEE Floating Point 
Standard 754. 

", 

§ §'" '" ,,, 
", L ___ ~ _ L ____ ~-_ ~BI!!.. _~ ____ .J 

Figure 1. 8087 Block Diagram 

GNO 
(A14) A014 2 

(A13) A013 3 

(A12) A012 • 

(All) AD11 5 

(Al0) A010 • 

(A9)A09 7 BHEiS7 
(A8) ADS 8 

21 RESET 
L....;. __ -...J 

Figure 2. 8087 Pin Configuration 

Intel Corporation Assumes No Reapons/bilty for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses 8'8 Implied. 

@INTEL CORPORATION, 1985 3-218 ORDER NUMBE~c~g~~~i.g~~ 



inter 8087/8087-2/8087-1 

Table 1. 8087 Pin Description 

Symbol Type Name and Function 

AD15-ADO 1/0 Address Data: These lines constitute the time multiplexed memory address (T,) and data (T 2, T 3, T w, T 4) bus. 
AO is analogous to BHE for the lower byte of the data bus, pins D7-DO. It is LOW during T, when a byte is 
to be transferred on the lower portion of the bus in memory operations. Eight-bit oriented devices tied 
to the lower half of the bus would normally use AO to condition chip select functions. These lines are 
active HIGH. They are input/output lines for 8087-driven bus cycles and are inputs which the 8087 
monitors when the CPU is in control of the bus. A15-A8 do not require an address latch in an 
8088/8087 or 80188/8087. The 8087 will supply an address for the T, -T. period. 

AHi/S6, 1/0 Address Memory: During T, these are the four most significant address lines for memory operations. 
A18/S5, During memory operations, status information is available on these lines during T 2, T3, T w, and T 4. For 
A17/S4, 8087-controlled bus cycles, S6, S4, and S3 are reserved and currently one (HIGH), while S5 is always 
A16/S3 LOW These lines are inputs which the 8087 monitors when the CPU is in control of the bus. 

BHE/S7 1/0 Bus High Enable: During T, the bus high enable signal (BHE) should be used to enable data onto the most 
significant half of the data bus. pins D15-D8. Eight-bit-oriented devices tied to the upper half of the bus 
would normally use BHE to condition chip select functions. BHE is LOW during T, for read and write cycles 
when a byte is to be transferred on the high portion of the bus. The S7 status information is available during 
T 2, T 3, Tw, and T 4. The signal is active LOW. S7 is an input which the 8087 monitors during the CPU-controlled 
bus cycles. 

S2,S1,00 1/0 Status: For 8087 -driven bus cycles, these status lines are encoded as follows: 

52 S1 SO 
o (LOW) X X Unused 
1 (HIGH) 0 0 Unused 
1 0 1 Read Memory 
1 1 0 Write Memory 
1 1 1 Passive 

Status is driven active during T4, remains valid during T, and T2, and is returned to the passive state 
(1, 1, 1) during T3 or during Tw when READY is HIGH. This status is used by the 8288 Bus Controller 
(or the 82188 Integrated Bus Controller with an 80186/80188 CPU) to generate all memory access 
control signals. Any change in S2, S1, or SO during T4 is used to indicate the beginning of a bus cycle, 
and the return tothe passive state in T3 orTw is used to indicate the end of a bus cycle. These signals 
are monitored by the 8087 when the CPU is in control of the bus. 

RQ/GTO 110 Request/Grant: This request!grant pin is used by the 8087 to gain control of the local bus from the CPU for 
operand transfers or on behalf of another bus master. It must be connected to one of the two processor request! 
grant pins. The request grant sequence on this pin is as follows: 

1. A pulse one clock wide is passed to the CPU to indicate a local bus request by e~her the 8087 or the master 
connected to the 8087 RQ/GT1 pin. 

2. The 8087 walts for the grant pulse and when it is received will either initiate bus transfer activity in the clock 
cycle following the grant or pass the grant out on the RQ/GT1 pin in this clock if the initial request was for 
another bus master. 

3. The BOB7 will generate a release pulse to the CPU one clock cycle after the completion of the last 80B7 bus cycle 
or on receipt of the release pulse from the bus master on RQ/Gn. 

For 801B6/80188 systems the same sequence applies except RQ/GT signals are converted to 
appropriate HOLD, HLDA Signals by the 82188 Integrated Bus Controller. This is to conform with 
80186/80188's HOLD, HLDA bus exchange protocol. Refer to the 82188 data sheet for further 

3-219 205835-005 



8087/8087·218087·1 

'IlIbie 1. 8087 Pin DeacrIptIon (ConUnued) 

Symbol be HIlma Ind Function 

Reitm'l 1/0 Requeet/Gl'llnt: This request/grant pin is used by Inother local bus master to force the 8087 to request 
the local bus. If the 8087 Is not In control of the bus when the request Is made the request/grant sequence 
Is passed through the 8087 on the ~Aml pin one cycle later. Subsequent grant and releese pulses are. 
also passed through the 8087 with a two and one clock delay, respectively, for resynchronization. Rl:itG'f1 
has an Intemal pullup resistor, and so may be left unconnected. If the 8087 has control of the bus the request! 
grant sequence is as follows: 

1. A pulse 1 ClK wide from another locel bus master indicates a local bus request to the 8087 (pulse 1). 
2. During the 8087's next T4 . or T1 a pulse 1 ClK wide from the 8087 to the requesting master (pulse 2) 

indicates that the 8087 has allowed the local bus to float and that It will enter the "RQ/GT acknowledge" 
stete at the next ClK. The 8087's control unit is disconnected logically from the local bus during "RQ/GT 
acknowledge." 

3. A pulse 1 CLK wide from the requesting master Indicates to the 8087 (pulse 3) that the "RQ/Gr' request 
is about to end and that the 8087 can reclaim the local bus at the next CLK. 

Each master-master exchange of the local bus Is a sequence of 3 pulses. There must be one dead CLK 
cycle after each bus exchange. Pulses are active LOW. 
For 80186/80188 system, the RO/GT1 line may be connected to the 82188 Integrated Bus Controller. In this 
case, a third processor with a HOLD, HLDA bus exchange system may acquire the bus from the 8087. For. 
this configuration, RO/GT1 will only be used if the 8087 is the bus master. Refer to 82188 data sheet for 
further information. 

081,QSO. I 081,080: QS1 and QSO provide the 8087 with status to allow tracking of the CPU instruction queue. 

081 080 
o (lOW) 0 No Operation 
0 1 First Byte of Op Code from Queue 
1 (HIGH) 0 Empty the Queue 
1 1 Subsequent Byte from Queue 

INT 0 Interrupt: This line is used to indicate that an unmasked exception has occurred during numeric instruction 
execution when 8087 interrupts are enabled. This signal is typically routed to an 8259A for 8086 systems and to 
INTO for 80186180188 systems. INT is active HIGH. 

BUSY 0 Busy: This signal Indicates that the 8087 NEU is executing a numeric instruction. It is connected to the CPU's 
'fES'f pin to provide synchronization. In the case of an unmasked exception BUSY remains active until the 
exception is cleared. BUSY Is active HIGH. 

READY I Ready: READY Is the acknowledgement from the addressed memory device that it will complete the data 
transfer. The ROY signal from memory is synchronized by the 8284A Clock Generator to form READY for 8088 
systems. For 80188/80188 systems, ROY is syncbronized by the 82188 Integrated Bus Controller to form 
READY. This signal is active HIGH. 

RESET I Reset: RESET causes the prqcessor to immediately terminate its present activity. The signal must be active 
HIGH for at least four. clock cycles. RESET is internally synchronized. 

CLK I Clock: The clock provides the besic timing for the processor and bus controller. It is asymmetriC with a 
33% duty cycle to provide optimized Internal timing. 

Vee Power:Vee Is the +5V power supply pin. 

GND Ground: GND are the ground pins. 

NOTE: 
For the pin descriptions of the 8086, 8088, 80186 and 80188 CPUs, reference the respective data sheets (8086, 8088, 80186, 80188). 

3-220 
205835-005 



8087/8087-2/8087-1 

APPLICATION AREAS 

The 8087 provides functions meant specifically for high 
performance numeric processing requirements. Trigo­
nometric, logarithmic, and exponential functions are 
built into the coprocessor hardware. These functions 
are essential in scientific, engineering, navigational, 
or military applications. 

The 8087 also has capabilities meant for business or 
commercial computing. An 8087 can process Binary 
Coded Decimal (BCD) numbers up to 18 digits without 
roundoff errors. It can also perform arithmetic on inte­
gers as large as 64 bits ± 1018). 

PROGRAMMING LANGUAGE SUPPORT 

Programs for the 8087 can be written in Intel's high­
level languages for 8086/8088 and 80186/80188 
Systems; ASM-86 (the 8086, 8088 assembly language), 
PLlM-86, FORTRAN-86, and PASCAL-86. 

RELATED INFORMATION 

For 8086, 8088, 80186 or 80188 details, refer to the re­
spective data sheets, For 80186 or 80188 systems, also 
refer to the 82188 I ntegrated Bus Controller data 
sheet. 

FUNCTIONAL DESCRIPTION 

The 8087 Numeric Data Processor's architecture is 
designed for high performance numeric computing in 
conjunction with general purpose processing. 

CPU 

The 8087 is a numeric processor extension that provides 
arithmetic and logical instruction support for a variety of 
numeric data types. It also executes numerous built-in 
transcendental functions (e.g., tangent and log func­
tions). The 8087 executes instructions as a coprocessor 
to a maximum mode CPU. It effectively extends the 
register and instruction set of the system and adds 
several new data types as well. Figure 3 presents the 
registers of the CPU+8087. Table 2 shows the range of 
data types supported by the 8087. The 8087 is treated as 
an extension to the CPU, providing register, data types, 
control, and instruction capabilities at the hardware 
level. At the programmers level the CPU and the 8087 
are viewed as a single unified processor. 

System Configuration 

As a coprocessor to an 8086 or 8088, the 8087 is wired 
in parallel with the CPU as shown in Figure 4. Figure 5 
shows the 80186/80188 system configuration. The 
CPU's status (SO-S2) and queue status lines (OSO­
OS1) enable the 8087 to monitor and decode instruc­
tions in synchronization with the CPU and without any 
CPU overhead. For 80186/80188 systems, the queue 
status signals of the 80186/80188 are synchronized to 
8087 requirements by the 8288 Integrated Bus Control­
ler. Once started, the 8087 can process in parallel with, 
and independent of, the host Cpu. For resynchroniza­
tion, the 8087's BUSY signal informs the CPU that the 
8087 is executing an instruction and the CPU WAIT 
instruction tests this signal to insure that the 8087 is 
ready to execute subsequent instructions. The 8087 
can interrupt the CPU when it detects an error or 

8087 
DATA FIELD TAG FIELD 

~7~9~7~8~~~6~4~63~ __ ~~~=-____ ,D 1 D 

~'D'''~ -,- i ,. FILE. D I U[!' A1 
ax I A2 
ex I A3 
ox I A' 
SI I AS 
01 I A8 
ap I A7 
sp I A8 I 

L __ , 

IP 

FLAGS 

I 
I 
I 
l... ____ -.., 

~~~I----------~I ! 
I

15

CONTROL REGISTER

STATUS REGISTER

TAG WORD

.--INSTRUCTION POINTER_

- DATA POINTER -

Figure 3_ CPU+8087 Architecture

3-221 205835-005

inter 8087/8087-2/8087-1

exception. The 8087's interrupt request line is typically
routed to the CPU through an 8259A Programmable
Interrupt Controller for 8086, 8088 systems and INTO
for 80186/80188.

The 8087 uses one of the request/grant lines of the
8086/8088 architecture (typically RQ/GTO) to obtain
control of the local bus for data transfers. The other
request/grant line is available for general system use
(for instance by an I/O processor in LOCAL mode). A
bus master can also be connected to the 8087's RQ/
GT1 line. In this configuration the 8087 will pass the
request/grant handshake signals between the CPU
and the attached master when the 8087 is not in
control of the bus and will relinquish the bus to the
master directly when the 8087 is in control. In this way
two additional masters can be configured in an
8086/8088 system; one will share the 8086 bus with the
8087 on a first come first served basis, and the second
will be guaranteed to be higher in priority than the
8087.

For 80186/80188 systems, RQ/GTO and RQ/GT1 are
connected to the corresponding inputs of the 82188

Integrated Bus Controller. Because the 80186/80188
has a HOLD, HLDA bus exchange protocol, an inter­
face is needed which will translate RQ/GT Signals to
corresponding HOLD, HDLA Signals and vice versa.
One of the functions of the 82188 IBC is to provide this
translation. RQ/GTO is translated to HOLD, HLDA sig­
nals which are then directly connected to the 80186/
80188. The RQ/GT1 line is also translated into HOLD,
HLDA signals (referred to as SYSHOLD, SYSHLDA
signals) by the 82188 IBC. This allows a third processor
(using a HOLD, HLDA bus exchange protocol) to gain
control of the bus.

Unlike an 8086/8087 system, RQ/GT is only used when
the 8087 has bus control. If the third processor requests
the bus when the current bus master is the 80186/80188,
the 82188 IBC will directly pass the request onto the
80186/80188 without going through the 8087. The third
processor has the highest bus priority in the system. If
the 8087 requests the bus while the third processor
has bus control, the grant pulse will not be issued until
the third processor releases the bus (using SYSHOLD).
In this configuration, the third processor has the highest
priority, the 8087 has the next highest, and the
80186/80188 has the lowest bus priority.

Table 2. 8087 Data Types

Data
Range Precision

Most Significant Byte
Formats

7 ~7 017 017 017 017 017 ~7 ~7 017 ~
Word Integer 104 16 Bits 115 101 Two's Complement

Short Integer 109 32 Bits 131 101 Two's Complement

Long Integer 1018 64 Bits 163
01 Two's

10 Complement

Packed BCD 1018 18 Digits sl- D17D161 101 D~

Short Real 10±38 24 Bits S 1 E7 EoIF1 F231 Fo Implicit

Long Real 10±308 53 Bits SjE10 EoIF1 F5~ Fo Implicit

Temporary Real 10±4932 64 Bits SjE14 EolFo F631

Integer: I Real: (_1)5(2E.BIA5)(FooF1"')

Packed BCD: (-1)5(017 ... 00) Bias= 127 for Short Real
1023 for Long Real
16383 for Temp Real

3-222 205835-005

intJ 8087/8087-2/8087-1

Bus Operation

The 8087 bus structure, operation and timing are
identical to all other processors in the 8086/8088 series
(maximum mode configuration). The address is time
multiplexed with the data on the first 16/8 lines of the
address/data bus. A 16 through A 19are time multiplexed
with four status lines 83-86. 83, 84 and 86 are always
one (HIGH) for 8087-driven bus cycles while 85 is
always zero (LOW). When the 8087 is monitoring CPU
bus cycles (passive mode) 86 is also monitored by the
8087 to differentiate 8086/8088 activity from that of a
local 110 processor or any other local bus master. (The
8086/8088 must be the only processor on the local bus
to drive 86 LOW). 87 is multiplexed with and has the
same value as BHE for all 8087 bus cycles.

The first three status lines, 80-82, are used with an 8288
bus controller or 82188 Integrated Bus Controller to
determine the type of bus cycle being run:

S2 Sf SO
0 X X Unused
1 0 0 Unused
1 0 1 Memory Data Read
1 1 0 Memory Data Write
1 1 1 Passive (no bus

cycle)

Programming Interface

The 8087 includes the standard 8086, 8088 instruction
set for general data manipulation and program control.
It also includes 68 numeric instructions for extended
preCision integer, floating point, trigonometric, log­
arithmic, and exponential functions. 8ample execution
times for several 8087 functions are shown in Table 3.
Overall performance is up to 100 times that of an
8086 processor for numeric instructions.

Any instruction executed by the 8087 is the combined
result of the CPU and 8087 activity. The CPU and the
8087 have specialized functions and registers providing
fast concurrent operation. The CPU controls overall
program execution while the 8087 uses the coprocessor
interface to recognize and perform numeric operations.

Table 2 lists the seven data types the 8087 supports
and presents the format for each type. Internally, the
8087 holds all numbers in the temporary real format
Load and store instructions automatically convert
operands represented in memory as 16-, 32-, or 64-bit
integers, 32- or 64-bit floating point numbers or 18-
digit packed BCD numbers into temporary real format
and vice versa. The 8087 also provides the capability
to control round off, underflow, and overflow errors
in each calculation.

Computations in the 8087 use the processor's register
stack. These eight 80-bit registers provide the equivalent
capacity of 20 32-bit registers. The 8087 register set
can be accessed as a stack, with instructions operating
on the top one or two stack elements, or as a fixed
register set, with instructions operating on explicitly
designated registers.

Table 5 lists the 8087's instructions by class. All appear
as ESCAPE instructions to the host. Assembly language
programs are written in A8M-86, the 8086, 8088 as­
sembly language.

Table 3. Execution Times for Selected 8086/8087
Numeric Instructions and Corresponding
8086 Emulation

Approximate Execution
Time (pos)

Floating Point
Instruction 8086/8087 8086

(8 MHz
(Clock) Emulation

Add/Subtract 10.6 1000
Multiply (single

precision) 11.9 1000
Multiply (extended

precision) 16.9 1312.5
Divide 24.4 2000
Compare 5.6 812.5
Load (double precision) 6.3 1062.5
Store (double precision) 13.1 750
Square Root 22.5 12250
Tangent 56.3 8125
Exponentiation 62.5 10687.5

3-223
205835-005

8087/8087-2/8087-1

NUMERIC PROCESSOR
EXTENSION ARCHITECTURE

As Shown in Figure 1, the 8087 is internally divided
into two processing elements,· the control unit (CU)
and the numeric execution unit (NEU). The NEU exe­
cutes all numeric instructions, while the CU receives
and decodes instructions, reads and writes memory
operands and executes 8087 control instructions. The
two elements are able to operate independently of one
another, allowing the CU to maintain synchronization

with the CPU while the NEU is busy processing a
numeric instruction.

Control Unit

The CU keeps the 8087 operating in synchronization
with its host CPU. 8087 instructions are intermixed with
CPU instructions in a single instruction stream. The CPU
fetches all instructions from memory; by monitoring the
status (SO-S2, S6) emitted by the CPU, the control unit
determines when an instruction is being fetched. The

Figure 4. 8086/8087, 8088/8087 System Configuration

r - -..,

8284A
CLOCK

GENERATOR

82~9A
PIC

INT 1-1 ---•• 1 INTR

CLK H,---~"'--I

'-.---~--IINT

... 618<108
BU.

tNTERFACE
COMPONENTS

Figure 5. 80186/8087, 80188/8087 System Configuration

82188

'"

OS' 0$0 bUSY INT

",Sl·NTQ

8."~801" !'--\ !'--\
CPU \--/ \--/

ffi..OAI_Hlo,\

HOtDt---HDLO

'-------'

I ; r----------~
: L ___ JSYSHOlD :

L---_JsYSHlDll 1/'-'\
: r\/-'./
I I L __________ ..J

3-224

.,~

,~

INTERFACE
COMf'ONENTS

MULTIMASTER
SYSTEM

BUS

205835-005

inter 8087/8087-2/8087-1

CU monitors the data bus in parallel with the CPU to
obtain instructions that pertain to the 8087.

The CU maintains an instruction queue that is identical
to the queue in the host CPU. The CU automatically
determines if the CPU is an 8086/186 or an 8088/188
immediately after reset (by monitoring the "SRE/S7Iine)
and matches its queue length accordingly. By monitor­
ing the CPU's queue status lines (OSO, OS1), the CU
obtains and decodes instructions from the queue in
synchronization with the CPU.

A numeric instruction appears as an ESCAPE instruction
to the CPU. Both the CPU and 8087 decode and execute
the ESCAPE instruction together. The 8087 only
recognizes the numeric instructions shown in Table 5.
The start of a numeric operation is acomplished when
the CPU executes the ESCAPE instruction. The instruc­
tion mayor may not identify a memory operand.

The CPU does, however, distinguish between ESC
instructions that reference memory and those that
do not. If the instruction refers to a memory operand,
the CPU calculates the operand's address using any
one of its available addressing modes, and then per­
forms a "dummy read" of the word at that location.
(Any location within the 1 M byte address space is
allowed.) This is a normal read cycle except that the
CPU ignores the data it receives. If the ESC instruc­
tion does not contain a memory reference (e.g. an
8087 stack operation), the CPU simply proceeds to
the next instruction.

An 8087 instruction can have one of three memory
reference options; (1) not reference memory; (2)
load an operand word from memory into the 8087; or
(3) store an operand word from the 8087 into
memory. If no memory reference is required, the
8087 simply executes its instruction. If a memory
reference is required, the CU uses a "dummy read"
cycle initiated by the CPU to capture and save the
address that the CPU places on the bus. If the in­
struction is a load, the CU additionally captures the
data word when it becomes available on the local
data bus. If data required is longer than one word,
the CU immediately obtains the bus from the CPU
uSing.the request/grant protocol and reads the rest
of the information in consecutive bus cycles. In a
store operation, the CU captures and saves the store
address as in a load, and ignores the data word that
follows in the "dummy read" cycle. When the 8087 is
ready to perform the store, the CU obtains the bus
from the CPU and writes the operand starting at the
specified address.

Numeric Execution Unit

The NEU executes all instructions that involve the
register stack; these include arithmetic, logical,
transcendental, constant and data transfer instruc­
tions. The data path in the NEU is 84 bits wide (68
fraction bits, 15 exponent bits and a sign bit) which
allows internal operand transfers to be performed at
very high speeds.

When the NEU begins executing an instruction, it
activates the 8087 BUSY signal. This signal can be
used in conjunction with the CPU WAIT instruction
to resynchronize both processors when the NEU has
completed its current instruction.

Register Set

The CPU+8087 register set is shown in Figure 3. Each of
the eight data registers in the 8087's register stack is 80
bits and is divided into "fields" corresponding to the
8087's temporary real data type.

At a given point in time the TOP field.in the control word
identifies the current top-of-stack register. A "push"
operation decrements TOP by 1 and loads a value into
the new top register. A "pop" operation stores the value
from the current top register and then increments TOP
by 1. Like CPU stacks in memory, the 8087 register
stack grows "down" toward lower-addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the top of the stack. These instruc­
tions implicitly address the register pointed to by the
TOP. Other instructions allow the programmer to
explicitly specify the register which is to be used.
Explicit register addressing is "top-relative."

Status Word

The status word shown in Figure 6 reflects the over­
all state of the 8087; it may be stored in memory and
then inspected by CPU code. The status word is a
16-bit register divided into fields as shown in Figure
6. The busy bit (bit 15) indicates whether the NEU is
either executing an instruction or has an interrupt
request pending (B = 1), or is idle (B = 0). Several
instructions which store and manipulate the status
word are executed exclusively by the CU, and these
do not set the busy bit themselves.

3-225 205835-005

intJ 8087/8087-2/8087-1

1

I BI~I TOP 1~1~1~lmlxl~I~I~IUI~I~1

(lIIR is set if any unmasked exception bit is set, cleared otherwise.

121$ee Table 3 for condition code interpretation.

(3~Top Values'
000'" Register 0 is Top of Stack
001 = Register ~ is Top of Stack.

111 "'" Register 7 is Top of Stack

I
EXCEPTION FLAGS (1 = EXCEPTION HAS OCCURRED)

INVALID OPERATION

DENORMALIZED OPERAND

ZERO DIVIDE

OVERFLOW

UNDERFLOW

PRECISION

(RESERVED)

INTERRUPT REQUESTl1l

CONDITION CODE(2)

TOP OF STACK POINTER/3)

NEU BUSY

Figure 6. 8087 Status Word

The four numeric condition code bits (CO-C3) are similar
to flags in a CPU: various instructions update these bits
to reflect the outcome of 8087 operations. The effect of
these instructions on the condition code bits is sum­
marized in Table 4.

Bits 14-12 of the status word point to the 8087 regis­
ter that is the current top-of-stack (TOP) as
described above.

Bit 7 is the interrupt request bit. This bit is set if any
unmasked exception bit is set and cleared other­
wise.

Bits 5-0 are set to indicate that the NEU has
detected an exception while executing an instruc­
tion.

Tag Word

The tag word marks the content of each register as
shown in Figure 7. The principal function of the tag
word is to optimize the 8087's performance. The tag

word can be used, however, to interpret the contents
of 8087 registers.

Instruction and Data Pointers

The instruction and data pointers (see Figure 8) are
provided for user-written error handlers. Whenever
the 8087 executes an NEU instruction, the CU saves
the instruction address, the operand address (if
present) and the instruction opcode. 8087 instruc­
tions can store this data into memory.

3-226

TAG VALUES:
00 = VAllO
01 " ZERO
10 " SPECIAL
" = EMPTY

Figure 7. 8087 Tag Word

205835-005

8087/8087-2/8087-1

Table 4a. Condition Code Interpretation

Instruction
C3 C2 Type

Compare, Test 0 0
0 0
1 0
1 1

Remainder 01 0

U 1

Examine 0 0
0 0
0 0
0 0
0 1
0 1
0 1
0 1
1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1

NOTES:
1. ST = Top of stack
2. X = value is not affected by instruction
3. U = value is undefined following instruction
4. Qn = Quotient bit n

Table 4b. Condition Code Interpretation after

FPREM Instruction As a Function of

Dividend Value

Dividend Range Q2 Q1 Qo

Dividend < 2 * Modulus C31 C11 00
Dividend < 4 * Modulus C31 0 1 00
Dividend;;" 4 * Modulus O2 0 1 00

NOTE:

C1

X
X
X
X

00

U

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

1. Previous value of indicated bit, not affected by FPREM
instruction execution.

3-227

Co

0
1
0
1

02

U

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

15

Interpretation

ST > Source or 0 (FTST)
ST < Source or 0 (FTST)
ST = Source or 0 (FTST)
ST is not comparable

Complete reduction with
three low bits of quotient
(See Table 4b)
Incomplete Reduction

Valid, positive unnormalized
Invalid, positive, exponent =0
Valid, negative, unnormalized
Invalid, negative, exponent =0
Valid, positive, normalized
Infinity, positive
Valid, negative, normalized
Infinity, negative
Zero, positive
Empty
Zero, negative
Empty
Invalid, positive, exponent = 0
Empty
Invalid, negative, exponent = 0
Empty

CONTROL WORD

STATUS WORD

TAG WORD

INSTRUCTION POINTER (15-0)

MEMORY
OFFSET

-0

,6

INSTRUCTION ill I INSTRUCTION
POINTER (19-16) 0 OPCODE (10-0) '8

OATA POINTER (15-0) +10

DATA POINTER I
(19-16) 0 +12

15 1211

Figure 8. 8087 Instruction and Data Pointer
Image in Memory

205835-005

inter 8087/8087-2/8087-1

Control Word

The 8087 provides several processing options which
are selected by loading a word from memory into the
control word. Figure 9 shows the format and encod­
ing of the fields in the control word.

The low order byte of this control word configures
8087 interrupts and exception masking. Bits 5-0 of
the control word contain individual masks for each
of the six exceptions that the 8087 recognizes and
bit 7 contains a general mask bit for all 8087 in­
terrupts. The high order byte of the control word
configures the 8087 operating mode including
precision, rounding, and infinity controls. The preci­
sion control bits (bits 9-8) can be used to set the
8087 internal operating precision at less than the
default of temporary real precision. This can be use­
ful in providing compatibility with earlier generation
arithmetic processors of smaller precision than the
8087. The rounding control bits (bits 11-10) provide
for directed rounding and true chop as well as the
unbiased round to nearest mode specified in the
proposed IEEE standard .. Control over closure of the
number space at infinity is also provided (either
affine closure, ±oo, or projective closure, 00, is treated
as unsigned, may be specified).

'5

Exception Handling

The 8087 detects six different exception conditions
that can occur during instruction execution. Any or
all exceptions will cause an interrupt if unmasked
and interrupts are enabled.

If interrupts are disabled the 8087 will simply con­
tinue execution regardless of whether the host
clears the exception. If a specific exception class is
masked and that exception occurs, however, the
8087 will post the exception in the status register
and perform an on-chip default exception handling
procedure, thereby allowing processing to continue.
The exceptions that the 8087 detects are the
following:

1. INVALID OPERATION: Stack overflow, stack un­
derflow, indeterminate form (0/0, 00- 00, etc.) or
the use of a Non-Number (NAN) as an operand.
An exponent val ue is reserved and any bit pattern
with this value in the exponent field is termed a
Non-Number and causes this exception. If this
exception is masked, the 8087's default response
is to generate a specific NAN called INDEFINITE,
or to propagate already existing NANs as the cal­
culation result.

I x x X II C I R C I P C I M I x I PM I UM I OM I ZM 10M] 1M J

(lJPrecision Control
00 = 24 bits
01 = Reserved
10 = 53 bits
11 64 bits

WRounding Control
00 '" Round to Nearest or Even
01 = Round Down (toward _ ac)
10:: Round Up (toward + 00)
11 = Chop (truncate toward zero)

I

Figure 9. 8087 Control Word

3-228

EXCEPTION MASKS (' = EXCEPTION IS MASKED)

INVALID OPERATION

DENORMALIZEO OPERAND

ZERO DIVIDE

OVERFLOW

UNDERFLOW

PRECISION

(RESERVED)

INTERRUPT MASK (' ~ INTERRUPTS ARE MASKED)

PRECISION CONTROL(l)

ROUNDING CONTROL (2)

INFINITY CONTROL (0 ~ PROJECTIVE. , ~ AFFINE)

(RESERVED)

205835-005

inter 8087/8087-2/8087-1

2. OVERFLOW: The result is too large in magnitude
to fit the specified format. The 8087 will generate
an encoding for infinity if this exception is
masked.

3. ZERO DIVISOR: The divisor is zero while the divi­
dend is a non-infinite, non-zero number. Again,
the 8087 will generate an encoding for infinity if
this exception is masked.

4. UNDERFLOW: The result is non-zero but too
small in magnitude to fit in the specified format. If
this exception is masked the 8087 will
de normalize (shift right) the fraction until the ex-

ponent is in range. This process is called gradual
underflow.

5. DENORMALIZED OPERAND: At least one of the
operands or the result is denormalized; it has the
smallest exponent but a non-zero significand.
Normal processing continues if this exception is
masked off.

6. INEXACT RESULT: If the true result is not exactly
representable in the specified format, the result
is rounded according to the rounding mode, and
this flag is set. If this exception is masked, pro­
cessing will simply continue.

3-229
205835-005

inl:ef 8087/8087-2/8087-1

ABSOLUTE MAXIMUM RATINGS· 'NOTlCE: Stresses above those listed under Absolute

Ambient Temperature Under Bias O"C to 70"C
Storage Temperature -65°C to +150°C
Voltage on Any Pin with

Respect to Ground -1.0V to +7V
Power Dissipation " 3.0 Watt

Maximum Ratings may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this
specification is not implied. Exposure to absolute maxi­
mum rating conditions for extended periods may affect
device reliability.

D.C. CHARACTERISTICS (TA = O°C to 70°C. VCC =+5V ±5%)

Symbol Parameter Min. Max. Units Test Conditions

V,l Input low Voltage -0.5 +0.8 V

V,H Input High Voltage 2.0 VCC +0.5 V

VOL Output Low Voltage (See Note 8) 0.45 V IOL = 2.5 mA

VOH Output High Voltage 2.4 V IOH = -400/LA

ICC Power Supply Current 475 mA TA = 25°C

III Input leakage Current ±10 /LA OV,., Y,N ,., VCC

IlO Output leakage Current ±10 /LA 0.45V,., VOUT ,., VCC

VCl Clock Input low Voltage -0.5 +0.6 V

VCH Clock Input High Voltage 3.9 VCC + 1.0 V

C,N Capacitance of Inputs 10 pF fc = 1 MHz

C'O Capacitance of I/O Buffer
(ADO-15. A16-A19. BHE. S2-S0. 15 pF fc = 1 MHz
RQ/GT) and ClK

COUT Capacitance of Outputs
BUSY,INT 10 pF fc = 1 MHz -

A.C. CHARACTERISTICS (TA = O°C to 70°C. VCC = +5V ±5%)

TIMING REQUIREMENTS 8087 8087-2 8087-1
(Preliminary: See Note 7)

Symbol Parameter Min. Max. Min. Max. Min. Max. Units Test Conditions

TClCl ClK Cycle Period 200 500 125 500 100 500 ns

TClCH ClK low Time 118 68 53 ns

TCHCl ClK High Time 69 44 39 ns

TCH1CH2 ClK Rise Time 10 10 15 ns From 1 "OV to 3.5V

TCl2Cl2 ClK Fall Time 10 10 15 ns From 3.5V to 1.0V

TDVCl Data in Setup Time 30 20 15 ns

TClDX Data in Hold Time 10 10 10 ns

TRYHCH READY Setup Time 118 68 53 ns

TCHRYX READY Hold Time 30 20 5 ns

TRYlCl READY Inactive to ClK" - 8 - 8 -10 ns

TGVCH RO/GT Setup Time(See Note 8) 30 15 15 ns

TCHGX RO/GT Hold Time 40 30 20 ns

TaVCl OSO-1 Setup Time (See Note 8) 30 30 30 ns

TClOX OSO-1 Hold Time 10 10 5 ns

TSACH Status Active Setup Time 30 30 30 ns

TSNCl Status Inactive Setup Time 30 30 30 ns

TILIH Input Rise Time (Except ClK) 20 20 20 ns From 0.8V to 2.0V

TIHll Input Fall Time (Except ClK) 12 12 15 ns From 2.0V to 0.8V

"See Note 6
3-230 205835-005

8087/8087-2/8087-1

A.C. CHARACTERISTICS (Continued)

TIMING RESPONSES 8087

Symbol Parameter Min. Max.
TCLML Command Active Delay

(See Notes 1,2) 10/0 35/70

TCLMH Command Inactive Delay
(See Notes 1,2) 1010 35/55

TRYHSH Ready Active to Status Passive
(See Note 5) 110

TCHSV Status Active Delay 10 110

TCLSH Status Inactive Delay 10 130

TCLAV Address Valid Delay 10 110

TCLAX Address Hold Time 10

TCLAZ Address Float Delay TCLAX 80

TSVLH Status Valid to ALE High
(See Notes 1,2) 15/30

TCLLH CLK Low to ALE Valid
(See Notes 1,2) 15/30

TCHlL ALE Inactive Delay
(See Notes 1,2) 15/30

TCLDV Data Valid Delay 10 110

TCHDX Data Hold Time 10

TCVNV Control Active Delay
(See Notes 1,3) 5 45

TCVNX Control Inactive Delay
(See Notes 1,3) 10 45

TCHBV BUSY and INT Valid Delay 10 150

TCHDTL Direction Control Active Delay
(See Notes 1,3) 50

TCHDTH Direction Control Inactive
Delay (See Notes 1,3) 30

TSVDTV STATUS to DT/R Delay
(See Notes 1,4) 0 30

TCLDTV DT/R Active Delay
(See Notes 1,4) 0 55

TCHDNV DEN Active Delay
(See Notes 1,4) 0 55

TCHDNX DEN Inactive Delay
(See Notes 1,4) 5 55

TCLGL RQ/GT Active Delay
(see Note 8) 0 85

TCLGH RQ/GT Inactive Delay 0 85

TOLOH Output Rise Time 20

TOHOL Output Fall Time 12

NOTES:
1. Signal at 8284A, 8288, or 82188 shown for reference only.
2, 8288 timing/82188 timing
3. 8288 timing
4, 82188 timing
5. Applies only to T 3 and wait states
6, Applies only to T2 state (8ns into T3)

8087-2

Min. Max.

10/0 35/70

1010 35/55

65

10 60

10 70

10 60

10

TCLAX 50

15/30

15/30

15/30

10 60

10

5 45

10 45

10 85

50

30

0 30

0 55

0 55

5 55

0 50

0 50

20

12

8087-1
(Preliminary: See Note 7)

Min. Max. Units Test Conditions

CL = 20 -100pF
10/0 35170 ns for all 8087 Outputs

(in addition to 8087

1010 35/70 ns self-load)

45 ns

10 45 ns

10 55 ns

10 55 ns

10 ns

TCLAX 45 ns

15/30 ns

15/30 ns

15/30 ns

10 50 ns

10 45 ns

5 45 ns

10 45 ns

10 65 ns

50 ns

30 ns

0 30 ns

0 55 I ns

0 55 ns

5 55 ns

0 38 ns
CL =40pF (in addition

- to 8087 self-load)
0 45 ns

---t---
15 ns From 0.8V to 2.0V

12 ns From 2.0V to 0.8V

7. IMPORTANT SYSTEM CONSIDERATION: Some 8087-1 timing parameters are constrained relative to the corresponding
8086-1 specifications. Therefore, 8086-1 systems incorporating the 8087-1 should be designed with the 8087-1 specifications.

8, Changes since last revision,

3-231 205835-005

8087/8087-2/8087-1

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT

2.4 =:X5_TESTPOINTS--1~
0.45

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC "1" AND O.45V FOR
A LOGIC"O."

3-232

DEVICE
UNDER

~CL~100PF TEST

-=

CL INCLUDES·JIG CAPACITANCE

205835-005

inter 8087/8087-218087-1

WAVEFORMS

MASTER MODE (with 8288 references)
T, T, T, T.

I

1'<--1 f4-TCl2Cl1

ClK

I+- TClCl -2:H1CH2--.
Tw :c ,......, ~ d'~:;~ ~TCHSV I ___ ~ vel

ALE (8288 OUTPUT)
(SEE NOTES 4,6)

TClAV

TSVlH-II
TCllH_

tl TCLAX ~DV

X BHE, Au -A'II X

f -I TCHll

~

t\ TRYLCl ---

WI;: IJ/(SEE NOTE 5) '.

~~
.... -_ .. -- TCHDX

57-53
./' FLOAT

(SEE NOTE 3)

,..--, , ----
I

READY (8087 INPUT) {
(SEE NOTE 2)

TRrSH-II'I --- I'- TCHRYX

READ CYCLE

{

DT/R

(~s: Il~~~~) MRDC

WRITE CYCLE

8288 OUTPUTS
(SEE NOTES 6, 7)

DEN

AC,s-ADo

TClAV-

f -- ~TI"AZ
A'5-AO

/I Fl?
TCHDTl_ .1-

\
TClMl __ r

TCVNV-- li-,
TClAV t::j. TClDV Ci

AtS-Ao X
TCVNV __

f
TClMl_

\.
TCLML

1. All SIGNALS SWITCH BETWEEN VOL AND VOH UNLESS OTHERWISE SPECIFIED.

TRYHCH __
I~TDVCl

DATA IN
\I

TCHDTH_

TClMH __

~

TCVNX __ t
DATA OUT

TCVNX

TCLMH H
I

~
TCLMH 11

2. READY IS SAMPLED NEAR THE END OFT2. T3 ANDTW TO DETERMINE IFTW MACHINE STATES ARE TO BE INSERTED.

3. THE LOCAL BUS FLOATS ONLY IFTHE 8087 IS RETURNING CONTROL TO THE 8086/8088.

4. ALE RISES AT LATER OF ITSVLH. TCLLH).

5. STATUS INACTIVE IN STATE JUST PRIOR TO T4'

6. SIGNALS AT 8284A OR 8288 ARE SHOWN FOR REFERENCE ONLY.

TelDX

FLOAT

ll1=
\

t1

--k LOAT n::

7. THE ISSUANCE OF 8288 COMMAND AND CONTROL SIGNALS IMRDC. MWi'C. AMWC AND DEN) LAGS THE ACTIVE HIGH 8288 CEN.

8. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE NOTED.

3-233

HDX

3)

205835-005

inter 8087/8087-2/8087-1

WAVEFORMS (Continued)

MASTER MODE (with 82188 references)

CLK

ALE (82188 OUTPUT)
(SEE NOTES 4,6)

READY (8087 INPUT) {
(SEE NOTE 2) ~

READ CYCLE
ADtS-AD o

VC :1=
reLAV

TSVLH'"
TCLLH-

TCLAV-

T, T, T, T.

TC~'CH2'- ~-I I+- TCL2CLI
!--TCLCL __

T.

V""" r--i br'~=~ f\..--..I "-....l
TCHSV f.---------. TCHCL

~/;/ V;I/(SEE NOTE 5}
\- - ---

I::l relAx ~DV , I':: -----.- TCHDX

I BHE, A'9-A'6 A 87-8 3
JI FLOAT

!f t:::-I TCHLL
(SEE NOTE 3)

r--

'\ ,
I ----

~
TRYLCL I--

TRrSH-o ¥ 1+-- 10-- TCHRVX

f
.-

frAz

TRVHCH ~
_4___TDVel TelOX

A1S-~
II'

DATA IN
\I

.1\ FLOAT 1\ /1 fLOAT

verY TS
TC - ~ 1\ Lorv

{(SE~.J~\E 9)

82188 OUTPUTS RD
(SEE NOTES 6,7)

DEN

* II
-+ if TLML - ~TCLMH

jf-f1
-..{ ~TCHDNV -- '- TCHDNX

t JC=T

WRITE CYCLE
TCLAV =t TCLDV tj -- I-T CHDX

82188 OUTPUTS
(SEE NOTES 6,7)

NOTES:

{

DEN

WR

TCHDNV~
AtS-Ao DATA OUT

{-
-- ~TCLML

1. ALL SIGNALS SWITCH BETWEEN VOL ~ND VOH UNLESS OTHERWISE SPECIFIED~

IFLOAT
(SEE NOTE

I - ~TCHDNX

- TCLMH

2~ READY IS SAMPLED NEAR THE END OF T2, T3 AND T w TO DETERMINE IF Tw MACHINE STATES ARE TO BE INSERTED~

3. THE LOCAL BUS FLOATS ONLY IF THE 8087 IS RETURNING CONTROL TO THE 80186/80188

4. ALE RISES AT LATER OF (TSVLH, TCLLH).

5~ STATUS INACTIVE IN STATE JUST PRIOR TO T4~

6~ SIGNALS AT 8284A OR 82188 ARE SHOWN FOR REFERENCE ONLY

3)

7. THE ISSUANCE OF 8288 COMMAND AND CONTROL SIGNALS (MRDC, MWTC, AMWt, AND DEN) LAGS THE ACTiVE HIGH 8288 CEN.

8. ALL TIMING MEASLiREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE NOTED.

9. DT/R BECOMES VALID AT THE LATER OF (TSVDTV, TCLDTV).

3-234 205835-005

8087/8087-2/8087-1

WAVEFORMS (Continued)

PASSIVE MODE T.

CLK

AO'5-AD o

READY I IN~~

RESET TIMING

I fo~o----->50f.lsec----~

VCC

CLK

ReSET

~20CLKCYCLES_-r----I'1

REQUEST/GRANTo TIMING

CLK

Ro/eno

AO,s-AD o

A'9/Se-A,s/S3
~,Sl'SO
BHE/S7

_r-~~g:~ --C

2::4 elK CYCLES

CPU

8087 TRACKS
CPU ACTIVITY

NOTE: THE CPU PROVIDES ACTIVE PULLUP OF OOIGTO, SEE TCLGH SPEC.

3-235

8087 READY TO
EXECUTE INSTRUCTIONS

205835-005

inter 8087/8087-2/8087-1

WAVEFORMS (Continued)

REQUEST/GRANT1 TIMING

ClK

ADn-ADo

A'9/S6-A'6/Sa
52 ,Spso
BHE/S7

~_TCl~l _TGVCH TClGl
TCHGX

iiQ

_________________ 8_~_7 ____ ~: ~:---------- ALTERNATE MASTER

(SEE NOTE)

NOTE" ALTERNATE MASTER MAY NOT DRIVE THE BUSES OUTSIDE OF THE REGION
SHOWN WITHOUT RISKING BUS CONTENTION.

BUSY AND INTERRUPT TIMING

ClK ~~ ____________ ~

BUSY, INT ------------

TCHBV ----------

3-236

8087

205835-005

Data Transfer

FLO ~ LOAD

Integer/Real Memory to ST(O)

Long Integer Memory to ST(O)

Temporary Real Memory to
ST(O)

BCD Memory to ST(O)

ST(i) to ST(O)

FST ~ STORE

ST(O) to Integer/Real Memory

ST(O) to ST(i)

FSTP ~ STORE AND POP

ST(O) to Integer/Real Memory

ST(O) to Long Integer Memory

ST(O) to Temporary Real
Memory

ST(O) to BCD Memory

ST(O) to ST(i)

FXCH ~ Exchange ST(i) and
ST(O)

Comparison
FCOM ~ Compare

Integer/Real Memory to ST(O)

ST(i) to ST (0)

FCOMP ~ Compare and Pop

Integer/Real Memory to ST(O)

ST(i) to ST(O)

FCOMPP ~ Compare ST(I) to
ST(O) and Pop Twice

FTST ~ Test ST(O)

FXAM ~ Examine ST(O)

Mnemonics © Intel 1982

8087/8087-2/8087-1

Table 5. 8087 Extensions to the 86/186 Instructions Sets

1 Optional
8,16 Bit

Displacement

1 MF

[ESCAPE MF 1 [MOD 0 0 0 R/M [= = ~I~P = =:

I ESCAPE 1 1 1 I MOD 1 0 1 R/M [= = :?I~P = =:

I ESCAPE 0 1 1 I MOD 1 0 1 R/M [= = =DI~P = =:

I ESCAPE 1 1 1 I MOD 1 0 0 R/M [~ ~ ~I~P ~ ~

I ESCAPE 0 0 1 1 1 1 0 0 0 ST(i) 1

I ESCAPE MF 1 1 MOD 0 1 0 R/M [~ ~ ~I~P ~ ~:

[ESCAPE 1 0 1 I 1 1 0 1 0 ST(iJ

1 ESCAPE MF 1 1 MOD 0 1 1 R/M [~ ~ ~I~P ~ J
@CAPE 1 1 1 I MOD 1 1 1 R/M [~ ~ ~I~P ~ J
1 ESCAPE 0 1 1 1 MOD 1 1 1 R/M [~. ~ ~I~< J
1 ESCAPE 1 1 1 1 MOD 1 1 0 R/M 1_ ~ ~?I~ ~:

1 ESCAPE 1 0 1 1 1 1 0 1 1 ST(i) 1

[ESCAPE 0 0 1 : 1 1 0 0 1 Sr(i) I

I ESCAPE MF o I MOD 0 1 0 R/M [~ DISP

I ESCAPE 0 0 0 I 1 1 0 1 0 Sr(i) I

i=~=S=C=A=P=E=M=F==o=.;I=M=O=D=O=I=I==R/=M===i[~I~P = =: I ESCAPE 0 0 0 I 1 1 0 1 1 ST(i) I
I ESCAPE 1 1 0 I 1 1 0 1 1 0 0 1 I
I ESCAPE 0 0 1 I 1 1 1 0 0 1 0 0 I
[ESCAPE 0 0 1 I 1 1 1 0 0 1 0 1 I

3-237

Clock Count Range
32 Bit 32 Bit 64 Bit 16 BII
Real Integer Real Integer

00 01 10

38-56 52-60 40-60
+E~ +EA +EA

60-68 + EA

53-65 + EA

290-310 + EA

17-22

11

46-54
+EA

84-90 82-92 96-104 80-90
+EA +EA +EA +EA

15-22

86-92 84-94 98-106 62-92
+EA +EA +EA +EA

94-105 +EA

52-58 + EA

520-540 + EA

17-24

10-15

60-70
+EA

78-91
+EA

40-50

63-73 80-93
+EA +EA

45-52

45-55

38-48

12-23

65-75
+EA

67-77
+EA

72-86
+EA

74-88
+EA

205835-005

inter 8087/8087-2/8087-1

'IlIbl8 5. 8087 Extensions to the 861186 Instruction Sets (cont.)

j Optional Clock Count Ranga
8,16 Bit 32 Bit 32 Bit 84 Bit 16BII

Constants D!splacemant Real Intager Real Intager

I MF = 00 01 10 11

FLDZ = LOAD + 0.0 into ST(O) I ESCAPE 0 0 1 I 1 1 1 0 1 1 1 0 I 11-17

FLD1 = LOAD + 1.0 into ST(O) I ESCAPE 0 0 1 I 1 1 1 0 1 0 0 0 I 15-21

FLDPI = LOAD" into ST(O) I ESCAPE 0 0 1 I 1 1 1 0 1 0 1 1 I 16-22

FLDL2T = LOAD log2 10 into I ESCAPE 0 0 1 I 1 1 1 0 1 0 0 1 I 16-22
S":(O)

FLDL2E = LOAD log2 e into I ESCAPE 0 0 1 I 1 1 1 0 1 0 1 0 I 15-21
ST(O)

FLDLG2 = LOAD log10 2 into
ST(O) I ESCAPE 0 0 1 I 1 1 1 0 1 1 0 0 I 18-24

FLDLN2 = LOAD log.2 into I ESCAPE 0 0 1 I 1 1 1 0 1 1 0 1 I 17-23
ST(O) ,

Arithmetic
FADD = Addition

I 1 [
._._.-

Integer/Real Memory with ST(O) ESCAPE MF 0 MOD 0 0 0 RIM DISP ! 90-120 108-143 95-125 102-137 .-. _.- .J +EA +EA +EA +EA

ST(i) and ST(O) I ESCAPE d P 0 I 1 1 0 0 0 ST(i) I 70-100 (Note 1) /

FSUB = Subtraction

Integer/Real Memory with ST(O) I ESCAPE MF 0 I MOD 1 0 A RIM [:=ril~P= -; 90-120 108-143 95-125 102-137 j
+EA +EA +EA +EA

ST(i) and ST(O) I ESCAPE d P 0
1

1 1 1 0 A A/M I 70-100 (Note 1)

FMUL = Multiplication -.-.-
I 1 [-,

Integer/Real Memory with ST(O) ESCAPE MF 0 MOD 0 0 1 A/M DISP i 110-125 13D-144 112-168 124-138 _._. - +EA +EA +EA +EA

ST(i) and ST(O) I ESCAPE d P 0 I 1'1 0 0 1 A/M I 90-145 (Note 1)

FDIV = Division
1-

-.-. -
Integer/Aeal Memory with ST(O) I ESCAPE MF 0 I MOD 1 1 A RIM DISP

,
215-225 230-243 220-230 224-238 i ._._.- . +EA +EA +EA +EA

ST(i) and ST(O) I ESCAPE d P 0 I 1 1 1 1 A A/M I 193-203 (Note 1)

FSQRT = Square Aoot of ST(O) I ESCAPE 0 0 1 I 1 1 1 1 1 0 1 0 I 18D-186

FSCALE = Scale ST(O) by ST(I) I ESCAPE 0 0 1 I 1 1 1 1 1 1 0 1
1 32-38

FPREM = Partial Remainder of I ESCAPE 0 0 1 I 1 1 1 1 1 0 0 0 I 15-190
ST(O) +ST(l)

FRNDINT = Aound ST(O) to I ESCAPE 0 0 1 I 1 1 1 1 1 1 0 0 I 16-50
Integer

NOTE:
1. If P= 1 then add 5 clocks.

3-238 205835-005

FXTRACT ~ Extract
Components of St(O)

FABS = Absolute Value of
ST(O,

FCHS ~ Change Sign of ST(O)

Transcendental
FPTAN = Partial Tangent of
ST(O)

FPATAN = Partial Arctangent
of ST(O) +ST(1)

F2XM1 ~ 25T,0'_1

FYL2X ~ ST(1)· L092
IST(O)I

FYL2XPl ~ ST(1)· Log2
[ST(O) +11

Processor Control

FINIT ~ Initialized 8087

FENI ~ Enable Interrupts

FOISI = Disable Interrupts

8087/8087-2/8087-1

Table 5. 8087 Extensions to the 86/186 Instructions Sets (cont.)

ESCAPE 0 0 1 1 1 1 1 0 1 0 0

ESCAPE 0 o~ 1 1 0 0 0 0 1

ESCAPE o 1 I 1 1

ESCAPE 1 1 0

ESCAPE o 1 1 1 1 1 0 o

ESCAPE 0 0 1 1 1 1 1 o 0 1

[ESCAPE ~1110

Optional
8.16 Bit

Displacement

I ESCAPE 1 I 1 o I

I ESCAPE 0 1 I 1 0 0 0 I

[ESCAPE 0 1

FLOCW ~ Load Control Word [iiCAPE o 1 MOD 1 0 1 R/M~~_~I~~ __

FSTCW ~ Store Control Word ~;;:;~;--[MOD RIM 1-- DIS~ --------
FSTSW ~ Store Status Word ~CAPE 1 0 1 MOD RIM DISP

FCLEX = Clear Excep!ions I ESCAPE 0 1 1 I 1 1 o 0 0 1 0

~---~--------~- - - -----
FSTENV ~ Store EnVIronment ~PE 0 0 1 l MOD 1 1 0 RIM! __ DISP

FLOENV ~ Load Environment @PE

FSAVE ~ Save State

FRSTOR ~ Restore State

FINCSTP ~ Increment Stack
Pointer

FDECSTP ~ Decrement Stack
Pointer

@CAPE

ESCAPE

ESCAPE

o

c

MOD

MOD 1 1 0 RIM

1 1 1

o 1YD

3-239

Clock Count Range

27-55

10-17

10-17

30-540

250-800

310-630

900-1100

700-1000

2-8

2-8

2-8

7-14 +EA

12-18 + EA

12-18 + EA

2-8

40-50 + EA

35-45+ EA

197 -207 + EA

197 - 207 + EA

6-12

6-12

205835-005

8087/8087-2/8087-1

lIIble 5. 8087 Extensions to the 861186 Instructions Sets (cont.)

FFREE ~ Free ST(i) ESCAPE 1 0 1 1 1 0 0 0 ST(i)

FNOP ~ No Operation

FWAIT = CPU Wait for BOB7

I ESCAPE 0 0 1 I 1 1 0 1 0 0 0-=0]

I 1 0 0 1 1 0 1 1 I
'n = number of times CPU examines TEST line before 8087 lowers BUSY.

NOTES:
1. if mod=OO then DISP=O', disp-Iow and disp-high are absent

if mod=Ol then DISP=disp-low sign-extended to 16-bits, disp-high is absent
if mod=10 then DISP=disp-high; disp-Iow
if mod = 11 then rim is treated as an STeil field

2. if r/m=OOO then EA=(BX) + (SI) +DISP
if r/m=OOl then EA=(BX) + (DI) +DISP
if r/m=010 then EA=(BP) + (SI) +DISP
if r/m=Oll then EA=(BP) + (DI) +DISP
if r/m=100 then EA=(SI) + DISP
if r/m=101 then EA=(DI) + DISP
if r/m= 110 then EA=(BP) + DISP
if r/m=lll then EA=(BX) + DISP

'except if mod=OOO and r/m=110 then EA =disp-high; disp-Iow.
3. MF= Memory Format

00-32-bit Real
01-32-bit Integer
10-64-bit Real
11-16-bit Integer

4. ST(O) = Current stack top
ST(i) ith register below stack top

5. d= Destination
O-Destination is ST(O)
l-Destination is STeil

6. P= Pop
O-No pop
1-PopST(0)

7. R= Reverse: When d=l reverse the sense of R
O-Destination (op) Source
l-Source (op) Destination

8. For FSQRT: -0", ST(O) ", +:c

For FSCALE: _215 ", ST(l) < +215 and ST(l) integer
For F2XM1: 0", ST(O)", 2-1

For FYL2X: 0 < ST(O) <x
-x < ST(l) < + x

For FYL2XP1: 0", IST(O)I < (2 -\/2)/2
-x < ST(l) < x

For FPTAN: 0", ST(O) "'1T/4
For FPATAN: 0", ST(O) < ST(l) < +x

3-240

Clock Count Range

9-16

10-16

3+5n'

205835-005

inter
8282/8283

OCTAL LATCH

• Address Latch for iAPX 86, 88, 186,
188, MCS·80®, MCS·85®, MCS·48®
Famlies

• 3·State Outputs

• 20·Pin Package with 0.3" Center

• High Output Drive Capability for
Driving System Data Bus • No Output Low Noise when Entering

or Leaving High Impedance State
• Fully Parallel 8·Bit Data Register and

Buffer • Available in EXPRESS
- Standard Temperature Range

• Transparent during Active Strobe - Extended Temperature Range

The 8282 and 8283 are 8-bit bipolar latches with 3-state output buffers. They can be used to implement latches, buffers,
or multiplexers. The 8283 inverts the input data at its outputs while the 8282 does not. Thus, all of the principal.periph­
eral and input/output functions of a microcomputer system can be implemented with these devices.

6262

8-- - rT-~~I--~+-.. B I elK I

I I
I I

~-t-..:=- ___ =~l ~
~ ~~

-------~_a

~ ... !-------- -.-8
~_t~L-------~~ ~

-------Jt -8

01, -- 001

L ______ _

8-4 0

8283 r-------,
F'::'l I I cr------ 0 a -t-€J

I elK II
I I
I I
I I L:.. _____ _

--a
G-~-j------- ~

B r1=======~{§j
8-4 4~

Figure 1. Logic Diagrams

3-241

Figure 2. Pin Configurations

Pin

STB

OE

010-017

000-007
(8282)

000-007
(8283)

8282/8283

Table 1. Pin Description

Description

STROBE (input). STB is an input control
pulse used to strobe data at the data input
pins (Ao-A7) into the data latches. This
signal is active HIGH to admit input data.
The data is latched at the HlGH to LOW
transition of STB.

OUTPUT ENABLE (Input). OE is an input
control signal which when active LOW
enables the contents of the data latches
onto the data output pin (Bo-B7)' OE being
inactive HIGH forces the output buffers to
their high impedance state.

DATA INPUT PINS (Input). Data presented
at these pins satisfying setup time reo
quirements when STB is strobed and
latched into the data input latches.

DATA OUTPUT PINS (Output). When OE is
true, the data in the data latches is pre·
sented as Inverted (8283) or non·inverted
(8282) data onto the data output pins.

FUNCTIONAL DESCRIPTION

The 8282 and 8283 octal latches are 8-bit latches with
3-state output buffers. Data having satisfied the setup
time requirements is latched into the data latches by
strobing the STB line HIGH to LOW. Holding the ST8
line in its active HIGH state makes the latches appear
transparent. Data is presented to the data output pins by
activating the DE input line. When DE is inactive HIGH
the output buffers are in their high impedance state.
Enabling or disabling the output buffers will not cause
negative·going transients to appear on the data output
bus.

3-242

8282/8283

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias O°C to 70°C
Storage Temperature - 6SoC to + 1S0°C
All Output and Supply Voltages - O.SV to + 7V
All Input Voltages -1.0V to + S.5V
Power Dissipation 1 Watt

*NOTlCE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (Vcc = 5V ±10%, TA = o·c to 70·C)

Symbol Parameter Min. Max. Units Test Conditions

Ve Input Clamp Voltage -1 V Ie = -5 mA

Icc Power Supply Current 160 mA

IF Forward Input Current -0.2 mA VF = 0.45V

IR Reverse Input Current 50 ,..A VR = 5.25V

VOL Output Low Voltage .4S V IOl = 32 rnA

VOH Output High Voltage 2.4 V IOH = -5 mA

IOFF Output Off Current ± 50 ,..A VOFF = 0.45 to 5.25V

Vil Input Low Voltage 0.8 V Vee= 5.0V See Note 1

VIH Input High Voltage 2.0 V Vee= 5.0V See Note 1

F= 1 MHz
CIN Input Capacitance 12 pF VBIAS =2.5V, Vee=5V

TA= 25°C

NOTE:
1. Output loading 10L = 32 mA, IOH = -5 mA, Cl = 300 pF."

A.C. CHARACTERISTICS (Vcc = 5V ±10%, TA = o·c to 70·C (See Note 2)
Loading: Outputs-IOl = 32 mA, IOH = -5 mA, CL = 300 pF*)

Symbol Parameter Min. Max. Units Test Conditions
f------.... --.

TIVOV Input to Output Delay (See Note 1)
-Inverting 5 22 ns
-Non·lnverting 5 30 ns

TSHOV STB to Output Delay
-Inverting 10 40 ns
-Non·lnverting 10 45 ns

TEHOZ Output Disable Time 5 18 ns

TELOV Output Enable Time 10 30 ns

TIVSL Input to STB Setup Time 0 ns

TSLIX Input to STB Hold Time 25 ns

TSHSL STB High Time 15 ns

TOLOH Input, Output Rise Time 20 ns From O.BV to 2.0V

TOHOL Input, Output Fall Time 12 ns From 2.0V to O.BV

NOTE: "Cl = 200 pF for plastic 8282/8283.
1. See waveforms and test load circuit on following page.
2. For Extended Temperature EXPRESS the Preliminary Maximum Values are TIVOV = 25 vs 22, 35 vs 30;

TSHOV = 45, 55; TEHOZ = 25; TElOV = 50.

3-243

inter 8282/8283

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

24 --V 5_ TESTPDINTS _15~
0.45---..l\
A.C. TESTING: INPUTS ARE DRIVEN AT2.4V FOR A LOGIC "1" AN00.45V FOR
A LOGIC "0."' TIMING MEASUREMENTS ARE MADE AT 1.5V FOR BOTH A
LOGIC "1" AND "0." INPUT RISE AND FALL TIMES ARE MEASURED FROM
O.BV TO 2.0V AND ARE DRIVEN AT 5ns ± 2n5.

OUTPUT TEST LOAD CIRCUITS

1.5V

33Q

OUT 0--

1300PF'

3·STATE TO VOL

'200 pF for plastic 8282/8283.

1.5V

180Q

OUT 0--

I300PF'

3·STATE TO VOH

3-244

2.14V

52.7Q

OUT 0----<

1300 PF'

SWITCHING

inter 8282/8283

WAVEFORMS

INPUTS
\V \V
/1\ 11\

I-----TIVSL~ I--TSLIX

\
-I TSHSL- 1

\

ST.

I \
- / \

-TIVOV- -~~fo- mw- -c= VOH-.1V

\1 1>-------
1..,\

VOL +.1V
SEE NOTE 1

OUTPUTS

-TSHOV~

NOTE: 1. OUTPUT MAY BE MOMENTARILY INVALID FOLLOWING THE HIGH GOING STB TRANSITION.

2. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE NOTED.

~
Z
>-
~ w o

50

8282

10

pF LOAD

50

8283

40

pF LDAD

Output Delay va. Capacitance

3-245

8284A/8284A-1
CLOCK GENERATOR AND DRIVER FOR

iAPX 86, 88 PROCESSORS

• Generates the System Clock for the
iAPX 86, 88 Processors:
5 MHz, 8 MHz with 8284A
10 MHz with 8284A-1

• Uses a Crystal or a TTL Signal for
Frequency Source

• Provides Local READY and MULTIBUS®
READY Synchronization

• 18-Pin Package

0

+3

8284A/8284A-1 Block Diagram

• Single +5V Power Supply

• Generates System Reset Output from
Schmitt Trigger Input

• Capable of Clock Synchronization with
Other 8284As

• Available in EXPRESS
- Standard Temperature Range
- Extended Temperature Range

D
RESET

OSC

PClK

ClK

READY

RDY1

READY

AEN2
ClK

X2

ASYNC
EFI

RES

8284A/8284A-1 Pin
Configuration

3-246

8284A/8284A-1

Table 1. Pin Description

Symbol Type Name and Function

AENI, I Address Enable: AEN is an activ.e lOW
AEN2 signal. AEN serves to qualify its respective

Bus Ready Signal (RDYI or RDY2). AENI
validates RDYI while AEN2 validates RDY2.
Two AEN signal inputs are useful in system
configurations which permit the processor to
access two Multi-Master System Busses. In
non Multi-Master configurations the AEN
signal inputs are tied true (lOW).

RDYI, I Bus Ready: (Transfer Complete). RDY is an
RDY2 active HIGH signal which is an indication from

a device located on the system data bus that
data has been received, or is available. RDYI
is qualified by AENI while RDY2 is qualified
by AEN2.

ASYNC I Ready Synchronization Select: ASYNC is an
input which defines the synchronization
mode of the READY logic. When ASYNC is
low, two stages of READY synchronization
are provided. When ASYNC is left open
(internal pull-up resistor is provided) or HIGH
a single stage of READY synchronization is
provided.

READY 0 Ready: READY is an active HIGH signal
which is the synchronized RDY signal input.
READY is cleared after the guaranteed hold
time to the processor has been met.

XI, X2 I Crystal In: XI and X2 are the pins to which a
crystal is attached. The crystal frequency is 3
times the desired processor clock frequency.

F/C I FrequencylCrystal Select: F/C is a strapping
option. When strapped lOW, Fie permits the
processor's clock to be generated by the crys-
tal. When F/Gis strapped HIGH, ClK is gener-
ated from the EFI input.

EFI I External Frequency: When F/C is strapped
HIGH, ClK is generated from the input fre-
quency appearing on this pin. The input
signal is a square wave 3 times the frequency
of the desired ClK output.

FUNCTIONAL DESCRIPTION

General

The 8284A is a single chip clock generator/driver for the
iAPX 86, 88 processors. The chip contains a crystal-con­
trolled oscillator, a divide-by-three counter, complete MULTI BUS
"Ready" synchronization and reset logic. Refer to Figure I
for Block Diagram and Figure 2 for Pin Configuration.

Oscillator

The oscillator circuit of the 8284A is designed primarily
for use with an external series resonant, fundamental
mode, crystal from which the basic operating frequency
is derived.

The crystal frequency should be selected at three times
the required CPU clock. XI and X2 are the two crystal
input crystal connections. For the most stable operation

Symbol Type Name and Function

ClK 0 Processor Clock: ClK is the clock output
used by the processor and all devices which
directly connect to the processor's local bus
(i.e., the bipolar support chips and other MOS
devices). ClK has an output frequency which
is V3 of the crystal or EFI input frequency and a
V3 duty cycle. An output HIGH of 4.5 volts
(Vcc~ 5V) is provided on this pin to drive MOS
devices.

PClK 0 Peripheral Clock: PClK is a TTL level pe-
ripheral clock signal whose output frequency
is V2 that of ClK and has a 50% duty cycle.

OSC 0 Oscillator Output: OSC is the TTL level out-
put of the internal oscillator circuitry. Its fre-
quency is equal to that of the crystal.

RES I Reset In: RES is an active lOW signal which
is used to generate RESET. The 8284A
provides a Schmitt trigger input so that an RC
connection can be used to establish the
power-up reset of proper duration.

RESET 0 Reset: RESET isan active HIGH signal which

I
is used to reset the 80B6 family processors. Its
timing characteristics are determined by

I RES.

CSYNC I Clock Synchronization: eSYNC is an active
HIGH signal which allows multiple 8284As to
be synchronized to provide clockS that are in
phase. When CSYNC is HIGH the internal
counters are reset. When eSYNC goes lOW
the internal counters are allowed to resume
counting. eSYNC needs to be externally syn-
chronized to EFt. When using the internal os-
cillator CSYNC should be hardwired to
ground.

GND Ground,

Vcc Power: +5V supply.

01 the oscillator (OSC) output circuit, two series resistors
(R, ~ R2 ~ 5100) as shown in the wavelorm figures are
recommended. The output olthe oscillator is buffered and
brought out on OSC so that other system timing signals
can be derived from this stable, crystal-controlled source.

For systems which have a Vce ramp time ~ I Vlms andlor
have inherent board capacitance between X1 or X2, ex­
ceeding 10 pF (not including 8284A pin capacitance), the
two 5100 resistors should be used. This circuit provides
optimum stability for the oscillator in such extreme condi­
tions. It is advisable to limit stray capacitances to less than
10 pF on XI and X2 to minimize deviation from operating
at the fundamental frequency.

If EFI is used and no crystal is connected, it is recommended
that X, or X2 should be tied to Vee through a 5100 resistor to
prevent the oscillator from free running which might produce
HF noise and additional Icc current.

3-247

inter 8284AI8284A-1

Clock Generator
The clock generator consists of a synchronous divide­
by-three counter with a special Clear input that Inhibits
the counting. This clear Input (CSYNC) allows the out­
put clock to be synchronized with an external event
(such as another 8284A clock). It is necessary to syn­
chronize the CSYNC Input to the EFI clock external to
the 8284A. This is accomplished with two Schottky flip­
flops. The counter output is a 33% duty cycle clock at
one-third the input frequency.

The Fie input Is a strapping pin that selects either the
crystal oscillator or the EFI input as the clock for the + 3
counter . .If the EFllnput is selected as the clock source,
the oscillator section can be used Independently for
another clock source. Output is taken from OSC.

Clock Outputs
The ClK output is a 33% duty cycle MOS clock driver
designed to drive the iAPX 86. 88 processors directly.
PClK is a TIL level peripheral clock signal whose out­
put frequency is 1/2 that of CLK. PCLK has a 50% duty
cycle.

Reset Logic
The reset logiC provides a Schmitt trigger Input (RES)
and a synchronizing fllp·flop to generate the reset
timing. The reset signal is synchronized to the falling
edge of. CLK .. A simple RC network can be used to
provide power-on reset by utilizing this function of the
8284A.

1

READY Synchronization
Two READY Inputs (RDY1, RDY2) are provided to accom­
modate two Multl·Master system busses. Each Input
has a qualifier (AEN1 and AEN2, respectively). The ~
signals validate their respective ROY signals. If a Multi-

CLOCK
SYNCHRONIZE >-+---~ D

EFt

Q

Master system is not being used" the AEfil pin should be
tied LOW.

Synchronization is required for all asynchronous active­
going edges of either ROY input to guarantee that the
ROY setup and hold times are met. Inactive-going edges
of ROY In normally ready systems do not require syn­
chronization but must satjsfy ROY setup and hold as a
matter of proper system design.

The ASYNC Input defines two modes of READY syn­
chronization operation.

When ASYNC Is LOW, two stages of synchronization
are provided for active READY input signals. Positive­
going asynchronous READY inputs will first be syn·
chronized to flip-flop one at the rising edge of CLK
and then synchronized to flip-flop two at the next falling
edge of CLK, after which time the READY output will go
active (HIGH). Negative-going asynchronous READY in­
puts will be synchronized directly to flip-flop two at the
falling edge of CLK. after which time the READY output
will go inactive. This mode of operation is intended for use
by asynchronous (normally not ready) deviCeS in the sys­
tem which cannot be guaranteed by design to meet the
required ROY setup timing. T RWCL. on each bus cycle.

When ASYNC Is high or left open, the first READY flip­
flop is bypassed in the READY synchronization logic.
READY Inputs are synchronized by flip·flop two on the
falling edge of CLK before they are presented to the
processor. This mode is available for synchronous
devices that can be guaranteed to meet the required
ROY setup time.

ASYNC can be changed on every bus cycle to select the
appropriate mode of synchronization for each device in
the system.

D
Q

(TO OTHER 8284As)

Figure 3. CSYNe Synchronization

3-248

8284A/8284A·1

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias O·C to 70·C
Storage Temperature -65·C to +150·C
All Output and Supply Voltages -0.5V to + 7V
All Input Voltages -1.0V to +5.5V
Power Dissipation 1 Watt

*NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (T A= o·e to 70·e, Vee = 5V ± 10%)

Symbol Parameter Min.

IF Forward Input Current (ASYNC)
Other Inputs

IR Reverse Input Current (ASYNC)
Other Inputs

Ve Input Forward Clamp Voltage

Icc Power Supply Current

VIL Input lOW Voltage

VIH Input HIGH Voltage 2.0

VIHR Reset Input HIGH Voltage 2.6

VOL Output lOW Voltage

VOH Output HIGH Voltage ClK 4
Other Outputs 2.4

VIHR - VILR RES Input Hysteresis 0.25

A.C. CHARACTERISTICS (T A = O·C to 70·C, Vcc = 5V ± 10%)

TIMING REQUIREMENTS

Symbol Parameter Min.

tEHEL External Frequency HIGH Time 13

tELEH External Frequency lOW Time 13

tELEL EFI Period 33

XTAl Frequency 12

tR1VCL RDY1, RDY2 Active Setup to ClK 35

tR1VCH RDY1, RDY2 Active Setup to ClK 35

tR1VCL RDY1, RDY2 Inactive Setup to ClK 35

tCLRIX RDY1, RDY2 Hold to ClK 0

tAYVCL ASYNC Setup to ClK 50

tCLAYX ASYNC.Hold to ClK 0

tA1VR1V AEN1, AEN2 Setup to RDY1, RDY2 15

tCLAIX AEN1, AEN2 Hold to ClK 0

tYHEH CSYNC Setup to EFI 20

tEHYL CSYNC Hold to EFI 10

tYHYL CSYNC Width 2' tELEL

.tIIHCL RE:S Setup to ClK 65

tCUI H RES Hold to ClK 20

3-249

Max. Units Test Conditions

-1.3 mA VF=0.45V
-0.5 mA VF=0.45V

50 ~ VR=Vee
50 ,..A VR= 5.25V

-1.0 V Ic= -5mA

170 mA

0.8 V

V

V

0.45 V 5mA

V -1mA
V -1mA

V

Max. Units Test Conditions

ns 90%-90% VIN

ns 10%-10% VIN

ns (Note 1)

30 MHz

ns ASYNC=HIGH

ns ASYNC=lOW

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns (Note 1)

ns (Note 1)

8284A/8284A-1

A.C. CHARACTERISTICS (Continued)
TIMING RESPONSES

Symbol Parameter MIn; 8284A

tClCl ClK Cycle Period 125

tCHCl ClK HIGH Time (1f3tclcJ+2

tClCH ClK lOW Time (% tClcl)-15

tCH1CH2 ClK Rise or Fall Time
tCL2Cl1

tpHPl PClK HIGH Time tClcl -20

tplPH PClK lOW Time tClCl-20

tRYlCl Ready Inactive to ClK (See Note 3) -s
tRYHCH Ready Active to ClK (See Note 2) (% tClcJ-15

tCLll ClK to Reset Delay

tClPH ClK to PClK HIGH DELAY

tClPl ClK to PClK lOW Delay

tOlCH OSC to ClK HIGH Delay -5

tol<:l OSC to ClK lOW Delay 2

tolOH Output Rise Time (except ClK)

tOHOl Output Fall Time (except ClK)

NOTES:

1. Setup and hold necessary only to guarantee recognition at next clock.
2. Applies only to T3 and TW states.
3. Applies only to T2 states.

Min. 8284A-1

100

39

53

tClCl -20

tclCl -20

-8

53

-5
2

Max. Unlta Teat Condltlona

ns

ns

ns

10 ns 1.0Vto 3.5V

ns

ns

ns

ns

40 ns

22 ns

22 ns

22 ns

35 ns

20 ns From O.SV to 2.0V

12 ns From 2.0V to O.SV

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A lOGIC "'1·· AND 0.45V
FOR A lOGIC ··0 .. · TIMING MEASUREMENTS ARE MADE AT 1.5V FOR
BOTH A lOGIC "'1·· AND ··0 .. · INPUT RISE AND FAll TIMES (MEASURED
BETWEEN 0.8V AND 2.0V) ARE 5 ± 2 NS.

3-250

.,... v.. = 2.08V

R, = 325tl
DEVICE
UNDER -TES.!

r Cl

Cl = 100pF FOR CLK
Cl = 30pF FOR READY

intJ

WAVEFORMS

CLOCKS AND RESET SIGNALS

NAME
EFI

OSC

ClK 0

PClK 0

CSYNC I

RESET 0

8284A/8284A-1

____ ~/---------~~-t
NOTE: ALL TIMING MEASUREMENTS ARE MADE AT 1.5 VOLTS, UNLESS OTHERWISE NOTED.

:READY SIGNALS (FOR ASYNCHRONOUS DEVICES)

elK

RDV1,2

READY

tRYHCH

3-251

inter 8284A/8284A~1

WAVEFORMS (Continued) ".'''

READY SIGNALS (FOR SYNCHRONOUS DEVICES)

ClK

RDY',2

tA1R1Y

Ir-------I----.'. --,--------+--,1

READY

tFlYHCH tRYLCL

Xl ClK I lOAD I
24MHZ$

I (SEE NOTE 1)

X2

Fie
R, R2 I

J..
CSYNC

4:- - R

Clock High ,lind Low Time (Using X1, X2)

I PULSE I EFI ClK I lOAD I
GENERATOR I I (SEE NOTE 1)

Vce
L FIC

* CSYNC

Clock High and Low Time (Using EFI)

3-252

inter

NOTES:
,. Cl=100pF
2. Cl=30pF

R, R2

-::"

8284A/8284A-1

Vcc

Am ClK

X1

24MHz CJ READY

X2

RDY2 OSC

FIe
AEN2
CSYNC

-::"

Ready to Clock (Using X1, X2)

I--r---I EFI ClK 1-----1

F/~

J\ENf
t-----I RDY2

AER2
CSYNC READY'i-----t

Ready to Clock (Using EFI)

3-253

R, - R. = 51011.

82C84A/82C84A-5
CHMOS CLOCK GENERATOR AND DRIVER

FOR 80C86; 80C88 PROCESSORS

• Generates the System Clock for the • Generates System Reset Output from
80C86, 80CS8 Processors: Schmitt Trigger Input

82C84A-5 for 5 MHz • Capable of Clock Synchronization with
82C84A for 8 MHz other 82C84As

• Pin Compatible with Bipolar 8284A * • Low Power Consumption

• Uses a Crystal or an External • Single 5V Power Supply
Frequency Source

Provides Local READY and MUL TIBUS® • TTL Compatible Inputs/Outputs • READY Synchronization • Will Be Available in 18-Lead Plastic DIP
and 20-Lead PLCC Packages
(See Packaging Spec., Order #231369)

The Intel 82C84A is a high performance CHMOS clock generator-driver designed to service the requirements
of the 80C86/88 and 8086/88. Power consumption is a fraction of that of equivalent bipolar circuits. The chip
contains a crystal controlled oscillator, a divide-by-three counter and complete READY synchronization and
reset logic. Crystal controlled operation up to 15, 25 MHz utilizes a parallel, fundamental mode crystal and two
small load capacitors. 'The Bipolar 8284A requires two load resistors and a resonant crystal.

RES--- .---------~

Xl

X2

Fie ------T-c>O---LoJ

EFI--------L..J
csvNe-------------~ __ +_f_--'

RDY1

~-~-----------~

82C84A/82C84A-5 Block Diagram

CSYNC Vee

PClK Xl

AENi X2

RDY1 ASYNC

READY EFI

RDY2 Fie

irni2 OSC

ClK RES

GND RESET

231198-2

82C84A/82C84A-518-Lead
DIP Configuration

RESET

osc

PCLK

elK

READY

Control
Pin

FIC

RES

RDY 1
RDY2

AEN 1
AEN2

ASYNC

RDY1

READY

RDY2

AEN2

NC

Logical 1 Logical 0

External Crystal
Clock Drive

Normal Reset

Bus Ready BllS not
ready

Address Address
Disabled Enabled

1 Stage Ready 2 Stage Ready
Synchronization Synchronization

82C84A/82C84A-5
Pin Description

X2

ASYNC

EFI

ric
NC

231198-13

8284A/8284A-5 20-Lead
PLCC Configuration

Intel Corporation assumes no responsibility for the use of any Circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. November 1985
© Intel Corporation, 1985 Order Number: 231198·002

3-254

82C84A/82C84A-5

Table 1. Pin Description

Symbol Type Name and Function

AEN1, I ADDRESS ENABLE: AEN is an active lOW signal. AEN serves to qualify
AEN2 its repective Bus Ready Signal (RDY1 or RDY2). AEN1 validates RDY1

while AEN2 validates RDY2. Two AEN signal inputs are useflll in system
configurations which permit the processor to access two Multi-Master
System Busses. In non Multi-Master configurations the AEN signal inputs
are tied true (lOW).

RDY1, I BUS READY: (Transfer Complete). RDY is an active HIGH signal which
RDY2 is an indication from a device located on the system data bus that data

has been received, or is available. RDY1 is qualified by AEN1 while
RDY2 is qualified by AEN2.

ASYNC I READY SYNCHRONIZATION SELECT: ASYNC is an input which
defines the synchronization mode of the READY logic. When ASYNC is
lOW, two stages of READY synchronization are provided. When ASYNC

I

is left open (an internal pull-up is provided) or HIGH a single stage of
READY synchronization is provided.

READY 0 READY: READY is an active HIGH signal which is the synchronized RDY
signal input. READY is cleared after the guaranteed hold time to the
processor has been met.

Xi, X2 I CRYSTAL IN: X1 and X2 are the pins to which a crystal is attached. The
crystal frequency is 3 times the desired processor clock frequency. (If no
crystal is attached, then Xi should be tied to Vee or GND and X2 should
be left open.)

F/C I FREQUENCY ICRYSTAL SELECT: F/C is a strapping option. When
strapped lOW, FIG permits the processor's clock to be generated by the

p, crystal. When FIG is strapped HIGH, ClK is generated from the EFI
input.

I EXTERNAL FREQUENCY: When F/C is strapped HIGH, ClK is
generated from the input frequency appearing on this pin. The input
signal is a square wave 3 times the frequency of the desired ClK output.
When FIG is strapped lOW, EFI should be tied HIGH or lOW.

ClK 0 PROCESSOR CLOCK: ClK is the clock output used by the processor

I
and all devices which directly connect to the processor's local bus (i.e.,
the bipolar support chips and other MOS devices). ClK has an output
frequency which is % of the crystal or EFI input frequency and a % duty
cycle.

PClK 0 PERIPHERAL CLOCK: PClK is a TTL level peripheral clock signal
whose output frequency is % that of ClK and has a 50% duty cycle.

ose 0 OSCILLATOR OUTPUT: OSC is the TTL level output of the internal
oscillator circuitry. Its frequency is equal to that of the crystal.

RES I RESET IN: RES is an active lOW signal which is used to generate
RESET. The 82C84A provides a Schmitt trigger input so that an RC
connection can be used to establish the power-up reset of proper
duration.

3-255

intJ 82C84A/82C84A·5

Table 1. Pin Description (Continued)

Symbol Type Name and Function

RESET 0 RESET: RESET is an active HIGH signal which is used to reset the
80C86/88 family processors. Its timing characteristics are
determined by RES.

CSYNC I CLOCK SYNCHRONIZATION: CSYNC is an active HIGH signal
which allows multiple 82C84A's to be synchronized to provide clocks
that are in phase. When CSYNCis HIGH the internal counters are
reset. When CSYNC goes lOW the internal counters .are allowed to
resume counting. CSYNC needs to be externally synchronized to
EFI. When using the internal oscillator CSYNC should be hardwired
to ground.

GND GROUND.

Vee POWER: + 5V supply.

FUNCTIONAL DESCRIPTION

Oscillator

The oscillator circuit of the 82C84A is designed pri­
marily for use with an external parallel resonant, fun­
damental mode crystal from which the basic operat-
ing frequency is derived. .

The crystal frequency should be selected at three
times the required CPU clock. X1 and X2 are the two
crystal input crystal connections. For the most sta­
ble operation of the oscillator (OSC) output circuit,
two capacitors (C1 = C2) as shown in the waveform
figures are recommended. The output of the oscilla­
tor is buffered and brought out on OSC so that other
system timing signals can be derived from this sta­
ble, crystal-controlled source.

Capacitors C1, C2 are chosen such that their com-
bined capacitance: .

CT = C1. C2 (Including stray capacitance)
C1 + C2

matches the load capacitance as specified by the
crystal manufacturer. This insures operation within
the frequency tolerance specified by the crystal
manufacturer.

Clock Generator

The clock generator consists of a synchronous di­
vide-by-three counter with a special clear input that
Inhibits the counting. This clear input (CSYNC) al­
lows the output clock to be synchronized with an
external event (such as another 82C84A clock). It is
necessary to synchronize the CSYNC input to the
EFI clock external to the 82C84A. This is accom-

plished with two Schottky flip-flops. The counter out­
put is a 33% duty cycle clock at one-third the input
frequency.

The F lc input is a strapping pin that selects either
the crystal oscillator or the EFI input as the clock for
the + 3 counter. If the EFI input is selected as the
clock source, the oscillator section can be used in­
dependently for another clock source. Output is tak­
en from asc.

Clock Outputs

The ClK ouput is a 33% duty cycle MOS clock driv­
er designed to drive the 80C86/88 processors di­
rectly. PClK is a TTL level peripheral clock signal
whose output frequency is % that of ClK. PClK has
a 50% duty cycle.

Reset Logic

The reset logic provides a Schmitt trigger input
(RES) and a synchronizing flip-flop to generate the
reset timing. The reset signal is synchronized to the
falling edge of ClK. A simple RC network can be
used to provide power-on reset by utilizing this func­
tion of the 82C84A.

READY Synchronization

Two READY inputs (RDY1, RDY2) are provided to
accommodate two Multi-Master system busses.
Each input has a qualifier (AEN1 and AEN2, respec­
tively). The· AEN signals validate their respective
ROY signals. If a Multi-Master system is not being
used the AEN pin should be tied lOW.

3-256

82C84A/82C84A-5

Synchronization is required for all asynchronous ac­
tive-going edges of either RDY input to guarantee
that the RDY setup and hold times are met. Inactive­
going edges of RDY in normally ready systems do
not require synchronization but must satisfy RDY
setup and hold as a matter of proper system design.

The ASYNC input defines two modes of READY
synchronization operation.

When ASYNC is lOW, two stages of synchroniza­
tion are provided for active READY input signals.
Positive-going asynchronous READY inputs will first
be synchronized to flip-flop one at the rising edge of
ClK and then synchronized to flip-flop two at the
next falling edge of ClK, after which time the
READY output will go active (HIGH). Negative-going
asynchronous READY inputs will be synchronized

CLOCK
SYNCHRONIZE >-+----+--1 0

EFI

Q

directly to flip-flop two at the falling edge of ClK,
after which time the READY output will go inactive.
This mode of operation is intended for use by asyn­
chronous (normally not ready) devices in the system
which cannot be guaranteed by design to meet the re­
quired RDY setup timing, T R1VeL, on each bus cycle.

When ASYNC is HIGH, the first READY flip-flop is
bypassed in the READY synchronization logic.
READY inputs are synchronized by flip-flop two on
the falling edge of ClK before they are presented to
the processor. This mode is available for synchro­
nous devices that can be guaranteed to meet the
required RDY setup time.

ASYNC can be changed on every bus cycle to se­
lect the appropriate mode of synchronization for
each device in the system.

o
Q

>j

(TO OTHER 82C84AI) 231198-3

Figure 3. CSYNC Synchronization

ABSOLUTE MAXIMUM RATINGS*

Supply Voltage -0.5Vto 7.0V

Input Voltage Applied -0.5V to Vee + 0.5V

Output Voltage Applied - 0.5V to Vee + 0.5V

Storage Temperature - 65°C to + 150°C

Ambient Temp. Under Bias O°C to + 70°C

Power Dissipation. 1.0 Watt

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tiona/ sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for
extended periods may affect device re/iability

NOTICE Specifications contained within the
following tables are subject to change.

D.C. CHARACTERISTICS (TA = O°Cto + 70°C, vee = 5V ±10%)

Symbol Parameter Min Max Units Test Conditions

lee Operating Supply Current: 82C84A 40 mA 25 MHz xtal, CL = 0
82C84A-5 10 15 MHz xtal, CL = 0

lees Stand By Supply Current (Note 1) 100 p,A

III Input ASYNC 10 p,A ASYNC = Vee
leakage Only -130 p,A ASYNC = GND
Current .,,-_.--

(Note 2) All Other Pins ± 1.0 p.A OV s VIN S Vee
... ~

3-257

82C84A/82C84.A·S

D.C. CHARACTERISTICS (Continued)

Symbol Parameter Min Max Units Test Conditions

VIL Input lOW Voltage 0.8 V

VIH Input HIGH Voltage 2.2 VCC + 0.5 V

VIHR Reset Input HIGH Voltage 0.6 VCC V

VOL Output lOW Voltage 0.4 V ClK: IOL = 4 mA
Others: IOL = 2.5 mA

VOH Output HIGH Voltage
VCC - 0.4

V ClK: IOH = -4 mA
V Others: IOH = - 2.5 mA

VIHWVILR RES Input Hysteresis 0.25 V

CIN Input Capacitance 7 pF freq = 1 MHz

NOTES:
1. VIH, FIC, Xl 2 Vee - O.2V; VIL, X2 :S: O.2V; ASYNC = Vee or ASYNC = OPEN.
2. An internal pull-up resistor is implemented on the ASYNC input.

A.C. CHARACTERISTICS (TA = O·Cto +70·C, VCC = 5V ±10%)

TIMING REQUIREMENTS

82C84A 82C84A·5
Symbol Parameter Units Test Conditions

Min Max Min Max

tEHEL External Frequency HIGH Time 13 20 ns 90%-90% VIN

tELEH External Frequency lOW Time 13 20 ns 10%-10% VIN

tELEL EFI Period 36 66 ns (Note 1)

XT Al Frequency 2.4 25 6.0 15 MHz

tR1VCL RDY1, RDY2 Active Setup to ClK 35 35 ns ASYNC = HIGH

tR1VCH RDY1, RDY2 Active Setup to ClK 35 35 ns ASYNC = lOW

tR1VCL RDY1, RDY2 Inactive Setup to ClK 35 35 ns

tCLR1X RDY1, RDY2 Hold to ClK 0 0 ns

tAYVCL ASYNC Setup to ClK 50 50 ns

tCLAYX ASYNC Hold to ClK 0 0 ns

tA1VR1V AEN1, AEN2 Setup to RDY1, RDY2 15 15 ns

tCLA1X AEN1, AEN2 Hold to ClK 0 0 ns

tYHEH CSYNC Setup to EFI 20 20 ns

tEHYL CSYNC Hold to EFI 20 20 ns

tYHYL CSYNCWidth 2· tELEL 2· tELEL ns

tllHCL RES Setup to ClK 65 65 ns (Note 2)

tCLIl H RES Hold to ClK 20 20 ns (Note 2)

tlLlH Input Rise Time 15 15 ns (Note 1)

tlHIL Input Fall Time 15 15 ns (Note 1)

3-258

inter 82C84A/82C84A-5

A.C. CHARACTERISTICS (Continued)

TIMING RESPONSES

Symbol Parameter Min 82C84A Min 82C84A-5 Max Units Test Conditions

tCLCL ClK Cycle Period 125 200 ns

tCHCL ClK HIGH Time (%tcLcu+2 (%tcLcu+2 ns

tCLCH ClK lOW Time (% tCLCU- 15 (% tCLcu-15 ns

tCH1CH2 ClK Rise or Fall Time 10 ns 1.0Vto 3.5V
tCL2CL1

tpHPL PClK HIGH Time tCLCL-20 tCLCL -20 ns

tpLPH PClK lOW Time tCLCL -20 tCLCL -20 ns

tRYLCL Ready Inactive to
ClK (See Note 4) -s -s ns

tRYHCH Ready Active to ClK
(See Note 3) (% tCLCU-15 (% tCLCU-15 ns

tCLIL ClK to Reset Delay 40 ns

tCLPH ClK to PClK HIGH DELAY 22 ns

tCLPL ClK to PClK lOW Delay 22 ns

tOLCH OSC to ClK HIGH Delay -5 -5 22 ns

tOLCL OSC to ClK lOW Delay 2 2 35 ns

tOLOH Output Rise Time
(except ClK) 15 ns From O.SV to 2.0V

tOHOL Output Fall Time
(except ClK) 15 ns From 2.0V to O.SV

NOTES:
1. Transition between Vldmax) - O.4V and VIH(min) + O.4V.
2. Setup and hold necessary only to guarantee recognition at next clock.
3. Applies only to T3 and TW states.
4. Applies only to T2 states.

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT OUTPUT

VIH+O.4V-V ~

Vll-O.'V~~ _______ ~
231198-4

A.C. TESTING: All INPUT SIGNALS MUST SWITCH BETWEEN
0.45V AND 2.4V. TAISE AND TFALL MUST BE S 15 ns.
All TIMING MEASUREMENTS ARE MADE AT 0.8V AND 2.0V.

A.C. TESTING LOAD CIRCUIT

., VL = 2.25V

RL = 7.400 fOR ALL OUTPUTS
EXCEPT ClK

DEVICE 4830 FDA CLOCK OUTPUT

UNDER ~
TEST

I C'

':'
231198-5

CL = 100 pF FOR ClK
CL = 30 pF FOR READY
CL INCLUDES PROBE AND JIG CAPACITANCE

3-259

intJ
WAVEFORMS

CLOCKS AND RESET SIGNALS

NAME
EFI

OSC

ClK

PClK

CSYNC

oJ"\J\ ..
O..p-"

:-\-c~r­~l-.

82C84A/82C84A-5

RESET 0 ____ ~/~--------~~~t
231198-6

NOTE:
ALL TIMING MEASUREMENTS ARE MADE AT O.8V AND 2.0V. UNLESS OTHERWISE NOTED.

READY SIGNALS (FOR ASYNCHRONOUS DEVICES)

ClK

RDY1,2

READY

tAYHCH

231198-7

3-260

intJ 82C84A/82C84A·5

WAVEFORMS (Continued)

READY SIGNALS (FOR SYNCHRONOUS DEVICES)

ClK

ROV1,2

READY

IRYHCH tRYLCL

231198-8

Xl CLK I LOAD I
24MHZ$

I (SEE NOTE 1)

X2

r t" I
Fie

CSYNC

,.- ,.- .J.
231198-9

Clock High and Low Time (Using X1, X2)

I PULSE I
GENERATOR J EFt ClK I lOAD I

I (SEE NOTE 1)

VL
Fie

.,r- CSYNC

231198-10

Clock High and Low Time (Using EFI)

3-261

inter

NOTES:
1. CL = 100 pF
2. CL = 30 pF

82C84A/82C84A·5

Vee

AENl ClK ~---I

r-----------------~--~X1
24MHz CJ READY J----I

r---;=======~--__1X2
J----I RDY2 OSC

FIC
AEN2
CSYNC

Ready to Clock (Using X1, X2)

~P---~ EFI ClK t------l

FtC
Ami

~---IRDY2

AEm
CSYNC READyrt------l

Ready to Clock (Using EFI)

3-262

231198-11

231198-12

inter
8286/8287

OCTAL BUS TRANSCEIVER

• Data Bus Buffer Driver for iAPX
86,88,186,188, MCS·80™, MCS·85™,
and MCS·48™ Families

• High Output Drive Capability for
Driving System Data Bus

• Fully Parallel 8·Bit Transceivers

• 3·State Outputs

• 20·Pin Package with 0.3" Center

• No Output Low Noise when Entering
or Leaving High Impedance State

• Available in EXPRESS
- Standard Temperature Range
- Extended Temperature Range

The 8286 and 8287 are 8-bit bipolar transceivers with 3-state outputs. The 8287 inverts the input data at its outputs
while the 8286 does not. Thus, a wide variety of applications for buffering in microcomputer systems can be met.

8286 r-------l
I I

18:--+-1--t:r-- I

I. ~ __ =t-<~t~~+--@
~

! f--------..j
Al 81

Vee AO

BO Ai

~
~

81 ifi
B2 B2
83 B3
B4 B4
85 as
56 B6
B7 B7
T GND T

Figure 1. Logic Diagrams Figure 2. Pin Configurations

3-263

8286/8287

Table 1. Pin Description

Symbol Type Name and Functlon

T I Transmit: T is an input control signal used to control the direction of the transceivers. When HIGH,
it configures the transceiver's 90-97 as outputs with Ao-A7 as inputs. T LOW configures Ao-A7 as
the outputs with 90-97 serving as the inputs.

OE I Output Enable: OE is an input control signal used to enable the appropriate output driver (as
selected by T) onto its respective bus. This signal is active LOW.

Ao-A7 1/0 Local Bus Data Pins: These pins serve to either present data to or accept data from the processor's
local bus depending upon the state of the T pin.

90-97(8286) 110 System Bus Data Pins: These pins serve to either present data to or accept data from the system
BQ-B7(8287) bus depending upon the state of the T pin.

FUNCTIONAL DESCRIPTION

The 8286 and 8287 transceivers are 8-bit transceivers with
high impedance outputs. With T active HIGH and OE ac­
tive LOW, data at the Ao-A7 pins is driven onto the Bo-B7
pins. With T inactive LOW and OE active LOW, data at the

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

Bo-B7 pins is driven onto the Ao-A7 pins. No output low
glitching will occur whenever the transceivers are enter­
ing or leaving the high impedance state.

2.4 JS--TEST POINTS __ ,~
0.45

A.C. TESTING: INPUT$ARE DRIVEN AT 2.4V FORA LOGIC "1" ANDO.45V
FOR A LOGIC "0." THE CLOCK IS DRIVEN AT 4.3V and O.25V. TIMING
MEASUREMENTS ARE MADE AT 1.5V FOR BOTH A LOGIC "1" AND "0."
INPUT RISE AND FALL TIMES ARES ±2 NS., MEASURED BETWEEN Q,BV
AND 2.0V.

3-264

intJ

TEST LOAD CIRCUITS

'200 pF for plastic 8286/8287

8286/8287

2.14V

o"'~~'"
1300P

F'

SWITCHING

B OUTPUT

2.28V

1114Q

OUT~
T100PF

J.-
SWITCHING

A OUTPUT

3-265

8286/8287

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias O·C to 70·C
Storage Temperature :... 65·C to + 150·C
All Output and Supply Voltages - 0.5V to + 7V
All Input Voltages - 1.0V to + 5.5V
Power Dissipation 1 Watt

*NOTlCE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (Vee = +5V ±10%, TA= O°C to 70°G)

Symbol Parameter Min Max Units Test Conditions

Ve Input Clamp Voltage -1 V le= -5 mA

Icc Power Supply Current-8287 130 mA
-8286 160 mA

IF Forward Input Current -0.2 mA VF=0.45V

IR Reverse Input Current 50 /.lA VR= 5.25V

VOL Output Low Voltage -B Outputs .45 V IOL = 32 mA
-A Outputs .45 V IOL = 16 mA

VOH Outpu1 '-iigh Voltage -BOutputs 2.4 V 'OH=-5 mA
-AOutputs 2.4 V 'OH=-1 mA

IOFF Output Off Current IF VOFF =0.45V

IOFF Output Off Current IR VOFF =5.25V

V,L Input Low Voltage -A Side 0.8 V Vee = 5.0V, See Note 1
-B Side 0.9 V Vee = 5.0V, See Note 1

V,H Input High Voltage 2.0 V Vee= 5.0V, See Note 1

F= 1 MHz
C 'N Input Capacitance 12 pF VBIAS =2.5V, Vee=5V

TA=25·C

NOTE:
1. B Outputs-IOl = 32 mA, 10H = -5 mA, CL = 300 pF*: A Outputs-IOL = 16 mA, IOH = -1 mA, CL = 100 pF.

A.C. CHARACTERISTICS (Vee = +5V ±10%, TA = O°C to 70°C) (See Note 2)

Loading: B Outputs-IOL = 32 mA, 10H = -5 mA, CL = 300 pF'
A Outputs-IOL = 16 mA, 10H = -1 mA, CL = 100 pF

Symbol Parameter Min Max Units

TIVOV Input to Output Delay
'Inverting
Non-Invertino

TEHTV Transmit/Receive Hold Time

TTVEL Transmit/Receive Setup

TEHOZ Output Disable Time

TELOV OutDut Enable Time

TOLOH Input, Output Rise Time

TOHOL Input, Output Fall Time

* CL = 200 pF for plastic 8286/8287
NOTE:
1. See waveforms and test load circuit on following page.

5 22 ns
5 30 ns

5 ns

10 ns

5 18 ns

10 30 ns

20 ns

12 ns

2. For Extended Temperature EXPRESS the Preliminary Maximum Values are TIVOV = 25 vs 22, 35 vs 30;
TEHOZ = 25; TELOV = 50.

3-266

Test Conditions

(See Note 1)

From 0.8 V to 2.0V

From 2.0V 10 8.0V

inter 8286/8287

WAVEFORMS

INPUTS \V
II\,

V '\
J r\

-Tivov~ - TEHOZ ~ TELOV-

t= VOH -.W

\V
~~-----11\ VOL +.W

OUTPUTS

!---TEHTV- I--TTVEL

T----~~

NOTE:

1. All timing measurements are made at 1.5V unless otherwise noted.

50 50

8287

40

10

200 400 eoo eoo 1000 200 400 &00 &00 1000

pF LOAD pF LOAD

Output Delay versus Capacitance

3-267

8288
BUS CONTROLLER

FOR iAPX 86, 88 PROCESSORS

• Bipolar Drive Capability • 3·State Command Output Drivers

• Provides Advanced Commands • Configurable for Use with an I/O Bus

• Provides Wide Flexibility in System • Facilitates Interface to One or Two
Configurations Multi·Master Busses

• Compatible with 10 MHz iAPX 86 and • Available in EXPRESS
8 MHz iAPX 186 based systems. - Standard Temperature Range

- Extended Temperature Range

The Intel® 8288 Bus Controller is a 20-pin bipolar component for use with medium-Io-Iarge iAPX 86, 88 processing
systems. The bus controller provides command and control timing generation as well as bipolar bus drive capability while
optimizing system performance.

A strapping option on the bus controller configures it for use with a multi-master system bus and separate I/O bus.

{So-- MRDe
8086 STATUS --. MwTC lOB VCC

STATUS ~-- DECODER
52-- COM· AMWC ClK so

MAND MUlTIBUS™
SIGNAL I6RC COMMAND 51 52
GENER· lowe

SIGNALS
ATOR DTiR MCE/PDEN

AiOWC
ALE DEN

INTA
AEN CEN

MRDC INTA

felK-- DT/R } AMWC 10RC

CONTROL AEN-
CONTROL ADDRESS lATCH, DATA

CONTROL SIGNAL OEN TRANSCEIVER. AND MWTC AIOWC
INPUTlCEN- lOGIC GENER, MCE/POEN INTERRUPT CONTROL

ATOR ALE SIGNALS GND 10WC
108-

+5V GND

Figure 2.
Figure 1. Block Diagram Pin Configuration

3-268

8288

Table 1. Pin Description

Symbol Type Name and Function Symbol Type Name and Function

Vee Power: +5V supply. AIOWC a Advanced 1/0 Write Command: The

GND Ground.
AIOWC issues an 1/0 Write Command
earlier in the machine cycle to give 1/0

So, S" S2 I Status Input Pins: These pins are the devices an early indication of a write in-
status input pins from the 8086, 8088 or struction. Its timing is the same as a read
8089 processors. The 8288 decodes these command signal. AIOWC is active Law.
inputs to generate command and control
signals at the appropriate time. When
these pins are not in use (passive) they are
all HIGH. (See chart under Command and

10WC a 1/0 Write Command: This command line
instructs an 1/0 device to read the data on
the data bus. This signal is active LOW.

Control Logic.) 10RC a 1/0 Read Command: This command line

CLK I Clock: This is a clock signal from the
8284 clock generator and serves to estab-
lish when command and control signals

instructs an I/O device to drive its data
onto the data bus. This signal is active
Law.

are generated. AMWC a Advanced Memory Write Com·

ALE a Address Latch Enable: This signal
serves to strobe an address into the
address latches. This signal is active HIGH
and latching occurs on the falling (HIGH
to LOW) transition. ALE is intended for
use with transparent 0 type latches.

mand: The AMWC issues a memory write
command earlier in the machine cycle to
give memory devices an early indication
of a write instruction. Its timing is the
same asa read command signal. AMWC is
active Law.

DEN ~ Cat:. Enable: This signa! se!'Ves to en-v

able data transceivers onto either the
local or system data bus. This signal is
active HIGH.

MWTC a Memory Write Command: This com-
mand iine instructs the memory' to rBcord
the data present on the data bus. This
signal is active Law.

DTIR a Data Transmlt/Receive: This signal es-
tablishes the direction of data flow
through the transceivers. A HIGH on this
line indicates Transmit (write to 1/0 or

MRDC 0 Memory Read Command: This com-
mand line instructs the memory to drive
its data onto the data bus. This signal is
active Law.

memory) and a LOW indicates Receive INTA a Interrupt Acknowledge: This command
(Read). line tells an interrupting device that its

AEN I Address Enable: AEN enables command
outputs of the 8288 Bus Controller at least
115 ns after it becomes active (LOW). AEN
going inactive immediately 3-states the

interrupt has been acknowledged and
that it should drive vectoring information
onto the data bus. This signal is active
Law.

command output drivers. AEN does not MCE/PDEN a This is a dual function pin.
affect the 1/0 command lines if the 8288 is MCE (lOB Is tied LOW): Master Cascade
in the 1/0 Bus mode (lOB tied HIGH). Enable occurs during an interrupt se-

CEN I Command Enable: When this signal is
LOW all 8288 command outputs and the
DEN and PDEN control outputs are forced
to their inactive state. When this signal is
HIGH, these same outputs are enabled.

quence and serves to read a Cascade
Address from a master PIC (Priority Inter-
rupt Controller) onto the data bus. The
MCE signal is active HIGH.
PDEN (lOB is tied HIGH): Peripheral
Data Enable enables the data bus trans-

lOB I InputlOutput Bus Mode: When the lOB is ceiver for the 1/0 bus that DEN performs
strapped HIGH the 8288 functions in the for the system bus. PO EN is active LOW.
1/0 Bus mode. When it is strapped LOW,
the 8288 functions in the System Bus
mode. (See sections on 1/0 Bus and Sys-
tem Bus modes).

3-269

8288

FUNCTIONAL DESCRIPTION

Command and Control Logic
The command logic decodes the three 8086, 8088 or 8089
CPU status lines (SQ, 81, S2l to determine what command
is to be issued.

This chart shows the meaning of each status "word".

52 S; SO Processor Siale 8288Command

0 0 0 InterruptAcknowledae INTA
0 0 1 Read 1/0 Port 10RC
0 1 0 Write 1/0 Port 10WC,AIOWC
0 1 1 Halt None
1 0 0 Code Access MRi5C
1 0 1 Read Memory MRDC
1 1 0 Write Memory MWTC,AMWC
1 1 1 Passive None

The command is issued in one of two ways dependent on
the mode of the 8288 Bus Controller

1/0 Bus Mode-The 8288 is in the 1/0 Bus mode if the lOB
pin is strapped HIGH. In the I/O Bus mode all 1/0 com­
mand lines (lORC, 10WC, AIOWC, INTA) are always en­
abled (i.e., not dependent on AEN). When an 1/0 command
is initiated by the processor, the 8288 immediately activates
the command lines using POEN and DT/R to control the
110 bus transceiver. The I/O command lines should not be
used to control the system bus in this configuration be­
cause no arbitration is present. This mode allows one 8288
Bus Controller to handle two external busses. No waiting
is involved when the CPU wants to gain access to the I/O
bus. Normal memory access requires a "Bus Ready" signal
(AEN LOW) before it will proceed. It is advantageous t6
use the lOB mode if 1/0 or peripherals dedicated to one
processor exist in a multi-processor system.

System Bus Mode-The 8288 is in the System Bus mode if
the lOB pin is strapped LOW. In this mode no command is
issued until 155 ns after the AEN Line is activated (LOW).
This mode assumes bus arbitration logic will inform the
bus controller (on the AEN line) when the bus is free for
use. Both memory and I/O commands wait for bus arbi­
tration. This mode is used when only one bus exists. Here,
both 1/0 and memory are shared by more than one
processor.

COMMAND OUTPUTS
The advanced write commands are made available to
initiate write procedures early in the machine cycle. This
signal can be used to prevent the processor from entering
an unnecessary wait state.

The command outputs are:

MRDC -Memory Read Command
MWTC -Memory Write Command
10RC --'1/0 Read Command
10WC -I/O Write Command
AMWC -Advanced Memory Write Command
AIOWC -Advanced 1/0 Write Command
INTA -Interrupt Acknowledge

INTA (Interrupt Acknowledge) acts as an 1/0 read during
an interrupt ecle. Its purpose is to inform an interrupting
device that its interrupt is being acknowledged and that it
should place vectoring information onto the data bus.

CONTROL OUTPUTS
The control outputs of the 8288 are Data Enable (DEN),
Data Transmit/Receive (OT/R) and Master Cascade Enablel
Peripheral Data Enable (MCE/PDEN). The DEN signal
determines when the external bus should be enabled onto
the local bus and the OT/R determines the direction of
data transfer. These two signals usually go to the chip
select and direction pins of a transceiver.

The MCE/PDEN pin changes function with the two modes
of the 8288. When the 8288 is in the lOB mode (lOB
HIGH) the PDEN signal serves as a dedicated data enable
signal for the I/O or Peripheral System bus.

INTERRUPT ACKNOWLEDGE AND MCE
The MCE signal is used during an interrupt acknowledge
cycle if the 8288 is in the System Bus mode (lOB LOW).
During any interrupt sequence there are two interrupt
acknowledge cycles that occur back to back. During the
first interrupt cycle no data or address transfers take
place. Logic should be provided to mask off MCE during
this cycle. Just before the second cycle begins the MCE
signal gates a master Priority Interrupt Controller's (PIC)
cascade address onto the processor's local bus where
ALE (Address Latch Enable) strobes it into the address
latches. On the leading edge of the second interrupt cycle
the addressed slave PIC gates an interrupt vector onto the
system data bus where it is read by the processor.

If the system contains only one PIC, the MCE signal is not
used. In this case the second Interrupt Acknowledge signal
gates the interrupt vector onto the processor bus.

ADDRESS LATCH ENABLE AND HALT
Address Latch Enable (ALE) occurs during each machine
cycle and serves to strobe the current address into the
address latches. ALE also serves to strobe the status (SO,
S;, 8'2) into a latch for halt state decoding.

COMMAND ENABLE
The Command Enable (CEN) input acts as a command
qualifier for the 8288. If the CEN pin is high the 8288
functions normally. If the CEN pin is pulled LOW, all
command lines are held in their inactive state (not 3-state).
This feature can be used to implement memory partitioning
and to eliminate address conflicts between system bus
devices and resident bus devices.

3-270

intel' 8288

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias O'C to 70'C
Storage Temperature -65'C to +150'C
All Output and Supply Voltages -0.5V to +7V
All Input Voltages -1.0V to +5.5V
Power Dissipation .. 1.5 Watt

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (Vee = 5V ± 10%, TA = O'C to 70'C)

[Symbol Parameter Min. Max.

Ve input Clamp Voltage -1

lee Power Supply Current I 230

IF Forward Input Current -0.7

_IR I Reverse Input Current 50

VOL I Output low Voltage

I Command Outputs 0.5

f------ I Control Outputs 0.5

\/OH
1"\ u: j"" \1""'1+

I
I

- ... ~t-' '1)::1" ""'.~""'~'-' I
Command Outputs 2.4

I Control Outputs 2.4 ------ I
V1l Input low Voltage 0.8

V1H Input High Voltage 2.0

IOFF _.-L...9utput Off Current I 100

A.C. CHARACTERISTICS (Vee = 5V ± 10%, TA = O'C to 70'C)*

TIMING REQUIREMENTS

~ Symbol I Parameter Min. Max.

~ TClCl I ClK Cycle Period 100

ClK low Time 50

TCHCl ClK High Time 30

Unit Test Conditions

V Ie = -5mA

mA

mA VF = 0.45V

!LA VR = Vee

V IOl = 32 mA
V 10l = 16 mA

V IOH = -5 mA
V IOH = -1 mA

V

V

!LA VQFF = 0.4 to 5.25V

Unit Test Conditions

ns

I ns

ns
~ TClCH

i ._---
. TSVCH Status Active Setup Time 35 ns I

! TCHSV Status Inactive Hold Time 10 ns

I TSHCL Status Inactive Setup Time 35 ns

L_ TClSH Status Active Hold Time 10 ns

* Note: For Extended Temperature EXPRESS the Preliminary Values are TClCl = 125; TClCH = 50; TCHCl", 30;
TCVNX = 50; TCllH, TClMCH = 25; TSVlH, TSVMCH = 25.

3-271

-

inter 8288

A.C. CHARACTERISTICS (Continued)
TIMING RESPONSES

Symbol Pa~ameter Min. Max. Unit

TCVNV Control Active Delay 5 45 ns

TCVNX Control Inactive Delay 10 45 ns

TCLLH, ALE MCE Active Delay (from CLK) 20 ns
TCLMCH

TMHNL Command to DEN Delay (NOTE 1) TCLCH-5 ns

TSVLH, ALE MCE'Active Delay (from 20 ns
TSVMCH Status)

TCHLL ALE Inactive Delay 4 15 ns

TCLML Command Active Delay 10 35 ns

TCLMH Command Inactive Delay 10 35 ns

TCHDTL Direction Control Active Delay 50 ns

TCHDTH Direction Control Inactive Delay 30 ns

TAELCH Command Enable Time 40 ns

TAEHCZ Command Disable Time 40 ns

TAELCV Enable Delay Time 115 200 ns

TAEVNV AEN to DEN 20 ns

TCEVNV CEN to DEN, PDEN 25 ns

TCELRH CEN to Command TCLML ns
TOLOH Output, Rise Time 20 ns

TOHOL Output, Fall Time 12 ns

Note 1. TMHNL is tested with DEN CL = 5 pF

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

2.4 =:XS_TESTPOINTS_1L
0.45

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC "1" AND OASV
FOA A LOGIC "0." THE CLOCK IS DRIVEN AT 4.3V AND O.2SV. TIMING
MEASUREMENTS ARE MADE AT 1.SV FOR BOTH A LOGIC "1" AND "0."
INPUT RISE AND FALL TIMES ARE 5 ± 2 NS., MEASURED BETWeEN O.BV
AND 2.0V

TEST LOAD CIRCUITS-3·STATE COMMAND OUTPUT TEST LOAD

Test Conditions

MRDC
IORC IOL =
MWTC 32 mA

IOWC IOH =
-5mA

INTA

AMWC
CL =
300 pF

AIOWC

, IOL = 16 mA

Other IOH = -1 mA

CL = BO pF

From O.BV to 2.0V

From 2.0V to O.BV

L roo lro l"" L
OUT~ OUT~ OUT~ OUTo-f OUT~

1300PF 1300PF I SPF 1300PF 180PF
3-STATE TO HIGH DEN OUTPUT

TEST lOAD
(TMHNL ONLY)

3-272

COMMAND OUTPUT
TEST LOAD

CONTROL OUTPUT
TEST LOAD

WAVEFORMS

STATE

CLK

ADDRESSIOATA

N01a

ALE

)
)

)
)

DEN (WRITE)

PDEN (WRITE)

)

)
DTiR(READ

(INTA

MCE

_T.

v--\
J

TCHSV~

\

TeLLH_

I
TCHDTH- _..t::! ---"-
----IJ

TCLMCH-

8288

T, """"-T2-~ T3--~
---TCLCLn I"-TCLCH~If'\LF
----I '---.J
- TSVCH - TCHCL-

I-- I-TeL;';
TSHCL

I -
Y J 1\

ADDR WRITE CD VALID DATA VALID

r r=1 I--YCHLL TSVLH

r
-

I
- l--rcLML -I _TCLML

\

-- "--TeVNV

J
TCVNX-

\

rNvl ;
/

I
I

- 1 TCHDTL

i f® ~ \
I--j LTSVMCH

r-TCVNX

1. AD~DATA BUS IS SHOWN ONLY FOR REFEflENCE PURPOSES.
2. LEADING EDGE OF. ALE AND MOE IS DETERMINED BY THE FALLING EDGE OF elK OR STATUS GOING ACTIVE, WHICHEVER OCCURS LAST
3. ALL TIMING MEASUa,EMENTS ARE MADE AT 1.5V UNLESS SPECIFIED OTtiERWISE.

3-273

r----T.~

V\
L-.J "--
~

r-TCLMH

V
J

V
J

1\
I--

V
J

- I--TMHNL

\
1\

- I--TCVNX

V
j

V
/

TCHDTH- I--

inter 8288

WAVEFORMS (Continued)

DEN, PDEN QUALIFICATION TIMING

CEN \V
11\

liEN \V
1\
I---TAEVNV-

OEN V \V
jf\ /[\

!---TCEVNV_

PmI

ADDRESS ENABLE (AEN) TIMING (3·STATE ENABLE/DISABLE)

OUTPUT
COMMAND

CEN

, __ TAELCV ___

r\:5V

~LC}
VOH

\

I
V

TCELRH--

~

·TCELRH-

\

1\ -
NOTE: CEN must be low or valid prior to T2 to prevent the command from being generated

3-274

'V
/[\

V

1.SV

iTAEHCZ --LT
VOH

"!I.--

82C88
CHMOS BUS CONTROLLER

FOR 80C86, 80C88 PROCESSORS

• Pin Compatible with Bipolar 8288

• Low Power Operation
-Iccs = 10/LA
-Icc = 1 mA/MHz

• Provides Advanced Commands for
Multi-Master Busses

• 3-State Command Output Drivers

• High Drive Capability

• Configurable for Use with an I/O Bus

• Single 5V Power Supply

• Will Be Available in 20-Lead Plastic DIP
and 20-Lead PLCC Packages
(See Packaging Spec., Order #231369)

The Intel 82C88 is a high performance CHMOS version of the 8288 bipolar bus controller. The 82C88 provides
command and control timing generation for 80C86/88, 8086/88 and iAPX 186 systems. Static CHMOS circuit
design insures low operating power. 8 MHz speed optimizes system performance and the 82C88 high output
drive capability eliminates the need for additional bus drivers.

I-
-1-

I so-·-
80CH S,

STATUS) .2--
\ 52 ---I-

ICLK -­

CONTROL AEN-­

INPUT tCEN --

108--

I-

r
I-
l-

STATUS
DECODER

COM·
MANO

L
SIGNAL
GENER
AIDR

I
r-- CONTROL

CONTROL SIGNAL
lOGIC f-- GENER·

ATaR

I I
+ 5V GND

r,-.
~-~~

I-~--

f-- -
1--
I-~-

r-
1--

r-
I--

MWTC
MRDC 1
AMWC MUl TIBUS ~
Tc5FiC I COMMAND
lowe SIGNALS

AIOWC

INTA

I ADDRESS LATCH. DATA
DEN TRANSCEIVER, AND
MCE/PDEN /INTERRUPT CONTROL

SIGNALS
ALE

231199-1

Figure 1. Block Diagram

lOB VCC

ClK SO
51 S2

DTIIl MCElPDEN

ALE DEN

AEN CEN

MRDC INTA

AMWC 10RC

MWTC AIOWC

GND 10WC

231199-2

Figure 2a. 82C88 20-Lead DIP
Configuration

DT/R 52

ALE t.lCE/PDEN

AEN DEN

t.lRDC CEN

At.lWC INTA

Ig", Q 1'-' 1'-' 1'-' ;> G ~ ~ Q
- :;;:

231199-8

Figure 2b. 82C88 20-Lead PLCC
Configuration

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. November 1985
© Intel Corporation, 1985 3-275 Order Number: 231199·002

82C88

Table 1. Pin Description

Symbol Type Name and Function

Vee POWER: + 5V supply.

GND GROUND.

So. S1. S2 I STATUS INPUT PINS: These pins are the status input pins from the 80C86. 80C88 or
8089 processors. The 82C88 decodes these inputs to generate command and control
signals at the appropriate time. When these pins are not in use (passive) they are all
HIGH. (See chart under Command and Control Logic.) Active "Bus Hold" circuits hold
these lines HIGH when no other driving source is present.

CLK I CLOCK: This is a clock signal from the 82C84 ciock generator and serves to establish
when command and control signals are generated.

ALE a ADDRESS LATCH ENABLE: This signal serves to strobe an address into the address
latches. This signal is active HIGH and latching occurs on the falling (HIGH to LOW)
transition. ALE is intended for use with transparent D type latches.

DEN a DATA ENABLE: This signal serves to enable data transceivers onto either the local or
system data bus. This signal is active HIGH.

DT/R a DATA TRANSMIT IRECEIVE: This signal establishes the direction of data flow through
the transceivers. A HIGH on this line indicates Transmit (write to I/O or memory) and a
LOW indicates Receive (Read).

AEN I ADDRESS ENABLE: AEN enables command outputs of the 82C88 Bus Controller at
least 110 ns after it becomes active (LOW). AEN going inactive immediately 3-states the
command output drivers. AEN does not affect the I/O command lines if the 82C88 is in
the I/O Bus mode (lOB tied HIGH).

CEN I COMMAND ENABLE: When this signal is LOW all 82C88 command outputs and the
DEN and PDEN control outputs are forced to their inactive state. When this signal is
HIGH. these same outputs are enabled.

lOB I INPUT 10UTPUT BUS MODE: When the lOB is strapped HIGH the 82C88 functions in
the I/O Bus mode. When it is strapped LOW, the 82C88 functions in the System Bus
mode. (See sections on 110 Bus and System Bus modes).

AIOWC a ADVANCED I/O WRITE COMMAND: The AIOWC issues an I/O Write Command earlier
in the machine cycle to give 110 devices an early indication of a write instruction. Its
timing is the same as a read command signal. AIOWC is active LOW.

10WC a I/O WRITE COMMAND: This command line instructs an I/O device to read the data on
the data bus. This signal is active LOW.

10RC a I/O READ COMMAND: This command line instructs an I/O device to drive its data onto
the data bus. This signal is active LOW.

AMWC a ADVANCED MEMORY WRITE COMMAND: The AMWC issues a memory write
command earlier in the machine cycle to give memory devices an early indication of a
write instruction. Its timing is the same as read command signal. AMWC is active LOW.

MWTC a MEMORY WRITE COMMAND: This command line instructs the memory to record the
data present on the data bus. This signal is active LOW.

MRDC a MEMORY READ COMMAND: This command line instructs the memory to drive its data
onto the data bus. This signal is active LOW.

INTA a INTERRUPT ACKNOWLEDGE: This command line tells an interrupting device that its
interrupt has been acknowledged and that it should drive vectoring information onto the
data bus. This signal is active LOW.

MCE/PDEN a This is a dual function pin.
MCE (lOB IS TIED LOW): Master Cascade Enable occurs during an interrupt sequence
and serves to read a Cascade Address from a master PIC (Priority Interrupt Controller)
onto the data bus. The MCE signal is active HIGH.
PDEN (lOB IS TIED HIGH): Peripheral Data Enable enables the data bus transceiver for
the I/O bus that DEN performs for the system bus. J5DEJij is active LOW.

3-276

inter 82C88

FUNCTIONAL DESCRIPTION

Command and Control Logic

The command logic decodes the three 80C86,
80C88 or 8089 CPU status lines (So, Sl, S2) to de­
termine what command is to be issued.

This chart shows the meaning of each status
"word".

52 5 1 So Processor State 82C88 Command

0 0 0 Interrupt Acknowledge INTA

0 0 1 Read I/O Port 10RC

0 1 0 Write I/O Port 10WC,AIOWC

0 1 1 Halt None

1 0 0 Code Access MRDC

1 0 1 Read Memory MRDC

1 1 0 Write Memory I iviWTC, AiviWC

1 1 1 Passive None

The command is issued in one of two ways depen­
dent on the mode of the 82C88 Bus Controller.

1/0 Bus Mode - The 82C88 is in the I/O Bus mode
if the lOB pin is strapped HIGH. In the 110 Bus mode
all I/O command lines (IORC, 10WC, AIOWC, INTA)
are always enabled (Le., not dependent on AEN).
When an 110 command is initiated by the processor,
the 82C88 immediately activates the command
lines, using PDEN and DT /A to control the I/O bus
transceiver. The I/O command lines should not be
used to control the system bus in this configuration
because no arbitration is present. This mode allows
one 82C88 Bus Controller to handle two external
busses. No waiting is involved when the CPU wants
to gain access to the 110 bus. Normal memory ac­
cess requires a "Bus Ready" signal (AEN LOW) be­
fore it will proceed. It is advantageous to use the lOB
mode if 1/0 or peripherals dedicated to one proces­
sor exist in a multi-processor system.

System Bus Mode - The 82C88 in the System Bus
mode if the lOB pin is strapped LOW. In this mode
no command is issued until 110 ns after the AEN
Line is activated (LOW). This mode assumes bus
arbitration logic will inform the bus controller (on the
AEN line) when the bus is free for use. Both memory
and I/O commands wait for bus arbitration. This
mode is used when only one bus exists. Here, both
110 and memory are shared by more than one proc­
essor.

3-277

COMMAND OUTPUTS

The advanced write commands are made available
to initiate write procedures early in the machine cy­
cle. This signal can be used to prevent the proces­
sor from entering an unnecessary wait state.

The command outputs are:

MRDC - Memory Read Command
MWTC - Memory Write Command

10RC - 1/0 Read Command
10WC - 1/0 Write Command

AMWC - Advanced Memory Write Command
AIOWC - Advanced 1/0 Write Command

INTA - Interrupt Acknowledge

INTA (Interrupt Acknowledge) acts as an 1/0 read
during an interrupt cycle. Its purpose is to inform an
interrupting device that its interrupt is being acknowl­
edged and that it should place vectoring information
onto the data bus.

CONTROL OUTPUTS

The control outputs of the 82C88 are Data Enable
(DEN), Data Transmit/Receive (DT/A) and Master
Cascade Enable/Peripheral Data Enable (MCEI
PDEN). The DEN signal determines when the exter­
nal bus should be enabled onto the local bus and
the DT /A determines the direction of data transfer.
These two signals usually go to the chip select and
direction pins of a transceiver.

The MCE/PDEN pin changes function with the two
modes of the 82C88. When the 82C88 is in the lOB
mode (lOB HIGH) the PDEN signal serves as a dedi­
cated data enable signal for the 1/0 or Peripheral
System bus.

INTERRUPT ACKNOWLEDGE AND MCE

The MCE signal is used during an interrupt acknowl­
edge cycle if the 82C88 is in the System Bus mode
(lOB LOW). During any interrupt sequence there are
two interrupt acknowledge cycles that occur back to
back. During the first interrupt cycle no data or ad­
dress transfers take place. Logic should be provided
to mask off MCE during this cycle. Just before the
second cycle begins the MCE signal gates a master
Priority Interrupt Controller's (PIC) cascade address
onto the processor's local bus where ALE (Address
Latch Enable) strobes it into the address latches. On
the leading edge of the second interrupt cycle the
addressed slave PIC gates an interrupt vector onto
the system data bus where it is read by the proces­
sor.

If the system contains only one PIC, the MCE signal
is not used. In this case the second interrupt Ac-

inter 82C88

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias O°C to 70°C
Storage Temperature - 65°C to + 150°C
Supply Voltage

(with Respect to GND - 0.5V to 8.0V
All Input Voltages

(with Respect to GND - 2.0V to Vcc + 0.5V
All Output Voltages

(with Respect to GND - O.SV to Vcc + 0.5V
Power Dissipation 1.0 Watt

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for
extended periods may affect device reliability.

NOTICE: Specifications contained within the
fol/owing tables are subject to change.

D.C. CHARACTERISTICS (Vcc = SV ±10%, TA = 0°Ct070°C)

Symbol Parameter Min Max Unit Test Conditions

VIN = Vee or GND
lee Operating Supply Current S mA Vee = 5.5V

Outputs Unloaded

VIN - Vee or GND
lees Standby Supply Current 10 IJ-A Vee = 5.5V

Outputs Unloaded

VIH Input High Voltage 2.0 V

Vil Input Low Voltage O.S V

VeH VIH for Clock 0.7 Vee V

Vel VIL for Clock 0.2 Vee V

III Input Leakage Current ±1.0 IJ-A
OV,;; VIN';; Vee
(Notes 1, 2)

IBHH
Input Leakage Current -50 -300 IJ-A

VIN = 2.0V
(Bus Hold High) (Notes 3. 4)

ISHHO Bus Hold High Overdrive -600 IJ-A (Notes 3, 5)

ILO Output Leakage Current ±10 IJ-A OV ,;; VOUT ,;; Vee

Output Low Voltage:
VOL Command Outputs 0.5 V IOL = 20 mA

Control Outputs 0.4 IOL = SmA
Output High Voltage:

Command Outputs 3.0 IOH = -SmA
VOH Vee - 0.4 V IOH = -2.5mA

Control Outputs 3.0 IOH = -4mA
Vee - 0.4 IOH = -2.5mA

CIN Input Capacitance 5 pF Freq. - 1 MHz
Unmeasured pins at GND

COUT Output Capacitance 15 pF Freq. = 1 MHz
Unmeasured pins at GND

NOTES:
1. Except So. S1. 5;;.
2. During input leakage test. maximum input rise and fall time should be 15 ns between Vee and GND.
3. So. S1. S2 only.
4. Raise inputs to Vee. then lower to 2.0V.
5. An external driver must sink at least IBHHO to toggle a status line from HIGH to LOW.

knowledge signal gates the interrupt vector onto the
processor bus.

ADDRESS LATCH ENABLE AND HALT

Address Latch Enable (ALE) occurs during each ma­
chine cycle and serves to strobe the current address
into the address latches. ALE also serves to strobe
the status (So. 51, S2) into a latch for halt state de­
coding.

COMMAND ENABLE

The Command Enable (CEN) input acts as a com­
mand qualifier for the 82C88. If the CEN pin is high
the 82C88 functions normally. If the CEN pin is
pulled LOW, all command lines are held in their inac­
tive state (not 3-state). This feature can be used to
implement memory partitioning and to eliminate ad­
dress conflicts between system bus devices and
resident bus devices.

3-278

inter 82C88

A.C. CHARACTERISTICS (Vcc = 5V ±10%, TA = 0'Cto70'C)*

TIMING REQUIREMENTS

Symbol Parameter Min Max Units Test Conditions

fc ClK Frequency 8 MHz

TClCl ClK Cycle Period 125 ns

TClCH ClKlowTime 66 ns

TCHCl ClK High Time 40 ns

TSVCH Status Active Setup Time 35 ns

TCHSV Status Inactive Hold Time 10 ns

TSHCl Status Inactive Setup Time 35 ns

TClSH Status Active Hold Time 10 ns

TIMING RESPONSES

Symbol Parameter Min Max Units Test Conditions"

TCVNV Control Active Delay 5 45 ns a
."--

TCVNX Control Inactive Delay 10 45 ns a

TClLH ALE Active Delay (from ClK) 20 ns a

TClMCH MCE Active Delay (from ClK) 25 ns a

TSVlH ALE Active Delay (from Status) 20 ns a

TSVMCH MCE Active Delay (from Status) 30 ns a

TCHll ALE Inactive Delay 4 25 ns a(Note 3)

TMHNl Command Inactive to DEN low Delay TClCH-5 ns Command: b, DEN: e

TClMl Command Active Delay 5 35 ns b

TClMH Command Inactive Delay 5 35 ns b

TCHDTl Direction Control Active Delay 50 ns a

TCHDTH Direction Control Inactive Delay 30 ns a

TAElCH Command Enable Time 40 ns c(Note 1)

TAEHCZ Command Disable Time 40 ns d(Note 2)

TAElCV Enable Delay Time 110 250 ns b

TAEVNV AEN to DEN 25 ns a

TCEVNV CEN to DEN, PDEN 25 ns a

TCElRH CEN to Command TClMl +10 ns b

TOlOH Output, Rise Time 15 ns From 0.8V to 2.0V

TOHOl Output, Fall Time 15 ns From 2.0V to 0.8V

NOTES:
1. TAELCH measurement is between 1.5V and 2.5V.
2. TAEHCZ measured at O.5V change in Your.
3. In 5 MHz SOCS6/SS systems, minimum ALE HIGH time = TCLCL - (TCHSV(max) + TSVLH) + TCHLL(min) = 74 ns.

3-279

inter 82C88

TEST LOAD CIRCUIT5-3-STATE COMMAND OUTPUT TEST LOAD

Vl • 'Test Condition Definition Table

~1
OUTPUT FROM TEST

DEVICE
UNDER TEST POINT

Cl'

I

Test
IOH IOL Vl Rl Cl

Condition

a -4.0mA +8.0mA 2.13V 2200 80 pf

b -8.0mA +20.0mA 2.29V 910 300 pf

c -8.0mA 1.5V 1870 300 pf

d -8.0mA 1.5V 18m 50 pf

e -1.0/LA + 1.0 /LA 2.13V 870kO 30 pf

231199-3
'Includes stray and jig capacitance

A.C. TESTING INPUT, OUTPUT WAVEFORM

V'H+O.4V-y v:
V'L -O.4V-.7\ ________ ~

231199-4

A.C. Testing: Inputs are driven at V,H + O.4V for a logic "1" and V,L - O.4V for a logic "0". The clock is driven at 3.9V
and O.4V. Timing measurements are made at 2.0V and 0.8V. Input rise and fall times should be ::; 15 ns measured
between 0.8V and 2.0V.

3-280

intJ 82C88

WAVEFORMS

ITATE
___ T,

T,~ I-----T'- T.-_-~~T,·~

CLK

ADDRtISlDAT'"

AL •

, ,

, ,

DEN (WRITE ,

ii5Di (WRITE ,

D, DTI" (REA
(INTA)

MC •

NOTES:

V\
-~TClCLn

!--TCLCH-r-\
~ J ----1 ~ "--

TCHSV- - TSVCH - TCHCL-
-\-TCL;';-

TSHCL --
\ l J ~

X ADDA WAITE CD VALID DATA VALID

TClI,.H_ r H ~TCHll TSVLH

r
l

_TCLMH

I

I
1/

- -TCLML - iTClMl

---~-

1/
J

~ 1= TCYNV

I
J 1\

TCVNX- f---

I
I J I

I
1

TCVNV- l-
i 1/
I J

I ~

I
I !\

I

~~~r'~1 -1 ""'" 
TCLMCH_it ~vtSVMC~ 

TCHDTH-

r-TCYNX 

1. Address/Data Bus is shown only for reference purposes. 

1\ 
1'--

\1 
TMHNL 

I\. 

f--- TCVNX 

V 
J 

1/ 
J 

f---

231199-5 

2. leading edge of ALE and MCE is determined by the falling edge of ClK or Status going active, whichever occurs last. 

3-281 



intJ 82C88 

WAVEFORMS (Continued) 

DEN PDEN QUALIFICATION TIMING , 

eEN W 
J~ 

m W 
J~ 

!o--TAEVNV-

DEN V \!I 
J~ J~ 

!---TCEVNV_ 

I'lIEII 
\I 
J\ 

ADDRESS ENABLE (AEN) TIMING (3-STATE ENABLE/DISABLE) 

OUTPUT 
COMMAND 

CEN 

NOTE: 

_TAElCV_ 

~ 

TAElC'!I. 
VOM 

.r \ 

/~ 
1/ 

TC£LRH- -

II 

_TCElRH_ 

\ 
1\ 

J 
TAEH:! 

1-

CEN must be low or valid prior to T2 to prevent the command from being generated. 

3-282 

231199-6 

231199-7 



82188 
INTEGRATED BUS CONTROLLER FOR 
8086,8088,80186,80188 PROCESSORS 

• Provides Flexibility in System 
Configurations 
- Supports 8087 Numerics 

Coprocessor in 8 MHz 80186 and 
80188 Systems 

- Provides a Low-cost Interface for 
8086, 8088 Systems to an 82586 LAN 
Coprocessor or 82730 Text 
Coprocessor 

• Facilitates Interface to one or more 
Multimaster Busses 

• Supports Multiprocessor, Local Bus 
Systems 

• Allows use of 80186, 80188 High­
Integration Features 

• 3-State, Command Output Drivers 

• Available in EXPRESS 
- Standard Temperature Range 
- Extended Temperature Range 

• Available in Plastic DIP or Cerdip 
Package 
(See Packaging Spec., Order #231369) 

The 82188 Integrated Bus Controller (IBC) is a 28-pin HMOS III component for use with 80186, 80188, 8086 
and 8088 systems. The IBC provides command and control timing signals plus a configurable 
RQ/GT ~ HOLO-HLDA converter. The device may be used to interface an 8087 Numerics Coprocessor 
with an 80186 or 80188 Processor. Also, an 82586 Local Area Network (LAN) Coprocessor or 82730 Text 
Coprocessor may be interfaced to an 8086 or 8088 with the IBC. 

OSOI Vee so 
OS1I SO 51 
osoo 51 52 
OSlO 52 

RESET ALE 
HlDA RD 
HOLD WR 

RQ/GTO DEN RESET 

SYSHOlD DT/R ClK 
SYSHlDA AEN AEN 

AO/GTl AADY 
CSOUT SADY 

CSIN SAO 
V •• ClK 

231051-1 CSIN 

OSOI 
Figure 1. 

OSll 
82188 Pin COl1figuration 

SYSHOlD 

HlDA 

~ 

~ 

-

SRDY ARDY 

I 
I 

~ I I I 
.,';'tri.\':. t- ~ ~\'.! J 

COMMAND I 
SIGNAL 

GENERATOR 

I CONTROL ~ CONTROL I 
~ lOGIC SIGNAL I 

GENERATOR 

I 
l CHIP SELECT lOGIC '-

J DELAY CIRCUIT I 

I BUS AC~=~~I~TION I 

RO/GTO 

Figure 2. 
82188 Block Diagram 

SRO 

RD 

WR 

DEN 
DT/Fi 
ALE 

OSOO 

OSlO 

HOLD 

SYSHlDA 

231051-2 

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent 
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. November 1985 
© Intel Corporation, 1985 Order Number: 231051-003 

3-283 



82188 

PIN DESCRIPTIONS 
Symbol Pin No. Type Name and Function 
SO 27 I Status Input Pins 
51 26 SO-52 correspond to the status pins of the CPU. 
52 25 The 82188 uses the status lines to detect and identify the processor 

bus cycles. The 82188 decodes SO-52 to generate the command 
and control signals. SO-52 are also used to insert 3 wait states into 
the SRO line during the first 256 80186 bus cycles after RESET. A 
HIGH input on all three lines indicates that no bus activity is taking 
place. The status input lines contain weak internal pull-up devices. 

S2 S1 SO Bus Cycle Initiated 

0 0 0 interrupt acknowledge 
0 0 1 read 110 
0 1 0 write 1/0 
0 1 1 halt 
1 0 0 instruction fetch 
1 0 1 read data from memory 
1 1 0 write data to memory 
1 1 1 passive (no bus cycle) 

ClK 15 I CLOCK 
ClK is the clock signal generated by the CPU or clock generator 
device. ClK edges establish when signals are sampled and 
generated. 

RESET 5 I RESET 
RESET is a level triggered signal that corresponds to the system reset 
signal. The signal initializes an internal bus cycle counter, thus 
enabling the 82188 to insert internally generated wait states into the 
SRO signal during system initialization. The 82188 mode is also 
determined during RESET. RD, WR, and DEN are driven HIGH during 
RESET regardless of AEN. RESET is active HIGH. 

AEN 19 I Address Enable 
This Signal enables the system command lines when active. If AEN is 
inactive (HIGH), ~, WR, and DEN will be tri-stated and ALE will be 
driven lOW (DT /R will not be effected). AEN is an asynchronous 
signal and is active lOW. 

ALE 24 0 Address Latch Enable 
This signal is used to strobe an address into address latches. ALE is 
active HIGH and latch should occur on the HIGH to lOW transition. 
ALE is intended for use with transparent D-type latches. 

DEN 21 0 Data Enable 
This Signal is used to enable data transceivers located on either the 
local or system data bus. The signal is active lOW. DEN is tri-stated 
when AEN is inactive. 

DT/R 20 0 Data TRANSMIT/RECEIVE 
This Signal establishes the direction of data flow through the data 
transceivers. A HIGH on this line indicates TRANSMIT (write to I/O or 
memory) and a lOW indicates RECEIVE (Read from I/O or memory). 

3-284 



82188 

PIN DESCRIPTIONS (Continued) 

Symbol Pin No. Type Name and Function 

RD 23 0 READ 
This signal instructs an I/O or memory device to drive its 
data onto the data bus. The RD signal is simi liar to the 
RD signal of the 80186(80188) in Non-Queue-Status 
Mode. RD is active LOW and is tri-stated when AEN is 
inactive. 

WR 22 0 WRITE 
This signal instructs an I/O or memory device to record 
the data presented on the data bus. The WR signal is 
similiar to the WR signal of the 80186(80188) in Non-
Queue-Status Mode. WR is active LOW and is tri-stated 
when AEN is inactive. 

HOLD 7 0 HOLD 
The HOLD signal is used to request bus control from the 
80186 or 80188. The request can come from either the 
8087 (RQ/GTO) or from the third processor 
(SYSHOLD). The signal is active HIGH. 

HLDA 6 I HOLD Acknowledge 
80186 MODE-This line serves to translate the HLDA 
output of the 80186(80188) to the appropriate s!gna! of 
the device requesting the bus. HLDA going active 
(HIGH) indicates that the 80186 has relinquished the 
bus. If the requesting device is the 8087, HLDA will be 
translated into the grant pulse of the RQ/GTO line. If the 
requesting device is the optional third processor, HLDA 
will be routed into the SYSHLDA line. 

This pin also determines the mode in which the 82188 
will operate. If this line is HIGH during the falling edge of 
RESET, the 82188 will enter the 8086 mode. If LOW, the 
82188 will enter the 80186 mode. For 8086 mode, this 
pin should be strapped to Vee. 

RQ/GTO 8 I/O Request/Grant 0 
RQ/GTO is connected to RQ/GTO of the 8087 Numeric 
Coprocessor. When initiated by the 8087, RQ/GTO will 
be translated to HOLD-HLDA to acquire the bus from the 
80186(80188). This line is bidirectional, and is active 
LOW. RQ/GTO has a weak internal pull-up device to 
prevent erroneous request!grant signals. 

RQ/GT1 11 I/O Request/Grant 1 
80186 Mode-In 80186 Mode, RQ/GT1 allows a third 
processor to take control of the local bus when the 8087 
has bus control. For a HOLD-HLDA type third processor, 
the 82188's RQ/GT1 line should be connected to the 
RQ/GT1 line of the 8087. 

8086 MODE-In 8086 Mode, RQ/GT1 is connected to 
either RQ/GTO or RQ/GT1 of the 8086. RQ/GT1 will 
start its request!grant sequence when the SYSHOLD 
line goes active. In 8086 Mode, RQ/GT1 is used to gain 
bus control from the 8086 or 8088. 

RQ/GT1 is a bidirectional line and is active LOW. This 
line has a weak internal pull-up device to prevent 
erl"Oneous request! grant signals. 

3-285 



inter 82188 

PIN DESCRIPTIONS (Continued) 

Symbol Pin No. Type Name and Function 

SYSHOLD 9 I System Hold 
80186 MODE-SYSHOLD serves as a hold input for an 
optional third processor in an 80186(80188)-8087 system. 
If the 80186(80188) has bus control, SYSHOLD will be 
routed to HOLD to gain control of the bus. If the 8087 has 
bus control, SYSHOLD will be translated to RO/GT1 to 
gain control of the bus. 

8086 MODE-SYSHOLD serves as a hold input for a 
coprocessor in an 8086 or 8088 system. SYSHOLD is 
translated to RO/GT1 of the 82188 to allow the 
coprocessor to take control of the bus. 

SYSHOLD may be an asynchronous signal. 

SYSHLDA 10 0 System Hold Acknowledge 
SYSHLDA serves as a hold acknowledge line to the 
processor or coprocessor connected to it. The device 
connected to the SYSHOLD-SYSHLDA lines is allowed 
the bus when SYSHLDA goes active (HIGH). 

SRDY 17 I Synchronous Ready 
The SRDY input serves the same function as SRDY of the 
80186(80188). The 82188 combines SRDY with ARDY to 
form a synchronized ready output Signal (SRO). SRDY 
must be synchronized external to the 82188 and is active 
HIGH. If tied to Vee, SRO will remain active (HIGH) after 
the first 256 80186 cycles following RESET. If only ARDY 
is to be used, SRDY should be tied LOW. 

ARDY 18 I Asynchronous Ready 
The ARDY input serves the same function as ARDY of the 
80186(80188). ARDY may be an asynchronous input, and 
is active HIGH. Only the rising edge of ARDY is 
synchronized by the 82188. The falling edge must be 
synchronized external to the 82188. If connected to Vee, 
SRO will remain active (HIGH) after the first 256 80186 
bus cycles following RESET. If only SRDY is to be used, 
ARDY should be connected LOW. 

SRO 16 0 Synchronous READY Output 
SRO provides a synchronized READY signal which may 
be interfaced directly with the SRDY of the 80186(80188) 
and READY of the 8087. The SRO signal is an 
accumulation of the synchronized ARDY signal, the SRDY 
signal, and the internally generated wait state signal. 

OSOI 1 I Queue-Status Inputs 
OS1I 2 OSOI, OS1I are connected to the Oueue-Status lines of 

the 80186(80188) to allow synchronization of the queue-
status signals to 8087 timing requirements. 

OSOO 3 0 Queue-Status Outputs 
OS10 4 OSOO, OS1 0 are connected to the queue-status pins of 

the 8087. The signals produced meet 8087 Oueue-Status 
input requirements. 

3-286 



82188 

PIN DESCRIPTIONS (Continued) 

Symbol Pin No. Type Name and Function 

CSIN 13 I Chip-Select Input 
CSIN is connected to one of the chip-select lines of the 
80186(80188). CSIN informs the 82188 that a bank select is taking 
place. The 82188 routes this signal to the chip-select output 
(CSOUT). CSIN is active LOW. This line is not used when memory 
and 1/0 device addresses are decoded external to the 
80186(80188). 

CSOUT 12 0 Chip-Select Output 
This signal is used as a chip-select line for a bank of memory 
devices. It is active when CSIN is active or when the 8087 has bus 
control. CSOUT is active LOW. 

FUNCTIONAL DESCRIPTION 

BUS CONTROLLER 

The 82188 Integrated Bus Controller (IBC) gener­
ates system control and command signals. The sig­
nals generated are determined by the Status Decod­
ing L~c.J::.he bus controller logic interprets stat~s 
lines SO-S2 to determine what type of bus cycle IS 

taking place. The appropriate signals are then gen­
erated by the Command and Control Signal Genera­
tors. 

The Address Enable (AEN) line allows the command 
and control signals to be disabled. When AEN is in­
active (HIGH), the command signals and D~ will be 
tri-stated, and ALE will be held low (DT IR will be 
uneffected). AEN inactive will allow other systems to 
take control of the bus. Control and command sig­
nals respond to a change in the AEN signal within 40 
ns. 

The command si~s consist of RD and WR. The 
82188's RD and WR signals are similiar to RD and 
WR of the 80186(80188) in the non-Queue-Status 
Mode. These command signals do not differentiate 
between memory and 1/0 devices. RD and WR can 
be conditioned by S2 of the 80186(80188) to obtain 
separate signals for 1/0 and memory devices. 

The control commands consist of Data Enable 
(DEN), Data Transmit/Receive (DT IR), and Address 
Latch Enable (ALE). The control commands are sim­
iliar to those generated by the 80186(80188). DEN 
determines when the external bus should be en­
abled onto the local bus. DT IR determines the di­
rection of the data transfer, and ALE determines 
when the address should be strobed into the latches 
(used for demultiplexing the address bus). 

MODE SELECT 

The 82188 Integrated Bus Controller (IBC) is config­
urable. The device has two modes: 80186 Mode and 
8086 Mode. Selecting the mode of the device con­
figures the Bus Arbitration Logic (see BUS ARBI­
TRATION section for details). In 80186 Mode, the 
82188 IBC may be used as a bus controller/inter­
face device for an 80186(810S8), 8087, and optional 
third processor system. In 8086 Mode, the 82188 
IBC may be used as an interface device allowing a 
maximum mode 8086(8088) to interface with a co­
processor that uses a HOLD-HLDA bus exchange 
protocol. 

The mode of the 82188 is determined during RE­
SET. If the HLDA line is LOW at the falling edge of 
RESET (as in the case when tied to the HLDA line of 
the 80186 or 80188), the 82188 will enter into 80186 
Mode. If the HLDA line is HIGH at the falling edge 01 
RESET, the 82188 will enter 8086 Mode. In 8086 
Mode, only the Bus Arbitration Logic is used. The 
eight pins used in 8086 Mod~r~ SYSHOLD, 
SYSHLDA,HLDA,CLK,RESET,RQ/GT1,Vcc,and 
Vss. The other pins may be left unconnected. 

BUS ARBITRATION 

The Bus Exchange Logic interfaces up to three sets 
of bus exchange signals: 

• HOLD-HLDA 

• SYSHOLD-SYSHLDA 

• RQ/GTO (RQ/GT1) 

This logic executes translating, routing, and arbitrat­
ing functions. The logic translat~OLD-HLDA sig­
nals to RQ/tT signals and RQ/GT signals to 
HOLD-HLDA signals. The logic also determines 
which set of bus exchange signals are to be inter­
faced. The mode of the 82188 and the priority 01 the 
devices requesting the bus determine the routing of 
the bus exchange signals. 

3-287 



inter 82188 

80186 MODE 

In 80186 Mode, a system may have three potential 
bus masters: the 80186 or 80188 CPU, the 8087 
Numerics Coprocessor, and a third processor (such 
as the 82586 LAN or 82730 Text Coprocessor). The 
third processor may have either a HOLD-HLDA or 
RQ/GT bus exchange protocol. The possible bus 
exchange signal connections and paths for 80186 
Mode are shown in Figures 3 & 4 and Tables 1 & 2, 
respectively. If no HOL.D-HLDA type third processor 
is used, SYSHOLD should be tied LOW to prevent 
an erroneous SYSHOLD signal. In 80186 mode, the 
bus priorities are: 

Highest Priority ................... Third Processor 

Second Highest Priority ..................... 808'1 

Default Priority ........................... 80186 

- THREE-PROCESSOR SYSTEM OPERATION 
(HOLD-HLDA TYPE THIRD PROCESSOR) 

In the configuration shown in Figure 3, the third proc­
essor requests the bus by sending SYSHOLD HIGH. 
The 82188 will route (and translate if necessary) the 
request to the current bus master. This includes 
routing the request to HOLD if the 80186(80188) is 
the current bus master or routing and translating the 
request to RQ/GT1 if the 8087 is in control of the 
bus. The third processor's request is not passed 
through the 8087 if the 80186 is the bus master (see 
Table 1). 

The 8087 requests the bus using RQ/GTO. The re­
quest pulse from the 8087 will be translated and 
routed to HOLD if the 80186 is the bus master. If the 
third processor has control of the bus, the grant 
pulse to the 8087 will be delayed until the third proc­
essor relinquishes the bus (sending SYSHOLD 
LOW). In this case, HOLD will remain HIGH during 
the third processor-to-8087 bus control transfer. The 
80186 will not be granted the bus until both coproc­
essors have released it. 

Table 1. Bus Exchange Paths (80186 Mode) (HOLD-HLDA Type 3rd Proc) 

Requesting Current Bus Master 
Device 80186 8087 3rd Proc 

80186 nla nla nla 

8087 RQ/GT _ HOLD 
o HLDA 

nla nla 

3rd Proc 
SYSHOLD HOLD SYSHOLD _ RQ/GT1 nla ---SYSHLDA HLDA SYSHLDA 

80186 82188 8087 

HOLD HOLD 

RQ/GTO RQ/GTO 

HLDA HLDA 

3RD pROC 

HLDA SYSHLDA 

RQ/GT1 RQ/GT1 

HOLD SYSHOLD 
231051-3 

Figure 3. 
Bus Exchange Signal Connections (80186 Mode) for a Three Local Processor System 

(HOLD-HLDA Type 3rd Proc) 

3-288 



inter 82188 

Table 2. Bus Exchange Paths (80186 Mode) (RQ/GT Type 3rd Proc) 

Requesting Current Bus Master 
Device 80186 8087 3rd Proc 

80186 n/a n/a n/a 

8087 
__ HOLD 
RQ/GTO --. --

HLDA 
n/a n/a 

__ __ HOLD 
RQ/GT1 --. RQ/GTO --. HLDA RQ/GT1 n/a 3rd Proc 

80186 82188 8087 

HOLD HOLD 

HLDA HLDA 

RO/GTO RO/GTO 

RO/GT1 RO/Gn 

LJ 
5YSHO .... ii 

I I f I RO/Gn ~ Ne I l 231051-4 

~.----
Figure 4. 

Bus Exchange Signal Connections (80186 Mode) for a Three Local Processor System 
(RQ/GT Type 3rd Proc) 

When the bus is requested from the 80186(80188), 
a bus priority decision is made. This decision is 
made when the HLDA line goes active. Upon receipt 
of the HLDA Signal, the highest·priority requesting 
device will be acknowledged the bus. For example, if 
the 8087 initially requested the bus, the bus will be 
granted to the third processor if SYSHOLD became 
active before HLDA was received by the 82188. In 
this case, the grant pulse to the 8087 will be delayed 
until the third processor relinquishes the bus. 

- THREE·PROCESSOR SYSTEM OPERATION 
(RQ/GT TYPE THIRD PROCESSOR) 

In the configuration shown in Figure 4, the third proc· 
essor requests the bus by initia~ a request/grant 
sequence with the 8087's RQ/GT1 line. The 8087 
will grant the bus if it is the current bus master or will 
pass the request on if the 80186 is the current bus 
master (see Table 2). In this configuration, the 
82188's Bus Arbitration Logic translates RQ/GTO to 
HOLD·HLDA The 8087 provides the bus arbitration 
in this configuration. 

8086 MODE 

The 8086 Mode allows an 8086, 8088 system to 
contain both RQ/GT and HOLD-HLDA type coproc· 
essors simultaneously. In 8086 Mode, two possible 
bus masters may be interfaced by the 82188; an 
8086 or 8088 CPU and a coprocessor which uses a 
HOLD·HLDA bus exchange protocol (typically an 
82586 LAN Coprocessor or an 82730 Text Coproc­
essor). The bus exchange signal connections for 
8086 Mode are shown in Figure 5. Bus arbitration 
signals used in the 8086 Mode are: 

• RQ/GT1 

• SYSHOLD 

• SYSHLDA 

In 8086 Mode, no arbitration is necessary since only 
two devices are interfaced. The coprocessor has 
bus priority over the 8086(8088). SYSHOLD­
SYSHLDA are routed and translated directly to RQ/ 
GT1. RQ/GT1 of the 82188 may be tied to either 
RQ/GTO or RQ/GT1 of the 8086(8088). 

3-289 



82188 

8086 62166 COPROC 

RQ/GT1 RQ/GT1 

SYSHOLD HOLD 

t SYSHLDA HLDA 
HLDA 

RQ/GTO I--

8087 

--0 RQ/GTO 

231051-5 

Figure 5. Bus Exchange Signal Connections (8086 Mode) 

QUEUE-STATUS DELAY 

The Queue-Status Delay logic is used to delay the 
queue-status signals from the 80186(80188) to meet 
8087 queue-status timing requirements. QSOI, QS11 
correspond to the queue-status lines of the 
80186(80188). The 82188 delays these signals by 
one clock phase. The delayed signals are interfaced 
to the 8087 queue-status lines by QSOO, QS10. 

CHIP-SELECT 

The Chip-Select Logic allows the utilization of the 
chip select circuitry of the 80186(80188). Normally, 
this circuitry could not be used in an 80186(80188)-
8087 system since the 8087 contains no chip select 
circuitry. The Chip-Select Logic contains two exter­
nal connections: Chip-Select Input (CSIN) and Chip­
Select Output (CSOUT). CSOUT is active when ei­
ther CSIN is active or when the 8087 has control of 
the bus. 

By using CSOUT to select memory containing data 
structures, no external decoding is necessary. The 
80186 may ~ access to this memory bank 
through the CSIN line while the 8087 will automati­
cally obtain access when it becomes the bus mas­
ter. Note that this configuration limits the amount of 
memory accessible by the 8087 to the physical 
memory bank selected by CSOUT. Systems where 
the 8087 must access the full 1 Megabyte address 
space must use an external decoding scheme. 

READY 

The Ready logic allows two types of Ready signals: 
a Synchronous Ready Signal (SRDY) and an Asyn­
chronous Ready Signal (ARDY). These signals are 
similiar to SRDY and ARDY of the 80186. Wait 
states will be inserted when both SRDY and ARDY 
are LOW. Inserting wait states allows slower memo­
ry and 1/0 devices to be interfaced to the 
80186(80188)-8087 system. 

ARDY's LOW-to-HIGH transition is synchronized to 
the CPU clock by the 82188. The 82188 samples 
ARDY at the beginning of T2, T3 and Tw until sam­
pled HIGH. Note that ARDY of the 82188 is sampled 
one phase earlier than ARDY of the 80186. ARDY's 
falling edge must be synchronous to the CPU clock. 
ARDY allows an easy interface with devices that 
emit an asynchronous ready signal. 

The SRDY signal allows direct interface to devices 
that emit a synchronized ready signal. SRDY must 
be synchronized to the CPU clock for both of its 
transitions. SRDY is sampled in the middle of T2, T3 
and in the middle of each Tw. An 82188-
80186(80188),s SRDY setup time is 30 ns longer 
than the 80186(80188)'s SRDY setup time. SRDY 
eliminates the half-clock cycle penalty necessary for 
ARDY to be internally sychronized. 

The sychronized ready output (SRO) is the accumu­
lation of SRDY, ARDY, and the internal wait-state 

3-290 



inter 82188 

generator. SRO should be connected to SRDY of 
the 80186(80188) (with 80186(80188),s ARDY tied 
LOW), and READY of the 8087. 

SRDY ARDY SRO 

0 0 0 
1 X 1 
X 1 1 

The internal wait state generator allows for synchro­
nization between the 80186(80188) and 8087 in 
80186 mode. Upon RESET, the 82188 automatically 
inserts 3 wai~-states per 80186(80188) bus cycle, 
overlapped with any externally produced wait-states 
created by ARDY and SRDY. 

Since the 8087 has no provision for internal wait­
state generation, only externally created wait states 
will be effective. The 82188, upon RESET, will inject 
3 walt states for each of the first 256 80186(80188) 
bus cycles onto the SRO line. This will allow the 
8087 to match the 80186(80188),s timing. 

The internally-generated wait states are overlapped 
with those produced by the SRDY and ARDY lines. 
Overlapping the injected wait states insures a mini­
mum of three wait states for the first 256 
80186(80188) bus cycles after RESET. Systems 
with a greater number of wait states will not be ef­
fected. Internal wait state generation by the 82188 
will stop on the 256th 80186(80188) bus cycle after 

RESET. To maintain sychronization between the 
80186(80188) and 8087, the following conditions 
are necessary: 

• The 80186(80188),s control block must be 
mapped in I/O space before it is written to or 
read from. 

• All memory Chip-select lines must be set to 0 
WAIT STATES, EXTERNAL READY ALSO USED 
within the first 256 80186(80188) bus cycles after 
RESET. 

An equivalent READY logic diagram is shown in 
Figure 6. 

SYSTEM CONSIDERATIONS 

In any 82188 configuration, clock compatibility must 
be considered. Depending on the device, a 50% or a 
33% duty-cycle clock is needed. For example, the 
80186 and 80188 (as well as the 82188, 82586, and 
82730) requires a 50% duty-cycle clock. The 8086 
8088 and their 'kit' devices' (8087, 8089, 8288, and 
8289) clock requirements, on the other hand, require 
a 33% duty-cycle clock signal. The system designer 
must make sure clock requirements of all the devic­
es in the system are met. 

Figure 7 demonstrates the usage of the 82188 in 
80186 Mode where it is used to interface an 8087 
into an 80186 system. 

SRDY 

I 
ARDY -----------11 SYNCHRONIZER 1~-----IC_>t 
CLK------------___ + . ~SRO 

§.Q 
S1 
52 

HLDA-----ol~--t 

RESET-----------~~-----~ 

Figure 6. 
Equivalent 82188 READY circuit 

3-291 

231051-6 



c.J 
rG 
~ 

~ .... 
~ 
dI ..... 
co 
g 
";'I 
N 
C/) 

1 
~:!! 
010 _. E: 
::::I .. 

10 CD - ...... ;:r. 
CD 
CO 
N 

i 
:i" 
~ .... 
CO 
en 

8: 
CD 

12MHz 

TO OPTIONAL 
THIRD BUS MASTER 

.. ,.. ~""""DAT'BU.~ t 
- SYS Sb~ 

HOLD HLD Jl-
HLDA HLDA 

- HOLD HOLD 'r MCSO CSIN 

- ARDY OSO OSOI 
-RD 

OS1 OS11 

SRDY 
RESETOUT 
CLOCKOUT ALE -

:---J' 
S2 t---INTO 

~ TEST 
S1 I--

S2 
SO t- S1 

SO 
CLK 

SO 
RESET 

~ BUSY r--
~ SRO 

S1 - INT I--
S2 t--- 82188 

CLK 
RESET DT/R t---

RDY DEN t---
OSO OSOO 
OS1 OS10 

RO/GTO RO/GTO 
RO/GT1 RO/GT1 

~ ADDRESS DATA BUST 
T 

8087-1 

ARDY SRDY 

~ STB 

~ 74LS 
373 

-V 
I 

I 

---I DIR 

---I OE 

~ 74LS 
245 

---y 
I 

COMMAND/CONTROL 

~ 
~ 

ADDRESS 

~ 

,A. 
\f 

DATA 

231051-7 

( 

<XI 
N .... 
<XI 
<XI 

"@ 
~ 
IiiiiI 
IF' 
c= 

~ 
~ 
~ 
~ 
~ 



inter 82188 

ABSOLUTE MAXIMUM RATINGS * 

Temperature Under Bias .............. O°C to 70°C 

Storage Temperature ............. - 65°C to 150°C 

Case Temperature ................. O°C to + 85°C 

Voltage on any Pin with 
Respect to GND ................ -1.0V to 7.0V 

Power Dissipation ...................... 0.7 Watts 

DC CHARACTERISTICS 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOTICE Specifications contained within the 
following tables are subject to change. 

(Vee = 5V ± 10%, TA = O°C to 70°C, TeASE = O°C to +85°C) 

Symbol Parameter Min Max Units TestCond. 

Vil Input Low Voltage -0.5 +0.8 volts 

VIH Input High Voltage 2.0 Vee + 0.5 volts 

VOL Output Low Voltage 0.45 volts IOl = 2mA 

VOH Output High Voltage 2.4 volts IOH = - 400 JLA 

Icc Power Supply Current 100 mA TA = 25°C 

III Input Leakage Current ±10 p.A OV<VIN<Vee 

ILO Output Leakage Current ±10 p.A O.45<VOUT <Vee 

VeLi CLK Input Low Voltage -0.5 +0.6 volts 

VeHI CLK Input High Voltage 3.9 Vee + 1.0 volts 

CIN Input Capacitance 10 pF 

CIO I/O Capacitance 20 pF 

AC CHARACTERISTICS 
(Vee = 5V ± 10%, TA = O°C to 70°C, TeASE = O°C to +85°C) 

TIMING REQUIREMENTS 

Symbol Parameter Min Max Units Notes 

TCLCL Clock Period 125 500 ns 

TCLCH Clock LOW Time %TCLCL-7.5 ns 

TCHCL Clock HIGH Time %TCLCL-7.5 ns 

TARYHCL ARDY Active Setup Time 20 ns 

TCHARYL ARDY Hold Time 15 ns 8 

TARYLCH ARDY Inactive Setup Time 35 ns 

TSRYHCL SRDY Input Setup Time 65,50 ns 1 

TSVCH STATUS Active Setup Time 55 ns 

TSXCL STATUS Inactive Setup Time 50 ns 

TOIVCL OSOI, OS11 Setup Time 15 ns 

THAVGV HLDA Setup Time 50 ns 

TSHVCL SYSHOLD Asynchronous Setup Time 25 ns 

TGVCH RO/GT Input Setup Time 0 ns 6 

3-293 



inter 82188 

TIMING RESPONSES 

Symbol Parameter Min Max Units 

TSVLH STATUS Valid to ALE Delay 30 ns 

TCHLL ALE Inactive Delay 30 ns 

TCLML AD, WA Active Delay 10 70 ns 

TCLMH AD, WA Inactive Delay 10 55 ns 

TSVDTV STATUS to DT /A Delay 30 ns 

TCLDTV DT /A Active Delay 55 ns 

TCHDNV DEN Active Delay 10 55 ns 

TCHDNX DEN Inactive Delay 10 55 ns 

TCLOOV OSOO, OS10 Delay 5 50 ns 

TCHHV HOLD Delay 50 ns 

TCLSAV SYSHLDA Delay 50 ns 

TCLGV AO/GT Output Delay 40 ns 

TGVHV AO/GTO To HOLD Delay 50 ns 

TCLLH ALE Active Delay 30 ns 

TAELCV Command Enable Delay 40 ns 

TAEHCX Command Disable Delay 40 ns 

TCHAO SAO Output Delay 5 30 ns 

TSRYHAO SRDY To SAO Delay 30 ns 

TCSICSO CSIN To CSOUT Delay 30 ns 

TCLCSOV CLK Low to CSOUT Delay 10 ns 

TCLCSOH CLK Low to CSOUT Inactive Delay 10 ns 

NOTES (applicable to both spec listing and timing ctiagrams): 

1. TSRYHOL = (80186's) TSRYCL + 30 ns=65 ns for 6 MHz operation and 50 ns for 8 MHz operation. 
2. Timing not tested. 
3. DT fA will be asserted to the latest of TSVDTV & TCLDTV. 
4. ALE will be asserted to the latest of TSVlH & TCllH. 
5. SRO will be asserted to the latest of TCHRO & TSRYHRO. 
6. Cl = 20-100 pF 
7. Address/Data bus shown for reference only. 
8. The falling edge of ARDY must be synchronized to ClK. 

A.C. TESTING INPUT, OUTPUT WAVEFORM 
INPUT/OUTPUT 

' .. ~~ ".,"',,'" -~ 
0.45 

231051-9 

A.C. Testing: Inputs are driven at 2.4V for a Logic '1' and 0.45V 
for a Logic '0', 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 'lee TEST 

CL includes Jig Capacitance 
CL = 20-200 pF unless otherwise noted 

3-294 

Notes 

4 

3 

3 

2,6 

6 

6 

2,6 

4 

5,6 

5 

231051-10 



ClK 

ARDY 

SRDY 

SRO 

82188 

Command and Control Waveforms-80186 Mode 

rECHRO 
,TSRYHRO 

______________ -L~ ® 

READY Timing-80186 Mode 

3-295 

TSRYHCl 

231051-12 



82188 

SYSHOLD·SYSHLDA to RQ/GT1 Tlming-80186 Mode and 8086 Mode 

3-296 



82188 

1 1 

SYSHOLD-SYSHLDA To HOLD-HLDA Timing-80186 Mode 

3-297 



82188 

ClK \: -r\. /\. , 
-~I-TG~ ~ TClGV-

HOLD 

HlDA 
--------------~ 

CSOUT _______________ ~-TClCSOV '-____ ....Jf TClCSOH 

~"---~\I- . 
231051-15 

RQ/GTO to HOLD-HLDA Timing-80186 Mode 

ClK 

TQIVCl 

QSOI, 
QS11 ______________ ~ 

QSOO, QS10 _________________ ....1 

RD':" ______ )_-tCr,--T-AE-L-C-V----J--..... ~ rTAEHCX 

DT/R, DEN K_ )f--

CSIN 'i. 
_____________ ~ __ '~,~-TC-S-I-C-SO------------

CSOUT "'-_ 
231051-16 

Queue Status, ALE, Chip Select Delay Timing-80186 Mode 

3-298 



8289/8289-1 
BUS ARBITER 

• Provides Multi-Master System Bus 
Protocol 

• Synchronizes iAPX 86, 88 Processors 
with Multi-Master Bus 

• 10MHz Version, 8289-1, Fully Compatible 
with 10MHz iAPX 86 or 8MHz iAPX 186 
Based Systems 

• Provides Simple Interface with 8288 
Bus Controller 

• Four Operating Modes for Flexible 
System Configuration 

• Compatible with Intel Bus Standard 
MULTIBUSTM 

• Provides System Bus Arbitration for 
8089 lOP in Remote Mode 

• Available in EXPRESS 
- Standard Temperature Range 
- Extended Temperature Range 

The Intel 8289 Bus Arbiter is a 20-pin, 5-volt-only bipolar component for use with medium to large iAPX 86, 88 multi­
master/multiprocessing systems. The 8289 provides system bus arbitration for systems with multiple bus masters, such as 
an 8086 CPU with 8089 lOP in its REMOTE mode, while providing bipolar buffering and drive capability. 

8086/808818089 lr. {
50 

STATUS s;; 

ClK I lOCK 

PROCESSOR. CRQLCK 
CONTROL RESB 

SYSB/Rm 3 

RESB 

BClK 

INIT 

BREli 7 

ANYROST 

lOB 

VCC 

51 

ClK 

LOCK 
CRQa:K 

Figure 2. Pin Diagram 

INIT 1 BClK 
BREQ MULTIBUS™ 
BPRN COMMAND 
BPRO SIGNALS 

BUSY 
CBRO 

AEN } SYSTEM 

L~=!;;~~=~;:;;:;~d-- SIGNALS SYSB/Rm 

HV 

Figure 1. Block Diagram 

GND 

PROCESSOR { ~ 
STATUS _ 

- S2 

_ LOCK 
_ ClK 8289 

CONTROLI _ CROLCK 
STRAPPING 

OPTIONS - RESB 
- ANYRQST 

VCC 

-INIT 
-BCD< 

BREO 
-BPRN 

i!1'RO 
Blm' 

MUlTiBUS 
INTERFACE 

SYSB/JiESB } SYSTEM 
lIEN SIGNALS 

Figure 3. Functional Pinout 

3-299 



8289/8289·1 

Table 1_ Pin Description 

Symbol ~pe Name and Function Symbol ~pe Name an~ Function 

Vcc Power: +5V supply ±lO"1o. AEN 0 Address Enable: The output of the 8289 

GND Ground. Arbiter to the processor's address latches, 
to the 8288 Bus Controller and 8284A 

SO,Sl,S2 I Status Input Pins: The status input pins Clock Generator. AEN serves to instruct the 
from an 8086, 8088 or 8089 proce~sor. The Bus Controller and address latches when 
8289 decodes these. pins to initiate bus re-
quest and surrender actions. (See Table.2.) 

to tri-state their output drivers; 

SYSB/ I System Bus/Resident Bus: An input 
ClK I Clock: From the 8284 clock chip and RESB signal when the arbiter is configured in the 

serves to. establish when bus arbiter ac- S.R. Mode (RESB is strapped high) which 
tions are initiated. determines when the multi-master system 

lOCK I Lock: A processor generated signal which 
when activated (low) prevents the arbiter 
from surrendering the multi-master system 
bus to any other bus arliter, regardless of 
its priority. 

CRalCK I Common Request lock: An active low 
signal which prevents the arbiter from sur-
rendering the multi-master system bus to 
any other bus arbiter requesting the bus 
through the CBRa input pin. 

bus is requested and multi-master system 
bus surrendering is permitted. The signal 
is intended to originate from a form of 
address-mapping circuitry, as a decoder or 
PROM attached to the resident address 
bus. Signal transitions and glitches are 
permitted on this pin from c/>1 ofT4 to c/> 1 of 
T2 of the processor cycle. During the 
period fromc/>l ofT2to c/> 1 ofT4,onlyclean 
transitions are permitted on this pin (no 
glitches). If a glitch occurs, the arbiter may 

RESB I Resident Bus: A strapping option to con- capture or miss it, and the mult.i-master 
figure the arbiter to operate in systems hav- system bus may be requested or surren-
ing both a mUlti-master system bus and a dered, depending upon the state of the 
Resident Bus. Strapped high, the multi- glitch. The arbiter requests the multi-
master system bus is requested or s~ 
dered as a function of the SYSB/RESB 

master system bus in the S.R. Mode when 
the state of the SYSB~ pin is high and 

input pin. Strapped low, the SYSB/RESB permits the bus to be surrendered when 
input is ignored. this pin is low. 

ANYRaST I Any Request: A strapping option which CBRa I/O Common Bus Request: An input signal 
permits the multi-master system bus to be which Instructs the arbiter if there are any 
surrendered to a lower priority arbiter as if other arbiters of lower priority requesting 
it were an arbiter of higher priority (i.e., the use of the multi-master system bus. 
when a lower priority arbiter requests the 
use ofthe multi-master system bus, the bus The CBRa pins (open-collector output) of 
is surrendered as soon as it is possible). .all the 8289 Bus Arbiters which surrender 
When ANYRaST is strapped low, the bus is to the multi-master system bus upon re-
surrendered according to Table 2. If ANY- quest are connected together. 
RaST is strapped high and CBRa is ac-
tivated, the bus is surrendered althe end of The Bus Arbiter running the current trans-
the present bus cycle. Strapping CBRa low fer cycle will not itself pull the CBRa line 
and ANYRaST high forces the 8289 arbiter low. Any other arbiter connected to the 
to surrender the multi-master system bus CBRa line can request the multi-master 
after each transfer cycle. Note that when system bus. The arbiter presently running 
surrender occurs BREa is driven false the current transfer cycle drops its BREa 
(high). signal and surrenders the bus whenever 

lOB I 10 Bus: A strapping option which confi-
gures the 8289 Arbiter to operate in sys-
tems having both an 10 Bus (Peripheral 
Bus) and a multi-master system bus. The 
arbiter requests and surrenders the use of 

the proper surrender conditions exist. 
Strapping CBRa low and ANYRaST high 
allows the multi-master system bus to' be 
surrendered after each transfer cycle. See 
the pin definition of ANYRaST. 

the multi-master system bus as a function 
of the status fine, 82. The multl-mastersys-

INIT I Initialize: An aciive low multi-master sys-
tem bus input signal .used to reset all the 

IlIm bus is permitted to be surrendered bus arbiters on the multi-master system 
while the processor is performing 10 com- bus. After initialization, no arbiters have 
mands and Is requested whenever the pro- the use of the multi-master system bus. 
cessor performs a memory command. 
Interrupt cycles are assumed as coming 
from the peripheral bus and are treated as 
an 10 command. 

3-300 



8289/8289-1 

Table 1. Pin Descriptions (Continued) 

Symbol Type Name and Function 

BClK I Bus Clock: The multi-master system bus 
clock to which all multi-master system bus 
interface signals are synchronized. 

BREQ 0 Bus Request: An active low output signal 
in the parallel Priority Resolving Scheme 
which the arbiter activates to request the 
use of the multi-master system bus. 

BPRN I Bus Priority In: The active low signal re-
turned to the arbiter to instruct it that it may 
acquire the multi-master system bus on the 
next falling edge of BClK. BPRN indicates 
to the arbiter that it is the highest priority 
requesting arbiter presently on the bus. 
The loss of BPRN instructs the arbiter that 
it has lost priority to a higher priority 
arbiter. 

FUNCTIONAL DESCRIPTION 

The 8289 Bus Arbiter operates in conjunction with the 
8288 Bus Controller to interface iAPX 86, 88 processors to 
a multi-master system bus (both the iAPX 86 and iAPX 88 
are configured in their max mode). The processor is un­
aware of the arbiter's existence and issues commands as 
though it has exclusive use of the system bus. If the pro­
cessor does not have the use of the multi-master system 
bus, the arbiter prevents the Bus Controller (8288), the 
data transceivers and the address latches from accessing 
the system bus (e.g. all bus driver outputs are forced into 
the high impedance state). Since the command sequence 
was not issued by the 8288, the system bus will appear as 
"Not Ready" and the processor will enter wait states. The 
processor will remain in Wait until the Bus Arbiter ac­
quires the use of the multi-master system bus whereupon 
the arbiter will ailow the bus controiler, the data transceiv­
ers, and the address latches to access the system. Typi­
cally, once the command has been issued and a data 
transfer has taken place, a transfer acknowledge (XACK) 
is returned to the processor to indicate "READY" from the 
accessed slave device. The processor then completes its 
transfer cycle. Thus the arbiter serves to multiplex a pro­
cessor (or bus master) onto a multi-master system bus and 
avoid contention problems between bus masters. 

Arbitration Between Bus Masters 

In general, higher priority masters obtain the bus when a 
lower priority master completes its present transfer 
cycle. lower priority bus masters obtain the bus when a 
higher priority master is not accessing the system bus. 
A strapping option (ANYROST) is provided to allow the 
arbiter to surrender the bus to a lower priority master as 
though it were a master of higher priority. If there are no 
other bus masters requesting the bus, the arbiter main­
tains the bus so long as its processor has not entered 

Symbol lYpe Name and Function 

BPRO 0 Bus Priority Out: An active low output 
signal used in the serial priority resolving 
scheme where BPRO is daisy-chained to 
BPRN of the next lower priority arbiter. 

BUSY 1/0 Busy: An active low open collector 
multi-master system bus interface signal 
used to instruct all the arbiters on the bus 
when the multi-master system bus is avail-
able. When the multi-master system bus is 
available the highest requesting arbiter 
(determined by BPRN) seizes the bus and 
pulls BUSY low to keep other arbiters off of 
the bus. When the arbiter is done with the 
bus, it releases the BUSY signal, permitting 
it to go high and thereby allowing another 
arbiter to acquire the multi-master system 
bus. 

the HALT State. The arOller wili nOl voiuntarily surrende, 
the system bus and has to be forced off by another 
master's bus request, the HALT State being the only ex­
ception. Additional strapping options permit other 
modes of operation wherein the multi-master system 
bus is surrendered or requested under different sets of 
conditions. 

Priority Resolving Techniques 

Since there can be many bus masters on a multi-master 
system bus, some means of resolving priority between 
bus masters simultaneously requesting the bus must be 
provided. The 8289 Bus Arbiter provides several resolv­
ing techniques. All the techniques are based on a priori· 
ty concept that at a given time one bus master will have 
priority above all the rest. There are provisions for using 
parallel priority resolving techniques, serial priority 
resolving techniques, and rotating priority techniques. 

3-301 

PARALLEL PRIORITY RESOLVING 
The parallel priority resolving technique uses a separate 
bus request line (Imrn) for each arbiter on the multi­
master system bus, see Figure 4. Each BREO line enters 
into a priority encoder which generates the binary ad­
dress of the highest priority BREO line which is active. 
The binary address is decoded by a decoder to select 
the corresponding BPRN (Bus Priority In) line to be 
returned to the highest priority requesting arbiter. The 
arbiter receiving priority (i3i5RN true) then allows its 
associated bus master onto the multi-master system 
bus as soon as it becomes available (i.e., the bus is no 
longer busy). When one bus arbiter gains priority over 
another arbiter it cannot immediately seize the bus, it 
must wait until the present bus transaction is complete. 



8289/8289·1 

Upon completing Its transaction the present bus occu· 
pant recognizes that It no longer has priority and sur· 
renders the bus by releasing BUSY. BUSY is an active 
low "OR" tied signal line which goes to every bus arbiter 
on the system bus. When BUSY goes'inactive (high), the 
arbiter wh ich presently h!s bus priority (iiP'R'N true) then 

seizes the bus and pulls BUSY low to keep other arbiters 
off of the bUI:!. See waveform timing diagram, Figure 5. 
Note that all multl·master system bus transactions are 
synchronized to the bus clock (BClK). This allows the 
parallel priority resolving circuitry or al"lY other priority 
resolving scheme employed to settle. 

74148 
PRIORITY 
ENCODER 

74138 
H08 

DECODER 

Figure 4. Parallel Priority Resolving Technique 

I HIGHER PRIORITY BUS ARBITER REQUESTS THE MULTI·MASTER SYSTEM BUS. 
ATTAINS PRIORITY. 

3 LOWER PRIORITY BUS ARBITER RELEASES BUSY. 
4 HIGHER PRIORITY BUS ARBITER THEN ACQUIRES THE BUS AND PULLS BUSY DOWN. 

Figure 5. Higher Priority Arbiter obtaining the Bus from a Lower Priority Arbiter 

3-302 



inter 8289/8289-1 

SERIAL PRIORITY RESOLVING 
The serial priority resolving technique eliminates the 
need for the priority encoder-decoder arrangement by 
daisy-chaining the bus arbiters together, connecting the 
higher priority bus arbiter's BPRO (Bus Priority Out) out­
put to the BPRN of the next lower priority. See Figure 6. 

,;.-:;;: ;~"'i'Vl;;;L:;; 00" ... r:lo:r:r.::; i~:t.i ~1A',' :)~ ~.~J~" C~.~.~~!!!:~ T0GET'"'!':? !~, T!-IJ" 

SERIAL PRIORITY RESOLVING SCHEME IS A FUNCTION OF BCLK AND THE PROPA· 
GATION DELAY FROM ARBITER TO ARBITER. NORMALLY, AT 10 MHz ONLY 3 ARBI· 
TER MAY BE DAISY·CHAINED. 

Figure 6_ Serial Priority Resolving 

ROTATING PRIORITY RESOLVING 
The rotating priority resolving technique is similar to 
that of the parallel priority resolving technique except 
that priority is dynamically re-assigned. The priority en· 
coder is replaced by a more complex circuit which ro­
tates priority between requesting arbiters thus allowing 
each arbiter an equal chance to use the multi-master 
system bus, over time. 

Which Priority Resolving Technique To 
Use 

There are advantages and disadvantages for each of the 
techniques described above. The rotating priority 
resolving technique requires substantial external logic 
to implement while the serial technique uses no exter­
nallogic but can accommodate only a limited number of 
bus arbiters before the daisy-chain propagation delay 
exceeds the multi-master's system bus clock (BCLK). 
The parallel priority resolving technique is in general a 
good compromise between the other two techniques. It 
allows for many arbiters to be present on the bus while 
not requiring too much logic to implement. 

*In some system configurations it is possible for a non-I/O Processor to 
have access to more than one Multi·Master System Bus, see 8289 
Application Note. 

8289 MODES OF OPERATION 

There are two types of processors in the iAPX 86 family. An 
I nput/Output processor (the 8089 lOP) and the iAPX 86/1 0, 
88/10 CPUs. Consequently, there are two basic operating 
modes in the 8289 bus arbiter. One, the lOB (1/0 Peripheral 
Bus) mode, permits the processor access to both an 110 
Peripheral Bus and a multi-master system bus. The sec­
ond, the RESB (Resident Bus mode), permits the pro­
cessor to communicate over both a Resident Bus and a 
mUlti-master system bus. An 1/0 Peripheral Bus is a bus 
where all devices on that bus, including memory, are 
treated as 1/0 devices and are addressed by I/O com­
mands. All memory commands are directed to another 
bus, the multi-master system bus. A Resident Bus can 
issue both memory and I/O commands, but it is a distinct 
and separate bus from the multi-master system bus. The 
distinction is that the Resident Bus has only one master, 
providing full availability and being dedicated to that one 
master. 

The lOB strapping option configures the 8289 Bus Ar­
iJiic( ii-Ito thB iOS mods cHid the strapping optio~ RES8 
configures it into the RESB mode. It might be noted at 
this point that if both strapping options are strapped 
false, the arbiter interfaces the processor to a multi· 
master system bus only (see Figure 7). With both op· 
tions strapped true, the arbiter interfaces the processor 
to a multi-master system bus, a Resident Bus, and an 1/0 
Bus. 

In the lOB mode, the processor communicates and con­
trols a host of peripherals over the Peripheral Bus. When 
the 1/0 Processor needs to communicate with system 
memory, it does so over the system memory bus. Figure 
8 shows a possible 1/0 Processor system configuration. 

The iAPX 86 and iAPX 88 processors can communicate 
with a Resident Bus and a multi-master system bus. Two 
bus controllers and only one Bus Arbiter would be needed 
in such a configuration as shown il~l Figure 9. In such a 
system configuration the processor would have access to 
memory and peripherals of both busses. Memory map­
ping techniques are applied to select which bus is to be 
accessed. The SYSB/RESB input on the arbiter serves to 
instruct the arbiter as to whether or not the system bus is 
to be accessed. The signal connected to SYSB/RESB also 
enables or disables commands from one of the bus 
controllers. 

A summary of the modes that the 8289 has, along with 
its response to its status lines inputs, is summarized in 
Table 2. 

3-303 



8289/8289-1 

Table 2. Summary of 8289 Modes, Requesting and Relinquishing the Multi-Master System Bus 

Single 

~ 
Status Lines From lOB Mode RESB (Mode) Only lOB Mode RESB Mode lOB = High 

8086 or 8088 or 8089 Only lOB = High RESB = High lOB = Low RESB = High RESB = Low 

52 51 So lOB = Low SYSB/RESB = High SYSB/RESB = Low SYSB/RESB = High SYSB/RESB = Low 

110 
0 0 0 x x x x 

COMMANDS 
0 0 1 x x x x 
0 1 0 x x x x 

HALT 0 1 1 x x x x x x 

MEM 
1 0 0 x x 

COMMANDS 
1 0 1 x x 
1 1 0 x x 

IDLE 1 1 1 x x x x x x 

NOTES: 

1. X=,Multi-Master System Bus is allowed to be Surrendered. 
2. v = Multi-Master System Bus is Requested. 

Pin Multi·Master System Bus 
Mode --

Strapping Requested * * Surrendered· 

Single Bus 10B= High Whenever the processor's 
HLT + TI 0 CBRO+ HPBROt Multi·Master Mode RESB= Low status lines go active 

RESB Mode Only 10B= High SYSB/RESB = High. (SYSB/RESB = Low + TI) • 
RESB= High ACTIVE STATUS CBRO + HLT + HPBRO 

lOB Mode Only 10B= Low Memory Commands 
(110 Status + TI) • CBRO + 

RESB= Low HLT+HPBRO 

10B= low (Memory Command) • 
«110 Status Commands)+ 

lOB Mode· RESB Mode SYSB/RESB = lOW» • CBRO 
RESB= High (SYSB/RESB = High) 

+HPBROt+HLT 

NOTES: 
• LOCK prevents surrender of Bus to any other arbiter, CRQlCK prevents surrender of Bus to any lower priority arbiter. 

··Except for HALT and Passive or IDLE Status. 

t HPBRQ, Higher priority Bus request or BPRN = 1. 
1. lOB Active low. 
2. RESB Active High. 
3. + Is read as "OR" and. as "AND." 
4. TI= Processor Idle Status $2, 51, SO= 111 
5. H L T = Processor Halt Status $2, 51, SO = 011 

3-304 



inter 

XACK IIlO BUS) >-

'0 ¢ COMMAND _ 

'" 
..r-- r 
-:;- Of 

ADDRESS 
LATCH 

8~831 

6282 
{20R 3) 

,-

8289/8289-1 

1----------------------« )tACK MULTI· MASTER SYSTEM BUS 

\ MULTI·MASTER 
Iv-------------CV CONTROL BUS 

f--l------vcc 

f--------------', MULTJoMASTER 

____ ,( ~6~~~ND 
,us 

MULfl.MASTEA. 

~====~==~=======================)\~~~~~S ,us 

k~================================> MUlTI·MASTER SYSTEM 
DATA 

Figure 7. Typical Medium Complexity CPU System 

o 
AEN1 

MUL TI·MASTER 
SYSTEM BUS 

8284'" 
CLOCK 

.~ - ---- ROYl -----« XACK MULTI·MASTER SYSTEM BUS 

8288 

'" CONTROLLER 

ALE lOB 
PDENDEN OnR 

-------\ MUlHMASTER ,_==--==-___ ,; ~~~TROL 

Figure 8. Typical Medium Complexity lOB System 

3-305 

MULTI-MASTER 
SYSTEM BUS 



intJ 

AEStOENT BUS 

8289/8289-1 

o 
AEN2 AEN1'~--------, ..... 

CLOCK 

~~~ENT 8U5--------I RDVtl--------f-------- )tACK MULTI·MASTER SYSTEM BUS 

SVSBI~

REStoENT COMMAND I';:===::===~ BUS \

108

:~~IDENT AODRESS \====--====1

RESIDENT DATA r:======~ BUS "4

'8Y ADDING ANOTHER 82811 ARBITER AND CONNECTING ITS AEH TO THE 8288
WHOSE l'm IS PRESENfL Y GROUNDED, THE PROCESSOR COULD HAVE ACCESS
TO TWO MULTI·MASTER BUSES.

Vee

MUL TIoMASTER SYSTEM
COMMAND BUS

MUL TIoMASTER SYSTEM
ADDRESS BUS

Figure 9. 8289 Bus Arbiter Shown in System-Resident Bus Configuration

3-306

MULTI·MASTER
SYSTEM BUS

8289/8289·1

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias O·C to 70·C
Storage Temperature -65·C to + 150·C
All Output and Supply Voltages - 0.5V to + 7V
All Input Voltages -1.0V to + 5.SV
Power Dissipation 1.5 Watt

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA = O°C to 70°C, Vee = +5V ±10%)

Symbol Parameter Min. Max. Units

Ve Input Clamp Voltage -1.0 V

IF Input Forward Current -0.5 mA

IR Reverse Input Leakage Current 60 iJ.A

VOL Output Low Voltage
BUSY, CBRQ 0.45 V
AEN 0.45 V
BPRO,BREQ 0.45 V

VOH Output High Voltage
BUSY, CBRQ Open Collector

._-_._._-
All Other Outputs 2.4

Icc Power Supply Current 165

V1l Input Low Voltage .8

V1H Input High Voltage 2.0

Cin Status Input Capacitance 25

Cin (Others) Input Capacitance 12

A.C. CHARACTERISTICS (Vee = +5V ±10%, TA = O°C to 70°C)

TIMING REQUIREMENTS

Symbol Parameter 8289 Min. 8289·1 Min.

TClCl ClK Cycle Period 125 100

TClCH ClK low Time 65 53

TCHCl ClK High Time 35 26

TSVCH Status Active Setup 65 55

TSHCL Status Inactive Setup 50 45

THVCH Status Active Hold 10 10

THVCL Status Inactive Hold 10 10

TBYSBl BUSYi 1-Setup to BCLK1- 20 20

TCBSBl CBROi 1-Setup to BClK1- 20 20

TBlBL BClK Cycle Time 100 100

TBHCL BlCK High Time 30 30

TCLlll LOCK Inactiv~ Hold 10 10

TClLl2 lOCK Active Setup 40 40

TPNBl BPRNi 1- to BClK Setup Time 15 15

TCLSRI SYSB/RESB Setup 0 0

TClSR2 SYSB/RESB Hold 20 20

TIVIH Initialization Pulse Width 3 TBLBl+ 3 TBlBL+
3 TCLCl 3 TClCL

3-307

V

mA

V

V

pF

pF

Max.

TClCL-l0

TCLCl-l0

.65[TBLBL]

Test Condition

Vee=4.50V, le= -5 mA

Vee = 5.50V, VF = 0.45V

Vee = 5.50, VR = 5.50

IOl= 20 mA
IOl= 16 mA
IOl=10mA

IOH= 400 iJ.A

Unit Test Condition

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

8289/8289·1

A.C. CHARACTERISTICS (Continued)

TIMING RESPONSES

Symbol Parameter

TBLBRL BCLK to BREQ Delayt t

TBLPOH BCLK to BPROa (See Note 1)

TPNPO BPRNt tto BPROt tDelay
(See Note 1)

TBLBYL BCLK to BUSY Low

TBLBYH BCLK to BUSY Float (See Note 2)

TCLAEH CLK to AEN High

TBLAEL BCLK to AEN Low

TBLCBL BCLK to CBRQ Low

TRLCRH BCLK to CBRQ Float (See Note 2)

TOLOH Output Rise Time

TOHOL Output Fall Time

t t Denotes that spec applies to both transitions of the signal.

NOTES:

Min. Max. Unit Test Condition

35 ns

40 ns

25 ns

60 ns

35 ns

65 ns

40 ns

60 ns

35 ns

20 ns From 0.8V to 2.0V

12 ns From 2.0V to 0.8V

1. BCLK generates the first BPRO wherein subsequent BPRO changes lower in the chain are generated through BPRON.
2. Measured at .5V above GND.

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

2.4 ~5--TESTPOINTS_'X=
0.45

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC "1" AND OASV
FOR A LOGIC "0." THE CLOCK IS DRIVEN AT 4.3V and O.25V. TIMING
MEASUREMENTS ARE MADE AT '.5V FOR BOTH A LOGIC .. , .• AND "0."
INPUT RISE AND FALL TIMES (MEASURED aETWEEN 0.8V AND 2.0V) ARE
DRIVEN AT 5 ± 2 NS.

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER

lCL~'OOPF TEST

-=
CL'" 100pF
CL INCLUDES JIG CAPACITANCE

3-308

WAVEFORMS

STATE --',-_

eLK

LOCI<
(SEE NOTE 1)

SYSB/A'ESB

AEiii
(SEE NOTE 3)

PROCESSORCLK RELATED

BUS elK RELATED

......
(1PA'01I11

"""" .. (1JfJm 11'3)

NOTES:

8289/8289·1

"-- '2-- ',--1--"--
--rCLCL ------ TelCH

TClAEH --- r--

_TBYSBl

I

I-TeasBl

1. LOCi< ACTIVE CAN OCCUR DURING ANY STATE, AS LONG AS THE
RELATIONSHIPS SHOWN ABOVE WITH RESPECT TO THE ClK ARE MAINTAINED.
[(Jci(INACTIVE HAS NO CRITICAL TIME AND CAN BE ASYNCHRONOUS.
-CRQlCK HAS NO CRITICAL TIMING AND IS CONSIDERED AN ASYNCHRONOUS
INPUT SIGNAL

2. GLiTCHING OF SYSB/RESs PIN IS PERMlnED DURING THIS TIME. AFTER ¢ 2 OF
T1, AND BEFORE ¢1 OF T4, SYSB/RESB SHOULD BE STABLE.

3. TEN lEADING EDGE IS RELATED TO BClK, TRAILING EDGE TO ClK. THE
TRAILING EDGE OF AEN OCCURS AFTER BUS PRIORITY IS lOST.

ADDITIONAL NOTES:

The signals related to ClK are typical processor signals. and do not relate to the depicted sequence of events of the
signals referenced to BCIi<. The signals shown related to the BClK represent a hypothetical sequence of events for
illustration.' Assume 3 bus arbiters of priorities 1,2 and 3 configured in serial priority resolving scheme as shown in
Figure 6. Assume arbiter 1 has the bus and is holding busy low. Arbiter #2 detects its processor wants the bus and
pulls low BREQ#2. If BPRN#2 is high (as shown), arbiter#2 will pull low CBRQ line. CBRQ signals to the higher priority
arbiter #1 that a lower priority arbiter wants the bus. [A higher priority arbiter would be granted BPRN when it makes
the bus request rather than having to wait for another arbiter to release the bus through ctrnl1] .•• Arbiter #1 will rei in·
quish the multi-master system bus when it enters a state not requiring it (see Table 1), by lowering its BPRO#1 (tied to
BPRN#2) and releasing BUSY. Arbiter #2 now sees that it has priority from BPRN#2 being low and releases CBRQ. As
soon as BUSY signifies the bus is available (high), arbiter #2 pulls BUSY low on next falling edge of BClK. Note that if
arbiter #2 didn't want the bus at the time it received priority, it would pass priority to the next lower priority arbiter by
lowering its BPRO #2 [TPNPOj.

"Note that even a higher priority arbiter which is acquiring the bus through"B'PR'N will momentarily drop CBRQ until it has acquired the bus.

3-309

~~ Intel CorporatIon 1979

APPLICATION
NOTE

3-310

Ap·67

September 1979

ORDER NUMBER, 230792·001

inter

8086 System Design Contents

1. INTRODUCTION

2. 8086 OVERVIEW AND BASIC SYSTEM
CONCEPTS

A. Bus Cycle Definition
B. Address and Data Bus Concepts
C. System Data Bus Concepts
D. Multiprocessor Environment

3. 8086 SYSTEM DETAILS

A. Operating Modes
B. Clock Generation
C. Reset
D. Ready Implementation and Timing
E. Interrupt Structure
F. Interpreting the 8086 Bus Timing Diagrams
G. Bus Control Transfer

4. INTERFACING WITH 1/0

5. INTERFACING WITH MEMORIES

6. APPENDIX

Inlel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product No Other Circuit Patent Licenses are Implied.

3-311 230792-001

AP-67

1. INTRODUCTION

The 8086 family, Intel's new series of microprocessors
and system components, offers the designer an ad·
vanced system architecture which can be structured to
satisfy a broad range of applications. The variety of
speed, configuration and component selections avail·
able within the family enables optimization of a specific
design to both cost and performance objectives. More
important however, the 8086 family concept allows the
designer to develop a family of systems providing multi·
pie levels of enhancement within a single deSign and a
growth path for future designs.

This application note is directed toward the implemen'
tation of the system hardware and will provide an in·
troduction to a representative sample of the systems
configurable with the 8086 CPU member of the family.
Application techniques and timing analysis will be given
to aid the designer in understanding the system require·
ments, advantages and limitations. Additional Intel
publications the reader may wish to reference are the
8086 User's Manual (9800722A), 8086 Assembly Lan·

-T,- ----T,_

READ
CYCLE

WRITE
CYCLE

CLK

A19fS6.A16/S3

READY

RD

DT/R

DEN

DEN

DT/R

r--"\
--'

P-

--- -

r--,

AODR

-
-

-X ADDRESS A1S-Ao \ FLOAT

ADDRESS

guage Reference Guide (9800749A), AP·28A MULTI·
BUS™ Interfacing (98005876B), INTEL MULTIBUS®
SPECIFICATION (9800683), AP·45 Using the 8202 Dy·
namic RAM Controller (9800809A), AP·51 Designing
8086, 8088, 8089 Multiprocessor Systems with the 8289
Bus Arbiter and Ap·59 Using the 8259A Programmable
Interrupt Controller. References to other Intel publica·
tions will be made throughout this note.

2. 8086 OVERVIEW AND BASIC SYSTEM CONCEPTS

2A. 8086 Bus Cycle Definition

The 8086 is a true 16·bit microprocessor with 16·bit in·
ternal and external data paths, one megabyte of memory
address space (2* *20) and a separate 64K byte (2* *16)
I/O address space. The CPU communicates with its ex·
ternal environment via a twenty·bit time multiplexed ad·
dress, status and data bus and a command bus. To
transfer data or fetch instructions, the CPU executes a
bus cycle (Fig. 2A1). The minimum bus cycle consists of
four CPU clock cycles called T states. During the first T
state (T1), the CPU asserts an address on the twentY·bit

---~TalTw ,-----T4- -
[r--, ..,v----'I ~

STATUS X

=x
---1------

-~-~ DATA IN 015-00)(F~~ -----

/

V

DATA OUT C

II

Figure 2A 1. Basic 8086 Bus Cycle

3-312 230792·001

intJ AP-67

multiplexed address/data/status bus. For the second T
state (T2), the CPU removes the address from the bus
and either three-states its outputs on the lower sixteen
bus lines in preparation for a read cycle or asserts write
data. Data bus transceivers are enabled in either T1 or
T2 depending on the 8086 system configuration and the
direction of the transfer (into or out of the CPU). Read,
write or interrupt acknowledge commands are always
enabled in T2. The maximum mode 8086 configuration
(to be discussed later) also provides a write command
enabled in T3 to guarantee data setup time prior to com­
mand activation.

During T2, the upper four multiplexed bus lines switch
from address (A19-A16) to bus cycle status
(S6,S5,S4,S3). The status information (Table 2A 1) is
available primarily for diagnostic monitoring. However,
a decode of S3 and S4 could be used to select one of
four banks of memory, one assigned to each segment
register. This technique allows partitioning the memory
by segment to expand the memory addressing beyond
one megabyte. It also provides a degree of protection by
preventing erroneous write operations to one segment
from overlapping into another segment and destroying
information in that segment.

The CPU continues to provide status Information on Ihe
upper four bus lines during T3 and will either continue
to assert write data or sample read data on the lower six­
teen bus lines. If the selected memory or I/O device is
not capable of transferring data at the maximum CPU
transfer rate, the device must signal the CPU "not
ready" and force the CPU to insert additional clock
cycles (Wait states TW) after T3. The 'not ready' indica­
tion must be presented to the CPU by the start of T3.
Bus activity during TW is the same as T3. When the
selected device has hadsufiicient time to complete the
transfer, it asserts "Ready" and allows the CPU to con­
tinue from the TW states. The CPU will latch the data on
the bus during the last wait state or during T3 if no wait
states are requested. The bus cycle is terminated in T4
(command lines are disabled and the selected external
device deselects from the bus). The bus cycle appears
to devices in the system as an asynchronous event con­
sisting of an address to select the device followed by a.
read strobe or data and a write strobe. The selected
device accepts bus data during a write cycle and drives
the desired data onto the bus during a read cycle. On ter­
mination of the command, the device latches write data
or disables its bus drivers. The only control the device
has on the bus cycle is the insertion of wait cycles.

The 8086 CPU only executes a bus cycle when instruc­
tions or operands must be transferred to or from
memory or 110 devices. When not executing a bus cycle,
the bus interface executes idle cycles (TI). During the
idle cycles, the CPU continues to drive status informa­
tion from the previous bus cycle on the upper address
lines. If the previous bus cycle was a write, the CPU con­
tinues to drive the write data onto the multiplexed bus
until the start of the next bus cycle. If the CPU executes
idle cycles following a read cycle, the CPU will not drive
the lower 16 bus lines until the next bus cycle is
required.

Since the CPU prefetches up to six bytes of the instruc­
tion stream for storage and execution from an internal
instruction queue, the relationship of instruction fetch
and associated operand transfers may be skewed in
time and separated by additional instruction fetch bus
cycles. In general, if an instruction is fetched into the
8086's internal instruction queue, several additional in­
structions may be fetched before the instruction is
removed from the queue and executed. If the instruction
being executed from the queue is a jump or other con­
trol transfer instruction, any instructions remaining in
the queue are not executed and are discarded with no ef­
fect on the CPU's operation. The bus activity observed
during execution of a specific instruction is dependent
on the preceding instructions but is always deter­
ministic within the specific sequence.

S3

a
1

a

S4

o
o

Table 2A1

Alternate (relative to the ES segment)

Stack (relative to the SS segment)

Code/None (relative to the CS seg-
ment or a default of zero)

Da.!? (n.l"tivA to the DS segment)

S5= IF (interrupt enable flag)
S6 = a (indicates the 8086 is on the bus)

2B_ 8086 Address and Data Bus Concepts

Since the majority of system memories and peripherals
require a stable address for the duration of the bus
cycle, the address on the multiplexed address/data bus
during Tl should be latched and the latched address
used to select the desired peripheral or memory loca­
tion. Since the 8086 has a 16-bit data bus, the multi­
plexed bus cC'mponents of the 8085 family are not ap­
plicable to the 8086 (a device on address/data bus lines
8-15 will not be able to receive the byte selection ad­
dress on lines 0-7). To demultiplex the bus (Fig. 2Bla),
the 8086 system provides an Address Latch Enable
signal (ALE) to capture the address in either the 8282 or
8283 8-bit bi-stable latches (Diag. 2Bl). The latches are
either inverting (8283) or non-inverting (8282) and have
outputs driven by three-state buffers that supply 32 mA
drive capability and can switch a 300 pF capacitive load
in 22 ns (inverting) or 30 ns (non-inverting). They prop­
agate the address through to the outputs while ALE is
high and latch the address on the falling edge of ALE.
This only delays address access and chip select
decoding by the propagation delay of the latch. The out­
puts are enabled through the low active OE input. The
demultiplexing of the multiplexed address/data bus
(Iatchings of the address from the multiplexed bus), can
be done locally at appropriate pOints in the system or at
the CPU with a separate address bus distributing the ad­
dress throughout the system (Fig. 2Blb). For optimum
system performance and compatibility with multiproc­
essor and MULTIBUS™ configurations, the latter tech­
nique is strongly recommended over the first. The re­
mainder of this note will assume the bus is demul­
tiplexed at the CPU.

3-313 230792-001

8086

ADDRESS
BUS

Figure 2B1a. Oemultlplexing the 8086 Bus

8086
CPU

ADDRESS BUS

DATA BUS

SEPARATE ADDRESS AND DATA BUSSES

r------,
I I
I I
I I
I r'----~~~ t-~------ ALE
I 8086

AP-67

I CPU
I

L-.1-... __ J\ ADDRESS/DATA

The programmer views the 8086 memory address space
as a sequence of one million bytes in which any byte
may contain an eight bit data element and any two con­
secutive bytes may contain a 16-bit data element. There
is no constraint on byte or word addresses (boundaries).
The address space is physically implemented on a six­
teen bit data bus by dividing the address space into two
banks of up to 512K bytes (Fig. 2S2). One bank is con­
nected to the lower half of the sixteen-bit data bus (07-0)
and contains even addressed bytes (AO = 0). The other
bank is connected to the upper half of the data bus
(015-8) and contains odd addressed bytes (AO= 1). A
specific byte within each bank is selected by address
lines A19-Al. To perform byte transfers to even ad­
dresses (Fig. 2S3a), the information is transferred over
the lower half of the data bus (07-0). AO (active low) is
used to enable the bank connected to the lower half of
the data bus to participate in the transfer. Another
signal provided by the 8086, Sus High Enable (SHE), is
used to disable the bank on the upper half of the data
bus from participating in the transfer. This is necessary
to prevent a write operation to the lower bank from
destroying data in the upper bank. Since SHE is a
multiplexed signal with timing identical to the A19-A16
address lines, it also should be latched with ALE to pro­
vide a stable signal during the bus cycle. Ouring T2
through T4, the SHE output is multiplexed with status
line S7 which is equal to SHE. To perform byte transfers
to odd addresses (Fig. 2S3b), the information is trans­
ferred over the upper half of the data bus (015-08) while
SHE (active low) enables the upper bank and AO
disables the lower bank. Oirecting the data transfer to
the appropriate half of the data bus and activation of
SHE and AO is performed by the 8086, transparent to the
programmer. As an example, consider loading a byte of
data into the CL register (lower half of the CX register)
from an odd addressed memory location (referenced
over the upper half of the 16-bit data bus). The data is
transferred into the 8086 over the upper 8 bits of the
data bus, automatically redirected to the lower half of
the 8086 internal 16-bit data path and stored into the CL
register. This capability also allows byte 1/0 transfers
with the AL register to be directed to 1/0 devices con­
nected to either the upper or lower half of the 16-bit data
bus.

I BUS

I
I I L ______ J

MULTIPLEXED BUS WITH lOCAL ADDRESS DEMUl TlPlEXING

Figure 2B1b.

T, T,

ClK
----'
~ It---\

--
'---

ALE / \

To access even addressed sixteen bit words (two con­
secutive bytes with the least significant byte at an even

T, T. T4

r--\ ,-I" r--\

--- --- _X __ X DATA IN OR OUT X ---
~--

I ---

Diagram 2B1. ALE Timing

3-314 230792-001

intel AP-67

byte address), A 19-A 1 select the appropriate byte within
each bank and AD and SHE (active low) enable both
banks simultaneously (Fig_ 2S3c)_ To access an odd ad­
dressed 16-bit word (Fig_ 2S3d), the least significant
byte (addressed by'AI9-Al) is first transferred over the
upper half of the bus (odd addressed byte, upper bank,
SHE low active and AD = 1), The most significant byte is
accessed by incrementing the address (A 19-AO) which
allows AI9-Al to address the neXt physical word loca­
tion (remember, AD was equal to one which indicated a
word referenced from an odd byte boundary), A second
bus cycle is then executed to perform the transfer of the
most significant byte with the lower bank (AD is now ac­
tive low and SHE is high), The sequence is automatically
executed by the 8086 whenever a word transfer is ex­
ecuted to an odd address, Directing the upper and lower
bytes of the 8086's internal sixteen-bit registers to the
appropriate halves of the data bus is also performed
automatically by the 8086 and is transparent to the pro­
grammer.

(A) LOGICAL ADDRESS SPACE
(8) PHYSICAL IMPLEMENTATION OF THE

ADDRESS SPACE

512K BYTES

II
~

11f'¥' 5 I i I, • I
3 ! I I , I

I ' I I " I

I I I

,-- , ~T---.J I I
I 0.l. ~

Dr-Do

1 MEGABYTE

Figure 282. 8086 Memory

A'9-.I\, 0,5-08 BHE (HIGH) 07-00 Ao (lOW)

Figure 2838. Even Addressed Byte Transfer

TRANSFER X + 1

1\ Y+1 ,-l\ Y

,~(X+11% X ---v IV

I
"'" ;-. <""

1
~ 7 _I "" ;7

A19-.I\, 0'S-D8 BHE (lOW) 07-00 Ao (HIGH)

Figure 283b. Odd Addressed Byte Transfer

~----,TRANSFER X + 1, x,--__ --,

D1S-D8 8HE (LOW) 07-00 Ao(LOW)

Figure 2B3c. Even Addressed Word Transfer

...-__ --,FIRST BUS CYCLE,-__ ---,

~--.......:;SECOND BUS CYCLr:E ___ ,

BHE (HIGH) ""(LOWI

Figure 2B3d. Odd Addressed Word Transfer

During a byte read, the CPU floats the entire sixteer,-bit
data bus even though data is only expected on the upper
or lower half of the data bus, As will be demonstrated
later, this action simpiifies the chip select decoding re­
quirements for read only devices (ROM, EPROM), During
a byte write operation, the 8086 will drive the entire
sixteen-bit data bus. The information on the half of the
data bus not transferring data is indeterminate. These
concepts also apply to the 110 address space. Specific
examples of 110 and memory interfacing are considered
in the corresponding sections.

2C_ System Data Bus Concepts

When referring to the system data bus, two implemen­
tation alternatives must be considered; (a) the multi­
plexed address/data bus (Fig. 2Cla) and a data bus buf­
fered from the multiplexed bus by transceivers (Fig.
2Clb).

If memory or 110 devices are connected directly to the
multiplexed bus, the designer must guarantee the
devices do not corrupt the address on the bus during T1.

3-315 230792-001

inter
MULTIPLEXED DATA BUS

ADDRESS

AP-67

To avoid this, device output drivers should not be enabl­
ed by the device chip select, but should have an output
enable controlled by the system read signal (Fig. 2C2).
The 8086 timing guarantees that read is not valid until
after the address is latched by ALE (Diag. 2C1). All Intel
peripherals, EPROM products and RAM's for microproc­
essors provide output enable or read inputs to allow
connection to the multiplexed bus.

8282's
ALE-_STB

ADDRESS BUS

L-_____ A"'D:c1::...-.:.:AD""Cl\ MULTIPLEXED

Flgur.2C1a. Multiplexed Data Bus

BUFFERED DATA BUS

Figure 2C1b. Bullered Data Bu.

Tl

ADDRESS/DATA

DATA

SYSTEM
BUS

T2

WR ------<JI

Rii-----....q

MULTIPLEXED
BUS

Figure 2C2. Device. with Oulput Enable. on the Multiplexed Bus

Several techniques are available for interfacing devices
without output enables to the multiplexed bus but each
introduces other restrictions or limitations. Consider
Figure 2C3 which has chip select gated with read and
write. Two problems exist with this technique. First, the
chip select access time is reduced to the read access
time, and may require a faster device if maximum
system performance (no wait states) is to be achieved
(Diag. 2C2). Second, the designer must verify that chip
select to write setup and hold times for the device are
not violated (Diag. 2C3). Alternate techniques can be ex­
tracted from the bus interfacing techniques given later
in this section but are subject to the associated restric­
tions. In general, the best solution is obtained with
devices having output enables.

A subsequent limitation on the multiplexed bus is the
8086's drive capability of 2.0 mA and capacitive loading
of 100 pF to guarantee the specified A.C. character­
istics. Assuming capacitive loads of 20 pF per I/O
device, 12 pF per address latch and 5-12 pF per memory
device, a system mix of three peripherals and two to
four memory devices (per bus line) are close to the
loading limit.

T3 T4

,----
\~------------~----------~----------4J~----ALE ___ -+--J

Diagram 2Cl. Relationship of ALE to READ

3-316 230792-001

inter AP-67

Figure 2C3. Devices without Output Enables on the Multiplexed Bus

ADDRESS -----<'-______________ _

I

\ 1/
~r-I" I' II

DATA ----------+I---1{-----
1 ACCESS TIME FOR CS GENERATED FROM ADDRESS DECODE,

2 ACCESS TIME IF CS IS GATED WITH RDIWR.

Diagram 2C2. Access Time: CS Gated with RDIWR

ADDR----<

~---------------------

1 CS IS NOT VALID PRIOR TO WRITE AND BECOMES ACTIVE ONE OR TWO GATE
DELAYS LATER.

2 CS REMAINS VALID AFTER WRITE ONE OR TWO GATE DELAYS.

Diagram 2C3. CS to WR Set-Up and Hold

To satisfy the capacitive loading and drive requirements
of larger systems, the data bus must be buffered. The
8286 non-inverting and 8287 inverting octal transceivers
are offered as part of the 8086 family to satisfy this re­
quirement. They have three-state output buffers that
drive 32 mA on the bus interface and 10 mA on the CPU
interface and can switch capacitive loads of 300 pF at
the bus interface and 100 pF on the CPU interface in 22
ns (8287) or 30 ns (8286). To enable and control the direc­
tion of the transceivers, the 8086 system provides Data
ENable (DEN) and Data Transmit/Receive (DT/R) signals
(Fig. 2C1 b). These signals provide the appropriate tim­
ing to guarantee isolation of the multiplexed bus from
the system during T1 and elimination of bus contention
with the CPU during read and write (Diag. 2C4). Although
the memory and peripheral devices are isolated from the
CPU (Fig. 2C4), bus contention may still exist in the
system if the devices do not have an output enable con­
trol other than chip select. As an example, bus conten­
tion will exist during transition from one chip select to
another (the newly selected device begins driving the
bus before the previous device has disabled its drivers).
Another, more severe case exists during a write cycle.
From chip select to write active, a device whose outputs
are controlled only by chip select, will drive the bus
s!~L!!tane0IJs!~1 \A,lith writA rl;:ltA hp.ing driven through the
transceivers by the CPU (Diag. 2C5). The same tech­
nique given for circumventing these problems on the
multiplexed bus can be applied here with the same limi­
tations.

One last extension to the bus implementation is a sec­
ond level of buffering to reduce the total load seen by
devices on the system bus (Fig. 2C5). This is typically
done for multiboard systems and isolation of memory
arrays. The concerns with this configuration are the ad­
ditional delay for access and more important, control of
the second transceiver in relationship to the system bus
and the device being interfaced to the system bus.
Several techniques for controlling the transceiver are
given in Figure 2C6. This first technique (Fig. 2C6a)
simply distributes DEN and DT/R throughout the
system. DT/R is inverted to provide proper direction con­
trol for the second level transceivers. The second exam­
ple (Fig. 2C6b) provides control for devices with output
enables. RD is used to normally direct data from the
system bus to the peripheral. The buffer is selected
whenever a device on the local bus is chip selected. Bus
contention is possible on the device's local bus during a
read as the read simultaneously enables the device out­
put and changes the transceiver direction. The conten­
tion may also occur as the read is terminated.

3-317

For devices without output enables, the same technique
can be applied (Fig. 2C6c) if the chip select to the device
is conditioned by read or write. Controlling the chip
select with read/write prevents the device from driving
against the transceiver prior to the command being
received. The limitations with this technique are access
limited to read/write time and limited CS to write setup
and hold times.

230792-001

ADo

AD1S-ADo

1 READ RD
CYCLE'

DTIR

DEN

AO,S·AOo

ViR
WRITE
CYCLE

DEN

DTiR

AP-67

--AT~LssJ~~~F:O:-t---_-; ~1·'--_D_A_TA_-_,:_3-+D_'_5 __ ~_O+--_-___ -r __ --_T.J4-1X_F_L_O-_A_~+---------r - --------
- ~ I

I
1\'---+----+---(1

_+ ___ +-__ -')(~ __ ArD-D-R-E-S~S----J~_I---_+-------DA-T-A+O-U-T--+--------~--LI~FLrO-A-T-J

- ---
I - _J

I 1.1
~----~~-----+--+---~II

I

1 DEN IS ENABLED AFTER THE 8086 HAS FLOATED THE MULTIPLEXED BUS

2 OEN ENABLES THE TRANSCEIVERS EARLY IN THE CYCLE, BUT DT/R GUARANTEES
THE TRANSCEIVERS ARE IN TRANSMIT RATHER THAN RECEIVE MODE AND WilL
NOT DRIVE AGAINST THE CPU,

Diagram 2C4. Bus Transceiver Control

AODR ---<~ _________________ _

--/~------.+----------------
DT/R /

-'

~ BUS CONTENTION ~ ~/'/'/!!'
.OTH DEVICES DRIVE ------ :i:,/;/l; // f--------------­

THE BUS

Figure 2C4. Devices with Output Enables on the System Bus Diagram 2C5,

3-318 230792-001

AP-67

CPU LOCAL
BUS

SYSTEM
BUS

MEMORY/IO
LOCAL BUS

Figure 2C5. Fully Buffered System

Figure 2eSa. Controlling System Transceivers wilh DEN and OT/R

\iiR----

~------r----~l

RD-----.--+--------+~~

SYSTEM /L __ -'\

DATA
BUS

Figure 2C6h. SuBering Devices with DElAO

MEMORY/liD
OEVICE

Figure 2eSe. Buffering Devices without 0E!R5 and with Common
or Separate InpuUOutput

An alternate technique applicable to devices with and
without output enables is shown in Figure 2C6d. RD
again controls the direction of the transceiver but it is
not enabled until a command and chip select are active.
The possibility for bus contention still exists but is
reduced to variations in output enable VS. direction
c:-Iange time for thG tiCiriScsi'y'GL F~n accses t!me from
chip select is now available, but data will not be valid
prior to write and will only be held valid after write by the
delay to disable the transceiver.

MEMORY/IIO
DEVICE

Figure 2C6d. Buffering Devices without OEJRO and with Common
or Separate Input/Output

One last technique is given for devices with separate in·
puts and outputs (Fig. 2C6e). Separate bus receivers and
drivers are provided rather than a single transceiver. The
receiver is always enabled while the bus driver is con ..
trolled by RD and chip select. The only possibility for
bus contention in this system occurs as multiple
devices on each line of the local read bus are enabled
and disabled during chip selection changes.

Throughout this note, the multiplexed bus will be con­
sidered the local CPU bus and the demultiplexed ad·
dress and buffered data bus will be the system bus. For
additional information on bus contention and the
system problems associated with it, refer to Appendix 1.

3-319 230792-001

intJ AP-67

ell

1m

WI!

Wf CS

SYSTEM
DATA 0
BUS

MEMORYIIIO
LOCAL REAO BUS DEVICE

145240

Figure 2C6s. Buffering Devices without OEiRO and with Separate
Input/Output

20. Multiprocessor Environment

The 8086 architecture supports multiprocessor systems
basad on the concept of a shared system bus (Fig. 201).
All CPU's in the system communicate with each other
and share resources via the system bus. The bus may be
either the Intel Multibus™ system bus or an extension
of ttJe system bus defined in the previous section. The
major addition required to the demultiplexed system
bus is arbitration logic to control access to the system
bus. As each CPU asynchronously requests access to
the shared bus, the arbitration logic resolves priorities
and grants bus access to the highest priority CPU. Hav­
ing gained access to the bus, the CPU completes its
transfer and will either relinquish the bus or wait to be
forced to relinquish the bus. For a discussion on
Multibus ™ arbitration techniques, refer to AP-28A, Intel
Multibus ™ Interfacing.

Figure 201. 8086 Family Multiprocessor System

To support a multimaster interface to the Multibus
system bus for the 8086 family, the 8289 bus arbiter is
included as part of the family. The 8289 is compatible
with the 8086's local bus and in conjunction with the
8288 bus controller, implements the Multibus protocol
for bus arbitration. The 8289 provides a variety of arbitra­
tion and prioritization techniques to allow optimization
of bus availability, throughput and utilization of shared
resources. Additional features (implemented through

strapping options) extend the configuration options
beyond a pure CPU interface to lhe multi master system
bus for access to shared resources to Inciudeconcllr·
rent support of a local CPU bus for private resources.
For specific configurations and additional Information
on the 8289, refer to application note Ap·51.

3. 8086 SYSTEM DETAILS

3A. Operating Modes

Possibly the most unique feature of the 8086 is the ablli·
ty to select the base machine configuration most suited
to the application. The MN/MX input to the 8086 is a
strapping option which allows the designer to select
between two functional definitions of a subset of the
8086 outputs.

MINIMUM MODE

The minimum mode 8086 (Fig. 3All is optimized for
small to medium (one or two boards), single CPU
systems. Its system architecture is directed at satisfy·
ing the requirements of the lower to middle segment of
high performance 16·bit applications. The CPU main­
tains the full megabyte memory space, 64K byte I/O
space and 16-bit data path. The CPU directly provides all
bus control (DTlR, DEN, ALE, M/iO), commands
(RD,WR,INTA) and a simple CPU preemption mech­
anism (HOLD, HLDA) compatible with existing DMA
controllers.

MAXIMUM MODE

The maximum mode (Fig. 3A2) extends the system ar­
chitecture to support multiprocessor configurations,
and local instruction set extension processors (co­
processors). Through addition of the 8288 bipolar bus
controlier, the 8086 outputs assigned to bus control and
commands in the minimum mode are redefined to allow
these extensions and enhance general system perform­
ance. Specifically, (1) two prioritized levels of processor
preemption (RQ/GTO, RQ/GT1) allow multiple proc­
essors to reside on the 8086's local bus and share its in­
terface to the system bus, (2) Queue status (QSO,QS1) is
available to allow external devices like ICE'M-86 or
special instruction set extension co-processors to track
the CPU instruction execution, (3) access control to
shared resources in multiprocessor systems is sup­
ported by a hardware bus lock mechanism and (4)
system command and configuration options are ex­
panded via ancillary devices like the 8288 bus controller
and 8289 bus arbiter.

The queue status indicates what information is being
removed from the internal queue and when the queue is
being reset due to a transfer of control (Table 3Al). By
monitoring the SO,51,52 status lines for instructions
entering the 8086 (1,0,0 indicates code access while AO
and BHE indicate word or byte) and QSO, QSl for in­
structions leaving the 8086's internal queue,it is possi­
ble to track the instruction execution. Since instruc­
tions are executed from the 8086's internal queue, the
queue status is presented each CPU clock cycle and is
not related to the bus cycle activity. This mechanism (1)
allows a co-processor to detect execution of an

3-320 230792-001

inter AP-67

ESCAPE instruction which directs the co-processor to
perform a specific task and (2) allows ICE-86 to trap ex­
ecution of a specific memory location. An example of a
circuit used by ICE is given in Figure 3A3. The first up
down counter tracks the depth of the queue while the
second captures the queue depth on a match. The sec­
ond counter decrements on further fetches from the
queue until the queue is flushed or the count goes to
zero indicating execution of the match address. The
first counter decrements on fetch from the queue
(QSO= 1) and increments on code fetches into the

queue. Note that a normal code fetch will transfer two
bytes into the queue so two clock increments are given
to the counter (T201 and T301) unless a single byte is
loaded over the upper half of the bus (AO-P is high).
Since the execution unit (EU) is not synchronized to the
bus interface unit (BIU), a fetch from the queue can oc­
cur simultaneously with a transfer into the queue. The
exclusive-or gate driving the ENP input of the first
counter allows these simultaneous operations to cancel
each other and not modify the queue depth.

vee r~D~ t _"OC' -':ENERATOR

RES

I ROY

GND t

Vee rD~

L -CLOCK
~NERATOR

RES

.l.

I ROY

GND t

MN/MX

I- ClK MIlO

I- READY INTA

r-- RESET RO
-
WR

DriR

DEN

8086 CPU

ALE

ADc-AD15
A16-Ai9

BHE

~Vcc

1----,
r----, I

I I r----...
I

I I I
I I

STB

! A GND I I ~Oe 8282

J rODR/DATA LATCH
2 OR 3 r

-
I I
II J----:1
IL T---'I
L-...Joe II

8286 I ~
OPTIONAL

FOR INCREASED
DATA BUS DRIVE

I TRAN7~EIVER I

Figure 3Al. Minimum Modo 8086

• CLK
MNfMX ~GND MRDC

... eLK So SO MWfC

..... READY 51 S; 8288 AMWC

.... RESET 52 52 BUS IORC
CTRLR - DEN lowe

8086 r-- DTiR AIOWC
CPU - ALE IN'fA

LOCK r- N.C.

"- STB

GND Oe

ADo-AD15 1,1 t.. 8282

A16- A19 ~DDRIDATA
LATCH

r (2 OR 3)

BHE f--

~
T

Oe 1,1 8286
TRANSCEIVER

~

(2) I~

r
FIgure 3A2. MaXImum Mode 8086

3-321

} COMMAND
BUS

>- 1 MEGABYTE
ADDRESS BUS

> 16·alT
DATA BUS

r--
I--
I--
I-- l "o.~'" BUS

I-- I I--
r--

~ 1 MEGABYTE 1> ADDRESS BUS

\ 16·BIT r DATA BUS

230792-001

AP-67

TABLE 3Al. QUEUE STATUS

aSI aso

o (LOW) 0 No Operation
0 1 First Byte of Op Code from Queue
1 (HIGH) 0 Empty the Queue
1 1 Subsequent Byte from Queue

The queue status is valid during the CLK cycle after
which the queue operation is performed.

To address the problem of controlling access to shared
resources, the maximum mode 8086 provides a hard·
ware LOCK output. The LOCK output is activated
through the instruction stream by execution of the
LOCK prefix instruction. The LOCK output goes active
in the first CPU clock cycle following execution of the
prefix and remains active until the clock following the
completion of the instruction following the LOCK prefix.
To provide bus access control in multiprocessor
systems, the LOCK signal should be incorporated into
the system bus arbitration logic resident to the CPU.

During normal multiprocessor system operation, pri·
ority of the shared system bus is determined by the ar·
bitration circuitry on a cycle by cycle basis. As each
CPU requires a transfer over the system bus, it requests
access to the bus via its resident bus arbitration logic.
When the CPU gains priority (determined by the system
bus arbitration scheme and any associated logic), it
takes control of the bus, performs its bus cycle and
either maintains bus control, voluntarily releases the
bus or is forced off the bus by the loss of priority. The
lock mechanism prevents the CPU from losing bus con·
trol (either voluntarily or by force) and guarantees a CPU
the ability to execute multiple bus cycles (during execu·

tion of the locked instruction) without intervention and
possible corruption of the data by another. CPU. A
classic use of the mechanism is the 'TEST and SET
semaphore' during which a CPU must read from a
shared memory location and return data to the location
without allowing another CPU to reference the same
location between the TEST operation (read) and the SET
operation (write). I n the 8086 this is accomplished with a
locked exchange instruction.

LOCK XCHG reg, MEMORY; reg is any register
;MEMORY is the addl'llss of the
;semaphore

The activity of the LOCK output is shown in Diagram
3A1. Another interesting use of the LOCK for multiproc­
essor systems is a locked block move which allows high
speed message transfer from one CPU's message buf­
fer to another.

During the locked instruction, a request for processor
preemption (RQ/GT) is recorded but not acknowledged
until completion of the locked instruction. The LOCK
has no direct affect on interrupts. As an exam.E\e, a
locked HALT instruction will cause HOLD (or RQ/GT) re­
quests to be ignored but will allow the CPU to exit the
HALT state on an interrupt. In general, prefix bytes are
considered extensions of the instructions they precede.
Therefore, interrupts that occur during execution of a
prefix are not acknowledged (assuming interrupts are
enabled) until completion of the instruction following
the prefixes (except for instructions which allow servic·
ing interrupts during their execution, i.e., HALT, WAIT
and repeated string primitives). Note that multiple prefix
bytes may precede an instruction. As another example,
consider a 'string primitive' preceded by the repetition

.--------1 ><:>-------"'+CLO

==============t[~~--------------t---------------~9 LOAD 745189

74800

SOLH --------:-r""\
SlLH --------'-LJ

S2LH ______ --='''-1'
74504

aCTO

MHBYTE AND 1 - MATCH CONDITIONS
CLKA
051, QSO
T301, T201
SOLH-S2LH
CACCE$S
aCTO
AO·P

-'CPU CLOCK
- CPU QUEUE STATUS
- T STATES T3 and 12 (CLOCK LOW TIME=01)
- CPU 8T ATUS 50·S2
- CODE ACCESS
- QUEUE MATCH
- SINGLE BYTE ON UPPER HALF OF THE BUS

~'~'~--_____________ CACCE~

Figure 3A3. Example Circuit to Track the 8086 Queue

3-322 230792-001

AP-67

prefix (REP) which is interruptible after each execution
of the string primitive. This holds even if the REP prefix
is combined with the LOCK prefix and prevents inter·
rupts from being locked out during a block move or
other repeated string operation. As long as the opera·
tion is not interrupted, LOCK remains active. Further in·
formation on the operation of an interrupted string
operation with multiple prefixes is presented in the sec·
tion dealing with the 8086 interrupt structure.

Three additional status lines (SO, S1, 52) are defined to
provide communications with the 8288 and 8289. The
status lines tell the 8288 when to initiate a bus cycle,
what type of command to issue and when to terminate
the bus cycle. The 8288 samples the status lines at the
beginning of each CPU clock (CLK). To initiate a bus cy·
cle, the CPU drives the status lines from the passive
state (SO, 81, 52 = 1) to one of seven possible command
codes (Table 3A2). This occurs on the rising edge of the
clock during T4 of the previous bus cycle or a TI (idle cy·
cle, no current bus activity). The 8288 detects the status
change by sampling the status lines on the high to low
transition of each clock cycle. The 8288 starts a bus cy·
cle by generating ALE and appropriate buffer direction
control in the clock cycle immediately following detec·
tion of the status change (T1). The bus transceivers and
me seiecteo command are enabied in the next ciocK
cycle (T2) (or T3 for normal write commands). When the
status returns to the passive state, the 8288 will ter·
minate the command as shown in Diagram 3A2. Since
the CPU will not return the status to the passive state
until the 'ready' indication is received, the 8288 will
maintain active command and bus control for any
number of wait cycles. The status lines may also be
used by other processors on the 8086's local bus to
monitor bus activity and control the 8288 if they gain
control of the local bus.

LOCK

LOCK
PREFIX

BYTe FROM
QUEUE

NOP BYTE
FROM THE

QUEUE
(LOCKED NOP)

TABLE 3A2. STATUS LINE DECODES

52 51 So

o (LOW) 0 0 Interrupt Acknowledge
0 0 1 Read 1/0 Port
0 1 0 Write 1/0 Port
0 1 1 Halt
1 (HIGH) 0 0 Code Access
1 0 1 Read Memory
1 1 0 Write Memory
1 1 1 Passive

The 8288 provides the bus control (DEN, DT/R, ALE) and
commands (INTA, MRDC, 10RC, MWTC, AMWC, 10WC,
AIOWC) removed from the CPU. The command structure
has separate read and write commands for memory and
1/0 to provide compatibility with the Multibus command
structure.

The advanced write commands are enabled one clock
period earlier than the normal write to accommodate the
wider write pulse widths often required by peripherals
and static RAMs. The normal write provides data setup
prior to write to accommodate dynamic RAM memories
and 1/0 devices which strobe data on the leading edge of
write. The advanced write commands do no! guarani""
that data is valid prior to the leading edge of the com·
mand. The DEN signal in the maximum mode is inverted
from the minimum mode to extend transceiver control
by allowing logical conjunction of DEN with other
signals. While not appearing to be a significant benefit
in the basic maximum mode configuration, introduction
of interrupt control and various system configurations
will demonstrate the usefulness of qualifying DEN.
Diagram 3A3 compares the timing of the minimum and
maximum mode bus transfer commands. Although the

1 QUEUE STATUS INDICATES FIRST BYTE OF OPCODE FROM THE QUEUE.

2 THE LOCK OUTPUT WILL GO INACTIVE BeTweEN SEPARATE LOCKED INSTRUCTIONS.

3 TWO CLOCKS ARE REQUIRED FOR DECODE OF THE LOCK PREFIX AND
ACTIVATION OF THE LOCK SIGNAL.

4 SINCE QUEUE STATUS REFLECTS THE QUEUE OPERATION IN THE PREVIOUS CLOCK
CYCLE. THE LOCK OUTPUT ACTUALLY GOES ACTIVE COINCIDENT WITH THE START
OF THE NEXT INSTRUCTION AND REMAINS ACTIVE FOR ONE CLOCK CYCLE
FOLLOWING THE INSTRUCTION.

5 IF THE INSTRUCTION FOLLOWING THE LOCK PREFIX IS NOT IN THE QUEUE, THE
LOCK OUTPUT STILL GOES ACTIVE AS SHOWN WHILE THE INSTRUCTION IS BEING
FETCHED.

6 THE BIU WILL STILL PERFORM INSTRUCTION FETCH CYCLES DURING EXECUTION
OF A LOCKED INSTRUCTION. THE LOCK MERELY LOCKS THE BUS TO THIS CPU FOR
WHATEVER BUS CYCLES THE CPU PERFORMS DURING THE LOCKED INSTRUCTION.

Diagram 3A1. 8086 Lock Activity

3-323 230792-001

intJ AP-67

maximum mode configuration is designed for multi·
processor environments, large single CPU designs
(either Multibus systems or greater than two PC boards)
should also use the maximum mode. Since the 8288 is a
bipolar dedicated controller device, its output drive for
the commands (32 rnA) and tolerances on AC character·
istics (timing parameters and worse case delays) pro·
vide better large system performance than the minimum
mode 8086.

ClK

ALE

READY

In addition to assuming the functions removed from the
CPU, the 8288 provides additional strapping options and
controls to support multiprocessor configurations and
peripheral devices on the CPU local bus. These capa·
bilities allow assigning resources (memory or 1/0) as
shared (available on the Multibus system bus) or private
(accessible only by this CPU) to reduce contention for
access to the Multibus system bus and improve multi·
CPU system performance. Specific configuration possi·
bilities are discussed in AP·51.

GOES INAcnVE IN THE STATE
JUST PRIOR TO T 4

----------\

o
WAIT

READY

\-----

Diagram 3A2. Status Line Activation and Termination

MN
MODE
8086

MX
MODE

ClK (8284 OUTPUT)

8086 AMWC OR Jrniii1C
WITH
8288

MW'\'"e OR Towc:

TCVCTX-

TCLMH_ 35

Diagram 3A3. 8086 Minimum and Maximum Mode Command Timing

3-324 230792-001

AP-67

3B. Clock Generation

The 8086 requires a clock signal with fast rise and fall
times (10 ns max) between low and high voltages of
- 0.5 to + 0.6 low and 3.9 to VCC + 1.0 high. The max·
imum clock frequency of the 8086 is 5 MHz and 8 MHz
for the 8086·2. Since the design of the 8086 incorporates
dynamic cells, a minimum frequency of 2 MHz is reo
quired to retain the state of the machine. Due to the
minimum frequency requirement, single stepping or
cycling of the CPU may not be accomplished by dis·
abling the clock. The timing and voltage requirements of
the CPU clock are shown in Figure 381. In general, for
frequencies below the maximum, the CPU clock need
not satisfy the frequency dependent pulse width limi·
tations stated in the 8086 data sheet. the values
specified only reflect the minimum values which must
be satisfied and are stated in terms of the maximum
clock frequency. As the clock frequency approaches the
maximum frequency of the CPU, the clock must con·
form to a 33% duty cycle to satisfy the CPU minimum
clock low and high time specifications.

-II-m" =~? "."o=n'""MmAX."".,J 1'° n. MAX

Flgur.3B1. 8088 Clock

An optimum 33% duty cycle clock with the required
voltage levels and transition times can be obtained with
the 8284 clock generator (Fig. 382). Either an external
frequency source or a series resonant crystal may drive
the 8284. The selected source must oscillate at 3X the
desired CPU frequency. To select the crystal inputs of
the 8284 as the frequency source for clock generation,
the FIG Input to the 8284 must be strapped to ground.
The strapping option allows selecting either the crystal
or the external frequency Input as the source for clock
generation. Although the 8284 provides an Input for a
tank circuit to accommodate overtone mode crystals,
fundamental mode crystals are recommended for more
accurate and stable frequency generation. When selec·
ting a crystal for use with the 8284, the series resistance
should be as low as possible. Since other circuit com·
ponents will tend to shift the operating frequency from
resonance, the operating Impedance will typically be
higher than the specified series resistance. If the at·
tenuation of the oscillator's feedback circuit reduces
the loop gain to less than one, the oscillator will fail.
Since the oscillator delays in the 8284 appear as induc·
tive elements to the crystal, causing it to run at a fre·
quency below that of the pure series resonance, a
capacitor should be placed in series with the crystal and
the X2 input of the 8284. This capacitor serves to cancel
this inductive element. The value of the capacitor (Cl)

must not cause the Impedance of the feedback circuit to
reduce the loop gain below one. The impedance of the
capacitor is a function of the operating frequency and
can be determined from the following equation:

XCl= 1/2n'F'Cl

17 X, OSC 12

8284 S088 XTAL Cl

~ 'S
CLK 1-"----',., CLK

x,
CL

" FIe:;

Figure 382. 8284 Clock Generator

It is recommended that the crystal series resistance
plus XCl be kept less than 1 K ohms. This capacitor also
serves to debias the crystal and prevent a DC voltage
bias from straining and perhaps damaging the crystal·
line structure. As the crystal frequency increases, the
amount of capacitance should be decreased. For exam·
pie, a 12 MHz crystal may require Cl '" 24 pF while 22
MHz may require GL'" 8 pF. ii very close correlation
with the pure series resonance is not necessary, a
nominal Cl value of 12·15 pF may be IJsed with a 15 MHz
crystal (5 MHz 8086 operation). 80ard layout and compo·
nent variances wi!1 affect the actual amount of induc·
tance and therefore the series capacitance required to
cancel it out (this is especially true for wire·wrapped
layouts).

Two of the many vendors which supply crystals lor Intel
microprocessors are listed in Table 381 along with a list
of crystal part numbers for various frequencies which
may be of interest. For additional information on speci·
fying crystals for Intel components refer to application
note Ap·35.

TABLE 3B1. CRYSTAL VENDORS

I Parallell Crystek(l) CTS Knlght,(2
Series Corp. Inc.

15.0 MHz S CY15A MP150
18.432 S CY198' MP184'
24.0 MHz S CY24A MP240

-Intel also supplies a crystal numbered 8801 for this application.

Not.a: 1. Address: 1000 Crystal Drive, Fort Meyers, Florida 33901
2. Address: 400 Reimann Ave., Sandwich, illinois

If a high accuracy frequency source, externally variable
frequency source or a common source for driving mul·
tiple 8284's is desired, the External Frequency Input
(EFI) of the 8284 can be selected by strapping the FICin·
put to 5 volts through "'1 K ohms (Fig. 383). The external
frequency source should be TTL compatible, have a
50% duty cycle and oscillate at three times the desired
CPU operating frequency. The maximum EFI frequency
the 8284 can accept is slightly above 24 MHz with
minimum clock low and high times of 13 ns. Although

3-325 230792·001

AP-67

no minimum EFI frequency is specified, it should not
violate the CPU minimum clock rate. If a common fre·
quency source is used to drive multiple 8284's
distributed throughout the system, each 8284 should be
driven by its own line from the source. To minimize
noise in the system, each line should be a twisted pair
driven by a buffer like the 74lS04 with the ground of the
twisted pair connecting the grounds of the source and
receiver. To minimize clock skew, the lines to all 8284's
should be of equal length. A simple technique for gen·
erating a master frequency source for additional 8284's
is shown in Figure 384. One 8284 with a crystal is used
to generate the desired frequency. The oscillator output
of the 8284 (OSC) equals the crystal frequency and is
used to drive the external frequency to all other 8284's
in the system.

+5

x,
X,

EXTERNAL Fie
Fr.EQUENCY---.!.::.j EFI

SOURCE

8284

elK ~--.!!'·CfclK

8088

Figure 383. 8284 with External Frequency Source

c y 18

13

+5

Figure 384. External Frequency for Multiple 82845

000

elK

PClK

The oscillator output Is inverted from the oscillator
signal used to drive the CPU clock generator circuit.
Therefore, the oscillator output of one 8284 should not
drive the EFI input of a second 8284 if both are driving
clock inputs of separate CPU's that are to be syn­
chronized. The variation on EFI to ClK delay over a
range of 8284's may approach 35 to 45 ns.lf, however, all
8284's are of the same package type, have the same
relative supply voltage and operate in the same tem­
perature environment, the variation will be reduced to
between 15 and 25 ns.

There are three frequency outputs from the 8284, the
oscillator (OSC) mentioned above, the system clock
(ClK) which drives the CPU, and a peripheral clock
(PClK) that runs at one half the CPU clock frequency.
The oscillator output is only driven by the crystal and is
not affected by the Fie strapping ortion. If a crystal is
not connected to the 8284 when the external frequency
input is used, the oscillator output is indeterminate. The
CPU clock is derived from the selected frequency
source by an internal divide by three counter. The
counter generates the 33% duty cycle clock which is op­
timum for the CPU at maximum frequency. The
peripheral clock has a 50% duty cycle and is derived
from the CPU clock. Diagram 380 shows the relation­
ship of ClK to OSC and PClK to ClK. The maximum
skew is 20 ns between OSC and ClK, and 22 ns between
ClK and PClK.

Since the state of the 8284 divide by three counter is in­
determinate at system initialization (power on), an exter­
nal sync to the counter (CSYNC) is provided to allow
synchronization of the CPU clock to an external event.
When CSYNC is brought high, the ClK and PClK out­
puts are forced high. When CSYNC returns low, the next
positive clock from the frequency source starts clock
generation. CSYNC must be active for a minimum of two
periods of the frequency source. If CSYNC is asynchro­
nous to the frequency source, the circuit in Figure 385
should be used for synchronization. The two latches
minimize the probability of a meta-stable state in the
latch driving CSYNC. The latches are clocked with the
inverse of the frequency source to guarantee the 8284
setup and hold time of CSYNC to the frequency source
(Diag. 381). If a single 8284 is to be synchronized to an
external event and an external frequency source is not
used, the oscillator output of the 8284 may be used to

Diagram 3BO. OSC - ClK and ClK - PClK Relationships

3-326 230792-001

intel' AP-67

synchronize CSYNC (Fig. 386). Since the oscillator out­
put is inverted from the internal oscillator Signal, the in­
verter in the previous example is not required. If multiple
8284's are to be synchronized, an external frequency
source must drive all 8284's and a single CSYNC syn­
chronization circuit must drive the CSYNC input of all
8284's (Fig_ 387). Since activation of CSYNC may cause
violation of CPU minimum clock low time, it should only
be enabled during reset or CPU clock high. CSYNC must
also be disabled a minimum of four CPU clocks before
the end of reset to guarantee proper CPU reset.

EXTERNAL
SYNC ------j

CONDITION
EXTERNAL

FREQUENCY

+5

1K

TO
CSYNC
INPUT

TO
'--------------EFI

EFI

C$YNC J
I

-+I

Figure 3B5. Synchronizing CSYNC with EFI

I
I
I
I..-TYHEH

·MAX IS SPEC'ED TO GUARANTEE MAX B086 CLOCK FREQUENCY

Diagram 381. CSYNC Setup and Hold to EFI

17 osc 12 r- x,
+5

Cl

Y 18
X,

Fie

SYNC CSYNC ClK 8

Figure 386. EFI from 8284 Oscillator

SYNC-----t----j

.5
I

Figure 3B7. Synchronizing Multiple 82840

Due to the fast transitions and high drive (5 mAl of the
8284 ClK output, it may be necessary to put a 10 to 100
ohm resistor in series with the clock line to eliminate
ringing (resistor value depending on the amount of drive
requirea). IT mUltiple sources of eLK are needed with
minimum skew, ClK can be buffered by a high drive
device (74S241) with outputs tied to 5 volts through 100
ohms to guarantee VOH = 3.9 min (8086 minimum clock
input high voltage) (Fig. 388). A single 8284 should not
be used to generate the ClK for multiple CPU's that do
not share a common local (multiplexed) bus since the
8284 synchronizes ready to the CPU and can only ac­
commodate ready for a single CPU. If multiple CPU's
share a local bus, they should be driven with the same
clock to optimize transfer of bus control. Under these
circumstances, only one CPU will be using the bus for a
particular bus cycle which allows sharing a common
READY signal (Fig. 389).

+5

100Q

ClK

8284
100Q

100Q

Figure 3B8. Buffering the 8284 ClK Output

3-327 230792-001

AP-67

MULTIPLEXED BUS

Figure 3B9. 8086 and Co-Processor on the Local Bus Share a
Common 8284

3C. Reset

The 8086 requires a high active reset with minimum
pulse width of four CPU clocks except after power on
which requires a 50 /"S reset pulse. Since the CPU inter­
nally synchronizes reset with the olock, the reset is in­
ternally active for up to one clock period after the exter­
nal reset. Non-Maskable Interrupts (NMI) or hold re­
quests on RO/GT which occur during the internal reset,
are not acknowledged. A minimum mode hold request
or maximum mode RO pulses active immediately after
the internal reset will be honored before the first in­
struction fetch.

From reset, the 8086 will condition the bus as shown in
Table 3C1. The multiplexed bus will three-state upon
detection of reset by the CPU. Other Signals which
three-state will be driven to the inactive state for one
clock low interval prior to entering three-state (Fig. 3C1).
In the minimum mode, ALE and HLDA are driven inac­
tive and are not three-stated. In the maximum mode
RO/GT lines are held inactive and the queue status in:
dicates no activity. The queue status will not indicate a
reset of the queue so any user defined external circuits
monitoring the queue should also be reset by the
system reset. 22K ohm pull-up resistors should be con­
nected to the CPU command and bus control lines to

CLOCK

RESET INPUT

INTERNAL RESET

BUS

guarantee the inactive state of these lines in systems
where leakage currents or bus capacitance may cause
the voltage levels to settle below the minimum high
voltage of devices in the system. In maximum mode
sys!!ms, the 8288 contains internal pull-ups on the
SO-S2 inputs to maintain the inactive state for these
lines when the CPU floats the bus. The high state of the
status lines during reset causes the 8288 to treat the
reset sequence as a passive state. The condition of the
8288 outputs for the passive state are shown in Table
3C2. If the reset occurs during a bus cycle, the return of
the status lines to the passive state will terminate the
bus cycle and return the command lines to the inactive
state. Note that the 8288 does not three-state the com­
mand outputs based on the passive state of the status
lines. If the designer needs to three-state the CPU off
the bus during reset in a single CPU system, the reset
Signal should also be connected to the 8288's AEN input
and the output enable of the address latches (Fig. 3C2).
This forces the command and address bus interface to
three-state while the inactive state of DEN from the 8288
three-states the transceivers on the data bus.

Tabla 3C1. 8086 Bus During Raset

Signals Condition

AD15·Q Three-State
A19·1E;lSs.3 Three-State
BHE/S7 Three-State
S2/(M/iQ) Driven to "1" then three-state
S1/(DT/R) Driven to "1" then three-state
SOlD EN Driven to "1" then three-state
LOCKlWR Driven to "1" then three-state
RD Driven to "1" then three-state
INTA Driven to "1" then three-state
ALE a
HLDA a
RO/GTO 1
RO/GT1 1
OSO a
OS1 a

t . L FLOAT BUS

L-.-- DRIVE OUTPUT TO INACTIVE STATE

Figure 3C1. 8086 Bus Conditioning on Reset

3-328 230792-001

AP-67

TABLE 3C2. 8288 OUTPUTS DURING PASSIVE MODE

ALE
DEN
DT/R
MCE/PDEN
COMMANDS

8086

o
o
1

011
1

~ o
Figure 3C2. Reset Disable for Max Mode 8086 Bus Interface

For multiple processor systems using arbitration of a
multimaster bus, the system reset should be connected
to the IN IT input of the 8289 bus arbiter in addition to
the 8284 reset input (Fig. 3C3). The low ac:iv6 INIT :npu;
forces all 8289 outputs to their inactive state. The inac·
tive state of the 8289 AEN output will force the 8288 to
three·state the command outputs and the address
latches to three-state the address bus interface. DEN in­
active from the 8288 will three-state the data bus inter­
face. For the multimaster CPU configuration, the reset
should be common to all CPU's (8289's and 8284'5) and
satisfy the maximum of either the CPU reset re­
quirements or 3 TBLBL (3 8289 bus clock times)+ 3
TCLCL (3 8086 clock cycle times) to satisfy 8289 reset
requirements.

8284

RESET

RESET

8086 L:J
ofe:l o

Figure 3C3. Reset Disable of for Max Mode 8086 Bus Interface in
Multi CPU System

If the 8288 command outputs are three-stated during
reset, the command lines should be pulled up to Vee
through 2.2K ohm resistors.

The reset signal to the 8086 can be generated by the
8284. The 8284 has a schmitt trigger input (RES) for
generating reset from a low active external reset. The
hysteresis specified in the 8284 data sheet implies that
at least .25 volts will separate the 0 and 1 switching
point of the 8284 reset input. Inputs without hysteresis
will switch from low to high and high to low at approxi­
mately the same voltage threshold. The inputs are
guaranteed to switch at specified low and high voltages
(VIL and VIH) but the actual switching point is anywhere
in-between. Since VIL min is specified at .8 volts, the
hysteresis guarantees that the reset will be active until
the input reaches at least 1.05 volts. A reset will not be
recognized until the input drops at least .25 volts below
the reset inputs VIH of 2.6 volts.

To guarantee reset from power up, the reset input must
remain below 1.05 volts for 50 microseconds after Vee
has reached the minimum supply voltage of 4.5 volts.
The hysteresis allows the reset input to be driven by a
simple RC circuit as shown in Figure 3C4. The
calculated RC value does not include time for the power
~:"':~P~l !~ ~ooc!l ~.5 velt:; c:" th8 :::hz.rgs :!c:u~L!!::!tec d!..!~­
ing this interval. Without the hysteresis, the reset out­
put might oscillate as the input voltage passes through
the switching voltage of the input. The calculated RC
value provides the minimum required reset period of 50
microseconds for 8284's that switch at the 1.05 volt
level and a reset period of approximately 162 micro­
seconds for 8284's that switch at the 2.6 volt level. If
tighter tolerance between the minimum and maximum
reset times is necessary, the reset circuit shown in
Figure 3C5 might be used rather than the simple RC cir­
cuit. This circuit provides a constant current source and
a linear charge rate on the capacitor rather than the in­
verse exponential charge rate of the RC circuit. The
maximum reset period for this implementation is 124
microseconds.

3-329

RESET IN __ + __ ''-'1' RES

8284

V
5

1621-1$

i-- MINI1MUM RESET ACTIVE TIME

= SO J.lsec
= 4.5

Vc = 1.05

RC 188x10- 6

, 1-- MAXIMUM RESET ACTIVE TIME

Figure 3C4. 8284 Reset Circuit

230792-001

AP-67

D,

D,

Vee

RESET

R, IC

R1 - DETERMINES CURRENT TO CHARGE C
R2 - VALUE NOT CRITICAL ::::10K

Ie = CHARGE CURRENT = Vbc(D1 ~ 02 - T 1)

IF ALL SEMICONDUCTORS ARE SILICON, Ie ~ ~

·k----'vee
-.6 dV Ie

df=c

Figure 3C5. Constant Curren! Power·On Reset Circuit

The 8284 synchronizes the reset input with the CPU
clock to generate the RESET signal to the CPU (Fig.
3C6). The output is also avai lable as a general reset to
the entire system. The reset has no effect on any clock
circuits in the 8284.

SYSTEM
17 X, ClK RESET

CJ 8284 19
ClK

L, 18
X, 8086

+5 13 10 21
Fie RESET RESET

':'

11
RES

I

Figure 3C6. 8086 Reset and System Reset

CLOCK

8086 READY

READY INACTIVE 8 ns

3~. Ready Implementation and Timing

As discussed previously, the ready signal is used in the
system to accommodate memory and I/O devices that
cannot transfer information at the maximum CPU bus
bandwidth. Ready is also used in multiprocessor
systems to force the CPU to wait for access to the
system bus or Multibus system bus. To insert a wait
state in the bus cycle, the READY signal to the CPU
must be inactive (low) by the end of T2. To avoid inser­
tion of a wait state, READY must be active (high) within
a specified setup time prior to the positive transition
during T3. Depending on the size and characteristics of
the system, ready implementatlon may take one of two
approaches.

The classical ready implementation is to have the
system 'normally not ready.' When the selected device
receives the command (RDIWRIINTA) and has had suffi­
cient time to complete the command, it activates
READY to the CPU, allowing the CPU to terminate the
bus cycle. This implementation is characteristic of large
multiprocessor, Multibus systems or systems where
propagation delays, bus access delays and device char­
acteristics inherently slow down the system. For max­
imum system performance, devices that can run with no
wait states must return 'READY' within the previously
described limit. Failure to respond in time will only
result in the insertion of one or more wait cycles.

An alternate technique is to have the system 'normally
ready.' All devices are assumed to operate at the max­
imum CPU bus bandwidth. Devices that do not meet the
requirement must disable READY by the end of T2 to
guarantee the insertion of wait cycles. This implementa­
tion is typically applied to small single CPU systems
and reduces the logic required to control the ready
signal. Since the failure of a device requiring wait states
to disable READY by the end of T2 will result in prema­
ture termination of the bus cycle, the system timing
must be carefully analyzed when using this approach.

The 8086 has two different timing requirements on
READY depending on the system implementation. For a
'normally ready' system to insert a wait state, the
READY must be disabled within 8 ns (TRYLCL) after the
end of T2 (start of T3) (Diag. 3D1). To guarantee proper

I
HOLD TIME 30 ns

--l I... 119 ns TO GUARANTEE THE
NEXT CYCLE IS T,

Diagram 301. Normally Ready System Inserting a Wait State

3-330 230792-001

inter AP-67

operation of the 8086, the READY input must not change
from ready to not ready during the clock low time of T3.
For a 'normally not ready' system to avoid wait states,
READY must be active within 119 ns (TRYHCH) of the

positive clock transition during T3 (Diag. 3D2). For both
cases, READY must satisfy a hold time of 30 ns
(TCHRYX) from the T3 or TW positive clock transition.

CLOCK

8086 READY

Diagram 302. Normally Not Ready System Avoiding a Wait State

1?
X, elK

1~ I
elK

Cl RESET
10 21

RESET

Y 18
X, 22

READY READY
+5 13

FJC
8284 8086

11
RES

3 AEN1

:J RDY,

7 AEN2

RDY2

To generate a stable READY signal which satisfies the
previous setup and hold times, the 8284 provides two
separate system ready inputs (RDY1, RDY2) and a single
synchronized ready output (READY) for the CPU. The
RDY in outs are Qualified with separate access enables
(AEN1,AEN2, low active) to allow selecting one of the
two ready signals (Fig. 3D1). The gated signals are
logically OR'ed and sampled at the beginning of each
CLK cycle to generate READY to the CPU (Diag. 3D3).
The sampled READY signal is valid within 8 ns (TRYLCL)
after CLK to satisfy the CPU timing requirements on
'not ready' and ready. Since READY cannot change until
the next CLK, the hold time requirements are also satis­
fied. The system ready inputs to the 8284 (RDY1,RDY2)
must be valid 35 ns (TRIVCL) before T3 and AEN must be
valid 60 ns before T3. For a system using only one RDY
input, the associated AEN is tied to ground while the
other AEN is connected to 5 volts through "'1 K ohms
(Fig. 3D2a). If the system generates a low active ready
Signal, it can be connected to the 8284 AEN input if the
additional setup time required by the 8284 AEN input is
satisfied. In this case, the associated RDY input would
be tied high (Fig. 3D2b). Figure 301. Ready Inputs to the 8284 and Output to the 8086

CLOCK

8284 READY OUT
(TO 8086)

---~._T.rrw

NOTE: THE 8284 DATA SHEET SPECIFIES READY OUT DELAY (TRYlCl) AS -8 ns
'BEFORE' THE END OF T2 WHICH IMPLIES THE TIMING SHOWN.

Diagram 303. 8284 with 8086 Ready Timing

3-331 230792-001

intel· AP-67

SYSTEM
READY

+5

8284

lK

Figu,e 3020. Using ROYlIROY2 to Gene,ate Ready

lK

+5

3 AENI 8284
4 RDYI

~ AEN2
RDY2

Figure 302b. Using AEN1/AEN2 to Generate Ready

The majority of memory and peripheral devices which
fail to operate at the maximum CPU frequency typically
do not require more than one wait state. The circuit
given in Figure 3D3 is an example of a simple wait state
generator. The system ready line is driven low whenever
a device requiring one wait state is selected. The flip
flop is cleared by ALE, enabling RDY to the 8284. If no
wait states are required, the flip flop does not change. If
the system ready is driven low, the flip flop toggles on
the low to high clock transition of T2 to force one wait
state. The next low to high clock transition toggles the
flip flop again to indicate ready and allow completion of
the bus cycle. Further changes in the state of the flip
flop will not affect the bus cycle. The circuit allows
approximately 100 ns for chip select decode and condi·
tioning of the system ready (Diag. 3D4).

If the system is 'normally not ready,' the programmer
should not assign executable code to the last six bytes
of physical memory. Since the 8086 prefetches instruc·
tions, the CPU may attempt to access non·exlstent
memory when executing code at the end of physical

memory. If the access to non·existent memory fails to
enable READY, the system will be caught in an in­
definite wait.

~:~~~~'~----~-4"

ALE ---t>o----

" 74LS7J

•

Figure 303. Single Wait State Generator

3E. Interrupt Structure

The 8086 interrupt structure is based on a table of inter­
rupt vectors stored in memory locations OH through
003FFH. Each vector consists of two bytes for the in­
struction pointer and two bytes for the code segment.
These two values combine to form the address of the in­
terrupt service routine. This allows the table to contain
up to 256 interrupt vectors which specify the starting ad­
dress of the service routines anywhere in the one mega­
byte address space of the 8086. If fewer than 256 differ­
ent interrupts are defined in the system, the user need
only allocate enough memory for the interrupt vector
table to provide the vectors for the defined interrupts.
During initial system debug, however, it may be desir­
able to assign all undefined interrupt types to a trap
routine to detect erroneous interrupts.

Each vector is associated with an interrupt type number
which paints to the vector's location in the interrupt vec­
tor table. The interrupt type number multiplied by four
gives the displacement of the first byte of the associ­
ated interrupt vector from the beginning of the table. As
an example, interrupt type number 5 points to the sixth
entry in the interrupt vector table. The contents of this
entry in the table points to the interrupt service routine
for type 5 (Fig. 3E1). This structure allows the user to
specify the memory address of each service routine by
placing the address (instruction painter and code seg­
ment values) in the table location provided for that type
interrupt.

Diagram 304.

3-332 230792-001

AP-67

INTERRUPT TYPE
NUMBER

INTERRUPT TYPE MEMORY
NUMBER ADDRESS

r---- IP 0001
I 0 '--------cs--- I

r- IP 004 I

,
I
r--
I
r-·
I

CS I ,. 008 I

CS ,. OOC

CS ,. 010

CS

:- 5 _ 0c>;');;:: / ;;;; ::: ~ 11
I cs I

[_ .. n~.:il
TYPE 5 INTERRUPT
SERVICE ROUTINE

'--____ --'1 FFFFE

INTERRUPT
VECTOR
TABLE

Figure 3E1. Direction to Interrupt Service Routine through the
Interrupt Vector Table

All interrupts in the 8086 must be assigned an interrupt
type which uniquely identifies each interrupt. There are
three classes 01 interrupt types in the 8086; predefined
interrupt types which are issued by specific functions
within the 8086 and user defined hardware and software
interrupts. Note that any interrupt type including the
predefined interrupts can be issued by the user's hard·
ware and/or software.

PREDEFINED INTERRUPTS

The predefined interrupt types in the 8086 are listed
below with a brief description of how each is invoked.
When invoked, the CPU will transfer control to the
memory location specified by the vector associated
with the specific type. The user must provide the inter·
rupt service routine and initialize the interrupt vector
table with the appropriate service routine address. The
user may additionally invoke these interrupts through
hardware or software. If the preassigned function is not
used in the system, the user may assign some other
function to the associated type. However, for com·
patibility with future Intel hardware and software prod·
ucts for the 8086 family, interrupt types 0·31 should not
be assigned as user defined interrupts.

TYPE a - DIVIDE ERROR

This interrupt type is invoked whenever a division opera·
tion is attempted during which the quotient exceeds the
maximum value (ex. division by zero). The interrupt is
non·maskable and is entered as part of the execution of
the divide instruction. If interrupts are not reenabled by
the divide error interrupt service routine, the service
routine execution time should be included in the worst
case divide instruction execution time (primarily when
considering the longest instruction execution time and
its effect on latency to servicing hardware interrupts).

TYPE 1 - SINGLE STEP

This interrupt type occurs one instruction after the TF
(Trap Flag) is set in the flag register. It is used to allow
software Single stepping through a sequence of code.
Single stepping is initiated by copying the flags onto the
stack, setting the TF bit on the stack and popping the
flags. The interrupt routine should be the Single step
routine. The interrupt sequence saves the flags and pro·
gram counter, then resets the TF flag to allow the Single
step routine to execute normally. To return to the
routine under test, an interrupt return restores the IP,
CS and flags with TF set. This allows the execution of
the next instruction in the program under test before
trapping back to the single step routine. Single Step is
not masked by the IF (Interrupt Flag) bit in the flag
register.

TYPE 2 - NMI (Non·Maskable Interrupt)

This is the highest priority hardware interrupt and is
non·maskable. The input is edge triggered but is syn·
chronized with the CPU clock and must be active for two
clock cycles to guarantee recognition. The interrupt
signal may be removed prior to entry to the service
routine. Since the input must make a low to high transi·
tion to qenerate an interrupt, spurious transitions on the
input should be suppressed. If the input is normally
high, the NMI low time to guarantee triggering is two
CPU clock times. This input is typically reserved for
catastrophic failures like power failure or timeout of a
system watchdog timer.

TYPE 3 - ONE BYTE INTERRUPT

This is invoked by a special form of the software inter·
rupt instruction which requires a single byte of code
space. Its primary use is as a breakpoint interrupt for
software debug. With full representation within a single
byte, the instruction can map into the smallest instruc·
tion for absolute resolution in setting breakpoints. The
interrupt is not maskable.

TYPE 4 - INTERRUPT ON OVERFLOW

This interrupt occurs if the overflow flag (OF) is set in
the flag register and the INTO instruction is executed.
The instruction allows trapping to an overflow error ser·
vice routine. The interrupt is non·maskable.

Interrupt types a and 2 can occur without specific action
by the programmer (except for performing a divide for
Type 0) while types 1, 3, and 4 require a conscious act by
the programmer to generate these interrupt types. All
but type 2 are invoked through software activity and are
directly associated with a specific instruction.

USER DEFINED SOFTWARE INTERRUPTS

The user can generate an interrupt through the software
with a two byte interrupt instruction INT nn. The first
byte is the INT opcode while the second byte (nn) con·
tains the type number of the interrupt to be performed.
The INT instruction is not maskable by the interrupt
enable flag. This instruction can be used to transfer can·
trol to routines that are dynamically relocatable and
whose location in memory is not known by the calling

3-333 230792-001

inter AP-67

program, This technique also saves the flags of the call­
ing program on the stack prior to transferring control.
The called procedure must return control with an inter­
rupt return (IRET) instruction to remove the flags from
the stack and fully restore the state of the calling pro­
gram,

All interrupts invoked through software (all interrupts
discussed thus far with the exception of NMI) are not
maskable with the IF flag and initiate the transfer of
control at the end of the instruction in which they occur.
They do not initiate interrupt acknowledge bus cycles
and will disable subsequent maskable interrupts by
resetting the IF and TF flags, The interrupt vector for
these interrupt types is either implied or specified in the
instruction. Since the NMI is an asynchronous event to
the CPU, the point of recognition and initiation of the
transfer of control is similar to the maskable hardware
interrupts,

USER DEFINED HARDWARE INTERRUPTS

The maskable interrupts initiated by the system hard­
ware are activated through the INTR pin of the 8086 and
are masked by the IF bit of the status register (interrupt
flag). During the last clock cycle of each instruction, the
state of the INTR pin is sampled. The 8086 deviates from
this rule when the instruction is a MOV or POP to a seg­
ment register. For this case, the interrupts are not
sampled until completion of the following instruction,
This allows a 32-bit pointer to be loaded to the stack
pointer registers SS and SP without the danger of an in­
terrupt occurring between the two loads. Another excep­
tion is the WAIT instruction which waits for a low active
input on the TEST pin, This instruction also continu­
ously samples the interrupt request during its execution
and allows servicing interrupts during the wait. When an
interrupt is detected, the WAIT instruction is again
fetched prior to servicing the interrupt to guarantee the
interrupt routine will return to the WAIT Instruction,

UNINTERRUPTABLE INSTRUCTION SEQUENCE

MOV SS, NEW$STACK$SEGMENT
MOV SP, NEW$STACK$POINTER

Also, since prefixes are considered part of the instruc­
tion they precede, the 8086 will not sample the interrupt
line until completion of the instruction the prefix(es)
precede(s). An exception to this (other than HALT or
WAIT) is the string primatives preceded by the repeat
(REP) prefix. The repeated string operations will sample
the interrupt line at the completion of each repetition.
This includes repeat string operations which include the
lock prefix. If multiple prefixes precede a repeated
string operation, and the instruction is interrupted, only
the prefix immediately preceding the string primative is
restored. To allow correct resumption of the operation,
the following programming technique may be used:

LOCKED$BlOCK$MOVE: LOCK REP MOVS OEST, CS:SOURCE
ANO ex, CX

J NZ LOCKED$BLOCK$MOVE

The code bytes generated by the 8086 assembler for the
MOVS instruction are (in descending order): LOCK
prefix, REP prefix, Segment Override prefix and MOVS,
Upon return from the interrupt, the segment override
prefix is restored to guarantee one additional transfer is
performed between the correct memory locations, The
instructions following the move operation test the
repetition count value to determine if the move was
completed and return if not.

If the INTR pin is high when sampled and the IF bit is set
to enable interrupts, the 8086 executes an interrupt
acknowledge sequence, To guarantee the interrupt will
be acknowledged, the INTR input must be held active
until the interrupt acknowledge is issued by the CPU, If
the BIU is running a bus cycle when the interrupt condi­
tion is detected (as would occur if the BIU is fetching an
instruction when the current instruction completes), the

T, I T2 T3 T4 T, TI T1 I T, TJ

AlEJ\I.---_~_----"n~ __

\L-____ ----JI

INTA \,--------,1 \,---+--J ------'\

ADD-AD" ~~F':;lO:.::.AT:...-__________ f'. ,,~, \ ""''''''" >-
\ REDRIVEN BY CPU IF QUEUE IS NOT FUll

Figure 3E2. Interrupt Acknowledge Sequence

3-334 230792-001

AP-67

interrupt must be valid at the 8086 2 clock cycles prior to
T4 of the bus cycle if the next cycle is to be an interrupt
acknowledge cycle. If the 2 clock setup is not satisfied,
another pending bus cycle will be executed before the
interrupt acknowledge is issued. If a hold request is also
pending (this might occur if an interrupt and hold reo
quest are made during execution of a locked instruc·
tion), the interrupt is serviced after the hold request is
serviced.

The interrupt acknowledge sequence is only generated
in response to an interrupt on the 8086 INTR input. The
associated bus activity is shown in Figure 3E2. The cy·
cle consists of two INTA bus cycles separated by two
idle clock cycles. During the bus cycles the INTA com·
mand is issued rather than read. No address is provided
by the 8086 during either bus cycle (BHE and status are
valid), however, ALE is still generated and will load the
address latches with indeterminate information. This
condition requires that devices in the system do not
drive their outputs without being qualified by the Read
Command. As will be shown later, the ALE is useful in
maximum mode systems with multiple 8259A priority in·
terrupt controllers. During the INTA bus cycles, DT/R
and DEN are conditioned to allow the 8086 to receive a
0!l~ byt"? intprrupt tYr'A 11 I) fTltu3 r frnm thA intp.rrlJ~t

system. The firs! INTA bus cycle signals an interrupt
acknowledge cycle is in progress and allows the system
to prepare to present the interrupt type number on the
next INTA bus cvcle. The CPU does not capture informa·
tion on the bus during the first cycle. The type number
must be transferred to the 8086 on the lower half of the
16·bit data bus during the second cycle. This implies
that devices which present interrupt type numbers to
the 8086 must be located on the lower half of the 16·bit
data bus. The timing of the INTA bus cycles (with excep·
tion of address timing) is similar to read cycle timing.
The 8086 interrupt acknowledge sequence deviates
from the form used on 8080 and 8085 in that no instruc·
tion is issued as part of the sequence. The 8080 and
8085 required either a restart or call instruction be
issued to affect the transfer of control.

In the minimum mode system, the MIlO signal will be
low indicating 1/0 during the INTA bus cycles. The 8086
internal LOCK signal will be active from T2 of the first
bus cycle until T2 of the second to prevent the BIU from
honoring a hold request between the two INTA cycles.

In the maximum mode, the status lines SO-52 will re­
quest the 8288 to activate the INTA output for each cy­
cle. The LOCK output of the 8086 will be active from T2
of the first cycle until T2 of the second to prevent the
8086 from honoring a hold request on either RQ/GT in­
put and to prevent bus arbitration logic from relinquish·
ing the bus between INTA's in multi-master systems.
The consequences of READY are identical to those for
READ and WRITE cycles.

Once the 8086 has the interrupt type number (from the
bus for hardware interrupts, from the instruction stream
for software interrupts or from the predefined con­
dition), the type number is multiplied by four to form the
displacement to the corresponding interrupt vector in
the interruot vector table. The four bytes of the interrupt

vector are: least significant byte of the instruction
pointer, most significant byte of the instruction pointer,
least significant byte of the code segment register,
most significant byte of the code segment register. Dur­
ing the transfer of control, the CPU pushes the flags and
current code segment register and instruction pointer
onto the stack. The new code segment and instruction
pointer values are loaded and the single step and inter­
rupt flags are reset. Resetting the interrupt flag disables
response to further hardware interrupts in the service
routine unless the flags are specifically re-enabled by
the service routine. The CS and IP values are read from
the interrupt vector table with data read cycles. No seg­
ment registers are used when referencing the vector
table during the interrupt context switch. The vector
displacement is added to zero to form the 20-bit address
and S4, S3 = 10 indicating no segment register selec­
tion.

The actual bus activity associated with the hardware in­
terrupt acknowledge sequence is as follows: Two inter­
rupt acknowledge bus cycles, read new IP from the in­
terrupt vector table, read new CS from the interrupt vec­
tor table, Push flags, Push old CS, Opcode fetch of the
first instruction of the interrupt service routine, and
Push old IP. After saving the old IP, the BIU will resume
normal operation of prefetching instructions into the
queue and servicing EU requests for operands. S5 (inter­
rupt enable flag status) will go inactive in the second
clock cycle following reading the new CS.

The number of clock cycles from the end of the instruc­
tion during which the interrupt occurred to the start of
interrupt routine execution is 61 clock cycles. For soft·
ware generated interrupts, the sequence of bus cycles
is the same except no interrupt acknowledge bus cycles
are executed. This reduces the delay to service routine
execution to 51 clocks for INT nn and single step, 52
clocks for INT3 and 53 clocks for INTO. The same inter­
rupt setup requirements with respect to the BIU that
were stated for the hardware interrupts also apply to the
software interrupts. If wait states are inserted by either
the memories or the device supplying the interrupt type
number, the given clock times will increase accordingly.

When conSidering the precedence of interrupts for
multiple simultaneous interrupts, the following guide·
lines apply: 1. INTR is the only maskable interrupt and if
detected simultaneously with other interrupts, resetting
of IF by the other interrupts will mask INTR. This causes
INTR to be the lowest priority interrupt serviced after all
other interrupts unless the other interrupt service
routines reenable interrupts. 2. Of the nonmaskable in­
terrupts (NMI, Single Step and software generated), in
general, Single Step has highest priority (will be ser­
viced first) followed by NMI, followed by the software in­
terrupts. This implies that a simultaneous NMI and
Single Step trap will cause the NMI service routine to
follow single step; a simultaneous software trap and
Single Step trap will cause the software interrupt ser­
vice routine to follow single step and a simultaneous
NMI and software trap will cause the NMI service
routine to be executed followed by the software inter·
rupt service routine. An exception to this priority struc­
ture occurs if all three interrupts are pending. For this
case, transfer of control to the software interrupt ser-

3-335 230792-001

AP-67

vice routine followed by the NMI trap will cause both the
NMI and software interrupt service routines to be ex­
ecuted without single stepping. Single stepping
resumes upon execution of the instruction following the
i~struction causing the software interrupt (the next in­
struction in the routine being single stepped).

If the user does not wish to single step before INTR ser­
vice routines, the single step routine need only disable
interrupts during execution of the program being single
stepped and reenable interrupts on entry to the single
step routine. Disabling the interrupts during the pro­
gram under test prevents entry into the interrupt service
routine while single step (TF = 1) is active. To prevent
single stepping before NMI service routines, the single
step routine must check the return address on the stack
for the NMI service routine address and return control to
that routine without single step enabled. As examples,
consider Figures 3E3a and 3E3b. In 3E3a Single Step
and NMI occur simultaneously while in 3E3b, NMI, INTR
and a divide error all occur during a divide instruction
being single stepped.

NMI

TF,IF=1

NORMAL SINGLE STEP
OPERATION

Figur. 3E3a. NMI During Single Stepping and Normal Single Step
Operation

3-336

INTR

TF=1
IF=1

CONTINUE TO SINGLE STEP
THE PROGRAM

Figure 3E3b. NMI, INTR, Single Step and Oivide Error Simultaneous
Interrupts

SYSTEM CONFIGURATIONS

To accommodate the INTA protocol of the maskable
hardware interrupts, the 8259A is provided as part of the
8086 family. This component is programmable to
operate in both 8080/8085 systems and 8086 systems.
The devices are cascadable in master/slave arrange­
ments to allow up to 64 interrupts in the system. Figures
3E4 and 3E5 are examples of 8259A's in minimum and
maximum mode 8086 systems. The minimum mode con­
figuration (a) shows an 8259A connected to the CPU's

230792-001

AP-67

multiplexed bus. Configuration (b) illustrates an 8259A
connected to a demultiplexed bus system. These inter­
connects are also applicable to maximum mode
systems. The configuration given for a maximum mode
system shows a master 8259A on the CPU's multiplexed
bus with additional slave 8259A's out on the buffered
system bus. This configuration demonstrates several
unique features of the maximum mode system inter­
face. If the master 8259A receives interrupts from a mix
of slave 8259A's and regular interrupting devices, the
slaves must provide the type number for devices con­
nected to them while the master provides the type
number for devices directly attached to its interrupt in­
puts. The master 8259A is programmable to determine if
an interrupt is from a direct input or a slave 8259A and
will use this information to enable or disable the data
bus transceivers (via the 'nand' function of DEN and
EN). If the master must provide the type number, it will
disable the data bus transceivers. If the slave provides
the type number, the master will enable the data bus
transceivers. The EN output is normally high to allow

the 8086/8288 to control the bus transceivers. To select
the proper slave when servicing a slave interrupt, the
master must provide a cascade address to the slave. If
the 8288 is not strapped in the 1/0 bus mode (the 8288
lOB input connected to ground), the MCE/PDEN output
becomes a MCE or Master Cascade Enable output. This
signal is only active during INTA cycles as shown in
Figure 3E6 and enables the master 8259A's cascade ad­
dress onto the 8086's local bus during ALE. This allows
the address latches to capture the cascade address with
ALE and allows use of the system address bus for
selecting the proper slave 8259A. The MCE is gated with
LOCK to minimize local bus contention between the
8086 three-stating its bus outputs and the cascade ad­
dress being enabled onto the bus. The first INTA bus cy­
cle allows the master to resolve internal priorities and
output a cascade address to be transmitted to the
slaves on the subsequent INTA bus cycle. For additional
information on the 8259A, reference application note
AP-59.

1----'------'-'-----'-'----'\ ADDRESS

~---.----.-r--~.-r---,I BUS

DATA
I\r---------------,/ BUS

a.

b.

Figure 3E4. Min Mode 8086 with Master 8259A on the local Bus and Slave 8259As on the System Bus

3-337 230792-001

AP-67

CAS
INTERRUPT

INTERRUPT

~~----~-+------~~--~----~----r---.ThITA

ADDRESS
~-r-------r--------r-r---------"r-------,/BUS

'-________________ -"""-________ ""''-______ .J, DATA

BUS

Figure 3E5. Max Mode 8086 with Master 8259A on the Local Bus and Slave 8259As on the System Bus

T, ! T2 T3 T4 TI TI T, I T, T,

ALE J\ _______ ----,------Jn'---__

\ FLOAT ~ FLOAT
ADo-AD,. ---.l>-------------------------------------~~

\, I(
\"--TY-PE-V-EC-TO-R---;>-

\'-----_--'---1/ \~--
Figure 3E6. MCE Timing to Gate 8259A CAS Address onto the 8086 Local Bus

3-338 230792-001

AP-67

3F. Interpreting the 8086 Bus Timing Diagrams

At first glance, the 8086 bus timing diagrams (Diag. 3F1
min mode and Diag. 3F2 max mode) appear rather com·
plex. However, with a few words of explanation on how
to interpret them, they become a powerful tool in deter·
mining system requirements. The timing diagrams for
both the minimum and maximum modes may be divided
into six sections: (1) address and ALE timing; (2) read cy·
cle timing; (3) write cycle timing; (4) interrupt acknowl­
edge timing; (5) ready timing; and (6) HOLD/HLDA or
RQ/GT timing. Since the A.C_ characteristics of the
signals are specified relative to the CPU clock, the rela­
tionship between the majority of signals can be de­
duced by simply determining the clock cycles between
the clock edges the Signals are relative to and adding or
subtracting the appropriate minimum or maximum
parameter values. One aspect of system timing not com­
pensated for in this approach is the worst case relation­
ship between minimum and maximum parameter values
(also known as tracking relationships). As an example,
consider a signal which has specified minimum and
maximum turn on and turn off delays. Depending on
device characteristics, it may not be possible for the
component to simultaneously demonstrate a maximum
turn-on and minimum turn-off delay even though worst
case analysis might imply the possibility. This argument
is characteristic of MOS devices and is therefore ap·
plicable to the 8086 A.C. characteristics. The message
is: worst case analysis mixing minimum and maximum
delay parameters will typically exceed the worst case
obtainable and therefore should not be subjected to fur­
ther subjective degradation to obtain worst-worst case
values. This section will provide guidelines for specific
areas of 8086 timing sensitive to tracking relationships.

A. MINIMUM MODE BUS TIMING

1. ADDRESS and ALE

The address/ALE timing relationship is important to
determine the ability to capture a valid address from the
multiplexed bus. Since the 8282 and 8283 latches cap­
ture the address on the trailing edge of ALE, the critical
timing involves the state of the address lines when ALE
terminates. If the address valid delay is assumed to be
maximum TCLAV and ALE terminates at its earliest
point, TCHLLmin (assuming zero minimum delay), the
address would be valid only TCLCHmin-TCLAVmax= 8
ns prior to ALE termination. This result is unrealistic in
the assumption of maximum TCLAV and minimum
TCHLl. To provide an accurate measure of the true
worst case, a separate parameter specifies the
minimum time for address valid prior to the end of ALE
(TAVAL). TAVAL= TCLCH·60 ns overrides the clock
related timings and guarantees 58 ns of address setup
to ALE termination for a 5 MHz 8086. The address is
guaranteed to remain valid beyond the end of ALE by the
TLLAX parameter. This specification overrides the rela­
tionship between TCHLL and TCLAX which might seem
to imply the address may not be valid by the end of the
latest possible ALE. TLLAX holds for the entire address
bus. The TCLAXmin spec on the address indicates the
earliest the bus will go invalid if not restrained by a slow
ALE. TLLAX and TCLAX apply to the entire multiplexed
bus for both read and write cycles. AD15-0 is three-

stated for read cycles and immediately switched to
write data during write cycles. AD19-16 immediately
switch from address to status for both read and write
cycles. The minimum ALE pulse width is guaranteed by
TLHLLmin which takes precedence over the value ob­
tained by relating TCLLHmax and TCHLLmin.

To determine the worst case delay to valid address on a
demultiplexed address bus, two paths must be con­
sidered: (1) delay of valid address and (2) delay to ALE.
Since the 8282 and 8283 are flow through latches, a valid
address is not transmitted to the address bus until ALE
is active. A comparison of address valid delay TCLAV­
max with ALE active delay TCLLHmax indicates TCLAV­
max is the worst case. Subtracting the latch prop­
agation delay gives the worst case address bus valid
delay from the start of the bus cycle.

2. Read Cycle Timing

Read timing consists of conditioning the bus, activating
the read command and establishing the data transceiver
enable and direction controls. DT/R is established early
in the bus cycle and requires no further consideration.
During read, the DEN signal must allow the transceivers
to propagate data to the CPU with the appropriate data
setup lime ana conllnue lO do so untii lhe required data
hold time. The DEN turn on delay allows TCLCL+
TCHCLmin - TCVCTVmax - TDVCL= 127 ns transceiver
enable time prior to valid data required by the CPU.
Since 1he CPU data hold time TCLDXmin and m:nlmum
DEN turnoff delay TCVCTXmin are both 10 ns relative to
the same clock edge, the hold time is guaranteed. Addi­
tionally, DEN must disable the transceivers prior to the
CPU redriving the bus with the address for the next bus
cycle. The maximum DEN turn off delay (TCVCTXmax)
compared with the minimum delay for addresses out of
the 8086 (TCLCL+ TCLAVmin) indicates the trans­
ceivers are disabled at least 105 ns before the CPU
drives the address onto the multiplexed bus.

If memory or I/O devices are connected directly to the
multiplexed address and data bus, the TAZRL parameter
guarantees the CPU will float the bus before activating
read and allowing the selected device to drive the bus.
At the end of the bus cycle, the TRHAV parameter spec­
ifies the bus float delay the device being deselected
must satisfy to avoid contention with the CPU driving
the address for the next bus cycle. The next bus cycle
may start as soon as the cycle following T4 or any
number of clock cycles later.

The minimum delay from read active to valid data at the
CPU is 2TCLCL- TCLRLmax - TDVCL= 205 ns. The
minimum pulse width is 2TCLCL-75 ns= 325 ns. This
specification (TRLRH) overrides the result which could
be derived from clock relative delays (2TCLCL­
TCLRLmax + TCLRHmin).

3. Write Cycle Timing

The write cycle involves providing write data to the
system, generating the write command and controlling
data bus transceivers. The transceiver direction control
signal DT/R is conditioned to transmit at the end of each
read cycle and does not change during a write cycle.

3-339 230792-001

AP-67

This allows the transceiver enable signal DEN to be ac­
tive early in the cycle (while addresses are valid) without
corrupting the address on the multiplexed bus. The
write data and write command are both enabled from the
leading edge of T2. Comparing minimum WR active
delay TCVCTVmin with the maximum write data delay
TCLDV indicates that write data may be not valid until
100 ns after write is active. The devices in the system
should capture data on the trailing edge of the write
command rather than the leading edge to guarantee
valid data. The data from the 8086 is valid a minimum of
2TCLCL- TCLDVmax + TCVCTXmin = 300 ns before the
trailing edge of write. The minimum write pulse width is
TWLWH = 2TCLCL- 60 ns = 340 ns. The CPU maintains
valid write data TWHDX ns after write. The TWHDZ spec­
ification overrides the result derived by relating
TCLCHmin and TCHDZmin which implies write data
may only be valid 18 ns after WR. The 8086 floats the bus
after write only if being forced off the bus by a HOLD or

RQ input. Otherwise, the CPU simply switches the out­
put drivers from data to address at the beginning of the
next bus cycle. As with the read cycle, the next bus cy­
cle may start in the clock cycle following T4 or any clock
cycle later.

DEN is disabled a minimum of TCLCHmin +
TCVCTXmin - TCVCTXmax = 18 ns after write to
guarantee data hold time to the selected device. Since
we are again evaluating a minimum TCVCTX with a max­
imum TCVCTX, the real minimum delay from the end of
write to transceiver disable is approximately 60 ns.

4. Interrupt Acknowledge Timing

The interrupt acknowledge sequence consists of two in­
terrupt acknowledge bus cycles as previously de­
scribed. The detailed timing of each cycle is identical to
the read cycle timing with two exceptions: command
timing and address/data bus timing.

T1 T2 T3 Tw T4

VCHv----'\1--- TCLCL-_~CH'CH] r -1 r- TCL2CL~~ n-
CLK (8284 OUTPUT) h£ ~

~ 1'---1 1"---'
- TCHCTV I-- TCHCL r- TCLCH -

MOO

TCHDX -

TCLLH- ir-TLHLL-=:

ALE .I
-t----+-' TCHLL-

r-­
I

~--~~----;------T----+------r----~----++t- _):'VCl ' I~>
ROY (8284 INPUT)

SEE NOTE 4

AD1S-ADO

AD
READ CYCLE

NOTE 1

(Wl'i. i'iilTA=VoHI
DT/A

DEN

-TAVAl-

1- TAVAL 1-
TCLAV""! _

TLLAX~

r-- -
A1S-Ao

lt~r-e-r-"";T;::CL~R*IX;---"'I""'----4--'---"""""""""""""
TRYLCL-

\

1-"

I=TRYHCH­
-TCLAX

-- ---- TCHRYX

TDVCL---TClDX~1

DATA IN
'---------"'1""'---'1'1 flOAT

J

TAZRL- fi TCLRH-
I f ~,"",,-I

-=----t TCHCTV
TCLRJ-'-t---I---~I/I _""''"

I
TRLRH

TCVCTV~ ~ TCVCTX - -/

Figure 3F1. 8086 Bus Timing - Minimum Mode System

3-340 230792-001

AP-67

CLK (8284 OUTPUT)

MIlO

ALE

TCLAV-

DATA OUT

WRITE CYCLE

NOTE 1

(RD, INTA,
DTlll =VOH)

r AD15- ADo

I -+-----+---'..

uc;~

INTA CYCLE
NOTES 1 & 3

RD, W'R=VOH
11m = VoL!

DTiR

SOFTWARE HALT - (DEN =
VOL; RD, ViR, INTA DT/R = VOH; AD1s-AOo

TI'S FOLLOW n, THEN NMI OR INTR
BEGIN A NEW T1.

AD15 ~ ADo

"" ----TWLWH -----+--1 r--+-------

:--TCLAZ
I

TCHCTV

TCVCTV-

FLOAT

~ ;r INVALID ADDRESS

TCLAV=:! 11==--

TCVCTX- 1-

NOTES: 1. ALL SIGNALS SWITCH BETWEEN VOH AND VOl UNLESS OTHERWISE
SPECIFIED.

2. ROY IS SAMPLED NEAR THE END OF T2. Ta, Tw TO DETERMINE IF Tw
MACHINES STATES ARE TO BE INSERTED.

3. BOTH INTA CYCLES RUN BACK·TO·BACK. THE 8088 LOCAL ADDRIDATA BUS IS
FlOATING DURING THE SECOND INTA CYCLE. CONTROL SIGNALS SHOWN
FOR SECOND INTA CYCLE.

4. SIGNALS AT 8284 ARE SHOWN FOR REFERENCE ONLY.
5. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE

NOTED.

Figure 3Fl. 8086 Bus Timing - Minimum Mode System (Con't)

3-341 230792-001

CLK

!f"Si,So (EXCEPT HALT)

1
ALE (8288 OUTPUT)

SEE NOTE 5

ROY (8284 INPUT)

READ CYCLE

8288 OUTPUTS

SEE NOTES 5,6

RD

AP-67

~ TCHSV TCLSH

-TCHRYX

TRYHSH -11...--1--'---+--'
I f

TRYHCH .I -

\-----­
\.-----

TCLAv-1 ",1::=.r--4 __ -+T_CL_A..,.Z f+- i rTOVCL~I--TCLOX- L

L A015-Ao -r/I\ DATA IN l--::F~LO:-:)A~TT--K ['

________ t-__ TA_Zf-R_L -~ (t\ TCLRH I-~~+-+t-.TRHAV--..j

_____ TC_H_O_T_L_-_I_, -I~ ~~ ---TRLRH- --.-~r-----I \ TCHDTH

\.
TCLML- 1·- TClMH-- -

TCVNV- --
r

TCVNX- --

Figure 3F2a. 8086 Bus Timing - Maximum Mode System (Using 8288)

3-342 230792-001

intel

WRITE CYCLE

8288 OUTPlIfS

SEE NOTES 5,6

INTA CYCLE

ClK

$2,S1.So (EXCEPT HAL T)

DEN

AMWC OR AIOWC

MWTC OR lowe

ADts-ADo
SF.E NOTES 3 & 4

MeEI

PDEN

DT/R

8288 OUTPUTS

SEe NOTES 5,6

DEN

AP-67

T, T, T, T.

Tw

VCl

TCVNX--

_TClMH

SOFTWARE HALT - i
(~= VOL;Jm,ilJmC,1O'FiC,MW'fC,AMWC,IDWC,Af5WC,iNTA,OTiR = VOH)!

TCVNX----i

AD1S-ADo INVALID ADDRESS ~ X
-T-ClA-V=1-+-' -1 f.='---------
~ /r----------..... , -------

\'---__ .-1 \ _____ _

NOTES: 1. ALL SIGNALS SWITCH BETWEEN VOH AND VOL UNl.ESS OTHERWISE
SPECIFIED.

2. ROY IS SAMPLED NEAR THE END OF T2. T3, Tw TO DETERMINE IF Tw
MACHINES STATES ARE TO BE INSERTED.

3, CASCADE ADDRESS IS VALID BETWEEN FIRST AND SECOND INTA CYCLES.
4. BOTH INTA CYCLES RUN BACK·lO·BACK. THE 8088 LOCAL ADDRIDATA BUS IS

FLOATING DURING THE SECOND INTA CYCLE. CONTROL FOR POINTER ADDRESS
IS SHOWN FOR SECOND INTA CYCLE.

5. SIGNALS AT 8284 OR 8288 ARE SHOWN FQR REFERENCE ONL.Y.
6. THE ISSUANCE OF THE 8288 COMMAND AND CONTROL. SIGNAL.S (MJmC,

"MW'i'C, AMWC, iOlfC, TQWC, AIOWC, INTA ANO DEN) LAGS THE ACTIVE HIGH
8288 CEN.

7. ALL TIMING MEASUREMENTS ARE MADE AT 1.SV UNL.ESS OTHERWISE
NOTED.

8. STATUS INACTIVE IN STATE JUST PRIOR TO T4.

Figure 3F2b. 8086 Bus Timing - Maximum Mode System (Using 8288) (Con't)

3-343

,--
I

230792-001

AP-67

The multiplexed address/data bus floats from the begin­
ning (T1) of the INTA cycle (within TCLAZ ns)_ The upper
four multiplexed address/status lines do not three-state.
The address value on A 19-A 16 is indeterminate but the
status information will be valid (S3 = 0, S4 = 0, S5 = IF,
S6 = 0, S7 = BHE = 0). The multiplexed address/data
lines will remain in three-state until the cycle afterT4 of
the INTA cycle. This sequence occurs for each of the
INTA bus cycles. The interrupt type number read by the
8086 on the second INTA bus cycle must satisfy the
same setup and hold times required for data during a
read cycle.

The DEN and DT/R signals are enabled for each INTA cy­
cle and do not remain active between the two cycles.
Their timing for each cycle is identical to the read cycle.

The INTA command has the same timing as the write
command. It is active within 110 ns of the start of T2 pro­
viding 260 ns of access time from command to data
valid at the 8086. The command is active a minimum of
TCVCTXmin = 10 ns into T4 to satisfy the data hold time
of the 8086. This provides minimum INTA pulse width of
300 ns, however taking signal delay tracking into con­
sideration gives a minimum pulse width of 340 ns. Since
the maximum inactive delay of INTA is TCVCTXmax=
110 ns aAd the CPU will not drive the bus until 15 ns
(TCLAVmin) into the next clock cycle, 105 ns are avail­
able for interrupt devices on the local bus to float their
outputs. If the data bus is buffered, DEN provides the
same amount of time for local bus transceivers to three­
state their outputs.

5. Ready Timing

The detailed timing requirements of the 8086 ready
signal and the system ready signal into the 8284 are
described in Section 3D. The system ready signal is
typically generated from either the address decode of
the selected device or the address decode and the com­
mand (RD, WR, INTA). For a system which is normally
not ready, the time to generate ready from a valid ad­
dress and not insert a wait state, is 2TCLCL­
TCLAVmax - TR1VCLmax = 255 ns. This time is avail­
able for buffer delays and address decoding to deter­
mine if the selected device does not require a wait state
and drive the RDY line high. If wait cycles are required,
the user hardware must provide the appropriate ready
delay. Since the address will not change until the next
ALE, the RDY will remain valid throughout the cycle. If
the system is normally ready, selected devices requiring
wait states also have 255 ns to disable the RDY line. The
user circuitry must delay re-enabling RDY by the ap­
propriate number of wait states.

If the RD command is used to enable the RDY signal,
TCLCL - TCLRLmax - TRIVCLmax = 15 ns are available
for external logic. If the WR command is used, TCLCL­
TCVCTVmax - TRIVCLmax = 55 ns are available. Com­
parison of RDY control by address or command in­
dicates that address decoding provides the best timing.
If the system is normally not ready, address decode
alone could be used to provide RDY for devices not re­
quiring wait states while devices requiring wait states
may use a combination of address decode and com­
mand to activate a wait state generator. If the system is

normally ready, devices not requiring wait states do
nothing to RDY while devices needing wait states
should disable RDY via the address decode and use a
combination of address decode and command to ac­
tivate a delay to re-enable ROY.

If the system requires no wait states for memory and a
fixed number of wait states for RD and WR to all 1/0
devices, the M/iOsignal can be used as an early indica­
tion of the need for wait cycles. This allows a common
circuit to control ready timing for the entire system
without feedback of address decodes.

6. Other Considerations

Detailed HOLD/HLDA timing is covered in the next sec­
tion and is not examined here. One last signal con­
sideration needs to be mentioned for the minimum
mode system. The TEST input is sampled by the 8086
only during execution of the WAIT instruction. The TEST
signal should be active for a minimum of 6 clock cycles
during the WAIT instruction to guarantee detection.

B. MAXIMUM MODE BUS TIMING

The maximum mode 8086 bus operations are logically
equivalent to the minimum mode operation. Detailed
timing analysis now involves signals generated by the
CPU and the 8288 bus controller. The 8288 also provides
additional control and command signals which expand
the flexibility of the system.

1. ADDRESS and ALE

In the maximum mode, the address information con­
tinues to come from the CPU while the ALE strobe is
generated by the 8288.To determine the worst case rela­
tionships between ALE and the address, we first must
determine 8288 ALE activation relative to the so-§2
status from the CPU. The maximum mode timing
diagram specifies two possible delay paths to generate
ALE. The first is TCHSV + TSVLH measured from the ris­
ing edge of the clock cycle preceding n. The second
path is TCLLH measured from the start of T1. Since the
8288 initiates a bus cycle from the status lines leaving
the passive state (SO-§2= 1), if the 8086 is late in issuing
the status (TCHSVmax) while the clock high time is a
minimum (TCHCLmin), the status will not have changed
by the start of T1 and ALE is issued TSVLH ns after the
status changes. If the status changes prior to the begin­
ning of T1, the 8288 will not issue the ALE until TCLLH
ns after the start of T1. The resulting worst case delay to
enable ALE (relative to the start of T1) is TCHSVmax +
TSVLHmax - TCHCLmin = 58 ns. Note, when calcu­
lating signal relationships, be sure to use the proper
maximum mode values rather than equivalent minimum
mode values.

The trailing edge of ALE is triggered in the 8288 by the
positive clock edge in T1 regardless of the delay to
enable ALE. The resulting minimum ALE pulse width is
TCLCHmax - 58 ns = 75 ns assuming TCHLL = 0_
TCLCHmax must be used since TCHCLmin was as­
sumed to derive the 58 ns ALE enable delay. The ad­
dress is guaranteed to be valid TCLCHmin +
TCHLLmin - TCLAVmax = 8 ns prior to the trailing edge

3-344 230792-001

AP-67

of ALE to capture the address in the 8282 or 8283
latches. Again we have assumed a very conservative
TCHLL = a. Note, since the address and ALE are driven
by separate devices, no tracking of A.C. characteristics
can be assumed.

The address hold time to the latches is guaranteed by
the address remaining valid until the end of T1 while
ALE is disabled a maximum of 15 ns from the positive
clock transition in Tl (TCHCLmin - TCHLLmax = 52 ns
address hold time). The multiplexed bus transitions
from address to status and write data or three-state (for
read) are identical to the minimum mode timing. Also,
since the address valid delay (TCLAV) remains the
critical path in establishing a valid address, the address
access times to valid data and ready are the same as the
minimum mode system.

2. Read Cycle Timing

The maximum mode system offers read signals
generated by both the 8086 and the 8288. The 8086 RD
output signal timing is identical to the minimum mode
system. Since the A.C. characteristics of the read com­
mands generated by the 8288 are significantly better
than the 8086 output, access to devices on the demul­
tipl"y"d blJffAred "YRtAm hll" "hOlild URI'! thA 8288 com­
mands. The 8086 RD signal is available for devices
which reside directly on the multiplexed bus. The
following evaluations for read, write and interrupt
acknowledge only consider the 8288 command timing.

The 8288 provides separate memory and 1/0 read signals
which conform to the same A.C. characteristics. The
commands are issued TCLML ns after the start of T2
and terminate TCLMH ns atter the start of T4. The
minimum command length is 2TCLCL- TCLMLmax+
TCLMLmin = 375 ns. The access time to valid data at the
CPU is 2TCLCL- TCLMLmax - TDVCLmax = 335 ns.
Since the 8288 was designed for systems with buffered
data busses, the commands are enabled before the CPU
has three-stated the multiplexed bus and should not be
used with devices which reside directly on the multi­
plexed bus (to do so could result in bus contention dur­
ing 8086 bus float and device turn-on).

The direction control for data bus transceivers is eSlab
lished in Tl while the transceivers are not enabled by
DEN until the positive clock transition of T2. This pro­
vides TCLCH + TCVNVmin = 123 ns for 8086 bus float
delay and TCHCLmin + TCLCL - TCVNVmax­
TDVCLmax = 187 ns of transceiver active to data valid at
the CPU. Since both DEN and command are valid a mini­
mum of 10 ns into T4, the CPU data hold time TCLDX is
guaranteed. A maximum DEN disable of 45 ns (TCVNX
max) guarantees the transceivers are disabled by the
start of the next 8086 bus cycle (215 ns minimum from
the same clock edge). On the positive clock transition of
T4, DT/R is returned to transmit in preparation for a
possible write operation on the next bus cycle. Since
the system memory and 110 devices reside on a buffered
system bus, they must three-state their outputs before
the device for the next bus cycle is selected (approxi­
mately 2TCLCL) or the transceivers drive write data onto
the bus (approximately 2TCLCL).

3. Write Cycle Timing

In the maximum mode, the 8288 provides normal and ad­
vanced write commands for memory and 1/0. The ad­
vanced write commands are active a full clock cycle
ahead of the normal write commands and have timing
identical to the read commands. The advanced write
pulse width is 2TCLCL- TCLMLmax + TCLMHmin = 375
ns while the normal write pulse width is TCLCL­
TCLMLmax + TCLMHmin = 175 ns. Write data setup
time to the selected device is a function of either the
data valid delay from the 8086 (TCLDV) or the transceiver
enable delay TCVNV. The worst case delay to valid write
data is TCLDV = 110 ns minus transceiver propagation
delays. This implies the data may not be valid until 100
ns atter the advanced write command but will be valid
approximately TCLCL - TCLDVmax + TCLMLmin = 100
ns prior to the leading edge of the normal write com­
mand. Data will be valid 2TCLCL - TCLDVmax +
TCLMHmin = 300 ns before the trailing edge of either
write command. The data and command overlap for the
advanced command is 300 ns while the overlap with the
normal write command is 175 ns. The transceivers are
disabled a minimum of TCLCHmin - TCLMHmax +
TCVNXmin = 85 ns atter the write command while the
CPU provides valid data a minimum of TCLCHmin­
I GLMHmax + -j CtiDZmin = 85 ns. This guaraniees write
data hold of 85 ns atter the write command. The trans­
ceivers are disabled TCLCL- TCVNXmax +
TCHDTLmin = 155 ns (assuming TCHDTL= 0) prior to
transceiver direction change for a subsequent read
cycle.

4. Interrupt Acknowledge Timing

The maximum mode INTA sequence is logically iden­
tical to the minimum mode sequence. The transceiver
control (DEN and DT/R) and INTA command timing of
each interrupt acknowledge cycle is identical to the
read cycle. As in the minimum mode system, the multi­
plexed addressldata bus will float from the leading edge
of Tl for each I NTA bus cycle and not be driven by the
CPU until after T4 of each INTA cycle. The setup and
hold times on the vector number for the second cycle
are the same as data setup and hold for the read. If the
device providing the interrupt vector number is con­
nected to the local bus, TCLCL - TCLAZmax +
TCLMLmin = 130 ns are available from 8086 bus float to
INTA command active. The selected device on the local
bus must disable the system data bus transceivers
since DEN is still generated by the 8288.

If the 8288 is not in the lOB (1/0 Bus) mode, the 8288
MCE/PDEN output becomes the MCE output. This out­
put is active during each INTA cycle and overlaps the
ALE signal during Tl. The MCE is available for gating
cascade addresses from a master 8259A onto three of
the upper ADI5-AD8 lines and allowing ALE to latch the
cascade address into the address latches. The address
lines may then be used to provide CAS address selec­
tion to slave 8259A's located on the system bus (refer­
ence Figure 3E5). MCE is active within 15 ns of status or
the start of Tl for each INTA cycle. MCE should not
enable the CAS lines onto the multiplexed bus during
the first cycle since the CPU does not guarantee to float

3-345 230792·001

intel· AP-67

the bus until 80 ns into the first fi'iI"fA cycle. The first
MCE can be inhibited by gating MCE with LOCK. The
8086 LOCK output is activated during T2 of the first
cycle and disabled during T2 of the second cycle. The
overlap of LOCK with MCE allows the first MCE to be
masked and the second MCE to gate the cascade ad­
dress onto the local bus. Since the 8259A will not pro­
vide a cascade address until the second cycle, no infor­
mation is lost. As with ALE, MCE is guaranteed valid
within 58 ns of the start of T1 to allow 75 ns CAS ad­
dress setup to the trailing edge of ALE. MCE remains
active TCHCLmin - TCHLLmax + TCLMCLmin = 52 ns
after ALE to provide data hold time to the latches.

If the 8288 is strapped in the lOB mode, the MCE output
becomes PDEN and all I/O references are assumed to be
devices on the local bus rather than the demultiplexed
system bus. Since INTA cycles are considered I/O
cycles, all interrupts are assumed to come from the
local system and cascade addresses are not gated onto
the system address bus. Additionally, the DEN signal is
not enabled since no I/O transfers occur on the system
bus. If the local I/O bus is also buffered by transceivers,
the PDEN signal is used to enable those transceivers.
PDEN A.C. characteristics are identical to DEN with
PDEN enabled for I/O references and DEN enabled for
instruction or memory data re·ferences.

5. Ready Timing

Ready timing based on address valid timing is the same
for maximum and minimum mode systems. The delay
from 8288 command valid to ROY valid at the 8284 is
TCLCL- TCLMLmax- TRIVCLmin = 130 ns. This time is
available for external circuits to determine the need to
insert wait states and disable ROY or enable ROY to
avoid wait states. INTA, all read commands and ad­
vanced write commands provide this timing. The normal
write command is not valid until after the ROY signal
must be valid. Since both normal and advanced write
commands are generated by the 8288 for all write
cycles, the advanced write may be used to generate a
ROY indication even though the selected device uses
the normal write command.

Since sepa.!!te commands are provided for memory and
I/O, no MilO signal is specifically available as in the
minimum mode to allow an early 'wait state required' in­
dication for I/O devices. The S2 status I ine, however is
logically equivalent to the MilO Signal and can be used
for this purpose.

6. Other Considerations

The RO/GT timing is covered in the next section and will
not be duplicated here. The only additional signals to be
considered in the maximum mode are the queue status
lines OSO, OS1. These signals are changed on the
leading edge of each clock cycle (high to low transition)
including idle and wait cycles (the queue status Is in­
dependent of the bus activity). External logic may sam­
ple the lines on the low to high transition of each clock
cycle. When sampled, the signals indicate the queue ac­
tivity in the previous clock cycle and therefore lag the
CPU's activity by one cycle. The TEST input require-

ments are identical to those stated for the minimum
mode. '

To inform the 8288 of HALT status when a HALT instruc­
tion is executed, the 8086 will initiate a status transition
from passive to HALT status. The status change will
cause the 8288 to emit an ALE pulse with an indeter­
minate address. Since no bus cycle is initiated (no com­
mand is issued), the results of this address will not af­
fect CPU operation (Le" no response such as READY is
expected from the system). This allows external hard­
ware to latch and decode all transitiol1,s in system
status.

3G. Bus Control Transfer (HOLD/HLDA and RQ/Gl)

The 8086 supports protocols for transferring control of
the local bus between itself and other devices capable
of acting as bus masters, The minimum mode config­
uration offers a signal level handshake similar to the
8080 and 8085 systems. The maximum mode provides
an enhanced pulse sequence protocol designed to op­
timize utilization of CPU pins while extending the
system configurations to two prioritized levels of alter­
nate bus masters. These protocols are simply tech­
niques for arbitration of control of the CPU's local bus
and should not be confused with the need for arbitration
of a system bus.

1. MINIMUM MODE

The minimum mode 8086 system uses a hold request in­
put (HOLD) to the CPU and a hold acknowledge (HLDA)
output from the CPU, To gain control of the bus, a
device must assert HOLD to the CPU and wait for the
HLDA before driving the bus. When the 8086 can relin­
quish the bus, it floats the RD, WR, INTA and M/iO com­
mand lines, the DEN and DT/R bus control lines and the
multiplexed address/data/status lines, The ALE signal is
not three-stated. The CPU acknowledges the request
with HLDA to allow the requestor to take control of the
bus. The requestor must maintain the HOLD request ac­
tive until it no longer requires the bus. The HOLD re­
quest to the 8086 directly affects the bus interface unit
and only indirectly affects the execution unit. The CPU
will continue to execute from its internal queue until
either more instructions are needed or an operand
transfer is required. This allows a high degree of overlap
between CPU and auxiliary bus master operation, When
the requestor drops the HOLD signal, the 8086 will re­
spond by dropping HLDA. The CPU will not re-drive the
bus, command and control signals from three-state until
it needs to perform a bus transfer. Since the 8086 may
still be executing from its internal queue when HOLD
drops, there may exist a period of time during which no
device is driving the bus, To prevent the command lines
from drifting below the minimum VIH level during the
transition of bus control, 22K ohm pull up resistors
should be connected to the bus command lines. The
timing diagram in Figure 3G1 shows the handshake se­
quence and 8086 timing to sample HOLD, float the bus,
and enable/disable HLDA relative to the CPU clock.

To guarantee valid system operation, the designer must
assure that the requesting device does not assert con-

3-346 230792-001

AP-67

tral of the bus prior to the 8086 relinquishing control and
that the device relinquishes control of the bus prior to
the 8086 driving the bus. The HOLD request into the
8086 must be stable THVCH ns prior to the CPU's low to
high clock transition. Since this input is not syn·
chronized by the CPU, signals driving the HOLD input
should be synchronized with the CPU clock to
guarantee the setup time is not violated. Either clock
edge may be used. The maximum delay between HLDA
and the 8086 floating the bus is TCLAZmax­
TCLHAVmin = 70 ns. If the system cannot tolerate the
70 ns overlap, HLDA active fram the 8086 should be
delayed to the device. The minimum delay for the CPU to
drive the control bus from HOLD inactive is THVCHmin
+3TCLCL=635 ns and THVCHmin+3TCLCL+
TCHCL = 701 ns to drive the multiplexed bus. If the
device does not satisfy these requirements, HOLD inac·
tive to the 8086 should be delayed. The delay from HLDA
inactive to driving the busses is TCLCL+ TCLCHmin­
TCLHAVmax = 158 ns for the control bus and 2TCLCL­
TCLHAVmax = 240 ns for the data bus.

1.1 Latency of HLDA to HOLD

The decision to respond to a HOLD request is made in

the decision are the current bus activity, the state of the
LOCK signal internal to the CPU (activated by the soft·
ware LOCK prefix) and interrupts.'

If the LOCK is not active, an interrupt acknowledge cy·
cle is not in progress and the BIU (Bus Interface Unit) is
executing a T4 or TI when the HOLD request is received,
the minimum latency to HLDA is:

35 ns
65 ns
200 ns
10 ns

310 ns

eLK

HOLD

THVCH min (Hold setup)
TCHCL min
TCLCL (bus float delay)
TCLHAV min (HLDA delay)

@ 5 MHz

(SAMPLE)

The maximum delay under these conditions is:

34 ns
200 ns
82 ns
200 ns
160 ns

677 ns

(just missed setup time)
delay to next sample
TCHCL max
TCLCL (bus float delay)
TCLHAV max (HLDA delay)

@ 5 MHz

If the BIU just initiated a bus cycle when the HOLD Re·
quest was received, the worst case response time is:

34 ns
82 ns
1'200
N*200
160 ns

1.676 fls

THVCH (just missed)
TCHCL max
bus cycle execution
N wait states/bus cycle
TCLHAV max (HLDA delay)

@ 5 MHz, no wait states

Note, the 200 ns delay for just missing is included in the
delay for bus cycle execution. If the operand transfer is
a word transfer to an odd byte boundary, two bus cycles
are executed to perform the transfer. The BIU will not
acknowledge a HOLD request between the two bus
cycles. This type of transfer would extend the above
maximum latency by four additional clocks plus N addi­
tional wait states. With no wait states in the bus cycle,
the maximum would be 2.476 microseconds.

A!though the minimum mode 8086 does not have a hard­
ware LOCK output, the software LOCK prefix may still
be included in the instruction stream. The CPU internal­
ly reacts to the LOCK prefix as would the maximum
mode 8086. Therefore, the LOCK does not allow a HOLD
request to be honored until completion of the instruc­
tion following the prefix. This allows an instruction
which performs more than one memory reference (ex.
ADD [BX], CX; which adds CX to [BX]) to execute without
another bus master gaining control of the bus between
memory references. Since the LOCK signal is active for
one clock longer than the instruction execution, the
maximum latency to HLDA is:

ADXXIAlSXX=1-=~~i~---2~:':..---------------f---------f-~
CONTROL

HlDA ___ -J

Figure 3G1. HOLD/HLDA Sequence

3-347 230792-001

34 ns
200 ns
82 ns
(M + 1)*200 ns
200 ns
160 ns

(M * 200 ns) + 876 ns

THVCH (just miss)
delay to next sample
TCHCL,. max
L,.OCK instruction execution
set up HLDA (internal)
TCLHAV max (HLDA delay)

@ 5MHz

AP-67

If the HOLD request is made at the beginning of an inter·
rupt acknowledge sequence, the maximum latency to
HLOA is:

A typical use of the HOLDIHLDA signals in the minimum
mode 8086 system is bus control exchange with DMA
devices like the Intel 8257·5 or 8237 DMA controllers.
Figure 3G2 gives a general interconnect for this type of
configuration using the 8237·2. The DMA controller
resides on the upper half of the 8086's local bus and
shares the A8·A 15 demultiplexing address latch of the
8086. All registers in the 8237·2 must be assigned odd
addresses to allow initialization and interrogation by the
CPU over the upper half of the data bus. The 8086
RDIWR commands must be demultiplexed to provide
separate I/O and memory commands which are compati·
ble with the 8237·2 commands. The AEN control from
the 8237·2 must disable the 8086 commands from the
command bus, disable the address latches from the
ICNer (AO·A7) and upper (A19·A16) address bus and
select the 8237·2 address strobe (ADSTB) to the A8·A 15
address latch. If the data bus is buffered, a pull·up
resistor on the DEN line will keep the buffers disabled.
The DMA controller will only transfer bytes between

34 ns
82 ns
2600 ns
160 ns

2.876,..s

THVCH (just missed)
TCHCL max
13 clock cycles for INTA
TCLHAV max

@ 5MHz

1.2 Minimum Mode DMA Configuration

Vee

DEMULTIPLEX
MIN MODE COMMANDS

..c.D~ I T mnIE

RD/WRIIO/M

I 8284. I iHE A19-U

L 8086

T READY ALE ~

ClK
RESET AD15.0

HOLD HlDA

T
-8282

__ 01
DO

STa

+
~

UPPER = 00-

DMA 01
AD DR -

- 8282 110 PORT
LOADED DURING - 8237 INITIALIZATION

--s2a2
74lS74 01 DO

Q

~
CLR - STa

ClK 0

~~ AD7.0 -
--s2a2

--01 DO

STa

EN

~ -
(AD)

087.0
A'.O} - AEN lOR

ADSTB 8237·2 lOW 1-
HlDA MEMR

HRQ elK
MEMW

Y> i RESET

Figure 3G2. DMA Using the 8237·2

3-348

COMMAND
BUS

LOCAL DATA
aus

230792-001

intel AP-67

memory and 1/0 and requires the 1/0 devices to reside on
an 8-bit bus derived from the 16-bit to 8-bit bus multiplex
circuit given in Section 4. Address lines A7-AO are driven
directly by the 8237 and BHE is generated by inverting
AD. If A19-A16 are used, they must be provided by an ad­
ditional port with either a fixed value or initialized by
software and enabled onto the address bus by AEN.

Figure 3G3 gives an interconnection for placing the
8257 on the system bus. By using a separate latch to
hold the upper address from the 8257-5 and connecting
the outputs to the address bus as shown, 16-bit DMA
transfers are provided. In this configuration, AEN
simultaneously enables AD and BHE to allow word
transfers. AEN still disables the CPU interface to the
command and address busses.

2. MAXIMUM MODE (RQ/GT)

The maximum mode 8086 configuration supports a sig­
nificantly different protocol for transferring bus control.
When viewed with respect to the HOLD/HLDA sequence
of the minimum mode, the protocol appears difficult to
implement externally. However, it is necessary to under­
stand the intent of the protocol and its purpose within
the system architecture.

r-e262
_01 DO
-r----- STB

- ~
eE

T
CPU r-e262
BUS AD15_a - 1--_ 01

INTERFACE DO

~ STB

T
-l~

01

Dl/R

DEN

HOLD

HlOA

L DO
STB

T

. AEN

DE

t

2.1 Shared System Bus (RQ/GT Alternative)

The maximum mode RQ/GT sequence is intended to
transfer control of the CPU local bus between the CPU
and alternate bus masters which reside totally on the
local bus and share the complete CPU interface to the
system bus. The complete interface includes the ad­
dress latches, data transceivers, 8288 bus controller and
8289 multi master bus arbiter. If the alternate bus
masters in the system do not reside directly on the 8086
local bus, system bus arbitration is required rather than
local CPU bus arbitration. To satisfy the need for multi­
master system bus arbitration at each CPU's system in­
terface, the 8289 bus arbiter should be used rather than
the CPU RQ/GT logic.

To allow a device with a simple HOLD/HLDA protocol to
gain control of a single CPU system bus, the circuit in
Figure 3G4 could be used. The design is effectively a
simple bus arbiter which isolates the CPU from the
system bus when an alternate bus master issues a
HOLD request. The output of the circuit, AEN (Address
ENable), disables the 8288 and 8284 when the 8086 in­
dicates idle status (50,81,52 = 1), LOCK is not active and
a HOLD request is active. With AEN inactive, the 8288
three-states the command outputs and disables DEN

3
A19-17

1 A16

I
BHE

1 3

7
A15.9

1 A8

f7 1

A7.1

.... 7 1 ~
DO

I
DO I AEN

8282 BE 8282 I/O PORT

01 01

! ~ I l_
Ao TO GROUND AND

081.0 ADSTB A7 As.a
UPPER BITS OF DMA ADDRESS J (FIXED OR REG)

8257- 5

CONTROLS ARE SAME AS 8·BIT
TRANSFER CONFIGURATION WITH
MANIPULATION OF THE DATA BUS

Figure 3G3. 8086 Min System, 8257 on System Bus 16·Bit Transfers

3-349 230792-001

AP-67

which three-states the data bus transceivers_ AEN must
also three-state the address latch (8282 or 8283) outputs_
These actions remove the 8086 from the system bus and
allow the requesting device to drive the system bus. The
AEN signal to the 8284 disables the ready input and
forces a bus cycle initiated by the 8086 to wait until the
8086 regains control of the system bus. The CPU may
actively drive its local bus during this interval.

The requesting device will not gain control of the bus
during an 8086 initiated bus cycle, a locked instruction
or an interrupt acknowledge cycle. The LOCK signal
from the 8086 is active between INTA cycles to
guarantee the CPU maintains control of the bus. Unlike
the minimum mode 8086 HOLD response, this arbitra­
tion circuit allows the requestor to gain control of the
bus between consecutive bus cycles which transfer a
word operand on an odd address boundary and are not
locked. Depending on the characteristics of the re­
questing device, any of the 74LS74 outputs can be used
to generate a HLDA to the device.

Upon completion of its bus operations, the alternate bus
master must relinquish control of the system bus and
drop the HOLD request. After AEN goes inactive, the ad­
dress latches and data transceivers are enabled but, if a
CPU initiated bus cycle is pending, the 8288 will not
drive the command bus until a minimum of 105 ns or
maximum of 275 ns later. If the system is normally not
ready, the 8284 AEN input may immediately be enabled
with ready returning to the CPU when the selected
device completes the transfer. If the system is normally
ready, the 8284 AEN input must be delayed long enough
to provide access time equivalent to a normal bus cycle.
The 74LS74 latches in the design provide a minimum of
TCLCHmin for the alternate device to float the system
bus after releasing HOLD. They also provide 2TCLCL ns
address access and 2TCLCL- TAEVCHmax ns (8288
command enable delay) command access prior to ena­
bling 8284 ready detection. If HlDA is generated as
shown in Figure 3G4, TCLCl ns are available for the
8086 to release the bus prior to issuing HLDA while
HLDA is dropped almost immediately upon loss of
HOLD.

So
51
5,--;==[:)

lOCK
HOLD

elK

+5

+5

A circuit configuration for an 8257-5 using this tech­
nique to interface with a maximum mode 8086 can be
derived from Figure 3G3. The 8257-5 has its own address
latch for buffering the address lines A15-A8 and uses its
AEN output to enable the latch onto the address bus.
The maximum latency from HOLD to HLDA for this cir­
cuit is dependent on the state of the system when the
HOLD is issued. For an idle system the maximum delay
is the propagation delay through the nand gate and RIS
flip-flop (TD1) plus 2TCLCL plus TCLCHmax plus prop­
agation delay of the 74LS74 and 74LS02 (TD2). For a
locked instruction it becomes: TD1 + TD2 + (M + 2)
*TCLCL+ TCLCHmax where M is the number of clocks
required for execution of the locked instruction. For the
i nterru pt acknowledge cycle the latency is
TD1 + TD2 + 9 *TCLCL+ TCLCHmax.

2.2 Shared Local Bus (RQ/GT Usage)

The RQ/GT protocol was developed to allow up to two in­
struction set extension processors (co-processors) or
other special function processors (like the 8089 1/0
processor in local mode) to reside directly on the 8086
local bus. Each RQ/GT pin of the 8086 supports the full
protocol for exchange of bus control (Fig. 3G5). The se­
quence consists of a request from the alternate bus
master to gain control of the system bus, a grant from
the CPU to indicate the bus has been relinquished and a
release pulse from the alternate master when done. The
two RQ/GT pins (RQ/GTO and RQ/GT1) are prioritized
with RQ/GTO having the highest priority. The prioritiza­
tion only occurs if requests have been received on both
pins before a response has been given to either. For ex­
ample, if a request is received on RQ/GT1 followed by a
request on RQ/GTO prior to a grant on RQ/GT1, RQ/GTO
will gain priority over RQ/GT1. However, if RQ/GT1 had
already received a grant, a request on RQ/GTO must wait
until a release pulse is received on RQ/GT1.

The request/grant sequence interaction with the bus in­
terface unit is similar to HOLD/HLDA. The CPU con­
tinues to execute until a bus transfer for additional in­
structions or data is required. If the release pulse is

,--------------ill (TO 8288 & 828213'0)

liEN' (TO 8284)

HLOA

Figure 3G4. Circuit to Translate HOLD into AEN Oisable for Max Mode 8086

3-350 230792-001

intel AP-67

received before the CPU needs the bus, it will not drive
the bus until a transfer is required.

Upon receipt of a request pulse, the 8086 floats the
multiplexed address, data and status bus, the SO, 51,
and 52 status lines, the LOCK pin and RD. This action
does not disable the 8288 command outputs from driv­
ing the command bus and does not disable the address
latches from driving the address bus. The 8288 contains
internal pull-up resistors on the So, 51, and 52 status
lines to maintain the passive state while the 8086 out­
puts are three-state. The passive state prevents the 8288
from initiating any commands or activating DEN to
enable the transceivers buffering the data bus. If the
device issuing the RQ does not use the 8288, it must
disable the 8288 command outputs by disabling the
8288 AEN input. Also, address latches not used by the
requesting device must be disabled.

GND
A014

AD13

AD11

AD10

ADa

AD7

ADS

ADS

AD'

AD3

AD2

AD1

ADO

NMI

GNO

vee
A015

A16/S3

RD
RaJGlO

RQIGT1
LOCK
52
S1

so
aso

TEST
READY

RESET

Figure 3GS. 8086 RQ/GT Connections

,. THE9(11l9Fl-OATSAxDx8usiWlltJP[(j""fj(OF<lTH'S(OGE
._ T!iF OTHER MASTER FlOATSS:;. 'S";,S;; FROM '-' 1 STAT~ ON 1ftiS EDGE

!: ~~~ ~~ERRE~:~;AT~~o~~~;g~ ~,~S~siliie, AND [~O .. THIS EDGE

"THE8086REORIVESTHEAO",LlNES

2.3 RQIGT Operation

Detailed timing of the RQIGT sequence is given in
Figure 3G6. To request a transfer of bus control via the
RQ/GT lines, the device must drive the line low for no
more than one CPU clock interval to generate a request
pulse. The pulse must be synchronized with the CPU
clock to guarantee the appropriate setup and hold times
to the clock edge which samples the RO/GT lines in the
CPU. After issuing a request pulse, the device must
begin sampling for a grant pulse with the next low to
high clock edge. Since the 8086 can respond with a
grant pulse in the clock cycle immediately following the
request, the RQ/GT line may not return to the positive
level between the request and grant pulses. Therefore
edge triggered logic is not valid for capturing a grant
pulse. It also implies the circuitry which generates the
request pulse must guarantee the request is removed in
time to detect a grant from the CPU. After receiving the
grant pulse, the requesting device may drive the local
bus. Since the 8086 does not float the address and data
bus, LOCK or RD until the high to low clock transition
following the low to high clock transition the requestor
uses to sample for the grant, the requestor should wait
the float delay of the 8086 (TCLAZ) before driving the
local bus. This precaution prevents bus contention dur­
ing th" "r,'"'l''''' of bus control bv the requestor.

To return control of the bus to the 8086, the alternate
bus master relinquishes bus control and issues a
release pulse on the same RQ/GT line. The 8086 may
drive the SO-52 status jines, RD and LOCK, three clock
cycles after detecting the release pulse and the ad­
dress/data bus TCHCLmin 118 (ClOCK high time) after the
status lines. The alternate bus master should be three­
stated off the local bus and have other 8086 interface
circuits (8288 and address latches) re·enabled within the
8086 delay to regain control of the bus.

2.4 RQ/GT Latency

The RQ to GT latency for a single RQ/GT line is similar
to the HOLD to HLDA latency. The cases given for the
minimum mode 8086 also apply to the maximum mode.
For each case the delay from RQ detection by the CPU
to GT detection by the requestor is:

(HOLD to HLDA delay)- (THVCH + TCHCL+ TCLHAV)

Figure 3G6. Request/Grant Sequence

3-351 230792-001

AP-67

This gives a clock cycle maximum delay for an idle bus
interface. All other cases are the minimum mode result
minus 476 ns. If the 8086 has previously issued a grant
on one of the RQ/GT lines, a request on the other RQ/GT
line will not receive a grant until the first device releases
the interface with.a release pulse on its RQ/GT line. The
delay from release on one RQ/GT line to a grant on the
other is typically one clock period as shown in Figure
3G7. Occasionally the delay from a release on RQ/GT1

CHANNEL 0 TO 1

CLOCK

to a grant on RQ/GTO will take two clock cycles and is a
function of a pending request for transfer of control
from the execution unit. The latency from request to
grant when the interface is under control of a bus
master on the other RQ/GT line is a function of the other
bus master. The protocol embodies no mechanism for
the CPU to force an alternate bus master off the bus. A
watchdog timer should be used to prevent an errant
alternate bus master from 'hanging' the system.

RaIGTO ~ RELEASE

RalGT1 ~GRANT

CHANNEL 1 TO 0

CLOCK

RO/GT1 ~RElEASE

\ / GRANT
I.---...J.

OR

\ / GRANT

Figure 3G7. Channel Transfer Delay

3-352 230792-001

infel AP-67

2.5 RQ/GT to HOLD/HLDA Conversion

A circuit for translating a HOLD/HLDA hand-shake se­
quence into a RQ/GT pulse sequence is given in Figure
3G8_ After receiving the grant pulse, the HLDA is ena­
bled TCHCLmin ns before the CPU has three-stated the
bus. If the requesting circuit drives the bus within 20 ns

of HLDA, it may be desirable to delay the acknowledge
one clock period. The HLDA is dropped no later than one
clock period after HOLD is disabled. The HLDA also
drops at the beginning of the release pulse to provide
2TCLCL+ TCLCH for the requestor to relinquish control
of the status lines and 3TCLCL to float the remaining
signals.

CLOCK------------------------------------~

A

74lS78 74S02
J Q

HlDA R
Q

CLR

HOLD

74502

+5

I

74lS78

)O--+-~HJ Q

ClK

- K ClR Q

74lS04

RESET----------------------------------~

Figure 3GS •. HOLOIHLOA-oC~ iiQ,Qf Conversion Circuit

88.3 MIN --1 r ---"1 r 44.6 MIN --I 1 - DATA BUS FLOATS

CLK~

HlDR

A

00

HLOA r--
------------------------~I

Figure 3G8b. HOLDIHLOA-CIMlQIQf Conversion Timing

3-353 230792-001

AP-67

4. INTERFACING WITH 1/0

The 8086 is capable of interfacing with 8· and 16-bit I/O
devices using either 1/0 instructions or memory mapped
1/0. The I/O instructions allow the 1/0 devices to reside
in a separate I/O address. space while memory mapped
1/0 allows the full power of the instruction set to be
used for I/O operations. Up to 64K bytes of 1/0 mapped
1/0 may be defined in an 8086 system. To the program·
mer, the separate I/O address space is only accessible
with INPUT and OUTPUT commands which transfer data
between I/O devices and the AX (for 16-bit data trans·
fers) or AL (for 8-bit data transfers) register. The first 256
bytes of the I/O space (0 to 255) are directly addressable
by the I/O instructions while the entire 64K is accessible
via register indirect addressing through the OX register.
The later technique is particularly desirable for service
procedures that handle more than one device by allow·
ing the desired device address to be passed to the pro·
cedure as a parameter. I/O devices may be connected to
the local CPU bus or the buffered system bus.

4A. Elght·Blt 1/0

Eight·bit 110 devices may be connected to either the up·
per or lower half of the data bus. Assigning an equal
number of devices to the upper and lower halves of the
bus will distribute the bus loading. If a device is can·
nected to the upper half of the data bus. all I/O ad·
dresses assigned to the device must be odd (AO= 1). If
the device is on the lower half of the bus, its addresses
must be even (AO = 0). The address assignment directs
the eight·bit transfer to the upper (odd byte address) or
lower (even byte address) half of the sixteen·bit data
bus. Since AO will always be a one or zero for a specific
device, AO cannot be used as an address input to select
registers within a specific device. If a device on the
upper half of the bus and one on the lower half are
assigned addresses that differ only in AO (adjacent odd
and even addresses), AO and BHE must be conditions of
chip select decode to prevent a write to one device from
erroneously performing a write to the other. Several
techniques for generating I/O device chip selects are
given in Figure 4A 1.

The first technique (a) uses separate 8205's to generate
chip selects for odd and even addressed byte periph·
erals. If a word transfer is performed to an even ad·
dressed device, the adjacent odd addressed 1/0 device
is also selected. This allows accessing the devices in·
dividually with byte transfers or' simultaneously as a
16-bit device with word transfers. Figure 4A 1(b) restricts
the chip selects to byte transfers, however a word
transfer to an odd address will cause the 8086 to run two
byte transfers that the decode technique will not detect.
The third technique simply uses a single 8205 to
generate odd and even device selects for byte transfers
and will only select the even addressed eight·bit device
on a word transfer to an even address.

If greater than 256 bytes of the I/O space or memory
mapped I/O is used, additional decoding beyond what Is
shown in the examples may be necessary. This can be
done with additional TTL, 8205's or bipolar PROMs (In·
tel's 3605A). The bipolar PROMs are slightly slower than
multiple levels of TTL (50 ns vs 30 to 40 ns for TTL) but

provide full decoding in a single package and allow in'
serting a new PROM to reconfigure the system 1/0 map
without circuit board or wiring modifications (Fig. 4A2).

ADDRESS

SHE --I--<lI

(0)

(b)

(e)

EVEN ADDRESSED
WORD OR BYTE
PERIPHERALS

ODD ADDRESSED
BYTE PERIPHERALS

EVEN ADDRESSED
ByrE PERIPHERALS

ODD ADDRESSED
BYTe PERIPHERALS

EVEN ADDRESSED
PERIPHERALS
(WORD/BYTE)

ODD ADDRESSED
PERIPHERALS
(BYTE)

Figure 4A 1. Techniques for 110 Device Chip Selects

CS1 O.
11

10
CS2 12 0,
Ao

02 13
A,

360. 01 14 A, A·1
A, A,

1 •.

14 Ao 16
As

Ao A, 17

Figure 4A2. Bipolar PROM Decoder

One last technique for interfacing with eight·bit periph·
erals is considered in Figure 4A3. The sixteen·bit data
bus is multiplexed onto an eight·bit bus to accom·
modate byte oriented DMA or block transfers to memory
mapped eight·bit I/O. Devices connected to this inter·
face may be assigned a sequence of odd and even ad·
dresses rather than all odd or even.

3-354 230792-001

AP-67

RD---r.~---------------

I~B1T I
1\1 ___ J\ 8·BIT

o:~~ 1 (L __ =-=--LLl\

BHE
PERIPHERAL

CS ..

PERIPHERAL
DATA BUS

Figure 4A3. 16· to 8·Bit Bus Conversion

4B. Slxteen·Blt I/O

For obvious reasons of efficient bus utilization and sim­
plicity of device selection, sixteen-bit 1/0 devices should
be assigned even addresses. To guarantee the device is
selected only for word operations, AO and 8HE should
be conditions of chip select code (FiQ. 481).

ADDRESS ---hi

"o---t-OI
~----t--q

0 0

8205 I
0,

EVEN ADDRESSED
WORD PERIPHERALS

Figure 4B1. Sixteen·Bil 110 Decode

4C_ General Design Considerations

MINIMAX, MEMORY 1/0 MAPPED AND LINEAR SELECT

Since the minimum mode 8086 has common read and
write commands for memory and 110, if the memory and
I/O address spaces overlap, the chip selects must be
qualified by MIlO to determine which address space the
devices are assigned to. This restriction on chip select
decoding can be removed if the 110 and memory ad­
dresses in the system do not overlap and are properly
decoded; all 110 is memory mapped; or RD, WR and M/iO
are decoded to provide separate memory and I/O
readlwrite commands (Fig. 4C1). The 8288 bus controller
in the maximum mode 8086 system generates separate
110 and memory commands in place of a M/iO signal. An
110 device is assigned to the 110 space or memory space
(memory mapped 110) by connection of either 110 or
memory command lines to the command inputs of the
device. To allow overlap of the memory and 110 address
space, the device must not respond to chip select alone
but must require a combination of chip select and a read
or write command.

74lS02 74lS368

RO ---;===+==:j[>---t;>o- lOR

MIlO

DEFINED EN~:~~ _______________ -4--.J

NOTE: IF IT IS NOT NECESSARY TO THREe-STATE THE COMMAND LINES, A
DECODER (8205 OR 745138) COULD BE USED. THE 74lS257 IS NOT
RECOMMENDED SINCE THE OUTPUTS MAY EXPERIENCE VOLTAGE
SPIKES WHEN ENTERING OR LEAVING THREE-STATE .

Figure 4C1. Decoding Memory and 1/0 RO and WR Commands for
Minimum Mode 8086 Systems

Linear select techniques (Fig. 4C2) for 110 devices can
only be used with devices that either reside in the 110 ad­
dress space or require more than one active chip select
(at least one low active and one high active). Devices
with a single chip select input cannot use linear select if
they are memory mapped. This is due to the assignment
01 memory aaaress space f-FH'+UH-h'H':f-f'H to nisei
startup and memory space 00000H-003FFH to interrupt
vectors.

AOO~~~~ =[]
~ lID IIOOEVICE

~ Wll

(a) SEPARATE 1/0 COMMANDS

ADDRESS.IUS LINES/ a
110 DEVICE

Ali Ali
Wll Wl't

(b) MULTIPLE CHIP SEleCTS

Figure 4C2. Linear Select for I/O

40. Determining I/O Device Compatibility

This section presents a set of A.C. characteristics which
represent the timing of the asynchronous bus interface
of the 8086. The equations are expressed in terms of the
CPU clock (when applicable) and are derived for
minimum and maximum modes of the 8086. They repre­
sent the bus characteristics at the CPU.

The results can be used to determine I/O device re­
quirements for operation on a single CPU local bus or
buffered system bus. These values are not applicable to

3-355 230792-001

AP-67

a Multibus system bus interface. The requirements for a
Multibus system bus are available in the Multibus inter­
face specification.

A list of bus parameters, their definition and how they
relate to the A.C. characteristics of Intel peripherals are
given in Table 4D1. Cycle dependent values of the
parameters are given in Table 4D2. For each equation, if
more than one signal path is involved, the equation
reflects the worst case path.

ex. TAVRL(address valid before read active) =
(1) Address from CPU to AD active

(or)
(2) ALE (to enable the address through the

address latches) to RD active

The worst case delay path is (1).

For the maximum mode 8086 configurations, TAVWLA,
TWLWHA and TWLCLA are relative to the advanced
write signal while TAVWL, TWLWH and TWLCL are
relative to the normal write signal.

TABLE 401. PARAMETERS FOR PERIPHERAL COMPATIBILITY

TAVRL - Address stable before RD leading edge
TRHAX - Address hold after RD trailing edge
TRLRH - Read pulse width
TRLDV - Read to data valid delay
TRHDZ - Read trailing edge to data floating
TAVDV - Address to valid data delay
TRLRL - Read c'ycle time
'TAVWL - Address valid before write leading edge
TAVWLA - Address valid before advanced write
TWHAX - Address hold after write trailing edge
TWLWH - Write pulse width
TWLWHA - Advanced write pulse width
TDVWH - Data set up to write trailing edge
TWHDX - Data hold from write trailing edge
TWlCl - Write recovery -time
TWLCLA - Advanced write recovery time
TSVRL - Chip select stable before RD leading edge
TRHSX - Chip select hold alter RD trailing edge
TSLDV - Chip select to data valid delay
TSVWL - Chip select stable before WR leading edge
TWHSX - Chip select hold after WR trailing edge
TSVWLA - Chip select stable before advanced write

(TAR)
(TRA)
(TRR)
(TRD)
(TOF)
(TAD)

(TRCYC)
(TAW)
(TAW)
(TWA)

(TWW)
(TWW)
(TOW)
(TWD)
(TRV)
(TRV)
(TAR)
(TRA)
(TRD)
(TAW)
(TWA)
(TAW)

Symbols in parentheses are equivalent parameters specified for
Intel peripherals.

In the given list of equations, TWHDXB is the data hold
time from the trailing edge of write for the minimum
mode with a buffered data bus. For this equation,
TCVCTX cannot be a minimum for data hold and a max­
imum for write inactive. The maximum difference is 50
ns giving the result TCLCH-50. If the reader wishes to
verify the equations or derive others, refer to Section 3F
for assistance with interpreting the 8086 bus timing
diagrams.

Figure. 4D1 shows four representative configurations
and the compatible Intel peripherals (including wait
states if required) for each configuration are given in
Table 4D3. Configuration 1 and 2 are minimum mode
demultiplexed bus 8086 systems without (1) and with (2)
data bus transceivers. Configurations 3 and 4 are max­
imum mode systems with one (3) and two (4) levels of ad­
dress and data buffering. The last configuration is
characteristic of a multi-board system with bus buffers
on each board. The 5 MHz parameter values for these
configurations are given in Table 4D4 and demonstrate

the relaxed device requirements for even a large com­
plex configuration. The analysis assumes all com­
ponents are exhibiting the specified worst case param­
eter values and are under the corresponding tem­
perature, voltage and capacitive load conditions. If the
capacitive loading on the 8282/83 or 8286/87 is less than
the maximum, graphs of delay vs. capacitive loading in
the respective data sheets should be used to determine
the appropriate delay values.

3-356

TABLE 402. CYCLE DEPENDENT PARAMETER REQUIREMENTS
FOR PERIPHERALS

(a) Minimum Mode

TAVRl= TCLCL+ TCLRLmin - TCLAVmax= TCLCL-100
TRHAX= TCLCL- TCLRHmax + TCLLHmin = TCLCL-150
TRLRH = 2TCLCL- 60= 2TCLCL·- 60
TRLDV = 2TCLCL- TCLRLmax- TOVCLmin= 2TCLCL-195
TRHDZ= TRHAVmin = 155 ns
TAVDV= 3TCLCL- TDVCLmin- TCLAVmax= 3TCLCL- 140
TRLRL = 4TCLCL = 4TCLCL
TAVWL= TCLCL+ TCVCTVmin- TCLAVmax = TCLCL-100
TWHAX= TCLCL+ TCLLHmin - TCVCTXmax= TCLCL-110
TWLWH = 2TCLCL- 40= 2TCLCL- 40
TDVWH = 2TCLCL+ TCVCTXmin - TCLDVmax = 2TCLCL - 100
TWHDX= TWHDZmin= 89
TWLCL= 4TCLCL= 4TCLCL
TWH DXB = TCLCHmin + (- TCVCTXmax + TCVCTXmin)=

TCLCHmin - 50

Note: Delays relative to chip select are a function of the chip select
decode technique used and are equal to: equivalent delay
from address - chip select decode delay.

(b) Maximum Mode

TAVRl= TCLCL+ TCLMLmin- TCLAVmax= TClCL-100
TRHAX = TCLCL- TCLMHmax + TCLLHmin = TCLCL- 40
TRLRH = 2TCLCL- TCLMLmax+ TCLMHmin =2TCLCL- 25
TRLDV = 2TClCL- TCLMLmax- TDVCLmin= 2TCLCL- 65
TRHDZ= TRHAVmin = 155
TAVDV= 3TCLCL- TDVClmin- TCLAVmax= 3TCLCL-140
TRLRL= 4TCLCL= 4TCLCL
TAVWLA= TAVRL= TCLCL-100
TAVWL= TAVRl+ TCLCL= 2TCLCL-100
TWHAX = TRHAX = TCLCL - 40
TWLWHA = TRLRH = 2TCLCL- 25
TWLWH = TRLRH - TCLCL= TCLCL- 25
TDVWH = 2TCLCL+ TCLMHmin - TCLDVmax= 2TCLCL-100
TWHDX = TCLCHmin - TCLMHmax + TCHDZmin = TCLCHmin - 30
TWLCL= 3TCLCL= 3TCLCL
TWLCLA = 4TCLCL = 4TClCL

TABLE 403. COMPATIBLE PERIPHERALS (5 MHz 8086)

Configuration

Minimum Mode Maximum Mode

Unbuffered Buffered Buffered Fully Buffered

8251A " 1W " " 8253·5 " 1W " " 8255A·5 " 1W " " 8257·5 " 1W " V"

8259A V" V" " V"

8271 " 1W V" " 8273 " 1W V" V"

8275 " 1W V" " 8279·5 " 1W " " 8041A" V' 1W " ..
8741A " 1W " " 8291 .. " .. "
"Includes other Intel peripherals based on the 8041A (i.e .• 8292, 8294,
8295).

v- implies full operation with no wait states,

W implies the number of wait states required.

230792-001

intel' AP-67

TABLE 404, PERIPHERAL REQUIREMENTS FOR FULL SPEED Peripheral compatibility is determined from the equa-

TAVRL
TRHAX
TRLRH
TRLDV
TRHDZ
TAVDV
TRLRL
TAVWL
TAVWLA
TWHAX
TWLWH
TWLWHA
TDVWH
TWHDX
TWLCL
TWLCLA
TSVRL
TRHSX
TSLDV
TSVWL
TWHSX
TSVWLA

"'10~ 9') . r

OPERATION WITH 5 MHz 8086 tions given for the CPU by modifying them to account

Configuration

Minimum Mode Maximum Mode

for additional delays from address latches and data
transceivers in the configuration, Once the system con­
figuration is selected, the system requirements can be
determined at the peripheral interface and used to
evaluate compatibility of the peripheral to the system,
During this process, two areas must be considered,
First, can the device operate at maximum bus band­
width and if not, how many wait states are required, Sec­
ond, are there any problems that cannot be resolved by
wait states.

Unbuffered

70
57

340
205
155
430
800

70
-
97

360
-

300
88

800
-
52
50

412
52
90
-

Ijl'"'?t>l ..

Buffered Buffered

72 70
27 169

320 375
150 305
158 382
400 400
770 800

72 270
- 70
67 169

340 175
- 375

339 270
15 95

772 600
- 800
54 52
50 171

382 382
54 252
90 171
- 52

o. M1NIMUM MOD~

Fully Buffered

58
141
347
261
360
372
772
258
58

141
147
347
258

13
572
772

40
143
354
240
143
40

Examples of the first are TRLRH (read pulse width) and
TRLDV (read access or RD active to output data valid).
Consider address access time (valid address to valid
data) for the maximum mode fully buffered configura­
tion,

TAVDV = 3TCYC - 140 ns - address latch delay -
address buffer delay - chip select decode delay - 2
transceiver delays

Assuming inverting latches, buffers and trans·
ceivers with 22 ns max delays (8283, 8287) and a
bipolar PROM decode with 50 ns delay, the result
is:

TAVDV=322 ns @ 5 MHz

b. MINIMUM MODE BUFFERED DATA AND COMMAND BUSSES

Figure 401, 8086 System Configurations

3-357 230792-001

AP-67

c. MAXIMUM MODE BUFFERED DATA BUS

elK

.284

NOTE: FOR OPTIMUM PERFORMANCE WITH INTEL PERIPHERALS, A10W (ADVANCED
WRITE) SHOULD BE USED.

d. MAXIMUM MODE DOUBLE BUFFERED SYSTEM

8284

Figure 401. 8086 System Configurations (Con't)

The result gives the address to data valid delay required
at the peripheral (in this configuration) to satisfy zero
wait state CPU access time. If the maximum delay
specified for the peripheral is less than the result, this
parameter is compatible with zero wait state CPU opera·
tion. If not, wait states must be inserted until TAVDV + n
• TCYC (n is the number of wait states) is greater than
the peripherals maximum delay. If several parameters
require wait states, either the largest number required
should always be used or different transfer cycles can
insert the maximum number required for that cycle.

The second area of concern includes TAVRL (address
set up to read) and TWHDX (data hold after write).
Incompatibilities in this area cannot be resolved by the
insertion of wait states and may require either addi·

tional hardware, slowing down the CPU (if the parameter
is related to the clock) or not using the device.

As an example consider address valid prior to advanced
write low (TAVWLA) for the maximum mode fully buf·
fered system.

TAVWLA = TCYC - 100 ns - address latch delay -
address buffer delay - chip select decode delay +
write buffer delay (minimum)

Assuming inverting latches and buffers with 22 ns
delay (8283, 8287) and an 8205 address decoder with
18 ns delay

TAVWLA=38 ns which is the time a 5 MHz 8086
system provides

3-358 230792-001

AP-67

4E. 1/0 Examples

1. Consider an interrupt driven procedure for handling
multiple communication lines. On receiving an interrupt
from one of the lines, the invoked procedure polls the
lines (reading the status of each) to determine which
line to service. The procedure does not enable lines but
simply services input and output requests until the
associated output buffer is empty (for output requests)
or until an input line is terminated (for the example only
EOT is considered). On detection of the terminate condi­
tion, the routine will disable the line. It is assumed that
other routines will fill a lines output buffer and enable
the device to request output or empty the input buffer
and enable the device to input additional characters.

The routine begins operation by loading CX with a count
of the number of lines in the system and OX with the 1/0
address of the first line. The 1/0 addresses are assigned
as shown in Figure 4E1 with 8251A's as the 1/0 devices.
The status of each line is read to determine if it needs
service. If yes, the appropriate routine is called to input
or output a character. After servicing the line or if no
service is needed, CX is decremented and OX is in·
cremented to test the next line. After all lines have been
tested and serviced, the routine terminates. If all inter­
rupts from the lines are OR'd together, only one inter­
rupt is used for all lines. II the Interrupt IS input \0 Ihe
CPU through an 8259A interrupt controller, the 8259A
should be programmed in the level triggered mode to
guarantee all line interrupts are serviced.

To service either an input or output request the called
routine transfers OX to BX, and shifts BX to form the off­
set for this device into the table of input or output buf­
fers. The first entry in the buffer is an index to the next
character position in the buffer and is loaded into the 51
register. By speCifying the base address of the table of

DEVICES ARE CONNECTED TO THE UPPER AND
LOWER HALVES OF THE DATA BUS.

ADDRESS

o
1
2
3

• 5
6
7

ETC.

DEVICE 0
DEVICE 1
DEVICE 0
DEVICE 1
DEVICE 2
DEVICE 3
DEVICE 2
DEVICE 3

DATA
DATA
CONTROL/STATUS
CONTROL/STATUS
DATA
DATA
CONTROl/STATUS
CONTROLISTATUS

Figure 4E1. Device Assignment

buffers as a displacement into the data segment, the
base + index + displacement addressing mode allows
direct access to the appropriate memory location. 8086
code for part of this example is shown in Figure 4E2.

2. As a second example, consider using memory
mapped I/O and the 8086 string primative instructions to
perform block transfers between memory and 1/0. By
assigning a block of the memory address space
(equivalent in size to the maximum block to be trans­
ferred to the 1/0 device) and decoding this address
space to generate the 1/0 device's chip select, the block
transfer capability is easily implemented. Figure 4E3
gives an interconnect for 16-bit 1/0 devices while Figure
4E4 incorporates the 16-bit bus to 8-bit bus multiplexing
scheme to support 8-bit 1/0 devices. A code example to
perform such a transfer is shown in Figure 4E5.

; THIS CODe DEMONSTRATES TESTING DEVICE
; STATUS FOR SERVICE, CONSTRUCTING THE
; APPROPRIATE LINE BUFFER ADDRESS FOR INPUT
; AND OUTPUT AND SERVICING AN INPUT
; REQUEST

MASK EQU OFFFDH
CHECK ___ STATUS: INPUT AL, ox ; GET 8251A STATUS.

MOV AH, AL
TEST AH, READ_.OR __ WRITE_STATUS
JZ NEXT_IO
CALL ADDRESS
TEST AH, READ STATUS
¥_ ':.",'n:i::: .. E:J""I:G:::

READ
AH, WRITE STATUS
NEXT_IO

WRITE .. SERVICE:

CALL
TEST
JZ
CALL
DEC
JNC
AND
ADD
OR
JMP

WRITE
NEXT _JO:

ADDRESS:

READ:

cx
EXIT
ox, MASK
OX. 3
OX, 2

; TEST IF DONE.
; YES, RESTORE & RETURN.
: REMOVE 41 AND
; INCREMENT ADDRESS.
; SELECT STATUS FOR

CHECK __ STATUS ; NEXT INPUT,

AND
MOV
INC
SHR
XOR
RET

OX, MASK
BH,OL
BH
BH
Bl, BL

INPUT AL, ox

; SELECT DATA.
; CONSTRUCT BUFFER
; DISPLACEMENT FOR
; THIS DEVICE.
; ex IS THE DISPLACEMENT.

; READ CHARACTER.
MOV 51, READ_BUFFERS IBX]
MOV READ_BUFFERS IBX + 51], Al
INC READ_BUfFERS {BXI

; GET CHARACTER POINTER.
; STORE CHARACTER.
: INCR CHAFtACTER POINTER.
; END OF TRANSMISSION? CMP Al. EaT

JNZ CONT _READ
CALL DISABLE READ
CaNT_READ: RET

; YES, DISABLE RECEIVER.
; SEND MESSAGE THAT INPUT
; IS READY.

Figure 4E2.

3605
A·1

DECODE

110 CHIP SELECT

j
16·
BIT
110

TRANSFER 256 BYTE BLOCKS TO THE 1/0 DEVICE

THE ADDRESS SPACE ASSIGNED TO THE I/O DEVICE IS

A"
FROM i-BASE
THRU f.- BASE

~'A7 Aol
ADDRESS - ..- O's -~
ADDRESS - 1's ~

MEMORY DATA NEED NOT BE ALIGNED TO EVEN ADDRESS BOUNDARIES
110 TRANSFERS MUST BE WORD TRANSFERS TO EVEN ADDRESS BOUNDARIES

Figure 4E3. Block Transfer to 16·Bit 1/0 Using 8086 String Primatives

3-359 230792-001

intJ AP-67

A,,·a '-------11

015·8 \.--r-----,

3805
A·l

CHIP SELECT

CS

8·BIT
I/O

DEVICE

_+---------'1 1
ADDRESS ASSIGNMENT SAME AS PREVIOUS EXAMPLE. 16·BIT BUS IS
MULTIPLEXED ONTO AN 8·BIT PERIPHERAL BUS.

Figure 4E4. Block Transfer to B·Bit 110 USing BOB6 String Primatives

; DEFINE THE I/O ADDRESS SPACE
110 SEGMENT
ORG BLOCK_ADDRESS

IIO_BLOCK: OW 128 DUP (7)
110 ENOS

; ASSUME THE DATA IS FROM THE CURRENT
; DATA SEGMENT

CLD ; OF = FORWARD
lES 01, IIO_BLOCKJDDRESS ; 110 BLOCK ADDRESS

MOV CX, BLOCK_LENGTH
MOV 51, SOURCE.....ADDRESS

; CONTAINS THE ADDRESS
; OF 110 BLOCK

MOVS 110 BLOCK ; PERFORM WORD TRANSFERS

; END CODE EXAMPLE

NOTE THE CODe IS CAPABLE OF PERFORMING BYTE TRANSFERS BY
CHANGING THE 110 BLOCK DEFINITION FROM 128 WORD TO 256 BYTES

Figure 4ES. Code for Block Transfers

S. INTERFACING WITH MEMORIES

Figure 5.1 is a general block diagram of an 8086
memory. The basic characteristics of the diagram are
the partitioning of the 16·bit word memory into high and
low 8·bit banks on the upper and lower halves of the
data bus and inclusion of BHE and AO in the selection of
the banks. Specific implementations depend on the type
of memory and the system configuration.

SA. ROM and EPROM

The easiest devices to interface to the system are ROM
and EPROM. Their byte format provides a simple bus in·
terface and since they are read only devices, AO and
BHE need not be included in their chip enable/select
decoding (chip enable is similar to chip select but addi­
tionally determines if the device is in active or standby
power mode). The address lines connected to the
devices start with A1 and continue up to the maximum

number the device can accept, leaving the remaining ad­
dress lines for chip enable/select decoding. To connect
the devices directly to the multiplexed bus, they must
have output enables. The output enable is also
necessary to avoid bus contention in other configura­
tions. Figure 5A1 shows the bus connections for ROM
and EPROM memories. No special decode techniques
are required for generating chip enables/selects. Each
valid decode selects one device on the upper and lower
halves of bus to allow byte and word access. Byte ac­
cess is achieved by reading the full word onto the bus
with the 8086 only accepting the desired byte. For the
minimum mode 8086, if RD, WR and M/iO are not decod­
ed to form separate commands for memory and I/O, and
the I/O space overlaps the memory space assigned to
the EPROM/ROM then M/iO (high active) must be a con­
dition of chip enable/select decode. The output enable
is controlled by the system memory read signal.

HIGH BAN~E('f.£-----------,

ADDRESS _____ --,

CONTROL

DATA

Figure 5.1. BOB6 Memory Array

CHIP SELECT ---............... ----qCE

08.15 00-7 ,,----.---..,-1 2732

Rii----H

00·7 .--__ -,-___ ,00.,

L-..---<tCE

NOTE Ao AND BHE ARE NOT USED.

Figure SAl. EPROM/ROM Bus Interlace

3-360 230792-001

AP-67

Static ROM's and EPROM's have only four parameters
to evaluate when determining their compatibility to the
system. The parameters, equations and evaluation tech·
niques given in the I/O section are also applicable to
these devices. The relationship of parameters is given in
Table 5A 1. TACC and TCE are related to the same equa·
tion and differ only by the delay associated with the chip
enable/select decoder. As an example, consider a 2716
EPROM memory residing on the multiplexed bus of a
minimum mode configuration:

TACC = 3TCLCL - 140 - address buffer delay = 430 ns
(8282 = 30 ns max delay)

TCE = TACC - decoder delay = 412 ns
(8205 decoder delay = 18 ns)

TOE=2TCLCL-195=205 ns

TDF= = 155 ns

TABLE SAl. EPROM/ROM PARAMETERS

TOE - Output Enable to Valid Data = TRLDV
TACC - Address to Valid Data = TAVDV
TCE - Chip Enable to Valid Data = TSLDV
TDF - Output Enable High to Output Float = TRHDZ

The results are the times the system cOnTlguration re­
quires of the component for full speed compatibility
with the system. Comparing these times with 2716
parameter limits indicates the 2716-2 will work with no
wail states while the 2716 wiil require 0116 wait stat6.
Table 5A2 demonstrates EPROM/ROM compatibility for
the configurations presented in the I/O section. Before
designing a ROM or EPROM memory system, refer to
AP-30 for additional information on design techniques
that give the system an upgrade path from 16K t032K
and 64K devices.

TABLE SA2. COMPATIBLE EPROM/ROM (5 MHz 8086)

Configuration

Minimum Mode Maximum Mode

Unbuffered Buffered Buffered Fully Bufiered

2716·1 '" '" '" '" 2716·2 '" 1W 1W 1W

devices with single chip selects and no output enables
(2114, 2141, 2147). Figure 5B3 gives selection tech­
niques for devices with chip selects and output enables.

I/01~D9

I/02~D8

ADDRESS
07

0,

Figure 581. Incorrect Connection of 2142 Across Byte Boundaries

The first group requires inclusion of AO and BHE to
decode or enable the chip selects. Since these
memories do not have output enables, read and write
are used as enabies for chip select generation to pre­
vent bus contention. If read and write are not used to
enable the chip seiects, devices with common inpllVoul­
put pins (like the 2114) will be subjected to severe bus
contention between chip select and write active. For
devices with separate input/output lines (like 2141,
2147), the outputs can be externally buffered with the
buffer enable controlled by read. This solution will only
allow bus contention between memory devices in the ar­
ray during chip select transition periods. These tech­
niques are considered in more detail in Section 2C.

2732 1W 1W
2332 '" '" 2364 '" '"

1W

'"
'"

1W

'"
'" I

For devices with output enables (2142), write may be
gated with BHE and AO to provide upper and lower bank
write strobes. This simplifies chip select decoding by
eliminating BHE and AO as a condition of decode.
Although both devices are selected during a byte write
operation, only one will receive a write strobe. No bus
contention will exist during the write since a read com­
mand must be issued to enable the memory output
drivers.

58. Static RAM

Interfacing static RAM to the system introduces several
new requirements to the memory design. AO and BHE
must be included in the chip select/chip enable
decoding of the devices and write timing must be con­
sidered in the compatibility analysis.

For e~ch device, the data bus connections must be
restricted to either the upper or lower half of the data
bus. Devices like the 2114 or 2142 must not straddle the
upper and lower halves of the data bus (Fig. 5B1). To
allow selecting either the upper byte, lower byte or full
i6-bit word for a write operation, BHE must be a condi­
tion of decode for selecting the upper byte and AO must
be a condition of decode for selecting the lower byte.
Figure 5B2 gives several selection techniques for

3-361

If multiple chip selects are available at the device, BHE
and AO may directly control device selection. This
allows normal chip select decoding of the address
space and direct connection of the read and write com·
mands to the devices. Alternately, the multiple chip
select inputs of the device could directly decode the ad·
dress space (linear select) and be combined with the
separate write strobe technique to minimize the control
circuitry needed to generate chip selects.

As with the EPROM's and ROM's, if separate commands
are not provided for memory and I/O in the minimum
mode 8086 and the address spaces overlap, M/iO (high
active) must be a condition of chip select decode. Also,
the address lines connected to the memory devices
must start with A1 rather than AO.

230792-001

ADDRESS '-___ ~-,

"0-----1

BHE--------r4---~

MIlO OR
ADDITIONAL -----<>-j-----q

ADDRESS

(al

ADDR '-_--,--,---,,'1

E,

"o---------------~
BHE-----------(-b-I--~

SHE------t
Ao------t"i
iiii
WR

MJiO ------I

ADDR

iiii
Viii

MJiO -----~>--_;

(cl

SHE -----t----<>I CS1

t---~CS2

(dl

lOW BANK
CHIP SELECTS

HIGH BANK
CHIP SELECTS

LOW BANK
CHIP SELECT

AP-67

Al0., ________ --,

RD--------------~

"0---<>"-""
Viii-1r-~...,

2142',

(a) HIGH AND LOW BANK WRITE STROBES

2142's

~~~ ::~E~T A,O" _________ ---, 

CHIP SELECTS 
(HIGH AND LOW FOR 
FOUR GROUPSI 

+5 

LOW BANK 
CHIP SELECTS 

HIGH BANK 
CHIP SELECTS 

iiii----------j 

Viii------~ 

"o-------H 

BHE------t-----<t Cii:S2 

CS-------~----------~ 

(b) Ao AND BHE AS DIRECT CHIP SELECT INPUTS 

AHt.' _________ ----, 

iiii--------j 

"O--d" ...... 
Viii-<~<f.....J 

2142's 

A" -------...... -+----q CS~S2 
A,.-------4-----.... 

(cl LINEAR CHIP SELECT USED WITH HIGH 
AND LOW BANK WRITE STROBES 

01·0 

D, .. 

Figure 5B2. Generating Chip Select. for Device. without Output Figure 5B3. Chip Selection for Device. with Output Enable. 
Enable. 

3-362 230792·001 



AP-67 

For analysis of RAM compatibility, the write timing 
parameters listed in Table 581 may also need to be con· 
sidered (depending on the RAM device being consid· 
ered). The CPU clock relative timing is given In Table 
582. The equations specify the device requirements at 
the CPU and provide a base for determining device reo 
quirements in other configurations. As an example con· 
sider the write timing requirements of a 2142 in a max· 
imum mode buffered 8086 system (Figure 584). The 
2142 write parameters that must be analyzed are TWA 
advanced write pulse width, TWR write release time, 
TDWA data to write time overlap and TDH data hold 
from write time. 

TWA = 2TCLCL- TCLMLmax+ TCLMHmin=375 ns. 
TWR = 2TCLCL - TCLMHmax + TCLLHmin + TSHOVmin = 170 ns. 
TDWA = 2TCLCL- TCLDVmax + TCLMHmin - TIVOVmax = 265 ns. 
TDH = TCLCH - TCLMHmax+ TCHDXmin + TlVOVmin = 95 ns. 

TABLE 5Bl. TYPICAL WRITE TIMING PARAMETERS 

TW - Write Puise Width 
TWR - Write Release (Address Hold From End of Write) 
TOW - Data and Write Pulse Overlap 
TDH - Data Hold From End of Write 
TAW - Address Valid to End of Write 
TCW - Chip Select to End of Write 
TASW - Address Valid to Beginning of Write 

TABLE 5B2. CYCLE DEPENDENT WRITE PARAMETERS 
FOR RAM MEMORIES 

(a) Minimum Mode 

TW=TWLWH=2TCLCL- 60= 340 ns 
TWR = TCLCL.., TCVCTXmax + TCLLHmin = 90 ns 
TOW = 2TCLCL- TCLDVmax + TCVCTXmin = 300 ns 
TDH=TWHDX=88 ns 
TAW= 3TCLCL- TCLAVmax+ TCVCTXmin= 500 ns 
TCW=TAW-Chip Select Decode 
TASW= TCLCL- TCLAVmax+ TCVCTXmin= 100 ns 

(b) Maximum Mode 

TW= TCLCL- TCLMLmax+ TCLMHmin= 175 ns 
TWR=TCLCL- TCLMHmax+ TCLLHmin= 165 ns 
TDW=TW= 175 ns 
TDH =TCLCHmin- TCLMHmax+ TCHDXmin=93 ns 
TAW= 3TCLCL- TCLAVmax+ TCLMHmin= 500 ns 
TCW = TAW - Chip Select Decode 
TASW= 2TCLCL- TCLAVmax+ TCLMLmin= 300 ns 
TWA· = TW+ TCLCL= 375 ns 
TDWA· = 2TCLCL- TCLDVmax+ TCLMHmin= 300 ns 
TASWA· =TASW- TCLCL= 100 ns 

* Relative to Advanced Write. 

Comparing these results with the 2142 family indicates 
the standard 2142 write timing is fully compatible with 
this 8086 configuration. Read timing analysis is also 
necessary to completely determine compatibility of the 
devices. 

sc. Dynamic RAM 

Dynamic RAM is perhaps the most complex device to 
design into a system. To relieve the engineer of most of 
this burden, Intel provides the 8202 dynamic RAM con· 
troller as part of the 8086 family of peripheral devices. 
This section will discuss using the 8202 with the 8086 to 
build a dynamic memory system for an 8086 system. For 

additional information on the 8202, refer to the 8202 
data sheet (9800873) and application note AP·45 Using 
the 8202 Dynamic RAM Controller (9800809A). 

Figure 5B4. Sample Configuration for Compatibility Analysis Example 

S.C.1 Standard 8086·8202 Interconnect 

Figure 5.C.1.1 shows a standard interconnection for an 
8202 into an 8086 system. The configuration accom· 
modates 64K words (128K bytes) of dynamic RAM ad· 
dressable as words or bytes. To access the RAM, the 
8086 initiates a bus cycle with an address that selects 
the 8202 (via PCS) and the appropriate transfer com· 
mand (MRDC or MWTC). If the 8202 is not performing a 
refresh cycle, the access starts immediately, otherwise, 
the 8086 must wait for completion of the refresh. XACK 
from the 8202 is connected to the 8284 ROY input to 
force the CPU to wait until the RAM cycle is completed 
before the CPU can terminate the bus cycle. This effec· 
tively synchronizes the asynchronous events of refresh 
and CPU bus cycles. The normal write command 
(MWTC) Is used rather than the advanced command 
(AMWC) to guarantee the data is valid at the dynamic 
RAMS before the write command is issued. The gating 
of i.iVi: with AO and SHE provides selective write strobes 
to the upper and lower banks of memory to allow byte 
and word write operations. The logic which generates 
the strobe for the data latches allows read data to prop· 
agate to the system as soon as the data is available and 
latches the data on the trailing edge of CAS. 

DETAILED TIMING 

Read Cycle 

For no wait state operation, the 8086 requires data to be 
valid from MRDC in: 

2TCLCL- TCLML- TDVCL- buffer delays = 291 ns. 

Since the 8202 is CAS access limited, we need only ex· 
amine CAS access time. The 8202/2118 guarantees data 
valid from 8202 RD low to be: 

(tph + 3tp + 100 ns) 8202 TCC delay + TCAC for the 2118 

3-363 230792-001 



AP-67 

8288 MRDe;: 
MWTC 

.... SHE 
5MHz 

OTHER ADQ·AD1S 

READY A~. 
INPUTS 

DATt 
I 

I 
DATA 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

XACR XACR 

Figure 5C1.1. 5 MHz 8086I8202I128K Byte System - Double Data, Control and Address Bullerlng (Note: Bus driver on 8202 Is not needed If le.1 
than 64K bytes are used) 

For a 25MHz 8202 and 2118-3, we get 297 ns which is in­
sufficient for no wait state operation. If only 64K bytes 
are accessed, the 8202 requires only (tph + 3tp + 85 ns) 
giving 282 ns access and no wait states required. Refer 
to Figure 5.C.1.2 and 5C.1.3 for timing information on 
the 8202 and 2118. 

Write Cycle 

An important ,consideration for dynamic RAM write 
cycles is to guarantee data to the RAM is valid when 
both CAS and WE are active. For the 2118, if WE is valid 
prior to CAS, the data setup is to CAS and if CAS is valid 
before WE (as woul(j occur during a read modify write 
cycle) the data setup time is to WE. For the 8202, the WR 
to CAS delay is analyzed to determine the data setup 
time to CAS inherently provided by the 8202 command 
to RAS/CAS timing. The minimum delay from WR to 
CAS is: 

TCCmin = tph + 2tp + 25 = 127 ns @ 25 MHz 

Subtracting buffer delays and data setup at the 2118, 
we have 83 ns to generate valid data after the write 
command is issued by the CPU (in this case the 8288). 
Since the 8086 will not guarantee valid data until 
TCLAVmax-TCLMLmin=100 ns from the advanced 

3-364 

write signal, the normal write signal is used. The normal 
write MWTC guarantees data is valid 100 ns before it is 
active. The worst case write pulse width is approximate­
ly 175 ns which is sufficient for all 2118's. 

Synchronization 

To force the 8086 to wait during refresh the XACK or 
SACK lines must be returned to the 8284 ready Input. 
The maximum delay from RO to SACK (if the 8202 is not 
performing refresh) is TAC = tp + 40 = 80 ns. To prevent 
a wait state at the 8086, ROY must be valid at the 8284 
TCLCHmln - TCLMLmax - TR1VCLmax = 48 ns after 
the command is active. This Implies that under worst 
case conditions, one wait state will be Inserted for every 
read cycle. Since MWTC does not occur until one clock 
later, two wait states may be inserted for writes. ' 

The XACK from command delay will assert ROY TCC + 
TeX= (tph + 3tp+ 100)+ (5tp+ 20)= 460 ns after the 
command. This will typically insert one or two wait 
states. 

Unless 2118-3's are used in 64K byte or less memories, 
SACK must not be used since it does not guarantee a 
wait state. From the previous access time analysis we 
saw that other configurations required a wait state. 

230792-001 



inter 

x/eLK 

RDORWR 

CAS 

XACK 

WE (WE =VOH 
FOR A RD CYCLE) 

AP-67 

- tsc 
_Ip_ 

---; -----, ,----------------------
\ 

--tco -_1 ___ 'CHS---
top 

tcc I ,--tRCO--

I· 
tAS - -tAlR toc 

IRSH 

[rELAy] ONLY 1 .. -
-, tRAH 1-

- ~ 

ROW ADDR COL ADDR 

- I-' 
-I ~I iCAH 

lAse ~ 

t 

r tcA -[ tCAS 
- tCK 

\ 
------- - ------------, r--

\ I 

tACK- -
1 

{--
lex .-txw---I -I twwt" _____ ..:.. _____ 

I 
\ I _I twcs 1_ ------tCWH 

( 

Figure 5C1.2. 8202 Timing Inlormatlon 

3-365 

'. 
\.._-

IL 

-
IKeH -

230792-001 



intel· AP-67 

A.C. CHARACTERISTICS 
T A= o·c to 70·C, VCC= 5V ± 10"10 

Measurements made with respect 10 RAS1- RAS4, CAS, 
WE, OUTo- OUT 6 are at 2.4V and 0.8V. All other pins are 
measured at 1.5V. 

Loading: 

64 Devices 

Symbol 

tp 

tRC 

tRAH 

tASR 

tCAH 

IASC 

tRco 

twcs 

IRSH 

tCAS 

tRP 

IWCH 

tREF 

tCR 

Icc 

tRFR 

tAs 

tCA 

tCK 

tKCH 

tsc 

__ tc_x ___ 

tACK 

txw 

ILL 

tCHS 

tww 

tAL 

tLA 

tpL 

tpH 

tpH 

Notes: 

CL= 30 pF 
CL=320 pF 
CL= 230 pF 
CL= 450 pF 
CL=640 pF 

Parameter 

Clock (Internal/External) Period (See Note 1) 

Memory Cycle Time 

Row Address Hold Time 

Row Address Setup Time 

Column Address Hold Time 

Column Address Setup Time 

RAS to CAS Delay Time 

WE Setup to CAS 

RAS Hold Time 

CAS Pulse Width 

RAS Precharge Time (See Note 2) 

WE Hold Time to CAS 

Internally Generated Refresh to Refresh Time 
64 Cycle 
128 Cycle 

RD, WR to RAS Delay 

RD,WR to CAS Delay 

REFRQ to RAS Delay 

Ao-A15 to RD, WR Setup Time (See Note 4) 

RD, WR to SACK Leading Edge 

RD, WR to XACK, SACK Trailing Edge Delay 

RD, WR Inactive Hold to SACK Trailing Edge 

RD, WR, PCS to X/CLK Setup Time (See Note 3) 

CAS to XACK Time 
1--= 

XACK Leading Edge to CAS Trailing Edge Time 

XACK Pulse Width 

REFRQ Pulse Width 

RD, WR, PCS Active Hold to RAS 

WR to WE Propagation Delay 

S1 to ALE Setup Time 

S1 to ALE Hold Time 

External Clock Low Time 
--

External Clock High Time 

External Clock High Time for Vcc= 5V ± 5"10 

1. tp minimum determines maximum oscillator frequency. 

Min 

40 

10 tp- 30 

tp-l0 

tpH 

5 tp 

tp- 35 

2 tp- 10 

tp- 40 

5 tp- 30 

5 tp 30 

4 tp- 30 

5 tp- 35 

548 tp 
264 tp 

tpH+ 30 

tpH+2tp+25 

1.5tp+30 

0 

10 

15 

5 tp- 40 

10 

2 tp- 25 

20 

0 

8 

40 

2 tp+ 40 

15 
I--

22 

18 

tp maximum determines minimum frequen~ maintain 2 rns refresh rate and tRP minimum. 

Max Units 

54 ns 

12 tp ns 

ns 

ns 

ns 

ns 

2 tp+ 45 ns 

ns 

ns 

ns 

ns 

ns 

576 tp ns 
288 tp ns 

tpH + Ip+ 75 ns 

t pH + 3 tp+ 100 ns 

2.5 tp+ 100 ns 

ns 

tp+ 40 ns 

30 ns 

ns 

ns 

5 tp+ 20 ns ---
ns 

ns 

ns 

ns 

50 ns 

ns 

ns 

ns 
---f-----

ns 

ns 

2. To achieve the minimum time between the RAS of a memory cycle and the RAS of a refresh cycle, such as a transparent refresh, REFRQ should be 
pulsed in the previous memory cycle. 

3. tsc is not required for proper operation which is in agreement with the other specs, but can be used to synchronize external Signals with X/eLK jf it is 
desired. 

4. If tAS is Jess than 0 then the only impact is that tASR decreases by a corresponding amount 

Flgur. 5C1.2. 8202 Timing Information (Con'l) 

------------.---.-- -.------_._--------
3-366 230792-001 



intJ AP-67 

READ CYCLE 
1,, _______________ _ 

IMAS-----------I r------,L 
AAS 

® tCflP 

V'"--.::::......=--l-w=====~~;::~~:::;:l----------ICAS--------j 

-----~-~------tCSH------------

CAS v,, ____ J 

v'"--~~_r-_+---~r_ __ ~~---_r-----~r----------_r-------------
ADDRESSES 

v" ___ --':dL-"-__ -+ ______ lL'---L-"-+ ______ + _________ "-''-______________ + ___________ __ 

v," 
WE 

V" 

YO" 

DOUT 

VOl 

-----ICAC--------i 

tOFF---j 
(l) }---VA-U-O ---{ (l) 

-------------------------------------~(l)~~I--O-~-A-O-U-T--_' 

-----------tRAc -------------

HIGH IMPEDANCE 

WRITE CYCLE I" 

.----- 1--- '''-~ 
v," 

RAS 

v" 

v," 
CAS 

V:l 

v," 
ADDRESSES 

V" 

V," 

WE 

v" 

v," 
0," 

v" 

VO" 

DOUT 

VOl 

1 ......... -- -~- ----- ----IRA5 --------- ---------

(I) 
(l) 

(i) tCRPl IRCO 

ICSH 

tRSH 

I CD[\ \ \~ 
ICAS 

0) 

1 tASR 

1M --tCAH--j ----IRAH --i -ltASC I-

.xCD 0) 
AOW X 

ADDRESS .x COLUMN K AODRESS 

, r--{~) tDs---1 i---!DH ~ 

HIGH IMPEDANCE 

NOTES: 1,2. VIH MIN AND 'IlL MAX ARE REFERENCE LEVELS FOR MEASURING TIMING OF 
INPUT SIGNALS. 

3,4. VOH MIN AND VOL MAX ARE REFERENCE lEVELS FOR MEASURING TlMING 
OF Dour. 

5. IOFF IS MEASURED TO lOUT < tOl. 
6. los AND IOH ARE REFERENCED TO CAS OR WE, WHICI-IEVER OCCURS LAST *. tRCH IS REFERENCED TO THE TRAILING EDGE OF CAS OR RAS, WHICHEVER 

OCCURS FIRST. 
8. ICRP REQUIREMENT IS ONLY APPLICABLE FOR RADICA$ CYCLES 

PRECEDED BY A CAS·ONLY CYCLE (i.e., FOR SYSTEMS WHERE CAS HAS 
NOT BEEN DECODED WITH RAS). 

Figure 5C1.3. 2118 Family Timing 

3-367 

V 
1'~-lc"l 

If 

230792-001 



AP-67 

A.C. CHARACTERISTICSll,2,31 
TA = O'C to 70'C, VOO = 5V ± 10%, VSS = OV, unless otherwise noted. 

READ, WRITE, READ·MODIFY·WRITE AND REFRESH CYCLES 

2118·3 2118·4 2118·7 

Symbol Parametef Min. Max. Min. Max. Min. Max. Unit Notes 

tRAC Access Ti me From RAS 100 120 150 ns 4,5 

tCAC Access Time from CAS 55 65 60 ns 4,5,6 

tREF Time Between Refresh 2 2 2 ms 

tRP RAS Precharge Time 110 120 135 ns 

tCPN CAS Precharge Time (non·page cycles) 50 55 70 ns 

tCRP CAS to RAS Precharge Time 0 0 0 ns 

tRCO RAS to CAS Delay Time 25 45 25 55 25 70 ns 7 

tRSH RAS Hold Time 70 85 105 ns 

tCSH CAS Hold Time 100 120 165 ns 

t ASR Row Address Set·Up Time 0 0 0 ns 

tRAH Row Address Hold Time 15 15 15 ns 

tASC Column Address Set·Up Time 0 0 0 ns 

tCAH Column Address Hold Time 15 15 20 ns 

tAR Column Address Hold Time to RAS 60 70 90 ns 

tT Transition Time (Rise and Fall) 3 50 3 50 3 50 ns 8 

tOFF Output Buffer Turn Off Delay 0 45 0 50 0 60 ns 

READ AND REFRESH CYCLES 

TRC Random Read Cycle Time 235 270 320 ns 

tRAS RAS Pulse Width 115 10000 140 10000 175 10000 ns 

tCAS CAS Pulse Width 55 10000 65 10000 95 10000 ns 

IRCS Read Command Set·Up Time 0 0 0 ns 

tRCH Read Command Hold Time 0 0 0 ns 

WRITE CYCLE 

tRC Random Write Cycle Time 235 270 320 ns 

tRAS RAS Pulse Width 115 10000 140 10000 175 10000 ns 

tCAS CAS Pulse Width 55 10000 65 10000 95 10000 ns 

twcs Write Command Set·Up Time 0 0 0 ns 9 

tWGH Write Command Hold Time 25 30 45 ns 

tWCR Write Command Hold Time, to RAS 70 85 115 ns 

twp Write Command Pulse Width 25 30 50 ns 

tAWl Write Command to RAS Lead Time 60 65 110 ns 

tCWl Write Command to CAS Lead Time 45 50 100 ns 

tos Data·ln Set·Up Time 0 0 0 ns 

tOH Data·ln Hold Time 25 30 45 ns 

tOHR Data·ln Hold Time, to RAS 70 85 115 ns 

READ·MODIFY·WRITE CYCLE 

'RWC Read·Modify·Write Cycle Time 285 320 410 ns 

tRRW RMW Cycle RAS Pulse Width 165 10000 190 10000 265 10000 ns 

tCRW RMW Cycle CAS Pulse Width 105 10000 120 10000 185 10000 ns 

tRWO RAS to WE Delay 100 120 150 ns 9 

tcwo CAS to WE Delay 55 65 80 ns 9 

NOTES, 
1. AU voltages referenced to Vss- _ _ 
2. Eight cycles afe required after power-up or prolonged periods (greater than 2 ms) of RAS inactivity before proper device operation is achieved. Any 8 cycles which perform 

refresh are adequate for this purpose. 
3. A.C. Characteristics assume IT. = 5 ns. 
4. Assume that tACO" tRCo (ma~q. If tACO Is greater than tRCO (max.) then tRAC will increase by the amount that tRCO exceeds tRCO (max.). 
5. Load = 2 TIL loads and 100 pF. 
6. Assumes tRCD ;<!: tRCD (max.). 
7. tRCD (max.) is specified as a reference point only; it tRCD is less than tRCO (max.) access time is tRAC' if tRCD is greater than tRCD (max.) access time is tRCO+ tCAC. 
8. tT is measured between VIH (min.) and VIL (max.). 
9. twcs, ICWD and tRWD qre specified as reference paints only. It twcs ;<!: twcs (min.) the cycle is' an early write cycle and the data out p,in will remain high impedance 

throughout the entire cycle. If ICWD ;<!: tewD (min.) and tRWD ;<!: 'AWD (min.), the cycle is a read·modlfy·write cycle and the data out will contain the data read from the 
selected address. If neither of the above conditions is satisfied, the condition of the data out is indeterminate. 

Figure SC1.3. 2118 Family Timing (Con't) 

3-368 230792-001 



AP-67 

S.C.2 Enhanced Operation 

Two problems are evident from the previous investiga· 
tion: 

1) SACK timing from command will not allow reliable 
operation while XACK is not active early enough to pre· 
vent wait states. 

2) The normal write command required to guarantee 
data setup is not enabled until the CPU has sampled 
READY thereby forcing multiple wait states during write 
operations. 

The first problem could be resolved if an early command 
could be generated that would guarantee SACK was 

+5 

S, 

1 

valid when READY was sampled and SACK to data valid 
satisfied the CPU requirements. Figure 5.C.2.1 is a cir· 
cuit which provides an early read command derived from 
the maximum mode status. The early command is en· 
abled from the trailing edge of ALE and disabled on the 
trailing edge of the normal command. The command 
provides an additional TCHCLmin - TCHLLmax + 
TCLMLmax - circuit delays = 53 ns of access time and 
time to generate ROY from the early command. If we go 
back to our previous equations, early command to valid 
data at the CPU is now: 

TCHCLmin - TCHLLmax + 2TCLCL- TDVCLmax - buf· 
fer and circuit delays = 333 ns 

13 

------, 

MRDe 

EARLY RD 

5, Q 

PRE 
So---+-~-=-JO a 

74LS74 

ALE -V">-+---I-'1 CK a 
CLR 

74LS32 

MRDe ' 11 
74lS14 

a 8 
MWTC 2 CK 

CLR 

13 

T, T, 

II 
I 

T, 

"----___ -----II 

Figure 5C2.1. Early Read and Write Command Generation 

3-369 230792-001 



intel· AP-67 

We can now use the slowest 2118 which gives 8202 and 
2118 access of 320 ns. Early command to ROY timing is 
TCLCL- TCHLLmax - circuit delays - TR1VCLmax = 
115 ns and provides 35 ns of margin beyond the 8202 
command to SACK delay. 

The write timing of the 8202 and write data valid timing 
of the 8086 do not allow use of an early write command. 
However, if the 8202 clock is reduced from 25 MHz to 20 
MHz and WE to the RAM's is gated with CAS, the ad­
vanced write command (AMWC) may be used. At 20 MHz 
the minimum command to CAS delay is 148 ns while the 
maximum data valid delay is 144 ns. 

The reduced 8202 clock frequency still satisfies no wait 
state read operation from early read and will insert no 
more than one wait state for write (assuming no conflict 
with refresh). 20 MHz 8202 operation will however re­
quire using the 2118-4 to satisfy read access time. 

Note that slowing the 8202 to 22.2 MHz guarantees valid 
data within 10 ns after CAS and allows using the 2118-7. 
Since this analysis is totally based on worst case 
minimum and maximum delays, the designer should 
evaluate the timing requirements of his specific im­
plementation. 

It should be noted that the 8202 SACK is equivalent to 
XACK timing if the cycle being executed was delayed by 

3-370 

-------------
refresh. Delaying SACK until XACK time causes the 
CPU to enter wait states until the cycle is completed. If 
the cycle is a read cycle, the XACK timing guarantees 
data is valid at the CPU before ROY is issued to the CPU. 

The use of the early command signals also solves a 
problem not mentioned previously. The cycle rate of the 
8202 @ 20 MHz requires that commands (from leading 
edge to leading edge) be separated by a minimum of 695 
ns. The maximum mode 8086 however may issue a read 
command 600 ns after the normal write command. For 
the early read command and advanced write command, 
725 ns are guaranteed between commands. • 

EARLYRD~ AD 
8202 

AMWC 
WE TO RAMS 

L----,CAS 

Figure 5C2.2. Delayed Write 10 Dynamic RAMs 

230792-001 



AP-67 

APPENDIX I 
BUS CONTENTION AND ITS EFFECT ON SYSTEM INTEGRITY 

SYSTEM ARCHITECTURE 

As higher performance microprocessors have become 
available, the architecture of microprocessor systems 
has been evolving, again placing demands on memory. 
For many years, system designers have been plagued 
with the problem of bus contention when connecting 
multiple memories to a common data bus. There have 
been various schemes for avoiding the problem, but 
device manufacturers have been unable to design inter­
nal circuits that would guarantee that one memory 
device would be "off" the bus before another device 
was selected. With small memories (512x8 and 1 Kx8), it 
has been traditional to connect all the system address 
lines together and utilize the difference between tACC 
and tco to perform a decode to select the correct device 
(as shown in Figure 1). 

Figure 1. Single Control Line Architecture 

With the 1702A, the chip select to output delay was only 
100 ns shorter than the address access time; or to state 
it another way, the tACC time was 1000 ns while the tco 
time was 900 ns. The 1702A tACC performance of 1000 ns 
was suitable for the 4004 series microprocessors, but 
the 8080 processor required that the corresponding 
numbers be reduced to tACC = 450 ns and tco = 120 ns. 
This allowed a substantial improvement in performance 
over the 4004 series of microprocessors, but placed a 
substantial burden on the memory. The 2708 was 
developed to be compatible with the 8080 both in ac­
cess time and power supply requirements. A portion of 
each 8080 machine cycle time had to be devoted to the 
architecture of the system decoding scheme used. This 
devoted portion of the machine cycle included the time 
required for the system controller (8224) to perform its 
function before the actual decode process could begin. 

Let's pause here and examine the actual decode 
scheme that was used so we can understand how the 
control functions that a memory device requires are 
related to system architecture. 

The 2708 can be used to illustrate the problem of having 
a single control line. The 2708 has only one read control 

function, chip select (CS), which is very fast (tco= 120 
ns) with respect to the overall access time (tAcc = 450 
ns) of the 2708. It is this time difference (330 ns) that is 
used to perform the decode function, as illustrated in 
Figure 2. The scheme works well and does not limit 
system performance, but it does lead to the possibility 
of bus contention. 

I 'ACC I 

ADDRESS~ I 

I { : 
cs 

i I E :~ ___ D~T~~E_ ~- 'co ~~-1 

DATA OUT 

Figure 2. Single Line Control Architecture 

BUS CONTENTION 

There are actually two problems with the scheme 
described in the previous section. First, if one device in 
a multiple memory system has a relatively long deselect 
time, and a relatively fast decoder is used, it would be 
possible to have another device selected at the same 
time. If the two devices thus selected were reading op­
posite data; that is, device number one reading a HIGH 
and device number two reading a LOW, the output tran­
sistors of the two memory devices would effectively pro­
duce a short circuit, as Figure 3 illustrates. In this case, 
the current path is from Vcc on device number one to 
GND on device number two. This current is limited only 
by the "on" impedance of the MaS output transistors 
and can reach levels in excess of 200 mA per device. if 
the MaS transistors have a lot of "extra" margin, the 
current is usually not destructive; however, an instan­
taneous load of 400 mA can produce "glitches" on the 
Vcc supply-glitches large enough to cause standard 
TTL devices to drop bits or otherwise malfunction, thus 
causing incorrect address decode or generation. 

The second problem with a single control line scheme is 
more subtle. As previously mentioned, there is only one 
control function available on the 2708 and any decoding 
scheme must use it out of necessity. In addition, any in­
advertent changes in the state of the high order address 
lines that are inputs to the decoder will cause a'change 
in the device that is selected. The result is the same as 
before-bus contention, only from a different source. 
The deselected device cannot get "off" the bus before 
the selected one is "on" the bus as the addresses rapid­
ly change state. One approach to solving this problem 
would be to deSign (and specify as a maximum) devices 

3-371 230792-001 



AP-67 

with tOF time less than tco time, thereby assuring that if 
one device is selected while another is simultaneously 
being deselected, there would be some small (20 ns) 
margin. Even with this solution, the user would not be 
protected from devices which have very fast tco times 
(tco is specified as a maximum). 

2708='-----, 
Vee I 

I 

0N1 I 

r----27iiii:2 
I Vee 

OR I 
TIE I 

DATA 
BUS 

I 

RESULTS OF IMPROPER TIMING WHEN OR TYING MULTIPLE 
MEMORIES. 

Figur.3. R.sults of Improper Timing when OR Tying Multiple 
Memories 

The only sure solution appears to be the use of an exter­
nal bus driver/transceiver that has an independent 
enable function. Then that function, not the "device 
selecting function," or addresses, could control the 
flow of data "on" and "off" the bus, and any contention 
problems would be confined to a particular card or area 
of a large card. In fact, many systems are implemented 
that way-the use of bus drivers is not at all uncommon 
in large systems where the drive requirements of long, 
highly capacitive interconnecting lines must be taken 
into conSideration-it also may be the reason why more 
system designers were not aware of the bus contention 
problem until they took a previously large (multicard) 
system and, using an advanced micorprocessor and 
higher density memory devices, combined them all on 
one card, thereby eliminating the requirement for the 
bus drivers, but experiencing the problem of bus con­
tention as described above. 

THE MICROPROCESSOR/MEMORY INTERFACE 

From the foregoing discussion, it becomes clear that 
some new concepts, both with regard to architecture 
and performance are required. A new generation of two 
control line devices is called for with general require­
ments as listed below: 

1. Capability to control the data "on" and "off" the 
system bus, independent of the device selecting func­
tion identified above. 

2. Access time compatible with the high performance 
microprocessors that are currently available. 

Now let's examine the system architecture that is re­
quired to implement the two line control and prevent 
bus contention. This is shown in the form of a timing 
diagram (Figure 4). As before, addresses are used to 

generate the unique device selecting function, but a 
separate and independent Output Enable (OE) control is 
now used to gate data "on" and "off" the system data 
bus. With this scheme, bus contention is completely 
eliminated as the processor determines the time during 
which data must be present on the bus and then 
releases the bus by way of the Output Enable line, thus 
freeing the bus for use by other devices, either 
memories or peripheral devices. This type of architec­
ture can be easily accomplished if the memory devices 
have two control functions, and the system is im­
plemented according to the block diagram shown in 
Figure 5. It differs from the previous block diagram 
(shown in Figure 1) in that the control bus, which is con­
nected to all memory Output Enable pins, provides 
separate and independent control over the data bus. In 
this way,the microprocessor is always in control of the 
system; while in the previous system, the microproc­
essor passed control to the particular memory device 
and then waited for data to become available. Another 
way to look at it is, with a Single control line the sytem is 
always asynchronous with respect to microprocessor/ 
memory communications. By using two control lines, 
the memory is synchronized to the processor. 

3-372 

ADDRESS J ...... ____________ L 
SELECTION 

OUTPUT 
ENABLE 

D~~~ --------{( ..... __ --J)I-----

Figure 4. Two Control line Architecture 

Figure 5. Two Control line Archi'tecture 

230792-001 



APPLICATION 
NOTE 

3-373 

AP·113 

February 1981 

207865-001 



inter AP·113 

INTRODUCTION 

This is an application note on using numerics in Intel's 
iAPX 86 or iAPX 88 microprocessor family. The nu­
merics implemented in the family provide instruction 
level support for high-precision integer and floating 
point data types with arithmetic operations like add, 
subtract, multiply, divide, square root, power, log and 
trigonometrics. These features are provided by members 
of the iAPX 86 or iAPX 88 family called numeric data 
processors. 

Rather than concentrate on a narrow, specific applica­
tion, the topics covered in this application Dote were 
chosen for generality across many applications. The 
goal is to provide sufficient background information so 
that software and hardware engineers can quickly move 
beyond needs specific to the numeric data processor and 
concentrate on the special needs of their application. 
The material is structured to allow quick identification 
of relevant material without reading all the material 
leading up to that point. Everyone should read the in­
troduction to establish terminology and a basic 
background. 

IAPX 88,88 BASE 

The numeric data processor is based on an 8088 or 8086 
microProcessor. The 8086 and 8088 are general purpose 
microprocessors, designed for general data processing 
applications. General applications need fast, efficient 
data movement and program control instructions. Ac­
tual arithmetic on data values is simple in general appli­
cations. The 8086 and 8088 fulfill these needs in a low 
cost, effective manner. 

However, some applications need more powerful arith­
metic instructions and data types than a general purpose 
data processor provides. The real world deals in.frac­
tional values and requires arithmetic operations like 
square root, sine, and logarithms. Integer data ,types 
and their operations like add, subtract, multiply, and 
divide may not meet the needs for accuracy, speed, and 
ease of use. ' 

Such functions are not simple or inexpensive. The 
general data processor does not provide these features 
due to their cost to other less-complex applications that 
do not need such features. A special processor is re­
quired, one which is easy to use and has a high level of 
support in hardware and software. 

The numeric data processor provides these features. It 
supports the data types and operations needed and 
allows use of all the current hardware and software sup­
port for the iAPX 86/10 and 88/10 microprocessors. 

The iAPX 86 and iAPX 88 provide two imple­
mentations of a numeric data processor. Each offers 
different tradeoffs in performance, memory size, and 
cost. 

One alternative uses a special hardware component, the 
8087 numeric processor extension, while the other is 
based on software, the 8087 emulator. Both component 
and software emulator add the extra numerics data 
types and operations to the 8086 or 8088. 

The component and its software emulator are com­
pletely compatible. 

Nomenclature 
Table one shows several possible configurations 
of the iAPX 86 and iAPX 88 microprocessor family. 
The choice of configuration will be decided by the 
needs of the application for cost and performance 
in the areas of general data processing, numerics, 
and I/O processing. The combination of an 8086 or 
8088 with an 8087 is called an iAPX 86120 or 88120 
numeric data processor. For applications requir­
ing high I/O bandwidths and numeric perfor­
mance, a combination of 8086, 8087 and 8089 is an 
iAPX 86121 numerics and I/O data processor. The 
same system with an 8088 CPU for smaller size 
and lower cost, due to the smaller 8-bit wide 
system data bus, is referred to as an iAPX 88121. 
Each 8089 in the system is designated in the units 
digit of the system designation. The term 86/2X or 
88/2X refers to a numeric data processor with any 
number of 8089s. 

Throughout this application note, I will use the 
terms NDP, numeric data processor, 86/2X, and 
88/2X synonymously. Numeric processor exten­
sion and NPX are also synonymous for the func­
tions of either the 8087 component or 8087 
emulator. The term numeric instruction or 
.numeric data type refers to an instruction or data 
type made available by the NPX. The term host will 
refer to either the 8086 or 8088 microprocessor. 

3-374 

Table 1. Components Used In iJAPX 88,88 

Configurations 

System Name 8088 8087 8088 8089 

iAPX 86110 I 
iAPX 86/11 I I 
iAPX 86/12 I: 2 
iAPX 86/20 I I 
iAPX 86121 I I I 
iAPX 86/22 I I 2 

iAPX 88/10 1 
iAPX 88/11 I I 
iAPX 88/12 I 2 
iAPX 88/20 I I 
iAPX 88121 I I I 
iAPX 88122 I I 2 

207865-001 



Ap·113 

NPX OVERVIEW 

The 8087 is a coprocessor extension available to 
iAPX 86/1X or iAPX 88/IX maximum mode 
microprocessor systems. (See page 7). The 8087 
adds hardware support for floating point and ex­
tended precision integer data types, registers, and 
instructions. Figure 1 shows the register set 
available to the NDP. On the next page, the seven 
data types available to numeric instructions are 
listed (Fig 2). Each data type has a load and store 
instruction. Independent of whether an 8087 or its 
emulator are used, the registers and data types all 
appear the same to the programmer. 

All the numeric instructions and data types of the NPX 
are used by the programmer in the same manner as the 
general data types and instructions of the host. 

The numeric data formats and arithmetic operations 
provided by the 8087 conform to the proposed IEEE 
Microprocessor Floating Point Standard. All the pro­
posed IEEE floating point standard algorithms, excep­
tion detection. exceotion handling, infinity arithmetic 
and rounding controls are impiemented. l 

The numeric registers of the NPX are provided for fast, 
easy reference to values needed in numeric calculations. 
All numeric values kept in the NPX register file are held 
in the 80-bit temporary real floating point format which 
is the same as the 80-bit temporary real data type. 

All data types are converted to the SO-bit register file 
format when used by the NPX. Load and store instruc­
tions automatically convert between the memory 
operimd data type and the register file format for all 
numeric data types. The numeric load instruction 
specifies the format in which the memory operand is ex­
pected and which addressing mode to use. 

All host base registers, index registers, segment 
registers, and addressing modes are available for 
locating numeric operands. In the same manner, the 
store instruction also specifies which data type to use 
and where the value is located when stored into 
memory. 

Selecting Numeric Data Types 
As figure 2 shows, the numeric data types are of dif­
ferent lengths and domains (real or integer). Each 
numeric data type is provided for a specific function, 
they are: 

I6-bit word integers -Index values, loop counts, 
and small program control 
values 

I .. An Implementation Guide to a Proposed Standard for Floating 
Point" by Jerome Coonen in Computer, Jan. 1980 or the Oct. 1979 

32·bit short integers 

64-bit long integers 

I8-digit packed 
decimal 

32-bit short real 

64-bit long real 

80-bit temporary 
real 

-Large integer general 
computation 

-Extended range integer 
computation 

-Commercial and decimal 
conversion arithmetic 

-Reduced range and 
accuracy is traded for 
reduced memory require­
ments 

-Recommended floating 
point variable type 

-Format for intermediate 
or high precision calcu-
lations 

Referencing memory data types in the NDP is not 
restricted to load and store instructions. Some arith­
metic operations can specify a memory operand in one 
of four possible data types. The numeric instructions 
compare, add, subtract, subtract reversed, multiply, 
divid~, 1'.,.,(1 divide reversed can specify a memory 
operand to be either a 16-bit integer, 32-bit integer, 
32-bit real, or 64·bit real value. As with the load and 
store operations, the arithmetic instruction specifies the 
address and expected format of the memory operand. 

The remaining arithmetic operations: square root, 
modulus, tangent, arctangent, logarithm, exponentiate, 
scale power, and extract power use only register 
operands. 

15 FILE 0 79 NPX STACK 0 

AA~ 
R1 EXPONENT SIGNIFICAND 

BX R2 

ex R3 

DX R4 

SI R5 

DI R6 
BP R7 
SP RB 

I IP I NPX STATUS 
FLAGS NPXMODE 

~i I I 
issue of ACM SIGNUM, for more information on the standard. Figure 1. NDP Register Set for iAPX 86/20, 88120 

3-375 207865-001 



AP·113 

The register set of the host and 8087 are in separate 
components. Direct transfer of values between the two 
register sets in one instruction is not possible. To trans· 
fer values between the host and numeric register sets, 
the value must first pass through memory. The memory 
format of a 16·bit short integer used by the NPX is iden· 
tical to that of the host, ensuring fast, easy transfers. 

Since an 8086 or 8088 does not provide single instruc· 
tion support for the remaining numeric data types, host 
programs reading or writing these data types must con­
form to the bit and byte ordering established by the 
NPX. 

Writing programs using numeric instructions is as sim­
ple as with the host's instructions. The numeric instruc­
tions are simply placed in line with the host's instruc­
tions. They are executed in the same order as they ap­
pear in the instruction stream. Numeric instructions 
follow the same form as the host instructions. Figure 2 
shows the ASM 86/88 representations for different 
numeric instructions and their similarity to host instruc­
tions. 

FILD 
FIADD 
FADD 

DATA 
FORMATS 

WORD INTEGER 

SHORT INTEGER 

LONG INTEGER 

PACKED BCD 

SHORT REAL 

LONG REAL 

TEMPORARY REAL 

RANGE 

10' 

10' 

1019 

1018 

10::!;;38 

10:t308 

10:t.4932 

PRECISION 

16 BITS 

32 BITS 

64 BITS 

18 DIGITS 

24 BITS 

53 BITS 

64 BITS 

VALUE 
TABLE [BX] 
ST,ST(1) 

MOST SIGNIFICANT BYTE 

7 01 7 01 7 

I" 101 

131 

163 

sl-ID17 0161 

SJE7 E~I F1 

S IE10 Eol F1 

SlE14 Eo I Fa 

INTEGER: 1 
PACKED BCD: (- l)SjD17' .. Do) 

01 7 

8087 EMULATOR OVERVIEW 

The NDP has two basic implementations, an 8087 com­
ponent or with its software emulator (E80S7). The deci­
sion to use the emulator or component has no effect on 
programs at the source level. At the source level, all in­
structions, data types, and features are used the same 
way. 

The emulator requires all numeric instruction opcodes 
to be replaced with an interrupt instruction. This 
replacement is performed by the LINKS6 program. In­
terrupt vectors in the host's interrupt vector table will 
point to numeric instruction emulation routines in the 
80S7 software emulator. 

When using the 80S7 emulator, the linker changes all the 
2-byte wait-escape, nop-escape, wait-segment override, 
or nop-segment override sequences generated by an 
assembler or compiler for the SOS7 component with a 
2-byte interrupt instruction. Any remaining bytes of the 
numeric instruction are left unchanged. 

01 7 01 7 01 7 01 7 01 7 01 7 ~ 

TWO'S COMPLEMENT 

10 I TWO'S COMPLEMENT 

10 I TWO'S 
COMPLEMENT 

1 0 , Dol 

F2~ Fo IMPLICIT 

FS21 Fo IMPLICIT 

F6~ 

REAL: (-1)S(2'·.'AS)(Fo." ... ) 
BIAS = 127 FOR SHORT REAL 

1023 FOR LONG REAL 
16383 FOR TEMP REAL 

Figure 2. NPX Data Types 

3-376 207865-001 



Ap·113 

When the host encounters numeric and emulated in· 
struction, it will execute the software interrupt instruc· 
tion formed by the linker. The interrupt vector table will 
direct the host to the proper entry point in the 8087 
emulator. Using the interrupt return address and CPU 
register set, the host will decode any remaining part of 
the numeric instruction, perform the indicated opera­
tion, then return to the next instruction following the 
emulated numeric instruction. 

One copy of the 8087 emulator can be shared by all pro­
grams in the host. 

The decision to use the 8087 or software emulator is 
made at link time, when all software modules are 
brought together. Depending on whether an 8087 or its 
software emulator is used, a different group of library 
modules are included for linking with the program. 

If the 8087 component is used, the libraries do not add 
any code to the program, they just satisfy external refer­
ences made by the assembler or compiler. Using the 
emulator will not increase the size of individual modu­
les: however. other modules requiring about 16K bytes 
that implement the emulator will be automatically 
added. 

Selecting between the emulator or the 8087 can be very 
easy. Different versions of submit files performing the 
link operation can be used to specify the different set of 
library modules needed. Figure 3 shows an example of 
two different submit files for the same program using 
the NPX with an 8087 or the 8087 emulator. 

iSBC 337™ MULTIMODULETM Overview 

BOB7 BASED LINK/LOCATE COMMANDS 

LlNKB6 :F1:PROG.OBJ, IO.LlB, BOB7.LlB TO 
:F1:PROG.LNK 

LOCB6 :F1:PROG.LNK TO :F1:PROG 

SOFTWARE EMULATOR BASED 
LINK/LOCATE COMMANDS 

LlNKB6 :F1:PROG.OBJ, IO.LlB, EBOB7.LlB, 
EBOB7 TO :F1:PROG.LNK 

LOCB6 :F1:PROG.LNK TO :F1:PROG 

Figure 3. Submit File Example 

iSBC 337'" MUl TIMOOUlE'''' BOARD 

/ 
BOARD OPTIONAL SOLDER 

(iSBC 86/12A"") MOUNT 

80871NT 
CONNECTOR 

The benefits of the NPX are not limited to systems 
which left board space for the 8087 component or mem­
ory space for its software emulator. Any maximum 
mode iAPX 86/1X or iAPX 88/1X system can be up­
graded to a numeric processor. The iSBC 337 MUL­
TIMODULE is designed for just this function. The 
iSBC 337 provides a socket for the host microprocessor 
and an 8087. A 4O-pin plug is provided on the underside 
of the 337 to plug into the original host's socket, as 
shown in Figure 4. Two other pins on the underside of 
the MUL TIMODULE allow easy connection to the 
8087 INT and RQ/GTl pins. 

Figure 4. MUL TIMODULE TM Math Mounting Scheme 

3-377 207865-001 



inter Ap·113 

CONSTRUCTING AN iAPX 86/2X OR iAPX 
8812X SYSTEM 

This section will describe how to design a micropro­
cessor system with the 8087 component. The discussion 
will center around hardware issues. However, some of 
the hardware decisions must be made based upon how 
the software will use the NPX. To better understand 
how the 8087 operates as a local bus master, we shall 
cover how the coprocessor interface works later in this 
section. 

Wiring up the 8087 

The 8087 can be designed into any 86/1X or 88/1X 
system operating in maximum mode. Such a system 
would be designated an 8612X or 8812X. Figure 5 shows 
the local bus interconnections for an iAPX 86120 (or 
iAPX 88/20) system. The 8087 shares the maximum 
mode host's multiplexed address/data bus, status sig­
nals, queue status signals, ready status signal, clock and 
reset signal. Two dedicated signals, BUSY and INT, in­
form the host of current 8087 status. The 10K pull-down 
resistor on the BUSY signal ensures the host will always 
see a "not busy" status if an 8087 is not installed. 

Adding the 8087 to your design has a minor effect on 
hardware timing. The 8087 has the exact same timing 
and equivalent DC and AC drive characteristics as a 
host or lOP on the local bus. All the local bus logic, 
such as clock, ready, and interface logic is shared. 

The 8087 adds 15 pF to the total capacitive loading on 
the shared address/data and status signals. Like the 
8086 or 8088, the 8087 can drive a total of 100 pF 
capacitive load above its own self load and sink 2.0 rnA 
DC current on these pins. This AC and DC drive is suf­
ficient for an 86121 system with two sets of data 
transceivers, address latches, and bus ·c·ontrollers for 
two separate busses, an on-board bus and an off-board 
MULTIBUSTMusing the 8289 bus arbiter. 

Later in this section, what to do with the 8087 INT and 
RQ/GT pins, is covered. 

It is possible to leave a prewired 4O-pin socket on the 
board for the 8087. Adding the 8087 to sucl1 a system is 
as easy as just plugging it in. If a program attempts to 
execute any numeric instructions without the 8087 in­
stalled, they will be simply treated as Nap instructions 
by the host. Software can test for the existence of the 
8087 by initializing it and then storing the control word. 
The program of Figure 6 illustrates this technique. 

3-378 

-M'1. • .., ...... to 

8282 

~
' !:;>o-" ... Q w .... 

O@C fa (J 

2 ~Ii ~ a: 
Q - ~ 

U·U U Ul!:<>-;-
=I=I~I~I;I~I~I;I 

r I 

I~ 
I~ 

8087 



'f 
'" -.J 
CD 

~ 
8l 
§ 

ii 
~l~ 
0-< 
G"a; 

" !!!'f: 

~~ 
~ , 
~2. :; 
~i 
~S" 
~g: 

.:~ 
i: 
3!!t 
~ 

-TT 
l_~~ 

A7 19 000 OW 1 
AS 18 001 011 2 

AS 17 002 012 3 

A4 16 003 CD DeC; 4 

A3 15 004 ~ D;"i 5 
A2 14 005 N 015 6 

Al 13 006 DIS 7 
AO 12 007 017 B 

AD' 

AD~S1 
24 

RQI 
aso GTO 

25 3' 

51 27 S2~a 
- 2. 

BUSYSO 

2:) 

1 ,~~~ I I I I IIIII I I I ... D~80 AOl 

O~ 81 A12 

O~ 82 A2. 3 

rl'OK 

D~B3 zC» A34 

D~ 84 !~ A4 5 
O~ 85 ... en AS 6 

~B6 AS 7 

8 '2 87 A7 8 241 251 301 231 
-=-----.:..=.. OE T 35 aSt aso RQ/GT1 TEST ., S A'./SS 9 11 36 A18/55 (550) BHElS7 ~ 

37 A17/54 HEADY 22 

38 A16/53 -lESET 21 

39 A015(~15) elK 19 _ 
2 AD14(A14) AD 32 AD 

3 AOl3(A13) [',OfGTO 31 ROIGTa 

4 AD12(A12) LOCK 29 LOCK 

5 AD11(A11) _ ~ 
·~u~~~ -
7 A09(A9) co CD NMI 17 NMI 

• 8 AD8(A8) ~ 0) INTR 18 INTR 

1 9 AD7 ,~+5V MCE 
~ ~~ AD6 ~ 
4 '2 ~~! 2 • , '0 20h "I 
5 13 AD3 elK AEN lOB GND Vee CEN MCE/ 
6 14 - 28 18 - POEN 13 IORC 

AD2 52 .. 52 CD IORC ~ 
7 15 ACl ~ 21 3 51 ~ lowe ~O"WC 
8 16 ADO Vee GND GNOMI'JfMlO 26 19 So CD 'AIOWC ~OWC 

AO I 

All 
A21 

'" A31 
N 

A41 '" 02 14 85 '" MI 

0' "18. A61 
00 12 87 All 

OE T 

·1 11~ :L 'LT'J A~I DT~i D'~i MR1C M;iC A~WC'4rA 

<]- ~I I~II~I ~I 

l 

» 
"lJ .:.. ... 
Co) 



Ap·113 

WHAT IS TH E iAPX 86, 88 
COPROCESSOR INTERFACE? 
The idea of a coprocessor is based on the observation 
that hardware specially designed for a function is the 
fastest, smallest, and cheapest implementation. But, it is 
too expensive to incorporate all desired functions in 
general purpose hardware. Few applications could use 
all the functions. To build fast, small, economical sys­
tems, we need some way to mix and match components 
supporting specialized functions. 

Purpose of the Coprocessor Interface 
The coprocessor interface of the general purpose 8086 
or 8088 microprocessor provides a way to attach special­
ized hardware in a simple, elegant, and efficient man­
ner. Because the coprocessor hardware is specialized, it 
can perform its job much faster than any general pur­
pose CPU of similar size and cost. The coprocessor 
interface simply requires connection to the host's local 
address/data, status, clock, ready, reset, test and re­
quest/grant signals. Being attached to the host's local 
bus gives the coprocessor access to all memory and I/O 
resources available to the host. 

The coprocessor is independent of system configura­
tion. Using the local bus as the connection point to the 
host isolates the coprocessor from the particular system 
configuration, since the timing and function of local bus 
signals are fixed. 

Software's View of the Coprocessor 
The coprocessor interface allows specialized hardware 
to appear as an integral part of the host's architecture 
controlled by the host with special instructions. When 
the host encounters these special instructions, both the 
host and coprocessor recognize them and work together 
to perform the desired function. No status polling loops 
or command stuffing sequences are required by soft­
ware to operate the coprocessor. 

More information is available to a coprocessor than 
simply an instruction opcode and a signal to begin exe-

cution. The host's coprocessor interface can read a 
value from memory, or identify a region of memory the 
coprocessor should use while performing its function. 
All the addressing modes of the host are available to 
identify memory based operands to the coprocessor. 

Concurrent Execution of Host and 
Coprocessor 
After the coprocessor has started its operation, the host 
may continue on with the program, executing it in par­
allel while the coprocessor performs the function started 
earlier. The parallel operation of the coprocessor does 
not normally affect that of the host unless the copro­
cessor must reference memory or I/O-based operands. 
When the host releases the local bus to the coprocessor, 
the host may continue to execute from its internal in­
struction queue. However, the host must stop when it 
also needs the local bus currently in use by the copro­
cessor. Except for the stolen memory cycle, the opera­
tion of the coprocessor is transparent to the host. 

This parallel operation of host and coprocessor is called 
concurrent execution. Concurrent execution of instruc­
tions requires less total time then a strictly sequential 
execution would. System performance will be higher 
with concurrent execution of instructions between the 
host and coprocessor. 

SYNCHRONIZATION 

In exchange for the higher system performance made 
available by concurrent execution, programs must pro­
vide what is called synchronization between the host 
and coprocessor. Synchronization is necessary whenever 
the host and coprocessor must use information available 
from the other. Synchronization involves either the host 
or coprocessor waiting for the other to finish an opera­
tion currently in progress. Since the host executes the 
program, and has program control instructions like 
jumps, it is given responsibility for synchronization. To 
meet this need, a special host instruction exists to syn­
chronize host operation with a coprocessor. 

3-380 207865-001 



AP-113 

The following algorithm detects the presence of the 8087 as well as the 80287 in a system. This will make it 
easier for ISVs to port their 8086-87 software to 286-287 systems. 

assume 

code 
start: 

cc-.er 
cc-.lf 

cz:code, ds:data 

segment 

mov 
mov 

aX,data 
dS,ax 

equ 
equ 

public 

OOH 
OAH 

carriage return 
line feed 

;set data segment 

Test if 8087 is present in PC or PC/XT, or 80287 is in PC/AT 

fninit 
xor 
mov 
fnstcw 
mov 
r.mn 

jne 

cop roc: 
mov 
mov 
int 
jmp 

no_coproc: 
mov 
mov 
int 

done: 
mov 
int 

code ends 

data segment 
control dw 
msg_yes db 

db 
msg-Ilo db 

db 
data ends 

end 

ah,ah 
byte ptr control+ 1 ,ah 
control 
ah,byte ptr control+1 
flhn::lh 

no-.eoproc 

ah,09h 
dX,offset msg_yes 
21h 

done 

ah,09h 
dX,offset msg-Ilo 
21h 

ah,4CH 
21h 

cc_cr,cc-.lf, 

public 
00 

;initialize coprocessor 
;zero ah register and memory byte 

;store coprocessor's control word in memory 

:uooer byte of control work will be 03 if 
;8087 or 80287 coprocessor is present 

;print string - coprocessor present 

;print string-coprocessor not present 

;terminate program 

'System has an 8087 or 80287',cecr, celf, '$' 
cc-.er,cc-.lf, 
'System does not have an 8087 or 80287',cc-.er, cel!, '$' 

start ;start is the entry point 

Figure 6. Test for Existence of an 8087 

3-381 207865-001 



Ap·113 

The host coprocessor. synchronization instruction, 
called "WAIT", uses the TEST pin of the host. The 
coprocessor can signal that it is still busy to the host via 
this pin. Whenever the host executes a wait instruction, 
it will stop program execution while the TEST input is 
active. When the TEST pin becomes inactive, the host 
will resume program execution with the next instruction 
following the WAIT. While waiting on the TEST pin, 
the host can be interrupted at 5 clock intervals; how­
ever, after the TEST pin becomes inactive, the host will 
immediately execute the next instruction, ignoring any 
pending interrupts between the WAIT and following 
instruction. 

COPROCESSOR CONTROL 

The host has the responsibility for overall program con­
trol. Coprocessor operation is initiated by special in­
structions encountered by the host. These instructions 
are called "ESCAPE" instructions. When the host en­
counters an ESCAPE instruction, the coprocessor is 
expected to perform the action indicated by the instruc­
tion. There are 576 different ESCAPE instructions, 
allowing the coprocessor to perform many different 
actions. 

The host's coprocessor interface requires the copro­
cessor to recognize when the host has encountered an 
ESCAPE instruction. Whenever the host begins execut­
ing a new instruction, the coprocessor must look to see 
if it is an ESCAPE instruction. Since only the host 
fetches instructions and executes them, the coprocessor 
must monitor the instructions being executed by the 
host. 

Host Queue Tracking 
The host can fetch an instruction at a variable length 
time before the host executes the instruction. This is a 
characteristic of the instruction queue of an 8086 or 
8088 microprocessor. An instruction queue· allows pre­
fetching instructions during times when the local bus 

S2 S1 SO Function aS1 

0 0 0 Interrupt Acknowledge 0 

0 0 1 Read I/O Port 0 

0 1 0 Write 1/0 Port 1 

0 1 1 Halt 1 

1 0 0 Code Fetch 

1 0 1 Read Data Memory 

1 1 0 Write Data Memory 

1 1 1 Idle 

would be otherwise idle. The end benefit is faster execu­
tion time of host instructions for a given memory band-
width. . 

The host does not externally indicate which instruction 
it is currently executing. Instead, the host indicates 
when it fetches an instruction and when, some time 
later, an opcode byte is decoded and executed. To iden­
tify the actual instruction the host fetched from its 
queue, the coprocessor must also maintain an instruc­
tion stream identical to the host's. 

Instructions can be fetched in byte or word increments, 
depending on the type of host and the destination ad­
dress of jump instructions executed by the host. When 
the host has filled its queue, it stops prefetching instruc­
tions. Instructions are removed from the queue a byte at 
a time for decoding and execution. When a jump oc­
curs, the queue is emptied. The coprocessor follows 
these actions in the host by monitoring the host's bus 
status, queue status, and data bus signals. Figure 7 
shows how the bus status signals and queue status 
signals are encoded. 

IGNORING 1/0 PROCESSORS 

The host is not the only local bus master capable of 
fetching instructions. An Intel 8089 lOP can generate 
instruction fetches on the local bus in the course of exe­
cuting a channel program in system memory. In this 
case, the status signals S2, SI, and SO generated by the 
lOP are identical to those of the host. The coprocessor 
must not interpret these instruction prefetches as going 
to the host's instruction queue. This problem is solved 
with a status signal called S6. The S6 signal identifies 
when the local bus is being used by the host. When the 
host is the local bus master, S6 = 0 during T2 and T3 of 
the memory cycle. All other bus masters must set S6 = I 
during T2 and T3 of their instruction prefetch cycles. 
Any coprocessor must ignore activity on the local bus 
when S6= 1. 

aso Host Function Coprocessor Activity 

0 No Operation No Queue Activity 

1 First Byte Decode Opcode Byte 

0 Empty Queue Empty Queue 

1 Subsequent Byte Flush Byte or if 2nd 

Byte of Escape 

Decode it 

Figure 7. 

3-382 207865-001 



AP·113 

DECODING ESCAPE INSTRUCTIONS 

To recognize ESCAPE instructions, the coprocessor 
must examine all instructions executed by the host. 
When the host fetches an instruction byte from its inter­
nal queue, the coprocessor must do likewise. 

The queue status state, fetch opcode byte, identifies 
when an opcode byte is being examined by the host. At 
the same time, the coprocessor will check if the byte fet­
ched from its internal instruction queue is an ESCAPE 
opcode. If the instruction is not an ESCAPE, the 
coprocessor will ignore it. The queue status signals for 
fetch subsequent byte and flush queue let the 
coprocessor track the host's queue without knowledge 
of the length and function of host instructions and ad­
dressing modes. 

Escape Instruction Encoding 

All ESCAPE instructions start with the high-order 
5-bits of the instruction being llOll. They have two 
basic forms. The non-memory form, listed here, in­
itiates some activity in the coprocessor using the nine 

which function to perform. 

MOD 

~1()lllil I I iilil I I ~ j 
'15 114 '13 '12 111 '10 19 18 17 '6 15 14 13 12 '1 I~-

Memory reference forms of the ESCAPE instruction, 
shown in Figure 8, allow the host to point out a memory 
operand to the coprocessor using any host memory ad­
dressing mode. Six bits are available in the memory 
reference form to identify what to do with the memory 
operand. Of course, the coprocessor may not recognize 
all possible ESCAPE instructions, in which case it will 
simply ignore them. 

Memory reference forms of ESCAPE instructions are 
identified by bits 7 and 6 of the byte following the 
ESCAPE opcode. These two bits are the MOD field of 
the 8086 or 8088 effective address calculation byte" 

They, together with the R/M field, bits 2 through 0, 
determine the addressing mode and how many subse­
quent bytes remain in the instruction. 

Host's Response to an Escape Instruction 

The host performs one of two possible actions when 
encountering an ESCAPE instruction: do nothing or 
calculate an effective address and read a word value 
beginning at that address. The host ignores the value of 
the word read. ESCAPE instructions change no regis­
ters in the host other than advancing IP. So, if there is 
no coprocessor, or the coprocessor ignores the ESCAPE 
instruction, the ESCAPE instruction is effectively a 
Nap to the host. Other than calculating a memory ad­
dress and reading a word of memory, the host makes no 
other assumptions regarding coprocessor, activity. 

The memory reference ESCAPE instructions have two 
purposes: identify a memory operand and for certain in­
structions, transfer a word from memory to the 
coprocessor. 

COPROCESSOR INTERFACE TO MEMORY 

i-ile design 01' Ii coprocessor 1S cO:H~h:ietaoiy Si.i.Tipiifieli :r 
it only requires reading memory values of 16 bits or less. 
The host can perform all the reads with the coprocessor 
latching the value as it appears on the data bus at the 
end of T3 during the memory read cycle. The copro­
cessor need never become a local bus master to read or 
write additional information. 

If the coprocessor must write information to memory, 
or deal with data values longer than one word, then it 
must save the memory address and be able to become a 
local bus master. The read operation performed by the 
host in the course of executing the ESCAPE instruction 
places the 20-bit physical address of the operand on the 
address/data pins during Tl of the memory cycle. At 
this time the coprocessor can latch the address. If the 
coprocessor instruction also requires reading a value, it 
will appear on the data bus during T3 of the memory 
read. All other memory bytes are addressed relative to 
this starting physical address. 

MOD RIM 16·bit direct displacement 

11 I 1 I 0 I 1 I 1 I I I 10 I 0 I I I 11 I 1 ~~_~ I I I.~ I I I I I I I LI 
115 114 '13 112 111 '10 19 IS '7 16 15 '4 13 12 11 10 015 DI4 D13 012 011 010 09 0 8 07 0 6 0 5 04 03 02 01 DO 

MOD RIM 16·blt displacement 

11 I 1 I 0 I 1 I 1 I I I 11 I 0 I I I I _~-L-!--LLL I I I I -h--I I I ~LLLI 
115 114 '13 '12 '11 '10 'g, 18 '7 16 15 14 13 12 11 '0 015 D14 D13 012 011 010 09 08 07 06 05 04 03 02 01 00 

MOD RIM 8·blt displacement 

11 I 1 I 0 ~~1~1 I I I I 1-4---.Ll--L1~J~ 
'15 114 113 112 111 '10 19 18 '7 16 15 14 13 12 11 10 07 Os 05 04 03 02 01 DO 

MOD RIM 

1~~~~~_LL~~---L_Lil._~ __ ~ 
'15 114 113 112 111 '10 19 18 '7 16 15 14 13 12 '1 '0 

Figure 8. Memory Reference Escape Instruction Forms 

3-383 207865-001 



Ap·113 

Whether the coprocessor becomes a bus master or not, 
if the coprocessor has memory reference instruction 
forms, it must be able to identify the memory read per­
formed by the host in the course of executing an 
ESCAPE instruction. 

Identifying the memory read is straightforward, requir­
ing all the following conditions to be met: 

1) A MOD value of 00, 01, or 10 in the second byte 
of the ESCAPE instruction executed by the host. 

2) This is the first data read memory cycle performed 
by the host after it encountered the ESCAPE in­
struction. In particular, the bus status signals 
S2-S0 will be 101 and S6 will be O. 

The coprocessor must continue to track the instruction 
queue of the host while it calculates the memory address 
and reads the memory value. This is simply a matter of 
following the fetch subsequent byte status commands 
occurring on the queue status pins. 

HOST PROCESSOR DIFFERENCES 

A coprocessor must be aware of the bus characteristics 
of the host processor. This determines how the host will 
read the word operand of a memory reference ESCAPE 
instruction. If the host is an 8088, it will always perform 
two byte reads at sequential addresses. But if the host is 
an 8086. it can either perform a single word read or two 
byte reads to sequential addresses. 

The 8086 places no restrictions on the alignment of 
word operands in memory. It will automatically per­
form two byte operations for word operands starting at 
an odd address. The two operations are necessary since 
the two bytes of the operand exist in two different mem­
ory words. The coprocessor should be able to accept the 
two possible methods of reading a word value on the 
8086. 

A coprocessor can determine whether the 8086 will per­
form one or two memory cycles as part of the current 
ESCAPE instruction execution. The ADO pin during T1 
of the first memory read by the host tells if this is the 
only read to be performed as part of the ESCAPE in­
struction. If this pin is a 1 during T1 of the memory 
cycle, the 8086 will immediately follow this memory 
read cycle with another one at the next byte address. 

Coprocessor Interface Summary 
The host ESCAPE instructions, coprocessor interface, 
and WAIT instruction allow easy extension of the host's 
architecture with specialized processors. The 8087 is 
such a processor, extending the host's architecture as 
seen by the programmer. The specialized hardware pro­
vided by the 8087 can greatly improve system perfor­
mance economically in terms of both hardware and 
software for numerics applications. 

The next section examines how the 8087 uses the 
coprocessor interface of the 8086 or 8088. 

8087 COPROCESSOR OPERATION 
The 8086 or 8088 ESCAPE instructions provide 64 
memory reference opcodes and 512 non-memory refer­
ence opcodes. The 8087 uses 57 of the memory reference 
forms and 406 of the non-memory reference forms. Fig­
ure 9 shows the ESCAPE instructions not used by the 
8087. 

11 1 1°1 1 11 1 1 1 11111 1 1 I I I 
'15 114 113 '12 '11 '10 19 IS 17 16 15 14 13 12 11 10 

110 19 IS 15 14 13 12 11 10 Available codes 

0 0 1 0 1 0 0 0 1 1 
0 0 1 0 1 0 0 1 - 2 
0 0 1 0 1 0 1 -- 4 
0 0 1 1 0 0 0 1 - 2 

0 0 1 1 0 0 1 1 - 2 

0 0 1 1 0 1 1 1 1 1 
0 0 1 1 1 0 1 0 1 1 
0 0 1 1 1 1 0 1 1 1 
0 0 1 1 1 1 1 1 - 2 

0 1 1 1 0 0 1 0 1 1 
0 1 1 1 0 0 1 1 - 2 

0 1 1 1 0 1 --- 8 
0 1 1 1 1 ---- 16 
1 0 1 1 ----- 32 
1 1 1 1 0 0 0 0 1 1 
1 1 1 1 0 0 0 1 0 1 
1 1 1 1 0 0 1 -- 4 
1 1 1 1 0 1 --- 8 
1 1 1 1 1 ---- 16 ---

105 total 

Available Non·Memory Reference Escape Instructions 

MOD RIM 

~I011111 I I I I I I I I I I 
115 114 113 112 111 110 19 IS 17 16 Is 14 13 12 11 10 

110 19 IS 15 14 13 

0 0 1 0 0 1 
0 1 1 0 0 1 
0 1 1 1 0 0 
0 1 1 1 1 0 
1 0 1 0 0 1 
1 0 1 1 0 1 
1 1 1 0 0 1 

Available Memory Reference Escape Instructions 

Figure 9. 

3-384 207865-001 



AP·113 

Using the 8087 With Custom 
Coprocessors 
Custom coprocessors, a designer may care to develop, 
should limit their use of ESCAPE instructions to those 
not used by the 8087 to prevent ambiguity about 
whether anyone ESCAPE instruction is intended for a 
numerics or other custom coprocessor. Using any 
escape instruction for a custom coprocessor may con­
flict with opcodes chosen for future Intel coprocessors. 

Operation of an 8087 together with other custom co­
processors is possible under the following constraints: 

I) All 8087 errors are masked. The 8087 will update its 
opcode and instruction address registers for the un­
used opcodes. Unused memory reference instruc­
tions will also update the operand address value. 
Such changes in the 8087 make software-defined 
error handling impossible. 

2) If the coprocessors provide a BUSY signal, they must 
be ORed together for connection to the host TEST 
pin. When the host executes a WAIT instruction, it 
does not know which coprocessor will be affected by 
the following ESCAPE mstruction. In generai, aii 
coprocessors must be idle before executing the 
ESCAPE instruction. 

Operand Addressing by the 8087 
The 8087 has seven different memory operand formats. 
Six of them are longer than one word. All are an even 
number of bytes in length and are addressed by the host 
at the lowest address word. 

When the host executes a memory reference ESCAPE 
instruction intended to cause a read operation by the 
8087, the host always reads the low-order word of any 
8087 memory operand. The 8087 will save the address 
and data read. To read any subsequent words of the 
operand, the 8087 must become a local bus master. 

When the 8087 has the local bus, it increments the 20-bit 
physical address it saved to address the remaining words 
of the operand. 

When the ESCAPE instruction is intended to cause a 
write operation by the 8087, the 8087 will save the ad­
dress but ignore the data read. Eventually, it will get 
control of the local bus, then perform successive write, 
increment address operations writing the entire data 
value. 

3-385 

8087 OPERATION IN IAPX 86,88 SYSTEMS 
The 8087 will work with either an 8086 or 8088 host. 
The identity of the host determines the width of the 
local bus path. The 8087 will identify the host and 
adjust its use of the data bus accordingly; 8 bits for an 
8088 or 16 bits for an 8086. No strapping options are 
required by the 8087; host identification is automatic. 

The 8087 identifies the host each time the host and 8087 
are reset via the RESET pin. After the reset signal goes 
inactive, the host will begin instruction execution at 
memory address FFFF016• 

If the host is an 8086 it will perform a word read at that 
address; an 8088 will perform a byte read. 

The 8087 monitors pin 34 on the first memory cycle 
after power up. If an 8086 host is used, pin 34 will be the 
BHE signal, which will be low for that memory cycle. 
For an 8088 host, pin 34 will be the SSO signal, which 
will be high during Tl of the first memory cycle. Based 
on this signal, the 8087 will then configure its data bus 
width to match that of the host local bus. 

For 8812X systems, pin 34 of the 8087 may be tied to 
V cc if not connected to the 8088 SSO pin. 

The width of the data bus and alignment of data oper­
ands has no effect, except for execution time and num­
ber of memory cycles performed, on 8087 instructions. 
A numeric program will always produce the same results 
on an 8612X or 8812X with any operand alignment. All 
numeric operands have the same relative byte orderings 
independent of the host and starting address. 

The byte alignment of memory operands can affect the 
performance of programs executing on an 8612X. If a 
word operand, or any numeric operand, starts on an 
odd-byte address, more memory cycles are required to 
access the operand than if the operand started on an 
even address. The extra memory cycles will lower system 
performance. 

The 8612X will attempt to minimize the number of extra 
memory cycles required for odd-aligned operands. In 
these cases, the 8087 will perform first a byte operation, 
then a series of word operations, and finally a byte 
operation. 

8812X instruction timings are independent of operand 
alignment, since byte operations are always performed. 
However, it is recommended to align numeric operands 
on even boundaries for maximum performance in case 
the program is transported to an 8612X. 

20"7865-001 



--
,. 

rD1 
READY 

8284A 
ClK 

CLOCK 
GENERATOR 

RESET 

t 
SYSTEM 
READY 

'-'+ 

-

Ap·113 

ClK 
IA ~ 

AID 

I~ V 

8088 
READY ---A (3)8282 

ADDRESS 

f---J\ 
~ lATCHES 

RESET STATUS 

Iv' 1; .... 
AQ/GT1 QS fESf STB 

""" 7-
A IIll/GTil QS BUSY 

Vt- ~ ;L-f---J\ 8286 
AID 

~ Iv' 'r~ 
DATA 'J 

TRANSCEIVER 

READY 

8087 T OE 

ClK 

~ 
RESET STATUS 

['rV AQ/iffi 

'------, 

4 
RQIGT tA- ---!\ RESET 

AID 

8089 
['r II 

DT/R 
READY 

'-- DEN r-ALE 

f---J\ " 
8288 

STATUS STATUS 
elK' IV V BUS 

CONTROLLER 

elK 

Figure 10. iAPX 88121 

3-386 

... --.., 
I I 

I ADDRESS I 

'~I ~ I 
I 
I 
I 
I 

DATA t\ 

;>; 

I 
I 

I 
I 
I 

I 
I 

I 

I , 
(OMMAN~SI 

I 
I 

I I 
'SYSTEMI 
, BUS I L. __ .J 

, ; 

207865-001 



inter AP·113 

RQ/GT CONNECTION 

Two decisions must be made when connecting the 8087 
to a system. The first is how to interconnect the RQ/GT 
signals of all local bus masters. The RQ/GT decision af­
fects the response time to service local bus requests from 
other local bus masters, such as an 8089 lOP or other 
coprocessor. The interrupt connection affects the 
response time to service an interrupt request and how 
user-interrupt handlers are written. The implications of 
how these pins are connected concern both the hardware 
designer and programmer and must be understood by 
both. 

The RQ/GT issue can be broken into three general cate­
gories, depending on system configuration: 86120 or 
88120, 86121 or 88121, and 86122 or 88122. Remote 
operation of an lOP is not effected by the 8087 RQ/GT 
connection. 

iAPX 86/20, 88/20 
For an 86120 or 88120 just connect the RQ/GTO pin of 
tht 8087 to RQ/GTl of the host (sec Figure 5), and skip 
forward to the interrupt discussion on page 15. 

iAPX 86/21, 88/21 

For an 86121 or 88121, connect RQ/GTO of the 8087 to 
RQ/GTl of the host, connect RQ/GT of the 8089 to 
RQ/GTl of the 8087 (see Figure 10, page 12), and skip 
forward to the interrupt discussion on page 15. 

The RQ/GTl pin of the 8087 exists to provide one 110 
processor with a low maximum wait time for the local 
bus. The maximum wait times to gain control of the 
local bus for a device attached to RQ/GTl of an 8087 
for an 8086 or 8088 host are shown in Table 2. These 
numbers are all dependent on when the host will release 
the local bus to the 8087. 

As Table 2 implies, three factors determine when the 
host will release the local bus: 

1) What type of host is there, an 8086 or 8088? 

2) What is the current instruction being executed? 

3) How is the lock prefix being used? 

An 8086 host will not release the local bus between the 
two consecutive byte operations performed for odd­
aligned word operands. The 8088, in contrast, will never 
release the local bus between the two bytes of a word 
transfer, independent of its byte alignment. 

Host operations such as acknowledging an interrupt will 
not release the local bus for several bus cycles. 

U sing a lock prefix in front of a host instruction 
prevents the host from releasing the local bus during the 
execution of that instruction. 

8087 RQ/GT Function 
The presence of the 8087 in the RQ/GT path from the 
lOP to the host has little effect on the maximum wait 
time seen by the lOP when requesting the local bus. The 
8087 adds two clocks of delay to the basic time required 
by the host. This low delay is achieved due to a preemp­
tive protocol implemented by the 8087 on RQ/GTl. 

The 8087 always gives higher priority to a request for 
the local bus from a device attached to its RQ/GTl pin 
than to a request generated internally by the 8087. If the 
8087 currently owns the local bus and a request is made 
to its RQ/GTl pin, the 8087 will finish the current 
memory cycle and release the local bus to the requestor. 
If the request from the devices arrives when the 8087 
does not own the local bus, then the 8087 will pass the 
request on to the host via its RQ/GTO pin. 

Table 2. Worst Case Local Bus Request Wait Times in Clocks 

System No Locked 
Configuration Instructions 

iAPX 86/21 
even aligned words 15[ 

iAPX 86/21 
odd aligned words 15[ 

iAPX 88/21 15[ 

Notes: 1. Add two clocks for each wait state inserted per bus cycle 
2. Add four clocks for each wait state inserted per bus cycle 
• Execution time of longest locked instruction 

Only Locked Other Locked 
Exchange Instructions 

35[ max (15[, *) 

432 max (432, *) 

432 max (432, *) 

3-387 207865-001 



Ap·113 

A 1\ 
READY 

AID 

I~ V 

,....:.... 8089 
ClK (lOPA) 

~ 
r"' RESET 

STATUS 

IV RQ/GT 

SYSTEM 

REry 

RQ/GTO A j IA 
READY READY AID 

-V l"f I~ 

~ 8284A STATUS 
ClK ClK 8086 -V 

CLOCK 
QS~ GENERATOR 

RESET RESET 
Rll/GTT TEST I--

L-1\ L,orl 
IV 

RQ/GTO BUSY 
READY 

I--

QS lA-
8087 rr- 1\ l-I-- ClK 

AID 

I~ 
I A 

V 
~ f-<- RESET STATUS 

"II Rll/GTT I~ 

r--

RQ/GT IA .. 1\ READY 
AID 

~ V 
8089 

'--I-- ClK (lOPS) 

1\ 
4 RESET 

STATUS 

Figure 11. iAPX 86/22 System 

3-388 

ADDRESS 
lATCHES 

V (3)8282 

STB 

.--J 

1\ DATA 
TRANSCEIVERS 

V (2) 8286 

T OE 

i.~ 

ALE DT/I! DEN 

8288 
STATUS 

BUS CONTROllER 
ClK 

r--' 
I 
'ADDRESS 

h==l , 
I 

I 

1;1;1 
I 
I 
I 
I 

I 

~ I 
I 

I 

",VI 
I , 
ICOMMAN , 

1\ 

I V 

ISYSTE 

L. .!U.! 

OS , , 
M' I 
..J 

207865-001 



AP·113 

IAPX 86/22, 88/22 
An 86/22 system offers two alternates regarding to 
which lOP to connect an 110 device. Each lOP will of­
fer a different maximum delay time to servide an 110 re­
quest. (See Fig. 11) 

The second 8089 (IOPA) must use the RQ/GTO pin of 
the host. With two lOPs the designer must decide which 
lOP services which 110 devices, determined by the max­
imum wait time allowed between when an I/O device re­
quests lOP service and the lOP can respond. The max­
imum service delay times of the two lOPs can be very 
different. It makes little difference which of the two 
host RQ/GT pins are used. 

The different wait times are due to the non-preemptive 
nature of bus grants between the two host RQ/GT pins. 
No communication of a need to use the local bus is 
possible between 10PA and the 8087/IOPB combina­
tion. Any request for the local bus by the 10PA must 
wait in the worst case for the host, 8087, and 10PB to 
finish their longest sequence of memory cycles. 10PB 
must wait in the worst case for the host and IOPA to 
finish their longest seouence of memory cycles. The 
8087 has little effect on the maximum wait time of 
10PB. 

DELAY EFFECTS OF THE 8087 

The delay effects of the 8087 on lOP A can be signifi­
cant. When executing special instructions (FSA VE, 
FNSA VE, FRSTOR), the 8087 can perform SO or 96 
consecutive memory cycles with an 8086 or 8088 host, 
respectively. These instructions do not affect response 
time to local bus requests seen by an 10PB. 

If the 8087 is performing a series of memory cycles while 
executing these instructions, and 10PB requests the 
local bus, the 8087 will stop its current memory activity, 
then release the local bus to 10PB. 

The 8087 cannot release the bus to 10PA since it cannot 
know that IOPA wants to use the local bus, like it can 
for 10PB. 

REDUCING 8087 DELAY EFFECTS 

For 86122 or 88122 systems requiring lower maximum 
wait times for 10PA, it is possible to reduce the worst 
case bus usage of the 8087. If three 8087 instructions are 
never executed; namely FSA VE, FNSA VE, or 
FRSTOR, the maximum number of consecutive mem­
ory cycles performed by the 8087 is 10 or 16 for an 8086 
or 8088 host respectively. The function of these instruc­
tions can be emulated with other 8087 instructions. 

Appendix B shows an example of how these three in­
structions can be emulated. This improvment does have 
a cost, in the increased execution time of 427 or 747 ad-

ditional clocks for an 8086 or 8088 respectively, for the 
equivalent save and restore operations. These opera­
tions appear in time-critical context-switching functions 
of an operating system or interrupt handler. This tech­
nique has no affect on the maximum wait time seen by 
10PB or wait time seen by 10PA due to 10PB. 

Which lOP to connect to which 110 device in an 86122 
or 88122 system will depend on how quickly an I/O re­
quest by the device must be serviced by the lOP. This 
maximum time must be greater than the sum of the 
maximum delay of the lOP and the maximum wait time 
to gain control of the local bus by the lOP. 

If neither lOP offers a fast enough response time, con­
sider remote operation of the lOP. 

8087 INT Connection 
The next decision in adding the 8087 to an 8086 or 8088 
system is where to attach the INT signal of the 8087. 
The INT pin of the 8087 provides an external indication 
of software-selected numeric errors. The numeric pro­
gram will stop until something is done about the error. 
Deciding where to COil.il.ect the lNT signal call havlO im­
portant consequences on other interrupt handlers. 

WHAT ARE NUMERIC ERRORS? 

A numeric error occurs in the NPX whenever an opera­
tion is attempted with invalid operands or attempts to 
produce a result which cannot be represented. If an in­
correct or questionable operation is attempted by a pro­
gram, the NPX will always indicate the event. Examples 
of errors on the NPX are: 110, square root of - 1, and 
reading from an empty register. For a detailed descrip­
tion of when the 8087 detects a numeric error, refer to 
the Numerics Supplement. (See Lit. Ref). 

3-389 

WHAT TO DO ABOUT NUMERIC ERRORS 

Two possible courses of action are possible when a 
numeric error occurs. The NPX can itself handle the 
error, allowing numeric program execution to continue 
undisturbed, or software in the host can handle the 
error. To have the 8087 handle a numeric error, set its 
associated mask bit in the NPX control word. Each 
numeric error may be individually masked. 

The NPX has a default fixup action defined for all pos­
sible numeric errors when they are masked. The default 
actions were carefuliy selected for their generality and 
safety. 

For example, the default fixup for the precision error is 
to round the result using the rounding rules currently in 
effect. If the invalid error is masked, the NPX will 
generate a special value called indefinite as the result of 
any invalid operation. 

207865-001 



Ap·113 

NUMERIC ERRORS (CON'T) 

Any arithmetic operation with an indefinite operand 
will always generate an indefinite result. In this manner, 
the result of the original invalid operation will pro­
pagate throughout the program wherever it is used. 

When a questionable operation such as multiplying an 
unnormal value by a normal value occurs, the NPX will 
signal this occurrence by generating an unnormal result. 

The required response by host software to a numeric 
error will depend on the application. The needs of each 
application must be understood when deciding on how 
to treat numeric errors. There are three attitudes 
towards a numeric error: 

I) No response required. Let the NPX perform the 
default fixup. 

2) Stop everything, something terrible has happened! 

3) Oh, not again! But don't disrupt doing something 
more important. 

SIMPLE ERROR HANDLING 

Some very simple applications may mask all of the 
numeric errors. In this simple case, the 8087 INT signal 
may be left unconnected since the 8087 will never assert 
this signal. If any numeric errors are detected during the 
course of executing the program, the NPX will generate 
a safe result. It is sufficient to test the final results of the 
calculation to see if they are valid. 

Special values like not-a-number (NAN), infinity, in­
definite, denormais, and unnormals indicate the type 
and severity of earlier invalid or questionable opera­
tions. 

SEVERE ERROR HANDLING 

For dedicated applications, programs should not gener­
ate or use any invalid operands. Furthermore, all num­
bers should be in range. An operand or result outside 
this range indicates a severe fault in the system. This 
situation may arise due to invalid input values, program 
error, or hardware faults. The integrity of the program 
and hardware is in question, and immediate action is re­
quired. 

In this case, the INT signal can be used to interrupt the 
program currently running. Such an interrupt would be 
of high priority. The interrupt handler responsible for 
numeric errors might perform system integrity tests and 
then restart the system at a known, safe state. The 
handler would not normally return to the point of error. 

Unmasked numeric errors are very useful for testing 
programs. Correct use of synchronization, (Page 21), 
allows the programmer to find out exactly what 
operands, instruction, and memory values caused the 
error. Once testing has finished, an error then becomes 
much more serious. 

The 8086 Family Numerics Supplement recommends 
masking all errors except invalid. (See Lit. Ref.). In this 
case the NPX will safely handle such errors as 
underflow, overflow, or divide by zero. Only truly ques­
tionable operations will disturb the numerics program 
execution. 

An example of how infinities and divide by zero can be 
harmless occurs when calculating the parallel resistance 
of several values with the standard formula (Figure 12). 
If RI becomes zero, the circuit resistance becomes O. 
With divide by zero and precision masked, the NPX will 
produce the correct result. 

NUMERIC EXCEPTION HANDLING 

For some applications, a numeric error may not indicate 
a severe problem. The numeric error can indicate that a 
hardware resource has been exhausted, and the software 
must provide more. These cases are called exceptions 
since they do not normally arise. 

Special host software will handle numeric error excep­
tions when they infrequently occur. In these cases, 
numeric exceptions are expected to be recoverable 
although not requiring immediate service by the host. In 
effect, these exceptions extend the functionality of the 
NDP. Examples of extensions are: normalized only 
arithmetic, extending the register stack to memory. or 
tracing special data values. 

Equivalent resistance = 

Figure 12. Infinity Arithmetic Example 

3-390 207865-001 



Ap·113 

HOST INTERRUPT OVERVIEW 

The host has only two possible interrupt inputs, a non­
mask able interrupt (NMI) and a maskable interrupt 
(INTR). Attaching the 8087 INT pin to the NMI input is 
not recommended. The following problems arise: NMI 
cannot be masked, it is usually reserved for more impor­
tant functions like sanity timers or loss of power signal, 
and Intel supplied software for the NDP will not sup­
port NMI interrupts. The INTR input of the host allows 
interrupt masking in the CPU, using an Intel 8259A 
Programmable Interrupt Controller (PIC) to resolve 
multiple interrupts, and has Intel support. 

NUMERIC INTERRUPT CHARACTERISTICS 

Numeric error interrupts are different from regular in­
struction error interrupts like divide by zero. Numeric 
interrupts from the 8087 can occur long after the 
ESCAPE instruction that started the failing operation. 
For example, after starting a numeric multiply opera­
tion, the host may respond to an external interrupt and 
be in the process of servicing it when the 8087 detects an 
overflow error. In this case the interrupt is a result of 
some earlier, unrelated program. 

From the point of view of the currently executing inter­
rupt handler, numeric interrupts can come from only 
two sources: the current handler or a lower priority pro­
gram. 

To explicitly disable numeric interrupts, it is re<:om­
mended that numeric interrupts be disabled at the 8087. 
The code example of Figure 13 shows how to disable 
any pending numeric interrupts then reenable them at 
the end of the handler. This code example can be safely 
placed in any routine which must prevent numeric inter­
rupts from occurring. Note that the ESCAPE instruc­
tions act as NOPs if an 8087 is not present in the system. 
It is not recommended to use numeric mnemonics since 
they may be converted to emulator calls, which run 
comparatively slow, if the 8087 emulator used. 

Interrupt systems have specific functions like fast 
response to external events or periodic execution of 
system routines. Adding an 8087 interrupt should not 
effect these functions. Desirable goals ofany 8087 inter­
rupt configuration are: 

- Hide numeric interrupts from interrupt handlers that 
don't use the 8087. Since they didn't cause the 
numeric interrupt why should they be interruoted? 

- Avoid adding code to interrupt handlers tha dOll't 

use the 8087 to prevent interruption by the 8)R7 

- Allow other higher priority interrupts to be 5el \ Il'ed 

while executin~ a numeric exception handler. 

- Provide numeric "\lTptiotJ halldling for interrupt 
service routines Wlll"" 1 I.\[' t he HUH? 

- Avoid deadlock a., d"scrihed in a later "'(Iion 
(page 24) 

Disable any possible numeric interrupt from the 8087. This code is S'lfe to place in any 
procedure. If an 8087 is not present, the ESCAPE instructions will a"t as nops. Thp~;r· 

instructions are not affected by the TEST pin of the host. Using the 8081 emulator will not 
convert these instructions into interrupts. A word variable, called control, is required to hold 
the 8087 control word. Control must not be changed until it is reloaded into the t087. 

ESC 15, control 
NOP 
NOP 
ESC 28,cx 

(FNSTCW) Save current 8087 contr~1 word 
Delay while 8087 saves current contl?1 
register value 
(FNDISI) Disable any 8087 interrupts 
Set IEM bit in 8087 control register 

, The contents of cx is irrelevant 
; Interrupts can now be enabled 

(Your Code Here) 

Reenable any pending interrupts in the 8087. This instruction does not disturb any 8087 instruction 
currently in progress since all it does is change the IEM bit in the control register. 

TEST control,80H 
JNZ $+4 
ESC 28,ax 

Look at IEM bit 
If IEM = 1 skip FNENI 
(FNENI) reenable 8087 interrupts 

Figure 13. Inhibit/Enable 8087 Interrupts 

3-391 207865-001 



Ap·113 

Recommended Interrupt Configurations 
Five categories cover most uses of the 8087 interrupt in 
fIxed priority interrupt systems. For each category, an 
interrupt configuration is suggested based on the goals 
mentioned above. 

1. All errors on the 8087 are always masked. 
Numeric interrupts are not possible. Leave the 
8087 INT signal unconnected. 

2. The 8087 is the only interrupt in the system. Con­
nect the 8087 INT signal directly to the host's 
INTR input. (See Figure 14 on page 19). A bus 
driver supplies interrupt vector 1016 for com­
patibility with Intel supplied software. 

3. The 8087 interrupt is a stop everything event. 
Choose a high priority interrupt input that will ter­
minate all numerics related activity. This is a 
"pecial case since the interrupt handler may never 
return to the point of interruption (Le. reset the 
s)Stem and restart rather than attempt to continue 
o~eration). 

4. Numeric exceptions or numeric programming er­
rors are expected and all interrupt handlers either 
Llon't use the 8087 or only use it with all errors 
masked. Use the lowest priority interrupt input. 
fhe 8087 interrupt handler should allow further 
interrupts by higher priority events. The PIC's 
priority system will automatically prevent the 8087 
from disturbing other interrupts without adding 
extra code to them. 

3-392 

S. Case 4 holds except that interrupt handlers may 
also generate numeric interrupts. Connect the 8087 
INT signal to multiple interrupt inputs. One input 
would still be the lowest priority input as in case 4. 
Interrupt handlers that may generate a numeric in­
terrupt will require another 8087 INT connection 
to the next highest priority interrupt. Normally the 
higher priority numeric interrupt inputs would be 
masked and the low priority numeric interrupt 
enabled. The higher priority interrupt input would 
be unmasked only when servicing an interrupt 
which requires 8087 exception handling. 

All of these confIgurations hide the 8087 from all inter­
rupt handlers which do not use the 8087. Only those in­
terrupt handlers that use the 8087 are required to per­
form any special 8087 related interrupt control ac­
tivities. 

A conflict can arise between the desired PIC interrupt 
input and the required interrupt vector of 1016 for com­
patibility with Intel software for numeric interrupts. A 
simple solution is to use more than one interrupt vector 
for numeric interrupts, all pointing at the same 8087 in­
terrupt handler. Design the numeric interrupt handler 
such that it need not know what the interrupt vector was 
(i.e. don't use specifIc EOI commands). 

I f an interrupt system uses rotating interrupt priorities, 
it will not matter which interrupt input is used. 

207865-001 



intJ 

rDIt 
8284A 

r-- READY 

CLOCK 
r- RESET GENERATOR 

r- elK 

READY 
AID 

STATUS 
>--f- RESET 

8086 
INTR 

..... elK rm 
RQ/(IT1 as 

f ..L~ 
RQtGTO as 

BUSY 
~ - -- READY 

INT 

- -- RESET 8087 
AID 

..... elK 
STATUS 

I 

Ap·113 

~ 

11 

SYSTEM READY 

;L ~ ~ ~ 

~ V ~ :SI 

II 

V 

-

----
-- T 8286 

-=- OE 

V 
VECTOR 

t--

r- ALE 

A ~ 
8288 Dl/R 

BUS 

H V CONTROLLER 

INTA :r ~ 
STATUS 

DEN -1\iII --V 
eLK 

Figure 14. iAPX 86/20 With Numerics Interrupt Only 

3-393 

(3)8282 
ADDRESS 
LATCHES 

STB 

• 

(2)8286 
DATA 

TRANSCEIVERS 

T OE 

r--
I ADDRESS 

~ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
",V I 

I 
I 
I 

~ 
ISYSTEM 
L .!U.! .J 

207865-001 



intJ AP·113 

GETTING STARTED IN SOFTWARE 

Now we are ready to run numeric programs. Developing 
numeric software will be a new experience to some pro­
grammers. This section of the application note is aimed 
at describing the programming environment and pro­
viding programming guidelines for the NPX. The term 
NPX is used to emphasize that no distinction is made 
between the 8087 component or an emulated 8087. 

Two major areas of numeric software can be identified: 
systems software and applications software. Products 
such as iRMXTM 86 provide system software as an off­
the-shelf product. Some applications use specially 
developed systems software optimized to their needs. 

Whether the system software is specially tailored or 
common, they share issues such as using concurrency, 
maintaining synchronization between the host and 8087, 
and establishing programming conventions. Appli­
cations software directly performs the functions of the 
application. All applications will be concerned with ini­
tialization and general programming rules for the NPX. 
Systems software will be more concerned with context 
switching, use of the NPX by interrupt handlers, and 
numeric exception handlers. 

How to Initialize the NPX 
The first action required by the NPX is initialization. 
This places the NPX in a known state, unaffected by 
other activity performed earlier. This initialization is 
similar to that caused by the RESET signal of the 8087. 
All the error masks are set, all registers are tagged 
empty, the TOP field is set to 0, default rounding, prec 
cision, and infinity controls are set. The 8087 emulator 
requires more initialization than the component. Before 
the emulator may be used, all its interrupt vectors must 
be set to point to the correct entry points within the 
emulator. 

To provide compatibility between the emulator and 
component in this special case, a call to an external pro­
cedure should be used before the first numeric instruc­
tion. In ASM86 the programmer must call the external 
function INIT87. (Fig. 15). For PLM86, the 
programmer must call the built-in function 
INIT$REAL$MA TH$UNIT. PLM86 will call INIT87 
when executing the INIT$REAL$MA TH$UNIT built­
in function. 

The function supplied for INIT87 will be different, 
depending on whether the emulator library, called 
E8087.LlB, or component library, called 8087.LlB, 
were used at link time. INIT87 will execute either an 
FNINIT instruction for the 8087 or initialize the 8087 
emulator interrupt vectors, as appropriate. 

3-394 

Concurrency Overview 

With the NPX initialized, the next step in writing a 
numeric program is learning about concurrent execution 
within the NDP. 

Concurrency is a special feature of the 8087, allowing it 
and the host to simultaneously execute different instruc­
tions. The 8087 emulator does not provide concurrency 
since it is implemented by the host. 

The benefit of concurrency to an application is higher 
performance. All Intel high level languages automatic­
ally provide for and manage concurrency in the NDP. 
However, in exchange for the added performance, the 
assembly language programmer must understand and 
manage some areas of concurrency. This section is for 
the assembly language programmer or well-informed, 
high level language programmer. 

Whether the 8087 emulator or component is used, care 
should be taken by the assembly language programmer 
to follow the rules described below regarding synchro­
nization. Otherwise, the program may not function cor­
rectly with current or future alternatives for implement­
ing the NDP. 

Concurrency is possible in the NDP because both the 
host and 8087 have separate arithmetic and control 
units. The host and coprocessor automatically decide 
who will perform any single instruction. The existence 
of the 8087 as a separate unit is not normally apparent. 

Numeric instructions, which will be executed by the 
8087, are simply placed in line with the instructions for 
the host. Numeric instructions are executed in the same 
order as they are encountered by the host in its instruc­
tion stream. Since operations performed by the 8087 
generally require more time than operations performed 
by the host, the host can execute several of its instruc­
tions while the 8087 performs one numeric operation. 

IN PLM86: 
CALL INIT$REAL$MATH$UNIT; 

IN ASM86: 
EXTRN 

• 
• 
• 
• 

CALL 

INIT8?:FAR 

INIT8? 

Figure 15. 8087 Initialization 

207865-001 



AP·113 

MANAGING CONCURRENCY 

Concurrent execution of the host and 8087 is easy to 
establish and maintain. The activities of numeric pro­
grams can be split into two major areas: program con· 
trol and arithmetic. The program control part performs 
activities like deciding what functions to perform, calcu­
lating addresses of numeric operands, and loop control. 
The arithmetic part simply performs the adds, sub­
tracts, multiplies, and other operations on the numeric 
operands. The NPX and host are designed to handle 
these two parts separately and efficiently. 

Managing concurrency is necessary because the arithme­
tic and control areas must converge to a well-defined 
state when starting another numeric operation. A well­
defined state means all previous arithmetic and control 
operations are complete and valid. 

Normally, the host waits for the 8087 to finish the cur­
rent numeric operation before starting another. This 
waiting is called synchronization. 

Managing concurrent execution of the 8087 involves 
three types of synchronization: instruction, data, and 
error. Instruction and error synchronization are 
automatically provided by the compiler or assembler. 
Data synchronization must be provided by the assembly 
language pro gammer or compiler. 

Instruction Synchronization 

Instruction synchronization is required because the 8087 
can only perform one numeric operation at a time. Be­
fore any numeric operation is started, the 8087 must 
have completed all activity from previous instructions. 

The WAIT instruction on the host lets it wait for the 
8087 to finish all numeric activity before starting an­
other numeric instruction. The assembler automatically 
provides for instruction synchronization since aWAIT 
instruction is part of most numeric instructions. A 
WAIT instruction requires 1 byte code space and 2.5 
clocks average execution time overhead. 

Instruction synchronization as provided by the assem­
bler or a compiler allows concurrent operation in the 
NDP. An execution time comparison of NDP concur­
rency and non-concurrency is illustrated in Figure 16. 
The non-concurrent program places a WAIT instruction 
immediately after a multiply instruction ESCAPE in­
struction. The 8087 must complete the multiply opera­
tion before the host executes the MOV instruction on 
statement 2. In contrast, the concurrent example allows 
the host to calculate the effective address of the next 
operand while the 8087 performs the multiply. The ex­
ecution time of the concurrent technique is the longest 
of the host's execution time from line 2 to 5 and the ex­
ecution time of the 8087 for a multiply instruction. The 
execution time of the non-concurrent example is the 
sum of the execution times of statements I to 5. 

This code macro defines two instructions which do not allow any concurrency of execution with 
the host. A register version and memory version of the instruction is shown. It is assumed that the 
8087 is always idle from the previous instruction. Allow space for emulator fixups. 

R233 Record RF6:2, Mid3:3, RF7:3 
CodeMacro NCMUL dst:T, src:F 
RNfix OOOB 
R233 (1 i B, 001 B, src) 
RWfix 
EndM 

CodeMacro NCMUL memop:Mq 
RNfixM 100B, memop 
ModRM 001 B, me mop 
RWfix 
EndM 

Statement 

2 
3 
4 
5 

Concurrent 

FMUL st(O), st(1) 
MOV ax, size A 
MUL index 
MOV bx, ax 
FMUL A [bx] 

Figure 16. Concurrent Versus Non·Concurrent Program 

3-395 

Non Concurrent 

NCMUL st(O), st(1) 
MOV 
MUL 
MOV 
NCMUL 

ax, size A 

index 
bx, ax 
A [bx] 

207865-001 



AP·113 

Data Synchronization 

'Managing concurrency requires synchronizing data ref· 
erences by the host and 8087. 

Figure 17 shows four possible cases of the host and 8087 
sharing a memory value. The second two cases require 
the FW AIT instruction shown for data synchronization. 
In the first two cases, the host will finish with the 
operand I before the 8087 can reference it. The 
coprocessor interface guarantees this. In the second two 
cases, the host must wait for the 8087 to finish with the 
memory operand before proceeding to reuse it. The 
FWAIT instruction in case 3 forces the host to wait for 
the 8087 to read I before changing it. In case 4, the 
FW AIT prevents the host from reading I before the 
8087 sets its value. 

Obviously, the programmer must recognize any form of 
the two cases shown above which require explicit data 
synchronization. Data synchronization is not a concern 
when the host and 8087 are using different memory 
operands during the course of one numeric instruction. 
Figure 16 shows such an example of the host performing 
activity unrelated to the current numeric instruction 
being executed by the 8087. Correct recognition of these 
cases by the programmer is the price to be paid for pro­
viding concurrency at the assembly language level. 

Automatic Data Synchronization 
Two methods exist to avoid the need for manual recog­
nition of when data synchronization is needed: use a 
high level language which will automatically establish 
concurrency and manage it, or sacrifice some perfor­
mance for automatic data synchronization by the as­
sembler. 

When a high level language is not adequate, the 
assembler can be changed to always place a WAIT in­
struction after the ESCAPE instruction. Figure 18 
shows an example of how to change the ASM86 code 
macro for the FIST instruction to automatically place 
an FWAIT instruction after the ESCAPE instruction. 
The lack of any possible concurrent execution between 
the host and 8087 while the FIST instruction is executing 
is the price paid for automatic data synchronization. 

An explicit FW AIT instruction for data synchroniza­
tion, can be eliminated by using a subsequent numeric 
instruction. After this subsequent instruction has 
started execution, all memory references in earlier 
numeric instructions are complete. Reaching the next 
host instruction after the synchronizing numeric instruc­
tion indicates previous numeric operands in memory are 
available. 

3-396 

The data synchronization purpose of any FWAIT or 
numeric instruction must be well documented. Other­
wise, . a change to the program at a later time may 
remove the synchronizing numeric instruction, causing 
program failure, as: 

FISTP 
FMUL 
MOV AX,I ; 1 is safe to use 

Case 1: 
MOV 1,1 
FILD 1 

Case 2: 
MOV AX,I 
FISTP I 

Case 3: 
FILD 
FWAIT 
MOV 

Case 4: 
FISTP 
FWAIT 
MOV 

Figure 17. Data Exchange Example 

1,5 

AX,I 

This is a code macro to redefine the FIST 
instruction to prevent any concurrency 
while the instruction runs. A wait 
instruction is placed immediately after the 
escape to ensure the store is done 
before the program may continue. This 
code macro will work with the 8087 
emulator, automatically replacing the 
wait escape with a nop. 

CodeMacro FIST memop: Mw 
RfixM 111 B, memop 
ModRM 010B, memop 
RWfix 
EndM 

Figure 18. Non-Concurrent FIST Instruction 
Code Macro 

207865-001 



inter AP·113 

DATA SYNCHRONIZATION RULES EXCEPTIONS 

There are five exceptions to the above rules for data syn­
chronization. The 8087 automatically provides data syn­
chronization for these cases. They are necessary to 
avoid deadlock (described on page 24). The instructions 
FSTSW IFNSTSW, FSTCW IFNSTCW, FLDCW, 
FRSTOR, and FLDENV do not require any waiting by 
the host before it may read or modify the referenced 
memory location. 

The 8087 provides the data synchronization by prevent­
ing the host from gaining control of the local bus while 
these instructions execute. If the host cannot gain con­
trol of the local bus, it cannot change a value before the 
8087 reads it, or read a value before the 8087 writes into 
it. 

The coprocessor interface guarantees that, when the 
host executes one of these instructions, the 8087 will 
immediately request the local bus from the host. This 
request is timed such that, when the host finishes the 
read operation identifying the memory operand, it will 
always grant the local bus to the 8087 before the host 
may use the local bus for a data reference while execut­
ing a subsequent instruction. The 8087 will not release 
the local bus to the host until it has finished executing 
the numeric instruction. 

Error Synchronization 

Numeric errors can occur on almost any numeric in­
struction at any time during its execution. Page 15 
describes how a numeric error may have many inter­
pretations, depending on the application. Since the re­
sponse to a numeric error will depend on the applica­
tion, this section covers topics common to all uses of the 
NPX. We will review why error synchronization is need­
ed and how it is provided. 

Concurrent execution of the host and 8087 requires syn­
chronization for errors just like data references and 
numeric instructions. In fact, the synchronization re­
quired for data and instructions automatically provides 
error synchronization. 

However, incorrect data or instruction synchronization 
may not cause a problem until a numeric error occurs. A 
further complication is that a programmer may not ex­
pect his numeric program to cause numeric errors, but 
in some systems they may regularly happen. To better 
understand these points, let's look at what can happen 
when the NPX detects an error. 

ERROR SYNCHRONIZATION FOR EXTENSIONS 

The NPX can provide a default fixup for all numeric 
errors. A program can mask each individual error type 
to indicate that the NPX should generate a safe, reason­
able result. The default error fixup activity is simply 
treated as part of the instruction which caused the error. 
No external indication of the error will be given. A flag 
in the numeric status register will be set to indicate that 
an error was detected, but no information regarding 
where or when will be available. 

If the NPX performs its default action for all errors, 
then error synchronization is never exercised. But this is 
no reason to ignore error synchronization. 

Another alternative exists to the NPX default fixup of 
an error. If the default NPX response to numeric errors 
is not desired, the host can implement any form of re­
covery desired for any numeric error detectable by the 
NPX. When a numeric error is unmasked, and the error 
occurs, the NPX will stop further execution of the 
numeric instruction. The 8087 will signal this event on 
the INT pin, while the 8087 emulator will cause inter­
rupt 1016 to occur. The 8087 INT signal is normally con­
nected to the host's interrupt system. Refer to page 18 
for further discussion on wiring the 8087 INT pin. 

Interrupting the host is a request from the NPX for 
help. The fact that the error was unmasked indicates 
that further numeric program execution under the arith­
metic and programming rules of the NPX is unreason­
able. Error synchronization serves to insure the NDP is 
in a well defined state after an unmasked numeric error 
occured. Without a well defined state, it is impossible to 
figure out why the error occured. 

Allowing a correct analysis of the error is the heart of 
error synchronization. 

NDP ERROR STATES 

If concurrent execution is allowed, the state of the host 
when it recognizes the interrupt is undefined. The host 
may have changed many of its internal registers and be 
executing a totally different program by the time it is in­
terrupted. To handle this situation, the NPX has special 
registers updated at the start of each numeric instruction 
to describe the state of the numeric program when the 
failed instruction was attempted. (See Lit. Ref. p. iii) 

Besides programmer comfort, a well-defined state is im­
portant for error recovery routines. They can change the 
arithmetic and programming rules of the 8087. These 
changes may redefine the default fixup from an error, 
change the appearance of the NPX to the programmer, 
or change how arithmetic is defined on the NPX. 

3-397 207865-001 



Ap·113 

EXTENSION EXAMPLES 

A change to an error response might be to automatically 
normalize all denormals loaded from memory. A 
change in appearance might be extending the register 
stack to memory to provide an "infinite" number of 
numeric registers. The arithmetic of the 8087 can be 
changed to automatically extend the precision and range 
of variables when exceeded. All these functions can be 
implemented on the NPX via numeric errors and 
associated recovery routines in a manner transparent to 
the programmer. 

Without correct error synchronization, numeric 
subroutines will not work correctly in the above situa­
tions. 

Incorrect Error Synchronization 

An example of how some instructions written without 
error synchronization will work initially, but fail when 
moved into a new environment is: 

FILD 
INC 
FSQRT 

COUNT 
COUNT 

Three instructions are shown to load an integer, calcu­
late its square root, then increment the integer. The 
coprocessor interface of the 8087 and synchronous ex­
ecution of the 8087 emulator will allow this program to 
execute correctly when no errors occur on the FILD in­
struction. 

But, this situation changes if the numeric register stack 
is extended to memory on an 8087. To extend the NPX 
stack to memory, the invalid error is unmasked. A push 
to a full register or pop from an empty register will 
cause an invalid error. The recovery routine for the er­
ror must recognize this situation, fixup the stack, then 
perform the original operation. 

The recovery routine will not work correctly in the ex­
ample. The problem is that there is no guarantee that 
COUNT will not be incremented before the 8087 can in­
terrupt the host. If COUNT is incremented before the 
interrupt, the recovery routine will load a value of 
COUNT one too large, probably causing the program to 
fail. 

Error Synchronization and WAITs 

Error synchronization relies on the WAIT instructions 
required by instruction and data synchronization and 
the INT and BUSY signals of the 8087. When an un­
masked error occurs in the 8087, it asserts the BUSY 
and INT signals. The INT signal is to interrupt the host, 
while the BUSY signal prevents the host from destroy­
ing the current numeric context. 

3-398 

The BUSY signal will never go inactive during a numeric 
instruction which asserts INT. 

The WAIT instructions supplied for instruction syn­
chronization prevent the host from starting another 
numeric instruction until the current error is serviced. In 
a like manner, the WAIT instructions required for data 
synchronization prevent the host from prematurely 
reading a value not yet stored by the 8087. or over­
writing a value not yet read by the 8087. 

The host has two responsibilities when handling 
numeric errors. I. ) It must not disturb the numeric con­
text when an error is detected, and 2.) it must clear the 
numeric error and attempt recovery from the error. The 
recovery program invoked by the numeric error may 
resume program execution after proper fixup, display 
the state of the NDP for programmer action, or simply 
abort the program. In any case, the host must do 
something with the 8087. With the INT and BUSY 
signals active, the 8087 cannot perform any useful 
work. Special instructions exist for controlling the 8087 
when in this state. Later, an example is given of how to 
save the state of the NPX with an error pending. (See 
page 29) 

Deadlock 
An undesirable situation may result if the host cannot 
be interrupted by the 8087 when asserting INT. This sit­
uation, called deadlock, occurs if the interrupt path 
from the 8087 to the host is broken. 

The 8087 BUSY signal prevents the host from executing 
further instructions (for instruction or data syn­
chronization) while the 8087 waits for the host to service 
the exception. The host is waiting for the 8087 to finish 
the current numeric operation. Both the host and 8087 
are waiting on each other. This situation is stable unless 
the host is interrupted by some other event. 

Deadlock has varying affects on the NDP's perfor­
mance. If no other interrupts in the system are possible, 
the NDP will wait forever. If other interrupts can arise, 
then the NDP can perform other functions, but the af­
fected numeric program will remain "frozen". 

SOLVING DEADLOCK 

Finding the break in the interrupt path is simple. Look 
for disabled interrupts in the following places: masked 
interrupt enable in the host, explicitly masked interrupt 
request in the interrupt controller, implicitly masked in­
terrupt request in the interrupt controller due to a higher 
priority interrupt in service, or other gate functions, 
usually in TTL, on the host interrupt signal. 

207865-001 



AP-113 

DEADLOCK AVOIDANCE 

Application programmers should not be concerned with 
deadlock. Normally, applications programs run with 
unmasked numeric errors able to interrupt them. Dead­
lock is not possible in this case. Traditionally, systems 
software or interrupt handlers may run with numeric in­
terrupts disabled. Deadlock prevention lies in this do­
main. The golden rule to abide by is: "Never wait on the 
8087 if an unmasked error is possible and the 8087 inter­
rupt path may be broken." 

Error Synchronization Summary 

In summary, error synchronization involves protecting 
the state of the 8087 after an exception. Although not ail 
applications may initially require error synchronization, 
it is just good programming practice to follow the rules. 
The advantage of being a "good" numerics program­
mer is generality of your program so it can work in 
other, more general environments. 

Summary 

Synchronization is the price for concurrency in the 
NDP. Intel high level language compilers will auto­
matically provide concurrency and manage it with syn­
chronization. The assembly language programmer can 
choose between using concurrency or not. Placing a 
WAIT instruction immediately after any numeric in­
struction will prevent concurrency and avoid synchro­
nization concerns. 

The rules given above are complete and allow concur­
rency to be used to full advantage. 

Synchronization and the Emulator 
The above discussion on synchronization takes on 
special meaning with the 8087 emulator. The 8087 emu­
lator does not allow any concurrency. All numeric 
operand memory references, error tests, and wait for 
instruction completion occur within the emulator. As a 
result, programs which do 110t provide proper instruc­
tion, data, or error synchronization may work with the 
8087 emulator while failing on the component. 

Correct programs for the 8087 work correctly on the 
emulator. 

Special Control In~tructions of the NPX 
The special control instructions of the NPX: FNINIT, 
FNSAVE,FNSTENV,FRSTOR,FLDENV,FLDCW, 
FNSTSW, FNSTCW, FNCLEX, FNENI, and FNDISI 
remove some of the synchronization requirements men­
tioned earlier. They are discussed here since they repre­
sent exceptions to the rules mentioned on page 21. 

The instructions FNINIT, FNSA VE, FNSTENV, 
FNSTSW, FNCLEX, FNENI, and FNDISI do not wait 

for the current numeric instruction to finish before they 
execute. Of these instructions, FNINIT, FNSTSW, 
FNCLEX, FNENI and FNDISI will produce different 
results, depending on when they are executed relative to 
the current numeric instruction. 

For example, FNCLEX will cause a different status 
value to result from a concurrent arithmetic operation, 
depending on whether is is executed before or after the 
error status bits are updated at the end of the arithmetic 
operation. The intended use of FNCLEX is to clear a 
known error status bit which has caused BUSY to be 
asserted, avoiding deadlock. 

FNSTSW will safely, without deadlock, report the busy 
and error status of the NPX independent of the NDP in­
terrupt status. 

FNINIT, FNENI, and FNDISI are used to place the 
NPX into a known state independent of its current 
state. FNDISI will prevent an unmasked error from 
asserting BUSY without disturbing the current error 
status bits. Appendix A shows an example of using 
FNDISI. 

The instructions FNSA VE and FNSTENV provide spe­
cial functions. They allow saving the state of the NPX in 
a single instruction when host interrupts are disabled. 

Several host and numeric instructions are necessary to 
save the NPX status if the interrupt status of the host is 
unknown. Appendix A and B show examples of saving 
the NPX state. As the Numerics Supplement explains, 
host interrupts must always be disabled when executing 
FNSAVE or FNSTENV. 

The seven instructions FSTSW IFNSTSW, FSTCW I 
FNSTCW, FLDCW, FLDENV, and FRSTOR do not 
require explicit WAIT instructions for data synchro­
nization. All of these instructions are used to interrogate 
or control the numeric context. 

Data synchronization for these instructions is 
automaticaily provided by the coprocessor interface. 
The 8087 will take exclusive control of the memory bus, 
preventing the host from interfering with the data values 
before the 8087 can read them. Eliminating the need for 
a WAIT instruction avoids potential deadlock pro­
blems. 

The three load instructions FLDCW, FLDENV, and 
FRSTOR can unmask a numeric error, activating the 
8087 BUSY signal. Such an error was the result of a 
previous numeric instruction and is not related to any 
fault in the instruction. 

Data synchronization is automatically provided since 
the host's interrupts are usually disabled in context swit­
ching or interrupt handling, deadlock might result if the 
host executed a WAIT instruction with its interrupts 
disabled after these instructions. After the host inter­
rupts are enabled, an interrupt will occur if an unmask­
ed error was pending. 

3-399 207865-001 



inter Ap·113 

PROGRAMMING TECHNIQUES 

The NPX provides a stack-oriented register set with 
stack-oriented instructions for numeric operands. These 

, registers and instructions are optimized for numeric 
programs. For many programmers, these are new re­
sources with new programming options available. 

Using Numeric Registers and 
Instructions 

The register and instruction set of the NDP is optimized 
for the needs of numeric and general purpose programs. 
The host CPU provides the instructions and data types 
needed for general purpose data processing, while the 
8087 provides the data types and instructions for 
numeric processing. 

The instructions and data types recognized by the 8087 
are different from the CPU because numeric program 
requirements are different from those of general pur­
pose programs. Numeric programs have long arithmetic 
expressions where a few temporary values are used in a 
few statements. Within these statements, a single value 
may be referenced many times. Due to the time involved 
to transfer values between registers and memory, a 
significant speed optimization is possible by keeping 
numbers in the NPX register file. 

In contrast, a general data processor is more concerned 
with addressing data in simple expressions and testing 
the results. Temporary values, constant across several 
instructions, are not as common nor is the penalty as 
large for placing them in memory.As a result it is 
simpler for compilers and programmers to manage 
memory based values. 

MAIN_PROGRAM: 

FLO A 
FADD ST, ST(1) 

NPX Register Usage 

The eight numeric registers in the NDP are stack ori­
ented. All numeric registers are addressed relative to a 
value called the TOP pointer, defined in the NDP status 
register. A register address given in an instruction is ad­
ded to the TOP value to form the internal absolute ad­
dress. Relative addressing of numeric registers has ad­
vantages analogous to those of relative addressing of 
memory operands. 

Two modes are available for addressing the numeric 
registers. The first mode implicitly uses the top and op­
tional next element on the stack for operands. This 
mode does not require any addressing bits in a numeric 
instruction. Special purpose instructions use this mode 
since full addressing flexibility is not required. 

The other addressing mode allows any other stack ele­
ment to be used together with the top of stack register. 
The top of stack or the other register may be specified as 
the destination. Most two-operand arithmetic instruc­
tions allow this addressing mode. Short, easy to develop 
numeric programs are the result. 

Just as relative addressing of memory operands avoids 
concerns with memory allocation in other parts of a 
program, top relative register addressing allows registers 
to be used without regard for numeric register assign­
ments in other parts of the program. 

STACK RELATIVE ADDRESSING EXAMPLE 

Consider an example of a main program calling a 
subroutine, each using register addressing independent 
of the other. (Fig. 19) By using different values of the 
TOP field, different software can use the same relative 
register addresses as other parts of the program, but 
refer to different physical registers. 

CALL SUBROUTINE Argument is in ST(O) 
FSTP B 

SUBROUTINE: 

FLD 
FSQRT 
FADD 
FMULP 
RET 

ST 

C 
ST(1), ST 

ST(O) = ST(1) = Argument 
Main program ST(1) is 
safe in ST(2) here 

Figure 19. Stack Relative Addressing Example 

3-400 207865-001 



Ap·113 

Of course, there is a limit to any physical resource. The 
NDP has eight numeric registers. Normally, program­
mers must ensure a maximum of eight values are pushed 
on the numeric register stack at any time. For time­
critical inner loops of real-time applications, eight regis­
ters should contain all the values needed. 

REGISTER STACK EXTENSION 

This hardware limitation can be hidden by software. 
Software can provide "virtual" numeric registers, ex­
panding the register stack size to 6000 or more. 

The numeric register stack can be extended into memory 
via unmasked numeric invalid errors which cause an in­
terrupt on stack overflow or underflow. The interrupt 
handler for the invalid error would manage a memory 
image of the numeric stack copying values into and out 
of memory as needed. 

The NPX will contain all the necessary information to 
identify the error, failing instruction, required registers, 
and destination register. After correcting for the missing 
hardware resource, the original numeric operation 
could be repeated. Either the original numeric instruc­
tion could be single stepped or the affect of the instruc­
tion emulateQ by a composite of table-based numeric in­
structions executed by the error handler. 

With proper data, error, and instruction synchroniza­
tion, the activity of the error handler will be transparent 
to programs. This type of extension to the NDP allows 
programs to push and pop numeric registers without 
regard for their usage by other subroutines. 

Programming Conventions 
With a better understanding of the stack registers, let's 
consider some useful programming conventions. Fol­
lowing these conventions ensures compatibility with 
Intel support software and high level language calling 
conventions. 

\) If the numeric registers are not extended to 
memory, the programmer must ensure that the 
number of temporary values left in the NPX stack 
and those registers used by the caller does not exceed 
8. Values can be stored to memory to provide enough 
free NPX registers .. 

2) Pass the first seven numeric parameters to a subrou­
tine in the numeric stack registers. Any extra param­
eters can be passed on the host's stack. Push the 
values on the register or memory stack in left to right 
order. If the subroutine does not need to allocate any 
more numeric registers, it can execute solely out of 
the numeric register stack. The eighth register can be 
used for arithmetic operations. All parameters 
should be popped off when the subroutine com­
pletes. 

3-401 

3) Return all numeric values on the numeric stack. The 
caller may now take advantage of the extended preci­
sion and flexible store modes of the NDP. 

4) Finish all memory reads or writes by the NPX before 
exiting any subroutine. This guarantees correct data 
and error synchronization. A numeric operation 
based solely on register contents is safe to leave run­
ning on subroutine exit. 

5) The operating mode of the NDP should be transpar­
ent across any subroutine. The operating mode is 
defined by the control word of the NDP. If the sub­
routine needs to use a different numeric operating 
mode than that of the caller, the subroutine should 
first save the current control word, set the new oper­
ating mode, then restore the original control word 
when completed. 

PROGRAMMING EXAMPLES 

The last section of this application note will discuss five 
programming examples. These examples were picked to 
illustrate NDP programming techniques and commonly 
used functions. All have been coded, assembled, and 
tested. However, no guarantees are made regarding 
their correctness. 

The programming examples are: saving numeric 
context switching, save numeric context without 
FSAVE/FNSA VE, converting ASCII to floating point, 
converting floating point to ASCII, and trigonometric 
functions. Each example is listed in a different appendix 
with a detailed written description in the following text. 
The source code is available in machine readable form 
from the Intel Insite User's Library, "Interactive 8087 
Instruction Interpreter," catalog item AA20. 

The examples provide some basic functions needed to 
get started with the numeric data processor. They work 
with either the 8087 or the 8087 emulator with no source 
changes. 

The context switching examples are needed for 
operating systems or interrupt handlers which may use 
numeric instructions and operands. Converting between 
floating point and decimal ASCII will be needed to in­
put or output numbers in easy to read form. The trigo­
nometric examples help you get started with sine or 
cosine functions and can serve as a basis for optimiza­
tions if the angle arguments always fall into a restricted' 
range. 

207865-001 



Ap·113 

APPENDIX A 

OVERVIEW 
Appendix A shows deadlock-free examples of numeric 
context switching. Numeric context switching is re­
quired by interrupt handlers which use the NPX and 
operating system context switchers. Context switching 
consists of two basic functions, save the numeric con­
text and restore it. These functions must work indepen­
dent of the current state of the NPX. 

Two versions of the context save function are shown. 
They use different versions of the save context instruc­
tion. The FNSA VE/FSA VE instructions do all the work 
of saving the numeric context. The state of host inter­
rupts will decide which instruction to use. 

Using FNSAVE 
The FNSA VE instruction is intended to save the NPX 
context when host interrupts are disabled. The host does 
not have to wait for the 8087 to finish its current opera­
tion before starting this operation. Eliminating the in­
struction synchronization wait avoids any potential 
deadlock. 

The 8087 Bus Interface Unit (BIU) will save this instruc­
tion when encountered by the host and hold it until the 
8087 Floating point Execution Unit (FEU) finishes its 
current operation. When the FEU becomes idle, the 
BIU will start the FEU executing the save context opera­
tion. 

The host can execute other non-numeric instructions 
after the FNSA VE while the BIU waits for the FEU to 
finish its current operation. The code starting at 
NO_INT~PX~AVE shows how to use the 
FNSA VE instruction. 

When executing the FNSA VE instruction, host inter­
rupts must be disabled to avoid recursions of the' in­
struction. The 8087 BIU can hold only one FNSA VE in­
struction at a time. If host interrupts were not disabled, 
another host interrupt might cause a second FNSA VE 
instruction to be executed, destroying the previous one 
saved in the 8087 BIU. 

It is not recommended to explicitly disabhi host inter­
rupts just to execute an FNSA VE instruction. In 
general, such an operation may not be the best course of 
action or even be allowed. 

If host interrupts are enabled during the NPX context 
save function, it is recommended to use the FSA VE in­
struction as shown by the code starting at NPX~AVE. 
This example will always work, free of deadlock, in­
dependent of the NDP interrupt state. 

3-402 

USing FSAVE 
The FSA VE instruction performs the same operation as 
FNSA VE but it uses standard instruction synchroniza­
tion. The host will wait for the FEU to be idle before 
initiating the save operation. Since the host ignores all 
interrupts between completing a WAIT instruction and 
starting the following ESCAPE instruction, the FEU is 
ready to immediately accept the operation (since it is not 
signalling BUSY). No recursion of the save context 
operation in the BIU is possible. However, deadlock 
must be considered since the host executes aWAIT in­
struction. 

To avoid deadlock when using the FSA VE instruction, 
the 8087 must be prevented from signalling BUSY when 
an unmasked error exists. 

The Interrupt Enable Mask (IEM) bit in the NPX con­
trol word provides this function. When IEM = I, the 
8087 will not signal BUSY or INT if an unmasked error 
exists. The NPX instruction FNDISI will set the IEM in­
dependent of any pending errors without causing 
deadlock or any other errors. Using the FNDISI and 
FSA VE instructions together with a few other glue in­
structions allows a general NPX context save function. 

Standard data and instruction. synchronization is re­
quired after executing the FNSA VE/FSA VE instruc­
tion. The wait instruction following an FNSA VEl 
FSA VE instruction is always safe since all NPX errors 
will be masked as part of the instruction execution. 
Deadlock is not possible since the 8087 will eventually 
signal not busy, allowing the host to continue on. 

PLACING THE SAVE CONTEXT FUNCTION 

Deciding on where to save the NPX context in an inter­
rupt handler or context switcher is dependent on 
whether interrupts can be enabled inside the function. 
Since interrupt latency is measured in terms of the max­
imum time interrupts are disabled, the maximum wait 
time of the host at the data synchronizing wait instruc­
tion after the FNSA VE or the FSA VE instruction is im­
portant if host interrupts are disabled while waiting. 

The wait time will be the maximum single instruction 
execution time of the 8087 plus the execution time of the 
save operation. This maximum time will be approxi­
mately 1300 or 1500 clocks, depending on whether the 
host is an 8086 or 8088, respectively. The actual time 
will depend on how much concurrency of execution bet­
ween the host and 8087 is provided. The greater the 
concurrency, the lesser the maximum wait time will be. 

207865-001 



Ap·113 

If host interrupts can be enabled during the context save 
function, it is recommended to use the FSA VE instruc­
tion for saving the numeric context in the interruptable 
section. The FSA VE instruction allows instruction and 
data synchronizing waits to be interruptable. This 
technique removes the maximum execution time of 8087 
instructions from system interrupt latency time con­
siderations. 

Using FRSTOR 
Restoring the numeric context with FRSTOR does not 
require a data synchronizing wait afterwards since the 
8087 automatically prevents the host from interfering 
with the memory load operation. 

The code starting with NPXJESTORE illustrates the 
restore operation. Error synchronization is not 
necessary since the FRSTOR instruction itself does not 
cause errors, but the previous state of the NPX may in­
dicate an error. 

It is recommended to delay starting the numeric save 
function as long as possible to maintain the maximum 
amount of concurrent execution between the host and 
the 8087. If further numeric instructions are executed after the 

FRSTOR, and the error state of the new NPX context is 
unknown, deadlock may occur if numeric exceptions 
cannot interrupt the host. 

NP~save 

General purpose save of NPX context. This function will work independent of the interrupt state of 
the NDP. Deadlock can not occur. 47 words of memory are required by the variable save_area. 
Register ax is not transparent across this code. 

NP)L.save: 
FNSTCW 
NOP 
FNDISI 
MOV 
FSAVE 

FWAIT 
MOV 

ax, save_area 
save_area 

Save IEM bit status 
Delay while 8087 saves control register 
Disable 8087 BUSY signal 
Get original control word 
Save NPX context, the host can be safely interrupted while 
waiting for the 8087 to finish. Deadlock is not possible since 
IEM = 1.Wait for save to finish. Put original control word into 
NPX context area. All done 

Save the NPX context with host interrupts disabled. No deadlock is possible. 47 words of memory 
are required by the variable save_area. 

no_i nLN P)L.save: 

FNSAVE save_area 
FWAIT 

NP~restore 

Save NPX context. Wait for save to finish, no deadlock 
is possible. Interrupts may be enabled now, all done 

Restore the NPX context saved earlier. No deadlock is possible if no further numeric instructions 
are executed until the 8087 numeric error interrupt is enabled. The variable save_area is assumed 
to hold an NPX context saved earlier. It must be 47 words long. 

N P)L.restore: 

FRSTOR Load new N PX context 

3-403 207865-001 



Ap·113 

APPENDIX B 

OVERVIEW 

Appendix B shows alternative techniques for switching 
the numeric context without using the FSA VEl 
FNSA VE or FRSTOR instructions. These alternative 
techniques are slower than those of Appendix A but 
they reduce the worst case continuous local bus usage of 
the 8087. 

Only an iAPX 86122 or iAPX 88122 could derive any 
benefit from this alternative. By replacing all 
FSA VE/FNSA VE instructions in the system, the worst 
case local bus usage of the 8087 will be 10 or 16 con­
secutive memory cycles for an 8086 or 8088 host, respec­
tively. 

Instead of saving and loading the entire numeric context 
in one long series of memory transfers, these routines 
use the FSTENV IFNSTENV IFLDENV instructions 
and separate numeric register loadl store instructions. 
Using separate load/store instructions for the numeric 
registers forces the 8087 to release the local bus after 
each numeric loadl store instruction. The longest series 
of back-to-back memory transfers required by these 
instructions are 8/12 memory cycles for an 8086 or 8088 
host, respectively. In contrast, the FSAVEI 
FNSA VE/FRSTOR instructions perform 50/94 back­
to-back memory cycles for an 8086 or 8088 host. 

Compatibility With FSA VE/FNSAVE 

This function produces a context area of the same for­
mat produced by FSA VE/FNSA VE instructions. Other 
software modules expecting such a format will not be 
affected. All the same interrupt and deadlock considera­
tions of FSA VE and FNSA VE also apply to FSTENV 
and FNSTENV. Except for the fact that the numeric 
environment is 7 words rather than the 47 words of the 
numeric context, all the discussion of Appendix A also 
applies here. 

The state of the NPX registers must be saved in memory 
in the same format as the FSA VE/FNSA VE instruc­
tions. The program example starting at the label 
SMALL_BLOCK~PLSA VE illustrates a software 
loop that will store their contents into memory in the 
same top relative order as that of FSA VE/FNSA VE. 

To save the registers with FSTP instructions, they must 
be tagged valid, zero, or special. This function will force 
all the registers to be tagged valid, independent of their 
contents or old tag, and then save them. No problems 
will arise if the tag value conflicts with the register's 
content for the FSTP instruction. Saving empty regis­
ters insures compatibility with the FSA VE/FNSA VE in­
structions. After saving all the numeric registers, they 
will all be tagged empty, the same as if an 
FSA VE/FNSA VE instruction had been executed. 

Compatibility With FRSTOR 

Restoring the numeric context reverses the procedure 
described above, as shown by the code starting at 
SMALL_BLOCK~PLRESTORE. All eight regis­
sters are reloaded in the reverse order. With each 
register load, a tag value will be assigned to each 
register. The tags assigned by the register load does not 
matter since the tag word will be overwritten when the 
environment is reloaded later with FLDENV. 

Two assumptions are required for correct operation of 
the restore function: all numeric registers must be empty 
and the TOP field must be the same as that in the con­
text being restored. These assumptions will be satisfied 
if a matched set of pushes and pops were performed bet­
ween saving the numeric context and reloading it. 

If these assumptions cannot be met, then the code exam­
ple starting at NPLCLEAN shows how to force all the 
NPX registers empty and set the TOP field of the status 
word. 

3-404 207865-001 



AP-113 

smalLbloclLNPX-save 

Save the NPX context independent of NDP interrupt state. Avoid using the FSAVE instruction to 
limit the worst case memory bus usage of the 8087. The NPX context area formed will appear the 
same as if an FSAVE instruction had written into it. The variable save_area will hold the NPX 
context and must be 47 words long. The registers ax, bx, and cx will not be transparent. 

smalLblock_N PX_save: 
FNSTCW save_area 
Nap 
FNDISI 
MOV 
MOV 
XOR 

ax, save_area 
cx, 8 
bx, bx 

FSTENV save __ area 
FWAIT 
XCHG save_area + 4, bx 
FLDENV save_area 
MOV 
MOV 
XOR 

save_area, ax 
save_area + 4, bx 
bx, bx 

reg_store_loop: 

FSTP saved_reg [bx] 
ADD bx, type saved_reg 
LOOP reg_store_loop 

Save current IEM bit 
Delay while 8087 saves control register 
Disable 8087 BUSY signal 
Get original control word 
Set numeric register count 
Tag field value for stamping ail registers as valid 
Save NPX environment 
Wait for the store to complete 
Get original tag value and set new tag value 
Force all register tags as valid. BUSY is still masked. No data 
synchronization needed. Put original control word into NPX 
environment. Put original tag word into NPX environment 
Set initial register index 

Save register 
Bump pointer to next register 

All done 

Force the NPX into a clean state with TOP matching the TOP field stored in the NPX context and all 
numeric registers tagged empty. Save_area must be the NPX environment saved earlier. 
Temp_env is a 7 word temporary area used to build a prototype NPX environment. Register ax will 

; not be transparent. 

NPX_clean: 
FINIT 
MOV 
AND 
FSTENV 

FWAIT 

ax, save_area + 2 
ax, 3800H 
temp_env 

OR temp_env + 2, ax 
FLDENV temp_env 

Put NPX into known state 
Get original status word 
Mask out the top field 
Format a temporary environment area with all registers 
stamped empty and TOP field = O. 

; Wait for the store to finish. 
; Put in the desired TOP value. 
; Setup new NPX environment. 

Now enter small_block_N PX_restore 

3-405 207865-001 



Ap·113 

smalLblocLNP>Lrestore 

Restore the NPX context without using the FRSTOR instruction. Assume the NPX context is in the 
same form as that created by an FSAVElFNSAVE instruction, all the registers are empty, and that 
the TOP field of the NPX matches the TOP field of the NPX context. The variable save_area must 
be an NPX context save area, 47 words long. The registers bx and cx will not be transparent. 

small_blocLN P~restore: 

MOV cX,8 
MOV bx, type saved_reg'7 

Set register count 
Starting offset of ST(7) 

reg_load_loop: 
FLj) saved_reg [bx] Get the register 
SUB bx, type saved_reg Bump pointer to next register 
LOOP reg_load_loop 

FLDENV save_area Restore NPX context 
All done 

APPENDIX C 

OVERVIEW 

Appendix C shows how floating point values can be 
converted to decimal ASCII character strings. The func­
tion can be called from PLM/86, P ASCALl86, FOR­
TRAN/86, or ASM/86 functions. 

Shortness, speed, and accuracy were chosen rather than 
providing the maximum number of significant digits 
possible. An attempt is made to keep integers in their 
own domain to avoid unnecessary conversion errors. 

Using the extended precision real number format, this 
routine achieves a worst case accuracy of three units in 
the 16th decimal position for a non-integer value or in­
tegers greater than 1018• This is double precision ac­
curacy. With values having decimal exponents less than 
100 in magnitude, the accuracy is one unit in the 17th 
decimal position. 

Higher precision can be achieved with greater care in 
programming, larger program size, and lower perfor­
mance. 

Function Partitioning 
Three separate modules implement the conversion. 
Most of the work of the conversion is done in the mod­
ule FLOATING_TO.-ASCII. The other modules are 
provided separately since they have a more general use. 
One of them, GET_POWELIO, is also used by the 
ASCII to floating point conversion routine. The other 
small module, TOS_STATUS, will identify what, if 
anything, is iri the top of the numeric register stack. 

Exception Considerations 

Care is taken inside the function to avoid generating ex­
ceptions. Any possible numeric value will be accepted. 
The only exceptions possible would occur if insufficient 
space exists on the numeric register stack. 

The value passed in the numeric stack is checked for ex­
istence, type (NAN or infinity), and status (unnormal, 
denormal, zero, sign). The string size is tested for a 
minimum and maximum value. If the top of the register 
stack is empty, or the string size is too small, the func­
tion will return with an error code. 

Overflow and underflow is avoided inside the function 
for very large or very small numbers. 

Special Instructions 

3-406 

The functions demonstrate the operation of several 
numeric instructions, different data types, and precision 
control. Shown are instructions for automatic conver­
sion to BCD, calculating the value of 10 raised to an in­
teger value, establishing and maintaining concurrency, 
data synchronization, and use of directed rounding on 
the NPX. 

Without the extended precision data type and built-in 
exponential function, the double precision accuracy of 
this function could not be attained with the size and 
speed of the shown example. 

The function relies on the numeric BCD data type for 
conversion from binary floating point to decimal. It is 

207865-001 



Ap·113 

not difficult to unpack the BCD digits into separate 
ASCII decimal digits. The major work involves scaling 
the floating point value to the comparatively limited 
range of BCD values. To print a 9-digit result requires 
accurately scaling the given value to an integer between 
108 and 109• For example, the number +0.123456789 
requires a scaling factor of 109 to produce the value 
+ 123456789.0 which can be stored in 9 BCD digits. The 
scale factor must be an exact power of 10 to avoid to 
changing any of the printed digit values. 

These routines should exactly convert all values exactly 
representable in decimal in the field size given. Integer 
values which fit in the given string size, will not be 
scaled, but directly stored into the BCD form. Non­
integer values exactly representable in decimal within 
the string size limits will also be exactly converted. For 
example, 0.125 is exactly representable in binary or 
decimal. To convert this floating point value to decimal, 
the scaling factor will be 1000, resulting in 125. When 
scaling a value, the function must keep track of where 
the decimal point lies in the final decimal value. 

DESCRIPTION OF OPERATION 

Converting a floating point number to decimal ASCII 
takes three major steps; identifying the magnitude of 
the number, scaling it for the BCD data type, and con­
verting the BCD data type to a decimal ASCII string. 

Identifying the magnitude of the result requires finding 
the value X such that the number is represented by 
I·IOX, where 1.0 <= 1< 10.0. Scaling the number re­
quires multiplying it by a scaling factor lOS, such that 
the result is an integer requiring no more decimal digits 
than provided for in the ASCII string. 

Once scaled, the numeric rounding modes and BCD 
conversion put the number in a form easy to convert to 
decimal ASCII by host software. 

Implementing each of these three steps requires atten­
tion to detail. To begin with, not all floating point 
values have a numeric meaning. Values such as infinity, 
indefinite, or Not A Number (NAN) may be en­
countered by the conversion routine. The conversion 
routine should recognize these values and identify them 
uniquely. 

Special cases of numeric values also exist. Denormals, 
unnormals, and pseudo zero all have a numeric value 
but should be recognized since all of them indicate that 
precision was lost during some earlier calculations. 

Once it has been determined that the number has a 
numeric value, and it is normalized setting appropriate 
unnormal flags, the value must be scaled to the BCD 
range. 

Scaling the Value 

To scale the number, its magnitude must be determined. 
It is sufficient to calculate the magnitude to an accuracy 
of 1 unit, or within a factor of 10 of the given value. 
After scaling the number, a check will be made to see if 
the result falls in the range expected. If not, the result 
can be adjusted one decimal order of magnitude up or 
down. The adjustment test after the scaling is necessary 
due to inevitable inaccuracies in the scaling value. 

Since the magnitude estimate need only be close, a fast 
technique is used. The magnitude is estimated by multi­
plying the power of 2, the unbiased floating point expo­
nent, associated with the number by log102. Rounding 
the result to an integer will produce an estimate of suffi­
cient accuracy. Ignoring the fraction value can in­
troduce a maximum error of 0.32 in the result. 

Using the magnitude of the value and size of the number 
string, the scaling factor can be calculated. Calculating 
the scaling factor is the most inaccurate operation of the 
conversion process. The relation lOX = 2··(X·log21O) is 
used for this function. The exponentiate instruction 
(F2XM1) will be used. 

Due to restrictions on the range of values allowed by the 
F2XMl instruction, the power of 2 value will be split in­
to integer and fraction components. The relation 
2**(1 + F) = 2"*1 • 2··F allows using the FSCALE in­
struction to recombine the 2**F value, calculated 
through F2XM1, and the 2··1 part. 

Inaccuracy in Scaling 
The inaccuracy of these operations arises because of the 
trailing zeroes placed into the fraction value when strip­
ping off the integer valued bits. For each integer valued 
bit in the power of 2 value separated from the fraction 
bits, one bit of precision is lost in the fraction field due 
to the zero fill occurring in the least significant bits. 

Up to 14 bits may be lost in the fraction since the largest 
allowed floating point exponent value is 214_1. 

AVOIDING UNDERFLOW AND OVERFLOW 

The fraction and exponent fields of the number are sep­
arated to avoid underflow and overflow in calculating 
the scaling values. For example, to scale 10- 4932 to 108 
requires a scaling factor of 104950 which cannot be rep­
resented by the NPX. 

By separating the exponent and fraction, the scaling 
operation involves adding the exponents separate from 
multiplying the fractions. The exponent arithmetic will 
involve small integers, all easily represented by the 
NPX. 

3-407 207865-001 



intJ AP·113 

FINAL ADJUSTMENTS Output Format 
It is possible that the power function (GetJower_lO) 
could produce a scaling value such that it forms a scaled 
result larger than the ASCII field could allow. 
For example, scaling 9.999999999999999ge4900 
by 1.0000000000000001Oe-4883 would produce 
1.000000000000000e18. The scale factor is within the 
accuracy of the NDP and the result is within the conver­
sion accuracy, but it cannot be represented in BCD for­
mat. This is why there is a post-scaling test on the 
magnitude of the result. The result can be multiplied or 
divided by 10, depending on whether the result was too 
small or too large, respectively. 

For maximum flexibility in output formats, the position 
of the decimal point is indicated by a binary integer 
called the power value. If the power value is zero, then 
the decimal point is assumed to be. at the right of the 
right-most digit. Power values greater than zero indicate 
how many trailing zeroes are not shown. For each unit 
below zero, move the decimal point to the left in the 
string. 

The last step of the conversion is storing the result in 
BCD and indicating where the decimal point lies. The 
BCD string is then unpacked into ASCII decimal char­
acters. The ASCII sign is set corresponding to the sign 
of the original value. 

LINE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

SOURCE 

$title(Convert a floating point number to ASCII) 
name floating to ascii 
public floating-to-ascii 
extrn get_power_le:near,tos_status:near 

This subroutine will convert the floating point number in the 
top of the 8~87 stack to an ASCII string and separate power of 10 
scaling value (in binary). The maximum width of the ASCII string 
formed is controlled by a parameter which must be > 1. Unnormal values, 
denormal values, and psuedo zeroes will be correctly converted. 
A returned value will indicate how many binary bits of 
precision were lost in an un normal or denormal value. Themagnitude 
(in terms of binary power) of a psuedo zero will also be indicated. 
Integers less than 10**18 in magnitude are accurately converted if the 
destination ASCII string field is wide enough to hold all the 
digits. Otherwise the value is converted to scientific notation. 

The status of the conversion is identified by the return value, 
it can be: 

o conversion complete, string_size is defined 
1 invalid arguments 
2 exact integer conversion, string_size is defined 
3 indefinite 
4 + NAN (Not A Number) 
5 - NAN 
6 + Infinity 
7 - Infinity 
8 psuedo zero found, string_size is defined 

The PLM/86 calling convention is: 

floating to ascii: 
procedure (number,denormal ptr,string ptr,size ptr,field Size, 

power-ptr) word external; - - -
declare (denormal ptr,string ptr,power ptr,size ptr) pointer; 
declare field size word, strIng size based size-ptr word; 
declare number real; - -
declare denormal integer based denormal ptr; 
declare power integer based power ptr; -
end floating_to_ascii; -

The floating point value is expected to be on the top of the NPX 
stack. This subroutine expects 3 free entries on the NPX stack and 
will pop the passed value off when done. The generated ASCII string 
will have a leading character either '-' or '+' indicating the sign 
of the value. The ASCII decimal digits will immediately follow. 
'fhe numeric value of the ASCII string is (ASCII STRING.) *10**POWER.·· 

3-408 207865-001 



49 
50 
51 
52 
53 
54 
55 
56 
57 
~8 
59 
60 
61 
62 
63 
64 
65 
66 
f,7 
68 
69 
70 
71 
72 
73 
,/4 
/5 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
% 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
III 
112 
113 
114 
115 
116 
117 
118 

119 

AP-113 

It the given number was zero, the ASCII string will contain a sign 
and a single zero chacter. The value string size indicates the total 
length of the ASCII string including the sign character. String(0) will 
always hold the sign. It-is possibie for string size to be less than 
field size. This occurs for zeroes or integer values. A psuedo zero 
will return a special return code. The denormal count will indicate 
the power of two originally associated with the value. The power of 
ten and ASCII string will be as if the value was an ordinary zero. 

This subroutine is accurate up to a maximum of 18 decimal digits for 
integers. Integer values will have a decimal power of zero associated 
with them. For non integers, the result will be accurate to within 2 
decimal digits of the 16th decimal place (double precision). The 
exponentiate instruction is also used for scaling the value into the 
range acceptable for the BCD data type. The rounding mode in effect 
on entry to the subroutine is used for the conversion. 

The following registers are not transparent: 

ax bx cx dx si di flags 

Define the stack layout. 

bp _save 
es save 
return ptr 
power ptr 
field-si ze 
size ptr 
string ptr 
denormal_ptr 

parms size 
& 

egu 
egu 
egu 
egu 
egu 
egu 
egu 
egu 

egu 

word ptr [bpI 
bp save + size bp_save 
es-save + size es save 
return ptr + size-return ptr 
power ptr + size power ptr 
field-size + size field size 
size ptr + size size ptr 
string_ptr + size string_ptr 

size power ptr + size field size + size size ptr + 
size strino ptr + size nenormal ptr 

Define constants used 

BCD DIGITS egu 18 Number of digits in bcd value 
'~ORi5 bIZE egu 2 
BCD SIZE egu HI 
MINUS egu 1 Defi ne return values 
NAN egu 4 The exact values chosen here are 
INFINITY equ 6 important. They must correspond 
INDEFINITE equ 3 the possible return values and be 
PSUEDO ZERO egu 8 the same numeric order as tested 
INVALdi egu -2 the proqram. 
ZERO egu -4 
DENORMAL egu -6 
UNNORMAL egu -8 
NORMAL equ 0 
EXACT egu 2 

Define layout of temporary storage area. 

status 
power two 
power-ten 
bcd value 
bcd-byte 
fraction 

local size 
& 

egu 
egu 
egu 
egu 
egu 
egu 

egu 

word ptr [bp-WORD bIZE) 
status - WORD bIZE 
power two - WORD bIZE 
tbyte-ptr power ten - BCD bIZE 
byte ptr bcd vafue 
bcd value -

size status + size power_two + size power_ten 
+ size bcd value 

to 
in 

by 

Allocate stack space for the temporaries so the stack will be big enough 

stack segment stack 'stack· 
db (local_size+6) dup (?) 

stack ends 

3-409 207865-001 



129 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 

135 

136 

137 

138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
1 S9 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
178 
171 
172 
173 
174 
175 
176 
177 
178 
179 
188 

cgroup 
code 

consUS 

, 

group 
segment 
assume 
extrn 

AP-113 

code 
public 'code' 
cs:cgroup 
power_table:qword 

Constants used by this function. 

even 
dw 10 

; Optimize for 16 bits 
; Adjustment value for too big BCD 

Convert the C3,C2,Cl,C0 encoding from tos status into meanin7ful bit 
flags and values. 

call 
mov 
mov 
cmp 
jne 

db UNNORMAL, NAN, UNNORf¥')'\I. + MI~llS, "11\1\1 + MI"'tlS, 

\I()R~AL, I~FINITY, NOR'IAL + MINlIS, INFINITY + MINUS, 

ZERO, INVALID, ZERO + MINUS, INVALID, 

DENORMAL, INVALID, DENORMAL + MINUS, INVALID 

tos status 
bx,ax 
al,status table[bx) 
a!, INVALID 
not_empty 

Look at status of ST(0) 
Get descriptor from table 

Look for empty ST(el 

~T(0) 1S empty! Return the status value. 

Remove infinity from stack and exit. 

found_infinity: 

exit 

fstp 
jmp 

st (0) 
short exit_proc 

OK to leave fstp runninq 

otring space is too smal1l Return invalid code. 

mov ai, INVALID 

_proc: 

mov sp,bp Free stack space 
pop bp Restore registers 
pop es 
ret parms_size 

ST(91 15 NAN or indefinite. Store the value in memory and look 
at the fraction field to separate indefinite "from an ordinary NAN. 

NAN_or_indefinite: 

fstp 
test 
fwait 
jz 

fraction 
aI.MINUS 

Remove value from stack for examination 
Look at sign bit 
Insure store is done 

exitJroc Can't be Indefinite if positive 

3-410 207865-001 



181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
I'll 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
2~2 

2,13 
2134 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
220 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
24~ 

241 
242 
243 
244 
245 
24fi 
247 
248 
249 
250 
251 
252 
253 
254 

mov 
sub 
or 
or 
or 
jnz 

mov 
jmp 

AP-113 

bx,0C000H 
bX,word ptr fraction+o 
bx,word ptr fraction+4 
bx,word ptr fraction+2 
bx,word ptr fraction 
exit_proe 

al,INDEFINITE 
exit_proc 

Match against upper 16 bits of fraction 
Compare bits 63-48 
Bits 32-47 must be zero 
Bits 31-10 must be zero 
Bits 15-0 must be zero 

Set return value for indefinite value 

Allocate stack space for local variables ann establish parameter 
addressibility. 

not_empty: 

push 
push 
mov 
sub 

mov 

es 
bp 
bp,sp 
sp,local size 

cx,field.size 
cmp cx,2 

size ok: 

jl small strinq 

dec 
cmp 
jbe 

mov 

cmp 
jge 

cmp 
jqe 

ex 
cx,BCD DIGITS 
si ze ok 

cx,BCD DIGITS 

"l,INFINITY 
found_infinity 

al,NAN 
NAN or indefinite 

Save workinq register 

Establish stack "ddressibility 

Check for enouqb string space 

Adiust for siqn character 
See if strinq is too larqe for BCD 

RIse set maximum strinq size 

Look for infinity 
Return status value for + or - inf. 

Look for NAN or INDEFINITE 

Set default return values and cbeck that the number is normalized. 

fabs 

mov 
xor 
mov 
mov 
mov 
mov 
cmp 
jae 

cmp 
jae 

fxtract 
cmp 
jb 

sub 

dx,ax 
ax,ax 
di ,denormal ptr 
word ptr [dil,ax 
bx,power ptr 
word ptr-[bxl,ax 
dl,ZERO 
real zero 

d 1, DENORMAL 
found denormal 

dl,UNNORMAL 
normal value 

dl,UNNORMAL-NORMAL 

Use positive value only 
siqn bit in al has trll" siqn of value 
Save return value for later 
Form 0 constant 
Zero denormal ~ount 

Zero power of ten value 

Test for zero 
Skip power code if value is zero 

Look for a denormal value 
Handle it specially 

Separate exponent from siqnificand 
Test for unnormal value 

; Return normal status with correct siqn 

Normalize tbe fraction, adjust the power of two in STell and set 
the denormal count value. 

Assert: 13 (; S1'(0) ( 1.0 

fldl 

normalize fraction: 

fadd st(l),st 
fsub 
fxtract 

fxch 

3-411 

Load constant to normalize fraction 

Set integer bit in fraction 
Form normalized fraction in ST(0) 
Power of two field will be negative 
of denormal count 
Put denormal count in 51'(0) 

207865-001 



255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 

, 

fist 
faddp 

neg 
jnz 

word ptr [di I 
st(2),st 

word ptr [di I 
not_psuedo_zero 

AP-113 

Put negative of denormal count in memory 
Form correct power of two in stIll 
OK to use word ptr [dil now 
Form positive denormal count 

A psuedo zero will appear as an unnormal number. When attempting 
to normalize it, the resultant fraction field will be zero. Performino 
an fxtract on zero will yield a zero exponent value. 

hch 
fistp 

sub 
jmp 

word ptr [dil 

dl,NORMAL-PSUEDO ZERO 
convert_integer -

Put power of two value in st(0) 
Set denormal count to power of two value 
Word ptr [dil is not used by convert 
inteqer, OK to leave runninq 
Set return value saving the siqn bit 
Put zero value into memory 

The number is a real zero, set the return value and setup for 
conversion to BCD. 

sub 
jmp 

dl,ZERO-NORMAL 
convert_integer 

Convert status to normal value 
Treat the zero as an integer 

The number is a denormal. FXTRACT will not work correctly in this 
case. To correctly separate the exponent and fraction, add a fixed 
constant to the exponent to auarantee the result is not a denormal. 

found denormal: 

. 

fldl 
hch 
fprem 

fxtract 

Prepare to bump exponent 

Force denormal to smallest representable 
extended real format exponent 
This will work correctly now 

The power of the oriqinal denormal value has he en safely isolated. 
Check if the fraction value is an unnormal. 

fxam 
fstsw 
flCch 
hch 
sub 
test 
jz 

fstp 

status 

st(2) 
dl,DENORMAL-NORMAL 
status,4400H 
normalize_fraction 

st(0) 

See if the fraction is an unnormal 
Save status for later 
Put exponent in ST(0) 
Put 1.0 into ST(0), exponent in ST(2) 
Return normal status with correct sign 
See if C3=C2=0 impling unnormal or NAN 
Jump if fraction is an unnormal 

Remove unnecessary 1.0 from st(0) 

Calculate the decimal magnitude associated with this number to 
within one order. This error will always be inevitable due to 
rounding and lost precision. As a result, we will deliberately fail 
to consider the LOGIO of the fraction value in calculating the order. 
Since the fraction will always be I <= F < 2, its LOG10 will not change 
the basic accuracy of the function. To get the decimal order of magnitude, 
simply multiply the power of two by LOG10(2) and truncate the result to 
an integer. 

normal value: 
not _ psuedo _ ze ro: 

fstp 
fist 
fld Ig2 

fmul 
fistp 

fraction 
power_two 

Save the fraction field for later use 
Save power of two 
Get LOGl0 (2) 
Power two is now safe to use 
Form LOG10(of exponent of number) 
Any rounding mode will work here 

Check if the magnitude of the number rules out treating it as 
an integer. 

ex has the maximum number of decimal digits allowed. 

3-412 207865-001 



inter 
328 
329 
33~ 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 
354 
355 
356 
357 
358 
359 
360 
361 
362 
363 
364 
365 
36~ 

367 
3~8 
369 
37~ 

371 
372 
373 
374 
375 
371i 
377 
378 
379 
3RVl 
381 
382 
383 
384 
385 
386 
387 
388 
389 
390 
391 
392 
393 
394 
395 
396 
397 
398 
399 
4110 
401 

. 

fwa it 
mov 
sub 
ja 

ax ,power _ten 
ax,cx 
adjust_result 

AP-113 

Wait for power ten to be valid 
Get power of ten of value 
Form scalinq factor necessary in ax 
Jump if number will not fit 

The number is between and l0**(field size). 
Test if it is an inteqer. 

fild power two 
mov si ,dx -
sub ell ,NORMAL-EXACT 
flel fraction 
fscale 
fst st(l) 
frndint 
fcomp 
fstsw status 
test status,q~~0H 

jnz convert _integer 

fstp st(0) 
mov dx,si 

Restore original number 
Save return value 
Convert to exact return value 

Form full value, this is safe here 
Copy value for compare 
Test it its an inteqer 
Compare values 
Save status 
C3=1 implies it was an integer 

Remove non inteqer value 
Restore original return value 

Scale the number to within the ranae allowed by the BCD format. 
The scaling operation should produce a number within one elecimal order 
of magnitude of the larqest decimal number representable within the 
given string width. 

The scaling power ot ten value is in ax. 

adjust result: 

mov word ptr 
neg ax 

call qet power -
flel fraction 
fmul 
mov si,ex 
shl si,l 
shl si ,1 
shl si,l 
fild power _ two 
faddp st(2) ,st 
fscale 
fstp st (l) 

[bx] ,ax 

10 -

Set initial power ot ten return value 
Subtract one for each order of 
maqnituele the value is scaled by 
Scalinq factor is returned as exponent 
and fraction 
Get fraction 
Combine fractions 
Form power of ten of the maximum 
BCD value to fit in the string 
Index in si 

Combine powers of two 

Form full value, exponent was safe 
Remove exponent 

Test the arljusted value aaainst a table of exact powers of ten8 
The combined errors of the maqnitude estimate and power function can 
result in a value one order of maqnitude too small or too larqe to fit 
correctly in the BCD field. To handle this problem, pretest the 
adjusted value, if it is too small or large, then adjust it by ten and 
adjust the power at ten value. 

fcom 

fstsw 
test 
jnz 

fidiv 
and 
inc 
jmp 

test_far_small: 

fcom 
fstsw 

power_table[si]+type 

status 
status,411l~H 

test_for_small 

constl" 
dl,not EXACT 
word ptr [bx] 
short in_range 

power table [si] 
status 

power table; Compare aqainst exact power 
entry. Use the next entry since ex 
has been decremented by one 
No wait is necessary 
If C3 = CII = II then too big 

Else adjust value 
Remove exact flaq 
Adjust power of ten value 
Convert the value to a BCD integer 

Test relative size 
No wait is necessary 

3-413 207865-001 



402 
403 
404 
405 
406 
407 
408 
409 
4liJ 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425 
426 
427 
428 
429 
430 
431 
432 
433 
43 c 
" 1 ~ 
fI?r.'" 

n7 
432 
439 
440 
441 
442 
443 
444 
445 
446 
447 
448 
449 
450 
451 
452 
453 
454 
455 
456 
457 
458 
459 
460 
461 
462 
463 
464 
465 
466 
467 
468 
469 
470 
471 
472 
473 
474 

test 
jz 

fimul 
dec 

frndint 

status ,1I'I0H 
in~ranqe 

const10 
word ptr [bxl 

AP-113 

If C0 = iJ then st(0l >= lower bound 
Convert the value to a BCD integer 

Adjust value into range 
Adjust power of ten value 

; Form inteqer value 

Assert: '" (= TOS (= 999,999,999,999,999,999 
The TOS number will be exactly representable in 18 digit BCD format. 

conve rt _i n teqer: 

fbstp Store as BCD format number 

While the store BCD runs, setup registers for the conversion to 
ASCII. 

mov 
mov 
mov 
mov 
mov 
mov 
cld 
mov 
test 
jz 

mov 

si,BCD SIZE-2 
cx ,0f1!4h 
bX,l 
di ,str ing_ptr 
ax,ds 
es,ax 

aI, 1+' 
dl,MINUS 
positive result -
al, ,_ f 

Initial BCD index value 
Set shift count and mask 
Set initial size of ASCII field for sian 
Get address of start of ASCII string 
Copy ds to es 

Set autoincrement mode 
Clear sign field 
Look for neoative value 

~0["itiVf:; rr'~'lllt: 

, 

and 
fwait 

ell,not MINllS 

Register usaqe: 

DU''''!' ~t-rln'1 ;"01nf::i>r paRt ~ion 

Turn off sion bit 
Wait tor fbstp to finish 

ah: BCD byte value in use 
al: ASCII character value 
dx: Return value 
ch: BCD mask = 0fh 
cl: BCD shift count = 4 
hx: ASCII string field width 
si: BCD field index 
di: ASCII strino field pointer 
ds,es: ASCII string seoment base 

Remove leading zeroes from the number. 

skip_leading_zeroes: 

mov ah,bcd _byte[sil 
mov al,ah 
shr al,cl 
and al,ch 
jnz enter odd 

mov al,ah 
and al,ch 
jnz enter even -
dec si 
jns skip leading -zeroes -

The significand was all zeroes. 

mov 
stosb 
inc 
jmp 

aI,' 0· 

bx 
short exit_with_value 

3-414 

Get BCD hyte 
Copy value 
Get high order digit 
Set zero flag 
Exit loop if leading non zero found 

Get BCD byte again 
Get low order digit 
Exit loop if non zero digit found 

Decrement BCD index 

Set initial zero 

Bump string length 

207865-001 



475 
476 
477 
478 
479 
480 
481 
482 
483 
484 
485 
486 
487 
488 
489 
490 
491 
492 
493 
494 
495 
496 
497 
498 
499 
~00 

501 
502 
503 
504 
~05 

506 
507 
508 
509 
510 
511 

AP-113 

Now expand the BCD string into digit per byte values 0-9. 

mov ah, bed_byte [si J Get BCD byte 
mov al,ah 
shr al,cl Get high order digir. 

enter odd: 

add aI, . ~ I Convert to ASCII 
stosb Put dig i t into ASCI I string 
mov al,ah Get low order digit 
and al,ch 
inc bx Bump field size counter 

enter even: -
add aI, ." I Convert to ASCII 
stosb Put digit into ASCII area 
inc bx Bump field size counter 
dec si Go to next BCD byte 
jns digit_loop 

Conversion complete. Set the strinq size and remainder. 
, 
exi t_wi th value: 

mov 
mov 
mov 
jmp 

di.size ptr 
word ptr fdil.bx 
ax,dx 
ex i t _proc 

floatinn to ascii 
code 

endp 
ends 
end 

Set return value 

area 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

LINE 

2 
3 
4 
5 
6 
7 
8 
'! 

10 
11 
12 
13 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

SOURCE 

~title(Calculate the value of 10*.ax) 

stack 

This subroutine will calculate the value of lR·-ax. 
All 8086 registers are transparent and the value is returned on 
the TOS as two numbers, exponent in STell and fraction in ST(H). 
The exponent value can be laroer than the maximum representable 
exponent. Three stack entries are used. 

name 
public 

get power 10 
get~power~10,power table 

segment stack 'stack' 
dw' 4 dup (?) Allocate space on the stack 

stack 

cgroup 
code 

ends 

group code 
segment public 'code' 
assume cs:cgroup 

Use exact values from 1.0 to le18. 

power table 
even 
do 1.0,lel,le2,le3 

3-415 

Optimize 16 bit access 

207865-001 



inter 
24 

25 

26 

27 

28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
S6 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
79 
71 

cmp 
ja 

push 
mov 
shl 
shl 
shl 
fld 
pop 
fxtract 
ret 

AP-113 

dq le4,le5,le6,le7 

dq leB,1e9,le10,le11 

dq 1e12,le13,le14,le15 

dq le16,lel7,le18 

proc 

ax,lS 
out_of_range 

bx 
bx,ax 
bx,l 
bx,l 
bx,l 
power table [bx] 
bx -

Test for A <= ax < 19 

Get working index register 
Form tah1e index 

Get exact value 
Restore register value 
Separate power and fraction 
OK to leave fxtract runninq 

Calculate the value uSing the exponentiate instruction. 
The following relations are used: 

10**x = 2**(loq2(10)*x) 
2**(I+F) 2**1 * 2**F 
if stell = I and st(0) = 2**F then fscale produces 2**(I+F) 

fld12t 
push 
mov 
push 
push 
fimul 
fnstcw 

mov 
and 
or 
xchg 

fldl 
fchs 
fld 
fldcw 
frndint 
mov 
fldcw 

bp 
bp,sp 
ax 
ax 
word ptr [bp-2] 
word ptr [bp-4] 

ax,word ptr [bp-4) 
aX,not "'CIl0H 
ax,0400H 
aX,word ptr [bp-4) 

st (1) 
word ptr [bp-4) 

word ptr [bp-4) ,ax 
word ptr [bp-4) 

3-416 

TOS = LOG 2 ( 10 ) 
Establish stack addressibility 

Put power (P) In memory 
Allocate space for status 
TOS,X = LOG2(10)*P = LOG2(10**P) 
Get current control word 
Control word Is a static value 
Get control word, no wait necessary 
Mask off current rounding field 
Set round to negative infinity 
Put new control word in memory 
old control word is in ax 
SetTOS = -1. 0 

Copy power value in base two 
Set new control word value 
TOS = II -Inf < I (= X, I is an integer 
Restore original rounding control 

207865-001 



LT 

72 
73 
74 
75 
76 
77 
78 
79 
B0 
B1 
82 
B3 
84 
85 

fxch 
pop 
fsub 
pop 
fsca1e 
f2xm1 
pop 
fsubr 
fmul 
ret 

qet po we r 10 
code -

st(2) 
ax 
st,st(2) 
ax 

bp 

st,st (0) 

endp 
ends 
end 

AP-113 

TOS = X, ST(I) = -1.0, ST(2) 
Remove oriqinal control word 
TOS,F = X-I: 0 (= TOS ( 1.0 
Restore power of ten 
TOS = F/2: 11 (= TOS < 0.5 
TOS = 2**(F/2) - 1.0 
Restore stack 
Form 2**(F/2) 
Form 2**F 
OK to leave fmul runninq 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

,I :.~ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

SOllHO: 

$title(iletermine TOS register contents) 

This subroutine will return a value from 0-15 in ax correspondinq 
to the contents of 8087 TOS. All registers are transparent and no 
errors are possihle. The return value corresponds to c3,c2,cl,c0 
of FXAM instruction. 

stack 

stack 

cgroup 
code 

name 
public 

tos _status 

fxam 
push 
push 
mov 
fstsw 
pop 
pop 
mov 
and 
shr 
shr 
shr 
or 
mov 
ret 

tos status 
code 

tos status 
tos -status 

segment stack 'stack' 
dw 3 dup (?) Allocate space on the stack 

ends 

group code 
segment public 'code' 
assume cs:cqroup 
proc 

ax 
bp 
bp,sp 
word ptr [bp+21 
bp 
ax 
al,ah 
aX,4007h 
ah,l 
ah,l 
ah,l 
al,ah 
ah,0 

endp 
ends 
end 

Get register contents status 
Allocate space for status value 
Establish stack addressibility 

Put tos status in memory 
Restore registers 
Get status value, no wait necessary 
Put bit 10-8 into bits 2-0 
Mask out bits c3,c2,cl,c~ 
Put hit c3 into bit II 

Put c3 into hit 3 
Clear return value 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

3-417 207865-001 



inter Ap·113 

APPENDIX D 

OVERVIEW 

Appendix D shows a function for converting ASCII 
input strings into floating point values. The returned 
value can be used by PLM/86, PASCALl86, FOR­
TRAN/86, or ASM/86. The routine will accept a num­
ber in ASCII of standard FORTRAN formats. Up to 18 
decimal digits are accepted and the conversion accuracy 
is the same as for converting in the other direction. 
Greater accuracy can also be achieved with similar 
tradeoffs, as mentioned earlier. 

code simply determines the meaning of each character 
encountered. Two separate number inputs must be rec­
ognized, mantissa and exponent values. Performing the 
numerics operations is very straightforward. 

The length of the number string is determined first to 
allow building a BCD number from low digits to high 
digits. This technique guarantees that an integer will be 
converted to its exact BCD integer equivalent. 

If the number is a floating point value, then the digit 
string can be scaled appropriately. If a decimal point oc­
curs within the string, the scale factor must be decreased 
by one for each digit the decimal point is moved to the 
right. This factor must be added to any exponent value 
specified in the number. 

Description of Operation 

Converting from ASCII to floating point is less complex 
numerically than going from floating point to ASCII. It 
consists of four basic steps: determine the size in deci­
mal digits of the number, build a BCD value corre­
sponding to the number string if the decimal point were 
at the far right, calculate the exponent value, and scale 
the BCD value. The first three steps are performed by 
the host software. The fourth step is mainly performed 
by numeric operations. 

ACCURACY CONSIDERATIONS 

All the same considerations for converting floating 
point to ASCII apply to calculating the scaling factor. 
The accuracy of the scale factor determines the accuracy 
of the result. 

The exponents and fractions are again kept separate to 
prevent overflows or underflows during the scaling 
operations. 

The complexity in this function arises due to the flexible 
nature of the input values it will recognize. Most of the 

LINE 

1 
2 
3 
4 
5 
6 
7 
8 
~ 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

SOURCE 

Stitle(ASCII to floating point conversion) 

Define the publicly known names. 

name 
public 
extrn 

ascii to floating 
ascii-to-floating 
get-power_10:near 

This function will convert an ASCII character string to a floating 
point representation. Character strings in integer or scientific form 
will be accepted. The allowed format is: 

[+,-1 [digit(s)] [.] [digit(s)] [E,e] [+,-] [digit(s) 1 

Where a digit must have been encountered before the exponent 
indicator IE' oriel. If a '+1, '-', Of I. I was encountered, then at 
least one digit must exist before the optional exponent field. A value 
will always be returned in the 8~87 stack. In case of invalid numbers, 
ya1ues like indefinite or infinity will be returned. 

The first character not fitting within the format will terminate the 
conversion. The address of the terminating character will be returned 
by this subroutine. 

The result will be left on the top of the NPX stack. This 
subroutine expects 3 free NPX stack registers. The sign of the result 
will correspond to any sign characters in the ASCII string. The rounding 
mode in effect at the time the subroutine was called will be used for 
the conversion from b0se 10 to base 2. Up to 18 significant decimal 
digits may appear in the number. LeAfi~~ 7eroes, tr?i}jnn 7eroes, or 
exronent ~iqits ~o not count towarrls the lB digit maximum. Integers 
or exactly representable decimal numbers of 18 digits or less will be 
exactly converted. The technigue used constructs a BCD number 

3-418 207865-001 



34 
35 
36 
37 
38 
39 
4~ 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
~l 
52 
53 
54 
55 
~6 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
7~ 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
1116 
1117 

AP-113 

representing the siqnificant ASCII digits of the string with the decimal 
point removed. 

An attempt is made to exactly convert relatively small inteqers or 
small fractions. For example the values: .06125, 123456789012345678, 
le17, 1.23456e5, and 125e-3 will be exactly converted to floating point. 

The exponentiate instruction is used to scale the generated BCD vaslue 
to very large or very small numbers. The basic accuracy of this function 
determines the accuracy of this subroutine. For very large or very small 
numbers, the accuracy of this function is 2 units in the I~th decimal 
place or double precision. The ranqe of decimal powers accepted is 
10 w*-4930 to 10**4930. 

The PLM/86 calling format is: 

ascii to floating: 

ax 

- procedure (string ptr,end ptr,status ptr) real external; 
declare (string ptr,end ptr,status ptr) pointer; 
declare end based end pEr pointer;-
declare status hased status ptr word; 
end; 

The status value has 6 possihle states: 

o A number was found. 
1 No number was found, return indefinite. 
2 Exponent was expected hut none found, return indefinite. 
3 Too many digits were found, return indefinite. 
4 Exponent was too biq, return a sioned infinity. 

The following registers are used by this subroutine: 

bx ex dx si di 

Define constants. 

LOW EXPONENT 
HIGH EXPONENT 
WORD-bIZE 

equ 
equ 
equ 
equ 

-4930 
4930 
Z 

Smallest allowed power ot 10 
Largest allowed power of I~ 

BCD bIZE l~ 

Define the parameter layouts involved: 

bp save 
return ptr 
status -ptr 
end ptf 
str rng _ptr 

equ 
equ 
equ 
equ 
equ 

equ 

word ptr [hpj 
hp save + size bp save 
return ptr + size return ptr 
status-ptr + size status-ptr 
end_ptr + size end_ptr -

size status_ptr + size end-ptr + size string_ptr 

Define the local variable data layouts 

power ten 
bed form 

local size 

equ 
equ 

equ 

word ptr (bp- WORD SIZE] ; power of ten value 
tbyte ptr power_ten - BCD_SIZE; BCD representation 

size power_ten + size bed form 

Define common expressions used 

bed byte 
bcd-count 
bcd-sign 
bcd:sign_bi t 

equ 
equ 
equ 
equ 

byte ptr bed form 
(type(bcd form)-l)*Z 
byte ptr bed form + 9 
811H -

Current byte in the BCD form 
Number of digits in BCD form 
Address of BCD sign byte 

Define return values. 
; 
NUMBER FOUND equ 
NO NUMBER equ 
NO-EXPONENT equ 
TOO MANY DIGITS equ 
EXPONENT-TOO BIG equ 

II 
1 
2 
3 
4 

3-419 

Number was found 
No number was found 
No exponent was found when expected 
Too many digits were found 
Exponent was too big 

207865-001 



108 
109 
lIe 
111 
ll2 

113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
14fi 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
171'1 
171 
172 
173 
174 
175 
176 
177 
178 
179 

, 
stack 

stack 

cgroup 
code 

AP-113 

Allocate stack space to insure enough exists at run time. 

segment stack 'stack' 
db (10ca1_size+4) dup (?) 

ends 

group code 
segment public 'code' 
assume cs:cgroup 

Define some of the possible return values. 

Optimize 16 bit access 
indefinite 
infinity 

even 
dd 
dd 

0FFC0000I'JR 
07FF81HI00R 

Single preC1Slon real for indefinite 
Single precision real for +infinity 

ascii to_floating proc 

fldz 
push 
mov 
sub 

bp 
bp,sp 
sp,local size 

Prepare to zero 8CD value 
Save callers stack environment 
Establish stack addressibility 
Allocate space for local variables 

Get any leading sign character to form initial BCD template. 

mov 
Kor 
cld 

si,string ptr 
dx ,nx -

Get starting address of the number 
Set initial necimal digit count 
Set auto increment mode 

Register usage: 

al: Current character value being examined 
cx: Digit count before the decimal point 
dx: Total digit count 
si: Pointer to character string 

Look for an initial sign and skip it if found. 

lodsb 
cmp 
jz 

al,I+' 
scan_leading digits 

aI, I_I 

Get first character 
Look for a sian 

cmp 
jnz enter _1 ead i ng_ dig its If not "-" test current character 

fchs Set TOS = -0 

Count the number of digits appearing before an optional decimal point. 

scan_leading_digits: 

lodsb 

call 
jnc 

test digit 
scan=leading_digits 

Get next character 

; Test for digit and bump counter 

Look for a possible decimal point and start fbstp operation. 
The fbstp zeroes out the BCD value and sets the cor~ect sign. 

fbstp 
mov 
cmp 
jnz 

bcd form 
cx,dx 
aI, I •• 

Set initial sign and value of BCD number 
Save count of digits before decimal point 

test for_digits 

Count the number of digits appearing after the decimal point. 

scan_trailing_digits: 

Iodsb Look at next character 

3-420 207865-001 



181! 
181 
182 
183 
184 
185 
186 
187 
188 
189 
1911 
191 
192 
193 
194 
195 
196 
197 
198 
199 
21l1l 
201 
202 
293 
294 
205 
206 
207 
2118 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 

; 

call 
jnc 

AP-113 

test dig it 
scan:trai1ing_digits 

; Test for digit and bump counter 

There must be at least one digit counted at this point. 

test_for_digi ts: 

dec 
or 
jz 

push 
dec 

si 
dx,dx 
no number found 

si 
si 

Put si back on terminating character 
Test digit count 
Jump if no digits were found 

Save pointer to terminator 
Backup pointer to last digit 

Check that the number will fit in the 18 digit BCD format. 
CX becomes the initial scaling factor to account for the implied 
decimal point. 

sub cx,dx For each digit to the right of the 
decimal point, subtract one from the 
initial scaling power 

neg dx Use negative digit count so the 
test digit routine can count dx up 
to zero 

cmp dX,-bcd count ; See if too many digits found 
jb test_for_unneeded_digits 

Setup initial register values for scanning the number right to left 
while building the BCD value in memory. 

std 
mov 
xor 
mov 
fwa it 
jmp 

power ten,cx 
di,di-
cl,4 

Set autodecrement mode 
Set initial power of ten 
Clear BCD number index 
Set digit shift count 
Ensure BCD store is done 

No digits were encountered before testing for the exponent. 
Restore the string pointer and return an indefinite value. 

no _number _found: 

, 

mov 
fld 
jmp 

aX,NO NUMBER 
indefTnite 
exit 

Set return status 
Return an indefinite numeric value 

Test for a number of the form ???0001l1l. 

test_terminating_point: 

, 

lodsb 
cmp 
jz 

inc 
jmp 

aI, I.' 
enter_power zeroes 

si 
short enter_power zeroes 

Get last character 
Look for decimal point 
Skip forward if found 

Else bump pointer back 

Too many decimal digits encountered. Attempt to remove leading and 
trailing digits to hring the total into the bounds of the BCD format. 

test_for_unneeded_digits: 

std 
or 

jz 

dec 

cx,cx 

test terminating_point 

dx 

Set autodecrement mode 
See if any digits appeared to the 
right of the decimal point 
Jump if none exist 

Adjust digit counter for loop 

Scan backwards from the right skipping trailing zeroes. 
If the end of the number is encountered, dx=0, the string consists of 
all zeroesl 

3-421 207865-001 



254 
255 
256 
257 
258 
259 
261'1 
261 
262 
263 
264 
265 
266 
267 
268 
269 
279 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
31'10 
31ll 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
321'1 
321 
322 
323 
324 
325 
326 
327 

AP-113 

; 
skip_trailing_zeroes: 

inc 
jz 

lodsb 
inc 
cmp 
jz 

dec 
cmp 
jnz 

dec 

dx 
look_fo r _exponent 

cx 
aI, '0' 
skip_trailing_zeroes 

cx 
aI, I • I 

scan_leading_zeroes 

dx 

Bump digit count 
Jump if string of zeroes found! 

Get next character 
Bump power value for each trailing 
zero dropped 

Adjust power counter from loop 
Look for decimal point 
Skip forward if none found 

Adjust counter for the decimal point 

The string is of the form: ????Ill'll'll'llll'll'l 

, 

See if any zeroes exist to the left of the decimal point. 

dec 

inc 
jz 

lodsb 
inc 
cmp 
jz 

dec 

dx 

dx 
look_for_exponent 

cx 
al,' 0' 
skip-power_zeroes 

cx 

Adjust aigit counter for loop 

Bump digit count 

Get next character 
Bump power value for each trailing 
zero dropped 

I Adjust power counter from loop 

~can the leading digits from the left to see if they are zeroes. 

scan_leading_zeroes: 

lea 
cld 
mov 
lodsb 
cmp 
je 

cmp 
jne 

di,byte ptr [si+11 

si,string_ptr 

aI, '+' 
skip_leading ze roes 

aI, '-' 
enter _leading zeroes 

Save new end of number pointer 
Set autoincrement mode 
Set pointer to the start 
Look for sign character 

Drop leading zeroes. None of them affect the power value in cx. 
We are guarenteed at least one non zero digit to terminate the loop. 

skip_leading_zeroes: 

lodsb 

inc 
cmp 
jz 

dec 
cmp 
jnz 

dx 
a1,' f3' 
skip_leading_zeroes 

dx 
aI, '. I 
test_digit_count 

Number is of the form 1'101'1.???? 

Get next character 

Bump digit count 
Look for a zero 

Adjust digit count from loop 
Look for I'II'II'I.??? form 

Drop all leading zeroes with no effect on the power value. 

skip_middle zeroes: 

inc 
lodsb 

dx 

3-422 

Remove the digit 
Get next character 

207865-001 



328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 
354 
355 
356 
357 
358 
359 
360 
361 
362 
363 
364 
365 
366 
367 
368 
369 
]7~ 

'7J 
372 
373 
374 
375 
376 
377 
378 
379 
380 
381 
382 
383 
384 
385 
386 
387 
388 
389 
390 
391 
392 
393 
394 
395 
396 
397 
398 
399 
400 
41ll 

AP-113 

cmp al,10' 
jz skip_middle_zeroes 

dec dx ; Adjust digit count from loop 

All superflous zeroes are removed. Check if all IS well now. 
, 
test_digit_count: 

cmp dx,-bcd count 
jb too_manY_digits_found 

mov 
jmp 

fld 
mov 
pop 
jmp 

s I ,d i 
form bed value 

indefinite 
ax,TOO_MANY_DIGITS 
si 
exit 

Restore strinq pointer 

Set return numeric value 
Set return flag 
Get last address 

Build BCD form of the decimal ASCII string from right to left with 
trailing zeroes and decimal point removed. Note that the only non 
digit possible is a decimal point which can be safely ignored. 
Test digit will correctly count d~ back towards zero to terminate 
the BCD build function. 

get_digi t_Ioop: 

lodsb 
call test digit 

get_digi t_loop 

Get next character 
Check if digit and bump digit count 
Skip the decimal point if found 

, 

jc 

shl 
or 
mov 
inc 
or 
jz 

jc 

mov 
or 
jnz 

mov 

al,cl 
ah,al 
bed byte [di] ,ah 
di -
dx,dx 
look_for_exponent 

t~st (Hai t 
enter_digit_Ioop 

ah,al 
dx,dx 
get_digit_loop 

bcd_byte [di 1 ,ah 

Look tor an exponent indicator. 

look for_exponent: 

pop 
cld 
mov 
lodsb 
cmp 
je 

si 

aI, "e I 

exponent found 

cmp aI, IE' 
jne convert 

Put digit into high nibble 
Form BCD byte in ah 
Put into BCD string 
Bump BCD pointer 
Check if ~igit is available 

Got npxt ch~r?~tpr 
Check If iliqit 
Skip the decimal point 

Save diqit 
Check If digit is available 

Save last odd digit 

Restore string pointer 
Set auto increment direction 
Get current power of ten 
Get next character 
Look for exponent indication 

An exponent is expected, get its numeric value. 
, 
exponent_found: 

lodsb 
xor 
mov 

d i ,d i 
cx,di 

3-423 

Get next character 
Clear power variable 
Clear exponent sign flag and digit flag 

207865-001 



4112 
403 
4114 
405 
4116 
407 
408 
409 
410 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425 
426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 
439 
441:1 
441 
442 
443 
444 
445 
446 
447 
448 
449 
450 
451 
452 
453 
454 
455 
456 
457 
458 
459 
460 
461 
462 
463 
464 
465 
466 
467 
468 
469 
470 
471 
472 
473 
474 
475 

cmp 
je 

cmp 
jne 

aI, '+' 
skip_power_sign 

81, '-' 
e~ter_power_loop 

AP-113 

The exponent is negative. 

inc ch 

Test for positive sign 

Test for negative sign 

Set exponent sign flag 

skip _power _sign: 

Register usage: 

a1: exponent character being examined 
bx: return value 
ch: exponent sign flag " positive, 1 negative 
c1: digit flag " no digits found, 1 digits found 
dx: not usable since test digit increments it 
sl: string pointer -
di: binary value of exponent 

Scan off exponent digits until a non-digit is encountered. 

power_loop: 

10dsb Get next character 

mov 
call 
jc 

mov 
sal 
add 
sal 
sal 
add 
cmp 
jna 

ah,0 Clear ah since ax is added to later 
test digit Test tor II digit 
form:power_value Exit loop If not 

cl,l Set power digit flag 
di,l 01d*2 
ax,di old*2+digit 
di,l 01d*4 
di,l 01d*8 
di,ax ; old*ll:1+dlgit 
di,HIGH EXPONENT+bcd_count; Check if exponent 
power_loop 

is too big 

The exponent is too large. 

exponent_overflow: 

mov 
fld 
test 
jz 

fchs 
jmp 

ax,EXPONENT TOO BIG 
infinity -
bcd sign.bcd sign bit 
exit --

short exit 

No exponent was found. 

no _exponent _found: 

dec 
mov 
fld 
jmp 

si 
ax,NO EXPONENT 
indeffnite 
short exit 

Set return value 
Return infinity 
Return correctly signed infinity 
Jump if not 

Return -infinity 

Put si back on terminating character 
Set return value 
Set number to return 

The string examination is complete. Form the correct power of ten. 
; 
form_power value: 

dec 

rcr 
jnc 

neg 

si 

ch,l 
positive_exponent 

di 

3-424 

Backup string pointer to terminating 
character 
Test exponent sign flag 

Force exponent negative 

207865-001 



476 
477 
478 
479 
480 
481 
482 
483 
484 
485 
486 
487 
488 
489 
490 
491 
492 
493 
494 
495 
496 
497 
498 
499 
501l 
Sill 
502 
503 
504 
505 
506 
507 
508 
509 
510 
511 
512 
513 
514 
515 
516 
517 
518 
519 
520 
521 
522 
523 
524 
525 
526 
527 
528 
529 
530 
531 
532 
533 
534 
535 
536 
537 
538 
539 
540 
541 
542 
543 
544 
545 
546 
547 

AP-113 

positive_exponent: 

convert: 

, 

rcr 
jnc 

add 
cmp 
js 

cl,l 
no_exponent_found 

di,power ten 
di ,LOW EXPONENT 
exponent_overflow 

cmp di,HIGH EXPONENT 
jg exponen~overflow 

inc si 

Test exponent digit flag 
If zero then no exponent digits were 
found 
Form the final power of ten value 
Check if the value is in range 
Jump if exponent is too small 

; Adjust string pointer 

Convert the base 10 number to base 2. 
Note: l0**exp = 2**(exp*log2(10)) 

di has binary power of ten value to scale the BCD value with. 

dec 
mov 
or 
js 

si 
ax,d! 
ax,ax 
get-?egative_power 

Bump string pointer back to last character 
Set power of ten to calculate 
Test for positive or negative value 

Scale the BCD value by a value >= 1. 

call 
fbld 
fmul 
jmp 

get power 10 
t,cd:form -

short done 

Get the adjustment power of ten 
Get the digits to use 
Form converged result 

Calculate a power of ten value> 1 then divide the BCD value with 
it. This technique is more exact than multiplying the BCD value by 
a fraction since no negative power of ten can be exactly represented 
in binary floating point. Using this technique will guarentee exact 
conversion of values like .5 and .0625. 

get_negative_power: 

, 
done: 

exit: 

neg 
call 
fbld 
fdivr 
fxch 
fchs 
fxch 

ax 
get power 10 
bcd:)orm -

All done, set return values. 

fscale 
mov ax,NUMBER FOUND 
fstp st (1) -

di,status ptr 
word ptr tdil,ax 
di ,end ptr 
word ptr [dil,si 
sp,bp 
bp 

Force positive power 
Get the adjustment power of ten 
Get the digits to use 
Divide fractions 
Negate scale factor 

Update exponent of the result 
Set return value 
Remove the scale factor 

Set status of the conversion 

Set ending string address 

Deallocate local storage area 
Restore caller's environment 

mov 
mov 
mov 
mov 
mov 
pop 
fwait 
ret 

Insure all loads from memory are done 
parms size 

Test if the character in al is an ASCII digit. 
If so then convert to binary, bump cx, and clear the carry flag. 

• Else leave as is and set the carry flag. 

3-425 207865-001 



AP·113 

548 
549 
550 
551 
552 
553 
554 
555 
556 
557 
558 
559 
5611 
561 
562 
563 
564 
565 
566 
567 
568 
569 
57e 

. 
test_digit: 

cmp 
ja 

cmp 
jb 

aI, 19' 
not_digi t 

aI, I g. 
not_digit 

Character is a digit. 

inc dx 
sub aI, 'e' 
ret 

Character is not a digit. . 
not digit: 

- stc 
ret 

ascii to floating endp 
code - - ends 

end 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

See if a digit 

Bump digit count 
Convert to binary and clear carry flag 

Leave as is and set the carry flag 

APPENDIX E 

OVERVIEW 
Appendix E contains three trigonometric functions for 
sine, cosine, and tangent. All accept a valid angle argu­
ment between - 262 and + 262. They may be called from 
PLM/86, PASCAL/86, FORTRAN/86 or ASM/86 
functions. 

They use the partial tangent instruction together with 
trigonometric identities to calculate the result. They are 
accurate to within 16 units of the low 4 bits of an ex­
tended precision value. The functions are coded for 
speed and small size, with tradeoffs available for greater 
accuracy. 

FPTAN and FPREM 
These trigonometric functions use the FPT AN instruc­
tion of the NPX. FPTAN requires that the angle rugu­
ment be between 0 and PI/4 radians, 0 to 45 degrees. 
The FPREM instruction is used to reduce the argument 
down. to this range. The low three quotient bits set by 
FPREM identify which octant the original angle was in. 

One FPREM instruction iteration can reduce angles of 
1018 radians or less in magnitude to PII4! Larger values 
can be reduced, but the meaning of the result is ques­
tionable since any errors in the least significant bits of 
that value represent changes of 45 degrees or more in the 
reduced angle. 

Cosine Uses Sine Code 
To save code space; the cosine function uses most of the 
sine function code. The relation sin (IAI + PI/2) = 
cos(A) is used to convert the cosine argument into a sine 

argument. Adding PII2 to the angle is performed by 
adding 0102 to the FPREM quotient bits identifying the 
argument's octant. 

It would be very inaccurate to add PII2 to the cosine 
argument if it was very much different from PII2. 

Depending on which octant the argument falls in, a dif­
ferent relation will be used in the sine and tangent func­
tions. The program listings show which relations are 
used. 

For the tangent function, the ratio produced by FPTAN 
will be directly evaluated. The sine function will use 
either a sine or cosine relation depending on which oc­
tant the angle fell into. On exit these functions will nor­
mally leave a divide instruction in progress to maintain 
concurrency. 

If the input angles are of a restricted range, such as from 
o to 45 degrees, then considerable optimization is pos­
sible since full angle reduction and octant identification 
is not necessary. 

All three functions begin by looking at the value given 
to them. Not a number' (NAN), infinity, or empty regis­
ters must be specially treated. Unnormals need to be 
converted to normal values before the FPT AN instruc­
tion will work correctly. Denormals will be converted to 
very small unnormals which do work correctly for the 
FPTAN instruction. The sign of the angle is saved to 
control the sign of the result. 

Within the functions, close attention was paid to main­
tain concurrent execution of the 8087 and host. The 
concurrent execution will effectively hide the execution 
time of the decision logic used in the program. 

3-426 207865-001 



LINE 

1 
2 
3 
4 
5 
6 +1 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 

AP-113 

SOURCE 

$title(8087 Trignometric Functions) 

public 
name 

sine,cosine,tangent 
trig_functions 

$include (:fl:8087.anc) 

Define 8087 word packing in the environment area. 

cw 87 
& 
& 
& 

sw 87 
& 
& 
& 

tw 87 
& 

10w_ip_87 

high_ip_op_87 

low_op_87 

high_op_87 

environment 87 
env87 cw 
env87-sw 
env87-tw 
env87-low ip 
env87-hip-op 
env87-low-op 
env87-hop­
environment_87 

record res871:3,infinity control:l,rounding control:2, 
precision control:2,error enable:l,res872:1, 
precision-mask:l,underflow mask:l,overflow mask:l, 
zero_divide_mask:l,denormaf_mask:l,invalid:mask:l 

record busy:l,cond3:l,top:3,cond2:1,condl:l,cond0:l, 
error-pending:l,res873:l,precision error:l, 
underflow error:l,overflow error:l;zero divide_error:l, 
denormal_error:l,invalid_error:l -

record reg7 tag:2,reg6 tag:2,reg5 tag:2,req4 taq:2, 
reg3:tag:2,reg2=tag:2.regl:tag:2,reg0=tag:2 

record low_ip:16 

record hi_ip:4,res874:1,opcode_87:11 

record low_op:16 

record hi_op:4,res875:l2 

struc 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
ends 

? 
? 
? 
? 
? 
? 
? 

8087 environemnt layout 

Define 8087 related constants. 

TOP VALUE INC egu sw 87 <0.B,l,0,0.0,~,0,0.0.0,0,0.0> 

VALID TAG equ 0 
ZERO 'TAG equ 1 
SPECI'AL TAG equ 2 
EMPTY TAG equ 3 
REGISTER MASK equ 7 

Define local variable areas. 
, 
stack 

local_area 
swl 
local area 

segment stack 'stack' 

struc 
dw 
ends 

? 

; 

stack 
db 
ends 

size 10cal_area+4 

code segment public 'code' 
assume cs:code,ss:stack 

Define local constants. 

Tag register values 

8087 status value 

Allocate stack space 

; 
status equ [bp].swl 8087 status value location 

even 

dt 3FFEC90FDAA22168C235R PI/4 

3-427 207865-001 



73 
74 
75 
76 
77 
18 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
98 
91 
92 
93 
94 
95 
96 
97 
98 
99 

Hill 
101 
102 
103 
III 4 
105 
106 
1117 
1118 
1119 
11" 
III 
112 
113 
114 
ll5 
116 
ll1 
118 
119 
120 
121 
122 
123 
124 
125 
126 
121 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
14" 
141 
142 
143 
144 
145 

AP-113 

indefinite dd 0FFCIHI"""R ; Indefinite special value 

This subroutine calculates the sine or cosine of the angle, given in 
radians. T.he angle is in ST(II) , the returned value will be in STIll). 
The result is accurate to within 1 units of the least significant three 
bits of the NPX extended real format. The PLM/86 definition is: 

sine: procedure (angle) real external; 
declare angle real; 
end sine; 

cosine: procedure (angle) real external; 
declare angle real; 
end cosine; 

Three stack registers are required. The result of the function is 
defined as follows for the following arguments: 

angle 

valid or unnormal less than 2**62 in magnitude 
zero 
denormal 
valid or unnormal greater than 2**62 
infinity 
NAN 
empt.y 

result 

correct value 
II or 1 
correct denormal 
indefinite 
indefinite 
NAN 
empty 

This function is based on the NPX fptan instruction. The fptan 
instruction will only work with an angle of from 0 to PI/4. With thi~ 
instruction. the sine or cosine of angles from" to PI/4 can be accurately 
calculated. The technique used by this routine can calculate a general 
sine or cosine by using one of four possible operations: 

1) sineR) 

Let R 
8 

langle mod PI/41 
-lor 1. according to the sign of the angle 

2) cos (R) 3) sin(PI/4-R) 4) cos(PI/4-R) 

The choice of the relation and the sign of the result follows the 
decision table shown below based on the octant the angle falls in: 

octant sine cosine 

" 8*1 2 
1 S*4 3 
2 S*2 -1*1 
3 8*3 -1*4 
4 -8*1 -1*2 
5 -8*4 -1*3 
6 -8*2 1 
1 -8*3 4 

Angle to sine function is a zero or unnormal. 

sine zero unnorma1: 

still fstp 
jnz enter Sine_normalize 

; 

Angle is a zero. 

pop 
ret 

bp 

Angle is an unnormal. 

enter sine normalize: 

3-428 

Remove PI/4 
Jump if angle is unnormal 

Return the zero as the result 

207865-001 



inter 

.~6 
147 
148 
149 
15. 
151 
152 
153 
154 
155 
156 
157 
158 
159 
16111 
161 
162 
163 
164 
165 
166 
167 
168 
169 
l71l 
171 
172 
173 
174 
175 
176 
177 
178 
179 
l81l 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
2113 
204 
205 
211)6 
211)7 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 

call 
jmp 

normalize value 
short enter_sine 

AP-113 

cosine proc Entry point to cosine 

Look at the value 

, 
sine: 

fxam 
push 
sub 
mov 
fstsw 
fld 
mov 
pop 
lahf 
jc 

bp 
sp,size local_area 
bp,sp 
status 
pi quarter 
c1 ;-1 
ax 

funnyyarameter 

Establish stack addressibility 
Allocate stack space for status 

Store status value 
Setup for angle reduce 
Signal cosine function 
Get status value 
ZF = e3, PF = e2, eF = C0 
Jump if parameter is 
empty, NAN, or infinity 

Angle is unnorma1, normal! zero, denorma1. 

fxch 
jpe 

Angle 

fstp 
jnz 

Angle 

fstp 
pop 
fldl 
ret 

enter sine 

is an unnormal or zero. 

st (1) 
enter 

is a 

st (rill 
bp 

sine normalize -
zero. cos (III) = 1.0 

st(0) angle, st(l) = PI/4 
Jump if normal or denorma1 

Remove PI/4 

Remove 0 
Restore stack 
Return I 

All work is done as a sine function. By adding PI/2 to the angle 
a cosine is converted to a sine. Of course the angle addition is not 
done to the argument but rather to the program loalc control values. 

fleam 
push 
sub 
mov 
fstsw 
fld 
pop 
lahf 
jc 

bp 
sp,size local_area 
bp,sp 
status 
pi_quarter 
ax 

funny _parameter 

Entry point for sine function 

Look at the parameter 
Establish stack addressibility 
Allocate local space 

Look at fxam status 
Get PI/4 value 
Get fxam status 
eF = C0, PF = C2, ZF = e3 
Jump if empty, NAN, or infinity 

Angle is unnormal, normal, zero, or denormal. 

fxch 
mov 
jpo 

cl,0 
sine_zero_unnormal 

ST(l) = PI/4, st(0) angle 
Signal sine 
Jump if zero or unnormal 

ST(0) 1S either a normal or denormal value. Both will work. 
Use the fprem instruction to accurately reduce the range of the given 
angle to within III and PI/4 in magnitude. If fprem cannot reduce the 
angle in one shot, the angle is too big to be meaningful, > 2**62 
radians. Any roundoff error in the calculation of the angle given 
could completely change the result of this function. It is safest ta 
call this very rare case an error. 

enter _Sine: 

fprem 

mov 
fstsw 

sp,bp 
status 

3-429 

Reduce angle 
Note that fprem will force a 
denormal to a very small unnormal 
Fptan of a very small unnormal 
will be the same very small 
unnormal, which is correct. 
Allocate stack space for status 
rheck if reruction WnS complete 

207865-001 



inter 
220 
221 
222 
223 
224 
225 
226 
227 
228 
22!1 
231l 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
2M! 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 

pop 
test 
jnz 

AP-113 

bx 
bh,high(mask cond2) 
angle _too _big 

Quotient in C0,c3,Cl 
Get fprem status 
sin(2*N*PI+x) = sin (x) 

Set sign flags and test for which eighth of the revolution the 
angle fell into. 

Assert: -PI/4 < st(ll) < PI/4 

fabs 

or 
jz 

cl,cl 
sine _select 

Force the argument positive 
condl bit in bx holds the sign 
Test for sine or cosine function 
Jump if sine function 

This is a cosine function. Ignore the original sign of the angle 
and add a quarter revolution to the octant id from the fprem instruction. 
cos(A) = sin(A+PI/2) and cos(IAIl cos(A) 

and 
or 

add 
mov 
rcl 
xor 

ah,not high(mask condl) 
bh,high(mask busy) 

bh,high(mask cond3) 
aI,'" 
al,l 
bh,al 

Turn off sign of argument 
Prepare to add 010 to C0,C3,Cl 
status value in ax 
Set busy hit so carry out from 
C3 will go into the carry flag 
Extract carry flag 
Put carry flag in low bit 
Add carry to Cil not changing 
CI flag 

See if the argument should be reversed, depending on the octant in 
which the argument fell during fprem. 

sine_select: 

no 

, 
do 

sine -

test 
jz 

bh,high(mask condl) 
no sine reverse 

Angle was in octants 1,3,5,7. 

fsub 
jmp 

Angle was in oct ants O,2,4,6. 

Reverse angle if Cl 

Invert sense of rotation 
'" < aeg <= PI/4 

Test for a zero argument since fptan will not work if st(0) Il 

reverse: 

ftst 
mov sp,bp 
fstsw status 
fstp st (1) 
pop cx 
test ch,high(mask 
jnz sine_arqument 

Assert: '" < st(0) (= 

cond3) 
_zero 

PI/4 

Test for zero angle 
Allocate stack space 
cond3 = 1 if st(ll) = " 
Remove PI/4 
Get ftst status 
If C3=1, argument is zero 

sine_fptan: 

fptan TAN ST("') ST(I)/ST!Il) = Y/X 

pop 
test 
jpo 

bp ; Restore stack 
bh,high(mask cond3 + mask condl); Look at octant angle fell into 
X numerator Calculate cosine for octants 

Calculate the sine of the argument. 
sin (A) = tan(A)/sqrt(l+tan(A)**2) 
sin (A) = Y/sqrt(X*X + y*y) 

fld 
jmp 

st(l) 
short finish sine 

3-430 

1,2,5,6 

if tan (A) = Y/X then 

Copy Y value 
Put Y value in numerator 

207865-001 



294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
3~6 

307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 
354 
355 
356 
357 
358 
359 
360 
361 
362 
363 
364 
365 
366 

AP-113 

The top of the stack is either NAN, infinity, or empty. 
; 
funny_parameter: 

fstp st(0) Remove PI/4 
jz return_empty Return empty if no parm 

jpo return NAN Jump if st (0) is NAN 

st(0) is infinity. Return an indefinite value. 

fprem 

return NAN: 
return:empty: 

pop 
ret 

bp 

Simulate fptan with st(0) '" 

sine_argument zero: 

fldl 
jmp after sine_fptan 

; STII) can be anything 

Restore stack 
Ok to leave fprem running 

; Simulate tan(0) 
; Return the zero value 

The angle was too large. Remove the modulus and dividend from the 
stack and return an indefinite result. 

, 
angle_too_big: 

fcompp 
fld 
pop 
fwa it 
ret 

indefinite 
bp 

Calculate the cosine of the argument. 
cos (A) 1/sqrt(1+tan(A)**2) if tan(A) 
cos (A) = X/sqrt(X*X + y*y) 

X numerator: 

Od 
fxch 

finish sine: 

fmul 
fxch 
fmul 
fadd 
fsqrt 

st(0) 
st(2) 

st,st(\I) 

st,st(0) 

Pop two values from the stack 
Return indefinite 
Restore stack 
Wait for load to finish 

Y/X then 

Copy X value 
Put X in numerator 

Form X*X + y*y 

stIll) 
st(0) 

x*x + y*y 
sqrt(X*X + y*y) 

Form the sign of the result. The two conditions are the Cl flag from 
FXAM in bh and the C0 flag from fprem in ah. 

and 
and 
or 
jpe 

fchs 

positive_sine: 

fdi v 
nit 

cosine endp 

bh,high(mask cond0) 
ah,hiqh(mask condl) 
bh, a h ~ 
positive_sine 

3-431 

Look at the fprem C0 flag 
Look at the fxam Cl flag 
Even number of flags cancel 
Two negatives make a positive 

Force result negative 

Form final result 
Ok to leave fdiv running 

207865-001 



361 
368 
369 
371/1 
371 
372 
373 
374 
375 
376 
377 
378 
379 
380 
381 
382 
383 
384 
385 
386 
387 
388 
389 
390 
391 
392 
393 
394 
395 
396 
397 
398 
399 
401/1 
401 
41112 
403 
404 
405 
4116 
407 
408 
409 
410 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425 
426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 
439 
440 

, 

AP-113 

This function will calculate the tangent of an angle. 
The angle, in radians is passed in ST(I/l), the tangent is returned 
in ST(0). The tangent is calculated to an accuracy of 4 units in the 
least three significant bits of an extended real format number. The 
PLM/86 calling format is: 

tangent: procedure (angle) real external; 
declare angle real; 
end tangent; 

Two stack registers are used. The result of the tangent function is 
defined for the following cases: 

angle result 

valid or unnormal < 2**62 in magnitude 
o 
denormal 
valid or unnormal > 2**62 in magnitude 
NAN 
infinity 
empty 

The tangent instruction uses the fptan instruction. 
relations are used: 

Let R = langle MOD PI/41 
S = -lor 1 depending on the sign of the angle 

correct value 
o 
correct denormal 
indefinite 
NAN 
indefinite 
empty 

Four possible 

1) tan (R) 2) tan (PI/4-R) 3) l/tan (R) 4) l/tan (PI/4-R) 

The following table is used to decide which relation to use depending 
on in which octant the angle fell. 

octant 

o 
1 
2 
3 
4 
5 
6 
7 

relation 

S*l 
S*4 

-S*3 
-S*2 

S*l 
S*4 

-S*3 
-S*2 

tangent proc 

; 

fxam 
push 
sub 
mov 
fstsw 
fld 
pop 
lahf 

bp 
sp,size local area 
bp,sp 
status 
pi_quarter 
ax 

jc funny_parameter 

Look at the parameter 
Establish stack addressibility 
Allocate local variable space 

Get fxam status 
Get PI/4 

CF = C0, PF e2, ZF C3 

Angle is unnormal, normal, zero, or denormal. 

fxch st (0) = angle, st (1) PI/4 
jpe tan zero unnormal 

Angle is either an normal or denormal. 
Reduce the angle to the range -PI/4 < result < PI/4. 
If fprem cannot perform this operation in one try, the magnitude of the 
angle must be > 2**62. Such an angle is so large that any rounding 
errors could make a very large difference in the reduced angle. 
It is safest to call this very rare case an error. 

tan_normal: 

fprem Quotient in CI/I,C3,Cl 
Convert denormals into unnormals 

3-432 207865-001 



441 
442 
443 
444 
445 
446 
447 
448 
449 
45~ 

451 
452 
453 
454 
455 
456 
457 
458 
459 
460 
461 
462 
463 
464 
465 
466 
467 
468 
469 
470 
471 
472 
473 
474 
475 
476 
477 
478 
479 
480 
481 
482 
483 
484 
485 
486 
487 
488 
489 
490 
491 
492 
493 
494 
495 
496 
497 
498 
499 
50e 
501 
5~2 
503 
504 
505 
506 
5~7 
508 
5~9 
510 
511 
512 
513 

mov 
fstsw 

pop 
test 
jnz 

sp,bp 
status 

bx 

AP-113 

bh,high(mask cond2) 
ang Ie :"too _big 

See if the angle must be reversed. 

Assert: -PI/4 < st(0) < PI/4 

fabs 

test 
jz 

bh,high(mask condl) 
no tan reverse 

Allocate stack spce 
Quotient identifies octant 
original angle fell into 
tan(PI*N+x) = tan (x) 
Test for complete reduction 
Exit if angle was too big 

o <= st(~) < PI/4 
CI in bx has the sign flag 
must be reversed 

Angle fell in octants 1,3,5,7. Reverse it, subtract it from PI/4. 

fsub 
jmp short do_tangent 

Angle is either zero or an unnormal. 

tan zero unnormal: 

fstp 
jz 

st (1) 
tan_angle zero 

A~gle is an ur.normal~ 

call normalize value 
jmp tan normaf 

pop 
ret 

bp 

Reverse angle 

Remove PI/4 

Restore stack 

Angle fell in oetants 0,2,4,6. Test for st(0) ~, fptan won't work. 

no tan reverse: 

ftst 
mov 
fstsw 
fstp 
pop 
test 

sp,bp 
status 
stell 
ex 
eh,high(mask eond3) 

jnz tan zero 

do tangent: 

fptan 

after tangent: 

Test for zero anqle 
Allocate stack space 
C3 = 1 if st(0) = 0 
Remove PI/4 
Get ftst status 

tan ST(~) ST(l}/ST(l'J) 

Decide on the order of the operands and their sign for the divide 
operation while the fptan instruction is working. 

pop bp Restore stack 
mov aI, bh , Get a copy of fprem C3 flag 
and ax ,mask condl + high(mask cond3); Examine fprem C3 flag and 

fxtract Cl flaq 
test bh,high(mask condl + mask cond3); Use reverse divide if in 

octants 1,;!,5,6 
jpo reverse divide Note! parity works on low 

8 bits only! 

Angle was in octants "',3,4,7. 
Test for the sign of the result. Two negatives cancel. 

or al,ah 
jpe positive_divide 

3-433 207865-001 



inter 
514 
515 
516 
517 
518 
519 
5211 
521 
522 
523 
524 
525 
526 
527 
528 
529 
530 
531 
532 
533 
534 
535 
536 
537 
538 
539 
540 
541 
542 
543 
544 
545 
546 
547 
548 
549 
550 
551 
552 
553 
554 
555 
556 
557 
558 
559 
560 
561 

fchs 

positive_divide: 

fdiv 
ret 

tan zero: 

fldl 
jmp after_tangent 

AP-113 

Angle was in octants 1,2,5,6. 
Set the correct sign of the result. 

reverse_divide: 

or al,ah 
jpe positive_r_divide 

Force result negative 

Form result 
Ok to leave fdlv running 

Force 1/1l tan(PI/2) 

fchs Force result negative 

positive_r_divide: 

fdivr 
ret 

tangent endp 

Form reciprocal of result 
Ok to leave fdiv running 

This function will normalize the value in st(II). 
Then PI/4 is placed into st(l). 

1 
normal i ze _val ue: 

fabs 
fxtract 
fldl 
fadd 
fsub 
fscale 
fstp 
fld 
fxch 
ret 

code ends 
end 

st (1) ,·st 

st (1) 
pi_quarter 

Force value positive 
Il <= st(ll) < 1 
Get normalize bit 
Normalize fraction 
Restore original value 
Form original normalized 
Remove scale factor 
Get PI/4 

value 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

3-434 207865-001 



© INTEL CORPORATION, 1983 

APPLICATION 
NOTE 

3-435 

AP-186 

March 1983 

ORDER NUMBER: 210973-003 



AP-186 

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in 
this document nor does it make a commitment to update the information contained herein. 

Intel retains the right to make changes to these specifications at any time, without notice. 

Contact your local sales office to obtain the latest specifications before placing your order. 

The following are trademarks of Intel Corporation and may only be used to identify Intel Products: 

BITBUS, COMMputer, CREDIT, Data Pipeline, GENIUS, i,1~ ICE, iCS, iDBR iDIS, I'ICE, 
iLBX, im, iMDDX, iMMX, Insite, Intel, intel, intelBOS, Intelevision, inteligent Identifier, 
inteligent Programming, Intellee, Intellink, iOSR iPDS. iRMX, iSBC, iSBX, ISDM, 
iSXM, KEPROM, Library Man'ager, MCS, Megachassis, MICROMAINFRAME, MULTI­
BUS, MULTICHANNEL, MULTIMODULE, OpenNET, Plug-A-Bubble, PROMPT, Prom­
ware, QUEST, QueX, Ripplemode, RMX/80, RUPI, Seamless, SLD, and UPI, and the 
combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or UPI and a numerical suffix. 

MDS is an ordering code only and is not used as a product name or trademark, MDS'· is a registered trademark of Mohawk Data 
Sciences Corporation, 

• MULTIBUS is a patented Intel bus, 

Additional copies of this manual or other Intel literature may be obtained from: 

'~INTEl CORPORATION 1985 

Intel Corporation 
Literature Distribution 
Mail Stop SC6-59 
3065 Bowers Avenue 
Santa Clara, CA 95051 

3-436 



inter Ap·186 

INTRODUCTION TO THE CONTENTS 
80186 MICROPROCESSOR 

3-437 

1. INTRODUCTION 
2. OVERVIEW OF THE 80186 

2.1 The CPU 
2.2 80186 CPU Enhancements 
2.3 DMA Unit 
2.4 Timers 
2.5 Interrupt Controller 
2.6 Clock Generator 
2.7 Chip Select and Ready Generation 

Unit 
2.8 Integrated Peripheral AcceSSing 

3. USING THE 80186 
3.1 Bus Interfacing to the 80186 

3.1.1 Overview 
3.1.2 Physical Address Generation 
3.1.3 80186 Data Bus Operation 
3.1.4 80188 Data Bus Operation 
3.1.5 General Data Bus Operation 
3.1.6 Control Si9..l:§IS 
3.1.6.1 RD and WR 
3.1.6.2 Queue Status Signals 
3.1.6.3 Status Lines 
3.1.6.4 TEST and CC5CK 
3.1.7 HALT Timing 
3.1.8 8288 and 8289 InterfaCing 
3.1.9 Ready InterfaCing 
3.1.10 Bus Performance Issues 

3.2 Example Memory Systems 
3.2.1 2764 Interface 
3.2.2 2186 Interface 
3.2.3 8203 DRAM Interface 
3.2.4 8207 DRAM Interface 

3.3 HOLD/HLDA Interface 
3.3.1 HOLD Response 
3.3.2 HOLD/HLDA Timing and Bus 

Latency 
3.3.3 Coming out of hold 

3.4 Differences Between the 8086 bus 
and the 80186 Bus 

4. DMA UNIT INTERFACING 
4.1 DMA Features 
4.2 DMA Unit Programming 
4.3 DMA Transfers 
4.4 DMA Requests 

4.4.1 DMA Request timing and 
latency 

4.5 DMA Acknowledge 
4.6 Internally Generated DMA 

Requests 
4.7 Externally Synchronized DMA 

Transfers 



intel' 

4.7.1 Source Synchronized DMA 
Transfers 

4.7.2 Destination Synchronized DMA 
Transfers 

4.8 DMA Halt and NMI 
4.9 Example DMA Interfaces 

4.9.1 8272 Floppy Disk Interface 
4.9.28274 Serial Communication 

Interface 
5. TIMER UNIT INTERFACING 

5.1 Timer Operation 
5.2 Timer Registers 
5.3 Timer Events 
5.4 Timer Input Pin Operation 
5.5 Timer Output Pin Operation 
5.6 Sample 80186 Timer Applications 

5.6.1 80186 Timer Real Time Clock 
5.6.2 80186 Timer Baud Rate 

Generator 
5.6.3 80186 Timer Event Counter 

6. 80186 INTERRUPT CONTROLLER 
INTERFACING 

6.1 Interrupt Controller Model 
6.2 Interrupt Controller Operation 
6.3 Interrupt Controller Registers 

6.3.1 Control Registers 
6.3.2 Request Register 
6.3.3 Mask Register and Priority Mask 

Register 
6.3.4 In-Service Register 
6.3.5 Poll and Poll Status Registers 
6.3.6 End of Interrupt Register 
6.3.7 Interrupt Status Register 
6.3.8 Interrupt Vector Register 

6.4 Interrupt Sources 
6.4.1 Internal Interrupt Sources 
6.4.2 External Interrupt Sources 
6.4.3 iRMX 86 Mode Interrupt 

Sources 
6.5 Interrupt Response 

6.5.1 Internal Vectoring, Master 
Mode 

6.5.2 Internal Vectoring, iRMX 86 
Mode 

6.5.3 External Vectoring 
6.6 Interrupt Controller External 

Connections 
6.6.1 Direct Input Mode 
6.6.2 Cascade Mode 
6.6.3 Special Fully Nested Mode 

AP-186 

3-438 

6.6.4 iRMX 86 Mode 
6.7 Example 8259A/Cascade Mode 

Interface 
6.8 Example 80130 iRMX 86 Mode 

Interface 
6.9 Interrupt Latency 

7. CLOCK GENERATOR 
7.1 Crystal Oscillator 
7.2 Using an External Oscillator 
7.3 Clock Generator 
7.4 Ready Generation 
7.5 Reset 

8. CHIP SELECTS 
8.1 Memory Chip Selects 
8.2 Peripheral Chip Selects 
8.3 Ready Generation 
8.4 Examples of Chip Select Usage 
8.5 Overlapping Chip Select Areas 

9. SOFTWARE IN AN 80186 SYSTEM 
9.1 System Initialization in an 80186 

System 
9.2 Initialization for iRMX 86 
9.3 Instruction Execution Differences 

Between the 8086 and 80186 
10. CONCLUSIONS 

APPENDIX A - Peripheral Control 
Block 

A.1 Setting the Base Location of the 
Peripheral Control Block 

A.2 Peripheral Control Block Registers 
APPENDIX B - Synchronizers 

B.1 Why Synchronizers Are Required 
B.2 80186 Synchronizers 

APPENDIX C - 80186 Example DMA 
Interface Code 

APPENDIX D - 80186 Example Timer 
Interface Code 

APPENDIX E - 80186 Example Interrupt 
Controller Interface Code 

APPENDIX F - 80186/8086 Example 
System Initialization Code 

APPENDIX G - 80186 Wait State 
Performance 

APPENDIX H - 80186 New 
Instructions 

APPENDIX I - 80186/80188 
Differences 



in1er AP-186 

1. INTRODUCTION 

As state of the art technology has increased the number 
of transistors possible on a single integrated circuit, 
these devices have attained new, higher levels of both 
performance and functionality. Riding this crest are the 
Intel 80186 and 80286 microprocessors. While the 
80286 has added memory protection and management 
to the basic 8086 architecture, the 80186 has integrated 
six separate functional blocks into a single device. 

The purpose of this note is to explain, through example, 
the use of the 80186 with various peripheral and mem­
ory devices. Because the 80186 integrates a DMA unit, 
timer unit, interrupt controller unit, bus controller unit 
and chip select and ready generation unit with the CPU 

INT311NTA1 

on a single chip (see Figure 1), system construction is 
simplified since many of the peripheral interfaces are in­
tegrated onto the device. 

The 80186 family actually consists of two processors: the 
80186 and 80188. The only difference between the two 
processors is that the 80186 maintains a 16-bit external 
data bus while the 80188 has an 8-bit external data bus. 
Internally, they both implement the same processor with 
the same integrated peripheral components. Thus, ex­
cept where noted, all 80186 information in this note also 
applies to the 80188. The implications of having an 8-bit 
external data bus on the 80188 are explicitly noted in ap­
pendix 1. Any parametric values included in this note are 
taken from the iAPX 186 Advance Information data 
sheet, and pertain to 8Mhz devices. 

INT211NTAO 

-
-

SRDY-_ 
ARDY- ..... 
TEST- ..... 
HOLD-..... 

HLDA:::~ 
RES -

RESET __ 

CLKOUT 

I I 

CLOCK 
GENERATOR 

Vee GND 

~ l 
EXECUTION UNIT] 

I 
16-BIT I 
ALU I 

I 
16-BIT I 

GENERAL I 
PURPOSE I REGISTERS 

.J 
(r 

INn 

Nil INITO 

~ ~ 
PROGRAMMABLE 

INTERRUPT 
CONTROLLER 

CONTROL, I 
REGISTERS 

{ 

TMR OUT 1 TMR OUT 0 

TMR IN t 
1 

TMR IN t 
~ 

.1_ L t_ 
PROGRAMMABLE 

TIMERS 
0 1 2 

MAX COUNT ~ 
REGISTER B I 

MAX COUNT 
REGISTER A 

CONTROL REGISTERS 

16-BIT 
COUNT REGISTER 

Dr-----------.urINT'-'="!ERN"""AL-""!BUS'--------,{ 71'------------'1 r---------+-DRQO 
~ r-I-DRQl 

BUS INTERFACE 
UNIT 16-BIT 

SEGMENT 
REGISTERS 

6-BYTE 
PREFETCH 

QUEUE 

CHIP-SELECT 
UNIT 

rp;;;R:!O:::G:;:;R:;:'A:-;M:-;M-:cAB~L-;:E,., 
DMA UNIT 
o 1 

20-BIT 
SOURCE POINTERS 

-".., 20-BIT 
L,/ DESTINATION 

PROGRAMMABLE 16-BIT I 
POINTERS 

CONTROL 
REGISTERS 

I 
J_~ 
LOCK 

DT/R 

1111 JUl 
Il~AtE.y _~f------"""'-1 
• Ali ADO- A161S3-

ieoGI~:TR~IR\ 11 TRANSFER COUNT 

~s t ~ ~S61A2 
LCS PCS51A1 

SHE/S7 AD15 A191S6 

MCSO-3 PCSO-4 

Figure 1. 80186 Block Diagram 

3-439 210973-003 



AP-186 

2. OVERVIEW OF THE 80186 

2.1 The CPU 

The 80186 CPU shares a common base architecture 
with the 8086, 8088 and 80286. It is completely object 
code compatible with the 8086/88. This architecture 
features four 16-bit general purpose registers (AX,BX, 
CX,DX) which may be used as operands in most arith­
metic operations in either 8 or 16 bit units. It also fea­
tures four 16-bit "pointer" registers (SI,DI,BP.sP) 
which may be used both in arithmetic operations and in 
accessing memory based variables. Four 16-bit segment 
registers (CS,DS,SS,ES) are provided allowing simple 
memory partitioning to aid construction of modular pro­
grams. Finally, it has a 16-bit instruction pointer and a 
16-bit status register. 

Physical memory addresses are generated by the 80186 
identically to the 8086. The 16-bit segment value is left 
shifted 4 bits and then is added to an offset value which 
is derived from combinations of the pointer registers, the 
instruction pointer, and immediate values (see Figure 
2). Any carry out of this addition is ignored. The result 
of this addition is a 20-bit physical address which is pre­
sented to the system memory. 

The 80186 has a 16-bit ALU which performs 8 or 16-bit 
arithmetic and logical operations. It provides for data 
movement among registers, memory and I/O space. In 
addition, the CPU allows for high speed data transfer 
from one area of memory to another using string move 
instructions, and to or from an I/O port and memory us­
ing block I/O instructions. Finally, the CPU provides a 

I' 
I' 

SEGMENT VALUE I 

OFFSET 

PHYSICAL ADDRESS I I 
~ 

wealth of conditional branch and other control 
instructions. 
In the 80186, as in the 8086, instruction fetching and in­
struction execution are performed by separate units: the 
bus interface unit and the execution unit, respectively. 
The 80186 also has a 6-byte prefetch queue as does the 
8086. The 80188 has a 4-byte prefetch queue as does the 
8088. As a program is executing, opcodes are fetched 
from memory by the bus interface unit and placed in this 
queue. Whenever the execution unit requires another in­
struction, it takes it out of the queue. Effective processor 
throughput is increased by adding this queue, since the 
bus interface unit may continue to fetch instructions 
while the execution unit executes a long instruction. 
Then, when the CPU completes this instruction, it does 
not 'have to wait for another instruction to be fetched 
from memory. 

2.2 80186 CPU Enhancements 
Although the 80186 is completely object code compati­
ble with the 8086, most of the 8086 instructions require 
fewer clock cycles to execute on the 80186 than on the 
8086 because of hardware enhancements in the bus in­
terface unit and the execution unit. In addition, the 
80186 provides many new instructions which simplify 
assembly language programming, enhance the perfor­
mance of high level language implementations, and re­
duce object code sizes for the 80186. These new 
instructions are also included in the 80286. A complete 
description of the architecture and instruction execution 
of the 80186 can be found in volume I of the 
iAPX86/186 users manual. The algorithms for the new 
instructions are also given in appendix H of this note. 

16 BITS 

'1 
16 BITS '1 

I 
+ 

= 

I 
20 BITS 

.1 

Figure 2. Physical Address Generation in the 80186 

3-440 210973-003 



Ap·186 

2.3 DMA Unit 

The 80186 includes a DMA unit which provides two 
high speed DMA channels. This DMA unit will perform 
transfers to or from any combination of £/0 space and 
memory space in either byte or word units. Every DMA 
cycle requires two to four bus cycles, one or two to fetch 
the data to an internal register, and one or two to deposit 
the data. This allows word data to be located on odd 
boundaries. or byte data to be moved from odd locations 
to even locations. This is normally difficult. since odd 
data bytes are transferred on the upper 8 data bits of the 
16-bit data bus, while even data bytes are transferred on 
the lower 8 data bils of the data bus. 

Each DMA channel maintains independent 20-bit 
source and destination pointers which are used to access 
the source and destination of the data transferred. Each 
of these pointers may independently address either I/O 
or memory space. After each DMA cycle, the pointers 
may be independently incremented, decremented, or 
maintained constant. Each DMA channel also main­
tains a transfer count which may be used to terminate a 
series of DMA transfers after a pre-programmed num­
ber of transfers. 

2.4 Timers 

The 80186 includes a timer unit which contains .3 inde­
pendent 16-bit timer/counters. Two of these timers can 
be used to count external events, to provide waveforms 
derived from either the CPU clock or an external clock 
of any duty cycle, or to interrupt the CPU after a speci­
fied number of timer "events." The third timer counts 
only CPU clocks and can be used to interrupt the CPU 
after a programmable number of CPU clocks, to give a 
count pulse to either or both of the other two timers after 
a programmable number of CPU clocks, or to give a 
DMA request pulse to the integrated DMA unit after a 
programmable number of CPU clocks. 

2.5 Interrupt Controller 

The 80186 includes an interrupt controller. This control­
ler arbitrates interrupt requests between all internal and 
external sources. It can be directly cascaded as the mas­
ter to two external 8259A interrupt controllers. In addi­
tion, it can be configured as a slave controller to an 
external interrupt controller to allow complete compati­
bility with an 80130, 80150. and the iRMX® 86 operat­
ing system. 

2.6 Clock Generator 

The 80186 includes a clock generator and crystal oscilla­
tor. The crystal oscillator can be used with a parallel res­
onant, fundamental mode crystal at2X the desired CPU 
clock speed (i.e., 16 MHz for an 8 MHz 80186), or with 
an external oscillator also at 2X the CPU clock. The out­
put of the oscillator is internally divided by two to pro­
vide the 50% duty cycle CPU clock from which all 

3-441 

80186 system timing derives. The CPU clock is external­
ly available, and all timing parameters are referenced to 
this externally available signal. The clock generator also 
provides ready synchronization for the processor. 

2.7 Chip Select and Ready Generation Unit 

The 80186 includes integrated chip select logic which 
can be used to enable memory or peripheral devices. Six 
output lines are used for memory addressing and seven 
output lines are used for peripheral addressing. 

The memory chip select lines are split into 3 groups for 
separately addressing the major memory areas in a typi­
cal 8086 system: upper memory for reset ROM, lower 
memory for interrupt vectors, and mid-range memory 
for program memory. The size of each of these regions is 
user programmable. The starting location and ending 
location of lower memory and upper memory are fixed 
at OOOOOH and FFFFFH respectively; the starting loca­
tion of the mid-range memory is user programmable. 

Each of the seven peripheral select lines address one of 
seven contiguous 128 byte blocks above a programmable 
base address. This base address can be located in either 
memory or I/O space in order that peripheral devices 
may be I/O or memory mapped. 

Each of the programmed chip select areas has associated 
with it a set of programmable ready bits. These ready 
bits control an integrated wait state generator. This al­
lows a programmable number of wait states (0 to 3) to 
be automatically inserted whenever an access is made to 
the area of memory associated with the chip select area. 
In addition, each set of readv bits includes a bit which 
determines whether the exte;nal ready signals (ARDY 
and SRDY) will be used, or whether they will be ignored 
(i.e., the bus cycle will terminate even though a ready 
has not been returned on the external pins). There are 5 
total sets of ready bits which allow independent ready 
generation for each of upper memory, lower memory, 
mid-range memory, peripheral devices 0-3 and peripher­
al devices 4-6. 

2.8 Integrated Peripheral Accessing 

The integrated peripheral and chip select circuitry is con­
trolled by sets of 16--bit registers accessed using standard 
input, output, or memory access instructions. These 
peripheral control registers are all located within a 256 
byte block which can be placed in either memory or 1/0 
space. Because they are accessed exactly as if they were 
external devices, no new instruction types are required 
to access and control the integrated peripherals. For 
more information concerning the interfacing and acces­
sing of the integrated 80186 peripherals not included in 
this note, please consult the 80186 data sheet, or the 
iAPX 86/186 User's Manual Hardware Reference. 

210973-003 



inter 

3. USING THE 80186 

3.1 Bus Interfacing to the 80186 

3.1.1 OVERVIEW 

AP-186 

The 80186 bus structure is very similar to the 8086 bus 
structure. It includes a multiplexed address/data bus, 
along with various control and status lines (see Table 1). 
Each bus cycle requires a minimum of 4 CPU clock cy­
cles along with any number of wait states required to ac­
commodate the speed access limitations of external 
memory or peripheral devices. The bus cycles initiated 
by the 80186 CPU are identical to the bus cycles initiat­
ed by the 80186 integrated DMA unit. 

In the following discussion, all timing values given are 
for an 8 MHz 80186. Future speed selections of the part 
may have different values for the various parameters. 

T, 

"=°"'1 
L-I __ -I 

01 

I (LOW 

·1 PHASE) 

I 

02 

(HIGH 

PHASE) 

L 
Figure 3. T-state in the 80186 

Each clock cycle of the 80186 bus cycle is called a "T" 
state, and are numbered sequentially T l' T 2' T 3' Tw and 
T4. Additional idle T states (T i) can occur between T4 
and Tl when the processor requires no bus activity (in­
struction fetches, memory writes, I/O reads, etc.). The 
ready signals control the number or wait states (Tw) in­
serted in each bus cycle. This number can vary from 0 to 
positive infinity. 

The beginning of a T state is signaled by a high to low 
transition of the CPU clock. Each T state is divided into 
two phases, phase 1 (or the low phase) and phase 2 (or 
the high phase) which occur during the low and high lev­
els of the CPU clock respectively (see Figure 3). 

Different types of bus activity occur for all of the T­
states (see Figure 4). Address generation information 
occurs during T l' data generation during T 2' T 3' Twand 

LINES 

Tf or 

T, T, T, T, .T, 

DATA 

LINES 

ADDRESS! T----~~~~:=:] '--I---......;----..j....;--..J 

CONTROL ..... -----!-----..... 
SIGNALS 

(RD,WR) 

Figure 4. Example Bus Cycle of the 80186 

Table 1. 80186 Bus Signals 

~. ___________________ F_u_n_c_ti_o_n __ . __________ -4 _______________ S_ig_n_a_l_N_a_m __ e ___________ ~ 
address/data ADO-ADlS I 
address/status A 16/S3-A19-S6,BHE/S7 
co-processor control TEST 
local bus arbitration HOLD,HLDA 
local bus control ALE,RD,WR,DTjR,DEN 
multi-master bus LOCK 
ready (wait) interface SRDY,ARDY 
status information SO-S2 

3-442 210973-003 



AP-186 

T 4' The beginning of a bus cycle is signaled by the status 
lines of the processor going from a passive state (all 
high) to an active state in the middle of the T-state im­
mediately before T [ (either a T 4 or a T). Because infor .. 
mation concerning an impending bus cycle occurs 
during the T-state immediately before the first T-state of 
the cycle itself, two different types of T 4 and T j can be 
generated: one where the T state is immediately fol­
lowed by a bus cycle, and one where the T state is imme­
diatly followed by an idle T state. 

During the first type ofT4 or Ti,status information con­
cerning the impending bus cycle is generated for the bus 
cycle immediately to follow. This information will be 
available no later than tCHSV (55ns) after the low-to­
high transition of the 80186 clock in the middle of the T 
state. During the second type of T 4 or T j the status out­
puts remain inactive (high), since no bus cycle is to be 
started. This means that the decision per the nature of a 
T 4 or T j state (i.e., whether it is immediately followed by 
a T j or a T I) is decided at the beginning of the T-state 
immediately preceding the T4 or T j (see Figure 5). This 
has consequences for the bus latency time (see section 
3.3.2 on bus latency). 

3.1.2 PHYSICAL ADDRESS GENERATION 

Physical addresses are generated by the 801 86 during T [ 
of a bus cycle. Since the address and data lines are mul­
tiplexed on the same set of pins, addresses must be 

T3 or 

latched during TI if they are required to remain stable 
for the duration of the bus cycle. To facilitate latching of 
the physical address, the 80186 generates an active high 
ALE (Address Latch Enable) signal which can be di­
rectly connected to a transparent latch's strobe input. 

Figure 6 illustrates the physical address generation pa­
rameters of the 80186. Addresses are guaranteed valid 
no greater then tCLAV (44ns) after the beginning of T I, 
and remain valid at least tCLAX (IOns) after the end of 
T I' The ALE signal is driven high in the middle of the T 
state (either T4 or T) immediately preceding TI and is 
driven low in the middle of T [, no sooner than tAvAL (30 
ns) after addresses become valid. This parameter 
(tAVAL) is required to satisfy the address latch set-up 
times of address valid until strobe inactive. Addresses 
remain stable on the address/data bus at least tLLAX (30 
ns) after ALE goes inactive to satisfy address latch hold 
times of strobe inactive to address invalid. 

Because ALE goes high long before addresses become 
valid, the delay t.hrough the address latches will be chief­
ly the propagation delay through the latch rather than 
the delay from the latch strobe, which is typically longer 
than the propagation delay. For the Intel 8282 latch, this 
parameter is t[vav, the input valid to output valid delay 
when strobe is held active (high). Note that the 80186 
drives ALE high one full clock phase earlier than the 
8086 or the 8288 bus controller, and keeps it high 
throughout the 8086 or 8288 ALE high time (i.e., the 
80186 ALE pulse is wider). 

J T w I T4 I Tj 

1 Idle bus cycles will be Inserlc(j I 
I I I 

I (DeG'~'on: No bUS' activity req.;,-ed. I 

ClOCK--..J~Ll 
OUT 

STATUS 
ACTIVE INACTIVE 
STATUS STATUS 

INFO 

T, T, 
DeCISion: Another buS cycle immelhillely 
requlfed-no Idle bus cycil!s 

CLOCK 

OUT 

STATUS 
ACTIVE INACTIVE ACTIVE 
STATUS STATUS STATUS 

LINES I 
I 

Figure 5. Active-Inactive Status Transitions inthe 80186 

3-443 
210973-003 



CLOCK 

OUT 

ALE 

AP-186 

AD-A19 ____ -:~J~~::_:~~~--

NOTES: 
1. tCHLH: Clock high to ALE high-35 ns max 
2. tCLAV: Clock low to address valid-44 ns max 

3. tCHLL: Clock high to ALE low-35 ns max 
4. tCLAX: Clock low to address invalid (address hold from clock low)=10 ns 

min 
5. tLLAx' ALE low to address invalid (address hold from ALE)-30 ns min 
6. tAVAL: Address valid to ALE low (address setup to ALE)=30 ns min 

Figure 6. Address Generation Timing of the 80186 , 

A typical circuit for latching physical addresses is shown 
in Figure 7. This circuit uses 3 8282 transparent octal 
non-inverting latches to demultiplex all 20 address bits 
provided by the 80 186. Typically, the upper 4 address 
bits are used only to select among various memory com­
ponents or subsystems, so when the integrated chip se-

lects (see section 8) are used, these upper bits need not 
be latched. The worst case address generation time from 
the beginning of T 1 (including address latch propaga­
tion time (tIvOV) of the Intel 8282) for the circuit is: 

186 SIGNALS 

A16-

A19 

AD8-

AD15 

ADO­

AD7 

ALE 

/4 

/8 
/ 

/8 
/ 

8282 
I 

STa 

,-- DE 

8282 
I 

STa 

~ Of 

8282 
I 

STa 

~ Of 

-:.:-

0 

0 

0 

tCLAV (44ns) + tIvOV (30Ils) = 74ns 

/ 

/ 

/ 

LATCHED ADDRESS 
SIGNALS 

/4 
A16-A19 

/8 
A8-A15 

/8 
AO-A7 

Figure 7. Demultiplexing the Address Bus of the 80186 

3-444 210973-003 



AP-186 

Many memory or peripheral devices may not require ad­
dresses to remain stable throughout a data transfer. Ex­
amples of these are the 80130 and 80150 operating 
system firmware chips, and the 2186 8K x 8 iRAM. If a 
system is constructed wholly with these types of devices, 
addresses need not be latched. In addition, two of the pe­
ripheral chip select outputs of the 80186 may be config­
ured to provide latched A 1 and A2 outputs for 
peripheral register selects in a system which does not de­
multiplex the address/data bus. 

One more signal is generated by the 80186 to address 
memory: BHE (Bus High Enable). This signal, along 
with AO, is used to enable byte devices connected to ei­
ther or both halves (bytes) of the 16-bit data bus (see 
section 3.1.3 on data bus operation section). Because AO 
is used only to enable devices onto the lower half of the 
data bus, memory chip address inputs are usually driven 
by address bits AI-AI9, NOT AO-A19. This provides 
SI2K unique word addresses, or 1M unique BYTE 
addresses. 

Of course, BHE is not present on the 8 bit 80188. All 
data transfers occur on the 8 bits of the data bus. 

3.1.3 80186 DATA BUS OPERATION 

Throughout T 2' T 3' TW' and T 4 of a bus cycle the multi­
plexed address/data bus becomes a 16-bit data bus. 
Data transfers on this bus may be either in bytes or in 
words. All memory is byte addressable, that is, the upper 
and lower byte of a 16-bit word each have a unique byte 
address by which they may be individually accessed, 
even though they share a common word address (see 
Figure 3-6). 

All bytes with even addresses (AO = 0) reside on the 
lower 8 bits of the data bus, while all bytes with odd ad­
dresses (AO = 1) reside on the upper 8 bits of the data 
bus. Whenever an access is made to only the even byte, 
AO is driven low, BHE is driven high, and the data trans­
fer occurs on DO-D7 of the data bus. Whenever an ac-

cess is made to only the odd byte, BHE is driven low, AO 
is driven high, and the data transfer occurs on D8-D15 
of the data bus. Finally, if a word access is performed to 
an even address, both AO and BHE are driven low and 
the da ta transfer occurs on DO-D 15. 

Word accesses are made to the addressed byte and to the 
next higher numbered byte. If a word access is per­
formed to an odd address, two byte accesses must be per­
formed, the first to access the odd byte at the first word 
address on D8-D1S, the second to access the even byte 
at the next sequential word address on DO-D7. For ex­
ample, in Figure 8, byte 0 and byte I can be individually 
accessed (read or written) in two separate bus cycles 
(byte accesses) to byte addresses 0 and 1 at word address 
O. They may also be accessed together in a single bus cy­
cle (word access) to word address O. However, if a word 
access is made to address 1, two bus cycles will be re­
quired, the first to access byte 1 at word address 0 (note 
byte 0 will not be accessed), and the second to access 
byte 2 at word address 2 (note byte 3 will not be ac­
cessed). This is why all word data should be located at 
even addresses to maximize processor performance. 

When byte reads are made, the data returned on the half 
of the data bus not being accessed is ignored. When byte 
writes are made, the data driven on the half of the data 
bus not being written is indeterminate. 

3.1.4 80188 DATA BUS OPERATION 

Because the 80188 externally has only an 8 bit data bus, 
the above discussion about upper and lower bytes of the 
data bus does not apply to the 80188. No performance 
improvement will occur if word data is placed on even 
boundaries in memory space. All word accesses require 
two bus cycles, the first to access the lower byte of the 
word; the second to access the upper byte of the word. 

Any 80188 access to the integrated peripherals must be 
done 16 bits at a time: thus in this special case, a word 
access will occur in a single bus cycle in the 80188. The 

r --16-BITS::j 

8 BITS-I~8 BITS 
WORD ADDRESS 

4 5 4 I.,,, -"'" ,"OW, 2 2 

0 a 
IN BYTE FIELD 

08· 00- 80186 SIGNAL 
015 07 CONNECTIONS 

Figure 8. Physical Memory Byte/Word Addressing in the 80186 

;3-445 210973-003 



inteJ AP-186 

external data bus will record only a single byte being 
transferred, however. 

3.1.5 GENERAL DATA BUS OPERATION 

Because of the bus drive capabilities of the 80186 
(200pF, sinking 2mA, sourcing 400uA, roughly twice 
that of the 8086), this bus may not require additional 
buffering in many small systems. If data buffers are not 
used in the system, care should be taken not to allow bus 
contention between the 80186 and the devices directly 
connected to the 80186 data bus. Since the 80186 floats 
the address/data bus before activating any command 
lines, the only requirement on a directly connected de­
vice is that it floats its output drivers after a read BE­
FORE the 80186 begins to drive address information for 
the next bus cycle. T~arameter of interest here is the 
minimum time from RD inactive until addresses active 
for the next bus cycle (tRHAV ) which has a minimum val­
ue of 85ns. If the memory or peripheral device cannot 
disable its output drivers in this time, data buffers will 
be required to prevent both the 80186 and the peripheral 
or memory device from driving these lines concurrently. 
Note, this parameter is unaffected by the addition of 
wait states. Data buffers solve this problem because 
their output float times are typically much faster than 
the 80186 required minimum. 

If buffers are required, the 80186 provides a DEN (Data 
ENable) and DT /R: (Data Transmit/Receive) signals 
to simplify buffer interfacing. The DEN and DT /R sig-

80186 SIGNAL 

AD8-D15 

DEN 

BUFFERED 

DEVICES 

SELECT 

ADO- AD7 

DT/R 

S 
8 

~ 
J " 

8 

-. 

nals are activated 'during all bus cycles, whether or not 
the cycle addresses buffered devices. The DEN signal is 
driven low whenever the processor is either ready to re­
ceive data (during a read) or when the processor is ready 
to send data (during a write) (that is, any time during an 
active bus cycle when address information is not being 
generated on the address/data pins). In most systems, 
the DEN signal should NOT be directly connected to 
the OE input of buffers, since unbuffered devices (or 
other buffers) may be directly connected to the proces­
sor's address/data pins. If DEN were directly connected 
to several buffers, contention would occur during read 
cycles, as many devices attempt to drive the processor 
bus. Rather, it should be a factor (along with the chip se­
lects for buffered devices) in generating the output en­
able input of a bi-directional buffer, 

The DT /R: signal determines the direction of data prop­
agation through the bi- directional bus buffers. It is high 
whenever data is being driven out from the processor, 
and is low whenever da ta is being read into the processor. 
Unlike the DEN signal, it may be directly connected to 
bus buffers, since this signal does not usually directly en­
able the output drivers of the buffer. An example data 
bus subsystem supporting both buffered and unbuffered 
devices is shown in Figure 9. Note that the A side of the 
8286 buffer is connected to the 80186, the B side to the 
external device. The B side of the buffer has greater 
drive capacity than the A side (since it is meant to drive 
much greater loads). The DT /R: signal can directly 
drive the T (transmit) signal of the buffer, since it has 
the correct polarity for this configuration. 

8286 
A 

OE B 

T 

8286 

A 

OE B 

T 

/8 
/ 

/8 

/8 

/ 8 
L 

/ 

08-

AD15 

00-

07 

BUFFERED 

DATA 

BUS 

UNBUFFERED 

} DATA 

BUS 

Figure 9. Example 80186 Buffered/Unbuffered Data Bus 

210973-003 
3-446 



inter AP-186 

CLOCK 

OUT 

ADO· 
AD15 

1. tClAZ: Clock low until address float~35 ns max 
2. tCLAl: Clock low until RD active ~ 70 ns max 
3. tAZAl: Address float until RD active ~ 0 ns min 
4. tDVCl: Data valid until clock low (data input set-up time) = 20 ns min" 
5. tCLDX: Clock low until data invalid (data input hold time from clock) = 10 

ns min" 
6. tClAH: Clock low until RD high = IOns min 
7. tRHAV: RD high until addresses valid = 85 ns min 
8. tAHDX: Read high until data invalid (data input hold from RD) = 0 ns min" 
• Input requirements of 80186, all others are output characteristics 

Figure 10. Read Cycle Timing of the 80186 

3.1.6 CONTROL SIGNALS 

The 80186 direc.ili::...£!:ovides the control signals RD, 
WR, LOCK and TE8T. In addition, the 80186 provides 
the status signals 80-82 and 86 from which all other re­
quired bus control signals can be generated. 

3.1.6.1 RD and WR 

The RD and WR si&!!a!s strobe data to or from memory 
or I/O space. The RD signal is driven low off the begin­
?ing ofT2, and is driven high off the beginning offidur-
109 all memory and I/O reads (see Figure 10). RD will 
not become active until the 80186 has ceased driving ad­
dress information on the address/data bus. Data is sam­
pled into the processor at the beginning of T 4' RD will 
not go inactive until the processor's data hold time 
(lOns) has been satisfied. 

LATCH 

52 ----..I D 

Note tha!..!.!!e 80186 does not provide separate I/O and 
memory RD signals. If separate I/O read and memory 
read signals are required, they can be synthesized using 
the 82 signal (which is low for all I/O ~ations and 
high for all memory operations) and the RD signal (see 
Figure 1!.1. It should be noted that if this approach is 
used, the 82 signal will require latching, since the 82 sig­
nal (like 80 and 81) goes t~passive state well before 
the beginning ofT4 (where RD goes inactive). If 82 was 
directly used for this purpose, the type ofread command 
(I/O or memory) could change just before T4 as 82 goes 
to the passive state (high). The status signals may be 
latched using ALE in an identical fashion as is used to 
latch the address signals (often using the spare bits in 
the address latches). 

Often the lack of a seperate I/O and memory RD signal 

Q~---.------~~ 1/0 

READ ALE ----.I STe 

Figure 11. Generating 1/0 and Memory Read Signals from the 80186 

3-447 210973-003 



AP-186 

is not important in an 80186 system. Each of the 80186 
chip select signals will respond on only one of memory or 
I/O accesses (the memory chip selects respond only to 
accesses memory space; the peripheral chip selects can 
respond to accesses in either I/O or memory space, at 
programmer option). Thus, the chip select signal en­
ables the external device only during accesses to the 
proper address in the proper space. 

The WR signal is also driven low off the beginni!!&,Qf T 2 

and driven high off the beginning of T 4' Like the RD sig­
nal, the WR signal is active for all memory and I/O 
writes, and also like the RD signal, separate I/O and 
memory writes may b~nerated using the latched S2 
signal along with the WR signal (see Figure 12). More 

T, 

ADO-

importantly, however, is the active going edge of write. 
At the time WR makes its active (high to low) transi­
tion, valid write data is NOT present on the data bus. 
This has consequences when using this signal as a write 
enable signal for DRAMs and iRAMs since both of 
these devices require that the write data be stable on the 
data bus at the time of the inactive to active transition of 
the WE signal. In DRAM applications, this problem is 
solved by a DRAM controller (such as the Intel 8207 or 
8203), while with iRAMs this problem may be solved by 
placing cross-coupled NAND gates between the CPU 
and the iRAMs on the WR line (see fture l3). This 
will delay the active going edge of the WR signal to the 
iRAMs by a clock phase, allowing valid data to be driv­
en onto the data bus. 

AD15 __ ~~~~-'l ______ -+-=~~ __ ~ ______ ~~r1..~~ __ _ 

Wii 

I 
I 
I I I 

1. tCLDV: Clock low until data valid ~ 44 ns max 
2. tCVCTV: Clock low until WR active ~ 70 ns max 
3. tCVCTX: Clock low until WR inactive ~ 55 ns max 
4. tCLDOX : Clock high until data invalid ~ 10 ns max 

5. WR inactive until data invalid ~ tCLCL min - tCVCTX + tCLDOX 

~125-55+10 

~ 80 ns 

Figure 12. Write Cycle Timing of the 80186 

CLKOUT --------~~~ 

DELAYED 

WRITE 

(DATA VALID 

ON LEADING EDGE) 

Figure 13. Synthesizing Delayed Write from the 80186 

3-448 210973-003 



inter AP-186 

3.1.6.2 Queue Status Signals 

If the RD line is externally grounded during reset and 
remains grounded during processor operation, the 
80186 will enter "queue status" mode. When in this 
mode, the WR and ALE signals become queue status 
outputs, reflecting the status of the internal prefetch 
queue during each clock cycle. These signals are pro­
vided to allow a processor extension (such as the Intel 
8087 floating point processor) to track execution of in­
structions within the 80186. The interpretation of QSO 
(ALE) and QS1 (WR) are given in Table 2. These sig­
nals change on the high-to-Iow clock transition, one 
clock phase earlier than on the 8086. Note that since ex­
ecution unit operation is independent of bus interface 
unit operation, queue status lines may change in any T 
state. 

80186 

3 8288 

SO-52 I--~- SO-52 
BUS CONTROL 

CLOCK SIGNALS 

OUT CLK 

Figure 14. 80186/8288 Bus Controller 
Interconnection 

Table 3. 80186 Status Line Interpretation 

S2 S1 SO I 
Table 2. 80186 Queue Status 

QS1 QSO Interpretation 

0 0 no operation 

Operation 

0 0 0 interrupt acknowledge 1 0 0 1 read I/O 
0 1 0 write I/O 

0 1 first byte of instruction taken 
from queue 

I 0 queue was reinitialized 

1 1 

I 

subsequent byte of instruct~ 
taken from queue 

Since the ALE, RD, and WR signals are not directly 
available from the 80186 when it is configured in queue 
status mogs these signals must be derived from the sta­
tus lines SO-S2 using an external 8288 bus controller 
(see below). To prevent the 80186 from accidentally en­
tering queue status mode during reset, the RD line is in­
ternally provided with a weak pullup device. RD is the 
ONLY three-state or input pin on the 80186 which is 
supplied with a pullup or pulldown device. 

3.1.6.3 Status Lines 

The 80186 provides 3 status outputs which are used to 
indicate the type of bus cycle currently being executed. 
These signals go from an inactive state (all high) to one 
of seven possible active states during the T state immedi­
ately preceding T 1 of a bus cycle (see Figure 5). The pos­
sible status line encodings and their interpretations are 
given in Table 3. The status lines are driven to their inac­
tive state in the T state (T3 or Tw) immediately preced­
ing T 4 of the current bus cycle. 

The status lines may be directly connected to an 8288 
bus controller, which can be used to provide local bus 
control signals or multi-bus control signals (see Figure 
14). Use of the 8288 bus controller does not preclude the 
use of the 80186 generated RD, WR and ALE signals, 
however. The 80186 directly generated signals may be 
used to provide local bus control signals, while an 8288 is 
used to provide multi-bus control signals, for example. 

0 1 1 halt 
1 0 0 instruction fetch 
1 0 1 read memory 
1 1 0 write memory 
1 I 1 passive 

The 80186 provides two additional status signals: S6 
and S7. S7 is equivalent to BHE (see section 3.1.2) and 
appears on the same pin as BHE. BHE/S7 changes 
state, reflecting the bus cycle about to be run, in the mid­
dle of the T state (T 4 or T) immediately preceding T I of 
the bus cycle. This means that BHE/S7 does not need to 
be latched, i.e., it may be used directly as the BHE sig­
nal. S6 provides information concerning the unit gener­
ating the bus cycle. It is time multiplexed with A19, and 
is available during T2, T3, T4 and Tw' In the 8086 family, 
all central processors (e.g., the 8086. 8088 and 8087) 
drive this line low, while all I/O processors (e.g., 8089) 
drive this line high during their respective bus cycles. 
Following this scheme, the 80186 drives this line low 
whenever the bus cycle is generated by the 80186 CPU, 
but drives it high when the bus cycle is generated by the 
integrated 80186 DMA unit. This allows external de­
vices to distinguish between bus cycles fetching data for 
the CPU from those transfering data for the DMA unit. 

Three other status signals are available on the 8086 but 
not on the 80186. They are S3, S4, and SS. Taken to­
gether, S3 and S4 indicate the segment register from 
which the current physical address derives. S5 indicates 
the state of the interrupt flip-flop. On the 80186, these 
signals will ALWAYS be low. 

3.1.6.4 TEST and LOCK 

Finally, the 80186 provides a TEST input and a LOCK 
output. The TEST input is used in conjunction with the 

3-449 210973-003 



intel AP-186 

processor WAIT instruction. It is typically driven by a 
processor extension (like the 8087) to indicate whether 
it is busy. Then, by executing the WAIT (or FWAIT) in­
struction, the central processor may be forced to tempo­
rarily suspend program execution until the processor 
extension indicates that it is idle by driving the TEST 
line low. 

The LOCK output is driven low whenever the data cy~ 
cles of a LOCKED instruction are executed. A 
LOCKED instruction is generated whenever the LOCK 
prefix occurs immediately before an instruction. The 
LOCK prefix is active for the single instruction immedi­
ately following the LOCK prefix. This signal is used to 
indicate to a bus arbiter (e.g., the 8289) that a series of 
locked data transfers is occurring. The bus arbiter 
should under no circumstances release the bus while 
locked transfers are occurring. The 80186 will not rec­
ognize a bus HOLD, nor will it allow DMA cycles to be 
run by the integrated DMA controller during locked 
data transfers. LOCKED transfers are used in multi­
processor systems to access memory based semaphore 
variables which control access to shared system re­
sources (see AP-I06, "Multiprogramming with the 
iAPX88 and iAPX86 Microsystems," by George Alexy 
(Sept. 1980». 

On the 80186, the LOCK signal will go active during T I 
of the first DATA cycle of the locked transfer. It is driv­
en inactive 3 T-states after the beginning of the last 
DATA cycle of the locked transfer. On the 8086, the 
LOCK signal is activated immediately after the LOCK 
prefix is executed. The LOCK prefix may be executed 
well before the processor is prepared to perform the 
locked data transfer. This has the unfortunate conse­
quence of activating the LOCK signal before the first 
LOCKED data cycle is performed. Since LOCK is ac­
tive before the processor requires the bus for the data 
transfer, opcode pre-fetching can be LOCKED. Howev­
er, since the 80186 does not activate the LOCK signal 
until the processor is ready to actually perform the 
locked transfer, locked pre-fetching will not occur with 
the 80186. 

Note that the LOCK signal does not remain active until 
the end of the last data cycle of the locked transfer. This 
may cause problems in some systems if, for example, the 
processor requests memory access from a dual ported 
RAM array and is denied immediate access (because of 
a DRAM refresh cycle, for example). When the proces­
sor finally is able to gain access to the RAM array, it 
may have already dropped its LOCK signal, thus allow­
ing the dual port controller to give the other port access 
to the RAM array instead. An example circuit which 
can be used to hold LOCK active until a RDY has been 
received by the 80186 is shown in Figure 15. 

3.1.7 HALT TIMING 

A HALT bus cycle is used to signal the world that the 

80186 CPU has executed a HLT instruction. It differs 
from a normal bus cycle in two important ways. 

~ --~--------~~r-~ 

so P-=-----l_/>-'---- LOCK 
S1 -------L.-J 

Figure 15. Circuit Holding lock Active Until 
Ready is Returned 

The first way in which a HALT bus cycle differs from a 
normal bus cycle is that since the processor is entering a 
halted state, none of the control lilies (RD or WR) will 
be driven active. Address and data information will not 
be driven by the processor, and no da ta will be returned. 
The second way a HALT bus cycle differs from a normal 
bus cycle is that the SO-S2 status lines go to their passive 
state (all high) during T2 of the bus cycle, well before 
they go to their passive state during a normal bus cycle. 

Like a normal bus cycle, however, ALE is driven active. 
Since no valid address information is present, the infor­
mation strobed into the address latches should be ig­
nored. This ALE pulse can be used, however, to latch the 
HALT status from the SO-S2 status lines. 

The processor being halted does not interfere with the 
operation of any of the 80186 integrated peripheral 
units. This means that if a DMA transfer is pending 
while the processor is halted, the bus cycles associated 
with the DMA transfer will run. In fact, DMA latency 
time will improve while the processor is halted because 
the DMA unit will not be contending with the processor 
for access to the 80186 bus (see section 4.4.1). 

3.1.8 8288 AND 8289 INTERFACING 

The 8288 and 8289 are the bus controller and multi­
master bus arbitration devices used with the 8086 and 
8088. Because the 80186 bus is similar to the 8086 bus, 
they can be directly used with the 80186. Figure 16 
shows an 80186 interconnection to these two devices. 

The 8288 bus cO!!,!roller generates control signals (RD, 
WR, ALE, DT/R, DEN, etc.) for an 8086 maximum 
mode system. It derives its information by decoding sta­
tus lines SO-S2 of the processor. Because the 80186 and 
the 8086 drive the same status information on these 
lines, the 80186 can be directly connected to the 8288 
just as in an 8086 system. Using the 8288 with the 80186 
does not prevent using the 80186 control signals directly. 
Many systems require both local bus control signals and 
system bus control signals. In this type of system, the 
80186 lines could be used as the local signals, with the 

3-450 210973-003 



AP-186 

80186 

--

SO· 
--~ 52 

I ClOCKOUT 

---- - .. --

lCS UCS PCSO 

TO MUlTI·MASTER BUS 

ADDRESS lATCHES & 

DATA BUFFERS 

r 
8288 J SO· ALE 

S2 DE-N 

DT/R 

ClK --~--

I 

Lib L __ 8289 
50-
52 

f----- SYSB/IH,SB-

~ ClK 

Figure 16. 80186/8288/8289 Interconnection 

8288 lines used as the system signals. Note that in an 
80186 system, the 8288 generated ALE pulse occurs lat­
er than that of the 80 J 86 itself. In many multimaster 
bus systems, the 8288 ALE pulse should be used to 
strobe the addresses into the system bus address latches 
to insure that the address hold times are met. 

The 8289 bus arbiter arbitrates the use of a multi-mas­
ter system bus among various devices each of which can 
become thcJ~.u~aster. This component also decodes 
status lines SO-S2 of the processor directly to determine 
when the system bus is required. When the system bus is 
required, the 8289 forces the processor to wait until it 

ARDY 

has acquired control of the bus, then it allows the proces­
sor to drive address, data and control information onto 
the system bus. The system determines when it requires 
system bus resources by an address decode. Whenever 
the address being driven coincides with the address of an 
on-board resource, the system bus is not required and 
thus will not be requested. The circuit shown factors the 
80186 chip select lines to determine when the system bus 
should be requested, or when the 80186 request can be 
satisfied using a local resource. 

3.1.9 READY INTERFACING 

The 80186 provides two ready lines, a synchronous 
ready ~SRDY) line and an asynchronous ready 
(ARDY) line. These lines signal the processor to insert 
wait states (Tw) into a CPU bus cycle. This allows slower 
devices to respond to CPU service requests (reads or 
writes). Wail states will only be inserted when both 
ARDY and SRDY are low, i.e., only one of ARDY or 
SRDY need be active to terminate a bus cycle. Any 
number 8f wait state~ may be inserted into a bUf; cycle. 
The 80186 will ignore the RDY inputs during any ac­
cesses to the integrated peripheral registers, and to any 
area where the chip select ready bits indicate that the 
external ready should be ignored. 

The timing required by the two RDY lines is different. 
The ARDY line is meant to be used with asynchronous 
ready inputs. Thus, inputs to this line will be internally 
synchronized to the CPU clock before being presented to 
the processor. The synchronization circuitry used with 
the ARDY line is shown in Figure 17. Figure 18A and 
18B show valid and invalid transitions ofthe ARDY line 
(and subsequent wait state insertion), The first flip-flop 
is used to "resolve" the asynchronous transition of the 
ARDY line. It will achieve a definite level (either high 
or low) before its output is latched into the second f1ip-

INPUT ,- - -- -- - - - - 80186 - - - - - -- -- ~ 

TaBUS : [I' I:IO)~D-c-D-CD 0 0 

i "" l' ~ C 
1 CLOCK-
L ___________ ~ _________ ~ 

INTERFACE 

UNIT 

FROM SYNCHRONOUS 
READY 

1. Asyncllronous Resolution Flip Flop 
2. Ready Latch Flip Flop 

NOTE: The second flip-flop is not actually in the circuit. It is drawn here only 
to show the functional equivalent of the interface to the BIU. 

Figure 17. Asynchronous Ready Circuitry of the 80186 

3-451 210973-003 



AP-186 

flop for presentation to the CPU. When latched high, it 
allows the level present on the ARDY line to pass direct­
ly to the CPU; when latched low, it forces not ready to be 
presented to the CPU (see Appendix B for 80186 syn­
chronizer information). 

With this scheme, notice that only the active going edge 
of the ARDY signal is synchronized. Once the synchro­
nization flip-flop has sampled high, the ARDY input di­
rectly drives the RDY flip-flop. Since inputs to this 
RDY flip-flop must satisfy certain setup and hold times, 
it is important that these setup and hold times (tARYLCL 
= 35ns and tCHARYX = 15 ns respectively) be satisfied 

by any inactive going transition of the ARDY line. The 
reason ARDY is implemented in this manner is to allow 
a slow device the greatest amount of time to respond 
with a not ready after it has been selected. In a normally 
ready system, a slow device must respond with a not 
ready quickly after it has been selected to prevent the 
processor from continuing and accessing invalid data 
from the slow device. By implementing ARDY in the 
above fashion, the slow device has an additional clock 
phase to respond with a not ready. 

If RDY is sampled active into the RDY flip-flop at the 
beginning of T3 or Tw (meaning that ARDY was sam-

CLOCK 
OUT 

ARDY 

T, T3 
I 
I 

~ 
1. No set-up or hold times required 
2. tCLARYX: Clock low to ARDY inactive (ARDY active hold time) = 15 ns min 

I ~ I ~ I ~ : ~ 

CLOCK~ OUT 

CD 0\D 
ARDY ......................... _ ...................... 

1. tARYHCH: ARDY valid until clock high (ARDY inactive set-up time to clock 
high) = 20 ns min 

2. No set-up or hold time required ONLY if (j) is guaranteed 
3. tCLARYX: Clock low to ARDY inactive (ARDY active hold time) = 15 ns min 

T, I T3 I Tw : T, 

'~:~ 
ARDY_ ~ 

1. tARYLCL: ARDY low to clock low (ARDY inactive set-up time to clock low) = 

35 ns min 
must be satisfied since synchronizing FLI P-FLOP has sampled 
active 

2. tARYHCH: ARDY high to clock high (ARDY active set-up time) = 20 ns min 
must be satisfied ONLY to guarantee recognition at the next clock 
(i.e. to guarantee synchronizing FLIP-FLOP will sample ARDY 
active) 

3. tCLARYX: Clock low to ARDY inactive (ARDY active hold time) = 15 ns 

Figure 18A. Valid ARDY Transitions 

3-452 
210973-003 



inter AP-186 

T2 Ta 

CLOCK 
OUT 

ARDY 

CD LESS THAN 3S ns 

CLOCK 

OUT 

ARDY 

1. Less than 20 ns 
2. Less than 35 ns 

Figure 18B. Invalid ARDY Transitions 

pled high into the synchronization flip-flop in the middle 
of a T state, and has remained high until the beginning 
of the next T state), that T state will be immediately fol­
lowed by T 4' If RDY is sampled low into the RDY flip­
flop at the beginning of T 3 or Tw (meaning that either 
ARDY was sampled low into the synchronization flip­
flop OR that ARDY was sampled high into the synchro­
nization flip-flop, but has subsequently changed to low 
before the ARDY setup time) that Tstate will be imme­
diately followed by a wait state (Tw)' Any asynchronous 
transition on the ARDY line not occurring during the 
above times, that is, when the processor is not "looking 
at" the ready lines, will not cause CPU malfunction. 

CLOCK 
OUT 

SRDY 

Again, for ARDY to force wait states to be inserted, 
SRDY must be driven low, since they are internally 
ORed together to form the processor RDY signal. 

The synchronous ready (SRDY) line requires that ALL 
transitions on this line during T 2' T 3 or Tw sa tisfy a cer­
tain setup and hold time (tSRYCL = 35 ns and tCLSRY = 
15 ns respectively). If these requirements are not met, 
the CPU will not function properly. Valid transitions on 
this line, and subsequent wait state insertion is shown in 
Figure 19. The processor looks at this line at the begin­
ning of each T3 and Two If the line is sampled active at 
the beginning of either ofthese two cycles, that cycle will 

1. Decision: Not ready, T-state will be followed by a wait state 
2. Decision: Ready, T-state will not be followed by a wait state 
3. tSRYCl: Synchronous ready stable until clock low (SRDY set-up 

time) ~ 35 ns min 

4. tClSRY: 

Clock low until synchronous ready transition (SRDY hold time) ~ 
15 ns min 

Figure 19. Valid SRDY transitions on the 80186 

3-453 210973-003 



inteJ AP-186 

be immediately followed by T 4' On the other hand, if the 
line is sampled inactive at the beginning of either of 
these two cycles, that cycle will be followed by a Tw' Any 
asynchronous transition on the SRDY line not occurring 
at the beginning of T 3 or Tw, that is, when the processor 
is not "looking at" the ready lines will not cause CPU 
malfunction. 

3.1.10 BUS PERFORMANCE ISSUES 

Bus cycles occur sequentially, but do not necessarily 
come immediately one after another, that is the bus may 
remain idle for several T states (T;) between each bus 
access initiated by the 80186. This occurs whenever the 
80186 internal queue is full and no read/write cycles are 
being requested by the execution unit or integrated 
DMA unit. The reader should recall that a separate 
unit, the bus interface unit, fetches opcodes (including 
immediate data) from memory, while the execution unit 
actually executes the pre-fetched instructions. The num­
ber of clock cycles required to execute an 80186 instruc­
tion vary from 2 clock cycles for a register to register 
move to 67 clock cycles for an integer divide. 

If a program contains many long instructions, program 
execution will be CPU limited, that is, the instruction 
queue will be constantly filled. Thus, the execution unit 
does not need to wait for an instruction to be fetched. If a 
program contains mainly short instructions or data 
move instructions, the execution will be bus limited. 
Here, the execution unit will be required to wait often 
for an instruction to be fetched before it continues its op­
eration. Programs illustrating this effect and perfor­
mance degradation of each with the addition of wait 
states are given in appendix G. 

All instruction fetches are word (16-bit) fetches from 
even addresses. unless the fetch occurs as a result of a 
jump to an odd location. This maximizes the utilization 

of each bus cycle used for instruction fetching, since 
each fetch will access two bytes of information. It is also 
good programming practice to locate all word data at 
even locations, so that both bytes of the word may be ac­
cessed in a single bus cycle (see discussion on data bus 
interfacing for further information, section 3.1.3 of this 
note). 

Although the amount of bus utilization, i.e., the percent­
age of bus time used by the 80186 for instruction fetch­
ing and execution required for top performance will vary 
considerably from one program to another, a typical in­
struction mix on the 80186 will require greater bus utili­
zation than the 8086. This is caused by the higher 
performance execution unit requiring instructions from 
the prefetch queue at a greater ratc. This also means 
that the effect of wait states is more pronounced in an 
80186 system than in an 8086 system. In all but a few 
cases, however, the performance degradation incurred 
by adding a wait state is less than might be expected be­
cause instruction fetching and execution are performed 
by separate units. 

3.2 Example Memory Systems 
3.2.1 2764 INTERFACE 
With the above knowledge of the 80186 bus, various 
memory interfaces may be generated. One of the sim­
plest of these is the example EPROM interface shown in 
Figure 20. 

The addresses are latched using the address generation 
circuit shown earlier. Note that the AO line of each 
EPROM is connected to the Al address line from the 
80186, NOT the AO line. Remember, AO only signals a 
data transfer on the lower 8 bits of the 16-bit data bus! 
The EPROM outputs are connected directly to the ad­
dress/data in~ofthe 80186, and the 80186 RD signal 
is used as the OE for the EPROMs. 

2764 2764 

lics 
A13 

A1 
RD 

ADO·AD7 

AD8-AD15 

CE ~ CE 
)3 )3 A12 

~ 
A12 

/ / AO AO 

DE 

I 
OE 

00-07 00·07 

i 
8 I 

/8 
/ 

Figure 20. Example 2764/80186 Interface 

210973-003 
3-454 



in1:el AP-186 

The chip enable of the EPROM is driven directly by the 
chip select output of the 80186 (see section 8). In this 
configuration, the access time calculation for the 
EPROMs are: 

time from 
address: (3 + N)*tCLCL -tCLAV - t1vav(8282) - tovCL 

= 375 + (N * 125) - 44 - 30 - 20 

=281+(N*125)ns 

time from 
chip select: (3 + N)*tCLcL - tCLCSV - tovCL 

= 375 + (N* 125) - 66 -- 20 

= 289 + (N * 125) ns 

time from 
RD (OE): (2 -r N)tCLCL - tCLRL -- tovCL 

where: 

= 250 + (N * 125) - 70 - 20 

=160+(N*125)ns 

tCLAV = time from clock low in T1 until addresses 
are valid 

tCLCL = clock period of processor 

t rvav = time from input valid of 8282 until output 
valid of 8282 

SHE I 

tOVCL = 186 data valid input setup time until clock 
low time of T 4 

lCLCSY = time from clock low in T 1 until chip selects 
are valid 

tCLRL = time from clock low in T 2 until RD goes low 

N = number of wait states inserted 

Thus, for 0 wait state operation, 250ns EPROMs must 
be used. The only significant Erameter not included 
above is tRHAy, the time from RD inactive (high) until 
the 80186 begins driving address information. This pa­
rameter is 85ns, which meets the 2764-25 (250ns speed 
selection) output float time of 85ns. If slower EPROMs 
arc used, a discrete data buffer MUST be inserted be­
tween the EPRO;v[ data lines and the address/data bus, 
since these devices may continue to drive data informa­
tion on the multiplexed address/data bus when the 
80186 begins to drive address information for the next 
bus cycle. 

3.2 .. 2 2186 INTERFACE 

An example interface between the 80186 and 2186 
iRAMs is shown in Figure 21. This memory component 
is almost an ideal match with the 80186, because of its 
large integration, and its not requiring address latching. 

-, 
1./ 

AO 

CLKOUT 

WR 

L 1)---

Fio 

AROY 

ADO· 
A015 

---1> 

~ 

-I 
]~ 2186 

CE 
---

I WE 

DE 
4.7K 

:::J ,---- AO·A12 

ROY 

00-07 

A01.13)" 8)I'AOO-

A013 A07 

Figure 21. Example 2186/80186 Interface 

3-455 

2186 - CE 

L.......-.o. WE 

OE 

,--- AO·A12 

I 
ROY 

00-07 

131' V A01- B/VAD8-

A013 AD15 

210973-003 



AP-186 

The 2186 internally is a dynamic RAM integrated with 
refresh and control circuitry. It operates in two modes, 
pulse mode and late cycle mode. Pulse mode is entered if 
the CE signal is low to the device a maximum of 130ns, 
and requires the command input (RD or WE) to go ac­
tive within 90ns after CEo Because of these require­
ments, interfacing the 80186 to the 2186 in pulse mode 
would be difficult. Instead, the late cycle mode is used; 
This affords a much simpler interface with no loss of 
performance. The iRAM automatically selects between 
these modes by the nature of the control signals. 

The 2186 is a leading edge triggered device. This means 
that address and data information are strobed into the 
device on the active going (high to lo~transition of the 
command signal. This requires both CE and WR be de­
layed until the address and data driven by the 80186 are 
guaranteed stable. Figure 21 shows a simple circuit 
which can be used to perform this function. Note that 
ALE CANNOT be used to delay CE if addresses are not 
latched externally, because this would violate the ad­
dress hold time required by the 2186 (30ns). 

Because the 2186s are RAMs, data bus enables (BHE 
and AO, see previous section) MUST be used to factor 
either the chip enables or write enables of the lower and 
upper bytes of the l6-bit RAM memory system. If this is 
not done, all memory writes, including single byte 
writes, will write to both the upper and lower bytes of the 
memory system. The examp!t?.!Ystem shown uses BHE 
and AO as factors to the 2186 CEo This may be done, be­
cause both of these signals (AO and BHE) are valid 
when the address information is valid from the 80186. 

The 2186 requires a certain amount of recovery time be­
tween its chip enable going inactive and its chip enable 
going active insure proper operation. For a "norma!" cy­
cle (a read or write), this time is tEHEL = 40ns. This 
means that the 80186 chip select lines will go inactive 
soon enough at the end of a bus cycle to provide the re­
quired recovery time even if two consecutive accesses are 
made to the iRAMs. If the 2186 CE is asserted without a 
command signal (WE or OE), a "False Memory Cycle" 
(FMC) will be generated. Whenever a FMC is generat­
ed, the recovery time is much longer; another memory 
cycle must not be initiated for 200ns. As a result, if the 
memory system will generate FMCs, CE must be taken 
away in the middle of the T state (T3 or Tw) immediately 
preceding T 4 to insure two consecutive cycles to the 
iRAM will not violate this parameter. Status going pas­
sive (all high) can be used for this purpose. These lines 
will all go high during the first phase of the next to last T 
state (either T3 or Tw) ofa bus cycle (see section 3.I.S). 

Finally, since it is a dynamic device, the 2186 requires 
refresh cycles to maintain data integrity. The circuitry 
to generate these refresh cycles is integrated within the 
2186. Because of this, the 2186 has a ready line which is 
used to suspend processor operation if a processor RAM 

access coincides with an internally generated refresh cy­
cle. This is an open collector output, allowing many of 
them to be wire-OR'ed together, since more than one de­
vice may be accessed at at time. These lines are also nor­
mally ready, which means that they will be high 
whenever the 2186 is not being accessed, i.e., they will 
only be driven low if a processor request coincides with 
an internal refresh cycle. Thus, the ready lines from the 
iRAM must be factored into the 80186 RDY circuit 
only during accesses to the iRAM itself. Since the 2186 
refresh logic operates asynchronously to the 80186, this 
RDY line must be synchronized for proper operation 
with the 80186, either by the integrated ready synchro­
nizer or by an external circuit. The example circuit uses 
the integrated synchronizer associated with the ARDY 
processor input. 

The ready lines of the 2186 are active unless a processor 
access coincides with an internal refresh cycle. These 
lines must go inactive soon enough after a cycle is re­
quested to insert wait states into the data c~. The 
2186 will drive this line low within SOns after CE is re­
ceived,which is early enough to force the 80186 to insert 
wait states if they are required. The primary concern 
here is that the ARDY line be driven not active before 
its setup time in the middle of T 2' This is required by the 
nature of the asynchronous ready synchronization cir­
cuitry of the 80186. Since the RDY pulse of the 2186 
may be as narrow as SOns, if ready was returned after 
the first stage of the synchronizer, and subsequently 
changed state within the ready setup and hold time of 
the high to low going edge of the CPU clock at the end of 
T2, improper operation may occur (see section 3.1.6). 

The example interface shown has a zero wait state RAM 
read access time from CE of: 

where: 

3 * tCLCL - tCLCSV - (TTL delay) - tDvCL 
= 375 - 66 - 30 - 20 ns 

= 2S9 ns 

tCLCL = CPU clock cycle time 

tCLCSV = time from clock low in T 1 until chip selects 
are valid 

tDvCL = 80186 data in setup time before clock low in 
T4 

The data valid delay from OE active is less than lOOns, 
and is therefore not an access time limiter in this inter­
face. Additionally, the 2186 data float time from RD in­
active is less than the 8Sns 80186 imposed maximum. 
The CE generation circuit shown in Figure 21 provides 
an address setup time of at least Ilns, and an address 
hold time of at least 3Sns (assuming a maximum two 
level TTL delay ofless than 30ns). 

3-456 210973-003 



AP-186 

Write cycle address setup and hold times are identical to 
the read cycle times. The circuit shown provides at least 
11 ns write data setup and lOOns data hold time from 
WE, easily meeting the Ons setup ,and 40ns hold times 
required by the 2186. 

For more information concerning 2186 timing and in­
terfacing, please consult the 2186 data sheet, or the ap­
plication note AP-132, "Designing Memory Systems 
with the 8Kx8 iRAM" by John Fallin and William 
Righter (June 1982). 

3.2.3 8203 DRAM INTERFACE 

An example 8203/DRAM interface is shown in Figure 
22. The 8203 provides all required DRAM control sig­
nals, address multiplexing, and refresh generation. In 
this circuit, the 8203 is configured to interface with 64K 
DRAMs. 

MCSl 

MCSO 

A17·A1 

ARDY 

AOO-A015 

U 

~ 

17/ 

-

~ 

~ 
>--r--

'--

'----

All 8203 cycles are generated off control signals (RD 
and WR) provided by the 80186. These signals will not 
go active until T 2 of the bus cycle. In addition, since the 
8203 clock (generated by the internal crystal oscillator 
of the 8203) is asynchronous to the 80186 clock, all 
memory requests by the 80186 must be synchronized to 
the 8203 before the cycle will be run. To minimize this 
synchronization time, the 8203 should be used with the 
highest speed crystal that will maintain DRAM com­
patibility. Even if a 25 MHz crystal is used (the maxi­
mum allowed by the 8203) two wait states will be 
required by the example circuit when using 150ns 
DRAMs with an 8 MHz 80186. three wait states if 
200ns DRAMs are used (see timing analysis, Figure 
23). 

The entire RAM array controlled by the 8203 can be se­
lected by one or a group of the 80186 provided chip se­
lects. These chip selects can also be used to insert the 
wait states required by the interface. 

"'-

:J.J-
22fl 22!l 

8203 J SEt: WR UPPER LOWER 
BYTE WE BYTE WE 

AD-
A16, WE e-
BO 
SACK DRAMsi 

XACK 
RO 

t 
/-

" 010-15 
8282 DOO-15 

000-7 

OE 010-7 -
STB 

8282 

000-7 

OE 010-7 f---

STB 

Figure 22. Example 8203/DRAM/80186 Interface 

3-457 210973-003 



AP-186 

T, 

186 ____ ,....~;., 

RD 

8203 ____________ ~--..... 

RAS 

8203 
CAS -----t-----+---~-+_ ... 

RAM ~~~~~~~~nn~~~~~~~~~~.r----4------------
DATA ~~~~~~~~UUUU~~~~~UUUU~UU'~ __ -+~ ________ __ 

LATCH 

DATA 

1. tClEl: Clock low until read low = 70 ns max 
2. tCR: Command active until RAS = 150 ns max· 
3. tcc: Command active until CAS = 245 ns max· 
4. tCAC: Access time from CAS = 85 ns max 
5. tISOU: Input to output delay = 30 ns max 

Q) & ® are 186 specs 
@ & @ are 8203 specs 
@isa2164A-15 spec 
® is on 8282 spec 

6. tOVCl: Data valid to clock low (data in set up) = 20 ns min ·Assumes 25MHz 
8203 operation Total Access Time = 70 + 245 +85 +30 +20 = 450 ns (3.6 T-states) 

Figure 23. 8203/2164A-15 Access Time Calculation 

Since the 8203 is operating asynchronously to the 
80186, the RDYoutput of the 8203 (used to suspend 
processor operation when a processor DRAM request 
coincides with a DRAM refresh cycle) must be synchro­
nized to the 80186. The 80186 ARDY lineis used to pro­
vide the necessary ready synchronization. The 8203 
ready outputs operate in a normally not ready mode, 
that is, they are only driven active when an 8203 cycle is 
being executed, and a refresh cycle is not being run. This 
is fundamentally different than the normally ready 
mode used by the 2186 iRAMs (see previous section). 
The 8203 SACK signal is presented to the 80186 only 
when the DRAM is being accessed. Notice that the 
SACK output of the 8203 is used, rather than the 
XACK output. Since the 80186 will insert at least one 
full CPU clock cycle between the time RDY is sampled 
active, and the time data must be present on the data 
bus, using the XACK signal would insert unnecessary 
additional wait states, since it does not indicate ready 
until valid data is available from the memory. 

For more information about 8203/DRAM interfacing 
and timing, please consult the 8203 data sheet, or 
AP97A, "Interfacing Dynamic RAM to iAPX86/88 

Systems Using the Intel 8202A and 8203" by Brad May 
(April 1982). 

3.2.4 8207 DRAM INTERFACE 

The 8207 advanced dual-port DRAM controller pro­
vides a high performance DRAM memory interface 
specifically for 80186 or 80286 microcomputer systems. 
This controller provides all address multiplexing and 
DRAM refresh circuitry. In addition, it synchronizes 
and arbitrates memory requests from two different ports 
(e.g., an 80186 and a Multibus), allowing the two ports 
to share memory. Finally, the 8207 provides a simple in­
terface to the 8206 error detection and correction chip. 

The simplest 8207 (and also the highest performance) 
interface is shown in Figure 24. This shows the 80186 
connected to an 8207 using the 8207 slow cycle, synchro­
nous status interface. In this mode, the 8207 decodes the 
type of cycle to be run directly from the status lines of 
the 80186. In addition, since the 8207 CLOCKIN is 
driven by the CLOCKOUT of the 80186, any perfor­
mance degradation caused by required memory request 
synchronization between the 80186 and the 8207 is not 
present. Finally, the entire memory array driven by the 

3-458 210973-003 



inter AP-186 

8207 may be selected using one or a group of the 80186 
memory chip selects, as in the 8203 interface above. 

80186 8207 

ClKOUT ClK 
- - -+ 
SO WR 

U 51 RD PCTC 

5 

52 PCTl 

LMCS PE 
AIICK 

SRDY --0(]- I 

Figure 24. 80186/8207/DRAM Interface 

The 8207 AACK signal may be used to generate a syn­
chronous ready signal to the 80186 in the above inter­
face. Since dynamic memory periodically requires 
refreshing, 80186 access cycles may occur simulta­
neously with an 8207 generated refresh cycle. When this 
occurs, the 8207 will hold the AACK line high until the 
processor initiated access is run (note, the sense of this 
line is reversed with respect to the 80186 SRDY input). 
This signal should be factored with the DRAM (8207) 
select input and used to drive the SRDY line of the 
80186. Remember that only one of SRDY and ARDY 
needs to be active for a bus cycle to be terminated. If 
asynchronous devices (e.g., a Multibus interface) are 
connected to the ARDY line with the 8207 connected to 
the SRDY line, care must be taken in design ofthe ready 
circuit such that only one of the RDY lines is driven ac­
tive at R time to prevent premature termination of the 
bus cycle. 

3.3 HOlD/HlDA Interface 

The 80186 employs a HOLD/HLDA bus exchange pro­
tocol. This protocol allows other asynchronous bus mas­
ter devices (i.e., ones which drive address, data, and 
control information on the bus) to gain control of the bus 
to perform bus cycles (memory or I/O reads or writes). 

3.3.1 HOLD RESPONSE 

In the HOLD/HLDA protocol, a device requiring bus 
control (e.g., an external DMA device) raises the 
HOLD line. In response to this HOLD request, the 
80186 will raise its HLDA line after it has finished its 
current bus activity. When the external device is finished 
with the bus, it drops its bus HOLD request. The 80186 
responds by dropping its HLDA line and resuming bus 
operation. 

When the 80186 recognizes a bus hold by driving 
HLDA high, it will float many of its signals i!ee Figure 
25). ADO - ADI5 (address/data 0-15) and DEN (data 
enable) are floated within tCLAZ (35ns) after the same 
clock edge that HLDA is driven active. AI6-·AI9 (ad­
dresU6 - 19), RD, WR, BHE (B~H~h Enable), 
DT /R (Data Transmit/Receive) and SO - S2 (status 0-
2) are floated within tCHCZ (45ns) after the clock edge 
immediately before the clock edge on which HLDA 
comes active. 

CLOCK 

OUT 

HOLD ----~------+_~~------~-----

HlDA ----~----+-~~ 

AD15-ADO ---"'7"'-~-":-,-_1-.:..F.::;LO::::A::,:T'---+-__ _ 
DEN ________ ~--__ j 

A16-A19 

RD, WR,BHE '"t ___ -:-----:F..:l;.:;O""AT"----';, 
. ,----

DT/R,SO-52 __ ~-----J , 

Figure 25. Signal Float/HLDA Timing of the 80186 

Only the above mentioned signals are floated during bus 
HOLD. Of the signals not floated by the 80186, some 
have to do with peripheral functionality (e.g., TmrOut). 
Many others either directly or indirectly control bus de­
vices. These signals are ALE (Address Latch Enable, 
see section 3.1.2) and all the chip select lines (UCS, 
LCS, MCSO-3, ~nd PCSO-6). The designer must be 
aware that the chip select circuitry does not look at ex­
ternally generated addresses (see section 10 for a discus­
sion of the chip select logic). Thus, for memory or 
peripheral devices which are addressed by external bus 
master devices, discrete chip select and ready generation 
logic must be used. 

3.3.2 HOLD/HLDA TIMING AND BUS LATENCY 

The time required between HOLD going active and the 
80186 driving HLDA active is known as bus latency. 
Many factors affect this latency, including synchroniza­
tion delays, bus cycle times, locked transfer times and 
interrupt acknowledge cycles. 

The HOLD request line is internally synchronized by 
the 80186, and may therefore be an asynchronous sig­
nal. To guarantee recognition on a certain clock edge, it 
must satisfy a certain setup and hold time to the falling 

3-459 
210973-003 



inter Ap·186 

edge of the CPU clock. A full CPU clock cycle is re­
quired for this synchronization, that is, the internal 
HOLD signal is not presented to the internal bus arbi­
tration circuitry until one full clock cycle after it is 
latched from the HOLD input (see Appendix B for a dis-

cussion of 80186 synchronizers). If the bus is idle, 
HLDA will follow HOLD by two CPU clock cycles plus 
a small amount of setup and propagation delay time. 
The first clock cycle synchronizes the input; the second 
signals the internal circuitry to initiate a bus hold. (see 
Figure 26). 

HOLD 

HLDA ____________________________ J 

Many factors influence the number of clock cycles be­
tween a HOLD request and a HLDA. These may make 
bus latency longer than the best case shown above. Per­
haps the most important factor is that the 80186 will not 
relinquish the local bus until the bus is idle. An idle bus 
occurs whenever the 80186 is not performing any bus 
transfers. As stated in section 3.1.1, when the bus is idle, 
the 80186 generates idle T-states. The bus can become 
idle only at the end of a bus cycle. Thus, the 80186 can 
recognize HO LD only after the end of its current bus cy­
cle. The 80186 will normally insert no T j states between 
T 4 and T 1 of the next bus cycle if it requires any bus ac­
tivity (e.g., instruction fetches or I/O reads). However, 
the 80186 may not have an immediate need for the bus 
after a bus cycle, and will insert T j states independent of 
the HOLD input (see section 3.1.7). 

1. tHVCL: Hold valid until clock low ~ 25 ns min 
2. tCLHAV: Clock low until HLDA active ~ 50 ns max 

Figure 26. 80186 Idle Bus Hold/HLDA Timing 
When the HOLD request is active, the 80186 will be 

CLOCK 
OUT 

HOLD 

HLDA 

T, OR 

Tw 

1. Decision: No additional internal bus cycles required, idle T-states will be 
inserted after T 4 

2. Greater than 25 ns (tHVCL) 
3. Less than 50 ns (tCLHAV) 
4. HOLD request internally synchronized 

CLOCK 
OUT 

HOLD 

HLDA 

T, OR 

1 Tw : ~ 1 ~ 

~1 
1 I I 
I I I 

I I 1 

0:. CD -..: : 
I I I 

1. Decision: Additional internal bus cycles required, no idle T-states will be 
inserted, Hold not active soon enough to force idle T-states 

2. Greater than 25 ns (tHVCL): not required since it will not get recognized 
anyway 

3. HOLD request internally synchronized 

Figure 27. HOLD/HLDA Timing in the 80186 

3-460 
210973-003 



AP·186 

CLOCK 
OUT 

HOLD 
I" .. I 
I I 
I I 

HLDA 

1. HOLD request internally synchronized 
2. Decision: HOLD request active, idle t-states will be inserted at end of 

current bus cycle 
3. Greater than 25 ns 
4. Less than 50 ns 

Figure 27A. HOLD/HLDA Timing in the 80186 

forced to proceed from T 4 to T j in order that the bus may 
be relinquished. HOLD must go active 3 T-states before 
the end of a bus cycle to force the 80186 to insert idle T­
states after T4 (one to synchronize the request, and one 
to signal the 80186 that T 4 of the bus cycle will be fol­
lowed by idle T-states, see section 3.1.1). After the bus 
cycle has ended, the bus hold will be immediately ac­
knowledged. If, however, the 80186 has already deter­
mined that an idle T-state will follow T4 of the current 
bus cycle, HOLD need go active only 2 T-states before 
the end of a bus cycle to force the 80186 to relinquish the 
bus at the end of the current bus cycle. This is because 
the external HOLD request is not required to force the 
generation of idle T-states. Figure 27 graphically por­
trays the scenarios depicted above. 

An external HOLD has higher priority than both the 
80186 CPU or integrated DMA unit. However, an exter­
nal HOLD will not separate the two cycles needed to 
perform a word access when the word accessed is located 
at an odd location (see section 3.1.3). In addition, an ex­
ternal HOLD will not separate the two-to-four bus cy­
cles required to perform a DMA transfer using the 
integrated controller. Each of these factors will add ad­
ditional bus cycle times to the bus latency of the 80186. 

Another factor influencing bus latency time is locked 
transfers. Whenever a locked transfer is occurring, the 
80186 will not recognize external HOLDs (nor will it 
recognize internal DMA bus requests). Locked trans­
fers are programmed by preceding an instruction with 
the LOCK prefix. Any transfers generated by such a 
prefixed instruction will be locked, and will not be sepa­
rated by any external bus requesting device. String in­
structions may be locked. Since string transfers may 

require thousands of bus cycles, bus latency time will 
suffer if they are locked. 

The final factor affecting bus latency time is interrupt 
acknowledge cycles. When an external interrupt con­
troller is used, or.if the integrated interrupt controller is 
used in iRMX 86 mode (see section 4.4.1) the 80186 will 
run two interrupt acknowledge cycles back to back. 
These cycles are automatically "locked" and will never 
be separated by any bus HOLD, either internal or exter­
nal. See section 6.5 on interrupt acknowledge timing for 
more information concerning interrupt acknowledge 
timing. 

3.3.3 COMING OUT OF HOLD 
After the 80186 recognizes that the HOLD input has 
gone inactive, it will drop its HLDA line in a single 
clock. Figure 28 shows this timing. The 80186 will insert 
only two T j after HLDA has gone inactive, assuming 
that the 80186 has internal bus cycles to run. During the 
last T j , status information will go active concerning the 
bus cycle about to be run (see section 3.1.1). If the 
80186 has no pending bus activity, it will maintain all 
lines floating (high impedance) until the last T j before it 
begins its first bus cycle after the HOLD. 

3.4 Differences Between the 8086 bus and 
the 80186 Bus 

The 80186 bus was defined to be upward compatible 
with the 8086 bus. As a result, the 8086 bus interface 
components (the 8288 bus controller and the 8289 bus 
arbiter) may be used directly with the 80186. There are 
a few significant differences between the two processors 
which should be considered. 

210973·003 
3-461 



AP-t86 

CLOCK 

OUT 

HOLD ---"\ 

T, T, 

HLDA --------~-------~~ 

ADO-AD1S 

DEN ------------------------------~--_L ____ __ 
A16/53-A19/S6 

RD,WR,BHE ------:------:.----...:.---'( 
DT/R,sa-52 '--+------

1. HOLD internally synchronized 
2. Greater than 25 ns 
3. Less than 50 ns 
4. Lines come out of float only if a bus cycle is pending 

Figure 28_ 80186 Coming out of Hold 

CPU Duty Cycle and Clock Generator 

The 80186 employs an integrated clock generator which 
provides a 50% duty cycle CPU clock (l /2 of the time it 
is high, the other 1/2 of the time it is low). This is differ­
ent that the 8086, which employs an external clock gen­
erator (the 8284A) with a 33% duty cycle CPU clock 
(1/3 of the time it is high, the other 2/3 of the time, it is 
low). These differences manifest themselves as follows: 

I) No oscillator output is available from the 80186, 
as it is available from the 8284A clock generator. 

2) The 80186 does not provide a PCLK (50% duty 
cycle, 1/2 CPU clock frequency) output as does 
the 8284A. 

3) The clock low phase of the 80186 is narrower, 
and the clock high phase is wider than on the 
same speed 8086. 

4) The 80186 does not internally factor AEN with 
RDY. This means that if both RDY inputs 
(ARDY and SRDY) are used, external logic 
must be used to prevent the RDY not connected 
to a certain device from being driven active dur­
ing an access to this device (remember, only one 
RDY input needs to be active to terminate a bus 
cycle, see sectipn 3.1.6). 

5) The 80186 concurrently provides both a single 
asynchronous ready input and a single synchro­
nous ready input, while the 8284A provides ei-

ther two synchronous ready inputs or two 
asynchronous ready inputs as a user strapable 
option. 

6) The CLOCKOUT (CPU clock output signal) 
drive capacity of the 80186 is less than the CPU 
clock drive capacity of the 8284A. This means 
that not as many high speed devices (e.g., 
Schottky TTL flip-flops) may be connected to 
this signal as can be used with the 8284A clock 
output. 

7) The crystal or external oscillator used by the 
80186 is twice the CPU clock frequency, while 
the crystal or external oscillator used with the 
8284A is three times the CPU clock frequency. 

Local Bus Controller and Control Signals 

The 80186 simultaneously provides both local bus con­
troller outputs (RD, WR, ALE, DEN and DT /R) and 
status outputs (SO, S 1, S2) for use with the 8288 bus 
controller. This is different from the 8086 where the lo­
cal bus controller outputs (generated only in min mode) 
are sacrificed if status outputs ( generated only in max 
mode) are desired. These differences will manifest 
themselves in 8086 systems and 80186 systems as 
follows: 

I) Because the 80186 can simultaneously provide 
local bus control signals and status outputs, 
many systems supporting both a system bus (e.g., 

3-462 210973-003 



inter AP-186 

a Multibus®) and a local bus will not require two 
separate external bus controllers, that is, the 
80186 bus control signals may be used to control 
the local bus while the 80186 status signals are 
concurrently connected to the 8288 bus control­
ler to drive the control signals of the system bus. 

2) The ALE signal of the 80186 goes active a clock 
phase earlier on the 80186 then on the 8086 or 
8288. This minimizes address propagation time 
through the address latches, since typically the 
delay time through these latches from inputs val­
id is less than the propagation delay from the 
strobe input active. 

3) The 80186 R D input must be tied low to provide 
queue status outputs from the 80186 (see Figure 
29). When so s~ped into "queue status mode," 
the ALE and WR outputs provide queue status 
information. Notice that this queue status infor­
mation is available one clock phase earlier from 
the 80186 than from the 8086 (see Figure 30). 

80186 

aso---~ ALE 

aS1---~ VIR 

Figure 29. Generating Queue Status Information 
from the 80186 

HOLD/HLDA vs. RQ/GT 

As discussed earlier, the 80186 uses a HOLD/HLDA 
type of protocol for exchanging bus mastership (like the 
8086 in min mode) rather than the RQ/GT protocol 
used by the 8086 in max mode. This allows compatiblity 
with Intel's the new generation of high performance/ 
high integration bus master peripheral devices (for ex-

CLOCK 

OUT 

186 

ample the 82586 Ethernet" controller or 82730 high 
performance CRT controller /text coprocessor). 

Status Information 

The 80186 does not provide S3-S5 status information. 
On the 8086, S3 and S4 provide information regarding 
the segment register used to generate the physical ad­
dress of the currently executing bus cycle. S5 provides 
information concerning the state of the interrupt enable 
flip-flop. These status bits are always low on the 80186. 

Status signal S6 is used to indicate whether the current 
bus cycle is initiated by either the CPU or a DMA de­
vice. Subsequently, it is always low on the 8086. On the 
80186, it is low whenever the current bus cycle is initiat­
ed by the 80186 CPU, and is high when the current bus 
cycle is initiated by the 80186 integrated DMA unit. 

Bus Drive 

The 80186 output drivers will drive 200pF loads. This is 
double that of the 8086 (iOOpF). This allows larger sys­
tems to be constructed without the need for bus buffers. 
[t also means that it is very important to provide good 
grounds to the 80186, since its large drivers can dis­
charge its outputs very quickly causing large current 
transients on the 80186 ground pins. 

Misc. 

The 80186 does not provide early and late write signals, 
as does the 8288 bus controller. The WR signal generat­
ed by the 80186 corresponds to the early write signal of 
the 8288. This means that data is not stable on the ad­
dress/data bus when this signal is driven active. 

The 80186 also does not provide differentiated I/O and 
memory read and write command signals. If these sig­
nals are desired, an external 8288 bus controller may be 
used, or the S2 signal may be used to synthesize differ­
entiated commands (see section 3.1.4). 

'Ethernet is a registered trademark of Xerox Corp. 

as ________ -+ ________ ~--__ ~\--+_----J~_*--------

8086 --------;-------.....,--------~~,.__----_Ir ... ,.-----as ____________________________ ~'~ ____ ~J~ ____ __ 

1. 80186 changes queue status off falling edge of ClK 
2. 8086 changes queue status off rising edge of ClK 

Figure 30. 80186 and 8086 Queue Status Generation 

3-463 
210973-003 



inter AP-186 

4. DMA UNIT INTERFACING 
The 80186 includes a DMA unit which provides two in· 
dependent high speed DMA channels. These channels 
operate independently of the CPU, and drive all inte­
grated bus interface components (bus controller, chip se­
lects, etc.) exactly as the CPU (see Figure 31). This 
means that bus cycles initiated by the DMA unit are ex­
actly the same as bus cycles initiated by the CPU (ex­
cept that S6 = 1 during all DMA initiated cycles, see 
section 3.1). Thus interfacing with the DMA unit itself 
is very simple, since except for the addition of the DMA 
request connection, it is exactly the same as interfacing 
to the CPU. 

EXTERNAL ADDRESS/DATA, 

CONTROL, CHIP SELECTS, 
ETC. 

BUS INTERFACE 

& 

CHIP SELECT CIRCUITRY 

DMA 

REQUESTS 

Figure 31. 80186 CPU/DMA Channel 

Internal Model 

4.1 DMA Features 
Each of the two DMA channels provides the following 
features: 

Independent 20-bit source and destination pointers 
which are used to access the I/O or memory location 
from which data will be fetched or to which data will 
be deposited 

Programmable auto-increment, auto-decrement or 
neither of the source and destination pointers after 
each DMA transfer 

Programmable termination of DMA activity after a 
certain number of DMA transfers 

Programmable CPU interruption at DMA termina­
tion 

Byte or word DMA transfers to or from even or odd 
memory or I/O addresses 

Programmable generation of DMA requests by: 

1) the source of the data 

2) the destination of the data 

3) timer 2 (see section 5) 

4) the DMA unit itself (continuous DMA requests) 

4.2 DMA Unit Programming 
Each of the two DMA channels contains a number of 
registers which are used to control channel operation. 
These registers are included in the 80186 integrated pe­
ripheral control block (see appendix A). These registers 
include the source and destination pointer registers, the 
transfer count register and the control register. The lay­
out and interpretation of the bits in these registers is giv­
en in Figure 32. 

The 20-bit source and destination pointers allow access 
to the complete 1 Mbyte address space of the 80186, and 
that all 20 bits are affected by the auto-increment or 
auto-decrement unit of the DMA (i.e., the DMA 
channels address the full 1 Mbyte address space of the 
80186 as a flat, linear array without segments). When 
addressing I/O space, the upper 4 bits of the DMA 
pointer registers should be programmed to be 0. If they 
are not programmed 0, then the programmed value 
(greater than 64K in I/O space) will be driven onto the 
address bus (an area of I/O space not accessable to the 
CPU). The data transfer will occur correctly, however. 

After every DMA transfer the 16-bit DMA transfer 
count register it is decremented by I, whether a byte 
transfer or a word transfer has occurred. If the TC bit in 
the DMA control register is set, the DMA ST /STOP 
bit (see below) will be cleared when this register goes to 
0, causing all DMA activity to cease. A transfer count of 
zero allows 65536 (2 16) transfers. 

The DMA control register (see Figure 33) contains bits 
which control various channel characteristics, including 
for each of the data source and destination whether the 
pointer points to memory or I/O space, or whether the 
pointer will be incremented, decremented or left alone 
after each DMA transfer. It also contains a bit which se­
lects between byte or word transfers. Two synchroniza­
tion bits are used to determine the source of the DMA 
requests (see section 4.7). The TC bit determines wheth­
er DMA activity will cease after a programmed number 
of DMA transfers, and the INT bit is used to enable in­
terrupts to the processor when this has occurred (note 
that an interrupt will not be generated to the CPU when 
the transfer count register reaches zero unless both the 
INT bit and the TC bit are set). 

The control register also contains a start/stop 
(ST /STOP) bit. This bit is used to enable DMA 
transfers. Whenever this bit is set, the channel is 

3-464 
210973-003 



AP-186 

x 

OFFSET 

DEH 

DCH 

DAH 

D8H 

D6H 

D4H 
D2H 

DOH 
CEH 

CCH 

CAH 

C8H 

C6H 
C4H 

C2H 
COH 

1-- I 
15 

15 

15 

X 

I 
15 

)( 

15 
)( 

15 

(1) CONTROL REGISTER LAYOUT: 

~----..--

X 

I I I 

X 

1 1 1 

)( 

)( 

X 

1 L Ixl 1 L 
0 

119 16 

0 

J19 16 

0 

X 

1 1 Ixl I I 
0 

)( J19 16 

0 

)( 119 16 

0 

CONTROL WORD 

TRANSFER COUNT 

DESTINATION POINTER 

SOURCE POINTER CHANNEL 1 t 

CHANNEL O~ 
CONTROL WORD 

TRANSFER COUNT 

DESTINATION POINTER 

SOURCE POINTER 

DESTINATION SOURCE SYNCHRONIZATION 

Figure 32. 80186 DMA Register Layout 

15 

Figure 33. DMA Control Register 

"armed," that is, a DMA transfer will occur whenever a 
DMA request is made to the channel. If this bit is 
cleared, no DMA transfers will be performed by the 
channel. A companion bit, the CHG/NOCHG bit, 
allows the contents of the D MA control register to be 
changed without modifying the state of the start/stop 
bit. The ST /STOP bit will only be modified if the 
CHG/NOCHG bit is also set during the write to the 
DMA control register. The CHG/NOCHG bit is 
write only. It will always be read back as a O. Because 
DMA transfers could occur immediately after the 
ST /STOP bit is set, it should only be set only after all 
other DMA controller registers have been programmed. 
This bit is automatically cleared when the transfer count 
register reaches zero and the TC bit in the DMA control 
register is set, or when the transfer count register 
reaches zero and unsynchronized D MA transfers are 
programmed. 

All DMA unit programming registers are directly 
accessable by the CPU. This means the CPU can, for ex­
ample, modify the DMA source pointer register after 
137 DMA transfers have occurred, and have the new 
pointer value used for the 138th DMA transfer. If more 
than one register in the DMA channel is being modified 
at any time that a DMA request may be generated and 
the DMA channel is enabled (the ST /STOP bit in the 
control register is set), the register programming values 
should be placed in memory locations and moved into 
the DMA registers using a locked string move instruc­
tion. This will prevent a DMA transfer from occurring 
after only half of the register values have changed. The 
above also holds true if a read/modify/write type of op­
eration is being performed (e.g., ANDing off bits in a 
pointer register in a single AND instruction to a pointer 
register mapped into memory space). 

210973-003 
3-465 



AP-186 

I T, I T, T, T, Tw Tw T, T, T, T, T4 
CLOCK ! I 

OUT~ 
I I 

~ \ I 
I I 

ORO I I 1 I 
I I I 1 

ADO· I 

~ 100 
I 

CD 0: I : 0: 1 
AD15 

I I I 
RD I I I I 

\ J I I 
1 I 

1 I I 
I I I 

WR :\ lr 
I I 

1. Source addr ss 
2. Source data 
3. Destination address 
4. Destination data 

NOTE: Wait states are inserted by the bus condition during the bus cycle, not by the DMA controller 

Figure 34. Example DMA Transfer Cycle on the 80186 

4.3 DMA Transfers 

Every DMA transfer in the 80186 consists of two inde­
pendent bus cycles, the fetch cycle and the deposit cycle 
(see Figure 34). During the fetch cycle, the byte or word 
data is accessed from memory or I/O space using the ad­
dress in the source pointer register. The data accessed is 
placed in an internal temporary register, which is not ac­
cessible to the CPU. During the deposit cycle, the byte 
or word da ta in this internal register is placed in memory 
or I/O space using the address in the destination pointer 
register. These two bus cycles will not be separated by 
bus HOLD or by the other DMA channel, and one will 
never be run without the other except when the CPU is 
RESET. Notice that the bus cycles run by the DMA 
unit are exactly the same as memory or I/O bus cycles 
run by the CPU. The only difference between the two is 
the state of the S6 status line (which is multiplexed on 
the A 19 line): on all CPU initiated bus cycles, this status 
line will be driven low; on all DMA initiated bus cycles, 
this status line will be driven high. 

4.4 DMA Requests 
Each DMA channel has a single DMA request line by 
which an external device may request a DMA transfer. 
The synchronization bits in the DMA control register 
determine whether this line is interpreted to be connect­
ed to the source of the DMA data or the destination of 
the D MA data. All transfer requests on this line are syn­
chronized to the CPU clock before being presented to in-

ternal DMA logic. This means that any asynchronous 
transitions of the DMA request line will not cause the 
DMA channel to malfunction. In addition to external 
requests, DMA requests may be generated whenever the 
internal timer 2 times out, or continuously by program­
ming the synchronization bits in the DMA control regis­
ter to call for un synchronized DMA transfers. 

4.4.1 DMA REQUEST TIMING AND LATENCY 

Before any DMA request can be generated, the 80186 
internal bus must be granted to the DMA unit. A certain 
amount of time is required for the CPU to grant this in­
ternal bus to the DMA unit. The time between a DMA 
request being issued and the DMA transfer being run is 
known as DMA latency. Many of the issues concerning 
DMA latency are the same as those concerning bus la­
tency (see section 3.3.2). The only important difference 
is that external HOLD always has bus priority over an 
internal DMA transfer. Thus, the latency time of an in­
ternal DMA cycle will suffer during an external bus 
HOLD. 

Each DMA channel has a programmed priority relative 
to the other DMA channel. Both channels may be pro­
grammed to be the same priority, or one may be pro­
grammed to be of higher priority than the other channel. 
If both channels are active, DMA latency will suffer on 
the lower priority channel. If both channels are active 
and both channels are of the same programmed priority, 
DMA transfer cycles will alternate between the two 
channels (i.e., the first channel will perform a fetch and 

3-466 
210973·003 



inter AP-186 

T3 0r 

Tw or Tw or 

T4 0r 

Tw or 

1 
1 
1 
1 

1 

T, 

olDMA 

T, T, T, 1 T, CYCLE 

~
iI1011, 

1 I I 1 I 
CD 

ORO 
I I 

I. ~I I 
1 G) I 1 
1 I 

~I.~~~--.~I I 
CD 1 I 

1. tOROCL ~ DMA request to clock low ~ 25 ns min to guarantee recognition 
2. Synchronizer resolution time 
3. DMA unit priority arbitration, etc. time 
4. Bus Interrace unit latches DMA requesl and decides to run DililA cycie 

Figure 35. DMA Request Timing on the 80186 (showing minimum response time to request) 

deposit, followed by a fetch and deposit by the second 
channel, etc). 

The minimum timing required to generate a DMA cycle 
is shown in Figure 35. Note that the minimum time from 
DRQ becoming active until the beginning of the first 
DMA cycle is 4 CPU clock cycles, that is, a DMA rei 
que~t is sampled 4 c1oc!c cycles before the beginning of a 
bus cycle to determine if any DMA activity will be re­
quired. This time is independent of the number of wait 
slales inserted in the bus cycle. The maximum DMA la­
tency is a function of other procc5sor activity (see 
above). 

80186 

ADDR. 

LATCH 

A6 

Also notice that if DRQ is sampled active at 1 in Figure 
35, the DMA cycle will be executed, even if the DMA 
request goes inactive before the beginning of the first 
DMA cycle. This does not mean that the DMA request 
is latched into the processor such that any transition on 
the DMA request line will cause a DMA cycle eventual­
ly. Quite the contrary, DMA request must be active at a 
certain time before the end of a bus cycle for the DMA 
request to be recognized by the processor. If the DMA 
request line goes inactive before that window, then no 
DMA cycles will be run. 

DMA DEVICE 

ALE~--------------------------~ 
DMA 
ACKNOWLEDGE 

PCSO I----------------.------..... ----------<-l CHIP SET 

DROO .------1 DMA REQUEST 

Figure 36. DMA Acknowledge Synthesis from the 80186 

3-467 210973-003 



AP-186 

4.5 DMA Acknowledge 

The 80186 generates no explicit DMA acknowledge sig­
nal. Instead, the 80186 performs a read or write directly 
to the DMA requesting device. If required, a DMA ac­
knowledge signal can be generated by a decode of an ad­
dress, or by merely using one of the PCS lines (see 
Figure 36). Note ALE must be used to factor the DACK 
because addresses are not guaranteed stable when chip 
selects go active. This is ~ired because if the address 
is not stable when the PCS goes active, glitches can 
occur at the output of the DACK generation circuitry as 
the address lines change state. Once ALE has gone low, 
the addresses are guaranteed to have been stable for at 
least tAVAl (30ns). 

4.6 Internally Generated DMA Requests 

There are two types in internally synchronized DMA 
transfers, that is, transfer initiated by a unit integrated 
in the 80186. These two types are transfers in which the 
DMA request is generated by timer 2, or where DMA 
request is generated by the DMA channel itself. 

The DMA channel can be programmed such that when­
ever timer 2 reaches its maximum count, a DMA re­
quest will be generated. This feature is selected by 
setting the TDRQ bit in the DMA channel control regis­
ter. A DMA request generated in this manner will be 
latched in the DMA controller, so that once the titner re­
quest has been generated, it cannot be cleared except by 
running the DMA cycle or by clearing the TDRQ bits in 
both DMA control registers. Before any DMA requests 
are generated in this mode, timer 2 must be initiated and 
enabled. 

A timer requested DMA cycle being run by either DMA 
channel will reset the timer request. Thus, if both chan­
nels are using it to request a DMA cycle, only one DMA 
channel will execute a transfer for every timeout of tim­
er 2. Another implication of having a single bit timer 
DMA request latch in the DMA controller is that if an­
other timer 2 timeout occurs before a DMA channel has 
a chance to run a DMA transfer, the first request will be 
lost, i.e., only a single DMA transfer will occur, even 
though the timer has timed out twice. 

The DMA channel can also be programmed to provide 
its own DMA requests. In this mode, DMA transfer cy­
cles will be run continuously at the maximum bus band­
width, one after the other until the preprogrammed 
number of DMA transfers (in the DMA transfer count 
register) have occurred. This mode is selected by pro­
gramming the synchronization bits in the DMA control 
register for un synchronized transfers. Note that in this 
mode, the DMA controller will monopolize the CPU 
bus, i.e., the CPU will not be able to perform opcode 
fetching, memory operations, etc., while the DMA 
transfers are occurring. Also notice that the DMA will 
only perform the number of transfers indicated in the 

maximum count register regardless of the state of the 
TC bit in the DMA control register. 

4.7 Externally Synchronized DMA 
Transfers 

There are two types of externally synchronized DMA 
transfers, that is, DMA transfers which are requested by 
an external device rather than by integrated timer 2 or 
by the DMA channel itself (in unsynchronized trans­
fers). These are source synchronized and destination 
synchronized transfers. These modes are selected by 
programming the synchronization bits in the DMA 
channel control register. The only difference between 
the two is the time at which the DMA request pin is sam­
pled to determine if another DMA transfer is immedi­
ately required after the currently executing DMA 
transfer. On source synchronized transfers, this is done 
such that two source synchronized DMA transfers may 
occur one immediately after the other, while on destina­
tion synchronized transfers a certain amount of idle 
time is automatically inserted between two DMA trans­
fers to allow time for the DMA requesting device to 
drive its DMA request inactive. 

4.7.1 SOURCE SYNCHRONIZED 
DMA TRANSFERS 

In a source synchronized DMA transfer, the source of 
the DMA data requests the DMA cycle. An example of 
this would be a floppy disk read from the disk to main 
memory. In this type of tra nsfer, the device requesting 
the transfer is read during the fetch cycle of the DMA 
transfer. Since it takes 4 CPU clock cycles from the time 
DMA request is sampled to the time the DMA transfer 
is actually begun, and a bus cycle takes a minimum of 4 
clock cycles, the earliest time the DMA request pin will 
be sampled for another DMA transfer will be at the be­
ginning of the deposit cycle of a DMA transfer. This al­
lows over 3 CPU clock cycles between the time the 
DMA requesting device receives an acknowledge to its 
DMA request (around the beginning ofT2 of the DMA 
fetch cycle), and the time it must drive this request inac­
tive (assuming no wait states) to insure that another 
DMA transfer is not performed if it is not desired (see 
Figure 37). 

4.7.2 DESTINATION SYNCHRONIZED 
DMA TRANSFERS 

In destination synchronized DMA transfers, the desti­
nation of the DMA data requests the DMA transfer. An 
example of this would be a floppy disk write from main 
memory to the disk. In this type of transfer, the device 
requesting the transfer is written during the deposit cy­
cle of the DMA transfer. This causes a problem, since 
the DMA requesting device will not receive notification 
of the DMA cycle being run until 3 clock cycles before 
the end of the DMA transfer (if no wait states are being 

3-468 . 210973-003 



AP-186 

FETCH CYCLE DEPOSIT CYCLE 

T, T, T, T, T, T, T, 

ORO --~----~----~----+-~ 

80186 DECISION: 

1. Current DMA source synchronized transfer will not be immediately 
followed by another DMA transfer 

DEPOSIT CYCLE 

NEXT 

DMA 

TRANSFER 

: T, : T, T, ~ ~: ~ ~ J ~ I ~ : 

Lll_ .... !LJl~nn.JLfi .. 

80186 Decision: 

1. Current DMA destination synchronized transfer will be followed 
immediately by another DMA transfer 

Figure 37. Source & Destination Synchronized DMA Request Timing 

inserted into the deposit cycle of the DMA transfer) and 
it takes 4 clock cycles to determine whether another 
DMA cycle should be run immediately following the 
current DMA transfer. To get around this problem, the 
DMA unit will relinquish the CPU bus after each desti­
nation synchronized DMA transfer for at least 2 CPU 
clock cycles to allow the DMA requesting device time to 
drop its DMA request if it does not immediately desire 
another immediate DMA transfer. When the bus is re­
linquished by the DMA unit, the CPU may resume bus 
operation (e.g., instruction fetching, memory or I/O 
reads or writes, etc.) Thus, typically, a CPU initiated 
bus cycle will be inserted between each destination syn­
chronized DMA transfer. If no CPU bus activity is re­
quired, however (and none can be guaranteed), the 
DMA unit will insert only 2 CPU clock cycles between 
the deposit cycle of one DMA transfer and the fetch cy­
cle of the next DMA transfer. This means that the DMA 
destination requesting device must drop its DMA re­
quest at least two clock cycles before the end of the de­
posit cycle regardless of the number of wait states 
inserted into the bus cycle. Figure 37 shows the DMA 
request going away too late to prevent the immediate 
generation of another DMA transfer. Any wait states in­
serted in the deposit cycle of the DMA transfer will 

lengthen the amount of time from the beginning of the 
deposit cycle to the time DMA will be sampled for an­
other DMA transfer. Thus, if the amount of time a de­
vice requires to drop its DMA request after receiving a 
DMA acknowledge from the 80186 is longer than the 0 
wait state 80186 maximum {l00 ns), wait states can be 
inserted into the DMA cycle to lengthen the amount of 
time the device has to drop its DMA request after receiv­
ing the DMA acknowledge. Table 4 shows the amount of 
time between the beginning of T 2 and the time DMA re­
quest is sampled as wait states are inserted in the DMA 
deposit cycle. 

Table 4. DMA Request Inactive Timing 

Max Time(ns) 
Number of For DRO Inactive 
Wait States From Start of T 2 

0 100 

1 225 

2 350 

3 475 

3-469 
210973-003 



inter AP-186 

DMA FETCH CYCLE 

DRQ 
(ALWAYS 

HIGH) 

NMI / I- + 0) CD 
I 
I 

DHLT 
(INTERNAL 
REGISTER 

BIT) 

1 DMA request synchronization 
2. Decision: Will DMA cycle be run? 

Answer: No DMA request is active but DHLT is set 
(from NMI request) 

3. NMI synchronization time 

DMA DEPOSIT CYCLE 

I I I 
I. .1. .1 
I CD I CD I 

·1 

/ 

4. Logic delay time from synchronized NMI until DHLT set (note: DHLT is in 
the interrupt control status register) 

Figure 38. NMI and DMA Interaction 

4.8 DMA Halt and NMI 

Whenever a Non-Maskable Interrupt is received by the 
80186, all DMA activity will be suspended after the end 
of the current DMA transfer. This is performed by the 
NMI automatically setting the DMA Halt (DHLT) bit 
in the interrupt controller status register (see section 
6.3.7). The timing of NMI required to prevent a DMA 
cycle from occurring is shown in Figure 38. After the 
NMI has been serviced, the DHLT bit should be cleared 
by the programmer, and DMA activity will resume ex­
actly where it left off, i.e., none of the DMA registers 
will have been modified. The DMA Halt bit is not auto­
matically reset after the NMI has been serviced. It is 
automatically reset by the IRET instruction. This DMA 
halt bit may also be set by the programmer to prevent 
DMA activity during any critical section of code. 

4.9 Example DMA Interfaces 

4.9.1 8272 FLOPPY DISK INTERFACE 

An example DMA Interface to the 8272 Floppy Disk 
Controller is shown in Figure 39. This shows how a typi­
cal DMA device can be interfaced to the 80186. An ex­
ample floppy disk software driver for this interface is 
given in Appendix C. 

The data lines of the 8272 are connected, through buff­
ers, to the 80186 ADO-AD7 lines. The buffers are re­
quired because the 8272 will not float its output drivers 
quickly enough to prevent contention with the 80186 
driven address information after a read from the 8272 
(see section 3.1.3). 

DMA acknowledge for the 8272 is driven by an address 
decode within the region assigned to PCS2. If 
PCS2 is assigned to be active between I/O locations 
OSOOH and OS7FH, then an access to I/O location 
OSOOH will enable only the chip select, while an access to 
I/O location OSI OH will enable both the chip select and 
the DMA acknowledge. Remember, ALE must be fac­
tored into the DACK generation logic because addresses 
are not guaranteed stable when the chip selects become 
active. If ALE were not used, the DACK generation cir­
cuitry could glitch as address output changed state while 
the chip select was active. 

Notice that the TC line of the 8272 is driven by a very 
similar circuit as the one generating DACK (except for 
the reversed sense of the output!). This line is used to ter­
minate an 8272 command before the command has com­
pleted execution. Thus, the TC input to the 8272 is 
software driven in this case. Another method of driving 
the TC input would be to connect the DACK signal to 
one of the 80186 timers, and program the timer to out-

210973-003 

3-470 



AP-186 

ORQ - 0 Q r------- 0 QJ 
7474 7474 

e. CL c. CL 

1 1 ORQ 

CLKOUT f-t> ClK 

-
PCS2 CS 

ALE b- OACK 

AOOR 

LATCH 8272 J 
-~ TC t>. FLOPPY 

DISK 

TERFACE 
AO 

DATA 

/ 
OBO-

A07- ADO BUF-
8/ 8' OB7 

FER 

ItO lID 

WP INA 

RESET -.--- . RESET 

C. ~ 7474 CLOCK INPUT 

CL ~ 7474 CLEAR INPUT 

Figure 39. Example 8272/80186 DMA Interface 

put a pulse to the 8272 after a certain number of DMA 
cycles have been run (see next section for 80186 timer 
informa tion). 

The above discussion assumed that a single 80186 
PCS line is free to generate all 8272 select signals. If 
more than one ch~lect is free, however, different 
80186 generated PCS lines could be used for each 
function. For example, PCS2 could be used to select 
the 8272, PCS3 could be used to drive the DACK line 
of the 8272, etc. 

DMA requests are delayed by two clock periods in going 
from the 8272 to the 80186. This is require.iQy the 8272 
tRQR (time from DMA request to DMA RD going ac­
tive) spec of 800ns min. This requires 6.4 80186 CPU 

clock cycles (at 8 MHz), well beyond the 5 minimum 
provided by the 80186 (4 clock cycles to the beginning of 
the DMA bus cycls..5 to the beginning ofT 2 ofthe DMA 
bus cycle where RD will go active). The two flip-flops 
add two complete CPU clock cycles to this response 
time. 

DMA request will go away 200ns after DACK is pre­
sented to the 8272. During aDMA write cycle (i.e., a 
destination synchronized transfer), this is not soon 
enough to prevent the immediate generation of another 
DMA transfer if no wait states are inserted in the depos­
it cycle to the 8272. Therefore, at least 1 wait state is re­
quired by this interface, regardless of the data access 
parameters of the 8272. 

3-471 210973-003 



AP-186 

4.9.2 8274 SERIAL 
COMMUNICATION INTERFACE 

An example 8274 synchronous/asynchronous serial 
chip/80186 DMA interface is shown in Figure 40. The 
827 4 interface is even simpler than the 8272 interface, 
since it does not require the generation of a DMA ac­
knowledge signal, and the 8274 does not require the 
length of time between a DMA request and the DMA 
read or write cycle that the 8272 does. An example serial 
driver using the 8274 in DMA mode with the 80186 is 
given in Appendix C. 

8274 

DROO TxDRO. 

DROl RxDRO. 

ADDR / r- AO,Al 
LATCH 2/ 

o/v 
A1.2 8286 

ADO·AD7 
A,/ 

DATA / DBO-DB7 
8/ 

BUFFER 
g 

RD RD 

WR WR 

RESET RESET 

Figure 40. Example 8274/80186 DMA Interface 

The data lines of the 8274 are connected through buffers 
to the 80186 ADO-AD7Iines. Again, these are required 
not because of bus drive problems, but because the 8274 
will not float its drivers before the 80186 will begin driv­
ing address information on its address/data bus. If both 
the 8274 and the 8272 are included in the same 80186 
system, they could share the same data bus buffer (as 
could any other peripheral devices in the system). 

The 8274 does not require a DMA acknowledge signal. 
The first read from or write to the data register of the 
8274 after the 8274 generates the DMA request signal 
will clear the DMA request. The time between when the 
control signal (RD or WR) becomes active and 
when the 8274 will drop its DMA request during a 
DMA write is 150ns, wliich will require at least one wait 
state be inserted into the DMA write cycle for proper op­
eration of the interface. 

5. TIMER UNIT INTERFACING 

The 80186 includes a timer unit which provides three in­
dependent 16-bit timers. These timers operate indepen­
dently of the CPU. Two of these have input and output 
pins allowing counting of external events and generation 
of arbitrary waveforms. The third timer can be used as a 
timer, as a prescaler for the other two timers, or as a 
DMA request source. 

5.1 Timer Operation 

The internal timer unit on the 80186 could be modeled 
by a single counter element, time multiplexed to three 
register banks, each of which contains different control 
and count values. These register banks are, in turn, dual 
ported between the counter element and the 80186 CPU 
(see Figure 41). Figure 42 shows the timer element se­
quencing, and the subsequent constraints on input and 
output signals. If the CPU modifies one of the timer reg­
isters, this change will affect the counter element the 
next time that register is presented to the counter ele­
ment. There is no connection between the sequencing of 
the counter element through the timer register banks 
and the Bus Interface Unit's sequencing through T­
states. Timer operation and bus interface operation are 
completely asynchronous. 

5.2 Timer Registers 

Each timer is controlled by a block of registers (see Fig­
ure 43). Each of these registers can be read or written 
whether or not the timer is operating. All processor ac­
cesses to these registers are synchronized to all counter 
element accesses to these registers, meaning that one 
will never read a count register in which only half of the 
bits have been modified. Because of this synchroniza­
tion, one wait state is automatically inserted into any ac­
cess to the timer registers. Unlike the DMA unit, 
locking accesses to timer registers will not prevent the 
timer's counter element from accessing the timer 
registers. 

Each timer has a 16-bit count register. This register is 
incremented for each timer event. A timer event can be a 
low-to-high transition on the external pin (for timers 0 
and 1), a CPU clock transition (divided by 4 because of 
the counter element multiplexing), or a time out of timer 
2 (for timers 0 and 1). Because the count register is 16 
bits wide, up to 65536 (2 16) timer events can be counted 
by a single timer / counter. This register can be both read 
or written whether the timer is or is not operating. 

Each timer includes a maximum count register. When­
ever the timer count register is equal to the maximum 
count register, the count register will be reset to zero, 
that is, the maximum count value will never be stored in 
the count register. This maximum count value may be 
written while the timer is operating. A maximum count 

3-472 210973-003 



TIMER IN 
o 

TIMER IN 
1 

TIMER OUT 
o 

TIMER OUT 
1 

CPU 

1. Timer in a resolution time 
2. Timer in 1 resolution time 

DMA 

REQUEST 

To T, 
IN IN 

Figure 41. 80186 Timer Model 

TIMER 1 

SERVICED 

TIMER 2 

SERVICED 

3. Modified count-value written into 80186 timer a count register 
4. Modified count value written into 80186 timer 1 count register 

DEAD 

To OUT 

T,OUT 

TIMER 0 

SERVICED 

Figure 42. 80186 Counter Element Multiplexing and Timer Input Synchronization 

3-473 210973-003 



AP-186 

COUNT REGISTER 

OFFSET 

50H 

52H 

54H 

56H 
58H 

5AH 

5CH 
SEH 

60H 

62H 

64H 
66H 

------------
MAX COUNT REGISTER A 

TIMER 0 ------------
MAX COUNT REGISTER B 

- CONTROL REGISTER~~ - - - -

COUNT REGISTER ------------
_ MAX COUNT REGISTER~ ____ 

TIMER 1 
MAX COUNT REGISTER B 

- CONTROL REGISTER 11L - - - -
COUNT REGISTER ------------
MAX COUNT REGISTER 

TIMER 2 --'""-----------X X X 
- CONTROL REGISTERli - - - -

CD CONTROL REGISTER LAYOUT 

EN IINH lINT I RIU I 

15 o 

Figure 43. 80186 Timer Register Layout 

value of 0 implies a maximum count of 65536, a maxi­
mum count value of I implies a maximum count of I, 
etc. The user should be aware that only equivalence be­
tween the count value and the maximum count register 
value is checked, that is, the count value will not be 
cleared if the value in the count register is greater than 
the value in the maximum count register. This could only 
occur by programmer intervention, either by setting the 
value in the count register greater than the value in the 
maximum count register, or by setting the value in the 
maximum count register to be less than the value in the 
count register. If this is programmed, the timer will 
count to the maximum possible count (FFFFH), incre­
ment to 0, then count up to the value in the maximum 
count register. The TC bit in the timer control register 
will not be set when the counter overflows to 0, nor will 
an interrupt be generated from the timer unit. 

Timers 0 and I each contain an additional maximum 
count register. When both maximum count registers are 
used, the timer will first count up to the value in maxi­
mum count register A, reset to zero, count up to the val­
ue in maximum count register B, and reset to zero again. 
The ALTernate. bit in the timer control register deter­
mines whether one or both maximum count registers are 
used. If this bit is low, only maximum count register A is 
used; maximum count register B is ignored. If it is high, 
both maximum count register A and maximum count 
register B are used. The RIU (register in use) bit in the 
timer control register indicates which maximum count 
register is currently being used. This bit is 0 when maxi­
mum count register A is being used, 1 when maximum 
count register B is being used. This RIU bit is read only. 
It is unaffected by any write to the timer control register. 
It will always be read 0 in single maximum count regis-

ter mode (since only maximum count register A will be 
used). 

Each timer can generate an interrupt whenever the tim­
er count value reaches a maximum count value. That is, 
an interrupt can be generated whenever the value in 
maximum count register A is reached, and whenever the 
value in maximum count register B is reached. In addi­
tion, the MC (maximum count) bit in the timer control 
register is set whenever the timer count reaches a maxi­
mum count value. This bit is never automatically 
cleared, i.e., programmer intervention is required to 
clear this bit. If a timer generates a second interrupt re­
quest before the first interrupt request has been ser­
viced, the first interrupt request to the CPU will be lost. 

Each timer has an ENable bit in the timer control regis­
ter. This bit is used to enable the timer to count. The tim­
er will count timer events only when this bit is set. Any 
timer events occurring when this bit is reset are ignored. 
Any write to the timer control register will modify the 
ENable bit only if the INHibit bit is also set. The timer 
ENable bit will not be modified by a write to the timer 
control register if the INHibit bit is not set. The INHibit 
bit in the timer control register allows selective updating 
of the timer ENable bit. The value of the INHibit bit is 
not stored in a write to the timer control register; it will 
always be read as a 1. 

Each timer has a CONTinuous bit in the timer control 
register. If this bit is.c1eared, the timer ENable bit will 
be automatically cleared at the end of each timing cycle. 
If a single maximum count register is used, the end of a 
timing cycle occurs when the count value resets to zero 
after reaching the value in maximum count register A. If 
dual maximum count registers are used, the end of a 

3-474 210973-003 



Ap·186 

timing cycle occurs when the count value resets to zero 
after reaching the value in maximum count register B. If 
the CONTinuous bit is set, the ENable bit in the timer 
control register will never be automatically reset. Thus, 
after each timing cycle, another timing cycle will auto­
matically begin. For example, in single maximum count 
register mode, the timer will count up to the value in 
maximum count register A, reset to zero, count up to the 
value in maximum count register A, reset to zero, ad in­
finitum. In dual maximum count register mode, the tim­
er will count up the the value in maximum count register 
A, reset to zero, count up the value in maximum count 
register B, reset to zero, count up to the value in maxi­
mum count register A, reset to zero, et cetera. 

5.3 Timer Events 

Each timer counts timer events. All timers can use a 
transition of the CPU clock as an event. Because of the 
counter element multiplexing, the timer count value will 
be incremented every fourth CPU clock. For timer 2, 
this is the only timer event which can be used. For timers 
o and 1, this event is selected by clearing the EXTernal 
and Prescaler bits in the timer control register. 

Timers 0 and 1 can use timer 2 reaching its maximum 
count as a timer event. This is selected by clearing the 
EXTernal bit and setting the Prescaler bit in the timer 
control register. When this is done, the timer will incre­
ment whenever timer 2 resets to zero having reached its 
own maximum count. Note that timer 2 must be initial­
ized and running for the other timer's value to be 
incremented. 

Timers 0 and 1 can also be programmed to count low-to­
high transitions on the external input pin. Each transi­
tion on the external pin is synchronized to the 80186 
clock before it is presented to the timer circuitry, and 
may, therefore, be asynchronous (see Appendix B for in­
formation on 80186 synchronizers). The timer counts 
transitions on the input pin: the input value must go low, 
then go high to cause the timer to increment. Any transi­
tion on this line is latched. If a transition occurs when a 
timer is not being serviced by the counter element, the 
transition on the input line will be remembered so that 
when the timer does get serviced, the input transition 
will be counted. Because of the counter element multi­
plexing, the maximum rate at which the timer can count 
is 1/4 of the CPU clock rate (2 MHz with an 8 MHz 
CPU clock). 

5.4 Timer Input Pin Operation 
Timers 0 and I each have individual timer input pins. 
All low-to-high transitions on these input pins are syn­
chronized, latched, and presented to the counter element 
when the particular timer is being serviced by the 
counter element. 

Signals on this input can affect timer operation in three 
different ways. The manner in which the pin signals are 
used is determined by the EXTernal and R TG (retrig-

ger) bits in the timer control register. If the EXTernal 
bit is set, transitions on the input pin will cause the timer 
count value to increment if the timer is enabled (the EN­
able bit in the timer control register is set). Thus, the 
timer counts external events. If the EXTernal bit is 
cleared, all timer increments are caused by either the 
CPU clock or by timer 2 timing out. In this mode, the 
RTG bit determines whether the input pin will enable 
timer operation, or whether it will retrigger timer 
operation. 

If the EXTernal bit is low and the RTG bit is also low, 
the timer will count internal timer events only when the 
timer input pin is high and the ENable bit in the timer 
control register is set. Note that in this mode, the pin is 
level sensitive, not edge sensitive. A low-to-high transi­
tion on the timer input pin is not required to enable timer 
operation. If the input is tied high, the timer will be con­
tinually enabled. The timer enable input signal is com­
pletely independent of the ENable bit in the timer 
control register: both must be high for the timer to 
count. Example uses for the timer in this mode would be 
a real time clock or a baud rate generator. 

If the EXTernal bit is low and the RTG bit is high, the 
timer will act as a digital one-shot. In this mode, every 
low-to-high transition on the timer input pin will cause 
the timer to reset to zero. If the timer is enabled (i.e., the 
ENable bit in the timer control register is set) timer op­
eration will begin (the timer will count CPU clock tran­
sitions or timer 2 timeouts). Timer operation will cease 
at the end of a timer cycle, that is, when the value in the 
maximum count register A is reached and the timer 
count value resets to zero (in single maximum count reg­
ister mode, remember that the maximum count value is 
never stored in the timer count register) or when the val­
ue in maximum count register B is reached and the timer 
count value resets to zero (in dual maximum count regis­
ter mode). If another low-to-high transition occurs on 
the input pin before the end of the timer cycle, the timer 
will reset to zero and begin the timing cycle again re­
gardless of the state of the CONTinuous bit in the timer 
control register the RIU bit will not be changed by the 
input transition. If the CONTinuous bit in the timer 
control register is cleared, the timer ENable bit will 
automatically be cleared at the end of the timer cycle. 
This means that any additional transitions on the input 
pin will be ignored by the timer. If the CONTinuous bit 
in the timer control register is set, the timer will reset to 
zero and begin another timing cycle for every low-to­
high transition on the input pin, regardless of whether 
the timer had reached the end of a timer cycle, because 
the timer ENable bit would not have been cleared at the 
end of the timing cycle. The timer will also continue 
counting at the end of a timer cycle, whether or not an­
other transition has occurred on the input pin. An exam­
ple use of the timer in this mode is an alarm clock time 
out signal or interrupt. 

3-475 210973-003 



in1er Ap·186 

5.5 Timer Output Pin Operation 
Timers 0 and 1 each contain a single timer output pin. 
This pin can perform two functions at programmer op­
tion. The first is a single pulse indicating the end of a 
timing cycle. The second is a level indicating the maxi­
mum count register currently being used. The timer out­
puts operate as outlined below whether internal or 
external clocking of the timer is used. If external clock­
ing is used, however, the user should remember that the 
time between an external transition on the timer input 
pin and the time this transition is reflected in the timer 
out pin will vary depending on when the input transition 
occurs relative to the timer's being serviced by the 
counter element. 

When the timer is in single maximum count register 
mode (the ALTernate bit in the timer control register is 
cleared) the timer output pin will go low for a single 
CPU clock the clock after the timer is serviced by the 
counter element where maximum count is reached (see 
Figure 44). This mode is useful when using the timer as 

TIMER 0 SERVICED 
~ 

a baud rate generator. 

When the timer is programmed in dual maximum count 
register mode (the ALTernate bit in the timer control 
register is set), the timer output pin indicates which 
maximum count register is being used. It is low if maxi­
mum count register B is being used for the current 
count, high if maximum count register A is being used. 
If the timer is programmed in continuous mode (the 
CONTinuous bit in the timer control register is set), this 
pin could generate a waveform of any duty cycle. For ex­
ample, if maximum count register A contained 10 and 
maximum count register B contained 20, a 33% duty cy­
cle waveform would be generated. 

5.6 Sample 80186 Timer Applications 

The 80186 timers can be used for almost any application 
for which a discrete timer circuit would be used. These 
include real time clocks, baud rate generators, or event 
counters. 

INTERNAL ------------------~.r_--------f_------------------COUNT 
VALUE 

MAXCOUNT-1 

TMROUT---------------------------" 

PIN 

Figure 44. 80186 Timer Out Signal 

80186 
+ 5V 

+SV - TMRINOI 
TIMER 

TMRIN 1 
0 TMR OUT 0 TxC } SERIAL 

'-----
RxC CONTROLLER 

TMROUT 1 

TMR IN 0 

Figure 45. 80186 Real Time Clock Figure 46. 80186 Baud Rate Generator 

3-476 
210973-003 



AP-186 

80186 

TMR IN 0 

Figure 47. 

o 
o 
D 

~'a- LIGHT 
'l 

5.6.1 80186 TIMER REAL TIME CLOCK 

The sample program in appendix D shows the 80186 
timer being used with the 80186 CPU to form a real 
time clock. In this implementation, timer 2 is pro­
grammed to provide an interrupt to the CPU every milli­
second. The CPU then increments memory based clock 
variables. 

code to program the timer as a baud rate generator is in­
cluded in appendix D. 

5.6.3 80186 TIMER EVENT COUNTER 

5.6.2 80186 TIMER BAUD RATE GENERATOR 

The 80186 timer can be used to count events. Figure 47 
shows a hypothetical set up in which the 80186 timer 
will count the interruptions in a light source. The num­
ber of interruptions can be read directly from the count 
register of the timer, since the timer c()unts lip, i.e., each 
interruption in the light source will GlllSe the timer 
count value to increase. The code to sct III' the Xill XI, 
timer in this mode is included in appendix I) 

The 80186 timers can also be used as baud rate gener­
ators for serial communication controllers (e.g., the 
8274). Figure 46 shows this simple connection, and the 

TIMER TIMER TIMER DMA DMA 
o 1 2 0 1 INTO INT1 INT2 INT3 NMI 

~ ~ T '~9~ U I 

~Irl, 
TIMER INTERRUPT 

CONTROL REG. REQUEST REG. 

DMAO INTERRUPT 
CONTROL REG. 

-+_ .. _--- MASK REG. 

DMA1 IN-SERVICE 
CONTROL REG. REG. 

EXT. INPUT 0 ~ 
INTERRUPT 

PRIOR. LEV. 
PRIORITY 

CONTROL REG. r----v RESOLVER 
MASK REG. 

EXT. INPUT 1 INTERRUPT 
CONTROL REG. STATUS REG. 

EXT. INPUT 2 VECTOR 
CONTROL REG. GENERA-

EXT. INPUT 3 TION 
CONTROL REG. LOGIC 

tl INTERRUPT ) ~ 11 REQUEST TO 
PROCESSOR 

INTERNAL ADDRESS/DATA BUS 

Figure 48. 80186 Interrupt Controller Block Diagram 

3-477 210973-003 



AP-186 

6. 80186 INTERRUPT CONTROLLER 
INTERFACING 

The 80186 contains an integrated interrupt controller. 
This unit performs tasks of the interrupt controller in a 
typical system. These include synchronization of inter­
rupt requests, priortization of interrupt requests, and re­
quest type vectoring in response to a CPU interrupt 
acknowledge. It can be a master to two external 8259A 
interrupt controllers or can be a slave to an external in­
terrupt controller to allow compatibility with the iRMX 
86 operating system, and the 80130/80150 operating 
system firmware chips. 

6.1 Interrupt Controller Model 

The integrated interrupt controller block diagram is 
shown in Figure 48. It contains registers and a control 
dement. Four inputs are provided for external interfac­
ing to the interrupt controller. Their functions change 
"ccmding to the programmed mode of the interrupt con­
I r' ,I In. Like the other 80186 integrated peripheral regis­
ICC', the interrupt controller registers are available for 
CPU reading or writing at any time. 

6.2 Interrupt Controller Operation 

The interrupt controller operates in two major modes, 
non-iRMX 86 mode (referred to henceforth as master 
mode), and iRMX 86 mode. In master mode the inte­
grated controller acts as the master interrupt controller 
for the system, while in iRMX 86 mode the controller 

operates as a slave to an external interrupt controller 
which operates as the master interrupt controller for the 
system. Some of the interrupt controller registers and in­
terrupt controller pins change definition between these 
two modes, but the basic charter and function of the in­
terrupt controller remains fundamentally the same. The 
difference is when in master mode, the interrupt control­
ler presents its interrupt input directly to the 80186 
CPU, while in iRMX 86 mode the interrupt controller 
presents its interrupt input to an external controller 
(which then presents its interrupt input to the 80186 
CPU). Placing the interrupt controller in iRMX 86 
mode is done by setting the iRMX mode bit in the pe­
ripheral control block pointer (see appendix A). 

6.3 Interrupt Controller Registers 

The interrupt controller has a number ofregisters which 
are used to control its operation (see Figure 49). Some of 
these change their function between the two major 
modes of the interrupt controller (master and iRMX 86 
mode). The differences are indicated in the following 
section. If not indicated, the function and implementa­
tion of the registers is the same in the two basic modes of 
operation of the interrupt controller. The method of in­
teraction among the various interrupt controller regis­
ters is shown in the flowcharts in Figures 57 and 58. 

6.3.1 CONTROL REGISTERS 

Each source of interrupt to the 80186 has a control regis­
ter in the internal controller. These registers contain 

MASTER MODE OFFSET ADDRESS ;RMX86N Mode 

INT3 CONTROL REGtSTER 

INT2 CONTROL REGISTER 

INn CONTROL REGtSTER 

INTO CONTROL REGISTER 

DMA1 CONTROL REGISTER 

DMAO CONTROL REGISTER 

TtMER CONTROL REGISTER 

INTERRUPT'CONTROLLER STATUS REGISTER 

INTERRUPT REQUEST REGISTER 

IN·SERVICE REGISTER 

PRIORITY MASK REGISTER 

MASK REGISTER 

POLL STATUS REGtSTER 

POLL REGISTER 

EOI REGISTER ----------CD-----------

3EH CD 

3CH ===========0=========== 3AH TIMER 2 CONTROL REGISTER 

38H 

36H 

34H 

32H 

30H 

2EH 

2CH 

2AH 

TIMER 1 CONTROL REGISTER 

DMA1 CONTROL REGISTER -----------------------
DMAO CONTROL REGISTER 

TIMER 0 CONTROL REGISTER 

INTERRUPT CONTROLLER STATUS REGISTER 

INTERRUPT REQUEST REGtSTER -----------------------
IN SERVICE REGISTER 

PRIORITY MASK REGISTER 

28H MASK REGISTER 

26H ===========0===== ====== 24H ___________ 0 __________ _ 
22H ______ !!!,~C.!F.!.C J'~I_R~~S..!~R _____ _ 

20H INTERRUPT VECTOR REGISTER 

1. Unsupported in this mode: values written mayor may not be stored 

Figure 49. 80186 Interrupt Controller Registers 

3-478 210973-003 



AP-186 

15 o rn + 
SPECIAL CAS- LEVEL 

FULLY MASK I I 
0 NESTED 

CADE TRIG. PRIORITY BITS 

BIT(D MODE(D MODE CD BIT I : 
1. This bit present only in INTO-INT3 control registers 
2. These bits present only in INTO-INT1 control register 

Figure 50_ Interrupt Controller Control Register 

15 MASTER MODE o 15 iRMXN 86 MODE 0 

x x x 113112 111 110 I 01 I DO I x ITMRI x x 

Figure 51. 80186 Interrupt Controller In-Service, Interrupt Request and Mask Register Format 

three bits which select one of eight different interrupt 
priority levels for the interrupt device (0 is highest prior­
ity, 7 is lowest priority), and a mask bit to enable the in­
terrupt (see Figure 50). When the mask bit is low, the 
interrupt is enabled, when it is high, the interrupt is 
masked. 

There are seven control registers in the 80186 integrated 
interrupt controller. In master mode, four of these serve 
the external interrupt inputs, one each for the two DMA 
channels, and one for the collective timer interrupts. In 
iRMX 86 mode, the external interrupt inputs are not 
used, so each timer can have its own individual control 
register. 

6.3_2 REQUEST REGISTER 

The interrupt controller includes an interrupt request 
register (see Figure 51). This register contains seven ac­
tive bits, one for each interrupt control register. When­
ever an interrupt request is made by the interrupt source 
associated with a specific control register, the bit in in­
terrupt request register is set, regardless if the interrupt 
is enabled, or if it is of sufficient priority to cause a pro­
cessor interrupt. The bits in this register which are asso­
ciated with integrated peripheral devices (the DMA and 
timer units) can be read or written, while the bits in this 
register which are associated with the external interrupt 
pins can only be read (values written to them are not 
stored). These interrupt request bits are automatically 
cleared when the interrupt is acknowledged. 

6.3.3 MASK REGISTER AND PRIORITY 
MASK REGISTER 

The interrupt controller contains a mask register (see 
Figure 51). This register contains a mask bit for each in­
terrupt source associated with an interrupt control regis­
ter. The bit for an interrupt source in the mask register is 
identically the same bit as is provided in the interrupt 
control register: modifying a mask bit in the control reg­
ister will also modify it in the mask register, and vice 
versa. 

The interrupt controller also contains a priority mask 
register (see Figure 52). This register contains three bib 
which indicate the lowest priority an interrupt may have 
that will cau,e an interrupt acknowledge. interrupts 
received which have a lower priority will be eifectively 
masked off. Upon reset this register is set to the lowest 
priority of 7 to enable all interrupts of any priority. This 
register may be read or written. 

15 o 
x x x x x 

\ P2 1p1G 
Figure 52. 80186 Interrupt Controller Priority 

Mask Register Format 

6.3.4 IN-SERVICE REGISTER 

The interrupt controller contains an in-service register 
(see Figure 51). A bit in the in-service register is associ­
ated with each interrupt control register so that when an 
interrupt request by the device associated with the con-

210973-003 

3-479 



AP-186 

trol register is acknowledged by the processor (either by 
the processor running the interrupt acknowledge or by 
the processor reading the interrupt poll register) the bit 
is set. The bit is reset when the CPU issues an End Of 
Interrupt to the interrupt controller. This register may 
be both read and written, i.e., the CPU may set in-ser­
vice bits without an interrupt ever occurring, or may re­
set them without using the EOI function of the interrupt 
controller. 

6.3.5 POLL AND POLL STATUS REGISTERS 

The interrupt controller contains both a poll register and 
a poll status register (see Figure 53). Both of these regis­
ters contain the same information. They have a single bit 
to indicate an interrupt is pending. This bit is set if an 
interrupt of sufficient priority has been received. It is 
automatically cleared when the interrupt is acknowl­
edged. If (and only if) an interrupt is pending, they also 
contain information as to the interrupt type of the high­
est priority interrupt pending. 

15 o 
x x x x I S41 S31 S2\ S1 I SO I 

SO-S4 ~ interrupt type 

Figure 53. 80186 Poll & Poll Status 
Register Format 

Reading the poll register will acknowledge the pending 
interrupt to the interrupt controller just as if the proces-

15 MASTER MODE o 

J;SPEC/
X 

x x X I S41 S31 S21 Sl I SO I 
SO-S4 ~ interrupt type 

sor had acknowledged the interrupt through interrupt 
acknowledge cycles. The processor will not actually run 
any interrupt acknowledge cycles, and will not vector 
through a location in the interrupt vector table. Only the 
interrupt request, in-service and priority mask registers 
in the interrupt controller are set appropriately. Reading 
the poll status register will merely transmit the status of 
the polling bits without modifying any of the other inter­
rupt controller registers. These registers are read only: 
data written to them is not stored. These registers are 
not supported in iRMX 86 mode. The state of the bits in 
these registers in iRMX 86 mode is not defined. 

6.3.6 END OF INTERRUPT REGISTER 

The interrupt controller contains an End Of Interrupt 
register (see Figure 54). The programmer issues an End 
Of Interrupt to the controller by writing to this register. 
After receiving the End Of Interrupt, the interrupt 
controller automatically resets the in-service bit for the 
interrupt. The value of the word written to this register 
determines whether the End Of Interrupt is specific or 
non-specific. A non-specific End Of Interrupt is specified 
by setting the non-specific bit in the word written to the 
End Of Interrupt register. In a non-specific End Of 
Interrupt, the in-service bit of the highest priority interrupt 
sct is automatically cleared, while a specific End Of 
Interrupt allows the in-service bit cleared to be explicitly 
specified. The in-service bit is reset whether the bit was set 
by an interrupt acknowledge or if it was set by the CPU 
writing the bit directly to the in-service register. If the 

15 iRMX86 MODE o 

X X X X X X 

LO-L2 ~ interrupt priority level 

Figure 54. 80186 End of Interrupt Register Format 

I I X X X X 

15r DHLT o 
X 

Figure 55. 80186 Interrupt Status Register Format 

15 o 

I X X X X 

Figure 56. 80186 Interrupt Vector Register Format (iRMX 86 mode only) 

3-480 
210973-003 



AP-186 

highest priority interrupt is reset, the priority mask 
register bits will change to reflect the next lowest priority 
interrupt to be serviced. If a less than highest priority 
interrupt in-service bit is reset. the priority mask register 
bits will not be modified (because the highest priority 
interrupt being serviced has not changed). Only the 
specific EOI is supported in iR MX 86 mode. This register 
is write only: data written is not stored and cannot be 
read back. 

6.3.7 INTERRUPT STATUS REGISTER 

The interrupt controller also contains an interrupt status 
register (see Figure 55). This register contains four sig­
nificant bits. There are three bits used to show which 
timer is causing an interrupt. This is required because in 
master mode, the timers share a single interrupt control 
register. A bit in this register is set to indicate which tim­
er has generated an interrupt. The bit associated with a 
timer is automatically cleared after the interrupt re­
quest for the timer is acknowledged. More than one of 
these bits may be set at a time. The fourth bit in the in­
terrupt status register is the DMA halt bit. When set, 
this bit prevents any DMA activity. It is automatically 
set whenever a NMI is received by the interrupt control­
ler. It can also be set explicitly by the programmer. This 
bit is automatically cleared whenever the IRET instruc­
tion is executed. All significant bits in this register are 
read/write. 

6.3.8 INTERRUPT VECTOR REGISTER 

Finally, in iRMX 86 mode only, the interrupt controller 
contains an interrupt vector register (see Figure 56). 
This register is used to specify the 5 most significant bits 
of the interrupt type vector placed on the CPU bus in re­
sponse to an interrupt acknowledgement (the lower 3 
significant bits of the interrupt type are determined by 
the priority level of the device causing the interrupt in 
iRMX 86 mode). 

6.4 Interrupt Sources 

The 80186 interrupt controller receives and arbitrates 
among many different interrupt request sources, both 
internal and external. Each interrupt source may be pro­
grammed to be a different priority level in the interrupt 
controller. An interrupt request generation flow chart is 
shown in Figure 57. Such a flowchart would be followed 
independently by each interrupt source. 

6.4.1 INTERNAL INTERRUPT SOURCES 

The internal interrupt sources are the three timers and 
the two DMA channels. An interrupt from each of these 
interrupt sources is latched in the interrupt controller, so 
that if the condition causing the interrupt is cleared in 
the originating integrated peripheral device, the inter­
rupt request will remain pending in the interrupt con­
troller. The state of the pending interrupt can be 
obtained by reading the interrupt request register of the 

3-481 

interrupt controller. For all internal interrupts, the 
latched interrupt request can be reset by the processor 
by writing to the interrupt request register. Note that all 
timers share a common bit in the interrupt request regis­
ter in master mode. The interrupt controller status regis­
ter may be read to determine which timer is actually 
causing the interrupt request in this mode. Each timer 
has a unique interrupt vector (see section 6.5.1). Thus 
polling is not required to determine which timer has 
caused the interrupt in the interrupt service routine. 
Also, because the timers share a common interrupt con­
trol register, they are placed at a common priority level 
as referenced to all other interrupt devices. Among 
themselves they have a fixed priority, with timer 0 as the 
highest priority timer and timer 2 as the lowest priority 
timer. 

6.4.2 EXTERNAL INTERRUPT SOURCES 

The 80186 interrupt controller will accept external in­
terrupt requests only when it is programmed in master 
mode. In this mode, the external pins associated with the 
interrupt controller may serve either as direct interrupt 
inputs, or as cascaded interrupt inputs from other inter­
rupt controllers as a programmed option. These options 
are selected by programming the C and SFNM bits in 
the INTO and INTI control registers (see Figure 50). 

When programmed as direct interrupt inputs, the four 
interrupt inputs are each controlled by an individual in­
terrupt control register. As stated earlier, these registers 
contain 3 bits which select the priority level for the inter­
rupt and a single bit which enables the interrupt source 
to the processor. In addition each of these control regis­
ters contains a bit which selects either edge or level trig­
gered mode for the interrupt input. When edge triggered 
mode is selected, a low-to-high transition must occur on 
the interrupt input before an interrupt is generated, 
while in level triggered mode, only a high level needs to 
be maintained to generate an interrupt. In edge trig­
gered mode, the input must remain low at least 1 clock 
cycle before the input is "re-armed." In both modes, the 
interrupt level must remain high until the interrupt is 
acknowledged, i.e., the interrupt request is not latched 
in the interrupt controller. The status of the interrupt in­
put can be shown by reading the interrupt request regis­
ter. Each of the external pins has a bit in this register 
which indicates an interrupt request on the particular 
pin. Note that since interrupt requests on these inputs 
are not latched by the interrupt controller, if the external 
input goes inactive, the interrupt request (and also the 
bit in the interrupt request register) will also go inactive 
(low). Also, if the interrupt input is in edge triggered 
mode, a low-to-high transition on the input pin must oc­
cur before the interrupt request bit will be set in the in­
terrupt request register. 

If the C (Cascade) bit of the INTO or INTI control reg­
isters are set, the interrupt input is cascaded to an exter­
nal interrupt controller. In this mode, whenever the 

210973-003 



AP-186 

PRESENT INTERRUPT 
REQUEST TO 

EXTERNAL CONTROLLER 

Figure 57. 80186 Interrupt Request Sequencing 

interrupt presented to the INTO or INTI line is ac­
knowledged, the integrated interrupt controller will not 
provide the interrupt type for the interrupt. Instead, two 
INTA bus cycles will be run, with the INT2 and INT3 
lines providing the interrupt acknowledge pulses for the 
INTO and the INTI interrupt requests respectively. IN­
TO/INT2 and INTI/INT3 may be individually pro­
grammed into cascade mode. This allows 128 
individually vectored interrupt sources if two banks of 9 
external interrupt controllers each are used. 

6.4.3 iRMX" 86 MODE INTERRUPT SOURCES 

When the interrupt controller is configured in iRMX 86 
mode, the integrated interrupt controller accepts inter-

3-482 

rupt requests only from the integrated peripherals. Any 
external interrupt requests must go through an external 
interrupt controller. This external interrupt controller 
requests interrupt service directly from the 80186 CPU 
through the INTO line on the 80186, In this mode, the 
function of this line is not affected by the integrated in­
terrupt controller. In addition, in iRMX 86 mode the in­
tegrated interrupt controller must request interrupt 
service through this external interrupt controller. This 
interrupt request is made on the INT3 line (see section 
6.7.4 on external interrupt connections). 

6.5 Interrupt Response 
The 80186 can respond to an interrupt in two different 
ways. The first will occur if the internal controller is pro-

210973-003 



inter AP-186 

GENERATE INTA 
CYCLES FOR 

EXTERNAL 
INTERRUPT 

CONTROLLER 

YES 

PROVIDE HIGHEST 
PRIORITY INTERRUPT 

VECTOR ON 
INTERNAL BUS 

1. Before actual interrupt acknowledge is run by CPU 

WAIT FOR NEXT 
INTERRUPT 

ACKNOWLEDGE 

PLACE INTERRUPT 
TYPE ON INTERNAL f.\ 

BUS DURING SECOND \V 
INTACYCLE 

2. Two interrupt acknowledge cycles will be run, the interrupt type is read by 
the CPU on the second cycle 

3. Interrupt acknowledge cycles will not be run, the interrupt vector address is 
placed on an internal bus and is not available outside the processor 

4. Interrupt type is not driven on external bus in iRMX86 mode 

Figure 58. 80186 interrupt Acknowledge Sequencing 

viding the interrupt vector information with the control­
ler in master mode. The second will occur if the CPU 
reads interrupt type information from an external inter­
rupt controller or if the interrupt controller is in iRMX 
86 mode. In both of these instances the interrupt vector 
information driven by the 80186 integrated interrupt 
controller is not available outside the 80186 
microprocessor. 

In each interrupt mode, when the integrated interrupt 
controller receives an interrupt response, the interrupt 
controller will automa.tically set the in-service bit and 
reset the interrupt request bitin the integrated controller. 
In addition, unless the interrupt control register for the 
interrupt is set in Special Fully Nested Mode, the 
interrupt controller will prevent any interrupts from 
occurring from the same interrupt line until the in-service 

.bit for that line has been cleared. 

6.5.1 INTERNAL VECTORING, MASTER MODE 

In master mode, the interrupt types associated with all 
the interrupt sources are fixed and unalterable. These 
interrupt types are given in Table 5. In response to an in­
ternal CPU interrupt acknowledge the interrupt con­
troller will generate the vector address rather than the 
interrupt type. On the 80186 (like the 8086) the inter­
rupt vector address is the interrupt type multiplied by 4. 
This speeds interrupt response. 

In master mode, the integrated interrupt controller is 
the master interrupt controller of the system. As a re­
sult, no external interrupt controller need know when 
the integrated controller is providing an interrupt vector, 
nor when the interrupt acknowledge is taking place. As a 
result, no interrupt acknowledge bus cycles will be gen­
erated. The first external indication that an interrupt 
has been acknowledged will be the processor reading the 
interrupt vector from the interrupt vector table in low 
memory. 

3-483 210973-003 



intel@ AP-186 

Table 5. 80186 Interrupt Vector Types 6.5.2 INTERNAL VECTORING, iRMX'" 86 MODE 

Interrupt Vector Default 
Name Type Priority 

timer 0 8 Oa 
timer 1 18 Ob 
timer 2 19 Oc 
DMAO 10 2 
DMAI 11 3 
INT 0 12 4 
INT 1 13 5 
INT 2 14 6 
INT 3 15 7 

Because the two interrupt acknowledge cycles are not 
run, and the interrupt vector address does not need be be 
calculated, interrupt response to an internally vectored 
interrupt is 42 clock cycles, which is faster then the in­
terrupt response when external vectoring is required, or 
if the interrupt controller is run in iRMX 86 mode. 

If two interrupts of the same programmed priority occur, 
the default priority scheme (as shown in table 5) is used. 

T, T, T, 

CLKOUT 

In iRMX 86 mode, the interrupt types associated with 
the various interrupt sources are alterable. The upper 5 
most significant bits are taken from the interrupt vector 
register, and the lower 3 significant bits are taken from 
the priority level of the device causing the interrupt. Be­
cause the interrupt type, rather than the interrupt vector 
address, is given by the interrupt controller in this mode 
the interrupt vector address must be calculated by the 
CPU before servicing the interrupt. 

In iRMX 86 mode, the integrated interrupt controller 
will present the interrupt type to the CPU in response to 
the two interrupt acknowledge bus cycles run by the pro­
cessor. During the first interrupt acknowledge cycle. the 
external master interrupt controller determines which 
slave interrupt controller will be allowed to place its in­
terrupt vector on the microprocessor bus. During the 
second interrupt acknowledge cycle, the processor reads 
the interrupt vector from its bus. Thus, these two inter­
rupt acknowledge cycles must be run, since the integrat­
ed controller will present the interrupt type information 
only when the external interrupt controller signals the 
integrated controller that it has the highest pending in­
terrupt request (see Figure 59). The 80186 samples the 

T, T, 

I I 

S~S2 -----~------~------~:-r---+------~------~---~~------~:~---~I-r1-~-------
I I I I I I 

INTERRUPT ACKNOWLEDGE INTERRUPT ACKNOWLEDGE 
INTO ,I I I I 

(HIGH) -----i----i----ii----i----i-----i---;----i-----i-f--;---
INT3 _____ ~----~----~----_+----~----~----~----~-----~~---~ __ __ 

(HIGH) 
~--~----~--~~------+-----~:----~------~-------:~---~.~---~---V_-

CAS CD 80186 SLAVE ENABLE CASCADE ADDRESS FROM 8259A 
~--~----~--JL~----_7I----~'-----~------_I~------~--~'-----~---I~-

SLAVE ----~------____;---__, 
SELECT CD 

I 

- I I 

INTA 0l~----..... ---'---'-'! I 
I 

LOCK 4 / 
I ~---~------_r------~------~-----~-----~------~, 
I I 

1. SLAVE SELECT = INn 
2. INTA = INT2 
3. Driven by external interrupt controller 
4. SLAVE SELECT must be driven before Phase 2 of T 2 of the second INTA 
llilL __ _ 

5. SLAVE SELECT read by 80186 

Figure 59. 80186 iRMX·86 Mode Interrupt Acknowledge Timing 

3-484 210973-003 



AP-186 

T, T, T3 T, T, Ti T, T, T3 T, 

so- S2 

INTA 

ADO-AD7 --~----~----~----~----~----~------~----~-1 

LOCK 

'---'-t----'--' 

I I 
INTERRUPT TYPE 
(FROM EXTERNAL 

CONTROLLER) 

Figure 60. 80186 Cascaded Interrupt Acknowledge Timing 

SLAVE SELECT line during the falling edge of the 
clock at the beginning of T J of the second interrupt ac­
knowledge cycle. This input must be stable 20ns before 
and IOns after this edge. 

These two interrupt acknowledge cycles will be run back 
to back, and will be LOCKED with the LOCK output 
active (meaning that DMA requests and HOLD re­
quests will not be honored until both cycles have been 
run). Note that the two interrupt acknowledge cycles 
will always be separated by two idle T states, and that 
wait states will be inserted into the interrupt acknowl­
edge cycle if a ready is not returned by the processor bus 
interface. The two idle T states are inserted to allow 
compatibility with the timing requirements of an exter­
nal 8259A interrupt controller. 

Because the interrupt acknowledge cycles must be run in 
iRMX 86 mode, even for internally generated vectors, 
and the integrated controller presents an interrupt type 
rather than a vector address, the interrupt response time 
here is the same as if an externally vectored interrupt 
was required, namely 55 CPU clocks. 

6.5.3 EXTERNAL VECTORING 

External interrupt vectoring occurs whenever the 80186 
interrupt controller is placed in cascade mode, special 
fully nested mode, or iRMX 86 mode (and the integrat­
ed controller is not enabled by the external master inter­
rupt controller). In this mode, the 80186 generates two 
interrupt acknowledge cycles, reading the interrupt type 

3-485 

off the lower 8 bits of the address / data bus on the second 
interrupt acknowledge cycle (see Figure 60). This inter­
rupt response is exactly the same as the 8086, so that the 
8259A interrupt controller can be used exactly as it 
would in an 8086 system. Notice that the two interrupt 
acknowledge cycles are LOCKED, and that two idle T­
states are always inserted between the two interrupt ac­
knowledge bus cycles, and that wait states will be 
inserted in the interrupt acknowledge cycle if a ready is 
not returned to the processor. Also notice that the 80186 
provides two interrupt acknowledge signals, one for in­
terrupts signaled by the INTO line, and one for inter­
rupts signaled by the INTi line (on the INT2/INTAO 
and INT3/INTAI lines, respectively). These two inter­
rupt acknowledge signals are mutually exclusive. Inter­
r!:!£t acknowledge status will be driven on the status lines 
(SO-S2) when either INT2/INTAO or INT3/ 
INTAI signal an interrupt acknowledge. 

6.6 Interrupt Controller External 
Connections 

The four interrupt signals can be programmably config­
ured into 3 major options. These are direct interrupt in­
puts (with the integrated controller providing the 
interrupt vector), cascaded (with an external interrupt 
controller providing the interrupt vector), or iRMX 86 
mode. In all these modes, any interrupt presented to the 
external lines must remain set until the interrupt is 
acknowledged. 

210973-003 



inter AP-186 

6.6.1 DIRECT INPUT MODE 

When the Cascade mode bits are cleared, the interrupt 
input lines are configured as direct interrupt input lines 
(see Figure 61). In this mode an interrupt source (e.g., 
an 8272 floppy disk controller) may be directly connect­
ed to the interrupt input line. Whenever an interrupt is 
received on the input line, the integrated controller will 
do nothing unless the interrupt is enabled, and it is the 
highest priority pending interrupt. At this time, the in­
terrupt controller will present the interrupt to the CPU 
and wait for an interrupt acknowledge. When the ac­
knowledge occurs, it will present the interrupt vector ad­
dress to the CPU. In this mode, the CPU will not run any 
interrupt acknowledge cycles. 

INTERRUPT 

SOURCES . 
. 

80186 

INTO 

INn 

INT2 

INT3 

Figure 61. 80186 Non-Cascaded 
Interrupt Connection 

These lines can be individually programmed in either 
edge or level triggered mode using their respective con­
trol registers. In edge triggered mode, a low-to-high 
transition must occur before the interrupt will be gener­
ated to the CPU, while in level triggered mode, only a 
high level must be present on the input for an interrupt 
to be generated. In edge trigger mode, the interrupt in­
put must also be low for at least I CPU clock cycle to 
insure recognition. In both modes, the interrupt input 
must remain active until acknowledged. 

6.6.2 CASCADE MODE 

When the Cascade mode bit is set and the SFNM bit is 
cleared, the interrupt input lines are configured in cas­
cade mode. In this mode, the interrupt input line is 
paired with an interrupt acknowledge line. The INT2/ 
INTAO and INT3/INTAI lines are dual purpose; they 
can function as direct input lines, or they can function as 
interrupt acknowledge outputs. INT2/INTAO provides 
the interrupt acknowledge for an INTO input, and 
INT3/INTAI provides the interrupt acknowledge for 
an INTI input. Figure 62 shows this connection. 

When programmed in this mode, in response to an inter­
rupt request on the INTO line, the 80186 will provide 
two interrupt acknowledge pulses. These pulses will be 
provided on the INT2/INTAO line, and will also be re­
flected by interrupt acknowledge status being generated 

on the SO-S2 status lines. On the second pulse, the inter­
rupt type will be read in. The 80186 externally vectored 
interrupt response is covered in more detail in section 
6.5. 

8259A 80186 

INT INTO 

INTA INT2 

8259A 

INT INn 

INTA INT3 

Figure 62. 80186 Cascade and Special Fully 
Nested Mode Interface 

INTO/INT2/INTAOand INTI/INT3/INTAI may be 
individually programmed into interrupt re­
quest/acknowledge pairs, or programmed as direct in­
puts. This means that INTO/INT2/INTAO may be 
programmed as an interrupt/acknowledge pair, while 
INTI and INT3/INTAI each provide separate inter­
nally vectored interrupt inputs. 

When an interrupt is received on a cascaded interrupt, 
the priority mask bits and the in-service bits in the par­
ticular interrupt control register will be set into the in­
terrupt controller's mask and priority mask registers. 
This will prevent the controller from generating an 
80186 CPU interrupt request from a lower priority in­
terrupt. Also, since the in-service bit is set, any subse­
quent interrupt requests on the particular interrupt 
input line will not cause the integrated interrupt control­
ler to generate an interrupt request to the 80186 CPU. 
This means that if the external interrupt controller re­
ceives a higher priority interrupt request on one of its in­
terrupt request lines and presents it to the 80186 
interrupt request line, it will not subsequently be pre­
sented to the 80186 CPU by the integrated interrupt 
controller until the in-service bit for the interrupt line 
has been cleared. 

6.6.3 SPECIAL FULLY NESTED MODE 

When both the Cascade mode bit and the SFNM bit are 
set, the interrupt input lines are configured in Special 
Fully Nested Mode. The external interface in this mode 
is exactly as in Cascade Mode. The only difference is in 
the conditions allowing an interrupt from the external 
interrupt controller to the integrated interrupt control­
ler to interrupt the 80186 CPU. 

When an interrupt is received from a special fully nested 

3-486 210973-003 



inter AP-186 

mode interrupt line, it will interrupt the 80186 CPU if it 
is the highest priority interrupt pending regardless of the 
state of the in-service bit for the interrupt source in the 
interrupt controller. When an interrupt is acknowledged 
from a special fully nested mode interrupt line, the pri­
ority mask bits and the in-service bits in the particular 
interrupt control register will be set into the interrupt 
controller's in-service and priority mask registers. This 
will prevent the interrupt controller from generating an 
80186 CPU interrupt request from a lower priority in­
terrupt. Unlike cascade mode, however, the interrupt 
controller will not prevent additional interrupt requests 
generated by the same external interrupt controller 
from interrupting the 80186 CPU. This means that if 
the external (cascaded) interrupt controller receives a 
higher priority interrupt request on one of its interrupt 
request lines and presents it to the integrated control­
ler's interrupt request line, it may cause an interrupt to 
be generated to the 80186 CPU, regardless of the state 
of the in-service bit for the interrupt line. 
H the SFNM mode bit is set and the Cascade mode bit is 
not also set, the controller will provide internal interrupt 
vectoring. It will also ignore the state of the in-service bit 
in determining whether to present an interrupt request 
to the CPU. In other words, it will use the SFNM condi­
tions of interrupt generation with an internally vectored 
interrupt response, i.e., if the interrupt pending is the 
highest priority type pending, it will cause a CPU inter­
rupt regardless of the state of the in-service bit for the 
interrupt. 

6.6.4 iRMX'" 86 MODE 

When the RMX bit in the peripheral relocation register 
is set, the interrupt controller is set into iRMX 86 mode. 

I 
80186 

...r-' ARDY -u 
INTO 

INT2 

INTl 

INT3 

ADO-AD7 

RD 

WA' 

PCSA 

( 

In this mode, all four interrupt controller input lines are 
used to perform the necessary handshaking with the ex­
ternal master interrupt controller. Figure 63 shows the 
hardware configuration of the 80186 interrupt lines 
with an external controller in iRMX 86 mode. 

80186 8259A 

INTO INT 

1-
INT2 INTA 

11 
CASCADE 

INT1 ADDR. 
DECODE 

INT3 

Figure 63. 80186 iRMX86 Mode interface 

Because the integrated interrupt controller is a slave 
controller, it must be able to generate an interrupt input 
for an external interrupt controller. It also must be sig­
naled when it has the highest priority pending interrupt 
to know when to place its interrupt vector on the bus. 
These two signals are provided by the INT3/Slave In­
terrupt Output and INTI /Slave Select lines, respective­
ly. The external master interrupt controller must be able 
to interrupt the 80186 CPU, and needs to know when the 
interruJ2.LI~est is acknowledged. The INTO and 
INT2/INTAO lines provide these two functions. 

OTHER ARD Y 

8259A-2 

10 

EXTERNAL 

INTERRUPTS 

INT . 
87 

/ 

INTA 

DO-D7 
+5V 

RD 

~ WR SF> 
CS 

J 

Figure 64. 80186/8259A Interrupt Cascading 

3-487 210973-003 



AP-186 

6.7 Example 8259A/Cascade Mode 
Interface 

Figure 64 shows the 80186 and 8259A in cascade inter­
rupt mode. The code to initialize the 80186 interrupt 
controller is given in Appendix E. Notice that an "inter­
rupt ready" signal must be returned to the 80186 to pre­
vent the generation of wait states in response to the 
interrupt acknowledge cycles. In this configuration the 
INTO and INT2 lines are used as direct interrupt input 
lines. Thus, this configuration provides 10 external in­
terrupt lines: 2 provided by the 80186 interrupt control­
ler itself, and 8 from the external 8259A. Also, the 
8259A is configured as a master interrupt controller. It 
will only receive interrupt acknowledge pulses in re­
sponse to an interrupt it has generated. It may be cas­
caded again to up to 8 additional 8259 As (each of which 
would be configured in slave mode). 

6.8 Example 80130 iRMX'" 86 Mode 
Interface 

Figure 65 shows the 80186 and 80130 connected in 
iRMX 86 mode. In this mode, the 80130 interrupt con­
troller is the master interrupt controller of the system. 

80186 

ALE ADDR 

r- LATCH 

2 6 
80130 

ADO-AD15 ADO-AD15 
/ 

CLK CLK 

MMCS2 MEMCS 
IRO-

PCS:! - r--- ices IR7 

- /3 
SO-82 SO-S2 

/ 

SHE 
- -

SHE 
INT 

INTO I 
INT3 

8205 

E2 E3 

INT2 E1 

INT1 7 

The 80186 generates an interrupt request to the 80130 
interrupt controller when one of the 80186 integrated 
peripherals has created an interrupt condition, and that 
condition is sufficient to generate an interrupt from the 
80186 integrated interrupt controller. Note that the 
80130 decodes the interrupt acknowledge status directly 
from the 80186 status lines; thus, the INT2jINTAO 
line of the 80186 need not be connected to the 80130. 
Figure 65 uses this interrupt acknowledge signal to en­
able the cascade address decoder. The 80130 drives the 
cascade address on AD8-AD10 during TI of the second 
interruptacknciwledge cycle. This cascade address is 
latched into the system address latches, and if the proper 
cascade address is decoded by the 8205 decoder, the 
80186 INTI jSLAVE SELECT line will be driven ac­
tive, enabling the 80186 integrated interrupt controller 
to place its interrupt vector on the internal bus. The code 
to configure the 80186 into iRMX 86 mode is presented 
in appendix E. 

6.9 Interrupt Latency 

Interrupt latency time is the time from when the 80186 
receives the interrupt to the time it begins to respond to 
the interrupt. This is different from interrupt response 

L8 /7 
/ / 

+5 

v3 A8-A 
,-

AO-A15 

10 

INTERRUPT 

REQUESTS 

Figure 65. 80186/80130 iRMX86 Mode Interface 

3-488 210973-003 



AP-186 

time, which is the time from when the processor actually 
begins processing the interrupt to when it actually ex­
ecutes the first instruction of the interrupt service rou­
tine. The factors affecting interrupt latency are the 
instruction being executed and the state of the interrupt 
enable flip-flop. 

Interrupt, will be acknowledged only if the interrupt en­
able flip-flop in the CPU is set. Thus, interrupt latency 
will be very long indeed if interrupts are never enabled 
by the processor! 

When interrupts are enabled in the CPU, the interrupt 
latency is a function of the instructions being executed. 
Only repeated instructions will be interrupted before be­
ing completed, and those only between their respective 
iterations. This means that the interrupt latency time 
could be as long as 69 CPU clocks, which is the time it 
takes the processor to execute an integer divide instruc­
tion (with a segment override prefix, see below), the 
longest single instruction on the 80186. 

Other factors call affect inlcl'ruptlakncy. An interrupt 
will not be accepted between the execution of a prefix 
(such as segment override prefixes and lock prefixes) 
and the instruction. In addition, an interrupt will not be 
accepted between an instruction which modifies any of 
the seg.ment registers and the instruction immediately 
following the instruction. This is required to allow the 
stack to be changed. If the interrupt were accepted, the 
r.'turn address from the interrupt would be placed on a 
stack which was not valid (the Stack Segment register 
would have been modified but the Stack Pointer register 
would not have been). Finally, an interrupt will not be 
accepted between the execution of the WAlT instruction 
and the instruction immediately followin.&..i!...i[the TEST 
input is active. If the WAIT sees the TEST input in­
active, however, the interrupt will be accepted, and the 
WAIT wj]J be re-executed after the interrupt return. 
Thi, i, required, since the WAIT is u",d to p,evem ex­
ecution by the 80186 of an 8087 instruction while the 
8087 is busy. 

x, 

x, 

7. CLOCK GENERATOR 

The 80186 includes a clock generator which generates 
the main clock signal for all 80186 integrated compo­
nents, and all CPU synchronous devices in the 80186 
system. This clock generator includes a crystal oscilla­
tor, divide by two counter, reset circuitry, and ready gen­
eration logic. A block diagram of the clock generator is 
shown in Figure 66. 

7.1 Crystal Oscillator 

The 80186 crystal oscillator is a parallel resonant, 
Pierce oscillator. It was designed to be used as shown in 
Figure 67. The capacitor values shown are approximate. 
As the crystal frequency drops, they should be in­
creased, so that at the 4 MHz minimum crystal frequen­
cy supported by the 80186 they take on a value of 30pF. 
The output of this oscillator is not directly available out­
side the 80186. 

The following parameters may be used for choosing a 
crystal: 

Temperature Range: 
ESR (Equivalent Series Resistance): 

o to 70° C 
300 max 

7.0 pf max 
20 pf ± 2 pf 

I mw max 

Co (Shunt Capacitance of Crystal): 
C 1 (Load Capacitance): 
Drive Level: 

80186 

X, 

ck ±2~F x,r-I -= 

I2~F 

-= 

Figure 67. 80186 Crystal Connection 

CPU CLOCK & 

CLOCKOUT 

ARDY---------------+~r_~~~ CPU 

READY SRDY ----------------rL::::::.:::::=:J 

RES ----------<>--<1 
CPU RESET 

& 

RESET OUTPUT 

Figure 66. 80186 Clock Generator Block Diagram 

3-489 210973-003 



AP-186 

EFI 

CLKOUT 

Figure 68. 80186 Clock Generator Reset 

7.2 Using an External Oscillator 
An external oscillator may be used with the 80186. The 
external frequency input (EFI) signal is connected di­
rectly to the X I input of the oscillator. X2 should be left 
open. This oscillator input is used to drive an internal di­
vide-by-two counter to generate the CPU clock signal, 
so the external frequency input can be of practically any 
duty cycle, so long as the minimum high and low times 
for the signal (as stated in the data sheet) are met. 

7.3 Clock Generator 
The output of the crystal oscillator (or the external fre­
quency input) drives a divide by two circuit which gener­
ates a 50% duty cycle clock for the 80186 system. All 
80186 timing is referenced to this signal, which is avail­
able on the CLKOUT pin of the 80186. This signal will 
change state on the high-to-low transition of the EFI 
signal. 

7.4 Ready Generation 
The clock generator also includes the circuitry required 
for ready generation. Interfacing to the SRDY and 
ARDY inputs this provides is covered in section 3.1.6. 

7.5 Reset 
The 80186 clock generator also provides a synchronized 
reset signal for the system. This signal is generated from 
the reset input (RES) to the 80186. The clock generator 
synchronizes this signal to the clockout signal. 

The reset input signal also resets the divide-by-two 
counter. A one clock cycle internal clear pulse is gener­
ated when the RES input signal first goes active. This 
clear pulse goes active beginning on the first low-to-high 
transition of the XI input after RES goes active, and 
goes inactive on the next low-to-high transition of the XI 
input. In order to insure that the clear pulse is generated 
on the next EFI cycle, the RES input signal must satisfy 
a 25ns setup time to the high-to-low EFI input signal 
(see Figure 68). During this clear, clockout will be high. 
On the next high-to-low transition of XI, clockout will 
go low, and will change state on every subsequent high­
to-low transition of EFI. 

The reset signal presented to the rest of the 80186, and 
also the signal present on the RESET output pin of the 
80186 is synchronized by the high-to-low transition of 
thedockout signal of the 80186. This signal remains ac­
tive as long as the RES input also remains active. After 
the RES input goes inactive, the 80186 will begin to 
fetch its first instruction (at memory location FFFFOH) 
after 6 1/2 CPU clock cycles (i.e., Tl of the first instruc­
tion fetch will occur 6 1/2 clock cycles later). To insure 
that the RESET output will go inactive on the next CPU 
clock cycle, the inactive going edge of the RES input 
must satisfy certain hold and setup times to the low-to­
high edge of the clockout signal of the 80186 (see Figure 
69). 

"'~~ 
RES ____ --I 

RESET 

\'---
Figure 69. 80186 Coming out of Reset 

8. CHIP SELECTS 
The 80186 includes a chip select unit which generates 
hardware chip select signals for memory and I/O ac­
cesses generated by the 80186 CPU and DMA units. 
This unit is programmable such that it can be used to 
fulfill the chip select requirements (in terms of memory 
device or bank size and speed) of most small and medi­
um sized 80186 systems. 

The chip selects are driven only for internally generated 
bus cycles. Any cycles generated by an external unit 
(e.g., an external DMA controller) will not cause the 
chip selects to go active. Thus, any external bus masters 
must be responsible for their own chip select generation. 
Also, during a bus HOLD, the 80186 does not float the 
chip select lines. Therefore, logic must be included to en­
able the devices which the external bus master wishes to 
access (see Figure 70). 

210973-003 
3-490 



AP-186 

B018ifcHlpSEij~:cf ~_ MEMORY or 1/0 

EXTERNALLY GENERATED CHIP SELECT ~ DEVICE CHIP SELECT 

Figure 70. 80i86/External Chip Select/Device Chip Select Generation 

8.1 Memory Chip Selects 

The 80186 provides six discrete chip select lines which 
are meant to be connected to memory components in an 
80186 system. These signals are named UCS, LCS, 
and MCSO-3 for Upper Memory Chip Select, Lower 
Memory Chip Select and Midrange Memory Chip Se­
lects 0-3. They are meant (but not limited) to be con­
nected to the three major areas of the 80186 system 
memory (see Figure 71). 

FFFFF 

ucs STARTUP 

ROM 

MCS3 

---
PROGRAM 

MEMORY 

MCS1 { 

---

---

MCSO { 

INTERRUPT 

VECTOR 

TABLE 
0 

,~ I 
Figure 71. 80186 Memory Areas & Chip Selects 

As could be guessed by their names, upper memory, low­
er memory, and mid-range memory chip selects are de­
signed to address upper, lower, and middle areas of 
memory in an 80186 system. The upper limit of UCS 
and the lower limit of LCS are fixed at FFFFFH and 
OOOOOH in memory space, respectively. The other limit 
of these is set by the memory size programmed into the 
control register for the chip select line. Mid-range mem­
ory allows both the base address and the block size of the 
memory area to be programmed. The only limitation is 
that the base address must be programmed to be an inte­
ger multiple of the total block size. For example, if the 
block size was 128K bytes (4 32K byte chunks) the base 
address could be 0 or 20000H, but not 10000H. 

3-491 

The memory chip selects are controlled by 4 registers in 
the peripheral control block (see Figure 72). These in­
clude 1 each for UCS and LCS, the values of which de­
termine the size of the memory blocks addressed by 
these two lines. The other two registers are used to con­
trol the size and base address of the mid-range memory 
block. 

On reset, only UCS is active. It is programmed by reset 
to be active for the top 1 K memory block, to insert 3 wait 
states to all memory fetches, and to factor external 
ready for every memory fetch (see section 8.3 for more 
information on internal ready generation). All other 
chip select registers assume indeterminate states after 
reset, but none of the other chip select Hnes will be active 
until all necessary registers for a signal have been ac­
cessed (not necessarily written, a read to an uninitialized 
register will enable the chip select function controlled by 
that register). 

8.2 Peripheral Chip Selects 

The 80186 provides seven discrete chip select lines 
which are meant to be connected to peripheral compo­
nents in an 80186 system. These signals are named 
PCSO-6. Each of these lines is active for one of seven 
contiguous 128 byte areas in memory or I/O space 
a bove a programmed base address. 

The peripheral chip selects are controlled by two regis­
ters in the internal peripheral control block (see Figure 
72). These registers allow the base address of the periph­
erals to be set, and allow the peripherals to be mapped 
into memory or I/O space. Both of these registers must 
be accessed before any of the peripheral chip selects will 
become active. 

A bit in the MPCS register allows PCS5 and PCS6 
to become latched Al and A2 outputs. When this option 
is selected, PCS5 and PCS6 will reflect the state of Al 
and A2 throughout a bus cycle. These are provided to al­
low external peripheral register selection in a system in 
which the addresses are not latched. Upon reset, these 
lines are driven high. They will only reflect A 1 and A2 
after both PACS and MPCS have been accessed (and 
are programmed to provide Al and A2!). 

8.3 Ready Generation 

The 80186 includes a ready generation unit. This unit 
generates an internal ready signal for all accesses to 
memory or I/O areas to which the chip select circuitry of 
the 80186 responds. 

210973-003 



AP-186 

OFFSET: 

AOH UPPER MEMORY SIZE 

A2H LOWER MEMORY SIZE 

CD 
CD 

UMCS 

LMCS 

A4H 

ASH 

PERIPHERAL CHIP SELECT BASE ADDRESS (3) PACS 

MMCS MID-RANGE MEMORY BASE ADDRESS CD 
ASH MID-RANGE MEMORY SIZE I ~ I ~ I CD MPCS 

® 
1. Upper memory ready bits 
2. Lower memory ready bits 
3. PCSO-PCS3 ready bits 
4. Mid-range memory ready bits 
5. PCS4-PCS6 ready bits 
6. MS: 1 = Peripherals active in memory space 

o = Peripherals active in I/O space 
EX:1 = 7 PCS lines 
0= PCS5 = A1, PCS6 = A2 

Not all bits of every field are used 

Figure 72. 80186 Chip Select Control Registers 

For each ready generation area, 0-3 wait states may be 
inserted by the internal unit. Table 6 shows how the 
ready control bits should be programmed to provide this. 
In addition, the ready generation circuit may be pro­
grammed to ignore the state of the external ready (i.e., 
only the internal ready circuit will be used) or to factor 
the state of the external ready (i.e., a ready will be re­
turned to the processor only after both the internal ready 
circuit has gone ready and the external ready has gone 
ready). Some kind of circuit must be included to gener­
ate an external ready, however, since upon reset the 
ready generator is programmed to factor external ready 
to all accesses to the top I K byte memory block. If a 
ready was not returned on one of the external ready lines 
(ARDY or SRDY) the processor would wait forever to 
fetch its first instruction. 

Table 6. 80186 Wait State Programming 

R2 R1 RO Number of Wait States 

0 0 0 o + external ready 
0 0 I 1 + external ready 
0 1 0 2 + external ready 
0 1 1 '3 + external ready 
1 0 0 o (no external ready required) 
1 0 1 1 (no external ready required) 
1 1 0 2 (no external ready required) 
1 1 1 3 (no external ready required) 

8.4 Examples of Chip Select Usage 

Many examples of the use of the chip select lines are giv­
en in the bus interface section of this note (section 3.2). 
These examples show how simple it is to use the chip se­
lect function provided by the 80186. The key point to re­
member when using the chip select function is that they 
are only activated during bus cycles generated by the 
80186 CPU or DMA units. When another master has 
the bus, it must generate its own chip select function. In 
addition, whenever the bus is given by the 80186 to an 
external master (through the HOLD/ HLDA arrange­
ment) the 80186 does NOT float the chip select lines. 

8.5 Overlapping Chip Select Areas 

Generally, the chip selects of the 80186 should not be 
programmed such that any two areas overlap. In addi­
tion, none of the programmed chip select areas should 
overlap any of the locations of the integrated 256-byte 
control register block. The consequences of doing this 
are: 

Whenever two chip select lines are programmed to 
respond to the same area, both will be activated dur­
ing any access to that area. When this is done the 
ready bits for both areas must be programmed to 
the same value. If this is. not done, the processor 
response to an access in this area is indeterminate. 
This rule also applies to overlapping chip selects 
with the integrated control block. 

If any of the chip select'area overlap the integrated 
256-byte control register block, the timing on the 

210973-003 

3-492 



inter AP-186 

chip select line is altered. As always, any values re­
turned on the external bus from this access are ig­
nored. 

9. SOFTWARE IN AN 80186 SYSTEM 

Since the 80186 is object code compatible with the 8086 
and 8088, the software in an 80186 system is very simi­
lar to that in an 8086 system. Because of the hardware 
chip select functions, however, a certain amount of ini­
tialization code must be included when using those func­
tions on the 80186. 

9.1 System Initialization in an 
80186 System 

Most programmable components of a computer system 
must be initialized before they are used. This is also true 
for the 80186. The 80186 includes circuitry which di­
rectly affects the ability of the system to address mem­
ory and I/O devices, namely the chip select circuitry. 
This circuitry must be initialized before the memory 
:lfeas and peripheral devices addressed by the chip select 
signals are used. 

Upon reset, the UMCS register is programmed to be ac­
tive for all memory fetches within the top 1 K byte of 
memory space. It is also programmed to insert three 
wait states to all memory accesses within this space. If 
the hardware chip selects are used, they must be pro­
grammed before the processor leaves this 1K byte area 
of memory. If a jump to an area for which the chips are 
not selected occurs, the microcomputer system will 
cease to operate (since the processor will fetch garbage 
from the data bus). Appendix F shows a typical initial­
ization sequence for the 80186 chip select unit. 

Once the chip selects have been properly initialized, the 
rest of the 80186 system may be initialized much like an 
8086 system. For example, the interrupt vector table 
might get set up. the interrupt controller initialized, a 
serial I/O channel initialized, and the main program be­
gun. Note that the integrated peripherals included in the 
80186 do not share the same programming model as the 
standard Intel peripherals used to implement these 
functions in a typical 8086 system, i.e., different values 
must be programmed into different registers to achieve 
the same function using the integrated peripherals. Ap­
pendix F shows a typical initialization sequence for an 
interrupt driven system using the 80186 interrupt 
controller. 

9.2 Initialization for iRMX'" 86 System 

Using the iRMX 86 operating system with the 80186 re­
quires an external 8259A and an external 8253/4 or al­
terna tively an external 80130 OSF component. These 
are required because the operating system is interrupt 
driven, and expects the interrupt controller and timers to 
have the register model of these external devices. This 

3-493 

model is not the same as is implemented by the 80186. 
Because of this, the 80186 interrupt controller must be 
placed in iRMX 86 mode after reset. This initialization 
can be done at any time after reset before jump to the 
root task of iRMX 86 System is actually performed. If 
need be, a small section of code which initializes both 
the 80186 chip selects and the 80186 interrupt controller 
can be inserted between the reset vector location and the 
beginning of iRMX 86 System (see Figure 73). In this 
case, upon reset, the processor would jump to the 80186 
initialization code, and when this has been completed, 
would jump to the iRMX 86 initialization code (in the 
root task). It is important that the 80186 hardware be 
initialized before iRMX 86 operation is begun, since 
some of the resources addressed by the 80186 system 
may not be initialized properly by iRMX 86 System if 
the initialization is done in the reverse manner. 

8086 80186 

FFFF:O 

Figure 73. iRMX-86 Initialization with 
8086 & 80186 

9.3 Instruction Execution Differences 
Between the 8086 and 80186 

There are a few instruction execution differences be­
tween the 8086 and the 80186. These differences are: 

Undefined Opcodes: 

When the opcodes 63H,64H,65H,66H,67H,FlH, 
FEH XXIIIXXXB and FFH XXIIIXXXB 
are executed, the 80186 will execute an illegal in­
struction exception, interrupt type 6. The 8086 
will ignore the opcode. 

OFH opcode: 

When the opcode OFH is encountered, the 8086 
will execute a POP CS, while the 80186 will ex­
ecute an illegal instruction exception, interrupt 
type 6. 

Word Write at Offset FFFFH: 

When a word write is performed at offset 
FFFFH in a segment, the 8086 will write one 
byte at offset FFFFH, and the other at offset 0, 
while the 80186 will write one byte at offset 

210973-003 



AP-186 

FFFFH, and the other at offset 10000H (one 
byte beyond the end of the segment). One byte 
segment underflow will also occur (on the 80186) 
if a stack PUSH is executed and the Stack Point­
er contains the value 1. 

Shift/Rotate by Value Greater Then 31: 

Before the 80186 performs a shift or rotate by a 
value (either in the CL register, or by an immedi­
ate value) it ANDs the value with 1 FH, limiting 
the number of bits rotated to less than 32. The 
8086 does not do this, 

LOCK prefix: 

The 8086 activates its LOCK signal immediately 
after executing the LOCK prefix. The 80186 
does not activate the LOCK signal until the pro­
cessor is ready to begin the data cycles associated 
with the LOCKed instruction. 

NOTE: When executing more than one LOCKed 
instruction, .always make sure there are 6 bytes 
of code between the end of the first LOCKed 
instruction and the start of the second LOCKed 
instruction. 

Interrupted String Move Instructions: 

If an 8086 is interrupted during the execution of 
a repeated string move instruction, the return 
value it will push on the stack will point to the 
last prefix instruction before the string move in­
struction. If the instruction had more than one 
prefix (e.g., a segment override prefix in addition 
to the repeat prefix), it will not be re-executed 
upon returning from the interrupt. The 80186 
will push the value of the first prefix to the re­
pea ted instruction, so long as prefixes are not re­
peated, allowing the string instruction to 
properly resume. 

Conditions causing divide error with an integer 
divide: 

The 8086 will cause a divide error whenever the 
absolute value of the quotient is greater then 
7FFFH (for word operations) or if the absolute 

value of the quotient is greater than 7FH (for 
byte operations). The 80186 has expanded the 
range of negative numbers allowed as a quotient 
by 1 to include 8000H and 80H. These numbers 
represent the most negative numbers representa­
ble using 2's complement arithmetic (equaling 
- 32768 and -128 in decimal, respectively). 

ESC Opcode: 

The 80186 may be programmed to cause an in­
terrupt type 7 whenever an ESCape instruction 
(used for co-processors like the 8087) is execut­
ed. The 8086 has no such provision. Before the 
80186 performs this trap, it must be pro­
grammed to do so. 

These differences can be used to determine whether the 
program is being executed on an 8086 or an 80186. 
Probably the safest execution difference to use for this 
purpose is the difference in multiple bit shifts. For exam­
ple, if a mUltiple bit shift is programmed where the shift 
count (stored in the CL register!) is 33, the 8086 will 
shift the value 33 bits, whereas the 80186 will shift it 
only a single bit. 

In addition to the instruction execution differences not­
ed above, the 80186 includes a number of new instruc­
tion types, which simplify assembly language 
programming of the processor, ana enhance the perfor­
mance of higher level languages running on the proces­
sor. These new instructions are covered in depth in the 
8086/80186 users manual and in appendix H of this 
note. 

10. CONCLUSIONS 

The 80186 is a glittering example of state-of-the art in­
tegrated circuit technology applied to make the job of 
the microprocessor system designer simpler and faster. 
Because many of the required peripherals and their in­
terfaces have been cast in silicon, and because of the 
timing and drive latitudes provided by the part, the de­
signer is free to concentrate on other issues of system de­
sign. As a result, systems designed around the 80186 
allow applications where no other processor has been 
able to provide the necessary performance at a compara­
ble size or cost. 

210973-003 
3-494 



APPENDIX A 

APPENDIX B 

APPENDIXC 

APPENDIX 0 

APPENDIX E 

APPENDIX F 

APPENDIX G 

APPENDIX H 

APPENDIX I 

AP-186 

3-495 
210973-003 



AP-186 

APPENDIX A: PERIPHERAL CONTROL 
BLOCK 
All the integrated peripherals within the 80186 micro­
processor are controlled by sets of registers contained 
within an integrated peripheral control block. The regis­
ters are physically located within the peripheral devices 
they control, but are addressed as a single block of regis­
ters. This set of registers fills 256 contiguous bytes and 
can be located beginning on any 256 byte boundary of 
the 80186 memory or I/O space. A map of these regis­
ters is shown in Figure A-I. 

A.1 Setting the Base Location of the 
Peripheral Control Block 

In addition to the control registers for each of the inte­
grated 80186 peripheral devices, the peripheral control 

block contains the peripheral control block relocation 
register. This register allows the peripheral control block 
to be re-located on any 256 byte boundary within the 
processor's memory or I/O space. Figure A-2 shows the 
layout of this register. 

This register is located at offset FEH within the periph­
eral control block. Since it is itself contained within the 
peripheral control block, any time the location of the pe­
ripheral control block is moved, the location of the relo­
cation register will also move. 

In addition to the peripheral control block relocation in­
formation, the relocation register contains two addition­
al bits. One is used to set the interrupt controller into 
iRMX86 compatibility mode. The other is used to force 
the processor to trap whenever an ESCape (coprocessor) 
instruction is encountered. 

OFFSET 

Relocation Register FEH 

DMA Descriptors Channell 

DMA Descriptors Channel 0 

~. 

Chip-Select Control Registers 

Timer 2 Control Registers 

Timer 1 Control Registers 

--
Timer 0 Control Registers 

Interrupt Controller Registers 

DAH 

DOH 

CAH 

COH 

A8H 

AOH 

66H 

60H 
5EH 

58H 
56H 

50H 

3EH 

20H 

Figure A-1. 80186 Integrated Peripheral Control Block 

3-496 210973-003 



AP-186 

11 10 9 8 7 6 5 4 3 2 o 
OFFSET: FEHL-__ L-__ ~ __ ~ __ L-__________ R_e_lo_c_a_ti_o_n_A_d_d_re_s_s_B_i_ts_R_1_9_-_R_8 ____________ ~ 

= ESC Trap 1 No ESC Trap (110) ET 
MilO 
RMX 

= Register block located in Memory 1 I/O Space (1/0) 
= Master Interrupt Controller mode 1 iRMX compatible 

Interrupt Controller mode (0/1) 

Figure A-2. 80186 Relocation Register Layout 

Because the relocation register is contained within the 
peripheral control block, upon reset the relocation regis­
ter is automatically programmed with the value 20FFH. 
This means that the peripheral control block will be lo­
cated at the very top (FFOOH to FFFFH) of I/O space. 
Thus, after reset the relocation register will be located at 
word location FFFEH in I/O space. 

If the user wished to locate the peripheral control block 
starting at memory location 10000H he would program 
the peripheral control register with the value llOOH. By 
doing this, he would move all registers within the inte­
grated peripheral control block to memory locations 
10000H to 100FFH. Note that since the relocation reg­
ister is contained within the peripheral control block, it 
too would move to word location 100FEH in memory 
space. 

Whenever mapping the 188 peripheral control block to 
another location, the programming of the relocation 
register should be done with a byte write (i.e. OUT 
OX,AL). Any access to the control block is done 16 bits at 
a time. Thus, internally, the relocation register will get 
written with 16 bits of the AX register while externally, the 
BI U will run only one 8 bit bus cycle. If a word instruction 
is used (i.e. OUT OX,AX), the relocation register will be 
written on the first bus cycle. The BIU will then run a 
second bus cycle which is unnecessary. The address of the 
second bus cycle will no longer be within the control block 
(i.e. the control block was moved on the first cycle). and 
therefore, will require the generation of an external ready 
signal to complete the cycle. For this reason we recommend 
byte operations to the relocation register. Byte instructions 
may also be used for the other registers in the control 
block and will eliminate half of the bus cycles required if a 
word operation had been specified. Byte operations are 
only valid on even addresses though, and arc undefined on 
odd addresses. 

A.2 Peripheral Control Block Registers 
Each of the integrated peripherals' control and statuS 
registers are located at a fixed location above the pro­
grammed base location of the peripheral control block. 
There are many locations within the peripheral control 
block which are not assigned to any peripheral. If a write 
is made to any of these locations, the bus cycle will be 
run, but the value will not be stored in any internalloca­
tion. This means that if a subsequent read is made to the 
same location, the value written will not be read back. 

The processor will run an external bus cycle for any 
memory or I/O cycle which accesses a location within 
the integrated control block. This means that the ad­
dress, data, and control information will be driven on the 
80186 external pins just as if a "normal" bus cycle had 
been run. Any information returned by an external de­
vice will be ignored, however, even if the access was to a 
location which does not correspond to any of the inte­
grated peripheral control registers. The above is also true 
for the 80188, except that the word access made to the 
integrated registers will be performed in a single bus cycle 
internally, while externally, the Bl U runs two bus cycles. 

The processor internally generates a ready signal when­
ever any of the integra ted peripherals are accessed; thus 
any external ready signals are ignored whenever an ac­
cess is made to any location within the integrated pe­
ripheral register control block. This ready will also be 
returned if an access is made to a location within the 256 
byte area of the periperal control block which does not 
correspond to any integrated peripheral control register. 
The processor will insert 0 wait states to any access with­
in the integrated peripheral control block except for ac­
cesses to the timer registers. ANY access to the timer 
control and counting registers will incur 1 wait state. 
This wait state is required to properly multiplex proces­
sor and counter element accesses to the timer control 
registers. 

3-497 210973-003 



AP-186 

All accesses made to the integrated peripheral control 
block will be WORD accesses. Any write to the integrated 
registers will modify all 16 bits of the register. whether the 
opcode specified a byte write or a word write. A byte read 
from an even location should cause no problems, but the 
data returned when a byte read is performed from an odd 
address within the peripheral control block is undefined. 
This is true both for the 80186 AND the 80188. As stated 
above, even though the 80188 has an external 8 bit data 
bus, internally it is still a 16 bit machine. Thus, the word 
accesses performed to the integrated registers by the 80188 
will each occur in a single bus cycle internally while 
externally the BIU runs two bus cycles. 

APPENDIX B: 80186 SYNCHRONIZATION 
INFORMATION 

Many input signals to the 80186 are asynchronous, that 
is, a specified set up or hold time is not required to insure 
proper functioning of the device. Associated with each of 
these inputs is a synchronizer which samples this exter­
nal asynchronous signal, and synchronizes it to the in­
ternal 80186 clock. 

B.1 Why Synchronizers Are Required 

Every data latch requires a certain set up and hold time 
in order to operate properly. At a certain window within 
the specified set up and hold time, the part will actually 
try to latch the data. If the input makes a transition 
within this window, the output will not attain a stable 
state within the given output delay time. The size of this 
sampling window is typically much smaller than the ac­
tual window specified by the data sheet, however part to 
part variation could move this window around within the 
specified window in the data sheet. 

Even if the input to a data latch makes a transition while 
a data l~tch is attempting to latch this input, the output 
of the latch will attain a stable state after a certain 
amount of time, typically much longer than the normal 
strobe to output delay time. Figure 8-1 shows a normal 
input to output strobed transition and one in which the 
input sign:;ll makes a transition during the latch's sample 
window. In order to synchronize an asynchronous signal, 
all one needs to do is to sample the signal into one data 
latch, wait a certain amount of time, then latch it into a 
second data latch. Since the time between the strobe into 
the first data latch and the strobe into the second data 
latch allows the first .data latch to attain a steady state 
(or to resolve the asynchronous signal), the second data 
latch will be presented with an input signal which satis­
fies any set up and hold time requirements it may have. 

STROBE I 
INPUT ---S=-:E::l:-:-U-:=P~T::IM::E-!' HOLD TIME 

m 
I 

ACTUAL SAMPLING INSTANT 

Iii I INVALID ~ 
~----' 

INPUT ~ 
RESPONSE --------1- RESOLUTION TIME .1 
VALID~ 
INPUT 

RESPONSE _______ ....J/ 

Figure 8-1_ Valid & Invalid Latch Input 
Transitions & Responses 

Thus, the output of this second latch is a synchronous 
signal with respect to its strobe input. 

A synchronization failure can occur if the synchronizer 
fails to resolve the asynchronous transition within the 
time between the two latch's strobe signals. The rate of 
failure is determined by the actual size of the sampling 
window of the data latch, and by the amount oftime be­
tween the strobe signals of the two latches. Obviously, as 
the sampling window gets smaller, the number of times 
an asynchronous transition will occur during the sam­
pling window will drop. In addition, however, a smaller 
sampling window is also indicative of a faster resolution 
time for an input transition which manages to fall within 
the sampling window. 

B.2 80186 Synchronizers 

The 80186 contains synchronizers on the RES, 
TEST, TmrInO-I, DRQO-I, NMI, INTO-3, ARDY, and 
HOLD input lines. Each of these synchronizers use the 
two stage synchronization technique described above 
(with some minor modifications for the ARDY line, see 
section 3.1.6). The sampling window of the latches is de­
signed to be in the tens of pico-seconds, and should allow 
operation of the synchronizers with a mean time be­
tween failures of over 30 years assuming continuous 
operation. 

210973-003 
3-498 



inter AP-186 

APPENDIX C: 80186 EXAMPLE DMA INTERFACE CODE 

$modl86 
name 

This file contains an example procedure which initializes the 80186 DMA 
controller to perform the DMA transfers between the 80186 system and the 
8272 Floppy Disk Controller (FDC). It assumes that the 80186 
peripheral control block has not been moved from its reset location. 

argl equ word ptr [BP + 4] 
arg2 equ word ptr [BP + 6] 
arg3 equ word ptr [BP + 8] 
DMA.FROM_LOWER equ OFFCOh 
DMA_FROM_UPPER equ OFFC2h 
DMA_TO_LOWER equ OFFC4h 
DMA. TO_UPPER equ OFFC6h 
DMA_COUNT equ OFFC8h 
DMA_CONTROL equ OFFCAh 
DMA_TO_DISK.CONTROL equ 01486h 

OA046h 

FDCDMA equ 6B8h 
FDCDATA equ 688h 
FDCSTATUS equ 680h 

cgroup group code 

DMA register locations 

destination synchronization 
source to memory, incremented 
destination to I/O 
no terminal count 
byte transfers 

source synchronization 
source to I/O 
destination to memory, incr 
no terminal count 
byte transfers 
FDC DMA address 
FDC data register 
FDC status register 

code segment public 'code' 
public seLdma_ 
assume cs:cgroup 

seLdma (offset,to) programs the DMA channel to point one side to the 

seLdma_ 

disk DMA address, and the other to memory pointed to by ds:offset. If 
'to' = 0 then will be a transfer from disk to memory; if 
'to' = 1 then will be a transfer from memory to disk. The parameters to 
the routine are passed on the stack. 

proc near 
enter 0,0 
push AX 
push BX 
push DX 
test arg2,1 

jz frollLdisk 
performing a transfer from memory to the disk controller 

mov 
rol 

AX,DS 
AX,4 

3-499 

set stack addressability 
save registers used 

check to see direction of 
transfer 

get the segment value 
gen the upper 4 bits of the 
physical address in the lower 4 
bits of the register 

210973-003 



AP-186 

mov BX,AX save the result... 
mov DX,DMA.FROM.UPPER prgm the upper 4 bits of the 
out DX,AX DMA source register 
and AX,OFFFOh form the lower 16 bits of the 

physical address 
add AX,argl add the offset 
mov DX,DMA.FROM.LOWER prgm the lower 16 bits of the 
out DX,AX DMA source register 
jnc no.carry.from check for carry out of addition 
inc BX if carry out, then need to adj 
mov AX,BX the upper 4 bits of the pointer 
mov DX,DMA.FROM.UPPER 
out DX,AX 

no.carry.from: 
mov AX,FDC.DMA prgm the low 16 bits of the DMA 
mov DX,DMA.TO.LOWER destination register 
out DX,AX 
xor AX,AX zero the up 4 bits of the DMA 
mov DX,DMA.TO.UPPER destina tion register 
out DX,AX 
mov AX,DMA. TO.DISK..CONTROL; prgm the DMA cd reg 
mov DX,DMA.CONTROL note: DMA may begin immediatly 
out DX,AX after this word is output 
pop DX 
pop BX 
pop AX 
leave 
ret 

performing a transfer from the disk to memory 

mov AX,DS 
rol AX,4 
mov DX,DMA.TO.UPPER 
out DX,AX 
mov BX,AX 
and AX,OFFFOh 
add AX,argl 
mov DX,DMA. TO.LOWER 
out DX,AX 
jne no.carry.to 
inc BX 
mov AX,BX 
mov DX,DMA.TO.UPPER 
out DX,AX 

no.carry.to: 
mov AX,FDC.DMA 

mov DX,DMA.FROM.LOWER 
out DX,AX 
xor AX,AX 
mov DX,DMA.FROM.UPPER 
out DX,AX 
mov AX,DMA.FROM.DISK..CONTROL 
mov DX,DMA.CONTROL 

3-500 210973·003 



AP-186 

out DX,AX 
pop DX 
pop BX 
pop AX 
leave 
ret 

seLdma_ endp 

code ends 
end 

3-501 210973-003 



inter AP-186 

APPENDIX D: 80186 EXAMPLE TIMER INTERFACE CODE 

$mod186 
name 

this file contains example 80186 timer routines. The first routine 

arg1 
arg2 
arg3 
timer_2int 

sets up the timer and interrupt controller to cause the timer 
to generate an interrupt every 10 milliseconds, and to service 
interrupt to implement a real time clock. Timer 2 is used in 
this example because no input or output signals are required. 
The code example assumes that the peripheral control block has 
not been moved from its reset location (FFOO-FFFF in I/O space). 

equ word ptr [BP + 4] 
equ word ptr [BP + 6] 
equ word ptr [BP + 8] 
equ 19 

timer.2control equ OFF66h 
timer_2malLctl equ OFF62h 
timer .inLct! equ OFF32h 
eoLregister equ OFF22h 
interrupt.stat equ OFF30h 

data segment 
public hour_,minute_,second_,msec_ 

msec~ db ? 
hOUL db ? 
minute_ db 
second_ db ? 
data ends 

cgroup group code 
dgroup group data 

code segment 
public seUime_ 
assume cs:code,ds:dgroup 

set.time(hour,minute,second) sets the time variables, initializes the 
80186 timer2 to provide interrupts every 10 milliseconds, and 
programs the interrupt vector for timer 2 

seUime_ proc near 
enter 0,0 
push AX 
push OX 
push SI 
push OS 

xor AX,AX 

mov OS,AX 

mov SI,4 * timer2.int 

3-502 

timer 2 has vector type 19 

interrupt controller regs 

public 'data' 

public 'code' 

set stack addressability 
save registers used 

set the interrupt vector 
the timers have unique 
interrupt 
vectors even though they share 
the same control register 

210973-003 



inter 

seuime_ 

timer2jnterrupLroutine 

bum p_second: 

bump_minute: 

AP-186 

mov 
inc 
inc 
mov 
pop 

DS: [SIl,offset timer_2jnterrupLroutine 
SI 

mov 
may 

mav 
mov 
maY 
mov 

may 
maY 

out 
mov 
mov 

SI 
DS:[SI],CS 
DS 

AX,argl 
hour_,AL 
AX,arg2 
minute_,AL 
AX,arg3 
second_,AL 

DX,timer2_max_ctl 
AX,20000 

DX,AX 
D X, timer2_con trol 
AX,III 000000000000 I b 

out DX,AX 

mov 
mov 

out 
sti 

DX,timeLinLctl 
AX,OOOOb 

DX,AX 

pop SI 
pop DX 
pop AX 
leave 
ret 
endp 

proc 
push 
push 

cmp 
jae 

far 
AX 
DX 

msec_,99 
bump_second 

inc msec_ 
jmp reseLinLctl 

may 
cmp 
jae 
inc 
jmp 

mov 
cmp 
jae 
inc 
jmp 

msec_,O 
second_,59 
bump_minute 
second_ 
reseLinLctl 

second_,O 
minute_,59 
bump_hour 
minute_ 
reseLinLctl 

3-503 

set the time values 

set the max count value 
10 ms / 500 ns (timer 2 counts 
at 1/4 the CPU clock rate) 

set the control word 
enable counting 
generate interrupts on TC 

, continuous counting 

set up the interrupt controller 
unmask interrupts 
highest priority interrupt 

enable processor interrupts 

see if one second has passed 
if above or equal... 

reset millisecond 
see if one minute has passed 

see if one hour has passed 

210973-003 



inter 

seLrmlL 
code 

pop 
pop 
ret 
endp 
ends 
end 

AX 
DX 

AP-186 

3-504 210973-003 



reseLhour: 

reseLinLctl: 

timer2jnterrupLroutine 
code 

$modl86 
name 

mov 
cmp 
jae 
inc 
jmp 

mov 

mov 
mov 
out 

pop 
pop 
iret 
endp 
ends 
end 

AP-186 

minute_,O 
hour_,12 
reseLhour 
hour_ 
reseLinLctl 

hour_,1 

DX,eoLregister 
AX,8000h 
DX,AX 

DX 
AX 

this file contains example 80186 timer routines. The second routine 
sets up the timer as a baud rate generator. In this mode, 
Timer 1 is used to continually output pulses with a period of 
6.5 usec for use with a serial controller at 9600 baud 
programmed in divide by 16 mode (the actual period required 
for 9600 baud is 6.51 usec). This assumes that the 80186 is 
running at 8 MHz. The code example also assumes that the 
peripheral control block has not been moved from its reset 
location (FFOO-FFFF in I/O space). 

timer Lcontrol 
timer Lmax_cnt 

equ OFF5Eh 
equ OFF5Ah 

see if 12 hours have passed 

non-specific end of interrupt 

code segment public 'code' 
assume cs:code 

seLbaudO initializes the 80186 timer! as a baud rate generator for 
a serial port running at 9600 baud 

seLbaud_ proc near 
push AX 
push DX 

mov DX,timerLmax..cnt 
mov AX, 13 
out DX,AX 
mov D X, timer Lcontrol 
mov AX, 11 0000000000000 1 b 

out DX,AX 

pop DX 
pop AX 

3-505 

save registers used 

set the max count value 
500ns * 13 = 6.5 usec 

set the control word 
enable counting 
no interrupt on TC 
continuous counting 
single max count register 

210973-003 



seLbaud.. 
code 

$mod186 
name 

ret 
endp 
ends 
end 

Ap·186 

this file contains example 80186 timer routines. The third routine 
sets up the timer as an external event counter. In this mode, 
Timer 1 is used to count transitions on its input pin. After 
the timer has been set up by the routine, the number of 
events counted can be directly read from the timer count 
register at location FF58H in I/O space. The timer will 
count a maximum of 65535 timer events before wrapping 
around to zero. This code example also assumes that the 
peripheral control block has not been moved from its reset 
location (FFOO-FFFF in I/O space). 

timer Lcontrol equ OFF5Eh 
timer Lmax_cnt equ OFF5Ah 
timer LcnLreg equ OFF58H 

code segment 
assume cs:code 

seLcountO initializes the 80186 timer! as an event counter 

seLcounL proc near 
push AX 
push DX 

mov DX,timerLmalLcnt 
mov AX,O 

out DX,AX 
mov D X, timer Lcontrol 
mov AX,II 00000000000 1 0 1 b 

out DX,AX 

xor AX,AX 
mov DX,timerLcnLreg 
out DX,AX 

pop DX 
pop AX 
ret 

seLcounL endp 
code ends 

end 

3-506 

public 'code' 

save registers used 

set the max count value 
allows the timer to count 
all the way to FFFFH 

set the control word 
enable counting 
no interrupt on TC 
continuous counting 
single max count register 
external clocking 

zero AX 
and zero the count in the timer 
count register 

210973-003 



AP-186 

APPENDIX E: 80186 EXAMPLE 
INTERRUPT CONTROLLER INTERFACE 
CODE 

$modl86 
name example_80 1 86jnterrupLcode 

This routine configures the 80186 interrupt controller to provide 
two cascaded interrupt inputs (through an external 8259A 
interrupt controller on pins INTOjINT2) and two direct 
interrupt inputs (on pins INTI and INT3). The default priority 
levels are used. Because of this, the priority level programmed 
into the control register is set the 111, the level all 
interrupts are programmed to at reset. 

intO_control 
inLmask 

equ 
equ 

OFF38H 
OFF28H 

code 

seLinL 

seLinL 
code 

$modU!6 
name 

segment 
assume CS:code 
proc near 
push DX 
push AX 

mov AX,OIOOliIB 

mov DX,intO_control 
out DX,AX 

mov AX,OIOOIIOIB 

mov DX,inLmask 
out DX,AX 
pop AX 
pop DX 
ret 
endp 
ends 
end 

exampk80186jnterrupLcode 

This routine configures the 80186 interrupt controller into iRMX 86 
mode. This code does not initialize any of the 80186 
integrated peripheral control registers, nor does it initialize 
the external 8259A or 80130 interrupt controller. 

relocation_reg equ OFFFEH 

code segment 
assume CS:code 

seLrmx_ proc near 
push DX 
push AX 

mov DX,relocation_reg 
in AX,DX 
or AX,O 1 OOOOOOOOOOOOOOB 
out DX,AX 

3-507 

public 'code' 

cascade mode 
interrupt unmasked 

now unmask the other external 
interrupts 

public 'code' 

read old contents of register 
set the RMX mode bit 

210973-003 



AP-186 

APPENDIX F: 80186/8086 EXAMPLE 
SYSTEM INITIALIZATION CODE 

name 

This file contains a system initialization routine for the 80186 
or the 8086. The code determines whether it is running on 
an 80186 or an 8086, and ifit is running on an 80186, it 
initializes the integrated chip select registers. 

restart segment at 

This is the processor reset address at OFFFFOH 

org 0 
jmp far ptr initialize 

restart ends 

extrn monitor:far 
iniLhw segment at 

assume CS:iniLhw 

This segment initializes the chip selects. It must be located in the 
top IK to insure that the ROM remains selected in the 80186 

system until the proper size of the select area can be programmed. 

UMCS.reg equ OFFAOH 
LMCS.reg equ OFFA2H 
PACS.reg equ OFFA4H 
MPCS.reg equ OFFA8H 
UMCS.value equ OF038H 
LMCS.value equ 07F8H 
PACS.value equ 007EH 
MPCS.value equ 8lB8H 

initialize proc far 
mov AX,2 
mov CL,33 
shr AX,CL 
test AX,! 
jz noL80l86 

mov DX,UMCS.reg 
mov AX, UMCS.value 
out DX,AX 

mov DX,LMCS.reg 
mov AX,LMCS.value 
out DX,AX 

mov DX,PACS.reg 

mov AX,PACS.value 
out DX,AX 

3-508 

OFFFFh 

OFFFOh 

chip select register locations 

64K, no wait states 
32K, no wait states 
peripheral base at 400H, 2 ws 
PCS5 and 6 supplies, 
peripherals in I/O space 

determine ifthis is an 
8086 or an 80186 (checks 
to see if the multiple bit 
shift value was ANDed) 

program the UMCS register 

program the LMCS register 

set up the peripheral chip 
selects (note the mid-range 
memory chip selects are not 
needed in this system, and 
are thus not initialized 

210973-003 



mov 
mov 
out 

AP-186 

OX,MPCS_reg 
AX,MPCS_value 
OX,AX 

Now that the chip selects are all set up, the main program of the 
computer may be executed. 

noL80186: 

initialize 
iniLhw 

jmp 
endp 
ends 
end 

far ptr monitor 

3-509 210973-003 



AP-186 

APPENDIX G: 80186 WAIT STATE 
PERFORMANCE . 

Because the 80186 contains seperate bus interface and 
execution units, the actual performance of the processor 
will not degrade at a constant rate as wait states are add­
ed to the memory cycle time from the processor. The ac­
tual rate of performace degradation will depend on the 
type and mix of instructions actually encountered in the 
user's program. 

Shown below are two 80186 assembly language pro­
grams, and the actual execution time for the two pro­
grams as wait states are added to the memory system of 
the processor. These programs show the two extremes to 
which wait states will or will not effect system perfor­
mance as wait states are introduced. 

Program 1 is very memory intensive. It performs many 
memory reads and writes using the more extensive mem­
ory addressing modes of the processor (which also take a 
greater number of bytes in the opcode for the instruc­
tion). As a result, the execution unit must constantly 
wait for the bus interface unit to fetch and perform the 
memory cycles to allow it to continue. Thus, the execu­
tion time of this type of routine will grow quickly as wait 
states are added, since the execution time is almost total­
ly limited to the speed at which the processor can run bus 
cycles. 

Note also that this program execution times calculated 
by merely summing up the number of clock cycles given 
in the data sheet will typically be less than the actual 
number of clock cycles actually required to run the pro­
gram. This is because the numbers quoted in the data 
sheet assume that the opcode bytes have been prefetched 
and reside in the 80186 prefetch queue for immediate 
access by the execution unit. If the execution unit cannot 

access the opcode bytes immediatly upon request, dead 
clock cycles will be inserted in which the execution unit 
will remain idle, thus increasing the number of clock cy­
cles required to complete execution of the program. 

On the other hand, program 2 is more CPU intensive. It 
performs many integer multiplies, during which time 
the bus interface unit can fill up the instruction pre­
fetch queue in parallel with the execution unit perform­
ing the multiply. In this program, the bus interface unit 
can perform bus operations faster than the execution 
unit actually requires them to be run. In this case, the 
performance degradation is much less as wait states are 
added to the memory interface. The execution time of 
this program is closer to the number of clock cycles cal­
culated by adding the number of cycles per instruction 
because the execution unit does not have to wait for the 
bus interface unit to place an opcode byte in the prefetch 
queue as often. Thus, fewer clock cycles are wasted by 
the execution unit laying idle for want of instructions. 
Table G-l lists the execution times measured for these 
two programs as wait states were introduced with the 
80186 running at 8 MHz. 

Table G-1 

Program 1 Program 2 

# of Exec Exec 
Wait Time Perf Time Perf 

States (usee) Degr (lLsec) Degr 

0 505 294 

I 595 18% 311 6% 

2 669 12% 337 8% 

3 752 12% 347 3% 

$modl86 
name example_waiLstate_performance 

This file contains two programs which demonstrate the 80186 performance 
degradation as wait states are inserted. Program 1 performs a 
transformation between two types of characters sets, then copies 

cgroup 
dgroup 
data 

the transformed characters back to the original buffer (which is 64 
bytes long. Program 2 performs the same type of transformation, however 
instead of performing a table lookup, it multiplies each number in the 
original 32 word buffer by a constant (3, note the use of the integer 
immediate multiply instruction). Program "nothing" is used to measure 
the call and return times from the driver program only. 

group code 
group data 
segment public 'data' 

3-510 
210973-003 



inter AP·186 

uable db 256 dup (?) 
Lstring db 64 dup (?) 
m_array dw 32 dup (?) 
data ends 

code segment public 'code' 
assume eS:cgroup,DS:dgroup 
public bench_I, bench_2,nothing_, waiLsta te_,seU imer_ 

bench_l proc near 
push SI ; save registers used 
push ex 
push BX 
push AX 

mov eX,64 translate 64 bytes 
mov SI,O 
may BH,O 

loop_back: 
mov BL,Lstring[SI] get the byte 
mov AL,uable[BX] transla te byte 
may LString[SI],AL and store it 
inc SI increment index 
loop loop_back do the next byte 

pop AX 
pop BX 
pop ex 
pop SI 
ret 

bench_l endp 

bench_2 proc near 
push AX save registers used 
push SI 
push ex 

mov eX,32 multiply 32 numbers 
mov Sl,offset lILarray 

loop_bacl<-2: 
imul AX,word ptr [SI],3 immediate multiply 
mov word ptr lSI] ,AX 
inc SI 
inc SI 
loop loop_bacl<-2 

pop ex 
pop SI 
pop AX 
ret 

bench_2_ endp 

3-511 210973-003 



nothing. 

nothing. 

proc 
ret 
endp 

AP-186 

near 

wait.state(n) sets the 80186 LMCS register to the number of wait states 
(0 to 3) indicated by the parameter n (which is passed on the stack). 
No other bits of the LMCS register are modified. 

wait-state. proc near 
enter 0,0 
push AX 
push BX 
push DX 

moy BX,word ptr [BP + 4] 
moy DX,OFFA2h 

contents 
in AX,DX 

and AX,OFFFCh 
and BX,3 
or AX,BX 
out DX,AX 

pop DX 
. pop BX 

pop AX 
leaye 
ret 

wait-state. endp 

seUimerO initializes the 80186 timers to count microseconds. Timer 2 
is set up as a prescaler to timer 0, the microsecond count can be read 

directly out of the timer 0 count register at location FF50H in I/O 
space. 

seUimer. proc near 
push AX 
push DX 

moy DX,Off66h 
moy AX,4000h 
out DX,AX 

moy DX,Off50h 
moy AX,O 
out DX,AX 

moy DX,Off52h 
moy AX,O 
out DX,AX 

3-512 

set up stack frame 
saye registers used 

get argument 
get current LMCS register 

and off existing ready bits 
insure ws count is good 
adjust the ready bits 
and write to LMCS 

tear down stack frame 

stop timer 2 

clear timer 0 count 

timer 0 counts up to 65535 

210973·003 



AP-186 

moy DX,Off56h ena ble timer 0 
moy AX,OcOO9h 
out DX,AX 

moy DX,Off60h clear timer 2 count 
moy AX,O 
out DX,AX 

moy DX,Off62h set maximum count of timer 2 
moy AX,2 
out DX,AX 

moy DX,Off66h re-enable timer 2 
moy AX,OcOOlh 
out DX,AX 

pop DX 
pop AX 
ret 

seUimer. endp 
code ends 

end 

3-513 210973-003 



AP-186 

APPENDIX H: 80186 NEW INSTRUCTIONS 

The 80186 performs many additional instructions to 
those of the 8086. These instructions appear shaded in 
the instruction set summary at the back of the 80186 
data sheet. This appendix explains the operation of these 
new instructions. In order to use these new instructions 
with the 8086/186 assembler, the "$modI86" switch 
must be given to the assembler. This can be done by plac­
ing the line: "$modI86" at the beginning of the assem­
bly language file. 

PUSH immediate 

This instruction allows immediate data to be pushed 
onto the processor stack. The data can be either an im­
mediate byte or an immediate word. If the data is a byte, 
it will be sign extended to a word before it is pushed onto 
the stack (since all stack operations are word 
opera tions). 

PUSHA, POPA 

These instructions allow all of the general purpose 
80186 registers to be saved on the stack, or restored from 
the stack. The registers saved by this instruction (in the 
order they are pushed onto the stack) are AX, CX, DX, 
BX, SP, BP, SI, and DI. The SP value pushed onto the 
stack is the value of the register before the first PUSH 
(AX) is performed; the value popped for the SP register 
is ignored. 

This instruction does not save any of the segment regis­
ters (CS, DS, SS, ES), the instruction pointer (IP), the 
flag register, or any of the integrated peripheral 
registers. 

IMUL by an immediate value 

This instruction allows a value to be multiplied by an im­
mediate value. The result of this operation is 16 bits 
long. One operand for this instruction is obtained using 
one of the 80186 addressing modes (meaning it can be in 
a register or in memory). The immediate value can be 
either a byte or a word, but will be sign extended if it is a 
byte. The 16-bit result of the multiplication can be 
placed in any of the 80186 general purpose or pointer 
registers. 

This instruction requires three operands: the register in 
which the result is to be placed, the immediate value 
and the second operand. Again, this second operand ca~ 
be any of the 80186 general purpose registers or a speci­
fied memory location. 

shifts/rotates by an immediate value 

The 80186 can perform multiple bit shifts or rotates 
where the .number of bits to be shifted is specified by an 

3-514 

immediate value. This is different from the 8086, where 
only a single bit shift can be performed, or a multiple 
shift can be performed where the number of bits to be 
shifted is specified in the CL register. 

All of the shift/rotate instructions of the 80186 allow 
the number of bits shifted to be specified by an immedi­
ate value. Like all multiple bit shift operations per­
formed by the 80186, the number of bits shifted is the 
number of bits specified modulus 32 (i.e. the maximum 
number of bits shifted by the 80186 multiple bit shifts is 
31). 

These instructions require two operands: the operand to 
be shifted (which may be a register or a memory location 
specified by any of the 80186 addressing modes) and the 
number of bits to be shifted. 

block input/output 

The 80186 adds two new input/output instructions: INS 
and OUTS. These instructions perform block input or 
output operations. They operate similarly to the string 
move instructions of the processor. 

The INS instruction performs block input from an I/O 
port to memory. The I/O address is specified by the DX 
register; the memory location is pointed to by the DI reg­
ister. After the operation is performed, the DI register is 
adjusted by 1 (if a byte input is specified) or by 2 (if a 
word input is specified). The adjustment is either an in-. 
crement or a decrement, as determined by the Direction 
bit in the flag register of the processor. The ES segment 
register is used for memory addressing, and cannot be 
overridden. When preceeded by a REPeat prefix, this in­
struction allows blocks of data to be moved from an I/O 
address to a block of memory Note tha t the I/O address 
in the DX register is not modified by this operation. 

The OUTS instruction performs block output from 
memory to an I/O port. The I/O address is specified by 
the DX register; the memory location is pointed to by the 
SI register. After the operation is performed, the SI reg­
ister is adjusted by 1 (if a byte output is specified) or by 
2 (if a word output is specified). The adjustment is either 
an increment or a decrement, as determined by the Di­
rection bit in the flag register of the processor. The DS 
segment register is used for memory addressing, but can 
be overridden by using a segment override prefix. When 
preceeded by a REPeat prefix, this instruction allows 
blocks of data to be moved from a block of memory to an 
I/O address. Again note that the I/O address in the DX 
register is not modified by this operation. 

Like the string move instruction, these two instructions 
require two operands to specify whether word or byte op­
erations are to take place. Additionally, this determina­
~.io? ca~. be,~upplied b~ the mnem?nic itself by adding a 

B or W to the baSIC mnemOnIC, for example: 
INSB ; perform byte input 
REP OUTSW ; perform word block output 

210973-003 



AP-186 

BOUND 

The 80186 supplies a BOUND instruction to facilitate 
bound checking of arrays. In this instruction, the calcu­
lated index into the array is placed in one of the general 
purpose registers of the 80186. Located in two adjacent 
word memory locations are the lower and upper bounds 
for the array index. The BOUND instruction compares 
the register contents to the memory locations, and if the 
value in the register is not between the values in the 
memory locations, an interrupt type 5 is generated. The 
comparisons performed are SIGNED comparisons. A 
register value equal to either the upper bound or the low­
er bound will not cause an interrupt. 

This instruction requires two arguments: the register in 
which the calculated array index is placed, and the word 
memory location which contains the lower bound of the 
array (which can be specified by any of the 80186 mem­
ory addressing modes). The memory location containing 
the upper bound of the array must follow immediatly the 
memory location containing the lower bound of the 
array. 

ENTER and LEAVE 

The 80186 contains two instructions which are used to 
build and tear down stack frames of higher level, block 
structured languages. The instruction used to build 
these stack frames is the ENTER instruction. The algo­
rithm for this instruction is: 

PUSH BP 

if level = 0 then 
BP:= SP; 

/* save the previous frame 
pointer * j 

else tempi := SP; /* save current frame pointer 
*j 

? 

BP~ BEFORE: 

SP-

temp2 : = level - I; 
do while temp2 > 0 j* copy down previous 

BP:= BP - 2; 
PUSH [BP]; 

BP:= tempi; 
PUSH BP; 

/ * in the save area * / 
SP:= SP - disp; 

/* local variables * / 

frame * j 
j* pointers * j 

/* put current level 
pointer * j 

/* create space on the 
for * / 

level 

frame 

stack 

Figure H-I shows the layout of the stack before and 
after this opera tion. 

This instruction requires two operands: the first value 
(disp) specifies the number of bytes the local variables of 
this routine require. This is an unsigned value and can be 
as large as 65535. The second value (level) is an un­
signed value which specifies the level of the procedure. It 
can be as great as 255. 

The 80186 includes the LEAVE instruction to tear down 
stack frames built up by the ENTER instruction. As can 
be seen from the layout of the stack left by the ENTER 
instruction, this involves only moving the contents of the 
BP register to the SP register, and popping the old BP 
value from the stack. 

Neither the ENTER nor the LEAVE instructions save 
any of the 80186 general purpose registers. If they must 
be saved, this must be done in addition to the ENTER 
and the LEAVE. In addition, the LEAVE instruction 
does not perform a return from a subroutine. If this is 
desired, the LEAVE instruction must be explicitly fol­
lowed by the RET instruction. 

AFTER 

BP_ OLDBP I-
OLD FRAME 

PTRS. 

CURRENT FRAME -PTR 

LOCAL 

VARIABLE 

AREA 
SP-

Figure H-1. ENTER Instruction Stack Frame 

3-515 210973-003 



Ap·186 

APPENDIX I: 80186/80188 DIFFERENCES 

The 80188 is exactly like the 80186, except it has an 8 bit 
external bus. It shares the same execution unit, timers, 
peripheral control block, interrupt controller, chip se­
lect, and DMA logic. The differences between the two 
caused by the narrower data bus are: 

The 80188 has a 4 byte prefetch queue, rather than 
the 6 byte prefetch queue present on the 80186. The 
reason for this is since the 80188 fetches opcodes one 
byte at a time, the number of bus cycles required to 
fill the smaller queue of the 80188 is actually greater 
than the number of bus cycles required to fill the 
queue of the 80186. As a result, a smaller queue is 
required to prevent an inordinate number of bus cy­
cles being wasted by prefetching opcodes to be dis­
carded during a jump. 

AD8-ADI5 on the 80186 are transformed to A8-
A15 on the 80188. Valid address information is pre­
sent on these lines throughout the bus cycle of the 
80188. Valid address information is not guaranteed 
on these lines during idle T states. 

BHEjS7 is always defined HIGH by the 80188, 
since the upper half of the data bus is non-existant. 

3-516 

The DMA controller of the 80188 only performs 
byte transfers. The BjW bit in the DMA control 
word is ignored. 

Execution times for many memory access instruc­
tions are increased because the memory access must 
be funnelled through a narrower data bus. The 
80188 also will be more bus limited than the 80186 
(that is, the execution unit will be required to wait 
for the opcode information to be fetched more often) 
because the data bus is narrower. The execution time 
within the processor, however, has not changed be­
tween the 80186 and the 80188. 

Another important point is that the 80188 internally is a 
16-bit machine. This means that any access to the 
integrated peripheral registers of the 80188 will be done 
in 16-bit chunks, NOT in 8-bit chunks. All internal 
peripheral registers are still 16-bits wide, and only a 
single read or write is required to access the registers. 
When a. word access is made to the internal registers, 
the BIU will run two bus cycles externally. 

Access to the control block may also be done with byte 
operations. Internally the full 16-bits of the AX register 
will be written, while externally, only one bus cycle will 
be executed. 

210973-003 



80286 Microprocessors 4 





iAPX 286/10 
High Performance Microprocessor 

with Memory Management and Protection 
(80286-10, 80286-8, 80286-6) 

• High Performance Processor (Up to six 
times iAPX 86) 

• Large Address Space: 
- 16 Megabytes Physical 
- 1 Gigabyte Virtual per Task 

• Integrated Memory Management, Four­
Level Memory Protection and Support 
for Virtual Memory and Operating 
Systems 

• Two iAPX 86 Upward Compatible 
Operating Modes: 
- iAPX 86 Real Address Mode 
- Protected Virtual Address Mode 

• Optional Processor Extension: 
- 80287 High Performance 80-bit 

Numeric Data Processor 

• Range of clock rates 
-10 MHz for 80286-10 
- 8 MHz for 80826-8 
- 6 MHz for 80286-6 

• Complete System Development 
Support: 
- Development Software: Assembler, 

PL/M, Pascal, FORTRAN, and System 
Utilities 

- In-Circuit-Emulator (ICETM-286) 

• High Bandwidth Bus Interface 
(10 Megabyte/Sec) 

• Available in EXPRESS: 
- Standard Temperature Range 

• Available in 68 Pin Ceramic LCC 
(Lead less Chip Carrier) and PGA (Pin 
Grid Array) Packages 
(See Packaging Spec., Order #231369) 

The iAPX 286/10 (80286 part number) is an advanced, high-performance microprocessor with specially opti­
mized capabilities for multiple user and multi-tasking systems. The 80286 has built-in memory protection that 
supports operating system and task isolation as well as program and data privacy within tasks. A 10 MHz iAPX 
286/10 provides five times or more throughput than the standard 5 MHz iAPX 86/10. The 80286 includes 
memory management capabilities that map 230 (one gigabyte) of virtual address space per task into 224 bytes 
(16 megabytes) of physical memory. 

The iAPX 286 is upward compatible with iAPX 86 and 88 software. Using iAPX 86 real address mode, the 
80286 is object code compatible with existing iAPX 86, 88 software. In protected virtual address mode, the 
80286 is source code compatible with iAPX 86, 88 software and may require upgrading to use virtual address­
es supported by the 80286's integrated memory management and protection mechanism. Both modes oper­
ate at full 80286 performance and execute a superset of the iAPX 86 and 88 instructions. 

The 80286 provides special operations to support the efficient implementation and execution of operating 
systems. For example, one instruction can end execution of one task, save its state, switch to a new task, load 
its state, and start execution of the new task. The 80286 also supports virtual memory systems by providing a 
segment-not-present exception and restartable instructions. 

"'2l-~. 
IIHE. M'IO 

READY. HOLD 

$1. so. COD'INt.., 

~-----r-:-P [OCI(,HLOA 

,..--'----'----"J 

210253-1 

Figure 1. 80286 Internal Block Diagram 

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent 
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. November 1985 
@lnteICorporation, 1985 4-1 Order Number: 210253-009 



iAPX 286/10 

Component Pad Views-As viewed from underside of 
component when mounted on the board. 

P.C. Board Views-As viewed from the component 
side of the P.C. board. 

.~ 
to 
0 A, 

~ 
0 
VI 
VI 

~ 
Au 

PIN NO.1 MARl<. 

NOTE: 

CAP 

mm 
N.C. 

N.C 
INTR 
N.C 
NM' 

V" 
PEREO 

V" 
ffii5V 
HOLD 

HLDA 

coO'iNTA 
M,m 

= 

A, 

" ClK 
V" 
RESET 

N.C. signals must not be connected 

AD DO 

~ 
A2 A1 

~ Vee CLK 
.. A3 RESET 
§ AS M 
z A7 AS 0: 

A9 AB 
A11 A1D 
A13 A12 

VI 0 ~ M j<') ..... Ii') 

>VI:ggocoooo 

g EiSa ~ g ~ ~ I~ 
@@@@@@@I~Hj) 

@@@@@@@@@@@ 

··0"" @@ @@ 
@@ @@ 

@@ ®J@ 
@@ . @@ 

@@ @@ 
@@ @@ 
@@l@@l@@®®0,@ 

@@@@®0®G)· 
N U'I ,.... (JI 

:;,( :;: :;: :;: 

:! ~ ~ ~ 
<;( c( -< "'" 

ERROR CAP 

N.C. BUSY 

INTR N.C • 

NMI N.C. 

PEREQ Vss 

READY Vee 

HLDA HOLD 

M Ito COD/INTA 

LOCK 

10 ..... I"') N ~ 0 V) 

EicaOOO~8>Vl 

I~ b :g :£ ~ ago 8 

@@@@@@@@@ 
CAP ERROR @@@@@@@@@@@ 

BUSY N.C. @ @ @ @ 
N.C. lHTR @ @ @ @ 
H.C. H"I @ @ @ @ 

VSS PEREO @ ®J @ @ 
VCC READY @ @ @ @ 

HOLD HLDA @ @ @ @ 

COD/INTA "liD @@ @@ 
LOCK H.C. @ '0®®@@@l@@@ 

·G)®0®@@@@ 

FIGURE 2. 80286 Pin Configuration 

Table 1. Pin Description 

DO AD 
Al A2 
CLK VCC 
RESET A3 

A4 AS 
AS A7 
A6 A9 
Al0 A11 
A12 A13 

210253-3 

The following pin function descriptions are for the 80286 microprocessor: 
Symbol Type Name and Function 

ClK I SYSTEM CLOCK provides the fundamental timing for iAPX 286 systems. It is divided by 
two inside the 80286 to generate the processor clock. The internal divide·by-two circuitry 
can be synchronized to an external clock generator by a lOW to HIGH transition on the 
RESET input. 

015- 00 I/O DATA BUS inputs data during memory. I/O, and interrupt acknowledge read cycles; 
outputs data during memory and I/O write cycles. The data bus is active HIGH and floats 
to 3·state OFF during bus hold acknowledge. 

A23-AO 0 ADDRESS BUS outputs physical memory and I/O port addresses. AO is LOW when data 
is to be transferred on pins 07-0' A23-A16 are lOW during I/O transfers. The address 
bus is active HIGH and floats to 3-state OFF during bus hol<;l acknowledge. 

BHE 0 BUS HIGH ENABLE indicates transfer or data on the upper byte of the data bus. 015-8' 
~t-bit oriented devices assigned to the upper byte of the data bus would normally use 
BHE to condition chip select functions. BHE is active lOW and floats to 3-state OFF 
during bus hold acknowledge. 

BHE and AD Encodings 

BHEValue AD Value Function 

0 0 Word transfer 
0 1 Byte transfer on upper half of data bus (015-08) 
1 0 Byte transfer on lower half of data bus (07 -0) 
.1 1 Will never occur 

4-2 



iAPX 286/10 

Table I. Pin Description (Continued) 

Symbol Type Name and Function 

SI, SO a BUS CYCLE STATUS indicates initiation of a bus cycle and, along with MIlO and CaDI 
INTA, defines the type of bus cycle. The bus is in a Ts state whenever one or both are 
LOW, SI and SO are active LOW and float to 3-state OFF during bus hold acknowledge. 

80286 Bus Cycle Status Definition 

CODIINTA MilO S1 SO Bus Cycle Initiated 

a (LOW) a 0 0 Interrupt acknowledge 
0 a 0 1 Will not occur 
0 a 1 a Will not occur 
a a 1 1 None; not a status cycle 
0 1 a 0 IF A1 = 1 then halt; else shutdown 
0 1 a 1 Memory data read 
a 1 1 a Memory data write 
0 1 1 1 None; not a status cycle 
1 (HIGH) a 0 a Will not occur 
1 0 a 1 1/0 read 
1 I 0 1 0 110 write 
1 a 1 1 None; not a status cycle 
1 1 0 a Will not occur 
1 I 0 1 Memory instruction read 
1 1 1 a Will not occur 
1 1 1 1 None; not a status cycle 

MIlO a MEMORY 1/0 SELECT distinguishes memory access from 1/0 access. If HIGH during Ts, a 
memory cycle or e halt/shutdown cycle is in !Jrogress. If lOW. an I/O cycle or an irterrupt 
acknowledge cycle is in progress. M/IO floats to 3-state OFF during bus hold acknowledge. 

COD/INTA a CODE/INTERRUPT ACKNOWLEDGE distinguishes instruction fetch cycles from memory 
<:!ata read cycles. Also distinguishes interrupt acknowledge cycles from 1/0 cycles. CQQI 
INTA floats to 3-state OFF during bus hold acknowledge. Its timing is the same as MIlO. 

LOCK a BUS LOCK indicates that other system bus masters are not to gain control of the system 
bus for the current and the following bus cycle. The LOCK signal may be activated explicitly 
by the "LOCK" instruction prefix or automatically by 80286 hardware during memory XCHG 
instructions, interrupt acknowledge, or descriptor table access. LOCK is active LOW and 
floats to 3-state OFF during bus hold acknowledge. 

READY I BUS READY terminates a bus cycle. Bus cycles are extended without limit until terminated 
by READY LOW. READY is an active LOW synchronous input requiring setup and hold 
times relative to the system clock be met for correct operation. READY is ignored during 
bus hold acknowledge. 

HOLD I BUS HOLD REQUEST AND HOLD ACKNOWLEDGE control ownership of the 80286 local 
HLDA 0 bus. The HOLD input allows another local bus master to request control of the local bus. 

When control is granted, the 80286 will float its bus drivers to 3-state OFF and then activate 
HLDA, thus entering the bus hold acknowledge condition. The local bus will remain granted 
to thE, requesting (nasle, until HOLD becomes inaciive which results in the 80286 
deactivating HLDA and regaining control of the local bus. This terminates the bus hold 
acknowledge condition. HOLD may be asynchronous to the system clock. These signals 
are active HIGH. 

INTR I INTERRUPT REQUEST requests the 80286 to suspend its current program execution and 
service a pending external request. Interrupt requests are masked whenever the interrupt 
enable bit in the flag word is cleared. When the 80286 responds to an interrupt request, it 
performs two interrupt acknowledge bus cycles to read an 8-bit interrupt vector that 
identifies the source of the interrupt. To assure program interruption, INTR must remain 
active until the first interrupt acknowledge cycle is completed. INTR is sampled at the 
beginning of each processor cycle and must be active HIGH at least two processor cycles 
Mfore the current instruction ends in order to interrupt before the next instruction. INTR is 
level sensitive, active HIGH, and may be asynchronous to the system clock. 

NMI I NON·MASKABLE INTERRUPT REQUEST interrupts the 80286 with an internally supplied 
vector value of 2. No interrupt acknowledge cycles are performed. The interrupt enable bit 
in the 80286 flag word does not affect this input. The NMI input is active HIGH, may be 
asynchronous to the system clock, and is edge triggered after internal synchronization. For 
proper recognition, the input must have been previously LOW for at least four system clock 
cycles and remain HIGH for at least four system clock cycles. 

4-3 



iAPX 286/10 

Table 1. Pin Description (Continued) 

Symbol Type Name and Function 

PEREa I PROCESSOR EXTENSION OPERAND REQUEST AND ACKNOWLEDGE 
PEACK 0 extend the memory management and protection capabilities of the 80286 to 

processor extensions. The PEREa input requests the 80286 to perform a 
data operand transfer for a processor extension. The PEACK output signals 
the processor extension when the requested operand is being transferred. 
PEREa is active HIGH and floats to 3·state OFF during bus hold ___ 
acknowledge. PEACK may be asynchronous to the system clock. PEACK is 
active LOW. 

BUSY I PROCESSOR EXTENSION BUSY AND ERROR indicate the operating 
ERROR I condition of a processor extension to the 80286. An active BUSY input stops 

80286 program execution on WAIT and some ESC instructions until BUSY 
becomes inactive (HIGH). The 80286 may be interrupted while waiting for 
BUSY to become inactive. An active ERROR input causes the 80286 to 
perform a processor extension interrupt when executing WAIT or some ESC 
instructions. These inputs are active LOW and may be asynchronous to the 
system clock. 

RESET I SYSTEM RESET clears the internal logic of the 80286 and is active HIGH. 
The 80286 may be reinitialized at any time with a LOW to HIGH transition on 
RESET which remains active for more than 16 system clock cycles. During 
RESET active, the output pins of the 80286 enter the state shown below: 

80286 Pin State During Reset 

Pin Value Pin Names 

1 (HIGH) SO, SI, PEACK, A23-AO, BHE, LOCK 
o (LOW) MIlO, COD/INTA, HLDA (Note 1) 
3-stateOFF D15- DO 

Operation of the 80286 begins after a HIGH to LOW transition on RESET. 
The HIGH to LOW transition of RESET must be synchronous to the system 
clock. Approximately 50 system clock cycles are required by the 80286 for 
internal initializations before the first bus cycle to fetch code from the power-
on execution address is performed. 
A LOW to HIGH transition of RESET synchronous to the system clock will 
end a processor cycle at the second HIGH to LOW transition of the system 
clock. The LOW to HIGH transition of RESET may be asynchronous to the 
system clock; however, in this case it cannot be predetermined which phase 
of the processor clock will occur during the next system clock period. 
Synchronous LOW to HIGH transitions of RESET are required only for 
systems where the processor clock must be phase synchronous to another 
clock. 

VSS I SYSTEM GROUND: 0 Volts. 

Vee I SYSTEM POWER: + 5 Volt Power Supply. 

CAP I SUBSTRATE FILTER CAPACITOR: a 0.047 ",F ± 20% 12V capacitor must 
be connected between this pin and ground. This capacitor filters the output of 
the internal substrate bias generator. A maximum DC leakage current of 1 ",A 
is allowed through the capacitor. 
For correct operation of the 80286, the substrate bias generator must charge 
this capacitor to its operating voltage. The capacitor chargeup time is 5 
milliseconds (max.) after Vee and CLK reach their specified AC and DC 
parameters. RESET may be applied to prevent spurious activity by the CPU 
during this time. After this time, the 80286 processor clock can be 
synchronizec;l to another clock by pulsing RESET LOW synchronous to the 
system clock. 

NOTE: 
1. HLDA is only Low if HOLD is inactive (Low). 

4-4 



inter iAPX 286/10 

FUNCTIONAL DESCRIPTION 

Introduction 

The 80286 is an advanced, high-performance micro­
processor with specially optimized capabilities for 
multiple user and multi-tasking systems. Depending 
on the application, the 80286's performance is up to 
six times faster than the standard 5 MHz 8086's, 
while providing complete upward software compati­
bility with Intel's iAPX 86, 88, and 186 family of 
CPU's. 

The 80286 operates in two modes: iAPX 86 real ad·· 
dress mode and protected virtual address mode. 
Both modes execute a superset of the iAPX 86 and 
88 instruction set. 

In iAPX 86 real address mode programs use real 
addresses with up to one megabyte of address 
space. Programs use virtual addresses in protected 
virtual address mode, also called protected mode. In 
protected mode, the 80286 CPU automatically maps 
1 gigabyte of virtual addresses per task into a 16 
megabyte real address space. This mode also pro­
vides memory protection to isolate the operating 
system and ensure privacy of each tasks' programs 
and data. Both modes provide the same base in­
struction set, registers, and addressing modes. 

The following Functional Description describes first, 
the base 80286 architecture common to both 
modes, second, iAPX 86 real address mode, and 
third, protected mode. 

iAPX 286/10 BASE ARCHITECTURE 

The iAPX 86, 88, 186, and 286 CPU family all con-

BYTE 
ADDRESSABLE 

(8-BIT 

REGISTER 

NAMES 
SHOWN) 

16-81T 
;:::;EGiSTER 

NAME 

X I :X 

cx 

BX 

P 

, 

o , 

SP 

15 

o 7 

AH AL 

OH OL 

CH CL 

BH BL 

GENERAL 

REGISTERS 

SPECIAL 
Rf::GISTER 

FUNCTIONS 

MULTIPLY/DIVIDE 

110 INSTRUCTIONS 

LOOP/SHIFT IREPEAT ICOUNT 

BASE REGISTERS 

INDEX REGISTERS 

STACK POINTER 

tain the same basic set of registers, instructions, and 
addressing modes. The 80286 processor is upward 
compatible with the 8086, 8088, and 80186 CPU's. 

Register Set 

The 80286 base architecture has fifteen registers as 
shown in Figure 3. These registers are grouped into 
the following four categories: 

General Registers: Eight 16-bit general purpose 
registers used to contain arithmetic and logical oper­
ands. Four of these (AX, BX, CX, and DX) can be 
used either in their entirety as 16-bit words or split 
into pairs of separate 8-bit registers. 

Segment Registers: Four 16-bit special purpose 
registers select, at any given time, the segments of 
memory that are immediately addressable for code, 
stack, and data. (For usage, refer to Memory Organi­
zation.) 

Base and Index Registers: Four of the general pur­
pose registers may also be used to determine offset 
addresses of operands in memory. These registers 
may contain base addresses or indexes to particular 
locations within a segment. The addressing mode 
determines the specific registers used for operand 
address calculations. 

Status and Control Registers: The 3 16-bit special 
purpose registers in figure 3A record or control cer­
tain aspects of the 80286 processor state including 
the Instruction Pointer, which contains the offset ad­
dress of the next sequential instruction to be execut­
ed. 

15 

CS 

~ os 

ss 

ES 

SEGMENT REGISTERS 

15 

,: 1---1 -----1 

STATUS AND CONTROL 

AEGISTERS 

CODE SEGMENT SELECTOR 

DATA SEGMENT SELECTOR 

STACK SEGMENT SELECTOR 

EXTRA SEGMENT SELECTOR 

STATUS WORD 

INSTRUCTION POINTER 

Figure 3. Register Set 

4-5 



STATUS FLAGS' 

CAARY 
PARITY 

AUlULlARV CARAY 
ZERO .. , 

" 
OV£AFL.OW~ 

14 13 12 11 

~\\\\I NT 10PL OF 

~ INTEL RESERVED 

iAPX 286/10 

" OF 

. . I, J . . 
" " " "1\ 

1 1 

TA$K$WITCH 
PROCESSOR EXTENSION EMULATED 

l. . , , . 
AF 1\.' \\\! Pf 1\\' \'\1 CF 

CONTROL FLAGS: 
tRAP FlAG 
INTERRUPT ENABLE 
DlA£CTIOM fLAG 

SPECIAL FIELDS: 
110 PRIVILEGE LEVEL 
NESTED TASK FlAG 

MONITOR PROCESSOf'I EXTENSION =====-~ 
PflOTECTlON ENABlE 210253-4 

Figure 3a. Status and Control Register Bit Functions 

Flags Word Description 

The Flags word (Flags) records specific characteris­
tics of the result of logical and arithmetic instructions 
(bits 0,2,4,6,7, and 11) and controls the operation 
of the 80286 within a given operating mode (bits 8 
and 9). Flags is a 16·bit register. The function of the 
flag bits is given in Table 2. 

Instruction Set 

The instruction set is divided into seven categories: 
data transfer, arithmetic, shift/rotate/logical, string 
manipulation, control transfer, high level instruc­
tions, and processor control. These categories are 
summarized in Figure 4. 

An 80286 instruction can reference zero, one, or two 
operands; where an operand resides in a register,. in 
the instruction itself, or in memory. Zero-operand In­
structions (e.g. Nap and HL T) are usually one byte 
long. One-operand instructions (e.g. INC and DEC) 
are usually two bytes long but some are encoded in 
only one byte. One-operand instructions may refer­
ence a register or memory location. Two-operand 
instructions permit the following six types of instruc­
tion operations: 

-Register to Register 

-Memory to Register 

-Immediate to Register 

-Memory to Memory 

-Register to Memory 

-Immediate to Memory 

4-6 

Table 2 Flags Word Bit Functions 
Bit Name Function Position 

0 CF Carry Flag-Set on high-order bit 
carry or borrow; cleared otherwise 

2 PF Parity Flag-Set if low-order 8 bits 
of result contain an even number of 
1-bits; cleared otherwise 

4 AF Set on carry from or borrow to the 
low order four bits of AL; cleared 
otherwise 

6 ZF Zero Flag-Set if result is zero; 
cleared otherwise 

7 SF Sign Flag-Set equal to high-order 
bit of result (0 if positive, 1 if negative) 

11 OF Overflow Flag-Set if result is a too-
large positive number or a too-small 
negative number (excluding sign-bit) 
to fit in destination operand; cleared 
otherwise 

8 TF Single Step Flag-Once set, a sin-
gle step interrupt occurs after the 
next instruction executes. TF is 
cleared by the single step interrupt. 

9 IF Interrupt-enable Flag-When set, 
maskable interrupts will cause the 
CPU to transfer control to an inter-
rupt vector specified location. 

10 DF Direction Flag-Causes string 
instructions to auto decrement 
the appropriate index registers 
when set. Clearing DF causes 
auto increment. 



iAPX 286/10 

Two-operand instructions (e.g. MOV and ADD) are 
usually three to six bytes long. Memory to memory 
operations are provided by a special class of string 
instructions requiring one to three bytes. For de­
tailed instruction formats and encodings refer to the 
instruction set summary at the end of this document. 

For detailed operation and usage of each instruc­
tion, see Appendix of iAPX 286 Programmer's Refer­
ence Manual (Order No 210498) 

GENERAL PURPOSE 
MOV Move byte or word 

PUSH Push word onto stack 

POP Pop word off stack 

PUSHA Push all registers on stack 

POPA Pop all registers from stack 

XCHG Exchange byte or word 

XLAT Translate byte 

INPUT/OUTPUT 

IN Input byte or word 

OUT Output byte or word 

ADDRESS OBJECT 

LEA Load effective address 

LDS Load pointer using DS 

LES Load pointer using ES 

FLAG TRANSFER 

LAHF Load AH register from flags 

SAHF Store AH register in flags 

PUSHF Push flags onto stack 

POPF Pop flags off stack 

Figure 4a. Data Transfer Instructions 

MOVS Move byte or word string 

INS Input bytes or word string 

OUTS Output bytes or word string 

CMPS Compare byte or word string 

SCAS Scan byte or word string 

LODS Load byte or word string 

STOS Store byte or word string 

REP Repeat 

REPE/REPZ Repeat while equal/zero 

REPNE/REPNZ Repeat while not equal/not zero 

Figure 4c. String Instructions 

4-7 

ADDITION 

ADD Add byte or word 

ADC Add byte or word with carry 

INC I ncrement byte or word by 1 

AAA ASCII adjust for addition 

DAA Decimal adjust for addition 

SUBTRACTION 

SUB Subtract byte or word 

SBB Subtract byte or word with borrow 

DEC Decrement byte or word by 1 

NEG Negate byte or word 

CMP Compare byte or word 

AAS ASCII adjust for subtraction 

DAS Decimal adjust for subtraction 

MULTIPLICATION 

MUL Multiple byte or word unsigned 

IMUL Integer multiply byte or word 

AAM ASCII adjust for multiply 

DIVISION 

DIV Divide byte or word unsigned 

IDIV Integer divide byte or word 

AAD ASCII adjust for division 

CBW Convert byte to word 

CWO Convert word to doubleword 

Figure 4b.Arithmetic Instructions 

LOGICALS 

NOT "Not" byte or word 

AND "And" byte or word 

OR "Inclusive or" byte or word 

XOR "Exclusive or" byte or word 

TEST "Test" byte or word 

SHIFTS 

SHLISAL Shift logical/arithmetic left byte or word 

SHR Shift logical right byte or word 

SAR Shift arithmetic right byte or word 

ROTATES 

ROL Rotate left byte or word 

ROR Rotate right byte or word 

RCL Rotate through carry left byte or word 

RCR Rotate through carry right byte or word 

Figure 4d. Shift/Rotate Logical Instructions 



inter iAPX 286/10 

CONDITIONAL TRANSFERS UNCONDITIONAL TRANSFERS 

JAlJNBE Jump if above/ not below nor equal CALL Call procedure 

JAE/JNB Jump if above or equal/not below RET Return from procedure 

JB/JNAE Jump if below/not above nor equal JMP Jump 

JBE/JNA Jump if below or equal/ not above 

JC Jump if carry ITERATION CONTROLS 

JE/JZ Jump if equal/zero 

JG/JNLE Jump if greater/not less nor equal LOOP Loop 

JGE/JNL Jump if greater or equal/not less LOOPE/LOOPZ Loop if equal/zero 

JLlJNGE Jump ifless/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero 

JLE/JNG Jump if less or equal/not greater JCXZ Jump if register CX = 0 

JNC Jump if not carry 

JNE/JNZ Jump if not equal/not zero INTERRUPTS 

JNO Jump if not overflow 

JNP/JPO Jump if not parity/parity odd INT Interrupt 

JNS Jump if not sign INTO Interrupt if overflow 

JO Jump if overflow IRET Interrupt return 

JP/JPE Jump if parity/parity even 

JS Jump if sign 

Figure 4e. Program Transfer Instructions 

FLAG OPERATIONS 

STC Set carry flag 

CLC Clear carry flag 

CMC Complement carry flag 

STD Set direction flag 

CLD Clear direction flag 

STI Set interrupt enable flag 

CLI Clear interrupt enable flag 

EXTERNAL SYNCHRONIZATION 

HLT Halt until interrupt or reset 

WAIT Wait for BUSY not active 

ESC Escape to extension processor 

LOCK Lock bus during next instruction 

NO OPERATION 

NOP No operation 

EXECUTION ENVIRONMENT CONTROL 

LMSW Load machine status word 

SMSW Store machine status word 

Figure 41. Processor Control Instructions 

ENTER Format stack for procedure ,entry 

LEAVE Restore stack for procedure exit 

BOUND Detects values outside prescribed range 

Figure 4g. High Level Instructions 

4-8 

Memory Organization 

Memory is organized as sets of variable length seg­
ments. Each segment is a linear contiguous se­
quence of up to 64K (216) a-bit bytes. Memory is 
addressed using a two component address (a point­
er) that consists of a 16-bit segment selector, and a 
16-bit offset The segment selector indicates the de­
sired segment in memory. The offset component in­
dicates the desired byte address within the segment. 

I 
" 

32-81T POINTER -
SEGMENT I OFF,SET I 

1615 0 

1 OPERAND 
SELECTED SELECTED 

SEGMENT 

'" 'V 'V 

MEMORY 

210253-5 

Figure 5. Two Component Address 



iAPX 286/10 

Table 3. Segment Register Selection Rules 

Memory Segment Register Implicit Segment 
Reference Needed Used Selection Rule 

Instructions Code (CS) Automatic with instruction prefetch 

Stack Stack (SS) All stack pushes and pops. Any memory reference which uses BP 
as a base register. 

Local Data Data (OS) All data references except when relative to stack or 
string destination 

External (Global) Data Extra (ES) Alternate data segment and destination of string operation 

All instructions that address operands in memory 
must specify the segment and the offset. For speed 
and compact instruction encoding, segment selec­
tors are usually stored in the high speed segment 
registers. An instruction need specify only the de­
sired segment register and an offset in order to ad­
dress a memory operand. 

Most instructions need not explicitly specify which 
segment register is used. The correct segment reg­
ister is automatically chosen according to the rules 
of Table 3. These rules follow the way programs are 
written (see Figure 6) as independent modules that 
require areas for code and data, a stack, and access 
to external data areas. 

Special segment override instruction prefixes allow 
the implicit segment register selection rules to be 
overridden for special cases. The stack, data, and 
extra segments may coincide for simple programs. 
To access operands not residing in one of the four 
immediately available segments, a full 32-bit pointer 
or a new segment selector must be loaded. 

Addressing Modes 

The 80286 provides a total of eight addressing 
modes for instructions to specify operands. Two ad­
dressing modes are provided for instructions that 
operate on register or immediate operands: 

Register Operand Mode: The operand is locat­
ed in one of the 8 or i6-bit general registers. 

Immediate Operand Mode: The operand is in­
cluded in the instruction. 

Six modes are provided to specify the location of an 
operand in a memory segment. A memory operand 
address consists of two i6-bit components: seg­
ment selector and offset. The segment selector is 
supplied by a segment register either implicitly cho­
sen by the addressing mode or explicitly chosen by 
a segment override prefix. The offset is calculated 
by summing any combination of the following three 
address elements: 

the displacement (an 8 or i6-bit immediate val­
ue contained in the instruction) 

the base (contents of either the BX or BP base 
registers) 

4-9 

MODULE It 

r---' 
I I 

~ODE 
DATA 

MODULE B ~:="-f---, 

PROCESS 
STACK 

PROCESS ti' : DATA 
BI.OCK 1 

I I 
I I 

~::ESsD 
BLOCK 2 

I I L ___ J 

MEMORY 

CPU 

COOE 

DATA 

STACK 

EXTRA 

SEGMENT 
REGISTERS 

210253-6 

Figure 6. Segmented Memory Helps 
Structure Software 

the index (contents of either the SI or 01 index 
registers) 

Any carry out from the i6-bit addition is ignored. 
Eight-bit displacements are sign extended to i6-bit 
values. 

Combinations of these three address elements de­
fine the six memory addressing modes, described 
below. 

Direct Mode: The operand's offset is contained in 
the instruction as an 8 or i6-bit displacement ele­
ment. 

Register Indirect Mode: The operand's offset is in 
one of the registers SI, 01, BX, or BP. 

Based Mode: The operand's offset is the sum of an 
8 or i6-bit displacement and the contents of a base 
register (BX or BP). 



intJ iAPX 286/10 

Indexed Mode: The operand's offset is the sum of 
an 8 or 16-bit displacement and the contents of an 
index register (SI or 01). 

Based Indexed Mode: The operand's offset is the 
sum of the contents of a base register and an index 
register. 

Based Indexed Mode with Displacement: The op­
erand's offset is the sum of a base register's con­
tents, an index register's contents, and an 8 or 16-bit 
displacement. 

Data Types 

The 80286 directly supports the following data 
types: 

Integer: 

Ordinal: 

Pointer: 

String: 

ASCII: 

BCD: 

A signed binary numeric value con­
tained in an 8-bit byte or a 16-bit 
word. All operations assume a 2's 
complement representation. Signed 
32 and 64-bit integers are supported 
using the iAPX 286/20 Numeric Data 
Processor. 

An unsigned binary numeric value 
contained in an 8-bit byte or 16-bit 
word. 

A 32-bit quantity, composed of a 
segment selector component and an 
offset component. Each component 
is a 16-bit word. 

A contiguous sequence of bytes or 
words. A string may contain from 1 
byte to 64K bytes. 

A byte representation of alphanu­
meric and control characters using 
the ASCII standard of character rep­
resentation. 

A byte (unpacked) representation of 
the decimal digits 0-9. 

Packed BCD: A byte (packed) representation of 
two decimal digits 0-9 storing one 
digit in each nibble of the byte. 

~Ioating Point: A Signed 32, 64, or 80-bit real num­
ber representation. (Floating point 
operands are supported using the 
iAPX 286/20 Numeric Processor 
configuration). 

Figure 7 graphically represents the data types sup­
ported by the iAPX286. 

1/0 Space 

The I/O space consists of 64K 8-bit or 32K 16-bit 
ports. I/O instructions address the I/O space with 

either an 8-bit port address, specified in the instruc­
tion, or a 16-bit port address in the OX register. 8-bit 
port addresses are zero extended such that A15-Aa 
are LOW. I/O port addresses 00F8(H) through 
OOFF(H) are reserved. 

4-10 

7 0 
SIGNED rTTTTTTT1 
BYTE~ 

SIGN BIT.J L---..J 
MAGNITUDE 

7 0 
UNSIGNED rrnTfTT1 

BYTE L-.:.....J 
~ 
MAGNITUDE 

1514 +1 '7 0 0 

s:~~gll"liiil"iliiil 
SIGN BIT..J ,-I L,,::U'iiS:~AG;;;;N;;;'T;;;UD"'E:---' 

SIGNED 31 +3 +2 1615 +1 0 

D~~~~~ Iii i I' iii iii Iii iii' iii' iii Ii' iii I 
SIGN BIT J ,-I L..:U=SB=----;:;U7:AG""N""'T'""UD""E,..----.....J 

+7 +6 +5 +4 +3 +2 +1 
SIGNED 63 48 47 3231 1615 

w~~~11 I It I 
SIGN BITJ ... ,L...;;U;;.;;S,,-B_--;U'"AG"'N"'IT"U""D"e ____ --' 

15 +1 0 

UNS~~=g I:' iii "1' if Iii' I 
I MSB I 

MAGNITUDE 

BINARY 7 +N 0 

CDDED~ 
DECIMAL BCD 

(BCD) DIGIT N 

7 +N 0 

ASC"~ 
ASCII 

CHARACTERN 

7 +N 0 
PACKED fTTTTTTT1 

BCD L-L..J 
L-....J 
UOST 
SIGNIFICANT DIGIT 

7 +1 07 0 

l'''liill'''jii'l 
BCD BCD 

OIGIT 1 DIGIT 0 

7 +1 07 0 0 

liiil"'I"""'-1 
ASCII ASCII 

CHARACTER, CHARACTERo 

7 +1 07 0 0 

I " i I. Ii , I' Ii I Ii i I 
L-....J 
LEAST 

SIGNIFICANT DIGIT 

7/15 +N 0 7/15 +1 07115 0 0 

STRING ~ ••• I11I11III11I11II1 

BYTEIWORO N BYTElWORD 1 BYTElWORD 0 

31 +3 +2 1615 +1 0 0 

POINTER Iii, I I I iii I , I I I II' i I I' iii' i II' iii 
I I I 

SELECTOR OFFSET 
79+9 +8 +7 +6 +5 +4 +3 +2 +1 

EXPONENT MAGNITUDE 

·Supported by IAPX 286120 Numeric Oq Proce •• or Conflgura1lo" 

210253-7 

Figure 7. iAPX286 Supported Data Types 



intJ iAPX 286/10 

Table 4. Interrupt Vector Assignments 

Function 
Interrupt 
Number 

Divide error exception 0 

Single step interrupt 1 

NMI interrupt 2 

Breakpoint interrupt 3 

I NTO detected overflow exception 4 

BOUND range exceeded exception 5 

Invalid opcode exception 6 

Processor extension not available exception 7 

Intel reserved-do not use 8-15 

Processor extension error interrupt 16 

Intel reserved-do not use 17-31 

User defined 32-255 

Interrupts 

An interrupt transfers execution to a new program 
location. The old program address (CS:IP) and ma­
chine state (Flags) are saved on the stack to allow 
resumption of the interrupted program. Interrupts fall 
into three classes: hardware initiated, INT instruc­
tions, and instruction exceptions. Hardware initiated 
interrupts occur in response to an external input and 
are classified as non-maskable or maskable. Pro­
grams may cause an interrupt with an INT instruc­
tion. Instruction exceptions occur when an unusual 
condition, which prevents further instruction proc­
essing, is detected while attempting to execute an 
instruction. The return address from an exception 
will always point at the instruction causing the ex­
ception and include any leading instruction prefixes. 

A table containing up to 256 pointers defines the 
proper interrupt service routine for each interrupt. In­
terrupts 0-31, some of which are used for instruc­
tion exceptions, are reserved. For each interrupt, an 
8-bit vector must be supplied to the 80286 which 
identifies the appropriate table entry. Exceptions 
supply the interrupt vector internally. INT instructions 
contain or imply the vector and allow access to all 
256 interrupts. Maskable hardware initiated inter­
rupts supply the 8-bit vector to the CPU during an 
interrupt acknowledge bus sequence. Non-maska­
ble hardware interrupts use a predefined internally 
supplied vector. 

MASKABLE INTERRUPT (INTR) 

The 80286 provides a maskable hardware interrupt 
request pin, INTR. Software enables this input by 

4-11 

Related Does Return Address 
Point to Instruction 

Instructions 
Causing Exception? 

DIV,IDIV Yes 

All 

INT 2 or NMI pin 

INT3 

INTO No 

BOUND Yes 

Any undefined opcode Yes 

ESC or WAIT Yes 

ESC or WAIT 

setting the interrupt flag bit (I F) in the flag word. All 
224 user-defined interrupt sources can share this in­
put, yet they can retain separate interrupt handlers. 
An 8-bit vector read by the CPU during the interrupt 
acknowledge sequence (discussed in System Inter­
face section) identifies the source of the interrupt. 

Further maskable interrupts are disabled while serv­
icing an interrupt by resetting the IF but as part of 
the response to an interrupt or exception. The saved 
flag word will reflect the enable status of the proces­
sor prior to the interrupt. Until the flag word is re­
stored to the flag register, the interrupt flag will be 
zero unless specifically set. The interrupt return in­
struction includes restoring the flag word, thereby 
restoring the original status of IF. 

NON-MASKABLE INTERRUPT REQUEST (NMI) 

A non-maskable interrupt input (NMI) is also provid­
ed. NMI has higher priority than INTR. A typical use 
of NMI would be to activate a power failure routine. 
The activation of this input causes an interrupt with 
an internally supplied vector value of 2. No external 
interrupt acknowledge sequence is performed. 

While executing the NMI servicing procedure, the 
80286 will service neither further NMI requests, 
INTR requests. nor the processor extension seg­
ment overrun interrupt until an interrupt return (IRET) 
instruction is executed or the CPU is reset. If NMI 
occurs while currently servicing an NMI, its presence 
will be saved for servicing after executing the first 
IRET instruction. IF is cleared at the beginning of an 
NMI interrupt to inhibit INTR interrupts. 



iAPX 286/10 

SINGLE STEP INTERRUPT 

The 80286 has an internal interrupt that allows pro· 
grams to execute one instruction at a time. It is 
called the single step interrupt and is controlled by 
the single step flag bit (TF) in the flag word. Once 
this bit is set, an internal single step interrupt will 
occur after the next instruction has been executed. 
The interrupt clears the TF bit and uses an internally 
supplied vector of 1. The IRET instruction is used to 
set the TF bit and transfer control to the next instruc­
tion to be single stepped. 

Interrupt Priorities 

When simultaneous interrupt requests occur, they 
are processed in a fixed order as shown in Table 5. 
Interrupt processing involves saving the flags, return 
address, and setting CS:IP to point at the first in­
struction of the interrupt handler. If other interrupts 
remain enabled they are processed before the first 
instruction of the current interrupt handler is execut­
ed. The last interrupt processed is therefore the first 
one serviced. 

Table 5 Interrupt Processing Order 
Order Interrupt 

1 Instruction exception 

2 Single step 

3 NMI 

4 Processor extension segment overrun 

5 INTR 

6 INT instruction 

Initialization and Processor Reset 

Processor initialization or start up is accomplished 
by driving the RESET input pin HIGH. RESET forces 
the 80286 to terminate all execution and local bus 
activity. No instruction or bus activity will occur as 
long as RESET is active. After RESET becomes in­
active and an internal processing interval elapses, 
the 80286 begins execution in real address mode 
with the instruction at physical location FFFFFO(H). 
RESET also sets some registers to predefined val­
ues as shown in Table 6. 

Table 6. 80286 Initial Register State after RESET 
Flag word 
Machine Status Word 
Instruction pointer 
Code segment 
Data segment 
Extra segment 
Stack segment 

0002(H) 
FFFO(H) 
FFFO(H) 
FOOO(H) 
OOOO(H) 
OOOO(H) 
OOOO(H) 

HOLD must not be active during the time from the 
leading edge of the initial RESET to 34 ClKs after 
the trailing edge of the initial RESET of an 80286 
system. 

Machine Status Word Description 
The machine status word (MSW) records when a 
task switch takes place and controls the operating 
mode of the 80286. It is a 16-bit register of which the 
lower four bits are used. One bit places the CPU into 
protected mode, while the other three bits, as shown 
in Table 7, control the processor extension interface. 
After RESET, this register contains FFFO(H) which 
places the 80286 in iAPX 86 real address mode. 

Table 7. MSW Bit Functions 
Bit Name Function 

Position 

0 PE Protected mode enable places the 
80286 into protected mode and cannot 
be cleared except by RESET. 

1 MP Monitor processor extension allows 
WAIT instructions to cause a processor 
extension not present exception 
(number 7). 

2 EM Emulate processor extension causes a 
processor extension not present 
exception (number 7) on ESC 
instructions to allow emulating a 
processor extension. 

3 TS Task switched indicates the next 
instruction using a processor extension 
will cause exception 7, allowing software 
to test whether the current processor 
extension context belongs to the current 
task. 

The lMSW and SMSW instructions can load and 
store the MSW in real address mode. The recom­
mended use of TS, EM, and MP is shown in Table 8. 

Table 8. Recommended MSW Encodings For Processor Extension Control 
Instructions 

TS MP EM Recommended Use Causing 
Exception 7 

0 0 0 Initial encoding after RESET. iAPX 286 operation is identical to iAPX 86, 88. None 

0 0 1 No processor extension is available. Software will emulate its function. ESC 

1 0 1 No processor extension is available. Software will emulate its function. The current ESC 
processor extension context may belong to another task. 

0 1 0 A processor extension exists. None 

1 1 0 A processor extension exists. The current processor extension context may belong to ESC or 
another task. The Exception 7 on WAIT allows software to test for an error pending WAIT 
from a previous processor extension operation. 

4-12 



infef iAPX 286/10 

Halt 

The HL T instruction stops program execution and 
prevents the CPU from using the local bus until re­
started. Either NMI, INTR with IF = 1, or RESET will 
force the 80286 out of halt. If interrupted, the saved 
CS:IP will point to the next instruction after the HL T. 

iAPX 86 REAL ADDRESS MODE 

The 80286 executes a fully upward-compatible su­
perset of the 8086 instruction set in real address 
mode. In real address mode the 80286 is object 
code compatible with 8086 and 8088 software. The 
real address mode architecture (registers and ad­
dressing modes) is exactly as described in the iAPX 
286/10 Sase Architecture section of this Functional 
Description. 

Memory Size 

Physical memory is a contiguous array of up to 
1,048,576 bytes (one megabyte) addressed by pins 
Ao through A19 and SHE. A20 through A23 should be 
ignored. 

Memory Addressing 

In real address mode physical memory is a contigu­
ous array of up to 1,048,576 bytes (one megabyte) 
addressed by pins Ao through A19 and SHE. Ad­
dress bits A20-A23 may not always be zero in real 
mode. A20-A23 should not be used by the system 
while the 80286 is operating in Real Mode. 

The selector portion of a pointer is interpreted as the 
upper 16 bits of a 20-bit segment address. The lower 
four bits of the 20-bit segment address are always 
zero. Segment addresses, there/ore, begin on multi­
ples of 16 bytes. See Figure 8 for a graphic repre­
sentation of address information. 

All segments in real address mode are 64K bytes in 
size and may be read, written, or executed. An ex­
ception or interrupt can occur if data operands or 
instructions attempt to wrap around the end of a 
segment (e.g. a word with its low order byte at offset 
FFFF(H) and its high order byte at offset OOOO(H). If, 
in real address mode, the information contained in a 
segment does not use the full 64K bytes, the unused 
end of the segment may be overlayed by another 
segment to reduce physical memory requirements. 

Reserved Memory locations 

The 80286 reserves two fixed areas of memory in 
real address mode (see Figure 9); system initializa-

4-13 

tion area and interrupt table area. Locations from 
addresses FFFFO(H) through FFFFF(H) are reo 
served for system initialization. Initial execution be­
gins at location FFFFO(H). Locations OOOOO(H) 
through 003FF(H) are reserved for interrupt vectors. 

15 0 

10000 I OFFSET I OFFSET 
L_-'-______ .....I ADDRESS 

19 

f---'L---I 

20-BIT PHYSICAL 
MEMORY ADDRESS 

SEGMENT 
ADDRESS 

210253-8 

Figure 8. iAPX 86 Real Address Mode 
Address Calculation 

~L., 

~:: 

RESET BOOTSTRAP 
PROGRAM JUMP 

· · 
INTERRUPT POINTER 

FOR VECTOR 255 

· · · 
INTERRUPT POINTER 

FOR VECTOR 1 

INTERRUPT POINTER 
FOR VECTOR 0 

~~ 

~~ 

FFFFFH 

FFFFOH 

3FFH 

3FCH 

7H 

4H 
3H 

OH 

INITIAL CS:IP VALUE IS FOOO:FFFO. 

210253-9 

Figure 9. iAPX 86 Real Address Mode Initially 
Reserved Memory Locations 



inter iAPX 286/10 

Table 9. Real Address Mode Addressing Interrupts 

Interrupt Related Return Address 
Function 

Number Instructions Before Instruction? 

Interrupt table limit too small exception 8 INT vector is not within table l.imit Yes 

Processor extension segment overrun 9 ESC with memory operand extend- No 
interrupt ing beyond offset FFFF(H) 

Segment overrun exception 13 Word memory reference with offset Yes 
= FFFF(H) or an attempt to exe-
cute past the end of a segment 

Interrupts 

Table 9 shows the interrupt vectors reserved for ex­
ceptions and interrupts which indicate an addressing 
error. The exceptions leave the CPU in the state ex­
isting before attempting to execute the failing in­
struction (except for PUSH, POP, PUSHA, or paPA). 
Refer to the next section on protected mode initiali­
zation for a discussion on exception 8. 

Protected Mode Initialization 

To prepare the 80286 for protected mode, the L1DT 
instruction is used to load the 24-bit interrupt table 
base and 16-bit limit for the protected mode interrupt 
table. This instruction can also set a base and limit 
for the interrupt vector table in real address mode. 
After reset, the interrupt table base is initialized to 
OOOOOO(H) and its size set to 03FF(H). These values 
are compatible with iAPX 86, 88 software. L1DT 
should only be executed in preparation for protected 
mode. 

Shutdown 

Shutdown occurs when a severe error is detected 
that prevents further instruction processing by the 
CPU. Shutdown and halt are externally signalled via 
a halt bus operation. They can be distinguished by 
A1 HIGH for halt and A1 LOW for shutdown. In real 
address mode, shutdown can occur under two con­
ditions: 

• Exceptions 8 or 13 happen and the lOT limit does 
not include the interrupt vector. 

• A CALL INT or PUSH instruction attempts to wrap 
around the stack segment when SP is not even. 

An NMI input can bring the CPU out of shutdown if 
the lOT limit is at least OOOF(H) and SP is greater 
than 0005(H), otherwise shutdown can only be exit­
ed via the RESET input. 

PROTECTED VIRTUAL ADDRESS 
MODE 

The 80286 executes a fully upward-compatible su­
perset of the 8086 instruction set in protected virtual 
address mode (protected mode). Protected mode 
also provides memory management and protection 
mechanisms and associated instructions. 

The 80286 enters protected virtual address mode 
from real address mode by setting the PE (Protec­
tion Enable) bit of the machine status word with the 
Load Machine Status Word (LMSW) instruction. Pro­
tected mode offers extended physical and virtual 
memory address space, memory protection mecha­
nisms, and new operations to support operating sys­
tems and virtual memory. 

All registers, instructions, and addressing modes de­
scribed in the iAPX 286/10 Sase Architecture sec­
tion of this Functional Description remain the same. 
Programs for·the iAPX 86, 88,186, and real address 
mode 80286 can be run in protected mode; howev­
er, embedded constants for segment selectors are 
different. 

Memory Size 

The protected mode 80286 provides a 1 gigabyte 
virtual address space per task mapped into a 16 
megabyte physical address space defined by the ad­
dress pin A23-Ao and SHE. The virtual address 
space may be larger than the physical address 
space since any use of an address that does not 
map to a physical memory location will cause a re­
startable exception . 

4-14 

Memory Addressing 

As in real address mode, protected mode uses 32-
bit pointers, consisting of 16-bit selector and offset 
components. The selector, however, specifies an in­
dex into a memory resident table rather than the up­
per 16-bits of a real memory address. The 24-bit 



iAPX 286/10 

base address of the desired segment is obtained 
from the tables in memory. The 16-bit offset is add­
ed to the segment base address to form the physical 
address as shown in Figure 10. The tables are auto­
matically referenced by the CPU whenever a seg­
ment register is loaded with a selector. All iAPX 286 
instructions which load a segment register will refer­
ence the memory based tables without additional 
software. The memory based tables contain 8 byte 
values called descriptors. 

CPU 

PHYStCAL MEMORY 

"- ""' 

I--7.M:=EM:=O:=Ry-t) 
OPERA.ND SEGMENT 

F~~~I--__ +-t~SE~G~ME~NT~) ~~~~::~OR 
DESCRIPTOR TABLE 

'V 

210253-10 

Figure 10. Protected Mode Memory Addressing 

DESCRIPTORS 

Descriptors define the use of memory. Special types 
of descriptors also define new functions for transfer 
of control and task switching. The 80286 has seg­
ment descriptors for code, stack and data segments, 
and system control descriptors for special system 
data segments and control transfer operations. De­
scriptor accesses are performed as locked bus op­
erations to assure descriptor integrity in multi-proc­
essor systems. 

CODE AND DATA SEGMENT DESCRIPTORS 
(S = 1) 

Besides segment base addresses, code and data 
descriptors contain other segment attributes includ­
ing segment size (1 to 64K bytes), access rights 
(read only, read/write, execute only, and execute/ 
read), and presence in memory (for virtual memory 
systems) (See Figure 11). Any segment usage vio­
lating a segment attribute indicated by the segment 
descriptor will prevent the memory cycle and cause 
an exception or interrupt. 

Code or Data Segment Descriptor 

ACCESS 
RIGHTS BYTE 

+1 

+5 

+3 

+1 

, 
INTEL RESERVED-

-l0Plls I TYPE H BASE2l-16 

845£15_0 

LlM1Tl5-0 

15 17 

• MUI' be I.t to 0 lor compatability with IAPX 381. 

+6 

+2 

210253-11 

Access Rights Byte Definition 

Type 
Field 
Definition 

Bit 
Position 

7 

6-5 

4 

3 
2 

1 

3 
2 

1 

0 

Name Function 

Present (P) P ~ 1 Segment is mapped into physical memory. 
p=o No mapping to physical memory exits, base and limit are 

not used. 
Descriptor Privilege Segment privilege attribute used in privilege tests. 
Level (DPL) 
Segment Descrip- S = 1 Code or Data (includes stacks) segment descriptor 
tortS) S=O System Segment Descriptor or Gate Descriptor 

Executable (E) E=O Data segment descriptor type is: 

) 
If 

Expansion Direc- ED 0 Expand up segment, offsets must be s limit. Data 
tion(ED) ED = 1 Expand down segment, offsets must be > limit. Segment 
Writeable (W) W = 0 Data segment may not be written into. (S = 1, 

W= 1 Data segment may be written into. E = 0) 

Executable (E) E ~ 1 Code Segment Descriptor type is: 

} 
If 

Conforming (C) C=1 Code segment may only be executed Code 
when CPL 2: DPL and CPL Segment 
remains unchanged. 

Readable (R) R =0 Code segment may not be read (S 1, 
R=1 Code segment may be read. E = 1) 

Accessed (A) A=O Segment has not been accessed. 
A=1 Segment selector has been loaded into segment register 

or used by selector test instructions. 

Figure 11. Code and Data Segment Descriptor Formats 
4-15 



iAPX 286/10 

Code and data (including stack data) are stored in 
two types of segments: code segments and data 
segments. Both types are identified and defined by 
segment descriptors (S = 1). Code segments are 
identified by' the executable (E) bit set to 1 in the 
descriptor access rights by1e. The access rights by1e 
of both code and data segment descriptor types 
have three fields in common: present (P) bit, De­
scriptor Privilege Level (DPL), and accessed (A) bit. 
If P = 0, any attempted use of this segment will 
cause a not-present exception. DPL specifies the 
privilege level of the segment descriptor. DPL con­
trols when the descriptor may be used by a task 
(refer to privilege discussion below). The A bit shows 
whether the segment has been previously accessed 
for usage profiling, a necessity for virtual memory 
systems. The CPU will always set this bit when ac­
cessing the descriptor. 

Data segments (S = 1, E = 0) may be either read­
only or read-write as controlled by the W bit of the 
access rights byte. Read-only (W = 0) data seg­
ments may not be written into. Data segments may 
grow in two directions, as determined by the Expan­
sion Direction (ED) bit: upwards (ED = 0) for data 
segments, and downwards (ED = 1) for a segment 
containing a stack. The limit field for a data segment 
descriptor is interpreted differently depending on the 
ED bit (see Figure 11). 

A code segment (S = 1, E = 1) may be execute­
only or execute/read as determined by the Read­
able (R) bit. Code segments may never be written 
into and execute-only code segments (R = 0) may 
not be read. A code segment may also have an attri­
bute called conforming (C). A conforming code seg­
ment may be shared by programs that execute at 
different privilege levels, The DPL of a conforming 
code segment defines the range of privilege levels 
at which the segment may be executed (refer to priv­
ilege discussion below). The limit field identifies the 
last byte of a code segment. 

SYSTEM SEGMENT DESCRIPTORS (S = 0, 
TYPE = 1-3) 

In addition to code and data segment descriptors, 
the protected mode 80286 defines System Segment 
Descriptors. These descriptors define special sys­
tem data segments which contain a table of descrip­
tors (Local Descriptor Table Descriptor) or segments 
which contain the execution state of a task (Task 
State Segment Descriptor). 

Figure 12 gives the formats for the special system 
data segment descriptors. The descriptors contain a 
24-bit base address of the segment and a 16-bit lim­
it. The access by1e defines the type of descriptor, its 
state and privilege level. The descriptor contents are 
valid and the segment is in physical memory if 

P = 1. If P = 0, the segment is not valid. The DPL 
field is only used i~ Task State Segment descriptors 
and indicates the privilege level at which the descrip­
tor may be used (see Privilege). Since the Local De­
scriptor Table descriptor may only be used by a spe­
cial privileged instruction, the DPL field is not used. 
Bit 4 of the access byte is 0 to indicate that it is a 
system control descriptor. The type field specifies 
the descriptor type as indicated in Figure 12. 

4-16 

System Segment Descriptor 

+7 INTEL REJEAVED- +6 

+5 ploPLlol TYPE I BASE23-16 +4 

+3 BASE1~ +2 

+1 LIMIT1~ 

1$ I 1 

-Mult b. set to 0 lor comJNItlbllity with IAPX 311. 210253-12 

System Segment Descriptor Fields 

Name Value Description 

TYPE 1 Available Task State Segment (TSS) 
2 Local Descriptor Table 
3 Busy Task State Segment (TSS) 

P 0 Descriptor contents are not valid 
1 Descriptor contents are valid 

DPL 0-3 Descriptor Privilege Level 

BASE 24-bit Base Address of special system data 
number segment in real memory 

LIMIT 16-bit Offset of last by1e in segment 
number 

Figure 12. System Segment Descriptor Format 

GATE DESCRIPTORS (S = 0, TYPE = 4-7) 

Gates are used to control access to entry points 
within the target code segment. The gate descrip­
tors are call gates, task gates, interrupt gates and 
trap gates. Gates provide a level of indirection be­
tween the source and destination of the control 
transfer. This indirection allows the CPU to automati­
cally perform protection checks and control entry 
point of the destination. Call gates are used to 
change privilege levels (see Privilege), task gates 
are used to perform a task switch, and interrupt and 
trap gates are used to specify interrupt service rou­
tines. The interrupt gate disables interrupts (resets 
IF) while the trap gate does not. 

Gate Descriptor 

" 
+7 INTEL RESEAVED" +6 

+. ploPLlol I, ,I WORD TYPE x X X COUNT 4-0 .4 

+3 DESTINATION SELECTOAl5--2 lx X +2 

+1 DESTINATION OFFSET 1$-0 

" 87 

SMuit be •• t to 0 for compatibility with IAPX 316. (X is don't care) 

210253-13 



iAPX 286/10 

Gate Descriptor Fields 
, 

Name Value Description 

4 -Call Gate 

TYPE 5 - Task Gate 
6 -Interrupt Gate 
7 - Trap Gate I 

p 

I 
0 

valid 
1 - Descriptor Contents are 

valid 

-0,,,",,,, Co","" ~, eo' i 

--
DPL 0-3 ~criPtor Privilege Level 

WORD 
COUNT 0-31 

~ 
I 

--1---
DESTINATION !16-bit 

SELECTOR i selector 

I 
----~-­

DESTINATION I 16-bit 
OFFSET - oliset 

Number of words to copy 
from callers stack to called 

" -procedures ~tack_ Only used 

w~~~~~ ____ ~ 
Selector to the target code 
segment (Call, Interrupt or 
Trap Gate) 
Selector to the target task 
state segment (Task Gate) 

Entry point within the target 
code segment 

~r::gurc 13. Gate Descr:ptor format 

Figure 13 shows the format of the gate descriptors. 
The descriptor contains a destination pointer that 
points to the descriptor of the target segment and 
the entry point offset. The destination selector in an 
interrupt gate, trap gate, and call gate must refer to a 
code segment descriptor. These gate descriptors 
contain the entry point to prevent a program from 
constructing and using an illegal entry point. Task 
gates may only refer to a task state segment. Since 
task gates invoke a task switch, the destination off­
set is not used in the task gate. 

Exception 13 is generated when the gate is used if a 
destination selector does not refer to the correct de­
scriptor type. The word count field is used in the call 
gate descriptor to indicate the number of parameters 
(0-31 words) to be autornatlcally copied from the 
caller's stack to the stack of the called routine when 
a control transfer changes privilege levels. The word 
count field is not used by any other gate descriptor. 

The access byte format is the same for all gate de­
scriptors. P =:: 1 indicates that the gate contents are 
valid. P = 0 indicates the contents are not valid and 
causes exception 11 if referenced. OPL is the de-

scriptor privilege level and specifies when this de­
scriptor may be used by a task (refer to privilege 
discussion below). Bit 4 must equal 0 to indicate a 
system control descriptor. The type field specifies 
the descriptor type as indicated in Figure 13. 

SEGMENT DESCRIPTOR CACHE REGISTERS 
A segment descriptor cache register is aSSigned to 
each of the four segment registers (eS, SS, OS, ES)_ 
Segment descriptors are automatically loaded 
(cached) into a segment descriptor cache register 
(Figure 14) whenever the associated segment regis­
ter is loaded with a selector. Only segment descrip­
tors may be loaded into segment descriptor cache 
registers. Once loaded, all references to that seg­
ment of memory use the cached descriptor Informa­
tion instead of reaccessing the descriptor. The de­
scriptor cache registers are not visible to programs. 
No instructions exist to store their contents. They 
only change when a segment register is loaded. 

SELECTOR FIELDS 

A protected mode selector Ilas three fields descrip­
tor entry index, local or global descriptor table mdi 
cator (TIl. and selector privilege (RPL) as shown in 
Figure 15. These fields select one of two memory 
based tables of descriptors, select the appropriate 
table entry and allow highspeed testing of the selec­
tor's privilege attribute (refer to privilege discussion 
below). 

I 1 i3!""~ .. 
Hl 

2 

15-3 

NAME 

-----_ .. _---
SEL.ECTOR 

L INDEX 
I ' I ! , i ! 

15 

FUNCTiON 

REQueSTED lNDICJ\TES SELECTOR PRIVILf::GE 
PRIVILEGE lEVEL DESIRED 
LEVEL 
(RPL) 

--
TABLE I TI ::= 0 USE GLOBAL DESCRIPTOR TABLE 
INDICATOR (GOT) 
(TI) TI = 1 USE LOCAL DESCRIPTOR TABLE 

(LOT) 

INDEX SELECT DESCRIPTOR ENTRV IN TABLE 

210253-15 

Figure 15. Selector Fields 

PROGRAM VISIBLE r - - - - - - - - - -;'RoGRA-M 7;;V-';,;L; - - - - - - - - - .., 

I ACCESS I 
SEGMENT SELECTORS I RIGHTS SEGMENT PHYSICAL BASE ADDRESS SEGMENT SIZE 

~~ ; t: [ I J 
15 11 : 47 40 39 16 15 0 

(~5:~";~~~~~ci~~~1 I SEGMENT DESCRIPTOR CACHE REGISTERS I I L ______ (~~~~CA~L~l~~E':.B:' c~~ ________ j 
21 0253-~~ ___ .J 

Figure 14. Descriptor Cache Registers 

4-17 



infef iAPX 286/10 

LOCAL AND GLOBAL DESCRIPTOR TABLES 

Two tables of descriptors, called descriptor tables, 
contain all descriptors accessible by a task at any 
given time. A descriptor table is a linear array of up 
to 8192 descriptors. The upper 13 bits of the selec­
tor value are an index into a descriptor table. Each 
table has a 24-bit base register to locate the descrip­
tor table in physical memory and a 16-bit limit regis­
ter that confine descriptor access to the defined lim­
its of the table as shown in Figure 16. A restartable 
exception (13) will occur if an attempt is made to 
reference a descriptor outside the table limits. 

One table, called the Global Descriptor table (GOT), 
contains descriptors available to all tasks. The other 
table, called the Local Descriptor Table (LOT). con­
tains descriptors that can be private to a task. Each 
task may have its own private LOT. The GOT may 
contain all descriptor types except interrupt and trap 
descriptors. The LOT may contain only segment, 
task gate, and call gate descriptors. A segment can­
not be accessed by a task if its segment descriptor 
does not exist in either descriptor table at the time of 
access. 

CPU 

I 
I PROGRAM INVISIBLE I 
I (AUTOMATICALLY I 
! LOADED I 

FROM LDT OESCR. I 

~_ ~I~~~T)_ J 

210253-16 

Figure 16. Local and Global 
Descriptor Table Definition 

The LGDT and LLDT instructions load the base and 
limit of the global and local descriptor tables. LGDT 
and LLDT are privileged, i.e. they may only be exe­
cuted by trusted programs operating at level O. The 
LGDT instruction loads a six byte field containing the 
16-bit table limit and 24-bit physical base address of 
the Global Descriptor Table as shown in Figure 17. 
The LOT instruction loads a selector which refers to 
a Local Descriptor Table descriptor containing the 

base address and limit for an LOT, as shown in Fig­
ure 12. 

0 

+5 INTEL RESERVED* I BASE2l_16 +4 

+3 BASE15-0 +2 

+1 LlM1T15-_0 

• 7 

'"M .... t be •• t to 0 tor comp.t.bllity with IAPX 38el. 210253-17 

Figure 17. Global Descriptor Table and Interrupt 
Descriptor Table Data Type 

INTERRUPT DESCRIPTOR TABLE 

The protected mode 80286 has a third descriptor 
table, called the interrupt Descriptor Table (lOT) 
(see Figure 18), used to define up to 256 interrupts. 
It may contain only task gates, interrupt gates and 
trap gates. The lOT (Interrupt Descriptor Table) has 
a 24-bit physical base and 16-bit limit register in the 
CPU. The privileged LlDT instruction loads these 
registers with a six byte value of identical form to 
that of the LGDT instruction (see Figure 17 and Pro­
tected Mode Initialization). 

4-18 

I'\., MEMORY "V 

GA.TE FOR 
IN1'ERRUPT #n 

GATE FOR 
INTERRUPT #n-1 

INTERRUPT 
DESCRIPTOR 
TABLE 
(lOT) 

GATE FOR 
INTERRUPT #1 

... ~_G_AT_E.:..'_OR":";"--I) 1 ~,,!;1 ~ ~~"' INTERRUPT #0 ~ ! Q 

~:E!il 

210253-18 ._---_._-----
Figure 18. Interrupt Descriptor Table Definition 

References to lOT entries are made via INT instruc­
tions, external interrupt vectors, or exceptions. The 
lOT must be at least 256 bytes in size to allocate 
space for all reserved interrupts. 

Privilege 
The 80286 has a four-level hierarchical privilege sys­
tem which controls the use of privileged instructions 
and access to descriptors (and their associated seg­
ments) within a task. Four-level privilege, as shown 
in Figure 19, is an extension of the user/supervisor 
mode commonly found in minicomputers. The privi­
lege levels are numbered 0 through 3. Level 0 is the 



iAPX 286/10 

CPU 
ENFORCED 
SOFTWARE 
INTERFACES 

HIGH SPEED 
OPERATING 
SYSTEM 
INTERFACE 

NOTE, Pl BECOMES NUMERICALLY LOWER AS PRIVILEGE LEVEL 
INCREASES 

210253-19 

most privileged level. Privilege levels provide protec­
tion within a task. (Tasks are isolated by providing 
private LOT's for each task.) Operating system rou­
tines, interrupt handlers, and other system software 
can be included and protected within the virtual ad­
dress space of each task using the four levels of 
privilege. Each task in the system has a separate 
stack for each of its privilege levels. 

Tasks, descriptors, and selectors have a privilege 
level attribute that determines whether the descrip­
tor may be used. Task privilege effects the use of 
instructions and descriptors. Descriptor and selector 
privilege only effect access to the descriptor. 

TASK PRIVILEGE 
A task always executes at one of the four privilege 
levels. The task privilege level at any specific instant 
is called the Current Privilege Level (CPL) and is de­
fined by the lower two bits of the CS register. CPL 
cannot change during execution in a single code 
segment. A task's CPL may only be changed by con­
trol transfers through gate descriptors to a new code 
segment (See Control Transfer). Tasks begin exe­
cuting at the CPL value specified by the code seg­
ment selector within TSS when the task is initiated 
via a task switch operation (See Figure 20). A task 
executing at Level 0 can access all data segments 
defined in the GOT and the task's LOT and is con­
sidered the most trusted level. A task executing a 
Level 3 has the most restricted access to data and is 
considered the least trusted level. 

DESCRIPTOR PRIVILEGE 
Descriptor privilege is specified by the Descriptor 
Privilege Level (DPL) field of the descriptor access 
byte. DPL specifies the least trusted task privilege 
level (CPL) at which a task may access the descrip-

tor. Descriptors with DPL = 0 are the most protect­
ed. Only tasks executing at privilege level 0 
(CPL = 0) may access them. Descriptors with DPL 
= 3 are the least protected (i.e. have the least re­
stricted access) since tasks can access them when 
CPL = 0, 1, 2, or 3. This rule applies to all descrip­
tors, except LOT descriptors. 

4-19 

SELECTOR PRIVILEGE 
Selector privilege is specified by the Requested Priv­
ilege Level (RPL) field in the least significant two bits 
of a selector. Selector RPL may establish a less 
trusted privilege level than the current privilege level 
for the use of a selector. This level is called the 
task's effective privilege level (EPL). RPL can only 
reduce the scope of a task's access to data with this 
selector. A task's effective privilege is the numeric 
maximum of RPL and CPL. A selector with RPL = 0 
imposes no additional restriction on its use while a 
selector with RPL = 3 can only refer to segments at 
privilege Level 3 regardless of the task's CPL. RPL 
is generally used to verify that pointer parameters 
passed to a more trusted procedure are not allowed 
to use data at a more privileged level than the caller 
(refer to pointer testing instructions). 

Descriptor Access and Privilege 
Validation 
Determining the ability of a task to access a seg­
ment involves the type of segment to be accessed, 
the instruction used, the type of descriptor used and 
CPL, RPL, and DPL. The two basic types of segment 
accesses are control transfer (selectors loaded into 
CS) and data (selectors loaded into OS, ES or SS). 

DATA SEGMENT ACCESS 
Instructions that load selectors into OS and ES must 
refer to a data segment descriptor or readable code 
segment descriptor. The CPL of the task and the 
RPL of the selector must be the same as or more 
privileged (numerically equal to or lower than) than 
the descriptor DPL. In general, a task can only ac­
cess data segments at the same or less privileged 
levels than the CPL or RPL (whichever is numerically 
higher) to prevent a program from accessing data it 
cannot be trusted to use. 

An exception to the rule is a readable conforming 
code segment. This type of code segment can be 
read from any privilege level. 

If the privilege checks fail (e.g. DPL is numerically 
less than the maximum of CPL and RPL) or an incor­
rect type of descriptor is referenced (e.g. gate de-



infef iAPX 286/10 

scriptor or execute only code segment) exception 13 
occurs. If the segment is not present, exception 11 
is generated. 

Instructions that load selectors into SS must refer to 
data segment descriptors for writable data seg­
ments. The descriptor privilege (DPL) and RPL must 
equal CPL. All other descriptor types or a privilege 
level violation will cause exception 13. A not present 
fault causes exception 12. 

CONTROL TRANSFER 

Four types of control transfer can occur when a se­
lector is loaded into CS by a control transfer opera­
tion (see Table 10). Each transfer type can only oc­
cur if the operation which loaded the selector refer­
ences the correct descriptor type. Any violation of 
these descriptor usage rules (e.g. JMP through a call 
gate or RET to a Task State Segment) will cause 
exception 13. 

The ability to reference a descriptor for control trans­
fer is also subject to rules of privilege. A CALL or 
JUMP instruction may only reference a code seg­
ment descriptor with DPL equal to the task CPL or a 
conforming segment with DPL of equal or greater 
privilege than CPL. The RPL of the selector used to 
reference the code descriptor must have as much 
privilege as CPL. 

RET and IRET instructions may only reference code 
segment descriptors with descriptor privilege equal 
to or less privileged than the task CPL. The selector 
loaded into CS is the return address from the stack. 
After the return, the selector RPL is the task's new 
CPL. If CPL changes, the old stack pointer is popped 
after the return address. 

When a JMP or CALL references a Task State Seg­
ment descriptor, the descriptor DPL must be the 
same or less privileged than the task's CPL. Refer-

ence to a valid Task State Segment descriptor caus­
es a task switch (see Task Switch Operation). Refer­
ence to a Task State Segment descriptor at a more 
privileged level than the task's CPL generates ex­
ception 13. 

When an instruction or interrupt references a gate 
descriptor, the gate DPL must have the same or less 
privilege than the task CPL. If DPL is at a more privi­
leged level than CPL, exeception 13 occurs. If the 
destination selector contained in the gate refer­
ences a code segment descriptor, the code seg­
ment descriptor DPL must be the same or more priv­
ileged than the task CPL. If not, Exception 13 is is­
sued. After the control transfer, the code segment 
descriptors DPL is the task's new CPL. If the desti­
nation selector in the gate references a task state 
segment, a task switch is automatically performed 
(see Task Switch Operation). 

The privilege rules on control transfer require: 

- JMP or CALL direct to a code segment (code 
segment descriptor) can only be to a conforming 
segment with DPL of equal or greater privilege 
than CPL or a non-conforming segment at the 
same privilege level. 

- interrupts within the task or calls that may 
change privilege levels, can only transfer control 
through a gate at the same or a less privileged 
level than CPL to a code segment at the same or 
more privileged level than CPL. 

- return instructions that don't switch tasks can 
only return control to a code segment at the 
same or less privileged level. 

- task switch can be performed by a call, jump or 
interrupt which references either a task gate or 
task state segment at the same or less privileged 
level. 

Table 10. Descriptor Types Used for Control Transfer 

Control Transfer Types 

Intersegment within the same privilege I.evel 

Intersegment to the same or higher privilege level Interrupt 
within task may change CPL. 

Intersegment to a lower privilege level (changes task CPL) 

Task Switch 

* NT (Nested Task bit of flag word) = 0 
* * NT (Nested Task bit of flag word) = 1 

Operation Types 

JMP, CALL, RET, IRET' 

CALL 

Interrupt Instruction, 
Exception, External 
Interrupt 

RET,IRET' 

CALL,JMP 

CALL,JMP 

IRET" 
Interrupt Instruction, 
Exception, External 
Interrupt 

4-20 

Descriptor Descriptor 
Referenced Table 

Code Segment GOT/LOT 

Call Gate GOT/LOT 

Trap or lOT 
Interrupt 
Gate 

Code Segment GOT/LOT 

Task State GOT 
Segment 

Task Gate GOT/LOT 

Task Gate lOT 



inter IAPX 286/10 

PRIVILEGE LEVEL CHANGES 

Any control transfer that changes CPL within the 
task, causes a change of stacks as part of the oper­
ation. Initial values of SS:SP for privilege levels 0, 1, 
and 2 are kept in the task state segment (refer to 
Task Switch Operation). During a JMP or CALL con­
trol transfer, the new stack pointer is loaded into the 
SS and SP registers and the previous stack pointer 
is pushed onto the new stack. 

When returning to the original privilege level, its 
stack is restored as part of the RET or IRET instruc­
tion operation. For subroutine calls that pass param­
eters on the stack and cross privilege levels, a fixed 
number of words, as specified in the gate, are cop­
ied from the previous stack to the current stack. The 
inter-segment RET instruction with a stack adjust­
ment value will correctly restore the previous stack 
pointer upon return. 

Protection 
The 80286 includes mechanisms to protect critical 
instructions that affect the CPU execution state (e.g. 
HL T) and code or data segments from improper us­
age. These protection mechanisms are grouped into 
three forms: 

Restricted usage of segments (e.g. no write al­
lowed to read-only data segments). The only seg­
ments available for use are defined by descrip­
tors in the Local Descriptor Table (LOT) and 
Global Descriptor Table (GOT). 

Restricted access to segments via the rules of 
privilege and descriptor usage. 

Privileged instructions or operations that may 
only be executed at certain privilege levels as de­
termined by the CPL and I/O Privilege Level 
(IOPL). The 10PL is defined by bits 14 and 13 of 
the flag word. 

These checks are performed for all instructions and 
can be split into three categories: segment load 
checks (Table 11), operand reference checks (Table 
12), and privileged instruction checks (Table 13). 
Any violation of the rules shown will result in an ex­
ception. A not-present exception related to the stack 
segment causes exception 12. 

The IRET and POPF instructions do not perform 
some of their defined functions if CPL is not of suffi­
cient privilege (numerically small enough). Precisely 
these are: 

• The IF bit is not changed if CPL > 10PL. 

• The 10PL field of the flag word is not changed if 
CPL> O. 

No exceptions or other indication are given when 
these conditions occur. 

4-21 

Table 11 
Segment Register Load Checks 

Error Description Exception 
Number 

Descriptor table limit exceeded 13 

Segment descriptor not-present 11 or 12 

Privilege rules violated 13 

Invalid descriptor/segment type seg-
ment register load: 

-Read only data segment load to 
SS 

-Special Control descriptor load to 
DS,ES,SS 13 

-Execute only segment load to 
DS,ES,SS 

-Data segment load to CS 
-Read/Execute code segment 

load to SS 

Table 12. Operand Reference Checks 

Error Description Exception 
Number 

Write into code segment 13 
Read from execute-only code 
segment 13 
Write to read-only data segment 13 
Segment limit exceeded1 12 or 13 

NOTE: 
Carry out in offset calculations is ignored. 

Table 13. Privileged Instruction Checks 

Error Description 
Exception 
Number 

CPL "" 0 when executing the following 
instructions: 

13 
LlDT, LLDT, LGDT, L TR, LMSW, 
CTS,HLT 

CPL > IOPL when executing the fol-
lowing instructions: 

13 
INS, IN, OUTS, OUT, STI, CLI, 
LOCK 

EXCEPTIONS 

The 80286 detects several types of exceptions and 
interrupts, in protected mode (see Table 14), Most 
are restartable after the exceptional condition is re­
moved. Interrupt handlers for most exceptions can 
read an error code, pushed on the stack after the 
return address, that identifies the selector involved 
(0 if none). The return address normally points to the 
failing instruction, including all leading prefixes. For a 
processor extension segment overrun exception, 
the return address will not point at the ESC instruc­
tion that caused the exception; however, the proces­
sor extension registers may contain the address of 
the failing instruction. 



iAPX 286/10 

Table 14. Protected Mode Exceptions 

Return 
Always Error Interrupt 

Function Address Restart· Code Vector At Falling able? on Stack? Instruction? 

8 Double exception detected Yes N02 Yes 
9 Processor extension segment overrun No N02 No 

10 Invalid task state segment Yes Yes Yes 
1 j Segment not present Yes Yes Yes 
12 Stack segment overrun or stack segment not present Yes Yes1 Yes 
13 General protection Yes No2 Yes 

NOTE: 
1. When a PUSHA or POPA instruction attempts to wrap around the stack segment, the machine state after the exception 
will not be restartable because stack segment wrap around is not permitted. This condition is identified by the value of the 
saved SP being either OOOO(H), 0001 (H), FFFE(H), or FFFF(H). 
2. These exceptions indicate a violation to privilege rules or usage rules has occurred. Restart is generally not attempted 
under those conditions. 

These exceptions indicate a violation to privilege 
rules or usage rules has occurred. Restart is gener­
ally not attempted under those conditions. 

All these checks are performed for all instructions 
and can be split into three categories: segment load 
checks (Table 11), operand reference checks (Table 
12), and privileged instruction checks (Table 13). 
Any violation of the rules shown will result in an ex­
ception. A not-present exception causes exception 
11 or 12 and is restartable. 

Special Operations 

TASK SWITCH OPERATION 

The 80286 provides a built·in task switch operation 
which saves the entire 80286 execution state (regis­
ters, address space, and a link to the previous task), 
loads a new execution state, and commences exe­
cution in the new task. Like gates, the task switch 
operation is invoked by executing an inter-segment 
JMP or CALL instruction which refers to a Task 
State Segment (TSS) or task gate descriptor in the 
GOT or LOT. An INT n instruction, exception, or ex­
ternal interrupt may also invoke the task switch op­
eration by selecting a task gate descriptor in the as­
sociated lOT descriptor entry. 

The TSS descriptor points at a segment (see Figure 
20) containing the entire 80286 execution state 
while a task gate descriptor contains a TSS selector. 
The limit field of the descriptor must be > 002B(H). 

Each task must have a TSS associated with it. The 
current TSS is identified by a special register in the 
80286 called the Task Register (TR). This register 
contains a selector referring to the task state seg­
ment descriptor that defines the current TS8. A hid­
den base and limit register associated with TR are 
loaded whenever TR is loaded with a new selector. 

The IRET instruction is used to return control to the 
task that called the current task or was interrupted. 
Bit 14 in the flag register is called the Nested Task 
(NT) bit. It controls the function of the IRET instruc­
tion. If NT = 0, the IRET instruction performs the 
regular current task by popping values off the stack; 
when NT = 1, IRET performs a task switch opera­
tion back to the previous task. 

When a CALL, JMP, or INT instruction initiates a 
task switch, the old (except for case of JMP) and 
new TS8 will be marked busy and the back link field 
of the new TSS set to the old TSS selector. The NT 
bit of the new task is set by CALL or INT initiated 
task switches. An interrupt that does not cause a 
task switch will clear NT. NT may also be set or 
cleared by POPF or IRET instructions. 

The task state segment is marked busy by changing 
the descriptor type field from Type 1 to Type 3. Use 
of a selector that references a busy task state seg­
ment causes Exception 13. 

PROCESSOR EXTENSION CONTEXT 
SWITCHING 

4-22 

The context of a processor extension (such as the 
80287 numerics processor) is not changed by the 
task switch operation. A processor extension con­
text need only be changed when a different task at­
tempts to use the processor extension (whicil still 
contains the context of a previous task). The 80286 
detects the first use of a processor extension after a 
task switch by causing the processor extension not 
present exception (7). The interrupt handler may 
then decide whether a context change is necessary. 

Whenever the 80286 switches tasks, it sets the Task 
Switched (TS) bit of the MSW. T8 indicates that a 
processor extension context may belong to a differ­
ent task than the current one. The processor exten­
sion not present exception (7) will occur when at­
tempting to execute an ESC or WAIT instruction if 
TS= 1 and a processor extension is present (MP= 1 
in MSW). 



intJ iAPX 286/10 

POINTER TESTING INSTRUCTIONS 

The iAPX 286 provides several instructions to speed 
pOinter testing and consistency checks for maintain­
ing system integrity (see Table 15). These instruc-

tions use the memory management hardware to ver­
ify that a selector value refers to an appropriate seg­
ment without risking an exception. A condition flag 
(ZF) indicates whether use of the selector or seg­
ment will cause an exception. 

"- 'V 

CPU INTEL RESERVED 
TYPE DESCRIPTION 

TASK REGISTER 

pi rio ITYP~I 

11 
TRD---

SYSTEM BASE2J~111 1 AN AVAILABLE TASK STATE 
....... SEGMENT SEGMENT. MAY BE USED AS 

DESCRIPTOR THE DESTINATION OF A TASK 
15 0 8A5E'5-_0 SWITCH OPERATION. r---------, 

I PROGRAM INVISIBLE I 3 A BUSY TASK STATE SEGMENT. 
I 15 0 I lIMIT~5-0 CANNOT BE USED AS THE 

I ~ H 
DESTINATION OF A TASK 

I 
I SWITCH. 

: L I 
------ ------------- _..J 

BASE 

I " 0 I ~ 
L. ___ --- --' BYTE 

15 0 OFFSET 

TASK LOT SELECTOR 42 

DS SELECTOR 40 rJ;-~Rl~Q!L 
55 SELECTOR 3B 

1 BASE AND LIMIT FIELDS ARE VALID 

0 SEGMENT IS NOT PRESENT IN 
CS SELECTOR 3. MEMORY, BASE AND LIMIT ARE NOT 

DEFINED 
ES SELECTOR 34 

01 32 

SI 30 

BP 28 CURRENT 
TASK 

SP 2. STATE 

BX 2. 

TASK OX 22 
STATE 
SEGMENT CX 20 

AX I. 
FLAG WORD ,. 
IP (ENTRY POINT) ,. 
55 FORCPL2 

"I 
SP FOR CPL2 10 

SS FOR CPL 1 8 INITIAL 
STACKS 

SP FORCPL 1 : FOR CPL 0.1.2 

SS FOR CPLO 

SP FOR CPLO 

BACK LINK SELECTOR TO TSS 0 

::t 
210253-20 

Figure 20. Task State Segment and TSS Registers 

4-23 



iAPX 286/10 

Table 15.80286 Pointer Test Instructions 

Instruction Operands Function 

ARPL Selector, Adjust Requested Privilege 
Register Level: adjusts the RPL of 

the selector to the numeric 
maximum of current selec-
tor RPL value and the RPL 
value in the register. Set 
zero flag if selector RPL 
was changed by ARPL 

VERR Selector VERify for Read: sets the 

I 
zero flag if the segment re-
ferred to by the selector 
can be read. 

VERW 

I 
Selector VERify for Write: sets the 

zero flag if the segment re-
ferred to by the selector 

I can be written. 

IL I Register, Load Segment Limit: reads 

I 
Selector the segment limit into the 

register if privilege rules 

I and descriptor type allow. 

t 
I Set zero flag if successful. 

t 
t-

Register, I Load Access Rights: reads 
I Selector I "'" d"",." ,~,~ 

I 
rights byte into the register 
if privilege rules allow. Set 
zero flag if successful. 

DOUBLE FAULT AND SHUTDOWN 

If two separate exceptions are detected during a sin­
gle instruction execution, the 80286 performs the 
double fault exception (8). If an execution occurs 
during processing of the double fault exception, the 
80286 will enter shutdown. During shutdown no fur­
ther instructions or exceptions are processed. Either 
NMI (CPU remains in protected mode) or RESET 
(CPU exits protected mode) can force the 80286 out 
of shutdown. Shutdown is externally Signalled via a 
HALT bus operation with A1 HIGH. 

PROTECTED MODE INITIALIZATION 

The 80286 initially executes in real address mode 
after RESET. To allow initialization code to be 
placed at the top of physical memory, A23-20 will be 
HIGH when the 80286 performs memory references 
relative to the CS register until CS is changed. 
A23-20 will be zero for references to the OS, ES, or 
88 segments. Changing CS in real address mode 
wili force LOW whenever CS is used again. 
The initial value of FOOO:FFFO provides 64K 
bytes of code space for initialization code without 
changing CS. 

Protected mode operation requires several registers 
to be initialized. The GOT and lOT base registers 
must refer to a valid GOT and lOT. After executing 
the LMSW instruction to set PE, the 80286 must im-

mediately execute an intra-segment JMP instruction 
to clear the instruction queue of instructions decod­
ed in real address mode. 

To force the 80286 CPU registers to match the initial 
protected mode state assumed by software, execute 
a JMP instruction with a selector referring to the ini­
tial TSS used in the system. This will load the task 
register, local descriptor table register, segment reg­
isters and initial general register state. The TR 
should point at a valid TSS since any task switch 
operation involves saving the current task state. 

SYSTEM INTERFACE 
The 80286 system interface appears in two forms: a 
local bus and a system bus. The local bus consists 
of address, data, status, and control signals at the 
pins of the CPU. A system bus is any buffered ver­
sion of the local bus. A system bus may also differ 
from the local bus in terms of coding of status and 
control lines and/or timing and loading of signals. 
The iAPX 286 family includes several devices to 
generate standard system buses such as the IEEE 
796 standard MUL TIBUS. 

Bus Interface Signals and Timing 
The iAPX 286 microsystem local bus interfaces the 
80286 to local memory and I/O components. The 
interface has 24 address lines, 16 data lines, and 8 
status and control signals. 

The 80286 CPU, 82284 clock generator, 82288 bus 
controller, 82289 bus arbiter, 828617 tranceivers, 
and 8282/3 latches provide a buffered and decoded 
system bus interface. The 82284 generates the sys­
tem clock and synchronizes READY and RESET. 
The 82288 converts bus operation status encoded 
by the 80286 into command and bus control signals. 
The 82289 bus arbiter generates Multibus bus arbi­
tration signals. These components can provide the 
timing and electrical power drive levels required for 
most system bus interfaces including the Multibus. 

Physical Memory and 110 Interface 
A maximum of 16 megabytes of physical memory 
can be addressed in protected mode. One mega­
byte can be addressed in real.caddress mode. Memo­
ry is accessible as bytes or words .. Words consist of 
any two consecutive bytes addressed with the least 
significant byte stored in the lowest address. 

4-24 

Byte transfers occur on either half of the 16-bit local 
data bus. Even bytes are accessed over 07-0 while 
odd bytes are transferred over 015-8. Even-ad­
dressed words are transferred over D15-0 in one 
bus cycle, while odd-addressed word require two 
bus operations. The first transfers data on D15-8, 
and the second transfers data on D7 -0. Both byte 
data transfers occur automatically, transparent to 
software. 



iAPX 286/10 

Two bus signals, Ao and BHE, control transfers over 
the lower and upper halves of the data bus. Even 
address byte transfers are indicated by Ao lOW and 
BHE HIGH. Odd address byte transfers are indicat­
ed by Ao HIGH and BHE lOW. Both Ao and SHE are 
lOW for even address word transfers. 

The I/O address space contains 64K addresses in 
both modes. The I/O space is accessible as either 
bytes or words, as is memory. Byte wide peripheral 
devices may be attached to either the upper or lower 
byte of the data bus. Byte-wide I/O devices attached 
to the upper data byte (015-8) are accessed with 
odd I/O addresses. Devices on the lower data byte 
are accessed with even I/O addresses. An interrupt 
controlier such as Intel's 8259A must be connected 
to the lower data byte (07-0) for proper return of the 
interrupt vector. 

Bus Operation 
The 80286 uses a double frequency system clock 
(ClK input) to control bus timing. All signals on the 
local bus are measured relative to the system ClK 
input. The CPU divides the system clock by 2 to pro­
duce the internal processor cloCk, which determines 
bus state. Each processor clock is composed of two 
system clock cycles named phase 1 and phase 2. 
The 82284 clock generator output (PClK) identifies 
the next phase of the processor clock. (See Figure 
21.) 

eLK 

~ONE PROCESSOR CLOCK CYCLE~ 
- ONE BUS T STATE--

PHASE 1 PHAse 2 
OF PROCESSOR •• ,J__ OF PROCESSOR 
CL.OCK CYCL.E ~ CLOCK CYCLE 

PClK Y' \'-----
210253-21 

Figure 21. System and Processor 
Clock Relationships 

Six types of bus operations are supported; memory 
read, memory write, I/O read, I/O write, interrupt ac­
knowledge, and halt/shutdown. Data can be trans­
ferred at a maximum rate of one word per two proc­
essor clock cycles. 

The iAPX 286 bus has three basic states: idle (Ti), 
send status (T s), and perform command (T d. The 
80286 CPU also has a fourth local bus state called 
hold (T h). T h indicates that the 80286 has surren­
dered control of the local bus to another bus master 
in response to a HOLD request. 

Each bus state is one processor clock long. Figure 
22 shows the four 80286 local bus states and al­
lowed transitions. 

4-25 

HLDA 

Figure 22. 80286 Bus States 

Bus States 
The idle (Ti) state indicates that ~o data transfers 
are in progress or requested. The active siate 
Ts is Signaled by status line 8i or LO"vV 
and identifying phase! of the processor Our· 
ing T s, the command encoding. the address, and 
data (jor a write operation) are 8vailabie on the 
80286 output Dins. The 82288 bus contraile!" OG·· 
codes the staius signals and generates Muil.ibus 
compatible read/write command and loca! trans­
ceiver control signals. 

After T s, the perform command (T cJ state is en­
tered. Memory or ilO devices respond to the bus 
operation during T c, either transferring read data to 
the CPU or accepting write data. T C states may be 
repeated as often as necessary to assure sufiicient 
time for the memory or 110 device to respond. The 
READY signal determines whether T c is repeated. ? 
repeated Testate is called a wait state. 

During hold (T h)' trle 80288 wil! float aii address, 
data, and status output pins enabling another bus 
master to use the local bus. The 80286 HOLD input 
signal is used to place the 80286 ;1'to ti,e state. 
The 80286 Hr._Dil, output 81gr:11 iwjlrqtRs ihF 
CPU has entered T h. 

Pipelined Addressing 
The 80286 uses a local bus interface with pipelined 
timing to allow as much time as possible for data 
access. Pipelined timing allows a new bus operation 
to be initiated every two processor cycles, while al­
lowing each individual bus operation to last for three 
processor cycles. 

The timing of the address outputs is pipelined such 
that the address of the next bus operation becomes 
available during the current bus cperation. Or" oth­
er words, the first clock of the next bus operation is 
overlapped with the last clock of the current bus op­
eration. Therefore, address decode and routing logic 
can operate in advance of the next bus operation. 



infef iAPX 286/10 

T, 

elK 

PRoe elK 

VALID ADDR (N) 

SO. Sl 

/ 
REAOY > oz::.::~------'Li.J""------;;;'>-=""---------------.--'LJ 

015-· Do - - -- - - - -- - -- - - -- - - - - - - - - - -~ _ _______________ ~ 

VALID READ VALID READ 
DATA (N) DATA (N + 1) 

PlPELlHIHG, VALID ADDRESS (H + 1) AVAILABLE IN LAST PHASE OF BUS CYCLE (H). 

210253-23 

Figure 23. Basic Bus Cycle 

External address latches may hold the address sta­
ble for the entire bus operation, and provide addi­
tional AC and DC buffering. 

The 80286 does not maintain the address of the cur­
rent bus operation during all To states. Instead, the 
address for the next bus operation may be emitted 
during phase 2 of any T c. The address remains valid 
during phase 1 of the first T c to guarantee hold time, 
relative to ALE, for the address latch inputs .. 

Bus Control Signals 
The 82288 bus controller provides control signals; 
address latch enable (ALE), Read/Write commands, 
data transmit/receive (DT /Fi), and data enable 
(DEN) that control the address latches, data trans­
ceivers, write enable, and output enable for memory 
and 1/0 systems. 

The Address Latch Enable (ALE) output determines 
when the address may be latched. ALE provides at 
least one system CLK period of address hold time 
from the end of the previous bus operation until the 
address for the next bus operation appears at the 
latch outputs. This address hold time is required to 
support MUL TIBUS® and common memory sys­
tems. 

The data bus transceivers are controlled by 82288 
outputs Data Enable (DEN) and Data Transmit/Re· 
ceive (DT lFi). DEN enables the data transceivers; 
while DT IR controls tranceiver direction. DEN and 
DT IR are timed to prevent bus contention between 
the bus master, data bus transceivers, and system 
data bus transceivers. 

Command Timing Controls 
Two system timing customization options, command 
extension and command delay, are provided on the 
iAPX 286 local bus. 

Command extension allows additional time for exter­
nal devices to respond to a command and is analo­
gous to inserting wait states on the 8086. External 
logic can control the duration of any bus operation 
such that the operation is only as long as necessary. 
The READY input signal can extend any bus opera­
tion for as long as necessary. 

Command delay allows an increase of address or 
write data setup time to system bus command active 
for any bus operation by delaying when the system 
bus command becomes active. Command delay is 
controlled by the 82288 CMDL Y input. After T s. the 
bus controller samples CMDL Y at each failing edge 
of CLK. If CMDL Y is HIGH, the 82288 will not acti­
vate the command signal. When CMDLY is LOW, 
the 82288 will activate the command signal. After 
the command becomes active, the CMDL Y input is 
not sampled. 

When a command is delayed, the available re­
sponse time from command active to return read 
data or accept write data is less. To customize sys­
tem bus timing, an address decoder can determine 
which bus operations require delaying the com­
mand. The CMDL Y input does not affect the timing 
of ALE, DEN, or DT IR. 

4-26 



iAPX 286/10 

elK 

.ROC ----, 
elK 

210253-24 

Figure 24. CMDL Y Controls the Leading Edge of Command Signal 

Figure 24 illustrates four uses of CMDl Y. Example 1 
shows delaying the read command two system 
CLKs for cycle N-1 and no delay for cycle N, and 
example 2 shows delaying the read command one 
system CLK for cycle N-1 and one system CLK de­
lay for cycle N. 

Bus Cycle Termination 
At maximum transfer rates, the iAPX 286 bus alter­
nates between the status and command states. The 
bus status signals become inactive after T s so that 
they may correctly signal the start of the next bus 
operation after the completion of the current cycle. 
No external indication of T c exists on the iAPX 286 
local bus. The bus master and bus controller enter 
T c directly after T s and c0rltinue executing T c cycles 
until terminated by READY. 

READY Operation 
The current bus master and 82288 bus controller 
terminate each bus operation simultaneously to 
achieve maximum bus operation bandwidth. Both 
are informed in advance by READY active (open­
collector output from 82284) which identifies the last 
T c cycle of the current bus operation. The bus mas­
ter and bus controller must see the same sense of 

4-27 

the READY signal, thereby requiring READY be syn­
chronous to the system clock. 

Synchronous Ready 
The 82284 clock generator provides READY syn­
chronization from both synchronous and asynchro­
nous sources (see Figure 25). The synchronous 
ready input (SRDY) of the clock generator is sam­
pled with the falling edge of ClK at the end of phase 
1 of each T c. The state of SRDY is then broadcast to 
the bus master and bus controller via the READY 
output line. 

Asynchronous Ready 
Many systems have devices or subsystems that are 
asynchronous to the system clock. As a result, their 
ready outputs cannot be guaranteed to meet the 
82284 SRDY setup and hold time requirements. But 
the 82284 asynchronous ready input (ARDY) is de­
signed to accept such signals. The ARDY input is 
sampled at the beginning of each T c cycle by 82284 
synchronization logic. This provides one system ClK 
cycle time to resolve its value before broadcasting it 
to the bus master and bus controller. 



inter iAPX 286/10 

• MEMORY CYCLE N - 1 .1. MEMORY CYCLE N ·1 
--Ts----.l....-.---..-TC~4__TS--------------I~Tc~-I~Tc-·-···~ 

I ~ I ~ I ~ ~ I ~ ~ I ~ ~1 I ~ 

eLK 

PROCCLK 

An-~ ________________ -rJ,~~+-____ ._.L_ID_AD_D_A ________ fJ~~~ __ ~ __ -J 

(SEE NOTE 1.) /'----

mv \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ IfiooomZWllll 
(SeE NOTE 3.) 

NOTES: 210253-25 
1. SRDYEN is active low. 
2. If SRDYEN is high. the state of SRDY will no affect READY. 
3. ARDYEN is active low. 

Figure 25. Synchronous and Asynchronous Ready 

ARDY or ARDYEN must be HIGH at the end of T S. 
ARDY cannot be used to terminate bus cycle with no 
wait states. 

Each ready input of the 82284 has an enable pin 
(SRDYEN and ARDYEN) to select whether the cur­
rent bus operation will be terminated by the synchro­
nous or asynchronous ready. Either of the ready in­
puts may terminate a bus operation. These enable 
inputs are active low and have the same timing as 
their respective ready inputs. Address decode logic 
usually selects whether the current bus operation 
should be terminated by ARDY or SRDY. 

Data Bus Control 

Figures 26, 27, and 28 show how the DT IR, DEN, 
data bus, and address signals operate for different 
combinations of read, write, and idle bus operations. 
DT IR goes active (LOW) for a read operation. DT IR 
remains HIGH before, during, and between write op­
erations. 

The data bus is driven with write data during the 
second phase of T s' The delay in write data timing 
allows the read data drivers, from a previous read 
cycle, sufficient time to enter 3-state OFF before the 
80286 CPU begins driving the local data bus for 
write operations. Write data will always remain valid 
for one system clock past the last T e to provide suffi­
cient hold time for Multibus or other similar memory 
or 110 systems. During write-read or write-idle se­
quences the data bus enters 3-state OFF during the 
second phase of the processor cycle after the last 
Te. In a write-write sequence the data bus does not 
enter 3-state OFF between T e and T s. 

Bus Usage 

The 80286 local bus may be used for several func­
tions: instruction data transfers, data transfers by 
other bus masters, instruction fetching, processor 
extension data transfers, interrupt acknowledge, and 
halt/shutdown. This section describes local bus ac­
tivities which have special signals or requirements. 

4-28 



elK 

so • $1 

MRDe 

MWTe 

DEN 

DTR 

elK 

A23 - Ao 

T, 
I 

____________ ~-----J 

iAPX 286/10 

Figure 26. Back to Back Read-Write Cycles 

WRITECYCL.E READ CYCLE 

D15-Oo ----------

DEN 

DT/A 

Figure 27. Back to Back Write-Read Cycles 

4-29 

210253-26 

210253-27 



iAPX 286/10 

DT/R VOH ----------------------------

210253-28 

Figure 28. Back to Back Write-Write Cycles 

HOLD and HLDA 
HOLD AND HLDA allow another bus master to gain 
control of the local bus by placing the 80286 bus into 
the T h state. The sequence of events required to 
pass control between the 80286 and another local 
bus master are shown in Figure 29. 

In this example, the 80286 is initially in the T h state 
as signaled by HLDA being active. Upon leaving T h, 
as signaled by HLDA going inactive, a write opera­
tion is started. During the write operation another 
local bus master requests the local bus from the 
80286 as shown by the HOLD signal. After complet­
ing the write operation, the 80286 performs one Tj 
bus cycle, to guarantee write data hold time, then 
enters Th as signaled by HLDA going active. 

The CMDL Y signal and ARDY ready are used to 
start and stop the write bus command, respectively. 
Note that SRDY must be inactive or disabled by 
SRDYEN to guarantee ARDY will terminate the cy­
cle. 

HOLD must not be active during the time from the 
leading edge of RESET until 34 CLKs following the 
trailing edge of RESET unless the 80286 is in the 
Halt condition. To insure that the 80286 remains in 
the Halt condition until the processor Reset opera­
tion is complete, no interrrupts should occur after 
the execution of HL T until 34 CLKs after the trailing 
edge of the RESET pulse. 

Lock 
The CPU asserts an active lock signal during Inter­
rupt-Acknowledge cycles, the XCHG instruction, and 
during some descriptor accesses. Lock is also as­
serted when the LOCK prefix is used. The LOCK 

prefix may be used with the following ASM-286 as­
sembly instructions; MOVS, INS, and OUTS. For bus 
cycles other than Interrupt-Acknowledge cycles, 
Lock will be active for the first and subsequent cy­
cles of a series of cycles to be locked. Lock will not 
be shown active during the last cycle to be locked. 
For the next-to-Iast cycle, Lock will become inactive 
at the end of the first T c regardless of the number of 
wait-states inserted. For Interrupt-Acknowledge cy­
cles, Lock will be active for each cycle, and will be­
come inactive at the end of the first T c for each cy­
cle regardless of the number of wait-states inserted. 

Instruction Fetching 
The 80286 Bus Unit (BU) will fetch instructions 
ahead of the current instruction being executed. This 
activity is called prefetching. It occurs when the local 
bus would otherwise be idle and obeys the following 
rules: 

A prefetch bus operation starts when at least two 
bytes of th~ 6-byte prefetch queue are empty. 

The prefetcher normally performs word prefetches 
independent of the byte alignment of the code seg­
ment base in physical memory. 

The prefetcher will perform only a byte code fetch 
operation for control transfers to an instruction be­
ginning on a numerically odd physical address. 

Prefetching stops whenever a control transfer or 
HL T instruction is decoded by the IU and placed into 
the instruction queue. 

4-30 

In real address mode, the prefetcher may fetch up to 
6 bytes beyond the last control transfer or HL T in­
struction in a code segment. 



inlef iAPX 286/10 

In protected mode. the prefetcher will never cause a 
segment overrun exception. The prefetcher stops at 
the last physical memory word of the code segment 
Exception 13 will occur if the program attempts to 
execute beyond the last full instruction in the code 
segment. 

HOLD (SEE NOTE •. ) 

HLDA 

(SEE NOTE 1.) ------------

If the last byte of a code segment appears on an 
even physical memory address, the prefetcher will 
read the next physical byte of memory (perform a 
word code fetch). The value of this byte is ignored 
and any attempt to execute it causes exception 13. 

BUS HOLD 
WRITE CYCLE ACKNOWLEDGE 

.' ~c .2 I .' T,c., I ., T,c .2 I .' ~' ., I ~, ~ .• 2 T 

An Ao (SEE NOTE 2.) 

MIlO, ----.- -------"- - ---\- C=~V~AL~'D~=2t]~~~~~~~~zt2~---------
COO/tNTA \ 

\ 
sHe, LOCK ------------------~ 

1 (SEE NOTE 3.) 

\ VALID lfWfl)»»>t>'»»»»»'lh» ---------
\ 

\ 
D15 Do -------------------------~'_ ______ VA_L_'D _____ :o2t)_--------

NWTC ,'-_____ ....J/ 

DT/R 

DEN ,'-----
L AL~ ______________ __J~'_ _________________ _ 

TS STATUS CYCLE 
TC COMMAND CYCLE 

210253-29 

NOTES: 
1. Status lines are not driven by 80286, yet remain high due to pullup resistors in 82288 and 82289 during HOLD state. 
2, Address, MilO and COD/INTA may start floating during any Tc depending on when internal 80286 bus arbiter de­
cides to release bus to external HOLD, The float starts in 4>2 of T c. 
3. SHE and LOCK may start floating after the end of any T c depending on when internal 80286 bus arbiter decides to 
release bus to external HOLD. The float starts in 4> 1 of T c. 
4. The minimum HOLD to HLDA time is shown. Maximum is one T H longer. 
5. The earliest HOLD time is shown. It will always allow a subsequent memory cycle if pending is shown. 
6. The minimum HOLD to HLDA time is shown. Maximum is a function of the instruction, type of bus cycle and other 

~
aChine state (i.e., Interrupts, Waits, Lock, etc.), 

7., Asynchronous ready allows termination of the cycle. Synchronous ready does not signal ready in this example. Syn­
chronous ready state is ignored after ready is signaled via the asynchronous input. 
---_.----------, 

Figure 29_ Multibus Write Terminated by Asynchronous Ready with Bus Hold 

4-31 



iAPX 286/10 

Processor Extension Transfers 

The processor extension interface uses I/O port ad­
dresses 00F8(H), OOFA(H), and OOFC(H) which are 
part of the I/O port address range reserved by Intel. 
An ESC instruction with Machine Status Word bits 
EM = 0 and TS = 0 will perform 110 bus operations 
to one or more of these I/O port addresses indepen­
dent of the value of 10PL and CPL. 

ESC instructions with memory references enable the 
CPU to accept PEREa inputs for processor exten­
sion operand transfers. The CPU will determine the 
operand starting address and read/write status of 
the instruction. For each operand transfer, two or 
three bus operations are performed, one word trans­
fer with I/O port address OOFA(H) and one or two 
bus operations with memory. Three bus operations 
are required for each word operand aligned on an 
odd byte address. 

Interrupt Acknowledge Sequence 

Figure 30 illustrates an interrupt acknowledge se­
quence performed by the 80286 in response to an 
INTR input. An interrupt acknowledge sequence 
consists of two INTA bus operations. The first allows 
a master 8259A Programmable Interrupt Controller 
(PIC) to determine which if any of its slaves should 
return the interrupt vector. An eight bit vector is read 
on 00-07 of the 80286 during the second INTA bus 
operation to select an interrupt handler routine from 
the interrupt table. 

The Master Cascade Enable (MCE) signal of the 
82288 is used to enable the cascade address driv· 
ers, during INTA bus operations (See Figure 30), 
onto the local address bus for distribution to slave 
interrupt controllers via the system address bus. The 
80286 emits the LOCK signal (active LOW) during T s 
of the first INTA bus operation. A local bus "hold" 
request will not be honored until the end of the sec­
ond INTA bus operation. 

Three idle processor clocks are provided by the 
80286 between INTA bus operations to allow for the 
minimum INTA to INTA time and CAS (cascade ad­
dress) out delay of the 8259A. The, second INTA bus 
operation must always have at least one extra T c 
state added via logic controlling READY. A23-AO 
are in 3-state OFF until after the first Testate of the 
second INTA bus operation. This prevents bus con­
tention between the cascade address drivers and 
CPU address drivers. The extra Testate allows time 
for the 80286 to resume driving the address lines for 
subsequent bus operations. 

Local Bus Usage Priorities 
The 80286 local bus is shared among several inter­
nal units and external HOLD requests. In case of 
simultaneous requests, their relative priorities are: 

(Highest) Any transfers which assert LOCK either 
explicitly (via the LOCK instruction prefix) 
or implicitly (i.e. some segment descriptor 
accesses, interrupt acknowledge se­
quence, or an XCHG with memory). 

The second of the two byte bus opera­
tions required for an odd aligned word op­
erand. 

The second or third cycle of a processor 
extension data transfer. 

Local bus request via HOLD input. 

Processor extension data operand trans­
fer via PEREa input. 

Data transfer performed by EU as part of 
an instruction. 

(Lowest) An instruction prefetch request from BU. 
The EU will inhibit prefetching two proc­
essor clocks in advance of any data 
transfers to minimize waiting by EU for a 
prefetch to finish. 

Halt or Shutdown Cycles 

The 80286 externally indicates halt or shutdown 
conditions as a bus operation. These conditions oc­
cur due to a HL T instruction or multiple protection 
exceptions while ath"1mpting to execute one instruc­
tion. A halt or shutdown bus operation is signalled 
when 81, SO and COD/INTA are LOW and M/IO is 
HIGH. A1 HIGH indicates halt, and A1 LOW indi­
cates shutdown. The 82288 bus controller does not 
issue ALE, nor is READY required to terminate a halt 
or shutdown bus operation. 

During halt or shutdown, the 80286 may service 
PEREa or HOLD requests. A processor extension 
segment overrun exception during shutdown will in­
hibit further service of PEREQ. Either NMI or RESET 
will force the 80286 out of either halt or shutdown. 
An INTR, if interrupts are enabled, or a processor 
extension segment overrun exception will also force 
the 80286 out of halt. 

4-32 



inter iAPX 286/10 

BUS CYCLE TYPE T, j---'-;:S--lrA C;cCLE 2 ~I 
. ,,~1 I ,/02 I (/II \ ,t:2 I ~,1 1 <b2 I 

T, 

CLK 

$1 • So 

M:'IO, COOifkfA 

LOCK 

\\\\'\\. (SEE NOTE 51 >- ______ (S_EE_NO_TE_5.IJ 
An - Ao LL.LLL/" - - - - - - - - - - ..:.. <'-___ O_ON_·T_C_A_"E _____ . '\ ___ _ 

SlIE l!!llJll»- - - - - u n - - -<'--__ O_O_N·_TC_A_"_E ______ >- - -- - - - n - ---c= 
PREVIOUS 

WRITE CYCLE 

(SEE NOTE 1.) 

-------<=>--------------------VECTO~-­
OND7·DQ 

(SEE NOTE 2.) (SEE NOTE 3.) 

READy 'ill\\\\. !I/II!///!II!7 \\\\\\ IIVl//lmrJ/I/IIIIlll!J)l!!I/@/1I \\\\\\ mmz 
NOT READY READY NOT READY READY 

iNTA ,\-__ --J! ',-__ ~r-
MCE ______ -J;____\~ ______________________ ~;____\~ ________ __ 

~I 
ALE ___ ,--" 1\ 
~ \~-------_--------'I \~ ______ __ 

,'-------', OT'R 
, ! 

l DE" I \ ~--------------~I 
210253-31 

NOTES: 
1, Data is ignored. 
2. First INTA cycle should have at least one wait state inserted to meet 8259A minimum INTA pulse width. 
3. Second INTA cycle must have at least one wait state inserted since the CPU will not drive A23-AO, SHE, and LOCK 
until afer the first TC state. The CPU imposed one/clock delay prevents bus contention between cascade address 
buffer being disabled by MCE i and address outputs. Without the wait state, the 80286 address will not be valid for a 
memory cycle started immediately after the second INTA cycle. The 8259A also requires one wait state for 
minimum INTA pulse width. 
4. LOCK is active for the first INTA cycle to prevent the 82289 from releasing the bus between INTA cycles in a multi­
master system. LOCK is also active for the second INTA cycle. 
5, A23-AO exits 3-state OFF during <1>2 of the second Tc in the INTA cycle. 

Figure 30. Interrupt Acknowledge Sequence 

4-33 



iAPX 286/10 

MADe 1---------.---- MEMORY READ 

MWTC 1----- --------. MEMORY WRITE 

lORe f----+-------------.. 10 READ 

lowe 1------1_._-----_ I o WRITE 

INTA 1-----4-++_-----........ INTERRUPT ACKNOWLEDGE 

ALE 1-----1-++.---
MCE ~---++-~~ 
DENr-----

,..----, 
READY H>--+-!-.---l READY 

CLK 1-..... +-1+-..1 CLK 

- - ~ r .... ADVANCED MEMORY 

DTR~ , r 

.... , 
- _ ~ DECODE ~ ..... AND I 0 CHIP SELECTS 

C~~2::0~~~R r -
r - J' I (OPTIONAL) I 

I r ,)i I - " MIO I r 
I '---.=~i"-' 1 I r -

.J I L ____ " 

SYNC READY --+ SRDY RESET H-;-+-!-++-~l _ J I I r 
ENABLE ---+ SRDVEN I ! ' I I 1 

--' ~ 

ASYNC READV ~ ARDY I I RE.SET M 10 I I I 

ENABLE ---+ ARDYEN I I CODLOINCTKA ~ ~ I I 
82284 I I L,. eLK ~ I I 

,..-1--
'-- STa 

±OE 

CLOCK t----- READY I I I 

" 
Vee GENERATOR:: ~~ 51 An AD f-'--, _L..L-L...L.l.-'--'-'_--", O~!~!3 

I L I I ~- SO 1-:"'-' -f-++H-=1 ~~ LATCH l ' --- -- -- - -" I I I : = :~~D aHE I ~L---
2QKII'" I r - - - - - - - j I I I 

, I I r - - - -, 1-,"'- HLOA I 
1 ,,---,---,-,-;---- ERROR I CASo_, 

I I I I·-~ BUSY INTA INT 

l--Ti-t-t'-I----,I,- PE.ACK I '------lINTA 
I I I r- - - - -- - - - ---. PEREa CAP h1 ----__ WR 

I I ' __ -I I I I 
!,IIII\r __ -l 80286 -;-r- RO 

'1'1,"',1 /,;. I -~00-~~'9A 

t-=:> ADDRESS BUS 

'0 I--
cs l---- CHIP SELECT 

k==IAO IR, 
I : : : ; I ! r I r - _J D~P_U Do ~. ""lr------4"SPEN 

I PR~~:~OR : 1- - - - ..-r::::::=::;-
,_LL:_:_t:J _UJ - - '- ---It-_J C~~~:~~~;R 
I EXTENSION ~ ..r - - r------- DE 

~ _____ (~PT~':l) ____ ~ . ___ ~ ___ J ~ 8!~6 ~ DATA 

----..-------,,/1 TR~~~- ~ BUS 

CEIVER 
L---------t T 

210253-32 

Figure 31. Basic iAPX 286 System Configuration 

SYSTEM CONFIGURATIONS (NPX) uses this interface. The iAPX 286/20 has all 
the instructions and data types of an iAPX 86/20 or 
iAPX 88/20. The 80287 NPX can perform numeric 
calculations and data transfers concurrently with 
CPU program execution. Numerics code and data 
have the same integrity as all other information pro­
tected by the iAPX 286 protection mechanism. 

The versatile bus structure of the iAPX 286 micro­
system, with a full complement of support chips, al­
lows flexible configuration of a wide range of sys­
tems. The basic configuration, shown in Figure 31, is 
similar to an iAPX 86 maximum mode system. It in­
cludes the CPU plus an 8259A interrupt controller, 
82284 clock generator, and the 82288 Bus Control­
ler. The iAPX 86 latches (8282 and 8283) and trans­
ceivers (8286 and 8287) may be used in an 
iAPX 286 microsystem. 

As indicated by the dashed lines in Figure 31, the 
ability to add processor extensions is an integral fea­
ture of iAPX 286 microsystems. The processor ex­
tension interface allows external hardware to per­
form special functions and transfer data concurrent 
with CPU execution of other instructions. Full system 
integrity is maintained because the 80286 supervis­
es all data transfers and instruction execution for the 
processor extension. 

The iAPX 286/20 numeric data processor which in­
cludes the 80287 numeric processor extension 

4-34 

The 80286 can overlap chip select decoding and ad­
dress propagation during the data transfer for the 
previous bus operation. This information is latched 
into the 8282/3's by ALE during the middle of a T s 
cycle. The latched chip select and address informa­
tion remains stable during the bus operation while 
the next cycle's address is being decoded and prop­
agated into the system. Decode logic can be imple­
mented with a high speed bipolar PROM. 

The optional decode logic shown in Figure 31 takes 
advantage of the overlap between address and data 
of the 80286 bus cycle to generate advanced mem­
ory and la-select signals. This minimizes system 



iAPX 286/10 

\Icc 

20KI 

910' L ~ SOIG 

SV,,",C RE:AO¥ --_.---1 $RDY 

EN.ABLf: --.-----i SF/OVEN 

AS¥NC READ\' ~ ARO' 

80287 
f.l:;CCESSQ-F1 
EXTENSION 
(OPTIONAL) 

Vee 

,- -' 

~' -
I -

I 
L ______ ~ ___ ___...J 

S~5B REse 

~ MULTIBlJS 
r BUS ARB:TRt.TIOro-. 

ADDRESS BUS 

210253-33 

Figure 32. MUL TIBUS@ System Bus Interface 

performance degradation caused by address propa­
gation and decode delays. In addition to selecting 
memory and 110, the advanced selects may be used 
with configurations supporting local and system bus­
es to enatSle the appropriate bus interface for each 
bus cycle. The COO/INTA and MilO signals are ap­
plied to the decode logic to distinguish between in­
terrupt, 110, code and data bus cycles. 

By adding the 82289 bus arbiter chip the 80286 pro­
vides a MUl TIBUS system bus interface as shown 
in Figure 32. The ALE output of the 82288 for the 

4-35 

MUl TIBUS bus is connected to its CMOl Y input to 
delay the start of commands one system ClK as 
required to meet MUl TIBUS address and write data 
setup times. This arrangement will add at least one 
extra Testate to each bus operation which uses the 
MUlTIBUS. 

A second 82288 bus controller and additional latch­
es and transceivers could be added to the local bus 
of Figure 32. This configuration allows the 80286 to 
support an on-board bus for local memory and pe­
ripherals, and the MUl TIBUS for system bus inter­
facing. 



iAPX 286/10 

DATA 0'5 - DO 

80286 
CPU 

OECODE 

8286 

LOCAL 

01 DO CICO 
16-0 16-0 CBDI 

DRAM 
2118,2184 

8287 

MUL TrBUS SELECT 

XACK 

MULTIBUS 
COMMAND 

(MRDC, MWTC) 

SELECT '-----I 
SELECT 

~ ____ ADDRESS 

210253-34 

Figure 33. iAPX 286 System Configuration with Dual-Ported Memory 

Figure 33 shows the addition of dual ported dynamic 
memory between the MUL TIBUS system bus and 
the iAPX 286 local bus. The dual port interface is 
provided by the 8207 Dual Port DRAM Controller. 
The 8207 runs synchronously with the CPU to maxi­
mize throughput for local memory references. It also 
arbitrates between requests from the local and sys­
tem buses and performs functions such as refresh, 

initialization of RAM, and read/modify/write cycles. 
The 8207 combined with the 8206 Error Checking 
and Correction memory controller provide for single 
bit error correction. The dual-ported memory can be 
combined with a standard MUL TlBUS system bus 
interface to maximize performance and protection in 
multiprocessor system configurations. 

Table 16.80286 Systems Recommended Pull Up Resistor Values 

80286 Pin and Name PullupValue 

4-S1 

5-S0 20 Kn ±10% 

6-PEACK 

53-ERROR 20 Kn ±10% 
54-BUSY 

63-READY 910n ±5% 

121CETM-286 System Design 
Considerations 

Purpose 

Pull SO, S 1, and PEACK inactive during 80286 hold periods 

Pull ERROR and BUSY inactive when 80287 not present 
(or temporarily removed from socket) 

Pull READY inactive within required minimum time (CL = 150 pF, 
IR';; 7mA) 

One of the advantages of using the 80286 is that full 
in-circuit emulation debugging support is provided 
through the 121CE system 80286 probe. To utilize 
this powerful tool it is necessary that the system de­
signer be aware of a few minor parametric and 

functional differences between the 80286 and 121CE 
system 80286 probe. The 121CE data sheet (121CE 
Integrated Instrumentation and In-Circuit Emulation 
System, order # 210469) contains a detailed de­
scription of these design considerations. It is recom­
mended that this document be reviewed by the 
80286 system designer to determine whether or not 
these differences affect his design. 

4-36 



iAPX 286/10 

PACKAGE 
The 80286 is packaged in a 68-pin, leadless JEDEC type A hermetic leadless chip carrier (LCG) and 68-pin pin 
grid array (PGA). Figure 34 illustrates the packages, and Figure 2 shows the pinout. 

SWEDGE PIN 

PIN NO 1 
CORNER 

n. 
(3.10) 

INCHES 
(MIL..LlMETlERS) 210253-35 

I-II-o--!- .055 ('·39Zl 
.045~ ~~ -_ _[ SEATING PLANE 

.150(3.810) .t22~ 
--- -.099(2.489) 

210253-36 

Figure 34. JEDEC Type A Package (Top) and Pin Grid Array Package 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias .... O°C to + 70°C 
Storage Temperature ........... - 65°C to + 150°C 
Voltage on Any Pin with 

Respect to Ground .............. -1.0V to + 7V 
Power Dissipation .......................... 3.3W 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICS (Vee = 5V ± 5%, T A = O°C to + 55°C, or TeASE = O°C to + 85°G) 

6MHz 8MHz 10MHz 
Test 

Symbol Parameter -6 -6 -8 -8 -10 -10 Unit 
Condition Min Max Min Max Min Max 

VIL Input lOW Voltage -.5 .8 -.5 .8 -.5 .8 V 

VIH Input HIGH Voltage 2.0 Vee + .5 2.0 Vee + .5 2.0 Vee + .5 V 

VILe elK Input lOW Voltage -.5 .6 -.5 .6 -.5 .6 V 

VI He elK Input HIGH Voltage 3.8 Vee + .5 3.8 Vee + .5 3.8 Vee + .5 V 

4-37 



iAPX 286/10 

D.C. CHARACTERISTICS (Vcc = 5V ± 5%, T A = oDe to + 55De, or T CASE = oDe to + 85°C) 

6MHz 8MHz 10 MHz 
Symbol Parameter -6 -6 -8 -8 -10 -10 Unit Test Condition 

Min Max Min Max Min Max -----
VOL Output lOW Voltage 0.45 0.45 0.45 V IOl = 2.0 mA 

VOH Output HIGH Voltage 2.4 2.4 2.4 V IOH = ~400 /l-A 

III Input leakage Current ±10 ±10 ±10 p.A OV s:; VIN s:; Vee 

ILeA Input leakage Current ±10 ±10 ±10 p.A OA5 ,;; VIN s:; Vee 

ILeA Input leakage Current ±1 ±1 ±1 mA OV ,;; VIN s:; OA5V 

IlL Input Sustaining Current on 
30 500 30 500 30 500 J.<A VIN = OV BUSY and ERROR Pins 

ILO Output leakage Current ±10 ±10 ±10 p.A 0.45V s:; VOUT ,;; Vee 

ILO Output leakage Current ±1 ±1 ±1 rnA OV s:; VOUT < OA5V 

lee Supply Current (turn on, O°C) 600 600 600 mA Note 1 --
CeLK ClK Input Capacitance 20 20 20 pF Fe = 1 MHz 

CIN Other Input Capacitance 10 10 10 pF Fe = 1 MHz 

Co Input/Output Capacitance 20 20 20 pF Fe = 1 MHz 

A.C. CHARACTERISTICS (Vcc = 5V ± 5%, T A = ODe to + 55'e, or T CASE = o'e to + 85'C) 
Ae timings are referenced to O.8V and 2.0V points of signals as illustrated in datasheet waveforms, unless 
otherwise noted. 

6MHz 8MHz 
10MHz 

Unit I Test Condition I (Preliminary) 
Symbol Parameter 

-6 -6 -8 -8 -10 -10 
Min Max Min Max Min Max 

1 System Clock (ClK) Period 83 250 62 250 50 250 ns 

2 System Clock (ClK) lOW Time 20 225 15 225 12 234 ns at 1.0V 
-~ 

3 System Clock (ClK) HIGH Time 25 230 25 235 16 238 ns at 3.6V 

17 System Clock (ClK) Rise Time 10 10 ~- ~t03.6V 
18 System Clock (ClK) Fall Time 10 10 8 

--;;, 3"00 '1 4 Asynch. Inputs Setup Time 30 20 20 ns 'Note 1 

5 Asynch. Inputs Hold Time 30 20 20 ns Note 1 

6 RESET Setup Time 33 28 23 --~~ -----~ 
7 RESET Hold Time 5 5 5 ns --
8 Read Data Setup Time 20 10 8 ns --
9 Read Data Hold Time 8 8 8 ns ----
10 READY Setup Time 50 38 26 ns -. 
11 READY Hold Time 35 25 25 ns 
12 Status/PEACK Valid Delay 1 55 1 40 - - ns Note 2 Note 3 

12a Status/PEACK Active Delay - - - - 1 28 ns Note 2 Note 3 
---

12b Status/PEACK inactive_Delay - - - - 1 30 ns Note 2 Note 3 
"---c:-

13 Address Valid Delay 1 80 1 60 1 47 ns Note 2 Note 3 

14 Write Data Valid Delay 0 65 0 50 0 40 ns Note 2 Note 3 

15 Address/Status/Data Float Delay 0 80 0 50 0 47 ns Note 2 Note 4 

16 HlDA Valid Delay 0 BO 0 50 0 47 ns Note 2 Note 3 -
19 Address Valid To Status - 38 27 ns Note 3 

Valid Setup Time 
I 

Note 5 No~~ 

NOTES: 
1. Asynchronous inputs are INTR, NMI, HOLD, PEREQ, ERROR, and BUSY. This specification is given only for testing 
purposes, to assure recognition at a specific ClK edge. 
2. Delay from 0.8V on the ClK, to O.BV or 2.0V or float on the output as appropriate for valid or floating condition, 
3. Output load: CL = 100 pF. 
4. Float condition occurs when output current is less than ILO in magnitude. 
5. Delay measured from address either reaching 0.8V or 2.0V (valid) to status going active reaching 2.0V or status going 
inactive reaching 0.8V. 
6. For load capacitance of 10 pF on STATUS/PEACK lines, subtract typically 7 ns for 8 MHz spec, and maximum 7 ns for 
10 MHz spec. 

4-38 



iAPX 286/10 

A.C. CHARACTERISTICS (Continued) 
-'----

NOTE 7: 
AC Test l_oading on Outputs 

CLKINPUT 

NOTE 8: 

DEVICE 
OUTPUT 

4.0V 

AC Drive and Measurement Points-ClK Input 

l 
I 

210253-37 

4.0V 

\ 3

1

' .661V r3.6V 
t 1.0V !,.OV 

___________ ~ ________ J 

CLKINPUT / 
O.45V 

NOTE 9: 

OTHER 
DEVICE 
INPUT 

2.4V 

DEVICE 
OUTPUT 

tSETUP tHOlD 

AC Setup, Hold and Delay Time Measurement-General 

2.0V 

O.BV 

210253-38 

210253-39 

L-_________________________________________________________ __ 

4-39 



inter iAPX 286/10 

A.C. CHARACTERISTICS (Continued) 

82284 Timing Requirements 
r 

82284-10 
82284-6 82284-8 (Preliminary) Units Test Conditions 

Symbol Parameter Min Max Min Max Min Max 

11 SRDY ISRDYEN Setup Time 25 17 15 ns 

12 SRDY ISRDYEN Hold Time 0 0 0 ns 

13 ARDY I ARDYEN Setup Time 5 0 0 ns (Note 1) 

14 ARDY I ARDYEN Hold Time 30 30 30 ns (Note 1) 

19 PCLK Delay 0 45 0 45 0 35 ns CL = 75pF 
IOL = 5 mA 
IOH = -1 mA 

NOTE 1: 
These times are given for testing purposes to assure a predetermined action. 

82288 Timing Requirements 

82288-6 82288-8 
82288-10 

(Preliminary) Units Test Conditions 

Symbol Parameter Min Max Min Max Min Max 

12 CMDL Y Setup Time 25 20 15 ns 

13 CMDL Y Hold Time 1 1 1 ns 

30 Command Delay Command Inactive 5 30 5 25 5 20 CL = 300 pF max 
fromCLK ns IOL = 32 mA max 

29 Command Active 3 40 3 25 3 21 IOH = 5mAmax 

16 ALE Active Delay 3 25 3 20 3 16 ns 

17 ALE Inactive Delay 35 25 19 ns 

19 DT IR Read Active Delay 40 25 23 ns CL = 150 pF 
22 DT IR Read Inactive Delay 5 45 5 35 5 20 ns 

IOL = 16 mA max 
20 DEN Read Active Delay 5 50 5 35 5 21 ns 

IOH = -1 mAmax 
21 DEN Read Inactive Delay 3 40 3 35 3 21 ns 

23 DEN Write Active Delay 35 30 23 ns 

24 DEN Write Inactive Delay 3 35 3 30 3 19 ns 

4-40 



inter iAPX 286/10 

WAVEFORMS 

MAJOR CYCLE TIMING 

BUS CYCLE TYPE 

ClK 

51·50 

A2:s-AO 

~ M 10, COD INTA 

:il 
BHE, lOCK 

READY 

SRDY+SRDYEN 

.. 
'" '" '" ., ARDY+ARDYEN 

PCLK 

I ALE 

CMDLY 

MWTC 

'" "' '" '" "' MRDC 

DTR 

DEN 

NOTE: 

READ CYCLE 
ILLUSTRATED WITH ZERO 
WAIT STATES 

WRITE CYCLE 
ILLUSTRATED WITH ONE 
WAIT STATE 

READ 
(T, OR TS) 

TI TS Te Ts Te Te 

,x~~'~~ ~'"""'~ ~~ ~j; ~ J; U 
-I(~) -'3;- -fi~H-OL _ _ _ 

(~r 

'I< / 

J6~- -59) 
I I .. ,. I 

.. I 
f-il~ .I. '0!~ ~ ..... I I 

~IIIIIIIIIIIIII~ VAliD ADDRESS ~ VAllO ADDRESS ~ WIIM VALID if fs ......, 

-~t1. H3j 
WIIIIIIIIIIIIIIIIIIII14 VALID CONTROL D0'/41 VALID CONTROL 

~ (9)- r- i 
I - 54ii ~ (S) 

~:er- '-.------.. -- ·----l-·-I·---I;""" .. ";;;""'" VALID WRITE DATA ~ 

-if1l- -if1l, 
.:j@r -l @ :-' 

~\\\\\\\\\\\\\\\\\\\\\\\\., ,\.w ~\\\\\'1 ~~ WI/, I'IIIII/' VI////h w 

I 

\.\\\\\\. //llllllll 
- ... -(~ 

I !.:jrf}-
~\\\\\\\\\\\\~ ~\\~ ~\~ WII/, Villi/, 'III/, Will/, 'II/, WIIIIIIII/,v/, 'II/, 0 

-@ I- -131 f-
j@r-

~III/III/' 'II/, 1////////1. VlIII~ VlIIIIIIIIIII~ VI////h J'/Jl ~'\\ ~\'\I,. WIIIIIII~ VI/lllllllih 

~tt t{--L ~ (2~~~ 
I 

~.' V-'-JI 
-0~r ft r ""\ I , .. . 

j(~ r ~r--r?f I @t -j@ . j@ 
~\\\\\\\\\\\\\w H//////II//I. VlIII~ '1/9 ~ H///////////////III.Vllllllllllh 

- .I-@ 
\: -@- -®t: (SEE NOTE 1) 

1 -(~ --
.; 

-@l 
-@t -®l 

iiJt:., - ~1 -
~ \: ~ , -

210253-40 

1. The modified timing is due to the CMDL Y Signal being active. 

4-41 



inter iAPX 286/10 

WAVEFORMS (Continued) 

80286 ASYNCHRONOUS 
INPUT SIGNAL TIMING 

BUS CYCLE TYPE 

NOTES: 

210253-41 

1. PClK indicates which processor cycle phase will occur 
on the next ClK. PClK may not indicate the correct phase 
until the first bus cycle is performed. 
2. These inputs are asynchronous. The setup and hold 
times shown assure recognition for testing purposes. 

EXITING AND ENTERING HOLD 

BUS CYCLE TYPE 

eLK 

Hl.DA ___ +"'''1 

BHE.LOCK 
A;;-- " Ao (SEE NOTE 5.) 

M/jij, ------------

COD/iiifA 
VALID 

80286 RESET INPUT TIMING AND 
SUBSEQUENT PROCESSOR CYCLE PHASE 

eLK 

RESET 
---4U I 

eLK 

RESET 

L-_____________ . __ --'2::..:.1.0253-42 

NOTE: 
When RESET meets the setup time shown, the next ClK 
will start or repeat <1>2 of a processor cycle. 

~@~. (®t. i 

D" -D. ___________________ ~=_~~T:~il (<<c 1:~~gE»» -------------------

210253-43 

NOTES: 
1. These signals may not be driven by the 80286 during the time shown. The worst case in terms of latest float time is 
shown. 
2. The data bus will be driven as shown if the last cycle before TI in the diagram was a write T c· 
3. The 80286 floats its status pins during T H. External 20 KO resistors keep these signals high (see Table 16). 
4. For HOLD request set up to HlDA, refer to Figure 29. 
5. BHE and lOCK are driven at this time but will not become valid until Ts. 
6. The data bus will remain in 3-state OFF II a read cycle is performed. 

4-42 



iAPX 286/10 

WA VEFORMS (Continued) 

180286 P~~~~~:'EAC' TIMING FOR ONE TRANSFER ONLY 

T ts I Te TS 
Vc~ I 1 1 ~ 1 ~ 1 

I CLK,,0 
10 READ IF PRoe. EXT. TO MEMORY MEMORY WRITE IF PRoe. EXT TO MEUORV 

Sl • so 
/

r- MEMORY REAC IF MEMORY TO PRoe. EXT ,/ - I 0 WRITE IF MEMORY TO PROC. EXT 

\ I I I \. I 
I 'I ~~:g=; :g~~:~: ~;~~~'I~XJE~~~:~g~~6~A~:;;~ANSFER 

All 0\0 I : ' -:y::y., : : ~-y i X 
COD LNTA _ ffi-- _~~ORESS OOFA.(H) IF PRl')C. EKT. TO MEMORY r'-RA-.-"-'-R -----

_.1(2) ~-. -__ I GIl f--. I MEMORY ADDRESS IF MEMORY TO PROC. EXT. TRANSFER 

PEACK ---~e;;1- (SEE NOTE 1) ~ : 

~- -----(SEE NOTE 2.1--------.., -:\I9)!"-
! -=~f~I' 

W&\\\W\\\~W;;::\\\\YM~ '-Y f,"''ji,"1"T''j/,TTJ!j),'''1/77"n''''11 /"''ji,77"Z''''/I/,'''JI/77!;;TrI/;"'j;;'171/TrV/''''Z'''1/,77"aTn'/ij.'T7!/,"TT'/I /Tn'i/'77n"TTT1W 

ASSU~!NG WORD-ALIGNED MEMORY OPERAND. IF 000 ALIGNED, 60286 TRANSFERS TO/~OM MEMORY BYTE·AT·A-TIME WITH TWO MEMORY CYCLES. 

~----- .. -------.------
210253-44 

NOTES: 
1. PEACK always goes active during the first bus operation of a processor extension data operand transfer sequence. The 
first bus operation will be either a memory read at operand address or I/O read at port address OOFA(H). 
2. To prevent a second processor extension data operand transfer, the worst case maximum time (Shown above) is: 3 x a 
(i) -12amax. - @)min .. The actual, configuration dependent, maximum time is: 3 x (i) -12amax. - @)min. + A X 2 X (i). 

A is the number of extra T c states added to either the first or second bus operation of the processor extension data operand 
transfer sequence. 

INITIAL 80286 PIN STATE DURING RESET 

NOTES: 

BUS CYC.LE TYPE 

Vc~ ~. ¢;;i ~ 
CLlt \.n.J t\.....J -t..J' 

v,,- 1",1-:- ! I 

RESET 

ii;1".S(j 

M/iQ 

COO/iijfi 

LOCK 

... OA 

Cl ___ 0.' \ (SEE NOTE 1.) 

UNtfiNOWN I 
\\ 

-------.-----+-------+--+-"'-~-~'r----
UNtI,NOWN 

__________ U._ •• _OW_N ___ -1~---'----t---+-_j.---'i\-----

liHKNOWN 

~ 
- @)r--ISE'NOTE31 

»)Niii1iZliliiZli51iiNNiilill»l»'1m:@~-----,"--------

UNKNOWN __ 55 

210253-45 

1. Setup time for RESET l may be violated with the consideration that 4>1 of the processor clock may begin one system 
elK period later. 
2. Setup and hold times for RESET ..t. must be met for proper operation, but RESET ..t. may occur during 4>1 or 4>2. 
3. The data bus is only guaranteed to be in 3-state OFF at the time shown. 

4-43 



inter IAPX 286/10 

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTES BYTEe 

r-r"-r-r,r=T:..r-":""-rT=-.r=T:"':''':'''':'' - - - - - - - 'T - - - - - - - ,. - - - - - - - ""P - - - - - - - ., 

LOW DlSPIDATA : HIGH DISP/DATA: LOW DATA : HIGH DATA : 
L--,---L,oy-ro-'-+..L.. ....... ..J _______ ... _______ ..L _______ .£ _______ "' 

REGISTEA OPERAND/REGISTERS TO USE IN OFFSET CALCULATION 
'---- REGISTER OPERAND/EXTENSION OF OPCODE 

'------ REGISTER MODE/MEMORV MODE WITH DISPLACEMENT LENGTH 
'------- WORD/BYTE OPERATION 

'-------- DIRECTION IS TO REGISTER/DIRECnON IS FROM REGISTER 
'---------- OPERATION (INSTRUCnON) CODE 

A. SHORT OPCODE FORMAT EXAMPLE 

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTES 
71'432107154321071'43210 

I IIIIIIIIIIIIIIIIIIIIIIII--::D:P--~--H~:D:'--~ LONG qPCODE mod rog rim I I ...... ____ .....I. _____ ....L..--I_~I-.--I _______ ~ _______ .. 

B. LONG OPCODE FORMAT EXAMPLE 

210253-46 

Figure 35. 80286 Instruction Format Examples 

80286 INSTRUCTION SET SUMMARY 

Instruction Timing Notes 

The instruction clock counts listed below establish 
the maximum execution rate of the 80286. With no 
delays in bus cycles, the actual clock count of an 
80286 program will average 5% more than the cal­
culated clock count, due to instruction sequences 
which execute faster than they can be fetched from 
memory. 

To calculate elapsed times for instruction se­
quences, multiply the sum of all instruction clock 
counts, as listed in the table below, by the processor 
clock period. An 8 MHz processor clock has a clock 
period of 125 nanoseconds and requires an 80286 
system clock (ClK input) of 16 MHz. 

Instruction Clock Count Assumptions 

1. The instruction has been prefetched, decoded, 
and is ready for execution. Control transfer in­
struction clock counts include all time required to 
fetch, decode, and prepare the next instruction for 
execution. 

2. Bus cycles do not require wait states. 

3. There are no processor extension data transfer or 
local bus HOLD requests. 

4. No exceptions occur during instruction execution. 

Instruction Set Summary Notes 

Addressing displacements selected by the MOD 
field are not shown. If necessary they appear after 
the instruction fields shown. 

Above/below refers to unsigned value 

Greater refers to positive signed value 

less refers to less positive (more negative) signed 

values 

if d = 1 then to register; if d = 0 then from register 

if w = 1 then word instruction; if w = 0 then byte 
instruction 

if s = 0 then 16-bit immediate data form the oper­
and 

if s = 1 then an immediate data byte is sign-ex­
tended to form the 16-bit operand 

x don't care 

z used for string primitives for comparison with 
ZF FLAG 

If two clock counts are given, the smaller refers to a 
register operand and the larger refers to a memory 
operand 

add one clock if offset calculation requires 
summing 3 elements 

n = number of times repeated 

m = number of bytes of code in next instruction 

level (l)-lexical nesting level of the procedure 

4-44 



iAPX 286/10 

The following comments describe possible excep­
tions, side effects, and allowed usage for instruc­
tions in both operating modes of the 80286. 

REAL ADDRESS MODE ONLY 
1. This is a protected mode instruction. Attempted 

execution in real address mode will result in an 
undefined opcode exception (6). 

2. A segment overrun exception (13) will occur if a 
word operand reference at offset FFFF(H) is at­
tempted. 

3. This instruction may be executed in real address 
mode to initialize the CPU for protected mode. 

4. The IOPL and NT fields will remain O. 

5. Processor extension segment overrun interrupt 
(9) will occur if the operand exceeds the seg­
ment limit. 

EITHER MODE 
6. An exception may occur, depending on the value 

of the operand. 

7. LOCK is automatically asserted regardless of the 
presence or absence of the LOCK instruction 
prefix. 

8. LOCK does not remain active between all oper­
and transfers. 

PROTECTED VIRTUAL ADDRESS MODE ONLY 
9. A general protection exception (13) will occur if 

the memory operand cannot be used due to ei­
ther a segment limit or access rights violation. If 
a stack segment limit is violated, a stack seg­
ment overrun exception (12) occurs. 

10. For segment load operations, the CPL, RPL, and 
DPL must agree with privilege rules to avoid an 
exception. The segment must be present to 
avoid a not-present exception (11). if the SS reg­
ister is the destination, and a segment not-pres­
ent violation occurs, a stack exception (12) oc­
curs. 

4-45 

11. All segment descriptor accesses in the GDT or 
LOT made by this instruction will automatically 
assert LOCK to maintain descriptor integrity in 
multiprocessor systems. 

12. JMP, CALL, INT, RET, IRET instructions refer­
ring to another code segment will cause a gener­
al protection exception (13) if any privilege rule is 
violated. 

13. A general protection exception (13) occurs if 
CPL * O. 

14. A general protection exception (13) occurs if 
CPL> IOPL. 

15. The I F field of the flag word is not updated if CPL 
> IOPL. The IOPL field is updated only· if 
CPL = o. 

16. Any violation of privilege rules as applied to the 
selector operand do not cause a protection ex­
ception; rather, the instruction does not return a 
result and the zero flag is cleared. 

17. If the starting address of the memory operand 
violates a segment limit, or an invalid access is 
attempted, a general protection exception (13) 
will occur before the ESC instruction is execut­
ed. A stack segment overrun exception (12) will 
occur if the stack limit is violated by the oper­
and's starting address. If a segment limit is vio­
lated during an attempted data transfer then a 
processor extension segment overrun exception 
(9) occurs. 

18. The destination of an INT, JMP, CALL, RET or 
IRET instruction must be in the defined limit of a 
code segment or a general protection exception 
(13) will occur. 



inter iAPX 286/10 

80286 INSTRUCTION SET SUMMARY. 

CLOCK COUNT COMMENTS 

Real 
Protected 

Real 
Protected 

UNCTION FORMAT Virtual Virtual 
Addre.s 

Address 
Addres. 

Addre.s 
Mode 

Mode 
Mode 

Mode 

DATA TRANSFER 

MOV ~Move: 

Register to Register/Memory I 1 0 0 0 1 0 0 w I mod reg rim I 2,3' 2,3' 2 9 

Register/memory to register ~00101W I mod reg rim I 2,5' 2,5' 2 9 

mmediate to register/memory 11100011W I modOOO rim I data I dataifw = 1 I 2,3' 2,3' 2 9 

mmediate to register 11011 w re~ data I data~d 2 2 

~emory to accumulator ~OOOOW I addr~low I addr-h;:::] 5 5 2 9 

f'\ccumulator to memory 11010001Wl addr-Iow I addr-hi9~ 3 3 2 9 i 

~egister/memory to segment register 110001110 I mod 0 reg rim I 2,5' 17,19' 2 9,10,11 

~e9ment register to register/memory I 10001100 I modO reg rim I 2,3' 2,3' 2 9 

PUSH~Pu.h: 

~emory ~111 I mod 110 rim I 5' 5' 2 9 

~egister IOI0~ 3 3 2 9 

~egment register l!l..~regl1 0 I 3 3 2 9 
,~, <. ~,' >," I 0 1101 0$01 I tlatah"'O ] \j\l'I1I!dla~. tlata 3 3 .2 9 

~plI~:t*Yi!litiJl'· ! 01100.0091 17 17 2 9 

POP~Pop: 

~emory 110001111 ImodOOO r/ml 5' 5" 2 9 

~egister I 01011 reg I 5 5 2 9 

~egment register I 000reg111 I (reg*OI) 5 20 2 9,10,11 

i"j)PA "'Poi> An I 01100001 I 19 19 e 9 

CHG ~ Exhcange: 

Register I memory with register ~OOOOIIW I mod reg r/ml 3,5' 3,5' 2,7 7,9 

Register with accumulator I 10010 reg I 3 3 

N ~ Inpullrom: 

ixed port ~0010W I port I 5 5 14 

Variable port 1111011 Ow I 5 5 14 

pUT ~ Oulpullo: 

ixed port ! 1110011 W I port I 3 3 14 

~ariable port [ 1110111 w] 3 3 14 

~LAT~Translate byte to AL I 11010111 I 5 5 9 

EA ~ Load EA to register ~0001101 I mod reg rim! 3' 3' 

DS ~ Load pOinter to DS I 11000101 I mod reg rim! (mod"'ll) 7' 21' 2 9,10,11 

ES ~ Load pOinter to ES I 11000100 I mod reg rim! (mod-Jot) 7' 21' 2 9,10,11 

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems. 

4-46 



inter iAPX 286/10 

80286 INSTRUCTION SET SUMMARY (Continued) 

CLOCK COUNT COMMENTS 

fUNCTION Real 
Protected Protected 

FORMAT Virtual 
Real 

Addre •• Address 
Virtual 

Mode 
Address 

Mode 
Address 

Mode Mode 

pATA TRANSFER (Continued) 

AHF Load AH with flags [ 10011 1 1 1 I 2 2 

~AHF ~ Store AH into flags L~u 2 2 

PUSHF ~ Push flags [i-;;-;;-;-~~ 3 3 2 9 

POPF ~ Pop flags ~}0J 5 5 2.4 9,15 

~RITHMETIC 

I ~DD~Add: 

~eg/memory with register to either I o 0 a 0 0 0 d w r;;;Od r;~---r~ 2,7' 2,7' 2 9 

mmediate to register/memory I 1 OOOOOsw I modOOO rim! data I data if 5 W "" 01J 3,7' 3,7' 2 9 

mmediate to accumulator 1000001 Ow I data [- dat~ if w~c-1 I 3 3 

~DC ~ Add with carry: 

~eg/memOry with register to either 10001 OOdw I mod reg rim] 2,7* 2,7' 2 9 

~sw I ~Od01 0 rim! 
---

J _ ~ 1 
rnmediate to register/memory data I datalfsw ~ 01 3,7' 3,7' 2 9 

mmediate to accumulator IOOO1010wl data data ifw= 1 I 3 ~I 

Ne = Increment: 

fegister/memory C2::il1111WI modOOD rim] 2,7' 2" 
" 

'I 

~egister ~;] 2 2 

~UB ~ Subtract: 

~eg/memory and register to either I 001010 d w I mod re9 rim I 2,7' 2,7' 2 9 

mmediaie from register/memory 1100000~--;rmodl0l rim I data IdataifsW ~~ 3,7' 3,7' 2 9 

mmediate from accumulator ~110wl data I data if _y!_= ·1 I 3 3 

~BB ~ Subtract with borrow: 

dala_~~~1 I 
~eg/memory and register to either ~0110dW I mod reg rim I 2,7' 2,7' 2 9 

mmediate from register/memory I 100000sw I modOll rim I 3,7' 3,7' 2 9 

mmediate from accumulator I 0OOl110wl data I dataifw=1 I 3 3 

PEC ~ Decrement 

~egister/memory I l111111w Imod001 rlml 2,7' 2,7' 2 9 

~egister [01001 reg I 2 2 

MP = Compare 

Register/memory with register [0011101W ImOdreg rlr.;] 2,6' 2,6' 2 9 

Register with register/memory Io011100W ImOdreg r/ml 2,7' 2,7' 2 9 

mmediate with register/memory 11 OOOOOsw Imod111 rlml data [ dataifsw~ 3,6' 3,6' 2 9 

mmediate with accumulator [OO11110wl data I dataifw=1 J 3 3 

NEG ~ Change sign I 1111011w ImodOl1 rlml 2 7' 2 9 

AAA ~ ASCII adjust for add I 00110111 I 3 3 

DAA ~ Decimal adjust for add ~~ 3 3 

4-47 



iAPX 286/10 

80286 INSTRUCTION SET SUMMARY (Continued) 

Real 
Protected 

Real 
Protected 

FORMAT Virtual Virtual 
Address 

Address 
Addres. 

Address 
Mode Mode 

Mode Mode 

(Continued) 

~ ASCII adjust for subtract ~111111 
= Decimal adjust for subtract 00101111 

I (unsigned): 1111011w Imodl00 r/ml 

13 13 

21 21 

16' 16' 2 
24' 24' 2 

Integer multiply (signed): 1111011w Imodl0l r/ml 
13 13 

21 21 

16' 16' 
24' 24' 

14 14 6 
22 22 

17' 17' 2,6 6,9 

25' 25' 2,6 6,9 

I ~ Integer divide (signed) 1 1 1 1 0 1 1 w 1 mod 1 1 1 r/ml 

17 17 6 
25 25 6 

20' 20' 2,6 6,9 

28' 28' 2,6 6,9 

I'''',M 0., ''''vIII '!djust for multiply ~ 1 00 0000 1 0 1 0 16 16 

~ ASCII adjust for divide 1 1 1 0 1 01 01 00001 01 0 14 14 

110011000 2 

ICYVD~ C:on',ertword to double word I 1 001 1 001 

Shllft/Roltate Instructions: 

2,7' 2,7' 

5+n,8+n" 5+n,8+n'" 

TIT Instruction 

000 RDL 

001 RDR 

010 RCL 
011 RCR 

100 SHL/SAL 

101 SHR 

111 SAR 

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems. 

4-48 



iAPX 286/10 

80286 INSTRUCTION SET SUMMARY (Continued) 

RITHMETIC (Continued) 

[
ND~And: 

eg/memory and register to either 

mmediate to register/memory 

mmediate to accumulator 

EST = And function to flags, no result: 

agister/memory and register 

mmediate data and register/memory 

mmediate data and accumulator 

eg/memory and register to either 

mmediate tc register/memory 

mmediate to accumulator 

OR = Exclusive or: 

eg/memory and register to either 

mmediate to register/memory 

mmediate to accumulator 

~OT = Invert re9,ister / memory 

TRING MANIPULATION: 

OVS~ Move byte/word 

~MPS ~ Compare byte/word 

rCAS ~ Scan byte/word 

LODS~ Load byte/wd to Al/AX 

FORMAT 

001000dw I mOdreg~ 
10ooooowimOdl00r/mi data TdatalfW-l 

~O lOw I data I dataifw~l I 

~OOOOl o;rmodr~ 
:==~----~------­

dataifw=1] data 

Gi2 0 1 0 O:-'W::..-J.I_--.:d:::a::ta~_-,I-,d::a:::ta:.:if:.:w::-~-,l ] 

L?i.ilol0dw}mOdreg rim I 
1, OODOOOw I modOOl rim I data IdatailW~l I 
~ow I data ~dataifW~ll 

~~~ 
~ooooow I mod110 rim I data dataifw= 0iJ
L.iiiii 0 lOw I data I data if:::}l

~lW I mOdolod

G-2~~~~,J
[;-~'0011WI

~~
r;-;;-~

101 C 101 w i
I01101fUw I
1,0) 10111", I

1111 10011

~OlZ
1010~
1010011W]

1,11,001Z G,0,,1W]

[0110011 tOl0110-;]

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

4-49

CLOCK COUNT COMMENTS

Real
Protected

Real
Protected

Virtual Virtual
Address

Address
Address

Mode
Address

Mode
Mod"

Mode

2,1' 2,1'

3,7' 3,7'

2,6' 2,6'

3,S' 3,6'

2,7' 2,7'

3,7' 3,7' 9

2,7' 2,7'

3,7' 3,7*

2,7' 2,7'

5

8

9

5+ 4n 5+4n

5+9n 5+9n 2,8 8,9

5+8n 5+8n 2,8 8,9

5+4n 5+4n 2,8 8,9

infef iAPX286/10

80286 INSTRUCTION SET SUMMARY (Continued)

CLOCK COUNT COMMENTS

Real
Protected

Real
Protected

FUNCTION FORMAT Virtual Virtual
Address Address

Mode
Address

Mode
Address

Mode Mode

CONTROL TRANSFER

FALL =CaU:

Direct within segment ~t01000 I disp-Iow I disp-high I 7+m 7+m 2 18

Register! memory I 11111111 I mod a 1 a rIm I 7 +m, 11 +m* 7+m, 11 +m"" 2,8 8,9,18
indirect within segment

Direct intersegment 1 100 110 1 a I segment offset I 13+m 26+m 2 11,12,18

Protected Mode Only (Olrect intersegment): 1 segment selector I
Via call gate to same privilege level 41+m 8,11,12,18
Via call gate to different privilege level, no parameters 82tm 8,11,12,18
Via call gate to different privilege level, x parameters 86 +4x+m 8,11,12,18
ViaTSS 177+m 8,11,12,18

Via task gate 182+m 8,11,12,18

Indirect intersegment 111111111 I mod011 r/ml (mod*ll) 16+m 29+m'" 2 8,9,11,12,18

Protected Mode Only (Indirect intersegment):
Via call gate to same privilege level 44+m* 8,9,11,12,18

Via call gate to different privilege level, no parameters 83 +m'" 8,9,11,12,18
Via call gate to different privilege level, x parameters 90+4x +m" 8,9,11,12,18
ViaTSS 180+m" 8,9,11,12,18

Via task gate 185+m* 8,9,11,12,18
JMP~ Unconditional jump:

Short/long 1 11101011 I disp-Iow I 7+m 7+m 18

Direct within segment I 1110100 1 I disp-Iow I disp-high I 7+m 7+ m 18

Register/memory indirect within segment I 11111111 Imod100 r/ml 7 +m, 11 +m" 7+m, 11 +m* 2 9,18

Direct intersegment I 11101010 I segment offset I 11+m 23+m 11,12,18

Protected Mode Only (Direct Intersegment): I segment selector I
Via call gate to same privilege level 38+m 8,11,12,18
ViaTSS 175+m 8,11,12,18
Via task gate 180+m 8,11,12,18

Indirect intersegment 1 11111111 I mod 1 01 r/ml (mod*11) 15+m" 26+m* 2 8,9,11,12,18

Protected Mode Only (Indirect Intersegment):

Via call gate to same privilege level 41 +m" 8,9,11,12,18
ViaTSS 178+m* 8,9,11,12,18
Via task gate 183+m* 8,9,11,12,18

RET ~ Return from CALL:

Within segment I 11000 a 11 I 11+m 11+m 2 8,9,18

Within seg adding immed to SP I 11000010 I data-low I data-high I 11+m 11+m 2 8,9,18

intersegment 1 110 a 10 11 I 15+m 25+m 2 8,9,11,12,18

I:ntersegment adding immediate to SP I 1100 10 1 a I data-low I data-high I 15+m 2 8,9,11,12,18

Protected Mode Only (RET):
To different privilege level 55+m 9,11,12,18

4-50

iAPX 286/10

80286 INSTRUCTION SET SUMMARY (Continued)

FUNCTION FORMAT

CONTROL TRANSFER (Continued)

JE/JZ= Jump on equal zero I 01110100 I disp I
JL/JNGE~Jump on less/not greater or equal I 01111100 I disp I
JLE/JNG ~ Jump on less or equal/not greater I 01111110 I disp I
JB/JNAE~Jump on below/not above or equal I 01110010 disp I
JBE/JNA~Jump on below or equal/not above [01110110 disp I
JP/JPE ~ Jump on parity/parity even 01111010 disp I
JO = Jump on overflow 01110000 disp I
JS= Jump on sign 01111000 disp I
JNE/JNZ = Jump on not equal/not zero 01110101 disp I
JNL/JGE =Jump on not less/greater or equal 01111101 disp I
JNLE/JG=Jump on not less or equal/greater 01111111 I disp

JNB/JAE~Jump on not below/above or equal I 01110011 I disp

JNBE/JA~ Jump on not below or equallabove I 01110111 disp

JNP/JPO~Jump on not par/par odd I 01111011 disp

JNO ~ Jump on not overflow I 01110001 disp

JNS = Jump on not sign [01111001 disp

LOOP ~ Loop CX times I 11100010 disp I
LOOPZ/LOOPE = Loop while zero/equal [11100001 disp I

I I I

INT ~ Interrupt:

Type specified 11001101 type

Type 3 11001100

INTO = Interrupt on overflow 11001110

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

4-51

CLOCK COUNT

Real
Addre ••

Mode

7+mor3

7+mor3

7+mor3

7+mor3

7+mor3

7+ m or 3

7 +mor3

7+ mor3

7+mor3

7+mor3

'l+mor3

7+mor3

7+mor3

7+m or3

7+mor3

7 +m or3

8 +mor4

B+mor4

23+m

23+m

24 +mor3
(3 ilno

interrupt)

Protected

Virtual
Addre.s

Mode

7+mor3

7+mor3

7+mor3

7+mor3

7+mor3

7+mor3

7+mor3

7+mor3

7+mor3

7+mor3

7+mor3

7+mor3

7+mor3

7+mor3

7+mor3

7+mor3

8+mor4

8+mor4

(3ilno
interrupt)

COMMENTS

Real
Protected

Virtual
Addre ••

Addre ••
Mode

Mode

18

18

18

18

18

18

18

18

18

18

18

18

18

18

18

18

18

18

2,7,8

2,7,8

2,6,8

intJ iAPX286/10

80286 INSTRUCTION SET SUMMARY (Continued)

Real
Protected

Real
Protected

Address
Virtual

Address
Virtual

Address Address
Mode

Mode
Mode

Mode

FORMAT

40+ m 7,8,11,12,18
78+ m 7,8,11,12,18
167+m 7,8,11,12,18

111001111 I 17+m 31+ m 2,4 8,9,11,12,15,18

55+m 8,9,11,12,15,18

11111000 2

carry 11110101 2

11111001 2

direction 11111100 2

11111101 2

11111010 14

11111011 2 14

11110100 2 13

10011011 3

0 14

11011 TTT I mod LLL rim I 9-20' 9-20' 5,8 8,17

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

4-52

iAPX 286/10

80286 INSTRUCTION SET SUMMARY (Continued)

FORMAT

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

4-53

Real

Addre ••

Mode

Protected

Virtual

Addre ••

Real

Address

Mode

Protected

Virtual
Addre ••

iAPX 286/10

Footnotes

The Effective Address (EA) of the memory operand
is computed according to the mod and rim fields:

if mod = 11 then rim is treated as a REG field
if mod = 00 then OISP = 0', disp-Iow and disp-high
are absent
if mod = 01 then DISP = disp-Iow sign-extended to
16 bits, disp-high is absent
if mod = 10 then OISP = disp-high: disp-Iow

if rim = 000 then EA = (BX) + (SI) + DISP
if rim = 001 then EA = (8X) + (01) + OISP
if rim = 010 then EA = (BP) + (SI) + OISP
if rIm = 011 then EA = (BP) + (01) + OISP
if rim = 100 then EA = (SI) + OISP
if rIm =0 101 then EA = (01) + OISP
if rim = 110 then EA = (BP) + OISP'
if rim = 111 then EA = (BX) + OISP

DISP follows 2nd byte of instruction (before data if
required)
'except if mod = 00 and rim = 110 then EQ = disp-high: disp-Iow.

SEGMENT OVERRIDE PREFIX

10 0 1 reg 1 1 0 I

reg is assigned according to the following:

Segment
reg Register
00 ES
01 CS
10 SS
11 DC

REG is assigned according to the following table:
16-Bit (w = 1) 8·Blt (w = 0)

000 AX 000 AL
001 CX 001 CL
010 OX 010 OL
011 BX 011 BL
100 5P 100 AH
101 8P 101 CH
101 51 110 OH
111 01 111 BH

The physical addresses of all operands addressed
by the BP register are computed using the S5 seg­
ment register. The physical addresses of the desti­
nation operands of the string primitive operations
(those addressed by the 01 register) are computed
using the E5 segment, which may not be overridden.

4-54

inter

PC BOARD PATTERN

~ ;-'IN NO 1

~l;l;l;~l;l;l;l;-:;;-n
f.:-': ~~~E~;rATION /l1 FRONT

.. PIN CLR HOLE.,.r;1 41
DEVICE PADS ~ FORI .021 DIA ~ 1.00
SHOWHFOR -E.?y+(O.74)-¥ <i-Ii 54
CONTACT !>,. I ~ ",.)
LOCATION ~ I .,.,---;I (2':. TVP

~~~~-A~~T ~\ ~-:««<,?l~ ~ 
..:ill. •• ~ ••• ~........ 1.00 

10.31) ~ tt. L 'i. ---1 h •. 54) TY. 
o .100 ~ .020"3 i2G.3Zi 

(0.51) • $PCS •• 100TOL NON ACCUM TVP 4 PLea 

CONTACT TAIL ,'.54) 

210253-48 

iAPX 286/10 

GUIDE BOSS 
3 Ples 

TEST PROBE POINT 

\ 

J --~t:----~-
-,~- I 

I \. SOCKET ORIENTATION PIN ~~ 
I ' 

ALUMINUM LID 
(HEATSINK PROVISIONS OPTIONAL) 

'i. 

Figure 36. Textool 68 Lead Chip Carrier Socket 

4-55 

INDEX 

~-~FRONT 

\ 
OPEN 

210253-49 



80287 
80-Bit HMOS 

NUMERIC PROCESSOR EXTENSION 
(80287-6,80287-8,80287-10) 

• High Performance aO-Bit Internal 
Architecture 

• Implements Proposed IEEE Floating 
Point Standard 754 

• Expands iAPX 286/10 Datatypes to 
Include 32-, 64-, 80-Bit Floating Point, 
32-, 64-Bit Integers and 18-Digit BCD 
Operands 

• Object Code Compatible with 8087 

• Built-in Exception Handling 

• Operates in Both Real and Protected 
Mode iAPX 286 Systems 

• 8x80-Bit, Individually Addressable, 
Numeric Register Stack 

• Protected Mode Operation Completely 
Conforms to the iAPX 286 Memory 
Management and Protection 
Mechanisms 

• Directly Extends iAPX 286/10 Instruction 
Set to Trigonometric, Logarithmic, 
Exponential and Arithmetic Instructions 
for All Datatypes 

• Compatible with 80386 CPU 

• Available in EXPRESS-Standard 
Temperature Range 

Available in 40 pin-Cerdip package (see 
Packaging Spec: Order #231369) 

The Intel® 80287 is a high performance numerics processor extension that extends the iAPX 286/10 
architecture with floating point, extended integer and BCD data types. The iAPX 186/20 computing system 
(80286 with 80287) fully conforms to the proposed IEEE Floating Point Standard. Using a numerics oriented 
architecture, the 80287 adds over fifty mnemonics to the iAPX 286/20 instruction set, making the iAPX 286/20 
a complete solution for high performance numeric processing. The 80287 is implemented in N-channel, 
depletion load, silicon gate technology (HMOS) and packaged in a 4D-pin cerdip package. The iAPX 286/20 
is object code compatible with the iAPX 86/20 and iAPX 88/20. 

BUS INTERFACE UNIT NUMERIC EXECUTION UNIT 

NEU INSTRUCTION 

OPERANDS 
QUEUE 

FRACTION 
BUS 1+-_-... 

- ~ ..,----:.-:~:::--:---.---.---~:-'.~ 
eo BITS 

Figure 1. 80287 Block Diagram 

_J NOTE: 

Nle 

Nle 

Vee 
Vss 
011 

010 

N.C. 

08 

08 

07 

06 

05 

04 

D3 

eKM 

Nle 

Nle 

PEACK 

REseT 

NPS2 

elK 

CMD1 

Vss 
eMOD 

NPWR 

HPRo 
ERROR 

BUSY 

PER~f..C 
DO 

Dl 

N.C. PINS MUST NOT BE CONNECTED. 

Figure 2. 80287 Pin Configuration 

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit 
Patent Licenses are Implied. January 1986 
© INTEL CORPORATION, 1983. Order Number: 210920-004 

4-56 



80287 

Table 1. 80287 Pin Description 

Symbols Type Name and Function 

ClK I Clock input: this clock provides the basic timing for internal 80287 opera-
tions. Special MaS level inputs are required. The 82284 or 8284A ClK 
outputs are compatible to this input. 

CKM I Clock Mode signal: indicates whether ClK input is to be divided by 3 or 
used directly. A HIGH input will cause ClK to be used directly. This input 
may be connected to Vee or Vss as appropriate. This input must be either 
HIGH or lOW 20 ClK cycles before RESET goes Law. 

-~ 

RESET I System Reset: causes the 80287 to immediately terminate its present ac-
tivity and enter a dormant state. RESET is required to be HIGH for more than 
480287 ClK cycles. For proper initialization the HIGH-lOW transition must 
occur no sooner than 50 ILs after Vee and ClK meet their D.C. and AC. 
specifications. 

--

D15-DO I/O Data: 16-bit bidirectional data bus. Inputs to these pins may be applied 
asynchronous to the 80287 clock. 

-----

BUSY a Busy status: asserted by the 80287 to indicate that it is currently executing 
a command. 

ERROR a Error status: reflects the ES bit of the status word. This signal indicates 
that an unmasked error condition exists. 

-~ 

PEREQ a Processor Extension Data Channel operand transfer request: a HIGH on 
this output indicates that the 80287 is ready to transfer data. PEREQ will be 
disabled upon assertion of PEACK or upon actual data transfer, whichever 
occurs first, if no more transfers are required. 

-----
PEACK I Processor Extension Data Channel operand transfer ACKnowledge: ack-

........ ,.,1""' ................... .A.h,..,+ + ....... , ........... , .... ,...+ ..... ;""'".......,1 In~OC0\ 1-..""''-' h..., .... ..." .... '"" .... ""'r- ..... ;,..,. .... ~ \t\f;n 

'""" th, "'",,' (PEREa) '0 b, withd"wo '0 '"" th'" '" 00 mOC~_j 
transfers required. PEACK may be asynchronous to the 80287 clock. 

NPRD I Numeric Processor Read: Enables transfer of data from the 80287. This 
input may be asynchronous to the 80287 clock. 

NPWR I Numeric Processor Write: Enables transfer of data to the 80287. This input 
may be asynchronous to the 80287 clock. 

NPS1, NPS2 I Numeric Processor Selects: indicate the CPU is performing an ESCAPE instruc-
tion. Concurrent assertion of these signals (i.e., NPS1 is lOW and NPS2 is 
HIGH) enables the 80287 to perform floating point instructions. No data trans-
fers involving the 80287 will occur unless the device is selected via these 
lines. These inputs may be asynchronous to the 80287 clock. 

CMD1, CMDO I Command lines: These, along with select inputs, allow the CPU to direct the 
operation of the 80287. 
These inputs may be asynchronous to the 80287 clock. 

4-57 210920-004 



80287 

Table 1. 80287 Pin Description (cont.) 

Symbols Type Name and Function 

VSS I System ground, both pins must be connected to ground. 

Vee I +5V supply 

FUNCTIONAL DESCRIPTION 

The 80287 Numeric Processor Extension (NPX) 
provides arithmetic instructions for a variety of 
numeric data types in iAPX 286/20 systems. It also 
executes numerous built-in transcendental func­
tions (e.g., tangent and log functions). The 80287 
executes instructions in parallel with a 80286. It 

80286 

15 FILE' o I 79 78 

effectively extends the register and instruction set 
of an iAPX 286/10 system for existing iAPX 286 
data types and adds several new data types as well. 
Figure 3 presents the program visible register 
model of the iAPX 286/20. Essentially, the 80287 
can be treated as an additional resource or an 
extension to the iAPX 286/10 that can be used as a 
single unified system, the iAPX 286/20. 

80287 
STACK: TAG FIELD 

64 63 0 1 

AX I R1 SIGN EXPONENT SIGNIFICANO 
I BX R2 

cx I 
R3 

OX I 
R4 

51 I 
RS 

01 I 
R6 

BP I 
R7 

5P I 
RS 

I 
L __ , 

;.;:.'5:..-____ .;0 I 

Ir--~F~L~:G~S~--~I : 

L ____ -, 
F15~ ____________ ~0 I 

f:I ] i 

15 o 
CONTROL REGISTER 

STATUS REGISTER 

TAG WORD 

_ INSTRUCTION POINTER_ 

- DATA POINTER -

Figure 3. iAPX 286/20 Architecture 

The 80287 has two operating modes similar to the 
two modes of the 80286. When reset, 80287 is in 
the real address mode. It can be placed in the 
protected virtual address mode by executing the 
SETPM ESC instruction. The 80287 cannot be 
switched back to the real address mode except by 
reset. In the real address mode, the iAPX 286/20 is 
completely software compatible with iAPX 86/20, 
88/20. 

4-58 

Once in protected mode, all references to memory 
for numerics data or status information, obey the 
iAPX 286 memory management and protection 
rules giving a fully protected extension of the 
80286 CPU. In the protected mode, iAPX 286/20 
numerics software is also completely compatible 
with iAPX 86/20 and iAPX 88/20. 

210920-004 



80287 

SYSTEM CONFIGURATION 
As a processor extension to an 80286, the 80287 can 
be connected to the CPU as shown in Figure 4A. 
The data channel control signals (PEREO, 
PEACK), the BUSY signal and the NPRD, NPWR 
signals, allow the NPX to receive instructions and 
data from the CPU. When in the protected mode, all 
information received by the NPX is validated by the 
80286 memory management and protection unit. 
Once started, the 80287 can process in parallel 
with and independent of the host CPU. When the 
NPX detects an error or exception, it will indicate 
this to the CPU by asserting the ERROR signal. 

The NPX uses the processor extension request and 
acknowledge pins of the 80286 CPU to implement 
data transfers with memory under the protection 
model of the CPU. The full virtual and physical 
address space of the 80286 is available. Data tor 
the80287 in memory is addressed and represented 
in the same manner as for an 8087. 

The 80287 can operate either directly from the CPU 
clock or with a dedicated clock. For operation with 
the CPU clock (CKM=O), the 80287 works at one­
third the frequency of the system clock (i.e., for an 
8 MHz 80286, the 16 MHz system clock is divided 
down to 5.3 MHz). The 80287 provides a capability 
to internally divide the CPU clock by three to pro­
duce the required internal clock (33% duty cycle). 
To use a higher performance 80287 (8 MHz), an 
8284A clock driver and appropriate crystal may be 
used to directly drive the 80287 with a 1/3 duty 
..... ,..1 ........... I .......... l.r ............. h .... (""'I V ;nl"'l It ,l'i.('I\A ...... 1 \ Tho frdlf"l\lIJinn 

table describes the relationship between ClOCK speed 
and 287 speed as a function of CKM state. 

r I CLKSpeed--
287 Speed I CKM = 0 CKM = 1 

6 MHz 16 MHz 6 MHz 
8 MHz 20 MHz 8 MHz 
10 MHz 25 MHz 10 MHz 

Figure 4B details the 80287 connected as a proces­
sor extension to 80386. 

4-59 

HARDWARE INTERFACE 
Communication of instructions and data operands 
between the 80286 and 80287 is handled by the 
CMDO, CMD1, NPS1, NPS2, NPRD, and NPWR sig­
nals. 1/0 port addresses 00F8H, OOFAH, and OOFCH 
are used by the 80286 for this communication. When 
any of these addresses are used, the NPS1 input 
must be LOW and NPS2 input HIGH. The RJRC" and 
iO'V\iC outputs of the 82288 identify 1/0 space trans­
ters (see Figure 4). CMDO should be connected to 
latched 80286 Ai and CMD1 should be connected to 
latched 80286 A2. 

1/0 ports 00F8H to OOFFH are reserved for the 
80286/80287 interface. To guarantee correct oper­
ation of the 80287. programs must not perform any 
I/O operations to these ports. 

The PEREa, PEACK, B"USY, and ERROR Signals of 
the 80287 are connected to the same-named 80286 
input. The data pins of the 80287 should be directly 
connected to the 80286 data bus. Note that all bus 
drivers connected tothe 80286 local bus must be 
inhibited when the 80286 reads from the 8028·1. The 
use of M/io in the decoder prevents INTA bus 
cycles from disabling the data transceivers. 

PROGRAMMING INTERFACE 

Table 2 lists the seven data types the 80287 sup­
ports and presents the format for each type. These 
values are stored in memory with the least signifi-

grams retrieve these values by generating tne 
lowest address. All values should star! at even 
addresses for maximum system performance. 

Internally the BUt:'tl7 hOlds all numbers in the tem­
porary real format. Load instructions automati­
cally convert operands represented in memory as 
16-, 32-, or 64-bit integers, 32- or 64-bit floating 
point number or 18-digit packed BCD numbers 
into temporary real format. Store instructions per­
form the reverse type conversion. 

80287 computations use the processor's register 
stack. These eight 80-bit registers provide the 
equivalent capacity of 40 16-bit registers. The 
80287 register set can be accessed as a stack, with 
instructions operating on the top one or two stack 
elements, or as a fixed register set, with instruc­
tions operating on explicitly designated registers. 

210920-004 



80287 

Vee 

20Kn Vee Vee 
RESET 

a READY 

82284 ClK f-
20Kn 20Kn 

=c.- 51 r-
So I I ADDRESS 

f-
:Il .. :l ... ., 

~1 N~ mIT 
N~ 

'" "'''' !i:(C CC< "''''''' "'''' A,s-Ao 
RESET 

READY READY 

ClK ClK 

~T 
y 51 51 80286 

So So D,s-Do 
l- t----

M/iO M/iO 

I- ERROR PEREQ 1-1-
82288 ~ BUSY PEACK I-

CODINTA ~ A2A1AO El I 
E2 8205 

DEN 
E3 0, 

-I 
I 

DTiFi - I. 0 0 0 
ALE 

~~o IOWC iOiiC 0 

RESET PEACK I-
~ PEREQ t--
OE 

80287 1 

=I r---DATA 8286 
D,s-DO OR 

Vee ~ 
NPRD NPS2 I-Vee 
NPWR NPSl 

- ERROR, CMDl 

10Kn - BUSY CMDO , ClK CKM , , 
J J ~ F/C ClK 

8284A-l 

Xl EFI~ Vee ---d' ~ 
":" 

I 
30 MHz TANK 
OSCillATOR 

Figure 4A. 80286/80287 System Configuration 

4-60 210920-004 



inter 

82384 
CLOCK 

GENERATOR 

CLK2 RESET 

t t 
CLK2 RESET 

--
BUSY 
--
ERROR 

PEREa 

MilO 

A31 

A2 

BE' 
80386 
CPU 

A 
015-8 

'I 

READY 
- -
ADS, MilO 

OIC, W/R 

80287 

Vee 

10K 

~ 

~ -

74F373 
LATCH 

.. 
J\, V1 ~ 

74F245 

V XCVRS 

0 V 

.. 
-\ LOCAL lOP 

BUS -
j CONTROLLER lOW 
I' 

I 30 MHz ~ OSCILLATOR 

FIC EFI~ 
8284A-l 

Xl CLOCK 

, y , '.J 
I 

RESET CLK 
--
BUSY CKM 
---
ERROR 

PEREa 

NPSl 

NPS2 

CMOl 

CMOS 
80287 

NUMERIC 
COPROCESSOR 

015-8 PEACK 

HPRO 

NPWR 

Vee 

1 
~ TIE LO , W FOR 0IVIDE-BY-3 TTL CLK 

H FOR NO-DIVIDE MOS CLK tTIEHIG 

Veo 

. ':'-'- -.. _. ----. _ .... - --:::r.- -, ........... ,.,.. ww •• ~. _ ........ '. 'WI"""~'Y _ .,_ 

4-61 210920-004 



80287 

Table 2. 80287 Datatype Representation in Memory 

Most Significant Byte HIGHEST ADDRESSED BYTE 
Data 

Range Precision 

01 7 01 7 01 7 01 7 01 7 01 7 01 7 01 7 01 7 01 Formats 7 

Word Integer 104 16 Bits I (TWOS COMPLEMENT) 

15 0 

Short Integer 109 32 Bits I (TWO'S COMPLEMENT) 
31 0 

Long Integer 1019 64 Bits I (TWO'S COMPLEMENT) 

63 0 

MAGNITUDE 
Packed BCD 1018 18 Digits s\ x I d 17 d\u dIS d 1cl do d'2 d 11 d\U dg dB d) d, d, d., d j d, d, 

79 72 

Short Real 10±38 24 Bits .1 BIASED I S EXPONENT SIGNIFICAND I 
31 23'- I, 0 

Long Real 10±308 53 Bits sl BIASED 
\ 

SIGNIFICAND I EXPONENT 
63 52"- 0 I, 

Temporary Real 10±4932 64 Bits sl BIASED 
EXPONENT 

NOTES: 
(1) S = Sign bit (0 = positive, 1 = negative) 
(2) dn = Decimal digit (two per byte) 

79 

(3) X = Bits have no significance; 8087 ignores when load­
ing, zeros when storing. 

(4) • = Position of implicit binary point 
(5) I = Integer bit of significand; stored in temporary real, 

implicit in short and long real 

Table 6 lists the 80287's instructions by class. No 
special programming tools are necessary to use 
the 80287 since all new instructions and data types 
are directly supported by the iAPX 286 assembler 

4-62 

~ SIGNIFICAND 

64 63' 

(6) Exponent Bias (normalized values): 
Short Real: 127 (7FH) 
Long Real: 1023 (3FFH) 
Temporary Real: 16383 (3FFFH) 

(7) Packed BCD: (-1)s(D17 ... 00) 

(8) Real: (_1)s(2E-BIAS)(Fo Fl"') 

and appropriate high level languages. All iAPX 
86/88 development tools which support the 8087 
can also be used to develop software for the iAPX 
286/20 in real address mode. 

210920-004 

d, I 
0 

J 
0 



80287 

SOFTWARE INTERFACE 
The iAPX 286/20 is programmed as a single pro­
cessor. All communication between the 80286 and 
the 80287 is transparent to software. The CPU au­
tomatically controls the 80287 whenever a numeric 
instruction is executed. All memory addressing 
modes, physical memory, and virtual memory of 
the CPU are available for use by the NPX. 

Since the NPX operates in parallel with the CPU, 
any errors detected by the NPX may be reported 
after the CPU has executed the ESCAPE instruc­
tion which caused it. To allow identification of the 
failing numeric instruction, the NPX contains two 
pointer registers which identify the address of the 
failing numeric instruction and the numeric 
memory operand if appropriate for the instruction 
encountering this error. 

INTERRUPT DESCRIPTION 

Several interrupts of the iAPX 286 are used to 
report exceptional conditions while executing nu­
meric programs in either real or protected mode. 
The interrupts and their functions are shown in 
Table 3. 

4-63 

PROCESSOR ARCHITECTURE 
As shown in Figure 1, the NPX is internally divided 
into two processing elements, the bus interface 
unit (BIU) and the numeric execution unit (NEU). 
The NEU executes all numeric instructions, while 
the BIU receives and decodes instructions, re­
quests operand transfers to and from memory and 
executes processor control instructions. The two 
units are able to operate independently of one 
another allowing the BIU to maintain asynchro­
nous communication with the CPU while the NEU 
is busy processing a numeric instruction. 

BUS INTERFACE UNIT 
The BIU decodes the ESC instruction executed by the 
CPU. If the ESC code defines a math instruction, the 
BIU transmits the formatted instruction to the NEU. If 
the ESC code defines an administrative instruction, 
the BIU executes it independently of the NEU. The 
parallel operation of the NPX with the CPU is normally 
transparant to the user. The BIU generates the BUSY 
and ERROR signals for 80826/80287 processor syn­
chronization and error notification, respectively. 

The 80287 executes a single numeric instruction at 
a time. When executing most ESC instructions, the 

210920-004 



80287 

Table 3. 80286 Interrupt Vectors Reserved for NPX 

Interrupt Number Interrupt Function 
-----------------------------------------4 

7 An ESC instruction was encountered when EM or TS of the 80286 MSW was set. 
EM=1 indicates that software emUlation of the instruction is required. When TS is 
set, either an ESC or WAIT instruction will cause interrupt 7. This indicates that the 
current NPX context may not belong to the current task. 

9 The second or subsequent words of a numeric operand in memory exceeded a 
segment's limit. This interrupt occurs after executing an ESC instruction. The saved 
return address will not point at the numeric instruction causing this interrupt. After 
processing the addressing error, the iAPX 286 program can be restarted at the 
return address with IRET The address of the failing numeric instruction and 
numeric operand are saved in the 80287. An interrupt handler for this interrupt must 
execute FNINIT before any other ESC or WAIT instruction. 

------------~---------
13 The starting address of a numeric operand is not in the segment's limit. The return 

address will point at the ESC instruction, including prefixes, causing this error. The 
80287 has not executed this instruction. The instruction and data address in 80287 
refer to a previous, correctly executed, instruction. 

-4----------------------------------.------------------.---------
16 The previous numeric instruction caused an unmasked nume.ric error. The address 

of the faulty numeric instruction or numeric data operand is stored in the 80287. 
Only ESC or WAIT instructions can cause this interrupt. The 80286 return address 

IWili point a. t a WAIT or ESC instruction, including prefixes, which may be restarted 
after clearing the error condition in the NPX. 

80286 tests the BOSY pin and waits until the 80287 
indicates that it is not busy before initiating the com­
mand. Once initiated, the 80286 continues program 
execution while the 80287 executes the ESC instruc­
tion. In iAPX 86/20 systems, this synchronization is 
achieved by placing a WAIT instruction before an ESC 
instruction. For most ESC instructions, the iAPX 286/20 
does not require a WAIT instruction before the ESC 
opcode. However, the iAPX 286/20 will operate cor­
rectly with these WAIT instructions. In all cases, a WAIT 
or ESC instruction should be inserted after any 80287 
store to memory (except FSTSW and FSTCW) or load 
from memory (except FLDENV or FRSTOR) before the 
80286 reads or changes the value to be sure the 
numeric value has already been written or read by 
the NPX. 

Data transfers between memory and the 80287, 
when needed, are controlled by the PEREO 
PEACK, NPRD, NPWR, NPS1, NPS2 signals. The 
80286 does the actual data transfer with memory 
through its processor extension data channel. 
Numeric data transfers with memory performed by 
the 80286 use the same timing as any other bus 

4-64 

cycle. Control signals for the 80287 are generated 
by the 80826 as shown in Figure 4, and meet the 
timing requirements shown in the AC require­
ments section. 

NUMERIC EXECUTION UNIT 
The NEU executes all instructions that involve the 
register stack; these include arithmetic, logicai, tran­
scendental, constant and data transfer instructions. 
The data path in the NEU is 84 bits wide (68 signifi­
cand bits, 15 exponent bits and a sign bit) which 
allows internal operand transfers to be performed at 
very high speeds. 

When the NEU be~xecuting an instruction, it 
activates the BIU BUSY signal. This signal is used 
in conjunction with the CPU WAIT instruction or 
automatically with most of the ESC instructions to 
synchronize both processors. 

REGISTER SET 
The 80287 register set is shown in Figure 5. Each of 
the eight data registers in the 8087's register stack 

210920-004 



inter 80287 

TAG FIELD DATA FIELD 

64 63 79 78 0 1 0 

~:::S=IG~N::'~-=-~E:::x3p_o~~N~E='N::T::.::";::::_~::::~_S=I_G:::-':"'N:':"':"'I~F_I:::C_:A_N:':".:...D;:'"_-___ -_-_-_--;' 

15 

CONTROL REGISTER 

STATUS REGISTER 
TAG WORD 

I- INSTRUCTION POINTER -

~. 

~ DATA POINTER -

Figure 5. 80287 Register Set 

is 80 bits wide and is divided into "fields" corre­
sponding to the NPX's temporary real data type. 

At a given point in time the TOP field in the status 
word identifies the current top··of-stack register. A 
"push" operation decrements TOP by 1 and loads a 

stores the value from the current top register and 
then increments TOP by 1. Like 80286 stacks in 
memory, the 80287 register stack grows "down" 
toward lower-addressed registers 

Instructions may address the data registers either 
implicitly or explicitly. Many instructions operate on 
the register at the TOP of the stack. Th!lse instructions 
implicitly address the register pointed by the TOP. 
Other instructions allow the programmer to explicitly 
specify the register which is to be used. This explicit 
register addressing is also "top-relative." 

STATUS WORD 
The 16-bit status word (in the status register) 
shown in Figure 6 reflects the overall state of the 
80287. It may be read and inspected by CPU code. 
The busy bit (bit 15) indicates whether the NEU is 
executing an instruction (8 = 1) or is idle (8 = 0). 

4-65 

The instructions FSTSW, FSTSW AX, FSTENV, and 
FSAVE which store the status word are executed 
exclusively by the BIU and do not set the busy bit 
themselves or require the Busy bit be cleared in 
order to be executed. 

,- -""' .... ' "-,,,,-,,,~, '-" ............ ~.'"''' .. ~'\J .... "" .......... \"-"'li '"-'31 I ... ,v 

similar to the flags in a CPU: instructions that per­
form arithmetic operations update these bits to reflect 
the outcome of NPX operations. The effect of these 
instructions 01"' the condition code is summarized in 
Tables 4a and 4b. 

Bits 14-12 of the status word point to the 80287 regis­
ter that is the current top-ai-stack (TOP) as described 
above. Figure 6 shows the six error flags in bits 5-0 of 
the status word. Bits 5-0 are set to indicate that the 
NEU has detected an exception while executing an 
instruction. The section on exception handling explains 
how they are set and used. 

Bit 7 is the error summary status bit. This bit is set if 
any unmasked exception bit is set and cleared other­
wise. If this bit is set, the ERROR signal is asserted. 

210920-004 



80287 

15 

I B I c3 1 TOP I Cd c, I Co I ES I x I PE I UE 10E I ZE I DE liE I 

I I EXCE PTION FLAGS (1 - EXCEPTION HAS OCCURRED) 

INVALID OPERATION' 

DENORMALIZED OPERAND' 

ZERO DIVIDE' 

OVERFLOW' 

UNDERFLOW' 

PRECISION' 

(RESE RVED) 

ERRO R SUMMARY STATUS(" 

ITION CODE'2I 'COND 

TOP 

NEU 

OF STACK POINTER(3( 

BUSY 

:"ES IS SET IF ANY UNMASKED EXCEPTION BIT IS SET, CLEARED OTHERWISE. 
(2I SEE TABLE 5 FOR CONDITION CODE INTERPRETATION. 
3ITOP VALUES 

000 2. Register 0 is Top of Stack 
001 ~ Register 1 is Top of Stack . 
111 ~ Register 7 is Top of Stack 

*For definitions, see the section on exception handling 

Figure 6. 80287 Status Word 

TA~ WORD 

The tag word marks the content of each register as 
shown in Figure 7. The principal function of the tag 
word is to optimize the NPX's performance, The eight 
two-bit tags in the tag word can be used, however, to 
interpret the contents of 80287 registers. 

INSTRUCTION AND DATA POINTERS 

The instruction and data pointers (See Figures 8a 
and 8b) are provided for user-written error hand­
lers. Whenever the 80287 executes a new instruc­
tion, the BIU saves the instruction address, the 
operand address (if present) and the instruction 
opcode. 80287 instructions can store this data into 
memory. 

The instruction and data pointers appear in one of 
two formats depending on the operating mode of 
the 80287. In real mode, these values are the 20-bit 
physical address and 11-bit opcode formatted like 
the 8087. In protected mode, these values are the 
32-bit virtual addresses used by the program 

4-66 

which executed an ESC instruction. The same 
FLDENV/FSTENV/FSAVE/FRSTOR instructions as 
those of the 8087 are used to transfer these values 
between the 80287 registers and memory. 

The saved instruction address in the 80287 will 
point at any prefixes which preceded the instruc­
tion. This is different than in the 8087 which only 
pointed at the ESCAPE instruction opcode. 

CONTROL WORD 

The NPX provides several processing options 
which are selected by loading a word from memory 
into the control word. Figure 9 shows the format 
and encoding of fields in the control word. 

The low order byte of this control word configures 
the 80287 error and exception masking. Bits 5-0 of 
the control word contain individual masks for each 
of the six exceptions that the 80287 recognizes. 
The high order byte of the control word configures 
the 80287 operating mode including precision, 

210920-004 



80287 

Table 4a. Condition Code Interpretation 

Instruction 
C3 C2 Type 

Compare, Test 0 0 
0 0 
1 0 
1 1 

Remainder 01 0 

U 1 
1-------. 

Examine 0 0 
0 0 
0 0 
0 0 
0 1 
0 1 
0 1 
0 1 
1 0 
1 0 
1 0 
1 0 
1 1 
1 1 
1 1 
1 1 

NnTI=<:· 

I. ,:,1 = tOP U1 S(dCK 

2. X = value is not affected by instruction 
3. U = value is undefined following instruction 
4. Qn = Quotient bit n 

Table 4b. Condition Code Interpretation after 

FPREM Instruction As a Function of 

Dividend Value 

Dividend Range 

Dividend < 2 * Modulus 
Dividend < 4 • Modulus 
Dividend ~ 4 * Modulus 

NOTE: 

C1 

X 
X 
X 
X 

00 

U 

0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

1. Previous value a! indicated bit, not affected by FPREM 
instruction execution. 

4-67 

Co Interpretation 

r-- --
0 ST> Source or 0 (FTST) 
1 ST" Source or 0 (FTST) 
0 ST == Source or 0 (FTST) 
1 ST is not comparable 

--

02 Complete reduction with 
three low bits of quotient 
(See Table 5b) 

U Incomplete Reduction 
._-- r----- ----
0 Valid, positive unnormalized 
1 Invalid, positive, exponent ==0 
0 Valid, negative, unnormalized 
1 Invalid, negative, exponent =0 
0 Valid, positive, normalized 
1 Infinity, positive 
0 Valid, negative, normalized 

I 

I 1 Infinity, negative 
0 Zero, positive 
1 Empty 
0 Zero, negative I 
1 Empty I 

Invalid, positive, exponent = 0 I 0 
1 

Empty _J 0 Invalid, negative, exponent = 0 
1 

I 
Empty 

rounding, and infinity control. The precision con­
trol bits (bits 9-8) can be used to set the 80287 
internal operating precision at less than the 
default of temporary real (80-bit) precision. This 
can be useful in providing compatibility with the 
early generation arithmetic processors of smaller 
preCision than the 80287. The rounding control 
bits (bits 11-10) provide for directed rounding and 
true chop as well as the unbiased round to nearest 
even mode specified in the IEEE standard. Control 
over closure of the number space at infinity is also 
provided (either affine closure: ± "', or projective 
closure: x, is treated as unsigned, may be 
specified). 

210920-004 



80287 

NOTE: The index i of tag (i) is D.Q! top-relative. A program 
typically uses the "top" field of Status Word to deter­
mine which tag (i) field refers to logical top of stack. 

TAG VALUES: 
00 ~ VALID 
01 ~ ZERO 
10 ~ INVALID or INFINITY 
11 ~ EMPTY 

Figure 7. 80287 Tag Word 

MEMORY OFFSET 

15 

CONTROL WORD +0 

STATUS WORD +2 

TAG WORD +4 

IP OFFSET +6 

CS SELECTOR +8 

DATA OPERAND OFFSET +10 

DATA OPERAND SELECTOR +12 

Figure 8a. Protected Mode 80287 Instruction and Data Pointer Image in Memory 

EXCEPTION HANDLING 

The 80287 detects six different exception conditions 
that can occur during instruction execution. Any or 
all exceptions will cause the assertion of external 
ER11011 signal and ES bit of the Status Word if the 
appropriate exception masks are not set. 

The exceptions that the 80287 detects and the 'default' 
procedures that will be carried out if the exception is 
masked, are as follows: 

Invalid Operation: Stack overflow, stack underflow, 
indeterminate form (0/0, 00, -00, etc) or the use of a 
Non-Number (NAN) as an operand. An exponent value 
of all ones and non-zero significand is reserved to 
identify NANs. If this exception is masked, the 80287 
default response is to generate a specific NAN called 

INDEFINITE, or to propogate already existing NANs 
as the calculation result. 

Overflow: The result is too large in magnitude to 
fit the specified format. The 80287 will generate an 
encoding for infinity if this exception is masked. 

Zero Divisor: The divisor is zero while the divi­
dend is a non-infinite, non-zero number. Again, the 
80287 will generate an encoding for infinity if this 
exception is masked. 

4-68 

Underflow: The result is non-zero but too small in 
magnitude to fit in the specified format. If this 
exception is masked the 82087 will denormalize 
(shift right) the fraction until the exponent is in 
range. The process is called gradual underflow. 

210920-004 



80287 

15 

CONTROL WORD 

STATUS WORD 

TAG WORD 

INSTRUCTION POINTER (15-0) 

INSTRUCTION)I I INSTRUCTION 
POINTER (19-16) 0 OPCODE (10-0) 

DATA POINTER (15-0) 

DATA POINTER I 
(19-16) 0 

15 12 11 

o 

o 

MEMORY 
OFFSET 

+0 

+4 

+6 

+8 

+10 

+12 

Figure 8b. Real Mode 80287 Instruction and Data Pointer Image in Memory 

16 o 
x x x I I C I R C 

III I II " I I I I I I I I 

11(PRECISION CONTROL 
00 ~ 24 BITS (SHORT REAL) 
01 = RESERVED 
10 = 53 BITS (LONG REAL) 
11 = 64 BITS (TEMP REAL) 

III ,-----I I 

"(ROUNDING CONTROL 
00 -, ROUND TO NEAREST OR EVEN 
01 - ROUND DOWN (TOWARD x) 
10 - ROUND UP (TOWARD I x) 
11 ~ CHOP (TRUNCATE TOWARD ZERO) 

EXCEPTION MASKS (1 ~EXCEPTION IS MASKED) 

DENORMALIZED OPERAND 

ZERO DIVIDE 

OVERFLOW 

UNDERFLOW 
PRECISION 

(RESERVED) 

(RESERVED) 

PRECISION CONTROL 111 

ROUNDING CONTROLI2( 

INFINITY CONTROL (0 ~ PROJECTIVE, 1 ~ AFFINE) 

(RESERVED) 

Figure 9. 80287 Control Word 

4-69 210920-004 



80287 

Denormalized Operand: At least one of the 
operands is denormalized; it has the smallest ex­
ponent but a non-zerosignificand. Normal pro­
cessing continues if this exception is masked off. 

Inexact Result: The true result is not exactly repre­
sentable in the specified format, the result is rounded 
according to the rounding mode, and this flag is set. 
If this exception is masked, processing will simply 
continue. 

If the error is not masked, the corresponding error 
bit and the error status bit (ES) in the control word 
will be set, and the ERROR output signal will be 
asserted. If the CPU attempts to execute another 
ESC or WAIT instruction, exception 7 will occur. 

The error condition must be resolved via an inter­
rupt service routine. The 80287 saves the address 
of the floating point instruction causing the error 
as well as the address of the lowest memory loca­
tion of any memory operand required by that 
instruction. 

iAPX 86/20 COMPATIBILITY: 
iAPX 286/20 supports portability of iAPX 86/20 
programs when it is in the real address mode. 
However, because of differences in the numeric 
error handing techniques, error handling routines 
may need to be changed. The differences between 
an iAPX 286/20 and iAPX 86/20 are: 

1. The NPX error signal does not pass through an 
interrupt controller (8087 INT signal does). 

4-70 

Therefore, any interrupt controller oriented in­
structions for the iAPX 86/20 may have to be 
deleted. 

2. Interrupt vector 16 must point at the numeric 
error handler routine. 

3. The saved floating point instruction address in 
the 80287 includes any leading prefixes before 
the ESCAPE opcode. The corresponding saved 
address of the 8087 does not include leading 
prefixes. 

4. In protected mode, the format of the saved in­
struction and operand pointers is different than 
for the 8087. The instruction opcode is not 
saved-it must be read from memory if needed. 

5. Interrupt 7 will occur when executing ESC in­
structions with eitherTS or EM of MSW=1. If T8 
of MSW=1 then WAIT will also cause interrupt 
7. An interrupt handler should be added to han­
dle this situation. 

6. Interrupt 9 will occur if the second or subse­
quent words of a floating point operand fall 
outside a segment's size. Interrupt 13 will occur 
if the starting address of a numeric operand 
falls outside a segment's size. An interrupt 
handler should be added to report these pro­
gramming errors. 

In the protected mode, iAPX 86/20 application 
code can be directly ported via recompilation if the 
286 memory protection rules are not violated. 

210920-004 



80287 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias .. Doe to 70 0 e 
Storage Temperature ....... -65°e to + 150°C 
ease Temperature ................. DoC to 85°e 
Voltage on Any Pin with 
Respect to Ground ..... . . -1.0 to + 7V 
Power Dissipation ........... . ....... 3.0 Watt 

"NOTICE: Stresses above those listed under Ab­
solute Maximum Ratings may cause permanent 
damage to the device. This is a stress rating only 
and functional operation of the device at these or 
any other conditions above those indicated in the 
operational sections of this specification is not 
implied. Exposure to absolute maximum rating 
conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS TA = Doe to 85°e, Vee = 5V ± 5% 
All Speed Selections 

Symbol Parameter Min Max Unit Test Conditions 

V1L Input LOW Voltage -.5 .8 V 

VIH Input HIGH Voltage 2.0 Vee + .5 V 

VILe Clock Input LOW Voltage 
CKM = 1: 2.0 Vee + 1 V 
CKM = 0: 3.8 Vee + 1 V 

VOL Output LOW Voltage .45 V IOL = 0.3 rnA 

VOH Output HIGH Voltage 2.4 V IOH = -400 fJ.A 

III Input Leakage Current ±10 fJ.A OV ::; V1N ::; Vee 

ILO Output Leakage Current ±10 fJ.A .45V ::; V 0 UT ::; Vee 

Icc Power Supply Current 600 rnA TA = O°C 
475 rnA TA = 25°C 
375 rnA TA = 70°C 

- II~ 1-- _. - --, -- - . --- - .. - - , '1,., . --

Co I nput/Output Capacitance 20 pF Fe = 1 MHz 
(00-015) 

CeLK ClK Capacitance 12 pF Fe = 1 MHz 

4-71 210920-004 



80287 

A.C. CHARACTERISTICS (TA = oce to 7oce, T CASE = oce to 85ce, Vcc = 5V ± 5%) 

TIMING REQUIREMENTS 

A.C. timings are referenced to Q.8V and 2.QV points on signals unless otherwise noted. 

10MHZ 
6 MHz 8MHz Preliminary 

Symbol Parameter -6 Min -6 Max -8 Min -8 Max -10 Min -10 Max Unit 

TCLCL ClK Period 
CKM = 1: 166 500 125 500 100 500 ns 
CKM = 0: 62.5 166 50 166 40 166 ns 

TClCH ClK lOW Time 
CKM = 1: 100 343 68 343 62 343 ns 
CKM 0: 15 146 15 146 11 146 ns 

TcHcl ClK HIGH Time 
CKM = 1: 50 230 43 230 28 230 ns 
CKM = 0: 20 151 20 151 18 151 ns 

TCH1CH2 ClK Rise Time 10 10 10 ns 

TCL2CL1 ClK Fall Time 10 10 10 ns 

--
TDYWH Data Setup to NPWRlnactive 75 75 75 ns 

TWHDX Data Hold from NPWR Inactive 30 18 18 ns 

TWLWH 
NPWRNPRD Active Time 95 90 90 ns 

TRLRH 

TAVRL Command Valid to NPWR or 0 0 0 ns 
TAVWL NPRD Active 

TMHRl 
Minimum_Delai': from PEREQ 130 130 100 ns 
Active to NPRD Active 

TKlKH 
--

85 85 60 PEAK Active Time ns 
"---

TKHKL PEAK Inactive Time 250 250 200 ns 

TKHCH 
PEAK Inactive to NPWR, 50 40 40 ns 
NPRD Inactive 

c-------

TCHKL 
NPWR NPRD Inactive to -30 -30 -30 ns -PEAK- Active 

TWMAX Command Hold from NPWR, 30 30 22 ns 
TRMAX NPRDlnactive 

TKLCL 
PEAI{.Active Setup to NPWR 50 40 40 ns 
NPRD Active 

T1VCL 
NPWR, NPRD 

70 70 53 ns to ClK Setup Time 
c-------

NPWR, NPRD 
TCLIH from ClK Hold Time 45 45 37 ns 

--
TRSCL RESET to ClK Setup Time 20 20 20 ns 

TCLRS RESET from ClK Hold Time 20 20 20 ns 

4-72 

Test Conditions 

AtO.8V 
AtO.6V 

At2.0V 
At3.6V 

1.QV 10 3.6V 
if CKM = 1 

3.6Vlo 1.0V 
if CKM ='1 

AtO.8V 

AtO.8V 

At2.0V 

NOTE 1 

NOTE 1 

NOTE 1 

NOTE 1 

210920-003 



A.C. CHARACTERISTICS 
TIMING RESPONSES 

6MHz 

Symbol Parameter -6 Min 
~~--+===~---------.--------
TR~OZ NPRD Inactive to Data Float 

TRLOV NPRD Active to Data Valid 

ERROR Active to BUSY 
100 

80287 

10 MHZ 
8 MHz Preliminary 

-6 Max -8 Min -8 Max -10 Min -10 Max Unit I ~est cO~~~iO"-Sl 
37.5 35 25 ns NOTE 2 

60 60 60 ns NOTE3 

100 100 ns NOTE 4 TllBH Inactive -----c---------------__f---~----/_---_+---__f----
TWLBV NPWR Active to BUSY Active 100 100 

T~LML 
PEACK Active to PEREa 

127 127 :~ :: ::~:~ 
IT Command Inactive Time --+--+-----+---+---------1 

CMDI Write-to-Write 15 I ns At 2.0V I 

I Read-to-Read 75 I ns At 2 OV I 

I 
95 I I 95 

Inactive 

95 95 l Write-to-Read ~-'5 ns At 2.0V i 
Read-to-Write 75 ns At 2 OV 

r'---~----------====----r----r---~----~----r---4- +---------~ 
Oata Hold from NPRO I 

TRHOH Inactive i ns N01:E 7 I 
~ ___ -L ___________________ ~ ___ ~ ___ ~ ____ ~ __ ~ ___ ~ ____ L-_____ . ________ ~ 

95 95 
95 95 

5 3 3 

NOTES: 
1. This is an asynchronous hlPUt. This specification is gi"v'sn fol' testfng purpo:;es only, to assur~ fGcogniUon 

at a specific ClK edge. 
2. Float condition occurs when output current is less than ILO on DO-015. 
3. 00-015 loading: Cl = 100pF 
4. BUSY loading: CL = 100pF 
5. BUSY loading: Cl = 100pF 
6. On last data transfer of nLlmerlc instruction. 
7. 00-015 loading: Cl = 100pF 

4-73 210920-004 



ClK 
INPUT 

4.0V 
2.4V 

CKM = 0 

O.4SV CKM 0 
O.2V CKM = 1 

80287 

CKM = 0 
CKM = 1 

NOTE 8: AC Drive and Measurement Points- ClK Input 

4.0V CKM = 0 
2.4V CKM = 1 

O.45V CKM = 0 
O.45V CKM = 1 

2.4V :S;:;>:~8?~~~;--r---;~0g~~~SS&~ 
OTHER )' 
DEVICE 
INPUT 

DEVICE 
OUTPUT 

NOTE 9: AC Setup, Hold and Delay Time Measurement - General 

DEVICE 
OUTPUT 

NOTE 10: 

l 
Cl 

I 
AC Test loading on Outputs 

4-74 210920-004 



80287 

WAVEFORMS (cont.) 

DATA TRANSFER TIMING (INITIATED BY 80286) 

CMDO CMD1 
~,NPS2 VALID 

_-~--TRHAX--'-_ 

NPRD-----------r----~ \ 

D"-D, ,, _______ t-_-;~;~:;~~-r---D-A-T4A --:-U-TT-::~~i II 
I 

VALID 
TAVWL 

• "1---rWLWH---i----TWHAX---1 

NPWR·----------.\I 

"} TDVwlTWHDX --11.;-.. 
----------------~--~ r------------

~ DATA IN ~~ DATA MAY CHANGE 
VALID , ------+--' 1'-------'1 

TWL:1.-
BDSY ___ ~_: __ _ 

DATA MAY CHANGE 

-

DATA 
TRANSFER 
FROM 
80287 

DATA 
TRANSFER 
TO 
80287 

I DATA CHANNEL TIMING (IOmATED BY 80287) 

.... .no ... ,,'" ----i ~l-----------------------:L,,..-------

,', -','" _. ---l t----I-t-T-AV-WL-I_---------_-I-TR-H--:AX :f~ 
~ TAVRl TWHAX !~ 

NPRD.NPWR-----------""\ i / 
-\: --1: ,,",of I _--TCMDI~ __ 

TMHRL-----_'_ TCLML_ 
_--TCHKL __ i 

TKLCL_ - \. 
_--TKLML_ -- TKHCH -- _TKHKL __ 

___ ------1 
PEACK }--~ ---------~---V ] 

-' 

-' Ir 
1 .... ,-----TKLKH----____ 

4-75 210920·004 



80287 

WAVEFORMS (cont.) 

ERROR OUTPUT TIMING 

BUSY ___ , r,,~"J 
ERROR ~ 

(Reset. NPWR. NPRD are inputs asynchronous to ClK. Timing requirements on this page 

are given fortesting purposes only. to assure recognition at a specific ClK edge.) 

ClK, RESET TIMING (CKM = 1) 

ClK 
(IF CKM = 1) I\~-

RES_ET ______ ------------------T-c-L�-H--.---.---~~-T-IV-CL-----------

4-76 210920-004 



WAVEFORMS (cont.) 

ClK 
(IF CKM = 1) 

NPRD, 
NPINR 

80287 

ClK, NPRD, NPWR TIMING (CKM = 1) 

</)2 I 
\ r'\ __ 

-

ClK, RESET TIMING (CKM = 0) 

( -'~·1 _~'~' 
RESET ___ ~d:------f/ \'-'S\ ...... ~-'-~.l..I.-______ _ 

NOTE: Reset must meet timing shown to guarantee known phase of internal + 3 circuit. 

NPRD, 
NPWR 

ClK, NPRD, NPWR TIMING (CKM = 0) 

I <1>2 

4-77 210920-004 



inter 80287 

Table 6. 80287 Extensions to the 80286 Instruction Set 
,----------------------------- --- -- --------------- ---------------------~-------

Data Transfer 

FLO 0- LOAD 

Integer/Real Memory to 8T(0) 

Long Integer Memory to ST(O) 

Temporary Real Memory to 
ST(O) 

BCD Memory to ST(O) 

STII) to ST(O) 

FST -- STORE 

ST(O) to Integer/Real Memory 

ST(O) to ST(,: 

FSTP ~ STORE AND POP 

ST(O) to Integer/Real Memory 

ST(O) to Long Integer Memory 

ST(O) to Temporary Real 
Memory 

ST(O) to BCD Memory 

ST(O) to ST(I) 

FXCH Exchange ST(I) and 
ST(O) 

Comparison 

FCOM Compare 

Integer/Real Memory to ST(O) 

ST(i) to ST (0) 

FCOMP ~ Compare and Pop 

Integer/Real Memory to ST(O) 

ST(i) to ST(O) 

r ESCA~-;-TL;;'OD --;-1-0 -~~-1___________ _ ______ -'..':J 

~CAP~_~_L~_1_0 __ ~~ 

l~~~-=_~ __ ~~~--;;--; 0 R/M 1-
§;;'~--=-~-;--;;-I2_~- ~1 .::_~ 

FCOMPP - Compare ST(I) to ~APE - 1 -1 iT-;- 1 -~~ 
ST(O) and Pop TWice 

FTST ~ Test ST(O) 

FXAM - Examine ST(O) 

Mnemonics ):' Intel 1982 

4-78 

DISP 

DISP 

DISP 

DISP 

DISP 

DISP 

-' 

-' 

-, 
I 

38-56 52-60 40-60 46-54 

60-68 

53-65 

290-310 

17--22 

84-90 82-92 96-' 04 

15-22 

80-90 I 

86-92 84-94 98-106 82-92 

94-105 

52-58 

520-540 

17-24 

10-15 

60-70 78-91 65-75 72-86 

40-50 

63-73 80-93 67-77 74-88 

45-52 

45-55 

210920-004 



80287 

Table 6. 80287 Extensions to the 80286 Instruction Set (cont.) ------------- ·----~-~-------I-~ ~~1t~o;~1 r~-;:i-~f'~~:~~unt6~a;i~16 Bit 

Constants ~--------~--~...L-OisPlacemen'--+-R-""'---L.lnteger ~~~eger 
I MF ~ 1 00 I 01 10' 11 _____ ~ __ ~ ___ . ____________________ .1 __ -----'--__ -"---_ 

FLOZ ~ LOAD + 0.0 Into ST(O) Lr~E~S-C-A-P~E-O-_~O_-_~.2....Cl_~l....2.._.a.J 

FL01 ~ LOAD + 1 0 into ST(O) @~_O_O_~ 1 1 ~_a...3:::iJ 

FLOPI ~ LOAD 7r into ST(O) ~SCAPE..<:.._O_~ __ l_a...~~:iiJ 

FLOL2T cc LOAD log2 10 into [ESCAPE-o-oQl-1'-Ol-0-~G 
ST(O) 

FLOL2E ~ LOAD log2 e mto LESCAPf'_ . .<:...Cl...2 T;-11-01~01OJ 
ST(O) 

FLOLG2 ~ LOAD IOg'0 2 into 
ST(O) 

FLOLN2 ~ LOAD loge2 into 
STIO) 

Arithmetic 

FAOO ~ Addition 

111011~ 
---"-----

ESCAPE 0 

Integer/Real Memory with ST(O) I ESCA;;;--'MF _ 0 I M~_~~~_J _ DISP 

STII) and ST(O) 

FSUB ~ Subtraction 

Integer/Real Memory with ST(O) ~PE MF 0 MOD 

STm and STIOl 

FMUL = Multiplication 

11-17 

15-21 

16-22 

16-22 

15-21 

18-24 

17-23 

90-120 108-143 95-125 102-137 

70-100 (Note 1) 

90-120 108-143 95·-t25 102-t37 

Integer/Aeal Memory with ST(O) L::,CAPE _ MF:=i:l MOD 0 0 1 RIM [ _DI~P_ _ 110-125 130-144 112-168 124-138 

ST(I) and ST(O) [ESCAPE d pelT; 1 0 0 1 RIM i ____ .~ ____ ~ ___ ~_...l 90-145 (Note 1) 

FDIV = Division 
[ ESCAPE IntegerlAeal Memory with STIO) MF MOD R R/~= DISP ~ 215-225 230-243 220-230 224-238 

~====~======~ 
STII) and ST(O) I ESCAPE d P 0 1 1 A R/M~ 

I 
FSQRT ~ Square Root of ST(O) I ESCAPE 0 Ll_ o 1 ~ 

FSCALE ~ Scale ST(O) by ST(l) I ESCAPE 0 I 1 a}] 

FPREM ~ Partial Remainder of [ESCAPE~T;--~--~l-l-l~~O 0 0 J 
ST(O) -eST(l) 

FRNOINT ~ Round STIO) to 
Integer 

NOTE: 
1. If P= 1 then add 5 clocks. 

I ESCAPE 0 0 1 I 1 1 1 1 1 1 0 0 

4-79 

193-203 (Note 1) 

180-186 

32-38 

15-190 

16-50 

210920-004 



80287 

Table 6. 80287 Extensions to the 80286 Instruction Set (cont.) 

Optional 
8,16 Bit 

Displacement 

FXTRACT Extract IESc-APE=_O-o-~E=I-11-Tl 0 0 I 
Compo"ents of St(O) 

~~~~ - Absolute Value of ~~~~-?_~-~[~-!-~~_~~_~_~ __ ~ 
FCHS -. Change Sign of Sl(O) Q~CA-P-E--O-O:=~=1-1~~;--O- 0·00- 0 1

Transcendental

FPTAN " Partial Tangent of
SHO)

FPATAN = Partial Arcta~gent
of STiO) ST(I)

F2XMl _ 25T(0) - 1

FYl2X ST(l)' Log2
[ST(OII

FYL2XPl " ST(l)' Log2
IST(O) + 1 j

Processor Control

FINIT = initIalize NPX

FSETPM -" Enter Protected
Mode

FSTSW AX - Store Control
Word

FLOCW -= Load Control Word

FSTCW -- Store Control Word

FSTSW =..-, Store Status Word

FCLEX "-'- Clear Exceptions

FSTENV -= Store Env!ronment

FLDENV .- Load Environment

FSAVE " Save State

FRSTOR - Restore State

FINCSTP _. Increment Stack
Pointer

r----------~,---.--------,

L:.s_CAP E __ 0 ___ a...1_1...1 1 1 1 0 0 0 1 i

1~~CA~~:.~_~~_1 I 1~1 --;---1 1 0 0 t]

[ESCAPE-O-C~T~I-·0- 0 0 1 2J
L:~~APE _O_..2...2I_l~I_.2.~_~~~

[!~~~_ 1-1 1 J_~-1 I· oo_~~J

IEsc-,;;p~O·~l MOD----;-O--;-R;;.;;-i- - ~;S;; .-:
____ . ___________ . _______ . _____ ~J ______ _

~C.~p~~o,-rMO~~~·l- 1 RIM I ~~~I~~~-:
[~sc~;;;j-- 0 lMO~--;--I-~~ __ ~I~~ ~J

~- 0_ 1 ~~r1~-1 1 _0 ~_o 1 0]
~EO-O-l-rMOD-l·~O-~M J ~~9~~ ~ J

LESC~~_~~L~~D __ 1 _~!~~~~~~~~~:
[ESCAPE;--;;-;-T MOD 1 1 0 RIM I -~isp -: , _____ , ______ '--l __ ~ __ ~~ _ ___.J ______ -

I::---~----I L ESCAPE 0 0 1 1 1 o 1 1

[E-S-C-A-P-E-OO_-~1--LI_l_-_1_-~~~O_ ~

Clock Count Range

27-55

10·17

10-17

30-540

250-800

310-630

900-1100

700-1000

2-8

2-8

10-16

7-14

12-18

12-18

2·8

40-50

35-45

205-215

205-215

6-12

6-12 I FDECSTP" Decrement Stack
Pointer ______________ J

4-80 210920-004

80287

Table 6. 80287 Extensions to the 80286 Instruction Set (cont.)

FFREE ~ Free ST(i) ~SCAPE 1 0 1 I 1 1 0 o~~

I FNOP = No Operation
I

IESCAPEO-U-' -'-ji I 0 I 0 0 a oj

NOTES:
1. if mod =00 then DISP=O" disp·low and disp-high are absent

if mod=01 then DISP=disp-low sign-extended to 16-bits. disp-high is absent
if mod=10 then DISP=disp-high; disp-Iow
if mod=11 then rim is treated as an ST(i) field

2. if rirn=OOO then EA =(BX) ~ (SI) +DISP
if rim=OOI then EA=(BX) + (01) +DISP
if rim=010 then EA=(BP) + (SI) +DISP
if rim=011 then EA=(BP) + (01) +DISP
if r!m=100 then EA=(SI) + DISP
if r/m=101 then EA=(DI) + DISP
if r/m=110 then EA=(BP) + DISP
if r/m=111 then EA=(BX) + DISP

'except if mod=OOO and rim=110 then EA =disp-high; disp-Iow.
3. MF= Memory Format

00-32-bit Rea.l
01-32-bit Integer
to-64-bit Real
11-1S-bit Integer

4. ST(O)= Current stack top

ST(i) ith register below stack top
5. d= Destination

O-Destination is ST(O)
1-Destination is ST(i)

S. P= Pop
O-No pop
i-Pop ST(O)

7. R= Reverse: When d=1 reverse the sense of R
O-Destination (op) Source

8. For FSQRT: -0 ,,; ST(O) ,,; +00

For FSCALE:

For F2XM1:

_215 ,,; ST(1) < +215 and ST(1) integer
o ,,; ST(O) ,,; 2-1

For FYL2X:

For FYL2XP1:

For FPTAN:
For FPATAN:

0< ST(O) <00
-oc < ST(1) < + 00

0,,; IST(O)I < (2 -Y2)/2
-on < ST(l) < oc

o ,,; ST(O) ,,;,,/4
0,,; ST(O) < ST(l) < +x

9. ESCAPE bit pattern is 11011.

4-81

Clock Count Range

9-16

10-16

I
I
J

210920-004

•

•
•
•

•

82258
ADVANCED DIRECT MEMORY ACCESS COPROCESSOR

(ADMA)
High Performance 16 Bit DMA • Automatic Data Chaining for Gathering
Controller for the iAPX 286 Family and Scattering of Data Blocks
- 8 MByte/sec Maximum Transfer Rate • 16 MByte Addressing Range

in 8 MHz iAPX 286 Systems

Four Independently Programmable • 16 MByte Block Transfer Capability

Channels • "On the Fly" Compare, Translate and

Multiplexor Channel Capability to
Verify Operations

Support Up to 32 Subchannels • Automatic Assembly/Disassembly of
Data

On Chip Bus Interface for the Whole
iAPX 86 Architecture • Programmable Bus Loading
-80286 • 6 and 8 MHz Speed Selections
-80186/188

Available in 68-Pin LCC Package -8086/88 •
(See Packaging Spec. Order #231369)

Command Chaining for CPU
Independent Processing

INTRODUCTION
Intel's 82258, Advanced Direct Memory Access Coprocessor is a high performance, 16 bit DMA processor
optimized for the iAPX 286 and the iAPX 86 family of CPUs. It has on-chip bus interface for the whole iAPX 86
family architecture. Four high speed, independently programmable DMA channels can achieve a maximum
cumulative transfer rate of 8 MByte/sec in an 8 MHz iAPX 286 system and 4 MByte/sec in 8 MHz iAPX
8086/80186 systems. Channel 3 can be used as a Multiplexor channel, whereby, it supports 32 subchannels.
This flexibility allows one to use a single DMA channel to handle a large number of slow and medium speed
I/O devices. Advanced capabilities like Command and Data chaining and "On the fly" operations allow the
82258 to remove the I/O management load from the processor. The 82258 addresses the full CPU memory
(16 MB for 80286), thus simplifying the system design. Automatic assembly/disassembly of data allows 16 bit
processors to interface with common 8 bit peripherals and vice-versa. Remote mode of operation, where the
82258 has its own resident bus, allows modular system design. The 82258 complements the high perform­
ance, multitasking capabilities of the 80286.

AQOR

DATA

BUS
CONTROL
SIGNALS

eLK
RESET

e

w

+--+

-

8US INTERFACE
UNIT

I ADDRESS I INCREMEN·
TER

I BURS< I COUNTERS

TEMP.
DATA
REGISTERS

• DATA PATH
CONTROL

I .us I CONTROL

I TIMING I
GENERAmR

ADDRESS UNIT

L ~
r- ALU

L

~~ !
" l PflINTER
'- REGl~'TERS

r
INTERNAL DATA 8US

r
P DATA HANDLER

-DArA
~ REGjSTERS

MATCH r-~ REGISTERS
U

MASK
1---REGISTERS

~~~:::Ll ~ 
REQUESTS 

BYTE r.OUNT UNIT 

BYTE 
COUNTERS 

D 
Xl 

CHANNEL 
COMMAND 
REGISTERS 

CONTROL 
STATUS 
REGISTERS 

MUUlPLEXOR 
CHANNel REG. 

CENTRAL CONTROL 

l PRIORITY 
lOGIC 

! 

l INSTRUCTION 
POINTER 
REGISTERS 

l 
ROM 

! I MICROINSTRUCTION 
CAC"E 

~ 
I INSTRUCTmN REG 

l 
I PIPELINE 

REGISTERS 

1+--+ 

I 

CHANNEL 
CONTROL 
SIGNALS 

231263-1 

Figure 1. 82258 Internal Block Diagram 
--~-----------------------

Intel Corporation assumes no responsibili1y for the use of any circui1ry other than circuitry embodied in an Intel product. No other circui1 patent 
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. November 1985 
@ Intel Corpora1ion, 1985 4-82 Order Number: 231263-002 



82258 

FABRICATION 

The B225B is a 6B pin device, fabricated in Intel 
HMOS II technology. It is packaged in JEDEC type A 
hermetic lead less chip carrier. 

PIN DEFINITIONS AND FUNCTIONS 

The B225B has four operational modes 

-2B6 

- 1 B6-for the B01 B6/BB and the BOB6/BB (Min. 
mode) CPUs 

- BOB6-for the BOB6/BB (Max. mode) CPUs 

- Remote 

Component Pad View· As viewed from underside of component 
when mounted on the board 

DO Ali 
00 An 
Dl AlB 
DlI AlB 
D2 A2D 
Dl0 A21 
D3 A22 
Dl1 A23 
VCC 82258 vee 
D4 DACK 0 
D12 DACKi 
D5 DACK 2 
013 DACK 3 
D6 EiiDo 
D14 EOD 1 
D7 EOD 2 
D15 lB EDD 3 

i!!! ii! :illi! a IlOl:!! ~It! In l!i l!i lilillis 

Pins of the B225B have different definitions for differ­
ent modes. 2B6 and remote modes have the same 
non-multiplexed bus structure and similar pin de­
scriptions. Similarly, the 1B6 and the BOB6 modes 
have multiplexed bus and similar pin description. 

PINNING IN THE 286 MODE 

In the 2B6 mode, the bus signals and the bus timings 
of the B225B are the same as those of the B02B6 
processor. The processor can access the internal 
registers of the B225B and these accesses must be 
supported by the bus signals. Therfore, some of the 
bus control signals are bidirectional and some addi­
tional bus control signals are necessary. 

P.C. Board View - As viewed from the component side of the P.C. 
board 

A16 
A17 
AlB 
AlB 
A2D 
A21 
A22 
A23 
vce 

DACK 0 
DACK 1 
DACK 2 
DACK 3 

EDO 0 
EOD 1 
EDD 2 em 

~ 
~ , 
9 

, 
9 
9 

'£~~~A£A~~AAAAAA 

.J,.. ",..., ........ "11""., .. "T""""'I"''''' -'1"'''''' "If".".. ..... , .. 

, ... 

DO 
08 
01 
D9 
D2 
DID 
D3 
011 
vee 
D4 
D12 
D5 
D13 
D6 
D14 
D7 
D15 

231263-2 

Figure 2. Pin Configuration in 286 Mode 

4-B3 



inter 82258 

Table 1. Pin Description for the 286 Mode (Also Contains Pins Identical in Other Modes) 

Pin 
Identical 

Symbol Type In Functions 
Input (I) Number All Modes 

Output (0) 

BHE 1/0 1 YES BUS HIGH ENABLE indicates transfer of data on the upper 
byte of the data bus, D15-8. Eight bit devices assigned to 
the upper byte of the data bus would normally use BHE to 
condition chip select function. BHE is active LOW and 
floats to Tri-State OFF when the 82258 does not own the 
bus. 

BHE and AO Encoding 

BHE AO 
Function 

Value Value 

0 0 Word Transfer (D15-0) 
0 1 Byte Transfer on upper half of data 

bus (D15-8) 
1 0 Byte Transfer on lower half of data 

bus (D7-0) 
1 1 Odd addressed byte on 8 bit 

bus (D7-0) 

RD I 2 NO READ command in conjunction with chip select (CS) 
enables reading out of the 82258 register, addressed by 
the address lines A7-AO. RD is an active LOW Signal and is 
asynchronous to the 82258 clock. 

WR I 3 NO WRITE command along with CS is used lor writing into the 
82258 registers. WR is an active LOW signal and is 
asynchronous to the 82258 clock. 

DREQ3-DREQO I 4-7 YE8 DMA REQUEST input signals are used for externally 
synchronized DMA transfers. If channel 3 is used as a 
Multiplexor channel, DREQ3 is defined as 1/0 Request 
(IOREQ) signal. These signals are active HIGH signals and 
are asynchronous to the 82258 clock. 

C8 I 8 NO CHIP SELECT is used to enable a processor to access the 
82258 registers. This access is additionally controlled 
either by bus status Signals or by the Read or Write 
command signals. C8 is an active LOW signal, 
asynchronous to the 82258 clock. 

READY I 10 NO BUS READY terminates a bus cycle. Bus cycles are 
extended without limit until terminated by an active READY. 
READY is an active LOW, synchronous input, requiring set 
up and hold times relative to system clock to be met for 
correct operation. 

81,80 1/0 11,13 YE8 BUS CYCLE STATUS signals control the support circuitry. 
The beginning of a bus cycle is indicated by 81, or 80, or 
both going active. The termination of a bus cycle is 
indicated by all the status signals going inactive in the 186 
mode or the bus ready (READY) going active in the 286 
mode. Both 80 & 81 are active LOW signals. 80, 81 along 
with 82 (in the 186 mode) or MIlO (in the 286 mode) define 
the type of bus cycle. 82 and M/iO have the same meaning 
but, in the 186 mode 82 signal can be active only when at 
least one of 81 and 80 is active, whereas in the 286 mode 
the MIlO Signal is valid with the address on address lines. 

4-84 



intJ 82258 

Table 1. Pin Description for the 286 Mode (Also Contains Pins Identical in Other Modes) (Continued) 

Pin 
Identical 

Symbol Type In Functions 
Input (I) Number All Modes 

Output (0) 

The 82258 Bus Cycle Status Definitions 
(82258 Local Bus Master, AI! Signals (0) 

MIlO 51 SO Bus Cycle Initiated 
orS2 

0 0 0 Read I/O-Vector 
(For Multiplexor channel) 

0 0 1 Read from 1/0 space 
0 1 0 Write into 1/0 space 
0 1 1 None. (Does not occur 

in the 186 mode). 
1 0 0 None. (Does not occur) 
1 0 1 Read from memory space 
1 1 0 Write into memory space 
1 1 1 None; not a bus cycle 

When the 82258 is not a bus master of the local bus, the 
status signals are used as inputs for detection of 
synchronous accesses to the 82258. 

I Interpretation of the Status and CS Signals 
by the 82258 

(82258 Slave, All Signals (I» 

CS 51 SO Interpretation 

1 X v 82258 not selected A 

(No action) 
0 0 0 No 82258 access 

(No action) 
0 0 1 Read from an 82258 register 
u 

I 
• I 

v I ~~~'~ .~.~~ ~~c~;;-~~ . v".v,_' 0 1 1 

*: The 82258 is selected but no synchronous access is 
activated. The 82258 monitors RD and WR signals for 
detection of an asynchronous access. 

.._---
elK I 12 NO SYSTEM CLOCK provides the fundamental system timing. It 

is divided by two to generate the 82258 internal clock. elK is 
an active HIGH signal which can be connected directly to the 
82284 elK output. The internal divide-by-two Circuitry is 
synchronized to the external clock generator by a lOW to 
HIGH transition on the RESET input, or by first HIGH to lOW 
transition on the Status Input SO or S1 after RESET. 

MilO 0 14 NO MEMORY 110 SELECT distinguishes between memory and 
1/0 space addresses. 

RESET I 15 YES SYSTEM RESET forces the 82258 to the initial state. RESET 
is an active HIGH signal and must be synchronous to the 
system clock. Reset must be activated for at least 16 ClK 
cycles. 

4-85 



82258 

Table 1. Pin Description for the 286 Mode (Also Contains Pins Identical in Other Modes) (Continued) 

Pin 
Identical 

Symbol Type In Functions 
Input (I) Number All Modes 

Output (0) 

HOLD 0 16 NO BUS HOLD REQUEST AND HOLD ACKNOWLEDGE 
HLDA I 17 control ownership of the local 82258 bus. When active, 

HOLD indicates a request for the control of the local bus. 
HOLD goes inactive when the 82258 relinquishes the bus. 
HLDA, when active, indicates that the 82258 can acquire 
the control of the bus. When HLDA goes inactive, the 
82258 must relinquish the bus at the end of its current 
cycle. HLDA may be synchronous to the system clock. Both 
HOLD and HLDA are active HIGH signals. 

D15-DO 1/0 18-25, NO DATA BUS is the bidirectional 16 bit bus. For use with an 8 
27-34 bit bus, only the lower 8 data lines D7 -DO are relevant. The 

data bus is active HIGH. 

A7-AO 1/0 35-42 NO ADDRESS LINES A7-AO are the lower 8 address lines for 
DMA transfers. They are also used to input the register 
address when the processor accesses an 82258 register. 
All lines are active HIGH. 

A23-A8 0 44-59 NO ADDRESS LINES A23-A8 form the remainder of the 82258 
address bus. Address bus is active HIGH. Pin A21 must 
have a pullup resistor (n 10k 0) connected to it to 
ensure that it is high during reset_ 

DACK3-DACKO 0 61-64 YES DMA ACKNOWLEDGE Signal acknowledges the requests 
of the corresponding DREQ Signal. DACKi goes active 
when the requested transfers are performed on the 
channel i in response to a DREQL If channel 3 is in the 
multiplexor mode, DACK3 is defined as 110 acknowledge 
(IOACK). These Signals are active LOW. 

-== EOD3-EODO I/O 65-68 YES END OF DMA signals are open drain drivers with internal 
high impedance pull up resistors (no external pull up 
resistor is required) and can be used as quasi-bi-directional 
lines. These Signals are active LOW. 
As OUTPUTs the signals are activated (if enabled) for two 
T -STATES cycles at the end of the DMA transfer of the 
corresponding channel or they are activated under program 
control (End of DMA output or interrupt output). 
EODs acts as "End of DMA" level triggered INPUTs if the 
signals are held high internally but forced low by the 
external circuitry for at least 250 ms. The current transfer is 
aborted and the 82258 continues with the next command. 
EOD2 can also be used as a common active high interrupt 
signal (INTOUT) for all four channels. In this mode, this 
signal is a push-pull output and not an open drain output. 
Other EODi pins may still be used in their regular I/O mode. 

Vss I 9,43 YES SYSTEM GROUND: 0 Volt. 

Vee I 26,60 YES SYSTEM POWER: + 5V Power Supply Pin. 

4-86 



82258 

PINNING IN THE 186 MODE 

The 80186 has a multiplexed bus structure. Therefore, many 82258 pins have different meaning in the 186 
mode than in the 286 mode. Since the 80186 has 20 address lines compared to 24 for the 80286, the 4 extra 
lines are used to generate additional bus control signals. The following table gives the details of pins having 
different meaning in the 186 mode compared to the 286 mode: 

Component Pad View" As viewed from underside Of component 
when mounted on the board 

P.C. Board View" As viewed from the component Side of the P.C. 
board 

ADO 
AD8 

ADI 
AD9 
AD2 
AD10 

A03 
AD11 
vce 
ADA 
AD12 
AD5 
AD13 
ADa 
AD14 
ADT 
AD15 8 

I~ II II 
2 

1= 
82258 

I-

I-

1= 

is c .... NC":! 

~9~ ;:j ~515151 w 

~ ~ ~l:;,t 1= d);) gs ~J~ ~ g; f51§ lili! I~ 

AfB/S3 S3/A1~ 
At7IS4 S4/A17 
A18/SS SSlA18 
A19/sa S6JAI9 
DEN DEN 
Dl/i! OT/ft 
ALE ALE 
AREADY AREADY 
VCC VCC 
DACK 0 DACK 0 
DACK 1 DACK 1 
DACK 2 DACK 2 
DACK 3 DACK 3 
EDD 0 EDD 0 
EDD 1 EDD1 
EDD 2 EDD 2 
EOD 3 EOO 3 

PIN NO. lMARK 

J -!L. .J .... ..IL...I1... -IL..II-..Jl...JL..J......L ..JL..IL.,IL...Jl...J\... ~~ 
5~ ;" ADO 

~ ~ :~: 
, ~ AD9 

AD2 
AD10 
AD3 
ADtt 
VCC 
ADA 

A012 
AD5 
A013 
ADfi 
A014 
ADT 
AD15 

Figure 3. Pin Configuration in the 186 Mode 

4-87 

231263-3 



intJ 82258 

Table 2. Changes in Pin Description in the 186 Mode: (Compared to the 286 Mode) 

Pin 

Symbol Type Functions 
Input (I) Number 

Output (0) 

RD,WR 110 2,3 READ, WRITE In the 186 mode, the RD & WR pins are used 
additionally as output pins to support the 80186 or the 8086 
minimum systems. These signals are active lOW. 

ALE 0 58 ADDRESS LATCH ENABLE signal provides a strobe to separate 
the address information on the multiplexed address-data lines. 
ALE is an active HIGH signal. 

DEN 0 56 DATA ENABLE signal is used for enabling the data transceiver, 
8286/8287. DEN is an active lOW signal. 

DTlFi 0 57 DATA TRANSMIT/RECEIVE signal controls the direction of data 
flow through the external 8286/8287 data bus transceiver, 
depending on whether a read, or a write bus cycle is performed. 
This pin must have a pul/up resistor connected to it to ensure 
that it is high during reset. 

SREADY I 10 SYNCHRONOUS READY input signal must be synchronized 
externally. Use of this pin permits a relaxed system and timing 
specification by eliminating the clock phase, required for resolving 
the signal level, when using AREADY input. 5READY is an active 
HIGH Signal. 

ClK I 12 SYSTEM CLOCK input gets a prescaled signal from the 186 clock 
(ClKOUT) or the 8086 clock (50% duty cycle for 186 and 33% 
duty cycle for 8086). No internal prescaling is done. elK is an 
active HIGH signal. 

52 0 14 STATUS SIGNAL along with 50 and 51 provides the bus cycle 
description (for details see 286 mode pin description of 50 and 
51). 

AD15-ADO 1/0 18-25 ADDRESS/DATA BUS Signals AD15-ADO contain multiplexed 
27-34 lower address and data information. Also, the demultiplexed 

A7-AO I/O 35-42 address information is available on address pins A i5-AO. 
A15-A8 0 44-51 

A19/S6 0 52-55 ADDRESS PINS A 19-A 16 are multiplexed with additional status 
A16/53 information on the bus cycle. These pins are active HIGH. 

5ignals 55 and 56 provide information on the status of the bus 
cycle. During an active bus cycle, 56 is always high and 55 always 
low. low 56 implies a processor bus cycle. 
5ignals 54 and 53 give the channel number for the running bus 
cycle as follows: 

54 53 Channel Number 

0 0 0 
0 1 1 
1 0 2 
1 1 3 

AREADY I 59 ASYNCHRONOUS READY is an asynchronous bus ready signal. 
The rising edge is internally synchronised. During reset, AREADY 
must be low to enter the 82258 into the 186 mode. AREADY is an 
active HIGH signal. 

4-88 



82258 

PINNING FOR THE 8086 MODE 

For the 8086 MIN configuration the pinning is identical to the 186 mode. For the 8086 MAX configuration, the 
bus arbitration is done via the RQ/GT protocol. Otherwise, the function of pins is identical to the 186 mode. 

Component Pad View· As viewed from underside of component 
when mounted on the board 

P.C. Board View· As viewed from the component side of the p.e. 
board 

ADO 
ADS 
AD1 
AD9 
AD2 
A010 

AD3 
AD11 
vee 
AD4 
AD12 
AD5 
AD13 
AD6 
AD!4 
AD7 
AD1S 8 

RQ/GT 

I 
HLDA 

A16/S3 
A17IS4 
A1B/S5 
A19/S6 
DEN 
OT/R 
ALE 
AREADY 

82258 vec 
DACK 0 
DACK 1 
DACK 2 
DACK 3 
EOD 0 
EOD 1 
EDD 2 
EOD 3 

sa/A1S 
S4/A17 
S5IA18 
S6/A19 

DEN 
DTiR 

ALE 
AREADY 

VCC 
DACK D 
DACK 1 
DACK 2 
DACK 3 

EDD 0 
Eiiif1 
EOD 2 
EDD 3 

, 
, 
~'~~~TT~TTTTTTTTT 

ADO 
ADS 
AD1 
A09 
AD2 
AD1D 
AD3 
ADl1 
vee 
AD4 
AD12 
AD5 
AD13 
ADS 

L.. AD14 
[ AD7 
38 A015 

~t;$ ~;~;; I~ 
~~ ~1~li a lUi 5i ~ltJ!!i!i 13 ~ 111~1~ 

PIN NO. lMARK 

Figure 4. Pin Configuration in the 8086 (Max) Mode 

Table 3. Changes in Pin Description in the 8086 (Max) Mode 
(Compared to the 186 Mode) 

Pin 

Type Functions 
Input (I) Number " .... _ .... ,,,, 

110 I 16 REQUEST IGRANT implements a one line communication 
protocol to arbitrate the use of the system bus; normally done 
via HOLD/HLDA. RQ/GT is an active LOW signal having 
internal pull-up resistor. 

I 17 HOLD ACKNOWLEDGE has no meaning in the 8086 (Max) 
mode. It should be tied high, for mode recognition, during 
reset. 

4-89 



inter 82258 

PINNING IN THE REMOTE MODE 

In the remote mode, most of the signals have the same function as in the 286 mode. Exceptions are noted in 
the following table: 

Component Pad View . As viewed from underside of component 
when mounted on the board 

P.C. Board View - As viewed from the component side of the P. c. 
board 

i:C~~~~:I!Ce:r:!~:;;~~~~ ~~~~5~=~=!C=~~~~c~ 

DO 5 A16 A16 
rjL. oJL ..... .JL. .J ... ../l. .JL ..N.. ..L .L ..II. .J'" -IL .JL ..tI...Jl -d~ 

DO 
08 A17 A17 

~ ~ 
08 

01 AlB AlB " ~ , 
~ 

01 
D9 A19 A19 D9 

" ~ 02 A2D A2tI , 
~ 

02 
DID A21 A21 

" ~ 
DID 

D3 A22 A22 

" ~ 03 
011 A23 A23 

" ~ 
011 

VCC 82258 VCC vee VCC 
D4 OACK D OACK D D4 
012 OACK 1 OACK 1 012 
Il5 OACK 2 OACK 2 05 
013 OACK 3 OACK 3 013 
06 Eiiifii EOO D D6 
014 EOO 1 Eao 1 

" 014 
07 Eao 2 EOii2 " , 07 
015 EOO 3 EOO 3 ~ ~ 015 

~rl'r" ~ '"'" ~ T ~ "" "" ~ "T"'T 

4:9 ~-' 1>- ~;; ~&i 
~~ ~ ~1P$dl:;;~ =111 r~ I ~I;r~ Ii PIN NO. lMARK 

"'NT"' C >-
!if"" !if 1::1 J 1u9 c 

Jili Ji ~ ~ ~ 2i1l3 ~ ~ I;;) d ~ Ii ~ ! ~ 
231263-5 

Figure 5. Pin Configuration in Remote Mode 

Table 4. Changes in Pin Description in the Remote Mode (Compared to the 286 Mode) 

Pin 

Symbol Type Functions 
Input (I) Number 

Output (0) 

CS I 8 CHIP SELECT has two functions in the remote mode. As in 
the 286 mode, CS enables access to the 82258 internal 
registers. In addition CS works as an Access Request Input. 
When forced LOW, it signals to the 82258 that another bus 
master needs access to the local bus of t~e 82258. The 
82258 releases the bus as soon as possible and signals it to 
the CPU by activating BREL (Bus Release) output. CS is an 
active LOW Signal. 

BREL 0 14 BUS RELEASE signal is used to indicate when the 82258 
releases control of the resident bus. 

HOLD 0 16 HOLD & HOLD ACKNOWLEDGE signals are used 
HLDA I 17 only for access to the system bus. They are connected to the 

bus arbiter (82289). Resident bus accesses are directly 
executed without the HOLD/HLDA sequence. 

4-90 



82258 

FUNCTIONAL DESCRIPTION 

The 82258 is an advanced DMA coprocessor for the 
iAPX 86 family architecture. In addition to providing 
high speed DMA transfers (8 MByteisec in an 8 
MHz iAPX 286 and 4 MByte/sec in 8 MHz iAPX 
186/86 systems), the 82258 takes I/O processing 
load off the CPU, thus improving overali system per­
formance. The 82258 has advanced featues not 
found in the previous generation DMA controllers: 
multiplexor channel, command & data chaining and 
'on the fly' data manipulation operations. 

MODES OF OPERATION 

The 82258 has a number of different modes of oper­
ation based upon its coupling with the CPU (tight or 
loose) and its adaptive on-chip bus interface (the 
286 bus or the 186 bus). 

Figure 6 shows the different operating modes of the 
82258 and the CPUs it can interface with in those 
modes. Figure 7 shows how to configure the 82258 
into these different modes. 

REMOTE 
MOOE 

LOCAL MODE 

In this mode the 82258 shares the local bus and all 
the support/control devices with the CPU. Because 
of its on-chip bus interface, the 82258 can be direct­
ly coupled to the whole iAPX 86 family of microproc­
essors. 

BUS INTERFACE l 
NON-MULTIPLEXED MULTIPLEXED 

" z 
::::; 
0.. 
::> g 
=> 
13 

LOOSE 
(REMOTE MODE) 

TIGHT 
(LOCAL MODE) 

BUS BUS 

B0286 
B0186 DOES 
80188 NOT 
8086 EXIST 
8088 

80186 

80286 
80188 
8086 
8088 

(286 MODE) (166/86 MODE) 

231263-52 

Figure 6. Operating Modes for the 82258 

186 
MODE 

8086 
MODE 

, BUS WIDTH ~ 

[~]"0 

l 

231263-6 

Figure 7. Selecting Modes of Operation 

4-91 



inter 82258 

286 System 

The configuration in Figure 8 shows the 82258 in the 
local mode (286 mode) in an iAPX 286 system which 
includes the Numeric Processor Extension 80287. 
The 286 mode is selected during reset (Figure 7). In 
this mode the 82258 supports the non-multiplexed, 
pipelined 286 bus. The DMA coprocessor resides on 
the processor's local bus (physical pins of the 
80286) and shares all the support circuits: latches, 
tranceivers, bus controller and arbiter, clock genera­
tor etc. By residing on the 286. bus, the 82258 
achieves maximum data transfer rate; up to 8 
MByte/sec at 8 MHz for single cycle transfer. 
HOLD/ HLDA protocol is used for bus exchange be­
tween the 80286 and the 82258. The 82258 can be 
programmed to handle both internal and external 
terminate conditions. Internal termination is pro­
grammed in the command block (in type 2 command 
as explained later). External termination is handled 
by the EOD (end of DMA) pins if they are enabled. 
Interrupts for the CPU are handled by an interrupt 
controller (~8259A) which receives the end of 
DMA pins (EOD 0-3) as interrupts. The multiplexor 
channel uses external 8259As to prioritize and arbi­
trate service requests between peripherals (Figure 
13). 

To link this system to the MUL TIBU8® bus architec­
ture another set of latches, tranceivers, bus control­
lers and a bus arbiter (82289) as shown in Figure 11 
(for remote mode configuration) are needed. 

186/188 (8086/8088 Min) Systems 

The 82258 can be configured into the 186 mode dur­
ing reset (Figure 7). In this mode it supports the 
80186 and the 8086 (Min) processors. It can be pro­
grammed to support the 80188 and the 8088 (Min) 
by programming the bus width in General Mode 
Register (GMR). Figure 9 shows the 82258 used in 
an iAPX 186 system containing the 8087 numeric 
coprocessor. This system uses the iAPX 86 bipolar 
support components: latches, transceivers and the 
bus controller (8288). The Integrated Bus Controller 
(82188) links the 80186 to the 8087. The 82188 is 
also used to support the 82258, since the 80186 has 
only one set of bus exchange signals (HOLD/ 
HLDA). An interrupt controller (8259A) processes 
the EOD signals for the CPU. 

In the 186 mode, the 82258 directly supports the 
80186/ 8086 bus with 16 address bits internally mul­
tiplexed into the data lines (AD15-ADO). The address 
pins A 19-A 16 are multiplexed with the status lines 
86-83. The address pins A22-A20 (in the 286 mode) 
are used to generate the control signals ALE, DEN 
and DT /R (in the 186 mode). The A23 pin (in the 
286 mode) serves as an asynchronous ready input 
AREADY (in the 186 mode). As a master in the 186 

mode, the 82258 offers address lines A 15-AO as 
latched outputs and shares all the 186/8086 support 
components with the processor. 

8086/88 Systems 

The 82258 is configured into the 8086 mode during 
reset (Figure 7). In this mode the 82258 supports 
8086/88 in the maximum mode and uses the 
RQ/GT protocol for the processor - DMA coproces­
sor bus exchange. The 8087 can be supported in the 
system without requiring the integrated bus control­
ler, 82188. To support the 8088 system in the maxi­
mum mode, the General Mode Register is pro­
grammed for 8 bit bus width. Figure 10 shows the 
82258 in an iAPX 86 system containing the 8087. 
The system configuration is very similar to the iAPX 
186 system in Figure 9. 

REMOTE MODE 

The 82258 is configured to be in the Remote Mode 
(Figure 7) by programming the General Mode Regis­
ter (RM bit), after putting the 82258 in the 286 mode 
during the reset. The 82258 has the bus timings and 
signals compatible to the 286 bus. 

In the remote mode, the 82258 is the sole local bus 
(resident bus) master and interfaces to the proces­
sor through the system bus (using the bus arbiter 
82289). Therefore, the 82258 can work in parallel 
with the processor. The remote mode is useful for a 
modular I/O subsystem. 

Figure 11 shows the 82258 configured in the remote 
mode of operation. The peripherals interface to the 
82258 on the resident bus. The resident bus compo­
nents are similar to the ones used for the 286 sys­
tem. Additional support components are used to in­
terface the 82258 to a system bus e.g. the MUL TI­
BUS. The 82258 communicates with the CPU 
(80286) over the system bus. 

Since the 82258 is the only master of the local/resi­
dent bus, it can start the local bus cycles without any 
bus arbitration. For system bus accesses, a dead­
lock can arise if: 

- The 82258 occupies the local bus to gain access 
to the system bus and 

4-92 

- The CPU (80286) occupies the system bus to 
gain access to the 82258 (through its local bus) 

To prevent this deadlock, for the system bus ac­
cesses the 82258 does not occupy the local bus 
until it has the system bus. Therefore, in the remote 
mode, the 82258 initiates all system bus accesses 
(and only these) through the HOLD/HLDA protocol. 
The local bus arbitration (for the CPU) is done 
through the C8 and the BREL lines. 



~ 1 
READY CLI(, 

RESET 
." 
cO' 
I: 

INTERRUPTS 

1-·····.:11 80286 HOLDA ... 
111 

!» 
CI 
~ 

I~ I25!IA INT I INTH 

INTA BHE,W 
AO-A 

HOLD 

i 
51,iii 011-015 

~ 
c.n 
CI --r 

t' 
:i' 

(0 III 
c.v ::::J 

READY CUI2I6, iii,51 l-I-RESET 
HOlDA 1+-,-I-

:; 
." 
>< 
~ 
CI 
al 
en 

811217 

~ 
'-

011-015 I--
l\-I--

r r-

~ESSr-
DATA BUS 

'< 
til 
it 
3 i DE 

iiiDiiE: 

LATCHES I xcv~s 
8282 8286 

~ 
DATA i 

.t.J. 
PROM I 
DECODER F] 

riD,! 
Xl X2 -CLI(, 

RESET READY 

I 

I 
CLI(, READY DREQn 
RESET 

DACKn 
EODn 

HOLDA 
12258 

HOLD IORED 

BHE,MIiO 
IDACK 

AO-A23 011-015 ~ 51,iii 

t 

INTA 
ALE 

DT/R 

DEN 
T ...--J 

DE 

i-r-
~t: 

S2·5O 
B.C. 
82288 

SELECTOR 
CHANNELS 

r 

HIGH 
SPEED 
PERIPH. 

Ml 
CH 

JIPLEXOR 
IAHNEL 

r- --- .-r-I..-------· 
~ INTA INT 

8259A 

I 1-···· .. 1 
LOW SPEED DEVICES ---- --

--., 
.. : 

I I 
I I 
I I 
I I 
I I 
I I 
I I ..... 
I 
~ 

231263-7 

l 

Q) 
I\) 
I\) 
c.n 
Q) 

~ 
§ 

~ 
~ 
© 
IMl 

~ 
'liil 
© 
2& 
~ 
~ 
C::{J 

© 
~ 



RESET 

CUJCI(. RESET 

I 
SROY RES CLKDUT. INTO 

"TI c· 
c .. 

J:" 
X1 

RESET 

~ HOlDA HOLDA SYSHLDA 

~ 
80186 HOLD +- HOLD SYSHDLD 

X2 r- ALE 82188 DEN 
CD 
!D 

BHE 
A16-A19 52·SO DT/R 

CO AIJII.AD15 52·SO 
N 
N 
UI 
CO 

.l>-
S· 

I III 
<0 
.I>-

;:, 

> 

t READY CLK, 52·SO 
RESET ROIGTe 

RQ/GTl 
-g 
>< ... 
CO 
CJ) 

~ 
III 

81187 BHE lI'-
A16-A19 ADDRESS/DATA BUS 

AIJO.AD15 .u-u 
;-
3 

STB T LATCHES XCVRS .r DE l12li2 1286 liE I 

~ ~'t , ADDRESS BUS I 
I r-ll 

DATA BUS 

U 
I 

PROM 
DECODER I 

I 

I READY J 
L SYNCH. 

f! 
CLOCK, SREADY A23(ARDy) 
RESET OREQn ..... HDLDA 

DACKn ..... HOLD 82258 EODn 

~ 
IORED BHE, 

A16-A19 IDACK 
AIJO.AD15 52·SO CS 

r 

SELECTOR 
CHANNELS 

I 
I 

HIGH 
SPEED I-

~ PERIPII. 

'"" 
~ 

-

MULTIPLEXOR 
CHANNEL 

r·---- ----~ 
• I 

,-----------. I 
I • I • I 

CS INTA INT • I • I • I • I 
8259A • • 

:-.1 
• .1 

I 1···· .. 1 1 
LOW SPEED DEVICES 

(MAlI. 32\ 

231263-8 

l 

CD 
N 
N 
UI 
CD 

~ 
(§1 

~ 
~ 
© 
IiiiiI 

~ 
'1iil 
© 
2.2J 
~ 
~ 
C::{) 
c::::o 

© 
~ 



INTERRUPTS 

82258 

52·SO CS 

•. C 
82 .. 

MUUlPlEX 
CHANNEL 

r -_ .. ---"'-i:, ,-'-... ------1 
, 

cs iiiTA INT :: 
·---Hf-\1 , , 

I==========+~ """ ' , , , ,_. 
_J 

u------' lOW SPlED DEVICES 
(""t 32j 

Figure 10.82258 in an iAPX 86 System 

Figure 11. 82258 In Remote Mode 

4-95 



intJ 82258 

COMMUNICATION MECHANISMS 

CPU -+ 82258 COMMUNICATION 

Communication from the CPU to the 82258 is two­
fold: 

- Some 82258 registers receive the main com­
mands from the CPU, through the slave interface 
of the 82258. Access to the 82258 is either syn­
chronoY.§.Jusing CS, §1, SO) or asynchronous 

(using CS, RD, WR; S1 = S2 = 1). 

- Most of the data is transferred via the control 
space in the memory in terms of organization 
blocks e.g. command blocks and multiplexor ta­
ble. Control space can lie in the memory space 
or the memory mapped I/O space (system or 
resident space for the remote mode) and can be 
dynamically changed with every start channel 
command. 

The CPU communicates with the 82258 by deposit­
ing data in the memory and into the on-chip registers 
of the 82258. The CPU can access the 82258 gener· 
al registers and status registers, and can start a 
channel by writing the proper command to the gen­
eral command register (GCR). The 82258 will then 
read the data from the memory command block and 
set itself up. 

Slave Interface 

The slave interface of the 82258 is used by the CPU 
to access the 82258 internal registers. Although 
most of the CPU to 82258 communication is done 
through memory based data blocks, some direct ac­
cesses to the 82258 registers are necessary. For 
example, during the initialization phase the general 
mode register (GMR) must be written to set up the 
82258 or, to start a channel the command pointer 
registor (CPR) and the general command register 
(GCR) must be loaded. During the system debug-

ging phase, access to the 82258 internal registers is 
very important. 

The slave interface is enabled by the CS input and 
consists of the following lines: 

S1, SO -Status Lines (inputs) 

RD, WR -Control Lines (inputs) 

A?-AO -Register Address (inputs) 

015-00 -Data Lines (inputs/outputs)-(for the 
286 and the remote modes) 

AD15-ADO -Address/Data Lines (inputs/out­
puts)-(for the 186 and 8086 modes) 

In the 286 mode and the 186/86 mode, two types of 
accesses are possible: 

- synchronous access through the status lines Si 
and SO 

- Asynchronous access using RD and WR 

The register address must be supplied on the ad­
dress pins A?-AO, except for the synchronous ac­
cess in the 186/86 mode. Address data lines AD?­
ADO are used for the register address information in 
case of a synchronous access in the 186/86 mode. 

In the remote mode, a synchronous access is not 
possible as the 82258 has to release its local bus to 
enable the CPU to access its registers. On receiving 
an access request (CS input asserted), the 82258 
releases the local bus as soon as possible and sig­
nals it by asserting the BREL line. Only then, can the 
CPU access the 82258 registers. 

82258 -+ CPU COMMUNICATION 

The 82258 to the CPU communication is also two­
fold: 

- Hardware based communication, using one or 
more EOD lines as interrupt request lines to the 
CPU. The CPU can then read the status registers 

4-96 



82258 

(and the interrupt vector register for the multi­
plexor channel) and service the interrupt. 

Control space based communication: At the end 
of a DMA transfer, the 82258 writes the contents 
of the appropriate channel status register into 
the channel command block. Additionally, it may 
transfer some other information (e.g. the updat­
ed source pointer) !ntc the commai1d status 
block. 

The 82258 updates its internal registers (e.g. the 
channel command pointer, the general status regis­
ter etc.) for any CPU access. 

82258 - PERIPHERAL COMMUNICATION 

The DMA interface of the 82258 is used for its com­
munication with the peripherais. It consists of three 
signal lines: 

DREQ -DMA Request 

DACK -DMA Acknowledge 

EOD -End of DMA 

DREQ and DACK control the externally synchro­
nized DMA transfers. A burst of data is transferred 
for a continuous DMA request, as long as the re·· 
quest signal is active. 

EOO lines, which are quaSi-bidirectional, enhance 
the 82258-Peripheral communication link. First 
these can be used as inputs to the 82258 to receive 
an asynchronous external terminate signal to termi­
nate a running DMA. As outputs, they can be used to 
interrupt the CPU and/or to signal a specific status 
to the peripheral (e.o. transfer aborter! or Ann of ,.. 
'/..oIVV-l\. Vi, ,.,;IvIIU/lcvvIVC; Ilv,x,l UIUI,..r\ .. j. III aUUIUUII, ule 

EOD output of channel 2 can be used as a collective 
interrupt output (INTOUT) for all the DMA channels 
while the other three EOO lines retain their normal 
function. 

An EOO output signal can be generated synchro­
nous to a synchronising device at the last data trans­
fer or, synchronous to the internal clock at the last 
destination cycle. An EOO can also be generated 
asynchronously through a Type 2 command. 

BUS ARBITRATION 

HOLD/HLDA Sequence 

These signals are used for the bus arbitration in the 
286 mode and the 186/88 (8086/88 Min.) mode. 
Whenever the 82258 needs the bus, it activates the 
HOLD signal and the processor surrenders the local 
bus as soon as possible by asserting HLOA. The 
82258 performs the transfer and switches the HOL.D 
to low. The processor takes the bus and switches 

4-97 

the HLOA to low To force the 82258 to surrender 
the bus, the HLOA must be set to low .. The 82258 
will release the bus after the currently running bus 
cycle or the unseparable bus cycles. Unseparable 
bus cycles are: 

-- The two 10 acknowledge bus cycles for the 
8259A PIC. 

- Word transfers on odd boundary addresses, real· 
ised by two bus cycles where each transfer is a 
byte. 

- Fetch of 24 bit address pointers out of the memo·· 
ry or restore of the pointers. 

- Read- modify- write the 8259A mask registers. 

The 82258 signals the surrendering of the bus by 
floating the bus and removing the HOL.D signal. If 
requests for bus cycies are present, the HOLD will 
go active after a delay of two T -states. 

F10/GT Sequence 

RQ/GT protocol is used for the [J086/8S (Ma"lC) 
Mode. The 82258 requests the bus bv sCllrJinst.8 
request pulse of one CLK period lellgth, VI:I til" HOI 
GT Signal, to the processor. The proc(,ss()1 ;1(k'll >wl­
edges it with a pulse on the same lirl() 1 il'" I III>' 
82258 controls the bus. When surrendnring thl' IIII~ •. 

it sends a release pulse on the RO/Gl line. 

CS/BREL Sequence 

This is used in the remote mode along With tile 
HOLD/HLDA signals. HOLO/HLDA are used for 
system bus arbitration and CSIBREL lor local bus 

~islers or the resident bus). Tho CPU asserts the 
CS signal to ask fo; the local bus and the 82258 
releases the bus as sOar! as possible by activating 
BREI.. After the CPU !las complf}ted its access. it 
should set CS high. The 82258 deactivates BREL 
and proceods with its own bus cycles on the local 
bus. 

NOTE: 
When the 82258 is not in possession of the bus, all 
output signals are tristat~_ except the follo~!!11L 

HOLD (except in the RQ/GT protocol), DACKO­
. OACK3, EOOO-EOD3, 

BREL (remote mode) and ALE (186 mode) 

CHANNEL CONFIGURATION 

The 82258 has four independently programmable 
DMA channels with their own register sets. All chan­
nels can be used as high speed selector ci1annels 
for achieving maximum transfer rate or channel 3 
can be used as a multiplexor channel to allow the 
82258 to interface to a large number of I/O devices. 



infef 82258 

The selector .channels support synchronised and 
non synchronised transfers as well as advanced fea­
tures like single cycle transfer, command and data 
chaining. Channel switching imposes no perform­
ance penalty on the 82258. Programmable priority 
schemes allow flexible multiple channel processing. 

of the command block are updat­
ed. The command pointer is not 
advanced until the block transfer 
is terminated. Maximum cumula­
tive data transfer rate of 275K 
Bytes/sec can be achieved for 
the channel. 

MULTIPLEXOR CHANNEL Single Transfer: Similar to the byte/word multplex. 

Channel 3 of the 82258 can also be operated as a 
multiplexor channel supporting up to 32 subchan­
nels. External 8259As are used to arbitrate and pri­
oritize channel requests (Figure 13). Multiplexor 
channel allows command chaining but data chaining 
is not supported. 

As a multiplexor channel, channel 3 uses an exter­
nal multiplexor table (MT) in the memory to store 
separate command pointers and, the PIC (8259A) 
mask register locations for each device in that chan­
nel. Each entry in the MT consists of 8 bytes; the 
first 4 give the command pointer for the subchannel 
and the second 4 the address of the mask register 
of the 8259A for that subchannel (Figure 14). 

After an 1/0 request from the 8259A, the 82258 
fetches an 8 bit vector (device number) from the in­
terrupt controller (by the INT IINTA mechanism), left 
shifts it by three and, uses that as an offset into the 
multiplexor table with that entry pointing to the cur­
rent subchannel command block. The 8259A should 
be programmed for AEOI mode. 

SLAVES 

But, the command pointer is ad­
vanced after each transfer, thus, 
executing command chaining. 

231263-12 

Each subchannel can have a subchannel program 
or a command chain. The command chain must be 
terminated by a stop and mask command (as op­
posed to a stop command for a selector channel). 
Three kinds of data transfers are possible: Figure 13. Multiplexor Configuration 

Byte/Word One byte/word is transferred per 
Multiplex: request. The source/destination 

pointer and the byte count fields 

. 
g MiJlJlPlEXORCONSISTS OF ONE 

OR MORE 8259A 
(INTERI!;UPTCONTROLL£R) 

Figure 12,82258 Channel Configuration 

4-98 

231263-11 



82258 

Block Multiplex The whole command block is ex­
Transfer: ecuted and a block transfer made 

upon receiving a request. Such 
transfer is necessarily free running 
or non-synchronised and is car­
ried out at a maximum speed of 4 
MByte/sec in an 8 MHz iAPX286 
system. After termination, the 
command pOinter is advanced 
(command chaining). 

The type 2 commands have the same function as for 
the selector channels (Table 6). A subchannel is 
stopped with a stop and mask command which must 
occur at the end of a command block chain. The 
82258 generates the interrupt (INTOUT) or EOO, if 

programmed. The 82258 automatically masks the 
request line on the 8259A by setting its mask bit. 
Thus no further requests can come from this sub­
channel until it is enabled by the CPU. The 82258 
indicates the interrupted subchannel (vector) in the 
Multiplexor Channel Interrupt Vector Register 
(MIVR). The MIVR can be accessed by the CPU 
a~d, af!er reading the MIVR, the stop bit of the indi­
cated subchannel is reset. If no channel 3 interrupt 
(EOO or programmed INTOUT) is enabled, the inter­
nal interrupt flag is set by the stop and mask com­
mand. Then the CPU checks the MIVR by polling, 
i.e., with each reference of this register, the CPU can 
read off the stopped subchannel vector that has the 
highest priority in queue until the NV (vector is not 
valid) bit in M!VR is set. 

I MULTIPLEXOR TABLE POINTER ON CHIP 

REO UEm FROM DEVICES ____ . ________________ -------------

+ + + + MULTIPLEXOR TABLE liN MEMORY 

I I SUBCHANNEl 0 
8259A SUSCH. /10 COMMAND CHAIN 

COMMAND 

8 eYTES ·0· 
, POINTER TYPE 1 

PER COMMAND 

SUBCHANNEl SU8CH. /10 
MASK TYPE 1 

I POiNTER COMMAND 
·0· 

STOP AND MASK 

SUSCH. 111 INTR. COMMAND 

8 BIT VECTOR COMMAND 

l (DEVICE NUMBER) 
·0· 

I POINTER 
SU8CH.1 PROGRAM . 

MASK 
1)1"'1;: i 

I POINTER ·0· 
TYPE 2 

SUSCH. #2 
cOMMAND f-I POINTER TYPE 1 

·0· 

STOP AN D MASK 
SUSCH. #2 INTR. COMMAND 

MASK 

-0· 
I POINTER 

SUSCH. 2 PROGRAM 

TYPE 1 

~ TYPE 1 

TYPE 1 

STOP AND MASK 
INTERRUPT 

231263-13 

Figure 14. Multiplexor Table 

4-99 



intJ 82258 

DATA TRANSFER AND 
MANIPULATION CONTROL 

SINGLE CYCLE AND TWO CYCLE TRANSFERS 

The 82258 provides the flexibility to optimize the 
system design by allowing: 

- Highest speed DMA transfers in the single cycle 
transfer mode. In this mode bytes or words (16 
bits) are transferred directly from the source to 
the destination without storing the data in the 
82258 registers (Figure 15). The single cycle 
transfer mode does not, necessarily, mean one 
bus cycle for transfer (though most of the trans­
fers require either a source or a destination data 
cycle only). Maximum Single channel or multiple 
channel transfer rate of 8 MByte/sec. in an 8 
MHz iAPX 286 system (4 MByte/sec in 8 MHz 
iAPX 186/86 systems) is achieved in this mode. 

a) Single Cycle Transfer 

In the single cycle transfer mode, while the re­
questing device is serviced (and addressed) us­
ing DACK signal, the pointer to the other location 
(memory or I/O) is issued and its bus cycle exe­
cuted by the 82258. It is the duty of the I/O de­
vice to know whether the cycle is a read cycle or 
a write cycle and, to generate its command signal 
out of the bus command signals. 

Single cycle transfers mode is not allowed for the 
multiplexor channel. All single cycle transfer are 
externally synchronised and "On the fly" opera­
tions are restricted (see Table 5). 

- Maximum data manipulation operations in the two 
cycle transfer mode. The two cycle transfer mode 
does not, necessarily, imply two bus cycles, 
though most of the transfers consist of a fetch 
cycle from the source and a store cycle to the 
destination location. In this mode the source data 
is always stored in the 82258 registers before be­
ing sent out to the destination. Although half as 

~E~ORY PERIPHERAL , t 

~ 
,_/ 

~ ADVANTAGE: 

~ > 
'SPEED-

BUS 1 BUS CYCLE/TRANSFER 

~ 

c:J 
b) Two Cycle Transfer 

~E~ORY PERIPHERAL , + ADVANTAGE: 

~ )~ .IION THE FLY" 

~ -TRANSLATE 
BUS 'VERIFY AND HALT 

~ 
V OPERATIONS 

, ~E~. TO ~E~. 

TRANSFERS 
, DISSI~ILAR BUS 

WIDTH SUPPORT 

82258 

231263-14 

Figure 15. Single/Two Cycle Transfer 

4-100 



82258 

fast as the single cycle mode, a number of "On 
the fly" operations e.g., translation, make this 
mode extremely versatile. The two cycle transfer 
mode also allows automatic assembly and disas­
sembly of the data, i.e., the data can be read as 
one 16 bit word and written as 2 bytes or vice­
versa. It is useful for linking the 8 bit peripherals 
to a 16 bit system and vice-versa. 

The two cycle transfer mode allows multiplexor 
channel operation and memory to memory trans­
fers. Two special cases of two cycle data transfer 
are: 

Read Operation or, data transfer without a 
destination address (the data assembly regis­
ter of the 82258 itself is the destination of the 
source data). Compare operations on the 
source data are possible (e.g. to test the 
status of a disk controller). 

Write Operation or, data transfer with no 
source address i.e., the source data is a byte 
or word constant (literal) in the data assembly 
register of the 82258 (loaded during the setup 
routine with a low word out of the source point­
er field). The write operation can be used to 
erase a memory/peripheral data block (or pe­
ripheral register) or to load it with a certain 
constant. 

Table 5. Data Manipulation Operations 

Operation 
Single I Two I Multiplexor 
Cycle Cycle Channel' 

Bus Cycles Required" 

Masked Compare 
I I (Byte/Word) 2 2 2 

Vt1It1Y 1'\1/1"'1 " 
, 

Verify and Halt N/A 2 N/A'" 
Verify and Save 2 F F 
Translate F 3 3 
T ransier wi 0 Source 

or Destination F 1 1 

Operation Allowed 

Command Chaining Yes Yes Yes 
List Data Chaining Yes Yes No 
Linked List Data Chaining Yes Yes No 
Assembly i Disassembly No Yes Yes 
Source Synchronization Yes Yes Yes 
Destination 

Synchronization Yes Yes Yes 
Free Running No Yes Yes 

: The multiplexor channel can only run in the two cy­
cle transfer mode. 

: Actual number of bus cycles may vary depending 
upon address boundary, hardware wait state num· 
ber, pOinter modification direction etc. 

: Verify and Halt is executed pfoperly if the subchan­
nel is not byte/word multiplex. 

F : Fatal efror is generated. 
N/A: Not Allowed 

4-101 

CHANNEL COMMANDS AND COMMAND 
BLOCKS 

The 82258 controls the data transfer, with all its 
modifications, through the channel command 
blocks. These contain the channel command word 
and all the initial parameters for the data transfer 
p'l(ecutiorL The channel start command from the 
CPU causes the 82258 to read the channel com­
mand block, with all its parameters from the memory 
and, to load them into the internal channel registers. 
The channel registers that are loaded via the com­
mand blocks are: CCR, SPR, DPR, SCR, TTPR, 
LPR/MTPR, MASKR and COMPR (see the register 
description for details on these registers). After ex­
amining the channel command for programming er­
rors, the data block transfer is executed if no errors 
are detected. After the transfer termination, the rea­
son for the termination is displayed in a word in the 
channel command block (channel status). Optional­
ly, the last values of the source and the destination 
pOinters and the byte count register may also be 
written out to the command block (constituting a 
status block if enabled). The CPU should not access 
the channel's control space while the channel is ac­
tive (not stopped). 

There are two basic types of channel commands: 

Type 1 Channel Command - Data transfer Opera­
tion (Transfer Channel Command). 

Type 2 Channel Command - Control Operation 
(Organizational Channel Command). 

A complete channel program consists of at least 
one channel command block with a type one com­
m::lnri ::Inri nnp. tvnp. :;> command (stoo\. 

Type 1 Channel Commands And Command 
Blocks 

A command block always specifies a data transfer 
operation. The type 1 channel command defines the 
task to be performed by the channel (see the chan­
nel command register for details). Simple block 
transfer is specified by the short channel command 
block (Figure 16), which also allows data chaining. 
For more complex operations, the standard block is 
expanded by a command and a block extension, 
forming a long channel command block (Figure 16). 
The command block is always pointed at by the 
command pointer. Each channel has its own com­
mand pointer. Enabling of the status block (a bit in 
the channel command extension) extends the long 
channel command block by a status field of 12 byte 
length. This status field is loaded by the 82258 after 
the termination 01 the block transfer (Figure 16). 



ON 
CHIP 

IN MEMORY 

82258 

COMMAND POINTER 

z 
Q 
!II 

~ 
'" '" g I 

15 TYPE 1 COMMAND 

SOURCE POINTER 

-0- I 
DESTINATION POINTER 

-0- I 
BYTE COUNT 

-0- I 
CHANNEL STATUS 

COMMAND EXTENSION 

MASK 

COMPARE DATA 

TRANSLATE POINTER t 1-: ----0-----. 
• I LAST SOURCE POINTER i 1--: --0-----., 

a 

) 

, 
I 
I .. 

!o.' LAST DESTINATION POINTER I 

g: -0- : 
CD ; • 

~, LAST BYTE COU NT I 
,.; , , 
I;l, - 0 - 1 I 

~.------- -----_ .. 231263-15 

Figure 16. Type 1 Command Block 

Type 2 Channel Commands and Command 
Blocks 

The type 2 channel commands support the con­
struction of channel programs by allowing opera­
tions such as auto-initialization, conditional chaining 
or program controlled interrupts. Figure 17 shows 
the structure of the type 2 channel command blocks. 

The first word of the type 2 command block is the 
command and the second and the third may be an 
address. 

Most of the type 2 commands can be executed con­
ditionally; only exception being the unconditional 
stop which on the multiplexor channel functions as 
the Stop and Mask command. The 4 termination 

conditions are given in the eSR. If more than one 
condition is specified, the conditions are ORed. A 
special flag in the command word (I flag) allows to 
invert the channel status register bits before they are 
compared with the termination conditions. Table 6 
gives the list of the different type 2 channel com­
mands. 

The type 2 commands can also activate ~ogram 
controlled interrupt (INTOUT) and/or an EOD signal 
during the execution of a command (controlled by 
the ED and the IT flags). In the type 2 command the 
EOD is an asynchronous EOD (compared to the 
type 1 EOD which is synchronous to the last data 
transfer). If the ED or the IT flag is set, the signal 
generation is unconditional, independent of the con­
dition code. 

4-102 



intef 82258 

Table 6. Type 2 Channel Commands 

Command 
~----------~~~~------------

Relative Jump' 
Absolute Jump' 
Unconditional Stop I 
(Stop and Mask Subchannel 

for multiplexor channel) 
LC~o~nd~i.t~i~o_na~I_S~t~o~p_·· ____________________ ~ 
* : Both conditional or unconditional 
* * : The 82258 does not check if a selector channel only 

type 2 command is used on the multiplexor channel, 
but its execution will lead to erroneous channel 
processing. 

COMMAND AND DATA CHAINING 

Command Chaining 

15 0 

Type 2 comman~ 
Signed 16-bit Displacement - Relative JUMP 
-------------------

-0-

L Type 2 Command I b 24-bit Pointer 1-- Absolute JUMP 

-o-=-~_~ 

Type 2 Command__ - Conditional STOP ~
----.-------~ 

_ 0 _ - Unconditional STOP 
------------- - STOP and MASK 
L-- - 0 - I for MUX Channel 

Figure 17. Type 2 Command Block 

The 82258 allows chaining of the command blocks in the memory, for any channel, for sequential execution. 
Figures 16 and 17 show channel command blocks and Figure 18 shows the examples of command chaining. 
The 82258 gets the address of the command block from its on-chip command pointer (initialized by the CPU) 
and starts executing. When it comes to the end 01 one command, it automatically starts to fetch and execute 
the next command block until a stop command is found. Conditional and unconditional STOP and JUMP 
commands allow complex sequences of DMAs to be performed. 

Command chaining allows the 82258 to do CPU independent 1/0 processing, thus, saving valuable CPU time. 

TYPE 2 TYPE 2 

A) SIt.4PLEST DMA OPERATION 8) AUTO-RELOAD DMA 

TYPE I 

TYPE 2 

TYPE 1 

TYPE 2 

// 
,-------, TYPE 1 

OMA 
# 1 

JUMP Ir ·CON­
OITlON· MET 

TYPE 1 STOP 

·CONDITION· = 
Jr,ip,SK COMPARE HIT 

OR 
VERlrY SUCCEED 

OR 
EXTERNAlTERMINATE 

OR 
BYTE COUNT END 

C) CONomONAL DMA OPERATION 

Figure 18. Command Chaining 

4-103 

l 

231263-16 j 



82258 

Data Chaining 

Data chaining allows gathering and scattering of data blocks. The 82258 permits automatic, dynamic linking of 
the data blocks scattered in the memory. Each data block in a chain can be up to 64K bytes. Two types of data 
chaining are allowed: 

List Chaining: The chained data block descriptors are contiguous in a block which forms the data chain list 
(Figure 19). End of the chain is indicated by making the byte count field zero in the data chain list. List chaining 
is fast (1 microsecond between completion of one block transfer and going to the next element in the list, in an 
8 MHz iAPX 286 system) but not very flexible. 

I COMMAND POINTER I 
---------------------;t------~:~;------------------

15 TYPE 1 COMMAND 

SOURCE POINTER 

- a -

CHAIN LIST POINTER 

-0-

NOT USED 

-0-

CHANNEL STATUS 

CHANNEL COMMAND BLOCK 

DATA 
BLOCK 
# 1 

DATA 
BLOCK 
# 2 

0 

DATA 
BLOCK 
#3 E 

Figure 19. Destination List Chaining of Data 

4-104 

BYTE COUNT 

DATA POINTER 

BYTE COUNT = 0 

DATA CHAIN LIST 

231263-17 



82258 

Linked List Chaining: Each list element which describes a particular data block (location and length) also 
holds a pointer to the next list element to be processed (Figure 20), End of the chain is indicated by making the 
byte count field zero in the linked list. 

Linked list chaining is slower than the list chaining but the data blocks can be included, removed or, their 
sequence altered dynamically, through the link pointer manipulation by the CPU, 

r----------- -------------------,--. 

I COMMAND POINTER I 
---------------------;t------~~~:,;;-----------------

15 TYPE 1 COMMAND a 

LINKED LIST POINTER 

- 0 - I 
DESTINATION POINTER 

- 0 - I ,/ 
NOT USED 

- 0 - I DATA 
BLOCK 

CHANNEL STATUS 

I 
# 1 

J 

---------DATA 
BLOCK 
# 2 

DATA 
BLOCK 
#3 

BYTE COUNT 

DATA POINTER 

- a - I 
LINK POINTER 

- 0 - I 
BYTE COUNT 

DATA POINTER 

- 0 - I 
LINK POINTER 

- 0 - I ~ 

~--____ B-YT-E_C-O-u-N-r----__ -l~~ 
~ATA POINTER 

BYTE COUNT= a 

I 
DATA CHAIN LINKED LIST J 

________________ . ____ .231263-18 

Figure 20, Source Linked List Chaining of Data 

4-105 



intJ 82258 

"ON THE FLY" OPERATIONS 

The 82258 allows various data manipulation opera­
tions during the transfer: 

Mask and Compare 

Allows comparison of each byte, word or bit field 
(masking) in source data with some given pattern. 
Data transfer can be terminated on a match or a 
mismatch depending upon the program. This is pos­
sible both for the single and the two cycle transfer 
modes but, the transfer rate is halved in the single 
cycle mode. 

Verify 

Complete source data block is compared with a giv­
en data block. The data transfer can be terminated 
on misrnatch (Verify and Halt). Supported only for 
the two cycle transfer mode. 

I SOURCE POINTER 

I TRANSLATE POINTER t-
·--------r--·------~ 

I TRANSLATED SOURCE POINTER 

;---~ 
I , 
I OPTIONAL I 
I MASK-COMPARE I 
I I 
I I ._--- --_. 

I DESTINATION POINTER 

82258 

Verify and Save 

The data block is transferred from source to destina­
tion and in parallel compared with a given data 
block. The data transfer is not stopped on a mis­
match. This operation is supported only for the sin­
gle cycle transfer. 

Translate 

The source data (bytes) is translated with the aid of 
a translation table (Figure 21) before being sent to 
the destination. Translation is supported for the two 
cycle transfer mode only. If the destination is 16 bits, 
the two translated source by1es are assembled in 
the DAR before the destination cycle is executed. 

Various 'on the fly' operations can be combined to 
allow the 82258 to perform versatile DMA opera­
tions. 

V 
BYTE 

H~)+ 

-'-
BYTE 

- ..... 

,. 

.;I' 

--. 

SOURCE 
BLOCK 

TRANSLATE 
TABLE 
(MAX. 2S6 
BYTES LONG) 

DESTINATION 
BLOCK 

231263-19 

Figure 21. Translate Operation 

4-106 



82258 

PRIORITY CONTROL 

The 82258 controls concurrent processing of its dif­
ferent channels (and subchannels) and, the internal 
and the external requests through a flexible priority 
scheme. 

The PRI bits in the GMR are used to select the prior­
ity scheme which can be fixed or variable or a com­
bination of the two (see the GMR description for the 
details). The unseparable bus cycles (e.g., 24 bit 
pointers) are not affected by the priority rotation. Ex­
ternal 8259As determine the priorities for the mUlti­
plexed subchannels. 

The processing of the internai or the external re­
quests is controlled by a fully nested priority system 
including all four channels. Since more than one re­
quest can compete for the same channel, the re­
quests are also prioritised in relation to their types as 
follows (in descending order of priority). 

- Channel Stop (Command from the CPU out of the 
GCR) 

- External asynchronous termination request 
(through EOD) 

- Internal continue request on previously interrupt­
ed sequence 

- Start or stop subchannel or multiplexor channel 

- Internal (without synchronization) or external 
(with synchronization) data service request or 10 
request for the multiplexor channel 

- Channel wait (idle) 

Data chaining and internal termination belong to the 
rI~t~ c:.e::al"'ui,..o ,.onll.o~t nr .... ,...oc-t:>i .... ,.. ............................... ,..J _1-._:_: __ 

o810ngs TO me termination processing. 

Slave operations, where the 82258 is addressed by 
the CPU, have the highest priority of all the activities. 

ADDRESSABILITY 

The 82258 has two address spaces like the 80286, 
the 80186/188 and the 8086188 processors: 

Memory space 

- 1/0 space 

Both the spaces are 16 MByte large for the 286/re­
mote mode and 1 Mbyte for the 186/8086 mode. All 
types of transfers are possible: 

Memory/Memory 

1/01110 

Memory/l/O 

1/0 ! Memory 

Either of the memory or the peripheral can lie in ei­
ther of the two spaces. Each space can be indepen­
dently 8 bit or 16 bit wide. All possible Even-Odd 
boundary address combinations are supported for 
the data transfer from source (8 bit or 16 bit) to des­
tination (8 bit or 16 bit) in the two cycle transfer 
mode. The source and the destination pointers can 
be incremented, decremented or not modified at all 
(INC/DEC bits of type 1 channel command in the 
eeR) after the corresponding data bus cycle. The 
82258 does not indicate or check an 'address out of 
range' condition. Address overflow and underflow 
during a block transfer results in an address wrap 
around. Maximum length of the data block can be 16 
MBytes in an iAPX 286 system. In the 186/86 mode 
the maximum byte count is (1 M-1). This is not 
checked by the 82258. 

SYNCHRONIZATION OF DATA TRANSFER 

The 82258 allows both the external synchronization 
of a DMA transfer (from a source or a destination 
device) or a free running DMA (internally synchro­
nized). 

The external synchronization allows control of input! 
"''\1 1+",1 !t ""'\f"~"""'+;""""'" : ...... I,.. .... _ .. _1 __ 4 41,....- ___ :_k __ ~1 -l~ 

Vice, nence occupying the bus only when the periph­
eral is able to receive or transmit data. 

Free running DMA (no external synchronization) is 
used for the memory to memory transfers, during a 
continuous DMA request or, in the block multiplex 
subchannel after the channel start. It is not support­
ed for the single cycle transfer mode. 

4-107 



82258 

286 PROTECTION 

The 82258 needs special consideration to operate in 
an iAPX 286 system in the protected mode. The 
82258 works only with the real addresses but it sup­
ports a protected mode iAPX 286 system if the fol­
lowing conditions are fulfilled: 

- The 286 kernel software must check all the pro­
tection rules during the set up routine for the 
82258 and perform the limit checks for the block 
transfers. This is supported by the 80286 instruc­
tions e.g. VERR (verify Read Access), VERW 
(verify Write Access), LSL (load Segment Limit). 

- The 286 kernel has to translate the logical ad­
dresses into the physical addresses. 

- All the 82258 registers should be memory 
mapped and access to them should be allowed 
only for a 286 kernel routine (task isolation). 

Normally an 1/0 utility routine is provided by the op­
erating system to service the 82258. No direct user 
access should be allowed to the 82258 from the 
lower privilege levels. The real addresses can be 
generated only by using the 286 protection mecha­
nism and are so checked against any protection vio­
lation. 

82258 REGISTER MODEL 

The 82258 has three sets of registers (Figure 22): 

General Registers 
Channel Registers 
Multiplexor Channel Registers 

All registers can be read or written into by the CPU 
but, most are accessed only for the test purposes. 
The CPU loads some registers (e.g. General Mode 
Register) during the initialization after the reset, and 
others during the invocation of a channel (General 
Command Register). Some of the channel registers 
are programmed or read by the CPU but most of 
them are loaded by the 82258 itself during the setup 
routine after a channel start. All accessible registers 
can be accessed bytewise or wordwise by the CPU. 

Figure 23 gives a layout of the registers. Note that all 
registers lie on even addresses. 

GENERAL REGISTERS 

15 0 

OSR I STATUS 

GWR I MODE 

OCR COMMAND 

GBR BURST 

GOR DELAY 

7 0 

CHANNEL REGISTERS (-4 SETS; 1 PER CHANNEl.) 

23 0 

CPR COt.tIdANO POINTER 

SPR SOURCE POINTER 

OPR DESTINATION POINTER 

TTPR TRANSLATE TABLE POINTER 

LPR LIST POINTER 

BCR BYTE COUNT 

CCR CHANNEL COMMAND 

MASKR MASK 

COIilPR COMPARE 

OAR ASSEMBLY / DISASSEMBLY 

15 CSR I CHANNEL STATUS 

7 0 

MULTIPLEXOR CHANNEL REGISTERS 

7 0 

MIVR INTtRRUPT VECTOR 

LVR LAST VECTOR 

SCR SUBCHANNEL 

7 0 

231263-20 

Figure 22. 82258 Register Set 

4-108 



82258 

Address Bits 
Address Bits 7,6 

Address Bits 
5-0 5-0 

(hexadecimal) 00 01 10 11 (binary) 

0 GCR 000000 
2 SCR 000010 
<I GSR 000100 
6 RESERVED 

RESERVED RESERVED RESERVED I 
000110 

8 GMR 001000 
A GBR 001010 
C GDR 001100 
E RESERVED 001110 

10 CSRO CSR1 CSR2 CSR3 010000 

I 
12 DARO DAR1 DAR2 DAR3 010010 
14 MASKRO MASKR1 MASKR2 MASKR3 010100 
16 COM PRO COMPR1 COMPR2 COMPR3 010110 
18 MIVR 

I 
011000 

1A 
RESERVED RESERVED RESERVED 

lVR 011010 
1C I 011100 
1E 

RESERVED 
011110 

20 CPRlO CPRl1 CPRl2 CPRl3 100000 
22 CPRHO CPRH1 CPRH2 CPRH3 100010 
24 SPRLO SPRL1 SPRL2 SPRL3 100100 
26 SPRHO SPRH1 SPRH2 SPRH3 100110 
28 DPRLO DPRL1 DPRL2 DPRL3 101000 
2A DPRHO DPRH1 DPRH2 DPRH3 101010 
2C TTPRLO TTPRL 1 TTPRL2 TTPRL3 101100 
2E TTPRHO TTPRH1 TTPRH2 TTPRH3 101110 

30 LPRLO LPRL1 LPRL2 LPRL3/MTPRL 110000 
32 LPRHO LPRH1 LPRH2 LPRH3/MTPRH 110010 
34 RESERVED RESERVED RESERVED RESERVED 110100 
-- ------ ._- -----, .-- ------ --- -----. --- - - -

38 BCRLO BCRU BCRL2 BCRL3 111000 
3A BCRHO BCRH1 BCRH2 BCRH3 111010 
3C CCRLO CCRL1 CCRL2 CCRL3 111100 
3E CCRHO CCRH1 I CCRH2 CCRH3 111110 

GCR = General Command Register MIVR = Multiplexor Interrupt Vector Register 

SCR = Subchannel Register LVR = Last Vector Register 

GSR = General Status Register CPR = Command Pointer Register 

GMR = General Mode Register SPR = Source Pointer Register 

GBR = General Burst Register DPR = Destination Pointer Register 

GDR = General Delay Register TTPR = Translate Table Pointer Register 

CSR = Channel Status Register LPR = List Pointer Register 

DAR = Data Assembly Register MTPR = Multiplexor Table Pointer Register 

MASKR = Mask Register BCR = Byte Count Register 

COMPR = Compare Register CCR = Channel Command Register 

L = Low Word 0,1,2,3 = Channel Number 

H = High Byte 
Figure 23. Layout of Register Addresses 

4-109 



82258 

GENERAL REGISTERS 

These registers are common to all the channels. 

General Mode Register (GMR) 

This is the first register to be programmed after the reset since it describes the 82258 environment. Here the 
system wide parameters are specified. The 16 bit register is loaded bytewise with the low byte being pro­
grammed f:rst. 

15 14 13 9 7 3 2 1 0 

EN 
MINT CYC I/O MEM 

0 CI 
3 I 2 1 I 0 

PRI 

:5 I 2 1 I 0 

CON RM (RES) (SYS) 
BUS BUS 

\ 1\ ''--- , \ , 

L PHYSICAL BUS WIDTH 

0- 8 BIT 
1 - 16 BIT 

REMOTE MODE ENABLE 

o - LOCAL MODE 
1 - REMOTE MODE 

MODE OF CHANNEL 3 

o - NORMAL CHANNEL 
1 - MULTIPLEXOR CHANNEL 

TRANSFER TYPE 

0- TWO CYCLE 
1 - SINGLE CYCLE 

CHANNEL PRIORITY 

00 - ALL FIXED, CH.O 
HIGHEST 

01 - CH.O,1,2 ROTATING, 
CH.3 FIXED (LOWEST) 

10 - CH.O,1 ROTATING 
(HIGHER GROUP) 
CH.2,3 ROTATING 
(LOWER GROUP) 

11 - ALL ROTATING 

INTERRUPT MASK 
FOR TYPE 2 
CHANNEL COMMAND 

o - INTERRU PT ENABLED 
1 - INTERRUPT DISABLED 

COMMON INTERRUPT 
ENABLE 

o - EOD2 PIN = EOD2 
1 - EOD2 PIN = COMMON 

INTERRUPT 
(INTOUT) 

231263-21 

Figure 24. General Mode Register 

4-110 



inter 82258 

General Status Register (GSR) 

This register provides the status information for all the channels. It also shows which channels have interrupts 
pending and, where the channel control space lies. It is a 16 bit register. 

15 

SiR 

12 

CH.3 

8 

CH.2 

4 

CH.1 

3 2 

CH.O 

o 

DMST 

l ~""""~"'" --------
00 - CHANNEL INACTIVE/ 

STOPPED, NO REQUEST 
01 - CHANNEL INACTIVE/ 

STOPPED, REQUEST 
PENDING 

10 - CHANNEL iN 
ORGANISATIONAL 
PROCESSING 

11 - DMA IN PROGRESS 

...... --~ INTERRUPT STATUS 

o - NO INTERRUPT 
1 - INTERRUPT PENDING 

'------I~ CONTROL SPACE LOCATION 

o - CONTROL SPACE ON 
RESIDENT BUS (REMOTE MODE) 
OR 10 BUS (LOCAL MODE) 

1 - CONTROL SPACE ON 
SYSTEM BUS (REMOTE MODE) 
OR MEMORY BUS (LOCAL MODE) 

L.-________ ~~ STATUS CHANNEL 1 

------------------+~ STATUS CHANNEL 2 

~--------------------------------------~~ STATUS CHANNEL 3 

231263-22 

Figure 25. General Status Register 

4-111 



82258 

General Command Register (GCR) 

GCR is an 8 bit register directly loaded by the CPU to start or stop a channel. The START command also 
defines the control space assignment. The pending interrupt from any channel is also cleared through the 
GCR. Any combination of channels can be addressed simultaneously. To start/stop a multiplexor subchannel, 
the subchannel number must be first loaded in the Subchannel Register (SCR). The Halt/single step com­
mand is useful for the system debugging. 

7 :5 

CHANNEL 

3 I 2 1 I 0 

I 

\ I \ 

0 

COMMAND 

I 

L," ANNEL COMMAND 

00 0- NOP 
00 1 - CONTINUE CHANNEL (5) AFTER IT HAS BEEN STOPPED 

BY THE STOP COMMAND 
01 
01 
10 

a - START 
1 - START 
a .- STOP 

CHANNEL (5) - COMMAND BLOCK IN SYSTEM/MEMORY SPACE 
CHANNEL (s) - COMMAND BLOCK IN RESIDENT/IO SPACE 
CHANNEL (5) 

10 SUBCHANNEL (N IN SCR) 
11 SUBCHANNEL (N IN SCR) 
11 

1 - START 
0- STOP 
1 - HALT SINGLE STEP CHANNEL (5): START EXECUTION AND STOP 

AfTER NEXT COMMAND BLOCK HAS BEEN LOADED 

IN 

0 
1 

TERRUPT COMMAND 

- NOP 
- CLEAR INTERRUPT (5) OF CHANNEL (5) 

---+ CH ANNEL SELECT 

Figure 26. General Command Register 

4-112 

231263-23 



82258 

General Burst Register (GBR) 

This 8 bit register determines the maximum number 
of contiguous bus cycles that can be requested by 
the 82258. GSR = 0 means unlimited contiguous 
bus cycles for the 82258. The GSR must be directly 
loaded by the CPU. 

General Delay Register (GOR) 

GOR is an 8 bit register which detormines the mini­
mum number of clocks between tho 82258 burst ac­
cesses. GOR 0 means no minimum delay be­
tween the HOLD request. 

Burst/Delay Algorithm 

Both the GBR and the elm do thoir actuill counting 
through their respectivo countors tilo GElC and the 
GOC. For the burst and d(llny countors. tilo following 
rules apply: 

- Whenever the 822~,H controls a tHIS cycle the 
burst counter is decrlHl1untud by ono but not be­
yond zero. 

- Whenever the 822tiB, in tliu local modo, do os 
not have the bus, tho dolay COlJntor is docro 
mented by one: evory suc;ond I -state in tho 2fl6 
mode or, every fourth T-stato in tho 186 modo. 

- Whenever the delay counter is zero, the burst 
and the delay counters aro loadod from the burst 
and the delay registers. 

- If the burst counter is zero (and no exception 
occurs), the 82258 releases the bus and the de­
lay counter counts until it is zero. Then both 
counters are loaded from their corresponding 
registers and the 82258 can again request the 
bus by activating HOLO signal. Unseparable bus 
cycles are the exception to this rule. Counting of 
the burst is not prevented but surrendering of the 
bus is, 

- In the remote mode the burst and the delay are 
relevant only for the system bus cycles. The 
GBC is only decremented while the 82258 per­
forms the system bus cycles and the GOC decre­
ments When the 82258 does not control the sys­
tem bus (idling or the resident bus cycles). 

CHANNEL REGISTERS 

Each of the four 82258 channels has these regis­
ters. A" the channel registers are loaded by the 
82258 from the memory except the Command Point-

er (CPR) [Multiplexor Table Pointer (MTPR) & Sub­
channel Register (SCR) for the channel 3 in the mul­
tiplexor mode). The initial contents of the registers 
are specified, by the CPU in the command blocks in 
the memory. 

Command Pointer Register (CPR) 

This 24 bit register contains the phYSical address of 
the command block. It must be loaded by the CPU 
before starting the channel. For the channel 3 in the 
multiplexor mode, the CPR is loaded by the 82258 
from the multiplexor table (MT) in the memory. 

Source Pointer Register (SPR) 

SPR is 24 bits and contains the physical addross of 
the source (mommy or 110, system or rosidcmt 
space) in a DMA transfer. In the single cyclo transfer 
mode, it contains the only address pointer (sollrce or 
destination). 

Destination Pointer Register (DPR) 

DPR contains tile physical addlfl~,S of the dOS!llla_ 
tion (memory or 1/0, system or r,ISldEllll i\l8coJ In a 
DMA transfer. During Verify oporatiorrs I Conlwrls 
tho vorify pointer (pointer to comparnth" iJata 
block). For the single cycle transfor modt I~; only 
used for ttlO verify and save operation. 1t.1 ;'·1 bit 
register. 

Translate Table Pointer Register (TTPI 

This 24 bit register is USIlO to reference tlnsln!c­
table in the memory whon the translat~!lon IS 

enabled in the channel command regisfOnslon 
(CCRX). 

List Pointer Register (LPR) 

LPR is used for data chaining (list pd list) 
operation. It is a 24 bit register and pillo list 
element. In the multiplexor mode for t101 3, it 
is used as the Multiplexor Table P°rlister 
(MTPR). (Multiplexor mode does nrr data 
chaining). 

Byte Count Register (BCR) 

SCR is a 24 bit register and conteS COunt 
for the DMA transfer. 

4-113 



inter 82258 

Channel Command Register (CCR) 

CCR specifies the type of DMA transfer or the type 
of internal operation. The channel commands are 
contained in a channel command block. The 82258 
has two types of channel commands: 

_ Type 1 for data movement 

_ Type 2 for command chaining control 

The channel command register has three configura­
tions: 
_ Short Type 1 command: SYN field NE. 00 and 

ECX = o. Upper 8 bits, i.e., Channel Command 
Register Extension (CCRX field), are not valid. 

13 L' 10 

- Long Type 1 command: SYN field. NE. 00 and 
ECX 1. All 24 bits are valid. 

- Type 2 command: SYN field = 00, Upper 8 bits 
(CCRX field) are not valid. 

Figure 27 shows CCR for Type 1 command and Fig­
ure 28 has the CCRX (Channel Command Register 
Extension). Figure 29 shows CCR for type 2 com­
mand. 

LOGICAL 8U5 WIDTH 

0- B BIT 
1 - 16 BIT 

DESTINATI{lN [H ';}UW'lI0N 

SAME AS .... ()IJRCf. D£-,:)CR. 

L.. _________ • DATA CHAINING 

LLC I.e 
o 0 NO CHAINING 
() 1 LIST CHAINING 

o LINKED LIST CHAINING 
1 NOT ALLOWED 

\r.U-CT cHAINING 

o - DESTINATION CHAINING 
1 - SOURCE CHAINING 

(ALWAYS 1 FOR SINGLE CYCLE) 
FOR MUX. CHANNEL: 
TRANSFER CHAINING 

o - TRANSFER IS SYNCHRONIZED 
1 - TRANSFER NOT SYNCHRONIZED 

1-_____________ + ~ : ~~::LLi :gg g~::~; 
o - DISABLE EXTERNAL TERMINATE INPUT 
1 - ENABLE EXTERNAL TERMINATE INPUT 

CHANNEL COMMAND BLOCK LENGTH 

0- SHORT 
1 - LONG (WITH COMMAND EXTENSION) 

SYNCHRONIZATION 

00 - TYPE 2 COhiMAND 
01 .. SOURCE SYNC, 
10 .. DESTINATION SYNC. 
11 - NO SYNC. (FREE RUNNING) 

FOR MULTIPLEXOR CHANNEL 

00 - TYPE 2 COt,thiAND 
01 .. BYTE/WORD MULTIPLEX OPERATION 
10 - SINGLE TRANSFER OPERATION 
11 - BLOCK MULTIPLEX OPERATION 231263-24 

Figure 27. Type 1 Channel Command CCR 
4-114 



7 

0 0 

15 13 

0 0 OPCODE 

5 

ENST TRA 

82258 

VER MATCH 

'---------''---------' 

I 
L MATCH-COMPARE 

00 - DISABLED 
01 - ENABLE MISMATCH (BYTE/WORD) 
10 - ENABLE BYTE MATCH 
11 - ENABLE WORD MATCH 

VERIFY 

00 - NO VERIFY 
01 - VERIFY 
10 - VERIFY AND HALT (ON MISMATCH) 
11 - VERIFY AND SAVE 

TRANSLATE ENABLE 

o - TRANSLATE DISABLED 
1 - TRANSLATE ENABLED 

ENABLE STATUS BLOCK 

o - UPDATE IN CHANNEL COMMAND BLOCK DISABLED 
1 - UPDATE ENABLED 231263-25 

Figure 28. Channel Command Register Extension CCRX 

11 10 5 

ED IT 0 0 0 0 0 I 

o 

CONDITION CODE 

VERIMAIETIBC 

~ CONDITION CODE 

BYTE COUNT = 0 

EXTERNAL TERMINATE 

BYTE/WORD 
MATCH/MISMATCH 

VERIFY MATCH 

INVERT 

INVERT CHANNEL STATUS 
BITS BEFORE COMPARING 
WITH CONDITION CODE 

GENERATE INTERRUPT 

GENERATE EOD PULSE 

OPCODE 

00 - UNCONDITIONAL STOP 
STOP AND t.lASK FOR 
t.lUX CHANNEL 

01 - CONDITIONAL STOP 
10 - CONDITIONAL' JUt.lP 

RELATIVE 
11 - CONDITIONAL' JUMP 

ABSOLUTE 231263-26 

• If all condition code bits are I, Jump becomes unconditional. 

Figure 29. Type 2 Channel Command CCR 

4-115 



82258 

Mask Register (MASKR) and Compare Register 
(COMPR) 

Both of these registers are 16 bit and are used dur­
ing the match/mismatch operation. For comparison 
with the transferred data, only those bit positions in 
the Compare Register which are not masked with 
1's in the Mask register are considered. These two 
registers together allow byte, word or bit level com­
parisons. MASKR is also used during the verify oper-

7 6 5 4 3 2 o 

DMA TERMINATION 
BUSY FE H SSH 

VERT t.4A I ET I BC 

\ I 

ations. MASKR and COMPR each should contain 
two identical bytes for Byte Match/Mismatch opera­
tions. 

Channel Status Register (CSR) 

CSR, an 8 bit register, reflects the status of the 
channel. The least significant half byte is the termi­
nation condition and the most significant half byte 
indicates fatal error, busy state and halted state. 

L FLAGS SET ON OMA TERMINATION 

BC - BYTE COUNT EXCEED 

~ 

* Valid only for channel 3 in multiplexor mode; zero otherwise. 

ET - EXTERNAL TERMINATE 
MA - MATCH/MISMATCH 
VER - VERIFY OPERATION ENDING IN MISMATCH 

SINGLE STEP HALT MODE 

CHANNEL OPERATING 
IN SSH MODE 

HALTED 

CHANNEL IN HALTED STATE 

FATAL ERROR 

FATAL ERROR HAS OCCURED 

BUSY· 

LAST SUBCHANNEL COt.4t.4AND TRANSFERRED 
IS PROCESSED 

231263-27 

Figure 30. Channel Status Register 

4-116 



inter 82258 

Data Assembly Register (DAR) 

This 16 bit register is used for automatic assembly/ 
disassembly of data. 

Mutiplexor Channel Registers 

These registers are valid only for channel 3, when 
used as a multiplexor channel. 

Multiplexor Table Pointer (MTPR) 

This register is used to reference the multiplexor ta­
ble in the memory when channel 3 is programmed 
as a multiplexor channel. Since data chaining is not 
allowed for the multiplexor channel, the List Pointer 
Register (LPR) is used as the MTPR. MTPR is.24 bit 
and must be loaded by the CPU. 

Multiplexor Interrupt Vector Register (MIVR) 

This 8 bit register is used by the CPU to determine 
which channels are stopped. The vectors of the 
stopped subchannels are output in the priority order 
(0 has the highest priority) upon each reference of 
this register, until the NV bit is set. A maximum of 32 
vectors can be distinguished. 

7 6 5 4 a 

a 

I 

last Vector Register (lVR) 

L VR gives the last vector read by the 82258 (from 
the 8259A). In case of a fatal error stop of channel 3, 
LVR determines the guilty subchannel. LVR is an 8 
bit register. 

Subchannel Register (SCR) 

This register gives the 8 bit subchannel number for 
the general commands START/STOP Sub channel. 
It must be loaded by the CPU before a subchannel 
command is written into the GCR. MIVR limits the 
number of subchannels supported to 32 (5 bits). 

82258 OPERATION AND 
PROGRAMMING OVERVIEW 

INITIAL STATE 

Upon activation of the RESET signal: 

- all channels are disabled (by clearing the DMA 
status bits in the General Status Register) 

- all bus activities are stopped 

- all tristate Signals are tristated and the others en-
ter the inactive state 

L SUBCHANNEL VECTOR 

VECTOR OF THE HIGHEST PRIORITY 
SUBCHANNEL STOPPEO AND NOT YET READ 

NON VALID 

o - VECTOR IS VALID 
1 - VECTOR IS NOT VALID 

(NO CHANNEL STOPPED OR 
ALL VECTORS READ) 

Figure 31. Multiplexor Interrupt Vector Register 

4-117 

231263-28 



inter 82258 

After the RESET Signal becomes inactive, the 82258 
state gets defined: 

- it is in the 186 mode if A23 pin was low at the 
falling edge of RESET; otherwise it is in the 286 
mode 

- it is in the 8086 max (Request/Grant) mode if the 
186 mode is detected and HLOA pin was high at 
the falling edge of RESET; otherwise it is in the 
186/8086 Min. (HOLO/HLOA) mode. 

- The contents of the 82258 registers are as follows: 

• GMR: All bits are zero 

• GSR: Zero value 

• GOA: Zero value 

• GSR: OMST bits for channels: OX 
(Stopped) 

INT for all channels: 0 (no interrupt 
pending) 

SIR = 0 (1/0 or resident space) 

• All Channel Status Registers (CSR): Zero Values 

• MIVR: NV = 1 (Vector not valid) 

- Vector is all 1, rest zero 

- All stop bits in matrix are reset 

• All other registers (GCR, LVR, SCR, CPRn,SPRn, 
DPRn, TTPRn, LPRn, BCRn, CCRn, COMPRn, 
MASKRn, MTPR) are undefined 

INITIALIZATION AND CHANNEL INVOCATION 

After RESET, the 82258 has to be initialized by the 
CPU. The General Mode Register (GMR) should be 
loaded first in the 16 bit systems; the lower byte of 
the GMR (which gives main configuration informa­
tion) in the 8 bit systems. 

SYSBUS (MEMBUS) bit of the GMR determines the 
physical bus width of the CPU-82258 communica­
tion. All register write and read operations are exe­
cuted: 

- Bytewise on the lower half of the data bus 
(07-00), if SYSBUS (MEMBUS) = 0 

- wordwise on 015- DO if SYSBUS (MEMBUS) . = 
1. Byte transfers are also possible here with the 
bytes being transferred on that half of the data 
bus which is addressed by the least significant bit 
of the register address. 

Internally the 82258 uses BHE and AO to detect the 
effective transfer width of the 82258-CPU commu­
nications. After the GMR, the General Burst Register 
(GBR) and the General Delay Register (GOR) 
should be programmed, if needed (Initial state = 0 
for both), by the CPU. 

Before a channel is invoked, the control space in the 
memory and the channel registers in the 82258 have 
to be initialized: 

Selector Channel Start 

Following conditions should be met: 

- channel program in the control space 

- if data chaining enabled, the chaining list or the 
linked lists in the control space 

- if translate enabled, the translate table in the con­
trol space 

- load the CPR with the start address of the chan­
nel program 

Multiplexor Channel Start 

For the multiplexor channel operation, the following 
is essential: 

- the multiplexor table MT in the control space with 
the subchannel command pointer and the mask 
register pointer of the associated 8259A for each 
subchannel 

- initialization of the 8259A's mask registers by 
masking off all the request inputs. In the remote 
mode, this can also be done by the data transfer 
operation on the selector channel (or by stop 
subchannel commands) 

....,.. load MTPR with the base address of the multiple­
xor table (MT) 

For the subchannel start 

- the subchannel program should be in the control 
space 

- if translate enabled, the translate table should be 
in the control space 

- the subchannel command pointer should be in 
the multiplexor table 

- read the multiplexor channel status register 
CSR3. Write a new subchannel number into the 
SCR only if BUSY bit = O. 

In case of a normal channel start, the last CPU oper­
ation is to write the general command into the GCR. 
Then the start will be processed by the 82258 ac­
cording to the requested channel's priority, with the 
highest priority being processed first. If the ad­
dressed channel is already active, the start com­
mand is ignored. If I = 1 in GCR, the INT bit(s) of the 
indicated channel(s) will be erased in the GSR. 

4-118 



82258 

COMMAND EXECUTION 

Selector Channel: The command bits in the GCR 
give the commands available to a selector channel. 
Execution of the continue and the start commands is 
prioritized; the stop commands are executed imme­
diately. The stop command forces the DMA status 
bit (DMST) in the GSR to channel inactive (stopped) 
without any additional routine. The continue com­
mand works directly with internal stored register pa­
rameters and continues a previously stopped chan­
nel operation. The start commands define the loca­
tion of the control space and initiate the set up rou­
tine. The halt command has multiple functions: 

- It forces the channel into the singie step and halt 
mode, indicated by the SSH bit in the CSR 

- If the channel is running, it will be halted after the 
completion of the current command block execu­
tion; the halted data is shown by the H bit of the 
CSR; the DMST bits of the GSR are not changed 

- If the channel is halted (or stopped) the haltlsin­
gle step command starts the channel, and the 
channel will again be halted after the completion 
of the next command block execution (type 1 or 
2) 

The single step and halt mode is finished by a start 
or a continue command. After a channel start, first 
the general status reflected in the GSR is changed 
into 'DMA in organizational processing'. GSR also 
indicates the location of the control space (S/R bit). 
After the prioritization of the start command, the 
channel's set up routine is executed. 

After the set up routine execution, all the transfer 
parameters are accessible in the 82258 internal reg­
isters. The SYN bits in the CCR decide: 

- if the channel activity is continued by an immedi­
ate start of the data transfer (i.e., free running 
mode or an internal data transfer seNice request) 

- or the channel is waiting for a DMA request i.e., 
external synchronization mode. 

Multiplexor Channel: On the multiplexor channel, 
there are two cases: 

a. The whole channel has to be treated by a gen­
eral command 

b. Only the addressed subchannel has to be 
treated by a general command 

a. In case of the whole channel, the commands are 
the same as the selector channel commands. 
Execution of the continue and the stop (stops 
whole channel) is the same. The channel 3 start 
command has only two functions: 

4-119 

- specify whether the system/memory or the 
residentilO control space has to be used on 
the multiplexor channel (S/R bit in GSR) 

- change of the general status of the channel 3 
(DMST bits in GSR) into "Channel started but 
idling" thus, enabling the 10REQs and the 
Subchannel commands. 

The general channel command "Haiti Single 
Step" has a slightly different interpretation for 
the multiplexor channel. While the selector chan­
nel can only be halted during the chaining of the 
command blocks, the multiplexor channel in the 
single step/halt mode will also be halted when it 
takes the idle state. In that case, a new halt/sin­
gle step command will only be executed if an 
10REO or a subchannel start/stop command is 
pending. 

b. With the start subchannel command, the 82258 
unmasks the corresponding bit in the 8259A 
mask register for the addressed subchannel, 
thus enabling the subchannel. The BUSY bit in 
the CSR is set indicating the state: "subchannel 
command pending". After prioritization, the sub­
channel routine is executed. When an I/O re­
quest is received on the subchannel, the com­
mand pointer is fetched from the MT and the 
channel's set up routine is executed. After the 
reset of the BUSY bit, a new start/stop subchan­
nel command can be accepted by the multiple­
xor channel. 

Only distinction between the stop subchannel 
command and the start subchannel command is 
the handling of the mask bit in the 8259A. For 
the STOP command, the vector specific mask bit 
is set by the 82258. As the start command, the 
stop command has also to be prioritized before 
execution. 

For the multiplexor channel the following rules 
are obseNed: 

- Before any 10REO can be processed, the 
whole channel 3 has to be started and the 
channel 3 must be in the idle state 

- In any state a subchannel command can be 
accepted and transferred into the state "sub­
channel command pending" 

- A pending subchannel command can be 
processed only in the idle state 

- In the idle state, a subchannel command has 
a higher priority than an 10REQ 

- In case of a fatal error stop of a subchannel, 
the whole channel 3 is stopped. LVR identi­
fies the guilty subchannel. To stop (mask) this 
subchannel, the CPU at first has to issue a 
START CH3 command and then stop the af­
fected subchannel. 



82258 

TERMINATION CONDITIONS 

The 82258 distinguishes the following conditions for 
termination of a block transfer: 

- byte count is zero and the data chaining not en­
abled; a standard termination condition 

- data chaining enabled and the new fetched byte 
count is zero 

- external termination via the channel's EOD line if 
enabled by the EXT bit in the CCR 

- match/mismatch during the masked byte or word 
compare, as specified and enabled in the com­
mand extension CCRX 

- mismatch during a verify & halt operation, as 
specified and enabled in the command extension 
CCRX 

- The CPU loading the GCR with a stop command, 
though the channel is not really terminated. 

INTERRUPT CONTROL 

The 82258 has four programmable EOD pins (one 
for each channel) for the CPU interruption and for 
communication with the system environment. As in­
puts, the EOD pins are used for external termination, 
enabled by the EXT bit of the type 1 channel com­
mand in the CCR. When used as output, the EOD 
pins provide two basic functions: 

EOD (end of DMA), a channel specific active 
LOW pulse signal of 2 T-states length, always en­
abled by the software. With a type 1 channel 
command, EODs, if enabled, are synchronous 
and always controlled by th~e count. If data 
chaining is enabled, type 1 EODs should not be 
used for interrupts since multiple EODs (with ev­
ery exceeding byte count) are issued. With a type 
2 command. the EOD, if enabled (ED = 1 in the 
CCR), is an asynchronous signal generated after 
a command execution. 

INTOUT (interrupt output) is a hardware generat­
ed (error detection) or a software enabled static 
active HIGH signal on the EOD2 pin, if pro­
grammed (ENCI = 1 in the GMR). The channel 
generating the INTOUT is indicated by the INT bit 
in the GSR. Hardware generated interrupt occurs 
in case of a fatal error (INTOUT issued if not 
masked by the MINT bit in the GMR). Type 2 
channel command allows software generated 
INTOUT if programmed (IT =1 in the CCR and 
not masked by the MINT bit in the GMR). A chan­
nel's INT bit in the GSR is activated independent 
of the MINT (in GMR). INTOUT remains active 
until all INT bits in the CSR are reset by the CPU 
with the general command CLEAR INTERRUPT. 

Multiplexor Channel Interrupts 

Interrupts from the multiplexor channel belong to a 
certain subchannel. For program controlled inter-

rupts, the status and the context information cannot 
be fetched from the internal 82258 registers (since 
the multiplexor channel is not stopped). Hence, the 
CPU can only investigate the interrupt via the MIVR 
register. After the MIVR read from the CPU, the valid 
bit and matrix stop bit (the vector of which was indio 
cated in the MIVR) are erased. For multiple stop 
conditions in the stop matrix, the stopped subchan­
nels get their vectors in the MIVR in the priority order 
(highest for vector zero). The MIVR is activated inde­
pendent of the programming of EOD or INTOUT. 
Therefore, the CPU can sample the MIVR in a poll­
ing mode when neither EOD nor INTOUT is used. 
With the interrupt vector out of the MIVR,. the CPU 
finds the related command pOinter (in MT) which 
points to the last executed channel command (stop 
and mask). For status information of last block trans­
fer, the CPU has to find the last type 1 command 
block in the channel program. Programmable inter­
mediate interrupt messages should not be used on 
the multiplexor subchannels (MIVR is activated only 
for the stopped subchannel). 

For hardware generated INTOUT the whole channel 
3 is stopped with the LVR indicating the last (guilty) 
vector. After the error investigation the CPU should 
start the channel 3 and then stop the affected sub­
channel. 

FAULT DETECTION 

On detecting a fatal error, the 82258 does the 
following: 

immediately stops the affected channel 
sets error bit in the channel's status register 
sets channel specific INT bit in the GSR 
sends interrupt if not masked (in GMR) 

For error investigation, the CPU should: 
read GSR (what channel?, channel stopped?) 
read CSR (error?) 
read CPR and investigate the channel command 
(type 1 command) 
read L VR for multiplexor channel, if affected 
(what subchannel?) 

The 82258 recognizes only type 1 command errors. 
Other error types are defaulted into non-fatal errors 
and not identified. The FE bit in the CSR indicates 
the fatal errors. 

Fatal Errors: Fatal errors are detected during the 
decoding of a type 1 channel command with the 
GMR. Six conditions are used for detection and the 
allowed six combinations of them lead to six differ­
ent transfer executions (Table 7). All other combina­
tions of the six conditions generate a fatal error. 

4-120 



82258 

Table 7 Fatal Error Detection 

Valid 
Conditions Decoded 

Operation 
Combination Single No Dst. NoSrc. 

Cycle Ptr. Ptr. 

1 False False False 

2 False False False 

3 False False True 

4 False True False 

5 True False False 

6 True False False 

The synchronization error is predecoded and acti­
vated in the following cases: 

Single cycle combined with free running 

No source pointer mode combined with the 
source synchronization on a selector channel 

No destination pointer combined with the destina­
tion synchronization on a selector channel 

Non Fatal Errors and Undetected Fatal Errors 

A non fatal error is not indicated in the channel 
status register. It is only defaulted. Channel process­
ing is not interrupted. Following are some examples 
of non fatal errors and the undetected fatal errors: 

Fault Action -. 
Remote mode + 186 RM not inhibited but 
mode read/write pins are also 

used as outputs 

Both list chaining and Linked list data chaining 

I 
linked list chaining I executed 
enabled 

Start/Stop subchannel New command 
and BUSY active overwrites old command 

(Fatal Error) 

Data chaining enabled MTPR is overwritten with 
on the multiplexor the list pointer 
channel (Fatal Error) 

TRANSFER RATES 

Selector Channel 

Table 8 illustrates the different transfer rates (in 
MBytes/sec) for the 286 mode of operation. These 
transfer rates are not affected by switching channels 
and are halved for both 186 and 86 modes of opera­
tion. 

Verify Trans- Sync. Performed 
& Save late Error 

False False - Two Cycle DMA 

False True _. Translate 
--

False False False No Source Ptr. DMA 

False False False No Dest. Ptr. DMA 
--

False False False Single Cyc. DMA 

True False False Verify & Save 

Table 8. Cummulative Selector Channel 
Transfer Rates (8 MHz 286 System) 

Transfer Single Cycle Two Cycle 

Word ~ Word 8 4 
--

Word ~ Byte not possible 2.66 
--

Byte ~ Word not possible 2.66 

Byte ~ Byte 4 2 

Byte ~ Byte w! not possible 

I 
800 KBytes 

Translate 
--

Multiplexor Channel 

The transfer rates on the multiplexor channel are 
different from the selector channel and depend on 
the mode of operation and the size of the command 
block. 

Table 9. Cummulative Multiplexor 
Channel Transfer Rates 

I Mode Icommandl Word Byte 
Block Transfers Transfers 

Byte! short 275 KBytes/sec 138 KBytes/sec 
Word 

Multiplex long 240 KBytes/sec 120 KBytes/sec 

Block short 4 MBytes/sec 2 MBytes/sec 

Multiplex long 4 MBytes/sec 2 MBytes/sec 
--

Data Chaining 

I 

I 

The transfer rate for data chaining depends on the 
block length of each chained data block, the number 
of blocks in the chain and also the type of chaining 
that is being done. See the section on data chaining 
latencies. 

4-121 



82258 

LATENCIES 

The latency calculations do not take into account set 
up, hold and output delay times which are specified 
in the A.C. Characteristics section. These should be 
added to get the final latency figures. All timings are 
in units of T-states (125 ns in an 8 MHz system). If 
bus cycles are involved then the following abbrevia­
tions are used: 

T = time for one bus transfer 

W = wait time during bus cycles for a slow device 

In case of various influences a.ffecting the timing, the 
most typical case is mentioned in the table and ex­
plained in notes. 

DMA Request Processing: 

Assumptions: 

1. The channel for which latencies are calculated 
currently has the highest priority and will not be 
blocked by other still higher priority requests. 

2. In remote mode delays due to CPU accesses to 
the 82258 are not taken into account for laten­
cies. 

3. All control space accesses are on a 16 bit bus 
and command blocks and data chain lists are ad­
dressed on even boundaries. 

4. Organizational and other unsynchronized trans­
fers (e.g. prefetch) have been completed before 
the processing of DREQ starts. 

0.5 r:::Il 
L:!J 

231263-29 

Figure 32. DREQ to DACK Latency in Local Mode' 

Table 10. DREQ to DACK in Local Mode' 

Minimum Typical Maximum 

DREQto HOLD 2.5 3 3 + W (1) (2) 

HOLD to HLDA 1 4.5 (3) 

HLDA to CYCLE START 1.5 2.5 2.5 

DREQ to CYCLE START 
2 2.5 4 + W (1) 

(without bus arbitration) 

CYCLE START to DACK 0.5 0.5 0.5 

Notes are indicated in parenthesis 
'All timings are in units of T-states (125 ns in an 8 MHz system). If bus 

cycles are involved then the following abbreviations are used: 
T = Time for one bus transfer 
W = Wait time during bus cycles for a slow device 

4-122 



inter 

SYSTEhl 
BUS 
REQUEST 

82258 

I DREQ t .. 1-' _.5 ___ .... ~: • 

RESIDENT 
BUS 
REQUEST 

Figure 33. DREQ to DACK Latency in Remote Mode" 

Table 11. DREQ to DACK In Remote Mode" 

DREQ to HOLDset 

HOLDset to HLDAset 

HOLDAset TO CYCLE START 

DREQ to HOLDreset 

HOLDreset to HLDAreset 

HLDAreset to CYCLE START 

DREQ to CYCLE START 
(without bus change) 

CYCLE START to DACK 

Notes: 
(1) Single bus cycle running: 1 + W 

unseparable bus cycles running: 

Minimum 

2.5 

2BC 

1.5 

1.5 

1 

1.5 

2 

0.5 

Typical Maximum 

3 3 + W (1) (2) 

2 + 2BC (4) 

2 2.5 

3 5.5 + W (1) 

2 2 

2 2.5 

3.5 5 + W(ll 

0.5 0.5 

-word access at odd addresses (and pOinter transfers): 3 + 2W 
-IOACK cycle (only multiplexor channel): 7 + 2W 

(2) General Burst Counter = 0: 2 x GDR 
HLDA = 1, HOLD = 0: Wait for HLDA = 0 
HLDA lost: 2 

(3) 16 + 15W (from the 286 manual, assumed repeat and lock prefix not combined) 
(4) Bus arbitration + currently running bus transfers. 

BC = Multibus clock cycle . 
• All timings are in units of T-states (125 ns in an 8 MHz system). 

If bus cycles are involved then the following abbreviations are used: 
T = Time for one bus transfer 
W = Wait time during bus cycles for a slow device 

4-123 

0.5 r:::Il 
L.±.J 

231263-30 



intJ 82258 

General Command Processing:' 

Minimum Typical Maximum 
WRITE to Set Up 6.5 8 9.5 

+ HOLD/HOLDA sequence 

At this point the start command is ready for the start 
of the channel set up routine 

Set Up Processing:' 

Standard command block 
additional for long command block 
additional for list data chaining 
additional for linked list data chaining 

Type 1 Command Processing:' 

Chaining : same as the set up processing 

Termination: 
store CSR and calculate next 
command pointer 
store status block (if programmed) 

Type 2 Command Processing:' 

Standard: 
CCR load 
CCR decode and execution 
additional for jump 

:7T + 4 
:5T 
:1T + 2 
:3T + 2 

: 1T +-6 
:6T 

1T 
2T + 2 
4 

START ISTOP Subchannel:' 

(see General Command Processing for set up) 

Execution :4T + 6 

Multiplexor Channel:' 

(see General Command Processing for set up) 

IOREQ to IOACK: identical to DREQ to DACK timing 
First IOACK to second IOACK : 1T + 2 
Second IOACK to vector in L VR : 1T + 2 
Calculate MT address and read 
command pointer into CPR 
Data transfer 
Restore pointers 
Restore byte count 

Data Chaining:" 

:2T + 4 
:2T + 2 
:4T + 4 
:2T 

Latencies in data chaining occur when transfers are 
changed between data blocks. 

List Chaining 
Linked List Chaining 

:3T + 6 
:5T + 6 

• All timings are in units of T-states (125 ns in an 8 MHz 
system). 

If bus cycles are involved then the following abbreviations 
are used: 

T = Time for one bus transfer 
W = Wait time during bus cycles for a slow device 

4-124 



intJ 82258 

Absolute Maximum Ratings 

Ambient Temperature Under Bias 
Case Temperature 
Storage Temperature 
Voltage on Any Pin with 

Respect to Ground 
Power Dissipation 

O·Cto 55·C 
O·Cto 85·C 

- 65·C to + 150·C 

-1.0Vto +7V 
3.6 Watt 

• Notice: Stresses above those listed under '~bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOTICE Specifications contained within the 
following tables are subject to change. 

D.C. Characteristics Vcc=5V ±5%; TA=O·Cto + 55·C, or TCASE=O·C to + 85·C 

Symbol Parameter 
Limit Values 

Units Test Conditions 
Min Max 

Vil Input Low Voltage -0.5 +0.8 
(except CLK) 

-
VIH Input High Voltage 2.0 Vce + 0.5 V 

(except CLK) 

VOL Output Low Voltage - 0.45 IOl = 3.00 rnA 

VOH Output High Voltage 2.4 - IOH = -400 p.A 

Icc Power Supply Current 450 rnA TA = 25·C, 
all outputs open 

III Input Leakage Current ±10 p.A OV s VIN S vee 

IlO Output Leakage Current 

SO, S1, 52, BHE, RD, -200 p.A 

WR, M/iD - 0.45V s VOUT = Vee 

HOLD (RQ/GT mode),EOD -1.5 rnA 

other pins ± 10 p.A 

Vel Clock Input Low Voltage -0.5 +0.6 
V -

VCH Clock Input High Voltage 3.8 Vee+ 1.O 

CIN Capacitance of Inputs 10 
(except CLK) 

Co Capacitance of I/O or - 20 pF fc = 1 MHz 
Outputs 

CCLK Capacitance of CLK Input 12 

4-125 



inter 82258 

A.C. Characteristics Vcc=5V ±5%; TA=O·Cto + 55·C, or TCASE=O·C to + 85·C 

AC timings are referenced to 0.8V and 2.0V pOints of signals as illustrated in datasheet waveforms, unless 
otherwise noted 

Sym Parameter 
6 MHz 8 MHz 

Unit Test Conditions 
Min Max Min Max 

1 CLK Cycle Period (286 Mode) 83 250 62 250 ns 

2 CLK Low Time (286 Mode) 20 225 15 230 ns atO.6V 

3 CLK High Time (286 Mode) " 25 230 20 235 ns at3.2V 

4 Output Valid Delay 1 80 1 60 ns CL = 125pF 

5 Output Valid Delay 1 55 1 40 ns CL = 125pF 

6 Data Setup Time 15 10 ns 
6a Address Input Setup (186 Mode) 20 15 ns 

7 Data Hold Time 8 5 ns 

8 READY Setup Time 50 38 ns 

9 READY Hold Time 35 25 ns 

10 Input Setup Time 25 20 ns 

11 Input Hold Time 25 20 ns 

11a SHE Hold Time (186 Mode) 15 10 ns 

12 Address Setup Time 3 2 ns 

13 Data Valid Delay 0 60 0 50 ns 

14 Data Float Delay 8 80 5 60 ns 

15 Chip Select Setup 30 20 ns 

16 Command Length 320 290 ns 

17 Data Setup Time 185 165 ns 

18 Address Setup Time 30 20 ns 

19 Command Inactive 320 290 ns 

19a Access Time 420 380 ns 
20 . CLK Period (186 Mode) 166 500 125 500 ns 

21 CLK Low Time (186 Mode) 76 55 ns 

22 CLK High Time (186 Mode) 76 55 ns 

23 CLK Rise Time (186 Mode) 15 15 ns 

24 CLK Fall Time (186 Mode) 15 15 ns 

25 READY Active Setup Time 20 20 ns 

26 READY Hold Time 10 10 ns 

26a SREADY Hold Time (186 Mode) 15 15 ns 

27 READY Inactive Setup Time 35 35 ns 

28 Control Reset Setup Time 25 20 ns 

29 Reset Control Setup Time 0 0 ns 

30 Address/Data Valid Delay 10 55 10 50 ns 

31 Status Delay 10 75 10 55 ns 

32 Address/Data Float Delay 10 50 10 50 ns 

33 DT /R Delay (186 Mode) 10 76 10 55 ns 

34 DEN Delay (186 Mode) 10 80 10 60 ns 

4-126 



inter 82258 

A.C; MEASUREMENT POINT DESCRIPTION 

4.00V '''/. ~ 1.0V - -

\',',,-1 ,---------------, 
OA5V 

2.40V 

231263-31 

A. ClK Input 

\" - - O.BV 

231263-32 

B. Outputs and Other Inputs 

Figure 33a. AC Drive and Measurement Points 

ClK 
INPUT 

4.00V 

OA5V 

DEVICE~ 
OUTPUT .1. 

T CL= 1S0pF 

231263-53 

Figure 33b. AC Test loading on Outputs 

\::" I 
...-- T SETUP _1 ___ T HOLD ------

OTHER 
DEVICE 
INPUTS 

DEVICE 
OUTPUT 

2.DV 

O.BY 

2.0Y 

O.BY 

2.0V 

O.BY 

231263-33 

Figure 34. AC Setup, Hold and Delay Time Measurement - General 

BUS CYCLE T-STATES: 

The bus cycles are subdivided into T-states which 
are interpreted differently depending on whether the 
82258 is in the 286 mode or the 186 mode. 

286 Mode T-states: Each T-state is two clock cy­
cles long and starts in the middle of a processor 
cycle and ends in the middle of the succeeding proc­
essor cycle. 

TI: [The bus is idle) This state will occur if the 
82258 cannot start the next bus cycle. 

TO: [A new bus cycle is beginning) When the 
address and status of a new bus cycle is to 
be sent as output, this state is used. 

T1: 

T21: 

T20: 

4-127 

[A bus cycle is proceeding) This state is 
used to allow the bus controller commands 
to become active and, to output data during 
a write cycle. 

[A bus cycle is prepared for termination with 
no new cycle ready to begin) If the READY 
signal is active and no new bus cycle is 
ready to begin, this will be the state used. 
Input data will be accepted during this state 
if the READY signal is active and if the bus 
cycle is an input cycle. 

[A bus cycle is prepared for termination with 
a new cycle ready to begin) This state ter­
minates a bus cycle if the READY signal is 
active and if a new bus cycle is ready to 



inter 82258 

begin. As with the T21 state, input data will 
be accepted during this state if the cycle is 
an input cycle and if the READY signal is 
active. This state will also output the ad­
dress of the new bus cycle, and if READY is 
active, the status also. 

186 Mode T-states: The T-states are one elK peri­
od long, beginning and ending with the falling edge 
of the elK signal. 
TI: [The bus is idlel This state occurs if the 

82258 cannot start the following bus cycle. 

T1: [The first bus cycle T -statel During this 
state, address information is output to the 
A19/S6-A16/S3 and AD15-ADO pins. The 
status is activated with the rising edge of 
the elK previous to this state. 

Waveforms 

T2: 

T3: 

T4: 

PROCESSOR STATES 
Ta I 

111 OR 120 T1 

eLK 

AmO,Mlio 

D15-00 (INPUl) 

[The second bus cycle T -statel This state 
allows the bus controller and the 82258 
commands to become active and outputs 
data if the cycle is a write cycle. 

[The third bus cycle T-statel This state is 
used to synchronize the ready signals. If the 
bus is not ready, then the bus cycle is ex­
tended by repeating this state, with the 
status lines going inactive during the last 
T3-state. 

[The last bus cycle T-statel During this cy­
cle, data is input for input cycles and the 
bus controller and the 82258 commands 
are disactivated. If the following state is T1 , 
then the status is activated during this state. 

Tc 

121 OR 120 
NOTE 2 

D1S.~~P~ __________ ~ ________ ~~ ____________________ +-______ ~J"~ __ __ 

REAiiY 
NOTE 2 

NOTES: 
1.015-00 floats during Single Cycle Transfer like a Read Cycle. 
2. T2 will be repeated, if READY is inactive. 

Figure 35. Timing of an Active Bus Cycle (286 and Remote modes) 

4-128 

231263-34 



82258 

,-----------------------------------------.-----------------

READ 
BUS CYCLE 

NOTES: 

eLK 

ALE 

S2,SUii 

Al!11S6-A161S3 

AD1&AlJO 

DT/R 

iiii (OUT) 

Wii (OUT) 

I 

T1 1'2 

NOTE 4 
n'13 

13 T4 

I/"'""""" 1\---<"""" "....., ~ 
,.---, 
~ ..... ~ I'-' ... 5~ -5t"- ,.+----

:; -tfc "" ' .... 31~ 
-t -f- \. m ____ 

....... 3C!t!::: .... 3f!t!::: 
X-X ADDRESS X SIi-S3 

-=; 3i!t'!: IX:--X -.... 3I!~ -~r- FUlAT ~~="' 7 1-0 FUlAT 
X ADDRESS DATA IN 

;;: ~r ! --to 33f-

+.. -_ ......... -34 .... - -... 34 ~-

1: ! -I-
, 

.... 4 r -,4;-
-t 

I -- ~~ ..... 3I!r.: -""I~L. 
X ADDRESS X DATA OUT X -"4,1 ..... 41"'" 

l-
-+!4 ...... -41'0--

-t -f-
231263 -35 

3. For a Single Cycle Transfer the timings of AD15-ADO, DEN and DT IF! are the same as In a Read Bus Cycle. 
4. Additional T3 cycles will be inserted if bus is not ready (see Figure 40). 

--------------- ---~-----------

Figure 36. Timing of an Active Bus Cycie (186 and 8086 Modes) 

eLK 

sUi 
ONPUT) 

A7-NJ, 
(INPUT) 

FOR WRITE: D15-DO 

FOR READ: D15-DO 

PftOCESlIOR SIms 

11 1t 

~.J14 
13 ~':I 

DATA OUT 
231263-36 

Figure 37. Timing of a Synchronous Access to the 82258 (286 Mode) 

4-129 



intJ 82258 

n 12 13 TC 

ClK 

ii.iii 

AD7-ADO 

BHE 

Ci 

WRITE: 
ADl5-ADO 

13 r- 14 ~ READ: 
ADl5-ADO , DATA OUT 

Figure 38. Timing of a Synchronous Access to the 82258 (186 and 8086 Modes) 

A7-/A 
BHE 

WRITE: 
WR 

O15-DO 
(A015-ADO) 

READ: 
Ro 

O15-DO 
(ADl5-ADO) 

::q:f------F 
18-- - 11 

~ 

1+-10-- - 11 ~ 

~ 

I 
17--_ 11 r-

)G DC 

16 19-

1 

I .. 198 --14 

Figure 39. Timing of an Asynchronous Access to the 82258 (All Modes) 

4-130 

231263-37 

231263-38 



elK 

AREADY 

SREADY 

sUi,So 

NOTE: 

82258 

13 

1,_---......... '--__ ~------...,~ v 

r8--~Z6.~.· 1--8-'--:1+-.Z-6'--"-· ----
-"'""'Ir----I---+---+--i'(---t. . 1-
_-oJ I iC:~: _----"l~"'___ _ __oIIl~_ 

I 

-, 31~ --, (( 

(' 
BUS READY BUS NOT READY 

231263-39 

Figure 40. READY Timing (186 Mode) 

DREan 

l>=zr.STATES 1- 111 

~.~~-+---,+--
elK 

WITHOUT 
BUS ARBITRATION, 

I I I 1£$ I -:15~--- I 
.., i, i' 

DACKn 

I I \" ... _- ,J 

-----i4ro---. __ 141+--. 
-----(l\"-~· ..... i I II -f i \'---II--I-'I-----t--------

I 1 

I 1 

i 
WITH 
BUS ARBITRATION: 

HOLD 

HLDA 

S1,SO 

DACKn 

231263-40 

5. The trailing edge of DR EOn, as specified in this diagram, is necessary if only one bus cycle should be executed. 
A later trailing edge may cause an additional bus cycle (continuous DREO), if no READY-wait·states are inserted. 

Figure 41. DREQ, DACK Timing (286 and Remote Modes) 

4-131 



82258 

eLI( 

OMQn 

HOLD 
~~ __________ JI 

HLDA ~~I----------~~~ 

ii·iii 
\._--

231263-41 

NOTE: 
The DREQ and DACK signal timings are the same for the 8086 mode. 

Figure 42. DREQ, DACK Timing (186 Mode) 

11 OR 121 121 1U 11 

elK 

BREl 
231263-42 

Figure 43. BREL, Bus Tristate Timing (Remote Mode) 

4-132 



CLK 

RESET 

A231AREADY 

HLDA 
(ONLY IN 186 MODE) 

ClK 

HOLD 

HlDA 

BUS 
ACTIVITY 

NOTE: 

82258 

~~----------~~----------~-----
~------a------~ 

186 MODE 2BB MODE 
29 

HOlDIHLDA MODE iili/li'f MODE 

231263-43 

Figure 44. RESET Timing (All Modes) 

I T·STATE I 

~--
~-) )J )~34 

( lc. l . 

~ ~--------

'l « 

231263-44 

See Figure 32 and Table 10 (Pg. 41) for HLDA to Cycle Start Latency. 

Figure 45. HOLD, HLDA Timing (286 and Remote Modes) 

4-133 



NOTE: 

eLK 

HOLD 

HLDA 

BUS 
ACTIVITY 

82258 

SEE NOTE 

231263-45 

See Figure 32 and Table 10 (Pg. 41) for HLDA to Cycle Start Latency. 

Figure 46. HOLD, HLDA Timing (186 Mode) 

elK 

-0.fYH'''-'J~<'(~1 -_---IT 
RELEASE REQUEST GRANT 

231263-46 

Figure 47. RQ/GT Timing (8086 Mode) 

4-134 



eLK 

(ACTIVE 
HIGH) 

EOOn 
(INPUT) 

eLK 

INTOUT 
(EODc 2 PIN) 

EOOn 
(OUTPUT) 

EOOn 
(INPUT) 

82258 

__ -t.~-n .. ~.------
" I 

231263-47 

Figure 48. INTOUT, EOD Timing (286 and Remote Modes) 

231263-48 

Figure 49.INTOUT, EOD Timing (186 and 8086 Modes) 

4-135 



82258 

WRITE CYCLE 

PROCESSOR STATES 
TS TC 

82258 STATES To OR T20 

CLOCK [ 

A23·AO, MIID [ ___ ...JX,, __ ...;S.;;,,;OU...;RC;.;.E ..... A.;;,,;OD_RE_SS,;..V_Al_ID __ ... X .... ___ _ 

BHE [ X VALID CONTROL x: 
--------~----------------

SiI·S! [ ,'------"', 
015·00 [ ------------------ ««< VALID WRITE DATA >5»-------
REA~[ _____________________________________ ~\ _____ ,' _________ ___ 

EOOn (OUTPUT) [ \~------------------I 
231263-49 

Figure 50. Single Cycle Transfer (286 mode) 

4-136 



." 
cS' 
c 
a; 
en ... 
-I 
:IE 
o 
o 
'< +> (") 

.!..a. ii' 
~ -I ... 

I» 
::l 
1/1 -ID ... 
N 
CD en 
3 
o c.. 
.e 

READ CYCLE WRITE CYCLE 

PROCESSOR STATES TS Te IS Ie 

82258 STATES To OR Tzo 

I 

T210RT20 i 

c~ CLOCK [ 

A2a-AD. M/ID [ x: SOURCE ADDRESS VALID x::::x DESTINATION ADDRESS VALID X ... ___ _ 

8HE [ X VALID CONTROL x::::x VALID CONTROL x::: 
SO-51 [ L ___ n _____ j L_ __I 

VALID 

D15.DO[ -----------------------------<:]2[}.-.~--·VALiil\\iRiTEOATA-----:»>r--­
DATA 

READY [ \. t ::=\ r= 
EODn (OUTPUT) [ ~-.- f 

231263-50 

( 

(XI 
N 
N 
UI 
(XI 

~ 
©J 
~ zg 
© 
[MJ 

~ 
"iiil 
© 
2.eJ 
~ 
~ 
Sl 
© 
~ 



82258 

PACKAGE 

The 82258 is packaged in a 68-pin, leadless JEDEC type A hermetic leadless chip carrier. 

JL ~I i 
1 

.9&0 
(24.38 

I 

I j 
~ .. 71 ~ _~ .960 _ptN~~NO_.l_J----+li~ I~PIN NO 1 MAlIK 

.839-'-----~----I-l 
(0.99) i 

L- _ 
Figure 52. JEDEC Type A Package 

4-138 

.130 
(3.30) 

INCHES 

L 
(MILLIMETERS) 

231263-51 



82284 
CLOCK GENERATOR AND READY INTERFACE 

FOR iAPX 286 PROCESSORS 
(82284-10, 82284-8, 82284-6) 

_ Generates System Clock for iAPX 286 
Processors 

- Uses Crystal or TTL Signal for Frequency 
Source 

- Available in 18-lead Cerdip Package 
(See Packaging Spec, Order #231369) 

- Single +5V Power Supply 

- Generates System Reset Output from 
Schmitt Trigger Input 

• Provides local READY and MUlTIBUS®* _ Available in EXPRESS 
READY Synchronization - Standard Temperature Range 

- Extended Temperature Range 

The 82284 is a clock generator/driver which provides clock signals for iAPX 286 processors and support compo­
nents, it also contains logic to supply READY to the CPU from either asynchronous or synchronous sources and 
synchronous RESET from an asynchronous input with hysteresis, 

RESET 

RES --l-<-l £! 
SYNCHRONIZER 

X1-+----I 

X2 -+----1 

EFI-f------' 

Fie -j------------' 

ARDYEN --+--<iI'_ 
ARDY -+--4-" 

SRDYEN -+--<f""", 
SRDY --j---<1._ 

S1-+--or_ 
so -+--<t-" 

Figure 1. 82284 Block Diagram 

*MUlTIBUS is a patented bus of Intel. 

RESET 

ClK 

READY 

PClK 

ARDY VCC 

SRDY ARDYE'N: 
SRDYEN 81 

READY SO 
EFI N.C. 
FIC PCLK 

X1 RESET 
X2 RES 

GND ClK 

Figure 2. 
82284 Pin Configuration 

Intel Corporation Assumes No Responsibility lor the Use Of Any Circuitry Other Than Circuitry Embodied In an Intal Product. No Other Circuit Patent licenses are Implied. 

© INTEL CORPORATION 1982 4-139 
January 1986 

ORDER NUMBER: 210453-004 



inter 82284 

Table 1. Pin Description 

The following pin function descriptions are for the 82284 clock generator. 

Symbol Type Name and Function 

ClK 0 System Clock is the signal used by the processor and support devices which must be synchro-
nous with the processor. The frequency of the ClK output has twice the desired internal pro-
cessor clock frequency. ClK can drive both TTL and MOS level inputs. 

F/C I Frequency/Crystal Select is a strapping option to select the source for the ClK output. When 
Flo is strapped lOW, the internal crystal oscillator drives ClK. When Flo is strapped HIGH, 
the EFI input drives the ClK output. 

Xl, X2 I Crystal In are the pins to which a parallel resonant fundamental mode crystal is attached for 
the internal oscillator. When F/e is lOW, the internal oscillator will drive the ClK output at the 
crystal frequency. The crystal frequency must be twice the desired internal processor clock 
frequency. -

EFI I External Frequency In drives ClK when the F/C input is strapped HIGH. The EFI input fre-
quency must be twice the desired internal processor clock frequency. 

PClK 0 Peripheral Clock is an output which provides a 50% duty cycle clock with 1/2 the frequency of 
ClK. PlCK will be in phase with the internal processor clock following the first bus cycle after 
the processor has been reset. 

ARDYEN I Asynchronous Ready Enable is an active lOW input which qualifies the ARDY input. 
ARDYEN selects ARDY as the source of ready for the current bus cycle. Inputs to ARDYEN 
may be applied asynchronously to ClK. Setup and hold times are given to assure a guaranteed 
response to synchronous inputs. 

ARDY I Asynchronous Ready is an active lOW input used to terminate the current bus cycle. The 
ARDY input is qualified by ARDYEN. Inputs to ARDY may be applied asynchronously to ClK. 
Setup and hold times are given to assure aguaranteed response to synchronous inputs. 

SRDYEN I Synchronous Ready Enable is an active lOW input which qualifies SRDY. SRDYEN selects 
SRDY as the source for READY to the CPU for the current bus cycle. Setup and hold times 
must be satisfied for proper operation. 

SRDY I Synchronous Ready is an active lOW input used to terminate the current bus cycle. The SRDY 
input is qualified by the SRDYEN input. Setup and hold times must be satisfied for proper oper-
ation. 

READY 0 Readr is an active LOW output whiq!! sianals the current bus cycle is to be completed. The 
SRDY, SRDYEN, ARDY, ARDYEN, Sl, SO and RES inputs control READY as explained later 
in the READY generator section. READY is an open collector output requiring an external 
pullup resistor. 

SO,Sl I Status inputs prepare the 82284 for a SUbsequent bus cycle. SO and Sl synchronize PClK to 
the internal processor clock and control READY. These inputs have pullup resistors to keep 
them HIGH if nothing is driving them. Setup and hold times must be satisfied for proper oper-
ation. 

RESET 0 Reset is an active HIGH output whichis derived from the RES input. RESET is used to force the 
system into an initial state. When RESET is active, READY will be active (lOW). 

RES I Reset In is an active lOW input which generates the system reset signal RESET. Si.9!!!!s to 
RES may be applied asynchronously to ClK. A Schmitt trigger input is provided on RES, so 
that an RC circuit can be used to provide a time delay. Setup and hold times are given to assure 
a guaranteed response to synchronous inputs. 

Vce System Power: +5V power supply 

GND System Ground: 0 volts 

FUNCTIONAL DESCRIPTION ready synchronization logic and system reset genera­
tion logic. 

Introduction 

The 82284 generates the clock, ready, and reset sig­
nals required for iAPX 286 processors and support 
components. The 82284 is packaged in an la-pin DIP 
and contains a crystal controlled oscillator, MOS 
clock generator, peripheral clock generator, Multibus 

4-140 

Clock Generator 

The elK output provides the basiC timing control for 
an iAPX 286 system. elK has output characteristics 
sufficient to drive MOS devices. elK is generated by 
either an internal crystal oscillator or an external 
source as selected by the Fie strapping option. When 

210453-004 



82284 

FIG is lOW, the crystal oscillator drives the ClK out­
put. When FIG is HIGH, the EFI input drives the ClK 
output. 

The 82284 provides a second clock output (PClK) for 
peripheral devices. PClK is ClK divided by two. 
PClK has a duty cycle of 50% and TTL output drive 
characteristics. PClK is normally synchronized to the 
internal processor clock. 

After reset, the PClK signal may be out of phase with 
the internal processor clock. The S1 and SO signals of 
the first bus cycle are used to synchronize PClK to 
the internal processor clock. The phase of the PClK 
output changes by extending its HIGH time beyond 
one system clock (see waveforms). PClK is forced 
HIGH whenever either SO or S1 were active (lOW) for 
the two previous ClK cycles. PClK continues to os­
cillate when both SO and S1 are HIGH. 

Since the phase of the internal processor clock will 
not change except during reset, the phase of PClK 
will not change except during the first bus cycle after 
reset. 

Oscillator 

The oscillator circuit of the 82284 is a linear Pierce os­
cillator which requires an external parallel resonant, 
fundamental mode, crystal. The output of the oscilla­
tor is internally buffered. The crystal frequency cho­
sen should be twice the required internal processor 
clock frequency. The crystal should have a typical 
load capacitance of 32 pF. 

X1 and X2 are the oscillator crystal connections. For 
stable operation of the oscillator, two loading capacitors 
are recommended, as shown in Table 2. The sum of 
the board capacitance and loading capacitance should 
equal the values shown. It is advisable to limit stray 
board capacitances (not induding the effect of the 
loading capacitors or crystal capacitance) to less than 
10 pF between the X1 and X2 pines. Decouple Vee and 
GND as close to the 82284 as possible. 

C1 

7 10 
X1 ClK ClK 

0 Vee iAPX 286 

t 
CPUor ...::r::::.- 8 

X2 
SUPPORT 

J ± C2 

82284 COMPONENT 
4 

READY READY 

6 F/C 
18 

Vee IT Vee 
SEE TABLE 

2 FOR DECOUPLING 
CAPACITOR I CAPACITOR 

VALUES 

'" 
Figure 3. Recommended Crystal and READY 

Connections 

4-141 

Reset Operation 

The reset logic provides the RESET output to force 
the system into a known, initial state. When the RES 
input is active (lOW), the RESET output becomes ac­
tive (HIGH). RES is synchronized internally at the fail­
ing edge of ClK before generating the RESET output 
(see waveforms). Synchronization of the RES 
input introduces a one or two ClK delay before affect­
ing the RESET output. 

At power up, a system does not have have a stable Vee 
and ClK. To prevent spurious activity, RES should be 
asserted until Vee and ClK stabilize at their operating 
values. iAPX 286 processors and support components 
also require their RESET inputs be HIGH a minimum of 
16 ClK cycles. An RC network, as shown in Figure 4, 
will keep RES lOW long enough to satisfy both needs. 

Vee 

10Kn 
11 

82284 

RES 

+ 

~ I 1O
•

F 

Figure 4. lYpical RC RES Timing Circuit 

A Schmitt trigger input with hysteresis on RES as­
sures a single transition of RESET with an RC circuit 
on RES. The hysteresis separates the input voltage 
level at which the circuit output switches between 
HIGH to lOW from the input voltage level at which the 
circuit output switches between lOW to HIGH. The 
RES HIGH to lOW input transition voltage is lower 
than the RES lOW to HIGH input transition voltage. 
As long as the slope of the RES input voltage remains 
in the same direction (increasing or decreasing) 
around the RES input transition voltage, the RESET 
output will make a single transition. 

Ready Operation 

The 82284 accepts two ready sources for the system 
ready signal which terminates the current bus cycle. 
Either a synchronous (SRDY) or asynchronous ready 
(AROY) source may be used. Each ready input has an 
enable (SRDYEN and ARDYEN) for selecting the type 
of ready source required to terminate the current bus 
cycle. An address decoder would normally select one 
of the enable inputs. 

210453-004 



82284 

READY is enabled (lOW), if either SRDY + 
SRDYEN = 0 or ARDY + ARDYEN = 0 when sam­
pled by the 82284 READY generation logic. READY 
will remain active for at least two ClK cycles. 

The READY output has an open-collector driver 
allowing other ready circuits to be wire or'ed with it, 
as shown in Figure 3. The READY signal of an iAPX 
286 system requires an external pull-up resistor. To 
force the READY signal inactive (HIGH) at the start of 
a bl,!§ cycle, the READY output floats when either Sf 
or SO are sampled lOW at the falling edge of ClK. 
Two system clock ~iods are allowed for the pull-up 
resistor to~~ READY signal to V1H. When RESET 
is active, READY is forced active one ClK later (see 
waveforms). 

Figure 5 illustrates the operation of SRDY and 

SRDYEN. These inputs are sampled on the falling 
edge of ClK when Sf and SO are inactive and PClK is 
HIGH. READY is forced active when both SRDY and 
SRDYEN are sampled as lOW. 

Figure 6 shows the operation of ARDY and ARDYEN. 
These inputs are sampled by an internal synchronizer 
at each falling edge of ClK. The output "of the synchro­
nizer is then sampled when PClK is HIGH. If the syn­
chronizer resolved both the ARDY and ARDYEN have 
been resolved as active, the S'RDY and SJm'YElIJ inputs 
are ignored. Either ARDY or ARDYEN must be HIGH at 
end of T s (see figure 6). 

READY remains active until either S1 or SO are sam­
pled LOW, or the ready inputs are sampled as inac­
tive. 

Table 2. 82284 Crystal Loading Capacitance values 

Crystal Frequency C1 Capacitance C2 Capacitance 
(pin 7) (pin 8) 

1 to 8 MHz 60 pF 40 pF 
8 to 20 MHz 25 pF 15 pF 

NOTE: Capacitance values must Include stray board capacitance. 

Ts Tc T, 

ClK 

PClK 

V,H 
ARDYEN----------~~------------_r-------------------+----~~--------

SilDYEN ~IIIIIIIIIIIIWlr'llll + 
SRDY ~~~~~...Ji!li41liJJ.!JllI..1jJ 

READY --------_____ _ 

Figure 5. Synchronous Ready Operation 

4-142 210453-004 



82284 

T, 

CLK 

PCLK 

61·50 

V'H 
SRDYEN--------------+-------+-----~------~----------~4------------4---

READY __________________ .Y' 

Figure 6. Asynchronous Ready Operation 

ABSOLUTE MAXIMUM RATINGS* 

Temperature Under Bias. . . . . . . .. .. O°C to 70°C 

Storage Temperature .......... -65°C to + 150°C 

All Output and Supply Voltages ...... -O.5V to + 7V 

All Input Voltages ............... -1.0V to +5.5V 

Power Dissipation ...................... 1 Watt 

'Notice: Stresses above those listed under "Absolute 
Maxmum Ratings" may cause permanent damage to 
the device. This is a stress rating only and functional 
operation of the device at these or any other condi­
tions above those indicated in the operational sec­
tions of this specification is not implied. Exposure to 
absolute maximum rating conditions for extended 
periods may affect device reliability. 

D.C. CHARACTERISTICS (TA = ooe to 7ooe, or TCASE = ooe to +85°e, Vec = 5V ± 5%) 

6MHz 8MHz 

-6 -6 -8 -8 
Sym Parameter Min Max Min Max Unit Test Condition 

V1L Input lOW Voltage .8 .8 V 

V1H Input HIGH Voltage 2.0 2.0 V 

V1HR RES and EFllnput HIGH Voltage 2.6 2.6 V 

VHYS RES Input hysteresis 0.25 0.25 V 

VOL RESET, PClK Output lOW Voltage 45 .45 V 'IOL ~ 5mA 

VOH RESET, PClK Output HIGH Voltage 2.4 2.4 V IOH ~ -1mA 

VOLR READY, Output lOW Voltage .45 .45 V IOL ~ 7mA 

VOLC ClK Output lOW Voltage .45 .45 V IOL ~ 5mA 

VOHC ClK Output HIGH Voltage 4.0 4.0 V IOH = -800~A 

Vc Input Forward Clamp Voltage -1.0 -1.0 V Ic ~ -5mA 

IF Forward Input Current -.5 -.5 mA VF ~ .45V 

IR Reverse Input Current 50 50 uA VR ~ Vcc 

Icc Power Supply Current 145 145 mA 

C1 Input Capacitance 10 10 pF Fc ~ 1MHz 

210453-004 

4-143 



inter 82284 

A.C. CHARACTERISTICS (TA = ooe to 70°C, or T CASE " 0° e to +85°e, Vcc = 5V, ±5%) 
Ae timings are referenced to 0,8V and 2,OV points of signais as illustrated in datasheet waveforms, unless 
otherwise noted, 

------
10 MHz 

6 MHz 8MHz (Preliminary) 
---

-6 -6 -8 -8 -10 -10 
Sym Parameter Min. Max. Min. Max. Min. Max. Unit Test Condition 

1 EFI to ClK Delay 35 30 30 ns at I.SV Note 1 

2 EFI lOW Time 40 22 25 ns at 1.5V Note 1 Note 7 

3 EFI HIGH Time 35 40 25 ns at 1.5V Note 1 Note 7 

-;;-1----_. 
ClK Period 83 500 62 500 50 500 ns 

5 ClK lOW Time 20 15 12 ns at 1.0V Note 1 Note 2, 7. 8 

6 elK HIGH Time 25 25 16 ns at 3.6V Note 1 Note 2, 7, 8 --
7 ClK Rise Time lD 10 8 ns 1.0V to 3.6V Note 1 

8 ClK Fall Time 10 10 8 ns 3.ev to 1.0V Note 1 

9 Status Setup Time 28 22 - ns Note 1 
-----+-- --

9a 
Status Setu p Ti me for - -_. 20 ns Note 1 
Status Going Active 

9b 
Status Setup Time for - - 20 ns Note 1 
Status Going Active 

10 Slatus Hold Time 0 1 1 ns Note 1 

11 SR'DY orSRDYEN Setup Time 25 17 15 ns Note 1 

12 SRby or SRDYEN Hold Time 0 0 0 ns Note 1 

13 ARDY or ARDYEN Setup Time 5 0 0 ns Note 1 Note 3 

14 ARDY or ARbvEN Hold Time 30 30 30 ns Note 1 Note 3 

15 RES' Setup Time 25 20 20 ns Note 1 Note 3 

16 RES Hold Time 10 10 10 ns Note 1 Note 3 

17 READY Inactive Delay 5 5 5 ns at 0.8V Note 4 
-

18 READY Active Delay 0 33 0 24 0 24 ns at 0.8V Note 4 

19 PCLK Delay 0 45 0 45 0 35 ns Note 5 

20 RESET Delay 5 50 5 34 5 27 ns Note 5 

21 PCLK LOW Time t4-20 t4-20 14-20 ns Note 5 Note 6 
-

22 PCLK HIGH Time t4-20 14-20 t4-20 ns Notes 5 Note 6 

NOTE 1: ClK loading: CL = 150pF. The 82284's X1 and X2 inputs are designed primarily for parallel-resonant crystals. 
Serial-resonant crystals may also be used, however, they may oscillate up to ,0'1 % faster than their nominal 
frequencies when used with the 82284. For either type of crystal, capacitive loading should be as specified by 
Table 2. 

NOTE 2: With the internal crystal oscillator using recommended crystal and capacitive loading; or with the EFI input 
meeting specifications t2 and t3, The recommended crystal loading for ClK frequencies of 8-20 MHz are 25pF 
from pin X, to ground, and 15pFfrom pin X2 to ground. These recommended values are ±5pF and include all stray 
capacitance. Decouple Vee and GND as close to the 82284 as possible. 

NOTE 3: This is an asychronous input. This specification is given for testing purposes only, to assure recognition at 
specific elK edge. 

NOTE 4: Pull-up Resistor values for READY Pin: 

CPU Frequency 6-8 MHz 
, 

10 MHz 

Resistor 910 ohm 700 ohm 
Cl 150 pF 150 pF 
10L 7 mA 7 mA 

NOTE 5: PCLK and RESET loading: CL = 75pF. PClK also has 750 ohm pullup resistor. 

NOTE 6: t4 refers to any allowable ClK period. 

4-144 
210453-004 



82284 

elK Output Frequency: 12MHz 16MHz 20MHz 
elK elK' elK' 

Min. required EFI HIGH time 35ns 40ns 25ns 
Min. required EFI lOW time 40ns 22ns 25ns 

'At elK Frequencies above 12M Hz, elK output HIGH and lOW times are guaranteed only when using crystal 
with recommended capacitive loading per Table 1, not when driving component from EFI. 

NOTE 7: When driving the 82284 with EFI, provide minimum EFI HIGH and lOW times as follows: 

NOTE 8: When using crystal (with recommended capacitive loading per Table 2) appropriate for speed of 80286, elK 
output HIGH and LOW times guaranteed to meet 80286 requirements. 

4-145 210453-004 



O.45V 

82284 

EFI Drive and Measurement POints ClK Output Measurement Points 

~
.6V 

1.5V 1.SV 

NOTE 9: 

82284 
elK 

OUTPUT 

.45 

F/C Drive Points 

IL 
NOTE 11: 

3.61 
1.0V 

DEVICE 
INPUT 

2.4VETIIi 
O.4SV 

PClK 
output 

OTHER 
DEVICE 

OUTPUT 

2.0V 

o.sv 

NOTE 12: AC Setup, Hold and Delay Time Measurement-General 

Vee 

Q 

> 
7SOohm} 

? 

Vee 

9 

9100hm~ 
READY~ __________ -1~ 
output -

150PF! 

NOTE 13: AC Test loading on Outputs 

4-146 

\;. 
1.0V 

NOTE 10: 

~~~~tsOo------l"'" 

clI

210453-004

Waveforms

82284

elK as a Function of EFI (82284-6 only)

EFI

eLK

NOTE: The EFI input LOW and HIGH times as shown are required to
guarentee the elK lOW and HIGH times s!'own.

RESET and READY Timing as a Function of RES
with S1, SO, ARDY to ARDYEN, and SRDY + SRDYEN HIGH

NOTE 1: This is an asynchronous input. The setup and hold times
shown are required to guarantee the response shown.

NOTE 1: This is an asynchronous input. The setup and hold times shown
are required ~rantee the response show_n_. __
NOTE 2: If SRDY + SRDYEN or ARDY + ARDYEN are active before
andlor during the first bus cycle after RESET, READY may not be
deasserted until after the falling edge of <1>2 of Ts.

4-147
210453-004

82288
BUS CONTROLLER

FOR iAPX 286 PROCESSORS
(82288-10,82288-8,82288-6)

• Provides Commands and Control for
Local and System Bus

• Offers Wide Flexibility in System
Configurations

• Flexible Command Timing

• Optional MULTIBUS®
Compatible Timing

• Control Drivers with 16 ma IOL and
3·State Command Drivers with
32 ma IOL

• Single + 5V Supply

• Available in 20 pin Cerclip Package
(See Packaging Spec, Order #231369)

The Intel B22BB Bus Controller is a 20·pin HMOS component for use in iAPX 2B6 microsystems. The bus
controller provides command and control outputs with flexible timing options. Separate command out·
puts are used for memory and I/O devices. The data bus is controlled with separate data enable and direc·
tion control signals.

Two modes of operation are possible via a strapping option: MULTI BUS compatible bus cycles, and high
speed bus cycles.

3-8TATE
COMMAND READY vcc

STATUS OUTPUTS

[so -] ClK so
Si iOiiC 51 MliO

MliO iO'YiC
MRDC MCE DTIR

~
ALE DEN

ClK MB CENIAEN
CONTROL

INPUTS CMDlY CENl
CENIAEN

CENL MRDC INTA

CMDlY
MWTC iORC

READY

GND IOWC
MB

Figure 1. 82288 Block Diagram Figure 2. 82288 Pin Configuration

"MULTIBUS is a patented bus of Intel.

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses are Implied.

© INTEL CORPORATION, 1982 4-148 January 1986
ORDER NUMBER: 210471-005

82288

Table 1. Pin Description

The following pin function descriptions are for the 82288 bus controller.

Symbol Type Name and Function

ClK I System Clock provides the basic timing control for the 82288 in an iAPX 286 micro-
system. Its frequency is twice the internal processor clock frequency. The falling edge
of this input signal establishes when inputs are sampled and command and control
outputs change.

SO, 51 I Bus Cycle Status starts a bus cycle and, along with MilO, defines the typ~f bus cycle.
These inputs are active lOW. A bus cycle is started when either S1 or SO is sampled
lOW at the falling edge of ClK. Setup and hold times must be met for proper operation.

iAPX 286 Bus Cycle Status Definition

MilO S1 SO Type of Bus Cycle

a a a Interrupt acknowledge
a a 1 1/0 Read
a 1 a 110 Write
a 1 1 None; idle
1 a a Halt or shutdown
1 a 1 Memory read
1 1 a Memory write
1 1 1 None; idle

M/iO I Memory or 110 Select determines whether the current bus cycle is in the memory space or 110
space. When LOW, the current bus cycle is in the 110 space. Setup and hold times must be met
for proper operation.

MB I MULTIBUS Mode Select de'termines timing of the command and control outputs. When
HIGH, the bus controller operates with MULTIBUS compatible timings. When LOW, the
bus controller optimizes the command and control output timing for short bus cycles. The
function of the CEN/AEN input pin is selected by this signal. This input is typically a
strapping option and not dynamically changed.

CENL I Command Enable Latched is a bus controller select signal which enables the bus controller to
respond to the current bus cycle being initiated. CENL is an active HIGH input latched internally
at the end of each T s cycle. CENL is used to select the appropriate bus controller for each bus
cycle in a system where the CPU has more than one bus it can use. This input may be connected
to Vcc to select this 82288 for all transfers. No control inputs affect CENL. Setup and hold times
must be met for proper operation.

CMDLY I Command Delay allows delaying the start of a command. CMDLY is an active HIGH input. If sampied
HIGH, the command output is not activiated and CMDLY is again sampled at the next CLK cycle.
When sampled LOW the selected command is enabled. If READY is detected LOW before the
command output is activated, the 82288 will terminate the bus cycle, even if no command was
issued. Setup and hold times must be satisfied for proper operation. This input may be connected
to GND if no delays are required before start.ing a command. This input has no effect on 82288
control outputs.

READY I READY indicates the end of the current bus cycle. READY is an active LOW input.
MULTI BUS mode requires at least one wait state to allow the command outputs to become
active. READY must be LOW during reset. to force the 82288 into the idle state. Setup and
hold times must be melfor proper operation. The 82284 drives READY LOW during RESET

4-149 210471-005

82288

Table 2. Command and Control Outputs for Each Type of Bus Cycle

Type of MilO 51 SO
Bus Cycle

Interrupt Acknowledge 0 0 0

1/0 Read 0 0 1

liOWrite 0 1 0

None; idle 0 1 1

Halt/Shutdown 1 0 0

Memory Read 1 0 1

Memory Write 1 1 0

None; idle 1 1 1

Operating Modes
Two types of buses are supported by the 82288:
MULTI BUS and non-MULTI BUS. When the MB in­
put is strapped HIGH, MULTIBUS timing is used.
In MULTI BUS mode, the 82288 delays command
and data activation to meet IEEE-796 requirements
on address to command active and write data to
command active setup timing. MULTI BUS mode
requires at least one wait state in the bus cycle since
the command outputs are delayed. The non-MULTI­
BUS mode does not delay any outputs and. does
not require wait states. The MB input affects the
timing of the command and DEN outputs.

Command and Control Outputs
The type of bus cycle performed by the local bus
master is encoded in the MliO, 81, and SO inputs.
Different command and control outputs are ac­
tivated depending on the type of bus cycle. Table 2
indicates the cycle decode done by the 82288 and
the effect on command, DT/R, ALE, DEN, and MCE
outputs.

Command DT/R ALE, DEN MCE
Activated State Issued? Issued?

INTA LOW YES YES

IORC LOW YES NO

IOWC HIGH YES NO

None HIGH NO NO

None HIGH NO NO

MRDC LOW YES NO

MWTC HIGH YES NO

None HIGH NO NO

4-150

Bus cycles come in three forms: read, write, and
halt. Aead bus cycles include memory read, 1/0
read, and interrupt acknowledge. The timing of the
associated read command outputs (MADC, 10AC,
and INTA), control outputs (ALE, DEN, DT/R) and
control inputs (CEN/AEN, CENL, CMDLY, MB, and
READY) are identical for all read bus cycles. Read
cycles differ only in which command output is ac­
tivated. The MCE control output is only asserted
during interrupt acknowledge cycles.

Write bus cycles activate different control and
command outputs with different timing than read
bus cycles. Memory write and 1/0 write are write
bus cycles whose timing for command outputs
(MWTC and 10WC), control outputs (ALE, DEN,
DT/R) and control inputs (CEN/AEN, CENL, CMDLY,
MS, and READY) are identical. They differ only in
which command output is activated.

Halt bus cycles are different because no command
or control output is activated. All control inputs are
ignored until the next bus cycle is started via S1
and SO.

210471-005

82288

Table 1. Pin Description (Cont.)

Symbol Type Name and Function

CEN/AEN I Comma,nd Enable/Address Enable controls the command and DEN outputs of the bus
controller, CEN/AEN inputs may be asynchronous to CLK, Setup and hold times are
given to assure a guaranteed response to synchronous inputs, This input may be con-
nected to VCC or GND,

When MB is HIGH this pin has the AEN function, AEN is an active LOW input which in-
dicates that the CPU has been granted use of a shared bus and the bus controller com-
mand outputs may exit 3-state OFF and become inactive (HIGH), AEN HIGH indicates
that the CPU does not have control of the shared bus and forces the command outputs
into 3-state OFF and DEN inacti~OW), AEN would normally be controlled by an
82289 bus arbiter which activates AEN when that arbiter owns the bus to which the bus
controller is attached,

When MB is LOW this pin has the CEN function, CEN is an unlatched active HIGH input
which allows the bus controller to activate its command and DEN outputs, With MB LOW,
CEN LOW forces the command and DEN outputs inactive but does not tristate them,

ALE a Address Latch Enable controls the address latches used to hold an address stable dur-
ing a bus cycle, This control output is active HIGH, ALE will not be issued for the halt
bus cycle and is not affected by any of the control inputs,

MCE a Master Cascade Enable signals that a cascade address from a master 8259A interrupt
controller may be placed onto the CPU address bus for latching by the address latches
under ALE control, The CPU's address bus may then be used to broadcast the cascade
address to slave interrupt controllers so only one of them will respond to the interrupt
acknowledge cycle, This control output is active HIGH, MCE is only active during inter-
rupt acknowledge cycles and is not affected by any control input, Using MCE to enable
cascade address drivers requires latches which save the cascade address on the falling
edge of ALE,

DEN a Data Enable controls when data transceivers connected to the local data bus should be
enabled, DEN is an active HIGH control output, DEN is delayed for write cycles in the
MULTI BUS mode,

DT/R a Data Transmit/Receive establishes the direction of data flow to or from the local data
bus, When HIGH, this control output indicates that a write bus cycle i~being performed,
A LOW indicates a read bus cycle, DEN is always inj!ctive when DTIR changes states,
This output is HIGH when no bus cycle is active, DT/R is not affected by any of the con-
trol inputs,

10WC a I/O Write Command instructs an I/O device to read the data on the data bus, This com-
mand output is active LOW, The MB and CMDLY inputs control when this output
becomes active, READY controls when it becomes inactive,

10RC 0 110 Read Command instructs an I/O device to place data onto the data bus, This com-
mand output is active LOW, The MB and CMDLY inputs control when this output
becomes active, READY controls when it becomes inactive,

MWTC a Memory Write Command instructs a memory device to read the data on the data bus,
This command output is active LOW, The MB and CMDLYinputs control when this out-
put becomes active, READY controls when it becomes inactive,

MRDC a Memory Read Command instructs the memory device to place data onto the data bus,
This command output is active LOW, The MB and CMDLY inputs control when this out-
put becomes active, READY controls when it becomes inactive.

INTA a Interrupt Acknowledge tells an interrupting device that its interrupt request is being
acknowledged. This command output is active LOW. The MB and CMDLY inputs con-
trol when this output becomes active, READY controls when it becomes inactive,

VCC System Power: + 5V power supply

GND System Ground: 0 volts

4-151 210471-005

82288

FUNCTIONAL DESCRIPTION
Introduction
The 82288 bus controller is used in iAPX 286
systems to provide address latch control, data
transceiver control, and standard level-type com­
mand outputs. The command outputs are timed
and have sufficient drive capabilities for large TTL
buses and meet a1l1EEE-796 requirements for MUl­
TIBUS. A special MUlTIBUS mode is provided to
statisfy all address/data setup and hold time re­
quirements. Command timing may be tailored to
special needs via a CMDl Y input to determine the
start of a command and READY to determine the
end of a command.

Connection to multiple buses are supported with
a latched enable input (CENl). An address
decoder can determine which, if any, bus con­
troller should be enabled for the bus cycle. This
input is latched to allow an address decoder to
take full advantage of the pipelined timing on the
iAPX 286 local bus.

Buses shared by several bus controllers are sup­
ported. An AEN input prevents the bus controller

VCH

CLK
Vel

82284 PCLK
(FOR REFERENCE) --I--'

from driving the shared bus command and data
signals except when enabled by an external bus
arbiter such as the 82289.

Separate DEN and DT/R outputs control the data
transceivers for all buses. Bus contention is
eliminated by disabling DEN before changing
DT/R. The DEN timing allows sufficient time for
tristate bus drivers to enter 3-state OFF before
enabling other drivers onto the same bus.

The term CPU refers to any iAPX 286 processor or
iAPX 286 support component which may become
an iAPX 286 local bus master and thereby drive the
82288 status inputs.

Processor Cycle Definition
Any CPU which drives the local bus uses an internal
clock which is one half the frequency of the system
clock (ClK) (see Figure 3). Knowledge of the phase
of the local bus master internal clock is required for
proper operation of the iAPX 286 local bus. The local
bus master informs the bus controller of its internal
clock phase when it asserts the status signals. Status
signals are always asserted beginning in Phase 1 of
the local bus master's internal clock.

Figure 3. ClK Relationship to the Processor Clock and Bus T-States

4-152 210471-005

inter 82288

Bus State Definition
The 82288 bus controller has three bus states (see
Figure 4): Idle (T,) Status (Ts) and Command (T d.
Each bus state is two ClK cycles long. Bus state
phases correspond to the internal CPU processor
clock phases.

The T, bus state occurs when no bus cycle is cur­
rently active on the iAPX 286 local bus. This state
may be repeated indefinitely. When control of the
local bus is being passed between masters, the
bus remains in the T, state.

NEW
CYCLE

READY .
NEW CYCLE

Figure 4. 82288 Bus States

veH
ClK

VeL

Bus Cycle Definition
The S1 and SO inputs signal the start of a bus cy­
cle. When either input becomes lOW, a bus cycle
is started. The Ts bus state is defined to be the two
ClK cycles during which either S1 or SO are active
(see Figure 5). These inputs are sampled by the
82288 at every falling edge of ClK. When either 51
or SO are sampled lOW, the next ClK cycle is con­
sidered the second phase of the internal CPU clock
cycle.

The local bus enters the T c bus state after the Ts
state. The shortest bus cycle may have one Ts state
and one Testate. Longer bus cycles are formed by
repeating Tc states. A repeated Tc bus state is
called a wait state.

The READY input determines whether the current
Tc bus state is to be repeated. The RI::AuY input
has the same timing and effect for all bus cycles.
READY is sampled at the end of each Tc bus state
to see if it is active. If sampled HIGH, the Tc bus
state is repeated. This is called inserting a wait
state. The control and command outputs do not
change during wait states.

When READY is sampled lOW, the current bus cy­
cle is terminated. Note that the bus controller may
enter the Ts bus state directly from Tc if the status
lines are sampled active at the next falling edge of
ClK.

I!!//////&

Figure 5. Bus Cycle Definition

4-153
210471-005

82288

Figures 6-10 show the basic command and control
output timing for read and write bus cycles. Halt
bus cycles are not shown since they activate no
outputs. The basic idle-read-idle and idle-write-idle
bus cycles are shown. The signal label CMD
represents the appropriate command output for
the bus cycle. For Figures 6-10, the CMDL Y input is
connected to GND and CENL to Vee. The effects of
CENL and CMDLY are described later in the sec­
tion on control inputs.

Figures 6, 7 and 8 show non-MULTIBUS cycles. MB
is connected to GND while CEN is connected to Vce·
Figure 6 shows a read cycle with no wait states while
Figure 7 shows a write cycle with one wait state. The
READY input is shown to illustrate how wait states
are added.

T,

I----READ BUS CYCLE

I Ts I Te "I T,

eLK

ALE ____ -J

DEN ______ -+---'

DT/R

c.w-------~

Figure 6. Idle-Read-Idle Bus Cycles with MB = 0

T,

WRITE BUS CYCLE ::::J
Te r-WAIT~ATE·I

T, Ts

ClK

ALE ____ _t'

DEN ____ ---'

vO" DT/R -------+------+----4-------

CMD -------'<:---.

Figure 7_ Idle-Write-Idle Bus Cycles with MB = 0

4-154 210471-005

82288

Bus cycles can occur back to back with no T, bus
states between Te and Ts. Back to back cycles do
not affect the timing of the command and control
outputs. Command and control outputs always
reach the states shown for the same clock edge
(within Ts, Te, or following bus state) of a bus cycle.

A special case in control timing occurs for back to
back write cycles with MB == O. In this case, DTiR
and DEN remain HIGH between the bus cycles (see
Figure 8). The command and ALE output timing
does not change.

1ST WRITE CYCLE --1- 2ND WRITE CYCLE

~ I ~ I ~
ClK

READY'

DE~OH --+---------t-j I

DT/R --+-------- ,

Figures 9 and 10 show a MULTIBUS cycle with
MB==1.. AEN and CMDLY are connected to GND.
The effects of CMDLY and AEN are described later
in the section on control inputs. Figure 9 shows a
read cycle with one wait state and Figure 10 shows
a write cycle with two wait states. The second wait
state of the write cycle is shown only for example
purposes and is not required. The READY input is
shown to illustrate how wait states are added.

Va" t I

I CMD_Y =--:---:-L I
Figure 8. Write·Write Bus Cycles with MB = 0

T, T, Tc Tc T,

ClK

ALE _____ -'

DEN _________ ~~--'

DT/~ --------+"""\'

CMD

Figure 9. Idle·Read·ldle Bus Cycles with MB = 1

4-155 210471-005

82288

T, T. Tc Tc Tc T,

CLK

Ij.§ij--""'\

ALE ____ --I

DEN ________________
J

CM6----------------------~~

Figure 10. Idle·Wrlte·ldle Bus Cycles with MB = 1

The MB control input affects the timing of the com­
mand and DEN outputs. These outputs are auto­
matically delayed in MULTI BUS mode to satisfy
three requirements:

1) 50 ns minimum setup time for valid address
before any command output becomes active.

2) 50 ns minimum setup time for valid write data
before any write command output becomes ac·
tive.

3) 65 ns maximum time from when any read com·
mand becomes inactive until the slave's read
data drivers reach 3·state OFF.

Three signal transitions are delayed by MB = 1 as
compared to MB = 0:

1)The HIGH to lOW transition of the read com·
mand outputs (R.rn'e, MRDC, and INTA) are
delayed one ClK cycle.

2) The HIGH to lOW transition of the write com·
mand outputs (IOWC and MWTC) are delayed
two ClK cycles.

3) The lOW to HIGH transition of DEN for write
cycles is delayed one ClK cycle.

Back to back bus cycles with MB = 1 do not
change the timing of any of the command or con·
trol outputs. DEN always becomes Inactive be·
tween bus cycles with MB = 1.

Except for a halt or shutdown bus cycle, ALE will
be Issued during the second half of Ts for any bus
cycle. ALE becomes inactive at the end of the Ts
to allow latching the address to keep it stable duro
Ing the entire bus cycle. The address outputs may
change during Phase 2 of any T c bus state. ALE is
not affected by any control input.

Figure 11 shows how MCE is timed during Inter·
rupt acknowledge (INTA) bus cycles. MCE is one
ClK cycle longer than ALE to hold the cascade
address from a master 8259A valid after the falling
edge of ALE. With the exception of the MCE con·
trol output, an INTA bus cycle Is Identical in tim·
ing to a read bus cycle. MCE is not affected by any
control input.

4-156 210471·005

inter 82288

To

ClK

ALE ____ +--'

MCE _____ .J

Figure 11. MCE Operation for an INTA Bus Cycle

Control Inputs
The control inputs can alter the basic timing of
command outputs, allow interfacing to multiple
buses, and share a bus between different
masters. For many iAPX 286 systems, each CPU
will have more than one bus which may be used to
perform a bus cycle. Normally, a CPU will only
have one bus controller active for each bus cycle.
Some buses may be shared by more than one CPU
(Le. MULTI BUS) requiring only one of them use
the bus at a time.

Systems with multiple and shared buses use two
control input signals of the 82288 bus controller,
CENL and AEN (see Figure 12). CENL enables the
bus controller to control the current bus cycle.
The AEN input prevents a bus controller from driv·
ing its command outputs. AEN HIGH means that
another bus controller may be driving the shared
bus.

In Figure 12, two buses are shown: a local bus and
a MULTI BUS. Only one bus is used for each CPU
bus cycle. The CENL inputs of the bus controller
select which bus controller is to perform the bus
cycle. An address decoder determines which bus
to use for each bus cycle. The 82288 connected to
the shared MULTI BUS must be selected by CENL
and be given access to the MULTIBUS by AEN
before it will begin a MULTI BUS operation.

4-157

CENL must be sampled HIGH at the end of the T8
bus state (see waveforms) to enable the bus con­
troller to activate its command and control out­
puts. If sampled LOW the commands and DEN
will not go active and DTiFf will remain HIGH. The
bus controller will ignore the CMDLY, CEN, and
READY inputs until another bus cycle is started
via S1 and SO. Since an address decoder is com­
monly used to identify which bus is required for
each bus cycle, CENL is latched to avoid the need
for latching its input.

The CEN L input can affect the DEN control out­
put. When M B = 0, DEN normally becomes active
during Phase 2 of T8 in write bus cycles. This tran­
sition occurs before CENL is sampled. If CENL is
sampled LOW, the DEN output will be forced LOW
during Tc as shown in the timing waveforms.

When MB = 1, CEN/AEN becomes AEN. AEN con­
trols when the bus controller command outputs
enter and exit 3-state OFF. AEN is intended to be
driven by a bus arbiter, like the 82289, which
assures only one bus controller is driving the
shared bus at any time. When AEN makes a LOW
to HIGH transition, the command outputs im­
mediately enter 3-state OFF and DEN is forced in­
active. An inactive DEN should force the local
data transceivers connected to the shared data
bus into 3-state OFF (see Figure 12). The LOW to
HIGH transition of AEN should only occur during
TI or T8 bus states.

The HIGH to LOW transition of AEN signals that
the bus controller may now drive the shared bus
command signals. Since a bus cycle m~e ac­
tive or be in the process of starting, AEN can
become active during any T-state. AEN LOW im­
mediately allows DEN to go to the appropriate
state. Three CLK edges later, the command out­
puts will go active (see timing waveforms). The
MULTIBUS requires this delay for the address and
data to be valid on the bus before the command
become active.

When M B = 0, CEN/AEN becomes CEN. CEN is an
asynchronous input which immediately affects
the command and DEN outputs. When CEN
makes a HIGH to LOW transition, the commands

210471-005

82288

and DEN are Immediately forced inactive. When
CEN makes a LOW to HIGH transition, the com·
mands and DEN outputs Immediately go to the
appropriate state (see timing waveforms). READY
must stili become active to terminate a bus cycle
if CEN remains LOW for a selected bus controller
(CENL was latched HIGH).

rO~
READY

Xl X2

iiiiDY A'RDY
82284 AiiDvEN SFiiiffi

CMD

ADDRESS

DATA

<=
READY

CMD 82288 ClK

MliO
Si.so

CENl

MB CEN

*
f

+5V

ADDRESS

DECODER

II
II
Au.o

F ClK READY 51. so

r-

>--

MliO
iii
SI

l
ClK READY MilO

51.SO

80286

Some memory or I/O systems may require more
address or write data setup time to command ac·
tlve than provided by the basic command output
timing. To provide flexible command timing, the
CMDLY input can delay the activation of com·
mand outputs. The CMDL Y Input must be
sampled LOW to activate the command outputs.
CMDLY does not affect the control outputs ALE,
MCE, DEN, and DT/R.

XAcK

9100 ",5%

READY COMMA NOS

ClK 82288
CMD)

MliO DEN {>o-
SI • so

DTIR - CENl ALE

MB AEN

Jv 1

READY AEN

ClK 82289 CON TROl

MliO CNTl

SI.SO

SYSIRESB

20KO /S1

+5V /

ADD RESS

8283 1/

- 1/11

li
/Trn!

I'""'""'-
DATA

Du.o ~ ~)
8287

1/

Figure 12. System Use of AEN and CENL

4-158 210471-005

82288

CMDlY is first sampled on the falling edge of the
ClK ending Ts. If sampled HIGH, the command
output is not activated, and CMDlY is again
sampled on the next falling edge of ClK. Once
sampled lOW, the proper command output
becomes active immediately if MB = O. If MB = 1,
the proper command goes active no earlier than
shown in Figures 9 and 10.

READY can terminate a bus cycle before CMDlY
allows a command to be issued. In this case no
commands are issued and the bus controller will
deactivate DEN and DT/A in the same manner as if
a command had been issued.

Waveforms Discussion
The waveforms show the timing relationships of in­
puts and outputs and do not show all possible tran-

4-159

sitions of all signals in all modes. Instead, all
signal timing relationships are shown via the
general cases. Special cases are shown when
needed. The waveforms provide some functional
descriptions of the 82288; however, most func­
tional descriptions are provided in Figures 5
through 11.

To find the timing specification for a signal transi·
tion in a particular mode, first look for a special
case in the waveforms. If no special case applies,
then use a timing specification for the same or
related function in another mode.

210471-005

82288

ABSOLUTE MAXIMUM RATINGS·
Ambient Temperature Under Bias o·e to 70·e
Storage Temperature - 65·e to + 150·e
Voltage on Any Pin with

Respect to G N D - 0.5V to + 7V
Power Dissipation 1 Watt

• NO TleE: Stresses above those listed under "Ab­
solute Maximum Ratings" may cause permanent
damage to the device. This is a stress rating only
and functional operation of the device at these or
any other conditions above those indicated in the
operational sections of this specification is not im­
plied. Exposure to absolute maximum rating condi­
tions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (Vcc = 5V ±5%, TA = ooe to 70°C, or T CASE = ooe to 85°C)

6 MHz

-6 -6
Symbol Parameter Min. Max.

V'L Input LOW Voltage -.5 .8

VjH Input HIGH Voltage 2.0 Vce + .5

V'LC CLK Input lOW Voltage -.5 .6

V'HC ClK Input HIGH Voltage 3.8 Vcc +.5

VOL Output LOW Voltage
Command Outputs .45
Control Outputs .45

VOH Output HIGH Voltage
Command Outputs 2.4
Control Outputs 2.4

IF Input Current (SO and S1 inputs) -.5

I'L Input leakage current (all

other inputs) ±10

ILO Output Leakage Current ±10

Icc Power Supply Current 120

CCLK ClK Input Capacitance 12

C, Input Capacitance 10

Co Input/Output Capacitance 20

NOTE: 1. Command Outputs are INTA, IORC, IOWC, MRDC, MWRC.
2. Control Outputs are DT/R, DEN, ALE and MCE.

4-160

8 MHz

-8 -8
Min. Max. Units Test Conditions

-.5 .8 V

2.0 Vce + .5 V

-.5 .6 V

3.8 Vcc +.5 V

.45 V IOL ~ 32mA Note 1

.45 V IOL = 16mA Note 2

2.4 V IOH = - 5mA Note 1
2.4 V IOH = - 1 mA Note 2

-.5 mA VI = .45V

±10 ~A OV " VI'N 'S Vcc

± 10 ~A .45V" VOUT " Vec

120 mA

12 pF Fc = 1 MHz

10 pF Fc = 1 MHz

20 pF Fc = 1 MHz

210471-005

82288

A.C. CHARACTERISTICS
(TA ~ O°C to 70°C, Vee ~ 5V, ±5%)
AC timings are referenced to O.BV and 2.0V points of signals as illustrated in data sheet waveforms, unless otherwise noted.

10 MHz
6MHz 8MHz (Preliminary)

-6 -6 -8
Sym Parameter Min. Max, Min.

1 ClK Period 83 250 62

2 ClK HIGH Time 25 230 20

3 ClK lOW Time 20 225 15

4 ClK Rise Time 10

5 ClK Fall Time 10

6 MilO and Status Setup Time 28 22

7 MilO and Status Hold Time 1 1

8 CENl Setup Time 30 20

9 CENl Hold time 1 1

10 READY Setup Time 50 38

11 READY Hold Time 35 25

12 CMDl Y Setup Time 25 20

13 CMDl Y Hold Time 1 1

14 AEN Setup Time 25 20

15 AEN Hold Time a 0

16 ALE, MCE Active Delay from ClK 3 25 3

17 ALE, MCE Inactive Delay from ClK 35

18 DEN (Write) Inactive from CENl 35

19 DT IR lOW from ClK 40

20 DEN (Read) Active from DT IR 5 50 5

21 DEN (Read) Inactive Diy from ClK 3 40 3

22 DT/R HIGH from DEN Inactive 5 45 5

23 DEN (Write) Active Delay from ClK 35

24 DEN (Write) Inactive Diy from ClK 3 35 3

25 DEN Inactive from CEN 40

26 DEN Active from CEN 35

27 DT/R HIGH from elK
(when CEN ~ lOW) 50

28 DEN Active from AEN 35

29 CMD Active Delay from ClK 3 40 3

30 CMD Inactive Delay from ClK 5 30 5

31 CMD Inactive from CEN 35

32 CMD Inactive from CEN 45

33 CMD Inactive Enable from AEN 40

34 CMD Float Delay from AEN 40

35 MB Setup Time 25 20

36 MB Hold Time 0 0

37 Command Inactive Enable
from MBi 40

38 Command Float Time from MBI 40

39 DEN Inactive from MBf 40

40 DEN Active from MBI 35

NOTE: 3. AEN is an asynchronous input. This specification is for testing
purposes only, to assure recognition at a specific elK edge

4. Control output load: CI ~ 150pF

4-161

-8 -10 -10
Max. Min. Max. Unit Test Condition

250 50 250 ns

235 16 238 ns at 3.6V

230 12 234 ns at 1.0V

10 8 ns 1.0V to 3.6V

10 8 ns 3.6V to 1.0V

18 ns

1 ns

15 ns

1 ns

26 ns

25 ns

15 ns

1 ns

15 ns Note 3

0 ns Note 3

20 3 16 ns Note 4

25 19 ns Note 4

35 23 ns Note 4

25 23 ns Note 4

35 5 21 ns Note 4

35 3 21 ns Note 4

35 5 20 ns Note 4

30 23 ns Note 4

30 3 19 ns Note 4

30 25 ns Note 4

30 24 ns Note 4

35 25 ns Note 4

30 26 ns Note 4

25 3 21 ns Note 5

25 5 20 ns Note 5

25 25 ns Note 5

25 25 ns Note 5

40 40 ns Note 5

40 40 ns Note 6

20 ns

0 ns

40 40 ns Note 5

40 40 ns Note 6

30 26 ns Note 4

30 30 ns Note 4

5 Command output load CI ~ 300pF
6. Float condition occurs when output current is less

210471-005

82288

4.0V

O.45V

NOTE 7: AC Drive and Measurement Points - ClK Input

4.0V

CLKINPUT

1.0V

O.45V

tHOLD

2.4V

OTHER 2.0V

DEVICE
INPUT

O.45V

tOELAY

2.0V

DEVICE
OUTPUT

O.BV

NOTE 8: AC Setup, Hold and Delay Time Measurement - General

DEVICE
OUTPUT

NOTE 9: AC Test loading on Outputs

4-162
210471-005

82288

WAVEFORMS

ClK CHARACTERISTICS

ClK

STATUS, ALE, MCE, CHARACTERISTICS

~ _____ Ts __ ~+-____ _

ClK

M/iO,S1,So ---Fi

MCE ______ --'

CENl, CMDlY, DEN CHARACTERISTICS WITH MB =0 AND CEN = 1 DURING WRITE CYCLE

DEN ____ f--/

CENl

CMDLY ;1 III! //////!l//ffi

4-163
210471-005

82288

WAVEFORMS (Continued)

READ CYCLE CHARACTERISTICS WITH MB = 0 AND CEN = 1

ClK

CMDlY

DTiii ---+"'\

DEN ----1-=---'

CENl

WRITE CYCLE CHARACTERISTICS WITH MB = 0 AND CEN = 1

ClK

DEN ______ --'

VOH--------------~---+-----~r--_+----------
DTiR

CMDlY

CENl

4-164 210471-005

inter 82288

WAVEFORMS (Continued)

CEN CHARACTERISTICS WITH MB = 0

CLK

CEN

DEN

CMD

DT/R __________ -I~--_+..J

~ CHARACTERISTICS WITH MB = 1

CLK

CMD ___ :i~~-------~
~~.1---------------~~+-~rl-~

DEN---J

NOTE 1: AEN is an asynchronous input. AE'N setup and hold time is specified to guarantee the response shown in the waveforms.

210471-005

4-165

intel® 82288

WAVEFORMS (Continued)

MB CHARACTERISTICS WITH AEN/CEN = HIGH

CLK

so·Sf

MB

CMD

DEN

READY

CLK

MB

" "MRDC

DTiif

DEN

Ts Tc Tc Tc Ts

Ts Tc Tc Ts

'----~/
I~r_@_ ~
~~ ~~~------------~-------------------

_______ ~_-f @-Cc,-F...::@=---------
~:~20 1 F-=..,...® -­
J-,f-.-:;..I.!!V-~~~'l----+t--' @

-------------------- ~. ~~~~~-dD-l--------------------
READY ~

NOTE 1: MB is an asynchronous input. MB setup and hold times specified to guarantee the response shown in
ihe waveforms.

NOTE 2: If the setup time, t35, is met two clock cycles will occur before CMD becomes active after the falling edge of
MB.

4-166 210471-005

inter
82289

BUS ARBITER
FOR iAPX 286 PROCESSOR FAMILY

• Supports Multi-master System Bus
Arbitration Protocol

• Synchronizes 80286 Processor with Multi­
master Bus

• Compatible With Intel Bus Standard
MULTIBUS® (IEEE 796 Standard)

• Three Modes of Bus Release Operation for
Flexible System Configuration

• Supports Parallel, Serial, and Rotating
Priority Resolving Schemes

• Available in EXPRESS - Standard
Temperature Range

• Available in 20 Pin Plastic Dip and Cerdip
Packages (See Packaging Spec Order
#231369)

The Intel 82289 Bus Arbiter is a 5-Volt, 20-pi n HMOS III component for use in multiple bus master iAPX 286
systems. The 82289 provides a compact solution to system bus arbitration for the 80286 CPU.

The complete IEEE 796 Standard bus arbitration protocol is supported. Three modes of bus release operation
support a number of bus usage models.

STATUS lSO#/HOLD
INPUTS S1#

M/IO#

LOCAL
SYSTEM r REA~~:

CONTROL LOCK#
ALWAYS ~/CBQLCK #

SYSB/RESB # l RESET

AEN#

-- PROCESSOR -- INTERFACE ---- STATE -- MACHINE

MULTIBUS@
INTERFACE

STATE
~ MACHINE

BUS REQUEST
...... -v

AND
RELEASE

LOGIC

M/IO# Vee

READY# S1#

SYSB/RESB# SO#/HOLD

CLK

BCLK# LOCK#
INIT# ALWAYS#/CBQLCK#

BREQ# LLOCK#

BPRO# AEN#

BPRN# CBRQ#

GND BUSY#

INDICATES FUNCTION IS ACTIVE LOW

I--

I-
I--
l-
l-

LLOCK#

f--.
f-
f--
I-

f--.

MULTIBUS

BREQ# INTERFACE

BPRN# SIGNALS

BPRO#

BCLK#

CBRQ#

BUSY#

INIT#

Figure 1. 82289 Block Diagram Figure 2. 82289 Pin Diagram

Intel Corporation Assumes No Responsiblrty for the Use of Any CI rcultry Other Than Circuitry Embodied In an Intel Product. No Other Circuit

Patent Licenses are lmplted Information Contained Herein Supercedes Previously Published Specifications of These Devices from Intel

',INTEL CORPORATION 1984 4-167 ORDER NUMBER 231095-003

Symbol Pin(s) Type

ClK 17 I

SO#/HOlD 18 I

82289

Table 1. 82289 Pin Definition

Name and Function

SYSTEM CLOCK accepts the ClK signal from the 82284 Clock
Generator chip as the timing reference for the bus arbiter and
processor interface signals,
STATUS INPUT SO# or HOLD is either the SO# status signal from
80286 or the HOLD signal from some other bus master, The function of
this input is established during the processor reset of the 82289 Bus
Arbiter, The 80286 SO# pin meets the setup and hold time requirements
of this pin,

The SO# pin function is selected by forcing this input high during the
falling edge of processor reset If the 82289 is used to support an 80286
processor, the SO# output of the processor will be high during reset

In supporting the 80286 processor, the 82289 decodes the SO# pin
together with the other status input pins, S1# and M/IO#, to determine
the beginning of a processor bus cycle and initiate bus request and
surrender actions,

The HOLD function of the SO#/HOlD pin is selected by holding this
input low during the falling edge of processor reset When supporting
a bus master other than 80286, the 82289 monitors the HOLD signal to

r __________ ~-----+----+--i-n-it-ia-te--b-us--re-q~u-e-s-ta-n-d--su-r_re_n_d_e_r_a_c_ti_o_ns_, __________________ ~
S i#, M/IO# 19, 1 I STATUS INPUTS are the status input signal pins from the 80286

processor. The arbiter decodes these inputs together with SO#/HOlD
input to initiate bus request and surrender actions, A bus cycle is
started when either S1# or SO# is sampled lOW at the falling edge of
ClK, The 80286 S1# and M/IO# pins meet the setup and hold time
requirements of these pins,

SYSB/RESB# 3

80286 Bus Cycle Status Encoding

M/IO#
o
o
o
o
1
1
1
1

S1#
o
o
1
1
o
o
1
1

SO#/HOLD
o
1
o
1
o
1
o
1

Type of Bus Cycle
Interrupt acknowledge
1/0 Read
110 Write
None; bus idle
Halt or shutdown
Memory read
Memory write
None; bus idle

When supporting the HOLD output of another bus master, the S1# and
M/IO# pins must be held HIGH during Ts, the Status Cycle, for proper
operation,

SYSTEM BUS/RESIDENT BUS# is an input signal which determines
when the multi-master system bus is required forthe current bus cycle,
The signal can originate from address mapping circuitry such as a
decoder or PROM attached to the processor address and status pins,
The arbiter will request or retain control of the multi-master system bus
when the SYSB/RESB# pin is sampled HIGH at the end of the Ts bus
state,

During an interrupt acknowledge cycle, this input is sampled on every
falling edge of ClK starting at the end of the Ts state·until either
SYSB/RESB# is sampled HIGH or the bus cycle is terminated by the
READY# signal. Setup and hold times for this pin must be met for
proper operation,

4-168 231095-003

82289

Table 1. 82289 Pin Definition (continued)

Symbol Pines) 'TYpe Name and Function

READY# 2 I READY# is an active-lOW signal which indicates the end of the bus
cycle. The 80286 halt or shutdown cycle does not require READY# to
terminate the bus cycle. Setup and hold times for this pin must be met
for proper operation.

lOCK# 16 I LOCK # is a processor-generated signal which when asserted (lOW)
prevents the arbiter from surrendering the multi-master system bus to
any other bus arbiter, regardless of its priority. lOCK# is sampled by
the arbiter at the end of the Ts (status) bus state. Setup and hold times'
for this pin must be met for proper operation. --- --

AlWAYS#/ 15 I ALWAYS RELEASE# or COMMON BUS REQUEST LOCK# can be
CBQlCK# programmed at processor reset to be either the ALWAYS RELEASE

(AlWAYS#) strapping option or the COMMON BUS REQUEST lOCK
(CBQlCK#) control input. Setup and hold times for this pin must be
met for proper programming.

When this pin is lOW during the falling edge of processor reset
(AlWAYS# option) the arbiter is programmed to surrender the multi-
master system bus after each bus transfer cycle. The 82289will remain
in the ALWAYS RELEASE mode until it is reprogrammed during the
next processor reset.

The bus arbiter is programmed to support the COMMON BUS
REQUEST lOCK function by forcing this input pin HIGH during the
falling edge of the processor reset.

CBQlCK# itself is an active-lOW signal which when active prevents
the arbiter from surrendering the multi-master system bus to a
common bus request through the CBRQ# input pin.

RESET 4 I PROCESSOR RESET is an active-HIGH input synchronous to the
system clock (ClK). RESET is the processor initialization of the arbiter
to release the mUlti-master bus and clear any pending request.

INIT# 6 I INITIALIZE# is an active-low MUlTIBUS® signal used to reset all
arbiters on the MUlTIBUS system. It will cause the release of the
mUlti-master bus, but will not clear the pending bus master request
so that the arbiter can again request the multi-master bus. No arbiters.
have the use of the multi-master bus immediately after initialization.
INIT# is an asynchronous signal to ClK.

BClK# 5 I BUS CLOCK# is the multi-master system bus clock to which the
multi-master bus interface signals are synchronized. BClK# can be
asynchronous to ClK.

BREQ# 7 0 BUS REQUEST# is an active-lOW output signal used in the parallel
and rotating priority resolving schemes. The arbiter activates BREQ#
to request the use of the multi-master system bus. The arbiter holds
BREQ# active as long as it is requesting or has possession of the
multi-master system bus.

CBRQ# 12 I/O COMMON BUS REQUEST# is a MULTI BUS signal that indicates
(open- when an arbiter is requesting the MULTI BUS. This pin is an open-
drain) drain input/output requiring an external pullup resistor.

As an input CBRQ# indicates that another arbiter is requesting the
multi-master system bus. The input function of this pin is enabled by
the CBQlCK# signal. Setup and hold times for this pin must be met for
proper operation.

As an output CBRQ# is asserted to indicate that this arbiter is re-
questing the MULTI BUS. The arbiter pulls CBRQ# low when it issues
a BREQ#. The arbiter release CBRQ# when it obtains the MULTI BUS.

4-169 231095-003

inter 82289

Table 1. 82289 Pin Definition (continued)

Symbol Pin(s) Type Name and Function

BPRN# 9 I BUS PRIORITY IN# is an active-low input indicating that this arbiter
has the highest priority of any arbiter requesting the system bus.
BPRN# HIGH signals the arbiter that a higher priority arbiter is
requesting or has possession of the system bus. Setup and hold times
for this pin must bt; met for proper operation.

BPRO# 8 0 BUS PRIORITY OUT# is an active-low output signal used in the serial
priority resolving scheme. SRPO# is connected to BPRN# of the next

. lower priority to grant or revoke priority from that arbiter . --
BUSY# 11 I/O BUSY# is a MULTI BUS Signal which is asserted when the system bus

(open- is in use.
drain)

BUSY# is an open drain input/output requirin~ an external pullup
resistor.

As an input BUSY# asserted indicates when the MULTI BUS is in use.
Setup and hold times must be met for proper operation.

As an output BUSY# is asserted to signal when this arbiter has taken
control of the MULTI BUS.

AEN# 13 0 ADDRESS ENABLE# is the output of the arbiter which goes directly to
the processor's address latches, the 82288 Bus Controller and the
82284 Clock Generator. AEN# asserted causes the bus controller and
address latches to enable their output drivers. AEN# also drives the
clock generator ARDYEN# input to enable its asynchronous ready
input (ARDY#).

AEN# can also be used as an active-LOW Hold Acknowledge to a bus
master other than 80286. It signals to the bus master that control of the
system bus has been relinquished when AEN# is inactive (HIGH).

Note that AEN# goes active relative to BCLK# and goes inactive
relative to CLK.

LLOCK# 14 0 LEVEL LOCK# is an active-low output signal decoded from processor
LOCK# signal. LLOCK# can be used as MULTI BUS LOCK# when
buffered with a tri-state buffer enabled by the AEN# signal. LLOCK1#
will be cleared by RESET but not by INIT#.

Vee 20 I +5 volts supply voltage

GND 10 I Ground

FUNCTIONAL DESCRIPTION determine which bus cycles require the system bus
and to resolve priorities of simultaneous requests
for control of the system bus. The 82289 Bus Arbiter in conjunction with the 82288

Bus Controller and the 82284 Clock Generator
interfaces the 80286 processor or some other bus
master to a multi-master system bus. The arbiter
multiplexes a processor onto a multi-master system
bus. It avoids contention with other bus masters.

The 82289 has two separate state machines which
communicate through bus request and release
logic. The processor interface state machine is
synchronous with the local system clock (CLK) and
the multi-master system bus interface state machioe
is synchronous with the bus clock (BCLK#).

The 82289 performs all signalling to request, obtain,
and release the system bus. External logic is used to

4-170

82289 with 80286

In an iAPX 286 system using an 82289 Bus Arbiter,
the 80286 processor is unaware of the arbiter's
existence and issues cammands as though It had
exclusive use of the multi-master system bus such
as MULTI BUS. If the processor cycle requires MUL­
TIBUS access, the arbiter requests control of the
MULTIBUS. Until the request is granted the 82289
keeps AEN# disabled to prevent the 82288 Bus
Controller and the address latches from accessing
the MULTI BUS. AEN# inactive also disasserts the

231095-003

82289

asynchronous ready enable (ARDYEN#) input of
the 82284 clock chi P so that the system bus will
appear as "NOT READY" to the 80286 processor.

Once the 82289 Bus Arbiter has acquired the bus,
it will assert AEN# allowing the 82288 Bus
Controller and the address latches to access the
system bus and asserting the ARDYEN# Input of
the 82284 Clock chip.

Typically, once the data transfer command has
been issued by the 82288 and the data transfer
has taken place, a transfer acknowledge (XACK#)
signal is returned to the processor onth multi­
master system bus to indicate "Ready" from the
accessed slave device. The processor remains in a
series of "Wait States" (Repeated Tc states) until
the addressed device reponds with XACK#
asserted signal to the 82284 ARDY# input and the
82284 asserts READY# to the processor. The
processor then completes its bus cycle.

82289 with other Bus Masters

When supporting other bus masters, the SO#/HOLD
and READY# pins of the bus arbiter can be connected
to the 'Hold' pin of that master. The inverted AEN#
signal from the 82289 can be used as the hold
acknowledge (HLDA) input for the other bus master.

The bus master sends a HOLD signal to the bus
arbiter when it needs the system bus for a memory
access. If the arbiter currently controls the system
bus. AEN# will be active. Otherwise, AEN# will be
inactive and the arbiter will request control of the
system bus. The bus master will have to wait until
the 82289 has asserted AEN# (LOW), before it starts
its bus cycle.

When the bus master no longer requests the MUL­
TIBUS it will have to inactivate the HOLD signal.
The arbiter interprets the MULTI BUS access as a
single bus cycle which is terminated by HOLD
going inactive (LOW). Thus the arbiter will not
release the MULTIBUS to any other bus master
during a bus access cycle.

Processor Cycle Definition

Any iAPX 286 system which gains access to the
MULTI BUS through the 82289 Bus Arbiter uses an
internal clock which is one half the frequency of
the system clock (CLK) (see figure 3). Knowledge
of the phase of the local bus master internal clock
is required for proper 82289 control of the iAPX 286
interface to MULTI BUS. The local bus master in­
forms the bus arbiter of its internal clock phase
when it asserts the status signals. The 80286 SO#
and S1# status signals are always first asserted in
phase 1 of the local bus master's internal clock.

4-171

ONE PROCESSOR CLOCK CYCLE

ONE BUS T-STATE

°JL~~~g};g2EA -+- °tl~~~gc~i~~EA

CLK~ONESYSTEM.I I
CLK CYCLE""

PCLKY \ V-

Figure 3: elK Relationship to Internal Processor
Phase, and Bus T-States

Bus State Definition

The 82289 Bus Arbiter has three processor bus
states (see figure 4): Idle (TIl. Status (T sl. Command
(T d. Each bus state is two CLK cycles long. Bus
state phases correspond to the internal CPU pro­
cessor clock phases.

READY

NEW CYCLE

Figure 4: 82289 Processor Bus States

231095-003

82289

Bus Cycle Definition

The S1# and SO# status inputs are sampled by the
822890n the falling edge of elK and signal the start
of a bus cycle by going active (lOW). The T8 bus
state is defined to be the two elK cycles during
which either S1# or SO# is active (see figure 5).
When either S1# or SO# is sampled lOW, the next
elK cycle is considered the second phase of the
associated processor clock cycle.

The arbiter enters the T c bus state after the T 8 state.
The shortest bus cycle may have one T 8 state and
one Testate. longer bus cycles are formed by
repeating T c states. A repeated T c bus state is
called a wait state.

VCH

ClK
VCL

51.SO VIH ___ """-

FROM
CPU VIL

The READY# input determines whether the current
T c bus state is to be repeated. The READY# input
has the same timing and effect for all bus cycles.
READY# is sampled at the end of each T c bus state
to see if it is active. If sampled HIGH, the T c bus
state is repeated. This is called inserting a wait state.

When READY# is sampled lOW, the current bus
cycle is terminated. Note that the bus arbiter may
enter the T 8 bus state directly from T c if the status
lines are sampled active (lOW) at the next falling
edge of elK (see Figure 5). If neither of the status
lines are sampled active at that time the 82289 will
enter the TI bus state. The TI bus state will be
repeated until the status inputs are sampled active.

/III!! ////A

Figure 5: 80286 Bus Cycle Definition (without wait states)

Arbitration Between Bus Masters

The MULTI BUS protocol allows multiple processing
elements to compete with each other to access
common system resources. Since the local 80286
processor does not have exclusive use of the
system bus, if the MULTI BUS is "BUSY" the 80286
processor will have to wait before it can access the
system bus.

The '82289 Bus Arbiter provides an integrated
solution for controlling access to a multi-master
system bus. The bus arbiter allows both higher and
lower priority bus masters to acquire the system bus
depending on which release mode is used. In
general, higher priority masters obtain the bus
immediately after any lower priority master com­
pletes its present transfer cycle. lower priority bus
masters obtain the bus when a higher priority

master is not accessing the system bus or the
proper surrender conditions exist. The 82289 handles
this arbitration in a manner completely transparent
to the bus master (e.g. 80286 processor).

At the end of each transfer, the arbiter may retain or
release the system bus. This decision is controlled
by the processor state, but arbitration inputs and
arbiter strapping options. (See Releasing The MUl­
TIBUS, ahead).

Priority Resolving Techniques

Some means of resolving priority between bus
masters requesting the multi-master bus simulta­
neously must be provided. The 82289 Bus Arbiter
supports parallel, serial, and rotating system bus
priority resolving techniques. All of these techniques
are based on the concept that at a given time, one
bus master will have priority above all the others.

4-172 231095-003

82289

BUSY ________________________ ~

(2) HIGHER PRIORITY BUS ARBITER REQUESTS THE MULTI-MASTER SYSTEM BUS.

o ATTAINS PRIORITY. (DOES NOT YET OWN BUS)

CD LOWER PRIORITY BUS ARBITER RELEASES BUSY.

o HIGHER PRIORITY BUS ARBITER THEN ACQUIRES THE BUS ANDPULLS ~LOW.

Figure 6: Bus Exchange Timing For The MULTlBUS@

An individual arbiter is the highest priority arbiter
requesting the MULTI BUS when its BPRN# input is
asserted (LOW). The highest priority requesting
arbiter cannot immediately seize the system bus. It
must wait until the present bus transaction is
completed. Upon completing its current transaction
the present bus owner surrenders the bus by releas­
ing BUSY#.

BUSY# is an active-low 'Wired-OR' MULTI BUS sig­
nal which goes to every bus arbiter on the system
bus. When BUSY# goes inactive, the arbiter which
has requested the system bus, and presently has
bus priority (BPRN# LOW), seize the bus by pulling
BUSY# LOW (See waveform in Figure 6).

The generation of a multi-master bus request
(BREQ#) is controlled by the type of bus cycle and
the SYSB/RESB# input. Whenever the processor
signals the status for memory read, memory write,
1/0 read, 1/0 write or interrupt acknowledge cycle,
and SYSB/RESB# is HIGH at the end of Ts, a bus
request is generated.

When the status inputs indicate an interrupt acknow­
ledge bus cycle, the arbiter allows external logic to
decide (through the SYSBIRESB# input) whether
the interrupt acknowledge cycle should use the
MULTIBUS

Figure 7 shows how SYSB/RESB# is repeatedly
sampled until it is sampled HIGH or the bus cycle is
terminated. If the bus cycle is completed (READY#
is sampled LOW) before SYSB/RESB# is sampled
HIGH, the arbiter will not request the MULTI BUS.

4-173

The 82289 bus Arbiter does not generate a separate
BREQ# for each bus cycle. Instead the 82289
generates BREQ# when it requests the bus and
holds BREQ# active during the time that it has
possession of the bus. Note that all multi-master
system bus requests (via BREQ#) are synchronized
to the system bus clock (BCLK#).

Parallel Priority Resolving Technique

The parallel priority resolving technique requires a
separate bus request line (BREQ#) for each arbiter
on the mUlti-master system bus (see Figure 8). Each
BREQ# line enters a priority encoder which gener­
ates the binary address of the highest priority
BREQ# line currently active. The binary address is
decoded to select the BPRN# line corresponding to
the highest priority arbiter requesting the bus. In a
parallel scheme, the BPRO# output is not used.

The arbiter receiving priority (BPRN# LOW) then
allows its associated bus master onto the m ulti­
master system bus as soon as the bus becomes
available (i.e., the bus is no longer busy). Any
number of bus masters may be acomodated in this
way, limited only by the complexity of the external
priority resolving circuitry. Such circuitry must
resolve the priority within one BCLK# period.

Serial Priority Resolving Technique

The serial priority resolving technique eliminates
the need for the priority ci rcuitry of the parallel
technique by daisy-chaining the bus arbiters to­
gether, that is, connecting the higher priority

231095-003

inter 82289

arbiter's BPRO# output to the BPRN# of the next
lower priority arbiter (see Figure 9). The highest
priority bus arbiter would have its BPRN# tied LOW
in this configuration, signifying to the arbiter that it
always has the highest priority when requesting the
system bus. In a serial scheme, the BREQ# output is
not used.

Since arbitration must be resolved within one
BCLK# period the number of arbiters connected

Ts TC

, <1>1 <1>2 <1>1 <1>2

CLK [

SO#/HOLDeS1# [

M/IO# [

<1>1

together in the serial priority is limited by arbiter
BPRN# to BPRO# propagation delay (18 ns). For a
10 MHz MULTIBUS BCLK#, five 82289 Bus Arbiters
may be connected together in serial configuration.

Maximum number of chained-priority devices =

BCLK# period

BPRN# to BPRO# delay

TC TC T,

<1>2 <1>1 <1>2 <1>1 <1>2

Figure 7: Bus Request Timing During an Interrupt Acknowledge Cycle

+vcc

74148
PRIORITY
ENCODER

Figure 8: Parallel Priority Resolving Technique

4-174

74138
3 TO 8

DECODER 4

231095-003

82289

Figure 9: Connections for Serial Priority Resolving Technique

BPRN#[-~ __ fj __ r--~,~, ----___.:I'/-' _______ _

BPRO#[~~~'I--_-f/F. \)-____ _

BREQ' [----#.',/-' ------.>'I-_'-------__,f>'r---+-'\ r, F"-. -__,f.I---+-, r)/r------
I THE LOCAL III THE LOCAL ~ 80286 REQUESTS 80286 NO LONGER

THE MULTIBUS NEEDS THE MULTIBUS

Note: Events A through F described above.

Figure 10: Serial Priority Bus Behavior

When using the serial priority resolving scheme, a
higher priority arbiter (for example, arbiter 2, Figure
9) passes priority to the next lower priority arbiter
(arbiter 3) by asserting its BPRO# signal (LOW).
This asserts BPRN# of next arbiter (arbiter 3) as
shown in Figure 10-a & 10-b. An arbiter's BPRO# is
asserted if the arbiter has priority (BPRN# is
asserted) but is not accessing or requesting the
system bus (as indicated by BREQ# inactive as
shown in Figure 10-c and 10-e for arbiter 3).
Whenever a higher priority arbiter (arbiter 3) issues
a bus request its BPRO# goes inactive causing the
next lower priority arbiter (arbiter 4) to lose its bus
priority (Figure 10-f). Any arbiter (arbiter 3) will also

bring its BPRO# inactive if its BPRN# goes inactive
(from arbiter 2), thereby passing the loss of bus
priority on to the lower priority arbiters (e.g. arbiter
4) as shown in Figure 10-d.

Rotating Priority Resolving Technique

The rotating priority resolving technique is similar
to the parallel priority resolving technique except
that priority is dynamically re-assigned. The priority
encoder is replaced by a more complex circuit
which rotates priority between requesting arbiters,
thus allowing each arbiter an equal chance to use
the multi-master system bus over a given period of
time.

4-175
231095-003

82289

Selecting the Appropriate Priority
Resolving Technique

The choice of a priority resolving technique involves
a tradeoff between external logic complexity and
ease of the MULTI BUS access for the different bus
masters in the system. The rotating priority resolving
technique requires a substantial amount of external
logic, but guarantees all the bus masters an equal
opportunity to access the system bus. The serial
priority resolving technique uses no external logic
but has fixed bus master priority levels and can
accommodate only a limited numberof bus arbiters.
The parallel priority resolving technique is in general
a compromise between the other two techniques.
(For example parallel priority configuration in Fig. 8
allows up to eight arbiters to be present on the
MULTI BUS, with fixed priority levels, while not
requiring a large amount of complex, external logic
to implement.)

Releasing the MULTIBUS®

Following a data transfer cycle on the MULTIBUS,
the 82289 Bus Arbiter can either retain control of
the system bus or release the bus for use by some
other bus master. The 82289 can operate in one of
three modes, defining different conditions under
which the arbiter relinquishes control of the multi­
master system bus. These release modes are de­
scribed in Table 2.

Conditions under which the Bus
Release Arbiter releases the system bus
Mode (unless cycles are LOCKed)

Mode 1 The Bus Arbiter always releases the
bus at the end of each transfer cycle

Mode 2 The Bus Arbiter retains the bus until:

• a higher-priority bus master re-
quests the bus, driving BPRN#
HIGH

• a lower-priority bus master requests
the bus by pulling CBRQ# LOW

Mode 3 The Bus Arbiter retains the bus until:

• a higher-priority bus master re-
quests the bus, driving BPRN#
HIGH. (CBRQ# LOW ignored)

Table 2: 82289 Release Modes

If the arbiter was programmed to operate in the
Always Release mode (Mode 1) during the previous
reset, it will surrender the MULTI BUS after each
complete transfer cycle. If the arbiter is not in the
Always Release mode, it will not surrender the bus
until the local 80286 processor enters a halt state,

the arbiter is forced off of the bus by the loss of
BPRN# (Mode 2 or 3), or by a common bus request
when the CBRQ# input is enabled by the CBQLCK#
input (Mode 2).

CBRQ# can save the bus exchange overhead in
many cases. If CBRQ# is high, it indicates to the bus
master that no other master is requesting the bus
and therefore the present bus master can retain the
bus. Without CBRQ#, only BPRN# indicates whether
or not another master is requesting the bus and, that
only if the other master is of higher priority. Between
the master's bus transfer cycles, in order to allow
lower priority masters to take the bus if they need it,
the master must give up the bus. At the start of the
master's next transfer cycle, the bus must be
regained. If no other master has the bus, this can
take approximately two BCLK# periods. To avoid
this overhead of unnecessarily giving up and regain­
ing the bus when no other masters need it, CBRQ#
is extremely useful. Any master that wants but does
not have the bus, must assert CBRQ# (LOW). If
CBRQ# line is not asserted the bus does not have to
be released, thereby eliminating the delay of
regaining the bus at the start of the next cycle.

The LOCK# input to the arbiter can be used to over­
ride any of the conditions shown in Table 2. While
LOCK# is asserted, the arbiter will not surrender
control of the MULTI BUS to any other requesting
arbiter. Note that the arbiter will surrender the
MULTIBUS (synchronous to BCLK#) either in re­
sponse to RESET or INIT# signals independent of
the current release mode or the state of the arbiter
inputs.

The three bus release modes have the same opera­
tion when supporting either the 80286 processor or
some other bus master.

Selecting the Appropriate Release Mode

The choice of which release mode to use may affect
the bus utilization of the individual subsystems, and
the system as a whole. Mode dependent perfor­
mance variations are due to the bus acquisition!
release overhead. The effect of these acquire and
release times on system bus efficiency is illustrated
in Figure 11.

An isolated transfer on the mUlti-master system bus
is depicted in Figure 11-a. Figure 11-b shows utiliza­
tion for the bus arbiter operating in Mode 1. The
arbiter must request and release the system bus for
each transfer cycle. Lower priority arbiters have
easy access to the system bus, but overall bus effi­
ciency is low. Bus utilization for a bus arbiter operat­
ing in Mode 2 or 3 is shown in Figure 11-c. In this
situation the arbiter acquires the bus once for a
sequence of transfers. The arbiter retains the bus
until forced off by another bus master's request as
defined in Table 2.

4-176
231095-003

82289

A.

B.

c.

Figure 11: Effects of Bus Release Mode on Bus Efficiency

The three release modes of the 82289 allow the
designer to optimize the system use of the MUL­
TIBUS.

Configuring the 82289 Release Mode

The 82289 Bus Arbiter can be configured in any of
its three bus release modes without additional

822889

RESET----tRESET

MODE 1

822889

RESET

hardware. the 82289 can also be configured to
switch between Mode 2 and Mode 3 under software
control of the 80286 processor, requiring that a
parallel port or addressable latch be used to drive
the ALWAYS#/CBQLCK# input pin of the 82289 (see
Figure 12).

822889

RESET ----IRESET

MODE 2

822889

RESET-_-----I!

Q .---,'--,

MODE 3 c ~
PARALLEL

1/0 OR
DATA ADDRESSABLE

LATCH

D

ENABLE '---_o<.I----MULTIBUS BCLK

SELECTABLE BETWEEN MODES 2 AND 3

* WHEN HIGH THE 82289 IS IN MODE 2;
WHEN LOW THE 82289 IS IN MODE 3.

Figure 12: 82289 Release Mode Configurations
4-177

231095-003

82289

Asserting the LOCK# Signal

Independent of the particular release mode of the
82289 Bus Arbiter, the 80286 processor can assert a
lOCK# signal synchronously to ClK to prevent the
arbiter from releasing the Multibus. This software­
controlled lOCK# signal prevents the 82289 from
surrendering the system bus to any other bus mas­
ter, whether that bus master is of higher or lower
priority. The lOCK# signal is typically used ior
implementing software semaphores for shared re­
sources or for critical processes that must run in
real-time.

The 82289 llOCK# output is the Multibus signal
asserted during all bus cycles which are locked
together. The llOCK# is set or reset depending on
processor lOCK# at the end of the Ts cycle. The
llOCK# will delay going inactive until the termina­
tion of the current transfer cycle.

The 82289 will continue to assert the llOCK# sig­
nal, retaining control of the MULTI BUS, until the
end of the first 'unlOCKed' 80286 bus cycle (80286
disables its lOCK# output on the last bus cycle
indicating that no future locked cycles are needed).
While the lOCK# signal will force the arbiter pres­
ently in control to hold the system bus, it cannot
force another arbiter to surrender the bus any ear­
lier than it normally would.

The llOCK# signal from the 82289 must be con-

4-178

nected to a tri-state buffer in order to drive the MUl­
TIBUS lOCK# signal. This tri-state buffer should
be enabled by the AEN# signal from the arbiter
going active.

82289 Reset and Initialization

The 82289 Bus Arbiter provides the RESET and
INIT# pins for initialization. RESET is a ClK syn­
chronous signal from the 80286 processor and
INIT# is an asynchronous signal on the multi­
master system bus. By having RESET pin high or
INIT# pin low, the BREQ#, BUSY#, and AEN# output
pins will all be cleared and become inactive. RESET
will also clear the llOCK# signal. Unlike RESET,
INIT# will not clear any pending bus request: the
bus request would be asserted after the I NIT# signal
goes inactive.

Note that when the 82289 is initialized by the RESET
input it does not wait until the end of the current bus
cycle to reset. Any bus cycle in process when
RESET goes active will be aborted by the arbiter.
Although the INIT# signal will also interrupt an
active bus cycle, the arbiter can request the MUl­
TIBUS and complete the bus cycle when INIT#
goes inactive.

As mentioned in the Table 1 Pin Description and
Figure 12, the functions of the SO#/HOlD pin and
the release mode (AlWAYS#/CBQlCK# pin) are
programmed at the falling edge of RESET.

231095-003

pelK """1 --
= .r '"

SYNCREADY_

ENABLE -----..

~ - ASYNC READY------+

-ENABLE--+

SROYEN

AROv

82289

ADDRESS '''':K2°~~ r==::::l OECODE 0 SYSB/RESa Bell< 1_. _________ -"'=~_

MRca

MULTIBUS
.US

ARBITRATION

MwTc ~~t==i:;===t=:: MEMORY WRITE" i5RC
iOWC

i'N'i'i ~~t=~tE=~h-- INTERRUPT ACKNOWLEDGE #

AL'
Me<

iiEi5Y t-:jf;+~~~ READY
elK" elK

DEN ~
DT/R ~

82288 BUS
CONTROLLER

I-

~ ADDRESS BUS

"'I-
cs f.- CHIP SELECT

L
.----,.....--../-J>,.~ sP EN

0Q,07

8259A
INTERRUPT

CONTROLleR

~DATABUS

Schematic 1: TyplcallAPX 286 Subsystem MULTIBUS@ Interface

4-179 231095-003

82289

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature
Under Bias ... " .. , O°C to 70°C

Storage Temperature -65°C to +150°C
Case Temperature O°C to 85°C
Voltage on Any Pin With

Respect to GND -0.5V to +7V
Power Dissipation 1 Watt

Electrical Characteristics and Waveforms

• Notice: Stresses above those listed under ''Absolute
Maximum Ratings" may cause permanent damage
to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is not implied.
Exposure to absolute maximum rating conditions
for extended periods may affect device reliability.

D.C. Characteristics (TA = 0° to 70°C, TeASE = O°C to 85°C, Vee = 5V ± 5%)
-

Preliminary

Symbol Parameter Min. Max. Units Test Conditions

Vil Input low Voltage -0.5 .8 V

VIH Input High Voltage 2.0 ' Vee + 0.5 V
-

VILe ClK Input low Voltage -0.5 ,6 V

VIHe ClK Input High Voltage 3,8 Vee + 1.0 V

Output low Voltage:

VOL
BUSY#, CBRQ# ,45 V IOL = 32mA
BPRO#,BREQ#,AEN# .45 V IOl = 16mA
llOCK# .45 V IOL = SmA

VOH Output High Voltage 2.4 V IOH = 400J.lA
-

III Input leakage Current ±10 J.IA 0.45V::::; VIN ::::; Vee
±1 mA OV::::; VIN < 0.45V

ILO Output leakage Current ±10 J.IA 0,45V::::; VOUT ::::; Vee

Icc Power Supply Current 120 mA
-

CeLK ClK, BClK# Input Capacitance 12 pF Fe = 1 MHz

CIN Input Capacitance 10 pF Fe = 1 MHz

Co Input/Output Capacitance 20 pF Fe = 1 MHz

4-180 231095-003

82289

A.C. Characteristics (TA = 0° to 70°C, T CASE = 0° to 85°C, Vcc = 5V ± 5%)
AC timings are referenced to 0.8V and 2.0V points of signals as illustrated in datasheet waveforms, unless
otherwise noted.

Sym

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
f--

23

24

25

26

27

28

29

30

31

32

NOTES:
NOTE 1:
NOTE 2:
NOTE 3:
NOTE 4:
NOTE 5:
NOTE 6:
NOTE 7:
NOTE 8:

NOTE 9:

-- ~~',---
Preliminary Preliminary Shown

6MHz BMHz Test in
Parameter Min. Max. Min. Max. Unit Conditions Figure

CLK Cycle Period 83 t5+ 62 t5+
50 50 ns 13

-- ~~~--
CLK Low Time 20 225 15 230 ns at 1.0 V 13

---f---
CLK High Time 25 230 20 235 ns at 3.6 V 13

--- --
CLK Rise/Fall Time 10 10 ns 1.0 to 3.6 V 13

--
BCLK# Cycle Time 100 x 100 00 ns 13

BCLK# High/Low Time 30 30 ns 13
- --

SO#/HOLD, SI#, M/IO# Setup 28 22 ns 13
--

SO#/HOLD. SI#, M/IO# Hold 1 1 ns 13
--

READY# Setup 50 38 ns 13

READY# Hold Time 35 25 ns 13

LOCK#, SYSB/RESB# Setup Time 28 20 ns 13,18

LOCK#, SYSB/RESB# Hold Time 1 1 ns 13. 18

RESET Setup Time 28 20 ns 19
--_._-- - .. ~- -,,--c---

RESET Hold Time 1 1 ns 19

RESET ACTIVE Pulse Width 16 16 CLKs 19

INIT# Setup Time 45 45 ns Note 9 20
-~ ~---

INIT# Hold Time 1 1 ns Note 9 20

INIT# Active Pulse Width 3(tl) 3(tl) 20
+3(tI4) +3(tI4) ns

-----~ ;---~--

BUSY#, BPRN#, CBRO#,

-I "'
CBOLCK#/ALWAYS# Setup 20 20 13,15,21
to BCLK# (or to RESET)

~~----- ------
BUSY#, BPRN#, CBRQ#,
CBQlCK#/ALWAYS# Hold
to BCLK# (or to RESET)

BCLK# to BREO# Delay

BCLK# to BPRO# Delay

BPRN# to BPRO# Delay

BCLK# to BUSY# Active Delay

BCLK# to BUSY# Float Delay

BCLK# to CBRO# Active Delay

BCLK# to CBRO# Float Delay

BCLK to AEN# Active Delay

ClK to AEN# Inactive Delay

CLK to LLOCK# Delay

RESET to LLOCK# Delay

CLK to BCLK# Setup Time

BREO# load CL = 60pF.
BPRO# load CL = 60pF.
BUSY# load CL = 300pF

1

1

1

3

38

1

30 30

35 35

25 25

60 1 60

35 35

55 55

35 35

25 1 25

25 3 25
C"-

20

i
20

35 35

38

Float condition occurs when output current is less that ILO In magnitude
CBRO# load: CL = 300pF.
AEN# load: CL = 150pF.
LLOCK# load: CL = 60p F.

I ns i 13. 1~. ?1

----- ~~-
ns Note 1 13,14

--c--------- r-----
ns Note 2 17
--c----~--

ns Note 2 17
--

ns Note 3 13

ns Note 4 13,14

ns Note 5 13
--

ns Note 4 13, 20
-_.- --

ns Note 6 13

ns Note 6 13,14
[---------- ~--.--

ns Note 7 18

ns Note 7 19

ns Note 8 13, 16, 20 __ L...... ___ '----___

In actual use, eLK and BCLK# are usually asynchronous to each other. However, for component testing
purposes, this specification is required to assure signal recognition at specific elK and BCLK# edges
INIT# is asynchronous to elK and to BCLK#, However for component testing purposes, this specification is
required to assure signal recognition at specific CLK and BCLK# edges

4-181
231095-003

,---_.-

4.0V
(2AV)

CLKINPUT
(BCLK # INPUT)

O.4SV
(OASV)

82289

NOTE 10: AC Drive'and Measurement Points - ClK Input (BClK# Input)

4.0V
(2.4V)

elK INPUT

(BClK# INPUT)

O.4SV
(OA5V)

OTHER
DEVICE
INPUT

2.4V

DEVICE
OUTPUT

tHOLD

tDELAY ----I

2.0V

O.SV

NOTE'11: AC Setup, Hold and Delay Time Measurement - General

DEVICE
OUTPUT

NOTE 12: AC Test loading on Outputs

4-182
231095-003

inter 82289

Waveforms

The waveforms (Figure 13-21) show the timing
relationships of the inputs and the outputs and do
not show all possible transitions of all signals in all
modes. Instead, all signal timing relationships are
shown via the general cases. Special cases are
shown when needed.

To find the timing specification for a signal transition
in a particular mode, first look for a special case in
the waveforms. If no special case applies, then use a
timing specification for the same or related function
in another mode.

The 82289 Bus Arbiter serves as an interface
between the iAPX 286 subsystem which operates
synchronous to the ClK signal and MULTI BUS
which operates synchronous to BClK# signal. ClK
and BClK# generally operate asynchronously to
each other and at different frequencies. Thus, the

Ts Tc

<1>1 <1>2 <1>1 <1>2

ClK [

SO#/HOloeS1# [

M/IO# [

REAOY# [

lOCK#, [
SYSB/RESB#

BClK# . [

BREQ# [

BPRN# [

BUSY# [

CBRQ# [

AEN# [

<1>1

exact clock period in which an input synchronous
to one clock will cause a response synchronous to
the other clock depends on the relative phase and
frequency of ClK and BClK# at the time the input
is sensed.

One strict relation between ClK and BClK# must
be maintained for proper MULTI BUS arbitration. If
the ClK period is too long relative to BClK# period
(t1 greater than t5 + 50ns). another arbiter could
gain control of the system bus before this arbiter
has released AEN# synchronous to its ClK. This
situation arises since the release of AEN# is syn­
chronous to the next falling ClK edge after the
processor cycle ends but the release of BREQ# and
BUSY# is synchronous to the next falling BClK#
edge after the processor cycle ends. In practice,
any ClK frequency greater than 6.66 MHz (ie.
80286 processor speeds greater than 3.33 MHz)
will avoid conflict with a 10 MHz BClK#. Therefore
all 80286 speed selections are MUlTIBUS
compatible.

Tc Tc

<1>2 <1>1 <1>2 <1>1 <1>2 <1>1

'ONlY FOR 82289 TEST PURPOSES

Figure 13: MULTIBUS® Acquisition and Always-Release Operation

4-183
231095-003

ClK [

SO#/I:IOlOeS1# [

Ts

82289

TC Tc TS Tc

M/IO# [ZZx:::===::t:X;2ZZZiZZZiZZ~~~2ZZ2ZZZiZZ$x:::=~=:t::x:~2ZZ2ZZ2ZZ~ZiZZ:Z

REAOY# [ZZ~~~~~ZZZZ~~~--~~~ __ ~-1~~2ZZ~~~ZZzr--r-~:z

SYSB/~~i::' [~?J.Z?J.Z~rt-.~z:zz?J.Z~:ZZ~~:z2:z2W2?J.Z:ZZr:zz~~z:zz?J.Z?J.Z~:ZZ~WZZ

BCLK# [

BPRN# [~:ZZ:ZZ:ZZ~~:z2t---~~:zz:zzZZ~~~~Z:ZZ~?J.Z:ZZZZ~~~Z:ZZZ:ZZ?J.Z:Z

BUSY# [--------------------1-+-',
BREO# [-------------------f-+.J'

AEN# [_________________________ ~

'ONLY FOR 82289 TEST PURPOSES

Figure 14: MULTIBUS® Release due to BPRN# Inactive

4-184 231095-003

82289

Ts TC TC Ts TC

<1>1 <1>2 <1>1 <1>2 <1>1 <1>2 <1>1 <1>2 <1>1

ClK ,-
L

SO#/HOloeS1# [

M/IO# [

REAOY# [

lOCK#,
SYSB/RESB#

BClK# [

BPRN#
,-
L

CBRO# [

CROlCK#

BREO#
,-
L

BUSY# [

AEN# [______________________________________ ~-J

'ONLY FOR 82289 TEST PURPOSES

'------------------,-,-,,-

Figure 15: MUL TIBUS® Release due to CBRQ# Active

4-185
231095-003

82289

Ts Tc Tc TC

CLK [

SO#/HOLDeS1# [

BCLK# [

BREQ# [

BPRO# [

'ONLY FOR 82289 TEST PURPOSES

Figure 16: MULTIBUS® Acquisition During 80286 INTA Cycles

BPRN#[-x..-.--r-.l jF-----or-?----+--~.__+___-
~I- -- ~@r-- _~I-'

BPRO#[~~~)'-_-+,

BREQ#[--------~''l-----------~~~------~/)'--~~ ____ /~--~-J

THE LOCAL
80286 REQUESTS
THE MULTIBUS

Figure 17: BPRN# to BPRO# Timing Relationship

4-186

THE LOCAL
80286 NO LONGER

NEEDS THE MULTIBUS

231095-003

"n+ _I®
111'e'

CLK [

(FROML8~~~~ [

<1>1

Ts TC

<1>2 <1>1

82289

Ts TC T, or Ts

<1>2 ¢1 1>2 ¢1

REAOY# [tEzzzzzzZZ~ZZ:7Z::7Z:~L--l-..lJ.zz:izz:i~ZZ~ZZZZZZL~...i.;W$zz:i~ ,

LLOCK# [
(FROM 82289)

I
'----_________________________________ J

Figure 18: 80286 lOCK# and 82289 llOCK# Relationship

TS or Tc or T, Tx T,
-------1

I

ClK [

RESET [

I
i

AEN# [

BCLK# [

BUSY# [

BREO# [

CBRQ# [

LlOCK# [

'FOR 82269 TEST PURPOSES ONLY

J
Figure 19: RESET Active Pulse

4-187
231095-003

inter

ClK [

INIT# [

82289

AEN# [~~ZZZZZZZZZZZZ~ZZZZ~~~------------------I1--------

BClK# [

BUSY# [2?2z::2z::2~~ZZZZZZZZZZZZZZ$Z7Z2r------------------------

llOCK# [Z',;/(;j!)I1II?;?I@/I/@/Ijml!l)illocK# IS UNAFFECTED BY INIT#7@/1;?1/liJIjjff;j!jff;j!jjilliJljj/

<FOR 82289 TEST PURPOSES ONLY

Figure 20: INIT# Active Pulse

Figure 21: Programming the Always-Release/Common-Bus-Request-Release Option

4-188 231095-003

80386 Microprocessors 5

intJ
80386

HIGH PERFORMANCE MICROPROCESSOR
WITH INTEGRATED MEMORY MANAGEMENT

• Flexible 32-Bit Microprocessor
- 8, 16, 32-Bit Data Types
- 8 General Purpose 32-Bit Registers

• Very Large Address Space
- 4 Gigabyte Physical
- 64 Terabyte Virtual
- 4 Gigabyte Maximum Segment Size

• Integrated Memory Management Unit
- Virtual Memory Support
- Optional On-Chip Paging
- 4 Levels of Protection
- Fully Compatible with 80286

• Object Code Compatible with All 8086
Family Microprocessors

• Virtual 8086 Mode Allows Running of
8086 Software in a Protected and
Paged System

• Hardware Debugging Support

• Optimized for System Performance
- Pipelined Instruction Execution
- On-Chip Address Translation Caches
-12.5 and 16 MHz Clock
- 32 Megabytes/Sec Bus Bandwidth

• High Speed Numerics Support via
80287 and 80387 Coprocessors

• Complete System Development
Support
- Software: C, PL/M, Assembler

System Generation Tool~
- Debuggers: PSCOPE, ICETM-386

• High Speed CHMOS III Technology

• 132 Pin Grid Array Package
(See Packaging Specification, Order # 231369)

The 80386 is an advanced 32-bit microprocessor designed for applications needing very high performance
and optimized for multitasking operating systems. The 32-bit registers and data paths support 32-bit addresses
and data types. The processor addresses up to four gigabytes of physical memory and 64 terabytes (2* * 46) of
virtual memory. The integrated memory management and protection architecture includes address translation
registers, advanced multitasking hardware and a protection mechanism to support operating systems. In
addition, the 80386 allows the simultaneous running of multiple operating systems.
Instruction pipelining, on-chip address translation, a a high bus bandwidth ensure short average instruction
execution times and high system throughput. The 80386 processor is capable of execution at sustained rates
of between 3 and 4 million instructions per second.
The 80386 offers new testability and debugging features. Testability features include a selHest and direct
access to the page translation cache. Four new breakpoint registers allow conditional or unconditional break­
point traps on code execution or data accesses, for powerful debugging of even ROM-based systems.
Object-code compatibility with all iAPX 86 family members (8086, 8088, 80186, 80188, 80286) means the
80386 offers immediate access to the world's largest microprocesor software base.

Figure 1-1.80386 Pipelined 32-Bit Microarchitecture

Unix™ is a Trademark of AT&T Bell Labs.
MS-DOS is a Trademark of MicroSoft Corporation.

HOLD, INTlt NMI
ERROR,iillSY
RESET,HlDA

231630-49

Intel Corporation assumes no responsibility for the use of any Circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. October 1985
© Intel Corporation, 1985 5-1 Order Number: 231630-001

inter
82384

CLOCK GENERATOR AND RESET INTERFACE
FOR 80386 PROCESSORS

• Generates All Clock Signals for 80386
Processors
- 32 MHz ClK2 and 16 MHz ClK for

80386-16
-25 MHz ClK2 and 12.5 MHz ClK for

80386-12

• Generates Synchronous Reset from
Schmitt-Trigger Input

• Generates Address Status Signal
Synchronous to ClK

INTRODUCTION

• Uses Crystal or TTL Signal for
Frequency Source

• CHMOS III Technology

• Available in Two Speed Selections
- 82384-16, Supporting Any 80386

Speed up to 16 MHz
- 82384-12, Supporting Any 80386

Speed up to 12.5 MHz

• 18-Pin Package
(See Packaging Specification, Order #231369)

The 82384 combines a third·overtone crystal oscillator, reset synchronizing circuitry, and address status
circuitry onto a single chip for easy timing and control of 80386-based systems.

The 82384 contains a clock generator/driver that provides two clock signals for the 80386·based systems.
The ClK2 signal generated by the 82384 meets the 80386 ClK2 requirements, and the ClK signal indicates
the 80386 processor phase. The 82384 also generates a synchronous reset signal from a schmitt-trigger reset
input, and provides an Address Status signal that has guaranteed setup and hold timing with respect to the
ClK output.

Xl
X2

EFI

FiC#

RES#

ADS#

ClK2

RESET

ClK

ADS#
SYNCHRONIZATION I----+~ ADSO#

TO ClK

Figure 1. Block Diagram
231659-1

Vee ADS#

vss vss
N.C. ClK

ADSO# RES#

Vee vee
RESET ClK2

Xl FiC#
X2 Vss
EFI Vss

231659-2

Figure 2. Pin Configuration

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. October 1985
@ Intel Corporation, 1985 5-2 Order Number: 231659·001

CIl
c:

:.:J
'0
~
0
Q

Ol
c: .e
«
:;
0

80386
HIGH PERFORMANCE MICROPROCESSOR

ADDITIONAL INFORMATION

You can obtain a free copy of the most recent 80386 data sheet and related
technical information by:

• Calling your local Intel sales office

• Calling toll-free (800) 538-1876

• Filling out this literature request form

Indicate areas of interest:

G27 0 Components: 80386 microprocessor, 82384 clock generator

G28 0 386 Languages and development tools

G29 0 386 single board computers

Name ______________________ ___ Title _________________ _

Company Mailstop ___________ _

Phone (

Address

City State ____ _ ZIP ___ _

HPMO-308C CARD EXPIRES 12/31186

U.S. and Canada

Mail to: Intel Corporation
Mailstop: SC6-58
P.O. Box 58065
Santa Clara, CA 95052-8065

Customers outside the U.S. and Canada should contact the local Intel
Sales Office or Distributor listed in the back of this book.

Q)

SO
-J

"tl
~
'0
Q
lJl c:
S
c:(

'5
()

80386
HIGH PERFORMANCE MICROPROCESSOR

ADDITIONAL INFORMATION

You can obtain a free copy of the most recent 80386 data sheet and related
technical information by:

• Calling your local Intel sales office

• Calling toll-free (800) 538-1876

• Filling out this literature request form

Indicate areas of interest:

G27 0 Components: 80386 microprocessor. 82384·clock generator

G28 0 386 Languages and development tools

G29 0 386 single board computers

Name _____________________ __ Title __________ _

Company Mailstop _______ _

Phone (

Address

City State ZIP ______ _

HPMO-308C CARD EXPIRES 12/31186

u.s. and Canada

Mail to: Intel Corporation
Mailstop: SC6-58
P.O. Box 58065
Santa Clara, CA 95052-8065

Customers outside the U.S. and Canada should contact the local Intel
Sales Office or Distributor listed in the back of this book.

