

To order Intel Literature write or call:

Intel Literature Sales
P.O. Box 58130

LITERATURE

Santa Clara, CA 95052-8130

Intel Literature Sales:
(800) 548-4725
Other Inquiries:
(800) 538-1876

Use the order blank on the facing page or call oLir Toll Free Number listed above to order literature.
Remember to add your local sales tax and a 10% handling charge for U.S. customers, 20% for Canadian
customers.

1986 HANDBOOKS

Product Line handbooks contain data sheets, application notes, article reprints and other design
information.

*PRICE IN
NAME ORDER NUMBER U.S. DOLLARS

COMPLETE SET OF 9 HANDBOOKS 231003 $120.00
Get a 30% discount off the retail price of $171.00

MEMORY COMPONENTS HANDBOOK 210830 $18.00

MICRO COMMUNICATIONS HANDBOOK 231658 $18.00

MICROCONTROLLER HANDBOOK 210918 $18.00

MICROSYSTEM COMPONENTS HANDBOOK 230843 $25.00
Microprocessor and peripherals (2 Volume Set)

DEVELOPMENT SYS~S HANDBOOK 210940 $18.00

OEM SYSTEMS HANDBOOK 210941 $18.00

SOFTWARE HANDBOOK 230786 $18.00

MILITARY HANDBOOK 210461 $18.00

QUALITY/RELIABILITY HANDBOOK 210997 $20.00

PRODUCT GUIDE 210846 No charge
Overview of Intel's complete product lines

LITERATURE GUIDE 210620 No charge
Listing of Intel Literature

INTEL PACKAGING SPECIFICATIONS 231369 No charge
Listing of Packaging types, number of leads,
and dimensions

*These prices are for the U. S. and Canada only. In Europe and other international locations, please
contact your local Intel Sales Office or Distributor for literature prices.

u.s. LITERATURE ORDER FORM
NAME: __ ___

COMPANY: __ _

ADDRESS: __ __

CITY: _______________________________ STATE: ____ ZiP: ___ _

COUNTRY:

PHONE NO.: (___ "--____________________ ___

ORDER NO.

1 I· 1 1 1 1 - ,--I '-----'--'

L-I --L-..L1--L-..l.-..L---.l1 - L-I --L-..L--..J

,--I -'----L.1--L-..L-.L.---.l1 -I '---'----L.--..J

1,--'----'.I-.I..--'--J._I - ,--I ",,---"-----,
,--I ...J.........l.1-----L-...J.........l._1 - L-I --L-..L--..J

,--I ...J.........l.--<--...J.........l._1 - ,--I-'----L.----'
,--,----,-----,--,----,----,1 - '--.1 -'---'---'

Add appropriate postage
and handling to subtotal
10% U.S.
20% Canada
~------------~
Allow 2-4 weeks for delivery

TITLE QTY. PRICE TOTAL

__ x __

__ x __

__ x __

__ x __

__ x __

__ x __

__ x __

Subtotal _____ _

Your Local Sales Tax _______ _

-------.. Postage & Handling ________ __

Total ________ __

Pay by Visa, MasterCard, Check or Money Order, payable to Intel Books. Purchase Orders
have a $50.00 minimum
o Visa 0 MasterCard Expiration Date _______ _
Account No. ___ _

Signature: __ __

Mail To: Intel Literature Sales
P.O. Box 58130
Santa Clara, CA
95052-8130

Customers outside the U.S. and Canada should con­
tact the local Intel Sales Office or Distributor listed
in the back of most I ntelliterature.

Call Toll Free: (800) 548-4725 for phone orders
Prices good until 12/31/86.

Source HB

Mall To: Intel Literature Sales
P.O. Box 58130
Santa Clara, CA 95052-8130 .

MICROSYSTEM
COMPONENTS HANDBOOK

1986

About Our Cover:
The design on our front cover is an abstract portrayal of the unlimited interface linking

options available with Intel microsystem components. Intel microprocessors and
associated peripherals are the building blocks which provide total systems development
solutions. Intel's superior technology, reliability and support provides easier solutions to
specific development problems. Thereby, cutting "time-to-market" and creating a greater

market share.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which
may appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BITBUS, COMMputer, CREDIT, Data Pipeline, GENIUS, i, t. ICE,
iCEL, iCS, iDBp, iDIS, 121CE, iLBX, im, iMDDX .. iMMX, Insite, Intel, intel,
intelBOS, Intelevision, inteligent Identifier, inteligent Programming, Intellec,
Intellink, iOSP, iPOS, iPSC, iRMX, iSBC, iSBX, iSOM, iSXM, KEPROM, Library
Manager, MCS, Megachassis, MICROMAINFRAME, MULTIBUS, MULTI­
CHANNEL, MULTIMODULE, ONCE, Open NET, Plug-A-Bubble, PROMPT,
Promware, QUEST, QueX,Ripplemode, RMX/80, RUPI, Seamless, SLO, UPI,
and VLSiCEL, and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or
UPI and a numerical suffix.

MOS is an ordering code only and is not used as a product name or trademark. MOSII!> is a registered tr;ldemark of
Mohawk Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

I ntel Corporation
Literature Distribution
Mail Stop SC6-59
3065 Bowers Avenue
Santa Clara, CA 95051

"INTEL CORPORATION 1985

Table of Contents
NUMERIC INDEX ... vi

CHAPTER 1
OVERVIEW

Introduction ... '. 1-1

CHAPTER 2
8080, 8085 MICROPROCESSORS

DATA SHEETS
8080A/8080A-1/8080A-2 8-Bit N-Channel Microprocessor 2-1
8085AH/8085AH-2/8085AH-1 8-Bit HMOS Microprocessor 2-10
8155H/8156H/8155H-2/8156H-2 2048-Bit Static HMOS RAM with I/O Ports and Timer 2-26
8185/8185-2 1024 x 8-Bit Static RAM for MCS®-85 2-38
8224 Clock Generator and Driver for 8080A CPU 2-43
8228/8238 System Controller and Bus Driver for 8080A CPU 2-48
8237A/8237A-4/8237A-5 High Performance Programmable DMA Controller............. 2-52
82C37A-5 CHMOS High Performance Programmable DMA Controller................ .. 2-67
8257/8257-5 Programmable DMA Controller .. 2-78
8259A/8259A-2/8259A-8 Programmable Interrupt Controller......................... .. 2-95
82C59A-2 CHMOS Programmable Interrupt Controller........................... 2-113
8755A/8755A-2 16, 384-Bit EPROM with I/O .. 2-133

APPLICATION NOTES
AP-59 Using the 8259A Programmable Interrupt Controller 2-144

CHAPTER 3
8086, 8088, 80186, 80188 MICROPROCESSCORS

DATA SHEETS
8086 16-Bit HMOS Microprocessor .. 3-1
80C86/80C86-2 16-Bit CHMOS Microprocessor 3-25
80186 High Integration 16-Bit Microprocessor .. 3-52
iAPX 88/10 8-Bit HMOS Microprocessor ... 3-106
80C88/80C88-2 8-Bit CHMOS Microprocessor : 3-133
80188 High Integration 8-Bit Microprocessor ... 3-162
8087/8087-2/8087-1 Numeric Data Coprocessor 3-218
8282/8283 Octal Latch ... 3-241
8284A/8284A-1 Clock Generator and Driver for iAPX 86, 88 Processors 3-246
82C84A/82C84A-5 CHMOS Clock Generator and Driver for 80C86, 80C88 Processors ... 3-254
8286/8287 Octal Bus Transceiver .. 3-263
8288 Bus Controller for iAPX 86, 88 Processors 3-268
82C88 CHMOS Bus Controller for 80C86, 80C88 Processors 3-275
82188 Integrated Bus Controller for iAPX 86, 88,186,188 Processors ..•................ 3-283
8289/8289-1 Bus Arbiter .. 3-299

APPLICATION NOTES
AP-67 8086 System Design ... 3-310
AP-113 Getting Started with the Numeric Data Processor 3-373
AP-186 Introduction to the 80186 .. 3-435

CHAPTER 4
80286 MICROPROCESSORS

DATA SHEETS
iAPX 286/10 High Performance Microprocessor

with Memory Management and Protection ... 4-1
80287 80-Bit HMOS Numeric Processor Extension , .. '. . .. 4-56
82258 Advanced Direct Memory Access Coprocessor 4-82
82284 Clock Generator and Ready Interface for iAPX 286 Processors 4-139
82288 Bus Controller for iAPX 286 Processors .. 4-148
82289 Bus Arbiter for iAPX 286 Processor Family 4-167

CHAPTER 5
80386 MICROPROCESSORS

DATA SHEETS
80386 High Performance Microprocessor with Integrated Memory Management.. 5-1
82384 Clock Generator and Reset Interface for 80386 Processors 5-2

iii

-VOLUME 2-

CHAPTER 6
MEMORY CONTROLLERS

DATA SHEETS
8202A Dynamic RAM Controller
8203 64K Dynamic RAM Controller ..•.....
8206/8206-2 Error Detection and Correction Unit•....................•...........
8207 Dual-Port Dynamic RAM Controller•.•..........•.•.•.•....................
8208'Dynamic RAM Controller " ,•.......
82C08 CHMOS Dynamic RAM Controller ..•...............•.... ~ ..•.................

USERS MANUAL' ,
Introduction .. .
Programming the 8207 .. .
RAM Interface .. ; ' .. .
Microprocessor Interfaces ...•...•........
8207 with ECC (8206) •............•..
Appendix•.. ' .. "

APPLICATION NOTES
AP-97A Interfacing Dynamic RAM to iAPX 86/88 Using the 8202A & 8203•..........
AP-141 8203/8206/2164A Memory Design
AP-167 Interfacing the 8207 Dynamic RAM Controller to the iAPX 186
AP-168 Interfacing the 8207 Advanced Dynamic RAM Controller to the iAPX 286 .•......

ARTICLE REPRINTS
AR-364 FAE News 1/84 "8208 with 186" ..•.
AR-231 Dynamic RAM Controller Orchestrates Memory Systems

SUPPORT PERIPHERALS
DATA SHEETS

8231 A Arithmetic Processing Unit :
8253/8253-5Programmable Interval Tim,er•..............•..•..................
8254 Programmable Interval Timer : '.
82C54 CHMOS Programmable Interval Timer•...... ,
8255A/8255A-5 Programmable Peripheral Interface ...•...............................
82C55A CHMOS Programmable Peripheral Interface•...........................
8256AH Multifunction Microproces,sor Support Controller
8279/8279-5 Programmable Keyboard/Display Interface

APPLICATION NOTES
AP-153 Designing with the 8256 .. .
AP-183 8256AH Application Note '

FLOPPY DISK CONTROLLERS
DATA SHEETS

8272A Single/Double Density Floppy Disk Controller•..............
" APPLICATION NOTES

AP-116 An Intelligent Data Base System Using the 8272
AP-121 Software Design and Implementation of Floppy Disk Systems

HARD DISK CONTROLLERS
DATA SHEETS

82062 Winchester Disk Controller .. .
82064 Winchester Disk Controller with On-Chip Error Detection and Correction

APPLICATION NOTES
AP-182 Multimode Winchester Controller Using the 82062 .. ','

UNIVERSAL PERIPHERAL INTERFACE SLAVE MICROCONTROLLERS
DATA SHEETS

UPI-452 Slave Microcontroller (8051)
UPI-41 8-Bit Slave Microcontroller
UPI-42 8-Bit Slave Microcontroller•.....................................
8243 MCS-48 Input/Output Expander .. .

iv

6-1
6-15
6-30
6-52
6-98

6-121

6-151
6-152
6-157
6-166
6-174
6-177

6-181
6-217
6-223
6-228

6-235
6-246

6-253
6-263.
6-274
6-290
6-307
6-328
6-351
6-374

6-386
6-461

~-478

6-497
6-538

6-608
6-635

6-667

6-729
6-768
6-780
6-799

UPI-41/42 USERS MANUAL
Introduction•.......•..............•................•................. ' •..• 6-805
Functional Description•................•...................... 6-810
Instruction Set .. " ...•. ~ 6-827
Single-Step, Programming, and Power-Down Modes•..•..•. 6-854
System Operation•............•....•..•................ 6-859
Applications ... 6-865
AP-161 or 61 Complex Peripheral Control with the UPI-42•.•................•. 6-939
AP-90 An 8741 A/8041 A Digital Cassette Controller 6-995

APPLICATION NOTES
Applications Using the 8042 UPIT• Microcontroller•..............•.... 6-1003

SYSTEM SUPPORT
ICE-42 8042 In-Circuit Emulator•..•................•.•.........•............... 6-1007
MCS-48 Diskette-Based Software Support Package•. 6-1015
iUP-200/iUP-201 Universal PROM Programmers•.•.......••....•..........• 6-1017

CHAPTER 7
ALPHANUMERIC TERMINAL CONTROLLERS

DATA SHEETS
8275H Programmable CRT Controller•.............. 7-1
8276H Small System CRT Controller .. 7-25

APPLICATION NOTES
AP-62 A Low Cost CRT Terminal Using the 8275 7-42

ARTICLE REPRINTS
AR-178 A Low Cost CRT Terminal Does More with Less 7-84

GRAPHICS DISPLAY PRODUCTS
DATA SHEETS

82720 Graphics Display Controller•............. 7-91
ARTICLE REPRINTS

AR-255 Dedicated VLSI Chip Lightens Graphic Display Design Load 7-128
AR-298 Graphics Chip Makes Low Cost High Resolution, Color Displays Possible... 7-136

TEXT PROCESSING PRODUCTS
DATA SHEETS

82730 Text Coprocessor..•.•..•... .. 7-143
ARCHITECTURAL OVERVIEW

The 82786 CHMOS Graphics Coprocessor. • . . • • . . • . • . • 7-187
ARTICLE REPRINTS

AR-305 Text Coprocessor Brings Quality to CRT Displays ...•.•...•................... 7-205
AR-297 VLSI Coprocessor Delivers High Quality Displays•.........•......... 7-213
AR-296 Mighty Chips•.........•.•.....•....•.•..•........... 7-216

CHAPTER 8
ERASABLE/PROGRAMMABLE LOGIC DEVICES

DATA SHEETS
5C1211200 Gate CHMOS H-Series Eraseable/Programmable Logic Device 8-1
5C060 600 Gate CHMOS H-Series Erasable/Programmable Logic Device............... 8-15

v

Numeric Index
5C121 1200 Gate CHMOSH-Series Eraseable/Programmable Logic Device 8-1
5C060 600 Gate CHMOS H-Series Eraseable/Programmable Logic Device .: 8-15
80186 (iAPX 186) High Integration 16-Bit Microprocessor 3-52, 3-435
80188 (iAPX 188) High Integration 8-Bit Microprocessor 3-162
80286 (iAPX 286/10) High Performance Microprocessor with Memory Management

and Protection ...• 4-1, 6-228, 6-247
80287 80-Bit HMOS Numeric Processor, Extension4-56
80386 High Performance Microprocessor with Integrated Memory Management• 5-1
8041A/8641A/8741A UlJiversal Peripheral Interface
8-Bit Slave Micro Controller : 6-768, 6-805, 6-994
8042/8742 Universal Peripheral Interface
8-Bit Slave Micro Controller ; 6-780, 6-805, 6-939, 6-1002, 6-1006
80452/83452/87452 Universal Peripheral Interface 8-Bit Slave Micro Controller ... 6-729, 6-805
8080Al8080A-1/8080A-2, 8-Bit N-Channel Microprocessor•...... , 2-1
8085AH/8085AH-2/8085AH-1 8-Bit HMOS Microprocessors•........ 2-10
8086 (iAPX 86/10) 16-Bit HMOS Microprocessor .•......................•.. 3-1, 3-310, 6-181
80C86/80C86-2 16-Bit Microprocessor ;•................... 3~25
8087/8087-2/8087-1 Numeric Data Coprocessor 3-218, 3-373
8088 (iAPX 88/10) 8-Bit HMOS Microprocessor•.. ; .. 3-106, 6-181
80C88/80C88-2 8-Bit CHMOS Microproces~or 3-133
8155H/8156H/8155H-2/8156H-2 2048-8it Static HMOS RAM with I/O Ports and Timer 2-26
8185/8185-2 1024 x 8-Bit Static RAM for MCS®-85 2-38
8202A Dynamic RAM Controller ..• 6-1, 6-181
820364K Dynamic RAM Controller•................................. 6-15, 6-181, 6-217
8205 High Speed 1 out of 8 Binary Decoder :•...............
8206 Error Detection and Correction Unit 6-30, 6-217, 6-247
82062 Winchester Disk Controller ; ~ 6-608, 6-667
82064 Winchester Disk Controller with On-Chip Error Detection and Correction 6-635
8207 Dual-Port Dynamic RAM Controller 6-52, 6-150, 6-223, 6-228, 6-247
8208 Dynamic RAM Controller .. 6-98, &235
82C08 Dynamic RAM Controller ... 6-121
82188 Integrated Bus Controller for iAPX86, 88, 186, 188 Processors 3-283
8224 Clock Generator And Driver for 8080A CPU•............. ,2-43
82258 Advanced Direct Memory Access Coprocessor4-82
8228/8238 System Controller and Bus Driver for 8080ACPU 2-48
82284 Clock Generator and Ready Interface for iAPX 286 Processors .•...•........... 4-139
82288 Bus Controller for iAPX 286 Processors 4-148
82289 Bus Arbiter for iAPX 286 Processor Family ; 4-167
8231 A Arithmetic Processing Unit .. 6-253
8237A/8237A-4/8237A-5 High Performance Programmable DMA Controller 2-52
82C37A-5 CHMOS High Performance Programmable DMA Controller 2-67
82384 Clock Generator And Reset I nterface for 80386 Processors 5-2
8243 MCS-48 Input/Output Expander ... 6-799,6-805

vi

8253/8253-5 Programmable Interval Timer .. 6-263
8254 Programmable Interval Timer ... 6-274
82C54 CHMOS Programmable Interval Timer 6-290
8255A/8255A-5 Programmable Peripheral Interface 6-307
82C55A CHMOS Programmable Peripheral Interface 6-328
8256AH Multifunction Microprocessor Support Controller 6-357, 6-386, 6-461
8257/8257-5 Programmable DMA Controller ... 2-78
8259A/8259A-2/8259A-8 Programmable Interrupt Controller 2-95, 2-144
82C59A-2 CHMOS Programmable Interrupt Controller 2-113
8272A Single/Double Density Floppy Disk Controller ~ 6-478, 6-497, 6-538
82720 Graphics Display Controller 7-91,7-128,7-136,7-205,7-213,7-216
82730 Text Coprocessor 7-136, 7-143, 7-205, 7-213, 7-216 .. , , , .
8275H Programmable CRT Controller ~ 7-1, 7-42
8276H Small System CRT Controller•...... 7-25, 7-84
82786 .. 7-187
8279/8279-5 Programmable Keyboard/Display Interface , 6-374
8282/8283 Octal Latch ... " 3-241
8284A/8284A-1 Clock Generator and Driver for iAPX 86, 88 Processors 3-246
82C84A/82C84A-5 CHMOS Clock Generator And Driver
For 80C86, 80C88 Processors .. ,..... 3-254
8286/8287 Octal Bus Transceiver 3-263
8288 Bus Controller for iAPX 86, 88 Processors 3-268
82C88 CHMOS Bus Controller for 80C86, 80C88 Processors ' 3-275
8289/8989-1 Bus Arbiter ... 3-299
8755A/8755A-2 16,384-Bit EPROM with I/O ... 2-133

vii

CUSTOMER SUPPORT

CUSTOMER SUPPORT

Customer Support is Intel's complete support service that provides Intel customers with Customer
Training, Software Support and Hardware Support;

After a customer purchases any system hardware or software product, service and support become
major factors in determining whether that product will continue to meet a customer's expectations.
Such support requires an international support organization and a breadth of programs to meet a
variety of customer needs. intel's extensive customer support includes factory repair services as well as
worldwide field service offices providing 'hardware repair services, software support services and
customer training classes.

HARDWARE SUPPORT.

Hardware Support Services provides maintenance on Intel supported products at board and system
level. Both field and factory services are offered. Services include several types of field maintenance
agreements, instailation and warranty services, hourly contracted services (factory return for repair) and
specially negotiated support agreements for system integrators and large volume end-users having
unique service requirements. FO,r more information contact your local Intel Sales Office.

SOFTWARE SUPPORT

. Software Support Service provides maintenance on software packages via software support contracts
which include subscription services, information phone support, and updates. Consulting services can
be arranged for on-site assistance at the customer's location for both short-term and long-term needs.
For complex products such as NDS II or PICE, orientation/ installation packages are available
through membership in Insite User's Library, where customer-submitted programs are catalogued and
made available for a minimijm fee to members. For more information contact your local Intel Sales
Office.

CUSTOMER TRAINING

Customer Training provides workshops at customer sites (by agreement) and on a regularly scheduled
basis at Intel's facilities. Intel offers a breadth of workshops on microprocessors, operating systems and
programming languages, etc. For more information on these classes contact the Training Center nearest
you.

TRAINING CENTER LOCATIONS

To obtain a complete catalog of our workshops, call the nearest Training Center in your area.

Boston (617) 692-1000 London (0793) 696-000
Chicago (312) 310-5700 Munich (089) 5389-1
San Francisco (415) 940-7800 Paris (01) 687-22-21
Washington, D.C. (301) 474-2878 Stockholm (468) 734-01-00
Israel (972) 349-491-099 Milan 39-2-82-44-071
Tokyo 03-437-6611 Benelux (Rotterdam) (10) 21-23-77
Osaka (Call Tokyo) 03-437-6611 Copenhagen (I) 198-033
Toronto, Canada (416) 675-2105 Hong Kong 5-215311-7

viii

OVERVIEW

INTRODUCTION

Intel microprocessors and peripherals provide a complete
solution in increasingly complex application environ­
ments. Quite often, a single peripheral device will replace
anywhere from 20 to 100 TTL devices (and the associated
design time that goes with them).

Built-in functions and standard Intel microprocessor/
peripheral interface deliver very real time and perfor­
mance advantages to the designer of microprocessor­
based systems.

REDUCED TIME TO MARKET

When you can purchase an off-the-shelf solution that
replaces a number of discrete devices, you're also replac­
ing all the design, testing, and debug time that goes with
them.

INCREASED RELIABILITY

At Intel, the rate offailure for devices is carefully tracked.
Highest reliability is a tangible goal that translates to
higher reliability for your product, reduced downtime,
and reduced repair costs. And as more and more
functions are intergrated on a single VLSI device, the
resulting system requires less power, produces' less heat,
and requires fewer mechanical connections-again re­
sulting in greater system reliability.

LOWER PRODUCTION COST

By minimizing design time, increasing reliability, and

replacing numerous parts, microprocessor and peripheral
solutions can contribute dramatically to lower product
costs.

HIGHER SYSTEM PERFORMANCE

Intel microprocessors and peripherals provide the highest
system performance for the demands of today's (and
tomorrow's) microprocessor-based applications. For exam­
ple, the 80386 32 bit offers the highest performance for
multitasking, multiuser systems. Intel's peripheral pro­
ducts have been designed with the future in mind. They
support all of Intel's 8, 16 and 32 bit processors.

HOW TO USE THE GUIDE

The following application guide illustrates the range of
microprocessors and peripherals that can be used for the
applictions in the vertical column of the left. The
peripherals are grouped by the I/O function they control.
CRT datacommunication, universal (user programmable),
mass storage dynamic RAM controllers, and CPU/bus
support.

An "X" in a horizontal application row indicates a
potential peripheral or CPU, depending upon the features
desired. For example, a conversational terminal could
use either of the three display controllers, depending
upon features like the number of characters per row or
font capability. A "Y" indicates a likely candidate, for
example, the 8272A Floppy Disk Controller in a small
business computer.

The Intel microprocessor and peripherals family provides
a broad range of time-saving, high performance solutions.

inter Intel's Microsystem Components Kit Solution

[1 <i£ 1-
I' DYNAMIC RAM 1-

"'nt,' 1985

FLOPPY DISK
CONTROL
8272A

MEMORY
SUPPORT
8203
8206
8207
8208/82C08

ROM/EPROM

CPU SUPPORT
8231 A
8254/82C54
8255/82C55
8256AH
8294A

LOCAL AREA
NETWORKING

82501
82502
82586
82588

CPU
8086
8088
80186
80188
80286

8251A
8273173-4
8274
82530-530-6
8044/8344/8744

HARD DISK
CONTROL
82062
82064

SPECIAL
PERIPHERAL
CONTROL
UPI'· 8041A
UPI'· 8042
UPI'· 8741A
UPI'· 8742

HARD COPY
CONTROL
UPI'· 8042/8742

KEYBOARD
CONTROL
8279-5
UPI'· 8041A
UPI'· 8042
UPI'· 8741A
UPI'· 8742

CRT
CONTROL
8275
8276
82720
82730

INSTRUMENTATION
BUS (GPIB)
8291
8292

Get Your Kit Together!

-~

8 --
_/L&£W

September 1985
Order Number: 230664-004

APPLICATION CHART

POTENTIAL APPLICATION X-TYPICAL APPLICATION Y

MICROPROCESSORS DISPLAY DATA COMMUNICATIONS UPI DISK DRAM CONTROL SUPPORT . . N ... C
II)

APPLICATION . ~ ;g . . .;, N ... ex:>
M N C CD C ... II)

CD t:: 0> II) ~ ~
II) II) :J: N

Si <t < a, iD ex:> ~ <t ~ ~ <t ~ CD CD CD C C . C
~

N . .
CD CD CD ex:> CD N M M M CD ex:> N N CD M CD ex:> ... II) CD .0>
CD CD N II) 0> II) II) II) c c c c c II) II) II)
c c c c C N N N N N N N N N N C C N N N N N N N N N N
CD ex:> ex:> ex:> ex:> ex:> ex:> ex:> ex:> ex:> ex:> CD ex:> ex:> ex:> ex:> ex:> CD ex:> CD ex:> ex:> ex:> ex:> CD ex:> CD

PERIPHERALS
Printers X: X.II .1. J I I. LX
Plotters X X
Keyboards X X

MASS STORAGE
Hard Disk X .X
Mini Winchester Y
Tape X X X
Cassette X X
Floppy/Mini Y

COMMUNICATIONS
PBX x. j(X X X ~~I XIX, X LANS X
Modems X
Bisync X
SOLC/HOLC X X
Serial Backplane X
Central Office X X X xl IX.
Network Control X X

OFFICE/BUS
Copier/FAX X Ix I X
Word processor X X X. Y y){
Typewriter X y
Electronic Mail Jf,

~ -~ ,

Transaction System X y X X
Data Entry X X X y xIX

COMPUTERS
SM Bus Computer X X X X X y y X X X X y y X
PC X X X X X X Y Y X X X ·X Y . Y X
Portable PC X Y y X y y X
Home Computer X X Y X X X Y X X X Y Y X

APPLICATION

TERMINALS
Conversational
Graphics CRT
Editing
Intelligent
Videotex
Printing, Laser, Impact
Portable

INDUSTRIAL AUTO
Robotics
Network
Numeric Control
Process Control
Instrumentation
Aviation/Navigation

INDUSTRIAUDATA ACO.
Laboratory Instrumentation
Source Data
Auto Test
Medical
Test Instrumentation
Security'

COMMERCIAL DATA
PROCESSING

POS Terminal
Financial Transfer
Automatic Teller
Document Processing

WORKSTATIONS
Office
Engineering
CAD

MINI MAINFRAME
Processor & Control Store
Database Subsystems
I/O Subsystem
Comm. Subsystem

'Single Source Product

MICROPROCJ;..SSORS DISPLAY DATA COMMUNICATIONS UPI DISK DRAM CONTROL SUPPORT . . N
.... 0 on . '" ~ ~ m a. ... N 5 N on .., CD 0 ...

CD ... '" on 0 ~
on on ::t N

5;
.....

c(c 0
. CD !!!! !!!! c(..... 0 0 c(CD

CD CD CD 0 0 . CD N . . m ~ iii Gi CD CD CD CD CD N ..,, ;;; .., CD CD N N CD .., CD ... CD
CD CD N on on on on 0 0 0 0 0 on on on ...
0 0 0 0 0 N N N N N N N N N N 0 0 N N N N N N N N N N
CD

y. y y y y X X ,~iX7dx,,, X X X "'XP'lt X y yrX'
)(I X y y y X X X 1<. X X X .X .X .Y.)S

xiX ,&.I,p" X X X .~ "~T' '7' =~,,~''''~, ,S7'
f"X;1

",. 'Y.' 7v',
)(.K)(. =X X _X. .X .)(. Y. X ·X

,;"'; ;~ I' X f'; .. ···, "K' 2<. X '(y X)(.)s .. X X X X X X
'I',':'· r":': r,J' ,;.," ... ':; ,.,,';)C.X 1·· ... ·:< .~:'

X X X X

X ·X[X: X y l<JKIK
:X:I'X'li¥;~

!)<LK
'x\X Ix ·xlx· ·YT)(y l"~;;;, X

X

I' "IStl".tT'Y'rY·r"·rCiCi".cx';r'"xl,u'rxl;;£,;4rxlx·T u 'rxT' \ ... ·\·····r r \. X

Peripherals 6

inter
8202A

DYNAMIC RAM CONTROLLER

• Provides All Signals Necessary to Con­
trol 2117, or 2118 Dynamic Memories

• Directly Addresses and Drives Up to 64K
Bytes Without External Drivers

• Provides Address Multiplexing and
Strobes

• Provides a Refresh Timer and a Refresh
Counter

• Refresh Cycles May be Internally or Exter-.
nally Requested

• Provides Transparent Refresh Capability

• Fully Compatible with Intel® 8080A,
808SA, iAPX 88, and iAPX 86 Family Micro­
processors

• Decodes CPU Status for Advanced Read
Capability with the 8202A-1 or 8202A-3

• Provides System Acknowledge and Trans­
fer Acknowledge Signals

• Internal Clock Capability with the 8202A·1
or 8202A-3

The Intel® 8202A is a Dynamic Ram System Controller designed to provide all signals necessary to use 2117 or
2118 Dynamic RAMs in microcomputer systems. The 8202A provides multiplexed addresses and address
strobes. as well as refresh/access arbitration. The 8202A-1 or 8202A-3 support an internal crystal oscillator.

AHQ-AHS

REFRESH
COUNTER

RiSIS1-------I
... -------1
iiCs-----oj

REFRO/ALE --------1

COLUMN
ADDRESS

""X
ROW

ADDRESS

""X ~===>OuTO-i5Uf6

60

Figure 1. 8202A Block Diagram

6-1

...........

TIMING
GENERATOR

RA'So

m,
m2
RAs3

CAS

WE

SACK

XACK

AH,

AH,

AH,

AH,

AHa

ALa

aiJTo

AL,

M1
AL,

M2
AL,

0iJf3

AL4

0iJf4

ALS

5lJfs

ALO

0uT6

GNO

Vee

AHs

AH,

N.C.

REFRO/AlE

Figure 2. Pin Configuration

205215-001

Pin
Symbol No. Type

ALo 6 I
ALI 8 I
Al2 10 I
AL3 12 I
AL4 14 I
Al5 16 I
Al6/ 18 I

AHO 5 I
AHI 4 I
AH2 3 I
AH3 2 I
AH4 1 I
AH5 39 I
AH6 38 I

BO 24 I
Bl/ 0P l 25 I

PCS 33 I

WR 31 I

RD/Sl 32 I

REFRQ/ 34 I
ALE

OUTO 7 0
OUTI 9 0
OUT2 11 0
OUT3 13 0
OUT4 15 0
OUT5 17 0
OUT6 19 0

WE 28 0

CAS 27 0

8202A

Table 1. Pin Descriptions

Name and Function

Address Low: CPU address in·
puts used to generate memory'
row address.

Address High: CPU address in·
puts used to generate memory
column address.

Bank Select Inputs: Used to
gate the appropriate RASO·
RAS3 output for a memory cy·
cle. B 1/ OP 1 option used to se·
lect the Advanced Read Mode.

Protected Chip Select: Used to
enable the memory read and
write inputs. Once a cycle is
started, it will not abort even if
PCS goes inactive before cycle
completion.

Memory Write Request.

Memory Read Request: SI
function used in Advanced Read
mode selected by OP 1 (pin 25).

External Refresh Request: ALE
function used in Advanced Read
mode, selected by OP 1 (pin 25).

Output of the Multiplexer:
These outputs are designed to
drive the addresses olthe Dynamic
RAM array. (Note that the OUT 0.6

pins do not require inverters or
drivers for proper operation.)

Write En,able: Drives the Write
Enable inputs of the Dynamic
RAM array.

Column Address Strobe: This
output is used to latch the Col·
umn Address into the Dynamic
RAM array.

6-2

Pin
Symbol No. Type Name and Function

RASO 21 0 Row Address Strobe: Used to
RAS1 22 0 latch the Row Address into the
RAS2 23 0 bank of dynamic RAMs, select·
RAS3 26 0 ed by the 8202A Bank Select

pins (BO, Bl/0Pl).

XACK 29 0 Transfer Acknowledge: This
output is a strobe indicating val·
id data during a read cycle or
data written during a write cycle.
XACK can be used to latch valid
data from the RAM array.

SACK 30 0 System Acknowledge: This
output indicates the beginning of
a memory access cycle. It can
be used as an advanced trans·
fer acknowledge to eliminate
wait states. (Note: If a memory
access request is made during a
refresh cycle, SACK is delayed
until XACK in the memory ac·
cess cycle).

(XO) OP2 36 110 Oscillator Inputs: These inputs
(XI) ClK 37 110 are designed for a quartz crystal

to control the frequency of the
oscillator. If XO/ OP2 is connect·
ed to a 1 Kfl resistor pulled to
+ 12V then XI / ClK becomes a
TTL input for an external clock.

N.C. 35 Reserved for future use.

Vce 40 Power Supply:+5V.

GND 20 Ground.

NOTE: Crystal mode for the B202A·l or 8202A·3 only.

I--..... -~--I Xo

I cs*
I
I
I

lKn
±5%

Cs < 10pF

FUNDAMENTAL XTAl

x,
8202A-l

or
8202A-3

Figure 3. Crystal Operation for the 8202A-1
and the 8202A-3

205215-001

inter 8202A

Functional Description
The 8202A provides a complete dynamic RAM controller
for microprocessor systems as well as expansion memory
boards. All of the necessary control signals are pro­
vided for 2117 and 2118 dynamic RAMs.

All 8202A timing is generated from a single reference
clock. This clock is provided via an external oscillator or
an on chip crystal oscillator. All output signal transitions
are synchronous with respect to this clock reference, ex­
cept for the CPU handshake signals SACK and XACK
(trailing edge).

CPU memory requests normally use the RD and WR in­
puts. The advanced READ mode allows ALE and S 1 to be
used in place of the RD input.

Failsafe refresh is provided via an internal refresh timer
which generates internal refresh requests. Refresh re­
quests can also be generated via the REFRQ input.

An on-chip synchronizer / arbiter prevents memory and re­
fresh requests from affecting a cycle in progress. The
READ, WRITE, and external REFRESH requests may be
asynchronous to the 8202A clock; on-chip logic will syn­
chronize the requests, and the arbiter will decide if the re­
quests should be delayed, pending completion of a cycle in
progress.

Option Selection
The 8202A has two strapping options. When OP,is se­
lected (1SK mode only). pin 32 changes from a RD input to
an S 1 input, and pin 34 changes from a REFREQ input to
an ALE input. See "Refresh Cycles" and "Read Cycles"
for more detail. OP1 is selected by tying pin 25 to
+12V through a 5.1 K ohm resistor on the 8202A-1. or
8202A-3 only.

When OP2 is selected, by connecting pin 3a to + 12V
through a 1 K ohm resistor, pin 37 changes from a crystal
input (X 1) to the CLK input for an external TIL .clock.

Refresh Timer
The refresh timer is used to monitor the time since the last
refresh cycle occurred. When the appropriate amount of
time has elapsed, the refresh timer will request a
refresh cycle. External refresh requests will reset the
refresh timer.

Refresh Counter
The refresh counter is use'd to sequentially refresh all of

Description Pin # Normal Function

B1/0P1 25 Bank (RAS) Select

the memory's rows. The 8-bit counter is incremented after
every refresh cycle.

Address Multiplexer
The address multiplexer takes the address inputs and the
refresh counter outputs, and gates them onto the address
outputs at the appropriate time. The address outputs, in
conjunction with the RAS and CAS outputs, determine the
address used by the dynamic RAMs for read, write, and
refresh cycles. During the first part of a read or write cy­
cle, ALo-ALa are gated to OUTO-OUTS, then AHo-AHa
are gated to the address outputs.

During a refresh cycle, the refresh counter is gated onto
the address outputs. All refresh cycles are RAS-only re­
fresh (CAS inactive, RAS active).

To minimize buffer delay, the information on the address
outputs is inverted from that on the address inputs.

OUT O-OUT a do not need inverters or buffers unless addi­
tional drive is required.

Synchronizer / Arbiter
The 8202A has three inputs, REFRQ / ALE (pin 34), RD
(pin 32) and WR (pin 31). The RD and WR inputs allow an
external CPU to request a memory read or write cycle,
respectively. The REFRQ/ ALE allows refresh requests to
be requested external to the 8202A.

All three of these inputs may be asynchronous with re­
spect to the 8202A's clock. The arbiter will resolve con­
flicts between refresh and memory requests, for both
pending cycles and cycles in progress. Read and write re­
quests will be given priority over refresh requests.

System Operation
The 8202A is always in one of the following states:

a) IDLE
b) TEST Cycle
c) REFRESH Cycle
d) READ Cycle
e) WRITE Cvcle

The 8202A is normally in the IDLE state. Whenever one of
the other cycles is requested, the 8202A will leave the
IDLE state to perform the desired cycle. If no other cycles
are pending, the 8202A will return to the IDLE state.

Option Function

Advanced-Read Mode (see text)

XO/OP2 36 Crystal Oscillator (8202A-1 or 8202A-3) External Oscillator

.... igure 4. 8202A Option Selection

6-3 205215-001

8202A

Test Cycle
The TEST Cycl!;! is used to check operation of several
8202A internal functions. TEST cycles are requested
by activating the RD and WR inputs, independent of
PCS. The TEST Cycle will reset the refresh address
counter. It will perform a WRITE Cycle if PCS is low.
The TEST Cycle should not be used in normal system
operation, since it would affect the dynamic RAM
refresh.

Refresh Cycles
The 8202A has two ways of providing dynamic RAM re­
fresh:

1) Internal (failsafe) refresh
2) External (hidden) refresh

Both types of 8202A refresh cycles activate all of the RAS
outputs, while CAS, WE, SACK, and XACK remain inac-
tive. .

Internal refresh is generated by the on-chip refresh timer.
The timer uses the 8202A clock to ensure that refresh of
all rows of the dynamic RAM occurs every 2 milliseconds.
If REFRQ is inactive, the refresh timer will request a re­
fresh cycle every 10-16 microseconds.

External refresh is requested via the REFRQ input (pin 34).
External refresh control is not available when the Ad­
vanced-Read mode is selected. External refresh requests
are latched, then synchronized to the 8202A clock.

The arbiter will allow the refresh request to start a refresh
cycle orily if the 8202A is not in the middle of a cycle.

Simultaneous memory request and external refresh re­
quest will result in the memory request being honored first.
This 8202A characteristic can be used to "hide" refresh
cycles during system operation. A circuit similar to
Figure 5 can be used to decode the CPU's instruction
fetch status to generate an external refresh request. The
refresh request is latched while the 8202A performs the
instruction fetch; the refresh cycle will start immediately
after the memory cycle is completed, even if the RD input
has not gone inactive. If the CPU's instruction decode time
is long enough, the 8202A can complete the refresh cycle
before the next memory request is generated.

Certain system configurations require complete external
refresh requests. If external refresh is requested faster
than the minimum internal refresh timer (tREF), then, in ef­
fect, all refresh cycles will be caused by the external re­
fresh request, and the internal refresh timer will never
generate a refresh request.

6-4

SO~ ---- REFRQ

-""
'-__________ ~:;Kor

8202A

Figure 5. Hidden Refresh

Read Cycles
The 8202A can accept two different types of memory,
Read requests:

1) Normal Read, via the RD input
2) Advanced Read, using the S1 and ALE inputs

The user can select the desired Read request configura­
tion via the B1 /OP1 hardware strapping option on pin 25.

Normal Read Advanced Read

Pin 25 81 input +12 Volt Option
Pin 32 RD input Sl input
Pin 34 REFRQ input ALE input
RAM banks 4 (RAS 0.3) 2 (RAS 2-3)
Ext. Refresh Req. Yes No

Figure 6. 8202A Read Options

Normal Reads are requested by activating the RD input,
and keeping it active until the 8202A responds with an
XACK pulse. The RD input can go inactive as soon as the
command hold time (tCHS) is met.

Advanced Read cycles are requested by pulsing ALE
while S 1 is active; if S 1 is inactive (low) ALE is ignored.
Advanced Read timing is similiar to Normal Read timing,
except the falling edge of ALE is used as the cycle start
reference.

If a Read cycle is requested while a refresh cycle is in
progress, then the 8202A will set the internal delayed­
SACK latch. When the Read cycle is eventually started,
the 8202A will delay the active SACK transition until XACK
goes active, as shown in the AC timing diagrams. This de-'
lay was designed to compensate for the CPU's READY
setup and hold times. The delayed-SACK latch is cleared
after every READ cycle.

Based on system requirements, either SACK or XACK can
be used to generate the CPU READY signal. XACK will

205215-001

8202A

normally be used; if the CPU can tolerate· an advanced
READY, then SACK can be used, but only if the CPU can
tolerate the amount of advance provided by SACK. If
SACK arrives too early to provide the appropriate number
of WAIT states, then either XACK or a delayed form of
SACK should be used.

Write Cycles
Write cycles are similiar to Normal Read cycles, except
for the WE output. WE is held inactive for Read cycles, but
goes active for Write cycles. All 8202A Write cycles are
"early-write" cycles; WE goes active before CAS goes ac­
tive by an amount of time sufficient to keep the dynamiC
RAM output buffers turned off.

General System Considerations
All memory requests (Normal Reads, Advanced Reads,
Writes) are qualified by the PCS input. PCS should be sta­
ble, either active or ·inactive, prior to the leading edge of
RD, WR, or ALE. Systems which use battery backup
should pullup PCS to prevent erroneous memory requests,
and should also pullup WR to keep the 8202A out of its
test mode.

In order to minimize propagation delay, the 8202A uses an
inverting address multiplexer without latches. The system
must provide adequate address setup and hold times to
guarantee RAS and CAS setup and hold times for the
RAM. The 8202A tAD AC parameter should be used for
this system calculation.

The BO-B 1 inputs are similiar to the address inputs in that
they are not latched. BO and B 1 should not be changed
during a memory cycle, since they directly control which
RAS output is activated.

The 8202A uses a two-stage synchronizer for the memory
request inputs (RD, WR, ALE), and a separate two stage
synchronizer for the external refresh input (REFRQ). As
with any synchronizer, there is always a finite probability
of metastable states inducing system errors. The 8202A
synchronizer was designed to have a system error rate
less than 1 memory cycle every three years based on the
full operating range of the 8202A.

6-5

A microprocessor system is concerned with the time data
is valid after RD goes low. See Figure 7. In order to calcu­
late memory read access times, the dynamic RAM's A.C.
specifications must be examined, especially the RAS-ac­
cess time (tRAC) and the CAS-access time (tCAC). Most
configurations will be CAS-access limited; i.e., the data
from the RAM will be stable tcc,max (8202A) + tCAC
(RAM) after a memory read cycle is started. Be sure to
add any delays (due to buffers, data latches, etc.) to cal­
culate the overall read access time.

Since the 8202A normally performs "early-write" cycles,
the data must be stable at the RAM data inputs by the time
CAS goes active, including the RAM's data setup time. If
the system does not normally guarantee sufficient write
data setup, you must either delay the WR input signal or
delay the 8202A WE output.

Delaying the WR input will delay all 8202A timing, including
the READY handshake signals, SACK and XACK, which
may increase the number of WAIT states generated by the
CPU.

If the WE output is externally delayed beyond the CAS ac­
tive transition, then the RAM will use the falling edge of WE
to strobe the write data into the RAM. This WE transition
should not occur too late during the CAS active transition,
or else the WE to CAS requirements of the RAM will not be
met.

Ro~ / I ~----~--------~I ______ -J

"': q-----tRlDV !IE I
~ ___ I

DATA -----------« B--
I :
t-tRAC-.......J
I I

RAS ------""""'~ i ;-
I

I tCAC I
4----+1

CAS --------------"''\ 1;-
Figure 7. Read Access Time

205215-001

8202A

OTITO-6
...... r---AS-15

~
ALO-6 r AO-6
AHO-6

ALE 80-1

8088
8202A

-
{16K MODE) WE ~

WE
ADO-7 CAS CAS

f- RAS
RO r=p RD/S1 RASa DIN DOUl

WR WR 1
RAS, E- ~ -

-<
RAS2t:: AO-6

SACK RAS3 r'
XACK

~
WE
CAS

t---- RAS
DIN DOUT

II
~ AO-.

::: WE
CAS

- - RAS
DIN DOUT

,TT.
.. ~ AO-•

c.-===: WE
CAS

~S~
D'N

RAS DOUT
DIN DOUT

DATA V 1" T I
DATA-BUS LATCH IN

--1\

Figure 8. Typical 8088 System

6-6

D'N
DOUT

J

2118
DYNAMIC RAM ARRAY

BAL

l

+
'1,

BAL

,ID'N DIN DOUT
DOUT

J j

."..--

O'N
DOU1

U

D'N
DOUT

:u

D'N

IT

D'N
D'N DOUT DOUT

Dour .---

205215-001

inter 8202A

ABSOLUTE MAXIMUM RATINGS'

Ambient Temperature Under Bias O'C to 70'C
Storage Temperature -6S0C to +150°C
Voltage On any Pin

With Respect to Ground -0.5V to +7V4
Power Dissipation 1.5 Watts

• NOTE: Stresses above those listed under "Absolute Maxi­
mum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operation of the de­
vice at these or any other conditions above those indicated in
the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for ex­
tended periods may affect device reliability.

D.C. CHARACTERISTICS TA = O°C to 70°C; VCC = 5.0V ± 10%, VCC = 5.0V ± 5% for 8202A-3, GND = OV

Symbol Parameter Min Max Units Test Conditions

Vc Input Clamp Voltage -1.0 V IC = -S rnA

ICC Power Supply Current 270 rnA

IF Forward Input Current
ClK -2.0 rnA VF = 0.45V
All Other Inputs3 -320 p.A VF = O.4SV

IR Reverse Input Current3 40 p.A VR = Vee (Note 1)

VOL Output low Voltage
SACK,XACK 0.45 V 10l = 5 rnA
All Other Outputs 0.45 V 10l = 3 rnA

VOH Output High Voltage Vil = 0.65V
SACK,XACK 2.4 V. 10H =; -1 rnA
All Other Outputs 2.6 V 10H = -1 rnA

Vil Input low Voltage 0.8 V VCC = 5.0V (Note 2)

VIHI Input High Voltage 2.0 V VCC = 5.0V

VIH2 Option Voltage V (Note 4)

F = 1 MHz

CIN Input Capacitance 30 pF VB lAS = 2.SV, VCC = 5V
TA = 2S'C

NOTES:
1. IR = 200l'A for pin 37 (elK) for external clock mode.
2. For test mode RD & WR must be held at GND.
3. Except for pin 36.
4. 8202A-l and 8202A-3 supports both OP, and OP,. 8202A only supports OP,.

+12 Volt ' K 36
±10%

1

OP,

8202A

5.1 K 2S OPI

Resistor Tolerance: ±5%

6-7 205215-001

8202A

A.C. CHARACTERISTICS
TA = O'C to 70'C, vcc "" 5V ± 10%, VCC = 5V ± 5% for 8202A-3

Measurements made with respect to RASO-RAS3, CAS, WE,OUTo-OUTe are at 2.4V and 0.8V. All
other pins are measured at 1.5V. All times are in nsec.

Symbol Parameter Min Max

tp Clock Period 40 54

tpH External Clock High Time 20

tpL External Clock Low Time-above (» 20 mHz 17

tpL External Clock Low Time-below «) 20 mHz 20

tRC Memory Cycle Time 10tp - 30 12tp

tREF Refresh Time (128 cycles-16K mode) 264tp 288tp

tRP RAS Precharge Time 4tp - 30

tRSH RAS Hold After CAS 5tp - 30

tASR Address Setup to RAS tp - 30

tRAH Address Hold From RAS tp - 10

tASC Address Setup to CAS tp - 30

tCAH Address Hold from CAS 5tp - 20

tCAS 'CAS Pulse Width 5tp - 10

twcs WE Setup to CAS tp - 40

tWCH WE Hold After CAS 5tp - 35

tRS RD, WR, ALE, REFRQ delay from RAS 5tp

tMRP RD, WR setup to RAS 0

tRMS REFRQ setup to RD, WR 2tp

tRMP REFRQ setup to RAS 2tp

tpcs PCS Setup to RD, WR, ALE 20

tAL S 1 Setup to ALE 15

tLA S 1 Hold from ALE 30

tCR RD, WR, ALE to RAS Delay tp + 30 2tp + 70

tcc RD, WR, ALE to CAS Delay 3tp + 25 4tp + 85

tsc CMD Setup to Clock 15

tMRS RD, WR setup to REFRQ 5

tCA RD, WR, ALE to SACK Delay 2tp + 47

tcx CAS to XACK Delay 5tp - 25 5tp + 20

tcs CAS to SACK Delay 5tp - 25 5tp + 40

tACK XACK to CAS Setup 10

txw XACK Pulse Width tp - 25

tCK SACK, XACK turn-off Delay 35

tKCH CMD Inactive Hold after SACK, XACK 10

tLL REFRQ Pulse Width 20

tCHS CMD Hold Time 30

tRFR REFRQ to RAS Delay 4tp + 100

tww WR to WE Delay 0 50

tAD CPU Address Delay 0 40

6-8

Notes

4,5

3

3

3

3

3

8

5

5

2

2

1

2,9

2,10

7

11

e

8

3

205215-001

WAVEFORMS
Normal Read or Write Cycle

Advanced Read Mode

ALE

XACK

SACK

8202A

tRS -----+-

IAS-

~~1~-
__ ~'i~_I'-------_---J

ICC
-MAX

-tCA-

6-9 205215-001

intJ

WAVEFORMS (cont'd)
Memory Compatibility Timing

8202A

~ ~ _______________ V_A_lI_D_AD_D_RE_S_S ________________ ~~~ __________________________ __

~~~~ ------+ -~~-

!\ 
tRSH :1 

I 
tCAS 

!\ / 
!---tASR_ !--tRAH ..... -tASC-- I-tCAH-

~ ROW X COLUMN K 

Write Cycle Timing 

\ I 
1\ I 

.1 

~~C~-\ MIN 

-~'i~-I' --- tww -
\ 1/ I 

_twcs_ -+---- tWCH . 
. tcc 

MIN 

. tcc 
MAX 

6-10 205215-001 



inter 8202A 

WAVEFORMS (cont'd) 
Read or Write Followed By External Refresh 

RD, WR \ 
\. 

...- tMRS---' ........- tLl ______ 

It \ 
I \ 

REFRQ 

l~tRS_ 
. tRMP __ tRP_. 

.---~'i~~ 

1\ r\ . tRC . 
.1 

. tcc ~ MIN tcc . MAX 

External Refresh Followed By Read or Write 

iffi,WR 

_tRMS - ..... l+=========-tM-R-P==========o-I.-I------------
REFRQ ,----"""' 

-tLL 

tRs ....... I··---

J---:-----tRC ------1 

\'-----

6-11 205215-00) 



intJ 8202A 

WAVEFORMS (cont'd) 
Clock And System Timing 

elK 

RD, \YR, ALE 

Table 2 8202A Output Test 
Loading 

Test Load 
Pin 

SACK.XACK CL=30pF 
OUTo-OUTe CL = leo pF 
RASo-RAS3 CL=60pF 
WE CL = 224 pF 
CAS CL = 320 pF 

. NOTES: 
1. tsc Is a reference point only. ALE. RO. WR. and REFRQ inputs do 

not have to be externally synchronized to 8202A clock. 
2. If tRS min and tMRS min are met then. tCA. tCR. and tcc are 

valid. otherwise tcs Is valid. 
3. tASR. tRAH. tASC. tCAH. and tRSH depend upon 80-81 and CPU 

.address remaining stable throughout the memory cycle. The ad­
dress Inputs are not latched by the 8202A. 

4. For back-to-back refresh cycles. tRC max = 13tp 
5. tRC max Is valid only if tRMP min Is met (READ. WRITE followed 

by REFRESH) or tMRP min Is met (REFRESH followed by READ. 
WRITE). 

8. tRFR Is valid only If tRS min and tRMS min are met. 
7. txw min applies when RD. WR has already gone high. Otherwise 

XACK follows RD. WR. 
8. WE goes high according to tWCH or tWW. whichever occurs 

first.· 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER I C

' 

TEST 

C, INCLUDES JIG CAPACITANCE 

9. tCA applies only when In normal SACK mode. 
10. tcs applies only when in delayed SACK mode. 
11. tCHS must be met only to ensure a SACK active pulse when In 

delayed SACK mode. XACK will always be activated for at 
least txw (tp-25 nS). Violating tCHS min does not otherwise 
affect device operation. 

6-12 205215-001 



inter 8202A 

The typical rising and falling characteristic curves for the 
OUT, RAS, CAS and WE output buffers can be used to 
determine the effects of capacitive loading on the A.C. 

Timing Parameters. Using this design tool in conjunction 
""lith the timing waveforms, the designer can determine 
typical timing shifts based on system capacitive load. 

A.C. CHARACTERISTICS FOR DIFFERENT CAPACITIVE LOADS 

NOTE: 

5.0 , ___ ,-__ _+---.,-----,----,------,----,----,---'C::.A,PA"'C::.'T"'A;.:NC:::E::.'.:.:,PF 

0.81----1----J,~~3..s~~--_1__---1-----I---_J---_1___-_I__ __ ....j 

O.O~--~---_+---~---~---L---~---~----L---~--~ 

TIME ~5n'-1 

5.0 .-__ ---,_---+-----r---,-----r------,-----.------.----C-A.,.PA-C-'T-A-NC-E-' ,-!PF 

~ 
~ 2A~----_4----4__+4-~~~--~~~~~~~----_4------_+----~----+----~ ... 
" o 

TIME 

MEASUREMENT CONDITIONS: 
Use the Test Load as the base capacitance for estimating timing 
shifts for system critical timing parameters. 

TA = 25'C 
Vee = +5V 
tp = 50 ns 

Pins not measured are loaded with the 
Test Load capacitance. 

6-13 205215-001 



8202A 

Example: Find the effect on teR and tee using 64 
2118 Dynamic RAMs configured in 4 banks. 

1. Determine the typical RAS and CAS capacitance: 
From the data sheet RAS = 4 pF and CAS = 4 pF. 
:. RAS load = 64 pF + board capacitance. 

CAS load = 256 pF + board capacitance. 
Assume 2 pF/in (trace length) for board 
capacitance. 

2. From the waveform diagrams, we determine that 
the fallins. edge timing is needed for teR and tee. 
Next find the curve that best app~oximates the 
test load; i.e., 68 pF for RAS and 330 pF for CAS. 

3. If we use 72 pF for RAS loading, then the teR 
(max.) spec should be increased by about 1 ns. 
Similarly if we us~ 288 pF for CAS, then tee (min.) 
and (max.) should decrease about 1 ns. 

6-14 205215-001 



8203 
64K DYNAMIC RAM CONTROLLER 

• Provides All Signals Necessary to 
Control64K (2164) and 16K (2117, 2118) 
Dynamic Memories 

• Directly Addresses and Drives Up to 64 
Devices Without External Drivers 

• Provides Address Multiplexing and 
Strobes 

• Provides a Refresh Timer and a Refresh 
Counter 

• Provides Refresh/ Access Arbitration 

• Internal Clock Capability with the 8203-1 
and the 8203-3 

• Fully Compatible with Intel® 8080A, 
808SA, iAPX 88, and iAPX 86 Family Micro­
processors 

• Decodes CPU Status for Advanced Read 
Capability in 16K mode with the 8203-1 and 
the 8203-3. 

• Provides System Acknowledge and Trans­
fer Acknowledge Signals 

• Refresh Cycles May be Internally or Exter­
nally Requested (For Transparent Refresh) 

• Internal Series Damping Resistors on All 
RAM Outputs 

The Intel® 8203 is a Dynamic Ram System Controller designed to provide all signals necessary to use 2164, 2118 
or 2117 Dynamic RAMs in microcomputer systems. The 8203 provides multiplexed addresses and address 
strobes, refresh logic, refresh/access arbitration. Refresh cycles can be started internally or axternally. The 
8203-1 and the 8203-3 support an internal crystal oscillator and Advanced Read Capability. The 8203-3 is a ±5% Vee 
part. 

REFRESH 
COUNTER 

00/51 _____ --/ 

"'-------/ 
OB-------t 

~ 

OiJTo--OiJT1 

oow 
'DD"'" 

oo 
a1/OPt 

Figure 1. 8203 Block Diagram 

.... 
RAJ, 

W2 ... , 
on 

~OR .. 
.... -

AH4 Vee 

AH3 AH, 

AH, AH. 

AH, x,/elK 

AH. 

AL. 16K/64I( 

ODTo REFRQ/ALE 

AL, PeS 

lftlf, 00151 

AL, Wo 

iIDf2 SACK 

AL3 XACK 

0uT3 we 
AL4 CAs 

M4 RAS3 (801 

Al, D,/0P, (AH71 

OUTs Bo (AL7) 

Al. AAS2 (M71 

0iJi6 RAS1 

GNO RASo 

Figure 2. Pin Configuration 

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses are Implied. 
©INTELCORPORATION.1982 6-15 JANUARY 1985 

ORDER NUMBER: 210444-004 



8203 

ABSOLUTE MAXIMUM RATINGS' 

Ambient Temperature Under Bias ............ O°C to 70'C 
Storage Temperature ..... . .... -65°C to +150'C 
Voltage On any Pin 

With Respect to Ground ................ -0.5V to + 7V4 
Power Dissipation ............................ 1.6 Watts 

'NOTE: Stresses above those listed under "Absolute Maxi­
mu'!' Ratings" may cause permanent damage to the device. 
This is a stress rating only and functional operation of the de­
vice at these or any other conditions above those indicated in 
the operational sections of this specification is not implied. 
Exposure to absolute maximum rating conditions for ex­
ten'ded periods may affect device reliability. 

D.C. CHARACTERISTICS TA = O°C to 70'C' VCC = 50V + 10% (5 OV + 5% for 8203-3)' GND = OV - -
Symbol Parameter Min Max 

Vc Input Clamp Voltage -1.0 

ICC Power Supply Current 290 

IF Forward Input Current 
ClK. 64K/16K Mode select -2.0 

All Other Inputs3 -320 

IR Reverse Input Current3 40 

VOL Output low Voltage 
SACK,XACK 0.45 
All Other Outputs 0.45 

VOH Output High Voltage 

SACK,XACK 2.4 
All Other Outputs 2.6 

Vil Input low Voltage 0.8 

VIH1 Input High Voltage 2.0 VCC 

VIH2 Option Voltage VCC 

CIN Input Capacitance 30 

NOTES: 
1. IR = 200 p.A for pin 37 (elK). 
2. For test mode RD & WR must be held at GND. 
3. Except for pin 36 in XTAl mode. 
4. 8203-1 and 8203-3 supports both OPI and OP2, 8203 only supports OP2. 

+12 Volt 
±10% 

1K 36 
L---'INI~--I 0,," 

8203 

Resistor Tolerance: ± 5'% L... __ --I 

5. IR = 150/lA for pin 35 (Mode Select 16K/64K) 

6-16 

Units Test Conditions 

V IC =-5 rnA 

rnA 

rnA VF = 0.45V 

/lA VF = 0.45V 

/lA VR = VCC; Note 1,5 

V 10l = 5 rnA 
V 10l = 3 rnA 

Vil = 0.65 V 
V 10H = -1 rnA 
V 10H = -1 rnA 

V VCC = 5.0V (Note 2) 

V VCC = 5.0V 

V (Note 4) 

F = 1 MHz 

pF VBIAS = 2.5V, VCC = 5V 
TA = 25'C 



Pin 

Symbol No. Type 

ALa 6 
AL1 8 
AL2 10 
AL3 12 
AL4 14 
AL5 16 
AL6 18 

AHa 5 
AH1 4 
AH2 3 
AH3 2 
AH4 1 
AH5 39 
AH6 38 

BO/AL7 24 

B1 /OP 11 25 
AH7 

PCS 33 I 

WR 31 I 

RD/S1 32 I 

REFRQI 34 I 
ALE 

OUTo 7 0 
OUT1 9 0 
OUT2 11 0 
OUT3 13 0 
OUT4 15 0 
OUT5 17 0 
OUT6 19 0 

WE 28 0 

CAS 27 0 

8203 

Table 1. Pin Descriptions 

Name and Function 

Address Low: CPU address in-
puts used to generate memory 
row address_ 

Address High: CPU address in-
puts used to generate memory 
column address_ 

Bank Select Inputs: Used to 
gate the appropriate RAS output 
for a memory cycle. B 11 OP 1 op-
tion used to select the Advanced 
Read Mode. (Not available in 
64K mode.) See Figure 5. 
When in 64K RAM Mode, pins 24 
and 25 operate as the AL 7 and 
AH7 address inputs. 

Protected Chip Select: Used to 
enable the memory read and 
write inputs. Once a cycle is 
started, it will not abort even if 
PCS goes inactive before cycle 
completion. 

Memory Write Request. 

Memory Read Request: S1 
function used in Advanced Read 
mode selected by OP1 (pin 25). 

External Refresh Request: ALE 
function used in Advanced Read 
mode, selected by OP 1 (pin 25). 

Output of the Multiplexer: 
These outputs are designed to 
drive the addresses of the Dy-
namic RAM array. (Note that the 
OUTO_7 pins do not require in-
verters or drivers for proper op-
eration.) 

Write Enable: Drives the Write 
Enable inputs of the Dynamic 
RAM array. 

Column Address Strobe: This 
output is used to latch the Col-
umn Address into the Dynamic 
RAM array. 

6-17 

Pin 

Symbol No. Type Name and Function 

RASa 21 0 Row Address Strobe: Used to 
RAS1 22 0 latch the Row Address into the 
RAS21 23 0 bank of dynamic RAMs, select-
OUT7 ed by the 8203 Bank Select pins 
RAS3/BO 26 1/0 (BO, B1/OP1). In 64K mode, 

only RASa and RAS 1 are avail-
able; pin 23 operates as OUT 7 
and pin 26 operates as the BO 
bank select input. 

XACK 29 0 Transfer Acknowledge: This 
output is a strobe indicating val-
id data during a read cycle or 
data written during a write cycle. 
XACK can be used to latch valid 
data from the RAM array. 

SACK 30 0 System Acknowledge: This 
output indicates the beginning of 
a memory access cycle. It can 
be used as an advanced trans-
fer acknowledge to eliminate 
wait states. (Note: If a memory 
access request is made during a 
refresh cycle, SACK is delayed 
until XACK in the memory ac-
cess cycle). 

XOIOP2 36 1/0 Oscillator Inputs: These inputs 

X1 /CLK 37 110 are designed for a quartz crystal 
to control the frequency of the 
oscillator. If XOIOP2 is shorted 
to pin 40 (VCC) or if XOIOP2 is 
connected to + 12V through a 
1 KQ resistor then X 1/ CLK be-
comes a TTL input for an exter-
nal clock. (Note: Crystal mode 
for the 8203-1 and the 8203-3 
only). 

16K/64K 35 I Mode Select: This input selects 
16K mode (2117,2118) or 64K 
mode (2164). Pins 23-26 
change function based on the 
mode of operation. 

VCC 40 Power Supply: +5V. 

GND 20 Ground_ 

Functional Description 
The 8203 provides a complete dynamic RAM control­
ler for microprocessor systems as well as expansion 
memory boards. All of the necessary control signals 
are provided for2164, 2118 and 2117 dynamic RAMs. 

The 8203 has two modes, one for 16K dynamic RAMs 
and one for 64Ks, controlled by pin 35. 



8203 

Xa WE 
I 
I CAS 

CS* = 
1KU I ±S% .... RASa I X, I -- C!!.L 8203-1 

HAS1 or 
6800 T 8203·3 

":" ±5% I RAS2 
.J 

":" RAS3 

Cs < 10pF XACK 

FUNDAMENTAL XTAL SiCK 

Figure 3. Crystal Operation for the 8203-1 and 
8203-3 

All 8203 timing is generated from a single reference clock. 
This clock is provided via an external oscillator or an on­
chip crystal oscillator. All output signal transitions are syn­
chronous with respect to this clock reference, except for 
the trailing edges of the CPU handshake signals SACK and 
XACK. 

CPU memory requests normally use the RD and WR in­
puts. The Advanced-Read mode allows ALE and S1 to be 
used in place of the RD input. 

Failsafe refresh is provided via an internai timer which gen­
erates refresh requests. Refresh requests can also be 
generated via the REFRQ input. . . 

An on-chip synchronizer I arbiter prevents memory and re­
fresh requests from affecting a cycle in progress. The 
READ, WRITE, and external REFRESH requests may be 
asynchronous to the 8203 clock; on-chip logiC will syn­
chronize the requests, and the arbiter will decide if the re­
quests should be delayed, pending completion of a cycle in 
progress .. 

16K/64K Option Selection 
Pin 35 is a strap input that controls the two 8203 modes. 
Figure 4 shows the four pins that are multiplexed. In 16K 
mode (pin 35 tied to VCC or left open), the 8203 has two 
Bank Se'lect inputs to select one of four RAS outputs. In 
this mode, the 8203 is exactly compatible with the Intel 
8202A Dynamic RAM Controller. In 64K mode (pin 35 tied 
to GND), there is only'one Bank Select input (pin 26) to 
select the two RAS outputs. More than two banks of 64K 
dymimic RAM's can be used with external logic. 

Description Pin # Normal Function 

B1/0P1 (16Konly)/AH? 25 Bank (RAS) Select 

Other Option Selections 
The 8203 has two strapping options. When OP, is selected 
(16K mode only), pin 32 changes from a RD input to an Sl 
input, and pin 34 changes from a REFRQ input to an ALE 
input. See "Refresh Cycles" and "Read Cycles" for more 
detail. OP, is selected by tying pin 25to+12Vthrough a5.1K 
ohm resistor on the 8203~1 or 8203-3 only. 

When OP2 is selected, the internal oscillator is disabled 
and pin 37 changes from a crystal input (X1) to a ClK 
input for an external TTL clock. OP2 is selected by short­
ing pin 36 (XO/OP2) directly to pin 40 (VCC). No current 
limiting resistor should be used. OP2 may also be selected 
by tying pin 36 to +12V through a 1Kn resistor. 

Refresh Timer 
The refresh timer is used to monitor the time since the last 
refresh cycle occurred. When the appropriate amount of 
time has elapsed, the refresh timer will request a refresh 
cycle. External refresh requests will reset the refresh 
timer. 

Refresh Counter 
The refresh counter is used to sequentially refresh all of 
the memory's rows. The a-bit counter is incremented after 
every refresh cycle. . 

Pin # 16K Function 64K Function 

'23 RAS2 Address Output (OUT?) 
24 Bank Select (BO) Address Input (AL?) 
25 Bank Select (B,) Address Input (AH?) 
26 RAS3 Bank Select (BO) 

Figure 4. 16K/64K Mode Selection 

Inputs Outputs 

B1 BO RASO RAS1 RAS2 RAS3 

a a a 1 1 1 
16K a 1 1 a 1 1 
Mode 1 a 1 1 a 1 

1 1 1 
" 

1 0' 

64K - a 0 1 - -
Mode - 1 1 a - -

Figure 5. Bank Selection 

Option Function 

. Advanced-Read Mode (8203-~~ 

XO/OP2 36 Crystal Oscillator (8203-1 and 8203-3) External Oscillator 

Figure 6. 8203 Option Selection 

6-18 



8203 

Address Multiplexer 
The address multiplexer takes the address inputs and the 
refresh counter outputs, and gates them onto the address 
outputs at the appropriate time. The address outputs, in 
coniunction with the RAS and CAS outputs, determine the 
address used by the dynamic RAMs for read, write, and 
refresh cycles. During the first part of a read or write cy­
cle, ALO-AL7 are gated to OUTO-OUT7, then AHO-AH7 
are gated to the address outputs. 

During a refresh cycle, the refresh counter is gated onto 
the address outputs. All refresh cycles are RAS-only re­
fresh (CAS inactive, RAS active). 

To minimize buffer delay, the information on the address 
outputs is inverted from that on the address inputs. 

OUTO-OUT7 do not need inverters or buffers unless addi­
tional drive is required. 

Synchronizer / Arbiter 
The 8203 has three inputs, REFRQI ALE (pin 34), RD (pin 
32) and WR (pin 31). The RD and WR inputs allow an ex­
ternal CPU to request a memory read or write cycle, re­
spectively. The REFRQ I ALE input allows refresh requests 
to be requested external to the 8203. 

All three of these inputs may be asynchronous with re­
spect to the 8203's clock. The arbiter will resolve conflicts 
between 'refresh and memory requests, for both pending 
cycles and cycles in progress. Read and write requests 
will be given priority over refresh requests. 

System Operation 
The 8203 is always in one of the following states: 

a) IDLE 
b) TEST Cycle 
c) REFRESH Cycle 
d) READ Cycle 
e) WRITE Cycle 

The 8203 is normally in the IDLE state. Whenever one of 
the other cycles is requested, the 8203 will leave the IDLE 
state to perform the desired cycle. If no other cycles are 
pending, the 8203 will return to the IDLE state. 

Test Cycle 
The TEST Cycle is used to check operation of several 
8203 internal functions. TEST cycles are requested by ac­
tivating the PCS, RD and WR inputs. The TEST Cycle will 
reset the refresh address counter and perform a WRITE 
Cycle. The TEST Cycle should not be used in normal sys­
tem operation, since it would affect the dynamic RAM re­
fresh. 

6-19 

Refresh Cycles 
The 8203 has two ways of providing dynamic RAM 
refresh: 

1) Internal (failsafe) refresh 
2) External (hidden) refresh 

Both types of 8203 refresh cycles activate all of the RAS 
outputs, while CAS, WE, SACK, and XACK remain 
inactive. 

Internal refresh is generated by the on-chip refresh timer. 
The timer uses the 8203 clock to ensure that refresh of all 
rows of the dynamic RAM occurs every 2 milliseconds 
(128 cycles) or every 4 milliseconds (256 cycles). If 
REFRQ is inactive, the refresh timer will request a refresh 
cycle every 10-16 microseconds. 

External refresh is requested via the REFRQ input (pin 34). 
External refresh control is not available when the Ad­
vanced-Read mode is selected. External refresh requests 
are latched, then synchronized to the 8203 clock. 

The arbiter will allow the refresh request to start a refresh 
cycle only if the 8203 is not in the middle of a cycle. 

When the 8203 is in the idle state a simultaneous memory 
request and external refresh request will result in the mem­
ory request being honored first. This 8203 characteristic 
can be used to "hide" refresh cycles during system oper­
ation. A circuit similar to Figure 7 can be used to decode 
the CPU's instruction fetch status to generate an external 
refresh request. The refresh request is latched while the 
8203 performs the instruction fetch; the refresh cycle will 
start immediately after the memory cycle is completed, 
even if the RD input has not gone inactive. If the CPU's 
instruction decode time is long enough, the 8203 can com­
plete the refresh cycle before the next memory request is 
generated. 

If the 8203 is not in the idle state then a simultaneous mem­
ory request and an external refresh request may result in 
the refresh request being honored first. 

So ~,..-___ REFRO 

8085A

S1 

. 

8203 

SACK or 
CAS. 

Figure 7. Hidden Refresh 



inter 8203 

Certain system configurations require complete external 
refresh requests. If external refresh is requested faster 
than the minimum internal refresh timer (tREF), then, in ef­
fect, all refresh cycles will be caused by the external re­
fresh request, and the internal refresh timer will never 
generate a refresh request. 

Read Cycles 
The 8203can accept two different types of memory Read 
requests: 

1) Normal Read, via the RD input 
2) Advanced Read, using the S1 and ALE inputs (16K 

mode only) 

The user can select the desired Read request configura­
tion via the B 1 / OP 1 hardware strapping option on pin 25. 

Normal Read Advanced Read 

Pin 25 81 input OPI (+12V) 
Pin 32 RD input 81 input 
Pin 34 REFRQ input ALE input 
# RAM banks 4 (RA8 0.3) 2 (RA8 2.3) 
Ext. Refresh Yes No 

Figure 8. 8203 Read Options 

Normal Reads are requested by activating the RD input, 
and keeping it active until the 8203 responds with an 
XACK pulse. The RD input can go inactive as soon as the 
command hold time (tCHS) is met. 

Advanced Read cycles are requested by pulsing ALE 
while S 1 is active; if S 1 is inactive (low) ALE is ignored. 
Advanced Read timing is similiar to Normal Read timing, 
except the falling edge of ALE is used as the cycle start 
reference. 

If a Read cycle is requested. while a refresh cycle is in 
progress, then the 8203 will set the internal delayed­
SACK latch. When the Read cycle is eventually started, 
the 8203 will delay the active SACK transition until XACK 
goes active, as shown in the AC timing diagrams. This de­
lay was designed to compensate for the CPU's READY 
setup and hold times. The delayed-SACK latch is cleared 
after every READ cycle. 

Based on system requirements, either SACK or XACK can 
be used to generate the CPU READY signal. XACK will 
normally be used; if the CPU can tolerate an advanced 
READY, then SACK can be used, but only if the CPU can 
tolerate the amount of advance provided by SACK. If 
SACK arrives too early to provide the appropriate number 
of WAIT states, then either XACK or a delayed form of 
SACK should be used. 

Write Cycles 
Write cycles are similiar to Normal Read cycles, except 
for the WE output. WE is held inactive for Read cycles, but 
goes active for Write cycles. All 8203 Write cycles are 
"early-write" cycles; WE goes active before CAS goes ac­
tive by an amount of time sufficient to keep the dynamic 
RAM output buffers turned off. 

General System Considerations 
All memory requests (Normal Reads, Advanced Reads, 
Writes) are qualified by the PCS input. PCS should be sta­
ble, either active or inactive, prior to the leading edge of 
RD, WR, or ALE. Systems which use battery backup 
should pullup PCS to prevent erroneous memory requests. 

In order to minimize propagation delay, the 8203 uses an 
inverting address multiplexer without latches. The system 
must provide adequate address setup and hold times to 
guarantee RAS and CAS setup and hold times for the 
RAM. The tAD AC parameter should be used for this sys-
tem calculation. . 

The BO-B 1 inputs are similiar to the address inputs in that 
they are not latched. BO and B1 should not be changed 
during a memory cycle, since they directly control which 
RAS output is activated. 

The 8203 uses a two-stage synchronizer for the memory 
request inputs (RD, WR, ALE), and a separate two stage 
synchronizer for the external refresh input (REFRQ). As 
with any synchronizer, there is always a finite probability 
of metastable states inducing system errors. The 8203 
synchronizer was designed to have a system error rate 
less than 1 memory cycle every three years based on the 
full operating range of the 8203. 

A microprocessor system is concerned when the data is 
valid after RD goes low. See Figure 9. In order to calculate 
memory read access times, the dynamic RAM's A.C .. 
specifications must be examined, especially the RAS-ac­
cess time (tRAC) and the CAS-access time (tCAC). Most 
configurations will be CAS-access limited; i.e., the data 
from the RAM will be stable tcc,max (8203) + tCAC 
(RAM) after a memory read cycle is started. Be sure to 
add any delays (due to buffers, data latches, etc.) to cal­
culate the overall read access time. 

6-20 

Since the 8203 normally performs "early-write" cycles, 
the data must be stable at the RAM data inputs by the time 
CAS goes active, including the RAM's data setup time. If 
the system does not normally guarantee sufficient write 
data setup, you must either delay the WR input signal or 
delay the 8203 WE output. 

Delaying the WR input will delay all 8203 timing, including 
the READY handshake Signals, SACK and XACK, which 



Ro~ / I ~--------------~I---------' 
1-' .>------tRLDV .1 
I I 

DATA -----------« B-
I I 
t.---tRAC~ 
I I 

'\ i ;-
I 

I tCAe I 
'-----t 

CAS ------------------\ i;-
Figure g. Read Access Time 

AS-1S ALO-6 OUTO-6 

~ 
AHO-6 

ALE BO-l 

BOBS 
6203 

(16K MODE) WE 
ADO_7 CAS 

r-p ROiS, RASa RO 

WR WR 

RAS, 

-<: SACK 
RAS2 

RAS3 

XACK 

~~11 
DATA BUS DATA V 

LATCH IN ~ 

~ 
'----

-

g=-

~ 

8203 

may increase the number of WAIT states generated by the 
CPU. 

If the WE output is externally delayed beyond the CAS ac­
tive transition, then the RAM will use the falling edge of WE 
to strobe the write data into the RAM. This WE transition 
should not occur too late during the CAS active transition, 
or else the WE to CAS requirements of the RAM will not be 
met. 

The RASO-3, CAS, OUTO-7' and WE outputs contain on­
chip series damping resistors (typically 20m to minimize 
overshoot. 

Some dynamic RAMs require more than 2.4V VIH. Noise 
immunity may be improved for these RAMs by adding pull­
up resistors to the 8203's outputs. Intel RAMs do not re­
quire pull-up resistors. 

2118 
DYNAMIC RAM ARRAY -

l' AO-6 --v 
O'N 

DOUl =: WE 
CAS Ll - RAS 
DIN Dour 

T 
::j 

+ 
AO-6 

O'N 

=: WE Dour 

CAS r - RAS 
DIN DOUT 

I 

..1., ::j-::::-

l-
O'N 

:::: WE 
Dour 

CAS n - RAS 
DIN Dour 

;--l 
BAL 

~AO-6 

O'N 

--==== 
WE :IOIN 

O'N DOUl ~T Dour 
CAS O'N 

DIN Dour 
DIN Dour 

RAS Dour Dour 

1 
DIN Dour 

I j T l 

Figure 10. Typical 8088 System 

6-21 



8203 

MULTIBUS"! 
TYPE 

SYSTEM 
I BUS 

8288 READ MRDe I READ 

WRITE MWTC I WRITE 

ur= 8086 ~ BHEN 
ADRO 

I A9"' A~'6 
A"i7-A19 

ADo-AD15 
OTHER A16-A19 

ADRF AD,. I 
READY SHE INPUTS I 

I 
I 

00-15 I 
DATA 

Figure 11. 8086/256K Byte System 

6-22 

WE 

HIGH BYTE 
WRITE 

t-_~"A_S~X_--"J MEMORY 

8203 

CAS 1>-----.1 

DO 

'6 

2'64 
256K 

BYTeS 

01 

'6 



8203 

A.C. CHARACTERISTICS 
TJ = O°C 10 70°C; VCC = 5V ± 10% (5.0V ± 5% for 8203-3); GND = OV 

Measuremenls made wilh respecllo RASO-RAS3, CAS, WE, QUTO-QUT6 are al 2.4V and 0.8V. All 
olher pins are measured al 1 5V All limes are in nsec 

Symbol Parameter Min Max 

Ip Clock Period 40 54 

IpH Exlernal Clock High Time 20 

IPL Exlernal Clock Low Time-above (» 20 mHz 17 

IpL Exlernal Clock Low Time-below (::S) 20 mHz 20 

IRC Memory Cycle Time IOtp - 30 121p 

IREF Refresh Time (128 cycles) 2641p 2881p 

IRP RAS Precharge Time 41p - 30 

tRSH RAS Hold After CAS 51p - 30 

tASR Address Selup 10 RAS tp - 30 

tRAH Address Hold From RAS tp - 10 

IASC Address Selup 10 CAS Ip - 30 

ICAH Address Hold from CAS 51p - 20 

tCAS CAS Pulse Widlh 5tp - 10 

IWCS WE Selup 10 CAS Ip - 40 . 
IWCH WE Hold Afler CAS 51p - 35 

IRS RD, WR, ALE, REFRQ delay from RAS 51p 

IMRP RD, WR selup 10 RAS 0 

IRMS REFRQ selup 10 RD, WR 21p 

IRMP REFRQ selup 10 RAS 21p 

IpCS PCS Selup 10 RD, WR, ALE 20 

IAL S 1 Selup 10 ALE 15 

tLA S l' Hold from ALE 30 

ICR RD, WR, ALE 10 RAS Delay Ip + 30 21p + 70 

ICC RD, WR, ALE 10 CAS Delay 31p + 25 41p + 85 

ISC CMD Selup 10 Clock 15 

IMRS RD, WR selup 10 REFRQ 5 

ICA RD, WR, ALE 10 SACK Delay 21p + 47 

ICX CAS 10 XACK Delay 51p - 25 51p + 20 

ICS CAS 10 SACK Delay 51p - 25 51p + 40 

lACK XACK 10 CAS Selup 10 

IXW XACK Pulse Widlh Ip - 25 

tCK SACK, XACK lurn-off Delay 35 

IKCH CMD Inaclive Hold after SACK, XACK 10 

ILL REFRQ Pulse Widlh 20 

ICHS CMD Hold Time 30 

IRFR REFRQ 10 RAS Delay 41p + 100 

IWW WR 10 WE Delay 0 50 

lAD CPU Address Delay 0 40 

6-23 

Notes 

4,5 

3 

3 

3 

3 

3 

8 

2,6 

5 

6 

5 

2 

2 

1 

2 

2,9 

2,10 

7 

11 

6 

8 

3 



inter 8203 

WAVEFORMS 
Normal Read or Write Cycle 

Advanced Read Mode 

6-24 



WAVEFORMS (cont'd) 
Memory Compatibility Timing 

AHo-AHS 

8203 

AL~~;~s'. ~ .... ______ V_AL_'D_AD_DR_ES_S _______ ~ 
'--------------

-~"fx- -::,~-

1\ 
tRSH 

I 
teAs 

\ V 
_tASR __ !-IRAH- !--tASC .... I-tCAH-

CUTo-OUT6 }. ROW X COLUMN K 

Write Cycle Timing 

\ I 
\ I 

4-:li~ 

tCR ~I - tww -""-MAX----' 
MAX 

\ / tww H MIN 

'I 
.... twcs __ ....--tWCH . 

tcc 
MIN 

, tcc 
MAX 

6-25 



8203 

WAVEFORMS (cont'd) 
Read or Write Followed By External Refresh 

\ 
\. 

..-tMRS--+ .--- tLL ---... 

REFRQ / \ 
J \ 

l-tRS -

. tRMP _tRP_ 

-~Cj,~-

\ 1\ 
tRC . 

• 1 . tcc \ MIN 

tcc . MAX 

External Refresh Followed By Read or Write 

RD.WR 

---l:========-tM-RP---------------------.. -,------------

REFRQ 

1+------ tRC ------1 

\~ 

6-26 



inter 

WAVEFORMS (cont'd) 
Clock And System Timing 

Table 2. 8203 Output Loading. 

Pin 

All specifications are 
for the Test Load un­
less otherwise noted 

Test Load 

SACK.XACK CL = 30 pF 
OUTO-OUTS CL = lS0 pF 
RASO-RAS3 CL = SO pF 
WE CL = 224 pF 
CAS CL = 320 pF 

NOTES: 
1. tsc is a reference point only. ALE. RD. WR. and REFRQinputs do 

not have to be externally synchronized to 8203 clock. 
2. If tRS min and tMRS min are met thentCA. tCR. and tcc are valid. 

otherwise tcs is valid. 
3. tASR. tRAH. tASC. tCAH. and tRSH depend upon BO-B 1 and CPU 

address remaining stable throughout the memory cycle. The ad· 
dress inputs are not latched by the 8203. 

4. For back·to·back refresh cycles.tRC max = 13tp 
5. tRC max is valid only if tRMP min is met (READ. WRITE followed 

by REFRESH) or tMRP min is met (REFRESH followed by READ. 
WRITE). 

6. tRFR is valid only if tRS min and tRMS min are met. 
7. txw min applies when RD. WR has already gone high. Otherwise 

XACK follows RD. WR. 
8. WE goes high according to tWCH or tWW. whichever occurs 

first. 

8203 

6-27 

A.C. TESTING LOAD CIRCUIT 

OEVICE 
UNDER 
TEST 

NOTE: CL includes jig capacitance 

9. tCA applies only when in normal SACK mode. de. 
10. tcs applies only when in delayed SACK mode. 
11. tCHS must be be met only to ensure a SACK active pulse 

when in delayed SACK mode. XACK will always be activated 
for at least txw (tp- 25 nS). Violating tCHS min does not 
otherwise affect device operation. 



8203 

The typical rising and falling characteristic curves for the 
OUT, RAS, CAS and WE output buffers can be used to 
determine the effects of capacitive loading on the A. C. 

Timing Parameters. Using this design tool in conjunction 
with the timing waveforms, the designer can determine 
typical timing shifts based on system capacitive load. 

A.C. CHARACTERISTICS FOR DIFFERENT CAPACITIVE LOADS 

NOTE: 

CAPACITANCE' p~ 
5.Dr-----~------i-------r_----_r------~----_.------_r------r_----_r----~ 

D.' ~--+_~~II!=31Ii5;;:2j::--_+--_+--_t---f__--+_--+_-_I 

D.D~----~------;-------~----~------~----~------~------L-----_7----~ 

f-5n.~ TIME 

CAPACITANCE: pF •. Or-----~------;-------r_----_r------~----_.------_r------r_----~----~ 

MEASUREMENT CONDITIONS: 
Use the Test Load as the base capacitance for estimating timing 
shifts for system critical timing parameters. 

TA = 25°C 
VCC = +5V 
tp = 50 ns 

Pins not measured are loaded with 
the Test Load capacitance 

6-28 



8203 

Example: Find the effect on tCR and tcc using 32 2164 
Dynamic RAMs configured in 2 banks. 

1. Determine the typical RAS and CAS capacitance: 
From the data sheet RAS = 5 pF and CAS = 5 pF. 

RAS load = 80 pF + board capacitance. 
CAS load = 160 pF + board capacitance. 
Assume 2 pF / in (trace length) for board capaci­
tance and for this example 4 inches for RAS and 
8 inches for CAS. 

6-29 

2. From the waveform diagrams, we determine that the 
falling edge timing is needed for tCR and tCC. Next find 
the curve that best approximates the test load; i.e., 
68 pF for RAS and 330 pF for CAS. 

3. If we use 88 pF for RAS loading, then tCR (min.) spec 
should be increased by about 1 ns, and tCR (max.) 
spec should be increased by about 2 ns. Similarly if we 
use 176 pF for CAS, then tcc (min.) should decrease 
by 3 ns and tcc (max.) should decrease by about 7 ns. 



8206 
ERROR DETECTION AND CORRECTION UNIT 

• Detects All Single Bit, Double Bit and 
Most Multiple Bit Errors 

• Corrects All Single Bit Errors 

• 3 Selections 8206-1 8206 8206-2 
Detection 35ns 42ns 57ns 
Correction 55ns 67ns 74ns 

• 8206-2 Timing Supports Single 8206 
8M Hz iAPX 186, 188,86,88 and 8207-8 
Systems 

• Syndrome Outputs for Error Logging 

• Separate Input and Output Busses-No 
Timing Strobes Required 

• Expandable to Handle 80 Bit Memories 

• Supports Read With and Without 
Correction, Writes, Partial (Byte) 
Writes, and Read-Modify-Writes 

• HMOS III Technology for Low Power 

• 68 Pin Leadless JEDEC Package 

• 68 Pin Grid Array Package 

The HMOS 8206 Error Detection and Correction Unit is a high-speed device that provides error detection and 
correction for memory systems (static and dynamic) requiring high reliability and performance. Each 8206 
handles 8 or 16 data bits and up to 8 check bits. 8206's can be cascaded to provide correction and detection for 
up to 80 bits of data. Other 8206 features include the ability to handle byte writes. memory initialization. and 
error logging. 

STB --;::;C=: 
C81/SY1 0.7 

SYO/CBO/PPOO.1 c:=t:.=~ 

PPIIPOSINSL 

• pOSo_. 
NSLg., 

Mis )---1-+----4--.1 

1. 

POSo_, 

SEOCU R/W 

,------1 I----_co 

,. 

GND ~5V 

1 1 

DATA 
CORRECTION 

16 

Vss Vee wz BMO~l 

Figure 1. 8206 Block Diagram 

Intel Corporation Assumes No Responsibilly for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses are Implied. 
© INTEL CORPORATION, 1982. JUNE 1985 

6-30 Order Number: 205220-007 



intel 

01 0. 15 

STB-~=L=: 
Cala.s 

SYO/CBOo_S ¢:=-:t=~ 

Symbol Pin No. Type 

Dlo.15 1,68-61, I 
59·53 

CBI/SYlo 5 I 
CBI/SYI1 6 I 
CBI/SYI2 7 I 
CBI/SYI3 8 I 
CBI/SYI4 9 I 
CBI/SYls 10 I 
CBI/SYls 11 I 
CBI/SYI7 12 I 

DOIWDlo 51 I/O 
DO/WDI1 50 I/O 
DOIWDI2 49 I/O 
DOIWDI3 48 I/O 
DOIWDI4 47 I/O 
DO/WDls 46 I/O 
DO/WDIS 45 I/O 
DO/WDI7 44 I/O 
DO/WDls 42 I/O 
DO/WDlg 41 I/O 
DO/WDI1O 40 I/O 
DO/WDI 11 39 I/O 

~O/wDI" 38 I/O 
DO/WDI 13 37 I/O 
DO/WDI 14 36 I/O 
DO/WDI 1S 35 I/O 

8206 

16 

,----------1 }-----_ORROR 

.-------1 }-----_CO 

WRITE 
PARTIAL PARITY 

GENERATOR 

R/W 

SYNDROME 
DECODER 

AND 
ERROR 

DETECTION 

16 

GND +5V 

1 1 
Figure 2. 8206-2 Block Diagram 

Table 1. 8206 Pin Description 

DATA 
CORRECTION 

16 

Name and Function 

Data In: These inputs accept a 16 bit data word from RAM'for error detection 
and/or correction. 

Check Bits In/Syndrome In: In a single 8206 system, or in the master in a multi-
8206 system, these inputs accept the check bits (5 to 8) from the RAM. ;n a 
single 8206 16 bit system, CBIO_5 are used. In slave 8206's these inputs accept 
the syndrome from the master. 

Data Out/Write Data In: I~ad cycle, data accepted~IO_15 appears~ 
these outputs corrected if CRCT is low, or uncorrected if CRCT is high. The BM 
inputs· must be high to enable the output buffers during the read cycle. In a 
write cycle, data to be written into the RAM is accepted by these inputs for com-
puting the write check bits. In a partial-write cycle, the byte not to be modified 
appears at either DOO-7 if BMo is high, or DOS-1S if BM1 is high, for writing to 
the RAM. When WZ is active, it causes the 8206 to output all zeros at DOO-15, 
with the proper write check bits on CBO. 

6-31 



8206 

Table 1. 8206 Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

SYO/CBO/PPOo 23 0 Syndrome Out/Check Bits Out/Partial Parity Out: In a single 8206 system, or 
SYO/CBO/PP01 24 0 in the master in a multi-8206 system, the syndrome appears at these outputs 
SYO/CBO/PP02 25 0 during a read. During a write, the write check bits appear. In slave 8206's the 
SYO/CBO/PP03 27 0 partial parity bits used by the master appe~ at these outputs. The syndrome is 
SYO/CBO/PP04 28 0 latched (during read-modify-writes) by R/W going low. 

.. -SYO/CBO/PP05-- - 29--· 0-- --- ------ -- ---- -- ._- --- -----

SYO/CBO/PP06 30 0 
SYO/CBO/PP07 31 0 

PPIO/POSo 13 I Partial Parity In/Position: In the master in a multi-8206 system, these inputs 
PPI1/POS1 14 I accept partial parity bits 0 and 1 from the slaves. In a slave 8206 these inputs in-

form it of its position within the system (1 to 4). Not used in a single 8206 
system. 

PPI2/NSLO 15 I Partial Parity In/Number of Slaves: In the master in a multi-8206 system, these 
PPI3/NSL1 16 I inputs accept partial parity bits 2 and 3 from the slaves. In a multi-8206 system 

these inputs are used in slave number 1 to tell it the total number of slaves in the 
system (1 to 4). Not used in other slaves or in a single 8206 system. 

PPI4/CE 17 I/O Partial Parity In/Correctable Error: In the master in a multi-8206 system this 
pin accepts partial parity bit 4. In slave number 1 only, or in a sin*e 8206 
system, this pin outputs the correctable error flag. CE is latched by R going 
low. Not used in other slaves. 

PPI5 18 I Partial Parity In: In the master in a multi-8206 system these pins accept partial 
PPls 19 I parity bits 5 to 7. The number of partial parity bits equals the number of check 
PPI7 20 I bits. Not used in single 8206 systems or in slaves. 

ERROR 22 0 Error: This pin outputs the error flag in l!.§ingle 8206 system or in the master of 
a multi-8206 system. It is latched by R/w going low. Not used in slaves. 

CRCT 52 I Correct: When low this pin causes data correction during a read or read-
modify-write cycle. When high, it causes error correction to be disabled, 
although error checking is still enabled. 

STB 2 I Strobe: STB is an input control used to strobe data at the 01 inputs and check-
bits at the CBI/SYI inputs. The signal is active high to admit the inputs. The 
signals are latched by the high-to-Iow transition of STB. 

BMo 33 I Byte MarkS: When high, the Data Out pins are enabled for a read cycle. When 
BM1 32 I low, th~ata Out buffers are tristated for a write cycle. BMo controls 000_7, 

while BM1 controls 008-15. In partial (byte) writes, the byte mark input is low 
for the new byte to be written. 

R/W 21 I Read/Write: When high this pin causes the 8206 to perform detection and 
correction (if CRCT is low). When low, it causes the 8206 to generate check bits. 
On the high-to-Iow transition the syndrome is latched internally for read-
.modify-write cycles. 

WZ 34 I Write Zero: When low this input overrides the BMO-1 and R/W inputs to cause 
the 8206 to output all zeros at 000-15 with the corresponding check bits at 
CBOO_7. Used for memory initialization. 

M/S 4 I Master/Slave: Input tells the 8206 whether it is a master (high) or a slave (low). 

SEOCU 3 I Single EDC Unit: Input tells the master whether it is operating as a single 8206 
(low) or as the master in a multi-8206 system (high). Not used in slaves. 

Vee 60 I Power Supply: +5V 

Vss 26 I Logic Ground 

Vss 43 I Output Driver Ground 

6-32 205220-007 



8206 

Table 2. 8206-2 Pin Description Differences over the 8206. 

Symbol Pin Type Name and Function 

CBlo-s 5-10 I Check Bits In: In an 8206-2 system. these inputs accept the check bits (5 
to 6) from the RAM. 

SYO/CBOo 23 0 Syndrome Out/Check Bits Out: In an 8206-2 system, the syndrome 
SYO/CB01 24 0 appears at these outputs during a read. During a write, the write check 
SYOICB02 25 0 bits appear. The syndrome is latched (during read-modify·writes) by R/W 
SYO/CB03 27 0 going low. 
SYO/CB04 28 0 
SYO/CBOs 29 0 

CE 17 0 Correctable Error: In an 8206-~system, this pin outputs the correctable 
error flag. CE is latched by R/W going low. 

WZ 34 I Write Zero: When low this input overrides the BMo_1 and R/W inputs to 
cause the 8206-2 to output all zeros at 000-15 with the corresponding check 

. bits at CBOo;s. Used for memory initialization. 

Strap High 4 I Must be tied High. 

Strap Low 3 I Must be tied Low. 

N.C. 11-16 I Note: These pins have internal pull-up resistors but if possible should be 
18-20 tied high or low. 

N.C. 30,31 0 Note: These are no connect pins and should be left open. 

FUNCTIONAL DESCRIPTION 

The 8206 Error Detection and Correction Unit 
provides greater memory system reliability through 
its ability to detect and correct memory errors. It is a 
single chip device that can detect and correct all 
single bit errors and detect all double bit and some 
higher multiple bit errors. Some other odd multiple 
bit errors (e.g., 5 bits in error) are interpreted as 
single bit errors, and the CE flag is raised. While 
some even multiple bit errors (e.g., 4 bits in error) are 
interpreted as no error, most are detected as double 
bit errors. This error handling is a function of the 
number of check bits used by the 8206 (see Figure 2) 
and the specific Hamming code used. Errors in 
check bits are not distinguished from errors in a 
word. 

For more information on error correction codes, see 
Intel Application Notes AP-46 and AP-73. 

A single 8206 or 8206-2 handles 8 or 16 bits of data, and 
up to 5 8206's can be cascaded in order to handle data 
paths of 80 bits. For a single 8206 8 bit system, the 
018- 15, DOIWDI8-1S and BM1 inputs are grounded. See 
the Multi-Chip systems section for information on 
24-80 bit systems. 

The 8206 has a "flow through" architecture. It sup­
ports two kinds of error correction architecture: 1) 
Flow-through, or correct-always; and 2) Parallel, or 
check-only. There are two separate 16-pin busses, 

6-33 

DATA WORD BITS CHECK BITS 

8 5 

16 6 

24 6 

32 7 

40 7 

48 8 

56 8 

64 8 

72 8 

80 8 

Figure 3. Number of Check Bits Used by 8206 

one to accept data from the RAM (DI) and the other 
to deliver corrected data to the system bus (DOl 
WDI). The logic is entirely combinatorial during a 
read cycle. This is in contrast to an architecture with 
only one bus, with bidirectional bus drivers that 
must first read the data and then be turned around to 
output the corrected data. The latter architecture 
typically requires additional hardware (latches 
andlor transceivers) and may be slower in a system 
due to timing skews of control signals. 

205220-007 



inter 

READ CYCLE 

With the RiW pin high, data is received from the RAM 
outputs.into the 01 pins where it is optionally latched 
by the STB signal. Check bits are generated from the 
data bits and compared to the check bits read from 
the RAM into the CBI pins. If an error is detected the 
ERROR flag is activated and the correctable error 
flag (CE) is used to inform the system whether the 
error was correctable or not. With the BM inputs 
high, the word appears corrected.at the DO pins if 
the error was correctable, or unmodified if the error 
was uncorrectable. . 

If more than one 8206 is being used, then the check 
bits are read by the master. The slaves generate a 
partial parity output (PPO) and pass it to the master. 
The master 8206 then generates and returns the 
syndrome to the slaves (SYO) for correction of the 
data. 

The 8206 may alternatively be used in a "check­
only" mode with the eRe'i' pin left high. With the 
correction facility turned off, the propagation delay 
from memory outputs to 8206 outputs is signifi­
cantly shortened. In this mode the 8206 issues an 
ERRORflag to the CPU, which can then perform one 
of several options: lengthen the current cyCle for 
correction, restart the instruction, perform a diag­
nostic routine, etc. 

A syndrome word, five to eight bits in length and 
containing all necessary information about the exis­
tence and location of an error, is made available to 
the system at the SYOO-7 pins. Error logging may be 
accomplished by latching the syndrome and the 
memory address of the word in error. 

WRITE CYCLE 

For a full write, in which an entire word is written to 
memory, the data is written directly to the RAM, 
bypassing the 8206. The same data enters the 8206 
through the WDI pins where check bits are gener­
ated. The Byte Mark inputs must be low to tristate 
the DO drivers. The check bits, 5 to 8 in number, are 
then written to the RAM through the CBO pins for 
storage along with the data word. In a multi~chip 
system, the master writes the check bits using par~ 
tial parity information from the slaves. 

In a partial write, part of the data word is overwritten, 
and part is retained in memory. Thisis accomplished 
by performing a read-modify-write cycle. The com­
plete old word is read into the 8206 and corrected, 

8206 

with the syndrome internally latched by RiW going 
low. Only that part of the word not to be modified is 
output onto the DO pins, as controlled by the Byte 
Mark inputs. That portion of the word to be overwrit­
ten is supplied by the system bus. The 8206 then 
calculates check bits for the new word, using the 
byte from the previous read and the new byte from 
the system bus, and writes them to the memory. 

READ-MODIFY-WRITE CYCLES 

Upon detection of an error the 8206 may be used to 
correct the bit in error in memory. This reduces the 
probability of getting multiple-bit errors in sub­
sequent read cycles. This correction is handled by 
executing read-modify-write cycles. 

The read-modify-write cycle is controlled by the RNi 
input. After (during) the read cycle, the system 
dynamic RAM controller or CPU examines the 8206 
ERROR and CE outputs to determine if a correctable 
error occurred. If it did, the dynamic RAM controller 
or CPU forces R/W low, telling the 8206 to latch the 
generated syndrome and drive the corrected check 
bits onto the CBO outputs. The corrected data .is 
available on the DO pins. The DRAM controller then 
writes the corrected data'and corresponding check 
bits into memory. 

The 8206 may be used to perform read-modify­
writes in one or two RAM cycles. If it is done in two 
cycles, the 8206 latches are used to hold the data 
and check bits from the read cycle to be used in the 
following write cycle. The Intel 8207 Advanced 
Dynamic RAM controller allows read-modify-write 
cycles in one memory cycle. See the System 
Environment section. 

6-34 

INITIALIZATION 

A memory system operating with ECC requires some 
form of initialization at system power-up in order to 
set valid data and check bit information in memory. 
The 8206 supports memory initialization by the write 
zero function. By activating the WZ pin, the 8206 will 
write a data pattern of zeros and the associated 
check bits in the current write cycle. By thus writing 
to all memory at power-up, a controller can set 
memory to valid data and check bits. Massive mem­
ory failure, as signified by both data and check bits 
all ones or zeros, will be detected as an uncorrecta­
ble error. 

AFN·020098 



intJ 8206 

MUL TI·CHIP SYSTEMS 

A single 8206 handles 8 or 16 bits of data and 5 or 6 
check bits, respectively. Up to 5 8206's can be cas­
caded for 80 bit memories with 8 check bits. 

When cascaded, one 8206 operates as a master, and 
all others as slaves. As an example, during a read 
cycle in a 32 bit system with one master and one 
slave, the slave calculates parity on its portion of the 
word-"partial parity"-and presents it to the mas­
ter through the PPO pins. The master combines the 
partial parity from the slave with the parity it calcu­
lated from its own portion of the word to generate 

3a. 48 BIT SYSTEM 

3b. 64 BIT SYSTEM 

3e. 80 BIT SYSTEM 

the syndrome. The syndrome is then returned by the 
master to the slave for error correction. In systems 
with more than one slave the above description con­
tinues to apply, except that the partial parity outputs 
of the slaves must be XOR'd externally. Figure 4 
shows the necessary external logic for multi-chip 
systems. Write and read-modify-write cycles are car­
ried out analogously. See the System Operation sec­
tion for mUlti-chip wiring diagrams. 

There are several pins used to define whether the 
8206 will operate as a master or a slave. Tables 3 and 
4 illustrate how these pins are tied. 

SLAVE 2 

PPO 

SLAVE 3 

PPO 

SLAVE 4 

PPO 

Figure 4. External Logic For Mult-Chlp Systems 

6-35 205220~007 



8206 

Table 3. Master/Slave Pin Assignments 

Pin No. Pin Name Master Shive 1 Slave 2 Slave 3 Slave 4 

4 
3 

13 
14 
15 
16 

·See Table 3, 
NOTE: 

MIS +5V 
SEOCU +5V 
PPlo/POSo PPI 
PPl1/POS1 PPI 
PPI2/NSLo PPI 
PPI3/NSLl PPI 

Gnd Gnd, Gnd Gnd 
+5V +5V +5V +5V 
Gnd +5V Gnd +5V 
Gnd Gnd +5V +5V . +5V +5V +5V . +5V +5V +5V 

Pins 13, 14, lS, 16 have internal pull-up resistors and may be left as N.C. where specified as connecting to +Sv. 

Table 4. NSL Pin Assignments for Slave 1 

Number of Slaves 
Pin 1 

PPI2/NSLo Gnd 
PPI3/NSL1 Gnd 

The timing specifications for multi-chip systems 
must be calculated to take account of the external 
XOR gating in 3, 4, and 5-chip systems. Let tXOR be 
the delay for a single external TTL XOR gate. Then 
the following equations show how to calculate the 
relevant timing parameters 'for 2-chip (n=O), 3-chip 
(n=1), 4-chip (n=2), and 5-chip (n=2) systems: 

Data-in to corrected data-out (read cycle) = 
TDVSV + TPVSV + TSVQV + ntXOR 

Data-in to error flag (read cycle) = 
TDVSV + TPVEV + ntXOR 

Data-in to correctable error flag (read cycle) = 
TDVSV + TPVSV + TSVCV + ntXOR 

Write data to check-bits valid (full write cycle) = 
TQVQV + TPVSV + ntXOR 

Data-in to check-bits valid (read-mod-write cycle) = 
TDVSV + TPVSV + TSVQV + TQVQV + TPVSV + 

2ntXOR 

Data-in to check-bits valid (non-correcting read-
modify-write cycle) = ' 

TDVQU + TQVQV + TPVSV + ntXOR 

HAMMING CODE 

The 8206 uses a modified Hamming code which was 
optimized for multi-chip EDCU systems, The code is 
such that partial parity is computed by all 8206's in 

2 

+5V 
Gnd 

3 4 
Gnd +5V 
+5V +5V 

parallel. No 8206 requires more time for propagation 
through logic levels than any other one, and hence 
no one device becomes a bottleneck in the parity 
operation. However; one or two levels of external 
TTL XOR gates are required in systems with three to 
five chips. The code appears in Table 5. The check 
bits are derived from the table by XORing or XNOR­
ing together the bits indicated by 'X's in each row 
corresponding to a check bit. For example, check bit 
o in the MASTER for data word 1000110101101011 
will be "0." It should be noted that the 8206 will 
detect the gross-error condi!ion of all lows or all 
highs. 

Error correction is accomplished by identifying the 
bad bit and inverting it. Table 5 can also be used as 
an error syndrome table by replacing the 'X's with 
'1's. Each column then represents a different syn­
drome word, and by locating the column corre­
sponding to a particular syndrome the bit to be cor­
rected may be identified. If the syndrome cannot be 
located then the error cannot be corrected. For 
example, if the syndrome word is 00110111, the bit 
to be corrected is bit 5 in the slave one data word (bit 
21). 

The syndrome decoding is also summarized in Tables 6 
and 7 which can be used for error logging. By finding 
the appropriate syndrome word (starting with bit zero" 
the least significant bit), the result is either: 1) no error; 
2) an identified (correctable)' single bit error; 3) a 
double bit error; or 4) a multi-bit uncorrectable error. 

6-36 205220-007 



cp 
c.> 
-J 

Table 5. Modified Hamming Code Check Bit Generation 

Check bits are generated by XOR'ing (except for the CBO and CBl data bits, which are XNOR'ed in the Master) the data 
bits in the rows corresponding to the check bits. Note there are 6 check bits in a l6-bit system, 7 in a 32-bit system, and 
8 in 48-or-more-bit systems. 

1 BYTE NUMBER 0 OPERATION 
BIT NUMBER 01234567 o 1 2 345 6 7 

2 3 OPERATION o 1 2 345 6 7 01234567 
CBO= x x - x - x x . x - - x - x - - XNOR -xxx-xx- - x x - - x - - XOR 
CB1 = x-x--x-x - x - x x - x - XNOR x x x - - x - x x x - - - - - x XOR 

CHECK CB2 = -xx-x-xx - - x - x - - x XOR - x x x - x x x - - x x - - - XOR 
CB3 = xxxxx--- xxx----- XOR x x - - x - x x x - - x x - - - XOR 

BITS CB4 = ---xxxxx - - - - - x x x XOR x x - - x x x x - - - - x - x - XOR 
CB5 = - - - - - - - - x x x x 1< x x x XOR - - - x x x x x - - - - - x x x XOR 
CB6 = - - - - - - - - - - - - - - - - XOR - - - - - - - - x x x x x x x x XOR 
CB7 = - - - - - - - - - - - - - - - - XOR - - - - - . - - - - - - - - - - XOR 

DATA BITS 000 0 0 0 0 0 00111111 
o 1 2 3 4 567 B 9 0 1 234 5 

1 1 1 1 2 2 2 2 22222233 
67690 1 2 3 45676901 

16 BIT OR MASTER SLAVE #1 

BYTE NUMBER 4 5 6 7 8 9 OPERATION 
BIT NUMBER 01234567 01234567 o 1 234 5 6 7 o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7 01234567 

CBO= xx-x-xx- x - - x - x - - x - x, - x x - - x - x x - - x - - x x x - x x - - x x - - x - - XOR 
CB1 = x-x--x-x -x-xx-x- - x x - - - x x x x x - - - x - - x x x - x x x - -~ x x - - - - XOR 

CHECK CB2 = - x x - x - x x - - x - x - - x - x x x - x x - - x x - - x - - x - - x - x x - - x x - - x - x XOR 
CB3 = x x x x x - - - x x x - - - - - x - x - - x x - x x - - x x - - - x x x x - - x x x - - x - - XOR 

BITS CB4 = - - - x x x x x - - - - - x x x - - - x x x x x - - - - - x x x - x x - - - x x x x x - - - x - XOR 
CB5 = x x x x x x x x - - - - - - - - - - - - - - - - x x x x x x x x x - x x x x - x - - - x - - - x XOR 
CB6= x x x x x x x x - - - - - - - - x x x x x x x x - - - - - - - - x x - -xxxx- - - - x - x - XOR 
CB7 = - - - - - - - - x x x x x X x x - - - - - - - - x x x x x x x x - - - - - - - - x x x x x x x x XOR 

DATA BITS 33333 3 3 3 4 4 4 4 4 444 44555555 5 5 5 5 666 6 66666677 77777777 
2 3 4 5 6 789 o 1 2 3 4 5 6 7 690 1 234 5 67890 1 2 3 45676901 2 3 4 5 6 7 8 9 

SLAVE #2 I I SLAVE #3 . I. I SLAVE #4 

cf 

~ 
8 

'\§J 
2& 
Iiiiil 
IF 

~ 
~ 
~ 
ae1 
~ 



inter 8206 

OE 

Table 6. 8206 Syndrome Decoding 

0 0 1 0 
Syndrome 1 0 0 1 

BII. 2 0 0 0 
7 6 5 4 3 0 0 0 
0 0 0 0 N CBO CBl 

0 0 0 1 CB4 0 

0 0 1 0 CBS 0 
0 0 1 1 0 13 

0 1 0 0 CB6 0 
0 1 0 1 0 52 

0 1 1 0 0 29 

0 1 1 1 30 0 

1 0 0 0 CB7 0 

1 0 0 1 0 45 

1 0 1 0 0 59 

1 0 1 1 63 0 
1 1 0 0 0 u 
1 1 0 1 78 0 

1 1 1 0 U 0 

1 1 1 1 0 U 

N = No Error 
. CBX = Error in Check Bit X 

X = Error in Data Bit X 
o = Double Bit Error 

0 

0 
14 

0 
55 

31 

0 

0 
46 

75 

0 

u 
0 

0 

U 

1 
1 
0 
0 
0 

5 

11 

0 

25 

0 

0 

37 

43 

0 

0 

62 

0 

u 
u 
0 

U = Uncorrectable Multi-Bit Error 

DATAMEMDRY 
16 BITS 

~ DI DO 

"1 

0 1 
0 0 
1 1 
0 0 

CB2 0 

0 6 

0 19 

15 0 

0 26 

51 0 

64 0 

0 38 

0 77 

47 0 
79 0 

0 U 

u 0 

0 u 
0 u 
U 0 

CHECK BITS 
7 BITS 

DI ·DO 

0 
1 
1 
0 
0 

7 

12 

0 

49 

0 

0 

39 

44 

0 

0 

U 

0 

u 
u 
0 

1 0 1 0 1 0 1 0 1 
1 0 0 1 1 0 0 1 1 
1 0 0 0 0 1 1 1 1 
0 1 1 1 1 1 1 1 1 
18 CB3 0 0 0 0 1 I 2 0 

0 0 3 16 0 4 0 0 17 

0 0 8 9 0 10 0 0 67 

21 20 0 0 66 0 22 23 0 

0 0 48 24 0 27 0 0 50 
70 28 0 0 65 0 53 54 0 

69 6B 0 0 32 0 33 34 0 

0 0 35 71 0 36 0 0 U 

0 0 40 41 0 42 0 0 U 

74 72 0 0 u 0 73 U 0 

58 60 0 0 56 0 U 57 0 

0 0 u u 0 61 0 0 U 

U 76 0 0 u 0 u u 0 

0 0 u u 0 u 0 0 U 

0 0 u u 0 u 0 0 U 

u u 0 0 u 0 u u 0 

SYSTEM ENVIRONMENT 

The 8206 interface to a typical 32 bit memory system 
is illustrated in Figure 5. For larger systems, the 
partial parity bits from slaves two to four must be 

DATAMEMDRY 
16 BITS 

DI DO 

32 BIT 
DATA 
BUS ~ 

x 
C, 
V 
R 

I - ~ - ~ 

~ 

T T I, !l 
DO/wDI DI SYOICBO CBI ... SYID-a DO/WDI DI 

PP10-6 PP00-6 POSo 

~~ CIIl:T PPI7 

~ 
r- CIIl:T . POS1 

CONTROL { 1ft CBI, It--- ViZ HILo I-
LINES 8206 

V--
8206 NSL, i-STB MASTER STB SLAVE 

R/W Mil T+V v--- R/W MIS I-
IEDCll PPI5-7 

~ 1M, 

Ir 
liM, smro 

~l liM, 
mmIi I-- ~, IVI, 

CE 
MARKS 

J 
ERROR 

+5V 

SIGNALS 

Figure 5. 32-81t 8206 System Interface 

6-38 20522CHJ07 



XOR'ed externally, which calls for one level of XOR 
gating for three 8206's and two levels for four or five 
8206's. 

The 8206 is designed for direct connection to the Intel 
8207 Advanced Dynamic RAM Controller. The 8207 
has the ability to perform dual port memory control, 
and Figure 6 illustrates a highly integrated dual port 

ACKB 1 ACKB 

ADDR ---'\ 
~ CMDfPEA --,; 
CAS 

CMD/PEB CMD/PEB WE -{>o-c 
8207 

MUX AORe 

ClK>----

WZ 

ClK PSEN -
ADORB 

CE 

eRROR 

oBM 
MUX l- i'" 

ADDR 
R/W 

CMD/PEA - ACKA PSEL 

ADORA 

ACKA -

r--"'-

BYTE 
MARK 

DECODER 

'---

8206 

WE 
01 

RAM implementation using the 8206 and 8207. The 
8206/8207 combination permits such features as au­
tomatic scrubbing (correcting errors in memory dur­
ing refreSh), extending RAS and CAS timings for 
Read-Modify-Writes in single memory cycles, and 
automatic memory initialization upon reset. To­
gether these two chips provide a complete dual­
port, error-corrected dynamic RAM subsystem. 

DYNAMIC 
RAM 

32 BITS + 
7 CHECK BITS 

CSI DOlcao 

th 
I L ~ 

L I L ERLR SYO/ ol/CBI CE SYI 01 
RfW cao R/W 

,5V- STB PPI PPO STB - -5V 
8206 8206 

¢' CRCT MASTER 

~ 
CRCT SLAVE 

wz WZ 

BM DO/WDI BM DD/WDI 

Q 1 Q 
lit: II r-.... 

V 

.11 
- L........, 

~ XCVR 

r- r-Ro 

STB eEl 
LATCH 

PORT A PORTS 

Figure 6. Dual Port RAM Subsystem with 8206/8207 (32-bit bus) 

6-39 205220-007 



inter 

Table. 7. .8206-2 Syndrome Decoding 

Syndrome 0 0 1 0 
Bits 1 0 0 1 

5 4 3 2 0 0 0 

0 0 0 N CBO CB1 

0 0 1 CB3 0 

0 1 0 CB4 0 

0 1 1 0 3 

1 0 0 CB5 0 

1 0 1 0 8 

1 1 0 0 13 

1 1 1 0 0 

N = No Error 
CBX = Error in Check Bit X 

X = Error in Data Bit X 
0= Double Bit Error 

0 

0 

0 

0 

9 

14 

0 

1 0 
1 0 
0 1 

D CB2 

0 D 

5 0 

D 4 

11 0 

D 10 

0 15 

0 0 

1 0 
0 1 
1 1 

D 0 

1 2 

6 7 

D D 

0 12 

0 0 

0 0 

D D 

OTHER Ai:K 
INPUTS 

1 
1 
1 

0 

0 

0 

0 

0 

0 

0 

0 

8206 

The 8206-2 handles 8 or 16 bits of data. For 8 bit 
.8296-2 systems, the Dls-15, DO/WDls_15 and BM1.in­
puts are grounded. 

The 8206-2 is designed for direct connection to the 
Intel 8207-2 Advanced Dynamic RAM Controller. The 
8207-2 has the ability to perform dual port memory 
control, and Figure 7 illustrates a highly integrated 
iAPX 186 RAM implementation using the 8206-2 and 
8207-2. The 8206-218207-2 combination permits such 
features as automatic scrubbing (correcting errors in 
memory during refresh), extending RAS and CAS tim­
ings for Read-Modify-Writes in single memory cycles, 
and automatic memory initialization upon reset. 
Together these two chips provide a complete dual-port; 
error-corrected dynamic RAM subsystems. 

ARDyeLK 

eLK AACKi AOo-aRASO-3 
000-3 

80188 

t------------1PCTLA 

t---------~~ 11207·2 

Eiilimi 140---1 

ERROR 010-15 CB1o_5 

~ 

SlB +SV 

Figure 7. IAPX 186 RAM Correct Always Subsystem with the 8206-2 and the 8207-2 

6-40 205221).007 



MEMORY BOARD TESTING 

The 8206 lends itself to straightforward memory 
board testing with a minimum of hardware over­
head. The following is a description of four common 
test modes and their implementation. 

Mode O-Read and write with error correction. 
Implementation: This mode is the normal 
8206 operating mode. 

Mode 1-Read and write data with error correction 
disabled to allow test of data memory. 
Implementation: This mode is performed 
with CRCT deactivated. 

Mode 2-Read and write check bits with error cor­
rection disabled to allow test of check bits 
memory. 
Implementation: Any pattern may be writ­
ten into the check bits memory by judi-

8206 

6-41 

ciously choosing the proper data word to 
generate the desired check bits, through 
the use of the 8206 Hamming code. To 
read out the check bits it is first necessary 
to fill the data memory with all zeros, 
which may be done by activating WZ and 
incrementing memory addresses with WE 
to the check bits memory held inactive, 
and then performing ordinary reads. The 
check bits will then appear directly at the 
SYO outputs, with bits CSO and CS1 
inverted. 

Mode 3-Write data, without altering or writing 
check bits, to allow the storage of bit 
combinations to cause error correction 
and detection. 
Implementation: This mode is im­
plemented by writing the desired word to 
memory with WE to the check bits array 
held inactive. 

205220·007 



8206 

BonOM 

0 0 ~ .0 " ~ ~ ~ ~ a a 8 TOP " " " I; 

wz 

""'[ 

BM. 
BMi 

TY0
7. 

01, SY03 

Vee Vss 

~l 
JSYO, 

SYOo 

rnrDii 
AI'll 

]PPI7 

01, PP1S 

PIN NO.1 MARK E'l!!la !!! I II .,,," i it w 
U> U U 0. 

BOTTOM 

0 i ci 6 
~ ~ ~ 

~ a a 
TOP " " " I; 

ClICT wz 
BMO 
BMI 
N.C. 
N.C. 

JVO. 
SY03 

V's 

J SYO, 
SYOo 

rnrDii 
AI'll 

] N.C. 

PIN NO.1 MARK ~ CD 0> II I~ o tii §~ 
iii i t.i i u u z 

" 
NOTE: 
The 8206 and 8206-2 is packaged in a 68 pin JEDEC TYPE A hermetic chip carrier 

Figure Sa. 8206 and 8206-2 Pinout Diagram 

6-42 , 205220·007 



inter 8206 

CERAMIC PIN GRID ARRAY PACKAGE TYPE A 
68-LEAD CERAMIC PIN GRID ARRAY 
PACKAGE TYPE A 

SWAGED PIN 
STANDOFF 
(4 PLACES) 

.070 TYP. 
(1.778) 

C 1.165 (29.591) -
1.135 (28.829) 

oooooo@)oo 

@)@)@)@)@)@@@@) 
o@) @@ 

o@) D@@ o@ @)@) 
o@) @@) 
o@) @)@) 
o@) @)@) 
o@) @)@) 
.@@)@)@)@)@)@)@@ 

@)@)@@)@)@)@)@)@) 

PINllD 

1.165 (29.591) 
1.135 (28.829) .122 (3.099) 

I L-[r·09~8;(2;.4~89~);;~;;~~ .140 MAX ''1 
1(3.556)'--=;= 

STANDOFFi!! 

L .090 (2.286) 
.060 (1.524) 

PIN GRID ARRAY (PGA) PIN-OUT 
TOP VIEW 

.~.~.~.~.~.~.~.~.~ 

-1 -2 '67'65-63'61'59'57-55'53'51 

• 3 • 4 • 50' 49 

• 5 • 6 • 48 • 47 

• 7 · . '46-45 

• 9 • 10 '44'43 

• 11 • 12 • 42 • 41 

• 13' 14 -40'39 

• 15' 16 • 38 • 37 

• 17 • 19 • 21 • 23 • 25 • 27 • 29' 31 • 33' 36' 35 

• 18 • 20 • 22 • 24 • 26 • 28 • 30' 32' 34 

Figure 8b. 8206 Pin Grid Array Package and Pinout Diagram 

6-43 205220-007 



inter 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias ......... O°C to 70°C 
Storage Temperature ............... -65°C to +150°C 
Voltage On Any Pin 

With Respect to Ground ............. -0.5V to +7V 
Power Dissipation .......................... 1.5 Watts 

8206 

'NOTE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D,C. CHARACTERISTICS (TA = O°C to 70°C, Vcc = 5.0V ± 10%, Vss= GND) 

Symbol Parameter Min. Max. Unit Test Conditions 

Icc Power Supply Current 
-Single 8206, 8206-2 or 270 mA 

Slave #1 
-Master in Multi-Chip 230 mA 

or Slaves #2,3,4 

Vil 
1 Input Low Voltage -0.5 0.8 V 

VIH 
1 Input High Voltage 2.0 Vcc+ V 

0.5V 

Output Low Voltage 
VOL -DO 0.45 V 10l = 8mA 

-All Others, 0.45 V 10l = 2.0mA 

Output High Voltage 
VOH -DO, CBO 2.6 V 10H = -2mA 

-All Other Outputs 2.4 V 10H = -O.4mA 

I/O Leakage Current 

IlO -PPI4/CE ± 20 /LA 0.45V .;; VI 10 .;; Vcc 

-DO/WDI0_15 ± 10 /LA 

III 
Input Leakage Current ___ 2 
-PPI0-3. 5-7. CBI6_7, SEDCU ± 20 /LA OV.;; VIN .;;VCC 
-All Other Input Only Pins . ± 10 /LA 

NOTES: 
1. SEDCU (pin 3) and MIS (pin 4) are device strapping options and should be tied to Vee orGND. VIH min = Vee -O.5Vand VIL max = 0.5V. 
2. PPIO-7 (pins 13-20) and CB16_7 (pins 11. 12) have internal pull-up resistors and if left unconnected will be pulled to Vee. 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

' .. ~" "X= > TEST POINTS < 
0.8 0.8 

0.45 

A.C, TESTING; INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC' l' AND OASV FOR 
A LOGIC 0." TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A LOGIC 1 
AND 0.8V FOR A LOGIC 0 

A.C. TESTING LOAD CIRCUIT 

IL.· _~_~:_~s~_~_--,~, 

CL INCLUOES JIG CAPACITANCE 

6-44 205220-007 



8206 

A.C. CHARACTERISTICS (TA = O°C to 70°C. Vee = +5V ± 10%, VSS = OV, RL = 220, CL = 50 pF; 
all times are in nsec.) 

8206-1 8206 8206-2 

Symbol Parameter Min. Max. Min. Max. Min. Max. 

TRHEV ERROR Valid from R/WI 20 25 40 

TRHCV CE Valid from R/WI (Single 8206) 34 44 49 

TRHQV Corrected Data Valid from R/WI 44 54 66 

TRVSV SYO/CBO/PPO Valid from R/W 32 42 46 

TDVEV ERROR Valid from Data/Check Bits In 35 42 57 

TDVCV CE Valid from Data/Check Bits In 50 70 76 

TDVQV Corrected Data Valid from Data/Check Bits In 55 67 74 

TDVSV SYO/PPO Valid from Data/Check Bits In 40 55 65 

TBHQV Corrected Data Access Time 35 37 37 

TBXQX Hold Time From Data/Check Bits In 0 0 0 

TBLQZ Corrected Data Float Delay 0 25 0 28 0 28 

TSHIV STB High to Data/Check Bits In Valid 30 30 30 

TIVSL Data/Check Bits In to STBI Set-up 5 5 5 

TSLIX Data/Check Bits In from STBI Hold 15 25 25 

TPVEV ERROR Valid from Partial Parity In 21 30 

TPVQV Corrected Data (Master) from Partial Parity In 46 61 

TPVSV Syndrome/Check Bits Out from Partial Parity In 32 43 

TSVQV Corrected Data (Slave) Valid from Syndrome 41 51 

TSVCV CE Valid from Syndrome (Slave number 1) 43 48 

TQVQV Check Bits/Partial Parity Out from Write Data In 44 64 69 

TRHSX Check Bits/Partial Parity Out from R/W, WZ Hold 0 0 0 

TRLSX Syndrome Out from R/W Hold 0 0 0 

TQXQX Hold Time from Write Data In 0 0 0 

TSVRL Syndrome Out to RIWI Set-up 5 17 

TDVRL Data/Check Bits to R/W Set-up 24 39 41 

TDVQU Uncorrected Data Out from Data In 29 32 38 

TTVQV Corrected Data Out from CRCTI 25 30 33 

TWLQL WZI to Zero Out 25 30 34 

TWHQX Zero Out from WZI Hold 0 0 0 

NOTES: 
1. A.C. Test Levels for CBO and DO are 2.4V and 0.8V. 

Notes 

4 

1 

1 

1 

1 

2 

3,4 

1,3 

1,3 

3 

3 

1 

1 

1 

3 

1 

4 

2. TSH1V is required to guarantee output delay timings: T DVEV, T DVCV, T DVQV, T DVSV. TSH1V + T1VSL guarantees a min STB pulse 
width of 35 ns (45 ns for the 8206-8). 

3. Not required for 8/16 bit systems 
4. 8206 S40037 has three parameters relaxed from full spec 8206: T RHEV = 35ns, TpVEV = 40ns, TWLQL = 40ns. 

6-45 205220-007 



8206 

WAVEFORMS 

READ 

DO 

6-46 205220-007 



8206 

WAVEFORMS (Continued) 

READ-MASTER/SLAVE 

STB 7r 1 t\t---------
l-lTsHlv 1 

1 I 1 : 

R/W __ ---I't)Z1 I l......-l 
V 1 TlVSL H TSLIX I 
I 1 I f-- TBLQZ----.I 

I l:/t I I I I 

8M __ ---L...I ....J.1-:7 ( I I '\L ...... __ --1: __ 

II ~ : I I 
C~: ---<~,-Ji'-·---!-i ---VAL-ID +-1 -~f I i 

~. r---;~:;:v~ i I_TDXQX~ 1 

::.~~:~::: I y/zvA i VALID XII 

-~I I I +---
1 I-TPVQv-I I I 

DOIMASTER) _-.----: _~"""'-7A.,....-i-r~-r-.~.,.......r~~j{-tr--VAL-'D -}}-
1 I l-TPvsv_1 I I 

SYOIMASTER)~>V///WW/ VALID k, ,,----I 
SYIISLAVE)- 4L 4 t---

I : 1 I ... TSVQV--i I I 

DOISLAVE)_--.!..: -~A//A VALID ~ 
I r· TPVEV..! I I 
~'~~~TR~HE;V~~~·I,LI _____ __ 

ERROR ____ ~4: VALID k'--__ 
1 !SVCV.I 1 

~I'~~~~~TR~HCV~~~~.~I ____ ~I 
CE ____ X/////ft//////A VALID X'---

6-47 205220·007 



inter 8206/820E 

WAVEFORMS (Continued) 

FULL WRITE 

!--TRvsv_1 

I I 

RIW 

~ 
, , 
, rf , 

I I 
I TRHSX I W TRLSX I r----+l 

I I 
. , 

~ 
I I , 

iiI.l I I I 
I I I 

I TBLOZ I I I 

~ I I I 

I I , 
I , , I I , 

I 

DOIWDI DATA OUT H I I 
WRITE DATA IN 1: , I 

I I 
I I ~ 

I_TOVOV .. , Toxoxi 
I , 
I , , 

SVOICBO SVN ~a CB X SVN 

FULL WRITE-MASTER/SLAVE 
J.---,TRYSV-...-..I 

I 

RJW -------..~ : r1 
I I 

11·La~ I I : 'yRHSX. I 

I I I I 

m~: : : 
I: I , : 

I -~TQVQv-------...1 

I . I I . I I : 
DATA OUT ~! : WRITEDATAlN} I 

-;------'-1--------- W. 
I : Taxaxl 

p:~~:~::: ---------~: >0:-"74 .. ~ k= 
DOIWDI 

I-- TRLSX -l I. TPV'V • , : 

SyO/c.O_-:--SYN __ ----J~-r-:/h"T7~-r-l~r--c-. -k= 
6-48 20522D-007 



inter 8206 

WAVEFORMS (Continued) 

READ MODIFY WRITE 

~ t tt,..1 ----------
TS~'VII4"'------T'vsL---... ,1 1-_---TSLIX---+j.1 

-tt- II I 
I I I 

R/WJ1 '{ A: 
, I I'-----;-I...J I 1 
14"1' ...L.I -----'TDVR,L-L ---... I_TRVSV---l 1 1 

! 1 I 1 1 1 II 

8M :: X-, ---VA-LID-: ---.-: ---!.:-C 
, 1 1 j!RHSXII- " 

I-TaHQV ---' 1 ,lTaL~i 
,I I 1 ' 

cg: -in-: ----+-: -VAL-'-ID: --.....;....-----..~ : : 

I 1 - TRHQV'--+---l~ 1 : J i I 
114.-;-1 ----'TDVQV--::' ;::;~~I~ ____ -I-__ TD_XQ_X_ 1-1 

DO/wD'~11 1--: ---~: ~ 
I 4:«i 

, I I TQXax-! l-
I ,""I_---TRVSV---~~I M '-TRLSX I 

I I I I 1 I 

syo/cao ----1...1 ~~,.....-r-Z~Z0..--rZ~Z$'-;"""c :~SYN ~~~7"'t7--, CB --PC 
I I I I I 
II-' ----'TDVSV'---+j.1 !--TQVQV-! 

6-49 205220-007 



8206 

WAVEFORMS (Continued). 

READ MODIFY WRITE-MASTER/SLAVE 

;t .'{ A __ .-J , ,'---__ -...J , 

, '!---TRHSX ----l 
I, ' I , 

_~ : X,------+i 
, ~TBHQV-' , ' I , I !--TBLQZ-r 
, I-TIVSL -I , , , J+' :, ski I I 

STB, I ,,' I : , " +,I-------------------+-r 
,- -,- TDVSV-l I' " , 

DI 
CBI 

TSHIV' I' I 

-(l i:rALlD :1 
I Ii, , I 
, I I : I, , 
I ~TRVSV---; 'i rTSVRL~TRVSv1 I I 

P::::::: ~R'D7 ~ I I VALID ~"W_RITEL~~'!i---------+_'! 1<= I , I I , , I 

DDIWDI 
(MASTER) 

I r-TP~s--1 . ·1 r , 
I I I II I , 

! ! ~( I VALID »i 
"I " .1' :_TPVSV_, ' . I J--TPV~V----' I 
I . I I I I 

SYO/CBD(M~/Z( SYN >0?~ CB 'K 
SYI (SLAVE) I I 

DDIWDI 
(SLAVE) 

I ~TQVQV~ 
, I 
I ~~20~~{----~L1-D--~~ 

6-50 205220-007 



inter 8206 

WAVEFORMS (Continued) 

NON·CORRECTING READ 

CRCT--------------------~~ ~ 

~I_---..J I 
I I 
I I 

1M=?: i ~ 
I I TTVQV I I_ TBLQZ "I 

01 
CBI 

I f.>lo--TDVQU--..... 1 l-
I I I I_TTVQV_I I n I 

: ( Iii ) I"
i 

I ------------~--------~----------~~ 
I I I I 

I I I 
!-TBHQV---I I I I 

I I I I I 

DO/WDI ------------_~ UNCORRECTED ¢: CORRECTED } UNCORRECTED ~ 

WRITE ZERO I' TWLQL ·1 
I I I 

Wi 

'i I ;1 I 
I I 
I 
1- TQVQV ----t 
I 
I 
I 
I 
I 
I 

DO@0/#/ftff$~ 

I~HQ!I 

I I 

:~ 
i 

II~ 
I 
1,....-__ 1 

SYO'CBo~mff~/W~ VALID x= 

6-51 205220-007 



8207 
DUAL·PORT DYNAMIC RAM CONTROLLER 

• Provides All Signals Necessary to 
Control 16K, 64K and 256K Dynamic 
RAMs 

• Directly Addresses and Drives up to 2 
Megabytes without External Drivers 

• Supports Single and Dual-Port 
Configurations 

• Automatic RAM Initialization in All 
Modes 

• Four Programmable Refresh Modes 

• Transparent Memory Scrubbing in 
ECC Mode 

• 80286 8 MHz 8207-16 
Fast cycle 
(CFS=1) 6 MHz 8207-12 
8086/186 8 MHz 8207-8 
Slow cycle 
(CFS=O) 6 MHz 8207-6 

• Provides Signals to Directly Control the 
8206 Error Detection and Correction Unit 

• Supports Synchronous or 
Asynchronous Operation on Either Port 

• +5 Volt Only HMOSII Technology for 
High Performance and Low Power 

• 68 Lead JEDEC Type A Leadless Chip 
Carrier (LCC) and Pin Grid Array 
(PGA), Both in Ceramic. 
See Packaging Specifications, Order #: 231369 

The Intel 8207 Advanced Dynamic RAM Controller (ADRC) is a high-performance, systems-oriented, 
Dynamic RAM controller that is designed to easily interface 16K, 64K and 256K Dynamic RAMs to I ntel and 
other microprocessor systems. A dual-port interface allows two different busses to independently access 
memory. When configured with an 8206 Error Detection and Correction Unit the 8207 supplies the necessary 
logic for designing large error-corrected memory arrays. This combination provides automatic memory 
initialization and transparent memory error scrubbing. 

~ 
PCTLA 

P9 

RFRQ 

.01---11---0-1 

aSO.1C===~~ 
Figure 1. 8207 Block Diagram 

Intel Corporation Assumes No Responsibility forthe Use of AnyCircuilry Other Than Clrc'uitry Embodied in an Intel Product. No Other Circuit 
Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications On These Devices From Inlel. 
"'INTEL CORPORATION, 1983 JAN. 1986 

6-52 ORDER NUMBER: 210463-005 



intel· 8207 

Table 1. Pin description 

Symbol Pin Type Name and Function 

LEN 1 0 ADDRESS LATCH ENABLE: In two-port configurations, when Port A is running with iAPX 286 Status 
interface mode, this output replaces the ALE signal from the system bus controller of port A and 
generates an address latch enable signal which provides optimum setup and hold timing for the 8207. 
This signal is used in Fast Cycle operation only. 

XACKA/ 2 0 TRANSFER ACKNOWLEDGE PORTA/ACKNOWLEDGE PORTA: In non-ECC mode, this pin is 
ACKA XACKA and inidcates that data on the bus is valid during a read cycle or that data may be removed 

from the bus during a write cycle for Port A. XACKA is a Multibus-compatible signal. In ECC mode, 
this pin is ACKA which can be configured, depending on the programming of th~ogram bit, 
as an XACK or AACK strobe. The SA programming bit determines whether the AACK will be an 
early EAACKA or a late LAACKA interface signal. 

XACKB/ 3 0 TRANSFER ACKNOWLEDGE PORT B/ACKNOWLEDGE PORT B: In non-ECC mode, this pin 
ACKB is XACKB and indicates that data on the bus is valid during a read cycle or that data may be re-

moved from the bus during a write cycle for Port B. XACKB is a Multibus-compatible signal. In ECC 
mode, this~ ACKB which can be configured, depending on the programming of the X program 
bit, as an XACK or AACK strobe. The SB programming bit determines whether the AACK will be 
an early EAACKB or a late LAACKB interface signal. 

AACKA/ 4 0 ADVANCED ACKNOWLEDGE PORT A/WRITE ZERO: In non-ECC mode, this pin is AACKA 
WZ and indicates that the processor may continue processing and that data will be available when re-

quired. This signal is optimized for the system by programming the SA program bit for synchronous 
or asynchronous operation. In ECC mode, after a RESET, this signal will cause the 8206 to force 
the data to all zeros and generate the appropriate check bits. 

AACKB/ 5 0 ADVANCED ACKNOWLEDGE PORT B/READ/WRITE: In non-ECC mode, this pin is AACKB and 
RiW indicates that the processor may continue processing and that data will be available when required. 

This signal is optimized for the system by programming the SB program bit for synchronous or asyn-
chronous operation. In ECC mode, this signal causes the 8206 EOCU to latch the syndrome and 
error flags and generate check bits. 

OBM 6 0 DISABLE BYTE MARKS: This is an ECC control output signal indicating that a read or refresh cy-
cle is occurring. This output forces the byte address decoding logic to enable all 8206 data output 
buffers. In ECC mode, this output is also asserted during memory initialization and the 8-cycle dynamic 
RAM wake-up exercise. In non-ECC systems this signal indicates that either a read, refresh or 8-cycle 
warm~up is in progress. 

ESTB 7 0 ERROR STROBE: In ECC mode, this strobe is activated when an error is detected and allows a 
negative-edge triggered flip-flop to latch the status of the 8206 EOCU CE for systems with error 
logging capabilities. ESTB will not be issued during refresh cycles. 

LOCK 8 I LOCK: This input instructs the 8207 to lock out the port not being serviced at the time LOCK was 
issued. 

Vcc 9 I DRIVER POWER: +5 Volts. Supplies Vcc for the output drivers. 
43 LOGIC POWER: +5 Volts. Supplies Vcc for the internal logic circuits. 

CE 10 I CORRECTABLE ERROR: This is an ECC input from the 8206 EDCU which instructs the 8207 whether 
a detected error is correctable or not. A high input indicates a correctable error. A low input inhibits 
the 8207 from activating WE to write the data back into RAM. This should be connected to the CE 
output of the 8206. 

ERROR 11 I ERROR: This is an ECC input from the 8206 EOCU and instructs the 8207 that an error was detected. 
This pin should be connected to the ERROR output of the 8206. 

MUX/ 12 0 MULTIPLEXER CONTROL/PROGRAMMING CLOCK: Immediately after a RESET this pin is used 
PCLK to clock serial programming data into the PDI pin. In normal two-port operation, this pin is used 

to select memory addresses from the appropriate port. When this signal is high, port A is selected 
and when it is low, port B is selected. This signal may change state before the completion of a RAM 
cycle, but the RAM address hold time is satisfied. 

PSEL 13 0 PORT SELECT: This signal is used to select the appropriate port for data transfer. When this signal 
is high port A is selected and when it is low port B is selected. 

PSEN 14 0 PORT SELECT ENABLE: This signal used in conjunction with PSEL provides contention-free port 
exchange on the data bus. When PSEN is low, port selection is allowed to change state. 

WE 15 0 WRITE ENABLE: This signal provides the dynamic RAM array the write enable input for a write 
operation. 

6-53 210463-005 



8207 

Table 1. Pin Description (Continued) 

Symbol Pin Type Name and Function 

FWR 16 I FULL WRITE: This is an ECC input signal that instructs the 8207, in an ECC configura-
tion, whether the present write cycle is normal RAM write (full write) or a RAM partial 
write (read-modify-write) cycle. 

RESET 17 I RESET: This signal causes all internal counters and state flip-flops to be reset and upon 
release of RESET, data appearing at the POI pin is clocked in by the PCLK output. The 
states of the POI, PCTLA, PCTLB and RFRO pins are sampled by RESET going inactive 
and are used to program the 8207. An 8-cycle dynamic RAM warm-up is performed after 
clocking POI bits into the 8207. 

CASO 18 0 COLUMN ADbRESS STROBE: These outputs are used by the dynamic RAM array to 
CAS1 19 0 latch the column address, present on the AOO-8 pins. These outputs are selected by 
CAS2 20 0 the BSO and BS1 as programmed by program bits RBO arid RB1. These outputs drive 
CAS3 21 0 the dynamic RAM array directly and need no external drivers. 

RASO 22 0 ROW ADDRESS STROBE: These outputs are used by the dynamic RAM array to latch 
RAS1 23 0 the row address, present on the AOO-8 pins. These outputs are selected by the BSO 
RAS2 24 0 and BS1 as programmed by program bits RBO and RB1. These outputs drive the 
RAS3 25 0 dynamic RAM array directly and need no external drivers. 

Vss 26 I DRIVER GROUND: Provides a ground for the output drivers. 
60 I LOGIC GROUND: Provides a ground for the remainder of the device. 

AOO 35 0 ADDRESS OUTPUTS: These outputs are designed to provide the row and column 
A01 34 0 addresses of the selected port to the dynamic RAM array. These outputs drive the 
A02 33 0 dynamic RAM array directly and need no external drivers'. 
A03 32 0 
A04 31 0 
A05 30 0 
A06 29 0 
A07 28 0 
A08 27 0 

BSO 36 I BANK SELECT: These inpulS are used to select one of four banks of the dynamic 
BS1 37 I RAM array as defined by the program bits RBO and RB1. 

ALO 38 I ADDRESS LOW: These lower-order address inputs are used to generate the row 
AU 39 I address for the internal address multiplexer. 
AL2 40 I 
AL3 41 I 
AL4 42 I 
AL5 44 I 
AL6 45 I 
AL7 46 I 
AL8 47 I 

AHO 48 I ADDRESS HIGH: These higher-order address inputs are used to generate the 
AH1 49 I column address for the internal address multiplexer. 
AH2 50 I 
AH3 51 I 
AH4 52 I 
AH5 53 I 
AH6 54 I 
AH7 55 I 
AH8 56 I 

POI 57 I PROGRAM DATA INPUT: This input programs the various user-selectable options in the 
8207. The PCLK pin shifts programming data into the POI input from optional external 
shift registers. This pin may be strapped high or low to a default ECC (POI =Logic "I") 
or non-ECC (POI = Logic "0") mode configuration. 

RFRO 58 I REFRESH REQUEST: This input is sampled on the falling edge of RESET. If it is high 
at RESET, then the 8207 is programmed for internal refresh request or external refresh 
request with failsafe protection. If.it is low at RESET, then the 8207 is programmed for 
external refresh without failsafe protection or burst refresh. Once programmed the RFRO 
pin accepts signals to start an external refresh with failsafe protection or external refresh 
without failsafe protection or a burst refresh. 

6-54 210463-005 



8207 

Table 1. Pin Description (Continued) 

Symbol Pin Type Name and Function 

ClK 59 I CLOCK: This input provides the basic timing for sequencing the internal logic. 

ROB 61 I READ FOR PORT B: This pin is the read memory request command input for port B.' 
This input also directly accepts the 51 status line from Intel processors. 

WRB 62 I WRITE FOR PORT B: This pin is the write memory request command input for port B. 
This input also directly accepts the SO status line from Intel processors. 

PEB 63 I PORT ENABLE FOR PORT B: This pin serves to enable a RAM cycle request for port 
B. It is generally decoded from the port address. 

PCTlB 64 I PORT CONTROL FOR PORT B: This pin is sampled on the falling edge of RESET. It 
configures port B to accept command inputs or processor status inputs. If low after 
RESET, the 8207 is programmed to accept command or iAPX 286 status inputs or 
Multibus commands. If high after RESET, the 8207 is programmed to accept status 
inputs from iAPX 86 or iAPX 186 processors. The S2 status line should be connected 
to this input if programmed to accept iAPX 86 or iAPX 186 status inputs. When 
programmed to accept commands or iAPX 286 status, it should be tied low or it may 
be used as a Multibus-compatible inhibit signal. 

RDA 65 I READ FOR PORT A: This pin is the read memory request command input for port A. 
This input also directly accepts the S1 status line from Intel processors. 

WRA 66 I WRITE FOR PORT A: This pin is the write memory request command input for port A. 
This input also directly accepts the SO status line from Intel processors. 

PEA 67 I PORT ENABLE FOR PORT A: This pin serves to enable a RAM cycle request for port 
A. It is generally decoded from the port address. 

peTlA 68 I PORT CONTROL FOR PORT A: This pin is sampled on the falling edge of RESET. It 
configures port A to accept command inputs or processor status inputs. If low after 
RESET, the 8207 is programmed to accept command or iAPX 286 status inputs or 
Multibus commands. If high after RESET, the 8207 is programmed to accept status 
inputs from iAPX 86 or iAPX 186 processors. The S2 status line should be connected 
to this input if programmed to accept iAPX 86 or iAPX 186 status inputs. When 
programmed to accept commands or iAPX 286 status, it should be tied low or it may 
be connected to INHIBIT when operating with Multibus. 

GENERAL DESCRIPTION FUNCTIONAL DESCRIPTION 

The Intel 8207 Advanced Dynamic RAM Controller 
(ADRC) is a microcomputer peripheral device which 
provides the necessary signals to address, refresh 
and directly drive 16K, 64K and 256K dynamic RAMs. 
This controller also provides the necessary arbitra­
tion circuitry to support dual-port access of the 
dynamic RAM array. 

Processor Interface 

The 8207 has control circuitry for two ports each 
capable of supporting one of several possible bus 
structures. The ports are independently configur­
able allowing the dynamic RAM to serve as an inter­
face between two different bus structures. The ADRC supports several microprocessor interface 

options including synchronous and asynchronous con­
nection to iAPX 86, iAPX 88, iAPX 186, iAPX 188, iAPX 
286 and Multibus. 

This device may be used with the 8206 Error Detec­
tion and Correction Unit (EDCU). When used with the 
8206, the 8207 is programmed in the Error Checking 
and Correction (ECC) mode. In this mode, the 8207 
provides all the necessary control signals for the 
8206 to perform memory initialization and transpar­
ent error scrubbing during refresh. 

6-55 

Each port of the 8207 may be programmed to run 
synchronous or asynchronous to the processor clock. 
(See Synchronous/Asynchronous Mode) The 8207 
has been optimized to run synchronously with Intel's 
iAPX 86, iAPX 88, iAPX 186, iAPX 188 and iAPX 286. 
When the 8207 is programmed to run in asynchronous 
mode, the 8207 inserts the necessary synchronization 
circuitry for the RD, WR, PE, and PCTl inputs. 

210463-005 



8207 

The 8207 achieves high performance (Le. no wait 
states) by decoding the status lines directly from the 
iAPX 86, iAPX 88, iAPX 186, iAPX 188 and iAPX 286 
processors. The 8207 can also be programmed to 
receive read or write Multibus commands or commands 
from a bus controller. (See Status/Command Mode) 

The 8207 may be programmed to accept the clock of 

1-___ .j\NRCLK 

1----.jiiO 

Slow-Cycle Synchronous-Status Interface 

Slow-Cycle Synchronous-Command Interface 

the iAPX 86,88, 186, 188, or 286. The.8207 adjusts 
its internal timing to allow for the different clock 
frequencies of these microprocessors. (See 
Microprocessor Clock Frequency Option) 

Figure 2 shows the different processor interfaces to 
the 8207 using the synchronous or asynchronous 
mode and status or command interface. 

eLK 
sa 

:g::~ Sf 
52 

ADDR.JDATA 

8207 

\-------1 All 

Slow-Cycle Asynchronous-Status Interface 

Slow-Cycle Asynchronous-Command Interface 

Figure 2A. Slow-cycle (CFS=O) Port Interfaces Supported by the 8207 

6-56 210463-005 



8207 

NOTE: NOTE: 
ADDRESS LATCH NOT REQUIRED IN SINGLE-PORT MODE. ADDRESS LATCH NOT REQUIRED IN SINGLE-PORT MODE. 

Fast-Cycle Synchronous-Status Interface Fast-Cycle AsynchronOUS-Status Interface 

SYNCHRONOUS 80286 
·MULTI·BUS OPTION 

Fast-Cycle Synchronous-Command Interface Fast-Cycle Asynchronous-Command Interface 

Figure 2B. Fast·cycle (CFS=1) Port Interfaces Supported by the 8207 

Single-Port Operation 

The use of an address latch with the iAPX 286 status 
interface is not needed since the 8207 can internally 
latch the addresses with an internal signal similar in 
behavior to the LEN output. This operation is active only 
in single-port applications when the processor is inter­
faced to port A. 

Dual-Port Operation 

The 8207 provides for two-port operation_ Two inde­
pendent processors may access memory controlled 
by the 8207. The 8207 arbitrates between each of the 
processor requests and directs data to or from the 
appropriate port. Selection is done on a priority con­
cept that reaSSigns priorities based upon past his­
tory. Processor requests are internally queued. 

Figure 3 shows a dual-port configuration with two 
iAPX 86 systems interfacing to dynamic RAM. One of 
the processor systems is interfaced synchronously 
using the status interface and the other is interfaced 
asynchronously also using the status interface. 

Dynamic RAM Interface 

The 8207 is capable of addressing 16K, 64K and 256K 
dynamic RAMs. Figure 4 shows the connection of the 
processor address bus to the 8207 using the different -
RAMs. 

The 8207 divides memory into as many as four banks, 
each bank having its own Row (RAS) and Column 

- (CAS) Address Strobe pair. This organization permits 
RAM cycle interleaving and permits error scrubbing 
during ECC refresh cycles_ RAM cycle interleaving 
overlaps the start of the next RAM cycle with the RAM 
Precharge period of the previous cycle. Hiding the 
precharge period of one RAM cycle behind the data 
access period of the next RAM cycle optimizes memory 
bandwidth and is effective as long as successive RAM 
cycles occur in alternate banks. 

6-57 

Successive data access to the same bank will cause 
the 8207 to wait for the precharge time of the previous 
RAM cycle. 

210463-005 



O'l 
a, 
0> 

~ 

~ 
§ 

8284A· P READY ROY 1 ~ OTHERACK INPUTS 
MEMORY MEMORY 

elK 
(UPPER) (LOWER) 8284A* 

P IQ~'-' elK WE 01 DO WE 01 DO CLK 

rP fill If ALE I---
8288" DEN I--

- elK 

~f,! 
DTtA r'-' ;..-...J ~ 8288* 

elK AACKA ACo•s RASo_3 ffi~ DEN OTfAI---
52 51 SO CASo-3 ..- I----l :z: 

5 ALE 

T 
WE 

READY elK 52 AACKli so 51 52 CLK READY PCTlA I J PCTlBf-
l' 52 51 RoA 8207 

so WRA ROB SI 

WRB 
so 

~ 
MUX ~ rtti ~ 

80861 

STU 
AHo_sALo.a PSEN PSEl 74LS74 74LS14 B086I 

80186 
L }. 

80186 

OE STB 
, 

8283 8283 
AODR/DATA f<:-;> LATCH 

~~ -r-" ADDRJDATA 

l.....-

f-- f- ~ 

....- B STB BO 

, ~ :!];~ 8283 ~ 

..-==- LATCH Bl 
t..::.~ I. 

'--

STB OE OE STB 

~ 8283 

~~I 
I. 

8283 I---I. LATCH 

'--
-........ 

5TB OE 

I I 8283 V 
LATCH I. 

'---

NOTE: 
"These components are not necessary when_ using the 80186 components. These functions are provided directly by 
the 80186. 

Figure 3. 8086/80186 Dual Port System 

EXTENDED MEMORY U 

PORT A-SYNCHRONO 

ISING STATUS. 

US; 

PORT B-ASYNCHRON DUS 

t 

~ o ...., 

"@ 
dQI 
Iffij] 

C 
~ 
~ 
~ 
dQI 
~ 



8207 

A12-A20 AHO-AH8 

8207 8207 8207 

A3-A11 

A1,A2 

256K RAM INTERFACE 64K RAM INTERFACE 16K RAM INTERFACE 

NOTES: 
(1) Unassigned address input pins should be strapped high or low. 
(2) AO along with BHE are used to select a byte within a processor word. 
(3) Low order address bits ,are used as bank select inputs so that consecutive memory access requests 

are to alternate banks allowing bank interleaving oT memory cycles. 

Figure 4. Processor Address Interface to the 8207 Using 16K, 64K, and 256K RAMS 

If not all RAM banks are occupied, the 8207 reassigns 
the RAS and CAS strobes to allow using wider data 
words without increasing the loading on the RAS and 
CAS drivers. Table 2 shows the bank selection 
decoding and the word expansion, including RAS and 
CAS assignments. For example, if only two RAM banks 
are occupied, then two AAS and two CAS strobes are 
activated per bank. Program bits RB1 and RBO are not 
used to check the bank select inputs BS1 and BSO. The 
system design must protect from accesses to "illegal", 
non-existent banks of memory, by deactivating the 
PEA, PEB inputs when addressing an illegal bank. 

The 8207 can interface to fast or slow RAMs. The 
8207 adjusts and optimizes internal timings for 
either the fast or slow RAMs as programmed. 
(See RAM Speed Option.) 

Memory Initialization 
After programming, the 8207 performs eight RAM 
"warm-up" cycles to prepare the dynamic RAM for 
proper device operation. During "warm-up" some 
RAM parameters, such as tRAH, tASC, may not be 
met. This causes no harm to the dynamic RAM ar­
ray. If configured for operation with error correction, 
the 8207 and 8206 EDCU will proceed to initialize 
all of memory (memory is written with zeros with 
corresponding check bits). 

6-59 

Program 
Bits 

RB1 RBO 

0 0 

0 0 

0 0 

0 0 

0 1 

0 1 

0 1 

0 1 

1 0 

1 0 

1 0 

1 0 

1 1 

1 1 

1 1 

1 1 

Table 2. 
Bank Selection Decoding and 

Word Expansion 

Bank 
Input 

BS1 BSe RAS/CAS Pair Allocation 

0 0 RASo_3, CASO-3 to Bank 0 

0 1 Illegal 

1 0 Illegal 

1 1 Illegal 

0 0 RASo,1, CASO,1 to Bank 0 

0 1 RAS2 3, CAS2,3 to Bank 1 

1 0 Illegal 

1 1 Illegal 

0 0 RASo, CASo to Bank 0 

0 1 RAS1 , CAS1 to Bank 1 

1 0 RAS2, CAS2 to Bank 2 

1 1 Illegal 

0 0 RASo, CASo to Bank 0 

0 1 RAS1, CAS1 to Bank 1 

1 0 RAS2, CAS2 to Bank 2 

1 1 RAS3, CAS3 to Bank 3 

210463-005 



inter 8207 

Because the time to initialize memory is fairly long, 
the 8207 may be programmed to skip initialization in 
ECC mode. The time required to initialize all of 
memory is dependent on the clock cycle time to the 
8207 and can be calculated by the following 
equation: 

eq.1 TINIT = (:t3) TCLCL 

if T CLCL = 125 ns then TINIT = 1 sec. 

8206 ECC Interface 

For operation with Error Checking and Correction 
(ECC), the 8207 adjusts its internal timing and 
changes some pin functions to optimize perfor­
mance and provide a clean dual-port memory inter­
face between the 8206 EDCU and memory. The 8207 
directly supports a master-only (16-bit word plus 6 
check bits)' system. Under extended operation and 
reduced clock frequency, the 8207 will support any 
ECC master-slave configuration up to 80 data bits, 
which is the maximum set by the 8206 EDGU. (See 
Extend Option) 

Correctable errors detected during memory read 
cycles are corrected immediately and then written 
back into memory. 

In a synchronous bus environment, EGG system per­
formance has been optimized to enhance processor 
throughput, while in an asynchronous bus environ- . 
ment (the Multibus), EGG performance has been op­
timized to get valid data onto the bus as quickly as 
possible. Performance optimization, processor 
throughput or quick data access may be selected via 
the Transfer Acknowledge Option. 

The main difference between the two EGC im­
plementations is that, when optimized for processor 
throughput, RAM data is always corrected and an 
advanced transfer acknowledge is issued at a point 
when, by knowing the processor characteristics, 
data is guaranteed to be valid by the time the proces­
sor needs it. 

When optimized for quick data access, (valid for Mul­
tibus) the 8206 is configured in the uncorrecting 
mode where the delay associated with error correc­
tion circuitry is transparent, and a transfer acknowl­
edge is issued as soon as valid data is known to exist. 
If the ERROR flag is activated, then the transfer ac­
knowledge is delayed until after the 8207 has instruc­
ted the 8206 to correct the data and the corrected 
data becomes available on the bus. Figure 5 il­
lustrates a dual-port ECC system. 

Figure 6 illustrates the interface required to drive the 
CRCT pin of the 8206, in the case that one port (PORT 
A) receives an advanced acknowledge (not Multibus­
compatible), while the other port (PORT B) receives 
XAGK (which is Multibus-compatible). 

Error Scrubbing 

The 8207/8206 performs error correction during 
refresh cycles (error scrubbing). Since the 8207 must 
refresh RAM, performing error scrubbing during 
refresh allows it to be accomplished without addi­
tional performance penalties. 

Upon detection of a correctable error during refresh, 
the RAM refresh cycle is lengthened slightly to per­
mit the 8206 to correct the error and for the corrected 
word to be rewritten into memory. Uncorrectable er­
rors detected during scrubbing are ignored. 

6-60 

Refresh 

The 8207 provides an internal refresh interval coun­
ter and a refresh address counter to aliow the 8207 to 
refresh memory. The 8207 will refresh 128 rows every 
2 milliseconds or 256 rows every 4 milliseconds, 
which allows all RAM refresh options to be sup­
ported. In addition, there exists the ability to refresh 
256 row address locations every 2 milliseconds via 
the Refresh Period programming option. 

The 8207 may be programmed for any of four different 
refresh options: Internal refresh only, External refresh 
with failsafe protection, External refresh without failsafe 
protection, Burst Refresh mode, or no refresh. (See 
Refresh Options) 

It is possible to decrease the refresh time interval by 
10%, 20% or 30%. This option allows the 8207 to 
compensate for reduced clock frequencies. Note 
that an additional 5% interval shortening is built-in in 
all refresh interval options to compensate for clock 
variations and non-immediate response to the inter­
nally generated refresh request. (See Refresh Period 
Options) 

External Ref~esh Requests after RESET 

External refresh requests are not recognized by the 
8207 until after it is finished programming and pre­
paring memory for access. Memory preparation in­
cludes 8 RAM cycles to prepare and ensure proper 

210463-005 



0) 

~ 

~ 

~ 
~ 

DT/RB 

DENB 

ACKB 

CMD/PEB 

ADDR B 

CMD/PEA 

ADORA 

ACKA 

DENA 

DT/RA 

J 
-V 

-
-

-
-

, 

J- ~I j DYNAMIC 
CMD/PEA ADDR 

1WE 

RAM 

CMD/PEB WE 001 V 
01 CBI CBO 

~o~~ 
8207 

MUX -{r r-h wz 
ClK PSEN 

CE I-
ERROR L I-

rV ADDR DBM l-

I 
-

f--
R/W r-

ACKA FWR PSEl , 

V 1 I ~ 
L ERROR SY/CB 011 R/W CE SYNC 

R/W CBI 
ECC PPI PPO ECC 

Y 
MASTER SLAVE 

71 
~~CT 

8206 'V CRCT 8206 

BM WOI/DO WR WR WOI/DO 

• R G(M 5 ~ STB 

BYTE ~ BYTE IIJ 1 MARK MARK t=:= 
DECODER rV lATCH - === ;=::=- 7 :::r: Jo---y 

~ 5l1~E XCVR 

DT/R -rc PORTB I PORTA 

Figure 5. Two-Port ECC Implementation Using the 8207 and the 8206 

~a~~RRIDE 

7 
01 

l 

QI 
~ o ..... 

"@ 

:m 
M 
F 
= 
~ 
~ 
~ 
:m 
<S 



intJ 8207 

8207 8206 

PSEL!----'----, 

R/W 

Figure 6. Interface to 8206 CRCT Input When Port 
A Receives AACK and Port B Receives 
XACK ' 

dynamic RAM operation, and memory initialization if 
error correction is used. Many dynamic RAMs re­
quire this warm-up period for proper operation. The 
time it takes for the 8207 to recognize a request is 
shown below. 

eq.2 Non-ECC Systems: TRESP = TpROG + 
TpREP 

eq.3 where: TpROG = (66) (TCLCL) which is 
programming time 

eq. 4 T PREP = (8) (32) (T CLCL) which is 
the RAM warm-up time 

if TCLCL ~ 125 ns then T RESp:::: 41 us 

eq. 5 ECC Systems: T RESP = T PROG + T PREP + 
TINIT ' 

if T CLCL = 125 ns then T RESp:::: 1 sec 

RESET 

RESET is an asynchronous input, the falling edge of 
which is used by the 8207 to directly sample to logic 
levels of the PCTLA, PCTlB, RFRO, and POI inputs. 
The internally synchronized falling edge of RESET is 
used to begin programming operations (shifting in the, 

, contents of the extemal shift register into the POI input). 

Until programming is complete the 8207 registers 
but does not respond to command or status inputs. A 
simple means of preventing commands or status 
from occurring during this period is to differentiate 
the system reset pulse to obtain a smaller reset pulse 
for the 8207. The total time of the reset pulse and the 
8207 programming time must be less than the time 
before the first command in systems that ,alter the 
default port synchronization programming bits 
(default is Port A synchronous, Port B asynchro­
nous). Differentiated reset is unnecessary when the 
default port synchronization programming is used. 

6-62 

The differentiated reset pulse would be shorter than 
the system reset pulse by at least the programming 
period required by the 8207. The differentiated reset 
pulse first resets the 8207, and system reset would 
reset the rest of the system. While the rest of the 
system is still in reset, the 8207 completes its pro­
gramming. Figure 7 illustrates a ci,rcuit to ac­
complish this task. 

Within 'four clocks after RESET goes active, all the 8207 
outputs will go high, except for PSEN, WE, and AOO-2, 
which will go low. 

OPERATIONAL DESCRIPTION 

Programming the 8207 

The 8207 is programmed after reset. On the falling 
edge of RESET, the logic states of several input pins 
are latched internally. The falling edge of RESET 
actually performs the latching, which means that the 
logic levels on these inputs must be stable prior, to 
that time. The inputs whose logic levels are latched at 
the end of reset are the PCTlA, PCTlB, REFRO, and 
POI pins. Figure 8 shows the necessary timing for 
programming the 8207. 

~~~ ~ 
RESET I I.--I'_"'---I.~I

820Iirl
R~~ I~ ___________ __

I, PROGRAMMING TIME OF 8207

DIFFERENTIATED R~ET

NOTES:

8207

RESET

(1)Required only when the port synchroniza­
tion options (SA & SB) are altered from
their initial default values.

(2)Vcc must be stable before system reset
is activated when using this circuit.

Figure 7. 8207 Differentiated Reset Circuit

210463-005

intel' 8207

elK
____ 4 --'0...-

RESET

:e~K~~
TLOAO '" I 6

POI ~~-~"'----':"":"""-P-O-O ----------..X POl X P02 x:=
NOTES:
TRTVCL - Reset is an asynchronous input, if reset occurs before 1;, then it is

guaranteed to be recognized.
TPGVCL - Minimum POI valid time prior to reset going low.
TCLPC - MUX/PCLK delay.
TLOAO - Asynchronous load data propagation delay.

Figure 8. Timing illustrating External Shift Register Requirements for Programming the 8207

Status/Command Mode
The two processor ports of the 8207 are configured
by the states of the PCTLA and PCTLB pins. Which
interface is selected depends on the state of the
individual port's PCTL pin at the end of reset. If PCTL
is high at the end of the reset, the 8086 Status inter­
face is selected; if it is low, then the Command inter­
face is selected.

The status lines of the 80286 are similar in code and
timing to the Multibus command lines, while the status
code and timing of the 8086 and 8088 are identical to
those of the 80186 and 80188 (ignoring the differences
in clock duty cycle). Thus there exists two interface con­
figurations, one for the 80286 status or Multibus
memory commands, which is called the Command in­
terface, and one for 8086,8088,80186 or 80188 status,
called the 8086 Status interface. The Command inter­
face can also directly interface to the command lines
of the bus controllers for the 8086, 8088, 80186 and
the 80286.

The 8086 Status interface allows direct decoding of
the status of the iAPX 86, iAPX 88, iAPX 186 and the
iAPX 188. Table 3 shows how the status lines are
decoded. While in the Command mode the iAPX 286
status can be directly decoded. Microprocessor
bus controller read or write commands or Multibus
commands can also be directed to the 8207 when in
Command mode.

Refresh Options

Immediately after system reset, the state of the
REFRQ input pin is examined. If REFRQ is high, the
8207 provides the user with the choice between self­
nMresh or user-generated refresh with failsafe pro­
tection. Failsafe protection guarantees that if the

6-63

Table 3A. Status Coding of 8086, 80186 and 80286

Status Code Function

S2 S1 SO 8086/80186 80286

0 0 0 INTERRUPT INTERRUPT

0 0 1 I/O READ I/O READ

0 1 0 I/O WRITE I/O WRITE

0 1 1 HALT IDLE

1 0 0 INSTRUCTION
FETCH HALT

1 0 1 MEMORY READ MEMORY READ

1 1 0 MEMORY WRITE MEMORY WRITE

1 1 1 IDLE IDLE

Table 3B. 8207 Response

8207
Command Function

8086/80186 80286 Status or
Status Command

PCTl RD WR Interface Interface

0 0 0 IGNORE IGNORE:

0 0 1 IGNORE READ

0 1 0 IGNORE WRITE

0 1 1 IGNORE IGNORE"

1 0 0 READ IGNORE

1 0 1 READ INHIBIT

1 1 0 WRITE INHIBIT

1 1 1 IGNORE IGNORE
"Illegal with CFS=O

210463-005

8207

user does not come back with another refresh re­
quest before the internal refresh interval counter
times out, a refresh request will be automatically
generated. If the REFRQ pin is low immediately after
a reset, then the user has the choice of a single
external refresh cycle without failsafe, burst refresh
or no refresh.

Internal Refresh Only

For the 8207 to generate internal refresh requests, it
is necessary only to strap the REFRQ input pin high.

External Refresh with Failsafe

To allow user-generated refresh requests with fail­
safe protection, it is necessary to hold the REFRQ
input high until after reset. Thereafter, a low-to-high
transition on this input causes a refresh request to be
generated and the internal refresh interval counter
to be reset. A high-to-Iow transition has no effect on
the 8207. A refresh request is not recognized until a
previous request has been serviced.

External Refresh without Failsafe

To generate single external refresh requests without
failsafe protection, it is necessary to hold REFRQ low
until after reset. Thereafter, bringing REFRQ high for
one clock period causes a refresh request to be
generated. A refresh request is not recognized until a
previous request has been serviced.

Burst Refresh

Burst refresh is implemented through the same pro­
cedure as aSingle external refresh without failsafe (i.e.,
REFRQ is kept low until after reset). Thereafter, bring­
ing REFRQ high for at least two clock periods causes
a burst of up to 128 row address locations to be
refreshed.

In ECC-configured systems, 128 locations are scrubbed.
Any refresh request is not recognized until a previous
request has been serviced (i.e., burst completed).

No Refresh

It is necessary to hold REFRQ low until after reset.
This is the same as programming External Refresh
without Failsafe. No refresh is accomplished by
keeping REFRQ low.

6-64

Option Program Data Word

The program data word consists of 16 program data
bits, POO-P015. If the first program data bit POO is
set to logic 1, the 8207 is configured to support ECC.
If it is logic 0, the 8207 is configured to support a non­
ECC system. The remaining bits, P01-P015, may
then be programmed to optimize a selected configura­
tion. Figures 9 and 10 show the Program words for non­
ECC and ECC operation.

Using an External Shift Register

The 8207 may be configured to use an external shift
register with asynchronous load capability such as a
74LS165. The reset pulse serves to parallel load the
shift register and the 8207 supplies the clocking sig­
nal to shift the data in. Figure 11 shows a sample
circuit diagram of an external shift register circuit.

Serial data is shifted into the 8207 via the POI pin (57),
and clock is provided by the MUX/PCLK pin (12), which
generates a total of 16 clock pulses. After program­
ming is complete, data appearing at the input of the
POI pin is ignored. MUXlPCLK is a dual-function pin.
During programming, it serves to clock the external shift
register, and after programming is completed, it reverts
to a MUX control pin. As the pin changes state to select
different port addresses, it continues to clock the shift
register. This does not present a problem because data
at the POI pin is ignored after programming. Figure 8
illustrates the timing requirements of the shift register
Circuitry.

ECC Mode (ECC Program Bit)

The state of POI (Program Data In) pin at reset deter­
mines whether the system is an ECC or non-ECC
configuration. It is used internally by the 8207 to
begin configuring timing circuits, even before pro­
gramming is completely finished. The 8207 then
begins programming the rest of the options.

Default Programming Options

After reset, the 8207 serially shifts in a program data
word via the POI pin. This pin may be strapped either
high or low, or connected to an external shift register.
Strapping POI high causes the 8207 to default to a
particular system configuration with errOr correc­
tion, and strapping it low causes the 8207 to default
to a particular system configuration without error
correction. Table 4 shows the default configurations.

210463-005

intel·

POlS poe PD7 POD

DID ITM11ffiilFFsim PLsl CIDI cI11mlllBOIRFslCFSl SBl SAl D

PROGRAM
DATA BIT NAME POLARITY/FUNCTION

PDO ECC ECC~O FOR NON-ECC MODE

POl SA SA~O PORT A IS SYNCHRONOUS
SA~l PORT A IS ASYNCHRONOUS

PD2 SB SB-O PORT B IS ASYNCHRONOUS
SB~l PORT B IS SYNCHRONOUS

PD3 CFS CFS-O FAST-CYCLE IAPX 286 MODE
CFS~l SLOW-CYCLE IAPX 86 MODE

PD4 RFS RFS-O FAST RAM
RFS~l SLOW RAM

PDS RBO RAM BANK OCCUPANCY
PD6 RB1 SEE TABLE 2

PD7 Cll COUNT INTERVAL BIT 1; SEE TABLE 6
PD8 CIO COUNT INTERVAL BIT 0; SEE TABLE 6

PD9 PLS PLS~O LONG REFRESH PERIOD
PLS~l SHORT REFRESH PERIOD

POlO EXT EXT~O NOT EXTENDED
EXT~l EXTENDED

POll FFS FFS~O FAST CPU FREQUENCY
FFS~l SLOW CPU FREQUENCY

PD12 PPR PPR~O MOST RECENTLY USED PORT
PRIORITY

PPR~l PORT A PREFERRED
PRIORITY

PD13 TMl TM1~0 TEST MODE 1 OFF
TM1~1 TEST MODE 1 ENABLED

PD14 0 RESERVED MUST BE ZERO

POlS 0 RESERVED MUST BE ZERO

Figure 9. Non-ECC Mode Program Data Word

POlS poe PD7 POD

001 RBll RBO I PPRI FFsim PLsl CiOI Cill XB I XA I RFSICFSI Slll SA 11

PROGRAM
DATA BIT NAME POLARITY/FUNCTION

PDO ECC ECC~l ECC MODE

POl SA SA~O PORT A ASYNCHRONOUS
SA~l PORT A SYNCHRONOUS

PD2 SB SB-O PORT B SYNCHRONOUS
Sll~l PORT B ASYNCHRONOUS

PD3 CFS CF;S-O SLOW-CYCLE IAPX 86 MODE
CFS~l FAST-CYCLE IAPX 286 MODE

PD4 RFS RFS~O SLOW RAM
RFS~l FAST RAM

PDS XA XA~O MULTI BUS-COMPATIBLE
ACKA

XA~l ADVANCED ACKA NOT
MULTI BUS-COMPATIBLE

PD6 XB XB~O ADVANCED ACKB NOT
MULTI BUS COMPATIBLE

XB~l MULTIBUS-COMPATIBLE
ACKB

PD7' CI1 COUNT INTERVAL BIT 1; SEE TABLE 6
poe Cili COUNT INTERVAL BIT 0; SEE TABLE 6

PD9 PLS PLS~O SHORT REFRESH PERIOD
PLS~l LONG REFRESH PERIOD

POlO EXT EXT~O MASTER AND SLAVE EDCU
EXT~l MASTER EDCU ONLY

POll FFS FFS-O SLOW CPU FREQUENCY
FFS~l FAST CPU FREQUENCY

PD12 PPR PPR~O PORT A PREFERRED
PRIORITY

PPR~l MOST RECENTLY USED PORT
PRIORITY

PD13 RBO RAM BANK OCCUPANCY
PD14 RBl SEE TABLE 2

POlS TM2 TM2~0 TEST MODE 2 ENABLED
TM2~1 TEST MODE 2 OFF

Figure 10. ECC Mode Program Data Word

6-65 210463-005

inter

sm~~ }---------'-....
8207

Figure 11. External Shift Register Interface.

Table 4A.
Default Non-ECC Programming, PDI Pin (57)

Tied to Ground.

Port A is Synchronous (EAACKA and RACRA)

Port B is Asynchronous (LAACKB and XACKB)

Fast-cycle Processor Interface (iAPX 286)

Fast RAM

Refresh Interval uses 236 clocks

128 Row refresh in 2ms; 256 Row refresh in 4 ms

Fast Processor Clock Frequency (16 MHz)

"Most Recently Used" Priority Scheme

. 4 RAM banks occupied

Table 4B.
Default ECC Programming, PDI Pin (57)

Tied to Vee. .

Port A is Synchronous

Port B is Asynchronous

Fast-cycle Processor Interface (iAPX 286)

Fast RAM

Port A has EAACKA strobe (non-multibus)

Port B has XACKB strobe (multibus)

Refresh interval uses 236 clocks

128 Row refresh in 2 ms; 256 Row refresh in 4 ms
Master EOCU only (16-bit system)

Fast Processor Clock Frequency (16 MHz)

"Most Recently Used" Pdority Scheme

4 RAM banks occupied

8207

If further system flexibility is needed, one or two
external shift registers can be used to tailor the 8207
to its operating environment.

Synchronous/Asynchronous Mode
(SA and SB Program Bits)

Each port of the 8207 may be independently config­
ured to accept synchronous or asynchronous port
commands (RD, WR, PCTL) and Port Enable (PEl via
the program bits SA and SB. The state of the SA and
SB programming bits determine whether their asso­
ciated ports are synchronous or asynchronous.

While a port may be configured with either the Status
or Command interface in the synchronous mode,
certain restrictions exist in the asynchronous mode. An
asynchronous Command interface using the control
lines of the Multibus is supported, and an asynchronous
8086 interface using the control lines of the 8086 is
supported, with the use of TIL gates as illustrated in
Figure 2. In the 8086 case, the TIL gates are needed
to guarantee that status does not appear at the 8207's
inputs too much before address, so that a cycle would
start before address was valid.

Microprocessor Clock Frequency Option
(CFS and FFS Program Bits)

The 8207 can be programmed to interface with slow,
cycle microprocessors like the 8086, 8088, 80188 and
80186 or fast-cycle microprocessors like the 80286. The
CFS bit configures the microprocessor interface to
accept slow or fast cycle signals from either micro-
processor group. .

The FFS bit is used to select the speed of the micro­
processor clock. Table 5 shows the various micro­
processor clock frequency options that can be
programmed;

Table 5.
Microprocessor Clock Frequency Options

Program Bits Processor Clock

CFS FFS Frequency

0 0 iAPX 86, 6 MHz
88, 186, 188

0 1 iAPX86, 8 MHz
88, 186, 188

1 0 . iAPX 286 12MHz

1 1 iAPX 286 16 MHz

6-66 210463-005

8207

The external clock frequency must be programmed
so that the failsafe refresh repetition circuitry can
adjust its internal timing accordingly to produce a
refresh request as programmed.

RAM Speed Option (RFS Program Bit)

The RAM Speed programming option determines
whether RAM timing will be optimized for a fast or
slow RAM.

Refresh Period Options
(CIO, C11, and PLS Program Bits)

The 8207 refreshes with either 128 rows every 2 mil­
liseconds or 256 rows every 4 milliseconds. This
translates to one refresh cycle being executed ap­
proximately once every 15.6 microseconds. This rate
can be changed to 256 rows every 2 milliseconds or a
refresh approximately once every 7.8 microseconds
via the Period Long/Short, program bit PLS, pro­
gramming option. The 7.8 microsecond refresh re­
quest rate is intended for those RAMs, 64K and
above, which may require a faster refresh rate.

In addition to PLS program option, two other pro­
gramming bits for refresh exist: Count Interval 0 (CIO)
and Count Interval 1 (CI1). These two programming
bits allow the rate at which refresh requests are
generated to be increased in order to permit refresh
requests to be generated close to the same 15.6 or
7.8 microsecond period when the 8207 is operating
at reduced frequencies. The interval between re-

freshes is decreased by 0%, 10%, 20%, or 30% as a
function of how the count interval bits are program­
med. A 5% guard band is built-in to allow for any
clock frequency variations. Table 6 shows the refresh
period options available.

The numbers tabulated under Count Interval represent
the number of clock periods between internal refresh
requests. The percentages in parentheses represent
the decrease in the interval between refresh requests.
Note that all intervals have a built-in 5% (approximate­
ly) safety factor to compensate for minor clock frequen­
cy deviations and non-immediate response to internal
refresh requests.

Extend Option (EXT Program Bit)

The Extend option lengthens the memory cycle to
allow longer access time which may be required by
the system. Extend alters the RAM timing to compen­
sate for increased loading on the Rowand Column
Address Strobes, and in the multiplexed Address
Olit lines.

Port Priority Option and Arbitration
(PPR Program Bit)

The 8207 has to internally arbitrate among three
ports: Port A, Port B and Port C-the refresh port.
Port C is an internal port dedicated to servicing
refresh requests, whether they are generated inter­
nally by the refreSh inverval counter, or externally by
the user. Two arbitration approaches are available via

Table 6. Refresh Count Interval Table

Count Interval
C11. CIO

(8207 Clock Periods)

Ref.
Period 00 01 10 11
(~S) CFS PLS FFS (0%) (10%) (20%) (30%)

15.6 1 1 1 236 212 188 164

7.8 1 0 1 118 106 94 82

15.6 1 1 0 148 132 116 100

7.8 1 0 0 74 66 58 50

15.6 0 1 1 118 106 94 82

7.8 0 0 1 59 53 47 41

15.6 0 1 0 74 66 58 50

7.8 0 0 0 37 33 29 25

6-67 210463-005

intJ 8207

the Port Priority programming option, program bit
PPR. .PPR determines whether the most recently
used port will remain selected (PPR = 1) or whether
Port A will be favored or preferred over Port B
(PPR = 0).

A port is selected if the arbiter has given the selected
port direct access to ,the timing generators. The
front-end logic, which includes the arbiter, is de­
signed to operate in parallel with the selected port.
Thus a request on the seleCted port is serviced imme­
diately. 'In contrast, an un selected port only has ac­
cess to the timing generators through the front-end
iogic. Before a RAM cycle can start for anunselected
port, that port must first become selected (Le;, the
MUX output now gates that port's address into the
8207 in the case of Port A or B). Also, in order to allow
its address to stabilize, a newly selected port's first
RAM cycle is started by the front-end logic. There­
fore, the selected port has direct access to the timing
generators. What all this means is that a request on a
selected port is started immediately, while a request
on an unselected port is started two to three clock
periods after the request, assuming that' the other

two ports are idle. Under normal operating condi­
tions, this arbitration time is hidden behind the RAM
cycle of the selected port so that as soon as the
present cycle is over a new cycle is started. Table 7
lists the arbitration rules for both options.

Port LOCK Function

The LOCK function provides each port with the
ability to obtain uninterrupted access to a critical
region of memory and, thereby, to guarantee that the
opposite port cannot "sneak in" and read from or
write to the critical region prematurely.

Only one LOCK pin is present and is multiplexed
between the two ports as follows: when MUX is high,
the 8207 treats the LOCK input as originating at
PORT A, while when MUX is low, the 8207 treats
LOCK as originating at PORT B. When the 8207
recognizes a LOCK, the MUX output will remain
pointed to the locking port until LOCK is deactivated.
Refresh is not affected by LOCK and can occur dur­
ing a locked memory cycle. '

Table 7. The Arbitration Rules for the Most Recently Used Port Priority and for
Port A Priority Options Are As follows:

1. If only one port requests service, then that port-if not already selected-becomes selected.

2a. When no service requests are pending, the last selected processor port (Port A or B) will remain selected.
(Most Recently Used Port Priority Option)

2b. When no service requests are pending, Port A is selected whether it requests service or not. (PortA Priority
Option)

3. During reset initialization only Port C, the refresh port, is selected.

4. If no processor requests are pending after reset initialization, Port A will be selected.

5a. If Ports A and B simultaneously(·) request service while Port C is being serviced, then the next port to be
selected is the one which was not selected' prior to servicing Port C. (Most Recently Used Port Priority
Option)

5b. If Ports A and B simultaneously(·) request service while Port C is selected, then the next port to be selected
is Port A. (Port A Priority Option)

6. If a port simultaneously requests service with the currently selected port, service is granted to the selected
port.

7. The MUX output remains in its last state whenever Port C is selected.,

B. If Port C and either Port A or Port B (or both) simultaneously request service, then service is granted to the
requester whose port is already selected. If the selected port is not requesting service, then service Is
granted 'to Port C. '

9. If during the servicing of one port, the other port requests service before or simultaneously with the refresh
port, the refresh port is selected. A new port is not selected before the presently selected port is
deactivated.

10. Activating LOCK will mask off service requests from Port B if the MUX output is high, or from Port A if the
MUX output is low .

• By "simultaneous" It Is meant that two or more requests are valid at the clock edge at which the internal arbiter
samples them.

6-68 210463-005

8207

Dual-Port Considerations

For both ports to be operated synchronously, several
conditions must be met. The processors must be the
same type (Fast or Slow Cycle) as defined by Table 8
and they must have synchronized clocks. Also when
processor types are mixed, even though the clocks
may be in phase, one frequency may be twice that of
the other. So to run both ports synchronous using
the status interface, the processors must have
related timings (both phase and frequency). If these
conditions cannot be met, then one port must run
synchronous and the other asynchronous.

Figure 3 illustrates an example of dual-port operation
using the processors in the slow cycle group. Note the
use of cross-coupled NAND gates at the MUX output
for minimizing contention between the two latches, and
the use of flip flops on the status lines of the asyn­
chronous processor for delaying the status and thereby
guaranteeing RAS will not be issued, even in the worst
case, until address is valid.

Processor Timing

In order to run without wait states, AACK must be
used and connected to the SRDY input of the ap­
propriate bus controller. AACK is issued relative to a
point within the RAM cycle and has no fixed relation­
ship to the processor's request.The timing is such,
however, that the processor will run without wait states,
barring refresh cycles, bank precharge, and RAM
accesses from the other port. In non-ECC fast cycle,
fast RAM, non-extended configurations (80286), AACK
is issued on the next falling edge of the clock after the

edge that issues RAS. In non-ECC, slow cycle, non­
extended, or extended with fast RAM cycle configura­
tions (8086, 80188, 80186), AACK is issued on the
same clock cycle that issues RAS. Figure 14 illustrates
the timing relationship between AACK, the RAM cycle,
and the processor cycle for several different situations.

Port Enable (PE) setup time requirements depend on
whether the associated port is configured for syn­
chronous or asynchronous fast or slow cycle opera­
tion. In a synchronous fast cycle configuration, PE is
required to be setup to the same clock edge as the
status or commands. If PE is true (low), a RAM
cycle is started; if not, the cycle is aborted. The
memory cycle will only begin when both valid sig­
nals (PE and RD or WR) are recognized at a
particular clock edge. In asynchronous operation,
PE is required to be setup to the same clock edge
as the internally synchronized status or commands.
Externally, this allows the internal synchronization
delay to be added to the status (or command)-to-PE
delay time, thus allowing for more external decode
time that is available in synchronous operation.
The minimum synchronization delay is the additional
amount that PE must be held valid. If PE is not held
valid for the maximum synchronization delay time, it
is possible that PE will go invalid prior to the status or
command being synchronized. In such a case the 8207
aborts the cycle. If a memory cycle intended for the
8207 is aborted, then no acknowledge (AACK or XACK)
is issued and the processor locks up in endless wait
states. Figure 15 illustrates the status (command)
timing requirements for synchronous and asyn­
chronous systems. Figures 16 and 17 show a more
detailed hook-up of the 8207 to the 8086 and the 80286,
respectively.

6-69 210463-005

8207

CLK

ADDRESS

I I I
1 1 I

~~: ____ V_A_LI_D ____ ~~I ____ V_AL_'D _____ ~r----V-A-L1-D----~
I.LUJ~ I 1

~~I ---.-,\ ____ 1 ! \ ____ ..Jr--iiii.iff

~I-I---+ \\..._-..JI ! \ r--
I

i L-J:~ LEN

\ /
1

\ .'----~/
CAS' \

\
PSEN /

PSEL ____ ~----~ ~ ____________ ~~~ _____ V_AL_'D ____ ~ X VALID

1 1

RAM DATA ---~: ----------------C~V~A~LID~~~>-------------«==lfA~L~ID=»--------<C
1-.---- CYCLE DELAYED BY _1_ CYCLE WITHOUT -i
I pt;i.E:;~~S~T~:~tE WAIT STATES I

NOTE: OR BANK PRECHARGE

(

1. The RAS and CAS shown in figure are different banks being accessed.

Figure 14. iAPX 286/8207 Synchronous-Status Timing Programmed in non-ECC Mode, CO
Configuration (Read Cycle)

6-70 210463-005

8207

8207 CLK

(A) liE SET-UP AND HOLD TIME REQUIREMENTS FOR FAST CYCLE,
SYNCHRONOUS OPERATION (80286 CMD/STATUS)

8207CLK

COMMAND/STATUS --------'""\

(8) PE TIMING REQUIREMENTS FOR FAST OR SLOW CYCLE
ASYNCHRONOUS OPERATION

Figure 15_

Memory Acknowledge
(AACK, XACK)

In system configurations without error correction,
two memory acknowledge signals per port are sup­
plied by the 8207. They are the Advanced Acknowl­
edge strobe (AACK) and the Transfer Acknowledge
strobe (XACK). The CFS programming bit deter­
mines for which processor AACJ<"A and AACKB are
optimized, either 80286 (CFS = 1) or 8086/186 (CFS
= 0), while the SA and SB programming bits optimize

. AACK for synchronous operation ("early" AACK) or
asynchronous operation ("late" AACK).

Both the early and late AACK strobes are three
clocks long for CFS = 1 and two clocks long for CFS
= O. The XACK strobe is asserted when data is valid
(for reads) or when data may be removed (for writes)
and meets the Multibus requirements. XACK is

6-71

remov!!d asynchronously by the command going in­
active. Since in asynchronous operation the 8207
removes read data before late AACK or XACK is
recognized by the CPU, the user must provide for
data latching in the system until the CPU reads the
data. In synchronous operation, data latching is un­
necessary since the 8207 will not remove data until
the CPU has read it.

In ECC-based systems there is one memory acknow­
ledge (XACK or AACK) per port and a programming
bit associated with each acknowledge. If the X pro­
gramming bit is active, the str,obe is configured as
XACK, while if the bit is inactive, the strobe is
configured as AACK. As in non-ECC, the SA and SB
programming bits determine wheth~r the AACK
strobe is early or late (EAACK or LAACK).

Data will always be valid a fixed time after the occur­
rence of the advanced acknowledge. Table 9 sum­
marizes the various transfer acknowledge options.

210463-005

8207

8284A· I-<lt= I OTHER.ACK INPUTS RDY 1
READY

CLK

+
CLK

8288·

DEN -
OT/R ~

CLK AACK

S2 SlS0ALE Wo.,
~ READY CLK r r CASc., v

52
8207 MEMORY

f:=> 1
PCTL AOo.s (UPPER)

51 RD WE t-
Sii WR

80861

~ AH".sALo.s PSEN WE DI DO 80186

't OE STB
ADDRI

DATA t- r-v' 8283

~~ ~ -
LATCH

AO D
CLK
~ Q

TV \7l ~D Q~
T OE J ;:)

16/

8287

,Vl
T OE

~
18

8287

NOTE:
"These components are not necessary when using the 80186. These funCtions are
provided directly by the 80186.

MEMORY
(LOWER)

WE DI DO

r {r
I

Figure 16. 8086/80186, 8207 Single Port Non-ECC Synchronous Systems

6-72 210463-005

8207

62284

REAOY SROY {If: I OTHER ACK INPUTS

ClK

t
ClK

62266
DEN t-- ClK AACK
OT/Rr-

M/iOs1S0 AOOR,
READY ClK

~II
STROBES

v: PCTl MEMORY
M/iO 6207 (UPPER)

51
1

RD WE r-
SO WR

60266 AODRIN PSEN WE 01 DO

r II I AODR

+ ~I=D- r-l
DATA I

ClK
f- AO' a BO

+5V
r--

TV} BHE' B1
Q r-----

T OE
16

8287

\7J
T OE

L-.c.- 16

'--- 8287

Note: While the 8207 does not need the input addresses latched, AD, SHE
must come from the latched address bus.

~ MEMORY
(lOWER)

WE 01 DO

111
J

Figure 17. 80286 Hook-up to 8207 Non-ECC Synchronous System-Single Port.

6-73 210463·005

inter 8207

Table 8. Processor Interface/Acknowledge Summary

SYNC/ASYNC
CYCLE PROCESSOR REQUEST TYPE INTERFACE ACKNOWLEDGE TYPE

80286 STATUS SYNC EAACK

80286 STATUS ASYNC LAACK

FAST 80286 COMMAND SYNC EAACK
CYCLE
CFS=1

80286 COMMAND ASYNC LAACK

8086/80186 STATUS ASYNC LAACK

8086/80186 COMMAND ASYNC LAACK

MULTIBUS COMMAND ASYNC XACK

8086/80186 STATUS SYNC EAACK

SLOW 8086/80186 STATUS ASYNC LAACK
CYCLE 8086/80186 COMMAND SYNC EAACK
CFS=O

8086/80186 COMMAND ASYNC LAACK

MULTIBUS COMMAND ASYNC XACK

Table 9. Memory Acknowledge Option Summary

Synchronous

AACK Optimized
Fast Cycle for Local 80286

AACK Optimized
Slow Cycle for Local 8086/186

Test Modes

Two special test modes exist in the 8207 to facilitate
testing. Test Mode 1 (non-EGG mode) splits the
refresh address counter into two separate counters
and Test Mode 2 (EGG mode) presets the refresh
address counter to a value slightly less than rollover.

Test Mode 1 splitsthe address counter into two, and
increments both counters simultaneously with each
refresh address update. By generating external
refresh requests, the tester is able to check for
proper operation of both counters. Once proper indi­
vidual counter operation has been established, the
8207 must be returned to normal mode and a second
test performed to checkthat the carry from the first
counter increments the second counter. The outputs
of the counters are presented-on the address out bus
with the same timing as the row and column ad­
dresses of a normal scrubbing operation. During
Test Mode 1, memory initialization is inhibited, since
the 8207, by definition, is in non-EGG mode.

Test Mode 2 sets the internal refresh counter to a
value slightly less than rollover. During functional
testing other than that covered in Test Mode 1, the

Asynchronous XACK

AACK Optimized for Multibus Compatible
Remote 80286

AACK Optimized for Multibus Compatible
Remote 8086/186

6-74

8207 will normally be set in Test Mode 2. Test Mode 2
eliminates memory initialization in EGG mode. This
allows quick examination of the circuitry which
brings the 8207 out of memory initialization and into
normal operation.

General System Considerations
The RASo_3, GASO_3, AOO-B, output buffers were
designed to directly drive the heavy capacitive loads
associated with dynamic RAM arrays. To keep the RAM
driver outputsJrom ringing excessively in the system
envi ron ment and causi ng noise in other output pi ns it is
necessary to match the output impedance of the RAM
output buffers with the RAM array by using series
resistors and to add series resistors to other control
outputs for noise reduction if necessary. Each applica­
tion may have different impedance characteristics and
may require .different series ~esistance values. The
series resistance values should be determined for each
application. In non-EGG systems unused EGG input
pins should b.e tied high or low to improve noise
immunity.

210463-005

8207

£~£~~~~~8~~~~9~~g «c«<c<>««<mmc
~~~~~~~;~~;~~~~~~ 

NOTE: 
LCC is mounted lid-down into socket. 

Figure 19. 8207 Pinout Diagram 

Packaging 
The 8207 is packaged in a 68 lead JEDEC Type A 
Leadless Chip Carrier (LCC) and in Pin Grid Array 
(PGA), both in Ceramic. The package designa­
tions are R and A respectively, eg: 

R 8207-8 LCC, 8 MHz DRAM Controller 
A 8207-16 PGA, 16 MHz DRAM Controller 

Note: The pin-out of the PGA is the same as the 
socketed pinout of the Lee. 

6-75 

24 RAS2 
23 RAS1 
22 RASO 
21 CAS3 
20 CAS2 
19 CAS1 
18 CASil 

210463-005 



8207 

ABSOLUTE MAXIMUM RATINGS 
Ambient Temperature 

Under Bias ................... -0° C to + 70° C 
Storage Temperature .......... -65°C to +150°C 
Voltage On Any Pin With 

Respect to Ground .............. -.5V to +7V 
Power Dissipation ..................... 2.5 Watts 

NOTICE: Stress above those listed under ''Absolute 
Maximum Ratings" may cause permanent damage 
to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the 
opel; una I sections of this specification is not 
implied. Exposure to absolute maximum rating 
conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS Vcc = 5.0V ± 10% for 8207-12, 8207-8, 8207-6; TA = O°C to 70°C; 
Vss = GND Vee = 5.0V ± 5% for 8207-16. 

Symbol Parameter Min. Max. Units Comments 

V,l Input Low Voltage -0.5 +0.8 V 

V,H Input High Voltage 2.0 Vcc + 0.5 V 

VOL Output. Low Voltage 0,45 V Note 1 

VOH Output High Voltage 2,4 V Note 1 

VROl 
RAM Output 

0,45 V Note 1 
Low Voltage 

VROH 
RAM Output 

2.6 V Note 1 
High Voltage 

Icc Supply Current 455 mA TA=OoC 

III Input Leakage Current +10 f.lA OV:S V,N :s Vcc 

VCl 
Clock Input 

-0.5 +0.6 V 
Low Voltage 

VCH 
Clock Input 3.8 Vcc + 0.5 V 
High Voltage 

C'N Input Capacitance 20 pF fc = 1 MHz 

NOTE 1: 

IOL =5 mAo and 10H = -0.2 rnA (Typically 10L = 10 rnA and 10H = -0.88 rnA) 
WE: IOL=8 rnA 

A.C. Testing Load Circuit A.C. Testing Input, Output Waveform 

RRAS RASO•3 1-----.;..;;.;;:;JVV\r-'-O 

8207 CAS()'3 I-=---=~""~~I. 
AOo.s _--",'u·, __ ," 

Other Outputs GRAS :r::. -CCAS 

RRAS = 39Q 
R CAS = 39Q 

RAO = 22Q 
RL = 39Q 

.::c '7 CAO 

CL-=- CRAS = 150 pF 
CCAS = 150 pF 
CAO = 380 pF 
CL = 100 pF 

6-76 

0_2_:'_-JX:": :::x ..... __ 
A.C. Testing inputs (except clock) are driven at 
2.4V for a logic "1" and 0.45V for a logic "0" 
(clock is driven at 4.0V and 0.45V for logic "1" 
and "0" respectively). Timing measurements are 
made at 2.0V, 2.4Vfor logic "1" and 0.8 V for logic 
"0". 

210463·005 



8207 

A.C. CHARACTERISTICS Vee = 5V ± 10% for 8207-12, 8207-8, 8207-6; TA = O°C to 70°C; 
Vee = +5V ± 5% for 8207-16. 

Measurements made with respect to RASO•3, CASO•3, AOo.8, are a +2.4V and a.BV. All other pins are 
measured at 2.aV and a.BV. All times are nsec unless otherwise indicated. Testing done with specified 
test load. 

CLOCK AND PROGRAMMING 
8207·16, ·8 8207·12, ·6 
(FFS=l) (FFS=O) 

Ref. Symbol Parameter Min. Max. Min. Max. Units Notes 

- tF Clock Fall Time 10 10 ns 3 

- tR Clock Rise Time 10 10 ns 3 

1 TClCl Clock Period 8207·16 62.5 200 ns 1 
8207·12 83.3 200 ns 1 
8207·8 125 500 ns 2 
8207·6 167 500 ns 2 

2 TCl Clock low Time 8207·16 15 180 ns 1 
8207·12 20 180 ns 1 
8207·8 TClCU2·12 ns 2 
8207-6 TClCU2·12 ns 2 

3 TCH Clock High Time 8207·16 20 180 ns 1 
8207·12 25 180 ns 1 
8207·8 TClCU3·3 ns 2 

, 8207·6 TClCLl3·3 ns 2 

4 TRTVCl Reset to ClK! Setup 40 55 ns 4 

5 TRTH Reset Pulse Width 4 TClCl 4 TClCl ns 

6 TPGVRTl PCTl, PDI, RFRO to RESET! 
Setup 125 167 ns 5 

7 TRTlPGX PCTl, RFRO to RESET! Hold 10 10 ns 

8 TClPC PCLK from ClK! Delay 45 55 ns 

9 TPDVCl PDin to ClK! Setup 60 85 ns 

10 TClPDX PDin to ClK! Hold 40 55 ns 6 

RAM WARM·UP AND INITIALIZATION 
I 64 I TClWZl I WZ from ClK! Delay 40 55 ns 7 

SYNCHRONOUS lAP PORT INTERFACE 
11 TPEVCl PE to ClK! Setup 30 40 2 

12 TKVCl RD, WR, PE, PCTl to ClK! Setup 20 25 ns 1 

13 TClKX RD, WR, PE, PCTl to ClK! Hold 0 0 ns 

14 TKVCH RD, WR, PCTl to ClK! Setup 20 30 ns 2 

ASYNCHRONOUS lAP PORT INTERFACE 
15 TRWVCl RD, WR to ClK! Setup 20 30 ns 8,9 

16 TRWl RD, WR Pulse Width. 2TClCl+30 2TClCl+40 ns 

17 TRWlPEV PE from RD, WR! Delay CFS=1 TClCl·20 TClCl·30 ns 1 
CFS=O TClCl·30 TClCl·40 ns 2 

18 TRWlPEX PEto RD, WR! Hold 2TClCl+30 2TClCl+40 ns 

19 TRWlPTV PCTl from RD, WR! Delay TClCl·30 TClCl·40 ns 2 

20 TRWlPTX PCTl to RD, WR! Hold 2TClCl+30 2TClCl+40 ns 2 

21 TRWlPTV PCTl from RD, WR! Delay 2TClCl·20 2TClCL-30 ns 1 

22 TRWlPTX PCTl to RD, WR! Hold 3TClCl+30 3TClCl+40 ns 1 

210463·005 

6-77 



A.C. CHARACTERISTICS (Continued) 
RAM INTERFACE 

ReI. Symbol Parameter 

23 TAVCl Al, AH, BS to ClK! Setup 

24 TClAX Al, AH, BS to ClK! Hold 

25 TCllN lEN Irom ClK! Delay 

26 TClRSl RAS! from ClK! Delay 

27 TRCD RAS to CAS Delay CFS=1 
CFS=O 
CFS=O 

28 TClRSH BASI from ClK! Delay 

29 TRAH Row Ao to RAS Hold CFS=1 
CFS=O 
CFS=O 

30 TASR Row AO to RAS setup 

31 TASC Column AO to CAS! Setup CFS=1 
CFS=O 

32 TCAH Column AO to CAS Hold 

33 TClCSl CAS! from ClKI Delay 

34 TClCSl CAS! from ClK! Delay 

35 TClCSH CASI from ClKI Delay 

36 TClW WE from ClKI Delay 

37 TClTKl XACKI from ClK! Delay 

38 TRWlTKH XACKt from ROt, WRt Delay 

39 TClAKl AACK! from ClK! Delay 

40 TClAKH AACKI from ClK! Delay 

41 TClDl DBM from ClK! Delay 

ECC INTERFACE 
42 TWRlFV FWR from WR! Delay CFS=1 

CFS=O 

43 TFVCl FWR to ClK! Setup 

44 TClFX FWR to ClK! Hold 

45 TEVCl ERROR to ClK! Setup 

46 TClEX ERROR to ClK! Hold 

47 TClRl RfW from ClK! Delay 

48 TClRH RfW from ClK! Delay 

49 TCEVCl CE to ClK! Setup 

50 TClCEX CE to ClK! Hold 

51 TClES ESTB from ClK! Delay 

8207 

8207·16, ·8 8207·12, ·6 
(FFS=1) (FFS=O) 

Min. Max. Min. Max. Units Notes 

35+tASR 45+tASR ns 10 

0 0 ns 

35 45 ns 

35 45 ns 

TClCl·25 TClCl·30 ns 1,14 
TClCU2·25 TClCLl2·30 ns 11,14 

75 70 ns 12,14 

50 60 ns 

TClCLl2·10 TClCLl2·15 ns 1,,13,15 
TClCLl4·10 TClCLl4·15 ns 11,15 

40 35 ns 12,15 

10,18 

0 5 ns 13,19,20 
5 5 ns 13,19,20 

(See DRAM Interface Tables) 21 

TClCLl4 TClCU1.8 TClCLl4 TClCU1.8 ns 11 
+30 +53 +30 +72 ns 12 

35 40 ns 1 

50 60 ns 

35 45 ns 

35 45 ns 

50 55 ns 

35 45 ns 

50 60 ns 

35 45 ns 

2TClCl·40 2TClCl·50 ns 1,22 
TClCl+ TClCl+ ns 2,22 
TCl·40 TCl·65 

40 50 ns 23 

0 0 ns 24 

20 25 ns 25,26 

0 0 ns 

40 45 ns 

50 60 ns 

20 25 ns 25,27 

0 0 ns 

35 45 ns 

210463-005 

6-78 



A.C. CHARACTERISTICS (Continued) 
PORT SWITCHING AND LOCK 

ReI. Symbol Parameter 

52 TClMV MUX from ClKl Delay 

53 TClPNV PSEN from ClKl Deiay 

54 TClPSV PSEl from ClKl 

55 TlKVCl LOCK to ClKl Setup 

56 TCllKX lOCK to ClKl Hold 

57 TRWllKV lOCK from RDl, WRl Delay 

58 TRWHlKX lOCK to ROt, WRt Hold 

REFRESH REQUEST 

59 TRFVCL RFRO to ClKl Setup 

60 TClRFX RFRO to ClKl Hold 

61 TFRFH Failsafe RFRO Pulse Width 

62 TRFXCl Single RFRO Inactive to ClKl 
Setup 

63 TBR.fH Burst RFRO Pulse Width 

NOTES: 

8207 

8207·16, ·8 
(FFS=1) 

Min. Max. 

45 

TCl 60 
TCl TCl+35 

35 

30 

10 

2TClCl·30 

3TClCl+30 

20 

10 

TClCl+30 

20 

2TClCl+30 

1. Specification when p'ogrammed in the Fast Cycle processor mode (iAPX 286 mode). 
2. Specification when p-ogrammed in the Slow Cycle processor mode (iAPX 186 mode). 
3. tR and IF are referenced from the 3.5V and 1.0V levels. 

8207·12, ·6 
(FFS=O) 

Min. Max. 

55 

TCl 60 
TCl TCl+35 

45 

40 

10 

2TClCl·40 

3TCLCl+40 

25 

10 

TCLCl+40 

30 

2TCLCl+40 

4. RESET is iniernally synchronized to elK. Hence a set·up time is required only to guarantee its recognition at a particular clock edge. 
5. The first programming bit (Poo) Is also samplad by RESET going low. 
6. TCLPDX is guaranteed if jXogramming data is shifted using PCLK. 
7. WZ is issued only in ECC mode. 
8. TRWVCL is not required for an asynchronous command except to guarantee its "recognition at a particular clock edge. 
9. Valid when programmed in either Fast or Slow C)Cle mode. 

10. tASR is a user specified parameter and Its value should be added accorangly to TAVCl. 
11. When programmed in Slow Cycle mode and 125 ns .. TClCl < 200 ns. 

"12. When programmed in Slow Cycle mode and 200 ns " TClCL. 
13. Specification for Test load conditions. 

Units 

ns 

ns 
ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

14. tRCO (actual) = tRCD (specification) +0.06 (6C~ASl· 0.06. (6Cc:A.'1) where 6C = C (test load)· C (actual) in pF. (These are first order approximations.) 
15. tRAH (actual) = tRAH (specification) + 0.06 (6CRASl· 0.022 {6CAol where 6C = C (test load)· C (actual) In pF. (Thase are first order approximations.) 
16. 
17. 
18. tASR (actuaf) - tASR (specification) +0.06 (6CAQl· 0.025 (6CRAsl where 6C = C (test load)· C (actUBt) in pF. (These are first order approximations.) 
19. tASC (actuaf) - IASC (specification) +0.06 (6CAol· 0.025 (6CcASl where 6C - C (test load)· C (actual) in pF. (These are first order approximations.) 
20. tASe is a functia1 of clock frequency and thus varies with changes in frequency. A miminum value is specilied. 
21. See 8207 DRAM Interface Tables 14 a 18. 

Notes 

28 
29 

30,31 

30,31 

31,32 

31,32 

33 

34 

33 

22. ~:!:;tC~I::~"ar~:e~~ ~~~~nous a1d asynchronous FWFr. In systems in which FWR is decoded directly fran the address inputs to the 8207. TCLFV is 

23. TFVCL is defined fa synchronous J!WFf. 
24. TCLFV is defined fa both synchronous and asynchronous FWR. In systems in which FWR is decoded directly from the address inputs to the 8207.-

TClFV is automatic:afly guaranteed by TCLAV. 
25. ERROR and CE are set·up to ClKI in fast cycle mode and ClK! in slow cycle mode. 
26. ERROR is set~up to the same edge BS RJW Is referenced to, in RMW' cycles. 
27. CE is setaup to the same edge as WE is referenced to in RMW cydes. 
28. Specification when TCl < 25 ns. 
29. Specification when Tel j;t. 25 ns. 
30. Synchronous operation only. Must arrive by the second clock falling edge after the clock edge which recognizes the command in order to be effective. 
31. lOCK must be held active for the entire period the opposite port nlJst be locked out. One clock after the release of LOCK the opposite port will be able to obtain 

access to memory. 
32. Asynchronous mode only. In this mode a synchronizer stage is used internally in the 8207 to synchronize up LOa<. TRWLLKV and TRWHlKX are only 

required for guaranteeing that LOCK will be recognized for the r~esting port, but these parameters are nol reqlired for correct 8207 operation. 
33. TFRFH and TBRFH pertain to asynchronous operation only. 
34. Single RFRQ cannot by supplied asynchronously. 

210463·005 

6-79 



"n+.-:I® 111ae-

WAVEFORMS 
Clock and Programming Timings 

ClK 

8207 

RESET-=~::::V5~~~~~------~-----------1-----------------L------------
PCTl 

® @ REFRQ 

POI PDO PD1 

MUXlPclK -:=J----..,,.....;.,'(?--------~"i®-8-----:®:......!..J' 

RAM Warm-up and Memory Initialization Cycles 

RESET---"'_--,I. 

mC/ 
WE:J 

WZ:J 

R1W:J 

rz , 

S .. 

5J 

$) 

, -
f 

:r 

PROGRAMMING 
i RESET ! 

NOTES: 

FIRST RAM WARM-UP CYCLE 

f 
' ..... ____ ...J1 

lAST RAM WARM-UP OR 
INITIALIZATION CYCLE 

1. When in non-ECC mode or in ECC mode with the TM2 programming bit on, there are no initialization cycles, 
when in ECC mode with TM2 off, the dummy cycles are followed by initialization cycles. 

2. The present example assumes a RAS four clocks long. 

210463-005 

6-80 



WAVEFORMS (Continued) 
Synchronous Port Interface 

COMMAND MODEl 
FAST CYCLE 
1m. WR". PE" 

COMMAND MODEl ---f---f--, 
FAST CYCLE 
PCTL (INHIBIT) 

COMMAND MODEl 
FAST CYCLE 

8207 

INTERNAL INHIBIT ---!---+----...... "I------------------

SLOW CYCLE 
RD.WR 

SLOW CYCLE 
PE 

SLOW CYCLE 
PClL 

INTERNAL 
CYCLE REQUEST 

NOTE: 
Actual transitions are programmable. Refer to Tables 12 and 13. 

6-81 

210463·005 



WAVEFORMS (Continued) 
Asynchronous Port Interface 

8207 

CLK~~l.nLr\J\ 
FAST/SLOW CYCLE ~ 

I--@-
RD,WR ~ -' r- ..., 

@ 

® f--®-FAST/SLOW CYCLE 
PE ~ If-k-. ......, 

, 

® 
I-@-

SLOW CYCLE 
PCTL - lI= I~K ) 

® ® 
-i 
:1 

FAST CYCLE \ j~ 
PCTL (INHIBIT) 

FAST CYCLE -, r-------------~----------INTERNAL INHIBIT ~ 

I 

INTERNAL 
CYCLE REQUEST -; ~ 

210463-005 

6-82 



WAVEFORMS (Continued) 
RAM Interface Timing 
ECC and Non-ECC Mode 

CLOCK a 

ClK ~ 

COMMAND 

INTERNAL 
CYCLE REQUEST 

Ala - Ala 
AHa - AHa 
BSa - BS, 

lEN 

RAS 

AOa - AOa 

CAS 

WE 

XACK 

AACK 

DBM 

, 

~@. 
){: -

NOTE: 

~ 

~ 

-@_1 
~ 

-@~-

~ 

JiG; @ 

-® 

~®j 
~ 

8207 

~ ~ ~~ 

/ / / 

~ 
l( 

r-@1 

f-@- ~ 
1-

It K 

~ ® 

~ ., 
I-@-

-@ ~. 
J! 1\. 

-®-1 -@ 

-®j 
~ 

~ 
L 

I 

~ 
1. 

Actual transitions are programmable. Refer to Tables 12 and 13. 

6-83 

210463-005 



WAVEFORMS (Continued) 
Port Switching and Lock Timing 

ClK 

8207 

COMMAND ____ r-__ ~--~------~~--+_--~------~ 
PORTA 

COMMAND 
PORTB 

PORTB MUX ~PO~R~T~A~-~I 
~+-___ ...JI 

RAS --------/. 

PSEN ______ ~ ____ ~~-r 

PSEl~~"':"'" ________ "'\1 
PORTA 

PORTA 

lOCK----------~~--------~~~----~------+_------~ 

\ PORT B IF lOCK = 0 
~---------------

'--

. . r---1 I-------@.,...------I FAST CYCLE =-__ ---J....... I ... ___ ...I!lL. ______ ~ ___________ _ 
INTERNAL lOCK 
DI!lABlE 

Refresh Request Timing 

ClK ____ -oJ 

FAilSAFE REFRE=.:SH~ __________ ~ 
REQUEST -

SINGLE REFRESH REQUEST ______________________ -J 

NOTE: 
Transients during MUX switching. 

---------------~t® @3 ':j:-@--------------BURST REFRESH 
REQUEST 

210463-005 

6-84 



WAVEFORMS (Continued) 
ECC Interface Timing 

CLOCK 0 

8207 

CLK ~F-I h~~~~~ 

NOTE: 

COMMAND 
(WR) 

INTERNAL 
CYCLE REQUEST 

FAST CYCLE 
FWR 

SLOW CYCLE 
FWR 

ERROR 

R/W 

XACK 

CE 

ESTB 

WE 

~ 

~ f@-
@ 
~~ 

)( VALID l( 
@ 

-@t~1 ~~ 
)( VALID l( 

r@. 
)[ 

~ 

@-l: 
VALID 

;.- X 

f-®-! - @I 

\)i j{ 

~ 
'\~2 

@ 
I-=-. @-

X-x: VALID 
~ 

@ 
~ .-

\- ;: 

~ .~ 
t-I 1\ 

1. This parameter is set-up to the falling edge of clock, as shown, for fast cycle configurations. It is set-up to the 
rising edge of clock if in slow cycle configurations. Table 13A shows which clock and clock edge these 
signals are set-up in the R/Vil L column. 

2. CE is set-up to the same edge as WE is referenced to in RMW cycles. 

210463-005 

·6-85 



8207 

CONFIGURATION TIMING CHARTS 
The timing charts that follow are based on 8 basic 
system configurations where the 8207 operates. 

Tables 10 and 11 give a description of non-ECC and 
ECC system configurations based .on the 8207's 
PDO, PD3, PD4, PD10 and PD11 programming bits. 

Table 10. Non-ECC System Configurations 
Non-ECC Mode: PDO=O 

Timing ConI. CFS(PD3) RFS(PD4) EXT(PD10) 

Co iAPX286(0) FAST RAM(O) NOT EXT(O) 

Co iAPX286(0) FAST RAM(O) EXT(1) 

Co iAPX286(0) SLOW RAM(1) NOT EXT(O) 

Co iAPX286(0) SLOWRAM(1) EXT(1) 

Co iAPX286(0) FAST RAM(O) NOT EXT(O) 

C, iAPX286(0) SLOWRAM(1) NOT EXT(O) 

c, iAPX286(0) FAST RAM(O) EXT(1) 

C2 iAPX286(0) SLOW RAM(1) EXT(1) 

C3 iAPX186(1) FAST RAM(O) NOT EXT(O) 

C3 iAPX186(1) SLOW RAM(1) NOT EXT(O) 

C3 iAPX186(1) FAST RAM(O) EXT(1) 

C3 iAPX186(1 ) FAST RAM(O) NOT EXT(O) 

C3 iAPX186(1) FAST RAM(O) EXT(1) 

C3 iAPX186(1) SLOW RAM(1) NOT EXT(O) 

C3 iAPX186(1 ) SLOW RAM(1) EXT(1) 

C. iAPX186(1) SLOW RAM(1) EXT(1) 

ECC Mode: PDO=1 
Table 11. ECC System Configurations 

Timing ConI. CFS(PD3) RFS(PD4) EXT(PD10) 

Co iAPX286(1 ) SLOWRAM(O) MIS EDCU(O) 

Co iAPX286(1 ) SLOW RAM(O) M EDCU(1) 

Co iAPX286(1) FAST RAM(1) MIS EDCU(O) 

Co iAPX286(1) FASTRAM(1) . MEDCU(1) 

Co iAPX286(1) FAST RAM(1) M EDCU(1) 

C, iAPX286(1) SLOW RAM(O) M EDCU(1) 

C2 iAPX286(1) FAST RAM(1) MIS EDCU(O) 

C3 iAPX286(1) SLOW RAM(O) MIS EDCU(O) 

C. iAPX186(0) SLOW RAM(O) MIS EDCLJ(O) 

C. iAPX186(0) FAST RAM(1) MIS EDCU(O) 

C. iAPX186(0) SLOW RAM(O) MEDCU(1) 

C. iAPX186(0) FAST RAM(1) M EDCU(1) 

Cs iAPX186(0) SLOW RAM(O) MIS EDCU(O) 

Cs iAPX186(0) FAST RAM(1) MIS EDCU(O) 

Co iAPX186(0) SLOW RAM(O) M EDCU(1) 

C. iAPX186(0) FAST RAM(1) M EDCU(1) 

6-86 

FFS(PDl1) 

10 MHZ(1) 

10MHZ(1) 

10 MHZ(1) 

10MHZ(1) 

16 MHZ(O) 

16 MHZ(O) 

16 MHZ(O) 

16 MHZ(O) 

8 MHZ(O) 

8 MHZ(O) 

8 MHZ(O) 

5 MHZ(1) 

5 MHZ(1) 

5 MHZ(1) 

5 MHZ(1) 

8 MHZ(O) 

FFS(PD11) 

10 MHZ(O) 

10 MHZ(O) 

10 MHZ(O) 

10 MHZ(O) 

16 MHZ(1) 

16 MHZ(1) 

16MHZ(1) 

16 MHZ(1) 

5 MHZ(O) 

5 MHZ(O) 

8MHZ(1) 

8 MHZ(1) 

8 MHZ(1) 

8 MHZ(1) 

5 MHZ(O) 

5 MHZ(O) 

210463-005 



8207 

Using the Timing Charts 

:The notation used to indicate which clock edge 
triggers an output transition is "nl" or "nl ", where 
"n" is the number of clock periods that have passed 
since clo~k 0, the reference clock, and "I" refers to 
rising edge and "I to falling edge. A clock period is 
defined as the interval from a clock falling edge to 
the following falling edge. Clock edges are defined 
as shown below. 

; i i 
~n--·~I ........ -n+1~ 

l I I I L 
(n-1 )! nl n! (n+1)1 (n+1)! 

The clock edges which trigger transitions on each 
8207 output are tabulated i(l Table 12 for non-ECC 
mode, and Table 13 for ECC mode. "H" refers to the 
high-going transition, and "L" to low-going transi­
tion; "V" refers to valid, and '''V'' to non-valid. 

Clock 0 is defined as the clock in which the 8207 
begins a memory cycle, either as a result of a port 
request which has just arrived, or of a port request 
which was stored previously but could not be 
serviced at the time of its arrival because the 8207 
was performing another memory cycle. Clock 0 may 
be identified externally by the leading edge of RAS. 
which is always triggered on 01. 

Notes for interpreting the timing charts. 

1. PSEL - valid is given as the latest time it can 
occur. It is entirely possible for PSEL to become 
valid before the time given. In a refresh cycle, 
PSEL can switch as defined in the chart, but it 
has no bearing on the refresh cycle itself, but 
only on a subsequent cycle for one of the 
external ports. 

2. LEN -low is given as the latest time it can occur. 
LEN is only activated by port Aconfigured in Fast 

Cycle iAPX286 mode, and thus it is not activated 
by a refresh cycle, although it may be activated 
by port A during a refresh cycle. 

3. ADDRESS - col, is the time column address 
becomes valid. 

4. In non-ECC mode the CAS, EAACK, LAACK and 
XACK outputs are not issued during refresh, 

5, In ECC mode there are really seven types of 
cycles: Read without error, read with error, full 
write, partial write without error, partial write with 
error, refresh without error, and refresh with er­
ror. These cycles may be derived from the timing 
chart as follows: 

A. Read without error: Use row marked 'RD, RF'. 

B. Read with~ Use~arked 'RMW', 
except for EAACK and LAACK. which should 
be taken from 'RD, RF" If the error is uncor­
rectable, WE will not be issued. 

C. Full write: Use row marked 'WR'. 

D. Partial write without error: Use row marked 
'RMW', except that DBM and ESTB will not be 
issued. 

E. Partial write with error: Use row marked 
'RMW', except that DBM will not be issued. If 
the error is uncorrectable, WE will not be 
issued. 

F. Refresh without error: Use row marked 'RD, 
RF', except that ESTB, EAACK, LAACK, and 
XACK will not be issued. 

G. Refresh with error: Use row marked 'RMW' 
except that EAACK, LAACK, ESTB, and 
XACK will not be issued. If the error is 
uncorrectable WE will not be issued. 

6. XACK - high is reset asynchronously by command 
going inactive and not by a clock edge. 

7. MUX - valid is given as the latest time it can occur. 

210463-005 

6-87 



8207 

Table 13 A. Timing Chart - ECC Mode 

PSEN PSEL OBM LEN RAS CAS R/W WE 

Cn CYCLE H L, V V L H L H L H L H L H H L 

RD. RF O~ 5~ 01 61 01 61 01 21 OJ 41 11 61 

Co WR O~ 5~ 01 61 01 21 01 61 1 I 61 1 I 61 31 61 

RMW O~ 8+ 01 91 01 91 01 21 01 91 1 I 91 41 91 61 91 

RD. RF O~ 5~ 01 61 01 61 OJ 21 01 41 1 I 61 

C, WR O~ 5~ 01 61 01 21 01 61 1 I 61 11 61 31 61 

RMW O~ 8+ 01 91 01 91 01 21 01 91 1 I 91 41 91 61 91 

RD. RF 0+ 6~ 01 71 01 71 01 21 OJ 51 1 I 71 

C2 WR m 6+ 01 71 01 21 01 71 1 I 71 1 I 71 41 71 

RMW 0+ 10+ 01 11 I 01 11 I 01 21 01 11 I 1 I 11 I 51 11 I 81 11 I 

RD. RF 0+ 6~ 01 71 01 71 01 21 01 51 1 I 71 

C3 WR 0+ 6~ 01 71 01 21 01 71 1 I 71 1 I 71 41 71 

RMW 0+ 10~ 01 11 I 01 11 I 01 21 01 11 I 1 I 11 I 51 11 I 81 11 I 

RD. RF O~ 3+ 01 41 01 41 01 21 01 31 OJ 41 

C. WR O~ 4~ 01 51 01 21 01 51 01 51 11 51 31 51 

RMW OJ. 6+ 01 71 01 71 OJ 21 01 71 01 71 31 71 51 71 

RD. RF O~ 3+ 01 41 01 41 01 21 01 31 01 41 

Cs WR O~ 4~ 01 51 01 21 01 51 01 51 11 51 31 51 

RMW O~ 6~ 01 71 01 71 01 21 01 71 01 71 31 71 51 71 

RD. RF 0+ 3+ 01 41 01 41 01 21 01 31 01 41 

Cs WR O~ 3~ 01 41 01 21 01 41 01 41 11 41 21 41 

RMW O~ 4~ 01 51 01 51 OJ 21 01 51 OJ 51 21 51 31 51 

210463·005 

6-88 



69-9 

SOO-89vO~C: 

tG H- 8M t£ -Iv -IG t£ H -Iv -1£ tG to MVII8 

tG H- 8M tG -1£ H t£ H tG to 8M 9:) 

tG H- 08 -IG -1£ H t£ H tG to .::l8 '08 

tG H- 8M tS -19 -Iv tS t£ -19 -IS tG to MVII8 

tG H- 8M t£ -IV -IG t£ H tG to 8M 5:) 

tG H- 08 -1£ -IS -1£ tv tG tG to .::l8 '08 

tG H- 8M tS -19 -Iv tS t£ -19 -IS tG to MVII8 

tG H- 8M t£ H -IG t8 H tG to 8M v:) 

tG H- 08 -18 -Iv -IG t8 H tG to .::l8'08 

tG tG- 8M t6 tO~ tL to ~ tL tO~ t9 t8 to MVII8 

tG tG- 8M tS t9 t8 t9 t8 t8 to 8M 8:) 

tG tG- 08 tS t9 tS tL tv t8 to .::l8 '08 

tG tG- 8M t6 tO~ tL to~ tL tO~ t9 t8 to MVII8 

tG tG- 8M tS t9 t8 t9 t8 t8 to 8M ~:) 

tG tG- 08 tS tL tv tL tv t8 to .::l8 '08 

tG tG- 8M tL t9 tS t9 tS t9 t9 t8 to MVII8 

tG tG- 8M tv tS tG tS tG t8 to 8M ~:) 

tG tG- 08 tv t9 t8 t9 t8 t8 to .::l8'08 

tG tG- 8M tL t9 tS t9 tS t9 t9 tG to MVII8 

tG tG- 8M tv tS tG tS tG tG to 8M 0:) 

tG tG- 08 tv t9 t8 tS tG tG to .::l8 '08 

1\ 1\ H 1 H 1 H 1 H 1 1\ 1\ 31::>A::> u::> 

xnw ~~~ >I::>VV1 ~::>VV~ S~S3 ~aaV10::: 

apow ::>::>3 - lJe4::> 6u!w!~ 'S £~ alqe~ 

A~'W!M ~ ~ ~1~~©l LO~8 ®Mu! 



8207 

8207 - DRAM Interface Parameter Equations 
Several DRAM parameters, but not all, are a direct 
function of 8207 timings, and the equations for 
these parameters are given in the following tables. 
The following is a list of those DRAM parameters 
which have NOT been included in the following 
tables, with an explanation for their exclusion. 

WRITE CYCLE 

READ, WRITE, READ-MODIFY-WRITE & 
REFRESH CYCLES 

tRAC: 
tCAC: 
tREF: 
tCRP: 

response. parameter. 
response parameter. 
See "Refresh Period Options" 

tRC: 
tRAS: 
tCAS: 
tWCS: 

IDS: 
IDH: 
IDHR: 

guaranteed by tRWC. 
guaranteed by tRRW. 
guaranteed by tCRW. _ 
WE always activated after CAS is acti­
vated, except in memory initialization, 
hence tWCS is always negative (this is 
important for RMW only) except in mem­
ory initialization; in memory initialization 
tWCS is positive and has several clocks of 
margin. 
system-dependent parameter. 
system-dependent parameter. 
system-dependent parameter. 

tRAH: 
tRCD: 
tASC: 
tASR: 
tOFF: 

must be met only if CAS-only cycles, 
which do not occur with 8207, exist. 
See "AC .. Characteristics" READ-MODIFY-WRITE CYCLE 

See "AC. Characteristics" 
See "AC. Characteristics" 

tRWD: don't care in 8207 write cycles, but tabu­
lated for 8207 RMW cycles. 

See "A.C. Characteristics" 
response parameter. 

tCWD: don't care in 8207 write cycles, but tabu­
lated for 8207 RMW cycles: 

READ & REFRESH CYCLES 

tRCH: WE always goes active after CAS goes 
active, hence tRCH is guaranteed by 
tCPN. 

Table 14, Non-ECC Mode - RD, RF Cycles 

Fast Cycle Configurations Slow Cycle Configurations 

Parameter Co C, C2 C3 C. 
tRP 3TCLCL-T26 4TCLCL-T26 4TCLCL-T26 2TCLCL-T26 2TCLCL-T26 

tCPN 3TCLCL-T35 3TCLCL-T35 3TCLCL-T35 2.5TCLCL - T35 2.5TCLCL - T35 

tRSH 2TCLCL-T34 3TCLCL-T34 3TCLCL-T34 3TCLCL~T34 4TCLCL-T34 

tCSH 4TCLCL-T26 6TCLCL-T26 6TCLCL-T26 3TCLCL-T26 4TCLCL-T26 

tCAH TCLCL-T34 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 

tAR 2TCLCL-T26 3TCLCL-T26 3TCLCL-T26 2TCLCL-T26 2TCLCL-T26 

IT 3/30 3/30 3/30 3/30 3/30 

tRC 6TCLCL 8TCLCL 8TCLCL 5TCLCL 6TCLCL 

tRAS 3TCLCL-T26 4TCLCL-T26 4TCLCL-T26 3TCLCL-T26 4TCLCL-T26 

tCAS 3TCLCL-T34 5TCLCL'-T34 5TCLCL-T34 3TCLCL-T34 4TCLCL-T34 

tRCS 2TCLCL-TCL 2TCLCL-TCL 2TCLCL-TCL 1.5TCLCL-TCL 1.5TCLCL-TCL 

-T36-TBUF -T36-TBUF -T36-TBUF -T36-TBUF -cT36-TBUF 

6-90 

Notes 

1 

1 

1 

1 

1 

1 

2 

1 

1 

1 

1 

210463-005 



~6-9 

gOO-£9pm~ 

tc: H- l::IM tc: ~8 H tc: to tc: to l::IM 
V:) 

tc: H- al::l ~8 t8 H t8 H tc: to :ll::l'al::l 

tc: H- l::IM tc: ~8 H tc: to tc: to l::IM 
£:) 

tc: H- al::l tc: t8 H tc: to tc: to :ll::l 'al::l 

tc: tC:- l::IM t8 tv H tv H t8 to l::IM 
G:) 

tc: tC:- al::l tv t9 t8 tS tc: t8 to :ll::l 'al::l 

tc: tC:- l::IM t8 tv H tv H t8 to l::IM 
~:) 

tc: tC:- al::l tv tS tc: tS tc: t8 to :ll::l 'al::l 

tc: tC:- ~M t8 tv H tv H tc: to l::IM 
0:) 

tc: tC:- al::l t8 tS tc: tv H tc: to :ll::l 'al::l 

!1 /I. H 1 H 1 H 1 .!1 /I. 31::>A::> u::> ! 

xnll\l >I::>"X >1::>""1 >1::>""3 I:IOO\f 10:> I 

apOIl\l ::>::>3-uoN - IJell::> 6U!W!1 -e C:~ alqel 

tv ~c: tv to tv to tc: to tv to t8 to l::IM 
I 

v:) I 

tv to tv to tc: to tv to tv to t8 to :ll::l 'al::l I 

tv ~c: tv to tv to tc: to tv to t8 to l::IM I 

£:) 
t8 to t8 to tc: to t8 to t8 to tc: . to :ll::l 'al::l 

tS tc: tS H tS to tc: to tS to tv to l::IM 
G:) 

t9 H tv to tc: to t9 to t9 to tS to :ll::l 'al::l 

tS tc: tS H tS to tc: to tS to tv to l::IM 
~:) 

t9 H tv to tc: to t9 to t9 to tS to :ll::l'al::l 

tS tc: tS H tS to tc: to tS to tv to l::IM 
0:) 

tv H t8 to tc: to tv to tv to t8 to :ll::l 'al::l I 

1 H H 1 H 1 H 1 H 1 /I. /I. 1 H 31::>A::> u::> 

3M s,,::> s,,~ N31 wec 13Sd N3Sd 

apoll\l ::>::>3-uON - J,lBlI::> 6UIW!1 ." C:~ alqBl 

A~w[M~IW\Il~'~~@] LO~9 @MU! 



8207 

Table 15. Non-ECC Mode - WR Cycle 

Fast Cycle Configurations Slow Cycle Configurations 

Parameter Co C, C2 C3 C4 Notes 

tRP 3TCLCL-T26 3TCLCL-T26 3TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1 

tCPN 4TCLCL-T35 4TCLCL-T35 4TCLCL-T35 2.5TCLCL - T35 2.5TCLCL - T35 1 

tRSH 4TCLCL-T34 4TCLCL-T34 4TCLCL-T34 4TCLCL-T34 4TCLCL-T34 1 

tCSH 5TCLCL-T26 5TCLCL-T26 5TCLCL-T26 4TCLCL-T26 4TCLCL-T26 1 

tCAH TCL.:CL-T34 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 1 

tAR 2TCLCL-T26 3TCLCL~T26 3TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1 

tT 3/30 3/30 3/30 3/30 3/30 2 

tRWC 8TCLCL 8TCLCL 8TCLCL 6TCLCL 6TCLCL 1 

tRRW 5TCLCL-T26 5TCLCL-T26 5TCLCL-T26 4TCLCL-T26 4TCLCL-T26 1 

tCRW 4TCLCL-T34 4TCLCL-T34 4TCLCL-T34 . 4TCLCL - T34 4TCLCL-T34 1 

tWCH 3TCLCL+TCL 3TCLCL+TCL 3TCLCL+TCL 3TCLCL+TCL 3TCLCL+TCL 1,3 

-T34 -T34 -T34 -T34 -T34 

tWCR 4TCLCL+TCL 4TCLCL+TCL 4TCLCL+TCL 3TCLCL+TCL 3TCLCL+TCL 1,3 

-T26 -T26 -T26 -T26 -T26 

tWP 2TCLCL+TCL 2TCLCL+TCL 2TCLCL+TCL 2TCLCL-T36 2TCLCL-T36 1 

-T36-TBUF -T36-TBUF -T36-TBUF -TBUF -TBUF 

tRWL 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 3TCLCL-TCL 3TCLCL-TCL 1 

-TBUF -TBUF -TBUF -T36-TBUF -T36-TBUF 

tCWL 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 3TCLCL-TCL 3TCLCL-TCL 1 

-TBUF -TBUF -TBUF -T36-TBUF -T36-TBUF 

210463-005 

6-92 



8207 

Table 16 A. ECC Mode - RD, RF Cycles 

Fast Cycle Mode 

Parameter Co C, C2 C3 Notes 

tRP 4TCLCL-T26 4TCLCL-T26 4TCLCL-T26 4TCLCL-T26 1 

tCPN 3TCLCL-T35 3TCLCL-T35 3TCLCL-T35 3TCLCL-T35 1 

tRSH 3TCLCL-T34 3TCLCL-T34 4TCLCL-T34 4TCLCL-T34 1 

tCSH 6TCLCL-T26 6TCLCL-T26 7TCLCL-T26 7TCLCL-T26 1 

tCAH TCLCL-T34 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 1 

tAR 2TCLCL-T26 3TCLCL-T26 3TCLCL-T26 3TCLCL-T26 1 

IT 3/30 3/30 3/30 3/30 2 

tRC 8TCLCL 8TCLCL 9TCLCL 9TCLCL 1 

tRAS 4TCLCL-T26 4TCLCL-T26 5TCLCL-T26 5TCLCL-T26 1 

tCAS 5TCLCL-T34 5TCLCL-T34 6TCLCL-T34 6TCLCL-T34 1 

tRCS TCLCL-T36 TCLCL-T36 TCLCL-T36 TCLCL-T36 1 

-TBUF -TBUF -TBUF -TBUF 

Table 16 B. ECC Mode - RD, RF Cycles 

Slow Cycle Mode 

Parameter C4 Cs Ce Notes 

tRP 2TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1 

tCPN 1.5TCLCL - T35 1.5TCLCL-T35 1.5TCLCL-T35 1 

tRSH 3TCLCL-T34 3TCLCL-T34 3TCLCL-T34 1 

tCSH 4TCLCL-T26 4TCLCL-T26 4TCLCL-T26 1 

tCAH 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 1 

tAR 2TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1 

tT 3/30 3/30 3/30 2 

tRC 5TCLCL 5TCLCL 5TCLCL 1 

tRAS 3TCLCL-T26 3TCLCL-T26 3TCLCL-T26 1 

tCAS 4TCLCL-T34 4TCLCL-T34 4TCLCL-T34 1 

tRCS 0.5TCLCL-T36 0.5TCLCL - T36 0.5TCLCL - T36 1 

-TBUF -TBUF -TBUF 

210463-005 

6-93 



8207 

Table 17 A. ECC Mode - WR Cycle 

Fast Cycle Mode 

Parameters Co C1 C2 C3 Notes 

tRP 3TCLCL-T26 3TCLCL-'-T26 3TCLCL-T26 3TCLCL-T26 1 

tCPN 4TCLCL-T35 4TCLCL-T35 4TCLCL-T35 4TCLCL-T35 1 

tRSH 5TCLCL-T34 5TCLCL-T34 6TCLCL-T34 6TCLCL-T34 1 

tCSH 6TCLCL-T26 6TCLCL-T26 7TCLCL-T26 7TCLCL-T26 1 

tCAH TCLCL-T34 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 1 

tAR 2TCLCL-T26 3TCLCL-T26 3TCLCL-T26 3TCLCL-T26 1 

tT 3/30 3/30 3/30 3/30 2 

tRWC 9TCLCL 9TCLCL 10TCLCL 10TCLCL 1 

tRRW 6TCLCL-T26 6TCLCL-T26 7TCLCL-T26 7TCLCL-T26 1 

tCRW 5TCLCL-T34 5TCLCL-T34 6TCLCL-T34 6TCLCL-T34 1 

tWCH 5TCLCL-T34 5TCLCL-T34 6TCLCL-T34 6TCLCL-T34 1,4 

tWCR 6TCLCL-T26 6TCLCL-T26 7TCLCL-T26 7TCLCL-T26 1,4 

tWP 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 1 

-TBUF -TBUF -TBUF -TBUF 

tRWL 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 1 

-TBUF -TBUF -TBUF -TBUF 

tCWL 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 1 

-TBUF -TBUF -TBUF -TBUF 

210463-005 

6-94 



8207 

Table 17 B. ECC Mode - WR Cycle 

Slow Cycle Mode 

Parameters C. Cs Cs Notes 

tRP 2TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1 

tCPN 2.5TCLCL - T35 2.5TCLCL - T35 2.5TCLCL-T35 1 

tRSH ·5TCLCL - T34 5TCLCL-T34 4TCLCL-T34 1 

tCSH 5TCLCL-T26 5TCLCL-T26 4TCLCL-T26 1 

tCAH 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 1 

tAR 2TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1 

tT 3/30 3/30 3/30 2 

tRWO 7TCLCL 7TCLCL 6TCLCL 1 

tRRW 5TCLCL-T26 5TCLCL-T26 4TCLCL-T26 1 

tCRW 5TCLCL-T34 5TCLCL-T34 4TCLCL-T34 1 

tWCH 5TCLCL-T34 5TCLCL-T34 4TCLCL-T34 1,4 

tWCR 5TCLCL-T26 5TCLCL-T26 4TCLCL-T26 1,4 

tWP 3TCLCL-TCL 3TCLCL-TCL 3TCLCL-TCL 1 

-T36-TBUF -T36-TBUF -T36-TBUF 

tRWL 3TCLCL-TCL 3TCLCL-TCL 3TCLCL-TCL 1 

-T36-TBUF -T36-TBUF -T36-TBUF 

tCWL 3TCLCL-TCL 3TCLCL-TCL 3TCLCL-TCL 1 

-T36-TBUF -T36-TBUF -T36-TBUF 

210463-005 

6-95 



8207 

Table 18 A. ECC Mode - RMW 

Fast Cycle Mode 

Parameters Co C, C2 C3 Notes 

tRP 3TCLCL-T26 3TCLCL-T26 3TCLCL-T26 3TCLCL-T26 1 

tCPN 4TCLCL-T35 4TCLCL-T35 4TCLCL-T35 4TCLCL-T35 1 

tRSH 8TCLCL-T34 8TCLCL-T34 10TCLCL - T34 10TCLCL-T34 1 

tCSH 9TCLCL-T26 9TCLCL-T26 11TCLCL - T26 11TCLCL - T26 1 

tCAH TCLCL-T34 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 1 

tAR 2TCLCL-T26 3TCLCL-T26 3TCLCL-T26 3TCLCL-T26 1 

tT 3/30 3/30 3/30 3/30 2 

tRWC 12TCLCL 12TCLCL 14TCLCL 14TCLCL 1 

tRRW 9TCLCL-T26 9TCLCL-T26 11TCLCL - T26 11TCLCL-T26 1 

tCRW 8TCLCL-T34 8TCLCL-T34 10TCLCL-T34 10TCLCL - T34 1 

tRCS TCLCL-T36 TCLCL-T36 TCLCL-T36 TCLCL-T36 1 

-TBUF -TBUF -TBUF -TBUF 

tRWD 6TCLCL-T26 6TCLCL-T26 8TCLCL-T26 8TCLCL-T26 1 

tCWD 5TCLCL-T34 5TCLCL-T34 7TCLCL-T34 7TCLCL-T34 1 

tWP 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 1 

-TBUF -TBUF -TBUF -TBUF 

tRWL 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 1 

-TBUF -TBUF -TBUF -TBUF 

tCWL 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 1 

-TBUF -TBUF -TBUF -TBUF 

210463-005 

6-96 



8207 

Table 18 B. ECC Mode - RMW 

Slow Cycle Mode 

Parameters C4 Cs Cs Notes 

tRP 2TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1 

tCPN 2.5TCLCL - T35 2.5TCLCL-T35 2.5TCLCL - T35 1 

tRSH 7TCLCL-T34 7TCLCL-T34 5TCLCL-T34 1 

tCSH 7TCLCL-T26 7TCLCL-T26 5TCLCL-T26 1 

tCAH 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 1 

tAR 2TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1 

tT 3/30 3/30 3/30 2 

tRWC 9TCLCL 9TCLCL 7TCLCL 1 

tRRW 7TCLCL-T26 7TCLCL-T26 5TCLCL-T26 1 

tCRW 7TCLCL-T34 7TCLCL-T34 5TCLCL-T34 1 

tRCS 0.5TCLCL - T36 0.5TCLCL - T36 0.5TCLCL-T36 1 

-TBUF -TBUF -TBUF 

tRWD 4TCLCL+TCL 4TCLCL+TCL 2TCLCL+TCL 1 

-T26 -T26 -T26 

tCWD 4TCLCL+TCL 4TCLCL+TCL 2TCLCL+TCL 1 

-T34 -T34 -T34 

tWP 3TCLCL-TCL 3TCLCL-TCL 3TCLCL-TCL 1 

-T36-TBUF -T36-TBUF -T36-TBUF 

tRWL 3TCLCL-TCL 3TCLCL-TCL 3TCLCL~TCL 1 

-T36-TBUF -T36-TBUF -T36-TBUF 

tCWL 3TCLCL-TCL 3TCLCL-TCL 3TCLCL-TCL 1 

-T36-TBUF -T36-TBUF -T36-TBUF 

NOTES: 
1. Minimum 
2. Value on right is maximum; value on left is minimum. 
3. Applies to the eight warm-up cycles during in~ialization only. 
4. Applies to the eight warm-up cycles and to the memory initilization 

cycles during initialization only. 
5. TP = TCLCL 

T26 = TCLRSL 
T34 = TCLCSL 
T35 = TCLCSH 
T36 = TCLW 
TBUF = TTL Buffer delay 

6-97 

210463-005 



inter 
8208 

DYNAMIC RAM CONTROLLER 

• o Wait State, 8 Mhz IAPX 286, IAPX • IAPX 286 CFS= 1 (fast cycle) 
186/188, and iAPX 86/88 Interface 8208-16 4-16 MHz 

• Provides all Signals necessary to 8208-12 4-12 MHz 

Control 64k and 256k Dynamic RAMs • IAPX 86/186 CFS=O (slow cycle) 

• Support Synchronous or Asynchronous 8208 2-8 MHz 

Microprocessor Interfaces 8208-6 2-6 MHz 

• Automatic RAM Warm-up • Directly Addresses and Drives up to 
1 Megabyte without External Drivers 

• Performs Early Write Cycles 

The Intel 8208 Dynamic RAM Controller is a high performance, systems oriented, Dynamic RAM controller that 
is designed to easily interface 64k and 256k Dynamic RAMs to Intel and other microprocessors. It is a 48 pin 
single-port version of the dual-port 8207. 

.'". 
PDI--+----l 

ALoeC==~ 

AHO.C==::Jl 
os 

r----v""', 

230734-1 

Al4 
Al3 
AL2 
Al1 
AlO 
BS 

AOO 
A01 
A02 
A03 
A04 
Vss 
AOS 
AOS 
A07 
A08 
Vss 

RASi 
~ 
em 
i5ASO 

Vss 
RESET 

Vee 

Figure 1. Block Diagram and Pinout Diagram 

'--------', 

Vee 
AlS 
Al6 
Al7 
Al8 
AHO 
AH1 
AH2 
AH3 
AH4 
AH5 
AH6 
Vss 
AH7 
AH8 
POI 
RFRQ 
ClK 
m5 
~ 
PE 
pcn 
AACK/XACK 
WEIPClK 

230734-2 

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent 
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. March 1985 
IE) Intel Corporation, 1985 6-98 Order Number: 230734-003 



intJ 8208 

Table 1. Pin Description 

Symbol Pin Type Name and Function 
ALO 5 I ADDRESS LOW: These low order address inputs are used to 
AL1 4 I generate the row address for the internal address multiplexer. In 
AL2 3 I iAPX 286 mode (CFS = 1), these addresses are latched internally. 
AL3 2 I 
AL4 1 I 
AL5 47 I 
AL6 46 I 
AL7 45 I 
AL8 44 I 

BS 6 I BANK SELECT: This input is used to select one of the two banks of 
the dynamic RAM array as defined by the program-bit RB. 

AOO 7 0 ADDRESS OUTPUTS: These outputs are designed to provide the 
A01 8 0 row and column addresses, of either the CPU or the refresh 
A02 9 0 counter, to the dynamic RAM array. These outputs drive the 
A03 10 0 dynamic RAM array directly and need no external drivers. However, 
A04 11 0 they typically need series resistors to match impedances. 
A05 13 0 
A06 14 0 
AO? 15 0 
A08 16 0 

VSS 12 I GROUND 
17 I GROUND 
22 I GROUND 
36 I GROUND 

RASO 19 0 ROW ADDRESS STROBE: These outputs are used by the dynamic 
RAS1 18 0 RAM array to latch the row address, present on the AOO-8 pins. 

These outputs are selected by the BS pin as programmed by 
program-bit RB. These outputs drive the dynamic RAM array 
directly and need no external drivers. 

CASO 21 0 COLUMN ADDRESS STROBE: These outputs are used by the 
CAS1 20 0 dynamiC RAM array to latch the column address, present on the 

AOO-8 pins. These outputs are selected by the BS pin as 
programmed by program-bit RB. These outputs drive the dynamic 
RAM array directly and need no external drivers. 

RESET 23 I RESET: This active high signal causes all internal counters to be 
reset and upon release of RESET, data appearing at the POI pin is 
clocked-in by the PCLK output. The states of the POI, PCTL and 
RFRQ pins are sampled by RESET going inactive and are used to 
program the 8208. An 8 cycle dynamic RAM warm-up is performed 
after clocking POI bits into the 8208. 

WEI 25 0 WRITE ENABLE/PROGRAMMING CLOCK: Immediately after a 
PCLK RESET this pin becomes PCLK and is used to clock serial 

programming data into the POI pin. After the 8208 is programmed 
this active high Signal provides the dynamic RAM array the write 
enable input for a write operation. 

VCC 24 I POWER: + 5 Volts. 
48 I POWER: + 5 Volts. 

6-99 



8208 

Table 1. Pin Description (Continued) 

Symbol Pin Type Name and Function 
AACK/ 26 0 ADVANCE ACKNOWLEDGE/TRANSFER ACKNOWLEDGE: 
XACK When the X programming bit is set to logic 0 this pin is AACK and 

indicates that the processor may continue processing and that data 
will be available when required. This Signal is optimized for the 
system by programming the S program-bit for synchronous or 
asynchronous operation. The S programming bit determines 
whether this strobe will be early or late. If another dynamic RAM 
cycle is in progress at the time of the new request, the AACK is 
delayed. When the X programming bit is set to logic 1 this pin is 

, XACK and indicates that data on the bus is valid during a read cycle 
or that data may be removed from the bus during a write cycle. 
XACK is a MUl TlBUS compatible signal. (See Figure 5) 

PCTl 27 I PORT CONTROL: This pin is sampled on the falling edge of 
RESET. It configures the 8208 to accept command inputs or 
processor status inputs. If PCTl is low after RESET the 8208 is 
programmed to accept bus/MUl TIBUS command inputs or iAPX 
286 status inputs. If PCTl is high after RESET the 8208 is 
programmed to accept status inputs from iAPX 86 or iAPX 186 type 
processors. The S2 status line should be connected to this input if 
programmed to accept iAPX 86 or iAPX 186 status inputs. When 
programmed to accept bus commands or iAPX 286 status inputs, it 
should be tied low or it may be connected to INHIBIT when 
operating with MUlTIBUS. 

PE 28 I PORT ENABLE: This pin serves to enable a RAM cycle request. It 
is generally decoded from the address bus. 

WR 29 I WRITE: This pin is the write memory request command input. This 
input also directly accepts the SO status line from Intel processors. 

RO 30 I READ: This pin is the read memory request command input. This 
input also directly accepts the S1 status line from Intel processors. 

ClK 31 I CLOCK: This input provides the basic timing for sequencing the 
internal logic. This clock requires MOS levels. 

RFRO 32 I REFRESH REQUEST: This input is sampled on the falling edge of 
RESET. If RFRO is high at RESET then the 8208 is programmed for 
internal-refresh request or external-refresh request with failsafe 
protection. If RFRO is low at RESET then the 8208 is programmed 
for external-refresh without failsafe protection or burst-refresh. 
Once programmed the RFRO pin accepts signals to start an 
external-refresh with failsafe protection or external-refresh without 
failsafe protection or a burst-refresh. 

POI 33 I PROGRAM DATA INPUT: This input is sampled by RESET going 
low. It programs the various user selectable options in the 8208. 
The PClK pin shifts programming data into the POI input from an 
external shift register. This pin may be strapped low to a default 
iAPX 186 mode configuration or high to a default iAPX 286 mode 
configuration. 

AHO 43 I ADDRESS HIGH: These higher order address inputs are used to 
AH1 42 I generate the column address for the internal address multiplexer. In 
AH2 41 I iAPX 286 mode, these addresses are latched internally. 
AH3 40 I 
AH4 39 I 
AH5 38 I 
AH6 37 I 
AH7 35 I 
AH8 34 I 

6-100 



inter 8208 

GENERAL DESCRIPTION 

The Intel 8208 Dynamic RAM Controller is a micro­
computer peripheral device which provides the nec­
essary signals to address, refresh and directly drive 
64k and 256k dynamic RAMs. 

The 8208 supports several microprocessor interface 
options including synchronous and asynchronous 
operations for iAPX 286, iAPX 186/188, iAPX 86/88 
and MUL TIBUS. 

FUNCTIONAL DESCRIPTION 

Processor Interface 

The 8208 has control circuitry capable of supporting 
one of several possible bus structures. The 8208 
may be programmed to run synchronous or asyn­
chronous to the processor clock. (See Synchro­
nous/ Asynchronous Mode.) The 8208 has been 

230734-3 

Synchronous-Status Interface 

230734-5 

Synchronous-Command Interface -

optimized to run synchronously with Intel'S iAPX 
286, iAPX 186/188, and iAPX 86/88. When the 
8208 is programmed to run in asynchronous mode, 
the 8208 inserts the necessary synchronization cir­
cuitry for the RD, WR, PE, -and PCTL inputs. 

The 8208 achieves high performance (i.e. no wait 
states) by decoding the status lines directly from the 
iAPX 286, iAPX 186/188, and the iAPX 86/88. The 
8208 can also be programmed to receive read or 
write MUL TIBUS commands or commands from a 
bus controller. (See Status/Command Mode.) 

The 8208 may be programmed to accept the clock 
of any Intel microprocessor. The 8208 adjusts its in­
ternal timing to allow for different clock frequencies 
of these microprocessors. (See Microprocessor 
Clock Frequency Option.) 

Figure 2 shows the different processor interfaces to 
the 8208 using the synchronous or asynchronous 
mode and status or command interface. 

230734-4 

Asynchronous-Status Interface 

230734-6 

Asynchronous-Command Interface 

Figure 2A. Slow-Cycle (CFS = 0) Interfaces Supported by the 8208 

6-101 



ClK 
SliI-----.... iYR 

80286 Si RD 

PE 
8208 

230734-7 

Fast-Cycle Synchronous-Status Interface 

ClK ClK ClK 
ViR 
RD' 
PCTL 

PE 8208 

230734-9 

Fast-Cycle Synchronous-Command Interface 

8208 

ClK 
iYR 
RD 
AACK 

Pi: 8208 

230734-8 

Fast-Cycle Asynchronous-Status Interface 

ClK ClK 
iYR 
RD 
PCTl 

Pi: 8208 

230734-10 

Fast-Cycle Asynchronous-Command Interface 

Figure 28. Fa~t-cycle (CFS = 1) Port Interfaces Supported by the 8208 

Dynamic RAM Interface 

The 8208 is capable of addressing 64k and 256k 
dynamic RAMs. Figure 3 shows the connection of 
the processor address bus to the 8208 using the 
different RAMs. The 8208 directly supports the 
2164A RAM family or any RAM with ,similar timing 
requirements and responses. 

The 8208 divides mem..2!Y!nto two banks, each bank 
having its own Row (RAS) and Column (CAS) Ad­
dress Strobe pair. This organization permits RAM cy­
cle interleaving. RAM cycle interleaving overlaps the 
start of the next RAM cycle with the RAM precharge 
period of the previous cycle. Hiding the precharge 
period of one RAM cycle behind the data access 
period of the next RAM cycle optimizes memory 
bandwidth and is effective as long as successive 
RAM cycles occur in the alternate banks. 

Successive data access to the same bank cause the 
8208 to wait for the precharge time, of the previous 
RAM cycle. But when the 8208 is programmed in an 
iAPX 186 synchronous configuration consecutive 
read cycles to the same bank does not result in ad­
ditional wait states (i.e. 0 wait state r~adsresult). 

6-102 

All-A19 

NOTES: 

8208 

256KRAM 
'INTERFACE 

(NOTE 1) 
AH8 

8208 

'64KRAM 
INTERFACE 

230734-11 

1. Unassigned address input pins should be strapped 
,high or low. 
2. AO along with SHE are used to select a byte within a 
processor word. 
3. Low order address bit is used as a bank select input 
so that consecutive memory access requests are to al­
ternate banks allowing bank interleaving of memory 
cycles. ' 

Figure 3. Processor Address Interface to the 
8208 Using 64k. and 256k. RAMS 



intJ 8208 

If not all RAM banks are occupied, the 8208 reas­
signs the RAS and CAS strobes to allow using wider 
data words without increasing the loading on the 
RAS and CAS drivers. Table 2 shows the bank se­
lection decoding and the horizontal word expansion, 
including RAS and CAS assignments. For example, 
if only one RAM bank is occupied, then the two RAS 
and CAS strobes are activated with the same timing. 

Table 2. Bank Selection Decoding 
and Word Expansion 

Program Bank 
Bit Input 8208 
RB BS RAS/CAS Pair Allocation 

0 0 RASo. 1, CASo. 1 to Bank 0 

0 1 Illegal 

1 0 RASo, CASo to Bank 0 

1 1 RAS1, CAS1 to Bank 1 

Program bit RB is not used to check the bank select 
, input BS. The system design must protect from ac­

cesses to "illegal", non-existent banks of memory 
by deactivating the PE input when addressing an "il­
legal", non-existent bank of memory. 

The 8208 adjusts and optimizes internal timings for 
either the fast or slow RAMs as programmed. (See 
RAM Speed Option.) 

Memory Initialization 

After programming, the 8208 performs eight RAM 
"wake-up" cycles to prepare the dynamic RAM for 
proper device operation. 

Refresh 

The 8208 provides an internal refresh interval coun­
ter and a refresh address counter to allow the 8208 
to refresh memory. The 8208 will refresh 128 rows 
every 2 milliseconds or 256 rows every 4 millisec­
onds, which allows all RAM refresh options to be 
supported. In addition, there exists the ability to re­
fresh 256 row address locations every 2 millisec­
onds via the Refresh Period programming option. 

The 8208 may be programmed for any of five differ­
ent refresh options: Internal refresh only, External 
refresh with failsafe protection, External refresh 
without failsafe protection, Burst Refresh modes, or 
no refresh. (See Refresh Options.) 

It is possible to decrease the refresh time interval by 
10%, 20% or 30%. This option allows the 8208 to 
compensate for reduced clock frequencies. Note 

that an additional 5% interval shortening is built-in in 
all refresh interval options to compensate for clock 
variations and non-immediate response to the inter­
nally generated refresh request. (See Refresh Peri­
od Options.) 

External Refresh Requests after 
RESET 

External refresh requests are not recognized by the 
8208 until after it is finished programming and pre­
paring memory for access. Memory preparation in­
cludes 8 RAM cycles to prepare and ensure proper 
dynamic RAM operation. The time it takes for th_e 
8208 to recognize a request is shown below. 

eq. 8208 System Response: 
TRESP = TPROG + TPREP 

where: TPROG = (40) (TCLCL) which is program­
ming time 

Reset 

TPREP = (8) (32) (TCLCL) which is the 
RAM warm-up time 

if TCLCL = 125 ns then TRESP = 37 us 

RESET is an asynchronous input, the falling edge of 
which is used by the 8208 to directly sample the 
logic levels of the PCTL, RFRO, and POI inputs. The 
internally synchronized falling edge of reset is used 
to begin programming operations (shifting in the 
contents of the external shift register, if needed, into 
the POI input). 

Differentiated reset is unnecessary when the default 
synchronization programming is used. 

Until programming is complete the 8208 registers 
but does not respond to command or status inputs. 
A simple means of preventing commands or status 
from occurring during this period is to differentiate 
the system reset pulse to obtain a smaller reset 
pulse for the 8208. The total time of the 8208 reset 
Pulse and the 8208 programming time must be less 
than the time before the first command the CPU is­
sues in systems that alter the default port synchro­
nization programming bit (default is synchronous 
interface). 

The differentiated reset pulse would be shorter than 
the system reset pulse by at least the programming 
period required by the 8208. The differentiated reset 
pulse first resets the 8208, and system reset would 
reset the rest of the system. While the rest of the 
system is still in reset, the 8208 completes its pro­
gramming. Figure 4 illustrates a circuit to accomplish 
this task. 

6-103 



8208 

SYSTEM I R"!!J ~ 
8208 ~11~ 

RESrul ......... _____ _ 

t1 PROGRAMMING TIME OF 8208 

8208 
SYSTEM RESET 

RESET 

DIFFERENTIATED RESET 
230734-12 

NOTES: 
1. Required only when the synchronization option is al­
tered from its initial default value. 
2. Vee must be stable before system reset is activated 
when using ,this circuit. 

Figure 4. 8208 Differentiated Reset Circuit 

Within four clocks after RESET goes active, all the 
8208 outputs will go high, except for AOO-2, which 
will go low: 

OPERATIONAL DESCRIPTION 

Programming the 8208 

The 8208 is programmed after reset. On the falling 
edge of RESET, the logic states of several input pins 
are latched internally. The falling edge of RESET ac­
tually performs the latching, which means that the 
logic levels on these inputs must be stable prior to 
that time. The inputs whose logic levels are latched 
at the end of reset are the PCTL, HEFRQ, and POI 
pins. 

Status/Command Mode 

The processor port of the 8208 is configured by the 
states of the PCTL pin. Which interface is selected 
depends on the state of the PCTL pin at the end of 
reset. If PCTL is high at the end of reset, the 80861 
80186 Status interface is selected; if it is low, then 
the MUL TIBUS or Command interface is selected. 

The status lines of the 80286 are,similar in code and 
timing to the Multibus command lines, while the 
status code and timing of the 8086 and 8088 are 
identical to those of the 80186 and 80188 (ignoring 
the differences in clock duty cycle). Thus there ex­
ists two interface configurations, one for the 80286 
status or Multibus memory commands, which is 
called the Command interface, and one for 8086, 

8088, 80186 or 80188 status, called the 8086 Status 
interface. The Command interface can also directly 
interface to the command lines of the bus controllers 
for the 8086, 8088, 80186 and the 80286. 

The 80186 Status interface allows direct decoding of 
the status lines for the iAPX 86, iAPX 88, iAPX 186 
and the iAPX 188. Table 3 shows how the status 
lines are decoded. Microprocessor bus controller 
read or write commands or MUL TIBUS commands 
can also be directed to the 8208 when in Command 
mode. 

Table 3A. Status coding of 8086, 
80186 and 80286 

Status Code Function 
S2 S1 SO 8086/80186 80286· 
0 0 0 INTERRUPT INTERRUPT 
0 0 1 110 READ 110 READ 
0 1 0 110 WRITE 110 WRITE 
0 1 1 HALT IDLE 
1 0 0 INSTRUCTION 

FETCH HALT 
,1 0 1 MEMORY MEMORY 

READ READ 
1 1 0 MEMORY MEMORY 

WRITE WRITE 

1 1 1 IDLE IDLE 
, • Refer 80286 pin deSCription table 

Table 3B. 8208 Response 

8208 Function Command 

8086/80186 80286 Status or 
PCTL RD WR Status Command 

Interface Interface 

0 0 0 IGNORE IGNORE' 

0 0 1 IGNORE READ 

0 1 0 IGNORE WRITE 

0 1 1 IGNORE IGNORE 

1 0 0 READ IGNORE 

1 0 1 READ INHIBIT 

1 1 0 WRITE INHIBIT 

1 1 1 IGNORE IGNORE 
·lIIegal with CFS = 0 

Refresh Options 

Immediately after system reset, the state of the 
REFRQ input pin is examined. If REFRQ is high, the 
8208 provides the user with the choice between 
self-refresh and user-generated refresh with failsafe 
protection. Failsafe protection guarantees that if the 
user does not come back with another refresh 

6-104 



inter 8208 

request before the internal refresh interval counter 
times out, a refresh request will be automatically 
generated. If the REFRQ pin is low immediately after 
a reset, then the user has the choice of a single 
external refresh cycle without failsafe, burst refresh 
or no refresh. 

Internal Refresh Only 

For the 8208 to generate internal refresh requests, it 
is necessary only to strap the REFRQ input pin high. 

External Refresh with Failsafe 

To allow user-generated refresh requests with fail­
safe protection, it is necessary to hold the REFRQ 
input high until after reset. Thereafter, a low-to-high 
transition on this input causes a refresh request to 
be generated and the internal refresh interval coun­
ter to be reset. A high-to-Iow transition has no effect 
on the 8208. A refresh request is not recognized 
until a previous request has been serviced. 

External Refresh without Failsafe 

To generate single external refresh requests without 
failsafe protection, it is necessary to hold REFRQ 
low until after reset. Thereafter, bringing REFRQ 
high for one clock period will cause a refresh re­
quest to be generated. A refresh request is not rec­
ognized until a previous request has been serviced. 

Burst Refresh 

Burst refresh is implemented through the same pro­
cedure as a single external refresh without failsafe 
(i.e., REFRQ is kept low until after reset). Thereafter, 
bringing REFRQ high for at least two clock periods 
will cause a burst of up to 128 row address locations 
to be refreshed. Any refresh request is not recog­
nized until a previous request has been serviced (i.e. 
burst is completed). 

No Refresh 

It is necessary to hold REFRQ low until after reset. 
This is the same as programming External Refresh 
without Failsafe. No refresh is accomplished by 
keeping REFRQ low. 

Option Program Data Word 

The program data word consists of 9 program data 
bits, PDO-PD8. If the first program data bit, PDO is 
set to logic 0, the 8208 is configured to support iAPX 

186, 188, 86, or 88 systems. The remaining bits, 
PD1-PD8, may then be programmed to optimize a 
selected system configuration. A default of all zeros 
in the remaining program bits optimizes the 8208 
timing for 8 MHz Intel CPUs using 150 ns (or faster) 
dynamic RAMs with no performance penalty. 

If the first program data bit is set to logic 1, the 8208 
is configured to support iAPX 286 systems (Com­
mand mode). A default of all ones in the program 
bits optimizes the 8208 timing for an 8 MHz 286 us­
ing 120 ns DRAMs at zero wait states. Note that the 
programming bits PD1-8 change polarity according 
to PDO. This ensures the same choice of options for 
both default modes. 

Figure 5 shows the various options that can be pro­
grammed into the 8208. 

Figure 5. Program Data Word 

Program Name 
Polarity IFunctlon 

Data Bit PD~ = 0 PD~ = 1 

CFS = 0 SLOW CYCLE 
POO CFS CFS CFS = 1 FAST CYCLE 

P01 S S S=O 
SYNCHRONOUS' 

8=1 
ASYNCHRONOUS 

P02 RFS RFS RFS = 0 FAST RAM' 
RFS = 1 SLOW RAM 

P03 RB RB RAM BANK 
OCCUPANCY 
SEE TABLE 2 

P04 CI1 CI1 COUNT INTERVAL BIT 1; 
SEE TABLE 6 

P05 CIO CIO COUNT INTERVAL BIT 0; 
SEE TABLE 6 

P06 PLS PLS PLS = 0 LONG 
REFRESH PERIOD' 

PLS = 1 SHORT 
REFRESH PERIOD -

PO? FFS FFS FFS = 0 FAST CPU 
FREQUENCY' 

FFS = 1 SLOW CPU 
FREQUENCY 

P08 X X X = OAACK' 
X = 1 XACK 

• Default In both modes 

Using an External Shift Register 

The 8208 may be programmed by using an external 
shift register with asynchronous load capability such 
as a 74LS165. The reset pulse serves to parallel 
load the shift register and the 8208 supplies the 
clocking signal (PCLK) to shift the data into the POI 

6-105 



8208 

programming pin. Figure 6 shows a sample circuit 
diagram of an external shift register circuit. 

Serial data is shifted into the 8208 via the POI pin 
(33), and clock is provided by the WE/PCLK pin 
(25), which generates a total of 9 clock pulses. After 
programming is complete, data appearing at the in­
put of the POI pin is ignored. 

WE/PCLK is a dual function pin. Ouring program­
ming, it serves to clock the external shift register, 
and after programming is completed, it reverts to the 
write enable RAM control output pin. As the pin 
changes state to provide the write enable signal to 

the dynamic RAM array, it continues to clock the 
shift register. This does not present a problem be­
cause data at the POI pin is ignored after program­
ming. Figure 7 illustrates the timing requirements of 
the shift register. 

Default Programming Options 

After reset, the 8208 serially shifts in a program data 
word via the POI pin. This pin may be strapped low 
or high, or connected to an external shift register. 
Strapping POI low causes the 8208 to default to the 
iAPX 186 system configuration, while high causes a 

+5V 

O---{l ........... ----O-O-O , • O>-_-IJ 
I I I I 

c 0 E F G H 8208 
RESET SER 

__ - __ ~~~~-~swrn 74LS165 QH \------1 POI 

CLK 

~------~~--------------------------------~RESET 

Figure 6. External Shift Register Interface 

CLK 

...... 4 ...... ~ 

8208 

WE/PCLJ( I--e-l .. 

230734-13 

RESET ________ ~~~-+~~------------------------------
~ 

~~-;-+-1-----.--6 -----.+--------"- ~ ~ 

POI =:) POO X POt. X P02 x= 
230734-14 

NOTES: 
TRTVCL - Reset is an asychronous input, if reset occurs before TRTVCL, then it is guaranteed to be recognized. 
Ti=>GVCL - Minimum POI valid time prior to reset going low. 
TCLPC - MUX/PCLK delay. 
TLOAO - Asychronous load data propagation delay. 

Figure 7. Timing illustrating External Shift Register Requirements for Programming the 8208 

6-106 



8208 

default to the iAPX 286 configuration. Table 4 shows 
the characteristics of the default configuration. If fur­
ther system flexibility is needed, one external shift 
register, like a 74LS165, can be used to tailor the 
8208 to its operating environment. 

Table 4. Default Programming 

Synchronous interface 

Fast RAM (Note 1) 

2 RAM banks occupied 

Refresh interval uses 118 clocks 

128 row refresh in 2ms; 256 row refresh in 4 ms 

Fast processor clock frequency (8 MHz) 

Advanced ACK strobe 

NOTE: 
1. For iAPX 86/186 systems either slow or fast (150 or 
100 ns) RAMS will run at 8 MHz with zero wait states. 

Synchronousl Asynchronous Mode 
(S program bit) 

The 8208 may be independently configured to ac­
~t synchronous or asynchronous commands (RD, 
WR, PCTL) and Port Enable (PE) via the S program 
bit. The state of the S programming bit determines 
whether the interface is synchronous or asynchro­
nous. 

While the 8208 may be configured with either the 
Status or Command (MUL TIBUS) interface in the 
Synchronous mode, certain restrictions exist in the 
Asynchronous mode. An Asynchronous-Command 
interface using the control lines of the MUL TIBUS is 
supported, and an Asynchronous-80186 Status in­
terface using the status lines of the 80186 is sup­
ported, with the use of TIL gates as illustrated in 
Figure 2. In the 80186 case, the TIL gates are need­
ed to guarantee that status does not appear at the 
8208's inputs too much before address, so that a 
cycle would start before address was valid. 

Microprocessor Clock Cycle Option 
(CFS and FFS program bits) 

The 8208 is programmed to interface with micro­
processors with "slow cycle" timing like the 8086, 
8088,80186, and 80188, and with "fast cycle" mi­
croprocessors like the 286. The CFS bit is used to 
select the appropriate timing. 

The FFS option is used to select the speed of the 
microprocessor clock. Table 5 shows the various mi­
croprocessor clock frequency options that can be 
programmed. The external clock frequency must be 
programmed so that the failsafe refresh repetition 

circuitry can adjust its internal timing accordingly to 
produce a refresh request as programmed. 

Table 5. Microprocessor Clock 
Frequency Options 

Program Bits Processor Clock 

CFS FFS Frequency 

0 0 iAPX86, 5MHz 
88, 186, 188 

0 1 iAPX86, 8MHz 
88,186,188 

1 0 iAPX286 10MHz 

1 1 iAPX286 16MHz 

RAM Speed Option (RFS program bit) 

The RAM Speed programming option determines 
whether RAM timing will be optimized for a fast or 
slow RAM. Whether a RAM is fast or slow is mea­
sured relative to 100 ns DRAMs (fast) or 150 ns 
DRAMs (slow). This option is only a factor in Com­
mand Mode (CFS = 1). 

Refresh Period Options (CIO, CI1 and 
PLS program bits) 

The 8208 refreshes with either 128 rows every 2 
milliseconds or with 256 rows every 4 milliseconds. 
This translates to one refresh cycle being executed 
approximately once every 15.6 microseconds. This 
rate can be changed to 256 rows every 2 millisec­
onds or a refresh approximately once every 7.8 mi­
croseconds via the Period Long/Short, program bit 
PLS, programming option. 

The Count Interval 0 (CIO) and Count Interval 1 (CI1) 
programming options allow the rate at which refresh 
requests are generated to be increased in order to 
permit refresh requests to be generated close to the 
15.6 or 7.8 microsecond period when the 8208 is 
operating at reduced frequencies. The interval be­
tween refreshes is decreased by 0%,10%,20%, or 
30% as a function of how the count interval bits are 
programmed. A 5% guardband is built-in to allow for 
any clock frequency variations. Table 6 shows the 
refresh period options available. 

The numbers tabulated under Count Interval repre­
sent the number of clock periods between internal 
refresh requests. The percentages in parentheses 
represent the decrease in the interval between re­
fresh requests. Note that all intervals have a built-in 
5% (approximately) safety factor to compensate for 
minor clock frequency deviations and non-immedi­
ate response to internal refresh requests. 

6-107 



inter 8208 

Table 6. Refresh Count Interval Table 

Count Interval 
Ref. C11,C10 

Period CFS PLS FFS (8208 Clock Periods) 
(""S) 00 01 10 11 

(0% ) (10%) (20%) (30%) 

15.6 1 1 1 236 212 188 164. 

7.8 1 0 1 118 106 94 82 

15.6 1 1 0 148 132 116 100 

7.8 1 0 0 74 66 58 50 

15.6 0 1 1 118 106 94 82 

7.8 0 0 1 59 53 47 41 

15.6 0 1 0 74 66 58 50 

7.8 0 0 0 37 33 29 25 

Processor Timing 

In order to run without wait states, AACK must be 
used and connected to the SRDY input of the appro· 
priate bus controller. AACK is issued relative to a 
point within the RAM cycle and has no fixed relation· 
ship to the processors's request. The timing is such, 
however, that the processor will run without wait 
states, barring refresh cycles. In slow c~cl~, fast 
RAM configurations (8086, 80186), AACK IS Issued 
on the same clock cycle that issues RAS. . 

Port Enable (PE) set-up time requirements depend 
on whether the 8208 is configured for synchronous 
or asynchronous, fast or slow cycle o~ration. In a 
synchronous f~st cycle configuration, PE is required 
to be set-,!!E to the same clock edge ~s the co~­
mands. If PE is true (low), a RAM cycle IS started; If 
not, the cycle is not started until the RD or WR line 
goes inactive. 

In asychronous operation, PE is required to be set­
up to the same clock edge as the internally.synchro­
nized status or commands. Externally, thiS allows 
the internal synchronization delay to be added to the 

status (or command) -to-PE delay time, t"~.iS allowing 
for more external decode time than is available in 
synchronous operation. 

The minimum~nchronization delay is the additional 
amount that PE must be held valid. If PE is not held 
valid for the maximum synchronization delay time, it 
is possible that PE will go invalid prior to the status 
or command being synchronized. In such a case the 
8208 does not start a memory cycle. If a memory 
cycle intended for the 8208 is not started, then no 
acknowledge (AACK or XACK) is issued and the 
processor locks up in endless wait states. 

Memory Acknowledge (AACK, XACK) 

Two types of memory acknowledge Signals are sup­
plied by the 8208. They are the Advanced Acknowl­
edge strobe (AACK) and the Transfer Acknowledge 
strobe (XACK). The S programming bit optimizes 
AACK for synchronous operation ("early" AACK) or 
asynchronous operation ("late" AACK). Both the 
early and late AACK strobes are two clocks long for 
CFS = 0 and three clocks. long for CFS = 1. 

The XACK strobe is asserted when data is valid (for 
reads) or when data may be removed (for writes) 
and meets the MUL TIBUS requirements. XACK is 
removed asynchronously by the command going 
inactive. 

Since in an asynchronous operation the 82?8 re­
moves read data before late AACK or XACK IS rec­
ognized by the CPU, the user must provide for data 
latching in the system 4ntil the CPU reads the data. 
In synchronous operation data latching is unn~ces­
sary, since the 8208 will not remove data until the 
CPU has read it. 

If the X programming bit is high, the strobe is confi~­
ured as XACK, while if the bit is low, the strobe IS 
configured as AACK. 

Data will always be valid a fixed time after the occur­
rence of the advanced acknowledge. Thus, the ad­
vanced acknowledge may also serve as a RAM cy­
cle timing indicator. 

Table 7. Memory Acknowledge Summary 

Synchronous Asynchronous XACK 

AACK Optimized AACK Optimized for 
Multibus Compatible Fast Cycle 

for Local 80286 (early) Remote 80286 (late) 

AACK Optimized AACK Optimized for 
Multibus Compatible Slow Cycle 

for Local 8086/186 (early) Remote 8086/186 (late) 

6-108 



intJ 8208 

General System Considerations 

1. The RASO, 1, CASO, 1 and AOO-8 output buffers 
are designed to directly drive the heavy capacitive 
loads associated with dynamic RAM arrays. To 
keep the RAM driver outputs from ringing exces­
sively in the system environment it is necessary to 
match the output impedance with the RAM array 
by using series resistors. Each application may 
have different impedance characteristics and may 
require different series resistance values. The se­
ries resistance values should be determined for 
each application. 

2. Although the 8208 has programmable options, in 
practice there are only a few choices the designer 
must make. For iAPX 86/186 systems (CFS = 0), 
the C2 default mode (pin 33 tied low) is the best 
choice. This permits zero wait states at 8 MHz with 

80186 

OTHER 
AACK 

SIGNALS 

ADD'" I--JI.......J\I 
OA'. 

pyiii DiN 

PAT .... US 

150 ns DRAM's. The only consideration is the re­
fresh rate, which must be programmed if the CPU 
is run at less than 8 MHz. 

For iAPX 286 systems (CFS = 1) the designer 
must choose between configuration CO (RFS = 
0) and C1 (RFS = 1, FFS = 0). CO permits zero 
wait state, 8 MHz iAPX 286 operaton with 120 ns 
DRAM's. However, for consecutive reads, this 
performance depends upon interleaving between 
two banks. The C1 configuration trades off 1 wait 
state performance for the ability to use 150 ns 
DRAM's. 150 ns DRAMs can be supported by the 
CO configuration using 7 MHz iAPX 286. Finally, 
for non-Intel processors the usual choice is asyn­
chronous, command mode (CO), since status lines 
are not available, Typically, to minimize the 
8208's synchronization delay, the 8208 would be 
run as fast as possible. 

MEMORY 
2184A-1& 
(lDWERI 

230734-15 

Figure 8A. 8208 Interface to an 80186 

6-109 



8208 

+5Y 
RASO m 

RErRQ CASO I-'--t----------I CiS 
+-_r---ti1-~rt----_r-~ClK EMCK 

I=======~ 
S1C64/256-12 

ClK ROY 

SO 
51 

ADDR 01/0 

80286 
WE 

DATA. 

SYSTEM LATCHED 
DATA BUS ADDRESS BUS 

230734-16 

Figure 8B. 8208 Interface to iAPX 286 

6-110 



8208 

Configuration Charts 

The 8208 operates. in three basic configurations­
CO, C1, C2-depending upon ~ programming of 
CFS (PDO), RFS (PD2), and FFS (PD7). Table 8 
shows these configurations. These modes deter­
mine the clock edges for the 8208's programmable 
signals, as shown in Table 9. Finally, Table 10 gives 
the programmable AC parameters of the 8208 as a 
fuction of configuration. The non-programmable pa­
rameters are listed under AC Characteristics. 

(n-1)1 nt nl (n + 1 )t (n + 1 ) 1 
230734-17 

Using the Timing Charts 

The clock edges which trigger transitions on each 
8208 output are tabulated in Table 9. "H" refers to 
the high-going transition, and "L" to low-going tran­
sition. 

The notation used to indicate which clock edge trig­
gers an output transition is "ni" or "n J, ", where 
"n" is the number of clock periods that have passed 
since clock 0, the reference clock, and "i" refers 
to rising edge and" J, " to falling edge. A clock peri­
od is defined as the interval from a clock falling edge 
to the following falling edge. Clock edges are de­
fined as shown below. 

Clock 0 is defined as the clock in which the 8208 
begins a memory cycle, either as a result of a port 
request which has just arrived, or of a port request 
which was stored previously but could not be serv­
iced at the time of its arrival because the 8208 was 
performing another memory cycle. Clock 0 is identi­
fied externally by the leading edge of RAS, which is 
always triggered on O. 

Table 8. 8208 Configurations 

Timing Conf. CFS(PDO) RFS{PD2) FFS{PD7) Wait States' 

Co iAPX286(1) FASTRAM(1) 16 MHz(1) 0 

Cl iAPX286(1) SLOW RAM(O) 16 MHz(1) 1 

Co iAPX286(1) FASTRAM(1) 12 MHz (0) 0 

Co iAPX286(1) SLOW RAM(O) 12 MHz (0) 0 

C2 iAPX186(0) DON'T CARE DON'T CARE 0 
• USing EAACK (synchronous mode) 

Table 9. Timing Chart 

RAS ADDRESS CAS WE EAACK LAACK XACK 

Cn Cycle L H Col Row L H H L L H L H L H 

0 
RD,RF OJ, sJ, OJ, 2J, 1J, 4J, 1J, 4J, 2J, 5J, aJ, RD 

WR OJ, 5J, OJ, sJ, 2J, sJ, 1J, sJ, 1J, 4J, 1J, 4J, sJ, WR 

1 
RD,RF OJ, 4J, OJ, sJ, 1J, 6J, 2J, sJ, 2J, sJ, 4J, RD 

WR OJ, sJ, OJ, sJ, 2J, sJ, 1J, sJ, 1 J, 4J, 1J, 4J, sJ, WR 

2 
RD,RF OJ, 2J, OJ, 2J, OJ, sJ, oj, 2J, 1 J, aJ, 2J, RD 

WR OJ, 4J, OJ, sJ, 1J, 4J, oj, 4J, OJ, 2J, 1J, sJ, 2J, WR 

NOTES FOR INTERPRETING THE TIMING CHART: 
1. COLUMN ADDRESS is the time column address becomes valid. 
2. The CAS, EAACK, LAACK and XACK outputs are not issued during refresh. 
3. XACK-high is reset asynchronously by command ~inactive and not by a clock edge. 
4. EAACK is used in synchronous mode, LAACK and XACK in asynchronous mode. 
5. ADDRESS-Row is the clock edge where the 8208 AO switches from current column address to the next row address. 
6. If a cycle is inhibited by PCTL= 1 (Multibus IIF mode) then CAS is not activated during write cycle and XACK is not 
activated in either read or write cycles. 

6-111 



inter 
8208-DRAM Interface Parameter 
Equations 

8208 

READ, WRITE REFRESH CYCLES 
tRAC: response parameter. 
tCAC: response parameter. 

Several DRAM parameters, but not all, are a direct 
function of 8208 timings, and the equations for these 
parameters are given in the following tables. The fol­
lowing is a list of those DRAM parameters which 
have NOT been included in the following tables, with 
an explanation for their exclusion. 

tREF: See "Refresh Period Options". 
tCRP: must be met only if CAS-only cycles, 

WRITE CYCLE 
tDS: system-dependent parameter. 
tDH: system-dependent parameter. 
tDHR: system-dependent parameter. 

which do not occur with 8208, exist. 
tRAH: See "A.C. Characteristics" 
tRCD:See "AC. Characteristics" 
tASC: See "AC. Characteristics" 
tASR: See "AC. Characteristics" 
tOFF: response parameter. 

Table 10. Programmable Timings 
Read and Refresh Cycles 

Parameter C2-Slow Cycle CO-Fast Cycle C1-Fast Cycle 
tRP 2TCLCL-T25 3TCLCL-T25 3TCLCL-T25 
tCPN 1.5TCLCL-T34 3TCLCL-T34 2TCLCL-T34 
tRSH 2TCLCL-T32 2TCLCL-T33 3TCLCL-T33 
tCSH 3TCLCL-T25 4TCLCL-T25 6TCLCL-T25 
tCAH . 2TCLCL-T32 TCLCL-T33 2TCLCL-T33 
tAR 2TCLCL-T25 2TCLCL-T25 3TCLCL-T25 
tT 3/30 3/30 3/30 
tRC 4TCLCL 6TCLCL 7TCLCL 
tRAS 2TCLCL-T25 3TCLCL-T25 4TCLCL-T25 
tCAS 3TCLCL-T32 3TCLCL-T33 5TCLCL-T33 
tRCS 1.5TCLCL-TCL-T36-TBUF 2TCLCL-TCL-T36-TBUF 2TCLCL-TCL-T36-TBUF 
tRCH TCLCL-T32 & T36 MIN TCLCL-T32 TCLCL-T32 

Write Cycles 

Notes 
1 
1 
1 
1 
1 
1 
2 
1 
1 
1 
1 
1 

Parameter C2-Slow Cycle CO-Fast Cycle C1-Fast Cycle Notes 
tRP 2TCLCL-T25 3TCLCL-T25 3TCLCL-T25 1 
tCPN 2.5TCLCL-T34 4TCLCL-T34 4TCLCL-T34 1 
tRSH 3TCLCL-T32 3TCLCL-T33 3TCLCL-T33 1 
tCSH 4TCLCL-T25 5TCLCL-T25 5TCLCL-T25 1 
tCAH 2TCLCL-T32 TCLCL-T33 TCLCL-T33 1 
tAR 3TCLCL-T25 3TCLCL-T25 3TCLCL-T25 1 
tT 3/30 3/30 3/30 2 
tRC 6TCLCL 8TCLCL 8TCLCL 1 
tRAS 4TCLCL-T25 5TCLCL-T25 5TCLCL-T25 1 
tCAS 3TCLCL-T32· 3TCLCL-T33 3TCLCL-T33 1 
tWCH 3TCLCL-T32 3TCLCL-T33 3TCLCL-T33 1,3 
tWCR 4TCLCL-T25 5TCLCL-T25 5TCLCL-T25 1,3 
tWP 4TCLCL-T36-TBUF 4TCLCL-T36-TBUF 4TCLCL-T36-TBUF 1 
tRWL 4TCLCL-T36-TSUF 4TCLCL-T36-TBUF 4TCLCL-T36-TBUF 1 
tCWL 4TCLCL-T36-TBUF 4TCLCL-T36-TBUF 4TCLCL-T36-TBUF 1 
tWCS TCLCL-T36-TBUF TCLCL-T36-TBUF TCLCL-T36-TBUF 1 

NOTES: 
1. Minimum. 
2. Value on right is maximum; value on left is minimum. 
3. Applies to the eight warm-up cycles during initialization. 

6-112 



inter 8208 

ABSOLUTE MAXIMUM RATINGS 

Ambient Temperature 
Under Bias 

Storage Temperature 
Voltage On Any Pin With 

Respect to Ground 
Power Dissipation 

- O°C to + 70°C 
- 65°C to + 150°C 

-0.5Vto +7V 
1.7 Watts 

* Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOTICE Specifications contained within the 
following tables are subject to change. 

D.C. CHARACTERISTICS TA = O°Cto 70°C; VCC = 5.0V ±10%;VSS = GND 

Symbol Parameter Min 

Vil Input Low Voltage -0.5 

VIH Input High Voltage 2.0 

VOL Output Low Voltage 

VOH Output High Voltage 2.4. 

VROl 
RAM Output 
Low Voltage 

VROH 
RAM Output 

2.6 
High Voltage 

Icc Supply Current 

III Input Leakage Current 

VCl 
Clock Input 

-0.5 
Low Voltage 

VCH 
Clock Input 

3.8 
High Voltage 

CIN Input Capacitance 

NOTE 1: 
IOL = 5 mA and IOH = -0.32 mA (Typically IOL = 10 mAl 
WE: IOL = 8 mA 

A.C. Testing Load Circuit· 

RASO_3 t----...;.;;;JV 

8208 CAS0-3 I-::R-Ao--J\J" \,~ ........ 
AOo_8 >---"0.'''' 

Other Outputs 

RRAS = 3911 
RCAS = 3911 
RAO = 2211 
RL = 3311 

230734-18 

CRAS = 150pF 
CCAS = 150 pF 
CAD = 200 pF 
CL = 50 pF 

6-113 

Max Units Comments 

+0.8 V 

Vcc + 0.5 V 

0.45 V Note 1 

V Note 1 

0.45 V Note 1 

V Note 1 

300 mA TA = O°C 

+10 )J-A OV :s; VIN :s; Vcc 

+0.6 V 

Vcc + 0.5 V 

20 pF fc = 1 MHz 

A.C. Testing Input, Output Waveform 

0_2_:5_--,)\:: :: x ___ _ 
230734-25 

A.C. Testing inputs (except clock) are driven at 2.4V for 
a logic "1" and 0.45V for a logic "0" (clock is driven at 
4.0V and 0.45V for logic "1" and "0" respectively). 
Timing measurements are made at 2.0V. 2.4V for logic 
"1" and 0.8V for logic "0". 



inter 8208 

A.C. CHARACTERISTICS (TA = O·Cto70"C;Vcc = +5V±10%, vss =.OV) 

Measurements made with respect to. RASo_l, CASO_l, ACO_B, are at +2.4V and O.SV. All other pins are 
measured at 2.0V and O.SV. All times are ns unless otherwise indicated. Testing done with specified test load. 

8208-16, 8208 8208-12, 8208-6 
Ref Symbol Parameter (FFS=l) (FFS=O) Units Notes 

Min Max Min Max 

CLOCK AND PROGRAMMING 

IF Clock Fall TIme 10 10 ns 3 

IR Clock Rise TIme 10 10 ns 3 

1 TClCl Clock Period 
8208·16 62.5 250 ns 1 
8208·12 83.3 250 ns 1 
8208 125. SOO ns 2 
8208·6 167 500 ns 2 

2 TCl Clock Low TIme 
8208·16 15 230 ns 1 
8208·12 20 225 ns .1. 
8208 TClCLl2·12 ·ns 2 
8208·6 - TClCLl2·12 ns 2 

3 TCH Clock High Time 
8208·16 20 230 ns 1 
8208·12 25 230 ns 1 
8208 TClCLl3+2 ns 2 
8208-6 TClCl/3+2 ns 2 

4 TRTVCl Reset to ClK J. Setup 40 65 ns 4 

5 TRTH Reset Pulse Width 4TClCl 4TClCl ns 

6 TPGVRTl PCTl, POI, RFRQ 
125 167 ns 5 

to RESET J. Selup 

7 TRTLPGX PCTl,RFRQ 
10 10 ns 

to RESET J. Hold 

8 TClPC PClK Irom ClK J. Delay 45 55 ns 

9 TPDVCl POI to ClK J. Setup 60 85 ns 

10 TClPDX POI to ClK J. Hold 40 55 ns 6 

SYNCHRONOUS "p PORT INTERFACE 

11 TPEVCl PE to ClK J. Setup 30 40 2 

12 TKVCl r:m, WR", J5E, PCTl 
20 25 ns 1 

to ClK J. Setup 

13 TClKX r:m, WR", J5E, PCTl 
·0 0 to ClK J. Hold ns 

14 TKVCH RD,WR,PCTl 
20 30 2 

10 ClK i Setup 
ns 

6-114 



inter 8208 

A.C. CHARACTERISTICS (Continued) 

8208-16,8208 8208-12,8208-6 
Ref Symbol Parameter (FFS=l) (FFS=O) Units Notes 

Min Max Min Max 

ASYNCHRONOUS ,.p PORT INTERFACE 

15 TRWVCl RD. WR to ClK J. Setup 20 30 ns 8.9 

16 TRWl RD. WR Pulse Width 2TClCl + 30 2TClCl + 40 ns 

17 TRWlPEV PE from RD. WR J. Delay 
CFS=l TClCl-20 TClCl-30 ns 1 
CFS=O TClCl-30 TClCl-40 ns 2 

18 TRWlPEX PE to RD. WR J. Hold 2TClCl + 30 2TClCl + 40 ns 

19 TRWlPTV PCTl from RD. TClCl-30 TClCl-40 ns 2 WR J. Delay 

20 TRWlPTX PCTl to RD. WR J. Hold 2TClCl + 30 2TClCl + 40 ns 2 

21 TRWlPTV PCTl from RD. 2TClCl-20 2TClCl-30 ns 1 WRJ. Delay 

22 TRWlPTX PCTllo RD. WR J. Hold 3TClCl + 30 3TClCl.+ 40 ns 1 

RAM INTERFACE 

23 TAVCl AL, AH. BS to ClK J. Setup 45 + IASR 55 + IASR ns 10 

24 TCLAX Al. AH. BS to ClK J. Hold 0 0 ns 

25 TClRSl RAS J. from ClK J. Delay 35 45 ns 

26 TRCD RAS to CAS Delay 
CFS=l TClCl-25 TClCl-30 ns 1.14 
CFS=O TClCl/2-25 TClCl/2-30 ns 2.11.14 
CFS=O 75 60 ns 2.12.14 

27 TClRSH RAS t from ClK J. Delay 50 60 ns 

28 TRAH CFS=l TClCl/2-13 TClCl/2-15 ns 1.13.15 
CFS=O TClCLl4-10 TClCl/4-15 ns 2.11.15 
CFS=O 40 35 ns 2.12.15 

29 TASR Row AO to CAS Hold 10.16 

30 TASC Column AO to CAS J. Setup 
CFS=l 2 5 ns 1.13.17.18 
CFS=O 5 5 ns 2.13.17.18 

31 TCAH Column AO to CAS Hold (See DRAM Inlerface Tables) 

32 TClCSl CAS J. from ClK J. Delay 
CFS=O TClCLl4 + 30 TClCl/1.8 + 53 TClCl/4 + 30 TClCl/1.8 + 72 ns 2 

33 TClCSl CAS J. from ClK J. Delay 
CFS=l 35 40 ns 1 

34 TClCSH CAS t from ClK J. Delay 50 60 ns 

35 TClWl WE J. from ClK J. Delay 35 45 ns 

36 TClWH WE t from ClK J. Delay 
CFS=O TClCl/4 + 30 TClCl/l.8 + 53 TClCl/4 + 30 TClCl/l.8 + 72 ns 2 
CFS=l 35 45 ns 1 

37 TClTKl XACK J. from ClK J. Delay 35 45 ns 

6-115 



8208 , 

A.C. CHARACTERISTICS (Continued) 

8208-16, 8208 8208-12,8208-6 
Ref Symbol Parameter (FFS= 1) (FFS=O) Units Notes 

Min Max Min Max 

RAM INTERFACE (Continued) 

38 TRWlTKH XACK j Irom RD j , 
50 55 ns WRjDelay 

39 TCLAKl AACK.J. Irom CO< .J.. Delay 35 35 ns 

40 TCLAKH AACK j from ClK.J. Delay 50 60 ns 

REFRESH REQUEST 

41 TRFVCl RFRO to ClK.J. Setup 20 30 ns 

42 TClRFX RFRO to ClK.J. Hold 10 10 ns 

43 TFRFH Failsafe RFRO Pulse Width TClCl + 30 TClCl + 50 ns 19 

44 TRFXCl Single RFRO Inactive 20 30 ns 20 to ClK.J. Setup 

45 TBRFH Burst RFRO Pulse Width 2TClCl + 30 2TClCl + 50 ns 19 

The following RC loading is assumed: 
AOO_8 R = 220 C = 2001JF 
RASO_l, CASO_l R = 390 C = 150 pF 
AACK, WE/PClK R = 330 C = 50 pF 

NOTES: 
1. Specification when programmed in the Fast Cycle processor mode (iAPX 286 mode). 8208-16, -12 only. 
2. Specification when programmed in the Slow Cycle processor mode (iAPX 186 mode). 8208-8, -6 only. 
3. tR and tF are referenced from the 3.5V and 1.0V levels. 
4. RESET is internally synchronized to ClK. Hence a set-up time is required only to guarantee its recognition at a particular 

clock edge. 
5. The first programming bit (PDO) is also sampled by RESET going low. 
6. TClPDX is guaranteed if programming data is shifted using PClK. 
8. TRWVCl is not required for an asynchronous command except to guarantee its recognition at a particular clock edge. 
9. Valid when programmed in either Fast or Slow Cycle mode. 

10. IASR is a user specified parameter and its value should be added accordingly to TAVCL. 
11. When programmed in Slow Cycle mode and 125 ns :s; TClCl < 200 ns. 
12. When programmed in Slow Cycle mode and 200 ns :s; TClCL. 
13. Specification for Test load conditions. 
14. tRCD (actual) = tRCD (specification) +0.06 (aCRAS) - 0.06(aCCAS) where aC = C (test load) - C (actual) in pF. (These 
are first order approximations.) 
15. tRAH (actual) = tRAH(specification) + 0.06 (aCRAS) - 0:022 (aCAO) where aC = C (test load) - C (actual) in pF. 
(These are first order approximations.) 
16. IASR (actual) = IASR (specification) +0.06 (aCAO) - 0.025 (aCRAS) where aC = C (test load) - C (actual) in pF. (These 
are first order approximations.) 
17. IASC (actual) = IASC (specification) + 0.06 (aCAO) - 0.025 (aCCAS) where aC (test load) - C (actual) in pF. (These are 
first order approximations.) 
18. IASC is a function of clock frequency and thus varies with changes in frequency. A minimum value is specified. 
19. TFRFH and TBRFH pertain to asynchronous operation only. 
20. Single RFRQ should be supplied synchronously to avoid burst refresh. 

6-116 



intJ 8208 ~OO[g!l.D~DOO~OOW 

WAVEFORMS 

Clock and Programming Timings 

~ ClK 4 ·0 
RESET 5 6 

PCTl 

REFRQ ® @ 
POI POD POl 

WEJPClK :=..J ® ® \- r-
230734-1~ 

RAM Warm-up Cycles 

~----------~;--
WE-::J--r-~f~G----~~~G------------------------~,S~G------------------~'--

lAST RAM WARM-UP 
FIRST RAM WARM·UP CYCLE 

----------------------4 
230734-20 

NOTE: 
The present example assumes a RAS four clocks long. 

Refresh Request Timing 

elK 

FAilSAFE 
REFRESH -----,1 
REQUEST 

SINGLE 
REFRESH ----------' 

REQUEST ~@: 
BURST _ __ 

. :~6~~;~ ----------' 4S --------

230734-21 

6-117 



inter 
WAVEFORMS (Continued) 

Synchronous Port Interface 

COMMAND MODEl 
FAST CYCLE 
AD. W1f.15"E" 

COMMAND MODEl ---+--;--"'" 
FAST CYCLE 
PCTL (INHIBIT) 

COMMAND MODEl 
FAST CYCLE 

8208 

INTERNAL INHIBIT __ -+ __ ;-___ ..... ;.;-________________ _ 

NOTE: 

SLOW CYCLE 
RO,WJi 

SLOW CYCLE 
fie 

SLOW CYCLE 
PCTL 

w---_ 

Actual transitions are programmable. Refer to Tables 8 and 9. 

6-118 

230734-22 



8208 

WAVEFORMS (Continued) 

Asynchronous Port Interface 

ClK 

FAST/SLOW CYCLE 
RD.WR 

~---------QD--+-------~~ 

~-=--------~+-------~~ 
FAST/SLOW CYCLE ---l~...::.i;:""'" 
PE 

SLOW CYCLE 
PCTl 

~------------~GD~'----~~ 
® 

~----~~----+---QDI--4-------~ 
~-----QDI----~~ 

FAST CYCLE 
PCTl (INHIBIT) ____________ -+~ __ ~----~L---------

FAST CYCLE 
INTERNAL INHIBIT 

liAS ---------_ 

6-119 

r------------------------

230734-23 



8208 

WAVEFORMS (Continued) 

RAM Interface Timing 

CLOCK 0 

CLK~~~~ 

COMMAND \ / / " \ r---@ @---
ALO - ALS ::::> 
AHO-AHS K BSO - BS 1 

~ -@---- ®-I---
RAS 

·-.@)r~ 
I 

I 2S 

AOO-AOS ~i f{ 
·@---I -~ -. €9 ---

CAS , I{ 

~ ®I---. 
36 

WE 1 \. 
-

-. @-- ---@--~ XACK , -, --+ 

~l -
AACK 

230734-24 

NOTE: 
Actual transitions are programmable. See Tables 8 and 9. 

6-120 



82C08 
CHMOS DYNAMIC RAM CONTROLLER 

• o Wait State with INTEL • Directly Addresses and Drives up to 1 
Microprocessors Megabyte without External Drivers 

• iAPX 286 } 82C08-20 4-20 MHz • Microprocessor Data Transfer and 
(10, 8, 6 MHz) 82C08-16 4-16 MHz Advance Acknowledge Signals 

82C08-12 4-12 MHz • Five Programmable Refresh Modes 
iAPX 186/88 } 82C08-10 2-10 MHz 

86/88 82C08-8 2-8 MHz • Automatic RAM Warm-up 

• Supports 64K and 256K DRAMS. • Pin-Compatible with 8208 
Optimized for CMOS DRAMs • Plastic DIP 48 Lead 

• Power Down Mode with Programmable PLCC 68 Lead 
Memory Refresh using Battery Backup 

The Intel 82C08 Dynamic RAM Controller is a CMOS, high performance, systems oriented, Dynamic RAM 
controller that is designed to easily interface 64K and 256K Dynamic RAMs to Intel and other microproces­
sors. The 82C08 also has a power down mode where only the refresh logic is activated using battery backup. 

mil, AL4 VCC/VPD 
1!mI AL3 AL5 

AL2 AL6 
ALI AL7 
ALO ALB 
as AHO 

AOO AHI 
AOI AH2 
A02 AH3 
A03 AH4 
A04 AH5 
Vss AH6 
A05 Vss 
A06 AH7 
A07 AH8 
A08 POI 

POD RFRQ 
RASi CLK 
FiASO Fm 
em WJ!I 
CAsO PE 

PDCLK PClL. 
RESET AACKlXACK 

Vce WE/PCLK 

231357-2 

85 ------I 

231357-1 

Figure 1. Block Diagram and Pinout lJagram 

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent 
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. December 1985 
© Intel Corporation, 1985 6-121 Order Number: 231357-003 



Intel 

. Symbol 

ALO 
AL1 
AL2 
AL3 
AL4 
AL5 
AL6 
AL7 
AL8 

AHO 
AH1 
AH2 
AH3 
AH4 
AH5 
AH6 
AH7 
AH8 

as 

AOO 
A01 
A02 
A03 
A04 
A05 
A06 
A07 
A08 

RASO 
RAS1 

RESET 

WEI 
PCLK 

Pin 

5 
4 
3 
2 
1 

47 
46 
45 
44 

43 
42 
41 
40 
39 
38 
37 
35 
34 

7 
8 
9 
10 
11 
12 
13 
14 
15 

19 
18 

21 
20 

23 

25 

Type 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 
o 

o 

82C08 

Table 1. Pin Description 

Naine and Function 

ADDRESS LOW: These lower order address inputs are used to 
generate the column address for the internal address multiplexer. In 
iAPX 286 mode (CFS = 1), these addresses are latched internally. 

ADDRESS HIGH: These higher order address inputs are used to 
generate the row address for the internal address multiplexer. In 
iAPX 286 mode, these addresses are latched internally. 

BANK SELECT: This input is used to select one of the two banks of 
the dynamic RAM array. . 

ADDRESS OUTPUTS: These outputs are designed to provide the row 
and column addresses, of either the CPU or the refresh counter, to the 
dynamic RAM· array. These outputs drive the dynamic RAM array 
directly and need no external drivers. However, they typically need 
series resistors to match impedances. 

ROW ADDRESS STROBE: These outputs are used by the dynamic 
RAM array to latch the row address, present on the AOO-8 pins. 
These outputs are selected by the as pin. These outputs drive the 
dynamic RAM array directly and need no external drivers. 

COLUMN ADDRESS STROBE: These outputs are used by the 
dynamic RAM array to latch the column address, present on the AOO-
8 pins, These outputs are selected by the as pin. These outputs drive 
the dynamic RAM array directly and need no external drivers. 

RESET: This active high signal causes all internal counters to be reset. 
Upon release of RESET, data appe!iring at the POI pin is clocked-in by 
the PCLK output. The states of the POI, PCTL, and RFRQ pins are 
sampled by RESET going inactive and are used to program the 82C08. 
An 8~cycle dynamic RAM warm~up is performed after clocking POI bits 
into the 82C08. 

WRITE ENABLE/PROGRAMMING CLOCK: Immediately after a 
RESET this pin becomes· PCLK and is used to clock serial 
programming data into the POI pin. After the 82C08 is programmed 
this active high signal provides the dynamic RAM array the write 
enable input for a write operation. . 

6-122 



inter 82C08 

Symbol Pin Type Name and Function 

AACK/ 26 0 ADVANCE ACKNOWLEDGE/TRANSFER ACKNOWLEDGE: When the X 
XACK programming bit is set to logic 0 this pin is AACK and indicates that the 

processor may continue processing and that data will be available when 
required. This signal is optimized for the system by programming the S 
program-bit for synchronous or asynchronous operation. The S 
programming bit determines whether this strobe will be early or late. If 
another dynamic RAM cycle is in progress at the time of the new request, 
the AACK is delayed. When the X programming bit is set to logic 1 this pin is 
XACK and indicates that data on the bus is valid during a read cycle or that 
data may be removed from the bus during a write cycle. XACK is, a 
MUL TIBUS compatible Signal. 

PCTL 27 I PORT CONTROL: This pin is sampled on the falling edge of RESET. It 
configures the 82C08 to accept command inputs or processor status inputs. 
If PCTL is low after RESET the 82C08 is programmed to accept bust 
multibus command inputs or iAPX 286 status inputs. If PCTL is high after 
RESET the 82C08 is programmed to accept status inputs from iAPX 86 or 
iAPX 186 type processors. The S2 status line should be connected to this 
input if programmed to accept iAPX 86 or iAPX 186 inputs. When 
programmed to accept bus commands or iAPX 286 status inputs, it should 
be tied low or it may be connected to INHIBIT when operating with 
MULTIBUS. 

PE 28 I PORT ENABLE: This pin serves to enable a RAM cycle request. It is 
generally decoded from the address bus. 

WR 29 I WRITE: This pin is the write memory request command input. This input also 
directly accepts the SO status line from Intel processors. 

RD 30 I READ: This pin is th~read memory request command pin. This input also 
directly accepts the S1 status line from Intel processors. 

CLK 31 I CLOCK: This input provides the basic timing for sequencing the internal 
logic. 

RFRO 32 I REFRESH REQUEST: This input is sampled on the falling edge of RESET. If 
RFRO is high at RESET then the 82C08 is programmed for internal-refresh 
request or external-refresh request with failsafe protection. If RFRO is low at 
RESET then the 82C08 is programmed for external-refresh without failsafe 
protection or burst refresh. Once programmed the RFRO pin accepts 
signals to start an external-refresh with failsafe protection or external-
refresh without failsafe protection or a burst refresh. RFRO is also sampled 
when POD is activated. When RFRO = 1 it will cause 3 burst refresh cycles. 

POI 33 I PROGRAM DATA INPUT: This input is sampled by RESET going low. It 
programs the various user selectable options in the 82C08. The PCLK pin 
shifts programming data into the POI input from an external shift register. 
This pin may be strapped low to a default iAPX 186 mode configuration or 
high to a default iAPX 286 mode configuration. 

'PDD 17 I POWER DOWN DETECT: This input is sampled before every memory cycle 
to inform the 82C08 of system detection of power failure. When active, the 
82C08 remains in power down mode and performs memory refresh only 
(RAS-only refresh). In power down mode the 82C08 uses PDCLK for timing 
and VPD for power. 

'PDCLK 22 I POWER DOWN CLOCK: This pin is used as a clock for internal refresh 
circuits during power down. The input can be asynchronous to pin 31. 
Extended refresh is achieved by slowing down this clock. This pin should be 
grounded if not used. 

'VeeIVpD 48 I POWER: Power supply for internal logic. This should be held active during 
power down. 

Vee 24 I POWER: Supply for drivers. Need not be held active during power down. 

Vss 12 I GROUND 
36 I GROUND 

·Different function than the HMOS 8208, 

6-123 



inter 82C08 

GENERAL DESCRIPTION 

The Intel 82C08 Dynamic RAM Controller is a micro­
computer peripheral device which provides the nec­
essary signals to address, refresh, and directly drive 
64K and 256K dynamic RAMs. 

The 82C08 supports several microprocessor inter­
face options including synchronous' and, asynchro­
nous operations for iAPX 86, iAPX 186, iAPX 286, 
and MUL TIBUS. The 82C08 will also interface to 
non-Intel microprocessors. 

The 82C08 is a CHMOS version of the 8208 and is 
pin compatible with it. Three pins:-17, 22, and 48-
of the 82C08 are different from the 8208. They pro­
vide a power down mode that allows the systE!m to 
run at a much lower ICC. In this mode, thE! 82C08 
rE!freshes the DRAM using battE!ry backup. ThE! pow­
er down current (lpD) that is drawn by the 82C08 is 
VE!ry small compared to thE! Icc which allows mE!mo­
ry to be kept alive with a battE!ry. A sE!paratE! refresh 
clock, pin 22, allows thE! designer to take advantage 
of RAMs that permit extended memory refresh. 

The 82C08 also has some timing changes versus 
the 8208. In order to eliminate the E!xternal bus 
latches, both WE and CAS timings are .shortened. 
These timing changes are backwards-compatible for 
8208 designs. 

FUNCTIONAL DESCRIPTION 

Processor Interface 

The 82C08 has control circuitry capable of support­
ing one of several possible bus structures. The 
82C08 may be programmed to run synchronous or 
asynchronous. to the processor clock. The 82C08 
has been optimized to run synchronously with Intel's 
iAPX 86, iAPX 88, iAPX 186/188 and iAPX 286. 
When the 82C08 is programmed to run in asynchro­
nous mode, the 82C08 inserts the necessary syn­
chronization circuitry for the RD, WR inputs. 

The 82C08 achieves high performance (i.e. no wait 
states) by decoding the status lines directly from the 
processor. The 82C08 can also be programmed to 
receive read or write MUL TIBUS commands or com­
mands from a bus controller. 

The 82C08 may be programmed to operate synchro­
nously to the processor. It can also be programmed 
to run at various frequencies. (See Microprocessor 
Clock Frequency Option.) 

Figure 2 shows the different processor interfaces to 
the 82C08 using the synchronous or asynchronous 
mode and status or command interface. Figure 3 
shows detailed interfaces to the iAPX 186 andiAPX 
286 processors. 

6-124 



Siil------t~ 
808&1 S'il------t 
80186 S21------t~ 

231357-3 

Slow-Cycle Synchronous-Status Interface 

231357-4 

Slow-Cycle Synchronous-Command Interface 

82C08 

231357-5 

Slow-Cycle Asynchronous-Status Interface 

231357-6 

Slow-Cycle Asynchronous-Command Interface 

Figure 2A. Slow-cycle (CFS = 0) Port Interfaces Supported by the 82C08 

6-125 



intJ 82C08 

231357-7 
231357-9 

Fast-Cycle Synchronous-Status Interface Fast-Cycle Asynchronous-Status Interface 

231357-8 231357-10 
'MULTIBUS OPTION 

Fast-Cycle Synchronous-Command Interface Fast-Cycle Asynchronous-Command Interface 

Figure 2B. Fast-cycle (CFS = 1) Port Interfaces Supported by the 82C08 

6-126 



82C08 

Figure 3A. 82C081nterface to an 80186 

OTHEAS~ AACI(. 
SIQNALS 

I J 
"" "" 

l I 
_151T us ~, 

CASCO 
MEMORY 

82C08 «UPPER. .. ~ c •• "0 0., 
~ .. 

IIU00<l1 . r:::o--rf :~" 
w. _____ w. . . 

"·~'·f 
" J .t. ~ 80286 ""/0 .s 

82288,82284 
ACIDII .n 

DATA ~. t--
D·16 m .. i'" iiit ::::::o---w..-

~ ---r-\. 

~ LATCH 
12&2 

~" 
,. 

LS24S 

-

Figure 38. 82C08 Interface to an 80286 

6-127 

r) 
I > 

LATCHED 
ADDRESS BUS 

SYSTEM 
ADDRESS BUS 

231357-11 

MiMORY 

ClowUtl 

Wi .. 
"'11 

} LATCHE 
... ADORES 

o 
5 BUS 

to. SYSTEM 
) DATA BUS 

231357-12 



82C08 

Dynamic RAM Interface 

The 82C08 is capable of addressing 64K and 256K 
dynamic RAMs. Figure 3 shows the connection of 
the processor address bus to the 82C08 using the 
different RAMs. 

All-A19 

NOTES: 

AHG-AH8 

82C08 

256K RAM 
INTERFACE 

(NOTE 1) 

82C08 

64K RAM 
INTERFACE 

231357-13 

1. Unassigned address input pins should be strapped 
high. 
2. AO along with SHE are used to select a byte within a 
processor word. 
3. Low order address bit is used as a bank select input 
so that consecutive memory access requests are to al­
ternate banks allowing bank interleaving of memory 
cycles. 

Figure 3. Processor Address Interface to the 
82C08 Using 64K, and 256K RAMS 

The 82C08 divides memory into two banks, each 
bank having its own Row (RAS) and Column (CAS) 
Address Strobe pair. This organization permits RAM 
cycle interleaving. RAM cycle interleaving overlaps 
the start of the next RAM cycle with the RAM pre­
charge period of the previous cycle. Hiding the pre­
charge period of one RAM cycle behind the data 
access period of the next RAM cycle optimizes 
memory bandwidth and is effective as long as suc­
cessive RAM cycles occur in the alternate banks. 

Successive data access to the same bank cause the 
82C08 to wait for the precharge time of the previous 
RAM cycle. But when the 82C08 is programmed in 
an iAPX 186 synchronous configuration, consecutive 
cycles to the same bank do not result in additional 
wait states (Le. 0 wait state). 

If not all RAM banks are occupied, the 82C08 can 
be programmed to reassign the RAS and CAS 
strobes to allow using wider data words without in­
creasing the loading on the RAS and CAS drivers. 

Table 2 shows the bank selection decoding and the 
corresponding RAS and CAS assignments. For ex­
ample, if only one RAM bank is occupied, then the 
two RAS and CAS strobes are activated with the 
same timing. 

Table 2. Bank Selection Decoding 
and Word Expansion 

Program Bank 
82C08 

Bit Input 
RAS/CAS,Pair Allocation 

RB BS 

0 0 RASo, 1, CASo, 1 to Bank 0 

0 1 Illegal 

1 0 RASo, CASo to Bank 0 

1 1 RAS1, CAS1 to Bank 1 

Program bit RB is not used to check the bank select 
input BS. The system design must protect from ac­
cesses to "illegal", non-existent banks of memory 
by deactivating the PE input when addressing an "il­
legal", non-existent bank of memory. 

The 82C08 adjusts and optimizes internal timings for 
either the fast or slow RAMs as programmed. (See 
RAM Speed Option.) 

Memory Initialization 

After programming, the 82C08 performs eight RAM 
"wake-up" cycles to prepare the dynamic RAM for 
proper device operation. 

Refresh 

The 82C08 provides an internal refresh interval 
counter and a refresh address counter to allow the 
82C08 to refresh memory. The 82C08 has a 9-bit 
internal refresh address counter which will refresh 
128 rows every 2 milliseconds, 256 rows every 4 
milliseconds or 512 rows every 8 milliseconds, which 
allows all RAM refresh options to be supported. In 
addition, there exists the ability to refresh 256 row 
address locations every 2 milliseconds via the Re­
fresh Period programming option. 

The 82C08 may be programmed for any of five dif­
ferent refresh options: Internal refresh only, External 
refresh with failsafe protection, External refresh 
without failsafe protection, Burst refresh modes, or 
no refresh. (See Refresh Options.) 

It is possible to decrease the refresh time interval by 
10%,20% or 30%. This option allows the 82C08 to 
compensate for reduced clock frequencies. Note 

6-128 



inter 82C08 

that an additional 5% interval shortening is built-in in 
all refresh interval options to compensate for clock 
variations and non-immediate response to the inter­
nally generated refresh request. (See Refresh Peri­
od Options.) 

External Refresh Requests after 
RESET 

External refresh requests are not recognized by the 
82C08 until after it is finished programming and pre­
paring memory for access. Memory preparation in­
cludes 8 RAM cycles to prepare and ensure proper 
dynamic RAM operation. The time it takes for the 
82C08 to recognize a request is shown below. 

ego 82C08 System Response: 

TRESP = TPROG + TPREP 

where: TPROG = (40) (TCLCL) programming time 

TPREP = (8) (32) (TCLCL) RAM 

warm-up time 

if TCLCL = 125 ns then TRESP = 37 ILs 

Reset 

RESET is an asynchronous input, its falling edge is 
used by the 82C08 to directly sample the logic levels 
of the PCTL, RFRO, and PDI inputs. The internally 
synchronized falling edge of reset is used to begin 
programming operations (shifting in the contents of 
the external shift register, if needed, into the PDI 
input). 

Differentiated reset is unnecessary when the default 
synchronization programming is used. 

Until programming is complete the 82C08 latches 
but does not respond to command or status inputs. 
A problem may occur if the S bit is programmed in­
consistently from the Command which was latched 
before programming was completed. A simple 
means of preventing commands or status from oc­
curring during this period is to differentiate the sys­
tem reset pulse to obtain a smaller reset pulse for 
the 82C08. 

The differentiated reset pulse would be shorter than 
the system reset pulse by at least the programming 
period required by the 82C08. The differentiated re­
set pulse first resets the 82C08, and system reset 
would reset the rest of the system. While the rest of 
the system is still in reset, the 82C08 completes its 
programming. Figure 4 illustrates a circuit to accom­
plish this task. 

SYSTEM I 
RE~ L--

82C08 i---11~ 
RES~ ________________ _ 

t PROGRAMMING TIME OF 82C08 
1~~=-______ ~~ 

SYSTEM 
RESET 

DIFFERENTIATED RESET 

B2COB 
RESET 

NOTES: 231357-14 
1. Required only when the synchronization option is al­
tered from its initial default value. 
2. Vee must be stable before system reset is activated 
when using this circuit. 

Figure 4. 82C08 Differentiated Reset Circuit 

Within four clocks after RESET goes active, all the 
82C08 outputs will go high, except for AOO-2, which 
will go low. 

OPERATIONAL DESCRIPTION 

Programming the 82C08 

The 82C08 is programmed after reset. On the falling 
edge of RESET, the logic states of several input pins 
are latched internally. The falling edge of RESET ac­
tually performs the latching, which means th~t the 
logic levels on these inputs must be stable prior to 
that time. The inputs whose logic levels are latched 
at the end of reset are the PCTL, RFRO, and PDI 
pins. 

Status/Command Mode 

The processor port of the 82C08 is configured by 
the states of the PCTL pin. Which interface is select­
ed depends on the state of the PCTL pin at the end 
of reset. If PCTL is high at the end of reset, the 
8086/80186 Status interface is selected; if it is low, 
then the MUL TIBUS or Command interface is select­
ed. 

The status lines of the 80286 are similar in code and 
timing to the Multibus command lines, while the 
status code and timing of the 8086 and 8088 are 
identical to those of the 80186 and 80188 (ignoring 
the differences in clock duty cycle). Thus there ex­
ists two interface configurations, one for the 80286 
status or Multibus memory commands, which is 
called the Command interface, and one for 8086, 

6-129 



82C08 

8088, 80186 or 80188 status, called the 8086 Status 
interface. The Command interface can also directly 
interface to the command lines of the bus controllers 
for the 8086, 8088, 80186 and the 80286. 

The 80186 Status interface allows direct decoding of 
the status lines for the iAPX 86, iAPX 88, iAPX 186 
and the iAPX 188. Table 3 shows how the status 
lines are decoded. 

Table 3A. Status Coding of 8086, 
80186 and 80286 

Status Code Function 

S2 Sl SO 8086/80186 80286' 

0 0 0 INTERRUPT INTERRUPT 
0 0 1 1/0 READ 1/0 READ 
0 1 0 1/0 WRITE 110 WRITE 
0 1 1 HALT IDLE 
1 0 0 INSTRUCTION HALT 

FETCH 
1 0 1 MEMORY MEMORY 

READ READ 
1 1 0 MEMORY MEMORY 

WRITE WRITE 
1 1 1 IDLE IDLE 

• Refer to 80286 pin deSCription table 

Table 3B. 82C08 Response 

82C08 Function Command 

8086/80186 80286 Status or 
PCTl RD WR Status Command 

Interface Interface 

0 0 0 IGNORE IGNORE' 

0 0 1 IGNORE READ 

0 1 0 IGNORE WRITE 

0 1 1 IGNORE IGNORE 

1 0 0 READ IGNORE 

1 0 1 READ INHIBIT 

1 1 0 WRITE INHIBIT 

1 1 1 IGNORE IGNORE 
'1lIegal with CFS = 0 

Refresh Options 

Immediately . after system reset, the state of the 
RFRQ input pin is examined. If RFRQ is high, the 
82C08 provides the user with the choice between 
self-refresh and user-generated refresh with failsafe 
protection. Failsafe protection guarantees that if the 
user does not come back with another refresh re­
quest before the internal refresh interval counter 
times out, a refresh request will be automatically 

generated. If the RFRQ pin is low immediately after 
a reset, then the user has the choice of a single 
external refresh cycle without failsafe, burst refresh 
or no refresh. 

Internal Refresh Only 

For the 82C08 to generate internal refresh requests, 
it is necessary only to strap the RFRQ input pin high. 

External Refresh with Failsafe 

To allow user-generated refresh requests with fail­
safe protection, it is necessary to hold the RFRQ 
input high until after reset. Thereafter, a low-to·high 
transition on this input causes a refresh request to 
be generated and the internal refresh interval coun­
ter to be reset. A high-to-Iow transition has no effect 
on the 82C08. A refresh request is not recognized 
until.a previous request has been serviced. 

External Refresh without Failsafe 

To generate single external refresh requests without 
failsafe protection, it is necessary to hold RFRQ low 
until after reset. Thereafter, bringing RFRQ high for 
one clock period will cause a refresh request to be 
generated. A refresh . request is not recognized until 
a previous request has been serviced. 

Burst Refresh 

Burst refresh is implemented through the same pro· 
cedure as a single external refresh without failsafe 
(Le., RFRQ is kept low until after reset). Thereafter, 
bringing RFRQ high for at least two clock periods 
will cause· a burst of up to 128 row address locations 
to be refreshed. A refresh request is not recognized 
until a previous request has been serviced (i.e. burst 
is completed). 

No Refresh 

It is necessary to hold RFRQ low until after reset. 
This is· the same as programming External Refresh 
without Failsafe. No refresh is accomplished by 
keeping RFRQ low. 

Option Program Data Word 

PROGRAMMING FOR SLOW CYCLE 

The program data word consists of 9 program data 
bits, PDO-PD8. If the first program data bit, PD~ is 

6-130 



inter 82C08 

set to logic 0, the 82C08 is configured to support 
iAPX 186, 188, 86, or 88 systems. The remaining 
bits, P01-P08, may then be programmed to opti­
mize a selected system configuration. A default of all 
zeros in the remaining program bits optimizes the 
82C08 timing for 8 MHz Intel CPUs using 150 ns (or 
faster) dynamic RAMs with no performance penalty. 

PROGRAMMING FOR FAST CYCLE 

If the first program data bit is set to logic 1, the 
82C08 is configured to support iAPX 286 systems 
(Command mode). A default of all ones in the pro­
gram bits optimizes the 82C08 timing for an 8 MHz 
286 using 120 ns DRAMs at zero wait states. Note 
that the programming bits P01-8 change polarity 
according to POO. This ensures the same choice of 
options for both default modes. 

Table 4A shows the various options that can be pro-
grammed into the 82C08. . 

Table 4A. Program Data Word 

Program Name 
Polarity/Function 

Data Bit PD~ = 0 PD~ = 1 

CFS = 0 SLOW CYCLE 
PD~ CFS CFS CFS = 1 FAST CYCLE 

PD1 5 S S=O 
SYNCHRONOUS' 

5=1 
ASYNCHRONOUS 

PD2 RFS RFS RFS = 0 FAST RAM' 
RFS = 1 SLOW RAM 

PD3 RB RB RAM BANK 
OCCUPANCY 
SEE TABLE 2 

PD4 CI1 CI1 COUNT INTERVAL BIT 1; 
SEE TABLE 6 

PD5 CIO CIO COUNT INTERVAL BIT 0; 
SEE TABLE 6 

PD6 PLS PLS PLS = 0 LONG 
REFRESH PERIOD' 

PLS = 1 SHORT 
REFRESH PERIOD 

PD7 FFS FFS FFS = 0 FAST CPU 
FREQUENCY' 

FFS = 1 SLOW CPU 
FREQUENCY 

PD8 X X X = OAACK' 
X = 1 XACK 

• Default In both modes 

Using an External Shift Register 

The 82C08 may be programmed by using an exter­
nal shift register with asynchronous load capability 

such as a 7 4HC165. The reset pulse serves to paral­
lel load the shift register and the 82C08 supplies the 
clocking signal (PCLK) to shift the data into the POI 
programming pin. Figure 6 shows a sample circuit 
diagram of an external shift register circuit. 

Serial data is shifted into the 82C08 via the POI pin 
(33), and clock is provided by the WE/PCLK pin 
(25), which generates a total of 9 clock pulses. 

WE/PCLK is a dual function pin. During program­
ming, it serves to clock the external shift register, 
and after programming is completed, it reverts to the 
write enable RAM control output pin. As the pin 
changes state to provide the write enable signal to 
the dynamic RAM array, it continues to clock the 
shift register. This does not present a problem be­
cause data at the POI pin is ignored after program­
ming. Figure 7 illustrates the timing requirements of 
the shift register. 

Default Programming Options 

After reset, the 82C08 serially shifts in a program 
data word via the POI pin. This pin may be strapped 
low or high, or connected to an external shift regis­
ter. Strapping POI low causes the 82C08 to default 
to the iAPX 186 system configuration, while high 
causes a default to the iAPX 286 configuration. Ta­
ble 4B shows the characteristics of the default con­
figuration for Fast Cycle (POI = 1) and Slow Cycle 
(POI = 0). If further system flexibility is needed, one 
external shift register, like a 74HC165, can be used 
to tailor the 82C08 to its operating environment. 

Table 4B. Default Programming 

Synchronous interface 

Fast RAM (Note 1) 

2 RAM banks occupied 

128 row refresh in 2 ms; 256 in 4 ms, 512 in 8 ms 

Fast processor clock frequency 

Advanced ACK strobe 

NOTE: 
1. For iAPX 86/186 systems either slow or fast (150 or 
100 ns) RAMS will run at 8 MHz with zero wait states. 

Synchronous! Asynchronous Mode 
(S program bit) 

The 82C08 may be configured to accept synchro­
nous or asynchronous commands (RO, WR, PCTL) 
and Port Enable (PE) via the S program bit. The 
state of the S programming bit determines whether 
the interface is synchronous or asynchronous. 

6-131 



inter 82C08 

+5V 

o ., 0-0-0 , • o)----1~ 
I I I I 

82C08 
RESET 

ClK 

82C08 

t-----I POI WE/PCLK t--.... ~ 

L------r---------------------------------~RESET 

231357-15 

Figure 6. External Shift Register Interface 

ClK 

..... 4 --'0..-
RESET . 

~~~~ 
. ~,......8,,"-----,

POI =:) POO X PD1 X P02 x:::::
. 231357-16

NOTES: ,
TRTVCL - Reset is an asychronous input, if reset occurs before TRTVCL, then it is guaranteed to be recognized.
TPGVCL - Minimum POI valid time prior to reset going low.
TCLPC - MUX/PCLK delay.
TLOAO - Asychronous load data propagation delay.

Figure 7. Timing Illustrating External Shift Register Requirements for Programming the 82C08

While the 82C08 may be configured with either the
Status or Command (MUL TIBUS) interface in the
Synchronous mode, certain restrictions exist in the
Asynchronous mode. An Asynchronous-Command
interface is directly supported. An Asynchronous-
80186/80286 Status interface using the status lines
of the 80186/80286 is supported with the use of
TIL gates as illustrated in Figure 2. In the 80186
case, the TIL gates are needed to guarantee that
status does not appear at the 82C08's inputs too
much before address, so that a cycle would start
before address was valid. In the case of the 80286,
the TIL gates are used for lengthening the Status
pulse, as required by the TRWL timing.

Microprocessor CloCk Cycle Option
(CFS and FFS program bits)

The 82C08 is programmed to interface with micro­
processors with "slow cycle" timing like the 8086,
8088, 80186, and 80188, and with "fast cycle" mi­
croprocessors like the 80286. The CFS bit is used to
select the appropriate timing.

The FFS option is used to select the speed of the
microprocessor clock. Table 5 shows the various mi­
croprocessor clock frequency options that can be
programmed. The external clock frequency must be

6-132

inter 82C08

programmed so that the failsafe refresh repetition
circuitry can adjust its internal timing accordingly to
produce a refresh request as programmed.

Table 5; Microprocessor Clock
Frequency Options

Program Bits Processor Clock
CFS FFS Frequency

0 0 iAPX86, s 5 MHz
88,186,188

0 1 iAPX86, ~ 6MHz
88,186,188

1 0 iAPX286 s 10 MHz

1 1 iAPX286 ~ 12 MHz

RAM Speed Option (RFS program bit)

The RAM Speed programming option determines
whether RAM timing will be optimized for a fast or
slow RAM. Whether a RAM is fast or slow is mea­
sured relative to 100 ns DRAMs (fast) or 150 ns
DRAMs (slow). This option is only a factor in Fast
cycle Mode (CFS = 1).

Refresh Period Options (CIO, CI1 and
PLS program bits)

The 82C08 refreshes with either 128 rows every 2
milliseconds, with 256 rows every 4 milliseconds or
512 rows every 8 milliseconds. This translates to
one refresh cycle being executed approximately
once every 15.6 microseconds. This rate can be
changed to 256 rows every 2 milliseconds or a re­
fresh approximately once every 7.8 microseconds
via the Period Long/Short, program bit PLS, pro­
gramming option.

The Count Interval 0 (CIO) and Count Interval 1 (Cll)
programming options allow the rate at which refresh
requests are generated to be increased in order to
permit refresh requests to be generated close to the
15.6 or 7.8 microsecond period when the 82C08 is
operating at reduced frequencies. The interval be­
tween refreshes is decreased by 0%,10%,20%, or
30% as a function of how the count interval bits are
programmed. A 5% guard band is built-in to allow for
any clock frequency variations. Table 6 shows the
refresh period options available.

The numbers tabulated under Count Interval repre­
sent the num!Jer of clock periods between internal
refresh requests. The percentages in parentheses
represent the decrease in the interval between re­
fresh requests.

Table 6. Refresh Count Interval Table

Count Interval
Ref. Cll,CIO

Period CFS PLS FFS (82C08 Clock Periods)
(p.S) 00 01 10 11

(0%) (10%) (20%) (30%)

15.6 1 1 1 236 212 188 164

7.8 1 '0 1 118 106 94 82

15.6 1 1 0 148 132 116 100

7.8 1 0 0 74 66 58 50

15.6 0 1 1 118 106 94 82

7.8 0 0 1 59 53 47 41

15.6 0 1 0 74 66 58 50

7.8 0 0 0 37 33 29 25

The refresh count interval is set up for the following
basic frequencies:

5 MHz slow cycle

8 MHz slow cycle

10 MHz fast cycle

16 MHz fast cycle

Example: Best 12 MHz fast cycle performance can
be achieved using the basic frequency of 16 MHz
(CFS = 1, FFS = 1) and the appropriate count in­
terval bits (Cll = 1, CIO = 1) to reduce the frequen­
cy.

clock pariod x rafrash count intarval = rafresh pariod

i.a. 83.3 ns X 164 = 13.6!,-s

Example: 10 MHz slow cycle

CFS = 0, FFS = 1, CI1 = 0, CIO = 0

i.e. 100 ns X 118 = 11.8!,-s

Processor Timing

In order to run without wait states, AACK must be
used and connected to the SRDY input of the appro­
priate bus controller. AACK is issued relative to a
point within the RAM cycle and has no fixed relation­
ship to the processors's request. The timing is such,
however, that the processor will run without wait
states, barring refresh cycles. In slow cycle, fast
RAM configurations (8086, 80186), AACK is issued
on the same clock cycle that issues RAS.

Port Enable (PE) set-up time requirements depend
on whether the 82C08 is configured for synchronous

6-133

inter 82C08

or asynchronous, fast or slow cycle o~ration. In a
synchronous fast cycle configuration, PE is required
to be set-!!E. to the same clock edge as the com­
mands. If PE is true (low), a RAM cycle is started; if
not, the cycle is not started until the RD ot WR line
goes inactive and active again.

In asychronous operation, PE is required to be set­
up to the same clock edge as the internally synchro­
nized status or commands. Externally, this allows
the internal synchronization delay to be added to the
status (or command) -to-PE delay time, thus allowing
for more external decode time than is available in
synchronous operation.

The minimum synchronization delay is the additional
amount that fiE must be held valid. If PE is not held
valid- for the maximum synchronization delay time, it
is possible that fiE will go invalid prior to the status
or command being synchronized. In such a case the
82C08 may not start a memory cycle. If a memory
cycle intended for the 82C08 is not started, then no
acknowledge (AACK or XACK) is issued and the
processor locks up in endless wait states.

Memory Acknowledge (AACK, XACK)

Two types of memory acknowledge signals are sup­
plied by the 82C08. They are the Advanced Ac­
knowledge strobe (AACK) and the Transfer Ac­
knowledge strobe (XACK). The S programming bit
optimizes AACK for synchronous operation ("early"
AACK) or asynchronous operation ('!late" AACK).
Both the early and late AACK strobes are two clocks
long for CFS = 0 and three clocks long for CFS =
1.

The XACK strobe is asserted when data is valid (for
reads) or when data may be removed (for writes)
and meets the MUL TIBUS requirements. XACK is
removed asynchronously by the command going
inactive.

Since in an asynchronous operation the 82C08 re­
moves read data before late AACK or XACK is rec­
ognized by the CPU, the user must provide for data
latching in the system until the CPU reads the data.
In synchronous operation data latching is unneces­
sary, since the 82C08 will not remove data until the
CPU has read it.

If the X programming bit is high, the strobe is config­
ured as XACK, while if the bit is low, the strobe is
configured as AACK.

Data will always be valid a fixed time after the -occur­
rence of the advanced acknowledge. Thus, the ad­
vanced acknowledge may also serve as a RAM cy­
cle timing indicator.

General System Considerations
1. The RASO, 1, CASO, 1, and AOO-8 output buffers

are designed to directly drive the heavy capacitive
loads of the dynamic RAM arrays. To keep the
RAM driver outputs from ringing excessively in the
system environment it is necessary to match the
output impedance with the RAM array by using
series resistors. Each application may have differ­
ent impedance characteristics and may require
different series resistance values. The series re­
sistance values should be determined for each
application. -

2. Although the 82C08 has programmable options,
in practice there are only a few choices the de­
signer must make. ForiAPX 86/186 systems
(CFS = 0) the C2 default mode (pin 33 tied low)
is the best choice. This permits zero wait states at
8 and 10 MHz with 150 ns DRAMs. The only con­
sideration is the refresh rate, which must be pro­
grammed if the CPU is run at less than 8 MHz;

For iAPX 286 systems (CFS = 1) the designer
must choose between configuration CO (RFS =
0) and C1 (RFS = 1, FFS = 0). CO permits zero
wait state, 8 MHz'iAPX 286 operation with 120 ns
DRAMs. However, for consecutive reads, this per­
formance depends on interleaving between two
banks. _ The C1 configuration trades off 1 wait
state performance for the ability to use 150 ns
DRAMs. 150 ns DRAMs can be supported by the
CO configuration using 7 MHz iAPX 286.

3. For non-Intel microprocessors, the asynchronous
command mode would be the best choice, since
Intel status lines are not available. To minimize
the synchronization delay, the 8~C08 should use
a 16 MHz clock. The preferred timing configura­
tion is CO.

Table 7. Memory Acknowledge Summary

Synchronous Asynchronous _ XACK

Fast Cycle AACK Optimized AACK Optimized for Multibus Compatible
for Local 80286 (early) Remote 80286 (late)

Slow Cycle AACK Optimized AACK Optimized for Multibus Compatible
for Local 8086/186 (early) Remote 8086/186 (late)

6-134

inter 82C08

POWER DOWN

During Power Down (PO) mode, the 82C08 will per­
form refresh cycles to preserve the memory content.
Two pins are dedicated to this feature, POD (Power
Down Detect) and PDCLK (Power Down Clock).
POD is used to inform the 82C08 of a system power
failure, and will remain active as long as the power is
down. It is the system's responsibility to detect pow­
er failure and to supply this signal. PDCLK is used to
supply the clock during power down for the 82C08
refresh circuits. It is the system's responsibility to
supply this clock.

Power Supplies

Power down is achieved by eliminating the clock
from all the 82C08 circuits that are not participating
in the refresh generation. The 82C08 has two power
pins (Vee's), one supplies power to the output buff­
ers and the other, to 82C08 logic. All the active cir­
cuits during power down are connected to the logic
Vee, including the active output buffers. Therefore, it
is the user's choice to connect only the logic Vee pin
to the back-up power supply, or to connect both pins
to it. It is recommended, however, to connect both
pins to the same power supply in order to simplify
and to shorten the power up time.

Extended Refresh at Power Down (PO)

To reduce power dissipation during PO, 82C08 will
support the extended refresh cycle of the Intel
51CXXL (e.g. 51C64L). In this mode, the refresh pe­
riod can be extended up to 64 milliseconds versus
4 milliseconds in non-extended cycles. This is
achieved by slowing down the PDCLK frequency.

The user should take into consideration that when
supporting extended refresh during PO, the dynamic
RAM must be refreshed completely within 4 millisec­
onds, without active cycles, both before going into
and after coming out of extended refresh. The
82C08 has the option of performing burst refresh of
all the memory whenever the user cannot guarantee
the 4 milliseconds idle interval. This is achieved by
performing 3 consecutive burst refresh cycles acti­
vated internally by the 82C08.

The option of refreshing all the memory is enabled in
failsafe mode configuration (RFRO input high at re­
set). When 82C08 detects power down, (high level
at POD) it examines the RFRO input. High level at
the RFRO input will cause 3 burst refresh cycles to
be performed. The user should supply the power

and the system clock during the time interval of the
3 burst cycles, e.g. 2310 clock cycles after activating
POD. Low level at RFRO input enables the 82C08 to
enter power down immediately without executing
any bursts.

Power Down Procedure

The 82C08 will preserve the memory content during
the entire period of the system operation. Upon de­
tection of power down, the 82C08 will save internally
its configuration status and the refresh address
counter content, execute 3 burst refresh cycles. (If it
is programmed to failsafe mode and the RFRO input
level is high), it will switch the internal clock from the
system clock (CLK) to the power down clock
(PDCLK) and will continue the refresh to the next
address location. (See Figure 11.)

When power is up again (POD input deactivated),
the 82C08 will issue internal reset which will not
reprogram the device and will not clear the refresh
address counter, and therefore, refresh will continue
to the next address location. After the internal reset,
82C08 performs 3 burst refresh cycles which refresh
the whole memory, as at entering extended PD. This
is done to give the 82C08 enough time to wake up.
Notice, at the time interval of 2310 clocks after pow­
er recovering no memory access will be performed.

82C08 Outputs on Power Down

Four of the 82C08 outputs are not activated during
power down, AACK, CASO-1 and WE. All these out­
puts will be forced to a non-active state, AACK and
CASO-1 will be forced high and WE will be forced
low (External NAND buffer is used to drive the WE
DRAM inputs, hence a high level on the DRAM in­
puts). The other 82C08 outputs, AOO-9 and RASO-
1, will switch to perform the memory refresh in a
"RAS-ONLY REFRESH CYCLE." The RAS outputs
internal pull-ups assure high levels on these outputs,
as close as possible to Vee, for low DRAM power.
The size of the output buffers, in power down, is
smaller than the normal size, and therefore, the
speed of these buffers is slower. It is done in order
to reduce the speed of charging and discharging the
outputs and hence reduce spikes on the power
lines. It is required especially in power down, since
there is only one power supply pin active which
drives the output buffers as well as the internal logic.

All the device inputs, beside POD and PDCLK, will
be ignored during power down.

6-135

'S2COS

esc. J
RAS#

PDCLK J
AO ________________________ ~X~ ____________ _

231357-18

Figure 8

Power Down Detect

As previously mentioned, the PDD input will be sup­
plied by the system to inform the 82C08 of a power
failure. It can be asynchronous since the 82C08 syn­
chronizes it internally. The PDD input will be sam­
pled by the 82C08 before the beginning of every
memory cycle but only after the termination of pro­
gramming and initialization period. The user should
guarantee Vee and ClK stable during the program­
ming and initialization period (300 clocks after RE­
SET). If the whole memory refresh is required (for
extended refresh) then Vee and system clock
should be available 2310 clocks after activating
PDD. If it isn't required then 82C08 should wait for
present memory cycle completion and synchroniza­
tion time which will take about 25 system clock cy­
cles.

With PDD going inactive, the 82C08 synchronizes
the clock back to the ClK clock, issuing internal re­
set and will perform 3 burst refresh cycles.

NOTE:
The power supplies and the ClK should go up be­
fore the PDD is deactivated. All CPU requests will
be ignored when PDD is active.

Refresh during Power Down

The 82C08 has two clock pins, ClK is the system
clock and PDClK is the power down clock. PDClK
should be an independent clock which has its own
crystal oscillator. When entering power down, the
82C08 will disable the system clock internally and
will run with the PDClK. The system clock will be
enabled and the PDClK will be disabled when pow­
er is up. The ClK and PDClK will be switched inter­
nally for the refresh circuits.

, During power down, 'RAS-ONl Y REFRESH' will be
performed by the 82C08, The time interval between
refreshes is 5 PDClKs and this is fixed for all appli­
cations. However, the 82C08 can support the ex­
tended refresh (up to 64 ms) by slowing down the
PDClK frequency.

During the power down refresh cycle, RAS will be
activated for one PDClK cycle only. In extended re­
fresh, the PDClK frequency will be below 50 kHz
and this will cause a long duration of the RAS signal
which will increase the DRAM's current rapidly. To
minimize the RAS low pulse, the two RC networks
shown in Figure 9 are designed to insert one very
fast (1 its) cycle whenever RAS is low (see Figure
8). The time' constant of RC1 and RC2 should be
centered around 300 ns and 100 ns respectively.

LOW FREOUENCY
OSCILLATOR

HC132

82C08

PDCLK
(GND)

RASo

I
Vcc·

231357-19

Figure 9. Low Frequency OSCillator

6-136

intJ 82C08

Power Down Synchronization
The 82C08 main clock (MClK) is generated internal­
ly, from the system clock (ClK) and the power down
clock (PDClK) (see Figure 10), and is driving the
circuits that are active at all times, i.e.: circuits that
are active both in power down mode and in normal
operation. The system clock (ClK) is driving the cir­
cuits that are active in normal operation only, and
the PDClK is driving the circuits that are active in
power down only. The operation of the three clocks
is as follows:

When entering power down mode, and the whole
memory refresh is required, the ClK minimum active
time after PDD is activated is 2310 clocks.

PO ,-
________________ J'

When it isn't required, PDClK should be active, and
ClK should remain active for at least 22 clock cy­
cles + synchronization time, for completion of SSE
write. The synchronization time is the ratio of PDClK
and ClK + 1. Therefore, the ClK minimum active
time after PD is activated:

22 + [CLK(MHz) I PDCLK(MHz) + 11 clock cycles

When the power is up again, PDClK should remain
active at least 4 clock cycles after PD is going inac­
tive, to assure completion of refresh cycle and inter­
nal synchronization time.

\
.~-----------------

ClK n n n n r----------, n n n r
J U LJ LJ LJ __________ LJ LJ LJ LJ

POClK

MClK

POWER DOWN FLOW

OUT

Figure 10

Figure 11

6-137

SET PDFLAQ,
DISABLE WE, AACKIf, CASN
DISABLE elK, ENS PDCLK

231357-20

231357-21

intJ 82C08

Differences Between 8208 and 82C08

The differences between the HMOS 8208 and the
CHMOS 82C08 represent forward compatible en­
hancements. The 82C08 can be plugged into an
8208 socket without changes.

LOGICAL DIFFERENCES
1. 82C08 has one new feature:

Power Down (PO)

2. 82C08 supports CMOS DRAMs with T RAC 100,
150

3. Address Mapping:

Outputs
9 Most 9 Least

Significant Bits Significant Bits

8208 column address row address
82C08 row address column address

4. Slow cycle shortening:

1). the write cycle is two clocks shorter so con­
secutive writes will be executed without wait
states.

2) The WE output is two clocks shorter. There­
fore, an external latch on the WE output is not
necessary.

3) CAS output is shorter by one clock on the read
cycle. This reduces one level of buffers for ad­
dress/data bus needed in 8208 deSigns. Read
access margins are improved to support non­
Intel spec. RAMs.

5. Fast cycle shortening:

1) The write cycle in CO configuration is shortened
by one clock.

2) For both CO and C1 synchronous configuration,
the CAS signal is shorter by one clock and the
activation of RAS is tied to the 02 cycle of the
80286. This prevents contention on the data
bus.

ELECTRICAL DIFFERENCES
1. AC parameters:

1) CAS delay: In C2 synchronous read cycle, the
CAS is deactivated by some delay from clock
falling edge (TCLCSH timing) as in the follow-
ing diagram: .

In C2 write cycles the CAS activation is trig­
gered by the clock falling edge with a delay of
35 ns from the clock. For 8208 the delay is
TP/1.8 + 53.

2) 82C08 has an additional timing parameter
TKNVCH (RD, WR) inactive setup time to
clock.

231357-22

2. DC parameters: The difference is in the current
consumption.

8208
ICC
IPD

300mA
82C08

30 mA (typical)
1 mA· (estimated)

Configuration Charts

The 82C08 operates in three basic configurations­
CO, C1, C2-depending upon the programming of
CFS (PDO), RFS (PD2), and FFS (PD7). Table 8
shows these configurations. These modes deter­
mine the clock edges for the 82C08's programmable
signals, as shown in Table 9. Finally, Table 10 gives
the programmable AC parameters of the 82C08 as a
function of configuration. The non-programmable
parameters are listed under AC Characteristics.

Using the Timing Charts

The notation used to indicate which clock edge trig­
gers an output transition is "n t" or "n.J,", where
"n" is the number of clock periods that have passed
since clock 0, the reference clock, and " t" refers
to rising edge and " .J, " to falling edge. A clock peri­
od is defined as the interval from a clock falling edge
to the following falling edge. Clock edges are de­
fined as shown below.

(n-1)1 ril nl (n+l)1 (n+l)1
231357-23

The clock edges which trigger transitions on each
82C08 output are tabulated in Table 9. "H" refers to
the high-going transition, and "L" to low-going tran­
sition.

6-138

inter 82C08

Clock 0 is defined as the clock in which the 82C08
begins a memory cycle, either as a result of a port
request which has just arrived, or of a port request
which was stored previously but could not be serv-

iced at the time of its arrival because the 82C08 was
performing another memory cycle. Clock a is identi­
fied externally by the leading edge of RAS, which is
always triggered on oJ,.

Table 8. 82C08 Configurations

Timing Conf. CFS(PDO) RFS(PD2) FFS(PD7) Wait States'

Co iAPX286(1) FAST RAM(1) 20 MHz(1) 0

Co . iAPX286(1) FASTRAM(1) 16 MHz(1) a
C1 iAPX286(1) SLOW RAM (0) 16 MHz(1) 1

Co iAPX286(1) FASTRAM(1) 10 MHz (0) a
Co iAPX286(1) SLOWRAM(O) 10-MHz (0) a
C2 iAPX186(0) DON'T CARE DON'T CARE a

• USing EAACK (synchronous mode)

Table 9a. Timing Chart - Synchronous Mode

RAS ADDRESS CAS WE EAACK

Cn Cycle L H Col Row' L H H L L H

a RD,RF oJ, sJ, oJ, 2J, 1J, sJ, 1J, 4J,

WR oJ, 4J, oJ, sJ, 2J, 4J, 1J, 4J, 1J, 4J,

1
RD,RF oJ, 4J, oJ, sJ, 1 J, 5J, 2J, 5J,

WR oJ, 5J, oJ, sJ, 2J, 5J, 1J, 5J, 2J, 5J,

2
RD,RF oJ, 2J, oJ, 2J, oJ, 2J, oJ, 2J,

WR oJ, 2J, oJ, sJ, 1J, sJ, oJ, 2J, oJ, 2J,

Table 9b. Timing Chart - Asynchronous Mode

RAS ADDRESS CAS WE LAACK XAACK

Cn Cycle L H Col Row' L H H L L H L H

a RD,RF oJ, sJ, oJ, 2J, 1J, 4J, 2J, 5J, sJ, RD

WR oJ, 4J, oJ, sJ, 2J, 4J, 1J, 4J, 1J, 4J, sJ, WR

1
RD,RF oJ, 4J, oJ, sJ, 1J, 6J, 2J, 5J, 4J, RD

WR oJ, 5J, oJ, sJ, 2J, 5J, 1 J, 5J, 1J, 4J, sJ, WR

2
RD,RF oJ, 2J, oJ, 2J, oJ, sJ, 1 J, sJ, 2J, RD

WR oJ, 2J, oJ, sJ, 1J, sJ, oJ, 2J, 1t st 2J, WR
..

The only dIfference between the two tables IS the traIling edge of CAS for all read cycle confIguratIons. In asynchro·
nous mode, CAS trailing edge is one clock later than in synchronous mode.

NOTES FOR INTERPRETING THE TIMING CHART:
1. COLUMN ADDRESS is the time column address becomes valid.
2. The CAS, EAACK, lAACK and XACK outputs are not issued during refresh.
3. XACK-high is reset asynchronously by command gOing inactive and not by a clock edge.
4. EAACK is used in synchronous mode, lAACK and XACK in asynchronous mode.
5. ADDRESS· Row is the clock edge where the 82C08 AO switches from current column address to
the next row address.
6. If a cycle is inhibited by PCTl = t (Multibus IIF mode) then CAS is not activated during write
cycle and XACK is not activated in either read or write cycles.
'Column addresses switch to row addresses for next memory cycle. The row address buffer is
transparent following this clock edge. 'TRAH' specification is guaranteed as per data sheet.

6-139

intJ
82C08-DRAM Interface Parameter
Equations

82C08

READ, WRITE REFRESH CYCLES
tRAC: response parameter.
tCAC: response parameter.

Several DRAM parameters, but not all, are a direct
function of 82C08 timings, and the equations for
these parameters are given in the following tables.
The following is a list of those DRAM parameters
which have NOT been included in the following ta­
bles, with an explanation for their exclusion.

tREF: See "Refresh Period Options".
tCRP: must be met only if CAS-only cycles,

which do not occur with 82C08, exist.
tRAH: See "A.C. Characteristics"
tRCD: See "A.C. Characteristics"
tASC: See "A.C. Characteristics"
tASR: See "A.C. Characteristics"

WRITE CYCLE
tOFF: response parameter.

tDS: system-dependent parameter.
tDH: system-dependent parameter.
tDHR: system-dependent parameter.

Table 10. Programmable Timings
Read and Refresh Cycles

Parameter C2-Slow Cycle CO-Fast Cycle C1-Fast Cycle Notes
tAP 2TCLCL-T25 STCLCL-T25 STCLCL-T25 1
tCPN 1.5TCLCL-TS4 STCLCL-TS4 2TCLCL-TS4 1,5
tCPN 2.5TCLCL-TS4 4TCLCL-TS4 STCLCL-TS4 1,4
tASH 2TCLCL-TS2 2TCLCL-TSS STCLCL-TSS 1
tCSH STCLCL-T25 4TCLCL-T25 6TCLCL-T25 1,5
tCSH 2TCLCL + TS4(min)-T25 STCLCL-T25 5TCLCL-T25 1,4
tCAH 2TCLCL-TS2 TCLCL-TSS 2TCLCL-TSS 1
tAA 2TCLCL-T25 2TCLCL-T25 STCLCL-T25 1
tT S/SO S/SO S/SO 2
tAC 4TCLCL 6TCLCL 7TCLCL 1
tAAS 2TCLCL-T25 STCLCL-T25 4TCLCL-T25 1
tCAS STCLCL-TS2 STCLCL-TSS 5TCLCL-TSS 1,5
tCAS 2TCLCL + TS!(min)-TS2 2TCLCL-T25 4TCLCL-TSS 1,4
tACS 1.5TCLCL-TCL-TS6-TBUF 2TCLCL-TCL-TS6-TBUF 2TCLCL-TCL-TS6-TBUF 1
tACH TCLCL-TS2+ TS6 (min.) TCLCL-TS2 TCLCL-TS2 1

Write Cycles

Parameter C2·Slow Cycle CO·Fast Cycle C1·Fast Cycle Notes
tAP 2TCLCL-T25 STCLCL-T25 STCLCL-T25 1
tCPN 1.5TCLCL-TS4 5TCLCL-TS4 4TCLCL-TS4 1
tASH STCLCL-TS2 2TCLCL-TSS STCLCL-TSS 1
tCSH STCLCL-T25 4TCLCL-T25 5TCLCL-T25 1
tCAH 2TCLCL-TS2 TCLCL-TSS TCLCL-TSS 1
tAA STCLCL-T25 STCLCL-T25 STCLCL-T25 1
tT S/SO S/SO S/SO 2
tAC 4TCLCL 7TCLCL 8TCLCL 1
tAAS 2TCLCL-T25 4TCLCL-T25 5TCLCL-T25 1
tCAS 2TCLCL-TS2 2TCLCL-TSS STCLCL-TSS 1
tWCH TCLCL-TS2 2TCLCL-TSS STCLCL-TSS 1,S
tWCA 2TCLCL-T25 4TCLCL-T25 5TCLCL-T25 1,S
tWP 2TCLCL:TS6-TBUF STCLCL-TS6,TBUF 4TCLCL-TS6-TBUF 1
tAWL 2TCLCL-TS6-TBUF STCLCL-TS6-TBUF 4TCLCL-TS6-TBUF 1
tCWL STCLCL-TS6-TBUF STCLCL-TS6-TBUF 4TCLCL-TS6-TBUF 1
tWCS TCLCL + TS6-TS1-TBUF TCLCL + TS6-TS1-TBUF TCLCL+ TS6-TS1-TBUF 1

NOTES:
1. Minimum.
2. Value on right is maximum; value on left is minimum.
S. Applies to the eight warm-up cycles during initialization.
4. For synchronous mode only.
5. For asynchronous mode only.

6-140

inter 82C08

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature
Under Bias

Storage Temperature

Voltage On Any Pin With
Respect to Ground

Power Dissipation

- O°C to + 70°C

- 65°C to + 150°C

-0.5Vto +7V

0.5 Watts

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operaUon of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for
extended periods may affect device reliability.

NOTICE: Specifications contained within the
following tables are subject to change.

D.C. CHARACTERISTICS TA = O°Cto 70°C; Vcc = 5.0V +10%;Vss = GND -
Symbol Parameter Min Max Units Comments

VIL Input Low Voltage -0.5 +0.8 V

VIH Input High Voltage 2.0 Vcc + 0.5 V

VOL Output Low Voltage 0.45 V Note 1

VOH Output High Voltage 2.4 V Note 1

VROL RAM Output Low Voltage 0.45 V Note 1

VROH RAM Output High Voltage 2.6 V Note 1

Icc Supply Current 30 mA Note 3
60 mA TA = 0°

III Input Leakage Current ±10 /J-A OV ~ VIN ~ Vcc

VCL Clock Input Low Voltage -0.5 +0.6 V

VCH Clock Input High Voltage 3.8 Vcc + 0.5 V

CIN Input Capacitance 20 pF fc = 1 MHz

VOHPD RAS Output High Vcc - 0.5 V Note 2
Power Down

IpD Supply Current at
Power Down

NOTE:
1.!oL= 5 rnA and IOH = -0.32 rnA WE: IOL = 8 rnA
2. RAS Output voltage during power down.
3. Typical value.

A.C. Testing Load Circuit

RASO.' ~--'-;';~\I\.I\,._-O

82C08 CASo., 1-=-.....::.;~fV\\r--''''O
A00-8 _RA;.;.;O,"""",,,_-..n

Other Outputs

RRAS = 390
RCAS = 390
RAO = 220

231357-24

CRAS = 150 pF
CCAS = 150 pF
CAO = 200 pF
CL=50pF

6-141

1.0 mA Estimated Value

A.C. Testing Input, Output Waveform

2.4 x::: :::x 0.45

231357-25

A.C. Testing inputs (except clock) are driven at 2.4V for a logic
"1" and 0.45V for a logic "0" (clock is driven at 4.0V and 0.45V
for logic "1"" and "0" respectively). Timing measurements are
made at 2.0V, 2.4V for logic "1" and O.BV for logic "0".

82C08

A.C. CHARACTERISTICS (TA = O°Cto 70°C; Vee = +5V ±10%, VSS = OV)

Measurements made with respect to RASo_1, CASO_1, AOO-B, are at +2.4Vand 0.8V ClK at 3V, 1V. All other
pins are measured at 2.0V and 0.8V. All times are ns unless otherwise indicated. Testing done with specified
test load.

S2COS·20, S2COS·16
S2COS-12

Ref Symbol Parameter S2COS-10, S2COS-S Units Notes
Min Max Min Max

CLOCK AND PROGRAMMING

tF Clock Fall Time 12 12 ns 3

tR Clock Rise Time 12 12 ns 3

1 TClCl Clock Period
82C08-20 50 250 ns 1
82C08-16 62.5 250 ns 1
82C08-12 83.3 250 ns 1
82C08-10 100 500 ns 2
82C08-8 125 500 ns 2

2 TCl Clock low Time
82C08-20 10 230 ns 1
82C08-16 15 230 ns .1
82C08-12 20 225 ns 1
82C08-10 44 ns 2
82C08-8 TClCLl2-12 ns 2

3 TCH Clock High Time
82C08-20 17 230 ns 1
82C08-16 20 230 ns 1
82C08-12 25 230 ns 1
82C08-10 44 ns 2
82C08-8 TClCl/3+2 ns 2

4 TRTVCl Reset to ClK J, Setup 40 65 ns 4

5 TRTH Reset Pulse Width 4TClCl 4TClCl ns

6 TPGVRTl PCTl, POI, RFRO
125 167 5

to RESET J, Setup
ns

7 TRTlPGX PCTl, RFRO
10 10

to RESET J, Hold
ns

8 TClPC PClK from ClK J, Delay 45 55 ns

9 TPDVCl POI to ClK J, Setup 60 85 ns

10 TClPDX POI to ClK J, Hold 40 55 ns 6

SYNCHRONOUS /LP PORT INTERFACE

11 TPEVCl PE to ClK J, Setup 30 40 2

12 TKVCl RD, WR, PE, PCTl
20 25 1

to ClK J, Setup
ns

13 TClKX RD, WR, PE, PCTl
0 0

to ClKJ,Hold
ns

14 TKVCH RD, WR, PCTl
20 30 2

to ClK t Setup
ns

6-142

intJ 82C08

A.C. CHARACTERISTICS (Continued)

82C08·20, 82C08-16
82C08-12

Ref Symbol Parameter 82C08-10, 82C08·8 Units Notes

Min Max Min Max

ASYNCHRONOUS~PPORTINTERFACE

15 TRWVCl RD, WRto 20 30 ns 8.9
ClKJ,Setup

16 TRWl RD, WR Pulse 2TClCl+30 2TClCl+40 ns
Width

17 TRWlPEV PEfromRD,
WRJ, Delay
CFS=1 TClCl-20 TClCl-30 ns 1
CFS=O TClCl-30 ns 2

18 TRWlPEX PEto RD, 2TClCl+30 2TClCl+40 ns
WRJ, Hold

19 TRWlPTV PCTl from RD, TClCl-30 TClCl-40 ns 2
WRJ, Delay

20 TRWlPTX PCTl to RD, 2TClCl+30 2TClCl+40 ns 2
WRJ, Hold

21 TRWlPTV PCTl from RD, 2TClCl-20 2TClCl-30 ns 1
WRJ, Delay

22 TRWlPTX PCTl toRD, 3TClCl+30 3TClCl+40 ns 1
WRJ, Hold

RAM INTERFACE

23 TAVCl Al,AH, BSto 45 + tASR 55 + tASR ns 2
ClK J, Set-up
82C08-20 51 +tASR ns
82C08-16 45 + tASR ns

24 TCLAX Al,AH, BSto 0 0 ns
ClKJ, Hold

25 TClRSl RASJ, from 25 35 ns 1
ClKJ, Delay 35 ns 2

60 60 ns 24

26 TRCD RAS to CAS Delay
CFS=1 TClCl-25 TClCl-30 ns 1,14
CFS=O 30 ns 23
CFS=O TClCl/2-30 ns 2,11,14
CFS=O 60 ns 2,12,14

27 TClRSH RASt from 50 60 ns
ClKJ, Delay 60 60 ns 24

6-143

82C08

A.C. CHARACTERISTICS (Continued)

82C08-20, 82C08-16
82C08-12

Ret Symbol Parameter 8208-10, 82C08-8 Units Notes
Min Max Min Max

RAM INTERFACE (Continued)

28 TRAH 82C08-20 18 13,15
82C08-16 TCLCL/2-13 TCLCLl2-15 ns 13,15
CFS=O TCLCLl4-10 ns 2, 11, 15
CFS=O 20 ns 23

29 TASR RowAO 10,16
RAS,j, Setup

30 TASC ColumnAOto
CAS,j, Setup
CFS=1 2 5 ns 1,13,17,18
CFS=O 5 ns 2,13,17,18
CFS=O 5 ns 23

31 TCAH Column AOto (See DRAM Interface Tables)
CAS Hold

32 TCLCSL CAS,j, from
CLK,j, Delay
CFS=O TCLCLl4+30 TCLCLl1.8 + 53 ns 2,26
CFS=O 50 100 ns 23
CFS=O 35 40 ns 2,27
CFS=1 35 40 ns 1

34 TCLCSH CASt from
TCLCLl4

50 60 ns
CLK,j, Delay TCLCL +50 ns '22

3.2

35 TCLWL WE,j, from 35 45 ns
CLK,j, Delay

36 TCLWH WEt from
CLK,j,Delay
CFS=O TCLCL/4+30 TCLCLl1.8 + 53 2
CFS=1 35 45 ns 1
CFS=O 50 100 ns 23

37 TCLTKL XACK,j, from 35 45 ns
CLK,j, Delay

38 TRWLTKH XACK t from RD t , 50 55 ns
WRt Delay

39 TCLAKL MCK,j, from 35 35 ns
CLK,j, Delay

40 TCLAKH AACKt from 50 60 ns
CLK,j, Delay

6-144

intJ 82C08

A.C. CHARACTERISTICS (Continued)

82COB·20, 82COB·16
B2C08·12

Ref Symbol Parameter 82C08-10, B2C08-B Units Notes
Min Max Min Max

REFRESH REQUEST

41 TRFVCl RFRO to ClK.l,. Setup 20 30 ns

42 TClRFX RFRO to ClK.l,. Hold 10 10 ns

43 TFRFH Failsafe RFRO Pulse TClCl + 30 TClCl + 50 ns 19
Width

44 TRFXCl Single RFRO Inactive 20 30 ns 20
to ClK.l,. Setup

45 TBRFH Burst RFRO Pulse 2TClCl + 30 2TClCl + 50 ns 19
Width

46 TPDVCl POD Setup Time 20 30 ns 24,25

47 TPDHRFX RFRO Valid after 4TClCl + 20 4TClCl + 30
POD Active

4B RFVPDH RFRO Setup Time 0 0 24
to POD Active

The following RC loading is assumed:
AOO-B R = 220 C = 200 pF
RASo_lo CASO_l R = 390 C = 150 pF
AACK, WE/PClK R = 330 C = 50 pF

NOTES:
1. Specification when programmed in the Fast Cycle processor mode (iAPX 2B6 mode). B2COB-20, -16, -12 only.
2. Specification when programmed in the Slow Cycle processor mode (iAPX 1 B6 mode). B2COB-B, -6 only.
3. tR and tF are referenced from the 3.5V and 1.0V levels.
4. RESET is internally synchronized to ClK. Hence a set-up time is required only to guarantee its recognition at a particular

clock edge.
5. The first programming bit (PDO) is also sampl.ed by RESET gOing low.
6. TClPDX is guaranteed if programming data is shifted using PClK.
B. TRWVCl is not required for an asynchronous command except to guarantee its recognition at a particular clock edge.
9. Valid when programmed in either Fast or Slow Cycle mode.

10. tASR is a user specified parameter and its value should be added accordingly to TAVCL.
11. When programmed in Slow Cycle mode and 125 ns ,;;; TClCl < 200 ns.
12. Wh.en programmed in Slow Cycle mode and 200 ns ,;;; TClCL.
13. Specification for Test load conditions.
14. tRCD (actual) = tRCD (specification) +0.06 (~CRAS) - 0.06{~CCAS) where ~C = C (test load) - C (actual) inpF.
(These are first order approximations.)
15. tRAH (actual) = tRAH (specification) + 0.06 (~CRAS) - 0.022 (~CAO) where ~C = C (test load) - C (actual) in pF.
(These are first order approximations.)
16. tASR (actual) = tASR (specification) +0.06 (~CAO) - 0.025 (~CRAS) where ~C = C (test load) - C (actual) in pF.
(These are first order approximations.)
1.7. tASC (actual) = tASC (speCification) +0.06 (~CAO) - 0.025 (~CCAS) where ~C (test load) - C (actual) in pF. (These
are first order approximations.) .
1 B. tASC is a function of clock frequency and thus varies with changes in frequency. A minimum value is specified.
19. TFRFH and TBRFH pertain to asynchronous operation only.
20. Single RFRO should be supplied synchronously to avoid burst refresh.
22. CFS = 0, synchronous mode, Read cycle.
23. For 10 MHz Slow Cycle only.
24. Power down mode.
25. POD is internally synchronized. A setup time is required only to guarantee its recognition at a particular clock edge.
26, Slow Cycle Read only.
27. Slow Cycle Write only.

6-145

intJ 82C08

WAVEFORMS

CLOCK AND PROGRAMMING TIMINGS

ClK

,RESET _n*--"'"'\

PCTl --~Fiiil_r=;;---

REFRQ ® @
PDI PD~ PDl

WE/PClK -==.J----,~/?--------..:.....~1®-8---®;;..8 ~
231357-26'

RAM WARM-UP CYCLES

'~~"~~f-'-":""------
RASC/ ~~'-_~ ____ .Jr
WE .-J I' 51 h'-.

lAST RAM WARM-UP
FIRST RAM WARM·UP CYCLE

PROGRAMMING
i RESET
~--~--~-----------------~-----------~

NOTE:
231357-27

The present example assumes a RAS four clocks long.

REFRESH REQUEST TIMING

Cl.K

==---"""'\1 REQUEST

SINGLE == _______ ..J

BURST

==~ -------
1 L....l
I I
I t-+----- I

POD f .. , 1

AFRO ==><--+-1 -+------>c
1 4• I

231357-28

6-146

infef
WAVEFORMS (Continued)

SYNCHRONOUS PORT INTERFACE

COMMAND MODEl
FAST CYCLE
1m, WI" PE"

COMMAND MODEl --+--+-_
FAST CYCLE
PCTL (INHIBIT)

COMMAND MODEl
FAST CYCLE

82C08

INTERNAL INHIBIT --+--1----""+----------------

NOTE:

SLOW CYCLE
RD,WR

~OWCYCLE

SLOW CYCLE
PCTL

RAS--__ ,

Actual transitions are programmable. Refer to Tables 8 and 9.

6-147

231357-29

inter 82C08

WAVEFORMS (Continued)

ASYNCHRONOUS PORT INTERFACE

ClK

FAST/SLOW CYCLE
RD,WR

~--------~--r-------~~

~----------~+--------r~
FAST/SLOW CYCLE _--1"""-"';;;':;"'"
PE

SLOW CYCLE
PCTl

~-------------+~I------+-

~------------~---QDI---r--------~
~~---~I----~~

FAST CYCLE
PCTl (INHIBIT)

--------------~~----~----~-----------

FAST CYCLE
INTERNAL INHIBIT

m ---------""\.

6-148

r------------------------
I

231357-30

82C08

WAVEFORMS (Continued)

RAM INTERFACE TIMING

CLOCK 0

ClK

COMMAND --~----~------------'-~----------~----~-------f

AlO - Ala
AHa - AHa
BSo- BS,

RAS --------~--~I

ADO - AOa _________ p ________ ~ +_+--~'\.------------_------_-----------
-@)~

CAS --------~------......;;;....,--_i_I ~-I------

WE

XACK
@~

AACK -, -@r
231357-31

NOTE:
Actual transitions are programmable. See Tables 8 and 9.

6-149

8207

8207 User's Manual

AUGUST 1983

NOVEMBER 1983

6-150 ORDER NUMBER: 230822-002

8207

CHAPTER 1
INTRODUCTION

This guide is a supplement to the 8207 Data Sheet 1 and is intended as a design aid and not a stand­
alone description of the 8207. The reader should already have read and have a copy of the 8207 Data
Sheet, 8206 Error Detection and Correction Unit Data Sheet (EDCU), a microprocessor Data Sheet,
or a Multibus bus specification for interfacing to the 8207, and a dynamic RAM Data Sheet2.

The Intel 8207 Advanced Dynamic RAM Controller is a high performance, highly integrated device
designed to interface 16k, 64k, and 256k dynamic RAMS to Intel microprocessors. The 8207, with
the 8206, provides complete control for memory initialization, error correction, and automatic error
scrubbing.

The 8207 has several speed selected versions. The -16 and -12 parts are for clock speeds up to 16MHz and 12
MHz in "fast cycle" configurations, and up to 8 MHz and 6 MHz in "slow cycle" configurations. The -8 and -6
parts can only be used in slow cycle configurations and as a result have some relaxed A.C. timings.

NOTE:

(I) The most current Data Sheet is dated July, 1984
(2) All RAM cycle timings and references are based on Intel's 2164A Dynamic RAMs, APR '82

6-151 230822-002

8207

CHAPTER 2
PROGRAMMING THE 8207

The many configurations of bus structures, RAM speeds, and system requirements that the 8207
supports require the 8207 to be programmable. The 8207 will modify its outputs to provide the best
performance possible. The 8207 must be told what type of interface the memory commands will
arrive on, what type of RAM (speed, refresh rate) is being used, the clock rate, and others.

The 8207 uses two means to be informed of the user's requirements. It reads in a 16 bit serial program
word and examines the logic states on several input pins. The pins that are sampled for a logic level
give the user options on the types of refresh and memory command input timing.

Input Pin Options

The three input pins that configure part of the 8207 are: PCTLA, PCTLB, and REFRQ. Let's
examine the options in refresh types the REFRQ pin provides.

Refresh types:

The 8207 gives the user a choice of the following refresh types.

1) Internal Refresh: All refresh cycles are generated internally - based on an internal
programmable time.

2) External Refresh with Failsafe: If the external logic does not generate a refresh cycle within
the programmed period, the 8207 will.

3) External Refresh - No Failsafe or No Refresh; All refresh cycles are generated at times
by the user. This is for systems that cannot tolerate the random delay imposed by refresh
(i.e. graphics memory).

4) Burst Refresh: The 8207 generates up to 128 consecutive refresh cycles and must be requested
by external logic. Memory requests will be performed when the burst is completed.

The 8207 examines the state of the REFRQ pin when RESET goes inactive. This timing is shown in
the "Clock and Programming Timings" waveforms in the Data Sheet.

If REFRQ is sampled active by the falling edge of RESET, the 8207's internal timer is enabled. The
timer's period is determined by the CIO, Cll, and PLS bits in the program word. External refresh
cycles are generated by a low to high transition on the REFRQ input. This transition, besides generating
a refresh cycle, also resets the internal timer to zero. Simply tie REFRQ to Vcc if internal refresh
is required.

If REFRQ is seen low at the falling edge of RESET, the internal timer is deactivated. All refresh cycles
must either be done by external logic or by accessing all RAM (internal) rows within a 2 ms period.

Once the no failsafe option is programmed, the 8207 will generate a burst of up to 128 refresh cycles
when the REFRQ input goes from low to high and sampled high for two consecutive clock edges.
These cycles are internally counted and the 8207 stops when the refresh address counter reaches the
value XXI1111112 (X = don't care; see Refresh Counter section). If prior to the burst request the
counter is at XX 11111102 then only 2 refresh cycles would be generated.

6-152 230822-002

inter 8207

For a single refresh cycle to be generated via external logic, the REFRQ input will have to go from
low to high and then sample high by a falling 8207 clock edge. Since external refresh requests typically
arrive asynchronously with respect to the 8207's clock, this requires the REFRQ to be synchronized
to the 8207 clock when programmed in the failsafe mode. This is to ensure that the request is seen
for one clock - no more, no less. If no external synchronization is performed, then the 8207 could
do random burst cycles.

Processor Interface Options:

The PCTLA, PCTLB input pins will program the 8207 to accept either the standard demultiplexed
RD and WR inputs, or to directly decode the status outputs of Intel's iAPX86, 88 family of
microprocessors. The state definitions of the status lines and their timings, relative to the processor
clock, differ for the 8086 family and the iAPX286 processor. Table 1 illustrates how the 8207
interprets these inputs after the PCTL pins are programmed.

If PCTL is seen high, as RESET goes inactive, and 8086 status interface is enabled. The commands
arriving at the 8207 are sampled by a rising clock edge. When PCTL is low, the 80286 status and
Multibus command interface is selected. These commands are sampled by the 8207 by a falling clock
edge.

More information on interfacing to processors is contained in the Microprocessor Interface section.

Table 1. Status Coding of 8086, 80186 and
80286

Status Code Function

S2 S1 SO 8086/80186 80286

0 0 0 Interrupt Interrupt

0 0 1 I/O Read I/O Read

0 1 0 I/O Write I/O Write

0 1 1 Halt Idle

1 0 0 Instruction Halt
Fetch

1 0 1 Memory Read Memory Read

1 1 0 Memory Write Memory Write

1 1 1 Idle Idle

Programming Word

8207 Response

8207 Function
Command

8086 Command
PCTL RD WR Status

Interface
Interface

0 0 0 Ignore Ignore

0 0 1 Ignore Read

0 1 0 Ignore Write

0 1 1 Ignore Ignore

1 0 0 Read Ignore

1 0 1 Read Inhibit

1 1 0 Write Inhibit

1 1 1 Ignore Ignore

The 8207 requires more information to operate in a wide variety of systems. The 8207 alters its
timings and pin functions to operate with the 8206 ECC chip. The programming options allow the
designer to use asynchronous or synchronous buses, various clock rates, various speeds and types of
RAM, and others. This is detailed in Table 2.

This data is supplied to the 8207 over the PDI input pin. There are two methods of supplying this
data. One is to strap the PDI pin high or low with the subsequent restrictions on your system. Table

6-153 230822-002

8207

3 shows the required system configuration. Note that your only option when strapping this pin high
or low is error correction or not.

If any other configurations are required, then the programming data will have to be supplied by one
or two 74LS165 type shift registers. Note that the sense of the bits in the program word change
between ECC and non-ECC configurations.

Table 2a.
Non-ECC Mode Program Data Word

PD15 PD8 PD7 PD~

I 0 I o I TM1 I PPR I FFS I EXT I PLS I CIO I CI1 I RB1 I RBO I RFS I CFS I SB SA o I
Program
Data Bit Name Polarity/Function

PD~ ECC ECC = 0 For non-ECC mode

PD1 SA SA = 0 Port A is synchronous
SA = 1 Port A is asynchronous

PD2 SB SB = 0 Port B is asynchronous
SB = 1 Port B is synchronous

PD3 CFS CFS = 0 Fast-cycle iAPX 286 mode
CFS = 1 Slow-cycle iAPX 86 mode

PD4 RFS RFS = 0 Fast RAM
RFS = 1 Slow RAM

PD5 RBO RAM bank occupancy ,

PD6 RB1 See Table 4

PD7 CI1 Count interval bit 1: see Table 6 in 8207 data sheet
PD8 CIO Co.unt interval bit 0: see Table 6 in 8207 data sheet

PD9 j5[S PLS = 0 Long refresh period
PLS = 1 Short refresh period

PD10 EXT EXT = 0 Not extended
EXT = 1 Extended

PD11 FFS FFS = 0 Fast CPU frequency
FFS = 1 Slow CPU frequency

PD12 PPR PPFi = 0 Most recently used port priority
PPR = 1 Port A preferred priority

PD13 TM1 TM1 = 0 Test mode 1 off
TM1 = 1 Test mode 1 enabled

PD14 0 Reserved must be zero

PD15 0 Reserved must be zero

6-154 230622-002

8207

Table 2b
ECC Mode Program Data Word

PD15 PD8 PD7 PDO

I TM21 RB1 I RBO I PPR I FFS I EXT I PLS I CIO I CI1 I XB XA I RFS I CFS I SB SA I 1 I
Program
Data Bit Name Polarity/Function

PDO ECC ECC = 1 ECC mode

PD1 SA SA = 0 Port A is asynchronous (late AACK)
SA = 1 Port A is synchronous (early AACK)

PD2 SB SB = 0 Port B is synchronous (early AACK)
SB = 1 Port B is asynchronous (late AACK)

PD3 CFS CFS = 0 Slow-cycle iAPX 86 mode
CFS = 1 Fast-cycle iAPX 286 mode

PD4 RFS RFS = 0 Slow RAM
RFS = 1 Fast RAM

PD5 XA XA = 0 Multibus-compatible XACKA
XA = 1 AACKA not multibus-compatible

PD6 XB XB = 0 AACKB not multibus-compatible
XB = 1 Multibus-compatible XACKB

PD7 CI1 Count interval bit 1: see Table 6 in 8207 data sheet
PD8 CIO Count interval bit 0: see Table 6 in 8207 data sheet

PD9 PLS PLS = 0 Short refresh period
PLS = 1 Long refresh period

PD10 EXT EXT = 0 Master and slave EDCU
EXT EXT = 1 Master EDCU only

PD11 FFS FFS = 0 -Slow CPU frequency
FFS = 1 Fast CPU frequency

PD12 PPR PPR = 0 Port A preferred priority
PPR = 1 Most recently used port priority

PD13 RBO RAM bank occupancy
PD14 RB1 See Table 4

PD15 TM2 TM2 = 0 Test mode 2 enabled
TM2 = 1 Test mode 2 off

Table 3. 8207 Default Programming

Port A is Synchronous-has early AACK

Port B is Asychronous-has late AACK

Fast RAM

Refresh Interval uses 236 clocks

128 Row refresh in 2 ms; 256 Row refresh in 4 ms

Fast Processor Clock Frequency (16 MHz)

"Most Recently Used" Priority Scheme

4 RAM banks occupied

6-155 230822-002

8207

Reset

If Port A is changed to an asynchronous interface (via the SA bit), then one of two precautions must
be taken. Either a differentiated reset must be provided, or else software must not access the 8207
controller RAM for a short period. The 8207 is either adding or deleting internal synchronizing
circuits. If a command is received during this changing, the 8207 may not perform properly. This
is required only if Port A is changed to asynchronous, or if Port B is changed to synchronous.

Several of the bits in the program word determine a particular configuration of the 8207 (reference
Tables 10, 11 and the 8207 Data Sheet). The bits are: CFS, CLOCK fast or slow; RFS, RAM access
time fast or slow (fast refers to 100 ns - slow is everything greater); and EXT, for memory data word
widths greater than 16 (22) bits. Generally speaking, CO is the fastest configuration at clock
frequencies up to 16 MHz, both in the ECC or non-ECC charts. 'C3' is the fastest for 8 MHz clocks
in non-ECC mode, and 'C4' is the fastest configuration when using ECC.

Take, for example, a 16 MHz 8207 clock with no error correction, a 16 bit word, and 150 ns (slow) dynamic
RAMs. Table 10, in the 8207 data sheet, is used to arrive at the configuration "CI."The Timing chart Table 12
in the 8207 Data Sheet is then used to determine which clock edge to reference all timings from. The
Waveforms diagrams then are used to determine the delay from the clock edge.

6-156 230822-002

8207

CHAPTER 3
'RAM INTERFACE

The 8207 takes the memory addresses from the microprocessor bus and multiplexes them into row
and column addresses as required by dynamic RAMs. The only hardware requirement when inter­
facing the 8207 to dynamic RAM are series resistors on all the RAM outputs of the 8207, and proper
layout of the traces (see Intel's RAM Data Sheets or the Memory Design Handbook). This section
mainly details the effects and requirements of input signals to the 8207 on the RAM array.

The 8207 contains an internal address counter used for refresh and error scrubbing (when using the
8206 EDCU) cycles. The 8207 has 18 address inputs (AILO-AIL8 and AIHO-AIH8) which are multiplexed
to form 9 address outputs (AOO-A08). There are also 2 bank select (BSO, BSl) inputs for up to 4 banks
of RAM. The Bank Select inputs are decoded internally to generate RAS and CAS outputs.

Refresh Interval

The 8207 supports four different refresh techniques as described in the Refresh Options section. In
addition, the rate at which refresh cycles are performed is programmable. This is necessary because
the refresh period is generated from the CLK input, which may vary over a wide range of frequencies.
Programming the Cycle Fast/Slow (CFS) and Frequency Fast/Slow (FFS) bits automatically reprograms
the refresh timer to generate the correct refresh interval for a clock frequency of 16, 10, 8, or 5 MHz
(CFS, FFS = 11, 10,01, and 00, respectively). For clock frequencies between those, Count Interval
(Cll, CIO) programming bits allow "fine tuning" of the refresh interval. Refresh will always be done
often enough to satisfy the RAM's requirements without doing refresh more often than needed and
wasting memory bandwidth for all clock frequencies.

Refresh Counter

The internal refresh address counter of the 8207 contains 20 bits as organized in Figure 1.

17 16 15 14 13 12 11 10 9
Col addr

8 7 6 5 4 3 2
Rowaddr

Figure 1. 8207 Refresh Address Counter'

o

In non-ECC mode, the refresh address counter does not count beyond bit 8. For standard RAMs,
this will refresh 128 rows every 2 ms or 256 rows every 4 ms.

In ECC mode, the 8207 automatically checks the RAM for errors during refresh. This requires it to
access each of the possible 220 words of memory. The 8207 does not delete any of these bits when
used with 16k and 64k dynamic RAMs. Each column would be scrubbed 4 times with 16k RAMs,
and twice with 64 RAMs. This will have no detrimental effect on reliability. Banks of RAM that are
not occupied, as indicated to the 8207 by the RBO, RBI programming bits, will not be scrubbed.

Bank Selects BSO, BS1; RBO, RB1

The 8207 is designed to drive up to 88 RAMs in various configurations. The 8207 takes 2 inputs, BSO,
BSl, and decodes them based on 2 programming bits, RBO, RBI, to generate the required RAS/CAS
strobes. Additionally, the 8207 will always recognize (not programmable) whether an access is made
to the same RAM bank or to a different bank. The 8207 will interleave the accesses resulting in
improved performance.

6-157 230822-002

8207

RAS and CAS Reallocation

The 8207's address lines are designed to drive up to 88 RAMs directly (through impedance matching
resistors). The 4 RAS and CAS outputs drive up to 22 RAMs per bank (16 data plus 6 check bits
with the 8206). Under these conditions, the 8207 will meet all RAM timing requirements. See
Figure 2 for an example. -

RASO
CASO 8 BITS 8 BITS

RAS1
8 BITS CAS1 8 BITS

8207
AOO·8

RAS2
8 BITS CAS2 8 BITS

BSO
BS1

RAS3
CiiS:i 8 BITS 8 BITS

'ECC OPTIONAL

Figure 2. 8207 4 RAM Bank Configuration

The 8207 can accommodate other configurations like a 32 bit error corrected memory system. Each
bank would have 39 RAMs (32 + 7 check bits) with the total number of RAMs equal to 78. This is
within the address drivers capability, but the 39 RAMs per bank exceeds the RAS and CAS drivers
limits. The loading of the RAS/CAS drivers should not exceed 22 RAMs per bank, otherwise critical
row, column address setup, and hold times would be violated.

In order to prevent these critical timings being violated, the 8207 will re-allocate the RAS and CAS
drivers based on the RBO, RBI programming bits (see Table 4). If the RBO, RBI bits are programmed
for 2 banks, the 8207 will operate RASO and RASI as a pair along with RAS2 and ~, CASU and
CASI, and CAS2 and CAS3. Now the address drivers would be loaded by 78 RAMs and the RAS/CAS
drivers by 20 RAMs. This relative loading is almost identical to the first case of four banks of
22 RAMs each. Drive reallocation allows a wide range of memory configurations to be used and still
maintain optimal memory timings. Figure 3 shows a 32 bit non-error corrected configuration.

These programming bits do not help to qualify RAM cycles. Their purpose is to'reallocate RAS/CAS
drivers. For example, if there is one bank of RAM and the bank select inputs (BSO, BSI) select any
other bank and no provision is made to deselect the 8207 (via PEl, the 8207 will do a RAM cycle
and issue an acknowledge. This happens irregardless of the RBO, RBI programmed value. See the
Optional RAM Bank's section to provide for this.

6-158 230822-002

RAS1
CAS1

RASO
CASO

AOO-8

RAS2
CAS2

C>- BSO
BS1

~ RAS3
CAS3

8207

8207

Table 4. RAM Bank Selection Decoding
and Word Expansion

Program Bank
. Bits Input RASICAS Pair Allocation

RB1 RBO B1 BO

0 0 0 0 RASO-3, CASO_3 to Bank 0

0 0 0 1 Illegal Bank Input

0 0 1 0 Illegal Bank Input

0 0 1 1 Illegal Bank Input

0 1 0 0 ~0,1' CASO,1 to Bank 0

0 1 0 1 RAS2,3, CAS2,3 to Bank 1

0 1 1 0 Illegal Bank Input

0 1 1 1 Illegal Bank Input

1 0 0 0 RASO, CASO to Bank 0

1 0 0 1 RAS1, CAS1 to Bank 1

1 0 1 0 RAS2, CAS2 to Bank 2

1 0 1 1 Illegal Bank Input .

1 1 0 0 RASO, CASO to Bank 0

1 1 0 1 RAS1, CAS1 to Bank 1

1 1 1 0 RAS2, CAS2 to Bank 2

1 1 1 1 RAS3, CAS3 to Bank 3

~ ~
16 BITS I L-=:f

I r-S ~ ~
16 BITS ;-

Figure 3. 8207 2 RAM Bank Configuration

6-159

16 BITS I
16 BITS I

230822-002

inter 8207

Scrubbing

An additional function of the RBO, RBI bits, besides RAS/CAS allocation, is to inform the 8207
of how many banks are physically present. The 8207 will, during the refresh cycle, read data from
a location and check to see that data and check bits are correct. If there is an error, the 8207 lengthens
the refresh cycle and writes the corrected data back into RAM. Scrubbing the entire memory greatly
reduces the chance of an uncorrectable error occurring. See the Refresh section for more dj!tail on
scrubbbing. c.

Refresh Cycles

The 8207 performs RAS only refresh cycles in non-ECC systems. It outputs all 8207 control signals
except for CAS and acknowledges. The real delay in a system due to refresh would be a fraction of
that value l . The length of the refresh cycle is always 2tRP + tRAS, and varies based upon the
programmed 8207 configuration.

In error-corrected systems, the refresh cycle is actually a read cycle. The 8207 outputs a row address,
then all RAS outputs go active. Next, a column address is output and then CAS. The CAS output
is based upon the RBO, RBI allocation bits. Figure 4a shows the general timing for a four bank system,
and Figure 4b shows a two bank system.

ROW ROW

~~---------------------- ~~---------------------
CASO \L-___ _ CASO,1 \\-.-.,...----
CAS1-3 CAS2,3

4 BANKS 2 BANKS

Figure 4. Refresh Cycles for Error Corrected Systems

(1) Measurements have shown a delay of 2-40/0 on program execution time compared to programs
running without refresh.

6-160 230822-002

8207

The 8207 sends the read out word through the 8206 EDCU to check for any errors. If no errors, the
refresh cycle ends. If an error is discovered, the 8207 lengthens the cycle. An error is determined if
the ERROR output of the 8206 is seen active at the same edge that the 8207 issues the R/W output.
Th~ cycle is then lengthened to a RMW cycle. If the error was correctable, the corrected data is writ­
ten back to the location it was read from. But, if the data is uncorrectable, the cycle is still lengthened
to a RMW, but no write pulse is issued. To aid in stabilizing the RAM output data and the Error
flag, pullup resistors of 10k ohms on the data out lines are recommended.

Scrubbing removes soft errors that may accumulate until a double-bit error occurs, which would halt
the system. Hard single-bit failures will not stop the system, but could slow it down. This is because
read and refresh cycles lengthen to correct the data.

For large RAM arrays some form of error logging or diagnostics should be considered.

I nterleavi n9

The term "interleaving" is often used to refer to overlapping the cycle times of multiple banks (or
boards or systems) of RAMs. This has the advantage of using relatively slow cycle time banks to achieve
a faster perceived cycle time at the processing unit. The drawbacks of interleaving are more logic to
handle the necessary control and, for maximum performance, the program should execute sequen­
tially through the addresses.

Dynamic RAM cycles consist of 2 parts - the RAS active time (tRAS in Dynamic RAM Data Sheets)
and precharge time (tRP). The sum of these two times are roughly equal to the cycle time of the RAM.
The 8207 determines how long these two periods are, based on the configuration the user picked (via
the programming bits). Bank interleaving, as used by the 8207, is slightly different than the previous
definition. The 8207 will overlap the precharge time of one bank with the access time of another bank.
In either case, the advantage is the effective cycle time is reduced without having to use faster RAMs.

For interleaving to take place. there must be more than 1 bank of RAM connected to the 8207.
Interleaving is not practical with 3 banks of RAM because 3 is not a power of 2 (the 2 bank inputs
BSO, BS1). So, interleaving works only for 2 or 4 banks of RAM. Note that it is easy enough to use
three banks of RAM where the bank select inputs are connected to the highest-order address line.
For instance, if three banks of 2164s are used in an 8086 system, and located at address OH, bank
selects BSO and BS1 would be connected to microprocessor addresses A17 and A18, respectively. Banks
0-2 would be accessed in the address ranges OH - FFFFH, 10000H - 1FFFFH, and 20000H - 2FFFFH,
respectively. In this case, consecutive addresses are almost always in the same bank and very little
interleaving can take place.

Figure 5 shows the effects on the performance of the processor with and without interleaving. In both
examples, consecutive accesses to the same bank will add 1 wait state to the second access, but no
wait states to consecutive accesses to different banks.lrregardless of the 8207 configuration, there
will always be a minimum 1 wait state added without interleaving. Therefore, interleaving is very highly
recommended!

Interleaving is accomplished by connecting the 8207's BSO, BSI inputs to the microprocessor's low
order word address lines. Each consecutive address is then located in a different bank of RAM. About
90"10 of memory accesses are sequential, so interleaving will occur about 90% of the time in a single
port system.

In a dual port system, the advantages of interleaving are a function of the number of banks of memory.
Since the memory accesses of the two ports are presumably independent, and both ports are continuously
accessing memory, the 8207 arbiter will tend to interleave accesses from each port (Le., Port A, Port

6-161 230822-002

inter

80286

16 MHz CLOCK

8207

RASO

RAS1

80186

8 MHz CLOCK

8207

RASO

RAS1

TS

0

\

T1 I T2

0

\

8207

TC TS'

I 2 I 3 I 4 I 5
0 1

l_tRP
DELAY

\
CONFIGURATION CO-NO ECC (READ)

T3 I T4 I T1 T2 I

I 2 I 3 I 4 1 0
0 1

/--D~~Y=4

\
CONFIGURATION C3-NO ECC (READ)

TC

0 1 2
2 3 .. \ \

I

TW T4
T3 T4 T1

1 2 3
2 3 4

I

Figure 5. Processor Performance With and Without Interleaving

TC
TS I"

3

r

T1
T2

I 4

/

B, Port A, Port B, ...). If there are two banks of RAM interleaving will occur 50% of the time and,
if there are four banks of RAM, interleaving will take place 75% of the timel. To the extent that
a single port generates a majority of memory cycles, interleaving efficiency will approach 900,70 as
described in the previous paragraph.

(1) Don't get confused here. The paragraph is talking about interleaving memory requests from
both ports, and their probability of accessing one of the other banks of RAM where tRP
has been satisfied. The 8207 will leave the RAM precharge time out if consecutive accesses go
to different banks. The 8207 RAM timing logic does not care which port requests a RAM cycle.
requests a RAM cycle.

Optional RAM Banks'

Many users allow various RAM array sizes for customer options and future growth. Some care must
be taken during the design to allow for this. Three items should be considered to permit optional RAM
banks.

The first item is tI!Uotal RAM size. The 8207 starts a memory cycle based only upon a valid status
or command and PE active. So some logic will be required to deselect the 8207 (via PEl when the
addressed location does not exist within the current memory size. A 7485 type magnitude comparator
works well. .

The second item to consider is the BSO, BSl inputs. With one bank of RAM these inputs are tied
to ground. Four banks of RAM require two address inputs. So, if the design ever needs four banks

6-162 230822-002

inter 8207

of RAM, then the BSO, BSI inputs must be connected to address lines. Selecting a non-existant RAM
bank is illegal. Figure 6 shows a non-interleaved method.

A19 "7----_---------------1 BSl

A18 .->---~-4------------_4 BSO

A

+5 ~B~------~ ~

f 8207

7485

Figure 6. Non-Interleaved 8207 Selection Circuit

With designs using interleaving, the least significant word address lines are connected to the BSO, BSI
inputs. With two banks of RAM, Al from the Intel processor is connected to BSO. A2 is connected
to BSl, but not allowed to function until four banks are present. However, A2 must still be used
since addresses increase sequentially. Two possible ways of implementing this are shown in Figure
7 below.

240

A19 AH7
A19

AH7
A18 AL7

A2
8207 8207

BSl A2

BSl

Al BSO t
PE. Al BSjiJ PE

A18 A

A>B

F B

7485 7485

Figure 7. Interleaved 8207 Selection Circuits

6-163 230822-002

inter 8207

The final consideration is for the RAS/CAS outputs. Remember that when the RBO, RBI bits are
programmed for two banks, then RASQ, 1 operates in tandem (non-ECC mode/ECC mode - the CAS
outputs also work in tandem). Figure 8 shows the proper layout. ,

2
RAM BANK

RASO/CASO

2
RAS2ICAS2 OPTIONAL BANK

8207

RAS1/CASl OPTIONAL BANK

RAS3/CAS3
OPTIONAL BANK

Figure 8. RAM Bank Layout

Write Enables - Byte Marks

The write enable supplied by the 8207 cannot drive the RAM array directly. It is intended to be
NAND with the processor supplied byte marks in a non-ECC system. In error-corrected systems, the
write enable output should be inverted before being used by RAMs. Only full word read/writes are
allowed in ECC systems. The changing of byte data occurs in the 8206 EDCU.

For single and dual port systems, the byte mark data (AO, BHE) must be latched. The 8207 can (and
will) change the input addresses midway through a RAM cycle.·

Memory Warm-up and Initialization

After programming, the 8207 performs 8 RAM warm-up cycles. The warm-up cycles are to prepare
the RAMs for proper operation. If the 8207 is configured for ECC, it will then prewrite zeros into
the entire array.

All RAS outPut~ are driven active for these cycles, once every 32 clock periods. The prewrite cycles
are equivalent to write cycles, except all RAS and CAS will go active, data is generated by the 8206,
and the address is generated by the 8207.

RAM Cycles/Timings

Tables 12 and 13 of the 8207 Data Sheet show on what clock edge each of the 8207 outputs are generated.
This, together with the timing waveforms and A.C. parameters, allows the user to calculate the
timings of the 8207 for each of its configurations. To make the job easier, Tables 14-18 of the 8207
Data Sheet precalculate dynamic RAM timings for each 8207 configuration and type of cycle. All
that is required is to plug in numerical values for the 8207 parameters.

6-164 230822-002

inter 8207

Write Cycles

The 8207 always issues WE after CAS has gone valid. These types of cycles are known as "late writes."
The 8207 does this primarily to interface to the iAPX286 processor bus timings. Late writes require
separate data in and data out traces to the RAM array, plus the additional drivers.

Data Latches

The 8207 is designed to meet data setup and hold times for the iAPX86 family processors when using
a synchronous status interface (see Microprocessor Interface section). Other types of interfaces will
require external data latches. This is because the CAS pulse is a fixed length - the user has no control
(besides programming options) over lengthening CAS. When CAS goes inactive, data out of the RAMs
will disappear. Asynchronous interfaces should use XACK or LAACK to latch the data.

6-165 230822-002 I

8207

CHAPTER 4
MICROPROCESSOR INTERFACES

The 8207 is designed to be directly compatible with all Intel iAPX86, 186, 188, and 286 processors.
For maximum per'formance, the 8207 will directly decode the status lines and operate off of the pro­
cessor's clock. Additionally, the 8207 interfaces easily to other bus types that support demultiplexed
address and data with separate read and write strobes.

Bus Interfaces

The 8207 easily supports either an asynchronous. or synchronous command timing. The command
timing can also be adjusted for various processors via the PCTL pin.'

MEMORY COMMANDS

There are four inputs for each port of the 8207 that initiate a memory cycle. The input pins are Wb
RD, PCTL, and PE. The first three inputs connect directly to the iAPX 86, 88, 186, 188 SO-S2
outputs, respectively. For the 80286, the same connections are used except that PCTL is tied to ground.
In all configurations PE is decoded from the address bus. Multibus type commands use the same.
input setup as the 80286.

COMMAND/STATUS INTERFACE

The status interface for the 80186 and the 80286 differ both in timing and meaning. The 8207 can
be optimized for either processor by programming the PCTL input pin at RESET time. S2 in 80186
systems, connects directly to PCTL. When the processor is reset it drives S2 high for one clock, then
tristates it. A pullup resistor to +5 will program the PCTL input for the 80186 status interface when
RESET goes inactive. A pullup is required only if no component has this pullup internally.

To optimize the 8207 for the 80286 interface, PCTL is tied to ground and not used in 80286 systems.
Multibus commands are similar in meaning to the 80286 status interface, and are programmed the
same way. In Multibus type systems, PCTL can be used as an inhibit to allow shadow memory. PCTL
would be driven high, when required, to prevent the 8207 from performing a memory cycle. It would
be connected to the Multibus INH pin through an inverter.

SYNCHRONOUS/ASYNCHRONOUS COMMANDS

Each port of the 8207 can be configured to accept either a synchronous or asynchronous (via
programming bits) memory request. Minimum m.emory request decode time (and maximum per­
formance) is achieved using a synchronous status interface. This type of interface to the processor
requires no 'logic for the user to implement. . .

An asynchronous interface is used with Multibus bus interfaces when the setup and hold times of
the memory commands cannot be guaranteed. Synchronizers are added to the inputs and will require
up to two clocks for the 8207 to recognize the command. It should be obvious that better performance
will result if the 8207's clock is run as fast as possible. ,

Figure 2 of the 8207 Data Sheet shows various combinations of interfaces. The additional logic for
the asynchronous interfaces is used to either lengthen the command width, to meet the minimum 8207
spec, or to make sure the command does not arrive too soon before the address has stabilized.

PORT ENABLE

The PE inputs serve t2Jlualify a memory request. A RAM cycle, once started, cannot be stopped.
A RAM cycle starts if PE is seen active at the proper clock edge and a valid command is recognized.
If PE is activated after a command has gone active and inactive, no cycle will start.

6-166 230822-002

8207

Types of logic that work well are 74138 and 7485. PE should be valid as much as possible before
the command arrives because, as the address bus switches and settles, glitches on PE could either:
disqualify a memory cycle; delay a memory cycle; or start a memory cycle when none should have.
Refer to the Port Interface Waveforms in the Data Sheet. If Port Enable is not seen active by the
next or same clock edge, no memory cycle will occur unless the command is removed and brought
active again.

Back to Back Commands

Holding the RD, 'WR inputs active will not generate continuous memory cycles. Memory commands
must go inactive for at least one clock period before another memory request at that port will be
considered valid. Holding the inputs active will not keep the other port from gaining access to the
RAM. The only signal that can prevent the other port's gaining access to the RAM is LOCK.

Address Inputs (And LOCK)

Two pins control the address inputs on the 8207, MUX and LEN. Neither are used for single port
8086 based systems. MUX is used for dual port configurations, and LEN is used for single and dual
port 80286 based systems. MUX is used to gate the proper ports addresses to the 8207. If the output
is high, Port A is selected. If it is low, Port B is selected.

The cross coupled NAND gates, shown in the 8207 Data Sheet (Figure 3), are used to minimize
contention when switching address buses. Use of a single inverter would have both outputs enabled
simultaneously for a short period. The cross coupled hand gates allow only one output enabled.

MUX also allows the single LOCK input to be multiplexed between ports. Figure 9 shows how to
multiplex the LOCK input for dual port systems. See the LOCK section for more information.

TO ADDR LATCH A EN

MUX I------.---i

8207

LOCK LOCKA

TO ADDR LATCH B EN

Figure 9. Dual Port LOCK Input Circuit

MUX TIMING

The MUX output is optimized by the Port Arbitration scheme, which is selected in the program word.
Figure 10 shows the effects on memory selected in the program word. Figure 10 shows the effect~
on memory bandwidth with the different schemes. Port A Preferred optimizes consecutive cycles for
Port A. Consecutive Port B cycles have at least 1 clock added to their cycle time. There would be
no MUX delays for any Port A request.

6-167 230822-002

inter 8207

The Most Recently Used scheme allows either port to generate consecutive cycles without any MUX
delays. The first memory cycle for each port would have the 1 clock delay. But all others would not.

With either scheme, if both ports request the memory at their top speed, the 8207 will interleave the
requests; Port A,' Port B, Port A, Refresh, Port B.

8 MHz

CMDA

CMDB

MUX
A

RiiSX A

MUX
A B A

MOST RECENTLY USED
RiiSX, A B B t, ~ __ ...Jr

Figure 10. Port Arbitration Effects

LEN

LEN is used to hold the 80286 addresses when the 8207 cannot respond immediately. The 8207 will
require a separate address latch, with the ALE input replaced with LEN. LEN optimizes the address
setup and hold times for the 8207. '

LEN goes from high to low when a valid 8207 command is recognized, which latches the 80286
address. This transition of LEN is independent of a memory cycle starting. The low to high transition
will occur in the middle of a memory cycle so that the next address will be admitted and subsequently
latched. '

If Port B is to interface t6 an 80286 with the synchronous status interface, then LEN must be created
using external logic. Figure 11 shows the equivalent 8207 circuit for Port B.

LOCK

The LOCK input allows each port uninterrupted access to memory. It does this by not permitting
MUX to ,switch. It is not intended as a means to improve throughput of one of the ports. To do so
is at the designer's riskl. Obviously, LOCK is only used in dual port systems. The'8207 interprets
LOCK as originating from the port that MUX is indicating.

(1) The 8207 will not malfunction if this is done. This is a system level concern. For example,
. a time dependent process may fail if the other port holds LOCK active, preventing its access of

memory and relinquishing the bus.

6-168 230822-002

8207

RESET

AACK PR
J Q

FROM lEN
80286 CLOCK

+5

SO g)~ 51

PE

Figure 11. Port B LEN Circuit

LOCK from the 8086 may be connected directly to the 8207 or to the multiplexing logic. The 8207
requires additional logic when interfaced to an 80286. Figure 12 shows both the synchronous and
asynchronous circuitry.

For 16 MHz operation, the 8207 ignores the LOCK input during the clock period that MUX switched.
During 8 MHz operation, the 8207 will see LOCK as being active during the clock period when MUX
switches.

The LOCK issued in Multibus bus systems may not be compatible with the 8207. The 8207 references
LOCK from the beginning of a cycle, while Multibus references LOCK from the end of a cycle. The

82284

RESET
V READY'

ClK

J PR Q V-i-JPRQ lOCK

ALE '-<I>
82288

r=[>rK r-K a I-- Q

-~
80286

'COCK

Figure 12a. Synchronous interface

6-169 230822-002

8207

--
80286

LOCK -

r-I> 1 1
PR

D Q
PR

Q D
82288

ALE CLR Q rl> CLR
Q

LT J
82284

RESET
READY

Figure 12b. Asynchronous interface

Multibus LOCK can be used if it meets the 8207 requirements. If the LOCK timing cannot be guaranteed,
then additional logic is necessary. The logic would issue LOCK whenever a Multibus command is
recognized. The drawback to this is that MUX cannot switch during the RAM cycle. This would delay
the other port's memory access by one or two clocks.

DEADLOCK

The designer should ensure that a deadlock hazard has not been created in the design. The simple
interfaces shown previously will not create a deadlock condition when the 8207 controls all system
memory. If LOCK is issued by both ports,_ then the above logic would need to be modified to remove
LOCK.

Figure 13 shows an illustration of the problem with a single LOCK input.

LOCK r---;

8207

Figure 13. Single LOCK Input Circuit

6-170 230822-002

8207

Suppose the 8207 starts a locked string transfer for the processor. The Multibus bus port requests
a memory cycle but must wait for the processor to remove LOCK. But the processor must access
Multibus as part of the locked string transfer. We now have a deadlock. The solution is to force LOCK
inactive whenever an access is made to non-8207 memory by the processor. By doing this we have
now violated the purpose of LOCK, since the Multibus port could change data. Another solution is
to ensure that locked data does not exist in physically separate memory.

8207 Acknowledge's

The 8207 in non-ECC mode has two active acknowledge'S per port, AACK and XACK. The AACK
output is configured into either an "early" or "late" AACK based on the SA, SB bits in the program
data word. In ECC systems there is on~ Acknowledge per port, and it is configured to anyone of
the three (EAACK, LAACK or XACK) by the programming bits.

The AACK pin is optimized for either the 80286 or the 8086, based upon the CFS programming bit
(fast = 80286; slow = 8086). XACK conforms to the Multibus bus specification. XACK requires a
tri-state buffer and must not drive the bus directly.

In synchronous systems, XACK will not go active if the memory' command is removed prior to the
clock period that issues XACK. In asynchronous systems, the AACK pin can also serve as an
advanced RAM cycle timing indicator.

Data out, in synchronous systems, should not have to be latched. The 8207 was designed to meet the
data setup and hold times of Intel processors, the 8086 family, and the 80286. In asynchronous systems,
the 8207 will remove data before the processor recognizes the Acknowledge (LAACK or XACK). In
these systems, the data should be latched with transparent type latches (Intel 8282/8283).

Output Data Control

Non-EGG

In single port systems, Intel processors supply the necessary timing signals to control the input or
output of data to the RAMs. These control signals are i5EN and DT lit Refer to the microprocessor
handbook for their explanation. If these signals are not available, then PSEN and DBM provide the
same function. They can be used directly to control the 8286/8287 bus drivers of the 8207.

Because of the single set of data in/out pins of the RAMs, data must be multiplexed between the
two ports in dual port systems. The 8207 provides two outputs for contention-free switching. PSEL
operates the same as the MUX output, in that a high selects Port A and a low selects Port B. PSEN
acts to enable the selected port. The timing is shown in the 8207 Data Sheet, Port Switching Timing
section.

The easiest means of using PSEL and PSEN is shown in Figure 14. At no time will both POltS be
enabled simultaneously.

PSEL

PSEN
t====Oa D OE PORT A

I ~;O>----D OE PORT B

Figure 14. PSEL and PSEN Interface Circuit

6-171 230822-002

inter 8207

Data Bus - Single Port

Recall that the 8207 always performs a late write cycle and that this requires separate data in and
out buses. One option for the data bus is shown in Figure 3 of the 8207 Data Sheet. It requires separate
data in and out traces on the processor board.

The second option is to keep the processor's combined data, bus but separate the data at the 8207
RAM. This is shown in Figure 15.

PE

DBM

Data Bus - Dual Port

Non-EGG

Figure 15. Data Bus Circuit

RAM

ARRAY

TO I'P DATA
BUS

'S240(2)

The multiplexed data of the 8207 RAM must be kept isolated so that an access by one port does not
affect another port. Figure 16 illustrates the control logic.

6-172 230822-002

DBM

PE

PORT B

S
Y
S
T
E
M

B
U
S

A PSEL c:>-----~t_t
PSEN C>---~-O--L--"

8207

RAM
ARRAY

Figure 16. Dual Port Data Bus Control Circuitry

6-173

PORT A

S
Y
S
T
E
M

B
U
S

230822-002

8207

CHAPTER 5
8207 WITH ECC (8206)

This section points out the proper control of the 8206 EDCU by the 8207.

The 8207 performs error correction during read and refresh cycles (scrubbing), and initializes memory
after power up to prevent false errors from causing interrupts to the processor. Since the 8207 must
refresh RAM, performing scrubbing during refresh allows it to be accomplished without any
additional performance penalty. Upon detection of a correctable error during scrubbing, the RAM
refresh cycle is lengthened slightly to permit the 8206 to correct the error and for the corrected word
to be rewritten into memory. Uncorrectable errors detected during scrubbing are ignored, since the
processor may never access that memory location.

Correctable errors detected during a memory read cycle are corrected immediately and written back
into memory.

Synchronous/Asynchronous Buses

The many types of configurations that are supported by the 8207/8206 combination can be broken
down into two classes: ECC for synchronous or for asynchronous buses.

In synchronous bus systems, performance is optimized for processor throughput. In asynchronous
buses, performance is optimized to get valid data onto the bus as quickly as possible (Multibus). While
possible to optimize the 8207/8206 for processor throughput in Multibus systems, it is not Multibus
compatible. The performance optimization is selected via the XA/XB and SA/SB programming bits.

When optimized for processor throughput, an advanced acknowledge (AACK - early or late) is issued
at some point (based on the type of processor) so that data will be valid when the processor needs it.

When optimized for quick data access, an XACK is issued as soon as valid data is known to exist.
If the data was invalid (based on the ERROR flag), then the XACK is delayed until the 8206 corrects
the data and the data is on the bus.

The first example is known as "correct always" mode. The 8206 CRCT pin is tied to ground and
the 8206 requires time to do the correction. Figure 17 shows this implementation. The quick data
access method is known as "correct on error." The CRCT pin is tied to the RIW output of the 8207.
When CRCT is high, the 8206 does not do correction, but still checks the data. This delay is typically
half of the first. If an error happens, the cycle becomes a RMW and XACK is delayed slightly so
that data can be corrected.

The correct on error mode is of no real benefit to non-Multibus users. The earliest acknowlege (EAACK)
is delayed by one clock to allow for the delays through the 8206. This imposes a 1 wait state delay.

Byte Marks

The only real difference to the 8207 system when adding the 8206 is the treatment of byte writes. Because
the encoded check bits apply only to a whole word (including check bits), byte ~rites must not be
permitted at the RAM. Instead, the altering of byte data is done at the 8206. The byte marks
previously sent to RAM are now sent to the 8206. These byte marks must also qualify the output
enables of the data drivers.

The DBM output of the 8207 is meant to be nanded with the processors byte marks. This output is
activated only on reads or refreshes. On write cycles, this output stays high which would force the
8206 byte mark input low. When low, the internal 8206 data out buffers are tristated so that new
data may be gated into the device.

6-174 230822-002

inter 8207

RAS,CAS RAM
AOOR

WE ~ ARRAY

+5
01 CBI DO

8207 OBM

WZ

ERROR

CE
Rm 16

PSEN FWR

AO

BHE

Figure 17. 8206 Interface to the 8207

Read Modify Writes - ECC

A RMW cycle occurs whenever a processor wants to do byte writes or when the 8207 has detected
an error during read or refresh (scrubbing) cycles. A byte write is detected by the FWR input to the
8207 and is based on the processor supplied byte marks.

At the start of it RMW cycle, DBM stays high, which, when qualified with the byte marks, will enable
the.J!ata out buffer of the 8206 for the unmodified byte, and tristates the buffer for the new byte;
R/W is high, which tells the 8206 to do error detection and correcting (if CRCT is low). The 8206
can latch data and check bits from the RAM via the STB'input, but the 8207 does not use this feature.
Instead, the 8207 keeps CAS active the entire length of the RMW cycle to hold data at the 8206. The
new byte data from the processor goes to the 8206 and to the RAM. The 8207 would have corrected
any errors just read, so the old and new bytes of data, plus their check bits, are available at the RAM,
and the 8207 generates a write pulse. The data driver for the unmodified byte must not have been
enabled, otherwise erroneous data would be wri,tten to RAM and possibly made valid (if it was stable)
by the 8206.

Data Buffer Control - ECC

The control of the data buffers is essentially the same as in non-ECC systems, with a few exceptions.

6-175 230822-002

8207

The processor's byte marks must now qualify the output enable logic. The reason was described earlier
. in the RMW section. This applies to both single and dual port configurations. A refresh cycle outputs
all the control signals that a read cycle will, except for an acknowledge. If complete buffer control
is left to the 8207, then it would occasionally (during refreshes) put data on the processor bus. The
DEN and DT IR signals must be qualified by the PE input. PE would have to be latched for the entire
cycle by PSEN.

Test Modes

Neither of the two test modes of the 8207 are to be used in a design. Both test modes reset the refresh
address counter to a specific value, which interrupts the refresh sequence and causes loss of data.

In error corrected systems, a reset pulse causes the 8207/8206 to write over the entire RAM array.
Test Mode 2 appears to bypass the prewrite sequence. But, the refresh counter is reset to a value of
IF7 (H). So, besides interrupting the refresh sequence, the 8207 still prewrites the 8 locations specified
by the counter.

To not overwrite the RAM data, the 8207 RESET will have to be isolated from the system reset logic
in ECC systems.

6-176 230822-002

8207

APPENDIX I
8207/8208 Performance

The following performance charts were based upon Figure 3 in the 8207 Data Sheet, and apply to
the 8208 as well. All RAM access delays are based upon Intel dynamic RAMs. The charts show the
performance of a single cycle with no precharge, refresh, port switching, or arbitration delays.

The read access calculations are: the margin between the 8207 starting a memory cycle to data valid
at the processor - 8207 RAS or CAS from clock delay - DRAM RAS or CAS access - 8286 propaga­
tion delay - processor setup.

Assume the RAS/CAS drivers are loaded with 150 pf, and the 8286 is driving a 300 pf data bus.

80286 (example)

80186 (example)

RAS Access: 3TCLCL - 8207 TCLRSL - 2118 tRAC -
8286 TIVOV - 80286 t8
= (3)62.5 - 35 max - 100 max - 22 - 10
= 20 ns

CAS Access: 2 TCLCL - 8207 TCLCSL - 2164A tCAC -
8286 TIVOV - 80186 TDVCL
= (2)125 - 115 max - 85 max - 22 - 20
= 8 ns

6-177 230822-002

8207

8207 Performance (EDC synchronous status interface)

Table 5a. Wait States for Different !,P and RAM Combinations

Wait states at full CPU speed RAM speed

CPU Freq 100 ns 120 ns 150 ns 200 ns

1-RD, WR 1-RD, WR 2-Read
80286 8 MHz 3-Byte WR 3-Byte WR 1-Write

CO (3) CO 3-Byte WR Not (1)
C2 compatible

80186, 1-RD, WR 1-RD,WR 1-RD,WR with RAM·

8086/88-2 8 MHz 3-Byte WR 3-Byte WR 3-Byte WR parameters

C4 C4 C4

1 1 1 1-RD, WR
8086/88 5 MHz C6 C6 C6 3-Byte WR

C4

8207 Performance (EDC synchronous status interface)

Table 5b. !,P Clock Frequency for Differenc !,P and RAM Combinations

Maxlmum.frequency for
RAM speed one wait-state (4)

CPU Freq 100 ns I 120 ns 150 ns 200 ns

80286 8 MHz 7.3 MHz 6 MHz:
CO CO

80186, 8 MHz 7 MHz
8086/88-2 FULL SPEED C4

8086/88 5 MHz

6-178 230822-002

8207

8207 Performance (Non-EDC synchronous status interface)

Table 6a. Wait States for Different lAP and RAM Combinations

r"vait states at full CPU speed RAM speed

CPU Freq 100 ns 120 ns 150 ns 200 ns

0 1·Read 1-Read Not(1)
80286 8 MHz CO(3) O-Write O-Write compatible

C1 C1 with

80186, 8 MHz 0 0 0(2) RAM
8086/88-2 C3 C3 C3 parameters

8086/88 5 MHz 0 0 0 0
C3 C3 C3 C3

Table 6b. lAP Clock Frequency for Different lAP and RAM Combinations

Maximum frequency for
RAM speed no wait-state (4)

CPU Freq 100 ns 1 120 ns I 150 ns 200 ns

80286 8 MHz I 7 MHz I 6 MHz 5.3 MHz

80186, 8 MHz 7 MHz
8086/88-2

FULL SPEED
8086/88 5 MHz

(1) The 2164A tRAH parameter is not satisfied.
(2) 150 ns 64K DRAMs with tCAC = 100 ns won't run with 0 wait-states, because they have a longer CAS

access time than the 2164A-15 (tCAC = 85 ns).
(3) Numbers in lower right corners are the programmed configurations of the 8207.
(4) To meet read access time.

6-179 230822-002

8207

8207 Performance (multibus interface)

This is an asynchronous, command Interface. Worst case data and transfer acknowledge
(XACK#) delays. Including synchronization and data buffer delays, are:

Table 7a. Non-EDC system

RAM speed

100 ns 120 ns 150 ns 200 ns

Data access time 289ns 299ns 322ns 380ns

XACK# access time 333ns 450ns

Table 7b. EDC system

RAM speed

100 ns 120 ns 150 ns 200 ns

Data access time (read) 359ns 369ns 392ns 450ns
(324 ns)[1] (334 ns) (357 ns) (415 ns)

XACK# access time 400 ns-RD, WR 520 ns-RD, WR
588 ns-Byte Write 806. nS-Byte WR

(1) Numbers in parentheses are for when 8206 is in check-only mode (8206 doesn't do error correction
until after an error is detected.

6-180 230822-002

APPLICATION
NOTE

AP·97A

April 1982

AP·97A

INTRODUCTION

The designer of a microprocessor-based system has two
basic types of devices available to implement a random
access read/write memory - static or dynamic RAM.
Dynamic RAMs offer many advantages. First, dynamic
RAMs have four times the density (number of bits per
device) of static RAMs, and are packaged in a 16-pin
DIP package, as opposed to the 20-pin or larger DIPs
used by static RAMs; this allows four times as many
bytes of memory to be put on a board, or alternatively,
a given amount of memory takes much less board space.
Second, the cost per bit of dynamic RAMs is roughly
one-fourth that of statics. Third, static RAMs use about·
one-sixth the power of static RAMs, so power supplies
may be smaller and less expensive. These advantages are
summarized in Table 1.

On the other hand, dynamic RAMS require complex
support functions which static RAMs don't, including

• address multiplexing
• timing of addresses and control strobes
• refreshing, to prevent loss of data
• arbitration, to decide when refresh cycles will be

performed.

LOG2 [COST!

CONTROLLER

CS LOGIC

4K 8K

Table 1. Comparison of Intel Static and
Dynamic RAMs Introduced during 1981

2164·15 2167·70
(Dynamic) (Static)

Density
(No. of bits) 64K 16K

No. of pins 16 20
Access time (ns) 150 70
Cycle time (ns) 300 70
Active power (rna) 60 125
Standby power (rna) 5 40
Approx. cost per bit 45 250

(millicents/bit)

In addition, dynamic RAMs may not always be able to
transfer data as fast as high-performance
microprocessors require; wait states must be generated
in this case. The circuitry required to perform these
functions takes up board space, costs money, and con­
sumes power, and so detracts from the advantages that
make dynamic RAMs so appealing. Obviously, the
amount of support circuitry should be minimized.

The Intel 8202A and 8203 are LSI dynamic RAM con­
troller components. Either of these 40-pin devices alone
does all of the support functions required by dynamic
RAMs. This results in a minimum of board space, cost,
and power consumption, allowing maximum advantage
from the use of dynamic RAMs.

16K 32K 64K 128K

LOG2 [RAM SIZE! (K BYTES)

Figure 1. Implemented Cost of Static vs. Dynamic RAM

6-182 210398-001

Ap·97A

Figure 1 shows the relative cost of static and dynamic
RAM, including support circuitry, as a function of
memory size, using the Intel 8202A or 8203. For any
memory larger than 16KBytes, the dynamic RAM is less
expensive. Since the cost of the dynamic RAM con­
troller is relatively independent of memory size, the cost
advantge for dynamic RAM increases with increasing

. memory size.

This Application Note will describe the techniques of in­
terfacing a dynamic RAM memory to an iAPX-86 or
iAPX-88 system using either the 8202A or 8203 dynamic
RAM controller. Various configurations of the 8086
and 8088 microprocessors, and those timings which they
satisfy, are described. The Note concludes with ex­
amples of particular system implementations.

DYNAMIC RAMS

This section gives a brief introduction to the interfacing
requirements for Dynamic RAMs. Later sections will
describe the operation of the Intel 8202A an,d 8203
Dynamic RAM Controllers.

Device Description

The pinout of two popular families of dynamic RAMs,
the Intel 2118 and 2164A, are shown in Figure 2. The
2118 is a 16,384 word by I-bit dynamic MOS RAM. The
2164 is a 65,536 word by I-bit dynamic MOS RAM.
Both parts operate from a single + 5v supply with a
± 101110 tolerance, and both use the industry standard
16-lead pinout.

The two parts are pinout-compatible with the exception
of the 2164 having one extra address input (A7, pin 9);
this pin is a no-connect in the 2118. Both parts are also
compatible with the next generation of 256K dynamic
RAMs (262,144 word by I-bit), which will use pin 1
(presently a no-connect on both the 2118 and 2164A) for
the required one extra address input (As). This makes it
possible to use a single printed circuit board layout with
any of these three types of RAM.

Vss
DIN CAS DIN
WE Dour WE

RAS A6 RAS

Ao A3 Ao

A2 A4 A2
A, As A,

Voo Voo

Addressing

Each bit of a dynamic RAM is individually addressable.
Thus, a 2164A, which contains 216 (or 65,536) bits of in­
formation, requires 16-bit addresses; similarly, the
2118, which contains 214(or 16,384) bits, requires 14-bit
addresses .

In order to reduce the number of address pins required
(and thus reduce device cost), dynamic RAMs time­
multiplex addresses in two halves over the same pins.
Thus a 2164A needs only 8 address pins to receive 16-bit
addresses, and the 2118 needs only 7 for its 14-bit ad­
dresses. The first address is called the row address, and
the second is called the column address. The row ad­
dress is latched internal to the RAM by the faIling edge
of the RAS (Row Address Strobe) control input; the col­
umn address is latched by the falling edge of the CAS
(Column Address Strobe) control input. This operation
is illustrated in Figure 3.

Dynamic RAMS may be visuallized as a two­
dimensional array of single-bit storage cells arranged
across the surface of the RAM's die. In the case of the
2164A, this array would consist of 28 (or 256) rows and
28 (or 256) columns, for a total of 216 (or 65,526) total
bit cells (Figure 4). This is the source of the "row ad­
dress" and "column address" terminology. Bear in
mind that any given RAM may not be physically im­
plemented as described here; for instance, the 2164A ac­
tually contains four arrays, each one 27 rows by 27
columns.

V.S "As V ••
CAS DIN CAS

Dour WE Dour
Ac RAS As
A3 Ao A3

A4 A2 A4

As A, As Ar. Voo A7

Figure 2. Dynamic RAM Pinout Compatibility

6-183 210398-001

AP·97A

ADDRESS COLUMN

Figure 3. Dynamic RAM Addressing

COLUMNS

°H °H .1H 2H 3H "l '\pH I FEH FFH

lH 100H 101H 102H 103H 19 \1 IFEH IFFH

2H 200H 201H 202H V 2031l1t \ 2FEit 2FFH

3H 300H 301H 302H 303(\3FEH 3FFH

400H 401H 402H 403H\ .

"" 500H 501H 502H 50y BIT CELL ADDRESS

4H

ROWS
5H

~

~ ~H FCFFH

FDOOH F H fi FDFEH FDFFH

FEOOH FE01H FE02H \ II FEFEH FEFFH

FFOOH FF01H FF02H 1\ / I FFFEH FFFFH

Figure 4. Bit Cell "Array"

Memory Cycles

In·this Application Note, we will discuss three types of
memory cycles - read, write, and RAS-only refresh.
Dymanic RAMs may perform other types of cycles as
well; these are described in the dynamic RAM's data
sheet.

Whether data is read or written during a memory cycle
is determined by the RAM's WE control input. Data is
written only when WE is active.

During a read cycle, the CAS input has a second func­
tion, other than latching the column address. CAS also
enables the RAM data output . (pin 14) when active,
assuming RAS is also active. Otherwise, the data output
is 3-stated. This allows multiple dynamic RAMs to have
their data outputs tied in common.

During write cycles, data on the RAM data input pin is
latched internally to the RAM by the falling edge of

6-184

CAS or WE, whichever occurs last. If WE goes active
before CAS (the usual case, called an "early write"),
write .data is latched by the falling edge of CAS. If WE
goes active after CAS (called a "late write"), data is lat­
ched by the falling edge of WE (see Figure 5).

Late writes are useful in some systems where it is desired
tp start the memory cycle as quickly as possible, to max­
imize performance, but the CPU cannot get the write
data to the dynamic RAMs quickly enough to be latched
by CAS. By delaying WE, more time is allowed for
write data to arrive at the dynamic RAMs.

Note that when "'late write" is performed, CAS goes ac­
tive while WE is still inactive; this indicates a read cycle,
so the RAM enables its data output. So, if "late write"
cycles are performed by a system, the RAM data inputs
and data outputs must be electically isolated from each
other to prevent contention. If no "late writes" are per­
formed. the RAM data inputs and data outputs may be
tied together at the RAM to reduce the number of board
traces.

210398-001

AP·97A

1\

lOS - IOH

>-
VALID .~

DOUT ~------------------------< ____ I_N_D_ET_E_R_M_IN_A_T_E ____ --I/-------------
B. "LATE WRITE"

1\
-

~ IOH

}. VALID ~
DOUT --

A. "EARLY WRITE"

Figure 5. Dynamic RAM Write Cycles

Access Times

Each dynamic RAM has two different access times
quoted for it -- access time from RAS active (tRAcl and
access time from CAS active (tcAcl; these are illustrated
in Figure 6. How do you know which to use? This
depends on the timings of your RAM controller. First,
the worst case delay from the memory read command
active to RAS active (tcw and CAS active (tccl must be
determined. Then the read data access time is the larger
of the tCR(Controller) + tRAdRAM) or tcC<Controller)
+ tCAdRAM). An alternative way to determine

6~185

whether to use tRAC or tCAC is to look at the dynamic
RAM parameter for RAS active to CAS active delay,
tRCD. tRCJ)I1Iax is a calcUlated value, and is shown on
dynamic RAM data sheets as a reference point only. If
the delay from RAS to CAS is less than or equal to
tRComax, then tRAC is the limiting access time para­
meter; if, on the other hand, the delay from RAS to
CAS is greater than tRcomax, then tCAC is the limiting
parameter. tRComax is not an operating limit, and this
spec may be exceeded without affecting operation of the
RAM. tRcJ)I1Iin, on the other hand, is an operating
limit, and the RAM will not operate properly if this spec
is violated.

210398-001

AP·97A

RAS \

CAS \ /

Dour -----------.--~~ ~ VALID ---"1f::------
Figure 6. Dynamic RAM Access Times

Refresh

One unique requirement of dynamic RAMs is that they
be refreshed in order to retain data. To see why this is
so, we must look briefly at how a dynamic RAM is
implemented.

Dynamic RAMs achieve their high density and low cost
mostly because of the very simple bit-storage cell they
use, which consists only of one transistor and a
capacitor. The capacitor stores one bit as-the presence
(or absence) of charge. This capacitor is selectively ac­
cessed for reading and writing by enabling its associated
transistor (see Figure 7).

Unfortunately, if left for very long, the charge will leak
out of the capacitor, and the data will be lost. To pre­
vent this, each bit-cell must be periodically read, the
charge on the capacitor amplified, and the capacitor
recharged to its initial state. The circuitry which does
this amplification of charge is called a "sense amp".
This must be done for every bit-cell every 2 ms or less to
prevent loss of data.

Each column in a dynamic RAM has its own sense amp,
so refresh can be performed on an entire row at a time.
Thus, for the 2118, it is only necessary to refresh each of
its 128 rows every 2 ms. Each row must be addressed via
the RAM's address inputs to be refreshed. To simplify

ONE COLUMN

BIT SELECT
LINES
(FROM ROW
ADDRESS
DECODER)

,--J'-----..

T
V+

~
BIT SENSE LINES
(TO SENSE AMPS)

T
v+

Figure 7. Dynamic RAM Cell

6-186

}
ONE
ROW

210391HlO1

inter AP·97A

ADDRESS X ROW X
RAS \ /
CAS

DON'T CARE

Dour

Figure 8. RAS·only Refresh

refresh, the 2164A is implemented in such a way that its
refresh requirements are identical to the 2118; 128 rows
every 2 ms. Some other 64K RAMs require 256 row
refresh every 4 ms.

Refresh can be performed by a special cycle called a
RAS-only refresh, shown in Figure 8. Only a row ad­
dress is sent; that row is refreshed. No column address is
sent, and no data is read or written during this cycle. In­
tel dynamic RAM controllers use this technique.

Any read, write, or read-modify-write cycle also
refreshes the row addressed. This fact may be used to
refresh the dynamic RAM without doing any special
refresh cycles. Unfortunately, in general you cannot be
sure that every row of every dynamic RAM in a system
will be read from or written to every 2 ms, so refresh
cannot be guaranteed by this method alone, except in
special applications.

A third technique for refresh is called hidden refresh.
This method is not popular in microprocessor systems,
so it is not described here, but more information is
available in the dynamic RAM's data sheet.

Three techniques for timing when refresh cycles are per­
formed are in common use: burst refresh, distributed
refresh, and transparent refresh.

Burst refresh means waiting almost 2 ms from the last
time refresh was performed, then refreshing the entire
memory with a "burst" of 128 refresh cycles. This
method has the inherent disadvantage that during the
time refresh is being performed (more than 40

6-187

microseconds for 128 rows) no read or write cycles can
be performed. This severely limits the worst case
response time to interrupts and makes this approach un­
suitable for many systems.

As long as every row of the RAM is refreshed every 2
ms, the distribution of individual refresh cycles is unim­
portant. Distributed refresh takes advantage of this fact
by performing a single refresh cycle every 2 ms/128, or
about every 15 microseconds. In this way, the refresh re­
quirements of the RAM are satisfied, but the longest
time that read and' write cycles are delayed because of
refresh is minimized. Those few !1ynamic RAMs which
use 256 row refresh allow 4 ms for the refresh to be com­
pleted, so the distributed refresh period is still 15
microseconds.

The third technique is called transparent (or "hidden"
or "syncronous") refresh. This takes advantage of the
fact that many microprocessors wait a fixed length of
time after fetching the first opcode of an instruction to
decode it. This time is necessary to determine what to do
next (Le. fetch more opcode bytes, fetch operands,
operate on internal registers, etc.); this time may be
longer than the time required for a RAM refresh cycle.
If the status outputs of the CPU can be examined to
determine which memory cycles are opcode fetches, a
refresh cycle may be performed immediately afterward
(Figure 9). In this way, refresh cycles will never interfere
with read or write cycles, and so appear "transparent"
to the microprocessor.

Transparent refresh has the disadvantage that if the
microprocessor ever stops fetching opcodes for very

210398-001

Ap·97A

INSTRUCTION
DECODE TIME

~

FETCH FETCH FETCH
OPCODE OPERAND OPERAND

• TIME

... , ""6" """ . h
INSTRUCTION . EXECUTION
DECODE TIME TIME DEGRADED
~ THIS AMOUNT

FETCH I-~:-E~~ll FETCH

·1 1
FETCH

1
OPCODE OPERAND OPERAND L __ ~~~~~_J ..

TIME
B. REFRESH INTERFERES WITH OPERAND FETCH

INSTRUCTION
DECODE TIME

~

FETCH I-~;;R~~~--l FETCH FETCH
OPCODE CYCLE I OPERAND OPERAND

I
L

_______ ...J

• TIME
C. TRANSPARENT REFRESH

Figure 9. Transparent Refresh

long, due to a HOLD, extended DMA transfers, or
when under hardware emulation, nei refresh cycles will
occur and RAM data will be lost. This puts restrictions
on the system design. Also, high speed microprocessors
do not allow sufficient time between opcode fetches and .
susequent bus cycles for a complete RAM refresh cycle
to be performed, so they must wait for the refresh cycle
to complete before they can do a subsequent bus cycle.
These microprocessors cannot use transparent refresh to
any advantage. Transparent refresh is useful for
microprocessors like the Intel 8085 operating at low
clock frequencies.

The 8086 and 8088, however, prefetch opcodes into a
queue which is several bytes long. This prefetching is in­
dependent of the actual decoding and execution of the
opcodes, and there is no time at which it can be
guaranteed that the 8086 or 8088 will not request a
memory cycle. So transparent refresh is not applicable
to these microprocessors.

The 8202A and 8203 perform distributed and/or
transparent refresh. Each device has an internal timer
which automatically generates a distributed refresh cy­
cle every 15.6 microseconds or less. In addition, an ex-

ternal refresh request input (REFRQ) allows the
microprocessor's status to be decoded to generate a
refresh cycle for transparent refresh. If, for whatever
reason, no external REFRQ is generated for 15
microseconds, the internally generated refresh will take
over, so memory integrity will be guaranteed.

Arbitration

Because RAMs cannot do a read or write cycle and a
refresh cycle at the same time, some form of arbitration
must be provided to determine when refresh cycles will
be performed.

Arbitration may be done by the microprocessor or by
the dynamic RAM controller. Microprocessor arbitra­
tion may be implemented as follows:

A counter, running froin the microprocessor's clock, is
used to time the period between refresh cycles. At ter­
minal count, the arbitration logic asserts the bus requ~st
signal to prevent the microprocessor from performing
any more memory cycles. When the microprocessor
responds with a bus grant, the arbitration logic

. generates a refresh cycle (or cycles, if. burst . refresh is

6-188 210398-001

Ap·97A

used). After refresh is complete, the arbitration logic
releases the bus. This method has several disadvantages:
First, time is wasted in exchanging bus control, which
would not be required if the RAM controller did ar­
bitration. Second, while refresh is being performed, all
bus activity is stopped; for instance, even if the
microprocessor is executing out of ROM at the time, it
must stop until refresh is over. Third, bursts of DMA
transfers must be kept very short, as refresh cannot be
performed while DMA is in progress.

Some microprocessors, such as the Zilog Z-80, generate
refresh cycles themselves after instruction fetches. This
removes the need for external arbitration logic, but still
has several disadvantages: First, DMA bursts still must
be kept short to allow the CPU to do refresh. Second,
this method adds to the complexity of the micropro­
cessor, without removing the need for the RAM con­
troller which is still required to do address multiplexing
and RAS, CAS and WE timing. Microprocessor refresh
can cause problems of RAM compatibility; for instance,
the Z-80 only outputs a 7-bit refresh address, which
means some 64K RAMs which use 256 row refresh can­
not be used with the Z-80. Also, since the Z-80 refresh
cycle is a fixed length (no wait states), faster speed selec­
tions of the Z-80 are not compatible with slower
dynamic RAMs. Third, systems employing multi­
processing or DMA are harder to implement, because of
the difficulty in insuring the microprocessor will be able
to perform refresh.

It is preferable to have arbitration performed by the
dynamic RAM controller itself. This method avoids all
the problems described above, but introduces a com­
plication. If the microprocessor issues a read or write
command while the dynamic RAM is in the middle of a
refresh cycle, the RAM controller must make the
microprocessor wait until it is done with the refresh

INTEL DYNAMIC RAM CONTROLLERS

The Intel 8202A and 8203 Dynamic RAM Controllers
each provide all the interface logic needed to use
dynamic RAMs in microprocessor systems, in a single
chip. Either the 8202A or 8203 allow a dynamic RAM
memory to be implemented using a minium of com­
ponents, board space, and power, and in less design
time than any other approach.

The following sections will describe each of these con­
trollers in detail.

8202A

FUNCTIONAL DESCRIPTION

The 8202A provides total dynamic RAM control for 4K

before it can complete the read or write cycle. This
means that from when the microprocessor activates the
read or write signal, the time until the cycle can be com­
pleted can vary over a range of roughly 200 to 700 ns.
Because of this, an acknowledge signal from the
dynamic RAM controller is required to tell the
microprocessor the memory cycle it requested is com­
plete. This signal goes to the microprocessor's READY
logic.

Memory Organization

As each dynamic RAM operates on only one bit at a
time, multiple RAMs must be operated in parallel to
operate on a word at a time. RAMs operated in this way
are called a bank of RAM. A bank consists of as many
RAMs as there are bits in the memory word. When used
in this way, all address and control lines are tied to all
RAMs in the bank.

A single bank of RAM will provide 64K words of
memory in the case of the 2164A, or 16K words in the
case of the 2118. To provide more memory words,
multiple banks of RAM are used. In this case, all ad­
dress, CAS, and WE lines are tied to all RAMs, but each
bank of RAM has its own RAS. Each bank knows
whether it is being addressed during a read or write
operation by whether or not its RAS input was activated
- if not, then all other inputs are ignored during that
cycle.

Data outputs for RAMs in corresponding bit positions
in each of the banks may be tied in common, since they
are 3-state outputs; even though CAS is connected to all
banks of RAM, only that bank whose RAS is active will
enable its data outputs in response to CAS going active.
Data inputs for RAMs in corresponding bit positions in
each of the banks are also tied in common.

and 16K dynamic RAMs, including the Intel 2104A,
2117, and 2118. The pinout and simplified logic
diagram of the 8202A are shown in Figures 10 and 11.

6-189

The 8202A is always in one of the following states:

a) IDLE
b) TEST cycle
c) REFRESH cycle
d) READ cycle
e) WRITE cycle

The 8202A is normally in the idle state. Whenever a cy­
cle is requested, the 8202A will leave the idle state to
perform the desired cycle; if no cycle requests are pen­
ding, the 8202A will return to the idle state. A refresh
cycle request may originate internally or externally to

210398-001

AP·97A

AH. Vee

AH3 AHs
AH2 AHS
AH, X,/CLK

AHo XolOP2

ALO N.C.

OUTo REFRQ ALE

AL, PCS

OUT, RDS1

AL2 WR

OUT2 SACK

AL3 XACK

OUT3 WE

AL. CAS

OUT. RAS3

ALs B,IOP,

OUTs Bo
ALslOP3 RAS2

OUTS RAS,

GND RASo

Figure 10. 8202A Pinout

the 8202A; all other requests come only from outside
the 8202A.

A test cycle is requested by activating the RD and WR
inputs simultaneously, independent of PCS (Protected
Chip Select). The test cycle will reset the refresh address
counter to zero and perform a write cycle. A test cycle
should not be allowed to occur in normal system opera·
tion, as it interferes with normal RAM refresh.

A refresh cycle performs a RAS-only refresh cycle of the
next. lower consecutive row address after the one
previously refreshed. A refresh cycle may be requested

by activating the REFRQ input to the 8202A; this input
is latched on the next 8202A clock. If no refresh cycles
are requested for a period of about 13 microseconds, the
8202A will generate one internally. By refreshing one
row every 15.6 microseconds or sooner, all 128 rows will
be refreshed every 2 ms. Because refresh requests are
generated by the 8202A itself, memory integrity is in­
sured, even if the rest of the system shouldllalt opera­
tion for an extended period of time.

The arbiter logic will allow the refresh cycle to take
place only if there is not another cycle in progress at the
time.

A read cycle may be requested by activating the RD in­
put, with PCS (Protected Chip Select) active. In the Ad­
vanced Read mode, a read cycle is requested if the
microprocessor's SI status line is high at the falling edge
of ALE (Address Latch Enable) and PCS is active. If a
dynamic RAM cycle is terminated prematurely, data
loss may result. The 8202A chip select is "protected" in
that once a memory cycle is started, it will go to comple­
tion, even if the 8202A becomes de-selected.

A write cycle may be requested by activating the WR in­
put, with PCS active; this is the same for the normal and
Advanced Read modes.

BLOCK DIAGRAM

Let's look at the detailed block diagram in Figure 12 to
see how the 8202A satisfies the interface requirements
of the dynamic RAM.

Address Multiplexing

Address multiplexing is achieved by a 3-to-l multiplexer

AHO·. --------v"1

OUTo·.

REFRQ/ALE RASo
RDIS1 RAS,

WR RAS2
pcs RAS3

TIMING CAS

GENERATOR WE
B.10P, SACK

Bo XACK

Figure 11. 8202A Simplified Block Diagram

6-190 210398-001

AP·97A

AHO·6

AlO·6 OUTO·6

Bo

B,

XoIOP2

X,/ClK
RASO

RAS,

RAS2

RAS3

CAS

WE

REFRQ/
ALE

AD/S1
SACK

WR

PCS

XACK
OP1 XACK

Figure 12. 8202A Detailed Block Diagram

internal to the 8202A; the three inputs are the row ad­
dress (ALo.6), column address (AHo.6), and refresh row
address (generated internally). When the 8202A is in the
Idle state, the multiplexer selects the row address, so it is
prepared to start a memory cycle. If a refresh cycle is re­
quested either internally or externally, the address
multiplexer will select the refresh row address long
enough before RASgoes active to satisfy the RAM's
tASR parameter.

To minimize propagation delays, the 8202A address
outputs (OUTO.6) are inverted from the address inputs.

This has no effect on RAM operation; inverters are not
needed on the address outputs.

Doing this multiplexing internally minImizes timing
skews between the address, RAS, and CAS, and allows
higher performance than would otherwise be possible.

Refresh Counter

The next row to be refreshed is determined by the
refresh counter, which is implemented as a 7-bit ripple­
carry counter. During each refresh cycle, the counter is

~---FROM MICROPROCESSOR ADDRESS BUS

OUTO·6 AlO·6 REF. ADDR. REF. ADDR.·1 AlO·6

Figure 13. Detailed 8202A Refresh Cycle

6-191 210398-001

AP·97A

incremented by one in preparation for the next refresh
cycle (a refresh cycle is shown in detail in Figure 13).

When the 8202A enters TEST mode, the refresh counter
is cleared. This feature is useful for automatic testing of
the refresh counter function. Because the address out­
puts are inverted, the first refresh address after clearing
the counter in test mode is 7FH, and the addresses
decrease for subsequent refresh cycles.

RAS Decoding

Which bank of RAM is selected for a memory cycle is
determined by the RAS decoder from the BO_I inputs,
which normally come from the microprocessor address
bus. The 8202A Timing Generator produces an internal
RAS pulse which strobes the RAS decoder, generating
the appropriate external RAS pulse. The BO-I inputs are
not latched, so they must be held valid for the length of
the memory cycle. During a refresh cycle, all the RAS
outputs are activated, refreshing' all banks at once. '

Oscillator

The 8202A operates from a single reference clock with a
frequency between 18.432 MHz and 25 MHz; this clock
is used by the synchronization, arbitration, and timing
generation logic. This clock may be generated by an on­
board crystal oscillator, or by an external TTL­
compatible clock source. When using the internal
oscillator (available only on part number D8202A-l or

Xo 36

X, 37

8202A

a,'CRYSTAL MODE

12.
±10%

1 Kn.
±5% 8202A

~
ClK 37

b, EXTERNAL CLOCK MODE

Figure 14. 8202A Clock Options

6-192

D8202A-3), a fundamental-mode crystal is attached to
pins 36 and 37 (Xo and XI), as shown in Figure 14. The
external TTL clock option is selected by pulling pin 36
(OPv to + 12v through lK ohm resistor, and attaching
the clock input to pin 37 (eLK).

Command Decoder

The command decoder takes the commands from the
bus and generates internal memory request (MEMR),
and TEST signals.

The 8202A has two bus interface modes: the "normal"
mode, and the "Advanced Read" mode. In the normal
mode, the 8202A interfaces to the usual bus RD and
WR signals.

In the Advanced Read mode, the 8202A interfaces to
the Intel microprocessor bus signals ALE, SI, and WR.
SI must be high on the falling edge of ALE for read
cycles, and WR must be low for write cycles (write
cycles are the same as for normal read mode). The
8085A SI may be used directly by the 8202A; the 8086
and 8088 Si must be inverted. ALE and WR must be
qualified by pes.

The Advanced Read mode is useful for reducing read
data access time, and thus wait states. This mode is used
mainly with 8085A systems.

If both RD and WR are active at once (regardless of the
state of peS), the internal TEST signal is generated and
the 8202.(\ performs a test cycle as described above. One
or both of RD and WR should have pull-up resistors to
prevent the 8202A from inadvertantly being put into test
mode, as the RD and WR signals are 3-stated by the
microprocessor when RESET or HOLD are active.
Since the test mode resets the refresh address counter,
the refresh sequence will be interrupted, and data loss
may result.

Refresh Timer and REFRQ

The 8202A contains a counter, operated from the inter­
nal clock to time the period from the last refresh cycle.
When the counter times out, an internal refresh request
is generated. This refresh period is proportional to the
8202A's clock period, and varies from lO.56 to 15.625
microseconds. Even at the lowest refresh rate, all the
rows of the dynamic RAM will be refreshed every 2 ms.

The 8202A has an option of reducing the refresh rate by
a factor of two, for use with 4K RAMS. These RAMs
have only 64 rows to refresh every 2 ms, so need refresh
cycles only half as often. This option is selected by pull-

210398~001

Ap·97A

ing pin 18 (AL6I'OP3) to + 12v through a 5.1K ohm
resistor. This pin normally serves as the high-order row
address input for the address multiplexer, but it is no
longer needed for this function, as 4K RAMs have one
less address input.

A refr,esh cycle may also be requested externally by ac­
tivating the REFRQ input. This input is latched, so it
only needs to be held active a maximum of 20 ns. If the
8202A is currently executing a memory cycle, it will
complete that cycle, and then perform the refresh cycle.
The internal and external refresh requests are ORed
together before going to the arbiter.

The REFRQ input cannot be used in the Advanced
Read mode, as the REFRQ pin is used for ALE in this
mode.

REFRQ is most often used to implement transparent
refresh, as explained in the section Dynamic
RAMS - Refresh. This technique is not useful in iAPX
86 and iAPX 88 systems, so REFRQ is normally tied to
ground.

The refresh timer is reset as soon as a refresh cycle is
started (whether it was requested internally or external­
ly). The time between refresh cycle (tREF) is measured
from when the first cycle is started, not when it was re­
quested, which occurs sometime earlier. Of course,
tREFmin does not apply if REFRQ is used - you may
externally request refresh cycles as often as you wish.

Arbiter

This is the hardest section of a dynamic RAM controller
to implement. If a read or write arrives at the same time
as a refresh request, the arbiter must decide which one
to service first. Also, if a read, write, or refresh request
arrives when another cycle is already in progress, the ar­
biter must delay starting the new cycle until the current
cycle is complete.

Both of the internal signals REFR (refresh request) and
MEMR (memory cycle request) are synchronized by
Ootype master-slave flip-flops before reaching the ar­
biter. these circuits have been optimized to resolve a
valid logic state in as short a time as possible. Of course,
with any synchronizer, there is a probability that it will
fail - not be able to settle in one logic state or the other
in the allowed amount of time, resulting in a memory
failure - but the 8202A has been designed to have less
than one system memory failure every three years,
based on operation in the worst case system timing
environments.

Both synchronizers and the arbiter are operated from

6-193

the 8202A's internal clock. Assuming the 8202A is in­
itially in an idle state, one full clock period after the syn­
chronizers sample the state of the MEMREQ and
REFREQ signals, the arbiter examines the REFR and
MEMR outputs of the synchronizers. If MEMR is ac­
tive, the arbiter will activate START to begin the
memory cycle (either read or write) on that clock. If
REFR is active (regardless of the state of MEMR), the
arbiter will activate START and REF to begin a refresh
cycle on that clock. Once the cycle is complete, the Cy­
cle Timing Generator will generate an end-of-cycle
(EOC) signal to clear the arbiter and allow it to respond
to any new or pending requests on the next clock.

Once a memory cycle is started, it cannot be stopped,
regardless of the state of the RO/Sl, WR, ALE; or PCS
inputs. This is necessary, as ending a dynamic RAM
cycle prematurely may cause loss of data. Note,
however, that the RAM WE output is directly gated by
the WR input, so if WR is removed prematurely, the
RAM WE pulse-width spec (twp) may be violated, caus­
ing a memory failure.

What happens if a memory request and refresh request
occur simultaneously?

If the 8202A is in the idle state, the memory request
will be honored first.

If the 8202A is not in the idle state (a memory or
refresh cycle is in progress) then the memory cycle
will lose priority and the refresh cycle will be honored
first.

Remember, if the 8202A is performing a cycle, the ar­
biter doesn't arbitrate again until the end of that cycle.
So the memory and refresh cycles are "simultaneous" if
they both happen early enough to reach the arbiter
before it finishes the current cycle. This arbitration ar­
rangement gives memory cycles priority over refresh
cycles, but insures that a refresh cycle will be delayed at
most one RAM cycle.

Refresh Lock·Out

As a result of the 8202A operation, transparent refresh
circuits like the one shown in Figure 15 should not be
used. This circuit uses the RO input, with some qualify­
ing logic, to activate REFRQ whenever the micropro­
cessor does an opcode fetch. This circuit will work fine,
as long as the 8202A never has to generate an internal
refresh request, which is unlikely (if nothing else, the
system RESET pulse is probably long enough that the
8202A will throw in a couple of refreshes while the
microprocessor is reset). If the 8202A ever does generate
its own refresh, there is a probability that the
microprocessor will try to fetch an opcode while the

210398-001

AP·97A

refresh is still in progress . .If that happens, the 8202A
will finish the refresh, see both the RD and REFRQ in­
puts active, honor the REFRQ first, and start a second
refresh. In the meantime, the microprocessor is sitting
in wait states, waiting for the 8202A to complete the op­
code fetch. When the 8202A finishes the second refresh,
it will see both RD and REFRQ active again, and will
start a third refresh, etc. The system "locks up" with
the microprocessor sitting in wait states ad infinitum,
and the 8202Adoing one refresh cycle after another.

808SA

Figure 15. Improper Transparent
Refresh Generation

To prevent this from happening, thf:) transparent refresh
circuit should be modified as shown in Figure 16. In this
circuit, REFRQ cannot be activated until the opcode
fetch is already in progress, as indicated by SACK being
active (remember, SACK is never active during a
refresh). If the microprocessor tries to do an opcode
fetch while the 8202A is doing a refresh, REFRQ will
not be active; the 8202A will finish the refresh and see
only RD active, and will start the opcode fetch; only
then will REFRQ be activated.

8202A
51
So REFRQ

808SA
SACK

RD RD

Figure 16. Generating Transparent
Refresh For 808SA Systems

Cycle Timing Generator

The Cycle Timing Generator consists of a travelling­
ones shift register and combinational logic required to
generate all the RAM control signals and SACK and
XACK. All timings are generated from the 8202A's in­
ternal clock; no external delay lines are ever needed. The
timing of these signals relative to CLK is illustrated in
Figure 17.

When the cycle is complete, the Cycle Timing Generator
sends an end-of-cycle (EOC) pulse to the arbiter to
enable it to respond to new or pending cycle requests.

Minimum and maximum values for the 8202A
parameters tCR (Command to RAS active delay) and tcc
(Command to CAS active delay) differ by one 8202A
clock period. This is because the commands (RD, WR,
ALE) must be synchronized to the 8202A's clock; this
introduces a ± one clock period (tP) uncertainty due to
the fact that the command mayor may not be sampled
on the first clock after it goes active, depending on the
set-up time. If RD or ALE and WR are synchronous to
the 8202A's clock, and the set-up time (tsC> is met, the
smaller number of clock periods will apply.

All 8202A output timings are specified for the
capacitive loading in the data sheet. Typical output
characteristics are'shown in the data sheet for capacitive
loads ranging from 0 to 660 pF, these can be used, to
calculate the effect of different loads than those
specified in the data sheet on output timings. All ad­
dress, RAg, CAS, and WE drivers are identical, so these
characteristic curves apply to all outputs.

SACK AND XACK

Because refresh cycles are performed asynchronously to
the microprocessor's operation (except during
transparent refresh), the microprocessor cannot know
when it activates RD or WR if a 'refresh cycle is in pro­
gress, and therefore, it can't know how long it will take
to complete the memory cycle.

This added consideration requires an acknowledge or
"handshake" signal from ,the 8202A to tell the
microprocessor when it may complete the memory
cycle. This acknowledge would be, used to generate the
microprocessor's READY input - the microprocessor
will sit in wait'states until the 8202A acknowledges the
memory cycle. Two signals are generated for this pur­
pose by the 8202A; they are called system acknowledge
(SACK) and transfer acknowledge (XACK). They serve
the same purpose but differ in timing.

6-194

XACK is a Multibus-compatible signal, and is not ac­
tivated until the read or write cycle has been completed
by the RAMs. In a microprocessor system, however,
there is a considerable delay from when the 8202A
acknowledges the memory cycle until the micro­
processor actually terminates the cycle. This delay is due
to the time required to combine this acknowledge with
other sources of READY in the system, synchronize
READY to the microprocessor's clock, sample the state
of READY, and respond to an active READY signal.
As a result, more wait states than necessary may actual-

210398-001

·1

T"\. IT"\.
CLK

iii)
WR

ALE

PCS

ADDRESS

RAS
en
~
CD
01

CAS

WE

SACK

XACK

IEOC)

~
0

'" U>
'1"
0
~

0 2 5

I.

ROW COLUMN

READ CYCLE

WRITE CYCLE

----------------E.~~!!'.P..~!lE~----------------------r'"
NORMAL SACK

Figure 17. 8202A Timing Relative To elK

8 9

ROW

~
"U
cD
~
~

AP·97A

ly be generated by using XACK. SACK is activati:d
earlier in the cycle to improve performance of
microproces!;ors by compensating for the delays in the
microprocessor responding to XACK, and thus
eliminating unneeded wait states which might be
generated as a result of XACK timing. The system
designer may use one or the other acknowledge signal,
or use both in different parts of the system, at, his
option.

SACK and XACK are activated by the Cycle Timing
Generator, but they can be de-activated only by the
microprocessor removing its RD or WR request, or by
activating ALE when in the advanced read mode. As the
SACK and XACK signals are used to generate READY
for the microprocessor, this is necessary to give the
microprocessor as much time as it needs to respond to
its READY input.

Delayed SACK Mode

SACK may be activated at one of two different times in
the memorY cycle; the earlier case is called "normal
SACK" and th~1ater is called "delayed SACK" (Figu~e
18). Delayed SACK occurs if the memorY request was
received by the 8202A while it was doing a refresh cycle.
In this case, the memorY cycle will be dehiyed, some
length of time while the refresh cycle completes; SACK
is delayed to ensure the microprocessor will generate
enough wait states. This is a concern mostly for read
cycles.

Because of the way the delayed SACK mode is'im­
plemented in the 8202A, if the RD or WR input is ac­
tivated while a refresh cycle is in progress, regardless of
whether or not the 8202A is chip-selected, the internal
delayed SACK mode flip-flop will be set. The next

DELAYED SACK

"8202A memory 'cycle will have SACK delayed, even if
that cycle was not actually delayed due to a refresh cycle
in progress. The delayed SACK flip-flop will be reset at
the end of that cycle, and the 8202A will return to nor­
mal SACK operation. The same thing happens in Ad­
vanced Read mode if SI is high at the falling edge of
ALE during a refresh cycle, once again regardless of the
state of PCS.

8203

The 8203 is an extension of the 8202A architecture
which allows the use of 64K dynamic RAMs. It is pinout
compatible with the 8202A and shares identical A.C.
and D.C. parameters with that part. The description of
the 8202A applies to this part also, with the modifica­
tions below.

ENHANCEMENTS

1. Supports 16K or 64K dynamic RAMs. 4K RAM
mode, selected by pulling AL6I'OP3 (pin 18) to
+ 12v, is not supported.

2. Allows a single board design to use either 16K
or 64K RAMs, without changing the controller,
and only making between two and four jumper
changes to reconfigure the board.

3. May operate from external TTL clock without
the + 12v pull-up which the 8202A requires (a
+ Sv or + 12v pull-up may be used).

The pinout of the 8203 is shown in Figure 19. This
pinout is identical to the 8202A, with the exception of
the five highlighted pins. The function of these is
described below. The simplified block diagram is similar
to the 8202A's, in Figure 11.

-------:-------~-------=-------------\

\ NORMAL SACK

Figure 18. Delayed SACK Mode

6-196 210398-001

AP·97A

AH4

AH3
. AH.

AHl

AHo
ALo

OUTo

ALl
OUTl

AL.
OUT.

AL3
OUT3

AL4
OUT4

ALs
OUTs

AL6
OUT6

Vo•

Fig. 198203 Pinout

16K Mode and 64K Mode

The goal of the 8203 is to provide a pin- and timing­
compatible upgrade of the 8202A for use With 64K
RAMs. The difficulty in doing this is that 64K RAMs re­
quire an additional address input ·compared to 16K
RAMs, and thus the 8203 needs three more pins (one
more RAM address output, and two more inputs to its
internal address multiplexer). Since all but one of the

8202A's pins are already used, this is clearly a challenge
- some functionality must be sacrificed to gain 64K
RAM support. The 8203 reduces the maximum number
of banks supported from four to two for 64K RAMs.

Pin 35 (16K/64K) is used to tell the 8203 whether it is be­
ing used to control 16K RAMs or 64K RAMs. When
tied to Vee or left unconnected, the 8203 operates in the
16K RAM mode; in this mode all the remaining pins
function identically to the 8202A. When tied to ground.
it operates in the 64K RAM mode, and pins 23 through
26 change function to enable the 8203 to support 64K
RAMs. Pin 35 (16K/64K) contains an internal Pull-up
-when unconnected, this input is high, and the 8203
operates identically to the 8202A. This maintains pinout
compatibility with the 8202A, in which pin 35 is a no­
connect, so the 8203 may be used in 8202A sockets with
no board modifications.

When the 8203 is in the 64K RAM mode, four pins
change function, as shown in Table 2 . .The pins change
function in this particular way to allow laying out a
board to use either 16K or 64K RAMs with a minimum
of jumpers, as shown in Figure 20. This figure shows the
8203 with two banks of RAM. Banks 0 and 1 may be
either 16K RAMs or 64K RAMs; banks 2 and 3 may on­
ly be 16K RAMs, as the 8203 supports two banks of 64K
RAM. For clarity, only those connections which are im­
portant in illustrating the 8203 jumper options are
shown.

Ao-A13 ALo·6 RASo 21 4 RAS
ALO·6

A14 24 Bo(AL7) RASl 22 2118 BANK 0 (2164)

A1S 25 Bl (AH7) RAS. 23 9 N.C. (A7)
J1

(OUT7)

- --0() RAS3(Bo) ~ ~ (32K WORDS) J2 ~
CS (64K WORDS) -0 PCS

1!!: (128K WORDS) ~
8203

J5 ~
16K164K

~ RAS

.1 2118 BANK 1
-=- (2164)

J7
A16 --<> JB ~ N.C. (A7)

16K RAM JUMPER OPTION
J1·J4 (32K WORDS)
J1·J2 (64K WORDS)

...... TO RAS OF BANK 2
(2118 ONLY)

'----- TO RAS OF BANK 3
(2118 ONLY)

84K RAM JUMPER OPTION
J2·J4 (64K WORDS)

J3·J4 (12BK WORDS)
J5·J6
J7·J8

Figure 20. 8203 Jumper Options

6-197 210398-001

AP·97A

Table 2. 16KJ64K Mode Selection

Pin # 16K Function 64K Function

23 RAS2 Address Output '(OUT;)
24 Bank Select (BO> Address Input (AL7)
2S ~ Select (Bt) Address Input (AH7)
26 RAS3 Bank Select (BO>

Jumpers 11-J4 may be used to chip select the 8203 over
various a'ddress ranges. For example, if two banks of
16K RAMs are replaced with two banks of 64K RAMs,
the address space controlled by the 8203 increases from
32K words to 128K words. If four banks of 16K RAMs
are replaced with one bank of 64K RAMs, no chip select
jumpers are needed.

In the 64K RAM mode, pins 24 and 25 (Bo(AL7) and
BI(AH7» change function from bank select inputs to
address inputs for the 64K RAM. Since the bank select
inputs normally come from the address bus anyway, no
jumper changes are required here. The bank select func­
tion moves to pin 26 (RAS3<Bo»; since only two bank of
64K RAM is supported, only one bank select input is
needed in this mode, not two. Jumpers J6 and J7 are
shorted in the 64K RAM mode to connect pin 26 (Bo) to
the address bus. In the 16K RAM mode, these jumpers
must be disconnected, as pin 26 junctions as the RAS3
output; in the 64K RAM mode, this bank is not popu­
lated, so RAS3 is not needed.

Pin 23 serves two functions: in the 16K RAM mode it is
the RAS output for bank 2 (RASv, in the 64K RAM
mode is the high order RAM address output (OUT7),

which goes to pin 9 of the 64K RAMs. This requires no
jumpers as when using 16K RAMs, pin 9 is a no­
connect, and when using 64K' RAMs, bank 2 is
depopulated, so RAS2 is not used.

This arrangement allows converting a board from 16K
RAMs to 64K RAMs 'withno change to the controller

.and changing a maximum of three jumpers.

+ 5v External Clock Option

Just as with the 8202A, the user has the option of an ex­
ternal TTL clock instead of the internal crystal
oscillator as the timing reference for the 8203; unlike the
8202A, he does not need to tie pin 36 (XoIOPv to + 12v
to select this option-this pin may be tied to either + 5v
or + 12v. If pin 36 is tied to + 12v, a lK ohm (± 51170)
series resistor must be used, just as for the 8202A. If pin
36 is tied to + 5v, it must be tied directly to pin 40 (V cc>
with no series resistor. This is because pin 36 must be
within one Schottky diode voltage drop (roughly 0.5v)

. of pin 40 to select the external TTL clock option; a
series resistor may cause too great a voltage drop for the
external clock option to be selected.· For the same
reason, the trace from pin 36 to 40 should be kept as
short as practical.

Test Cycle

An 8203 test cycle is requested by activating the RD.
WR, and PCS inputs simultaneously. By comparison,
an 8202Atest cycle requires activating only the RD and
WR inputs simultaneously, independent of PCS. Like
the 8202A, and 8203 test cycle resets the address counter
to zero and performs a write cycle.

AHo·6 --------,/1

REFRQ/ALE
RDIS1

WR
pes

TIMING
81.0P1_ ______ -IGENERATOR

80---------1

16K/,64K------J

Figure 21. 8203 Simplified Block Diagram

6-198 210398-001

AP·97A

BLOCK DIAGRAM

A simplified block diagram of the 8203 is shown in
Figure 21. It is identical to the 8202A except for the
following differences:

I. The 3: 1 address multiplexer is 8 bits wide, instead
of 7 bits wide, to support the addressing
requirements of the 64K RAM.

2. The refresh address counter is 8 bits. This allows

INTEL iAPX·86 AND iAPX·88

Device Descriptions

The iAPX-86 and iAPX-88 are advanced 16-bit
microprocessor families, based on the 8086 and 8088
microprocessors, respectively. While both have a similar
architecture and are software compatible, the 8086
transfers data over a 16-bit bus, while the 8088 uses an
8-bit data bus (but has a 16-bit internal bus).

Min and Max Modes

In order to support the widest possible range of applica­
tions, the 8086 and 8088 can operate in one of two
modes, called minimum and maximum modes. This
allows the user to define certain processor pins to
"tailor" the 8086 or 8088 to the intended system. These
modes are selected by strapping the MN/MX
(minimum/maximum) input pin to Vee or ground.

READY

8284A
ClK

GEN'R ClK

TO
TOCPU
READY
lOGIC

8086
CPU

M/iO

ALE

A16·19 .11-----',
ADo·15

BHE

8282
lATCH

it to support RAMs which use either the 128-row
or 256-row refresh schemes. Regardless of which
type of RAM is used, the refresh counter cycles
through 256 rows every 4 ms. RAMs which use
128-row re-fresh treat the eighth address bit as a
"don't care" during refresh, so they see the
equivalent of 128-row refresh every 2 ms. In
either case the rate of internally-generated
refresh cycles is the same-at least one every
15.6 microseconds.

In the minimum mode, the microprocessor supports
small, single-processor systems using a minimum of
components. In this mode, the 8086 or 8088 itself
generates all the required bus control signals (Figure
22).

In the maximum mode, the microprocessor supports
larger, higher performance, or multiprocessing systems.
In this mode, the 8086 or 8088 generates status outputs
which are decoded by the Intel 8288 Bus Controller to
provide an extensive set of bus control signals, and
Multibus compatibility (Figure 23). This allows higher
performance RAM operation because the memory read
and write commands are generated more quickly than is
possible in the minimum mode. The maximum mode is
the one most often used in iAPX-86 and iAPX-88
systems.

Figure 22. 8086 Minimum Mode

6-199 210398-001

Ap·97A

READY

8284A
ClK

GEN'R ClK

TOCPU
READY
lOGIC

Figure 23. 8086 Maximum Mode

Alternate Configuration

The Alternate Configuration is not an operating mode
of the SOS6 or SOSS per se, but uses TTL logic along with
the status outputs of the microprocesor to generate the
RAM read and/or write control signals (Figure 24). The
alternate configuration may be used with the
microprocessor in either minimum or maximum mode.
This configuration is advantageous because it activates
the memory read and write signals even earlier than the
maximum mode, leading to higher performance. It is
possible to generate either the RAM read or write signal
using this configuration, and generate the other RAM

control signal using the min or max mode in the normal
configuration.

Each of the three system configurations may· be· used
with buffers on the address, data, or control bus for in­
creased electrical drive capability.

Performance vs. Wait States

Before starting a discussion of timing analyses, it's
worthwhile to look at the effect of wait states on the
iAPX-S6 and iAPX-SS.

Vee

8284A { ClK -----------~
CLOCKED AMWC

8086 {STATUS
8088 (So.2>

I ALE

8288

~~~~ 

Figure 24. Alternate Configuration Logic 

6-200 

TO 
8202AI 
8203 

210398-001 



Ap·97A 

Fm most microprocessors, the effect of, say, one wait 
state on execution times is straightforward. If a bus 
cycle normally is three clocks long, adding a wait state 
to every bus cycle will make all bus cycles four clocks, 
decreasing performance by 33070. This is multiplied by 
the percentage of time that the microprocesor is doing 
bus cycles (some instructions take a long time to exe­
cute, so the microprocessor skips a few bus cycles). 

The effect of wait states on the iAPX-86 and iAPX-88 is 
not so straightforward, however. 

The 8086 and 8088 microprocessors consist of two pro­
cessing units: the execution unit (EU) executes instruc­
tions, and the bus interface unit (BIU) fetches instruc­
tions, reads operands, and writes results. During 
periods when the EU is busy executing instructions, the 
BIU "looks ahead" and fetches more instructions from 
the next consecutive addresses in memory; these are 
stored in an internal queue. This queue is four bytes 
long for the 8088 and six bytes long for the 8086; under 
most conditions, the BIU can supply the next instruc­
tions without having to perform a memory cycle. Only 
when the program doesn't proceed serially (e. g. a Jump 
or Call instruction) does the EU have to wait for the 
next instruction to be fetched from memory. Otherwise, 
the instruction fetch time "disappears" as it is pro­
ceeding in parallel with execution of previously fetched 
instructions. The EU then has to wait for the BIU only 
when it needs to read operands from memory or write 
results to memory. As a result, the 8086 and 8088 are 
less sensitive to wait states than other microprocessors 

8086 8282 

A'6.'9 Ip.---"..I 
ADO·15 

52. 51,s" 
READY 

which don't use an instruction queue. The effect of wait 
states on 8086 execution time compared to the Motorola 
68000 and Zilog Z8000 for a typical mix of software is 
summarized in Table 3.[IJ 

Table 3. Effects of Wait States on Execution Time 

Execution Time Increase 
Over 0 Wait State 
Execution Time 

Processor 1 Wait 2 Wait 3 Wait 
Stale States States 

iAPX 86/10 (measured) 8.3070 16.3% 26.3% 
Z8000 (computed) 19.1% 38.2% 57.3% 
68000 (computed) 15.9% 31.9% 47.8% 

The BIU can fetch instructions faster than the EU can 
execute them, so wait states only affect performance to 
the extent that they make the EU wait for the transfer of 
operands and results. How much this affects program 
execution time is a function of the software; programs 
that contain many complex instructions like mUltiplies 
and divides and register operations are slowed down less 
than programs that contain primarily simple instruc­
tions. The effect of wait states on the 8086 and 8088 is 
always less than on other microprocessors which don't 
use an instruction queue. 

[1] From J6-Bit Microprocessor Benchmark Report: 
iAPX-86, Z8000, and 68000, pub!. by Intel Corp. 
1980 

Ao 
74532 

WE 
(LOW 
BYTE) 

OUT WE 

0'71==tc:::~ 
~:~t----J~ RAM 

rl ___ ~--,::r~~~A,.K~ DIlDO 

Figure 25. 8086 Max Mode System 

6-201 210398-001 



AP·97A 

AL:~~~~t t AHO-AH6 --.J 12::=-....;.-------------....,--' ~-----------
~~x- ~~~-

1\ 

_tRe tRSH I 
teAs 

/ 
f4-tASR- ,..tRAH+ !-tAse ...... f4-- teA_ 

). ROW COLUMN K 
Figure 26. Memory Compatibility Timing 

Timing Analysis 

This section will look at two specific system configura­
tions to show how the 8203 timing requirements are 
satisfied by the 8086. Methods of determining the worst 
case number of wait states for the various configura-
tions are also given. -

The timings of the 8202A and 8203 are identical; only 
the 8203 is -referred to for the remainder of this note, but 
all comments apply equally to the 8202A. All timings 
are worst case over the range of T A = 0 - 70·C and 
Vee = + 5v ± 10"10 for the test conditions given in the 
devices' data sheets. 

Example 1. 8086 Max 
Mode System (5 MHz) 

This example (Figure 25) is representative of a typical 
medium-size microprocesor system. Example 1 requires 
one wait state (worst case) for memory cycles. Example 
2 also uses an 8086 in Max mode at 5 MHz, but uses ex­
ternallogic to reduce the number of wait states to zero 
for both read and write cycles. 

DYNAMIC RAM INTERFACE 

First, look at the timing requirements of the dynamic 
RAM to ensure they are satisfied by the 8203. Memory 
compatibility timings are shown in the 8203 data sheet 
(Figure 26). Seven 8203 timings are given, not counting 
tAD, which will be discussed in the next section. These 
timings are summarized in Table 4. 

Table 4. Memory Compatibility Timings 
(all parameters are minimums) 

Syinbol Parameter Value 

tASC Column Address Set-Up Time tp-30 
tASR Row Address Set-Up Time 1p-30 
teAH Column Address Hold Time SIp-30 
teAS CAS Pulse Width SIp-1O 
4wI Row Address Hold Time 1p-1O 
iRcD[1l RAS to CAS -Delay Time 21p-40 
iRSH RAS Hold Time from CAS SIp-30 

[IJtRcomin = tRAHmin + tAScmin = 2p - 40 
This parameter is the minimum RAS active to cAs 
active delay. 

These timings are all a function of the 8203's clock 
period (tp); they may be adjusted to be compatible with 
slower dynamic RAMs by siowing the 8203's clock (in­
creasing tp). The frequency of the 8203's clock may be 
varied from 18.432 MHz to 25 MHz; for best perfor­
mance, the 8203 should be operated at the highestpossi­
ble frequency compatible with the chosen dynamic 
RAM. In most cases, tRAH or teAS will be the frequency 
limiting parameter, but the 821B can operate at its max­
imumfn:quency with most dynamic RAMs available. 

6-202 

tASR applies only to refresh cycles. When the 8203 is in 
the Idle state (not performing any memory or refresh 
cycles) the address multiplexer allows the ALo_7 inputs 
(the RAM row address) to propagate through to the 
8203 OUTO_7 pins, which are connected to the RAM ad­
dress pins. So in read or write cycles, the row address 
will propagate directly from the address bus to the 

210398-001 



Ap·97A 

RAM; the row address set-up time in this case is deter­
mined by the microprocessor's timing (see the next sec­
tion). At the beginning of a refresh cycle, the 8203 has 
to switch its internal multiplexer to direct the refresh 
row address to the RAMs before activating RAS; the 
tASR parameter in Table 4 refers to this case only. 

Assume the Intel 2164A-20 RAM (200 ns access time) is 
used. Equations l(a)-(h) show that this RAM is com­
patible at the S203's maximum operating frequency of 
25 MHz (lp = 1/(25 MHz) = 40 ns). This frequency 
will be used for now; once the rest of the system timings 
are calculated, the minimum 8203 frequency which will 
provide the same system performance can also be deter­
mined. 

(a) tASC 
(b) tASR 
(c) tCAH 
(d) tCAS 
(e) tRAH 
(f) tRCD[1J 
(g) tRP 

(h) tRSH 

tp - 30 
tp - 30 

5tp - 30 
5tp - 10 

tp - 10 
2tp - 40 
4tp - 30 
5tp - 30 

[IJ May be calculated as 

10 (Equation 1.) 
10 

170 
190 
30 
40 

130 
170 

tRComin = tRAHmin + tAscmin = 2tp - 40 

6086 

A,6.19 lfi--...I\.I 
ADo·15 

52.51,50 
READY 

6262 

ADDRESS SET·UP AND HOLD TIME MARGINS 

The microprocessor must put the memory address on 
the address bus early enough in the memory cycle for it 
to pass through the 8203 and meet the row address set­
up time to RAS (tASR> requirement of the dynamic 
RAM (Figure 27). Since the address propagates directly 
through the 8203, this set-up time is a function of how 
long the microprocessor holds the address on the bus 
before activating the RD or WR command, the address 
delay through the 8203 (tAomax), and how long the 
8203 waits before activating RAS (tcRmin). This is 
shown in Figure 28, and calculated in Equation 2. This 
and all following equations show timing margins; a 
positive result indicates extra margin, a zero result says 
the parameter is just met, and a negative result indicates 
it is not met for worst-case conditions. 

Row Address Set-Up Time Margin (Equation 2.) 

CPU Address to RD Delay + RAS 
Active Delay - Address Delays 
TCLCL(5MHz) + TCLML min (8288) + 
tCRmin(8203) - [Greater of 
TCLA Vmax(8086) + TIVOVmax (8282) or 
TCLLHmax(8288) + TSHOVmax(8282)] -
tAomax(8203) - tASR(2164A-20) 

200 + 10 + [40 + 30] -
[Greater of (110 + 30) or (15 + 45)] - 40 - 0 

100 

AD 

H-+--t---tPC56203 WE 

74532 

WE 
(LOW 
BYTE) 

OUTO'; WE 

RA,~_~~~ RAM 

r4 ___ ~--'T".:.....!~~ 01100 

Figure 27. Address Set·Up and Hold Time Margins 

6-203 210398-001 



'1' 
I\) 

~ 

~ 
fl ; 

CLK(8284A) 

BHEl(8086) 
AO-19 

ALE(8288) 

ADDRESS BUS 

OUT 0_7(8203) = Ae-n2184·20) 

MRDC 1(8288) 
AMWC 

RAS(8203) 

~ 
1\ 
I----TCLAV-

\V 
/1\ 

I--TCLLH-

/ 
I 

T1 

\ 
1\ 

BHE. A019VALID 

TIVOV 
TSHOV 

\/ 
11\ 

I+--IAO---

>-

\ 
1\ 

i-TCLML 

Figure 28. Address Set·up Time Margin 

T2 

VALID 

!------IASR-

[\ 
ICR-

\ 

VALID 

I\--

l> 
"tI 
cO 
~ 



T2 

\ \ 
CLK(8284A) 

1\ " 
ALE(8288) 

q> ADDRESS BUS 

g 
~ 

MRDs 1(8288) 
\ 

AMWC 1\ 

RAS(8203) 

I. ICC 

i CAS(8203) 

~ 

~ 
~ 

- - -- -- --- -- - -- ----

T3 TW· T4 

\ \ 

'\. '\. 

VALID 

IRSH J 

/ 

Figure 29. Address Hold Time Margin 

T1 

\ 
I\. 

~ 
1/ 

/ 

~ 
\V 
~I\ 

\. 

'--

l> 
"tI 

~ 
l> 



AP·97A 

Similarly, the microprocessor must maintain the 
memory address long enough to satisfy the column ad­
dress hold time (tcAH> of the RAM; the 8203 TAomin 
parameter should be used for this calculation. 

More importantly, the 8203 bank select (BO-I) inputs are 
also not latched; these are used directly to decode which 
RAS output is activated during read or write cycles, so 
these inputs must be held valid until RAS goes inacti.ve. 
Since BO.I are usually taken directly from the address 
bus, this determines the address hold time required of 
the system (Figure 29). These are easily satisfied by the 
8086 as shown by Equation 3. N represents the number 
of wait states. This equation can be tried with various 
values for N (starting with 0 and increasing) until the 
equation is satisfied, or it can beset equal to zero 
(meaning no excess margin remains) and solved for N 
directly; the fractional value for N that results must be 
rounded up to get the worst-case number of wait states 
to satisfy this particular parameter. No wait states are 
required to meet address hold times. 

Address Hold Time Margin (N = 0) (Equation 3.) 
CPU Address Hold Time,. from 
RD Active - RAS Inactive Delays 
(3 + N)TCLCL(5MHz) + 
TCLLHmin(8288)[I] + TSHOYmin(8282)­
TCLMLmax(8288) - tccmas(8203) -
tRSHmax(8203) [2] 

3(200) + 2 + 10 - 35 - [4(40) + 85(­
[5(40) + 301 
102 

READ DATA ACCESS TIME MARGIN 

Read data access times determine how many wait states 
are required for read cycles. Remember that dynamic 
RAMs have two access time parameters, liAS· access 
time (tRAd and CAS access time (tcAd. Either one may 
be the limiting factor in determining RAM access time, 
as explained in the section Dynamic RAM - Access 
Times, above. Here tcAC is the limiting factor, as 

tccmax + tcACmax 2: tcRmax + tRACmax. 

This timing is shown in Figures 30 and 31, and is 
calculated in Equation 4. In this system, one wait state is 
required to satisfy the read data access time re­
quirements of the system; the margin is -50 ns, which is 
too large a difference to be made up by using a faster 
RAM. 

[I] Not specified - use 2 ns 

[2] Not specified in 8203 data sheet; 
tRsHmax(8203) =5tp + 30 

Figure 30. Read Data Access Time Margin 

6-206 210398-001 



CLK(8284A) 

MRDC(8288) 

CAS(8203) 
cp 
N 

~ 

DouT(2164-20) 

DATA BUS 

ADIJ.15(8086) 

'" 8 ; 

T2 T3 

1...10'--______ _ 
ICC ------1"1 

Figure 31. Read Data Access Time Margin 

TW 

VALID 

VALID 

T4 

l> 
"'D 
cD ..... 
l> 



AP·97A 

Read Data Access (Equation 4.) 
Time Margin (N = 0) 

CPU RD Active to Data Valid Delay -
CAS Active Delay - Data Delays 
(2 + N)TCLCL(5MHz) -. TCLMLmax(8288) 
tccmax(8203) - tCAcmax(2164A-20) -
tpmax(74S373)[1) - TIVOVmax(8286) -
TDVCLmin(8086) 
2(200) - 35 - [4(40) + 85] - 110-
30[1) - 30 - 30 

- 80=>1 wait state needed (N = I) 

WRITE DATA SET·UP AND HOLD TIME MARGINS 

In write cycles, the write data must 

I. reach the dynamic RAMs long enough before 
CAS to meet the RAM's data set-up time 
parameter, tos (Figures 32 and 33), and 

2. be held long enough after CAS to meet the 
RAM's data hold time parameter (tow (Figures 
32 and 34.) 

Data set-up time margin is calculated in Equatio1l5, and 
data hold time margin is given in Equation 6. Again, 
these are margins, so a positive number indicates that 
system timing requirements are met for worst-case tim­
ings. Data hold time is a function of the number of 8086 
wait states, represented as N, as is the read data access 
time margin. No wait states are required to meet this 
parameter. 

Write Data Set-Up Time Margin (Equation 5.) 
CPU WR Active to Data Valid Delay + 
CAS Delay - Data Delay 
TCLMLmin(8288) + tccmin(8203) -
TCLDVmax(8086) - TIVOVmax(8286) -
tosmin(2164A-20) 
10 + [3(40) + 25] - 110 - 30 - 0 
IS 

Write Data Hold Time (Equation 6.) 
Margin (N = 0) 

CPU Data Hold Time, from AMWC 
Active + Data Delays - CAS Active Delay 
(2 + N)TCLCL(SMHz) + TCLCHmin(8284A) 
+ TCHDXmin(8086) + TIVOVmin(8286) 
- TCLMLmax(8288) - tccmax(8203) -
tOHmin(2164A-20) 
2(200) + [¥J(2OO) - IS] + 10 
+ 5 - 35 - [4(40) + 85] - 45 
308 

[I) tp(74S373) is the greater of tpHL (from data) or 
tpLH (from data) and is compensated for Vee and 
temperature variations, and is derated for a 
300pF load (T.I. spec is at 15pF). 
tp(74S373) = 13ns + 0.OSns/pF(300 - IS)pF 
+ 2.7Sns = 30ns. 

Where 13ns is T.1. spec value 
0.05ns/ pF is derating factor 
for excess capacitive load 
(300 - IS) is excess capacitive 
load 2.75 is compensation for 
TA and Vee variation 

Figure 32. Write Data Set·Up and Hold Time Margins 

6-208 210398-001 



Ap·97A 

T1 T2 

\ \ 
1\ /\ 

CLK(8284A) 

TCLML 

\ 
AMWC(8288) 

f\ 
ICC 

CAS(8203) \ 
!-TCLDV-

ADO·I.(8086) 

DATA BUS= I 
DIN(2164A·20) 

ADDRESS 

------------------------------

\/ 
/1\ 

!-TIVOV 

DATA 

tDS~ 

\V 
//\ 

VALID 

Figure 33. Write Data Set·Up Time Margin 

SACK SET-UP TIME MARGIN 

As explained earlier, SACK (and XACK) are "hand­
shaking" signals used to tell the microprocessor when it 
may terminate the bus cycle in progress. Thus, SACK 
timing determines how many wait states will be 
generated, as opposed to how many wait states are ac­
tually required for proper operation, which is determin­
ed by the read data access time for read cycles and by 
the write data hold time for write cycles. If SACK 
causes more wait states than are required, there is a per­
formance penalty, but the system operates; if too few 
wait states are generated, the system will not function. 

SACK and XACK serve the same function; they differ 
only in timing. XACK is Multibus compatible, and is 
activated only when the read data is actually on the bus 
(in a read cycle) or when the write data has been latched 
into the RAM (in a write cycle). SACK is activated 
earlier in the memory cycle than XACK to compensate 
for delays in the microprocessor responding to this 
signal to terminate the cycle. Use of SACK is normally 
preferable, as it results in the fewest possible wait states 
being generated. But in some systems, SACK will not 
generate a sufficient number of wait states, so XACK or 
a delayed form of SACK must be used. Note that the 
number of wait states generated by SACK and XACK 
will vary, depending on whether a refresh cycle is in pro­
gress when the memory cycle was requested, and if 

refresh cycle is in progress, how near it is to completion. 
SACK is sampled by the 8284A Clock Generator Chip's 
RDYI or RDY2 input. The 8284A can be program­
med to treat these inputs as either synchronous or asyn­
chronous inputs by tying its ASYNC input (pin 15) 
either high or low, respectively. SACK must be treated 
as asynchronous unless it has been synchronized to the 
microprocessor's clock with an external flip-flop. 

SACK set-up time is shown in Figures 35 and 36, and is 
calculated in Equation 7. This equation indicates that, . 
at worst case, one wait state will be generated (n = 1). 
This satisfies the requirements of the system, namely 
one wait state for reads and zero (or more) wait states 
for writes. 

SACK Set-Up Time Margin (N = 0) (Equation 7.) 

6-209 

RD or WR Active to SACK Active Delay 
(N)TCLCL(5MHz) + tpLHmin(7404)[I] -
TCLMLmax(8288) - tCAmax(8203) 
- tsumin(74S74) 
o + 1 - 35 - [2(40) + 47] - 3 
-164 => 1 wait state wi! be generated (N = 1) 

We have only looked at "worst case" SACK set-up time 
so far, to determine the maximum number of wait states 
that will be generated (assuming no delays due to a 
refresh cycle in progress). We should look at "best 

[I] Not specified - use 1 ns. 

210398-001 



'l' 
~ 
o 

~ 

~ 
~ 

CLK(8284A) 

AMWC(8288) 

CAS(8203) 

ADo·1s(8086) 

DEN(8288) 

DATA BUS 

~ 

'\ 

~ 
\ 

T2 T3 

1\ \ 
f\ \ 

1\ 
Icc 

\ 

DATA VALID 

VALID 

Figure 34. Write Data Hold Time Margin 

T4 

V 
/ 

TCHDX 

\ 
/ 

~TCVNX 

IOH 

\ 
1\ 

-
\ 

~ 
!-TELOZ-

--=-TIVOV-

~ 

» 
"tJ 
cO ...... » 



ClK(8284A) 

MRDC 1(8288) 
AMWC 

SACK(8203) 

ClK(74574) 

a(74S74)~ 
RDY1(8284A) 

READY(8284A,8086) 

8086 
CPU 

8282 

Ap·97A 

A'6.'. l,.;t-----",I 
ADO·'S 

s"S:;,SQ 
READY 

Figure 35. SACK Set·Up Time Margin 

T2 T3 

Figure 36. SACK Set·Up Time Margin 

6-211 

AO 
74532 

WE 
(lOW 
BYTE) 

OUT WE 
0·'1--__ .,/ 

m a¥s RAM 
XACR 

DIlDO 

TW 

210398-001 



AP·97A 

case" SACK timing also, to make sure enough wait 
states are always generated. Note that in Figure 35, 
SACK goes through an external 74S74 flip-flop; this 
samples SACK on-half clock cycle earlier than the 
8284A does (on the same clock edge that activates 
MRDC or AMWC), effectively reducing SACK set-up 
time by one-half clock period. This guarantees the pro­
per number of wait state will be generated for "best 
case" SACK timing. Adding this flip-flop does not in­
crease the worst case number of wait states generated by 
SACK. 

In the case where a memory cycle is requested while a 
refresh cycle is in progress, the memory cycle will be 
delayed by a variable amount of time, depending on 
how near the refresh cycle is to completion. This delay 
may be as long as one full memory cycle if the refresh 
was just starting; this time is about 650 ns~ depending on 
the 8203's clock frequency. SACK set-up, read data set­
up, and write data hold times to the microprocessor's 
clock are not the same as in the usual case where there is 
no refresh interference. In this case, SACK is delayed 
until the read or write cycle has been completed by the 
RAM, so that there is no possibility of terminating the 
cycle too soon. 

pes SET·UP TIME MARGIN 

The 8203's RD, WR, and ALE inputs must be qualified 
by PCS in order to perform a memory cycle. If the PCS 
active set-up time parameter (tpes) is violated, the 
memory cycle will be delayed. In this case all maximum 
delays normally measured from command (tCR' tcc, 
tcA> will be measured instead from PCS active and will 
be increased by tpcs (20 ns). Minimum tCR, tcc, tCA 
delays remain the same, but are measured from com­
mand or PCS whichever goes active later. If tpcs is 
violated, care must be taken that PCS does not glitch 
low while RD, WR, or ALE is active, erroneously trig­
gering a memory cycle. tpcs is not violated in this 
system, however (Equation 8). 

PCS Set-Up Time Margin (Equation 8.) 
CPU Address Valid to Command Active 
Delay - PCS Decode Time 
TCLCL(5MHz) + TCLMLmin(8288) -
[Greater of TCLA Vmax(8086) + 
TIVOVmax(8282) or TCLLHmax(8288) + 
TSHOVmax(8282») 
- tpffiax(8205) -t pcsmin(8203) 
200 + 10 - [Greater of (110 + 30) or 
(15 + 45») - 18 - 20 
32 

6-212 

RAM DATA OUT HOLD TIME MARGIN 

The 8203 CAS output is only held valid for a fixed 
length of time during a read cycle, after that the RAM 
data outputs are 3-stated. This time is not long enough 
to allow the 8086 to read the data from the bus, so the 
data must be latched externally. This latch should bea 
transparent type and should be strobed by XACK from 
the 8203. Because the minimum time from XACK active 
to CAS inactive is only 10 ns, a latch with a data hold 
time requirement of 10 ns or less (such as a 74S373) 
should be used (see Equation 9). 

RAM Data Out Hold Time Margin, (Equation 9.) 
from XACK Active 

tAcKmin(8203) + tOFFmin(2164A - 20) 
- tHmin(74S373)[11 

10+0-10 
o 

OTHER CALCULATIONS 

Equations 3, 4, 6 and 7 may be solved directly for N, 
where N is the number of wait states, to find how many 
wait states are required at a given frequency. Alter­
natively, a number may be substituted for N and these 
equations solved for the 8086's clock period, TCLCL, 
to find the maximum microprocessor frequency possible 
with N wait states. Note that the clock high and low 
times (TCHCL and TCLCH) are also a function of 
TCLCL. Be sure to use the proper speed selection of the 
8086 in this calculation, as various A.C. parameters are 
different and the result may be different for different 
speed selections of the 8086, even at the same frequency. 
Be sure to check the other equations at this frequency to 
make sure they are OK, too. 

Finally, for given values of TCLCL and N, Equations 3, 
4, 6, .and 7 may be checked to find the lowest 8203 clock 
frequency which will allow the same system per­
formance, if it is desired to operate at some frequency 
other than the 25 MHz we assumed. 

CONCLUSION 

This design will operate with, at worst case, one wait 
state (except for refresh) at microprocessor frequencies 
up to 6 MHz, using slow (200 ns access time) dynamic 
RAMs. At 6 MHz, it is limited by a lack of SACK set-up 

[I) A 74S373 must be used to meet this timing re­
quirement. Even though worst case margin is 0 ns, 
this is not a critical timing, as valid data will hold 
on the latch inputs for a considerable time after 
the RAM outputs 3-state. 

210398-001 



Ap·97A 

time. At 5 MHz, the 8203 can be operated at any clock 
frequency from 18.432 MHz to 25 MHz, still with only 
one wait state. 

Example 2. 8086 Alternate 
Configuration System (5 MHz) 

Figure 37 shows another 8086 Max mode system at 5 
MHz, but this time using the Alternate Configuration, 
which allows it to operate with no wait states (except for 
refresh). 

The system in the previous example was limited by 
SACK set-up time. SACK set-up time can be improved 
by sampling SACK later; this has been done by changing 
the clock edge used to sample SACK, allowing roughly 
213 clock period longer. SACK set-up time (and read data 
access time and write data hold time) margin can also be 
improved by activating the RD or WR inputs of the 8203 
earlier in the 8086's bus cycle; this is the purpose of the 
extra logic in Figure 37 (l.C.s A8 - All). These generate 
advanced RD and WR signals timed from the falling 
edge of ALE, which occurs roughly 1;3 clock· period 
sooner than the MRDC and AMWC are generated by the 
8288 Bus Controller. Altogether, these changes allow 
about one 8086 clock period more set -up time for SACK. 

Let's look at this logic in more detail. An Intel 8205 
(A8) is used to decode the 8086's status outputs SO.2. An 
opcode fetch, memory read, or memory write decode to 
8205 outputs 4,5, and 6, respectively. These outputs go 
to the D inputs of two 74S74 flip-flops. The Q output of 
flip-flop AlO.2 is an advanced memory read signal and 
the Q output of AIl.2 is an advanced memory write 
signal. As shown in Figure 37, the 8203 is not activated 
for opcode fetches, but it can be if 8205 outputs 4 and 5 
are ORed with the unused 74SOO gate (A9.4) and the Q 
output of AlO.2 used instead of Q. Both flip-flops are 
clocked by the falling edge of ALE to generate the ad­
vanced commands. Flip-flop AlO.I is clocked by the 
trailing edge of either AMWC (Advanced Memory 
Write Command) or MRDC (Memory Read Command) 
from the 8288 bus controller (A6), indicating that the 
8086 has completed the.memory cycle. AlO.I, in turn, 
presets both the AlO.2 and All.2 flip-flops to terminate 
the advanced memory read and write signals to the 
8202A. AIO.I is then preset to its initial state by ALE 
going active at the start of the next bus cycle. 

Because RAM write cycles are started very early in the 
8086's bus cycle using this logic, the 8203 will activate 
CAS to the RAMs (latching write data) before the data 
is valid from the 8086. This requires delaying WE to the 
RAMs and performing a "late write" (explained earlier 
under Dynamic RAMs) in order to allow more time for 
the write data to arrive. But the WE signal must not be 

6-213 

delayed so long that there is no longer enough data hold 
time, measured from when WE goes active; or that the 
WE active to CAS inactive delay spec or the RAM 
(tRwLl is violated. None of the control signals from the 
8086 or 8288 bus controller satisfy both of these timing 
constraints, so such a signal is generated by flip-flop 
AI1.I, which serves to delay AMWC from the bus con­
troller by an amount of time equal to TCLCH (the low 
time of the 8086's clock). AIl.l is also preset by AIO.I 
at the end of the memory cycle. The Q output of AII.I 
is ANDed with WE from the 8203 by A14.1 to form a 
delayed RAM WE. As in the previous example, this 
signal is then ANDed with BHE and AO to form the 
WE for the high and low bytes of RAM, respectively. 

A total" of four packages (three 14-pin and one 16-pin) 
of TTL logic are required. 

The dynamic RAM interface timings are identical to the 
last example (Equations I (a)-(h»; 2164A-20 RAMs will 
be used again. 

ADDRESS SET·UP AND HOLD TIME MARGINS 

Address set-up and hold time margins are given in 
Equations 10 and II, respectively. An 8086-2 
microprocessor has been used instead of the standard 
8086, as this speed-selected part gives better address set­
up to RD or WR times, which this design needs since it 
uses advanced RD and WR commands. 

Row Address Set-Up Time Margin l1] (Equation lO.) 
CPU Address to Adv. RD Delay 
+ RAS Delay - Address Delays 
TCLCHmin(8284A) + TCHLLmin(8288)[2] 
+ tpLHmin(74Soo)[3] + tpHLmin(74S74)[2] 

+ tCRmin(8203) - [Greater of 
TCLA Vmax(8086 - 2) + TIVOVmax(8282) 
or TCLLHmax(8288) + TSHOVmax(8282)] 

- tAIJ11lax(8203) - tAsRmin(2164A-20) 
['13(200) -15] + 2 + I + 2 + [(40) + 30] 
- [Greater of (60 + 30) or (15 + 45)] - 40 - 0 

63 

[1] Read or write cycles only. Eq. Ib gives this timing 
for refresh cycles. 

[2] Not specified - use 2 ns. 
[3] Not specified - use Ins. 

210398-001 



Ap·97A 

Address Hold Time Margin (N = 0) (Equation 11.) 
CPU Address Hold Time from Adv. RD 
Active - RAS Inactive Delays 

(3 + N)TCLCL(5MHz) + TCHCLmin(8284A) 
+ TCLLHmin (8288) 
+ TSHOVmin(8282) - TCLMLmax(8288) 
- tccmax(8203) - tRsHmax(8203) 
(3)200 + ['h(200) + 2] + 2 + 5 - 35 
- [4(40) + 85] - [5(40) + 20] 
175 

READ DATA ACCESS TIME MARGIN 

Read data access time margin is shown in Equation 12; 
no wait states are required for read cycles, even with 200 
ns access time RAMs. 

Read Data Access Time (Equation 12.) 
Margin (N = 0) 

Adv. RD to Data Valid Delay - CAS Delay 
- Read Data Delays 
(2 + N)TCLCL(5MHz) + TCHCLmin(8284A) 
- TCHLLmax(8288) - tpLHmax(74S00) 
- tpHLmax(74S74) - tccmax(8203) 
- tCAcmax(2164A-20) - tplIlax(74S373) 
- TlVOVmax(8286) - TDVCLmin(8086-2) . 

(2)200 + ['h(200) + 2] - 15 - 5 - 10 
- [4(40) + 85] - 110 - 30 - 30 - 20 

3 

WRITE DATA SET·UP AND HOLD TIME MARGINS 

Write data set-up and hold times are shown in Equa­
tions 13 and 14, respectively. No wait states are required 
during write cycles. Note that write data set-up has been 
guaranteed by delaying WE from the 8203 with clocked 
AMWC from the bus controller and performing "late 
write" cycles; write data set-up time would not be 
satisfied otherwise. Equation 15 verifies that WE has 
not been delayed too long to meet the RAM's WE active 
to RAS inactive set-up time (tRWU' The RAM's WE ac­
tive to CAS inactive set-up time (tcwu is also satisfied, 
since CAS does riot go inactive until at least 20 ns after 
RAS. 

Write Data Set-Up Time Margin (Equation 13.) 
CPU Data to Clocked AMWC Set-Up 
+ WE Delays - Data Delays 
TCLCHmin(8284A) + tpHLmin(74S74)[1] 
+ (2)tpHLmin(74S32)[I] 
- TCLDVmax(8086-2) - TlVOVmax(8286) 
- tDsmin(2164A-20) 

[Y3(200) - 15] + 2 + (2)2 - 60 - 30 - 0 
34 

6-214 

Write Data Hold Time (Equation 14.) 
Margin (N = 0) 

CPU Data Hold Time from Clocked AMWC , 
+ Data Delays - WE Delays 

(2 + N)TCLCL(5MHz) 

TCHDXmin(8086-2) + TlVOVmin(8286) -
- tpHLmax(74S74) - (2)tpHLmax(74S32) 
- tDHmin(2164A-20) 
(2)200 + 10 + 5 - 10 - (2)7 - 45 
346 

WE Active Set-Up Time Margin (Equation 15.) 
to RAS Inactive 

TCHLLmin(8284A) [I] + tpLHmin(74S00)[2] 
+ tccmin(8203) + tRsHmin(8203) 
- tSKEw(74S74)[3] -(2)tpHLmax(74S32) 
- tRwLmin(2164A-20) - TCLCL(5MHz) 
2 + 1 + [3(40) + 25] + [5(40) - 30] 
- 2 - (2)7 - 50 - 200 

52 

SACK SET·UP TIME MARGIN 

Equation 16 shows that SACK set-up time is satisfied; 
no wait states will be generated for read or write cycles 
(except for refresh). 

SACK Set-Up Time Margin (N = 0) (Equation 16.) 
(l + N)TCLCL(5MHz) - TCHLLmax(8288) 
- tPLHmax(74S00) - tpHLmax(74S74) 
- tCAmax(8203) - tsumin(74S74) 
200 - 35 - 5 - 10 [2(40) + 47]- 3 
20 

[I] Not specified - use 2 ns. 
[2]· Not specified - use 1 ns. 
[3] tSKEw(74S74) is max. skew between 

tpHL(Q output, from CLK) of two Q outputs in 
same package - use = 2 ns. 

210398-001 



9' 
~ 
01 

I\) 

I 
6 

A1 
8284A 

A5YNC 

>-z "'I'" Ow 
a:..: 

>­o 
Li\ 
a: 

" .... 
U 

A16·19 

ADo·15 

A2 
8086·2 

READY 
50-2 

ClK 

NOles· Symbol t- indicates connection to Voe through 1~pull·up 
- -- indicates additional circuitry to zero wait slales. 

I ~ ~ r ___ ~~_R:::~~:________ A18,'9:>iAo:12 00
115 

A8 

I vI AO.' 0619::------
II' l.'~"_O ____ __, 

8205 Osr 
04 

74500 

! 
I 1.._, 

I 
I L _______ _ 

DATA BUS 

745138 

AO 

~ Figure 37. 8086 Alternate Configuration System 

Dour 
DIN 

WE 
(HIGH 
BYTE) 

WE 

RAM 
2164A 

·20 

DIN 

:J> 
"tI 
cD ..... 
:J> 



intJ AP·97A 

PCS Set-Up Time Margin (Equation 17.) 
CPU Address Valid to Adv. RD or Adv. 
WR Delay - PCS Decode Time 
TCLCHmin(8284A) + TCHLLniin(8288)[IJ 
+ tpLHmin(74S00) + tpHLmin(74S74)[IJ 
- TCLA Vmax(8086-2) - TIVOVmax(8282) 
- tpffiax(74S138[3J - tpcsmin(8203) 
[¥3(200) - 15] + 2 + 1 + 2 - 60 - 30 - 12 - 20 
1 

PCS SET·UP TIME MARGIN 

PCS set-up time for the 8203 (tpcS> is satisfied, but not 
with as much margin in the last example (Figure 17). 

[lJ Not specified - use 2 ns. 
[2J Not specified - use 1 ns. 
[3J Must use 74S138 to maintain PCS Set-Up 

Time Margin. 

This is because the RD and WR commands are activated 
earlier in the microprocessor's bus cycle, leaving less 
time to decode PCS from the address bus. 

CONCLUSION 

This design will operate with a guaranteed zero wait 
states up to 5 MHz using slow (200 ns access time) 
RAMs. At this frequency, it is limited by both read and 
write data set-up times, and to a lesser extent, by SACK 
set-up time. Using faster RAMs will not raise the max­
imum frequency, as write data and SACK set-up times 
are not affected by the RAM speed. The 8203 operating 
frequency must be 25 MHz. 

This design can be used (with some modifications) to 
allow one wait state performance up to 8086 clock fre­
quency of 8 MHz. 

6-216 210398-001 



APPLICATION 
NOTE 

Ap·141 

October 1981 

6-217 order number:210315.001 



8203/8206/2164A 
Memory Design 

Contents 

ABSTRACT 

DESIGN 

CONCLUSION 

6-218 210315-001 



AP·141 

ABSTRACT 
This Application Note shows an error corrected 
dynamic RAM memory design using the 8203 64K 
Dynamic RAM Controller, 8206 Error Detection and 
Correction Unit and 150 ns 64K Dynamic RAMs with a 
minimum of additional logic. 

The goals of this design are to: 

1. Control 128K words x 16 bits (256 KB) of 64K 
dynamic RAM. 

2. Support 150 ns dynamic RAMs. 
3. Write corrected data back into dynamic RAM when 

. errors are detected during read operations. 

4. To use a minimum of additional logic. 

It is not the goal of this design to: 

1. Provide the maximum possible performance. 
2. Provide features like error logging, automatic error 

scrubbing and dynamic RAM initialization on 
power-up, or diagnostics, although these features 
can be added. 

A17·A, ____ --,/1 

RD-----1'-+aI RD 8203 RASOp----OI 
WR WR RAS11O----0I 
Cs CS cAsp-.,---C4 

XACK 

XACK~~~----~---~r-

Ao-----+-I Ao 
BHE BHE 

R/1Nt---­
BMot>---~ 
BM,t>---~ 

Tt--t-----' 

'-:I-:-:NT=E::R~F-:-AC:-:E:--' 
LOGIC 

DESIGN 

Figure 1 shows a memory design using the 8206 with 
Intel's 8203 64K Dynamic RAM Controller and 150 ns 
64K Dynamic RAMs. As few as three additional ICs 
complete the memory control function (Figure 2). 

For simplicity, all memory cycles are implemented as 
single-cycle read-modify-writes, shown in Figure 3. This 
cycle differs from a normal read or write primarily when 
the dynamic RAM write enable (WE) is activated. In a 
normal write cycle, WE is activated early in the cycle; 1n 
a read cycle, WE is inactive. A read-modify-write cycle 
consists of two phases. In the first phase, WE is inac­
tive, and data is read from the dynamic RAM; for the 
second phase, WE is activated and the (modified) data is 
written into the same word in the dynamic RAM. 
Dynamic RAMs have separate data input and output 
pins so that modified data may be written, even as the 
original data is being read. Therefore data may be read 
and written in only one memory cycle. 

Figure 1. 8203/8206 Memory System 

6-219 210315-001 



inter Ap·141 

In order to do read-modify-writes in one cycle, the 
dynamic RAM's CAS strobe must be active long enough 
for the 8206 to access data from the dynamic RAM, cor­
rect it, and write the corrected data back· into the 
dynamic RAM. CAS active time is an 8203 spec (tcASl, 
and is dependent on the 8203's clock frequency. The 
clock frequency and dynamic RAM must be chosen to 
satisfy Equation 1. 

(Eq.I) 
Dynamic Dynamic Dynamic 

8203 RAM 8206 8206 RAM RAM 

tCASmin ~ tCAC + TDVQV + TQVQV +IDS + tCWL 

5(54)-10 ~ 85 + 67 + 59 + 0 + 40 

260 ~ 251 

The 8203 itself performs normal reads and writes.· In 
order to perform read-modify-writes, all that is needed 
is to change the timing of the WE signal. In this design, 
WE is generated by the interface logic in Figure 2-the 
8203 WE output is not used. All other dynamic RAM 
control signals come from the 8203. A 20-ohm damping 
resistor is used to reduce ringing of the WE signal. These 
resistors are included on-chip for all 8203 outputs. 

The interface logic generates the R/W input to the 8206. 
This signal is high. for read cycles and lo~ for write 
cycles. During a read-modify-write cycle, R/W is first 
high, then low. The faIling edge of RlW tells rhe 8206 to 
latch its syndrome bits internally and generatf corrected 
check bits to be written to dynamic RAM.· Corrected 
data is already available from the DO pins. ~o control 
si~nals at all are required to generate corrected data. 

R/W is generated by delaying CAS from the 8203 with a 
TTL-buffered delay line. This allows the 8206 sufficient 
time to generate the syndrome; this delay, tDELAY J, 

must satisfy Equation 2. . 

(Eq.2) 
Dynamic 

RAM 8206 

tDELAYJ ~ tCAc + TDVRL 

ISO '" 85 + 34 

ISO ~ 119 '" 
The 8206 uses multiplexed pins to output first the syn­
drome word anq then check bits. This same R/W signal 
may be used to latch the syndrome word externally for 
error logging. The 8206 also supplies two useful error 
signals. ERROR signals the presence of an error in the 
data or check bits. CE tells if the error is correctable 
(single bit in error) or uncorrectable (multiple bits in 
error). 

In the event that an uncorrectable error is detected, the 
8206 will force the Correctable Error (CE) flag low; this 
may be used .as an interrupt to the CPU to halt execu­
tion and/or perform an error service routine. In this 
case the 8206 outputs data and check bits just as they 
were read, so that the data in the dynamic RAM is left 
unaltered, and may be inspected later. 

After R/W goes low, sufficient time is allowed for the 
8206 ·togenerate corrected check bits, then the interface 
logic activates WE to write both corrected data and 
check bits into dynamic RAM. WE is generated by 
delaying CAS from the 8203 with the same delay line 

8203 CAS- IN 
TIL 

DELAY LINE 
50 100 150 200 250 

2011 

'-----Wl,-:,~ ] :~:AY 
SYSTEM {Ao--'-------"T"-or"""" BMa ~~~TROL 

ADDRESS r----~~>-_+_+ 

BUS BHE _+------......,.+-~...J BM1 

DEL~~~~ cs-..--" ..... ,..., -] 

SYSTEM { AD L. ________ -,-___ :T::: ~~~TROL CONT:~~ WR -.. ........ __ 

Figure 2. Interface Logic 

6-220 210315-001 



AP·141 

A7.AO:=J<: ROW X COLUMN X 
RAS \ ~----------------~/ 
CAS \ ~-------------'/ 

DO- -- -- -- -- - - - < ... ______ vA_L_I_D _____ .....,,>-
DI _______ , _____________________________ __J:><:~ ______ V_A_Ll_D ____ __J:><: ... ______ _ 

Figure 3. Single·Cycle Read·Modify·Write 

used to generate R/W. This delay, tDELAY 2, must be 
long enough to allow the 8206 to generate valid check 
bits, but not so long that the tCWL spec of the RAM is 
violated. This is expressed by Equation 3, 

8206 8203 

(Eq. 3) 

Dynamic 
RAM 

tDELAY I + TRVSV S tDELAY 2 :5 tcAsmin - tCWL 

150 + 42 :5 200 :5 260 40 

192 :5 200 :5 220 

Unlike other EDC chips, errors in both data and check 
bits are automatically corrected, without programming 
the chip to a special mode, 

Since the 8203 terminates CAS to the dynamic RAMs a 
fixed length of time after the start of a memory cycle, a 
latch is usually needed to maintain data on the bus until 
the 8086 completes the read cycle. This is conveniently 
done by connecting XACK from the 8203 to the STB in­
put of the 8206, This latches the read data and check 
bits using the 8206's internal latches. 

The 8086, like all l6-bit microprocessors, is capable of 
reading and writing single byte data to memory. Since 
the Hamming code works only on entire words, if you 
want to write one byte of the word, you have to read the 
entire word to be modified, do error correction on it, 
merge the new byte into the old word inside the 8206, 
generate check bits for the new word, and write the 

6-221 

whole word plus check bits into dynamic RAM, A byte 
write is implemented as a Read-Modify-Write. 

Why bother with error correction on the old word? Sup­
pose a bit error had occurred in the half of the old word 
not to be changed. This old byte would be combined 
with the new byte, and new check bits would be gener­
ated for the whole word, including the biUn error. So 
the bit error now becomes "legitimate"; no error will be 
detected when this word is read, and the system will 
crash. You can see why it is important to eliminate this 
bit error before new check bits are generated. Byte 
writes are difficult with most EDC chips, but easy with 
the 8206. 

Referring again to Figure 2, the 8206 byte mark inputs 
(BMo, BM I ), are generated.from AO and BHE, respec­
tively, of the 8086's address bus, to tell the 8206 which 
byte is being written. The 8206 performs error correc­
tion on the entire word to be modified, but tri-states its 
DO/WDI pins for the byte to be written; this byte is 
provided from the data bus by enabling the correspon­
ding 8286 transceiver. The 8206 then generates check 
bits for the new word. 

During a read cycle, BMo and BM[ are forced inactive, 
i.e., the 8206 outputs both bytes even if 8086 is only 
reading one. This is done since all cycles are imple­
mented as read-modify-writes, so both bytes of data 
(plus check bits) must be present at the dynamic RAM 
data input pins to be rewritten during the second phase 
of the read-modify-write. Only those bytes actually be-

210315-001 



inter Ap·141 

ing read by the 8086 are driven on the data bus by enabl­
ing the corresponding 8286 transceiver. 

The output enables of the 8286 transceivers (OEBO, 
OEB1) are qualified by the 8086 RD, WR commands 
and the 8203 CS. This serves two purposes: 

1. It prevents data bus contention during read cycles. 
2. It prevents contention between the transceivers and 

the 8206 DO pins at the beginning of a write cycle. 

CONCLUSION 
Thanks to the use of a 68-pin package, the 8206 Error 
Detection and Correction Unit is able to implement an 
architecture with separate 16 pin input and output 
busses. The resulting simplification of control require­
ments allows error correction to be easily added to an 
8203 .memory subsystem with a minimal amount of 
interface logic. 

6-222 210315-001 



in1er 

©Iniel Corporation, 1983. 

APPLICATION 
NOTE 

6-223 

AP-167 

August 1983 

ORDER NUMBER: 230809-001 
NOVEMBER 1983 



AP-167 

INTRODUCTION 

Most microprocessor based workstation designs to­
day use large amounts of DRAM for program storage. 
A drawback to DRAMs is the many critical timings 
that must be met. This control function could easily 
equal the area of the DRAM array if implemented with 
discrete logic. 

The VLSI 8207 Advanced Dynamic RAM Controller 
(ADRC) performs complete DRAM timing and con­
trol. This includes the normal RAM 8 warm-up cycles, 
various refresh cycles and frequencies, address 
multiplexing, and address strobe timings. The 8207's 
system interface and RAM timing and control are pro­
grammable to. permit it to be used in most 
applications. 

Integrating all of the above functions (plus a dual port 
and error correcting interfaces) allows the user to 
realize significant cost savings over discrete logic. For 
example, comparing the 8207 to the iSBC012B 512K 
byte RAM board (where the DRAM control is done 
entirely with TTL), an 8207 design saved board space 
(3 in2 vs 10 in2); required less power (420 rna vs 
1220 rna); and generated less heat. Moreover, design 
time was reduced, and increased margins were a­
chieved due to less skewing of critical timings. This 
comparison is based on a single port design and did 
not include the 8207's RAM warm-up, dual-port and 
error correcting features. If these features were fully 
implemented, there would be no change to the 8207 
figures, listed above, while the TTL figures would easi­
ly double. 

This Application Note will illustrate an iAPX design 
with the 8207 controlling the dynamic RAM array. The 
reader should be familiar with the 8207 data sheet, the 
80186 data sheet, and a RAM data sheet". 

DESIGN GOALS 

The main objective of this design is for the 80186 to 
run with no wait states with a Dynamic RAM array. 
The design uses one port of the 8207. The dual port 
and error correcting interfaces of the 8207 are covered 
in separate Application Notes. 

The size of the RAM array is 4 banks of 64k RAMs 
or 512k bytes. The memory is to be interfaced locally 
to the 80186. 

USING THE 8207 

The three areas to be considered when designing in 
the 8207 are: 

• 8207 programming logic 
• Microprocessor interface 
• RAM array 

8207 Programming 

The 8207 requires up to two 74LS165 shift registers 
for programming. This design needs one 8 bit shift 
register, as shown in Figure 1. The 16 bits in the Pro­
gram Data Word are set as shown in Figure 2. Refresh 
is done internally, so the REFRQ input must be tied 
high. The memory commands are iAPX 86 status, so 

r---------- -, 
SYSTEM \ I .------i----------. 

RESET 

PClKlMUX 

RESET I : V I 
I ...---........ _--'---""1 I 
I I lOAD ClK I lOAD ClK 

: PUSO SHIFT REG. QH ~ SERIAL PUSO SHIFT REG. QH." PD I 

II LT+rTA IN G H ~ A B DATA IN G 

tLw· .. t t t : t t t .. ~ t t t 
I !! -=~. I! : 1 1 _ _ 1 1 JUMPER OPTIONS 

~: PD15 PD8 : PD7 PD¢ 

H 

8207 

I I 
L __ ~T2£.N~ ____ J 

Figure 1. 8207 programming shift registers 

'Ali RAM references in this Application Note are based on Intel's 2164A 64k DynamiC RAM. 

6-224 230809-001 



Ap·167 

+5 

SRDyelK 
S2t----++-'....--+_ ........ 
S1t----4-----+_~ 

80186 So r""""i;=~!::::::;--__j-1 

S240 

+5 

ADDRESS DATA 
BUS BUS 

NOTE: THE 8207 REQUIRES SERIES RESISTORS ON All OUTPUTS TO RAM. 

Figure 3. 80186 to 8207, non-ECC, synchronous system single port. 

the timing of EAACK will always guarantee 2 clocks 
of address hold time from RAS. 

Acknowledge Setup Time 
The margin between the 8207 issuing EAACK and the 
80186 ready input for no wait states minus delays from 
clock edges, logic delays, and setup time is calculated 
as follows. 

1 clock - 8207 TCLAKL max - 74S30 tPLH @ 
15 pf - 80186 TSRYCL ~ 0 

125 ns - 35 - 22 - 35 = 33 ns 

Read Access Margin 
The 8207 starts a memory cycle on the falling clock 
edge between the 80186's T1 and T2. Data must be 
valid within 2 clocks. Valid data from the RAMs is 

6-225 

based upon the CAS access period minus buffer, 
clock, setup requirements. 

2 TCLCL - 8207 TCLCSL @ 150 pf (t34) -
DRAM tCAC - 74S240 propagation delay @ 
50 pf - additional bus loading delay 
(250 pf)(!) - 74S240 delay @ 50 pf - 80186 
TDVCL ~ 0 

250 ns - 122 - 85 - 7 - 7 - 7 - 20 = 2 ns 

Write Data Setup and Hold Margin 
Data from the processor must be valid when WE 
is issued by the 8207 to meet the RAM specifica­
tion tDS (2164A = 0 ns), and then held for a 
minimum of 30 ns. 
(1) 74STTL logic derated by .05 ns/pf. 74STTL 
buffers (240, 37) derated by .025 ns/pf. 

230809-001 



AP-167 

o 0 0 000 0 0 0 0 0 o 0 0 

~11_5 ____________________ 8~11 ~7 _____________________ 0~1 

Figure 2. Program data word 

the PCTLA input must be high when RESET goes 
inactive. 

The differential reset circuit shown in the Data Sheet 
is necessary only to ensure that memory commands 
are not received by the 8207 when Port A is changed 
from synchronous to asynchronous (vice versa for 
Port B). This design keeps Port A synchronous so no 
differential reset circuit is needed. 

Microprocessor Interface 

To achieve no wait states, the 8207 must connect 
directly to the microprocessor's CLKOUT and status 
lines. The 8207 Acknowledge (EAACK) must connect 
to the SRDY input of the 80186. 

When the 80186 is reset, it tristates the status lines. 
The 8207 PCTLA input requires a high to decode the 
proper memory commands. This is accomplished by 
using a pull-up resistor or some component that 
incorporates a pull-up on S2. 

The 8207 address inputs are connected directly to the 
latched/demultiplexed address bus. 

RAM Array 

The 8207 provides complete control of all RAM tim­
ings, warm up cycles, and refresh cycles. All write 
cycles are "late writes." During write cycles, the data 
out lines go active. This requires separate data in/out 
lines in the RAM array. 

To operate the 80186 with no wait states, it is necessary 
to chose sufficiently fast DRAMs. The 150 ns version 
of the 2164A allows operating the 80186 at 8 MHz, 
and the 200 ns version up to 7 MHz. 

HARDWARE DESIGN 
Figure 3 shows a block diagram of the design, and 
Figure 4 is a timing diagram showing the relationship 
between the 8207 and the 80186. 

8207 Command Setup 
Two events must occur for a command to be recog­
nized by the 8207. The 80186 status outputs are sam­
pled by a rising clock edge and Port Enable (PE) is 
sampled by the next falling clock. edge (refer to the 
Data Sheet wave forms). 

The command timing is determined by the period be­
tween the status being issued and the first rising clock 
edge of the 8207, minus setup and delays. 

80186 status valid to 8207 rising clock - status from 
clock delay - 8207 setup to clock ~ 0 

1 TCLCL - 80186 TCHSV max - 8207 TKVCH 
min ~ 0 

125 ns - 55 - 20 = 50 ns 

PE is a chip select for a valid address range. It can 
be generated from the address bus or from the 80186' s 
programmable memory selects. This. design uses an 
inverted A19. The timing is determined by the inter­
val between the address becoming valid and the fall­
ing clock edge, minus setup and delays. 

80186 address valid to 8207 falling clock edge 
- 80186 address from clock delay - 8283 latch 
delays - 8207 PE setup ~ 0 

1 TCLCL - 80186 TCLAV max - 8283 IVOV @ 
300 pf - 8207 TPEVCL ~ 0 

125 ns - 44 - 22 - 30 = 29 ns 
The hold times are 0 ns and are met. 

Address Setup 
For an 80186 design, the 8207 requires the address to 
be stable before RAS goes active, and to remain stable 
for 2 clocks. Unused 8207 address inputs should be 
tied to Vcc. 

tASR is a RAM specification. If it is greater than zero, 
this must be added to the address setup time of the 
8207. Address setup is the interval between addresses 
being issued and RAS going active, minus appropriate . 
delays. 

80186 address valid to 8207 RASactive -
80186 address from clock delay - bus delays -
(8207 setup + RAM tASR) ~ 0 

TCLCL + 8207 TCLRSL min @ 150 pf(l) -
80186 TCLA V max - 8283 IVOV max @ 300 pf 
- (8207 TA VCL min + DRAM tASR) ~ 0 

125 ns + 0 - 44 - 22 - (35 + 0) = 24 ns 

The address hold time of 2 docks + 0 ns is always 
met, since the addresses are latched by the 828213. 
Even when the processor is in wait states (for refresh), 

(1) Not specified-use 0 ns. 

6-226 230809-001 



AP-167 

TCLCL + TCLCH + 8207 TCLW min(l) + 
74S 37 delay tPHL min @ 50 pf + additional 
loading (142 pf) - 80186 TCVCTV -
74S240tPZL - bus delays (250 pf) - 74S240 
delay - 2164A tOS ;;. 0 

125 + 62.5 + 0 + 6.5 + 3.5 - 70 - 15 - 7 - 7 -
o = 98.5 ns 

The hold time, tDH, is from WE going low to the 
80186 DEN going high plus buffer delays minus 
WE from clock delays. 

TCLCL - 80186 TCVCTX min + 74S32 
tPD(2) min + 74S240 tPHZ (min)(2) + 250 pf 
bus delays + 74S240 propagation delay min -
8207 TCL W max - 74S37 tPHL @ 50 pf -
142 pf loading delays - DRAM tOH ;;. 0 

8 MHz 

8207 RASO 

8207 RAS1 

8207 CASO 

8207 CAS1 

8207 WE ___ ~_--, 

8207 EAACK 

80186 (SRDY) 

NOTES: 

WRITE 
CYCLE 

. 1. COMMAND SETUP MARGIN 
2. PE SETUP MARGIN 
3. EAACK SETUP MARGIN 
4. DATA SETUP MARGIN 
5. READ ACCESS MARGIN 

READ 
CYCLE 

62.5 ns + 10 + 2 + 3 + 7 + 3.5 - 35 -
3.5 - 30 = 19.5 ns 

All margins are actually better by about 10-20 ns. No 
improvement in timing was allowed for lower 
capacitive loads when additional buffers are used (i.e. 
the 80186 address out delay is at 200 pf, but the 8283 
latch only loads these lines with about 20 pf). 

SUMMARY 

The 8207 supports the 80186 microprocessor run­
ning with no wait states. The 8207 interfaces easi­
ly between the microprocessor and dynamic RAM. 
There are no difficult timings to be resolved by 
the designer using external logic. 

REFRESH 
CYCLE 

READ CYCLE -I 

Figure 4. 8207/80186 timing relationship 

(1) Not specified, use 0 ns. 
(2) Not specified, use one half of typical value. 

6-227 230809-001 



intJ 

©Intel Corporation, 1983. 

APPLICA TION 
NOTE 

6-228 

A,P-168 

August 1983 

ORDER NUMBER: 230862·001 
NOVEMBER 1983 



inter AP-168 

INTRODUCTION 

The 80286 high speed microprocessor pushes 
microprocessor based systems to new performance 
levels. However, its high speed bus requires special 
design considerations to utilize that performance. In­
terfacing the 80286 to a dynamic RAM array require 
many timings to be analyzed, refresh cycle effects on 
bus timing examined, minimum and maximum signal 
widths noted, and the list continues. 

The 8207 Advanced Dynamic RAM Controller was 
specifically designed to solve all interfacing issues for 
the 80286, provide complete control and timing for 
the DRAM array, plus achieve optimum system per­
formance. This includes the normal RAM 8 warm­
up cycles, various' refresh cycles and frequencies, ad­
dress multiplexing, and address strobe timings. The 
8207 Dynamic RAM Controller's system interface and 
RAM timing and control are programmable to per­
mit it to be used in most applications. 

Integrating these functions (plus dual port and error 
correcting interfaces) allows the user to realize signifi­
cant savings in both engineering design time, PC board 
space and product cost. For example, in comparing 
the 8207 to the ISBC012B 512k byte RAM board 
(where the DRAM timing and control is done entire­
ly with TTL), the 8207 design saved board space (3 in2 
vs 10 in2); used less power (420 ma vs 1220 ma); 
reduced the design time; and increased margins due 
to less skewing of timings. The comparison is based 
upon a single port 8207 design and does not include 
its RAM warm-up, dual port, error correcting, and 
error scrubbing or RAM interleaving features. 

This Application Note will detail an 80286 and 8207 
design. The reader should have read the 8207 and the 
80286 data sheets, a DRAM data sheet*, and have them 
available for reference. 

DESIGN GOALS 

The main objective of this design is to run the RAM 
array without wait states, to maximize the 80286's per­
formance, and to use as little board space as possi­
ble. The 80286 will interface synchronously to Port 
A of the 8207 and the 8207 will control 512k bytes 
of RAM (4 banks using 64k DRAMs). The dual port 
and error correcting features of the 8207 are covered 
in separate Appltcation Notes. 

8207 INTERFACE 

The 8207 Memory design can be subdivided into three 
sections: 

• Programming the 8207. 
• The 80286/8207 interface. 
• The Dynamic RAM array. 

Programming the 8207 

The RAM timing is configured via the 16 bit program 
word that the 8207 shifts-in when reset. This can re­
quire two 74LSI65 shift registers to provide complete 
DRAM configurability. The 8207 defaults to the con­
figuration shown in Table 1 when PDI is connected 
to ground. This design does not need the flexibility 
the shift registers would allow since standard 
8207/80286 clock frequencies, DRAM speeds and 
refresh rates are used. Table 1 details the 8207/80286 
configuration and Table 10 in the Data Sheet iden­
tifies "CO" as the configuration of the 8207 all tim­
ings will be referenced to (80286 mode at 16 MHz us­
ing fast RAMs = CO). 

Table 1. Default Non-ECC programming, PD1 
pin (57) tied to ground. 

Port A is Synchronous (EAACKA and XACKA) 

Port B is Asynchronous (LAACKB and XACKB) 

Fast-cycle Processor Interface (10 or 16 MHz) 

Fast RAM 100/120 ns RAM 

Refresh Interval uses 236 clocks 

128 Row refresh in 2 ms; 256 Row refresh in 
4 ms 

Fast Processor Clock Frequency (16 MHz) 

"Most Recently Used" Priority Scheme 

4 RAM banks occupied 

The '8207 will accept 80286, status inputs when the 
PCTLA pin is sampled low at reset. This pin is not 
necessary for an 80286 design (besides programming) 
and is tied to ground. 

Refresh is the final option to be programmed. If the 
Refresh pin is sampled high at reset, an internal timer 

"All RAM references in this Application Note are based upon Intel's CMOS 51C64-12 64k Dynamic RAM. Any DRAM with similar tim· 
ings will function, Refer to section 4.4. . 

6-229 230862-001 



inter AP-168 

is enabled, and if low at reset, this timer is disabled. 
The first method is the easiest to implement, so the 
RFRQ pin is tied to Vcc. 

The differential reset circuit shown in the Data Sheet 
is necessary only to ensure that memory commands 
are not received by the 8207 when Port A is changed 
from synchronous to asynchronous (vice versa for 
Port B). This design keeps Port A synchronous so no 
differential reset circuit is needed. 

RAM Array 
The 8207 completely controls all RAM timings, warm­
up cycles, and refresh cycles. To determine if a par­
ticular RAM will work with the 8207, calculate the 
margins provided by the 8207 (Table 15, 16-8207 
Data Sheet) and ensure they are greater than the RAM 
requirement. An additional consideration is the ac­
cess times of the RAMs. The access time of the system 
is dependent upon the number of data buffers between 
the 80286 and the DRAMs. To operate the 80286 at 
zero wait states requires access times of 100-120 ns. 
Slower RAMs can be used (150 ns) by either adding 
a wait state (programming the 8207 for "Cl ") or 
reducing the clock frequency (to 14.9 MHz approx­
imately and maintaining the CO configuration.) 

All write cycles are "late writes" and the data out lines 
of the RAM will go active. This will require separate 
data in and out lines in the RAM array. Another con­
sideration for the RAM array is the proper layout of 
the RAM, and impedance matching resistors on the 
8207 outputs. Proper layout is covered in Intel's RAM 
Data Sheets and Application Notes. . 

Microprocessor Array 
To achieve no wait state operation, the 8207's clock 
input must be connected to the 80286's clock input. 
The EAACK (early acknowledge) output of the 8207 
must connect to the SRDY input of the 82284 .. The 
8207's address inputs connect directly to the 80286 
address outputs and the addresses are latched inter­
nally. This latch is strobed by an internal signal with 
the same timing as LEN (which is for dual port 80286 
designs). Figure 2 shows the timing relationship bet­
ween LEN and the 80286. 

LEN will fall from high to low, which latches the bus 
a4dress internally, when a valid command is receiv­
ed. LEN can go high in two clock cycles if the RAM 
cycle started (RAS going low) at the same time LEN 
went low. If the 8207 is doing a refresh cycle, the 80286 
will be put into wait states until the memory cycle can 

start. LEN will then go high two clocks after RAS 
starts, since addresses are no longer needed for the 
current RAM cycle. Thus the low. period of LEN could 
be much longer than listed in the Data ·Sheet. 

DESIGNING THE HARDWARE 
Figure 1 shows a detailed block diagram of the design 
and Figure 2 shows the timing relationship between 
the 8207 and the 80286. 

The following analysis of six parameters will confirm 
that the design will work. These six system parameters 
are generally considered .the most important in any 
microprocessor-,Dynamic RAM design. 

. 8207 Command Setup Margin 
Two events must occur for the 8207 to start a memory 
cycle. Either RD or WR active (low) and PE must be 
low when the 8207 samples these pins on a falling clock 
edge. If PE is not valid at the same clock edge that 
samples RD or WR active, the memory cycle will be 
aborted and no acknowledge will be issed. 

6-230 

The command setup time is based upon the status be­
ing valid at the first falling clock edge. 

80286 status valid to 8207 falling clock -
80286. status from clock delay - 8207 
command setup to clock ~ 0 
TCLCL - 80286 tl2 (max) - 8207 TKVCL 
(min) ~ 0 
62.5 - 40hs - 20ns = 2.5ns 

PE is decoded from the address bus and must be set 
up to the same falling clock edge that recognizes the 
RD, WR inputs. This margin is determined from the 
clock edge that issues the address and the clock edge 
t.hat will recognize RD or WR, minus decoding logic 
delays. 

There are 2 clocks between addresses being issued by 
the 80286 and PE being sampled by the 8207. Then 
the 80286 address delay from the clock edge and 
decoding logic delays are subtracted from this inter­
val. This margin must be greater than O. 

2TCLCL - 80286 tl3 (max) - 8207 TPEVCL 
(min) ~ 0 
125 - 60 - 30 = 35ns 

The address decode logic must use no more than 35 ns 
(and less is better). Figure 3 shows an easy implemen­
tation which uses a maximum of 12 ns. 

The 8207 requires a zero ns hold time and is always 
met. 

230862-001 



AP-168 

82284 

~------~~ SRDYr--------------, 
ClK 

t 
ClK 

ALE ...-------, +5 

82288 t OE~___ ClK AACK 
OTIR 

MilO S1 SO A00R,...-------' ........ 
"REi'i1iY Cl~ Y I RFRQ STROBES y 

MilO ~ "" PCTl POI ~ 
S1 V - RO 8207 WE t- V 
SO WR PSEN 

MEMORY 
(UPPER) 

MEMORY 
(lOWER) 

80286 AOOR IN lEN WE 01 DO WE 01 DO 

AOOR ~=;-;::::~~::::J'I ~ 7 =;oJ 
DATA U '-1::fJo- r-

~-~l~~~---~-------~ r--~~J ~O 
r-----~ r---- AO ST8 80 

Y-------IO a 
AAcK _ 7474 

L1 .--__ '-_--..-+-8;;.;H-E--< .... 0 a ~ VI 
y OE 

~ 

74S240 
~ ~ 

T OE STB 

8287 8283 
OE 

{t {} 74S240 

DATA AOOR 

NOTE: THE 8207 REQUIRES SERIES RESISTORS ON All OUTPUTS. 

I 

--t""t>- ACCK 

""'-..J>- OBM 

Figure 1_ 80286 to 8207, non-ECC, Synchronous System Single Port 

6-231 230862-001 



inter 

16 MHz 
CLOCK 

S0-81 

80266 
ADDR. 

LEN 

RASO 

RAS1 

DRAM WE 

A23 

A22 

A21 

A20 

A19 

Ts 

I 

AP-168 

Te 

I 
T1 

I 
Ts 
I 

Figure 2. 80286/8207 Timing-"CO". 

+5 

74S04 

Figure 3. Address Decode Logic 

6-232 

Te 

I 

74S30 

Te 

I 
Te 

I 

8207 
PE 

230862-001 



\ AP-168 

Address Setup Margin 

The 8207 must have stable addresses up to two clocks 
after RAS goes active. This is of no concern to the 
user, since LEN latches the address internally and will 
not admit a new address until two clocks after RAS 
goes active. 

Addresses must be stable at least 35 ns (tAVCL) before 
RAS goes active to allow for propagation delays 
through the 8207, if a RAM cycle is not delayed by 
the 8207. 

tASR is a RAM specification. If it is greater than zero, 
tASR must be added to the address setup time of the 
8207. Address setup is the interval between addresses 
being issued, by the 80286, and RAS going active, 
minus appropriate delays. 

The margin is determined from the number of clocks 
between addresses being issued from the 80286 to RAS 
going active. Exactly when RAS goes active is unim­
portant, since here we are interested only in the clock 
edge. 

2TCLCL - 80286 t13 (max) - 8207 TA VCL 
(min) ~ 0 
125 - 60ns - 35ns = 35ns 

Acknowledge Setup Margin 

The 8207 acknowledge (EAACK) can be issued at any 
point in the 80286 bus cycle (end of ~I or ~2 of Ts 
or Tc). If EAACK is issued at the end of ~2 (Ts or 
Tc), the 80286 will complete the current bus cycle. If 
EAACK is issued at the end of ~I of Tc, the 82284 
will not generate READY to the 80286 in time to end 
the current bus cycle. A new Tc would then be 
generated and EAACK would now be sampled in time 
to terminate the bus cycle. EAACK is 3 clocks long 
in order to meet setup and hold times for either 
condition. 

We need the margin between the 8207 issuing EAACK 
and the 82284 needing it. Figure 4, shows a worst case 
example. 

TCLCL - 8207 TCLAKL max - 82284 t II ~ 0 
62.5 - 35 - 15 = 12.5ns 

Read Access Margin 

The 8207 will typically start a memory cycle (i.e. RAS 
goes low) at the end of ~I of Ts. But if the start of 
a memory cycle is delayed (by a refresh cycle for in­
stance), then RAS will be delayed. In the first case, 

~ Th ~mn 

Figure 4. Acknowledge to the 82284 

6-233 230862-001 



this represents 3 clocks and the second case could re­
. quire 4 clocks to meet the data setup requirements of 
the 80286. In either case, data must be valid at the 
end of Tc. The 8207 holds CAS active long enough 
to ensure valid data is received by the 80286 in dther 
case. 

DRAMs specify two access times, RAS access (tRAC) 
and CAS access (tCAC) Both access periods must be 
calculated and the one with the least inarginused. Also 
the number of data buffers should be kept to a 
minimum. Too many buffers would require either 
faster (more expensive) DRAMs, or a reduction in the 
performance of the CPU (by adding wait states). 

RAS Access Margin 

3TCLCL - 8207 TCLRSL max @ 150 pf -
DRAM tRAC - 74S240 propagation delay max 
@ 50 pf - 80286 t8 ~ 0 

187.5 - 35 - 120 - 7 - 10 = 15.5ns 

CAS Access Margin 

2TCLCL - 8207 TCLCSL max @ 150 pf - DRAM 
tCAA (or tCAC - 74S240 tplh max @ 50 pf -
80286 t8 ~ 0 

125 - 35 - 60- 7 - 10 = 13ns 

By solving each equation for iRAC and tCAC, the 
speed requirement of the RAM can be determined. 

DRAM tRAC = 3 rCLCL- 8207 TCLRSL -
74S240 tplh - 80286 t8 = 135.50s 

DRAM tCAC = 2 TCLCL - 8207 TCLCSL -
74S240 tplh - 80286 t8 = 73ns 

1. Not specified. Assun1e no delay for worst case analysis. 
2. STTL derated by .05nsipf. 

AP-168 

So any DRAM that has a RAS access period less than 
.135 ns, a CAS access period less than 73 ns, and meets 
all requirements in the DRAM Interface Timing (Table 
IS, 16-8207 Data Sheet), will work. 

6-234 

Write Data Setup and Hold Margin 
Write data from the processor must be valid when the 
8207 issues WE to meet the DRAM specification tDS 
and then held to meet the tDH requirement. Some 
write cycles will be byte writes and the information 
to determine which byte is decoded from AO and 
BHE/. Since the 80286's address bus is pipelined, these 
two signals can change before the RAM cycle starts, 
hence they must be latched by LEN. PSEN is used 
in .the WE term to shorten the WE pulse. Its use is 
not essential. 

Data must be set up to the faIling edge of WE, since 
WE occurs after CAS. The 2 clocks between valid 
write data and WE going active (at the RAM's) minus 
propagation delays determines the margin. 

2 TCLCL - 80286 t14 (max) @ 100 pf -
74S240 tplh + 8207 TCLW (min)1 + 74S1O tphl @ 
192 pf2 - DRAM tpS = 0 

125 - 50 - 7 + 0 + 14 - 0 = 82ns 

The timing of the 8207's acknowledge is such that data 
will be kept valid by the 80286, for more than two 
clocks after WE goes active. This easily meets all RAM 
tDH specifications. 

SUMMARY 
The 8207 complements the 80286's performance and 
high integration with its own performance, integra­
tion and ease of use. No critical timings or logic design 
has been left to the designer. The 80286/8207 com­
bination allows users to realize maximum performance 
from their simpler design. 

230862-001 



AR-364 

7231B 

APPLICATION BRIEF 

INTERFACING THE DYNAMIC RAM CONTROLLER TO THE iAPX 186 

Jim Sleezer 

1.0 INTRODUCTION 

The 80186 microprocessor has integrated about 20 typically used system 
components into the same package as the microprocessor. This integration 
saves board space and design-in time. The 8208 Dynamic RAM Controller 
continues this system level integration. It is designed to control up to 
256 Kbytes of Dynamic RAM (DRAM) using 64 K x 1 DRAMs. and up to 1 Mbyte using 
256 K x 1 DRAMs. 

Besides generating all DRAM control and timings. the 8208 allows various 
refresh types. frequencies. and microprocessor interfaces. Additionally. the 
8208 does the 8 DRAM warm-up cycles back-to-back to prepare for operation. 

By integrating the entire RAM timing and programmable refresh types. refresh 
rates. and interfaces into a single package. the user realizes significant 
savings in development time and board space. For example. a quick comparison 
of the 8208 versus a TTL implementation (using just the DRAM timing logic from 
Intel's iSBC012B memory board) yielded the following results: 

1) a reduction in board space (10 in2 to 3 in2). 

2) a reduction in power (1.2 A to 300 ml\). and 

3) much less design time (1 day). 

The difference would be greater still if RAM warm-up. refresh. and interface 
programmability were added to the TTL implementation. 

This Application Note will examine an 8208 to 80186 design. The reader should 
already have read the 8208 Data Sheet. the 80186 Data Sheet. and a DRAM Data 
Sheet*. 

* While all DRAM references in this Application Note are based upon Intel's 
2164A-15 64 K x 1 Dynamic RAM. any DRAM that meets the timing requirements 
in the Data Sheet. Table 8. and A.C. Characteristics. plus satisfies the 
Read Data Access Margin. will work. 

6-235 



inter AR-364 

2.0 HARDWARE DESIGN 

An 8208 design can be divided into three areas: programming the 8208, DRAM 
compatibility, and system interface. While each topic will be covered in this 
Application Note, the 82081 s programming logic defaults to an 8 MHz 80186 
synchronous status interface with 150 ns access RAMs. All programming, RAM 
timings, and interface issues are satisfied for that configuration. 

2.1.0 8208 PROGRAMMING 

On the trailing edge of Reset, the 8208 samples the levels on two input pins 
and clocks in a 9 bit serial programming word. One input pin controls the 
type of refresh to be performed, while the other input pin alters the edge on 
which the 8208 samples memory commands. The program word further configures 
the 8208 for a refresh rate as a function of 8208 clock frequency, synchronous 
or asynchronous operation, and either an advanced acknowledge or Multibus 
compatible acknowledge. 

2.1.1 REFRESH TYPES 

If the REFRQ pin is sampled high at reset, an internal refresh timer is 
enabled; a low disables it. Both modes allow an external refresh cycle 
request by pulsing theREFRQ pin. An external request is generated by a 
low-to-high transition, and sampled by an 8208 (clock edge). Burst refresh 
occurs only when the timer is disabled and the REFRQ pin is sampled by ,two 
falling clock edges. The easiest method is to tie the REFRQ pin to Vcc 
(through a pull-up resistor); refresh cycles are transparent to the user. 

2.1.2 8208 COMMANDS 

The 8208 alters the point at which it samples a command and its response to 
the command inputs, based on the level sampled on PCTl when reset goes 
inactive. A high enables the status interface and a rising clock edge is used 
(this would be the middle of the Tl state; refer to the Timing Diagram). If 
low, the Multibus compatible interface is selected and a falling edge is used 
to allow for more propagation delay. 

'6-236 



AR-364 

When the status interface is used, the status lines must be externally pulled 
up. The 80186 will tristate them when reset and the proper level (high) may 
not be seen by the 8208. 

2.1.3 PROGRAM WORD 

The program word defaults to a synchronous interface, fast acknowledge (for no 
wait states), and a refresh rate compatible with an 8 MHz clock 
(128 row/2 ms; 256 row/4 ms). When operating the 8208 at 8 MHz, most designs 
will not need to alter any programming bits and the POI input pin can be tied 
to ground. If the 8208 is not run at 8 MHz a 74LS165-type shift register is 
needed to adjust for a proper refresh rate; otherwise, refresh cycles would 
not be performed often enough and data would be corrupted. 

2.1.3.1 REFRESH RATE OPTIONS (CIO, CI1, PLS, FFS) 

These four programming bits permit almost any DRAM to be used without wasting 
memory bandwidth. The combination of these four bits selects one of sixteEn 
clock intervals as shown in Table 1. 

I 

I 
I 

I Coum In,erval CI1, CIO (8208 Clock P.II0d.) 

I 
I I ! 

I 
00 I 01 i 10 11 I I 

CFS PLS FFS I (0%) (10%) I (20%) i (30%) 

I 0 I ! I I 118 ! 106 i 94 I 82 

I 0 0 I , I 59 
, 

53 i 47 ; 41 I i 

! 0 I , I 0 ., 74 ! 66 58 50 I 

I 0 0 I 0 37 , 33 29 25 I 

Table 1. Refresh Count Intervals 

6-237 



AR-364 

The 8208 does not alter any other of its functions with these four bits. To 
determine which combination of bits to use, examine the following equation: 

Equation 1. Refresh Rate = count interval x 8208 clock period 
14.6 usec = count interval x 190 ns 
14.6 usec/.190 = 76.8 count interval 

The next fastest Count Interval of 74 is chosen from Table 1. The bit 
configuration is: PLS = 1; FFS = 0; CIl = 0; CIO = 0, and generates 
seventy-four 8208 clocks between refresh cycles. A refresh cycle can be 
delayed up to one 8208 RAM cycle from the time it was requested to the time it 
is serviced. Thus, the 14.6 usec refresh rate is chosen to allow for these 
delays. The 190 ns clock period was picked at random. The refresh timer. is 
restarted when the cycle is requested and not when the cycle begins ____ 
executing. Note the difference in the sense of the programming bits. PLS = 0 
is the same as PLS = 1. This notation is used throughout the Data Sheet. 

2.1.3.3 INTERFACE OPTIONS (S", X) 

The S programming bit adds synchronizers to the 8208's inputs when input 
signals cannot meet setup and hold times. The RD, WR inputs are still decoded 
as determined by PCTL, but these inputs will ·be sampled on a falling edge 
(status or command interface). The X bit allows either an 80186 (8086) no 
wait state acknowledge or an XACK (Multibus) type acknowledge. A synchronous 
interface should use the advanced acknowledge and an asynchronous interface 
the XACK acknowledge. XACK is removed by the inactive edge of RD or WR. If 
RD or WR goes inactive before the 8208 issues XACK, then no XACK is issued. 

2.1.3.3 OTHER OPTIONS (~, mr, RFS) 

The CFS bit must be set to zero. This bit is reserved for future speed 
enhancements of the 8208. RFS has no effect on 8208 timings and may be set to 

. either state. It is to be used with faster 8208's. RB is to allow for 32 bit 
wide memory arrays. If an 8 or 16 bit wide system is used, set this bit to 
its active state (RB = 0). The Bank Select pin must not select a RAM bank 
that is not physically present. 

6-238 



I"n+ _I® 'e' AR-364 

2.2 MICROPROCESSOR INTERFACE 

The 8208's timings are optimized for an 8086 and 80186 system. The 
synchronous status interface offers the best performance (i.e., no wait 
states) and is the easiest to implement. 

2.3 DRAM COMPATIBILITY 

Table 2 lists the equations to determine whether a particular DRAM will work 
with the 8208. Four other questions are listed in the A.C. Characteristics 
Section in the 8208 Data Sheet. 

Par.mel .. Rd. RI' Cye: ... I HOI" P.r_lef WA CyclH HOIH 

IRP 2TC1.C1.-T26 , IRP 2TCLCL-T26 , 
ICPN 2.5TC1.C1.-T3! , tCPN 2.STC1.CL-T35 i , 
IRSH 3TC1.CL-T~ I tRSH 3TCLCL- T306 I , 
ICSH 3TCLCL-T26 , !CSH 4TCLCL-T26 , 
ICAH 2TCLCL-T306 , !CAH 2TCLCL-T'34 , 
tAR 2TCLCL-T26 , tAR 3TCLCL-T26 , 
IT 3130 2 IT 3130 i 2 

IRC HCLCL , IRC 6TC1.CL , 
IRAS 2TCLCL-T26 , tRAS 4TCLCL-T26 , 
ICAS 3TCLCL-T306 , !CAS TCLCL-T34 ! , 
IRCS , .5TCLCL-TCL-T36-TBUF , tWCH 3TCLCL-T34 '.3 
tRCH O.5TCLCL-T~ , tWCR HCLCL-T26 '.3 

IWP HCLCL-T36-TBUF i , 
tAWL 4TCLCL-T36-TBUF , 
!CWL 4TCLCL-T36-T8UF , , 
lWCS TCLCL-T36-T8UF I 

Table 2. DRAM Equations 

These equations merely determine if the 8208 will provide proper margins for a 
DRAM. Whether a RAM works properly in a system is another issue. The 
Hardware Design Example section examines most of the important system timings. 

6-239 



inter AR-364 

3.0 HARDWARE DESIGN EXAMPLE 

The objective is to have the 80186 run without wait states when accessing a 
DRAM array. The total amount of DRAM is 128K bytes and will be organized as 
1 bank of 64K words. 

Figure 1 is a block diagram of our design showing all relevant logic. The 
programming shift register is not needed since the 8208 will be operating at 
8 MHz, and the other defult values are required. A data buffer is required in 
a no wait state design, since during reads the 8208 CAS line drives data onto 
the bus up to 50 ns past the end of T4. If another bus cycle were starting, 
then the multiplexed address/data lines would conflict with the driven data 
bus. This would reduce the systems' address to ALE setup margins. Figure 2 
is a timing diagram of the design. 

The timing parameters that are examined ensure that this portion of the system 
will operate,properly. The parameters are: 

1. Command setup and hold margin. 

2. Address setup and hold margin. 

3. Acknowledge setup and hold margin. 

4. Write data setup .and hold margin. 

5. Read access margin. 

3.1 ACKNOWLEDGE SETUP AND HOLD MARGIN 

The 8208 early acknowledge (AACK) is intended to be connected to the SRDY 
input on the 80186 after being inverted. The AACK is issued at the beginning 
of T2 and must be valid at the beginning of T3. 

lTCLCL - 8208 TCLAKL max - 7410 tPLH @ 15 pf. - 80186 TSRYCL min _ 0 

125ns - 35 - 22 - 35 
= 33 ns 

6-240 



inter AR-364 

The 80186 hold requirements. TCLSRY. of 15 ns is always met. The 15 ns hold 
time applies only when READY is being looked at by the 80186. Transitions 
that occur anywhere else in the bus cycle have no effect. AACK is two clocks 
long and is issued from a falling clock edge. AACK would always be sampled 
one clock into its duration. There would be a hold time of about 1 clock. 

3.2 COMMAND SETUP AND HOLD MARGIN 

Two events must occur for the 8208 to recognize a valid memory command. The 
80186 status outputs are sampled by a rising clock edge (middle 'of Tl 
typically) and PE is sampled on the very next falling clock edge. If PE is 
not sampled at this point. no memory cycle will start. The status lines would 
have to go inactive before requesting another memory cycle. 

The status setup margin is referenced to the middle of T4 or TI. and is 
required to be valid by the middle of Tl. 

lTCHCH - 80186 TCHSV max - 8208 TKVCH min 0 

125 ns - 55 ns - 20 ns 
= 50 ns 

PE setup margin is referenced to the beginning of Tl and must be valid by the 
end of Tl. PE selects the 8208 for a valid address range. It can be 
generated from either the address bus or using the 80186's programmable chip 
selects. 

1 TCLCL - 80186 TCLCSV max - 8208 TPEVCL min 0 

125 - 66 - 30 
= 29 ns 

Both PEand the RD. WR. and PCTL inputs require a 0 ns hold time to their 
respective clock edges. 

6-241 



AR-364 

The 8208 latches this information internally for cases when a refresh cycle. 
delays a memory cycle from starting. Thus, a cycle will start when the 
refresh cycle finishes, even if the status signals have gone inactive •. The 
hold margin is always met. 

3.3 ADDRESS SETUP AND HOLD MARGINS 

The 8208 requires the addresses to be stable before RAS goes active, and to 
remain stable for two clock periods thereafter. Unused address inputs should 
be pulled up to Vcc with a resistor. 

The 8208 generates a margin of 0 ns minimum for the DRAM specification tASR 
when the 8208 specification TAVCl is met. If some DRAM is found that needs a 
more positive margin for tASR, then this requirement must be added to TAVCl. 

The setup margin is between the clock edge that addresses are issued from to 
the 8208 issuing RAS, minus delays. 

1 TClCl + 8208 TClRSl min[l] (@ 150 pf) - 80186 TClAV max -
8282 IVOV max (@ 300 pf) - [8208 TAVCl min + DRAM tASR] _ 0 

125 ns + 0 -44 - 30 - (35 + 0) 
= 16 ns 

The 8208's address bus is divided into two halves. AlO-8 becomes the DRAM row 
address outputs and AHO-8 becomes the column addresses (64K DRAMs would need 
AlO-7 and AHO-7 connected to the address bus, Al8, AH8 would be tied to Vcc). 
Internally, the 8208 latches AHO-8 with CAS to provide for tCAH - column 
address hold time. This latching occurs near the end of T2 for read cycles 
and near the end of T3 for write cycles. When the RAM cycle is delayed due to 
refresh, the timing of AACK will ensure the two clock hold requirement. No 
equation is provided since this happens internally. . 

[1] Since this is not specified, 0.wi11 be used for analysis only. Based 
upon design information this value would be about 20 ns. 

6-242 



inl:el® AR-364 

3.4 WRITE DATA SETUP AND HOLD MARGIN 

During write cycles, data from the 80186 must be valid at the DRAM when CAS 
goes low, and satify the DRAM tDS specification. Data must then be held valid 
and referenced to CAS long enough to meet the DRAM specification tDH. In this 
design example DEN is the limiting factor in the data setup margin. DEN is 
active before data is issued by the microprocessor, but there is a significant 
delay before the buffer is active. The result is that write data will be 
valid at the buffer before it is fully capable of transmitting data. The 
margin is referenced to the clock edge that issues DEN and the clock edge that 
issues CAS, minus delays. 

TCHCL + 1 TCLCL = 8208 TCLCSL min (@ 150 pf) -
80186 TCVCTV max - 74LS245 TPZH max - DRAM TDS 0 

55 + 125 + 62.5 - 70 - 40 - 0 
= 132 ns 

The hold margin is referenced to the edge that issues CAS and when valid data 
disappears. DEN is the controlling signal because it can go inactive before 
the data bus is floated by the microprocessor. 

1 TCLCL + 1 TCLCH + 80186 TCVCTX min + 74LS245 TPLZ min[l] -
8208 TCLCSL max (@ 150 pf) - DRAM. TDH _ 0 

125 ns + 55 + 10 + 7.5 ~ 121 - 30 
= 46.5 ns 

The WE pulse length may cause problems with back-to-back bus cycles. 
Shortening the pulse width will not cause any other problems. The easiest 
solution is to factor in a shorter width signal, such as AACK, as is done in 
the design example. 

[1] This parameter is not specified. For analysis, either assume 0 ns or use 
a more realistic value, such as one-half of typical. 

6-243 



3.5 READ DATA ACCESS MARGIN 

The design example requires a buffer in the data path because the 8208 will 
not stop driving data onto the bus until after the end of T4. With 
back-to-back bus cycles this would cause bus contention and reduce address to 
ALE setup margins. The DRAM access parameter used is called "TCAC", and is 
referenced from the CAS active edge - not RAS. This parameter varies widely 
between manufacturers. When analyzing read access margins, some trade-off 
between buffer speed and TCAC delays must be considered. 

The 8208 starts a memory cycle, typically, at the end of T1, and data must be 
valid at the end of T3. With [refresh cycle] delayed bus cycles, data would 
still have to be valid in two clocks. The timing of the AACK signal 
guarantees this. From this two clock margin, buffer delays, TCAC delays, and 
others must be subtracted. 

2 TCLCL - 8208 TCLCSL max (@ 150 pf) - DRAM TCAC max 
(@100 pf) - buffer delays max - 80186 TDVCL min 0 

250 ns - 121 - 85 - 12 - 20 
= 12 ns 

4.0 SUMMARY 

The 8208 solves most of the many design issues faced when adding a dynamic RAM 
array by giving the designer options. Options for various types of DRAMs, 
clock speeds, and system configurations. The margins that were just examined 
showed that the 8208 has plenty of margin in a system. Several margins were 
even higher. The READ DATA ACCESS MARGIN, for example, is considerably 
greater. The access time for DRAMS is specified with 100 pf loads, yet this 
was not added into the equation. Each designer should verify this analysis as 
specifications from manufacturer's change, without notice. 

6-244 



AR-364 

n T2 T3 T4 Tl T2 T3 

ALE 

ADO·IS 

\'--------! 

~iCK-----------_1--------------------AACJ' _______ _ 

I-.....!...-___ I 

D1/ II' 

8208 Timing Diagram 

Read thl!n Write Cycle with one Bank of RA~ 

"IHER 
HACk 

SIGNAl.S 

\I...... __ --<r------
1. Status setup margin 
2. Address setup margin 
3. Acknowledqe setup Inargin 
4. Write data setun margin 
5. Read access mar!);n: based uoon TCAC 
6. Shortened WE pulse 

6-245 



ARTICLE 
REPRINT 

"Reprinted from ELECTRONICS, Sept. 8, 1982. Copyright (c) McGraw·Hifl, Inc. 1982. All rights reserved." 

6-246 

AR-231 

October 1982 

OCTOBER 1982 
ORDER NUMBER: 210758-001 



AR-231 

Dynamic-RAM controller 
orchestrates memory systems 

Up to 88 chips take their cues from an n-channel MOS Ie 
that both housekeeps and supports error-corrected dual-port memories 

by Jim Nadir and Mel Bazes. Inlel Corp .. Sanla Clara. Calif. 

o Designing a dynamic-random-access-memory system 
means balancing the goals of high performance. reliabili­
ty, and versatility against the often contrary aims of 
economy, simplicity. and compactness. Tn the last five or 
so years, the advent of dynamic-RAM controller chips 
relieved designers of some of the onus of tending to the 
needs of dynamic chips: standard supportive integrated 
circuits brought together the counters, timers, multiplex­
ers, and other elements needed. 

But controllers diverged into two types. One bought 
the high performance to ride with fast memory systems 
at the expense of functionality, while the other took on 
more and more functions to do a complete but slower 
job. The 8207 -an advanced dynamic-RAM controller­
blunts the horns of that dilemma and also solves a 
variety of less severe design problems. 

A dynamic-RAM controller is charged with making a 
dynamic memory system appear static to the host pro­
cessor. At a minimum, therefore, the controller takes 
over refreshing the memory chips, multiplexing the row 
and column addresses, generating control signals, timing 
the precharge period, and signaling the processor when 

data is available or no longer needed. But, beyond those 
local housekeeping chores, the controller can also go a 
long way to solving more global design problems, like 
sharing memory between two processors, not to mention 
detecting and correcting errors. 

To realize this potential for a highly integrated solu­
tion, the 8207 has a dual-port interface and, when used 
with the 8206 error-checking and -correction unit, 
ensures data integrity in large dynamic-RAM systems. In 
addition to doing the jobs of refreshing, address multi­
plexing, and control timing, the unit supports memory­
bank interleaving for pipelined accesses, overlaying RAM 
and read-only-memory locations, and initializing RAM. 

The exact implementation of most of these functions is 
programmable, letting designers tailor their systems in 
detail. Systems containing up to 88 dynamic-RAM 
chips-whether 16-,64-, or 256-K versions-in one, two, 
or four banks need only a single 8207 and no external 
buffering. Attesting to the high performance claimed, 
the 8207 mates dynamic RAMs having 100-nanosecond 
access times to the iAPX-286 processor operating at 8 
megahertz without introducing any wait states. 

8207 
DYNAMIC· 

RAM 
CONTROLLER 

DYNAMIC 
RANOOM'ACCESS 

MEMORY 

PROCESSOR 

DEVELOPMENT PROTOTYPE 

EXTERNAL DISPLAY FOR DEBUGGING 

VIDEO·DISPLAY ....... 
CONTROLLER II 

DATA 
TABLE 

WORKING 
REGISTERS 

........ DISPLAY 

6-247 

1. Window on 8 micro. One use for a dual­
port memory shared by independent proces­
sors is the development system shown. Add­
ing a video display to the prototype Itself 
gives a window on the system memory. 

210758-001 



inter AR·231 

To achieve that speed and include all those functions, 
the 8207 relies on a dense, high-speed n-channel MOS 
process (H·MOS II) and requires a chip some 230 by 200 
mils in area. To meet the rigors of operation with even 
faster processors, novel logic and integrated-circuit 
designs are employed. Replacing the two-phase logic 
common in n-MOS les, single-phase edge-triggered logic 
simplifies logic and circuit design, precludes problems of 
clock-pulse overlap, and reduces the sensitivity to clock 
high and low times. Voltage·controlled capacitive loads 
form the delay elements that time critical output pulses, 
such as the address strobes, and compensate the output­
switching delays for variations in power-supply voltage, 
temperature, and processing. 

A low 20-ns setup time for input signals is achieved by 
cutting the RC delay of input-protection devices and 
moving the TTL-tO-MOS signal buffering from the input 
pads to the pulse generators. A short 35-ns delay from 
input to output switching is achieved by triggering the 
output generators directly from the external clock, sav­
ing a buffer delay time. With the reSUlting high-speed 
performance and a high level of integration, the 8207 
successfully attacks the stringent requirements of today's 
memory systems. 

One system feature gaining popularity currently is the 
use of multiple processors operating on shared data to 
obtain higher performances and reliability. For example, 
a separate processor dedicated to input/output tasks 
frees the main processor for full-time data processing. 
Alternatively, multiple main processors can execute dif­
ferent tasks simultaneously. In all such cases, sharing a 
common memory space among the cooperating proces­
sors is the key to effective operation. 

Unfortunately, when more than one processor accesses 
shared memory through a single bus, the limited bus 
bandwidth and the time spent in exchanging bus control 
slow down data transfers. Dual-port memory systems 
overcome this limitation by giving two processors access 

to a common memory through two independent buses. 
The 8207 includes a dual-port interface to simplify the 
design of shared memory systems. 

Two-port memories can be used with multiprocessing 
or multitasking architectures. In the former, indepen­
dent processors run independent programs, sharing only 
a common memory. Multitasking processors cooperate 
on different parts of the same task. 

An example of a multiprocessing architecture is the 
dynamic video display (Fig. I) that provides a window 
on a processor's memory. Centering the display over a 
data table, for example, immediately reveals how pro­
gram execution affects the data, which aids in debugging 
programs. If a microcomputer is implemented with a 
dual-port memory-the second port for a dynamic video 
display - then the prototype itself can serve as a develop­
ment and debugging system, reverting to single-port 
operation in the final version. 

A dual-port architecture in a multitasking environ­
ment, on the other hand, adds a margin of safety to a 
shared-resource bus, such as Intel's Multibus. Although 
one of the biggest benefits of such a bus is the sharing of 
expensive peripherals among several users' programs, an 
intimidating problem is that a single program gone hay­
wire can easily corrupt the entire system. A two-port 
memory, properly configured, circumvents this occur­
rence. Because each port has its own address, data, and 
control--lines,-problems on one side are confined by 
hardware to that side. 

Port of call 

As a general rule for multitasking architectures, one 
port of a two-port memory operates in a local environ­
ment, and the other port runs remotely, off the expanda­
ble shared-resource bus. The local processor is likely to 
require a synchronous port to reap the benefit of higher 
performance. Remote buses, in contrast, are usually 
configured asynchronously. Unless programmed other-

Dynamic-RAM controllers get In step 
Synchronous and asynchronous signalS have different 
requirements for interfacing with a controller. The terms 
synchronous and asynchronous are conventionally ap­
plied to dynamic random-access memory depending on 
whether it exists in a local or a remote environment, 
respectively. However, they more properly characterize 
the dynamic-RAM controllers, for the RAMs themselves 
need no clocks - the only restrictions as to the start of a 
memory access cycle involve ensuring that the refresh and 
precharge requirements are satisfied. 

Because the controller decides both when to refresh 
and whether or not precharge and other timing require­
ments have been met, it does need a clock. Incoming 
commands can either always arrive with a fixed relation­
ship to the controller's clock or have no partiCUlar relation­
ship to it. The former are, of course, synchronous opera­
tions, the latter asynchronous. 

The major difference between an asynchronous and a 
synchronous controller (or port of a controller, in the case 
of the dual-port 8207) is that the asynchronous controller 
must first synchronize the incoming commands to its own 

internal clock. From that point on, the asynchronous con­
troller looks just like a synchronous device. 

Whereas various techniques for synchronization are 
available off chip. on-chip synchronization is restricted to 
the resolution and sampling of states of a flip-flOp. The 
incoming command is clocked into a reSOlving flip-flOp. 
After a predetermined time, a sampling flip-flop reads the 
state of the reSolving flip-flOp, thereby synchronizing the 
command. Assuming that both flip-flaps are triggered on 
the same edge of the controller's internal clock, the fastest 
that an asynchronous signal can be synchronized is one 
clock period. The slowest synchronization takes two clock 
periods; on the average, getting the signals in step takes 
one and a half clock cycles. 

Because the processor typically requires four or fewer 
clock periods to complete a cycle, adding a cycle and a 
half for synchronizing increases the access time by 
approximately 25%. Synchronous contrOllers are therefore 
always preferred when the environment permits them, and 
local environments, such as single-board computers, gen­
erally do so. 

6-248 210758-001 



AR-231 

wise, the 8207 configures one port synchronously, and 
the other asynchronously. For specific applications, both 
ports may be programmed as either synchronous or 
asynchronous (see "Dynamic-RAM controllers get in 
step," p. 129). 

Whether the ports are programmed for synchronous 
or asynchronous operation, 'some mechanism must 
decide which processor will gain access to memory when 
both request it almost simultaneously. That mechanism 
consists of arbitration logic that controls access and 
always leaves one port selected. When a port is selected, 
its associated control and interface signals are passed 
directly to the RAM timing logic by the command multi­
plexer (Fig. 2). Both ports' command and control lines, 
after being synchronized, go into both the command 
multiplexer and the arbitration logic. 

However, the arbitration logic enables the command 
multiplexer to pass only commands that appear at the 
selected port. At the same time as a command appears at 
a selected port, arbitration logic initiates the cycle­
control logic that completes the timing of the RAM cycle 
that ensues. If a command appears on the unselected 
port, it will not get through the multiplexer to initiate a 
RAM cycle but will instead wait in the status-command 
decoder until the current command is completed, at 
which time the command multiplexer switches to the 
unselected port. The arbitration logic will then service 
this queued access request by starting a new cycle. 

The arbitration logic examines all port requests, 
including the internal refresh port. The refresh-request 
port is subject to arbitration like the other two ports, 
except that it is always assigned a higher priority than an 
unselected external access port. Thus, refreshing can be 
delayed, at most, one RAM cycle. 

While the current RAM cycle is running, the arbiter 
determines the next cycle to be initiated. Thus, the 
arbitration time of two or more simultaneous port 
requests is hidden by the memory cycle tim<!. In other 
words, in cases where both a selected and an unselected 
port request access simultaneously, the arbitration time 
for the unselected port does not extend that port's access 
time, which is delayed by one memory cycle anyway. 
Only when an unselected port requests a free memory 
does the arbitration time slow access, because then the 
command must pass through the arbitration logic before 
a RAM cycle can be initiated. To minimize such delays in 
most cases, there are two arbitration algorithms to be 
selected by the user. 

The first algorithm, intended for multiprocessing envi­
ronments, automatically returns the arbiter to a desig­
nated preferred port, generally the higher-performance, 
synchronous port. Thus any command on the selected 
port generally has immediate access, whereas any com­
mand arriving at the unselec.ted port must wait. 

The second, or last-accessed-port, algorithm, which is 
applicable in multitasking environments, leaves the most 
recently accessed port as the selected port. This algo­
rithm optimizes port selection for task passing in a 
multitasking environment. In task passing, the host pro­
cessor sends a task to an execution processor; until the 
task is received, the execution processor seldom accesses 
memory. Conversely, orice the task is passed, the host 

processor seldom accesses memory until the task is com­
pleted. Thus, the ports are used in spurts. 

Because timely refreshing is needed to preserve 
dynamic-RAM data, a refresh request is always serviced 
on the next available cycle. The refresh algorithm, how­
ever, may be selected by the user. The options available 
are: no refresh, user-generated single refresh, automatic 
refresh, or user-generated burst refresh. 

No refresh would be selected for applications like 
bit-mapped-video displays, where continuous, sequential 
access of all RAM locations itself refreshes every cell 
periodically. User-generated refresh modes allow the 
designer greater control over power, dissipation, for 
example, in large memory systems. Automatic refresh­
ing, in which the controller itself times the refresh inter­
val and initiates the operation, lets the designer ignore 
the refresq requirements entirely. As mentioned, the 
refresh requests are subject to arbitration just like other 
access requests. However, once a burst refresh is select­
ed, it remains active until completed. 

Cleaning up errors 

Ensuring data integrity is a major concern in large 
dynamic-RAM systems, particularly because of their sus­
ceptibility to soft errors caused by alpha-particle radia­
tion. Various parity encoding techniques have been 
developed to detect and correct memory-word errors 
[Electronics, June 2, 1982, p. 153]. The parity bits, called 
check bits when used for correction as well as detection, 
are stored in the memory array along with their asso­
ciated data word. When the data is read, the check bits 
are regenerated and compared with the stored check 
bits. If an error exists, whether in the retrieved check bits 
or in the retrieved data word, the result of the compari­
son-called the syndrome-gives the location in the 
group of the bit in error. 

Two drawbacks surface in the design of any memory 
system that is to be protected by error-correction circuit­
ry. First, the memory-word width must be increased to 
store the check bits; second, extra time must be allotted 
for the error-correction circuitry to generate the check 
bits on write cycles, plus more time to regenerate and 
compare the check bits on read cycles. The 8207 pro­
vides several ways to minimize both problems. 

Error-correction schemes require a smaller proportion 
of check bits to protect wider memory words. For exam­
ple, an 8-bit word needs 5 check bits, for a 63% increase 
in memory. Put the other way around, 38% of the 
available memory would be dedicated to the check bits. 
Six check bits are required to protect a 16-bit data 
word-only a 27% overhead. Clearly, the wider the 
memory array, the more economical the error correction. 

The 38% overhead necessary to protect such 8-bit-bus 
machines as the 8088 or 8085 makes error correction an 
unattractive proposition. However, if the memory width 
could be doubled, with the 8088 accessing only half a 
word ata time, the overhead would drop to 27%. 

Reading a double-width word, checking for soft errors, 
and then sending the desired portion of the word to the 
processor presents no major problems, unlike writing to 
such an array. The check bits cannot be calculated from 
only a portion of the word-they must be calculated for 

6-249 210758-001 



AR-231 

PORTA 
COMMANOS 

PORT B 
COMMANDS SYNCHRO· .. ~ .. "~I NIZER .. 

PROGRAM· 
MING DATA 
INPUT 

SERIAL· 
PROGRAM 

COLLECTOR 

PORT 

ROW'ADDRESS 
STROBE 0 
COLUMN'ADDRESS 
STROBE 0 

RASt/CASt 

RAS2/CAS2 

RAS3/CAS3 

............ CONTROLANO 

.. TIMING STROBES 

............ ERROR·CORRECTION· 
" CONTROL INPUTS 

CONTROL 
OUTPUT 

CONTROL .... -i.-------------' 

RDW/ 
COLUMN 

MULTI· 
PLEXER 

ADDRESS OUTPUTS 

2. Arbiter'. labor. Two external ports plus the internal refresh port can request access to the memory system at once. Arbitration logic 
decides which to service. based on programmable algorithms. High-speed logic design cuts the delay from input to output switching to 55 ns. 

the entire word at once. Whenever the processor writes a 
partial word to. memory, it must first read the entire 
word, check it, substitute for that portion of the word to 
be rewritten, and recalculate the check bits. Only then 
can the entire word be written to memory. The 8207, 
working in conjunction with the 8206 error-checking and 
-correction unit, contains mechanisms to expedite this 
potentially arduous process. 

Whenever the 8207 performs a partial-write cycle, it 
initiates a read-modify-write cycle wherein the entire 
memory word is first read and latched into the 8206 
(Fig. 3). After the retrieved data has been verified as 
correct, new data is supplied to the RAM, half from the 
processor and half from the 8206, which also generates 
the check bits for the entire new word. 

Control signals-called byte marks-specify which 
portion of the new data word is coming from the proces­
sor and which from the 8206. The byte marks determine 
whether the processor or the 8206 drives the RAM data 
bus-for example, if the 8206 is driving one portion of 
the data bus, the processor is prevented from driving the 
same portion. The byte-mark signals simply disable the 
appropriate transceivers. If, on the other hand, the pro­
cessor is driving a portion of the RAM data bus, the byte 
marks change the 8206 data outputs to inputs, allowing 

the 8206' to read the data from the processor and calcu­
late new check bits. 

The ability of the 8207 to handle memories organized 
as one, two, or four banks allows tradeoffs between the 
cost and performance of an error-correction system. For 
maximum performance, memory would be organized in 
four banks, each 16 bits wide. In applications requiring 
error correction, but where maximum performance is not 
critical, concatenation of RAM banks into two banks of 
32-bit words, or even one bank of 64-bit words, can make 
error correction very economical. 

Holding to high performance. 

Even though the cost of error correction has thus been 
reduced to where it becomes an attractive solution, the 
problem remains of minimizing performance degrada­
tion. Tackling that challenge depends on the particulars 
of the configuration, such as whether the memory is to 
be used with a high-performance local processor, as 
system memory on a shared-resource bus, or is to be 
shared between a local high-performance processor and 
a shared-resource bus. 

The method chosen to handle errors depends on the 
type of bus. Intel's Multibus is the kind that requires 
data to be valid prior to the issuance of a transfer-

6-250 210758-001 



AR-231 

PROCESSOR 
AODRESS 
AND 
COMMAND 
INPUTS 

LOWER 
MEMORY 

UPPER 
MEMORY 

3. Teamwork. The 8206 error-correction 
chip jOins forces with the random-access­
memory controller so that an 8-bit-bus pro­
cessor may utilize the 16-bit-wide memory 

that is more economical for error-correction 
schemes. Byte marks configure the data 
buses for partial-word transfers. 

BYTE· 
MARK 
INPUT 

8206 
ERROR·DETECTION 

AND ·CORRECTION UNIT 

acknowledge signal, in contrast to the local buses of the 
iAPX-86, -186, and -286 processors. A local bus will 
usually be synchronous, with a single processor or copro­
cessor group attached to it; the processor characteristics 
are known, as is the processor's response to a transfer­
acknowledge signal. 

With Multibus and other shared-resource buses, the 
processor types that will eventually be connected are not 
known in advance, and the buses themselves are general­
ly asynchronous. Hence the time between the transfer­
acknowledge signal and data becoming valid is not 
known. Therefore, the rule with such buses is to 
acknowledge a transfer only when data is valid. (On 
some asynchronous buses, the acknowledgment is issued 
earlier to compensate for synchronization delay at the 
receiving processor.) 

Two basic configurations for checking and correcting 
errors derive from these system considerations and the 
fact that it takes longer to correct data than to detect an 
error. One is for buses that connect to processors and 
coprocessors receiving a transfer acknowledge prior to 
data becoming valid, and the other for buses that con­
nect to processors receiving a transfer acknowledge after 
data is valid. Both configurations are supported by the 
8206-8207 team. 

Buses among the former type of processors always get 
corrected data from the 8206, whether an error exists or 
not, and will carry a transfer acknowledge from the 8207 
before data becomes valid on the bus. Though this means 
data is delayed for error correction on every transaction, 
the extra delay is immaterial, since it is hidden behind 
the processor's response time to the transfer-acknowl­
edge signal. By the time the processor requires data, it is 

already corrected and on the bus. As a result, system 
performance is not degraded at all because of single-bit 
errors. 

For buses among processors that receive the transfer 
acknowledge after the data is valid, the 8206 always 
checks for errors but does not routinety correct data. In 
this mode, RAM data passes through faster, because the 
8207 will issue an acknowledgment sooner. If, however, 
an error is found, the 8207 will lengthen the cycle, 
command the 8206 to correct the data, and delay the 
transfer-acknowledge signal until the corrected data can 
be placed on the bus. For those buses with an acknowl­
edge-synchronization delay, the 8207 can be pro­
grammed to issue the acknowledgment earlier to com­
pensate for the delay. 

Power-up problems 

Another problem with memories protected by ECC 

circuits crops up when the power is turned on. At 
power-up; the data stored in memory is completely ran­
dom; any attempt to read or perform a partial write will 
be aborted because the check bits will indicate multiple, 
and therefore uncorrectable, errors. For processors 
whose word width is the same as that of the memory 
array, the processor could simply initialize the entire 
memory array, taking some additional time and soft­
ware. For memories whose word width is greater than 
that of the processor, however, initialization of the mem­
ory is not possible unless the error-checking or -correc­
tion circuitry is disabled by hardware, for example, by 
gating off the error flags. 

The 8207 is equipped to deal with the initialization 
problem by itself. At system reset, the 8207 performs 

6-251 210758-001 



inter AR-231 

4. Interleeving. Overlapping accesses to dif­
ferent banks increases memory throughput. 
Once the column-address hold time is satis­
fied, the 8207 starts a second cycle, pulling 
the second row-address strobe low. ROW·ADDR ESS 

STROBE 1 

CO LUMN·ADDR ESS 

FIRST 
RANDDM·ACCESS·MEMORY CYCLE 

SECOND 
RAM CYCLE 

PRECHARGE 
STROBE 1 ---1--'-----, 

RAS2 

CAS2 

8207 
ADDRESS 
OUTPUTS 

MEMORY 
DATA 
OUTPUTS 

eight cycles on all banks at once to warm up the dynamic 
RAMS, a typical RAM requirement forstable operation. 
The chip then individually initializes all memory loca­
tions to 0, adding the proper check bits. Though all 
memory banks could be initialized in parallel, that would 
require more power than any other memory operation, 
calling for a heftier and more expensive power supply 
needed only at system reset. 

One final problem associated with memories protected 
by error-correction circuitry stems from the fact that 
only data that is acces~ed by the processor is corrected. 
If the processor continually accesses one particular seg­
ment of memory, the rest of the array may be accumu­
lating soft errors. The possibility of two soft errors 
accumulating in a word of seldom accessed memory now 
bec;:omes significant-and not all double-bit errors are 
correctable in. simple ECC schemes. The 8207 scrubs 
memories to clean up this problem. During each refresh 
cycle, one word of memory is read, checked for errors, 
and if necessary, corrected before data is written back to 
memory. Because scrubbing occurs during refresh cycles 
with a read cycle replacing a row-address-strobe-only 
refresh cycle, no performance penalty is incurred. Scrub­
bing rids the entire memory of errors at least once every 
16 seconds, reducing the probability of two soft errors 
accumulating in the same word almostto nil. 

Bells and whistles 

All dynamic RAMs require a recovery period for pre­
charging internal lines after each access. If the processor 
were immediately to reaccess the RAM,. the controller 
would have to delay it until the precharge time was over. 
By automatically organizing memory into banks so that 
sequential addresses are in different banks, the 8207 is 
usually able to hide the precharge time of one bank 
behind the access time of another. That organization 
follows from using the 2 least significant bits of the 
address to select the bank. Of course, a break in the 
program flow, such as would be caused by a jump or call 

VALID DATA 

instruction, raises the probability that the same bank 
may be immediately re-accessed. This probability is less 
in four-bank memories than in two-bank configurations. 

Further .. performance advantages are gleaned by 
organizing memory into multiple banks. For example, 
the 8207 can speed throughput by pipelining cycles. 
Once the row and column addresses to one bank have 
been latched, the controller sends the row address for the 
next cycle to the next bank (Fig. 4). 

The 8207's manifold features can be tailored to a 
given system with the use of a serial programming pin. 
This pin can either be strapped high or low to select one 
of two default modes or be programmed by means of a 
shift register. The external register is completely con­
trolled by the 8207, eliminating any local processor 
support. Sixteen bits are shifted into the 8207 to configu­
re up to nine different features. The bits are arranged in 
order of increasing importance; using a shift register 
with less than 16 bits permits just those features needed 
to be programmed. 

Programmable features of the processor interface 
include the choice of arbitration algorithm, clock com­
pensation, and preferred port. At the RAM interface, the 
user can specify fast or slow memory chips, indicate 
bank configuration, and select the optimal refreshing 
scheme. Tn anticipation of the next generation of 256-K 
dynamic RAMs, the 8207 can support a 256-row-l­
millisecond refresh convention, in addition to the 128-
row..,2-ms one Cor current 16- and 64-K parts. 

Helping facilitate system design is a self-programming 
processor interface. By decoding the command input 
pins at power-up, the 8207 automatically determines 
whether it is connected to the status lines of an 8086, 
iAPX-286 or to the command lines of the Multibus. 
Because the 8207 can directly decode the status lines of 
Intel microprocessors, it can anticipate the next memory 
cycle and start a new cycle before actually receiving a 
command. This extra pipelining enables the designer to 
specify slower RAMs then would otherwise be required,D 

6-252 210758-001 



8231 A 
ARITHMETIC PROCESSING UNIT 

• Fixed Point Single and Double • Compatible with all Intel and most 
Precision (16/32 Bit) other Microprocessor Families 

• Floating Point Single Precision • Direct Memory Access or 
(32 Bit) Programmed 1/0 Data Transfers 

• Binary Data Formats • End of Execution Signal 
• Add, Subtract, Multiply and Divide General Purpose 8·Bit Data Bus 

Trigonometric and Inverse • • Interface 
Trigonometric Functions 

Standard 24 Pin Package Square Roots, Logarithms, • • 
Exponentiation • + 12 Volt and + 5 Volt Power 

• Float to Fixed and Fixed to Float Supplies 

Conversions • Advanced N·Channel Silicon Gate 

• Stack Oriented Operand Storage HMOS Technology 
The Intel® 8231AArithmetic Processing Unit (APU) is a monolithic HMOS LSI device that provides high performance fixed 
and floating point arithmetic and floating point trigonometric operations. It may be used to enhance the mathematical 
capability of a wide variety of processor-oriented systems. Chebyshev polynomials are used in the implementation of the 
APU algorithms. 

All transfers, including operand, result, status and command information, take place over an 8-bit bidirectional data bus. 
Operands are pushed onto an internal stack and commands are issued to perform operations on the data in the stack. 
Results are then available to be retrieved from the stack. 

Transfers to and from the APU may be handled by the associated processor using conventional programmed 110, or may be 
handled by a direct memory access controller for improved performance. Upon completion of each command, the APU 
issues an end of execution signal that may be used as an interrupt by the CPU to help coordinate program execution. 

EACK 3 

SVACK 

SVREO 5 

DO~~(g~~( 6 

DB' 

Figure 1, Block Diagram Figure 2. Pin Configuration 

6-253 Order Number: 231305-001 



Pin 
Symbol No. 'tYpe 

Vcc 2 

Voo 16 

Vss 1 

ClK 23 I 

RESET 22 I 

CS 18 I 

AD 21 I 

AD RD 

0 1 
0 0 
1 1 
1 0 

RD 20 I 

WR 19 I 

EACK 3 I 

SVACK 4 I 

END 24 a 

8231A 

Table 1. PIn DescrIptIon 

Name and Function 

Power: +5 Volt power supply. 

Power: +12 Volt power supply. 

Ground. 

Clock: An external, TTL compatible, 
timing source is applied to the ClK pin. 

Reset: The active high reset signal pro-
vides initialization for the chip. RESET 
also terminates any operation in pro-
gress. RESET clears the status register 
and places the 8231A into the idle state. 
Stack contents and command registers 
are not affected (5 clock cycles). 

Chip Select: CS is an active low input 
signal which selects the 8231A and en· 
abies communication with the data bus. 

Address: In conjunction with the RD 
and WR signals, the AD control line es-
tablishes the type of communication 
that is to be performed with the 8231 A as 
shown below: 

WR Function 

0 Enter data byte into stack 
1 Read data byte from stack 
0 Enter command 
1 Read status 

Read: This active low input indicates 
that data or status is to be read from the 
8231A if CS is low. 

Write: This active low input indicates 
that data or a command is to be written 
into the 8231A if CS is low. 

End of Execution: This active low input 
clears the end of execution output sig-
nal (END). If EACK is tied low, the END 
output will be a pulse that is one clock 
period wide. 

Service Request: This active low input 
clears the service request output 
(SVREQ). 

End: This active low, open·drain output 
indicates that execution of, the pre-
viously entered command is complete. I! 
can be used as an interrupt request and 
is cleared by EACK, RESET or any read 
or write access to the 8231. 

6-254 

Pin 
Symbol No. 'tYpe Name and Function 

SVREQ 5 a Service Request: This active high out· 
put signal indicates that command 
execution is complete and that post 
execution service was requested in the 
previous command byte. I! is cleared by 
SVACK, the next command output to the 
device, or by RESET. 

READY 17 a Ready: This active high output indi-
cates that the 8231A is able to accept 
communication with the data bus. When 
an attempt is made to read data, write 
data or to enter a new command while 
the 8231 A is executing a command, 
READY goes low until execution of the 
current command is complete (See 
READY Operation, p. 5). 

DBO- 8- I/O Data Bus: These eight bidirectional 
DB7 15 lines provide for transfer of commands, 

status and data between the 8231 A and 
the CPU. The 8231A can drive the data 
bus only when CS and RD are low. 

COMMAND STRUCTURE 

Each command entered into the 8231A consists of a single 
8-bit byte having the format illustrated below: 

Bits 0-4 select the operation to be performed as shown 
in the table. Bits 5·6 select the data format appropriate 
to the selected operation. If bit 5 is a 1, a fixed point data 
format is specified. If bit 5 is a 0, floating point format is 
specified. Bit 6 selects the precision of the data to be 
operated upon by fixed point commands only (if bit 
5 = 0, bit 6 must be 0). If bit 6 is a 1, single-precision 
(16-bit) operands are assumed. If bit 6 is a 0, double­
precision (32-bit) operands are indicated. Results are 
undefined for all illegal combinations of bits in the com­
mand byte. Bit 7 indicates whether a service request is 
to be issued after the command is executed. If bit 7 is a 
1, the service request output (SVREQ) will go high at the 
conclusion of the command and will remain high until 
reset by a low level on the service acknowledge pin 
(SVACK) or until completion of execution of the suc­
ceeding command where service request (bit 7) is O. 
Each command issued to the 8231A requests post execu­
tion service based upon the state of bit 7 in the command 
byte. When bit 7 is a 0, SVREQ remains low. 

231305-001 



8231A 

Table 2. 32-Bit Floating Point Instructions 

Hexll) Slack Conlenls(2) Slalu. Flag.(4) 
Instruction Descrlpllon Code 

Aller Execullon Affecled 
A B C D 

ACOS Inverse Cosine of A 0 6 R U U U 5, Z, E 

ASIN Inverse Sine of A 0 5 R U U U 5, Z, E 

ATAN Inverse Tangent of A 0 7 R B U U 5, Z 

CHSF Sign Change of A 1 5 R B C D 5, Z 

COS Cosine of A (radians) 0 3 R B U U 5, Z 

EXP eA Function 0 A R B U U 5, Z, E 

FADD Add A and B 1 0 R C D U 5, Z, E 

FDIV Divide B by A 1 3 R C D U 5, Z, E 

FLTD 32·8il Integer to Floating Point Conversion 1 C R B C U S,Z 

FLTS 16·8il Integer to Floating Point Conversion 1 D R B C U 5, Z 

FMUL Multiply A and B 1 2 R C D U 5, Z, E 

FSUB Subtract A from B 1 1 R C D U 5, Z, E 

LOG Common Lagarilhm (base 10) of A 0 8 R B U U 5, Z, E 

LN Natural Logarithm of A 0 9 R B U U S, Z, E 

POPF Slack Pop 1 8 B C D A 5, Z 

PTOF Stack Push 1 7 A A B C 5, Z 

PUPI Push n onto Stack 1 A R A B C 5, Z 

PWR SA Power Function 0 B R C U U 5, Z, E 

SIN Sine 01 A (radians) 0 2 R B U U 5, Z 

SORT Square Root of A 0 1 R B C U S, Z, E 

TAN Tangenl of A (radians) 0 4 R B U U 5, Z, E 

XCHF Exchange A and B 1 9 B A C D S,Z 

Table 3. 32-Bit Integer Instructions 

Hexll) Slack Conlenls(2) Slalus Flags(4) 
Instruction Description After Execution Code A B C D Affecled 

CHSD Sign Change of A 3 4 R B C D S,Z,O 

DADD Add A and B 2 C R C D A 5, Z, C, E 

DDIV Divide B by A 2 F R C D U 5, Z, E 

DMUL Mulliply A and B (R = lower 32·bits) 2 E R C D U 5, Z, 0 

DMUU Multiply A and B (R = upper 32·bits) 3 6 R C D U S,Z,O 

DSUB Subtract A from B 2 D R C D A S, Z, C, 0 

FIXD Floating Point to Integer Conversion 1 E R B C U S,Z,O 

POPD Stack Pop 3 8 B C D A 5, Z 

PTOD Stack Push 3 7 A A B C 5, Z 

XCHD Exchange A and B 3 9 B A C D 5, Z 

Table 4. 1S-Bit Integer Instructions 

Hexll ) Slack Conlents(3) Stalus Flags(4) 
Instruction Description Code 

After Execution Affected 
Au AL Bu BL Cu CL Du DL 

CHSS Change Sign of Au 7 4 R AL Bu BL Cu CL Du DL 5, Z, 0 

FIXS Floating Point to Integer Conversion 1 F R Bu BL Cu CL U U U 5, Z, 0 

POPS Stack Pop 7 8 AL Bu BL Cu CL Du DL Au S, Z 

PTOS Stack Push 7 7 Au Au AL Bu BL Cu CL Du 5, Z 

SADD Add Au and AL 6 C R Bu BL Cu CL Du DL Au 5, Z, C, E 

SDIV Divide AL by Au 6 F R Bu BL Cu CL Du DL U 5, Z, E 

SMUL Multiply AL by Au (R = lower 16·bits) 6 E R .Bu BL Cu CL Du DL U 5, Z, E 

SMUU Multiply AL by Au (R = upper 16·bits) 7 6 R Bu BL Cu CL Du DL U 5, Z, E 

SSUB Subtract Au from AL 6 D R Bu BL Cu CL Du DL Au 5, Z, C, E 

XCHS Exchange Au and AL 7 9 AL Au Bu BL Cu CL Du DL 5, Z 

NOP No Operation 0 0 Au AL Bu BL Cu CL Du DL 

Noles: 1. In the hex code column, SVREO IS a O. 
2. The stack initially is composed of four 32·bit numbers(A, B, C, D). A is equivalent to Top Of Stack (TOS) and B is Next On Stack (NOS). Upon 

completion of a command the stack is composed of: the result (R); undefined (U); or the initial contents (A, B, C, or D). 
3. The stack initially is composed of eight 16·bit numbers (Au, AL, Bu, BL, Cu, CL, Du, DL). Au is the TOS and AL is NOS. Upon completion of a 

command the stack is composed of: the result (R); undefined (U); or the initial contents (Au, AL, Bu, BL' ... ). 
4. Nomenclature: Sign (5); Zero (Z); Overflow (0); Carry (C); Error Code Field (E). 

6-255 231305-001 



8231A 

DATA FORMATS 
The 8231A arithmetic processing unit handles operands 
in both fixed point and floating point 'formats. Fixed 
point oparands may be represented in either single 
(16-bit operands) or double precision (32-bit operands), 
and are always represented as binary, two's comple-
ment values. ' 

SINGLE PRECISION FIXED POINT FORMAT 

I VALUE I 
51 I I I I I I I I I I I I I I 
15 0 

DOUBLE PRECISION FIXED POINT FORMAT 

I VALUE I 
51 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
n 0 

The sign (positive or negative) of the operand is located 
in the most significant bit (MSB). Positive values are 
represented by a sign bit of zero (S = 0). Negative values 
are represented by the two's complement of the corre­
sponding positive value with a sign bit equal to 1 (S = 1). 
The range of values that may be accommodated by each 
of these formats is - 32,768 to + 32,767 for Single preci­
sion and - 2,147,483,648 to + 2,147,483,647 for double 
precision. 

Floating point binary values are represented in a format 
that permits arithmetic to be performed in a fashion 
analogous to operations with decimal values expressed 
in scientific notation. 

In the decimal system, data may be expressed as values 
between 0 and 10 times 10 raised to a power that effec­
tively shifts the implied decimal pOint right or left the 
number of places necessary to express the result in con­
ventional form (e.g., 47,572.8), The value-portion of the 
data is called the mantissa. The exponent may be either 
negative or positive. ' 

The concept of floating point notation has both a gain 
and a loss associated with it. The gain is the ability to 
represent the Significant digits of data with values span­
ning a large dynamic range limited only by the capacity 
of the exponent field. For example, in decimal notation 
if the exponent field is two digits wide, and the mantissa 
is five digits, a range of values (positive or negative) 
from 1.0000x 10- 99 to 9.9999 x 10+ 99 can· be accom­
modated. The loss is that only the significant digits of 
the value can be represented. Thus there is no distinc­
tion in this representation between the values 123451 
and 123452, for example, since each would be ex­
pressed as: 1.2345 x 105. The sixth digit has been 
discarded. In most applications where the dynamic 
range of values to be represented is large, the loss of 
significance, and hence accuracy of results, is a minor 
consideration. For greater precision a fixed point format 
could be chosen, although with a loss of potential 
dynamic range. 

The 8231A is a binary arithmetic processor and requires 
that floating point data be represented by a fractional 
mantissa value between .5 and 1 multiplied by 2 raised 
to an appropriate power. This is expressed as follows: 

value = mantissa x 2exponent 

For example, the value 100.5 expressed in this form is 
0.1100 1001 x 27. The decimal equivalent of this value 
may be computed by summing the components (powers 
of two) of the mantissa and then multiplying by the ex­
ponent as shown below: 

value= (2- 1 + 2- 2+ 2- 5 + 2- 8) x 27 

= 0.5 + 0.25+0.03125+ 0.00290625) x 128 
= 0.78515625 x 128 
= 100.5 

FLOATING POINT FORMAT 
The format for floating point values in the 8231A is given 
below. The mantissa is expressed as a 24-bit (fractional) 
value; the exponent is expressed as a two's complement 
7-bit value having a range of - 64 to + 63. The most 
significant bit is the sign of the mantissa (0 = positive, 
1 = negative), for a total 'of 32 bits. The binary point is 
assumed to be to the left of the most significant man­
tissa bit (bit 23). All floating point data values must be 
normalized. Bit 23 must be equal to 1, except for the 
value zero, which is represented by all zeros. 

I EXPONENT I' MANTISSA I 
~I~I I I I I I I I I I I I I I I I I I I II I I I I I I I I 
31 30 211 23 0 

The range of values that can be represented in this for­
mat is ± (2.7 x 10 - 20 to 9.2 X 1018) and zero. 

FUNCTIONAL DESCRIPTION 

STACK CONTROL 

The user interface to the 8231A includes access to an 8 
level 16-bit wide data stack. Since single precision fixed 
point operands are 16-bits in length, eight such values 
may be maintained in the stack. When using double 
precision fixed point or floating point formats four 
values may be stored. The stack in these two configura­
tions can be visualized as shown below: 

TOS 

NOS 
-- A2 A1 

B2 B1 

-16-

T05-
NOS-

A' A' A2 A1 

B' B' B2 B1 

---'2-

Data are written onto the stack, eight bits at a time, in 
the order shown (A 1, A2, A3, ... ). Data are removed from 
the stack in reverse byte order (A4, A3, A2 ... ). Data 
should be entered onto the stack in multiples of the 
number of bytes appropriate to the chosen data format. 

6-256 231305-001 



8231A 

DATA ENTRY 

Data entry is accomplished by bringing the chip select 
(CS), the command/data line (Ao!, and WR low, as shown 
in the timing diagram. The entry of each new data word 
"pushes down" the previously entered data and places 
the new byte on the top of stack (TOS). Data on the bot­
tom of the stack prior to a stack entry are lost. 

DATA REMOVAL 

Data are removed from the stack in the 8231A by bringing 
chip select (CS), command/data (Ao!, and RD low as 
shown in the timing diagram. The removal of each data 
word redefines TOS so that the next successive byte to 
be removed becomes TOS. Data removed from the stack 
rotates to the bottom of the stack. 

COMMAND ENTRY 

After the appropriate number of bytes of data have been 
entered onto the stack, a command may be issued to 
perform an operation on that data. Commands which reo 
quire two operands 'for execution (e.g., add) operate on 
the TOS and NOS values. Single operand commands 
operate only on the TOS. 

Commands are issued to the 8231A by bringing the chip 
select (CS) line low, command data (Ao) line high, and 
WR line low as indicated by the timing diagram. After a 
command is issued, the CPU can continue execution of 
its program concurrently with the 8231A command 
execution. 

COMMAND COMPLETION 

The 8231A signals the completion of each command exe­
cution by lowering the End Execution line (END). 
Simultaneously, the busy bit in the status register is 
cleared and the Service Request bit of the command 
register is checked. If it is a "1" the service request out­
put level (SVREQ) is raised. END is cleared on receipt of 
an active low End Acknowledge (EACK) pulse. Similarly, 
the service request line is cleared by recognition of an 
active low Service Acknowledge (SVACK) pulse. 

READY OPERATION 

An active high ready (READY) is provided. This line is 
high in its quiescent state and is pulled low by the 8231A 
under the following conditions: 

1. A previously initiated operation Is in progress (device 
busy) and Command Entry has been attempted. In 
this case,the READY line will be pulled low and re­
main low until completion of the current command 
execution. It will then go high, permitting entry of the 
new command. 

2. A previously initiated operation is in progress and 
stack access has been attempted. In this case, the 
READY line will be llulled low, will remain in that 
state until execution is complete, and will then be 
raised to permit completion of the stack access. 

3. The 8231A is not busy, and data removal has been re­
quested. READY will be pulled low for the length of 
time necessary to transfer the byte from the top of 
stack to the interface latch, and will then go high, 
indicating availability of the data. 

4. The 8231A is not busy, and a data entry has been re­
quested. READY will be pulled low for the length of 
time required to ascertain if the preceding data byte, 
if any, has been written to the stack. If so READY will 
immediately go high. If not, READY will remain low 
until the interface latch is free and will then go high. 

5. When a status read has been requested, READY will 
be pulled low for the length of time necessary to 
transfer the status to the interface latch, and will 
then be raised to permit completion of the status 
read. Status may be read whether or not the 8231A is 
busy. 

When READY goes low, the APU expects the bus con­
trol signals present at the time to remain stable until 
READY goes high. 

DEVICE STATUS 

Device status is provided by means of an internal status 
register whose format is shown below: 

I BUSY 1 SIGN 1 ZERO r=-L ERROR 1 CODE '-I --I CARRY I 

BUSY: Indicates that 8231A is currently executing a com­
mand (1 =Busy) 

SIGN: Indicates that the value on the top of stack is 
negative (1 = Negative) 

ZERO: Indicates that the value on the top of stack is 
zero (1 = Value is zero) 

ERROR CODE: This field contains an indication of the 
validity of the result of the last opera­
tion. The error codes are: 

0000 - No error 
1000 - Divide by zero 
0100 - Square root or log of negative number 
1100 - Argument of inverse sine, cosine, or 

eX too large 
XX10 - Underflow 
XX01 - Overflow 

CARRY: Previous operation resulted in carry or borrow 
from most significant bit. (1 = Carry/Borrow, 
0= No Carry/No Borrow.) 

If the BUSY bit in the status register is a one, the other 
status bits are not defined; if zero, indicating not busy; 
the ope'ration is complete and the other status bits are 
defined as given above. 

READ STATUS 

The 8231A status register can be read by the CPU at any 
time (whether an operation is in progress or not) by 
bringing the chip select (CS) low, the command/data line 
(Ao) high, and lowering RD. The status register is then 
gated onto the data bus and may be input by the CPU. 

EXECUTION TIMES 
Timing for execution of the 8231A command set is con­
tained below. All times are given in terms of clock 
cycles. Where substantial variation of execution times 

6-257 231305-001 



8231A 

is possible, the minimum and maximum values are 
quoted; otherwise, typlcai values are given. Variations 
are data dependent. 

Total execution times may require allowances for 
operand transfer Into the APU, command execution, and 
result retrieval from the APU. Except for command exe· 

cution, these times will be heavily influenced by the 
nature of the data, the control Interface used, the speed 
of memory, the CPU used, the priority allotted to DMA 
and Interrupt operations, the size and number of 
operands to be transferred, and the use of chained 
calculations, etc., 

Table 5. Command Execution Times 

Command Clock Command Clock 
Mnemonic Cycles Mnemonic Cycles 

SADD 17 FADD 54·368 
SSUB 30 FSUB 70·370 
SMUL 84-94 FMUL 146-168 
SMUU 80-98 
SDIV 84-94 FDIV 154-184 
DADD 21 SORT 800 
DSUB 38 SIN 4464 
DMUL 194-210 COS 4118 
DMUU 182-218 
DDIV 208 TAN 5754 
FIXS 92-216 ASIN 7668 
FIXD 100-346 ACOS 7734 
FLTS 98-186 ATAN 6006 
FLTD 98-378 LOG 4474-7132 

DERIVED FUNCTION DISCUSSION 
Computer approximations of transcendental functions 
are often based on some form of polynomial equation, 
such as: 

(1-1) 

The primary shortcoming of an approximation in this 
form is that it typically exhibits ~ery large errors when 
the magnitude of IXI is large, although the errors are 
small when IXI is small. With polynomials in this form, 
the error distribution is markedly uneven over any 
arbitrary interval. 

A set of approximating functions exists that not only 
minimizes the maximum error but also provides an even 
distribution of errors within the selected data represen­
tation interval. These' are known as Chebyshev Poly­
nomials and are are based upon cosine functions. These 
functions are defined as follows: 

T n(X) = Cos n9; where n= 0,1,2 ... 
9=COS-1X 

(1-2) 

The various terms of the Chebyshev series can be com­
puted as shown below: 

To(X) = Cos (0' 9)= Cos (0)= 1 (1-4) 
T1(X) = Cos (COS-1X);= X (1-5) 
T2(X) = Cos29= 2COS2 9-1 = 2COS2(CoS-1X)-1 (1-6) 

=2X2_1 

Command Clock Command Clock 
Mnemonic Cycles Mnemonic Cycles 

LN 4298·6956 POPF 12 
EXP 3794-4878 XCHS 18 
PWR 8290-12032 XCHD 26 

NOP 4 XCHF 26 
CHSS 23 PUPI 16 
CHSD 27 
CHSF 18 

PTOS 16 
PTOD 20 
PTOF 20 
POPS 10 
POPD 12 

In general, the next term in the Chebyshev serIes can be 
recursively derived from the previous term as follows: 

T n(X) = 2X [Tn-:-1(X))- Tn- 2(X); n;lo 2 (1-7) 

Common logarithms are computed by multiplication 
of the natural logarithm by the conversion factor 
0.43429448 and the error fun,ction is therefore the same 
as that for natural logarithm. The power function is 
realized by combination of natural log and exponential 
functions according to the equation: 

The error for the power function is a combination of that 
for the logarithm 'and exponential functions. 

Each of the derived functions Is an approximation of the 
true function. Thus the result of a'derived function will 
have an error. The absolute error is the difference be­
tween the function's result and the true result. A more 
useful measure of the function's error is relative error 
(absolute error/true result). This gives a measurement of 
the significant digits of algorithm accuracy. For the 
derived functions except LN, LOG, and PWR the relative 
error is typic:;ally 4x 10-7. For PWR the relative error is 
the summation of the EXP and LN errors, 7x 10-7. For 
LN and LOG, the absolute error is 2 x 10 -7. 

6-258 231305-001 



8231A 

APPLICATION INFORMATION 

The diagram in Figure 4 shows the interface connec­
tions for the APU with operand transfers handled by an 
8237 DMA controller, and CPU coordination handled by 
an Interrupt Controller. The APU interrupts the CPU to 
indicate that a command has been completed. When the 
performance enhancements provided by the DMA and 
Interrupt operations are not required, the APU interface 

can be simplified as shown in Figure 3. The 8231 A APU is 
designed with a general purpose 8-bit data bus and in· 
terface control so that it can be conveniently used with 
any general 8·bit pro,cessor. 

In many systems it will be convenient to use the 
microcomputer system clock to drive the APU clock 
input. In the case of 8080A systems it would be the 
q,2TIL signal. Its cycle time will usually fall in the range 
of 250 ns to 1000 ns, depending on the system speed. 

t-.. 
ADDRESS BUS i 

lOR RD Ao cs 
CPU 

lOW WR 8231A 
ARITHMETIC 

CLOCK ClK PROCESSOR 

READY READY UNIT 

l~ 
~ 

.... 7_ '" ~ SYSTEM DATA BUS 

Figure 3. Minimum Configuration Example 

-) ADDRESS BUS 

~ If J[ • 
! 8205 J A8-A15 

J 
DECODER <:S AO-A7 r- OE ADDRESS AEN 

I p-- ..... J LATCH 

AO-A15 8237 AOSTB STB 8282 
DMA CONTROLLER oBo.lA 

HLDA HLOA 

1~ ~ ~ 
OBl Ire- ~ r 

HOLD HRD ~ 112 ~ I~ * 
CLOCK t r MEMR ~ 
MEMW • IDA 

CPU iow 
READV 

rvco 
! 

WR RO CS AO I~ i Ii ~ ~ I~ ~ 

rNfA iNTA 
8259A IRa END ~ 8231A 

INTERRUPT 

r ARITHMETIC 
INT INT 

CONTROLLER EACK 
PROCESSOR UNIT 

DBO-DB7 DBO-DB7 DBO-OB7 

I '" r "'" r 

... ... "=- ...::: ...:: ".. ...1\ 
SYSTEM DATA BUS V 

Figure 4_ High Performance Configuration Example 

6-259 231305-001 



intJ 8231A 

ABSOLUTE MAXIMUM RATINGS· 
Storage Temperature ............. - 65.'C to + 150'C 
Ambient Temperature Under Bias' ......... 0 'C to 70 'C 
,V DO with Respect to Vss ............ - 0.5V to + 15.0V 
Vee with Respect to Vss ............. - 0.5V to + 7.0V 
All Signal Voltages with Respect 

to Vss ....................... '" - 0.5V to + 7.0V 
Power Dissipation ............................ 2.0W 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may effect device 
reliability. . 

D.C. AND OPERATING CHARACTERISTICS (TA = O°C to 70°C, Vss. = OV, Vee = +5V ± 10%, 

Voo = +12V ± 10%) 

Parameters Description Min. 

VOH Output HIGH Voltage 3.7 

VOL Output LOW Voltage 

V,H Input HIGH Voltage 2.0 

V,L Input LOW Voltage -0.5 

I,L Input Load Current 

IOFL Data Bus Leakage 

Icc Vee Supply Current 

100 V DO Supply Current 

Co Output Capacitance 

C, Input Capacitance 

Cia I/O Capacitance 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

AC. TESTING: INPUTS ARE DRIVEN AT 3.7V FOR A lOGIC "'1"' AND OAV FOR 
AlOGIC "'D."' TIMING MEASUREMENTS ARE MADE AT2.0V FORA lOGIC "'1"' 
AND O.BV FOR A lOGIC "'D."' 

Typ. 

50 

50 

8 

5 

10 

6-260 

Max. Units Test Conditions 

Volts IOH= -200/,A 

0.4 Volts IOL=3.2 rnA 

Vee Volts 

0.8 Volts 

± 10 /,A Vss :S Y,N :S Vee 

± 10 /,A Vss +0.45.;; VO\JT .;; Vee 

95 rnA 

95 rnA 

pF 

pF Ic = 1.0 MHz, Inputs = OV 

pF 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 

'1CL~150PF TEST 

231305-001 



8231A 

A.C. CHARACTERISTICS (TA = O°C to 70°C. Vss = OV. Vee = +5V ± 10%. Vee = +12V ± 10%) 

READ OPERATION 

Symbol Parameter 8231A·8 8231A Units 
Min. Max. Min. Max. 

tAA Ao. CS Setup to RD 0 0 ns 

tAA Ao. CS Hold from RD 0 0 ns 

tAy READY I from RD I Delay (Note 2) 1S0 100 ns 

tYR READY t to RD t 0 0 ns 

Data 3.S tCY 3.S tCY ns 
+SO +SO 

tAAA READY Pulse Width (Note 3) 

Status 1.S tCY 1.S tCY ns 
+ SO +SO 

tAOE Data Bus Enable from RD I SO SO ns 

tOAY Data Valid 10 READY t 0 0 ns 

tOF Data Float after RD t SO 200 SO 100 ns 

WRITE OPERATION 

Symbol Parameter 
; 8231A·8 8231A Units 

Min. Max. Min. Max. 

tAW Ao, cs Setup to WR 0 0 ns 

tWA Ao. CS Hold after WR 60 2S ns 

tWY READY I from WR I Delay (Note 2) 1S0 100 ns 

tyW READY t to WR t 0 0 ns 

tAAW READY Pulse Width (Note 4) 50 SO ns 

Write Inactive Time (Note 4) I Command 4 tCY 4 ICY ns 
tWI I Data 5 tCY 5 tCY ns 

tow Data Setup to WR 1S0 100 ns 

two Data Hold after WR 20 20 ns 

OTHER TIMINGS 

Symbol Parameter 8231A·8 8231A Units 
Min. Max. Min. Max. 

tCY Clock Period 480 5000 2S0 2S00 ns 

tCPH Clock Pulse High Width 200 100 ns 

tCPL Clock Pulse Low Width 240 120 ns 

tEE EN D Pulse Width (Note S) 400 200 ns 

tEAE EACK I to END t Delay 200 150 ns 

tAA EACK Pulse Width 100 SO ns 

tSA SVACK I to SVREQ I Delay 300 150 ns 

tss SVACK Pulse Width 100 50 ns 

NOTES: 
1. Typical values are for TA=25'C. nominal supply voltages and nominal processing parameters. 
2. READY is pulled low for both command and data operations. 
3. Minimum values shown assume no previously entered command is being executed for the data access. If a previously entered 

command is being executed, READY low pulse width is the time to complete execution plus the time shown. Status may be read at any 
time without exceeding the time shown. 

4. READY low pulse width is less than 50 ns when writing into the data port orthe control port as long as the duty cycle requirement (tWI) is 
observed and no previous command is being executed. tWI may be safely violated as long as the extended tRRW that results is 
observed. If a previously entered command is being executed. READY low pulse width is the time to complete execution plus the time 
shown. These timings refer specifically to the 8231A. 

5. END low pulse width is specified for EACK tied to VSS. Otherwise tEAE applies. 

6-261 231305·001 



intJ 
WAVEFORMS 

READ OPERATION 

CLOCK 

Ao,CS 

READY 

DATA 
BUS 

WRITE OPERATION 

8231 A 

-----J~------------------------------~r~--IAA 

1o---------\,j::IDAV . IDFj 
-------------........ ~ OUTPUT VALID ~ 

INTERRUPT OPERATION 

EACR 

\IEE4' 
lEAED! ____________ -1 .. - ,..--________ _ 

SVREQ / 1.. 
--------~ ~\---------

fiACR ______________ IS_.{-IS.-y ..... __________ _ 

6-262 231305-001 



8253/8253·5 
PROGRAMMABLE INTERVAL TIMER 

• MCS·85™ Compatible 8253·5 

.3 Independent 16·Bit Counters 

• DC to 2.6 MHz 

• Programmable Counter Modes 

• Count Binary or BCD 

• Single + 5V Supply 

• Available in EXPRESS 
-Standard Temperature Range 
-Extended Temperature Range 

The Intel® 8253 is a programmable counter/timer device designed for use as an Intel microcomputer peripheral. It uses nMOS 
technology with a single +5V supply and is packaged in a 24-pin plastic DIP. 

It is organized as 3 independent 16-bit counters, each with a count rate of up to 2.6 MHz. All modes of operation are software 
programmable. 

elK 0 

DATA 

°7"°0 
BUS GATED 

BUFFER 
DUTO 

RO 
eLK 1 Vee WR- READ! ViR 

WRITE GATE 1 

Ao lOGIC AD 
OUTl 

A, 
A, 

0, 

cs 

elK 2 
GATE 2 

CONTROL COUNTER 
QUTO elK' 

WORD 
=2 GATE 2 GATED GATE 1 

REGISTER 

OUT 2 OUT 1 

INTERNAL BUS / 

Figure 1. Block Diagram Figure 2. Pin Configuration 

A81NTEL CORPORATION, 1983. 
6-263 Order Number: 231306-001 



inter 825318253·5 

FUNCTIONAL DESCRIPTION 
General 
The 8253 is a programmable interval timer/counter 
specifically designed for use with the Intel'" Micro­
computer systems. Its function is that of a general 
purpose, multi-timing element that can be treated as an 
array of I/O ports in the system software. 

The 8253 solves one of the most common problems in any 
microcomputer system, the generation of accurate time 
delays under'software control. Instead of setting up timing 
loops in systems software, the programmer configures the 
8253 to match his requirements, initializes one of the 
counters of the 8253 with the desired quantity, then upon 
command the 8253 will count out the delay and interrupt 
the CPU when it has completed its tasks. It is easy to see 
that the software overhead is minimal and that multiple 
delays can easily be maintained by assignment of priority 
levels. 

Other counter/timer functions that are non-delay in 
nature but also common to most microcomputers can be 
implemented with the 8253. 

• Programmable Rate Generator 
• Event Counter 

_. Binary Rate Multiplier 
• Real Time Clock 
• Digital One-Shot 
• Complex Motor Controller 

Data Bus Buffer 

This 3-state, bi-directional, 8-bit buffer is used to interface 
the 8253 to the system data bus. Data Is transmitted or 
received by the buffer upon execution of I Nput or OUTput 
CPU instructions. The Data Bus Buffer has three basic 
functions. 

1. Programming the MODES.of the 8253. 
2. Loading the count registers. 
3. Reading the count values. 

ReadlWrlte Logic 

The Read/Write Logic accepts inputs from the system bus 
and in turn generates control signals for overall device 
operation. It is enabled or disabled by CS so that no 
operation can occur to change the function unless the 
device has been selected by the system logic. 

RD (Read) 
A "low" on this input informs the 8253 that the CPU is 
inputting data in the form of a counters value. 

WR (Write) 
A "lOW" on this input informs the 8253 that the CPU is 
outputting data in the form of mode information or loading 
counters. 

6-264 

AO,A1 
These inputs are normally connected to the address bus. 
Their function is to select one of the three counters to be 
operated on and to address the control word register for 
mode selection. 

CS (Chip Select) 
A "low" on this input enables the 8253. No reading or 
writing will occur unless the device is selected. The CS 
input has no effect upon the actual operation of the 
counters. 

Figure 3. Block Diagram Showing Data Bus Buffer and 
Read/Write Logic Functions . 

CS RD· WR A1 Ao 

0 1 0 0 0 Load Counter No. 0 

0 1 0 0 1 Load Counter No.1 

0 1 0 1 0 Load Counter No. 2 

0 1 0 1 1 Write Mode Word 

0 0 1 0 0 Read Counter No. 0 

0 0 1 0 1 Read Counter No. 1 

0 0 1 1 0 Read Counter No.2 

0 0 1 1 1 No-Operation 3-State 

1 X X X X Disable 3-State 

0 1 1 X X No-Operation 3-State 

231306-001 



8253/8253·5 

Control Word Register 
The Control Word Register is selected when AO, A 1 are 11. 
It then accepts information from the data bus buffer and 
stores it in a register. The informatiori stored in this 
register controls the operational MODE of each counter, 
selection of binary or BCD counting and the loading of 
each count register. 

The Control Word Register can only be written into; no 
read operation of its contents is available. 

Counter #0, Counter #1, Counter #2 
These three functional blocks are identical in operation so 
only a single Counter will be described. Each Counter 
consists of a single, 16-bit, pre-settable, DOWN counter. 
The counter can operate in either binary or BCD and its 
input, gate and output are configured by the selection of 
MODES stored in the Control Word Register. 

The counters are fully independent and each can have 
separate Mode configuration and counting operation, 
binary or BCD. Also, there are special features in the 
control word that handle the loading of the count value so 
that software overhead can be minimized for these 
functions. 

The reading olthe contents of each counter is available to 
the programmer with simple READ operations for event 
counting applications and special commands and logic 
are included in the 8253 so that the contents of each 
counter can be read "on the fly" without having to inhibit 
the clock input. 

8253 SYSTEM INTERFACE 
The 8253 is a component of the Intel'· Microcomputer 
Systems and interfaces in the same manner as all other 
peripherals of the family. It is treated by the systems 
software as an array of peripheral 1/0 ports; three are 
counters and the fourth is a control. register for MODE 
programming. 

Basically, the select inputs AO, A1 connect to the AO, A1 
address bus signals of the CPU. The CS can be derived 
directly from the address bus using a linear select method. 
Or it can be connected to the output of a decoder, such as 
an Intel'"' 8205 for larger systems. 

RJj 

WR 

A. 

A, 

cs 

\ 

6-265 

CLKO 
DATA 
BUS GATED 

BUFFER 
DUTO 

eLK 1 
READI 
WRITE GATE 1 
LOGIC 

OUT1 

eLK 2 

COUNTER 
GATE 2 .2 

DUT2 

INTERNAL BUS / 

Figure 4. Block Diagram S!1owlng Control Word 
Register and Counter Functions 

ADDRESS BUS (161 

A, A. 

CONTROL BUS 

I/OR I/OW 

DATA BUS (8) 

f: 
A, Ao cs 0 0"07 RD WR 

8253 
COUNTER COUNTER COUNTER 

0 1 2 
I 

I OUT GATE elK I 
I 

lOUT GATE elK I 1 OUT G~TE elK I 

1 1 1 1 1 f 1 f 1 

Figure 5. 8253 System Interface 

231306-001 

\ 



intel° 8253/8253·5 

OPERATIONAL DESCRIPTION 

General 
The complete functional definition of the 8253 is 
programmed by" the systems software. A set of control 
words must be sent out by the CPU to initialize each 
counter of the 8253 with the desired MODE and quantity 
Information. Prior to Initialization, the MODE, count, and 
output of all counters Is undefined. These control words 
program the MODE, Loading sequence and selection of 
binary or BCD counting. " 

M - MODE: 

M2 M1 MO 

0 0 0 Mode 0 

0 0 1 Mode 1 

X 1 0 Mode 2 

X ,1 1 Mode 3 

1 0 0 Mode 4 

1 0 1, Mode 5 

Once programmed, the 8253 is ready to perform whatever BCD: 
timing tasks it is assigned to accomplish. 

The actual counting operation of each counier is 
completely independent and, additional logic is provided 
on-Chip so that the usual problems associated with 
efficient monitoring and management of external, 
asynchronous events or rates to the microcomputer 
system have been"eliminated. 

Programming the 8253 
All of the MODES for each counter are programmed by the 
systems software by simple I/O operations. 

Each counter of the 8253 is individually programmed by 
writing a control word into the Control Word Register. 
(AO, AI = 11) 

Control Word Format 

01 Do 

SCI SCO RL1 MO BCD 

Definition of Control 

SC - Select Counter: 

SC1 seo 
0 0 Select Counter 0 

0 1 Select Counter 1 

1 0 Select Counter 2 

1 1 Illegal 

RL - Read/Load: 

RL1 RLO 

0 0 Counter Latching operation (see 
READ/WRITE Procedure Section) 

1 0 Read/Load most significant byte only. 

0 1 Read/Load least significant byte only. 

1 1 Read/Load least significant byte first, 
then most significant byte. 

o 
1 " 

Binary Counter 16-bits 

Binary Coded Decimal (BCD) Counter 
(4 Decades) 

Counter Loading 

The count register is not loaded until the count value Is 
written (one or two bytes, depending on the mode" 
selected by the RL bits), followed by a rising edge and a 
falling edge of the clock. Any read of the counter prior to 
that falling clock edge may yield invalid data; 

MODE Definition 

MODE 0: Interrupt on Terminal Count. The output will 
be Initially low after the mode set operation. After the 
count is loaded into the selected count register, the out­
put will remain low and the counter will count. When ter­
minal count is reached the output will go high and re­
main high until the selected count register Is reloaded 
with the mode or a new count is loaded. The counter 
continues to decrement after terminal count has been 
reached. 

Rewriting II counter register during counting results in 
the following: 

(1) Write 1st byte stops the current counting. 
(2) Wrlie 2nd byte starts the new count. 

MODE 1: Programmable One·Shot. The output will go 
low on the count following the rising edge of the gate In­
put. 

The output will go high on the terminal count. If a new 
count value is loaded while the output is low It will not 
affect the duration of the one·shot pulse until the sue· 
ceeding trigger. The current count can be read at any 
time without affecting the one-shot pulse. 

The one·shot is retriggerable, hence the output will re­
main low for the full count after any rising edge of the 
gate input. 

6-266 231306-001 



8253/8253·5 

MODE 2: Rate Generator. Divide by N counter. The out· 
put will be low for one period of the input clo.ck. The 
period from one output pulse to the next equals the 
number of Input counts In the count register. If the 
count register is reloaded between output pulses the 
present period will not be affected, but the subsequent 
period will reflect the new value. 

The gate input, when low, will force the output high. 
When the gate input goes high, the counter will start 
from the initial count. Thus, the gate Input can be used 
to syn.chronlze the counter. 

When this mode Is set, the output will remain high until 
after the count register is loaded. The output then can 
also be synchronized by software. 

MODE 3: Square Wave Rate Generator.Slmiiar to MODE 
2 except that the output will remain high until one half 
the count has been completed (for even numbers) and 
go low for the other half of the count. This is accom· 
plished by decrementing the counter by two on the fall· 
ing edge of each clock pulse. When the counter reaches 
terminal count, the state of the output is changed and 
the counter is reloaded with the full count and the whole 
process is repeated. 

If the count is odd and the output is high, the first clock 
pulse (after the count Is loaded) decrements the count 
by 1. Subsequent clock pulses decrement the clock by 
2. After timeout, the output goes low and the full count 
is reloaded. The first clock pulse (following the reload) 
decrements the counter by 3. Subsequent clock pulses 
decrement the count by 2 until timeout. Then the whole 
process is repeated. In this way, If the count is odd, the 
output will be high for (N + 1)/2 counts and low for 
(N -1)/2 counts. 

In Modes 2 and 3, if a elK source other than the system 
clock is used, GATE should be pulsed immediately following 
WR of a new count value. 

MODE 4: Software Triggered Strobe. After the mode is 
set, the output will be high. When the count is loaded, 
the counter will begin counting. On terminal count, the 

output will go low for one Input clock period, then Will 
go high again. 

If the count register is reloaded during counting, the new 
count will be loaded on the next elK pulse. The count will 

. be inhibited while the GATE input is low. 

MODE 5: Hardware Triggered Strobe. The counter will 
start counting after the rising edge of the trigger input' 
and will go low for one clock period when the terminal 
count is reached. The counter is retrlggerable. The out· 
put will not go low until the full count after the rising 
edge of any trigger. 

~ 
Low 

Slalus Or Going 
Modes Low Rising High 

0 Disables -- Enables 
counting .::ounting 

1 -- 1l Initiates --
counting 

2) Resets output 
after next clock 

2 1) Disables 
1) Reloads counting Enables 

2) Sels oulpul counter counting 
immediately 2) Iniliales 

high counting 

3 1) Disables 1) Reloads 
counting counter Enables 

2) Sets output 2) Initiates counting 
immediately counting 
high 

4 Disables -- Enables 
counting counting 

5 -- Initiates --
counting 

Figure 6. Gate Pin Operations Summary 

6-267 231306-001 



8253/8253·5 

MODE 0: Interrupt on Terminal Count 

CLOCK 
I I 

WJ!fn~ 
, I 

4 3 2 1 0 
OUTPUT (INTERRUPT) 1 I 

(n=4) /-t-n---l 
I I 
I , 

WRm~ , , 
GATE------------.,:~~-+'--------

5 4 3 2 1 0 
OUTPUT (INTERRUPTI ~ 

fm .,- 5) '-v-' '---v--' 
A B 

A+B""rn 

MODE 1: Programmable One·Shot 

TRIGGER 

OUTPUT 

-----.r-
4;_~3~:2~'~j-----------­~. 

TRIGGER~ 

432421 
OUTPUT ----,i.~~~.::...~_:...~j-------

MODE 2: Rate Generator 

CLOCK 

4 3 2 1 0(4) 3 2 1 0(3) 2 1 0 
OUTPUT ~ 

OUTPUT Cn '" 3) 
0(3) 

RESET ---,L ______ ..r--------

MODE 3: Square Wave Generator 

CLOCK 

OUTPUT Cn = 4) 

OUTPUT (n = 5) 

MODE 4: Software Triggered Strobe 

lOAOn~r----------------------

GATE -------~L__Jr-------------

OUTPUT 
______ ~4 ______ ~4~3~~~~~ 

MODE 5: Hardware Triggered Strobe 

CLOCK 

GATE ------J~-----------
4 3 2 

OUTPUT Cn = 4) LJ 

GATE~ 

OUTPUT Cn = 4) 4 3 4 3 2 1 Ur--------

Figure 7. 8253 Timing Diagrams 

6-268 231306-001 



8253/8253·5 

8253 READIWRITE PROCEDURE 

Write Operations 

The systems software must program each counter of the 
8253 with the mode and quantity desired. The program­
mer must write out to the 8253 a MODE control word and 
the programmed number of count register bytes (1 or 2) 
prior to actually using the selected counter. 

The actual order of the programming is quite flexible. 
Writing out of the MODE control word can be in any 
sequence of counter selection, e.g., counter #0 does not 
have to be first or counter #2 last. Each counter's MODE 
control word register has a separate address so that its 
loading is completely sequence independent. (SCO, SC1) 

The loading of the Count Register with the actual count 
value, however, must be done in exactly the sequence 
programmed in the MODE control word (RLO, RL 1). This 
loading of the counter's count register is still sequence 
independent like the MODE control word loading, but 
when a selected count register is to be loaded it must be 
loaded with the number of bytes programmed in the 
MODE control word (RLO, RL 1). The one or two bytes to 
be loaded in the count register do not have to follow the 
associated MODE control word. They can be programmed 
at any time following the MODE control word loading as 
long as the correct number of bytes is loaded in order. 

All counters are down counters. Thus, the value loaded 
into the count register will actually be decremented. 
Loading all zeroes into a count register will result in the 
maximum count (216 for Binaryor 10'for BCD).ln MODEO 
the new count will not restart until the load has been 
completed. It will accept one of two bytes depending on 
how the MODE control words (RLO, RL 1) are program­
med. Then proceed with the restart operation. 

6-269 

MODE Control Word 
Counter n 

LSB 
Count Register byte 

Counter n 

MSB 
Count Register byte 

Counter n 

Note: Format shown is a simple example of loading the 8253 and 
does not imply that it is the only format that can be used. 

Figure 8. Programming Format 

Al AD 

No.1 
MODE Control Word 

1 1 
Counter 0 

MODE Control Word 
1 1 

Counter 1 
No. 2 

MODE ControlWord 
1 1 

Counter 2 
No.3 

LSB 
Count Register Byte 

0 1 
Counter 1 

No.4 

Count Register Byte 
0 1 

MSB Counter 1 No. 5 

LSB 
Count Register Byte 

1 0 
Counter 2 

No.6 

MSB 
Count Register Byte 

1 0 
Counter 2 

No. 7 

LSB 
Count Register Byte 

0 0 
Counter 0 

No.8 

MSB 
Count Register Byte 

0 0 
Counter 0 

No. 9 

Note: The exclusive addresses of each counter's count register make 
the task of prog,amming the 8253·a very simple matter, and 
maximum effective use of the device will result if this feature 
is fully utilized. 

Figure 9. Alternate Programming Formats 

231306-001 



intJ 8253/8253·5 

Read Operations 
In most counter applications it becomes necessary to read 
the value of the count in progress and make a 
computational decision based on this quantity. Event 
counters are probably the most common application that 
uses this function. The 8253 contains logic that will allow 
the programmer to easily read the contents of any of the 
three counters without disturbing the actual count in 
progress· 

There are two methods that the programmer can use to 
read the ,value of the counters. The first method involves 
the use of simple I/O read operations of the selected 
counter. By controlling the AO, A 1 inputs to the 8253 the 
programmer can select the counter to be read (remember 
that no read operation of the mode register is allowed AO, 
A 1-11). The only requirement with this method is that in 
order to assure a stable count reading the actual operation 
of the selected counter must ~ inhibited either by 
controlling the Gate input or by external logic that inhibits 
the clock input. The contents of the counter selected will 
be available as.follows: 

first I/O Read contains the least significant byte (lSB). 

second I/O Read contains the most significant byte 
(MSB). 

Due to the internal logic of the 8253 it is absolutely 
'necessary to complete the entire reading procedure. If two 
bytes are programmed to be read then two bytes must be 
read before any loading WR command can be sent to the 
same counter. 

3MHz 
ClK ~2 

8085 

Read Operation Chart 

A1 AO RD 

0 0 0 Read Counter No. 0 

0 1 0 Read Counter No.1 

j 0 0 Read Counter No. 2 

1 1 0 Illegal 

Reading While Counting 
In order for the programmer to read the contents of any 
counter without effecting or disturbing the counting 
operation th.e 8253 has speciai internal logic that can be 
accessed using simple WR commands to the MODE 
register. Basically, when the programmer wishes to read 
the contents of a selected counter "on the fly" he loads the 
MODE register with a special code which latches the 
present count value into a storage register so that its 
contents contain an accurate, stable quantity. The 
pro'grammer then issues a normal read command to the 
selected counter and the contents of the latched register is 
available. 

MODE Register for Latching Count 

AD, A1 = 11 

SC1,SCO- specify counter to be latched. 

DO 

x 

05,04 - 00 designates counter latching operation. 

X - don't care. 

The same limitation applies to this mode of reading the 
counter as the previous method. That is, it Is mandatory 
to complete the entire read operation as programmed. 
This command has no effect on the counter's mode. 

• 1.5MHz 
ClK 

8253-5 

"If an 8085 clock output is to drive an 8253·5 clock Input, It must be reduced to 2 MHz or less. 

Figure 10. MCS·85™ Clock Interface· 

6-270 231306-001 



825318253·5 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias ........ 0°Ct070°C 
Storage Temperature .... . . . . . . . . .. -65° C to +150° C 
Voltage On Any Pin 

With Respectto Ground .............. -0.5 Vto +7 V 
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 Watt 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this 
specification is not implied. Exposure to absolute maxi­
mum rating conditions for extended periods may affect 
device reliability. 

D,C. CHARACTERISTICS (TA = O°C to 70°C, Vee = 5V ±10%) , 

Symbol Parameter Min. Max. Unit Test Conditions 

VIL Input Low Voltage -0.5 0.8 V 

VIH Input High Voltage 2.2 Vee+·5V V 

VOL Output Low Voltage 0.45 V Note 1 

VOH Output High Voltage 2.4 V Note 2 

IlL Input Load Current ±10 /J.A VIN = Vee to OV 

IOFL Output Float Leakage ±10 /J.A VOUT = Vee to .45V 

Icc Vee Supply Current 140 mA 

CAPACITANCE (TA = 25°C, Vee = GND = OV) 

Symbol Parameter Min. Typ. Max. Unit Test Conditions 

CIN I nput Capacitance 10 pF fc= 1 MHz 

CliO I/O Capacitance 20 pF Unmeasured pins returned to VSS 

A.C. CHARACTERISTICS (TA = O°C to 70°C, Vec = 5.0V ± 10%, GND = OV) , 

Bus Parameters (Note 3) 

READ CYCLE 

Symbol Parameter 

tAR Address Stable Before READ 

tRA Address Hold Time for READ 

tRR READ Pulse Width 

tRD Data Delay From READ[4] 

tDF READ to Data Floating 

tRY Recovery Time Between READ 
and Any Other Control Signal 

Min. 

50 

5 

400 

25 

1 

6-271 

8253 8253-5 

Max. Min. Max. Unit 

30 ns 

5 ns 

300 ns 

300 200 ns 

125 25 100 ns 
-------

1 ps 

231306-001 



intJ 825318253·5 

A.C. CHARACTERISTICS (Continued) 

WRITE CYCLE 

8253 8253-5 
Symbol Parameter Mln_ Max. Min. Max. 

tAW Address Stable Before WR ITE 50 30 

tWA Address Hold Time for WR ITE 30 30 

tww WR ITE Pulse Width 400 300 

tow Data Set Up Time for WR ITE 300 250 

two Data Hold Ti'me for WR ITE 40 30 

tRY . Recovery Time Between WRITE 1 1 
and Any Other Control Signal 

CLOCK AND GATE TIMING 

8253 8253·5 
Symbol Parameter Min. Max. Min. Max. 

tCLK Clock Period 380 dc 380 dc 

tPWH High Pulse Width 230 230 

tPWL Low Pulse Width 150 150 

tGW Gate Width High 150 150 

tGL Gate Width Low 100 100 

tGS Gate Set Up Time to CLKt 100 100 

tGH Gate Hold rime After CLKt 50 50 

too Output Delay From CLKH4] 400 400 

tOOG Output Delay From Gate~ [4] 300 300 

NOTES: 
1. IOL = 2.2 mA. 
2. IOH = -400 pA. 
3. AC timings measured at VOH 2.2, VOL = O.S. 
4. CL = 150pF . 
• For Extended Temperature EXPRESS, use M8253 electrical parameters. 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

2.4 
2.2V 2.2V > TEST POINTS < 
0.8 0.8 

0.45 

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A lOGIC "1" AND O.45V FOR A 
LOGIC "0." TIMING MEASUREMENTS ARE MADE AT 2.2V FOR A LOGIC "1" AND 
O.BV FOR A LOGIC O. 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 

i}CL=15DPF 
TEST 

CL INCLUDES JIG CAPACITANCE 

6-272 

Unit 

ns 

ns 

ns 

ns 

ns 

/-IS 

-Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

231308-001 



8253/8253·5 

WAVEFORMS 

WRITE TIMING 

110-1' CS 

DATA BUS 
----------Jl~----r-~~~--

CLOCK AND GATE TIMING 

READ TIMING 

DATA 

6-273 231306-001 



• 

• 

• 
• 

8254 
PROGRAMMABLE INTERVAL TIMER 

Compatible with all Intel and most • Three Independent 16-bit Counters 
other microprocessors 

Handles Inputs from DC to 10 MHz • Binary or BCD Counting 
5 MHz 8254-5 
8 MHz 8254 

Single +5V Supply 10 MHz 8254-2 • 
Status Read-Back Command • Available in EXPRESS 

Six Programmable Counter Modes -Standard Temperature Range 

The Intel® 8254 is a counter/timer device designed to solve the common timing control problems in microcom­
puter system design. It provides three independent 16-bit counters, each capable of handling clock inputs up to 
10 MHz. All modes are software programmable. The 8254 is a superset of the 8253. 

The 8254 uses HMOS technology and comes in a 24-pin plastic or CERDIP package. 

eLK 0 

Dr-Do 

OUTO 

0, Vee 

O. WR 

iili Os RO 
eLK 1 cs WIl 
GATE 1 At .. 

" 
OUT 1 0, Ao 

0, eLK 2 

DO OUT2 
~ 

ClK' 

GATE' 
GATE 2 GNO OUT' 

OUT2 

Figure 1. 8254 Block Diagram Figure 2. Pin Configuration 

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No 
Other Circuit Patent Licenses are Implied. Information Contained herein Supersedes Previously Published SpeCifications On The 
Devices From Intel. 

@INTELCORPORATION, 1984 6-274 January 1985 
ORDER NUMBER: 231164-002 



inter 8254 

Table 1. Pin Description 

Symbol PinNa. Type Name and Function 

DTDO 1·8 1/0 Data: Bi·directional three state data bus 
lines, connected to system data bus. 

ClK 0 9 I Clock 0: Clock input of Counter O. 
--

OUTO 10 0 Output 0: Output of Counter O. 

GATE 0 11 I Gate 0: Gate input of Counter O. 

GND 12 Ground: Power supply connection. 

FUNCTIONAL DESCRIPTION 

General 

The 8254 is a programmable interval timerlcounter de­
signed for use with Intel microcomputer systems. It is a 
general purpose, multi-timing element that can be treated 
as an array of 1/0 ports in the system software. 

The 8254 solves one of the most common problems in 
any microcomputer system, the generation of accurate 
time delays under software control. Instead of setting 
up timing loops in software, the programmer configures 
the 8254 to match his requirements and programs one of 
the counters for the desired delay. After the desired 
delay, the 8254 will interrupt the CPU. Software over· 
head is minimal and variable length delays can easily be 
accommodated. 

Some of the other counter/timer functions common to 
microcomputers which can be implemented with the 
8254 are: 

• Real time clock 
• Event counter 
• Digital one·shot 
• Programmable rate generator 
• Square wave generator 
• Binary rate multiplier 
• Complex waveform generator 
• Complex motor controller 

Symbol Pin No. Type 

Vee 24 

WR 23 I 

RD 22 I 

CS 21 I 

A" Ao 20·19 I 

ClK 2 18 I 

OUT2 17 0 

GATE 2 16 I 

ClK 1 15 I 

GATE 1 14 I 

OUT 1 13 0 

Block Diagram 
DATA BUS BUFFER 

Name and Function 

Power: + 5V power supply connection. 

Write Control: This input is low during CPU 
write operations. 

Read Control: This input is low during CPU 
read operations. 

Chip Select: A low on this Input enables the 
8254 to respond to AD and WR signals. Ff5 
and WR are ignored otherwise. 

Addre •• : Used to select one of the three 
Counters or the Control Word Register (or 
read or write operations. Normally con-
nected to the system address bus. 

A, Ao Selects 

0 0 Counter 0 

0 1 Counter 1 

1 0 Counter 2 

1 1 Control Word Register 

Clock 2: Clock input of Counter 2. 

Out 2: Output of Counter 2. 

Gate 2: Gate input of Counter 2. 

Ctock 1: Clock input of Counter 1. 

Gate 1: Gate input of Counter 1. 

Out 1: Output of Counter 1. 

This 3-state, bi·directional, 8·bit buffer is used to inter· 
face the 8254 to the system bus (see Figure 3). 

elK 0 

GATE 0 

OUT 0 

ClK 1 

GATE 1 

OUT 1 

elK 2 

GATE 2 

OUT 2 

Figure 3. Block Diagram Showing Data Bus Buffer and 
Read/Write Logic Functions 

6-275 231164-002 



8254 

READ/WRITE lOGIC 

The ReadlWrite Logic accepts inputs from the system 
bus and generates control signals for the other func­
tional blocks of the 8254. A1 and Ao select one of the 
three counters or the Control Word Register to be read 
from/written into. A "low" on the RD input tells the 8254 
that the CPU is reading one of the counters. A "low" on 
the WR input tells the 8254 that the CPU is writing either 
a Control Word or an initial count. Both RD and WR are 
qualified by CS; RD and WR are ignored unless the 8254 
has been selected by holding CS low. 

CONTROL WORD REGISTER 

The Control Word Register (see Figure 4) is selected by 
the ReadlWrite Logic when A1,Ao= 11. If the CPU then 
does a write operation to the 8254, the data is stored in 
the Control Word Register and is interpreted as a Con­
trol Word used to define the operation of the Counters. 

The Control Word Register can only be written to; status 
information is available with the Read-Back Command. 

elK 0 

GATE 0 

OUTO 

eLK 1 

GATE 1 

OUT 1 

<" "<'",-~- eLK 2 

~, )lg~U.!\~~~/..I--_ GATE 2 

Figure 4. Block Diagram Showing Control Word 
Register and Counter Functions 

COUNTER 0, COUNTER 1, COUNTER 2 

These three functional blocks are identical in operation, 
so only a single Counter will be described. The internal 
block diagram of a single counter is shown in Figure 5. 

The Counters are fully independent. Each Counter may 
operate in a different Mode. 

The Control Word Register is shown in the figure; it is 
not part of the Counter itself, but its contents determine 
how the Counter operates. 

Figure 5. Internal Block Diagram of a Counter 

The status register, shown in the Figure, when latched, 
contains the current contents of the Control Word 
Register and status of the output and null count flag. 
(See detailed explanation of the Read-Back command.) 

The actual counter is labelled CE (for "Counting Ele: 
ment"). It is a 16·bit presettable synchronous down 
counter. 

OlM and OLL are two 8-bit latches. OL stands for "Out­
put Latch"; the subscripts M and L stand for "Most sig­
nificant byte" and "Least significant byte" respectively. 
Both are normally referred to as one unit and called just 
OL. These latches normally "follow" the CE, but if a 
suitable Counter Latch Command is sent to the 8254, 
the latches "latch" the present count unti I read by the 
CPU and then return to "following" the CEo One latch at 
a time is enabled by the counter's Control Logic to drive 
the internal bus. This is how the 16-bit Counter com­
municates over the 8·bit internal bus. Note that the CE 
itself cannot be read; whenever you read the count, it is 
the OL that is being read. 

Similarly, there are two 8-bit registers called CRM and 
CRL (for "Count Register"). Both are normally referred to 
as one unit and called just CR. When a new count is writ­
ten to the Counter, the count is stored in the CR and 
later transferred to the CEo The Control Logic allows one 
register at a time to be loaded from the internal bus. 
Both bytes are transferred to the CE simultaneously. 
CRM and CRL are cleared when the Counter is pro· 
grammed. In this way, if the Counter has been pro­
grammed for one byte counts (either most significant 
byte only or least significant byte only) the other byte 
will be zero. Note that the CE cannot be written into; 
whenever a count is written, it is written into the CR. 

The Control logic is also shown in the diagram. ClK n, 
GATE n, and OUT n are all connected to the outside 
world through, the Control logic. 

6-276 231164-002 



8254 

8254 SYSTEM INTERFACE 

The 8254 is a component of the Intel Microcomputer Sys­
tems and interfaces in the same manner as all other pe­
ripherals of the family. It is treated by the systems software 
as an array of peripheral 1/0 ports; three are cou nters and 
the fourth is a control register for MODE programming. 

Basically, the select inputs Ao, A1 connect to the Ao, A1 
address bus signals of the CPU. The CS can be derived 
directly from the address bus using a linear select method. 
Or it can be connected to the output of a decoder, such as 
an Intel 8205 for larger systems. 

t t 
Figure 6. 8254 System Interface 

OPERATIONAL DESCRIPTION 

General 
After power·up, the state of the 8254 is undefined. The 
Mode, count value, and output of all Counters are 
undefined. 

How each Counter operates is determined when it is 
programmed. Each Counter must be programmed 
before it can be used. Unused counters need not be pro­
grammed. 

Programming the 8254 
Counters are programmed by writing a Control Word 
and then an initial count. 

All Control Words are written into the Control Word 
Register, which is selected when A1,Ao= 11. The Can· 
trol Word itself specifies which Counter is being pro· 
grammed. 

By contrast, initial counts are written into the Counters, 
not the Control Word Register. The A1,Ao inputs are 
used to select the Counter to be written into. The format 
of the initial count is determined by the Control Word 
used. 

Control Word Format 

A1oAO= 11 CS=O RD= 1 WR=O 

SC1 I sco I RW1 I RWO M2 M1 MO I BCD I 
SC - Select Counter. 

SC1 SCO 

0 0 Select Counter 0 

0 1 Select Counter 1 
1 0 Select Counter 2 

1 1 Read·Back Command 
(See Read Operations) 

RW - ReadlWrlte: 

RW1 RWO 

0 0 Counter Latch Command (see Read 
Operations) 

0 1 ReadlWrite least significant byte only. 

1 0 ReadlWrite most significant byte only. 

1 1 ReadlWrite least signilicant byte first, 
then most significant byte. 

NOTE: DON'T CARE BITS (X) SHOULD BE 0 TO INSURE 
COMPATIBILITY WITH fUTURE INTEL PRODUCTS. 

M - MODE: 

M2 M1 

0 0 

0 0 

X 1 

X 1 

1 0 

1 0 

BCD: 

Figure 7. Control Word Format 

6-277 

MO 
0 Mode 0 
1 Mode 1 

0 Mode 2 

1 Mode 3 

0 Mode 4 
1 Mode 5 

Binary Counter 16·bits 
Binary Coded Decimal (BCD) Counter 
(4 Decades) 

231164-002 



inter 

Write Operations 
The programming procedure for the 8254 is very flexible. 
Only two conventions need to be remembered: 

1} For each Counter, the Control Word must be written 
before the initial count is written. 

2} The initial count must follow the count format 
specified in the Control Word (least significant byte 
only, most significant byte only, or least significant 
byte and then most significant byte). 

Since the Control Word Register and the three Counters 
have separate addresses (selected by the A"Ao inputs), 
and each Control Word specifies the Counter it applies 
to (SCO,SC1 bits), no special instruction sequence is reo 

A, Ao 

Control Word - Counter 0 1 1 
LSB of count - Counter 0 0 0 
MSB of count - Counter 0 0 0 
Control Word - Counter 1 1 1 
LSB of count - Counter 1 0 1 
MSB of count - Counter 1 0 1 
Control Word - Counter 2 1 1 
LSB of count - Counter 2 1 0 
MSB of count - Counter 2 1 0 

A, Ao 

Control Word - Counter 0 1 1 
Control Word - Counter 1 1 1 
Control Word - Counter 2 1 1 
LSB of count - Counter 2 1 0 
LSB of count - Counter 1 0 1 
LSB of count - Counter 0 0 0 
MSB of count - Counter 0 0 0 
MSB of count - Counter 1 0 1 
MSB of count - Counter 2 1 0 

8254 

quired. Any programming sequence that follows the 
conventions above Is acceptable. 

A new initial count may be written to a Counter at any 
time without affecting the Counter's programmed Mode 
in any way. Counting will be affected as described in the 
Mode definitions. The new count must follow the pro· 
grammed count format. 

If a Counter is programmed to read/write two-byte 
counts, the following precaution applies: A program 
must not transfer control between writing the first and 
second byte to another routine which also writes into 
that same Counter. Otherwise, the Counter will be 
loaded with an incorrect count. 

A, Ao 

Control Word - Counter 2 1 1 
Control Word - Counter 1 1 1 
Control Word - Counter 0 1 1 
LSB of count - Counter 2 1 0 
MSB of count - Counter 2 1 0 
LSB of count - Counter 1 0 1 
MSB of count - Counter 1 0 1 
LSB of count - Counter 0 0 0 
MSB of count - Counter 0 0 0 

A, Ao 

Control Word - Counter 1 1 1 
Control Word - Counter 0 1 1 
LSB of count - Counter 1 0 1 
Control Word - Counter 2 1 1 
LSB of count - Counter 0 0 0 
MSB of count - Counter 1 0 1 
LSB of count - Counter 2 1 0 
MSB of count - Counter 0 0 0 
MSB of count - Counter 2 0 

NOTE: IN ALL FOUR EXAMPLES, ALL COUNTERS ARE PROGRAMMED TO READlWRITE TWO·BYTE COUNTS. 

THESE ARE ONLY FOUR OF MANY POSSIBLE PROGRAMMING SEQUENCES. 

Figure 8_ A Few Possible Programming Sequences 

Read Operations 
It is often desirable to read the value of a Counter 
without disturbing the count in progress. This is easily 
done in the 8254. 

There are three possible methods for reading the counters: a 
simple read operation, the Counter Latch Command, and 

the Read-Back Command. Each is explained below. The first 
method is to perform a simple read operation. To read the 
Counter, which is selected with the A1, AO inputs, the ClK 
input of the selected Counter must be inhibited by using 
either the GATE input or external logic. Otherwise, the count 
may be in the process of changing when it is read, giving an 
undefined result. 

6-278 231164-002 



8254 

COUNTER LATCH COMMAND 

The second method uses the "Counter Latch Command". 
Like a Control Word, this command is written to the Control 
Word Register, which is selected when A

" 
Ao= 11. Also Iikea 

Control Word, the SCD, SC1 bits select one of the three 
Counters, but two other bits, 05 and 04, distinguish this 
command from a Control Word. 

A1 ,Ao=11; CS=O; RO=1; WR=O 

0 7 0 6 0 5 0 4 0 3 O2 0 1 Do 

I SC1 I SCO I 0 I 0 I X I X I X I xl 
SC1,SCO - specify counter to be latched 

SC1 SCO Counter 

0 0 0 
0 1 1 
1 0 2 
1 1 Read·Back Command 

05,04 - 00 designates Counter Latch Command 

X - don't care 

NOTE: DON'T CARE BITS (X) SHOULD BE 0 TO INSURE 
COMPATIBILITY WITH FUTURE INTEL PRODUCTS. 

Figure 9. Counter Latching Command Format 

The selected Counter's output latch (OL) latches the 
count at the time the Counter Latch Command is reo 
ceived. This count is held in the latch until it is read by 
the CPU (or until the Counter is reprogrammed). The 
count is then unlatched automatically and the OL 
returns to "following" the counting element (CE). This 
allows reading the contents of the Counters "on the fly" 
without affecting counting in progress. Multiple 
Counter Latch Commands may be used to latch more 
than one Counter. Each latched Counter's OL holds its 
count until it is read. Counter Latch Commands do not 
affect the programmed Mode of the Counter in any way. 

If a Counter is latched and then, some time later, latch· 
ed again before the count is read, the second Counter 
Latch Command is ignored. The count read will be the 
count at the time the first Counter Latch Command was 
issued. 

With either method, the count must be read according 
to the programmed format; specifically, if the Counter is 
programmed for two byte counts, two bytes must be 
read. The two bytes do not have to be read one right 
after the other; read or write or programming operations 
of other Counters may be inserted between them. 

Another feature of the 8254 is that reads and writes of 
the same Counter may be interleaved; for example, if the 
Counter is programmed for two byte counts, the follow· 
ing sequence is valid. 

1. Read least significant byte. 
2. Write new least significant byte. 
3. Read most significant byte. 
4. Write new most significant byte. 

If a Counter is programmed to read/write two·byte 
counts, the following precaution applies: A program 
must not transfer control between reading the first and 
second byte to another routine which also reads from 
that same Counter. Otherwise, an incorrect count will be 
read. 

READ-BACK COMMAND 

The third method uses the Read-Sack Command. This 
command allows the user to check the count value, pro­
grammed Mode, and current states of the OUT pin and Null 
Count flag of the selected counter(s). 

The command is written into the Control Word Register 
and has the format shown in Figure 10. The command 
applies to the counters selected by setting their corre· 
sponding bits 03,02,01 =1. 

AO,A1=11 cs=o RO=1 W'R=o 

ICOuiifISTATUSI CNT21 CNT, I CNTO I 0 I 

OS' 0 = LATCH COUNT OF SELECTED COUNTER(S) 
D.: 0 = LATCH STATUS OF SELECTED COUNTER(S) 
03' , = SELECT COUNTER 2 
02' , = SELECT COUNTER' 
D1: 1 = SELECT COUNTER 0 
Do: RESERVED FOR FUTURE EXPANSION; MUST BE 0 

Figure 10. Read·Back Command Format 

The read·back command may be used to latch multiple' 
counter output latches (OL) by setting the COUNT bit 
05=0 and selecting the desired counter(s). This single 
command is functionally equivalent to several counter 
latch commands, one for each counter latched. Each 
counter's latched count is held until it is read (or the 
counter is reprogrammed). That counter is automatically 
unlatched when read, but other counters remain latched 
until they are read. If multiple count read-back commands 
are issued to the same counter without reading the count, 
all but the first are ignored; i.e., the count which will be 
read is the count at the time the first read-back command 
was issued. 

The read·back command may also be used to latch 
status information of selected counter(s) by setting 
STATUS bit 04 = O. Status must be latched to be read; 
status of a counter is accessed by a read from that 
counter. 

231164·002 



inter 8254 

The counter status format is shown in Figure 11. Bits D5 
through DO contain the counter's programmed Mode ex· 
actly as written in the last Mode Control Word. OUTPUT 
bit D7 contains the current state of the OUT pin. This 
allows the user to monitor the counter's output via soft· 
ware, possibly eliminating some hardware from a 
system. 

0,1 ~ OUT PIN 151 
o ~ OUT PIN ISO 

0, 

M1 

06 ~ ~ ~gh'iJ~~~rLABLE FOR READING 

MO BCD 

Os-Do COUNTER PROGRAMMED MODE (SEE FIGURE 7) 

Figure 11. Status Byte 

NULL COUNT bit D6 indicates when the last count writ­
ten to the counter register (CR) has been loaded into the 
counting element (CE). The exact time this happens de­
pendson the Mode of the counter and is described in 
the Mode Definitions, but until the count is loaded into 
the counting element (CE), it can't be read from the 
counter. If the count is latched or read before this time, 
the count value will not reflect the new count just writ· 
ten. The operation of Null Count is shown in Figure 12. 

THIS ACTION: CAUSES: 

A. WRITE TO THE CONTROL WORD REGISTER:[1) NULL COUNT~1 
B. WRITE TO THE COUNT REGISTER (CR);[2) NULL COUNT~1 
C. NEW COUNT IS LOADED INTO CE (CR_CE); NULL COUNT~O 

111 ONLY THE COUNTER SPECIFIED BY THE CONTROL WORD WILL HAVE 
ITS NULL COUNT SET TO 1. NULL COUNT BITS OF OTHER COUNTERS 
ARE UNAFFECTED. 

121 IF THE COUNTER IS PROGRAMMED FOR TWO-BYTE COUNTS (LEAST 
SIGNIFICANT BYTE THEN MOST SIGNIFICANT BYTE) NULL COUNT 
GOES TO 1 WHEN THE SECOND BYTE IS WRITIEN. 

Figure 12. Null Count Operation 

If multiple status latch operations of the counter(s) are 
performed without reading the status, all but the first 
are ignored; i.e., the status that will be read is the status 
of the counter at the time the first status read·back com­
mand was issued. 

Both count and status of the selected counter(s) may be 
latched simultaneously by setting both COUNT and 
STATUS bits D5,D4=0. This is functionally the same as 
issuing two separate read-back commands at once, and 
the above discussions apply here also. Specifically, if mul­
tiple count and/or status read-back commands are issued 
to the same counter(s) without any intervening reads, all 
but the first are ignored. This is illustrated in Figure 13. 

Command 
D7 D6 D5 D4 D3 D2 D1 Do 

Description Result 

1 1 0 0 0 0 1 0 Read back count and status of Count and status latched 
Counter 0 for Counter 0 

1 1 1 0 0 1 0 0 Read back status of Counter 1 Status latched for Counter 1 

1 1 1 0 1 1 0 0 Read back status of Counters 2, 1 Status latched for Counter 
2, but not Counter 1 

1 1 0 1 1 0 0 0 Read back count of Counter 2 Count latched for Counter 2 

1 1 0 0 0 1 0 0 Read back count and status of Count latched for Counter 1, 
Counter 1 but not status 

1 1 1 0 0 0 1 0 Read back status of Counter 1 Command ignored, status 
alreacjy latched for Counter 1 

Figure 13. Read-Back Command Example 

6-280 231164-002 



inter 

If both count and status of a counter are latched, the 
first read operation of that counter will return latched 
status, regardless of which was latched first. The next 
one or two reads (depending on whether the counter is 
programmed for one or two type counts) return latched 
count. Subsequent reads return unlatched count. 

CS RD WR A1 Ao 

0 1 0 0 0 Write into Counter 0 

0 1 0 0 1 Write into Counter 1 

0 1 0 1 0 Write into Counter 2 

0 1 0 1 1 Write Control Word 

0 0 1 0 0 Read from Counter 0 

0 0 1 0 1 Read from Counter 1 

0 0 1 1 0 Read from Counter 2 

0 0 1 1 1 No·Operation (3·State) 

1 X X X X No-Operation (3-State) 

0 1 1 X X No·Operation (3-State) 

Figure 14. ReadlWrite Operations Summary 

Mode Definitions 

8254 

1) Writing the first byte disables counting. OUT is set 
low immediately (no clock pulse required) 

2) Writing the second byte allows the new count to be 
loaded on the next ClK pulse. 

This allows the counting sequence to be synchronized 
by software. Again, OUT does not go high until N + 1 
ClK pulses after the new count of N is written. 

If an initial count is written while GATE = 0, it will still be 
loaded on the next ClK pulse. When GATE goes high, 
OUT will go high N ClK pulses later; no ClK pulse is 
needed to load the Counter as this has already been 
done. 

CW=10 LSB=4 ___________ _ 

WR 'l.JL..J 
elK 

GATE -----------------

OUT =-=--''-_______ --' 

CW=10 LSB=3 

m~----------------

elK 

The following are defined for use in describing the GATE 

operation of the 8254. 

ClK pulse: a rising edge, then a falling edge, in that 
order, of a Counter's ClK input. 

trigger: a rising edge of a Counter's GATE input. 
Counter loading: the transfer of a count from the CR 

to the CE (refer to the "Functional 
Description") 

MODE 0: INTERRUPT ON TERMINAL COUNT 

Mode 0 is typically used for event counting. After the 
Control Word is written, OUT is initially low, and will re­
main low until the Counter reaches zero. OUT then goes 
high and remains high until a new count or a new Mode 
o Control Word is written into the Counter. 

GATE=1 enables counting; GATE=O disables count­
ing. GATE has no effect on OUT. 

After the Control Word and initial count are written to a 
Counter, the initial count will be loaded on the next ClK 
pulse. This ClK pulse does not decrement the count, so 
for an initial count of N, OUT does not go high until N + 1 
ClK pulses after the initial count is written. 

If a new count is written to the Counter, it will be loaded 
on the next ClK pulse and counting will continue from 
the new count. If a two-byte count is written, the follow· 
ing happens: 

6-281 

OUT .=-=:J'-_______ ---'r-
I ~ I ~~ I 

elK 

GATE -----------------

OUT =::JL.. ________ -J,--
ININININI I~I~~I 

NOTE: THE FOLLOWING CONVENTIONS APPLY TO ALL MODE TIMING DIAGRAMS: 

1. COUNTERS ARE PROGRAMMED FOR BINARY (NOT BCD) COUNTING AND FOR 
READING/WRITING LEAST SIGNIFICANT BYTe (LSS) ONLY. 

2. THE COUNTER IS ALWAYS SELECTED (CS ALWAYS LOW). 
3. CW STANDS FOR "CONTROL WORD"; CW "" 10 MEANS A CONTROL WORD OF 10, 

HEX IS WRITTEN TO THE COUNTER. 
4. LSS STANDS FOR "LEAST SIGNIFICANT BYTE" OF COUNT. 
5. NUMBERS BELOW DIAGRAMS ARE COUNT VALUES. 

THE LOWER NUMBER IS THE LEAST SIGNIFICANT BYTE. 
THE UPPER NUMBER IS THE MOST SIGNIFICANT BYTE. SINCE THE COUNTER 
IS PROGRAMMED TO ReAD/WRITE LSB ONLY, THE MOST SIGNIFICANT BYTE 
CANNOT BE READ. 
N STANDS FOR AN UNDEFINED COUNT. 
VERTICAL LINES SHOW TRANSITIONS BETWEEN COUNT VALUES. 

Figure 15. Mode 0 

231164-002 



8254 

MODE 1: HARDWARE RETRIGGERABlE ONE·SHOT 

OUT will be initially high. OUT will go low on the ClK 
pulse following a trigger to begin the one·shot pulse, 
and will remain low until the Counter reaches zero. OUT 
will then go high and remain high until the ClK pulse 
after the next trigger. 

After writing the Control Word and initial count, the 
Counter is armed. A trigger results in loading the 
Counter and setting OUT low on the next ClK pulse, 
thus starting the one-shot pulse. An initial count of N 
will result in a one-shot pulse N ClK cycles in duration. 
The one-shot is retriggerable, hence OUT will remain 
low for N ClK pulses after any trigger. The one-shot 
pulse can be repeated without rewriting the same count 
into the counter. GATE has no effect on OUT. 

If a new count is written to the Counter during a one­
shot pulse, the current one-shot is not affected unless 
the Counter is retriggered. In that case, the Counter is 
loaded with the new count and the one-shot pulse con­
tinues until the new count expires. 

CW='2 lS8=3_'--_________ _ 

WRLJU 
elK 

GATE ------;n~--------1n-----

OUT 

CW=12 lSB=3 ___________ _ 

WI! LJL.J 
elK 

GATE -------;n----ln----------
OUT =.J IL _____ ---JI 

INININININI~I~I I~I~I 

elK 

GATE -------',n--------:" n------
OUT 

I N I N I N I N I N I ~ I ~ I ~ I ~~ I ~~ I 
Figure 16. Mode 1 

6-282 

MODE 2: RATE GENERATOR 

This Mode functions like a divide-by-N counter. It Is 
typiclaly used to generate a Real Time Clock interrupt. 
OUT will initially be high. When the initial count has 
decremented to 1, OUT goes low for one ClK pulse. OUT 
then goes high again, the Counter reloads the initial 
count and the process is repeated. Mode 2 is periodic; 
the same sequence is repeated indefinitely. For an in­
itial count of N, the sequence repeats every N ClK 
cycles. 

GATE = 1 enables counting; GATE = 0 disables count­
ing. If GATE goes low during an output pulse, OUT is set 
high immediately_ A trigger reloads the Counter with the 
initial count on the next ClK pulse; OUT goes low N 
eLK pulses after the trigger. Thus the GATE input can 
be used to synchronize the Counter. 

After writing a Control Word and initial count, the 
Counter will be loaded on the next CLK pulse. OUT goes 
low N CLK Pulses after the initial count is written_ This 
allows the Counter to be synchronized by software also. 

CW:::14 LSB=3 

WRLJU,--------~ 

elK 

GATE ----------------

OUT 

CW=14 lSB=:J WR LJU-----------
elK 

GATE 

OUT~ 

elK 

LJ 
I ~ I ~ I 

GATE ----------------

OUT =-=.J U 
I N I N I N I N I ~ I ~ I ~ I ~I ~ I ~ I ~ I 

NorE: A GATE transition should not occur one clock prior to terminal 
count. 

Figure 17. Mode 2 

231164-002 



8254 

Writing a new count while counting does not affect the 
current counting sequence. If a trigger is received after 
writing a new count but before the end of the current 
period, the Counter will be loaded with the new count on 
the next ClK pulse and counting will continue from the 
new count. Otherwise, the new count will be loaded at 
the end of the current counting cycle. In mode 2, a 
COUNT of 1 is illegal. 

MODE 3; SQUARE WAVE MODE 

Mode 3 is typically used for Baud rate generation. Mode 
3 is similar to Mode 2 except for the duty cycle of OUT. 
OUT will initially be high. When half the initial count has 
expired, OUT goes low for the remainder of the count. 
Mode 3 is periodic; the sequence above is repeated in· 
definitely. An initial count of N results in a square wave 
with a period of N ClK cycles. 

GATE = 1 enables counting; GATE=O disables coun· 
ting. If GATE goes low while OUT is low, OUT is set high 
immediately; no ClK pulse is required. A trigger reloads 
the Counter with the initial count on the next ClK pulse. 
Thus the GATE input can be used to synchronize the 
Counter. 

After writing a Control Word and initial count, the 
Counter will be loaded on the next ClK pulse. This 
allows the Counter to be synchronized by software also. 

Writing a new count while counting does not affect the 
current counting sequence. If a trigger is received after 
writing a new count but before the end of the current 
half·cycle of the square wave, the Counter will be loaded 
with the new count on the next ClK pulse and counting 
will continue from the new count. Otherwise, the new 
count will be loaded at the end of the current half-cycle. 

Mode 3 is implemented as follows: 

Even counts: OUT is initially high. The initial count is 
loaded on one ClK pulse and then is decremented by 
two on succeeding ClK pulses. When the count expires 
OUT changes value and the Counter is reloaded with the 
initial count. The above process is repeated' indefinitely. 

Odd counts: OUT is initially high. The initial count 
minus one (an even number) is loaded on one ClK pulse 
and then is decremented by two on succeeding ClK 
pulses. One ClK pulse after the count expires, OUT 
goes low and the Counter is reloaded with the initial 
count minus one. Succeeding ClK pulses decrement 
the count by two. When the count expires, OUT goes 
high again and the Counter is reloaded with the initial 
count minus one. The above process is repeated in· 
definitely. So for odd counts, OUT will be high for 
(N + 1)12 counts and low for (N - 1)12 counts. 

CW .. UI LSO.4r-____________ _ 

WIt L.J"--J 

GATE ------------------

OUT 

CW_1e LSO .. Sr-____________ _ 

WltLrLJ 

GATE ------------------

OUT 

CW=1B Lsa .. 4r-____________ _ 

WliL.JL.J 

NOTE: A GATE transition should not occur one clock prior to terminal 
count. 

Figure 18. Mode 3 

MODE 4: SOFTWARE TRIGGERED STROBE 

OUT will be initially high. When the initial count expires, 
OUT will go low for one ClK pulse and then go high 
again. The counting sequence is "triggered" by writing 
the initial count. 

GATE = 1 enables counting; GATE= 0 disables count· 
ing. GATE has no effect on OUT. 

After writing a Control Word and initial count, the 
Counter will be loaded on the next ClK pulse. This ClK 
pulse does not decrement the count, so for an initial 
count of N, OUT does not strobe low until N + 1 ClK 
pulses after the initial count is written. 

If a new count is written during counting, It will be load· 
ed on the next ClK pulse and counting will continue­
from the new count. If a two· byte count is written, the 
following happens: 

1) Writing the first byte has no effect on counting. 
2) Writing the second byte allows the new count to be 

loaded on the next ClK pu Ise. 

This allows the sequence to be "retriggered" by soft· 
ware. OUT strobes low N + 1 ClK pulses after the new 
count of N is written. 

6-283 231164-002 



CW=18 LSB:3i-__________ _ 

WlIL..Jl....J 
elK 

GATE-------------------

OUT =-.J u 
o I 0 I FF I FF I FF I 
1 0 FF FE FO 

CW=1B lSB=3i--__________ _ 

WlIL..Jl....J 
elK 

GATE 

--------------~ 

OUT~ u---
o I 0 I FF I 1 0 FF 

elK 

GATE ---'---------------

OUT~ 

Figure 19. Mode 4 

MODE 5: HARDWARE TRIGGERED STROBE 
(RETRIGGERABlE) 

OUT will initially be high. Counting is trigg.ered by a ris· 
ing edge of GATE. When the initial count has expired, 
OUT will go low for one ClK pulse and then go high 
again. 

After writing the Control Word and initial count, the 
counter will not be loaded until the ClK pulse after a 
trigger. This ClK pulse does not decrement the count, 
so for an initial count of N, OUT does not strobe low un­
til N + 1 ClK pulses after a trigger. 

A trigger results in the Counter being loaded with the in· 
itial count on the next ClK pulse. The counting se­
quence is retriggerable. OUT· will not strobe low for 
N + 1 ClK pulses after any trigger. GATE has no effect 
on OUT. 

II a new count is written during counting, the curent 
counting sequence will not be affected. II a trigger oc· 
curs after the new count is written but before the cur­
rent count expires, the Counter will be loaded with the 
new count on the next ClK pulse and counting will con­
tinue from there. 

8254 

6-284 

CW=1A LSB=3;...-_________ _ 

WI! LJLJ 

CW=1A LSB=3_------------

WlI LJLJ 
elK 

GATE - - --- ----l~ - -- ----- - - --

OUT~ 

1 N 1 N 1 N 1 N 1 N 1 NI ~ 1 

OUT =:J u 

Figure 20. Mode 5 

Signal Low 
Status OrGolng Rising High 
Modes Low 

0 Disables -- Enables 
counting counting 

1 -- 1) Initiates --
counting 

2) Resets output 
after next clock 

2 t) Disables 
counting Initiates Enables 

2) Sets output counting counting 
immediately 
high 

3 1) Disables 
counting Initiates Enables 

2) Sets output counting counting 
immediately 
high 

4 Disables -- Enables 
counting counting 

5 -- Initiates --
counting 

Figure 21. Gate Pin Operations Summary 

231t64-002 



inter 

Mode Min Max 
Count Count 

0 1 0 

1 1 0 

2 2 0 

3 2 0 

4 1 0 

5 1 0 

NOTE: 0 IS EQUIVALENT TO 218 FOR BINARY COUNTING AND 104 FOR 
BCD COUNTING. 

Figure 22. Minimum and Maximum Initial Counts 

Operation Common to All Modes 

PROGRAMMING 

When a Control Word is written to a Counter, all Control 
Logic is immediately reset and OUT goes to a known 
initial state; no CLK pulses are required for this. 

8254 

GATE 

The GATE input is always sampled on the rising edge of 
CLK. In Modes 0, 2, 3, and 4 the GATE input is level 
sensitive, and the logic level is sampled on the rising 
edge of CLK. In Modes 1, 2, 3, and 5 the GATE input is 
rising-edge sensitive. In these Modes, a rising edge.of 
GATE (trigger) sets an edge-sensitive flip-flop in the 
Counter. This flip-flop is then sampled on the next rising 
edge of CLK; the flip-flop is reset immediately after it is 
sampled. In this way, a trigger will be detected no matter 
when it occurs-a high logic level does not have to be 
maintained until the next rising edge of CLK. Note that 
in Modes 2 and 3, the GATE input is both edge- and level­
sensitive. In Modes 2 and 3, if a CLK source other than the 
system clock is used, GATE should be pulsed immediately 
following WR of a new count value. 

6-285 

COUNTER 

New counts are loaded and Counters are decremented 
on the falling edge of CLK. 

The largest possible initial count is 0; this is equivalent 
to 216 for binary counting and 104 for BCD counting. 

The Counter does not stop when it reaches zero. In 
Modes 0, 1,4, and 5 the Counter "wraps around" to the 
highest count, either FFFF hex for binary counting or 
9999 for BCD counting, and continues counting. Modes 
2 and 3 are periodic; the Counter reloads itself with the 
initial count and continues counting from there. 

231164-002 



8254 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ......... O·C to 70·C 

Storage Temperature .............. -65·C to + 150·C 

Voltage on Any Pin with 
Respect to Ground ................. -0.5V to + 7V 

Power Dissipation .......................... 1 Watt 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to Absolute Maximum 
Rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (TA= o·C to 70·C; Vee = 5V± 10%) 

Symbol Parameter Min. Max. 

VIL Input Low Voltage -0.5 0.8 

VIH Input High Voltage 2.0 Vee+ 0.5V 

VOL Output Low Voltage 0.45 

VOH Output High Voltage 2.4 

IlL Input Load Current ±10 

10FL Output Float Leakage ±10 

lee Vee Supply Current 170 

CAPACITANCE (TA=25°C, Vee=GND=OV) 

Symbol Parameter Min. Max. 

CIN Input Capacitance 10 

CliO 1/0 Capacitance 20 

A.C. CHARACTERISTICS (TA=O°C to 70°C, Vee=5V± 10%, GND=OV) 

Bus Parameters (Note 1) 

READ CYCLE 

Units 

V 

V 

V 

V 

IlA 

IlA 

mA 

Units 

pF 

pF 

8254-5 8254 

Symbol Parameter Min. Max. Min. Max. 

tAR Address Stable Before RD I 45 45 

tSR CS Stable Before R D I 0 0 

tRA Address Hold Time After RDI 0 0 

tAR RD Pulse Width 150 150 

tAD Data Delay from RD j 120 120 

tAD Data Delay from Address 220 220 

tDF RD I to Data Floating 5 90 5 90 

tRV Com·mand Recovery Ti me 200 200 

Note 1: AC timings measured at VOH = 2.0V, VOL" a.BV. 

6-286 

Test Conditions 

IOL=2.0 mA 

10H= -4001lA 

VIN = Vee to OV 

VOUT= Vee toO.45V 

Test Conditions 

fc=1MHz 

Unmeasured pins 
returned to Vss 

8254·2 

Min. Max. Unit 

30 ns 

0 n. 

0 ns 

95 ns 

85 ns 

185 ns 

5 65 ns 

165 ns 

231164-002 



8254 

A.C. CHARACTERISTICS (Continued) 

WRITE CYCLE 

8254-5 8254 8254-2 

Symbol Parameter Min. Max. Min. Max. Min. 

tAW Address Stable Before WR I a a a 
tsw CS Stable Before WR I a a a 
tWA Address Hold Time After WRI a a a 
tww WR Pulse Width 150 150 95 

tow Data Setup Time Before WR! 120 120 95 

two Data Hold time After WR! a a a 
tRV Command Recovery Time 200 200 165 

CLOCK AND GATE 

8254-5 8254 8254-2 

Symbol Parameter Min. Max. Min. Max. Min. 

telK Clock Period 200 DC 125 DC 100 

tpWH High Pulse Width 6013} 60[3} 30[3} 

tpWL Low Pulse Width 60[3} 60[3} 50[31 

tR Clock Rise Time 25 25 

tF Clock Fall Time 25 25 

tGW Gate Width High 50 50 50 

tGl Gate Width Low 50 50 50 

tGS Gate Setup Time to CLK! 50 50 40 

tGH Gate Setup Time After CLKI 50[21 50[21 50[2[ 

too Output Delay from CLKI 150 150 

tODG Output Delay from Gatel 120 120 

twe CLK Delay for Loadingl a 55 a 55 a 
tWG Gate Delay for Sampling -5 50 -5 50 -5 

two OUT Delay from Mode Write 260 260 

tel CLK Set Up for Count Latch -40 45 -40 45 -40 

Note 2: In Modes 1 and 5 triggers are sampled on each rising clock edge. A second trigger within 120 ns (70 ns for the 8254-2) of the 
rising clock edge may not be detected. 

Note 3: Low-going glitches that violate tpWH' IpWL may cause errors requiring counter reprogramming 

6-287 

Max. Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

Max. Unit 

DC ns 

ns 

ns 

25 ns 

25 ns 

ns 

ns 

ns 

ns 

100 ns 

100 ns 

55 ns 

40 ns 

240 ns 
--

40 ns 

231164-002 



8254 

WAVEFORMS 

WRITE 

A O• 1 

CS 

DATA BUS 

READ 
AO·1 

CS 

DATA BUS---

I RECOVERY 

CLOCK AND. GATE 

elK ----...:...--"'f"\ 

GATE 

OUTPUT 0 

two • lAST BYTE OF COUNT BEING WRITTEN 

6-288 231164-002 



A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

2.4 =<2.0 2.o)C 
08> TEST POINTS < 08 

0.45 - -

A.C. TESTING: INPUTS ARE DRIVEN AT 2AV FOR A LOGIC "1" AND O.45V FOR 
A LOGIC "0," TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A LOGIC "1' 
AND O.8V FOR A LOGIC "0 .. 

8254 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 

'1Cl~150PF TEST 

-=-
CL = 150 pF 
Cl INCLUDES JIG CAPACITANCE 

6-289 231164-002 



.82C54 
CHMOS PROGRAMMABLE INTERVAL TIMER 

• Compatible with all Intel and most • Low Power CHMOS 
other microprocessors -Icc = 10 rnA @ 8 MHz Count 

• High Speed, "Zero Wait State" frequency 

Operation with 8 MHz 8086188 and • Completely TTL Compatible 
801861188 • Six Programmable Counter Modes 

• Three independent 16-bit counters • Binary or BCD counting 

• Handles Inputs from DC to 8 MHz • Status Read Back Command 
-10 MHz for 82C54-2 

• Available in 24-Pin DIP and 28-Pin PLCC 

The Intel 82C54 is a high-performance, CHMOS version of the industry standard 8254 counter/timer which is 
designed to solve the timing control problems common in microcomputer system design. It provides three 
independent 16-bit counters, each capable of handling clock inputs up to 10 MHz. All modes are software 
programmable. The 82C54 is pin compatible with the HMOS 8254, and is a superset of the 8253. 

Six programmable timer modes allow the 82C54 to be used as an event counter, elapsed time indicator, 
programmable one-shot, and in many other applications. 

The 82C54 is fabricated on Intel's advanced CHMOS III technology which provides low power consumption 
with performance equal to or. greater than the equivalent HMOS product. The 82C54 is available in 24-pin DIP 
and 28-pin plastic leaded chip carrier (PLCC) packages. 

07"00 

A, 

~ 

O~T 0 

eLK 1 

GATE 1 

OUT 1 

231244-1 

Figure 1. 82C54 Block Diagram 

05 Os 01 NC Vee WR RD 

28 27 26 

82C54 

12 13 -14 15 16 17 18 

aUTO GATEO GND NC OUTt GATE1 eLK1 

PLASTIC LEADED CHIP CARRIER 

0, 

0, 

0, 

d. 

0, 

0, 

0, 

."----' 

Vee 
w-
liO 
es 
A, 

olo 
eLK 2 

OUT 2 

eLK 1 

GATE 1 

OUT 1 

Diagrams are for pin reference only. 
Package sizes are not to scale. 

Figure 2. 82C54 Pinout 

231244-3 

231244-2 

Intel Corporation assumes no responsibility for the use of any Circuitry other than circuitry embodied in an Intel product. No other circuit patent 
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. November 1985 
© Intel Corporation. 1985 6-290 Order Number: 231244-002 



inter 82C54 

Table 1. Pin Description 

Symbol 
DIP 

Pin Number 

PLCC 
Type 

DrDo 1-8 2-9 110 

ClKO 9 10 I 

OUTO 10 12 0 
GATE 0 11 13 I 

GND 12 14 

OUT1 13 16 0 
GATE 1 14 17 I 

ClK 1 15 18 I 

GATE 2 16 19 I 

OUT2 17 20 0 
ClK2 18 21 I 

A1,Ao 20-19 23-22 I 

CS 21 24 I 

RD 22 26 I 

WR 23 27 I 

Vee 24 28 

NC 1, 11,15,25 

FUNCTIONAL DESCRIPTION 

General 

The 82C54 is a programmable interval timer/counter 
designed for use with Intel microcomputer systems. 
It is a general purpose, multi-timing element that can 
be treated as an array of I/O ports in the system 
software. 

The 82C54 solves one of the most common prob­
lems in any microcomputer system, the generation 
of accurate time delays under software control. In­
stead of setting up timing loops in software, the pro­
grammer configures the 82C54 to match his require­
ments and programs one of the counters for the de-

Function 

Data: Bidirectional tri-state data bus lines, 
connected to system data bus. 

Clock 0: Clock input of Counter O. 

Output 0: Output of Counter O. 

Gate 0: Gate input of Counter o. 
Ground: Power supply connection. 

Out 1 : Output of Counter 1. 

Gate 1: Gate input of Counter 1. 

Clock 1: Clock input of Counter 1. 

Gate 2: Gate input of Counter 2. 

Out 2: Output of Counter 2. 

Clock 2: Clock input of Counter 2. 

Address: Used to select one of the three Counters 
or the Control Word Register for read or write 
operations. Normally connected to the system 
address bus. 

A1 Ao Selects 

0 0 Counter 0 
0 1 Counter 1 
1 0 Counter 2 
1 1 Control Word Register 

Chip Select: A low on this input enables the 82C54 
to respond to RD and WR signals. RD and WR are 
ignored otherwise. 

Read Control: This input is low during CPU read 
operations. 

Write Control: This input is low during CPU write 
operations. 

Power: + 5V power supply connection. 

No Connect 

sired delay. After the desired delay, the 82C54 will 
interrupt the CPU. Software overhead is minimal and 
variable length delays can easily be accommodated. 

Some of the other counter/timer functions common 
to microcomputers which can be implemented with 
the 82C54 are: 

• Real time clock 
• Even counter 
• Digital one-shot 
• Programmable rate generator 
• Square wave generator 
• Binary rate multiplier 
• Complex waveform generator 
• Complex motor controller 

6-291 



inter 82C54 

Block Diagram 

DATA BUS BUFFER 

This 3-state, bi-directional, 8-bit buffer is used to in­
terface the 82C54 to the system bus (see Figure 3). 

231244-4 

Figure 3. Block Diagram Showing Data Bus 
Buffer and Read/Write Logic Functions 

READ/WRITE LOGIC 

The Read/Write Logic accepts inputs from the sys­
tem bus and generates control signals for the other 
functional blocks of the 82C54. A1 and Ao select 
one of the three counters or the Control Word Re~ 
ter to be read from/written into. A "low" on the RD 
input tells the 82C54 that the CPU is reading one of 
the counters. A "low" on the WR input tells the 
82C54 that the CPU is writing either a Control Word 
or an initial count. Both RD and WR are qualified by 
CS; RD and WR are ignored unless the 82C54 has 
been selected by holding CS low. 

CONTROL WORD REGISTER 

The Control Word Register (see Figure 4) is selected 
by the Read/Write Logic when A1, Ao = 11. If the 
CPU then does a write operation to the 82C54, the 
data is stored in the Control Word Register and is 
interpreted as a Control Word used to define the 
operation of the Counters. 

The Control Word Register can only be written to; 
status information is available with the Read-Back 
Command. 

231244-5 

Figure 4. Block Diagram Showing Control Word 
Register and Counter Functions 

COUNTER 0, COUNTER 1, COUNTER 2 

These three functional blocks are identical in opera­
tion, so only a single Counter will be described. The 
internal block diagram of a single counter is shown 
in Figure 5. 

The Counters are fully independent. Each Counter 
may operate in a different Mode. 

The Control Word Register is shown in the figure; it 
is not part of the Counter itself, but its contents de­
termine how the Counter operates. 

6-292 



intJ 82C54 

231244-6 

Figure 5. Internal Block Diagram of a Counter 

The status register, shown in the Figure, when 
latched, contains the current contents of the Control 
Word Register and status of the output and null 
count flag. (See detailed explanation of the Read­
Back command.) 

The actual counter is labelled CE (for "Counting Ele­
ment"). It is a 16-bit presettable synchronous down 
counter. 

OlM and Oll are two 8-bit latches. Ol stands for 
"Output latch"; the subscripts M and l stand for 
"Most significant byte" and "least significant byte" 
respectively. Both are normally referred to as one 
unit and called just Ol. These latches normally "fol­
low" the CE, but if a suitable Counter latch Com­
mand is sent to the 82C54, the latches "latch" the 
present count until read by the CPU and then return 
to "following" the CEo One latch at a time is enabled 
by the counter's Control logic to drive the internal 
bus. This is how the 16-bit Counter communicates 
over the 8-bit internal bus. Note that the CE itself 
cannot be read; whenever you read the count, it is 
the Ol that is being read. 

Similarly, there are two 8-bit registers called CRM 
and CRl (for "Count Register"). Both are normally 
referred to as one unit and called just CR. When a 
new count is written to the Counter, the count is 

stored in the CR and later transferred to the CE. The 
Control logic allows one register at a time to be 
loaded from the internal bus. Both bytes are trans­
ferred to the CE simultaneously. CRM and CRl are 
cleared when the Counter is programmed. In this 
way, if the Counter has been programmed for one 
byte counts (either most significant byte only or least 
significant byte only) the other byte will be zero. 
Note that the CE cannot be written into; whenever a 
count is written, it is written into the CR. 

The Control logic is also shown in the diagram. ClK 
n, GATE n, and OUT n are all connected to the out­
side world through the Control logic. 

82C54 SYSTEM INTERFACE 

The 82C54 is treated by the systems software as an 
array of peripheral 1/0 ports; three are counters and 
the fourth is a control register for MODE program­
ming. 

Basically, the select inputs Ao, A1 connect to the Ao, 
A1 address bus signals of the CPU. The CS can be 
derived directly from the address bus using a linear 
select method. Or it can be connected to the output 
of a decoder, such as an Intel 8205 for larger sys­
tems. 

r r 
231244-7 

Figure 6. 82C54 System Interface 

6-293 



82C54 

OPERATIONAL DESCRIPTION 

General 

After power-up, the state of the 82C54 is undefined. 
The Mode, count value, and output of 11-11. Counters 
are undefined. 

How each Counter operates is determined when it is 
programmed. Each Counter must be programmed 
before it can be used. Unused counters need not be 
programmed. 

Control Word Format 

A1, Ao = 11 CS = 0 RD = 1 WR = 0 

Programming the 82C54 

Counters are programmed by writing a Control Word 
and then an initial count. The control word format is 
shown in Figure 7. 

All Control Words are written into the Control Word 
Register, which is selected when A1, Ao = 11. The 
Control Word itself specifies which Counter is being 
programmed. 

By contrast, initial counts are written into the Coun­
ters, not the Control Word Register. The A1, Ao in­
puts are used to select the Counter to be written 
into. The format of the initial count is determined by 
the Control Word used. 

D7 D6 D5 D4 D3 D2 D1 Do 

I SC1 I sco I RW1 I RWO I M21 M1 I MO I BCD I 
SC - Select Counter: M-MODE: 

SC1 SCO M2 M1 MO 

0 0 Select Counter 0 0 0 0 Mode 0 

0 1 Select Counter 1 0 0 1 Mode 1 

1 0 Select Counter 2 X 1 0 Mode 2 

1 1 
Read-Back Command X 1 1 Mode 3 
(See Read Operations) 1 0 0 Mode 4 

RW - Read/Write: 1 0 1 Mode 5 

RW1 RWO 

0 0 Counter Latch Command (see Read BCD: 

Operations) 0 Binary Counter 16-bits 

0 1 Read/Write least significant byte only. 1 Binary Coded Decimal (BCD) Counter . 

1 0 Read/Write most significant byte only. (4 Decades) 

1 1 Read/Write least significant byte first, 
then most significant byte. 

NOTE: Don't care bits (X) should be 0 to insure 
compatibility with future Intel products. 

Figure 7. Control Word Format 

6-294 



82C54 

Write Operations 

The programming procedure for the 82C54 is very 
flexible. Only two conventions need to be remem-
bered: . 

1) For each Counter, the Control Word must be 
written before the initial count is written. 

2) The initial count must follow the count format 
specified in the Control Word (least significant 
byte only, most significant byte only, or least sig­
nificant byte and then most significant byte). 

Since the Control Word Register and the three 
Counters have separate addresses (selected by the 
A1, Ao inputs), and each Control Word specifies the 
Counter it applies to (SCa, SC1 bits), no special in-

A1 Ao 
Control Word - Counter a 1 1 
LSB of count - Counter a a a 
MSB of count- Counter a a a 
Control Word - Counter 1 1 1 
LSB of count - Counter 1 a 1 
MSB of count- Counter 1 a 1 
Control Word - Counter 2 1 1 
LSB of count - Counter 2 1 a 
MSB of count- Counter 2 1 a 

A1 Ao 
Control Word - Counter a 1 1 
Counter Word - Counter 1 1 1 
Control Word - Counter 2 1 1 
LSB of count- Counter 2 1 a 
LSB of count - Counter 1 a 1 
LSB of count - Counter a a a 
MSB of count- Counter a a a 
MSB of count - Counter 1 a 1 
MSB of count - Counter 2 1 a 

NOTE: 

struction sequence is required. Any programming 
sequence that follows the conventions above is ac­
ceptable. 

A new initial count may be written to a Counter at 
any time without affecting the Counter's pro­
grammed Mode in any way. Counting will be affected 
as described in the Mode definitions. The new count 
must follow the programmed count format. 

If a Counter is programmed to read/write two-byte 
counts, the following precaution applies: A program 
must not transfer control between writing the first 
and second byte to another routine which also writes 
into that same Counter. Otherwise, the Counter will 
be loaded with an incorrect count. 

A1 Ao 
Control Word- Counter 2 1 1 
Control Word- Counter 1 1 1 
Control Word - Counter a 1 1 
LSB of count - Counter 2 1 a 
MSB of count - Counter 2 1 a 
LSB of count- Counter 1 a 1 
MSB of count - Counter 1 a 1 
LSB of count - Counter a a a 
MSB of count - Counter a a a 

A1 Ao 
Control Word - Counter 1 1 1 
Control Word - Counter a 1 1 
LSB of count - Counter 1 a 1 
Control Word - Counter 2 1 1 
LSB of count - Countei"a a a 
MSB of count - Counter 1 a 1 
LSB of count - Counter 2 1 a 
MSB of count - Counter 0 a a 
MSB of count- Counter 2 1 a 

In all four examples, all counters are programmed to read/write two-byte counts. 
These are only four of many possible programming sequences. 

Figure 8. A Few Possible Programming Sequences 

Read Operations 

It is often desirable to read the value of a Counter 
without disturbing the count in progress. This is easi­
ly done in the 82C54. 

There are three possible methods for reading the 
counters: a simple read operation, the Counter 

Latch Command, and the Read-Back Command. 
Each is explained below. The first method is to per­
form a simple read operation. To read the Counter, 
which is selected with the A 1, Aa inputs, the CLK 
input of the selected Counter must be inhibited by 
using either the GATE input or external logic. Other­
wise, the count may be in the process of changing 
when it is read, giving an undefined result. 

6-295 



inter 82C54 

COUNTER LATCH COMMAND 

The second method uses the "Counter Latch Com­
mand". Like a Control Word, this command is written 
to the Control Word Register, which is selected 
when A1, Ao = 11. Also like a Control Word, the 
SCO, SC1 bits select one of the three Counters, but 
two other bits, 05 and 04, distinguish this command 
from a Control Word. 

A1' Ao=11; CS=D; RD=1; WR=D 

D7 D6 D5 D4 D3 D2 D1 Do 

I SC1 I SCO I 0 I 0 I X I X I X X I 
SC1, SCO - specify counter to be latched 

SC1 seD Counter 

0 0 0 
0 1 1 
1 0 2 
1 1 Read-Back Command 

05,04 - 00 designates Counter Latch Command 

X - don't care 

NOTE: 
Don't care bits (X) should be 0 to insure compatibility 
with future Intel products. 

Figure 9. Counter latching Command Format 

The selected Counter's output latch (OL) latches the 
count at the time the Counter Latch Command is 
received. This count is held in the latch until it is read 
by the CPU (or until the Counter is reprogrammed). 
The count is then unlatched automatically and the 
OL returns to "following" the counting element (CE). 
This allows reading the contents of the Counters 
"on the fly" without affecting counting in progress. 
Multiple Counter Latch Commands may be' used to 
latch more than one Counter. Each latched Coun­
ter's OL holds its count until it is read. Counter Latch 
Commands do not affect the programmed Mode of 
the Counter in any way. 

If a Counter is latched and then, some time later, 
latched again before the count is read, the second 
Counter Latch Command is ignored. The count read 
will be the count at the time the first Counter Latch 
Command was issued. 

With either method, the count must be read accord­
ing to the programmed format; specifically, if the 
Counter is programmed for two byte counts, two 
bytes must be read. The two bytes do not have to be 
read one right after the other; read or write or pro-

gramming operations of other Counters may be in­
serted between them. 

Another feature of the 82C54 is that reads and 
writes of the same Counter may be interleaved; for 
example, if the Counter is programmed for two byte 
counts, the following sequence is valid. 

1. Read least significant byte. 
2. Write new least significant byte. 
3. ,Read most significant byte. 
4. Write' new most significant byte. 

If a Counter is programmed to read/write two·byte 
counts, the following precaution applies; A program 
must not transfer control between reading the first 
and second byte to another routine which also reads 
from that same Counter. Otherwise; an incorrect 
count will be read. 

READ-BACK COMMAND 

The third method uses the Read-Back command. 
This command allows the user to check the count 
value, programmed Mode, and current state of the 
OUT pin and Null Count flag of the selected coun­
ter(s). 

The command is written' into the Control Word Reg­
ister and has the format shown in Figure 10. The 
command applies to the counters selected by set­
ting their corresponding bits 03,02,01 = 1. 

AO, A1 = 11 CS = 0 RO = 1 WR = 0 

07 06 "05 04 03 02 01 DO 

1111 ICOUNTlsTATUsICNT.2ICNT1IcNTOI 0 I 
05: 0 = Latch count of selected counter(s) 
04: 0 = Latch status of selected counter(s) 
03: 1 = Select counter 2 
02: 1 = Select counter 1 
01: 1 = Select counter 0 
09: Reserved for future expansion; must be 0 

Figure 10. Read-Back Command Format 

The read-back command may be used to latch mUlti­
ple counter output latches (OL) by setting the 
COUNT bit 05 = 0 and selecting the desired coun­
ter(s). This single command is functionally equiva­
lent to several counter latch .commands, one for 
each counter latched. Each counter's latched count 
is held until it is read (or the counter is repro­
grammed). That counter is automatically unlatched 
when read, but other counters remain latched until 
they are read. If multiple count read-back commands 
are issued to the same counter without reading the 

6-296 



82C54 

count, all but the first are ignored; i.e., the count 
which will be read is the count at the time the first 
read-back command was issued. 

The read-back command may also be used to latch 
status information of selected counter(s) by setting 
STATUS bit 04 = o. Status must be latched to be 
read; status of a counter is accessed by a read from 
that counter. 

The counter status format is shown in Figure 11. Bits 
05 through DO contain the counter's programmed 
Mode exactly as written in the last Mode Control 
Word. OUTPUT bit 07 contains the current state of 
the OUT pin. This allows the user to monitor the 
counter's output via software, possibly eliminating 
some hardware from a system. 

07 1 = Out Pin is 1 
o = Out Pin is 0 

06 1 = Null count 
o = Count available for reading 

05-00 Counter Programmed Mode (See Figure 7) 

Figure 11. Status Byte 

NULL COUNT bit 06 indicates when the last count 
written to the counter register (CR) has been loaded 
into the counting element (CE). The exact time this 
happens depends on the Mode of the counter and is 
described in the Mode Definitions, but until the count 
is loaded into the counting element (CE), it can't be 
read from the counter. If the count is latched or read 
before this time, the count value will not reflect the 
new count just written. The operation of Null Count 
is shown in Figure 12. 

THIS ACTION: 
A. Write to the control 

word register: [1] 

B. Write to the count 
register (CR);[2] 

C. New count is loaded 
into CE (CR - CE); 

CAUSES: 

Null count = 1 

Null count= 1 

Null count=O 

[1] Only the counter specified by the control word will 
have its null count set to 1. Null count bits of other 
counters are unaffected. 
[2] If the counter is programmed for two-byte counts 
(least significant byte then most significant byte) null 
count goes to 1 when the second byte is written. 

Figure 12_ Null Count Operation 

If multiple status latch operations of the counter(s) 
are performed without reading the status, all but the 
first are ignored; i.e., the status that will be read is 
the status of the counter at the time the first status 
read-back command was issued. 

Both count and status of the selected counter(s) 
may be latched simultaneously by setting both 
COUNT and STATUS bits 05,04=0. This is func­
tionally the same as issuing two separate read-back 
commands at once, and the above discussions ap­
ply here also. Specifically, if multiple count and/or 
status read-back commands are issued to the same 
counter(s) without any intervening reads, all but the 

. first are ignored. This is illustrated in Figure 13. 

If both count and status of a counter are latched, the 
first read operation of that counter will return latched 
status, regardless of which was latched first. The 
next one or two reads (depending on whether the 
counter is programmed for one or two type counts) 
return latched count. Subsequent reads return un­
latched count. 

Command 
D7 D6 D5 D4 D3 D2 Dl Do· 

Description Results 

1 1 0 0 0 0 1 0 Read back count and status of Count and status latched 

1 1 1 O. 0 1 

1 1 1 0 1 1 

1 1 0 1 1 0 

1 1 0 0 0 1 

1 1 1 0 0 0 

Counter 0 

0 0 Read back status of Counter 1 

0 0 Read back status of Counters 2, 1 

0 0 Read back count of Counter 2 

0 0 Read back count and status of 
Counter 1 

1 0 Read back status of Counter 1 

Figure 13_ Read-Back Command Example 

6-297 

for Counter 0 

Status latched for Counter 1 

Status latched for Counter 
2, but not Counter 1 

Count latched for Counter 2 

Count latched for Counter 1 , 
but not status 

Command ignored, status 
already latched for Counter 1 



inter 82C54 

CS RD WR A1 Ao 
0 1 0 0 0 Write into Counter 0 

0 1 0 0 1 Write into Counter 1 

0 1 0 1 0 Write into Counter 2 

0 1 0 1 1 Write Control Word 

0 0 1 0 0 Read from Counter 0 

0 0 1 0 1 Read from Counter 1 

0 0 1 1 0 Read from Counter 2 

0 0 1 1 1 No-Operation (3-State) 

1 X X X X No-Operation (3-State) 

0 1 1 X X No-Operation (3-State) 

Figure 14. Read/Write Operations Summary 

Mode Definitions 

The fOllowing are defined for use in describing the 
operation of the 82C54. 

ClK PULSE: a rising edge, then a falling edge"in 
that order, of a Counter's ClK input. 

TRIGGER: a rising edge of a,Counter's GATE in­
put. 

COUNTER lOADING: the transfer of a count from 
the CR to the CE (refer to 
the "Functional Descrip­
tion") 

MODE 0: INTERRUPT ON TERMINAL COUNT 

Mode 0 is typically used for event counting. After the 
Control Word is written, OUT is initially low, and Will 
remain low until the Couriter reaches zero. OUT then 
goes high and remains high until a new count or a 
new Mode 0 Control Word is written into the Coun­
ter. 

GATE = 1 enables couriting; GATE = 0 disables 
counting. GATE has no effect on OUT. 

After the Control Word and initial count are written to 
a Counter, the initial count will be loaded on the next 
CLK pulse. This ClK pulse does not decrement the 
count, so for an initial count of N, OUT does not go 
high until N + 1 ClK pulses after the initial count is 
written. 

If a new count is written to the Counter, it will be 
loaded on the next ClK pulse and counting will con­
tinue from the new count. If a two-byte count is writ­
ten, the following happens: 

1) Writing the first byte disables counting. OUT is set 
low immediately (no clock pulse required). 

2) Writing the second byte allows the new count to 
be loaded on the next CLK pulse. 

This allows the counting sequence to be synchro­
nized by software. Again, OUT does not go high until 
N + 1 ClK pulses after the new count of N is writ­
ten. 

If an, initial count is written while GATE = 0, it will 
still be loaded on the next ClK pulse. When GATE 
goes high, OUT will go high N CLK pulses later; no 
ClK pulse is needed to load the Counter as this has 
already been done. 

CW.'. lS ... ________ _ 

WlI""L.fLJ 
CLK 

GATE --------------

cwo,. LSa-3r-________ _ 

WlI""L.fLJ 
ClK 

QATE 

OUT :.-:J .... _______ ..J,---
, N , N , N , N , ~ , :,' : , : , ~ , ~ ,~~, 

elK 

GATE --------------

OUT :::1 ... _______ --1,---
, N , N , N , N , ~ , : , ~ , : , ~ , ~ ,~~, 

231244-8 

NOTE: 
The FollOwing Conventions Apply To All Mode Timing 
Diagrams: , 
1. Counters are programmed for binarY (not BCD) 
counting and for Reading/Writing least significant byte 
(LSB) only. 
2. The counter is always selected (~ always low). 
S. CW stands for "Control Word";CW = 10 means a 
control word of 1 0, hex is written to the counter. 
4. LSB stands for "Least Significant Byte" of count. 
5. Numbers below diagrams are count values. 
The lower number is the least significant byte. 
The upper number is the most significant byte. Since 
the counter is programmed to Read/Write LSB only, 
the most sigriificant byte cannot be read. 
N stands for an undefined count. 
Vertical lines show transitions between count values. 

Figure 15. Mode 0 

6-298 



82C54 

MODE 1: HARDWARE RETRIGGERABLE 
ONE-SHOT 

OUT will be initially high. OUT will go Iowan the ClK 
pulse following a trigger to begin the one-shot pulse, 
and will remain low until the Counter reaches zero. 
OUT will then go high and remain high until the ClK 
pulse after the next trigger. 

After writing the Control Word and initial count, the 
Counter is armed. A trigger results in loading the 
Counter and setting OUT Iowan the next ClK pulse, 
thus starting the one-shot pulse. An initial count of N 
will result in a one-shot pulse N ClK cycles in dura­
tion. The one-shot is retriggerable, hence OUT will 
remain low for N ClK pulses after any trigger. The 
one-shot pulse can be repeated without rewriting the 
same count into the counter. GATE has no effect on 
OUT. 

If a new count is written to the Counter during a one­
shot pulse, the current one-shot is not affected un­
less the Counter is retriggered. In that case, the 
Counter is loaded with the new count and the one­
shot pulse continues until the new count expires. 

CW;:12 LSB=J 

~~~------------------

eLK

GATE ------In---------~n==

OUT

I N I N I N I N I N I ~ I : I : I : I ~~ I ~ I : I

CW::12 LSB=3~----------

WI\~

eLK

GATE -------~n----ln----------

OUT =..J ,.
INININININI~I:I:I~I:I:I:1

eLK

GATE -------;n---------;n===

OUT

I N I N I N I N I N I : I : I : I ~~ I ~~ I : I ~ I
231244-9

Figure 16. Mode 1

MODE 2: RATE GENERATOR

This Mode functions like a divide-by-N counter. It is
typicially used to generate a Real Time Clock inter­
rupt. OUT will initially be high. When the initial count
has decremented to 1, OUT goes low for one ClK
pulse. OUT then goes high again, the Counter re­
loads the initial count and the process is repeated.
Mode 2 is periodic; the same sequence is repeated
indefinitely. For an initial count of N, the sequence
repeats every N ClK cycles.

GATE = 1 enables counting; GATE = 0 disables
counting. If GATE goes low during an output pulse,
OUT is set high immediately. A trigger reloads the
Counter with the initial count on the next ClK pulse;
OUT goes low N ClK pulses after the trigger. Thus
the GATE input can be used to synchronize the
Counter.

After writing a Control Word and initial count, the
Counter will be loaded on the next ClK pulse. OUT
goes low N ClK Pulses after the initial count is writ­
ten. This allows the Counter to be synchronized by
software also.

CW=14 LSB=]

WI\~~----------------

eLK

GATE

OUT

CW= 14 LS8= J~ ______________ -

WA~

eLK

GATE

aUT~

ININiNINI~I:I:I~I:I:I~1

eLK

GATE --------------

aUT~ u
ININININI:I~I:I:I:I:I~1

231244-10

NOTE:
A GATE transition should not occur one clock prior to
terminal count.

Figure 17. Mode 2

6-299

intJ 82C54

Writing a new count while counting does not affect
the current counting sequence. If a trigger is re­
ceived after writing a new count but before the end
of the current period, the Counter will be loaded with
the new count on the next ClK pulse and counting
will continue from the new count. Otherwise, the
new count will be loaded at the end of the current
counting cycle. In mode 2, a COUNT of 1 is illegal.

MODE 3: SQUARE WAVE MODE

Mode 3 is typically used for Baud rate generation.
Mode 3 is similar to Mode 2 except for the duty cycle
of OUT. OUT will initially be high. When half the ini­
tial count has expired, OUT goes low for the remain­
der of the count. Mode 3 is periodic; the sequence
above is repeated indefinitely. An initial count of N
results in a square wave with a period of N ClK
cycles.

GATE = 1 enables counting; GATE = 0 disables
counting. If GATE goes low while OUT is low, OUT is
set high immediately; no ClK pulse is required. A
trigger reloads the Counter with the initial count on
the next ClK pulse. Thus the GATE input can be
used to synchronize the Counter.

After writing a Control Word and initial count, the
Counter will be loaded on the next ClK pulse. This
allows the Counter to be synchronized by software
also.

Writing a new count while counting does not affect
the current counting sequence. If a trigger is re­
ceived after writing a new count but before the end
of the current half-cycle of the square wave, the
Counter will be loaded with the new count on the
next ClK pulse and counting will continue from the
new count. Otherwise, the new count will be loaded
at the end of the current half-cycle.

Mode 3 is implemented as follows:

Even counts: OUT is initially high. The initial count is
loaded on one ClK pulse and then is decremented
by two on succeeding ClK pulses. When the count
expires OUT changes value and the Counter is re­
loaded with the initial count. The above process is
repeated indefinitely.

Odd counts: OUT is initially high. The initial count
minus one (an even number) is loaded on one ClK
pulse and then is decremented by two on succeed­
ing ClK pulses. One ClK pulse after the count ex­
pires, OUT goes low and the Counter is reloaded
with the initial count minus one. Succeeding ClK
pulses decrement the count by two. When the count
expires, OUT goes high again and the Counter is
reloaded with the initial count minus one. The above
process is repeated indefinitely. So for odd counts,

OUT will be high for (N + 1)/2 counts and low for
(N -1)/2 counts.

CW=HI Lsa=4r___-----------
... L-JL.J

INI"I"I-I:I:I:I:I:I:I:I:I:I:I

wwl:ii:Jr-----'---------

I " I " I " I _ I : I : I : I.: I : I : I : I : I : I : I

n_~r--------------

OUT

I _ I " I N I ". I : I·: I : I : I : I : I : I : I : I : I
231244-11

NOTE:
A GATE transition should not occur one clock prior to
terminal count.

Figure 18. Mode 3

MODE 4: SOFTWARE TRIGGERED STROBE

OUT will be initially high. When the initial count ex­
pires, OUT will go low for one ClK pulse and then
go high again. The counting sequence is "triggered"
by writing the initial count.

GATE = 1 enables counting; GATE = 0 disables
counting. GATE has no effect on OUT.

After writing a Control Word and initial count, the
Counter will be loaded on the next ClK pulse. This
ClK pulse does not decrement the count, so for an
initial count of N, OUT does not strobe low until
N + 1 ClK pulses after the initial count is written.

If a new count is written during counting, it will be
loaded on the next ClK pulse and counting will con­
tinue from the new count. If a two-byte count is writ­
ten, the following happens:

6-300

inter 82C54

1) Writing the first byte has no effect on counting.

2) Writing the second byte allows the new count to
be loaded on the next ClK pulse.

This allows the sequence to be "retriggered" by
software. OUT strobes low N + 1 ClK pulses after
the new count of N is written.

CW",18 lSB=3r.-________ _

WR '--1L.J
elK

GATE --------------

aUT~ u

CW:18 lSB=3_---------

WR'--1L.J
elK

GATE ---------!
OUT~

elK

GATE --------------

OUT =.:J Lr
I N I N I N I N I I: I ~ I : I I ~ I ;; I

231244-12

Figure 19. Mode 4

MODE 5: HARDWARE TRIGGERED STROBE
(RETRIGGERABLE)

OUT will initially be high. Counting is triggered by a
rising edge of GATE. When the initial count has ex­
pired, OUT will go low for one ClK pulse and then
go high again.

After writing the Control Word and initial count, the
counter will not be loaded until the ClK pulse after a
trigger. This ClK pulse does not decrement the
count, so for an initial count of N, OUT does not
strobe low until N + 1 ClK pulses after a trigger.

A trigger results in the Counter being loaded with the
initial count on the next ClK pulse. The counting
sequence is retriggerable. OUT will not strobe low
for N + 1 ClK pulses after any trigger. GATE has
no effect on OUT.

If a new count is written during counting, the current
counting sequence will not be affected. If a trigger
occurs after the new count is written but before the
current count expires, the Counter will be loaded
with the new count on the next ClK pulse and
counting will continue from there.

CW=lA LSB=J

~.~~-----------

eLK

GATE -n----l n--u-----lrc.=
OUT

I N I N I N I N I N I ~ I ~ I : I : I ;; I ~

CW",lA LSB=J

WR ~r--------------------

CLK

GATE - - - - - - - - -" ~ - - - - - - - - - - --

OUT =-.J
I N I N I N I N I N I N I ~ I ~ I ~ I ~ I : I : I ;; I

GATE --------vr-n-n---l,n=.:==

OUT =.J U
I N I N I N I N I N I ~ I ~ I : I : I ;; I ;: I : I : I

231244-13

Figure 20. Mode 5

6-301

Signal Low
Status Or Going Rising High
Modes Low

0 Disables - Enables
counting counting

1 - 1) Initiates -
counting

2) Resets output
after next
clock

2 1) Disables
counting Initiates Enables

2) Sets output counting counting
immediately
high

3 1) Disables
counting Initiates Enables

2) Sets output counting counting
immediately
high

4 Disables - Enables
counting counting

5 - Initiates -
counting

Figure 21. Gate Pin Operations Summary

MODE
MIN MAX

COUNT COUNT

0 1 0

1 1 0

2 2 0

3 2 0

4 1 0

NOTE:
o is equivalent to 216 for binary counting and 104 for
BCD counting

82C54

Operation Common to All Modes

Programming

When a Control Word is written to a Counter, all
Control logic is immediately reset and OUT goes to
a known initial state; no ClK pulses are required for
this.

GATE

The GATE input is always sampled on the rising
edge of ClK. In Modes 0, 2, 3, and 4 the GATE input
is level sensitive, and the logic level is sampled on
the rising edge of ClK. In Modes 1, 2, 3, and 5 the
GATE input is rising-edge sensitive. In these Modes,
a rising edge of GATE (trigger) sets an edge-sensi­
tive flip-flop in the Counter. This flip-flop is then sam­
pled on the next rising edge of ClK; the flip-flop is
reset immediately after it is sampled. In this way, a
trigger will be detected no matter when it occurs-a
high logic level does not have to be maintained until
the next rising edge of ClK. Note that in Modes· 2
and 3, the GATE input is both edge- and level-sensi­
tive. In Modes 2 and 3, if a ClK source other than
the system clock is used, GATE should be pulsed
immediately following WR of a new count value.

COUNTER

New counts are loaded and Counters are decre­
mented on the falling edge of ClK.

The largest possible initial count is 0; this is equiva­
lent to 216 for binary counting and 104 for BCD
counting.

Figure 22. Minimum and Maximun initial Counts

The Counter does not stop when it reaches zero. In
Modes 0, 1, 4, and 5 the Counter "wraps around" to
the highest count, either FFFF hex for binary count­
ing or 9999 for BCD counting, and continues count­
ing. Modes 2 and 3 are periodic; the Counter reloads
itself with the initial count and continues counting
from there.

6-302

inter 82C54

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias O°C to 70°C
Storage Temperature - 65° to + 150°C
Supply Voltage - 0.5 to + B.OV
Operating Voltage + 4V to + 7V
Voltage on any Input. GND - 2V to + 6.5V
Voltage on any Output .. GND - 0.5V to Vee + 0.5V
Power Dissipation 1 Watt

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for
extended periods may affect device reliability.

NOTICE: Specifications contained within the
following tables are subject to change.

D.C. CHARACTERISTICS (TA=O°Cto WC, Vee=5V± 10%, GND=OV)

Symbol Parameter Min Max Units Test Conditions

VIL Input low Voltage -0.5 O.B V

VIH Input High Voltage 2.0 Vee + 0.5 V

VOL Output low Voltage 0.4 V IOL = 2.5 mA

VOH Output High Voltage 3.0 V IOH = -2.5 mA
Vee - 0.4 V IOH = -100/LA

IlL Input load Current ±10 V VIN=Vee toOV

IOFL Output Float leakage Current ±10 /LA VOUT=Vee to 0.45V

lee Vee Supply Current 10 mA
Clk Freq=

BMHzB2C54
1 OMHz 82C54-2

leeSB Vee Supply Current-Standby 10 /LA ClK Freq = DC
CS = HIGH
All Inputs/Data Bus HIGH
All Outputs Floating

CAPACITANCE (TA = 25°C, Vee = GND = OV)

Symbol Parameter Min Max Units Test Conditions

CIN Input Capacitance 10 pF fc = 1 MHz

CliO I/O Capacitance 20 pF Unmeasured pins

COUT Output Capacitance 20 pF returned to GND

A.C. CHARACTERISTICS (T A = O°C to 70°C, Vee = 5V ± 1 0%, GND = OV)
BUS PARAMETERS (Note 1)

READ CYCLE

Symbol Parameter 82C54 82C54-2
Units

Min Max Min Max

tAR Address Stable Before RD .! 45 30 ns

tSR CS Stable Before RD .! 0 0 ns

tRA Address Hold Time After RD .! 0 0 ns

tRR RD Pulse Width 150 95 ns

tRO Data Delay from RD .! 120 85 ns

tAD Data Delay from Address 220 185 ns

tOF RD t to Data Floating 5 90 5 65 ns

tRY Command Recovery Time 200 165 ns

NOTE:
1. Ae timings measured at VOH = 2.0V, VOL = O.BV.

6-303

82C54

A.C. CHARACTERISTICS (Continued)

WRITE CYCLE

Symbol Parameter
82C54 82C54-2

Units
Min Max Min Max

tAW Address Stable Before WR J, 0 0 ns

tsw CS Stable Before iNA J, 0 0 ns

tWA Address Hold Time After WR t 0 0 ns

tww WR Pulse Width 150 95 ns

tow Data Setup Time Before WR t 120 95 ns

two Data Hold Time After WR t 0 0 ns

tRY Command Recovery Time 200 165 ns

CLOCK AND GATE

Symbol ,Parameter
82C54 82C54-2

Units
Min Max Min Max

tClK Clock Period 125 DC 100 DC ns

tPWH High Pulse Width 60[3] , 30[3] ns

tPWl low Pulse Width 60(3) 50131 ns

TR Clock Rise Time 25 25 ns

tF ' Clock Fall Time 25 25 ns

lGw Gate Width High 50 50 ns

tGl Gate Width low 50 50 ns

tGS Gate Setup Time to ClK t 50 40 ns

tGH Gate Hold Time After ClK t 50(2) 50(2) ns

Too Output Delay from ClK J, 150 100 ns

tOOG Output Delay from Gate J, 120 100 ns

twc ClK Delay for loading 0 55 0 55 nli

twG Gate Delay for Sampling -5 50 -5 40 ns

two OUT Delay from Mode Write 260 240 ns

tCl ClK Set Up for Count latch_ -4 45 -40 40 ns

NOTES:
2, In Modes 1 and 5 triggers are sampled on each rising clock edge. A second trigger within 120 ns (70 ns for the 8254-2) of
the rising clock edge may not be detected. '
3. low-going glitches that violate tPWH. tPWL may cause errors requiring counter reprogramming.

6-304

inter 82C54 ~OO~Ufi'{(]OOO~OOW

WAVEFORMS

WRITE

A O. 1

~IAW~

CS

DATA BUS

WR

231244-14

READ

Ao·,

IA.

CS

QATABUS---

231244-15

~}+-I.V=1\
RD. Wii~.,--. __ J

231244-16

6-305

inter
CLOCK AND GATE

eLK -----'--.Jr!

GATE --__ -"-____ ~_II

OUTPUT 0

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

24=X)C 2.0 ' 2.0 . > TEST POINTS <
0.8 0.8

0.45

231244-18
A.C. Testing: Inputs are driven at 2.4V for a logic "1" and 0.45V
for a logic "0." Timing measurements are made at 2.0V for a logic
"1" and 0.8V for a logic "0."

82C54

231244-17
• Last byte of count being written

A.C. TESTING LOAD CIRCUIT

231244-19
CL = 150 pF
CL includes jig capacitance

6-306

intel@

8255A/8255A·5
PROGRAMMABLE P.ERIPHERAL INTERFACE

• MCS·85™ Compatible 8255A·5

• 24 Programmable 1/0 Pins

• Completely TTL Compatible

• Fully Compatible with Intel® Micro·
processor Families

• Improved Timing Characteristics

• Direct Bit SetlReset Capability Easing
Control Application Interface

• Reduces System Package Count

• Improved DC Driving Capability

• Available in EXPRESS
-Standard Temperature Range
-Extended Temperature Range

The Intel@ 8255A is a general purpose programmable 1/0 device designed for use with Intel@ microprocessors. It has
241/0 pins which may be individually programmed in 2 groups of 12 and used in 3 major modes of operation. In the first
mode (MODE 0), each group of 121/0 pins may be programmed in sets of 4 to be input or output. In MODE 1, the second
mode, each group may be programmed to have 8 lines of input or output. Of the remaining 4 pins, 3 are used for hand­
shaking and interrupt control signals. The third mode of operation (MODE 2) is a bidirectional bus mode which uses 8
lines for a bidirectional bus, and 5 lines, borrowing one from the other group, for handshaking.

Figure 1. 8255A Block Diagram Figure 2. Pin Configuration

~INTEL CORPORATION, 1982.
Order Number: 231308-001 6-307

•"n+._ .f
I I"e' 8255A!8255A·G

82S5A FUNCTIONAL DESCRJPTION (RD)

General

The 8255A is a programmabje peripheral interface (PPI)
device designed for use in Intel® microcomputer
systems. Its function is that of a general purpose 1/0
component to interface peripheral equipment to the
microcomputer system bus. The functional configura­
tion of the 8255A is programmed by the system software
so that normally no external logic is necessary to inter­
face peripheral devices or structures.

Data Bus Buffer

This 3-state bidirectional 8-bit buffer is used to interface
the 8255A to the system data bus. Data is transmitted or
received by the buffer upon execution of input or output
instructions by ttie CPU. Control words and st<;itus infor
mation are also transferred through the data bus buffer.

ReadlWrite and Control Logic

The function of this block is to manage all of the internal
and external transfers of both Data and Control or Status
words. It accepts inputs from the CPU Address and Con­

'tTOI busses and in turn, issues commands to both of the
Control Groups.

(es)

ChiD Select_ A "low" on this input pin enables tna com'
muniction belween the 8255A and the CPU.

[
-OW

POWER
SUPPLIES __ ''"

iW--_

W1\--_ WRITE

', ___ C~~6~~L
'0---

,,------'

Rea~ A "low" on this input pin enables the 8255A to
:;eM the data or status information to the CPU on the
data bus. In essence, it allows the CPU to "read from"

.the 8255A.

(WR)
Write. A "low" on this input pin enables the CPU to write
data or control words into the 8255A.

(Ao and Al)

Pori Select 0 and Pori Select 1f These input Signals, in
conJuncfion with the RD and WR inputs, control the
selection of one of the three ports or the control word
registers. They are normally connected to the least
significant bits of the address bus (An and Al).

8255A BASIC OPERAIION.
Al AO RD WR CS INPUT OPERATION (READ)

0 0 0 1 0 PORT A = DATA BUS
0 1 0 1 0 PORT B = DATA BUS
1 0 0 1 0 PORT C = DATA BUS

OUTPUT OPERATION
(WRITE)

0 0 1 0 0 DATA BUS= PORT A
0 1 1 0 0 DATA BUS = PORT B
1 0 1 0 0 DATA BUS = PORT C
1 1 1 0 0 DATA BUS = CONTROL

DISABLE FUNCTION

X X X X 1 DATA BUS = 3-STATE
1 1 0 1 0 ILLEGAL CONDITION

X X 1 1 0 DATA BUS= 3-STATE

Figure 3_" 8255A Block Diagram Showing Data Bus Buffer and Read/Write Control Logic Functions

6-308
231308-001

8255A18255A·5

(RESET)

Reset. A "'high" on this input clears the control register
and all ports (A, B, C) are set to the input mode.

Group A and Group B Controls

The functional configuration of each port is program·
med by the systems software. In essence, the CPU "out·
puts" a control word to the 8255A. The control word con­
tains information such as "mode", "bit set", "bit reset",
etc., that initializes the functional configuration of the
8255A.

Each of the Control blocks (Group A and Group B) accepts
"commands" from the Read/Write Contr~1 Logic, receives
"control words" from the internal data bus and issues the
proper commands to its associated ports.

Control Group A - Port A and Port C upper (C7-C4)
Control Group B - Port B and Port Clower (C3·CO)

The Control Word Register can Only be written into. No
Read operation of the Control Word Register is allowed.

'0'"{-.,.
$UPPl-IES __ ,"0

Ports A, S_ and C

The 8255A contains three 8-bit ports lA, B, and C)- ArT
can be configured in a wide variety of functional charac­
teristics by the system software but each has its own
special features or "personality" to further enhance the
power and flexibility of the 8255A_

Port A. One 8·bit data output latch/buffer and one 8·bit
data input latch.

Port B. One 8-bit data input/output latch/buffer and one
8·bit data input buffer.

Port C. One 8·bit data output latch/buffer and one 8·bit
data input buffer (no latch for input). This port can be
divided into two 4·bit ports under the mode control.
Each 4·bit port contains a 4·bit latch and it can be used
for the control signal outputs and status signal inputs in
conjunction with ports A and B.

PIN CONFIGURATION

PIN NAMES
,,0

Pill-PliO IJ, Do DATA BUS (BI DIRECTIONAL)

RESET RESET INPUT
cs CHIP SELECT

AD READ INPUT
W'R WRITE INPUT

AO, Al ~AT ADDRESS

PA7·PAQ PORT A {BIT)

PB7 PBO PORT B (BIT)

pe7·peo PORT C (BIT)

~c£. +5VOllS

GND II VOLTS

Figure 4. 8225A Block Diagram Showing Group A and
Group B Control Functions

231308·001

6-309

8255A/8255A-5

8255A OPERATIONAL DESCRIPTION

Mode Selection
There are three basic modes of operation that can be select­
ed by the system software:

Mode 0 - Basic Input/Output
Mode 1 - Strobed Input/Output
Mode 2 - Bi-Directional Bus

When the reset input goes "high" all ports will be set to
the input mode (Le_, all 24 lines will be in the high im­
pedance state)_ After the reset is removed the 8255A can
remain in the input mode with no additional initialization
required_ During the execution of the system program
any of the other modes may be selected using a'single
output instruction. This allows a single 8255A to service
a variety of peripheral devices with a simple software
maintenance routine.

The modes for Port A and Port B can be separately defined,
while Port C is divided into two portions as required by the
Port A and Port B definitions. All of the output registers, in­
cluding the status flip-flops, will be reset whenever the
mode is changed. Modes may be combined so that their
functional definition can be "tailored" to almost' any I/O
structure. For instance; Group B can be programmed in
Mode 0 to monitor simple switch closings or display compu­
tational results, Group A could be programmed in Mode 1
to monitor a keyboard or tape reader on an interrupt-driven
basis.

MODE: 0

ADDRESS BUS

CONTROL BUS

Figure 5. Basic Mode Definitions
and Bus Interface

CONTROL WORD

I 07 1 o. 05 1 O. 1 031 0, 1 0, 1 do I
LJ

/ GROUPS \
L-..

PORT C (LOWER)
1'" INPUT
0"" OUTPUT

PORTB - 1 = INPUT
0'" OUTPUT

MODE SELECTION
O=MODEO
1 "'MODE 1

/ GROUP A \
PORT C (UPPER)
1'" INPUT
0'" OUTPUT

PORT A
1 '" INPUT
0= OUTPUT

MODE SELECTION
00 .. MODE 0
01", MODE 1
1X=MQDE2

MODE SET FlAG
, '" ACTIVE

Figure 6. Mode Definition Format

The mode definitions and possible mode combinations
may seem confusing at first but after a cursory review of
the complete device operation a simple, logical I/O ap­
proach will surface. Ti1e design of the 8255A has taken
into account things such as efficient PC board layout,
control signal definition vs PC layout and complete
functional flexibility to support almost any peripheral
device with no external logic. Such design represents
the maximum use of the available pins.

Single Bit Set/Reset Feature

Anyofthe eight bits of PortC can beSet or Reset using
a single OUTput instruction, This feature reduces
software requirements iri Control-based applications.

6-310 231308-001

intJ 8255A/8255A-5

CONTROL WORD

I~I~I~I~I~I~I~I~I
I I I BIT SET/RESET

I I X X X I 1'" SET
I 0'" RESET

DON'T
CARE

BIT SELECT

01234567

01010101 80
0011001181

0000'1118,1

BIT SET/RESET FLAG I 0'" ACTIVE

Figure 7. Bit Set/Reset Format

Operating Modes

MODE 0 (Basic Input/Output). This functional configura­
tion provides simple input and output operations for
each of the three ports. No "handshaking" is required,
data is simply written to or read from a specified port

RD --'[--

~IR-

INPUT

j--tAR -

CS, Al, AO

MODE 0 (Basic Input)

i------tAW-----+i

CS, Al.AO

OUTPUT

MODE 0 (Basic Output)

tRO

When Port C is being used as status/control for Port A or B,
these bits can be set or reset by using the Bit Set/Reset op­
eration just as if they were data output ports.

Interrupt Control Functions

When the B255A is programmed to operate in mode 1 or
mode 2, control signals are provided that can be used as
interrupt request inputs to the CPU_ The interrupt re­
quest signals, generated from port C, can be inhibited or
enabled by setting or resetting the associated INTE flip­
flop, using the bit set/reset function of port C_

This function allows the Programmer to disallow or allow a
specific I/O device to interrupt the CPU without affecting
any other device in the interrupt structure.

I NTE flip-flop definition:

(BIT-SET) -INTE is SET -Interrupt enable
(BIT-RESET) -INTE is RESET -Interrupt disable

Note: All Mask flip-flops are automatically reset during
mode selection and device Reset.

Mode 0 Basic Functional Definitions:

• - Two B-bit ports and two 4-bit ports_
• Any port can be input or output_
• Outputs are latched_
• Inputs are not latched.
• 16 different Input/Output configurations are possible

in this Mode_

tRR

-, f-
!.---t

HR
_

-tRA----:1

tOF .

two

i-------'wA----~

L .. d-
6-311 231308-001

intJ 8255A/8255A-5

MODE 0 Port Definition

A B GROUPA GROUPB

PORTC PORTC
04 03 01 DO PORTA

(UPPERI
PORT B

(LOWERI

0 0 0 0 OUTPUT OUTPUT 0 OUTPUT OUTPUT

0 0 0 1 OUTPUT OUTPUT 1 OUTPUT INPUT

0 0 1 0 OUTPUT OUTPUT 2 INPUT OUTPUT

0 0 1 1 OUTPUT OUTPUT '3 INPUT INPUT

0 1 0 0 OUTPUT INPUT 4 OUTPUT OUTPUT

0 1 0 1 OUTPUT INPUT 5 OUTPUT INPUT

0 1 1 0 OUTPUT INPUT 6 INPUT OUTPUT

0 1 1 1 OUTPUT INPUT 7 INPUT INPUT

1 0 0 0 INPUT OUTPUT 8 OUTPUT OUTPUT

1 0 0 1 INPUT OUTPUT 9 OUTPUT INPUT

1 0 1 0 INPUT OUTPUT 10 INPUT OUTPUT

1 0 1 1 INPUT OUTPUT 11 INPUT INPUT

1 1 0 0 INPUT INPUT 12 OUTPUT OUTPUT

1 1 0 1 INPUT INPUT 13 OUTPUT INPUT

1 1 1 0 INPUT INPUT 14 INPUT OUTPUT

1 1 1 1 INPUT INPUT 15 INPUT INPUT

MODE 0 Configurations

CONTROL WORD #0 CONTROL WORD #2

0, D, D, D, D, D, D, Do D, D, D, D, D, D, D, Do

I, 10101010101 o I 0 I I, I 0 I 0 I 0 I 0 I 0 I '1:.1
A

8
PA7·PAo A

8
PA7·pAo

8255A 8255A ,
PC7·PC4

,
PC7·PC4 c{ c{ °7-0 0 q °7-00 , ,
PCa-PCa PC3-PCa

B
8

PB7·PBo B
8 PB7·PBo

CONTROL WORD #1 CONTROL WORD #3

D, D, D, D, D, D, D, Do D, D, 0, D, D, D, D, 00

I, I 0 I o I 0 I 0 I 0 I o I, I I , I 0 I 0 I 0 I 0 I 0 I , 1,1

A
8

PA7·P!\o A
8

PA"PAo

8255A 8255A

,
PC7-PC4

,
PC7·PC4 c{ c{ °7,00 °7-00 I .

I " PC"PCo 0 I
(' pea-Peo

B
8

PB7·PBa B
8

PB7·PBo

6-312 231308-001

intel' 8255A/8255A-5

CONTROL WORD #4 CONTROL WORD =8

D, D, D5 D, DJ D, D, Do D, D6 D5 D, DJ D, D, DO

I, I 0 I o I 0 I , 1 0 1 o 1 0 I I , 1
0

1
0

1

,
1

0
1

0
1

0
1

0
I

A
8

PAJ-PAO A
,8

PAl-PAC ,
8255A 8255A

4
PC7"PC4

4
PC7·PC4 c{ c{ °7"00 • °7-00

4 pe3-pcO
4

pel-pcO

B
8

P~·PBo B
8

PSJ-PBO

CONTROL WORD #5 CONTROL WORD #9

D, D, D5 D, DJ D, D, Do D, D, D5 D, DJ D, D, DO

I , 1
0

1
0

1
0

1

,
1

0
1

0
1 ' I

I, 1 0 1 o 1
,

1
o 1 o 1 o I, I

A
8

PA7·pAo A , ,8
PArPAo

8255A 8255A ,
PC, ·PC4

4
PC7-PC4 c{ c{ O,·DiI .. . °7-00 •

4
pe3-pcO . ,4 pe3 -pcO ,

B
8

PSl·PBo B
8

PBrPBo

CONTROL WORD #S CONTROL WORD #10

D, D, D5 D, DJ D, D, Do D, D, D5 D, DJ D, D, DO

I, 1 0 1 0 1 0 I, 1 0 1
,

1 0 I I , 1
0

1
0

1

,
1

0
1

0
1

,
1 0 I

8 A
8

A PAl-PAC PA1-PAo

8255A 8255A

"
4

PC7-PC4 c{ , PC1-PC4 c{ °7-0 0 • °7.0 0 ..
4

,
pe3-pcO pe3,pcO

B
8

PBJ-PBO B
,8

PBJ,PSO I

CONTROL WORD #7 CONTROL WORD #11

D, D, D5 D, DJ D, D, Do D, D, D5 D, DJ D, D, DO

1
,

1
0

1
0

1
0

1

,
1

0
1

,
I' I I, 1 0 1 0 1

,
1 0 1 0 1

1 I,
I

A
8

A , ,8
PAJ-PAc PA,·pAo ,

8255A 8255A , ,
PC7-PC4 c{ PC-,.PC4 c{ °7-°0 °7,00 • . " pel·pcO

,
pel-pcO I

B
8

PBJ-PSO B
8

PSJ-PBO

6-313 231308-001

8255A/8255A-5

CONTROL WORD #12

07 De 05 04 D3 02 01 Do

I 1 1 1 1 1 1 0 1 0 I
A

,8
I PA7·PAa

8255A

c{
. I

,4

.
4

PC,-PC4

pe3,pcC

8
B PB7,PBo

CONTROL WORD #13

07 0 6 05 04 D3 02 01 Do

I 1 1 1 1 1 1 0 I, I
A

8

8255A

c{ I
,4

4

8
8

Operating Modes

MODE 1 (Strobed Input/Output). This functional con­
figu ration provides a means for transferring I/O data to
or from a specified port in conjunction with strObes or
"handshaking" signals. In mode 1, port A and port B
use the lines on port C to generate or accept these
"hand-shaking" signals.

6-314

A I " PArPAo

8255A

c{ . I
i 4

PC7·PC4

°7-0 0

pe3"pcO

B 7
,8

PBrPBo

CONTROL WORD #15

A
8

8255A

4

. c{
4

B
8

Mode 1 Basic Functional Definitions:

• Two Groups (Group A and Group B)
• Each group contains one 8·bit data port and one 4·bit

control/data port.
• The 8·bit data port can be either input or output.

Both inputs and outputs are latched.
• The 4·bit port is used for control and status of the

8·bit data port.

231308-001

8255A/8255A-5

Input Control Signal Definition

STB (Strobe Input). A "low" on this input loads data into
the input latch.

IBF (Input Buffer Full F/F)

A "high" on this output indicates that the data has been
loaded into the input latch; in essence, an aCknowledgement
IBF is set by STB input being low and is reset by the rising
edge of the RD input.

INTR (Interrupt Request)

A "high" on this output can be used to interrupt the CPU
when an input device is requesting service. INTR is set by
the STB is a "one", IBF is a "one" and INTE is a "one".
It is reset by the falling edge of RD. This procedure allows
an input device to request service from the CPU by simply
strobing its data into the port.

IBF

INTR

INTE A

Controlled by bit set/reset of PC 4.

INTE B

Controlled by bit set/reset of PC 2.

----- t5T----

,-'SIBIl
tSIT

If

---I
1

___ tpH~1

MODE 1 (PORT A)

CONTROL WORD

r-- --,

, INTE I

~3_J
PC4 -rnA

pes IBF A

CL
MODE 1 (PORT BJ

CONTROL WORD

Figure 8. MODE 1 Input

1~-tR'B~)
i

--- tRIT
I

/ I

// /

INPUT FROM
PERIPHERAL --- ---------------------tps

Figure 9. MODE 1 (Strobed Input)

6-315 231308-001

8255AJ8255A·5

Output Control Signal Definition

OBF (Output Buffer Full F/F). The OBF output will go
"low" to indicate that the CPU has written data out to the
specified port. The OBF F/F will be set by the rising edge
of the WR input and reset by ACK input being low.

ACK (Acknowledge Input). A "Iow" on this input informs
the 8255A that the data from port A or port B has been
accepted. In essence, a response from the peripheral
device indicating that it has recieved the data output by
the CPU.

INTR (Interrupt Request). A "high" on this output can be
used to interrupt the CPU when an output device has
accepted data transmitted by the CPU. INTR is set when
ACK is a "one", OBF is a "one", and INTE is a "one". It is
reset by the falling edge of WR.

INTR (Interrupt Request). A "high" on this output can be
used to interrupt the CPU when an output device has
accepted data transmitted by the CPU. INTR is set when
ACK is a "one", OBF is a "one", and INTE is a "one". It is
reset by the falling edge of WR.

INTEA

Controlled by bit set/reset of PC6.

INTEB

CONTROL WORD

CONTROL WORD

07 06 05 04 0 3 02 0, Do

1, fXk><M><l1 I 0 txJ

WR_

'MODE 1 (PORT AJ

MODE 1 (PORT B)

r-- ,
! INTE I
I B I __ 1

Controlled by bit seVreset of PC2. Figure 10. MODE 1 Output

INTR

1-----twIT

OUTPUT

Figure 11. Mode 1 (Strobed Output)

6-316

INTRa

231308-001

8255A18255A·S

Comblilations of MODE 1

Port A and Port B can be individually defined as input or
output in Mode 1 to support a wide variety of strobed I/O
applications.

PAJ"PAa

PC, STBA

PC, IBFA

PC, INTRA

2
PCe,7 --f-- I/O

PC,

PORT A - (STROBED INPUT)
PORT B - (STROBED OUTPUT)

INTRa

pe3 INTRA

2

PC4. 5 --+-- I/O

PC,

PC,

PORT A - (STROBED OUTPUT)
PORT B - (STROBED INPUT)

INTRa

Figure 12. Combinations of MODE 1

Operating Modes

MODE 2 (Strobed Bidirectional Bus 1/0). This functional
configuration provides a means/or communicating with
a peripheral device or structure on a single B·bit bus for
both transmitting and receiving data (bidirectional bus
'I/O). "Handshaking" signals are provided to maintain
proper bus flow discipline in a similar manner to MODE
1. Interrupt generation and enable/disable functions are
also available.

MODE 2 Basic Functional Definitions:
• Used in Group A only.
• One B·bit, bi-directional bus Port (Port A) and a 5·bit

cqntrol Port (Port C).
• Both inputs and outputs are latched.
• The 5·bit control port (Port C) is used for control

and status for the B·bit, bi-directional bus port (Port
A).

Bidirectional Bus I/O Control Signal Definition

INTR (Interrupt Request). A high on this output can be
used to interrupt the CPU for both input or output opera­
tiona.

Output OperaU,ons

OBF (Output Buffer Full). The OBF output will go "low" to
indicate that the CPU has written data out to port A

ACK (Acknowledge). A "low" on this input enables the
tri·state output buffer of port A to send out the data.
Otherwise, the output buffer will be in the high im·
pedance state.

INTE 1 (The INTE Flip·Flop Associated with OBF). Can·
trolled by bit set/reset of PC6.

Input Operations

STB (Strobe Input). A "low" on this input loads data into
the input latch.

IBF (Input Buffer Full F/F). A "high" on this output in·
dicates that data has been loaded into the input latch.

INTE 2 (The INTE Flip·Flop Associated with IBF). Con­
trolled by bit set/reset of PC4 .

6-317 231308-001

inter

INTR

IBF

8255A18255A-5

CONTROL WORD

PC2-o
1'" INPUT
0= OUTPUT

"----PORTB
1'" INPUT
0'" OUTPUT

'------+ GROUP B MODE
O=MODEO
, = MODE 1

Figure 13. MODE Control Word

//

DATA FROM
/. CPU TO 8255A

WR-

R5---

PERIPHERAL _________ _
BUS

!
DATA FROM

PERIPHERAL TO 8255A

Figure 15. MODE 2 (Bidirectional)

NOTE: Any sequence where WR occurs before ACK and STBoccurs before AD is permissible.
(tNTR = IBF • MASK. STB • RD + OBF • MASK· ACK • WR)

6-318

PC,

3

PC,. -+--110

Figure 14. MODE 2

~----f---
DAtA FROM

8255A TO 8080

_______ l~tRl8

231308-001

8255A1~55A·5

MODE 2 AND MODE 0 (INPUT)

CONTROL WORD

07 0 6 0 5 04 D3 02 01 DO

I, I, 0XJX1 ° I JOI
PC2.Q

1" INPUT
0" OUTPUT

PC, ~---- INTRA

PC,

PC6 -ACKA

PCs

3

PC,. ---+--.- I/O

MODE 2 AND MODE 1 (OUTPUT)

OBFA

CONTROL WORD
ACKA

D1 D6 05 04 OJ 02 0, DO

I' I, IXlXlXl' I ° IXI STBA

PCs IBFA

PB1·PSO

PC, OBFs

RD

WR PCo INTRa

MODE 2 AND MODE 0 (OUTPUT)

CONTROL WORD

07 0 6 0 5 04 DJ 02 0, Do

I, I, 0XJX1 ° I 0jOI
pc2.()

, = INPUT
0= OUTPUT

RD-

WR_

PC, ~--- INTRA

PC,

MODE 2 AND MODE 1 (INPUT)

PC, ~--_ INTRA

PC,

CONTROL WORD

07 0 6 0 5 04 D3 02 0, Do

I'I'~'I'[XJ
PCs 1---- ISF A

PC, 1---- IBFB

PCo INTRa

Figure 16. MODE 1f4 Combinations

6-319 231308-001

intJ 8255A/8255A-5

Mode Definition Summary

MOOED MODE 1 MODE 2
IN OUT IN

PAD IN OUT IN
PA1 IN OUT IN
PA2 IN OUT IN
PA3 IN OUT IN
PA,j IN OUT IN
PA5 IN OUT IN
PAa IN OUT IN
PA7 IN OUT IN

PBD IN OUT IN
PB1 IN OUT IN
PB2 IN OUT IN
PB3 IN OUT IN
PB4 IN OUT IN
PB5 IN OUT IN
PBa IN OUT IN
PB7 IN OUT IN

PCD IN OUT INTRB
PC1 IN OUT IBFe
PC2 IN OUT STBB
PC3 IN OUT INTRA
PC4 IN OUT STBA
PC5 IN OUT IBFA
PCa IN OUT I/O
PC7 IN OUT I/O

Special Mode Combination Considerations

There are several combinations of modes when" not all of the
bits in Port C are used for control or status. The remaining
bits can be used as follows:

I f Programmed as Inputs -
All input lines can be accessed during a normal Port C
read.

If Programmed as Outputs -
Bits in C upper (PCrPC4) must be individually accessed
using the bit set/reset function.

Bits in Clower (pC3·PCo) can be accessed using the bit
set/reset function or accessed as a threesome by writing
into Port C.

Source Current Capability on Port B a"nd Port C

Any set of eight output buffers, selected randomlY from
Ports Band C can source 1mA at 1.5 volts. This feature
allows the 8255 to directly drive Darlington type drivers
and high·voltage displays that require such source current.

Reading Port C Status

In Mode 0, Port C transfers data to or from the peripheral
device. When the 8255 is programmed to function in Modes
1 or 2, Port C generates or accepts "hand·shaking" signals
with the peripheral device. Reading the contents of Port C

OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT

OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT

INTRB
OBFe
ACKB
INTRA

I/O
1/0

ACKA
OeFA

GROUPAONLY -------------
--
--
--
--
--
--
--

I/O
I/O
I/O

INTRA
STBA
IBFA

ACKA
OBFA

MOOED
OR MODE 1
ONLY

allows the programmer to test or verify the "status" of each
peripheral device and change the program flow accordingly.

There is no special instruction to read the status informa·
tion from Port C. A normal read operation of Port C is
executed to perform this function.

INPUT CONFIGURATiON

OUTPUT CONFIGURATION

Figure 17. MODE 1 Status Word Format

~ ~ ~ ~ ~ ~ ~ ~

I OaFA I'NTE, I'BFA I INTE, I INTRA [XIXCXJ
L---- -.-- .------!~...,. _. _---l

GROUP A ________ - GROUP B

(DEFINED BY MODE 0 OR MODE 1 SELECTION)

Figure 18. MODE 2 Status Word Format

6-320 231308-001

8255A/8255A·5

APPLICATIONS OF THE 8255A

The 8255A is a very powerful tool for Interfacing
peripheral equipment to the microcomputer system. It
represents the optimum use of available pins and is flex­
ible enough t6 interface almost any I/O device without
the need for additional external logic.

Each peripheral device in a microcomputer system
usually has. a "service routine" associated with it. The
routine mar,ages the software interface between the
device and the CPU. The functional definition of the
8255A is prbgrammed by the I/O service routine and
becomes an extension of the system software. By ex·
;lmiflin9 the I/O devices interface characteristics for
both data transfer and timing, and matching this infor·
matlon to the examples and tables in the detailed opera·
tional description, a control word can easily be devel·
oped to initialize the 8255A to exactly "fit" the applica­
tion. Figures 19 through 25 present a few examples of
typical applications of the 8255A.

INTERRUPT
REQUEST

MODE 1
(OUTPUT)

825SA

MODE 1
(OUTPUT)

PC,

INTERRUPT
REaUEST

PA,

PA,

PA,

; PAs

PA,

PC,

PC,

PC,

~C4

PB,

PB,

PB,

PB,

PB,

PB,

; PBs

PB,

PC,

PC, ACK

CONTROL LOGIC AND DRIVERS

Figure 19. Printer Interface

6-321

INTERRUPT
REQU EST I

PC3

8255A

MODEl
(INPUT)

reAo

; PAl

PA,

PA3
,

PA,

PAs

- PA6

! PA,

PC,

pe5
-

r'-
I PBo

PB,

PB,

PB3

PB,

PBs
MODE 1 ~ PB,

(OUTPUT)

PC,

UPT~ INTERR
REQUEST

PB,

! PC,

PC,

PC,

~~C7

Ao

A,

A, FULLY

A3
DECODED

KEYBOARD
A,

As

SHIFT

CONTROL

STROBE

ACK

B,

B,

B,
BURROUGHS
SELF-SCAN

B3 DISPLAY

B,

Bs

BACKSPACE

CLEAR

DATA READY

ACK

BLANKING

CANCEL WORD

Figure 20. Keyboard and Display Interface

REQUEST
INTERRUPT I

PC3 .
PA, R,

PA, R,

PA, R,

PA, R,
FULLY

MODE 1 DECODED
(INPUT) PA, R, KEYBOARD

PA, R,

825SA
PA, SHIFT

PA, CONTROL.

PC, STROBE

PC, ACKNOWLEDGE

PC, BUSY LT

i PC; TEST L T

-
PB, 'o- I-- TERMINAL

PB, --.,,- I-- ADDRESS

PB, .,,- f--

MODE a PB, 'o- f--
(INPUT) ; PB4

-- o- f--

PB, --_ I--
I PB,

--""0- f--

PB,
--0-I--

Figure 21. Keyboard and Terminal Address
Interface

231308-001

8255Al8255A·5

PAO LSB

PA,

PA,

PA,

PA.

MODE 0 PA5 r-------
(OUTPUT} PII,; 12·811

PA, D·A f--CONVERTER
ANALOG OUTPUT

PC, {DAC}

PC,

8255A
PC,

PC, MSB

r 5TB DATA

PC, OUTPUT EN

BIT
SET/RESET

PC, SAMPLE EN

PC, STB

PBO LSB

PB, B-BIT
A·D

PB, CONVERTER - ANALOG INPUT

MODE 0 PB, (ADe)

(INPUT) PB,

PB,

PB,

Po, MSB

Figure 22. Digital to Analog, Analog to Digital

INTERRUPT
REa UES1"1

Pc,

MODE 1
(OUTPUT}

8255A

MODE 0
(OUTPUT)

PA,

PA,

PA,

PA,

PA.

PA,

PA,

PA,

PC,

PC,

PC,

PC.

PC,

PC',

PCo

PBo

PB,
PB,

PB,

PB.
PB,

PB,

PB,

Ro
R, CRT CONTROLLER

R, • CHARACTER GEN.
R, • REFRESH BUFFER

R. • CURSOR CONTROL

R,

SHIFT

CONTROL

DATA READY

ACK

BLANKED

BLACK/WHITE

ROWSTB

COLUMN STe

CURSOR H/V STe

}_'"_'OC_ ADDRESS
H&V

Figure 24. Basic CRT Controller Interface

6-322

REQUEST
INTERRUPT :J.

PC, PAo Do

PA, 0,

PA, 0,
PA, 0, FLOPPY DISK

PA. D.
CONTROLLER
AND DRIVE

PA, 0,

MODE2 PA, 0,

PA, 0,

pc. DATA STB

PC, ACKliN)

PC, DATA READY

PC, ACK (OUTI

8255A
PC, TRACK "0" SENSOR

PCo SYNC READY

PC, INDEX

r
ENGAGE HEAD

PB, FORWARD/REV.

PB, READ ENABLE

MODE 0 PBJ WRITE ENABLE

(OUTPUT) ,PB4 DISC SELECT

PB, ENABLE CRe

PB, TEST

PB, BUSY LT

Figure 23. Basic Floppy Disk Interface

REQUEST
INTERRUPTi

PC, PAO --~Ro

PA, R,
PA, ____

R, 8 LEVEL
PAPER

PA, R, TAPE

PA. R.
READER

MODE 1
PAs R,

(INPUn
PA, R,

PA, R,

pc. STB

PC, "'"' PC, STOP/GO

8255A MACHINE TOOL

fCO
START/STOP

MODE 0
(INPUT) PCl LIMIT SENSOR {H/V}

PC, OUT OF FLUID

r
CHANGE TOOL

PB, LEFT/RIGHT

PB, UP/DOWN

MODE 0 PB3 HOR STEP STROBE

(OUTPUn PB4 VERT STEP STROBE

PB, SLEW/STEP

PB, FLUID ENABLE

PB, 1---- EMERGENCV STOP

Figure 25. Machine Tool Controller Interface

231308-001

inter 8255A18255A·5

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias oOe to 70°C
Storage Temperature _65°e to +150o e
Voltage on Any Pin

With Respect to Ground -O.5V to + 7V
Power Dissipation 1 Watt

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera·
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA = O°C to 70°C, Vee = +5V ±10%, GND = OV\'

Symbol Parameter Min. Max. Unit Test Conditions

VIL Input Low Voltage -0.5 0.8 V

VIH Input High Voltage 2.0 Vee V

VOL (DB) Output Low Voltage (Data Bus) 0.45 ' V IOL = 2.5mA

VOL(PER) Output Low Voltage (Peripheral Port) 0.45' V IOL = 1.7mA

VOH(DB) Output High Voltage (Data Bus) 2.4 V IOH = -400pA

VOH(PER) Output High Voltage (Peripheral Port) 2.4 V IOH = -200pA

IOARlll Darlington Drive Current -1.0 -4.0 mA R EXT = 750n; VEXT= 1.5V

lee Power Supply Current 120 mA

IlL Input Load Current ±10 pA VIN = Vee to OV

IOFL Output Float Leakage ±10 pA VOUT = Vcc to .45V

NOTE:
1. Available on any 8 pins from Port Band C.

CAPACITANCE (TA = 25°C, Vee = GND = OV)

Symbol. Parameter Min. Typ. Max. Unit Test Conditions

CIN Input Capacitance 10 pF fc = 1MHz

CliO 1/0 Capacitance 20 pF Unmeasured pins returned to GND

A.C. CHARACTERISTICS (TA = O°C to 70°C, Vee = +5V ±10%, GND = OV)'

Bus Parameters
READ

8255A 8255A-5

Symbol Parameter Min. Max. Min. Max. Unit

tAR Address Stable Before READ 0 0 ns

tRA Address Stable After READ 0 0 ns

tRR READ Pulse Width 300 300 ns

tRD Data Valid From R EADlll 250 200 ns

tDF Data Float After READ 10 150 10 100 ns

tRv Time Between READs and lor WR ITEs 850 850 ns

6-323

8255A18255A·5

A.C. CHARACTERISTICS (Continued)
WRITE

Symbol Parameter

tAW Address Stable Before WR ITE

tWA Address Stable After WR ITE

tww WRITE Pulse Width

tDW Data Valid to WR IT E (T. E.)

tWD Data Valid After WR ITE

OTHER TIMINGS

Symbol Parameter

tws WR = 1 to Outputl11

tlR Peripheral Data Before RD

tHR Peripheral Data After RD

tAK ACK Pulse Width

tST STB Pulse Width

tps Per. Data Before T. E. of ST B

tPH Per. Data After T.E. of STB

tAD ACK = 0 to Output l1)

tKD ACK = 1 to Output Float

twos WR = 1 to OBF = 011)

tAOS ACK = 0 to OBF = 1(1)

tSIS STB = 0 to IBF = 1[1)

tRIB RD = 1 to IBF = 0)1)

tRIT RD = 0 to INTR = 0111

tSIT STB = 1 to INTR = 1111

tAIT ACK= 1 to INTR = 1[11

tWIT WR = 0 to INTR = 01 1,3)

NOTES:
1. Test Conditions: CL = 150 pF.

8255A

Mln_

0

20

400

100

30

8255A

Min.

0

0

300

500

0

180

20

8255A-5

Max. Min. Max.

0

20

300

100

30

8255A-5

Max. Min. Max.

350 350

0

0

300

500

0

180

300 300

250 20 250

650 650

350 350

300 300

300 300

400 400

300 300

350 350

450 450

2. Period of Reset pulse must be at least SOILS during or after power on. Subsequent Reset pulse can be 500 ns min.
3. INTRt may occur as early as WRt .
• For Extended Temperature EXPRESS, use M8255A electrical parameters.

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT

DEVICE
2.4

2.0 2.0 > TEST POINTS <
UNDER i CL~15DpF V
TEST

0.8
0.45

0.8 -=

Unit

ns

ns

ns

ns

ns

Unit

ns

ns

ns

ns

ns

ns

ns.

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

-0 VEXT•

A,C. TESTING. INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC" 1" AND OASV FOR
A LOGIC "0_'- TIMING MEASUREMENTS ARE MADE AT 20V FOR A lOGIC l'
AND a.BV FOR A LOGIC' 0

'VEXT IS SET AT VARIOUS VOLTAGES DURING TESTING TO GUARANTEE THE
SPECIFICATION. CllNCLUDES JIG CAPACITANCE.

6-324

8255A18255A·5

WAVEFORMS

MODE 0 (BASIC INPUT)

'RR

~r] r-

e lR -
I-tHA-i

INPUT

t'==..:AR-- -tRA~1

CS, A1, AO

1 I. r----------- <
'RD 'D'

.

MODE 0 (BASIC OUTPUT)

-----·--t, .. w~--

WR

CS, A1, AO

OUTPUT

6-325

intel' 8255A/8255A-5

WAVEFORMS (Continued)

MODE 1 (STROBED INPUT)

-- tST -----------

IBF

INTA

INPUT FROM
PERIPHERAL ---

,
-t"811

. tps

MODE 1 (STROBED OUTPUT)

INTR
_twiT

OUTPUT

tSIT

V

\
-! l_tRI8 - 1

1
i.-tRIT :1 !L 1

.J

_tpH~1

-tAK

6-326

WAVEFORMS (Continued)

MODE 2 (BIDIRECTIONAL)

DATA FROM
/ 8080 TO 8255

INTR

IBF

PERIPHERAL _________ _
BUS

/
DATA FROM

·PERIPHERAL TO 8255

82SSA/82SSA-S

I
I

------t---

DATA FROM
8255 TO 8080

I _ I-IRIB

NOTE: Any sequence where WR occurs before ACK and STB occurs before RD is permissible.
(lNTR = IBF • MASK· STB • RD + OBF.· MASK· ACK • WR)

WRITE TIMING READ TIMING

AD_,· cs==x:'--_______ -"I~\...----
-l - i--tRA

RD------------------,~~: -----------
. ..-,IRO t- -ttDF~

6-327

82C55A
CHMOS PROGRAMMABLE PERIPHERAL INTERFACE

• Compatible with all Intel and most • Low Power CHMOS
other microprocessors • Completely TTL Compatible

• High Speed, "Zero Wait State" • Control Word Read-Back Capability
Operation with 8 MHz 8086/88 and
80186/188 • Direct Bit Set/Reset Capability

• 24 Programmable I/O Pins • 2.5 rnA DC Drive Capability on all I/O

• Bus-hold circuitry on all I/O Ports
Port Outputs

Eliminates Pull-up Resistors • Available in 40-Pin DIP and 44-Pin PLCC

The Intel 82C55A is a high·performance, CHMOS version of the industry standard 8255A general purpose
programmable 1/0 device which is designed for use with all Intel and most other microprocessors. It provides
24 I/O pins which may be individually programmed in 2 groups of 12 and used in 3 major modes of operation.
The 82C55A is pin compatible with the NMOS 8255A and 8255A-5.

In MODE 0, each group of 12 1/0 pins may be programmed in sets of 4 and 8 to be inputs or outputs. In
MODE 1, each group may be programmed to have 8 lines of input or output. 3 of the remaining 4 pins are used
for handshaking and interrupt control signals. MODE 2 is a strobed bi-directional bus configuration.

The 82C55A is fabricated on Intel's advanced CHMOS III technology which provides low power consumption
with performance equal to or greater than the equivalent NMOS product. The 82C55A is available in 40-pin
DIP and 44-pin plastic leaded chip carrier (PLCC) packages.

"

ts-----'

Figure 1. 82C55A Block Diagram

6 5 .. 3 2 1 43 42 41 40

PC7 11
82eSSA

pe6 13

PCS 14

PC4 15

PCD 16

PCI 17

w Y"WnnnUBUD~
I'e,-PC.

231256-1

231256-31

231256-2

Figure 2. 82C55A Pinout
Diagrams are for pin reference only. Package
sizes are not to scale.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. November 1985
© Intel Corporation, 1985 6-328 Order Number: 231256-002

82C55A

Table 1. Pin Description

Symbol
Pin Number

Type Name and Function
Dip PLCC

PA3-0 1-4 2-5 1/0 PORT A, PINS 0-3: Lower nibble of an 8·bit data output latchl
buffer and an 8·bit data input latch.

RD 5 6 I READ CONTROL.: This input is low during CPU read operations.

CS 6 7 I CHIP SELECT: A low on this input enables the 82C55A to
respond to RD and WR signals. RD and WR are ignored
otherwise.

GND 7 8 System Ground

A1-0 8-9 9-10 I ADDRESS: These input signals, in conjunction RD and WR,
control the selection of one of the three ports or the control
word registers.

A1 Ao RD WR CS Input Operation (Read)

0 0 0 1 0 Port A • Data Bus

0 1 0 1 0 Port B • Data Bus

1 0 0 1 0 Port C • Data Bus

1 1 0 1 0 Control Word· Data Bus

Output Operation (Write)

0 0 1 0 0 Data Bus· Port A

0 1 1 0 0 Data Bus· Port B

1 0 1 0 0 Data Bus· Port C

1 1 1 0 0 Data Bus· Control

Disable Function

X X X X 1 Data Bus· 3 • State

X X 1 1 0 Data Bus· 3 • State

PC7-4 10-13 11,13:-15 110 PORT C, PINS 4-7: Upper nibble of an 8·bit·data output latchl
buffer and an 8·bit data input buffer (no latch for input). This port
can be divided into two 4·bit ports under the mode control. Each
4·bit port contains a 4·bit latch and it can be used for the control
signal outputs and status signal inputs in conjunction with ports
Aand B.

PCO-3 14-17 16-19 1/0 PORT C, PINS 0.;.3: Lower nibble of Port C.

PBO.7 18-25 20-22, 1/0 PORT B, PINS 0-7: An 8·bit data output latchlbuffer and an 8·
24-28 bit data input buffer.

Vee 26 29 SYSTEM POWER: + 5V Power Supply.

07-0 27-34 30-33, 1/0 DATA BUS: Bi·directional, tri·state data bus lines, connected to
35-38 system data bus.

RESET 35 39 I RESET: A high on this input clears the control register and all
ports are set to the input mode ..

WR 36 40 I WRITE CONTROL: This input is low during CPU write
operations.

PA7-4 37-40 41-44 ·1/0 PORT A, PINS 4-7: Upper nibble of an 8·bit data output latchl
buffer and an 8·bit data input latch.

NC 1,12, No Connect
23,34

6·329

inter 82C55A

82C55A FUNCTIONAL DESCRIPTION

Generai

The 82C55A is a p~ogrammable peripheral interface
device designed for use in Intel microco'!'puter sys­
tems. Its function is that of a general purpose 110
component to interface peripheral equ!pment to .the
microcomputer system bus. The functIonal confIgu­
ration of the 82C55A is programmed by the system
software so that normally 'no external logic is neces­
sary to interface peripheral devices or structures.

Data Bus Buffer

This 3-state bidirectional 8-bit buffer is used to inter­
face the 82C55A to the system data bus. Data is
transmitted or received by the buffer upon execution
of input or output instructions by the CPU. Control
words and status information are also transferred
through the data bus ·buffer.

Read/Write and Control Logic

The function of this block is to manage all of the
internal and external transfers of both Data and
Control or Status words. It accepts inputs from the
CPU Address and Control busses and in turn, issues
commands to both of the Control Groups.

Group A and Group B Controls

The functional configuration of each port is pro­
grammed by the systems software. In essence, the
CPU "outputs" a control word to the 82C55A. The
control word contains information such as "mode",
"bit -set", "bit reset", etc.; that initializes the func­
tional configuration of the 82C55A.

Each of the Control blocks (Group A and Group B) ,
accepts "commands" from the Read/Write Control
Logic, receives "control words" from, the in.ternal
data bus and issues the proper commands to Its as­
sociated ports.

Control Group A - Port A and Port C upper (C7 -C4)
Control Group B - Port 13 and Port Clower (C3-CO)

The control word register can be both written and
read as shown in the address decode bible in the
pin descriptions. Figure 6 shows the control word
format for both Read and Write operations. When
the control word is read, bit 07 will always be a logic
"1 ", as this implies control word mode information.

Ports A. B. and C

The 82C55A contains three 8-bit ports (A, B, and C).
All can be configured in a wide variety of functional
characteristics by the system software but each has
its own special features or "personality" to further
enhance the power and flexibility of the 82C55A.

Port A. One 8-bit data output latch/buffer and one
8-bit input latch buffer. Both "pull-up" and "pull­
down" bus hold devices are present on Port A.

Port B. One 8-bit data, input/output latch/buffer.
Only "pull-up" bus hold devices are present on Port
B.

Port C. One 8-bit data outputlatch/buffer and one
8-bit data input buffer (no latch for input). This port
can be divided into two 4-bit ports under the mode
control. Each 4-bit port contains a 4-bit latch and it
can be used for the control signal outputs and status
signai inputs in conjunction with ports A and B. Only
"pull-up" bus hold devices are present on Port C. .

See Figure 4 for the bus-hold circuit configuration for
Port A, B, and C. '

6-330

I--'v
---aND

81 OIR(CTIQNAL DATA BUS

0, Do /'----"1

;;0----

..,----1
RfSET----/

13------'

82C55A

I BIT
INTERNAL
OATA8US

GROUP
A

PORT
A

'"
JC==::> p~~ PAo

, 0
1'r --./PCl PCO

I/'-~-~, 0'0
IV --./ pa,·PBD

231256-3

Figure 3. 82C55A Block Diagram Showing Data Bus Buffer and Read/Write Control. Logic Functions

RESET --j"~)o-l>o---.,

INTERNAL EXTERNAL
DATA IN -_~---o<l"':">(I-""-- ~~RT A

Vee

RESET --::r')o --i

EXTERNAL
L-_o---O<l-~"""- PORT B,C

PIN

INT~~~~~ ----()OC_---.J

Figure 4. Port A, B, C, Bus-hold Configuration

6-331

231256-4

82C55A

82C55A OPERATIONAL DESCRIPTION

Mode Selection

There are three basic modes of operation that can
be selected by the system software:

Mode 0 - Basic input/ output
Mode 1 - Strobed Input/output
Mode 2 - Bi-directional Bus

When the reset input goes "high" all ports will be set
to the input mode with all 24 port lines held at a logic
"one" level by the internal bus hold devices. After
the reset is removed the 82C55A can remain in the
input mode with no additional initialization required.
This eliminates the need for pullup or pull down de­
vices in "all CMOS" designs. During the execution
of the system program, any of the other modes may
be selected by using a single output instruction. This
allows a single 82C55A to service a variety of pe­
ripheral devices with a simple software maintenance
routine.

The modes for Port A and Port B can be separately
defined, while Port C is divided into two portions as
required by the Port A and Port B definitions. All of
the output registers, including the status flip-flops,
will be reset whenever the mode is changed. Modes
may be combined so that their functional definition
can be "tailored" to almost any I/O structure. For
instance; Group B can be programmed in Mode 0 to
monitor simple switch closings or display computa­
tional results, Group A could be programmed in
Mode 1 to monitor a keyboard or tape reader on an
interrupt-driven basis.

ADDRESS BUS

MODE 0

MODEl ---r~o '1111 I III
PB7"paO CONTROL CONTROL

OR I/O OR 110

231256-5

Figure 5_ Basic Mode Definitions and Bus
Interface

CONTROL WORD

I 0, , 0, 0,' D.' 0, , D, , 0, , 0, I
LJ

I GROUP B \
PORT C (LOWER) , - 1 ",INPUT
0= OUTPUT

PORrs
~ 1 = INPUT

0,. OUTPUT

MODE SELECTION
0" MODE 0
1 ",MODE 1

/ GROUP A \
PORT C (UPPER)
1" INPUT
0'" OUTPUT

PORTA
1. INPUT
O· OUTPUT

MODE SELECTION
00 = MODE 0
01 = MODE 1
lX= MODE 2

MODE SET FLAG
'''ACTIVE

231256··6

Figure 6. Mode Definition Format

The mode definitions and possible mode combina­
tions may seem confusing at first but after a cursory
review of the complete device operation a simple,
logical I/O approach will surface. The design of the
82C55A has taken into account things such as effi­
cient PC board layout, control Signal definition vs PC
layout and complete functional flexibility to support
almost any peripheral device with no external logic.
Such design represents the maximum use of the
available pins.

Single Bit Set/Reset Feature

Any of the eight bits of Port C can be Set or Reset
using a single OUTput instruction. This feature re­
duces software requirements in Control-based appli­
cations.

When Port C is being used as status/control for Port
A or B, these bits can be set or reset by using the Bit
Set/Reset operation just as if they were data output
ports.

6-332

CONTROL WORD

BITSET/AESET
, .. SET
Ooo RESET

BIT SELECT
01234567
0101010180
o 0 1 , 0 0 1 1 B,

L---------+-000011118

231256-7

Figure 7. Bit Set/Reset Format

82C55A

Interrupt Control Functions

When the 82C55A is programmed to operate in
mode 1 or mode 2, control signals are provided that
can be used as interrupt request inputs to the CPU.
The interrupt request signals, generated from port C,
can be inhibited or enabled by setting or resetting
the associated INTE flip-flop, using the bit set/reset
function ?f port C.

This function allows the Programmer to disallow or
allow a specific I/O device to interrupt the CPU with­
out affecting any other device in the interrupt struc­
ture.

INTE flip-flop definition:

(BIT-SET)-INTE is SET-Interrupt enable
(BIT-RESET)-INTE is RESET-Interrupt disable

Note:
All Mask flip-flops are automatically reset during
mode selection and device Reset.

6-333

inter 82C55A

Operating Modes

Mode 0 (Basic Input/Output). This functional con­
figuration provides simple input and output opera­
tions for each of the three ports. No "handshaking"
is required, data is simply written to or read from a
specified port.

MODE 0 (BASIC INPUT)

.
~r

~IR-

INPUT

t':::====-t Afl -

ES, Al,AO

---------- .(

MODE 0 (BASIC OUTPUT)

cs.Al.AO

OUTPUT

'RO

Mode 0 Basic Functional Definitions:

• Two a-bit ports and two 4-bit ports.

• Any port can be input or output.

• Outputs are latched.

• Inputs are not latched.

• 16 different Input/Output configurations are pos­
sible in this Mode.

'RR
...,'-

-'"R-I

--tRA._1

'0' 0

231256-8

'w0

231256-9

6-334

intJ 82C55A

MODE 0 Port Definition

A B GROUP A GROUPB

D4 D3 D1 Do PORTA

0 0 0 0 OUTPUT

0 0 0 1 OUTPUT

0 0 1 0 OUTPUT

0 0 1 1 OUTPUT

0 1 0 0 OUTPUT

0 1 0 1 OUTPUT

0 1 1 0 OUTPUT

0 1 1 1 OUTPUT

1 0 0 0 INPUT

1 0 0 1 INPUT

1 0 1 0 INPUT

1 0 1 1 INPUT

1 1 0 0 INPUT

1 1 0 1 INPUT

1 1 1 0 INPUT

1 1 1 1 INPUT

MODE 0 Configurations

CONTROl. WORD #0

Dr De Os D4 03 DZ D, Do

1,1·1·1·1·1·1·1·1
PA,·PAc,

82ISA

c{ PC7·PC.

°7-00

Pel-PCg

ps,.fISO

CONTROL WORD #,
D7 D. Os D. D3 Da 0, Do

1,1·1·1·1·1·1·1,1

82HA

0,.1)0-·---1
c {I-.---"~- "",-PC,

'._---"f-',4<-- ""'-!'Co

1---1-'-""'-""0

PORTC
PORTB PORTC

(UPPER) (LOWER)

OUTPUT 0 OUTPUT OUTPUT

OUTPUT 1 OUTPUT' INPUT

OUTPUT 2 INPUT OUTPUT

OUTPUT 3 INPUT INPUT

INPUT 4 OUTPUT OUTPUT

INPUT 5 OUTPUT INPUT

INPUT 6 INPUT OUTPUT

INPUT 7 INPUT INPUT

OUTPUT B OUTPUT OUTPUT

OUTPUT 9 OUTPUT INPUT

OUTPUT 10 INPUT OUTPUT

OUTPUT 11 INPUT INPUT

INPUT 12 OUTPUT OUTPUT

INPUT 13 OUTPUT INPUT

INPUT 14 INPUT OUTPUT

INPUT 15 INPUT INPUT

CONTROL WORD #2

01 D. 05 D. 03 D2 0, Do

6-335

1,1·1·1·1·1·1,1·1
A P",-PAo

8265A

c{ H;-PC.

0 , -°0

""'-PC"

"",-Pe.

CONTROL WORD #3

D7 0, Os D" 03 02 0, Do

1,1·1·1·1·1·1,1,1

o,-D.---I

A 1---1-"- P",-PAo

8255A

c { I------F'--- "",-PC,

1---1''--- ""'-PC"

1---1''-- "",-P8,

231256 10

82C55A

MODE 0 Configurations (Continued)

CONTROL WORD #4 CONTROL WORD #8

0, D. 0, D. 0, 0, 0, 0, 0, 0, 0, O. 0, 0, 0, 0,

1,1010101,1010 I 0 I I, I 0 I 0 I, I 0 I 0 I o I 0 I
A

8
PA7·PAa A , ,8

PA
"

PAc!

125511 I255A

• Pe"pc. • c{ c{ PC7·pc.

°7·DQ
0 7,00 • .

• Pe3·PeO • Pel,PeO

8
8

'8,·P80 B
8 PB,.PBo

-
CONTROL WORD #6 CONTROL WORD #9

0, D. 0, D. 0, 0, 0, 0, 0, 0, 0, D. 0, 0, 0, 0,

I , I 0 I 0 I 0 I , I 0 I 0 I, I I. I 0 I 0 I· 10 I 0 I o I. I
A

B
PA"'Aa A . ,8

PA7·PAa I

8255A :8255A

• Pe7-PC. • PC" PC. c{ c{ °7 ,00 I °7.00

• Pel,PeO • Pel·Pea

B
8

PB,·pBo B
8

PS7 'pBo

CONTROL WORD #6 CONTROL WORD %110

0, 0, 0, D. 0, 0, 0, 0, 0, 0, 0, D. 0, 0, 0, 0,

I , I 0 I 0 I 0 I , I 0 I , I 0 I I, I 0 I 0 I, I 0 I 0 I , I 0 I
A • PA"PAa • A PA, -PAo

8255A 125511

. !. pe7 ,pc. • Pe7,PC • c{ , c{ °7,00 • °,-00

• Pel,PCg • pc3.pco

• • PB7·PSO • B PS7"PRo

CONTROL WORD #7 CONTROL WORD #11

0, 0, 0, D. 0, 0, 0, 0, 0, D. 0, D. 0, 0, 0, Do

I , I 0 I 0 I 0 I , I 0 I • I , I I, I 0 I 0 I· , 0 I 0 I , I, I
A • PA7'PAo A • p.,

8255,\ 125511

• Per·PC. • Pe,'pc" c{ c{ °7-0 0 °,,00

• Pel,Peg • Pel·Peg

• • P87·pBo B • PB,

231256-11

6-336

82C55A

MODE 0 Configurations (Continued)

CONTROL WORD #12

07 0 6 05 D. 03 02 01 Do

1,10101,\,1010101

PA,-PAo

a:Z55A

c{) " pe,'pc.

°7,°0 •

pel,pca

PB,-PBo

CONTROL WORD #13

07 0, Os D4 D3 02 0, Do

I, I 0 I 0 I I, I 0 I 0 I, 1

8255A

{
.c,·pc,

c ~-pc, .• c,

Operating Modes

MODE 1 (Strobed Input/Output). This functional
configuration provides a means for transferring 1/0
data to or from a specified port in conjunction with
strobes or "handshaking" signals. In mode 1, Port A
and Port B use the lines on Port C to generate or
accept these "handshaking" signals.

6-337

CONTROL WORD #14

A PA7·pAo
8255A

c{)
, .

pc,.PC ..

o,-0 0

PCl-PCa

P~·PBo

CONTROL WORD #15

I, I 01 0 I, I, 1 0 I, I, I

8255A

c {/----,I-'-- pc,·.c,

/----,1-'-- PCl-PeO

/-----:F- '''.'.,

231256-12

Mode 1 Basic functional Definitions:

• Two Groups (Group A and Group B).

• Each group contains one 8-bit data port and one
4-bit control I data port.

• The 8-bit data port can be either input or output
Both inputs and outputs are latched.

• The 4-bit port is used for control and status of the
8-bit data port.

infef 82C55A

Input Control Signal Definition

STB (Strobe Input). A "low" on this input loads
data into the input latch.

IBF (Input Buffer Full F/F)

A "high" on this output indicates that the data has
been loaded into the input latch; in essence, an ac­
knowledgement. ISF is set by STS input being low
and is reset by the rising edge of the RD input.

INTR (Interrupt Request)

A "high" on this output can be used to interrupt the
CPU when an input device is requesting service.
INTR is set by the STS is a "one", ISF is a "one"
and INTE is a "one". It is reset by the falling edge of
RD. This procedure allows an input device to re­
quest service from the CPU by simply strobing its
data into the port.

INTEA
Controlled by bit set/reset of PC4.

INTE B

Controlled by bit set/reset of PC2.

-tsT-

I

'8F
-'''011

1S1T

INTR D
f.- -I

MODe 1 (PORT Al

CONTROL WORD

07 06 Os 04 0 3 02 01 00

I, I 0 I. I· 11IoC><lXIX]

L ;:61~PUT
0= OUTPUT

MODE 1 (PORT 8~

231256-13

Figure 8. MODE 1 Input

\ 1_'.,0_,)

~7 /
I

INPUT FROM
PERIPHERAL --- ---------------------

'"
231256-14

Figure 9. MODE 1 (Strobed Input)

6-338

intJ 82C55A

Output Control Signal Definition

OBF (Output Buffer Full F/F). The OBF output will
go "low" to indicate that the CPU has written data
out to the specified port. The OBF F IF will be set by
the rising edge of the WR input and reset by ACK
Input being low.

ACK (Acknowledge Input). A "low" on this input
informs the 82C55A that the data from Port A or Port
B has been accepted. In essence, a response from
the peripheral device indicating that it has received
the data output by the CPU.

INTR (Interrupt Request). A "high" on this output
can be used to interrupt the CPU when an output
device has accepted data transmitted by the CPU.
INTR is set when ACK is a "one", OBF is a "one"
and INTE is a "one". It is reset by the falling edge of
WR.

INTEA

Controlled by bit set/reset of PC6.

INTE B

Controlled by bit set/reset of PC2.

INTR

-+---twiT

OUTPUT

MUUI: 1 (t>UH 1 Al

MODE 1 (PORT B)

P~-PBo 8

CONTROL WOAD

WR_

231256-15

Figure 10. MODE 1 Output

_tAK

231256-16

Figure 11. MODE 1 (Strobed Output)

6-339

82C55A

Combinations of MODE 1

Port A and Port B can be individually defined as input or output in Mode 1 to support a wide variety of strobed
I/O applications.

PC,

2
PC6,7 --I-- I/O

WR-

PCo

PORT A - (STROBED INPUT)
PORT B - (STROBED OUTPUT)

1NTRS

PC,

2
PC4.5 --I- I/O

PC,

PORT A - (STROBED OUTPUT)
PORT B - (STROBED INPUn

INTRa

231256-17

Figure 12. Combinations of MODE 1

Operating Modes

MODE 2 (Strobed Bidirectional Bus I/O).This
functional configuration provides a means for com­
municating with a peripheral device or structure on a
single 8-bit bus for both transmitting and receiving
data (bidirectional bus I/O). "Handshaking" signals
are provided to maintain proper bus flow discipline in
a similar manner to MODE 1. Interrupt generation
and enable/disable functions are also available.

MODE 2 Basic Functional Definitions:

• Used in Group A only.
• One 8-bit, bi-directional bus port (Port A) and a 5-

bit control port (Port C).

• Both inputs and outputs are latched.

• The 5-bit control port (Port C) is used for control
and status for the 8-bit, bi-directional bus port
(Port A).

Bidirectional Bus I/O Control Signal Definition

INTR (Interrupt Request). A high on this output can
be used to interrupt the CPU for input or output oper­
ations.

Output Operations

OBF (Output Buffer Full). The OBF output will go
"low" to indicate that the CPU has written data out
to port A.

ACK (Acknowledge). A "low" on this input enables
the tri-state output buffer of Port A to send out the
data. Otherwise, the output buffer will be in the high
impedance state.

INTE 1 (The INTE Flip-Flop Associated with'
OBF). Controlled by bit set/reset OfPC6.

Input Operations

STB (Strobe Input). A "Iow"on this input loads
data into the input latch.

IBF (Input Buffer Full F/F). A "high" on this output
indicates that data has been loaded into the input
latch.

INTE 2 (The INTE Flip-Flop Associated with IBF).
Controlled by bit set/reset of PC4.

6-340

inter
CONTROL WORD

C
~2~J~P~T
PORT B
1 = INPUT
0" OUTPUT

GROUP B MODE
O=MODEO
1 ",MODE 1

231256-18

Figure 13. MODE Control Word

WR

INTR

IBF

DATA FROM
CPU TO 8255A

RIPHERAL _________ _

BUS

DATA fROM
PERIPHERAL TO 8255A

82C55A

WR---

00---

Figure 15. MODE 2 (Bidirectional)

NOTE:

3

PC2.() -+-- I/O

231256-19

Figure 14. MODE 2

tAl< .---

~r----~---------

/
DATA FROM

8255A TO 8080

231256-20

Any sequence where WR occurs before ACK, and STB occurs before RD is permissible.
(INTR = IBF. MASK. STB • RD + OBF. MASK. ACK • WR)

6-341

MODE 2 AND MODE 0 !INPUT)

CONTROL WORD

D, 06 Os D. D3 02 0, Do

I ' I ' ~<t><I><JoI JD'
pc,.
l-INPUT
o "'OU1PUT

RD_

\YR-

MODE 2 AND MODE 1 (OUTPUT)

PC, -INTRA

OBF ...

CONTROL WORD
ACKA

D, 0, Os 04 0 3 02 0, 00

I ' I ' 1XJXL'8H D C><l PC, Sri ...

PC, IBFA

PB,·PBO

PC, OBF.

AD PC, ACKB

Wii PC, INTRa

82C55A

MODE 2 AND MODE 0 (OUTPUT)

CONTROL WORD

D, 0, Os 0. 0 3 02 0, Do

,. 1'@¢<JD1Dj"'
pc,.
l-INPUT
0 .. OUTPUT

3

PC24 -f--- 110

MODE 2 AND MODE 1 (INPUT)

PC, INTR ...

PA,·pAo

PC, DBF.

CONTROL WORD

0, D6 DS D.. D3 02 D, 00

I ' I • IXIX])<)1/ , IX! PC, STB ...

PC, IBfA

PB7·PBn

PC, m.
RO_ PC, IIF,

WR_ PC, INTRa

231256-21

Figure 16. MODE % Combinations

6-342

82C55A

Mode Definition Summary

MODE 0 MODE 1

IN OUT IN OUT

PAo IN OUT IN OUT
PA1 IN OUT IN OUT
PA2 IN OUT IN OUT
PA3 IN OUT IN OUT
PA4 IN OUT IN OUT
PA5 IN OUT IN OUT
PA6 IN OUT IN OUT
PA7 IN OUT IN OUT

PBo IN OUT IN OUT
PB1 IN OUT IN OUT
PB2 IN OUT IN, OUT
PB3 IN OUT IN OUT
PB4 IN OUT IN OUT
PB5 IN OUT IN OUT
PB6 IN OUT IN OUT
PB7 IN OUT IN OUT

PCo IN OUT INTRs INTRs
PC1 IN OUT IBFs OBFs
PC2 IN OUT STBs ACKS
PC3 IN OUT INTRA INTRA
PC4 IN OUT STBA 1/0
PC5 IN OUT IBFA 1/0
PC6 IN OUT 1/0 ACKA
PC7 IN OUT 1/0 OBFA

Special Mode Combination Considerations

There are several combinations of modes possible.
For any combination, some or all of the Port Clines
are used for control or status. The remaining bits are
either inputs or outputs as defined by a "Set Mode"
command.

During a read of Port C, the state of all the Port C
lines, except the ACK and STB lines, will be placed
on the data bus. In place of the ACK and STB line
states, flag status will appear on the data bus in the
PC2, PC4, and PCG bit positions as illustrated by
Figure 18.

Through a "Write Port C" command, only the Port C
pins programmed as outputs in a Mode 0 group can
be written. No other pins can be affected by a "Write
Port C" command, nor can the interrupt enable flags
be accessed. To write to any Port C output pro­
grammed as an output in a Mode 1 group or to

MODE 2

GROUP A ONLY

~

~

~

~

~

~

~

~

-
-
-
-
-
-
-
-
1/0
1/0
1/0

INTRA
STBA
IBFA

ACKA
OBFA

MODEO
OR MODE 1
ONLY

change an interrupt enable flag, the "Set/Reset Port
C Bit" command must be used.

With a "Set/Reset Port C Bit" command, any Port C
line E!Q9!ammed as an output (including INTR, IBF
and OBF) can be written, or an interrupt enable flag
can be either set or reset. Port C lines programmed
as inputs, including ACK and STB lines, associated
with Port C are not affected by a "Set/Reset Port C
Bit" command. Writin9...!Q. the corresponding Port C
bit positions of the ACK and STB lines with the
"Set/Reset Port C Bit" command will affect the
Group A and Group B interrupt enable flags, as illus­
trated in Figure 18.

Current Drive Capability

Any output on Port A, B or C can sink or source 2.5
mAo This f~ature allows the 82C55A to directly drive
Darlington type drivers and high-voltage displays
that require such sink or source current.

6-343

inter 82C55A

Reading Port C Status

In Mode 0, Port C transfers data to or from the pe­
ripheral device. When the 82C55A is programmed to
function in Modes 1 or 2, Port C generates or ac­
cepts "hand-shaking" signals with the peripheral de­
vice. Reading the contents of Port C allows the pro­
grammer to test or verify the "status" of each pe­
ripheral device and change the program flow ac­
cordingly.

There is no special instruction to read the status in­
formation from Port C. A normal read operation of
Port C is executed to perform this function.

Interrupt Enable Flag Position

INTEB PC2
INTEA2 PC4
INTEA1 PC6

INPUT CONI'IGURATION
07 06 05 04 03 02 01 DO

11/0 11/0 IIBFA IINTEA I INTRA IINTEs IIBFs IINTRs I
I I I

GROUPA GROUPB

OUTPUT CONFIGURATIONS
07 06 05 04 03 02 01 DO

I OBFA IINTEA 11/0 11/0 I INTRA IINTEs I OBFs IINTRs I
I I I

GROUPA GROUPB

Figure 17a. MODE 1 Status Word Format

07 06 05 04 03 02 01 DO

IOBFAIINTE111BFAIINTE211NTRAI
I I

GROUP A GROUPB
(Defined Sy Mode 0 or Mode 1 Selection)

Figure 17b. MODE 2 Status Word Format

Alternate Port C Pin Signal (Mode)

ACKB (Output Mode 1) or STBB (Input Mode 1)
STBA (Input Mode 1 or Mode 2)
ACKA (Output Mode 1 or Mode 2

Figure 18. Interrupt Enable Flags in Modes 1 and 2

6-344

inter 82C55A

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias O°C to + 70°C
Storage Temperature - 65°C to + 150°C
Supply Voltage - 0.5 to + B.OV
Operating Voltage + 4V to + 7V
Voltage on any Input. GND - 2V to + 6.5V
Voltage on any Output .. GND-0.5VtoVee + 0.5V
Power Dissipation 1 Watt

D.C. CHARACTERISTICS
TA = O°C to 70°C, Vee = +5V ±10%, GND = OV

Symbol Parameter

VIL Input Low Voltage

VIH Input High Voltage

VOL Output Low Voltage

VOH Output High Voltage

'Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for
extended periods may affect device reliability.

NOTICE Specifications contained within the
following tables are subject to change.

Min Max Units Test Conditions

-0.5 O.B V

2.0 Vee V

0.4 V IOL = 2.5 mA

3.0 V IOH = -2.5mA
Vee - 0.4 V IOH = -100 /LA

IlL Input Leakage Current ±1 /LA VIN = Vee to OV
(Note 1)

IOFL Output Float Leakage Current ±10 /LA VIN = Vee to OV
(Note 2)

IDAR Darlington Drive Current ±2.5 mA Ports A, B, C
Rext = 7500
Vext = 1.5V

IpHL Port Hold Low Leakage Current +50 +300 /LA VOUT = 1.0V
Port A only

IpHH Port Hold High Leakage Current -50 -300 /LA VOUT = 3.0V
Ports A, B, C

IpHLO Port Hold Low Overdrive Current -350 /LA VOUT = O.BV

IpHHO Port Hold High Overdrive Current +350 /LA VOUT = 3.0V

lee Vee Supply Current 10 mA (Note 3)

leeSB Vee Supply Current-Standby 10 /LA Vee = 5.5V
VIN = Vee or GND
Port Conditions
If lIP = Open/High

O/P = Open Only
With Data Bus =

High/Low
CS = High
Reset = Low

Pure Inputs =
Low/High

NOTES:
1. Pins A1, Ao, es, WR, RD, Reset.
2. Data Bus; Ports B, e.
3. Outputs open.

6-345

82C55A

CAPACITANCE
TA = 25°C, Vee =GND = OV

Symbol Parameter Min Max Units Test Conditions

CIN Input Capacitance 10 pF Unmeasured pins

ClIO 1/0 Capacitance 20 pF returned to GND

A.C. CHARACTERISTICS
TA = 0° to 70°C, Vee = +5V ±10%, GND = OV

BUS PARAMETERS

READ CYCLE

Symbol Parameter
82C55A 82C55A-2

Units
Test

Min Max Min Max Conditions

tAR Address Stable Before RD .J, 0 0 ns

tRA Address Hold Time After RD t 0 0 ns

tRR RD Pulse Width 150 150 ns

tRo Data Delay from RD .J, 120 120 ns

tOF RD t to Data Floating 10 75 10 75 ns

tRY Recovery Time between RD/WR 200 200 ns

WRITE CYCLE

Symbol Parameter
82C55A 82C55A-2

Units
Test

Min Max Min Max Conditions

tAW Address Stable Before WR .J, 0 0 ns

tWA Address Hold Time AfterWR t 20 20 ns Ports A & B

20 20 ns PortC

tww WR Pulse Width· 100 100 ns

tow Data Setup Time Before WR t 100 100 ns

two Data Hold Time After WR t 30 30 ns Ports A& B

30 30 ns PortC

6-346

82C55A

OTHER TIMINGS

Symbol Parameter
82C55A 82C55A-2

Units
Test

Min Max Min Max Conditions

tws WA = 1 to Output 350 350 ns

tlR Peripheral Data Before AD 0 0 'ns

tHR Peripheral Data After AD 0 0 ns

tAK ACK Pulse Width 200 200 ns

tST STB Pulse Width 100 100 ns

tps Per. Data Before STB High 20 20 ns

tpH Per. Data After STBHigh 50 50 ns

tAD ACK = 0 to Output 175 175 ns

tKD ACK = 1 to Output Float 20 250 20 250 ns

twos WA = 1 to OBF = 0 150 150 ns

tAOS ACK = OtoOBF = 1 150 150 ns

tSIS STB = 0 to IBF = 1 150 150 ns

tRIS AD = 1 to IBF = 0 150 150 ns

tRIT AD = 0 to INTA = 0 200 200 ns

tSIT STB = 1 to INTA = 1 150 150 ns

tAIT ACK = 1 to INTA = 1 150 150 ns

tWIT WA = 0 to INTA = 0 200 200 ns see note 1

tRES Aeset Pulse Width 500 500 ns see note 2

NOTE:
1. INTR i may occur as early as WR J. .
2. Pulse width of initial Reset pulse after power on must be at least 50 ,..Sec. Subsequent Reset pulses may be 500 ns
minimum.

6-347

intJ 82C55A

WAVEFORMS

MODE 0 (BASIC INPUT)

' ..
-<- ~~

I---tIR - I--'H·-·I
INPUT

~tA.R~ -tRA~!

CS, A1,AO

--------~.". --
'DF

231256-22

MODE 0 (BASIC OUTPUT)

'ww----

~ <- 1'-
r---'ow 'wD--I

'AW 'wA

CS.A1,AO

OUTPUT

1------ 'wo--'

231256-23

6-348

inter

WAVEFORMS (Continued)

MODE 1 (STROBED INPUT)

18F

INTR

INPUT FROM
PERIPHERAL

--,-tsr--

-''''1)
tSIT

1--·,,-----

MODE 1 (STROBED OUTPUT)

INTR
_twiT

OUTPUT

82C55A

~ I~"IB_>

1 "7 /

I--'PH-I

231256-24

231256-25

6-349

WAVEFORMS (Continued)

MODE 2 (BIDIRECTIONAL)

INTR

DATA FROM
8080 TO 8255

82C55A

-tAK _

----------------~~------------+-, /1,----+----------

_IST _

----------------~ r-~--~----~-------------m

IBF

PERIPHERAL
BUS ----------

Note:

DATA FROM
PERIPHERAL TO 8255

DATA FROM
8255 TO 8080

231256-26

Any sequence where WR occurs before ACK AND STS occurs before RD is permissible.
(INTR = ISF. MASK. STS • RD + OSF • MASK • ACK • WR)

WRITE TIMING

An·,· cs __ ,-,.. _______ -+-'f.'-___ _

DATA BUS
-----------J·1"--~--_+----f~---

231256-27

A.C. TESTING INPUT, OUTPUT WAVEFORM

2.'
2.0 2.0

READ TIMING

AO.,.CS----x. ___ ~-~~ '-____ _
-~ tAR

RD

HIGH IMPEDANCE

231256-28

A.C. TESTING LOAD CIRCUIT

:> TEST POINTS < YEn*

0.8 0.8
0.45

231256-29

A.C. Testing Inputs Are Driven At 2.4V For A Logie 1 And 0.45V
For A Logic 0 Timing Measurements Are Made At 2.0V For A
Logie 1 And 0.8 For A Logie O.

6-350

231256-30

'VEXT Is Set At Various Voltages During Testing To Guarantee
The Specification. CL Includes Jig Capacitance.

8256AH
MULTIFUNCTION MICROPROCESSOR

SUPPORT CONTROLLER

• Programmable Serial Asynchronous
Communications Interface for 5·, 6·, 7·,
or 8·Bit Characters, 1, 1 Y2, or 2 Stop
Bits, and Parity Generation

• On·Board Baud Rate Generator
Programmable for 13 Common Baud
Rates up to 19.2K Bits/second, or an
External Baud Clock Maximum of 1 M
Bit/second

• Five 8·Bit Programmable Timer/
Counters; Four Can Be Cascaded to
Two 16·Bit Timer/Counters

• Two 8·Bit Programmable Parallel I/O
Ports; Port 1 Can Be Programmed for
Port 2 Handshake Controls and Event
Counter Inputs

• Eight-Level Priority Interrupt Controller
Programmable for 8085 or iAPX 86,
iAPX 88 Systems and for Fully Nested
Interrupt Capability

• Programmable System Clock to 1 x ,
2 x , 3 x , or 5 x 1.024 MHz

The Intel® 8256AH Multifunction Universal Asynchronous Receiver-Transmitter (MUART) combines five com­
monly used functions into a single 40-pin device. It is designed to interface to the 8086/88, iAPX 1861188,
and 8051 to perform serial communications, parallel 1/0, timing, event counting, and priority interrupt func­
tions. All of these functions are fully programmable through nine internal registers. In addition, the five
timerlcounters and two parallel 1/0 ports can be accessed directly by the microprocessor.

ADO-AD4

OBS-OB7

cs-......J---'
iiii
WR

ALE

RESET

INT

Figure 1. MUART Block Diagram

ADO Vee
ADt pta

AD2 Pl1

AD3 Pt2

AD4 Pt3

DB5 Pt'

DBS Pt5

DB7 PtS

ALE Pt7

iiii P20

ViR P2t

RESET P22

cs P23

INTA P24

RxD INT P25

TxD EXTINT P2S

RxC ClK P27
TiC
CTS

RxC TxD

RxD TxC

GND CTS

Figure 2. MUART Pin Configuration

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Palent Licenses are Implied

., INTEL CORPORATION t984 6-351 September 1984
ORDER NUMBER: 230759-002

Symbol
ADO-AD4
DBS-DB?

ALE

RD

WR

RESET

CS

INTA

INT

EXTINT

ClK

RxC

RxD

GND

Pin
l-S
6-8

9

10

11

12

13

14

lS

16

17

18

19

20

Type
I/O

o

I/O

PS

8256AH

Table 1. Pin Description

Name and Function
ADDRESS/DATA: Three-state address/data lines which interface to the lower
8 bits of the microprocessor's multiplexed address/data bus. The S-bit
address is latched on the falling edge of ALE. In the 8-bit mode, ADO-AD3
are used to select the proper register, while AD1-AD4 are used in the 16-bit
mode. AD4 in the 8-bit mode is ignored as an address, while ADO in the
16-bit mode is used as a second chip select, active low.

ADDRESS LATCH ENABLE: latches the S address lines on ADO-AD4 and CS on the
falling edge.

READ CONTROL: When this signal is low, the selected register is gated
onto the data bus.

WRITE CONTROL: When this signal is low, the value on the data bus is
written into the selected register.

RESET: An active high pulse on this pin forces the chip into its initial state.
The chip remains in this state until control information is written.

CHIP SELECT: A low on this signal enables the MUART. It is latched with
the address on the falling edge of ALE, and ro5 and WR have no effect
unless CS was latched low during the ALE cycle.

INTERRUPT ACKNOWLEDGE: If the MUART has been enabled to respond
to interrupts, this signal informs the MUART that its interrupt request is being
acknowledged by the microprocessor. During this acknowledgement the
MUART puts an RSTn instruction on the data bus for the 8-bit mode or
a vector for the 16-bit mode.

INTERRUPT REQUEST: A high signals the microprocessor that the MUART
needs service.

EXTERNAL INTERRUPT: An external device can request interrupt service
through this input. The inpui is level sensitive (high), therefore it must be
held high until an iiiifA occurs or the interrupt address register is read.

SYSTEM CLOCK: The reference clock for the baud rate generator and the timers.

RECEIVE CLOCK: If the baud rate bits in the Command Register 2 are all 0,
this pin is an input which clocks serial data into the RxD pin on the rising
edge of RxC. If baud rate bits in Command Register 2 are programmed from
1-0FH, this pin outputs a square wave whose rising edge indicates when
the data on RxD is being sampled. This output remains high during start,
stop, and parity bits.

RECEIVE DATA: Serial data input

GROUND: Power supply and logic ground reference.

6-352 230759-002

Symbol
CTS

TxC

TxD

P27-P20

P17-P10

8256AH

Table 1. Pin Description (continued)

Pin Type Name and Function
21 I CLEAR TO SEND: This .J!!put enables the serial transmitter:...!!.. 1, 1.5, or 2

stop bits are selected CTS is level sensitive. As long as CTS is low, any
character loaded into the transmitter buffer register will be transmitter serially.
A single negative going pulse causes the transmission of a single character previously
loaded into the transmitter buffer register. If a baud rate from 1-0FH is
selected, CTS must be low for at least 1132 of a bit, or it will be ignored. If
the transmitter buffer is empty, this pulse will be ignored. If this pulse
occurs during the transmission of a character up to the time where Y2 the first
(or only) stop bit is sent out, it will be ignored. If it occurs afterwards, but
before the end of the stop bits, the next character will be transmitted
immediately following the current one. If CTS is still high when the transmitter
register is sending the last stop bit, the transmitter will enter its idle state
until the next high-to-Iow transition on CTS occurs. If 0.75 stop bits is
chosen, the eTS input is edge sensitive. A negative edge on eTS results in the
immediate transmission of the next character. The length of the stop bits is
determined by the time interval between the beginning of the first stop bit and
the next negative edge on CTS. A high-to-Iow transition has no effect if the
transmitter bulfer is empty or if the time interval between the beginning of the
stop bit and next negative edge is less than 0.75 bits. A high or a low level
or a low-to-high transition has no effect on the transmitter for the 0.75 stop bit mode.

22 1/0 TRANSMIT CLOCK: If the baud rate bits in command register 2 are all set
to 0, this input clocks data out of the transmitter on the falling edge. If baud
rate bits are programmed for 1 or 2, this input permits the user to provide a
32x or 64x clock which is used for the receiver' and transmitter. If the baud rate
bits are programmed for 3-0FH, the internal transmitter clock is output. As an
output it delivers the transmitter clock at the selected bit rate. If 1Y2 or 0.75
stop bits are selected, the transmitter divider will be asynchronously reset at
the beginning of each start bit, immediately causing a high-to-Iow transition
on TxC. TxC makes a high-to-Iow transition at the beginning of each serial
bit, and a low-to-high transition at the center of each bit.

23 0 TRANSMIT DATA: Serial data output.

24-31 110 PARALLEL 1/0 PORT 2: Eight bit general purpose 1/0 port. Each nibble (4 bits)
of tliis port can be either an input or an output. The outputs are latched whereas
the input signals are not. Also, this port can be used as an 8-bit input or output
port when using the two-wire handshake. In the handshake mode both inputs
and outputs are latched.

32-39 1/0 PARALLEL I/O PORT 1: Each pin can be programmed as an input or an output
to perform general purpose 110. All outputs are latched whereas inputs are
not. Alternatively these pins can serve as control pins which extend the
functional spectrum of the chip.

40 PS POWER: +5V power supply.

6-353 230759-002

inter 8256AH

FUNCTIONAL DESCRIPTION

The 8256AH Multi-Function Universal Asynchronous
Receiver-Transmitter (MUART) combines five com­
monly used functions into a single 40-pin device. The
MUART performs asynchronous serial communica­
tions, parallel I/O, timing, event counting, and inter­
rupt control. For detailed application information, see
Intel Ap Note #153, Designing with the 8256.

Serial Communications

The serial communications portion of the MUART
contains a full-duplex asynchronous receiver­
transmitter (UART). A programmable baud rate
generator is included on the MUART to permit a varie­
ty of operating speeds without external components.
The UART can be programmed by the CPU for a
variety of character sizes, parity generation and detec­
tion, error detection, and start/stop bit handling. The
receiver checks the start and stop bits in the center
of the bit, and a break halts the reception of data. The
transmitter can send breaks and can be controlled
by an external enable pin ..

Parallel 110

The MUART includes 16 bits of general purpose
parallel I/O. Eight bits (Port 1) can be individually
changed from input to output or used for special I/O
functions. The other eight bits (port 2) can be used
as nibbles (4 bits) or as bytes. These eight bits also
include a handshaking capability using two pins on
Port 1.

Counter/Timers

There are five 8-bit counter/timers on the MUART:
The timers can be programmed to use either a 1 kHz
or 16 kHz clock generated from the system clock.
Four of the 8-bit counter/timers can be cascaded to
two 16-bit counter/timers, and one of the 8-bit
counter/timers can be reset to its initial value by an
external signal.

Interrupts

An eight-level priority interrupt controller can be con­
figured for fully nested or normal interrupt priority.
Seven of the eight interrupts service functions on the
MUART (counter/timers, UART), and one external in­
terrupt is provided which can be used for a particular
function or for chaining interrupt controllers or more
MUARTs. The MUARTwili support 8085 and 8086/88
systems with direct interrupt vectoring, or the MUART
can be polled to determine the cause of the interrupt.
If additional interrupt control capability is needed, the
MUART's interrupt controller can be cascaded into

another MUART, into an Intel 8259A Programmable
Interrupt Controller, or into the interrupt controller of
the iAPX 186/188 High-Integration Microprocessor.

INITIALIZATION

In general the MUART's functions are independent
of each other and only the registers and bits
associated with a particular function need to be in­
itialized, not the entire chip. The command sequence
is arbitrary since every register is directly addressable;
however, Command Byte 1 must be. loaded first. To
put the device into a fully operational condition, it is
necessary to write the following commands:

Command byte 1
Command byte 2
Command byte 3

Mode byte
Port 1 control
Set Interrupts

The modification register may be loaded if required
for special applications; normally this operation is noi
necessary. The MUART should be reset before in­
itialization. (Either a hardware or a software reset will
do.)

INTERFACING

This section describes the hardware interface bet­
ween the 8256 MUART and the 80186
microprocessor. Figure 3 displays the block diagram
for this interface. The MUART can be interfaced to
many other microprocessors using these basic
principles.

In all cases the 8256 will be connected directly to the
CPU's multiplexed address/data bus. If latches or
data bus buffers are used in a system, the MUART
should be on the microprocessor side of the ad­
dress/data bus. The MUART latches the address in­
ternally on the falling edge of ALE. The address con­
sists of Chip Select (CS) and four address lines. For
8-bit microprooessors, ADO-AD3 are the address lines.
For 16-bit microprocessors, AD1-AD4 are the address
lines; ADO is used as a second chip select which is
active low. Sinoe chip select is internally latched along
with the address, it does not have to remain active
during the entire instruction cycle. As long as the chip
select setup and hold times are met, it can be deriv­
ed from multiplexed address/data lines or multiplex­
ed address/status lines. When the 8256 is in the 16-bit
mode, AO serves as a second chip select. As a result
the MUART's internal registers will all have even ad­
dresses since AO must be zero to select the device.
Normally the MUART will be placed on the lower data
byte. If the MUART is placed on the upper data byte.

6-354 230759-002

inter 8256AH

Vee 16 MHz

n rDl
X x RESET

1 2 AD
RES WR

J
INTO

INTAO
ALE

+5V- SRDV DT/R - ~
1 STB

DEN - 8282
NMI lATCH ADDRESS ,)

y .r ADo-15 v ADDR/DATA
(2) OE

HOLD + - ~ pcso
80186

!2J!6
(16) TRCVR DATA ri CLOCK d

~0E(2) v GENERATOR

0-
f

ALE INTA INT WR RD RESET ClK
(8) ADO_4

8256
PORT 1 (8)

y

°5-7 PORT 2 (8)
CS CTS TxD RxD TxC RxC EXTINT

! . -SERIAL 1/0

Figure 3_ 80186/8256 Interface

the internal registers will be 512 address locations
apart and the chip would occupy an 8 K word address
space.

DESCRIPTION OF THE REGISTERS

The following section will provide a description of the
registers and define the bits within the registers where
appropriate. Table 2 lists the registers and their
addresses.

Command Register 1

I L1 I LO S1 so I BRKII BIT I I 8086 I FRO I
(OR) (OW)

FRO - Timer Frequency Select

This bit selects between two frequencies for the five
timers. If FRO = 0, the timer input frequency is 16
kHz (62.5/As). If FRO = 1, the timer input frequency
is 1 KHz (1 ms). The selected clock frequency is
shared by all the counter/timers enabled for timing;
thus, all timers must run with the same time base.

8086 - 8086 Mode Enable

This bit selects between 8085 mode and 8086/8088
mode. In 8085 mode (8086 = 0), AO to A3 are used
to address the internal registers, and an RSTn instruc­
tion is generated in response to the first INTA. In
In 8086 mode (8086 = 1), A1 to A4 are used to ad­
dress the internal registers, and AO is used as an ex­
tra chip select (AO must equal zero to be enabled).
The response to INTA is for 8086 interrupts where
the first INTA is ignored, and an interrupt vector (40H
to 47H is placed on the bus in response to the
second INTA.

BITI - Interrupt on Bit Change

This bit selects between one of two interrupt sources
on Priority Level 1, either CounterlTimer 2 or Port 1
P17 interrupt. When this bit equals 0, CounterlTimer
2 will be mapped into Priority Level 1. If BITI equals
o and Level 1 interrupt is enabled, a transition from
1 to 0 in Counter/Timer 2 will generate an interrupt
request on Level 1. When BITI equals 1, Port 1 P17
external edge triggered interrupt source is mapped
into Priority Level 1. In this case if Level 1 is en­
abled, a low-te-high transition on P17 generates an
interrupt request on Level 1.

6-355 230759-002

L11 LOI

Read Registers

8256AH

Table 2. MUART Registers

8085 Mode: AD3 AD2 AD1 ADO
8086 Mode: AD4 AD3 AD2 AD1

Write Registers .

S1 I so I BRKII BITI 180861 FRO I 0 o 0 0 I L1 I LO I S1 I SO I BRKII BITlla0861 FRO I
Command 1 Command 1

I PENI EP I C1 I CO I B31 B2 I B1 I BO I 0 o 0 1 I PEN I EP I C1 I CO I B3 I B2 I B1 I BO I
Command 2 Command 2

I 0 I RxE I IAE I NIE I 0 ISBRKITBRKI 0 I 0 0 o I SET I RxE I IAE I NIE I END ISBR~TBR~ RST I
Command 3 Command 3

I T351 T241 T5C I CT31 CT21 P2C21 P2C11 P2coI 0 0 I T351 T241 T5C I CT31 CT21 P2C21 P2C11 P2coI
Mode Mode

I P171 P161 P151 P141 P131 P121 P11 I P10 I 0 0 0 I P171 P161 P151 P141 P131 P121 P11 I P10 I
Port 1 Control Port 1 Control

I L7 I L6 I L5 I L4 I L31 L2 I L1 I LO I 0 o 1 I L7 I L6 I L5 I L4·1 L3 I L2 I L 1 1 LO 1
Interrupt Enable Set Interrupts

I 07 1 06 1 05 I 04 I 03 I 02 I .01 I DO I 0 o lul~I~lul~I~IL1ILOI
Interrupt Address Reset Interrupts

I 07 I 06 1 05 I 04 I 03 I 02 I 01 I DO I 0 1071001~1~loolml~lool
Receiver Buffer Transmitter Buffer

I 07 I 06 I 05 I 04 I 03 I 02 I 01 I DO I 1 o 0 0 I 07 I 06 I 05 I 04 I 03 I 02 I 01 I 00 I
Port 1 Port 1

[07I00I~I~loolmIMlool o 0 1 I 07 I 06 I 05 1 04 I 03 I 02 I 01 1 DO 1
Port 2 Port 2

I 07 I 06 I 05 I 04 1. 03 I 02 I 01 I DO I 1 0 o 107lool~I~loolml~lool
Timer 1 Timer 1

I 07 I 06 I 05 I 04, I 03 I 02 I 01 I DO I 1 0 1 07 I 06 I 05 I 04 I 03 1 02 I 01 I DO 1
Timer 2 Timer 2

I 07 I 06 I 05 I 04 I 03 1 02 1 01 I DO I o 0 I 07 I 06 1 05 1 04 I 03 1 02 1 01 I DO 1
Timer 3 Timer 3

I 07 I 00 I 05 I 04 I 03 I 02 1 01 I DO 1 1 o I 07 I 06 I 05 I 04 I 03 I 02 1 01 I DO 1
Timer 4 Timer 4

I 07 I 06 I 05 I 04 I 03 I 02 I 01 1 DO 1 1 0 1 07 1 06 1 05 1 04 1 03 I 02 I 01 I DO 1
Timer 5 Timer 5

liNT I RBF I TBE I TRE I BO I PE I OE I FE I 1 1 ,I 0 I RS4 I RS3 I RS2 I RS1 I RSO ITME 10SC 1
Status Modification

6-;356 230759-002

8256AH

BRKI - Break-In Detect Enable

If this bit equals 0, Port 1 P16 is a general purpose
1/0 port. When BRKI equals 1, the Break-In Detect
feature is enabled on Port 1 P16. A Break-In condi­
tion is present on the transmission line when it is
forced to the start bit voltage level by the receiving
station. Port 1 P16 must be connected externally to
the transmission line in order to detect a Break-In.
A Break-In is polled by the MUART during the
transmission of the last or only stop bit of a character.

A Break-In Detect is OR-ed with Break Detect in Bit
3 of the Status Register. The distinction can be made
through the interrupt controller. If the transmit and
receive interrupts are enabled, a Break-In will
generate an interrupt on Level 5, the transmit inter­
rupt, while Break will generate an interrupt on Level
4, the receive interrupt.

SO, S1 - Stop Bit Length

S1 SO Stop Bit Length

0 0 1

0 1 1.5

1 0 2

1 1 0.75

The relationship of the number of stop bits and the
function of input CTS is discussed in the Pin Descrip­
tion section under "CTS".

LO L 1 - Character Length ,
L1 LO Character Length

0 0 8

0 1 7

1 0 6

1 1 5

Command Register 2

IPEN! EP ! C1 ! CO B3 82 B1 BO

(1 R) (1W)

Programming bits o ... 3with values from 3H to FH
enables the internal baud rate generator as a com­
mon clock source for the transmitter and receiver and
determines its divider ratio.

Programming bits 0 ... 3 with values of 1 H or 2H
enables input TxC as a common clock source for the
transmitter and receiver. The external clock must pro-

vide a frequency of either 32x or 64x the baud rate.
The data transmission rates range from o ... 32
Kbaud.

If bits o ... 3 are set to 0, separate clocks must be
input to pin RxC for the receiver and pin TxC for the
transmitter. Thus, different baud rates can be used
for transmission and reception. In this case,
prescalers are disabled and the input serial clock fre­
quency must match the baud rate. The input serial
clock frequency can range from 0 to 1.024 MHz.

6-357

BO, B1, B2, B3 - Baud Rate Select

These four bits select the bit clock's source, sam­
pling rate, and serial rate for the internal baud rate
generator.

Baud Sampling
B3 B2 B1 BO Rate Rate

Q Q 0 0 TxC, Rxe: 1

0 0 0 1 IxC/64 64

0 0 1 0 TxC/32 32

0 0 1 1 19200 32

0 1 0 0 9600 64

0 1 0 1 4800 64

0 1 1 0 2400 64

0 1 .1 1 1200 64

1 0 0 0 600 64

1 0 0 1 300 64

1 0 1 0 200 64

1 0 1 1 150 64

1 1 0 0 110 64

1 1 0 1 100 64

1 1 1 0 75 64

1 1 1 1 50 64

The following table gives an overview of the function
of pins TxC and RxC:

Bits 3 to
o (Hex_) TxC RxC

0 Input: 1 x baud I Input: 1 x baud
rate clock for the rate clock for the
transmitter receiver

1, 2 Input: 32 x or 64 x Output: receiver bit
baud rate for trans- clock with a low-to-
mitter and receiver high transition at

I data bit sampling
1 time. Otherwise:
h~h level

3 to F Output: baud rate I Output: as above
clock of the
transmitter J

230759-002

8256AH

As an output, AxC outputs a low-to-high transition at
sampling time of every data bit of a character. Thus,
data can be loaded, e.g., into a shift register exter­
nally. The transition occurs only if data bits of a
character are present. It does not occur for start, pari­
ty, and stop bits (RxC = high).

As an output, TxC outputs the internal baud rate clock
of the transmitter. There will be a high-to-Iow transi­
tion at every beginning of a bit.

CO, C1 - System Clock Prescaler
. (Bits 4, 5)

Bits 4 and 5 define the system clock prescaler divider
ratio. The internal operating frequency of 1.024 MHz
is derived from the system clock. .

C1 CO Divider Ratio

0 0 5

0 1 3

1 0 2

1 1 1

EP - Even Parity (Bit 6)

EP = 0: Odd parity
EP = 1: Even parity

Clock at Pin
ClK

5.12 MHz

3.072 MHz

2.048 MHz

1.024 MHz

PEN - Parity Enable (Bit 7)

Bit 7 enables parity generation and checking.

PEN = 0: No parity bit
PEN = 1: Enable parity bit

The parity bit according to Command Register 2 bit
6 (see above) is inserted between the last data bit of
a character and the first or only stop bit. The parity
bit is checked during reception. A false parity bit
generates an error indication in the Status Register
and an Interrupt Request on Level 4.

Command Register 3

I SET I RxE IIAE I NIW I END I SBRK I TBRK I RST I
(2R) (2W)

Command Register 3 is different from the first two
registers because it has a bit set/reset capability.
Writing a byte with Bit 7 high sets any bits which were
also high. Writing a byte with Bit 710w resets any bits
which were high. If any bit 0-6 is low, no change oc-

curs to that bit. When Command Register 3 is read,
bits 0, 3, and 7 will always be zero.

RST - Reset

If RST is set, the following events occur:

1. All bits in the Status Register except bits 4 and 5
are cleared, and bits 4 and 5 are set.

2. The Interrupt Enable, Interrupt Request, and In­
terrupt Service Registers are cleared. Pending re­
quests and indications for interrupts in service will
be cancelled. Interrupt signal INT will go low.

3. The receiver and transmitter are reset. The
transmitter goes idle (TxD is high), and the receiver
enters start bit search mode.

4. If Port 2 is programmed for handshake mode, IBF
and OBF are reset high.

RST does not alter ports, data registers or command
registers, but it halts any operation in progress. RST
is automatically cleared.

RST = 0 has not effect. The reset operation triggered
by Command Register 3 is a subset of the hardware
reset.

TBRK - Transmit Break

The transmission data output TxD will be set low as
soon as the transmission of the previous character
has been finished. It stays low until TBRK is cleared.
The state of CTS is of no significance for this
operation. As long as break is active, data transfer
from the Transmitter Buffer to the Transmitter
Register will be inhibited. As soon as TBRK is reset,
the break condition will be deactivated and the
transmitter will be re-enabled.

SBRK - Single Character Break

This causes the transmitter data to be set low for one
character including start bit, data bits, parity bit, and
stop bits. SBRK is automatically cleared when time
for the last data bit has passed. It will start after the
character in progress completes, and will delay the
next data transfer from the Transmitter Buffer to the
Transmitter Register until TxD returns to an idle
(marking) state. If both TBRK and SBRK are set,
break will be set as long as TBRK is set, but SBRK
will be cleared after one character time of break. If
SBRK is set again, it remains set for another
character. The user can send a definite number of
break characters in this manner by clearing TBRK
after setting SBRK for the last character time.

6-358 230759-002

inter 8256AH

END - End of Interrupt

If fully nested interrupt mode is selected, this bit reset
the currently served interrupt level in the Interrupt Ser­
vice Register. This command must occur at the end
of each interrupt service routine during fully nested
interrupt mode. END is automatically cleared when
the Interrupt Service Register (internal) is cleared.
END is ignored if nested interrupts are not enabled.

NIE - Nested Interrupt Enable
When NIE equals 1, the interrupt controller will
opera~e in the nested interrupt mode. When NIE
equals 0, the interrupt controller will operate in the
normal interrupt mode. Refer to the "Interrupt con­
troller" section of AP-153 under "Normal Mode"
and "Nested Mode" for a detailed description of
these operations.

IAE - Interrupt Acknowledge Enable

This bit enables an automatic response to INTA. The
particular response is determined by the 8086 bit in
Command Register 1.

RxE - Receive Enable

This bit enables the serial receiver and its associated
status bits in the status register. If this bit is reset,
the serial receiver will be disabled and the receive
status bits will not be updated.

Note that the detection of break characters remains
enabled while the receiver is disabled; i.e., Status
Register Bit 3 (BD) will be set while the receiver is
disabled whenever a break character has been
recognized at the receive data input RxD.

SET - Bit Set/Reset

If this bit is high during a write to Command Register
3, then any bit marked by a high will set. If this bit
is low, then any bit marked by a high will be cleared.

Mode Register

I T351 T241 T5C I CT31 CT21 P2C21 P2C1 I P2CO I
(3R) (3W)

If test mode is selected, the output from the internal
baud rate generator is placed on bit 4 of Port 1 (pin
35).

To achieve this, it is necessary to program bit 4 of
Port 1 as an output (Port 1 Control Register Bit P14 = 1), and to program Command Register 2 bits B3
- BO with a value;;' 3H.

P2C2, P2C1, P2CO - Port 2 Control
Direction

P2C2 P2C1 P2CO Mode Upper Lower
0 0 0 Nibble Input Input
0 0 1 Nibble Input Output
0 1 0 Nibble Output Input

0 1 1 Nibble Output Output
1 0 0 Byte Input

Handshake
1 0 1 Byte Output

Handshake
1 1 0 DO NOT USE
1 1 1 Test

NOTE:
If Port 2 is operating in handshake mode, Interrupt Level 7
is not available for Timer 5. Instead it is assigned to Port 2
handshaking. .

CT2, CT3 - Gtl~lIltp.f!Timp.r Mode

Bit 3 and 4 defines the mode of operation of event
counter/timers 2 and 3 regardless of its use as a single
unit or as a cascaded one.

If CT2 or CT3 are high, then counter/timer 2 or 3
respectively is configured as an event counter on bit
2 or 3 respectively of Port 1 (pins 37 or 36). The event
counter decrements the count by one on each low­
to-high transition of the external input. If CT2 or CT3
is low, then the respective counter/timer is configured
as a timer and the Port 1 pins are used for parallel 110.

T5C - Timer 5 Control
If T5C is set, then Timer 5 can be preset and started
by an external signal. Writing to the Timer 5 register
loads the Timer 5 save register and stops the timer.
A high-to-Iow transition on bit 5 of Port 1 (pin 34) loads
the timer with the saved value and starts the timer.
The next high-to-Iow transition on pin 34 retriggers
the timer by reloading it with the initial value and con­
tinues timing.

Following a hardware reset, the save register is reset
to OOH and both clock and trigger inputs are dis­
abled. Transferring an instruction with T5C = 1
enables the trigger input; the save register can now
be loaded with an initial value. The first trigger pulse
causes the initial value to be loaded from the save
register and enables the counter to count down to
zero.

When the timer reaches zero it issues an interrupt
request, disables its interrupt level and continues
counting. A subsequent high-to-Iow transition on pin
5 resets Timer 5 to its initial value. For another timer
interrupt, the Timer 5 interrupt enable bit must be set

. again.

6-359 230759-002

inter 8256AH

T35, T24 - Cascade Timers

These two bits cascade Timers 3 and 5 or 2 and 4;
Timers 2 and 3 are the lower bytes, while Timers 4
and 5 are the upper bytes. If T5C is set, then both
Timers 3 and 5 can be preset and started by an ex·
ternal pulse.

When a high·to·low transition occurs, Timer 5 is preset
to its saved value, But Timer 3 is always preset to all
ones. If either CT2 or CT3 is set, then the correspon·
ding timer pair is a 16·bit event counter.

A summary of the counter/timer controi bits is given
in Table 3.

NOTE:
Interrupt levels assigned to single counters are partly not oc·
cupied if event countersltimers are cascaded. Level 2 will be
vacated if event countersltimers 2 and 4 are cascaded.
Likewise, Level 7 will. be vacated if event countersltimers 3
and 5 are cascaded. '.

Single event countersltimers generate an interrupt request
on the transition from 01 H to OOH, while cascaded ones
generate it on the transition from 0001 H to OOOOH.

Port 1 Control Register

Ip171p161 P151p141 P131 P12 I P11 P10

(4W) (4W)

Each bit in the Port 1 Control Register configures the
direction of the corresponding pin. If the bit is high,
the pin is an output, and if it low the pin is an input.
Every Port 1 pin has another function which is can·
trolled by other registers. If that special function is
disabled, the pin functions as a general I/O pin as
specified by this register. The special functions for
each pin are described below.

Port 10, 11 - Handshake Control

If byte handshake control is enabled for Port 2 by
t.!:!£...Mode Register, then Port 10 is programmed as
STB/ACK handshake-2.Qntrol input, and Port 11 is
programmed as IBF/OBF handshake control output.

If byte handshake mode is enabled foroutput on Port
2 OBF indicates that a character has been loaded

Table 3. Event CounterslTimers Mode of Operation

Event Counter/ Programming
Timer Function (Mode Word) Clock Source

1 a·bit timer - Internal clock

2 a·bit timer T24",,0, CT2=0 Internal clock

a·bit event counter T24=0, CT2= 1 P12 pin 37

2 8-bit timer T35=0, CT3=0 Internal clock

a·bit event counter T35=0, CT3= 1 P13 pin 36

4 8-bit timer T24=0 Internal clock

a·bit timer, T35=0, T5C=0 Internal clock

5 normal'mode

a·bit timer, T35=0, T5C=1 Internal clock
retriggerable mode

2 and 4 16·bit timer T24= 1, CT2=0 Internal clock

cascaded 16·bit event counter T24=1, CT2=1 P12 pin 37

16·bit timer, T35=1, T5C=O, Internal clock
normal mode CT3=0

3 and 5 16·bit event counter, T35=1, T5C=O, P13 pin 36
cascaded normal mode CT3=1

16·bit timer, T35=1, T5C=1, Internal clock
retriggerable mode CT3=O

16·bit event counter, T35=1, T5C=1, P13 pin 36
retriggerable mode CT3=1

6-360 230759·002

8256AH

into the Port 2 output buffer. When an external
device reads the data, it acknowledges this opera­
tion by driving ACK low. OBF is set low by writing to
Port 2 and is reset by ACK.

If b~handshake mode is enabled for input on Port
2, STB is an input. IBF is driven low after STB goes
low. On the rising edge of STB the data from Port 2
is latched.

IBF is reset high when Port 2 is read.

Port 12, 13 - Counter 2, 3 Input

If Timer 2 or Timer 3 is programmed as an event
counter by the Mode Register, then Port 12 or Port
13 is the counter input for Event Counter 2 or 3,
respectively. -

Port 14 - Baud Rate Generator Output
~. __ 1-

"IU~I\

If test mode is enabled by the Mode Register and
Command Register 2 baud rate select is greater than
2, then Port 14 is an output from the internal baud
rate generator.

P14 in Port 1 control register must be set to 1 for the
baud rate generator clock to be output. The baud rate
generator clock is 64 x the serial bit rate except at
19.2Kbps when it is 32 x the bit rate.

Port 15 - Timer 5 Trigger

If TSC is set in the Mode Register enabling a retrig­
gerable timer, then Port 1S is the input which starts
and reloads Timer S.

A high-to-Iow transition on P1S (Pin 34) loads the timer
with the save register and starts the timer.

Port 16 - Break-In Detect

If Break"ln Detect is enabled by BRKI in Command
Register 1, then this input is used to sense a Break­
In. If Port 16 is low while the serial transmitter is sen­
ding the last stop bit, then a Break-In condition is
signaled.

Port 17 - Port Interrupt Source

If BITI in Command Register 1 is set, then a low-to­
high transition on Port 17 generates an interrupt re­
quest on Priority Level 1.

Port 17 is edge triggered.

6-361

Interrupt Enable Register

L7 I L6 I LS I L4 L3 I L2 L1 LO

(SR) (SW=enable,
(6W=disable)

Interrupts are enabled by writing to the Set Interrupts
Register (SW). Interrupts are disabled by writing to
the Reset Interrupts Register (6W). Each bit set by
the Set Interrupts Register (SW) will enable that level
interrupt, and each bit set in the Reset Interrupts
Register (6W) will disable that level interrupt. The user
can determine which interrupts are enabled by
reading the Interrupt enable Register (SR).

Priority
Highest

Lowest

Source

LO Timer 1
L 1 Timer 2 or Port Interrupt
L2 External Interrupt (EXTINT)
L3 Timer 3 or Timers 3 & 5
L4 Receiver Interrupt
LS Transmitter Interrupt
L6 Timer 4 or Timers 2 & 4
L7 Timer S or Port 2 Handshaking

Interrupt Address Register

I 0 I 0 I 0 I D4 I Dpm
I ~

(6R)

o 0

Interrupt Level
Indication

Reading the interrupt address register transfers an
identifier for the currently requested interrupt level
on the system data bus. This identifier is the number
of the interrupt level multiplied by 4. It can be used
by the CPU as an offset address for interrupt handl­
ing. Reading the interrupt address register has the
same effect as a hardware interrupt acknowledge
INTA; it clears the interrupt request pin (I NT) and
indicates an interrupt acknowledgement to the inter­
rupt controller.

Receiver and Transmitter Buffer

Iwlool~I~lool ~ D1 00

(7Ft) (7W)

Both the receiver and transmitter in the MUART are
double buffered. This means that the transmitter and
receiver have a shift register and a buffer register.
The buffer registers are directly addressable by
reading or writing to register seven. After the receiver
buffer is full, the RBF bit in the status register is set.

230759-002

inter 8256AH

Reading the receive buffer dears the RBF status bit.
The transmit buffer should be written to only if the
TBE bit in the status register is set. Bytes wri.tten to
the transmit buffer are held there until the transmit
shift register is empty, assuming eTS is low. If the
transmit buffer and shift register are empty, writing
to the transmit buffer immediately transfers the byte
to the transmit shift register. If a serial character
length is less than 8 bits, the unused most significant
bits are set to zero when reading the receive buffer,
and are ignored when writing to the transmit buffer.

Port 1

I 07 I 06 I 05 04 03 02 01 DO
(8R) (8W)

Writing to Port 1 sets the data in the Port 1 output
latch. Writing to an input pin does not affect the pin,
but the data is stored and will be output if. the direc­
tion of the pin is changed later. If the pin is used as
a control signal, the pin will not be affected, but the
data is stored. Reading Port 1 transfers the data in
Port 1 onto the data bus.

Port 2

I 07 I 06 I 05 I 04 03 02 01 00

(9R) (9W)

Writing to Port 2 sets the data in the Port 2 output
latch. Writing to an input pin does not affect tlie pin,
but it does store the data in the latch. Reading Port
2 puts the input pins onto the bus or the contents of
the output latch for output pins.

Timer 1-5

I 07 I 06 I 05 I 04 03 02 01 00

Reading Timer N puts the contents of the timer onto
the data bus. If the counter changes while RO is low,
the value on the data bus will'not change. If two timers
are cascaded, reading the high-order byte will cause
the low-order byte to be latched. Reading the low­
order byte will unlatch ·them both. Writing to either
timer or decascading them also clears the latch con­
dition. Writing to a timer sets the starting value of that
timer. If two timers are cascaded, writing to the high­
order byte presets the low-order. byte to all ones.
Loading only the high-order byte with a value of X

leads to a count of X *256 + 255. Timers count
down continuously. If the interrupt is enabled, it
occurs when the.counter changes from 1 to O.

The timer/counter interrupts are automatically disabl­
ed when the interrupt request is generated.

Status Register

OE FE

Reading the status register gates its contents onto
the data bus. It holds the operational status of the
serial interface as well as the stat\ls of the interrupt
pin INT. The status register can be read at any time.
The flags are stable and well defined at a" instants.

FE - Framing Error, Transmission
Mode.

Bit 0 can be used in two modes. Norma"y, FE in­
dicates framing error which can be changed to
transmission mode indication by setting the TME bit
in the modification register.

If transmission mode is disabled (in Modification
Register), then FE indicates a framing error. A fram­
ing error is detected during the first stop bit. The er­
ror is reset by reading the Status Register or by a chip
reset. A framing error does not inhibit the loading of
the Receiver Buffer. If RxO remains low, the receiver
will assemble the next character. The false stop bit
is treated as the next start bit, and no high-to-Iow tran­
sition on RxO is required to synchronize the receiver.

When the TME bit in the Modification Register is set;
FE is used to indicate that the transmitter was active
during the' reception of a character, thus indicating
that the character received was·transmitted by its own
transmitter. FE is reset when the transmitter is not
active during the reception of character. Reading the
status register will not reset the FE bit in the transmis­
sion mode.

OE - Overrun Error

If the user does not read the character in the Receiver
Buffer before the next character is received and
transferred to this register, then the OE Qit is set. The
OE flag is set during the reception of the first stop
bit and is cleared when the Status Register is read
or when a hardware or software reset occurs. The first
character received in this case will be lost.

6-362 230759-002

8256AH

PE - Parity Error

This bit indicates that a parity error has occurred dur­
ing the reception of a character. A parity error is pre­
sent if value of the parity bit in the received character
is different from the one expected according to com­
mand word 2 bits 6 EP. The parity bit is expected and
checked only if it is enabled by command word 2 bit
7 PEN.

A parity error is set during the first stop bit and is reset
by reading the Status Register or by a chip reset.

BD - Break/Break-In
The BD bit flags whether a break character has been
received, or a Break-In condition exists on the
transmission line. Command Register 1 Bit 3 (BRKI)
enables the Break-In Detect function.

Whenever a break character has been received,
Status Register Bit 3 will be set and in addition an
interrupt request on Levei 4 is generaied. Tile ,tlceiv6i·
will be idled. It will be started again with the next high­
to-low transition at pin RxD.

The break character received will not be loaded into
the receiver buffer register.

If Break-In Detection is enabled and a Break-In con­
dition occurs, Status Register Bit 3 will be set and
in addition an interrupt request on Level 5 is
generated.

The BD status bit will be reset on reading the status
register or on a hardware or software reset. For
more information on BreaklBreak-ln, refer to the
"Serial Asynchronous Communication" section of
AP-153 under "Receive Break Detect" and "Break­
In Detect."

TRE - Transmit Register Empty
When TRE is set the transmit register is empty and
an interrupt request is generated on Level 5 if en­
abled. When TRE equals 0 the transmit register is
in the process of sending data. TRE is set by a chip
reset and when the last stop bit has left the transmit­
ter. It is reset when a character is loaded into the
Transmitter Register. If CTS is low, the Transmitter
Register wilLQe loaded during the transmission of the
start bit. If CTS is high at the end of a character, TRE
will remain high and no character will be loaded into
the Transmitter Register until CTS goes low. If the
transmitter was inactive before a character is load­
ed into the Transmitter Buffer, the Transmitter
Register will be empty temporarily while the buffer
is full. However, the data in the buffer will be transfer­
red to the transmitter register immediately and TRE
will be cleared while TBE is set.

TBE - Transmitter Buffer Empty

TBE indicates the Transmitter Buffer is empty and
is ready to accept a character. TBE is set by a chip
reset or the transfer of data to the Transmitter
Register, and is cleared when a character is written
to the transmitter buffer. When TBE is set, an inter­
rupt request is generated on Level 5 if enabled.

RBF - Receiver Buffer Full

RBF is set when the Receiver Buffer has been load­
ed with a new character during the sampling of the
first stop bit. RBF is cleared by reading the receiver
buffer or by a chip reset.

INT - Interrupt Pending

The INT bit reflects the state of the INT Pin (Pin 15)
and indicates an interrupt is pending. It is reset by
INTA or by reading the Interrupt Address Register if
only one interrupt is pending and by a chip reset.

FE, DE, PE, RBF, and Break Detect all generate a
Level 4 interrupt when the receiver samples the first
stop bit. TRE, TBE, and Break-In Detect generate a
Level 5 interrupt. TRE generates an interrupt when
TBE is set and the Transmitter Register finished
transmitting. The Break-In Detect interrupt is issued
at the same time as TBE or TRE.

Modification Register

o IRS41 RS31 RS21 RS1 I RSO I TME I DSC I

(OF1sW)

DSC - Disable Start Bit Check

DSC disables the receiver's start bit check. In this
state the receiver will not be reset if RxD is not low
at the center of the start bit.

TME - Transmission Mode Enable

TME enables transmission mode and disables fram­
ing error detection. For information on transmission
mode see the description of the framing error bit in
the Status Register.

RSO, RS1, RS2, RS3, RS4 - Receiver
Sample Time

The number in RSn alters when the receiver samples
RxD. The receiver sample time can be modified only
if the receiver is not clocked by RxC.

6-363 230759-002

inter 8256AH

NOTE: ,
The modification register cannot be read. Reading from ad­
dress OFH, 8086: 1 EH gates the contents of th!! status
register' onto the data bus.

A hardware reset (reset, Pin 12) resets all modifica­
tion register bits to 0, Le.:
• The start bit check is enabled.
• Status Register Bit 0 (FE) indicates framing error.
• The sampling time of the serial receiver is the bit

center.

A software reset (Command Word 3, RST) does not
affect the modification register.

Hardware Reset

A reset signal on pin RESET (HIGH level) forces the
device 8256 into a well-defined initial state. This state
is characterized as follows:

1. Command registers 1 , 2 and 3, mode register, Port
1 control register, and modification register are
reset. Thus, all bits of the parallel interface are set
to be inputs and event countersltimers are con'
figured as independent 8-bit timers.

2. Status register bits are reset with the exception of
bits 4 and '5. Bits 4 and 5 are set indicating that
both transmitter register and transmitter buffer
register are empty.

3. The interrupt mask, interrupt request, and inter­
;upt service register bits are reset and disable all
requests. As a consequence, interrupt signallNT
IS INACTIVE (LOW).

4. The transmit data output is set to the marking state
(HIGH) and the receiver section is disabled until
it is enabled by Command Register 3 Bit 6.

5. The start bit will be checked at sampling time. The
receiver will return to start bit search mode if in­
put RxD. is not LOW at this time.

6. Status Register Bit 0 implies framing error.

7. The receiver samples input RxD at bit center.

Reset has no effect on the contents of receiver buf­
fer register, transmitter buffer register, the in­
termediate latches of parallel ports, and event
counters/timers, respectively.

RS4 RS3 RS2 RS1 RSO Point of time between
start of bit and end of
bit measured in steps
of 1/32 bit length

0 1 1 1 1 1 (Start of Bit)
0 1 1 1 0 2
0 1 1 0 1 3
0 1 1 0 0 4
0 1 0 1 1 5
0 1 0 1 0 6
0 1 0 0 1 7
0 1 0 0 0 8
0 0 1 1 1 9
0 0 1 1 0 10
0 0 1 0 1 11
0 0 1 0 0 12
0 0 0 1 1 13
0 0 0 1 0 14
0 0 0 0 1 15
0 0 0 0 0 16 (Bit center)
1 1 1 1 1 17
1 1 1 1 0 18
1 1 1 ,0 1 19
1 1 1 0 0 20
1 1 0 1 1 21
1 1 0 1 0 22
1 1 0 0 1 23
1 1 0 0 0 24
1 0 1 1 1 25
1 0 1. 1 0 26
1 0 1 0 1 27
1 0 1 0 0 28
1 0 0 1 1 29
1 0 0 1 0 30
1 0 0 0 1 31
1 0 0 0 0 32 (End of Bit)

6-364 230759-002

8256AH

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias 0° C to 70° C
Storage Temperature -65°C to +150°C
Voltage On Any Pin

With Respect to ground -0.5V to +7V
Power Dissication 1 Watt

D.C. CHARACTERISTICS

Symbol Parameter Min.

VIL Input Low Voltage -0.5

VIH Input High Volt~ge 2.0

VOL Output Low Voltage

VOH Output High Voltage 2.4

IlL Input Leakage

ILO Output Leakage

Icc Vee Supply Current

CAPACITANCE (TA= 25°C, Vex;= GND = OV)

Symbol Parameter Min.

GIN Input Capacitance

CliO I/O Capacitance

6-365

"NOTICE: Stresses above those listed under "Ab­
solute Maximum Ratings" may cause permanent
damage to the device. This is a stress rating only and
functional operation of the device at these or any other
conditions above those indicated in the operational
sections of this specification is not implied. Exposure
to absolute maximum rating conditions for extended
periods may affect device reliability.

Max. Units Test Conditions

0.8 V

Vcc+ 0.5 V

0.45 V IOL= 2.5 mA

V IOH= -400 p.A

10 IlA VIN= Vcc
-10 IlA VIN= OV

10 ~ VOUT= Vce
-10 VOUT= 0.45V

160 mA

Max. Units Test Conditions

10 pF fc= 1 MHz

20 pF Unmeasured pins
returned to Vss

230759-002

8256AH

A.C. CHARACTERISTICS
BUS PARAMETERS

(TA = ooe to 70oe, Vee = +5.0V ± 10%, GND = OV)

8256AH
Symbol Parameter

Min. Max.
Units

tLL ALE Pulse Width 50 ns

tCSL CS to ALE Setup Time 0 ns

tAL Address to ALE Setup Time 20 ns

tLA Address Hold Time After ALE 25 ns

tLC ALE to RDIWR 20 ns

tCC RD, WR, INTA Pulse Width 200 ns

tRD Data Valid from RD (1) 120 ns

tOF Data Float After RD (2) 50 ns

tOW Data Valid to WR 150 ns

tWO Data Valid After WR 50 ns

tCL RDIWR Control to Latch Enable 25 ns

tLDR ALE to Data Valid 150 ns

tRST Reset Pulse Width 300 ns

tRV Recovery Time Between RD/WR 500 ns

TIMER/COUNTER PARAMETERS

tCPI Counter Input Cycle Time (P12, P13) 2.2 /is

tCPWH Counter Input Pulse Width High 1.1 /is

tCPWL Counter Input Pulse Width Low 1.1 /is

tTPI Counter Inputt to INTt at Terminal Count 2.75 /is

tTlH LOAD Pulse High Time Counter 5 1.1 /is

tTlL LOAD Pulse Low Time Counter 5 1.1 /is

tPP Counter 5 Load Before Next Clock Pulse on P13 1.1 /is

tCR External Count Clockt to ROt to Ensure Clock is 2.2 /is
Reflected in Count

tRC ROt to External Count Clockt to Ensure Clock 0 ns
is not Reflected in Count

tCW External Count Clockt ro WRt to Ensure Count 2.2 /is
Written is Not Decremented

tWC WRt to External Count Clock to Ensure Count 0 ns
Written is Decremented

INTERRUPT PARAMETERS

tOEX EXTINTt to INTt 200 ns

tOPI Interrupt request on P17t to INTt 2tCY
+500 ns

tPI Pulse Width of Interrupt Request on P17 tCY+
100 ns

tHEA INTAt or ROt to EXTINn 30 ns

tHIA INTAt or ROt to INn 300 ns

6-366 230759-002

8256AH

A.C. CHARACTERISTICS (continued)
SERIAL INTERFACE AND CLOCK PARAMETERS

Symbol Parameter

tCY . Clock Period

tCLKH Clock High Pulse Width

tCLKL Clock Low Pulse Width

tA Clock Aise Time

tF Clock Fall Time

tSCY Serial Clock Period (4)

tSPD Serial Clock High (4)

tSPW Serial Clock Low (4)

tSTD Internal Status Update Delay From Center of
Stop Bit (5)

tDTX TxC to TxD Data Valid

tlABF INT Delay From Center of First Stop Bit

tlTBE INT Delay From Falling Edge of Transmit Clock at
end of Start Bit

tCTS Pulse Width for Single Character Transmission

PARALLEL 1/0 PORT PARAMETERS

tWP WA t to P1/P2 Data Valid

tPA P1/P2 Data Stable Before AD ~ (7)

tAP PlIP2 Data Hold Time

tAK ACK Pulse Width

tST Strobe Pulse Width

tPS Data Setup to STB t
tPH Data Hold After STB t
tWOB WA t to OBF t
tAOB ACKI to OBFI
tSIB STB ~ to IBF ~

tAl AD t to IBF t
tSIT STB t to INT t

tAIT ACK t to INT t

tAED OBF~ to ACK ~ Delay

NOTES:

8256AH

Min. Max .

195 1000

65

65

20

20

975

350

350

300

300

2tCY
+500

2tCY
+500

(6)

0

300

50

150

tSIB

50

50

250

250

250

250

2tCY
+500

2tCY
+500

0

1. CL = pF all outputs. 5. The center of the Stop Bit will be the receiver

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

2. Measured from logic "one" or "zero"
to 1.5V at CL = 150 pF.

sample time, as programmed by the modification register.

3. P12, P13 are external clock inputs.
4. Note that RxC may be used as an input only

in 1X mode, otherwise it will be an output.

6. 1I16th bit length for 32X, 64X; 100 ns for 1 X.
7. To ensure tRO spec is met.

6-367 230759-002

8256AH

WAVEFORMS
A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT
DEVICE 2.4=X)C 2.0 2.0

TEST POINT~

UNDER n C = IS0pF
TEST IL ~% U U

NOTES:
A.C. testing: inputs are driven at 2.4V for a logic "1" and
0.45V for a logic "0". timing measurements are made at 2.0V
for a logic "1" and O.BV for a logic "0".

SYSTEM CLOCK

WRITE CYCLE

DB
()'7

A
0·3

ALE

READ CYCLE

DB
0·7

A
0·3

ALE

14------ICy--......

ClK

NOTES:
Cl = 150 pF
Cl includes jig capacitance

DATA

RD

(INTA)
- ... _-tcc--~

6-368 230759·002

8256AH

WAVEFORMS (Continued)

PARALLEL PORT HANDSHAKING - INPUT MODE

1---------_1-..,1 ---_

P
10

(S-TB)

P
11

(IBF)

INT

RD

DB
0-7

A
0-3

-----------------~r..,\-------~

PARALLEL PORT HANDSHAKING - OUTPUT MODE

DB =x X :\\
0-7 DATA

A
VJUlD

0-3

WR

P
tAOB

11

(OBF)

P
10

(ACK)

INT

INTAOR AD

OUTPUT >t ;;

P
: ~ATAVALID

~ !
20-27

6-369

'\:X
II

Ai ~

r;l)

"

DATA. >-­
VALID

>-

=1 tHIA

231256-001

intJ

COUNT PULSE TIMINGS

P12 - P13
(COUNTER INPUT)

INT

8256AH

LOADING TIMER (OR CASCADED COUNTERITIMER 3 AND 5)

P13
(COUNTER INPUT)

PIS
(COUNTER INPUT)

.... ----tTIL-----~

INT

ZERO COUNT

TRIGGER PULSE FOR TIMER 5 (CASCADED EVENT COUNTER/TIMER 3 AND 5)

PIS
(TRIGGER INPUT)

COUNTER TIMER TIMING

EXTERNAL CLOCK
(P12, P13)

-
OUTPUT FROM PORT 1 AND PORT 2

"''----n---

DB
0-7

A
0-3

______________ J:><:, ____ DA_T_A_V_A_Ll_D __ -':>C'-______________ __

OUTPUT

Pl0~17, P2G-27

" :-----~ ~~
. " 1-<" :xr~:::::::::::::::::=

6-370. 230759-002

inter 8256AH

INPUT FROM PORT 1 AND PORT 2

INPUT

Pl0-17, P20-27

DB
0-7

A
0-3

___________ .Jx DATA VALID)>--------

INTERRUPT TIMING

EXTINT

INT

""iNTA OR AD

DB
0-7

A
0-3

____________ x DATA.)>----

CTS FOR SINGLE CHARACTER TRANSMISSION

RESET TIMING

RESET

EXTERNAL BAUD RATE CLOCK FOR SERIAL INTERFACE

TxC
(64 X AND 32
BAUD RATE INPUT

6-371 230759-002

inter 8256AH

TRANSMITTER AND RECEIVER CLOCK FROM INTERNAL CLOCK SOURCE

TXC, RiC
(OUTPUT)

TRANSMISSION OF CHARACTERS ON SERIAL INTERFACE

- STATUS
REGISTER
BIT 5 (TBE)

STATUS
REGISTER
BIT 4 (TRE)

INT
(LEVEL 5)

TxD

NOTES:
1. Load transmitter buffer register.
2. Transmitter buffer register is empty.
3. Transmitter register is empty.
4. Character format for this example: 7 Data Bits with Parity Bit and 2 Stop Bits.
5. Loading of transmitter buffer register must be complete before CfS goes low.
6. Interrupt due to transmitter buffer register empty.
7. Interrupt due to transmitter register empty.

No Status bits are altered when AD is active.

DATA BIT OUTPUT ON SERIAL INTERFACE

TxC
(1 x BAUD RATE' INPUT)

TxC
(64 x BAUD RATE INPUT)

TxC
(32 x BAUD RATE INPUT)

TxD

~-----DATA BIT------t

6-372 230759·002

8256AH

CONTINUOUS RECEPTION OF CHARACTERS ON SERIAL INTERFACE WITHOUT ERROR CONDITION

CHARACTER CHARACTER CHARACTER CHARACTER CHARACTER

RxD

COMMAND
REGISTER
BIT 6 (RxE)

STATUS
REGISTER
BIT 6 (RBF)

INT
(LEVEL 4)

1)

2)

RD 4)
RECEIVER ENABLE

CHARACTER CHARACTER

RECEIVER DISABLE

CHARACTER

NOTES:
1. Character format for this example: 6 data bits with parity bit and one stop bit.
2. Set or reset bit 6 of command register 3 (enable receiver).
3. Receiver buffer located.
4. Read receiver buffer register.

ERROR CONDITIONS DURING RECEPTION OF CHARACTERS ON THE SERIAL INTERFACE

RxD 1)

STATUS
REGISTER 2)
BIT 6 (RBF)

INT
(LEVEL 4)

CHARACTER CHARACTER

CHARACTER

STATUS 3)
REGISTER ______ ++ ____ J

BIT 1 (OE)

STATUS
REGISTER

CHARACTER CHARACTER CHARACTER

BIT 0 (FE) FRAMING ERROR

NOTES:
1. Character format for this example: 6 data bits without parity and one stop bit.
2. Receiver buffer register loaded.
3. Overrun error.
4. Framing error.
5. Interrupt from receiver buffer register loading.
6. Interrupt from overrun error.
7. Interrupt from framing error and loading receiver buffer register.

No status bits are altered when AD is active.

6-373 230759-002

inter
8279/8279·5

PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE

• Simultaneous Keyboard Display
Operations

• Scanned Keyboard Mode

• Scanned Sensor Mode

• Strobed Input Entry Mode

• a·Character Keyboard FIFO

• 2·Key Lockout or N·Key Rollover with
Contact Debounce

• Dual a· or 16·Numerical Display

• Single 16·Character Display

• Right or Left Entry 16·Byte Display
RAM

• Mode Programmable from CPU

• Programmable Scan Timing

• Interrupt Output on Key Entry

• Available in EXPRESS
-Standard Temperature Range
-Extended Temperature Range

The Intel~ 8279 is a general purpose programmable keyboard and display I/O interface device designed for use with
Intel~ microprocessors. The keyboard portion can provide a scanned interface to a 64·contact key matrix. The'
keyboard portion will also Interface to an array of sensors or a strobed interface keyboard; such as the hall effect and
ferrite variety. Key depressions can be 2·key lockout or N-key rollover. Keyboard entries are debounced and strobed,in
an 8-character FIFO. If more than 8 characters are entered, overrun status is set. Key entries set the interrupt output
line to the CPU. .

The display portion provides a scanned display interface for LED, incandescent, and other popular display
technologies. Both numeric and alphanumeric segment displays may be used as well as simple indicators, The 8279
has 16X8 display RAM which can be organized Into dual 16X4. The RAM can be loaded or interrogated by the CPU. Both
right entry, calculator and left entry typewriter display formats are possible. Bath read and write of the display RAM
can be done with auto-increment of the display RAM address.

CPU
INTERFACE

IRQ

DATA
BUS

AD

wR

cs

. Ao

RESET

ClK

Vee

RLo.7

SHIFT

CNTlISTB

SLOoJ

OUT AO.3

OUT 80-3

1 ___ - KEY DATA .

SCAN

DISPLAY
DATA

Figure 1. Logic Symbol

V" io-__

Figure 2. Pin Configuration

6-374

8279/8279·5

HARDWARE DESCRIPTION
The 8279 is packaged in a 40 pin DIP. The following is
a functional description of each pin.

Table 1. Pin Descriptions

Pin
Symbol No. Name and Function

DBo-DB7 19-12 BI-dlrectlonal data bus: All data
and commands between the CPU
and the 8279 are transmitted on
these lines.

ClK 3 Clock: Clock from system used to
generate internal timing.

RESET 9 Reset: A high signal on this pin re-
sets the 8279. After being reset the
8279 is placed in the following
mode:
1) 16 8-bit character display

-left entry.
2) Encoded scan keyboard-2

key lockout.
Along with this the program clock
prescaler is set to 31.

CS 22 Chip Select: A Iowan this pin en-
ables the interface functions to
receive or transmit.

Ao 21 Buffer Address: A high on. this
line indicates the signals in or out
are interpreted as a command or
status. A low indicates that they
are data.

RD,WR 10-11 Input/Output Read and Write:
These signals enable the data
buffers to either send data to the
external bus or receive it from the
external bus.

IRQ 4 Interrupt Request: In a key-
board mode, the interrupt line is·
high when there is data in the
FIFO/Sensor RAM. The interrupt
line' goes low with each FIFO/
Sensor RAM read and returns
high if there is still information in
the RAM. In a sensor mode, the
interrupt line goes high whenever
a change in a sensor is detected.

Vss , Vcc 20,40 Ground and power supply pins,

SLo-Sl3 32.,'35 Scan Lines: Scan lines which are
used to scan the key switch or
sensor matrix and the display
digits. These lines can be either
encoded (1 of 16) or decoded (1
of 4),

RLo-Rl7 38, Return Line: Return line inputs
39, which are connected to the scan
1,2, lines through the keys or sensor
5-8 switches. They have active internal

pullups'lo keep them high until a
switch closure pulls one low. They
also serve as an 8-bit input in the
Strobed Input mode,

6-375

Pin
Symbol No, Name and Function

SHIFT 36 Shift: The shift input status is
stored along with the key position
on key closure in the Scanned Key-
board modes. It has an active in-
ternal pullup to keep it high until a
switch closure pulls it low.

CNTUSTB 37 Control/Strobed Input Mode: For
keyboard modes this line is used
as a control input and stored like
status on a key closure. The line
is also the strobe line that enters
the data into the FIFO in the
Strobed Input mode.

(Rising Edge), It has an active in-
ternal pullup to keep it high until
a switch closure pulls it low.

OUT Ao-OUT A3 27-24 Outputs: These two ports are the
OUT Bo-OUT B3 31-28 outputs for the 16 x 4 display re-

fresh registers. The data from
these outputs is synchronized to
the scan lines (SLo-Sl3) for multi-
plexed digit displays. The two 4
bit ports may be blanked inde-
pendently. These two ports may
also be considered as one 8-bit
port,

BD 23 Blank Display: This output is
used to blank the display during
digit switching or by a display
blanking command.

FUNCTIONAL DESCRIPTION

Since data input and display are an integral part of many
microprocessor designs, the system designer needs an
interface that can contrbl these functions without plaCing
a large load on the CPU. The 8279 provides this function
for 8-bit microprocessqrs.

The 8279 has two seciions: keyboard and display, The
keyboard section can interface to regular typewriter style
keyboards or random toggle 0' thumb switches. The
display section drives alphanumeric displays or a bank of
indicator lights. Thus the CPU is relieved from scanning
the keyboard or refreshing the display.

The 8279 is designed to directly connect to the
microprocessor bus, The CPU can program all operating
modes for the 8279. These modes inClude:

inter 8279/8279-5

Input Modes
• Scanned Keyboard - with encoded (8 x 8 key

keyboard) or decoded (4 x 8 key keyboard) scan lines.
A key depression generates a 6·bit encoding of key
position. Position and shift and control status are
stored in the FIFO. Keys are automatically debounced
with 2·key lockout or N·key rollover.

• Scanned Sensor Matrix - with encoded (8 x 8 matrix
switches) or decoded (4 x 8 matrix switches) scan lines.
Key status (open or closed) stored in RAM addressable
by CPU. .

• Strobed Input - .oata on return lines during control
line strobe is transferred to' FIFO.

Output Modes
• 8 or 16 character multiplexed displays that can be or·

ganlzed as dual 4·bit or single 8·blt (80 = Do, Aa = 07)'

• Right entry or left entry display formats.

Other features of the 8279 include:

• Mode programming from the CPU.

• Clock Prescaler

• Interrupt output to signal CPU when there is keyboard
or sensor data available.

• An 8 byte FIFO to store keyboard information.

• 16 byte internal Display RAM for display refresh. This
RAM can also be read by the CPU.

eLK RESET

OUT Ao.3 OUT 80.3

DBO·7

TIMING
AND

CONTROL

PRINCIPLES O'F OPERATION

The following is a description olthe major elements olthe
8279 Programmable Keyboard/Display interface device.
Refer to the block diagram in Figure 3.

1/0 Control and Data Buffets

The I/O control section uses the CS, Ao, RD and WR lines
to control data flow to and from the various internal
registers and buffers. Ail data flow to and from the 8279 is
enabled by CS. The character of the information, given or
desired by the CPU, is Identified by Ao. A logic one
means the Information is a command or status. A logic
zero means the information is data. RD and WR determine
the direction of data flow through the Data Buffers. The
Data Buffers are bi-directional buffers that connect the
internal bus to the external bus. When the chip is not.
selected (CS = 1), the devices are in a high impedance
state. The drivers input during WRe CS and output during
Ai5 .es. .

Control and Timing Registers and Timing Control

These registers store the keyboard and display modes and
other operating conditions programmed by the CPU. ,The
modes are programmed by presenting the proper
command on the data lines with Ao = 1 and then sending
a WR. The command is latched on the rising edge of WR..

IRO

KEYBOARD
OEBOUNCE­

AND
CONTROL

Figure 3. Internal Block Diagram
6-376

inter 8279/8279·5

The command is then decoded and the appropriate
function is set. The timing control contains the basic
timing counter chain. The first counter is a .,. N prescaler
that can be programmed to yield an internal frequency
of 100 kHz which gives a 5.1 ms keyboard scan time and
a 10.3 ms debounce time. The other counters divide
down the basic internal frequency to provide the proper
key scan, row scan, keyboard matrix scan, and display
scan times.

Scan Counter
The scan counter has two modes. In the encoded mode,
the counter provides a binary count that must be
externally decoded to provide the scan lines for the
keyboard and display. In the decoded mode, the scan
counter decodes the least significant 2 bits and provides a
decoded 1 of 4 scan. Note than when the keyboard is in
decoded scan, so is the display. This means that only the
first 4 characters in the Display RAM are displayed.

In the encoded mode, the scan lines are active high
outputs. In the decoded mode, the scan lines are active
low outputs.

Return Buffers and Keyboard Debounce
and Control
The 8 return lines are buffered and latched by the Return
Buffers. In the keyboard mode, these lines are scanned,
looking for key closures in that row. If the debounce
circuit detects a closed switch. it waits about 10 msec to
check if the switch remains closed. If it does, the address
of the switch in the matrix plus the status of SHIFT and
CONTROL are transferred to the FIFO. In the scanned
Sensor Matrix modes, the contents of the return lines is
directly transferred to the corresponding row of the
Sensor RAM (FIFO) each key scan time. In Strobed Input
mode, the contents of the return lines are transferred to
the FIFO on the rising edge of the CNTLlSTB line pulse.

FIFO/Sensor RAM and Status
This block is a dual function 8 x 8 RAM. In Keyboard or
Strobed Input modes, it is a FIFO. Each new entry is
written into successive RAM positions and each is then
read in order of entry. FIFO status keeps track of the
number of characters in the FIFO and whether it is full or
empty. Too many reads or writes will be recognized as an
error. The status can be read by an RD with CS low and
Ao high. The status logic also provides an IRQ signal
when the FIFO is not empty. In Scanned Sensor Matrix
mode, the memory is a Sensor RAM. Each row of the
Sensor RAM is loaded with the status of the correspond­
ing row of sensor in the sensor matrix. In this mode, IRQ is
high if a change in a sensor is detected.

Display Address Registers and Display RAM
The Display Address Registers hold the address of the
word currently being written or read by the CPU and the
two 4-bit nibbles being displayed. The read/write
addresses are programmed by CPU command. They also
can be set to auto increment after each read or write. The
Display RAM Cdn be directly read by the CPU after the
correct mode and a·:tdress is set. The addresses for the A
and B nibbles are> .'utomatically updated by the 8279 to
match data entry by the CPU. The A and B nibbles can be
entered independently or as one word, according to the
mode that is set by the CPU. Data entry to the display can
be set to either left or right entry. See Interface
Considerations for details.

SOFTWARE OPERATION

8279 commands
The following commands program the B279 operating
modes. Tl]e commands are sent on the Data Bus with CS
low and Ao high and are loaded to the B279 on the rising
edge of WR.

Keyboard/Display Mode Set

MSB LSB

Code: 101010iDIDIK IKIKI

Where DD is the Display Mode and KKK is the Keyboard
Mode.

DO
o 0 B B-bit character display - Left entry

o 1 16 8-bit character display - Left entry'

o B B-bit character display - Right entry

16 B-bit character display - Right entry

For description of right and left entry, see Interface
Considerations. Note that when decoded scan is set in
keyboard mode, the display is reduced to 4 characters
independent of display mode set.

KKK

0 0 0 Encoded Scan Keyboard - 2 Ke/y Lockout·

0 0 Decoded Scan Keyboard - 2-Key Lockout

0 0 Encoded Scan Keyboard - N-Key Rollover

0 1 Decoded Scan Keyboard - N-Key Rollover

0 0 Encoded Scan Sensor Matrix

0 Decoded Scan Sensor Matrix

0 Strobed Input, Encoded Display Scan

Strobed Input, Decoded Display Scan

Program Clock

Code: 1 0 1 0 11 1 pip 1 pip 1 P I
All timing and multiplexing signals for the 8279 are
generated by an internal prescaler. This prescaler
divides the external clock (pin 3) by a programmable
integer. Bits PPPPP determine the value of this integer
which ranges from 2 to 31. Choosing a divisor that yields
100 kHz will give the specified scan and debounce
times. For instance, if Pin 3 of the 8279 is being clocked
by a 2 MHz Signal, PPPPP should be set to 10100 to
divide the clock by 20 to yield the proper 100 kHz operat­
Ing frequency.

Read FIFO/Sensor RAM

Code: 1 0 11 1 0 1 AI I X I A I A 1 A 1 X = Don't Care

The CPU sets up the B279 for a read of the FIFO/Sensor
RAM by first writing this command. In the Scan Key-

'Default after reset.

6-377

827918279·5

board Mode, the Auto-Increment flag (AI) and the RAM
address bits (AAA) are irrelevant. The 8279 will automati­
cally drive the data bus for each subsequent read (Ao= 0)
in the same sequence in which the data first entered the
FIFO. All subsequent reads will be from the FIFO until
another command is issued.

In the Sensor Matrix Mode, the RAM address bits AAA
select one of the 8 rows of the Sensor RAM. If the AI flag
is set (AI = 1), each successive read will be from the sub­
sequent row of the sensor RAM.

Read Display RAM

Code: 1 0 11 11 1 AliA 1 A 1 A 1 AI

The CPU sets up the 8279 for a read of the Display RAM
by first writing this command. The address bits AAAA
select one of the 16 rows of the Display RAM. If the AI
flag is set (AI = 1), this row address will be incremented
after each following read or write to the Display RAM.
Since the same counter is used for both reading and
writing, this command sets the next read or write
address and the sense of the Auto-Increment mode for
both operations.

Write Display RAM

The CPU sets up the 8279 for a write to the Display RAM
by first writing this command. After writing the com·
mand with Ao= 1, all subsequent writes with Ao= 0 will
be to the Display RAM. The addressing and Auto­
Increment functions are identical to those for the Read
Display RAM. However, this command does not affect
the source of subsequent Data Reads; the CPU will read
from whichever RAM (Display or FIFO/Sensor) which
was last specified. If, indeed, the Display RAM was last
specified, the Write Display RAM will, nevertheless,
change the next Read location.

Display Write Inhibit/Blanking

A B A B
Code:

The IW Bits can be used to mask nibble A and nibble B
in applications requiring separate 4-bit display ports. By
setting the IW flag (IW = 1) for one of the ports, the port
becomes marked so that entries to the Display RAM
from the CPU do not affect that port. Thus, if each nibble
is input to a BCD decoder, the CPU may write a digit to
the Display RAM without affecting the other digit being
displayed. It is important to note that bit Bo corresponds
to bit Do on the CPU bus, and that bit A3 corresponds to
bit D7•

If the user wishes to blank the display, the BL flags are
available for each nibble. The last Clear command issued
determines the code to be used as a "blank." This code
defaults to all zeros after a reset. Note that both BL
flags must be set to blank a display formatted with a
single 8-bit port.

Clear

Code: 11 11 1 0 1 Co 1 CD 1 CD 1 CF 1 CA 1

The CD bits are available in this command to clear all
rows of the Display RAM to a selectable blanking code
as follows:

1"'C: ': ' AU z,," IX - 000" "',,'

1 0 AB = Hex 20 (0010 0000)

1 1 All Ones

Enable clear display when = 1 (or by CA = 1)

During the time the Display RAM is being cleared ("'160 ,",s),
it may not be written to. The most significant bit of the
FIFO status word is set during this time. When the Dis­
play RAM becomes available again, it automatically
resets.

If the CF bit is asserted (C F = 1), the FIFO status is
cleared and the interrupt output line is reset. Also, the
Sensor RAM pointer is set to row O.

CA, the Clear All bit, has the combined effect of CD and
CF; it uses the CD clearing code on the Display RAM and
also clears FIFO status. Furthermore, it resynchronizes
the internal timing chain. '

End Interrupt/Error Mode Set

Code:

For the sensor matrix modes this command lowers the
IRQ line and enables further writing into RAM. (The IRQ
line would have been raised upon the detection of a
change in a sensor value. This would have also inhibited
further writing into the RAM until reset).

For the N-key rollover mode - if the E bit is programmed
to "1"' the chip will operate in the special Error mode. (For
further details, see Interface Considerations Section.)

Status Word
The status word contains the FIFO status, error, and
display unavailable signals. This word is read by the CPU
when Ao is high and Cs and RD are low. See Interface
Considerations for more detail on status word.

Data Read

Data is read when Ao, CS and RD are all low. The source
of the data is specified by the Read FIFO or Read Display
commands. The trailing edge of RD will cause the address
of the RAM being read to be incremented if the Auto­
Increment flag is set. FIFO reads always increment (if no
error occurs) independent of Ak

Data Write
Data that is written with Ao, CS and WR low is always
written to the Display RAM. The address is specified by the
latest Read Display or Write Display command. Auto­
Incrementing on the rising edge of WR occurs if AI set by
the latest display command.

6-378

intel' 827918279·5

INTERFACE CONSIDERATIONS
Scanned Keyboard Mode, 2·Key Lockout

There are three possible combinations of conditions
that can occur during debounce scanning. When a key is
depressed, the debounce logic is set. Other depressed
keys are looked for during the next two scans. If none
are encountered, it is a single key depression and the
key position is entered into the FIFO along with the
status of CNTL and SHIFT lines. If the FIFO was empty,
IRQ will be set to signal the CPU that there is an entry in
the FIFO. If the FIFO was full, the key will not be entered
and the error flag will be set. If another closed switch is
encountered, no entry to the FIFO can occur. If all other
keys are released before this one, then it will be entered
to the FIFO. If this key is released before any other, it
will be entirely ignored. A key is entered to the FIFO
only once per depression, no matter how many keys
were pressed along with it or in what order they were
released. If two keys are depressed within the debounce
cycle, it is a simultaneous depression. Neither key will
be recognized until one key remains depressed alone.
The last key will be treated as a single key depression.

Scanned Keyboard Mode, N·Key Rollover
With N-key Rollover each key depression is treated
independently from all others. When a key is depressed.
the debounce circuit waits 2 keyboard scans and then
checks to see if the key is still down. If it is, the key is
entered into the FIFO. Any number of keys can be
depressed and another can be recognized and entered
into the FIFO. If a simultaneous depression occurs, the
keys are recognized and entered according to the order
the keyboard scan found them.

Scanned Keyboard - Special Error Modes
For N-key rollover mode the user can program a special
error mode. This is done by the "End Interrupt/Error Mode
Set" command. The debounce cycle and key-validity
check are as in normal N-key mode. If during a single
debounce cycle, two keys are found depressed, this is
considered a simultaneous multiple depression, and sets
an error flag. This flag will prevent any further writing into
the FIFO and will set interrupt (if not yet set). The error flag
could be read in this mode by reading the FIFO STATUS
word. (See "FIFO STATUS" for further details.) The error
flag is reset by sending the normal CLEAR command with
CF = 1.

Sensor Matrix Mode
In Sensor Matrix mode, the debounce logic is inhibited.
The status of the sensor switch is inputted directly to the
Sensor RAM. In this way the Sensor RAM keeps an image
of the state of the switches in the sensor matrix. Although
debouncing is not provided, this mode has the advantage
that the CPU knows how long the sensor was closed and
when it was released. A keyboard mode can only indicate
a validated closure. To make the software easier. the
designer should functionally group the sensors by row
since this is the format in which the CPU will read them.

The IRQ line goes high if any sensor value change is
detected at the end of a sensor matrix scan. The IRQ line is
cleared by the first data read operation if the Auto-

I ncrement flag is set to zero, or by the End. Interrupt
command if the Auto-Increment flag is set to one.

Note: Multiple changes in the matrix Addressed by (SLo-3
= OJ may cause multiple interrupts. (SLe =0 in the Decoded
Model. Reset may cause the 8279 to see multiple changes.

Data Format
In. the Scanned Keyboard mode, the character entered
into the FIFO corresponds to the position of the switch
in the keyboard plus the status of the CNTL and SHIFT
lines (non·inverted). CNTL is the MSB of the character
and SHIFT is the next most significant bit. The next
three bits are from the scan counter and indicate the
row the key was found in. The last three bits are from the
column counter and indicate to which return line the key
was connected.

MSB LSB

I CNTL ISH I FTI ~ETUR~
SCANNED KEYBOARD DATA FORMAT

In Sensor Matrix mode, the data on the return lines is
entered directly in the row of the Sensor RAM that
corresponds to the row in the matrix being scanned.
Therefore, each switch postion maps directly to a Sensor
RAM pOSition. The SHIFT and CNTL inputs are ignored in
this mode. Note that switches are not necessarily the only
thing that can be connected to the return lines in this
mode. Any logic that can be triggered by the scan lines
can enter data to the return line inputs. Eight multiplexed
input ports could be tied to the return lines and scanned by
the 8279.

MSB' LSB

RL71 RLGI RLSI RL41 RL31 RL21 RLl I RLo

In Strobed Input mode, the data is also entered to the FIFO
from the return lines. The data is entered by the rising
edge of a CNTLlSTB line pulse. Data can come from
another encoded keyboard or simple switch matrix. The
return lines can also be used as a general purpose strobed
input.

MSB

Display
Left Entry

LSB

Left Entry mode is the simplest display format in that each
display position directly corresponds to a byte (or nibble)
in the Display RAM. Address 0 in the RAM is the left-most
display character and address 15 (or address 7 in 8
character display) is the right most display character.
Entering characters from position zero causes the display
to fill from the left. The 17th (9th) character is entered back
in the left most position and filling again proceeds from
there.

6-379

inter 8279/8279·5

1st entry

2nd entry

16th entry

o 1 14 15_Display

r,rr_- _- _- _- CD RAM
L...:.L...1 Address

o 1 14 15
r::iT?1- - - - ITI
~

o 1 14 15

~====~
o 1 14 15

17th entry EEI= = = =~
o 1 14 15

18th entry @EI= = = =~

Right Entry

LEFT ENTRY MODE
(AUTO INCREMENT)

Right entry is the method used by most electronic
calculators. The first entry is placed in the right most
display character. The next eniry is also placed .in the right
most character after the display is shifted left one
character. The left most character is shifted off the end
and is lost.

1 2 14 15 O'-Display·

1st entry [II: = = = I I 11 I :~~ess

1 2 14 15 0

17th entry [!0====1151161171

2 3 15 0 1

ISthentry l2EI= = = =11611711sl

RIGHT ENTRY MODE
(AUTO INCREMENT)

Note that now the display position and register address do
not correspond. Consequently, entering a character to an
arbitrary position in the Auto Increment mode may have
unexpected results. Entry starting at Display RAM address
o with sequential entry is recommended.

Auto Increment

In the Lett Entry mode, Auto Incrementing causes the
address where the CPU will next write to be incremented
by one and the character appears in the next location.
With non-Auto Incrementing the entry is both to the same
RAM address and display position. Entry to an arbitrary
address in the Auto Increment mode has no undesirable
side effects and the result is predictable:

1st entry

2nd entry

Command
10010101·

o 1 2 3 4 5 6 '7'-Displav

111 I I I I I I 1 :~d~ess

Enter next at Location 5 Auto Increment

o 1 234 5 6 7

3rd entry 11 I 2 I I I 13 I I I
o 1 2 3 4 5 6 7.

4thentrv 111211113141

LEFT ENTRY MODE
(AUTO INCREMENT)

In the Right Entry mode, Auto Incrementing and non
Incrementing have the same effect as in the Left Entry
except if the address sequence is interrupted:

.1 2 3 4 5 6 ·7 O:4-Di,play

1st entry I I I I I I 11 I :~d~ess

23456701

2nd entry I [I I 11 I 21

Command
10010101

23456701

I I 1'1 121

Enter next at Location 5 Auto Increment

34567012

3rd entry I I I 3 I 11 12 I 1

4th entry

45670123

13141 11 121 I 1

RIGHT ENTRY MODE
(AUTO INCREMENT)

Starting at an arbitrary location operates as shown below:

6-380

Command
10010101

o 1 2 3 4 5 6 7.- Display

1 I II I I I I 1 :~~ess
Enter next at Location 5 Auto Increment

12345670

1st entry I I I I 11 I I I I

23456701

2nd entry I I I '1 1 12 I I I
Sthentry 141516171s1112131

9th entry 1516 I 7 Is 19 12 13 14 I

RIGHT ENTRY MODE
(AUTO INCREMENTI

inter 8279/8279·5

Entry appears to be from the initial entry pOint.

8/16 Character Display Formats

If the display mode is set to an 8 character display, the on
duty-cycle is double what it would be for a 16 character
display (e.g., 5.1 ms scan time for 8 characters vs. 10.3 ms
for 16 characters with 100 kHz internal frequency).

G. FIFO StatuB

FIFO status is used in the Keyboard and Strobed Input
modes to indicate the number of characters in the FIFO
and to indicate whether an error has occurred. There are
two types of errors possible: overrun and underrun.
Overrun occurs when the entry of another character into a
full FIFO is attempted. Underrun occurs when the CPU
tries to read an empty FIFO.

The FIFO status word also has a bit to indicate that the
Display RAM was unavailable because a Clear Display or
Clear All command had not completed its clearing
operation.

In a Sensor Matrix mode, a bit Is set In the FIFO status
word to indicate that at least one sensor closure indica·
tion is contained in the Sensor RAM.

In Special Error Mode the S/E bit Is showing the error
flag and serves as an indication to whether a simultane·
ous multiple closure error has occurred.

FIFO STATUS WORD

Error-Overrun
'----- Sensor Closure/Error Flag for

Multiple Closures
'------ Display unavailable

SHIFT KEYBOARD
~ MATRIX

CONTROL

iT 8 COLUMNS

RETURN
LINES 8 ROWS

• }-

v·
INT SHIFT CNTL RO_7 3 INT voo 3- B DECODER

8-SIT DATA BUS

lv MICRO· DATA 8/
IIss

~ PROCESSOR BUS
0 0 _1

SVSTEM 3 LSI'

CONTROLS {

AD
lOR So.3 4/

WR 8279 SCAN LINES
t4 lOW

RESET
RESET

CS C! 4-1SDECODER
ADDRESS { Ao BUS Ao

US
CLOCK

CLK
CLK BO_3 BD AQ_ 3 BLANK

l~'SPLAV
ADDRESSES
(DECODED!

DISPLAY

4 CHARACTERS

/
DATA

DISPLAY

• Do not drive the keyboard decoder with the MSB of the scan lines.

Figure 4. System Block Diagram

6-381

inter 8279/8279·5

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature O°C to 70°C
Storage Temperature•..... -65°C to 125°C
Voltage on any Pin with

Respect to Ground .. ,........... -0.5V to +7V
Power Dissipation•............... 1 Watt

·NOTlCE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and· functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS [TA = O"C to 70°C. Vss = 011, (NOTE 3))*

Symbol Parameter Min. Max.

VILl Input Low Voltage for -0.5 1.4
Return Lines

VIL2 Input Low Voltage for All Others -0.5 0.8

VIHl Input High Voltage for 2.2

Return Lines

VIH2 Input High Voltage for All Others 2.0

VOL Output Low Voltage 0.45

VOHl Output High Voltage on Interrupt 3.5
Line

VOH2 Other Outputs 2.4

IILl Input Current on Shift. Control and +10
Return Lines -100

f--_.
IIL2 Input Leakage Current on All Others ±10

IOFL Output Float Leakage ±10

Icc Power Supply Current 120

CAPACITANCE
Symbol Parameter Typ . . Max.

CIN Input Capacitance 5 10

COUT Output Capacitance 10 20

A.C. CHARACTERISTICS [TA = O"C to 70°C. VSS = OV. (Note 3)] •

Bus Parameters
READ CYCLE

8279

Symbol Parameter Min. Max.

tAR Address Stable Before READ 50

tRA Address Hold Time for READ 5

tRR READ Pulse Width 420

tRO[4] Data Delay from READ 300

tAO [4] Address to Data Valid
I

450

tOF READ to Data Floating 10 100

tRCY Read Cycle Time 1

6-382

Unit Test Conditions

V

V

V

V

V Note 1

V Note 2

-400p.A 8279-5
IOH = -100p.A 8279

IJ.A VIN = Vcc
IJ.A VIN = OV

IJ.A VIN = Vcc to OV

IJ.A VOUT = Vee to 0.45V
..

mA

Unit Test Conditions

pF fe = 1 MHz Unmeasured

pF pins returned to VSS

8279-5

Min. Max. Unit

0 ns

0 ns

250 ns

150 ns

250 ns

10 100 ns

1 IJ.S

8279/8279·5

A.C. CHARACTERISTICS (Continued)

WRITE CYCLE

8279 8279-5

Symbol Parameter Min_ Max_ Min_ Max_ Unit

tAW Address Stable Before WR IT E 50 0 ns

tWA Address Hold Time for WR ITE 20 0 ns

tww WR ITE Pulse Width 400 250 ns

tDW Data Set Up Time for WR ITE 300 150 ns

tWD Data Hold Time for WR IT E 40 0 ns

twey Write Cycle Time 1 1 I'S

OTHER TIMINGS

8279 8279-5
I

Symbol Parameter Min_ Max_ Min_ Max_ I Unit ._-
t¢w Clock Pu Ise Width 230 120 J nsec

tCY Clock Period 500 320 i nsec
--

Keyboard Scan Time 5.1 msec Digit-on Time 480 p,sec
Keyboard Debounce Time 10.3 msec
Key Scan Time 80 p,sec

Blanking Time 160 p,sec
Internal Clock Cycle[5] 10 p,sec

Display Scan Time 10.3 msec

NOTES:
1. 8279, IOl = 1.6mA; 8279-5, IOl = 2.2mA.
2. IOH = -1OOfLA
3. 8279, Vee = +5V ±5%; 8279-5, Vee = +5V ±10%.
4. 8279, Cl = 100pF; 8279-5, Cl = 150pF.
5. The Prescaler should be programmed to provide a 10 fLs internal clock cycle .
• For Extended Temperature EXPRESS, use M8279A electrical parameters.

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

u==x)C 2.0 2.0 > TEST POINTS <
O.B 0.8

0.45

A.C. TESTING: INPUTS ARE DRIVEN AT 2AV FOR A LOGIC "1" AND0.45V FOR
A lOGIC "0." TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A LOGIC "1"
AND a.8V FOR A LOGIC "0 ..

6-383

A_C. TESTING LOAD CIRCUIT

DEVICE
UNDER

TeST

CL =120pF

I c, ~ 120pF

CL INCLUDES JIG CAPACITANCE

8279/8279·5

WAVEFORMS

READ OPERATION

(SYSTEM'S 1---------------------r "'-___________ -- ADDRESS BUS)

-4--tAR-I~·~---------tRcv ----1-------1

J---~-'AA-----I

t RD - --tOF

I----·Ao----I

DATA BUS
(OUTPUT) ~..,.;~~~~ ~..,.;~~ __________ ~~~~loll~~~~~~~~

WRITE OPERATION

~---~w---~

-.oW~ -~o

~-------------------

DATA BUS DATA 'V -+---DATAVALlO-- - ---X DATA
IINPUT) _____ M_A_Y_C_HA_N_G_E __ F--..J~ ,- '-____ ,.;M:.;,A;,;Y,.;C;;,;H;,;A;;,;NG:;,;E;,.. ____ _

CLOCK INPUT

(READ CONTROL)

(SYSTEM'S
ADDRESS BUS)

(WRITE CONTROL)

~---

6-384

8279/8279-5

WAVEFORMS (Continued)

SCAN

ENCODED
SCAN

DECODED
SCAN

DISPLAY

5,

5,

5,

5,

5,

50

5,

AO-A3
ACTIVE HIGH

80- 8 3
ACTIVE HIGH

Rlo- RL7

u u u
u

u u
u u

!--------6.II0I'S=64tCy-------

AIO)

NOTE: SHOWN IS ENCODED SCAN LEFT ENTRY

BLANK
CODE"

52-53 ARE NOT SHOWN BUT THEY ARE SIMPLY 51 DIVIDED BY 2 AND 4

6-385

u u
u

u
PRESCALER PROGRAMMED FOR IN­
TERNAL FREQUENCY = 100 kHz SO
teY"'" 10J,ts

All)

"BLANK CODE IS EITHER ALL
O's OR ALL 1'$ OR 20 HEX

8(1)

4901'$

L

L
L

LJ

APPLICATION
NOTE

6-386

Ap·153

June 1983

210907-002

Designing with the 8256 Contents

INTRODUCTION

DESCRIPTION OF THE MUART

Microprocessor Bus Interface
Command and Status Registers
Clock Circuitry

System Clock Prescaler
Timer Prescaler

Asynchronous Serial Interface
Receiver Section of the UART
Receive Break Detect
Transmitter Section of the UART
Transmit Break Features
Modification Register

Parallel I/O
Two Wire Byte Handshake

Event CounteriTimers
Interrupt Controller

MCS-85/8256 Interrupt Operation
MCS-86/88/8256 Interrupt Operation
Using the Interrupt Controller

Without INTA
Interrupt Registers
Interrupt Modes
Edge Triggering
Level Triggering
Cascading the MUART's Interrupt

Controller
Polling the MUART

PIN DESCRIPTIONS

DESCRIPTION OF REGISTERS

Hardware Reset

INTERFACING

PROGRAMMING

6-387

Initialization .
Operating the Serial Interface

Transmitting
Receiving

Operating the Parallel Interface
Loading Port 1 and 2
Reading Port 1 and 2

Operating the Event Counter/Timers
Loading Event CounterlTimers
Reading Event CounterlTimers

210907-002

Contents (cont.)

APPLICATION EXAMPLE

Description of the Line Printer
Multiplexer

Description of the Hardware
Description of the Software
Buffer Management
Using the LPM with the MDS SERIES II

ORSERIESIII

APPENDIX

6-388

Listing of the Line Printer Multiplexer
Software

Listing of the WRITE Program
MUART Registers

210907-002

AP-153

INTRODUCTION
The INTEL 8256 MUART is a Multifunction Univer­
sal Asynchronous Receiver Transmitter designed to be
used for serial asynchronous communication while
also providing hardware support for parallel 110, tim­
ing, counting and interrupt control. Its versatile
design allows it to be directly connected to the
MCS@-85, iAPX-86, iAPX-88, iAPX-186, and
iAPX-188 microcomputer systems plus the MCS-48
and MCS-51 family of single-chip microcomputers.

The four commonly used peripheral functions con­
tained in the MUAR Tare:

1) Full-duplex, double-buffered serial asynchronous
Receiver/Transmitter with an on-chip Baud Rate
Generator

2) Two - 8-bit parallel 110 ports
3) Five - 8-bit countersltimers
4) 8-level priority interrupt controller

This manual can be divided into two parts. The first
part describes the MUART in detail, including its
functions, registers and pins. This section also
describes the interface between the MUART and Intel
CPUs plus a discussion on programming considera­
tions. The second section provides an application ex­
ample: a MUART-based line printer multiplexer. The
Appendix contains software listings for the line
printer multiplexer and some useful reference infor­
mation.

DESCRIPTION OF THE MUART

The MUART can be logically partitioned into seven
sections: the microprocessor bus interface, the com­
mand and status registers, clocking circuitry, asyn­
chronous serial communication, parallel 110, timer/e­
vent counters, and the interrupt controller. This can
be seen from the block diagram of the 8256 MUART
as shown in Figure 1. The MUART's pin configura­
tion can be seen in Figure 2.

Microprocessor Bus Interface

The microprocessor bus interface is the hardware
section of the MUART which allows a IlP to com­
municate with the MUART. It consists of tristate
bi-directional data-bus buffers, an address latch, a
chip select (CS) latch and bus control logic. In order to
provide all of the MUART's functions in a 40-pin DIP
while retaining direct register addressing, a multi­
plexed address/data bus is used.

6-389

Address/Data Bus

The MUART contains 16 internal directly addressable
read/write registers. Four of the eight address/data
lines are used to generate the address. When using
8-bit microprocessors such as MCS-85, MCS-48 and
MCS-51, ADO - AD3 are used to address the 16 inter­
nal registers while Address/Data line 4 (AD4) is not
used for addressing. For 16-bit systems, AD! - AD4
are used to generate the address for the internal data
registers and ADO is used as a second active low chip
select.

RD, WR, CS

The 8256 bus interface uses the standard bus control
signals which are compatible with all Intel peripherals
and microprocessors. The chip select signal (CS),
typically derived from an address decoder, is latched
along with the address on the falling edge of ALE. As
a result, chip select does not have to remain low for
the entire bus cycle. However, the data bus buffers
will remain tristated unless an RD or a WR signal
becomes active while chip select has been latched in
low.

INT,INTA

The INT and INTA signals are used to interrupt the
CPU and receive the CPU's acknowledgment to the
interrupt request. The MUART can vector the CPU to
the appropriate service routine depending on the
source of the interrupt.

RESET

When a high level occurs on the RESET pin, the
MUART is placed in a known initial state. This initial
state is described under "Hardware Reset."

Command and Status Register

There are three command registers and one status
register as shown in Figure I. The three command
registers are read/write registers while the status
register is a read only. The command registers con­
figure the MUART for its operating environment (Le.,
8 or 16 bits CPU, system clock frequency). In addi­
tion, they direct its higher level functions such as con­
trolling the UART, selecting modes of operation for
the interrupt controller, and choosing the fundamen­
tal frequency for the timers. Command Register 3 is
the only register in the MUART which is a bit set/reset
register, allowing the programmer to simply perform
one write to set or reset any of the bits.

210907-002

ADo·AD.
DBs·DBr

Os

AD
W-

ALE

RESET

iNti
INT

ADO

AD1

AD2

AD3

AD4

DBS

DBB

DB7

ALE

RD

WR

RESET

CS

iNTA
INT

EXTINT

ClK

RiC

RxD

OND

AP·153

P10'tp

P2o.a7

AxD

T,D

RiC

I _____ ~========== elK -"" EXTINT

Figure 1. Block Diagram of the 8256 MUART

Vee
P10

P11

P12

P13

P14

P1S

P16

PH

P20

P21

P22

P23

P24

P2S

P2B

P27

TxD

rxc
CTS

The status register provides all of the information
about the status of the UART's transmitter and
receiver as weIl as the status of the interrupt pin. The
status register is the only read only register' in the
MUART.

CLOCK CIRCUITRY

The clock for the five timers and baud rate generator
is derived from the system clock. The system clock,
pin 17 (eLK), is fed into a system clock prescaler
which in turn feeds the five timers and the baud rate
generator. The MUART's system clock can be asyn­
chronous to the microprocessor's clock.

System Clock Prescaler

Figure 2. MUART Pin Configuration

The system clock prescaler is a programmable divider
which normalizes the internal clocking frequency for
the timers and baud rate generator to 1.024MHz. It
divides the system clock (eLK) by I, 2, 3, or 5, aIlow­
ing clock frequencies of 1.024MHz, 2.04SMHz,
3.072MHz or 5.12MHz. (The, commonly used
6.144MHz crystal frequency for the SOS5 results in a
3.072MHz frequency from the SOS5's eLK pin;) If the
system clock is not one of the four frequencies men­
tioned above,' then the frequency of the baud rate
generator and the timers will be nonstandard;

6-390 210907-002

Ap·153

however, the MUART will still run as long as the
system clock meets the data sheet tcy spec.

Timer Prescaler

The timer prescaler permits the user to select one of
two fundamental timing frequencies for all of the
MUART's timers, either 1KHz or 16KHz. The fre­
quency selection is made via Command Register O.

Asynchronous Serial Interface

The asynchronous serial interface of the MUART is a
full-duplex double-buffered transmitter and receiver
with separate control registers. The standard asyn­
chronous format is used as shown in Figure 3. The
operation of the UART section of the MUART is very
similar to the operation of the 8251A USART.

Receiver Section of the UART

The serial asynchronous receiver section contains a
serial shift register, a receiver buffer register and
receiver control logic. The serial input data is clocked
into the receive shift register from the RxD pin at the
specified baud rate. The sampling actually takes place
at the rising edge of RxC, assuming an external clock,

GENERATED
OoO'----D~ BYB256

DOES NOT APPEAR

RECEIVER INPUT 000, ----0 .. ON THE DATA BUS

STJ;-i
errs L

t t t t
RxO IL._S,,;,T:_.~_T ..JG,--_D_AT-;A Bf-'T_SL---'_...I' '~~fL

PROGRAMMED
CHARACTER

LENGTH

TRANSMISSION fORMAT

CPU BYTE 15·8 BITS/CHAR)

DATA C:!,RACTER

ASSEMBLED SERIAL DATA OUTPUT ~T.DI

START DATA CHARACTER STOt;-']
,--B~'T~ __ ~~ __ ~~~_B~'T~

RECEIVE FORMAT

SERIAL DATA INPUT IR.DI

L.-ST_~~_T~ ___ DA_T_A_CH-iAR~AC_T_'R __ ~ __ --, __ S-;~~I=J
CPU BYTE (58 BITS/CHARI'

'.'
D.ATA CH~R"" A_CT_'_R __ -,

'NOTE IF CHARACTER LENGTH IS DEFINED AS 5, 6 OR 7
BITS THE UNUSED BITS ARE SET TO "ZERO"

Figure 3. Asynchronous Format

or at the rising edge of the internal-baud clock. When
the receiver is enabled but inactive, the receive logic is
sampling RxD at either 32 or 64 times the bit rate,
looking for a change from the Mark (high) to the
Space (low) state. This is commonly referred to as the
start bit search mode. When this state change occurs,
the receive logic waits one half of a bit time and then
samples RxD again. If RxD is still in the Space state,
the receive logic begins to clock in the receive data
beginning one bit period later. If RxD has returned to
the Mark state (i.e., false start bit), the receive logic
will return to the start bit search mode.

Normally the received data is sampled in the center of
each bit, however it is possible to adjust the location
where the bit is sampled. This feature is controlled by
the modification register.

The bit rate of the serial receive data is derived from
either the internal baud rate generator or an external
clock. When using an external clock, the programmer
has a choice of three sampling rates: lx, 32x, or 64x,
Using the internal baud rate generator, the sampling
rates are all 64x except for 19.2 Kbps which is 32x.

When the serial shift register clocks in the stop bit, an
internal load pulse is generated which transfers the
contents of the shift register into the receive buffer.
This transfer takes place during the first half of the
first stop bit. The load pulse also triggers several other
signals relevant to the receive section including
Receive Buffer Full (RBF), Parity Error (PE), Over­
run Error (OE), and Framing Error (FE). These four
status bits are updated after the middle of the first
stop bit when the receive buffer has already been
latched. Each one of these four status bits are latched.
They are reset on the rising edge of the first read pulse
(RD) addressed to the status register. A complete
description of the status register is given in the section
"Description of the Registers."

When the serial receiver is disabled (via bit 6 of Com­
mand Register 3) the load pulse is suppressed. The
result is that the receive buffer is not loaded with the
contents of the shift register, and the RBF, PE, OE,
and FE bits in the status register are not updated.
Even though the receiver is disabled, the serial shift
register will still be clocking in the data from RxD, if
any. This means that the receiver will still be syn­
chronized with the start and stop bits. For example, if
the receiver is enabled via Command Register 3 in the
middle of receiving a serial character, the character
will. still be ass~mbled correctly. When the receiver is
disabled the last character received will remain in the
receive buffer. On power-up the value in the receive
buffer is undefined.

6-391 210907-002

inter Ap·153

Whenever a character length of fewer than 8 bits is
programmed, the most significant bits of a received
character will read as zero. Also, the receiver will only
check the first stop bit of any character, regardless of
how many stop bits are programmed into the device.

Receive Break Detect

A Receive Break occurs when RxD remains in the
space state for one character time, including the parity
bit (if any) and the first stop bit. The MUART will set
the Break Detect status bit (BD) when it receives a
break. The Break Detect status bit is set after the mid­
dle of the first stop bit. If the MUART detects a break
it will inhibit the receive buffer load pulse, thus the
receive buffer will not be loaded with the null
character, and none of the four status bits (PE, OE,
FE, and RBF) will be updated. The last character
received will remain in the receive buffer. A break
detect state has the same effect as disabling the
receiver-they both inhibit the load pulse-'therefore
one can think of the break status as disabling the
receiver.

The Break Detect status bit is latched. It is cleared by
the rising edge of the read pulse addressed to the status
register. If a break occurs, and then the RxD data line
returns to the Mark state before the status register is
read, the BD status bit will remain set until it is read.
If RxD returns to the Mark state after the BD status
bit has been read true, the BD status bit will be reset
automatically without reading the status register.

The receive break detect logic of the MUART is in­
dependent of whether the receiver is enabled or dis­
abled; therefore even if the receiver is disabled the
MUART will recognize a break. When the RxD line
returns to the Mark state after a break, the 8256 will
be in the start bit search mode.

If the receiver interrupt level is enabled, break will
generate an interrupt request regardless of whether the
receiver is enabled. Another receive interrupt will not
be generated until the RxD pin returns to the Mark
state.

Transmitter Section of the UART

The serial asynchronous transmitter section of the
MUART consists of it transmit buffer, a transmit
(shift) register, and the associated control logic. There
are two bits in the status register which indicate the
status of the transmit buffer and transmit register:
TBE (transmit butfer empty) and TRE (transmit
register empty).

To transmit a character, a byte is written to the
transmit buffer. The transmit buffer should only be
written to when TBE = 1. When the transmit register is
empty and CTS = 0, the character will be automatic­
ally transferred from the transmit buffer into the
transmit register. The data transfer from the transmit
buffer to the transmit register takes place during the
transmission of the start bit. After this transfer takes
place, sometime at the beginning of the transmission
of the first data bit, TBE is set to 1.

When the transmitter is idle, both TBE. and TRE will
be set to 1. After a character is written to the transmit
buffer, TBE = 0 and TRE = 1. This state will remain
for a short period of time, then the character will be
transferred into the transmit register and the status
bits will read TBE = 1 and TRE = O. At this point a se­
cond character may be written to the transmit buffer
after which TBE = 0 and TRE = O. TBE will not be set
to 1 again until the transmit register becomes empty
and is reloaded with the byte in the transmit buffer.

The transmitter can be disabled only one way-using
the CTS pin. When CTS = 0 the transmitter is enabled,
and when CTS = 1 the transmitter is disabled. If the
transmitter is idle and ffi" goes from 0 to I, disabling
the transmitter, TBE and TRE will remain set to 1.
Since TBE = 1 a character can be written into the
tr~nsmit buffer. The character will be stored in the
transmit buffer but it will not be transferred to the
transmit register until CTSgoes low.

If CTS goes from low to high during transmission of a
character, the character in transmission will be com­
pleted and TxD will return to the Mark state. If the
transmitter is full (i.e., TBE and TRE = 0), the
transmit shift register will be emptied but the transmit
buffer will not; therefore TBE = 0 and TRE = I.

Transmitter Break Features

The MUART ,has three transmit break features:
Break-In Detect, Transmit Break (TBRK), and Single
Character Break (SBRK).

Break-In Detect - A Break-In condition occurs when
the MUART is sending a serial message and the
transmission line is forced to the space state by the
receiving station. Break-In is usually used with half­
duplex transmission so that the receiver can signal a
break to the transmitter. Port 16 must be connected
externally to the transmission line in order to detect a
Break-In. If transmission voltage levels other than
TTL are used, then proper buffering must be provided
so that Port 16 on the MUART will receive the correct
polarity and voltage levels.

6-392 210907-002

inter AP·153

When Break-In Detect is enabled, Port 16 is polled in­
ternally during the transmission of the last or only
stop bit of a character. If this pin is low during
transmission of the stop bit, the Break Detect status
bit (BD) will be set. Break-In Detect and receive Break
Detect are OR-ed to set the BD status bit. (Either one
can set this bit.) The distinction can be made through
the interrupt controller. If the transmit and receive in­
terrupts are enabled, a Break-In will generate an inter­
rupt on level 5, the transmit interrupt, while Break will
generate an interrupt on level 4, the receive interrupt.
If RxC and TxC are used for the serial bit rates,
Break -In cannot be detected.

Transmit Break - This causes the TxD pin to be forced
low for as long as the TBRK bit in Command Register
3 is set. While Transmit Break is active, data transfers
from the Transmit Buffer to the Transmit register will
be inhibited.

If both the Transmit Buffer and the Transmit Register
are full, and a Transmit Break command is issued
(command register 3, TBRK = I), the entire character
in the Transmit register is sent including the stop bits.
TxD is then driven low and the character in the
Transmit Buffer remains there until Transmit Break is
disabled (command register 3, TBRK = 0). At this time
TxD will go high for one bit time and then send the
character in the Transmit Buffer.

Single Character Break - This causes TxD to be set
low for one character including start bit, data bits,
parity bit, and stop bits. The user can send a specific
number of Break characters using this feature.

If both the Transmit Buffer and the Transmit Register
are full and a Send Break command is issued (com­
mand register 3, SBRK = I) the entire character in the
Transmit Register is sent including the stop bits. TxD
is driven low for one complete character time followed
by a high for two bit times after which the characterin
the Transmit Buffer is sent.

Modification Register

The modification register is used to alter two standard
functions of the receiver (start bit check, and sampling
time) and to enable a special indicator flag for half­
duplex operation (transmitter status). Disabling start
bit check means that the receiver will not return to the
start bit search mode if RxD has returned to the Mark
state in the center of the start bit. It will simply pro­
ceed to assemble a character from the RxD pin
regardless of whether it received a false start bit or
not. The modification register also allows the user to

define where within the receive data bits the MUART
will sample.

Parallel 1/0

The MUART contains 16 parallel 110 pins which are
divided into two 8-bit ports. These two parallel 1/0
ports (Port I and Port 2) can be used for basic digital
110 such as setting a bit high or low, or for byte
transfers using a two-wire handshake. Port 1 is bit
programmable for input or output, so any combina­
tion of the eight bits in Port 1 can be selected as either
an input or an output. Port 2 is nibble programmable,
which means that· all four bits in the upper or lower
nibble have to be selected as either inputs or outputs.
For byte transfers using the two- wire handshake,
Port 2 can either input or output the byte while two
bits in Port I are used for the handshaking signals.

All of the bits in Port 1 have alternate functions other
than 110 ports. As mentioned above, when using the
byte handshake mode, two bits on Port I are used for
the handshaking signals. As a result, these two bits
cannot be used for general purpose 1/0. The other six
bits in Port I also have alternate functions if they are
not used as 110 ports. Table 1 lists each bit from Port
1 and its corresponding alternate function.

The bits in the Port 1 Control Register select whether
the pins on Port I are inputs or outputs. The pins on
Port I are selected as control pins through the other
programming registers which are relevant to the con­
trol signal. Configuring a bit in Port I as a control
function overrides its definition in the Port I Control
Register. If the pins on Port I are redefined as control
signals, the definition of whether the pin is an input or
an output in the Port I Control Register remains un­
changed. If the pins on Port 1 are converted back to
110 pins, they assume the state which was defined in
the Port I Control Register.

Each parallel 110 port has a latch and drivers. When
the port is in the output mode, the data written to the
port is latched and driven on the pins. The data which
is latched in the 110 ports remains unchanged unless
the port is written to again. Reading the ports,
whether the port is an input or output, gates the state
at the pins onto the data bus. Writing to an input port
has no effect on the pin, but the data is stored in the
latch and will be output if the direction on the pin is
changed later. Writing to a control pin on Port I has
the same effect as writing to an input pin. If pins 2, 3,
5, and 6 in Port I are used for control signals, the con­
tents of the respective output latches will be read, not
the state of the control signals. If pins 0, I, and 7 on

6-393 210907-002

AP·153

Table 1. Port 1 Control Signals

Pin Pin
Symbol Number Control Function Condition

PI0 39 ACK Control signals for Port 2 Mode register
Pll 38 OBF 8-bit handshake output P2C2 - P2CO=101

PIO 39 STB Control signals for Port 2 Mode register
Pll 38 IBF 8-bit handshake input P2C2 - P2CO= 100

P12 37 Event counter 2
clock input

P13 36 Event counter 3
clock input

P14 35 Internal baud rate
generator clock output

P15 34 Timer 5 trigger input

P16 33 Break-In detection input

P17 32 External edge sensitive
interrupt input

Port 1 are used for control signals, the state of the
control signals will be read. If pin 4 on Port 1 is used
as a test output for the internal baud rate, this clock
signal will be output through the output latch, thus the
information in the output latch will be lost.

The Two·Wire Byte Handshake

The 8256 can be programmed, via the Mode Register,
to implement an input or output two-wire byte hand­
shake. When the Mode Register is programmed for
the byte handshake, Port 2 is used to transmit or
receive the byte, and pins PIO and Pll are used for the
two handshake control signals. Figures 4 and 5 on
pages 7 through 10 show a block diagram and timing
signals for the two-wire handshake input and output.

To set up the two-wire handshake output using inter­
rupts one must first program the Mode Register, and
then enable tbe interrupt via the interrupt mask
register. An interrupt will 110t occur immediately after
the two-wire handshake interrupt is enabled. The in­
terrupt is triggered by the rising edge of ACK. There
are two ways to generate the first interrtipt. Either the

Mode register
CT2=1

Mode register
CT3=1

Mode word
P2CO - P2C2 = 111
Port 1 control word P14= 1
Command Register 2
B3 - BO~ 3H

Mode register
T5C=1

Command Register 1
BRKI=1

Command Register 1
BITI= 1

first data byte must be written to Port 2 and complete­
ly transferred before an interrupt will occur, or the
two-wire handshake interrupt is enabled while ACK is
low, and then ACK goes high.

Event Countersrtimers

The MUART's five 8-bit programmable counters/
timers are binary presettable down counters. The
distinction between timer and counter is determined
by the clock source. A timer measures an absolute
time interval, and its input clock frequency is derived
from the MUART's system clock. A counter's input
clock frequency is derived from a pulse applied to an
external pin. The counter is decremented on the rising,
edge of this pulse. '

When the counters/timers are configured as timers
their clock source passes through two dividers: the
system clock prescaler, and the timer prescaler. As
mentioned before, the system clock prescaler normali­
zes the internal system clock to 1.024 MHz. The timer
prescaler receives this normalized system clock and
devides it down to either 1 kHz or 16 kHz, depending

6-394 210907-002

Ap·153

INT OBF

iNTA AcK

Ro
PrDcessDr 8256 Equipment

WR

Databus P20·P27

Figure 4. Block Diagram of Handshake Output

on how Command Register I is programmed. If more
timing resolution is needed the clock frequency can be
input externally through the I/O ports.

By programming the Mode Register, four of the 8-bit
counters/timers can be cascaded to form two 16-bit
counters. Counters/timers 3 and 5 can be cascaded
together, and counters/timers 2 and 4 can be cascaded
together. Counters/timers 2 and 3 are the lower bytes,
while counters/timers 4 and 5 are the upper bytes in
the cascaded mqde.

Each counter can be loaded with an arbitrary initial
value. Timer 5 is the only timer which has a special
save register which holds its initial value. Whenever
Timer 5 is loaded with an initial value the special save
register is also loaded with this value. Timer 5 can be
reloaded to its initial value from the detection of a
high-to-low transition on Port P15.

The counters are decremented on the first rising edge
of the clock after the initial value has been loaded.
The setup time for loading the counter when using an
external clock is specified in the data sheet. When us­
ing internal clocks, the user has no way of knowing
the phase relationship of the clock to the write pulse;
therefore the timing accuracy is one clock period.

The timers are counting continuously, and an inter­
rupt request is issued any time a single counter or pair
of cascaded counters reaches zero. If the timers are
going to be used with interrupts, then the programmer
should first load the timer with the initial value, then
enable the interrupt. If the programmer enables the in­
terrupt first, it is possible that the interrupt will occur
before the initial value is loaded. When an interrupt
from anyone of the timers occurs, the corresponding

bit in the interrupt mask register is automatically
reset, preventing further interrupt requests from oc­
curing.

The event counters/timers can be used in the follow­
ing modes of operation:

Timer I
- Serves as an 8-bit timer.

Event Counter/Timer 2
- Serves as an 8-bit timer or event counter, or

cascaded with Timer 4 as a 16-bit timer or event
counter.

Event Counter/Timer 3
- Serves as an 8-bit timer or event counter, or

cascaded with Timer 5 as a 16-bit timer or event
counter, with the additional modes of operation
selectable for Timer 5.

Timer 4
- Serves as an 8-bit timer, or cascaded with Event

Counter/Timer 2 as a 16-bit timer or event
counter.

Timer 5
I) Non-retriggerable 8-bit timer
2) Retriggerable a-bit timer whose initial value is

loaded from a save register which starts following
the negative transition of an external signal. Subse­
quent transitions of this signal after the counting
has started, reloads the initial value and restarts the
counting.

3) Cascaded with Event Counter/Timer 3, non­
retriggerable 16-bit timer, which can be loaded
with an initial value by two write operations.

6-395 210907-002

INT

iN'i'A
or
RfI

AD.·AD4
DBS·DB7

P20·P27

___ J

Ap·153

............
............

......
®
2 " \

i ,

Data

Figure 4a. Timing' of Handshake Output

CD The 8256 signals with INT that the equipment has accepted the last ci)aracter and that the output latches are empty again.

o Thereupon, the microprocessor transfers the next data to the 8256.

CDThe rising edge of WR latches the data into port 2 (P20 ... P27) and "Output Buffer Full" (OBF) is set which indicates that a
new byte is available.

@The equipment acknowledges with the falling edge ofACK that it recognized OBF.

0Thereupon, the 8256 releases OBF.
® The equipment acknowledges the data transfer with a rising edge of ACK which causes the 8256 to set INT.

6-396 210907-002

Ap·153

INT STB

INTA IBF

AD
Processor 8256 Equipment

Oatabus P20·P27

Figure 5. Block Diagram of Handshake Input

4) Cascaded with event counter/timer 3, non·
retriggerable 16·bit event counter, which can
be loaded with an initial value by two write
operations.

5) Cascaded with Event Counter/Timer 3, retrig·
gerable 16·bit timer. The most significant byte
(Timer 5) will be loaded with its initial value from
the save register, while the least significant byte'
(Event Counter/Timer 3) will be set to OFFH
automatically, Loading, starting, and retriggering
operations follow the same pattern as in 2).

6) Cascaded with Event Counter/Timer 3, retrig­
gerable 16-bit event counter. The most significant
byte (Timer 5) will be loaded with its initial value
from the save register, while the least significant
byte (Event Counter/Timer 3) will be set to OFFH
automatically. Loading, starting, and retriggering
operations follow the same pattern as in 2).

Interrupt Controller
In a microcomputer system there are several ways for
the CPU to recognize that a peripheral device needs
service. Two of the most common ways are the polling
method and the interrupt service method.

In the polling method the CPU reads the status of
each peripheral to determine whether it needs service.

. If the peripheral does not need service, the time the
CPU spends polling is wasted; therefore this overhead
results in increasing the execution time. Some systems
must meet a specific request to response time such as a
real time signal. In this case the programmer must
guarantee that the peripheral is polled at a certain fre­
quency. This polling frequency cannot always easily

be met when the CPU must execute a main program as
well as subroutines. Usually each peripheral has its
own request to response time requirements; therefore
the user must establish a priority scheme.

The interrupt method provides certain advantages
over the polling method. When a peripheral device
needs service it signals the CPU through hardware
asynchronously, thus reducing the overhead of polling
a device which does not need service. The CPU would
typically finish the.instruction it is executing, save the
important registers, and acknowledge the peripheral's
interrupt request. During the acknowledgment, the
CPU reads a vector which directs the CPU to the start­
ing location of the appropriate interrupt service
routine. If several interrupt requests occur at the same
time, special logic can prioritize the requests so that
when the CPU acknowledges the interrupt, the highest
priority request is vectored to the CPU.

An interrupt driven system requires additional hard­
ware to control the interrupt request signal, priority,
and vectoring. The 8256 integr~tes this additional
hardware onto the chip. The interrupt controller on
the MUART is directly compatible with the MCS-85,
iAPX-86, iAPX-88, iAPX-186, iAPX-188 family of
microcomputer systems, and it can also be used with
other microprocessors as well. It contains eight priori­
ty levels, however, there are a total of 12 interruptable
sources: 10 internal and 2 external. Since there are
eight priority levels, only eight interrupts can be used
at one time. The assignment of the interrupts used is
selected by Command Register 1 and by the mode
register. The MUART's interrupt sources have a fixed
priority. Table 2 displays how the 12 interrupt sources
are mapped into the 8 priority levels.

6-397 210907-002

Ap,·153

: P2G-P27 =x: x: II :)< Data Data
II

~
STB

~----~~~i--------~!~---J

INT

AD.AD4 ~~i
DBS.DB7_' ________ ~~~~'lI------

Figure 5a. Timing for Handshake Input

CD The equipment indicates with the falling edge of STB (Strobe) that a new character is available at port 2. The 8256
acknowledges the indication by activating IBF (Input Buffer Full).

@Thereupon, the equip~ent releases ffi and the 8256 latches the character.

®The 8256 informs the microprocessor through INT that a new character is ready for transfer.

@The microprocessor reads the character.

® The rising edge of Signal Ri5" resets signal iBF.
® This action signals to the equipment that the input latches of the 8256 are empty and the next character can be transferred.

6-398 210907-002

inter Ap·153

Table 2. Mapping of Interrupt Sources to
Priority Levels MEMORY ADDRESS

Priority Source

Highest LO Timer 1
L1 Timer 2 or Port Interrupt
L2 External Interrupt (EX TINT)
L3 Timer 3 or Timers 3 & 5
L4 Receiver Interrupt
L5 Transmitter Interrupt
L6 Timer 4 or Timers 2 & 4

Lowest L7 Timer 5 or Port 2 Handshaking

MCS®·85/8256 Interrupt Operation

The 8256 is compatible with the 8085 interrupt vector·
ing method when the 8086 bit in Command Register 1
of the MUART is set to O. This is the default condition
after a hardware reset. The 8085 has five hardware in­
terrupt pins: INTR, RST 7.5, RST 6.5, RST 5.5, and
TRAP. When the MUART's interrupt acknowledge
feature is enabled (lAE bit 5 Command Register 3 = 1)
the MUART's INT Pin 15 should be tied to the 8085's
INTR, and both the 8085 and the MUART's INTA
pins should be tied together. All of the interrupt pins
on the 8085 except INTR automatically vector the pro­
gram counter to a specified location in memory. When
the INTR pin becomes active (HIGH), assuming the
8085 has interrupts enabled, the 8085 fetches the next
instruction from the data bus where it has been placed
by the 8256 or some other interrupt controller. This
instruction is usually a Call or an RSTO through
RST7. Figure 6 shows the memory locations where the
8085 will vector to based on which type of interrupt
occurred.

The 8085 can receive an interrupt request any time,
since its INTR input is asynchronous. The 8085,
however, doesn't always acknowledge an interrupt re­
quest immediately. It can accept or disregard requests
under software control using the EI (Enable Interrupt)
or DI (Disable Interrupt) instructions.

At the end of each instruction cycle, the 8085 ex­
amines the state of its INTR pin. If an interrupt re­
quest is present and interrupts are enabled, the 8085
enters an interrupt machine cycle. During the inter­
rupt machine cycle the 8085 automatically disables
further interrupts until the EI instruction is executed.
Unlike normal machine cycles, the interrupt machine

TRAP

RST 7.5
RST 6.5
RST 5.5

BOBSA
EXECUTING
SOFTWARE

RST INSTRUCTIONS
IN RESPONSE TO INTR

RST0r-____ ..,

BOBSA
SYSTEM
MEMORY

OOH

OBH

10H

1BH

20H

24H

2BH

2CH

30H

34H

3BH

3CH

Figure 6. 8085A Hardware and Software RST
Branch Locations

cycle doesn't increment the program counter. This en­
sures that the 8085 can return to the pre-interrupt
program location after the interrupt service is com­
pleted. The 8085 issues an INTA pulse indicating that
it is honoring the request and is ready to process the
interrupt.

The 8256 can now vector program execution to the
corresponding service routine. This is done during the
first and only INTA pulse. Upon receiving the INTA
pulse, the 8256 places the opcode RSTn on the data
bus; where n equals 0 through 7 based on the level of
the interrupt requested. The RSTn instruction causes
the contents of the program counter to be pushed onto
the stack, then transfers control to the instruction
whose address is eight times n, as shown in Figure 6.

Note that because interrupts are disabled during the
interrupt acknowledge sequence, the EI instruction
must be executed in either the service routine or the
main program before further interrupts can be proc­
essed.
For additional information on the 8085 interrupt
operation and the RSTn in~truction, refer to the
MCS-85 User's Manual.

6-399 210907-002

Ap·153

iAPX·86/88 - 8256 Interrupt Operation

The MUART is compatible with the 8086/8088
method of interrupt vectoring when the 8086 bit in
Command Register 1 is set to 1. The MUART's INT
pin is tied to the 8086/8088 INTR pin, and its INTA
pin connected to the 8086/88's INTA pin. Like the
8085, the 8086/8088's INTR pin is also asynchronous
so that an interrupt request can occur at any time. The
8086/8088 can accept or disregard requests on the
INTR pin under software control instructions. These
instructions set or clear the interrupt· enabled flag IF.
When the 8086/8088 is powered· on or reset, the IF
flag is cleared, disabling external interrupts on INTR.

Although there are some basic similarities, the actual
processing of interrupts with an 8086/8088 is different
from the 8085. When an interrupt request is present
and interrupts are enabled, the 8086/8088 enters its in·
'terrupt acknowledge machine cycle. The interrupt
acknowledge machine cycle pushes the flag registers
onto the stack (as in PUSHF instruction). It then
clears the IF flag, which disables interrupts. Finally,
the contents of both the code segment register and the
instruction pointer are pushed onto the stack. Thus,
the stack retains the pre-interrupt flag status and pro­
gram location which are used to return from the ser­
vice routine. The 8086/8088 then issues the first ·of

MUART'S
INTERRUPT
LEVELS

,~

tR

t~

INTERRUPT

INTERRUPT

INTERRUPT

INTERRUPT

INTERRUPT

INTERRUPT

INTERRUPT

INTERRUPT

INTERRUPT

INTERRUPT .
.

INTERRUPT

INTERRUPT

INTERRUPT

two INTA pulses which signals the 8256 that the
8086/8088 has honored its interrupt request.

The 8256 is now ready to vector program execution to
the appropriate service routine. Unlike the 8085 where
the first INT A pulse is used to place an instruction on
the data bus, the first INTA pulse from the 8086/8088
is used only to signal the 8256 of the honored request.
The second INTA pulse causes the 8256 to place a
single interrupt vector byte onto the data bus. The
8256 places the interrupt vector bytes 40H through
47H corresponding to the level of the interrupt to be
serviced. Not used as a direct address, this interrupt
vector byte pertains to one of 256 interrupt "types"
supported by the 8086/8088 memory. Program execu­
tion is vectored to the corresponding service routine
by the contents of a specified interrupt type.

All 256 interrupt types are located in absolute memory
locations 0 through3FFH which make up the
8086/8088's interrupt vector table. Each type in the
interrupt vector table requires 4 bytes of memory and
stores a code segment address and an instruction
pointer address. Figure 7 shows a block diagram of
the interrupt vector table. When the 8086/8088
receives an interrupt vector byte, it multiplies its value
by four to acquire the address of the interrupt type.

TYPE 255

TYPE 254

· · ·
TYPE 71

TYPE 70

TYPE 69

TYPE 68

TYPE 67

TYPE 66

TYPE 65

TYPE 64

TYPE 2

TYPE 1

TYPE 0

--'f'
(FFH)

(FE H)

~~

(47H)

(46H)

(45H)

~441iL

(43H)

(42H)

(41H)

~Ol:!l.

~~

(2H)

(lH)

(OH)

3FCH

3F8H

llCH

118H

114H

110H

lOCH

108H

104H

100H

8H

4H

OH

Figure 7. 8086/8088 Interrupt Vector Table

6-400 210907-002

Ap·153

Once the service routine is completed the main pro­
gram may be reentered by using an IRET (Interrupt
Return) instruction. The I RET instruction will pop the
pre-interrupt instruction pointer, code segment and
flags off the stack. Thus the main program will
resume where it was interrupted with the same flag
status regardless of changes in the service routine.
Note especially that this includes the state of the IF
flag; thus interrupts are re-enabled automatically
when returning from the service routine. For further
information refer to the iAPX 86,88 User's Manual.

Using the 8256's Interrupt Controller
Without INTA

There are several configurations where the 8256 will
not have an INTA signal connected to it. Some ex­
amples are when using the 8256 with an 8051 or 8048,
or when connecting the INT pin on the 8256 to the
8085's RST 7.5, RST 6.5, or RST 5.5 inputs. In these
configurations the IAE bit in Command Register 3 is
set to 0, and the INTA pin on the 8256 is tied high.
When the interrupt occurs the CPU should branch to
a service routine which reads the interrupt address
register to determine which interrupt request level oc­
cured. The interrupt address register contains the level
of the interrupt multiplied by four. Reading the inter­
rupt address register is equivalent in effect to the
iNTA signal; it clears the INT pin and indicates to the
MUART that the interrupt request has been
acknowledged. After the CPU reads the value in the
interrupt address register, it can add an offset to this
value and branch to an interrupt vector table which
contains jump instructions to the appropriate inter­
rupt service routines. An 8085 program which
demonstrates this routine is given is Figure 8.

Table 3 summarizes the priority levels and the in­
terrupt vectors which the 8256 sends back to the CPU.
Note that when using Timer 1 there is a conflict pre-

sent between RSTO in the 8085 mode and a hardware
reset, because both expect instructions starting at
address OH. However, there is a way to distinguish
between the two. After a hardware reset, all control
registers are reset to a value of OH; therefore when
using Timer 1, Reset and RSTO can be distinguished
by reading one of the control registers of the 8256
which has not been programmed with a value of OH.
The control registers will contain the previously
programmed values if RSTO occurs.

Interrupt Registers

The 8256's interrupt controller has several registers
associated with it: an Interrupt Mask Register, an In­
terrupt Address Register, an Interrupt Request
Register, an Interrupt Service Register, and a Priority
Controller. Only the Interrupt Mask Registers and the
Interrupt Address Register can be accessed by the
user.

Interrupt Mask Registers
The Interrupt Mask Registers consist of two write
registers - the Set Interrupts Register and Reset Inter­
rupts Register, and one read register - the Interrupt
Enable Register. Each one of the eight levels of inter­
rupts may be individually enabled or disabled through
these registers. Writing a one to any of the bits in the
Set Interrupts Register enables the corresponding in­
terrupt level, while writing a one to a bit in the Reset
Interrupts Register disables the corresponding inter­
rupt level. Reading the Interrupt Enable Register
allows the user to determine which interrupt levels are
enabled. The bits which are set to one in the Interrupt
Enable Register correspond to the levels which are
enabled. All of the interrupt levels will remain enabled
until disabled by the Reset Interrupts Register except
the counter Itimer interrupts which automatically
disable themselves when they reach zero.

INTA: IN
MOV
XRA
MOV

INTADD
L, A

;Read the Interrupt Address Register
;Put the interrupt address in HL

LXI
DAD
PCHL

A
H,A

B, TABLE
B

;Load BE with the interrupt table offset
;Add the offset to the interrupt address
;Jump to the interrupt vecor table

Figure 8. Software Interrupt Acknowledge Routine

6-401 210907-002

Ap·153

Table 3. Assignment of Interrupt Levels to Interrupt Sources

Restart Inter·
Com· rupt
mand Vector Inter· Sources

Interrupt 8085 8086 rupt Trigger (Only one source can be Selection
Level mode mode Address Mode assigned at any time) by

Highest RSTO 40H OH edge Timer 1 -
Priority
0

1 RSTI 41H 4H edge Event Counter/Timer 2 or Command
external interrupt request word 1 BITI
on Port 1 PI7 (bit 2)

2 RST2 42H SH level Input EXTINT -

3 RST3 43H CH edge Event Counter/Timer 3 or Mode word
cascaded event counters/ T35 (bit 7)
timers 3 and 5

4 RST4 44H 10H edge Serial receiver -

5 RST5 45H 14H edge Serial transmitter -

6 RST6 46H 2SH edge Timer 4 or cascaded event Mode word
counters/timers 2 and 4 T24 (bit 6)

7 RST7 47H ICH edge Timer 5 or Port 2 with Mode word
Lowest handshaking interrupt P2C2 - P2CO
Priority request (bits 2 ... 0)

Note:

If no interrupt requests are pending and INTA cycle occurs, interrupt level 2 will be the default value vectored to the CPU.

Interrupt requests occurring when the corresponding
interrupt level is disabled are lost. An interrupt will
only occur if the interrupt is enabled before the
interrupt request occurs.

Interrupt Address Register
The Interrupt Address Register contains an identifier
for the currently requested interrupt level. The
numerical value in this register is equal to the interrupt
level mutliplied by four. It can be used in lieu of an
INTA signal to vector the CPU to the appropriate in­
terrupt service routine. Reading this register has the
same effect as the INTA pulse: it clears the INT pin
aud indicates an interrupt acknowledgement to the
MUART. If the Interrupt Address Register is read
while no interrupts are pending, the external interrupt
EXTINT will be the default value, OSH.

Interrupt Request Register
The Interrupt Request Register latches all pending in­
terrupt requests unless they are masked off. The re­
quest is set whenever the associated event occurs.

Interrupt Service Register
In the fully nested mode of operation, every interrupt
request which is granted service is entered into this
register. The appropriate bit will be set whenever the
interrupt is acknowledged by 'iNTA or by reading the
Interrupt Address Register. At the same time, the cor­
responding bit in the Interrupt Request Register is
reset. The Interrupt Service Register bit remains set
until the microcomputer transfers the End Of Inter­
rupt command (EOI) to the device by writing it into
Command Register 3. In the normal mode the bits in
the Interrupt Service Register are never set.

6-402 210907-002

inter Ap·153

Priority Controller
The priority controller selects the highest priority
request in the Interrupt Request Register from up to
eight requests pending. If the INTA signal is enabled
and becomes active, the priority controller will cause
the highest priority level in the Interrupt Request
Register to be vectored back to the CPU, regardless of
whether the 8256 is in the normal mode or the nested
mode. In the normal mode, if any bits are set in the
Interrupt Request Register, the INT pin is activated.
The highest priority level in the Interrupt Request
register will be transferred to the Interrupt Address
Register at the same time the interrupt request occurs.
In the Fully Nested mode, the priorities of all pending
requests are compared to the priorities in the Interrupt
Service Register. If there is a higher priority in the
Interrupt Request Register than in the Interrupt Ser·
vice Register, the INT signal will be activated and the
new interrupt level will be loaded into the Interrupt
Address Register.

Interrupt Modes
There are two modes of operation for the interrupt
controller: a normal mode and a fully nested mode. In
the normal mode the CPU should only be a maximum
of one interrupt level deep; therefore, the CPU can be
interrupted only while in the main program and not
while in an interrupt service routine. In the fully
nested mode it is possible for the CPU to be nested up
to eight interrupt levels deep. Using the fully nested
mode, the MUART will activate the INT pin only
when a higher priority than the one in service is re­
quested. The fully nested mode is used to protect high
priority interrupt service routines from being
interrupted by equal or lower priority requests.

Normal Mode
In the normal mode of operation the 8256 will activate
the INT pin whenever any of the bits in the Interrupt
Request Register are set. The bits in the Interrupt
Request Register can be set only if the corresponding
interrupts are enabled. If more than one interrupt re­
quest bit is set, the MUART will always place the
highest priority level in the Interrupt Address Register
and vector this level to the CPU during an iN'i'A cy­
cle. When the CPU acknowledges the interrupt
request, using either the INTA signal or by reading the
Interrupt Address Register, the corresponding Inter­
rupt Request Register bit is reset. Since the Interrupt
Service Register bits are never set, there is no indica­
tion in the MUART that an interrupt service routine is
in progress. Therefore, the priority controller will in­
terrupt the CPU again if any of the interrupt request
bits are set, regardless of whether the next request is a
higher, lower, or equal priority.

The implied way to design a program using the normal
mode is to have the CPU's interrupt flag enabled dur­
ing portions of the main program, but to leave the in­
terrupt flag disabled while the CPU is executing code
in an interrupt service routine. This way, the CPU can
never be interrupted in an interrupt service routine.
Upon completion of an interrupt service routine the
program can enable the CPU's interrupt flag, then
return to the main program.

Figure 9 shows an example of how the normal mode
of interrupts may operate. As the CPU begins
executing code in the main program, certain liD
ports, variables, and arrays need to be initialized.
During this time the CPU's interrupt flag is disabled.
Once the program has completed the initialization
routine and can accept an interrupt, the interrupt flag
is enabled. In the 8085 this is done with the assembly
language instruction EI, and on the 8086 with STI.

A short time later, an interrupt request comes in on
Level 4. Since the CPU's interrupt flag is enabled, the
interrupt acknowledge signal is activated and the CPU
branches off to Interrupt Service Routine 4. While the
CPU is executing code in Interrupt Service Routine 4,
an interrupt request comes in on Level 6 and then a
short time later on Level 2. The 8256 activates the INT
signal; however, the CPU ignores this because its in­
terrupt flag is disabled. Upon returning to the main
program the interrupt flag is enabled. When the inter­
rupt acknowledge signal is activated, the MUART
places the highest priority interrupt request on the
data bus regardless of the order in which the requests
came in. Therefore, during the interrupt acknowledge
the MUART vectors the indirect address for Interrupt
Level 2. The INT signal is not cleared after the
acknowledge because there is still a pending interrupt.

The normal mode of operation is advantageous in that
it simplifies programming and lowers code re­
quirements within interrupt routines; however, there
are also several disadvantages. One disadvantage is
that the interrupt response time for higher priority in­
terrupts may be excessive. For example, if the CPU is
executing code in an interrupt service routine during a
higher priority request, the CPU will not branch off to
the higher priority service routine until the current in­
terrupt service routine is completed. This delay time
may not be acceptable for interrupts such as the serial
receiver or a real time signal. For these cases the
MUART provides the nested mode.

Nested Mode
In the nested mode of operation, whenever a bit in the
Interrupt Request Register is set, the Priority Con-

6-403 210907-002

Ap·153

INTERRUPT
REQUEST 4

MAIN PROGRAM

t

_t
EI OR STI

t

t

l
•
• · '---

i

t

1

rINTERRUPT-l
SERVICE I

ROUTINE 4 I
I

4
I
I

:
t I

I RET OR IRET I ________ .J

'-iNTERRupT -,
I SERVICE I

ROUTINE 2 I

I I
I , I
I I
I

, I
I I
I I
I , I
I RET OR IRET I ... _______ .J

r-iN'TER'RUPi"- ,
I SERVICE I
i ROUTINE 6 I
I I
I I
I I
I I
I RET OR IRET I ... _______ 1

INTERRUPT
REQUEST 6

INTERRUPT
REQUEST 2

Figure 9. Normal Interrupt Mode Example

troller compares the Interrupt Request Register to the
Interrupt Service Register. If the bit set in the Request
Register is of a higher priority than the highest priority
bit set in the Service Register, the MUAR T will ac­
tivate the INT signal and update the Interrupt Address
Register. If the bit in the Request Register is of equal
or lower priority than the highest priority bit set in the
Service Register, the INT signal will not be activated.
When an 'iN'TA signal is' activated or the Interrupt
Address Register is read, the corresponding bit in the
Request Register which caused the INT signal to be
asserted is reset and set in the Service Register. When

an EOI (End Of Interrupt) command is issued, the
highest priority bit in the Service Register is reset.

Figure 10 shows an example of the program flow using
the nested mode of interrupts. During the main pro­
gram an interrupt request is generated from Level 4.
Since the interrupt flag is enabled, the interrupt
acknowledge signal is activated, and the
microprocessor is vectored to Service Routine 4.
During Service Routine 4, Level 2 requests an inter-,
rupt. Since Level 2 is a higher priority than Level 4,
the 8256 activates its INT signal. An interrupt

6-404 210907-002

INTERRUPT
REQUEST 4

Ap·153

MAIN PROGRAM

EI OR STI
....t..

r INTERRUPT -,

I R~mW~CEE4 I

• c::::::;- i I
I

: It.. INTERRUPT

~ I
I REQUEST 2

I L I r - INiER"RUPT- ,

I L EI OR STI I SERVICE I
I ROUTINE 2 1

I
EI OR STI

I
I I : I I

I
I I I

• I I _I
• I I I I I EOI I I I EOI I I RET OR IRET I I I REl OR I/tEl ... _____ ..J ___ J

ICE r.~Pr'" I R E6 I

I EI OR STI I
I

I I
I EOI I
I I
I RET OR IRET I
I I
... ____ :..l

Figure 10. Fully Nested Interrupt Mode Example

Edge Triggering

INTERRUPT
REQUEST 6

acknowledge is not generated because the interrupt
flag is disabled. This section of code in Service
Routine 4 is protected and cannot be' interrupted. A
protected section of code may reinitialize a timer, take
a sample, or update a global variable. When the inter­
rupt flag is enabled the microprocessor acknowledges
the interrupt and vectors into Service Routine 2. Ser­
vice Routine 2 immediately enables the interrupt flag
because it does not have a protected section of code.
During Service Routine 2, Interrupt Request 6 is
generated. However, the MUART will not interrupt
the microprocessor until service routines 2 and 4 have
issued the EOI command.

The MUART has a maximum of two external inter­
rupts-EXTINT and P17. EXTINT is a dedicated
interrupt pin which is level triggered, where PI7 is
either an 110 port or an edge triggered interrupt. If
PI7 is selected as an interrupt through Command
Register I and its interrupt level is enabled, it will
generate an interrupt when the level on this pin
changes from low to high. The edge triggered mode in­
corporates an edge lockout feature. This means that
after the rising edge of an interrupt request and the
acknowledgment of the request, the positive level on

6-405 . 210907-002

Ap·153

PI7 won't generate further interrupts. Before another
interrupt can be generated PI7 must return low.

External devices which generate a pulse for an inter·
rupt request can use the edge triggered mode as long as
the minimum high time specified in the data sheet is
met.

Level Triggering

The external interrupt (EXTINT pin 16) is the only
level triggered interrupt on the MUART. The 8256 will
recognize any active (high) level on the EXTINT as an
interrupt request. The EXTINT pin must stay high un·
til a short time after the rising edge of the first INTA
pulse. If the voltage level on the EXTlNT pin is high
then goes low, the bit in the interrupt .request register
corresponding to EXTINT will be reset.

In the normal mode of operation if EXTINT is still
high after the iNTA pulse has been activated, the INT
signal will remain active. If the microprocessor's inter­
rupt flag is immediately reenabled, another interrupt
will occur. Unless repeated interrupt generation is
desired, the programmer should not reenable the
CPU's interrupt flag until EXTINT has gone low.

In the nested mode of operation, if EXTINT is still
high after the INTA pulse has been activated, the INT
signal will not be reactivated. This is because in the
nested mode only a higher priority interrupt than the
one being serviced can activate the INT signal. The

8085
8088

INTR

8256

INTA

EXTINT pin should go inactive (low) before the EOI
command is issued if an immediate interrupt is not
desired.

Depending upon the particular design and applica­
tion, the EXTINT pin has a number of uses. For
example, it can provide repeated interrupt generation
in the normal mode. This is useful in cases when a ser­
vice routine needs to be continually executed until the
interrupt request goes inactive. Another use of the
EXTINT pin is that a number of external interrupt re­
quests can be wire-ORed. This can't be done using
PI7, for if a device makes an interrupt request while
PI7 is high (from another request), its transition will
be shadowed. Note that when a wire-OR'ed scheme is
used, the actual requesting device has to be deter­
mined by the software in the service routine.

Cascading the MUART's
Interrupt Controller

Cascading the MUART's interrupt controller is
necessary in -an interrupt driven system which contains
more than one interrupt controller, such as a system
using more than one MUART, or using a MUART
with another interrupt controller like the 8259A. For a
system which uses several MUART's, one of them is
tied directly to the microprocessor's INT and INTA
pins, while the remaining MUARTs are daisy-chained
using the EXTINT and INT pins. This is shown in
Figure 11.

8258 8256

INT EXTINT INT

INTA INTA
Vee Vee

Figure 11. Cascading the MUART's Interrupt Controller

6-406 210907-002

inter AP·153

Using the configuration in Figure 11, when the
microprocessor receives an interrupt, it generates an
interrupt acknowledge and branches into an interrupt
service routine. For the interrupt service routine of the
external interrupt, EXTINT Level 2, the micro­
processor will read the next MUART's interrupt ad­
dress register and branch to the appropriate service
routine. In effect, this would be a software interrupt

FIRST
MUART

SECOND
MUART

LEVEL 0
INTERRUPT

SERVICE
ROUTINE

LEVEL 1
INTERRUPT

SERVICE
ROUTINE

•
•
•

acknowledge. An example of this type of interrupt
acknowledge is given in Figure 8. If the last MUART
in the chain indicated an external interrupt, the
microprocessor would simply return to the main pro­
gram; however, this would be an error condition
caused by a spurious interrupt. A flow chart of the
software to handle cascaded interrupts is given in
Figure 12.

• • •

• • •

Figure 12. Flow Chart to Resolve Interrupt Request When Cascading MUART
Interrupt Controllers .

6-407 210907·002 .

AP-.153

Some consideration should be given to the priority of
the interrupts when cascading MUARTs. If all of the
MUART's Level 0 and Levell interrupts are disabled,
the highest priority interrupt is the EXTINT. In this
case the last MUART in the chain would have the
highest priority; however, it would take the longest
time to propagate back to the CPU. If, however,
Level 0 or Level 1 interrupts were enabled, the closer
to the microprocessor the MUART is, the higher the
priority these two levels would have.

When using the 8256 interrupt controller along with
. some other interrupt controller, such as the 8259A,
the MUART's INT signal would simply be tied to one
of the interrupt controller's request inputs. The ser­
vice routine for the MUART's interrupt request would
initially perform the software interrupt acknowledge
before servicing the MUART's interrupt request.
A block diagram of this configuration is given in
Figure 13.

Polling the MUART

If interrupts are not used, the only other way to con­
trol the MUART is to poll it. It is still possible to use
the priority structure of the MuART with polling. In
this mode of operation the MUART's INT signal (Pin
15) is not used, and the iiifTA pin is tied high. Since
the INT pin's level is duplicated In the MSB of the
Status Register, a program can poll this bit. When it
becomes set, the program could read the Interrupt
Address Register to determine the cause. Either the
normal or nested mode of operation can be used. Note
that the functions used with this polled method must
hi:\Ve their interrupts enabled .

It is also possible to poll the counters/timers, parallel
I/O, and UART separately. To control the UART,
one could poll the Status Register. Byte handshakes
with the parallel I/O can be controlled by polling Port
1. Finally; each counter/timer has its own register
which can be polled.

8085A 8259A 8256
8088

INTR I-- INT IRm I-- INT

INTA t--- iNTA vc't"' INTA

Figure 13. Connecting the 8256 to the 8259A Interrupt Controller

6-408 210907-002

Symbol Pin No. Type

ADO-AD4 1-5 110

DB5-DB7 6-8

ALE 9

RD 10

WR 11

RESET 12

CS 13

Ap·153

PIN DESCRIPTIONS

Name and Function
~--~--'-'-----~~I

Name and Function Symbol Pin No. Type

Address/Data: Three­
state address/data lines
which interface to the
lower 8 bits of the micro­
processor's multiplexed
address/data bus. The
5-bit address is latched on
the falling edge of ALE.
In the 8-bit mode, ADO­
AD3 are used to select the
proper register, while
ADI-AD4 are used in the
16-bit mode. AD4 in the
8-bit mode is ignored as
an address, while ADO in
the 16-bit mode is used as
a second chip select, active
low.

Address Latch Enable:
Latches the 5 address lines
on ADO-AD4 and CS on
the falling edge.

Read Control: When this
signal is low, the selected
register is gated onto the
data bus.

Write Control: When this
signal is low, the value on
the data bus is written in­
to the selected register.

Reset: An active high
pulse on this pin forces
the chip into its initial
state. The chip remains in
this state until control in­
formation is written.
Chip Select: A low on this
signal enables the
MUART. It is latched
with the address on the
falling edge of ALE, and
RD and WR have no ef­
fect unless CS was latched
low during'the ALE cycle.

6-409

INTA

INT

EXTINT

CLK

RxC

14

IS

16

17

18

o

Interrupt Acknowledge:
If the MUART has been
enabled to respond to in­
terrupts, this signal in­
forms the MUART that
its interrupt request is be­
ing' acknowledged by the
microprocessor. During
this acknowledgement the
MUART puts an RSTn
instruction on the data
bus for the 8-bit mode or
a vector for the 16-bit
mode.

Interrupt Request: A high
signals the microproc­
essor that the MUART
needs service.

I External Interrupt: An ex­
ternal device can request
interrupt service through
this input. The input is
level sensitive (high),
therefore it ~be held
high until an INTA occurs
or the interrupt address
register is read.

I System Clock: The
reference clock for the
baud rate generator and
the timers.

lIO Receive Clock: If the
baud rate bits in Com­
mand Register 2 are all 0,
this pin is an input which
clocks serial data into the
RxD pin on the rising
edge of RxC. If baud rate
bits in Command Register
2 are programmed from
I-OFR, this pin outputs a
square wave whose rising

210907-002

Ap·153

PIN DESCRIPTIONS (CONTINUED)

Symbol Pin No. Type Name and Function

edge indicates when the
data on RxD is being
sampled. This output re­
mains high during start,
stop, and parity bits.

RxD 19

CTS 21

I Receive Data: Serial data
input.

I Clear To Send: This input
enables the serial trans­
mitter. If I, 1.5, or 2 stop
bits are selected, CTS is
level sensitive. As long as
CTS is low, any character
loaded into the transmit­
ter buffer register will be
transmitted serially. A
single negative going
pulse causes the transmis­
sion of a single character
previously loaded into the
transmitter buffer
register. If a baud rate
from I-OFH is selected,
CTS must be low for at
least 1132 of a bit, or it
will be ignored. If the
transmitter buffer is emp­
ty, this pulse will be ig­
nored. If this pulse occurs
during the transmission of
a character up to the time
where 112 of the first (or
only) stop bit is sent out,
it will be ignored. If it oc­
curs afterwards, but
before the end of the stop
bits, the next character
will be transmitted im­
mediately following the
current one. If CTS is still
high when the transmitter
register is sending the last
stop bit, the transmitter
will enter its idle state un­
til the next high-to-low
transition on rn occurs.

6-410

Symbol Pin No. Type Name and Function

If 0.75 stop bits is chosen,
the CTS input is edge sen­
sitive. A negative edge on
CTS results in the im­
mediate transmission of
the next character. The
length of the stop bits is
determined by the time in­
terval between the begin­
ning of the first stop bit
and the next negative edge
on CTS. A high-to-low
transition has no effect if
the transmitter buffer is
empty or if the time inter­
val between the beginning
of the stop bit and next
negative edge is less than
0.75 bits. A high or a low
level or a low-to-high
transition has no effect on
the transmitter for the
0.75 stop bit mode.

TxC 22 I/O Transmit Clock: If the
baud rate bits in com­
mand register 2 are all set
to 0, this input clocks data
out of the transmitter on
the falling edge. If baud
rate bits are programmed
for 1 or 2, this input per­
mits the user to provide a
32x or 64x clock which is
used for the receiver and
transmitter. If the baud
rate bits are programmed
for 3-0FH, the internal
transmitter clock is out­
put. As an output it
delivers the transmitter
clock at the selected bit
rate. If 1 Y, or 0.75 stop
bits are selected, the
transmitter divider will be
asynchronously reset at
the beginning of each

210907-002

inter AP-153

PIN DESCRIPTIONS (CONTINUED) DESCRIPTION OF THE REGISTERS

Symbol Pin No. Type Name and Function

start bit, immediately
causing a high-to-Iow
transition on TxC. TxC
makes a high-to-Iow tran­
sition at the beginning of
each serial bit, and a low­
to -high transition at the
center of each bit.

TxD 23

P27-P20 24-31

PI7-PIO 32-39

GND 20

Vcc 40

o Transmit Data: Serial
data output.

I/O Parallel 110 Port 2: Eight
bit general purpose I/O
port. Each nibble (4 bits)
of this port can be either
an input or an output.
The outputs are latched
whereas the input signals
are not. Also, this port
can be used as an 8-bit in­
put or output port when
using the two-wire hand­
shake. In the handshake
mode both inputs and
outputs are latched.

I/O Parallel I/O Port 1: Each
pin can be programmed as
an input or an output to
perform general purpose
I/O. All outputs are
latched whereas inputs are
not. Alternatively these
pins can serve as control
pins which extend the
functional spectrum of
the chip.

PS Ground: Power sup"ly
and logic ground
reference.

PS Power: + 5V power sup­
ply.

The following section will provide a description of the
registers and define the bits within the registers where
appropriate. Table 4 lists the registers and their
addresses.

Command Register 1

I L 1 I LO I 81 I SO I BRKI I BITI 8086 I FRO I
(OR) (OW)

FRQ - Timer Frequency Select

This bit selects between two frequencies for the five
timers. If FRQ = 0, the timer input frequency is
16KHz (62.5us). If FRQ = I, the timer input frequen­
cy is 1 KHz (lms). The selected clock frequency is
shared by all the counter/timers enabled for timing;
thus, all timers must run with the same time base.

8086 - 8086 Mode Enable

This bit selects between 8085 mode and 8086/8088
mode. In 8085 mode (8086 = 0), AO to A3 are used to
address the internal registers, and an RSTn instruction
is generated in response to the first INTA. In 8086
mode (8086= I), Al to A4 are used to address the in­
ternal registers, and AO is used as an extra chip select
(AO must equal zero to be enabled). The response to
INTA is for 8086 interrupts where the first INTA is ig­
nored, and an interrupt vector (40H to 47H) is placed
on the bus in response to the second iNTA, .

BITI - Interrupt on Bit Change

This bit selects between one of two interrupt sources
on Priority Levell, either Counter/Timer 2 or Port 1
P17 interrupt. When this bit equals 0, Counter/Timer
2 will be mapped into Priority Levell. If BITI equals
o and Level 1 interrupt is enabled, a transition from 1
to 0 in Counter/Timer 2 will generate an interrupt re­
quest on Levell. When BIT! equals I, Port 1 P17 ex­
ternal edge triggered interrupt source is mapped into
Priority Levell. In this case if Level 1 is enabled, a

. low-to-high transition on P17 generates an interrupt
request on Levell.

BRKI - Break-In Detect Enable

lfthis bit equals 0, Port 1 P16is a general purpose I/O
port. When BRKI equals I, the Break-In Detect
feature is enabled on Port 1 P16. A Break-In condi­
tion is present on the transmission line when it is forc­
ed to the start bit voltage level by the receiving station.
Port I P16 must be connected externally to the
transmission line in order to detect a Break-In. A

6-411 210907-002

AP·153

Table 4. MUART Registers

Read Regl.ters Write Registers
8085 Mode: AD3 AD2 AD1 ADO
8088 Mode: AD4 AD3 AD2 AD1

L1 I LO I S1 I SO 18AKII 81T11soss1 FAOI 0 0 0 0 I L1 I LO I S1 I .SO 18AKII 81T1 I sossl FAOI
Command 1 Command 1

. I PEN I EP I C1 I CO I 83 I 82 I 81 I 80 I 0 0 0 1 I PEN I EP I C1 I CO I 83 I 82 I 81 I 80 I
Command 2 Command 2

I 0 I AxE I IAE I NIE I 0 IS8AKIT8AKI 0 I 0 0 o I SET I AxE I IAE I NIE I END IS8A~T8A3 AST I
Command 3 Command 3

1 T3sl T241 TSC 1 CT31 CT21 P2C21 P2C11 P2coI 0 0 1 1 T3S1 T241 T5C I CT31 CT21 P2C21 P2C11 P2COj
Mode Mode

I P171 P1s1 P1s1 P141 P131 P121 P11 I P10 I 0 0 o I PHI P1s1 P1s1 P14 1 P131 P121 P11 I P10 I
Port 1 Control

L7 I LS I LS I L4 I L3 I L2 I L 1 I LO 1 0
Interrupt Enable

I 07 I OS I 05 I 04 I 03 I 02 I 01 I DO I 0
Interrupt Addre ••

1 07 1 OS 1 05 I 04 1 03 1 02 1 01 1 DO "I 0
Receiver Buller '

I 07 I D8 I OS I 04 I 03 I 02 I 01 I 00 I 1
Port 1

I 07 I OS I 05 I 04 I 03 I 02 I 01 I DO I 1
Port 2

1 07 1 .OS 1 05 1 04 1 03 1 02 I 01 1 DO 1 1
Timer 1

IWID8ID8I~IOOI~I~lool 1
Timer 2

1 07 1 OS 1 05 I 04 1 03 1 02 1 01 1 DO I 1
Timer 3

IwlD8ID8I~IOOI~I~lool 1
Timer 4

IWID8ID8I~IOOI~I~ 1001 1
TimerS

liNT I A8F I T8E I TAE I 80 I PE I OE I FE I 1
, StatuI

Port 1 Control

o 1 I L7 I LS I L5 I L4 1 L3 I L2 I L 1 LO I
Sel"lnterrupts

1 . 0 I L7 I LS I L5 I L4 I L3 I L2 I L 1 LO I
Reset Interrupts

1 IwlD8ID8I~lool~I~lool
Transmitter Buller

o 0 0 I 07 I OS I 05 I 04 I 03 I 02 I 01 I 00 I
Port 1

00110710SI051041031021011 00 1
.Port 2

o o IWID8ID8I~IOOI~I~lool
Timer 1

o IWID8ID8I~IOOI~I~lool
Timer 2

o 0 I 07 I OS 1 OS I 04 I 03 1 02 I 01 I 00 1

o

6-412

Timer 3

IWID8ID8I~IOOI~I~lool
Timer 4

o I 07 1 OS 1 05 I 04 I 03 I 02 I 01 I DO 1
TimerS

1 I 0 I RS4 I AS3 I AS2 I AS1 I ASO ITME losc I
Modification

210907-002

Ap·153

Break·In is polled by the MUART during the
transmission of the last or only stop bit of a character.

A Break-In Detect is OR-ed with Break Detect in Bit 3
of the Status Register. The distinction can be made
through the interrupt controller. If the transmit and
receive interrupts are enabled, a Break-In will generate
an interrupt on Level 5, the transmit interrupt, while
Break will generate an interrupt on Level 4, the receive
interrupt.

SO, 51 - Stop Bit Length

51 SO
o 0
o I
I 0
I I

Stop Bit Length
I
1.5
2
0.75

The relationship of the number of stop bits and the
function of input CTS is discussed in the Pin Descrip­
tion section under "CTS".

LO, L 1 - Character Length

L1 LO

o
o
I
I

o
1
o
I

Command Register 2

I PEN I EP I CI I CO

(IR)

B3

Character
Length

8
7
6
5

B2 BI BO

(lW)

Programming bits O ... 3 with values from 3H to FH
enables the internal baud rate generator as a common
clock source for the transmitter and receiver and
determines its divider ratio.

Programming bits 0 ... 3 with values of IH or 2H
enables input TxC as a common clock source for the
transmitter and receiver. The external clock must pro­
vide a frequency of either 32x or 64x the baud rate.
The data transmission rates range from 0 ... 32
Kbaud.

If bits O ... 3 are set to 0, separate clocks must be input
to pin RxC for the receiver and pin TxC for the
transmitter. Thus, different baud rates can be used for

transmission and reception. In this case, pre scalers are
disabled and the input serial clock frequency must
match the baud rate. The input serial clock frequency
can range from 0 to 1.024 MHz.

BO, B1, B2, B3 - Baud Rate Select

These four bits select the bit clock's source, sampling
rate, and serial bit rate for the internal baud rate
generator.

B3 B2 B1 BO Baud Sampling
Rate Rate

0 0 0 0 TxC, RxC I
0 0 0 1 TxC/64 64
0 0 I 0 TxC/32 32
0 0 I I 19200 32
0 I 0 0 9600 64
0 I 0 I 4800 64
0 I I 0 2400 64
0 I I I 1200 64

0 0 0 600 64
0 0 I 300 64
0 I 0 200 64
0 I I 150 64
I 0 0 110 64
I 0 I 100 64
1 I 0 75 64
I I I 50 64

The following table gives an overview of the function
of pins TxC and RxC:

Bits 3 to
o (Hex.) TxC RxC

o Input: I x baud
rate clock for the
transmitter

Input: I x baud
rate clock for the
receiver

1,2

3 to F

Input 32 x or 64 x Output: receiver bit
baud rate for trans- clock with a low -to­
mitter and receiver high transition at

data bit sampling
time. Otherwise:
high level

Output: baud rate Output: as above
clock of the
transmitter

As an output, RxC outputs a low-to-high transition at
sampling time of evary data bit of a character. Thus,
data can be loaded, e.g., into a shift register external-

6-413 210907-002

inter AP-153

ly. The transition occurs only if data bits of a
character are present. It does not occur for start, pari­
ty, and stop bits (RxC = high).

As an output, TxC outputs the internal baud rate
clock of the transmitter. There will be a highcto-low
transition at every beginning of a bit.

CO, C1 - System Clock Prescaler
(Bits 4, 5)

Bits 4 and 5 define the system clock prescaler divider
ratio. The internal operating frequency of 1.024 MHz
is derived from the system clock.

C1 CO Divider Ratio

0 0 5
0 1 3
1 0 2
1 1 1

EP - Even Parity (Bit 6)

EP = 0: Odd parity
EP = 1: Even parity

PEN - Parity Enable (Bit 7)

Clock at Pin
ClK

5.12 MHz
3.072 MHz
2.048 MHz
1.024 MHz

Bit 7 enables parity generation and checking.

PEN = 0: No parity bit
PEN = 1: Enable parity bit

The parity bit according to Command Register 2 bit 6
(see above) is inserted between the last data bit of a
character and the first or only stop bit. The parity bit
is checked during reception. A false parity bit
generates an error indication in the Status Register
and an Interrupt Request·on Level 4.

Command Register 3

I SET I RxE I IAE I NIE I END I SBRK~BRK I RST I
(2R) (2W)

Command Register 3 is different from the first two
registers because it has a bit set/reset capability.

Writing a byte with Bit 7 high sets any bits which were
also high. Writing a byte with Bit 7 low resets any bits
which were high. If any bit 0-6 is low, no change oc­
curs to that bit. When Command Register 3 is read,
bits 0, 3, and 7 will always be zero.

RST - Reset

If RST is set, the following events occur:

1) All bits in the Status Register except bits 4 and 5
are cleared, and bits 4 and 5 are set.

2) The Interrupt Enable, Interrupt Request, and In­
terrupt Service Registers are cleared. Pending re­
quests and indications for interrupts in service will
be cancelled. Interrupt signal INT will go low.

3) The receiver and transmitter are reset. The
transmitter goes idle (TxD is high), and the receiver
enters start bit search mode.

4) If Port 2 is programmed for handshake mode, IBF
and OBF are reset high.

RST does not alter ports, data registers or command
registers, but it halts any operation in progress. RST is
automatically cleared.

~ST = 0 has no effect. The reset operation triggered
by Command Register 3· is a subset of the hardware
reset.

TBRK - Transmit Break

The transmission data output TxD will be set low as
soon as the transmission of the previous character has
been finished. It stays low until TBRK is cleared. The
state of CTS is of no significance for this operation.
As long as break is active, data transfer from the
Transmitter Buffer to the Transmitter Register will be
inhibited. As soon as TBRK is reset, the break condi­
tion will be deactivated and the transmitter will be re­
enabled.

SBRK - Single Character Break

This causes the transmitter data to be.set low for one
character including start bit, data bits, parity bit, and
stop bits. SBRK is automatically cleared when. time
for the last data bit has passed. It will start after the
character in progress completes, and will delay the
next data transfer from the Transmitter Buffer to the
Transmitter Register until TxD returns to an idle

6-414 210907-002

inter Ap·153

(marking) state. If both TBRK and SBRK are set,
break will be set as long as TBRK is set, but SBRK will
be cleared after one character time of break. If SBRK
is set again, it remains set for another character. The
user can send a definite number of break characters in
this manner by clearing TBRK after setting SBRK for
the last character time.

END - End of Interrupt

If fully nested interrupt mode is selected, this bit resets
the currently served interrupt level in the Interrupt
Service Register. This command must occur at the end
of each interrupt service routine during fully nested in­
terrupt mode. END is automatically cleared when the
Interrupt Service Register (internal) is cleared. END is
ignored if nested interrupts are not enabled.

NIE - Nested Interrupt Enable

When NIE equals I, the interrupt controller will
operate in the nested interrupt mode. When NIE
equals 0, the interrupt controller will operate in the
normal interrupt mode. Refer to the "Interrupt con­
troller" section under "Normal Mode" and "Nested
Mode" for a detailed description of these operations.

IAE - Interrupt Acknowledge Enable

This bit enables an automatic response to INTA. The
particular response is determined by the 8086 bit in
Command Register 1.

RxE - Receive Enable

This bit enables the serial receiver and its associated
status bits in the status register. If this bit is reset, the
serial receiver will be disabled and the receive status
bits 'will not be updated.

Note that the detection of break characters remains
enabled while the receiver is disabled; i.e., Status
Register Bit 3 (BD) will be set while the receiver is
disabled whenever a break character has been
recognized at the receive data input RxD.

SET - Bit Set/Reset

If this bit is high during a write to Command Register
3, then any bit marked by a high will set. If this bit is
low, then any bit marked by a high will be cleared.

Mode Register

I T35 I T241 T5C I CT31 CT21 P2C21 P2Cli P2COI

(3R) (3W)

P2C2, P2C1', P2CO - Port 2 Control

Direction
P2C2 P2C1 P2CO Mode Upper Lower

o 0 0 nibble input input
o 0 1 nibble input output
o 1 0 nibble output input
o 1 1 nibble output output
1 0 0 byte handshake input
1 0 1 byte handshake output
1 1 0 DO NOT USE
1 1 1 test

If test mode is selected, the output from the internal
baud rate generator is placed on bit 4 of Port 1 (pin
35).

To achieve this, it is necessary to program bit 4 of Port
1 as an output (Port 1 Control Register Bit P14 = I),
and to program Command Register 2 bits B3 - BO
with a value ~.3H.

Note:
If Port 2 is operating in handshake mode. Interrupt Level 7 is
not available for Timer 5. Instead it is assigned to Port 2 hand­
shaking.

CT2, CT3 - CounterlTimer Mode

Bit 3 and 4 defines the mode of operation of event
counter/timers 2 and 3 regardless of its use as a single
unit or as a cascaded one.

If CT2 or CT3 are high, then counter/timer 2 or 3
respectively is configured as an event counter on bit 2
or 3 respectively of Port 1 (pins 37 or 36). The event
counter decrements the count by one on each low-to­
high transition of the external input. If CT2 or CT3 is
low, then the respective counter/timer is configured as
a timer and the Port 1 pins are used for parallel I/O.

T5C - Timer 5 Control

If T5C is set, then Timer 5 can be preset and started by
an external signal. Writing to the Timer 5 register
loads the Timer 5 save register and stops the timer. A
high-to-low transition on bit 5 of Port 1 (pin 34) loads
the timer with the saved value and starts the timer.
The next high-to-low transition on pin 34 retriggers
the timer by reloading it with the initial value and con­
tinues timing.

Following a hardware reset, the save register is reset to
OOH and both clock and trigger inputs are disabled.
Transferring an instruction with T5C = 1 enables the
trigger input; the save register can now be loaded with

6-415 210907-002

AP·153

an initial value. The first trigger pulse causes the initial
value to be loaded from the save register and enables
the counter to count down to zero.

When the timer reaches zero it issues an interrupt re­
quest, disables its interrupt level and continues count­
ing. A subsequent high-to-low transition on pin 5
resets Timer 5 to its initial value. For another timer in­
terrupt, the Timer 5 interrupt enable bit must be set
again.

T35, T24 - Cascade Timers

These two bits cascade Timers 3 and 5 or 2 and 4.
Timers 2 and 3 are the lower bytes, while Timers 4 and
5 are the upper bytes. If T5C is set, then both Timers 3
and 5 can be preset and started by an external pulse.

When a high-to-low transition occurs, Timer 5 is
preset to its saved value, But Timer 3 is always preset
to all ones. If either CT20r CT3 is set, then the cor­
responding timer pair is a 16-bit event counter.

A summary of the counter/timer control bits is given
in Table 5.

Note:
Interrupt levels assigned to single counters are partly not oc­
cupied if event counters/timers are cascaded. Level 2 will be
vacated if event counters/timers 2 and 4 are cascaded.
Likewise. Level 7 will be vacated if event counters/timers 3
and 5 are cascaded.

Single event counters/timers generate an interrupt request on
the transition from 01H to OOH, while cascaded ones generate
it on the transition from 0001H to ooooH.

Table 5. Event CounterslTlmers Mode of Operation

Event Counterl Programming
Timer Function (Mode Word) Clock Source

I 8-bit timer - internal clock

2 8-bit timer T24=0, CT2=0 internal clock

8-bit event counter T24=0, CT2= I P12 pin 37

3 8-bit timer T35=0, CT3=0 internal clock

8-bit event counter T35 =0, CT3 = I P13 pin 36

4 8-bit timer T24=0 internal clock

8-bit timer, T35=0, T5C=0 internal clock

5 normal mode

8-bit timer, T35=0, T5C=I internal clock
retriggerable mode

2 and 4 16-bit timer T24=1, CT2=0 internal clock
cascaded 16-bit event counter T24=1, CT2=I P12 pin 37

16-bit timer, T35=I, T5C=0, internal clock
normal mode CT3=0

3 and 5 16-bit event counter, T35=I, T5C=0, P13 pin 36
cascaded normal mode CT3=I

16-bit timer, T35 = I, T5C = I, internal clock
Retriggerable mode CT3=0

16-bit event counter, T35=I, T5C=I, P13 pin 36
Retriggerable mode CT3=l

6-416 210907-002

inter Ap·153

Port 1 Control Register

I P17 I P161 PIS I P141 P13 I P121 Pll I PI0 I
(4R) (4W)

Each bit in the Port 1 Control Register configures the
direction of the corresponding pin. If the bit is high,
the pin is an output, and if it is low the pin is an input.
Every Port 1 pin has another function which is con­
trolled by other registers. If that special function is
disabled, the pin functions as a general 110 pin as
specified by this register. The special functions for
each pin are described below.

Port 10, 11 - Handshake Control

If byte handshake control is enabled for Port 2 by the
Mode~ister, then Port 10 is programmed as
STBI ACK handshake control input, and Port 11 is
programmed as IBFIOBF handshake control output.

If byte handshake mode is enabled for output on Port
2, OBF indicates that a character has been loaded into
the Port 2 output buffer. When an external device
reads the data, it acknowledges this operation by driv­
ing ACK low. OBF is set low by writing to Port 2 and
is reset high by ACK.

If byte handshake mode is enabled for input on Port
2, STB is an input. IBF is driven low after ffi goes

- low. On the rising edge of STB the data from Port 2 is
latched.

IBF is reset high when Port 2 is read.

Port 12, 13 - Counter 2, 3 Input

If Timer 2 or Timer 3 is programmed as an event
counter by the Mode Register, then Port 12 or Port 13
is the counter input for Event Counter 2 or 3, respec­
tively.

Port 14 - Baud Rate Generator Output Clock

If test mode is enabled by the Mode Register and
Command Register 2 baud rate select is greater than 2,
then Port 14 is an output from the internal baud rate
generator.

P14 in Port 1 control register must be set to 1 for the
baud rate generator clock to be output. The baud rate
generator clock is 64 x the serial bit rate except at
19.2Kbps when it is 32 x the bit rate.

Port 15 - Timer 5 Trigger

If T5C is set in the Mode Register enabling a retrig­
gerable timer, then Port 15 is the input which starts
and reloads Timer 5.

A high-to-Iow transition on PIS (Pin 34) loads the
timer with the save register and starts the timer.

Port 16 - Break·ln Detect

If Break-In Detect is enabled by BRKI in Command
Register 1, then this input is used to sense a Break-In.
If Port 16 is low while the serial transmitter is sending
the last stop bit, then a Break-In condition is signaled.

Port 17 - Port Interrupt Source

If BITI in Command Register 1 is set, then a low-to­
high transition on Port 17 generates an interrupt re­
quest on Priority Level 1.

Port 17 is edge triggered.

Interrupt Enable Register

L7 I L6 1 L5 1 L4 1 L3 1 L2 1 Ll LO

(5R) (5W = enable,
6W = disable)

Interrupts are enabled by writing to the Set Interrupts
Register (5W). Interrupts are disabled by writing to
the Reset Interrupts Register (6W). Each bit set by the
Set Interrupts Register (5W) will enable that level in­
terrupt, and each bit set in the Reset Interrupts
Register (6W) will disable that level interrupt. The
user can determine which interrupts are enabled by
reading the Interrupt Enable Register (5R).

Priority
Highest LO

Ll
L2
L3
L4
L5
L6

Lowest L7

Source
Timer 1

Timer 2 or Port Interrupt
External Interrupt (EXTINT)

Timer 3 or Timers 3 & 5
Receiver Interrupt

. Transmitter Interrupt
Timer 4 or Timers 2 & 4

Timer 5 or
Port 2 Handshaking

Interrupt Address Register

o o o D4 0310210101

2 Interrupt Level
(6R) Indication

6-417 210907·002

int~:f Ap·153

Reading the interrupt address register transfers an
identifier for the currently requested interrupt level on
the system data bus. This identifier is the number of
the interrupt level multiplied by 4. It can be used by
the CPU as an offset address for interrupt handling.
Reading the interrupt address register has the same ef·
fect as a hardware interrupt acknowledge INTA; it
clears the interrupt request pili (INT) and indicates an
interrupt acknowledgement to the interrupt con­
troller.

Receiver and Transmitter Buffer

07 1 06 1 05 \04 D3 \ 02 I 01 I 00
(7R) (7W)

Both the receiver and ,transmitter in the MUART are
double buffered. This means that the transmitter and
receiver have a shift register and a buffer register. The
buffer registers are directly addressable by reading or
writing to register seven. After the receiver buffer is
full, the RBF bit in the status register is set. Reading
the receive buffer clears the RBP status bit. The
transmit buffer should be written to only if the TBE
bit in the status register is set. Bytes written to the
transmit buffer are held there until the transmit shift
register is empty, assuming CTS is low. If the transmit
buffer and shift register are empty, writing to the
transmit buffer immediately transfers the byte to the
transmit shift register. If a serial character length is
less than 8 bits, the unused most significant bits are set
to zero when reading the receive buffer, and are ig­
nored when writing to the transmit buffer.

Port 1

07 1 061 05 \ 04 \ 03 02 01 00

(8R) (8W)

Writing to Port I sets the data in the Port 1 output
latch. Writing to an input pin does not affect the pin,
but the data is stored and will be output if the direc­
tion of the pin is changed later. If the pin is used as a
control signal, the pin will not be affected, but the
data is stored. Reading Port 1 transfers the data in
Port 1 onto the data bus.

Port 2

07 06 05 04 03 02 01 00

(9R) (9W)

Writing to Port 2 sets the data in the Port 2 oiltput
latch. Writing to an input pin does not affect the pin,
but it does store the data in the latch. Reading Port 2
puts the input pins onto the bus or the contents of the
output latch for output pins.

Timer 1·5

07 I 06 I 05 04 03 02 D1 00

Reading Timer N puts the contents of the timer onto
the data bus. If the counter changes while RO is low,
the value on the data bus will not change. If two
timers are cascaded, reading the high-order byte will
cause the low-order byte to be latched. Reading the
low-order byte will unlatch them both. Writing to
either timer or decascading them also clears the latch
condition. Writing to a timer sets the starting value of
that timer. If two timers are cascaded. writing to the
high-order byte presets the low-order byte to all ones.
Loading only the high-order byte with a value of X
leads to a count of X 256+255. Timers count down
continuously. If the interrupt is enabled, it occurs
when the counter changes from 1 to o ..

The timer/counter interrupts are automatically dis­
abled when the interrupt request is generated.

Status Register

lINT I RBF 1 TBE 1 TRE 1 BO 1 PE OE FE
(OFI6R)

Reading the status register gates its contents onto the
data bus. It holds the operational status of the serial
interface as well as the status of the interrupt pin INT.
The status register can be read at any tiIne. The flags
are stable and well defined at all instants.

FE - Framing Error, Transmission Mode

Bit 0 can be used in two modes. Normally, FE in­
dicates framing error which can be changed to
transmission mode indication by setting the TME bit
in the modification register.

6-418 210907-002

inter AP·153

If transmission mode is disabled (in Modification
Register), then FE indicates a framing error. A fram-

. ing error is detected during the first stop bit. The error
is reset by reading the Status Register or by a chip
reset. A framing error does not inhibit the loading of
the Receiver Buffer. If RxD remains low, the receiver
will assemble the next character. The false stop bit is
treated as the next start bit, and no high-to-low transi­
tion on RxD is requied to synchronize the receiver.

When the TME bit in the Modification Register is set,
FE is used to indicate that the transmitter was active
during the reception of a character, thus indicating
that the character received was transmitted by its own
transmitter. FE is reset when the transmitter is not ac­
tive during the reception of character. Reading the
status register will not reset the FE bit in the transmis­
sion mode.

OE - Overrun Error

If the user does not read the character in the Receiver
Buffer before the next character is received and
transferred to this register, then the OE bit is set. The
OE flag is set during the reception of the first stop bit
and is cleared when the Status Register is read or when
a hardware or software reset occurs. The first
character received in this case will be lost.

PE - Parity Error

This bit indicates that a parity error has occurred dur­
ing the reception of a character. A parity error is pres­
ent if value of the parity bit in the received character
is different from the one expeCted according to com­
mand word 2 bits 6 EP. The parity bit is expected and
checked only if it is enabled by command word 2 bit 7
PEN.

A parity error is set during the first stop bit and is reset
by reading the Status Register or by a chip reset.

BO - Break/Break·ln

The BD bit flags whether a break character has been
received, or a Break-In condition exists on the
transmission line. Command Register 1 Bit 3 (BRKI)
enables the Break-In Detect function.

Whenever a break character has been received, Status
Register Bit 3 will be set and in addition an interrupt
request on Level 4 is generated. The receiver will be
idled. It will be started again with the next high-to-low
transition at pin RxD.

The break character received will not be loaded into
the receiver buffer register.

If Break-In Detection is enabled and a Break-In condi­
tion occurs, Status Register Bit 3 will be set and in ad­
dition an interrupt request on Level 5 is generated.

The BD status bit will be reset on reading the status
register or on a hardware or software reset. For more
information on Break/Break-In, refer to the "Serial
Asynchronous Communication" section under
"Receive Break Detect"and "Break-In Detect."

TRE - Transmit Register Empty

When TRE is set the transmit register is empty and an
interrupt request is generated on Level 5 if enabled.
When TRE equals 0 the transmit register is in the pro­
cess of sending data. TRE is set by a chip reset and
when the last stop bit has left the transmitter. It is
reset when a character is loaded into the Transmitter
Register. If CTS is low, the Transmitter Register will
be loaded during the transmission of the start bit. If
CTS is high at the end of a character, TRE will remain
high and no character will be loaded into the
Transmitter Register until CTS goes low. If the
transmitter was inactive before a character is loaded
into the Transmitter Buffer, the Transmitter Register
will be empty temporarily while the buffer is full.
However, the data in the buffer will be transferred to
the transmitter register immediately and TRE will be
cleared while TBE is set.

TBE - Transmitter Buffer Empty

TBE indicates the Transmitter Buffer is empty and is
ready to accept a character. TBE is set by a chip reset
or the transfer of data to the Transmitter Register,
and is cleared when a character is written to the
transmitter buffer. When TBE is set, an interrupt re­
quest is generated on Level 5 if enabled.

RBF - Receiver Buffer Full

RBF is set when the Receiver Buffer has been loaded
with a new character during the sampling of the first
stop bit. RBF is cleared by reading the receiver buffer
or by a chip reset.

INT - Interrupt Pending

The INT bit reflects the state of the INT Pin (Pin 15)
and indicates an interrupt is pending. It is reset by
INTA or by reading the Interrupt Address Register if
only one interrupt is pending and by a chip reset.

6-419 210907-002

Ap·153

FE, DE, PE, RBF, and Break Detect all generate a
Level 4 interrupt when the receiver samples the first
stop bit. TRE, TBE, and Break-In Detect generate a
Level 5 interrupt. TRE generates an interrupt when
TBE is set and the Transmitter Register finished
transmitting. The Break-In Detect interrupt is issued
at the same time as TBE or TRE.

Modification Register

I 0 I RS4 I RS3 I RS21 RSI I RSO I TME I DSC I
(OF16W)

esc - Disable Start Bit Check

DSC disables the receiver's start bit check. In this state
the receiver will not be reset if RxD is not low at the
center of the start bit.

TME - Transmission Mode Enable

TME enables transmission mode and disables framing
error detection. For information on transmission
mode see the description of the framing error bit in the
Status Register.

RSO, RS1, RS2, RS3, RS4 - Receiver Sample
Time

The number in RSn alters when the receiver samples
RxD. The receiver sample time can be modified only if
the receiver is not clocked by RxC.

Note:
The modification register cannot be read. Reading from ad­
dress OFH, 8086: lEH gates the contents of the status register
onto the data bus.

- A hardware reset (reset, Pin 12) resets all modifica­
tion register bits to 0, i.e.:
* The start bit check is enabled.
* Status Register Bit 0 (FE) indicates framing error.
* The sampling time of the serial receiver is the bit

center.

A software reset (Command Word 3, RST) does not
affect the modification register.

Hardware Reset

A reset signal on pin RESET (HIGH level) forces the
device 8256 into a well-defined initial state. This state
is characterized as follows:

RS4 RS:l RS2 RS1 RS(] Point of time between
start of bit and end of
bit measured in steps of
1/32 bit length

0 1 1 1 1 1 (Start of Bit)
0 1 1 1 0 2
0 1 1 0 1 3
0 1 1 0 0 4
0 1 0 1 1 5
0 1 0 1 0 6
0 1 0 0 1 7
0 1 0 0 0 8
0 0 1 1 1 9
0 0 1 1 0 10
0 0 1 0 1 11
0 0 1 0 0 12
0 0 0 1 1 13
0 0 0 1 0 14
0 0 0 0 1 15
0 0 0 0 0 16 (Bit center)
1 1 1 1 1 17
1 1 1 1 0 18
1 1 1 0 1 19
1 1 1 0 0 20
1 1 0 1 1 21
1 1 0 1 0 22
1 1 0 0 1 23
1 1 0 0 0 24
1 0 1 1 1 25
1 0 1 1 0 26
1 0 1 0 1 27
1 0 1 0 0 28
1 0 0 1 1 29
1 0 0 1 0 30
1 0 0 0 1 31
1 0 0 0 0 32 (End of Bit)

1) Command registers 1, 2 and 3, mode register, Port
1 control register, and modification register are
reset. Thus, all bits of the parallel interface are set
to be inputs and event counters/timers are con­
figured as independent 8-bit timers.

2) Status register bits are reset with the exception of
bits 4 and 5. Bits 4 and 5 are set indicating that
both transmitter register and transmitter buffer
register are empty.

6-420 210907-002

Ap·153

3) The interrupt mask, interrupt request, and inter·
rupt service register bits are reset and disable all reo
quests. As a consequence, interrupt signal INT is
inactive (LOW).

4) The transmit data output is set to the marking state
(HIGH) and the receiver section is disabled until it
is enabletl by Command Register 3 Bit 6.

5) The start bit will be checked at sampling time. The
receiver will return to start bit search mode if input
RxD is not LOW at this time.

6) Status Register Bit 0 implies framing error.

7) The receiver samples input RxD at bit center.

Reset has no effect on the contents of receiver buffer
register, transmitter buffer register, the intermediate
latches of parallel ports, and event counters/timers,
respectively.

INTERFACING

This section describes the hardware interface between
the 8256 MUART and the 8085, 8086,8088, and 80186
microprocesors. Figures 14 through 19 display the
block diagrams for these interfaces. The MUART can
be interfaced to many other microprocessors using
these basic principles.

In all cases the 8256 will be connected directly to the
CPU's multiplexed address/data bus. If latches or
data bus buffers are used in a system, the MUART
should be on the microprocessor side of the ad·
dress/data bus. The MUARTlatches the address in·
ternally on the falling edge of ALE. The address con·
sists of Chip Select (CS) and four address lines. For
8·bit microprocessors, ADO·AD3 are the address
lines. For 16-bit microprocessors, ADI-AD4 are the
address lines; ADO is used as a second chip select
which is active low. Since chip select is internally lat­
ched along with the address, it does not have to re­
main active during the entire instruction cycle. As long
as the chip select setup and hold times are met, it can
be derived from multiplexed address/data lines or
multiplexed address/status lines.

In Figure 15, the 8088 min mode, the 8205 chip select
decoder is connected to the 8088's address bus lines
A8-AI5. These address lines are stable throughout the
entire instruction cycle. However, the MUART's chip
select signal could have been derived from A1'6/S3-
AI9/S6.

Figure 16 shows the 8256 interfaced with an 8086 in
the min mode. When the 8256 is in the 16-bit mode,
AO serves as a second chip select. As a result the
MUART's internal registers will all have even ad·
dresses since AO must be zero to select the device. Nor­
mally the MUART will be placed on the lower data
byte. If the MUART is placed on the upper data byte
the internal registers will be 512 address locations
apart and the chip would occupy an 8 K word address
space. Figure 16A shows a table and a diagram of how
the 8256 may be selected in an 8086 system where the
MUART is I/O mapped and used on the lower byte of
the address/data bus.

PROGRAMMING

Initialization

In general the MUART's functions are independent of
each other and only the registers and bits associated
with a particular function need to be initialized, not
the entire chip. The command sequence is arbitrary
since every register is directly addressable; however,
Command Word 1 must be loaded first. To put the
device into a fully operational condition, it is
necessary to write the following commands:

Command byte 1
Command byte 2
Command byte 3

Mode byte
Port 1 control
Set Interrupts

The modification register may be loaded if required
for special applications; normally this operation is not
necessary. It is a good idea to reset the part before in­
itialization. (Either a hardware or a software reset will
do.)

Operating the Serial Interface

The microprocessor transfers data to the serial inter­
face by writing bytes to the Transmit Buffer Register.
Receive characters are transferred by reading the
Receiver Buffer Register. The Status Register provides
all of the necessary information to operate the serial
I/O, including when to write to the Transmit Buffer,
and when to read the Receive Buffer and error infor­
mation.

Transmitting
The transmitter and the receiver may be operated by
using either polling or interrupts. If polling is used.
then the software may poll the Status Register and
write a byte to the Transmit Buffer whenever TBE = 1.
Writing a byte to the Transmit Buffer clears the TBE

6-421 210907-002

AP·153

pD~ vfs v~c
~

::: TRAP X, X, RESET IN HOLD ::; RST 7.5 HlDA

=: RST8.5 SOD :;:::
RST 5.5 8085A Sf. ::: So
'cr
Q

Iii WJi C K ~~~E~T mn ~ 10 M ~~~~ ALE
cr

r~ Q
Q
CC i
€ Q

Q
CC

€

I 8205 I
DECODER

.................... L--

r-r
8282 . J cc lATCH

~
~
Q

€
€

TO NON·MUlTIPlEXED
PERIPHERALS

IL~ RiC

~}Serl RxD

RESET Til:!
TxD t=, ClK 1m

al,IIO

WR
IfIj

ALE
Port 1 (8))

ADO·AD4
DB5·DB7

CS Part 2
.....

(8) ~

EXTINT -
VCC ClND

. t t

Figure 14. 8085/8256 Interface

status bit. If the CTS pin is low, then the Transmit
Buffer will transfer the data to the Transmit Register
when it becomes empty. When this transfer takes
place the TRE bit is reset, and the TBE bit is set in­
dicating th~xt byte may be written to the Transmit
Buffer. If CTS is high, disabling the transmitter, the
data byte will remain in the Transmit Buffer and TBE

. will remain low until CTS goes low. The transmitter
can only buffer one byte if it is disabled.

There is no· way of knowing that the transmitter is
disabled unless the CTS signal is fed into one of the
1/0 ports. Using the transmitter interrupt will free up
the CPU to perform other functions while the
transmitter is disabled or while the Transmit Buffer is
full.

To enable the transmit interrupt feature Bit LS in the
Set Interrupt Register must be set. An interrupt re­
quest will not occur immediately after this bit has been
set. Before any transmit interrupt request will occur a

byte must be written to the Transmit Buffer. After the
first byte has been written to the Transmit Buffer, a
transmit interrupt· request will occur, providing the
transmitter is enabled.

There are three sources of transmitter interrupt re­
quests: TBE=l, TRE=l, and Break-In Detect.
Assuming the Break-In Detect feature is disabled,
after the transmit interrupt is enabled and the first
byte is written, a transmit interrupt request will be
generated by TBE going active. The microprocessor
can immediately write a byte to the Transmit Buffer
without reading any status. However if Break-In
Detect is enabled, the Status Register must be read to
determine whether the transmit interrupt request was
generated by Break-In Detect or TBE.

The TRE interrupt request can be used to indicate
when the transmitter has completely sent all of the
data. For example, using half-duplex communica-

6-422 210907-002

inter Ap·153

1 01111111 R
A,oA15 ADDR

II1111 L-~ PORT1~ r-- ClK ADg-ADr ADDR/DATA

MN/MX r-VCC
PORT 2 <::=:::>

ADO·AD4

ALE D5·D7

RD
WR TxC

,..- READY 101M 8256
RxC

INTR TxD SERI AlliO

8088 INTA INTA
RxD

~ ~
INTR CTS

A"/S3·A"/S6 RESET ClK
WR

READY - RD
RES ALE EXTINT ~ .s-r- RESET ClK

RESET

X, X,

0

v 'v

Figure 15. 8088 Min Mode/8256 Interface Multiplexed Bus

tions, all of the data written to the MUART must be
transmitted before the line can be turned around.
After the last byte is written, an interrupt request will
be generated by TBE. If this interrupt is acknowl·
edged without writing another byte, then the next
transmitter interrupt request, TRE = 1, will indicate
that the transmitter is empty and the line may be
turned around.

RECEIVING

Valid data may be read from the Receive Buffer
whenever the RBF bit in the Status Register is set.
Reading the Receive Buffer resets the RBF status bit.
The RBF bit in the Status Register can be used for
polling. When the RBF bit is set, the three receive
status bits, PE, OE, and FE are updated. These three
status bits are reset when they are read. Therefore
when the status register is read with RBF set, the three
error status bit should be tested too.

If interrupts are used for serial receive data, the
receiver must be enabled by setting the RxE bit in
Command Register 3, and Bit L4 must be set in the Set
Interrupt Register. When the receive interrupt request

occurs the Receive Buffer may be read, but the status
register should also be read since the receive interrupt
could have been generated by the Break Detect. Also,
reading the status register will indicate whether there
were any errors in the received character.

Operating the Parallel Interface

Data can be transferred to or read from Port 1 and
Port 2 by using the appropriate write and read opera·
tions.

LOADING PORT 1 and PORT 2

Writing to the ports transfers the data present on the
data bus into the output latches. This operation is in·
dependent of the programmed I/O characteristics of
the individual port pins. Writing to control or input
ports has no effect on the state of the pins. Pins de·
fined as outputs immediately assume the state which is
associated with the transferred data. If inputs or con·
trol pins are reprogrammed into outputs, they assume
the states stored in their output latches which were
transferred by the most recent port write operation.

210907-002

Ap·153

rD~ ~ MN/MX !-Vcc
M/Rl

8284 RESET AD
CLOCK

..... ClK WR
GENERATOR

...... READY INT

RES INTA f---L.
ALE f---I-I
DT/R ---, I I L STS
DEN I---'n-'I

8086

I: : I ADo-AD I5 8282 ADDR)
Au-AI' ~DRlDATA lATCH

- ,," 2 OR 3

BHE I-- II' OE
I',I ~
I I II [-=----' I I ----'1

I I I I 'I" 8286 : I .
: : I I : I TRANS I

DATA ')
" (16)~ CEIVER I I I
~ (2)11 OE II

I IT j-II-i-
L I JOi>iiONAl I CS ALE INTA INT WR RD RESET ClK

S
'C-:.::.:: ______ ' PORT 1

8256
ADDR/DATA (8) ADo·AD4

D5,D7 PORT 2

CTS TxD RxD. TxC RxC EXTINT

~ T
SERIAL 110

Figure 16. 8086 Min Mode/8256 Interface

BHE A. CHARACTERISTICS

0 0 WHOLE WORD
0 1 UPPER BYTE FROMITO ODD ADDRESS

MUART 1 0 LOWER BYTE FROMITO EVEN ADDRESS
1 1 NONE

0,
ADDRESS • A.-A,

~
8205 t prVEN ADDRESS E, - BYTE PERIPHERALS

M/iO E, 1/0 MAPPED

BHE E, 0,

Figure 16a. Technique for Generating the MUART's Chip Select

6-424 210907-002

AP-153

~ 8288 BUS

I--;:;;;5i~~---lL g?KNTROllER

I 8284A ~ ~~M'k!t="====:~? ~~~!~~CO~M~M~A~N~D~BU~S~~~~~~~~~~~E~ RES ~ READY S, ,~
~RESET ~, ~

S, r-- DEl'J. il5RC
C~ rr'lTl' ~

GENERATOR 8088
CPU L STB

1~==~~ 8282 :£~! k 8~~3 rnr RIIE,s 1 BL I~
...... ..;~+ IMEMORY PERIPHERA

lL-L~r-,7,--..,.1 DATA DATA
I 8205 I

~
8286

T OR
8287

n n DECODER

DATA B S

RESET ClK

PORT1

Q

OE

1
INT ALE AD,·AD, CSWRRDINTA

0,·0,
8256

PORT2 EXTINT TxC RxC TxD RxD CTS

D l~
Figure 17. 8088 Max Mode/8256 Interface

READING PORT 1 AND PORT 2

Reading the ports gates the state at the pins onto the
data bus if they are defined as 110 pins. A read opera­
tion transfers the contents of the associated output
latches of pins PI2,.PI3, PIS, and P16, which are de­
fined as control function pins. Reading control pins
PIO, Pll, and PI7 delivers the state of these pins.

Operating the Event CounterslTimers

The event counters/timers can be loaded with an
initial value at any time. Reading event
counters/timers is possible without interfering with
the counting process.

LOADING EVENT COUNTERSITIMERS

Loading event counters/timers 1-5 under their respec­
tive addresses transfers the data present on the data

bus as an initial value into the addressed event
counter/timer. The event counter/timer counts from
the new initial value immediately following the data
transfer (exception: retriggerable mode of Timer 5, or
3 and 5)

Cascaded counters/timers can be loaded with an
initial value using one of two procedures: .
1) Only the event counter/timer representing the most
significant byte will be loaded. The event
counter/timer representing the least significant byte is
set to OFFH automatically. Counting is started im­
mediately after the data transfer.
2) The event counter/timer representing the most
significant byte will be loaded, causing the least
significant byte to be set to OFFH automatically.
Counting is started immediately following the. data
transfer. Next, the counter representing the least
significant byte will be loaded and counting is started

6-425 210907-002

Ap·153

rml ~CLK MN/Ml' I--GND S,
CLKMRDC

S, MWTC
S, S, AMWC f-i 8284 RESET S, S, iOIiC

CLOCK f-- DEli .JQWk
GENERATOR READY

r- DT/R AI~ [i ... ALE JmA
INTR

8086 IL r---
,
I

§I.B I
I

~
OE

AD
8282

W ADo·ADH LATCH
Au·Au (2 OR 3)
BHE

8286
TRANS·

CEIVERS
LA (2)

~
T
BE

Ilr - J
ALE INT INTA WR RD CS CLK RESET

ADDRIDATA ADo·AD4

~ D~·D1 8256 PORT1

CTS TxD RxD TxC RxC EXTINT PORT2

~'I
SERIAL 110

Figure 18. 8086 Max Mode/8256 Interface

again, but this time with a complete 16-bit initial
value. The least significant byte of the initial value
must be transferred before the counter representing
the least significant byte exhibits its zero transition to
prevent the most significant byte of the initial value
from being decremented improperly.

In the case of an 8-bit initial value for Timer 5 or for
cascaded Event Counter/Timer 3 and 5, the initial
value for Timer 5 is loaded from a save register, if it is
operated in retriggerable counting mode. Counting is
started after an initial value has been transferred
whenever a high-to-low transition occurs on Port
P15.

Cascaded Event Counter/Timer 3 and 5 operating in
retriggerable counting mode can be loaded directly
with an initial value for Timer 5 representing the most
significant byte; Event Counter/Timer 3 will be set to
OFFH automatically. '

READING EVENT COUNTERSITIMERS

Reading event counters/timers 1-5 from their respec­
tive addresses gates ,the counter contents onto the data
bus. The counter contents gated onto the data bus re­
main stable during the read operation while the
counter just being read continues to count. The
minimum time between the two read operations from
the same counter is I usec.

The procedure to be followed when reading cascaded
event counters/timers is:
I) The event counter/timer representing the most
significant byte will be read first. At this time, the
least significant byte is latched into read latches.
2) When the event counter/timer representing the
least significant byte is addressed, the byte stored in
the read latches will be gated onto the data bus. The
value stored in the read latches remains valid until it is
read, the cascading condition is removed, or a write

6-426 210907-002

inter AP·153

16 MHz
VCC rm.,

!.[i
x, X, RESET

iiii
RES WR

INTO

+5
..

INTAO
V_ SRDY

ALE

f"" NMI
DTlii

f"" HOLD DEN

L-.~
8282

ADo·AD" ~.ADDRIDATA lATCH ADDRESS > 80186 (2)

PCSO
OE

~
8286

TRCVR

(161 (2)
DATA)

- .1:ro- OE

I
GENERATOR ~ CLOCK II

ALE INTA INT WR RD RESET ClK

(8) ADo·AD.
'(ij) 0,-0.

8256 PORT1
~

CS PORT2
CTS TxD RxD TxC RxC EXTINT

(8))

"" t ! t J , f
~

SERIAL 110

Figure 19. 80186/8256 Interface

operation affecting one of the two event
counters/timers is executed.

The time between reading the most significant byte
and the least significant byte must be at least 1 usec.

Note:
For cascaded event counters/timers the least significant
counter/timer is latched after reading the most significant
counter/timer. If the lower byte changes from OOH to OFFH
between the reading of the MSB and the latching of the LSB,
the carry from the most significant event counter/timer to the
least significant event counter/timer is lost.

Therefore, it is necessary to repeat the whole reading once if
the value of the least significant event counter/timer is OFFH.
Doing this will avoid working with a wrong value (correct
value + 255).

APPLICATION EXAMPLE

This section describes how the 8256 was designed into
a Line Printer MUltiplexer (LPM). This application
example was chosen because it employs a majority of
the MUART's features. The information in this sec­
tion will be applicable to many other designs since it
describes some common software and hardware
aspects of using the MUART.

Description of the Line Printer Multiplexer
(LPM)

The Line Printer Multiplexer allows up to eight
workstations to share one printer. The workstations
transmit serial asynchronous data to the LPM. The
LPM receives the serial data, buffers it, then transmits

6-427 210907-002

Ap·153

Workstations
Une Printer

Figure 20. Using the Line Printer Multiplexer to Share a Line Printer

it to the line printer using a two-wire byte handshake
Dataproducts interface. A conceptual diagram of this
system is shown in Figure 20. Note that only one
workstation can transmit at a time. This workstation
will transmit its entire file before another workstation·
will be allowed to transmit.

The LPM sequentially polls each of the eight RS-232
ports for a Request To Send (RTS). When it finds a
serial port which has asserted RTS, it configures itself
for the appropriate data format and bit rate,
establishes the connection and sends back to the serial
port a Clear To Send (CTS) which enables transmis­
sion. The LPM receives the serial asynchronous data,
buffers it ina software FIFO, and transmits the data
to the line printer. If the LPM detects an error in any
ofthe serial characters it receives, it transmits an error
message to the serial port and ignores the bad
character. If the LPM does not receive a serial
character after 18 seconds, it assumes that the
transmission is complete. It transmits the final status
to the serial port, and returns to scanning.

This LPM was designed to be used with single-user
workstations and a 300 lines per minute line printer.
These workstations are not multitasking; therefore in
the middle of a file transfer when the CPU needs to
reload its buffer from the disk, no serial data is
transmitted. During this time the LPM is emptying its
FIFO; thus, the line' printer never stops printing.

The buffer size on the LPM was chosen to comple­
ment the disk access time on the workstations. Figure
21 illustrates the buffer size calculation. The line
printer can print up to 300 lines per minute, or ap­
proximately 660 characters per second. This cor­
responds to a serial transmission rate of 6,600bps
(assuming ASCII character codes and a parity bit) as
shown in equation 1.

(1) Serial bit rate = (300 Iines/min)·(l32 char/line)·(lObits/char)
for the line printer (60 sec/min)

The bottleneck in this data transfer is the line printer
. since the MUART and the workstations can both

transmit and receive at 19.2Kbps. To realize the max­
imum data transfer rate of this system the LPM must
guarantee that the average transfer rate to the line
printer is 660 characters per second. The maximum
amount of dead time that the serial port on the
workstation is not transmitting, multiplied by 660 is
the number of bytes which the LPM should buffer. It
was determined through experimentation that it takes
about 3 seconds to load 40K bytes of data from the ,
disk into the workstation's RAM. During these 3
seconds no serial data is being sent; therefore the buf­
fer size on the LPM should be 2K bytes; (Note: even
though only a 2K byte FIFO is required, this design
used an 8 Kbyte FIFO.)

To keep the LPM's buffer full the serial data rate must
be greater than 6.6Kbps. The two bit rates which the

6-428 210907-002

inter Ap·153

LPM

LINE
PRINTER

300 LINES/MIN iii
660CHAR/SEC= ~

6,600 BPS ~~ Q 9,600 BPS
OR

~ . ;).:_ ... i 19,200 BPS

Figure 21. LPM Buffer Size Calculation

FIRST BYTE

L 1 LO
0 0 8·BIT
0 1 7
1 0 6
0 0 5

SECOND BYTE I X x I x X

UPPER NIBBLE

LOWER NIBBLE

B3 I B2 I B1 I BO

~
BAUD RATE SELECT

B3 B2 B1 BO
o 0 0 0
o 0 0 1
o 0 1 0
o 0 1 1
o 1 0 0
o 1 0 1
o 1 1 0
o 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

BIT RATE
DO NOT USE
DO NOT USE
DO NOT USE
19200
9600
4800
2400
1200
600
300
200
150
110
100

75
50

Figure 22. Programming Words Format for LPM

workstations use are 9.6Kbps and 19.2Kbps. The CTS
signal is used to control the flow of the serial data so
that the LPM buffer will not overflow.

Each serial port on the LPM can have a different bit
rate, character length, and parity format. These
parameters are programmable through the serial port.
When the LPM powers up, or is reset, it expects a bit
rate of 9600 bps, 7 bit characters, and odd parity.

6-429

When a serial port receives an ASCII ESC character
(lBH), it puts that port in the program mode. The
next two bytes will program these three parameters.
Only the lower nibbles of these two bytes are used,
and the upper nibbles are discarded. The format of
these programming words is given in Figure 22. If the
word following the ESC is an ASCII NUL (0), the
LPM will exit from the programming mode and not
change any of its parameters.

210907-002

inter Ap·153

Description of the Hardware

Figure 23 shows a block diagram of the LPM. In addi­
tion to the standard components of most
microprocessor systems such as CPU, RAM, and
ROM this particular design requires a UART, timers,
parallel I/O and an interrupt controller. The MUART
is the ideal choice for this design since it integrates
these four functions onto one device.

The eight serial I/O ports use four signals: Transmit
Data (TxD), Receive Data .@1f.D), Request To Send
(RTS); and Clear To Send (CTS). These four signals,
controlled by the MUART, are connected toone port
at a time using TTL mUltiplexers. The TTL multiplex­
ers are interfaced to RS-232 transceivers to be elec­
trically compatible with the RS-232 spec. The serial
port select address is derived from three bits of the
MUART's parallel I/O port (Port 1). Two more bits
from Port i control CTS and RTS, and another bit
lights up an LED to indicate when the LPM's buffer is

r----------
I

I
I
I
I
I
I
L

full. Parallel Port 2 and two bits from Port 1 are con­
nected to the line printer implementing a two-wire
byte handshake transfer. These signals are passed
through a line driver so that they can reliably drive a
long cable.

There are three timing functions needed for the LPM:
a scan timer, a debounce timer, and a recieve timeout.
The Scan timer determines the amount of time spent
sampling RTS on each port before the next port is ad­
dressed. By using one of the MUART's timers to do
this function, the CPU is free to perform other func­
tions instead of implementing the timer in software. If
RTS is recognized as true, the CPU branches into a
debounce procedure. This procedure uses another one
of the MUART's timers to wait 10 msec then sample
RTS again, thus preventing any glitches from register­
ing as a false RTS. The receive timeout timer uses two
8-bit timers in the cascaded mode to measure an
18-second interval. After a valid RTS is recognized,

----------l

c=J e---.; c......J ~. Serial

1;===:::-t~==~1-;===:::-t~==::;-ll/o porls e---.; c=J c=; C........J

Figure 23. Functional Block Diagram of the Line Printer Multiplexer

6-430 210907-002

AP-153

the LPM sends back a CTS and initializes the receive
timeout timer for 18 seconds. Each time a character is
received by the LPM, this timer is reinitialized. If this
timer times out, the LPM considers the transmission
complete and returns to scanning.

registers occupy even addresses from 0 to IEH. Using
an 8088 CPU the MUART must be placed in the 8086
mode since the INTA signal is used; hence the register
addresses are all even numbers.

The line printer used provides a choice of two stan-
The schematic diagram of the LPM is shown in Figure dard parallel interfaces: Centronics or Dataproducts.
24. The CPU is an 8088 used in the min mode. It is in- The Centronics interface uses a two-wire handshake
terfaced directly to the 8256. An 8282 latch is pulsed strobe where the transmitter asserts a complete
employed in the system so that nonmultiplexed bus strobe pulse before an acknowledge is received. The
memory can be used. A 2716 holds the entire pro- Dataproducts interface is an interlocking two-wire
gram, and six 2016s (2K x 8 static RAMs) are used to handshake. The Dataproducts interface was chosen
store the buffer, temporary data, stack area, and in- since it is directly compatible with the MUART's
terrupt vector table. The 2716 is located in the upper two-wire byte handshake. The MUART could also be
2K of the 8088 address space (FF800-FFFFFH) so that connected to the Centronics interface; however, addi-
the reset vectors can be stored starting at location tional hardware would be necessary to generate the
FFFFOH. The RAM address space spans 0-2FFFH so pulsed strobe for correct interrupt operation. Figure
that the interrupt vector table can be stored starting at 25 shows the timing of the Dataproducts interface and
location O. The MUART is I/O mapped and its Table 6 lists the connector pin configuration.

Table 6_ Dataproducts Interface Line Functions

Signal Description Connector Pin

Data Request Sent by printer to synchronize data transmission. When E(return C)
true, requests a character. Remains true until Data
strobe is received, then goes false within 100 nsec.

Data Strobe Sent by user system to cause printer to accept j(return m)
information on data lines. Should remain true until
printer drops Data Request line. Data lines must
stabilize for at least 50 nsec before Data Strobe is sent.

Data Bit I B(return D)
Data Bit 2 F(return J)
Data Bit 3 L(return N)
Data Bit 4 Bit 8 controls optional character set R(return T)
Data Bit 5 Refer to Commands and Formats. V(return X)
Data Bit 6 Z(return b)
Data Bit 7 n(return k)
Data Bit 8 h(return e)

VFU Control Optional control from user system. Used for VFU p(return s)
(PI) control. Data Request/Strobe timing is same as for data

lines.

Ready Sent to user system by printer. True when !Io Check CC(return EE)
condition exists.

On Line Sent to user system by printer. True when. Ready y(return AA)
line is true and operator has activated ON LINE
Pushbutton. Enables interface activity.

Interface Jumper in printer connector. Continuity informs user x to v
Verify system that connector is properly seated.

+5V Supply voltage for Exerciser only. HH

6-431 210907-002

SYSTEM
RESET

.-l.
IN ., . .r 0-,,"',""-..,.,

TO 2121(F)

TO 2128(E)

TO 2121(D)

TO 2121(C)

TO 2121(8)

TYPICAL
OF6
2Kd

STATIC
RAMS,
2011(A)
THAU
201~f)

Ap·153

'-______________ ..!''j'RST

~~~~":'NT 
14i1lTi 

ALE 
llWii 
lORD 

.., 
I 
I 
I 
I 
I 
I 

13 Ci 

Figure 24. Schematic of LPM 

6-432 

e.10&4MHr 

8256 

P11 32 
Pili 33 

P15 34 
P,4 35 
P13 38 

P12 31 
P1, 31 
Pl0 39 

210907-002 



inter Ap·153 

~ 
"11, 

5 . 
8205 

-:-

713';" :~ 1314 

" 11\ 11( HIlI( lK 11\ 11\ 11\ 

t4' ~l ~L • L~ l~ 

LE.O 

Figure 24. Schematic of LPM (Continued) 

6-433 210907-002 



AP-153 

~~I------------------------------~U 
READ~' 

ON·lINE 
,...... __ ~,I-' i+.......,--------2~ SEC MIN -----------1 •• :1 

,DATA REQUEST L-________________ ~ 11
1
,----, _ 100NSEC ~ , 

DATA LINES 
1 THROUGH 8 & Pl 

I 
~ ~ 50 N~EC MIN 

_______ ........ ________ I~II L/ ' DATA STROBE Y \~---'----
Figure 25. Timing of Dataproducts Interface 

Only ten signals are used to interface the LPM to the 
line"printer: Data Request, Data Strobe, and the eight 
data lines. The most. significant data line is' not used 
since the character code is 7-bit ASCII. Data Strobe 
connects to OBF on' the MUART; however, for the 
Dataproducts interface this signal must be inverted. 
Data Request is connected to ACK on the MUART. 
When the line printer is ready to accept data, the Data 
Request signal goes high. The 8256 will not interrupt 
'the CPU to transmit parallel data unless this signal is 
high. 

The Dataproducts interface is slightly different from 
the MUART's two-wire handshake in that it latches 
the data on the leading edge of the strobe signal. 
When the MUART receives bytes it latches the data on 
the trailing edge. As a result the Dataproducts inter­
face has a 50 nsec setup time for data stable to the 
leading edge of Data Strobe. In the LPM hardware a 
delay line was used to realize this setup time. 

Description of the Software 
The software is written in PL/M and is broken up into 
four separate modules, each containing several pro­
cedures. A block diagram of the software structure is 
given in Figure 26. The modules are identified by the 
dotted boxes, and the procedures are identified by the 
solid boxes. Two or more procedures connected by a 
solid line means the procedure above calls the pro­
cedure below. The procedures without any solid lines 

connected above are interrupt procedures. They are 
entered when the MUART interrupts the CPU and 
vectors an indirect address to it. 

The LPM program uses nested interrupts; the priority 
of the interrupt procedures is given in Table 7. 

Table 7. Line Printer Multiplexers' Interrupt 
Priority 

Priority Source 

Highest 0 Debounce timer 
1 Not Used 
2 Not Used 
3 Receive timer 
4 RxD Interrupt 
5 TxD Interrupt 
6 Scan timer 
7 LP Interrupt 

The priority of the interrupts is not programmable but 
they are logically oriented so that for this application 
the priority is correct. In the steady state of the LPM's 
operation the UART will be receiving data, and the 
parallel port will be transmitting data. The serial 
receiver should be the highest priority since it can have 
overrun errors. This is the case because the debounce 
timer will be disabled, and the receive timeout inter­
rupt will only occur when serial reception has ended. 
Therefore the RxD request can interrupt any other ser­
vice routine, thus preventing any possibility of an 
overrun error. 

6-434 210907-002 



AP-153 

~------------, MAIN_MOD SCAN I 
I I 

r.;--- --.., 
IPON_MOD 

I I 
I ..... -P-O-W...lE-R-SO-N-.,: 
L _______ J 

I 
I 
I 
I 
I 

I I L ____________ J 

r;:-----
liNT_MOD --------------- ---, 
I I SCANSTIME I I DEBOUNCESTIME I I RECEIVESTIME I LOADSINTSTABLE I 

I I 
I L __ c:!!IJ I ____________ .J 

Figure 26. Block Diagram of LPM Software Structure 

On power-up the CPU branches from OFFFFOH to 
the INITCODE routine which is included in the 
machine code by the MDS locater utility. INITCODE 
initializes the 8088's segment registers, stack pointer, 
and instruction pointer, then it disabled interrupts and 
jumps into MAIN_MOD. The first executable in­
struction in MAIN~OD calls POWER$ON, which 
initializes the MUART, flags, variables, and arrays. 
The MAIN-.MOD calls LOAD$INT$TABLE, which 
initializes the interrupt vector table. The CPU's inter­
rupt is then enabled and the program enters into a DO 
FOREVER loop which scans the eight serial ports for 
an R'i'S. 

There are three software functions which employ the 
MUART's timers and interrupt controller to measure 
time intervals: SCAN, debounce, and IN IT­
$RECElVER. DEBOUNCE and INIT$RECElVER 
procedures, employ the MUART's timers and inter­
rupt controller to measure time intervals. The CPU re­
mains in a loop for a specific amount of time before it 
proceeds with the next section of code. In this loop the 
CPU is waiting for a global status flag to change while 

servicing any interrupts which may occur. When the 
appropriate timer interrupt occurs, the interrupt ser­
vice routine will set the global flag which causes the 
CPU to exit the loop and proceed to the next section 
of code. An example can be seen from the scan flow 
chart in Figure 27. 

The first thing the program does before entering the 
loop is set the flag (in this case SCAN$DELAY) 
TRUE. The timer is initialized and the loop is entered. 
As long as SCAN$DELA Y is TRUE the CPU will 
continue to sample RTS. If RTS remains false for 
more than 100 msec, the timer interrupts the CPU and 
the interrupt service routine sets SCAN$DELAY 
FALSE. This causes the CPU to exit the loop and ad­
dress the next port. The process is then repeated. If 
RTS becomes true while it is being sampled, the DE· 
BOUNCE procedure is called. 
DEBOUNCE does nothing more than wait 10 msec 
and sample RTS again using the same technique 
discussed above. If RTS is still valid IN· 
IT$RECEIVER is called, otherwise the CPU returns 
to scan. 

6-435 210907-002 



AP-153 

ADDRESS NEXT PORT 

Figure 27. Scan Flow Chart. 

INIT$RECEIVER calls CONFIGURE which pro­
grams the MUART for the bit rate, number of bits in a 
character, and parity format. This information is 
stored in an array called SERIAUFORMAT, which 
contains a byte for each port. The bytes in the 
SERIAL$FORMAT array have the same bit definition 
as the two nibbles in the programming words in Figure 
22. Upon returning to INIT$RECEIVER the receiver 
is enabled, the receive timeout timer is initialized. and 
the timer and receiver interrupts are enabled. CTS on 
the serial port is then set true, and the CPU enters a 
loop which does nothing except wait for 18 seconds. If 
no characters are received within; 18 seconds, the 
receive timeout interrupt occurs and the loop flag is 
set false, which causes the CPU to exit the loop. If a 
character is received, a receive interrupt occurs, and 
the CPU vectors into the RxD interrupt service 
routine. 

Figure 28 shows a flow chart of the RxD interrupt ser­
vice routine. This routine begins by reading the receive 
buffer and reinitializing the receive timeout timer. 
There are two conditions to check for before the 
character can be inserted into the FIFO. First, if there 

CALL ERROR 
PROCEDURE 

Figure 28. RxD Interrupt Procedure Flow Chart 

are any errors in the received character, an ERROR 
procedure is called which reports back to the serial 
port what the error condition was. The character in er­
ror is discarded and the routine returns. The other 
condition is that if the received character is an ASCII 
ESC, the PROGRAM procedure is called. If neither 
one of these conditions occurs, the character is placed 
in the FIFO by the BUFF$IN procedure. 

The LP interrupt routine is entered when the byte 
handshake interrupt request is acknowledged; This 
routine simply calls the BUFF$OUT procedure, which 
extracts a byte out of the FIFO. BUFF$OUT returns 
the byte to the LP interrupt procedure, which then 
writes it to Port 2. One small problem with getting the 
handshake interrupt going is that the first byte has to . 
be written to Port 2 before the first handshake inter­
rupt will occur. The problem is that the line printer 
may not be.ready for the first byte. This would be in­
dicated by DATA REQUEST being low. If the byte 
was written to the LP while DATA REQUEST is low, 
it would be lost. Note that if the handshake interrupt 
is enabled while DATA REQUEST is low, then DATA 
REQUEST goes high, the interrupt will occur without 

6-436 210907-002 



Ap·153 

writing the first byte. There are several ways to solve 
this problem. Port 1 can be read to find out what 'the 
state of the DATA REQUEST line is. If DATA RE· 
QUEST is low, the CPU can simply wait for the inter­
rupt without writing the first byte. If DATA RE­
QUEST is high, then the first data byte may be writ­
ten. Another solution would be to write a NUL 
character as the first byte to Port 2. If DATA 
REQUEST is low, then a worthless character is lost. If 
DATA REQUEST is high, the NUL character would 
be sent to the line printer; however, it is not printed 
since NUL is a nonprintable character. The LPM pro­
gram uses the NUL character solution. 

BUFFER MANAGEMENT 

The FIFO implementation uses an 8K byte array to 
store the characters. There are two pointers used as in­
dexes in the array to address the characters: 
IN$POINTER and OUT$POINTER. IN$POINTER 
points to the location in the array which will store the 
next byte of data inserted. OUT$POINTER points to 
the next byte of data which will be removed from the 
array. Both IN$POINTER and OUT$POINTER are 
declared as words. Figure 29 illustrates the FIFO in a 
block diagram. 

The BUFF$IN procedure receives a byte from the 
RxD interrupt routine and stores it in the array loca­
tion pointed to by IN$POINTER, then IN$POINTER 
is incremented. Similarly, when BUFF$OUT is called 

(0) 

I-- FIFO (OUT$POINTER) 

I-- FIFO (IN$POINTER) 

(8 K) 

BUFFER$STATUS 

EMPTY 
INUSE 
FULL 

Figure 29. FI FO Structure and Status 

6-437 

by the LP interrupt routine, the byte in the array 
pointed to by OUT$POINTER is read. 
OUT$POINTER is incremented, and the byte which 
was read is passed back to the LP interrupt routine. 
Since IN$POINTER and OUT$POINTER are always 
incremented, they must be able to roll over when they 
hit the top of the 8K byte address space. This is done 
by clearing the upper three bits of each pointer after it 
is incremented. 

IN$POINTER and OUT$PONTER not only point to 
the locations in the FIFO, they also indicate how 
many bytes are in the FIFO and whether the FIFO is 
full or empty. When a character is placed into the 
FIFO and IN$POINTER is incremented, the FIFO is 
full if IN$POINTER equals OUT$POINTER. When 
a character is read from the FIFO and OUT$­
POINTER is incremented, the FIFO is empty if 
OUT$POINTER equals IN$POINTER. If the buffer 
is neither full nor empty, then it is in use. A byte called 
BUFFER$STATUS is used to indicate one of these 
three conditions. 

The software uses the buffer status information to 
control the flow into and out of the FIFO. When the 
FIFO is empty the handshake interrupt must be turned 
off. When the FIFO is full, ffi must be sent false so 
that no more data will be received. If the buffer status 
is in use, ffi' is tru~ and the handshake interrupt is 
enabled. 

Figure 30 shows the now chart of the BUFF$IN pro­
cedure. The BUFF$IN procedure begins by checking 
the BUFFER$STATUS. If it is empty and the 
character· to be inserted into the FIFO is a CR or LF, 
the handshake interrupt is enabled, a NUL character 
is output, and the BUFFER$STATUS is set to IN­
USE. The character passed to BUFF$IN from RxD is 
put into the FIFO. If the FIFO is now full, the BUF­
FER$STATUS is set to FULL, CTS is set false, and 
the buffer full LED is turned on. 

Figure 31 shows the flow chart of the BUFF$OUT 
procedure. After the character is read from the FIFO, 
the FIFO is tested to determine if it is empty. If it is 
not empty, the BUFFER$STATUS is FULL and there 
are 200 bytes available in the FIFO, serial data recep­
tion is reemibled, and the FIFO fills again. While data 
is being received from the workstation, CTS toggles 
high and low, filling up and emptying the last 200 
bytes in the FIFO. Referring to the top of the flow 
chart (FIFO empty test) if it's empty, the BUF­
FER$STATUS is set to EMPTY, and the handshake 
interrupt is disabled. During this time all interrupts 

210907-002 



AP-153 

Figure 30. Flow Chart of the BUFF$IN Procedure 

are disabled at the CPU. (Remember that the RxD in­
terrupt routine can interrupt the LP and BUFF$OUT 
procedures since it has a higher priority, and the 
MUART is in the nested mode.) 

If the CPU interrupt was not disabled during this 
time, the following events could occur which would 
cause the LPM to crash. Assume that the RxD inter­
. rupt occured where the asterisk is in the flow chart, 
after BUFFER$STATUS is set to EMPTY .. The 
BUFF$IN procedure would set BUFFER$STATUS to 
INUSE and enable the handshake interrupt. When the 
RxD interrupt routine returned to BUFF$OUT; the 
handshake interrupt is disabled, but the BUF­
FER$STATUS is INUSE. The handshake interrupt 
could never be reenabled, and the FIFO would fill up. 

This is known as a critical section of code. Suspicion 
should arise for a critical section of code when two or 
more nested interrupt routines can affect the same 
status. One solution is to disable the interrupt flag at 
the CPU while the status and conditional .operations 
are being modified. 

The flow chart for the TxD interrupt procedure is 
given in Figure 32. For this program five different 
messages can be transmitted, and they are stored in 
ROM. It is possible to download the messages into a 
dedicated RAM buffer; however, the RAM buffer 
would have to be as large as the largest message. A 
more efficient way to transmit the messages is to read 
them from ROM. In this case the address of the first 
byte of the. message would have to be accessible by the 
transmit interrupt procedure. Since parameters cannot 
be passed to interrupt procedures, this message 
pointer is declared PUBLIC in one module and EX­
TERNAL in the other modules. 

To get the transmit interrupt started, the first byte of 
the message must be written to the transmit buffer. 
When a section of code decides to transmit a message 
serially, it loads the global message pointer with the 
address of the first byte of the message, enables the 
transmit interrupt, and calls the TxD interrupt pro­
cedure. Calling the TxD interrupt procedure writes the 
first byte to the transmit buffer to initiate transmit in­
terrupts. This can be done by calling PL/M's built-in 

. procedure CAUSE$INTERRUPT. 

The transmit interrupt routine checks each byte before 
it writes it to the transmit buffer. The last character in 
each message is a 0, so if the character. fetched is 0, the 
transmit interrupt is disabled and the character is 
ignored. 

USING THE LPM WITH THE INTELLE~ 
MICROCOMPUTER DEVELOPMENT 
SYSTEM, SERIES" OR SERIES '" 
A special driver program was written for the MDS to 
communicate to the LPM. This program, called 
WRITE, reads a specified file from the disk, expands 
any TAB characters, and transmits the data through . 
Serial Channel 2 to the LPM. Serial Channel 2 was 
chosen because CTS and RTS are brought out to the 
RS-232 connector. The WRITE program is listed in 
appendix B. It was also necessary to modify the boot 
ROM of the development system so that Serial Chan­
nel2 initializes with RTS false and a bit rate of 9600 
bps. . 

6-438 210907-002 



inter AP·153 

Figure 31. Flow Chart of the BUFF$OUT Procedure 

Figure 32. Flow Chart for TxD Interrupt Procedure 

6-439 210907-002 



AP·153 

APPENDIX A 
LISTING OF THE LINE PRINTER 

MULTIPLEXER SOFTWARE 

6-440 210907-002 



Ap·153 

PLlM-t,lb CD~lPIL£k r·lI·\} i-.lj'IUlJ 

SERIES-I II PL/M-86 VI 0 COMPILAfWN OF MODULE MAINMOD 
09.JECT MODULE PLACED IN : J."I: MAIN. OBJ 
COMPILER INVO~ED 5Y PLM86. 86 : F I: 11AIN. SRC 

2 

I**************~*********.**********.***********************~*~********~***** 
~ 

~ 

~ 

MAIN MODUL.E FOR THE LINE PRINTER MULTIPLEXER * 
* • 

************~***************************************************************1 

$DEBUG 
MAIN$MOD: DO, 

1**************************************************************************** 
* PORT 1 BIT CONFIGURATION * 
* 
~ BUFFER FULL 
* B7 

CTS 
B6 

ADDRESS 
95 54 53 

RTS 
52 

TWO WIRE HANDSHA~E 
81 BO 

* 
* 
* *****************************************************************************1 

DECLARE LIT LITERALLY 'LITERALLY', 
TRUE LIT 'OFFH', 
FALSE LIT '0', 
FOREVER LIT 'WHILE l' , 

CMD$I LIT '0', 1*8256 REGISTERS*I 
CMD$2 LIT '2', 
CMD$3 LIT '4', 
MODE LIT '6', 
PORT$I$CTRL LIT '8', 
SET$lNT LIT 'OAH', 
INT$EN LIT 'OAH', 
RST$INT LIT 'OCH', 
INT$ADDR LIT 'OCH' , 
TX$BUFF LIT 'OEH', 
RX$5UFF LIT 'OEH', 
PORT$1 LIT '10H', 
PORT$2 LIT '12H', 
DEBOUNCESTIMER LIT '14H', 
SCAN$TIMER LIT 'IAH', 
RECEIVESTIMER LIT ' lCH', 
STATUSSREG LIT 'lEH', 

SCAN$INT LIT '40H', 
DE90UNCE$INT LIT 'OIH', 
RECEIVER$INT LIT 'IOH' . 
TIME$OUT$lNT LIT '08H' , 
TRANSMITSINT LIT '20H' , 

EMPTY LIT '0', 
INUSE LIT '1', 
FULL LIT '2', 

RTS Lli '( INPUT(PORTSll AND 04Hl', 

6-441 210907-002 



AP·153 

PL/M-86 COMPILER MAINMOD 

:3 
4 

5 
6 

7 
8 
9 

10 
11 

12 
1:3 
14 
15 
16 
17 
18 

19 

20 
21 

22 
23 
24 
25 

1 
2 

1 
2 

1 
2 
2 
2 
2 

1 
2 
2 
2 
2 
2 
2 

2 

2 
3 

2 
2 
2 
2 

BEGIN LABEL 

TEMP BYTE. 
SCAN$DELAY BYTE 

PUBLIC, 

PlJBLIC. 
PUBLIC. 
PUBLIC. 
PUBLIC. 

DEBOUNCE$DELAY BYTE 
RECEIVE$DELAY BYTE 
PORT$PTR BYTE 
SERIAL$FORMAT(8)BYTE PUBLIC. I> PEN EP Ll LO B:3 82 Bl BO *1 

MESSAGE$PTR 
J 
OKl1> 
llUFFER$STATUS 

POINTER 
BYTE 
BYTE 
BYTE 

EXTERNAL. 
EXTERNAL .• 
EXTERNAL. 
EXTERNAL; 

1********************************************************************* 
* EXTERNAL PROCEDURE DECLARATIONS * 
****************************************************** •• *.**.*.****.*/ 

POWER$ON:PROCEDURE EXTERNAL; 
END POWER$ON; 

LOAD$INT$TABLE:PROCEDURE EXTERNAL; 
END LOAD$INT$TABLE; 

1********************************************************************* 
* SET THE BIT RATE AND ,DATA FORMAT FOR THE SERtAL PORT * 
*********************************************************************1 

CONFIGURE:PROCEDURE ; I*Initiali,e bit rate and data format*1 
TEMP=SER IAL$FORr1AT( SHR (PORT$PTR. 3) ); 
OUTPUTlCMD$I)=(lSHLCTEMP.2) AND OCOH) OR 03H); 
OUTPUTCCMD$2)=CTEMP OR :30H); 
END CONFIGURE; 

, , ' 

/**************************~****************************************** 
* INITIALIZE SERIAL RECEIVER * 
*********************************************************************1 

INIT$RECEIVER' PROCEDURE; 
CALL CONFIGURE; 
RECEIVE$DELAY=TRUE; 
OUTPUTCCMD$3)=OCOH; 
OUTPUTlRECEIVESTIMER)=70; 
OUTPUTlSET$INT)=18H; 
IF (8UFFER$STATUS<>FULL) 

I*Initialize 8256 se~ial po~t*1 

I*Enable 5e~ial receiver*1 
1*18 second TIMESOUT*/ 
I*Enable RECEIVER and TIME$OUT interrupts*1 

THEN 
OUTPUTlPORT$l)=CINPUTCPORT$l) AND OBFH); I*Send CTS TRUE*I 

DO WHILE RECEIVE$DELAY=TRUE. 1* Wait here while receiving se~ial data *1 
END; 

1* After 18 seconds of not receiving a character. proceed *1 

OUTPUTlSET$INT)=TRANSMIT$INT; 
J=O; 
MESSAGESPTR= QOKlO); 
CAUSE$INTERRUPT (45H); 

1* Send the terminating m~ssage *1 

6-442 210907-002 



AP-153 

PL/M-86 COMPILER MAlI'moD 

26 
27 
28 
29 

30 
31 
32 
33 
34 
35 
36 
38 

39 

40 

41 

42 

43 

2 
2 
2 
2 

1 
2 
2 
2 
2 
3 
2 
2 

2 

oUTPUT(PoRT$I)~(INPUT(PoRT$I) 

oUTPUT(RST$INT)~18H; 

oUTPUT(CMD$3)~40H; 

END INIT$RECEIVER; 

DR 40H) i I*Send CTS FALSE*I 
I*Clear RECEIVER and TIMER Interrupts*1 
I*Disable serial receiver*/ 

1********************************************************************* 
* DEB OUNCE RTS * 
***********~*********************************************************1 

DEBoUNCE:PRoCEDURE; 
DEBoUNCE$DELAY~TRUEi 
OUTPUTCDEBOUNCE$TIMER);10; 1* 10 msec debounce time delay *1 
oUTPUT(SET$INT)~DEBoUNCE$INTi 

DO \'HIL.E DEBoUNCE$DELAY~TRUEi 
END; 

IF RTS~O THEN CALL INIT$RECEIVERi 
END DEB OUNCE i 

I**************************************~****************************** 
* BEGIN MAIN PROGRAM * 
*********************************************************************1 

BEGIN: CALL POWER$ONi 

CALL LoAD$INT$TABLEi 

ENABLE; 

DO FOREVER; 

SCAN$DELAY~TRUE; 

44 2 OUTPUT(SCAN$TIt1ER)=100; I*Spend 100 msec on each serial port sampling RTS*I 
45 2 

46 2 
47 3 

48 3 
49 3 

50 2 
51 2 
52 2 
53 2 

54 2 
55 2 
56 

oUTPUT(SET$INT)~SCAN$INT; 

DO WHILE SCAN$DELAY~TRUEi 

IF RTS~O 
THEN 

CALL DEBOUNCE; 
END; 

TEMP~INPUT(PORT$I); I*Increment PoRT$PTR*1 
PORT$PTR~TEMP AND 38H; 
TEMP~TEMP AND (NOT 38H), 
PORT$PTR~(PORT$PTR+8) AND 38H; 

OUTPUT(PoRT$I)~TEMP DR PoRT$PTRi I*Look at next serial port*1 
END; 1*00 FOREVER*I 
END MAIN$MODi 

MODULE INFORMATION: 

CODE AREA SIZE 011CH 284D 

PL/M-86 COMPILER MAINMoD 

CONSTANT AREA SIZE OOOOH 00 
VARIABLE AREA SIZE OOODH 130 
MAXIMUM STACK SIZE OOOCH 120 
159 LINES READ 
o PROGRAM WARNINGS 
o PROGRAM ERRORS 

END OF PL/M-86 COMPILATION 
6-443 210907-002 



Ap·153 

PL/M-86 COMPILER INTMll0 

SERIES-Ill PL/M-86 Yl. 0 COMPILATICIN OF MODULE INl'MOD 
OBJECT MODUl.E PLACED IN . F\; INT OBJ 
COMPILER INYOKED BY: Pl.M86.86 FI INT. SR,' 

3 

4 
5 
6 

7 
8 

9 
10 
11 

12 
13 

14 

I 
:2 
:2 

I 
2 

1 
2 
2 

1 
2 

'**********~~**********.********.~**.****************~ *~***.***~.*.*** 
* • * INTE'lRUF'T MODULE': CONTAINS ALL INTERRUPT ROUHNES •. 
* PLUS LOAD INTERPUPT fP,DL.E PROCEDURE * 
* * 
**********************************~*.********************************1 

$DEBUG 
INT$MOD: DO, 
'liNOLIST 

DECLARE 
ESC 
SCAN$DELAY 
DEBOUNCE$DELAY 
RECEIVE'liDELAY 
MESSAGE'liPTR 
J 

LIT 
BYTE 
BYTE 
BYTE 
POINTER 
BYTE 

'ISH' , 
EXTERNAL, 
EXTERNAL, 
EXTERNAL, 
EXTERNAL, 
EXTERNAL, 

1******************************************·*************************** 
* MESSAGES SENT TO SERIAL PORTS * 
*********************************************************************1 

OK (*) BYTE PUBLIC DATA ('TRANSMISSION COMPLETE',OAH,ODH.OO), 
BREAK (*) BYTE PUBLIC DATA ('BREAK DETECT ERROR',OAH.ODH.OO), 
PARITY (*)BYTE PUBLIC DATA ('PARITY ERROR DETECTED',OAH.ODH,OO), 
FRAME (*) BYTE PUBLIC DATA ('FRAMING ERROR DETECTED'. OAH.ODH, 00), 
OVER'liRUN(*)BYTE PUBLIC DATA('OVER RUN ERROR DETECTED',OAH.ODH,OO), 

1*************************_·******************************************* 
* EXTERNAL PROCEDURES CALLED BY THE INTERRUPT ROUTINES * 
*********************************************************************1 

ERROR:PROCEDURE (STATUS) EXTERNAL; 
DECLARE STATUS BYTE, 
END ERROR, 

PROQRAM:PROCEDURE EXTERNAL, 
END PROGRAM, 

BUFF$IN:PROCEDURE (CHAR) EXTERNAL, 
DECLARE CHAR BYTE, 
END BUFF'liIN, 

BUFF'liOUT. PROCEDURE BYTE E·XTERNAL, 
END BUFF'liOUT; 

1*********************************************************~*********** 
.. LOAD THE INTERRUPT TABLE •. 
********************~************************************************1 

LOAD'liINT$TABLE:PROCEDURE PUBLIC, 

6-444 210907-002 



Ap·153 

PL/M-B6 COMPILER INTMOD 

15 
16 
17 
IB 
19 
20 

21 

22 

23 
24 
25 
26 

27 
2B 
29 
30 

31 
32 
33 
34 
35 

36 

37 

38 
39 
40 

2 
2 
2 
2 
2 
2 

2 

2 
2 
2 
2 

1 
2 
2 
2 

1 
2 
2 
2 
2 

2 
2 
2 

CALL SETS INTERRUPT C40H.DEBOUNCESTIME); 
CALL SET$lNTERRUPT' C 43H. RECEI YESTI ME); 
CALL SETSINTERRUPT C44H.RXD); 
CALL SETSINTERRUPT C45H.TXD); 
CALL SETSINTERRUPT (46H.SCANSTIME); 
CALL SETS INTERRUPT (47H.LP); 

END LOADSINTSTABLE; 

1********************************************************************* 
* INTERRUPT ROUTINES * 
*********************************************************************1 

1********************************************************************* 
* SET SCAN DELAY FLAG FALSE * 
*********************************************************************1 

SCANSTIME:PROCEDURE INTERRUPT 46H, 

ENABLE, 
SCANSDELAY=FALSEi 
OUTPUTCCMDS3)=BBH, 
END SCANSTIME, 

I*Output end fD~ nested mode*/ 

1********************************************************************* 
* SET DEBOUNCE DELAY FLAG FALSE * 
*********************************************************************1 

DEBOUNCESTIME:PROCEDURE INTERRUPT 40H; 
DEBOUNCESDELAY=FALSE, 
OUTPUTCCMDS3)=BBH, 
END DEBOUNCESTIt1E, 

1********************************************************************* 
* SET RECEIYE DELAY FLAG FALSE * 
*********************************************************************1 

RECEIYESTIME:PROCEDURE INTERRUPT 43H, 
ENABLE, 
RECEIYESDELAY=FALSEi 
OUTPUTCCMDS3)=BBH, 
END RECEIYESTIME, 

1********************************************************************* 
* READ SERIAL RECEIYE BUFFER * 
*********************************************************************1 

RXD:PROCEDURE INTERRUPT 44H, 

DECLARE 
STATUS BYTE. 
CHAR BYTE, 

CHAR=INPUTCRXSBUFF), 
OUTPUT'RECEIYE$TIMER)=70. 1* REINITIALIZE RECEIYE TIME OUT ./ 
STATUS~ INPUT( STATUS.REG) AND OF'H, 

6-445 

12/09/82 

210907-002 



Fl_/M-86 COMP lLE'.R r;HMOD 

41 

42 

43 

44 

45 
46 
47 

48 
49 
50 
51 
52 

53 
54 

55 
56 
57 

59 
60 
61 
62 

63 

:2 

2 

2 

2 

2 
2 
2 

2 
2 
2 
2 

1 
2 

2 
2 
2 

2 
2 
2 
2 

H' STATUS<,:'O 
THEN 

CALL ERROR (STATUS) I 

ELSF. IF CHAR=ESC 
THEN 

CAl.L PRDGRAI1; 
ELSE 

CALL BUFF51N ICHAR ), 
OUTPUTICMD$3)=88H; 
END RXD, 

1********************************************************************* 
* SEND A BYTE TO THE LINE PRINTER * 
*********************************************************************1 

I_P: PROCEDURE INTERRUPT 47H; 
ENABLE. 
OUTPUT I PORT$2) =BUFFSOUT; 
OUTPUTICMD$3)=88H. 
END LP; 

1********************************************************************* 
* SEND A BYTE TO THE SERIAL PORTS * 
*********************************************************************1 

TXD:PROCEDURE INTERRUPT 45H. 
DECLARE 

MESSAGE BASED MESSAGESPTR (1) BYTE, 
I BYTE. 

ENABLE; 
I =MESSAGE I J), 

IF 1<>0 
THEN OUTPUT(TXSBUFF)=I. 

ELSE OUTPUTIRSTSINTI=TRANSMIT$INT. 
J=J+l. 
OUTPUTICMD$31=88H; 

END TXD. 

END INT$MOD. 

MODULE INFORMATION: 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
181 LINES READ 
o PROGRAM WARNINGS 
o PROGRAM ERRORS 

END OF PL/M-86 COMPILATION 

01BDH 
0078H 
0003H 
0022H 

4450 
1200 

3D 
340 

6-446 .210907-002 



Ap·153 

PL/M-86 COMPILER BUFFMOD 

SERIES-III PL/M-86 VI. 0 COMPILATION OF MODULE BUFFMOD 
OB-JECT MODULE PLACED IN . Fl: BUFF. OB-J 
COMPILER INVOKED BY: PLM86.86 :Fl.BUFF. SRC 

3 

4 1 
5 2 

6 2 

7 2 
8 3 
9 3 

10 3 

11 3 

12 2 
13 2 

14 2 

15 2 

1********************************************************************* .. .. 
* BUFFER MODULE: INSERTS At,D REMOVES CHARACTERS FROM FIFO .. 
* REPORTS SERIAL RECEIVE ERRORS AND .. 
.. RE-PROGRAMS SER IAL PORTS •. .. .. 
**************~****************************~*************************1 

$DEBUG 
BUFF$MOD: DO; 
$NOLIST 

DECLARE 
MESSAGE$PTR POINTER 
-J BYTE 
OK(I) BYTE 
BREAK(I) BYTE 
PARITY(I) BYTE 
FRAME(I) BYTE 
OVER$RUN(I) BYTE 
SERIAL$FORMAT(I)BYTE 
PORT$PTR BYTE 

FIFO(8192) 
IN$POINTER 
OUT$POINTER 
BUFFER$STATUS 

BYTE. 
WORD 
WORD 
BYTE 

PUBLIC, 
PUBLIC. 
EXTERNAL. 
EXTERNAL. 
EXTERNAL. 
EXTERNAL. 
EXTERNAL. 
EXTERNAL. 
EXTERNAL. 

PUBLIC. 
PUBLIC, 
PUBLIC; 

1*********************************************************************. 
.. INSERT CHARACTER INTO FIFO .. 
*********************************************************************1 

BUFF$IN:PROCEDURE (CHAR) PUBLIC; 
DECLARE 

CHAR BYTE; 

IF «BUFFER$STATUS=EMPTY) AND «CHAR=LF) DR (CHAR=CR»l 
THEN 

DO; 
OUTPUT(SETSINT)=HANDSHAKE$INTi 1* Enable two-wire handshake interrupt *1 
BUFFER$STATUS=INUSE; 
OUTPUT(PORT$2)=O; I .. Output NULL character to get 

the interrupt started *1 
END; 

FIFOCIN$POINTER)=CHARi 1* Put CHAR lnto FIFO and IncrPffiPnt pOlnt~r ~! 
IN$POINTER=( (INPOINTERH) AND lFFFH); 

IF «(It..I'liPOlt"TER-t4) AND lFFFH)o:.OlJT$PCllhl1l-R) 1* If' tht:> bllfft'r' I~, filII .... top l't!'It-.'pt\\ln ft 

THEN 
DO; lit Send CT~i FALSE. dlld light up but'reT' ·fu! I I ~ D u/ 

6-447 210907-002 



Ap·153 

FL/M-86 COMPILER BUFFMOD 

16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
2B 
29 
30 

31 

32 
33 
34 
35 

37 

38 
39 

40 

41 
42 

43 
44 

45 
46 

47 

49 
50 

3 
3 
3 
2 

I 
2 
2 

" 2 

:? 
3 
3 
3 
3 
3 

2 

2 
3 
3 
3 

2 

2 

2 

2 
2 

2 
2 

2 
:2 

2 

3 
3 

OUTPUTiPORT$1 )~( (INPUT(PORT$I) DR 40H) AND 7FH), 
[~UFFER$STATIJS~Fl.ILL.; 

END; 
END IlUFF$ I N; 

I**********************************~********************************** 
.• REMOVE CHARACTER FROM F JFO * 
*********************************************************************1 

BUFF$OUTPROCEDURE BYTE PUBLIC, 
DECLARE CHAR BYTE, 
CHAR=FIFO(OIJT$POINTER), 
OUT'POlNTER=((OUT'POINTER+I) AND IFFFH), 
IF OUT$POINTER=IN'POINTER 1* If the buffer i. EMPTY disable the output to LP *1 

THEN 
DO, 

DISABLE; 
BUFFER$STATUS=EMPTY, 
OUTPIJT(RSU!NT)~HANDSHAKE$INT. 
ENAIlLE, 

END, 

1* If tho buf'e. is ~eady to .ill up again then send CTS TRUE *1 

ELSE IF « BUFFErl$STATUS~FULLl AND « (OUT$PUINTER·-:200) AND IFFFH) '=IN$POINTER) ) 
THEN 

DO; 1* Turn off buffer-full LED and turn on CTS */ 
OUTPUT(PORT$!)=«INPUT(PORT$I) AND OBFH) DR BOH); 
BUFFER$STATUS=INUSE; 

END; 
RETURN CHAR; 

END BUFF$OUT; 

1*************************************.****-************************** 
* SEND ERROR MESSAGE TO SERIAL PORT * 
*********************************************************************1 

ERROR· PROCEDURE (STATL'S) PUBLIC, 
DECLARE STATUS BYTE. 

MESSAGE BASED MESSAGE$PTR(li BYTE; 

IF (STATUS ANO 02H»O 
THEN 

STATUS=2; 
ELSE IF (STATUS AND 04H»0 

THEN 
STATUS=3; 

ELSE IF (STATUS AND OBH»O 
THEN 

STATUS=4; 
ELSE IF (STATUS AND OIH»)·O 

THEN 
STATUS=I, 

DO CASE STATUS; 

MESSAGE$PTR~@FRAME(O), 

6-448 210907-002 



inter AP-153 

PL/M-86 COMPILER GUFFMOD 

51 3 
52 3 
53 3 
54 3 

55 2 
56 2 
57 2 
58 2 

59 
60 2 

61 2 
62 3 

63 2 

64 2 

65 2 
66 3 
67 3 
68 3 
69 3 

70 2 

71 2 
72 3 

73 2 

74 2 
75 2 

76 

MESSAGE$PTR=@OVER$RUN(O); 
MESSAGE$PTR=@PARITY(O), 
MESSAGE$PTR=@GREAKCO); 

END; 

J=I; 1* Point to second character ln string *1 
OUTPUT(SET$INT)=TRANSMIT$INT; 
OUTPUT(TX$GUFF)=MESSAGE(O); 

END ERROR; 

1********************************************************************* 
* RELOAD SERIAL PORT CONFIGURE IlYTE 
*********************************************************************J 

PROGRAM: PROCEDURE PUGLIC; 
DECLARE TEMP GYTE, 

CHAR GYTE; 

DO WHILE (INPUT(STATUS$REG) AND 40H)=O, 1* Wait for next byte *1 
END, 

CHAR=INPUT(RX$IlUFF), 

IF CHAR=O 
THEN 

DO, 

END, 

1* If second byte is 0, exit program mode *1 

OUTPUT(RECEIVE$TIMER)=70, 
CALL IlUFF$IN (CHAR), 
RETURN, 

TEMP=(CHAR AND OFH), 

DO WHILE (INPUT(STATUS$REG) AND 40H)=0, 
END, 

TEMP=(INPUT(RXIlUFF) AND OFH) DR SHL(TEMP,4), 

SERIAL$FORMAT (SHR(PORT$PTR.3»=TEMP; 
END PROGRAM, 

END GUFF$MOD, 

MODULE INFORMATION: 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
r~AXIMUM STACK SIZE 
18'1 LINES READ 
o PROGRAM WARNINGS 
o PROGRAM ERRORS 

END OF PL/M-86 COMPILATION 

OlE4H 
OOOOH 
200BH 
OOOAH 

484D 
OD 

82030 
100 

6-449 210907-002 



Ap·153 

PL/M-86 COMPILER 

SER IES- I II PL/M-86 VI 0 CoMP ILAT JON OF MOOULE PON __ MOfJ 
OBJECT MODULE PLACED IN f'l PON DB,) 
COMPILER INVOKED BY: PLM86.86 FI PON SRC 

3 

4 

5 2 

6 2 

7 2 

8 2 

9 2 
10 2 

II 2 

12 2 

13 2 

14 2 
15 2 
17 2 

18 2 

$DEBUG 

/*****~*.******************************************************************** 
* i~ 

• 
* 

POWER ON INITIALIZATION OF THE LINE P·RINTER MULTIPLEXER * 
* 

****************************~*~******~*****~*******************************J 

$NOLIST 

DECLARE BUFFER$STATUS BYTE 
I N$Po !tHER WORD 
OUT$POINTER WORD 
PORT$PTR BYTE 
SERIAL$FDRMAT(8)BYTE 

POWER$ON: PROCEDURE PUBLIC, 

DECLARE I BYTE, 

DISABLE, 

EXTERNAL, 
EXTERNAL, 
EXTERNAl., 
EXTERNAL, 
EXTERNAL, 

1* INITIALIZE THE MUART *1 

OUTPUT(CMD$I)=OIOOOOIIB, 

OUTPUT(CMD$2i=IOlI0100D, 

OUTPUT(CMD$3)=0111111IB, 
OUTPUT(CMD$3)=1011000IB, 

OUTPUT(MODE)=10000101B, 

1*8086 MODE, FRECl=IKHz, 1 STOP BIT, ~, 

7 BITS/CHARACTER., 
1*000 PARITY, SYSTEM CLoCK=I. 024 MHz, & 

9600 bps.' 
I*CLEAR CMD$3 REGISTER*I 
I-RESET, INTERRUPT ACKNOWLEDGE ENABLE, ~, 

NESTED INTERRUPT MODE.' 
I_CASCADE TIMERS 35 FOR THE 

RECEIVE$TIME$OUT TIMER, BYTE OUTPUT MODE., 

oUTPUT(PoRT$ISCTRL)=11111000B: I*PoRT I RTS=INPUT, THE REST ARE oUTPUTS., 

oUTPUT(PoRTSI)=11000000B, I.POINT TO THE FIRST PORT, CTS IS F~' 

AND BUFFER IS NOT FULL. I 

I. INITIALIZE FLAGS, VARIABLES, AND ARRAYS ., 

BUFFER$STATUS=EMPTY, 
IN$POINTER=O, OUT$PoiNTER=O, 
PoRT$PTR=O, 

DO 1=0 TO 7, 

6-450 210907-002 



Ap·153 

PL/M-86 COMPILER 

19 3 SERIAL$FORMAT<II=10010100B; 

20 3 END; 

21 2 END POWER$ON; 

22 

MODULE INFORMATION: 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
t1AXIMUM STACK SIZE 
98 LINES READ 
o PROGRAM WARNINGS 
o PROGRAM ERRORS 

END OF PL/M-86 COMPILATION 

0058H 
OOOOH 
0001H 
0002H 

880 
00 
10 
20 

6-451 

/* ON POWER-UP ALL EIGHT SERIAL PORTS 
DEFAULT TO 9600 bps, ODD PARITY, AND 
7 BITS/CHARACTER_/ 

210907-002 



Ap·153 

APPENDIX B 
. LISTING OF THE WRITE PROGRAM 

6-452 210907-002 



Ap·153 

PL/M··60 COr1P ILEj, 

ISIS-II PL/M-60 V4.0 COMPILATION OF MODULE WRITEMOD 
OBJECT MODULE PLACED IN : FI: I~RITE OBJ 
COMPILER INVOKED BY: : F2: PLM60 : F'I: WRITE. SRC 

2 

3 

4 

5 
6 

7 

B 
9 

10 

2 
2 

$DEBUG 
WR ITE$MOD: DO, 

1********************************************************************* .. .. .. .. .. .. .. 

WRITE PROGRAM: READS A FILE FROM A DISK AND COPIES 
IT TO SER I AL CHANNEL 2 ON THE ~IDS. 

SYNTAX OF WRITE: WRITE : DEVICE: NAME. EXTENSION 

.. .. .. .. .. 
****************·It*********************"******·*****·"' .. *************'''****1 

DECLARE LIT LITERALLY 'LITERALLY', 
USART$DATA LIT 'OF6H', 
USART$STATUS LIT 'OF7H', 
RTS LIT '20H', 
TXEN LIT 'OIH', 
RXE LIT '04H', 
CR LIT 'ODH', 
LF LIT 'OAH', 
TAB LIT '09H', 
SP L.IT '20H', 
ESC LIT 'IBH' , 
FORM$FEED LIT 'OCH', 

DECLARE AFT$IN ADDRESS, 
FILENAME(IS) BYTE, 
STATUS ADDRESS, 
BUFFER(32000) BYTE, 
ACTUAL ADDRESS, 
CHAR$COUNT ADDRESS, 
BYE(42) BYTE INITIAL 

('WROTE ',0,0,0,0,0,0,0,0,0,0,0,0,0,0, TO THE LINE PRINTER',OAH,ODH), 
I ADDRESS, 
J BYTE, 

1*************."********""****************·It**'Jfo************************* 
.. EXTERNAL SYSTEM. LIB PROCEDURES .. 
**********·»**·"**·"***********************·It********·1t**,.*****,.**********1 

OPEN: 
PROCEDURE (AFTNPTR,FILE,ACCESS,MODE,STATUS) EXTERNAL, 
DECLARE (AFTNPTR, FILE, ACCESS, MODE,STATU51 ADDRESS; 

END OPEN, 

READ: 
PROCEDURE (AFTN,BUFFER,COUNT,ACTUAL, STATUS) EXTERNAL, 
DECLARE (AFTN, BUFFER, COUNT, ACTUAL, STATUS) ADDRESS, 

END READ, 

WRITE: 

6-453 210907-002 



AP·153 

PL/M-80 COMPILER 

11 
10? 

13 

14 
15 

1~ 

17 
18 

19 

20 

21 

22 
23 
24 

25 

2~ 

27 

28 

29 

30 

31 

32 

33 

34 

3S 

3~ 

2 
2 

2 
2 

2 
2 

2 

2 
3 
2 

PROCEDURE (AFTN. BUFFER. COUNT,STATUS) EXTERNAL, 
DECLARE (AFTN,BUFFER,COUNT,STATUS) ADDRESS, 

END WRITE, 

CLOSE: 
PROCEDURE (AFTN, STATUS) EXTERNAL, 
DECLARE (AFTN, STATUS) ADDRESS, 

END CLOSE, 

ERROR: 
PROCEDURE (ERRNUM) EXTERNAL, 
DECLARE (ERRNUM) ADDRESS, 

END ERROR, 

EXIT: 
PROCEDURE EXTERNAL, 

END EXIT, 

1*******************************************************~.************* 
* WAIT UNTIL USART TRANSMITTER IS READY * 
*********************************************************************1 

TXRDY: 
PROCEDURE, 
DO WHILE ( (INPUT(USART$STATUS) AND OlH) 
END, 

END TXRDY, 

° ), 

1********************************************************************* 
* BEGIN MAIN PROGRAM * 
*********************************************************************1 

BEGIN: 
STATUS=O, 

CALL READ(l.. FILENAME, 15,. ACTUAL,. STATUS), 1* Read in file and path name *1 

REPEAT: 

IF STATUS <> ° 
THEN 

GO TO DONE, 

CALL OPEN(. AFT$IN, . FILENAME, 1,0, . STATUS), 1* Open up the file *1 

IF STATUS C· ° 
THEN 

GO TO DONE, 

CALL READ(AFT$IN, . BUFFER,32000,. ACTUAL, . STATUS), 

IF STATUS () ° 
THEN 

GO TO DONE, 

CHAR.COUNT~Oi 1* CHAR$COUNT keeps track of the tab columns in each line *1 

OUTPUT(USART$STATUS)= RTS OR TXEN, 

6-454 210907-002 



PL/t-l-SU Cu,'H·-' 1 LER 

37 

38 
39 " 

40 2 
41 2 

42 

43 2 

44 2 
45 3 
46 3 
47 3 

48 3 
49 4 
50 4 
51 4 
52 4 
53 3 

54 2 

55 2 
56 3 
57 3 
58 3 

59 2 
60 3 
61 3 
62 3 

63 3 

64 3 

65 3 
66 3 
67 2 

68 

69 

70 
71 
72 

Ap·153 

IF RUFFER(O)aFORM$FEED 1* If the first chaTacter is a form feed 
remove it ro'rm feeds are inserted at the 
end of a file *i 

THEN 
DO, 

BUFFER (0) =OOH, 
CHAR$COUNT=-! , 

END, 

DO IOTa lAC TUAL - !), 

END; 

IF (BUFFER(I)=TAB) 1* Replace "rAB characters wIth the 
approprlate number of spaces *1 

ELSE 

THEN 
DO, 

END, 

CALL TXRDY, 
OUTPUT(USART$DATA1=SP, 
CHAR$COUNT=CHAR$COUNT+l, 

DO WHILE «CHAR$COUNT AND 0007H)CO), 
CALL TXRDY, 

END, 

OUTPUT (USART$DATA)=SP, 
CHAR$COUNT=CHAR$COUNT+l, 

IF BUFFER(I)-ESC I. If outputting ESC, then output a 
o next so the LPM does not get 

re-programmed *1 
THEN 

DO J-O TO 1; 

CALL TXRDY, 
OUTPUT(USART$DATA)=O, 

END, 
ELSE 1* If the character is not an ESC or TAD then output it *1 

DO, 
CALL TXRDY, 
OUTPUT(USART$DATA)=BUFFER(I), 
IF I BUFFER I J) >!FH AND BUFFER I I ) <>7FH) 

THEN 1* Only ,ncrement CHAR.COUNT 
for printable characters *1 

CHAR$COUNT=CHAR$CoUNT+!, 

IF IBUFFER(I)=CR) DR IBUFFERII)=LF) 
THEN 1* Reset CHAR<.f;COUNT for CR or LF *1 

CHAR$CoUNT=O, 
ENDi 

IF ACTUAL = 32000 1*lf the file is more than 32K, get same more data *1 
THEN 

GO TO REPEAT, 

CALL TXRDY; 1* Terminate file with CR. LF, and FF *1 
OUTPUTIUSART$DATA)=CR, 
CALL TXRDY; 

6-455 210907-002 



AP·153 

PL/M-80 COMPILER 

73 
74 
75 

76 

77 

78 
79 2 

80 2 
81 2 
82 2 

83 

84 

85 

86 

87 

SKIP: 

DONE: 

NEXT: 

OUTPUT (uSARTSDATA) =LF, 
CALL TXRDY, 
OUTPUT (USARTSOATA)=FORMSFEEO, 

OUTPUT(USARTSSTATUS)=RXE OR TXEN, 1* Shut off RTS *1 

CALL CLOSE (AFTSIN •. STATUS), 

00 1=0 TO 14; 1* Output sign off message '*1 

END, 

IF FILENAME(I)=CR 
THEN 

GO TO SKIP, 
DYE( 1+5)=FILENAME( I), 

CALL WRITE(O •. BYE.42 •. STATUS), 

GO TO NEXT, 

CALL ERROR(STATUS), 

CALL EXIT, 

END WRITESMOD, 

MODULE INFORMATION: 

CODE AREA SIZE 
VARIABLE AREA SIZE 
r1AXIMUM STACK SIZE 
191 LINES READ 
o PROGRAM ERRORS 

END OF PL/M-80 COMPILATION 

0209H 
7D44H 
0008H 

5210 
320680 

80 

6-456 210907-002 



inter AP·153 

APPENDIX C 
MUART REGISTERS 

6-457 210907-002 



Ap·153 

8085 Mode: AD3 ADZ ADl ADO 
8086 Mode: AD4 AD3 ADZ ADl 

0000 

0001 

0010 

001l 

Timer Frequency Select 
'----- 8086 Mode Enable 

Interrupt on Bit Change 
Break-in Detect Enable 
Stop Bit Length 
Character Bit Length 

'------- Baud Rate Select 
'------------- System Clock Divider 

L.. _______________ Even Parity 

'------------------- Parity Enable 

I SET I RxE 1 lAE I NlE I END ISBRKtrBRK I RST I 
Command 3 

1 

I 
I 

I T35 I T24 I T5C I CT31 CT21 P2C21p2CII P2col 

Software Reset 
Transmit Break 
Single Character Break 
End of Interrupt 
Nested Interrupt Enable 
Interrupt Acknowledge Enable 
Receiver Enable 
Bit Set/Reset 

1'--____ Port 2 Control MOdleL....--1 __ 
Counter/Timer 2 
Counter/Timer 3 

L.. _____________ Timer 5 Retriggerable 

'----------------- Cascade Counter/Timer 2 & 4 
1..-_________________ Cascade Counter/Timer 3 & 5 

6-458 210907-002 



0100 

0101 

0110 

0101 

0110 

1111 

Ap·153 

'----------- Output/Input of Port 1 pins 

(Write only) 

L7 L6 I L5 I L4 I L3 I L2 Ll I LO I Enable 
Set Interrupts 

(Write only) 

L7 L6 I L5 I L4 I L3 I L2 Ll I LO I Disable 

Reset Interrupts 

(Read only) 

L7 L6 I L5 I L4 I L3 I L2 Ll I LO I Interrupt Levels Enabled 
Interrupt Enable 

(Read only) 

Interrupt Level in Service 

(Write only) 

Disable Start Bit Check 
..... ---- Transmit Mode Enable 

'----------- Receiver Sampling Point 

6-459 210907-002 



Ap·153 

Status Register (Read only) 

1111 lINT I RBF I TBE I TRE l BD J PE I OE I FE I 

I 
Framing Error/Transmission Mode 
Indication 
Overrun Error 
Parity Error 
Break Detect or Break·in Detect 
Transmitter Register Empty 
Transmitter Buffer Empty 
Receiver Buffer Full 
Interrupt Pending 

Response to INTA 
SOSS·Mode (RST·instruction in response to INTA) 

os D41031· 
1-. __________ Interrupt Level 

SOS6-Mode (Interrupt Vector in response to second INTA) 

o o o o D2 DI I DO 1 

1-. ____ Interrupt Level 

6-460 210907-002 



APPLICATION 
NOTE 

AP-183 

August 1984 

8256AH Multifunction Peripheral 
Simplifies Microcomputer 

I/O Design 

CHRISTOPHER SCOTT 

© I ntel Corporation, 1984 6-461 Order Number: 231125-001 



AP·183 

8256AH Multifunction CONTENTS 
Peripheral Simplifies INTRODUCTION 

Microcomputer I/O Design Description of the 8256AH 

HARDWARE DESCRIPTION 

8256AH/80186 System Design 

RS-232C Hardware Ihterface 

Parallel 110 with Handshaking 

SOFTWARE DESCRIPTION 
Serial RS-232C Interface 

RS·232C Control Signals Interrupt 
Structure 

CONCLUSION 

APPENDIX A. 

Software Listing 

FIGURES 

1a. System Block Diagram Without 
8256AH 

1b. System Block Diagram With 
8256AH 

2. 8256AH Internal Block Diagram 

3. 8256AH / 80186 Schematic 

4. Block Diagram of the 8256AH Serial 
RS·232C Interface Software 
Structure 

5. 8256AH Interrupt Source To Priority 
Level Map 

6. Port 1 RS·232C Pin Definition 

7. Receive Data Interrupt Service 
Routine Software Flowchart 

8. Transmit Data Interrupt Service 
Routine Software Flowchart 

Additional Sources of Information 
Ap Note 153 Designing with the 8256AH 

6-462 231125-001 



AP-183 

INTRODUCTION 

A primary goal of microcomputer system design is to 
provide the required functionality and flexibility with 
the fewest number of components. The 8256AH Multi­
function Peripheral is designed specifically to meet 
these conflicting requirements. Four of the most com­
mon microcomputer system functions, previously re­
quiring up to four separate MSI or LSI devices, are 
combined into one LSI device. The 8256AH incorpo­
rates a serial asynchronous communication channel, 
two 8-bit parallel I/O ports, five 8-bit timer/count­
ers and an eight level priority interrupt controller in 
one 40 pin package. Its flexible design allows it to 
directly interface to most microprocessors, including 
Intel's MCS-85, iAPX-86, iAPX-88, iAPX-186 and 
iAPX-188, and the MCS-48 and MCS-5l family of sin­
gle-chip microcomputers. 

This application note describes using the 8256AH to 
implement a Data Terminal Equipment (DTE) 
RS-232C serial asyncrhonous communication link with 
the control signals necessary to interface to a Bell 
1031212A modem. The interface requires a total of 
nine interface signals. Three of these signals, TxD, RxD 
and CTS, are provided by the UART section of the 
8256AH. The balance of the RS-232C interface signals 
are implemented using six of the independently pro­
grammable parallel PORT I lines. In addition, the ap­
plication design provides an eight bit parallel I/O port 
with handshaking signals. The on-chip priority inter­
rupt controller enables the RS-232C serial interface an. 
the parallel interface to operate on an interrupt baSI 
The 8256AH uniquely addresses the complexities of 
implementing an RS-232C communications interface. 
By utilizing the built-in hardware and software features 
of the 8256AH, the design achieves flexibility with sim­
plicity, qualities often exclusive of one another. 

2 WIRE 
HANDSHAKE 

Previous solutions required four components to imple­
ment the same interface. Figure I illustrates the basic 
system block diagrams for the two solutions. In Figure 
la the 8251A Programmable Communications Inter­
face provides the UART serial communications inter­
face. The 8254 Programmable Interval Timer provides 
baud rate generation and other timing functions, such 
as time-out loops, needed for software support of an 
RS-232C interface. These .are especially needed if the 
RS-232C channel is to operate in an interrupt system 
environment. The 8255A Programmable Peripheral In­
terface provides parallel I/O with one port dedicated to 
the RS-232C control signals. The 8259A Priority Inter­
rupt Controller provides an eight level priority inter­
rupt structure. This represents a total of 120 device pins 
compared to the single 40 pin 8256AH, and 465 mA 
current requirement verses a 160 mA current require­
ment. Figure Ib represents the 8256AH solution incor­
porating the four functions in one package. 

In some data communication applications only three 
lines - ground, Transmit Data and Receive Data - are 
used for serial communication. An example is commu­
nication between an ASCII terminal or printer and a 
personal computer. These devices are usually located 
close to one another and in general do not require the 
additional control signals of the EIA RS-232C serial 
communications standard. In other data communica­
tions applications, this same equipment requires that 
the integrity of the serial communications link be con­
stantly monitored. This enables the host system to con­
trol the data trransmission at all times, whether it be a 
host computer or intelligence local to a communica­
tions device, such as an ASCII terminal. The need for 
control and monitoring of the serial line is particularly 
important when the communications link is over tele­
phone lines using a modem. In a Switched Network, 
where a number of serial devices share the same com­
munications line, the control signals are crucial to the 
system's multiplexing the single line. 

RxD 11<0 

231125-1 

Figure 1a. System Block Diagram Without the 8256AH 

6-463 231125-001 



AP.183 

ADO-AD4 

DB5·DB7 

CS ---.. 
RD ---.. 
WR ---.. 

ALE --_ .. 

RESET --......... 

ADDRESSI 
DATA 
BUS 

BUFFERS 

BUS 
CONTROL 

LOGIC 

TO All INTERNAL 
FUNCTIONS 

PORT 1 
COUNTER 
INPUTS 

SYSTEM 
CLOCK 

PRESCAlER 

BAUD 
RATE 

GENERATOR 

ClK 

RxD 

'/XD 

RxC 

'/XC 
CTS 

INTA --_ .. INTERRUPT 
CONTROllER 1+--- EXTINT INT_-~ 

231125-3 

Figure 2. 8256AH Internal Block Diagram 

parallel port with ACK/OBF and STB/IBF two wire 
handshake signals. In the latter configuration, the six 
remaining I/O lines may be used as either independent· 
ly programmable I/O lines, or as predefined special 
function inputs and/or outputs, such as a second exter­
nal interrupt input or timer/counter inputs. 

The five 8-bit programmable timer/counters are binary 
presettable downcounters. In addition, an independent 
on-chip Baud Rate Generator is provided for the 
UART. The clock sources for the timers/counters may 
be either internal or external - via programmed parallel 
port pins - depending upon whether they are configured 
as timers or counters. Four of the timer/counters may 
be cascaded to form two 16-bit timer/counters. Each of 
the five timer/counters has its own read/write register. 

The eight level priority interrupt controller has twelve 
possible interrupt sources. Ten of the sources are inter­
nal and two are external. One of the external interrupt 
sources is a fixed pin; EXTINT. The second is one of 
the parallel Port 1 pins which can be programmed as an 
external interrupt source. The twelve interrupt sources 
are internally mapped to the eight interrupt priority 
levels. 

6-464 

The interrupt controller may be programmed to oper­
ate in either a Normal or Nested Interrupt Mode. In 
Normal Mode any interrupt may interrupt any other 
interrupt based upon the enable/disable bits in the In­
terrupt Enable, or Mask, Register. In the Nested Mode 
only an interrupt of higher piority may interrupt one of 
lower priority, again based upon the bits in the Enable 
Register. 

The 8256AH interrupt structure supports both 8085 
and 8086 interrupt vectoring methods via the INTR 
and INT A signals. In vectored interrupt operation the 
8256AH places the interrupt vector address on the data 
bus during the INT A sequence. In addition the 
8256AH supports non-vectored interrupt interfaces, 
such as MCS-5l and MCS-48 systems. In non-vectored 
interrupt applications the host system simply reads the 
interrupt vector address from the . Interrupt Address 
Register of the 8256AH. Reading the interrupt address 
register clears the INT pin and acknowledges that the 
interrupt has been serviced. This is the functional 
equivalent to an INTA sequence generated by the host 
processor. 

231125·001 



AP-183 

PARALLEL 
1/0 WITH 
2 WIRE 

HANDSHAKE 

RxD TxD 
SERIAL 1/0 

231125-2 

Figure 1b. System Block Diagram With the 8256AH 

This Application Note assumes that the reader is famil­
iar with the 8256AH Data Sheet and with the RS-232C 
communication protocol and terminology. A complete 
software listing is provided in Appendix A. A complete 
description and definition of the RS-232C interface 
standard may be found in the book "Data Communica­
tions: A Users Guide" by Kenneth Sherman, Reston 
Publishing 1981. 

DESCRIPTION OF THE 8256AH 

The 8256AH combines four commonly used piiripheral 
functions into one device (see Figure 2); 

1. A full-duplex, double-buffered serial asynchronous 
Receiver/Transmitter (UART) with an on-chip 
Baud Rate Generator. 

2. Two 8-bit parallel I/O ports; One bit programmable, 
One nibble programmable. 

3. Five 8-bit timer/counters; 4 can be cascaded to form 
2 16-bit timer/counters 

4. An 8-level priority interrupt controller. 

The 8256AH uses the standard bus control signals 
compatible with Intel's family of peripherals and mi­
croprocessors. The microprocessor interface utilizes a 
multiplexed address/data bus. Four of the eight ad­
dress/data lines are used to generate the register ad­
dress. This enables all of the 8256AH's functionality to 
be contained in a 40 pin package while retaining direct 
register addressing. 

The sixteen directly addressable internal read/write 
registers provide control for all of the 8256AH's vari­
ous functions. Fourteen of the registers are read/write, 
one, the Status Register, is read only and one, the Mod­
ification Register, is write only. Three Command Reg­
isters configure the operating environment including 
the type of CPU, 8 or 16 bit, and system clock frequen­
cy. Command Register Three provides bit set-reset ca­
pability for control of such functions as End of Inter­
rupt, Nested Interrupts, Interrupt Acknowledge and 
UART Receive Enable. The Status Register provides 
all information about the UART's transmitter and re­
ceiver, and the state of the interrupt (INT) output pin 
to the microprocessor. The Mode Register defines the 
configuration of the two parallel ports and the five tim­
er / counters. The write only Modification Register is 
used to alter two standard functions of the receiver, 
start bit sampling and to enable a special indicator flag 
for half-duplex operation. In addition, six registers con­
trol the two parallel ports. Two registers provide for 
UART Transmit and Receive Buffers. Ten registers are 
used for timer!counter interface, and four registers pro­
vide for Priority Interrupt Controller support. 

The UART section of the 8256AH features a full-du­
plex double-buffered transmitter and receiver with sep­
arate control registers. The internal baud rate generator 
provides the thirteen common sampling rates from 50 
bps to 19.2 kbps. An external baud rate clock can also 
be used, with programmable choice of IX, 32X or 64X 
sampling rates. 

The two parallel I/O ports can be configured as two 
independent 8-bit parallel I/O ports, or as one 8-bit 

6-465 231125-001 



AP-183 

DESIGN DESCRIPTION 

Hardware Description 

Figure 3 shows a block diagram of this application's 
system design. The microprocessor used is an 
iAPX-186 with two 8256AH's for parallel and serial 
I/O, as well as for providing a variety of system sup­
port functions. One 8256AH is used to implement both 
the RS-232C modem interface and provide multiplexed 
parallel I/O. The system uses the Intel 957B System 
Monitor for control of the system hardware and soft­
ware development support. The second 8256AH is used 
for basic serial communication between an ASCII ter­
minal and the Intel 957B System Monitor residing in 
16K bytes of EPROM. The two 8256AHs provide a 
total of six I/O channels - two UARTs and four paral­
lel I/O ports. 

When one of the 8256AHs is configured for the serial 
RS-232C interface, one of its parallel ports, Port I pins 
2-7, provides control signals for the serial interface. 
Four of the RS-232C control signals (CTS, DSRS, DSR 
and CD) are OR'd to the EXTINT pin of the 8256AH. 
If any of these signals change from their defined state, 
an interrupt is generated to the 8256AH. The modem 
driver software then responds to the interrupt by read­
ing the Port I register, determines the signal generating 
the interrupt and responds accordingly (see the soft­
ware listing; INT-,.MOD). In addition to the RS-232C 
control signals, the communications software can sup­
port all of the standard UART error conditions such as 
framing errors, underrun, overrun and parity, if parity 
is enabled. 

Parallel 110 With Handshaking 

The remaining two Port 1 lines, not used for the 
RS-232C control signals, provide ACK/OBF and 
STB/IBF handshaking signals for parallel Port 2. In an 
environment which utilized the second parallel port, 
while implementing the above described RS-232C 
channel, both would operate on an interrupt basis. The 
interrupt software algorithm depends upon whether the 
parallel port is configured as input or output, and 
whether Nested or Normal interrupt mode is pro­
grammed. If Nested Interrupt Mode is used, the soft­
ware flow would default to parallel input or output (as 
programmed) with Port 2 handshaking the lowest pri­
ority interrupt. The serial channel would then interrupt 
parallel Port 2 transmission whenever the serial chan­
nel transmitted or received a character. The RS-232C 
control signals, OR'd to the External Interrupt 
(EXTINT) pin, would have the highest interrupt con­
troller priority. The Software Description below de­
scribes this in greater. detail. 

SOFTWARE DESCRIPTION 

Serial R5-232C Interface 

The software is written in PL/M and is broken up into 
four separate modules, each containing several proce­
dures. A block diagram of the software structure is giv­
en in Figure 4. The modules are identified by the dotted 
boxes, and the procedures are identified by the solid 
boxes .. Two or more procedures connected by a solid 
line means the procedure above calls the procedure be­
low. The procedures without any solid lines connecting 
them are interrupt procedures. They are entered when 
the 8256AH interrupts the 80186 and vectors an indi­
rect address to the 80186. 

The Serial RS-232C Interface software uses nested in­
terrupts. The priority of the interrupt procedures is giv­
en in Figure 5. 

The priority of the interrupts is not programmable but 
they are logically oriented so that for this application 
the priority is correct. The serial receiver should have 
the highest priority since it could have overrun errors. 
Therefore the RxD request can interrupt any other in­
terrupt service routine thus preventing any possibility 
of an overrun error. 

The Serial RS-232C Interface software is entered via a 
GO instruction from the 957B System Monitor console. 
The software first calls POWR-ON-INIT which ini­
tializes the 8256AH. This sets the 8256AH to 8086 
Mode with parallel Port 2 in two wire handshake mode 
using Port I pin 0-1 for Port 2 handshaking. The ini­
tialization configures six of the Port I lines, pins 2-7, 
for RS-232C handshaking-input or output depending 
upon the specific signal tied to the pin. Figure 6 illus­
trates the definition of each Port I RS-232C handshak­
ing line and its direction. 

Both the Serial RS-232C Interface and the parallel in­
terface with handshaking operate on an interrupt basis. 
Following initialization the software enters an endless 
loop and awaits an interrupt from one of three sources; 
Receive Data (RxD), Transmit Data (TxD) or the par­
allel interface. In the serial interface idle state, neither 
transmitting nor receiving data, the software is con­
stantly responding to TxD interrupts; a result of the 
Transmit Buffer (TBE) and/or Transmit Register 
(TRE) being continuely empty. When data is received 
by the RS-232C channel the RxD interrupt, being of 
higher priority, asserts its interrupt. 

6-466 231125-001 



RESET 

"II 
Iii c ... 
CD 

~ 
c» 
N en 
G) 

:.-
T. ::z: .... 
C1> c» 
-...I 0 .... 

c» 
G) 

(I) 
n 
:::T 
CD 
3 
AI 

~ 

'" ~ 
'" 
~ 

t ~ · ~l X, 1.2 RESET RESET CLK crs 
RES ~ AD 1kD H,~-~," SERIAL 

WR WA RaD ~~'E=~': UO INto INT TaC 
INTA INTA RIC' • 
PLIO CS ... -----.. 

SRDY ALE ALE 
AllOY 

'7 ::LD 00.8& 82: 1 17 ::s 1 :~~ 
~ - - ~ ~ l ~ D,"", • :.:c HANDSH 

KINa 

uo 
ING 

DEN - STa LOW ADD~RESS8-'5) pORr 2 PARAW 

DI1R ->.. 62.. EXTINT ~ 

..... ----.... ~ r" ~~R~ .... '-- RESET CTS _ 

IJQ 

crs 
DSR 

DS" 
co 

EPR~ :'::c ~ ~ 1kD 

~ IK • • RAM L.....-- WR RaD 9578 MON 
HIGH (2) 2K • • INT 1XC SERIAL 

~ LOW (3) iNti RaC 

'ITDR 
uo 

--.I .... I ~ cs EXTINT 

~ TRCYR ~ L ALE 

~) DATA[?E(o-l5) 8256AH 

L'::===::J ~E 
~ AD,-ADs 

L--------{J D,.o. 
2lI4L 

~: ~~~c PORT 1 11'-----'\ 
(2) RAM 

ZK x, 

AD~ :~: 
231125-4 

:.­

" ... 
CCI 
Co) 



AP-183 

r------ r-------------, I PON·MOD I MAIN·MOD I 
I I I 
, I' 
: HI----------+,-- Tx·Rx·LOOP I , , , , L _____________ ~ L______ _ _____ ~ 

r----------------------------------- ------, ,'NT-MOD . I 

1GB HANDSHAKE·INT LOAD·INT·TABLE I 
. I L___________________ _~ _________________ J 

rH~~MOD------ - -----------, , , , , , , , , , , 
I , , , ~ ____________________________ J 

231125-5 

Figure 4. Block Diagram of the 8256AH Serial RS·232C Interface Software Structure 

Priority Source 

Highest 0 Not Used 
1 Not Used 
2 External Interrupt (EXTINT) 
3 Not Used 
4 RxD Interrupt 
5 TxD Interrupt 
6 Timer 2 or 2 & 4 (16 bit) 
7 Port 2 Handshaking 

Figure 5. 8256AH Interrupt Source To Priority Level Map 

Port 1 
Circuit I/O Abrev. Signal Name 

Pin No. 

0 STB/ACK Parallel Port 2 
1 IBF/OBF Handshaking Signals 
2 CG I CTS Clear To Send 
3 CE I RI Ring Indicator 
4 CD 0 DTR Data Terminal Ready 
5 CI I DSRS Data Signal Rate Selector 
6 CF I RLSD Receive Line Signal Detector 

(or CD) (Carrier Detect) 
7 CC I DSR Data Set Ready 

Figure 6. Port 1 RS·232C Pin Definition 

231125·001 



AP·183 

Although the parallel interface software is not imple­
mented in the software listing of Appendix A, the algo· 
rithm for implementing multiplexed parallel and serial 
I/O is to input or output data on the parallel port duro 
ing the relatively lengthy time required for serial com· 
munication overhead. The algorithm differs slightly 
during the serial channel idle state when the software 
responds to repetitive TxD interrupts. In this case the 
endless loop would detect the idle state repetitive TxD 
interrupts and disable the TxD interrupt for a short 
time while the parallel inputs or outputs data. This 
would require using one of the 8256AH timers to time 
out repetitive TxD interrupts. The timer used has to be 
lower in priority than the RxD interrupt to guarantee 
protection against overrun errors. Timer 2, or 2 and 4 
cascaded if longer time delays are desired, provides the 
proper interrupt level as shown in Figure 5. 

Figure 7 shows the Receive Data (RxD) interrupt servo 
ice routine software flowchart. Since two conditions 
can generate an RxD Interrupt the Software first reads 
the Status Register and checks for the Break Detect 

(DB) bit being set. If the BD bit is clear, no Break 
condition being present, the data byte is read, stripped 
to seven bits, for an ASCII character, and sent to the 
system console via a call to the 957B System Monitor 
Console Output (CO) routine. Upon return from the 
957B monitor call an End Of Interrupt (EOI) is sent to 
the 8256AH to reset the currently served interrupt level 
bit in the Interrupt Service Register. 

Figure 8 shows the Transmit Data (TxD) interrupt 
service routine software flowchart. There are three con· 
ditions which may cause a TxD Interrupt; TBE, TRE 
and Break·In Detect. The TxD service routine first 
reads the Status Register to determine if the interrupt 
source is the TBE (Transmit Buffer Empty), if not then 
the interrupt service routine returns to the MAIN­
MOD loop. If TBE = 1 (true) then a data byte is read 
from the 957B System Monitor Console Input (CI) rou· 
tine. If the data byte is an ASCII character it is written 
to the 8256AH Transmit Buffer. The software exists via 
an EOI (End Of Interrupt) command to the 8256AH 
then returns to the MAIN-MOD Rx-Tx-Loop. 

231125-6 

Figure 7. Receive Data Interrupt Service Routine 
Software Flowchart 

6-469 231125-001 



AP·183 

N 

231125-7 

Figure 8.Transmit Data Interrupt Service Routine 
Software Flowchart ' 

RS·232C Control Signals Interrupt 
Structure 

The overall interrupt scheme is such that a change in a 
RS-232C handshake line causes an interrupt via the 
EXTINT pin on the 8256AH (see Figure 3 8256AH/ 
80186 Schematic). The EXTINT interrupt is of higher 
priority than either the RxD or TxD interrupt. This 
enables the RS-232C handshake signals to manage the 
receipt or transmission of data via the nested interrupt 
mode of the 8256AH. The EXTINT interrupt service 
routine first reads the Port 1 pins 2-7 data and com­
pares it to default state for the signal requiring service. 
The EXTINT interrupt service routine then calls the 
appropriate handshake signal service procedure as 
shown in the bottom module of Figure 4 Software 
Structure Block Diagram. 

Each of the individual RS-232C control signal service 
procedures displays a message on the 957B monitor 
console device indicating the signal requiring a re­
sponse. The service procedure then either initiates spe-

cltlc predefin,ed actions or prompts the user with op­
tions. In a system which utilized file storage, such as a 
personal computer, the RS-232C software driver could 
pass a flag to the communications software, rather than 
a message. The communications software would in tum 
perform the same types of action but could also protect 
disk buffering files which might be open at the time of 
the interrupt. Two examples of the RS-232C Control 
Signal interrupt service routines, CTS and DSRS, are 
described below; 

If Clear To Send (CTS) changes state, the UART auto­
matically disables the transmitter. The CTS interrupt 
service procedure initializes the 8256AH's internal 
Timer. If the timer times out before CTS goes active 
again an interrupt is generated, a second message is 
displayed at the 957B monitor console prompting the 
user that the CTS line remains inactive. The options 
available at this point are to wait again, re-initializing 
Timer 1, or to disconnect the RS-232C channel. 

6-470 231125-001 



AP-183 

If Data Signal Rate Selector (DSRS) changes state, the 
software prompts the user with a message that the Data 
Rates of the two RS-232C channels are not the same 
and the user is given the option of altering the data rate. 
This application example was interfaced to a 103A/212 
Bell modem and as such prompts the user to select 
between 300 or 1200 bps data rates. In the case of a 

non-modem interface the routine could prompt the user 
for one of the thirteen standard data rates. The software 
then returns to the TxD/RxD software loop. The bal­
ance of the interrupt service procedures for the 
RS-232C handshaking signals function in a similar 
manner. 

Depending upon the specific system design and soft­
ware requirements, a variety of enhancements could be 
added to the system design. These could include inter­
rupt traps that initiate specific corrective options or 
cascading multiple 8256AHs each with an RS-232C in­
terfaces as described above. An example of an interrupt 
trap might be auto redial upon time out for lack of 
Carrier Detect (CD) upon initiating a communications 
link, or automatic disk file update when a receive buffer 
approaches overflow. 

The ability of the 8256AH to be reprogrammed to meet 
the changing requirements of a system simplifies the 
overall system design and multiplies its capabilities. A 
simple reinitialization sequence could reconfigure the 
8256AH as a UART with two parallel ports or utilize 
any of the various special functions of the parallel Port 
I; e.g., an external timer input or an additional external 
interrupt input; etc. The reinitialization could also con-

figure the 8256AH Multifunction Peripheral for a vari­
ety of custom applications. 

CONCLUSION 

The functional integration of the 8256AH makes it 
ideal for designs which require maximum flexibility and 
simplicity of implementation. The implementation of 
the RS-232C serial channel modem interface and multi­
plexed parallel I/O described in this application note 
represent a level of efficiency in peripheral performance 
and design previously unavailable. The 8256AH Multi­
function Peripheral represents a savings of two-thirds 
the board space and power required by the previous 
four chip solution, with the added benefit of increased 
system reliability. The application note demonstrates 
the ease of implementing the variety of I/O capabilities 
and system support functions of the 8256AH. The inte­
gration of four common microprocessor system func­
tions into one VLSI device enables the designer to de­
vote valuable resources to adding features to enhance 
the system design, adding performance and flexibility, 
and reducing the system's overhead. 

6-471 231125-001 



APPENDIX A. 

SOFTWARE LISTING 

PL/M-86 COMPILER MAINMOD 

SERIES-III PL/M-86 V2.3 COMPILATION OF MODULE MAINMOD 
OB~ECT MODULE PLACED IN :F2:56. OBJ 
COMPILER INVOKED BY: PLM86.86 :F2:56 

1* * * * * * * * * * * * * * * * * * *. * * * * * * * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

9256AH MULTIFUNCTION PERIPHERAL SIMPLIFIES 
MICROCOMPUTER 1/0 DESIGN 

Intel Co"po"ation 
3065 Bow.". Avenue 
Santa Cla"a, Ca. 95051 

W"itten B~ Ch"istophe" Scott 

~ * * * * * * * * * * * * * * * * * * * * * * * * * 
.MODI86 DEBUG LARGE 
MAINMOD: 
DO; 

* * * * * * * 
* 
* 
* 
* 
* • 
* 
* 
* 
* 
* 

* * * * * * * *1 

1* - - - - - - - - - - - - - - - - - - *1 
1* 8256AH Registe" I Value I Constant Definitions *1 
1* - - - - - - - - - - - - - - *1 

2 Dech"e Lit Li h"all~ 'lite"all~ " 
DCL lit 'Dec la1".', 

T"ue lit 'Offh " 
False lit 'Oh " 
For.veT' lit 'lIIh i 1 It l' , 
Pc 51 lit 'SOh " 
Cmd1"eg lit 'pcs1 + 0', 
Cmd2"eg lit 'pcsl + 2', 
Cmd"3"eg lit 'p c 5 1 + 4', 
Mode"eg lit 'pcs1 + 6', 

Po"tlCt"llReg lit 'p c s 1 + 8', 
SetlntReg lit 'pc s 1 + Oah', 
EnIntReg lit 'pcsl + Oah I, 
RstIntReg lit 'pcsl + Och I, 
IntAdd"Reg lit 'p cs1 + Och', 
TxBuffReg lit 'pcsl + Oeh', 
RxBuffReg lit 'pc 51 + Och I, 

Po"t1R"g lit 'pcsl + 10h " 
Po"t2Reg lit 'pc 51 + 12h " 
Time"lReg lit 'pc 5 1 + 14h' , 
Time"2R,,g lit 'pc s 1 + lah' , 
Tim",,3Reg lit 'p C5 1 + 1 ch I, 
StatReg lit 'pc 5 1 + leh' , 

Int,,1 t 'pcsl + 40h " 
Int,,2 t 'cil + 01h', 
Int,,3 t 'p c 51 + 10h " 

6-472 

231125-8 

231125-001 



PL/M-Bb COMPILER 

3 

1* - -
1* 
DeL 

1* - -

MAINMOD 

Intr4 

Int_Reset 
SioTxEn 
SioT.Rd~ 

SioR.Rd~ 
Break 
Dislntr 
StripTo7fh 
Port I_Strip 

Cmdl 
Cmd2A 
Cmd2B 
Cmd3elr 
Cmd3 
Mode 
EnRcvl' 

A 
B 
DSR 
DSRJlag 
CO 
CO_Flag 
DSRS 
DSRS_Flag 
DTR 
RI 
CTS 
CTS_Flag 

(Status, 
Hndsh k Pins, 
J) -

Char 

lit 

lit 
lit 
lit 
lit 
lit 
lit 
lit 
lit 

lit 
lit 
lit 
lit 
lit 
lit 
lit 

lit 
lit 
lit 
lit 
lit 
lit 
lit 
lit 
lit 
lit 
lit 
lit 

B~ te, 

B~te 

Pointeri 

'pest + OSh', 

'BSh " 
'lOh " 
'20h' , 
'40h' , 
'04h' , 
'OOh " 
'7fh' , 
'OfcH' , 

'43h' , 
'07h' , 
'09h " 
'7fh' , 
'Oa Ih I, 

'OOh' , 
'OcOh' , 

'41h' , 
'42h' , 
'BOh' , 
'BOh' , 
'40h " 
'40h' , 
'20h " 
'20h' , 
'10h " 
'OBh' , 
'04h " 
'04h' , 

Extel'naL 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *1 

-

Message Declarations *1 
CTS_MSG (*) B~te Public Data ('CTS Disabled Receive Data stopped. 

DSR _t1SG (*) B~te 
CD _MSG (it) B~te 
DSRS_r1SG (it) B~te 

eTS2 _t1SG (*) B~te 

Break _MSG (*) B~te 
- - - - - - - - -

Public Data 
Public Data 
Public Data 

Public Data 

Public Data 
- - - - - -

OAH, ODH, 0) , 
('DSR Disabled. ',OAH, ODH, 00), 
( 'CO Disab led. ',OAH, ODH, 00), 
('Enter Baud Rate; ~ 300 B. 1200 

(AlB) ',00), 
('CTS Di.abled. Receive Data stopped. 

OAH, ODH. 00). 
('Break in Receive Data. ',OAH, OOH, 00); 
- - - - - - - - - - - - - *1 

lit - - - - - - - - - - - - - - - - - - - - - - - - - - - - *1 
lit External Procedures: *1 

231125-9 

6-473 231125-001 



PL/M-B6 COMPILER MAINMOD 

4 
5 
6 

7 
B 

10 

11 

12 

13 
14 

15 
16 

17 
IB 

19 

20 

21 
22 
23 
24 

25 

1 
2 
2 

1 
2 

2 

2 

2 

2 
2 

2 
2 

2 
2 

2 

2 
2 
2 
2 

2 

1* 
1* 
1* 
1* 
1* 
1* 

MCO: 

MCI: 

*1 
957B Monitor Consol. Output Routin. *1 

V 
957B Monitor Consol. Input Routine *1 

*1 
- - - - - - *1 

MCO: ProcedureCChar) External. 
DCL Char Byte. 

End MCO. 

MCI: Procedure BUte External. 
End MCI. 

1* - - - - - - - - - - - - - - - - - - - - - - - - -'- - - - - *1 

1* - - - -, - - - - - - - - - - - - - - - - - - - - - - - - - - *1 
1* Initialize B256AH Procedure *1 
InitS6: Procedure. 

Di .ab I •• 
1* Output B256AH Init Data 
OutputCCmdlR.~)aCmdl. 

OutputCCmdlRe~)=Cmd2A. 

OutputCCmdlReg)=Cmd3Clr. 
OutputCCmdlReg)=Cmd3. 

OutputCCmdlReg)-EnRcvr. 
OutputCCmdlReg)=Mode. 

Call Load_Int_Table. 
Enab Ie. 

*1 
1* BOB6 mod". freg=1 kh z. 1 stop bit. 

and 7 bit char *1 
1* odd paritu. system clk=I, 024mhz. 
and 1200 bps *1 

1* clear cmd reg 3 *1 
1* reset. itr ack I!nabled. nl!sted 

intr mod" *1 
1* enable rl!ce1v"r *1 
1* cascade timl!rs 3&~ for thl! 

rl!I!ivI!rStim"rSout tim"r. bUtl! & 
output modI! *1 

End Ini t56. 
1* - - - - - - - - - - - - - - - -- - - - - - -'- - - - - - - - *1 

1* - - - - - - - - - - - - - - - - - - - - - -- - - -
1* Procedure: Load Interrupt Address Vectors 
Load_Int_Table: Procedure Public. 

Call SetSInterruptC42H.EXTINT). 
Call SetSInterruptC44H.Receive_Char). 
Call SetSInterrupt(45H.Transmit_Char). 
Call S"tSInterrupt(46H.Timer_2_4). 

End Load_Int_Tabll!' 

- *1 
*1 

1* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *1 

1* - - - - -
1* 
1* 

- - - - - - - - - - - - - - - - - - - - - - *1 
EXTINT Intl!rrpt Procedurl!: *1 

*1 

,6-474 

231125-10 

231125-001 



PL/M-86 COMPILER MAINMOD 

26 

27 2 
28 2 
29 2 
30 2 
31 3 
32 3 
33 3 
34 2 

35 2 
36 2 

37 2 
38 2 

39 2 
40 3 
41 3 
42 :3 

43 3 
44 3 

45 3 
46 2 
47 2 

48 2 

49 

50 2 
51 2 
52 2 
53 2 
54 3 
55 3 
56 3 
57 2 

58 3 
59 3 
60 3 
61 2 

62 2 

1* Service routine r ... d. the Port 1 RS232 *1 
1* h.ndsh .. k. sign .. ls .. nd •• t. the m ..... g. pointer *1 
1* core.ponding to the Signal d.t.ct.d. *1 
1* *1 
1* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *1 
EXTINT: Procedur. Interrupt 42H, 

En .. b Ie, 
HndShk-Pins-lnputCPort1Reg) .. nd Port1_Stripl 
If CTSjFlag • HndShk-Pins and CTS Then 

001 
Me .... g._Ptr-aCTS_MSQCO) I 
outputCTimer2R.g)=100, 

Endl 
El •• 

If DSRjFI .. g • HndShk_Pin •• nd DSR Th.n 
Me .... ge_Ptr-aDSR_MSQCO)I 

Else 
If CD_FI .. g a HndShk-Pin •• nd CD Then 

M ••• ilge_Ptr=aCD_MSQCO) • 
Else 

If DSRS_Flag • HndShk-Pins .. nd DSRS Th.n 
DO. 

Me .... ge_Ptr-eDSRS_MSQCO). 
If MCI • A Then 

OutputCCmdlReg)-Cmd2AI 
Else 

1* odd p .. rity. system clk-1. 024mhz. 
.nd 1200 bps *1 

If MCI = 0 Then 
OutputCCmdlReg)-Cmd2B. 1* odd p .. rity. system clk-l. 024mhz. 

.. nd 300 bps *1 
End. 

Call SendJisg. 
OutPutCRstlntReg)alnt_Re.et. 

End EXTINT. 
1* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *1 

1* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *1 
1* Procedure Rlceive a ch .. r .. cter *1 
Receive_Char: Procedure Interrupt 44H. 

Enab 1., 
StatusaClnputCStatReg) and SioRxRdyl, 
If St .. tU5 AND Oreak Then 

DO. 
Mess .. ge_Ptr=@Break_MSGCO). 
Call Send_Msg. 

Endl 
Else 

Do; 
Char.lnputCRxBuffReg) and StripTo7fh. 
Cdl MCOCCh"r). 

End. 
OutPutCRstIntReg)=Int_Re •• tl 

6-475 

231125-11 

231125-001 



PL/M-86 COMPILER MAINMOD 

63 

64 
65 
66 
67 
68 
69 

70 

71 

72 
73 
74 

75 

76 

77 

78 
79 
80 
81 
82 
83 
84 

85 

86 
87 
88 

2 
2 
2 
2 
2 
2 

2 

2 
2 
2 

2 

2 

2 
2 
3 
3 
3 
3 
2 

2 

1 
1 
2 

1* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *1 

1* - - - - - - - - - - - - - - - - - - - - - - - -
1* Procedure: Write character to 8256AH UART 
Transmit_Char: Procedure Interrupt 45HI 

8tetus-CInputCStatRegl and SioRKRdVl1 
If Status and SioRKRdV Then 

- *1 
*1 

Char-CMCI And StripTo7FHII 1* strip to 7 bits *1 
If Char >- 20H And Char <- 7fH Then 1* if char is ASCII Dutput it *1 

OutputCTKSuffRegl-Char; 
OutPutCRltlntRegl=Int_Resetl 

End Transmit_CharI 
1* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *1 

1* - - - - - - - - - - - - - - - - - - - -
'1* Procedure: Wrih charachr to 856AH UART 
Timer_2_4: 'PrDcedure Interrupt 46HI 

Message-ptr-eCTS2_MSGCOII 
Call Send_Msg; 
OutPutCRstIntRegl-Int_Reset, 

End Tim.r~_4' 

- *1 
*1 

1* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *1 

1* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *1 
1* Message Output Procedure *1 
Send_Msg: Procedure, 

DCL 

~·o; 
Do While Message(~1 <> 0, 

Char-Message (~II 
Call MCOCChat"I, 
~·~+1, 

End, 
Return, 

End Send_Msgl 
1* - - - - - - - - - - - - - -'- - - - - - - - - - - - - - - - - - *1 

1* - - - - - - - - - - - - - - - - - - - - *1 
1* Main Program BodV *1 

Call Ini t56, 
Do Forever; 
End; , 

1* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *1 

6-476 

231125-12 

~31125-001 



PL/M-B6 COMPILER MAINMOD 

B9 End M.inMod, 

MODULE INFORMATION: 

CODE AREA SIZE • 0235H 565D 
CONSTANT AREA SIZE. OOBEH 190D 
VARIABLE AREA SIZE. 0007H 7D 
MAXIMUM STACK SIZE. 0034H 52D 
2BO LINES READ 
o PROGRAM WARNINGS 
o PROGRAM ERRORS 

DICTIONARY SUMMARY: 

31KB MEMORY AVAILABLE 
6KS MEMORY USED (19X) 
OKS DISK SPACE USED 

END OF PL/M-B6 COMPILATION 

Ap·183 

6-477 231125-001 



inter 

• 
• 
• 
• 

8272A 
SINGLE/DOUBLE DENSITY 

FLOPPY DISK CONTROLLER 

IBM Compatible In Both Single and • Data Transfers in DMA or Non·DMA 
Double Density Recording Formats Mode 
Programmable Data Record Lengths: • Parallel Seek Operations on Up to 
128,256,512, or 1024 Bytes/Sector Four Drives 
Multl·Sector and Multl·Track Transfer • Compatible with all Intel and Most 
Capability Other Microprocessors 
Drives Up to 4 Floppy or Mlnl·Floppy • Single· Phase 8 MHz Clock. 
Disks • Single +5 Volt Power Supply (::!:10%) 

The 8272A is an LSI Floppy Disk Controller (FDC) Chip, which contains the circuitry and control functions for Inter· 
facing a processor to 4 Floppy Disk Drives. It is capable of supporting either IBM 3740 single density format (FM), or 
IBM System 34 Double Density format (MFM) including double sided recording. The 8272A provides control signals 
which simplIfy the design of an external phase locked loop and write precompensation circuitry. The FDG simplifies 
and handles most of the burdens associated with Implementing a Floppy Disk Drive Interface. The 8272A Is a pin· .. 
compatible upgrade to the ~272. 

D80-7 

TERMINAL 
COUNT 

REGISTERS 

READY 
WRITE PROTECTITWO SIDE 
INDEX 
FAULTITRACK 0 

DRIVE SELECT 0 
DRIVE SELECT 1 
MFM MODE 

IIW/SEEK 
HEAD LOAD 

elK --... HEAD SELECT 
Vee -.. LOW CURRENT/DIRECTION 

QND -... FAULT RESET/STEP 

PSD 

PS, 

WR DATA 

DS, 
DS, 

HDSEL 

Figure 1. 8272A Internal Block Diagram Figure 2. Pin Configuration 

Intel Corporation Bssumes no responsibility for the USB of any circuitry other than circuitry embodied In an Intel product. No other circuit patent licenses are Implied. 
© 'nt., Corporation, 1982 6-478 ORDER NUMBER 210lI06-001 



8272A 

Table 1. Pin Description 

Pin Connec· 
Symbol No. Type tlon To Name and Function 

RESET 
1 I JLP 

Reset: Places FDC in 
Idle state. Resets out· 
put lines to FDD to "a" 
(low). Does not clear the 
last specify command. 

RD 2 1111 JLP Read: Control signal 
for transfer of data from 
FDC to Data Bus, when 
"0" (low). 

WR 3 1111 JLP Write: Control signal 
for transfer of data to 
FDC via Data Bus, when 
"0" (low). 

CS 4 I JLP Chip Select: IC selected 
when "a" (low), allow· 
ing RD and WR to be 
enabled. 

Ao 5 1111 JLP Data/Status Register 
Select: Selects Data 
Reg (Ao = 1) or. Status 
Reg (Ao = a) contents 
to be sent to Data Bus. 

DBo·DB7 6-13 1/0111 JLP Data Bus: Bidirectional 
8·Bit Data Bus. 

DRO 14 0 DMA Data DMA Request: 
DMA Request is being 
made by FDC when 
DRO "1.,,131 

DACK 15 I DMA DMA Acknowledge: 
DMA cycle is active 
when "0" (low) and 
Controller is perform-
ing DMA transfer. 

TC 16 I DMA Terminal Count: Indi-
cates the termination of 
a DMA transfer when 
"1" (high}I'I. 

lOX 17 I FDD Index: Indicates the 
beginning of a disk 
track. 

INT 18 0 JLP Interrupt: Interrupt Re-
quest Generated by 
FDC. 

ClK 19 I 
Clock: Single Phase 8 
MHz (4 MHz for mini 
floppies) Squarewave 
Clock. 

GND 20 Ground: D.C. Power 
Return. 

Note 1: Disabled when CS=1. 
Nole 2: TC must be activated to terminate the Execution Phase of any command. 
Note 3: ORO is also an input for certain test modes. It should have a 5kO pull-up 

resistor to prevent activation. 

Symbol 

Vcc 

RW/SEEK 

lCT/DIR 

FR/STP 

HDl 

RDY 

WP/TS 

FlT/TRKO 

PS" PSO 

WR DATA 

DS" DSo 

HDSEl 

6-479 

Pin Connec-
No. Type tlon To Name and Function 

40 D.C. Power: +5V 

39 0 FDD Read Write / SEEK: 
When "1" (high) Seek 
mode selected and 
when "a" (low) Read/ 
Write mode selected. 

38 0 FDD low Current/Direction: 
lowers Write current 
on inner tracks in 
Read/Write mode, de-
termines direction head 
will step in Seek mode. 

37 0 FDD Fault Reset/Step: Re-
sets fault FF in FDD in 
Read/Write mode, pro-
vides step pulses to 
move head to another 
cylinder in Seek mode. 

36 0 FDD Head Load: Command 
which causes read/write 
head in FDD to contact 
diskette. 

35 I FDD 
Ready: Indicates FDD 
is ready to send or re-
ceive data. Must be tied 
high (gated by the index 
pulse) for mini floppies 
which do not normally 
have a Ready line. 

34 I FDD Write Protect / Two· 
Side: Senses Write Pro· 
teet status in Read/ 
Write mode, and Two 
Side Media in Seek 
mode. 

33 I FDD Fault/Track 0: Senses 
FDD fault condition in 
Read/Write mode and 
Track a condition in 
Seek mode. 

31,32 0 FDD Precompensatlon (pre-
shift): Write precom-
pensation status during 
MFM mode. Determines 
early, late, and normal 
times. 

30 0 FDD Write Data: Serial clock 
and data bits to FDD. 

28,29 0 FDD Drive Select: Selects 
FDD unit. 

27 0 FDD Head Select: Head 1 
selected when "1" 
(high) Head a selected 
when "O"J!0w}. 

210606-001 



inter 8272A 

Table 1. Pin Description (Continued) 

Pin Connec-
Symbol No. Type tlon To Name and Function 

MFM 26 0 PLL MFM Mode: MFM mode 
when "1," FM mode 
when "0." 

WE 25 0 FDD Write Enable: Enables 
write data into FDD. 

VCO 24 0 PLL VCO Sync: Inhibits VCO 
in PLL when "0" (low), 
enables VCO when "1." 

RD DATA 23 I FDD Read Data: Read data 
from FDD, containing 
clock and data bits. 

CPU I 
~ 

SYSTEM BUS 

"'" C- oL ". 

"" ". 
I ;y: DATA Br 

WINDOW PLL ORa 

RD DATA 

WR DATA 
8237 OACK 8272A 

;I '"., ,~ OMA FOC INTERFACE 
CONTROLLER INPUT CONTROL 

~ 
~ 

OUTPUT CONTROL 
TC V TERMINAL -

COUNT 

Figure 3. 8272A System Block Diagram 

DESCRIPTION 
Hand-shaking Signals are provided in the 8272A which 
make DMA operation easy to incorporate with the aid of 
an external DMA Controller chip, such as the 8237 A. The 
FDC will operate iii either DMA or Non·DMA mode. In 
the Non-DMA mode, the FDC generates interrupts to the 
processor for every transfer of a data byte between the 
CPU and the 8272A. In the DMA mode, the processor 
need only load a command into the FDC and all data 
transfers occur under control of the 8272A and DMA 
controller. 

There are 15 separate commands which the 8272A will 
execute. Each of these commands require multiple 8·bit 
bytes to fully specify the operation which the processor 
wishes the FDC to perform. The following commands 
are available. 

Read Data 
Read ID 
Read Deleted Data 
Read a Track 
Scan Equal 

Write Data 
Format a Track 
Write Deleted Data 
Seek 
Recalibrate (Restore to 

Pin Connec-
Symbol No. Type tlon To Name and Function 

OW 22 I PLL Data Window: Gener-
ated by PLL, and used 
to sample data from 
FDD. 

WRCLK 21 I Write Clock: Write data 
rate to FDD FM = 500 
kHz, MFM = 1 MHz, with 
a pulse width of 250 ns 
for both FM and MFM. 

Must be enabled for all 
operations,both Read 
and Write. 

Scan High or Equal 
Scan Low or Equal 
Specify 

Track 0) 
Sense Interrupt Status 
Sense Drive Status 

For more information see the Intel Applic!ltion Notes 
AP·116 and AP-121. 

FEATURES 
Address mark detection circuitry is internal to the FDC 
which simplifies the phase locked loop and read elec· 
tronics. The track stepping rate, head load time, and 
head unload time may be programmed by the user. The 
8272A offers many additional features such as multiple 
sector transfers in both read and write modes with a 
single command, and full IBM compatibility in both 
single (FM) and double density (MFM) modes. 

8272A ENHANCEMENTS 
On the 8272A, after detecting the Index Pulse, the 
VCO Sync output stays low for a shorter period of 
time. See Figure 4A. 
On the 8272 there can be a problem reading data 
when Gap 4A is 00 and there is no lAM. This occurs 
on some older floppy formats. The 8272A cures this 
problem by adjusting the veo Sync timing so that it 
is not low during the data field. See Figure 4B. 

... 
Track Gap4A IIAM I Gap1 110 I Gap2 I Data ... 
Index Pulse ----.r-----1 

8272 VCO Syn;;----' I 

8272A VCO SyiiC' I 

'580 ~s In FM mode; 527 ~s In MFM mode 

A. Margin on the Index Pulse 

Track Gap 4A (00) I 10 I Gap2 I Data 

Index Pulse -..r-"l 

8272 I r--VCO Sync 

8272A 
VCO Sync L-.J 

B. Ability to Read Data When Gap 4A Contains 00 

Figure 4. 8272A Enhancements over the 8272 

6-480 210606-001 



8272A 

8272A REGISTERS - CPU INTERFACE 
The 8272A contains two registers which may be ac­
cessed by the main system processor; a Status Register 
and a Data Register. The 8-bit Main Status Register con­
tains the status information of the FDC, and may be 
accessed at any time. The 8-bit Data Register (actually 
consists of several registers in a stack with only one 
register presented to the data bus at a time), stores 
data, commands, parameters, and FDD status informa­
tion. Data bytes are read out of, or written into, the Data 
Register in order to program or obtai n the results after 
execution of a command. The Status Register may only 
be read and is used to facilitate the transfer of data 
between the processor and 8272A. 

The relationshi p between the Status/Data registers and 
the signals RD, WR, and Ao is shown in Table 2. 

Table 2. Ao, RD, WR decoding for the selectIon 
of Status/Data register functlons_ 

Ao RD WR FUNCTION 

0 0 1 Read Main Status Register 

0 1 0 Illegal (see note) 

0 0 0 Illegal (see note) 

1 0 0 Illegal (see note) 

1 0 1 Read from Data Register 

1 1 0 Write into Data Register 

Note: Design must guarantee that the 8272A 
is not subjected to illegal inputs_. 

The Main Status Register bits are defined in Table 3. 

Table 3_ Main Status Register bit descriptlon_ 
BIT tlUMBER !lAME SYMBOL DESCRIPTIOtl 

00 FOD 0 Busy °oB FOD ,number a Is In the Seek 
mode. 

0 1 FOD 1 Busy °l B FoD number 1 Is In the Seek 
mode. 

02 FOD 2 Busy °2B FOD number 2 is In the Seek 
mode. 

03 FOD 3 Busy °3B FOD number 3 is In the Seek 
mode. 

04 FOC Busy CB A read or write command is in 
process. 

05 Non·DMA mode NOM The FOC is in the non·OMA 
mode. This bit Is set only dur-
Ing the execution phase in 
non·DMA mode. Transition to 
"0" state Indicates execution 
phase has ended. 

06 Data input/Output 010 Indicates direction of data 
transfer between FOC and Ot 
Register. If 010="1" then 
transfer Is from Data Register 
to the Processor. If 010="0", 
then transfer Is from the Proc· 
ossor to Data Register. 

07 Request for Master RQM Indicates Data Register Is 
ready to send or receive data 
to or from the Processor. Bot 
bits 010 and ROM should be 
used to perform the hand-
shaking functions of "ready" 
and "direction" to the proc-
essor. 

The 010 and ROM bits in the Status Register indicate 
when Data is ready and in which direction data will be 
transferred on the Data Bus. 

Note: There is a 121lS or 24115 ROM flag delay when 
using an 8 or 4 MHz clock respectively_ 

OATAIN·OUT 
(010) 

REQUEST 
FOR MASTER 

(ROM) 

OUT OF PROCESSOR AND INTO FDC 

I 1.1 
Wi -----u u I 
iiii 

I I 

I I I 1 
I • I . I • I c I 

NOTES: ~ - DATA REOISTER READY TO BE WRI"EN INTO IY PROCESSOR 
00 - DATA REGISTER NOT REAOY TO 8E WRITTEN INTO BY PROCESSOR 
!&l - DATA REGISTER READY FOR NEXT DATA 8YTE TO BE READ BY THE 

PROCESSOR 
[2] - DATA REGISTER NOT READY FOR NEXT OATA BYTE TO BE READ BY 

PROCESSOR 

Figure 5_ Status Register Timing 

• I 

The 8272A is capable of executing 15 different com­
mands. Each. command is initiated- by a multi-byte 
transfer from the processor, and the result after execu­
tion of the command may also be a multi-byte transfer 
back to the processor. Because of this multi-byte inter-· 
change of information between the 8272A and the ·proc­
essor, it is convenient to consider each command as 
consisting of three phases: 

Command Phase: The FDC receives all information 
required to perform a particular 
operation from the processor. 

Execution Phase: The FDC performs the operation it 
was instructed to do. 

Result Phase: After completion of the operation, 
status and other housekeeping In­
formation are made available to 
the processor. 

During Command or Result Phases the Main Status 
Register (described in Table 3) must be read by the proc­
essor before each byte of information is written into or 
read from the Data Register. Bits 06 and D7 in the Main 
Status Register must be in a 0 and 1 state, respectively, 
before each byte of the command word may be written 
into the 8272A. Many of the commands require multiple 
bytes, and as a result the Main Status Register.must be 
read prior to each byte transfer to the 8272A. On the 
other hand, during the Result Phase, 06 and 07 in the 
Main Status Register must both be 1's (06 = 1 and 
07 = 1) before reading each byte from the Data 
Register. Note, this reading of the Main Status Register 
before each byte transfer to the 8272A is required in 
only the Command and Result Phases, and NOT during 
the Execution Phase. 

During the Execution Phase, the Main Status Register 
need not be read. If the 8272A is in the non-DMA Mode, 
then the receipt of each data byte (if 8272A is reading 
data from FDD) is indicated by an Interrupt signal on pin 
18 (INT = 1). The generation of a Read Signal (RD = 0) 
will reset the Interrupt as well as output the Data onto 

210606-001 



8272A 

the Data Bus. For example, if the processor cannot 
handle Interrupts fast enough (every 13 ,..s for MFM 
mode) then it may poll the Main Status Register and 
then bit 07 (ROM) functions just like the Interrupt 
signal. If a Write Command is in process, then the WR 
signal performs the reset to the Interrupt signal. 

The 8272A always operates in a multi·sector transfer 
mode. It continues to transfer data until the TC input is 
active. In Non·DMA Mode, the system must supply the 
TC input. 

If the 8272A is in the DMA Mode, no Interrupts are gener· 
ated during the Execution Phase. The 8272A generates 
ORa's (DMA Requests) when each byte of data is 
available. The DMA Controller responds to this request 
with both a DACK = 0 (DMA Acknowledge) and a RD = 0 
(Read signal). When the DMA Acknowledge signal goes 
low (DACK = 0) then the DMA Request is reset (ORO = 0). 
If a Write Command has been programmed then a WR 
signal will appear instead of RD. After the Execution 
Phase has been completed (Terminal Count has 
occurred) then an Interrupt will occur (INT = 1). This 
signifies the beginning of the Result Phase. When the 
first byte of data is read during the Result Phase, the In· 
terrupt is automatically reset (lNT = 0). 

It is important to note that during the Result Phase all 
bytes shown in the Command Table must be read. The 
Read Data Command, for example, has seven bytes of 
data in the Result Phase. All seven bytes must be read 
in order to successfully complete the Read Data Com· 
mand. The 8272A will not accept a new command until 
all seven bytes have been read. Other commands may 
require fewer bytes to be read during the Result Phase. 

The 8272A contains five Status Registers. The Main 
Status Register mentioned above may be read by the 
processor at any time. The other four Status Registers 
(STO, ST1, ST2, and ST3) are only available during the 
Result Phase, and may be read only after successfully 
completing a command. The particular command which 
has been executed determines how many of the Status 
Registers will be read. 

The bytes of data which are sent to the 8272A to form 
the Command Phase, and are read out of the 8272A in 
the Result Phase, must occur in the order shown in the 
Table 4. That is, the Command Code must be sent first 
and the other bytes sent in the prescribed sequence. No 
foreshortening of the Command or Result Phases are 
allowed. After the last byte of data in the Command 
Phase is sent to the 8272A, the Execution Phase 

Table 4. 8272A Command Set 

DATA BUS DATA BUS I 
PHASE RIW ~ D6 Ds D4 D3 D2 Dl Do REMARKS PHASE RIW D7 D6 DS D4 D3 D2 Dl DO REMARKS 

READ DATA WRITE DATA 

Command W MT MFM SK 0 0 1 1 0 Command Codes Command W MT MFM 0 0 0 1 0 1 Command Codes 

W 0 0 0 0 0 HOS OSl OSO W 0 0 0 0 0 HOS OS1 !DSO 

W C Sector 10 information W C Sector to information 
W H prior to Command W H prior to Command 
W R execution W A execution 
W N W N 
W EOT W EOT 
W GPl W GPl 
W OTl W OTl 

Execution Data transfer Execution Data transfer 
between the FDD between the main-
and main-system system and FOD 

Result A STO Status information Result A STO Status information 
A ST 1 after Command A STl after Command 
A ST2 execution A ST2 execution 
A C A C 
A H Sector 10 Information A H Sector ID information 
A A after command A A after Command 
A N execution A N execution 

READ DELETED DATA WRITE DELETED DATA 

Command W MT MFM SK 0 1 1 0 0 Command Codes Command W MT MFM 0 0 1 0 0 1 Command Codes 

W 0 0 0 0 0 HOS 051 050 W 0 0 0 0 0 HOS 051 050 

W C Sector ID information W C Sector 10 information 
W H prior to Command W H prior to Command 
W A execution W R ______ execution 
W N W N 
W EOT W EOT _____ 

W GPl W GPl 
W DTl ____ W DTl 

Execution Data transfer Execution Data transfer 
between the FDO between the FOD 
and main·system and main-system 

Result A STO Status information Result A STO Status information 
A ST 1 after Command A ST 1 after Command 
A ST 2 execution A ST 2 execution 
A _____ C A C 
A H Sector ID in'ormation A H Sector ID information 
A A after Command A A after Command 
A N execution A N execution 

Note: 1. Symbols used In this table are described at the end of this section. 

2. AO = 1 for all operations. 

3. X = Don't care, usually made to equal binary O. 

6-482 210606-001 



8272A 

Table 4. 8272A Command Set (Continued) 

I DATA BUS DATA BUS 

PHASE RIW I 07 06 05 04 03 02 01 DO REMARKS PHASE RIW I 07 06 05 04 03 02 01 DO REMARKS 

READ A TRACK SCAN LOW OR EQUAL 

Command W 0 MFM SK 0 0 0 1 0 Command Codes Command W MT MFM SK 1 1 0 0 1 Command Codes 

W 0 0 0 0 0 HOS OSl OSO W 0 0 0 0 0 HOS OSl OSO 

W C Sector 10 Information W C Sector 10 Information 
W H prior to Command W H prior Command 
W R execution W R execution 
W N W N 
W EOT W EOT 
W GPL W GPL 
W OTL W STP 

Executlon Data transfer Execution Data compared 
between the FOD between the FOD 
and maln·system. and main-system 
FOC reads all of 
cylinders contents Result R ST 0 Status Information 
Irom Index hole to R ST 1 after Command 
EOT R ST 2 execution 

R C 
Result R STO Status Information R H Sector 10 Information 

R ST 1 after Command R R after Command 
R ST 2 execution R N execution 
R C 
R H Sector 10 Information SCAN HIGH OR EQUAL 

R R after Command Command W MT MFM SK 1 1 1 0 1 Command Codes 
R N execution 

W 0 0 0 0 0 HOS OSl OSO 
READ 10 W C Sector 10 Information 

Command W 0 MFM 0 0 1 0 1 0 Commands W H prior Command 
W R execution 

W 0 0 0 0 0 HOS DS1 eso W N 
W EOT 

Execution The first correct 10 W GPL 
information on the W STP 
Cylinder Is stored in 
Data Register Execution Data compared 

between the FDO 
Result R STO Status information and main-system 

R ST 1 after Command 
R ST 2 execution Result R ST 0 Status information 
R C R ST 1 after Command 
R H Sector 10 information R ST 2 execution 
R R during Executlon R C 
R N Phase R H Sector 10 information 

FORMAT A TRACK 
R R after Command 
R N execution 

Command W 0 MFM 0 0 1 1 0 1 Command Codes RECALIBRATE 
W 0 0 0 0 0 HOS OSl OSO 

W N Bytes/Sector 
Command W 0 0 0 0 0 1 1 1 Command Codes 

W SC Sectors/Cylinder W 0 0 0 0 0 0 OSl DSO 

W GPL _____ Gap 3 Execution Head retracted to 
W 0 Filler Byte Track 0 

Execution FOC formats an SENSE INTERRUPT STATUS 
entire cylinder Command W 0 0 0 0 1 0 0 0 Command Codes 

Result R ST 0 Status information Result R ST 0 Status information at 

R STl after Command R PCN the end of each seek 

R ST 2 execution operation about the 

R C FOC 

R H In this case, the 10 
SPECIFY R R Information has no 

R N meaning Command W 0 0 0 0 0 0 1 1 Command Codes 

SCAN EQUAL W _ SRT __ '. ___ HUT -
W HLT • NO 

Command W MT MFM SK 1 0 0 0 1 Command Codes 

W 0 0 0 0 0 HOS OSl OSO SENSE DRIVE STATUS 

W C Sector 10 information Command W 0 0 0 0 0 1 0 0 Command Codes 
W H prior to Command W 0 0 0 0 0 HOS OSl OSO 
W R execution 

Result R ST 3 Status Information W N 
W EOT about FOo 

W GPL SEEK 
W STP 

Command W 0 0 0 0 1 1 1 1 Command Codes 
Execution Data compared W 0 0 0 0 0 HOS OSl DSO 

between the FOD 
W NCN and main-system 

Result R STO Status information Execution Head Is positioned 

R ST 1 alte r Command o .... er proper Cylinder 

R ST 2 execution on Diskette 

R C INVALID 
R H Sector 10 Information 
R R after Command Command W ____ In .... alld Codes ____ Invalid Command 
R N execution Codes (NoOp- FDC 

goes into Standby 
State) 

Result R ST 0 ST 0= 80 
(16) 

6-483 210606-001 



8272A 

Table 5. Command Mneumonlcs , 
SYMBOL NAME DESCRIPTION 

AO Address Line 0 At) controls selection of Main Status 
Register (AO=O) or Data Register (AO= 1). 

C Cylinder Number C stands for the current selected Cylinder 
,track number 0 through 76 of the medium. 

D Data o stands for the data pattern which Is 
going to be written Into a Sector. 

07- 0 0 Oala Bus 8-blt Data Bus where 07 Is the most 
significant bit, and DO Is the least slgnlfl· 
cant bit. 

OSO,OSl Drive Select OS stands for a selected drive number 0 
or1. 

OTL Data Length When N is defined as 00, DTL stands for 
the data length which users are going to 
read out or write Into the Sector. 

EOT End of Track EOT stands for the final Sector number of 
a Cylinder. 

GPL Gap Length GPL stands for the length of Gap 3 
(spacing between Sectors excluding VCO 
Sync Field). 

H Head Address H stands for head number 0 or 1, as 
specified In 10 field. 

HOS Head Select HD5 stands for a selected head number 0 
or 1 (H = HDS In all command words). 

HLT Head load Time HlT stands for the head load time in the 
FDD (2 to 254ms In 2ms increments). 

HUT Head Unload Time HUT stands for the head unload time after 
a read or write operation has occurred (16 
to 240ms in 16ms increments). 

MFM FM or MFM Mode If MF Is low, FM mode Is selected and 11 
it is high, MFM mode is selected. 

MT Multi-Track If MT Is high, a multl·track operation Is to 
be performed (a cylinder under both HOO 
and HDl will be read or written). 

N Number N stands for the number of data bytes 
written in a Sector. 

automatically starts. In a Similar fashion, when the last 
byte of data is read out in the Result Phase, the com­
mand is automatically ended and the 8272A is ready for 
a new command, A command may be aborted by simply 
sending a Terminal Count signal to pin 16 
(TC = 1), This is a convenient means of ensuring that the 
processor may always get the 8272A's attention even if 
the disk system hangs up in an abnormal manner. 

POLLING FEATURE OF THE 8272A 
After power-up RESET, the Drive Select Lines DSO and 
DS1 will automatically go into a polling mode. In be­
tween commands (and between step pulses in the SEEK 
command) the 8272A polls all four FDDs looking for a 
change in the Ready line from any of the drives, I(the 
Ready line changes state (usually due to a door opening 
or closing) then the 8272A will generate an interrupt. 
When Status Register 0 (STO) is read (after Sense Inter­
rupt Status is issued), Not Ready (NR) will be indicated. 
The polling of the Ready line by the 8272A occurs con­
tinuously between instructions, thus notifying the 
processor which drives are on or off line. Approximate 
scan timing is shown in Table 6. 

Table 6. Scan Timing 
OSl DSO APPROXIMATE SCAN TIMING 

0 0 220",5 

0 1 220"S 
1 0 220"S 
1 1 440JolS 

COMMAND DESCRIPTIONS 
During the Command Phase, the Main Status Register 
must be polled by the CPU before each byte is written 

SYMBOL NAME DESCRIPTION 

NCN New Cylinder Number NCN stands for a new Cylinder number. 
which Is going to be reached as a result 
of the Seek operation. Desired position of 
Head. 

NO Non·DMA Mode NO stands for operation in the Non·DMA 
Mode. 

PCN Present Cylinder PCN stands for the Cylinder number at 
Number the completion of SENSE INTERRUPT 

STATUS Command. POSition of Head at 
present time. 

R Record R stands for the Sector number. which 
will be read or written. 

R/W Read/Write R/W stands for either Read (R) or Write 
(W) signal. 

SC Sector SC indicates the number of Sectors per 
Cylinder. 

SK Skip SK stands for Skip Deleted Data Address 
Mark. 

SAT Step Rate Time SRT stands for the Stepping Rate for the 
FDD (1 to 16 ms in 1 ms increments). The 
same Stepping Rate applies to all drives 
(F=l ms, E=2 ms, etc.). 

STO Status 0 ST 0-3 stand for one of four registers 
STl Status 1 which store the status Information after 
ST 2 Status 2 a command has been executed. This 
ST 3 Status J information is available during the result 

phase after command execution. These 
registers should not be confused with the 
main status register (selected by Ao = 0). 
ST 0-3 may be read only after a command 
has been executed and contain Information 
relevant to that particular command. 

STP During a Scan operation, if STP= 1, the 
data in contiguous sectors Is compared 
byte by byte with data sent from the 
processor (or DMA), and If STP = 2, then 
alternate sectors are read and compared. 

into the Data Register. The DIO (DB6) and ROM (DB7) 
bits in the Main Status Register must be in the "0" and 
"1" states respectively, before each byte of the com­
mand may be written into the 8272A. The beginning of 
the execution phase for any of these commands will 
cause DIO and ROM to switch to "1" and "0" states 
respectively. 

READ DATA 
A set of nine (9) byte words are required to place the 
FDC into th~ Read Data Mode, After the Read Data com­
mand has been issued the FDC loads the head (if it Is in 
the unloaded state), waits the specified head settling 
time (defined in the Specify Command), and begins 
reading ID Address Marks and ID fields. When the cur­
rent sector number ("R") stored in the ID Register (IDR) 
compares with the sector number read off the diskette, 
then the FDC outputs data (from the data field) byte-by­
byte to the main system via the data bus. 
After completion of the read operation from the current 
sector, the Sector Number is incremented by one, and 
the data from the next sector is read and output on the 
data bus. This continuous read function is called a 
"Multi-Sector Read Operation," The Read Data Com­
mand must be terminated by the receipt of a Terminal 
Count signal. Upon receipt of this signal, the FDC stops 
outputting data to the processor, but will continue to 
read data from the current sector, check CRC (Cyclic 
Redundancy Count) bytes, and then at the end of the 
sector terminate the Read Data Command. 

The amount of data which can be handled with a single 
command to the FDC depends upon MT (multi-track), 
MFM (MFM/FM), and N (Number of Bytes/Sector), Table 
7 on the next page shows the Transfer Capacity. 

6-484 210606-001 



8272A 

Table 7. Transfer Capacity 
Multl·Track MFM/FM Bytes/Sector Maximum Transf.r Capacity Final Sector R.ad 

MT MFM N (Bylaa/Sector) (Number of Sectors) trom Diskette 

0 0 00 
0 1 01 

1 0 00 
1 1 01 

0 0 01 
0 1 02 

1 0 01 
1 1 02 

0 0 02 
0 1 03 

1 0 02 
1 1 03 

The "multi·track" function (MT) allows the FDC to read 
data from both sides of the diskette. For a particular 
cylinder, data will be transferred starting at Sector 1, 
Side 0 and completing at Sector L, Side 1 (Sector L = last 
sector on the side). Note, this function pertains to only 
one cylinder (the same track) on each side of the 
diskette. 

When N = 0, then DTL defines the data length which the 
FDC must treat as a sector. If DTL is smaller than the ac­
tual data length in a Sector, the data beyond DTL in the 
Sector is not sent to the Data Bus. The FDC reads (inter­
nally) the complete Sector performing the CRC check, 
and depending upon the manner of command termina­
tion, may perform a Multi-Sector Read Operation. When 
N is non-zero, then DTL has no meaning and should be 
set to OFFH. 

At the completion of the Read Data Command, the head 
is not unloaded until after Head Unload Time Interval 
(specified in .the Specify Command) has elapsed. If the 
processor issues another command before the head 
unloads then the head settling time may be saved be­
tween subsequent reads. This time out is particularly 
valuable when a diskette is copied from one drive to 
another. 

If the FDC detects the Index Hole twice without finding 
the right sector, (indicated in "R"), then the FDC sets 
the ND (No Data) flag in Status Register 1 to a 1 (high), 
and terminates the Read Data Command. (Status 
Register 0 also has bits 7 and 6 set to 0 and 1 respective­
ly.) 

After reading the ID and Data Fields in each sector, the 
FDC checks the CRC bytes. If a read error is detected 
(incorrect CRC in ID field), the FDC sets the DE (Data Er­
ror) flag in Status Register 1 to a 1 (high), and if a CRC er­
ror occurs in the Data Field the FDC also sets the DD 
(Data Error in Data Field) flag in Status Register 2 to a 1 
(high), and terminates the Read Data Command. (Status 
Register 0 also has bits 7 and 6 set to 0 and 1 respec­
tively.) 

If the FDC reads a Deleted Data Address Mark off the 
diskette, and the SK bit (bit D5 in the first Command 
Word) is not set (SK = 0), then the FDC sets the CM (Con­
trol Mark) flag in Status Register 2 to a 1 (high), and ter­
minates the Read Data Command, after reading all the 
data in the Sector. If SK= 1, the FDC skips the sector 
with the Deleted Data Address Mark and reads the next 
sector. 

(12B) (26)= 3.32B 26 at Side 0 
(256) (26)= 6.656 or 26 at Side 1 

(12B) (52) = 6.656 
26 at Side 1 

(256) (52)= 13.312 

(256) (15) = 3.B40 15 at Side a 
(512)(15)= 7.6BO or 15 at Side 1 

(256)(30) = 7.6BO 
15 al Side 1 

(512) (30)= 15.360 

(512) (B) = 4.096 8 at Side 0 
(1024) (B) = B.192 or 8 at Side 1 

(512) (16)= B.192 
8 at Side 1 

(1024) (16)= 16.3B4 

During disk data transfers between the FDC and the 
processor, via the data bus, the FDC must be serviced 
by the processor every 27 I's in the FM Mode, and every 
131's in the MFM Mode, or the FDC sets the OR (Over 
Run) flag in Status Register 1 to a 1 (high), and ter­
minates the Read Data Command. 

If the processor terminates a read (or write) operation in 
the FDC, then the ID Information in the Result Phase is 
dependent upon the state of the MT bit and EOT byte. 
Table 5 shows the values for C, H, R, and N, when the 
processor terminates the Command. 

Table 8. ID Information When Processor 
Terminates Command 

Final SectorTrans.erred to 
10 Information at Result Ph ••• 

MT EOT Processor C H R N 

1A Sector 1 to 25 at Side 0 
OF Sector 1 to 14 at Side 0 NC NC R+1 NC 
08 Sector 1 to 7 at Side 0 

1A Sector 26 at Side 0 
OF Sector 15 at Side 0 C+1 NC R=01 NC 

OB Sector B at Side 0 
0 

1A Sector 1 to 25 at Side 1 
OF Sector 1 to 14 at Side 1 NC NC R+1 NC 

08 Sector 1 to 7 al Side 1 

1A Sector 26 at Side 1 
OF Sector 15 at Side 1 C+1 NC R=01 NC 
DB Sector 8 at.Slde 1 

1A Sector 1 to 25 at Side a 
OF Sector 1 to 14 at Side a NC NC R+1 NC 

OB Sector 1 to 7 at Side a 

1A Sector 26 at Side a 
OF Sector 15 at Side a NC LSB R=01 NC 
OB Sector 8 at Side a 

1 
1A Sector 1 to 25 at Side 1 
OF Sector 1 to 14 at Side 1 NC NC R+1 NC 
08 Sector 1 to 7 at Side 1 

1A Sector 26 at Side 1 
OF Sector 15 at Side 1 C+1 LSB R=01 NC 

OB Sector 8 at Side 1 

Notes: 1. NC (No Change): The same value as the one at the beginning of command 
execution. 

2. LSB (Least Significant Bit): The least significant bit of H Is 
complemented. 

WRITE DATA 
A set of nine (9) bytes are required to set the FDC into 
the Write Data mode. After the Write Data command has 
been issued the FDC loads the head (if it is in the 
unloaded state), walts the specified head settling time 
(defined in the Specify Command), and begins reading 
ID Fields. When the current sector number ("RU), stored 
in the ID Register (lDR) compares with the sector 

6-485 210606-001 



inter 8272A 

number read off the diskette, then the FDC takes data 
from the processor byte·by·byte via the data bus, and 
outputs It to the FDD. 
After writing data Into the current sector, the Sector 
Number stored In "R" Is Incremented by one, and the 
next data field Is written Into. The FDC continues this 
"Multl·Sector Write Operation" until the issuance of a 
Terminal Count signal. If a Terminal Count signal Is sent 
to the FDC it continues writing into the current sector to 
complete the data field. If the Terminal Count signal is 
received while a data field is being written then the reo 
malnder of the data field is filled with 00 (zeros). 
The FDC reads the ID field of each sector and checks 
the CRC bytes. If the FDC detects a read error (incorrect 
CRC) in one of the 10 Fields, it sets the DE (Data Error) 
flag of Status Register 1 to a 1 (high), and terminates the 
Write Data Command. (Status Register 0 also has bits 7 
and 6 set to 0 and 1 respectively.) 
The Write Command operates in much the same manner 
as the Read Command. The following items are the 
same; refer to the Read Data Command for details: 
• Transfer Capacity 
• EN (End of Cylinder) Flag 
• NO (No Data) Ffag 

• Head Unload Time Interval 
• ID Information when the processor terminates com· 

mand (see Table 2) 

• Definition of DTL when N = 0 and when N '" 0 

In the Write Data mode, data transfers between the proc· 
essor and FDC must occur every 31 ,..S in the FM mode, 
and every 15 ,..S in the MFM mode. If the time interval 
between data transfers is longer than this then the FDC 
sets the OR (Over Run) flag in Status Register 1 to a 1 
(high), and terminates the Write Data Command. 
For mini·floppies, multiple track writes are usually not 
permitted. This is because of the turn·off time of the' 
erase head coils-the head switches tracks before the 
erase head turns off. Therefore the system should 
typically wait 1.3 mS. before attempting to step or 
change sides. 

WRITE DELETED DATA 

This command is the same as the Write Data Command 
except a Deleted Data Address Mark is written at the 
beginning of the Data Field instead of the normal Data 
Address Mark. 

READ DELETED DATA 

This command is the same as the Read Data Command 
except that when the FDC detects a Data Address Mark 
at the beginning of a Data Field (and SK = 0 (low)), it will 
read all the data in the sector and set the CM flag in 
Status Register 2 to a 1 (high), and then terminate the 
command. If SK = 1, then the FDC skips the sector with 
the Data Address Mark and reads the next sector. 

READ A TRACK 

This command is similar to READ DATA Command 
except that the entire data field is read continuously 
from each of the sectors of a track. Immediately after 
encountering the INDEX HOLE, the FDC starts reading 

all data fields on the track as continuous blocks of data. 
If the FDC finds an error In the 10 or DATA CRC check 
bytes, It continues to read data from the track. The FOe 
compares the 10 Information read from each sector with 
the value stored in the lOR, and sets the NO flag of 
Status Register 1 to a 1 (high) if there is no comparison. 
Multl·track or skip operations are not allowed with this 
command. 
This command terminates when EOT number of sectors 
have been read. If the FDC does not find an 10 Address 
Mark on the diskette after it encounters the INDEX 
HOLE for the second time, then It sets the MA (missing 
address mark) flag In Status Register 1 to a 1 (high), and 
terminates the command. (Status Register 0 has bits 7 
and 6 set to 0 and 1 respectively.) 

READID 

The READ 10 Command is used to give the present posl· 
tion of the recording head. The FDC stores the values 
from the first 10 Field it is able to read. If no proper 10 
Address Mark is found on the diskette, before the IN· 
DEX HOLE is encountered for the second time then the 
MA (Missing Address Mark) flag in Status Register 1 is 
set to a 1 (high), and if no data is found then the NO (No 
Data) flag Is also set in Status Register 1 to a 1 (high) 
and the command is terminated. 

FORMAT A TRACK 

The Format Command allows an entire track to be for· 
matted. After the INDEX HOLE is detected,Data is writ· 
ten on the Diskette: Gaps, Address Marks, 10 Fields and 
Data Fields, all per the IBM System 34 (Double Density) 
or System 3740 (Single Density) Format are recorded. 
The particular format which will be written is controlled 
by the values programmed into N (number of bytes/sec· 
tor), SC (sectors/cylinder), GPL (Gap Length), and 0 
(Data Pattern) which are supplied by the processordur· 
ing the Command Phase. The Data Field is filled with 
the Byte of data stored in D. The ID Field for each sector 
is supplied by the processor; that is, four data requests 
per sector are made by the FDC for C (Cylinder Number), 
H (Head Number), R (Sector Number) and N (Number of 
Bytes/Sector). This allows the diskette to be formatted 
with nonsequential sector numbers, if desired. 

After formatting each sector, the processor must send 
new values for e, H, R, and N to the 8272A for each sec· 
tor on the track. The contents of the R Register is in· 
cremented by one after each sector is formatted, thus, 
the R register contains a value of R + 1 when it is read 
during the Result Phase. This incrementing and format· 
ting continues for the whole track until the FDC en· . 
counters the INDEX HOLE for the second time, where· 
upon it terminates the command. 

If a FAULT signal is received from the FDD at the end of 
a write operation, then the FDe sets the Ee flag of 
Status Register 0 to a 1 (high), and terminates the com· 
mand after setting bits 7 and 6 of Status Register 0 to 0 
and 1 respectively. Also the loss of a READY signal at 
the beginning of a command execution phase causes 
command termination. 

Table 9 shows the relationship between N, SC, and GPL 
for various sector sizes: 

6-486 210606-001 



8272A 

Table 9. Sector Size Relationships. 
S" STANDARD FLOPPY 51(. W MINI FLOPPY 

FORMAT SECTOR SIZE N SC GPL1 GPL2 REMARKS SECTOR SIZE N SC GPL 1 GPL2 

FM Mode 128 bytes/Sector 00 lA 07 lB IBM Diskette 1 128 bytes/Seclor 00 12 07 09 

256 01 OF OE 2A IBM Diskette 2 128 00 10 10 19 
512 02 08 18 3A 256 01 08 18 30 

1024 03 04 47 8A 512 02 04 46 87 
2048 04 02 C8 FF 1024 03 02 C8 FF 
4096 05 01 C8 FF 2048 04 01 C8 FF 

MPM Mode 256 01 lA OE 36 IBM Diskette 20 256 01 12 OA OC 
512 02 OF lB 54 256 01 10 20 32 

1024 03 08 35 74 IBM Diskette 20 512 02 08 2A 50 
2048 04 04 99 FF 1024 03 04 80 FO 
4096 05 02 C8 FF 2048 04 02 C8 FF 
8192 06 01 C8 FF 4096 05 01 C8 FF 

Note: 1. Suggested values of GPL In Read or Write Commands to avoid splice point between data field and 10 field of contiguous sections. 

2. Suggested values of GPL In format command. 

SCAN COMMANDS 

The SCAN Commands allow data which is being read 
from the diskette to be compared against data which is 
being supplied from the main system (Processor in 
NON·DMA mode, and DMA Controller in DMA mode). 
The FDC compares the data on a byte· by· byte basis, and 
looks for a sector of data which meets the conditions of 

DFDD = DP,ocesso,; DFDD ~ DP,ocesso" or DFDD;' DP,ocesso,' 
Ones complement arithmetic is used for comparison 
(FF = largest number, 00 = smallest number).' After a 
whole sector of data is compared, if the cond itions are 
not met, the sector number is incremented (R + STP -
R), and the scan operation is continued. The scan opera· 
tion continues until one of the following conditions oc· 
cur; the conditions for scan are met (equal, low, or high), 
the last sector on the track is reached (EaT), or the ter· 
minal count signal is received. 

If the conditions for scan are met then the FDC sets the 
SH (Scan Hit) flag of Status Register 2 to a 1 (high), and 
terminates the Scan Command. If the conditions for 
scan are not met between the starting sector (as 
specified by R) and the last sector on the cylinder (EaT), 
then the FDC sets the SN (Scan Not Satisfied) flag of 
Status Register 2 to a 1 (high), and terminates the Scan 
Command. The receipt of a TERMINAL COUNT signal 
from the Processor or DMA Controller during the scan 
operation will cause the FDC to complete the com· 
parison of the particular byte which is in process, and 
then to terminate the command. Table 10 shows the 
status of bits SH and SN under various conditions of 
SCAN. 

Table 10. Scan Status Codes 

STATUS REGISTER 2 
COMMAND 

BIT2=SN BIT3=SH 
COMMENTS 

Scan Equal 
0 1 DFDO = Dprocessor 
1 o ' DFDD 4= Dprocessor 

0 1 OF DO = Dprocessor 
Scan Low or Equal 0 0 DFDD < 0processor 

1 0 DFDD ~ Dprocessor 

0 1 OF DO = Dprocessor 
Scan High or Equal 0 0 OF DO > Dprocessor 

1 0 OF DO ;t 0processor 

If the FDC encounters a Deleted Data Address Mark on 
one of the sectors (and SK = 0), then it regards the sec· 
tor as the last sector on the cylinder, sets GM (Control 

Mark) flag of Status Register 2 to a 1 (high) and ter· 
minates the command. If SK= 1, the FDC skips the sec· 
tor, with the Deleted Address Mark, and reads the next 
sector. In the second case (SK= 1), the FDC sets the CM 
(Control Mark) flag of Status Register 2 to a 1 (high) in 
order to show that a Deleted Sector had been en· 
countered. 

When either the STP (contiguous sectors STP = 01, or 
alternate sectors STP = 02 sectors are read) or the MT 
(Multi·Track) are programmed, it is necessary to 
remember that the last sector on the track must be read. 
For example, if STP = 02, MT = 0, the sectors are 
numbered sequentially 1 through 26, and we start the 
Scan Command at sector 21; the following will happen. 
Sectors 21, 23, and 25 wi II be read, then the next sector 
(26) will be skipped and the Index Hole will be en· 
countered before the EaT value of 26 can be read. This 
will result in an abnormal termination of the command. 
If the EaT had been set at 25 or the scanning started at 
sector 20, then the Scan Command would be completed 
in a normal manner. 

During the Scan Command data is supplied by either the 
processor or DMA Controller for comparison against the 
data read from the diskette. In order to avoid having the 
OR (Over Run) flag set in Status Register 1, it is nec· 
essary to have the data available in less than 27 I'S (FM 
Mode) or 13 I's (MFM Mode). If an Overrun occurs the 
FDC terminates the command. 

SEEK 

The read/write head within the FDD is moved from 
cylinder to cylinder under control of the Seek Command. 
The FDC compares the PCN (Present Cylinder Number) 
which is the current head position with the NCN (New 
Cylinder Number), and performs the following operation 
if there is a difference: 

PCN < NCN: Direction signal to FDD set to a 1 (high), 
and Step Pulses are issued. (Step In.) 

PCN > NCN: Direction signal to FDD set to a 0 (low), 
and Step Pulses are issued. (Step Out.) 

The rate at which Step Pulses are issued is controlled by 
SRT (Stepping Rate Time) in the SPECIFY Command. 
After each Step Pulse is issued NCN is compared 
against PCN, and when NCN= PCN, then the SE (Seek 
End) flag is set in Status Register 0 to a 1 (high), and the 
command is terminated. 

6-487 210606-001 



8272A 

During the Command Phase of the Seek operation the 
FDC is in the FDC BUSY state, but during the Execution 
Phase it is in the NON BUSY state. While the FDC is in 
the NON BUSY state, another Seek Command may be 
issued, and in this manner parallel seek operations may 
be done on up to 4 Drives at once. 

I! an FDD is in a NOT READY state at the beginning of 
the command execution phase or during the seek opera­
tion, then the NR (NOT READY) flag is set in Status 
Register 0 to a 1 (high), and the command Is terminated. 

Note that the 8272A Read and Write Commands do not 
have implied Seeks. Any R/W command should be 
preceded by: 1) Seek Command; 2) Sense Interrupt 
Status; and 3) Read ID. 

RECAliBRATE 

This command causes the read/write head within the 
FDD to retract to the Track 0 position. The FDC clears 
the contents Of the PCN counter, and checks the status 
of the Track 0 signal from the FDD. As long as the Track 
o signal is low, the Direction signal remains 1 (high) and 
Step Pulses are issued. When the Track 0 signal goes 
high, the SE (SEEK END) flag in Status Register 0 is set 
to a 1 (high) and the command is terminated. I! the Track 
o signal is still low after 77 Step Pulses have been 
issued, the FDC sets the SE (SEEK END) and EC (EQUIP­
MENT CHECK) flags of Status Register 0 to both 1s 
(highs), and terminates the command. 

The ability to overlap RECALIBRATE Commands to 
multiple FDDs, and the loss of the READY Signal, as 
described in the SEEK Command, also applies to the 
RECALIBRATE Command. 

SENSE INTERRUPT STATUS 

An Interrupt signal is generated by the FDC for one of 
the following reasons: 

1. Upon entering the Result Phase of: 
a. Read Data Command 
b. Read a Track Command 
c. Read ID Command 
d. Read Deleted Data Command 
e. Write Data Command 
f. Format a Cylinder Command 
g. Write Deleted Data Command 
h. Scan Commands 

2. Ready Line of FDD changes state 
3. End of Seek.or Recalibrate Command 
4. During Execution Phase in the NON-DMA Mode 

Interrupts caused by reasons 1 and 4 above occur during 
normal command operations and are easily discernible 
by the processor. However, interrupts caused by 
reasons 2 and 3 above may be uniquely identified with 
the aid of the Sense Interrupt Status Command. This 
command when issued resets the interrupt signal and 
via bits 5, 6, and 7 of Status Register 0 identifies the 
cause of the interrupt. 

Neither the Seek or Recalibrate Command have a Result 
Phase. Therefore, it is mandatory to use the Sense Inter­
rupt Status Command after these commands to effec­
tively terminate them and to provide verification of the 
head position (PCN). 

Table 11. Seek, Interrupt Codes 

SEEK END INTERRUPT CODE 

BIT 5 BIT6 BIT7 CAUSE 

0 1 1 Ready Line changed 
state, either polarity 

1 0 0 Normal Termination 
of Seek or Recalibrate 
Command 

1 1 0 Abnormal Termination of 
Seek or Recalibrate 
Command 

SPECIFY 
The Specify Command sets the initial values for each of 
the three internal timers. The HUT (Head Unload Time) 
defines the time from the end of the Execution Phase of 
one of the Read/Write Commands to the head unload 
state. This timer is programmable from 16 to 240 ms in 
increments of 16 ms (01 = 16 ms, 02=32 ms .... OF= 
240 ms). The SRT (Step Rate Time) defines the time in­
terval between adjacent step pulses. This timer is pro­
grammable from 1 to 16 ms in increments of 1 ms (F = 1 
ms, E = 2 ms, D = 3 ms, etc.). The H l T (Head load Time) 
defines the time between when the Head load signal 
goes high and when the Read/Write operation starts. 
This timer is programmable from 2 to 254 ms in in­
crements of 2 ms (01 = 2 ms, 02 = 4 ms, 03 = 6 ms .... 
FE=254 ms). 

The step rate should be programmed 1 mS longer than 
the minimum time required by the drive. 

The time intervals mentioned above are a direct function 
of the clock (ClK on pin 19). Times indicated above are 
for an 8 MHz clock, if the clock was reduced to 4 MHz 
(mini-floppy application) then all time intervals are in­
creased by a factor of 2. 

The choice of DMA or NON-DMA operation is made by 
the ND (NON-DMA) bit. When this bit is high (ND = 1) the 
NON-DMA' mode is selected, and when ND = 0 the DMA 
mode is selected. 

SENSE DRIVE STATUS 

This command may be used by the processor whenever 
it wishes to obtain the status of the FDDs. Status 
Register 3 contains the Drive Status information. 
INVALID 

If an invalid command is sent to the FDC (a command 
not defined above), then the FDC will terminate the com­
mand. No interrupt is generated by the 8272A during this 
condition. Bit 6 and bit 7 (DIO and RQM) in the Main 
Status Register are both high ("1 ") indicating to the 
processor that the 8272A is in the Result Phase and the 
contents of Status Register 0 (STO) must be read. When 
the processor reads Status Register 0 it will find an 80H 
indicating an invalid command was received. 

A Sense Interrupt Status Command must be sent after a 
Seek or Recalibrate interrupt, otherwise the FDC will 
consider the next command to be an Invalid Command. 

I n some appl ications the user may wish to use this com­
mand as a No-Op command, to place the FDC In a stand­
by or no operation state. 

6-488 210606-001 



inter 8272A 

Table 12. Status Registers 

BIT BIT 

NAME SYMBOL 
DESCRIPTION 

NO. DESCRIPTION 
NO. NAME SYMBOL 

STATUS REGISTER 0 STATUS REGISTER 1 (CONT.) 

D7 Interrupt IC D7=0 and D6=0 
Code Normal Termination of Command, 

D, Not NW During execution of WRITE DATA, 
Writable WRITE DELETED DATA or Format A 

(ND, Command was completed and Cylinder Command, if the FOC 
properly executed. detects a write protect signal from 

D6 D7=0 and D6= 1 the FOO, then this flag is set. 

Abnormal Termination of Com-
mand, (An. Execution of Command 
was started, but was not 
successfully completed. 

Do Missing MA If the FOG cannot detect the 10 
Address Address Mark after encountering the 
Mark index hole twice, then this flag is set. 

D7-1 and D6-0 
Invalid Command issue, (Ie). 
Command which was issued was 
never started. 

If the FOC cannot detect the Data 
Address Mark or Deleted Data 
Address Mark, this flag is set. Also 
at the same time, the MO (Missing 
Address Mark in Data Field) of 

D7= 1 and D6= 1 Status Register 2 is set. 
Abnormal Termination because 
during command execution the STATUS REGISTER 2 

ready signal from FDD changed 
state. 

D7 Not used. This bit is always 0 (low). 

D5 Seek End SE When the FDG completes the 
D6 Control CM During executing the READ DATA or 

Mark SCAN Command, if the FDC 
SEEK Command, this flag is set to 1 encounters a Sector which contains 
(high). a Deleted Data Address Mark, this 

0_ Equipment EC If a fault Signal is received from the flag is set. 

Check FOO, or if the Track 0 Signal fails to 
occur after 77 Step Pulses (Reeali-
brate Command) then this flag is set. 

D5 Data Error in DD If the FOG detects a CRC error in 
Data Field the data field then this flag is set. 

D3 Not Ready NR When the FDD is in the not-ready 
state and a read or write command is 

D_ Wrong WC This bit is related with the NO bit, 
Cylinder and when the contents of C on the 

medium is different from that stored 
issued, this flag is set. If a read or 
write command is issued to Side 1 

in the IDR, this flag is set. 

of a single sided drive, th'en this flag D3 Scan Equal SH During execution, the SCAN 
is set. Hit Command, if the condition of 

O2 Head HD This flag is used to indicate the 
"equal" is satisfied, this flag is set. 

Address state of the head at Interrupt. D2 Scan Not SN During executing the SCAN 

D, Unit Select 1 US 1 These flags are used to indicate a 
Satisfied Command, if the FOC cannot find a 

Sector on the cylinder which meets 

Do Unit Select a US 0 Drive Unit Number at Interrupt the condition, then this flag is set. 

STATUS REGISTER 1 D, Bad BC This bit is related with the NO bit, 

D7 End of EN When the FOG tries to access a 
Cylinder and when the content of C on the 

medium is different from that stored 
Cylinder Sector beyond the final Sector of a in the IDA and the content of C is 

Cylinder, this flag is set. FF, then this flag Is set. 

D6 Not used. This bit is always 0 (low). 
Do Missing MD When data is read from the medium, 

0 5 Data Error DE When the FDC detects a CRC error 
in either the 10 field or the data field, 

Address if the FOC cannot find a Data 
Mark in Data Address Mark or Deleted Data 

this flag is set. Field Address Mark, then this flag is set. 

D4 Over Run OR If the FOC is not serviced by the STATUS REGISTER 3 
main-systems during data transfers, 
within a certain time interval, this 
flag is set. 

D7 Fault FT This bit is used to indicate the 
status of the Fault signal from the 
FDD. 

0 3 Not used. This bit always 0 (low). 
D6 Write WP This bit is used to indicate the 

D2 No Data ND During execution of READ DATA, Protected status of the Write Protected signal 
WRITE DELETED DATA or SCAN from the FOO. 
Command, if the FOC cannot find 
the Sector specified in the lOR 
Register, this flag is set. 

D5 Ready RDY This bit is used to indicate the status 
of the Ready signal from the FDD. 

During executing the READ 10 Com-
mand, if the FOC cannot read the 

D_ Track 0 TO This bit is used to indicate the status 
of the Track 0 signal from the FOD. 

10 field without an error, then this 
flag is set. 

D3 Two Side TS This bit is used to indicate the status 
of the Two Side signal from the FDO. 

During the execution of the READ A 
Cylinder Command, if the starting 

D2 Head HD This bit is used to indicate the status 
Address of Side Select signal to the FDD. 

sector cannot be found, then this 
flag is set. D, Unit Select 1 US 1 This bit is used to indicate the status 

of the Unit Select 1 signal to the FDO. 

Do Unit Select 0 US a This bit is used to indicate the status 
of the Unit Select a signal to the FDD. 

6-489 210606-001 



8272A 

ABSOLUTE MAXIMUM RATINGS* 
Operating Temperature .................. o·c to + 70·C 
Storage Temperature ............. - 40·C to + 125·C 
All Output Voltages ............... -0.5 to + 7 Volts 
All Input Voltages ................. -0.5 to + 7 Volts 
Supply Voltage Vcc ............... -0.5 to + 7 Volts 
Power Dissipation .......................... 1 Watt 

NOTICE: Stress above those listed under "Absolute Max­
imum Ratings" may cause permanent damage to the de­
vice. This is a stress rating only and functional operation of 
the device at these or any other conditions above those 
indicated in the operational sections of this specification 
is not implied. Exposure to absolute maximum rating 
conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (TA = o·c to + 70·C, Vcc = +5V ± 10%) 

Limits 
Symbol Parameter Min. Max. Unit 

VIL Input Low Voltage -0.5 0.8 V 

V IH Input High Voltage 2.0 Vcc+ 0.5 V 

VOL Output Low Voltage 0.45 V 

VOH Output High Voltage 2.4 Vcc V 

Icc V cc Supply Current 120 mA 

IlL 
Input Load Current 10 /iA 
(All Input Pins) -10 /iA 

ILOH High Level Output 10 /iA 
Leakage Current 

IOFL 'Output Float ±10 /iA 
Leakage Currerit 

CAPACITANCE (TA = 25°C, Ie = 1 MHz, Vcc = OV) 

Limits 
Symbol Parameter Min. Max. Unit 

CIN(<I» Clock Input Capacitance 20 pF 

CIN Input Capacitance 10 pF 

CliO Input/Output Capacitance 20 pF 

A.C. CHARACTERISTICS (TA=O·Cto +70·C, Vcc= +5.0V ±10%) 

CLOCK TIMING 

Symbol Parameter Min. Max. 

tCY Clock Period 120 500 

tCH Clock High Period 40 

tRST Reset Width 14 

READ CYCLE 

tAR Select Setup to RDI" 0 

tRA Select Hold from ROt 0 

tRR RD Pulse Width 250 

tRO Data Delay from RDI 200 

tOF Output Float Delay 20 100 

6-490 

Test 
Conditions 

10L= 2.0 mA 

IOH = - 400 !-<A 

VIN = Vcc 
VIN=OV 

VOUT=Vcc 

0.45V ,,;; VOUT ,,;; Vee 

Test 
Conditions 

All Pins Except 
Pin Under Test 
Tied to AC 
Ground 

Unit Notes 

ns Note 5 

ns Note 4, 5 

tCY 

ns 

ns 

ns 

ns 

ns 

210606-001 



intel· 8272A 

A.C. CHARACTERISTICS (Continued) (TA=O·C to +70·C, vcc= +5.0V ±10%) 

WRITE CYCLE 

Symbol Parameter Typ.l Min. Max. Unit Notes 

tAW Select Setup to WRI 0 ns 

tWA Select Hold from WRt 0 ns 

tww WR Pulse Width 250 ns 

tDW Data Setup to WRf '150 ns 

tWD Data Hold from WRt 5 ns 

INT Delay from ROt Note 6 

INT Delay from WRt Note 6 

DMA 

tACCY ORO Cycle Period 13 ~s Note 6 

tAKRQ DACKI to ORal 200· ns 

tACA DROf fo RDI 800 ns Note 6 

tACW DRat toWRI 250 ns Note6 

tACAW DROf to RDf or WRf 12 ~s Note 6 

FDDINTERFACE 

twCY WCK Cycle Time 2 or 4 ~~~:~ Note 2 1 or 2 
~s 

tWCH WCK High Time 250 80 350 ns , 

tcp Pre·Shift Delay from WCKt 20 100 ns 

tCD WDA Delay from WCK! 20 100 ns 

tWDD Write Data Width tWCH-50 ns 

tWE WEt to WCKt or WEI to WCKI Delay 20 100 ns 

twWCY Window Cycle Time 2 ~s 
MFM~O 

1 MFM~1 

tWAD Window Setup to ROOt 15 ns 

tROW Window Hold from RDDI 15 ns 

tROD ROD Active Time (HIGH) 40 ns 

FDD SEEK/DIRECTION/STEP 

tus USO.l Setup to RW/SEEKt 12 ~s Note 6 

tsu USO,1 Hold after RW/SEEKI 15 ~s Note 6 

tSD RW/SEEK Setup to LCTIDIR 7 ~s Note 6 

tDS RW/SEEK Hold from LCTIDIR 30 ~s Note 6 

tDST LCT/DIR Setup to FR/STEPt 1 ~s Note 6 

tSTD LCT/DIR Hold from FR/STEPI 24 ~s Note 6 

tSTU DS2,1 Hold from FR/Stepl 5 ~s Note 6 

tSTP STEP Active Time (High) 5 ~s Note 6 

'se STEP Cycle Time 33 ~s Note 3, 6 

tFA FAULT RESET Active Time (High) 8 10 ~s Note 6 

tlOX INDEX Pulse Width 10 tCY 

'TC Terminal Count Width 1 tCY 

NOTES: 
1. Typical values forTA~ 25·C and nominal supply voltage. 

2. The former values are used for standard floppy and the latter values are used for mini· floppies. 

3, tSC~33 ~s min. Is for different drive units. In the case of same unit, tsc can be ranged from 1 ms to 16 ms with B MHz clock period, and 2 ms 
to 32 ms with 4 MHz clock, under software control. 

4. From 2.0V to + 2,OV . 

5. At 4 MHz, the clock duty cycle may range from 16% to 76%. Using an B MHz clock the duty cycle can range from 32% to 52%. Duty cycle is 
defined as: D.C. ~ 100 (tCH ... tCY) with typical rise and fall times of 5 ns. 

6. The specified values listed are for an B MHz clock period. Multiply timings by 2 when using a 4 MHz clock period. 

6-491 210606-001 



intJ 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

"=X x= 2.0 2.0 .' > TEST POINTS < 
0.8 0.8 

0.45 

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC "1" ANO O.45V FOR 
A LOGIC "0." TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A LOGIC "1" 
AND 0.8V FOR A LOGIC "0:' 

WAVEFORMS 

PROCESSOR READ OPERATION 

8272A 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 

~CL=100PF TEST 

CL = 100pF 
CL INCLUDES JIG CAPACITANCE 

1_----'RoI----_ .....---tOF 

DATA - - - - - - - - - - - -

INT 

'RI_, 

6-492 210606-001 



8272A 

WAVEFORMS (Continued) 

PROCESSOR WRITE OPERATION 

Ar.}. CS. OACK 

...--iAw f----tww----., 

-4-----tOW----..-

DATA 

I • 

INT 

DMA OPERATION 

1--_________ tRQCY -----------

ORa 

!---______ IRQRW ______ -+j 

W"Ror R5 
I __ ---IRQW----! 

1-----tROR----i 

6-493 210606-001 



WAVEFORMS (Continued) 

CLOCK TIMING 

elK 

FDD WRITE OPERATION 

WRITE ENABLE 
(WE) 

NORMAL 

LATE 

EARLY 

INVALID 

8272A 

Ic' 

PRESHIFT 0 PRESHIFT I 

0 0 

0 1 

1 0 

1 1 

6~494 210606-001 



WAVEFORMS (Continued) 

SEEK OPERATION 

LeT( 
DIRECTION 

STEP 

FLT RESET 

FAULT RESET 
FAil UNSAFE RESET 

tSD~ 

8272A 

STABLE 

~tD5 

1---;---------'sc------------1 

INDEX 

.....-tIDX ______ 

6-495 210606-001 



8272A 

WAVEFORMS (Continued) 

FDD READ OPERATION 

READDA4A 
tROD . -------------------------

RE~~N~A_OT; __________________ ~~I-'f------------t-w'-o~~~~~~--------____ _ 

/ tl4----------tWWCy-----------~ 

TERMINAL COUNT RESET 

RESET 
TC 

6-496 210606-001 



APPLICATION 
NOTE 

6-497 

AP·116 

March 1981 

207875-002 



APPLICATIONS 

An Intelligent 
Data Base System 

Using the 8272 

Contents 

INTRODUCTION 

The Floppy Disk 
The Floppy Disk Drive 

SUBSYSTEM OVERVIEW 

Controller Electronics 
Drive Electronics 
Controller/Drive Interface 
Processor/Memory Interface 

DISK FORMAT 

Data Recording Techniques 
Sectors 
Tracks 
Sector Interleaving 

THE 8272 FLEXIBLE DISKETTE CONTROLLER 

Floppy Disk Commands 
Interface Registers 
Command/Result Phases 
Execution Phase 
Multi-sector and Multi-track Transfers 
Drive Status Polling 
Command Details 

THE DATA SEPARATOR 

Single Density 
Double Density 
Phase-Locked Loop Design 
Initialization 
Floppy Disk Data 
Startup 
PLL Synchronization 

AN INTELLIGENT DISKETTE DATA BASE SYSTEM 

Processor and Memory 
Serial 110 
DMA 
Disk Drive Interface 

SPECIAL CONSIDERATIONS 

APPENDiX 

Schematics 
Power Distribution 

6-498 207875-002 



APPLICATIONS 

1. INTRODUCTION 

Most microcomputer systems in use today require low­
cost, high-density removable magnetic media for informa­
tion storage. In the area of removable media, a designer's 
choice is limited to magnetic tapes and floppy disks 
(flexible diskettes), both of which offer non-volatile 
data storage. The choice between these two technologies 
is relatively straight-forward for a given application. 
Since disk drives are designed to permit random access to 
stored information, they are significantly faster than 
tape units. For example, locating information on a disk 
requires less than a second, while tape movement (even at 
the fastest rewind or fast-forward speed) often re­
quires several minutes. This random access ability per­
mits the use of floppy disks in on-line storage applica­
tions (where information must be located, read, and 
modified/updated in real-time under program or 
operator control). Tapes, on the other hand, are ideally 
suited to archival or back-up storage due to their large 
storage capacities (more than 10 million bytes of data 
can be archived on a cartridge tape). 

A sophisticated controller is required to capitalize on 
the abilities of the disk storage unit. In the past, disk 
controller designs have required upwards of 150 ICs. 
Today, the single-chip 8272 Floppy Disk Controller 
(FDC) plus approximately 30 support devices can handle 
up to four million bytes of on-line data storage on four 
floppy disk drives. 

The Floppy Disk 

A floppy disk is a circular piece of thin plastic material 
covered with a magnetic coating and enclosed in a pro­
tective jacket (Figure 1). The circular piece of plastic 
revolves at a fixed speed (approximately 360 rpm) within 
its jacket in much the same manner that a record revolves 
at a fixed speed on a stereo turntable. Disks are 
manufactured in a variety of configurations for various 
storage capacities. Two standard physical disk sizes are 
commonly used. The 8-inch disk (8 inches square) is the 
larger of the two sizes; the smaller size (5-114 inches 
square) is often referred to as a mini-floppy. Single­
sided disks can record information on only one side of the 
disk, while double-sided disks increase the storage 
capacity by recording on both sides. In addition, disks are 
classified as single-density or double-density. Double­
density disks use a modified recording method to store 
twice as much information in the same disk area as can be 
stored on a single-density disk. Table 1 lists storage 
capacities for standard floppy disk media. 

A magnetic head assembly (in contact with the disk) 
writes information onto the disk surface and subse­
quently reads the data back. This head assembly can 
move from the outside edge of the disk toward the 
center in fixed increments. Once the head assembly is 

Figure 1. A Floppy Diskette 

positioned at one of these fixed positions, the head can 
read or write information in a circular path as the disk 
revolves beneath the head assembly. This method 
divides the surface into a fixed number of cylinders (as 
shown in Figure 2). There are normally 77 cylinders on a 
standard disk. Once the head assembly is positioned at a 
given cylinder, data may be read or written on either 
side of the disk. The appropriate side of the disk is 
selected by the read/write head address (zero or one). 
Of course, a single-sided disk can only use head zero. 
The combination of cylinder address and head address 
uniquely specifies a single circular track on the disk. The 
physical beginning of a track is located by means of a 
small hole (physical index mark) punched through the 
plastic near the center of the disk. This hole is optically 
sensed by the drive on every revolution of the disk. 

Table 1. Formatted Disk Capacities 

Single· Density 
Format 

Byte/Sector 128 256 512 1024 
Sectors/Track 26 15 8 4 
Tracks/Disk 77 77 77 77 

Bytes/Disk 256,256 295,680 315,392 315,392 

Double·Density 
Format 

Bytes/Sector 128 256 512 1024 
Sectors/Track 52 30 16 8 
Tracks/Disk 77 77 77 77 

Bytes/Disk 512,512 591,360 630,784 630,784 

6-499 207875-002 



APPLICATIONS 

Each track is subdivided into a number of sectors (see 
detailed discussion in section 3). Sectors are generally 
128, 256, 512, or 1024 data bytes in length. This track 
sectoring may be accomplished b'y one of two tech­
niques: hard sectoring or soft sectoring. Hard sectored 
disks divide each track into a maximum of 32 sectors. 
The beginning of each sector is indicated by a sector 
hole punched in the disk plastic. Soft sectoring, the IBM 
standard method, allows software selection of sector 
sizes. With this technique, each data sector is preceded 
by a unique sector identifier that is read/written by the 
disk controller. 

A floppy disk may also contain a write protect notch 
punched at the edge of the outer jacket of the disk. This 
notch, is detected by the drive and passed to the con­
troller as a write protect signal. 

The Floppy Disk Drive 

The floppy disk drive is an electromechanical device 
that records data on, or reads data from, the surface of 
a floppy disk. The disk drive contains head control elec'­
tronics that move the head assembly one increment 
(step) forward (toward the center of the disk) or 
backward (toward the edge of the disk). Since the 
recording head must be in contact with the disk material 
in order to read or write information, the disk drive also 
contains head-load electronics. Normally the read/write 
head is unloaded until it is necessaiy to read or write in­
formation on the floppy disk. Once the head assembly 
has been positioned over the correCt track on the 'disk, 
the head is loaded (brought into contact with the disk). 
This sequence prevents excessive disk wear. A small 
time penalty is paid wheri the head is loaded. Approx­
imately thirty to fifty milliseconds are needed before 
data may be reliably read from, or written to, the disk. 
This time is known as the head load time. If desired, the 
head, may be moved from cylinder to cylinder while 
loaded. In tl?-is manner, only a small time interval (head 
settling time) is required before data may be, read from 
the new cylinder. The head settling time is often shorter 
than the head load time. Typically, disk drives also con­
tain drive select 10g1c that allows more than one physical 
drive to be connected to the same interface cable (from 
the controller). By means of a jumper on the drive, the 
drive number may be selected' by the OEM or end user. 
The drive is enabled only when selected; when not 
seiected, all control signals on the cable are ignored. 

Finally, the drive provides additional signals to' the 
system controller regarding the status of the drive and 
disk. These signals include: 

Drive Ready - Signals the system that the drive door 
is closed and that a floppy disk is inserted into the 
drive. 

Track Zero - Indicates that the head assembly is 
located over the outermost track of the disk. 
This signal may be used for calibration of the disk 
drive at system initialization and after an error con­
,dition. , 

Write Protect - Indicates that the floppy disk loaded 
into the drive is, write protected. 

Dual Sided - Indicates that the floppy disk in the 
drive is dual-sided. 

Write Fault - Indicates that an error occurred during 
a recording operation. 

Index - Informs the system that the physical index 
mark of the floppy disk (signifying the start of Ii data 
track) has been sensed. 

CURRENT TRACK 

Figure 2. Concentric Cylinders on a Floppy Diskette 

6-500 207875-002 



APPLICATIONS 

2. SUBSYSTEM OVERVIEW 

A disk subsystem consists of the following functional 
electronic units: 

1. Disk Controller Electronics 

2. Disk Drive Electronics 

3. Controller/Disk Interface (cables, drivers, termina· 
tors) 

4. Controller/Microprocessor System Interface 

The operation of these functional units is discussed in 
the following paragraphs. 

Controller Electronics 

The disk controller is responsible for converting high· 
level disk commands (normally issued by software ex· 
ecuting on the system processor) into disk drive com· 
mands. This function includes: 

1. Disk Drive Selection - Disk controllers typically 
manage the operations of multiple floppy disk 
drives. This controller function permits the system 
processor to specify which drive is to be used in a 
particular operation. 

2. Track Selection - The controller issues a timed se· 
quence of step pulses to move the head from its cur· 
rent location to the proper disk cylinder from which 
data is to be read or to which data is to be written. 
The controller stores the current cylinder number 
and computes the stepping distance from the current 
cylinder to the specified cylinder. The controller also 
manages the head select signal to select the correct 
side of the floppy disk. 

3. Sector Selection - The controller monitors the 
data on a track until the requested sector is sensed. 

4. Head Loading - The disk controller determines 
the times at which the head assembly is to be brought 
in contact with the disk surface in order to read or 
write data. The controller is also responsible for 
waiting until the head has settled before reading or 
writing information. Often the controller maintains 
the head loaded condition for up to 16 disk revolu· 
tions (approximately 2 seconds) after a read or write 
operation has been completed. This feature elimi· 
nates the head load time during periods of heavy disk 
I/O activity. 

5. Data Separation - The actual signal recorded on a 
floppy disk is a combination of timing information 
(clock) and data. The serial READ DATA input 
(from the disk drive) must be converted into two sig· 
nal streams: clock and data. (The READ DATA in· 
put operates at 250K bits/second for single·density 
disks and 500K bits/second for double·density 

6-501 

disks.) The serial data must also be assembled into 
8·bit bytes for transfer to system memory. A byte 
must be assembled and transferred every 32 
microseconds for single· density disks and every 16 
microseconds for double·density. 

6. Error Checking - Information recorded on a flop· 
py disk is subject to both hard and soft errors. Hard 
(permanent) errors are caused by media defects. Soft 
errors, on the other hand, are temporary errors 
caused by electromagnetic noise or mechanical inter· 
ference. Disk controllers use a standard error check· 
ing technique known as a Cyclic Redundancy Check 
(CRC). As data is written to a disk, a l6·bit CRC 
character is computed and also stored on the disk. 
When the data is subsequently read, the CRC charac· 
ter allows the controller to detect data errors. Typi· 
cally, when CRC errors are detected, the controlling 
software retries the failed operation (attempting to 
recover from a soft error). If data cannot reliably be 
read or written after a number of retries, the system 
software normally reports the error to the operator. 
Multiple CRC errors normally indicate unrecover· 
able media error on the current disk track. Subse· 
quent recovery attempts must be defined by the sys· 
tem designers and tailored to meet system interfacing 
requirements. 

Today, single·chip digital LSI floppy disk controllers 
such as the 8272 perform all the above functions with 
the exception of data separation. A data separation cir· 
cuit (a combination of digital and analog electronics) 
synchronizes itself to the actual data rate of the disk 
drive. This data rate varies from drive to drive (due to 
mechanical factors such as motor tolerances) and varies 
from disk to disk (due to temperature effects). In order 
to operate reliably with both single· and double·density 
storage, the data separation circuit must be based on 
phase·locked loop (PLL) technology. The phase·locked 
loop data separation logic is described in section 5. The 
separation logic, after synchronizing with the data 
stream, supplies a data window to the LSI disk con· 
troller. This window differentiates data information 
from clock information within the serial stream. The 
controller uses this window to reconstruct the data 
previously recorded on the floppy disk. 

Drive Electronics 

Each floppy disk drive contains digital electronic cir· 
cuits that translate TTL·compatible command signals 
into electromechanical operations (such as drive selec· 
tion and head movement/loading) and that sense and 
report disk or drive status to the controller (e.g., drive 
ready, write fault, and write protect). In addition, the 
drive electronics contain analog components to sense, 
amplify, and shape data pulses read from, or written to, 
the floppy disk surface by the read/write head. 

207875·002 



APPLICATIONS 

Controller/Drive Interface 

The controller/drive interface consists of high-current 
line drivers, Schmitt triggered input gates, and flat or 
twisted pair cable(s) to connect the disk drive electronics 
to the controller electronics. Each interface signal line is 
resistively terminated at the end of the cable farthest 
from the line drivers. Eight-inch drives may be directly 
interfaced by means of 50-conductor flat cable. 
Generally, cable lengths should be less than ten feet in 
order to maintain noise immunity. 

Normally, provisions are made for up to four disk 
drives to share the same interface cable. The controller 
may operate as many cable assemblies as practical. LSI 
floppy disk controllers typically operate one to four 
drives on a single cable. 

Processor/Memory Interface 

The disk controller must inteiface to the system proc­
essor and memory for two distinct purposes. First, the 
processor must specify disk control and command 
parameters to the controller. These parameters include 
the selection of the recording density and specification 
of disk formatting information (discussed in section 3). 
In addition to disk parameter specification, the proc­
essor must also send commands (e.g., read, write, seek, 
and scan) to the controller. These commands require the 
specification of the command code, drive number, 
cylinder address, sector address, and head address. 
Most LSI controllers receive commands and parameters 
by means of processor I/O instructions. 

In addition to this I/O interface, the controller must 
also be designed for high-speed data transfer between 
memory and the disk drive. Two implementation 
methods may be used to coordinate this data transfer. 
The lowest-cost method requires direct processor in­
tervention in the transfer. With this method, the con­
troller issues an interrupt to the processor for each data 
transfer. (An equivalent method allows the processor to 
poll an interrupt flag in the controller status word.) In 
the case of a disk write operation, the processor writes a 
data byte (to be encoded into the serial output stream) 
to the disk controller following the receipt of each con­
troller interrupt. During a disk read operation, the proc­
essor reads a data byte (previously assembled from the 
input data stream) from the controller after each inter­
rupt. The processor must transfer a data byte from the 
controller to memory or transfer a data byte. from 
memory to the disk controller within 16 or 32 
microseconds after each interrupt (double-density and 
single-density response times, respectively). 

If the system processor must service a variety of other 
interrupt sources, this interrupt method may not be 
practical, especially in double-density systems. In this 
case, the disk controller may be interfaced to a Direct 

Memory Access (DMA) controller. When the disk con­
troller requires the transfer of a data byte, it simply ac­
tivates the DMA request line. The DMA controller in­
terfaces to the processor and, in response to the disk 
controller's request, gains control of the memory inter­
face for a short period of time-long enough to transfer 
the requested data byte to/from memory. See section 6 
for a detailed DMA interface description. 

3. DISK FORMAT 

New floppy disks must be written with a fixed format by 
the controller before these disks may be used to store 
data. Formatting is a method of taking raw media and 
adding the necessary information to permit the con­
troller to read and write data without error. All format­
ting is performed by the disk controller on a track-by­
track basis under the direction of the system processor. 
Generally, a track may be formatted at any time. 
However, since formatting "initializes" a complete disk 
track, all previously written data is lost (after a format 
operation). A format operation is normally used only 
when initializing new floppy disks. Since soft-sectoring 
in such a predominant formatting technique (due to 
IBM's influence), the following discussion will limit 
itself to soft-sectored formats. 

Data Recording Techniques 

Two standard data recording techniques are used to 
combine clock and data information for storage on a 
floppy disk. The single-density technique is referred to 
as FM encoding. In FM encoding (see Figure 3), a dou­
ble frequency encoding technique is used that inserts a 
data bit between two adjacent clock bits. (The presence 
of a data bit represents a binary "one'.' while the 
absence of a data bit represents a binary "zero.") The 
two adjacent clock bits are referred to as a bit cell, and 
except for unique field identifiers, all clock bits written 
on the disk are binary "ones." In FM encoding, each 
data bit is written at the center of the bit cell and the 
clock bits are written at the leading edge of the bit cell. 

The encoding used for double-density recording is 
termed MFM encoding (for "Modified FM"). In MFM 
encoding (Figure 3) the data bits are again written at the 
center of the bit cell. However, a clock bit is written at 
the leading edge of the bit cell only if no data bit was 
written in the previous bit cell and no data bit will be 
written in the present bit cell. 

Sectors 

Soft-sectored floppy disks divide each track into a 
number of data sectors. Typically, sector sizes of 128, 
256, 512, or 1024 data bytes are permitted. The sector 
size is specified when the track is initially formatted by 
the controller. Table 1 lists the single- and double-

6-502 207675-002 



APPLICATIONS 

density data storage capacities for each of the four sec­
tor sizes. Each sector within a track is composed of the 
following four fields (illustrated in Figure 4): 

I. Sector ID Field - This field, consisting of seven 
bytes, is written only when the track is formatted. 
The ID field provides the sector identification that is 
used by the controller when a sector must be read or 
written. The first byte of the field is the ID address 
mark, a unique coding that specifies the beginning of 
the ID field. The second, third, and fourth bytes are 
the cylinder, head, and sector addresses, respective­
Iy, and the fifth byte is the sector length code. The 
last two bytes are the 16-bit eRe character for the 
ID field. During formatting, the controller supplies 
the address mark. The cylinder, head, and sector ad­
dresses and the sector length code are supplied to the 
controller by the processor software. The eRe 
character is derived by the controller from the data in 
the first five bytes. 

2. Post ID Field Gap - The post ID field gap (gap 2) 
is written initially when the track is formatted. Dur­
ing subsequent write operations, the drive's write cir­
cuitry is enabled within the gap and the trailing bytes 
of the gap are rewritten each time the sector is up­
dated (written). During subsequent read operations, 
the trailing bytes of the gap are used to synchronize 
the data separator logic with the upcoming data 
field. 

3. Data Field - The length (number of data bytes) of 
the data field is determined by software when the 
track is formatted. The first byte of the data field is 
the data address mark, a unique coding that specifies 

the beginning of the data field. When a sector is to be 
deleted, (e.g., a hard error on the disk), a deleted 
data address mark is written in place of the data ad­

. dress mark. The last two bytes of the data field com­
prise the eRe character. 

4. Post Data Field Gap - The post data field gap 
(gap 3) is written when the track is formatted and 
separates the preceding data field from the next 
physical ID field on the track. Note that a post data 
field gap is not written following the last physical 
sector on a track. The gap itself contains a program­
selectable number of bytes. Following a sector up­
date (write) operation, the drive's write logic is 
disabled during the gap. The actual size of gap 3 is 
determined by the maximum number of data bits 
that can be recorded on a track, the number of sec­
tors per track and the total sector size (data plus 
overhead information). The gap size must be ad­
justed so that it is large enough to contain the discon­
tinuity generated on the floppy disk when the write 
current is turned on or off (at the start or completion 
of a disk write operation) and to contain a syn­
chronization field for the upcoming ID field (of the 
next sector). On the other hand, the gaps must be 
small enough so that the total number of data bits re­
quired on the track (sectors plus gaps) is less than the 
maximum number of data bits that can be recorded 
on the track. The gap size must be specified for all 
read, write, and format operations. The gap size 
used during disk reads and writes must be smaller 
than the size used to format the disk to avoid the 
splice points between contiguous physical sectors. 
Suggested gap sizes are listed in Table 9. 

DATA I 0 I 0 o I o I 1 

FM 

MFM 

--j I- BIT CELL (4 ",) 

NOTE THAT THE FM EiITCELL IS TWICE THE SIZE OFTHE MFM BIT CELL. THUS, THE 
FM TIME SCALE IN THIS FIGURE IS 4~s/BIT WHJlE THE MFM TIME SCALE IS 2 f.js/BIT 

Figure 3. FM and MFM Encoding 

6-503 
207875-002 



APPLICATIONS 

Tracks 

The overall format for a track is illustrated in Figure 4. 
Each track consists of the following fields: 

1. Pre-Index Gap - The pre-index gap (gap 5) is writ­
ten only when the track is formatted. 

2. Index Address Mark - The index address mark 
consists of a unique code that indicates the beginning 
of a data track. One index mark is written on each 
track when the track is formatted. 

3. Post Index Gap - The post index gap (gap 1) is 
used during disk read and write operations to syn-

nPHYSICAL 
INDEX 
MARK 

-------' 

i~ FINAL PRE· 
SECTOR INDEX 

DATA 
GAP 

GAP 
FIELD 

(GAP 4) 
(GAP 5) 

, 

INDEX 
POST 
INDEX 

ADDRESS 
GAP 

MARK (GAP 1) 

I 

chronize the data separator logic with the data to be 
read from the ID field (of the first sector). The post 
index gap is written only when the disk is formatted. 

4. Sectors - The sector information (discussed above) 
is repeated once for each sector on the track. 

5. Final Gap - The final gap (gap 4) is written when 
the track is formatted and extends from the last 
physical data field on the track to the physical index 
mark. The length of this gap is dependent on the 
number of bytes per sector specified, the lengths of 
the program-selectable gaps specified, and the drive 
speed. 

SECTOR 
POST ID 

FIELD SECTOR 1 
1 GAP DATA FIELD 

ID FIELD (GAP 2) 

HEX FF SYNC J 
(HEX 00) 1 SYNC J HEX FF (HEX 00) 

l DATA 1 CRC 1 CRC J ADDRESS 128 x 2" USER DATA BYTES BYTE 1 eVTE 2 MARK 

/I I 

POST POST 
POST 10 DATA POST 10 DATA SECTOR lu) SECTOR FIELD SECTOR 2 FIELD SECTOR FIELD 2 FIELD 3 GAP DATA FIELD GAP DATA GAP 10 FIELD GAP 10 FIELD 

(GAP 3) (GAP 2) (GAP 3) (GAP 2) FIELD 

I I 

I 1 SYNC J l I SYNC I HEX FF (HEX 00) HEX FF (HEX 00) 

l 10 
TRACK I HEAD 1 SECTOR 1 SECTOR 1 CRC I CRC J ADDRESS 

MARK ADDRESS ADDRESS ADDRESS LENGTH BYTE 1 BYTE 2 

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 BYTE 7 

Figure 4. Standard Floppy Diskette Track Format (From sec 204 Manual) 

6-504 207875-002 



APPLICATIONS 

Sector Interleaving 

The initial formatting of a floppy disk determines where 
sectors are located within a track. It is not necessary to 
allocate sectors sequentially around the track (i.e., 
1,2,3, ... ,26). In fact, is is often advantageous to place 
the sectors on the track in a non-sequential order. Se­
quential sector ordering optimizes sector access times 
during multi-sector transfers (e.g., when a program is 
loaded) by permitting the number of sectors specified 
(up to an entire track) to be transferred within a single 
revolution of the disk. A technique known as sector in­
terleaving optimizes access times when, although sectors 
are accessed sequentially, a small amount of processing 
must be performed between sector reads/writes. For ex­
ample, an editing program performing a text search 
reads sectors sequentially, and after each sector is read, 
performs a software search. If a match is not found, the 
software issues a read request for the next sector. Since 
the floppy disk continues to rotate during the time that 
the software executes, the next physical sector is already 
passing under the read/write head when the read request 
is issued, and the processor must wait for another com­
plete revolution of the disk (approximately 166 
milliseconds) before the data may actually be input. 
With interleaving, the sectors are not stored sequentially 
on a track; rather, each sector is physically removed 
from the previous sector by some number (known as the 
interleave factor) of physical sectors as shown in Figure 
5. This method of sector allocation provides the proc­
essor additional execution time between sectors on the 
disk. For example, with a 26 sector/track format, an in­
terleave factor of 2 provides 6.4 milliseconds of proces­
sing time between sequential 128 byte sector accesses. 

Figure 5. Interleaved Sector Allocation Within a Track 

To calculate the correct interleave factor, the maximum 
processor time between sector operations must be divid­
ed by the time required for a complete sector to pass 
under the disk read/write head. After determining the 
interleave factor, the correct sector numbers are passed 
to the disk controller (in the exact order that they are to 
physically appear on the track) during the execution of a 
format operation. 

4. THE 8272 FLEXIBLE DISKETTE 
CONTROLLER 

The 8272 is a single-chip LSI Floppy Disk Controller 
(FDC) that contains the circuitry necessary to imple­
ment both single-and double-density floppy disk storage 
subsystems (with up to four dual-sided disk drives per 
FDC). The 8272 supports the IBM 3740 single-density 
recording format (FM) and the IBM System 34 double­
density recording format (MFM). With the 8272, less 
than 30 ICs are needed to implement a complete disk 
subsystem. The 8272 accepts and executes high-level 
disk commands such as format track, seek, read sector, 
write sector, and read track. All data synchronization 
and error checking is automatically performed by the 
FDC to ensure reliable data storage and subsequent 
retrieval. External logic is required only for the genera­
tion of the FDC master clock and write clock (see Sec­
tion 6) and for data separation (Section 5). The FDC 
provides signals that control the startup and base fre­
quency selection of the data separator. These signals 
greatly ease the design of a phase-locked loop data 
separator. 

In addition to the data separator interface signals, the 
8272 also provides the necessary signals to interface to 
microprocessor systems with or without Direct Memory 
Access (DMA) capabilities. In order to interface to a 
large number of commercially available floppy disk 
drives, the FDC permits software specification of the 
track stepping rate, the head load time, and the head 
unload time. 

The pin configuration and internal block diagram of the 
8272 is shown in Figure 6. Table 2 contains a description 
for each FDC interface pin. 

Floppy Disk Commands 

The 8272 executes fifteen high-level disk interface 
commands: 

Specify 
Sense Drive Status 
Sense Interrupt Status 
Seek 
Recalibrate 
Format Track 
Read Data 
Read Deleted Data 

6-505 

Write Data 
Write Deleted Data 
Read Track 
Read ID 
Scan Equal 
Scan High or Equal 
Scan Low or Equal 

207875-002 



APPLICATIONS 

Each command is initiated by a multi-byte transfer from 
the processor to the FDC (the transferred bytes contain 
command and parameter information). After complete 
command specification, the FDC automatically ex­
ecutes the command. The command result data (after 
execution of the command) may require a multi-byte 
transfer of status information back to the processor. It 

'is convenient to consider each FDC command as con­
sisting of the following three phases: 

COMMAND PHASE: The executing program 
transfers to the FDC all the 
information required to per­
form a particular disk opera­
tion. The 8272 automatically 
enters the command phase 
after RESET and following 
the completion of the result 
phase (if any) of a previous 
command. 

RESET Vee 080.7 

iiii RWISEEK 

LeTICIR 

FR/STP 

Ao HDL 

DBa RDY 

DB, WPfTS 

DB, FLT/TRKO 

DB, PSo 

DB, PS, 

DB. WR DATA 

DB, DS, 

DB, DS, 

DRO HDSEl 

DACK MFM 

TC WE 

IDX Vee 
INT RD DATA eli -----1-. 

CLK DW 

GND WRCLK 
elK --. 
Vee ----.. 
GND~ 

EXECUTION PHASE: The FDC performs the 
operation as instructed. The 
execution phase is entered 
immediately after the last 
command parameter is writ­
ten to theFDC in the 
preceding command phase. 
The execution phase normal­
ly ends when the last data 
byte is transferred to/from 
the disk (signalled by the TC 
input to the FDC) or when an 
error occurs. 

RESULT PHASE: After completion of the disk 
operation, status and other 
housekeeping information 
are made available to the 
processor. After the proc­
essor reads this information, 
the FDC reenters the com­
mand phase and is ready to 
accept another command. 

REGISTERS 

SERIAL 
INTERFACE 

CONTROLLER 

READY 
WRITE PROTECTITWO SIDE 
INDEX 
FAULTITRACK 0 

DRIVE DRIVE SELECT 0 
INTERFACE DRIVE SELECT 1 

CONTROLLER MFM MODE 

RWISEEK 
HEAD LOAD 
HEAD SELECT 
LOW CURRENT/DIRECTION 
FAULT RESET/STEP 

Figure 6. 8272 Pin Configuration and Internal Block Diagram 

6-506 207875-002 



APPLICATIONS 

Table 2. 8272 FDe Pin Description 

Number Pin I/O To/From Description 
Symbol 

I RST I uP Reset. Active-high signal that places the FDC in the "idle" state and all 
disk drive output signals are forced inactive (low). This input must be 
held active during power on reset while the RD and WR inputs are active. 

2 RD I- uP Read. Active-low control signal that enables data transfer from the FDC 
to the data bus. 

3 WR I- uP Write. Active-low control signal that enables data transfer from the data 
bus into the FDC. 

4 CS I uP Chip Select. Active-low control signal that selects the FDC. No reading or 
writing will occur unless the FDC is selected. 

5 Ao I- uP Address. Selects the Data Register or Main Status Register for input/out-
put in conjunction with the RD and WR inputs. (See Table 3.) 

6-13 DBa-DB, I/O- uP Data Bus. Bidirectional three-state 8-bit data bus. 

14 DRQ 0 DMA DMA Request. Active-high output that indicates an FDC request for 
DMA services. 

IS DACK I DMA DMA Acknowledge. Active-low control signal indicating that the re-
quested DMA transfer is in progress. 

16 TC I DMA Terminal Count. Active-high signal that causes the termination of a com-
mand. Normally, the terminal count input is directly connected to the 
TC/EOP output from the DMA controller, signalling that the DMA 
transfer has been completed. In a non-DMA environment, the processor 
must count data transfers and supply a TC signal to the FDC. 

17 IDX I Drive Index. Indicates detection of the physical index mark (the beginning of a 
track) on the selected disk drive. 

18 INT 0 uP Interrupt Request. Active-high signal indicating an 8272 interrupt service 
request. 

19 CLK I Clock. Signal phase 8 MHz clock (50"70 duty cycle). 

20 GND Ground. DC power return. 

21 WRCLK I Write Clock. 500 kHz (FM) or I MHz (MFM) write clock with a constant 
pulse width of 250 ns (for both FM and MFM recording). The write clock 
must be present at all times. 

22 DW I PLL Data Window. Data sample signal from the phase-locked loop indicating 
that the FDC, should sample input data from the disk drive. 

23 RD DATA I Drive Read Data. FDe input data from the selected disk drive. 

24 VCO 0 PLL VCO Sync. Active-high output that enables the phase-locked loop to 
synchronize with the input data from the disk drive. 

25 WE 0 Drive Write Enable. Active-high output that enables the disk drive write gate. 

26 MFM 0 PLL MFM Mode. Active-high output used by external logic to enable the 
MFM double-density recording mode. When the MFM output is low, 
single-density FM recording is indicated. 

27 HDSEL 0 Drive Head Select. Selects head 0 or head I on a dual-sided disk. 

28,29 DSl>DSO 0 Drive Drive Select. Selects one of four disk drives. 

30 WRDATA 0 Drive Write Data. Serial data stream (combination of clock and data bits) to be 
written on the disk. 

31,32 PSl>PSO 0 Drive Precompensation (pre-shift) Control. Write precompensation output con-
trol during MFM mode. Specifies early, late, and normal timing signals. 
See the discussion in Section 5. 

6-507 207875-002 



APPLICATIONS 

Table 2. 8272 FDC Pin Description (continued) 

Number Pin I/O To/From Description 
Symbol 

33 FLT/TRKO I Drive Fault/Track O. Senses the disk drive fault condition in the Read/Write 
mode and the Track 0 condition in the Seek mode. 

34 WP/TS I Drive Write Protect/Two-Sided. Senses the disk write protect status in the 
Read/Write mode and the dual-sided media status in.the Seek mode. 

35 RDY I Drive Ready. Senses the disk drive ready status. 

36 HDL 0 Drive Head Load. Loads the disk drive read/write head. (The head is placed in 
contact with the disk.) 

37 FR/STP 0 Drive Fault Reset/Step. Resets the fault flip-flop in the disk drive when 
operating in the Read/Write mode. Provides head step pulses (to move 
the head from one cylinder to another cylinder) in the Seek mode. 

38 LCT/DIR 0 Drive Low Current/Direction. Signals that the recording head has been position-
ed over the inner cylinders (44-77) of the floppy disk in the Read/Write 
mode. (The write current must be lowered when recording on the phys-
ically shorter inner cylinders of the disk. Most drives do not track the ac-
tual head position and require that the FDC supply this signal.) Deter-
mines the head step direction in the Seek mode. In the Seek mode, a high 
level on this pin steps the read/write head toward the spindle (step-in); a 
low level steps the head away from the spindle (step-out). 

39 RW/SEEK 0 Drive Read, Write/Seek Mode Selector. A high level selects the Seek mode; a 
low level selects the Read/Write mode. 

40 Vee + 5V DC Power. 

·Disabled when CS is high. 

Interface Registers 

To support information transfer between the FDC and 
the system processor, the 8272 contains two 8-bit 
registers: the Main Status Register and the Data 
Register. The Main Status Register (read only) contains 
FDC status information and may be accessed at any 
time. The Main Status Register (Table 4) provides the 
system processor with the status of each disk drive, the 
status of the FDC, and the status of the processor inter­
face. The Data Register (read/write) stores data, com­
mands, parameters, and disk drive status information. 
The Data Register is used to program the FDC during 
the command phase and to obtain result information 
after completion of FDC operations. Data is read from, 
or written to, the FDC registers by the combination of 
the AO, RD, WR, and CS signals, as described in' 
Table 3. 

In addition to the Main Status Register, the FDC con­
tains four additional status registers (STO, STl, ST2, 
and ST3). These registers are only available during the 
result phase of a command. 

Table 3. FDC Read/Write Interface 

CS Ao RD WR Function 

0 0 0 I Read Main Status Register 
0 0 I 0 Illegal 
0 0 0 0 Illegal 
0 I 0 0 Illegal 
0 1 0 I Read from Data Register 
0 1 I 0 Write into Data Register 
I X X X Data Bus is three-stated 

6-508 207875-002 



APPLICATIONS 

Table 4. Main Status Register Bit Definitions 

Bit Symbol Description 
Number 

0 DaB Disk Drive 0 Busy. Disk Drive 0 is 
in the Seek mode. 

I D]B Disk Drive I Busy. Disk Drive I is 
in the Seek mode. 

2 D2B Disk Drive 2 Busy. Disk Drive 2 is 
in the Seek mode. 

3 D3B Disk Drive 3 Busy. Disk Drive 3 is 
in the Seek mode. 

4 CB FDC Busy. A read or write com-
mand is in process. 

5 NDM Non-DMA Mode. The FDC is in 
the non-DMA mode when this bit is 
high. This bit is set only during the 
execution phase of commands in 
the non-DMA mode. Transition to 
a low level indicates that the exe-
cution phase has ended. 

6 DIO Data Input/Output. Indicates the 
direction of a data transfer between 
the FDC and the Data Register. 
When DIO is high, data is read 
from the Data Register by the proc-
essor; when DIO is low, data is 
written from the processor to the 
Data Register. 

7 RQM Request for Master. Indicates that 
the Data Register is ready to send 
data to, or receive data from, the 
processor. 

Command/Result Phases 

Table 5 lists the 8272 command set. For each of the fif­
teen commands, command and result phase data 
transfers are listed. A list of abbreviations used in the 
table is given in Table 6, and the contents of the result 
status registers (STO-ST3) are illustrated in Table 7. 

The bytes of data which are sent to the 8272 during the 
command phase, and are read out of the 8272 in the 
result phase, must occur in the order shown in Table 5. 
That is, the command code must be sent first and the 
other bytes sent in the prescribed sequence. All bytes of 
the command and result phases must be read/written as 
described. After the last byte of data in the command 
phase is sent to the 8272 the execution phase 
automatically starts. In a similar fashion, when the last 
byte of data is read from the 8272 in the result phase, 

the command is automatically ended and the 8272 is 
ready for a new command. A command may be aborted 
by simply raising the terminal count signal (pin 16). This 
is a convenient means of ensuring that the processor 
may always gain control of the 8272 (even if the disk 
system hangs up in an abnormal manner). 

It is important to note that during the result phase all 
bytes shown in Table 5 must be read. The Read Data 
command, for example, has seven bytes of data in the 
result phase. All seven bytes must be read in order to 
successfully complete the Read Data command. The 
8272 will not accept a new command until all seven 
bytes have been read. The number of command and 
result bytes varies from command-to-command. 

In order to read data from, or write data to, the Data 
Register during the command and result phases, the 
system processor must examine the Main Status Register 
to determine if the Data Register is available. The DIO 
(bit 6) and RQM (bit 7) flags in the Main Status Register 
must be low and high, respectively, before each byte of 
the command word may be written into the 8272. Many 
of the commands require multiple bytes, and as a result, 
the Main Status Register must be read prior to each byte 
transfer to the 8272. To read status bytes during the 
result phase, DIO and RQM in the Main Status Register 
must both be high. Note, checking the Main Status 
Register in this manner before each byte transfer 
to/from the 8272 is required only in the command and 
result phases, and is NOT required during the execution 
phase. 

Execution Phase 

All data transfers to (or from) the floppy drive occur 
during the execution phase. The 8272 has two primary 
modes of operation for data transfers (selected by 
the specify command): 

1. DMA mode 

2. non-DMA mode 

In the DMA mode, DRQ (DMA Request) is activated 
for each transfer request. The DMA controller responds 
to DRQ with DACK (DMA Acknowledge) and RD (for 
read commands) or WR (for write commands). DRQ is 
reset by the FDC during the transfer. INT is activated 
after the last data transfer, indicating the completion of 
the execution phase, and the beginning of the result 
phase. In the DMA mode, the terminal count 
(TC/EOP) output of the DMA controller should be 
connected to the 8272 TC input to properly terminate 
disk data transfer commands. 

6-509 207875-002 



APPLICATIONS 

Table 5. 8272 Command Set 
DATA BUS DATA BUS 

PHASE RIW D7 D8 DS D4 D3 D2 D, DO I REMARKS PHASE RIW D7 D8 DS D4 D3 D2 D, DO REMARKS 

AEAO DATA AEAO A TAACK 

Command W MT MFM SK 0 0 , , 0 Command Codes Command W 0 MFM SK 0 0 0 1 0 Command Codes 

W 0 0 0 0 0 HDS OS, DSO W 0 0 0 ' 0' 0 HDS DSl DSO 

W C Sector 10 information W C Sector 10 Information 
W H prior to Command W H prior to Command 
W A execution W A execution 
W N W N 
W ______ EOT W EOT 
W GPL W GPL 
W DTL W DTL 

Executlon Oala transfer Execution 
Data transfer 

between the FOD between the FOD 

and the main-system and the main-system. 
FOC reads the 

Result A STO Status Information complete track 
A ST 1 alter Command contents from the 
A ST 2 execution physical index 
A C mark to EOT 
A H Sector 10 Information 
A A after command Result A ST 0 Status information 
A N execution A ST 1 after Command 

A ST 2 execution 
READ DELETED DATA A C 

Command W MT MFM SK 0 , 1 0 0 Command Codes A H _____ Sector 10 information 

W 0 0 0 0 0 HOS OS, DSO 
A A after Command 
A N execution 

W C Sector 10 information 
W H prior to Command AEAO 10 
W A execution Command W 0 MFM 0 0 , 0 1 0 Command Codes 
W N 
W ECl W 0 0 0 0 0 HDS OSl OSO 

W GPL 
W OTL Execution The first correct ID 

Execution Data transfer 
Information on the 

between the FOO 
track is stored in 

and the main-system 
Data Register 

Result A ST 0 Status information Result A STO Status information 
A ST 1 after Command A STl after Command 
A ST2 execution A ST 2 execution 
A C A C 
A H Sector 10 information A H Sector 10 information 
A A after Command A A during Execution 

A N execution A N Phase 

WAITE DATA FORMAT A TRACK 

Command W MT MFM 0 0 0 1 0 1 Command Codes Command W 0 MFM 0 0 1 1 0 1 Command Codes 

W 0 0 0 0 0 HOS OS1 OSO 'w 0 0 0 0 0 HOS OS1 OSO 

W C Sector 10 information W N Bytes/Sector 

W H prior to Command W SC SectorsfTrack 

W A execution W GPL Gap 3 

W N W 0 Filter Byte 

W EOT 
W GPL Execution FOC formats an 
W __ ~. ___ OTL entire track 

Execution Data transfer Result A ST 0 Status information 
between the main- A ST 1 after Command 
system and the FOO A ST2 ____ execution 

Result A ST 0 Status information A C 

A ST 1 after Command A H In this case, the 10 

A ST2 execution A A information has no 

A C A N meaning 

A H Sector 10 information SCAN EQUAL 
A A aUer Command 
A N execution Command W MT MFM SK 1 0 0 0 1 Command Codes 

WAITE DELETED DATA W 0 0 0 0 0 HOS OS1 OSO 

Command W MT MFM 0 0 1 0 0 , Command Codes 
W C Sector 10 information 
W H prior to Command 

W 0 0 0 0 0 HOS OS1 OSO W A execution 
W C Sector 10 information W N 
W H prior to Command W EOT 
W A execution W GPL 
W N W STP 

W ______ EOT 

W GPL Execution Data compared 
W OTL between the FOO 

Execution Data transfer 
and the maln·system 

between the FOO Result A STO Status information 
and the main-system A ST 1 after Command 

Result A STO Status information A ST 2 execution 

A ST 1 after Command A C 

A ST 2 execution A H Sector 10 information 

A 
C, ______ A A after Command 

A H Sector ID information A N execution 

A A atter Command 
A N execution 

Note: 1. AO= 1 for all operations. 

6-510 207875-002 



APPLICATIONS 

Table 5. Command Set (Continued) 

DATA BUS DATA BUS 

PHASE RIW 0 7 06 05 D. 03 02 01 DO REMARKS PHASE RIW 07 06 05 04 ·03 02 01 DO REMARKS 

SCAN LOW OR EQUAL RECALIBAATE 

Command W MT MFM SK 1 1 0 0 1 Command Codes Command W 0 0 0 0 0 1 1 1 Command Codes 
W 0 0 0 0 0 HOS OS1 OSO W 0 0 0 0 0 0 OSl DSO 
W C Sector ID information Execution Head retracted to 
W H prior Command Track 0 
W R execution 
W N SENSE INTERRUPT STATUS 
W EOT 

Command W 0 0 W GPl 0 0 1 0 0 0 Command Codes 

W STP Result ----- R STO Status information at 
R C the end of each seek 

Execution Data compared operation about the 
between the FDD FOC 
and the main-system 

SPECIFY 

Result R ST 0 Status information Command W 0 0 0 0 0 0 1 1 Command Codes 
R ST 1 

----~ 
after Command 

W _SPT __ .. _HUT R ST 2 execution - Timer Settings 
R C W HlT NO 

R H ----- Sector ID information SENSE DRIVE STATUS 
R R after Command 
R N execution Command W 0 0 0 0 0 1 0 0 Command Codes 

SCAN HIGH OR EQUAL W 0 0 0 0 0 HOS OSl DSO 

Result R ST 3 Status information 
Command W MT MFM SK 1 1 1 0 1 Command Codes about the FDD 

W 0 0 0 0 0 HDS DS1 DSO 
SEEK 

W C Sector ID information 
W H prior Command Command W 0 0 0 0 1 1 1 1 Command Codes 
W R execution W 0 0 0 0 0 HDS DS1 DSO 
W N 

W C W EOT ---- ----
W GPl 
W STP Execution Head is positioned 

over proper Cylinder 

Execution Data compared on Diskette 

between the FDD INVALID 
and the main-system 

Command W --_. Invalid Codes 
---~ 

Invalid Command 
Result R ____ ~ STO Status information Codes (NoOp- FDC 

R ST 1 alter Command goes into Standby 
R ST 2 execution State) 
R C Result R STO 5TO=80 
R H 

----~-
Sector ID information 116) 

R R after Command 
R N execution 

Table 6. Command/Result Parameter Abbreviations 

Symbol Description Symbol Description 

C Cylinder Address. The currently selected EaT End of Track. The final sector number of the 
cylinder address (0 to 76) on the disk. current track. 

0 Data Pattern. The pattern to be written in GPL Gap Length. The gap 3 size. (Gap 3 is the 
each sector data field during formatting. space between sectors excluding the VCO syn-

DSO,DSI Disk Drive Select. chronization field as defined in section 3.) 

DSI DSO H Head Address. Selected head: 0 or 1 (disk side 
0 0 Drive 0 o or 1, respectively) as encoded in the sector 
0 I Drive I ID field. 
I 0 Drive 2 HLT Head Load Time. Defines the time interval 
I 1 Drive 3 that the FDC waits after loading the head 

DTL Special Sector Size. During the execution of before initiating a read or write operation. 
disk read/write commands, this parameter is Programmable from 2 to 254 milliseconds (in 
used to temporarily alter the effective disk sec- increments of 2 ms). 
tor size. By setting N to zero, DTL may be HUT Head Unload Time. Defines the time interval 
used to specify a sector size from I to 256 from the end of the execution phase (of a read 
bytes in length. If the actual sector (on the or write command) until the head is unloaded. 
diskette) is larger than DTL specifies, the re- Programmable from 16 to 240 milliseconds (in 
mainder of the actual sector is not passed to increments of 16 ms). 
the system during read commands; during write 
commands, the remainder of the actual sector MFM MFM/FM Mode Selector. Selects MFM 

is written with all-zeroes bytes. DTL should double,density recording mode when high, FM 

be set to FF hexadecimal when N.is not zero. single-density mode when low. 

6-511 207875-002 



APPLICATIONS 

Table 6. Command/Result Parameter Abbreviations (continued) 

Symbol Description Symbol Description 

MT Multi-Track Selector. When set, this flag SK Skip Flag. When this flag is set, sectors con-
selects the multi-track operating mode. In this taining deleted data address marks will auto-
mode (used only with dual-sided disks), the matically be skipped during the execution of 
FDC treats a complete cylinder (under both multi-sector Read Data or Scan commands. In 
read/write head 0 and read/write head 1) as a the same manner, a sector containing a data 
single track. The FDC operates as if this address mark will automatically be skipped 
expanded track started at the first sector under during the execution of a multi-sector Read 
head 0 and ended at the last sector under head Deleted Data command. 
1. With this flag set (high), a multi-sector read 

SRT Step Rate Interval. Defines the time interval 
opeation will automatically continue to the 

between step pulses issued by the FDC (track-
first sector under head 1 when the FDC 

to-track access time). Programmable from 1 to 
finishes operating on the last sector under head 

16 milliseconds (in increments of 1 ms). 
O. 

N Sector Size. The number of data bytes within a 
STO Status Register 0-3. Registers within the FDC 
STl that store status information after a command 

se<;tor. (See Table 9.) 
ST2 has been executed. This status information is 

ND Non-DMA Mode Flag. When set (high), this ST3 available to the processor during the Result 
flag indicates that the FDC is to operate in the Phase after command execution. These 
non-DMA mode. In this mode, the processor registers may only be read after a command 
is interrupted for each data transfer. When has been executed (in the exact order shown in 
low, the FDC interfaces to a DMA controller Table 5 for each command). These registers 
by means of the DRQ and DACK signals. should not be confused with the Main Status 

R Sector Address. Specifies the sector number to Register. 

be read or written. In multi-sector transfers, STP Scan Sector Increment. During Scan opera-
this parameter specifies the sector number of tions, this parameter is added to the current 
the first sector to be read or written. sector number in order to determine the next 

SC Number of Sectors per Track. Specifies the sector to be scanned. 

number of sectors per track to be initialized by 
the Format Track command. 

Table 7. Status Register Definitions 

Bit Symbol Description 
Number 

Status Register 0 

7,6 IC Interrupt Code. 

00 - Normal termination of command. The specified command was properly executed and 
completed without error. 

01 - Abnormal termination of command. Command execution was started but could not be 
successfully completed. 

10 - Invalid command. The requested command could not be executed. 

II - Abnormal termination. During command execution, the disk drive ready signal 
changed state. 

5 SE Seek End. This flag is set (high) when the FDC has completed the Seek command and the 
read/write head is positioned over the correct cylinder. 

4 EC Equipment Check Error. This flag is set (high) if a fault signal is received from the disk drive 
or if the track 0 signal fails to become active after 77 step pulses (Recalibrate command). 

3 NR Not Ready Error. This flag is set if a read or write command is issued and either the drive is 
not ready or the command specifies side I (head I) of a single-sided disk. 

2 H Head Address. The head address at the time of the interrupt. 

1,0 DSI,DSO Drive Select. The number of the drive selected at the time of the interrupt. 

6-512 207875-002 



APPLICATIONS 

Table 7. Status Register Definitions (continued) 

Bit Symbol Description 
Number 

Status Register 1 

7 EN End of Track Error. This flag is set if the FDC attempts to access a sector beyond the final 
sector of the track. 

6 Not used. This bit is always low. 

S DE Data Error. Set when the FDC detects a CRC error in either the ID field or the data field of a 
sector. 

4 OR Overrun Error. Set (during data transfers) if the FDC does not receive DMA or processor serv-
ice within the specified time interval. 

3 Not used. This bit is always low. 

2 ND Sector Not Found Error. This flag is set by any of the following conditions. 

a) The FDC cannot locate the sector specified in the Read Data, Read Deleted Data, or Scan 
command. 

b) The FDC cannot locate the starting sector specified in the Read Track command. 

c) The FDC cannot read the ID field without error during a Read ID command. 

1 NW Write Protect Error. This flag is set if the FDC detects a write protect signal from the disk 
drive during the execution of a Write Data, Write Deleted Data, or Format Track command. 

0 MA Missing Address Mark Error. This flag is set by either of the following conditions: 

a) The FDC cannot detect the ID address mark on the specified track (after two occurrences 
of the physical index mark). 

b) The FDC cannot detect the data address mark or deleted data address mark on the 
specified track. (See also the MD bit of Status Register 2.) 

Status Register 2 

7 Not used. This bit is always low. 

6 CM Control Mark. This flag is set when the FDC encounters one of the following conditions: 

a) A deleted data address mark during the execution of a Read Data or Scan command. 

b) A data address mark during the execution of a Read Deleted Data command. 

S DD Data Error. Set (high) when the FDC detects a CRC error in a sector data field. This flag is 
not set when a CRC error is detected in the ID field. 

4 WC Cylinder Address Error. Set when the cylinder address from the disk sector ID field is different 
from the current cylinder address maintained within the FDC. 

3 SH Scan Hit. Set during the execution of the Scan command if the scan condition is satisfied. 

2 SN Scan Not Satisfied. Set during execution of the Scan command if the FDC cannot locate a sec-
tor on the specified cylinder that satisfies the scan condition. 

1 BC Bad Track Error. Set when the cylinder address from the disk sector ID field is FF hexadecimal 
and this cylinder address is different from the .current cylinder address maintained within the 
FDC. This all "ones~' cylinder number indicates a bad track (one containing hard errors) ac-
cording to the IBM soft-sectored format specifications. 

0 MD Missing Data Address Mark Error. Set if the FDC cannot detect a data address mark or 
deleted data address mark on the specified track. 

6-513 207875-002 



APPLICATIONS 

Table 7. Status Register Definitions (continued) 

Bit Symbol Description 
Number 

Status Register 3 

7 FT Fault. This flag indicates the status of the fault signal from the selected disk drive. 

6 WP Write Protected. This flag indicates the status of the write protect signal from the selected disk 
drive. 

S RDY Ready. This flag indicates the status of the ready signal from the selected disk drive. 

4 TO Track O. This flag indicates the status of the track 0 signal from the selected disk drive. 

3 TS Two-Sided. This flag indicates the status of the two-sided signal from the selected disk drive. 

2 H Head Address. This flag indicates the status of the side select signal for the currently selected 
disk drive. 

1,0 DS1,DSO Drive Select. Indicates the currently selected disk drive number. 

In the non-DMA mode, transfer requests are indicated 
by activation of both the INT output signal and the 
RQM flag (bit 7) in the Main Status Register. INT can 
be used for interrupt-driven systems and RQM can be 
used for polled systems. The system processor must re­
spond to the transfer request by reading data from (ac­
tivating RD), or writing data to (activating WR), the 
FDC. This response removes the transfer request (INT 
and RQM are set inactive). After completing the last 
transfer, the 8272 activates the INT output to indicate 
the beginning of the result phase. In the non-DMA 
mode, the processor must activate the TC signal to the 
FDC (normally by means of an I/O port) after the 
transfer request for the last data byte has been received 
(by the processor) and before the appropriate data byte 
has been read from (or written to) the FDC. 

In either mode of operation (DMA or non-DMA), the 
execution phase ends when a terminal count signal is 
sensed or when the last sector on a track (the EOT 
parameter-Table 5) has been read or written. In addi­
tion, if the disk drive is in a "not ready" state at the 
beginning of the execution phase, the "not ready" flag 
(bit 3 in Status Register 0) is set (high) and the command 
is terminated. 

If a fault signal is received from the disk drive at the end 
of a write operation (Write Data, Write Deleted Data, 
or Format), the FDC sets the "equipment check" flag 
(bit 4 in Status Register 0), and terminates the command 
after setting the interrupt code (bits 7 and 6 of Status 
Register 0) to "01" (bit 7 low, bit 6 high). 

Multi-sector and Multi-track Transfers 

During disk read/write transfers (Read Data, Write 
Data, Read Deleted Data, and Write Deleted Data), the 
FDC will continue to transfer data from sequential sec­
tors until the TC input is sensed. In the DMA mode, the 

TC input is normally connected to the TC/EOP (ter­
minal count) output of the DMA controller. In the non­
DMA mode, the processor directly controls the FDC TC 
input as previously described. Once the TC input is 
received, the FDC stops requesting data transfers (from 
the system processor or DMA controller). The FDC, 
however, continues to read data from, or write data to, 
the floppy disk until the end of the current disk sector. 
During a disk read operation, the data read from the 
disk (after reception of the TC input) is discarded, but 
the data CRC is checked for errors; during a disk write 
operation, the remainder of the sector is filled with all­
zero bytes. 

If the TC signal is not received before the last byte of the 
current sector has been transferred to/from the system, 
the FDC increments the sector number by one and ini­
tiates a read or write command for this new disk sector. 

The FDC is also designed to operate in a multi-track 
mode for dual-sided disks. In themuiti-track mode 
(specified by means of the MT flag in the command 
byte-Table 5) the FDC will automatically increment 
the head address (from 0 to 1) when the last sector (on 
the track under head 0) has been read or written. 
Reading or writing is then continued on the first sector 
(sector 1) of head 1. 

Drive Status Polling 

After the power-on reset, the 8272 automatically enters 
a drive status polling mode. If a change in drive status is 
detected (all drives are assumed to be }'not ready" at 
power-on), an interrupt is generated. The 8272 con­
tinues this status polling between command executions 
(and between step pulses in the Seek command). In this 
manner, the 8272 automatically notifies the system 
processor when a floppy disk is inserted, removed, or 
changed by the operator. 

6-514 207875-002 



APPLICATIONS 

Command Details 

During the command phase, the Main Status Register 
must be polled by the CPU before each byte is written 
into the Data Register. The DIO (bit 6) and RQM (bit 7) 
flags in the Main Status Register must be low and high, 
respectively, before each byte of the command may be 
written into the 8272. The beginning of the execution 
phase for any of these commands will cause DIO to be 
set high and RQM to be set low. 

The following paragraphs describe the fifteen FDC 
commands in detail. 

Specify 

The Specify command is used prior to performing any 
disk operations (including the formatting of a new disk) 
to define drive/FDC operating characteristics. The 
Specify command parameters set the values for three in­
ternal timers: 

1. Head Load Time (HLT) - This seven-bit value 
defines the time interval that the FDC waits after 
loading the head before initiating a read or write 
operation. This timer is programmable from 2 to 254 
milliseconds in increments of 2 ms. 

2. Head Unload Time (HUT) - This four-bit value 
defines the time from the end of the execution phase 
(of a read or write command) until the head is 
unloaded. This timer is programmable from 16 to 
240 milliseconds in increments of 16 ms. If the proc­
essor issues another command before the head 
unloads, the head will remain loaded and the head 
load wait will be eliminated. 

3. Step Rate Time (SRT) - This four-bit value defines 
the time interval between step pulses issued by the 
FDC (track-to-track access time). This timer is pro­
grammable from I to 16 milliseconds in increments 
of 1 ms. 

The time intervals mentioned above are a direct func­
tion of the FDC clock (CLK on pin 19). Times indicated 
above are for an 8 MHz clock. 

The Specify command also indicates the choice of DMA 
or non-DMA operation (by means of the ND bit). When 
this bit is high the non-DMA mode is selected; when ND 
is low, the DMA mode is selected. 

Sense Drive Status 

This command may be used by the processor whenever 
it wishes to obtain the status of the disk drives. Status 
Register 3 (returned during the result phase) contains 
the drive status information as described in Table 7. 

Sense Interrupt Status 

An interrupt signal is generated by the FDC when one or 
more of the following events occurs: 

1. The FDC enters the result phase for: 

a. Read Data command 
b. Read Track command 
c. Read ID command 
d. Read Deleted Data command 
e. Write Data command 
f. Format Track command 
g. Write Deleted Data command 
h. Scan commands 

2. The ready signal from one of the disk drives changes 
state. 

3. A Seek or Recalibrate command completes opera­
tion. 

4. The FDC requires a data transfer during the execu-
tion phase of a command in the non-DMA mode. 

Interrupts caused by reasons (1) and (4) above occur 
during normal command operations and are easily 
discernible by· the processor. However, interrupts 
caused by reasons (2) and (3) above are uniquely iden­
tified with the aid of the Sense Interrupt Status com­
mand. This command, when issued, resets the interrupt 
signal and by means of bits 5, 6, and 7 of Status Register 
o (returned during the result phase) identifies the cause 
of the interrupt (see Table 8). 

Table 8. Interrupt Codes 

Seek End Interrupt Code Cause 
Bit 5 Bit 6 Bit 7 

0 1 1 Ready Line changed 
state, either polarity 

1 0 0 Normal Termination 
of Seek or Recalibrate 
Command 

1 1 0 Abnormal Termination 
of Seek or Recalibrate 
Command 

Neither the Seek nor the Recalibrate command has a 
result phase. Therefore, it is mandatory to use the Sense 
Interrupt Status Command after these commands to 
effectively terminate them and to provide verification of 
the disk i).ead position. 

207875-002 
6-515 



APPLICATIONS 

When an interrupt is received by the processor, the FDC 
busy flag (bit 4) and the non-DMA flag (bit 5) may be 
used to distinguish the above interrupt causes: 

bit 5 

o 
o 
1 

bit 4 

o 
1 
1 

Asynchronous event-(2) or (3) above 
Result phase-(1) above 
Data transfer required-(4) above 

A single interrupt request to the processor may, in fact, 
be caused by more than one of the above events. The 
processor should continue to issue Sense Interrupt 
Status commands (and service the resulting conditions) 
until an invalid command code is received. In this man­
ner, all "hidden" interrupts are serviced. 

Seek 

The Seek command causes the drive's read/write head 
to be positioned over the specified cylinder. The FDC 
determines the difference between the current cylinder 
address and the desired (specified) address, and issues 
the appropriate number of step pulses. If the desired 
cylinder address is larger than the current address, the 
direction signal (LCT/DIR, pin 38) is set high (step-in); 
the direction signal is set low (step-out) if the desired 
cylinder address is less than the current address. No 
head movement occurs (no step pulses are issued) if the 
desired cylinder is the same as the current cylinder. 

The rate at which step pulses are issued is controlled by 
the step rate time (SRT) in the Specify command. After 
each step pulse is issued, the desired cylinder address is 
compared against the current cylinder address. When 
the cylinder addresses are equal, the "seek end" flag 
(bit 5 in Status Register 0) is set (high) and the command 
is terminated. If the disk drive becomes "not ready" 
during the seek operation, the "not ready" flag (in 
Status Register 0) is set (high) and the command is ter­
minated. 

During the command phase of the Seek operation the 
FDC is in the FDC busy state, but during the execution 
phase it is in the non-busy state. While the FDC is in the 
non-busy state, another Seek command may be issued. 
In this manner parallel seek operations may be in opera­
tion on up to four floppy disk drives at once. The Main 
Status Register contains a flag for each drive (Table 4) 
that indicates whether the associated drive is currently 
operating in the seek mode. When a drive has completed 
a seek operation, the FDC generates an interrupt. In 
response to this interrupt, the system software must 
issue a Sense Interrupt Status command. During the 
result phase of this command, Status Register 0 (con­
taining the drive number in bits 0 and I) is read by the 
processor. 

Recalibrate 

This command causes the read/write head of the disk 
drive to retract to the track 0 position. The FDC clears 
the contents of its internal cylinder counter, and checks 
the status of the track 0 signal from the disk drive. As 
long as the track 0 signal is low, the direction signal re­
mains high and step pulses are issued. When the track 0 
signal goes high, the seek end flag (in Status Register 0) 
is set (high) and the command is terminated. If the track 
o signal is still low after 77 step pulses have been issued, 
the seek end and equipment check flags (in Status 
Register 0) are both set and the Recalibrate command is 
terminated. 

Recalibrate commands for multiple drives can be 
overlapped in the same manner that Seek commands are 
overlapped. 

Format Track 

The Format Track command formats or "initializes" a 
track on a floppy disk by writing the ID field, gaps, and 
address marks for each sector. Before issuing the For­
mat command, the Seek command must be used to posi­
tion the read/write head over the correct cylinder. In ad­
dition, a table oflD field values (cylinder, head, and 
sector addresses and sector length code) must be 
prepared before the command is executed. During com­
mand execution, the FDC accesses the table and, using 
the values supplied, writes each sector on the track. The 
ID field address mark originates from the FDC and is 
written automatically as the first byte of each sector's 
ID field. The cylinder, head, and sector addresses are 
taken, in order, from the table. The ID field CRC 
character (derived from the data written in the first five 
bytes) is written as the last two bytes of the ID field. 
Gaps are written automatically by the FDC, with the 
length of the variable gap determined by one of the For­
mat command parameters. 

The data field address mark is generated by the FDC 
and is written automatically as the first byte of the data 
field. The data pattern specified in the command phase 
is written into each data byte of each sector. A CRC 
character is derived from the data address mark and the 
data written in the sector's data field. The two CRC 
bytes are appended to the last data byte. 

The formatting of a track begins at the physical index 
mark. As previously mentioned, the order of sector 
assignment is taken directly from the formatting table. 
Four entries are required for each sector: a cylinder ad­
dress, a head address, a sector address, and a sector 
length code. The cylinder address in the ID field should 
be equal to the cylinder address of the track currently 
being formatted. 

6-516 207875-002 



APPLICATIONS 

The sector addresses must be unique (no two equal). 
The order of the sector entries in the table is the se­
quence in which sector numbers appear on the track 
when it is formatted. The number of entry sets 
(cylinder, head, and sector address and sector length 
code) must equal the number of sectors allocated to the 
track (specified in the command phase). 

Since the sector address is supplied, in order, for each 
sector, tracks can be formatted sequentially (the first 
sector following the index mark is assigned sector ad­
dress 1, the adjacent sector is assigned sector address 2, 
and so on) or sector numbers can be interleaved (see sec­
tion 3) on a track. 

Table 9 lists recommended gap sizes and sectors/track 
for various sector sizes. 

Read Data 

Nine (9) bytes are required to complete the command 
phase specification for the Read Data command. Dur­
ing the execution phase, the FDC loads the head (if it is 
in the unloaded state), waits the specified head load time 
(defined in the Specify command), and begins reading 
ID address marks and ID fields. When the requested 
sector address compares with the sector address read 
from the disk, the FDC outputs data (from the data 
field) byte-by-byte to the system. The Read Data com­
mand automatically operates in the multi-sector mode 
described earlier. In addition, multi-track operation 
may be specified by means of the MT command flag 
(Table 5). The amount of data that can be transferred 
with a single command to the FDC depends on the 
multi-track flag, the recording density flag, and the 
number of bytes per sector. 

During the execution of read and write commands, the 
special sector size parameter (DTL) is used to tem­
porarily alter the effective disk sector size. By setting the 
sector size code (N) to zero, DTL may be used to specify 
a sector size from 1 to 256 bytes in length. If the actual 
sector (on the disk) is larger than DTL specifies, only 
the number of bytes specified by the DTL parameter are 

passed to the system; the remainder of the actual disk 
sector is not transferred (although the data is checked 
for CRC errors). Multi-sector read operations are per­
formed in the same manner as they are when the sector 
size code is non-zero. (The N and DTL parameters are 
always present in the command sequence. DTL should 
be set to FF hexadecimal when N is not zero.) 

If the FDC detects the physical index mark twice 
without finding the requested sector, the FDC sets the 
"sector not found error" flag (bit 2 in Status Register 1) 
and terminates the Read Data command. The interrupt 
code (bits 7 and 6 of Status Register 0) is set to "01." 
Note that the FDC searches for each sector in a multi­
sector operation. Therefore, a "sector not found" error 
may occur after successful transfer of one or more 
preceding sectors. This error could occur if a particular 
sector number was not included when the track was first 
formatted or if a hard error on the disk has invalidated a 
sector ID field. 

After reading the ID field and data field in each sector, 
the FDC checks the CRC bytes. If a read error is detect­
ed (incorrect CRC in the ID field), the FDC sets the 
"data error" flag in Status Register 1; if a CRC error 
occurs in the data field, the FDC sets the "data error" 
flag in Status Register 2. In either error condition, the 
FDC terminates the Read Data command. The interrupt 
code (bits 7 and 6 in Status Register 0) is set to "01." 

If the FDC reads a deleted data address mark from the 
disk, and the skip flag (specified during the command 
phase) is not set, the FDC sets the "control mark" flag 
(bit 6 in Status Register 2) and terminates the Read Data 
command (after reading all the data in the sector). If the 
skip flag is set, the FDC skips the sector with the deleted 
data address mark and reads the next sector. Thus, the 
skip flag may be used to cause the FDC to ignore deleted 
data sectors during a multi-sector read operation. 

During disk data transfers between the FDC and the 
system, the FDC must be serviced by the system (proc­
essor or DMA controller) every 27 I's in the FM mode, 
and every 13 I's in the MFM mode. If the FDC is not 

Table 9. Sector Size Relationships 

N SC GPL1 GPL2 

Format Sector Size Sector Size Sectorsl Gap 3 Gap 3 Remarks 
Code Track Length Length 

128 bytes/Sector 00 lA(16) 07(16) IB(16) IBM Diskette 1 
FM Mode 256 01 OF(16) OE(16) 2A(16) IBM Diskette 2 

512 02 08 IB(16) 3A(16) 

256 01 IA(l6) OE(l6) 36(16) IBM D'iskette 2D 
MFM Mode 512 02 OF(16) IB(16) 54(16) 

1024 03 08 35(16) 74(16) IBM Diskette 2D 

Notes: 1. Suggested values of GPL in Read or Write commands to avoid splice point between data field and ID field of contiguous sectors. 

2. Suggested values of GPL in Format command. 

6-517 207875-002 



APPLICATIONS 

serviced within this interval, the "overrun error" flag 
(bit 4 in Status Register 1) is set and the Read Data com­
mand is terminated. 

If the processor terminates a read (or write) operation in 
the FDC, the ID information in the result phase is 
dependent upon the state of the multi-track flag and end 
of track byte. Table 11 shows the values for C, H, R, 
and N, when the processor terminates the command. 

Write Data 

Nine (9) bytes are required to complete the command 
phase specification for the Write Data command. Dur­
ing the execution phase the FDC loads the head (if it is 
in the unloaded state). waits the specified head load time 
(defined by the Specify command), and begins reading 
sector ID fields. When the requested sector address 
compares with the sector address read from the disk, the 
FDC reads data from the processor one byte at a time 
via the data bus and outputs the data to the data field of 
that sector. The CRC is computed on this data and two 
CRC bytes are written at the end of the data field. 

The FDC reads the ID field of each sector and checks 
the CRC bytes. If the FDC detects a read error (incor­
rect CRC) in one of the ID fields, it sets the "data 
error" flag (bit 5 in Status Register 1) and terminates the 
Write Data command. The interrupt code (bits 7 and 6 
in Status Register 0) is set to "01." 

The Write Data command operates in much the same 
manner as the Read Data command. The following 
items are the same; refer to the Read Data command for . 
details: 

• Multi-sector and Multi-track operation 
• Data transfer capacity 
• "End of track error" flag 
• "Sector not found error" flag 
• "Data error" flag 
• Head unload time interval 
• ID information when the processor terminates the 

command (see Table 11) 
• Definition of DTL when N = 0 and when N"" 0 

During the Write Data execution phase, data transfers 
between the processor and FDC must occur every 31 /-<s 
in the FM mode. and every 15 /-<s in the MFM mode. If 
the time interval between data transfers is longer than 
this, the FDC sets the "overrun error" flag (bit 4 in Sta­
tus Register 1) and terminates the Write Data command. 

Read Deleted Data 

This command operates in almost the same manner as 
the Read Data command operates. The only difference 
involves the treatment of the data address mluk and the 

skip flag. When the FDC detects a data address mark at 
the beginning of a data field (and the skip flag is not 
set), the FDC reads all the data in the sector, sets the 
"control mark" flag (bit 6 in Status Register 2), and ter­
minates the command. If the skip flag is set, the FDC 
skips the sector with the data address mark and con­
tinues reading at the next sector. Thus, the skip flag may 
be used to cause the FDC to read only deleted data sec­
tors during a multi-sector read operation. 

Write Deleted Data 

This command operates in the same manner as the 
Write Data command operates except that a deleted 
data address mark is written at the beginning of the data 
field instead of the normal data address mark. This 
command is used to mark a bad sector (containing a 
hard error) on the floppy disk. 

Read Track. 

The Read Track command is similar to the Read Data 
command except that the entire data field is read con­
tinuously from each of the sectors of a track. Im­
mediately after encountering the physical index mark, 
the FDC starts reading all data fields on the track as 
continuous blocks of data. If the FDC finds an error in 
the ID field or data field CRC check bytes, it continues 
to read data from the track. The FDC compares the ID 
information read from each sector with the values 
specified during the command phase. If the specified ID 
field information is not found on the track, the "sector 
not found error" flag (in Status Register 1) is set. Multi­
track and skip operations are not allowed with this 
command. 

This command terminates when the last sector on the 
track has been read. (The number of sectors on the track 
is specified by the end of track parameter byte during 
the command phase.) If the FDC does not find an ID 
address mark on the disk after it encounters the physical 
index mark for the second time, it sets the "missing ad­
dress mark error" flag (bit 0 in Status Register 1) and 
terminates the command. The interrupt code (bits 7 and 
6 of Status Register 0) is set to "01." 

Read 10 

The Read ID command transfers (reads) the first correct 
ID field from the current disk track (following the 
physical index mark) to the processor. If no correct ID 
address mark is found on the track, the "missing ad­
dress mark error" flag is set (bit 0 in Status Register 1). 
If no data mark is found on the track, the "sector not 
found error" flag is also set (bit 2 in Status Register 1). 
Either error condition causes the command to be 
terminated. 

6-518 207875-002 



APPLICATIONS 

Scan Commands 
The Scan commands allow the data being read from the 
disk to be compared against data supplied by the system 
(by the processor in non-DMA mode, and by the DMA 
controller in DMA mode). The FDC compares the data 
on a byte-by-byte basis, and searches for a sector of 
data that meets the conditions of "disk data equal to 
system data", "disk data less than or equal to system 
data", or "disk data greater than or equal to system 
data". Simple binary (ones complement) arithmetic is 
used for comparison (FF = largest number, 00 = smallest 
number). If, after a complete sector of data is com­
pared, the conditions are not met, the sector number is 
incremented by the scan sector increment (specified in 
the command phase), and the scan operation is con­
tinued. The scan operation continues until one of the 
following conditions occurs; the conditions for scan are 
met (equal, low, or high), the last sector on the track is 
reached, or the terminal count signal is received. 

If the conditions for scan are met, the FDC sets the 
"scan hit" flag (bit 3 in Status Register 2) and ter­
minates the Scan command. If the conditions for scan 

are not met between the starting sector and the last sec­
tor on the track (specified in the command phase), the 
FDC sets the "scan not satisfied" flag (bit 2 in Status 
Register 2) and terminates the Scan command. The re­
ceipt of a terminal count signal from the processor or 
DMA controller during the scan operation will cause the 
FDC to complete the comparison of the particular byte 
which is in process, and to terminate the command. 
Table 10 shows the status of the "scan hit" and "scan 

Table 10. Scan Status Codes 

Command Status Register 2 Comments 
Bit 2 = SN Bit 3= SH 

Scan Equal 0 1 DFDD = Dprocessor 
I 0 DFDD=F Dprocessor 

Scan Low 0 1 DFDD = Dprocessor 

or Equal 0 0 DFDD< Dprocessor 
I 0 DFDD~ DProcessor 

Scan High 0 I DFDD = DProcessor 

or Equal 0 0 DFDD> Dprocessor 
I 0 DFD01- Dprocessor 

Table 11. ID Information When Processor Terminates Command 

Final Sector Transferred 

MT EOT to ID Information at Result Phase 
Processor C 

IA Sector I to 25 at Side 0 
OF Sector I to 14 at Side 0 NC 
08 Sector I to 7 at Side 0 

IA Sector 26 at Side 0 
OF Sector 15 at Side 0 C+I 

0 
08 Sector 8 at Side 0 

IA Sector I to 25 at Side I 
OF Sec\or I to 14 at Side I NC 
08 Sector I to 7 at Side I 

IA Sector 26 at Side I 
OF Sector 15 at Side I C+I 
08 Sector 8 at Side I 

IA Sector I to 25 at Side 0 
OF Sector I to 14 at Side 0 NC 
08 Sector 1 to 7 at Side 0 

IA Sector 26 at Side 0 
OF Sector 15 at Side 0 NC 

I 08 Sector 8 at Side 0 

IA Sector I to 25 at Side 1 
OF Sector 1 to 14 at Side 1 NC 
08 Sector I to 7 at Side I 

IA Sector 26 at Side I 
OF Sector 15 at Side I C+I 
08 Sector 8 at Side I 

Notes: 1. NC (No Change): The same value as the one at the beginning of command execution. 
2. LSB (Least Significant Bit): The least significant bit of H is complemented. 

6-519 

H R 

NC R+I 

NC R=OI 

NC R+I 

NC R=OI 

NC R+I 

LSB R=OI 

NC R+I 

LSB R=OI 

N 

NC 

NC 

NC 

NC 

NC 

NC 

NC 

NC 

207875-002 



APPLICATIONS 

not satisfied" flags under various scan termination 
conditions. 

If the FDC encounters a deleted data address mark in 
one of the sectors and the skip flag is low, it regards the 
sector as the last sector on the cylinder, sets the "control 
mark" flag (bit 6 in Status Register 2) and terminates 
the command. If the skip flag is high, the FDC skips the 
sector with the deleted address mark, and reads the next 
sector. In this case, the FDC also sets the "control 
mark" flag (bit 6 in Status Register 2) in order to show 
that a deleted sector had been encountered. 

NOTE: During scan command execution, the last sector 
on the track must beread for the command to 
terminate properly. For example, if the scan 
sector increment is set to 2, the end of track 
parameter is set to 26, and the scan begins at 
sector 21, sectors 21, 23, and 25 will be 
scanned. The next sector, 27 will not be found 
on the track and an abnormal command ter­
mination will occur. The command would be 
completed in a normal manner if either a) the 
scan had started at sector 20 or b) the end of 
track parameter had been set to 25. 

During the Scan command, data is supplied by the proc­
essor or DMA controller for comparison against the 
data read from the disk. In order to avoid having the 
"overrun error" flag set (bit 4 in Status Register I), it is 
necessary to have the data available in less than 27 p's 
(FM Mode) or 13 p's (MFM Mode). If an overrun error 
occurs, the FDC terminates the command. 

Invalid Commands 

If an invalid (undefined) command is sent to the FDC, 
the FDC will terminate the command. No interrupt is 
generated by the 8272 during this condition. Bit 6 and 
bit 7 (DIO and RQM) in the Main Status Register are 
both set indicating to the processor that the 8272 is in 
the result phase and the contents of Status Register 0 
must be read. When the processor reads Status Register 
o it will find an 80H code indicating that an invalid com­
mand was received. 

A Sense Interrupt Status command must be sent after a 
Seek or Recalibrate interrupt; otherwise the FDC will 
consider the next.command to be an invalid command. 
Also, when the last "hidden" interrupt has been ser­
viced, further Sense Interrupt Status commands will 
result in invalid command codes. 

In some applications the user may wish to use this com­
mand as a No-Op command to place the FDC in a 
stand-by or no operation state. 

5. THE DATA SEPARATOR 

As briefly discussed in section 2, LSI disk controllers 
such as the 8272 require external circuitry to generate a 
data window signal. This signal is used within the FDC 
to isolate the data bits contained within the READ 
DATA input signal from the disk drive. (The disk 
READ DATA signal is a composite signal constructed 
from both clock and data information.) After isolating 
the data bits from this input signal, the FDC assembles 
the data bits into 8-bit bytes for transfer to the system 
processor or memory. 

Single Density 

In single-density (FM) recording (Figure 3 ), the bit cell 
is 4 microseconds wide. Each bit cell contains a clock bit 
at the leading edge of the cell. The data bit (if present) is 
always located at the center of the cell. The job of data 
separation is relatively straightforward for single­
density; simply generate a data window 2 p.s wide start­
ing 1 p's after each clock bit. Since every cell has a clock 
bit, a fixed window reference is available for every data 
bit and because the window is 2 p.s wide, a slightly 
shifted data bit will still remain within the data window. 

A single-density data separator with these specifications 
may be easily generated using a digital or analog one­
shot triggered by the clock bit. 

Double·Density 

Double-density (MFM) bit cells are reduced to 2 p.s (in 
order to double the disk data storage capacity). Clock 
bits are inserted into the data stream only if data bits are 
not present in both the current and preceding bit cells 
(Figure 3). The data bit (if present) still occurs at the 
center of the bit cell and the clock bit (if present) still oc­
curs at the leading edge of the bit cell. 

MFM data separation has two problems. First, only 
some bit cells contain a clock bit. In this manner, MFM 
encoding loses the fixed bit cell reference pulse present 
in FM encoding. Second, the bit cell for MFM is one­
half the size of the bit cell for FM. This shorter bit cell 
means that MFM cannot tolerate as large a playback 
data-shift (as FM can tolerate) without errors. 

Since most playback data-shift is predictable, the FDC 
can precompensate the write data stream so that 
datal clock pulses will be correctly positioned for subse­
quent playback. This function is completely controlled 
by the FDC and is only required for MFM recording. 
During write operations, the FDC specifies an early, 
normal, or late bit positioning. This timing information 
is specified with respect to the FDC write clock. Early 
and late timing is typically 125 ns to 250 ns before or 
after the write clock transition (depending on disk drive 
requirements). 

207875-002 



APPLICATIONS 

The data separator circuitry for double-density record­
ing must continuously analyze the total READ DATA 
stream, synchronizing its operation (window genera­
tion) with the actual clock/data bits of the data stream. 
The data separation circuit must track the disk input 
data frequency very closely-unpredictable bit shifts 
leave less than 50 ns margin to the window edges. 

Phase· Locked Loop 
Only an analog phase-locked loop (PLL) can provide 
the reliability required for a double-density data separa­
tion circuit. (A phase-locked loop is an electronic circuit 
that constantly analyzes the frequency of an input signal 
and locks another oscillator to that frequency.) Using 
analog PLL techniques, a data separator can be de­
signed with ± 1 ns resolution (this would require a 100 
MHz clock in a digital phase-locked loop). The analog 
PLL determines the clock and data bit positions by 
sampling each bit in the serial data stream. The phase 
relationship between a data bit and the PLL generated 
data window is constantly fed back to adjust the posi­
tion of the data window, enabling the PLL to track in­
put data frequency changes, and thereby reliably read 
previously recorded data from a floppy disk. 

PLL Design 
A block diagram of the phase-locked loop described in 
this application note is shown in Figure 7. Basically, the 
phase-locked loop operates by comparing the frequency 
of the input data (from the disk drive) against the fre­
quency of a local oscillator. The difference of these fre­
quencies is used to increase or decrease the frequency of 
the local oscillator in order to bring its frequency closer 
to that of the input. The PLL synchronizes the local 
oscillator to the frequency of the input during the all 
"zeroes" synchronization field on the floppy disk (im­
mediately preceding both the ID field and the data 
field). 

The PLL consists of nine ICs and is located on page 3 of 
the schematics in the Appendix. The 8272 YCO output 
essentially turns the PLL circuitry on and off. When the 
PLL is off, it "idles" at its center frequency. The YCO 
output turns the PLL on only when valid data is being 
received from the disk drive. The YCO turns the PLL 
on after the read/write head has been loaded and the 
head load time has elapsed. The PLL is turned off in the 
gap between the ID field and the data field and in the 
gap after the data field (before the next sector ID field). 
The GPL parameter in the FDC read and write com­
mands specifies the elapsed time (number of data bytes) 
that the PLL is turned off in order to blank out discon­
tinuities that appear in the gaps when the write current is 
turned on and off. The PLL operates with either MFM 
or FM input data. The MFM output from the FDC con­
trols the PLL operation frequency. 

The PLL consists of six functional blocks as follows: 

1. Pulse Shaping - A 96LS02 senses a READ DATA 
'pulse and provides a clean output signal to the FDC 
and to the PLL Phase Comparator and Frequency 
Discriminator circuitry. 

2. Phase Comparator - The phase difference be­
tween the PLL oscillator and the READ DATA input 
is compared. Pump up (PU) and pump down (PD) 
error signals are derived from this phase difference 
and output to the filter. If there is no phase dif­
ference between the PLL oscillator and the READ 
DATA input, the PU and PD pulse widths are equal. 
If the READ DATA pulse occurs early, the PU dura­
tion is shorter than the PD duration. If the data pulse 
occurs late, the PU duration is longer than the PD 
duration. 

3. Filter - This analog circuit filters the PU and PD 
pulses into an error voltage. This error voltage is buf­
fered by an LM358 operational amplifier. 

r-----------------------------------~~~~D~~TA 

READ DATA 
(FROM DISKETTE DRIVE) 

FREQUENCY 
DISCRIMINATOR 

VCO (FROM FDC) ---------------------1 
MFM (FROM FDC) ---------------------1 

START IDLE CLAMP 
LOGIC 

Figure 7. Phase·Locked Loop Data Separator 

6-521 

DATA WINDOW 
(TO FDC) 

207875-002 



APPLICATIONS 

4. PLL Oscillator - This oscillator is composed of a 
74LS393, 74LS74, and 96LS02. The oscillator fre­
quency is controlled by the error voltage output by 
the filter. This oscillator also generates the data win­
dow signal to the FDC. 

5. Frequency Discriminator - This logic tracks the 
READ DATA input from the disk drive and 
discriminates between the synchronization gap for 
FM recording (250 KHz) and the gap for MFM 
recording (500 KHz). Synchronization gaps im­
mediately precede address marks. 

6. Start Logic - The function of this logic is to clamp 
the PLL oscillator to its center frequency (2 MHz) 
until the FDC VCO signal is enabled and a valid data 
pattern is sensed by the frequency discriminator. The 
start logic (consisting of a 74LS393 and 74LS74) en­
sures that the PLL oscillator is started with zero 
phase error. 

PLL Adjustments 

The PLL must be initially adjusted to operate at its 
center frequency with the VCO output off and the ad­
justment jumper removed. The 5K trimpot should be 
adjusted until the frequency at the test point (Q output 
of the 96LS02) is 2 MHz. The jumper should then be 
replaced for normal operation. 

PLL Design Details 

The following paragraphs describe the operational and 
design details of the phase-locked loop data separator il-

lustrated in the appendix. Note that the analog section is 
operated from a separately filtered + 5V supply. 

Initialization 
As long as the 8272 maintains a low VCO signal, the 
data separator logic is "turned off". In this state, the 
PLL oscillator (96LS02) is not oscillating and therefore 
the 2XBR signal is constantly low. In addition, the 
pump up (PU) and pump down (PD) signals are inactive 
(PU low and PD high), the CNT8 signal is inactive 
(low), and the filter input voltage is held at 2.5 volts by 
two IMohm resistors between ground and +5 volts. 

Floppy Disk Data 
The data separator frequency discriminator, the input 
pulse shaping circuitry, and the start logic are always 
enabled and respond to rising edges of the READ DATA 
signal. The rising edge of every data bit from the disk 
drive triggers two pulse shaping one-shots. The first 
pulse shaper generates a stable and well-defined 200 ns 
read data pulse for input to the 8272 and other portions 
of the data separator logic. The second one-shot 
generates a 2.5 J1,S data pulse that is used for input data 
frequency discrimination. 

The frequency discriminator operates as illustrated in 
Figure 8. The 2F output signal is active (high) during 
reception of valid MFM (double-density) sync fields on 
the disk while the IF signal is active (high) during recep­
tion of valid FM (single-density) sync fields. A 
multiplexer (controlled by the 8272 MFM signal) selects 
the appropriate IF or 2F signal depending on the pro­
grammed mode. 

(0) FM OPERATION: ONE·SHOT TIMES OUT BETWEEN CLOCK PULSES 

FMREADDATA~------lnl-...Jnl-...Jnl-...JnL.--_rL 

FREQ DISC -~. __ 

2F LOW. 1F HIGH DURING SYNC DATA INPUT (FM) 

MFM READ DATA 

FREQ DISC~ 
~ 2F HIGH. 1 F LOW DURING SYNC DATA INPUT (MFM) 

~J( K )( J( )( J( I( I( 

x= FREQUENCY DISCRIMINATOR SAMPLE POINTS TO GENERATE 1F AND 2F SIGNALS 

Figure 8. Input Data Frequency Discrimination 

6-522 207875-002 



APPLICATIONS 

Startup 

The data separator is designed to require reception of 
eight valid sync bits (one sync byte) before enabling the 
PLL oscillator and attempting to synchronize with the 
input data stream (see Figure 9). This delay ensures that 
the PLL will not erroneously synchronize outside a valid 
sync field in the data stream if the VCO signal is enabled 
slightly early. The sync bit counter is asynchronously 
reset by the CNTEN signal when valid sync data is not 
being received by the drive. 

READ DATA 

FREQ DISC 

Once the VCO signal is active and eight sync bits have 
been counted, the CNT8 signal is enabled. This signal 
turns on the PLL oscillator. Note that this oscillator 
starts synchronously with the rising edge of the disk in­
put data (because CNT8 is synchronous with the data 
rising edge) and the oscillator also starts at its center fre­
quency of 2 MHz (because the LM348 filter input is held 
at its center voltage of approximately 2.5 volts). This 
frequency is divided by two and four to generate the 
2XBR signal (1 MHz for MFM and 500 KHz for FM). 

2F~L-__________ _ 

lF~ 

CNTEN~L-______________________________________________________ ___ 

Vco 

CNT8----------------------________________________________ ~ 

PLCLK _______________________________________________________ ~ 

2XBR ________________ ~ ____________________________________ ___ ~ 
PDCLR _________________________________________________________ ~ 
PUCLR ____________________________________________________________ -,~ 

PU 
_______________________________________ ~n~~n~_ 
PD---------------,U LJ 

DW ___________ ILJLJ 
Figure 9. Typical Data Separator Startup Timing Diagram 

6-523 207875-002 



APPLICATIONS 

PLL Synchronization 

At this point, the PLL is enabled and begins to syn­
chronize with the input data stream. This synchroniza­
tion is accomplished very simply in the following man­
ner. The pump up (PU) signal is enabled on the rising 
edge of the REAO OATA from the disk drive. (When 
the PLL is synchronized with the data stream, this point 
will occur at the same time as the falling edge of the 
2XBR signal as shown in Figure 9). The PU signal is 
turned off and the PO signal is activated on the next ris­
ing edge of the 2XBR clock. With this scheme, the dif­
ference between PU active time and the PO active time 
is equal to the difference between the input bit rate and 
the PLL clock rate. Thus, if PU is turned on longer than 
PO is on, the input bit rate is faster than the PLL clock. 

As long as PU and PO are both inactive, no charge is 
transferred to or from the LM358 input holding 
capacitor, and the PLL output frequency is maintained 
(the LM358 operational amplifier has a very high input 
impedance). Whenever PU is turned on, current flows 
from the +5 volt supply through a 20K resistor into the 
holding capacitor. When the PO signal is turned on, 
current flows from the holding capacitor to ground 
through a 20K resistor. In this manner, both the pump 
up and pump down charging rates are balanced. 

The change in capacitor charge (and therefore voltage) 
after a complete PU/PO cycle is proportional to the dif­
ference between the PU and PO pulse widths and is also 
proportional to the frequency difference between the in­
coming data stream and the PLL oscillator. As the 
capacitor voltage is raised (PU active longer than PO), 
the PLL oscillator time constant (RC of the 96LS02) is 
modified by the filter output (LM358) to raise the 
oscillator frequency. As the capacitor voltage is lowered 
(PO active longer than PO), the oscillator frequency is 
lowered. If both frequencies are equal, the voltage on 
the holding capacitor does not change, and the PLL 
oscillator frequency remains constant. 

6. AN INTELLIGENT DISKETTE 
DATA BASE SYSTEM 

The system described in this application note is designed 
to function as an intelligent data base controller. The 
schematics for this data base unit are presented in Ap­
pendix A; a block diagram of the unit is illustrated in 
Figure 10. As designed, the unit can access over four 
million bytes of mass storage on four floppy disk drives 
(using a single 8272 FOC); the system can easily be ex­
panded to four FOC devices (and 16 megabytes of on­
line disk storage). Three serial data links are also includ­
ed. These data links may be used by CRT terminals or 
other microprocessor systems to access the data base. 

Processor and Memory 

A high-performance 8088 eight-bit microprocessor 
(operating at 5 MHz with no wait states) controls system 
operation. The 8088 was selected because of its memory 
addressing capabilities and its sophisticated string 
handling instructions. These features improve the speed 
of data base search operations. In addition, these 
capabilities allow the system to be easily upgraded with 
additional memory, disk drives, and if required, a bub­
ble memory or winchester disk unit. 

The schematics for the basic design provide 8K bytes of 
2732A high-speed EPROM program storage and 8K 
bytes of disk directory and file buffer RAM. This 
memory can easily be expanded to 1 megabyte for 
performance upgrades. 

An 8259A Programmable Interrupt Controller (PIC) is 
also included in the design to field interrupts from both 
the serial port and the FOC. This interrupt controller 
provides a large degree of programming flexibility for 
the implementation of data base functions in an asyn­
chronous, demand driven environment. The PIC allows 
the system to accumulate asynchronous data base re­
quests from all serial 110 ports while previously 
specified data base operations are currently in progress. 
This feature is made possible by the ability of the 8251A 
RXROY signal to cause a processor interrupt. After 
receiving this interrupt, the processor can temporarily 
halt work on existing requests and enter the incoming 
information into a data base request buffer. Once the 
information has been entered into the buffer, the system 
can resume its previous processing. 

In addition, the PIC permits some portions of data base 
requests to be processed in parallel. For example, once a 
disk record has been loaded into a memory buffer, a 
memory search can proceed in parallel with the loading 
of the next record. After the FOC completes the record 
transfer, the memory search will be interrupted and the 
processor can begin another disk transfer before resum­
ing the memory search. 

The bus structure of the system is split into three func­
tional buffered units. A 20-bit address from the proc­
essor is latched by three-state transparent 74LS373 
devices. When the processor is in control of the address 
and data busses, these devices are output enabled to the 
system buffered address bus. All 110 devices are placed 
directly on the local data bus. Finally, the memory data 
bus is isolated from the local data bus by an 8286 octal 
transceiver. The direction of this transceiver is deter­
mined by the Memory Read signal, while its output 
enable is activated by a Memory Read or Memory Write 
command. 

6-524 207875-002 



APPLICATIONS 

I · '" '"'"''' ".. rl'"~ I F===>I ADDRESS r--- RAM 
l.ATCH 2732A (211'·3) f---J 

I ~ 
CLOCK f--GENERATOR RESET PROCESSOR 8·BIT LOCAL DATA BUS 

f- t,!, (8284) READY (6066) 
f-

~ 
110 AND CS DATA BUS I 

110 AND MEMORY COMMANDS f- MEMORY TRANSCEIVER 

INTA ADDRESS RD,WR,CS (8286) 

INT f- DECODE 

f-

HOLD t HLDA ~ '" '" '" "" " F===>I ADDRESS ~ 
a:," ci" r:i 

LATCHI ~ '". ~ 
I-- c c c 

BUFFER '" '" '" RD,WR,es 
DMA l CONTROLLER f--

(8237·2) ,--- I--- 8·BIT LOCAL DATA BUS 

rlJL. r---

ORO t DACK ~ + 
FLEXIBLE DISKETTE - I-- BAUD CONTROLLER PROGRAMMABLE 

DATA INTERRUPT - SERIAL I/O PORTS 
~ 

RATE I--
(6272 FDC) I ~INDOWI CONTROLLER (B251A USARTs) GENERATOR 

(B259A PIC) - ~ (6253 pm -r VCO,MFM 

U:k~:~ (EAD DATA PHASE 
LOCKED 

LOOP 
(PLL) 

I I DATA 
RECEIVERS SEPA· L----RxD 

~ hD 

rtt READY 
R,D 

INDEX 

WRITE PROTECT 

TWO SIDED 

FAULT 

TRACK 0 

READ DATA 

DRIVERS 

111 DRIVE SELECT 

DIRECTION 

STEP 
WRITE GATE 

FAULT RESET 

LOW CURRENT 

SIDE SELECT 

HEAD LOAD 
WRITE DATA 

Figure 10. Intelligent Data Base Block Diagram 

6-525 207875-002 



APPLICATIONS 

Serial 1/0 

The three RS-232-C compatible serial 110 ports operate 
at software-programmable baud rates to 19.2K. Each 
110 port is controlled by an 8251A USART (Universal 
Synchronous/Asynchronous Receiver/Transmitter). 
Each USART is individually programmable for opera­
tion in many synchronous and asynchronous serial data 
transmission formats (including IBM Bi-sync). In 
operation, USART error detection circuits can check 
for parity, data overrun, and framing errors. An 8253 
Programmable Interval Timer is employed to generate 
the baud rates for the serial 110 ports. 

The Transmitter Ready and Receiver Ready output 
signals of the 8251As are routed to the interrupt inputs 

. of the 8259A interrupt controller. These signals inter­
rupt processor execution when a data byte is received by 
a USART and also when the USART is ready to accept 
another data byte for transmission. 

DMA 
The 8272 FDC interfaces to system memory by means of 
an 8237-2 high-speed DMA controller. Transfers be­
tween the disk controller .and memory also operate with 
no wait states when 2114-3 (150 ns) or faster static RAM 
is used. In operation, the 8272 presents a DMA request 
to the 8237 for every byte of data to be transferred. This 
request causes the 8273 to present a HOLD request to 
the 8088. As soon as the 8088 is able to relinquish 
data/address bus control, the processor signals a HOLD 
acknowledge to the 8237. The 8237 then assumes con­
trol over the data and address busses. After latching the 
address for the DMA . transfer, the 8237 generates 
simultaneous 110 Read and Memory Write commands 
(for a disk read) or simultaneous 110 Write and 
Memory Read commands (for a disk write). At the same 
time, the 8272 is selected as the I/O device by means of 
the DMA acknowledge signal from the 8237. After this 
single byte has been transferred between the FDC and 
memory, the DMA controller releases the data/address 
busses to the 8088 by deactivating the HOLD request. In 
a short period of time (13 /LS for double-density and 27 
/LS for single-density) the FDC requests a subsequent 
data transfer. This transfer occurs in exactly the same 
manner as the previous transfer. After all data transfers 
have been completed (specified by the word count pro­
grammed into the 8237 before the FDC operation was 
initiated), the 8237 signals a terminal count (EOP pin). 
This terminal count signal informs the 8272 that the 
data transfer is complete. Upon reception of this ter­
minal count signal, the 8272 halts DMA requests and 
initiates an "operation complete" interrupt. 

Since the system is designed for 20-bit addressing, a 
four-bit DMA-address latch is included as a processor 

addressable 110 port. The processor writes the upper 
four DMA address bits before a data transfer. When the 
DMA controller assumes bus control, the contents of 
this latch are output enabled on the upper four bits of 
the address bus. The only restriction in the use of this 
address latch is that a single disk read or write transfer 
cannot cross a 64K memory boundary. 

Disk Drive Interface 

The 8272 FDC may be interfaced to a maximum of four 
eight-inch floppy disk drives. Both single- and double­
density drives are accommodated using the data separa­
tion circuit described in section 5. In addition, single- or 
dual-sided disk drives may be used. The 8272 is driven 
by an 8 MHz crystal controller clock produced by an 
8224 clock generator. 

Drive select signals are decoded by means of a 74LS139 
from the DSO, DSI outputs of the FDC. The fault reset, 
step, low current, and direction outputs to the disk 
drives are generated from the FR/STEP, LCT/DIR, 
and RW/SEEK FDC output signals by means of a 
74LS240. The other half of the 74LS240 functions as an 
input multiplexer for the disk write protect, two-sided, 
fault, and track zero status signals. These signals are 
multiplexed into the WP/TS and FLT/TRKO inputs to 
the 8272. 

The 8272 write clock (WR CLK) is generated by a ring 
counter/multiplexer combination. The write clock fre­
quency is 1 MHz for MFM recording and 500 KHz for 
FM recording (selected by the MFM output of the 
8272). The pulse width is a constant 250 ns. The write 
clock is constantly generated and input to the FDC (dur­
ing both read and write operations). The FDC write 
enable output (WE) is transmitted directly to the write 
gate disk drive input. 

Write data to the disk drive is preshifted (according to 
the PSO, PSI FDC outputs) by the combination of a 
74LS175 four-bit latch and a 74LS153 multiplexer. The 
amount of preshift is completely controlled within the 
8272 FDC. Three cases are possible: the data may be 
written one clock cycle early, one clock cycle late, or 
with no preshift. The data preshift circuit is activated by 
the FDC only in the double-density mode. The preshift 
is required to cancel predictable playback data shifts 
when recorded data is later read from the floppy disk. 

A single 50-conductor flat cable connects the board to 
the floppy disk drives. FDC outputs are driven by 7438 
open collector high-current line-drivers. These drivers 
are resistively terminated on the last disk drive by means 
of a 150 ohm resistor to +5V. The line receivers are 7414 
Schmitt triggered inverters with 150 ohm pull-up 
resistors on board. 

6-526 207875-002 



APPLICATIONS 

7. SPECIAL CONSIDERATIONS 

This section contains a quick review of key features and 
issues, most of which have been mentioned in other sec­
tions of this application note. Before designing with the 
8272 FDC, it is advisable that the information in this 
section be completely understood. 

1. Multi·Sector Transfers 
The 8272 always operates in a multi-sector transfer 
mode. The 8272 continues to transfer data until the TC 
input is activated. In a DMA configuration, the TC in­
put of the 8272 must always be connected to the 
EOP /TC output of the DMA controller. When mUltiple 
DMA channels are used on a single DMA controller, 
EOP must be gated with the select signal for the proper 
FDC. If the TC signal is not gated, a terminal count on 
another channel will abort FDC operation. 

In a processor driven configuration with no DMA con­
troller, the system must count the transfers and supply a 
TC signal to the FDC. In a DMA environment, ORing a 
programmable TC with the TC from the DMA con­
troller is a convenient means of ensuring that the proc­
essor may always gain control of the FDC (even if the 
diskette system hangs up in an abnormal manner). 

2. Processor Command/Result Phase Interface 
In the command phase, the processor must write the ex­
act number of parameters in the exact order shown in 
Table 5. During the result phase, the processor must 
read the complete result status. For example, the For­
mat Track command requires six command bytes and 
presents seven result bytes. The 8272 will not accept a 
new command until all result bytes are read. Note that 
the number of command and result bytes varies from 
command-to-command. Command and result phases 
cannot be shortened. 

During both the command and result phases, the Main 
Status Register must be read by the processor before 
each'byte of information is read from, or written to, the 
FDC Data Register. Before each command byte is writ­
ten, DIO (bit 6) must be low (indicating a data transfer 
from the processor) and RQM (bit 7) must be high (in­
dicating that the FDC is ready for data). During the 
result phase, DIO must be high (indicating a data 
transfer to the processor) and RQM must also be high 
(indicating that data is ready for the processor). 

NOTE: After the 8272 receives a command byte, the 
RQM flag may remain set for 12 microseconds 
(with an 8 MHz clock). Software should not at­
tempt to read the Main Status Register before 
this time interval has elapsed; otherwise, the 
software will erroneously assume that the FDC 
is ready to accept the next byte. 

3. Sector Sizes 
The 8272 does not support 128 byte sectors in the MFM 
(double-density) mode. 

4. Write Clock 
The FDC Write Clock input (WR CLK) must be present 
at all times. 

5. Reset 
The FDC Reset input (RST) must be held active during 
power-on reset while the RD and WR inputs are active. 
If the reset input becomes inactive while RD and WR 
are still active, the 8272 enters the test mode. Once ac­
tivated, the test mode can only be deactivated by a 
power-down condition. 

6. Drive Status 
The 8272 constantly polls (starting after the power-on 
reset) all drives for changes in the drive ready status. At 
power-on, the FDC assumes that all drives are not 
ready. If a drive application requires that the ready line 
be strapped active, the FDC will generate an interrupt 
immediately after power is applied. 

7. Gap Length 
Only the gap 3 size is software programmable. All other 
gap sizes are fixed. In addition, different gap 3 sizes 
must be specified in format, read, write, and scan com­
mands. Refer to Section 3 and Table 9 for gap size 
recommendations. 

8. Seek Command 
The drive busy flag in the Main Status Register remains 
set after a Seek command is issued until the Sense Inter­
rupt Status command is issued (following reception of 
the seek complete interrupt). 

The FDC does not perform implied seeks. Before issu­
ing data read or write commands, the read/write head 
must be positioned over the correct cylinder. If the head 
is not positioned correctly, a cylinder address error is 
generated. 

After issuing a step pulse, the 8272 resumes drive status 
polling. For correct stepper operation in this mode, the 
stepper motor must be constantly enabled. (Most drives 
provide a jumper to permit the stepper motor to be con­
stantly enabled.) 

9. Step Rate 
The 8272 can emit a step pulse that is one millisecond 
faster than the rate programmed by the SRT parameter 
in the Specify command. This action may cause subse­
quent sector not found errors. The step rate time should 
be programmed to be 1 ms longer than the step rate time 
required by the drive. 

10. Cable Length 
A cable length of less than 10 feet is recommended for 
drive interfacing. 

6-527 207875-002 



APPLICATIONS 

11. Scan Commands 
The-current 8272 has several problems when using the 
scan commands. These commands should not be used at 
this time. 

12. Interrupts 
When the processor receives an interrupt from the FDC, 
the FDC may be reporting one of two distinct events: 

a) The beginning' of the result phase of a previously re­
quested read, write, or scan command. 

b) An asynchronous event such as a seek/recalibrate 
completion, an attention, an abnormal command 
termination, or an invalid command. 

These two cases are distinguished by the FDC busy flag 
(bit 4) in the Main Status Register. If the FDC busy flag 
is high, the interrupt is of type (a). If the FDC busy flag 
is low, the interrupt was caused by an asynchronous 
event (b). ' 

A single interrupt from the FDC may signal more than 
one of the above events. After receiving an interrupt, 
the processor must continue to issue Sense Interrupt 
Status commands (and service the resulting conditions) , 
until an invalid command code is received. In this man­
ner, all "hidden" interrupts are ferreted out and 
serviced. 

13. Skip Flag (SK) 
The skip flag is used during the execution of Read Data, 
Read Deleted Data, Read Track, and various Scan com­
mands. This flag permits the FDC to skip unwanted sec­
tors on a disk track. 

When performing a Read Data, Read Track, or Scan 
command, a high SK flag indicates that the FDC is to 
skip over (not transfer) any sector containing a deleted 
data address mark. A low SK flag indicates that the 
FDC is to terminate the command (after reading all the 
data in the sector) when a deleted data address mark is 
encountered. 

When performing a Read Deleted Data command, a 
high SK flag indicates that sectors containing normal 
data address marks are to be skipped. Note that this is 
just the opposite situation from that described in the last 
paragraph. When a data address mark is enco\lntered 
during a Read Deleted Data command (and the SK flag 

is low), the FDC terminates the command after reading 
all the data in the sector. 

14. Bad Track Maintenance 
The 8272 does not internally maintain bad track infor­
mation. The maintenance of this information must be 
performed by system software. As an example of typical 
bad track operation, assume that a media test deter­
mines that track 31 and track 66 of a given floppy disk 
are bad. When the disk is formatted for use, the system 
software formats physical track 0 as logical cylinder 0 
(C=O in the command phase parameters), physical 
track 1 as logical track I (C = I); and so on, until 
physical track 30 is formatted as logical cylinder 30 
(C = 30). Physical track 31 is bad and should be format­
ted as logical cylinder FF (indicating a bad track). Next, 
physical track 32 is formatted as logical cylinder 31, and 
so on, until physical track 67 is formatted as logical 
cylinder 64. Next, bad physical track 66 is formatted as 
logical cylinder FF (another bad track marker), and 
physical track 67 is formatted as logical cylinder 65. 
This formatting continues until the last physical track 
(77) is formatted as logical cylinder 75. Normally, after 
this formatting is complete, the bad track information is 
stored in a prespecified area on the floppy disk (typical­
ly in a sector on track 0) so that the system will be able 
to recreate the bad track information when the disk is 
removed from the drive and reinserted at some later 
time. 

To illustrate how the system software performs a 
transfer operation disk with bad tracks, assume that the 
disk drive head is positioned at track 0 and the disk 
described above is loaded into the drive. If a command 
to read track 36 is issued by an application program, the 
system software translates this read command into a 
seek to physical track 37 (since there is one bad track 
between 0 and 36, namely 31) followed by a read of 
logical cylinder 36. Thus, the cylinder parameter C is set 
to 37 for the Seek command and 36 for the Read Sector 
command. 

15. Head Load versus Head Settle Times 
The 8272 does not permit separate specification of the 
head load time and the head s,ettle time. When the 
Specify command is issued for a given disk drive, the 
proper value for the HLT parameter is the maximum of 
the head load time and the, head settle time. 

6-528 207875-002 



APPLICATIONS 

APPENDIX 

6-529 207875-002 



APPLICATIONS 

Power Distribution 

Part Ref Deslg +5 GND +12 -12 

8088 A2 40 1,20 
8224 16 9,16 8 
8237-2 A6 31 20 
8251A A9,B9,C9 26 4 
8253-5 AIO 24 12 
8259A BIO 28 14 
8272 DIO 40 20 
8284 Al 18 9 
8286 B6,F4 20 10 

2114 Fl,F2,01,02,Hl,H2,I1,12 18 9 
2732A DI,D2 24 12 

74LSOO E1 14 7 
74LS04 B2,E6,E8,F8 14 7 
74LS27 E2,E5 14 7 
74LS32 Bl 14 7 
74LS74 A4,05,H6 14 7 
74LS138 F3 16 8 
74LS139 EI0 16 8 
74LS153 13 16 8 
74LS157 F6 16 8 
74LSI64 F5 14 7 
74LS173 G3 16 8 
74LS175 04 i6 8 
74LS240 010 20 10 
74LS257 D3 16 8 
74LS367 C3,E9 16 8 
74LS373 B4,C4,D4,C6 20 10 
74LS393 15,F7 14 7 

74S08 E4 14 7 
74S138 D6,E3 16 8 

7414 H7 14 7 
7438 H8,H9,HIO 14 7 

1488 H3 7 14 1 
1489 H4 14 7 

96LS02 07 16 8 
96LS02 G6 16 8 

LM358 H5 8 4 

6-530 207875-002 



APPLICATIONS 

REFERENCES 
1. Intel, "8272 Single/Double Density Floppy Disk 

Controller Data Sheet," Intel Corporation, 1980. 

2. Intel iSBC 208 Hardware Reference Manual, 
Man~al Order No. 143078, Intel Corporation, 
1980. 

3. Intel, iSBC 204 Flexible Diskette Controller Hard­
ware Reference Manual, Manual Order 
No. 9800568A, Intel Corporation, 1978. 

4. Shugart, SA8001801 Diskette Storage Drive OEM 
Manual, Part No. 50574, Shugart Associates, 1977. 

5. Shugart, SA8001801 Diskette Storage Drive Theory 
of Operations, Part No. 50664, Shugart Associates, 
1977. 

6. Shugart, SA800 Series Diskette Storage Drive 
Double Density Design Guide, Part No. 39000, 
Shugart Associates, 1977. 

7. Shugart, "Application Notes for Shugart Dual 
VFO," Part No. 39101, Shugart Associates, 1980. 

8. Pertec, "Soft-sector Formatting for PERTEC Flex­
ible Disk Drives," Pertec Application Note, 1977. 

9. Austin Lesea and Rodnay Zaks, "Floppy-disc Con­
troller Design Must Begin With the Basics," EDN, 
May 20, 1978. 

10. John Hoeppner and Larry Wall, "Encoding/ 
Decoding Techniques Double Floppy Disc Capa­
city," Computer Design, Feb 1980. 

11. John Zarrella, System Architecture, Mirocomputer 
Applications, 1980. 

6-531 
207875-002 



inter 

ADG-AD7 

ADO 

ADl 

AD. 

AD. 

AD. 

ADS 

ADO 

AD7 

RESET 

iOR 
lOW 

70CS 

AXD 

DREQ72 

DACK72 

INT72 

EOP 

.5V 

8224 9 

12 
OSC 

t Xl Voo 

.-'[ ".'"~ 
lDpF ~ RESIN 3 

,. 5 
X2SYNC ---

150 7414 (2 PLeS) 

READY 

INDEX 

.5~1l : RH: (2 PLCS) 

.1!.. 

,''-
.... 

H7 

2 

3"- • ... 
~:~ . ~ 

(4 PleS) 

WRITE PROT 

TWO SIDED 

FAULT 

TRACK 

r:;; 
I-;ofo 
r.'"fo 

0'" '--

T 150 

A '0 READ OAT 

112 lS240 
Gl0 

or-- ,. 
15 1A3 lY3 

~ 8 2A3 2Y3 

rai lA4 lY' 
17 

2Y, 2A4 
'---

7414 

5" 0 

';;'7 

8 

7 

8 

a 

10 

11 

" ,. 
1 

• 
• 
• 
5 ,. 

15 

18 

10 

,. 

35 

17 

3. 

33 

7 ... 

HDL 38 ~ 1 • 12 H, 
H1D - LS04 (PLCS) • ----; • E8 !.t-. • -2S 0, 051 

• 8 
: B LS13 • • ')00, .... 

5-

DSO .. A E10 8 " 5 .... 8 
1".Jo-oo. 01 

1 7 , ..... "" ~ D. ro Y3 
" -... '--- " .10 D. 8 

27 H1D 
D' HOSEL a 

4.7K (4 PLeS) 1 7438 7438 (4 F 
05 • 5V • H8 
08 1/2 LS240 • 1 
07 • 7 .r--- 18 . ~ • Ha • 
RESET FR/STEP ~ 1A1 1Vt 

11 a J "-" '-"= .-
2A1 2Vt • RD • 10 ~ 6jo.,. 0 H9 

~ 
lA. lY2 WR 

~ 
7 joo. ~ 

5 
lCTfDIR W .Y2 

~ CS ,.'" " l Ha 
L5 010 

AD 
t2 1~ .. .... ~ lS04 (4 PLeS) 

ORO RWISEEK 

"~ 11 
EO 

~ DACK ,'-'' 10 

INT E8 .... LSD. " TC 7'" LS367 
~8 

WE 
25 14 ...... 13 H8 

8272 

15 
E9 5- LS08 (2 PLeS) 

1 

3. ~ PSD 

~ 31 5 •• 
CLK PSl 

4 MHz 

010 

Gr---<i4 '0 
~3D 2 1 

30 .. 
WR DATA 5 20 40 15 • lC2 

I""LS393 
LS 10 8 

9 175 3Q lCO 

ao" 
4 MHz 7 5 te1 

ROY 13 CLR 2Q 

lOX '5 :J:r f :~3 CLR 

12 ... 'Lsi ... 
21 

WPITS WRCLK 

OW 
22 

28 
MFM 

FLTrrRKO 
23 

RD DATA 

.5V .II'~ 
3K ,21 " l' 

2. 
a 0 

VCO F, 
96LS02 

" 
ao 11 1 MHz 

~j. ~kHZ +5V 01 
CLR 

12 

lK 3 -
27K ..JL 200pF 2 

.5V 1!.J...::...U5 ~5 2F 0 
07 10 

¥' a 
FREQ IF 5 

12 96LS02 -- DISC 
r CLR 

~-F 1 as 

LS04 , .... 2 

Fa 

6-532 



APPLICATIONS 

DSELO .. DRIVEiEC~ 
DSEL1 

28 DRIYE SEL!C'i'1 
DSEL2 

30 DRivE SELECT2 
DSEL3 3. DRIVE SELEeT3 
DIR 

34 DIRECTION SELECT 
STEP 

38 STEP 
WHGT 

40 ~ 
FiiIT.Tliffi'i" 
LOYiCiiiiiiENT 

" SIDE SELECT ,. HEAD LOAD 

1.~~=~::::!~!!::~=-________ ~1°13B 
~ LS157 9 

11 3Y L-____________ ~~3A F6 

r-----------------------------------·~H ~ 

7438 
10 

H.p.:~-1-..J 

5 
F8 lS04 

LS04 8 13 Fa 12 

" 

+5V 

+5VA 

I. 
+5YA 

1M 

:. -no ... 

+5V 

10K 

SETUP 
ADJUSTMENT 

6-533 

~--~~~-~~o~ 2MHzNOM 

207875-002 



ADo·AD7--------------------------------------------~ __ -------------------------------------

ADO 8 
DO 

AD1 7 

AD2 8 BAUD RJI 

AD3 S BAUD RATE 9800 

GENERATOR 4800 
AD4 4 2400 

8253 1200 
ADS 3 A10 800 

AD8 2 300 
D7 150 

AD7 1 110 

+5V 18 
GATE2 

1K E GATE1 
11 

GATED 

Po CLK2 
15 

elK1 aUTO 10 
9 

CLKO OUTl 13 
AX1 20 A1 OUT2 17 l 
AXO 19 AO I 

CS RDWR 

~----------------------------------------~-}--------~--~~-----------------­
~----------------------------------------+--+----------+-~--~-----------------­
css-rn------~----------------------------------+_--~--------~--+_--+_------~-----------

AXQ·AX19 ________________________________ -+ __ L_---'AX~O'...... _ _+-t_-t_-----------
PCLK------------------------------------------~------------~--~--~-------------------

r.; r:; 8 ~S~~~S) 
em _________________________________ J. ..... ~4!...).:5!.J; ~ • 
RESET-------------------------------------------------------------+---+----------------~ 
~------------------------------------------~--+------------­
mw------------------------------------------------~------------­
DO·D7------------------------------------------------------------------------~----------

I.lIiW 
MW 

Mi! 

AX12 

AX13 

AX14 

AX15 

AX1. S 

AX17 41 E1 • 
AX18 2 

!.I E1 
3 

AX19 

~ 

1~p!-: F. 

2 B ~~ F. 

3 
~ 

FA 
C 5138 

FB 6 E3 ~ G1 

~~ 
FC 

5 G2B 
~O FD 

~ 
4 Y7 

7 FF 
G2A 

PR~SS 

618 20 1. 20 

AX11 21 CE OE CE OE 
A11 

AX10 19 

AX. 22 • DO 

AX8 23 
DO 

10 D1 

AX7 1 11 D2 

AX. 2 
2732A 2732A 

D1 D2 13 D3 

AX5 3 14 D4 

(2 PLCS) DECODE AX4 4 1S 05 

AX3 S 18 D. 

AX2 • 07 17 D7 

AX1 7 

AXO • AO FEDOO FFDOO 

PROGRAM 
MEMORY 

6-534 



----.., 

ADO 27 
DO 

ADl 28 

AD2 1 

AD3 2 

AD' 5 

ADS 8 

AD. 7 8251A 8251A 
AD7 • 07 

A9 .9 

21 
RESET 

13 
RD 

10 
WR 

12 
AD 

~ ClK 

t CTS 
,.. ,.. ,.. ,.. 
c c 

c c " " 
c ~ c c " " a: a: 

U) 
a: 

U) )( )( )( )( )( )( )( )( )( )( )( )( 

" I- a: a: l- I- a: " I- a: a: l-I- a: 

l' 125 11 15 
" 3 "rt 11 15 14 3 1 

-
-

1 

AX • • G2A 
YO 

15 SO AX7 ,. Sl AX. 

13 S2 AX5 
G2B 

12 ' S3 AX. 
S138 

F' 
11 S4 AX' 

10 
Gl 

S5 AX2 

S6 AXl 

C Y7 
S7 AXD 

AX' 

A AX. 

AX7 

AX6 

AX5 

AX. 

AX3 

AX2 

AXl 

AXD 

APPLICATIONS 

SERIAL 
8251A PORTS 

C9 

,.. ,.. 
c c 

c c " " U) 
a: a: 

)( )( )( )( )( )( 
I- a: " I- a: a: l-

'Jr 11 15 

'"[ ,'9 

10 
WE 

15 
A' 

16 

17 

2114 ARRAY 

Fl Gl Hl 11 

5 AD 
15 

A' 
18 

F2 G2 H2 12 
17 

I ! I 8 
~ " 8 

6-535 

1~ 11 
H3 

13 

9 1488 
'-""""' . 

H3 

10 

5 1488 

• H' .-

11 
D. 

12 

13 

DO 14 

D. 
11 

12 

~ U 
00 00 

13 ,. 

3 H!.11 

~1489 
~ 33DPF 

• H.!-t. 

~1489 
~ 3'0 PF 

8 H!-tlD 

~ 1489 
I 33DPF 

07 

D. 

05 

D. 

03 

02 OATA 

TXD3 

RXCl 

TXD2 

RXD2 

'rXD1 

RXCl 

INT513R 

INT513T 

INT512R 

INT512T 

INT511R 

INT511T 

01 MEMORY 

00 

207875-002 



inter 

82 

+5V 14rD~~OPF 
3 ...... 4 

+5V 

V L::4 l~ 

1N914~ 
8 ~9 

18 17 10K 

~ 2 
X2 X1 33 MIN/Jill[ A19 35 8 03 Q3 9 -,~ 

RESET 10 21 RESET A18 36 7 tS37! Q2 6 AX1S r----

1 
RES 8 19 ClK 

02 
ClK A17 37 4 04 

Q1 
5 AX17 

"FJ 01 

5 
22 READY 

AlB 38 3 
DO QO 2 AX16 

A1 READY 
19,;",0' A15 39 18 07 07 19 AX1S AX1S 

8284 A14 2 17 06 Q6 16 AX14 16 06 

+ 

2 A13 3 14. 05 05 15 AX13 15 Q5 
PCLK 

A124 13 04 04 12 AX12 12 Q4 1\)K 4 FIe 

~ 
lS373 

5V ROY1 A1l 5 6 03 C4 Q3 9 AX11 9 Q3 
l1 

r"~ 
CSYNC 

A1D 6 7 
02 Q2 • 

AX10 6 Q2 

A9 7 4 01 Q1 5 AX. 5 Q1 AEN1 AEN2 

AI • 
3 DO 2 AX6 AX6 2 QO 

[3 71 
QD 

AD] 9 18 07 07 19 AX7 ::= 
ADS 10 17 06 06 18 AX6 AX7 12 87 

PClK 

ADS 11 14 05 Q5 
15 AX5 13 B6 

AD412 13 
04 

LS373 Q4 12 AX4 14 85 

AD3 13 • B4 
Q3 9 AX3 15 84 • 03 

AD214 7 
02 Q2 6 AX2 16 83 

AD,'5 4 
01 Q1 5 AX1 17 82 

ADO ,. 3 
DO G DE aD 2 

AXO 18 B1 

"\ 
AXO 19 80 T 

lS361 1 

ALE 25 4 .... 5 ";;f" 
HLDA 30 

.... C3 

HOLD 31 
5 

Q 0 2 

LS74 
r--8088 A4 

3 
A2 ClR PR -

1 ~ 4 

INTR 16 
24 

INTA 

10K 
(2 PlCS) 

+5V 

f 10K (3 PlCS) 
1K 

LS367 

IO/~ 26 2~ 
l' C3 

1 15 

32 2 1A 
SEl OE +5V 10K 

100I'H RD (3 PlC 
_~Vv-v t 0.1 ,F AIR 

+SVA 

( L ~'B t-'-r-
!!: NMI 

f-12A 
4.7p.F ~ r-!- 2B LS257 

29 11 03 1Y 4 
WR 3A 

2Y 7 

~ 
3B 

.J! 4A 
3Y 9 

4Y 12 

+1 ~ 1 
+5V 13 4B 

+5V 

221'F I I I GND>~ ___ l~ ___ (2_P_lC_S)~ __ ~ __ ~ __ -,~ 
O.1I'F AlA 

6-536 



LR~ET I/O PORTS 

OX - 8237·2 

1X - DMA UPPER ADDRESS 
12 elK 

2X -'8253 

~8 9 AEN 

il 
3X - 8272 

OREQl 

~. 17 4X - 8251A'1 
DREQ2 

8 ADSTB 18 5X - 6251A12 
DREa3 ex - 8251A13 

AD7 21 DB7 7X - 6259A 
ADa 22 

AD5 23 

AD. 8237·2 26 
A6 

AD3 27 

AD2 26 11 
CS 

ADl 26 19 
ADO 30 

DREaD 
DBO 25 

DACKO 

40 A7 10K 

39 

36 E6 

37 EOP 
36 "~ 

35 2 ";:"SO. 
lOW 

3' • MW 
33 

lOR 0::-
32 ~ AD MR 

7 HLDA 

10 HRQ READY 

6 

1 
+5V~ 

10K 

ADD 1 AD M eo 19 
ADl 2 Al B1 18 
AD2 3 A2 B2 17 
AD3 

'. A3 8266 83 18 
AD4 5 A. F4 84 15 
ADS 6 A5 B5 ,. 

AD6 7 A6 86 13 

AD7 B A7 T DE B7 12 

"'1' 9'1' 

~' 
LS367 

t=LSDB 

(' PLCS) 13 12 
10 ..... 9 C3 

..... 6 ..... 7 

....... 5 ...... 

..... 2 ..... 3 

~ 

APPLICATIONS 

AX8 3 
C V7 r:l--

AX5 2 
B V6 9 

AX. 1 
A V5 

10 

Sl36 V' 
11 

06 12 
V3 

f> 01 13 
V2 

S 
" 

f0
2B 

Yl 

YOl 
OOA 

,r--
AXO 27 AD CS IRO 

16 

ADO 11 
DO IRl 

19 

10 01 . IR2 20 

9 02 
21 

IR3 

v-----.!. 03 IR4 22 

7 D. 23 
IRS 

6 05 8259A IRS 24 

S 06 
B1D 

~ IR7 
AD7 

• 07 
WR 

2 

RD p:-
17 
26 

INT 

INTA 

I 
,1,1 

DO '~DD 00 3 AX16 

01 ~Dl 01 • 
AX17 

02 ~ 
LS173 5 AX18 

02 03 02 
03 ~ 03 03 6 AX19 

D. 
~N 05 02 01 

06 2~ 
'(9 

07 

I 

6-537 

I-

RESET 

C 5513 

5512 

5511 

572 

i: 
C 

C 

S53 C 

0 REa72 

ACiffi 0 

I 

I 

I 

I 

I 

I 

I 

NT72 

NT511R 

NT511T 

NT512R 

NT512T 

NT513R 

NT513T 

E OP 

A XQ·AX19 

A DO·AD? 

DO ,07 

Rw M 

M 

10 

M 

10 

Ii 
Ii 
Vi 
W 

207875-002 



© Intel Corporation, 1981. 

APPLICATION . 
NOTE 

6-538 

AP-121 

June 1981 

207885-001 



Software Design and 
Implementation of 

Floppy Disk 
Subsystems 

Contents 

1. INTRODUCTION 

The Physical Interface Level 
The Logical Interface Level 
The File System Interface Level 
Scope of this Note 

2. DISK I/O TECHNIQUES 

FDC Data Transfer Interface 
Overlapped Operations 
Buffers 

3. THE 8272 FLOPPY DISK CONTROLLER 

Floppy Disk Commands 
Interface Registers 
Command/Result Phases 
Execution Phase 
Multi-sector and Multi-track 
Transfers 
Drive Status Polling 
Command Details 
Invalid Commands 

4. 8272 PHYSICAL INTERFACE 
SOFTWARE 

INITIALlZE$DRIVERS 
EXECUTE$DOCB 
FDCINT 
OUTPUT$CONTROLS$TO$DMA 
OUTPUT$COMMAND$TO$FDC 
INPUT$RESULT$FROM$FDC 
OUTPUT$BYTE$TO$FDC 
INPUT$BYTE$FROM$FDC 
FDC$READY$FOR$COMMAND 
FDC$READY$FOR$RESULT 
OPERATlON$CLEAN$UP 
Modifications for 
Polling Operation 

5. 8272 LOGICAL INTERFACE 
SOFTWARE 

SPECIFY 
RECALIBRATE 
SEEK 
FORMAT 
WRITE 
READ 
Coping With Errors 

6-539 207885-001 



Contents (Continued) 

6. FILE SYSTEMS 

File Allocation 
The Intel File System 
Disk File System Functions 

7. KEY 8272 SOFTWARE 
INTERFACING CONSIDERATIONS 

REFERENCES 

APPENDIX A-8272 FDC 
DEVICE DRIVER SOFTWARE 

APPENDIX B-8272 FDC 
EXERCISER PROGRAM 

APPENDIX C-8272 DRIVER FLOWCHARTS 

6-540 207885-001 



APPLICATIONS 

1. Introduction 

Oisk interface software is a major contributor to the efficient and reliable 
operation of a floppy disk subsystem. This software must be a well-designed 
compromise between the needs of the application software modules and the 
capabilities of the floppy disk controller (FOC). In an effort to meet these 
requirements, the implementation of disk interface software is often divided 
into several levels of abstraction. The purpose of this application note is 
to define these software interface levels and describe the design and imple­
mentation of a modular and flexible software driver for the 8272 FOC. This 
note is a companion to AP-116, "An Intelligent Data Base System Using the 
8272. " 

The Physical Interface Level 

The software interface level closest to the FOC hardware is referred to as the 
physical interface level. At this level, interface modules (often called disk 
drivers or disk handlers) communicate directly with the FOC device. oisk drivers 
accept floppy disk commands from other software modules, control and monitor the 
FOC execution of the commands, and finally return operational status information 
(at command termination) to the requesting modules. 

In order to perform these functions, the drivers must support the bit/byte level 
Foe interface for status and data transfers. In addition, the drivers must field, 
classify, and service a variety of FDC interrupts. 

The Logical Interface Level 

System and application software modules often specify disk operation parameters 
that are not directly compatible with the FOC device. This software incompati­
bility is typically caused by one of the following: 

1. The change from an existing FOC to a functionally equivalent 
design. Replacing a TTL based controller with an LSI device is 
an example of a change that may result in software incompati­
bilities. 

2. The upgrade of an existing FDC subsystem to a higher capability 
design. An expansion from a single-sided, single-density sys­
tem to a dual-sided, double-density system to increase data 
storage capacity is an example of such a system change. 

3. The abstraction of the disk software interface to avoid redun­
dancy. Many FOC parameters (in particular the density, gap 
size, number of sectors per track and number of bytes per 
sector) are fixed for a floppy disk (after formatting). In 
fact, in many systems these parameters are never changed during 
the life of the system. 

6-541 207885-001 



APPLICATIONS 

4. The requirement to support a software interface that is inde­
pendent of the type of disk attached to the system. In this 
case, a system generated ("logical") disk address (drive, head, 
cylinder, and sector numbers) must be mapped into a physical 
floppy disk address. For example, to switch between single­
and dual-sided disks, it may be easier and more cost-effective 
for the software to treat the dual-sided disk as containing 
twice as many sectors per track (52) rather than as having two 
sides. with this technique, accesses to sectors 1 through 26 
are mapped onto head 0 while accesses to sectors 27 through 52 
are mapped onto head 1. 

5. The necessity of supporting a bad track map. Since bad tracks 
depend on the disk media, the bad track mapping varies from 
disk to disk. In general, the system and application software 
should not be concerned with calculating bad track parameters. 
Instead, these software modules should refer to cylinders 
logically (0 through 76). The logical interface level pro­
cedures must map these cylinders into physical cylinder posi­
tions in order to avoid the bad tracks. 

The key to logical interface software design is the mapping of the "logical disk 
interface" (as seen by the application software) into the "physical disk inter­
face" (as implemented by the floppy disk drivers). This logical to physical 
mapping is tightly coupled to system software design and the mapping serves to 
isolate both applications and system software from the peculiarities of the FOC 
device. Typical logical interface procedures are described in Table 1. 

The File System Interface Level 

The file system typically comprises the highest level of disk interface software 
used by application programs. The file system is designed to treat the disk as 
a collection of named data areas (known as files). These files are cataloged in 
the disk directory. File system interface software permits the creation of new 
files and the deletion of existing files under software control. When a file is 
created, its name and disk address are entered into the directory; when a file is 
deleted, its name is removed from the directory. Application software requests 
the use of a file by executing'an OPEN function. Once opened, a file is 
normally reserved for use by the requesting program or task and the file cannot 
be reopened by other tasks. When a tas~ no longer needs to use an open file, 
the task closes the file, releasing it for use by other tasks. 

Most file systems also support a set of file attributes that can be specified 
for each file. File attributes may be used to protect files (e.g., the WRITE 
PROTECT attribute ensures that an existing file cannot accidentally be over­
written) and to supply system configuration information (e.g., a FORMAT attri­
bute may specify that a file should automatically be created on a new disk' 
when the disk is formatted). 

At the file system interface level, application programs need not be explicitly 
aware of disk storage allocation techniques, block sizes, or file coding strate­
gies. Only a "file name" must be presented in order to open, read or write, 
and subsequently close a file. Typical file system functions are listed in 
Table 2. 

6-542 207885-001 



APPLICATIONS 

Table 1: Examples of Logical Interface Procedures 

Name Description 

FORMAT DISK 

RECALIBRATE 

SEEK 

READ STATUS 

READ SECTOR 

WRITE SECTOR 

Controls physical disk formatting for all tracks on a disk. 
Formatting adds FDC recognized cylinder, head, and sector 
addresses as well as address marks and data synchronization 
fields (gaps) to the floppy disk media. 

Moves the disk read/write head to track 0 (at the outside 
edge of the disk). 

Moves the disk read/write head to a specified logical 
cylinder. The logical and physical cylinder numbers may 
be different if bad track mapping is used. 

Indicates the status of the floppy disk drive and media. One 
important use of this procedure is to determine whether a 
floppy disk is dual-sided. 

Reads one or more complete sectors starting at a specified 
disk address (drive, head, cylinder, and sector). 

Writes one or more complete sectors starting at a specified 
disk address (drive, head, cylinder, and sector). 

6-543 207885-001 



APPLICATIONS 

Table 2: Disk File System Functions 

Name Description 

OPEN 

CLOSE 

READ 

WRITE 

CREATE 

DELETE 

RENAME 

ATTRIBUTE 

LOAD 

INITDISK 

Prepare a file for processing. If the file is to be opened for 
input and the file name is not found in the directory, an error 
is generated. If the file is opened for output and the file name 
is not found in the directory, the file is automatically created • 

. _ Termi':late processing of an open file. 

Transfer data from an open file to memory. The READ function is 
often designed to buffer one or more sectors of data from the disk 
drive and supply this data to the requesting program, as required. 

Transfer data from memory to an open file. The WRITE function is 
often designed to buffer data from the application program until 
enough data is available to fill a disk sector. 

Initialize a file and enter its name and attributes into the 
file directory. 

Remove a file from the directory and release its storage space. 

Change the name of a file in the directory. 

Change the attributes of a file. 

Read a file of executable code into memory. 

Initialize a disk by formatting the media and establishing the 
directory file, the bit map file, and other system files. 

6-544 207885-001 



APPLICATIONS 

Scope of this Note 

This application note directly addresses the logical and physical interface 
levels. A complete 8272 driver (including interrupt service software) is 
listed in Appendix A. In addition, examples of recalibrate, seek, format, 
read, and write logical interface level procedures are included as part of 
the exerciser program found in Appendix B. Wherever possible, specific 
hardware configuration dependencies are parametized to provide maximum flexi­
bility without requiring major software changes. 

6-545 207885-001 



APPLICATIONS 

2. Disk I/O Techniques 

One of the most important software aspects of disk interfacing is the fixed sector 
size. (Sector sizes are fixed when the disk is formatted.) Individual bytes of 
disk storage cannot be read/written; instead, complete sectors must be trans­
ferred between the floppy disk and system memory. 

Selection of the appropriate s.ector size involves a tradeoff between memory 
size; disk storage efficiency, and disk transfer efficiency. Basically, the 
following factors must be weighed: 

1. Memory size. The larger the sector size, the larger the memory 
area that must be reserved for use during disk I/O transfers. 
For example, a lK byte disk sector size requires that at least 
one lK memory block be reserved for disk I/O. 

2. Disk Storage efficiency. Both very large and very small sectors 
can waste disk storage space as follows. In disk file systems, 
space must be allocated somewhere on the disk to link the sectors 
of each file together. If most files are composed of many small 
sectors, a large amount of linkage overhead information is re­
quired. At the other extreme, when most files are smaller than a 
single disk sector, a large amount of space is wasted at the 
end of each sector. 

3. Disk transfer efficiency. A file composed of a few large sectors 
can be transferred to/from memory more efficiently (faster and 
with less overhead) than a file composed of many small sectors. 

Balancing these considerations requires knowledge of the intended system appli­
cations. Typically, for general purpose systems, sector sizes from 128 bytes 
to lK bytes are used. For compatibility between single-density and double­
density recording with the 8272 floppy disk controller, 256 byte sectors or 512 
byte sectors are most useful. 

FDC Data Transfer Interface 

Three distinct software interface techniques may be used to interface system mem­
ory to the FDe device during sector data transfers: 

1. DMA - In a DMA implementation, the software is only required 
to set up the DMA controller memory address and transfer count, 
and to initiate the data transfer. The DMA controller hardware 
handshakes with the processor/system bus in order to perform 
each data transfer. 

2. Interrupt Driven - The FDC generates an interrupt when a data 
byte is ready to be transferred to memory, or when a data byte 
is needed from memory. It is the software's responsibility to 
perform appropriate memory reads/writes in order to transfer 
data from/to the FDC upon receipt of the interrupt. 

3. polling - Software responsibilities in the polling mode are 
identical to the responsibilities in the interrupt driven mode. 
The polling mode, however, is used when interrupt service over­
head (context switching) is too large to support the disk data 

6-546 207885-001 



APPLICATIONS 

rate. In this mode, the software determines when to transfer 
data by continually polling a data request status flag in the 
Foe status register. 

The OMA mode has the advantage of permitting the processor to continue executing 
instructions while a disk transfer is in progress. (This capability is especially 
useful in multiprogramming environments when the operating system is designed to 
permit other tasks to execute while a program is waiting for I/O.) Modes 2 and 
3 are often combined and described as non-OMA operating modes. Non-OMA modes 
have the advantage of significantly lower system cost, but are often perform-
ance limited for double-density systems (where data bytes must be transferred 
to/from the Foe every 16 microseconds) • 

Overlapped Operations 

Some Foe devices support simultaneous disk operations on more than one disk 
drive. Normally seek and recalibrate operations can be overlapped in this 
manner. Since seek operations on most floppy drives are extremely slow, this 
mode of operation can often be used by the system software to reduce overall 
disk access times. 

Buffers 

The buffer concept is an extremely important element in advanced disk I/O 
strategies. A buffer is nothing more than a memory area containing the same 
amount of data as a disk sector contains. Generally, when an application pro­
gram requests data from a disk, the system software allocates a buffer (memory 
area) and transfers the data from the appropriate disk sector into the buffer. 
The address of the buffer is then returned to the application software. In the 
same manner, after the application program has filled a buffer for output, 
the buffer address is passed to the system software, which writes data from the 
buffer into a disk sector. In multitasking systems, multiple buffers may be 
allocated from a buffer pool. In these systems, the disk controller is often 
requested to read ahead and fill additional data buffers while the application 
software is processing a previous buffer. Using this technique, system software 
attempts to fill buffers before they are needed by the application programs, 
thereby eliminating program waits during I/O transfers. Figure 1 illustrates 
the use of multiple buffers in a ring configuration. 

6-547 207885-001 



DISK 
DRIVE 

APPLICATIONS 

BUFFER #, 
EMPTV 

BUFFER #1 
BEING 
FILLED 

DISK 
SUBSYSTEM 

BUFFER #3 
EMPTV 

BUFFER #2 
EMPTY 

DATA FLOW FROM DISK 
INTO BUFFER 

a) The first disk read request by the application software causes the disk subsystem to begin filling 
the first empty buffer, The application software must wait until the buffer is filled before it may 
continue execution. 

AFN-01949A 

Figure 1. Using Multiple Memory Buffers for Disk I/O 

6-548 207885-001 



OISK 
DRIVE 

APPLICATIONS 

APPLICATION 
SOFTWARE 

BUFFER #1 
BEING 

EMPTIED 

BUFFER #2 
BEING 
FILLED 

OISK 
SUBSYSTEM 

~ 
BUFFER #4 

EMPTY 

t 
BUFFER #3 

EMPTY 

/ 
DATA FLOW FROM DISK 

INTO BUFFER 

b) After the first buffer is filled, the disk system continues to transfer disk data into the next buffer 
while the application software begins operating on the first full buffer. 

AFN-01949A 

Figure 1. Using Multiple Memory Buffers for Disk I/O (Continued) 

6-549 207885-001 



SUFFER #2 
FULL 

BUFFER #3 
FULL 

APPLICATIONS 

APPLICATION 
SOFTWARE 

BUFFER #4 
FULL 

t 
BUFFER #1 

BEING 
EMPTIED 

DISK 
SUBSYSTEM 

NO DISK TRANSFER 
ACTIVE 

c) When all empty buffers have been filled, disk activity is stopped until the application software 
releases one or more buffers for reuse. 

AFN-01949A 

Figure 1. Using Multiple Memory Buffers for Disk I/O (Continued) 

6-550 207885-001 



I DISK 
DRIVE 

APPLICATIONS 

~/ 

I 
I 

BUFFER #3 
, FULL 

BUFFER #4 
FULL 

APPLICATION 
SOFTWARE 

t 
BUFFER #2 

BEING 
EMPTIED 

'--:c-___ --' 

BUFFeR #1 
BEING 
FILLED 

t DATA FLOW fROM 
DISK INTO BUFFER 

DISK 
SUBSYSTEM 

d) When the application software releases a buffer (for reuse), the disk subsystem begins a disk 
sector read to refill the buffer. This strategy attempts to anticipate application software needs by 
maintaining a sufficient number of full data buffers in order to minimize data transfer delays. If 
disk data is already in memory when the application software requests it, no disk transfer delays 
are incurred. 

AFN.Q1949A 

Figure 1. Using Multiple Memory Buffers for Disk I/O (Continued) 

6-551 207885-001 



APPLICATIONS 

3. THB 8272 FLOPPY DISK CONTROLLBR 

The 8272 is a single~chip LSI Floppy Disk Controller ,(FOe) that implements both 
single- and double-density floppy disk storage subsystems (with up to four 
dual-sided disk drives per FOe). The 8272 supports the IBM 3740 single-density 
recording format (FM) and the IBM System 34 double-density 'recording format 
(MFM). The 8272 accepts and executes high-level disk commands such as format 
track, seek, read sector, and write sector •. All data synchronization and error 
checking is automatically performed by the FDC to ensure reliable data storage 
and subsequent retrieval. The 8272 interfaces to microprocessor systems with 
or without Direct Memory Access (DMA) capabilities and also interfaces to a 
large number of commercially available floppy disk drives. 

Floppy Disk Commands 

The 8272 executes fifteen high-level' disk interface commands: 

Specify 
Sense Drive Status 
Sense Interrupt Status 
Seek 
Recalibrate 
Format Track 
Read Data 
Read Deleted Data 

Write Data 
Write Deleted Data 
Read Track 
Read ID 
Scan Equal 
Scan High or Equal 
Scan Low or Equal 

Each command is initiated by a multi-byte transfer from the driver software 
to the FDC (the transferred bytes contain command and parameter information). 
After complete command specification, the FOe automatically executes the 
command. The command result data (after execution of the command) may require a 
multi-byte transfer of. status information back to the driver. It is con­
venient to consider each FDC command as consisting of the following three phases: 

Command Phase: The driver transfers to the FDC all the information 
required to perform a particular disk operation. The 
8272 automatically enters the command phase after 
RESET and following the completion of the result 
phase (if any) of a previous command. 

Execution Phase: The FOe performs the operation as instructed. The 
execution phase is entered immediately after the 
last command parameter is written to the FDC in the 
preceding command phase. The execution phase 
normally ends when the last data byte is transferred 
to/from the disk or when an error occurs. 

Result Phase: After completion of the disk operation, status and 
other housekeeping information are made avail-
able to the driver software. After this information is 
read, the FDC reenters the command phase and is ready 
to accept another command. 

6-552 207885-001 



APPLICATIONS 

Interface Registers 

To support information transfer between the FDC and the system software, the 
8272 contains two 8-bit registers: the Main status Register and the Data 
Register. The Main status Register (read only) contains FDC status information 
and may be accessed at any time. The Main Status Register (Table 3) provides 
the system processor with the status of each disk drive, the status of the 
FDC, and the status of the processor interface. The Data Register (read/write) 
stores data, commands, parameters, and disk drive status information. The Data 
Register is used to program the Foe during the command phase and to obtain 
result information after completion of FDC operations. 

In addition to the Main Status Register, the FDC contains four additional 
status registers (STD, ST1, ST2, and ST3). These registers are only available 
during the result phase of a command. 

Command/Result Phases 

Table 4 lists the 8272 command set. For each of the fifteen commands, command 
and result phase data transfers are listed. A list of abbreviations used in 
the table is given in Table 5, and the contents of the result status registers 
(STD-ST3) are illustrated in Table 6. 

The bytes of data which are sent to the 8272 by the drivers during the command 
phase, and are read out of the 8272 in the result phase, must occur in the order 
shown in Table 4: That is, the command code must be sent first and the other 
bytes sent in the prescribed sequence. All bytes of the command and result 
phases must be read/written as described. After the last byte of data in the 
command phase is sent to the 8272 the execution phase automatically starts. In 
a similar fashion, when the last byte of data is read from the 8272 in the 
result phase, the result phase is automatically ended and the 8272 reenters the 
command phase. 

It is important to note that during the result phase all bytes shown in Table 4 
must be read. The Read Data command, for example, has seven bytes of data in the 
result phase. All seven bytes must be read in order to successfully complete 
the Read Data command. The 8272 will not accept a new command until all seven 
bytes have been read. The number of command and result bytes varies from 
command-to-command. 

In order to read data from, or write data to, the Data Register during the 
command and result phases, the software driver must examine the Main Status 
Register to determine if the Data Register is available. The 010 (bit 6) and 
RQM (bit 7) flags in the Main Status Register must be low and high, respective­
ly, before each byte of the command word may be written into the 8272. Many of 
the commands require multiple bytes, and as a result, the Main Status Register 
must be read prior to each byte transfer to the 8272. TO read status bytes 
during'the result phase, 010 and RQM in the Main Status Register must both be 
high. Note, checking the Main Status Register in this manner before each byte 
transfer to/from the 8272 is required only in the command and result phases, 
and is NOT required during the execution phase. 

6-553 207885-001 



BIT SYMBOL 
NUMBER 

0 DOB 

1 DIB 

2 D2B 

3 D3B 

4 CB 

5 NDM 

6 DIO 

7 RQM 

APPLICATIONS 

Table 3: Main status Register Bit Definitions 

DESCRIPTION 

Disk Drive 0 Busy. Disk Drive 0 is seeking. 
I 

Disk Drive 1 BUSY· Disk Drive 1 is seeking. 

Disk Drive 2 BUSY· Disk Drive 2 is seeking. 

Disk Drive 3 BUSY· Disk Drive 3 is seeking. 

FDC BUSY. A read Qr write command is in progress. 

Non-DMA Mode. The FDC is in the non-DMA mode when this flag is 
set (1). This flag is set only during the execution. phase of 
commands in the non-DMA mode. Transition of this flag to a 
zero (0) indicates that the execution phase has ended. 

Data Input/Output. Indicates the direction of a 
between the FDC and the Data Register. When DIO 
is read from the Data Register by the processor; 
reset (0), data is written from the processor to 

data transfer 
is set (1), data 
when DIO is 

the Data Register. 

Request for Master. When set (1), this flag indicates that 
the Data Register is ready to send data to, or receive data 
from, the processor. 

6-554 207885-001 



APPLICATIONS 

Table 4: 8272 Command Set 
OATA BUS I OATA BUS 

PHASE AJW °7 06 °5 °4 03 °2 0, 00 I REMARKS PHASE AJW °7 °6 °5 °4 °3 °2 0, °0 REMARKS 

READ DATA READ A TRACK 

Command W MT MFM SK 0 0 1 1 0 Command Codes Command W 0 MFM SK 0 0 0 1 0 Command Codes 

W 0 0 0 0 0 HOS OS1 eso W 0 0 0 0 0 HDS DS1 DSO 

W G Sector 10 information W G Sector 10 information 
W H prior to Command W H prior to Command 
W R execution W R execution 
W N W N 
W EOT W EOT 
W GPL W GPL 
W OTL W DTL 

Execution Oala transfer Dala transfer 

between the FOD 
Execution between the FOD 

and the maln·system and the main-system. 
FOC reads the 

Result R STO Status information complete track 
R ST 1 after Command contents from the 
R ST 2 execution physical index 
R C mark to EOT 
R H Sector 10 information 
R R aller command Result R ST 0 Status information 

R N execution R ~ _____ ST1 after Command 
R ST 2 execution 

REAO DELETED DATA R C 

Command W MT MFM SK 0 1 1 0 0 Command Codes R H __ ~~_ Sector 10 information 
R R after Command 

W 0 0 0 0 0 HOS OS1 eso R N execution 
W C Sector 10 information 
W H prior to Command READ ID 

W R execution Command W 0 MFM 0 0 1 0 1 0 Command Codes 
W N 
W EG 1 W 0 0 0 0 0 HOS OS1 OSO 

W GPL 
W DTL Execution The first correct 10 

Execution Data transfer 
information on the 

between the FDO 
track is_stored In 

and the main-system 
Data Register 

Result R STO Status Information Result R ST 0 Status information 
R ST 1 after Command R ST 1 after Command 
R ST 2 execution R ST 2 execution 
R C R C 
R H Sector ID information R H Sector 10 information 
R R after Command R R during Execution 

R N execution R N Phase 

WRITE DATA FORMAT A TRACK 

Command W MT MFM 0 0 0 1 0 1 Command Codes Command W 0 MFM 0 0 1 1 0 1 Command Codes 

W 0 0 0 0 0 HOS DS1 OSO W 0 0 0 0 0 HOS OS1 DSO 

W G Sector 10 information W N Bytes/Sector 

W H prior to Command W SC SectorsfTrack 
W R execution W GPL Gap 3 

W N W D Filter Byte 

W EOT 
W GPL Execution FOC formats an 
W DTL entire track 

Execution Data transfer Result R ST 0 Status Information 
between the main· R ST 1 after Command 
system and the FOD R ST 2 execution 

Result R ST 0 Status information R C 

R ST 1 after Command R H In this case, the 10 

R ST 2 execution R R information has no 

R C R N meaning 

R H Secto-r ID information SCAN EOUAL 
R R after Command 
R N execution Command W MT MFM SK 1 0 0 0 1 Command Codes 

WRITE DELETED DATA W 0 0 0 0 0 HDS DS1 OSO 

Command W MT MFM 0 0 1 0 0 1 Command Codes 
W C Sector ID Information 
W H prior to Command 

W 0 0 0 0 0 HOS OS1 DSO W R execution 
W C Sector 10 information W N 

W H prior to Command W EOT 
W R execution W GPL 

W N W STP 

W EOT 
W GPL Execution Data compared 
W DTL between the FDo 

Execution Data transler 
and the main-system 

between the FDO Result R STO Status information 
and the main-system R ST 1 after Command 

Result R STO Status information R ST 2 execution 

R ST 1 after Command R C 

R ST 2 execution R H Sector 10 information 

R G R R after Command 

R H Sector 10 information R N execution 

R R after Command 
R N execution 

Note: 1. AO= 1 for all operations. 

6-555 207885-001 



APPLICATIONS 

I DATA BUS I DATA BUS 

PHASE RIW 07 De Os 0, 03 O2 0, DO REMA,RKS PHASE RIW 07 De Os 0, 03 02 0, DO REMARKS 

SCAN lOW OR EQUAL RECALIBRATE 

Command W MT MFM SK , 1 0 0 1 Command Codes Command W 0 0 0 0 0 , , 1 Command Codes 
W 0 0 0 0 0 HoS OS, oSO W 0 0 0 0 0 0 OS, oSO 
W C Sector 10 Information Execution Head retracted to 
W H prior Command Track 0 
W R execution 
W N SENSE INTERRUPT STATUS 
W EDT 

Command W 0 0 0 0 '1 0 0 0 Command Codes W GPl 
W STP Result R ST 0 Status Information al 

R C the end of each seek 
Execution Data compared operation about the 

between the FDD FoC 
and the main-system 

SPECIFY 

Result R STO Status information Command W 0 0 0 0 0 0 , 1 Command Codes 
R ST' after Command 

W _SPT __ + ______ HUT 
R ST 2 execution - Timer Settings 
R C W HlT _NO 

R H Sector 10 information SENSE ORIVE STATUS 
R R alter Command 
R N execution Command W 0 0 0 0 0 1 0 0 Command Codes 

SCAN HIGH OR EQUAL W 0 0 0 0 0 HOS OS1 OSO 

Result R _____ ST3 Status information 
Command W MT MFM SK 1 1 1 0 1 Command Codes about the FDD 

W 0 0 0 0 0 HOS OSI DSO SEEK 
W C Sector 10 information 
W H prior Command Command W 0 0 0 0 1 , 1 , Command Codes 
W R execution W 0 0 0 0 0 HOS DS1 DSa 
W N 

W C W EDT 
W GPl 

Execution Head is pOSitioned W STP 
over proper Cylinder 

Execution Data compared on Diskette 

between the FDD INVALID 
and the main-system 

Command W ____ Invalid Codes ____ Invalid Command 
Result R STO _____ Status information Codes (NoOp- FDC 

A ST 1 after Command goes into Standby 
R ST2 execution State) 
R C Result R ST 0 STO=80 
R H Sector ID information (16) 
A R after Command 
R N execution 

6-556 207885-001 



SYMBOL 

C 

D 

APPLICATIONS 

Table 5: Command/Result Parameter Abbreviations 

DESCRIPTION 

Cylinder Address. The currently selected cylinder address (0 to 76) on 
the disk. 

Data Pattern. The pattern to be written in each sector data field during 
formatting. 

'DSO,DSl Disk Drive Select. 

DSl DSO 
0 0 Drive 0 
0 1 Drive 1 
1 0 Drive 2 
1 1 Drive 3 

DTL Special Sector Size. During the execution of disk read/write commands, 
this parameter is used to temporarily alter the effective disk sector 
size. By setting N to zero, DTL may be used to specify a sector size 
from 1 to 256 bytes in length. If the actual sector (on the disk) 
is larger than DTL specifies, the remainder of the actual sector is not 
passed to the system during read commands: during write commands, the 
remainder of the actual sector is written with all-zeroes bytes. DTL 
should be set to FF hexadecimal when N is not zero. 

EDT End of Track. The final sector number of the current track. 

GPL Gap Length. The gap 3 size. (Gap 3 is the space between sectors.) 

H Head Address. Selected head: 0 or 1 (disk side 0 or 1, respectively) 
as encoded in the sector ID field. 

HLT Head Load Time. Defines the time interval that the FDC waits after 
loading the head before initiating a read or write operation. program­
mable from 2 to 254 milliseconds (in increments of 2 ms). 

HUT Head Unload Time. Defines the time interval from the end of the exe­
cution phase (of a read or write command) until the head is unloaded. 
programmable from 16 to 240 milliseconds (in increments of 16 ms). 

MFM MFM/FM Mode Selector. Selects MFM double-density recording mode when 
high, FM single-density mode when low. 

MT Multi-Track Selector. When set, this flag selects the multi-track 
operating mode. In this mode (used only with dual-sided disks), 

N 

the FDC treats a complete cylinder (under both read/write head 0 and 
read/write head 1) as a single track. The FDC operates as if this 
expanded track started at the first sector under head 0 and ended at the 
last sector under head 1. With this flag set (high), a mUlti-sector 
read operation will automatically continue to the first sector under 
head 1 when the FDC finishes operating on the last sector under head O. 

Sector Size Code. The number of data bytes within a sector. 

6-557 207885-001 



APPLICATI.ONS 

ND Non-DMA Mode Flag. When set ·(1), this flag indicates that the FDC 
is to operate in the non-DMA mode. In this mode, the processor 
participates in each data transfer (by means of an interrupt or by 
polling the ROM flag in the Main status Register). When reset (0), 
the FDC interfaces to a DMA controller. 

R sector Address. Specifies the sector number to be read or written. In 
multi-sector transfers, this parameter specifies the sector number of 
the first sector to be read or written. 

SC Number of Sectors per Track. 'Specifies the number of sectors per track 
to be initialized by the Format Track command. 

SK Skip Flag. When this flag is set, sectors containing deleted data 
address marks will automatically be skipped during the execution of 
multi-sector Read Data or Scan commands. In the same manner, a sector 
containing a data address mark will automatically be skipped during 
the execution of a multi-sector Read Deleted Data command. 

SRT step Rate Interval. Defines the time interval between step pulses 
issued by the FDC (track-to-track acc.ess time). programmable from 
1 to 16 milliseconds (in increments of 1 ms). 

STO status Register 0-3. Registers within the FDC that store status infor-
STI mation after a command has been exe.cuted. This status information is 
ST2 available to the processor during the Result phase after command exe-
ST3 cution. These registers may only be read after a command has been 

executed (in the exact order shown in Table 4 for each command). 
These registers should not be confused with the Main Status Register. 

STP Scan Sector Increment. 'During Scan operations, this parameter is 
added to the current sector number in order to determine the next 
sector to be scanned. 

6-558 207885-001 



APPLICATIONS 

Table 6: status Register Definitions 

Status Register 0 

BIT 
NUMBER 

7,6 

5 

4 

3 

SYMBOL 

IC 

SE 

EC 

NR 

DESCRIPTION 

Interrupt Code. 

00 - Normal termination of command. The specified command was 
properly executed and completed without error. 

01 - Abnormal termination of command. Command execution was 
started but could not be successfully completed. 

10 - Invalid command. The requested command could not be executed. 

11 - Abnormal termination. During command execution, the disk 
drive ready signal changed state. 

Seek End. This flag is set (1) when the FDC has completed the 
Seek co~and and the read/write head is positioned over the 
correct cylinder. 

Equipment Check Error. This flag is set (1) if a fault signal 
is received from the disk drive or if the track 0 signal is 
not received from the disk drive after 77 step pulses 
(Recalibrate command). 

Not Ready Error. This flag is set if a read or write command is 
issued and either the drive is not ready or the command specifies 
side 1 (head 1) of a single-sided disk. 

2 H Head Address. The head address at the time of the interrupt. 

1,0 DSl,DSO Drive Select. The number of the drive selected at the time of 
the interrupt. 

status Register 1 

BIT 
NUMBER 

7 

6 

5 

4 

SYMBOL 

EN 

DE 

OR 

DESCRIPTION 

End of Track Error. This flag is set if the FDC attempts to 
access a sector beyond the final sector of the track. 

Undefined 

Data Error. Set when the FDC detects a CRC error ,in either the 
the ID field or the data field of a sector. 

Overrun Error. Set (during data transfers) if the FDC does not 
receive DMA or processor service within the specified time 
interval. 

6-559 207885-001 



3 

2 ND 

1 NW 

o MA 

APPLICATIONS 

Undefined 

Sector Not Found Error. This flag is set by any of the,fo11ow­
ing conditions. 

a) The FDC cannot locate the sector specified in the Read 
Data, Read Deleted Data, or Scan command. 

b) The FDC cannot locate the starting sector specified in 
the Read Track command. 

c) The FDC cannot read the ID field without error during 
a Read ID command. 

write Protect Error. This flag is set if the FDC detects a 
write protect signal from the disk drive during the execution 
of a Write Data, Write Deleted Data, or Format Track command. 

Missing Address Mark Error. This flag is set by either of the 
following conditions: 

a) The FDC cannot detect the ID address mark on the specified 
track (after two rotations of the disk). 

b) The FDC cannot detect the data address mark or deleted data 
address mark on the specified track. (See also the MD bit 
of Status Register 2.) 

Status Register 2 

BIT 
NUMBER 

7 

6 

5 

4 

3 

2 

SYMBOL 

CM 

DD 

WC 

SH 

SN 

DESCRIPTION 

Undefined 

Control Mark. This flag is set when the FDC encounters one of 
the following conditions: 

a) A deleted data address mark during the execution of a Read 
Data or Scan command. 

b) A data address mark during the execution of a Read Deleted 
Data command. 

Data Error. Set (1) when the FDC detects a CRC error in a 
sector data field. This flag is not set when a CRC error is 
detected in the ID field. 

Cylinder Address Error. Set when the cylinder address from the 
disk sector ID field is different from the current cylinder 
address maintained within the FDC. 

Scan Hit. Set during the execution of the Scan command 
if the scan condition is satisfied. 

Scan Not Satisfied. Set during execution of the Scan command 
if the FDC cannot locate a sector on the specified cylinder 
that satisfies the scan condition. 

6-560 207885-001 



1 BC 

o MD 

APPLICATIONS 

Bad Track Error. Set when the cylinder address from the disk 
sector ID field is FF hexadecimal and this cylinder address is 
different from the current cylinder address maintained within 
the FDC. This all "ones" cylinder number indicates a bad track 
(one containing hard errors) according to the IBM soft-sectored 
format specifications. 

Missing Data Address Mark Error. Set if the FDC cannot detect 
a data address mark or deleted data address mark on the speci­
fied track. 

status Register 3 

BIT 
NUMBER 

7 

6 

5 

4 

3 

2 

SYMBOL 

FT 

WP 

RDY 

TO 

TS 

H 

DESCRIPTION 

Fault. This flag indicates the status of the fault signal from 
the selected disk drive. 

write Protected. This flag indicates the status of the write 
protect signal from the selected disk drive. 

Ready. This flag indicates the status of the ready signal from 
the selected disk drive. 

Track O. This flag indicates the status of the track 0 signal 
from the selected disk drive. 

TWo-Sided. This flag indicates the status of the two-sided 
signal from the selected disk drive. 

Head Address. This flag indicates the status of the side select 
signal for the currently selected disk drive. 

1,0 DS1,DSO Drive Select. Indicates the currently selected disk drive 
number. 

6-561 207885-001 



APPLICATIONS 

Execution phase 

All data transfers to (or from) the floppy drive occur during the execution 
phase. The 8272 has two primary modes of operation for data transfers 
(selected by the specify command): 

1) DMA mode 
2) non-DMA mode 

In the DMA mode, execution phase data transfers are handled by the DMA con-
troller hardware (invisible to the driver software). The driver software, however, 
must set all appropriate DMA controller registers prior to the beginning of the 
disk operation. An interrupt is generated by the 8272 after the last data 
transfer, indicating the completion of the execution phase, and the beginning of 
the result phase. 

In the non-DMA mode, transfer requests are indicated by generation of an interrupt 
and by activation of the RQM flag (bit 7 in the Main status Register). The 
interrupt signal can be used for interrupt-driven systems and RQM can be used for 
polled systems. The driver software must respond to the transfer request by 
reading data from, or writing data to, the FDC. After completing the last 
transfer, the 8272 generates an interrupt to indicate the beginning of the 
result phase. In the non-DMA mode, the processor must activate the "terminal 
count" (TC) signal to the FDC (normally by means of an I/O port) after the 
transfer request for the last data byte has been received (by the driver) and 
before the appropriate data byte has been read from (or written to) the FDC. 

In either mode of operation (DMA or non-DMA), the execution phase ends when a 
"terminal count" signal is sensed by the FDC, when the last sector on a track 
(the EOT parameter - Table 4) has been read or written, or when an error 
occurs. 

Multi-sector and Multi-track Transfers 

During disk read/write transfers (Read Data, Write Data, Read Deleted Data, 
and Write Deleted Data), the FDC will continue to transfer data from sequential 
sectors until the TC input is sensed. In the DMA mode, the TC input is normally 
set by the DMA controller. In the non-DMA mode, the processor directly controls 
the FDC TC input as previously described. Once the TC input is'received, the FDC 
stops requesting data transfers (from the system software or DMA controller) • 
The FDC, however, continues to read data from, or write data to, the floppy disk 
until the end of the current disk sector. During a disk'read operation, the data 
read from the disk (after reception of the TC input) is discarded, but the data 
CRC is checked for errors: during a disk write operation, the remainder of the 
sector is filled with all-zero bytes. 

If the TC signal is not received before the last byte of the current sector has 
been transferred to/from the system, the FDC increments the sector number by one 
and initiates a read or write command for this new disk sector. 

6-562 207885-001 



APPLICATIONS 

The FDC is also designed to operate in a multi-track mode for dual-sided 
disks. In the multi-track mode (specified by means of the MT flag in the 
command byte - Table 4) the FDC will automatically increment the head address 
(from 0 to 1) when the last sector (on the track under head 0) has been read or 
written. Reading or writing is then continued on the first sector (sector 1) 
of head 1. 

Drive status polling 

After the power-on reset, the 8272 automatically enters a drive status 
polling mode. If a change in drive status is detected (all drives are assumed 
to be "not ready" at power-on), an interrupt is generated. The 8272 continues 
this status polling between command executions (and between step pulses in the 
Seek command). In this manner, the 8272 automatically notifies the system 
software whenever a floppy disk is inserted, removed, or changed by the operator. 

Command Details 

During the command phase, the Main Status Register must be polled by the driver 
software before each byte is written into the Data Register. The 010 (bit 6) and 
RQM (bit 7) flags in the Main Status Register must be low and high, respectively, 
before each byte of the command may be written into the 8272. The beginning 
of the execution phase for any of these commands will cause 010 to beset high 
and RQM to be set low. 

Operation of the FDC commands is described in detail in Application Note AP-116, 
"An Intelligent Data Base System Using the 8272." 

Invalid Commands 

If an invalid (undefined) command is sent to the FDC, the FDC will terminate 
the command. No interrupt is generated by the 8272 during this condition. 
Bit 6 and bit 7 (010 and RQM) in the Main Status Register are both set indi­
cating to the processor that the 8272 is in the result phase and the contents 
of Status Register 0 must be read. When the processor reads Status Register 
o it will find an 80H code indicating that an invalid command was received. 
The driver software in Appendix B checks each requested command and will not 
issue an invalid command to the 8272. 

A Sense Interrupt Status command must be sent after a Seek or Recalibrate 
interruptl otherwise the FDC will consider the next command to be an invalid 
command. Also, when the last "hidden" interrupt has been serviced, further 
Sense Interrupt Status commands will result in invalid command codes. 

6-563 207885-001 



APPLICATIONS 

4. 8272 physical Interface Software 

PL/M software driver listings for the 8272 FOC are contained in Appendix A. 
These drivers have been designed to operate in a OMA environment (as described 
in Application Note AP-1l6, "An Intelligent Oata Base System Using the 8272"). 
In the following paragraphs, each driver procedure is described. (A description 
of the driver data base variables is given in Table 7.) In addition, the modi­
fications necessary to reconfigure the drivers for operation in a polled envir­
onment are discussed. 

INITIALIZE$DRIVERS 

This initialization procedure must be called before any FOC operations are 
attempted. This module initializes the ORIVE$READY, ORlVE$STATUS$CHANGE, 
OPERATION$IN$PROGRESS, and OPERATION$COMPLETE arrays as well as the 
GLOBAL$ORIVE$NO variable. 

EXECUTE$DOCB 

This procedure contains the main 8272 driver control software and handles the 
execution of a complete FDC command. EXECUTE$OOCB is called with two-parame­
ters: a) a pointer to a disk operation control block and b) a pointer to a 
result status byte. The format of the disk operation control block is illus­
trated in Figure 2 and the result status codes are described in Table 8. 

Before starting the command phase for the specified disk operation, the command 
is checked for validity and to determine whether the FOC is busy. (For an over­
lapped operation, if the FOC BUSY flag is set - in the Main Status Register -
the command cannot be started; non-overlapped operations cannot be started if 
the FOC BUSY flag is set, if any drive is in the process of seeking/recalibrating, 
or if an operation is currently in progress on the specified drive.) 

After these checks are made, interrupts are disabled in order to set the 
OPERATION$IN$PROGRESS flag, reset the OPERATION$COMPLETE flag, load a pointer 
to the current operation control block into the OPERATION$OOCB$PTR array and 
set GLOBAL$ORIVE$NO (if a non-overlapped operation is to be started). 

At this point, parameters from the operation control block are output to the 
OMA controller and the FOC command phase is initiated. After completion of the 
command phase, a test is made to determine the type of result phase required 
for the current operation. If no result phase is needed, control is immediate­
ly returned to the calling program. If an immediate result phase is required, 
the result bytes are input from the FOC. Otherwise, the CPU waits until the 
OPERATION$COMPLETE flag is set (by the interrupt service procedure) • 

Finally, if an error is detected in the result status code (from the FOC), an 
FOC operation error is reported to the calling program. 

6-564 207885-001 



APPLICATIONS 

Table 7: Driver Data Base 

NAME DESCRIPTION 

DRIVE$READY A public array containing the current "ready" 
status of each drive. 

DRIVE$STATUS$CHANGE A public array containing a flag for each 
drive. The appropriate flag is set when­
ever the ready status of a drive changes. 

OPERATION$DOCB$PTR An internal array of pointers to the 
operation control block currently in 
progress for each drive. 

OPERATION$IN$PROGRESS An internal array used by the driver pro­
cedures to determine if a disk operation 
is in progress on a given drive. 

OPERATION$COMPLETE An internal array used by the driver pro­
cedures to determine when the execution 
phase of a disk operation is complete. 

GLOBAL$DRlVE$NO A data byte that records the current drive 
number for non-overlapped disk operations. 

VALID$COMMAND A constant flag array that indicates 
whether a specified FOC command code is 
valid. 

COMMAND $ LENGTH 

DRlVE$NO$PRESENT 

OVERLAP$OPERATION 

NO$RESULT 

IMMED$RESULT 

POSSIBLE$ERROR 

A constant byte array specifying the number 
of command/parameter bytes to be trans­
ferred to the FDC during the command phase. 

A constant flag array that indicates whether 
a drive number is encoded into an FDC command. 

A constant flag array that indicates whether 
an FOC command can be overlapped with other 
commands. 

A constant flag array that is used to deter­
mine when an FDC operation does not have a 
result phase. 

A constant flag array that indicates that an 
FDC operation has a result phase beginning 
immediately after the command phase is 
complete. 

A constant flag array that indicates if an 
FDC operation should be checked for an 
error status indication during the result 
phase. 

6-565 207885-001 



Address 
Offset 

o 

1 

3 

4 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

APPLICATIONS 

Disk Operation 
Control Block (DOCB) 

DMA$OP 

DMA$ADDR 

DMA$ADDR$EXT 

DMA$COUNT 

DISK$COMMAND(O) 

DISK$COMMAND(l) 

DISK$COMMAND(2) 

DISK$COMMAND(3) 

DISK$COMMAND(4) 

DISK$COMMAND(~) 

DISK$COMMAND(6) 

DISK$COMMAND(7) 

DISK$COMMAND(8) 

DISK$RESULT(O) 

DISK$RESULT(l) 

DISK$RESULT(2) 

DISK$RESULT(3) 

DISK$RESULT(4) 

DISK$RESULT(5) 

DISK$RESULT(6) 

MISC 

Figure 2. Disk Operation Control Block (DOCB) Format 

6-566 

I 

I 

AFN-Ql949A 

20788S'()01, 



Code 

o 

1 

2 

3 

4 

5 

APPLICATIONS 

Table 8: EXECUTE$DOCB Return status Codes 

Description 

No errors. The specified operation was completed without error. 

FDC busy. The requested operation cannot be started. This error 
occurs if an attempt is made to start an operation before the 
previous operation is completed. 

FDC error. An error was detected by the FDC during the execution 
phase of a disk operation. Additional error information is con­
tained in the result data portion of the disk operation control 
block (DOCB.DISK$RESULT) as described in the 8272 data sheet. 
This error occurs whenever the 8272 reports an execution phase 
error (e.g., missing address mark). 

8272 command interface error. An 8272 interfacing error was de­
tected during the command phase. This error occurs when the command 
phase of a disk operation cannot be successfully completed (e.g., 
incorrect setting of the DIO flag in the Main status Register). 

8272 result interface error. An 8272 interfacing error was detected 
during the result phase. This error occurs when the result phase 
of a disk operation cannot be successfully completed (e.g., incorrect 
setting of the DIO flag in the Main Status Register) • 

Invalid FDC Command. 

6-567 207885-001 



APPLICATIONS 

FDCINT 

This procedure performs all interrupt processing for the 8272 interface drivers. 
Basically, two types of interrupts are generated by the 8272: (a) an interrupt 
that signals the end of a command execution phase and the beginning of the re­
sult phase and (b) an interrupt that signals the completion of· an overlapped 
operation or the occurrence of an unexpected event (e.g., change in the drive 
"ready" status). 

An interrupt of type (a) is indicated when the FDC BUSY flag is set (in the 
Main Status Register). When a type (a) interrupt is sensed, the result bytes 
are read from the 8272.and placed in the result portion of the disk operation 
control block, the appropriate OPERATION$COMPLETE flag is set, and, the OPERA­
TION$IN$PROGRESS flag is reset. 

When an interrupt of type (b) .is indicated (FDC not busy), a sense interrupt 
status command is issued (to the FDC). The upper two bits of the result status 
register (status Register Zero - STD) are used to determine the cause of the 
interrupt. The following four cases are possible: 

1) Operation Complete. An overlapped operation is complete. The 
drive number is found in the lower two bits of STD. The STD data 
is transferred to the active operation control block, the OPERA­
TION$COMPLETE flag is set, and the OPERATION$IN$PROGRESS flag is 
reset. 

2) Abnormal Termination. A disk operation has abnormally terminated. 
The drive number is found in the lower two bits of STD. The STD 
data is transferred to the active control block, the OPERATION$COM­
PLETE flag is set, and the OPERATION$IN$PROGRESS flag is reset. 

3) Invalid Command. The execution of an invalid command (i.e., a 
sense interrupt command with no interrupt pending) has been attempt­
ed. This interrupt signals the successful completion of all interrupt 
processing. 

4) Drive Status Change. A change has occurred in the "ready" status 
of a disk drive. The drive number is found in the lower two bits 
of STD. The DRIVE$READY flag for this disk drive is set to the 
new drive "ready" status and the DRIVE$STATUS$CHANGE flag for the 
drive is also set. In addition, if a command is currently in 
progress, the STD data is transferred to the active control block, 
the OPERATION$COMPLETE flag is set, and the OPERATION$IN$PROGRESS 
flag is reset. 

After processing a type (b) interrupt, additional sense interrupt status commands 
must be issued and processed until an "invalid command" result is returned from 
the FOC. This action guarantees that all "hidden" interrupts are serviced. 

In addition to the major driver procedures described above, a number of support 
procedures are required. These support routines are briefly described in the 
following paragraphs. 

6-568 207885-001 



APPLICATIONS 

OUTPUT$CONTROLS$TO$DMA 

This procedure outputs the DMA mode, the DMA address, and the DMA word count 
to the 8237 DMA controller. In addition, the upper four bits of the 20-bit 
DMA address are output to the address extension latch. Finally, the disk DMA 
channel is started. 

OUTPUT$COMMAND$TO$FDC 

This software module outputs a complete disk command to the 8272 FDC. The 
number of required command/parameter bytes is found in the COMMAND$LENGTH table. 
The appropriate bytes are output one at a time (by calls to OUTPUT$BYTE$TO$FDC) 
from the command portion of the disk operation control block. 

INPUT$RESULT$FROM$FDC 

This procedure is used to read result phase status information from the disk 
controller. At most, seven bytes are read. In order to read each byte, a call 
is made to INPUT$BYTE$FROM$FDC. When the last byte has been read, a check is 
made to insure that the FDC is no longer busy. 

OUTPUT$BYTE$TO$FDC 

This software is used to output a single command/parameter byte to the FOC. 
This procedure waits until the FOC is ready for a command byte and then out­
puts the byte to the FOC data port. 

INPUT$BYTE$FROM$FDC 

This procedure inputs a single result byte from the FDC. The software waits 
until the FDC is ready to transfer a result byte and then reads the byte from 
the FDC data port. 

FDC$READY$FOR$COMMAND 

This procedure assures that the FOC is ready to accept a command/parameter byte 
by performing the following three steps. First, a small time interval (more 
than 20 microseconds) is inserted to assure that the RQM flag has time to become 
valid (after the last byte transfer). Second, the master request flag (RQM) is 
polled until it is activated by the FOC. Finally, the DIO flag is checked to 
ensure that it is properly set for FDC input (from the processor) • 

FDC$READY$FOR$RESULT 

The operation of this procedure is similar to the FDC$READY$FOR$COMMAND with 
the following exception. If the FOC BUSY flag (in the Main Status Register) 
is not set, the result phase is complete and no more data is available from 
the FOC. Otherwise, the procedure waits for the RQM flag and checks the bIO 
flag for FDC output (to the processor) • 

6-569 207885-001 



APPLICATIONS 

OPBRA~IOR$CLBAR$UP 

This procedure is called after the execution of a disk operation that has no 
result phase. OPERATION$CLEAN$UP resets the OPERATION$IN$PROGRESS flag and the 
GLOBAL$DRIVE$NO variable if appropriate. This procedure is also called to clean 
up after some disk operation errors. 

Modifications for polling Operation 

To operate in the polling mode, the following modifications should be made to 
the previous routines: 

1. The OUTPUT$CONTROLS$TO$DMA routine should be deleted. 

2. In EXECUTE$DOCB, immediately prior to WAIT$FOR$OP$COMPLETE, a 
polling loop should be inserted into the code. The loop should 
test the RQM flag (in the Main status Register). When RQM is 
set, a data byte should be written to, or read from, the 8272. 
The buffer address may be computed from the base address con­
tained in DOCB.DMA$ADDR and DOCB.DMA$ADDR$EXT. After the correct 
number of bytes have been transferred, an operation complete 
interrupt will be issued by the POC. During data transfer in 
the non-DMA mode, the NON-DMA MODE flag (bit 5 of the Main status 
Register) will be set. This flag will remain set for the complete 
execution phase. When the transfer is finished, the NON-DMA MODE 
flag is reset and the result phase interrupt is issued by the POC. 

6-570 207885-001 



APPLICATIONS 

5. 8272 Logical Interface Software 

Appendix B of this Application Note contains a PL/M listing of an exerciser 
program for the 8272 drivers. This program illustrates the design of logical 
interface level procedures to specify disk parameters, recalibrate a drive, 
seek to a cylinder, format a disk, read data, and write data. 

The exerciser program is written to operate a standard single-sided 8" floppy 
disk drive in either the single- or double-density recording mode. Only the 
eight parameters listed in Table 9 must be specified. All other parameters 
are derived from these 8 basic variables. 

Each of these logical interface procedures is described in the following para­
graphs (refer to the listing in Appendix B) • 

SPECIFY 

This procedure sets the FDC signal timing so that the FOC will interface 
correctly to the attached disk drive. The SPECIFY procedure requires four 
parameters, the step rate (SRT), head load time (HLT), head unload time (HUT), 
and the non-DMA mode flag (ND). This procedure builds a disk operation control 
block (SPECIFY$DOCB) and passes the control block to the FOC driver module 
(EXECUTE$DOCB) for execution. (Note carefully the computation required to 
transform the step rate (SRT) into the correct 8272 parameter byte.) 

RECALIBRATE 

This procedure causes the floppy disk read/write head to retract to track O. 
The RECALIBRATE procedure requires only one parameter - the drive number on 
which the recalibrate operation is to be performed. This procedure builds a 
disk operation control block (RECALIBRATE$OOCB) and passes the control block 
to the FDC driver for execution. 

SEEK 

This procedure causes the disk read/write head (on the selected drive) to move 
to the desired cylinder position. The SEEK procedure is called with three 
parameters: drive number (DRV), head/side number (HD), and cylinder number 
(CYL). This software module builds a disk operation control block (SEEK$OOCB) 
that is executed by the FDC driver. 

FORMAT 

The FORMAT procedure is designed to initialize a complete floppy disk so that 
sectors can subsequently be read and written by system and application programs. 
Three parameters must be supplied to this procedure: the drive number (DRV), 
the recording density (DENS), and the interleave factor (INTLVE). The FORMAT 
procedure generates a data block (FMTBLK) and a disk operation control block 
(FORMAT$DOCB) for each track on the floppy disk (normally 77) • 

6-571 207885-001 



APPLICATIONS 

Table 9: Basic Disk Parameters 

Name Description . 

DENSITY 

FILLER$BYTE 

TRACKS$PER$DISK 

BYTES $PER$ SECTOR 

INTERLEAVE 

STEP $ RATE 

HEAD $LOAD$TIME 

HEAD$UNLOAD$TIME 

The recording mode (FM or MFM). 

The data byte to be written in all sectors during 
formatting. . 

The number of cylinders on the floppy disk. 

The number of bytes in each disk sector. The 
exerciser accepts 128, 256, and 512 in FM mode, 
and 256, 512, and 1024 in MFM mode. 

The sector interleave factor for each disk track. 

The disk drive step rate (1-16 milliseconds). 

The disk drive head load time (2-254 milliseconds). 

The head unload time (16-240 milliseconds). 

6-572 207885-001 



APPLICATIONS 

The format data block specifies the four sector ID field parameters (cylinder, 
head, sector, and bytes per sector) for each sector on the track. The sector 
numbers need not be sequential: the interleave factor (INTLVE parameter) is used 
to compute the logical to physical sector mapping. 

After both the format data block and the operation control block are generated 
for a given cylinder, control is passed to the 8272 drivers for execution. 
After the format operation is complete, a SEEK to the next cylinder is per­
formed, a new format table is generated, and another track formatting operation 
is executed by the drivers. This track formatting continues until all tracks 
on the diskette are formatted. 

In some systems, bad tracks must also be specified when a disk is formatted. For 
these systems, the existing FORMAT procedure should be modified to format 
bad tracks with a cylinder number of OFFH. 

WRITE 

The WRITE procedure transfers a complete sector of data to the disk drive. Five 
parameters must be supplied to this software module: the drive number (DRV), 
the cylinder number (CYL), the head/side number (HO), the sector number (SEC) 
and the recording density (DENS). This procedure generates a disk operation 
control block (WRITE$DOCB) from these parameters and passes the control block to 
the 8272 driver for execution. When control returns to the calling program, the 
data has been transferred to disk. 

READ 

This procedure is identical to the WRITE procedure except the direction of data 
transfer is reversed. The READ procedure transfers a sector of data from the 
floppy disk to system memory. 

Coping With Errors 

In actual practice all logical disk interface routines would contain error 
processing mechanisms. (Errors have been ignored for the sake of simplicity 
in the exerciser programs listed in Appendix B.) A typical error recovery 
technique consists of a two-stage procedure. First, when an error is detected, 
a recalibrate operation is performed followed by a retry of the failed operation. 
This procedure forces the drive to seek directly to the requested cylinder (low­
ering the probability of a seek error) and attempts to perform the requested 
operation an additional time. Soft (temporary) errors caused by mechanical or 
electrical interference do not normally recur during the retry operation: hard 
errors (caused by media or drive failures), on the other hand, will continue 
to occur during retry operations. If, after a number of retries (approximately 
10), the operation continues to fail, an error message is displayed to the sys­
tem operator. This error message lists the drive number, type of operation, 
and failure status (from the FDC). It is the operator's responsibility to take 
additional action as required. 

6-573 207885-001 



APPLICATIONS 

6. File Systems 

The file system 'provides the disk I/O interface level most familiar to users 
of interactive microcomputer and minicomputer systems. In a file system, all 
data is stored in named disk areas called files. The user and applications 
programs need not be concerned with the exact location of a file on the disk - the 
disk file system automatically determines the file location from the file name. 
Files may be created, read, written, modified, and finally deleted (destroyed) 
when they are no longer needed. Each floppy disk typically contains a directory 
that lists all the files existing on the disk. A directory entry for a f'ile 
contains information such as file name, file size, and the disk address (track 
and sector) of the beginning of the file. 

File Allocation 

File storage is actually allocated on the disk (by the file system) in fixed 
size areas called blocks. Normally a block is the same size as a disk sector. 
Files are created by finding and reserving enough unused blocks to contain the 
data in the file. Two file allocation methods are currently in widespread use. 
The first method allocates blocks (for a file) from a sequential pool of unused 
blocks. Thus, a file is always contained in a set of sequential blocks on the 
disk. Unfortunately, as files are created, updated, and deleted, these free­
block pools become fragmented (separated from one another). When this fragmen­
tation occurs, it often becomes impossible for the file system to create a file 
even though there is a sufficient number of free blocks on the disk. At this 
point, special programs must be run to "squeeze" or compact the disk, in order 
to re-create a single contiguous free-block pool. 

The second file allocation method uses a more flexible technique in which indi­
vidual data blocks may be located anywhere on the disk (with no restrictions). 
With this technique, a file directory entry contains the disk address of a file 
pointer block rather than the disk address of the first data block of the file. 
This file pointer block contains pointers (disk addresses) for each data block 
in the file. For example, the first pointer in the file pointer block contains 
the track and sector address of the first data block in the file, the second 
pointer contains the disk address of the second data block, etc. 

In practice, pointer blocks are usually the same size as data blocks. Therefore, 
some files will requir~ multiple pointer blocks. TO accommodate this require­
ment without loss of flexibility, pointer blocks are linked together, that is, 
each pointer block contains the disk address of the following pointer block. 
The last pointer block of the file is signalled by an illegal disk address 
(e.g., track 0, sector 0 or track OFFH, sector OFFH). 

6-574 207885-001 



APPLICATIONS 

The Intel File System 

The Intel file system (described in detail in the RMX-80 Users Guide) uses 
the second disk file allocation method (previously discussed). In order to 
lower the system overhead involved in finding free data blocks, the Intel file 
system incorporates a free space management data structure known as a bit map. 
Each disk sector is represented by a single bit in the bit map. If a bit in the 
bit map is set to 1, the corresponding disk sector has been allocated. A zero 
in the bit map indicates that the corresponding sector is free. With this 
technique, the process of allocating or freeing a sector is accomplished by 
simply altering the bit map. 

File names consist of a basic file name (up to six characters) and a file ex­
tension (up to three characters). The basic file name and the file extension 
are separated by a period (.). Examples of valid file names are: DRIV72.0BJ, 
XX.TMP, and FILE.CS. In addition, four file attributes are supported (see 
Figure 3 for attribute definitions) . 

The bit map and the file directory are placed on prespecified disk tracks 
(reserved for system use) beginning at track zero. 

Disk File System Functions 

Table 2 illustrates the typical functions implemented by a disk file system. 
As an example, the disk directory function (DIR) lists disk file information on 
the console display terminal. Figure 3 details the contents of a display entry 
in the Intel file system. The PL/M procedure outlined in Figure 4 illustrates 
a disk directory algorithm that displays the file name, the file attributes, 
and the file size (in blocks) for each file in the directory. 

6-575 207885-001 



Directory Entry 

APPLICATIONS 

• -y .·INVISIBLE 
1 - SYSTEM 
2· WRITE-PROTECT 
3· 
;: } (RESERVED) 

6· 
7 - FORMAT 

Presence is a flag that can contain one of three values: 

OOOH - The file associated with this entry is present on the disk. 

AFN·01949A 

07FH - No file is associated with this entrYl the content of the rest 
of the entry is undefined. The first entry with its flag set 
to 07FH marks the current logical end of the directory and 
directory searches stop at this entry. 

OFFH - The file named in this entry once existed on the disk but is 
currently deleted. The next file added to the directory will 
be placed in the first entry marked OFFH. This flag cannot, 
therefore, be used to (reliably) find a file that has been 
deleted. A value of OFFH should be thought of as simply marking 
an open directory entry. 

File Hame is a string of up to 6 non-blank ASCII characters specifying the 
name of the file associated with the directory entry. If the file name is 
shorter than six characters, the remaining bytes contain binary zeros. For ex­
ample, the name ALPHA would be stored as: 4l4C50484l00H. 

Extension is a string of up to 3 non-blank ASCII characters that specifies an 
extension to the file name. Extensions often identify the type of data in the 
file such as OBJ (object 'module) , or PLM (PL/M source module). As with the 
file name, unused positions in the extension field are filled with binary zeros. 

Figure 3. Intel Directory Entry Format 

6-576 207885-001 



APPLICATIONS 

Attributes are bits that identify certain characteristics of the file. A 1 
bit indicates that the file has the attribute, while a a bit means that the file 
does not have the attribute. The bit positions and their corresponding attri­
butes are listed below (bit a is the low-order or rightmost bit, bit 7 is the 
leftmost bit): 

0: Invisible. Files with this attribute are not listed by the 
ISIS-II DIR command unless the I switch is used. All system 
files are invisible. 

1: System. Files with this attribute are copied to the disk in 
drive 1 when the S switch is specified with the ISIS-II FORMAT 
command. 

2: Write-Protect. Files with this attribute cannot be opened for 
output or update, nor can they be deleted or renamed. 

3-6: These positions are reserved for future use. 

7: Format. Files with this attribute are treated as though they 
are write-protected. In addition, these files are created on 
a new diskette when the ISIS-II FORMAT command is issued. The 
system files all have the FORMAT attribute and it should not 
be given to any other files. 

EOF count contains the number of the last byte in the last data block of 
the file. If the value of this field is OBOH, for example, the last byte in 
the file is byte number l2B in the last data block (the last block is full). 

N.umber of Data Blocks is an address variable that indicates the number of 
data blocks currently used by the file. ISIS-II and the RMX/BO Disk File 
system both maintain a counter called LENGTH that is the current number of 
bytes in the file. This is calculated as: 

«NUMBER OF DATA BLOCKS - 1) x l2B + EOF COUNT. 

Header Block pointer is the address of the file's header block. The high 
byte of the field is the sector number and the low byte is the track number. 
The system "finds" a disk file by searching the directory for the name and then 
using the header block pointer to seek to the beginning of the file. 

Figure 3. Intel Directory Entry Format (Continued) 

6-577 207885-001 



dir: procedure (drv,dens) 
declare drv 

dens 
sector 
i 
dir$ptr 
dir$entry 

size (5) 

invisible$f1ag 
system$flag 
protected$f1ag 
format$f1ag 

APPLICATIONS 

public; 
byte, 
byte, 
byte, 
byte, 
byte, 
based rdbptr structure (presence byte, 
file$name(6) byte,extension(3) byte, 
attribute byte,eof$count byte, 
data$blocks address,header$ptr address), 
byte, 

literallv -1-, 
li terally - 2- , 
literally -4-, 
literally -SOH-; 

1* The disk directory starts at cylinder 1, sector .2.*1 
call seek(drv,l,O)~ 
do sector=2 to·26~ 

call read(drv,l,O,sector,dens)~ 
do dir$ptr=O to 112 by 4~ 

if dir$entry.presence=7FH then return~ 
if dir$entry.presence=O 

then do~ 
do i=O to 5~ call co(dir$entr.y.file$name(i»~ end~ 
call co(period)~ 
do i=O to 2~ call co(dir$entry.extension(i»~ end~ 
do i=O to 4~ ·call co(space)~ end~ 
call ~onvert$to$decimal(@size,dir$entry.data$blocks)~ 
do i=O to 4; call co(size(i»; end; 
If (dir$entrv.attribute and invisible$flag) <> 0 then call co(-I-); 
If (dir$entry.attribute and system$flag) <> 0 then call co(-S-)~ 
If (dir$entry.attribute and protected$flag) <> 0 then call co(-W-)~ 
If (dir$entry~attribuie and format$flag) <> 0 then call co(-F-)~ 

end~ 
end; 

end~ 

end dir~ 

Figure 4. Sample PLJM Directory Procedure 

6-578 

AFN-Q1949A 

207885-{)Ol 



APPLICATIONS 

7. Key 8272 Software Interfacing Considerations 

This section contains a quick review of Key 8272 Software design features and 
issues. (Most items have been mentioned in other sections of this application 
note.) Before designing 8272 software drivers, it is advisable that the infor­
mation in this section be thoroughly understood. 

1. Non-DMA Data Transfers 

In systems that operate without a DMA controller (in the polled or 
interrupt driven mode), the system software is responsible for counting 
data transfers to/from the 8272 and generating a TC signal to the FDC 
when the transfer is complete. 

2. processor Command/Result phase Interface 

In the command phase, the driver software must write the exact number of parameters 
in the exact order shown in Table 5. During the result phase, the driver 
must read the complete result status. For example, the Format Track command 
requires six command bytes and presents seven result bytes. The 8272 will not 
accept a new command until all result bytes are read. Note that the number of 
command and result bytes varies from command-to-command. Command and result 
phases cannot be shortened. 

During both the command and result phases, the Main Status Register must be read 
by the driver before each byte of information is read from, or written to, 
the FDC Data Register. Before each command byte is written, DIO (bit 6) 
must be low (indicating a data transfer from the processor) and RQM (bit 7) 
must be high (indicating that the FDC is ready for data). During the result 
phase, DIO must be high (indicating a data transfer to the processor) and RQM 
must also be high (indicating that data is ready for the processor). 

Note: After the 8272 receives a command byte, the RQM flag may remain set for 
approximately 16 microseconds (with an 8 MHz clock). The driver should not 
attempt to read the Main Status Register before this time interval has 
elapsed; otherwise, the driver may erroneously assume that the FDC is 
ready to accept the next byte. 

3. Sector Sizes 

The 8272 does not support 128 byte sectors in the MFM (double-density) mode. 

4. Drive Status Changes 

The 8272 constantly polls all drives for changes in the drive ready status. 
This polling begins immediately following RESET. An interrupt is generated 
every time the FDC senses a change in the drive ready status. After reset, 
the FDC assumes that all drives are "not ready". If a drive is ready 
immediately after reset, the 8272 generates a drive status change interrupt. 

6-579 207885-001 



APPLICATIONS 

5. Seek Commands 

The 8272 'FCC does not perform implied seeks. Before issuing a data read 
or write command, the read/write head must be positioned over the correct 
cylinder by means of an explicit seek command. If the head is not'posit­
ioned correctly, a cylinder address error is generated. 

6. Interrupt processing 

When the processor receives an ,interrupt from the FCC, the FDC may be re­
porting one of two distinct events: 

a) The beginning of the result phase of a previously requested 
read, write, or scan command. 

b) An 'asynchronous event such as a seek/recalibrate,completion, 
an attention, an abnormal command termination, or an invalid 
command. 

These two cases are distinguished by the'FDC BUSY flag (bit 4) in the Main 
Status Register. If the FDC BUSY flag is high, the interrupt is of type (a). 
If the FDC BUSY flag is low, the interrupt was caused by an asynchronous 
event (b). 

A single interrupt from the FDC may signal more than one of the above events. 
After receiving an interrupt, the processor must 'continue to issue Sense 
Interrupt Status commands (and service the resulting conditions) until an 
invalid command code is received. In this manner, all "hidden" interrupts are 
ferreted out and serviced. 

7. Skip Flag (SK) 

The skip flag is used during the execution of Read Data, Read Deleted Data, 
Read Track, and various Scan commands. This flag permits the FDC to skip 
unwanted sectors on a disk track. 

When performing a Read Data, Read Track, or Scan command, a high SK flag indi­
cates that the FCC is to skip over (not transfer) any 'sector containing a 
deleted data address mark. A low SK flag indicates that the FDC is to termi­
nate the command (after reading all the data in the sector) when a deleted 
data address mark is encountered. 

When performing a Read Deleted Data command, a high SK flag indicates that 
sectors containing normal data address marks are to be skipped. Note that 
this is just the opposite situation from that described in the last paragraph. 
When a data address mark is encountered during a Read Deleted 'Data command (and 
the SK flag is low), the FCC terminates the command after reading all the data 
in the sector. 

6-580 207885-001 



APPLICATIONS 

B. Bad Track Maintenance 

The B272 does not internally maintain bad track information. The maintenance 
of this information must be performed by system software. As an example of 
typical bad track operation, assume that a media test determines that track 
31 and track 66 of a given floppy disk are bad. When the disk is formatted 
for use, the system software formats physical track 0 as logical cylinder 
o (C=O in the command phase parameters), physical track 1 as logical track 1 
(C=l), and so on, until physical track 30 is formatted as logical cylinder 
30 (C=30). Physcial track 31 is bad and should be formatted as logical 
cylinder FF (indicating a bad track). Next, physical track 32 is formatted 
as logical cylinder 31, and so on, until physiaal track 65 is formatted as 
logical cylinder 64. Next, bad physical track 66 is formatted as logical 
cylinder FF (another bad track marker), and physical track 67 is formatted 
as logical cylinder 65. This formatting continues until the last physical 
track (77) is formatted as logical cylinder 75. Normally, after this formatting 
is complete, the bad track information is stored in a prespecified area on the 
floppy disk (typically in a sector on track 0) so that the system will be able 
to recreate the bad track information when the disk is removed from the drive 
and reinserted at some later time. 

To illustrate how the system software performs a transfer operation on a disk 
with bad tracks, assume that the disk drive head is positioned at track 0 and 
the disk described above is loaded into the drive. If a command to read track 
36 is issued by an application program, the system software translates this 
read command into a seek to physical track 37 (since there is one bad track 
between 0 and 36, namely 31) followed by a read of logical cylinder 36. 
Thus, the cylinder parameter C is set to 37 for the Seek command and 36 for 
the Read Sector command. 

6-581 207885-001 



APPLICATIONS 

REPBRERCBS 

1. Intel, n8272 Single/Double Density Floppy Disk Controller Data Sheet,n 
Intel Corporation, 1980. 

2. Intel, nAn Intelligent Data Base System Using the 8272," Intel Application 
Note, AP-116, 1981. 

3. Intel, iSBC 208 Hardware Reference Manual, Manual Order No. 143078, 
Intel Corporation, 1980. 

4.. Intel, RMX/80 User I s Guide, Manual Order No. 9800522, Intel 
Corporation, 1978 

5. Brinch Hansen, P., Operating System principles, prentice-Hall, Inc., 
New Jersey, 1973. 

6. Flores, I., Computer Software: programming systems for Digital.Computers, 
prentice-Hall, Inc., New Jersey, 1965. 

7. Knuth, D. E., Fundamental Algorithms, Addison-Wesley publishing Company, 
Massachusetts, 1975. 

8~ Shaw, A. C., The Logical Design of Operating Systems, prentice-Hall, Inc., 
New Jersey, 1974. 

9. Watson, R. W., Time Sharing system Design Concepts, McGraw-Hill, Inc., 
New York, 1970. 

10. Zarrella,'J., Operating Systems: Concepts and principles, Microcomputer 
Applications, California, 1979. 

6-582 207885-001 



APPLICATIONS 

APPENDIX A 
8272 FDC DEVICE DRIVER SOFTWARE 

6-583 207885-001 



APPLICATIONS 

PL/M-86 COMPILER 8272 FLOPPY DISK CONTROLLER DEVICE DRIVERS 

ISIS-II PL/M-86 Vl.2 COMPILATION OF MODULE DRIVERS 
OBJECT MODULE PLACED IN :Fl:driv72.0BJ 
COMPILER INVOKED BY: plm86 :Fl:driv72.p86 DEBUG 

10 

1 

1 

$title('8272 floppy disk controller device drivers') 
$nointvector 
$optimize (2) 
$large 

drivers: do; 

declare 
1* floppy disk port 
fdc$status$port 
fdc$data$port 

declare 

definitions */ 
literally'30H', 
literally '3lH': 

/* 8272 status port */ 
/* 8272 data port */ 

/* floppy disk commands */ 
sense$int$status literally ~08H~; 

declare 
1* interrupt definiti.ons *1 
fdc$int$level literally '33': /* fdc interrupt level */ 

declare 
1* return status and 
error 
ok 
complete 
false 
true 
error$in 
propagate$error 

stat$ok 
stat$busy 
stat$error 
stat$command$error 
stat$result$error 
stat$invalid 

declare 
/* masks */ 
busy$mask 
DIO$mask 
RQM$mask 
seek$mask 
result$error$mask 
result$drive$mask 
result$ready$mask 

declare 
/* drive numbers */ 
max$no$drives 
fdc$general 

neclare 

error codes */ 
literally ""0"', 
literally"'1"', 
literally"'3", 
literally "'0"', 
literally"1", 
literally "not"" 
literally "'return error"', 

literally"O'", 
literally' '"1'", 
literally '2', 
literally"'3'", 
literally '4', 
literally "5"': 

literallv"'lOH"', 
literallv'40H', 
literally'80H', 
literallv"'OFH"', 
literally'OCOH', 
literally'03H', 
literally '08H': 

literally '"3'", 
literally "'4"'; 

/* fde operation completed without errors */ 
/* "fdc is husy, operation cannot be started */ 
/* fdc operation error */ 
/* fdc not ready for command phase */ 
1* fdc not ready for r~sult phase */ 
1* invalid fdc command */ 

1* misceJ.laneous control */ 
'((input(fdc$status$port) and seek$mask) <> a)', 
'(docb.disk$command(O) and lFH)', 
'((input(fdc$status$port) and DIO$mask)=O)', 
'((input(fdc$status$port) and DIO$mask)<>O)',' 
'(docb.disk$command(l) and 03H)', 
'((input(fdc$status$port) and busy$mask) <> a)', 
'possible$error(command$code) and ((docb.disk$result(O) 

any$drive$seeking literally 
command$code Ii terallv 
DIO$set$for$input literally 
DIO$set$for$output literally 
extract$drive$no literally 
fdc$busy li ter ally 
nO$fdc$error literally 

wait$for$op$complete 
wait$for$RQM 

literally 
literally 

and result$error$mask) = a)', 
'"do while not operation$complete(drive$no) ~ end'", 
'do while (input (fdc$status$port) and RQM$mask) = 0: end:': 

1 declare 

1 

/* structures */ 
docb$type literally /* disk operation control block */ 

$eject 
declare 

"'(dma$op byte,dma$addr word, dma$addr$ext byte,dma$count word, 
disk$command(9) byte,disk$result(7) byte,misc byte)': 

drive$status$change(4) byte public, 
drive$ready(4) byte public: 

/* when set - indicates that drve status changed */ 
/* current status of drives */ 

6-584 207885-001 



11 

12 

13 

14 

15 
16 
17 
18 
19 
20 

21 
22 
23 

24 

25 

26 

27 

30 

32 

33 

34 

35 

36 

2 
2 
2 

APPLICATIONS 

declare 
operation$in$progress(5) byte, 
operation$complete(5) byte, 
operation$docb$ptr(5) pointer, 
interrupt$docb structure docb$type, 
globa1$drive$no byte, 

/* internal flags for operation with multiple drives */ 
1* fde execution phase completed */ 
/* pointers for operations in progress */ 
1* temporary dacb for interrupt processing */ 
/* drive number of non-overlapped operation 

in progress - if any */ 

declare 
/* internal vectors that contain command operational information */ 
no$result(32) byte 1* no result phase to command */ 

data(O,O,O,l,O,O,O,O,O,O,O,O,O,O,O,D,O,O,O,O,O,O,O,O,O,0,0,0,0,0,0,0) , 
immed$result(32) byte 1* immediate result phase for command */ 

data (0, 0, 0, 0, 1, 0, 0, 0,1, 0, 0,0, 0, 0,0,0, 0,0, 0, a ,0, 0, 0,0, 0, 0, 0, 0,0,0,0,0) , 
overlap$operation(32) byte 1* command permits overlapped operation of drvies *1 

data(O,O,O,O,O,O,O,l,O,O,O,O,O,O,O,l,O,O,O,O,O,O,O,O,O,0,0,0,0,0,0,0), 
drive$no$present(32) byte 1* drive number present in command information *1 

data(O,O,I,O,I,l,l,l,O,l,l,O,l,l,O,l,O,l,O,O,O,O,O,O,O,1,0,0,0,1,0,0), 
possible$error(32) byte 1* determines if command can return with an error *1 

data(O,O,l,O,O,l,l,l,l,l,l,O,l,l,O,l,O,l,O,O,O,O,O,O,O,1,0,0,0,1,0,0), 
command$length(32) byte 1* contains number of command bytes for each command *1 

data(O,0,9,3,2,9,9,2,l,9,2,0,9,6,O,3,O,9,O,O,0,O,0,0,0,9,0,0,0,9,0,0), 
valid$command(32) byte 1* flags invalid command codes */ 

data(O,O,l,l,l,l,l,l,l,l,l,O,l,l,O,l,O,l,O,O,O,O',O,O,0,1,0,0,0,1,0,0); 

$eject 

1**** initialization for the 8272 fdc driver software. This procedure m~st 
be called prior to execution of any driver software. ****1 

initialize$drivers: procedure pUblic: 
1* initialize 8272 drivers *1 

declare drv$no byte; 

do drv$no=O to max$no$drives; 
~rive$ready(drv$no)=fa1se, 
drive$status$change(drv$no)=false, 
operation$in$progress(drv$no)=false; 
operation$complete(drv$no)=false: 

end; 

operation$in$progress (fdc$general) =falsej 
operation$complete(fdc$general)=£alsej 
global$drive$no=O, 

end initialize$drivers; 

1**** wait until the 8272 fdc is ready to receive command/parameter bytes 
in the command phase. The 8272 is ready to receive command bytes 
when the RQM flag is high and the 010 flag is low. ****1 

fdc$ready$£or$command: procedure byte; 

1* wait for valid flag settings in status register *1 
call time (~); 

1* wait for "master request" flag *1 
wait$for$RQM, 

/* check data direction flag */ 
if DIO$set$for$input 

then return ok; 
else return error: 

end fdc$ready$for$command, 

/**** wait until the 8272 fdc is ready to return data bytes in the result 
phase. The 8272 is ready to return a result byte when the RQM and 010 
flags are both high. The busy flag in the main status register will 
remain set ,until the last data byte of the result phase has been read 
by the processor. ****1 

fdc$ready$for$resu1t: procedure byte, 

1* wait for valid settings in status register *1 
call time (1) , 

1* result phase has ended when the 8272 busy flag is reset *1 
if not fdc$busy 

then return complete; 

6-585 207885-001 



38 

41 

43 

44 

45 
46 

47 

49 

50 
51 

52 
53 
54 

55 
56 

58 

~o 

61 
62 

63 
64 
65 

66 

67 

69 
70 

1 
2 
2 

3 
3 

APPLICATIONS 

/* wait for "master request" flag */ 
wait$for$RQM, 

/* check data direction flag */ 
if DIO$set$for$output 

then return ok; 
else return error; 

end fdc$ready$for$result, 

/**** output a single command/parameter byte to the 8272 fde. The "data$byte" 
parameter is the byte to be output to the fdc. ****/ 

output$byt~$to$fdc: procedure (data$byte) byte; 
declare data$byte byte, 

1* check 'to see if fde is ready for command */ 
if not fdc$readv$for$command 

then propagate$error; 

output (fdc$data$port)=data$byte, 

return ok; 
end output$byte$to$fdc, 

/**** input a single result byte from the 8272 fdc. The "data$byte$ptr" 
parameter is a pointer to the memory location that is to contain 
the input byte. ****/ 

input$byte$from$fdc: procedure (data$byte$ptr) byte, 
declare data$byte$ptr pointer; 
declare 

data$byte based data$byte$ptr byte, 
status byte: 

/* check to see if fdc is ready */ 
status=fdc$readySfor$result, 
if ~rror$in status 

then propagate$error~ 

/* check for result phase complete *1 
if status=complete 

then return complete; 

data$byte=input(fdc$data$port) , 
return oki 

end input$byte$from$fdc, 

$eject 

/**** output the drna mode, the drna address, and the drna word count to the 
8237 dma controHer. Also output the high order four bits of the 
address to the address extension latch. Finally, start the disk 
drna channel. The "docb$ptr" parameter is a pointer to the appropriate 
disk operation control block. ****/ 

output$controls$to$dma: procedure(docb$ptr), 
declare docb$ptr pointer; 
declare docb based docb$ptr structure docbtype; 

declare 
/* drna port definitions */ 
dma$upper$addr$port literally'lOH', 
dma$disk$addr$port literally 'OOH', 
dma$disk$word$count literally ~OlH~, 
dma$cornrnand$port literally ~08H~, 
dma$rnode$port literally ~OBH~, 
dma$mask$sr$port literally'OAH', 
dma$clear$ff$port literally'OCH', 
dma$master$clear$port literally 'ODH', 
dma$mask$port literally'OFH', 

dma$disk$chan$start 
dma$extended$write 
dma$single$transfer 

if docb.dma$op < 3 
then do, 

literally'OOH', 
literally'shl(l,5)', 
literally'shl(l,6)', 

/* upper 4 bits of current address */ 
/* current address port */ 
/* word count port */ 
/* command port */ 
/* mode port */ 
/* mask set/reset port */ 
/* clear first/last flip-flop port */ 
/* drna master clear port */ 
/* parallel mask set port*/ 

/* drna mask to start disk channel */ 
/* extended write flag */ 
/* single transfer flag */ 

/* set dma mode and clear first/last flip-flop */ 
output (dma$mode$port) =shl (docb.dma$op, 2) or 40H, 
output (dma$clear$ff$port)=O, 

6-586 



71 
72 
73 

74 
75 

76 
77 

7B 

79 
BO 

B1 

B2 

83 
B4 

B9 

90 
91 
92 

93 
94 
95 

96 

97 
98 
99 

104 

109 
110 

ill 
112 

114 
115 

116 
117 

11B 
119 

APPLICATIONS 

/* set dma address */ 
output (dma$disk$addr$port)=low (docb.dma$addr) , 
output (dma$disk$addr$port) =high(docb.dma$addr) , 
output (dma$upper$addr$port)=docb.dma$addr$ext, 

/* output disk transfer word count to dma controller */ 
Qutput (dma$disk$word$cQuntl =low(docb.dma$cQunt) ; 
output (dma$disk$word$count)=high(docb.dma$count) , 

/* start dma channel a for fdc */ 
output (dma$mask$sr$port) =dma$disk$chan$start, 

end; 

end Qutput$controls$to$dmaj 

/**** output a high-level disk command to the 8272 fdc. The number of bytes 
required for each command is contained in the IIcommand$length" table. 
The "docb$ptr" parameter is a pointer to the appropriate disk operation 
control block. ****/ 

output$command$to$fdc: procedure (docb$ptr) byte, 
declare docb$ptr pointerj 

declare 
docb based docb$ptr structure docb$type, 
cmd$byte$no byte, 

disable; 

/* output all command bytes to the fde */ 
do cmd$byte$no=O to command$length(command$code)-l, 

if error$in output$byte$to$fdc(docb:disk$command(cmd$byte$no)) 
then do; enable; propagate$erro[j end; 

end; 

enable; 
return ok: 

end output$command$to$fdc; 

/**** input the result data from the 8272 fdc during the result phase (after 
command execution). The "docb$ptr" parameter is a pointer to the 
appropriate disk operation control block. ****/ 

input$result$from$fdc: procedure (docb$ptr) byte, 
declare docb$ptr pointer; 
declare 

docb based docb$ptr structure docb$type, 
result$byte$no byte, 
temp byte, 
status byte; 

disable; 

do result$byte$no=O to 7, 
status=input$byte$from$fdc(@temp), 
if error$in status 

then do; enable: propagate$error; end: 
if status=complete 

then do; enable: return oK: end: 
docb.disk$result(result$byte$no)=temp, 

end: 

enable: 
if fdc$busv 

then return error; 
else return ok; 

end input$result$from$fdc; 

/**** cleans up after the execution of a disk operation that has no result 
phase. The procedure is also used after some disk operation errors. 
"drvll is the drive number, and IICC II is the command code for the 
disk operation. ****/ 

operation$clean$up: procedure (drv,cc) : 
declare (drv,cc) bytei 

disable; 
operation$in$progress(drv)=false: 

6-587 207885-001 



120 

122 

123 

124 

125 
126 

127 

132 

134 

135 

140 

145 
146 

152 

153 
154 

155 

157 

158 
159 

161 
162 
163 
164 

165 

167 
168 
169' 
170 

2 
2 

2 
2 

3 
3 
3 
3 

APPLICATIONS 

if not Qverlap$operation(cc) 
then global$drive$no=01 

enable~ 

end operation$clean$up; 

$eject 

1**** execute the disk operation control block specified by the pointer 
parameter "docb$ptr". The "statusSptr" parameter is a pointer to 
a byte variable that is to contain the status of the requested 
operation when it has been completed. Six status conditions are 
possible on return: 

The specified operation was completed without error. 
The fde is busy and the requested operation cannot be started. 
Fda error. (further information is contained in the result 
storage portion of the disk operation control block - as 
described in the 8272 data sheet). 

3 Transfer error during output of the command bytes to the fde. 
4 Transfer error during input of the result bytes from the fdc. 
S Invalid fdc command. ****/ 

execute$docb: procedure (docb$ptr,status$ptr) public; 
/* execute a disk operation control block */ 

declare docb$ptr pointer, status$ptr pointer t 
declare 

docb based docb$ptr structure docb$type, 
status based status$ptr byte, 
drive$no byte; 

/* check command validity */ 
if not valid$command(command$code) 

then do; status=stat$invalid; return; end; 

/* determine if command has a drive number field - if not, set the drive 
number for a general fdc command */ 

if drive$no$present(command$code) 
then drive$no=extract$drive$no, 
else drive$no=fdc$genera1; 

/* an overlapped operation can not be performed if the fde is busy */ 
if overlap$operation(command$code) and fdc$busy 

then do; status=stat$busy; return; end; 

/* for a non-overlapped operation, check fde busy or any drive seeking */ 
if not overlap$operation(command$code) and (fdc$busy or any$drive$seeking) 

then do; status=stat$busy; return; end; 

/* check for drive operation in progress - if none, set flag and start operation *1 
disable; 
if operation$in$progress(drive$no) 

then do; enable; status=stat$busYi return; end; 
else operation$in$progress(drive$no)=true; 

/* at this point, an fde operation is about to begin, so: 
1. reset the operation complete flag 
2. set the docb pointer for the current operation 
3. if this is not an overlapped operation, set the global drive 

number for the subsequent result phase interrupt. */ 
operation$comp1ete(drive$no)=O, 
operation$docb$ptr(drive$no)=docb$ptr 1 

if not overlap$operation(command$code) 
then global$drive$no=drive$no+l1 

enable; 

call output$controls$to$dma(docb$ptr) 1 
if error$in output$command$to$fdc(docb$ptr) 

then do; 
call operation$clean$up(drive$no,command$code) 1 
status=stat$command$error; 
return; 

end; 

/* return immediately if the command has nO result phase or completion interrupt - specify */ 
if no$result(eommand$code) 

then do; 
call operation$clean$up(drive$no,command$code) 1 
status=stat$ok; 
return; 

end; 

6-588 207885-001 



171 

173 

175 4 
176 4 
177 4 
17S 4 
179 3 
ISO 2 
lSI 3 
lS3 3 

188 

lS9 

191 

192 

193 1 
194 2 
195 2 

196 

198 3 
199 3 
202 3 
203 3 
204 3 
205 3 

206 

APPLICATIONS 

if immed$result(command$code) 
then do; 

if error$in input$resu1t$from$fdc(docb$ptr) 
then do; 

call operation$clean$up(drive$no,command$code) ; 
status=stat$result$error; 
return; 

end; 
end; 
else do; 

wait$for$op$comp1ete; 
if docb.misc = error 

then do; status=stat$result$errori return; end; 
end; 

if no$fdc$error 
then status=stat$ok; 
else status=stat$error; 

end execute$docb; 

$eject 

/**** copy disk command results from the interrupt control block to the 
currently active disk operation control block if a disk operation is 
in progress. ****/ 

copy$int$result: procedure(drv); 
declare drv byte; 
declare 

i byte, 
docb$ptr pointer, 
docb based docb$ptr structure doch$type; 

if operation$in$progress(drv) 
then do; 

docb$ptr=operation$docb$ptr(drv); 
do i=l to 6; docb.disk$result(i)=interrupt$docb.disk$result(i); end; 
docb.misc=ok; 
operation$in$progress(drv)=false; 
operation$complete(drv)=true; 

end; 

end copY$int$result; 

/**** interrupt processing for 8272 fdc drivers. Basically, two types of 
interrupts are generated by the 8272: (a)when the execution phase of 
an operation has been completed, an interrupt is generated to signal 
the beginning of the result phase (the fdc busy flag is set 
when this interrupt is received), and (b) when an overlapped operation 
is completed or an unexpected interrupt is received (the fdc busy flag 
is not set when this interrupt is received). 

When interrupt type (a) is received, the result bytes from the operation 
are read from the 8272 and the operation complete flag is set. 

When an interrupt of type (b) is received, the interrupt result code is 
examined to determine which of the following four actions are indicated: 

1. An overlapped option (recalibrate or seek) has been completed. The 
result data is read from the 8272 and placed in the currently active 
disk operation control block. 

2. An abnormal termination of an operation has occurred. The result 
data is read and placed in the currently active disk operation 
control block. 

3. The execution of an invalid command has been attempted. This 
signals the successful completion of all interrupt processing. 

4. The ready status of a drive has changed. The "drive$ready" and 
"dr ive$ready$status" change tables are updated. If an operation 
is currently in progress on the affected drive, the result data 
is placed in the currently active disk operation control block. 

After an interrupt is processed, additional sense interrupt status commands 
must be issued and processed until an invalid command result is returned 
from the fdc. This action guarantees that all "hidden" interrupts 
are serviced. ****/ 

6-589 



207 
208 

209 

210 

211 

213 

215 
216 

218 
219 
220 
221 
222 
223 

224 
225 
226 

227 
229 

231 

232 
233 
234 
235 

236 
237 
238 
239 

240 

241 
242 
243 
244 
245 

247 
248 
249 
250 
251 

252 
253 

254 

1 
2 

4 
4 
4 
4 
4 
3 

5 
6 
6 
6 
6 

6 
6 
5 
4 
3 

1 

APPLICATIONS 

fdcint: procedure public interrupt fdc$int$leve11 
declare ' 

invalid byte, 
drive$no byte, 
docb$ptr pointer, 
docb based docb$ptr structure docb$type1 

declare 
1* interrupt port definitions */ 
ocw2 literally'70H', 
nseoi literally 'shl(1,5)'1 

declare 
;* miscellaneous flags *; 
result$code literally 'shr(interrupt$docb.disk$result(O) and result$error$mask,6)', 
result$drive$ready literally '((interrupt$docb.disk$result(O) and result$ready$mask) = 0)' 
extract$result$drive$no literally' (interrupt$docb.disk$result(O) and result$drive$mask)', 
end$of$interrupt literally 'output(ocw2)=nseoi'1 

/* if the fde is busy when an interrupt is received, then the result 
phase of the previous non-overlapped operation has begun */ 

if fdc$busy 
then do: 

/* process interrupt if operation in progress */ 
if global$drive$no <> a 

then do; 
docb$ptr=operation$docb$ptr(global$drive$no-l) 1 
if error$in input$result$from$fdc(docb$ptr) 

then docb.rnisc=error; 
else docb.misc=ok; 

operation$in$progress(global$drive$no-l)=false1 
operation$complete(global$drive$no-l)=true 1 
global$drive$no=01 

end; 
end; 

/* if the fdc is not busy, then either an overlapped operation has been 
completed or an unexpected interrupt has occurred (e.g., drive status 
change) *; 

else do; 
invalid=false; 
do while not invalid; 

/* perform a sense interrupt status operation - if errors are de;!:.ected, 
in the actual fdc interface, interrupt processing is discontinued */ 

if error$in output$byte$to$fdc(sense$int$status) then go to ignore1 
if error$in input$result$from$fdc(@interrupt$docb) then go to ignore1 

do case result$code; 

;* case a - operation complete *; 
do; 

drive$no=extract$result$drive$no; 
call copy$int$result(drive$no) 1 

end; 

/* case 1 - abnormal termination */ 

do; 
drive$no=extract$result$drive$no; 
call copy$int$result(drive$no) 1 

end; 

/* case 2 - invalid command */ 
invalid=truei 

/* 'case 3 - drive ready change */ 
do; 

drive$no=extract$result$drive$no; 
call copY$int$result(drive$no)1 
drive$status$change (drive$no) =true; 
if result$drive$ready 

then drive$ready(drive$no)=truej 
else drive$ready(drive$no)=false; 

end; 
end; 

end; 
end; 

ignore: end$of$interrupt; 
end fdcint1 

end drivers; 

6-590 207885-001 



MODULE INFORMATION: 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
564 LINES READ 
o PROGRAM ERROR(S) 

END OF PL/M-86 COMPILATION 

0615H 
OOOOH 
0050H 
0032H 

15570 
00 

800 
SOD 

APPLICATIONS 

6-591 207885-001 



APPLICATIONS 

APPENDIX B 
8272 FDC EXERCISER PROGRAM 

6-592 207885-001 



APPLICATIONS 

PL/M-86 COMPILER 8272 FLOPPY DISK DRIVER EXERCISE PROGRAM 

ISIS-II PL/M-86 Vl.2 COMPILATION OF MODULE RUN72 
OBJECT MODULE PLACED IN :Fl:run72.0BJ 
COMPILER INVOKED BY: plm86 :Fl:run72.p86 DEBUG 

$title ('8272 floppy disk driver exercise program') 
$nointvector 
$optimize(2) 
$large 
run72: do; 

declare 
docb$type literally /* disk operation control block */ 

(dma$op byte,dma$addr word,dma$addr$ext byte,dma$cQunt word, 
disk$command(9) byte,disk$result(7) byte,misc byte)'; 

declare 
/* 8272 fdc commands */ 
fm 
mfm 
dma$mode 
non$dma$mode 
recalibrate$command 
specify$command 
read$command 
write$command 
format$command 
seek$command 

declare 
dma$ver ify 
dma$read 
dma$write 
dma$noop 

declare 

literally 
literally 
literally 
literally 
literally 
li terally 
literally 
literally 
literally 
literally 

literally 
literally 
literally 
literally 

"0"', 
"'1'" , 
'0', 
"'1'" , 
'7', 
'3', 
"'6", 
"5"', 
'ODH' , 
'OFH'; 

/* disk operation 
format$docb 
seek$docb 
recalibrate$docb 
speci fy$docb 
read$docb 
write$docb 

control blocks */ 
structure docb$type, 
structure docb$type, 
structure docb$type, 
structure docb$type, 
structure docb$type, 
structure docb$type; 

declare 
step$rate 
head$load$time 
head$unload$tirne 
filler$byte 
operation$statu5 
interleave 
format$gap 
read$wri te$gap 
index 
drive 
density 
multitrack 
sector 
cylinder 
head /* disk drive head */ 
tracks$per$disk 
sectors$per$track 
bytes$per$sector$code 
bytes$per$sector 

byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
wordr /* number of bytes in a sector on the disk */ 

declare 
1* read and write 
fmtblk(104) 
wrbuf(1024) 
rdbuf (1024) 

declare 

buffers */ 
byte public, 
byte public, 
byte public; 

/* disk format initialization tables */ 
sec$trk$table(3) byte data(26,lS,8), 
fmt$gap$table(8) byte data(lBH,2AH,3AH,O,O,36H,54H,74H), 
rd$wr$gap$table(8) byte data(07H,OEH,lBH,O,O,OEH,lBH,3SH); 

6-593 20788p-001 



10 
11 
12 

13 
14 

15 
16 

17 
18 
19 
20 
21 

22 

23 
24 

25 
26 
27 
28 

29 

30 
31 

32 
33 
34 
35 
36 

37 

38 

39 
40 

41 
42 

43 

46 

47 
48 

1 
2 
2 

1 
2 

1 

2 
2 

declare 
/* external pOinter 
rdbptr (2) 
wrbptr (2) 
fbptr (2) 
intptr (2) 
intvec(80H) 

APPLICATIONS 

tables and interrupt vector */ 
word external, 
word external, 
word external, 
word external, 
word external; 

execute$docb: procedure (docb$ptr,statu5$ptr) external: 
declare docb$ptr pointer, status$ptr pointer; 

end execut'e$docb; 

initialize$drivers: procedure external; 
end initialize$drivers; 

$eject 

/**** specify step rate ("srt"), head load time ("hIt"), head un+oad time ("hut"), 
and dma or non-dma operation ("nd"). ****/ 

specify: procedure(srt,hlt,hut,nd); 
declar~ -(srt,hlt,hut,nd) byte; 

specify$docb.dma$op=dma$noop, 
specify$docb.disk$command (0) =specify$command; 
specify$docb.disk$command(1)=sh1((not srt)+1,4) or shr(hut,4) , 
specify$docb.disk$command(2)=(h1t and OFEH) or (nd and 1), 
call execute$docb(@specify$docb,@operation$status), 

end specify; 

1**** recalibrate disk drive 
8272 automatically steps out until the track 0 signal is activated 
by the disk drive. ****1 

recalibrate: procedure (drv) : 
declare drv byte; 

recalibrate$docb.dma$op=dma$noop; 
recalibrate$docb.disk$command(O)=recalibrate$command: 
recalibrate$docb.disk$command(l)=drvl 
call execute$docb(@recalibrate$docb,@operation$status): 

end recalibrate; 

1**** seek drive "drv", head (side) "hd" to cylinder "cyl".' ****1 

seek: procedure(drv,cyl,hd)i 
declare (drv,cy1,hd) byte, 

seek$docb.dma$op=dma$noop; 
seek$docb.disk$command(O)=seek$commandi 
seek$docb.disk$command (1) =drv or· sh1 (hd, 2) , 
seek$docb.disk$command(2)~cy1, 

call execute$docb(@seek$docb,@operation$status): 

end seek; 

1**** format a complete side (llhead") of a single floppy disk in drive "drv". The density, 
(single or double) is specified by flag "dens". ****1 

format: procedure (drv,dens,intlve) : 
/* format disk */ 

declare (drv,dens,intlve) byte; 
declare physical$sector byte; 

call recalibrate(drv): 
do cy1inder=0 to tracks$per$disk-1, 

1* set sector numbers in format block to zero before computing interleave *1 

do physica1$sector=1 to sectors$per$track, fmtb1k((physica1$sector-1)*4+2)=0, end, 
1* physical sector 1 equals logical sector 1 *1 
physical$sector=l; 

1* assign interleaved sectors *1 
do sector=l to sectors$per$track: 

index=(physica1$sector-1) *4, 

6-594 207885-001 



49 

53 
54 
55 
56 

57 
58 

60 

61 

62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 

74 

75 
76 

77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 

91 
92 

93 

94 
95 

96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

1 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

APPLICATIONS 

/* change sector and index if sector has already been assigned */ 
do while fmtblk(index+2) <> 0; index=index+4; physical$sector=physical$sector+l; end; 

/* set cylinder, head, sector, and size code for current sector _into table */ 
fmtblk(index)=cylinder; 
fmtb1k (index+1) =head; 
fmtb1k(index+2)=sector; 
fmtb1k (index+3) =bytes$per$sector$code; 

/* update physical sector number by interleave */ 
physical$sector=physical$sector+intlve; 
if physical$sector > sectors$per$track 

then physical$sector=physical$sector-sectors$per$track; 
end; 

/* seek to next cylinder */ 
call seek (drv,cylinder,head) ; 

/* set up format control block */ 
format$docb.dma$op=dma$write; 
format$docb.dma$addr=fbptr(O)+sh1(fbptr(1) ,4); 
format$docb.dma$addr$ext=O; 
forrnat$docb.dma$cQunt=sectors$per$track*4-l; 
format$docb.disk$command(O)=format$command or shl(dens,6); 
format$docb.disk$command(l)=drv or sh1(head,2); 
format$docb.disk$command(2)=bytes$per$sector$code; 
format$docb.disk$command(3)=sectors$per$track; 
format$docb.disk$command(4)=format$gap, 
format$docb.disk$command(5)=fi11er$byte; 
call execute$docb(@format$docb,@operation$status); 

end; 

end format; 

/**** write sector "sec ll on drive "drv" at head "hd" and cylinder "cyl". The 
disk recording density is specified by the "dens" flag. Data is expected to be 
in the global write buffer ("wrbuf"). ****/ 

write: procedure (drv,cyl,hd,sec,dens) ; 
declare (drv,cyl,hd,sec,dens) byte; 

write$docb.dma$op=dma$write: 
write$docb.dma$addr=wrbptr(0)+sh1(wrbptr(1) ,4); 
write$docb.dma$addr$ext=O; 
write$docb.dma$count=bytes$per$sector-l; 
write$docb.disk$command(O)=write$command or sh1(dens,6) or sh1(mu1titrack,7); 
write$docb.disk$command(l)=drvor sh1(hd,2); 
write$docb.disk$command(2)=cy1; 
write$docb.disk$command(3)=hd; 
write$docb.disk$command(4)=sec; 
write$docb.disk$command(5)=bytes$per$sector$code; 
write$docb.disk$command(6)=sectors$per$track; 
write$docb.disk$command(7)=read$write$gap; 
if bytes$per$sector$code = 0 

then write$docb.disk$command (8) =bytes$per$sector; 
else write$docb.disk$command(8)=OFFH; 

call execute$docb(@write$docb,@operation$status); 

end write; 

/**** read sector "sec" on drive "drv" at head "hd" and cylinder "cyl". The 
disk recording density is defined by the "dens" flag. Data is read into 
the global read buffer (I'rdbuf"). ****/ 

read: procedure(drv,cyl,hd,sec,dens); 
declare (drv,cyl,hd,sec,dens) byte: 

read$docb.dma$op=dma$read; 
read$docb.dma$addr=rdbptr(O)+sh1(rdbptr(1) ,4); 
read$docb.dma$addr$ext=O; 
read$docb.dma$count=bytes$per$sector-l; 
read$docb.disk$command(O)=read$command or sh1(dens,6) or sh1(mu1titrack,7); 
read$docb.disk$command(l)=drv or sh1(hd,2); 
read$docb.disk$command(2)=cy1; 
read$docb.disk$command(3)=hd; 
read$docb.disk$command(4)=sec; 
read$docb.disk$command(5)=bytes$per$sector$code; 
read$docb.disk$command(6)=sectors$per$track; 
read$docb.disk$command(7)=read$write$gap; 

6-595 207885-001 



lOB 

110 
III 

112 

113 
114 

llS 

116 
117 

11B 

119 
120 
121 
122 
123 
124 
l2S 
126 
127 

l2B 
129 
130 
131 
132 
133 
134 
l3S 
136 

1 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 

APPLICATIONS 

if bytes$per$sector$code = 0 
then read$docb.disk$command(B)=bytes$per$sector; 
else read$docb.disk$command(B)=OFFH; 

call execute$docb(@read$docb,@operation$status); 

end read; 

$eject 

1**** initialize system by setting up 8237 dma controller and 8259A interrupt 
controller. ****1 

initialize$system: proceduref 
declare 

/* I/O ports */ 
dma$disk$addr$port 
dma$disk$word$count$port 
dma$command$port 
dma$mode$port 
dma$mask$sr$port 
dma$clear$ff$port 
dma$master$clear$port 
dma$mask$port 
dma$cl$addr$port 
dma$cl$word$count$port 
dma$c2$addr$port 
dma$c2$word$count$port 
dma$c3$addr$port 
dma$c3$word$count$port 
icwl 
icw2 
icw4 
oewl 
ocw2 
oew3 

declare 

literally 
literally 
literally 
literally 
literally 
literally 
literally 
literally 
literally 
literally 
literally 
literally 
literally 
l:iterally 
literally 
literally 
literally 
literally 
li terally 
li terally 

/* mise masks and literals *1 

'OOH', 
'OlH', 
'OBH', 
"'OBH"', 
"OAH"', 
'OCH' , 
"'ODH"', 
"'OFH"', 
'02H' , 
"'03H"", 
'04H', 
'OSH', 
'06H', 
'07H', 
'"'08"', 
'71H' , 
'71H' , 
'71H' , 
'70H' , 
'70H'; 

/* current address port */ 
/* word count port */ 
/* command port */ 
/* mode port */ 
/* mask set/reset port */ 
/* clear first/last flip-flop 
1* dma master clear port */ 
1* parallel mask set port·/ 

dma$extended$write literally'shl(l,S)', /* extended write flag */ 
/* single transfer flag */ dma$single$transfer literally'shl(1,6)', 

dma$disk$mode li terally '40H', 
dma$c1$mode literally '41H' , 
dma$c2$mode literally' 42H', 
dma$c3$mode li terally '43H', 
mode$BOB8 li terally '1', 
interrupt$base Ii terally ... 20H'" , 
single$controller literally 'shl(l,l)', 
level$sensitive literally 'shl(l,3)', 
control$word$4$required literally '1' 
base$icwl literally '"IOR"",~ 
mask$all literally'OFFH', 
disk$interrupt$mask literally '1'; 

output (dma$master$clear$port) =0; 
output (oma$mode$port)=dma$extended$write; 

/* set all dma registers to valid values */ 
output (dma$mask$port)=mask$all; 

1* set all addresses to zero */ 
output (dma$clear$ff$port)=O; 
output (dma$disk$addr$port) =0; 
output (dma$disk$addr$port) =0; 
output (dma$cl$addr$port) =0; 
output (dma$cl$addr$port) =0; 
output (dma$c2$addr$port) =0; 
output (dma$c2$addr$port) =0; 
output (dma$c3$addr$port) =0; 
output (dma$c3$addr$port) =0; 

1* set all word counts to valid values */ 
output (dma$clear$ff$port) =0; 
output (dma$disk$word$count$port) =1; 
output (dma$disk$word$count$port) =1; 
output (dma$cl$word$count$port) =1 
output (dma$c1$word$count$port) =1 
output (dma$c2$word$count$port) =1 
output (dma$c2$word$count$port)=1 
output (dma$c3$word$count$port) =1 
output (dma$c3$word$count$port) =1 

/* master reset */ 
/* set dma command mode */ 

/* mask all channels */ 

/* reset first/last flip-flop */ 

/* reset first/last flip-flop */ 

port */ 

6-596 207885-001 



137 
138 
139 
140 

141 
142 
143 
144 

145 
146 

147 

148 

149 

150 
151 
152 
153 
154 
155 
156 
157 
158 
159 

160 
161 
162 

167 
168 

169 

170 
171 

172 
173 

174 
175 

176 

177 

178 
179 

181 

182 

183 
184 
185 
186 

187 

1 
1 
1. 
1 
1 
1 
1 
1 
1 
1 

1 
1 

1 

1 
2 

1 

APPLICATIONS 

1* initialize all dma channel modes */ 
output (dma$mode$port) =dma$disk$mode; 
output (dma$mode$port) =dma$cl$mode; 
output (dma$mode$port) =dma$c2$mode; 
output (dma$mode$port) =dma$c3$mode: 

1* initialize 8259A interrupt controller */ 
Qutput(icwl)=single$controller or level$sensitive or control$word4$required or base$icwl; 
Qutput(icw2)=interrupt$base; 

/* set 8088 interrupt mode */ output (icw4)=mode$8088; 
Qutput(ocwl)=not disk$interrupt$mask: 1* mask all interrupts except disk */ 

/* initialize interrupt vector for fde */ 
intvec(40H)=intptr(O) ~ 
intvec(41H)=intptr(1); 

end initialize$system; 

$eject 

1**** main program: first format disk (all tracks on side (head) o. Then 
read each sector on every track of the disk forever. ****/ 

declare drive$ready(4) byte external: 

1* disable until interrupt vector setup and initialization complete */ 
disable; 

/* set initial floppy disk parameters */ 
density=mfm; 
head=o; 
multitrack=O; 
filler$byte=55H; 
tracks$per$disk=77; 
bytes$per$sector=1024; 
interleave=6; 

/* double-density */ 
/* single sided */ 
/* no multitrack operation */ 
/* for format */ 
/* normal floppy disk drive */ 
/* 1024 bytes in each sector */ 
/* set track interleave factor */ 

step$rate=ll; 
head$load$time=4o; 

/* 10ms for SABOO plus 1 for uncertainty */ 
/* 40ms head load for SASoo */ 

head$unload$time=240; /* keep head loaded as long as possible */ 

/* derive dependent parameters from those above */ 
bytes$per$sector$code=shr(bytes$per$sector,7); 
do index=O to 3; 

if (bytes$per$sector$code and 1) <> 0 
then do; bytes$per$sector$code=index; go to donebc; end; 
else bytes$per$sector$code=shr(bytes$per$sector$code,l); 

end; 

donebc: 
sectors$per$track=sec$trk$table(bytes$per$sector$code-density); 
format$gap=fmt$gap$table(shl(density,2)+bytes$per$sector$code); 
read$write$gap=rd$wr$gap$table (shl (density,2)+bytes$pe r$sector$code); 

/* initialize system and drivers */ 
call initialize$system; 
call initialize$drivers; 

/* reenable interrupts and give B272 a chance to report on drive status 
before proceeding */ 

enable; 
call time (10) ; 

/* specify disk drive parameters */ 
call specify {step$rate,head$load$time,head$unload$time,dma$ mode); 

drive=O; 

/* wait until drive ready */ 
do while 1; 

if drive$ready(drive) 
then go to start; 

end; 

start: 
call format(drive,density,interleave}; 

do while 1; 
do cylinder=o to tracks$per$disk-l; 

callseek(drive,cylinder,head); 
do sector=l to sectors$per$track; 

/* set up write buffer */ 

/* run single disk drive #0 */ 

do index=O to bytes$per$sector-l; wrbuf(index)=index+sector+cylinder; end; 

6-597 207885-001 



190 
191 

192 

194 
195 
196 

197 

4 
4 

4 
3 
2 

1 

· APPLICATIONS 

call write(drive,cylinder,head,sector,density); 
eall read(drive~eylinder,head,seetor,density), 

/* eheek read buffer against write buffer */ 
if empw(@wrbuf,@rdbuf,shr(bytes$per$seetor,l» <> OFFFFH 

then halt, 
end, 

endJ 
endJ 

end run72, 

MODULE INFORMATION: 
CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE = 
MAXIMUM STACK SIZE 
412 LINES READ 
o PROGRAM ERROR(S) 

END OF PL/M-86 COMPILATION 

0570H 
OOOOH 
0907H 
0022H 

13920 
00 

23110 
340 

6-598 207885-001 



APPLICATIONS 

APPENDIX C 
8272 DRIVER FLOWCHARTS 

6-599 207885-001 



RETURN 

APPLICATIONS 

6-600 

RESET" 
-DRIVE$READV 
-DRIVE$STATUSSCHANGE 
-OPERATION$IN$PROGRESS 
-OPERATIONSCOMPLETE 

RETURN 

207885-001 



APPLICATIONS 

c'------"=;;;;.... __ 

RETURN 

6-601 

RETURN 
COMPLETE ) 

207885-001 



APPLICATIONS 

YES 

6-602 207885-001 



( RETURN ) 
... _~E:.:..R:.:..RO:.:..R __ -, 

APPLICATIONS 

RETURN 

6-603 

( RETURN 
ERROR ) 

207885-001 



APPLICATIONS 

">'= _____ ,( RETURN ) 
..,. INVALID STATUS 

'--------' 

:::>-'-'~ ____ .( RETURN ) 
~_~B~U~S~V~S~TA~T~U~S~--, 

( RETURN ) >='------ BUSVSTATU~ 
'-------' 

ENABLE INTERRUPTS 1------1 .. ( RETURN ) 
• ~ __ ~B~U~SV~ST~A~T~U~S __ ~ 

"-------_ .... 

NO 

6-604 207885-001 



RETURN 
ERROR STATUS 

YES 

APPLICATIONS 

RETURN 
RESULT ERROR STATUS 

NO 

YES 

NO 

"----~) 

6-605 207885-001 



APPLICATIONS 

RESET OPERATIONSINSPROGRESS FLAG 
SET OPERATION$COMPLETE FLAG 

6-606 207885-001 



RESULT PHASE OF 
PREVIOUS COMMAND 

NO 

AESET OPERATION$IN$PROGRESS 
SET OPERATlON$COMPLETE 
RESET GLOBAL$DRIVESNO 

APPLICATIONS 

ASYNCHRONOUS 
INTERRUPT 

NO 

6-607 

CALL COPY$INTSRESUL T 
TO PUT OPERATION 

RESULT INFORMATION 
INTO THE Doca 

CALL COPYSINT$RESULT 
TO PUT OPERATION 

RESULT INFOAMATION 
INTO THE DOC a 

207885-001 



82062 

82062 
WINCHESTER DISK CONTROLLER 

• Controls ST506/ST412 Interface 
Winchester Drives 

• 5 MBit/Sec Transfer Rate 

• 128, 256, 512, and 1024 Byte Sector 
Lengths 

• Six High-Level Commands: Restore, Seek, 
Read Sector, Write Sector, Scan .10, and 
Write Format 

• Multiple Sector Transfer Capability 

• Implied Seek With Read/Write Commands 

• 7 Byte Sector Length Extension For 
External Error Correction Code 

• Single +5 Volt Power Supply 

The 820S2 Winchester Disk Controller (WDC) device interfaces microprocessor systems to Winchester Disks 
that use theSeagate Technology ST50S/ST412 interface. Examples include the Seagate ST50S and ST412, 
Shugart SA604 and SASOS, Tandon SOO, and Computer Memories CM520S and CM5412. The device translates 
parallel data from the microprocessor to a 5 mbitisec, MFM-encoded serial bit stream. It provides all of the 
drive control logic and, in addition, control signals which simplify the design of an external phase locked loop 
and write precompensation circuitry. The 820S2 is designed to interface to the host controller through an 
external sector buffer. 

TASK. STATUS, DATA 
REGISTERS vee DATA 

080-7 BUS RD CLOCK 
BUFFER 

RD GATE 
WR DATA 

RD OATA 

WRITE EARLY BORO 
CONT1lOL LATE 

_ENCODE 
Rwe CRUN 

RESET WR CLOCK RWe 
se 

INTRQ 

AO-2 READ RD DATA 

liD CONT1lOL RD GATE WR FAULT 
AM DETECT 

ORUN INDEX 
ViR MFM DECODE 

Os .....-- RDCLOCK DRDY 

STEP 

BROY WR GATE 

Bes BUFFER STEP 
CONTROL WRGATE 

BORO DlR 
BcR DRIVE LATE 

INTERFACE DRDY 
Vcc---+ CONTROL -WR DATA 

WR FAULT 
vss---...· TRACK 000 

INDEX 

se 

Figure 1. 82062 Block Diagram Figure 2. Pin Configuration 

S-S08 ORDER NUMBER 210446-005 



82062 

Table 1. Pin Description 

Symbol Pin No. Type Name and Function 

BGS 1 0 Buffer Chip Select: Output used to enable reading or writing of the external 
sector buffer by t~8206~hen low, the host should not able to drive the 
82062 data bus, RD, or WR lines. 

BGR 2 0 Buffer Counter Reset: Output that is strobed by the 82062 prior to read/write 
operation. This pin is strobed whenever BGS changes state. Used to reset the 
address counter of the buffer memory. 

INTRQ 3 0 Interrupt Request: Interrupt generated by the 82062 upon command 
termination. It is reset when any register is read. Optionally signifies when a 
data transfer is required on Read Sector commands. 

N/G 4 No connection. Reserved for future use. 

RESET 5 I Reset: Initializes the controller and clears all status flags. Does not clear the 
Task Registers. 

RD 6 I/O Read: As an input, RD controls the transfer of information from the 82062 
registers to the host. RD is an output when the 82062 is reading data from the 
sector buffer (BGS low). 

WR 7 I/O Write: As an input, WR controls the transfer of command or task information 
into the 82062 registers. WR is an output when the 82062 is writing data to the 
sector buffer (BGS low). 

GS 8 I Chip Select: Enables RD and WR as inputs for access to the Task Registers. It 
has no effect once a disk command starts .. 

Ao-A2 9-11 I Address: Used to select a register from the task register file. 

DBo-DB7 12-19 I/O Data Bus: Bidirectional8-bit Data Bus with control determined by BGS. When 
BGS is high the microprocessor has full control of the data bus for reading 
and writing the Task Registers. When BGS is low the 82062 controls the data 
bus to transfer data to or from the buffer. 

GND 20 Ground 

WR DATA 21 0 Write Data: Open drain output that shifts out MFM data at a rate determined 
by Write Glock. Requires an external flip-flop clocked at 10 MHz. See 
note 1. 

LATE 22 0 Late: Open drain output used to derive a delay value for write precom-
pensation. Valid when WR GATE is high. Active on all cylinders. See note 1. 

EARLY 23 0 Early: Open drain output used to derive a delay value for write precom-
pensation. Valid when WR GATE is high. Active on all cylinders. See note 1. 

WR GATE 24 0 Write Gate: High when write data is valid. WR GATE goes low iftheWR FAULT 
input is active. This output is used by the drive to enable head write current. 

WR GLOGK 25 I Write Clock: Glock input used to derive the write data rate. Frequency - 5MHz 
for the ST506 interface. 4.34MHz for the SA 1000 interface. See note 2. 

DIR 26 0 Direction: High level on this output tells the drive to move the head inward 
(increasing cylinder number). The state of this signal is determined by the 
82062's internal comparison of actual cylinder location vs desired cylinder. 

STEP 27 0 Step: Provides 8.4 microsecond pulses to move the drive head to another 
cylinder at a programmable frequency. -. 

DRDY 28 I Drive Ready: If DRDY from the drive goes low, the command will be 
terminated. 

6-609 210446-005 



inter 82062 

Table 1. Pin Description (continued) 

Symbol Pin No. "TYpe Name and Function 

INDEX 29 I Index: Signal from the drive indicating the beginning of a track. It is used by 
the 82062 during formatting, and for counting retries. Index is edge triggered. 
Only the rising edge is valid. 

WR FAULT 30 I Write Fault: An error input to the 82062 which indicates a fault condition at the 
drive. If WR FAULT from the drive goes high, the command will be 
terminated. 

TRACK 000 31 I Track Zero: Signal from the drive which indicates that the head is at the 
outermost cylinder. Used by the Restore command. 

SC 32 I Seek Complete: Signal from the drive indicating to the 82062 that the drive 
head has settled and that reads or writes can be made. SC is edge triggered. 
Only the rising edge is valid. 

RWC 33 0 Reduced Write Current: Signal goes high for all cylinder numbers above the 
value programmed in the Write Precomp Cylinder register. It is used by the 
precompensation logic and by the drive to reduce the effects of bit shifting. 

DRUN 34 I Data Run: This signal informs the 82062 when a field of ones or zeroes has 
been detected in the read data stream by an external one-shot. This indicates 
the beginning of an I D field. RD GATE is brought high when DRUN is sampled 
high for 16 clock periods. See note 2. 

BRDY 35 I Buffer Ready: Input used to signal the controller that the buffer is ready for 
reading (full), or writing (empty), by the host up. Only the rising edge 
indicates the condition. 

BDRQ 36 0 Buffer Data Request: Activated during Read or Write commands when a data 
transfer between the host and the 82062's sector buffer is required. Typically 
used as a DMA request line, or to generate an interrupt. 

RD DATA 37 I Read Data: Single ended input that accepts MFM data from the drive. See 
note 2. 

RD GATE 38 0 Read Gate: Output that is high for data anq ID fields. Goes active when DRUN 
has been high for 16 WR CLOCK periods to permit the external phase lock 
loop to lock onto the incoming disk data stream. 

RD CLOCK 39 I Read Clock: Clock input derived from the external data recovery circuits. See 
note 2. 

Vee 40 I D.C. Power: +5V 

Note 1: This pin requires a pull-up resistor to function properly. A value of 1000 ohms will work satisfactorily. 

Note 2: This pin requires input levels that are not TTL compatible. These lines can be interfaced to TTL with a 
pull-up resistor. Too small of a resistor will produce a VIL level that is too high. Too large of a resistor will 
degrade the signal's rise time. A minimum value for the resistor is determined as follows: 

(Vee max) - (82062 VIL max) 

(TTL 10L min) - (82062 IlL max) 

This would typically be: 

5.25V - 0.5V 
3kO 

1.6 mA - 10 tJA 

6-610 210446-005 



82062 

FUNCTIONAL DESCRIPTION 

The Intel 82062 Winchester Disk Controller (WDC) 
integrates much of the logic needed to implement 
Winchester Disk controller subsystems. It provides 
MFM-encoded data and all the control lines required 
by hard disks using the Seagate Technology STS06 
or Shugart Associates SAlaOO interface standard. 
Currently, most S'14 inch and mar:ty8 inch Winchester 
Drives use this interface. 

Due to the higher data rates required by these 
drives-1 byte every 1.6 usec-the 82062 is designed 
to interface with the host CPU or I/O controller 
through an external buffer RAM. The 82062 WDC has 
four pins that minimize the logic required to design a 
buffer interface. 

Figure 3 shows a block diagram of an 82062 subsys­
tem. The WDC is controlled by the host CPU through 
six commands: 

Restore 
Seek 
Read Sector 
Write Sector 
Scan 10 
Write Format 

These commands use information stored by six task 
registers. Command execution starts immediately 
after the command register is loaded-therefore 
commands require only one byte from the CPU after 
the WDC has been initialized. 

The 82062 adds all the required track formatting to 
the data field, including two bytes of CRC. Optionally, 
these two bytes can be replaced by seven bytes of 
ECC information for external error correction. 

1-------------jBORQ 

1-------------jINTRQ 

INTERNAL ARCHITECTURE 

The internal architecture of the 82062 WDC is shown 
in more detail in Figure 4. The major functional 
blocks are: 

PLA Controller 

The PLA interprets commands and provides all con­
trol functions. It is synchronized with WR CLOCK. 

Magnitude Comparator 

A 1Q-bit magnitude comparator is used to calculate 
the direction and number of step pulses needed to 
move the head from the present to the desired 
cylinder. 

CRC Logic 

Generates and checks the cyclic redundancy check 
characters appended to the 10 and data fields. The 
polynomial used is: 

X16 + X12 + X5 + 1. 

MFM Encode/Decode 

Encodes and decodes MFM data to be written/read 
from the drive. The MFM encoder operates from WR 
CLOCK, a clock having a frequency equivalent to the 
bit rate. The MFM decoder operates from RD CLOCK, 
a bit rate clock generated from the external data 
separator. RD CLOCK and WR CLOCK need not be 
synchronized. 

RD CLOCK 

RDOATA 1-_____ --1 

EARLY, Rwe ~=====::::l 
LATE I-

82062 
woe 

WR DATA 

10 MHZ 

DRIVE CONTROL 

Figure 3. System Block Diagram 

6-611 210446-005 



inter 82062 

080-7 

AD , 
WR f 

i 
AO-2 

I .. 
HOST 

INTRa IFC 

REsET 

cs 

m ------ 1-.---"1 

PLA 
CONTROLLER 

WR DATA 

WR CLOCK 

RO CLOCK 

RD DATA 

BROV L.... _____ ...... 

STEP 
DIR 

EARI'1 
LATE 
DROY BORa 

iiCS 

GNO ------+-

WR FAULT· 

TRACK 000 

INDEX 

SC 

RWC 
WR GATE 
RD GATE 

'--_.J-~ DR UN 

Figure 4_ 82062 Detailed Block Diagram 

AM Detect 

The address mark detector checks the incoming data 
stream for a unique missing clock pattern (Data = 
A1 H, Clock = OAH) used in each 10 and data field. 

Host/Buffer Interface Control 

The Host/Buffer IFC logic contains all of the neces­
sarycircuitryto communicate with the 8-bit bus from 
the host processor. 

Drive Interface Control 

The Drive IFC logic controls and monitors all lines 
from the drive, with the exception of read and write 
data. 

DRIVE INTERFACE 

The drive side of the 82062 WDC requires three sec­
tions of external logic. These are buffer/receivers, 
data separator, and write precompensation. Figure 5 
illustrates a drive side interface. 

The buffer/receivers condition the control lines to 
be driven down the cable to the drive. The control 
lines are typically single-ended, resistor terminated 
TTL levels. The data lines to and from the drive also 
require buffering, but are differential RS-422 levels. 
The interface specification to the drive can be found 
in the manufacturers' OEM manual. The WDC supp­
lies T:rL compatible signals, and will interface to 
most buffer/driver devices. 

The data recovery circuits consist of a phase-lock 
loop data separator and associated components. 
The 82062 WDC interacts with the data separator 
thru the DATA RUN (DRUN) and RD GATE signals. 
A block diagram of a typical data separator circuit is 
shown in Figure 6. Read data from the drive is pres­
ented to the RD DATA input of the WDC, the refer­
ence multiplexor, and a retriggerable one-shot. The 
RD GATE (Pin 38) output will be low when the WDC 
is not inspecting data. The PLL at this time should 
remain locked to the reference clock. 

6-612 210446-005 



82062 
woe 

MFM 

82062 

,X 
DATA RATE 

WRITE DATA 

EARLY WAITE 
LATE PRECOMP 

WINCHESTER DRIVE 0 
Rwe 

WRITE DATA 

READ DATA READ DATA 

READ CLOCK PHASE 
LOCK DRIVE SEL ORUN LOOP 

READ GATE 
STEP 

TO NEXT 
DRIVE DIRECTION 

DATA 
WR CLOCK RATE READY 

ose 

WRITE FAULT 

sc 
TRACK 000 

INDEX 
INDEX 

TKOQO 
seEK COMPLETE 

DADY Rwe 

WR FAULT 
HEAD NUMBER 

OIR 
WRITE GATE 

WR GATE 

STEP 

DATA BUS 

a DAISY CHAIN TO 
NEXT DRIVE 

ADDRESS (HOLDS DRIVE AND HEAD 
SELECTS) 

DATA LATCH 

Figure 5. Drive Interface 

AETAIGGEAABLE 
ONE-SHOT ~------------------------~~DRUN 

DISK >------"""~----------------------------------------------------------~~ AD DATA 
DATA 

82062 

A t-------.... ----------+I AD CLOCK 

MUX 

r----------t~ B 1-011--''----------------------------------------...; AD GATE 

t-------------__ ~WACLOCK 

Figure 6. Data Recovery Circuit 

6-613 210446-005 



inter 82062 

When any Read/Write command is initiated and a 
search for address mark begins, the DRUN input is 
examined. The DRUN one-shot is set for slightly 
greater than one bit time, allowing it to retrigger 
constantly on a field of ones and zeros. An internal 
counter times out to see that DRUN is high for2 byte 
times. RD GATE is set by the WDC, switching the 
data separator to lock onto the incoming data 
stream. If DRUN falls prior to an additional 7 byte 
times, RD GATE is lowered and the process is 
repeated. RD GATE will remain active high until a 
non-zero, non-address mark byte is detected. It will 
then lower RD GATE for two byte times (to allow the 
PLL to lock back on to the reference clock), and 
start the DRUN search again. If an address mark is 
detected, RD GATE will be held high and the com­
mand will continue searching for the proper 10 field. 
This sequence is shown in the flow chart in Figure 7. 

The write precompensation logic is controlled by 
the signals REDUCE WRITE CURRENT (RWC), . 
EARLY and LATE. The cylinder in which the RWC 
line becomes active is controlled by the REDUCE 
WRITE CURRENT register in the Task Register File. 
It can be used to turn on the precomp circuitry on a 
predetermined cylinder. If the REDUCE WRITE 
CURRENT register contents are FFH, then RWC will 
always be low. 

The signals EARLY and LATE are used to tell the 
precomp circuitry how much delay is required on 
the WR DATA pulse about to be sent. The amount of 
delay is determined externally through a digital 
delay line or equivalent circuitry. Since the EARLY 
signal occurs after the fact, WR DATA should be 
delayed by one interval when both EARLY and LATE 
are deasserted, two intervals when LATE is asserted, 
and no delay when EARLY is asserted. An interval is, 
for example, 12-15 ns. for the ST506 interface. 
EARLY or LATE will be active slightly ahead of the 
WR DATA pulse. EARLY and LATE will never be 
asserted at the same time. EARLY and LATE are 
always active, and should be gated externally by the 
RWC signal. 

HOST PROCESSOR INTERFACE 

The primary interface between the host processor 
and the 82062 WDC is through an 8-bit bi-directional 
data bus. This bus is used to transmit/receive data to 
both the WDC and a sector buffer. The sector buffer 
is constructed with either FIFO memory, or static 
RAM and a counter. Since the WDC will use the data 
bus when accessing the sector buffer, a transceiver 
must be used to isolate the host during this time. 
Figure 8 shows a typical connection to a sector 
buffer implemented with RAM memory. Whenever 
the WDC is not using the sector buffer, The BUFFER 
CHIPSELECT (BCS) is high (disabled). Thisallows 
the host to access the WDC's Task Register File, and 

6-614 

SET 
RD GATE 

HIGH 

RESET 
RD GATE 

Figure 7. PLL Control Sequence 

210446-005 



82062 

to set up parameters prior to issuing a command. It 
also allows the host to access the RAM buffer. A 
decoder is used to generate a chip select when AO-2 
is '000', an unused address in the WDC. A binary 
counter is enabled whenever RD or WR go active 
and is incremented on the trailing edge of the chip 
select. This allows the host to access sequential 
bytes within the RAM. The decoder also generates 
another chip select when AO-2 does not equal '000', 
allowing access to the WDC's internal registers 
while keeping the RAM tri-stated. 

During a WRITE SECTOR command, the host pro­
cessor sets up data in the Task Register File and 
then issues the command. It then generates a status 
to inform the host that it may load the buffer with the 
data to be written. When the counter reaches its 
maximum count, the BUFFER READY (BRDY) sig­
nal is made active (by the "carry" out of the counter), 
informing the WDC that the buffer is full. (BRDY is a 
rising edge triggered signal which will be ignored if 
activated before the WDC issues BCR). BCS is then 
made active, disconnecting the host through the 
transceivers, and the RD and WR lines become out­
puts from the WDC to allow it to access the buffer. 

AD 

WR : 
DATA ~ 

• 

When the WDC is done using the buffer, it disables 
BCS which again allows the host to access the local 
bus. The READ SECTOR command operates in a 
similar manner, except the buffer is loaded by the 
WDC instead of the host processor. 

Another control signal called BUFFER DATA 
REQUEST (BDRQ, not used in Figure 8) is a DMA 
signal that can inform a DMA controller when the 
82062 WDC is requesting data. For further explana­
tion, refer to the individual command descriptions 
and the A.C. Characteristics. In a READ SECTOR 
command, interrupts are generated at the termina­
tion of the command. An interrupt may be specified 
to occur either at the end of the command, or when 
BDRQ is activated. The INTERRUPT line (INTRQ) 
is cleared either by reading the STATUS register, or 
by writing a new command in the COMMAND 
register. 

RO 

WR 

DATA 

4-11 =RC}+ =c BCR 

I 
I RO WR I 
I CK 

I 
I Q ADDR DATA f-- I 
I I 
I I 
I TC CS 

HOST -,-- I 
CPU I 82062 

SYSTEM -------- ---=Q--- I 

jG==] BCS 

BRDY 

Os 

ADDRESS 
3 

AO·A2 

INTERRUPT INTRa 

RESET RESET 

LM ..... 
STB ..... DRIVE HEAD 

SELECT ~ 

01 
LATCH 

Figure 8. CPU Buffer Interface 

6-615 210446-005 



82062 

TASK REGISTER FILE 

The Task Register File is a bank of registers used to 
hold parameter information pertaining to each 
command. These registers and their addresses are: 

A2 A1 AO READ WRITE 
0 0 0 (Bus TricStated) (Bus Tri-Stated) 
0 0 1 Error Flags Reduce Write Curren 
0 1 0 Sector Count . Sector Count 
0 1 1 Sector Number Sector Number 
1 0 0 Cylinder Low Cylinder Low 
1 0 1 Cylinder High Cylinder High 
1 1 0 SDH SDH 
1 1 1 Status Register Command Register 

NOTE: Registers are not cleared by RESET. 

ERROR REGISTER 

This read-only register contains specific error sta­
tus after the completion of a command. The bits are 
defined as follows: 

7 654 3 2 o 

IBBDICRC 1- 1 ID 

Bit 7 - Bad Block Detect 

This bit is set when an ID field has been encoun­
tered that contains a bad block mark. It is used for 
bad sector mapping. 

Bit 6 - CRC Data Field 

This bit is set when a data field CRC error has 
ocurred. The sector buffer may still be read but will 
contain errors. 

Bit 5 - Reserved Not used. 

Forced to zero. 

Bit 4 - IDNot Found 

This bit is set when the desired cylinder, head, sec­
tor, or size parameter cannot be found after 8 revolu­
tions of the disk, or if an ID field CRC error has 
occured. 

Bit 3 - Reserved Not used. 

Forced to zero. 

Bit 2 - Aborted Command 

This bit is set if a command was issued while DRDY 
(Pin 28) is deasserted or WR FAULT (Pin 30) is 
asserted. The Aborted Command bit will also be set 
if an undefined command is written into the COM­
MAND register, but an implied seek will be executed. 

Bit 1 - TRACK 000 

This bit is set only by the RESTORE command. It 
indicates that TRACK 000 (Pin 31) has not gone 
active after the issuance of 1024 stepping pulses. 

Bit 0 - Data Address Mark 

This bit is set during a READ SECTOR command if 
the Data Address Mark is not found after the proper 
Sector ID is read. 

REDUCE WRITE CURRENT REGISTER 

This register is used to define the cylinder number 
where RWC (Pin 33) is asserted: 

7 

The value (0-255) loaded into this register is inter­
nally multiplied by 4 to specify the actual cylinder 
where RWC is asserted. Thus a value of 01H will 
cause RWC to activate on cylinder 4, 02H on 
cylinder 8, and so on. RWC switching points are 
then 0,4,8, ... 1020. RWC will be asserted when the 
present cylinder is greater than or equal to the 
cylinder indicated by this register. For example, the 
ST506 interface requires precomp on cylinder 128 
(80H) and above. Therefore, the REDUCE WRITE 
CURRENT register should be loaded with 32 (20H). 
A value of FFH will make RWC stay low, regardless 
of the actual ,cylinder number. 

6-616 210446-005 



82062 

SECTOR COUNT REGISTER 

This register is used to define the number of sectors 
that need to be transfered to the buffer during a 
READ MULTIPLE SECTOR or WRITE MULTIPLE 
SECTOR command.: 

7 6 5 4 3 2 o 

The value contained in the register is decremented 
after each sector is transferred to/from the sector 
buffer. A zero represents a 256 sector transfer, a one 
a 1 sector transfer, etc. This register is a "don't care" 
when single sector commands are specified. 

SECTOR NUMBER 

This register holds the sector number of the desi red 
sector: 

7 6 5 4 3 2 o 

For a multiple sector command, it specifies the first 
sector to transferred. It is incremented after each 
sector is transferred to/from the sector buffer. The 
SECTOR NUMBER register may contain any value 
from 0 to 255. 

The SECTOR NUMBER register is also used to pro­
gram the Gap 1 and Gap 3 lengths to be used when 
formatting a disk. See the WRITE FORMAT Com­
mand description for further explanation. 

7 6 5 4 3 2 

CYLINDER NUMBER LOW REGISTER 

This register holds the lower byte of the desired 
cylinder number: 

76543210 

; LS B~TE ~F CY~INDE~ NU~BER : 

It is used in conjunction with the CYLINDER 
NUMBER HIGH register to specify a range of 0 to 
1023. 

CYLINDER NUMBER HIGH REGISTER 

This register holds the two most significant bits of the 
desired cylinder number: 

7 6 5 4 3 2 o 
x x x x x x (9) (8) 

Internal to the 82062 WDC is another pair of registers 
that hold the actual position where the R/W heads are 
located. The CYLINDER NUMBER HIGH and LOW 
registers can be considered the cylinder destination 
for seeks and other commands. After these com­
mands are executed, the internal cylinder position 
registers' contents are equal to the cylinder high/low 
registers. If a drive number change is detected on a 
new command, the WDC automatically reads an 10 
field to update its internal cylinder position registers. 
This affects all commands except a RESTORE. 

SECTOR/DRIVE/HEAD REGISTER 

The SOH register contains the desired sector size, 
drive number, and head number parameters. The 
format is diagramed below. 

o 

S:IZE L DRIVE 

I \ 
I \ 

l :HEAD ~=t ___ _ 
'~~~" ----------I \ 

I \ ........ ::::::::............ ----------
... ...... , ... -

6 5 SECTOR SIZE 4 3 DRIVE # 2 1 0 HEAD # 

0 0 256 0 0 DSEL1 0 0 0 HSELO 
0 1 512 0 1 DSEL2 0 0 1 HSEL1 
1 0 1024 1 0 DSEL3 0 1 0 HSEL2 
1 1 128 1 1 DSEL4 0 1 1 HSEL3 

1 0 0 HSEL4 
1 0 1 HSEL5 
1 1 0 HSEL6 
1 1 1 HSEL7 

6-617 210446-005 



inter 82062 

080 
OB1 

DB' 
BUS 083 

TRANSCEIVER 

C~~~OB4 OB5 
DB. 
OB7 

Wrl>------,. OBOl Q1 
091 A 02 
092 T 03 

HSELO 
HSEl1 
HSEL2 AO >---,-__ ~_ 

A1 >--f':>o---...J 
A' 
~>--.....:;.--..J 

L===tDB3 C 04 L-_--. 
084 H as 0 OSEL 1 

E OSEL2 

82062 

Co DSELJ 
o DSEL4 

E 

Figure 9. Drive/Head Select Logic 

Both head number and sector size are compared 
against the disks' ID field. Head select and drive 
select lines are not available as outputs from the 
82062 WDC and must be generated externally. Figure 
9 shows a possible logic implementation of these 
select lines. 

Bit 7, the extension bit (EXT), is used to extend the 
data field by seven bytes when using ECC codes. 
When EXT = 1, the CRC is not appended to the end of 
the data field, the data field becomes "sector size + 7" 
bytes long. The CRC is checked on the ID field 
regardless of the state of EXT. Note that the sector 
size bits (SIZE) are written to the ID field during a 
formatting command. The SDH byte written into the 
ID field is different than the SDH Register contents. 
The recorded SDH byte does not have the drive 
number (DRIVE) written but does have the BAD 
BLOCK mark written. The format is: 

7 6 5 4 3 2 o 

o 

Note that use of the extension bit requires the gap 
lengths to be modified as described in the WRITE 
FORMAT command description. 

STATUS REGISTER 

The status register is a read-only register which 
informs the host of certainev~nts performed by the 
82062 WDC as well as reporting status from the 
drive control lines. The INTRQ line will be reset 
when the status register is read. The format is: 

7 6 5 4 3 2 o 

I BUSyl READY I WF SC I ORO CIP I ERROR\ 

Bit 7 - Busy 

This bit is set whenever the 82062 WDC is accessing 
the disk. Commands should not be loaded into the 
COMMAND register while Busy is set. Busy is set 
when a command is written into the WDC and is 
cleared at the end of all commands except READ 
SECTOR. While executing a READ SECTOR com­
mand, Busy is cleared after the sector buffer has 
been filled. When the Busy bit is set, no other bits in 
either the STATUS or any other registers are valid. 

Bit 6 - Ready 

This bit reflects the state of the DRDY (Pin 28) line. 

Bit 5 - Write Fault 

This bit reflects the state of the WR FAULT (Pin 30) 
line. Whenever WR FAULT goes high, an interrupt 
will be generated. 

Bit 4 - Seek Complete 

This bit reflects the state of the SC (Pin 32) line. 
Commands which initiate a seek will pause until 
Seek Complete is set. 

6-618 210446-005 



82062 

Bit 3 - Data Request 

The Data request bit (ORO) reflects the state of the 
BDRO (Pin 36) line. It is set when the sector buffer 
should be loaded with data or read by the host 
processor, depending upon the command. The 
ORO bit and the BDRO line remain high until BRDY 
is sensed, indicating the operation is completed. 
BDRO can be used in DMA interfacing, while ORO 
can be used for programmed I/O transfers. 

Bit 2 - Reserved 

Not Used. Forced to zero. 

Bit 1 - Command in Progress 

When this bit is set, a command is being executed 
and a new command should not be loaded until it is 
cleared. Although a command may be executing, 
the sector buffer is still available for access by the 
host processor. Only the STATUS register may be 
read. If other registers are read, the STATUS regis­
ter contents will be returned. 

Bit 0 - Error 

This bit is set whenever any bits in the ERROR 
register are set. It is the logical 'or' of the bits in the 
error register and may be used by the host proces­
sor to quickly check for successful completion of a 
command. This bit is reset when a new command is 
written into the COMMAND register. 

COMMAND REGISTER 

This write-only register is loaded with the desired 
command: 

7 6 5 4 3 2 1 o 

The command begins to execute immediately upon 
loading. This register should not be loaded while the 
Busy or Command in Progress bits are set in the 
STATUS register. The INTRO line (Pin 3), if set, will 
be cleared by a write to the COMMAND register. 

6-619 

INSTRUCTION SET 
The 82062 WDC instruction set contains six 
commands. Prior to loading the command register, 
the host processor must first set up the Task 
Register File with the information needed for the 
command. Except for the COMMAND register, the 
registers may be loaded in any order. If a command 
is in progress, a subsequent write to the COMMAND 
register will be ignored until execution of the 
current command is completed as indicated by the 
command in progress bit in the STATUS register 
being cleared 

COMMAND 7 6 5 4 3 2 1 0 

RESTORE 0 0 0 1 R3 R2 R1 RO 
SEEK 0 1 1 1 R3 R2 R1 RO 
READ SECTOR 0 0 1 0 I M 0 T 
WRITE SECTOR 0 0 1 1 0 M 0 T 
SCAN 10 0 1 0 0 0 0 0 T 
WRITE FORMAT 0 1 0 1 0 0 0 0 

R3_0 = Rate Field 

For 5 MHz WR CLOCK: 

R3-0 = 0000 - =35 us 
0001 - 0.5 ms 
0010 - 1.0 ms 
0011 - 1.5 ms 
0100 - 2.0 ms 
0101 - 2.5 ms 
0110 - 3.0 ms 
0111 - 3.5 ms 
1000 - 4.0 ms 
1001 - 4.5 ms 
1010 - 5.0 ms 
1011 - 5.5 ms 
1100 - 6.0 ms 
1101. - 6.5 ms 
1110 - 7.0 ms 
1111 - 7.5 ms 

T = Retry Enable 

T= 0 Enable Retries 
T= 1 Disable Retries 

M= Multiple Sector Flag 

M= 0 Transfer 1 Sector 
M= 1 Transfer Multiple Sectors 

Interrupt Enable 

0 Interrupt at BDRQ time 
1 Interrupt at end of command 

210446-005 



82062 

RESTORE COMMAND 

The RESTORE command is usually used on a 
power-up comdition. The actual stepping rate used 
for the RESTORE is determined by the Seek Com­
plete time. A step pulse is issued and the 82062 
WDC waits for a rising edge on the Seek Complete 
(SC) line before issuing the next pulse. If 10 index 
pulses are received without a rising edge of SC, the 
82062 will switch to sensing the level of the SC line. 
If after 1,024 stepping pulses the TRACK 000 line 
does not go active, the WDC will set the TRACKOOO 
bit in the ERROR register and terminate with an 
INTRQ. An interrupt will also occur if WR FAULT 
goes active or DRDY goes inactive at any time dur­
ing execution. 

The rate field specified R3-o is stored in an internal 
register for future use in commands with implied 
seeks. 

A flowchart of the RESTORE command is shown in 
Figure 10. 

SEEK COMMAND 

Since all commands except the SCAN ID command 
feature an implied seek, the SEEK command can be 
used for overlap seek operations oil multiple drives. 
The actual stepping rate used is taken from the Rate 
Field of the command, and is stored in an internal 
register for future use. If DRDY goes inactive or WR 
FAULT goes active at any time during the seek, the 
command is terminated and an INTRQ is generated. 

The direction and number of step pulses needed is 
calculated by comparing the contents of the 
CYLINDER NUMBER LOW/HIGH register pair to 
the internal cylinder position register. After all steps 
have been issued, the internal cylinder position reg­
ister is updated and the command is terminated. 
The Seek Complete (SC) line is not checked at the 
beginning or end of the command. 

If an implied seek was performed, the 82062 will 
search until a rising edge of SC is received. If 10 
index pulses are received without a rising edge of 
SC, the 82062 will switch to sensing the I.evel of the 
SC line .. 

A flowchart of the SEEK command is shown in 
Figure 11. 

READ SECTOR 

The READ SECTOR command is used to transfer 
one or more sectors of data from the disk to the 
sector buffer. Upon receipt of the READ SECTOR 
command, the 82062 WDC checks the CYLINDER 

NUMBER LOW/HIGH register pair against the 
internal cylinder position register to see if they are 
equal. If not, the direction and number of steps 
calculation is performed and a seek takes place. If 
an implied seek was performed, the WDC will 
search until a rising edge of SC is received. The WR 
FAULT and DRDY lines are monitored throughout 
the command. 

RESET INTRa. 
ERRORS. 

seT BUSY, CIP 

RESET Rwe 
seT DIRECTION 

OUT 
STORE STEP RATE 

ISSUE A 
STEP PULSE 

PULSE iiCR 
SET INTRa 

RESET BUSV.CIP 

PULSE iCii 
SETINTRQ 

RESET BUSY,CIP 

Figure 10. Restore Command Flow 

6-620 210446-005 



82062 

When the Seek Complete (SC) line is high (with or 
without an implied seek having occured), the search 
for an ID field begins. If T = 0 (retries enabled), the 
82062 WDC must find an ID with the correct cylinder 
number, head, sector size and CRC within 10 revolu­
tions, or an automatic scan ID will be performed to 
obtain cylinder position information, and then a 
seek performed (if necessary). The search for the 
proper I D will be retried for up to 10 revolutions. If the 
correct sector is still not found, the appropriate error 
bits will be set and the command terminated. Data 
CRC errors will also be retried for up to 1 0 revolutions 
(if T = 0). 

1fT = 1 (retries disabled), the I D search must find the 
correct sector within 2 revolutions or the approp­
riate error bits will be set and the command 
terminated. 

Both the READ SECTOR and WRITE SECTOR com­
mandsfeaturea "simulated completion"toease program­
ming. DRO/BDRO will be generated upon detecting 
an error condition. This allows the same program 
flow for successful or unsuccessful completion of a 
command. 

When the data address mark is found, the WDC is 
ready to transfer data to the sector buffer. After the 
data has been transferred, the I bit is checked. If 1= 0, 
INTRO is made active coincident with BDRO, indicat­
ing that a transfer of data from the buffer to the host 
processor is required. If I = 1, INTRO will occur at the 
end of the command, i.e. after the bufferis unloaded 
by the host. 

An optional M bit may be set for multiple sector 
transfers. When M = 0, one sector is transferred and 
the SECTOR COUNT register is ignored. When M = 
1, multiple sectors are transferred. After each sector 
is transferred the 82062 decrements the SECTOR 
COUNT register and increments the SECTOR NUM­
BER register. The next logical sector will be trans­
ferred regardless of any interleave. Sectors are num­
bered at format time by a byte in the ID field. 

For the 82062 to make multiple sector transfers to the 
buffer, the BRDY line must betoggled lowto high for 
each sector. Transfers will continue until the SEC­
TOR COUNT register equals zero, orthe BRDY line 
goes active. If the SECTOR COUNT register is non­
zero (indicating more sectors are to be transferred 
but the buifer is full), BDRO will be made active and 
the host must unload the buffer. After this occurs, the 
buffer will again be free to accept the remaining 
sectors from the WDC. This scheme enables the 
user to transfer more sectors than the buffer memory 
has capacity for. 

In summary then, READ SECTOR operation is as 
follows: 

6-621 

Figure 11. Seek Command Flow 

210446-005 



82062 

When M = 0 (READ SECTOR) 

(1) Host: Sets up parameters; issues 
READ SECTOR command. 

(2) 82062: Strobes BCR; sets BCS = O. 
(3) 82062: Finds sector specified; transfers 

( 4) 
( 5) 
( 6) 
( 7) 
( 8) 

82062: 
82062: 
82062 
Host: 
82062: 

data to buffer. 
Strobes BCR; sets BCS = 1. 
SetsBDRO = 1, ORO = 1. 
If I bit = 1 then go to (9). 
Reads contents of sector buffer. 
Waits for BRDY, then sets 
INTRO = 1; END. 

(9) 82062: Sets INTRO = 1. 
(10) Host: Reads out contents of buffer; 

END. 

When M = 1 (READ MULTIPLE SECTOR) 

( 1) Host: Sets up parameters; issues 
READ SECTOR command. 

( 2) 82062: Strobes BCR; sets BCS = O. 
( 3) 82062: Finds sector specified; transfers 

data to buffer. 
( 4) 82062: Decrements SECTOR COUNT 

register; increments SECTOR 
NUMBER register. 

( 5) 82062: Strobes BCR; sets BCS = 1. 
( 6) 82062: Sets BDRO = 1, ORO = 1. 
( 7) Host: Reads out contents of buffer; 
( 8) Buffer: Indicates data has been trans-

ferred by activating BRDY. 
( 9) 82062: When BRDY = 1, if Sector Count 

= 0, then go to (11). 
(10) 82062: Go to (2). 
(11) 82062: Set INTRO = 1; END. 

A flowchart of the READ SECTOR command is 
shown in Figure 12. 

WRITE SECTOR 

The WRITE SECTOR command is used to write one 
or more sectors of data to the disk from the sector 
buffer. Upon receipt of WRITE SECTOR command 
the 82062 WDC checks the CYLINDER NUMBER 
LO~(HIGH ~egister pair against the internal cylinder 
position register to see if they are equal. If not the 
direction and number of steps calculation is 'per­
formed and a seek takes place. The WR FAULT and 
DRDY lines are checked throughout the command. 

When the Seek Complete (SC) line is found to be 
true (with or without an implied seek having oc­
cured), the BDRO signal is made active and the host 
proceeds to load the buffer. When the 82062 senses 
BRDY going high, the 10 field with the specified 

cylinder number, head, and sector size is searched 
for. Once found, WR GATE is made active and the 
data is written to the disk. It is necessary to resynch­
ronize the write data since a bit cell can extend from 
295 nS to 315 nS during a write cycle. If retries are 
enabled(T = 0), and if the 10 field cannot be found 
within 10 revolutions, automatic scan ID and seek 
commands are performed. The ID Not Found error 
bit is set and the command is terminated if the cor­
rect 10 field is not found within 10additional revolu­
tions. If retries are disabled, (T = 1), and if the 10 field 
cannot be found within 2 revolutions, the ID Not 
Found error bit isset and the command is terminated. 

During a WRITE MULTIPLE SECTOR command 
(M = 1), the SECTOR NUMBER register is incre­
mented and the SECTOR COUNT register is decre­
mented. If the BRDY line is asserted after the first 
sector is transferred from the buffer, the 82062 will 
transfer the next sector. If BRDY is deasserted, the 
82062 will set BDRO and wait for the host processor 
to place more data in the buffer. In summary then, 
the WRITE SECTOR operation is as follows: 

When M = 0,1 (WRITE SECTOR) 

( 1) Host: Sets up parameters; issues 
WRITE SECTOR command. 

( 2) 82062: Sets BDRO = 1, 
ORO = 1. 

( 3) Host: Loads sector buffer with data. 
( 4) 82062: Waits for BRDY = low to high. 
( 5) 82062: Finds specified 10 field; writes 

sector to disk. 
( 6) 82062: If M = 0, then set 

INTRO = 1; END .. 
( 7) 82062 Increment SECTOR NUMBER 

register; decrement SECTOR 
COUNT register. 

( 8) 82062 If SECTOR = 0, then set INTRO 
= 1; END. 

( 9) 82062 Go to (2). 

A flowchart of the WRITE SECTOR command is 
shown in Figure 13. 

SCANID 

The SCAN 10 command is used to update the SEC­
TOR/DRIVE/HEAD, SECTOR NUMBER, and CYL­
INDER NUMBER LOW/HIGH registers. 

After the command is loaded, the Seek Complete 
(SC) line is sampled until it is valid. The DRDY and 
WR FAULT lines are also monitored throughout 
execution of the command When the first 10 field is 

6-622 210446-005 



inter 

RESET INTRa 
ERRORS 

SET BUSY, CIP 

82062 

PULSE= 
SET INTRa, AC 

RESET BUSY, Clp, Bes 

*It T bit at command = 1 then dashed path Is taken after 2 index pUlses. 

SEARCH 
FOR 10 
FIELD 

NOTE· I 
I 
I 
I 
I 

Figure 12A. Read Sector Command Flow 

6-623 210446-005 



82062 

"If T bit 01 command = 1 then dashed path II taken. 
uif T bit of command = 1 then lest I, tor 2 Index pulse •. 

Figure 128. Read Sector Command Flow 

6-624 210446-005, 



*11 retries disabled then dashed path Is 
taken atler 2 Index pulses, 

82062 

Figure 13. Write Sector Command Flow 

6-625 

>--..-----, 
I 

210446-005 



82062 

found, the 10 information is loaded into the SOH, 
SECTOR NUMBER, and CYLINDER NUMBER 
registers. The internal cylinder position register is 
also updated. If a bad block is detected, the BAD 
BLOCK bit will also be set. The CRC is checked and 
if an error is found, the 82062 will retry up to 10 
revolutions to find an error-free 10 field. There is no 
implied seek with this command and the sector 
buffer is not disturbed. 

A flowchart of the SCAN 10 command is shown in 
Figure 14. 

WRITE FORMAT 

The WRITE FORMAT command is used to format 
one track using the Task Register File and the sector 
buffer. During execution of this command, the sector 
buffer is used for additional parameter information 
instead of sector data. Shown in Figure 15 is the 
contents of the sector buffer for a 32 sector track 
format with an interleave factor of two. Each sector 
requires a two byte sequence. The first byte desig­
nates whether a bad block mark is to be recorded in 
the sector's 10 field. An OOH is normal; an 80H indi­
cates a bad block mark for that sector. In the example 
of Figure 15, sector 04 will get a bad block mark 
recorded. 

The second byte indicates the logical sector number 
to be recorded. This allows sectors to be recorded 
with any interleave factor desired. The remaining 
memory in the sector buffer may be filled with any 
value; its only purpose is to generate a BRDY to tell 
the 82062 to begin formatting the track. 

An implied seek is in effect on this command. As for 
other commands, if the drive number has been 
changed, an 10 field will be scanned for cylinder 
position information before the implied seek is per­
formed. If no 10 field can be read (because the track 
had been erased or because an incomplete format 
had been been used), an 10 Not Found error will 
result and the WRITE FORMAT command will be 
aborted. This can be avoided by issuing a RESTORE 
command before formatting. 

The SECTOR COUNT register is used to hold the 
total number of sectors to be formatted (FFH = 255 
sectors), while the SECTOR NUMBER register holds 
the numberof bytes minus three to be used for Gap 1 
and Gap 3; for instance, if the SECTOR COUNT 
register value is 02H and the SECTOR NUMBER 
register value is OOH, then 2 sectors are written and 3 
bytes of 4EH are written for Gap 1 and Gap 3. The 
data fields are filled with FFH and the CRC is automat­
ically generated and appended. The sector extension 
bit in the SOH register should not be set. After the last 
sector is written the track is filled with 4EH. 

6-626 

*11 retries are disabled. path 
is taken after 2 Index pulses. 

Figure 14. Scan 10 Command Flow 

210446-005 



inter 82062 

FORMAT COMMAND 
SECTOR BUFFER CONTENTS 

SECTOR LOCICAL 
BUFFER BAD SECTOR 

ADDRESS BLOCK? NUMBER 

00 00 00 
02 00 10 
04 00 01 
06 00 11 
08 00 02 
OA 00 12 
DC 00 03 
OE 00 13 
10 80 04 
12 00 14 
14 00 05 
16 00 1'5 
18 00 06 
1A 00 16 
1C 00 07 
1E 00 17 
20 00 08 
22 00 18 
24 00 09 
26 00 19 
28 00 OA 
2A 00 1A 
2C 00 OB 
2E 00 1B 
30 00 DC 
32 00 1C 
34 00 00 
36 00 10 
38 00 OE 
3A 00 1E 
3C 00 OF 
3E 00 1F 
40 FF FF 

FO FF FF 

Figure 15 

10 FIELD 
Al '" A1H with OAH clock 

IDENT = MSB of Cylinder Number 
FE " O~255 Cylinders 
FF" 256-51' Cylinders 
Fe = 512-767 Cylinders 
FD" 768·1023 Cylinders 

WRITEGATE~ 
SOH BYTE :: BI15 " " 2 ~ Head Number 

Bits 3. 4 0 
Bits 5. 6 0 Sector Size 
Bll 7 = Bad Block Mark 

Sec # = Logical Sector Number 

The Gap 3 value is determined by the drive motor 
speed variation, data sector length, and the interleave 
factor. The interleave factor is only important when 
1:1 interleave is used. The form ula for determining the 
minimum Gap 3 length value is: 

Gap 3 = (2 • M • S) + K + E 

M = motor speed variation (e.g., 0.03 
for± 3%) 

S = sector length in bytes 

K = 25 for interleave factor of 1 

K = 0 for any other interleave factor 

E = 7 if the sector is to be extended 

Like all commands, a WR FAULT or drive not ready 
condition will terminate execution of the WRITE 
FORMAT command. Figure 16shows the format that 
the 82062 will write on the disk. 

A flowchart of the WRITE FORMAT command is 
shown in Figure 17. 

DATA FIELD 

USER DATA 

DATA FIELD 
At = A1H with OAH clock 
Fa '" Data Address Mark: Normal clock 

USER = Data Field 128 to 1024 Bytes" 
NOTES 
1 GAP1 and 3 length deterfY1med by sector number register conlents during 

formatting 
2. If EXT bit In SOH register is set to 1 then an additional? data by\esare written 

no CRG bytes are written 

Figure 16. Track Formal 

6-627 210446-005 



-SCAN ID 
GET CYL #: 

SET ABORTED" 
COMMAND BIT 

C FORMAT ) 

-------r---'" 

NO 

YES 

~ 
RESETINTRO 

ERRORS 
SET CIP,BUSY 

ACTIVATE BDRO 

RESET WR GATE, Bes 
PULSE~ 
SET INTRa 

RESET BUSY CIP 

82062 

YES 

Figure 17. Write Format Command Flow 

6-628 210446-005 



82062 

ELECTRICAL CHARACTERISTICS 
ABSOLUTE MAXIMUM RATINGS* 
Ambient Temperature Under Bias ..• O°C to 70°C 
Storage Temperature •......... -65°C to +150°C 
Voltage on any pin with 

respect to GND ................. -0.5V to +7V 
Power Dissipation .............•........ 1.5 Watt 

• NOTICE: Stresses above those listed under 
"Absolute Maximum Ratings" may cause perma­
nent damage to the device. This is a stress rating 
only and functiona I opera tion of the device a t these 
or any other conditions above those indicated in 
the operational sections of this specification is 
not implied. Exposure to absolute maximum rating 
conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (TA = DoC to 70°C; VCC = +5V ± 10%; GND = OV) 

SYMBOL PARAMETER MIN MAX UNIT TEST CONDITIONS 

IlL Input Leakage Current ±10 JlA VIN = Vee to OV 

IOFL Output Leakage Current ±10 JlA VOUT = Vee to 0.45V 

VIH Input High Voltage 2.0 V 

VIL Input Low Voltage 0.8 V 

VOH Output High Voltage 2.4 V IOH = -100uA 

VOL Output Low Voltage 0.45 V IOL = 1.6mA 
4.8mA P21,22,23 

Icc Supply Current 200 mA All Outputs Open 

CIN Input Capacitance 10 pF fc = 1 MHz 

CliO I/O Capacitance 20 pF Unmeasured pins returned 
toGND 

For Pins 25,34,37,39 

VIH Input High Voltage 4.6 V 

VIL Input Low Voltage 0.5 V 

TRS Rise Time 30 ns 10% to 90% points 

6-629 21044fHlOS 



82062 

A.C. CHARACTERISTICS (TA = O°C to 70°C; Vee = +5V ± 10%; GND = OV) 

HOST READ TIMING 

SYMBOL P"RAMETER MIN MAX UNIT TEST CONDITIONS 

1 Address Stable Before RD! 100 ns 

2 Data Delay From RD! 375 ns 

3 RD Pulse Width 0.4 10 f..lS 

4 RD to Data Floating 20 200 ns 

5 Address Hold Time after ROt 0 ns 

6 Read Recovery Time 300 ns 

7 es Stable before RD I 0 ns See Note 6 

~-2 ~-CD----------~ 
~ --""\. 

CD 

1IIi---------.. 

D80-7 _____ --<~0 ~,. .. ~ f>-CD_ 
HOST WRITE TIMING 

SYMBOL PARAMETER MIN MAX UNIT TEST CONDITIONS 

8 Address Stable Before WR! 0 10 f..ls 

9 es Stable Before WR! 0 10 f..lS 
10 Data Setup Time Before WRt 0.2 10 f..ls 

11 WR Pulse Width 0.2 10 f..ls 

12 Data Hold Time After WRt 10 ns 

13 Address Hold Time After WRt 30 ns 

14 es Hold Time After WRt 0 ns See Note 7 

15 Write Recovery Time 1.0 f..ls 

AO-2=>t=~0'-----:-_______ --->I 

cs ~===7J®~5==~~ 

® 

6-630 210446-005 



82062 

BUFFER READ TIMING (WRITE SECTOR COMMAND) 

SYMBOL PARAMETER MIN TYP MAX UNIT TEST CONDITIONS 

16 SCSI to RD Valid 15 100 ns 

17 RD Output Pulse Width 300 400 500 ns See Note 3 

18 Data Setup to ROt 140 ns 

19 Data Hold from ROt 0 ns 

20 RD Repetition Rate 1.2 1.6 2.0 f.JS See Note 1 

21 RD Float from BCSt 15 100 ns 

~~~----------~,~ 
Jm--­
(OUTPUT)

080-7 ;xxx
~-------- ®------~~

BUFFER WRITE TIMING (READ SECTOR COMMAND)

SYMBOL PARAMETER MIN TYP MAX UNIT TEST CONDITIONS

22 SCS I to WR Valid 15 100 ns

23 WR Output Pulse Width 300 400 500 ns See Note 3

24 Data Valid from WRI 150 ns

25 Data Hold from WRt 60 ns

26 . WR Repetition Rate 1.2 1.6 2.0 f.JS See Note 1

27 WR Float from SCSt 15 100 ns

BCS~~~® __________________ ~,;-z~@

WR

(OUTPUT)
® ®

080-7 -------+<.' DATA VALID

I~~~----®---~.~I

6-631 210446-005

82062

MISCEllANEOUS TIMING

SYMBOL PARAMETER MIN TYP MAX UNIT TEST CONDITIONS

28 BDRQ Reset from BRDY 40 200 ns

29 BRDY Pulse Width 800 ns See Note 4

30 BeR Pulse Width 1.4 1.6 1.8 f..I.S See Note 1

31 STEP Pulse Width 8.3 8.4 8.7 f..I.S See Note 1

32 INDEX Pulse Width 500 ns

33 RESET Pulse Width 24 WR ClK See Note 2

34 RESETt to BCR 1.6 3.2 6.4 f..I.S See Note 1

35 RESETt to WR, CSI 6.4 f..I.S See Note 1

36 WR CLOCK Frequency 0.25 5.0 5.25 MHz 50% Duty Cycle

37 RD CLOCK Frequency 0.;!5 5.0 5.25 MHz 50% Duty Cycle
See Note 5

BROY ___ ~_(ii)L(ii)~
BORQ .

~ STEP---./....-l2!:~

6-632 210446-005

82062

READ DATA TIMING

SYMBOL PARAMETER MIN TYP MAX UNIT TEST CONDITIONS

38 RD CLOCK Pulse Width 95 2000 ns 50%,Duty Cycle

39 RD DATA after RD CLOCK! 0 T38 ns

40 RD DATA before RD CLOCK! 20 T38 ns

41 RD DATA Pulse Width 40 T38 ns

42 DRUN Pulse Width 30 ns

CAUN

WRITE DATA TIMING

SYMBOL PARAMETER MIN TYP MAX UNIT TEST CONDITIONS

43 WR CLOCK Pulse Width 95 2000 ns

Propogation Delay

44A WR CLOCK! to WR DATA!

448 WR CLOCKI to WR DATAl 10 65 ns

440 WR CLOCK) to WR DATA! I
45A WR CLOCK! to EARLY/LATEI

458 WR CLOCKI to EARLY/LATE,
10 65 ns

46A WR CLOCK! to EARLY/LATE!

468 WR CLOCK) to EARLY/LATE!
10 65 ns

6-633 210446-005

~---I 38)---....,j

WRCLOCK

WRDATA

A.C. TESTING INPUT, OUTPUT WAVEFORM
INPUT OUTPUT

::.=X:: > "" ~'"" < ::x=
AC TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC .1,
AND 0.4SV FOR A LOGIC .0. TIMING MEASUREMENTS ARE
MADE AT 2.0V FOR A LOGIC .1, ANOO.8V FOR A LOGIC .0,

NOTES:
1. Based on WR CLOCK = 5.0 MHz.
2. 24 WR CLOCK periods = 4.8 f.ls at 5.0 MHz.
3. 2 WR CLOCK periods ± 100 ns.

82062

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER

~Cl= 50pF
TEST

::-

Cl INCLUDES JIG CAPACITANCE

4. When used with a OMA controller BROY must be> 4 f.ls or a spurious BORQ pulse may exist for up to 4 f.ls
after the rising edge of BROY.

5. WR CLOCK Frequency = RO CLOCK Frequency ± 15%.
6. RO may be asserted before CS as long as it remains activeforat leasttheminimum.T3 pulse width afterCS

is asserted.
7. WR may be asserted before CS as long as it remains active for at least the minimum T11 pulse width after CS

is asserted.

6-634 210446-005

82064
WINCHESTER DISK CONTROLLER

WITH ON-CHIP ERROR DETECTION AND CORRECTION

• Compatible with all Intel and most • 5 or 11-bit correction - span software
other microprocessors selectable

• Controls ST506/ST412 Interface • Implied seeks with Read/Write
Winchester Disk Drives Commands

• 5 Mbit/sec Data Transfer Rate • Multiple Sector Transfer Capability

• Eight High-Level commands: Restore, • 128, 256, 512 and 1024 Byte Sector
Seek, Read Sector, Write Sector, Scan Lengths
ID, Write Format, Compute Correction, • Available in 40-Lead Ceramic Dual In-
Set Parameter Line, 40-Lead Plastic Dual In-Line, and

• Software Compatible with 82062 44-Lead Plastic Chip Carrier Packages

• High-speed "zero wait state" operation (See Packaging Spec., Order #231369)

with 8 MHz 80186/188

• On-chip ECC Unit Automatically
corrects errors

The 82064 Winchester Disk Controller (WDC) with on-chip error detection and correction circuitry interfaces
microprocessor systems to 5%" Winchester disk drives. It is socket and software compatible with the 82062
Winchester Disk Controller, and additionally includes on-chip ECC, support for drives with up to 2k tracks, and
has an additional control signal which eliminates an external decoder.

The 82064 is fabricated on Intel's advanced HMOS III technology and is available in 40-pin CERDIP and
plastic packages. .

oeo,

miT----,
INTRO

.... , ..
iili
5

OORO

BUFFER
CONTROL

vcc­
'15$-

Figure 1.82064 Block Diagram

EiiiLY
L.m:

ROOAr..

ROQATE

OIIUN

231242-1

BCS Vee

BCA RO CLOCK

INTRO RD GATE

SOHLE RD DATA

REID BORa

Rii BROY

w- ORUN

cs Awe

'0 SC ., TRACK 000

'2 WR FAULT

08, INDEX

0" OROY

D., STEP

08. D,A

DB, WR CLOCK

082 WR GATE

DB, lim
DSO LiTe
VSS WR DATA

231242-2

Figure 2. 82064 Pinout

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. November 1985
© Intel Corporation, 1985 6-635 Order Number: 231242-002

inter 82064

Table 1. Pin Description

Symbol Pin No. Type Name and Function

BCS 1 0 BUFFER CHIP SELECT: Output used to enable reading or
writing of the external sector buffer by the 82064. When low,
the host should not be able to drive the 82064 data bus, RD,
orWR lines.

BCR 2 0 BUFFER COUNTER RESET: Output that is asserted by the
82064 prior to readlwrite operation. This pin is asserted
whenever BCS changes state. Used to reset the address
counter of the buffer memory.

INTRQ 3 0 INTERRUPT REQUEST: Interrupt generated by the 82064
upon command termination. It is reset when the STATUS
register is read, or a new command is written to the
COMMAND register. Optionally signifies when a data transfer
is required on Read Sector commands.

SDHLE 4 0 SDHLE is asserted when the SDH register is written by the
host.

RESET 5 I RESET: Initializes the controller and clears all status flags.
Does not clear the Task Register File.

RD 6 1/0 READ: Tri-state, bi-directional signal. As an input, RD controls
the transfer of information from the 82064 registers to the
host. RD is an output when the 82064 is reading data from the
sector buffer (BCS low).

WR 7 1/0 WRITE: Tri-state, bi-directional signal. As an input, WR
controls the transfer of command or task information irito the
82064 registers. WR is an output when the 82064 is writing
data to the sector buffer (BCS low).

CS 8 I CHIP SELECT: Enables RD and WR as inputs for access to
the Task Registers. It has no effect once a disk command
starts.

AO-2 9-11 I ADDRESS: Used to select a register from the task register
file.

DBo-7 12-19 1/0 DATA BUS: Tri-state, bi-directionaI8-bit Data Bus with control
determined by BCS. When BCS is high the microprocessor
has full control of the data bus for reading and writing the Task
Register File. When BCS is low the 82064 controls the data
bus to transfer to or from the buffer.

Vss 20 Ground

WRDATA 21 0 WRITE DATA: Output that shifts out MFM data at a rate
determined by Write Clock. Requires an external D flip-flop
clocked at 10 MHz. The output has an active pullup and
pulldown that can sink 4.8 rnA.

LATE 22 0 LATE: Output used to derive a delay value for write
precompensation. Valid when WR GATE is high. Active on all
cylinders.

EARLY 23 0 EARLY: Output used to derive a delay value for write
precompensation. Valid when WR GATE is high. Active on all
cylinders.

6-636

inter 82064

Table 1. Pin Description (Continued)

Symbol Pin No. Type Name and Function

WRGATE 24 0 WRITE GATE: High when write data is valid. WR GATE goes
low if the WR FAULT input is active. This output is used by the
drive to enable head write current.

WRCLOCK 25 I WRITE CLOCK: Clock input used to derive the write data rate.
Frequency = 5 MHz for the ST506 interface.

DIR 26 0 DIRECTION: High level on this output tells the drive to move
the head inward (increasing cylinder number). The state of this
signal is determined by the 82064's internal comparison of
actual cylinder location vs. desired cylinder.

STEP 27 0 STEP: This signal is used to move the drive head to another
cylinder at a programmable frequency. Pulse width = 1.6 /Ls
for a step rate of 3.2 /LsI step, and 8.4 /Ls for all other step
rates.

DRDY 28 I DRIVE READY: If DRDY from the drive goes low, the
command will be terminated.

INDEX 29 I INDEX: Signal from the drive indicating the beginning of a
track. It is used by the 82064 during formatting, and for
counting retries. Index is edge triggered. Only the rising edge
is valid.

WR FAULT 30 I WRITE FAULT: An error input to the 82064 which indicates a
fault condition at the drive. If WR FAULT from the drive goes
high, the command will be terminated.

TRACK 000 31 I TRACK ZERO: Signal from the drive which indicates that the
head is at the outermost cylinder. Used to verify proper
completion of a RESTORE command.

SC 32 I SEEK COMPLETE: Signal from the drive indicating to the
82064 that the drive head has settled and that reads or writes
can be made. SC is edge triggered. Only the rising edge is
valid.

RWC 33 0 REDUCED WRITE CURRENT: Signal goeshigh for all
cylinder numbers above the value programmed in the Write
Precomp Cylinder register. It is used by the precompensation
logic and by the drive to reduce the effects of bit shifting.

DRUN 34 I DATA RUN: This signal informs the 82064 when a field of all
ones or all zeroes has been detected in the read data stream
by an external one·shot. This indicates the beginning of an 10
field. RD GATE is brought high when DRUN is sampled high
for 16 clock periods.

BRDY 35 I BUFFER READY: Input used to Signal the controller that the
buffer is ready for reading (full), or writing (empty), by the host
/LP. Only the rising edge indicates the condition.

6-637

82064

Table 1. Pin Description (Continued)

Symbol Pin No. Type Name and Function

BORO 36 0 BUFFER DATA REQUEST: Activated during Read or Write
commands when a data transfer between the host and the
82064's sector buffer is required. Typically used as a OMA
request line.

ROOATA 37 I READ DATA: Single ended input that accepts MFM data from
the drive.

ROGATE 38 0 READ GATE: Output that is asserted when a search for an
address mark is initiated. It remains asserted until the end of
the 10 or data field.

ROCLOCK 39 I READ CLOCK: Clock input derived from the external data
recovery circuits.

Vee 40 I D.C. POWER: + 5V.

FUNCTIONAL DESCRIPTION

The Intel 82064 Winchester Disk Controller (WOC)
interfaces microprocessor systems to Winchester
disk drives that use the Seagate ,Technology
ST506/ST412 interface. The device translates par­
allel data from the microprocessor to a 5 Mbitlsec,
MFM-encoded serial bit stream. It provides all of the
drive control logic and control signals which simplify
the deSign of external data separation and write pre­
compensation circuitry. The 82064 is designed to in­
terface to the host processor through an external
sector buffer.

On-chip error detection algorithms include the CRCI
CCITI and a 32-bit computer generated ECC poly­
nomial. If the ECC code is selected, the 82064 pro­
vides three possible error handling techniques if an
error is detected during a read operation:

1. Automatically correct the data in the sector buffer,
providing the host with good information.

2. Provide the host with the error location and pat­
tern,allowing the host to correct the error.

3. Take no action other than setting the error flag.

The 82064 is software compatible with the 82062.

INTERNAL ARCHITECTURE

The internal architecture of the 82064 is shown in
more detail in Figure 3. It is made up of seven major
blocks as described below.

PLA Controller

The PLA interprets commands and provides all con­
trol functions. It is synchronized with WR CLOCK.

Magnitude Comparator

An 11-bit magnitude comparator is used to calculate
the direction and number of steps needed to move
the heads from the present to the desired cylinder
position. It compares the cylinder number in the task
file to the internal "present position" cylinder num­
ber.

A separate high-speed equivelance comparator is
used to compare 10 field bytes when searching for a
sector 10 field.

6-638

inter 82064

080·7

IcA ---1i-I..--.j

PO
CDNTROLLER

BROY -------'

BDRD

Ia

Vcc~

GND--"

WR DATA

WR CLOCK

RO CLOCK

AD DATA

...... -r:::==;_ i6HlE
STEP
DIRC

mirY
WE
DRDY

WR FAULT

TRACK IlOO
INDEX

SC

AWC
WR GATE
RDGATE

...... -..J""r"" DAUN

231242-3

Figure 3. 82064 Detailed Block Diagram

CRC and ECC Generator and Checker

The 82064 provides two options for protecting the
integrity of the data field. The data field may have
either a CRC (SOH register, bit 7 = 0), or a 32-bit
ECC (SOH register, bit 7 = 1) appended to it. The 10
field is always protected by a CRC.

The CRC m,ode provides a means of verifying the
accuracy of the data read from the disk, but does
not attempt to correct it. The CRC generator com­
putes and checks cyclic redundancy check charac­
ters that are written and read from the disk after 10
and data fields. The polynomial used is:

X1.6+ X12+ Xs+ 1

The CRC register is preset to all one's before com-·
putation starts.

If the CRC character generated while reading the
data does not equal the one previously written an
error exists. If an 10 field CRC error occurs the "10
not found" bit in the error register will be set. If a

data field CRC error occurs the "ECC/CRC" bit in
the error register will be set.

The ECC mode is only applicable to the data field. It
provides the user with the ability to detect and cor­
rect errors in the data field automatically. The com­
mands and registers which must be considered
when ECC is used are:

1. SOH Register, bit 7 (CRC/ECG)

2. READ SECTOR Command, bit 0 (T)

3. READ SECTOR and WRITE SECTOR Com-
mands, bit 1 (L)

4. COMPUTE CORRECTION Command

5. SET PARAMETER Command

6. STATUS Register, bit 2 - error correction suc­
cessful

7. STATUS Register, bit 0 - error occurred

8. ERROR Register, bit 6 - uncorrectable error

To enable the ECC mode, bit 7 of the SOH register
must be set to one.

6-639

inter 82064

Bit 0 (T) of the READ Command controls whether or
not error correction is attempted. When T = 0 and
an error is detected, the 82064 tries up to 10 times
to correct the error. 'If the error is successfully cor­
rected, bit 2 of the STATUS Register is set. The host
can interrogate the status register and detect that an
error occurred and was corrected. If the error was
not correctable, bit 6 of the ERROR Register is set.
If the correction span was set to 5 bits, the host may
now execute the SET PARAMETER Command to
change the correction span to 11 bits, and attempt
the read again. If the error persists, the host can
read the data, but it will contain errors.

When T = 1 and an error is detected, no attempt is
made to correct it. Bit 0 of the STATUS Register and
bit 6 of the ERROR Register are set. The user now
has two choices:

1.' Ignore the error and make no attempt to correct it.

2. Use the COMPUTE CORRECTION Command to
determine the location and pattern of the error,
and correct it within the user's program.

When the COMPUTE CORRECTION Command is
implemented, it must be done before executing any
command which can alter the contents of the ECC
Register. The READ SECTOR, WRITE SECTOR,
SCAN ID, and FORMAT Commands will alter this
register and correction will be impossible. The COM­
PUTE CORRECTION Command may determine that
the error is uncorrectable, at which pOint the error
bits in the STATUS and ERROR Registers are set.

Although ECC generation starts with the first bit of
the F8H byte in the data ID field, the actual ECC
bytes written will be the same as if the A 1 H byte was
included. The ECC polynomial used is:

For automatic error correction, the external sector
buffer must be implemented with a static RAM and
counter, not with a FIFO.

The SET PARAMETER Command is used .to select
a 5-bit or 11-bit correction span.

When the L Bit (bit 1) of the READ SECTOR and
WRITE SECTOR commands is set to one, they are
referred to as READ LONG and WRITE LONG com­
mands. For these commands, no CRC or ECC char­
acters are generated or checked by the 82064. In
effect, the data field is extended by 4 bytes which
are passed to/from the sector buffer.

With proper use of the WRITE SECTOR, READ
LONG, WRITE LONG, and READ SECTOR Com­
mands,a diagnostic routine may be developed to
test the accuracy of the error correction process.

MFM ENCODER/DECODER

Encodes and decodes MFM data to be written/read
from the drive. The MFM encoder operates from
WR CLOCK, a clock having a frequency equal to the
bit rate. The MFM decoder operates from
RD CLOCK, a bit rate clock generated by the exter­
nal data separator. RD CLOCK and WR CLOCK
need not be synchronous.

The MFM encoder also generates the write precom­
pensation control signals. Depending on the bit pat­
tern of the data, EARLY or LATE may be asserted.
External Circuitry uses these signals to compensate
for drift caused by the influence one bit has over
another. More information on the use of the EARLY
and LATE control signals can be found in the sec­
tion which describes the drive interface.

Address Mark (AM) Detection

An address mark is comprised of two unique bytes
preceeding both the ID field and the data field. The
first byte is used for resynchronization. The second
byte indicates whether it is an ID field or a data field.

The first byte, A 1 H, normally has a clock pattern of
OEH; however, one clock pulse has been sup­
pressed, making it OAH. With this pattern, the AM
detector knows it is looking at an address mark. It
now examines the next byte to determine if it is an ID
or data field. If this byte is 111101 XX or 111111 XX it
is an ID field. Bits 3, 1, and 0 are the high order
cylinder number bits. If the second byte is F8H, it is a
data field.

Host/Buffer Interface Control

The primary interface between the host processor
and the 82064 is an 8-bit bi-directional bus. This bus
is used to transmit and receive data for both the
82064 and the sector buffer. The sector buffer con­
sists of a static RAM and counter. Since the 82064
makes the bus active when accessing the sector
buffer, a transceiver must be used to isolate the host
during this time. Figure 4 illustrates a typical inter­
face with a sector buffer. Whenever the 82064 is not
using the sector buffer, the BUFFER CHIP SELECT
(BCS) is high (disabled). This allows the host access
to the 82064's Task Register File and to the sector
buffer. A decoder is used to generate BeS when
AO-2 is '000', 'an unused address in the 82064. A
binary counter is enabled whenever RD or WR go
active. The location within the sector buffer which is
addressed by the counter will be accessed. The
counter will be incremented by the trailing edge of
the RD or WR. This allows the host to access se-

6:-640

intJ 82064

Ro Ro

~l--C WR WR

19:1- DATA BUS (8) -DATA - '// '/. OBO_7

TRANS~ BCR

~>~
00 - A DATA

o fiE r--HOST - A,
CPU • 82064

SYSTEM • - • WE I--• - • • • • - •
MR • • - •

TC Ox - AX Cs

- 0 0 E
C
0

BCS 0
i:.

3J r E -
CS

ADDRESS
3,

AO-2
I r--- I

0 ° BROY

CP BORO
DATA - OMA

11 RST
INTERRUPT REOUEST CONTROLLER T INTRO

t
231242-4

Figure 4. Host Interface Block Diagram

quential bytes within the sector buffer. The decoder
also generates a CS for the 82064 whenever AO-2
does not equal '000', allowing access to the 82064's
internal Task Register File while keeping the sector
buffer tri-stated.

During a WRITE SECTOR Command, the host proc­
essor sets up data in the Task Register File and then
issues the command. The 82064 asserts BUFFER
COUNTER RESET (BCR) to reset the counter. It
then generates a status to inform the host that it can
load the sector buffer with data to be written. When
the counter reaches its maximum count, the BUFF­
ER READY (BRDY) signal is asserted by the carry
out of the counter, informing the 82064 that the sec­
tor buffer is full. (BRDY is a rising edge triggered
signal which will be ignored if asserted before the
82064 asserts BCR.) BCS is then asserted, discon-

6-641

necting the host through the transceivers, and the
RD and WR lines become outputs from the 82064 to
allow access to the sector buffer. When the 82064 is
done using the buffer, it deasserts BCS which again
allows the host to access the local bus. The READ
SECTOR command operates in a similar manner,
except the buffer is loaded by the 82064 instead of
the host.

Another control signal, BUFFER DATA REQUEST
(BDRQ), can be used with a OMA controller to indi­
cate that the 82064 is ready to send or receive data.
When data transfer is via a programmed I/O envi­
ronment, it is the responsibility of the host to inter­
rogate the ORQ status bit to determine if the 82064
is ready (bit 3 of the status register). For further ex­
planation, refer to the individual command descrip­
tions and the A.C. Characteristics.

inter 82064

When INTRa is asserted, the host is signaled that
execution of a command has terminated (either a
normal termination or an aborted command). For the
READ SECTOR command, interrupts may be pro­
grammed to be asserted either at the termination of
the command, or when BDRa is asserted. INTRa
will remain active until the host reads the STATUS
register to determine the cause of the termination, or
writes a new command into the COMMAND register.

The 82064 asserts SDHLE whenever the SDH regis­
ter is being written. This signal can be used to latch
the drive and head select information in an external
register for decoding. Figure 5 illustrates one method.

Drive Interface

The drive side of the 82064 WDC requires three sec­
tions of external logic. These are the control line
buffer/receivers, data separator, and write precom­
pensation. Figure 5 illustrates a drive interface.

The buffer/receivers condition the control lines to be
driven down the cable to the drive. The control lines
are typically single-ended, resistor terminated, TIL
levels. The data lines to and from the drive also re­
quire buffering. This is typically done with differential
RS-422 drivers. The interface specification for the
drive will be found in the drive manufacturer's OEM

j. r-;;-;:-o HSELO
DBO_ 4 • A Q HSEL1

~ Q HSEL2
H Q DSEL1

y~t--
D - DSEL2 E
C
0 r-- DSEL3
D
E I-- DSEL4

'--

SDHLE

RD GATE
DRUN DATA

RD DATA SEPARATOR

RD CLOCK

82064

WR DATA WRITE DISK

<= ~ EARLY PRECOMPENSATION DRIVE

LATE AND HOST

" D80_/' RWC SYNCHRONIZATION

STEP
DIR

DRDY
WR rAULT INTERrACE/

TRACK 000 BurrER
INDEX

SC
WR GATE

231242-5

Figure 5. Drive Interface Block Diagram

6-642

inter 82064

manual. The 82064 supplies TTL compatible signals,
and will interface to most buffer/driver devices.

The data recovery circuits consist of a phase locked
loop, data separator, and associated components.
The 82064 interacts with the data separator through
the DATA RUN (DRUN) and RD GATE signals. A
block diagram of a typical data separator circuit is
shown in Figure 6. Read data from the drive is pre­
sented to the RD DATA input of the 82064, the ref­
erence multiplexor, and a retriggerable one shot.
The RD GATE output will be de asserted when the
82064 is not inspecting data. The PLL should remain
locked to the reference clock.

When any READ or WRITE command is initiated
and a search for an address mark begins, the DRUN
input is examined. The DRUN one-shot is set for
slightly longer than one bit time, allowing it to retrig­
ger constantly on a field of all ones or all zeroes. An
internal counter times out to see that DRUN is as­
serted for two byte times. RD GATE is asserted by
the 82064, switching the data separator to lock on to
the incoming data stream. If DRUN is deasserted
prior to an additional seven byte times, RD GATE is
deasserted and the process is repeated. RD GATE
will remain asserted until a non-zero, non-address
mark byte is detected. The 82064 will then deassert
RD GATE for two byte times to allow the PLL to lock
back on the reference clock, and start the DRUN
search again. If an address mark is detected, RD
GATE remains asserted and the command will con­
tinue searching for the proper ID field. This se­
quence is shown in the flow chart in Figure 7.

250 NSEC

The write precompensation Circuitry is designed to
reduce the drift in the data caused by interaction
between bits. It is divided into two parts, REDUCED
WRITE CURRENT (RWC) and EARLY/LATE writing
of bits. A block diagram of a typical write precom­
pensation circuit is shown in Figure 8.

The cylinder in which the RWC line becomes active
is controlled by the REDUCE WRITE CURRENT reg­
ister in the Task Register File. When a cylinder is
written which has a cylinder number greater than or
equal to the contents of this register, the write cur­
rent will be reduced. This will decrease the interac­
tion between the bits.

Drift may also be caused by the bit pattern. With
certain combinations of ones and zeroes some of
the bits can drift far enough apart to be difficult to
read without error. This phenomenon can be mini­
mized by using EARLY and LATE as described be­
low. The 82064 examines three bits, the last one
written, the one being written, and the next one to be
written. From this, it determines whether to assert
EARLY or LATE. Since the bit leaving the 82064 has
already been written, it is too late to make it early.
Therefore, the external delay circuit must be as fol­
lows:

EARLY asserted and LATE deasserted = no
delay

EARLY deasserted and LATE deasserted =
one unit delay (typically 12-15 ns)

EARLY deasserted and LATE asserted = two
units delay (typically 24-30 ns)

EARLY and LATE are always active, and should be
gated externally by the RWC signal. Figure 8 illus­
trates one method of using these signals.

RETRIGGERABLE DRUN
ONE-SHOT

MFM ~

DISK ::: J ~ RD DATA
DATA

L~,mo
C

r~ 82064

PHASE AND +2 RD CLOCK

- A COMP VCO
f--

MUX

I
B RD GATE

I +2 L
WR CLOCK

231242-6

110 MHZ 1
OSC

Figure 6. Data Separator Circuit

6-643

inter 82064

NO

231242-7

Figure 7. PLL Control Sequence

6-644

inter 82064

DELAY LINE
WR DATA J----4

EARLY 1----1
LATEJ----I

12NS 24NS

82064

10t.lHZ
OSC

c
Q

WR DATA
TO DRIVE

RWC~----------e--+----------------~~

..... ---------------------------------. TO DRIVE
231242-9

Figure 8. Write Precompensation Circuit

TASK REGISTER FILE

The Task Register File is a bank of nine registers
used to hold parameter information pertaining to
each command, status information, and the com­
mand itself. These registers and their addresses are:

A2 A1 AD READ WRITE
0 0 0 BUS TRI·STATED BUS TRI·STATED
0 0 1 ERROR REGISTER REDUCE WRITE CURRENT
0 0 SECTOR COUNT SECTOR COUNT
0 1 SECTOR NUMBER SECTOR NUMBER

0 0 CYLINDER LOW CYLINDER LOW
0 1 CYLINDER HIGH CYLINDER HIGH

0 SDH SDH
1 STATUS COMMAND

NOTE:
These registers are not cleared by RESET being asserted.

ERROR REGISTER

This read only register contains specific error infor­
mation after the termination of a command. The bits
are defined as follows:

o
DAM

Bit 7 - Bad Block Detect (BB)

This bit is set when an 10 field has been encoun­
tered that contains a bad block mark. It is used for
bad sector mapping.

Bit 6 - GRG/EGG Data Field Error (GRG/EGG)

When in the GRG mode (SOH register, bit 7 = 0),
this bit is set when a GRG error occurs in the data
field. When retries are enabled, ten more attempts
are made to read the sector correctly. If none of
these attempts are successful bit 0 in the STATUS
register is also set. If one of the attempts is success­
ful, the GRG/EGG error bit remains set to inform the
host that a marginal condition exists; however, bit 0
in the STATUS register is not set.

When in the EGG mode (SOH register, bit 7 = 1),
this bit is set when the first non-zero syndrome is
detected. When retries are enabled, up to ten at­
tempts are made to correct the error. If the error is
successfully corrected, this bit remains set; howev­
er, bit 2 of the STATUS register is also set to inform
the host that the error has been corrected. If the
error is not correctable, the GRG/EGG error bit re­
mains set and bit 0 of the STATUS register is also
set.

The data may be read even if uncorrectable errors
exist.

NOTE: If the long mode (L) bit is set in the READ or
WRITE command, no error checking is performed.

Bit 5 - Reserved

Not used. Forced to zero.

6-645

inter 82064

Bit 4 - 10 Not Found (10)

This bit is set to indicate that the correct cylinder,
head, sector, or size parameter could not be found,
or that a CRC error occurred in the 10 field. This bit
is set on the first failure and remains set even if the
error is recovered on a retry. When recovery is un­
successful, the Error bit (bit 0) of the STATUS regis­
ter is also set.

For a SCAN 10 command with retries enabled (T =
0), the Error bit in the STATUS register is set after
ten unsuccessful attempts have been made to find
the correct 10. With retries disabled (T = 1), only
two attempts are made before setting the Error bit.

For a READ or WRITE command with retries en­
abled (T = 0), ten attempts are made to find the
correct 10 field. If there is still an error on the tenth
try, an auto-scan and auto-seek are performed.
Then ten more retries are made before setting the
Error bit. When retries are disabled (T = 1), only two
tries are made. No auto-scan or auto-seek opera­
tions are performed.

Bit 3 - Reserved

Not used. Forced to zero.

Bit 2 - Aborted Command (AC)

Command execution is aborted and this bit is set if a
command was issued while DRDY.is deasserted or
WR FAULT is asserted. This bit will also be set if an
undefined command is written to the COMMAND
register; however, an implied seek will be execute.d.

Bit 1 - Track 000 Error (TKOOO)

This bit is set during the execution of a RESTORE
command if the TRACK 000 pin has not gone active
after the issuance of 2047 step pulses.

Bit 0 - Data Address Mark (DAM) Not Found

This bit is set during the execution of a READ SEC­
TOR command if the DAM is not found following the
proper sector 10 ..

REDUCE WRITE CURRENT REGISTER

This register is used to define the cylinder number
where the RWC output (Pin 33) is asserted.

7 6 I 5 I 4 I 3 I 2 1

CYLINDER NUMBER + 4

The value (OO-FFH) loaded into this cylinder is inter­
nally multiplied by four to specify the actual cylinder
where RWC is asserted. Thus a value of 01 H will
cause RWC to be asserted on cylinder 04H, 02H on

. cylinder OSH, ... , 9CH on cylinder 270H, 9DH on
cylinder 274H, and so on. RWC will be asserted
when the present cylinder is greater than or equal to
four times the value of this register. For example, the
S1506 interface requires precomp on cylinder SOH
and above. Therefore, the REDUCE WRITE CUR­
RENT register should be loaded with 20H.

A value of FFH causes RWC to remain deasserted,
regardless of the actual cylinder number.

SECTOR COUNT REGISTER

This register is used to define the number of sectors
that need to be transferred to the buffer during a
READ MULTIPLE SECTOR or WRITE MULTIPLE
SECTOR command.

I 7 1 6. 1 5 I 4 I 3 I 2 I 1 o

The value contained in the register is decremented
after each sector is transferred to/from the sector
buffer. A zero represents a 256 sector transfer, a
one a one sector transfer, etc. This register is a
"don't care" when single sector commands are
specified.

SECTOR NUMBER REGISTER

This register holds the sector number of the desired
sector.

I 7 I 6 I 5 1 41 3 1 2' I 1 I 0 I
SECTOR NUMBER

For a multiple sector command, it specifies the first
sector to be transferred. It is incremented after each
sector is transferred to/from the sector buffer. The
SECTOR NUMBER register may contain any value
from 0 to 255.

The SECTOR NUMBER register is also used to pro­
gram the Gap 1 and Gap 3 lengths to be used when
formating a disk. See the WRITE FORMAT com­
r:nand description for further explanation.

6-646

intJ 82064

CYLINDER NUMBER LOW REGISTER

This register holds the lower byte of the desired cyl­
inder number.

I 7 I 6 I 5 I 4 I 3 I 2 I

It is used with the CYLINDER NUMBER HIGH regis­
ter to specify the desired cylinder number over a
range of 0 to 2047.

CYLINDER NUMBER HIGH REGISTER

This register holds the three most significant bits of
the desired cylinder number.

The CYLINDER NUMBER LOW/HIGH register pair
determine where the R/W heads are to be posi­
tioned. The host writes the desired cylinder number
into these registers. Internal to the 82064 is another
pair of registers that hold the present head location.
When any command other than a RESTORE is exe­
cuted, the internal head location registers are com­
pared to the CYLINDER NUMBER registers to deter­
mine how many cylinders to move the heads and in
what direction.

The internal head location registers are updated to
equal the CYLINDER NUMBER registers after the
completion of the seek.

When a RESTORE command is executed, the inter­
nal head location registers are reset to zero while
DIR and STEP move the heads to track zero.

SECTOR/DRIVE/HEAD (SDH) REGISTER

The SDH register contains the desired sector size,
drive number, and head parameters. The format is
shown in Figure 9. The EXT bit (bit 7) is used to
select between the CRC or ECC mode. When bit 7
= 0 the ECC mode is selected for the data field.
When bit 7 = 1 the CRC mode is selected.

The SDH byte written in the ID field of the disk by the
FORMAT command is different than the SDH regis­
ter contents. The recorded SDH byte does not have

the drive number recorded, but does have the bad
block mark written. The format of the SDH byte writ­
ten on the disk is:

4 3 2 1

o o HEAD

STATUS REGISTER

The status register is used to inform the host of cer­
tain events performed by the 82064, as well as re­
porting status from the drive control lines. Reading
the STATUS register deasserts INTRQ. The format
is:

Bit 7 - Busy

This bit is asserted when a command is written into
the COMMAND register and, except for the READ
command, is deasserted at the end of the com­
mand. When executing a READ command, Busy will
be deasserted when the sector buffer is full. Com­
mands should not be loaded into the COMMAND
register when Busy is set. When the Busy bit is set,
no other bits in the STATUS or ERROR registers are
valid.

Bit 6 - Ready

This bit reflects the status of DRDY (pin 28). When
this bit equals zero, the command is aborted and the
status of this bit is latched.

Bit 5 - Write Fault (WF)

This bit reflects the status of WR FAULT (pin 30).
When this bit equals one the command is aborted,
INTRQ is asserted, and the status of this bit is
latched.

Bit 4 - Seek Complete (SC)

This bit reflects the status of SC (pin 32). When a
seek or implied seek has been initiated by a com­
mand, execution of the command pauses until the
seek is complete. This bit is latched after an aborted
command error.

6-647

intJ 82064

7 6 5 4 3 2 o

,.,.. .. -
6 5 SECTOR SIZE 4 3 DRIVE # 2 1 0 HEAD #
0 0 256 0 0 DSEL1 0 0 0 HSELO
0 1 , 512 0 1 DSEL2 0 0 1 HSEL1
1 0 1024 1 0 DSEL3 0 1 0 HSEL2
1 1 128 1 1 DSEL4 0 1 1 HSEL3

1 0 0 HSEL4
1 0 1 HSEL5
1 1 0 HSEL6
1 1 1 HSEL7

231242-10

NOTE:
Drive select and head select lines must be generated externally. Figure 3 represents one method of achieving this.

Figure 9. SOH Register Format

Bit 3 - Data Request (DRQ)

The DRQ bit reflects the status of BDRQ (pin 36). It
is asserted when the sector buffer must be written
into or read from. DRQ and BDRQ remain asserted
until BRDY indicates that the sector buffer has been
filled or emptied, depending upon the command.
BDRQ can be used for DMA interfacing, while DRQ
is used in a programmed 1/0 environment.

Bit 2 - Data Was Corrected (DWC)

When set, this bit indicates that an ECC error has
been detected during a read operation, and that the
data in the sector buffer has been corrected. This
provides the user with an indication that there may
be a marginal condition within the drive before the
errors become uncorrectable. This bit is forced to
zero when not in the ECC mode.

Bit 1 - Command In Progress (CIP)

When this bit is set a command is being executed
and a new command should not be loaded.· Al­
though a command is being executed, the sector
buffer is still available for access by the host. When
the 82064 is no longer Busy (bit 7 = 0) the STATUS
register can be read. If other registers are read while
CIP is set the contents of the STATUS register will
be returned.

Bit 0 - Error

This bit is set whenever any bits in the ERROR reg­
ister are set. It is the logical 'or'· of the bits in the
ERROR register and may be used by the host proc­
essor to quickly check for nonrecoverable errors.
The host must read the ERROR register to deter­
mine what type of error occurred. This bit is reset
when a new command is written into the COMMAND
register.

COMMAND REGISTER

The command to be executed is written into this
write-only register:

1716151413121 1 101
COMMAND

The command sets Busy and CIP, and begins to ex­
ecute as soon as it is written into this register. There­
fore, all necessary information should be loaded into
the Task Register File prior to entering the com­
mand. Any attempt to write a register will be ignored
until command execution has terminated, as indicat­
ed by the CIP bit being cleared. INTRQ is deassert­
~d when the COMMAND register is written.

6-648

inter 82064

COMMAND 7 6
RESTORE 0 0
SEEK 0 1
READ SECTOR 0 0
WRITE SECTOR 0 0
SCANID 0 1
WRITE FORMAT 0 1
COMPUTE CORRECTION 0 0
SET PARAMETER 0 0

R3-0 = Stepping Rate Field

For 5 MHz WR CLOCK:

R3-0 = 0000 35}Ls
0001 0.5 ms
0010 1.0 ms
0011 1.5 ms
0100 2.0 ms
0101 2.5 ms
0110 3.0 ms
0111 3.5 ms
1000 4.0 ms
1001 4.5 ms
1010 5.0 ms
1011 5.5 ms
1100 6.0 ms
1101 6.5 ms
1110 3.2}Ls
1111 16}Ls

I = Interrupt Control

5 4

0 1
1 1
1 0
1 1
0 0
0 1
0 0
II 0

3 2 1 0

R3 R2 Rl RO
R3 R2 Rl RO
I M L T
0 M L T
0 0 0 T
0 0 0 0
1 0 0 0
0 0 0 S

I = 0 INTRa occurs with BDRO/DRO indicating
the sector buffer is full. Valid only when M =
o.

I = 1 INTRa occurs when the command is com­
pleted and the host has read the sector buff­
er.

M = Multiple Sector Flag

M = 0 Transfer one sector. Ignore the SECTOR
COUNT register.

M = 1 Transfer multiple sectors.

L = Long Mode

L = 0 Normal mode. Normal CRC or ECC functions
are performed.

L = 1 Long mode. No CRC or ECC bytes are devel­
oped or error checking performed on the
data field. The 82064 appends the four addi­
tional bytes supplied by the host or disk to
the data field.

T = Retry Enable

T = 0 Enable retries.

T = 1 Disable retries.

S = Error Correction Span

S = 0 5-bit span.

S = 1 ll-bit span.

RESTORE COMMAND

The RESTORE command is used to pOSition the
R/W heads over track zero. It is usually issued by
the host when a drive has just been turned on. The
82064 forces an auto-restore when a FORMAT
command has been issued following a drive number
change.

The actual step rate used for the RESTORE com­
mand is determined by the seek complete time. A
step pulse is issued and the 82064 waits for a rising
edge on the SC line before issuing the next pulse. If
the rising edge of SC has not occurred within ten
revolutions (INDEX pulses) the 82064 switches to
sensing the level of SC. If after 2047 step pulses the
TRACK 000 line does not go active the 82064 will
set the TRACK 000 bit in the ERROR register, assert
INTRa, and terminate execution of the command.
An interrupt will also occur if WR FAULT is asserted
on DRDY is deasserted at any time during execu­
tion.

The rate field specified (R3-0) is stored in an internal
register for future use in commands with implied
seeks.

A flowchart of the RESTORE command is shown in
Figure 10.

SEEK COMMAND

The SEEK command can be used for overlapping
seeks on multiple drives. The step rate used is taken
from the Rate Field of the command, and is stored in
an internal register for future use by those com­
mands with implied seek capability.

The direction and number of step pulses needed are
calculated by comparing the contents of the CYLIN­
DER NUMBER registers in the Task Register File to
the present cylinder position stored internally. After
all the step pulses have been issued the present
cylinder position is updated, INTRa is asserted, and
the command terminated.

6-649

infef 82064

If DRDY is deasserted or WR FAULT is asserted
during the execution of the command, INTRa is as­
serted and the command aborts setting the AC bit in
the ERROR register.

If an implied seek is performed, the step rate indicat­
ed by the rate field is used for all but the last step
pulse. On the last pulse, the command execution
continues until the rising edge of SC is detected. If
10 INDEX pulses are received without a rising edge
of SC, the 82064 will switch to sensing the level of
SC.

A flowchart of the SEEK command flow is shown in
Figure 11.

READ SECTOR

The READ SECTOR command is used to transfer
one or more sectors of data from the disk to the
sector buffer. Upon receipt of the command, the
82064 checks the CYLINDER NUMBER LOW/HIGH
register pair against the internal cylinder position
register to see if they are equal. If not, the direction
and number of steps calculation takes place, and a
seek is initiated. As stated in the description of the
SEEk command, if an implied seek occurs, the step
rate specified by the rate field is used for all but the
last step pulse. On the last step pulse the seek con­
tinues until the rising edge of SC is detected.

If the 82064 detects a change in the drive number
since the last command, an auto-scan ID is per­
formed. This updates the internal cylinder position
register to reflect the current drive before the seek
begins.

After the 82064 senses SC (with or without an im­
plied seek) it must find an ID field with the correct
cylinder number, head, sector size, and CRC. If re­
tries are enabled (T = 0), ten attempts are made to
find the correct ID field. If there is still an error on the
tenth try, an auto-scan ID and auto-seek are per­
formed. Then ten more retries are attempted before
setting the ID Not Found error bit. When retries are
disabled (T = 1) only two tries are made. No auto­
scan or auto-seek operations are performed.

When the data address mark (DAM) is found, the
82064 is ready to transfer data into the sector buffer.
When the disk has filled the sector buffer, the 82064
asserts BDRa and DRa and then checks the I flag.
If I = 0, INTRa is asserted, signaling the host to
read the contents of the sector buffer. If I = 1,
INTRa occurs after the host has read the sector
buffer and the command has terminated. If after suc­
cessfully reading the ID field, the DAM is not found
the DAM Not Found bit in the ERROR register is set.

6-650

RESET INTRa
EAROAS.

SET BUSY, CIP

RESET Rwe
SET OIRECTIQN

- OUT
STORE STEP RATE

ISSUE A
STEP PULSE

PULseID
SET INTRQ

RESET BUSV.CIP

231242-11

Figure 10. Restore Command Flow

intJ 82064

YES

YES

231242-12

Figure 11. Seek Command Flow

6-651

inter 82064

An optional M flag can be set for multiple sector
transfers. When M = 0, one sector is transferred
and the SECTOR COUNT register is ignored. When
M = 1, multiple sectors are transferred. After each
sector is transferred, the 82064 decrements the
SECTOR COUNT register and increments the SEC­
TOR NUMBER register. The next logical sector is
transferred regardless of any interleave. Sectors are
numbered during the FORMAT command by a byte
in the ID field.

For the 82064 to make multiple sector transfers to
the sector buffer, the BRDY signal must be toggled
from low to high for each sector. The transfers con­
tinue until the SECTOR COUNT register equal zero.
If the SECTOR COUNT is not zero (indicating more
sectors remain to be read), and the sector buffer is
full, BDRa will be asserted and the host must unload
the sector buffer. Once this occurs, the sector buffer
is free to accept the next sector.

WR FAULT and DRDY are monitored throughout the
command execution. If WR FAULT is asserted or
DRDY is deasserted, the command will terminate
and the Aborted Command bit in the ERROR regis­
ter will be set. For a de.scription of the error checking
procedure on the data field see the explanation in
the section entitled "CRC and ECC Generator and
Checker."

Both the READ and WRITE commands feature a
"simulated completion" to ease programming.
BDRa, DRa, and INTRa are generated in a normal
manner upon detection of an error condition. This
allows the same program flow for successful or un­
successful completion of a command.

In summary then, the READ ~ECTOR operation is
as follows:

When M = 0 (Single Sector Read)

1. HOST: Sets up parameters. Issues READ
SECTOR command.

2. 82064: Asserts BCA.

3. 82064: Finds sector specified. Asserts BCR
and BCS. Transfers data to sector
buffer.

4. 82064: Asserts BCA. Deasserts BCS.

5. 82064: Asserts BDRa and DRa.

6. 82064: If I = 1 then go to 9.

7. HOST: Read contents of sector buffer.

8. 82064: Wait for BRDY, then assert INTRa.
End.

9. 82064: Assert INTRa.

10. HOST: Read contents of sector buffer. End.

When M= 1 (Multiple Sector Read)

1. HOST: Sets up parameters. Issues READ
SECTOR command.

2. 82064: Asserts BCA.

3. 82064: Finds sector specified. Asserts BCR
and BCS. Transfers data to sector buff­
er.

4. 82064: Asserts BCA. Deasserts BCS.

5. 82064: Asserts BDRa and DRa.

6. HOST: Reads contents of sector buffer.

7. SECTOR·
BUFFER: Indicates data has been transferred by

asserting BRDY.

8. 82064: When BRDY is asserted, decrement
SECTOR COUNT, increment SECTOR
NUMBEA. If SECTOR COUNT = 0, go
to 11.

9. 82064: Go to 2.

10. 82064: Assert INTRa.

A flowchart of the READ SECTOR command is
shown in Figure 12.

WRITE SECTOR

The WRITE SECTOR command is used to write one
or more sectors of data from the sector buffer to the
disk. Upon receipt of the command, the 82064
checks the CYLINDER NUMBER LOW/HIGH regis­
ter pair against the internal cylinder position register
to see if they are equal. If not, the direction and num­
ber of steps calculation takes place, and a seek is
initiated. As stated in the description of the SEEK
command, if an implied seek occurs, the step rate
specified by the rate field is used for all but the last
step pulse. On the last step pulse the seek contin­
ues until the rising edge of SC is detected.

If the 82064 detects a change in the drive number
since the last command, an al,lto-scan ID is per­
formed. This updates the internal cylinder position
register to reflect the current drive before the seek
begins.

After the 82064 senses SC (with or without an im­
plied seek) BDRa and DRa are asserted and the
host begins filling the sector buffer with data. When
BRDY is asserted, a search for the ID field with the
correct cylinder number, head, sector size, and CRC
is initiated. If retries are enabled (T = 0), ten at­
tempts are made to find the correct ID field. If there
is still an error on the tenth try, an auto-scan ID and
auto-seek are performed. Then ten more retries are
attempted before setting the ID Not Found error bit.
When retries are disabled (T = 1) only two tries are
made. No auto-scan or auto-seek operations are
performed.

6-652

82064

231242-13

* If T bit of command = 1 then dashed path is taken after 2 index pulses.

Figure 12a. Read Sector Command Flow

6-653

inter 82064

NO

*If T,bit of command = 1 then dashed path is taken. 231242-14
·*If T bit of command = 1 then test is for 2 index pulses.

Figure 12b. Read Sector Command Flow (Continued)

6-654

inter 82064

When the correct 10 is found, WR GATE is asserted
and data is written to the disk. When the CRC/ECC
bit (SOH Register, bit 7) is zero, the 82064 gener­
ates a two byte CRC character to be appended to
the data. When the CRC/ECC bit is one, four ECC
bytes replace the CRC character. When L = 1, the
polynomial generator is inhibited and neither CRC or
ECC bytes are generated. Instead four bytes of data
supplied by the host are written.

During a WRITE MULTIPLE SECTOR command (M
= 1), the SECTOR NUMBER register is increment­
ed and the SECTOR COUNT register is decrement­
ed. If BRDY is asserted after the first sector is read
from the sector buffer, the 82064 continues to read
data from the sector buffer for the next sector. If
BRDY is deasserted, the 82064 asserts BORa and
waits for the host to place more data in the sector
buffer.

In summary then, the WRITE SECTOR operation is
as follows:

When M = 0,1

1. HOST: Sets up parameters. Issues READ SEC-
TOR command.

2.82064: Asserts BORa and ORO.

3. HOST: Loads sector buffer with data.

4. 82064: Waits for riSing edge of BRDY.

5.82064: Finds specified 10 field. Writes sector to
disk.

6.82064: If M = 0, asserts INTRa. End.

7.82064: Increments SECTOR NUMBER. Decre­
ments SECTOR COUNT.

8.82064: IF SECTOR COUNT = 0, assert INTRa.
End.

9. 82064: Go to 2.

A flowchart of the WRITE SECTOR command is
shown in Figure 13.

SCANID

The SCAN 10 command is used to update the SOH,
SECTOR NUMBER, and CYLINDER NUMBER
LOW/HIGH registers.

After the command is loaded, the SC line is sampled
until it is valid. The DRDY and WR FAULT lines are
also monitored throughout execution of the com­
mand. If a fault occurs the command is aborted and
the appropriate error bits are set. When the first 10
field is found, the 10 information is loaded into the
SOH, SECTOR NUMBER, and CYLINDER NUMBER
registers. The internal cylinder position register is
also updated. If this is an auto-scan caused by a

change in drive numbers, only the internal position
register is updated. If a bad block is detected, the
BAD BLOCK bit will also be set.

If an 10 field is not found, or if a CRC error occurs,
and if retries are enabled (T = 0), ten attempts are
made to read it. If retries are disabled (T = 1), only
two tries are made. There is no auto-seek in this
command and the sector buffer is not disturbed.

A flowchart of the SCAN 10 command is shown in
Figure 14.

WRITE FORMAT

The WRITE FORMAT command is used to format
one track using information in the Task Register File
and the sector buffer. During execution of this com­
mand, the sector buffer is used for additional param­
eter information instead of data. Shown in Figure 15
is the contents of a sector buffer for a 32 sector
track with an interleave factor of two.

Each sector requires a two byte sequence. The first
byte designates whether a bad block mark is to be
recorded in the sector's 10 field. An OOH is normal;
an 80H indicates a bad block mark for that sector. In
the example of Figure 15, sector 04 will get a bad
block mark recorded. The second byte indicates the
logical sector number to be recorded. This allows
sectors to be recorded with any interleave factor de­
sired. The remaining memory in the sector buffer
may be filled with any value; its only purpose is to
generate a BRDY to tell the 82064 to begin format­
ting the track.

If the drive number has been changed since the last
command, an auto-restore is initiated, positioning
the heads to track 000. The internal cylinder position
register is set to zero and the heads seek to the
track specified in the Task Register File CYLINDER
NUMBER register. This prevents an 10 Not Found
error from occuring due to an incompatible format,
or the track having been erased. A normal implied
seek is also in effect for this command.

The SECTOR COUNT register is used to hold the
total number of sectors to be formatted (FFH = 255
sectors), while the SECTOR NUMBER register holds
the number of bytes, minus three, to be used for
Gap 1 and Gap 3. If, for example, the SECTOR
COUNT register value is 02H and the SECTOR
NUMBER register value is OOH, then 2 sectors are
formatted and.3 bytes of 4EH are written for Gap 1
and Gap 3. The data fields are filled with FFH and
the CRC or ECC is automatically generated and ap­
pended. After the last sector is written the track is
filled with 4EH.

6-655

inter 82064

°If retries disabled then dashed path is taken after 2 index pulses.

Figure 13. Write Sector Command Flow

6-656

RESET INTRa,
ERRORS

SET BUSY. CIP

SEARCH FOR
ANY 10 FIELD

UPDATE SOH.
CYL. SECTOR,

CYL POS, REG'S

NO

82064

SET INTRQ. AC
RESET BUSY. CIP

'If retries are disabled, path is taken after 2 index pulses.

Figure 14. Scan 10 Command Flow

6-657

23t242-16

inter 82064

DATA
ADDR 0 1 2 3 4 5 6 7

00 00 00 00 10 00 01 00 11
08 00 02 00 12 00 03 00 13
10 80 04 00 14 00 05 00 15
18 00 06 00 16 00 07 00 17
20 00 08 00 18 00 09 00 19
28 00 OA 00 1A 00 08 00 18
30 00 OC 00 1C 00 OD 00 10
38 00 OE 00 1E 00 OF 00 1F
40 FF FF FF FF FF FF FF FF

:
:

FO FF FF FF FF FF FF FF FF

Figure 15. Format Command Buffer Contents

The Gap 3 value is determined by the drive motor
speed variation, data sector length, and the inter­
leave factor. The interleave factor is only important
when 1:1 interleave is used. The formula for deter­
mining the minimum Gap 3 length is:

Gap 3 = (2.M.S)+K+E

where:

M = motor speed variation (e.g., 0.03 for + 3%)
S = sector length in bytes
K = 18 for an interleave factor of 1

o for any other interleave factor
E = 2 if ECC is enabled (SOH register, bit 7 = 1)

As for all commands, if WR FAULT is asserted or
OROY is deasserted during execution of the com­
mand, the command terminates and the Aborted
Command bit in the ERROR register is set.

Figure 16 shows the format which the 82064 will
write on the disk.

A flowchart of the WRITE FORMAT command is
shown in Figure 17.

COMPUTE CORRECTION

The COMPUTE CORRECTION command deter­
mines the location and pattern of a single burst er­
ror, but does not correct it. The host, using the data
provided by the 82064, must perform the actual cor­
rection. The COMPUTE CORRECTION command is
used following a data field ECC error. The command
initiating the read must specify no retries (T = 1).

The COMPUTE CORRECTION command first writes
the four syndrome bytes from the internal ECC regis­
ter to the sector buffer. Then the ECC register is
clocked. With each clock, a counter is incremented

and the pattern examined. If the pattern is correct­
able, the procedure is stopped and the count and
pattern are written to the sector buffer, following the
syndrome. The process is also stopped if the count
exceeds the sector size before a correctable pattern
is found.

When the command terminates the sector buffer
contains the following data:

Syndrome MSB
Syndrome
Syndrome
Syndrome LSB
Error Pattern Offset
Error Pattern Offset
Error Pattern MSB
Error Pattern
Error Pattern LSB

As an example, when the Error Pattern Offset is zero
the following procedure may correct the error. The
first data byte of the sector is exclusive OR'd with
the MSB of the Error Pattern, the second data byte
with the second byte of the Error Pattern, and the
third data byte with the LSB of the Error Pattern.

If the sector buffer count exceeds the sector size, or
if the error burst length is greater than that selected
by the Set Parameter command, the ECC/CRC error
in the ERROR register and the Error bit in the
STATUS register is set.

SET PARAMETER

This command selects the correction span to be
used for the error correction process. A 5-bit span is
selected when bit zero of the command equals 0,
and an 11-bit span when bit zero equals 1. The
82064 defaults to a 5-bit span after a RESET.

6-658

intJ 82064

REPEATED FOR EACH SECTOR

~ r--ID FIELD ~ ,----DATA FIELD-

I
H S C C D C L 2 CRC

GAP4 GAP1 14 BYTES A E E R R 3 BYTES 12 BYTES A F 3 BYTES GAP3
E Y 0 USER DATA OR

4E 4E '00' 1 A C C C '00' '00' 1 8 '00' 4E
N L W 4 ECC

(1)
T D # 1 2 (1)

'" ; I III j

: --1J:~':---------+-----------+:----~L-'
I t I I

WRITE GATE I I
I I I 1
I 11 I I

ORUN-.J 1//////////1//////$1:1 t1 W// /1/ //I/J// /14
I ;

READ GATE---.J

I '
~--------_____ I ___ _

231242-17

ID FIELD
A1 = A 1 H with OAH Clock

IDENT = Bits 3, 1, 0 = Cylinder High
FE = 0-255 Cylinders
FF = 256-511 Cylinders
FC = 512-767 Cylinders
FD = 768-1023 Cylinders
F6 = 1024-1279 Cylinders
F7 = 1280-1535 Cylinders
F4 = 1536-1791 Cylinders
F5 = 1792-2047 Cylinders

HEAD = Bits 0, 1, 2 = Head Number
Bits 3,4 = 0
Bits 5, 6 = Sector Size
Bit 7 = Bad Block Mark

Sec # = Logical Sector Number

DATA FIELD

A1 = A 1 H with OAH clock

F8 = Data Address Mark; Normal Clock

USER = Data Field 128 to 1024 Bytes

NOTE:
1. GAP 1 and 3 length determined by Sector Number Register contents during formatting.

Figure 16. Track Format

6-659

inter 82064

RESET WR GATE, BCS
PULSE BeR, SET INTRQ

RESET BUSY, ClP

Figure 17. Write Format Command Flow

6-660

231242-18

82064

ELECTRICAL CHARACTERISTICS
ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias O°C to 70°C
Storage Temperature - 65°C to + 150°C
Voltage on any pin with

respect to GND - 0.5V to + 7V
Power Dissipation 1.5 Watt

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for
extended periods may affect device reliability.

NOTICE Specifications contained within the
following tables are subject to change.

D.C. CHARACTERISTICS (T A = O°C to 70°C; Vee = + 5V ± 1 O~/o; GND = OV)

Symbol Parameter Min Max Units Test Conditions

IlL Input Leakage Current ±10)-LA VIN = Vee to OV

IOFL Output Leakage Current ±10)-LA VOUT = Vee to 0.45V

VIH Input High Voltage 2.0 V

VIL Input Low Voltage 0.8 V

VOH Output High Voltage 2.4 V IOH = -100)-LA

VOL Output Low Voltage 0.40 V IOL = 1.6 mA
0.45 6.0 mA P21, 22, 23

lee Supply Current 160 mA All Outputs Open

CIN Input Capacitance 10 pF fc = 1 MHz

CliO I/O Capacitance 20 pF Unmeasured pins returned
toGND

For Pins 25, 34, 37, 39
(WR CLOCK, DRUN,
READ DATA, READ CLOCK)

TRS Rise Time 30 ns 0.9Vto 4.2V

A.C. CHARACTERISTICS (T A = O°C to 70°C; Vee = + 5V ± 10%; GND = OV)

HOST READ TIMING WR CLOCK = 5.0 MHz

Symbol Parameter Min Max Units Test Conditions

1 Address Stable Before RD ,.t, 0 ns

2 Data Delay from RD ,.t, 70 ns

3 RD Pulse Width 0.2 10)-Ls

4 RD to Data Floating 10 200 ns

5 Address Hold Time after RD i 0 ns

6 Read Recovery Time 300 ns

7 CS Stable before RD ,.t, 0 ns See Note 6

6-661

inter 82064

AO-2 ~ ADDRESS STABLE X'-__ _
- -T-G)-. ®- 1--""-
cs ---0

~~~ ______ ~-JI 

-0-
RO-----~ r-----

1~-lC@ 
OBO-7 -----.... CX-O-A-TA-VA-L-IO .... )-

231242-19 

HOST WRITE TIMING WR CLOCK = 5.0 MHz 

Symbol Parameter Min Max Units Test Conditions 

8 Address Stable Before WR J, 0 10 p,s 

9 CS Stable Before WR J, 0 10 p,s 

10 Data Setup Time Before WR i 0.16 10 p,s 

11 WR Pulse Width 0.2 10 p,s 

12 Data Hold Time After WR i . 0 ns 

13 Address Hold Time After WR i 0 ns 

14 CS Hold Time After WR i 0 ns See Note 7 

15 Write Recovery Time 300 ns 

47 SDHLE Propagation Delay 20 150 ns 

AO-2»~_~X,---
_ -T-0- 1+-
cs GD 

~~------------~~' 
WR----~I_--([j)---Ir-----

-@ 

SOHLE ------t"'\ 

231242-20 

6-662 



inter 82064 

BUFFER READ TIMING (WRITE SECTOR COMMAND) WR CLOCK = 5.0 MHz 

Symbol Parameter Min Typ Max Units Test Conditions 

16 BCS J, to RD Valid 0 100 ns 

17 RD Output Pulse Width 300 400 500 ns See Note 3 

18 Data Setup to RD i 140 ns 

19 Data Hold from RD i 0 ns 

20 RD Repetition Rate 1.2 1.6 2.0 p.s See Note 1 

21 RD Float from BCS i 0 100 ns 

~~~@--------------~,~ 
Jm--­
(OUTPUT)

;xxx
~--------®------~~

231242-21

BUFFER WRITE TIMING (READ SECTOR COMMAND) WR CLOCK = 5.0 MHz

Symbol Parameter Min Typ Max Units Test Conditions

22 BCS J, to WR Valid 0 100 ns

23 WR Output Pulse Width 300 400 500 ns See Note 3

24 Data Valid from WR t 150 ns

25 Data Hold from WR i 60 200 ns

26 WR Repetition Rate 1.2 1.6 2.0 p.s See Note 1

27 WR Float from BCS i 0 100 ns

::~~~®~--------------------------~' ~
(OUTPUT)

®
DBO·7 --------+<' DATA VALID

231242-22

6-663

MISCELLANEOUS TIMING

Symbol Parameter Min

28

29

30

31

32

33

34

35

36

37

BDRQ Reset from BRDY 20

BRDY Pulse Width 400

BCR Pulse Width 1.4

STEP Pulse Width 1.5

7.9

INDEX Pulse Width 500

RESET Pulse Width 24

RESET i to BCR 0

RESET i to WR, CS ,J.. 6.4

WR CLOCK Frequency 0.25

RD CLOCK Frequency 0.25

BRDY _~6~®L(i!~
BDRD .

m~

~ STEP~-~~

INDEX~
231242-23

READ DATA TIMING WR CLOCK = 50 MHZ

Symbol Parameter

38 RD CLOCK Pulse Width

39 RD DATA after RD CLOCK,J..

40 RD DATA before RDCLOCK i
41 RD DATA Pulse Width

42 DRUN Pulse Width

82064

Typ Max Units Test Conditions

200 ns

ns See Note 4

1.6 1.8 p,s See Note 1

1.6 1.7 _p,s Step Rate = 3.2 p,s/step

8.4 8.7 p,s All other step rates

ns

WRCLK See Note 2

3.2 6.4 p,s See Note 1

p,s See Note 1

5.0 5.25 MHz 50% Duty Cycle

5.0 5.25 MHz See Note 5

:~®;et
WR CLOCK --t ~ .f
RD CLOCK --t ~ (

231242-24

Min Typ Max Units Test Conditions

95 2000 ns 50% Duty Cycle

10 ns

20 ns

40 T38/2 ns

30 ns

6-664

intJ 82064

DR UN

231242-25

WRITE DATA TIMING WR CLOCK = 5.0 MHZ

Symbol Parameter Min Typ Max Units Test Conditions

43 WR CLOCK Pulse Width 95 2000 ns 50% Duty Cycle

Propagation Delay

44A WR CLOCK i to WR DATA i
448 WR ClOCKJ,. toWR DATAJ,. 10 65 ns

44D WR CLOCK J,. to WR DATA i
45A WR CLOCK i to EARLY flATE J,.

10 65 ns
458 WR CLOCK J,. to EARLY flATE J,.

46A WR CLOCK i to EARLY flATE i
10 65 ns

468 WR CLOCK J,. to EARLY flATE i

WA CLOCK

WRDATA

231242-26

6-665

infef
A.C. TESTING INPUT, OUTPUT WAVEFORM

Input Output

2.4
20 20

'> TEST POINTS ~
¥ " 0.8 08

045

23t242-27

AC Testing: Inputs Are Driven At 2.4V For A Logic .1, And
O.4SV For A Logic .0. Timing Measurements Are Made At
2.0V For a Logic .1, And O.BV For A Logic .0.

NOTES
1. Based on WR CLOCK = 5.0 MHz
2. 24 WR CLOCK periods = 4.8 I-'s at 5.0 MHz.
3. 2 WR CLOCK periods ± 100 ns.

82064

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER

~C';50PF TEST

-=-
231242-28

CL Includes Jig Capacitance

4. Previous restrictions on BRDY no longer apply. There are no restrictions on when BRDY may come. BRDY may be
connected directly to BDRO.
5. WR CLOCK Frequency = RD CLOCK Frequency ± 15%.
6. RD may be asserted before CS as long as it remains active for at least the minimum. T3 pulse width after CS is asserted.
7. WR may be asserted before CS as long as it remains' active for at least the minimum T11 pulse width after CS is
asserted.

6-666

APPLICATION
NOTE

Multimodule ™
Winchester Controller

Using the 82062

® INTEL CORPORATION, 1984

J. SLEEZER
TECHNICAL MARKETING

6-667

AP-182

July 1984

Order Number: 231133-002

MUL TIMODULETM
WINCHESTER

CONTROLLER USING
THE 82062

CONTENTS
INTRODUCTION
ST506 Winchester Drive Overview

82062 WINCHESTER DISK
CONTROLLER

Clock Inputs

Microprocessor Interface

Sector Buffer Control

Data Transfer Logic

Drive Interface

Microprocessor Interfaces

PIN DESCRIPTIONS

TASK REGISTER FILE

Error Register

Reduce Write Current Register

Sector Count Register

Sector Number

Cylinder Number Low Register

Cylinder Number High Register

Sector/Drive/Head Register

Status Register

Command Register

PROGRAMMING THE 82062
Commands

Software Section: General
Programming

APPLICATION EXAMPLE
iSBX Bus Multimodule Boards

The SBX82062 Design Example

Software Driver Overview

6-668 231133-002

CONTENTS
APPENDIX A

STS06 INTERFACE

THE STS06 INTERFACE
Data Transfer Rate

ID Fields

Sector Interleaving

Electrical Interface

ST 412 HP (High Performance)
Interface

6-669

CONTENTS
APPENDIX B

SOFTWARE DRIVER

APPENDIX C

SCHEMATICS

APPENDIX D

PAL SCHEMATICS

231133-002

Ap·182

INTRODUCTION

The 82062 Winchester Disk Controller (WDC) was de­
veloped to ease the complex task of interfacing Win­
chester disk drives to microprocessor systems. Specifi­
cally, the 82062 WDC interfaces to drives that conform
to the ST506 specification, which is the dominant inter­
face for 5'/. inch drives. This Application Note pro­
vides some background on the 82062 WDC, the drive
interfaces and general software routines. It concludes
with a design example using the 82062 WDC interfaced
to the SBXTM bus. Appendix B contains the listing of
the software necessary to operate this controller board.

ST506 Winchester Drive Overview

Since the 82062 WDC interfaces only to drives con­
forming to the ST506 specification, this overview will
limit itself to those drives. A summary of the STS06
specification is shown in Appendix A for those who are
not familiar with it. The ST506 Winchester Disk con­
tains from I to 8 hard disks (or platters) with the aver­
age being 2 to 3 disks. These disks are made from alu­
minum (hence the term hard disk) anrl are coated with
some type of recording media. The recording media is
typically made of magnetic-oxide, which is similar to
the material used on floppy disks and cassette tapes.
Each side of a hard disk is coated with recording media
and each side can store data. Each surface of a disk has
its own read/write head.

Hard disk drives are sealed units because the R/W
heads actually fly above the disk surface at about 8 to
20 microinches. A piece of dust or dirt, which appears
as a boulder to the gap between the heads and the disk
surface, will wreak havoc upon the disk media.

The R/W heads are mechanically connected together
and move as a single unit across the surface of the disk.
There are 2 basic methods for positioning the heads.
The first is with stepper motors, which is the most com­
mon method and is also used on most floppy disk

drives. These posltIoners are used mainly because of
their low cost.

The second method of positioning the heads is to use a
voice-coil mechanism. These units do not move in steps
but swing across the disk. These mechanisms generally
permit greater track density than steppers, but also re­
quire complex feedback electronics which increases the
cost of the drive. Generally, voice-coil head positioners
use closed loop servo positioning, as compared to the
open loop positioning used with stepper motors.

The surface of a disk is divided logically into concentric
circles radiating from the center as shown in Figure I.
Each concentric circle is called a track.

The group of same tracks on all cylinders is collectively
called a cylinder. The number of tracks on a surface
(which affects storage density) is determined by the
head positioners. Typically, stepper head positioners
have fewer tracks than drives that use a voice coil posi­
tioner. Which type of positioner is used is irrelevant to
the 82062 as positioners are part of the drive electron­
ics. The 82062 can access up to 1024 tracks per surface.

Once the surface is divided into cylinders it is further
divided radially (as with a pie). The area between the
radial spokes is referred to as a sector. The numoer of
sectors per track is determined by many variables, but
is basically determined by the number of data bytes and
the length of the ID field (which locates a sector). Fig­
ure 2 shows one manufacturer's specifications for their
drive. The manufacturer formats the drive with 32-256
byte sectors per track. Alternatively, the drive could be
reformatted to contain 17-512. byte sectors per track.
This second option has fewer sectors per track but
stores more data. Determining how many bytes each
sector contains is done by extensive analysis of the
hardware and operating system. The 82062 WDC is
programmable for sector size during formatting.

The order in which sectors are logically numbered on
the track is called interleaving. An interleave factor of
four would have three sectors separating logically se-

231133-1

Figure 1

6-670 231133-002

AP-182

Capacity
Unformatted

Per Drive
Per Surface
Per Track

Formatted
Per Drive
Per Surface
Per Track
Per Sector
Sectors per Track

Transfer Rate

Access Time
Track to Track
Average (Inc. Settle)
Maximum (Inc. Settle)
Settling Time

Average Latency

Functional Specifications
Rotational speed
Recording density
Flux densi ty
Track density
Cylinders
Tracks
R/W Heads
Disks

6.38 Megabytes
I. 59 Megabytes
10416 Bytes

5.0 Megabytes
1.25 Megabytes
8192 Bytes
256 Bytes
32

5.0 Megabits
per second

3 ms
170 ms
500 ms
15 ms

8.33 ms

3600 rpm± 1%
7690 bpi max
7690 fci
255 tpi
153
612
4
2

Figure 2. A Typical Drive Specification

quential sectors. Starting at the index pulse, an example
of four way interleaving is:

Sector I, Sector X, Sector Y, Sector Z, Sector 2, Sec­
tor ...

Interleaving is used primarily because one sector at a
time is transferred from disk to sector buffer to system
RAM. Without interleaving, the delay in transferring
data would result in sectors on the disk rotating past
the heads. The operating system would then have to
wait one disk revolution to get to the next sector (a 16.7
msec delay). With interleaved sectors, the next logical
sector would be positioned beneath the heads after the
previous sector of data had been transferred to the sys­
tem RAM. Interleaving unfortunately slows down the
overall transfer rate from the disk. A 5 Mbit/second
transfer rate averages out to a 1.25 Mbit/second trans­
fer rate when many sectors are transferred with four
way interieaving. Again, how much interleaving to use
is determined by extensive hardware/software bench­
marking.

Whenever data is stored on a multiple platter disk
drive, the same track on all surfaces whould be used

before repositioning the heads to another track. Repo­
sitioning the heads generates a longer delay due to the
mechanical delay of moving the heads. Switching to
another head incurs no mechanical positioning delay.
Only one head can be selected at a time.

Hard disk drives tend to be faster than floppies for two
reasons. The speed at which the disk spins is about 10
times faster than the floppy (a floppy spins at 360 rpm).
This yields an immediate one-tenth reduction in access
times for the same size drive. While both ST506 drives
and floppies use stepper motors, the steppers utilized by
the hard disk drives are approximately twice as fast as
those used by floppies.

82062 WINCHESTER DISK
CONTROLLER

The 82062 WDC provides most of the functions neces­
sary to interface between a microprocessor and an
ST506 compatible disk drive. The 82062 converts the
high level commands and parallel data of a microproc­
essor bus into ST506 compatible disk control signals
and serial MFM encoded data. This section presents a
detailed description of the 82062 and a discussion of
various techniques which can be used to interface the
82062 to a microprocessor.

The internal structure of the 82062 is divided into sev­
eral sections as shown in Figure 3. They are:

I. the microprocessor interface which includes the
status and task registers;

2. sector buffer control;

3. the drive interface;

4. and the data transfer section, which includes the
CRC logic and the conversion and MFM encoding/
decoding of microprocessor data.

Clock Inputs

The 82062 has two clock inputs: read clock (RD
CLOCK) and write clock (WR CLOCK). The PLA
controller, the processor interface, buffer control and
MFM encoding sections operate off the WR CLOCK
input. The RD CLOCK input is used only for decoding
the MFM data stream. The clocks may be asynchro­
nous to one another. Both clocks have non-TTL com­
patible inputs. The easiest method to interface to TTL
requires a pull-up resistor to satisfy their input voltage
needs. The resistor's value must be compatible with the
VIL specification of these pins. See the Pin Descrip­
tions Section for more specific information.

Microprocessor Interface

The microprocessor interface of the 82062 contains the
control logic which permits commands and data to be

6-671 231133-002

AP-182

080·7 -f4 1/0 BUFFERS

RD

WR

AO-2

INTRQ

RESET

CS

BCR

BRDY

BDRQ

BCS

Vcc---'
GND--+

PLA
CONTROLLER

DATA REG

MFM J--. WR DATA

..... _E_N_C_O_D_E_R--II_ WR CLOCK

MFM
DECODER

RD CLOCK

AM DETECT I- RD DATA

STEP

DIR

EARLY

LATE

TRACK 000

WR GATE

RD GATE

DRUN

231133-2

Figure 3. 82062 Internal Block Diagram

transferred between the host and the 82062. The inter­
face consists of an 8 bit, tri-state, bidirectional data bus;
the task registers; a 3 to 8 address decoder for selecting
one of the seven registers; and the general read, write,
and chip select logic. Externally, the 82062 expects a
buffer equal in size to a sector on the disk, and tri-state
transceivers between the sector buffer and the micro­
processors data bus in order to isolate itself from the
microprocessor during disk data transfers.

AO-A2, Data Bus

These three address lines are active high signals and
select one of the seven register locations in the 82062.
They are not latched internally. If the three addresses
are equal to 0 and the 82062 is selected, the data bus is
kept tri-stated to ease interfacing to a sector buffer. The
82062's data bus is controlled by both the microproces­
sor and the 82062. The microprocessor has control for
loading the registers and command. During disk reads
or writes, control switches to the 82062 so that it may
access the local sector buffer when transferring data
between the disk and the buffer.

RD, WR,CS

The chip select (CS) is typically decoded from the high­
er order address lines. CS only permits data to be
placed into, or read from, the 82062's task registers.
Once a disk operation starts, CS no longer efffects the
82062. RD and WR are bidirectional lines and are used
to read or write the 82062's registers by the host micro­
processor and are valid only if CS is present. The 82062
will drive RD and WR when transferring data between
the sector buffer and the disk. A signal is provided to
tri-state the RD and WR lines from the host during a
buffer access. This is covered in the Sector Buffer Con­
trol Section.

Interrupts

An interrupt is issued at the end of all commands, and
the interrupt is cleared by reading any register. For the
Read Sector command only, the 82062 allows the user
the option of an interrupt ~ither at the termination of
the command, as is the case with all other commands,

6-673 231133-002

AP-182

Polled Interface

Since the 82062 isolates itself from the host during sev­
eral commands, the host cannot read the status register
during some periods to deterinine what course should
be taken. In Figure 10, trying to read the status register
when BeS is active will return indeterminate data. To
prevent the microprocessor from reading this indeter­
minate data, a hardware generated "Busy" pattern
should be driven onto the data bus if BeS is active.
This is shown in Figure 11. The status register contains
a data request (DRQ) bit whose timing is equal to the
BDRQ output signal, thus making a polled operation
possible. DRQ will stay set in the status register until a
BRDY is generated.

cycle may almost be finished, and the read access peri­
od of the 82062 will not be satisfied. The data returned
to the microprocessor will be invalid.

Interrupt Interface

. There are cases where the designer does not want to tie
up the microprocessor with polling. The typical 82062
design will need two interrupts per command. One for a
data transfer and one for the completion of the com­
mand. The 82062 has an output to issue an interrupt
when the command has finished. However for data
transfers an interrupt must be generated from the
BDRQ line as shown in Figure 12 (whether a DMA
controller is used or not). When a data transfer is need­
ed, the 82062 will activate the BDRQ line. The micro­
processor will be interrupted and do the data transfer
function. BDRQ will stay active until BROY is gener­
ated, so the system must either use edge triggered inter­
rupts or must not write the end-of-interrupt byte until
BDRQ is removed (this is true of Intel's 8259A).

One design issue with the polled interface occurs when
the microprocessor is polling the status and the 82062
deactivates Bes. The microprocessor would normally
read the hardware busy pattern. If BeS is deasserted,
the hardware pattern is disabled and the microproces­
sor will start to read the real status register. The read

PIN DESCRIPTIONS

Symbol Pin. No. Type Name and Function

BCS 1 0 Buffer Chip Select: Output used to enable reading or writing of the
external sector buffer by the 82062. When low, the host should not
be able to drive the 82062 data bus, RD, or WR lines.

BCR 2 0 Buffer Counter Reset: Output that is strobed by the 82062 prior to
read/write operation. This pin is strobed whenever BCS changes
state. Used to reset the address counter of the buffer memory.

INTRQ 3 0 Interrupt Request: Interrupt generated by the 82062 upon
command termination. It is reset when any register is read.
Optionally signifies when a data transfer is required on Read Sector
commands.

N/C 4 No connection. Reserved for future use.

RESET 5 I Reset: Initializes the controller and clears all status flags. Does not
clear the Task Registers.

RD 6 I/O Read: As an input, RD controls the transfer of information from the
82062 registers to the host. RD is an output when the 82062 is
reading data from the sector buffer (BCS low).

WR 7 I/O Write: As an input, WR controls the transfer of command or task
information into the 82062 registers. WR is an output when the
82062 is writing data to the sector buffer (BCS low).

CS 8 I Chip Select: Enables RD and WR as inputs for access to the Task
Registers. It has no effect once a disk command starts.

AO-A2 9-11 I Address: Used to select a register from the task register file.

DBO-DB7 12-19 I/O Data Bus: Bidirectional 8-bit Data Bus with control determined by
BCS. When BCS is high the microprocessor has full control of the
data bus for reading and writing the Task Registers. When BCS is
low the 82062 controls the data bus to transfer data to or from the
buffer.

6-674 231133-002

AP-182

Pin Descriptions (continued)

Symbol Pin. No. Type Name and Function

GND 20 Ground.

WR DATA 21 0 Write Data: Open drain output that shifts out MFM data at a rate
determined by Write Clock. Final stage requires an external flip·flop
clock at 10 MHz. See note 1.

LATE 22 0 Late: Open drain output used to derive a delay value for write
precompensation. Valid when WR GATE is high. Active on all
cylinders. See note 1.

EARLY 23 0 Early: Open drain output used to derive a delay value for write
precompensation. Valid when WR GATE is high. Active on all
cylinders. See note 1.

WR GATE 24 0 Write Gate: High when write data is valid. WR GATE goes low if
the WR FAULT input is active. This output is used by the drive to
enable head write current.

WR CLOCK 25 I Write Clock: Clock input used to derive the write data rate.
Frequency - 5 MHz for the ST506 interface, 4.34 MHz for the SA
1000 interface. See Note 2.

DIR 26 0 Direction: High level on this output tells the drive to move the head
inward (increasing cylinder number). The state of this signal is
determined by the 82062's internal comparison of actual cylinder
location vs desired cylinder.

STEP 27 0 Step: Provides 8.4 microsecond pulses to move the drive head to
another cylinder at a programmable frequency.

DRDY 28 I Drive Ready: If DRDY from the drive goes low, the command will
be terminated.

INDEX 29 I Index: Signal from the drive indicating the beginning of a track. It is
used by the 82062 during formatting, and for counting retries. Index
is edge triggered. Only the rising edge is valid.

WR FAULT 30 I Write Fault: An error input to the 82062 which indicates a fault
condition at the drive. If WR FAULT from the drive goes high, the
command will be terminated.

TRACK 000 31 I Track Zero: Signal from the drive which indicates that the head is
at the outermost cylinder. Used by the Restore command.

SC 32 I Seek Complete: Signal from the drive indicating to the 82062 that
the drive head has settled and that reads or writes can be made.
SC is edge triggered. Only the rising edge is valid.

RWC 33 0 Reduced Write Current: Signal goes high for all cylinder numbers
above the value programmed in the Write Precomp Cylinder
register. It is used by the precompensation logic and by the drive to
reduce the effects of bit shifting.

DRUN 34 I Data Run: This signal informs the 82062 when a field of ones or
zeros has been detected by an external one-shot. This indicates
the beginning of an ID field. RD GATE is brought high when DRUN
is sampled high for 16 clock periods. See Note 2.

BRDY 35 I Buffer Ready: Input used to signal the controller that the buffer is
ready for reading (full), or writing (empty), by the host fLP. Only the
rising edge indicates the condition.

6-675 231133-002

AP-182

I
I
o

Figure 5. Data Address Mark

MFM Encoding/Decoding

The MFM encoding section will receive 8 bit parallel
data when a valid command has been recognized and
BRDY has gone high. The parallel data is first serial·
ized and converted to an intermediate, NRZ encoded,
data stream. The serial NRZ data is sent to the MFM
encoding section and then transferred to the disk. De·
coding "of the MFM bit stream (during disk reads) hap·
pens in reverse order.

The control logic operates off the write clock (WR
CLOCK) running at a frequency of the desired tranfer
rate. The MFM decoding portion operates off of the
read clock (RD CLOCK) input, which is supplied by
an external phase lock loop. The two clocks need not be
synchronized to each other. Data is written (and hence
read) with the most significant bit first.

Address Mark Detector

The address mark is a unique 2 byte code written at the
beginning of each ID field and· data field .. This address
mark serves two purposes. It tells the controller what
type of data is about to be received so that internal
computations can be performed, and to ensure that ID
fields are not sent to the host. The second purpose is to
align the serial data back to the. original 8 bit bounda­
ries that existed when data was written (there are no
byte boundaries on a disk).

An address mark is always preceded by the all zeros
synchronization field. The 82062 starts comparing the
incoming data stream when the synchronization field
ends. A high speed comparator is used since the 82062
does not yet know where the proper' byte boundaries
are. When a proper comparison of the address mark is
made the controller starts asscmbling bytes, starting
with the second byte of the address mark.

The first byte of the address mark is an "AI" Hex, but
purposely violates the MFM encoding rules by remov­
ing a clock pulse. In Figure 5, the first example is of a
norm,al MFM encoded AIH. The second example is of
the address mark and shows the missing clock pulse.
The non-MFM compatible AI is to prevent the host

from issuing a similar data byte and possibly confusing
detection logic.

The second byte specifies either an ID or data field and
is encoded according to normal MFM rules. It is either
an "F8" Hex for a data field, or "FC(' through "FF"
for an ID field. The different values correspond to a
range of cylinders on the drive in increments of 256
tracks. The 82062 makes no use of this information, but
writes it for compatibility with the ST506 specification
during formatting.

CRC Generation/Checking

The CRC generator computes and checks the cyclic
redundancy check bytes that are appended to the ID
and data fields. CRC generation/checking is always
done on ID fields. Data fields have a choice between
82062 CRC or externally supplied ECC. Read Sector
commands with a CRC error will still have transferred
the data into the sector buffer. When bit 7 in the SDH
register is low (enabling CRC for data fields) the CRC
bytes are not transferred to the sector buffer or host. .

The generator polynomial for the CRC-CCITT (CRC-
16) code is:

x16 + x12 + x5 + 1 = (x + 1) (x15 + x14 + x13 +
x12 + x4 + x3 + x2 + x + 1)

The code's capability is as follows:

a) Detects all occurrences of an odd number of bits in
error.

b) Detects all single, double, and triple bit errors if the
record length (including check bits) is less than
32,767 bits.

c) Detects all single-burst errors of sixteen bits or less.

d) Detects 99.99695% of all possible 17 bit burst er·
rors, and 99.99847% of all possible longer burst, as­
suming all errors are possible and equally probable.

The CRC code has some double-burst capability when
used with short records (sectors). For a 256 byte sector
the code will detect double-bursts as long as the total
number of bits in error does not exceed 7.

6-676 231133-002

AP-182

PLA Control

The PLA Controller interprets command sent by the
microprocessor. Its operation is synchronized to the
WR CLOCK input. The PLA controller is started
when a command is written into the command register.
It generates control signals and operates in a handshake
mode when communicating with the MFM decoding
block.

Magnitude Comparator

A 10 bit magnitude comparator is used to calculate the
direction and number of step pulses needed to move the

2X
DATA RATE

_,~a~
EARLY

head from the present cylinder position to the desired
position. A separate high speed equivalence comparator
is used to compare ID field bytes when searching for a
sector ID field.

Drive Interface

The drive interface of the 82062 contains the logic that
makes possible the storage and reliable recovery of
data. This interface consists of the drive and head select
logic, the disk control signals, and read and write data
logic as shown in Figure 6. This section describes the
external circuitry which is required to complete the
82062's drive interface.

WRITE
LATE PRECOMP I--n
AWC

WINCHESTER DRIVE 0

12
WRITE DATA

READ DATA
READ CLOCK PHASE

DRUN
LOCK
LOOP

READ GATE

0 82062
WDC TO NEXT

DATA DRIVE

WR CLOCK RATE
OSC

...
SC ::

INDEX :-
TRACK 000 :.

DRDY :: WR FAULT
.......

DIR :
WR GATE :

STEP ..
DATA BUS- 0

71
°7

ADDRESS- (HOLDS DRIVE AND HEAD
SELECTS)

DATA LATCH

Figure 6. Drive Interface

6-677

'/2
READ DATA

I
r-- DRIVE SEL

~ STEP

~ DIRECTION

~ READY

~ WRITE FAULT

~ TRACK 000

~ INDEX - SEEK COMPLETE - AWC - HEAD NUMBER - WRITE GATE

DAISY CHAIN TO
NEXT DRIVE

231133-5

231133-002

Ap·182

MULTIPLEXOR

...--------t A

WR DATA
FLIP

_..J:::::;:---.a
TO DISK C

8 FLOP
2 10 MHz
0
6 EARLY 2

.----1 } SELECT
LINES

LATE

RWC

231133-6

Figure 7. Write Precompensation Logic

Drive/Head Select

The 82062 has no outputs for selecting the head or
drive. Therefore these signals must be generated by the
user as shown in Figure 6. Data bits 0-4 should be
latched whenever the SDH register is written. Bits 0-2
would then be driven onto the drive cable with open
collector buffers. Bits 3 and 4 would be decoded after
being latched, then buffered for the cable. The head
information written to the 82062's SDH register is used
to write the proper ID fields during formatting. Chang­
ing the drive bits in the SDH register will cause a Scan
ID to be performed by the 82062 to update non user
accessible registers.

Drive Control

The drive control (STEP, DIR, WR FAULT, TRACK
000, INDEX, SC, RWC, and WR GATE) signals are
merely conditioned for transmission over the drive
cable. The purpose of each pin can be found in the sec-

tion on Pin Descriptions and their use in the Command
Section.

WR DATA, EARLY, LATE

Figure 7 is a diagram of the interface required on the
write data line. The final stage of the MFM encoding
requires applying the WR DATA to an external flip­
flop clocked at 10 MHz. The 82062 monitors the serial
write data output for particular bit patterns that require
precompensation to prevent bit shifting. EARLY and
LATE are active on all cylinders and will normally re­
quire that RWC be factored into them to activate the
data precompensation on the proper cylinder.

A delay line is required to generate the delayed data for
precompensation since the actual delay varies between
drive manufacturers. EARLY and LATE go active in
the same clock period that generates the data bit to be

. shifted.

1--------1 DRUN

r-----------------~RDGATE

FROM
DISK

82062

;>r-~~r::::::-""""~""""""r=====~""~RDDA~

10 MHz
OSC

VCO RD CLOCK

I-------.. WR CLOCK

Figure 8. Data Recovery Logic

6-678

231133-7

231133-002

AP-182

RD Data, DRUN, RD Gate

The read data interface is shown in Figure 8, and con­
sists of the data run (DRUN) signal and a phase lock
loop to generate the RD CLOCK input to decode the
serial data. DRUN is generated from a retriggerable
one-shot with a period just exceeding one bit cell. A
sync field consisting of a string of clock pulses will con­
tinually retrigger the one-shot producing a steady high
level on DRUN. The 82062 counts off 16 clock pulses
internally, and if DRUN is still active, will make RD
GATE active. Any byte other than an address mark
will deactivate RD GATE and the sequence starts over.

The phase lock loop generates RD CLOCK which is
used to decode the incoming serial data. Until RD
GATE is activated by the 82062, the phase lock loop
(PLL) should be locked onto a local 10 MHz clock to
minimize PLL lock-up times. When RD GATE is acti­
vated, the PLL starts locking onto the incoming data
stream, which should consist of the all zeros sync field.
Once the PLL locks onto this synch field, the 82062
will start examining the serial data for a non-zero byte.
A non-zero byte will be indicated by DRUN dropping
since the address mark follows the sync field and is an
"AI" Hex. This sequence is shown in Figure 9. If the
address mark is detected, and if it was preceded by at
least 9 bytes of zeros, RD GATE will stay active. The
82062 will then assemble bytes of data, and ensure the
proper ID field is found. If a non-zero or non-address
mark byte was detected, RD GATE will go inactive for
a minimum of 2 byte times. If a data field or the wrong
ID field is detected, or the ID field was not preceded by
8 bytes of zeros, then RD GATE goes inactive and the
sequence starts over with the 82062 examining the
DRUN input.

Microprocessor Interfaces

This section shows the general 82062 interfaces to a
microprocessor system. There are essentially four inter­
faces which consist of a combination of polled, DMA,
and interrupts. While the 82062 was designed to inter­
face directly to one type, it accommodates all with mi­
nor additional logic.

DMA Interface

The 82062 is designed to use a DMA controller for data
transfer between its sector buffer and the host system,
and to interrupt the host when the command has fin­
ished. This interface is shown in Figure 10.

When the 82062 determines that a transfer is needed
between the sector buffer and the host (either at the
beginning of a command or through BRDY going ac­
tive in a multiple sector transfer), it will assert BDRQ.
BDRQ will initiate a DMA transfer via theDMA re-

quest input. The DMA controller will generate reads or
writes which will increment an address counter. BRDY
indicates that the data transfer has finished and is is­
sued off the carry-out line (or high order address line)
of the counter. The 82062 will assert BDRQ at this
point and activate BCS to prevent the host from intefer­
ing with disk/buffer transfers. There can be no polling
for a data transfer or a register read without an inter­
rupt in this scheme.

DONE

RESET
RD GATE

231133-8

Figure 9. PLL Control Sequence

6-679 231133-002

AP-182

~-----IBRDY

82062
TO
uP

~~---------+~-------------------IBCSI

8237A 1--l1>--------~H--------------____I WRI

~-------~-.--------------___IRDI
1-----~--------------------------__1BDRa

INTRa

Figure 10.82062 DMA Interface

231133-9

t------iBROY

Figure 11. 82062 Polled Interface

I------IBROY

82062

t----------l~----------------____IBCSI

~--------4_+----------------___IROI

~-----------.----------------___IWRI

Figure 12. 82062 Interrupt Interface

6-680

BORa
INTRa

82062

,231133-10

231133-11

231133-002

AP-182

Bit 2 - Aborted Command

This bit is set if a command was issued or in progress
while DRDY (Pin 28) was deasserted or WR FAULT
(Pin 30) was asserted. The Aborted Command bit will
also be set if an undefined command is written into the
COMMAND register, but an implied seek will be exe­
cuted.

Bit 1 - TRACK 000

This bit is set only by the RESTORE command. It
indicates that TRACK 000 (Pin 31) has not gone active
after the issuance of 1024 stepping pulses.

Bit 0 - Data Address Mark

This bit is set during a READ SECTOR command if
the Data Address Mark is not found after the proper
Sector ID is read.

Reduce Write Current Register

This register is used to define the cylinder number
where RWC (Pin 33) is asserted:

7 6 5 4 3 2. o
CYLINDER NUMBER I 4

The value (0-255) written into this register is internally
multiplied by 4 to specify the actual cylinder where
RWC is asserted. Thus a value of 01H will cause RWC
to activate on cylinder 4, 02H on cylinder 8 and so on.
RWC will be asserted when the present cylinder is
greater than or equal to the cylinder indicated by this
register. For example, one ST506 compatible drive re­
quires precompensation on cylinder 128 (80H) and
above. Therefore the REDUCE WRITE CURRENT
register should be loaded with 32 (20H). A value of
FFH will keep the RWC output inactive regardless of
the actual cylinder number.

Sector Count Register

This register is used to define the number of sectors
that need to be transferred to the buffer during a
READ MULTIPLE SECTOR or WRITE MULTI­
PLE SECTOR command.

7 6 5 4 3 2 o
OF SECTORS

The value contained in the register is decremented after
each sector is transferred to/from the sector buffer. A
zero represents a 256 sector transfer, a one a I sector
transfer, etc. This register is ignored when single sector
commands are specified in the Command register.

Sector Number

This register holds the sector number of the desired
sector:

7 6 5 4 3 2 o
SECTOR NUMBER

For a multiple sector command it specifies the first sec­
tor to be transferred. It is decremented after each sector
is transferred to/from the sector buffer. The SECTOR
NUMBER register may contain any value from 0 to
255. The ID Not Found bit will be set if the desired
sector cannot be located on the track.

The SECTOR NUMBER register is also used to pro­
gram the Gap 1 and Gap 3 lengths to be used when
formatting a disk. See the WRITE FORMAT com­
mand description for further explanation.

Cylinder Number Low Register

This register holds the lower byte of the desired cylin­
der number:

7 6 5 4 3 2 o
LS BYTE OF CYLINDER NUMBER

It is used in conjunction with the CYLINDER NUM­
BER HIGH register to specify a range of 0 to 1024
tracks.

Cylinder Number High Register

This register holds the two most significant bits of the
desired cylinder number:

7 6 543 2 o
I x x x x x x (9) (8)

X = ignored

The 82062 contains a pair of registers that store the
actual position where the R/W head are located. The
CYLINDER NUMBER HIGH and LOW registers are
considered the cylinder destination registers for seeks
and other commands. The 82062 compares its internal
registers to the destination registers and issues the num­
ber of steps in the right direction to make both sets of
registers equal. After a command is executed, the inter­
nal cylinder position registers' contents are equal to the
cylinder high/low registers. If a drive number change is
detected on a new command, the 82062 automatically
reads an ID field to update its internal cylinder position
registers. This affects all commands except a RE­
STORE.

6-681 231133-002

AP-182

Pin Descriptions (continued)

Symbol Pin. No. Type Name and Function

BORQ 36 0 Buffer Data Request: Activated during Read or Write commands
when a data transfer between the host and the 82062's sector
buffer is required. Typically used as a OMA request line, or to
generate an interrupt.

RO DATA 37 I Read Data: Single ended input that accepts MFM data from the
drive. See note 2.

ROGATE 38 0 Read Gate: Output that is high for data and 10 fields. Goes active
when ORUN has been high for 16 WR CLOCK periods to permit the
external phase lock loop to lock onto the incoming disk data
stream.

ROCLOCK 39 I Read Clock: Clock input derived from the external data recovery
circuits. See note 2.

Vee 40 I D.C. Power: + 5V

NOTES:
I. This pin requires a pull·up resistor to function properly. A value of 1000 ohms will work satisfactorily.
2. This pin requires input levels that are not TTL compatible. These lines can be interfaced to TTL with a pull-up resistor. Too small
of a resistor will produce a VIL level that is too high. Too large of a resistor will degrade the signal's rise time. A minimum value for
the resistor is determined as follows:

(Vee max) - (82062 VIL max) = Resistor
(TTL IOL min.) - (82062 IlL max)

TASK REGISTER FILE

The Task Register File is a bank of registers used to
hold parameter information pertaining to each com­
mand. These registers and their addresses are:

A2 A1 AO READ WRITE

0 0 0 (Bus Tri-Stated) (Bus Tri-Stated)
0 0 1 Error Flags Reduce Write Current
0 1 0 Sector Count Sector Count
0 1 1 Sector Number Sector Number
1 0 0 Cylinder Low Cylinder Low
1 0 1 Cylinder High Cylinder High
1 1 0 SOH SOH
1 1 1 Status Register Command Register

NOTE:
Registers are not cleared by RESET

Error Register

This read-only register contains specific error status af­
ter the completion of a command. If any bit in this
register is set, then the Error bit in the Status Register
will also be set. The bits are defined as follows:

76543210

I BBO I CRC 1-110 I-I AC I TKOOO I OM I

Bit 7 - Bad Block Detect

This bit is set when an ID field has been encountered
that contains a bad block mark. The bad block bit is set
only during formatting. The 82062 will terminate a
command if an attempt is made to read a sector that
contains this bit.

Bit 6 - eRe Data Field

This bit is set when a data field eRe error has oc­
curred. The sector buffer may still be read but will con­
tain errors.

Bit 5 - Reserved.

Not used. Set to zero.

Bit 4 - ID Not Found

This bit is set when the desired cylinder, head, sector or
size parameter cannot be found after 8 revolutions of
the disk, or if an ID field eRe error has occurred.

Bit 3 - Reserved.

Not used. Set to zero.

6-682 231133-002

AP-182

Sector IDrive/Head Register

The SDH register contains the desired sector size, drive
number, and head number parameters. The format is
shown below.

7

EXT

6 5

SECT
SIZE

4 3 2 0

DRIVE HEAD #

Both head number and sector size are compared against
the disk's ID field. Head select and drive select lines are
not available as outputs from the 82062 and must be
generated externally.

Bit 7, the extension bit (EXT), is used to extend the
data field by seven bytes when using ECC codes for
READ/WRITE SECTOR commands. When EXT = 1,
the CRC is not appended to the end of the data field
and the data field becomes "sector size + 7" bytes
long. The CRC is checked on the ID field regardless of
the state of EXT. The SDH byte written into the ID
field is different than the SDH Register contents. The
reccorded SDH byte does not have the drive number
(DRIVE) written but does have the BAD BLOCK
mark written. The EXT bit must not be set during the
Format command.

Note that use of the extension bit requires the gap
lengths to be modified as described in the WRITE
FORMAT command description.

Status Register

The status register is a read-only register which informs
the host of certain events. This register is a flow­
through latch until the microprocessor reads it at
which point the drive status lines are latched. The
INTRQ line will be reset when this register is read. The
format is:

76543210

I BUSY I READY I WF I SC I DRO I-I CIP I ERROR I
Bit 7 - Busy

This bit is set whenever the 82062 is transferring data
between its sector buffer and the disk and reflects the
state of the BCS pin. When BCS is active, the host
should not access the sector buffer or any 82062 regis­
ter. The 82062 will be generating a RD or WR pulse
every 1.6 fl.sec and the host must not interfere with
these data transfers. Busy is cleared when the data
transfer operation is completed.

During other non-data transfer commands, Busy
should be ignored as it will go active for short periods.

Bit 6 - Ready

This bit reflects the state of the DRDY (Pin 28) line at
the time the microprocessor reads the status register.
Transitions on the DRDY line will abort a command
and set the aborted command bit in the error register.

Bit 5 - Write Fault

This bit reflects the state of the WR FAULT (Pin 30)
line. Transitions on this line will abort a command and
set the aborted command bit in the error register.

Short transitions on DRDY and WR FAULT may not
show up in the status register. These pins are not
latched until the microprocessor reads the status and by
that time the error condition may have disappeared.
However the aborted command bit will be set to notify
the host of an error. To hold short transitions on these
pins it is recommended that they be latched.

Bit 4 - Seek Complete

This bit reflects the state of the SC (Pin 32) line. Com­
mands which initiate a seek will pause until Seek Com­
plete is set.

Bit 3 - Data Request

The Data request bit (DRQ) reflects the state of the
BDRQ (Pin 36) line. It is set when the sector buffer
should be loaded with data or read by the host proces­
sor, depending upon the command. The DRQ bit and
the BDRQ line remain high until BRDY is sampled,
indicating the operation has completed.

Bit 2 - Reserved

Not used. Set to zero.

Bit I - Command in Progress

When this bit is set, a command is being executed and a
new command should not be loaded until it is cleared.
Although a command may be executing, the sector
buffer is still available for access by the host processor.
If CIP is set, only the status register can be read regard­
less of which register is selected.

Bit 0 - Error

This bit is an OR of the contents of the error register.
Any bit being set in the error register sets this bit. This
bit is cleared when a new command is loaded.

6-583 231133-002

AP-182

Command Register

This write-only register is loaded with the desired com­
mand:

7 6 5 4 3 2 o
COMMAND

The 82062 begins to execute immediately upon loading
any value into this register. This register should not be
written while the Busy or Command in Progress bits
are set in the STATUS register. The INTRQ line (Pin
3) if set, will be cleared by a write to the COMMAND
register. .

Instruction Set

The 82062 WDC instruction set contains six com­
mands. Prior to loading the command register, the host
processor must first set up the Task Register File with
the information needed for the command. Except for
the COMMAND register, the registers may be loaded
in any order. If a command is in progress, a subsequent
write to the COMMAND register will be ignored. A
command is finished when the command in progress
(CIP) bit in the STATUS register is cleared. See the
Command Section for an explanation of each com­
mand.

COMMAND 7 6 5 4 3 2 1

RESTORE 0 0 0 1 R3 R2 Rl RO
SEEK 0 1 1 1 R3 R2 Rl RO
READ SECTOR 0 0 1 0 I M 0 T
WRITE SECTOR 0 0 1 1 0 M 0 T
SCANID 0 1 0 0 0 0 0 T
WRITE FORMAT 0 1 0 1 0 0 0 0

R 3-0 = Rate Field

For 5 MHz WR Clock:

0000- ::::35 f..ts
0001 - 0.5 ins
0010 -1.0 ms
0011 -1.5 ms
0100-2.0 ms
0101-2.5ms
0110 - 3.0 ms
0111 -,- 3.5 ms
1000-4.0 ms
1001 - 4.5 ms
1010-5.0 ms
1011 -5.5 ms
1100 -6.0 ms
1101-6.5 ms
1110-7.0ms
1111 -7.5 ms

COMMAND 7 6

T - Retry Enable

T = 0 Enable Retries
T = 1 Disable Retries

5

M= Multiple Sector Flag

M = 0 Transfer 1 Sector

4

M = 1 Transfer Multiple Sectors

I = Interrupt Enable

3

I = 0
I = 1

Interrupt at BDRQ time
Interrupt at end of command

Programming the 82062

2

This section consists of two parts. The first part gives
an explanation of each command, a flowchart showing
the 82062's sequence of events, and the commands' se­
quence of events as seen by the host microprocessor.
The second section shows flowcharts of general soft­
ware routines and their PLM equivalent, for both
polled and interrupt driven software.

The designer must remember that the 82062 expects a
full sector buffer that can be isolated from the host
during data transfers between the 82062 and the disk.
Since the 82062 assumes a full sector buffer is available,
it does not check for data overrun or underrun error
conditions. If such a condition occurs, corruption of
data will happen and the host will have no indication of
an error. The design must guarantee against over-run
and under-run conditions when not using the sector
buffer approach.

Commands

A command is placed into the command register only
after the Task Registers have been written with proper
values. The Task Registers may be loaded in any order.
A command, once started, can only be terminated by a
hardware reset to the 82062. This may corrupt data on
the disk by removing necessary control signals out of
sequence.

The general sequence of a command is as follows:

- The host loads the Task Registers

- The host loads the Command Register

- The 82062 locates the correct cylinder

- Data transfer takes place

- The 82062 issues an interrupt

6-684 231133-002

AP-182

Restore Command -
o 0 0 1 R3 R2 R 1 RO

The Restore command is used to position the heads to
cylinder O. This command must be issued to the 82062
on power-up to initialize internal registers. The user
specified rate field (R3-RO) is stored internally for FU­
TURE use in commands with implied seeks. The step
rate value is not used with this command. The actual
stepping rate used is dependent upon the handshake
delay between the 82062 issuing a step pulse and the
drive returning a seek complete for each track (roughly
20 ms). After each step pulse is issued, the 82062 waits
for a rising edge on the Seek Complete (SC) line before
issuing the next pulse. If 8 index pulses are received
without a rising edge on SC, the 82062 will switch to
sampling the level of the SC line. If after 1,024 step
pulses the Track 00 signal has not gone active,· the

(RESTORE

ISSUE A
STEP PULSE

)

SET ABORTED
COMMAND BIT

SET
TRACK 000

ERROR

231133-12

Figure 13. Restore Command Flow

82062 will terminate the command and set the TRACK
000 bit in the Error Register. The command will termi­
nate ifWR Fault goes active or DRDY goes inactive at
any time. Figure 13 is a flow chart of the command.

This command should precede the format command.
The format command will be aborted if an ID field is
not present (because the disk was never formatted) and

231133-13

Figure 14. Seek Command Flow

6-685 231133-002

AP-182

a new drive is selected. Recall the 82062 will do a Scan
ID to update internal registers when the drive is
changed. This information is used to calculate the num­
ber of steps required to get to the destination cylinder.
When the heads are positioned to track zero the 82062
will not try to read an ID field, but will issue the cor­
rect number of steps.

Seek Command -
o 1 1 1 R3 R2 R1 RO

The Seek command positions the heads to the cylinder
specified in the Task Registers. The direction and num­
ber of step pulses issued is calculated by comparing the
cylinder high/low regi~ters to an internal "present posi­
tion" cylinder register. The present position register is
updated after all step pulses are issued and the com­
mand is terminated. The Seek Complete input is not
checked.

The actual stepping rate is taken from the rate field bits
(R3-RO) and stored for future use. The command ter­
minates at once if WR FAULT goes active or DRDY
goes inactive at any time. Figure 14 is a flowchart of the
command.

Since the data transfer commands feature implied
seeks, this command is of use mainly to those using
multiple drives and software that can take advantage of
overlapped seeks.

Scan 10 Command -
0100000T

The Scan ID command is used by both the 82062 and
the host to update the SDH, the Sector Number, Cylin­
der and internal present position registers. Once the
command is issued, the Seek Complete line is sampled
until valid. The first ID field found, as indicated by the
address mark, is loaded into the previously mentioned
registers. The Bad Block bit will be set if detected, and
the command will terminate. ID CRC errors will start
the search sequence over for a maximum of 10 index
pulses, but the registers will be loaded with whatever
data the 82062 had perceived as ID information. Im­
proper states on WR Fault on DRDY will terminate
the command. Figure 15 is the flow chart of the com­
mand.

The main use for this command is to determine where
the heads are currently located and what size the sec­
tors are (i.e. 256, 512 etc.). Without this command, it
would be necessary to recall the heads to track zero and
then step out to the desired cylinder each time a drive
was changed. Specifying the wrong sector size would
yield an ID not found error. This command enables the
system to read the disk drive to determine what size
sectors were'recorded.

Read Sector Command -
0010lMOT

The READ SECTOR command is used to transfer one
or more sectors of data from the disk to the sector
buffer. Upon receipt of the READ SECTOR com­
mand, the 82062 checks the CYLINDER NUMBER
LOW/HIGH register pair against an internal cylinder
position register to see if they are equal. If not, the
direction and number of steps are calculated and a seek
takes place. If an implied seek is performed, the 82062

SET INTRC. AC
RESET BUSY, CIP

SET BAD BLOCK BIT

'IF RETRIES ARE DISABLED, PATH
IS TAKEN AFTER 2 INDEX PULSES

231133-14

Figure 15. Scan 10 Command Flow

6-686 231133-002

AP-182

will search until a rising edge of SC is received. The
WR FAULT and DRDY lines are monitored through­
out the command.

Once the Seek Complete (SC) line is high (with or with­
out an implied seek having occurred), the search for an
ID field begins. If T = 0 (retries enabled), the 82062
must find an ID with the correct cylinder number,
head, sector size, and CRC within 10 revolutions, or a
Scan ID and re-Seek will be performed. The search for
the proper ID will again be tried for up to 10 revolu­
tions. If the correct sector is still not found, the appro­
priate error bits will be set and the command terminat­
ed. Data CRC errors will also be retried for up to 10
revolutions (if T = 0).

If T = I (retries disabled), the ID search must find the
correct sector within 2 revolutions or the appropriate
error bits will be set and the command terminated.

Both the READ SECTOR and WRITE SECTOR
commands feature a "simulated completion" to ease
programming. DRQ/BDRQ will be generated upon de­
tecting an error condition. This allows the same pro­
gram flow for successful or unsuccessful completion of
a command.

In summary then, READ SECTOR operation is as follows:

When M = 0 (READ SECTOR) .

When the data address mark is found, the 82062 is
ready to tranfer data to the sector buffer. After the data
has been transferred, the I bit is checked. If I = 0,
INTRQ is made active coincident with BDRQ, indicat­
ing that a transfer of data from the buffer to the host
processor is required. If I = I, INTRQ will occur at
the end of the command, i.e. after the buffer is unload­
ed by the host.

The M bit is set for multiple sector transfers. When
M = 0; one sector is transferred and the SECTOR
COUNT register is ignored. When M = I, multiple
sectors are transferred. After each sector is transferred,
the 82062 decrements the SECTOR COUNT register
and increments the SECTOR NUMBER register. The
next logical sector will be transferred regardless of any
interleave. Sectors are numbered at format time.

Multiple sector transfers continue until the SECTOR
COUNT register equals zero, or the BRDY line goes
active (low to high). If the SECTOR COUNT register
is non-zero (indicating more sectors are to be trans­
ferred but the buffer is full), BDRQ will be made active
and the host must unload the buffer. After this occurs,
the buffer will again be free to accept the remaining
sectors from the 82062. This scheme enables the user to
transfer more sectors than the buffer memory has ca­
pacity for.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)

Host:
82062:
82062:
82062:
82062:
82062:

Sets up parameters; issues READ SECTOR command.
Strobes BCR; sets BCS = o.

Host:
82062:
82062:
Host
82062:

Finds sector specified; transfers data to buffer.
Strobes BCR; sets BCS = 1.
Sets BORa = 1; ORO = 1.
If I bit = 1 go to (9).
Reads contents of sector buffer.
Waits for BRDY, then sets INTRa = 1: END.
Sets INTRa = 1.
Reads out contents of buffer; END.
If I = 1 wait for BRDY, then clear BORa; END.

When M = 1 (READ MULTIPLE SECTOR)

Sets up parameters; issues READ SECTOR command.
Strobes BCR; sets BCS = o.
Finds sector specified; transfers data to buffer.

(1) Host:
(2) 82062:
(3) 82062:
(,4) 82062:
(5) 82062:
(6) 82062:
(7) Host:
(8) 82062:
(9) 82062:
(10) 82062:
(11) 82062:

Decrements SECTOR COUNT register; increments SECTOR NUMBER register.
Strobes BCR; sets BCS = o.
Sets BORa = 1; ORO = 1.
Reads out contents of buffer.
Waits for BRDY.
When BRDY = 1, if Sector Count = 0 then go to (11).
Go to (2).
Set INTRa = 1; End.

A flowchart of the READ SECTOR command is shown in Figures 16A and 16B.

6-687 231133-002

AP·182

Write Sector Command -
01110MOT

The WRITE SECTOR command is used to write one
or more sectors of data to the disk from the sector
buffer. Upon receipt of a WRITE SECTOR command
the 82062 checks the CYLINDER NUMBER LOW /
HIGH register pair against the internal cylinder posi­
tion register to see if they are equal. If not, the direction
and number of steps calculation is performed and a
seek takes place. The WR FAULT and DRDY lines
are checked throughout the command.

When the Seek Complete (SC) line is found to be true
(with or without an implied seek having occurred), the
BDRQ signal is made active and the host proceeds to
load the buffer. Once BRDY goes high, the ID field
with the specified cylinder number, head, and sector
size is searched for. Once found, WR GATE is made

active and the data is written to the disk. If retries are
enabled (T = 0), and if the ID field cannot be found
within 10 revolutions, a Scan ID and re-Seek are per­
formed. If the correct ID field is not found within 10
additional revolutions, the ID Not Found error bit is
set and the command is terminated. If retries are dis­
abled, (T = I) and if the ID field cannot be found
within 2 revolutions, the ID Not Found error bit is set
and the command is terminated.

During a WRITE MULTIPLE SECTOR command
(M = I), the SECTOR NUMBER register is decre­
mented and the SECTOR COUNT register is incre­
mented after the transfer to the disk takes place. Dur­
ing multiple sector transfers if BRDY is asserted after
the first sector is transferred from the buffer, the 82062
will transfer the next sector before issuing BDRQ. The
82062 will set BDRQ and wait for the host processor to
place more data in the buffer.

In summary then, the WRITE SECTOR operation is as follows:

When M = 0, 1 (WRITE SECTOR)

(1) Host:
(2) 82062:

Sets up parameters; issues WRITE SECTOR command.
Sets BDRO = 1, DRO = 1.

(3) Host: Loads sector buffer with data.
(4) 82062: Waits for BRDY = 0 to 1.
(5) 82062:
(6) 82062:

Finds specified ID field; writes sector to disk.
If M = 0, then set INTRO = 1; END.

(7) 82062:
(8) 82062:

Increment SECTOR NUMBER register; decrement SECTOR COUNT register.
If SECTOR = 0, then set INTRO = 1; END.

(9) 82062: Goto (2).

A flowchart of the WRITE SECTOR command is shown in Figure 17.

Write Format Command
01010000

The WRITE FORMAT command is used to format
one track using the Task Register File and the sector
buffer. During execution of this command, the sector
buffer is used for additional parameter information in­
stead of sector data. Shown in Figure 18 is the contents
of the sector buffer for a 32 sector/track format with an
interleave factor of two. Each sector requires a two byte
sequence. The first byte designates whether a bad block
mark is to be recorded in the sector's ID field. A 00
Hex is normal: an 80H indicates a bad tllock mark for
the sector. In the example of Figure 18, sector 04 will
get a back block mark recorded. Any attempt to access
sector 4 in the future will terminate the command.

The second byte indicates the logical sector number to
be recorded. This allows sectors to be recorded with
any interleave factor desired. The remaining memory in
the sector buffer may contain any value. Its only pur­
pose is to generate a BRDY to tell the 82062 to begin
formatting the track. An implied seek is in effect on this

command. As for other commands, if the drive number
has been changed an ID field will be scanned for cylin­
der position information before the implied seek is per­
formed. If no ID field can be read (because the track
had been erased or because an incomplete format had
been used), an ID N ot Found error will result and the
WRITE FORMAT command will be aborted. This can
be avoided by issuing a RESTORE command before
formatting.

The SECTOR COUNT register is used to hold the total
number of sectors to be formatted (01 H = 1 sector:
OOH = 256 sectors), while the SECTOR NUMBER
register holds the number of bytes (minus three) to be
used for Gap 1 and Gap 3. For instance, if the SEC­
TOR COUNT register value is 02H and the SECTOR
NUMBER register value is OOH, then 2 sectors are
written on a track and 3 bytes of 4EH are written for
Gap 1 and Gap 3. The data fields are filled with FFH
and the CRC is automatically generated and appended.
All gaps are filled with 4EH. After the last sector is
written, the track is filled with 4EH until the index
pulse terminates the write. The Gap 3 value is deter-

6-688 231133-002

'IF T = 1 THEN DASHED PATH IS TAKEN
AFTER 2 INDEX PULSES.

AP-182

PERFORM
SEEK

COMMAND

PULSE BCR
SET INTRa, AC

RESET BUSY, CIP, BCS

Figure 16A, Read Sector Command Flow

6-689

231133-15

231133-002

RESET BORO
PULSE BCR
SET INTRO
RESET CIP

AP-182

PULSE BCR
SET ERROR. INTRO

RESET BUSY CIP

Figure 168. Read Sector Command Flow

6-690

231133-23

231133-002

AP-182

Figure 17. Write Sector Command Flow

6-691

"IF RETRIES ARE DISABLED THE
DASHED PATH IS TAKEN AFTER
2 INDEX PULSES

231133-16

231133-002

AP-182

00 00 00 10 00 01 00 11 00 02 00 12 00 03 00 13
80 04 00 14 00 05 00 15 00 06 00 15 00 07 00 17
00 08 00 18 00 09 00 19 00 OA 00 19 00 08 00 18
00 OC 00 1C 00 00 00 10 00 OE 00 1E 00 OF 00 1F
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
00 00 00 .00 00 00 00 00 00 00 00 00 00 00. 00 00

Figure 18. Sector Buffer Contents For Format

mined by the drive motor speed variation, data sector
length, and the interleave factor. The interleave factor
is only important when 1:1 (no) interleave is used. The
formula for determining the minimum Gap 3 length
value is:

Gap 3 = (2 • M • S) + K + E
M = motor speed variation (e.g., 0.03 for ± 3%)

S = sector length in bytes

K = 25 for interleave factor of I

K = 0 for any other interleave factor

E = 7 if the sector is to be extended

As with all commands, a WR FAULT or drive not
ready condition, will terminate execution of the
WRITE FORMAT command. Figure 19 shows the
format that the 82062 will write on the disk. The ex­
tend bit in the SDH register must not be set during the
Format command.

A flowchart of the WRITE FORMAT command is
shown in Figure 20.

SOFTWARE SECTION: GENERAL
PROGRAMMING

This section describes the software needed to communi­
cate with the 82062 in order to store and retrieve data.

This chapter describes the software in a general manner
and Appendix Bcontains the actual implementation
used to exercise the 82062 SBX board.

Polled Mode

As discussed in the Polled Interface Section, the 82062
does not directly support polled operation for data
transfers without the addition of hardware. This section
is based upon the polled interface as described in the
Polled Interface Section.

The six 82062 commands can be divided into two
groups, those with data transfers and those without.
The commands that do not use the sector buffer are:
Restore, Seek and Scan ID. The functions of each com­
mand are explained in the Commands Section. Figure
21 is a flowchart of a polled operation and a PLM ex­
ample.

The last status that was read will contain any error
conditions that might have occurred during the com­
mand.,

For commands that do make use of the sector buffer,
the size of the sector buffer will affect the software. If
the sector buffer is equal in size to one sector, then a
carry out of an address counter (for the sector buffer)
as the buffer is being filled will indicate to the 82062
that the command should continue. If the sector buffer

INn"" n r--~-------- REPEATED FOR EACH SECTOR

~ L-+ 1 10 FIELD

I

GAP 4 GAP 1 14 BYTES A
0 C

4E 4E 00 1
E Y
N L

'L T

~
r--DATA FIELD~

S C C
S E R R 3 BYTES 12 BYTES A F
0

C C C 00 00 1 8
USER DATA

H
1 2

WRITE GATE -.J

Figure 19.82062 Sector Format

6-692

C C
R R 3 BYTES
C C 00
1 2

GAP 3
4E

231133-17

231133-002

SET ABORTED
COMMAND BIT

RESET INTRC.
ERRORS

SET CIP, BUS'{
ACTIVATE SORO

AP-182

NO

YES

Figure 20. Write Format Command Flow

6-693

231133-18

231133-002

AP-182

size is equal to two or more disk sectors, and only one
sector is being transferred, then the carry out signal
would not go active, and the 82062 will be forever wait­
ing for BRDY. In this case an I/O port would have to
be used to generate this signal for the 82062 so that
command execution can finish. Figure 22 is a flowchart
of the READ SECTOR command, and its PLM repre­
sentation. The WRITE SECTOR and FORMAT
TRACK commands are equivalent in terms of software
interfacing. Their flowcharts and their PLM equiva­
lents are shown in Figure 23.

Once the command register is written the 82062 re­
quests a data transfer before locating the proper track.
Once the buffer is filled and BRDY is asserted, the
82062 will locate the target track and sector. If the ID·
is not located before the selected number of retries have
occurred, the 82062 will terminate the command. The
data transferred to the sector buffer will not have been
used. Once the command has finished (i.e., CIP = 0),
the status and error registers will inform the host of an
error.

Figure 24 is the PLM routine that allows for all six of
the commands. It differs from the READ and WRITE
routines in that the direction that data is to be trans­
ferred is determined by the command.

Disk$Operation: Procedure;

Figure 24 also works for multiple sector transfers.
However, the BRDY signal must be generated in hard­
ware (the carry-out of an address counter).

Interrupt Mode

Interrupt driven software is chosen when the micro­
processor must execute other tasks and cannot sit wait­
ing for the disk to reposition its heads, as in a polled
environment. The delay in repositioning heads can be
anything from a couple of milliseconds to· a second or
more.

The 82062's interrupt (INTRQ) pin goes active to indi­
cate that the command has finished. The READ SEC­
TOR command provides the programmable choice of
having the interrupt occur at the end of the data trans­
fer or the normal end of the command. The reason for
this option is that when the 82062 signals that a data
transfer is required (via BDRQ, DRQ) the disk has
been read and the data has been placed in the buffer.
The host would remove the data and issue BRDY. The
82062 would then issue an interrupt indicating that the
command has finisped. The interrupt procedure would
only have to read the status register. If the interrupt is
issued at BDRQ the host would remove the buffer data

> ___ -' YES

231133-19

Call Write82062Task$Reg's; /* Write Task Registers */
Output (Command$Reg) = Command;
Status = Input (Status$Reg); /* Read Status Reg * /
Do while Status and CIP = CIP; /* Wait until command finishes * /

Status = Input (Status$Reg);
End;

End Disk$Operation;

Figure 21. Polling Status

6-694 231133-002

AP-182

READ SECTOR COMMAND

Disk$Operation: Procedure;
Call Write82062Task$Regs;
Output (Command $ Reg) = Command;
Status = Input (Status$Reg);
Do while Status and CIP = CIP;

231133-20

If Status and DRQ = DRQ then Do;
Call Read$Data$From$Buffer;
Output (BRDY$PORT) = 01;

End;
Status = Input (Status$Port)

End;
End Disk$Operation;

Figure 22. Polling For Read Data

6-695 231133-002

AP-182

WRITE, FORMAT COMMANDS

Disk$Operation: Procedure;

NO

MOVE OATA
FROM SYSTEM

RAM TO SECTOR
BUFFER

Call Write82062Task$Regs;
Output (Command$Reg) = Command;
Status = Input (Status$Reg);
Do while status and CIP = CIP;

If status and DRQ = DRW then do;
Call Write$Data$to$Buffer;

231133-21

Output (BRDY$Port) = 01; /* Make BRDY go active */
End;
Status = Input (Status$Reg)

End;
End Disk$Operation;

Figure 23. Polling For Write Data

6-696 231133-002

AP-182

Disk$Operation: Procedure;
Call Write82062Task$Regs; /* Write registers */
Output (Command$Reg) = Command; /* Start command 0/
Status = Input (Status$Reg); /* Read status 0/
Do while status and CIP = CIP; /* Is a command in progress * /

If status and DRQ = DRQ then do; /* Data transfer? = yes 0/
If command = Read$Sector then

Call Read$Data$From$Buffer; /0 Remove data 0/
Else Call Write$Data$to$Buffer; /* Send data */
Output (BRDY$PORT) = 01; /* Toggle BRDY 0 to 1 0/

End;
End Disk$Operation;

Figure 24. Complete Polled Flow

Start$Disk$Operation: Procedure;
Call Write82062Task$Reg's;
Output (Command $ Reg) = Command;

End Start$Disk$Operation;

Figure 25. Interrupt Mode; Starting a Disk Transfer

and generate BRDY. At this point the status and error
registers contain valid information. Generating an in­
terrupt at BDRQ time may save some systems some
software overhead.

The WRITE SECTOR and FORMAT commands do
not have this option because the sector buffer is filled
before the track and sector are located. Hence, there
can be significant delays between asking for data and
the command terminating.

In an interrupt driven environment, the 82062 can in­
terface to a DMA controller for data transfers between
the sector buffer and the host's RAM. If a DMA con­
troller is not available an interrupt must be generated
via the BDRQ line. However, BDRQ can stay active
for long periods of time (until BRDY is generated). The
interrupt sensing logic must take this into account to
avoid being retriggered constantly. Intel's 8259A Inter­
rupt Controller 8259A provides that capability. It
should be programmed for edge triggered interrupts or
the end of interrupt byte must not be issued until
BDRQ is removed to prevent retriggering.

Figure 25 is a PLM example of starting a disk opera­
tion in an interrupt driven environment. The command
slarts, arid some indefinite amount of time later an in­
terrupt would be generated, indicating service is re­
quired.

If a DMA controller is used, it would have to be pro­
grammed and initialized before the command is issued
to the 82062. Recall that once a data transfer between
the microprocessor and 82062 has finished, BRDY
must be set high. As long as BRDY is generated from
hardware, no microprocessor intervention is needed. If
BRDY is generated by an I/O port the microprocessor
will have to perform this function (this will be the case
with any system that has a sector buffer larger than one
sector). (One option could be to generate an interrupt
from the terminal count pin of the DMA controller.
The microprocessor would then issue a BRDY.) Data
transfers between host RAM and the sector buffer
would be handled-without microprocessor intervention.
The interrupt would then signal that the command has
finished as shown in Figure 26. The only operation the
host processor would perform is to check the status
register of the 82062 for any error conditions.

If BDRQ is used to generate an interrupt in addition to
the normal interrupt, then the routines shown in Figure
27 will check the status register to see if a data transfer
should be executed or if the command is finished. If
DRQ is not set, the command has finished and any
error conditions would be in the status register.

Another possibility would be to have separate interrupt
routines for the two possible sources of interrupts

6-697 231133-002

AP-182

EndofTransfer: Procedure Interrupt;
Status = Input (Status$Register);
Output (8259A PIC) = EndofInterrupt;

End EndofTransfer;

Figure 26. Checking Status via Interrupt

Service$Disk$Controller: Procedure Interrupt;
Status = Input (Status$Port);
If Status and DRQ = DRQ then

Call Transfer$Data$To/From$Buffer;/* Enable DMAC */
Output (8259A PIC) = EndofInterrupt;

End Service$Disk$Controller;

Figure 27. Complete Interrupt Procedure

(INTRQ, BRDQ). There would then be no need to test
the status to see which interrupt had occurred.

APPLICATION EXAMPLE

This section shows an application using the 82062 in­
terfaced to the SBX bus. A quick overview of the SBX
bus is provided (pin descriptions, general wave forms)
as a background for the application. Designing the
82062 onto al). SBX Multimodule board was chosen to
highlight the size and complexity differences between
earlier TTL, MSI, LSI-based disk controller boards and
what is possible using the 82062. Both the hardware
and software sections will be applicable to most other
designs using the 82062. This design example is called
SBX82062 and does not represent a real product of­
fered by Intel Corporation. Appendix C contains the
schematic of the SBX board.

The advantage of the SBX Multimodule is that it per­
mits the system to be tailored for specific needs with a
minimum of effort. The advantage of an SBX based
disk controller is that a current system can make use of
the capacity, reliability and speed of a hard disk with
no (or minimal) hardware redesign.

iSBX Bus Multimodule Boards

The iSBX Multimodule boards are small, specialized,
I/O mapped boards which plug onto base boards. The
iSBX boards connect to the iSBX bus connector and
convert the iSBX bus signals to a defined I/O interface.

Base Boards

The base board decodes I/O addresses and generates
the chip selects for the iSBX Multimodule boards. In 8-
bit systems, the base board decodes all but the lower
three addresses in generating the iSBX Multimodule
board chip selects. In 16-bit systems, the base board
decodes all but the lower order four addresses in gener­
ating the iSBX Multimodule board chip selects: Thus, a
base board would normally reserve two blocks of 8 I/O
ports for each iSBX socket it provides.

There are two classes of base boards, those with Direct
Memory Access (DMA) support and those without.
Base boards with DMA support are boards with DMA
controllers on them. These boards, in conjunction with
an iSBX Multimodule board (with DMA capability),
can perform direct I/O to memory or memory to I/O
operations.

iSBX Bus Interface

The iSBX bus interface can be grouped into six func­
tional classes:

I. Control Lines

2. Address and Chip Select Lines

3. Data Lines

4. Interrupt Lines

5. Option Lines

6. Power Lines

6-698 231133-002

AP-182

iSBX BOARD
USER CONNECTOR

iSBX BOARD

INTEL SUPPLIED ~:. . .

CONNECTOR n !: ~
~

231133-22

Figure 28. iSBX Multimodule Board Concept (Double Wide)

Control Lines

The following signals are classified as control lines:

COMMANDS:

DMA:

lORD (I/O Read)
IOWRT (I/O Write)

MDRQT (DMA Request)
MDACK (DMA Acknowledge)
TDMA (Terminate DMA)

INITIALIZE:
RESET

CLOCK:
MCLK (iSBX Multimodule Clock)

SYSTEM CONTROL:
MWAIT
MPST (iSBX Multimodule Board Present)

Command Lines (lORD, IOWRT)

T.he command lines are active low signals which pro­
vIde the communication link between the base board
and the iSBX Multimodule board. An active command
line, conditioned by chip select, indicates to the iSBX
Multimodule board that the address lines are valid and
the iSBX Multimodule board should perform the speci­
fied operation.

DMA Lines (MDRQT, MDACK, TDMA)

The DMA lines are the communication link between
the DMA controller device on the base board and the
iSBX Multimodule board. MDRQT is an active high
output signal from the iSBX Multimodule board to the

base board's DMA device requesting a DMA cycle.
MDACK is an active low input signal to the iSBX
Multimodule board from the base board DMA device
acknowledging that the requested DMA cycle has been
granted. TDMA is an active high output signal from
the iSBX Multimodule board to the base board.
TDMA is used by the iSBX Multimodule board to ter­
minate DMA activity. The use of the DMA lines is
optional as not all base boards will provide DMA chan­
nels and not all iSBX Multimodule boards will be capa­
ble of supporting a DMA channel.

Initialize Lines (Reset)

This input line to the iSBX Multimodule board is gen­
erated by the base board to put the iSBX Multimodule
board into a known internal state.

Clock Lines (MCLK)

This input to the iSBX Multimodule board is a timing
signal. The 10 MHz (+ 0%, - 10%) frequency can
vary ·from base board to base board. This clock is asyn­
chronous from all other iSBX bus signals.

System Control Lines
(MWAIT, MPST)

These output signals from the iSBX Multimodule
board control the state of the system.

An active MW AIT (Active Low) will put the CPU on
the board into wait states providing additional time for
the iSBX Multimodule board to perform the requested
operation. MW AIT must be generated from address

6-699 231133-002

AP·182

(address plus chip select) information only. If MWAIT
is driven active due to a glitch on the CS line during
address transitions, MW AIT must be driven inactive in
less than 75 ns.

The iSBX Multimodule. board pnysent (MPST) is an
active low signal (tied to signal ground) that informs
the base board I/O decode logic that an iSBX Multi­
module board has been installed.

Address and Chip Select Lines

The address and chip select lines are made up of two
groups of signals.

Adress Lines: MAO-MA2

Chip Select Lines: MCSO-MCSI

The base board decodes I/O addresses and generates
the chip selects for the iSBX Multimodule boards. The
base board decodes all but the lower order three ad­
dresses in generating the iSBX Multimodule board chip
selects.

Address Lines (MAO-MA2)

These positive true input lines to the iSBX Multimod­
ule boards are generally the least three significant bits
of the I/O address. In conjunction with the command
and chip select lines, they establish the I/O port ad­
dress being accessed. In 16-bit systems, MAO-MA2
may be connected to ADRI-ADR3 of the base board
address lines.

Chip Select Lines (MCSO-MCS1/)

In an 8-bit system, these input lines to the iSBX Multi­
module board are the result of the base board I/O de­
code logic. MCS is an active low signal which condi­
tions the I/O command signals and thus enables com­
munication with the iSBX Multimodule boards.

The SBX82062 Design Example

The SBX82062 Multimodule board will interface an
ST506 compatible drive to any host board having an
SBX connector. Two restrictions on the disk drive are
that there is a maximum of 1024 cylinders and/or 8
heads. The SBX connector cannot supply the power-up
current requirements of the drive. The drive must be
connected directly to the power supply. The SBX82062
in Appendix C does not support DMA transfers. The
version in Appendix D does support DMA transfers.
Since this multi module has a 2 kbyte sector buffer, the
host microprocessor must generate a BRDY by access­
ing an I/O port during data transfers.

The software for communicating to the SBX board is
intended to be interrupt driven. Polling for data trans­
fers is not supported. Reading the status without an
interupt is not recommended. During the times the
82062 is accessing the sector buffer, the SBX82062 will
isolate itself from the host. To support polling, a hard­
ware generated busy pattern should be driven onto the
hosts's data bus as is shown in the Polled Interface
section. The sector buffer stores up to 2 kbytes of disk
data, for multiple sector transfers. The SBX board only
interfaces to one drive (for space reasons), but four
drives could be used with the addition of a read data
multiplexor (one IC) and the drive data cables.

Microprocessor Interface

Figure 29 is a block diagram ,of the SBX82062's micro­
processor interface. The I/O port assignments are listed
in Table I. The functional blocks of the interface are:

Sector Buffer Isolation Logic

Wait State Logic

Sector Buffer

Sector/Drive/Head Register Logic

Table 6-1.110 Port Assignments

Port Address Read Write

80H Sector Buffer Sector Buffer
82H Error Reg RWCReg
84H Sector Count Sector Count
86H Sector Number Sector Number
88H Cylinder Low Cylinder Low
8AH Cylinder High Cylinder High
8CH SOH Reg SOH Reg
8EH Status Reg Command Reg
90H None None
92H None Asserts BCR
94H None Asserts BROY

NOTE:
Address assignments are determined by the host board.

Sector Buffer Isolation Logic

The host will be isolated from the SBX board whenever
the 82062 is accessing its sector buffer which is enabled
by BCS. The host's control signals, RD, WR, MCSO,
and MCSI and data bus are also disabled at the same
time to prevent any data in the sector buffer from being
corrupted. The host should wait for an interrupt before
reading the 82062's Status register. Attempting to read
the SBX board while BCS is active will return invalid
data, since the SBX board will have the data bus tri­
stated.

6-700 231133-002

AP-182

MWAIT

7'
LS374

Figure 29

6-701

-MFM WA DATA
+MFM WR OATA

+MFM AD OATA
-MFM RD DATA

INDEX

TAACKO
SC
AEACY
WR FAULT

HDO
HOI
HD2
Dsii
DSI
DS2

OS,

231133-002

8 7 6

74504
3 4 ... 74LS164

D

UDl

15 lORD rT- A QA a1-
B QB ~

P1 ~ CLR QC ~
10 MHZ 8 QD ~ 4A6

QE ~
"11
iii
c
'" CD

QF
11

QG ~
QH ~

'" !'»
CD

~I C
en
'" ml I lD
)(

0> 3:

DELAYED READ

L PAL 16L8

19
BCS

I
2 18 BDWR

22 MCSO 3 17 ClK
I C -..j

0 ;:;
I\) 3"

~P1 4 16 IOBCR

~ 20 MCSl 5 15 IOBRDY
0 a. P1 6 14 CS
c
iD ~ 13 IOWR I MAO 7 13 LTCH SDH

1111 B

0'
()

Pl
MAl 8 12 BDRD

MA2 9 11

'" c 7 MA2

Dr P1
10
'" DI
3

9 MAl
~P1

I
11 MAO

P1

37 MDACK

A P1

5 RESET
P1 __

J 8 MPST

P1 V
'" ~ 8 7 6
c;;
'" b
<>
'"

5 4 3

+5V
7 RPl ;f

~4 1.4
2 D PR Q~

UB2
3

_ 6
Q

CLR

1 74508 1 +5V

2- UB3
3

9 74508
8 RP1 RPl RPl

10 UB3 ~ lK -
I RAMSEl

I

74504
9 £>0 8

UDl

5 4 3

2

lORD 2C8 -

MWAIT 16

Pl
'J

D

C
BDWR ,3C8 2C8.

RAMSEL 2C8

IOBCR 2C8

IOBRDY 3D8

CS ,3C8 2C8,:

LTCH SDH 2A8
B

BDRD 3C8 2D8,:

MDACK 2C8

AO-2 3C8

MR 3C8

I INTEL CORPORATION

I TITLE I A
82062 SBX

SIZE I CODE I NUMBER I REV
B 062PAL.DWG A
DAII: SEPT 1984 -.- -. --SHEET 1 OF 4

2

231133-35

):0
"0
I ...

CD
N

AP-182

Wait State Logic

The wait state logic drives the 'not ready' line,
MW AIT, active whenever the host reads the SBX
board. MW AIT does not go active for buffer or 82062
register writes. This logic was required for two reasons.
First, a delayed read is generated, because the address
setup to RD margin of the SBXbus is less than the
82062's needs (50 ns vs 100 ns). Second, the RD to data
valid access period of the 82062 (375 ns), is greater than
the SBX bus' full speed read cycle (275 ns) permits.
MW AIT is deactivated after allowing for the delayed
RD and the access period of the 82062. This delay is
accomplished with a 500 ns delay line. The first tap at
100 ns generates the read request to allow for the ad­
dress setup margin. The next tap 400 ns later removes
MW AIT to allow the host to continue.

Sector Buffer

The sector buffer consists of an address counter (using
, Is393's) and a 2 kbyte static RAM. The address coun­
ter is incremented on the trailing edge of a valid RD or
WR cycle, either host microprocessor or 82062 initiat­
ed. The counter is reset by a hardware reset, the 82062
buffer reset BCR, or by accessing an I/O port to pro­
vide software control. The 82062 will issue BCR each
time BCS changes state (i.e. twice per sector). Resetting
the buffer counter can be put under software control for
multiple sector transfers. BRDY going high tells the
82062 that the buffer is available for its use. BRDY is
generated by the address counter, by filling or emptying
the entire buffer in multiple sector transfers, or from an
I/O port when single sector transfers are done (since
single sectors won't use all 2 kbytes of the buffer, the
hardware signal will not be generated). When the 82062
is using the buffer, BCS will be low, and the RD or WR
line will be pulsed every I. 6 microseconds.

When the 82062 is using the buffer it prevents access by
the host by tristating the read, write, select and data
lines with a low on BCS.

SOH Register Logic

The drive and head select bits must be latched external­
ly to the 82062, since these outputs are not provided.
An 8 bit latch is strobed on the trailing edge of the WR
pulse when the SDH register is selected. The two drive
select bits are then demultiplexed to provide a one of
four drive select line. If multiple drives are used then
these outputs would also be used to select which disk's
read data line would be gated into the PLL.·

Interrupts

While the interrupt line is programmable (to notify of
an end of command or data transfer request for the
Read Sector command only), software will ensure that
the interrupt from the 82062 signifies command termi­
nation. The BDRQ line is OR'ed with the 82062's
INTRQ line or BDRQ can generate its own interrupt.
BDRQ is also gated off-board for a DMA controller.

Disk Interface

Figure 30 is a block diagram of the interface between
the 82062 and the disk drive. The functional blocks are:

Write Data Logic

Read Data Logic (PLL)

Drive Control

Write Data Logic

The WR DATA output requires a D flip-flop clocked
at 10 MHz to complete the conversion of data to MFM.
The output of this D flip-flop is true MFM and is sent
to a delay line. A delay line determines the amount of
delay for precompensation. No delay corresponds to
shifting the data bit early; the first tap is approximately
12 ns of delay and is the "normal", or no delay and the
second tap provides 12 ns of delay, referenced to the
"normal" write data. Which output is selected is deter­
mined by the states on RWC, Early and Late. This
function was generated with a 74s151 multiplexer.
When R WC is inactive EARLY and LATE only select
"normal" data since they are always active. The pre­
compensated write data is then driven onto the data
cable by an RS-422 driver.

Read Data Logic

The PLL generates the RD CLOCK that is used to
decode the serial MFM data from the drive. A selected
drive issues read data, unless WR GATE is active. A
one-shot generates a pulse of 220-270 ns to provide the
DRUN input. Only during an all zero's or one's field
will the DRUN input stay high, as it will be retriggered
every 200 ns (the minimum distance that separates con­
tinuous clock and data bits). As soon as DRUN is de­
termined to be valid, the RD GATE output will go
active, switching the PLL from the 10 MHz local clock
input to disk data. The PLL will synchronize to the
incoming serial data and generate a Read Clock of the
proper timing and phase. The 82062 will then start to
search for the address mark which is indicated by
DRUN going low at the address mark.

6-703 231133-002

AP-182

RD GATE

DRUN DATA -RD DATA RECOVERY

RD CLOCK

82062

WR DATA WRITE

EARLY PRECOMPENSATION
(DATA/CTRL r=1 LATE AND ·1 DRIVE

RWC SYNCHRONIZATION

HOST

STEP

DIR
DRDY

WR FAULT BUFFERI
TRACK 000 RECEIVERS

INDEX

SC

WR GATE

231133-24

Figure 30. 82062 Disk Interface Block Diagram

No detail is provided herein on PLL design, as it is
beyond the scope of this document. PLL design should
be left to experienced designers, since minute changes
in temperature and component values will drastically
affect the soft error rate. As an alternative, several com­
panies manufacture very high speed PLL chips for
MFM encoded disk drives. Besides being fairly easy to
design in, they reduce the number of components and
board area needed for the sophisticated PLL.

Software Driver Overview

Presented in Appendix B is a listing of the software
used to exercise the SBX 82062 board. Communication
between the host software and the SBX driver routine is
done through a structure located in system RAM. The
host routine fills in required parameters, then passes the
address of this communication block to the SBX driver
routine. The driver routine pulls necessary values from
this command block (CBL), executes a disk operation,
then fills the CBL with the 82062's register contents,
plus status and error information. The command block
structure is shown in Figure 31.

Command
Rwc Reg
Sector Cnt.
Sector Num.
Cyl Low
Cyl High
SOH Reg
Status Reg
Error Reg
Host Buffer

Figure 31

Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Pointer

The host board did not have a DMA controller avail­
able, so an interrupt is issued from the BDRQ line and
OR'ed with the 82062's interrupt line as interrupt
sources were limited by the host. When an interrupt
occurs, the interrupt procedure checks for either a data
transfer, and executes it, or the completion of the com­
mand. If the interrupt signifies command completion,
the interrupt procedure fills the command block with
the 82062's task, status and error registers.

6-704 231133-002

AP-182

In this example, the host software examines one byte in
the command block and until this byte is changed to a
00, no other command blocks will be passed to the disk
driver routine. An alternative would be to issue a soft­
ware interrupt to notify the microprocessor that the
disk operation has finished and the command block
contains parameters from the last operation and that a
new disk command could start.

The driver for this example allows polling for non-data
transfer commands, and must use interrupts for data
transfers. As mentioned earlier, microprocessor inter­
vention is required since the sector buffer is much larg­
er than one sector and will not generate a BRDY. The
microprocessor must write to an I/O port, which sets
BRDY, after each host to sector buffer transfer. An
actual software implementation would not include the
polling and interrupt routines together, as only one
method would generally be used.

The calling routine, which would normally be a direc­
tory program, places the values for which sector, num­
ber of sectors, etc., in the CBL. The disk routine is
called and the address of this structure is passed on the
stack. The disk driver places these parameters in the
82062's Task registers and initiates a command.

If the interrupt driven method was chosen, the disk
driver routine returns to the calling routine. This per­
mits other processing to be performed while the disk is
executing a command. At some point, an interrupt will
be generated, either from BRDY or INTRQ. Control
will pass to the driver and the status register will be
checked. If a data transfer is needed, either the micro­
processor can transfer data or a DMA controller can
perform the function. Once the transfer of data to the
buffer is finished the microprocessor must set BRDY
through an I/O port.

6-705 231133-002

APPENDIX A
ST5061NTERFACE

THE ST506 INTERFACE

The ST506 interface is a modified version of Shugarts
floppy disk drive interface and has been promoted by
Seagate Technology. This interface is intended to be
easy and low in cost to implement, yet provide a medi­
um level of performance. The interface rigidly defines
several areas: the hardware interconnects, the data
transfer rate, the data encoding method, and how the
disk is formatted.

Data Transfer Rate

The data transfer rate depends upon the linear bit den­
sity of the disk media and the speed at which the disk
spins. ST506 specifies a 5 Mbit/second transfer rate.
The typical STS06 drive has a nominal linear density of
10,416 bytes and a disk speed of 3600 rpm, which yields
a 5 Mbit/second data transfer rate. No deviation from
5 Mlbits second is allowed.

Increasing the linear density to increase storage capaci­
ty would require a decrease in disk speed. Otherwise,
the data rate would increase. This decrease in disk
speed would cause access times to increase, which
many would deem unacceptable. To increase storage
capacity, and remain ST506 compatible, either the
number of cylinders and/or the number of platters can
increase.

Data Encoding

ST506 requires that the serial data, sent between the
drive and the controller, be encoded according to MFM
rules. The basic unit of storage is a bit cell, which stores
one bit infromation. This bit cell is divided into two
halves, consisting of a clock bit and a data bit (see Fig­
ure A-I).

CLOCK BIT DATA BIT CLOCK BIT I DATA BIT

THIS WOULD EQUAL A USER 0 THIS WOULD EQUAL A USER 1

- B~~OC~~L -----.
231133-25

Figure A·1

The encoding rules for MFM are fairly simple:

1. A clock bit is written when the previous and the cur­
rent bit cell does not contain a data bit.

2. A data bit is written whenever there is a "one" from
the user.

Sync fields are composed of zeroes which generates a
series of clock bits in the bit cell's. A phase lock loop
locks on to the data stream during this period and gen­
erates a signal of the proper phase and frequency which
is used to decode the combined clock and data serial
data stream.

Disk Format

All disk media must be written with a specified format
so that data may be reliably stored and retrieved. The
smallest unit of controller accessible data is the sector
which typically contains sync fields, ID fields, and a
data field, and buffer fields.

The format of the disk required by ST506 is shown in
Figure A-2. It should be noted that this format is fixed
in the 82062. The user has options only for GAPI and
3 length (when changing sector size or ECC) and
whether to have 82062 CRC checking or user supplied
ECC syndrome bits.

Gap 1 - Index Gap

Gap 1 serves two purposes. The first is to allow for
variations in the index pulse timing due to motor speed
variations. The second purpose is to allow a small delay
to permit a different head to be selected without miss­
ing a sector. This is more of a data transfer optimiza­
tion function and requires the disk controller to know
which head is to be selected, when the last sector of a
track has been read, and the next logical sector in the
file exists on another platter. The 82062 does not switch
heads automatically. Whether this scheme can be used
or not depends upon the fLP being able to alter one
register in the 82062, before the next sector p!lsses be­
neath the heads.

This gap is typically 12 bytes long and is written by the
82062 as 4E Hex.

Gap 2 - Write Splice Gap

This gap follows the CRC bytes of the ID field and
continues up to the data field address mark. When up-

6-706 231133-002

AP-182

dating a previously written sector, motor speed varia­
tions could turn on the write coil, as the head was pass­
ing over the ID field. This gap prevents this from oc­
curring. The value written is OOH and also serves as
the PLL sync field for the data field. The minimum
value is determined by the "lock up" performance of
the PLL. The 82062 writes sixteen bytes for this field
once WG is activated. The user has no control over this
field.

Gap 3 - Post Data Field Gap

Gap 3 is very similar to Gap 2 as it is used as a speed
tolerance buffer also. Without this gap, and with the
motor speed varying slightly, it would be possible for
the upcoming sector's sync field and ID field to be
overwritten. This value is '4E' H and is typically 15
bytes long. The 82062's Gap 3 length is programmable.
The exact value is dependent upon several factors. Re­
fer to 82062 Format command, Software Section: Gen­
eral Pro'gramming Section.

Gap 4 - Track Buffer Gap

This gap follows the last sector on a track and is written
until an index pulse is received. Its purpose is to pre­
vent the last sector from overflowing past the index
gap, and absorb track length variations when ECC is
used (ECC uses more bytes than CRC). The value is
'4E' H and is about 320 bytes when CRC and 256 byte
sectors are used. The 82062 writes this field only during

formatting. The user has no control over the number of
bytes written with the 82062.

10 Fields

The controller uses ID fields to locate any individual
sector. An address mark of two bytes precedes the ID
field and the data field in a sector. An address mark
tells the controller the nature of the upcoming informa­
tion. ID fields are used by the disk controller and are
not passed to the host.

Sector Interleaving

Sector interleaving occurs when logical sectors are in a
non-sequential order, which is determined during for­
matting. An advantage is that there is a delay between
logically sequential sectors. This delay can be used for
data processing and then deciding if the next sector
should be read. Without interleaving, the next sector
could slip by, imposing a one revolution delay (approx.
16.7 ms). An additional benefit to this delay is that bus
utilization is reduced by spreading the data transfer
over a greater amount of time. The delay between sec­
tors can be determined as follows:

1 Revolution Period
Sectors/Track x (Interleave factor - 1) = Delay

For the typical ST506 drive with four-way interleaving
this yields 1.57 ms of delay.

~
REPEATED FOR EACH SECTOR

1 r---ID FIELD-.

I
H S C o C L C

GAP 4 GAP 1 14 BYTES A E E R R 3 BYTES
4E 4E' 00 1

E YO
A C C C 00

NLW
T

o # 1 2

WRITEGATE~

10 FIELD

A1 = A1 HEX WITH OA HEX CLOCK
IDENT = 2LS.B. = CYLINDER HIGH

FE = 0-255 CYLINDERS
FF = 256-511 CYLINDERS
FC = 512-767 CYLINDERS
FD = 768-1023 CYLINDERS

HEAD = BITS 0, 1, 2 = HEAD NUMBER
BITS 3, 4 = 0
BITS 5, 6 = SECTOR SIZE
BIT 7 = BAD BLOCK MARK

SEC # = LOGICAL SECTOR NUMBER

12 BYTES
00

,---DATA FIELD-

C C
A F R R 3 BYTES GAP 3
1 8

USER DATA
C C 00 4E
1 2

DATA FIELD

A1 = A1 HEX WITH OA HEX CLOCK
F8 = DATA ADDRESS MARK; NORMAL CLOCK

USER = DATA FIELD 128 TO 1024 BYTES

231133-26

Figure A-2. Format Field

6-707 231133-002

AP-182

FLAT CABLE OR TWISTED PAIR
HOST SYSTEM 20 FEET MAXIMUM ST506

1 -
RESERVED 2

I--- RESERVED (HD SELECT 22)_
3 .•

4
5 -

-WRITE GATE 6
7 ~

-SEEK COMPLETE 8
9 ~

-TRACK 0 10
11 ~

-WRITE FAULT 12
13 ~

-HEAD SELECT 20 14
15

RESERVED 16
17 •

-HD SELECT 2' 18
19

-INDEX 20
21

-READY 22
23

-STEP 24
25

-DRIVE SELECT 1 • 26
27

-DRIVE SELECT 2 28
29·

-DRIVE SELECT 3 30
31 •

-DRIVE SELECT 4 32
33

-DIRECTION IN 34

V V
231133-27

Figure A-3

The disadvantage to interleaving is that file transfers
take longer, which may slow dpwn the overall system.
A four-way interleaved disk will have the transfer rate
reduced to an average of 1.25 Mbit/sec.

host of certain conditions. A diagram of the 34 pin
control connector is shown in Figure A-3.

The 82062 leaves the logical sector sequence to the
user.

ELECTRICAL INTERFACE

The interface to the ST506 drive is divided into three
categories and they are:

1. control signals,

2. data signals,

3. power.

Control Signals

The functions of the control signals are not covered in
detail here. Their purpose can be found in the pin de­
scriptions section. All control lines are digital in nature
and either provide signals to the drive or inform the

The driver/receiver logic diagram is shown in Figure
A-4 and the electrical characteristics are:

6-708

True
False

7438

Voltage
0.0 VDC to 0.4 VDC
2,5 VDC to 5.25 VDC

20 FT.

Figure A·4

Current
-40 mA (IOL max.)
250 p.A (IOH open)

+5V

2200

231133-28

231133-002

AP-182

Data Signals

The lines associated with the transfer of read/write data between the host and the drive are differential in nature and
may not be multiplexed between drives. There is one pair of balanced lines for each read and write data line per drive
and must conform to the RS-422 specification. Figure A-5 shows the receiver/transmitter combination.

20 FT.

HIGH TRUE

Z=10S

231133-29

Figure A-5. E1A RS22 Driver/Receiver Pair Flat Ribbon or Twisted Pair

6-709 231133-002

APPENDIX B
SOFTWARE DRIVER

SERIES-III PL/M-86 V2.3 COMPILATION OF MODULE DISK_IO_MODULE
OBJECT MODULE PLACED IN :F2:DISKIO.OBJ
COMPILER INVOKEO BY: PLM86.86 :F20ISKIO. P86

2

3

4

STITLE('82062/SBX DISK CONTROLLER')
DISK_IO_MODULE:DO;

(* CBL_PTR IS A POINTER TO A COMMAND BLOCK- HENCE CBL.

*1

THIS COMMAND BLOCK RESIDES IN RAM AND CONTAINS ALL
VALUES REGUIRED BY THIS PROGRAM TO OPERATE THE 82062
DISK CONTROLLER. ONCE THIS PROCEDURE IS CALLED, THE
CBL IS REMAIN UNTOUCHED UNTIL THE COMMAND BYTE IS
SET TO A 00 VALUE. THIS ROUTINE WILL CALL THE CALLING
PROGRAM WHEN A COMMAND IS COMPLETED.

REV DATE NAME DESCR IPTION

1.0 I/JUL/84 J. SLEEZER INITIAL

1* PROGRAM CONSTANTS *1

DECLARE LIT LITERALLY 'LITERALLY',
TRUE LIT 'OFFH',
FALSE LIT 'DOH',
FOREVER LIT 'WHILE TRUE';

1* BOARD ADDRESSING FOR THE 86(05

DECLARE BASE_ADDR LIT '80H',
SCTR BFFR LIT 'BASE A.DDR',
ERR_REG LIT 'BASE-ADDR + 02H',
SEC_CNT _REG LIT 'BASE:::ADDR + 04H',
SEC_NUM_REG LIT 'BASE_ADDR + 06H',
CYL_LOW_REG LIT 'BASE_ADDR + OSH',
CYL_HI_REG LIT 'BASE_ADDR + OAH' j

S_DR_HD_REG LIT 'BASE ADDR + OCH' J

STATUS REG LIT 'BASE-ADDR + OEH',
COMMAND REG LIT 'BASE-ADDR + OEH',
WR]Cf1P:::REG LIT 'BASE:::ADDR + 02H' J

BFFR_RESET LIT '92H',
BFFR_RDY LIT '94H' ,
SEC_BUF LIT '2048';

1******* 82062 COMMANDS ********1

, IFH',
'7FH',
'50H',
'40H',
'20H "
'30H',

*1

1* READ ONLY *1

1* READ ONLY *1
1* WR ITE ONLY *1
1* WR ITE ONLY *1

DECLARE RESTORE
SEEK
FORMAT
SCAN 10
READ-SEC
WR ITE SEC
ECC_EN
NO INTERPT
INTR ON CMD
MUL T:::ScTR

LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT

'SOH', 1* TO BE DR '0 WITH VALUE IN SOH REG *1
'DOH "
'OSH "
'04H ';

231133-36

6-710 231133-002

5

6

7

8

9 2

10 2
11 2
12 2
13 3
15 3
17 4
18 4
19 3
20 3
21 3

22 2

23

24 2

AP-182

1* STATUS REGISTER BITS *1

DECLARE ERR LIT 'OIH' ,
CIP LIT '02H',
DRG LIT 'BOH "
SC LIT '10H',
WRF LIT '20H' ,
DRDY LIT '40H',
BUFBSY LIT 'BOH'; 1* USER WILL NEVER SEE THIS EIT SET *1

1* PROGRAM VARIABLES *1

DECLARE CMD_BLOCK_PTR POINTER,
CEL BASED CMD_ELOCK]TR STRUCTURE

COMMAND BYTE,
PRECMP BYTE,
S_CNT BYTE,
SCTR BYTE,
LOW_CYL BYTE,
HI _CYL BYTE,
SOH EYTE,
STATUS BYTE,
ERRS BYTE,
INTERUPT BYTE,
RET PROC POINTER,
BUFF]TR POINTER) ;

DECLARE EUFFER]TR POINTER,
BUFF BASED BUFFER]TR (1) BYTE,
STATUS BYTE,
ERRORS BYTE,
COMMAND BYTE;

$EJECT

1***************************-********1

1* 82062 POLL ROUTINE *1

1************************************1

POLL: PROCEDURE;

DECLARE COUNT m~ORD;

COUNT = 7FFFFH; 1* LOOP FAILSAFE - TWEAK AS REGUIRED *1
STATUS = INPUT(STATUS REG);
DO WHILE «STATUS AND-(CIP OR DRDY» = (CIP OR DRDY»;

IF COUNT = 00 THEN RETURN;
IF (STATUS AND DRG) = DRG THEN DO;

CALL XFER DATA;
END; -
STATUS = INPUT(STATUS_REG);
COUNT = COUNT - 1;

(

END; 1* IF THE ROUTINE EXP IRES DUE TO COUNT = 0, ALL DISK *1
1* REG VALUES IN THE CBL WILL CONTAIN THE STATUS REG *1
1* WHICH WILL = A BUSY PATTERN AND caL. COMMAND WILL *1
1* CONTAIN 00, INDICATING THE COMMAND IS FINISHED *1

END POLL;

1*******************.**1

1* TRANSFER DATA BETWEEN HOST RAM AND ONBOARD SECTOR BUFFER

1*** ••••• *.********1

XFER_DATA: PROCEDURE;

DECLARE CNT
INDEX
SZ 1
SECTR_SZ

BYTE,
WORD,
BYTE,
WORD; 231133-37

6-711 231133-002

25
26
28
30
32

34
35

36
37
38
39
40
41
42
43

44
46
47
48
49
50
51
52
53
54

55

56

57

58
59
60
61
62
63
64

65'

66

67
68
69
70
71
72

73

2
2
2
2
2

2
2

2
2
3
3
4
4
3
3

2
3
4
4
3
2
3
4
4
3

2

2

2
2
2
2
2
2
2

2

2
2
2
2
2
2

2

AP-182

SZI = (SHR(CBl.SDH,5) AND 03H),
IF SZI = 00
ELSE IF SZI
ELSE IF SZI
ELSE IF SZI

THEN SECTR_SZ = 256,
01 THEN SECTR SZ

= 02 THEN SECTR-SZ
= 03 THEN SECTR:SZ

1* OBTAIN SECTOR SIZE BITS
1* REGISTER *1

512,
1024,
128,

IF CBl.SDH AND EC~_EN = ECC EN THEN
SECTR_SZ = SECTR_SZ + 7,

FROM SOH *1

IF (((CBL. COMMAND AND OFOH = READ SEC) DR (CBL. COMMAND AND OFOH = WR ITE SEC»
AND (CBl. COMMAND AND OFH = MUlT SCTR» THEN 00,1* VARIOUS SECTOR SIZES*I
CNT = (SEC BUF/CBl. S CNTl, - 1* ARE POSSIBLE. THIS FIGURES *1
DO WHILE (CNT * SECTR SZ) :> SEC_BUF, 1* HOW MANY SECTORS Will FIT *1

CNT = CNT - I, - 1* INTO THE BOARDS SECTOR BFFR *1
END,
SECTR_SZ = SECTR_SZ * CNT,

END,

OUTPUT(BFFR_RDY)

END XFER_DATA'

$EJECT

00, 1* ACTIVATES 062'S BRDY lINE *1

I*********************~**************/

UPDATE COMMAND BLOCK *1

1************************************1

UPDATE_CBl: PROCEDURE,

CBl.S_CNr = INPUT (SEC_CNT_REG),
CBl.SCTR = INPUT(SEC NUM REG),
CBl.lOW_CYl = INPUT(CYl_LOW_REG),
CBl.HI_CYl = INPUT(CYl_HI_REG),
CBl.SDH = INPUT(S DR HD REG),
CBl.STATUS = STATUS,- -
CBl. ERRS = INPUT (ERR_REG),

END UPDATE_CBL,

1******************************** '~****/

WRITE THE CBl TO 82062

1*************************************1

WR_CBl: PROCEDURE,

OUTPUT(WR PCMP REG) CBl. PRECMP,
OUTPUT (SEC_CNT:REG) CBl.S_CNT'
OUTPUT(SEC NUM REG) = CBl.SCTR,
OUTPUT(CYl-lOW-REG) CBl.lOW CYl,
OUTPUT(CYl-HI REG·) = CBL. HI CYl,
OUTPUT(S_DR_HO_REG) = CBl.SOH,

END WR3Bl,

$EJECT

6-712

231133-38

231133-002

74

75 2

76 2
77 2

78 2
79 2
81 3
82 3
83 3
84 3
85 3

86 2
88 3
89 3
90 3
91 3

92 2

93 2
94 2

95 2
96 2
97 2
99 3

100 3
101 3
102 3
103 3

104 2

105

106 2
107 2

108 2
110 3
III 3
112 3
113 3
114 3
115 2

116 2

117

AP-182

1**1
/***** MAIN PROGRAM ***********1

DIS~: PROCEDURE(CBl_PTR) PUBLIC;

DECLARE CBl_PTR POINTER;

CMD_BlOC~_PTR ; CBl_PTR;
BUFFER_PTR = CBl. BUFF_PTR;

CAll WR CBl;
IF CBl. COMMAND = 99H THEN DO;

CAll .UPDATE CBl;

END;

CBl. COMMAND - = 00;
CBl.STATUS INPUT(STATUS_REG);
RETURN;

IF (INPUT(STATUS REG) AND DRDY) <> DRDY
CEl. STATUS = INPUT(STATUS REG);
CEl. COMMAND ; OOH; -
RETURN;

END;

OUTPUT(BFFR_RESET) = OOH;

'* ADDRESS OF STRUCTURE *'
1* THAT CONTAINS 82062 *1
'* TASK REG DATA *1

'* A DUMMY COMMAND TD READ*,
,*THE CURRENT REG VALUES *'

THEN DD; '* NO CDMMAND IS ISSUED .,
'* IF THE 82062 SEES *f
'* THAT THE SELECTED *,
'* DRIVE IS NDT READY

IF (CEl.CDMMAND AND OFOH) = READ SEC THEN ,. FOR PRDGRAM CONSISTENCY.'
CBl. COMMAND; CBl. COMMAND OR-INTR_ON_CMD;" SET INTERUPT FDR CDMMAND*' '* TERMINATION .,

OUTPUT(COMMAND REG) ; CBl. COMMAND;
CAll TIME<lOO);
IF CEl. INTERUPT = ND_INTERPT THEN DO,

CAll PDll;

END;

CAll UPDATE CBL;
CBl. CDMMAND-; 00;
RETURN;

END DIS~;

$EJECT

'* A DELAY IS NEEDED EECAUSE FAST.' '* UP'S CAN READ THE STATUS REG *' '* BEFORE A VALID STATUS IS READY.,

1***1

'* INTERRUPT SERVICE ROUTINE

1***1

DISK_SERVICE: PROCEDURE PUBLIC;

CAll TIME (500)'
STATUS = INPUT,STATUS_REG);

IF (STATUS AND CIP) = 00 THEN DO;
CAll UPDATE CBl;
CBl.COMMAND-= 00;
OUTPUT(BFFR RESET) OOH;
RETURN; -

END;
ELSE CAll XFER_DATA;

END DISK_SERVICE,

END DISK_IO_MoDUlE;

MODULE INFORMATION:

CODE AREA SIZE 02EEH
CONSTANT AREA SIZE OOOOH
VARIAElE AREA SIZE = 0011H
MAXIMUM STACK SIZE = OOOAH
272 lINES READ
o PROGRAM WARNINGS
o PROGRAM ERRORS

750D
OD

17D
10D

231133-39

6-713 231133-002

DICTIONARY SUMMARY:

31KB MEMORY AVAILABLE
5KB MEMORY USED (167.)
OKB DISK SPACE USED

END OF PL/M-B6 COMPILATION

AP-182

SERIES-III PL/M-B6 V2.3 COMPILATION OF MODULE HOST_MODULE
OBJECT MODULE PLACED IN :F2:DSKHST. OBJ
COMPILER INVOKED BY: PLMB6.B6 :F2:DSKHST.PB6

STITLE('DEMO PROGRAM FOR SBX062')
HOST_MODULE: DO,

1* PROGRAM TO EXERCISE THE 82062/SBX BOARD USING THE 957 MONITOR
ON AN sac 86/05. THIS PROGRAM DEMONSTRATES HOW THE DISKIO MODULE
IS USED. THE CASE STATEMENTS IN THE MAIN SECTION SHOW THE VARIOUS
ROUTINES. THE TYPICAL ROUTINES LIKE HEX TO ASCII. ETC .• WERE

2 1
3 :2
4 2

5 1
6 2

NOT INCLUDED IN THIS LISTING. SEVERAL OF THE ROUTINES USE
STATEMENTS THAT COULD BE REDUCED CONSIDERABLY BUT WERE LEFT
SIMPLIFIED 50 THAT ALL WOULD UNDERSTAND.

REV DATE NAME

1.0 20/JUL/84 J. SLEEZER
*1·

1* EXTERNAL ROUTINES

CO: PROCEDURE(CHAR) EXTERNAL,
DECLARE CHAR BYTE,

END CO,

CI: PROCEDURE BYTE EXTERNAL,
END CI,

*1

DESCRIPTION

INITIAL

7 1
8 2
9 2

DISK: PROCEDURE (CMD_BLK_PTR) EXTERNAL,I* THIS ROUTINE STAIHS A DISK OPERATION *1
DECLARE CMD_BLK_PTR POINTER,

10 1
11 2

12

END DISK,

DISK_SERVICE: PROCEDURE EXTERNAL,I* THIS ROUTINE SERVICES THE B2062 INTERUPTS*I
END DISK_SERVICE,

1* PROGRAM CONSTANTS *1

DECLARE LIT LITERALLY 'LITERALLY'.
TRUE LIT 'OFFH'.
FALSE LIT 'OOH'.
FOREVER LIT 'WHILE TRUE'.
SPACE LIT· '20H'.
CR LIT 'ODH'.
LF LIT 'OAH',

·RUB LIT '7FH'.
BACKSP LIT 'OBH'.
ESC LIT 'IBH' ,

1* 82062 COMMANDS *1
231133-40

6-714 231133-002

13

14

15

16

17

IB

DECLARE RESTORE LIT
SEEK LIT
FORMAT LIT
SCAN 10 LIT
READ::::SECT LIT
WRITE SCT LIT
MULT SCTR LIT
NO RETRYS LIT
NO::::CRC LIT

P _COMP LIT
SEC CNT LIT
SEcToR LIT
CYL LB LIT
CYL::HB LIT
SOH LIT

1* STATUS REGISTER BITS

DECLARE ERR LIT
CIP LIT
DRG LIT
SC LIT
WRF LIT
DRDV LIT
BUFESV LIT

f* ERROR REGISTER BITS

DECLARE VALID_BITS LIT
AM NT FND LIT
TKOO ERR LIT
ABRTD_Ct1D LIT
10 NT FND LIT
DATA ERR LIT
EADjlLK LIT

1***** PROGRAM VARIABLES

AP-182

, 10H',
'70H "
'SOH',
'40H' ,
'28H',
'30H',
'04H',
'01H' ,
'BOH',

1* INTR ONLY ON COMMAND TERMINATION *1

f* TO BE OR'D WITH COMMAND *1
f* TO EE OR'D WITH COMMAND *1
f* TO EE OR'D WITH VALUE IN SDH REG *1

'0', 1* INDEXING INTO DISK_REG ARRAY *1
'I "
'2 "
'3' ,
'4' ,
'5' ,

'OIH' ,
'02H' ,
'BOH',
'10H' ,
'20H',
'40H "
'BOH'; f* USER WILL NEVER SEE THIS EIT S[T *1

'OD7H' ,
'OOIH',
'002H' ,
'004H',
'OIOH' ,
'040H' ,
'OSOH',

*****1

DECLARE CMD_BLK(I) STRUCTURE COMMAND
PRECMP
S_CNT
SCTR
LOWB_CYL
HIE_CYL
SDHD
STATUS
ERRS
INTERUPT
RET _PROC
EUFF _PTR

BYTE,
BYTE,
BYTE,
BYTE,
EYTE,
EYTE,
BYTE,
BYTE,
EYTE,
BYTE,
POINTER,
POINTER) ;

DECLARE COUNT WORD,

CHAR BYTE,
ERRORS BYTE,
COMMAND BYTE,
STEP _RATE BYTE,
I WORD,
12 BYTE,
BUFFER (1100) BYTE,
INDEX WORD,
DISK IS_NOT _BUSV BVTE,
TRACKS BVTE,
PLATTERS BVTE,
PLAT CNT BYTE,
TRACK CNT BYTE,
I FACTOR BYTE,
FRMT _BFFR_SIZE BYTE,
LOG_SECT _NUM BYTE,
MAKING_TABLE BYTE,
AA BVTE,
INDX BYTE,

DECLARE DISK _REGS (6) BYTE,

SNOLIST
$EJECT 231133-41

6-715

337

338 2
339 :2
340 :2
341 2
342 2
343 2
344 3
345 3
346 2
347 2
348 2
349 2
350 2
351 2
352 2
353 2
354 2
355 :2
356 2

357 :2
358 3
360 4
361 4
362 4
363 4
364 4
365 4
366 4
367 4
368 4
369 5
371 6
372 6
373 6
374 6

375 5
376 5
377 5
378 5
379 4

380 5
381 6
382 6
383 6
384 6
385 6
386 6
387 6
389 7
390 7

391 7
392 7
393 6

394 6
395 6
396 6
398 7
399 7

400 7
401 6

402 6
403 6

AP-182

1**1

1********* MAIN PROGRAM *******1

1**1

MAIN: DO;

STEP RATE = OFH;
PLAT :::CNT =OFFH;
TRACK_CNT =OFFH;
PLATTERS = 00;
TRACKS = 00;
DO I = 0 TO 5;

DISK_REGS(I) = 00;
END;
DISK_REGS(P_COMP) = OFFH;
CALL UPDATE_CMD_BLK;
CMD_BLK(INDX). INTERUPT = 00;
CALL WRITEA(@(LF,LF,LF,LF,LF,OO»;
CALL WRITEA(@SIGN ON),
OUTPUT(OC2H) = OFDH; 1* PERMITS AN INTERRUPT 1 *1
INDX = 0;
CMD_BLK(INDX).BUFF_PTR = @BUFFER;
CALL SETSINTERRUPT(2IH,CHECK_DISK);
ENABLE;
DISK_IS_NOT _BUSY = TRUE;

DO FOREVER;
IF DISK_IS_NOT_BUSY THEN DO;

cr1D BLK (INDX). COr1MAND = OFFH,
CALL WRITEA(@(CR,LF, 'COMMAND ::,',00»,
CHAR = CI,
CALL CO(CHAR),
CALL CO(CR),
CALL CO(LF);
COMMAND = FALSE,
12 = 0,
DO WHILE (COMMAND = FALSE),

END,

IF 12 > LENGTH(VALID_CMDS) THEN DO,

END;

CALL WRITEA(@('INVALID COMMAND',CR,LF,OO»,
12 = 0,
CHAR = Cli

IF CHAR = VALID CMDS(12) THEN
COMMAND = TRUE,

12 = 12 + 1 i

DO CASE (12 - 1);

1* CASE 0 - READ SECTOR *1
DO,

CALL WRITEA(@('READ SECTOR COMMAND',CR,LF,LF,OQ»,
CALL WR ITE REGS,
DISK IS NOT BUSY = FALSE,
cr1DjlLK(INDX). COMMAND = READ_SECT;
CALL WRITEA(@('MULTIPLE SECTOR'S? >',00»,
CHAR = CI,
IF CHAR = 'Y' THEN DO,

CALL WRITEA(@('YES - ',00»,
CMD BLK(INDX).COMMAND =

- CMD BLK(INDX).COMMAND OR MULT SCTR,
CALL WRITEA(@('OO NOT EXCEED BUFFER LIMIT! ',CR,LF,QO»,

END;
ELSE CALL WRITEA(@('NO',CR,LF,OO»,

CALL WRITEA(@('AUTOMATIC RETRIES? ::",00»,
CHAR = CI,
IF CHAR = 'N' THEN DO,

END,

CALL WRITEA(@('NO', CR, LF, 00»,
CMD BLK(INDX).COMMANO =

- CMO_BLK(INOX).COMMANO OR NO_RETRYS,

ELSE CALL WRITEA(@('YES',CR,LF,OO»;

CALL DISK(@CMD_BLK(INDX»,
. END,

6-716

231133-42

404 5
405 6
406 6
407 6
408 6
409 6
410 6
411 6
412 6
414 7
415 7

416 7
417 7
418 6

419 6
420 6
421 6
423 7
424 7

425 7
426 6

427 6
428 6

429 5
430 6
431 6
432 6
433 6
434 6
435 6
436 6
437 6
438 6
439 6
440 6
441 7
442 7
443 6
444 6
445 6
446 6
447 7
448 8
449 8
450 8
451 8
452 7
454 8
455 8
456 8
457 8
458 7
459 7
460 6
461 6
462 6
463 6
464 6
465 6
466 6
467 6
468 6
469 6

Ap·182

1* CASE 1 - WRITE SECTOR *1
DOl

CALL WRITEA(@('WRITE SECTOR COMMAND',CR,LF,LF,OO»I
CALL WR ITE_REGSI
CALL DATA_PATI
DISK IS NOT BUSY ~ FALSEI
CMD_BLK(INDX). COMMAND = WRITE_SCTI
CALL WRITEA«!('MULTIPLE SECTOR'S?)',00»1
CHAR = CII
IF CHAR = 'Y' THEN DOl

CALL WRITEA «!('YES - ',00»;
CMD BLK(INDX). COMMAND =

- CMD_BLK(INDX).COMMAND DR MULT SCTRI
CALL WRITEA«!('DO NOT EXCEED BUFFER LIMIT" ',CR,LF,OO»I

END;
ELSE CALL WRITEA«!('NO', CR, LF, 00»·1

CALL WR ITEA «! ('ENABLE RETR IES ?)', 00));
CHAR = CI I
IF CHAR = 'N' THEN DOl

ENOl

CALL WRITEA(@('NO',CR,LF,OO»I
CMD BLK(INDX),COMMAND •

- CMD_BLK(INDXl.COMMAND OR NO_RETRYSI

ELSE CALL WRITEA«!('YES',CR,LF,OO»I

CALL DISK(I!CMD_BLK(INDX»I
ENDI

1* CASE 2 - FORMAT TRACK *1
DOl

CALL WRITEA(@('FORMAT TRACK',CR,LF,LF,OO»I
CALL WRITE REGSI
DISK_IS_NOT_BUSY = FALSEI
CMD BLK(INDX) COMMAND = FORMAT;
CALL WR !TEA (I! (' INTERLEAVE FACTOR? (1 TO ?»', 00» I
I_FACTOR = CI - '0';
CALL CO(I FACTOR + '0')1
CALL CO(CA);
CALL CO(LF};
FRMT BFFR SIZE = (2 * (CMD_BLK(INDX), S_CNT) + 1)1
DO 1-= 0 TO FRMT BFFR SIZE;

BUFFER (I) = CO;
END;
LOG_SECT _NUM = 0;
1= II
MAKING TABLE = TRUE;
DO WHILE MAKING_TABLE;

DO WHILE I <= FRMT_BFFR_SIZEI
BUFFER(I) = LOG SECT NUM;
LOG_SECT_NUM = LOG_SECT_NUM + II
I = I +(1 FACTOR * 2);

ENOl -
IF LOG_SECT_NUM < CMD_BLK(INDX),S CNT THEN DOl

I = I - (FRMT BFFR SIZE + III
IF (I = 1) OR-(BUFFER(I) () 00) THEN

r = I + 2;
ENOl
ELSE I1AKING_TABLE = FALSE I

END;
CALL WRITEA«!('256 TRACKS IS THE LIMIT',CR,LF,OO»;
CALL WRITEA«!('HOW MANY TRACKS? IN HEX ;>',00»1
TRACKS = HEXIN(TRACKS)I
CALL CO(CR)I
CALL CO(LF)I
CALL WRITEA(I!('HOW MANY SURFACES? I.E. ,01)',00»;
PLATTERS = HEXIN(PLATTERS)I
CALL CO(CR);
CALL CO(LF);
TRACK_CNT = 1;

6-717

231133-43

231133-002

470 6
471 7
472 7
473 8
474 8
475 8
476 8
477 8
478 8
479 8
480 8
481 8
482 8
483 9
484 8
485 8
486 8
487 7
488 7
489 7
490 7
491 7
492 7
493 7
494 6
495 6
496 6

497 5
498 6
499 6
500 6
501 6
502 6
503 6

504 5
505 6
506 6
507 6
508 6
509 6
510 6

511 5
512 6
513 6
514 6
515 6
516 6
517 6

518 5
519 6
520 6
521 6
522 6
523 6
524 6

525 5
526 6
527 6
528 6

529 5
530 6
531 6

END.

AP-182

DO WHILE TRACK_CNT (= TRACKS.

END.

PLAT CNT = I.
DO WHILE PLAT CNT (= PLATTERS.

ENDI

CALL UPDATE CMD ELK.
CALL CO(CR)~ -
CALL WR!TEA(@('TRACK = ',00)).
CALL DISP_HEX(@TRACK_CNT, I).
CALL WR !TEA (@('. HEAD = , 00)) •
AA = DISK_REGS(SDH) AND 07H.
CALL DISP HEX(@AA.I).
CMD_BLK(INDX). COMMAND = FORMAT.
CALL DISK(@CMD BLK(INDX)).
DO WHILE CMD_BLK(INDX). COMMAND <) DO.
END.
PLAT CNT = PLAT CNT + I.
DISK=REGS(SDH) ~ DISK_REGS(SDH) + I.

DISK REGS(SDH) = DISK REGS(SDH) - (PL.ATTERS).
DISK-REGS(CYL LB) = DISK REGS(CYL LB) + I.
IF DISK_REGS(CYL_LB) = 00 THEN -

DISK_REGS(CYL_HB) DISK_REGS(CYL_HB) + I.
TRACK CNT = TRACK CNT + I.
CALL UPDATE_CMD_BLK.

CALL CO(CR).
CALL CO(LF).

1* CASE 3 - SCAN 10 *1
DO.

CALL WRITEA(@(' SCAN ID', CR, LF, LF, 00)).
CALL WR I TE REGS.
DISK_IS_NOT_BUSY = FALSE.
Ct1D BLK(INDX). COMMAND = SCAN ID.
CALL DISK(@CMD BLK(INDX)). -

END. -

1* CASE 4 - SEEK TRACK *1
DO.

CALL WRITEA(@('SEEK TRACK',CR,LF,LF,OO)).
CALL WR I TE_REGS.
CMD_BLK(INDX). COMMAND = SEEK OR STEP_RATE.
DISK_IS_NOT_BUSY = FALSE.
CALL DISK(@CMD BLK(INDX)).

END. -
1* CASE 5 - RESTORE *1
DO.

END.

CALL WRITEA(@(' RESTORE COMMAND',CR,LF,LF,OO)).
CALL WR I TE_REGS.
Ct1D_BLK (INDX). COMMAND = RESTORE OR STEP _RATE.
DISK_IS_NOT_BUSY = FALSE.
CALL DISK(@CMD_BLK(INDX)).

1* CASE 6 - READ DISK REGISTER FILE *1
DO.

END.

CALL WR!TEA(@(' READ DISK REGISTERS',CR.LF.LF,OO»).
CMD_BLK(INDX).COMMAND = 99H.
CALL DISK(@CMD_BLK(INDX)).
CALL DISP _CMD_BLK.
CMD_BLK(INDX).COMMAND = OFFH.

1* CASE 7 - HELP TABLE *1
DO.

END.

CALL lOR !TEA (<!HELP) •
CALL CO(LF).

1* CASE 8 - EXAMINE COMMAND BLOCK *1
DO.

CALL DISP _CMD_BLK.
END.

231133-44

6-718 231133-002

AP-182

1* CASE 9 - DISPLAY BUFFER DATA *1
DO; 532

533
534
535
536
537
538
540
541
542
543
544
545
546
547
548
549
551
552
553
554
555
556
557
558

5
6
6
6
6
6
6
7
7
8
9
9
8
B
8
7
6
7
7
8
8
8
8
7
6

CALL WRITEA«(!('DISPLAY ASCII(A> OR HEFH> > >',00»;
CHAR = CI;

559
560
561
562
563

564
566
567
568

569

570
571

5
4
3
4
4

3
4
4
4

3

2
1

END,

CALL CO(CHAR);
CALL CO(CR);
CALL CO(LF);
IF CHAR = 'A' THEN DO;

INDEX = 0;
DO WHILE CHAR <> ESC;

DO I = 0 TO 255;

END,
END;

CALL CO (BUFFER (INDEX + I»;
END;
INDEX = INDEX + I;
CHAR = CI;

IF CHAR = 'H' THEN DO,
INDEX = 0,
DO WHILE CHAR <) ESC;

END,
END;

END;

CALL DISP HEX(!BUFFER(INDEX),256),
INDEX = INDEX + 256;
CHAR = CI;

END; 1* DO CASE *1
END, 1* IF *1
ELSE DO,

CALL WRITEA«(!('*** DISK IS BUSY ***',CR,QO»,
END,

IF CMD BLK(INDX).COMMAND = 00 THEN DO;
D I SK_I S_NOT _BUSY = TRUE;
CALL DISP STATUS,

END, -

1* FOREVER *1

END MAIN,
END HOST _MODULE,

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STAC~ SIZE
868 LI NES READ
o PROGRAM WARNINGS
o PROGRAM ERRORS

DICTIONARY SUMMARY:

OFD8H
= 09;JCH

04BOH
003EH

31KB MEMORY AVAILABLE
12KB MEMORY USED (38%)
OKE DISK SPACE USED

END OF PL/M-86 COMPILATION

40560
2364D
1152D

62D

6-719

231133-45

231133-002

Q)
I

-J
f\)
o

)

;

I

-
IS lORD
PI

~ 22 MCSO
PI

20 MCSI
PI

1310WR
PI

BCS

MCSO

7Mol2

PI

"" 8 Moll
PI

11 MAO

PI

5 RESET

:>~M~l
-

RPI
74LS126 4 1 +5V
S .. 6

~4 RPI

1 +5Y 74LS126 6
12Jo 11

~13 RPI
1 +5V 74L5126 S

g .. 8

~ 10

1 RPI 3

iW +SY

Moll

MAO

+"SV

1
RPI

2

L

I "\7

74LS04
5 8

UD1

-

RPt
+5V 1

71

~LS74 X4

74LS04 2 0 PR Qti- 1 ,_ 2

UB2
r UDI l! ~ CLR Q pL

4 74508 I~06
~1

6 ~3 5..JUHl
~

4 G2A Yiit=7 r+ G2ii
VI

Gl 13
3

C ~ 12
2

B 745138 ~~ 1
A ~ 10

VS Pf"
Yipt-

Uol2 Y7~ ~

9 74S08

10 ']UB3
8

4 G2A YO
15

S
G2B Vi ~ 8
G1 Y2 P'¥.- 1 74LS32

~3
3

C 745138 Y3 ~
2

B Vi ~ 1
A ~ ~

Y6

Uol3 Y7 ~

TTL
DELAV
LINE

lOONS!
TAP

UBI

lORD

MWAIT ~ ~

14
+SY I

~ 74LS126
4 2 3 iiiiRD

~ Uoll 8
1

~RP1 ~

~
~'

1

+~

II
BDWR

IDBCR

iOiiiIiY
CS

II
RolMSEL

LTCH SOH r
Mol

MR

INTEL CORPORATION

TITLE I'
82082 sax

S~El CODE I NUMBER llREY 082ARY,DWG A
DATE JUNE 1984 'SHEET 1 OF 4'

-

231133-31

(I)>
0"'0
::1:"'0
mm
i:z »0 --><
00 (I)

'f'
-...J

!::'1

'" ~
W
'f
a
~

8 I

RAMSEL

aOWR

SORD

IOBCR

BeR

MOO 33

MOl 31

M0229

M0327

MD425

MDS 23

M0621

MD719

lORD

os

LTCH SOH

7

13 74508 ~ . • 7~04., r0-
II 10 UCl -.~ 'OA~~ '2 UB3

UDl r!- Rl lOB rt-~
'Qe~~

74LS393 100 ~~

~ ~----2QA I ~~ :;
----.:::-. R2 2QB~

20CI: :~
UE, 2QOIl

7450. 74L504 ~ I> ,OA ~
5 61 2 2 4 A9

4 UB3 UD1 Rl ~~~ f-sA;o
74LS393 100 ~

~ ~ RP2 2 r*< ~-----2QA ~
R2 ~~~ t

UE2 2ao L..:--

2
AO

,.
3 BO 17

4 A' B,

A2 92 ~: S
Al

6
A4

83 14

7
B.

AS 74LS245 85 13 • '2

• A6 86
A7 B7 11 ,
T

~ 10 10 2
HDSELO

~2D 2Q 5
HDSEll

OE UC2 ~3D 30 6 HDSEL2
19

T-l, B""QUTPUT 8 40 4Q 9 DSELO, 1

13 50 74LS374 50 12 DSEL2,3

~:~ ~~~
T, 80 80 ~

U02 DE~

I 6 I 5 I 4

eLR

• • AD 00
7

A'
01 10

6
A2 02 11

s
A:l 03 13

4
A4 D4~

3

2
AS 05~
AS

2016 06~ ,
23

A7 07

22 AS
A9 ,.
A10 UEJ

~ WEC"E DE
y,. 20

An

00
0,

02

03

O'
OS

06

07

INTEL CORPORATION

TITLE
82062 SBX

S~E I CODE I NUMBER ;1 REV
062PAL2.DWG A

DATE SEPT 198~.L SHEET 2 OF 4

I 3 I 2 I 1

1133321NT 023

>
"0
.!..
CO
I\)

'" ~
C;;

'" b
iG

Ol
I

-J
N
N

D

C

B

A

8

7 6

IOoRDY

~74S74 !._
12120 PR a L MORQT

V P1
E1 E3 MINTR1 12 Q e ··e

P1

A11 11 UB2
E2~""'~E4 12 r-... 11 ~ MINTRO 14

CK eLR apl!- 13 UCl t eTC 26LS31/4 ,.!:!...
Y,3 V 74Ls32 74508 74LS04

'~'0 CLR flL MiI~8 1i);; 10 WG6
BRDV

. 9~068 "'01 U03 BeR 2 BCR 24 RWC2 WG
BCS 3 1 1 BCS RWC

33
UI1 11~06'0 UHl 2 L.L 27 STEP 24

Mil
INTRQ STEP ~U11 ,~06'2 74$08 5 Mil 26 DIR IN 34

OIR
BDRD 6 AD ~FROMUH2 !":UI1 'J;-BDWR 7

WCLK +5V
WR 74LS14 r'WV" INoEX'20~ CS 8 CS INDEX 29 6 5

---2!... BORa TRKOO 31 14LS11 UK1 r""fv'" r'I/II'¥" TRACK 000 10

rl AO SC
32

UK1 7~LS1~ ~ .r'VII'v-MA 30 SEEK COMPLETE·8

~
A1 WR FAULT

~~'~ A2 DRDY
28 I UK1 ~- WRITE FAULT 12

DO 19
DO 82062

510<>

WR DATA I UK,,~4~'1, ~ r'VII'v-01 18 01 WD 21
PUlWP READY 22

02 17 02 RC 39 RDCLK UK1 ~~~ J' 03 16 03 Ro
37 RD DATA SHT 4 'T 04 15 04 RG
38 RDGATE

NOTE: ALL UNUSED CONN
PINS ARE TIED TO GRND 05 14 05 oRUN

34
oRUN

06 13 06 LATE
22

LATE
07 12 07 . EARLY

23
EARLY

74n~

HDSELO UF3 ----
HOO 14 --

HoSEL1 UI1 3~o!,,4 ____________ ~ __________ ~[
HDSEL2 5 ~O~ 6 t-ui1

uJ!

7407
lJ>2

UD3

UI1
~
2G 1YO

7407
.!p6

U03

1G m
iC· m
1C

13 L oSEL2.3
DSELO. 1

UC3

HD2 4

DSO 26

7407
OS128 31>4

U03 OS230

7407
OS332

21>8
U03 J1

TITLE

SIZE

a

INTEL CORPORATION'

82062 sax
REV

A

D

C

B

A

»
"a
.!..
CCI
N

a>
I

--J
I\)
W

'" ::1
W
'f
o
o
'"

D

-

C

+5V
"T'

~

8 I 7 I 6 I 5

Pll

I 4 I 3 I 2 I

+5V +5V
1

RP3 DRUN 3Bl

1 uF PUP1 5 26lS32

UG2
~~ ___________ + .. ~4J B 265ns

ClR

3Bl RD GATE 11
3Bl RD ClK

3Bl RD DATAj 3Bl "'"7R'P2 74S151 J2

~
26lS31

D7

3Bl WR DATA r----~_::':'---..:;,!!.!!!...---+-E.lD6
1~ ~

D4

B 13Bl EARLY D3 D2

1~ ~
DO

~~~ 
STB 

W 6 1 INC OUTA+ 2 
7 IND OUTA- 3 

OUTD- 13 
OUTD+ 14 

UK2 

6 
9 INB OUTB+ .... 8:---:-' 
15 INA OUTB- .... 11,....-:::~ 

3Dl WGEN 4 EN OUTC-.'-1-0-~ 
12 EN Ul2 OUTC+ .... __ , 

D 

t--

C 

t--

B 

I-

"" ..,. I ~ I ,£'n It, PUPl 

A 
lC8, 4B8 
4D5 ~l INTEL CORPORATION 

L-~~~--------~IA 
I TITLE 82062 sax 

3Dl RWC 

8 I 7 I 6 I 5 I 4 I 3 
r- ._-2-

231133-34 

REV 
A 

> 
"tI 
I ..... 

co 
I\) 



APPENDIXD 

This appendix contains a schematic of the previous design using PAL's to replace the random logic. The previous 
design could not do DMA transfers and inserted a large delay when transferring data from buffer RAM to the 
system. The PAL version does do DMA transfers and buffer reads happen at full SBX bus speed. One other minor 
change was to replace the 500 ns delay line with a 74LSl64, which is a more cost effective solution. 

This schematic is only a paper design since only random logic was replaced with the PAL's. 
PAL Equation's 

PAL - Page 1: 
BDRD/ = (lORD/ • MDACKIl + (lORD/ • MCSO/ • MAO • MAl • MA2) + 

(DELAYED-READ/ • CLK) IF BCS 

LTCHSDH/ = (MCSO/ • MAO/ • MAl • MA2 • IOWRIl 

RAMSEL/ (MCSO • MAO • MAl • MA2) + (BCSIl + (MDACKIl 

IOBRDY/ (MCS1/ • MAO/ • MAl • MA2/ • IOWR/) 

IOBCR/ = (MCS1/ • MAO • MAl/ • MA2/' IOWRIl 

BDWR/ = (IOWRIl IF BCS 

Cst (MCSO/) IF BCS 

CLK (MCSO/ • MAO • MAl/ • MA21l +~ (MCSO/ • MAO/ • MAl • MA21l + (MCSO/ 
• MAO • MAl • MA21l + (MCSO/ • MAO/ • MAl/ • MA2) + (MCSO/ • MAO • MAl/ • 
MA2) + (MCSO/ • MAO/ • MAl • MA2) + (MCSO/ • MAO • MAl • MA2) 

PAL - Page 2: 
MINTR1/MDRQT = (PIN1) 

MINTRO = (PIN2) + (INTRQ) 

COUNT = (BDWR/ + BDRDIl • (RAMSELIl 

RSTCOUNT = (IOBCRIl + (BCRIl 

OE/ = (MDACKIl + (CSIl 

CLR/ = (IOBCRIl + (BCRIl 

6-724 231133-002 



q> 
"" I\:> 
(J1 

'" ~ 
W 
'f 
o 
o 
'" 

D 

4A6 

C 

lDl 

B 

A 

8 

74504 
3 .. 4 

.... 
UDI 

15 lORD 

Pl 
10 MHZ 

BCS 

22 MCSO I 
~Pl 

_ 20 MCSI 

PI 

"' 13 IOWR I 
PI 

7 MA2 

PI 

9 MAl 
~Pl 

11 MAO 

PI 

37 MDACK 

PI 
5 RESET 

Pl 
) 8 MPST 

PI V 

7 6 

74L5164 

ri- A QA ~ 
B OB f4--

~ CLR r;..... OC 

OD 
6 

7cl 
OE 7-
OF 

OG ~ 
OH ,.!!.... 

DELAYED READ 

L PAL 16L8 

19 

2 18 BDWR 

3 17 CLK 

4 16 IOBCR 

5 15 IOBRDY 

6 14 CS 

MAO 7 13 LTCH SDH 

MAl 8 12 BDRD 

MA2 9 11 

I 

5 4 3 

+5V 
7 RPI if 

~4 04 

2 D PR O~ 
UB2 

3 
_ 6 
0 

CLR 

1 74508 1 ;,~ 
2 UB3 

3 
9 74508 

RPl RPl 8 
10 UB lK 

I RAMSEL 

I 

74504 
9 t>o 8 

UDI 

5 4 3 

RPl 

I 
I 

2 

lORD 2C8 

::> 
MWAIT 16 

Pl 

D 

C 
BDWR 2C8. 3C8 

RAM5EL 2C8 

IOBCR 2C8 

IOBRDY 3D8 

CS 3C8 2C8.: 

LTCH SDH 2A8 
B 

BDRD .3C8 2D8.: 

MDACK 2C8 

AO·2 3C8 

MR 3C8 

INTEL CORPORATION 

TITLE I A 
82062 sax 

NUMBER I REV 
062PAL.DWG A 

SHEET 1 OF 4 

2 

231133-35 

):0 
'1J 
I .... 

CD 
I\) 



q> ..... 
I\) 
en 

'" ~ 
c;; 
co 
6 
o 
'" 

8 

D 

C 

B 

A 

8 

7 6 5 4 3 2 

:101 IORQ ., ~o MDRGT:I4~ 

~ :~~ :!~ 
I t~". ~--- ----}ii-I 

• 
3Dt INTRQ 

181 SORD 4 

tet IIDWA I 
3CI 8CR • I 
'" MMSEL 7) 
181 CS • I 
,., IOBCR • I 

lAl~ 

MDOn 12 
_~ M _a M 

_ ~ M _8 ~ 

::: ::: 
1ID71' • A7 

17 CLR 
,. COUNT 

15 RSTCOUNT 

~
. 

'3 

'.2 DE 
1t 

.,v 
or, 

R' 

felS313 tac 

~
3 ____ '2.0 

t2 .... 
A2 208 

,ac 
20'. 

UEO 

DOt-=-----..., 
01 ,. 

D2 ~; 

'" 

INTRO ON IIDRQ WI. W4, W7. WI 
INTAl ON IOAQ W1, W3, WI, .7 
MOROT ON lORa W" W3, W5, W' [, ~--t---ft~~Jlb i ~ ITIADY 3D. "'" 

UEZ ZOD 

7fLS24! 
II I I I I I I I I DO Ii l' -01 

~I~ II Ill- ~-: · III K _ 
tet lORD 1 T 

~ DE UC2 -' :I - 1D 10 • 2 HDSELD 
2Q HOSELI 381 

HDSELf T.t,8 z 0UTPUT 

: DSELO. 1 :sAl 
12 DSEU.:I INTEL CORPORATION 

D 

C 

B 

so 
so 
TD 
ID 

50 ,. 
10 
10 11 
10 ,. 

'TITLE ' A 
82062 sax 

'.'~ iii 
'\7 UD2 

7 6 5 4 3 

SIZE I CODE I NUMBER 
B 
DATE SEPT 1984 

2 

REV 
0I2PAL2.DWQ I A 
·SHEET 20F 4 

231133-32 

» 
'U 
I ... 

CD 
N 



(I) 
I 

--I 
f\) 

--I 

'" ~ 
W 
't' 
o 
o 
'" 

8 7 

,B, 

D 2C, 

2D, 

+ 5V 74574! 10 

S~ PR a 19 
STBRDY'1 UB2 ¥ I CK CLR II 

CL~ 1'3 

2ea BCR 

,1., MR 
,B, BDRD 
,C, BOWR 
,B, CS 

C ,B, 1.0-2 

00 

01 

02 

2Bl 
03 

04 
05 
D6 
D7 

B 
7406 

21.1 HDSELO to. 2 
~ 

2A, HOSEL, Ull 3~ 

21., HOSEL2 51>!! UI1 

Ull 

+5V 

""C. 
AI2A'~ 

21.1 OSELO. , 

8 7 

6 

,:r.;; 
'21 UB3 

7450B 

35 BRDY 
2 BCR 24 

WG 
1 

BCS 33 
RWC 

LL INTRa STEP 
27 

5 MR DIR 
26 

6 
RD WCLK 

25 
7 WR 
8 29 CS INDEX 

~ BDRO 3' TRKOO 
AD 9 

AD SC 
32 

~ 
30 

A' WR FAULT 
A2 " 1.2 DRDY 

28 
19 

DO B2062 
'8 0' WO 2' 

'7 02 RC 
39 

'6 D3 RD 
37 

15 D4 RG 
38 

'4 05 ORUN 
34 

'3 D6 22 
LATE 

'2 D7 23 
EARLY 

UF3 UF3 

~ 
2G 1YO 
10 1Yl 
2C lY2 

lC 
B 
A 

UC3 
6 

" 

5 4 3 

rWGEN 484 

i~ 74LS04 ,7!'",0 '1.1 MR 1 UH, 8 ,iO;: '0 

r ......... 9~068 ttiDl ~3 
"UI1 '1~406 '0 

"'UI1 ".!:40~ 12 

WCLK 4B6 .... UI' 
+ V 

l4LS_l~ rwv-
7~~ UKI r-"N'r" ~ 
~ 7:LS'~ ~..NVI.-

I 14~s~a UK' ~ 

5'0 

WROATA ~ U':(, 1~~'~1 ~-J..Nv-PULWP 

~ 330 
RO CLK 4CI UK' 

7220 UL3 
RD DATA 4C8 ~ 
RD GATE 4C8 
DRUN 40' 
EARLY 4B8 

LATE 4B8 

HOD '4 HOD '41""""1 
H01'8 

HD2 4 

74D7 

2 

WG6 

RWC2 

STEP 24 

DlR IN 34 

BDRa BDRa 2D8 
INTRa 

BCS 

Rwe 

r0-

2D8 

,ea 

41.8 

7 
INDEX 20"';';' 

TRACK 000'0 

SEEK COMPLETE 8 

WRITE FAULT 12 

READY 22 

'-:;r 

D 

c 

B 

OSD 26 1.(>2 
7407 

DS'28 UD3 3t>4 
7407 U03 DS230 1t>& 

7407 
DS332 U03 9-1> I 

U03 

5 4 

:I, 

3 

INTEL CORPORATION 

I TITLE IA 
82082 SBX 

NUMBER 

SEPT 1884 

2 

REV 
082PAL3.0WG I A 

SHEET 3 OF 4 

231133-33 

:t­
"a 
I .... 

CD 
N 



'l' 
-J 
I\.) 
(Xl 

~ 
c;; 
'" 6 
2 

8 I 7 I 
+5Y .. PLl 

;.5k 1 ~;~k 
o 

T.D1ut 
T.01uF 

-

6 i 5 

1 uF 

~ 4 

+5Y 
1""1 

RP3 

I 3 I 2 

t--t-4~WIo--I+5Y 

PUP1 3 5 26LS32 

ClK 20 10MHz 4A8 UG2 OUTD IND+ 2 
MFM 19 4 B 265n. 13 OUTC IND-

ClR 14 

3 
... +---.....1 

"1k 1% +5Y 011 
cl V 9 

3B1 RD GATE 11 

I 

DRUN 3B1 

3B1 RO K 3B1 ~ RP3 1 +5Y 
-I3B1 1- RP2 745151 .... ~ J2 

28lS31 
D7 

11 

6 t:!:1INC 
381 WR DATA 

1 RP2 
---JtI',..,..,.~~-&'::..I 

B 13Bl EARLY 

1 RP2 

12 ns 

t!-

10 +12 n. 

~~ M .... 

wr ~INO OUTA+i-
OUTA- 3 
OUTD- 13 
OUTD+ 14 

INB OUTB+ .... 6_.:::.1 
INA OUTB-_8_~ 

D 

I-

C 

t-

IB 

-I 4A610MHZ B 3C4 9 C 
UK2 

___ ~.1 EN OUTC- 11 13 

EN Ul2 0UTC+ 10 14 I-

OUT 
A I UF1 1Ca.4Ba 

20MHz 405 

301 RWC 

a 7 I 8- I 5 T 

STB 

-~7 

4 I 

INTEL CORPORATION 
I IA 
TITLE 82062 sax 

3 2 

231133-34 

REY 
A 

l> 
"U . .... 
co 
II) 



UPI·452 
CHMOS SINGLE CHIP SLAVE MICROCONTROLLER 

83452 - 8K X 8 Mask Programmable Internal ROM 

87452 - 8K X Internal EPROM 

80452 - External ROM/EPROM 

• 83452187452/80452:1.6 to 16 MHz Clock • Two 16-Bit Timer/Counters 
Rate • Boolean Processor 

• Software Compatible with the MCS-51 • Bit Addressable RAM 
Family 

128-Byte Bi-Directional FIFO Slave • 8 Interrupt Sources • Interface • Programmable Full Duplex Serial 

Two DMA Channels 
Channel • 

256 x 8-Bit Internal RAM • 64K Program Memory Space • 
34 Additional Special Function • 64K Data Memory Space • Registers • 68-Pin PGA 

• 40 Programmable I/O Lines 
(See Packaging Spec .• Order: # 231369) 

The Intel 83452/87452/80452 Universal Peripheral Interface, UPITM-452, is a 68 pin CHMOS Microcontroller 
with a sophisticated bi-directional FIFO buffer interface on the slave bus and a two channel DMA processor 
on-chip. The UPI-452 is the newest member of Intel's UPI family of products. It is a general-purpose slave 
microcontroller that allows the designer to grow a customized interface solution. 

The UPI-452 contains a complete 80C51 CPU core with twice the on-chip data and program memory. The 
sophisticated slave FIFO module acts as a buffer between the UPI-452 internal CPU and the external host 
CPU. To both the external host and the internal CPU, the FIFO module looks like a bi-directional bottomless 
buffer that can both read and write data. The FIFO manages the transfer of data independent of the UPI-452 
core CPU and generates an interrupt or DMA request to either CPU, host or internal, as a FIFO service 
request. 

The FIFO consists of two channels:the Input FIFO and the Output FIFO. The division of the FIFO module 
array, 128 bytes, between Input channel and Output channel is programmable by the user. Each FIFO byte 
has an additional ninth bit to distinguish between a data byte and a Data Stream Command byte. Additionally, 
Immediate Commands allow direct, interrupt drive, bi-directional communication between the UPI-452 internal 
CPU and external host CPU, bypassing the FIFO. 

The on-chip DMA processor allows high speed data transfers from one writeable memory space to another. 
As many as 64K bytes can be transferred in a single DMA operation. Three distinct memory spaces may be 
used in DMA operations; Internal Data Memory, External Data Memory, and the Special Function Registers. 

Like the 80C51, the CHMOS UPI-452 has Normal, Idle and Power Down Modes. 

6-729 
November 1985 

Order Number: 231428-001 



> 

'i' "'I "'I >"I~~ N tn 1"'"1 0 

." 

r - jill 
c" 
c ... 
CD ..... 

" z ~,..::j~(II~ .....z!:::u> 
~o5~~ 

» ... 
n 
::. 
CD 0> n 

..!.J -c Co) ... 0 !!!.. 
III 
0" 
n 
;II; 

C 
iii" 
cc 
iil 
3 

@) 

g 
o 
• 

li: 
o 
00 c:'" ,Q 
_z 
~~ _"'z 

~I !i 0 :ti 
~~~~ 

- - - - - - - - - ~ ---'Hr,

I. " r--I+----------1t---{F-~:ll I~ iii i
FIFO FIFO FIFO HOST - I

C;r~~~L MODULE C~~-::~iL INT~~~ACE I
I

~~~ I 

IMMEDIATE 
COMMAND 

HSTAT I L.-..;;;;;;o;.;......1 
.t; ';lIo. I 
1 i I 

a..::.;;.::..&.::.:;.;. ,;::..I, i! I 

+~---i~-"' 

DMA TIMING 
AND CONTROL 

Sm"S 
DCONO DCONl 
SARO SAR 1 

DARO DAR 1 
BCRO BCR 1 

HOST DMA 
AND 

INTERRUPT 
REQUEST 
CONTROL 

r--------------------
~ 

l 

c: 
"U 
7"" 
.j:o, 
(II 
N 

~ 
@ 

~ 
~ 
© 
Iiiiil 

~ 
'liiI 
© 
~ 
~ 
~ 
C::3 
© 
~ 



PSEN 

ALE 

EA 
RST 

UPI·452 

r------------------------, 

z 
Q", 
... ", 

u'" 
:::>~ 

"''' ...... 
"'''' " 

peON seON TMOD TeON 

Tl1 TL 1 

-lQ L-____________________________________________________ ~~ ...... 
L-------------------------------------------------------~~~i 

----------------~ 

Figure 1. Architectural Block Diagram (Continued) 

6-731 

231428-2 

" N .. 
I 
o 

~ 



inter UPI-452 

UPI MICROCONTROLLER FAMIL V 

The UPI-452 joins the current members of the UPI 
microcontroller family. UPI's are derivatives of the 
MCSTM family of microcontrollers. Because of their 
on-chip system bus interface, UPI's are designed to 
be system bus "slaves", while their microcontroller 
counterparts are intended as system bus "masters". 
In addition to the UPI-452, which is based on the 
MCS-51 family, Intel makes the following UPI micro­
controllers: 

These UPI Microcontrollers are fully supported by 
Intel's EPROM programmers (iUP-201) and develop­
ment tools (ICE, ASM and PLM). 

UPI Family MCSFamily 
(Slave (Master 

Configuration) Configuration) 

8041A 8048AH 

8741AH 8748H 

.8042 8049AH 

8742H 8749H 

8042A -
8742AH -
83452 80C51 

87452 80C51 

_68 -66 -64 -62 -60 -58 -56 -54 -52 

- 1 - 2 -67 -65 -63 -61 _59 -57 -55 -53 -51 

- 3 _ 4 -50 -49 

- 5 - 6 -48 -47 

- 7 - 8 -46 -45 

- 9 -10 -44 -43 

-11 -12 -42 -41 

-13 -14 -40 -39 

-15 -16 -38 -37 

-17 -19 -21 -23 _25 -27 -29 -31 -33 -36 -35 

-18 -20 -22 -24 -26 -28 -30 -32 -34 

231428-3 

Packaging 

The first UPI-452 versions to be offered will be the 
87452 (EPROM) and 83452 (ROM-Less). 

The 80452 comes in a 68-pin PGA (Pin Grid Array) 
package, while the 87452 will be offered in a hybrid 
package. This hybrid package will consist of the 
standard 68-pin PGA package with a 2764A EPROM 
soldered on top (see Figure 2). These two packages 
allow designers to use either on-chip EPROM or ex­
ternal memory for their initial designs. The 83452 
(ROM version) will come in the standard 68-pin PGA 
package. 

RAM ROM EPROM 
Speed 

(Bytes) (Bytes) (Bytes) 

6MHz 64 1K -
6MHz 64 - 1K 

12 MHz 128 2K -
12MHz 128 - 2K 

12 MHz 256 2K -
12 MHz 256 - 2K 

16 MHz 256 8K -
16MHz 256 - 8K 

231428-4 

Figure 2a_ Top View of UPI-452 68-Pin Package 

6-732 



SWEDGE PIN 
(4) PLes 

PINS B2. 81 D, 
K2,AND Kl0 

PIN # 1 ID 
CORNER 

UPI-452 

t---------1.15o~.010 SQ.--------I 

.025 ~IN 
TYP 

" a 
g~ 

"' .. 
l.F==::j=j=====*=:j=::::f==f::=:j=~~-.575:t .010 

@@@@ t--{. &l---t -t----l--#- .500 ~ .003 

@ CO) @ @ 
@@ 
@@ 
@@ 

! 

I 

@ 
@ 

----.----

@@ 
@@ 
@@ 
@@@@@ 

@@@ 

+.008 
.018 

-.003 

I 
i 

@@ 
@@ 
@@ 

@@@@@ 
@@@@ 

! 
SEATING PLANE! 

.0SOi .005 

........L...~_~ 

231428-6 

Figure 2b. Bottom View of UPI·452 S8·Pin PGA Package 

6-733 

.400:t .003 

.300i .003 

.200~ .003 

.100:1: .003 

231428-5 



inter UPI-452 

UPI-452 PIN DESCRIPTIONS 
Symbol Pin # Type Name and Function 

Vss 9/43 I Circuit Ground. 

Vee 60 I + 5V power supply during normal, idle, power down, programming 
and verification operation. 

XTAL1 38 I Input to the oscillator's high gain amplifier. A crystal or external 
source can be used. 

XTAL2 39 0 Output from the high gain amplifier. 

PortO I/O Port 0 is an 8-bit open drain bi-directionall/O port. It is also the 
(ADO-AD7) multiplexed low-order address and data local expansion bus during 
PO.O 8 accesses to external memory. It is used for data input and output 

.1 10 during programming and verification. External pull ups are required 

.2 11 during program verification. Port 0 can sink/source eight LS TTL 

.3 12 inputs . 

. 4 13 

.5 14 

.6 15 
PO.7 16 

Port 1 I/O Port 1 is an 8-bit quasi-bi-directional I/O port. It is used for low-order 
(AO-A7) address byte during programming and verification. Port 1 can sink/ 
(HLD, HLDA) source four LS TTL inputs. Pins P1.5 and P1.6 are multiplexed with 
P1.0 7 HLD and HLDA respectively whose functions are defined as below: 

.1 6 Port Pin Alternate Function 

.2 5 P1.0-P1.4 . (No Special Function) 

.3 4 P1.5 HLD -Parallel interface's hold 

.4 3 input/output Signal 

.5 2 P1.6 HLDA -Parallel interface's hold 

.6 1 acknowledge output 
P1.7 68 P1.7 (No Special Function) 
Port 2 I/O Port 2 is an 8-bit quasi-bi-directionall/O port. It also emits the high-
(A8-A15) order 8 bits of address when accessing local expansion bus 
P2.0 29 external memory (or during 87452 programming and verification) . 

. 1 28 Port 2 can sink/source four LS TTL inputs . 

. 2 27 

.3 25 

.4 24 

.5 23 

.6 22 

.7 21 

Port 3 I/O Port 3 is an 8-bit quasi-bi-directionall/O port. It is also multiplexed 
P3.0 67 with the interrupt, timer, local serial channel, RD/ and WR/ 

.1 66 functions that are used by various options. The output latch 

.2 65 corresponding to a Special Function Register must be programmed 

.3 64 to a one (1) for that function to operate. Port 3 can sink/source four 

.4 63 LS TTL inputs. The alternate functions assigned to the pins of Port 

.5 62 3 are as follows: 

.6 61 Port Pin Alternate Function 
P3.7 59 P3.0 RxD - Serial input port 

P3.1 TxD - Serial output port 
P3.2 INTO - Interrupt 0 Input 
P3.3 INT1 - Interrupt 1 Input 
P3.4 TO -Input to counter 0 
P3.5 T1 -Input to counter 1 
P3.6 WR/ - The write control signal latches the 

data from Port 0 outputs into the 
External Data Memory on the 
local bus. 

P3.7 RD/ - The read control signal latches the 
data from Port 0 outputs on the 
local bus. 

6-734 



inter UPI-452 

UPI-452 PIN DESCRIPTIONS (Continued) 

Symbol Pin # Type Name and Function 

Port 4 I/O Port 4 is an 8-bit quasi-bi-directionall/O port. Port 4 can sink/source 
P4.0 30 four TTL inputs. It is also used as the control signals during EPROM 

.1 31 programming and verification as follows: 

.2 32 Port Pin Alternate Function 

.3 33 P4.5 '1' during program and verify 

.4 34 P4.6 '0' during program and verify 

.5 35 P4.7 '0' during verify - used as output enable 

.6 36 '1' during programming w/ ALE = 0 

.7 37 Note: see Programming and Verification Characteristics in AC/DC 
Specification section. 

RST 20 I A high level on this pin for two machine cycles while the oscillator is 
running resets the device. An internal pulldown resistor permits Power-
on reset using only a capacitor connected to Vee. 
This pin does not receive the power down voltage as is the case for 
HMOS MCS-51 family members. This function has been transferred to 
the Vee pin. 

ALE/PGM 18 I/O Provides Address Latch Enable output used for latching the address 
into external memory during normal operation. Receives the program 
pulse input during EPROM programming. ALE can sink/source eight LS 
TTL inputs. 

PSEN 19 0 The Program Store Enable output is a control signal that enables the 
external Program Memory to the bus during normal fetch operation. 
PSEN can sink/source eight LS TTL inputs. 

EA 17 I When held at TTL high level, the UPI-452 executes instructions from the 
internal ROM/EPROM when the PC is less than 8192 (8K, 200H). When 
held at a TTL low level, the UPI-452 fetches all instructions from 
external Program Memory. 

DBO 58 I/O Slave Data Bus is an 8-bit bi-directional bus. It is used to transfer data 
DB1 57 and commands between the UPI-452 and the host processor. This bus 
DB2 56 can sink/source eight LS TTL inputs. 
DB3 55 
DB4 54 
DB5 53 
DB6 52 
DB7 51 

CS 44 I This pin is the Chip Select of the UPI-452. 

AO 40 These three address lines are used to interface with the host system. 
A1 41 They define the UPI-452 operations. The interface is compatible with 
A2 42 the Intel microprocessors and the MUL TIBUS. 

READ 46 I This pin is the read strobe from the host CPU. Activating this pin causes 
the UPI-452 to place the contents of the Output FIFO (either a 
command or data) or the Host Status/Control Special Function Register 
on the Slave Data Bus. 

WRITE 47 I This pin is the write strobe from the host. Activating this pin will cause 
the value on the Slave Data Bus to be written to the Input FIFO as a 
command or data. 

DROIN/ 49 0 This pin requests an input transfer whenever the Input Channel requires 
INTROIN data. 

DROOUT/ 48 0 This output pin requests an output transfer whenever the Output 
INTROOUT Channel requires service. If the external host to UPI-452 DMA is 

enabled, and a Data Stream Command is at the Output FIFO, DROOUT 
is deactivated and INTRO is activated (see 'GENERAL PURPOSE DMA 
CHANNELS' section). 

6-735 



intJ UPI·452 

UPI·452 PIN DESCRIPTIONS (Continued) 

Symbol Pin # Type Name and Function 
INTRO 50 0 This output pin is used to interrupt the host processor when an 

Immediate Command Out or an error condition is encountered. It is 
also used to interrupt the host processor when the FIFO requests 
service if the DMA is disabled and INTROIN and INTROOUT are 
not used. 

DACK 45 I This pin is the DMA acknowledge for the Slave Data Bus Input and 
Output Channels. When activated, a write command will cause the 
data on the Slave Data Bus to be written as data to the Input 
Channel (to the Input FIFO). A read command will cause the Output 
Channel to output data (from the Output FIFO) on to the Slave Data 
Bus. This pin should be driven high (+ 5V) in systems which do not 
have a DMA controller (see Address Decoding). 

VeelVpp 26 I + 5V power supply during operation. The Vee pin receives the 
+ 12V EPROM programming and verification supply voltage. It is 
also the standby power pin for power down mode. 

ARCHITECTURAL OVERVIEW 

Introduction 

The UPI-452 slave microcontroller is essentially an 
80C51 with double the program and data memory, a 
slave interface which allows it to be connected di­
rectly to the host system bus as a peripheral, a FIFO 
buffer module, a two channel DMA processor, and a 
fifth I/O port (Figure 3). The UPI-452 retains all of 
the 80C51 architecture, and is fully compatible with 
the MCS-51 instruction set. . 

The Special Function Register (SFR) interface con­
cept introduced in the MCS-51 family of microcon­
trollers has been expanded in the UPI-452. To the 
25 Special Function Registers of the MCS-51, the 
UPI-452 adds 34 more. These additional Special 
Function Registers, like those of the MCS-51, pro­
vide access to the UPI-452 functional elements in­
cluding the FIFO, DMA and added interrupt capabili­
ties. Several of the 80C51 core Special Function 
Registers have also been expanded to support add­
ed features of the UPI-452. 

This data sheet describes the unique features of the 
UPI-452. Refer to the 80C51 data sheet for a de­
scription of the UPI-452's core CPU functional 
blocks including; 

- Timers/Counters 

-1/0 Ports 

- Interrupt timing and control (other than FIFO and 
DMAinterrupts) 

- Serial Channel 

- Local Expansion Bus 

- Program/Data Memory structure 

- Power-Saving Modes of Operation • 

- CHMOS Features 

- Instruction Set 

• except 87452 hybrid package 

Figure 3 contains a conceptual block diagram olthe 
UPI-452. Figure 4 provides a functional block dia­
gram. 

231428-7 

Figure 3. UPI-452 Conceptual Block Diagram 

6-736 



UPI·452 

OPTIONAL FEATURES: 
-SERIAL CHANNEL I 

-EXTERNAL INTERRUPTS I 

-HLD!HLD ACK 
-LOCAL EXPANSION 

BUS 
-RD 
-WR 

-EXTERNAL 
COUNTER INPUT 

I -EPROM PROGRAM 
I AND VERIFY 
I CONTROL 

231428-8 

Figure 4. UPI·452 Functional Block Diagram 

FIFO Buffer Interface 

A unique feature of the UPI-452 is the incorporation 
of a 128 byte FIFO array at the host-slave interface. 
The FIFO allows asynchronous bi-directional trans­
fers between the host CPU and the internal CPU. 
The division of the 128 bytes between Input and 
Output channels is user programmable allowing 
maximum flexibility. If the entire 128 byte FIFO is 
allocated to the Input channel, a high performance 
Host can transfer up to 128 bytes at one time, then 
dedicate its resources to other functions while the 
internal CPU processes the data in the FIFO. Vari­
ous handshake signals allow the external Host to 
operate independently and without frequent monitor­
ing of the UPI-452 internal CPU. The FIFO Buffer 
insures that the slave processor receives data in the 
same order that it was sent by the host without the 
need to keep track of addresses. Three slave bus 
interface handshake methods are supported by the 
UPI-452: DMA, Interrupt and Polled. 

The FIFO is nine bits wide. The ninth bit acts as a 
command/data flag. Commands written to the FIFO 
by either the host or internal CPU are called Data 
Stream Commands or DSCs. DSCs are written to 
the input FIFO by the Host via a unique external 
address. DSCs are written to the output FIFO by the 
internal CPU via the COMMAND OUT Special Func­
tion Register (SFR). When encountered by the host 
or internal CPU a Data Stream Command can be 
used as an address vector to user defined service 
routines. DSCs provide synchronization of data and 
commands between the Host and internal CPU. 

FIFO PROGRAMMABLE FEATURES 

Size of Input/Output Channels 

The 128 bytes of FIFO space can be allocated be­
tween the Input and Output channels via the Chan­
nel Boundary Pointer (CBP) SFR. This register con­
tains the number of address locations assigned to 
the Input channel. The remaining address locations 
are automatically assigned to the Output FIFO. The 
CBP SFR can only be programmed by the internal 
CPU during Freeze Mode (See FIFO-External Host 
Interface Freeze Mode description). The CBP is ini­
tialized to 40H (64 bytes) upon reset, and can range 
from OOH-7FH. 

The number in the Channel Boundary Pointer SFR is 
actually the first address location of the Output 
FIFO. Writing to the CBP SFR reassigns the Input 
and Output FIFO address space. Whenever the CBP 
is written, the Input FIFO pointers are reset to zero 
and the Output FIFO pointers are set to the value in 
the CBP SFR. 

All of the FIFO space may be assigned to one chan­
nel. In such a situation the other channel's data path 
consists of a single SFR (FIFO IN/COMMAND IN or 
FIFO OUT/COMMAND OUT SFR) location. 

6-737 



intJ UPI-452 

FIFO Read/Write Pointers 

These normally operate in auto-increment (and auto­
rollover) mode, but can be reassigned by the internal 
CPU during Freeze Mode (See FIFO-External Host 
Interface Freeze Mode description). 

Threshold Register 

The input FIFO Threshold SFR contains the number 
of empty bytes that must be available in the Input 
FIFO to generate a Host interrupt. The Output FIFO 
Threshold SFR contains the number of bytes, data 
and/or DSC(s), that must be in the FIFO before an 
interrupt is generated.The Threshold feature pre­
vents the Host from being interrupted each time the 
FIFO needs to load or unload one byte of data. The 
thresholds, therefore, allow the FIFO's operation to 
be adjusted to the speed of the Host, optimizing the 
overall interface performance. 

Immediate Commands 

The UPI-452 provides, in addition to data and DSCs, 
a third direct means of communication between the 
external host and internal CPUs called Immediate 
Commands. As the name implies, an Immediate 
Command is available to the receiving CPU immedi­
ately, via an interrupt, without being entered into the 
FIFO as are Data Stream Commands. Like Data 
Stream Commands, Immediate Commands are writ­
ten either via a unique external address by the host 
CPU, or via dedicated SFR by the internal CPU to 
the external host CPU. 

The DSC and/or Immediate Command interface 
may be defined as either Interrupt or Polled under 
user program control via the Interrupt Enable (IE) 
and Interrupt Enable Priority (IEP) Special Function 
Registers, for the internal CPU and via the Host 
Control SFR for the external host CPU. 

DMA 

The UPI-452 contains a two channel internal DMA 
controller which allows transfer of data between any 

of the three writeable memory spaces: Internal 
Memory, External Memory and the Special Function 
Register array. The Special Function Register array 
appears as a set of unique dedicated memory ad­
dresses which may be used as either the source or 
destination address of a DMA transfer. Each DMA 
channel is independently programmable via dedicat­
ed Special Function Registers for mode, source and 
destination addresses, and byte count to be trans­
ferred. Each DMA channel has five programmable 
modes: 

- Burst Mode 

- Alternate Cycle Mode 

- External Demand Mode 

- FIFO Demand and Alternate Cycle Mode 

- Serial Port Demand Mode 

A complete description of each mode and DMA op­
eration may be found in the section titled "General 
Purpose DMA Channels". 

FIFO/SLAVE INTERFACE 
FUNCTIONAL DESCRIPTION 

Overview 

The FIFO is a 128 Byte RAM array with recirculating 
pointers to manage the read and write accesses. 
The FIFO consists of an Input and an Output chan­
nel. Access cycles to the FIFO by the internal CPU 
and external Host are interleaved and appear to be 
occurring concurrently to both the internal CPU and 
external Host. Interleaving access cycles ensures 
efficient use of this shared resource. The internal 
CPU accesses the FIFO in the same way it would 
access any of the Special Function Registers e.g., 
direct and register indirect addressing as well as ar­
ithmetric and logical instructions. 

Input FIFO Channel 

The Input FIFO Channel provides for data transfer 
from the external Host to the internal CPU (Figure 5). 
The registers associated with the Input Channel dur­
ing normal operation are listed in Table 1*. 

Table 1. Input FIFO Channel Registers 

Register Name Description 

1) Input Buffer Latch Host CPU Write only 
2) FIFO IN SFR Internal CPU Read only 
3) COMMAND IN SFR Internal CPU Read only 
4) Input FIFO Read Pointer SFR Internal CPU Read only 
5) Input FIFO Write Pointer SFR Internal CPU Read only 
6) Input FIFO Threshold SFR Internal CPU Read only . .. .. See FIFO-EXTERNAL HOST INTERFACE FREEZE MODE section for Freeze Mode SFR characteristics description . 

6-738 



intJ UPI-452 

EXTERNAL 
ADDRESS HOST DATA 

BUS 

INPUT WRITE 
POINTER (ORPR) 

THRESHOLD SFR 

INPUT WRITE 
POINTER (ORPR) 

t: 
CD 

:I: .... 
Z 
Z 

INPUT FIFO 

231428-9 

Figure 5. Input FIFO Channel Functional Block Diagram 

The host CPU writes data and Data Stream Com­
mands into the Input Buffer Latch on the rising edge 
of the external WR signal. External addressing de­
termines whether the byte is a data byte or Data 
Stream Command and the FIFO logic sets the ninth 
bit of the FIFO accordingly as the byte is moved 
from the Input Buffer Latch into the FIFO. A "1" in 
the ninth bit indicates that the incoming byte is a 
Data Stream Command. The internal CPU reads 
data bytes via the FIFO IN SFR, and Data Stream 
Commands via the COMMAND IN SFR. 

A Data Stream Command will generate an interrupt 
to the internal CPU prior to being read and after 
completion of the previous operation. The DSC can 
then be read via the COMMAND IN SFR. Data can 
only be read via the FIFO IN SFR and Data Stream 
Commands via the COMMAND IN SFR. Attempting 
to read Data Stream Commands as data by address­
ing the FIFO IN SFR will result in "OFFH" being 
read, and the Input FIFO Read Pointer will remain 
intact. (This prevents accidental misreading of Data 
Stream Commands.) Attempting to read data as 
Data Stream Commands will have the same conse­
quence. 

The Input FIFO Channel addressing is controlled by 
the Input FIFO Read and Write Pointer SFRs. These 
SFRs are read only registers during normal opera­
tion. However, during Freeze Mode (See FIFO-Ex­
ternal Host Interface Freeze Mode description), the 
internal CPU has write access to them. Any write to 
these registers in normal mode will have no effect. 
The Input Write Pointer SFR contains the address 
location to which datal commands are written from 
the Slave Bus Input/Slave Bus Command registers. 
The write pointer is automatically incremented after 
each write and is reset to zero if equal to the CBP, 
as the Input FIFO operates as a circular buffer. 

If a write is performed on an empty FIFO, the first 
byte is also written into the FIFO IN or COMMAND 
IN SFR. If the Host continues writing while the Input 
FIFO is full, an external interrupt, if enabled, is sent 
to the host to signal the overrun condition. The 
writes are ignored by the FIFO control logic and the 
cycle is terminated. Similarly, an internal CPU read 
of an empty FIFO will cause an underrun error inter­
rupt to be generated to the internal CPU and a value 
of "OFFH" will be read by the internal CPU. 

6-739 



UPI-452 

The Read Pointer SFR holds the address of the next 
byte to be read from the Input FIFO. An Input FIFO 
read operation post-increments the Input Read 
Pointer SFR and loads a new data byte to the FIFO 
IN SFR or a Data Stream Command into the COM­
MAND IN SFR at the end of the read cycle. 

A FIFO Request for Service (via DMA, Interrupt or a 
flag) is generated to the Host whenever more data 
can be written into the Input FIFO. For efficient utili­
zation of the Host, a "threshold" value can be pro­
grammed into the Input FIFO Threshold SFR. The 
range of values of the Input FIFO Threshold SFR 
can be from 0 to (CBP-2). The Request for Service 
Interrupt is generated only after the Input FIFO has 
room to accommodate a threshold number of bytes 
or more. The threshold is equal to the total num-

ber of bytes in the Input FIFO minus the number of 
bytes programmed in the Input FIFO Threshold SFR. 
With this feature the Host is assured that it can write 
at least a threshold number of bytes to the Input 
FIFO channel without worrying about an overrun 
condition. Once the Request for Service is generat­
ed it remains active until the Input FIFO becomes 
full. 

Output FIFO Channel 

The Output FIFO Channel provides data transfer 
from the UPI-452 internal CPU to the external Host 
(Figure 6). 

The registers associated with the Output Channel 
during normal operation are listed in Table 2*. 

OUTPUT FIFO 

231428-10 

Figure 6. Output FIFO Channel Functional Block Diagram 

Table 2. Output FIFO Channel Registers 

Register Name Description 

1) Output Buffer Latch Host CPU Read only 
2) FIFO OUT SFR Internal CPU Read and Write 
3) COMMAND OUT SFR Internal CPU Read and Write 
4) Output FIFO Read Pointer SFR Internal CPU Read only 
5) Output FIFO Write Pointer SFR Internal CPU Read only 
6) Output FIFO Threshold SFR Internal CPU Read only 

'See "FIFO·EXTERNAL HOST INTERFACE FREEZE MODE" section for Freeze Mode register characteristics description. 

6-740 



inter UPI·452 

The UPI-452 internal CPU transfers data to the Out­
put FIFO via the FIFO OUT SFR and commands via 
the COMMAND OUT SFR. If the byte is written to 
the COMMAND OUT SFR, the ninth bit is automati­
cally set (= 1) to indicate a Data Stream Command. 
If the byte is written to the FIFO OUT SFR the ninth 
bit is cleared (= 0). Thus the FIFO OUT and COM­
MAND OUT SFRs are the same but the address de­
termines whether the byte entered in the FIFO is a 
DSC or data byte. 

The Output FIFO preloads a byte into the Output 
Buffer Latch. When the Host issues a RD/ signal, 
the data is immediately read from the Output Buffer 
Latch. The next data byte is then loaded into the 
Output Buffer Latch and an interrupt, if enabled, is 
generated if the byte is a DSC (ninth bit is set). The 
operation is carefully timed such that an interrupt 
can be generated in time for it to be recognized by 
the Host before its next read instruction. Internal 
CPU write and external Host read operations are in­
terleaved at the FIFO so that they appear to be oc­
curring concurrently. 

The Output FIFO read and write pointer operation is 
the same as for the Input Channel. Writing to the 
FIFO OUT or COMMAND OUT SFRs will increment 
the Output Write Pointer SFR but reading from it will 
leave the write pointer unchanged. A rollover of the 
Output FIFO Write Pointer causes the pointer to be 
reset to the value in the Channel Boundary Pointer 
(CBP) SFR. 

If the external host attempts to read a Data Stream 
Command as a data byte it will result in invalid data 
being read. The DSC is not lost because the invalid 
read does not increment the pointer. Similarly at­
tempting to read a data byte as a Data Stream Com­
mand has the same result. 

A Request for Service is generated to the external 
Host under the following two conditions: 

1.) Whenever the internal CPU has written a thresh­
old number of bytes or more into the Output FIFO 
(threshold = (OTHR) + 1). The threshold num­
ber should be chosen such that the bus latency 
time for the external Host does not result in a 
FIFO overrun error condition on the internal CPU 
side. The threshold limit should be large enough 
to make a bus request by the UPI-452 to the ex­
ternal host CPU worthwhile. Once a request for 
service is generated, the request remains active 
until the Output FIFO becomes empty. The range 
of values of the FIFO Output Threshold (OTHR) 
SFR is from 1 to the Output FIFO Size. The 
threshold number can be programmed via the 
OTHR SFR. 

6-741 

2.) The second type of Request for Service is called 
"Flush Mode" and occurs when the internal CPU 
writes a Data Stream Command into the Output 
FIFO. Its purpose is to ensure that a data block 
entered into the Output FIFO, which is less than 
the programmed threshold, will generate a Re­
quest for Service interrupt, if enabled, and be 
read, or "Flushed" from the Output FIFO, by the 
external host CPU regardless of the status of the 
OTHR SFR. 

Immediate Commands 

Immediate Commands provide direct communica­
tion between the external Host and UPI-452. Unlike 
Data Stream Commands which are entered into the 
FIFO, the Immediate Command is available to the 
receiving CPU directly, bypassing the FIFO. The Im­
mediate Command can serve as a program vector 
pointing into a jump table in the recipients software. 
Immediate Command Interrupts are generated, if en­
abled, and a bit in the appropriate Status Register is 
set when an Immediate Command is input or output. 
A similar bit is provided to acknowledge when an 
Immediate Command has been read and whether 
the register is available to receive another com­
mand. The bits are reset when the Immediate Com­
mands are read. Two Special Function Registers are 
dedicated to the Immediate Command interface. Ex­
ternal addressing determines whether the Host is 
accessing the Input FIFO or the Immediate Com­
mand IN (IMIN) SFR. The internal CPU writes Imme­
diate Commands to the Immediate Command OUT 
(IMOUT) SFR. 

Both processors have the ability to enable or disable 
Immediate Command Interrupts. By disabling the in­
terrupt, the recipient of the Immediate Command 
can poll the status SFR and read the Immediate 
Command at its convenience. Immediate Com­
mands should only be written when the appropriate 
Immediate Command SFR is empty (as indicated in 
the appropriate status SFR:HCON/SCON). Similarly, 
the Immediate Command SFR should only be read 
when there is data in the Register. 

The flowcharts in Figure 7a and 7b illustrate the 
proper handshake mechanisms between the exter­
nal Host and internal CPU when handling Immediate 
Commands. 



UPI-452 

r----------------

, 
• OPERATES 

INT~RRUPT 

, 

, 
~ , , 

.IC 
GENERATES 
INT~RRUPT 

, , 

SET 

SET 

231428-11 

Figure 7a. Handshake Mechanisms for Handling 
Immediate Command IN Flowchart 

6-742 

SET 

SET 

Q 
\::.J 

-... 
OPERATES 
INT~RRUPT 

, 

, 
~ , , 

.IC 
OPERATES 
INTERRUPT , , 

,,------
231428-12 

Figure 7b. Handshake Mechanisms for Handling 
Immediate Command OUT Flowchart 



UPI-452 

HOST & SLAVE INTERFACE SPECIAL FUNCTION REGISTERS 

Slave Interface Special Function Registers 

The Internal CPU interfaces with the FIFO slave module via the following registers: 

1) Mode Special Function Register (MODE) 

2) Slave Control Special Function Register (SLCON) 

3) Slave Status Special Function Register (SSTAT) 

Each register resides in the SFR Array and is accessible via all direct addressing modes except bit. 

1) MODE Special Function Register (MODE) 

The MODE SFR provides the primary control of the external host-FIFO interface. It is included in the SFR 
Array so that the internal CPU can configure the external host-FIFO interface should the user decide that the 
UPI-452 slave initialize itself independent of the external host CPU. 

The MODE SFR can be directly modified by the internal CPU through direct address instructions. It can also be 
indirectly modified by the external host CPU by setting up a MODE SFR service routine in the UPI-452 program 
memory and having the host issue a Command, either Immediate or DSC, to vector to that routine. 

Symbolic Physical 
Address Address 

MODE MD6 MD5 MD4 OF9H 

(MSB) (LSB) 
Status On Reset: 

1* o o o 1* 1* 1* 1* 

MD7 (reserved)" 

MD6 Request for Serivce to external CPU via; 

1 = DMA (DRQIN/DRQOUT) request to external host when the Input or Output FIFO channel re-
quests service . 

o = Interrupt (INTRQIN/INTRQOUT or INTRQ) to external host when the Input or Output FIFO 
channel requests service or a DSC is encountered in the I/O Buffer Latch 

MD5 Configure DRQINIINTRQIN and DRQOUT IINTRQOUT to be either; 

1 = Actively driven in both directions 

o = Open drain (tri-state) 

MD4 Configure INTRQ to be either; 

1 = Actively driven in both directions 

o = Open drain (tri-state) 

MD3 (reserved) •• 

MD2 (reserved)" 
MD1 - (reserved) •• 

MOO (reserved)" 

2) Slave Control SFR (SLCON) 

The Slave Control SFR is used to configure the FIFO-internal CPU interface. All interrupts are to the internal 
CPU. 

6-743 



UPI·452 

Symbolic Physical 
Address Address 

SLCON IFI OFI ICII ICOI FRZ IFRS OFRS OE8H 

(MSB) (LSB) 
Status On Reset: 

0 0 0 0 0 l' 0 I 0 

IFI Enable Input FIFO Interrupt (due to Underrun Error Condition, Data Stream Command or Request 
Service) 

1 = Enable 

0= Disable 

OFI Enable Output FIFO Interrupt (due to Overrun Error Condition or Requet Service) 

1 = Enable 

0= Disable 

Note: If the DMA is configured to serivce a FIFO demand, then the Request for Service Interrupt is 
not generated. 

ICII Generate Interrupt when a command is written to the Immediate Command in Register 

1 = Enable 

0= Disable 

ICOI Generate Interrupt when Immediate Command Out Register is Available 

1 = Enable 

o = Disable 

FRZ Enable Freeze Mode 

1 = Normal operation 

o = Freeze Mode 

SC2 (reserved) •• 

IFRS Type of Input FIFO Channel Request for Service 

1 = Request when Input FIFO not empty 

o = Request when Input FIFO full 

OFRS Type of Output FIFO Channel Request for Service 

1 = Request when Output FIFO not full 

o = Channel Request when Output FIFO empty 

3) Slave Status SFR (SST AT) 

The bits in the Slave Status SFR reflect the status of the FIFO-internal CPU interface. It can be read during an 
internal interrupt service routine to determine the nature of the interrupt or read during a polling sequence to 
determine a course of action. 

Symbolic 
Address 

SSTAT 

(MSB) 

o o o 
(LSB) 

6-744 

Physical 
Address 

OE9H 



inter UPI·452 

SST7 Output FIFO Overrun Error Condition 

1 = No Error 

o = Error (latched until Slave Status SFR is read) 

SST6 Immediate Command Out Register Status 

1 = Full (Le. Host CPU has not read previous Immediate Command Out sent by internal CPU) 

o = Available 

SST5 Freeze Mode Status 

1 = Normal Operation 

o = Freeze Mode in Progress 

SST4 Output FIFO Request for Service Flag 

1 = Output FIFO does not request service 

o = Output FIFO requests service 

SST3 Input FIFO Underrun Error Condition Flag 

1 = No Underrun Error 

o = Underrun Error (latched until Slave Status SFR is read) 

SST2 Immediate Command In SFR Status 

1 = Empty 

o = Immediate Command received from host CPU 

SST1 Data Stream Command/Data at Input FIFO Flag 

1 = Data (not DSC) 

o = DSC (at COMMAND IN SFR) 

(Note: Only if SSTO = 0, if SSTO = 1 then undetermined) 

SSTO Input FIFO Request For Service Flag 

1 = Input FIFO Does Not Request Service 

o = Input FIFO Request for Service 

NOTES: 
• A '1' will be read from a. SFR reserved location. 

"'reserved'-these locations are reserved for future use by Intel Corporation. 

EXTERNAL HOST INTERFACE SPECIAL FUNCTION REGISTERS 

The external host CPU has direct access to the following SFRs: 

1) Host Control Special Function Register 

2) Host Status Special Function Register 

It can also access other SFRs by commanding the internal CPU to change them accordingly via Data Stream 
Commands or Immediate Commands. The protocol for implementing this is entirely determined by the user. 

1) Host Control SFR (HCON) 

By writing to the Host Control SFR, the host can enable or disable FIFO interrupts and DMA requests and can 
reset the UPI-452. 

6-745 



inter UPI·452 ~@W~OO©[§ OOO~@OOIMl~jjO@OO 

Symbolic Physical 
Address Address 

HCON HC7 HC6 HCS HC4 HC3 HC1 OE7H 

(MSB) (LSB) 
Status On Reset: 

0 0 0 0 0 1" 0 . 1* I 
HC7 Enable Output FIFO Interrupt due to Underrun Error Condition, Data Stream Command or Service 

Request 

1 = Enable 

0= Disable 

HC6 Enable Input FIFO Interrupt due to Overrun Error Condition, or Service Request 

1 = Enable 

0= Disable 

HCS Enable the generation of the Interrupt due to Immediate Command Out being present 

1 = Enable 

0= Disable 

HC4 Enable the Interrupt due to the Immediate Command in Register being Available for a new Immediate 
Command byte 
1 =·Enable 

0= Disable 

HC3 Reset UPI-4S2 

1 = Software RESET 

o = Normal Operation 

HC2 (reserved)"" 

HC1 Select between INTRQ and INTRQIN/INTRQOUT as Request for Service interrupt signal when DMA is 
disabled 

1 = INTRQ 

o = INTRQIN or INTRQOUT 

HCO (reserved)'" 

2) Host Status SFR (HSTAT) 

The Host Status SFR provides information on the FIFO-Host Interface and can be used to. determine the 
source of an external interrupt during polling. Like the Slave Status SFR, the Host Status SFR reflects the 
current status of the FIFO-external host interface. 

Symbolic 
Address 

HSTAT 

-- Output FIFO Status -+ 
Status On Reset: 

(MSB) 

6-746 

o 0/1* 

(LSB) 

Physical 
Address 

OE6H 



UPI-452 

HST7 Output FIFO Underrun Error Condition 

1 = No Underrun Error 

o = Underrun Error (latched until Host 
Status Register is read) 

HST6 Immediate Command Out SFR Status 

1 = Empty 

o = Immediate Command Present 

HST5 Data Stream Command/Data at Output 
FIFO Status 

1 = Data (not DSC) 

o = DSC (present at Output FIFO COM­
MAND OUT SFR) 

(Note: Only if HST4 = 0, if HST 4 = 1 then 
undetermined) 

HST4 Output FIFO Request for Service Statue 

1 = No Request for Service 

o = Output FIFO Request for Service due 
to; 

a. Output FIFO containing the threshold 
number of bytes or more 

b. Internal CPU sending a block of data ter­
minated by a DSC (DSC alone clears 
upon being read) 

HST3 InPut FIFO Overrun Error Condition 

1 = No Overrun Error 

o = Overrun Error (latched until Host 
Status Register is read) 

HST2 Immediate Command In SFR Status 

1 = Full (Le. Internal CPU has not read pre­
vious Immediate Command sent by Host) 

0= Empty 

Reset value; 

'0' - if read by the external Host 

'1' - if read by internal CPU (reads shadow 
latch - see Freeze Mode description) 

HST1 Freeze Mode Status 

1 = Freeze mode in progress. 

(In freeze mode, the bits of the Host Status 
SFR are forced to a '1' initially to prevent 
the external Host from attempting to access 
the FIFO. The definition of the Host Status 
SFR bits during freeze mode can be found 
in Freeze Mode description) 

o = Normal Operation 

HSTO Input FIFO Request Service Status 

Note: 

1 = Input FIFO does not request service 

o = Input FIFO request service due to the 
Input FIFO containing enough space for the 
host to write the threshold number of bytes 
or more 

• A '1' will be read from a SFR reserved 
location 
• "reserved' - these locations are reserved 
for future use by Intel Corportion 

FIFO MODULE - EXTERNAL HOST 
INTERFACE 

Overview 

The FIFO-external host interface supports asynchro­
nous bi-directional 8-bit data transfers for a Host op­
erating up to 10 MHz. The host interface is fully com­
patible with Intel microprocessor local busses and 
with MUL TIBUS. The FIFO has two specialized DMA 
request pins for Input and Output FIFO channel 
DMA requests. These are multiplexed to provide a 
dedicated Request for Service interrupt (DRQIN/IN­
TRQIN, DRQOUT /INTRQOUT). 

The external Host can program, under user defined 
protocol, thresholds into the FIFO Input and Output 
Threshold SFRs which determine when the FIFO 
Request for Service interrupt is generated. The FIFO 
module external Host interface is configured by the 
internal CPU via the MODE SFR. The external Host 
can enable and disable the interfacing pins (INTRQ, 
DRQINIINTRQIN and DRQOUT /INTRQOUT) via 
the Host Control SFR. Data Stream Commands in 
the Input FIFO channel allow the Host to influence 
the processing of data blocks and are sent with the 
data flow to maintain synchronization. Data Stream 
Commands in the Output FIFO Channel allow the 
internal CPU to perform the same function, and also 
to set the Output FIFO Request Service status logic 
to the host CPU regardless of the programmed val­
ue in the Threshold SFR. 

Slave Interface Address Decoding 

The UPI-452 determines the desired Host function 
through address decoding. The lower three bits of 
the address as well as the Read, Write, Chip Select 
and DMA Acknowledge are used for decoding. Ta­
ble 3 shows the pin states and the Read or Write 
operations associated with each configuration. 

6-747 



inter UPI-4S2 

Table 3. UPI·452 Address Decoding 

DACK CS A2 A1 AO Read Write 

1 1 X X X No Operation No Operation 
1 0 0 0 0 Data or DMA from Data or DMA to 

Output FIFO Channel Input FIFO Channel 

1 0 0 0 1 Data Stream Command Data Stream Command 
from Output FIFO to Input FIFO 
Channel Channel 

1 0 0 1 0 Host Status SFR Reserved 
Read 

1 0 0 1 1 Host Control SFR Host Control SFR 
Read Write 

1 0 1 0 0 Immediate Command Immediate Command 
SFR Read to SFRWrite 

1 0 1 1 X Reserved Reserved 
0 X X X X DMA Data from DMA Data to Input 

Output FIFO Channel FIFO Channel 

NOTES: 
1. Attempting to read a DSC as a data byte will result in invalid data being read. The read pointers are not incremented so 
that the DSC is not lost. Attempting to read a data byte as a DSC has the same result. 
2. If DACKI is active the UPI-452 will attempt a DMA operation when RDI orWRI becomes active regardless of the DMA 
enable bit (MD6) in the MODE SFR. Care should be taken when using DACK/. For proper operation, DACKI must be driven 
high (+ 5V) when not using DMA. 

Interrupts to the Host 

TheUPI-452 interrupts the external Host via the 
INTRQ pin. In addition, the DRQIN and DRQOUT 
pins can be multiplexed as interrupt request lines, 
INTRQIN and INTRQOUT respectively, when DMA 
is disabled. This provides two special FIFO "Re­
quest for Service" interrupts. 

There are six FIFO-related interrupt sources; two 
From The Input FIFO; three From The Output FIFO; 
and one from the Immediate Command Out SFR. 

INPUT FIFO: The Input FIFO interrupt is generated 
whenever: 

a. The Input FIFO contains space for a threshold 
number of bytes. 

b. When an Input FIFO overrun error condition ex­
ists. The appropriate bits in the Host status SFR 
are set and the interrupt is generated only if en­
abled. 

OUTPUT FIFO: The Output FIFO Request forServ­
ice Interrupt operates in the same manner as the 
Input FIFO interrupt: 

a. When the FIFO contains the threshold number of 
bytes or more. 

b. Output FIFO error condition interrupts are gener­
ated when the Output FIFO is underrun. 

c. There are also interrupts due to the presence of a 
Data Stream Command in the output FIFO. 

A Data Stream Command interrupt is used to halt 
normal processing, using the command as a vector 
to a service routine. When DMA is disabled, the user 
may program (through HC1) INTRQ to include FIFO 
Request for Service Interrupts or use INTRQIN and 
INTRQOUT as Request for Service Interrupts. 

IMMEDIATE COMMAND OUT SFR: 

a. An Immediate Command Out Interrupt is generat­
ed when the internal CPU writes to the Immediate 
Command Out SFR. It allows the internal CPU to 
bypass the FIFO when communicating with the 
external Host. 

b. An Immediate Command Interrupt is generated 
when the Immediate Command SFR is empty. 

FREEZE MODE: When the internal CPU invokes 
FIFO Freeze Mode, for example at reset or to recon­
figure the FIFO interface, INTRQ is activated. The 
INTRQ can only be deactivated by the external Host 
reading the Host Status SFR (HST1 remains active 
until Freeze Mode is disabled by the internal CPU). 

6-748 



intJ UPI-4S2 

Once an interrupt is generated, INTRO will remain 
high until no interrupt generating condition exists. 
For a FIFO underrun/ overrun error interrupt, the in­
terrupt condition is deactivated by the external Host 
reading the Host Status SFR. An interrupt is serv­
iced by reading the Host Status SFR to determine 
the source of the interrupt and vectoring the appro­
priate service routine. 

DMA Requests to the Host 

The UPI-452 generates two DMA requests, DROIN 
and DROOUT, to facilitate data transfer between the 
Host and the Input and Output FIFO channels. A 
DMA acknowledge, DACK, is used as a Chip select 
and initiates a data transfer. The external READ and 
WRITE signals select the Input and Output FIFO re­
spectively. The CS and address lines can also be 
used as a DMA acknowledge for processors with 
onboard DMA controllers which do not generate a 
DACK signal. 

The internal CPU can configure the UPI-452 to re­
quest service from the external host via DMA or in­
terrupts by programming Mode SFR MD6 bit. In ad­
dition the external Host enabled DMA requests 
through bits 6 and 7 of the Host Control SFR. When 
a DMA request is invoked the number of bytes trans­
ferred to the Input FIFO is the total number of bytes 
in the Input FIFO (as determined by the CBP SFR) 
minus the value programmed in the Input FIFO 
Threshold SFR. The DMA request line is activated 
only when the Input FIFO has a threshold number of 
bytes that can be transferred. 

The Output FIFO DMA request is activated when a 
DSC is written by the internal CPU at the end of a 
block of data (Flush Mode) or when the Output FIFO 
threshold is reached. The request remains active un­
til the Input FIFO becomes full or the Output FIFO 
becomes empty. If a DSC is encountered the DMA 
request is dropped until the DSC is read. The DMA 
request will be reactivated after the DSC is read and 
remains active until the Output FIFO becomes emp­
ty or another DSC is encountered. When a block of 
data is being transferred via DMA and if a DSC is 
encountered, the Output FIFO DMA request will be 
automatically deactivated prior to a DSC being read 
out of the FIFO. 

FIFO MODULE - INTERNAL CPU 
INTERFACE 

Overview 

The Input and Output FIFOs are accessed by the 
internal CPU through direct addressing of the FIFO 

IN/COMMAND IN and FIFO OUT/COMMAND OUT 
Special Function Registers. All of the 80C51 instruc­
tions involving direct addressing may be used to ac­
cess the FIFO's SFRs. The FIFO IN, COMMAND IN 
and Immediate Command In SFRs are actually read 
only registers, and their Output counterparts are 
write only. Internal DMA transfers data between In­
ternal memory, External Memory and the Special 
Function Registers. The Special Function Registers 
appear as another group of dedicated memory ad­
dresses and are programmed as the source or desti­
nation via the DMAO/DMA 1 Source Address or Des­
tination Address Special Function Registers. The 
FIFO module manages the transfer of data between 
the external host and FIFO SFRs. 

Internal CPU Access to FIFO Via 
Software Instructions 

The internal CPU has access to the Input and Out­
put FIFOs via the FIFO IN/COMMAND IN and FIFO 
OUT/COMMAND OUT SFRs which reside in the 
Special Function Register Array. At the end of every 
instruction that involves a read of the FIFO IN/COM­
MAND IN SFR, the SFR is written over by a new 
byte from the Input FIFO channel when available. At 
the end of every instruction that involves a write to 
the FIFO OUT/COMMAND OUT SFR, the new byte 
is written into the Output FIFO channel and the write 
pointer is incremented after the write operation (post 
incremented). 

The internal CPU reads the Input FIFO by using the 
FIFO IN/COMMAND IN SFR as the source register 
in an instruction. Those instructions which read the 
Input FIFO are listed below: 

ADD A,FIFO IN/COMMAND IN 

ADDC A,FIFO IN/COMMAND IN 

PUSH FIFO IN/COMMAND IN 

ANL A,FIFO IN/COMMAND IN 

ORL A,FIFO IN/COMMAND IN 

XRL A,FIFO IN/COMMAND IN 

CJNE A,FIFO IN/COMMAND IN, rei 

SUBB A,FIFO IN/COMMAND IN 

MOV direct,FIFO IN/COMMAND IN 

MOV @Ri,FIFO IN/COMMAND IN 

MOV Rn,FIFO IN/COMMAND IN 

MOV A,FIFO IN/COMMAND IN 

6-749 



UPI-452 

After each access to these registers, they are over· 
written by a new byte from the FIFO. 

NOTE: 
Instructions which use the FIFO IN or COMMAND 
IN SFR as both a source and destination register 
will have the data destroyed as the next data byte 
is rewritten into the FIFO IN register at the end of 
the instruction. These instructions are not support· 
ed by the UPI·452 FIFO. Data can only be read 
through the FIFO IN SFR and DSCs through the 
COMMAND IN SFR. Data read through the COM· 
MAND IN SFR will be read as OFFH, and DSDs 
read through the FIFO IN SFR will be read as 
OFFH. The Immediate Command in SFR is read 
with the same instructions as the FIFO IN and 
COMMAND IN SFRs. 

The FIFO IN, COMMAND IN and Immediate Com· 
mand In SFRs are read only registers. Any write op· 
eration performed on these registers will be ignored 
and the FIFO pointers will remain intact. 

The internal CPU uses the FIFO OUT SFR to write 
to the Output FIFO and any instruction which uses 
the FIFO OUT or COMMAND OUT SFR as a desti· 
nation will invoke a FIFO write. DSCs are differenti· 
ated from data by writing to the COMMAND OUT 
SFR. In the FIFO, Data Stream Commands have the 
ninth bit associated with the command byte set to 
"1". The instructions used to write to the Output 
FIFO are listed below: 

MOV FIFO OUT ICOMMOUT, A 

MOV FIFO OUT/COMMOUT, direct 

MOV FIFO OUT/COMMOUT, Rn 

POP FIFO OUT ICOMMOUT 

MOV FIFO OUT ICOMMOUT, #data 

MOV FIFO OUT/COMMOUNT, @Ri 

NOTE: 
Instructions which use the FIFO OUT ICOMMAND 
OUT SFRs as both a source and destination regis· 
ter cause invalid data to be written into the Output 
FIFO. These instructions are not supported by the 
UPI·452 FIFO. 

GENERAL PURPOSE DMA CHANNELS 

Overview 

There are two identical General Purpose DMA Chan· 
nels on the UPI·452 which allow high speed data 
transfer from one writeable memory space to anoth· 
er. As many as .64K bytes can be transferred in a 
single DMA operation. The following memory 
spaces can be used with DMA channels: 

• Internal Data Memory 

• External Data Memory 

• Special Function Registers 

The Special Function Register array appears as a 
limited group of dedicated memory addresses. The 
Special Function Registers may be used in DMA 
transfer operations by specifying the SFR as the 
source of destination address. The Special Function 
Registers which may be used in DMA transfers are 
listed in Table 4. Table 4 also shows whether the 

. SFR may be used as Source or Destination only, or 
both. 

Table 4. DMA Accessible Special Function Registers 

SFR Symbol Address 
Source Destination 

Either 
Only Only 

Accumulator AlACC OEOH Y 
B Register B OFOH Y 
FIFO IN FIN OEEH Y 
COMMAND IN CIN OEFH Y 
FIFO OUT FOUT OFEH Y 
COMMAND OUT COUT OFFH Y 
Serial Data Buffer SBUF 099H Y 
Port 0 PO 080H Y 
Port 1 P1 090H Y , 
Port 2 P2 OAOH Y 
Port 3 P3 OBOH Y 
Port 4 P4 OCOH Y 

6·750 



inter UPI-4S2 

The FIFO can be accessed during DMA by using the 
FIFO IN SFR as the DMA Source Address Register 
(SAR) or the FIFO OUT SFR as the Destination Ad­
dress Register (DAR). (Note: Since the FIFO IN SFR 
is a read only register, the DMA transfer will be ig­
nored if it is used as a DMA DAR. This is also true if 
the FIFO OUT SFR is used as a DMA SAR.) 

Each DMA channel is software programmable to op­
erate in either Block Mode or Demand Mode. In the 
Block Mode, DMA transfers can be further pro­
grammed to take place in Burst Mode or Alternate 
Cycle mode. In Burst Mode, the processor halts its 
execution and dedicates its resources to the DMA 
transfer. In Alternate Cycle Mode, DMA cycles and 
instruction cycles occur alternately. 

In Demand Mode, a DMA transfer occurs only when 
it is demanded. Demands can be accepted from an 
external device (through External Interrupt pins, 
EXTO/EXT1) or from either the Serial Channel or 
FIFO flags. In this way, a DMA transfer can be syn­
chronized to an external device, the FIFO or the Se­
rial Port. If the External Interrupt is configured in 
Edge Mode, a single byte transfer occurs per tran­
sition. The external interrupt itself will occur if en­
abled. If the External Interrupt is configured in Level 
Mode, DMA transfers continue until the External In­
terrupt request goes inactive or the byte count be­
comes zero. The following flags activate Demand 
Mode transfers of one byte to/from the FIFO or Seri­
al Channel: 

RI - Serial Channel Receiver Buffer 
Full 

TI - Serial Channel Transmitter Buff­
er Empty 

DMA Special Function Registers 

DMA Control SFR: DCONO, DCON1 
Symbolic 
Address 

DCONO 

DCON1 

DIFRS - Input FIFO Request Service 

DOFRS - Output FIFO Request Service 

(DIFRS differs from bit 0 of the Slave Status SFR 
(SSTO - Input FIFO Request Service flag) in that it is 
deactivated when a DSC is to be read from the Input 
FIFO.) 

Architecture 

There are three 16 bit and one 8 bit Special Function 
Registers associated with each DMA channel. 

• The 16 bit Source Address SFR (SAR) points to 
the source byte. 

• The 16 bit Destination Address SFR (DAR) points 
to the destination. 

• The 16 bit Syte Count SFR (SCR) contains the 
number of bytes to be transferred and is decre­
mented when a byte transfer is accomplished. 

• The DMA Control SFR (DCON) is eight bits wide 
and specifies the source memory space, destina­
tion memory space and the mode of operation. 

In Auto Increment mode, the Source Address and/ 
or Destination Address is incremented when a byte 
is transferred. When a DMA transfer is complete 
(SCR = 0), the DONE bit is set and a maskable 
interrupt is generated. The GO bit must be set to 
start any DMA transfer (also, the Slave Control SFR 
FRZ bit must be set to disable Freeze Mode). The 
two DMA channels are designated as DMAO and 
DMA 1, and their corresponding registers are suf­
fixed by 0 or 1; e.g. SARO, DAR1, etc. To transfer 
64K bytes of data the SCR should be programmed 
to zero. 

Physical 
Address 

092H 

093H 

Reset Status: DCONO and DCON1 = OOH 



infef UPI-452 

Bit Definition: 

DAS IDA 

0 0 
0 1 
1 0 '. 
1 1 

SAS ISA 

0 0 
0 1 
1 0 
1 1 

OM TM 

0 0 
0 1 
1 0 
1 1 

DONE DMA transfer Flag: 

o DMA transfer is not completed. 

DMA transfer is complete. 

NOTE: 
This flag is set when contents of the Byte Count 
SFR decrements to zero. It is reset automatically 
when the DMA vectors to its interrupt routine. 

GO Enable DMA Transfer: 

o 
modes). 

Disable DMA transfer (in all 

1 Enable DMA transfer. If the DMA 
is in the Block mode, start DMA transfer if possible. 
If it is in the Demand mode, enable the channel and 
wait for a demand. 

NOTE: 
The GO bit is reset when the BCR decrements to 
zero. 

DMA Transfer Modes 

The following five modes of DMA operation are pos­
sible in the UPI-452. 

BURST MODE 

In BURST mode the DMA is initiated by setting the 
GO bit in the DCON SFR. The DMA operation con-

Destination Address Space 

External Data Memory without Auto-Increment 
External Data Memory with Auto-Increment 
Special Function Register 
Internal Data Memory 

Source Address Space 

External Data Memory without Auto-Increment 
External Data Memorywith Auto-Increment 
Special Function Register 
Internal Data Memory 

DMA Transfer Mode 

Alternate-Cycle Transfer Mode 
Burst Transfer Mode 
FIFO or Serial Channel Demand Mode 
External Demand Mode 

tinues until BCR decrements to zero (zero byte 
count), then an interrupt is generated (if enabled). 
No interrupts are recognized during a DMA opera­
tion once started. 

INPUT CHANNEL:The FIFO Input Channel can be 
used in burst mode by specifying the FIFO IN SFR 
as the DMA Source Address. DMA transfers begin 
when the GO Bit in the DMA Control SFR is set. The 
number of bytes to be transferred must be specified 
in the Byte Count SFR (BCR) and auto-incrementing 
of the SAR must be disabled. Once the GO bit is set 
nothing can interrupt the transfer of data until the 
BCR is zero. In this mode, a Data Stream Command 
encountered in the FIFO will be held in the COM­
MAND IN SFR with the pointers frozen, and invalid 
data (FFH) will be read through the FIFO IN SFR. If 
the Input FIFO becomes empty during the block 
transfer, an OFFH will be read until BCR decrements 
to zero. 

OUTPUT CHANNEL:The Output FIFO Channel can 
be used in burst mode by specifying the FIFO OUT 
or COMMAND OUT SFR as the DMA Destination 
Address. DMA transfers begin when the GO bit is 
set. This mode can be used to send a block of data 
or a block of Data Stream Commands. If the FIFO 
becomes full during the block transfer, the remaining 
data will be lost. 

(Note: All interrupts including FIFO interrupts are not 
recognized in Burst Mode. Burst Mode transfers 
should be used to service the FIFO only when the 
user is certain that no Data Stream Commands are 
in the block to be transferred (Input FIFO) and that 

6-752 



UPI-4S2 

the FIFO contains enough space to store the block 
to be transferred. In all other cases Alternate Cycle 
or Demand Mode should be used.) 

2. ALTERNATE CYCLE MODE 

Alternate cycle mode is useful when CPU process­
ing must occur during the DMA transfers. In this 
mode, a DMA cycle and an instruction cycle occur 
alternately. The interrupt request is generated (if en­
abled) at the end of the process, i.e. when BCR dec­
rements to zero. The transfer is initiated by setting 
the GO bit in the DCON SFR. 

3. EXTERNAL DEMAND MODE 

The DMA can be initiated by an external device via 
External Interrupt 0 and 1 (INTO/EINT1) pins. The 
INTO pin demands DMAO (Channel 0) and INT1 de­
mands DMA 1 (Channel 1). If the interrupts are con­
figured in edge mode, a single byte transfer is ac­
complished for every request. Interrupts also result 
(INTO or INT1) after every byte transfer (if enabled). 
If the interrupts are configured in level mode, the 
DMA transfer continues until the request goes inac­
tive or BCR= O. In either case, a DMA interrupt is 
generated (if enabled) when BCR = O. The GO bit 
must be set for the transfer to begin. 

4. FIFO DEMAND AND ALTERNATE CYCLE DE­
MAND MODES 

Although any DMA mode is possible using the FIFO 
buffer, only Demand and Alternate Cycle Demand 
Modes make sense. Demand Mode DMA transfers 
using the Input FIFO Channel are set-up by setting 
the GO Bit and specifying the FIFO IN register as the 
DMA Source Address Register. The BCR should be 
set to the maximum number of expected transfers. 
The user must also program bit 1 of the Slave Con­
trol Register (SC1) to determine whether the FIFO 
Request For Service Flag will be set when the FIFO 
becomes not empty or full. Once the Request For 
Service Flag is set by the FIFO, the DMA transfer 
begins, and continues until the request flag is deacti­
vated. While the request is active, nothing can inter­
rupt the DMA (i.e. it behaves like burst mode). The 
DMA Request is held active until one of the following 
occurs: 

1) The FIFO becomes empty 

2) A Data Stream Command is encountered (this 
generates a FIFO interrupt and DMA operation 
resumes after the Data Stream command is 
read.) 

3) BCR = 0 (this generates a DMA interrupt and 
sets the DONE Bit) 

DMA transfers to the Output FIFO Channel are simi­
lar. The FIFO OUT or COMMAND OUT SFR is the 

DMA Destination Address SFR and a transfer is 
started by setting the GO bit. The user programs bit 
o of the Slave Control SFR (SCO) to determine 
whether a demand occurs when the Output FIFO is 
not full or empty. DMA transfers begin when the Re­
quest For Service Flag is set by the FIFO logic and 
continue as long as the flag is set. The Flag remains 
set until one of the following occurs: 

1) The FIFO becomes full 

2) BCR = 0 (this generates a DMA interrupt and 
sets the DONE bit) 

Alternate cycle demand mode is also useful for FIFO 
transfers of a less urgent nature. As mentioned be­
fore, CPU instruction cycles are interleaved with 
DMA transfer cycles, allowing true parallel process­
ing. 

This mode differs from FIFO Demand Mode in that 
CPU instruction cycles must be interleaved with 
DMA transfers, even if the FIFO is demanding DMA. 
In FIFO Demand Mode, CPU cycles would never oc­
cur if the FIFO demand was present. 

In either mode, the FIFO logic resets the interrupt 
flag after transferring the byte, so the interrupt is 
never generated. 

5. SERIAL PORT DEMAND MODE 

Demand mode is the logical choice when using the 
Serial Port. The DMA's can be activated by one of 
the Serial Channel Flags, Receiver Interrupt (RI) or 
Transmitter Interrupt (TI). 

After the GO bit is set, the DMA is activated if one of 
the following conditions takes place; 

SARO = SBUF and RI flag is set 
DARO = SBUF and TI flag is set 
SARO = FIFO In and IFRS flag is set 
DARO = FIFO OUT and OFRS flag is set 

NOTE: 
TI flag must be set by software to initiate the first 
transfer. 

When the DMA transfer begins, only one byte is 
transferred at a time. The serial port hardware auto­
matically resets the flag after completion of the 
transfer, so an interrupt will not be generated. The 
DMA interrupt (if enabled) is not generated until 
BCR=O. 

6-753 



UPI-4S2 

EXTERNAL MEMORY DMA: 

When transferring data to or from external memory 
via DMA, the HOLD (HLD) and HOLD-ACKNOWL­
EDGE (HLDA) signals are used for handshaking. 
The HOLD and HOLD-ACKNOWLEDGE are active 
low signals which arbitrate control of the local bus. 
The UPI-452 can be used in a system where multi­
masters are connected to a single parallel Address/ 
Data bus. The HLD/HLDA signals are used to share 
resources (memory, peripherals, etc.) among all the 
processors On the local bus. The UPI-452 can be 
configured in any of three different External Memory 
Modes controlled by bits 5 and 6 (REQ & ARB) in 
the PCON SFR (Table 5). Each mode is described 
below: 

REQUESTER MODE: In this mode, the UPI-452 is 
not the bus master, but must request the bus from 
another device. The UPI-452 configures port pin PI.6 
as a HLD output and pin PI.7 as a HLDA input. The 
UPI-452 issues a HLD signal when it needs external 
access for a DMA channel. It uses the local bus after 
re.ceiving the HLDA signal from the bus master,' and 
will not release the bus until its DMA operation is 
complete. 

The balance of the PCON SFR bits are described in 
the "80C51 Register Description:Power. Control 
SFR" section below. 

Latency 

When the GO bit is set, the UPI-452 finishes the 
current instruction. before starting the DMA opera­
tion. Thus the maximum latency is 3.0 microseconds 
(at 16 MHz). 

DMA Interrupt Vectors 

Each DMA channel has a unique vectored interrupt 
associated with it. There are two vectored interrupts 
associated with the two DMA channels. The DMA 
interrupts are enabled and priorities set via the Inter­
rupt Enable and Priority SFR (see "Interrupts" sec­
tion). The interrupt priority scheme is similar to the 
scheme in 80C51. 

When a DMA operation is complete (BCR decre­
ments to zero), the DONE flag in the respective 
DCON (DCONO or DCON1) SFR is set. If the DMA 
interrupt is enabled, the DONE flag is reset automat­
ically upon vectoring to the interrupt routine. ARBITER MODE: In this mode, the UPI-452 is the 

bus master. It configures port pin PI.6 as HLD input 
and pin PI.7 as HLDA output. When a device asserts 
the HLD signal to use the local bus, the UPI-452 
asserts the HLDA signal after current instruction ex­
ecution is complete. If the UPI-452 needs an exter­
nal access via a DMA channel, it waits until the re­
quester releases the bus, HLD goes inactive. 

, Interrupts When DMA is Active 

DISABLE (NON-DMA). MODE: When external pro­
gram memory is accessed by an instruction or by 
program counter overflow beyond the internal ROM 
address, or when external data memory is assessed 
by MOVX instructions, the HLD/HLDA sequence is 
not initiated, since this is not a DMA memory access. 

If a Burst Mode DMA transfer is in progress, the in­
terrupts are not serviced until the DMA transfer is 
complete. This is also true for level activated Exter­
nal Demand DMA transfers. During Alternate Cycle 
DMA transfers, however, the interrupts are serviced 
at the end of the DMA cycle. After that, DMA cycles 
and instruction execution cycles occur alternately. In 
the case of edge activated External Demand Mode 
DMA transfers, the interrupt is serviced at the end of 
DMA transfer of that single byte. 

Table 5. DMA MODE CONTROL - PC ON SFR 
SymbOlic 
Address 

PCON 

Definition: 

ARB 

0 
0 
1 
1 

-* ARB REQ -* 

(MSB) 
*Defined as per MLS-51 Data Sheet 
Reset Status: OOH 

REQ 

0 
1 
0 
1 

-* 

6-754 

-* -* -* 
(LSB) 

HLD/HLDA logic is disabled. 

Physical 
Address 

87H 

The UPI-452 is in the Requester Mode. 
The UPI-452 is in the Arbiter Mode. 
Invalid 



inter UPI-452 

DMA Arbitration 

Only one of the two DMA channels is active at a 
time, except when both are configured in the Alter­
nate Cycle mode. In this case, the DMA cycles and 
Instruction Execution cycles occur in the following 
order: 

1. DMA Cycle O. 

2. Instruction execution. 

3. DMA Cycle 1. 

4. Instruction execution. 

DMAO has priority over DMA 1 during simultaneous 
activation of the two DMA channels. If one DMA 
channel is active, the other DMA channel, if activat­
ed, waits until the first one is complete. 

If DMAO is already in the Alternate Cycle mode and 
DMA 1 is activated in Alternate Cycle Mode, it will 
take two instruction cycles before DMA 1 is activated 

(due to the priority of DMAO). Once DMA1 becomes 
active, the execution will follow the normal se­
quence. 

If DMAO is already in the Alternate Cycle mode and 
DMA 1 is activated in Burst Mode, the DMA 1 Burst 
transfer will follow the DMAO Alternate Cycle trans­
fer (after the completion of the next instruction). 

If the UPI-452 (as a Requester) asserts a HLD signal 
to request a DMA transfer (see "External Memory 
DMA")and its other DMA Channel requests a trans­
fer before the HLDA signal is received, the channel· 
having higher priority is activated first. 

If, while executing a DMA transfer, the Arbiter re­
ceives a HLD signal, and then before it can acknowl­
edge, its other DMA Channel requests a transfer, it 
then completes the second DMA transfer before 
sending the HLDA signal to release the bus to the 
HLD request. 

The DMA Transfer waveforms are in Figures 8-11. 

OSC nnJ1Jl.ArtiLrtil-nJi.Jl.iLrul-rul-nJi.nilsJU-
ALE \. r 1"\ 

PSEN 

PORT2 -0( S( URCE ADDR iss A1S-A ~ DES NATION ADD ESS A15 A8 -
PORTO A7-AO X DATA IN A7- 0 X DATA OUT 

Rli I\. 1/ 

VIR \ r 
DMA CYCLE 

231428-13 

\ 

Figure 8. DMA Transfer from External Memory to External Memory 

6-755 



inter UPI-4S2 

'I 53 

DMA CYCLE 

53 54 Sl S2 S5 S6 Sl S2 
CLOCK 

ALE 

PSEN 

PORT 2 INST ADDR SOURCE ADDRESS A 15-A8 

PORTO DATA IN 

RD 

TROLV 1---.... -------J-+---l-----if 1-- TRHOX 

1----- T RLRH -----I 

231428-14 

Figure 9. DMA Transfer from External Memory to Internal Memory 

Sl S2 S3 S4 S5 S6 Sl S2 S3 

CLOCK 

ALE 

PORT 2 INST ADDR DESTINATION ADDRESS A15-A8 

PORTO DATA OUT 

TOVWX I---~_---+-TWLWH-+---·I- TWHQX 

I. DMA CYCLE ---------1 
231428-15 

Figure 10. DMA Transfer from Internal Memory to External Memory 

6-756 



inter UPI-4S2 

SI 52 53 54 55 56 51 52 53 

CLOCK 

-~ \. \. \ ALE 

f\-
PORT2 A15-A8 A15-A8 

PORTO -< IN5T I A7-AO II--

DMA CYCLE INSTRUCTION I---EXECUTION 

231428-16 

Figure 11. DMA Transfer from Internal Memory to Internal Memory 

INTERRUPTS 

Overview 

The UPI-452 provides eight interrupt sources (Table 
6). Their operation is the same as in the 80C51, with 
the addition of new interrupt sources for the UPI-452 
FIFO and DMA features. These added interrupts 
have their enable and priority bits in the Interrupt 
Enable and Priority (IEP) SFR. The IEP SFR is in 
addition to the 80C51 Interrupt Enable (IE) and Inter­
rupt Priority (IP) SFRs. The added interrupt sources 
are also globally enabled or disabled by the EA bit in 
the Interrupt Enable SFR. Table 6 lists the eight in­
terrupt sources in order of priority. Table 7 lists the 
eight interrupt sources and their respective address 
vector location in program memory. (DMA interrupts 
are discussed in the "General Purpose DMA Chan­
nels" section. Additional interrupt information for 
Timer/Counter, Serial Channel, External Interrupt 
may be found in the Microcontroller Handbook for 
the 80C51.) 

FIFO Module Interrupts to Internal CPU 

The FIFO module generates interrupts to the inter­
nal CPU whenever the FIFO requests service or 
when a Data Stream Command is in the COMMAND 
IN SFR. The Input FIFO will request service whenev­
er it becomes full or not empty depending on bit 1 of 

Table 6. Interrupt Priority 
Interrupt Source Priority Level 

External Interrupt 0 
Internal Timer/Counter 0 
DMA Channel 0 Request 
External Interrupt 1 
DMA Channel 1 Request 
Internal Timer/Counter 1 
FIFO - Slave Bus Interface Buffer 
Serial Channel 

(highest) 
o 
1 
2 
3 
4 
5 
6 
7 

(lowest) 

Table 7. Interrupt Vector Addresses 
Interrupt Source Starting Address 

External Interrupt 0 3 (003H) 
Internal Timer/Counter 0 11 (OOBH) 
External Interrupt 1 19 (013H) 
Internal Timer/Counter 1 27 (01 BH) 
Serial Channel 35 (023H) 
FIFO - Slave Bus Interface Buffer 43 (02BH) 
DMA Channel 0 Request 51 (033H) 
DMA Channel 1 Request 59 (03BH) 

the Slave Control SFR (IFRS). Similarly, the Output 
FIFO requests service when it becomes empty or 
not full as determined by bit 0 of the Slave Control 
SFR (OFRS). Request for Service interrupts are 
generated only if enabled by the internal CPU and if 
DMA requests are disabled via the MODE SFR and 
the Interrupt Enable SFR. 

6-757 



infef UPI·452 

A Data Stream Command Interrupt is generated 
whenever there is a Data Stream Command in the 
COMMAND IN SFR. The interrupt is generated to 
ensure that th internal interrupt is recognized before 
another instruction is executed. 

Interrupt, the main program instruction is not execut­
ed (to prevent misreading of invalid data). 

Interrupt Enabling and Priority 

One instruction from the main program is executed 
between two consecutive interrupt service routines 
as in the 80C51. However, if the second interrupt 
service routine is due to a Data Stream Command 

Each of the three interrupt special function registers 
(IE, IP and IEP) is listed below with its corresponding 
bit definitions. 

Interrupt Enable Register (IEC) 
Symbolic 
Address 

IEC EA 

(MSB) 

Symbol Position 

EA 1E.7 

- 1E.6 
- 1E.5 
ES IE.4 
ET1 1E.3 
EX1 IE.2 
ETO IE.1 
EXO IE.O 

Interrupt Priority Register (I PC) 

ES ET1 EX1 ETO EXO 

(LSB) 

Function 

Enables all interrupts. If EA = 0, no interrupt will be 
acknowledged. If EA = 1, each interrupt source is 

Physical 
Address 

OA8H 

individually enabled or disabled by setting or clearing its 
enable bit. 
(reserved) 
(reserved) 
Serial Channel interrupt enable 
Internal Timer/Counter 1 Overflow Interrupt 
External Interrupt Request 1. 
Internal Timer/Counter 0 Overflow Interrupt 
External Interrupt Request O. 

A priority level of 0 or 1 may be assigned to each interrupt source, with 1 being higher priority level, through the 
IPC and the IEP (Interrupt Enable and Priority) SFR. A priority level of 1 interrupt can interrupt a priority level 0 
service routine to allow nesting of interrupts. 

Symbolic 
Address 

IPC 

(MSB) 

PSC PT1 

6-758 

PX1 PTO PXO 

(LSB) 

Physical 
Address 

OB8H 



inter UPI-452 

Symbol Position Function 
Priority Within 

A Level 

(lowest) 
- IP.7 (reserved) -
- IP.6 (reserved) -
- IP.5 (reserved) -
PSC IP.4 Local Serial Channel 0.7 
PT1 IP.3 Internal Timer/Counter 1 0.5 
PX1 IP.2 External Interrupt Request 1 0.3 
PO IP.1 Internal Timer/Counter 0 0.1 
PXO IP.O External Interrupt Request 0 0.0 

(highest) 

Interrupt Enable and Priority Register (lEP) 

The Interrupt Enable and Priority Register establishes the enabling and priority of those resources not covered 
in the Interrupt Enable and Interrupt Priority SFRs. 

Symbolic 
Address 

Physical 
Address 

IEP I PFIFO I EDMAO I EDMA1 I PDMAO I PDMA1 I EFIFO I OFBH 

(MSB) (LSB) 

Priority 
Symbol Position Function Within a 

Level 

- IEP.7 (reserved) 
- IEP.6 (reserved) 
PFIFO IEP.5 Slave Bus Interrupt Priority 0.6 
EDMAO IEP.4 DMA Channel 0 Interrupt Enable 
EDMA1 IEP.3 DMA Channel 1 Interrupt Enable 
PDMAO IEP.2 DMA Channel 0 Priority- 0.2 
PDMA1 IEP.1 DMA Channel 1 Priority 0.4 
EFIFO IEP.O Enable FIFO Buffer Interrupt Enable 

FIFO-EXTERNAL HOST INTERFACE 
FREEZE MODE 

Overview 

During Freeze Mode the internal CPU can reconfig­
ure the FIFO interface. Freeze Mode is provided to 
prevent the host from accessing the FIFO during a 
reconfiguration sequence. The internal CPU invokes 
Freeze Mode by clearing bit 3 of the Slave Control 
SFR (SC3). INTRQ becomes active whenever 
Freeze Mode is invoked to indicate the freeze 
status. The interrupt can only be deactivated by the 
Host reading the Host Status SFR. 

During Freeze Mode only two operations are possi­
ble by the Host to the UPI-452 slave, the balance 
are disabled, as shown in Table B. The internal DMA 

disabled during Freeze Mode, and the internal CPU 
has write access to all of the FIFO control SFRs 
(Table 9). 

Initialization 

At reset, the FIFO - Host interface is automatically 
frozen (SC3 = 0). The CBP SFR and the Output 
FIFO Read and Write Pointers are set to 40H. The 
Input FIFO Threshold SFR is set to BOH and the 
Output FIFO Threshold SFR is set to one. The Input 
FIFO Read and Write Pointer SFRs are set to zero. 
The Input and Output FIFO channels may be recon­
figured by programming any of these Special Func­
tion Registers. Once the FIFO channel configuration 
sequence is complete, the internal CPU should set 
SC3 (CS3 = 1) to enable normal FIFO operation. 

6-759 



UPI·452 

Table 8. Slave Bus Interface Status During Freeze Mode 

Interface Pins; 
CS A2 A1 AO READ 

DACK 

1 0 0 1 0 0 

1 0 0 1 1 0 

1 0 0 1 1 1 

1 0 0 0 0 0 

1 0 0 0 0 1 

1 0 0 0 1 0 

1 0 0 0 1 1 

1 0 1 0 0 0 

1 0 1 0 0 1 

0 X X X X 0 

, 0 X X X X 1 

Invoking Freeze Mode During Normal 
Operation 

When the UPI-452is in normal operation, Freeze 
Mode should not be arbitrarily invoked by clearing 
SC3 (SC3 = 0) because the external Host runs asyn­
chronously to the internal CPU. Invoking Freeze 
Mode without first stopping the external Host from 
accessing the UPI-452 will not guarantee a clean 
break with the external Host. 

The proper way to invoke Freeze Mode is by issuing 
an Immediate Command to the external host indicat­
ing that Freeze Mode will be invoked. Upon receiv­
ing the Immediate Command, the external Host 
should complete servicing all pending interrupts and 
DMA requests, then send an Immediate Command 
back to the UPI-452 acknowledging the Freeze 
Mode request. After issuing the first Immediate 
Command, the internal CPU should not perform any 
action on the FIFO until Freeze Mode is invoked. 

If Freeze Mode is invoked without stopping the Host, 
only the last two bytes of data written into or read 
from the FIFO will be valid. The timing diagram for 
disabling the FIFO module to the external Host inter­
face is illustrated in Figure 12. Due to this synchroni­
zation sequence, the UPI-452 might not go into 
Freeze Mode immediately after SC3 is cleared. A 

WRITE 
Operation In Status In 
Normal Mode Freeze Mode 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

Read Host Status SFR Operational 

Read Host Control SFR Operational 

Write Host Control SFR Disabled 

Data or DMA Data from Disabled 
Output Channel 

Data or DMA Data to Disabled 
Input Channel 

Data Stream Command from Disabled 
Output Channel 

Data Stream Command to Disabled 
Input Channel 

Read Immediate Command Disabled 
Out from Output Channel 

Write Immediate Command Disabled 
In to Input Channel 

DMA Data from Output Disabled 
Channel 

DMA Data to Input Channel Disabled 

special bit in the Slave Status Register (SST5) is 
provided to indicate the status of the Freeze Mode. 
The Freeze Mode operations described in this sec­
tion are only valid after SST5 is cleared. 

As Freeze Mode is invoked, the DRQIN or DRQOUT 
will be deactivated (stopping the transferring of 
data), bit 1 of the Host Status SFR will. be set 
(HST1 = 1), and SST5 will be cleared (SST5 = 0) to 
indicate to the external Host and internal CPU that 
the slave interface has been frozen. After the freeze 
becomes effective, any attempt by the external Host 
to access the FIFO will cause the overrun and un­
derrun bits to be activated (bits HST7 (for reads) or 
HST3 (for writes)). These two bits, HST3 and HST7, 
will be set (deactivated) after the Host Status SFR 
has been read. 

External Host writing to the Immediate Command In 
SFR and the Host Control SFR is also inhibited 
when the slave bus interface is frozen. Writing to 
these two registers after Freeze Mode is invoked will 
also cause HST3 (overrun) to be activated 
(HST3 = 0). Similarly, reading the Immediate Com­
mand Out Register by the external Host is disabled 
during Freeze Mode, and any attempt to do so will 
cause the clearing (deactivating, "0") of HST7 bit 
(underrun). 

6-760 



UPI·452 

DRQOUT DRQIN/..J s ~ 

--, " 11 ra n n .....-: ------55 5-----, 
RD?/WR? LJ LJ W W W ! II:: ~_! / ) HOST STATUS 

~:~~~ll~ 1~~O'i[ET;~:~~f:g:~~~ REGISTER READ 
HST 3 OR HST 7 TO BE SET 

S ~<----------------~~------~~~~--~~~----~-1 
INTRQ ..1 ________ ______________ . J : FIFO INTERNALLY STOPPED FROM '-.....I~-----I 

-i ' ACCEPTING OR OUTPUTIING DATA 
-------, 

SC3 

(~---------------------------------I 

HST1 ----------I"nl 
~-----------------------I 231428-17 

Figure 12. Disabling FIFO to Host Slave Interface Timing Diagram 

After the slave bus interface is frozen, the internal 
CPU can perform the following operations on the 
FIFO Special Function Registers (these opeiations 
are allowed only during Freeze Mode). 

For FIFO 

Reconfiguration 

To Enhance the 
Testability 

1. Changing the Channel 
Boundary Pointer SFR. 

2. Changing the Input and 
Output Threshold SFR. 

3. Writing to the read and write 
pointers of the Input and 
Output FIFO's. 

4. Writing to and reading the 
Host Control SFRs. 

5. Controlling some bits of Host 
and Slave Status SFRS. 

6. Reading the Immediate 
Command Out SFR and 
Writing to the Immediate 
Comand In SFR. 

Description of each of these special 
functions are as follows: 

FIFO Module SFRs During Freeze 
Mode 

Table 9 summarizes the characteristics of all the 
FIFO Special Function Registers during normal and 

6-761 

Freeze Modes. The registers that require special 
treatment in Freeze Mode are: HCON, IWPR, IRPR, 
OWPR, ORPR, HSTST, SSTAT, IMMIN & IMMOUT 
SFRs. They can be described in detail as follows: 

Host Control SFR (HCON) 

During normal operation, this register is written to or 
read by the external Host. However, in Freeze Mode 
(i.e. SST5 = 0) the UPI·452 internal CPU has write 
access to the Host Control SFR and write opera· 
tions to this SFR by the external Host will not be 
accepted. If the Host attempts to write to HCON, the 
Input Channel error condition flag (HST3) will be set. 

Input FIFO Pointer Registers (IRPR &. 
IWPR) 

Once the FIFO module is in Freeze Mode, error flags 
due to overrun and underrun of the Input FIFO point· 
ers will be disabled. Any attempt to create an over­
run or underrun condition by changing the Input 
FIFO pointers would result in an inconsistency in 
performance between the status flag and the thresh­
old counter. 

To enhance the speed of the UPI-452, read opera­
tions on the Input FIFO will look ahead by two bytes. 
Hence, every time the IRPR is changed during 
Freeze Mode, two NOPs need to be executed so 
that the two byte pipeline can be updated with the 
new data bytes pointed to by the new IRPR. The 



infef UPI-4S2 

. Table 9. FIFO SFR's Characteristics During Freeze Mode 

Normal Freeze Mode 
Label Name Operation Operation 

(SST5 = 1) (SST5 = 0) 

HCON Host Control Not Accessible Read & Write 

HSTAT Host Status Read Only Read & Write 4 

SLCON Slave Control Read & Write Read & Write 

SSTAT Slave Status Read Only Read & Write 4 

IEP Interrupt Enable & Priority Read & Write Read & Write 

MODE Mode Register Read & Write Read & Write 

IWPR Input FIFO Write Pointer Read Only Read & Write 5 

IRPR Input FIFO Read Pointer Read Only Read & Write 1, 5 

OWPR Output FIFO Write Pointer Read Only Read & Write 6 

ORPR Output FIFO Read Pointer Read Only Read & Write 2, 6 

CBP Channel Boundary Pointer Read Only Read & Write 3 

IMIN Immediate Command In Read Only Read & Write 

IMOUT Immediate Command Out Read & Write Read & Write 

FIN FIFO IN Read Only Read Only 

CIN COMMAND IN Read Only Read Only 

FOUT FIFO OUT Read & Write Read & Write 

COUT COMMAND OUT Read & Write Read & Write 

ITHR Input FIFO Threshold Read Only Read & Write 

OTHR Output FIFO Threshold Read Only Read & Write 

NOTES: 
1. Writing of IRPR will automatically cause the FIFO IN SFR to load the contents of the Input FIFO from that location. 
2. Writing to ORPR will automatically cause the IOBL SFR to load the contents of the Output FIFO at that ORPR address. 
3. Writing to the CBP SFR will cause automatic reset of the four pointers of the Input and Output FIFO channels. 
4. The internal CPU cannot directly change the status of these registers. However, by changing the status of the FIFO 
channels, the internal CPU can indirectly change the contents of the status registers. 
5. Changing the Input FIFO Read/Write Pointers also requires that a consistent update of the Input FIFO Threshold Counter 
SFR 
6. Changing the Output FIFO Read/Write Pointers also requires that a consistent update of the Output FIFO Threshold 
Counter SFR. 

Threshold Counter SFR also needs to change by the 
same number of bytes as the IRPR (increase 
Threshold Counter if IRPR goes forward or decrease 
if IRPR goes backward). This will ensure that future 
interrupts will still be generated only after a thresh­
old number of bytes are available. (See "Input and 
Output FIFO Threshold SFR" section below.) 

In Freeze Mode, the internal CPU can also change 
the content of IWPR, and each change of IWPR also 
requires an update of the Threshold Counter SFR. 

Normally, the internal CPU cannot write into the In­
put FIFO. It can, however, during Freeze Mode by 
first reconfiguring the FIFO as an Output FIFO (Re­
fer to "Input and Output FIFO Threshold SFR" sec­
tion below).Changing the IRPR to be equal to IWPR 
generates a full condition while changing IWPR to 
be equal to IRPR generates an empty condition. The 
order in which the pointers are written determines 
whether a full or empty condition is generated. 

6-762 



inter UPI-4S2 

Output FIFO Pointer SFR (ORPR and 
OWPR) 

In Freeze Mode the contents of OWPR can be 
changed by the internal CPU, but each change of 
OWPR or ORPR requires the Threshold Counter 
SFR to be updated as described in the next section. 
A NOP must be executed whenever a new value is 
written into ORPR, as just described for changes to 
IRPR. As before, changing ORPR to be equal to 
OWPR will generate a full condition, Output FIFO 
overrun or underrun condition cannot be generated 
though. 

Input and Output FIFO Threshold SFR 
(ITHR & OTHR) 

The Input and Output FIFO Threshold SFRs are also 
programmable by the internal CPU during Freeze 
Mode. For proper operation of the Threshold fea­
ture, the Threshold SFR should be changed only 
when the Input and Output FIFO channels are emp­
ty, since they reflect the current number of bytes 
available to read/write before an interrupt is gener­
ated. 

Table 10 illustrates the Threshold SFRs range of 
values and the number of bytes to be transferred 
when the Request For Service Flag is activated: 

Table 10. Threshold SFRs Range of Values and 
Number of Bytes to be Transferred 

ITHR No. of Bytes OTHR No. of Byte~ 
(lower Available to (lower Available to 

Fieven bits) be Written seven bits be Read 

0 CBPR 1 2 
1 CBPR-1 2 3 
2 CBPR-2 3 4 

• • • • 
• • • • 
• • • • 

CBP-3 3 (80H-CBP)-3 (80H-CBP)-2 
CBP-2 2 (80H-CBP)-2 (80H-CBP)-1 

(80H-CBP)-1 (80H-CBP) 

The eighth bit of the Input and Output FIFO Thresh­
old SFR indicates the status of the service requests 
regardless of the freeze condition. If the eighth bit is 
a "1 ", the FIFO is requesting service from the exter­
nal Host. In other words, when the Threshold SFR 
value goes below zero (2's complement), a service 
request is generated. Normally the ITHR SFR is in­
cremented for each read operation by the Host and 
decremented for each write by the internal CPU. The 
OTHR SFR is decremented by internal CPU writes 
and incremented by external Host reads. Thus if the 
pointers are moved when the FIFO's are not empty, 

these relationships can be used to calculate the off­
set for the Threshold SFRs. It is best to change the 
Threshold SFRs only when the FIFO's are empty to 
avoid this complication. 

Host Status SFR (HSTAT) 

When in Freeze Mode, some bits in the Host Status 
SFR are forced high and will not reflect the new 
status until the system returns to normal operation. 
The definition of the register in Freeze Mode is as 
follows: 

NOTE: 
The internal CPU reads this shadow latch value 
when reading the Host Status SFR. The shadow 
latch will keep the information for these bits so nor­
mal operation can be resumed with the right status. 
The following bits are cleared (= 0) when Freeze 
Mode is invoked; 

HST7 Output FIFO Error Condition Flag 

1 = No error. 

o = An invalid read has been done on the 
output FIFO or the Immediate Command 
Out Register by the host CPU. 

NOTE: 
The normal underrun error condition status is dis­
abled. If an Immediate Command Out (IMOUT) 
SFR read is attempted during Freeze Mode, the 
ocntents of the IMOUT SFR is output on the Data 
Buffer and the error status is set (= 1). 

HST6 Immediate Command Out SFR Status 

During normal operation, this bit is cleared 
(=0) when the IMOUT SFR is written by the 
UPI-452 internal CPU and set (= 1) when the 
IMOUT SFR is read by the external Host. 
Once the host-slave interface is frozen (Le. 
SST5 = 0), this bit will be read as a 1 by the 
host CPU. A shadow latch will keep the infor­
mation for this bit so normal operation can be 
resumed with the correct status. 

Shadow latch: 

1 = Internal CPU reads the IMOUT SFR 

o = Internal CPU writes to the IMOUT SFR 

HST5 Data Stream Command at Output FIFO 

This bit is forced to a "1" during Freeze Mode 
to prevent the external host CPU from trying 
to read the OSC. Once normal operation is 
resumed, HST5 will reflect the Data/Com­
mand status of the current byte in the Output 
FIFO. 

Shadow Latch (read by the internal CPU): 

1 = No Data Stream Command (OSC) 

o = Data Stream Command at Output FIFO 

6-763 



infef UPI-4S2 

HST4 Output FIFO Service Request Status 

When Freeze Mode is invoked, this bit no 
longer reflects the Output FIFO Request 
Service Status. This bit wll be forced to a "1". 

HST3 Input FIFO Error Condition Flag 

1 = No error. 

o ~ One of the following operations has 
been attempted by the external host and 
is invalid: 

1) Write into the Input FIFO 

2) Write into the Host Control SFR 

3) Write into the Immediate Comamnd In 

SFR 

NOTE: 
The normal Input FIFO overrun condition is dis­
abled. 

HST2 Immediate Command In SFR Status 

This bit is normally cleared when the internal 
CPU reads the IMIN SFR and set when the 
external host CPU writes into the IMIN SFR. 
When the host-slave interface is frozen, read­
ing and writing of the IMIN will change the· 
shadow latch of this bit. This bit will be read 
as a "1" by the external Host. 

Shadow latch. 

1 = Internal CPU writes into IMIN SFR 

o = Internal CPU reads the IMIN SFR 

HST1 Freeze Mode Status 

1 = Freeze Mode. 

o = Normal Operation (non-Freeze Mode). 

NOTE: 
This bit is used to indicate to the external Host that 
the host-slave interface has been frozen and hence 
the external Host functions are now reduced as 
shown in Table 8. 

HSTO Input FIFO Request Service Satus 

When slave interface is frozen this bit no 
longer reflects the Input FIFO Request Serv­
ice Status. This bit will be forced to a "1". 

Slave Status SFR (SST A T) 

The Slave Status SFR is a read-only SFR. However, 
once the slave interface is frozen, most of the bits of 
this SFR can be changed by the internal CPU by 
reconfiguring the FIFO and accessing the FIFO Spe­
cial Function Registers. 

SST7 Output FIFO Overrun Error Flag 

Inoperative in Freeze Mode. 

SST6 Immediate Command Out SFR Status 

In Freeze Mode, this bit will be cleared when 
the internal .CPU -reads the Immediate Com­
mand Out SFR and set when the internal 
CPU writes to- the Immediate Command Out 
Register. 

SST5 FIFO-External Interface Freeze Mode Status 

This bit indicates to the internal CPU that 
Freeze M6de is in progress and that it has 
write access to the FIFO Control, Host con­
trol and Immediate Command SFRs. 

SST4 Output FIFO Request Service Status 

During normal operation, this bit indicates to 
the internal CPU that the Output FIFO is 
ready for more data. The status of this bit re­
flects the position of the Output FIFO read 
and write pointers. Hence, in Freeze Mode, 
this flag can be changed by the internal CPU 
indirectly as the read and write pointers 
change. 

SST3 Input FIFO Underrun Flag 

Inoperative during Freez:e Mode. 

During normal operation, a read operation 
clears (= 0) this bit when there are no data 
bytes in the Input FIFO and deactivated (= 1) 
when the Slave Status SFR is read. In Freeze 
Mode, this bit will not be cleared by an Input 
FIFO read underrun error condition, nor will it 
be reset by the reading of the Slave Status 
SFR. 

SST2 Immediate Command In SFR Status 

This bit is normally activated (= 0) when the 
external host CPU writes into the Immediate 
Command In SFR and deactivated (= 1) 
when it is read by the internal CPU. In Freeze 
Mode, this bit will not be activated (= 0) by 
the external Host's writing of the Immediate 
Command IN SFR since this function is dis­
abled. However, this bit will be cleared (= 0) if 
the internal CPU writes to the Immediate 
Command In SFR and it will be set = 1) if it 
reads from the register. 

SST1 Data Stream Command at Input FIFO Flag 

In Freeze Mode, this bit operates normally. It 
indicates whether the next byte of data from 
the Input FIFO is a DSC or data byte. If it is a 
DSC byte, reading from FIFO IN SFR will re­
sult in reading invalid data (FFH) and vice ver­
sa. In Freeze Mode, this bit still reflects the 
type of data byte available from the Input 
FIFO. 

6-764 



inter UPI-4S2 

SSTO Input FIFO Service Request Flag 

During normal operation, this bit is activated 
(= 0) when the Input FIFO contains bytes that 
can be read by the internal CPU and deacti­
vated (=1) when the Input FIFO does not 
need any service from the internal CPU. In 
Freeze Mode, the status of this bit should not 
change unless the pointers of the Input FIFO 
are changed. In this mode, the internal CPU 
can indirectly change this bit by changing the 
read and write pointers of the Input FIFO but 
cannot change it directly. 

Immediate Command In/Out SFR . 
(IMMIN/IMMOUT) 

If Freeze Mode is in progress, writing to the Immedi­
ate Command In SFR by the external host will be 
disabled, and any such attempt will cause HST3 to 
be cleared (= 0). Similarly, the Immediate Command 
Out SFR read operation (by the host) will be dis­
abled internally and read attempts will cause HST7 
to be cleared (= 0). 

Internal CPU Read and Write of the 
FIFO During Freeze Mode 

In normal operation, the Input FIFO can only be read 
by the internal CPU and similarly, the Output FIFO 
can only be written by the internal CPU. During 
Freeze Mode, the internal CPU can read the entire 
contents of the Input FIFO by programming the CBP 
SFR to 7FH, setting the IRPR SFR to zero, and then 
the IWPR SFR to zero. Programming the pointer reg­
isters in this order generates a FIFO full signal to the 
FIFO logic and enables internal CPU read opera­
tions. If the IWPR and IRPR are already zero, the 
write pOinter should be changed to a non-zero value 
to clear the empty status then the pointers can be 
set to zero. 

In a similar manner, the internal CPU can write to all 
128 by1es of the FIFO by setting the CBP SFR to 
zero, setting OWPR SFR to zero, and then setting 
ORPR SFR to zero. This generates a FIFO empty 
Signal and allows internal CPU write operations to all 
128 by1es of the FIFO. The Threshold registers also 
need to be adjusted when the pointers are 
changed.(See "Input and Output FIFO Threshold 
SFR" section below.) 

MEMORY ORGANIZATION 

The UPI-452 has separate address spaces for Pro­
gram Memory and Data Memory like the 80C51. The 

Program Memory can be up to 64K by1es. The lower 
8K of Program Memory may reside on-chip. The 
Data Memory consists of 256 by1es of on-chip RAM, 
up to 64K bytes of off-chip RAM and a number of 
"SFRs" (Special Function Registers) which appear 
as yet another set of unique memory addresses. The 
80C51 Special Function Registers are listed in Table 
11 a, and the additional UPI-452 SFRs are listed in 
Table 11 b. A brief description of the 80C51 core 
SFRs is also provided below. 

Accessing External Memory 

As in the 80C51 , accesses to external memory are 
of two types: Accesses to external Program Memory 
and accesses to external Data Memory. 

External Program Memory is accessed under two 
conditions: 

1) Whenever signal EA is active; or 

2) Whenever the program counter (PC) contains a 
number that is larger than 1 FFFH. 

This requires that the ROM less versions have EA 
wired low to enable the lower 8K program by1es to 
be fetched from external memory. 

External Data Memory is accessed using either the 
MOVX @DPTR (16 bit address) or the MOVX @Ri (8 
bit address) instructions. 

Table 11a. 80C51 Special Function Registers; 

Symbol Name Address 

'ACC Accumulator OEOH 
'B B Register OFOH 
'PSW Program Status Word ODOH 
SP Sfack Pointer 81H 

DPTR Data Pointer (consisting 82H 
of DPH and DPL) 

'PO PortO 80H 
'P1 Port 1 90H 
'P2 Port 2 OAOH 
'P3 Port 3 OBOH 
'IP Interrupt Priority Control OB8H 
OlE Interrupt Enable Control OA8H 
TMOD Timer/Counter Mode Control 89H 
TCON Timer/Counter 2 Control OC8H 
THO Timer/Counter 0 (high byte) 8CH 
TLO Timer/Counter 0 (low byte) 8AH 
TH1 Timer/Counter 1 (high byte) 8DH 
TL1 Timer/Counter 1 (low byte) 8SH 
'SCON Serial Control 98H 
SBUF Serial Data Buff 99H 
'PCON Power Control 87H 

6-765 



infef UPI-452 

Table 11b. UPI-452 Additional Special Function 
Registers 

ITHR Input FIFO Threshold OF6H 
OTHR Output FIFO Threshold OF7H 
*SLCON Slave Control OE8H 
SSTAT Slave Status OE9H 
*IEP Interrupt Enable & Priority OF8H 
MODE Mode Register OF9H 
IWPR Input Write Pointer OEAH 
IRPR Input Read Pointer OEBH 
ORPR Output Read Pointer OFAH 
OWPR- Output Write Pointer OFBH 
CBP Channel Boundary Pointer OECH 
IMMIN Immediate Command In OFCH 
IMMOUT Immediate Command Out OFDH 
FIN FIFO IN OEEH 
CIN COMMAND IN OEFH 
FOUT FIFO OUT OFEH 
COUT COMMAND OUT OFFH 
*P4 Port 4 OCOH 
HSTAT Host Status OE6H 
HCON Host Control OE7H 
DCONO DMAO Control 92H 
DCON1 DMA 1 Control 93H 

DMA Source Address 
SARLO low byte/ OA2H 
SARHO hi byte/ channel 0 OA3H 
SARL1 low byte/ OB2H 
SARH1 hi byte/ channel 1 OB3H 

DMA Destination Address 
DARLO low byte/ OC2H 
DARHO hi byte/ channel 0 OC3H 
DARL1 low byte/ OD2H 
DARH1 hi byte/ channel 1 OD3H 

DMA Byte Count 
BCRLO low byte/ OE2H 
BCRHO hi byte/ channel 0 OE3H 
BCRL1 low byte/ OF2H 
BCRH1 hi byte/ channel 1 OF3H 

The SFRs marked with an asterisk (') are both bit· and byte· address· 
able. The functions of the SFRs are as follows: 

Miscellaneous Special Function 
Register Description 

80C51 SFRs 

ACCUMULATOR 

ACC is the Accumuator SFR. The mnemonics for 
accumulator-specific instructions, however, refer to 
the accumulator simply as A. 

B REGISTER 

The B SFR is used during multiply and divide opera­
tions. For other instructions it can be treated as an­
other scratch pad regster. 

PROGRAM STATUS WORD 

The PSW SFR contains program status information 
as detailed in Table 12. 

STACK POINTER 

The Stack Pointer register is 8 bits wide. It is incre­
mented before data is stored during PUSH and 
CALL executions. While the sta:ck may reside any· 
where in on-chip RAM, the Stack Pointer is initialized 
to 07H after a reset. This causes the stack to begin 
at location 08H. 

DATA POINTER 

The Data Pointer (DPTR) consists of a high byte 
(DPH) and a low byte (DPL). Its intended function is 
to hold a 16-bit address. It may be manipulated as a 
16-bit register or as two independent 8-bit registers. 

PORTS 0 TO 4 

PO, P1, P2, P3 and P4 are the SFR latches of Ports 
0, 1, 2, 3 and 4, respectively. 

SERIAL DATA BUFFER 

The Serial Data Buffer is actually two separate regis­
ters, a transmit buffer and a receive buffer register. 
When data is moved to SBUF, it goes to the transmit 
buffer where it is held for serial transmission. (Mov­
ing a byte to SBUF is what initiates the 
transmission.) When data is moved from SBUF, it 
comes from the receive buffer. 

TIMER/COUNTER SFR 

Register pairs (THO, TLO), and (TH1, TL 1) are the 
16-bit counting registers for Timer/Counters 0 and 2. 

POWER CONTROL SFR (PCON) 

The PCON Register (Table 13) controls the power 
down and idle modes in the UPI-452, as well as pro­
viding the ability to double the Serial Channel baud 
rate. There are also two general purpose flag bits 
available to the user. Bits 5 and 6 are used to set the 
DMA mode (see "General Purpose 'DMA Channels" 
section), and bit 4 is not used. 

6-766 



infef UPI-4S2 

Table 12. Program Status Word 
Symbolic 
Address 

PSW 

Symbol 

CY 
AC 
Fa 
RS1 
RSO 
OV 
-
P 

CY AC FO 

(MSB) 

Position 

PSW.7 
PSW.6 
PSW.5 
PSW.4 
PSW.3 
PSW.2 
PSW.1 
PSW.O 

'(RS1, RSO) enable Internal RAM register banks as follows: 

RS1 RSO 

a a 
a 1 
1 a 
1 1 

RS1 RSO OV 

Name 

Carry Flag 

P 

(LSB) 

Physical 
Address 

ODOH 

Auxiliary Carry (For BCD operations) 
Flag a (user assignable) 
Register Bank Select bit l' 
Register Bank Select bit 0' 
Overflow Flag 
(reserved) 
Parity Flag 

Internal RAM Register Bank 

BankO 
Bank 1 
Bank 2 
Bank 4 

Table 13. peON Special Function Register 
Symbolic 
Address 

PCON 

Symbol 

SMOD 

ARB 
REO 

-
GF1 
GFO 
PD 

IDL 

SMOD ARB I REO 

(MSB) 

Position 

PCON7 

PCON6 
PCON5 
PCON4 
peON3 
PCON2 
PCON1 

PCONO 

'See "DMA Transfer Mode" deSCription. 

NOTE: 

GF1 GFO PD IDL 

(LSB) 

Function 

Double Baud rate bit. When set to a 

Physical 
Address 

087H 

1 , the baud rate is doubled when the 
serial port is being used in either 
Mode 1, 2 or 3. 
DMA Arbiter control bit' 
DMA Requestor control bit' ~ 

(reserved) 
General-purpose flag bit 
General-purpose flag bit 
Power Down bit. Setting this bit 
activates power down operation. 
Idle Mode bit. Setting this bit 
activates idle mode operation. 

If 1's are written to PO and IOL at the same time, PO takes precedence. The reset value of peON is (OOOXOOOO). 

6-767 



II 

II 

• 
• 

II 

UPI-41ATM [p~~[bUIMlUOO~[fltl 

UNIVERSAL PERIPHERAL INTERFACE 
8-BIT SLAVE MICROCONTROLLER 

8-Bit CPU plus ROM, RAM, I/O, Timer 
and Clock in a Single Package 

One 8-Bit Status and Two Data Registers 
for Asynchronous Siave-to-Master 
Interface 

DMA, Interrupt, or Polled Operation 
Supported 

1024 x 8 ROM/EPROM, 64 x 8 RAM, 
8-Bit Timer/Counter, 18 Programmable 
I/O Pins 

3.6 MHz 8741A-8Available 

• 
• 
• 
• 
• 
• 

• 

Fully Compatible With All 
Microprocessor Families 
Interchangeable ROM and EPROM 
Versions 
Expandable I/O 
RAM Power-Down Capability 
Over 90 Instructions: 70% Single Byte 
Available in EXPRESS 
-Standard Temperature Range 
-Extended Temperature Range 
8741A Available in 40-Lead Cerdip 
Package. 8041A in Both 40-Lead Plastic 
and 44-Lead Plastic Leaded Chip Carrier 
Packages. 
(See Packaging Specifications, Order #231369) 

The I ntel® UPI-41 A'· is a general purpose, programmable interface device designed for use with a variety of 8-bit 
microprocessor systems. It contains a low cost microcomputer with program memory, data memory, 8-bit CPU, I/O 
ports, timer/counter, and clock in a single 40-pin package. Interface registers are included to enable the UPI device 
to function as a peripheral controller in MCS-48'·, MCS-80'·, MCS-85'·, MCS-86'·, and .other 8-bit systems. 

The UPI-41A ™ has 1 K words of program memory and 64 words of data memory on-chip. To allow full user flexibility the 
program memory is available as ROM in the 8041A version or as UV-erasable EPROM in the 8741A version. The 8741A 
and the 8041A are fully pin compatible for easy transition from prototype to production level designs. 

The device has two 8-bit, TTL compatible I/O ports and two test inputs. Individual port lines can function as either in­
puts or outputs under software control. I/O can be expanded with the 8243 device which is directly compatible and has 
16 I/O lines. An 8-bit programmable timer/counter is included in the UPI device for generating timing sequences or 
counting external inputs. Additional UPI features include: single 5V supply, low power standby mode (in the 8041A), 
single-step mode for debug (in the 8741 A), and dual working register banks. 

Because it's a complete microcomputer, the UPI provides more flexibility for the designer than conventional LSI inter­
face devices. It is designed to be an efficient controller as well as an arithmetic processor. Applications include key­
board scanning, printer control, display multiplexing and similar functions which involve interfacing peripheral 
devices to microprocessor systems. 

SYNC----
!!l:------_ 

PAO!l4---
1IIm'·---_ 

1 
nnTJ.l r"UAL1---EJ 

LC,O"-, T,",NII 
ClOC~ L 1(l.&U---_ 

BLOCK DIAGRAM 

INlER,.U 

'"' 

r~'~ .. 8 
~M.DO'" 

_ A~CHS 

'---..7.'=~ 

,., 
PORT 2 

DIP PIN 
CONFIGURATION 

PlCC PIN 
CONFIGURATION 

C5-- 7 
EA,-S 

RD- 9 
A,--- 10 

WR- 11 
NC-- 12 

SYNC- 13 
oo~- 14 

Ol-~--= ~~ 
0,- 17 

39 -Pl,"OBF 
38-P" 
31 -PI' 
36-_P" 

8041A 11 ~~:: 
30-P,o 
29 --Voo 

Intel Corporation Assumes No Responsibilty for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses afe Implied. 

©tNTEl CORPORATION. 1985 6-768 SEPT. 1985 
231316-002 



inter UPI-41ATM 

Table 1. Pin Description 

Signal Description Signal Description 

Do-D7 Three-state, bidirectional DATA BUS BUF- XTAL1, Inputs for a crystal, LC or an external timing 
(BUS) FER lines used to interface the UPI-41 A to an XTAL2 signal to determine the internal oscillator 

8-bit master system data bus. frequency. 

P10-P17 8-bit, PORT 1 quasi-bidirectional 1/0 lines. SYNC Output signal which occurs once per UPI-

P20-P27 8-bit, PORT 2 quasi-bidirectional 1/0 lines. 
The lower 4 bits (P20-P23) interface directly 
to the 8243 1/0 expander device and contain 

41 A instruction cycle. SYNC can be used as a 
strobe for external circuitry; it is also used to 
synchronize single step operation. 

address and data information during PORT EA External access input which allows emula-
4-7 access. The upper 4 bits (P24 -P27) can tion, testing and PROMIROM verification. 
be programmed to provide Interrupt Request 
and DMA Handshake capability. Software 
control can configure P24 as OBF (Output 

PROG Multifunction pin used as the program pulse 
input during PROM programming. 

Buffer Full), P25 as IBF (Input Buffer Fu~ During 1/0 expander access the PROG pin 
as DRQ (DMA Request), and P27 as DACK acts as an addressldata strobe to the 8243. 
(DMA ACKnowledge). 

RESET Input used to reset status flip-flops and to set 
WR 1/0 write input which enables the master CPU the program counter to zero. 

to write data and command words to the UPI-
41 A INPUT DATA BUS BUFFER. 

RESET is also used during PROM program-
ming and verification. 

RD 1/0 read input which enables the master CPU RESET should be held low for a minimum of8 
to read data and status words from the OUT-
PUT DATA BUS BUFFER or status register. 

CS Chip select input used to select one UPI-41 A 
out of several connected to a common data 
bus. 

instruction cycles after power-up. 

SS Single step input used in the 8741A in con-
junction with the SYNC output to step the 
program through each instruction. 

Ao Address input used by the master processor 
to indicate whether byte transfer is data or 
command. During a write operation flag F1 is 
set to the status of the Ao input. 

Vee +5V main power supply pin. 

VDD +5V during normal operation. +25V during 
programming operation. Low power standby 
pin in ROM version. 

TEST 0, Input pins which can be directly tested using VSS Circuit ground potential. 
TEST 1 conditional branch instructions. 

T 1 also functions as the event timer input 
(under software control). TO is used during 
PROM programming and verification in the 
8741 A. 

6-769 231316-002 



inter 

PROGRAMMING, VERIFYING, AND 
ERASING THE 8741A EPROM 

Programming Verification 

In brief, the programming process consists of: activating 
the program mode, applying an address, latch ing the 
addres~, applying data, and applying a programming pulse. 
Each word is programmed completely before moving on to 
the next and is followed by a verification step. The follow· 
ing is a list of the pins used for programming and a descrip· 
tion of their functions: 

Pin Function 

XTAL 1 Clock Input (1 to 6MHz) 

Reset Initialization and Address Latching 

Test 0 Selectlon of Program or Verify Mode 

EA Activation of ProgramlVerify Modes 

BUS Addre~s and Data Input 
Data Output During Verify 

P20·1 Address Input 

VDD Programming Power Supply 

PROG Program Pulse Input 

WARNING: 

An attempt to program a missocketed 8741 A will result in severe 
damage to the part. An indication of a properly socketed part is the 
appearance of the SYNC clock output. The lack of this clock may 
be used to disable the programmer. 

The Program/Verify sequence is: 

1. AO= OV, CS = 5V, EA = 5V, RESET = OV, TESTO = 5V, 
VOO = 5V. clock applied or internal oscillator operating, 
BUS and PROG floating. 

2. Insert 8741A in programming socket 

3. TEST 0 = Ov (select program mode) 

4. EA = 23V (activate program mode) 

5. Address applied to BUS and P2D-l 

6. RESET = 5v (latch address) 

7. Data applied to BUS 

8. V DD = 25v (programm ing power) 

9. PROG = Ov followed by one 50ms pulse to 23V 

10. V DD = 5v 

11. TEST 0 = 5v (verify mode) 

12. Read and verify data on BUS 

13. TEST 0 = Ov 

14. RESET = Ov and repeat from step 5 

15. Programmer should be at conditions of step 1 when 
8741A is removed from socket. 

8741A Erasure Characteristics 

The erasure characteristics of the 8741A are such that 
erasure begins to occur when exposed to light with 
wavelengths shorter than approximately 4000 Ang· 
stroms (A). It should be noted that sunlight and certain 
types of fluorescent lamps have wavelengths in the 
3000-4000A range. Data show that constant exposure to 
room level fluorescent lighting could erase the typical 
8741A in approximately 3 years while it would take ap· 
proximately one week to cause erasure when exposed 
to direct sunlight. If the 8741A is to be exposed to these 
types of lighting conditions for extended periods of 
time, opaque labels are available from Intel which 
should be placed over the 8741A window to prevent 
unintentional erasure. 

6-770 

The recommended erasure procedure for the 8741A is 
exposure to shortwave ultraviolet light which has a 
wavelength of 2537 A. The integrated dose (i.e., UV inten· 
sity x exposure time) for erasure should be a minimum 
of 15 w·sec/cm2. The erasure time with this dosage is 
approximately 15 to 20 minutes using an ultraviolet 
lamp with a 12,000 "W/cm'2 power rating. The 8741A 
should be placed within one inch of the lamp tubes duro 
ing erasure. Some lamps have a filter on their tubes 
which should be removed before erasure. 

231316-002 



UPI_41ATM 

UPI·41A™ FEATURES AND 
ENHANCEMENTS 

1. Two Data Bus Buffers, one for input and one for out· 
put. This allows a much cleaner Master/Slave pro­
tocol. 

INPUT 

BUS 

INTERNAL 
DATA BUS 

df DATA 

00-07 L....-----JBU~;ER 8 
OUTPUT 

DATA 
BUS 

BUFFER 
(8) 

2. 8 Bits of Status 

FO 1 IBF OBF 1 

ST 4-ST 7 are user definable status bits. These bits are 
defined by the "MOV STS, A" single byte, single 
cycle instruction. Bits 4-7 of the accumulator are 
moved to bits 4-7 of the status register. Bits 0-3 of 
the status register are not affected. 

MOV STS, A Op Code: 90H 

1,10101,101010101 

3. RD and WR are edge triggered. IBF, OBF, F, and INT 
change internally after the trailing edge of RD or WR. 

FlAGS AFFECTED 

AD orWR 

4. P24 and P25 are port pins or Buffer Flag pins which 
can be used to interrupt a master processor. These 
pins default to port pins on Reset. . 

If the "EN FLAGS" instruction has been executed, 
P24 becomes the OBF (Output Buffer Full) pin. A "1" 
written to P24 enables the OBF pin (the pin outputs 
the OBF Status Bit). A "0" written to P24 disables the 
OBF pin (the pin remains low). This pin can be used 
to indicate that valid data is available from the UPI· 
41A (in Output Data Bus Buffer). 

6-771 

If "EN FLAGS" has been executed, P25 becomes the 
IBF (Input Buffer Full) pin. A "1" written to P25 
enables the IBF pin (the pin outputs the inverse of the 
IBF Status Bit). A "0" written to P25 disables the IBF 
pin (the pin remains low). This pin can be used to 
indicate that the UPI·41A is ready for data. 

OBF (INTERRUPT REOUESn 

fijJ' (INTERRUPT REOUEsn 

DATA BUS BUFFER INTERRUPT CAPABILITY 

EN FLAGS Op Code: OF5H 

DO 

5. P26 and P27 are port pins or DMA handshake pins for 
use with a DMA controller. These pins default to port 
pins on Reset. 

If the "EN DMA" instruction has been executed, P26 
becomes the DRQ (DMA ReQuest) pin. A "1" written 
to P26 causes a DMA request (DRQ is activated). DRQ 
is deactivated by DACK· RD, DACK· WR, or execution 
of the "EN DMA" instruction. 

If "EN DMA" has been executed, P27 becomes the 
DACK (DMA ACKnowledge) pin. This pin acts as a 
chip select input for the Data Bus Buffer registers 
during DMA transfers. 

ORO~ OROn 

UPI·41A 8257 

DACK~ DACK 

DMA HANDSHAKE CAPABiliTY 

EN OMA Op Coda: OESH 

0, 

231316-002 



intJ 

APPLICATIONS 

808SA 

ADDRI==:::":::=i~~ 
CONTROLr-______ rrfl 

--TO 

Figure 1. SOSSA-UPI-41A Interface 

8243 
EXPANDER 

DATA BUS 

CONTROL BUS 

UPI·41A 

KEYBOARD 
MATRIX 

Figure 3. UPI-41A-S243 Keyboard Scanner 

UPI-41ATM 

,---
¢!J Ali Ali 

... 
WR WR ¢!J 0 

8048 UPI·41A 
eli 

PORT CONTROL 2 
AO -TO 

BUS DATA BUS 8 DBB -T1 

Figure 2. S04S-UPI-41A Interface 

L CONTROL BUS 

Figure 4. UPI-41A Matrix Printer Interface 

6-772 231316-002 



UPI-41ATM 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ......... O·C to 70'C 
Storage Temperature ............. - 65'C to + 150'C 
Voltage on Any Pin With Respect 

to Ground .......................... -0.5V to + 7V 
Power Dissipation ......................... 1.5 Watt 

D.C. AND OPERATING CHARACTERISTICS 
TA=O'C to 70'C, Vss=OV, Vcc=voo= +5V :!:10%' 

Symbol Parameter 

'COMMENT: Stresses above those listed under "Absolute Maximum 
Ratings" may cause permanent damage to the device. This is a stress 
rating only and functional operation of the device at these or any other 
conditions above those indicated in the operational sections of this 
specification is not implied. Exposure to absolute maximum rating con­
ditions for extended periods may affect device reliability. 

Min. Max. Unit Test Conditions 

VIL Input Low Voltage (Except XTAL 1, XTAL2, RESET) -0.5 0.8 V 

VILI Input Low Voltage (XTALl, XTAL2, RESET) 

VIH Input High Voltage (Except XTAL 1, XTAL2,IjIESET) 

VIHI Input High Voltage (XTALl, XTAL2, RESET) 

VOL Output Low Voltage (00-07) 

VOL1 Output Low Voltage (PIOP17, P20P27, Sync) 

VOL2 Output Low Voltage (Prog) 

VOH Output High Voltage (0 0-07) 

VOHI Output High Voltage (All Other Outputs) 

IlL I nput Leakage Current (To, T I, RD, WR, CS, Ao, EA) 

loz Output Leakage Current (00-07, High Z State) 

III Low Input Load Current (P'OP17' P20P27) 

ILiI Low Input Load Current (RESET, SS) 

100 Voo Supply Current 

lec+ 100 Total Supply Current 

A.C. CHARACTERISTICS 
TA=O'C to 70'C, Vss=OV, Vcc=Voo= +5V :!:10%' 
DBB READ 

Symbol Parameter 

tAR CS, Ao Setup to RD I 

tRA CS, Ao Hold After ROt 

tRR RD Pulse Width 

tAD CS, Ao to Data Out Delay 

tRO RDI to Data Out Delay 

tOF Fmt to Data Float Delay 

tCY Cycle Time (Except 8741A·8) 

tCY Cycle Time (8741A·8) 

DBB WRITE 

Symbol Parameter 

tAW CS, Ao Setup to WRI 

tWA CS, Ao Hold After WR t 

tww WR Pulse Width 

tow Data Setup "to WR f 

two Data Hold After WRf 

6-773 

- 0.5 0.6 V 

2.2 Vee 

3.8 Vee V 

0.45 V IOL=2.0 mA 

0.45 V IOL=1.6rnA 

0.45 V IOL=1.0rnA 

2.4 V 10H= -400 "A 

2.4 V 10H= -50 "A 
:!:10 "A Vss :S VIN :S Vee 
±10 "A Vss +0.45 :S VIN :S Vee 
0.5 mA VIL = 0.8V 

0.2 rnA VIL =0.8V 

15 rnA Typical = 5 mA 

125 mA Typical = 60 rnA 

Min, Max. Unit Test Conditions 

0 ns 

0 ns 

250 ns 

225 ns CL=150 pF 

225 ns CL= 150 pF 

100 ns 

2.5 15 "s 6.0 MHz XTAL 

4.17 15 p's 3.6 MHz XTAL 

Min. Max, Unit Test Conditions 

0 ns 

0 ns 

250 ns 

150 ns 

0 ns 

231316-002 



inter UPI-41ATM 

A.C. TIMING SPECIFICATION FOR PROGRAMMING 
TA=O°C to 70°C, VCC= +5V ±10% * , 

Symbol Parameter Min. Max. Unit Test Conditions 

tAW Address Setup Time to RESET I 4tcy 

tWA Address Hold Time After RESET I 41CY 

tow Data in Setup Time to PROG I 4tcy 

two Data in Hold Time After PROG I 4tcy 

tpH RESET Hold Time to Verify 4tcy 

tvoow Voo Setup Time to PROG I 4tcy 

tVOOH Voo Hold Time After PROG I 0 

tpw Program Pulse WIdth 50 60 mS 

trw Test 0 Setup Time for Program Mode 4tcy 

tWT Test 0 Hold Time After Program Mode 4tcy 

too Test 0 to Data Out Delay 4tcy 

tww RESET Pulse Width to Latch Address 4tcy 

tr, tf Voo and PROG Rise and Fall Times 0.5 2.0 I-'S 

tCY CPU Operation Cycle Time 5.0 I-'S 

tRE RESET Setup Time Before EA I. 4tcy 

Note: If TEST 0 is high, too can be triggered by RESET t. 
* For Extended Temperature EXPRESS, use M8741 A electrical parameters. 

D.C. SPECIFICATION FOR PROGRAMMING 
TA = 25°C ±5°C, Vcc = 5V ±5%, Voo = 25V ±1V 

Symbol Parameter Min. Max. Unit Test Conditions 

VOOH Voo Program Voltage High Level 24.0 26.0 V 

VOOL Voo Voltage Low Level 4.75 5.25 V 

VPH PROG Program Voltage High Level 21.5 24.5 V 

VPL PROG VOltage Low Level 0.2 V 

VEAH EA Program or Verify Voltage High Level 21.5 24.5 V 

VEAL EA Voltage Low Level 5.25 V 

100 Voo High Voltage Supply Current 30.0 mA 

IPROG PROG High Voltage Supply Current 16.0 mA 

lEA EA High Voltage Supply Current 1.0 mA 

A.C. CHARACTERISTICS-PORT 2 
TA =O·Ct070·C,: Vcc= +5V ±10% 

Symbol Parameter Min. Max. Unit Test Conditions 

tcp Port Control Setup Before Falling 
Edge of PROG 110 ns 

tpc Port Control Hold After Falling 
Edge of PROG 100 ns 

tPR PROG to Time P2 Input Must Be Valid 810 ns 

tPF Input Data Hold Time 0 150 ns 

top Output Data Setup Time 250 ns 

tpo Output Data Hold Time 65 ns 

tpp PROG Pulse Width 1200 ns 

6-774 231316-002 



inter 

A.C. CHARACTERISTICS-DMA 
Symbol Parameter 

IACC DACK 10 WR or RD 

ICAC RD or WR 10 DACK 

IACD DACK 10 Data Valid 

ICRO RD or WR 10 DRQ Cleared 

CRYSTAL OSCILLATOR MODE 

r-----w XTAL1 

: 1·6 mHz 
<" 15 pF I 

(INCLUDES XTAL....L c:::J 
SOCKET, STRAY) i 

I 
, 3 
L_____ XTAL2 

15-25pF 
(INCLUDES SOCKET, I 

STRAY) -= 

CRYSTAL SERIES RESISTANCE SHOULD BE 
<75Q AT 6 MHz; <laOQ AT 3.6 MHz. 

LC OSCILLATOR MODE 

Jc ~ NOMINAL f 

4S"H 20 pF 5.2 MHz 
120"H 20 pF 3.2 MHz 

rIc 
-=- t C 

UPI_41ATM 

Min. Max. Unit Test Conditions 

0 ns 

0 ns 

225 ns CL =150pF 

200 ns 

DRIVING FROM EXTERNAL SOURCE 

2 

l 
XTAL1 

~ L 

I 3 
XTAl2 

+ SV 

470Q 

l>--+-------::.j XTAll 

+ SV 

470Q 

'----....... ---'-1XTAL2 

BOTH XTAl1 AND XTAL2 SHOULD BE DRIVEN. 
RESISTORS TO Vee ARE NEEDED TO ENSURE ViH = 3.eV 
IF TTL CIRCUITRY IS USED. 

f :::2ri)LC' 

C,=C+~Cpp 
2 

Cpp ::: 5 -10 pF PIN·IO·PIN 
CAPACITANCE 

EACH C SHOULD BE APPROXiMATELY 20 pF,lNCLUDING STRAY CAPACITANCE. 

TYPICAL 8041/8741 A CURRENT 

o 
o 

80 rnA 

60 rnA 

+ 40 rnA 
u 
u 

20 rnA -

TEMP (OC) 

6-775 

A.C TESTING LOAD CIRCUIT 

DEVICE 
UNDER n CL~150pF TEST 

I 
-

231316-002 



inter UPI-41ATM 

WAVEFORMS 
READ OPERATION-DATA BUS BUFFER REGISTER. 

~ V (SVSTEM'S 

CS OR AO -----./"1'\'-------------------1"" ..... ------------- ADDRESS BUS) 

-'''1 1-',,-1
1

. -',,-

\ Y }-------4 
!READ CONTROLI 

_'''_. ~C, ----'AO----

~OA~TAp~~~-----------« ___ DATAVAlIO»-----------

WRITE OPERATION-DATA BUS BUFFER REGISTER. 

~ J2< !SYSTEM'S 

aOR Ao _ [--------'----------'1.1'---------- ADDRESSBUSI 

-'" -~ ~."--~-,--'W-'-~-D--------'-----,WRITE CONTROLI WR 

DATA BuS DATA) 1\1 DATA 
IINPUT) MAY CHANGE --DATAVAlID--"~ MAY CHANGE. 

--------------~ ~-----------

PORT 2 TIMING 

SYNC 

EXPANDER 
PORT 

OUTPUT 

EXPANDER 
PORT 

INPUT 

PROG 

PORT 20-3 DATA 

peRT 20-3 DATA 

6-776 231316-002 



inter UPI-41ATM 

WAVEFORMS FOR PROGRAMMING 

COMBINATION PROGRAMIVERIFY MODE IEPROM'S ONLY) 

5V -~/ 
23V 

EA 

TESTO 

____ ~_--_t_TW_=_--_+' _--_P_RO_GR_AM ___ ~~~~~J-r,~.:~-V-ER-lFy-~\.,..I·'--------_-_P_RO_GR_AM_-_-___ -

l=,.. .I 
-1 k~---+-i -~\'--~/ 

tAW • i· -1- tWA r-- t OO --1 
J -- r--D-A-T-A-T-O-B-E----' __ ~DATA __ J NEXTADORX= 

PROGRAMMED VALID VALID, VALID 
I 

Voo 

LAST 
ADDRESS 

+25--- --.- -----------

ADDRESS 18-9) VALID 

tvoow --~ f-- -l ~ tVOOH 

NEXT 
ADDRESS 

_,_~-tWT-

·5------------- ! Ipw I "-------------------------

tow -r'-1, I ! 1- -1- two 
PAOG+ 23 ---.. ". __ . ---i!/\! i 

:~ ---- - - - - - - -"""\:.LJ ~ ___ .../r----- - - - -"'\'-_____ _ 

VERIFY MODE IRDM/EPROM) 

/ 
\"----

=>---
_______ ~»(~ _________ A_D_D_R_E_ss_r8_-9_I_V_A_L_rO ________ J»(~ _______ N_E_X_T_A_D_D_R_E_SS_V_A_L_'_D ___________ __ 

NOTES: 
" PROG MUST FLOAT IF EA IS LOW (I ••. , * 23V), OR IF TO=SV FOR THE 8741A. FOR THE 

8041A PROG MUST ALWAYS FLOAT. 
2. XTAL 1 ANO XTAL 2 DRIVEN BY 3,6 MH: CLOCK Will GIVE 4.17 /,sec ICY' THIS IS ACCEPT· 

ABLE FOR 8741A·8 PARTS AS WELL AS STANDARD PARTS. 
3. AO MUST BE HELD LOW (I .... = OV) DURING PROGRAMNERIFY MODES. 

The 8741A EPROM can be programmed by either of two 
Intel products: 

1. PROMPT-48 Microcomputer Design Aid, or 
2. Universal PROM Programmer (UPP series) peripheral 

of the Intellec'" Development System with a UPP-848 
Personality Card. 

6-777 231316-002 



UPI-41ATM 

WAVEFORMS-DMA 
DACK 

AD 

'AC~ =----:iCAC--
WR 

-1'Ace ~ - _ICAC -
DATA BUS .1,....----.. 

~ I VALID 

-'ACD~I~ 
~ 

ORa 
-Ic}-

\ 
-'CRJ-

INPUT AND OUTPUT WAVEFORMS FOR A.C. TESTS 

2.4----"'" V2.2....... . /2.2V 
'--___ ...IAo.a- TEST POINTS ....... o.aA 

0.45 - 1.-----

Table 2. UPI™ Instruction Set 

Mnemonic Description Bytes Cycles Mnemonic Description Byles Cycles 

Accumulator XRL A,@Rr Exclusive OR data 1 1 
ADD A,Rr Add register to A 1 1 memory to A 
ADD A,@Rr Add data memory to A 1 1 XRL A,#data Exclusive OR imme- 2 2 
ADD A,#data Add immediate to A 2 2 diale 10 A 
ADDC A,Rr Add register to A with 1 1 INCA Increment A 1 1 

carry DEC A Decrement A 1 1 
ADDC A.@Rr Add data memory to A 1 1 CLR A Clear A 1 1 

with carry CPL A Complement A 1 1 
ADDC A. Add immed. to A with 2 2 DAA Decimal Adjust A 1 1 
#data carry SWAP A Swap nibbles of A 1 1 
ANL A.Rr AND register to A 1 1 RL A Rotate A left 1 1 
ANL A,@Rr AND data memory to A 1 1 RCL A Rotate A left through 1 1 
ANL A,#data AND immediate to A 2 2 carry 
ORL A,Rr OR register to A 1 1 RR A Rotate A right 1 1 
ORL A.@Rr OR data memory to A 1 1 RRC A Rotate A right through 1 1 
ORL A.#data OR immediate to A 2 2 carry· 
XRL A,Rr Exclusive OR register 1 1 

to A 

6-778 231316-002 



UPI-41ATM 

Table 2. UPI'M Instruction Set (Cont'd.) 

Mnemonic Description Bytes Cycles Mnemonic Description Bytes Cycles 

Input/Output Control 
In A,Pp Input port to A 1 2 EN DMA Enable DMA Hand- 1 1 
OUTL Pp,A Output A to port 1 2 shake Lines 
ANL Pp,#data AND immediate to port 2 2 EN I Enable IBF Interrupt 1 1 
ORL Pp,#data OR immediate to port 2 2 DIS I Disable IBF Interrupt 1 1 
In A,DBB Input DBB to A, 1 1 EN FLAGS Enable Master 1 1 

clear IBF Interrupts 
OUT DBB,A Output A to DBB, 1 1 SEL RBO Select register 1 1 

set OBF bank 0 
MOV STS,A A4-A7 to Bits 4-7 1 1 SEL RB1 Select register 1 1 

of Status bank 1 
MOVD A,Pp Input Expander port 1 2 NOP No Operation 1 1 

to A 
MOVD Pp,A Output A to Expander 1 2 

port 
ANLD Pp,A AND A to Expander 1 2 
ORLD Pp,A OR A to Expander 1 2 

port 

Registers 
INC Rr Increment register 1 1 
INC@Rr Increment data 1 1 

memory 
DEC Rr Decrement register 1 1 

Data Moves 
MOV A,Rr Move register to A 1 1 
MOVA,@Rr Move data memory 1 1 

to A 
MOVA,#data Move immediate to A 2 2 

Subroutine 
CALL addr Jump to subroutine 2 2 
RET Return 1 2 
RETR Return and restore 1 2 

status 

MOV Rr,A Move A to register 1 1 
MOV@Rr,A Move A to data 1 1 

Flags 
CLR C Clear Carry 1 1 

memory 
MOV Rr,#data Move immediate to 2 2 

register 
MOV@Rr, Move immediate to 2 2 
#data data memory 
MOVA,PSW Move PSW to A 1 1 

CPLC Complement Carry 1 1 
CLR FO Clear Flag 0 1 1 
CPL FO Complement Flag 0 1 1 
CLR F1 Clear F1 Flag 1 1 
CPL F1 Complement F1 Flag 1 1 

MOV PSW,A Move A to PSW 1 1 
XCH A,Rr Exchange A and 1 1 

register 
XCH A,@Rr Exchange A and data 1 1 

memory 
XCHD A,@Rr Exchange digit of A 1 1 

and register 
MOVPA,@A Move to A from 1 2 

Branch 
JMP addr Jump unconditional 2 2 
JMPP@A Jump indirect 1 2 
DJNZ Rr,addr Decrement register 2 2 

and jump 
JC addr Jump on Carry=1 2 2 
JNC addr Jump on Carry=O 2 2 
JZ addr Jump on A Zero 2 2 

current page 
MOVP3, A,@A Move to A from 1 2 

page 3 

Timer/Counter 
MOVA,T Read Timer/Counter 1 1 
MOV T,A Load Timer/Counter 1 1 
STRT T Start Timer 1 1 
STRT CNT Start Counter 1 1 
STOP TCNT Stop Timer/Counter 1 1 
EN TCNTI Enable Timer/Counter 1 1 
DIS TCNTI Disable Timer/ 1 1 

Counter Interrupt 

JNZ addr Jump on A not Zero 2 2 
JTO addr Jump on TO=1 2 2 
JNTO addr Jump on TO=O 2 2 
JT1 addr Jump on T1 =1 2 2 
JNT1 addr Jump on T1 =0 2 2 
JFO addr Jump on FO Flag=1 2 2 
JF1 addr Jump on F1 Flag=1 2 2 
JTF addr Jump on Timer 2 2 

Flag=1, Clear Flag 
JN1BF addr Jump on ISF Flag=O 2 2 
JOBF addr Jump on OBF Flag=1 2 2 
JBb addr Jump on Accumulator 2 2 

Bit 

6-779 231316-002 



• 
• 
• 
• 

• 

• 
• 

UPITM-42: 8042/8742AH 
UNIVERSAL PERIPHERAL INTERFACE 

8-BIT SLAVE MICROCONTROLLER 
UPI-42: 12 MHz • Interchangeable ROM and EPROM 

Pin, Software and Architecturally Versions 

Compatible with 8041A/8741A • Expandable I/O 

8-Bit CPU plus ROM, RAM, I/O, Timer/ • Sync Mode Available 
Counter and Clock in a Single Package • Over 90 Instructions: 70% Single Byte 
2048 x 8 ROM/EPROM, 128 x 8 RAM, • Available in EXPRESS 
8-Bit Timer/Counter, 18 Programmable - Standard Temperature Range 
I/O Pins 

One 8-Bit Status and Two Data • inteligent Programming™ Algorithm 
- Fastest EPROM Programming 

Registers for Asynchronous Siave-to-
Master. Interface • 8742AH Available In 40-Lead Cerdlp 

DMA, Interrupt, or Polled Operation 
Package 
8042 Available in both 40-Lead Plastic 

Supported and 44-Lead Plastic Leaded Chip 
Fully Compatible with all Intel and Most Carrier Packages 
Other Microprocessor Families (See Packaging Spec., Order #231369) 

The Intel UPI-42 is a general-purpose Universal Peripheral Interface that allows the designer to develop 
customized solution for peripheral device control. 

It is essentially a "slave" microcontroller, or a microcontroller with a slave interface included on the chip. 
Interface registers are included to enable the UPI device to function as a slave peripheral controller in the 
MCSTM Modules and iAPX family, as well as other 8-, 16-bit systems. 

To allow full user flexibility, the program memory is available in either ROM or UV-erasable EPROM. All UPI-42 
devices are fully pin compatible for easy transition from prototype to production level designs. These are the 
memory configurations available. 

UPI ROM Device 

8042 2K 

8742AH -

Figure 1. Block Diagram 

EPROM 

-
2K 

210393-1 

RAM 

256 

256 

210393-2 

Figure 2. DIP Pin 
Configuration 

Programming 
Voltage 

-
12.5V 

I~ N - • .It \1\ ,. HiivJlIi .... 
• ,' 311444342".0 

" 0 'W-

'" '" 
'" ' .. 

" '" ,~ 

'" 
'" ' .. 
'" '. 

~~..r~>RV .. P..f'fll~ 

210393-3 

Figure 3. PLCC Pin 
Configuration 

Intel Corporation assumes no responsibility for the use of any circuitry other than Circuitry embodied in an Intel product. No other circuit patent 
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. November 1985 
© Intel Corporation, 1985 6-780 Order Number: 210393-002 



inter UPI-42 

Table 1. Pin Description 

DIP PLCC 

Symbol Pin Pin Type Name and Function 

No. No. 

TEST 0, 1 2 I TEST INPUTS: Input pins which can be directly tested using conditional branch 

TEST 1 39 43 instructions. 

FREQUENCY REFERENCE: TEST 1 (T1) also functions as the event timer input (under 
software control). TEST ° (To) is used during PROM programming and verification in the 
8742AH. 11 is also used during "sync mode" to reset the instruction state to SI and 
synchronize the internal clock to PH 1. See the Sync Mode Section. 

XTAL 1, 2 3 I INPUTS: Inputs for a crystal, LC or an external timing signal to determine the internal 

XTAL2 3 4 oscillator frequency. 

RESET 4 S I RESET: Input used to reset status flip·flops and to set the program counter to zero. 

RESET is also used during PROM programming and verification. 

SS S 6 I SINGLE STEP: Single step input used in conjunction with the SYNC output to step the 
program through each instruction (8742AH). This should be tied to + SV when not used. 
This pin is also used to put the device in synch mode by applying 12.SV to it. 

CS 6 7 I CHIP SELECT: Chip select input used to select one UPI microcomputer out of several 
connected to a common data bus. 

EA 7 8 I EXTERNAL ACCESS:, External access input which allows emulation, testing and PROM I 
ROM verification. This pin should be tied low if unused. 

RD 8 9 I READ: 1/0 read input which enables the master CPU to read data and status words from 
the OUTPUT DATA BUS BUFFER or status register. 

Ao 9 10 I COMMAND/DATA SELECT: Address Input used by the master processor to indicate 
whether byte transfer is data (Ao = 0, Fl is reset) or command (Ao = 1, Fl is set). 

WR 10 11 I WRITE: 1/0 write input which enables the master CPU to write data and command words 
to the UPIINPUT DATA BUS BUFFER. 

SYNC 11 13 0 OUTPUT CLOCK: Output Signal which occurs once per UPI·42 instruction cycle. SYNC 
can be used as a strobe for external circuitry; it is also used to synchronize single step 
operation. 

Do-D7 12-19 14-21 1/0 DATA BUS: Three-state, bidirectional DATA BUS BUFFER lines used to interface the UPI-

(BUS) 42 microcomputer to an 8-bit master system data bus. 

P10-P17 27-34 30-33 1/0 PORT 1: 8-bit, PORT 1 quasi-bidirectional 1/0 lines. P10-P14 and P17 access the 

3S-38 signature row and security bit on the 8742AH. 

P20-P27 21-24 24-27 1/0 PORT 2: 8-bit, PORT 2 quasi-bidirectional 1/0 lines. The lower 4 bits (P20-P23) interface 

3S-38 39-42 directly to the 8243 1/0 expander device and contain address and data information during 
PORT 4-7 access. The upper 4 bits (P24 -P27) can be programmed to provide interrupt 
Request and DMA Handshake capability. Software control can configure P24 as Output 
Buffer Full (OBF) interrupt, P25 as Input Buffer Full (IBF) interrupt, P26 as DMA Request 
(DRO), and P27 as DMA ACKnowledge (DACK). 

PROG 2S 28 1/0 PROGRAM: Multifunction pin used as the program pulse input during PROM programming. 

During 1/0 expander access the PROG pin acts as an addressldata strobe to the 8243. 
This pin should be tied high if unused. 

Vee 40 44 POWER: + SV main power supply pin. 

VDD 26 29 POWER: + SV during normal operation. + 12.5V during programming operation. Low 
power standby pin in EPROM and ROM versions. 

VSS 20 22 GROUND: Circuit ground potential. 

6-781 



inter UPI·42 

UPI·42 FEATURES 
1. Two Data Bus Buffers, one for input and one for 

output. This allows a much cleaner Master/Slave 
protocol. 

INPUT 

BUS 
BUFFER 

INTERNAL 
DATA 8US 

df DATA 

00-07 ,------,(8) JI 
OUTPUT 

DATA 
BUS 

BUFFER 
(8) 

210393-4 

2. 8 Bits of Status 

1ST 71 ST 61 ST 51 ST 41 F1 I Fo IIBF I OBF I 
D7 D6 D5 D4 D3 D2 D1 Do 

ST 4 -ST 7 are user definable status bits_ These 
bits are defined by the "MOV STS, A" single byte, 
single cycle instruction. Bits 4-7 of the acccumu· 
lator are moved to bits 4-7 of the status register. 
Bits 0-3 of the status register are not affected. 

MOV STS, A Op Code: 90H 

3. RD and WR are edge triggered. IBF, OBF, F1 and 
INT change internally after the trailing edge of RD 
orWR. 

AD or "'{Po 

210393-6 

During the time that the host CPU is reading the 
status register, the UPI·42 is prevented from up· 
dating this register or is 'locked out.' 

4. P24 and P25 are port pins or Buffer Flag pins 
which can be used to interrupt a master proces· 
sor. These pins default to port pins on Reset. 

6-782 

If the "EN FLAGS" instruction has been execut· 
ed, P24 becomes the OBF (Output Buffer Full) pin. 
A "1" written to P24 enables the OBF pin (the pin 
outputs the OBF Status Bit). A "0" written to P24 
disables the OBF pin (the pin remains low). This 
pin can be used to indicate that valid data is avail· 
able from the UPI·41A (in Output Data Bus Buff· 
er). 

If "EN FLAGS" has been executed, P25 becomes 
the IBF (Input Buffer Full) pin. A "1" written to P25 
enables the IBF pin (the pin outputs the inverse of 
the IBF Status Bit. A "0" written to P25 disables 
the IBF pin (the pin remains low). This pin can be 
used to indicate that the UPI·42 is ready for data. 

OBF (INTERRUPT RECUESn 

i1fF (INTERRUPT REOUEST) 

210393-5 

Data Bus Buffer Interrupt Capability 

EN FLAGS Op Code: OFSH 

I I I 0 0 

DO 



inter UPI·42 

5. P26 and P27 are port pins or DMA handshake pins 
for use with a DMA controller. These pins default 
to port pins on Reset. 

If the "EN DMA" instruction has been executed, 
P26 becomes the DRO (DMA Request) pin. A "1" 
written to P26 causes a DMA request (DRO is acti­
vated). DRO is deactivated by DACK-RD, 
DACK-WR, or execution of the "EN DMA" in­
struction. 

If "EN DMA" has been executed, P27 becomes 
the DACK (DMA ACKnowledge) pin. This pin acts 
as a chip select input for the Data Bus Buffer reg­
isters during DMA transfers. 

ORa~ OROn 
8041AHI 8257 

8741A 

DACK~ OACK 

210393-7 

DMA Handshake Capability 

EN DMA op Code: OE5H 

o 
Do 

6. When EA is enabled on the UPI-42, the program 
counter is placed on Port 1 and the lower three 
bits of Port 2 (MSB = P22, LSB = P10). On the 
UPI-42 this information is multiplexed with PORT 
DATA (see port timing diagrams at end of this 
data sheet). 

7. The 8742AH supports the inteligent Programming 
Algorithm. (See the Programming Section.) 

APPLICATIONS 

8088 

AODR r-----.--'\I 

CONTAOlE===~~ 

TO 8 I 
I PERIPHERAL 

DEVICES 
-TO 

--T1 

210393-8 

Figure 3. 8088-UPI-42 Interface 

6-783 

00 ~'-----Rii 

8048H WR ----IWR 

i------....==-----,!\ - UPI·42 
PORT CONTROL 2( i~ 

BUS 'If ._. DATA:~==<> Das -T, 

I TO 
PERIPHERAL 
DEVICES 

210393-10 

Figure 4. 8048H-UPI-42 Interface 

UPI·42 

DATA BUS 

CONTROL BUS 

210393-9 

Figure 5. UPI-42-8243 Keyboard Scanner 

z 
z 0 
0 ~ 

;:: 
;:: in 
in ~ ~ 
~ .. 

m .. 0 
Z 0. 

g: 2 
~l 

PORT 2 

210393-11 

Figure 6. UPI-42 80-Column 
Matrix Printer Interface 



UPI-42 

PROGRAMMING, VERIFYING, AND 
ERASING THE 8742AH EPROM 

Programming Verification 

In brief, the programming process consists of: acti­
vating the program mode, applying an address, 
latching the address, applying data, and applying a 
programming pulse. Each word is programmed com­
pletely before moving on to the next and is followed 
by a verification step. The following is a list of the 
pins used for programming and a description of their 
functions: 

Pin Function 

XTAL1 2 Clock Inputs 

Reset Initialization and Address Latching 

Test 0 Selection of Program or Verify Mode 

EA Activation of ProgramlVerify Signature 
Row/Security Bit Modes 

BUS Address and Data Input 
Data Output During Verify 

P20-22 Address Input 

VDD Programming Power Supply 

PROG Program Pulse Input 
WARNING 
An attempt to program a missocketed 8742AH will result in severe 
damage to the part. An indication of a properly socketed part is the 
appearance of the SYNC clock output. The lack of this clock may be 
used to disable the programmer. 

The ProgramlVerify sequence is: 

1. Ao = OV, CS = 5V, EA = 5V, RESET = OV, 
TEST 0 = 5V, VDD = 5V, clock applied or inter­
nal oscillator operating, BUS floating, PROG 
5V. 

2. Insert 8742AH in programming socket 

3. TEST 0 = OV (select program model) 

4. EA = 12.5V (active program mode) 

5. VDD = 12.5V (programming power) 

6. Address applied to BUS and P20-22 

7. RESET = 5V (latch address) 

8. Data-applied to BUS 

9. PROG = Vee followed by one 1 ms pulse to OV 

10.TEST 0 = 5V (verify mode) 

11. Read and verify data on BUS 

12. TEST 0 = OV 

13. RESET = OV and repeat from step 6 

14: Programmer should be at conditions of step 1 
when 8742AH is removed from socket 

Please follow the inteligent Programming flow chart 
for proper programming procedure. 

8742AH Erasure Characteristics 

The erasure characteristics of the 8742AH are such 
that erasure begins to occur when exposed to light 
with wavelengths shorter than approximately 4000 
Angstroms (A). It should be noted that sunlight and 
certain types of fluorescent lamps have wavelengths 
in the 3000-4000A range. Data show that constant 
exposure to room level fluorescent lighting could 
erase tile typical 8742AH in approximately 3 years 
while it would take approximately one week to cause 
erasure when exposed to direct sunlight. If the 
8742AH is to be exposed to these types of lighting 
conditions for extended periods of time, opaque la­
bels are available from Intel which should be placed 
over the 8742AH window to prevent unintentional 
erasure. 

The recommended erasure procedure for the 
8742AH is exposure to shortwave ultraviolet light 
which has a wavelength of 2537 A. The integrated 
dose (i.e., UV intensity x exposure time) for erasure 
should be a minimum of 15 w-sec/ cm2. The erasure 
time with this dosage is approximately 15 to 20 min­
utes using an ultraviolet lamp with a 12,000 /J-W / cm2 
power rating. The 8742AH should be placed within 
one inch of the lamp tubes during erasure. Some 
lamps have a filter on their tubes which should be 
removed before erasure. Exposure of the 8742AH to 
high intensity UV light for long periods may cause 
permanent damage. 

inteligent Programming™ Algorithm 

The 8742AH inteligent Programming Algorithm rap­
idly programs Intel 8742AH EPROMs using an effi­
cient and reliable method particularly suited to the 
production programming environment. Typical pro­
gramming time for individual devices is on the order 
of 10 seconds. Programming reliability is also en­
sured as the incremental program margin of each 
byte is continually monitored to determine when it 
has been successfully programmed. A flowchart of 
the 8742AH inteligent Programming Algorithm is 
shown in Figure 7. 

The inteligent Programming Algorithm utilizes two 
different pulse types: initial and overprogram. The 
duration of the initial PROG pulse(s) is one millisec­
ond, which will then be followed by a longer overpro­
gram pulse of length 3X msec. X is an iteration coun­
ter and is equal to the number of the initial one milli­
second pulses applied to a particular 8742AH loca­
tion, before a correct verify occurs. Up to 25 one-mil­
lisecond pulses per byte are provided for before the 
overprogram pulse is applied. 

6-784 



intJ UPJ-42 

210393-12 

Figure 7 

6-785 



inter UPI-42 

The entire sequence of program pulses and byte 
verifications is performed at Vee = 6.0V and Voo = 
12.SV. When the inteligent Programming cycle has 
been completed, all bytes should be compared to 
the original data with Vee = S.O, Voo = 12.SV. 

Verify 

A verify should be performed on the programmed 
bits to determine that they have been correctly pro­
grammed. The verify is performed with TO = SV, 
Voo = 12.SV, EA = 12.SV, SS = SV, PROG = SV, 
AO = OV, and CS = SV. 

SECURITY BIT 

The security bit is a single EPROM cell outside the 
EPROM array. The user can program this bit with the 
appropriate access code and the normal program­
ming procedure, to inhibit any external access to the 
EPROM contents. Thus the user's resident program 
is protected. There is no direct external access to 
this bit. However, the security byte in the signature 
mode has the same address and can be used to 
check indirectly whether the security bit has been 
programmed or not. The security bit has no effect on 
the signature mode, so the security byte can always 
be examined. 

SECURITY BIT PROGRAMMING! 
VERIFICATION 

Programming: 
a. Read the security byte of the signature row. 

Make sure it is OOH. 

b. Apply access code to appropriate inputs to put 
the device into security mode. 

c. Apply high voltage to EAand Voo pins. 

d. Follow the programming procedure as per the 
inteligent Programming Algorithm with DBO-DB7 
= high. Not only the security bit, but also the 
security byte of the signature row is programmed. 

e. Verify that the security byte of the signature row 
contains FFH. 

f. Read two known bytes from the EPROM array 
and verify that the wrong data are retrieved in at 
least one verification. If the EPROM can still be 
read, the security bit may have not been fully pro­
grammed though the security byte in the signa­
ture row has. 

Verification: 

Since the security bit address overlaps the address 
of the security byte of the signature row, it can be 
used to check indirectly whether the security bit has 
be.en programmed or not. Therefore, the security bit 
verification is a mere read operation of the security 
byte of the signature row (1 = security bit pro­
grammed; 0 = security bit unprogrammed). Note 
that during the security bit programming, reading se­
curity byte = FFH does not necessarily indicate that 
the security bit has been successfully programmed. 
Thus, it is recommended that two known bytes in the 
EPROM array be read and the wrong data should be 
read at least once, because it is highly improbable 
that random data coincides with the correct ones 
twice. 

SIGNATURE MODE 

The UPI-42 has an additional 32 bytes of EPROM 
available for Intel and user signatures and miscella­
neous purposes. The 32 bytes are partitioned as fol­
lows: 

A. Test code/checksum-This ROM memory can 
accommodate up to 2S bytes of code for testing 
the internal nodes that are not testable by exe­
cuting from the external memory. The checksum 
is used in the ROM testing only. 

B. Intel signature-This allows the programmer to 
read from the UPI-42 the manufacturer of the de­
vice and the exact product name. It facilitated 
automatic selection of EPROM size and pro­
gramming voltages. Location 10H contains the 
manufacturer code. For Intel, it is 89H. Location 
11 H contains the device code. The code is 43H 
for the 8042; it is 42H for the 8742AH. 

C. User signature-The user signature memory is 
implemented in the EPROM and consists of 2 
bytes for the customer to program his own signa­
ture code (for identification purposes and quick 
sorting of previously programmed materials). 

D. Test signature (8)-This memory is used to 
store testing information such as: test data, bin 
number, etc. (for use in quality and manufactur­
ing control). 

E. Security byte-This. byte is used to check 
whether the security bit has been programmed or 
not (see the security bit section). 

6-786 



intJ UPI·42 

The signature mode can be accessed by setting P10 = 0, P11 = 1, P12 = 1, P13 = 1, P14 = 1, and then follow­
ing the programming and/or verification procedures. The location of the various address partitions are as 
follows: 

Address 

Test Code/Checksum 0 OFH 
16H 1EH 

Intel Signature 10H 11H 

User Signature 12H 13H 

Test Signature (B) 14H 15H 

Security Byte 1FH 

SYNC MODE 

SYNC mode allows the UPI-42 to be forced external­
ly into a known state upon reset. It can be used to 
synchronize multiple parts on a printed circuit board. 
It clears the oscillator prescaler, the phases, and the 
Time State Generator. Since, under normal opera­
tion, the RS signal can occur asynchronously with 
respect to the UPI-42's internal state, it cannot be­
guaranteed that a RS will leave several devices in 
the same state. 

SYNC mode is activated when the S8 pin is at a 
voltage level of 12V. The actual synchronization 

Alternate Device No. of 
Address Type Bytes 

EPROM/ROM 25 -

DOH D1H ROM 2 

- EPROM 2 

- EPROM 2 

DFH EPROM 1 

starts when the TO pin is raised to VIH during XTAL 
1 = O. After 3 XT AL 1 pulses, the prescaler is forced 
into a known state, which sets both PH1 and PH2 to 
a "0" state as shown. The Time State Generator is 
completely reset with TS1 =TS2=TS3=TS4= 
TS5 = 0, and the input to TS1 is equal to a "1" state. 
SYNC is removed when TO is brought from "1" to 
"0" during the next XT AL = O. The subsequent 
PH2= 1 and PH1 =0, then PH2=0, and PH1 = 1 will 
latch a "1" into TS1. A normal reset is then given to 
put the device into proper operation. What state the 
device will be in after the RS becomes a "1" can be 
determined by tracking how many XT AL 1 cycles oc­
cur during RS. 

6-787 



inter UPI-42 

SYNC MODE TIMING DIAGRAMS 

XTAL 1 

XTAL2 

TO 

PH1 

PH2 .... --------------+-~ 
TS1 TS3 

i--------TS5 --'--'----+1 

12V--------------------------------------~~~ 

Ss 5V \ \ 

OV - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • 

210393-13 

Minimum Specifications 
SYNC Operation Time, tSYNC = 3.5 XTAL 1 Clock cycles. Reset Time, tRS = 4 Icy. 

NOTE: 
The rising and falling edges of TO should not coincide with the falling edge of XTAL 1 clock. 

6-788 



intJ UPI-42 

ACCESS CODE 

The following table summarizes the access codes required to invoke the SYNC mode, signature mode, 
and the security bit, respectively. Also, the programming and verification modes are included for 
comparison. 

Modes 
Control Signals 

TO RST SS EA PROG Voo Vee 
Programming 0 0 1 HV 1 VOOH Vee 
Mode 0 1 1 HV STB VOOH Vee 

Verification 1 0 1 HV 1 VOOH Vee 
Mode 1 1 1 HV 1 VOOH Vee 

Sync Mode STB 0 HV 0 X Vee Vee 
High 

Signature Prog 0 0 1 HV 1 VOOH Vee 
Mode 0 1 1 HV STB VOOH Vee 

Verify 1 0 1 HV 1 VOOH Vee 

1 1 1 HV 1 VOOH Vee 

Security Prog 0 0 1 HV 1 VOOH Vee 
Bit 0 1 1 HV STB VOOH Vee 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias .... ooe to + 700 e 

Storage Temperature .......... -65°e to + 1500 e 

Voltage on Any Pin with 
Respect to Ground .............. - O.5V to + 7V 

Power Dissipation ......................... 1.5 W 

Access Code 
Data Bus 

Port 2 Port 1 

0 1 2 3 4 5 6 7 0 1 2 0 1 2 3 4 7 

Address Address 00/11 X X X X 

Data In Address 

Address Address 00/11 X X X X 

Data Out Address 

X X X X X X X X X X X X X X X X X 

Addr. (See Sig Row Table) 0 0 0 0 1 1 1 1 1 

Data In 0 0 0 

Addr. (See Sig Row Table) 0 0 0 

Data Out 0 0 0 

1 1 1 1 1 1 1 1 0 0 0 

1 1 1 1 1 1 1 1 0 0 0 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

6-789 



UPI·42 

D.C. CHARACTERISTICS TA = O°Cto + 70°C. vee = VOO = +5V ±10% 

Symbol Parameter 

VIL Input Low Voltage (Except XTAL 1. XTAL2. RESET) 

VIL1 Input Low Voltage (XTAL1. XTAL2. RESET) 

VIH Input High Voltage (Except XTAL 1. XTAL2. RESET) 

VIH1 Input High Voltage (XTAL 1. RESET) 

VIH2 Input High Voltage (XTAL2) 

VOL Output Low Voltage (00-07) 

VOL1 Output Low Voltage (P1OP17. P20P27. Sync) 

VOL2 Output Low Voltage (PROG) 

VOH Output High Voltage (00-07) 

VOH1 Output High Voltage (All Other Outputs) 

IlL Input Leakage Current (To. T 1. RO. WR. CS. Ao. EA) 

IOFL Output Leakage Current (00-07. High Z State) 

lu Low Input Load Current (P1OP17. P20P27) 

IU1 Low Input Load Current (RESET. SS) 

100 Voo Supply Current 

Icc + 100 Total Supply Current 

IIH Input Leakage Current (P1O-P17. P20-P27) 

CIN Input Capacitance 

CIO 1/0 Capacitance 

D.C. CHARACTERISTICS-PROGRAMMING 
T A = 25°C ± 5°C. Vee = 6V ± 0.25V. Voo = 12.5V ± 0.5V 

Symbol Parameter 

VOOH Voo Program Voltage High Level 

VOOL Voo Voltage Low Level 

VPH PROG Program Voltage High Level 

VPL PROG Voltage Low Level 

VEAH Inpl!t High Voltage for EA. SS 

VEAL EA Voltage Low Level 

100 Voo High Voltage Supply Current 

IpROG PROG High Voltage Supply CUrrent 

lEA EA Voltage Supply Current 

NOTES: 

8042/8742 

Min Max 

-0.5 0.8 

-0.5 0.6 

2.0 Vee 

3.5 Vee 

2.2 Vee 

0.45 

0.45 

0.45 

2.4 

2.4 

±10 

±10 

0.3 

0,.2 

20 

135 

100 

10 

20 

Min 

12 

4.75 

2.0 

-0.5 

12.0 

1. Voltages over 13V applied to pin VDD will permanently damage the device. 
2. VEAH must be applied to EA before VDOH and removed after VDDL' 

Units 

V 

V 

V 

V 

V 

V 

V 

V 

V 

p,A 

p,A 

mA 

mA 

mA 

mA 

p,A 

pF 

pF 

Max 

13 

5.25 

5.5 

0.8 

13.0 

5.25 

30.0 

1.0 

1.0 

Notes 

, 

IOL = 2.0 mA 

IOL = 1.6 mA 

IOL = 1.0 mA 

IOH = -400 p,A 

IOH = -50 p,A 

Vss :s: VIN :s: Vee 

Vss +0.45 
:s: VOUT:S: Vee 

VIL = 0.8V 

VIL = 0.8V 

Typical = 5 mA 

Typical = 60 mA 

VIN = Vee 

Units 

V(1) 

V 

V 

V 

V(2) 

V 

mA 

mA 

mA 

3. Vee must be applied simultaneously or before VDD and must be removed simultaneously or after VDD. 

6-790 



intJ UPI-42 

A.C. CHARACTERISTICS TA = oaCto +70aC, vss = OV, vcc = voo = +5V ±10% 
DBB READ 

Symbol Parameter Min Max 

tAR CS, AD Setup to RD -L 0 

tRA CS, AD Hold After RD i 0 

tRR RD Pulse Width 160 

tAO CS, AD to Data Out Delay 130 

tRO RD -L to Data Out Delay 130 

tOF RD i to Data Float Delay 85 

DBB WRITE 

Symbol Parameter Min Max 

tAW CS, AD Setup to WR -L 0 

tWA CS, AD Hold After WR i 0 

tww WR Pulse Width 160 

tow Data Setup to WR i 130 

two Data Hold After WR i 0 

CLOCK 

Symbol Parameter Min Max 

tCY Cycle Time 1.25 9.20 

tCYC Clock Period 83.3 613 

tPWH Clock High Time 33 

tpWL Clock Low Time 33 

tR Clock Rise Time 10 

tF Clock Fall Time 10 

NOTE: 
1. ICY = 15/f(XTAL) 

A.C. CHARACTERISTICS DMA 

Symbol Parameter Min Max 

tACC DACK to WR or RD 0 

tCAC RD or WR to DACK 0 

tACO DACK to Data Valid 130 

tCRQ RD or WR to ORO Cleared 110 

NOTE: 
1. CL = 150 pF. 

6-791 

Units 

ns 

ns 

ns 

ns 

ns 

ns 

Units 

ns 

ns 

ns 

ns 

ns 

Units 

p.s(1) 

ns 

ns 

ns 

ns 

ns 

Units 

ns 

ns 

ns 

ns(1) 



inter UPI·42 

A.C. CHARACTERISTICS-PROGRAMMING 
TA = 25°C ±5°C, VCC = 5V ±5%, Voo = +5V ±0.5V 
(8742AH ONLY) 

Symbol Parameter 

tAW Address Setup Time to RESET i 
tWA Address Hold Time After RESET i 
tow Data in Setup Time to PROG i 
two Data in Hold Time After PROG !-
tPH RESET Hold Time to Verify 

tpw Initial Program Pulse Width 

tTW Test 0 Setup Time for Program Mode 

tWT . Test 0 Hold Time After Program Mode 

too Test 0 to Data Out Delay 

tww RESET Pulse Width to Latch Address 

ti, tf Voo and PROG Rise and Fall Times 

tCY CPU Operation Cycle Time 

tRE RESET Setup Time Before EA i 
topw Overprogram Pulse Width 

tOE EA High to Voo High 

NOTES: 
1. Typical Ini1ial Program Pulse width tolerance = 1 ms ± 5%. 
2. This variation is a function of the iteration counter value, X. 
3. If TEST 0 is high, tDO can be triggered by RESET t . 

Min Max 

4tCY 

4tCY 

4tCY 

4tCY· 

4tCY 

0.95 1.05 

4tCY 

4tCY 

4tcy 

4tCY 

0.5 100 

4.0 

4tCY 

2.85 78.75 

1tCY 

A.C. CHARACTERISTICS PORT2TA = O°Cto + 70°C, VCC = +5V ±10% 

Symbol Parameter f(tCy)(3) Min 

tcp Port Control Setup Before Falling Edge of PROG 1/15 tCy-28 55 

tpc Port Control Hold After Falling Edge ofPROG 1/10tCY 125 

tpR PROG to Time P2 Input Must Be Valid 8/15tCy-16 

tpF Input Data Hold Time 0 

top Output Data Setup Time 2/10 tCY 250 

tpo Output Data Hold Time 1/10 tCy-80 45 

tpp PROG Pulse Width 6/10 tCY 750 

NOTES: 
1. CL = 80 pF. 
2. CL = 20 pF. 
3. tCY = 1.25 ,",5. 

6-792 

Units 

ms(1) 

/-Ls 

/-Ls 

ms(2) 

Max Units 

ns(1) 

ns(2) 

650 ns(1) 

150 ns(2) 

ns(1) 

ns(2) 

ns 



UPI-42 

A.C. TESTING INPUT/OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT IOUTPUT 

::5 =x:: > TEST POINTS < ::x= 
210393-14 

210393-15 

DRIVING FROM EXTERNAL SOURCE-TWO OPTIONS 
,------------------------------, ,------------------------------, 

>6 MHz 

LC OSCILLATOR MODE 

L C NOMINAL 
45 H 20 pF 5.2 MHz 

120 H 20 pF 3.2 MHz 

XTALl 

XTAL2 

210393-16 

+ 5V 

410,,> 

}>---+------'-j XTAll 

410') 

L--~-"l XTAL2 

210393-17 
Rise and Fall Times Should Not Exceed 10 ns. Resis­
tors to Vcc are Needed to Ensure VIH = 3.SV if TIL 
Circuitry is Used. 

1=_1_ 
27T.J[Ci 

C' = C + 3Cpp 
2 

Cpp '" 5-10 pF 
Pin-to-Pin Capacitance 

CRYSTAL OSCILLATOR MODE 

~C~2_J __ ~=~:~,122 XTAU 

,- : - =r= 
= I 

f--'----'---~ XTAL2 
C3 

210393-19 
C1 5 pF (STRAY 5 pF) 
C2 (CRYSTAL + STRAY) 8 pF 
C3 20-30 pF INCLUDING STRAY 

210393-18 
Each C Should be Approximately 20 pF, including Stray Capacitance. 

Crystal Series Resistance Should 
be Less Than 30n at 12 MHz; 
Less Than 7Sn at 6 MHz; Less 
Than lBon at 3.6 MHz. 

6-793 



inter UPI-42 

WAVEFORMS 

READ OPERATION-DATA BUS BUFFER REGISTER 

ts OR AO ~ )( 
-lA~-

'RR -110111.-

RD \ V 
-'RO-- --'Of 

'A() 

WRITE OPERATION-DATA BUS BUFFER REGISTER 

WR 

~ORAO ==xt ____ ~ 
~ r_, .. _~~-_~,w_w-___ -

~------------------

DATA BUS DATA 'V V DATA 
MAY CHANGE (INPUT! MAYCHANQ( 1'--OATAVAlIO_~ 

----------------~ ~--------------------

CLOCK TIMING 

2.4V 

XTAL2 1.6V 

.45V 

tCYC 

6-794 

(SYSTEM'S 
ADDRESS BUSt 

mEAD CONTROL: 

210393-20 

(SYSTEM'S 
ADDRESS OUSt 

(WA ITE CONTROL I 

210393-21 

210393-22 



UPI-42 

WAVEFORMS (Continued) 

COMBINATION PROGRAM/VERIFY MODE 

PROGRAt.4 

I---- to, 
VEAH (12V) 

EA V1H(5V} 

V1L(OV) 
- P -

-tTW - -
TO 

V1H(5V) 

V1L(OV) 

- ---, 

RESET 
V1H1 (5V) 

V1L1 (OV) 

DBo-DB7 
V'H(5V) 

V1L{OV) 

-
I--tAW-I--tw~. 

J--- ADDRESS X DATA IN 

P20·P22 
V1H(5V) 

V1L(OV) 
ADDRESS 

VOOH(12.5 V) 

Voo VODL(5V) 

- to'l-

I 
tpw -

PROG 
V,"(5V) 

VIL(OV) 

tDW - ~ 
NOTES: 
1. Ao must be held low (OV) during program/verify modes. 

I 

tWT ~ 

VERIFY ---I-- PRDGRAI.! 

\. 

END OF' 
0'" 
ERIFY 

PROG 
00 v 

\. 

" 
t ... ~_ 

-r- too 

-- XOATA OUT}-{ NEXT ADDRESS 
T 

X NEXT ADDRESS 

tad 
\... 

I--tWD 

2. For VIH. VIH1. Vil. Vll1. VOOH. and VOOl. please consult the D.C. Characteristics Table. 

210393-23 

3. When programming the 8742AH. a 0.1 /-IF capacitor is required across VOO and ground to suppress spurious voltage 
transients which can damage the device. 

VERIFY MODE 

12.5V 

EA 5V 

OV 
--------1' I 

12.5V 

vaa 5V _____ ---JJ 
5V 

RESET \ OV \,-_~J 

X DATA OUT ----- NEXT ADDRESS X DATA OUT ADDRESS 

5V 
P20-P22 OV ________________ -JX~ ______ A_DD_R_ES_S ____ _JX~ _____ N_EX_T_A_D_D_RE_S_5 ______ __ 

210393-24 

NOTES: 
1. PROG must float if EA is low. 
2. PROG must always float for 8042. 
3. TO must be held high (5V). 
4. PlO-P17 = 5V or must float. 
5. P24-P27 = 5V or must float. 
6. Ao must be held low during programming/verify modes. 

6-795 



inter 
WAVEFORMS (Continued) 

DMA 

'\ 

- 'ACC - '---'CAC -

DATA BUS 

VALID 

-'ACD-

ORO Jl 
PORT 2 

SYNC 

EXPANDER 
PORT 

OUTPUT 

EXPANDER 
PORT 

INPUT 

PROG 

PORT TIMI~G DURING EA 

SYNC / 
P1O•17 

PORT 

P2Q.22 
DATA 

PORT 20_3 DATA 

peRT 20_3 OATA 

\ 

X 

UPI-42 

- 'ACC - -'CAC -
VALID 

- 'CR ~-

210393-25 

210393-26 

/ \ 
PC X PORT X PC DATA 

210393-27 
On the Rising Edge of SYNC and EA is Enabled, Port Data is Valid and can be Strobed on the Trailing Edge of Sync the 
Program Counter Contents are Available. 

6-796 



intJ UPI·42 

Table 2. UPITM Instruction Set 

Mnemonic Description Bytes Cycles Mnemonic Description Bytes Cycles 

ACCUMULATOR DATA MOVES 
ADDA, Rr Add register to A 1 1 MOVA, Rr Move register to A 1 1 
ADDA,@Rr Add data memory 1 1 MOVA,@Rr Move data memory 1 1 

toA toA 
ADD A, #data Add immediate to A 2 2 MOVA, #data Move immediate to A 2 2 
ADDCA, Rr Add register to A 1 1 MOVRr,A Move A to register 1 1 

with carry MOV@Rr,A Move A to data 1 1 
ADDCA,@Rr Add data memory 1 1 memory 

to A with carry MOV Rr, #data Move immediate to 2 2 
ADDC A, #data Add immediate 2 2 register 

to A with carry MOV@Rr, Move immediate to 2 2 
ANLA, Rr AND register to A 1 1 # data data memory 
ANL,A@Rr AND data memory 1 1 MOVA,PSW MovePSWtoA 1 1 

toA MOVPSW,A MoveAtoPSW 1 1 
ANLA, #data AND immediate to A 2 2 XCHA,Rr Exchange A and 1 1 
ORLA, Rr OR register to A 1 1 register 
ORL,A, @Rr OR data memory 1 1 XCHA,@Rr Exchange A and 1 1 

toA data memory 
ORLA, #data OR immediate to A 2 2 XCHDA,@Rr Exchange digit of A 1 1 
XRLA, Rr Exclusive OR regis- 1 1 and register 

tertoA MOVPA, @A Move to A from 1 2 
XRLA,@Rr Exclusive OR data 1 1 current page 

memory to A MOVP3,A,@A Move to A from 1 2 
XRLA, #data Exclusive OR imme-. 2 2 page 3 

diatetoA 
INCA IncrementA 1 1 
DECA Decrement A 1 1 
CLRA Clear A 1 1 
CPLA Complement A 1 1 

TIMER/COUNTER 
MOVA, T Read Timer/Counter 1 1 
MOVT,A Load Timer/Counter 1 1 
STRTT Start Timer 1 1 
STRTCNT Start Counter 1 r 

DAA Decimal Adjust A 1 1 
SWAP A Swap nibbles of A 1 1 
RLA Rotate A left 1 1 
RLCA Rotate A left through 1 1 

STOP TCNT Stop Timer/Counter 1 1 
EN TCNTI Enable Timer/ 1 1 

Counter Interrupt 
DIS TCNTI Disable Timer/ 1 1 

carry 
RRA Rotate A right 1 1 
RRCA Rotate A right 1 1 

through carry 

INPUT/OUTPUT 
INA, Pp Input port to A 1 2 

Counter Interrupt 

CONTROL 
ENDMA Enable DMA Hand- 1 1 

shake Lines 
ENI Enable IBF Interrupt 1 1 

OUTLPp, A Output A to port 1 2 
ANL Pp, #data AND immediate to 2 2 

port 
ORL Pp, #data OR immediate to 2 2 

port 
INA, DBB Input DBB to A, 1 1 

DISI Diable IBF Inter- 1 1 
rupt 

EN FLAGS Enable Master 1 1 
Interrupts 

SELRBO Select register 1 1 
bank 0 

clear IBF 
OUTDBB,A Output A to DBB, 1 1 

setOBF 
MOVSTS,A A4-A7 to Bits 4-7 of 1 1 

Status 

SELRB1 Select register 1 1 
bank 1 

NOP No Operation 1 1 

REGISTERS 

MOVDA, Pp Input Expander 1 2 
port to A 

INCRr Increment register 1 1 
INC@Rr Increment data 1 1 

MOVDPp,A Output A to 1 2 
Expander port 

memory 
DECRr Decrement register 1 1 

ANLD Pp,A AND A to Expander 1 2 
port 

ORLD Pp, A OR A to Expander 1 2 
port 

6-797 



inter 
Table 2. UPITM Instruction Set (Continued) 

Mnemonic 'Description Bytes Cycles 

SUBROUTINE 
'CALLaddr Jump to subroutine 2 2 
RET Return 1 2 
RETR Return and restore 1 2 

status 

FLAGS 
CLRC Clear Carry 1 1 
CPLC Complement Carry 1 1 
CLRFO Clear Flag 0 1 1 
CPLFO Complement Flag 0 1 1 
CLRF1 Clear F1 Flag 1 1 
CPLF1 Complement F1 Flag 1 1 

BRANCH 
JMPaddr Jump unconditional 2 2 
JMPP@A Jump indirect 1 2 
DJNZ Rr, addr Decrement register 2 2 

and jump 
JCaddr Jump on Carry = 1 2 2 
JNCaddr Jump on Carry = 0 2 2 
JZaddr Jump on A Zero 2 2 
JNZaddr Jump on A not Zero 2 2 
JTO addr Jump on TO = 1 2 2 
JNTO addr Jump on TO = 0 2 2 
JT1 addr JumponT1 = 1 2 2 
JNT1 addr JumponT1 = 0 2 2 
JFO addr Jump on FO Flag = 1 2 2 
JF1 addr Jump on F1 Flag = 1 2 2 
JTFaddr Jump on Timer Flag 2 2 

= 1, Clear Flag 
JNIBFaddr Jump on IBF Flag 2 2 

=0 
JOBF addr Jump on OBF Flag 2 2 

= 1 
JBb addr Jump on Accumula- 2 2 

for Bit 

6-798 



8243 
MCS-48® INPUT/OUTPUT EXPANDER 

• Low Cost 
• Simple Interface to MCS-48® 

Microcomputers 
• Four 4-Bit 1/0 Ports 
• AND and OR Directly to Ports 

• 24-Pin DIP 
• Single 5V Supply 
• High Output Drive 
• Direct Extension of Resident 8048 1/0 

Ports 

The Intel® 8243 is an input/output expander designed specifically to provide a low cost means of I/O 
expansion for the MCS-48® family of single chip microcomputers. Fabricated in 5 volts NMOS, the 8243 
combines low cost, single supply voltage and high drive current capability. 

The 8243 consists of four 4-bit bidirectional static I/O ports and one 4-bit port which serves as an interface to 
the MCS-48 microcomputers. The 4-bit interface requires that only 4 I/O lines of the 8048 be used for I/O 
expansion, and also allows multiple 8243's to be added to the same bus. 

The I/O ports of the 8243 serve as a direct extension of the resident I/O facilities of the MCS-48 microcomputers 
and are accessed by their own MOV, ANL, and ORL instructions. 

PORT 2 

""~B 

Figure 1. 8243 
Block Diagram 

PORT 4 

PORT 5 

PORT 6 

POAT 7 

PSO vee 
P41l PSl 

"'1 PS2 

P42 PS3 

P43 P60 

cs P61 

PROG P62 

P23 P63 

P22 P73 

P21 P72 

P20 P71 

GND P70 

Figure 2. 8243 
Pin Configuration 

Intel Corporallon Assumes No ResponslblllY lor the Use of Any Clfcultry Other Than Clrcultr~ Embodied In dn Inll!1 Product No Other Clfcud Patell! Licenses are Implied 

INTEL CORPORATION, 1980 6-799 231317-001 



intJ 8243 

Table 1. Pin Description 

Symbol Pin No. Function 

PROG 7 Clock Input. A hig'h to low transi-
tion on PROG signifies that ad-
dress and control are available on 
P20-P23, and a low to high transi-
tion signifies that data is available 
on P20-P23. 

CS 6 Chip Select Input. A high on CS 
inhibits any change of'output or 
intern al status. 

P20-P23 11-8 Four (4) bit bi-directional port con-
tains the address and control bits 
on a high to' low transition of 
PROG. During a low to high tran-
sition contai ns the data for a sel-
ected output port if a write opera-
tion, or the data from a selected 
port before the low to high transi-
tion if a read operation. 

GND 12 o volt supply, 

P40-P43 2-5 Four (4) bit bi-directionall/O ports. 
P50-P53 1,23-21 May be programmed to be input 
P60-P63 20-17 (during read), low impedance 
P70-P73 13-16 latched output (after write), or a tri-

state (after read). Data on pins 
P20-P23 may be directly written, 
ANDed or ORed with previous 
data. 

VCC 24 +5 volt supply. , 

FUNCTIONAL DESCRIPTION 

General Operation 
The 8243 contains four 4-bit I/O ports which serve 
as an extension of the on-chip I/O and are ad­
dressed as ports 4-7. The following operations may 
be performed on these ports: 

• Transfer Accumulator to Port. 
• Transfer Port to Accumulator. 
• AND Accumulator to Port. 
• OR Accumulator to Port. 

All communication between the 8048 and the 8243 
occurs over Port 2 (P20-P23) with timing provided 
by an output pulse on the PROG pin of the proces­
sor. Each transfer consists of two 4-bit nibbles: 

The first containing the "op code" and port address 
and the second containing the actual 4-bits of data. 
A high to low transition of the PROG line indicates 
that address is present while a low to high transition 
indicates the presence of data. Additional 8243's 
may be added to the 4-bit bus and chip selected 
using additional output lines from the 8048/8748/ 
8035. 

6-800 

Power On Initialization 
Initial application of power to the device forces 
input/output ports 4, 5, 6, and 7 to the tri-state and 
port 2 to the input mode. The PROG pin may be 
either high or low when power is applied. The first 
high to low transition of PROG causes device to 
exit power on mode. The power on sequence is 
initiated if vee drops below lV. 

Address Instruction 
P21 P20 Code P23 P22 Code 

0 0 Port 4 0 0 Read 
0 1 Port 5 0 1 Write 
1 0 Port 6 1 0 ORlD 

1 Port 7 ANlD 

Write Modes 
The device has three write modes. MOVD Pi, A dir­
ectly writes new data into the selected port and old 
data is lost. ORlD Pi, A takes new data, OR's it with 
the old data and then writes it to the port. ANlD Pi, A 
takes new data, AND's it with the old data and then 
writes it to the port: Operation code and port ad­
dress are latched from the input port 2 on the high 
to low transition ofthe PROG pin. On the lowto high 
transition of PROG data on port 2 is transferred to 
the logic block of the specified output port. 

After the logic manipulation is performed, the data 
is latched and outputed. The old data remains. 
latched until new valid outputs are entered. 

Read Mode 
The device has one read mode. The operation code 
and port address are latched from the input port2 on 
the high to low transition of the PROG pin. As soon 
as the read operation and port address are decoded, 
the appropriate outputs are tri-stated, and the input 
buffers switched on. The read operation is termina­
ted by a low to high transition of the PROG pin. The 
port (4, 5, 6 or 7) that was selected is switched to the 
tri-stated mode while port 2 is returned to the input 
mode. 

Normally, a port will be in an output (write mode) or 
input (read mode). If .modes are changed during 
operation, the first read following a write should 
be ignored: all following reads are valid. This is to 
allow the external driver on the port to settle after 
the first read instruction removes the low imped­
ance drive from the 8243 output. A read of any port 
will leave that port in a high impedance state. 

231317-001 



8243 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias. . . . . . .. 0' C to 70' C 
Storage Temperature ............... -65'C to +150'C 
Voltage on Any Pin 

With Respect to Ground .............. -0.5 V to +7V 
Power Dissipation ............................ 1 Watt 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D,C. CHARACTERISTICS TA = O'C to 70'C, VCC = 5V 10% 

Test 
Symbol Parameter Min Typ Max Units Conditions 

VIL Input Low Voltage -0.5 0.8 V 

VIH Input High Voltage 2.0 VCC+0.5 V 

VOLI Output Low Voltage Ports 4-7 0.45 V IOL = 4.5 mA' 

VOL2 Output Low Voltage Port 7 1 V IOL = 20 mA 

VOHI Output High Voltage Ports 4-7 2.4 V IOH = 240",A 

IILI Input Leakage Ports 4-7 -10 20 ",A Vin = VCC to OV 

IIL2 Input Leakage Port 2, CS, PROG -10 10 ",A Vin = VCC to OV 

VOL3 Output Low Voltage Port 2 .45 V IOL = 0.6 mA 

ICC VCC Supply Current 10 20 mA 

VOH2 Output Voltage Port 2 2.4 IOH = 100",A 

IOL Sum of alllOL from 16 Outputs 72 mA 4.5 mA Each Pin 

'See following graph for additional sink current capability 

A,C. CHARACTERISTICS TA = O'C to 70'C, VCC = 5V 10% 

Symbol Parameter Min Max Units Test Conditions 

tA Code Valid Before PROG 100 ns 80 pF Load 

tB Code Valid After PROG 60 ns 20 pF Load 

tc Data Valid Before PROG 200 ns 80 pF Load 

to Data Valid After PROG 20 ns 20 pF Load 

tH Floating After PROG 0 150 ns 20 pF Load 

tK PROG Negative Pulse Width 700 ns 

tcs CS Valid BeforelAfter PROG 50 ns 

tpo Ports 4-7 Valid After PROG 700 ns 100 pF Load 

tLPl Ports 4-7 Valid BeforelAfter PROG 100 ns 

tACC Port 2 Valid After PROG 650 ns 80 pF Load 

'.4 ----'X 0'.'.0 > TEST POINTS 

0.45---....J 

6-801 231317-001 



intel· 

WAVEFORMS 

PROG 

PORT2 

PORT2 

PORTS 4-7 

I,p 

PORTS 4-7 

'CS 

8243 

~ _________________ 'K ________________ ~ 

FLOAT 

PREVIOUS OUTPUT VALID 

INPUTYALID 

6-802 

IpO 

'CS 

FLOAT 

OUTPUT 
VALID 

231317-001 



8243 

125 

, .. 
;( 
g 
~ 

Q 

" 75 
.... 
ffi 
a: 
a: GUARANTEED WORST CASE ::> 
0 

" OF ANY 110 PORT PIN vs. TOTAL z 
iii 5. SINK CURRENT OF ALL PINS 
~ 

;! 
0 .... 

25 

,. 11 12 13 

MAXIMUM SINK CURRENT ON ANY PIN@ .4SV 
MAXIMUM tOl WORST CASE PIN (mA) 

Figure 3 

Sink Capability 

The 8243 can si nk 5 mA @ .45V on each of its 16 1/0 
lines simultaneously. If, however, all lines are not 
sinking simultaneously or all lines are not fully 
loaded, the drive capability of any individual line 
increases as is shown by the accompanying curve. 

For example, if only 5 of the 16 lines are to sink 
current at one time, the curve shows that each of 
those 5 lines is capable of sinking 9 mA @ .45V (if 
any lines are to sink 9 mA the total 10l must not 
exceed 45 mA or five 9 mA loads). 

Example: How many pins can drive 5 TTL loads (1.6 rnA) 
assuming remaining pins are unloaded? 

10l = 5 x 1.6 rnA = 8 rnA 
,IOl = 60 rnA from curve 
# pins = 60 rnA.;. 8 rnA/pin = 7.5 = 7 

In this case, 7 lines can sink 8 rnA for a total of 
56mA. This leaves 4 mA sink current capability 
which can be divided in any way among the 
remaining 8 I/O lines of the 8243. 

Example: This example shows how the use of the 20 rnA 
sink capability of Port 7 affects the sinking 
capability of the other I/O lines. 

An 8243 will drive the following loads simul­
taneously. 

2 loads-20 rnA @ 1V (port 7 only) 
8 loads-4 rnA @ .45V 
6 loads-3.2 rnA @ .45V 
Is this within the specified limits? 

,IOl = (2 x 20) + (8 x 4) + (6 x 3.2) = 91.2 rnA. 
From the curve: for 10l = 4 rnA, ,IOl = 93 rnA. 
since 91.2 rnA < 93 rnA the loads are within 
specified limits. 

Although the 20 rnA @ 1V loads are used in 
calculating ,IOl, it is the largest current re­
quired @ .45V which determines the maximum 
allowable dOL. 

NOTE: A10 to 50KO pullup resistor to +5V should be added to 8243 outputs when driving to 5V CMOS directly. 

6-803 231317-001 



intel' 

PORT 1 
8048 

8243 

-=-
I/O 

CS 

.4 
PROG PROG 

TEST '5 

8048 INPUTS 8243 

P6 

DATA IN 
.2 

'7 

Figure 4, Expander Interface 

PROG ~ / \1.-. ___ -' BITS 3,2 

~!1 ~~~~E 
11 ! AND 

'20·'23 --{'-_---'X'-_____ )>---
ADDRESS (4·BITS) DATA (4·BITS) 

Figure 5. Output Expander Timing 

I/O 

I/O 

I/O 

I/O 

BITS 1,0 

001 

" PORT 

" ADDRESS 
11.J 

.AOG~--------------~----------------~------------~--~-----------------J 

Figure 6. Using Multiple 8243'5 

6-804 231317-001 



intJ 

MICROPROCESSOR PERIPHERALS 
UPFM USER'S MANUAL 

APRIL 1982 

6-805 ORDER NUMBER: 231318-001 



CHAPTER 1 
INTRODUCTION 

Accompanying the introduction of microprocessors 
such as the 8080, 8085, 8088, and 8086 there has been 
a rapid proliferation of intelligent peripheral de­
vices. These ,l'pecial purpose peripherals extend 
CPU performance and flexibility in a number of im­
portant wa:vs. 

Table 1-1. Intelligent Peripheral Devices 

8255 (GPIO) Programmable Peripheral 
Interface 

8251A (DSART) Programmable 
Communication Interface 

8253 (TIMER) Programmable Interval Timer 

8257 (DMA) Programmable DMA Controller 

8259 Programmable Interrupt 
Controller 

8271 (SDFDC), Programmable Floppy Disk 
8272 (DDFDC) Controllers 

8273 (SDLC) Programmable Synchronous 
Data Link Controller 

8274 Programmable Multiprotocol­
Serial Communications 
Controller 

8275/8276 (CRT) Programmable CRT 
Controllers 

8279 (PKD) Programmable 
Keyboard/Display Controller 

8291A, 8292, 8293 Programmable GPIB System 
Talker, Listener, Controller 

Intelligent devices like the 8272 floppy disk control­
ler and 8273 synchronous data link controller (see 
Table 1-1) can preprocess serial data and perform 
control tasks which off-load the main system proces­
sor. Higher overall system throughput is achieved 
and software complexity is greatly reduced. The in­
telligent peripheral chips simplify master processor 
control tasks by performing many functions exter­
nally in peripheral hardware rather than internally 
in main processor software. 

Intelligent peripherals also provide system flexibil­
ity. They contain on-chip mode registers which are 
programmed by the master processor during system 
initialization. These control registers allow the pe­
ripheral to be configured into many different oper­
ation modes. The user-defined program for the 
peripheral is stored in main system memory and is 
transferred to the peripheral's registers whenever a 
mode change is required. Of course, this type of 
flexibility requires software overhead in the master 
system which tends to limit the benefit derived from 
the peripheral chip. 

In the past, intelligent peripherals were designed to 
handle very specialized tasks. Separate chips were 

designed for communication disciplines, parallel 
I/O, keyboard encoding, interval timing, CRT con­
trol, etc. Yet, in spite of the large number of devices 
available and the increased flexibility built into 
these chips, there is still a large number of micro­
computer peripheral control tasks which are not 
satisfied. 

With the introduction of the Universal Peripheral 
Interface (UP!) microcomputer, Intel has taken the 
intelligent peripheral concept a step further by 
providing an intelligent controller that is fully user 
programmable. It is a complete single-chip micro­
computer which can connect directly to a master 
processor data bus. It has the same advantages of in­
telligence and flexibility which previous peripheral 
chips offered. In addition, the UPI is user­
programmable: it has 1K bytes of ROM or EPROM 
memory for program storage plus 64 bytes of RAM 
memory for data storage or initialization from the 
master processor. The UPI device allows a designer 
to fully specify his control algorithm in the periph­
eral chip without relying on the master processor. 
Devices like printer controllers and keyboard scan­
ners can be completely self-contained, relying on the 
master processor only for data transfer. 

The UPI family currently consists of five components: 

• 8741A microcomputer with 1K EPROM 
memory 

• 8041AH micr~computer with 1K ROM mem-
ory 

• 8042 microcomputer with 2K ROM memory 
• 8243 I/O expander device 
• 8742 microcomputer with 2K EPROM 

memory 

The 8741A, 8041AH, 8742 and 8042 single chip 
microcomputers are functionally equivalent except 
for the type and amount of program memory avail­
able with each. These devices have the following 
main features: 

6-806 

• 8-bit CPU 
• 8-bit data bus interface registers 
• 1K by 8 bit ROM or EPROM memory (2K for 

8042/8742) 
• 64 by 8 bit RAM memory (128 bytes for 

8042/8742) 
• Interval timer/event counter 
• Two 8-bit TTL compatible I/O ports 
• Resident clock oscillator 
• 12 MHZ operation, 1.25 f.Lsec instruction cycle 

for 8041AH, 8742, 8042 



INTRODUCTION 

HOST 
PROCESSOR 

OAT A CONTROL 
BUS BUS 

\ ADDRESS 
BUS 

KEYBOARD 

~ 
PRINTER 

Figure 1-1. Inter1acing Peripherals To Microcomputer Systems 

HMOS processing has been applied to the UPI fam· 
ily to allow for additional performance and memory 
capability while reducing costs. The 8041AH, 8741A, 
8042,8742 are all pin and software compatible. This 
allows growth in present designs to incorporate new 
features and add additional performance. For new 
designs, the additional memory and performance of 
the 8042/8742 extends the UPI 'grow your own solu­
tion' concept to more complex motor control tasks, 
80·column printers and process control applications 
as examples. 

The 8243 device is an I/O multiplexer which allows 
expansion of I/O to over 100 lines (if seven devices 
are used). All three parts are fabricated with N­
channel MOS technology and require a single, 5V 
supply for operation. 

INTERFACE REGISTERS FOR MUL TI­
PROCESSOR CONFIGURATIONS 
In the normal configuration, the 8041AH/8741A, 
8042/8742 interfaces to the system bus, just like any 
intelligent peripheral device (see Figure 1-1). The 
host processor and the 8041AH/8741A, 8042/8742 
form a loosely coupled multi· processor system, that 
is, communications between the two processors are 
direct. Common resources are three addressable reg· 
isters located physically on the 8041AH/8741A, 
8042/8742. These registers are the Data Bus Buffer 
Input (DBBIN), Data Bus Buffer Output 
(DBBOUT), and Status (STATUS) registers. The 
host processor may read data from DBBOUT or 
write commands and data into DBBIN. The status 
of DBBOUT and DBBIN plus user· defined status is 
supplied in STATUS. The host may read STATUS 

at any time. An interrupt to the UPI processor is 
automatically generated (if enabled) when DBBIN 
is loaded. 

Because the UPI contains a complete microcom­
puter with program memory, data memory, and 
CPU it can function as a "Universal" controller. A 
designer can program the UPI to control printers, 
tape transports, or multiple serial communication 
channels. The UPI can also handle off· line arithme­
tic processing, or any number of other low speed con· 
trol tasks. 

a041AH, 8042 
MASK 

PROGRAMMED 
'ROM 

8741A,8742 
ELECTRICALLY 

PROGRAMMABLE 
LIGHT ERASABLE 

EPROM 

Figure 1-2. Pin Compatible ROM/EPROM Versions 

6-807 



INTRODUCTION 

POWERFUL 8-BIT PROCESSOR 

The UPI contains a powerful, 8-bit CPU with as fast 
as 1.25 ILsec cycle time and two single-level inter­
rupts. Its instruction set includes over 90 instruc­
tions for easy software development. Most 
instructions are single byte and single cycle and 
none are more than two bytes long. The instruction 
set is optimized for bit manipulation and I/O oper­
ations. Special instructions are included to allow bi­
nary or BCD arithmetic operations, table lookup 
routines, loop counters, and N -way branch routines. 

SPECIAL INSTRUCTION SET 
FEATURES 

• For Loop Counters: 
Decrement Register and Jump if not 
zero. 

• For Bit Manipulation: 
AND to A (immediate data or Register) 
OR to A (immediate data or Register) 
XOR to A (immediate data or Register) 
AND to Output Ports (Accumulator) 
OR to Output Ports (Accumulator) 
Jump Conditionally on any bit in A 

• For BDC Arithmetic: 
Decimal Adjust A 
Swap 4-bit Nibbles of A 
Exchange lower nibbles of A and Register 
Rotate A left or right with or without 
Carry 

• For Lo()kup Tables: 
Load A from Page of ROM (Address in A) 
Load A from Current Page of ROM 
(Address in A) . 

Features for Peripheral Control 
The UPI 8-bit interval timer/event counter can be 
used to generate complex timing sequences for con­
trol applications or it can count external events such 
as switch closures and position encoder pulses. Soft­
ware timing loops can be simplified or eliminated by 
the interval timer. If enabled, an interrupt to the 
CPU will occur when the timer overflows. 

The UPI I/O complement contains two TTL-com­
patible 8-bit bidirectional I/O ports and two general­
purpose test inputs. Each of the 16 port lines can 
individually function as either input or output under 
software control. Four of the port lines can also func­
tion as an interface for the 8243 I/O expander which 
provides four additional 4-bit ports that are directly 
addressable by UPI software. The 8243 expander al­
lows low cost I/O expansion for large control applica­
tions while maintaining easy and efficient software 
port addressing. 

P~3 1/'-----''-1 
P20 

8041AH/8741A, 
8042/8742 

8243 

PROG 1--------' 

12 I/O LINES 

16 I/O LINES 

Figure 1-4. 8243110 Expander Interface 

PERIPHERAL 
CONTROL 

OFF-LINE ARITHMETIC 
PROCESSING 

1*---- ~~~~~NICATION 

Figure 1-3. Interface8 And Protocol8 For Multlproce88or SY8tem8 

6-808 



INTRODUCTION 

On-Chip Memory 
The UPI's 64 (128) bytes of data memory include 
dual working register banks and an 8-level program 
counter stack. Switching between the register banks 
allows fast response to interrupts. The stack is used 
to store return addresses and processor status upon 
entering a subroutine. 

The UPI program memory is available in two types 
to allow flexibility in moving from design to proto­
type to production with the same PC layout. The 
8741A, 8742 device with EPROM memory is very 
economical for initial system design and develop­
ment. Its program memory can be electrically pro­
grammed using the Intel Universal PROM 
Programmer. When changes are needed, the entire 
program can be erased using UV lamp and 
reprogrammed in about 20 minutes. This means the 
8741A/8742 can be used as a single chip 
"breadboard" for very complex interface and control 
problems. After the 8741A/8742 is programmed it 
can be tested in the actual production level PC 
board and the actual functional environment. 
Changes required during system debugging can be 
made in the 8741A/8742 program much more easily 
than they could be made in a random logic design. 
The system configuration and pC layout can remain 
fixed during the development process and the turn 
around time between changes can be reduced to a 
minimum. 

At any point during the development cycle, the 
8741A!8742 EPROM part can be replaced with the 
low cost 8041AH, 8042 respectively with factory 
mask programmed memory. The transition from 
system development to mass production is made 
smoothly because the 8741A and 8041AH, 8742 and 
8042 parts are completely pin compatible. 8742s or 

6-809 

8042s can be used in an 8041AH/8741 socket. This 
feature allows extensive testing with the EPROM 
part, even into initial shipments to customers. Yet, 
the transition to low-cost ROM is simplified to the 
point of being merely a package substitution. 

PREPROGRAMMED UPI's 

The 8292, 8294, and 8295 are 8041A's that are pro­
grammed by Intel and sold as standard peripherals. 
The 8292 is a GPIB controller, part of a three chip 
GPIB system. The 8294 is a Data Encryption Unit 
that implements the National Bureau of Standards 
data encryption algorithm. The 8295 is a dot matrix 
printer controller designed especially for the LRC 
7040 series dot matrix impact printers. These parts 
illustrate the great flexibility offered by the UPI 
family. 

DEVELOPMENT SUPPORT 

The UPI microcomputer is fully supported by Intel 
with development tools like the UPP PROM pro­
grammer already mentioned. An ICE-41A in-circuit 
emulator is also available to allow UPI software and 
hardware to be developed easily and quickly. The 
combination of device features and Intel develop­
ment support make the UPI an ideal component for 
low-speed peripheral control applications. 

UPI DEVELOPMENT SUPPORT 

• 8048/8041AH/8042 Assembler 
• Universal PROM Programmer UPP Series 
• ICE-41A Module 
• MULTI-ICE 
• Insite User's Library 
• Application Engineers 
• Training Courses 



CHAPTER 2 
FUNCTIONAL DESCRIPTION 

The UPI-41AH, 42 microcomputer is an intelligent 
peripheral controller designed to operate in iAPX-
86, 88, MCS-85, MCS-80, MCS-51 and MCS-48 sys­
tems. The UPt'S architecture, illustrated in Figure 
2-1, is based on a low cost, single-chip microcom­
puter with program memory, data memory, CPU, 
I/O, event timer and clock oscillator in a single 40-
pin package. Special interface registers are included 
which enable the UPI to function as a peripheral to 
an 8-bit master processor. 

This chapter provides a basic description of the UPI 
microcomputer and its system interface registers. 
Unless otherwise noted the descriptions in this sec-

I CLOCK 

1 J 
a-BIT CPU 

I 
I 

a·BIT 
DATA BUS 

INPUT REGISTER 

II 

I 
1024 X a, 2048 x 8 

PROGRAM 
MEMORY 

(ROM/EPROM) 

II 
II 

8-BIT 
DATA BUS 

OUTPUT REGISTER 

II 

SYSTEM 
INTERFACE 

tion apply to both the 8741A, 8742 (with UV eras­
able program memory) and the 8041AH, 8042 (with 
factory mask programmed memory). These two de­
vices are so similar that they can be considered iden­
tical under most circumstances. All functions 
described in this chapter apply to the 8041AH, 8042, 
and 8741A, 8742. 

PIN DESCRIPTION 
The 8041AH/8741A, 8042/8742 are packaged in 40-
pin Dual In-Line (DIP) packages. The pin configu­
ration for both devices is shown in Figure 2-2. Figure 
2-3 illustrates the UPI Logic Symbol. 

64 X a, 128 x 8 
DATA MEMORY 

J I 
II 

8·BIT 
STATUS 

REGISTER 

II 

a-BIT 
TIMER/COUNTER 

18 
1/0 LINES 

PERIPHERAL INTERFACE 
AND 

1/0 EXPANSION 

Figure 2-1. UPI-41AH, 42 Single Chip Microcomputer 

6-810 



FUNCTIONAL DESCRIPTION 

TEST 0 Vee 

XTAL1 TEST 1 

XTAL2 P27 / DACK 

ReSET P26 /DRQ 
PROGRAM 

55 P2S /mF PllOU 
+SV GNO,....1-, 

Cs P24 / 08F 

EA P17 

AD P'6 PORT #1 

AO P,s 

WR P" 
PORT #2 

DATA 
SYNC P'3 BUS SUFFER 

INTERFACE 
DO P'2 { ~~ 0, P" CONTROL WRITE 

02 
INTERFACE CONTROLI 

P,o DATA 

03 
CHIP SELECT 

Voo 

0, PROG 

Os P23 

06 .22 

07 P2' 

V55 P20 

Figure 2-2. Pin Configuration Figure 2-3. Logic Symbol 

The following section summarizes the functions of 
each UPI-41A pin. NOTE that several pins have two 

or more functions which are described in separate 
paragraphs. 

Table 2-1. Pin Description 

Symbol Pin No. Type Name and Function 

DO-D7 12-19 I/O Data,Bus: Three-state, bidirectional DATA BUS BUFFER lines used to interface the 
(BUS) UPI-41AH, 42 microcomputer to an 8-bit master system data bus. 

PlO-P I7 27-34 I/O Port 1: 8-bit, PORT 1 quasi-bidirectionalI/O lines. 

P20-P27 21-24 I/O Port 2: 8-bit, PORT 2 quasi-bidirectional I/O lines. The lower 4 bits (P20-P23) inter-
35-38 face directly to the 8243 1/0 expander device and contain address and data information 

during PORT 4-7 access. The upper 4 bits (P24-P27) can be programmed to provide 
interrupt Request and D,MA Handshake capability. Software control can configure P24 
as Output Buffer Full (OBF) interrupt, P25 as Input Buffer Full (lBF) interrupt, P26 
as DMA Request (DRQ), and P27 as DMA ACKnowledge (DACK). 

WR 10 I Write: I/O write input which enables the master CPU to write data and command 
words to the UPI-4IA INPUT DATA BUS BUFFER. 

RD 8 I Read: 1/0 read input which enables the master CPU to read data and status words 
from the OUTPUT DATA BUS BUFFER or status register. 

CS 6 I Chip Select: Chip select input used to select one UPI-4IAH, 42 microcomputer out of 
several connected to a common data bus. 

AO 9 I Command/Data Select: Address input used by the master processor to indicate 
whether byte transfer is data (AO=O) or command (AO=I). 

TEST 0, I I Test Inputs: Input pins which can be directly tested using conditional branch instruc-
TESTl 39 tions. 

Frequency Reference: TEST 1 (TI) also functions as the event timer input (under 
software control). TEST 0 (TO) Is used during PROM programming and verification in 
the 874lA, 8742. 

6-811 



FUNCTIONAL DESCRIPTION 

Tabla 2·1. Pin Description (Continued) 

Symbol Pin No. Type Nama and Function 

XTALl, 2 I Inputs: Inputs for a crystal, LC or an external timing signal to determine the internal 
XTAL2 3 oscillator frequency. 

SYNC 11 0 Output Clock: Output signal which occurs once per UPI-41A instruction cycle. SYNC 
can be used as a strobe for external circuitry; it is also used to synchronize single step 
operation. 

EA 7 I External Access: External access input which allows emulation, testing and PROM/ 
ROM verification. . .. --

PROG 25 I/O Program: Multifunction pin used as the program pulse input during PROM program-
ming. 

During I/O expander access the PROG pin acts as an address/data strobe to the 8243. 

RESET 4 I Reset: Input used to reset status flip-flops and to set the program counter to zero. 

RESET is also used during PROM programming and verification. 

SS 5 I Single Step: Single step input used in conjunction with the SYNC output to step the 
program through each instruction. 

VCC 40 Power: +5V main power supply pin. 

VDD 26 Power: +5V during normal operation. +25V during programming operation, +21 \' for 
programming 8742. Low power standby pin in ROM version. 

VSS 20 Ground: Circuit ground potential. 

The following sections provide a detailed functional 
description of the UPI microcomputer. Figure 2-4 il-

lustJ;ates the functional blocks within the UPI de­
vice. 

""- " D, 

...,.. ....,.. .... "" .. 
iii 
cs .. --"'*' .-
is 

..... 

~~. {::: 

{

,oo ____ ...... , 

...... 'CC--_-+5SUWt.Y 'ss--__ 

Dm ...-, 

11( .'.:rt{ l!' 
~~r 

Figura 2-4. UP1-41AH, 42'" Block Diagram 

6-812 

v. PIO-

""'" ." 

RESIDENT 
MI',nlle ...... ", .... --, 

---......... 
0/. 

""'" Poo-P" 
PORT,,·, ".--"" 



FUNCTIONAL DESCRIPTION 

CPU SECTION 
The CPU section of the UPI-41AH, 42 micro­
computer performs basic data manipulations and 
controls data flow throughout the single chip com­
puter via the internal 8-bit data bus. The CPU sec­
tion includes the following functional blocks shown 
in Figure 2-4: 

• Arithmetic Logic Unit (ALU) 
• Instruction Decoder 
.' Accumulator 
• Flags 

Arithmetic Logic Units (ALU) 
The ALU is capable of performing the following op­
erations: 

• ADD with or without carry 
• AND, OR, and EXCLUSIVE OR 
• Increment, Decrement 
• Bit complement 
• Rotate left or right 
• Swap 
• BCD decimal adjust 

In a typical operation data from the accumulator is 
combined in the ALU with data from some other 
source on the UPI-41AH, 42 internal bus (such as a 
register or an I/O port). The result of an ALU oper­
ation can be transferred to the internal bus or back 
to the accumulator. 

If an operation such as an ADD or ROTATE re­
quires more than 8 bits, the CARRY flag is used as 
an indicator. Likewise, during decimal adjust and 
other BCD operations the AUXILIARY CARRY 
flag can be set and acted upon. These flags are part 
of the Program Status Word (PSW). 

Instruction Decoder 
During an instruction fetch, the operation code (op­
code) portion of each program instruction is stored 
and decoded by the instruction decoder. The de­
coder generates outputs used along with various tim­
ing signals to control the functions performed in the 
ALU. Also, the instruction decoder controls' the 
source and destination of ALU data. 

Accumulator 

The accumulator is the single most important regis­
ter in the processor. It is the primary source of data 
to the ALU and is often the destination for results as 
well. Data to and from the I/O ports and memory 
normally passes through the accumulator. 

PROGRAM MEMORY 
The UPI-41AH, 42 microcomputer has 1024, 2048 8-
bit words of resident, read -only memory for program 

storage. Each of these memory locations is directly 
addressable by a 10-bit program counter. Depending 
on the type of application and the number of pro­
gram changes anticipated, two types of program 
memory are available: 

• 8041AH, 8042 with mask programmed ROM 
Memory 

• 8741A, 8742 with electrically programmable 
EPROM Memory 

The 8041AH and 8741A, 8042 and 8742 are function­
ally identical parts and are completely pin compati­
ble. The 8742 and 8042 can be used in 8041AH, 
8741A sockets. The 8041AH, 8042 has ROM memory 
which is mask programmed to user specification 
during fabrication. The 8741A/8742 are electrically 
programmed by the user using the Universal PROM 
Programmer (UPP series) with a UPP-848 or UPP-
549 Personality Card. It can be erased using 
ultraviolet light and reprogrammed at any time. 

A program memory map is illustrated in Figure 2-5. 
Memory is divided into 256 location 'pages' and 
three locations are reserved for special use: 

PAGE 7 

PAGE 6 

PAGE 5 

PAGE 4 

PAGE 3 

PAGE 2 

PAGE 1 

PAGE 0 

{
2047 

1792 
1 

{ 
179 

1536 

{ 
1535 

1280 

{ 
1279 

1024 

{ 
1023 

768 

{ 
767 

512 

{ 
511 

25. 
255 

-
-

-
-
: 

7 

ADDRESS 

6 5 4 3 2 1 

+ 

,.... 

~ 

o~ 

8042 
8742 

B041AH, 
8741A 

LOCATION 7 - TIMER 
INTERRUPT VECTORS 
PROGRAM HERE 

LOCATION 3 - 18F 
INTERRUPT VECTORS 
PROGRAM HERE 

LOCATION 0 - RESET 
VECTORS 
PROGRAM HERE 

PROGRAM MEMORY MAP 

Figure 2-5. Program Memory Map 

INTERRUPT VECTORS 
1) Location 0 

Following a RESET input to the processor, the 
next instruction is automatically fetched from 
location O. 

6-813 



FUNCTIONAL DESCRIPTION 

2) Location 3 
An interrupt generated by an Input Buffer Full 
(IBF) condition (when the IBF interrupt is en­
abled) causes the next instruction to be fetched 
from location 3. 

3) Location 7 
A timer overflow interrupt (when enabled) will 
cause the next instruction to be fetched from lo­
cation 7. 

Following a system RESET, program execution be­
gins at location O. Instructions in program memory 
are normally executed sequentially. Program control 
can be transferred out of the main line of code by an 
input buffer full (IBF) interrupt or a timer inter­
rupt, or when a jump or call instruction is encoun­
tered. An IBF interrupt (if enabled) will 
automatically transfer control to location 3 while a 
timer interrupt will transfer control to location 7. 

All conditional JUMP instructions and the indirect 
JUMP instruction are limited in range to the current 
256-location page (that is,. they alter PC bits 0-7 
only). If a conditional JUMP or indirect JUMP be­
gins in location 255 of a page, it must reference a des­
tination on the following page. 

Program memory can be used to store constants as 
well as program instructions. The UPI-41AH, 42 in­
struction set contains an instruction (MOVP3) de­
signed specifically for efficient transfer of look-up 
table information from page 3 of memory. 

DATA MEMORY 
The UPI-41AH, 42 universal peripheral interface 
has 64, 128 8-bit words of random access data mem­
ory. This memory contains two working register 
banks, an 8-level program counter stack and a 
scratch pad memory, as shown in Figure 2-6. The 
amount of scratch pad memory available is variable 
depending on the number of addresses nested in the 
stack and the number of working registers being 
used. ' 

Addressing Data Memory 
The first eight locations in RAM are designated as 
working registers Ro-R7. These locations (or registers) 
can be addressed directly by specifying a register 
number in the instruction. Since these locations are 
easily addressed, they are generally used to store 
frequently accessed intermediate results. Other locations 
in data memory are addressed indirectly by using Ro or 
R I to specify the desired address. Since all RAM loca­
tions (including the eight working registers) can be 
addressed by 6 bits (UPI-4IAH), and! or 7 bits (UPI-
42), the most significant bit(s) of the address (6 and 7, 
or 7 only) are ignored. 

127 ,..----------, 

8042 
USER RAM 

64 X 8 

~;I----------1 

USER RAM 
32 X 8 

~~ 1----------1 
BANK 1 

WORKING 
REGISTERS 

8X8 

-------R1'--------
24 -------'Ro---------
23 

a LEVEL STACK 
OR 

USER RAM 
16 X 8 

BANKO 
WORKING 

REGISTERS 
8X8 

-------~---------------M--------

I 
DIRECTLY 

ADDRESSABLE 
WHEN BANK 1 

:JTEO 

ADDRESSED 
INDIRECTLY 
THROUGH 
R1 OR AO 

(AO' OR R1') 

DIRECTLY 
ADDRESSABLE 
WHEN BANK 0 
IS SELECIEO 

Figure 2-6. Data Memory Map 

Working Registers 
Dual banks of eight working registers are included in 
the UPI-41AH, 42 data memory. Locations 0-7 
make up register bank 0 and locations 24-31 form 
register bank 1. A RESET signal automatically se­
lects register bank O. When bank 0 is selected, 
references to Ro-R7 in UPI-4IAH, 42 instructions 
operate on locations 0-7 in data memory. A "select 
register bank" instruction is used to select between 
the banks during program execution. If the instruc­
tion SEL RBI (Select Register Bank 1) is executed, 
then program references to RO-R7 will operate on 
locations 24-31. As stated previously, registers 0 and 
1 in the active register bank are used as indirect ad­
dress registers for all locations in data memory. 

Register bank 1 is normally reserved for handling in­
terrupt service routines, thereby preserving the con­
tents of the main program registers. The SEL RBI 
instruction can be issued at the beginning of an in­
terrupt service routine. Then, upon return to the 
main program, an RETR (return & restore status) 
instruction will automatically restore the previously 
selected bank. During interrupt processing, registers 
in bank 0 can be accessed indirectly using Ro' and 
RI'. 

If register bank 1 is not used, registers 24-31 can still 
serve as additional scratch pad memory. 

6-814 



FUNCTIONAL DESCRIPTION 

Program Counter Stack 
RAM locations 8-23 are used as an 8-level program 
counter stack. When program control is temporarily 
passed from the main program to a subroutine or in­
terrupt service routine, the lO-bit program counter 
and bits 4-7 of the program status word (PSW) are 
stored in two stack locations. When control is re­
turned to the main program via an RETR instruc­
tion, the program counter and PSW bits 4-7 are 
restored. Returning via an RET instruction does not 
restore the PSW bits, however. The program counter 
stack is addressed by three stack pointer bits in the 
PSW (bits 0-2). Operation of the program counter 
stack and the program status word is explained in 
detail in the following sections. 

The stack allows up to eight levels of subroutine 
'nesting'; that is, a subroutine may call a second sub­
routine, which may call a third, etc., up to eight lev­
els. Unused stack locations can be used as scratch 
pad memory. Each unused level of subroutine nest­
ing provides two additional RAM locations .for gen­
eral use. 

The following sections provide a detailed descrip­
tion of the Program Counter Stack and the Program 
Status Word. 

PROGRAM COUNTER 
The UPI-41AH, 42 microcomputer has a IO-bit pro­
gram counter (PC) which can directly address any of 
the 1024, 2048 locations in program memory. The 
program counter always contains the address of the 
next instruction to be executed and is normally 
incremented sequentially for each instruction to be 
executed when each instruction fetches occurs. 

When control is temporarily passed from the main 
program to a subroutine or an interrupt routine, 
however, the PC contents must be altered to point to 
the address of the desired routine. The stack is used 
to save the current PC contents so that, at the end of 
the routine, main program execution can continue. 
The program counter is initialized to zero by a 
RESET signal. 

PROGRAM COUNTER STACK 

The Program Counter Stack is composed of 16 loca­
tions in Data Memory as illustrated in Figure 2-7. 
These RAM locations (8 through 23) are used to 
store the lO-bit program counter and 4 bits of the 
program status word. 

An interrupt or CALL to a subroutine causes the 
contents of the program counter to be stored in one 
of the 8 register pairs of the program counter stack. 

6-815 

STACK 
POINTER 

11 1 

11 0 

10 1 

10 0 

01 1 

01 0 

00 1 

00 0 

MS. 

I 

I 

I 

I 

I 

I 

I 

I 
I 

I 

I 

I 

I 

I 

I 

PSW(4-7) I pe{S-g) 

PCI4-7) I PC(O-3) 

DATA 
MEMORY 

LOCATION 

23 

22 

21 

20 

19 

'" 
17 

16 

15 

14 

13 

12 

11 

10 

LSB 

Figure 2-7. Program Counter Stack 

A 3-bit Stack Pointer which is part of the Program 
Status Word (PSW) determines the stack pair to be 
used at a given time. The stack pointer is initialized 
by a RESET signal to OOH which corresponds to 
RAM locations 8 and 9. 

The first call or interrupt results in the program 
counter and PSW contents being transferred to 
RAM locations 8 and 9 in the format shown in Figure 
2-7. The stack pointer is automatically incremented 
by 1 to point to locations 10 and 11 in anticipation of 
another CALL. 

Nesting of subroutines within subroutines can con­
tinue up to 8 levels without overflowing the stack. If 
overflow does occur the deepest address stored (lo­
cations 8 and 9) will be overwritten and lost since the 
stack pointer overflows from07H to OOH. Likewise, 
the stack pointer will underflow from OOH to 07H. 

The end of a subroutine is signaled by a return in­
struction, either RET or RETR. Each instruction 
will automatically decrement the Stack Pointer and 
transfer the contents of the proper RAM register 
pair to the Program Counter. 

PROGRAM STATUS WORD 
The 8-bit program status word illustrated in Figure 
2-8 is used to store general information about pro­
gram execution. In addition to the 3-bit Stack 



FUNCTIONAL DESCRIPTION 

CY 

MSB 

SAVED IN STACK 
I 

AC FO BS I - S2 

STACK POINTER 
I 

S, So 

Figure 2-8. Program Status Word 

I 
LSB 

Pointer discussed previously, the PSW includes the 
following flags: 

• CY - Carry 
• AC - Auxiliary Carry 
• FO - Flag 0 
• BS - Register Bank Select 

The Program Status Word (PSW) is actually a col­
lection of flip-flops located throughout the machine 
which are read or written as a whole. The PSW can 
be loaded to or from the accumulator by the MOV A, 
PSW or MOV PSW,A instructions. The ability to 
write directly to the PSW allows easy restoration of 
machine status after a power-down sequence. 

The upper 4 bits of the PSW (bits 4, 5, 6, and 7) are 
stored in the PC Stack with every subroutine CALL 
or interrupt vector. Restoring the bits on a return is 
optional. The bits are restored if an RETR instruc­
tion is executed, but not if an RET is executed. 

PSW bit definitions are as follows: 
• Bits 0-2 Stack Pointer Bits SO, SI, S2 
• Bit 3 Not Used 
• Bit 4 Working Register Bank 

0= Bank 0 
1 = Bank 1 

• Bit 5 Flag 0 bit (FO) 
This is a general purpose flag 
which can be cleared or com ple-

• Bit 6 

• Bit 7 

mented and tested with condi­
tional jump instructions. It may 
be used during data transfer to 
an external processor. 

Auxiliary Carry (AC) 
The flag status is determined by 
an ADD instruction and is used 
by the Decimal Adjustment in­
struction DAA. 

Carry (CY) 
The flag indicates that a previous 
operation resulted in overflow of 
the accumulator. 

CONDITIONAL BRANCH LOGIC 
Conditional Branch Logic in the UPI-41AH, 42 al­
lows the status of various processor flags, inputs, and 
other hardware functions to directly affect program 
execution. The status is sampled in state 3 of the 
first cycle. 

Table 2-2 lists the internal conditions which are test­
able and indicates the condition which will cause a 
jump. In all cases, the destination address must be 
within the page of program memory (256 locations) 
in which the jump instruction occurs. 

OSCILLATOR AND TIMING CIRCUITS 
The 8041A's internal timing generation is controlled 
by a self-contained oscillator and timing circuit. A 
choice of crystal, L-C or external clock can be used to 
derive the basic oscillator frequency. 

The resident timing circuit consists of an oscillator, 
a state counter and a cycle counter as iJIustrated in 
Figure 2-9. Figure 2-10 shows instruction cycle 
timing. 

Table '2-2. Conditional Branch Instructions 

Jump Condition 
Device Instruction Mnemonic Jump if: 

Accumulator JZ addr All bits zero 
JNZ addr Any bit not zero 

Accumulator bit JBb addr Bit "b" = 1 
Carry flag JC addr Carry flag = 1 

JNC addr Carry flag = 0 
User flag JFO addr FO flag = 1 

JFl addr Fl flag = 1 
Timer flag JTF addr Timer flag = 1 
Test Input 0 JTO addr TO = 1 

JNTO addr TO = 0 
Test Input 1 JTl addr Tl = 1 

JNTl addr Tl = 0 
Input Buffer flag JNIBF addr IBF flag = 0 
Output Buffer flag JOBF addr OBF flag = 1 

6-816 



FUNCTIONAL DESCRIPTION 

SYNC 
t-"""?'"-i- OUTPUT 

(2.5 psecj 

INTERNAL TIMING 

Figure 2·9. Oscillator Configuration 

Oscillator 
The on-board oscillator is a series resonant circuit 
with a frequency range of 1 to 12 (8041AH-2/ 
8042/8742) MHz. Pins XTAL 1 and XTAL 2 are in­
put and output (respectively) of a high gain ampli­
fier stage. A crystal or inductor and capacitor 
connected between XTAL 1 and XTAL 2 provide 
the feedback and proper phase shift for oscillation. 
Recommended connections for crystal or L-C are 
shown in Figure 2.11. 

5VNC----------------~~L------------
2.5 psac CYCLE 

L 55 5, 52 53 1 54 1 55 5, 

1 INPUT DECODE EXECUTION 
INPUT 

INST. INST. 

OUTPUT ADDRESS INC. PC OUTPUT ADDRESS 

I I I I I 

Figure 2·10. Instruction Cycle Timing 

State Counter 
The output of the oscillator is divided by 3 in the 
state counter to generate a signal which defines the 
state times of the machine. 

Each instruction cycle consists of five states as illus­
trated in Figure 2-10 and Table 2-3. The overlap of 
address and execution operations illustrated in Fig­
ure 2-10 allows fast instruction execution. 

Table 2·3. Instruction Timing Diagram 

INSTRUCTION 
CYCLE 1 CYCLE 2 

51 52 53 54 55 51 52 53 S4 55 

IN A.Pp Felch Increment - Increment - - Read Port - - -Instruction Program Counter Timer 

OUTl Pp.A Felch Increment - Increment Output - - - - -Instruction Program Counter Timer To Pori 

ANl pp. DATA Felch Increment - Increment Read Port Felch - Incremcnt Output -Instruction Program Counter Timer Immediate Data Program Counter To Pori 

ORl pp. DATA Felch Increment - Increment Read Pori Felch - Increment Output -[nstrucHon Program Counter Timer Immediale Oala Program Counler To Port 

MOVD A.Pp Felch Incremenl Output Increment - - Read - - -Instruction Program Counter Opcode/Address Timer P2 Lower 

MOVO Pp,A Fetch Increment Outpul Increment Output Data - - - - -Instruction Program Counter Opcode/Address Timer To P2 Lower 

ANlD Pp.A Fetch Increment Output Increment Output - - - - -Instruction Program Counter Opcode/Address Timer Oala 

ORlD Pp.A Felch Increment Output Increment Output - - - - -Instruction Program Counter Opcode/Address Timer Data 

J (Conditional) Felch Increment Sample Increment - Fetch - Update - -Instruction Program Counter Condition Timer Immediate Dala Program Counter 

MOV STS. A Felch Increment - Increment Update 
Instruction Program Counter Timer Status Register 

IN A.DBB Fetch Increment - Increment -Instruction Program Counler Timer 

OUT DBB.A Fetch Increment - increment Output 
Instruction Program Counter Timer To Pori 

5TRT T Felch Increment Starl - -5TRT CNT Instruction Program Counter Counter 

STOP TCNT Fetch Incremenl - - SlOp 
Instruction Program Counler Counter 

EN I Felch Increment - Enable -Instruction Program Counter Interrupt 

DIS I Felch Increment - Disable -tnstruction Program Counler Interrupt 

EN DMA Felch Increment - OMA Enabled -Instruction Program Counter OAO Cleared 

EN FLAGS Fetch Increment - OBF.IBF -Instruclion Program Counter Output Enabled 

6-817 



FUNCTIONAL DESCRIPTION 

r 20 pF 
2 

XTAl1: 

~ I' 
XTAL 1 

B041AH B041AH 
8741A 8741A 

'3 
8042 8042 
8742 8742 

POPF 
3 

± 15·25 pF 

XTAL 2 XTAL 2 

Figure 2-11. Recommended Crystal and L-C Connections 

Cycle Counter 
The output of the state counter is divided by 5 in the 
cycle counter to generate a signal which defines a 
machine cycle. This signal is call SYNC and is avail­
able continously on the SYNC output pin. It can be 
used to synchronize external circuitry or as a general 
purpose clock output. It is also used for synchroniz­
ing single-step. 

Frequency Reference 
The external crystal provides high speed and accu­
rate timing generation. A crystal frequency of 5.9904 
MHz is useful for generation of standard communi­
cation frequencies by the 8041AH/8741, 8042/8742. 
However, if an accurate "frequency reference and 
maximum processor speed are not'required, an in­
ductor and capacitor may be used in place of the cry­
stal as shown in Figure 2"11. 

A recommended range of inductance and capaci­
tance combinations is given below: 

• L = 130 /LH corresponds to 3 MHz 
• L = 45 /LH corresponds to 5 MHz 

+5V 

Ie -lD<>-1-----<'---l XTAL 1 

B041AH 
8741A 
8042 
8742 

'--Oo-+--( XTAL 2 

STANDARD TTL OR 
OPEN COLLECTOR 

Figure 2-12. Recommended Connection 
For External Clock Signal 

An external clock signal can also be used as a fre­
quency reference to the 8741AH, 8741A, 8742 or 
8042; however, the levels are not TTL' compatible. 
The signal must be in the 1-12 MHz frequency range 
and must be connected to pins XTAL 1 and XTAL 2 
by buffers with a suitable pull-up resistor to guaran­
tee that a logic "I" is above 3.8 volts. The recom­
mended connection is shown in Figure 2-12. 

INTERVAL TIMER/EVENT COUNTER 
The 8041AH, 8042 has a resident 8-bit timer/ 
counter which has several software selectable modes 
of operation. As an interval timer, it can generate ac­
curate delays from 80 microseconds to 20.48 milli­
seconds without placing undue burden on the 
processor. In the counter mode, external events such 
as switch closures or tachometer pulses can be 
counted and used to direct program flow. 

Timer Configuration 

6-818 

Figure 2-13 illustrates the basic timer/counter con­
figuration. An 8-bit register is used to count pulses 
from either the internal clock and prescaler or from 
an external source. The counter is presettable and 
readable with two MOV instructions which transfer 
the cOJ;ltents of the accumulator to the counter and 
vice-versa (i.e. MOV T, A and MOV A, T). The 
counter is stopped by a RESET or STOP TCNT in­
struction and remains stopped until restarted either 
as a timer (START T instruction) or,asa counter 
(START CNT instruction). Once started, the 
counter will increment to its maximum count (FFH) 
and overflow to zero continuing its count until 
stopped by a STOP TCNT instruction or RESET. 

The increment from maximum count to zero (over­
flow) results in setting the Timer Flag (TF) and gen­
erating an interrupt request. The state of the 
overflow flag is testable with the conditional ju,mp 



FUNCTIONAL DESCRIPTION 

EXTERNAL 
INPUT 

SLTEST' 

TIMER 

COUNTER 

o 
STOP 

PRESCALER 
Ie- 32) 

XTAL 1 

8-81T 
COUNTER 

o 
XTAL 2 

OSCILLATOR 

Figure 2-13. Timer Counter 

instruction, JTF. The flag is reset by executing a 
JTF or by a RESET signal. 

The timer interrupt request is stored in a latch and 
ORed with the input buffer full interrupt request. 
The timer interrupt can be enabled or disabled inde­
pendent of the IBF interrupt by the EN TCNTI and 
DIS TCTNI instructions. If enabled, the counter 
overflow will cause a subroutine call to location 7 
where the timer service routine is stored. If the timer 
and Input Buffer Full interrupts occur simulta­
neously, the IBF source will be recognized and the 
call will be to location 3. Since the timer interrupt is 
latched, it will remain pending until the DBBIN reg­
ister has been serviced and will immediately be rec­
ognized upon return from the service routine. A 
pending timer interrupt is reset by the initiation of a 
timer interrupt service routine. 

Event Counter Mode 
The STRT CNT instruction connects the TEST 1 
input pin to the counter input and enables the 
counter. Note this instruction does not clear the 
counter. The counter is incremented on high to low 
transitions of the TEST 1 input. The TEST 1 input 
must remain high for a minimum of one state in or­
der to be registered (250 ns at 12 MHz). The maxi­
mum count frequency is one count per three 
instruction cycles (267 kHz at 12 MHz). There is no 
minimum frequency limit. 

Timer Mode 
The STRT T instruction connects the internal clock 
to the counter input and enables the counter. The 

6-819 

input clock is derived from the SYNC signal of the 
internal oscillator and the divide·by-32 prescaler. 
The configuration is illustrated in Figure 2-13. Note 
this instruction does not clear the timer register. 
Various delays and timing sequences between 40 
J.isec and 10.24 msec can easily be generated with a 
minimum of software timing loops (at 12 MHz). 

Times longer than 10.24 msec can be accurately 
measured by accumulating multiple overflows in a 
register under software control. For time resolution 
less than 40 J.isec, an external clock can be applied to 
the TEST 1 counter input (see Event Counter 
Mode). The minimum time resolution with an exter­
nal clock is 3.75 J.isec (267 kHz at 12 MHz). 

TEST 1 Event Counter Input 
The TEST 1 pin is multifunctional. It is automati­
cally initialized as a test input by a RESET signal 
and can be tested using UPI-41A conditional branch 
instructions. 

In the second mode of operation, illustrated in Fig­
ure 2-13, the TEST 1 pin is used as an input to the 
internal 8-bit event counter. The Start Counter 
(STRT CNT) instruction controls an internal switch 
which connects TEST 1 through an edge detector to 
the 8-bit internal counter. Note that this instruction 
does not inhibit the testing of TEST 1 via condi­
tional Jump instructions. 

In the counter mode the TEST 1 input is sampled 
once per instruction cycle. After a high level is de­
tected, the next occurence of a low level at TEST 1 



FUNCTIONAL DESCRIPTION 

will cause the counter to increment by one. 

The event counter functions can be stopped by the 
Stop Timer/Counter (STOP TCNT) instruction. 
When this instruction is executed the TEST 1 pin 
becomes a test input and functions as previously de­
scribed. 

TEST INPUTS 
There are two multifunction pins designated as Test 
Inputs, TEST 0 and TEST 1. In the normal mode of 
operation, status of each of these lines can be di­
rectly tested using the following conditional Jump 
instructions: 

• JTO Jump if TEST 0 = 1 
• JNTO Jump if TEST 0 = 0 
• JT1 Jump if TEST 1 = 1 
• JNT1 Jump if TEST 1 = 0 

The test inputs are TTL compatible. An external 
logic signal connected to one of the test inputs will 
be sampled at the time the appropriate conditional 
jump instruction is executed. The path of program 
execution will be altered depending on the state of 
the external signal when sampled. 

INTERRUPTS 
The 8041AH/8741A, 8042/8742 has the following in­
ternal interrupts: 

WR a IBF 

• Input Buffer Full (IBF) interrupt 
• Timer Overflow interrupt 

The IBF interrupt forces a CALL to location 3 in 
program memory; a timer-overflow interrupt forces 
a CALL to location 7. The IBF interrupt is enabled 
by the EN I instruction and disabled by the DIS I 
instruction. The timer-overflow interrupt is enabled 
and disabled by the EN TNCTI and DIS TCNTI 
instructions, respectively. 

Figure 2-14 illustrates the internal interrupt lo~ 
An IBF interrupt request is generated whenever WR 
and CS are both low, regardless of whether inter­
rupts are enabled. The interrupt request is cleared 
upon entering the IBF service routine only. That is, 
the DIS I instruction does not clear a pending IBF 
interrupt. 

Interrupt Timing Latency 
When the IBF interrupt is enabled and an IBF inter­
rupt request occurs, an interrupt sequence is initi­
ated as soon as the currently executing instruction is 
completed. The following sequence occurs: 

• A CALL to location 3 is forced. 
• The program counter and bits 4-7 of the Pro­

gram Status Word are stored in the stack. 
• The stack pointer is incremented. 

es INTERRUPT 
REQUEST 

IBF 
INTERRUPT 
REQUEST 

IBF 
INTERRUPT 

RECOGNIZED 

RESET 
IBF 
INTERRUPT 

EN I a ENABLE 

IBF 
INTERRUPT 

ENABLE 

DIS I 

RESET 

TIMER =..1"L::.....;=---!>-____ -l 
OVERFLOW 

TIMER 
INTERRUPT 

RECOGNIZED 

01$ TeNTI 
EXECUTED 

RESET 

a 

TIMER 
INTERRUPT 

ENABLE 

TIMER 
INTERRUPT 
REQUEST 

RETR EXECUTED 

RESET 

Figure 2-14. Interrupt Logic 

6-820 

a INTERRUPT 
IN PROGRESS 



FUNCTIONAL DESCRIPTION 

Location 3 in program memory should contain an 
unconditional jump to the beginning of the IBF in­
terrupt service routine elsewhere in program mem­
ory. At the end of the service routine, an RETR 
(Return and Restore Status) instruction is used to 
return control to the main program. This instruction 
will restore the program counter and PSW bits 4-7, 
providing automatic restoration of the previously 
active register bank as well. RETR also re-enables 
interrupts. 

A timer-overflow interrupt is enabled by the EN 
TCNTI instruction and disabled by the DIS TCNTI 
instruction. If enabled, this interrupt occurs when 
the timer/counter register overflows. A CALL to lo­
cation 7 is forced and the interrupt routine proceeds 
as described above. 

The interrupt service latency is the sum of current 
instruction time, interrupt recognition time, and the 
internal call to the interrupt vector address. The 
worst case latency time for servicing an interrupt is 7 
clock cycles. Best case latency is 4 clock cycles. 

Interrupt Timing 
Interrupt inputs may be enabled or disabled under 
program control using EN I, DIS I, EN TCNTI and 
DIS TCNTI instructions. Also, a RESET input will 
disable interrupts. An interrupt request must be re­
moved before the RETR instruction is executed to 
return from the service routine, otherwise the pro­
cessor will re-enter the service routine immediately. 
Thus, the WR and CS inputs should not be held low 
longer than the duration of the interrupt service 
routine. 

The interrupt system is single level. Once an inter­
rupt is detected, all further interrupt requests are 
latched but are not acted upon until execution of an 
RETR instruction re-enables the interrupt input 
logic. This occurs at the beginning ofthe second cy­
cle of the RETR instruction. If an IBF interrupt and 
a timer-overflow interrupt occur simultaneously, the 
IBF interrupt will be recognized first and the timer­
overflow interrupt will remain pending until the end 
of the interrupt service routine. 

External Interrupts 
An external interrupt can be created using the UPI-
41AH, 42 timer/counter in the event counter mode. 
The counter is first preset to FFH and the EN 
TCNTI instruction is executed. A timer-overflow in­
terrupt is generated by the first high to low transi­
tion of the TEST 1 input pin. Also, if an IBF 
interrupt occurs during servicing of the 
timer/counter interrupt, it will remain pending until 
the end of the service routine. 

6-821 

Host Interrupts And DMA 
If needed, two external interrupts to the host system 
can be created using the EN FLAGS instruction. 
This instruction allocates two I/O lines on PORT 2 
(P24 and P25). P24 is the Output Buffer Full inter­
rupt request line to the host system; P25 is the Input 
Buffer empty interrupt request line. These interrupt 
outputs reflect the internal status of the OBF flag 
and the IBF inverted flag. Note, these outputs may 
be inhibited by writing a "0" to these pins. Reenab­
ling interrupts is done by writing a "I" to these port 
pins. Interrupts are typically enabled after power on 
since the I/O ports are set in a "I" condition. The EN 
FLAG's effect is only cancelled by a device RESET. 

DMA handshaking controls are available from two 
pins on PORT 2 of the UPI-41A microcomputer. 
These lines (P26 and P27) are enabled by the EN 
DMA instruction. P26 becomes DMA request 
(DRQ) and P27 becomes DMA acknowledge 
(DACK). The UPI program initiates a DMA request 
by writing a "I" to P26. The DMA controller trans­
fers the data into the DBBIN data register using 
DACK which acts as a chip select. The EN DMA in­
struction can only be cancelled by a chip RESET. 

RESET 
The RESET input provides a means for internal 
initialization of the processor. An automatic 
initialization pulse can be generated at power-on by 
simply connecting a.l /lfd capacitor between the 
RESET input and ground as shown in Figure 2-15. It 
has an internal pull-up resistor to charge the capaci­
tor and a Schmitt-trigger circuit to generate a clean 
transition. A 2-stage sychronizer has been added to 
support reliable operation up to 12 MHz. 

If automatic initialization is used, RESET should be 
held low for at least 10 milliseconds to allow the 
power supply to stabilize. If an external RESET sig­
nal is used, RESET may be held low for a minimum 
of 8 instruction cycles. Figure 2-15 illustrates a con­
figuration using an external TTL gate to generate 
the RESET input. This configuration can be used to 
derive the RESET signal from the 8224 clock gener­
ator in an 8080 system. 

The RESET input performs the following functions: 

• Disables Interrupts 
• Clears Program Counter to Zero 
• Clears Stack Pointer 
• Clears Status Register and Flags 
• Clears Timer and Timer Flag 
• Stops Timer 
• Selects Register Bank 0 
• Sets PORTS 1 and 2 to Input Mode 



FUNCTIONAL DESCRIPTION 

EXTERNAL 
RESET 

SIGNAL 
OPEN COLLECTOR ' 

B041AH 
8741A 
8042 
8742 

Figure 2·15. External Reset Configuration 

DATA BUS BUFFER 
Two 8-bit data bus buffer registers, DBBIN and 
DBBOUT, serve as temporary buffers for commands 
and data flowing between it and the master proces­
sor. Externally, data is transmitted or received by 
the DBB registers upon execution of an INput or 
OUTput instruction by the master processor. Four 
control signals are used: 

• AO Address input signifying ·control or 
data 

• CS Chip Select 
• RD Read strobe 
• WR Write strobe 

Transfer can be implemented.with or without UPI 
program interference by enabling or disabling an in­
ternal UPI interrupt. Internally, data transfer be-

UPI~41AH, 42 

BUS CONTENTS DU.,ING STATUS READ 

ST7 St:6 STs ST 4 F1 FO 

07 06 05 D4 .03 02 

IBF 

01 

SYSTEM 
INTERFACE 

OSF 

DO 

tween the DBB and the UPI accumulator is under 
software control and is completely asynchronous to 
the external processor timing. This allows the UPI 
software to handle peripheral control tasks indepen­
dent of the main processor while still maintaining a 
data interface with the master system. 

Configuration 
Figure 2-16 illustrates the internal configuration of 
the DBB registers. Data is stored in two8"bit buffer 
registers, DBBIN and DBBOUT. DBBIN and 
DBBOUT may be accesse~ the external processor 
using the WR line and the RD line, respectively. The 
data bus is a bidirectional, three-state bus which can 
be connected directly to an 8-bit microprocessor sys­
tem. Four control lines (WR, RD, CS, AO) are used 
by the external processor to transfer data to and 
from the DBBIN and DBBOUT registers. 

Wii 
CONTROL ii6 

BUS cs 
00 

DATA . BUS "\r-_-I---,1",8)_-I 

2·16. Data Bus Buffer Configuration 

6-822 



FUNCTIONAL DESCRIPTION 

An 8-bit register containing status f1ags is used to 
indicate the status of the DBB registers. The eight 
status f1ags are defined as follows: 

• OBF Output Buffer Full This flag is auto­
matically set when the UPI-Microcomputer 
loads the DBBOUT register and is cleared when 
the master processor reads the data register. 

• IBF Input Buffer Full This flag is set when 
the master processor writes a character to the 
DBBIN register and is cleared when the UPI IN­
puts the data register contents to its accumula­
tor. 

• FO This is a general purpose f1ag which can be 
cleared or toggled under UPI software control. 
The f1ag is used to transfer UPI status informa­
tion to the master processor. 

• Fl Command/Data This f1ag is set to the con­
dition of the AO input line when the master pro­
cessor writes a character to the data register. The 
Fl f1ag can also be cleared or toggled under UPI­
Microcomputer program control. 

• ST4 Through ST7 These bits are user defined 
status bits. They are defined by the MOV STS A 
instruction. ' 

All f1ags in the status register are automatically 
cleared by a RESET input. 

a-SIT 
SYSTEM 

BUS 

) 

- \ 

~ 
L... 

AO Al 

8 

00-0 7 AO cs 

PORT 1 

8 

..y 

SYSTEM INTERFACE 
Figure 2-17 illustrates how an UPI-Microcomputer 
can be connected to a standard 8080-type bus sys­
tem. Data lines DO-D7 form a three-state 
bidirectional port which can be connected directly t~ 
the system data bus. The UPI bus interface has suf­
ficient drive capability (400 f.lA) for small systems, 
however, a larger system may require buffers. 

Four control signals are required to handle the data 
and status information transfer: 

• WR I/O WRITE signal used to transfer data 
from the system bus to the UPI DBBIN 
register and set the Fl f1ag in the status 
register. 

• RD I/O READ signal used to transfer data 
from the DBBOUT register or status 
register to the system data bus. 

• CS CHIP SELECT signal used to enable 
one 8041A out of several connected to a 
common bus. 

• AO Address input used to select either the 
8-bit status register or DBBOUT regis­
ter during an I/O READ. 

iDA lOW 

Also, the signal is used to s~t the Fl f1ag 
in the status register during an I/O 
WRITE. 

ADDRESS BUS ~ 

CONTROL BUS ~ 

RESET ¢2 

DATA BUS <) 

~ \7 
470 

t 
-v +5V 

470 

I 
-v +5V 

RO WR RESET XTAL 1 XTAL 2 

a04,1A/8741A 

PORT 2 TEST1 TEST 0 

8 

'v 

I 
PERIPHERAL INTERFACE 

Figure 2-17. Interface to 8080 System Bus 

6-823 



FUNCTIONAL DESCRIPTION 

The WR and RD signals are active low and are stan­
dard MCS-80 peripheral control signals used to syn­
chronize data transfer between the system bus and 
peripheral devices. 

The CS and AO signals are decoded from the address 
bus of the master system. In a system with few I/O 
devices a linear addressing configuration can be used 
where AO and Al lines are connected directly to AO 
and CS inputs (see Figure 2-17). 

Data Read 
Table 2-4 illustrates the relative timing of a 
DB BOUT Read. When CS, AO, and RD are low, the 
contents of the DBBOUT register is placed on the 
three-state Data lines DO-D7 and the OBF flag is 
cleared. 

The master processor uses CS, AO, WR, and RD to 
control data transfer between the DBBOUT register 
and the master system. The following operations are 
under master processor control: 

Table 2-4. Data Transfer Controls 

CS RD WR AO 
0 0 1 0 Read DBBOUT register 
0 0 1 1 Read STATUS register 
0 1 0 0 Write DBBIN data register 
0 1 0 1 Write DBBIN command register 
1 x x x Disable DBB 

Status Read 
Table 2-4 shows the logic sequence re~ed for a 
STATUS register read. When CS and RD are low 
with AO high, the contents of the 8-bit status register 
appears on Data lines DO-D7. 

Data Write 
Table 2-4 shows the sequence for writing informa­
tion to the DB BIN register. When CS and WR are 
low, the contents of the system data bus is latched 
into DBBIN. Also, the IBF flag is set and an inter­
rupt is generated, if enabled. 

Command Write 
During any write (Table 2-4), the state of the AO in­
put is latched into the status register in the Fl 
(command/data) flag location. This additional bit is 
used to signal whether DBBIN contents are com­
mand (AO = 1) or data (AO = 0) information. 

INPUT/OUTPUTINTERFACE 
The UPI-41A has 16 lines for input and output func­
tions. These I/O lines are grouped as two 8-bit TTL 
compatible ports: PORTS 1 and 2. The port lines 

can individually function as either inputs or outputs 
under software control. In addition, the lower 4 lines 
of PORT 2 can be used to interface to an 8243 I/O 
expander device to increase I/O capacity to 28 or 
more lines. The additional lines are grouped as 4-bit 
ports: PORTS 4, 5, 6, and 7. 

PORTS 1 and 2 
PORTS 1 and 2 are each 8 bits wide and have the 
same I/O characteristics. Data written to these ports 
by an OUTL Pp,A instruction is latched and re­
mains unchanged until it is rewritten. Input data is 
sampled at the time the IN, A,Pp instruction is ex­
ecuted. Therefore, input data must be present at the 
PORT until read by an INput instruction. PORT 1 
and 2 inputs are fully TTL compatible and outputs 
will drive one standard TTL load. 

Circuit Configuration 
The PORT 1 and 2 lines have a special output struc­
ture (shown in Figure 2-18) that allows each line to 
serve as an input, an output, or both, even though 
outputs are statically latched. 

Each line has a permanent high impedance pull-up 
(50Kfl) which is sufficient to provide source current 
for a TTL high level, yet can be pulled low by a stan­
dard TTL gate drive. Whenever a "1" is written to a 
line, a low impedance pull-up (5K) is switched in 
momentarily (500 ns) to provide a fast transition 
from 0 to 1. When a "0" is written to the line, a low 
impedance pull-down (300g) is active to provide 
TTL current sinking capability. 

To use a particular PORT pin as an input, a logic "1" 
must first be written to that pin. 

NOTE: A RESET intializes all PORT pins to the 
high impedance logic "1" state. 

An external TTL device connected to the pin has 
sufficient current sinking capability to pull-down 
the pin to the low state. An IN A,Pp instruction will 
sample the status of PORT pin and will input the 
proper logic level. With no external input connected, 
the IN A,Pp instruction inputs the previous output 
status. . 

This structure allows input and output information 
on the same pin and also allows any mix of input and 
output lines on the same port. However, when inputs 
and outputs are mixed on one PORT, a PORT write 
will cause the strong internal pull-ups to turn on at 
all inputs. If a switch or other low impedance device 
is connected to an input, a PORT write ("1" to an 
input) could cause current limits on internal lines to 

6-824 



FUNCTIONAL DESCRIPTION 

INTERNAL 
BUS 

Figure 2-18. Quasi-Bidirectional Port Structure 

be exceeded. Figure 2-19 illustrates the recom­
mended connection when inputs and outputs are 
mixed on one PORT. 

The bidirectional port structure in combination with 
the UPI-41AH, 42 logical AND and OR instructions 
provides an efficient means for handling single line 
inputs and outputs within an 8-bit processor. 

PORTS 4, 5, 6, and 7 
By using an 8243 I/O expander, 16 additional I/O 
lines can be connected to the UPI-41AH, 42 and di­
rectly addressed as 4-bit I/O ports using UPI-41AH, 
42 instructions. This feature saves program space 
and design time, and improves the bit handling ca­
pability of the UPI-41AH, 42. 

PORT 1,' r---o l NPUT 

8041AH 
8741A 
8042 _ 
8742 -

INCORRECT UNLESS 
ALL LINES ON THE 
PORT ARE INPUTS 

The lower half of PORT 2 provides an interface to 
the 8243 as illustrated in Figure 2-20. The PROG pin 
is used as a strobe to clock address and data informa­
tion via the PORT 2 interface. The extra 16 I/O lines 
are referred to in UPI software as PORTS 4, 5, 6, and 
7. Each PORT can be directly addressed and can be 
ANDed and ORed with an immediate data mask. 
Data can be moved directly to the accumulator from 
the ~xpander PORTS (or vice-versa). 

The 8243 I/O ports, PORTS 4,5,6, and 7, provide 
more drive capability than the UPI-41AH, 42 
bidirectional ports. The 8243 output is capable of 
driving about 5 standard TTL loads. 

1K 
PORT 1,2 !-"'II\{I,---o l NPUT-=-

B041AH 
8741A 
804. 
8742 

RECOMMENDED WHEN 
INPUTS AND OUTPUTS 
ARE MIXED ON A PORT 

Figure 2-19. Recommended PORT Input Connections 

6-825 



FUNCTIONAL DESCRIPTION 

-=- THAN ONE EXPANDER IS USED 
*l CHIP SELECT CONNECTION IF MOR 

12 I/O CS 

P4- PORT 4 4 > I/O 

TEST 2 INPUTS 
a041AH P5-PORT5 4 I/O 
8741A 
8042 8243 
8742 

P6 - PORT 6 4 I/O 

P20·P23 4 00-03 

P7 - PORT 7 4 I/O 
PROG PROG 

\ / BITS 0,1 BITS 2,3 
PROG 

o~ 0fr READ 01 PORT 01 . WRITE 

--< X > 
10 ADDRESS 10 OR 
11 , 11 AND 

P20-P23 

ADDRESS (4-8IT5) DATA (4-8IT5) 

Figure 2-20. 8243 Expander Interface 

Multiple 8243's can be connected to the PORT 2 in­
terface. In normal operation, only one of the 8243's 
would be active at the time an Input or Output com­
mand is executed. The upper half of PORT 2 is used 
to provide chip select signals to the 8243's. Figure 2-
21 shows how four 8243'8 could be connected. Soft-

8041AH 
DstTsA '-_--"-_/I DBB 8;o~iA 

8742 

CO~3~OL /---:;--" CONTRO~ORT 1 K:::]=) 

ware is needed to select and set the proper PORT 2 
pin· before an INPUT or OUTPUT command to 
PORTS 4-7 is executed. In general, the software 
overhead required is very minor compared to the 
added flexibility of having a large number of I/O 
pins available. 

PORT2~:Jc:==::-===~~=====r====~=-::========~::~========~::J 
PROG~-----__ ~ ______ +-_______ ~ ______ -J 

Figure 2-21. Multiple 8243 Expansion 

6-826 



CHAPTER 3 
INSTRUCTION SET 

The UPI-41AH, 42 Instruction Set is opcode-com­
patible with the MCS-48 set except for the elimina­
tion of external program and data memory 
instructions and the addition of the data bus buffer 
instructions. It is very straightforward and efficient 
in its use of program memory. All instructions are 
either 1 or 2 bytes in length (over 70% are only 1 
byte long) and over half of the instructions execute 
in one machine cycle. The remainder require only 
two cycles and include Branch, Immediate, and I/O 
operations. 

The UPI-41AH, 42 Instruction Set efficiently han­
dles the single-bit operations required in control ap­
plications. Special instructions allow port bits to be 
set or cleared individually. Also, any accumulator bit 
can be directly tested via conditional branch instruc­
tions. Additional instructions are included to 
simplify loop counters, table look-up routines and 
N-way branch routines. 

The UPI-41AH, 42 Microcomputer handles 
arithmetic operations in both binary and BCD for 
efficient interface to peripherals such as keyboards 
and displays. 

The instruction set can be divided into the following 
groups: 

• Data Moves 
• Accumulator Operations 
• Flags 
• Register Operations 
• Branch Instructions 
• Control 
• Timer Operations 
• Subroutines 
• Input/Output Instructions 

Data Moves 
(See Instruction Summary) 
The 8-bit accumulator is the control point for all 
data transfers within the UPI-41AH, 42. Data can be 
transferred between the 8 registers of each working 
register bank and the accumulator directly (i.e., with 
a source or destination register specified by 3 bits in 
the instruction). The remaining locations in the 
RAM array are addressed either by RO or Rl of the 
active register bank. Transfers to and from RAM re­
quire one cycle. 

chine status accordingly and provide a means of re­
storing status after an interrupt or of altering the 
stack pointer if necessary. 

Accumulator Operations 
Immediate data, data memory, or the working regis­
ters can be added (with or without carry) to the ac­
cumulator. These sources can also be ANDed, ORed, 
or exclusive ORed to the accumulator. Data may be 
moved to or from the accumulator and working reg­
isters or data memory. The two values can also be 
exchanged in a single operation. 

The lower 4 bits of the accumulator can be ex­
changed with the lower 4 bits of any of the internal 
RAM locations. This operation, along with an in­
struction which swaps the upper and lower 4-bit 
halves ofthe accumulator, provides easy handling of 
BCD numbers and other 4-bit quantities. To facili­
tate BCD arithmetic a Decimal Adjust instruction is 
also included. This instruction is used to correct the 
result of the binary addition of two 2-digit BCD 
numbers. Performing a decimal adjust on the result 
in the accumulator produces the desired BCD result. 

The accumulator can be incremented, decremented, 
cleared, or complemented and can be rotated left or 
right 1 bit at a time with or without carry. 

A subtract operation can be easily implemented in 
UPI-41AH, 42 software using three single-byte, 
single-cycle instructions. A value can be subtracted 
from the accumulator by using the following instruc­
tions: 

• Complement the accumulator 
• Add the value to the a<::cumulator 
• Complement the accumulator 

Flags 
There are four user accessible flags: 

• Carry 
• Auxiliary Carry 

• FO 
• Fl 

The Carry flag indicates overflow of the accumula­
tor, while the Auxiliary Carry flag indicates overflow 
between BCD digits and is used during decimal ad­
just operations. Both Carry and Auxiliary Carry are 
part of the Program Status Word (PSW) and are 

Constants stored in Program Memory can be loaded stored in the stack during subroutine calls. The FO 
directly into the accumulator or the eight working and Fl flags are general-purpose flags which can be 
registers. Data can also be transferred directly be- cleared or complemented by UPI instructions. FO is 
tween the accumulator and the on-board timer/ accessible via the Program Status Word and is 
counter, the Status'Register (STS), or the Program stored in the stack with the Carry flags. Fl reflects 
Status Word (PSW). Transfers to the STS register the condition of the AO line, and caution must be 
alter bits 4-7 only. Transfers to the PSW alter ma- used when setting or clearing it. 

6-827 



INSTRUCTION SET 

Register Operations 
The working registers can be accessed via the accu­
mulator as explained above, or they can be loaded 
with immediate data constants from program mem­
ory. In addition, they can be incremented or 
decremented directly, or they can be used as loop 
counters as explained in the section on branch 
instructions. 

Additional Data Memory locations can be accessed 
with indirect instructions via Ro and RI. 

Branch Instructions 
The UPI-4IAH, 42 Instruction Set includes 17 jump 
instructions. The unconditional jump instructiortal­
lows jumps anywhere in the IK words of program 
memory. All other jump instructions are limited to 
the current page (256 words) of program memory. 

Conditional jump instructions can test the following 
inputs and machine flags: 

• TEST 0 input pin 
• TEST !.input pin 
• Input Buffer Full flag 
• Output Buffer Full flag 
• Timer flag 
• Accumulator zero 
• Accumulator bit 
• Carry flag 
• FO flag 
• FI flag 

The conditions tested by these instructions are the 
instantaneous values at the time the conditional 
jump instruction is executed. For instance, the jump 
on accumulator zero instruction tests the accumula­
tor itself, not an intermediate flag. 

The decrement register and jump if not zero (DJNZ) 
instruction combines decrement and branch oper­
ations in a single instruction which is useful in im­
plementing a loop counter. This instruction can 
designate any of the 8 working registers as a counter 
and can effect a branch to any address within the 
current page of execution. 

A special indirect jump instruction (JMPP @A) al­
lows the program to be vec.tored to any one of several 
different locations based on the contents ofthe accu­
mul!\tor. The contents of the accumulator point to a 
location in program memory. which contains the 
jump address. As an example, this instruction could 
. be used to vector to anyone of several routines based 
on an ASCII character which has been loaded into 
the accumulator.' In this way, ASCII inputs can be 
used to initiate various routines. 

Control 
The UPI-4IAH, 42 Instruction Set has six instruc­
tions for control of the DMA, interrupts, and selec­
tion of working register banks. 

The UPI-4IAH, 42 provides two instructions for 
control of the external microcompu~er system. IBF 
and OBF.flags can be routed to PORT 2 allowing in­
terrupts of the external processor. DMA 
handshaking signals can also be enabled using lines 
from PORT 2. 

The IBF interrupt can be enabled and disabled 
using two instructions. Also, the interrupt is auto­
matically disabled following a RESET input or dur-
ing an interrupt service rC1utine. . 

The working register bank switch instructions allow 
the programmer to immediately substitute a second 
8 register bank for the one in use. This effectively 
provides either 16 working registers or the means for 
quickly saving the contents of the first 8 registers in 
response to an interrupt. The user has the option of 
switching register banks when an interrupt occurs. 
However, if the banks are switched, the original 
bank will automatically be restored upon execution 
of a return and restore status (RETR) instruction at 
t1!e end of the interrupt service routine. 

Timer 
The 8-bit on-board timer/counter can be loaded or 
read via the accumulator while the counter is 
stopped or while counting. 

The counter can be started as a timer with an inter­
nal clock source or as a'll event counter or timer with 
an external clock applied to the TEST 1 pin. The 
instruction executed determines which clock source 
is used. A single instruction stops the counter 
whether it is operating with an internal or an exter­
nal clock source. In addition, two-instructions allow 
the timer interrupt to be enabled or disabled. 

Subroutines 
Subroutines are entered by executing a call instruc­
tion. Calls can be made to any address in the IK 
word program memory. Two separate return 
instructions determine whether or not status (i.e., 
the upper 4 bits of the PSW) is restored upon return 
from a subroutine. 

Input/Output Instructions 
Two 8-bit . data bus buffer registers (DBBIN and 
DBBOUT) and an 8-bit status register (STS) enable 
the UPI-4IA universal peripheral interface to com­
municate with the external microcomputer system. 
Data can be INputted from the DBBIN register to 

6-828 



INSTRUCTION SET 

the accumulator. Data can be OUTputted from the 
accumulator to the DBBOUT register. 

The STS register contains four user-definable bits 
(ST4-ST7) plus four reserved status bits (IBF, OBF, 
Fa, and Fl). The user-definable bits are set from the 
accumulator. 

The UPI-41AH, 42 peripheral interface has two 8-
bit static I/O ports which can be loaded to and from 
the accumulator. Outputs are statically latched but 
inputs to the ports are sampled at the time an IN 
instruction is executed. In addition, immediate data 
from program memory can be ANDed and ORed di­
rectly to PORTS 1 and 2 with the result remaining 
on the port. This allows "masks" stored in program 
memory to be used to set or reset individual bits on 
the I/O ports. PORTS 1 and 2 are configured to al­
low input on a given pin by first writing a "I" to the 
pin. 

Four additional4-bit ports are available through the 
8243 I/O expander device. The 8243 interfaces to the 
UPI-41AH, 42 peripheral interface via four PORT 2 

. lines which form an expander bus. The 8243 ports 
have their own AND and OR instructions like the 
on-board ports, as well as move instructions to trans­
fer data in or out. The expander AND or OR instruc­
tions, however, combine the contents of the 
accumulator with the selected port rather than with 
immediate data as is done with the on-board ports. 

INSTRUCTION SET DESCRIPTION 
The following section provides a detailed descrip­
tion of each UPI instruction and illustrates how the 
instructions are used. 

For further information about programming the 
UP I, consult the 8048/8041A Assembly Language 
Manual. 

Table 3-1. Symbols and Abbreviations Used 

Symbol Definition 

A Accumulator 
C Carry 

DBBIN Data Bus Buffer Input 
DBBOUT Data Bus Buffer Output 

FO,F1 FLAG 0, FLAG 1 (C/D flag) 
I Interrupt 
P Mnemonic for "in-page" operation 

PC Program Counter 
Pp Port designator (p = 1,2, or 4-7) 

PSW Program Status Word 
Rr Register designator (r = 0-7) 
SP Stack Pointer 

STS Status register 
T Timer 

TF Timer Flag 
TO,T1 TEST 0, TEST 1 

# Immediate data prefix 
@ Indirect address prefix 

(( )) Double parentheses show the effect of @, 
that is, @RO is shown as ((RO)). 

() Contents of 

Table 3-2. Instruction Set Summary 

Mnemonic Operation Description Bytes Cycles 

Accumulator 
ADD A,Rr Add register to A 1 1 
ADD A,@Rr Add data memory to A 1 1 
ADD A,#data Add immediate to A 2 2 
ADDC A,Rr Add register to A with carry 1 1 
ADDC A,@Rr Add data memory to A with carry 1 1 
ADDC A,#data Add immediate to A with carry 2 2 
ANL A,Rr And register to A 1 1 
ANL A,@Rr And data memory to A 1 1 
ANL A,#data And immediate to A 2 2 
ORL A,Rr Or register to A 1 1 
ORL A,@Rr Or data memory to A 1 1 
ORL A,#data Or immediate to A 2 2 
XRL A,Rr Exclusive Or register to A 1 1 
XRL A,@Rr Exclusive Or data memory to A 1 1 
XRL A,#data Exclusive Or immediate to A 2 2 
INC A Increment A 1 1 
DEC A Decrement A 1 1 
CLR A Clear A 1 1 
CPL A Complement A 1 1 
DA A Decimal Adjust A 1 1 
SWAP A Swap nibbles of A 1 1 
RL A Rotate A left 1 1 
RLC A Rotate A left through carry 1 1 
RR A Rotate A right 1 1 
RRC A Rotate A right through carry 1 1 

6-829 



INSTRUCTION SET 

Table 3·2. Instruction Set Summary (Con't.) 

Mnemonic Operation Description Bytes Cycles 

INPUT /OUTPUT 

IN A,Pp Input port to A 1 2 
OUTL Pp,A Output A to port 1 2 
ANL Pp,#data And immediate to port 2 2 
ORL Pp,#data Or immediate to port 2 2 
IN A,DBB Input DBB to A, clear IBF 1 1 
OUT DBB,A Output A to DBB, Set OBF 1 1 
MOV STS,A A4-A 7 to bits 4-7 of status 1 1 
MOVD A,Pp Input Expander port to A 1 2 
MOVD Pp,A Output A to Expander port 1 2 
ANLD Pp,A And A to Expander port 1 2 
ORLD Pp,A Or A to Expander port 1 2 

DATA MOVES 

MOV A,Rr Move register to A 1 1 
MOV A,@Rr Move data memory to A 1 1 
MOV A,#data Move immediate to A 2 2 
MOV Rr,A Move A to register 1 1 
MOV @Rr,A Move A to data memory 1 1 
MOV Rr,#data Move immediate to register 2 2 
MOV @Rr,#data Move immediate to data memory 2 2 
MOV A,PSW MovePSW toA 1 1 
MOV PSW,A Move A toPSW 1 1 
XCH A,Rr Exchange A and registers 1 1 
XCH A,@Rr Exchange A and data memory 1 1 
XCHD A,@Rr Exchange digit of A and register 1 1 
MOVP A,@A Move to A from current page 1 2 
MOVP3 A,@A Move to A from Page 3 1 2 

TIMER/COUNTER 

MOV A,T Read Timer/Counter 1 1 
MOV T,A Load Timer/Counter 1 1 
STRT T Start Timer 1 1 
STRT CNT Start Counter 1 1 
STOP TCNT Stop Timer/Counter 1 1 
EN TCNTI Enable Timer/Counter Interrupt 1 1 
DIS TCNTI Disable Timer/Counter Interrupt 1 1 

CONTROL 

EN DMA Enable DMA Handshake Lines 1 1 
EN I Enable IBF interrupt 1 1 
DIS I Disable IBF interrupt 1 1 
EN FLAGS Enable Master Interrupts 1 1 
SEL RBO Select register bank 0 1 1 
SEL RBI Select register bank 1 1 1 
NOP No Operation 1 1 

REGISTERS 

INC Rr Increment register 1 1 
INC @Rr Increment data memory 1 1 
DEC Rr Decrement register 1 1 

SUBROUTINE 

CALL addr Jump to subroutine 2 2 
RET Return 1 2 
RETR Return and restor~ status 1 2 

FLAGS 

CLRC Clear Carry 1 1 
CPLC Complement Carry 1 1 
CLRFO Clear Flag 0 1 1 
CPLFO Complement Flag 0 1 1 
CLRFI Clear Fl Flag 1 1 
CPLFI Complement Fl Flag 1 1 

6-830 



INSTRUCTION SET 

Table 3-2. Instruction Set Summary (Con't.) 

Mnemonic Operation Description Bytes Cycles 

BRANCH 
JMP addr Jump unconditional 2 
JMPP @A Jump indirect 1 
DJNZ Rr,addr Decrement register and jump on non-zero 2 
JC addr Jump on Carry=l 2 
JNC addr Jump on Carry=O 2 
JZ addr Jump on A Zero 2 
JNZ addr Jump on A not Zero 2 
JTO addr .Jump on TO=l 2 
JNTO addr Jump on TO=O 2 
JTl addr Jump on Tl=l 2 
JNTI addr Jump on Tl=O 2 
JFO addr Jump on FO Flag=l 2 
JFl addr Jump on Fl Flag=l 2 
JTF addr Jump on Timer Flag=l 2 
JNIBF addr Jump on IBF Flag=O 2 
JOBF addr Jump on OBF Flag=1 2 
JBb addr Jump on Accumulator Bit 2 

ALPHABETIC LISTING 

ADD A,Rr Add Register Contents to Accumulator 

Opcode: LI _o ________ o~I_1 ___ r2 ___ r1 ___ ro~1 

The contents of register 'r' are added to the accumulator. Carry is affected. 

Exampie: 
(A) -- (A) + (Rr) r=O-7 
ADDREG: ADD A,R6 ;ADD REG 6 CONTENTS 

;TOACC 

ADD A,@Rr Add Data Memory Contents to Accumulator 

Opcode: LI_o ________ o~l_o ___ o ___ o ___ r~1 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

The contents of the standard data memory location addressed by register 'r' bits 0-5 are added to the 
accumulator. Carry is affected. 
(A) -- (A) + «Rr» r=O-1 

Example: ADDM: MOV RO,#47 ;MOVE 47 DECIMAL TO REG 0 
ADD A,@RO ;ADD VALUE OF LOCATION 

;47 TO ACC 

ADD A,#data Add Immediate Data to Accumulator 

Opcode: I 0 0 q 0 I 0 0 

This is a 2-cycle instruction. The specified data is added to the accumulator. Carry is affected. 
(A) -- (A) + data 

Example: ADDID: ADD A,#ADDER ;ADD VALUE OF SYMBOL 
;'ADDER' TO ACC 

6-831 



INSTRUCTION SET 

ADDC A,Rr Add Carry and Register Contents to Accumulator 

Opcode: ~I _0 ________ 1~1 _1 __ r_2 __ r_1 __ ro~1 
The content of the carry bit is added to accumulator location O. The contents of register 'r' are then added to 
the accumulator. Carry is affected. ' 
(A) - (A) + (Rr) + (C) r=0-7 

Example: ADDRGC: ADDC A,R4 ;ADD CARRY AND REG 4 
, ;CONTENTS TO ACC 

ADDC A,@Rr Add Carry and Data Memory Contents to Accumulator 

Ope ode: I 0 1 I 0 0 0 r I L-________ ~ ________ ~ 

The content of the carry bit is added to accumulator location O. Then the contents of the standard data 
memory location addressed by register 'r' bits 0-5 are added to the accumulator. Carry is affected. 
(A) - (A) + «Rr» + (C) r=0-1 

Example: ADDMC: MOV R1,#40 ;MOV '40' DEC TO REG 1 
ADDC A,@R1 ;ADD CARRY AND LOCATION 40 

;CONTENTS TO ACC 

ADDC A,#data Add Carry and Immediate Data to Accumulator 

Ope ode: I 0 0 0 1 I 0 0 

This is a 2-cycle instruction. The content of the carry bit is added to accumulator location O. Then the 
specified data is added to the accumulator. Carry is affected. 
(A) - (A) + data + (C) 

Example:' AD DC A,#255 ;ADD CARRY AND '225' DEC 
;TOACC 

ANL A,Rr Logical AND Accumulator With Register Mask 

Opcode: ~I _0 _____ 0 ___ 1~1 ._1 __ r_2 __ r1 ___ ro~1 

Data in the accumulator is logically ANDed with the mask contained in working register 'r'. 
(A) - (A) AND (Rr) r=0-7 

Example: ANDREG: ANL A,R3 ;'AND' ACC CONTENTS WITH MASK 
;MASK IN REG 3 

ANL A,@Rr Logical AND Accumulator With Memory Mask 

Opcode: ~I _0 _____ 0 ___ 1~1 _o __ o ___ o ___ r~1 

Data in the accumulator is logically ANDed with the mask contained in the data memory location referenced 
by register 'r', bits 0-5. 
(A) - (A) AND «Rr» r=0-1 

Example: ANDDM: MOV RO,#OFFH ;MOVE 'FF' HEX TO REG 0 
ANL A,#OAFH ;'AND' ACC CONTENTS WITH 

;MASK IN LOCATION 63 

6-832 



INSTRUCTION SET 

ANL A,#data Logical AND Accumulator With Immediate Mask 

Opcode: LI 0 ___ 0 _1...J..1_0_0 __ 1-.l1 • 1 d7 d6 d5 d41 d3 d2 d 1 dO 1 

This is a 2-cycle instruction. Data in the accumulator is logically ANDed with an immediately-specified mask. 
(A) -- (A) AND data 

Example: ANDID: ANL A,#OAFH ;'AND' ACC CONTENTS 
:WITH MASK 10101111 

ANL A,#3+X/Y ;'AND' ACC CONTENTS 
;WITH VALUE OF EXP 
;'3+X/Y' 

ANL Pp,#data Logical AND Port 1-2 With Immediate Mask 

Opcode: 11 0 0 1 11 0 P1 PO 1 • 1 d7 d6 d5 d41 d3 d2 d1 dO 1 

This is a 2-cycle instruction. Data on port 'p' is logically ANDed with an immediately-specified mask. 
(Pp) -- (Pp) AND data p= 1-2 

Note: Bits 0-1 of the opcode are used to represent PORT 1 and PORT 2. If you are coding in binary rather than 
assembly language, the mapping is as follows: 

Bits p1 

o 
o 
1 
1 

pO 
o 

Port 

X 

o 2 
1 X 

Example: ANDP2: ANL P2,#OFOH ;'AND' PORT 2 CONTENTS 
;WITH MASK 'FO' HEX 
;(CLEAR P20-23) 

ANLD Pp,A Logical AND Port 4-7 With Accumulator Mask 

Opcode: 11 0 0 1 11 1 P 1 PO 1 

This is a 2-cycle instruction. Data on port 'p' on the 8243 expander is logically ANDed with the digit mask 
contained in accumulator bits 0-3. 
(Pp) -- (Pp) AND (AO-3) p=4-7 

Note: The mapping of Port 'p' to opcode bits P1,PO is as follows: 

~ PO 
o 0 
o 1 
1 0 
1 1 

Example: ANDP4: ANLD P4,A 

Port 

4 
5 
6 
7 
;'AND' PORT 4 CONTENTS 
;WITH ACC BITS 0-3 

6-833 



INSTRUCTION SET 

CALL address Subroutine Call 

Opcode: 1 0 ag aa 1 1 0 o 0 1 • 1 a7 a6 as a41 a3 a2 a1 aO 1 

This is a 2-cycle instruction. The program counter and PSW bits 4-7 are saved in the stack. The stack 
pointer (PSW bits 0-2) is updated. Program control is then passed to the location specified by 'address'. 

Execution continues at the instruction following the CALL upon return from the subroutine. 
«SP» -- (PC), (PSW4-7) 
(SP) -- (SP) + .1 
(PCa-g) -- (addra-g) 
(PCO-7) -- (addrO-7) 

Example: Add three groups of two numbers. Put subtotals in locations 50,51 and total in location 52. 
MOV RO,#50 ;MOVE '50' DEC TO ADDRESS 

;REGO 
BEGADD: MOV A,R1 ;MOVE CONTENTS OF REG 1 

;TO ACC 
ADD A,R2 ;ADD REG 2 TO ACC 
CALL SUBTOT ;CALL SUBROUTINE 'SUBTOT' 
ADD A,R3 ;ADD REG 3 TO ACC 
ADD A,R4 ;ADD REG 4 TO ACC 
CALL SUBTOT ;CALL SUBROUTINE 'SUBTOT' 
ADD A,R5 ;ADD REG 5 TO ACC 
ADD A,R6 ;ADD REG 6 TO ACC 
CALL SUBTOT ;CALL SUBROUTINE 'SUBTOT' 

SUBTOT: MOV @RO,A ;MOVE CONTENTS OF ACC TO 
;LOCATION ADDRESSED BY 
;REGO 

INCRO 
RET 

CLR A Clear Accumulator 

Opcode: 1 0 0 0 1 0 

;INCREMENT REG 0 
;RETURN TO MAIN PROGRAM 

The contents of the accumulator are cleared to zero. 
(A) -- OOH 

CLR C Clear Carry Bit 

Opcode: 11 0 0 1 0 

During normal program execution, the carry bit can be set to one by the ADD, ADDC, RLC, CPLC, RRC, and 
DAA instructions. This instruction resets the carry bit to zero. 
(C) -- 0 

CLR F 1 Clear Flag 1 

Opcode: L..I _1_0 ___ 0--1.1_0 ___ 0_---' 

The F 1 flag is cleared to zero. 
(F1)--0 

6-834 



INSTRUCTION SET 

CLR FO Clear Flag 0 

Opcode: I 1 0 0 0 I 0 0 

Flag 0 is cleared to zero. 
(FO) - 0 

CPL A Complement Accumulator 

Opcode: ILO_0 ___ 1....L1_0 ___ 1--.J1 

The contents of the accumulator are complemented. This is strictly a one's complement. Each one is 
changed to zero and vice-versa. 
(A) - NOT (A) 

Example: Assume accumulator contains 01101010. 
CPLA: CPL A ;ACC CONTENTS ARE COMPLE­

;MENTED TO 10010101 

CPL C Complement Carry Bit 

Opcode: I 1 0 0 I 0 

The setting of the carry bit is complemented; one is changed to zero, and zero is changed to one. 
(C) - NOT (C) 

Example: Set C to one; current setting is unknown. 
CTO 1: CLR C ;C IS CLEARED TO ZERO 

CPL C ;C IS SET TO ONE 

CPL FO Complement Flag 0 

Opcode: I 1 0 0 1 I 0 0 

The setting of Flag 0 is complemented; one is changed to zero, and zero is changed to one. 
FO- NOT (FO) 

CPL F1 Complement Flag 1 

Opcode: IL1_0 ___ 1....L1_0 __ 0_1--.J1 

The setting of the F1 Flag is complemented; one is changed to zero, and zero is changed to one. 
(F1) - NOT (F1) 

6-835 



INSTRUCTION SET 

DA A Decimal Adjust Accumulator 

Opcode: ~I _0 _____ 0 ___ 1-L1_0 ________ ~ 

The S-bit accumulator value is adjusted to form two 4-bit Binary Coded Decimal (BCD) digits following the 
binary addition of BCD numbers. The carry bit C is affected. If the contents of bits 0-3 are greater than nine, 
or if AC is one, the accumulator is incremented by six. 

The four high-order bits are then checked. If bits 4-7 exceed nine, or if C is one, these bits are increased by 
six. If an overflow occurs, C is set to one; otherwise, it is cleared to zero. 

Example: Assume accumulator contains 9AH. 
DA A ;ACC ADJUSTED TO 01H with C set 

C AC ACC 
o 0 9AH INITIAL CONTENTS 

06H ADD SIX TO LOW DIGIT 
o o A1H 

60H ADD SIX TO HIGH DIGIT 
o 01H RESULT 

DEC A Decrement Accumulator 

Opcode: I 0 0 0 0 I 0 

The contents of the accumulator are decremented by one. 
(A)-(A)-1 

Example: Decrement contents of data memory location 63. 
MOV RO,#3FH ;MOVE '3F' HEX TO REG 0 
MOV A,@RO ;MOVE CONTENTS OF LOCATION 63 

;TOACC 
DEC A ;DECREMENT ACC 
MOV @RO,A ;MOVE CONTENTS OF ACC TO 

;LOCATION 63 

DEC Rr Decrement Register 

Opcode: 1~_1 _____ 0 ___ 0-L1 _1 __ r_2 __ r_1 __ ro~1 

The contents of working register 'r' are decremented by one. 
(Rr) - (Rr) - 1 r=0-7 

Example: DECR1: DEC R1 ;DECREMENT ADDRESS REG 1 

DIS I Disable IBF Interrupt 

Opcode: LI 0 __ 0_0_~1 O ___ O_~ 
The input Buffer Full interrupt is disabled. The interrupt sequence is not initiated by WR and CS, however, 
an IBF interrupt request is latched and remains pending until an EN I (enable IBF interrupt) instruction is 
executed. 

Note: The IBF flag is set and cleared independent of the IBF interrupt request so that handshaking protocol can 
continue normally. 

6-836 



INSTRUCTION SET 

DIS TCNTI Disable Timer I Counter Interrupt 

Opcode: LI 0_0 ___ 1---L�_o __ 0_----'1 1 

The timer / counter interrupt is disabled. Any pending timer interrupt request is cleared. The interrupt se­
quence is not initiated by an overflow, but the timer flag is set and time accumulation continues. 

DJNZ Rr, address Decrement Register and Test 

Opcode: 11 

This is a 2-cycle instruction. Register 'r' is decremented and tested for zero. If the register contains all zeros, 
program control falls through to the next instruction. If the register contents are not zero, control jumps to the 
specified address within the current page. 
(Rr) ..... (Rr) - 1 

If R "* 0, then; 
(PCO-7) ..... addr 

Note: A 10-bit address specification does not cause an error if the DJNZ instruction and the jump target are on the 
same page. If the DJNZ instruction begins in location 255 of a page, it will jump to a target address on the 
following page. Otherwise, it is limited to a jump within the current page. 

Example: Increment values in data memory locations 50-54. 
MOV RO,#50 ;MOVE '50' DEC TO ADDRESS 

;REG ° 
MOV R3,#05 ;MOVE '5' DEC TO COUNTER 

;REG 3 
INCRT: INC @RO ;INCREMENT CONTENTS OF 

;LOCATION ADDRESSED BY 

;REG ° 
INC RO ;INCREMENT ADDRESS IN REG ° 
DJNZ R3,INCRT ;DECREMENT REG 3--JUMP TO 

;'INCRT' IF REG 3 NONZERO 
NEXT-- ;'NEXT' ROUTINE EXECUTED 

;IF R3 19 ZERO 

EN DMA Enable DMA Handshake Lines 

Opcode: LI _1 ___ 0....JILo ___ o_....J 

DMA handshaking is enabled using P26 as DMA request (DRO) and P27 as DMA acknowledge (DACK). The 
DACK line forces CS and AO low internally and clears DRO. 

EN FLAGS Enable Master Interrupts 

oPcode:1 ~ _1 ________ 1~1 _O _____ o __ ~ 

The Output Buffer Full (OBF) and the Input Buffer Full (lBF) flags (lBF is inverted) are routed to P24 and P25. 
For proper operation, a "1" should be written to P25 and P24 before the EN FLAGS instruction. A "0" written 
to P24 or P25 disables the pin. 

6-837 



INSTRUCTION SET 

EN I Enable IBF Interrupt 

Opcode: 10 ° ° 010 ° 
The Input Buffer Full interrupt is enabled. A low signal on WR and CS initiates the interrupt sequence. 

EN TCNTI Enable Timer/Counter Interrupt 

Opcode: 1,-0_0 __ 0-,-1 o __ o_1-,1 

The timer I counter interrupt is enabled. An overflow of this register initiates the interrupt sequence. 

IN A,DBB Input Data Bus Buffer Contents to Accumulator 

Opcode: <-I 0_0 __ 0--,-1 0_0 __ 0--,1 

Data in the DBBIN register is transferred to the accumulator and the Input Buffer·Fuli (lBF) flag is set to zero. 
(A)- (DBB) 
(IBF)- ° 

Example: INDBB: IN A,DBB ;INPUT DBBIN CONTENTS TO 
;ACCUMULATOR 

IN A,Pp Input Port 1-2 Data to Accumulator 

Opcode: I ° ° ° ° 11 ° P1 PO I 
This is a 2-cycle instruction. Data present on port 'p' is transferred (read) to the accumulator. 
(A) - (Pp) . p= 1-2 (see ANL instruction) 

Example: INP12: IN A,P1 ;INPUT PORT 1 CONTENTS 
;TOACC 

MOV RB,A ;MOVE ACC CONTENTS TO 
;REGB 

IN A,P2 ;INPUT PORT 2 CONTENTS 
;TOACC 

MOV R7,A ;MOVE ACC CONTENTS TO REG 7 

INC A Inprement Accumulator 

Opcode: I ° ° ° 1 I ° 
The contents of the accumulator are incremented by one. 
(A)+-(A)+ 1 

Example: Increment contents of location 10 in data memory. 
INCA: MOV RO,#10 ;MOV '10' DEC TO ADDRESS 

;REGO 
MOV A,@RO ;MOVE CONTENTS OF LOCATION 

;10TO ACC 
INC A ;INCREMENT ACC 
MOV @RO,A ;MOVE ACC CONTENTS TO 

;LOCATION 10 

6-838 



INSTRUCTION SET 

INC Rr Increment Register 

Opcode: 1 ° ° ° 1 11 r2 r1 ro 1 

The contents of working register 'r' are incremented by one. 
(Rr) - (Rr) + 1 r=0-7 

Example: INCRO: INC RO ;INCREMENT ADDRESS REG ° 
INC @Rr Increment Data Memory Location 

Opcode: 1 ° ° ° 1 1 ° ° ° r 1 

The contents of the resident data memory location addressed by register 'r' bits 0-5 are incremented by 
one. 
«Rr» - «Rr» + 1 r=0-1 

Example: INCDM: MOV R1,#OFFH ;MOVE ONES TO REG 1 
;INCREMENT LOCATION 63 INC @R1 

JBb address Jump If Accumulator Bit is Set 

Opcode: 1 b2 b1 bO 1 1 ° ° 
This is a 2-cycle instruction. Control passes to the specified address if accumulator bit 'b' is set to one. 
(PCO-7) - addr if b=1 
(PC) - (PC) + 2 if b=O 

Example: JB41S 1: JB4 NEXT ;JUMP TO 'NEXT ROUTINE 
;IF ACC BIT 4=' 

JC address Jump If Carry Is Set 

Opcode: LI _, ____ 1--'-1 _0 ____ 0--'1 • 1 a7 a6 a5 a41 a3 a2 a 1 ao 1 

This is a 2-cycle instruction. Control passes to the specified address if the carry bit is set to one. 
(PCO-7) - addr if C= 1 

. (PC) - (PC) + 2 if C=O 
Example: JC,: JC OVERFLOW ;JUMP TO 'OVFLOW' ROUTINE 

;IF C=1 

JFO address Jump If Flag 0 Is Set 

Opcode: L-_o ___ '-LI_o ____ o--'1 • 1 a7 a6 a5 a41 a3 a2 a 1 ao 1 

This is a 2-cycle instruction. Control passes to the specified address if flag ° is set to one. 
(PCO-7) - addr if FO= 1 

Example: JFOIS1: JFO TOTAL ;JUMP TO 'TOTAL' ROUTINE 
;IF FO=1 

6-839 



INSTRUCTION· SET 

JF1 address Jump If C/O Flag (F1) Is Set 

OPcode:1 L-_0 ____ 1--'--1_0 ____ 0--'1 • 1 a7 a6 a5 a41 a3 a2 a 1 ao 1 

This is a 2-cycle instruction. Control passes to the specified address if the C/D flag (F 1) is set to one. 
(PCO-7) -- addr if F 1 = 1 

Example: JF 11S 1: JF 1 FILBUF ;JUMP TO 'FILBUF' 
;ROUTINE IF F 1 = 1 

JMP address Direct Jump Within 1K Block 

Opcode: la10 a9 as ° 1 ° 

This is a 2-cycle instruction. Bits 0-9 of the program counter are replaced with the directly-specified 
address. 
(PCS-9) -- addr S-9 
(PCO-7) -- addr 0-7 

Example: JMP SUBTOT ;JUMP TO SUBROUTINE 'SUBTOT' 
JMP $-6 ;JUMP TO INSTRUCTION SIX LOCATIONS 

;BEFORE CURRENT LOCATION 
JMP 2FH ;JUMP TO ADDRESS '2F' HEX 

JMPP @A Indirect Jump Within Page 

Opcode: 11...-1_°-..., __ 1_1'--° __ 0 ___ --' 

This is a 2-cycle instruction. The contents of the program memory location pointed to by the accumulator are 
substituted for the 'page' portion of the program counter (PC 0-7). 
(PCO-7) .... «A» 

Example: Assume accumulator contains OFH 
JMPPAG: JMPP @A ;JMP TO ADDRESS STORED IN 

;LOCATION 151N CURRENT PAGE 

JNC address Jump If Carry Is Not Set 

Opcode: '--____ 0_1L..,0 _____ 0--'1 • 1 a7 a6 a5 a41 a3 a2 a1 ao 1 

This is a 2-cycle instruction. Control passes to the specified address if the carry bit is not set, that is, equals 
zero. 
(PCO-7) .... addr if C=O 

Example: JCO: JNC NOVFLO ;JUMP TO 'NOVFLO' ROUTINE 
;IFC=O 

JNIBF address Jump If Input Buffer Full Flag Is Low 

Opcode: L-1_1 ___ 0 __ 1--'--I_o ____ o--'l. 1 a7 a6 a5 a41 a3 a2 a 1 ao 1 

This is a 2-cycle instruction. Control passes to the specified address if the Input Buffer Full flag is low 
(lBF=O). 
(PCO-7) .... addr if IBF=O 

Example: LOC 3:JNIBF LOC 3 ;JUMP TO SELF IF IBF=O 
;OTHERWISE CONTINUE 

6-840 



INSTRUCTION SET 

JNTO address Jump If TEST 0 Is Low 

Opcode: LI 0 __ 0-'--__ 0...LI_o ____ o---'I-l a7 a6 a5 a41 a3 a2 a1 aol 

This is a 2-cycle instruction. Control passes to the specified address, if the TEST ° signal is low. Pin is 
sampled during SYNC. 
(PCO-7) - addr if TO=O 

Example: JTOLOW: JNTO 60 ;JUMP TO LOCATION 60 DEC 
;IF TO=O 

JNT1 address Jump If TEST 1 Is Low 

Opcode: .... 1_o ___ O __ 0.....L.I_o ____ o-'1 - I a7 a6 a5 a41 a3 a2 a1 ao I 

This is a 2-cycle instruction. Control passes to the specified address if the TEST 1 signal is low. Pin is 
sampled during SYNC. -
(PCO-7) - addr if T 1 =0 

Example: JT1LOW: JNT1 OBBH ;JUMP TO LOCATION 'BB' HEX 
;IF T 1=0 

JNZ address Jump If Accumulator Is Not Zero 

Opcode: '--_0 __ 0 __ 1_1'-0 _____ 0-'1 - I a7 a6 a5 a41 a3 a2 a 1 ao I 

This is a 2-cycle instruction. Control passes to the specified address if the accumulator contents are nonzero 
at the time this instruction is executed. 
(PCO-7) - addr if Aif=O 

Example: JACCNO: JNZ OABH ;JUMP TO LOCATION 'AB' HEX 
;IF ACC VALUE IS NONZERO 

JOBF Address Jump If Output Buffer Full Flag Is Set 

Opcode: 11 ° ° ° I ° ° I - I a7 a6 a5 a41 a3 a2 a 1 ao I 

This is a 2-cycle instruction. Control passes to the specified address if the Output Buffer Full (OBF) flag is set 
(= 1) at the time this instruction is executed. 
(PCO-7) - addr if OBF= 1 

Example: JOBFHI: JOBF OAAH ;JUMP TO LOCATION 'AA' HEX 
;IF OBF=1 

JTF address Jump If Timer Flag Is Set 

Opcode: 10 0- ° 1 10 

This is a 2-cycle instruction. Control passes to the specified address if the timer flag is set to one, that is, the 
timer I counter register overflows to zero. The timer flag is cleared upon execution of this instruction. (This 
overflow initiates an interrupt service sequence if the timer-overflow interrupt is enabled.) 
(PCO-7) - addr if TF= 1 

Example: JTF1: JTF TIMER ;JUMP TO 'TIMER' ROUTINE 
;IF TF=1 

6-841 



INSTRUCTION SET 

JTO address Jump If TEST 0 Is High 

Opcode: LI_0_o ___ 1---,-I_o~ ___ 0-,1. 1 a7 a6 a5 a41 a3 a2 a1 ao I. 

This is a 2-cycle instruction. Control passes to the specified address if the TEST ° signal is high (= t). Pin is 
sampled during SYNC. 
(PCO-7) - addr if TO= 1 

Example: ",TOHI: JTO 53 ;JUMP TO LOCATION 53 DEC 
;IF To=1 

JT1 address Jump If TEST 1 Is High 

Opcode: 1 ° . 1 ° 1 1 ° o 1 • 1 a7 a6 a5 a41 a3 a2 a 1 ao 1 

This is a 2-cycle instruction. Control passes to the specified address if the TEST 1 signal is high (= 1). Pin is 
sampled during SYNC. 
(PCO-7)- addr if T1=1 

Example: JT1HI: JT1 COUNT ;JUMP TO 'COUNT' ROUTINE 
;IF T1=1 

JZ address Jump If Accumulator Is Zero 

Opcode: 1.-.1 _1 ___ 0 __ 0-,-1 _0 ____ 0-'1 • 1 a7 a6 a5 a41 a3 a2 a 1 ao 1 

This is a 2-cycle instruction. Control passes to the specified address if the accumulator contains all zeros at 
the time this instruction is executed. ' 
(PCO-7) - addr if A=O 

Example: JACCO: JZ OA3H ;JUMP TO LOCATION 'A3' HEX 
;IF ACC VALUE IS ZERO 

MOV A,#data Move Immediate Data to Accumulator 

This is a 2-cycle instruction. The a-bit value specified by 'data' is loaded in the accumulator. 
(A) - data 

Example: MOV A,#OA3H ;MOV 'A3' HEX TO ACC 

MOV A,PSW Move PSW Contents to Accumulator 

Opcode: LI1 __ 0_0--,-1 0 ___ 1--,1 

The contents of the program status word are moved to the accumulator. 
(A)- (PSW) 

Example: Jump to 'RB1SET' routine if bank switch, PSW bit 4, is set. 
BSCHK: MOV A,PSW ;MOV PSW CONTENTS TO ACC 

JB4 RB1 SET ;JUMP TO 'RB1SET' IF ACC 
;BIT 4=1 

6-842 



INSTRUCTION SET 

MOV A, Rr Move Register Contents to Accumulator 

Opcode: ~I _1 ________ 1~1_1 ___ r2 ___ r1 ___ ro~1 

Eight bits of data are moved from working register 'r' into the accumulator. 
(A) -- (Rr) r=0-7 

Example: MAR: MOV A,R3 ;MOVE CONTENTS OF REG 3 
;TOACC 

MOV A,@Rr Move Data Memory Contents to Accumulator 

Opcode: L-11 ____ 1---1.I_o_o_o_--'r 1 

The contents of the data memory location addressed by bits 0-5 of register 'r' are moved to the accumula­
tor. Register 'r' contents are unaffected. 
(A) -- «Rr» r=0-1 

Example: Assume R1 contains 00110110. 

MADM: MOV A,@R1 ;MOVE CONTENTS OF DATA MEM 
;LOCATION 54 TO ACC 

MOV A,T Move Timer/Counter Contents to Accumulator 

Opcode: L-lo ___ o_0---l.I_o_o __ o--,1 

The contents of the timer / event-counter register are moved to the accumulator. The timer / event-counter is 
not stopped. 
(A) -- (T) 

Example: Jump to "EXIT" routine when timer reaches '64', that is, when bit 6 is set-assuming initialization to zero. 
TIMCHK: MOV A,T ;MOVE TIMER CONTENTS TO 

;ACC 
JB6 EXIT ;JUMP TO 'EXIT' IF ACC BIT 

;6=1 

MOV PSW,A Move Accumulator Contents to PSW 

Opcode: ° 1 1 ° 
The contents of the accumulator are moved into the program status word. All condition bits and the stack 
pointer are affected by this move. 
(PSW) -- (A) 

Example: Move up stack pOinter by two memory locations, that is, increment the pointer by one. 
INCPTR: MOV A,PSW ;MOVE PSW CONTENTS TO ACC 

INC A ;INCREMENT ACC BY ONE 
MOV PSW,A ;MOVE ACC CONTENTS TO PSW 

6-843 



. INSTRUCTION SET 

MOV Rr,A Move Accumulator Contents to Register 

Opcode: ,-1_1_0 ___ 0--,-1_1_r_2_r_1_3l_rO-J 

The contents of the accumulator are moved to register 'r'. 
(Rr) - (A) r=0-7 

Example: MRA MOV RO,A ;MOVE CONTENTS OF ACC TO 

;REG ° 
. MOV Rr,#data Move Immediate Data to Register 

Opcode: .11 ° 
This a 2-cycle instruction. The a-bit value specified by 'data' is moved to register 'r'. 
(Rr) - data r=0-7 

Example: MIR4: MOV R4,#HEXTEN ;THE VALUE OF THE SYMBOL 
;'HEXTEN' IS MOVED INTO 
;REG 4 

MIR5: MOV R5;#PI*(R*R) ;THE VALUE OF THE 
;EXPRESSION 'PI*(R*R)' 
;IS MOVED INTO REG 5 

MIR6: MOV R6,#OADH ;'AD' HEX IS MOVED INTO 
;REG 6 

MOV @Rr,A Move Accumulator Contents to Data Memory 

Opcode: 11 ° ° 1 ° 0· ° r 1 
'------~----~ 

Example: 

The contents of the accumulator are moved to the data memory location whose address is specified by bits 
0-5 of register 'r'. Register 'r' contents are unaffected. 
«Rr» - (A) r=0-1 
Assume RO contains 11000111. 
MDMA: MOV @R,A ;MOVE CONTENTS OF ACC TO 

;LOCATION 7 (REG) 

MOV @Rr,#data Move Immediate Data to Data Memory 

Opcode: 11 ° 
This is a 2-cycle instruction. The a-bit value specified by 'data' is moved to the standard data memory 
location addressed by register 'r', bit 0-5. 
«Rr» - data r=0-1 

Example: Move the hexadecimal value AC3F to locations 62-63. 
MIDM: MOV RO,#62 ;MOVE '62' DEC TO ADDR REGO 

MOV @RO,#OACH ;MOVE 'AC' HEX TO LOCATION 62 
INC RO ;INCREMENT REG ° TO '63' 
MOV @RO,#3FH ;MOVE '3F' HEX TO LOCATION 63 

6-844 



INSTRUCTION SET 

MOV STS,A Move Accumulator Contents to STS Register 

Opcode: 1 1 ° ° 1 1 ° ° ° ° 1 

The contents of the accumulator are moved into the status register. Only bits 4-7 are affected. 
(STS4-7)'" (A4-7) 

Example: Set ST 4-ST7 to "1". 

MSTS: MOV A,#OFOH 
MOV STS,A 

;SET ACC 
;MOVETO STS 

MOV T,A Move Accumulator Contents to Timer/Counter 

Opcode: �L....0 ____ 0...J..1_0_0 __ 0--'1 

The contents of the accumulator are moved to the timer I event-counter register. 
(T) ... (A) 

Example: Initialize and start event counter. 

INITEC: CLR A 
MOV T,A 
STRT CNT 

;CLEAR ACC TO ZEROS 
;MOVE ZEROS TO EVENT COUNTER 
;START COUNTER 

MOVD A,Pp Move Port 4-7 Data to Accumulator 

Opcode: 1 ° ° ° ° 11 1 P1 PO 1 

This is a 2-cycle instruction. Data on 8243 port 'p' is moved (read) to accumulator bits 0-3. Accumulator bits 
4-7 are zeroed. 
(AO-3)'" Pp p=4-7 

(A4-7)'" ° 
Note: Bits 0-1 of the opcode are used to represent PORTS 4-7. If you are coding in binary rather than assembly 

language, the mapping is as follows: 

Bits P1 PO 

° ° 
° 

° 1 

Port 

4 

5 

6 

7 

Example: INPPT5: MOVO A,P5 ;MOVE PORT 5 DATA TO ACC 
;BITS 0-3, ZERO ACC BITS 4-7 

MOVO Pp,A Move Accumulator Data to Port 4, 5, 6 and 7 

Opcode: ILo ___ 0 ______ 1_1L-1 __ 1 ___ p_1_p_o~1 
This is a 2-cycie instruction. Data in accumulator bits 0-3 is moved (written) to 8243 port 'p'. Accumulator 
bits 4-7 are unaffected. (See NOTE above regarding port mapping.) 
(Pp) ... (AO-3) p=4-7 

Example: Move data in accumulator to ports 4 and 5. 
OUTP45: MOVD P4,A ;MOVE ACC BITS 0-3 TO PORT 4 

SWAP A ;EXCHANGE ACC BITS 0-3 AND 4-7 
MOVD P5,A ;MOVE ACC BITS 0-3 TO PORT 5 

6-845 



INSTRUCTION SET 

MOVP A,@A Move Current Page Data to Accumulator 

oPcode:1 L-1_0 ___ °....L1_0_0 __ 1--J1 

This is a 2-cycle instruction. The contents of the program memory location addressed by the accumulator 
are moved to the accumulator. Only bits 0-7 of the program counter are affected, limiting the program 
memory reference to the current page. The program counter is restored following this operation. 
(A) - «A» 

Note: This is a 1-byte, 2-cycle instruction. If it appears in location 255 of a program memory page, @Aaddresses 
a location in the following page. 

Example: MOV128: MOV A,#128 ;MOVE '128' DEC TO ACC 
MOVP A,@A ;CONTENTS OF 129TH LOCATION 

;IN CURRENT PAGE ARE MOVED TO 
;ACC 

MOVP3 A,@A Move Page 3 Data to Accumulator 

Opcode: 

This is a 2-cycle instruction. The contents of the program memory location within page 3, addressed by the 
accumulator, are moved to the accumulator. The program counter is restored following this operation. 
(A) - «A» within page 3 

Example: Look up ASCII equivalent of hexadecimal code in table contained at the beginning of page 3. Note that ASCII 
characters are designated by a 7-bit code; the eighth bit is always reset. 
TABSCH: MOV A,#OB8H ;MOVE 'B8' HEX TO ACC (10111000) 

ANL A,#7FH ;LOGICAL AND ACC TO MASK BIT 
;7 (00111000) 

MOVP3, A,@A ;MOVE CONTENTS OF LOCATION 
;'38' HEX IN PAGE 3 TO ACC 
;(ASCII'8') 

Access contents of location in page 3 labelled TAB 1. Assume current program location is not in page 3. 
TABSCH: MOV A,#TAB1 ;ISOLATE BITS 0-7 

;OF LABEL 
;ADDRESS VALUE 

MOVP3 A,@A ;MOVE CONTENT OF PAGE 3 
;LOCATION LABELED 'TAB1' 
;TOACC 

NOP The NOP Instruction 

Opcode: I 0 0 0 0 I 0 0 0 0 

No operation is performed. Execution continues with the following instruction. 

ORL A,Rr Logical OR Accumulator With Register Mask 

Opcode: ~1_0 ______ 0 __ 0~1_1 ___ r_2 __ r_1 __ ro-"1 

Data in the accumulator is logically ORed with the mask contained in working register 'r'. 
(A) - (A) OR (Rr) r=0-7 

Example: ORREG: ORL A,R4 ;'OR' ACC CONTENTS WITH 
;MASK IN REG 4 

6-846 



INSTRUCTION SET 

ORL A,@Rr Logical OR Accumulator With Memory Mask 

Opcode: 1,-0 ___ 0 _0-LI_o_o_o_r--,1 

Data in the accumulator is logically ORed with the mask contained in the data memory location referenced by 
register 'r', bits 0-5. 
(A) ... (A) OR «Rr» r=0-1 

Example: ORDM: MOVE RO,#3FH ;MOVE '3F' HEX TO REG ° 
ORL A,@RO ;'OR' ACC CONTENTS WITH MASK 

;IN LOCATION 63 

ORL A, #data Logical OR Accumulator With Immediate Mask 

Opcode: 1-1 0 ___ 0 _0-,-1_o_o __ 1--,1 • 1 d7 d6 d5 d41 d3 d2 d 1 dO 1 

This is a 2-cycle instruction. Data in the accumulator is logically ORed with an immediately-specified mask. 
(A) -- (A) OR data 

Example: ORID: ORL A,#'X' ;'OR' ACC CONTENTS WITH MASK 
;01011000 (ASCII VALUE OF 'X') 

ORL Pp,#data Logical OR Port 1-2 With Immediate Mask 

This is a 2-cycle instruction. Data on port 'p' is logically ORed with an immediately-specified mask. 
(Pp) -- (Pp) OR data p= 1-2 (see OUTL instruction) 

Example: ORP1: ORL P1,#OFFH ;'OR' PORT 1 CONTENTS WITH 
;MASK 'FF' HEX (SET PORT 1 
'TO ALL ONES) . 

ORLO Pp,A Logical OR Port 4-7 With Accumulator Mask 

Opcode: 11 ° ° ° 11 1 P1 PO 1 

This is a 2-cycle instruction. Data on 8243 port 'p' is logically ORed with the digit mask contained in accumu­
lator bits 0-3, 
(Pp) (Pp) OR (AO-3) p=4-7 (See MOVD instruction) 

Example: ORP7: ORLD P7,A ;'OR' PORT 7 CONTENTS 
;WITH ACC BITS 0-3 

OUT OBB,A Output Accumulator Contents to Data Bus Buffer 

Opcode: 1 ° ° ° ° 1 0 0 0 1 

Contents of the accumulator are transferred to the Data Bus Buffer Output register and the Output Buffer Full 
(OBF) flag is set to one. 
(DBB) -- (A) 
OBF-1 

Example: OUTDBB: OUT DBB,A ;OUTPUT THE CONTENTS OF 
;THE ACC TO DBBOUT 

6-847 



INSTRUCTION SET 

OUTl Pp,A Output Accumulator Data to Port 1 and 2 

Opcode: L-I 0_0 ___ 1--L1_1_0_p_1_p----'0 1 

This is a 2-cycle instruction. Data residing in the accumulator is transferred (written) to port 'p' and latched. 
(Pp) - (A) P= 1-2 

Note: Bits 0.;.1 of the opcode are used to represent PORT 1 and PORT 2. If you are coding in binary rather than 
assembly language, the mapping is as follows: 

Bits p1 pO Port 
o 0 --X 
o 1 1 
102 
1 1 X 

Example: OUTlP: MOV A,R7 ;MOVE REG 7 CONTENTS TO ACC 
OUTl P2,A ;OUTPUT ACC CONTENTS TO PORT2 
MOV A,R6 ;MOVE REG 6 CONTENTS TO ACC 
OUTl P1,A ;OUTPUT ACC CONTENTS TO PORT 1 

RET Return Without PSW Restore 

Opcode: '11 0 0 0 1 0 0 

This is a 2-cycle instruction. The stack pOinter (PSW bits 0-2) is decremented. The program counter is then 
restored from the stack. PSW bits 4-7 are not restored. 
(SP) - (SP) - 1 
(PC) - «SP» 

RETR Return With PSW Restore 

Opcode: 11001100 

This is a 2-cycle instruction. The stack pointer is decremented. The program counter and bits 4-7 of the 
PSW are then restored from the stack. Note that RETR should be used to return from an interrupt, but should 
not be used within the interrupt service routine as it signals the end of an interrupt routine. 
(SP) - (SP) - 1 
(PC) - «SP» 
(PSW4-7) - «SP» 

Rl A Rotate left Without Carry 

Opcode: 1 1 0 1 0 

The contents of the accumulator are rotated left one bit. Bit 7 is rotated into the bit 0 position. 
(An+1) -- (An) n=0-6 
(AO) - (A7) 

Example: Assume accumulator contains 10110001. 
RlNC: Rl A ;NEW ACC CONTENTS ARE 01100011 

6-848 



INSTRUCTION SET 

RLC A Rotate Left Through Carry 

Opcode: LI1 ___ 1---...l.-1 0 ___ 1-,1 

Example: 

The contents of the accumulator are rotated left one bit. Bit 7 replaces the carry bit; the carry bit is rotated 
into the bit 0 position. . 
(An+1) - (An) n=0-6 
(AO) - (C) 
(C) - (A7) 
Assume accumulator contains a 'signed' number; isolate sign without changing value. 
RL TC: CLR C ;CLEAR CARRY TO ZERO 

RLC A ;ROTATE ACC LEFT, SIGN 
;BIT (7) IS PLACED IN CARRY 

RR A ;ROTATE ACC RIGHT - VALUE 
;(BITS 0-6) IS RESTORED, 
;CARRY UNCHANGED, BIT 7 
;IS ZERO 

RR A Rotate Right Without Carry 

Opcode: '-1_0 ____ 1---11_0 ____ ---' 

The contents of the accumulator are rotated right one bit. Bit 0 is rotated into the bit 7 position. 
(An) - (An+1) n=0-6 
(A7) - (AO) 

Example: Assume accumulator contains 10110001. 
RRNC: RRA ;NEW ACC CONTENTS ARE 11011000 

RRC A Rotate Right Through Carry 

Opcod~ 1 0 0 1 0 

Example: 

The contents of the accumulator are rotated right one bit. Bit 0 replaces the carry bit; the carry bit is rotated 
into the bit 7 position. 
(An) - (An+1) n=0-6 
(A7) - (C) 
(C) - (AO) 
Assume carry is not set and accumulator contains 10110001. 
RRTC: RRCA ;CARRY IS SET AND ACC 

;CONTAINS 01011000 

SEL RBO Select Register Bank 0 

Opcode: LI_1 ___ 0 __ 0--'-1_0 ___ 0_---' 

PSW BIT 4 is set to zero. References to working registers 0-7 address data memory locations 0-7. This is 
the recommended setting for normal program execution. 
(BS) - 0 

6-849 



INSTRUCTION SET 

SEL RB 1 Select Register Bank 1 

Opcode: ~I _1 _____ 0 ___ 1-L1 _o _____ o __ ~ 

PSW bit 4 is set to one. References to working registers 0-7 address data memory locations 24-31. This is 
the recommended setting for interrupt service routines, since locations 0-7 are left intact. The setting of 
PSW bit 4 in effect at the time of an interrupt is restored by the RETR instruction when the interrupt service 
routine is completed. 
(BS) - 1 

Example: Assume an IBF interrupt has occurred, control has passed to program memory location 3, and PSW bit 4 
was zero before the interrupt. 
LOC3: JMP INIT ;JUMP TO ROUTINE 'INIT' 

INIT: MOV R7,A 

SEL RB1 
MOV R7,#OFAH 

SEL RBO 
MOVA,R7 
RETR 

STOP TCNT Stop Timer IEvent Counter 

;MOV ACe CONTENTS TO 
;LOCATION 7 
;SELECT REG BANK 1 
;MOVE 'FA' HEX TO LOCATION 31 

;SELECT REG BANK ° 
;RESTORE ACC FROM LOCATION 7 
;RETURN--RESTORE PC AND PSW 

Opcode: ILo _______ o--'-l_o ___ o_---' 

This instruction is used to stop both time accumulation and event counting. 
Example: Disable interrupt, but jump to interrupt routine after eight overflows and stop timer. Count overflows in 

register 7. 
START: DIS TCNTI ;DISABLE TIMER INTERRUPT 

CLR A ;CLEAR ACC TO ZERO 
MOV T,A :MOV ZERO TO TIMER 
MOV R7,A :MOVE ZERO TO REG 7 
STRT T ;START TIMER 

MAIN: JTF COUNT ;JUMP TO ROUTINE 'COUNT' 
;IF TF= 1 AND CLEAR TIMER FLAG 

JMP MAIN ;CLOSE LOOP 
COUNT: INC R7 ;INCREMENT REG 7 

MOV A,R7 ;MOVE REG 7 CONTENTS TO ACC 
JB3 INT ;JUMP TO ROUTINE 'INT' IF ACC 

;BIT 3 IS SET (REG 7=8) 
JMP MAIN ;OTHERWISE RETURN TO ROUTINE 

;MAIN 

INT: STOP TCNT 
JMP 7H 

;STOP TIMER 
;JUMP TO LOCATION 7 (TIMER 
;INTERRUPT ROUTINE) 

6-850 



INSTRUCTION SET 

STRT CNT Start Event Counter 

Opcode: ,-I 0 ___ 0 _0--'-�_o __ o_1----'1 

The TEST 1 (T 1) pin is enabled as the event-counter input and the counter is started. The event-counter 
register is incremented with each high to low transition on the T 1 pin. 

Example: Initialize and start event counter. Assume overflow is desired with first T 1 input. 
ST ARTC: EN TCNT! ;ENABLE COUNTER INTERRUPT 

STRT T Start Timer 

MOV A,#OFFH ;MOVE 'FF' HEX (ONES) TO 
;ACC 

MOV T,A ;MOVE ONES TO COUNTER 
STRT CNT ;INPUT AND START 

Opcode: ~I _0 _____ 0 ____ ~1 _o _____ o __ ~ 
Timer accumulation is initiated in the timer register. The register is incremented every 32 instruction cycles. 
The prescaler which counts the 32 cycles is cleared but the timer register is not. 

Example: Initialize and start timer. 
STARTT: EN TCNT! ;ENABLE TIMER INTERRUPT 

CLR A :CLEAR ACC TO ZEROS 
MOV T,A ;MOVE ZEROS TO TIMER 
STRT T ;START TIMER 

SWAP A Swap Nibbles Within Accumulator 

Opcode: '-10 ___ 0_0--'-1_0 ___ ----'11 

Bits 0-3 of the accumulator are swapped with bits 4-7 of the accumulator. 
(A4-7) -- (AO-3) 

Example: Pack bits 0-3 of locations 50-51 into location 50. 
PCKDIG: MOV RO,#50 ;MOVE '50' DEC TO REG ° 

MOV R1,#51 ;MOVE '51' DEC TO REG 1 
XCHD A,@RO ;EXCHANGE BIT 0-3 OF ACC 

;AND LOCATION 50 
SWAP A ;SWAP BITS 0-3 AND 4-7 OF ACC 

XCHD A,@R1 ;EXCHANGE BITS 0-3 OF ACC AND 
;LOCATION 51 

MOV @RO,A ;MOVE CONTENTS OF ACC TO 
;LOCATION 51 

XCH A,Rr Exchange Accumulator-Register Contents 

Opcode: LI _0 __ 0 ______ 0-L1_1 __ r_2 __ r_1 __ ro~1 
The contents of the accumulator and the contents of working register 'r' are exchanged. 
(A) -- (Rr) r=0-7 

Example: Move PSW contents to Reg 7 without losing accumulator contents. 
XCHAR7: XCH A,R7 ;EXCHANGE CONTENTS OF REG 7 

;AND ACC 
MOV A,PSW ;MOVE PSW CONTENTS TO ACC 
XCH A,R7 ;EXCHANGE CONTENTS OF REG 7 

;AND ACC AGAIN 

6-851 



INSTRUCTION SET 

XCH A,@Rr Exchange Accumulator and Data Memory Contents 

Opcode: LI o_o ___ 0--LI_o_o_o_r--l1 

The contents of the accumulator and the contents of the data memory location addressed by bits 0-5 of 
register 'r' are exchanged. Register 'r' contents are unaffected. 
(A) -- «Rr» r=0-1 

Example: Decrement contents of location 52. 
DEC52: MOV RO,#52 ;MOVE '52' DEC TO ADDRESS 

;REGO 
XCH A, @RO ;EXCHANGE CONTENTS OF ACC 

;AND LOCATION 52 
DEC A ;DECREMENT ACC CONTENTS 
XCH A,@RO ;EXCHANGE CONTENTS OF ACC 

;AND LOCATION 52 AGAIN 

XCHD A,@Rr Exchange Accumulator and Data Memory 4-bit Data 

Opcode: L.1_O_O ___ 1--L1_0_0 __ 0 __ r--..-J1 

This instruction exchanges bits 0-3 of the accumulator with bits 0-3 of the data memory location addressed 
by bits 0-5 of register 'r'. Bits 4-7 of the accumulator, bits 4-7 of the data memory location, and the 
contents of register 'r' are unaffected. 
(AO-3) -- «RrO-3» r=0-1 

Example: Assume program counter contents have been stacked in locations 22-23. 
XCHNIB: MOV RO,#23 ;MOVE '23' DEC TO REG ° 

CLR A ;CLEAR ACC TO ZEROS 
XCHD A,@RO ;EXCHANGE BITS 0-3 OF ACC 

;AND LOCATION 23 (BITS 8-11 
;OF PC ARE ZEROED, ADDRESS 
;REFERS TO PAGE 0) 

XRL A,Rr Logical XOR Accumulator With Register Mask 

Opcode: IL_1 ___ 0 __ 1-L1 _1_r_2_r1_._ro---,1 

Data in the accumulator is EXCLUSIVE ORed with the mask contained in working register 'r'. 
(A) -- (A) XOR (Rr) r=0-7 

Example: XORREG: XRL A,R5 ;'XOR' ACC CONTENTS WITH 
;MASK IN REG 5 

XRL A,@Rr Logical XOR Accumulator With Memory Mask 

Opcode: ,-I _1 __ 0 __ 1...11_0 __ 0 _ 0_--,r 1 

Data in the accumulator is EXCLUSIVE ORed with the mask contained in the data memory location ad­
dressed by register 'r', bits 0-5. 
(A) -- (A) XOR «Rr» r=0-1 

Example: XORDM: MOV R1,#20H ;MOVE '20' HEX TO REG 1 
XRL A,@R1 ;'XOR' ACC CONTENTS WITH MASK 

;IN LOCATION 32 

6-852 



INSTRUCTION SET 

XRL A,#data Logical XOR Accumulator With Immediate Mask 

Opcode: 

This is a 2-cycle instruction. Data in the accumulator is EXCLUSIVE ORed with an immediately-specified 
mask. 
(A) - (A) XOR data 

Example: XORID: XOR A,#HEXTEN ;XOR CONTENTS OF ACC WITH 
;M~SK EQUAL VALUE OF SYMBOL 
;'HEXTEN' 

6-853 



CHAPTER 4 
SINGLE-STEP, PROGRAMMING, 

AND POWER-DOWN MODES 

SINGLE-STEP 
The UPI family has a single-step mode which allows 
the user to manually step through his program one 
instruction at a time. While stopped, the address of 
the next instruction to be fetched is available on 
PORT 1 and the lower 2 bits of PORT 2. The single­
step feature simplifies program debugging by allow­
ing the user to easily follow program execution. 

+5V 

10k 

PRESET 

MOMENTARY +5V 0 0 
PUSH TO STEP fl} +5V 

10k 

CLEAR 

'!7 7474 

Figure 4-1 illustrates a recommended circuit for sin­
gle-step operation, while Figure 4-2 shows the tim­
!!!g relationship between the SYNC output and the 
SS input. During single-step operation, PORT 1 and 
part of PORT 2 are used to output address informa­
tion. In order to retain the normal I/O functions of 
PORTS 1 and 2, a separate latch can be used as 
shown in Figure 4-3. 

+5v 

10k 
HALT 

+5V o 

L-----------~>CLOCK 

o 
TOSS 
INPUT 
ON 8741A 

FROM 

'-------<I- ~~~~A 
Y2 7474 OUTPUT 

Figure 4-1. Single-Step Circuit 

SYNC~ 

\~ I ':" 55 

55 BUTTON 

PlO-17 PORT DATA X :: pca·7 >C 
P2o-P21 X :: PC8-9 >C 

ACTIVE CYCLE STOP CYCLE ACTIVE CYCLE 

Figure 4-2. Single-Step Timing 

6-854 



SINGLE-STEP, PROGRAMMING, & POWER-DOWN MODES 

SYNC 

.,0 .'0 010 

.11 
DATA IN 

011 . ,. 01 • 

8041AH 
8042 .,3 013 

8741A 
8742 .,. 01. 

.,5 015 

.'6 016 

.17 017 , , , "::' 
:-.. 

+5Y 
, 

+5Y 

SYNC 

10k ADDRESS 
DISPLAY 
ILEDI 

.17 

OC = OPEN COLLECTOR TTL 
LS = LOW POWER SCHOTTKLY TTL P17INPUT DATA 

Figure 4-3. Latching Port Data 

Timing 
The sequence of single-step operation is as follows: 
1) The processor is requested to stop by applying a 

low level on SS. The SS input should not be 
brought low while SYNC is high. (The UPI 
samples the SS pin in the middle of the SYNC 
pulse). 

2) The processor responds to the request by stop­
ping during the instruction fetch portion of the 
next instruction. If a double cycle instruction is 
in progress when the single-step command is re­
ceived, both cycles will be completed before 
stopping. 

3) The processor acknowledges it has entered the 
stopped state by raising SYNC high. In this 
state, which can be maintained indefinitely, the 
IO-bit address of the next instruction to be 
fetched is present on PORT 1 and the lower 2 
bits of PORT 2. . 

4) SS is then raised high to bring the processor out 
of the stopped mode allowing it to fetch the 
next instruction. The exit from stop is indicated 
by the processor bringing SYNC low. 

5) To stop the processor at the next instruction SS 
must be brought low again before the next 
SYNC pulse-the circuit in Figure 4-1 uses the 
trailing edge of the previous pulse. If SS is left 
high, the processor remains in the "RUN" 
mode. 

Figure 4-1 shows a schematic for implementing sin­
gle-step. A single D-type flip-flop with preset and 
clear is used to generate SS. In the RUN mode SS if>· 
held high by keeping the flip-flop preset (preset has 
precedence over the clear input). To enter single­
step, preset is removed allowing SYNC to bring SS 
low via the clear input. Note that SYNC must be 
buffered since the SN7474 is equivalent to 3 TTL 
loads. 

The processor is now in the stopped state. The next 
instruction is initiated by clocki~'I" into the flip­
flop. This "I" will not appear on SS unless SYNC is 
high (i.e., clear must be removed from the flip-flop). 
In response to SS going high, the processor begins an 
instruction fetch which brings SYNC low. SS is then 
reset through the clear input and the processor again 
enters the stopped state. 

6-855 



SINGLE-STEP, PROGRAMMING, & POWER-DOWN MODES 

PROGRAMMING, VERIFYING AND ERASING 
EPROM (8741A, 8742 EPROM ONLY) 
The internal Program Memory of the 8741A and 
8742 may be erased and reprogrammed by the user 
as explained in the following sections. See the data 
sheet for more detail. 

Programming 
The programming procedure consists of the follow­
ing: activating the program mode, applying an 
address, latching the address, applying data, and 
applying a programming pulse. Each word is pro­
grammed completely before moving on to the next 
and is followed by a verification step. Figure 4-4 
illustrates the programming and verifying sequence. 
The following is a list of the pins used for program­
ming and a description of their functions: 

• XTAL 1, Clock Inpqt 
XTAL2 

• RESET Initialization and Address Latching 

• TEST 0 Selection of Program or Verify 
Mode 

• EA Activation of Program/Verify 
Modes 

• DO-D7 Address and Data Input 
Data Output During Verify 

+5V 

RESET 

• c P20, P21 AddressInput 

• VDD Programming Power Supply 

• PROG Program Pulse Input 

NOTE: All set-up and hold times are 4 cycles. 

The detailed Programming sequence (for one byte) 
is as follows: 

1) Initial Conditions: VCC = VDD = 5V; Clock 
Running; AO = OV, CS = 5V; EA = 5V; DO-D7 
and PROG Floating. 

2) RESET = OV, TEST 0 = OV (Select Program­
ming Mode); 

3) EA = 23V for 8741A 
EA = l8V for 8742 

4) Address applied to DO-D7 and PORTS 20-22. 

5) RESET = 5V (Latch Address). 

6) Data applied to DO-D7. 

7) VDD = 25V for 8741A 
VDD = 21 V for 8742 (Programming Power). 

BUS AND PROG CAN BE DRIVEN ONL V DURING THIS TIME 

+sv 
TEST 0 

+23V/+1BV 
EA 

+sv 

PO·P7 ( ADDRESS 0-7 H DATA ) -GJ[ OUT 

P20-21 ( ADDRESS AO-Ag ) 
+25V/+21V 

VDD 
+sv 

+5V +23V/+21V I L, PROG 
+OV , 

Figure 4-4. Programming Sequence 

6-856 



SINGLE-STEP, PROGRAMMING, & POWER-DOWN MODES 

8) PROG = OV followed by one 50 msec pulse of 
23V for 8741A 
PROG = OV followed by one 50 msec pulse of 
18V for 8742. 

9) VDD = 5V. 

10) TEST 0 = 5V (Select Verify Mode). 

11) Read data on DO-D7 and verify EPROM cell 
contents. 

WARNING 
An attempt to pro'gram a mis-socketed 8741A 
or 8742 will result in severe damage to the part. 
An indication of a properly socketed part is the 
appearance of the SYNC clock output. The 
lack of this clock may be used to disable the 
programmer. 

Verification 
Verification is accomplished by latching in an ad­
dress as in the Programming Mode and then apply­
ing "I" to the TEST 0 input. The word stored at the 
selected address then appears on the DO-D7 lines. 
Note that verification can be applied to both ROM's 
and EPROM's independently of the programming 
procedure. See the data sheet. 

The detailed Verifying sequence (for one byte) is as 
, follows: 

1) Initial Conditions: VCC = VDD = 5V; Clock 
Running; AO = OV, CS = 5V; EA = 5V; DO-D7 
and PROG Floating. 

2) RESET = OV, TEST 0 = 5V (Verify Mode). 

3) EA = 23V for 8741A 
EA = 18V for 8742 

4) Address applied to DO-D7 and PORTS 20-22. 

5) RESET = 5V (Latch Address) 

6) Read data on DO-D7 and verify EPROM cell 
contents. 

Erasing 
The program memory of the 8741A or 8742 may be 
erased to zeros by exposing its translucent lid to 
shortwave ultraviolet light. 

EPROM Light Sensitivity 
The erasure characteristics of the 8741A or 8742 
EPROM are such that erasure begins to occur when 

exposed to light with wavelengths shorter than ap­
proximately 4000 Angstroms. It should be noted 
that sunlight and certain types of fluorescent lamps 
have wavelengths in the 3000-4000 Angstrom range, 
Data shows that constant exposure to room level flu­
orescent lighting could erase the typical 8741A in ap­
proximately 3 years while it would take 
approximately 1 week to cause erasure when ex­
posed to direct sunlight. If the 8741A or 8742 is to be 
exposed to these types of lighting conditions for ex­
tended periods of time, opaque labels (available 
from Intel) should be placed over the 8741A or 8742 
window to prevent unintentional erasure. 

The recommended erasure procedure for the 8741A 
or 8742 is exposure to shortwave ultraviolet light 
which has a wavelength of 2537 Angstroms. The in­
tegrated dose (i.e., UV intensity X exposure time) 
for erasure should be a minimum of 15W -sec/cm2 
power rating. The erasure time with this dosage is 
approximately 15 minutes using an ultraviolet lamp 
with a 12,000 /lW/cm2 power rating. The 8741A or 
8742 should be placed within 1 inch of the lamp 
tubes during erasure. Some lamps have a filter on 
their tubes which should be removed before erasure. 

EXTERNAL ACCESS 
The UPI family has an External Access mode (EA) 
which puts the processor into a test mode. This 
mode allows the user to disable the internal program 
memory and execute from external memory. Exter­
nal Access mode is useful in testing because it allows 
the user to test the processor's functions directly. It 
is only useful for testing since this mode uses DO-D7, 
PORTS 10-17 and PORTS 20-22. 

This mode is invoked by connecting the EA pin to 
5V. The 11-bit current program counter contents 
then come out on PORTS 10-17 and PORTS 20-22 
after the SYNC output goes high. (PORT 10 is the 
least significant bit.) The desired instruction opcode 
is placed on DO-D7 before the start of state Sl. Dur­
ing state Sl, the opcode is sampled from DO-D7 and 
subsequently executed in place of the internal pro­
gram memory contents. 

The program counter contents are multiplexed with 
the I/O port data on PORTS 10-17 and PORTS 20-
22. The I/O port data may be de multiplexed using 
an external latch on the rising edge of SYNC. The 
program counter contents may be demultiplexed 
similarly using the trailing edge of SYNC. 

Reading and/or writing the Data Bus Buffer regis­
ters is still allowed although only when DO-D7 are 
not being sampled for opcode data. In practice, since 
this sampling time is not known externally, reads or 

6-857 



SINGLE-STEP, PROGRAMMING, & POWER-DOWN MODES 

writes on the system bus are done during SYNC high 
time. Approximately 600ns are available for each 
read or write cycle. 

POWER DOWN MODE 
(8041AH/8042 ROM ONLY) 

Extra circuitry is included in the ROM version to al­
low low-power, standby operation. Power is removed 
from all system elements except the internal data 
RAM in the low-power mode. Thus the contents of 
RAM can be maintained and the device draws only 
10 to 15% of its normal power. 

The Vee pin serves as the 5V power supply pin for 
all of the ROM version's circuitry except the data 
RAM array. The VDD pin supplies only the RAM 
array. In normal operation, both Vee and VDD are 
connected to the same 5V power supply. 

To enter the Power-Down mode, the RESET signal 
to the UPI is asserted. This ensures the memory will 
not be inadvertently altered by the UPI during 
power-down. The Vee pin is then grounded while 
VDD is maintained at 5V. Figure 4-5 illustrates a 
recommended Power-Down sequence. The sequence 
typically occurs as follows: 

1) Imminent power supply failure is detected .by 
user defined circuitry. The signal must occur 

POWER SUPPLY 

early enough to guarantee the 8041AH or 8042 
can save all necessary data before Vee falls 
outside normal operating tolerance. 

2) A "Power Failure" signal is used to interrupt 
the processor (via a timer overflow interrupt, 
for instance) and call a Power Failure service 
routine. 

3) The Power Failure routine saves all important 
data and machine status in the RAM array. The 
routine may also initiate transfer of a backup 
supply to the VDn pin and indicate to external 
circuitry that the Power Failure routine is com­
plete. 

4) A RESET signal is applied by external hard­
ware to guarantee data will not be altered as the 
power supply falls out of limits, RESE~ must 
be low until Vee reaches ground potential. 

Recovery from the Power-Down mode can o~cu~ as 
any other power-on sequence. An external 1 /-tfd ca­
pacitor on the RESET input will provide the neces­
sary initialization pulse. 

1'\ 
PROCESSOR 1 '"I ----...-
INTERRUPTED I I 

/ I I -----". 1 1 
PO~i~ ~v~~~r . I I NORMAL 

�I-----!�-----I--------- ~~6'J:N~~ 
I 1 1 FOllOWS 
1 1 I _______ ~I ____ _;I 1 

RE~ I LJI 
I . 1---------
~I--_,--~ILI------r----

DATA SAVE 
ROUTINE 
EXECUTED 

ACCESS TO 
DATA RAM 
INHIBITED 

Figure 4-5. .Power-Down Sequence 

6-858 



CHAPTER 5 
SYSTEM OPERATION 

BUS INTERFACE 
The UPI-4IAH, 42 Microcomputer functions as a 
peripheral to a master processor by using the data 
bus buffer registers to handle data transfers. The 
DBB configuration is illustrated in Figure 5-1. The 
UPI-4IAH, 42 Microcomputer's 8 three-state data 
lines (D7-DO) connect directly to the master proces­
sor's data bus. Data transfer to the master is con­
trolled by 4 external inputs to the UPI: 

• AO Address Input signifying command 

• 
• 
• 

or data 
Chip Select 
Read strobe 
Write strobe 

WR 
CONTROL RO 

BUS cs 
AD 

Reading the DBBOUT Register 
The sequence for reading the DBBOUT register is 
shown in Figure 5-2. This operation causes the 8-bit 
contents of the DBBOUT register to be placed on 

6-859 

the system Data Bus. The OBF flag is cleared auto­
matically. 

Reading STATUS 
The sequence for reading the UPI-4IAH, 42 
Microcomputer's 8 STATUS bits is shown in Figure 
5-3. This operation causes the 8-bit STATUS regis­
ter contents to be placed on the system Data Bus as 
shown. 

Write Data to DBBIN 
The sequence for writing data to the DBBIN register 
is shown in Figure 5-4. This operation causes the sys­
tem Data Bus contents to be transferred to the 
DB BIN register and the IBF flag is set. Also, the FI 
flag is cleared (FI = 0) and an interrupt request is 
generated. When the IBF interrupt is enabled, a 
jump to location 3 will occur. The interrupt request 
is cleared upon entering the IBF service routine or 
by a system RESET input. 

AD 

iiii ------..\~ __ _';__ 

DATA ---«'----~)-

ST7 5T6 STS . ST 4 FO IBF OBF 

07 06 05 04 03 02 01 00 

Figure 5-3. Status Read 



SYSTEM OPERATION 

AO 

Wii ---..... \"'"---_....Jf 
DATA -< )-

Figure 5-4. Writing .Data to DBBIN 

Writing Commands to DBBIN 
The sequence for writing commands to the DBBIN 
register is shown in Figure 5-5. This sequence is 
identical to a data write except that the AO input is 
latched in the F1 flag (F1 = 1). The IBF flag is set 
and an interrupt request is generated when the mas­
ter writes a command to DBB. 

Operations of Data Bus Registers 
The UPI-41AH, 42 Microcomputer controls the 
transfer of DBB data to its accumulator by execut­
ing INput and OUTput instructions. An IN A,DBB 
instruction causes the contents to be transferred to 
the UPI accumulator and the IBF flag is cleared. 

, 
The OUT DBB,A instruction causes the contents of 
the accumulator to be transferred to the DBBOUT 
register. The OBF flag is set. 

The UPI's data bus bufferinterface is applicable to a 
variety of microprocessors including the 8086, 8088, 
8085AH, 8080, and 8048. 

A description of the interface to each of these pro­
cessors follows. 

DESIGN EXAMPLES 
8085AH Interface 
Figure 5-6 illustrates an 8085AH system using a 
UPI-41AH, 42. The 8085AH system uses a multi­
plexed address and data bus. During I/O the 8 upper 
address lines (A8-A 15) contain the same I/O address 
as the lower 8 address/data lines (AO-A7); therefore 
I/O address decoding is done using only the upper 8 
lines to eliminate latching of the address. An 8205 
decoder provides address decoding for both the 
UPI-41AH, 42 and the 8237. Data is transferred 

AO 

Wii --....... \'-______ 1 

DATA -< )-
Figure 5-5. Writing Commands to DBBIN 

using the two DMA handshaking lines of PORT 2. 
The 8237 performs the actual bus transfer operation. 
Using the UPI-41AH, 42's OBF master interrupt, 
the UPI-41A notifies the 8085AH upon transfer 
completion using the RST 5.5 interrupt input. The 
IBF master interrupt is not used in this example. 

8088 Interface 
Figure 5-7 illustrates a UPI-41AH, 42 interface to an 
8088 minimum mode system. Two 8-bit latches are 
used to demultiplex the address and data bus. The 
address bus is 20-lines wide. For I/O only, the lower 
16 address lines are used, providing an addressing 
range of 64K. UPI address selection is accomplished 
using an 8205 decoder. The AO address line of the 
bus is connected to the corresponding UPI input for 
register selection. Since the UPI-41A is polled by the 
8088, neither DMA nor master interrupt capabilities 
of the UPI-41AH, 42 are used in the figure. 

8086 Interface 
The UPI-41AH, 42 can be used on an 8086 maxi­
mum mode system as shown in figure 5-8. The ad­
dress and data bus is demultiplexed using three 8282 
latches providing separate address and data buses: 
The address bus is 20-lines wide and the data bus is 
16-lines wide. Multiplexed control lines are decoded 
by the 8288. The UPI's CS input is provided by lin­
ear selection. Note that the UPI-41AH, 42 is both 
I/O mapped and memory mapped as a result of the 
linear addressing technique. An address decoder 
may be used to limit the UPI-41AH, 42 to a specific 
I/O mapped address. Address line Al is connected to 
the UPI's AO input. This insures that the registers of 
the UPI will have even I/O addresses. Data will be 
transferred on DO-D7 lines only. This allows the I/O 
registers to be accessed using byte manipulation 
instructions. 

6-860 



SYSTEM OPERATION 

a085AH 

IO/M E3 8205 

ALE E2 00 r--
Aa- A 15 

ADDRESS AO-A2 0, r-

ADO-AD? 
I'<- ADDRESS/OATA 

f-- CONTROL t f--

,-.. RST 5.5 

L 8237 8041AH,8741A 
8042, 8742 

- L. CS es PORT 1 (B) 

~ L-.... AD PORT 2 (B) 

'-----.., -
WR 

00-0 7 

00-07 
TEST a 

ORO 
TEST 1 

DACK 

Figure 5-6. SOS5AH-UPI System 

~ 

elK ADDRESS 
8088 BUS 

READY 

lL RESET 
8041AH 

'-- 8282 8205 I 8741A 
ADO-AD15 

['r- -.I (2) )I 8042 

r r=F:l I 
cs 8742 

lolM 
PORT 1 (8) 

ALE I L 
AD 

PORT 2 (8) 

DATA BUS 00-0 7 

AD -
TEST 0 RO 

WR -
TEST 1 WR 

Figure 5-7. SOSS-UPI Minimum Mode System 

6-861 



SYSTEM OPERATION 

8284 

CLK 
8086 

I ) 
CONTROL 

READY 828B 

RESET 

'~M"j 
8282 

(3) ADDRESS ~ 

DATA 

U 
DO-D7 CS AO WR RD 

8041AH 
B741A 
8042 
8742 

PORT 2 POAT 1 

TEL 1 
~ r ~J 

8 

'" D 
TEST 1 

Figure 5-S. SOSS-UPI Maximum Mode Systems 

8080 Interface 
Figure 5-9 illustrates the interface to an 8080A sys­
tem. In this example, a crystal and capacitor are 
used for UPI-41AH, 42 timing reference and power­
on RESET. If the 2-MHz 8080A 2-phase clock were 
used instead of the crystal, the UPI-41AH, UPI-42 
would run at only 16% full speed. 

The AO and CS inputs are direct connections to the 
8080 address bus. In larger systems, however, either 
of these inputs may be decoded from the 16 address 
lines. 

The RD and WR inputs to the UPI can be either the 
lOR and lOW or the MEMR and MEMR signals de­
pending on the I/O mapping technique to be used. 

The UPI can be addressed as an I/O device using IN­
put and OUTput instructions in 8080 software. 

8048 Interface 
Figure 5-10 shows the UPI interface to an 8048mas­
ter processor. 

6-862 

The 8048 RD and WR outputs are directly compati­
ble with the UPI. Figure 5-11 shows a distributed 
processing system with up to seven UPI's connected 
to a single 8048 master processor. 

In this configuration the 8048 uses PORT 0 as a data 
bus. I/O PORT 2 is used to select one of the seven 
UPI's when data transfer occurs. The UPI's are pro­
grammed to handle isolated tasks and, since they op­
erate in parallel, system throughput is increased. 

GENERAL HANDSHAKING PROTOCOL 
1) Master reads STATUS register (RD, CS, AO = 

(0,0, 1)) in polling or in response to either an 
IBF or an OBF interrupt. 

2) If the UPI DBBIN register is empty (IBF flag = 
0), Master writes a word to the DBEIN register 
(WR, CS, AO = (0,0,1) or (0, 0, 0)). If AO = 1, 
write command word, set Fl. If AO = 0, write 
data word, Fl = O. 



SYSTEM OPERATION 

DATA K:=~===~~~~~ 

B080A 

ADOR 1----'-"6'-----,1'1 

lOW 1-_____ "'--'-"..1 
lOA I------,--n/I 

I' pfd/10V 

Figure 5-9. 8080A-UPllnterface 

\ 

- AD ~ AD 

- -
WA WR a041AH 

8048 8741A ~ TO 
PERIPHERAL 
DeVICES Cs 8042 

PORT CONTROL 2 8742 
i--TEST 0 

Ao 

BUS DATA BUS 8 OBB I-- TEST' 

I 

Figure 5-10. 8048-UPllnterface 

TO 
PERIPHERAL 
DEVICES 

3) If the UPI DBBOUT register is full (OBF flag = 
1), Master reads a word from the DBBOUT reg­
ister (RD, es, AO = (0,0,0)). 

5) UPI-41AH, 42 recognizes OBF flag = 0 (via 
JOBF). Next word is output to DBBOUT regis­
ter, OBF is set. Repeat step 1 above. 

4) UPI recognizes IBF (via IBF interrupt or 
JNIBF). Input data or command word is 
processed, depending on Fl; IBF is reset. Re­
peat step 1 above. 

6-863 



SYSTEM OPERATION 

P2, 
RD,WR 

8048 

PORT 0 I¢=:A~~~ 

CONTROL 
BUS 

cs 
t::::I::::>I ~ B041AH 

WR 8741A 
AO 8042 

1/'-"""".. ...... ,1 DBB 8742 

#1 

cs 
t---:" ...... ,,~ 8041AH 

WR 8741A 
AO 8042 

1/'",""",-" DBB 9742 110 

#2 

DATA BUS 

cs 
r:::::I::::~ ~ B041AH 

AO 8:~~A 
,/,"-=--'" DBB 8742 

#N 

N .$. 7 

Figure 5-11. Distributed Processor System 

6-864 



Chapter 6 
APPLICATIONS 

ABSTRACTS 
The UPI-41A is designed to fill a wide variety of low 
to medium speed peripheral interface applications 
where flexibility and easy implementation are im­
portant considerations. The following examples il­
lustrate some typical applications. 

Keyboard Encoder 
Figure 6-1 illustrates a keyboard encoder config­
uration using the UPI and the 8243 I/O expander 
to scan a 128-key matrix. The encoder has switch 
matrix scanning logic, N-key rollover logic, ROM 
look-up table, FIFO character buffer, and additional 
outputs for display functions, control keys or other 
special functions. 

PORT 1 and PORTs 4-7 provide the interface to the 
keyboard. PORT 1 lines are set one at a time to se­
lect the various key matrix rows. 

When a row is energized, all 16 columns (Le., PORTs 
4-7 inputs) are sampled to determine if any switch 
in the row is closed. The scanning software is code 
efficient because the UPI instruction set includes in­
dividual bit set/clear operations and expander 
PORTs 4-7 can be directly addressed with single, 2-
byte instructions. Also, accumulator bits can be test­
ed in a single operation. Scan time for 128 keys is 
about 10 ms. Each matrix point has a unique binary 

INTERFACE 
TO 8-BIT 
MASTER 

PROCESSOR 

... 

'I 

PORT 4 

PORTS 
8243 

EXPANDER 
PORT 6 

PORT 7 

1i r 
PORT 2 PROG 

DBB 

a 
DATA BUS 

CONTROL BUS 

code which is used to address ROM when a key clo­
sure is detected. Page 3 of ROM contains a look-up 
table with useable codes (Le., ASCII, EBCDIC, etc.) 
which correspond to each key. When a valid key clo­
sure is detected the ROM code corresponding to that 
key is stored in a FIFO buffer in data memory for 
transfer to the master processor. To avoid stray 
noise and switch bounce, a key closure must be de­
tected on two consecutive scans before it is consid­
ered valid and loaded into the FIFO buffer. The 
FIFO buffer allows multiple keys to be processed as 
they are depressed without regard to when they are 
released, a condition known as N-key rollover. 

The basic features of this encoder are fairly standard 
and require only about 500 bytes of memory. Since 
the UPI is programmable and has additional mem­
ory capacity it can handle a number of other func­
tions. For example, special keys can be programmed 
to give an entry on closing as well as opening. Also, 
I/O lines are available to control a 16-digit, 7 -seg­
ment display. The UPI can also be programmed to 
recognize special combinations of characters such as 
commands, then transfer only the decoded informa­
tion to the master processor. 

A complete keyboard application has been devel­
oped for the UPI-41A. A description is included in 
this section. The code for the application is available 
in the Intel Insite Library (program AB 147). 

4 . 

'" 4 z 

'" '3 KEYBOARD 
0 MATRIX 

4 u 
:!! 

4 8 ROWS 

11 ~ 
0- n 

~ !!. u :l 
0-

~ 9 !l; B u a: 

! 

I ' PORT 1 

PORr 2 
B041A/B741A 

CONTROL 

l 
..'l 

I 
...'l 

Figure 6-1. Keyboard Encoder Configuration 

6-865 



APPLICATIONS 

Matrix Printer Interface 
The matrix printer interface illustrated in Figure 6-2 
is a typical application for the UPI-41A. The actual 
printer mechanism could be any of the numerous 
dot-matrix types and . similar configurations can be 
shown for drum, spherical head, daisy wheel or chain 
type printers. 

The bus structure shown represents a generalized, 8-
bit system bus configuration. The UPl's three-state 
interface port and asynchronous data buffer regis­
ters allowit to connect directly to this type of system 
for efficient, two-way data transfer. 

The UPl's two on-board I/O ports provide up to 16 
input and output signals to control the printer 
mechanism. The timer/event counter is used for 
generating a timing sequence to control print head 
position, line feed, carriage return, and other se­
quences. The on-board program memory provides 
character generation for 5 X 7, 7 X 9, or other dot 
matriX formats. As an added feature a portion of the 
64 X 8-bit data memory can be used as a FIFO buffer 
so that the master processor can send a block of data 
at a high rate. The UPI can then output characters 
from the buffer at a rate the printer can accept while 
tpe master processor returns to other tasks. 

INTERFACE 
TO 8-BIT 
MASTER 

PROCESSOR 

~ 

) 

FORM 
PRINT l.F. HOLD 

I MOTOR 
DRIVERS 

PQRT2 

099 

n 
8 

O· 
DATA BUS 

CONTROL· BUS 

The 8295 Printer Controller is an example of an 
S041A preprogrammed as a dot matrix printer inter­
face. 

Tape Cassette Controller. 
Figure 6-3 illustrates a digital cassette interface 
which can be implemented with the UPI-41A. Two 
sections of the tape transport are controlled by the 
UPI: digital data!command logic, and motor servo 
control. 

The motor servo requires a speed reference in the 
form of a monostable pulse whose width is propor­
tional to the desired speed. The UPI monitors a 
prerecorded clock from the tape and uses its on­
board· interval timer to generate the required speed 
reference pulses at each clock transition. 

Recorded data from the tape is supplied serially by 
the data/command logic and is converted to 8-bit 
words by the UPI, then transferred to the master 
processor. At 10 ips tape speed the UPI can easily 
handle the SOOO bps data rate. To record data, the 
UPI uses the two input lines to the data/command 
logic which control the flux direction in the record­
ing head. The·UPI also monitors 4 status lines from 
the tape transport including: end of tape, cassette 

DOT MATRIX PRINTER 

SOLENOIDS 

z 
z 0 
0 

~ ~ 1= 0 

I ill .. SOLENOID 0 
~ fa .. DRIVERS ... .. w 

~ g u. 
w .. ~ 1 [-

70R9 

PORT 2 PORT 1/PORT 2 

8041A/8741A 

CONTROL 

n 
4 

j 

l 
j 

Figure 6-2. Matrix Printer Controller 

6-866 



APPLICATIONS 

DATA 
EOT/BOT 

18<KrGJ 

I DATA ENCODE/DECODE II MOTOR I AND COMMAND DRIVE 

INTERFACE 
TO 8-BIT 
MASTER 

/ 

OATA 
OUT 

I 

DATA CLOCK IN 
2 

I 
PORT 1 

DBB 

STATUS FWD REV SPEED 
4 

I I i 
I 

PORT 2 

B041A/8741A 

CONTROL 

DATA BUS \ 

PROCESSOR CONTROL BUS 

Figure 6-3. Tape Transport Controller 

inserted, busy, and write permit. All control signals 
can be handled by the UPI's two I/O ports. 

Universal 1/0 Interface 
Figure 6-4 shows an I/O interface design based on 
the UP!. This configuration includes 12 parallel I/O 
lines and a serial (RS232C) interface for full duplex 
data transfer up to 1200 baud. This type of design 
can be used to interface a master processor to a 
broad spectrum of peripheral devices as well as to a 
serial communication channel. 

PARALLEL 
110 

,-L-, 

PORT 1 is used strictly for I/O in this example while 
PORT 2 lines provide five functions: 

• P23-P20 I/O lines (bidirectional) 
• P24 Request to send (RTS) 
• P25 Clear to Send (CTS) 
• P26 Interrupt to master 
• P27 Serial data out 

The parallel I/O lines make use of the bidirectional 
port structure of the UP!. Any line can function as 
an input or output. All port lines are automatically 
initialized to 1 by a system RESET pulse and remain 

AS232C 
SERIAL INTERFACE 

i 

crs RTS 

12 

'---r-' . 
PORT 1 AND 2 

I 
PORT 2 

B041A/8741A 

INTERFACE OATA 
TO 8-BIT 
MASTER 

PROCESSOR CONTROL 

TEST 0 

Figure 6-4. Universal 1/0 Interface 

6-867 

RECEIVE 
DATA 



APPLICATIONS 

latched. An external TTL signal connected to a port 
line will override the UPI's 50K-ohm internal pull­
up so that an INPUT instruction will correctly sam­
ple the TTL signal. 

Four PORT 2 lines function as general I/O similar to 
PORT 1. Also, the RTS signal is generated on PORT 
2 under software control when the UPI has serial 
data to send. The CTS signal is monitored via PORT 
2 as an enable to the UPI to send serial data. A 
PORT 2 line is also used as a software generated in­
terrupt to the master processor. The interrupt func­
tions as a service request when the UPI has a byte of 
data to transfer or when it is ready to receive. Alter­
natively, the EN FLAGS instruction could be used 
to create the OBF and IBF interrupts on P24 and 
P25· 

The RS232C interface is implemented using the 
TEST 0 pin as a receive input and a PORT 2 pin as a 
transmit output. External packages (AO, AI) are 
used to provide RS232C drive requirements. The 
serial receive software is interrupt driven and uses 
the on-chip timer to perform time critical serial con­
tro!. After a start bit is detected the interval timer 

can be preset to generate an interrupt at the proper 
time for sampling the serial bit stream. This elimi­
nates the need for software timing loops and allows 
the processor to proceed to other tasks (i.e., parallel 
I/O operations) between serial bit samples. Software 
flags are used so the main program .can determine 
when the interrupt driven receive program has a 
character assembled for it. 

This type of configuration allows system designers 
flexibility in designing custom I/O interfaces for spe­
.cific serial and parallel I/O applications. For in­
stance, a second or third serial channel could be 
substituted in place of the parallel I/O if required. 
The UPI's data memory can buffer data and com­
mands for up to 4 low-speed channels (110 baud tele­
typewriter, etc.) 

Application Notes 
The following application notes illustrate the var­
ious applications of the UPI family. Other related 
publications including the 8048 Family Application 
Handbook are available through the Intel Literature 
Department. 

6-868 



APPLICATIONS 

INTRODUCTION TO THE UPI-41ATM 

Introduction 

Since the introduction in 1974 of the second genera­
tion of microprocessors, such as the 8080, a wide 
range of peripheral interface devices have appeared. 
At first, these devices solved application problems of 
a general nature; i.e., parallel interface (8255), serial 
interface (8251), timing (8253), interrupt control 
(8259). However, as the speed and density of LSI 
technology increased, more and more intelligence 
was incorporated into the peripheral devices. This 
allowed more specific application problems to be 
solved, such as floppy disk control (8271), CRT con­
trol (8275), and data link control (8273). The advan­
tage to the system designer of this increased 
peripheral device intelligence is that many ofthe pe­
ripheral control tasks are now handled externally to 
the main processor in the peripheral hardware 
rather than internally in the main processor soft­
ware. This reduced main processor overhead results 
in increased system throughput and reduced soft­
ware complexity. 

In spite of the number of peripheral devices avail­
able, the pervasiveness of the microprocessor has 
been such that there is still a large number of peri ph­
eral control applications not yet satisfied by dedi­
cated LSI. Complicating this problem is the fact that 
new applications are emerging faster than the manu­
facturers can react in developing new, dedicated pe­
ripheral controllers. To address this problem, a new 
microcomputer-based Universal Peripheral Inter­
face (UPI-41A) device was developed. 

In essence, the UPI-41A acts as a slave processor to 
the mairi system CPU. The UPI contains its own 
processor, memory, and I/O, and is completely user 
programmable; that is, the entire peripheral control 
algorithm can be programmed locally in the UPI, in­
stead of taxing the master processor's main memory. 
This distributed processing concept allows the UPI 
to handle the real-time tasks such as encoding key­
boards, controlling printers, or multiplexing dis­
plays, while the main processor is handling non-real­
time dependent tasks such as buffer management or 
arithmetic. The UPI relies on the master only for 
initialization, elementary commands, and data 
transfers. This technique results in an overall in­
crease in system efficiency since both processors­
the master CPU and the slave UPI-are working in 
parallel. 

This application note presents three UPI-41A appli­
cations which are roughly divided into two groups: 
applications whose complexity and UPI code space 

requirements allow them to either stand alone or be 
incorporated as just one task in a "multi-tasking" 
UPI, and applications which are complete UPI ap­
plications in themselves. Applications in the first 
group are a simple LED display and sensor matrix 
controllers. A combination serial/parallel/ I/O de­
vice is an application in the second group. Each ap­
plication illustrates different UPI configurations 
and features. However, before the application de­
tails are presented, a section on the UPI/master pro­
tocol requirements is included. These protocol 
requirements are key to UPI software development. 
For convenience, the UPI block diagram is repro­
duced in Figure 1 and the instruction set summary 
in Table 1. 

UPI-41 vs. UPI-41 A 
The UPI-41A is an enhanced version of the UPI-41. 
It incorporates several architectural features not 
found on the "non-A" device: 

• Separate Data In and Data Out data bus buf­
fer registers 

• User-definable STATUS register bits 
• Programmable master interrupts for the OBF 

and IBF flags 
• Programmable DMA interface to external 

DMA controller. 

The separate Data In (DBBIN) and Data Out 
(DBBOUT) registers greatly simplify the master/ 
UPI protocol compated to the UPI-41. The master 
need only check IBF before writing to DBBIN and 
OBF before reading DBBOUT. No data bus buffer 
lock-out is required. 

The most significant nibble of the STATUS register, 
undefined in the UPI-41, is user-definable in UPI-
41A. It may be loaded directly from the most signifi­
cant nibble of the Accumulator (MOV STS,A). 
These extra four STATUS bits are useful for trans­
ferring additional status information to the master. 
This application note uses this feature extensively. 

A new instruction, EN FLAGS, allows OBF and IBF 
to be reflected on PORT 2 BIT 4 and PORT 2 BIT 5 
respectively .. This feature enables interrupt-driven 
data transfers when these pins are interrupt sources 
to the master. 

By executing an EN DMA instruction PORT 2 BIT 
6 becomes a DRQ (DMA Request) output and 
PORT 2 BIT 7 becomes DACK (DMA Acknowl­
edge). Setting DRQ requests a DMA cycle to an ex­
ternal DMA controller. When the cycle is granted, 
the DMA controller returns DACK plus either RD 
(Read) or WR (Write). DACK automatically forces 

6-869 



APPLICATIONS 

.~{" 
7681-_____ ~ 

PAGE 2{767 

512 I-_____ ~ "' .. r 
~~~ I------~ 

LOCATION 7 - TIMER

1-_____ -1 ~-~NRT~~~X:TH~~~TORS
PAGE 0

LOCATION 3 - IBF

I-------~-+--~~~~~r~ ~~~~TORS

716 I 5 14 I 31 21' I 0 -~~~~~X~C,J."R~S
ADDRESS

Figure lA. Program Memory Map

CS and AO low internally and clears DRQ.This se­
lects the appropriate data buffer register (DBBOUT
for DACK and RD, DBBIN for DACK and WR) for
the DMA transfer.

Like the "non-A", the UPI-41A is available in both
ROM (8041A) and EPROM (8741A) Program Mem­
ory versions. This application note deals exclusively
with the UPI-41A since the applications use the "A"s
enhanced features.

UPI/MASTER PROTOCOL
As in most closely coupled multiprocessor systems,
the various processors communicate via a shared re­
source. This shared resource is typically specific lo­
cations in RAM or in registers through which status
and data are passed. In the case of a master proces­
sor and a UPI-41A, the shared resource is 3 separate,
master-addressable, registers internal to the UPI.
These registers are the status register (STATUS),
the Data Bus Buffer Input register (DBBIN), and
the Data Bus Output register (DBBOUT). [Data
Bus Buffer direction is relative to the UPI]. To illus­
trate this register interface, consider the 8085A/UPI
system in Figure 2.

63r---------------,

USER RAM
32 X 8

~~r-------------~
BANK 1

WORKING
REGISTERS

8X8

a LEVEL STACK
OR

USER RAM
16 X B

BANK 0
WORKING

REGISTERS
8X8

I
DIRECTLY

ADDRESSABLE
WHEN BANK 1
IS SELECTED

~
ADDRESSED
INDIRECTlY
THROUGH
R1 OR RO

(RO' OR R1')

DIRECTLY
ADDRESSABLE
WHEN BANK 0
IS SElECrO

Figure lB. Data Memory Map

Looking into the UPI from the 8085A, the 8085A
sees only the three registers mentioned above. If the
8085A wishes to issue a command to the UPI, it does
so by writing the command to the DBBIN register
according to the decoding of Table 2. Data for the
UPI is also passed via the DBBIN register. (The UPI
differentiates commands and data by examining the
AO pin. Just how this is done is covered. shortly.)
Data from the UPI for the 8085A is passed in the
DBBOUT register. The 8085A may interrogate the
UPI's status by reading the UPI's STATUS register.
Four bits of the STATUS register act as flags and
are used to handshake data and commands into and
out of the UP!. The STATUS register format is
shown in Figure 3.

BIT 0 is OBF (Output Buffer Full). This flag indi­
cates to the master when the UPI has placed data in
the DB BOUT register. OBF is set when theUPI
writes to DBBOUT and is reset when the master
reads DBBOUT. The master finds meaningful data
in the DBBOUT register only when OBF is set.

The Input Buffer Full (IBF) flag is BIT 1. The UPI
uses this flag as an indicator that the master has
written to the DBBIN register. The master uses IBF

AFN'()1536A

6-870

APPLICATIONS

INTERNAL

'"'

MASTEA
SYSTEM

INTERFACE j'~~
" '" "

}m' rTAL2

CONTROL
lOGIC

POWEA Vee --_ +5 SUPPlY {

,,, --_ PAOMPAOGRAM SUPPLY

'''--_GflOUND

DATA
MEMORY

~===::::'J

RESIDENT
54X8

RANDOM
ACCESS
MEMORY

''0 PORT 1

PORTA·7
EXPANDER
INTERFACE

8-BIT

EVEN~~t~"TER

PERIP~ERAL
INTERFACE

Figure 1C. UPI·41A Block Diagram

to indicate when the UPI has accepted a particular
command or data byte. The master should examine
IBF before outputting anything to the UP!. IBF is
set when the master writes to DBBIN and is reset
when the UPI reads DBBIN. The master must wait
until IBF=O before writing new data or commands
to DBBIN. Conversely, the UPI must ensure IBF=l
before reading DBBIN.

The third STATUS register bit is FO (FLAG 0). This
is a general purpose flag that the UPI can set, reset,
and test. It is typically used to indicate a UPI error
or busy condition to the master.

FLAG 1 (Fl) is the final dedicated STATUS bit.
Like FO the UPI can set, reset, and test this flag.
However, in addition, Fl reflects the state of the AO
pin whenever the master writes to the DBBIN regis­
ter. The UPI uses this flag to delineate between mas­
ter command and data writes to DBBIN.

The remaining four STATUS register bits are user
definable. Typical uses of these bits are as status in-

6-871

8085

~r-" J¢r-" ~r-"r-__ y,,1 STATUS I
t--<c~ 5
t-- "'r' i3 := AO I DBBIN I
t-- Q r- "~ 8 t--=c=s-~
r-- r- r-v RD r-::::==-r--§-~ I DBBOUT I ""'- h.~WC!!!R_t::=:=::J

Figure 2. Register Interface

dicators for individual tasks in a multitasking UPI
or as UPI generated interrupt status. These bits find
a wide variety of uses in the upcoming applications.

Looking into the 8085A from the UPI, the UPI sees
the two DBB registers plus the IBF, OBF, and Fl
flags. The UPI can write from its accumulator to
DBBOUT or read DBBIN into the accumulator.
The UPI cannot read OBF, IBF, or Fl directly, but
these flags may be te~ted using conditional jump

APPLICATIONS

Table 1. Instruction Set Summary

Mnemonic Description Bytes Cycles Mnemonic Description Bytes Cycles

Accumulator Timer/Counter

ADDA,Rr Add register to A 1 1 MOVA,T Read Timer/Counter 1 1
ADDA,@Rr Add data memory to A 1 1 MOVT,A Load Timer/Counter 1 1
ADDA,#data Add immediate to A 2 2 STRTT Start Timer 1 1
ADDCA,Rr Add register to A with carry 1 1 STRTCNT Start Counter 1 1
ADDCA@Rr Add date memory to A with carry 1 1 STOP TCNT Stop Timer/Counter 1 1
ADDC A,#date Add immed. to A with carry 2 2
ANLa,Rr AND register to.A 1 1
ANLA,@Rr AND date memory to A 1 1
ANLA,#data AND immediate to A 2 2

EN TCNTI Enable Timer/Counter Interrupt 1 1
DISTCNTI Disable Timer/Counter Interrupt 1 1

Control

ORLA,Rr OR register to A 1 1 ENDMA Enable DMA Handehake Lines 1 1
ORLA@Rr OR data memory to A 1 1 ENI Enable IBF Interrupt 1 1
ORLA,#data OR immediate to A 2 2 DIS I Disable IBF Interrupt 1 1
XRLA,Rr Exclusive OR register to A 1 1 EN FLAGS Enable Master InterruptS 1 1
XRLA,@Rr Exclusive OR data memory to A 1 1 SELRBO Select register bank 0 1 1
XRLA,#data Exclusive OR immediate to A 2 2 SELRBI Select register bank 1 1 1
INCA IncrementA 1 1 NOP No Operation 1 1
DEC A Decrement A 1 1
CLRA Clear A 1 1 Registers

CPLA Complement A 1 1
DAA Decimal Adjust A 1 1
SWAP A Swap digits of A 1 1
RLA Rotate' A left i 1

INCRr Increment register ·1 1
INC@Rr Increment data memory 1 1
DECRr Decrement register 1 1

RLCA Rotate A left through carry 1 1 Subroutine
RRA Rotate A right 1 1
RRCA Rotate A right through carry 1 1

CALLaddr Jump to subroutine 2 2
RET Return 1 2

Input/Output RETR Return and restore status 1 2

INA,P Input port to A 1 2
OUTL~p,A Output A to port 1 2
ANL Pp,#data AND immediate to port 2 2
ORLP1lj#data OR immediate to port 2 2
INA,D B Input DBB to A, clear IBF 1 1
OUTDBB,A Output A to DBB, set OBF 1 1
MOVSTS,A A4 -A7 to Bits 4-7 of Status 1 1
MOVDA,PX Input Expander port to A 1 2
MOVDPp, Output A to Expander port 1 2
ANLDPp,A AND A to Expander port 1 2
ORLDPp.A OR A to Expander port 1 2

Flags

CLRC Clear Carry 1 1
CPLC Complement Carry 1 1
CLRFO Clear Flag 0 1 1
CPLFO Complement Flag 0 1 1
CLRFI Clear Fl FIlii! 1 1
CPLFI Complement Fl Flag 1 1

Branch

JMPADDR Jump unconditional 2 2
JMPP@A Jump indirect 1 2

Data Moves DJNZR,addr Decrement register and skip 2 2

MOVA,Rr Move register to A 1 1
MOVA,@Rr Move data memory to A 1 1
MOVA,#data Move immediate to A 2 2
MOVRr,A Move A to register 1 1
MOV@Rr,A Move A. to data memory 1 1
MOV Rr,#data Move immediate to register 2 2
MOV @Rr,#data Move immediate to data memory 2 2
MOVA,PSW Move PSW to A 1 1
MOVPSW,A MoveAtoPSW 1 1
XCHA,Rr Exchange A and register 1 1
XCHA.@Rr Exchange A and data memory 1 1
XCHDA@Rr Exchange digit of A and register 1 1
MOVPA.@A Move to A from current page 1 2
MOVP3,A,@A Move to· A from page 3 1 2

JC addr Jump on Carry=1 2 2
JNC addr' Jump on Carry=O 2 2
JZaddr Jump on A Zero 2 2
JNZaddr Jump on A not Zero 2 2
JTOaddr Jump on TO=1 2 2
JNTOaddr JumponTO=O 2 .2
JTl addr Jump on Tl=1 2 2
JNTladdr Jump on Tl=O 2 2
JFOaddr Jump on FO Flagz l 2 2 ,.

JFladdr Jump on Fl Flag=1 2 2
JTF addr Jump on Timer Flag=I,Clear Flag 2 2
JNIBF addr Jump on IBF Flag=O 2 2
JOBF addr Jump OD OBF Flag=1 2 2
JBbaddr Jump on Accumulator Bit 2 2

Table 2, Register Decoding

cs AO 1m \WI

0 0 0 1

0 1 0 1

0 0 1 0
0 1 1 0

1 X X X

REGISTER

READDBBOUT
READ STATUS
WRITE DBBIN (DATA)
WRITE DBBIN (COM-
MAND)
NO ACTION

"Ii-'--il-'-. '.-'-'.-'--r' .. -,-,-'-r' OBF _ DBBOUT FULL 1716i5114113,1 '~O
IBF - oBBIN FULL

'---~- FO - FLAG 0

'------ Fl - FLAG 1
'--------- USER DEFINED

STATUS REGISTER

Figure 3. Status Register Format

AFN-ol536A

APPLICATIONS

instructions. The UPI should make sure that OBF is
reset before writing new data into DBBOUT to en­
sure that the master has read previous DBBOUT
data. IBF should also be tested before reading
DBBIN since DBBIN data is valid only when IBF is
set. As was mentioned earlier, the UPI uses Fl to dif­
ferentiate between command and data contents in
DBBIN when IBF is set. The UPI may also write the
upper 4-bits of its accumulator to the upper 4-bits of
the STATUS register. These bits are thus user
definable.

The UPI can test the flags at any time during its in­
ternal program execution. It essentially "polls" the
STATUS register for changes. If faster response is
needed to master commands and data, the UPI's in­
ternal interrupt structure can be used. If IBF inter­
rupts are enabled, a master write to DBBIN (either
command or data) sets IBF which generates an in­
ternal CALL to location 03H in program memory. At
this point, working register contents can be saved
using bank switching, the accumulator saved in a
spare working register, and the DBBIN register read
and serviced. The interrupt logic for the IBF inter­
rupt is shown in Figure 4. A few observations con­
cerning this logic are appropriate. Note that if the
master writes to DBBIN while the UPI is still servic­
ing the last IBF interrupt (a RETR instruction has
not been executed), the IBF Interrupt Pending line

is made high which causes a new CALL to 03H as
soon as the first RETR is executed. No EN I (Enable
Interrupt) instruction is needed to rearm the inter­
rupt logic as is needed in an 8080 or 8085A system;
the RETR performs this function. Also note that ex­
ecuting a DIS I to disable further IBF interrupts
does not clear a pending interrupt. Only a CALL to
location 03H or RESET clears a pending IBF inter­
rupt.

Keeping in mind that the actual master/UPI proto­
col is dependent on the application, probably the
best way to illustrate correct protocol is by example.
Let's consider using the UPI as a simple parallel I/O
device. (This is a trivial application but it embodies
all of the important protocol considerations.) Since
the UPI may be either interrupt or non-interrupt
driven internally, both cases are considered.

Let's take the easiest configuration first; using the
UPI PORT 1 as an 8-bit output port. From the UPI's
point-of-view, this is an input-only application since
all that is required is that the UPI input data from
the master. Once the master writes data to the UPI,
the UPI reads the DBBIN register and transfers the
data to PORT 1. No testing for commands versus
data is needed since the UPI "knows" it only per­
forms one task-no commands are needed.

FORCE
a 1------, a INTERRUPT

CALL

RESET
DIS TeNTI

EXECUTED

TIMER
INTERRUPT

ENABLE

WR
Cs

RESET
ISF INTERRUPT

CALL EXECUTED

RESET
DIS I

ExeCUTED

EN I
EXECUTED

a

IBF INTERRUPT
ENABLE

Figure 4. UPI-41 A Interrupt Structure

6-873

INTERRUPT
IN PROGRESS

1·SHOT

AFN'()1536A

APPLICATIONS

Non-interrupt driven UPI software is shown in Fig­
ure 5A while Figure 5B shows interrupt based soft­
ware. For Figure 5A, the UPI simply waits until it
sees IBF go high indicating the master has written a
data byte to DBBIN. The UPI then readsDBBIN,
transfers it to PORT 1, and returns to waiting for the
next data. For the interrupt-driven UPI, Figure 5B,
once the EN I instruction is executed, the UPI sim­
ply waits for the IBF interrupt before handling the
data. The UPI could handle other tasks during this
waiting time. When the master writes the data to
DBBIN, an IBF interrupt is generated which per­
forms a CALL to location 03R. At this point the UPI
reads DBBIN (no testing of IBF is needed since an
IBF interrupt implies that IBF is set), transfers the
data to PORT 1, and executes an RETR which re­
turns program flow to the main program.

Software for the master 8085A is.included in Figure
5C. The only requirement for the master to output
data to the UPI is that it check the UPI to be sure
the previous data had been taken before writing new
data. To accomplish this the master simply reads the
STATUS register looking for IBF=O before writing
the next data.

; UPIINPUT ONL Y EXAMPLE-PORT 1 USED AS OUTPUT PORT
UPI POLLS IBF FOR DATA

RESET: JNIBF RESET
IN A,DBB
OUTL Pl,A
JMP RESET

; WAIT ON IBF FOR INPUT
; INPUT THERE, SO READ IT
; TRANSFER DATA TO PORT 1
; GO WAIT FOR NEXT DATA

Figilre SA. Single Output Port Example-Polling

; UPIINPUT ONLY EXAMPLE-PORT 1 USED AS OUTPUT PORT
DATA INPUT IS INTERRUPT· DRIVEN ON IBF

RESET: EN I
JMP RESET+l

IBFINT: IN A,DBB
OUTL Pl,A
RETR

; ENABLE IBF INTERRUPTS
; LOOP WAITING FOR INPUT
; READ DATA FROM DB BIN
; TRANSFER DATA TO PORT 1
; RETURN WITH RESTORE

Figure 58. Single Output Port Example-Interrupt

; BOB5 SOFTWARE FOR UPIINPUT·ONLY EXAMPLE
DATA FOR OUTPUT IS PASSED IN REG. C

UP lOUT: IN
ANI
JNZ
MOV
OUT
RET

STATUS
IBF
UPIOUT
A,C
DBBIN

; READ UPI STATUS
; LOOK AT IBF
; WAIT FOR IBF=O
; GET DATA FROM C
; OUTPUT DATA TO DB BIN
; DONE, RETURN

Figure SC. BOBSA Code for Single Output Port Ex­
ample

Figure 6A illustrates the case where UPI PORT 2 is
used as an 8-bit input port. This configuration is
termed. UPI output-only as the master does not
write (input) to the UPI but simply reads either the
STATUS or the DBBOUT registers. In this example
only the OBF flag is used. OBF signals the master
that the UPI has placed new port data in DBBOUT.
The UPI loops testing OBF. When OBF is clear, the
master has read the previous data and UPI then
reads its input port (PORT 2) and places this data in
DBBOUT. It then waits on OBF until the master
reads DBBOUT before reading the input port again.
When the master wishes to read the input port data,
Figure 6B, it simply checks for OBF being set in the
STATUS register before reading DBBOUT. While
this technique illustrates proper protocol, it should
be noted that it is not meant to be a good method of
using the UPI as an input port since the master
would never get the newest status of the port.

; UPI OUTPUT ONL Y EXAMPLE-PORT 2 USED AS INPUT PORT
PORT DATA IS AVAILABLE IN DBBOUT

RESET: JOBF RESET
IN A,P2
OUT DBB,A
JMP RESET

; LOOP IF OBF=l (DATA NOT READ)
; DBBOUT CLEAR, READ PORT
; TRANSFER PORT DATA TO DB BOUT
; WAIT FOR MASTER TO READ DATA

Figure SA. Single Input Port Example

; BOB5 SOFTWARE FOR UPI OUTPUT -ONL Y EXAMPLE
INPUT DATA RETURNED IN REG. A

UPIIN: IN STATUS
ANI OBF
JZ UPIIN
IN DBBOUT
RET

; READ UPI STATUS
; LOOK AT OBF
; WAIT UNTIL OBF= 1
; READ DBBOUT
; RETURN WITH DATA IN A

Figure S8. BOBSA Single Input Port Code

The above examples can easily be combined. Figure
7 shows UPI software to use PORT 1 as an output
port simultaneously with PORT 2 as an input port.
The program starts with the UPI checking IBF to
see if the master has written data destined for the
output port into DBBIN. If IBF is set, the UPI reads
DBBIN and transfers the data to the output port
(PORT 1). If IBF is not set or once the data is trans­
ferred to the output port if it was, OBF is tested. If
OBF is reset (indicating the master has read
DBBOUT), the input port (PORT 2) is read and
transferred to DBBOUT. If OBF is set, the master
has yet to read DBBOUT so the program justioops
back to test IBF.

6-874

The master software is identical to the separate
input/output examples; the master must test IBF

AFN.()1536A

APPLICATIONS

; UPIINPUT/OUTPUT EXAMPLE-PORT lOUTPUT, PORT 2 INPUT

RESET: JNIBF
IN
OUTl

OUT1: JOBF
IN
OUT
JMP

OUTI
A,DBB
P1, A
RESET
A, P2
DBB, A
RESET

; IF IBF=O, DO OUTPUT
; IF ISF= 1, READ DBBIN
; TRANSFER DATA TO PORT 1
; IF OBF=l, GO TEST IBF
; IF OBF=O, READ PORT 2
, TRANSFER PORT DATA TO DBBOUT
; GO CHECK FOR INPUT

Figure 7. Combination Output/Input Port Example

and OBF before writing output port data into
DBBIN or before reading input port from DB BOUT
respectively.

In all of the three examples above, the UPI treats
information from the master solely as data. There
has been no need to check if DBBIN information is a
command rather than data since the applications do
not require commands. But what if both PORTs 1
and 2 were used as output ports? The UPI needs to
know into which port to put the data. Let's use a
command to select which port.

Recall that both commands and data pass through
DBBIN. The state of the AO pin at the time of the
write to DBBIN is used to distinguish commands
from data. By convention, DBBIN writes with AO=O
are for data, and those with AO=1 are commands.
When DBBIN is written into, F1 (FLAG 1) is set to
the state of AO. The UPI tests F1 to determine if the
information in the DBBIN register is data or
command.

For the case of two output ports, let's assume that
the master selects the desired port with a command
prior to writing the data. (We could just use F1 as a
port select but that would not illustrate the subtle
differences between commands and data). Let's de­
fine the port select commands such that BIT 1=1 if
the next data is for PORT 1 (Write PORT 1=0000
0010) and BIT 2=1 if the next data is for PORT 2
(Write PORT 2=0000 0100). (The number ofthe set
bit selects the port.) Any other bits are ignored. This
assignment is completely arbitrary; we could use any
command structure, but this one has the advantage
of being simple.

Note that the UPI must "remember" from DB BIN
write to write which port has been selected. Let's use
FO (FLAG 0) for this purpose. If a Write PORT 1
command is received, FO is reset. If the command is
Write PORT 2, FO is set. When the UPI finds data in
DBBIN, FO is interrogated and the data is loaded
into the previously selected port. The UPI software
is shown in Figure BA.

: UPI DUAL OUTPUT PORT EXAMPLE-BOTH PORT 1 AND 2 OUTPUTS
COMMAND SELECTS DESIRED PORT

RESET:

PORT2:

CMD:

PT1:

PT2:

WRITE PORT 1-00000010 (02H)
WRITE PORT 2-0000 0100 (04H)

FLAG 0 USED TO REMEMBER WHICH PORT WAS SELECTED
BY LAST COMMAND.

JNIBF RESET ; WAIT FOR MASTER INPUT
IN A,DBB ; READ INPUT
JFl CMD ; IF F 1 = 1, COMMAND INPUT
JFa PORT2 ; INPUT IS DATA, TEST Fa
OUTL Pl,A ; Fo=a, SO OUTPUT TO PORT 1
JMP RESET ; WAIT FOR NEXT INPUT
OUTL P2,A ; FO= 1, SO OUTPUT TO PORT 2
JMP RESET ; WAIT FOR NEXT INPUT
JBl PTl ; TEST COMMAND BITS (BIT 1)
JB2 PT2 ; TEST BIT 2
JMP RESET ; NEITHER BIT SET, WAIT FOR INPUT
CLR Fa ; PORT 1 SELECTED, CLEAR FO
JMP R,ESET ; WAIT FOR INPUT
CLR Fa ; PORT 2 SELECTED, SET Fa
CPL Fa
JMP RESET ; WAIT FOR INPUT

Figure SA. Dual Output Port Example

Initially, the UPI simply waits until IBF is set indi­
cating the master has written into DBBIN. Once
IBF is set, DBBIN is read and F1 is tested for a com­
mand. If F1 =1, the DB BIN byte is a command. As­
suming a command, BIT 1 is tested to see if the
command selected PORT 1. If so, FO is cleared and
the program returns to wait for the data. If BIT 1 =0,
BIT 2 is tested. !fBIT 2 is set, PORT 2 is selected so
FO is set. The program then loops back waiting for
the next master input. This input is the desired port
data. If BIT 2 was not set, FO is not changed and no
action is taken.

When IBF=1 is again detected, the input is again
tested for command or data. Since it is necessarily
data, DBBIN is read and FO is tested to determine
which port was previously selected. The data is then
output to that port, following which the program
waits for the next input. Note that since FO still se­
lects the previous port, the next input could be more
data for that port. The port selection command
could be thought of as a port select flip-flop control;
once a selection is made, data may be repeatedly
written to that port until the other port is selected.
Master software, Figure BB, simply must check IBF
before writing either a command or data to DBBIN.
Otherwise, the master software is straightforward.

For the sake of completeness, UPI software for im­
plementing two input ports is given in Figure 9. This
case is simpler than the dual output case since the
UPI can assume that all writes to DBBIN are port
selection commands so no command/data testing is
required. Once the Port Read command is input, the
selected port is read and the port data is placed in
DBBOUT. Note that in this case FO is used as a UPI

6-875

APPLICATIONS

error indicator. If the master happened to issue an
invalid command (a command without either BIT 1
or 2 set), FO is set to notify the master that the UPI
did not know how to interpret the command. FO is
also set if the master commanded a port read before
it had read DBBOUT from the previous command.
The UPI simply tests OBF just prior to loading
DBBOUT and if OBF=I, FO is set to indicate the
error.

All of the above examples are, in themselves, rather
trivial applications of the UPI although they could
easily be incorporated as one of several tasks in a
UPI handling multiple small tasks. We have covered
them primarily to introduce the UPI concept and to
illustrate some master/UPI protocol. Before moving
on to more realistic UPI applications, let's discuss
two UPI features that do not directly relate to the
master/UPI protocol but greatly enhance the UPI's
transfer capability.

In addition to the OBF and IBF bits in the STATUS
register, these flags can also be made available di­
rectly on two port pins. These port pins can then be
used as interrupt sources to the master. By execut­
ing an EN FLAGS instruction, PORT 2 pin 4 re­
flects the condition of OBF and PORT 2 pin 5
reflects the inverted condition of IBF (IBF). These
dedicated outputs can then be enabled or disabled
via their respective port bit values; i.e., P24 reflects
OBF as long as an instruction is executed which sets
P24 (i.e. ORL P2,#10H). The same action applies to
the IBF output except P25 is used. Thus P24 may
serve as a DATA AVAILABLE interrupt output.
Likewise for P25 as a READY-TO-ACCEPT-DATA
interrupt. This greatly simplifies interrupt-driven
master-slave data transfers. .

; 8085 SOFTWARE FOR DUAL OUTPUT PORT EXAMPLE
THIS ROUTINE WRITES DATA IN REG. C TO PORT 1
(SAME ROUTINE FOR PORT 2-JUST CHANGE COMMAND)

PORT1: IN STATUS ; READ UPI STATUS
ANI IBF ; LOOK AT IBF
JNZ PORTl : WAIT UNTIL IBF~O
MVI A,00000010B ; LOAD WRITE PORTl CMD
OUT UPICMD ; OUTPUT TO UPI COMMAND PORT

Pl: IN STATUS ; READ UPI STATUS AGAIN
ANI IBF ; LOOK AT IBF
JNZ P1 ; WAIT UNTIL COMMAND ACCEPTED
MOV A, C .; GET DATA FROM C
OUT DBBIN ; OUTPUT TO DBBIN
RET ; DONE, RETURN

Figure SB. SOSSA Dual Output Port Example Code

The UPI also supports a DMA transfer interface. If
an EN DMA instruction is executed, PORT 2 pin 6
becomes a DMA Request (DRQ) output and P27 be­
comes a high impedance DMA Acknowledge

; UPI DUAL INPUT PORT EXAMPLE-BOTH PORT 1 AND 2 INPUTS
COMMAND SELECTS WHICH PORT IS TO BE READ
FLAG 0 USED AS ERROR FLAG

RESET: JNIBF RESET ; WAIT FOR INPUT
CLR Fa ; CLEAR ERROR FLAG
IN A,DBB ; READ INPUT (COMMAND)
JB1 PTl ; TEST BIT 1 (PORT 1)
JB2 PT2 ; TEST BIT 2 (PORT 2)

ERROR: CPL Fa ; ERROR-COMPLEMENT Fa
JMP RESET ; WAIT FOR INPUT

PT1: IN A, P1 ; READ PORT 1
JOBF ERROR ; TEST OBF BEFORE LOADING DBBOUT
OUT DBB, A ; LOAD PORT 1 DATA INTO DBBOUT
JMP RESET ; WAIT FOR INPUT

PT2: IN A, P2 ; READ PORT 2
JOBF ERROR ; TEST OBF BEFORE LOADING DBBOUT
OUT DBB, A ; LOAD PORT 2 DATA INTO DBBOUT
JMP RESET ; WAIT FOR INPUT

Figure 9. Dual Input Port Example

(DACK) input. Any instruction which would nor­
mally set P26 now sets Dgg, DR~ cleared when
DACK is low and either RD or WR is low. When
DACK is low, CS and AO are forced low internally
which allows data bus transfers between DBBOUT
or DBBIN to occur, depending upon whether WR or
RD is true. Of course, the function requires the use
of an external DMA controller.

Now that we have discussed the aspects of the UPI
protocol and data transfer interfaces, let's move on
to the actual applications.

EXAMPLE APPLICATIONS
Each of the following three sections presents the
hardware and software details of a UPI application.
Each application utilizes one of the protocols men­
tioned in the last section. The first example is a sim­
ple 8-digit LED display controller. This application
requires only that the UPI perform input operations
from the DBBIN; DBBOUT is not used. The reverse
is true for the second application: a sensor matrix
controller. The final application involves both
DBBOUT and DBBIN operations: a combination
serial/parallel I/O device.

The core master processor system with which these
applications were developed is the iSBC 80/30 single
board computer. This board provides an especially
convenient UPI environment since it contains a
dedicated socket specifically interfaced for the UPI-
41A. The 80/30 uses the 8085A as the master proces­
sor. The I/O and peripheral complement on the
80/30 include 12 vectored priority interrupts (8 on
an 8259 Programmable Interrupt Controller and 4
on the 8085A itself), an 8253 Programmable Interval
Timer supplying three 16-bit programmable timers
(one is dedicated as a programmable baud rate gen­
erator), a high speed serial channel provided by a
8251 Programmable USART, and 24 parallel I/O

6-876

APPLICATIONS

lines implemented with an 8255A Programmable
Parallel Interface. The memory complement con­
tains 16K bytes of RAM using 2117 16K bit Dynamic
RAMs and the 8202 Dynamic RAM Controller, and
up to 8K bytes of ROM/EPROM with sockets com­
patible with 2716, 2758, or 2332 devices. The 80/30's
RAM uses a dual port architecture. That is, the
memory can be considered a global system resource,
accessible from the on-board 8085A as well as from
remote CPU s and other devices via the
MUL TIBUS. The 80/30 contains MUL TIBUS con­
trollogic which allows up to 16 80/30s or other bus
masters to share the same system bus. (More de­
tailed information on the iSBC 80/30 and other
iSBC products may be found in the latest Intel
Systems Data Catalog.)

A block diagram of the iSBC 80/30 is shown in Fig­
ure 10. Details of the UPI interface are shown in Fig­
ure 11. This interface decodes the UPI registers in
the following format:

Register

Read STATUS
Write DB BIN (command)

Read DB BOUT (data)
Write DBBIN (data)

Operations

IN E5H
OUTE5H
INE4H

OUTE4H

a-Digit Multiplexed LED Display
The traditional method of interfacing an LED dis­
play with a microprocessor is to use a data latch
along with a BDC-to-7-segment decoder for each
digit of the display. Thus two ICs, seven current
limiting resistors, and about 45 connections are re­
quired for each digit. These requirements are, of
course, multiplied by the total number of digits de­
sired. The obvious disadvantages of this method are
high parts count and high power dissipation since
each digit is "ON" continuously. Instead, a scheme
of time multiplexing the display can be used to de­
crease both parts count and power dissipation.

Display multiplexing basically involves connecting
the same segment (a, b, c, d, e, f, or g) of each digit in
parallel and driving the common digit element (an­
ode or cathode) of each digit separately. This is
shown schematically in Figure 12. The various digits
of the display are not all on at once; rather, only one
digit at a time is energized. As each digit is ener­
gized, the appropriate segments for that digit are
turned on. Each digit is enabled in this way, in se­
quence, at a rate fast enough to ensure that each
digit appears to be "ON" continuously. This implies
that the display must be "refreshed" at periodic in­
tervals to keep the digits flicker-free. Ifthe CPU had
to handle this task, it would have to suspend normal

processing, go update the display, and then return to
its normal flow. This extra burden is ideally handled
by a UP!. The master CPU could simply give charac­
ters to the UPI and let the UPI do the actual seg­
ment decoding, display multiplexing, and
refreshing.

As an example of this technique, Figure 13 shows the
UPI controlling an 8-digit LED display. All digit
segments are connected in parallel and are driven
through segment drivers by the UPI PORT 1. The
lower 3 bits of PORT 2 are inputs to a 3-to-8 decoder
which selects an individual digit through a digit
driver. A fourth PORT 2 line is used as a decoder
enable input. The remaining PORT 2 lines plus the
TEST 0 and TEST 1 inputs are available for other
tasks.

Internally, the UPI uses the counter/timer in the in­
terval timer mode to define the interval between dis­
play refreshes. Once the timer is loaded with the
desired interval and started, the UPI is free to han­
dle other tasks. It is only when a timer overflow in­
terrupt occurs that the UPI handles the short
display multiplexing routine. The display multiplex­
ing can be considered a background task which is en­
tirely interrupt-driven. The amount of time spent
multiplexing is such that there is ample time to han­
dle a non-timer task in the UPI foreground. (We'll
discuss this timing shortly.)

6-877

When a timer interrupt occurs, the UPI turns off all
digits via the decoder enable. The next digit's seg­
ment contents are retrieved from the internal data
memory and output via PORT 1 to the segment
drivers. Finally, the next digit's location is placed on
PORT 2 (P20-P22) and the decoder enabled. This
displays the digit's segment information until the
next interrupt. The timer is then restarted for the
next interval. This process continues repeatedly for
each digit in sequence.

As a prelude to discussing the UPI software, let's ex­
amine the internal data· memory structure used in
this application, Figure 14. This application requires
only 14 of the 64 total data memory locations. The
top eight locations are dedicated to the Display
Map; one location for each digit. These locations
contain the segment and decimal point information
for each character. Just how characters are loaded
into this section of memory is covered shortly. Regis­
ter R7 of Register Bank 1 is used as the temporary
Accumulator store during the interrupt service
routines. Register R3 stores the digit number of the
next digit to be displayed. R2 is a temporary storage
register for characters during input routine. Ro is

APPLICATIONS

16K X B
RAM
2117

RS232C
COMPATIBLE

DEVICE

POWER FAIL
INTERRUPT

4 INTERRUPT
REQUEST LINES

USER DESIGNATED
PERIPHERALS

42 PROGRAMMABLE
PARAllEL I/O LINES

BINTERRUPT
REQUEST LINES

2 INTERRUPT
REQUEST LINES

MULTIBUSTM

Figure 10. iSBC 80/30 Block Diagram

the offset pointer pointing to the Display Map loca­
tion ofthe next digit. That makes 12 locations so far.
The remaining two locations are the two stack loca­
tions required to store the return address plus status
during the timer and input interrupt service
routines. The remaining unused locations, all of
Register Bank 0, 14 bytes of stack, 4 in Register
Bank 1, and 24 general purpose RAM locations, are
all available for use by any foreground task.

The UPI software consists of only three short
routines. One, INIT, is used strictly during
initialization. DISPLA is the multiplexing routine
called at a timer interrupt. INPUT is the character
input handler called at an IBF interrupt. The flow

charts for these routines are shown in Figures 14A
through 14C.

INIT initializes the UPI by simply turning off all
segment and digit drivers, filling the Display Map
with blank characters, loading and starting the
timer, and enabling both timer and IBF interrupts.
Although the flow chart shows the program looping
at this point, it is here that the code for any fore­
ground task is inserted. The only restrictions on this
foreground task are that it not use I/O lines dedi­
cated to the display and that it not require dedicated
use of the timer. It could share the timer if precau­
tions are taken to ensure that the display will still be
refreshed at the required interval.

6-878

APPLICATIONS

--=r.;:==~====J RESET _ CS

10 PORT

CONTROL E5

DATA +5V

DBa- <:=========>1 00-087 07

5.5296
MH.

+5V +5V

620 620

)0-->----1 XTAL 1

L:--_______ --jXTAL 2

+5V

VDD

P13

PORT 1
P14

P15

P16

P17

TEST 0 1------'---1

TEST 1

a041A

V55

_~-==:-;E;-VE;':N~T CLOCK (8253)

3~IRS.232
3~CHANNEL

45

o-=:;:===~ a0851NTR

".
'"
P22

"3

P25

P26

P27

Figure 11.UPllnterface on iSBC 80/30

+ 5V

00

Figure 12. LED Multiplexing

6-879

APPLICATIONS

+ 5V
.../"' ./""' ../"

L E3 00 r- ----- Cs 01 ----- .r- E2
- 02 - r- M

8205 03
!-- r- ----- WR

PORT 21

3 r--- E1 O'

~
r- ----- AO 2 r--- A2 05

~
1 r--- A1 06

9 "
l> Or--- AO

07 (;l 0 " " " .I'-----" 9 9 9 9-" " l> -I III -I DATA
" l> ~
~ '"

8041A/ 7 r--- dp
8741A 6 I-- 9

5 r--- f

PORT 1: • I-- e a 7 6 5 • 3 2 1
3 I-- d

2 I-- c
1 I-- b
0 r-- a

h.. '"'- SEGMENT
DRIVERS

Figure 13. UPI Controlled a-Digit LED Display

63

31

2'
23

-

DISPLAY MAP
8x8

USER RAM
24 x 8

(NOT USeD)

ACCUMULATOR STORE

NOT USED

NOT USED

NOT USED

DIGIT COUNTER

TEMPORARY STORE

NOT USED

DISPLAY MAP POINTER

STACK
16 x 8

UNUSED
8xa

R7

R6

R5

R' REGISTER

R3
BANK 1

R2

R1

RO

REGISTER
BANK 0

Figure 14. LED Display Controller Data Memory
Allocation

INIT

INITIALIZE
REGISTERS

TURN OFF ALL
DRIVERS

FILL DI$PLA Y MAP WITH
BLANK CHARACTERS

CLEAR DIGIT COUNTER

LOAD AND START
TIMER

ENABLE TIMER AND
ISF INTERRUPTS

WAIT LOOP OR
FOREGROUND TASK CODe

Figure 14A. INIT Routine Flow

6-880

DIGIT
DRIVERS

APPLICATIONS

INPUT

SWITCH TO RB1
SAVE ACCUMULATOR

READ AND SAVE OBBIN

ISOLATE DIGIT SELECT

UPDATE DISPLAY MAP POINTER
TO SELECTED DIGIT LOCATION

NO

RESTORE ACCUMULATOR

RETURN

Figure 14B. INPUT Routine Flow

The INPUT routine handles the character input. It
is called when an IBF interrupt occurs. After the
usual swapping of register banks and saving of the
accumulator, DBBIN is read and stored in register
R2. DBBIN contains the Display Data Word. The
format for this word, Figure 15, has two fields: Digit
Select and Character Select. The Digit Select field
selects the digit number into which the character
from the Character Select field is placed. Notice that
the character set is not limited strictly to numerics,
some alphanumeric capability is provided. Once
DBBIN is read, the offset for the selected digit is
computed and placed in the Display Map Pointer
Ro.Next the segment information for the selected
character is found through a look-up table starting
in page 3 of the program memory. This segment in­
formation is then stored at the location pointed at by
the Display Map Pointer. If the Character Select
field specified a decimal point, the segment corre­
sponding to the decimal point is ANDed into the
present segment information for that digit. After the
accumulator is restored, execution is returned to the
main program.

The DISPLA routine simply implements the
mUltiplexing actions described earlier. It is called
whenever a timer interrupt occurs. After saving pre-

6-881

D15PLA

SWITCH TO RB1
SAVE ACCUMULATOR

TURN OFF ALL DIGIT
DRIVERS

UPDATE DISPLAY
MAP POINTER

GET SEGMENT INFO
FROM DISPLAY MAP

OUTPUT TO SEGMENT
DRIVERS

TURN ON DIGIT
DRIVER

LOAD AND START TIMER

RESTORE ACCUMULATOR

RETURN

Figure 14C. DISPLA Routine Flow

interrupt status by switching register banks and
storing the Accumulator, all digit drivers are turned
off. The Display Map Pointer is then updated using
the Current Digit Register to point at that digit's
segment information in the Display Map. This infor­
mation is output to PORT 1; the segment drivers.
The number of the current digit, R3, is then sent to
the digit select decoder and the decoder is enabled.
This turns on the current digit. The digit counter is
incremented and tested to see if all eight digits have
been refreshed. If so, the digit counter is reset to
zero. If not, nothing is done. Finally, the timer is
loaded. and restarted, the Accumulator is restored,
and the routine returns execution to the main pro­
gram. Thus DISPLA refreshes one digit each time it
is CALLed by the timer interrupt. The digit remains
on until the next time DISPLA is executed.

The UPI software listing is included as Appendix
AI. Appendix A2 shows the 8085A test routine used

AFN.Q1536A

APPLICATIONS

DISPLAY DATA WORD

7 6 5 4 3 I 2 I 1 I 0 I

I
'DIGIT SELECT

7 5 6 DIGIT

0 0 0 1
0 0 1 2

0 1 0 3
0 1 1 4
1 0 0 5
1 0 1 6
1 1 0 7

1 1 1 8

I
CHARACTER SELECT

4 3 2 1 0 CHAR

0 0 0 0 0 a
0 0 0 0 1 1

0 0 0 1 0 2

0 0 0 1 1 i
0 0 1 0 0 'I

0 0 1 0 1 5

0 0 1 1 0 •
0 0 1 1 1 1

0 1 0 0 0 e
0 1 0 0 1 q

0 1 0 1 0 " 0 1 0 1 1 b

0 1 1- 0 0 [

0 1 1 0 1 d

0 1 1 1 0 f

0 1 1 1 1 F

1 0- 0 0 0

1 0 0 0 1 0

1 0 0 1 0 H

1 0 0 1 1 1

1 0 1 0 0 J

1 0 1 0 1 L

1 0 1 1 0 "
1 0 1 1 1 .-
1 1 0 0 0 p

1 1 0 0 1

1 1 0 1 0 t

1 1 0 1 1 u
1 1 1 0 0 " 1 1 1 0 1

1 1 1 1 0

1 1 1 1 1 blank

Figure 15. LED Display Controller Display Data
Word Format

to display the contents of a display buffer on the dis- -
play. The SOS5A software takes care of the display
digit numbering. Since the application is input-only
for the UPI, the only protocol required is that the
master must test IBF before writing a Display Data
Word into DBBIN.

On the iSBC SO/30, the UPI frequency is at 5.5296
MHz. To obtain a flicker-free display, the whole dis­
play must be refreshed at a rate of 50 Hz or greater.

If we assume a 50 Hz refresh rate and an S-digit dis­
play, this means the DISPLA routine must be
CALLed 50XS or 400 times/sec. This transfers, using
the timer interval of S7 }LS at 5.5296 MHz, to a timer
count of 227. (Recall from the UPI-41A User's Man­
ual that the timer is an "S-bit up-counter".) Hence
the TIME equate of 227D in the UPI listing. Obvi­
ously, different frequency sources or'display lengths
would require that this equate be modified.

With the UPI running at 5.5296 MHz, the instruc­
tion cycle time is 2.713 }LS. The DISPLA routine re­
quires 2S instruction cycles, therefore, the routine
executes in 76 }LS. Since DISPLA is CALLed 400
times/sec, the total time spent refreshing the display
during one second is then 30 ms or 3 % of the total
UPI-time. This leaves 97.0% for any foreground
tasks that could be added.

While the basic UPI software is useful just as it
stands, there are several enhancements that could be
incorporated depending on the application. Auto-in­
crementing of the digit location could be added to
the input routine to alleviate the need for the master
to keep track of digit numbers. This could be (op­
tionally) either right-handed or left-handed entry a
la TI or HP calculators. The character set could be
easily modified by simply changing the lookup table.
The display could be expanded- to 16 digits at the
expense of one additional PORT 2 digit select line,
the replacement ofthe 3-to-S decoder with a 4-to-16
decoder, and S more Display Map locations.

Now let's move on to a slightly more complex appli­
cation that is UPI output-only-a sensor matrix
controller.

Sensor Matrix Controller
Quite often a microprocessor system is called upon
to read the status of a large number of simple SPST
switches or sensors. This is especially true in a proc­
ess or industrial control environment. Alarm sys­
tems are also good examples of systems with a large
sensor population. If the number of sensors is- small,
it might be reasonable to dedicate a single input port
pin for each sensor. However, as the number of sen­
sors increase, this technique becomes very wasteful.
A better arrangement is to configure the sensors in a
matrix organization like that shown in Figure ·16.
This arrangement of 16 sensors requires only 4 input
and 4 output lines; half the number needed if dedi­
cated inputs were used. The line saving becomes
even more substantial as the number of sensors
increases.

AFN-01536A
6-882

APPLICATIONS

In Figure 16, the basic operation of the matrix in­
volves scanning individual row select lines in se­
quence while reading the column return lines. The
state of any particular sensor can then be deter­
mined by decoding the row and column information.
The typical configuration pulls up the column re­
turn lines and the selected row is held low. De­
selected rows are held high. Thus a return line re­
mains high for an open sensor on the selected row
and is pulled low for a closed sensor. Diode isolation
is used to prevent a phantom closure which would
occur when a sensor is closed on a selected row and
there are two or more closures on a deselected row.
Germanium diodes are used to provide greater noise
margin at the return line input.

ROW
SELECT

LINES

2 + v 1 +v O+v

Figure 16. 4x4 Sensor Matrix

"" -y

FIFO NOT
EMPTY

OBF

DO·
07

Cs
-
RO

-
WR

AD

P24

P25

If the main processor was required to control such a
matrix it would periodically have to output at the
row port and then read the column return port. The
processor would need to maintain in memory a map
of the previous state of the matrix. A comparison of
the new return information to the old information
would then be made to determine whether a sensor
change had occurred. Any changes would be pro­
cessed as needed. A row counter and matrix map
pointer also require maintenance each scan. Since in
most applications sensors change very slowly com­
pared to most processing actions, the processor
probably would scan the rows only periodically with
other tasks being processed between scans.

Rather than require the processor to handle the
rather mundane tasks of scanning, comparing, and
decoding the matrix, why not use a dedicated pro­
cessor? The UPI is perfect.

Figure 17 shows a UPI configuration for controlling
up to 128 sensors arranged in a 16X8 matrix. The 4-
to-16 line decoder is used as the row selector to save
port pins and provides the expansion to 128 sensors
over the maximum of 64 sensors if the port had been
used directly. It also helps increase the port drive ca­
pability. The column return lines go directly into
PORT 1. Features of this design include complete
matrix management. As the UPI scans the matrix it
compares its present status to the previous scan. If
any change is detected, the location of the change is
decoded and loaded, along with the sensor's present
state, into DBBOUT. This byte is called a Change
Word. The Master processor has only to read one
byte to determine the status and coordinate of a
changed sensor. If the master had not read a pre­
vious Change Word in DBBOUT (OBF=1) before a
new sensor change is detected, the new Change

PORT 1 8 RETURN LINES

B041A/
8741A 74154

P23 I-- 0

P22 I-- C 15~ 16 x 8
1 16 SENSOR

P21 I-- B

G: \

MATRIX

P20 I-- A
G1

~ ~ SELECT UNES

Figure 17. 128 Sensor Matrix Controller

6-883

APPLICATIONS

Word is loaded into an internal FIFO. This FIFO
buffers up to 40 changes before it fills. The status of
the FIFO and OBF is made available to the master
either by polling the UPI STATUS register, Figure
18A, or as interrupt sources on port pins P24 and
P25 respectively, Figure 17. The FIFO NOT EMP­
TY pin and bit are true as long as there are changes
not yet read in the FIFO. As long as the FIFO is not
empty, the UPI monitors OBF and loads new
Change Words from the FIFO into DB BOUT. Thus,
the UPI provides complete FIFO management.

7 6 5 4 3 2 1 0

L W I ~ OBF - CHANGE WORD READY (P25)

IBF

F1

FO

FIFO NOT EMPTY (P24)
NOT useD

Figure 18A. Sensor Matrix Status Register Format

osaOUT REGISTER - CHANGE WORD

- SENSOR COORDINATE I 1 1 1 ,-' ___ 1_1_

'----------- SENSOR STATE
a =CLOSED
1 =QPEN

Figure 188. Sensor Matrix Change Word Format

Internally, the matrix scanning software is pro­
grammed to run as a foreground task. This allows
the timer/counter to be used by any background task
although the hardware configuration leaves only 2
inputs (TEST 0 and TEST 1) plus 2 I/O port pins
available. Also, to add a background task, the FIFO
would have to be made smaller to accommodate the
needed register and data memory space. (It would be
possible however to turn the table here and make the
scanning software timer/counter interrupt-driven
where the timer times the scan interval.) ,

The data memory organization for this application is
shown in Figure 19. The upper'16 bytes form the
Matrix Map and store the sensor states from the
previous scan; one bit for each sensor. The Change
Word FIFO occupies the next 40 locations. (The top
and bottom addresses of this FIFO are treated as
equate variables in the program so that the FIFO
size may easily be changed to accommodate the reg­
ister needs of other tasks.) Register Ro serves as a
pointer into the matrix map area for comparisons

and updates of the sensor status. Rl is a general
FIFO pointer. The FIFO is implemented as a circu­
lar ,buffer with In and Out pointer registers which
are stored in R4 and R5 respectively. These registers
are. moved into FIFO pointer Rl for actual transfers
into or out of the FIFO. R2 is the Row Select
Counter. It stores the number of the row being
scanned.

63

48
47

MATRIX MAP
16 x a

FIFO
40 X 8

COMPARE RESULT

CHANGE WORD STORE

FIFO OUT

FIFO IN

COLUMN COUNTER

SCAN ROW SELECT

FIFO POINTER

MATRIX MAP POINTER

R7

RS

RS

R'
R3

R2

R1

RO

Figure 19. Sensor Matrix Data Memory Map

Register R3 is the Column Counter. This counter is
normally set to OOR; however, when a change is de­
tected somewhere in a particular row, it is used to
inspect each sensor status bit individually for a
change. When a changed counter sensor bit is found,
the Row Select Counter and Column Counter are
combined to give the sensor's matrix coordinate.
This coordinate is temporarily stored in the Change
Word Store, register R6. Register R7 is the Compare
Result. As each row is scanned, the return informa­
tion is Exciusive-OR'd with the return information
from the previous scan of that row. The result of this
operation is stored in R7. If R7 is zero, there have
been no changes on that row. A non-zero result indi­
cates at least <:me changed sensor.

The basic program operation is shown in the flow
chart of Figure 20. At RESET, the software ini­
tializes the working registers, the ports, and clears
the STATUS register. To get a starting point from
which to perform the sensor comparisons, the cur­
rent status of the matrix is read and stored in the
Matrix Map. At this point, the UPI begins looking
for changed sensors starting with the first row.

6-884

APPLICATIONS

INITIALIZATION

SCAN AND
COMPARE

CHANGE WORD
ENCODING

FIFO oaBOUT
MANAGEMENT

Figure 20. Sensor Matrix Controller Flow Chart

6-885

Before delving further into the flow, let's pause to
describe the general format of the operation. The
UPI scans the matrix one row at a time. If no
changes are detected on a particular row, the UPI
simply moves to the next row after checking the sta­
tus of DBBOUT and the FIFO. If a change is de­
tected, the UPI must check each bit (sensor) within
the row to determine the actual sensor location.
(More than one sensor on the scanned row could
have changed.) Rather than test all 8 bits of the row
before checking the DBBOUT and FIFO status
again, the UPI performs the status check in between
each of the bit tests. This ensures the fastest re­
sponse to the master reading previous Change
Words from DBBOUT and the FIFO.

With this general overview in mind, let's go first
thru the flow chart assuming we are scanning a row
where no changes have occurred. Starting at the
Scan-and-Compare section, the UPI first checks if
the entire matrix has been scanned. If it has, the var­
ious pointers are reset. If not, the address of the
next row is placed on PORTs 20 thru 23. This selects
the desired row. The state of the row is then read
on PORT 1; the column return lines. This present
state is compared to the previous state by retriev­
ing the previous state from the matrix map and
performing an Exclusive-OR with the present state.
Since we are assuming that no change has occurred,
the result is zero. No coordinate decoding is needed
and the flow branches to the FIFO-DBBOUT Man­
agement section.

The FIFO-DBBOUT Management section simply
maintains the FIFO and loads DBBOUT whenever
Change Words are present in the FIFO and
DB BOUT is clear (OBF=O). The section first tests if
the FIFO is full. (If we assume our "no-change" row
is the first row scanned, the FIFO obviously would
not be full.) If it is, the UPI waits until OBF=O, at
which point the next Change Word is retrieved from
the FIFO and placed in DBBOUT. This "unfills" the
FIFO making room for more Change Words, At this
point, the Column Counter, R3, is checked. For rows
with no changes, the Column Counter is always zero
so the test simply falls through. (We cover the case
for changes shortly.) Now the FIFO is tested for be­
ing empty. If it is, there is no sense in any further
tests so the flow simply goes back up to scan the next
row. If the FIFO is not empty, DBBOUT is tested
again through OBF. If a Change Word is in
DBBOUT waiting for the master to read it, nothing
can be done and the flow likewise branches up for
the next row. However, if the DBBOUT is free and
remembering that the previous test showed that the
FIFO was not empty, DBBOUT is loaded with the
next Change Word and the last two conditional tests
repeat.

APPLICATIONS

Now let's assume the next row contains several
changed sensors. Like before, the row is selected, the
return lines read, and the sensor status compared to -
the previous scan. Since changes have occurred, the
Exclusive-OR result is now non-zero. Any l'sin the
result reflect the positions of the changed sensors.
This non-zero result is stored in the Compare Result
register, R7. At this point, the Column Counter is
preset to S. To determine the changed sensors' loca­
tions, the Compare Result register is shifted bit-by­
bit to the left while decrementing the Column
Counter. After each shift, BIT 7 of the result is test­
ed. If it is a one, a changed sensor has been found.
The Column Counter then reflected the sensor's ma­
trix column position while the Scan Row Select reg­
ister holds it row position. These registers are then
combined in R6, the Change Word Store, to form the
sensor's matrix coordinate section of the Change
Word. The Sth bit ofthe Change Word Store is cod­
ed with the sensor's present state (Figure IS). This
byte forms the complete Change Word. It is loaded
into the next available FIFO position. If BIT 7 of the
Compare Result had been zero, that particular sen­
sor had not changed and the coordinate decoding is
not performed.

In between each shift, test, and coordinate encode (if
necessary), the FIFO-DBBOUT Management is
performed. It is the Column Counter test within this
section that routes the flow back up to the Change
Word Encoding section if the entire Compare Result
(row) has not been shifted and tested.

The FIFO is implemented as a circular buffer with
IN and OUT pointers (R4 and R5 respectively). The
operations of the FIFO is best understood using an
example, Figure 21. This series of figures show how
the FIFO, DBBOUT, and OBF interact as changes
are detected and Change Words are read by the mas­
ter. The letters correspond to sequential Change
Words being loaded into the FIFO. Note that the fig­
url;lS show only a 4XS FIFO however, the principles
are the same in the 40XS FIFO.

Figure 21A shows the condition where no Change
Words have been loaded into the FIFO or DBBOUT.
In Figure 21B a change, "A", has been detected, de­
coded, and loaded into the FIFO at the location
equal to the value of the FIFO-IN pointer. The
FIFO-OUT pointer is reset to the bottom of the
FIFO since it had reached the FIFO top. Now that a
Change Word is in the FIFO, OBF is checked to see
if DBBOUT is empty. Because OBF=O, DBBOUT is
empty and the Change Word is loaded from the
FIFO location pointed at by the FIFO-OUT pointer.
This is shown in Figure 21C. Loading DBBOUT
automatically sets OBF. OBF remains set until the

master reads DBBOUT. Figures 21D and 21E show
two more Change Words loaded into the FIFO. In
Figure 21F the first Change Word is finally read by
the master resetting OBF. This allows the next
Change Word to be loaded into DBBOUT. Note that
each time the FIFO is loaded, the FIFO-IN pointer
increments. Each time DBBOUT is read the FIFO­
OUT pointer increments unless there are no more
Change Words in the FIFO. Both pointers wrap­
around to the bottom once they reach the FIFO top.
The remaining figures show more Change Words be­
ing loaded into the FIFO. When the entire FIFO fills
and DBBOUTcan not be loaded (OBF=I), scanning
stops until the master reads DBBOUT making room
for more Change Words.

As was mentioned earlier, two interrupt outputs to
the master are available: Change Word Ready (P25,
OBF) and FIFO NOT EMPTY (P24). The Change
Word Ready interrupt simply reflects OBF and is
handled automatically by the UPI since an EN
FLAGS instruction is executed during initialization.
The FIFO NOT EMPTY interrupt is generated and
cleared as appropriate, each pass through the FIFO
management code. .

No debouncing is provided although it could be
added. Rather, the scan time is left as an equate
variable so that it could be varied to account for both
deb ounce time and expected sensor change rates.
The minimum scan time for this application is
2msec when using a 6MHz clock. Since the matrix
controller is coded as a foreground task, scan time
simply uses a software delay loop.

The UPI software is included as Appendix B1. Ap­
pendix B2 is SOS5A test software which builds a
Change Word buffer starting at BUFSRT. This soft­
ware simply polls the STATUS register looking for
Change Word Ready to go true. DB BOUT is then
read and loaded into the buffer. Now let's move on to
an application which combines both the foreground
and background concepts.

Combination 1/0 Device
The final UPI application was designed especially to
add additional serial and parallel I/O. ports to the
iSBC SO/30. This UPI simulates a full-duplex UART
(U niversal Asynchronous Receiver/Transmitter)
combined with an S-bit parallel I/O port. Features of
the UART include: software selectable baud rates
(110, 300, 600, or 1200 baud), double buffering for
both the transmitter and receiver, and receiver test­
ing for false start bit, framing, and overrun errors.
For parallel I/O, one S-bit port is programmable for
either input or output. The output port is statically
latched and the input port is sampled.

6-886

APPLICATIONS

A) F) omtt -tr-e:] c:J
OUT :

08F 08F

0 IN D
OBBOUT FIFO DBBOUT FIFO

fiFO EMPTY (MASTER READS CHANGE A
OBBQUTj FIN ALL Y READ

8)

~H
G)

H" e:] 0 OUT C .

08F
IN

08F

0 D
DBBOUT FIFO DBBOUT FIFO

CHANGE A DETECTED CHANGE 8 LOADED
INTO DBBQUT

C)

oo,H
H)

~'" D D OUT

08F IN
08F

0 0
OSSOUT FIFO DBBOUT FIFO

CHANGE A LOADED INTO DBBOUT, CHANGE 0 DETECTED
FIFO EMPTY

D)

oo,lf D IN D oo,~
08F 08F

...-IN

0 0 E

DBBOUT FIFO OS BOUT FIFO
CHANGE B DETECTED CHANGE E DETECTED

E)

o",-tr
J)

~1!f"
IN

D D
08F

0 0
OSSOUT FIFO OSSOUT FIFO

CHANGE C DETECTED CHANGE F DETECTED, FifO FULL.
SCANNING STOPPED UNTIL B IS READ

Figure 21A-J. FIFO Operation Example

6-887

APPLICATIONS

Figure 22 shows the interface of this combination
I/O device to the dedicated UPI socket on the iSBC
80/30. The only external requirement is a 76.8 kHz
source which serves as the baud rate standard. The
internal baud rates are generated as multiples of this
external clock. This clock is obtained from one of the
8253 counters. Otherwise, an RS-232 driver and re­
ceiver already available for UPI use in serial I/O ap­
plications. Sockets are also provided for termination
of the parallel port.

PARALLEL PORT

TxD

RxD

TICK SAMPLE

EXT CLOCK(76.8 KHz)
FROM 8253

Figure 22. Combination I/O Device

There are three commands for this application.
Their format is shown in Figure 23. The CON­
FIGURE command specifies the serial baud rate
and the parallel I/O direction. Normally this com­
mand is issued once during system initialization.
The I/O command causes a parallel I/O operation to
be performed. If the parallel port direction is out,
the UPI expects the data byte immediately following
an I/O command to be data for the output port. If
the port is in the input direction, an I/O command
causes the port to be read and the data placed in
DBBOUT. The RESET ERROR command resets
the serial receiver error bits in the STATUS register.

COMMAND FORMAT

COP A-120D BAUD SELECT
B- 600 BUAO SELECT
c- 300 BAUD SELECT
0- 110 BAUD SELECT
P-PARALlEL I/O OIRECTION

O-INPUT
1-0UTPUT

o I/O COMMAND

o RES~T ERROR COMMAND

Figure 23. Combination I/O Command Format

The STATUS register format is shown in Figure 24.
Looking at each bit, BIT 0 (OBF) is the DATA
A V AILABLE flag. It is set whenever the UPI places
data into DBBOUT. Since the data may come from

either the receiver or the parallel input port, the FO
and Fl flags (BITs 2 and 3) code the source. Thus,
when the master finds OBF set, it must decode FO
and Fl to determine the source.

STATUS FORMAT

OBF-DATA AVAILABLE
ISF-BUSY

I ~=Fl L- NOT USED

L~======= Tx INTERRUPT FRAMING ERROR
'-----------OVERRUN ERROR

FO F 1 OPERATION (SF = 1)

NO OPERATION
PARALLEL I, 0 DATA
SERIAL 1:0 DATA

COMMAND ERROR

Figure 24. STATUS Register Format

BIT 1 (IBF) functions as a busy bit. When IBF is set,
no writes to DBBIN are allowed. BIT 5 is the TxINT
(Transmitter Interrupt) bit. It is asserted whenever
the transmitter buffer register is empty. The master
uses this bit to determine when the transmitter is
ready to accept a data character.

BITS 6 and 7 are receiver error flags. The framing
error flag, BIT 6, is set whenever a character is re­
ceived with an invalid stop bit. BIT 7, overrun error,
is set if a character is received before the master has
read a previous character. If an overrun occurs, the
previous character is overwritten and lost. Once an
error occurs, the error flag remains set until reset by
a RESET ERROR command. A set error flag does
not inhibit receiver operation however.

Figure 25 shows the port pin definition for this ap­
plication. PORT 1 is the parallel I/O port. The
UART uses PORT 2 and the Test inputs. P20 is the
transmitter data out pin. It is set for a mark and re­
set for a space. P23 is a transmitter interrupt output.
This pin has the same timing as the TxINT bit in the
STATUS register. It is normally used in interrupt­
driven systems to interrupt the master processor
when the transmitter is ready to accept a new data
character.

The OBF flag is brought out on P24 as a master in­
terrupt when data is available in DBBOUT. P26 is a
diagnostic pin which pulses at four times the se­
lected baud rate. (More about this pin later.) The re­
ceiver data input uses the TEST 0 input. One of the
PORT 2 pins could have been used, however, the

6-888

APPLICATIONS

PORT PIN DEFINITION

PORT !!!! FUNCTION

0-7 PARALLEL lID

Tx Data
NOT USED
NOT USED
Tx INTERRUPT
OaF INTERRUPT
NOT USED

NOT USED (TICK SAMPLE)
NOT USED

TO Rx DATA

T1 EXTERNAL CLOCK (76.8 kHz)

Figure 25. Combination 1/0 Port Definition

software can test the TEST 0 in one instruction
without first reading a port.

The TEST 1 input is the baud rate external source.
The UART divides this input to determine the tim­
ing needed for the selected baud rate. The input is a
non-synchronous 76.8 kHz source.

Internally, when the CONFIGURE command is re­
ceived and the selected baud rate is determined, the
internal timer/counter is loaded with a baud rate
constant and started in the event counter mode.
Timer/counter interrupts are then enabled. The
baud rate constant is selected to provide a counter
interrupt at four times the desired baud rate. At
each interrupt, both the transmitter and receiver are
handled. Between interrupts, any new commands
and data are recognized and executed.

As a prelude to discussing the flow charts, Figure 26
shows the register definition. Register Bank 0 serves
the UART receiver and parallel I/O while Register
Bank 1 handles the UART transmitter and com­
mands. Looking at RBO first, R3 is the receiver sta­
tus register, RxSTS. Reflected in the bits of this
register is the current receiver status in sequential
order. Figure 27 shows this bit definition. BIT 0 is
the Rx flag. It is set whenever a possible start bit is
received. BIT 1 signifies that the start bit is good
and character construction should begin with the
next received bit. BIT 1 is the Good Start flag. BIT 2
is the Byte Finished flag. When all data bits of a
character are received, this flag is set. When all the
bits, data and stop bits are received, the assembled
character is loaded into the holding register (R4 in
Figure 27) BIT 3, the Data Ready flag, is set. The
foreground routine which looks for commands and
data continuously, looks at this bit to determine
when the receiver has received a character. BITS 4
and 5 signify any error conditions for a particular
character.

63
USER RAM

32 (NOT USED)

31 AC TEMP. STORE R7

30 COMMAND STORE R6

29 Tx STATUS - TxSTS R5

28 Tx BUFFER R' REGISTER

27 Tx SERIALIZER R3
BANK 1

26 Tx TICK COUNTER R2

25 BAUD RATE CONSTANT R1

2. NOT USED RO

23 STACK
(ONE LEVEL USeD)

STATUS STORE R7

Rx DESERIALIZER R6

Rx TICK COUNTER R5

Rx HOLDING R' REGISTER

Ax STATUS-RxSTS R3
BANK a

NOT USED R2

NOT USED R1

NOT USED RO

Figure 26. Combination 1/0 Register Map

RxSTS FORMAT

Ax FLAG-POSSIBLE START BIT
START FLAG-GOOD START BIT

L~=== BYTE FINISHED FLAG
DATA READY FLAG

'------- FRAMING ERROR

L---======== aVERRRUN ERROR I, 0 DIRECTION
L---_________ L 0 FLAG

Figure 27. RxSTS Register

The parallel I/O port software uses BITS 6 and 7.
BIT 6 codes the I/O direction specified by the last
CONFIGURE command. BIT 7 is set whenever an
I/O command is received. The foreground routine
tests this bit to determine when an I/O operation has
been requested by the master.

As was mentioned, R4 is the receiver holding regis­
ter. Assembled characters are held in this register
until the foreground routine finds DBBOUT free, at
which time the data is transferred from R4 to
DBBOUT. R5 is the receiver tick counter. Recall
that counter interrupts occur at four times the baud
rate. Therefore, once a start bit is found, the receiver
only needs to look at the data every four interrrupts
or tick counts. R5 holds the current tick count.

R6 is the receiver de-serializing register. Data char­
acters are assembled in this register. R6 is preset to
80H when a good start bit is received. As each bit is

6-889

APPLICATIONS

sampled every four timer ticks, they are rotated into
the leftmost bit of Ra. The software knows the char­
acter assembly is complete when the original preset
bit rotates into the carry.

An image ofthe upper 4 bits ofthe STATUS register
is stored in R7. These bits are the TxINT, Framing
and Overrun bits. This image is needed since the
UPI may load the upper 4 STATUS register bits
from its accumulator; however, it cannot read STA­
TUS directly.

In Register Bank I (Figure 26), RI holds the baud
rate constant which is found from decoding the baud
rate select bits of the CONFIGURE command. The
counter is reloaded with this constant every timer
tick. Like the receiver, the transmitter only needs to
update the transmitter output every four ticks. R2
holds the transmitter tick count. The value of R2 de­
termines which portion of the data is being trans­
mitted; start bit, data bits, or stop bit. The transmit
serializer is Rg. Rg holds the data character as each
character bit is transmitted.

R4 is the transmitter holding register. It provides
the double buffering for the transmitter. While
transmitting one character, it is possible to load the
next character into R4 via DBBIN. The TxINT bit
in STATUS and pin on PORT 2 reflect the "full­
ness" of R4. If the ,holding register is empty, the in­
terrupt bit and pin are set. They are reset when the
master writes a: new data byte for the transmitter
into DBBIN. The transmitter status register
(TxSTS) is RS. Like RxSTS,TxSTS contains flag
bits which indicate the current state of the transmit­
ter. This flag bit format is shown in Figure 28.

TxSTS BIT 0 is the Tx flag. It is set whenever the
transmitter is transmitting a character. It is set from
the beginning of the start bit until the end of the
stop bit. BITl is the Tx request flag. This bit is set
by the foreground routine when it transfers a new
character from DBBIN to the Tx holding register,
R4. The transmitter software uses this flag to tell if
new data is available. It is reset when the transmitter

, transfers the character from the holding register to
the serializer.

TxSTS FORMAT

1716i'~'14131211~ ,
I. I I I I I Tx FLAG - TRANSMITTING

. REQUEST FLAG

L __ ~~=_==PIPELINED DATA BIT START BIT FLAG
NOT USED

Figure 28. TxSTS Register

BIT 2 is the pipelined Tx data bit. The transmitter
uses a pipelining technique which sets up the next

, output level in BIT 2 after processing the current
timer tick. The output level is always changed at the
same point after a timer tick -interrupt. This tech­
nique ensures that no bit timing distortion results
from different length processing paths through the
receiver and transmitter routines.

BIT g of TxSTS is the Start Bit flag. It is set by the
transmitter when the start bit space is set up in the
pipelined data bit. This allows the transmitter to
differentiate between the start bit and the data bits
on following timer ticks.

The flow charts for this application are shown in
Figures 29A-F. At reset, the INIT routine is exe­
cuted which initializes the registers and port pins.
After initialization, IBF and OBF are tested in
MNLOOP. These flags are tested continually in this
loop. If IBF is set, FI is tested for command or data
and execution is transferred to the appropriate rou­
tine (CMD or DATA). If IBF=O, OBF is checked. If
OBF=O (DBBOUT is free), the Rx data ready and
I/O flags in RxSTSare tested. If Rx data ready is set,
the received data is retrieved from the Rx holding
register and transferred to DBBOUT. Any error
flags associated with that data are also transferred to
STATUS. If the I/O flag is set and the I/O direction
is input, PORT I is read and the data transferred to
DBBOUT. In either case, FO and FI are set to indi­
cate the data source.

If IBF is set by a command write to DBBIN, CMD
reads the command and decodes the desired oper­
ation. If an I/O operation is specified" the I/O flag is
set to indicate to the MNLOOP and DATA routines'
that an I/O operation is to be performed. If the com­
mand is a CONFIGURE command, the constant for
the selected baud rate is loaded into both Baud Rate
Constant register and the timer/counter. The timer/
counter is started in the event counter mode and
timer/counter interrupts are enabled. In addition,
the I/O port is initialized to alII's ifthe I/O direction
bit specifies an input port. If the command is a RE­
SET ERROR command, the two error flags in STA-
TUS are cleared. .

If the IBF flag is set by a data write, the DATA rou­
tine reads DBBIN and places the data in the appro­
priate place. If the I/O flag is set, the data is for the
output port so the port is loaded. If the I/O flag is
reset, the data is for the UART transmitter. Data for
the transmitter resets the TxINT bit and pin plus
sets the Tx request flag in TxSTS. The data is trans­
ferred to the Tx holding register, R4.

6-890

APPLICATIONS

Figure 29A.

Once a CONFIGURE command is received and the
counter started, timer/counter interrupts start oc­
curring at four times the selected baud rate. These
interrupts cause a vector to the TIMINT routine,
Figure 29D. A 76.8 kHz counter input provides a
13.02 JlS counter resolution. Since it requires several
UPI instruction cycles to reload the counter, the
counter is set to two counts less than the desired
baud rate and the counter is reloaded in TIMINT
synchronous with the second low-going transition
after the interrupt. Once the counter is reloaded, an
output port (P26) is toggled to give an external indi-

SET FRAMING
ERROR IN STATUS

OUTPUT

INIT Flow Chart

6-891

cation of internal counter interval. This is a helpful
diagnostic feature. After the tick sample output, the
pipelined transmitter data in TxSTS is output to the
TxD pin. Although this occurs every timer tick, the
pipelined data is changed only every fourth tick.

The receiver is now handled, Figure 29E. The Rx
flag in RxSTS is examined to see if the receiver is
currently in the process of receiving a character. If it
is not, the RxD input is tested for a space condition
which might indicate a possible start bit. If the input
is a mark, no start bit is possible and execution

AFN·Ol536A

APPLICATIONS

. Figure 29B. CMO Flow Chart

branches to the transmitter flow, XMIT. If the input
is a space, the Rx flag is set before proceeding with
XMIT.

If the Rx flag is found set when entering ReV, the
receiver is in the process of receiving a character. If
so, the start bit flag is then tested to determine if a
good start bit was received. The Rx tick counter is
initialized to 4 and the Rx deserializer is set to SOH. '
A mark indicates a bad start bit; the Rx flag is reset
to abort the reception.

If the start bit flag is set, the program is .somewhere
in the middle of the received character. Since 'the
data should be sampled every fourth timer tick, the
tick counter is decremented and tested for zero. If
non-zero no sample is needed and execution contin­
ues with XMIT. If zero, the tick counter is reset to
four. Now the byte finished flag is tested to deter­
mine if the data sample is a data or stop bit. If reset,
the sample is a data bit. The sample is done and the
new bit rotated into the Rx deserializer. If this rotate

6-892

Figure 29C. Data Flow Chart

AFN.ol536A

APPLICATIONS

Figure 290. TIMINT Flow Chart

sets the carry, that data bit was the last so the byte
finished flag is set. If the carry is reset, the data bit is
,not the last so execution simply continues with
XMIT.

Had the byte finished flag been set, this sample is for
the stop bit. The RxD input is tested and if a space,
the framing error flag is set. Otherwise, it is reset.
Next, the Rx data ready flag is tested. If it is set, the
master has not read the previous character so the
overrun error flag is set. Then the Rx data ready flag
is set and the received data character is transferred
into the Rx holding register. The Rx, start bit, and
byte finished flags are reset to get ready for the next
character.

Execution of the transmitter routine, XMIT, follows
the receiver, Figure 29F. The transmitter starts by
checking the start bit flag in TxSTS. Recall that the
actual transmit data is output at the beginning of
the timer routine. The start bit flag indicates wheth­
er the current timer tick interrupt started the start
bit. If it is set, the pipelined data output earlier in
the routine was the start of the start bit so the flag is
reset and the Tx tick counter is initialized. Nothing
else is done this timer tick so the routine returns to
the foreground.

6-893

If the start bit flag is reset, the Tx tick counter is
incremented and tested. The test is performed mod­
ulo 4. lithe counter mod 4 is not zero, it has not been
four ticks since the transmitter was handled last so
the routine simply returns. If the counter mod 4 is
zero, it is time to handle the transmitter and the Tx
flag is tested.

The Tx flag indicates whether the transmitter is ac­
tive. If the transmitter is inactive, no character is
currently being transmitted so the Tx request flag is
tested to see if a new character is waiting in the Tx
buffer. If no character is waiting (Tx request
flag=O), the Tx interrupt pin and bit are set before
returning to the foreground. If there is a character
waiting, it is retrieved from the buffer and placed in
the Tx serializer. The Tx request flag is reset while
the Tx and start bit flags are set. A space is placed in
the Tx pipelined data bit so a start bit will be output
on the next tick. Since the Tx buffer is now empty,
the Tx interrupt bit and pin are set to indicate the
availability of the buffer to the master. The routine
then returns to the foreground.

If the tick counter mod 4 is zero and the Tx flag in­
dicates the transmitter is in the middle of a charac­
ter, the tick counter is checked to see what transmit­
ter operation is needed. If the counter is 2BH (40D),
all data bits plus the stop bits are complete. The
character is therefore done and the Tx flag is reset. If
the counter is 24H (36D), the data bits are complete
and the next output should be a mark for the stop bit
so a mark is loaded into the Tx pipelined data bit.

If neither of the above conditions are met for the
counter, the transmitter is some place in the data
field, so the next data bit is rotated out of the Tx
serializer into the pipelined data bit. The next tick
outputs this bit.

At this point the program execution is returned to
the foreground.

That completes the discussion of the combination
I/O device flow charts. The UPI software listing is
shown in Appendix Cl. Appendix C2 is example
BOS5A driver software.

Several observations concerning the drivers are ap­
propriate. Notice that since the receiver and input
port of the UPI use the OBF flag and interrupt out­
put, the interrupt and flag are cleared when the mas­
ter reads DBBOUT. This is not true for the
transmitter. There is always some time after a mas­
ter write of new transmitter data before the trans­
mitter bit and pin are cleared. Thus in an interrupt­
driven system, edge-sensitive interrupts should be

APPLICATIONS

Figure 29E. RCV Flow Chart

used. For polled-systems, the software must wait
after writing new data for IBF=O before re-examin­
ing the Tx interrupt flag in STATUS.

Notice that this application uses none of the user
data memory above Register Bank 1 and only 361
bytes of program memory. This leaves the door open
for many improvements. Improvements that come
to mind are increased buffering of the transmit or
received data, modem control pins, and parallel port
handshaking inputs.

This completes our discussion of specific UPI appli­
cations. Before concluding, let's look briefly at two
debug techniques used during the development of

these applications that you might find useful in your
own designs.

DEBUG TECHNIQUES
Since the UPI is essentially a single-chip microcom­
puter, the classical data, address, and control buses
are not available to the outside world during normal
operation. This fact normally makes debugging a
UPI design difficult; however, certain "tricks" can be
included in the UPI software to ease this task.

If a UPI is handling multiple tasks, it is usually
easier to code and debug each task individually. This
is fairly standard procedure. Since each task usually
utilizes only a subset of the total number of I/O pins,

6-894

APPLICATIONS

(XMIT)

RETR)

RETR (AETR)

MARK TO P1PELINED
DATA FLAG (STOP)

(RETR)

SET Tx INT

(RETR)

Figure 29F. XMIT Flow Chart

coding only one task leaves some I/O pins free. Port
output instructions can then be added in the task
code being debugged which toggle these unused pins
to determine which section of task code is being ex­
ecuted at any particular time. The task can also be
made to "wait" at various points by using an extra
pin as an input and adding code to loop until a par­
ticular input condition is met.

. One example of using an extra pin as an output is
included in the combination serial/parallel device
code. During initial development the receiver was
not receiving characters correctly. Since this could
be caused by incorrect sampling, three lines of code
were added to toggle BIT 6 of PORT 2 at each tick of
the sample clock. This code "is at lines 184 and 185 of
the listing. Thus by looking at the location of the tick

6-895

sample pulse with respect to the received bit, the
UPI sampling interval can be observed. The tick
sample time was incorrect and the code was modi­
fied accordingly. Similar techniques could be ap­
plied at other locations in the program.

The EPROM version of the UPI (8741A) also con­
tains another feature to aid in debug: the capability
to single step thru a program. The user may step
thru the program instruction-by-instruction. The
address of the next instruction to be fetched is avail­
able on PORT 1 and the lower 2 bits of PORT 2. Fig­
ure 30 shows the timing used in the discussion below.
When the single step input, SS, is brought low, the
internal processor responds by stopping during the
fetch portion of the next instruction. This action is
acknowledged by the processor raising the SYNC

APPLICATIONS

SV: ~,-___ I ___ ~:~~:_i_~L_l_:.F
PORTS X PORT DATA VALID X ADDRESS ~~ x:::

I. ~~~~i'Na _ I._--STOPPEO-+ACTIVE r INSTRUCTION

Figure 30. , Single Step Timing

output. The address of the instruction to be fetched
is then placed on the port pins. This state may be
held indefinitely. To step to the next instruction, SS
is raised high, which causes SYNC to go low, which is
then used to return SS low. This allows the processor
to advance to the next instruction. If SS is left high,
the processor continues to execute at normal speed
until SS goes low.

To preserve port functionality, port data is valid
while SYNC is low. Figure 31 shows the external cir­
cuitry required to implement single step while pre­
serving port functionality. S1 is the RUN/STOP
switch. When in the RUN position, the 7474 is held
preset so SS is high and the UPI executes normally.
When switched to STOP, the preset is removed and

+5
+s

+s S1

;s.
RUN

55

C

7400 +s
8D41A1
8741A

7407 :

SYNC

the next low-going transition of SYNC causes the
7474 to clear, lowering SS. While sync is low, the
port data is valid and the current instruction is ex­
ecuting. Low SYNC is also used to enable the tri­
state buffers when the ports are used as inputs.
When execution is complete, SYNC goes high. This
transition latches the valid port data in the
74LS374s. SYNC going high also signifies that the
address of the next instruction will appear on the
port pins. This state can be held indefinitely with
the address data displayed on the LEDs.

When the S2 is depressed, the 7474 is set which
causes SS to go high. This allows the processor to
fetch and execute the instruction whose address was
displayed. SYNC going low during execution, clears

74LS374

2D 2a

1D 1a

LATCHED
P21 8D 8a PORT

DATA

74L$314

• 1 OF 10 PORT . LINES

P10 1D 1a

+s

Figure 31. Single Step External Circuitry

6-896

APPLICATIONS

the 7474 lowering SS. Thus the processor again stops
when execution is complete and the next fetch is
started.

All UPI functions continue to operate while single
stepping (the processor is actually executing NOPs
internally while stopped). Both IBF and timer/
counter interrupts can be serviced. The only change
is that the interval timer is prescaled on single
stepped instructions and, of course, will not indicate
the correct intervals in real time. The total number
of instruction which would have been executed dur­
ing a given interval is the same however.

The single step circuitry can be used to step through
a complete program; however, this might be a time­
consuming job if the program is long or if only a por­
tion is to be examined. The circuitry could easily be
modified to incorporate the output toggling tech­
nique to determine when to run and stop. If you
would like to step thru a particular section of code,

an extra port pin could replace switch S1. Extra
instructions would then be added to lower the port
when entering the code section and raise the port
when exiting the section. The program would then
stop when that section of code is reached allowing it
to be stepped through. At the end of the section, the
program would execute at normal speed.

CONCLUSION
Well, that's it. Machine readable (floppy disk or pa­
per tape) source listings of UPI software for these
applications are available in Insite, the Intel library
. of user-donated programs. Also available in Insite
are the source listings for some of Intel's pre-pro­
grammed UPI products.

For information about Insite, write to:

6-897

Insite
Intel Corp.
3065 Bowers Ave.
Santa Clara, Ca 95051

APPENDIX AI

6-898

APPLICATIONS

Fl A5M4B F'3. LED PRINT< Lf') NC10I3JECT

ISIS-I I MCS-A8/UPI-41 MACRO ASSEMELER, V3.0 PAGE

LOC OBJ LINE SOURCE STATEMENT

1 $MOD41A
2 ***

UPI-41A a-DIGIT LED DISPLAY CONTROLLER

4 ***
5
6
7 ,
B j THIS PROGRAM USES THE UPI-41A AS A LED DISPLAY CONTROLLER
9 j WHICH SCANS AND REFRESHES EIGHT SEVEN-SEGMENT LEO DISPLAYS.

10 j THE CHARACTERS ARE DEFINED BY INPUT FROM A MASTER CPU IN THE
11 j FORM OF ONE EIGHT BIT WORD PER DIGIT-CHARACTER SELECTION.
12
13
14

15 J ***
16
17
18
19
20

I REGISTER DEFINITIONS:

21 J

22
23
24
25
26
27

REGISTER

RO
R1
R2
R3
R4
R5
R6
R7

RB1

DISPLAY MAP POINTER
NOT USED
DATA WORD AND CHARACTER
DIGIT COUNTER
NOT USED
NOT USED
NOT USED
ACCUMULATOR STORAGE

RBO

NOT USED
NOT USED

STORAGE NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED

28 J **
29
30 ; PORT PIN DEFINITIONS:
31 PIN PORT 1 FUNCTION PORT 2 FUNCTION
32
33 PO-7 SEGMENT DRIVER CONTROL DIGIT DRIVER CONTROL
34 ,
35 SEJECT

6-899

APPLICATIONS

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER. V3.0 PAGE 2

LOC DB') LINE SOURCE STATEMENT

36 ; **
37 ; DISPLAY DATA WORD BIT DEFINITION:
38 B IT FUNCTION
39
40 , 0-4 CHARACTER SELECT
41 5-7 DIGIT SELECT
42 ,
43 j CHARACTER SELECT:
44 D4 D3 D2 D1 DO CHARACTER
45 0 0 0 0 0 0
4b 0 0 0 0 1 1
47 0 0 0 1 0 2
48 0 0 0 1 1 3
49 0 0 0 0 4
'0 , 0 0 0 1 ,
" 0 0 1 0 6
'2 , 0 0 1 1 1 7
53 , 0 1 0 0 0 8
.4 0 0 0 1 9
50 , 0 0 1 0 A
56 , 0 0 1 1 B
57 0 1 0 0 C
.8 , 0 0 1 D
59 0 1 0 E
60 0 1 1 1 1 F
61 , 1 0 0 0 0
62 1 0 0 0 1 G
63 1 0 0 1 0 H
64 , 0 0 1 1 I
65 0 1 0 0 .J
66 , 0 1 0 1 L
67 , 0 1 1 0 N
68 0 1 1 1 0
69 0 0 0 P
70 0 0 1 R
71 , 0 1 0 T
72 0 1 1 U
73 , 0 0 y
74 0 1
7. 1 0
7b "BLANK"
77
78 ; DIGIT SELECT:
79 D7 D6 DO DIGIT NUMBER
80 0 0 0 1
81 0 0 1 2
82 , 0 1 0 3
83 0 1 1 4
84 0 0 5
85 0 1 6
8b , 0 7
87 1 B

88 J ***
89 SEJECT

6-900

APPLICATIONS

1815-1 I MCS-.04B/UPI-41 MACRO ASSEMBLER. V3.0 PAGE 3

LOC DB..}

FFFI

0000
0000 0409
0002 00
0003 0436
0000 00
0006 00
0007 041D

0009 D5
CODA BADe
Dooe B838
OOOE 23FF
0010 AD
0011 18
0012 F8
0013 B20E
D015 BBOO
0017 23F1
0019 62
OOIA 55
0018 25
DOlC 0",

LINE SOURCE STATEMENT

90 ; ***
91 J EQUATES
92 j THE FOLLOWING COCE DESIGNATES "TIME" AS A VARIABLE. THIS
93 j ADJUSTS THE AMOUNT OF CYCLES THE TIMER COUNTS BEFORE
94 1 A TIMER INTERRUPT OCCURS AND REFRESHES THE DISPLAY. APPROXIMATELY
95 ;:50 TIMES PER SECOND.
96 TINE EGU -OFH ; TIMER VALUE 2. '5MSEC

97 j ***'It.it******
98 INTERRUPT BRANCHING
99 I THIS PORTION OF MEMORY IS DEDICATED FOR USE OF RESET AND

100 ,INTERRUPT BRANCHI NG. WHEN THE INTERRUPTS ARE ENABLED THE
101 i CODE AT THE FOLLOWING DESIGNATED SPOTS ARE EXECUTED WHEN A
102 ; RESET OR A INTERRUPT OCCURS.
103 ORG 0
104 JMP START ; RESET
10~ NOP I

106 ""MP INPUT J IBF INTERRUPT
107 NOP
108 NOP

JMP DISPLA j TIMER INTERRUPT 109
110
III
112
113
114
II~
II.

; ***

117
liB
119
120
121
122
123
124
125
12.
127
128
129
130

J INITIALIZATION
J THE FOLLOWING CODE SETS UP THE UPI-41 AND DISPLAY HARDWARE
I INTO OPERATIONAL FORMAT. THE DISPLAY IS TURNED OFF, THE DISPLAY
j MAP IS FILLED WITH "BLANK" CHARACTERS, THE TIMER SET AND THE
I INTERRUPTS ARE ENABLED.

START: SEL RBI
ORL P2, .. OSH J TURN DIGIT DRIVERS OFF
MOV RO. #38H J DISPLAY MAP POINTER, BOTTOM OF DISPLAY MAP

DLKMAP: MOV A,IOFFH J FF="BLANK"
MOV @:RO, A I BLANK TO DISPLAY MAP
INC RO j INCREMENT DISPLAY MAP POINTER
MOV A, RO ; DISPLAY MAP POINTER TO ACCUMULATOR
JB' BLKMAP J BLANK DISPLAY MAP TILL FILLED
MOV R3. ,",DOH ; SET DIGIT COUNTER TO 0
MOV A, .. TIME ; TIMER VALUE
MOV T, A i LOAD TIMER
STRT T i START TIMER
EN TCNTI ; ENABLE TIMER INTERRUPT
EN I ; ENABLE IBF INTERRUPT

131 i **
132 USER PROGRAM
133 i A USERS' PROGRAM WOULD INITIALIZE AT THIS POINT. THE FOLLOWING
134 ; CODE IS UND CONCLUDED WITH
135 ; SYNC CHARACTERS (OAAH). A CHECKSUM BYTE IMMEDIATELY PRECEEDS THE
136 j FINAL SYNC. WHEN READING, THE CONTROLLE********************************it****
137 $EJECT

6-901

APPLICATIONS

ISIS-II MCS-49/UPI-41 MACRO ASSEMBLER, V3.0 PAGE

Lac OB0

0010 0'
001E AF
OOlF 8A08
0021 PB
0022 4338
0024 A8
002~ FO
0026 39
0027 FB
0026 3A
0029 19
002A 0307
002C ~630
002E BBOO
0030 23F1
0032 62
0033 '" 0034 FF
003~ 93

LINE SOURCE STATEMENT

138 ; ****************.****************tf*************************************
139) DISPLAY ROUTINE
140 I THIS PORTION OF THIS PROGRAM IS AN INTERRUPT ROUTINE WHICH IS
141 j ACTED UPON WHEN THE TIMER COUNT IS COMPLETED. THE ROUTINE UPDATES
142 ; ONE DISPLAY DIGIT FROM THE DISPLAY MAP PER INTERRUPT SEQUENTIALLY,
143 I THUS EIGHT TIMER INTERRUPTS WILL HAVE REFRESHED THE ENTIRE DISPLAY.
144 ; REGISTER BANK 1 IS SELECTED AND THE ACCUMULATOR IS SAVED UPON
14~ ; ENTERING THE ROUTINE. ONCE THE DISPLAY HAS BEEN REFRESHED THE TIMER
146 I IS RESET AND THE ACCUMULATOR AND PRE-INTERRUPT REGISTER DANK IS RESTORED.
147
148 DISPLA: BEL RBI ,REGISTER BANK 1
149 MOV R7. A ,SAVE ACCUMULATOR
150 ORL P2, :lOSH ; TURN DIGIT DRIVERS OFF

1" MOV A, R3 j DIGIT COUNTER TO ACCUMULATOR
152 ORL A, *38H , "OR". TO GET DISPLAY MAP ADDRESS
153 MOV RO. A ; DISPLAY MAP POINTER
104 MOV A. !!RO ; GET CHARACTER FROM DISPLAY MAP
155 OUTL Pl, A j OUTPUT CHARACTER TO SEGMENT DR IVERS
106 MOV A. R3 ; DIGIT COUNTER VALUE TO ACCUMULATOR
1'7 OUTL P2, A ,OUTPUT TO DIGIT DRIVERS
158 INC R3 j INCREMENT DIGIT COUNTER
159 XRL A, #07H J CHECK IF AT LAST DIGIT
160 JNZ SETIME ,RESET TIMER IN NOT LAST DIGIT
161 MOV R3. ~OOH I RESET DIGIT COUNTER
162 SETIME: MOV A, *TIME j T I MER VALUE
163 MOV T.A I LOAD TIMER
164 STRT T I START TIMER
165 MOV A. R7 ; RESTORE ACCUMULATOR
166 RETR ; RETURN

167 I ** 169 'E~ECT

6-902

APPLICATIONS

ISIS-I I MCS-4B/UPI-41 MACRO ASSEMBLER. V3.0 PAGE

LOC 00..)

0036 D5
0037 AF
0038 22
0039 AA
003A 47
0038 77
003C 5307
003E 4338
0040 A8
0041 FA
0042 531F
0044 E3
0045 AA
0046 D37F
0048 C64E
004A FA
0040 AO
004C 0451
004E FA
004F 50
0050 AO
0051 FF
0052 93

LINE SOURCE STATEMENT

169

170 j **""*****11'******* •• ********-11"*_
171 INPUT CHARACTER AND DIGIT ROUTINE
172 ; THIS PORTION OF THE PROGRAM IS AN INTERRUPT ROUTINE WHICH
173 ; IS ACTED UPON WHEN THE IBF BIT IS SET. THE ROUTINE GETS THE
174 ; DISPLAY DATA WORD FROM THE DDB AND DEFINES BOTH THE DIGIT AND
175 ; THE CHARACTER TO BE DISPLAYED. THIS IS DONE BY MEANS OF A
176 j CHARACTER LOOP-UP TABLE AND A DISPLAY MAP FOR DIGIT AND CHARACTER
177) LOCATION. SPECIAL CONSIDERATION IS TAKEN FOR A DECIMAL POINT WHICH IS
178 I SIMPLY ADDED TO THE·EXISTING CHARACTER IN THE DISPLAY MAP. REGISTER
179 I BANK 1 IS SELECTED AND THE ACCUMULATOR IS SAVED UPON ENTERING
180 l THE ROUTINE. ONCE THE DATA WORD HAS BEEN FULLY DEFINED THE ACCUMULATOR
181 J AND THE PRE-INTERRUPT REGISTER SANK IS RESTORED.
182 I

183 INPUT:
184
160
166
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201 DPOINT:
202
203
204 RETURN:
205

SEL
MOV
IN
MOV
SWAP
RR
ANL
ORL
MOV
MOV
ANL
MOVP3
MOV
XRL
JZ
MOV
MOV
JMP
MOV
ANL
MOV
MOV
RETR

RBI
R7. A
A.DBB
R2. A
A
A
A. :tt07H
A.138H
RD. A
A. R2
A. #lFH
A.@A
R2. A
A. #7FH
DPOINT
A. R2
@RO.A
RETURN
A. R2
A.@RO
@RO,A
A, R7

; REGISTER BANK 1
; SAVE ACCUMULATOR
J GET DATA
; SAVE DATA WORD
; DEFINE DIGIT LOCATION

; DIGIT LOCATION IN DIGIT POINTER
; SAVED DATA WORD TO ACCUMULATOR
; DEFINE CHARACTER LOOK-UP-TABLE LaC.
; GET CHARACTER
; SAVE CHARACTER
; IS CHARACTER DECIMAL POINT

; SAVED CHARACTER TO ACCUMULATOR
J CHARACTER TO DISPLAY MAP

i SAVED CHARACTER TO ACCUMULATOR
i"AND" WITH OLD CHARACTER
) BACK TO DISPLAY MAP
; RESTORE ACCUMULATOR

206 ; **
207 SEJECT

6-903

APPENDIX All

6-904

APPLICATIONS

ISIS-I I MCS-48/UPI-41 ,MACRO ASSEMBLER, V:]. 0 PAGE 6

LOC OBJ LINE SOUR C E STATEMENT

208 ; **iI-****
209 LOOK-UP TABLE
210 , THIS LOOK-UP TABLE ORIGINATES IN PAGE 3 OF THE UPI-41 PROGRAM
211 I MENORY. IT IS USED TO DEFINE THE CORRECT LEVEL OF EACH SEGMENT
212 j AND DECIMAL POINT FOR A SELECTED CHARACTER FROM THE INPUT ROUTINE.
213 I INVERSE LOGIC IS USED BECAUSE OF THE SPECIFIC DRIVER CIRCUITRY. THUS
214 ,A 1 ON A GIVEN SEGMENT MEANS IT I S OFF AND A 0 MEANS IT IS ON.
21~ I
216 J *******SEGMENTS********

0300 217 ORG 300H , DP G F E D C D A
0300 CO 218 CHO: DB OCOH ,1 1 0 0 0 0 0 0
0301 F9 219 CH1: DD OF9H ;1 1 1 1 1 0 0 1
0302 A4 220 CH2: DB OA4H ,I 0 1 0 0 1 0 0
0303 DO 221 CH3: DB oaOH ;1 0 1 1 0 0 0 0
0304 99 222 CH4: DD 99H ,1 0 0 1 1 0 0 1
030~ 92 223 CH': DB 92H ; 1 0 0 1 0 0 1
0306 82 224 CH6: DB 82H ,1 0 0 0 0 0 1
0307 F8 22~ CH7: DB OF8H ,1 1 1 1 1 0 0
0308 80 226 CH8: DB 80H ; 1 0 0 0 0 0 0 0
0309 98 227 CH9: DB 98H ,1 0 0 1 1 0 0 0
030A 88 228 CHA: DB 88H ; 1 0 0 0 1 0 0 0
0308 83 229 CHB: DB 83H ,1 0 0 0 0 0 1 1
030C C6 230 CHC: DB OC6H ,1 0 0 0 1 1 0
0300 AI 231 CHD: DB OA1H ;1 1 0 0 0 0 1
030E 86 232 CHE: DB 86H ;1 0 0 0 0 1 0
030F 8E 233 CHF: DB 8EH ;1 0 0 0 1 0
0310 7F 234 CHOP: DB 7FH ,0 1 1 1 1 1
0311 C2 235 CHG: DB OC2H ; 1 1 0 0 0 1 0
0312 89 236 CHH: DB 89H ;1 0 0 0 0 0
0313 FB 237 CHI: DB OF13H ,1 1 1 1 1 0 1
0314 El 238 CHJ: DB OE1H ,1 1 1 0 0 0 0
031~ C7 239 CHL: DB OC7H ; 1 1 0 0 0 1 1 1
0316 AB 240 CHN: DB OA8H ,1 0 0 1 0 1 1
0317 A3 241 CHO: DB OA3H ; 1 0 0 0 0 1 1
0318 Be 242 CHP: DB BCH ,1 0 0 1 0 0
0319 AF 243 CHR: DB OAFH ; 1 0 0 1 1 1
031A 87 244 CHT: DB 87H ,I 0 0 0 1 1 1
0318 Cl 24::1 CHU: DB OC1H ,1 1 0 0 0 0
031C 91 246 CHY: DB 91H ,1 0 1 0 0 0
0310 BF 247 CHDASH: DD O13FH

"
0 1

031E FD 248 CHAFOS: DB OFDH ,1 1 0
031F FF 249 BLANK: DB OFFH ; 1 1 1

250 ; **
2"1 END

USER SYMBOLS
BLANK 031F BLKMAP OOOE CHO 0300 CHI 0301 CH2 0302 CH3 0303 CH4 0304 CH5 0305
CH6 0306 CH7 0307 CH8 0308 CH9 0309 CHA 030A CHAPOS 031E CHB 0308 CHC 030C
CHD 0300 CHOASH 0310 CHDP 0310 CHE 030E CHF 030F CHG 0311 CHH 0312 CHI 0313
CHJ 0314 CHL 031~ CHN 0316 CHO 0317 CHP 0318 CHR 0319 CHT 031A CHU 031I3
CHY 031C DISPLA 0010 DPOINT 004E INPUT 0036 RETURN 0051 SETIME 0030 START 0009 TIME FFFl

ASSEMBLY COMPLETE, NO ERRORS

6-905

APPLICATIONS

LOC OBJ SEQ SOlmSTATEI£NT

1
2 0085A SliaRtlffIl£ TO DISPUl'/ THE 8-DIGIT BlFFER STARTlIll
3 AT THE LOCATlIJl POINTED AT ay ItSGSRT ON TI£ UPI-CONfRtUED
4 LED DISPUlY.
5
6 INPUTS:I'ISGSRT - /ESSIG: START LOCATION POINTER
7 DESTROYS: A, FIF'S
8 CfUS: OOTCIR
9

4889 19 ORG 488eH
99E5 U STATUS EIlU 9E5H ; UPI STATUS ~T
9992 12IBF EIlU 92H ; UPI IBF FLAG IflSK
99E4 13 DBBIN EOO .9E4H ; UPI DBBIN PIJlT

14 ;
4899 E5 15 DSPl.R'I: PUSH H ;SAYE HL
4891 c:; 16 PUSH a ;SfM. 8C
4802 2A2848 17 LHLD ItSGSRT ; LOAD HL WITH IESSIG: START fI!)R

4995 II6ee 18 I1YI B,(9! ; INITIALIZE DIGIT CWflER
4997 7E 19 S1: IKl\I A," ; GET CIR FOOl BUFFER
4888 E61F 29 ANI 1FH ; I1AKE IT 5 ails
4gefl 88 21 fI)() a ; ROO IN DIGIT COUN1ER
4889 4F 22 IKl\I C,A ; SAllE TOTAL IN C
499C CD1D49 23 CALL OUTCHR ; OUTPUT CIR PLUS LOCATlIJl TO UPI
499F 78 24 ItOV A,a ; GET DIGIT COUNTER
4918 C629 25 ADI 29H ; INC FOR I£XT DIGIT
4B12 DA1A48 26 JC ~XIT ; DONE IF CARR'! SET
4915 47 27 IKl\I a,A ; RESTORE DIGIT COUNTER
4916 23 29 INX H ; INC IESSAGE POINTER
4917C39749 29 JKP S1 ; GO GEl I£XT CIR

39;
491A C1 31 EXIT: PIJ' ;RESIORE 8C
4918 E1 32 POP ; RESTORE HL
491C C9 33 RET ;RETWI

34 ;
35 ; SUBROOTlI£ TO OUTPUT CIt1 TO UPI
36;

4910 !a5 37 OUTCIR: IN STATUS ; READ UPI STAM
491F E6ll2 39 ANI IBF ;LOIlI(AT llif
4921 C21D49 39 JN2 OOTCHR ; WAIT UNTIL IBF=0
4924 79 48 IKl\I A,C ; GET CHR
4925 D3E4 41 OUT D88IN ; OUTPUT CIR TO 1.1'1 DBBIN
4927 C9 42 RET ; RETURN

43 ;
9992 44 I'ISGSRT: os 92H ; LOCATION OF KESSIG: START POINTER

45 ;
46 Ell>

6-906

APPLICATIONS

FI ASM48 F3: SENSOR NOOBJECT PRINT(: LP:)

1515- I I MCS-48/UP I -41 MACRO ASSEMBLER, V3. 0 PAGE

LaC 0['-.1 LINE SOURCE STATEMENT

1 '$M0041A
2 ************.**************** .. ****************
3 UPI-41A SENSOR MATRIX CONTROLLER ..

• *.**********.*.***.**************************.
5
6 THIS PROGRAM USES THE UPI-41A AS A SENSOR MATRIX CONTROLLER.
7 j IT HAS MONITORING CAPABILITIES OF UP TO 128 SENSORS. THE COORDINATE
8 ; AND SENSOR STATUS OF EACH DETECTED CHANGE IS AVAILABLE TO THE MASTER
9 ; MICROPROCESSOR IN A SINGLE BYTE. A 40Xe FIFO QUEUE IS PROVIDED FOR

10 ; DATA BUFFERING. BOTH HARDWARE OR POLLED INTERRUPT MET Hans CAN BE USED
11 ; TO NOTIFY THE MASTER OF A DETECTED SENSOR CHANGE.
12
13 j .****.*****.** •• *** •••• *** ••••• ** ••••••• * •• ****************************
14
15
16
17
18
19
20
21
22
23
24
2'
26

; REGISTER DEFINITIONS:
REGISTER

RO
Rl
R2
R3
R4
R,
R6
R7

RBO RBI

MATRIX MAP POINTER NOT USED
FIFO POINTER NOT USED
SCAN ROW SELECT NOT USED
COLUMN COUNTER NOT USED
FIFO-IN NOT USED
FIFO-OUT NOT USED
CHANGE WORD NOT USED
COMPARE NOT USED

27 ; ***
28
29 ,PORT PIN DEFINITIONS:
30
31 i PIN
32
33 ; PO-7
34
35
36
37

PORT 1 FUNCTION PIN

COLUMN LINE INPUTS PO-3
P4
P5
P6-7

PORT 2 FUNCTION

ROW SELECT OUTPUTS
FIFO NOT EMPTY INTERRUPT
08F INTERRUPT
NOT USED

38 i ***
39
40 .EJECT

6-907

APPLICATIONS

1515-1] NCS-48/UPI-41 MACRO ASSEMBLER. V3 0 PAGE 2

LOC aBv

OOOF
0008
002F

LINE SOURCE STATEMENT

41 ; **.********************
42
43 ; CHANGE WORD BIT DEFINITION:
44
4~

46
47
48
49

BIT

00-6
D7

FUNCTION

SENSOR COORDINATE
SENSOR STATUS

:50 ; *********************************.*************************************
51
52 ; STATUS REGISTER BIT DEFINITION:
53
~4 BIT FUNCTION
55
56 DO OBF
~7 01-3 IBF. FO. F1 (NOT USED)
~8 D4 FIFO NOT EMPTY
59 05-7 USED DEFINED (NOT USED)
60 ,
61
62
63
64
65
66
67
68
69
70
71
72
73
74
n
76
77
78

; .* ** * _.* .. -*-*-**** ** ... ***** ***** ***** ** * ** *** ** .. ****** ***** ... *. ** .. * * _ .. *-
EQUATES

; THE FOLLOWING CODE DESIGNATES THREE VARIABLES; SCANTM. FIFOBA
; AND FIFOTA. SCANTM ADJUSTS THE LENGTH OF A DELAY BETWEEN
• SCANNING SWITCH. THIS SIMULATES DEBOUNCE FUNCTIONS FIFOBA
; IS THE BOTTOM ADDRESS OF THE FIFO. FIFOTA IS THE TOP ADDRESS
,OF THE FIFO THIS MAIoC.ES IT POSSIBLE TO HAVE A FIFO 3 TO 40
; BYTES IN LENGTH.

; ***
SCANTM EGU
FIFOBA EGU
FIFOTA EQU

$EJECT

OFH
OSH
2FH

• SCAN TIME ADJUST
.FIFO BOTTOM ADDRESS
. FIFO TOP ADDRESS

6-908

APPLICATIONS

IS I 5- I I MCS-48/UP I -41 MACRO ASSEMBLER, V3. 0 PAGE

LOC 013,)

0000
0000 1383F
0002 BAOF
0004 BeD8
0006 I3D2F
0008 89FF
DODA 2300
Dooe 90
0000 FA
DaDE 3A
DOOF 09
0010 AD
0011 FA
0012 C618
0014 C8
0015 CA
0016 040D
0018 BALD
DOlA FA
ODIE 3A
ODIC F5

LINE SOURCE STATEMENT

79 ; ** ** ******* ... **** *4************************* *************** *it*it** ...
80
81 INITIALIZATION
82
83 j THE PROGRAM STARTS AT THE FOLLOWING CODE UPON RESET. WITHIN
84 i THIS INITIALIZATION SECTION THE REGISTERS THAT MAINTAIN THE MATRIX
85 j MAP, FIFO AND ROW SCANNING ARE SET UP PORT 1 IS SET HIGH FOR USE
86 j AS AN INPUT PORT FOR THE COLUMN STATUS BIT 4 OF STATUS REGISTER 15
87 j WRITTEN TO CONVEY A FIFO EMPTY CONDITION THE INITIAL COLUMN STATUS
88 j OF ALL THE ROWS IN THE SENSOR MATRIX IS THEN READ INTO THE MATRIX
89 • MAP. ONCE THE MATRIX MAP 15 FILLED THE OEF INTERRUPT (PORT 2-4) IS
90 i ENABLED.
91

92 ; ***
93
94 ORG 0
9~ INITMX
96
97
98
99

100
101
102 FILLMX
103
104
105
106
107
108
109
110
III OBFINT
112
113
114
115
116 '!iEJECT

MOV
MOV
MOV
MOV
ORL
MOV
MOV
MOV
DUTL
IN
MOV
MOV
JZ
DEC
DEC
JMP
MOV
MOV
oUTL
EN

RO.tt3FH
R2,ttOFH
R4, ttFIFOBA
R~, ttFIFDTA
PI, #OFFH
A, .. OOH
ST5, A
A,R2
P2,A
A, PI
@RO, A
A,R2
DEFINT
RO
R2
FILLMX
R2,#IOH
A, R2
P2, A
FLAGS

MATRIX MAP POINTER REGISTER, TOP ADDRESS
SCAN ROW SELECT REGISTER, TOP ROW
FIFO INPUT ADDRESS REGISTER, BOTTOM OF FIFO
FIFO OUTPUT ADDRESS REGISTER, TOP OF FIFO
INITIALIZE PORT 1 HIGH FOR INPUTS
INITIALIZE STATUS REGISTER, FIFO EMPTY
WRITE TO STATUS REGISTER, BITS 4-7
sCAN ROW SELECT TO ACCUMULATOR
OUTPUT SCAN ROW SELECT TO PORT 2
INPUT COLUMN STATUS PORT 1
LOAD MATRIX MAP WITH COLUMN STATUS
CHECK SCAN ROW SELECT REGISTER VALUE FOR 0
IF 0 ENABLE OBF INTERRUPT
DECREMENT TO NEXT MATR I X MAP ADDRESS
DECREMENT TO SCAN NEXT ROW
FILL NEXT MATRIX MAP ADDRESS
BIT 4 HIGH IN ROW SCAN SELECT REGISTER
ROW SCAN SELECT VALUE TO ACCUMULATOR
INITIALIZE PORT 2, BIT 4 FOR "EN FLAGS"
ENABLE OBF INTERRUPT PORT 2, BIT 4

6-909

APPLICATIONS

ISIS-I I MCS-4B/UPI-41 MACRO ASSEMBLER, V3.0 PAGE

LOC OBJ

001D FA
ODIE ~3OF
0020 C626
0022 C8
0023 CA
0024 042C
0026 B83F
0028 FA
0029 430F
002B AA
002C FA
0020 3A
002E BBOF
0030 EB30
0032 09
0033 20
0034 DO
0035 AF
0036 C669

LINE SOURCE STATEMENT

117 i**
lIB
11 q SCAN AND COMPARE
120
121) THE FOLLOWING CODE IS THE SCAN AND COMPARE SECTION OF THE PROGRAM.
122 ,UPON ENTERING THIS SECTION A CHECK IS MADE TO SEE IF THE ENTIRE MATRIX
123 ,HAS BEEN SCANNED. IF SO THE REGISTERS THAT MAINTAIN THE MATRIX MAP AND ROW
124 ; SCANNING ARE RESET TO THE BEGINNING OF THE SENSOR MATRIX. IF THE ENTIRE
125 ,MATRIX HASNT BEEN SCANNED THE REGISTERS INCREMENT TO SCAN THE NEXT ROW.
126 i FROM THIS POINT ON THE ROW SCAN SELECT REGISTER IS USED FOR TWO FUNCTIONS.
127 i BITS 0-3 FOR SCANNING AND BITS 4 AND :5 FOR THE EXTERNAL INTERRUPTS. THUSLY
12B ,ALL USAGE OF THE REGISTERS IS DONE BY LOGICALLY MASKING IT SO AS TO ONLY
129 ,AFFECT THE FUNCTION DESIRED. ONCE THE REGISTERS ARE RESET. ONE ROW OF THE
130 ; SENSOR MATRIX IS SCANNED. A DELAY IS EXECUTED TO ADJUST FOR SCAN TIME
131 ,(DEBOUNCE). A BYTE OF COLUMN STATUS IS THEN READ INTO THE MATRIX MAP.
132 ; AT THE TIME THE NEW COLUMN STATUS IS COMPARED TO THE OLD. THE RESULT IS
133 j STORED IN THE COMPARE REGISTER. THE PROGRAM IS THEN ROUTED ACCORDING TO
134 ,WHETHER OR NOT A CHANGE WAS DETECTED.
13~

136
137

; **** tf *tf**.* *tf**tftf ****.tf tf **tf***** ****************** *******************

13B
139
140
141
142
143
144
14'
146
147
148
149
150

ADJREG:

SCANMX:

1'1 DELAY2:
1'2
153
1'4
155

"" 1'7
158 $EJECT

MOV
ANL
,JZ
DEC
DEC
,JMP
MOV
MOV
ORL
MOV
MOV
OUTL
MOV
D,JNZ
IN
XCH
XRL
MOV
,JZ

A. R2
A.tfOFH
RSETRG
RO
R2
SCANMX
RO •• 3FH
A, R2
A. *OFH
R2, A
A. R2
P2. A
R3. *SCANTM
R3.DELAY2
A. PI
A. I!:RO
A. I!:RO
R7. A
CHFFUL

SCAN ROW SELECT TO ACCUMULATOR
CHECK FOR 0 SCAN VALUE ONLY, NOT INTERRUPT
IF 0 RESET REG I STERS
DECREMENT MATRIX MAP POINTER
DECREMENT SCAN ROW SELECT
SCAN MATRIX
RESET MATRIX MAP POINTER REGISTER. TOP ADDRESS
SCAN ROW SELECT TO ACCUMULATOR
RESET SCAN ROW SELECT, NO INTERRUPT CHANGE
SCAN ROW SELECT REGISTER
SCAN ROW SELECT TO ACCUMULATOR
OUTPUT SCAN ROW SELECT TO PORT 2
SET DELAY FOR OUTPUT SCAN TIME
DELAY
INPUT COLUMN STATUS FROM PORT 1 TO ACCUMULATOR
STORE NEW COLUMN STATUS SAVE OLD IN ACCUMULATOR
COMPARE OLD WITH NEW COLUMN STATUS
SAVE COMPARE RESULT IN COMPARE REGISTER
IF THE SAME. CHECK IF FIFO IS FULL

6-910

APPLICATIONS

1515-1 I MCS-48/UPI-41 MACRO ASSEMBLER, V3.0 PAGE

LOC OB~

0038 BB08
003A CB
003B FO
Q03C 77
0030 AO
003E FF
003F 77
0040 AF
0041 F24~
0043 0469
0045 FA
0046 ~30F
0048 E7
0049 E7
004A E7
0048 4B

004C AE
0040 FO
004E 5380
oo~o 4E
0051 AE

LINE SOURCE STATEMENT

1 ~9 j *********** ••••• ***** •••• **** ••••••••••• ********* ••• *******.****** ••••••
160
161 CHANGE WORD ENCODING
162
163 j THE FOLLOWING CODE IS THE CHANGE WORO ENCODING SECTION. THIS
164 ; SECTION IS ONLY EXECUTED IF A CHANGE WAS DETECTED. THE COLUMN COUNTER
16~ i IS SET AND DECREMENTED TO DESIGNATE EACH OF THE 8 COLUMNS. THE COMPARE
166 ; REGISTER IS LOOKED AT ONE BIT AT A TIME TO FIND THE EXACT LOCATION OF
167 j THE CHANGE(S). WHEN A CHANGE IS FOUND IT 15 ENCODED BY GIVING IT A
168 j COORDINATE FOR ITS LOCATION. THIS IS DONE BY COMBINING THE PRESENT VALUE
169 ; IN THE ROW SCAN SELECT REGISTER AND THE COLUMN COUNTER. THE ACTUAL STATUS
170 ; OF THAT SENSOR IS ESTABLISHED BY LOOKING AT THE CORRESPONDING BYTE IN

; THE MATRIX MAP. THIS STATUS IS COMBINED WITH THE COORDINATE TO ESTABLISH 171
172
173

; THE CHANGE WORD. THE CHANGE WORD IS THEN STORED IN THE CHANGE WORD REGISTER

174
175

; ••• **.* ••••••••••••••••••••••••

176
177
178
179
180
181
182
183
184
185

RRLOOK:

lS6 ENCODE:
187
188
189
190
191
192
193
194
195
196
197
198
199 $EJECT

MOV
DEC
MOV
RR
MOV
MOV
RR
MOV
~B7

~MP

MOV
ANL
RL
RL
RL
ORL

MOV
MOV
ANL
ORL
MOV

R3.ttOSH
R3
A, <!RO
A
@RO, A
A. R7
A
R7, A
ENCODE
CHFFUL
A, R2
A,ttOFH
A
A
A
A, R3

Rb, A
A.@RO
A,ttSOH
A. R6
R6.A

,SET COLUMN COUNTER REGISTER TO 8
; DECREMENT COLUMN COUNTER
,COLUMN STATUS TO ACCUMULATOR
• ROTATE COLUMN STATUS RIGHT
• ROTATED COLUMN STATUS BACK TO MATRIX MAP
• COMPARE REGISTER VALUE TO ACCUMULATOR
• ROTATE COMPARE VALUE RIGHT
j ROTATED COMPARE VALUE TO COMPARE REGISTER
; TEST BIT 7 IF CHANGE DETECTED ENCODE CHANGE WORD
• IF NO CHANGE IS DETECTED CHECK FOR FIFO FULL
; SCAN ROW SELECT TO ACCUMULATOR ODOOXXXX
lROTATE ONLY SCAN VALUE
i ROTATE LEFT OOOXXXXO
; ROTATE LEFT OOXXXXOQ
• ROTATE LEFT OXXXXOOO
,ESTABLISH MATRIX COORDINANT OXXXXXXX
j (OR) COLUMN COUNTER VALUE WITH ACCUMULATOR
; SAVE COORDINANT IN CHANGE WORD REGISTER
,COLUMN STATUS FROM MATR I X MAP TO ACCUMULATOR
,0 ALL BITS BUT BIT 7
; (OR) SENSOR STATUS WITH COORDINATE FOR COMPLETED CHANGE WORD
; SAVE CHANGE WORD XXX XXX XX

6-911

APPLICATIONS

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER. V3.0 PAGE 6

LOC OBJ

00~2 FC
00~3 A9
OO~4 FE
0055 Al
00:56 2310
0o,8 90
0059 8A20
005B FA
OO:5C 4320
OO~E AA
005F 232F
0061 DC
0062 e667
0064 IC
006:5 0469
0067 BC08
0069 Fe
006A 00
006B 9670
0060 8660
006F 232F
0071 DO
0072 C677
0074 10
0075 0479
0077 BD08
0079 FD
D07A A9
007B Fl
007C 02
0070 FB
007E 963A
0080 2308

LINE SOURCE STATEMENT

200 ; .**
201
202 FIFO-DBBOUT MANAGEMENT
203
204 I THE FOLLOWING CODE IS THE FIFO-DBBOUT MANAGEMENT SECTION OF THE
20~ ; PROGRAM, THIS SECTION TAKES AN ENCODED CHANGE WORD AND LOADS IT INTO
206 I THE FIFO. THE FIFO NOT EMPTY INTERRUPT IS THEN SET AND THE FIFO-IN
207 J POINTER GETS UPDATED. A FIFO FULL CONDITION IS THEN CHECKED FOR AND
208 j ROUTED ACCORDINGLY. IF 80TH THE FIFO AND OOF HAVE CHANGE WORDS THE
209 ; PROGRAM LOCKS UP UNTIL' THIS HAS CHANGED. IF THE FIFO ISNT FULL COLUMN
210 J COUNTER'=' 0, FIFO EMPTY AND oaF CONDITIONS ARE CHECKED. THE FIFO-OUT
211 ; POINT-ER IS SET AND DaaOUT IS LOADED IF THE FIFO ISNT EMPTY AND oaF ISNT
212 ; SET. IF THIS ISNT THE SITUATION. PROGRAM FLOW IS ROUTED BACK TO THE
213 j THE SCAN AND COMPARE SECTION TO SCAN THE NEXT ROW,
214

215 j *** 216
217 LOADFF: MOV
218 MOV
219 MOV
220 MOV
221 STATNE: MOV
222 MOV
223 INTRHI' ORL
224 MOV
22~ ORL
226 MOV
227 ADJFIN' MOV
228 XRL
229 JZ
230 INC
231 JMP
232 RSFFIN: MOV
233 CHFFUL: MOV
2304 XRL
23~ JNZ
236 CHOBF1: JOBF
237 ADJFOT: MOV
238 XRL
239 JZ
240 INC
241 JMP
242 RSFFQT' MOV
243 LOADDB: MOV
244 MOV
245 MOV
246 OUT
247 CHCNTR; MOV
248 JNZ
249 CHFFEM' MOV
250
251 <EJECT

A',R4
Rt. A
A, R6
eRI, A
A ... lOH
STS,A
P2,*20H
A. R2
A. tl20H
R2. A
A. "FIFOTA
A. R4
RSFFIN
R4
CHFFUL
R4, "FIFQEA
A. R4
A,'R~

CHCNTR
CHOSFI
A, "FIFOTA
A. R~
RSFFOT

R'
LOADDB
RS. ftFIFOSA
A, R~
R 1. A
A, ltRI
DBB, A
A. R3
RRLOOK
A. *FIF03A

FIFO INPUT ADDRESS TO ACCUMULATOR
FIFO POINTER USED FOR INPUT
CHANGE WORD TO ACCUMULATOR
LOAD FIFO AT FIFO INPUT ADDRESS
BIT 4 FOR FIFO NOT EMPTY
WRITE TO STATUS REGISTER. FIFO NOT EMPTY
FIFO NOT EMPTY INTERRUPT PORT 2-5 HIGH
RO", SCAN SELECT TO ACCUMULATOR
SAVE INTERRUPT, NO CHANGE TO SCAN VALUE
ROW SCAN SELECT REGISTER
FIFO TOP ADDRESS TO ACCUMULATOR
COMPARE WITH CURRENT FIFO INPUT ADDRESS
IF THE SAME RESET FIFO INPUT REGISTER
NEXT FIFO INPUT ADDRESS
CHECK FIFO FULL
RESET FIFO INPUT REGISTER, BOTTOM OF FIFO
FIFO INPUT ADDRESS TO ACCUMULATOR
COMPARE INPVT WITH OUTPUT FIFO ADDRESS
IF NOT SAME CHECK COLUMN COUNTER VALUE
IF OSF IS 1 THEN CHECK OSF
FIFO TOP ADDRESS TO ACCUMULATOR
COMPARE TOP TO OUTPUT FIFO ADDRESS
IF THE SAME RESET FIFO OUTPUT REGISTER
NEXT FIFO OUTPUT ADDRESS
LOAD DDBOUT
RESET FIFO OUTPUT ADDRESS TO BOTTOM OF FIFO
OUTPUT FIFO ADDRESS TO ACCUMULATOR
FIFO POINTER USED FOR OUTPUT
CHANGE WORD TO ACCUMULATOR
CHANGE WORD TO DI3BOUT
COLUMN COUNTER TO ACCUMULATOR
IF NOT 0 FINISH CHANGE WORD ENCODING
FIFO BOTTOM ADDRESS TO ACCUMULATOR

6-912

APPLICATIONS

1515-1 I MCS-4B/UPI-41 MACRO ASSEMBLER, V3 0

LOC OBJ LINE SOURCE STATEMENT

0082 DC
0083 Cb8G
0085 FC
0086 07
00B7 DO
0088 C691
OOBA 049C
aOBe 232F
008E DO
OOSF 969C
0091 2300
0093 90
0094 9AOF
0096 FA
0097 ~3DF
0099 AA
009A 0410
009C 8610
009E 046F

USER SYMBOLS
ADJFEM ooac
CHOBF2 009C
INTRLO 0094
SCANMX 002C

XRL
JZ
MOV
DEC
XRL
JZ
JMP

2~9 ADJFEM: MOV
260 XRL
261 JNZ
262 5T ATMT: MOV
263 MOV
264 I NTRLO: ANL
26~ MOV
266 ANL
267 MOV
268 JMP
269 CHOBF2: JOBF
270 JMP
271
272 END

ADJFIN OO'F ADJFOT
DELAY2 0030 ENCODE
LOADDB 0079 LOADFF
SCANTM OOOF STATMT

ASSEMBLY COMPLETE. NO ERRORS

A. R4
AO,.JFEM
A. R4
A
A. R~
STATHT
CHOBF2
A. ttFIFOTA
A,R5
CHOBF2
A ... OOH
STs. A
P2 ... OOFH
A. R2
A ... OOFH
R2. A
ADJREG
AOJREG
ADJFOT

006F ADJREG
004~ FIFOBA
00~2 OBFINT
0091 STATNE

0010
0008
0018
0056

PAGE

iCQMPARE FIFO INPUT ADDRESS WITH FIFO BOTTOM ADD
IF THE SAME. ADJUST TO CHECIoC. FOR FIFO EMPTY
FIFO INPUT ADDRESS TO ACCUMULATOR
DECREMENT FIFO INPUT ADDRESS IN ACCUMULATOR
COMPARE INPUT TO OUTPUT FIFO ADDRESSES
JF SAME, WRITE STATUS REGISTER FOR FIFO EMPTY
CHECK OBF
FIFO TOP ADDRESS TO ACCUMULATOR
COMPARE TOP TO OUTPUT FIFO ADDRESS
I F NOT SAME THEN FIFO IS NOT EMPTY. CHECK Ol3F
CLEAR BIT 0 FOR FIFO EMPTY
WRITE TO STATUS REGISTER
FIFO EMPTY. INTERRUPT PORT 2-~ LOW
SCAN ROW SELECT TO ACCUMULATOR
SAVE INTERRUPT. NO CHANGE TO SCAN VALUE
SCAN ROW SELECT REG I STER
ADJUST REGISTERS
IF OBF=l THEN ADJUST REGISTERS
ADJUST FIFO OUT ADDRESS TO LOAD Don OUT

CHCNTR 0070 CHFFEM 0080 CHFFUL
FIFOTA 002F FILLMX 0000 INITMX
RRLOOK 003A RSETRG 0026 RSFFIN

0069
0000
0067

6-913

CHOBF1 0060
INTRHl 00~9
RSFFOT 0077

APPLICATIONS

ISIS-II 888818885 IIlCRO ASSEIIllER,)(188
8885AIlf'1 SEN5(J! IIITRIX COOR!UER

LOC. (IjJ

4888
88E5
88E4
9818
8001

·4388

4888 218843
4883 8688
4885 0BE5
4887 E611
4889 C8
488R 0BE5
480C E681
488E C/l8548
4811 0BE4
4813 n
481423
4815 84
4816 C8
4817 C38548

sam STATEIENT

1 ;
2 ; SUBROOTIIE TO RERO ALL CIHGS IN TI£ If'1 All> BUILD A BlfFER
3 ; STfRTlIIl AT IIlFSRT. REIi B COOAINS TIE /lII1BER (f CIfNlES
4 ; lP!ll EXIT. TIE IIIXHUI IUIIIER (f CIfNlES IN ANI' 01£ CfU.
5; IS 255.
6 ;
7 ; IIf'UTS: IIlTHIIil
8 ; OOTPUTS: CIfNlE IQI) BlfFER AT IIlFSRT
9 ; CIfNlE IQI) crurr IN REIi B

18 ;CfU.S: IIlTHIIil
11;
12 alG 4800H
13 STATIJS EIlU 8E5H LPI STA1US POlT
14 DBBOOT EIlU 8E4H LPI DBBOOT POlT
15mO EIlU 1111 FIFO lilT Ell'TI' IIASK
16 OOF EQU 81H OOF IIASK
17 IIlFSRT EIlU 4381Jl BlfFER STfRT LOCATION
18 ;
19 STflRT: LXI H, BUFSRT INITIALIZE BUFFER POINTER
28 IIYI B,8IJl ClEfR CIfNlE WOOl crurrER
21 1'(ll1: IN STATUS RERO lI'l STATUS
22 /WI FIFO OR OOF TEST FIFO lilT Ell'TI' All> OOF
23 RZ ~ IF ZERO
24 IN STATUS RERO LPI STATUS
25 /WI OOF TEST OOF Fl.OO
26 JZ I'(ll1 WRIT IF lilT REfI)Y
27 IN D!I8OOT RERO CIflNGE WORD
28 I«lY It. A LOllI) BUFFER WITH CIfNlE WORD
29 INX H INC BlfFER POINTER
38 INR 8 INC CIR«lE IQI) COUNTER
31 RZ EXIT IF COUNTER = 256
32 Jill' I'(ll1 CHECK IF PllRE CIfNlE WOROS
33 ;
3400

6-914

APPLICATIONS

1515-/1 1l:5-48IlPl-41 PKRO A55E11lLER, V2. a
11'-41 CQIlltfHlON 110 DEVICE

LOC OOJ SEQ S(J.m STATEl£NT

1 $10)42

2 i *************************t.'UOO*t***********1 I I I til I **********
3 ;
4 ; TIllS 1JPl-41 PROGRff1 IIt'LE/£HTS A FlU -DlRE)(IHiT WITIl OII-CHIP
5 ; BfU) RATE GEl£RATION IN CQIllNATION WITIl AN a-BIT PfiRLEL 110
6 ; PORT. TIlE IlfU) RA1E 15 5ELECTABLE FmI ua 10 12e9 B/lIJ). TI£
7 ; PARfUEL 110 ron 15 I'ROORIfIItfRE FIJ1 EITI£R INFUT OR emPUT.
a ;
9 ; IHTERRlJ'T OOTPUTS ARE A'lAILfIlLE FIJ1 DATA RVAILfIlLE ON TIlE RECEI~

1a ; fill) PflffiLLEL INFUT. 11£ STATUS REGISTER I'IJST BE REAO TO DmRPHNE
u ; IIHCH ~ CfUSED TI£ INTrnM'T. THE FLAGS Fa AND F1 COIlC TIlE
12 ; INTERRIJPT~. Fa fill) F1 ALSO GIVE AN IPI>ICATION OF rotIANI)
13 ; ERRORS.
14 ;

15 i ***
16 ;
17 ; REGISTER DEFINlllON
18 ; R8Il
19 ;
29;
21;
2'.1 ;
23 ;
24 ;
25;
26 ;
27 ;
28;

a
1
2
3
4
5
6
7

NOT USEe
NOT USED
NOT USED
RX STATUS (RXSTS)
RX IU.DIPll
RX TICK CruffER
RX DE5ERIALIZER
STATUS REG ST~

RBi

NOT USED
BfU) RATE COIlS] ANT
TX TICK COlMfER
TX SERIALI2ER
1X BUFFER
1X STA1US (TXSTS)
COI'IIIAN!) STORE
ACe. IImRRIJP1 SRVE

29 ; *** 38;
31 $EJECT

6-915

LOC IJlJ

APPLICATIONS

SEQ so.m STATEIEHT

32;
33 ;** ... 1 I 11*1111111111 I I' ' '11 IIII ********
34 ;
35;catffN)S

36;
37 ;
38;
39;
48;
41 ;
42;
43;
44;
45 ;
46 0;

47 ;
48;

m.F1Gt»:: 8 8 8 ABC D P

110: 1 8 8 8 8 8 8 8
RESET ~:11 8 8 8 8 8 8

Ii - 1288 IIfU) SillCT
B - 688 BIW saECT
C - 388 IIIU) SElECT
D - U8 IIfU) SELECT
E - PARfl.LEL 110 DIRECTlIJl

8 - IIf'UT
1 - OOTPUT

(1'EIlI'OOI11O~T1IJl)

(RESET RX ~ IN STAnIS)

49 i~**********""'''''''*******1 58;
51 ; STATUS REGISTER D!:FINITIIJl
52;
51 ; BIT D!:FINITIIJl
54;
55; 8 OOF - DATA AVAILABLE
56; 1 IEF -!AJS'/
57; 2 Fe
58; 3 F1
59; 4 NOT USED
68; 5 TXINT - TX INlET<RtPT
61 ; 6 FRIlliNG ~
62; 7 Il'/ERR(JI ERr«IR
63;
64; F8 F1 !fERftTlIJl
65;
66; X
67; 8 PARfl.LEL 110 DATA AVAILABLE
68; 1 SERIAL 110 DATA AYAILIIlLE
6!1; 1 COIIfN) ~

78;
71 ; I III ,

72;
73 $EJECT

6-916

1111'M

lOC OOJ

APPLICATIONS

so..m: STATEIENT

74 ;

75 ; *** .. **.**********t ••• *********
76 ;

I I IIIII .,..t~* ... t** III I

77 ; STATUS REGISTER DEFINITIOOS
78;
79;
88;
81 ;
82;
83 ;
84;
85;
86;
87 ;
88;
89;

l
3
4
5

RXSTS TX5TS

RX FlAG - 5PfU TX FlAG - TRlftiI1lnlNG ~
STfIH FlAG - GOOD ~l~T REQI.£ST BVTE - ~ IN BlfFER
B'IlE FINISIED TX PIf'£l.INED DATA 811
DATA REfI>I' STfRT 811 FLAG
mIIlNG ERRCR I«lT USB)

0'v'ERR\JI ERRCR I«lT USED
10 DIRECTlOO NOT lJ5EI>
10 FlAG I«lT USB)

99 ; ********************tt 'f *** •••• * ... ***** .. **«=tt***************
91;
92 ; PORT 2 DEFINIlIOOS
93 ;
94 ; BIT
95;
96;
97 ;
98;
99 ;

100 ; 4
1B1; 0
182 ; i,
1BL 7
184 ;

DEFINITIOO

TX DATH
I«lT USB)

NOT USB)

IX INTERRl.fT
!J8F INTERRlJ'T (RX OR 110 DATA A'lAllABlE)
NOT USB)

NOT USED (TJCI: SAllPLE)
I«lT USED

195 ; .. *******************.*************************************** I t I I *.*
186 ;
1B7 ; MISC.
188 ;
189 ;
11B;
111;

RX DATA
EXTClOCl:

T9 INPUT
T1 INPUT 76.8KHZ (1 221l8I1HZI16)

112 i **********************.* *************************** I I I I II I I 1 .. *
113 ;
114 $EJECT

6-917

LOC C81

8001
8882
ge84

8988
8918
8828
8848
8888
11881
8882
8848
8888
ge84

887F
8883
8828
8824
ge84

88FB
8888
8988
8828
8828
883F
8849
8888
8001
88FE
8988
9883
988S

APPLICATIONS

5(UCE STRID£HT

U5;
U6 j **********' ___ , .. II"'I ~**************.****:M******

117 ;
U8;~ EQUATES:
119 ;
128 RXFLG EQU
121SR1FLG EQU
122 BFFLG EQU
123 DATROY EQU
124 FRRIER EQU
125 Il\mj EQU
126 l00IR EQU
127/1RG EQU
128 TlIl'l.G EQU
129 REIlFLG EQU
138 mOOT EIlU
131 RXINTL EQU
132 TlCSRT EQU
133 RSC/tSI(EQU
134 TIme EQU
135 Tl\E1I) EQU
136 STPoo EQU
137 1ffIlK' EQU
138 SPACE EQU
139 ZERO EQU
149 TXINT EQU
141 TXBIT EQU
142 TIIall oQU
143 RSTERR EQU
144 FESTS EQU
145 OYSTS EIlU
146 ttKllUT EQU
147 SPOUT EQU
148 S81T EQU
149 RXSTS EQU

158 TXSTS EQU
151 ;
152 $EJECT

81H ; RECEI"" FLAG IN RXSTS
82H ; START BIT FLAG IN RXSTS
84H ; 8'ITE FINISI£l) FLAG IN. RXSTS
88H ; DATR REff)Y FLAG IN RXSI S
1SH ; FRRIIING ~ FLAG IN RXSTS
28H ; MRRUN ERROR FLAG IN RXSTS
48H ; 110 DIRECTI~ FLAG IN RXS·'S
OOH ; 110 REQl£ST FLAG IN RXSTS
91H ; TX FLAG IN TXS T5
82H ; REQUEST ME FLAG IN TXSTS
48H ; TICK SIftPlE BIT IN PORT 2
OOH ; RX DESERIRLIZER IN/TIRLIZATI~
84H ; TICK INiTlRLIZATIlfI
i'fH ; ASCII /IASK
93H ; TX TICK Ill) /IASK
48D i TICK coon RT END fF IX CHlRRCTER
36D ; liCK coon AT 00 OF TX DATA
84H ; rIRRJ(IlUTPIIT
8F8H ; SPACE OOTPUT
OOH ; GEIERlI. CLE/f(

88H ; TX INTERRIJ'T OUTPUT IN PORT 2
28H, TX INTEkRLf'T BIT IN STAT1JS
32D ; TIlER ClfISTRNT RRII LOCATION
3FH ; RESET ERRU1/IASK FOR STATUS
48H ; FRfIItING ERROR BIT IN STAM
8IlH ; O'IERRUN ERROR BIT I N STATUS
81H ; rIRRJ(IlUTPUT TO PORI
8FEH ; SPACE WTPUT TO PORT
88H IX START BIT FLfI(j

R3 RX STATUS REGISTER
R5 TX STATUS REGISTEk

6-918

LOC IIIJ

11987

8887 D5
B888 RF
8889 F9
8IIIlR 88
B888 5688
8880 62

8812 FD
81113 5219
8815 9fFE
88178418
8819 8R81

8818 C5

APPLICATIONS

SEQ S!UCE 5TA1EI£NT

153 ; 1 III II. rllllill I 11**111111 *****
154 ;
155 ; R58 YECTlI! LOCATION
156 ;
157 ;*** 1111 II I It.11 .tlllllll II I I II MU*

158 ;
159 lI!G B988H
168 ;
161 RESET: SEL
162 JII'
163 ;

RIl8
INIl

;GET INTO RII8 RT R58
; GO TO INITIALIZATION

164;11111***1111 II ' 11 II.

165 ;
166 ; rIl£R INlBlRlI'T LOCATION - TII£R IS SET TO 4 rI~ lIE 8IID RIllE. 111:
167 ; RECEI'IER fII) TRffISIIITTER 1ft: SEJrlICED E'taN FIX.!! 1116 lICKS. !>tfllfRE
168 ;DElRY LIO' IS USED FlI! TI"IIil FII£-lLNIIil. RB1 R1 POINTS Rll1£LRY
169 ; CONSTANT RT INlBlRlI'T. 1<1-1 POINTS R1 TII£R CONSTRNl.
179 ;
171 ;'" II J rtt _ I

172 ;
173 lI!G 8987H
174 ;
175 TI"INT: SEL RBi
176 lIllY R7,R
177 lIllY R,R1
fill I«lP
179 INT1: JT1 INI1
180 lIllY T,R
181 ;
182 ;TICK SfII'LE OOTPUT
183 ;
184
185
186 ;

P2,If«)T TICOUT
P2..TICWl

1111 111111111111111.*

; INlBlRlI'l PROCESSIIil IN RB1
; 5RYE fUtII.l.fIll1! IN R7
;GET TII£R CONSTANT
; DElRY TO GET INTO 11 HIGf
; WRIT IJITIL 11 IS LOI
; lIEN LCR> COlNTER

187 ; ... *********** ... 1111111111 ********111 111111+' 1111

188 ;
189 ; TRffISIIITTER OOTPUT - lIItE CRITICAL TfIS1(5 DOI£ FINST. DATR BIT OlITPUl
198 ; PIP8.INE~ IN TXSTS BIl 2 IS OOTPUT IOl
191 ;
192 ;****111111 1111111. III 1111*******111111111111111111

193 ;
194 TXOOT: lIllY
195 JB2
196 fit.
197 JIll'
198 IO.JT:. lI!L
199 ;

It TXSTS
IO.JT
P2,1SPOUT
RCV
P2.M<0lIT

; GET Tl(STRTUS
; TEST PIf'ELII£D DATR
; OOTPUT SPOCE IF RESeT
; DO RECEIVER
; OUTPUT t'fR' IS SET

298 ; *. -.. _H •••• tt I II II t.t.-t. I II I 1.*******'."

2B1 ;
282 ; SHiH OF RECEI'IER FLOI - RXSIS REGISTER
283 ; I«l.DS RECEIVER STRTUS.
284 ;
295 i************"'IIIIIIII"'*~"''''''
286 ;
287 RCV: SEL RII8 ; SWITCH TO RX BfN(

6-919

APPLICATIONS

lOC (EJ SEQ S(UCE STATEI£I(f

991C FB 298 lIlY II. RXSTs ; GET RXSTs
891D 1226 289 J[j8 RCY1 ; TEST WEC£IYI: FI.Rl

218 ; 8 - 1«1 CII! I£IItl RECl:I'yg)
211 ; 1 - POSsIIilE STIIIT ~IT. DO TESI

991F 3668 212 JT8 lOUT ; TEST 00 IN'UT
213 ; 8 - SI'ACL SET RIC FI.Rl
214 ; 1 - 1ft!(. GO ClECK IOIIT

8821 4381 215 (I1l R.IRXFlG ; SPACC - SET RIC FI.Rl
8823 III 216 lIlY RXSTs.A ; RESTIRE RXSTs
88248468 217 .III' IOIIT ; 00 IftI)lE XItTR

218;
219 ; sTIIIl BI1 lID
228 ;

B826 3238 221 RCY1: 191 RCY3 ; FIRST lEST STfI!T BIl ~lRG
8828 3633 222 JTB RCY2 ; TEST 00 1/f'Ul

223 ; 8 - SPACE. 00ll STIIIl BIT
224 ; 1 - RK. BfI) STfI!T BIl. IGIlJRE

88211 4382 225 (I1l A.ISRTFlG ; 00ll STllll - SET STIIIT BIT FI.Rl
882C III 226 lIlY RXSTs.A ; REST(Jl(RXSTS
882I) BE88 227 lIlY R6.IRXINTl ; 5ETlI' RIC DESERIRlIZER
882F BI)84 228 lIlY R5.'TICSRT ;llH> RIC liCK CMTER
8831 8468 229 .III' IOIIT ; GO IftI)lE IOITR

238 ;
231 ; BfI) S TIIIT BIT - R£SET FlAGS
232 ;

883] 53FE 233 RCY2: IN. A.II«IT RXFlG ;RE5I:.' R£Cl:I~ FI.Rl
8835 III 234 lIlY RXSTS,A ; R£STIRE RXSTs
8836 8468 2]5 .III' IOIIT ; 00 IftI)lE IOITR

236 ;
237 ; IN nlOOlE II' CII! - SIffI.f EVERY 4 linER TICI(S
238 ;

11838 ED68 239 RCY3: DJHZ R5.IOIIT ; IIlIT IMll 41li TICK
883R lIOII4 248 lIlY 1(5 •• TICSRT ;RElIH> RJ(TICK ~lER
883C 5240 241 192 RCY5 ; TEST BYTE FINI5I£D flAG

242 ; B - nlOOlE II' CII!. ClIITIIIJE
243 ; 1 - I)(J£ Nil H 51(1' BITS

883£ 97 244 ClR C ; CI.EfI! CIWI BEFIRE ROTA~
883F 2642 245 M8 RCY4 ; 1 EST 00 IN'UT
8841 A7 246 CPl C ;00 IS RK. SET CfI!RY
8842 FE 247 RCY4: lIlY R.R6 ; GET DE5B<IRlIZER
8843 67 248 RRC A ; ROTATE IN NEW BIT
8844 RE 249 lIlY R6.A ; RlSTM DESERIRlIZER
8845 E668 258 JNC IOIIT ; TEST CfI!RY fHER ROTATE

251 ; B - "100lE II' Of(

252 ; 1 - STIP ~IT Wflltl NEXT
8847 FB 253 lIlY II. RXSTs ; GET RXSTs
8848 4384 254 (I1l R.IIIFFlG ; SET BYTE FINI5I£D FLAG
884A III 255 lIlY RXSTS.A ; RE5TORE RXSIS
8848 8468 256 .III' IOIIT ; GO HfN)lE XItTR

257 ;
258 ; BYTE FINI5I£D - DO sTIP BIT TEST
259 ;

884D 2668 268 RCY5: JNT8 ReVS ; lEST 00 IN'UT
261 ; 8.- SPACE. INYRlID STIP ~IT
262 ; 1 - 1ft!(. YRlID ~11P BIT

6-920

LOC OOJ

B84F 53EF

88517264
885l 53IlF

8855 4388
8857 5lF8
8859 III
885ft FE
8858 5l7F
985D f.:
II85E 8468

9868 4319
886.2 9451

e964 4328
1!966 84SS

9868 OS
8969 FD
996A 7283
986C 1ft
91161) 2383
886F SA
9978 9688
9972 FD
997117
9974129C

99762128
9978 M
99799681
9978 FD
997C 5lFE
997E R>
997F B499

APPLICATIONS

5rulCC STATEI£NT SEll

261 IN.. R.INlT FRII£R ,t«l FRfIIIt«l 1:RkO!. RESET FIJIi
264 ,
265 ,MRR\.fl TEST - IF RX MTA REIllY STILL 5£1. MRR\.fl ERRa!
266 ,
207 RCV6: JB3 RCV9 ,IF MTR REIllY mLL SET. ERRa!
268 IN.. R.IIIlT 0YRlIl ,t«l IMRRtJI. RESET FIJIi
269,
278 ,~ lJ' Rl(SJ5 AT DR CIJI'lETE
271,
272 ReV?: (RL R.IOfITRDY ,SET MTA RE/i)\'

213 IN.. R.INlT (RlflG OR SRULG OR 8FFLG) , RESET .OTI£R FUllS
274 lIlY RXSTS.A ,RESTIJlI: RXSTS
275 lIlY R.R6 ,Gl:.T D£SEJilfLlZER REG
276 IN.. A.1fISCIISK ,/lICE IT 7 8115
277 lIlY R4.A ,PUT MTR INTO 1DJ)1t«l REG
278 JIll XIIIT ,GO IRI)l£ XIITR
279 ,
288 ,11/1) ST(I' - SET FRfIIIt«l ERRa! FIJIi
281 ;
282 RCY8: (RL R.IFRIIER ,SET FRIIIIt«l ERRa! FIJIi
283 JIll RCV6 ,C(Jff11lE
284 ,
285 ,MRR\.fl ERRa! - SET 0VERRtJI KRG
286 ,
287 RCV9: ORL R.1OYRtJI
288 JIll ReV?

,SET 0VERRtJI fLAG
,C(Jff11lE

299 ; *****************................................. III 11111*** .. ***
291 ,
292 ,STAlT OF TRfIISIIHTER FLOW - TRfIISIIlllI:R IS SElNIC8l EVERY 4 TICKS.
293 ,TI£ TX TICK COLmER SERVES AS TI£ TX 811 CWITER. TRfIISIIIlTER STATUS
294 , IS HElD IN TI£ TXSTS REGISTER.
295 ,
296 ; ... 111111

297,
298 lOIlT: sa R81 ,BE m WE'RE IN R81
299 lIlY R.TXSTS ,GET TX STAT\.IS
388 J81 SRTBIT ,THIS IS STfRT GF STfRT BIT
381 II«: R2 ,II«: TX TICK CWITER
lB2 lIlY R. 11XTlC ,TEST TICK CWITER 10) 4
383 fN.. A.R2
lB4 JNZ RET1.IlN ,IF IIlN-ZERO. "IOOlE GF BIT
lB5 ItOY A. TXSTS ,ZERO. GET lXSTS
lB6 CI'I. A ,Cm>LEl£NT FOR 8 TEST
387 JB8 Xl!T4 ,TEST TX FIJIi
388) 8 - t«lT TXIt«l. CI£CK FOR 1£11 CII!
lB9 ,1 - CURRENTLY IN CII!
318 lIlY R.llXE/1) ,CI£CK FOR 00 GF MTR III) ST(I'
311 XRL R.R2 ,XII! WITH CtJRENT TICK crull
312 JNZ XIIl1 1 t«lT Da£. CONTIIlE
313 lIlY R. TXSTS 1 Da£. GET TXSTS
314 fit. R.INlT TXFLG ,RESET TX FIJIi
315 lIlY TXSTS.A ,RESTORE TXSTS
316 JIll RET1.IlN lGO EXIT
317,

6-921

LOC OOJ

9881 2324
9883 Dfl
Il884 968C

8986 FD
8887 4384
Il889 fI)

Il88A 8488

888C F8
Il88I) 67
Il88E fII
Il88F FD
8898 F697
8892 SJF8
9894 fI)

9995 8488
8897 4384
8899 fI)

889A 8488

889C J2A8

889E Fe
889F fII
89A8 FD
eeA1 53FD
89AJ 4J89
II9A5 5JF8
88A7 fI)

88A8 8A98
88AA C5
88AB FF
88AC 4328
88AE AF
fl9AF 98

II9B8 1)5

IlIIB1 FF
81182 93

APPLICATIONS

SEll 500lCE STATEI£Nf

318 ; Cl£C!(IF 11'5 TIlE FOR STIP BIT
319 ;
328 001: /lOY It ISTf'EII) ; (;/£c!(FOR STIF BIT TIlE
:l21 lIRl A,R2 ;~ WITH llc!(CWfTER
:l22 JNZ XIIT2 ; NOT TIlE, 00 !£XT BIT
J23;
J24 ; TRANSIt IT sTIP BIl
:l25 ;
J26 /lOY It TJ(5Ts ; GEl TX STAM
J27 0Rl It IIfIlI(; S£Tlf PIPRII£D sTIP BIT
J28 /lOY TJ(5Ts,A ; RESTORE TX STATUS
:l29 JIt' R£T~ ;RE~

3J8 ;
m ; IN "IDOlE IF CII! - TRANSIIIT I£XT BIT
3J2 ;
m 002: /lOY A,R3 ; Ii: 1 IX SERIAlIZER
334 RRC A ; ROTATE !£XT BIT INTO CARRY
Il5 /lOY R3,A ;R5TORE SERIAlIZER
3J6 /lOY A, TJ(5Ts ; (£[IX STAM FOR plPRINED DflTA
337 IC XIIB ; OUTPUT A IIlRK IF 1
338 IN. A, ISPACE ; R£SET TXDflTA BIT
JJ9 /lOY TXSTs, A ;R£5TORE TX STATUS
348 JIt' R£TLIIN ;00 EXIT
341 XIITJ: 0Rl A,1IfIlI(; SET TXDflTA BIl
342 /lOY TXSTS, A ; RESTOR!: TX STATUS
343 JIt' R£TLI1N ; 00 EXIT
344 ;
345 ; TEST R£Qt£ST Flffi sita NOT C~TlY TRANSIIITTING
346 ;
347 004: 181 ~ ; TEST TX R£llI£sT Flffi
348 ; a - NO CII! WAITING IN 8tFFER
349 ; 1 - CHR WAITING IN 8U'FER
358 /lOY ItR4 ; CHR I.UTlNG. GET IT F~ HOLDING
351 /lOY R3,A ; PUT IN SERIAllZER
352 IIOY It TXSTs ; GET TJ(5Ts
353 IN. It II«IT R£IlFLG· ; R£SET R£QlJEST Flffi
354 0Rl It ITXFlG OR SBIT ; SET TX ANI) START BIT FLffiS
355 IN. A,ISPACE ;S£Tlf TXDflTA FOR START BIT
356 /lOY TJ(5TS,A ; RESTORE TXST5
357 ;
35B ; TX BlfFER ~ - SET TXINT PIN ANO BIT
359 ;
368 XIIT5: 0Rl nlTXINT ; SET TXINT PIN
J61 sa RB8 ; SWITCH FOR ~ 15
J62 /lOY ItR7 ;GET STs
J6J 0Rl It ITXBIl ; SE1 TXINT BIl
J64 /lOY R7,A ; R£STORE STS
J65 /lOY STS, A ;LOAO STAlUS
J66 ;

30(; *******************************.**********.******* ********
368 ;
J69 ; EXIT FOR TIlER INTERRIJ>T RWTIP£ POINT
378 ;
371 ; •• tt ************************************ *********************.
372 ;
373 R£T~: sa
374 /lOY
J75 RETR
376;

RS1
ItR7

; IRE SIft WE'R£ IN RBi
; RESTORE A
; ~ WITH R£5TORE

Tn ;.... I I I I I I I I I 111 I II I II II .t._*****""""."""",,******-
378 ;
379 ; GET HERE IF INTERRIJ>T 15 FIRS] FOR START BIT - ClEAR START BIT Flffi IN
JB8 ; TJ(5Ts ANI) S£Tlf TX Tic!(COIJITER
J81 ;
382 ; .. , _, -*', ... , .. , .. $>' ... '*'11 ... ' .. '**'_ $>11 ... '*'11 ... ' .. _ 1111111' I

J83;
384 SRTBIT: IN.
385 /lOY
J86 /lOY
387 JIt'
JB8 ;
389 $EJECT

It INOT SBIT
TXSTS,A
R2, I81H
~

6-922

RESET START BIT Flffi IN TJ(5Ts
R£STORE TX STATUS
INITIAliZE TX TIC!(CWfTER
~

III

LOC (RJ

8188

8188 D5
8181 22
8182 FE
8183 F227
8185 53E9
8187 963Il
8189 C5
811lA 1221
818C 89FF
818E F8
818F 53IIF
8111 III
8112 D5
8113 B928
8115 FE
8116323E
8118 5242
811A 7246
011C 924A
811E B5
811F 4414

8121 F8
9122 4349
8124 AS
8125 2412

8127 D231
8129 C5
812A F8
812B 4389
812D III
812E B5
012F 4414

APPLICATIONS

SWICE STRTEIEHT

3!iIIl;
~;M'*II~'MII*"M*"'~~*.~""~.'*'.'~'~'~'~~~.II.'M'~~"~~""
392 ;
393 ; 00fRI) REcmll2ER - GET !ERE FRO! IIIF IIUTE WITH F1 SET. 00fRI)

394 ; 15 5l~ IN R6. BfU) RIllE SELECTI(It BITS ARE EYILI.ImJ) RUiIl TO LEFT.
395 ; 11£ FIRST SET BIT FIXN> DETERltINES THE BfU) RATE. If AN IIMl.ID 00fRI)

3S6 ; 15 DETECTED. BOTH F1 AND FO ARE S£T AND I«l ACTI(It IS TlI<EN.
397 ; THE TIlER BfU) RIlTE C(lt5TANT 15 SET TO TIll CWlT5 L£55 THAN 11£ DESINED
398 ; IUIlER.
399;
499;MI~1 *11.IMII*II~".I.I.II.I.'MII*11~'.II~II.'*'"' .II.'.II.II~II~**.'.II.'~"~II.II"II

491 ;
492 ORO
493 ;
494 00: sa
495 IN
496 I9JY
497 JB7
498 ANL
489 JNZ
418 sa
411 JB8
412 ORL
413 I9JY
414 ANL
415 I9JY
416 001: sa
417 I9JY
418 I9JY
419 JB1
428 JB2
421 JB3
422 JB4
423 CP\.
424 JII'
425 ;

RBi
ftDBB
R6.A
10ER
ftl8ElIH
ERROR
RB9
002
PLIefFH
ftRX5T5
A.INOT IODIR
RX5T5.A
RBi
RLITlII:(It
ftR6
8118
B388
B688
81288
F1
1H.P1

;5ELECT RBi
; READ 00fRI)

; SAVE (;(JIlIN) IN R6
; IF BIT 7 SET. 10 OPERfITI(It
; TEST T!J' 3 BITS
; IF N(lt-ZERO. ERROR
; 10 FUll IN RB9
; IF BIT 8--1. OIIIPUT PORT
; IIf'Ul PORT. SET ALL HIGl
;GET RXST5
; RESET 10 DIRECTI(It Am
; RESTORE RXST5
; BfU) RllTE W61ANT5 IN RBi
; POINT AT TIlER C(lt5TfIlT LOCItTl(lt
;GET 00fRI)

; 119 BfU) SELECTED
; 388 BfU) SELECTEO
; 688 BfU) 5El.EC1ED
; 1288 BfU) 5ELECTEO
; RESET F1
; I)(ItE, JtJI' IIf(I(TO IIIIN UU'

426 ; PORT 15 5ELECTEO AS WTPUT PORT - SET 10 DIREClI(lt Am
427 ;
428 CllD2: I9JY
429 ORL
439 lilY
431 JIP
432 ;

A.RXST5
ft IIODIR
RXST5..A
CII>1

; GET Rl5T5
; SET 10 DIRECTI(It FUll
; RESTORE RX5T5
; C(ltfINJE

433 ; I£RE WITH EITHER 10 OR RESET ERROR WIIN)
434 ;
435 10ER:
436
437
438
439
449
441
442

JB6
sa
I9JY
ORL
lIlY
CP\.
JII'

ERR5T
RB9
ftRXSTS
ftllOFLG
RXSTS.A
F1
IH.P1

443 RESET ERROR 00fRI)

444

6-923

IF BIT 6 SET. RESET ERROR FLAGS
10 Am IN RXST5
GET RXSTS
SU 10 fUll
RESTORE RX5T5
RESET F1
DQ£, JIll' BACK TO IIIIN LOOP

APPLICATIONS

LOC OOJ SEQ SOOlCE SlRTEIENT

8131 C5 445 Ekf6T: SEL RII9 ; SlS IN RII9
9132 FF 446 ItOY R,R7 ; GET SlS
8m 53JF 447 IN. fl.lRSTERR ; RESET ERr<1ll FI.OOS
9135 IF 448 ItOY R7,R ; REST!J<E SlS
9136 99 449 ItOY SlS,R ; LIft) SlRTUS
am as 459 CPL F1 ;RESET F1
8138 4414 451 JII> 1H.P1 ; I)(J£, BACK TO ItRIN LOOP

452 ;
453 ; COllIN) ERr<1ll - SET BOTH F1 IN) F8·
454 ;

913fl as 455 ERRCR: ClR F8 ;SET FB
9138 95 456 CPL FB
8BC 4414 457 JlI' IH.P1 ; I)(J£, BACK TO IIIIN LOOP

458 ;
459 ; 118 BfW ctllSTffITS
469 ;

91:lE B954 461 8119: ItOY R1,1-(1741)-2O) iLIR) 118 BfW COOSHIH
9149 244(; 462 JlI' SlTII~ ; (;() START TII£R

463 ;
464 ; 308 BfW Cl»6TRNTS
465 ;

9142 B9C2 466 8308: ItOY RL '-(641)-20) ; U.ft) l8(j BfW ctllSTffIT
9144 244(; 46? JlI' SHlMR ; GO SlARl crulTER

469 ;
469 ; 609 BfW CONSTffITS
471iJ

9146 99E2 . 471 B609: ItOY R1, '-(J2D-2O) ; LIH> 609 BfW CONSlRNT
9149 244(; 472 JII> STTIMR ; GO SlART CWlTER

473 ;
474 ; 1299 BfW CONSTANTS
475 ;

914R B9F2 476 B129I!: ItOY RL '-(160-20) ; LIft) 120iI BfW Cl»6TffIT
477 ;
478 ; SHIH C!UITER
479 ;

914C F9 488 SlTIMR: ItOY fH1 ; GET crullER CONSTIlIT
9140 62 491 ItOY . T,R ; LIR) C!UITER
914E 45 492 SlRT 00 ; START crurrER
814F 25 483 EN TOOl ; EtfIBLE 1I1£R INTERRlJ'TS
9159 as 4B4 CPL F1 ;RESET F1
9151 4414 4B5 JlI' IH.P1 ; DONE, BfICI(TO ItRIN LOOP

496 ;
487 $EJECT

6-924

UK: IIIJ

11153 CS
11154 FB
11155 F2f;7

11157 FF
11158 53Df
II15A IF
11158 ~
1115C 'IfF?
11151: D5
11151' 22
11168 fr:
11161 FD
11162 4382
11164 II)
1116:> 4414

11167 537F
11169 III
111611 22
8168 39
1116C 4414

APPLICATIONS

SEQ

488 ;
~;""~'MII*.~'MIJ*'~'''M'~ •• ~'M'~''''*"I ~'*"*'~'*''''*"~'''M'~II*'
4~;

491 ;DATR ROOTII£ - Gl:T IDE WITH IIF II!ITE WITH Fl RESET. THIS ROOTI~
492 ; FIRST TESTS IF THE 110 FUli IS SET IN THE RX>TS REGlS1ER. IF SO, THE DATA
493 ; IS FlJ/ THE WIPIIT PIIIT. OTHERWISE. THE DATA IS FIR THE T19iSIIITTER fH)

494 ; IS PIJl:El) IN lIE TX BU'FER REGISTER. THE TXINT BIT fH) PIN fIR!: RESET.
495 ;
496 ;~I ~'*IIM.~'*'M' *'_*'M'~'*"'''''' ~'''~'*'M'~',"_'' •• ~ •• '_~_''.'''''.~ •......
497 ;
4~ DATA:
499
588
5B1
5112
58l
584
585
586
587
5B8
589
518
511
512
ill ;

SEl
lIlY
JB7
lIlY
IN.
lIlY
lIlY
IN.
sa
IN
lIlY
lIlY
IIa.
lIlY
JII'

R88
R.RXSTS
10000R
R.R7
R.II«lTTXBIT
R7.R
STS,A
P2.1I«lT TXINT
RII1
R.088
R4,R
R. TXSTS
R.IR£IlflG
TXSTS,R
IIlP1

514 ; 10 DATR ROOTINE
515;
516 10000TA: IN.
517 lIlY
518 IN
51~ OOTL
S2Il JII'

R.1I«lT IlFLG
RXSTS,R
R.088
Pi,R
IIlP1

6-925

;DRTR IIN>LED IIOSTLY IN RIl8
;GET RXSTS
; IF 10 FLf(j SET, DATR IN FOR 110
;GET STS
; RESET TXINT BIT IN' STS
; RESTORE STS
; LOll) STRTUS
; RESET TXINT PIN

TXSTS IN RBi
READ DATA
PUT DATA IN TX BLfFER
GET lXSTS
SET RElllEST FUli IN TXSTS
RESTORE lXSTS
BID(TO IIUN LOOP

RESET 10 FUli
RESTORE RXSTS
READ 10 DATA FRat 088IN
OOlPUT TO PORT 1
DONE. IIf£K TO "fUN U)(P

lOC OOJ

9298 9ff:7
82Il2 F5
9283 2398
8285 III
8286 AD
8297 II'
82Il8 D5
82Il9 f£
82IlA BD84

82IlC 0614
828E 7612
921e 2453
9212 2499
9214 869C
9216 C5
9217 FB
9218 721E
921A mc
1121C 449C

1121£ 85
II21F 95
11229 A5
11221 922E
9223 F8
11224 B235 .
11226 FB

APPLICATIONS

5(UCE STATEl£NT

523 ,

524 ; *******.***************************~""***********4'f:"'"
S2:J ,
526 ,INITIAlIZATIOO - GET tm AT RESET. THIS ROUTINE RESET5 TI£ INTERRIJ'T
527 ,OUTPUTS fill) EtfiIlES TI£It fill) ClEARS TIE fPPRlPRlATE STATUS fH) DATA
52B ,REGI5TER5.
529 ,

539 ; ... **
531,
532 ~ II299H
533 ,
534 INIT: ANl P2, 18F7H ,RE5E1 TlUNl PIN
53:> EN FlAGS ,EIIlBI.E INl ERRLPT5 OUTPUT
516 IIJY It lZERO ,ClEAR A
537 PllV RXSTS, A ,CLEAR RXSTS
538 PllV A5,A ,ClEAR RX TICK COltITER
539 IIJY R7,A ,ClEAR STS
549 SEl RB1 , SW ITCH Blft(S
541 I10V R6,A ,CLEAR COIf'IGURE STORE
542 PllV TX5TS, IIfRK ,SETUP PIf'El.INED Tl(DATA
543 ,
544 j *************** ... I 1 ... *' * I 11 ***** I I I r I I , I III ... *' I I , I I '***
545,
546 "tUN lOOP - IBF fill) OBF ARE IflII)lED IN THIS llXl'. IF 18f=L Tlio
547 ,AI'PROPRIATE COItIfN) ~ DATA ROUTINE 15 ACCESSED. IF IBF=9, If£N OBF
549 , 15 TESTED. IF OBF=L IBF IS TESTED AGAIN. AS 5COl AS OBF=9, RXSTS
549 , IS EXIItINE~ TO SEE IF DATA 15 WAITING F~ 0Ul PUT. II£N RX DATA
559 ,READY 15 SET, Fe 15 SET fill) Fl IS~, fill) TIE DATH 15 TRIIISFERRED
551 ,FRO! TI£ RX IOJlING REGISTER INTO DBBOUT AFTER TESTING F~ ERR~
552 ,FlAGS. ANY EIlRIR FlAGS SET ARE TRfIISFERREO TO TIE 51 ATUS REGISTER
55J ,IF TIE 110 FlAG 15 SET, TIE ~T 15 READ fill) TI£ DATA TRANSfERRED TO
554 ,DBBOUT.
555 ,

5S6 ; *** I I I 1************
557 ,
558 1ti.00P: JNIBF
559 JF1
568 JIf'
561 Clt)J1: JIf'
56< 1N..P1: JOBF
563 SEl
564 I10V
565 JB3
566 JB7
567 JIf'
56B ,

IN..P1
Clt)J1
DATA
CIt)

IH.OOP
RB9
ItRXST5
RXR~Y

10FlAG
IH.OOP

,IF IBF=9, TI:5T OOF
,IBF=L TEST F1 F~ COIIflII)
,F1=9, JIJI' TO DATA ROUTINE
,OUT -IF-ffllE COI9IfN) JIJI'
,WAIT UNTil DBBOUT 15 FREE
,RXSTS IN R89
,GET RX5TS
,TEST RX DAl A R!:ADY FlRll
,TEST 10 FlRll
'llXl'

569 ,RX DAI A READY - TRANSfER TO D8BOOT
579 ,
571 RXRIlY: CLR
572 CPl
5"(3 CLR
574 JB4
5-"5 RXRIlY1: I10V
576 JB5
577 RXRIlY2: PllV

F8
Fe
F1
RXF
It RXSTS
RXO
A,RXSTS

6-926

,SET Fe

,RE5ET Fl
,CHECK FRfflING ~ FlAG
,GET RXSTS
,CHECK F~ ~ EIlRIR
,GET RXSTS AGAIN

APPLICATIONS

LOC OOJ SCQ SOOlCE STRTEIEHT

8227 53t7 578 IN. II. II«lT (DRTJ1I)I' OR Fl1IIER OR IlYRLIO ; RESET 5I.I'E FI.ffiS
9229 III 579 IllV RXSTS, A ; RESTORE RXST5
922A FC 588 IllV II.R4 ; GET DRTA FRO! I«LDIMl REG
922B 92 581 ruT D88,R ; PUT IN D!I8OUT
a22C 440C S82 JIIP MOO' ;LOO'

583;
584 ; FRftIIMl ERROR Fl.ffi 5U
585 ;

Il22E FF 586 RlIf: ItOY II.R7 ;GET ST5
922F 4340 587 IlRL II. 1FES1S ; !lET fRlllIMl IORROR FI..OO
9231 ~ 588 ItOY R7,A ; RESTORE STS
9232 99 589 ItOY 515, A ; LIlAIl STATUS
9233 4423 599 JIll' RlIJID\'1 ; CONTItu:

591 ;
592 ; 0\IERRtJj ERROR Fl.ffi S£ T
593 ;

~FF 594 00: ItOY II.R7 ; GET ST5
9236 4388 595 IlRL II. IOVSTS ; S£T O'lERRltl ERROR Fl.ffi
8238 ~ 596 IllV R7,A ; RESTORE ST5
9239 99 597 J10Y STS,A ;LIlAIl STATUS
923A 4426 598 JIf> RXRDY2 ;CONTItu:

599 ;
6SO ; 10 Fl.ffi S£T - TEST DIRECTION
691 ;

923C FB 6a2 IDFLfIJ: IllV A, RXSTS ; GET RXST5
823D D20C 683 JB6 IH.OO' ; PORT 15 rulPUl - NIl ACTION
923F as 684 CLR F8 ; RESET F8
9240 AS 685 CLR F1 ; S£T F1
8241 B5 686 C!'I. F1
9242 537F 687 IN. II.II«lT HRG ; RESET III Fl.ffi
9244 All 688 ItOY RXSTS, A ; RESTORE RXSTS
9245 89 689 IN A,P1 ; R£RI) PORT 1
9246 92 618 ruT DBB,H ; PUT DRTA IN D!I8OUT
9247 44eC 611 JMP MIlIlF ; LOOP

612 ;
613 END

USER 5'II1BOL5
A5C/1SK 007F 8119 813E B1200 814ft BjOO 9142 B600 9146 BFFLG 8894 ell) 9100 CII)1 9112
Cl'l)2 9121 CllDJ1 9212 DRTR 9153 DRlRDY aeea ERROR 81lA ERRST 9131 FESTS 004e FRIftR 11810

INIT 9200 INT1 89IIIl IIlDRTA 9167 100lR 9848 IIEl 9127 IDFLfIJ 923C IIlFLG aeea 'IlR!(9004
MKOUT 9001 IROO' 929C 1RP1 9214 /OJT 11819 O'MII 0029 IlYSTS eeae RCY 991B RCY1 0026
RCY2 0033 RCY3 0038 RCY4 8942 RCY5 lI94I) RCY6 0051 RCY7 eess kCY8 9968 RCY9 Il964
REQFLG 8002 !<ESCT eeee RETURN eeee I<STERR 003F RlIf Il22E RlIfLG 9001 RXINTL eeae 00 9235
RXRDY II21E RXRDY1 9223 RXRDY2 9226 RXSTS 8003 SBIT eeea 5FIll: OOF8 5F(lJl OOFE SR181T 91183
SRTFLG 0092 5TPENO 0024 STTIMR 914C TlC!XJT a94e TlCSRT 9004 TlMCIlN 0029 T1MINT 9007 lXBIT 0029
TXEND 0029 TXFLG 0091 TXINT eeea TXWT 11812 TXSTS eees mlc 91183 XlIIT 9968 001 0091
XIIT2 ease 003 0097 XlIT4 009C XlIT5 IIeAS ZERO eeee

A55E1t81..Y C{)IIPlETE. NIl ERRORS

6-927

APPLICATIONS

LOC !BJ SEQ sam: STATEItENT

1
2 TEST ROOTII£ IflICH OUTPUTS Tl£ ASCII Clflt'lCTER SET TO *
3 U'I TRfIGIITTER IN) DI5I'lAYS 011 Tl£ 88Il8 romE fWII
4 Clm'£TERS RECEIVED BY TIE U'I RECUYER.
5
6 IIf'IITS: r«JTHII«l
7 OUTPUTS: Clm'£TERS TO romE
8 CALLS: r«JTHII«l
9

4888 18 001 488eH
I!OOf 11 IQ)E5J EllU OOFH ,8253 COOTROL PG!T
880C 12 008 ElIU 9DCH ,8253 00 8 PG!T
88E5 13 CIt) ElIU 8E511 ,U'I COI9IN) PG!T
88E5 14 STATUS ElIU 8E5II ,U'l STATUS PG!T
88E4 15 D88IN ElIU 8E4H i U'I DBSIN I'OI<T
88E4 16 DBSOOT ElIU 8E4H ; Lf'1 DBSOOT PalT
8828 17 TXINT ~lIU 28H ; TXINT IflSI(
8881 18 0Ilf ElIU 81H ; 0Ilf IfISI(

8882 1!IIBF ElIU 82H ; IBF IfISI(

88ED 28 STAT51 ElIU 8EDH ; 8251 STATUS f1JRT
88EC 21DATA51 EllU 8ECH ,8251 DATA PalT
8881 22 TXRDI' ElIU 81H ; 8251 TXRDI' IfISI(

23 ;
4888 lEl6 24 START: ItVI 1tl6H ; 8253 008 ItOOE laD

. 4882 DJDF 25 IllIT 1tOOE53 ; 8253 CONTR!il. PG!T
4884 3E18 26 /lV1 A.18H ; DIVIDE BY 160
4886 DlOC 27 OOT 008 ; 8253 008 PalT LS8
4888 1£88 28 /lV1 1t88H ;
488A DlOC 29 OOT 008 ;8253 008 PG!T r.ss
488C 8628 38 ItVI 8.28H ; INITIALIZE OOTP\JT CIt!
488E lEi8 31 ItVI A.18H ; COIf'IGlfiE COItIfH) - 1288 8fU)
4818 0~5 12 IllIT CIt) ; U'l wtIfN) PG!T
4812 08E5 33 PW.1: IN STAM ,READ U'I STATUS
4814 E621 34 fill TXINT ~ 0Ilf ,TEST TXINT fflO 0Ilf
4816 CA1248 35 JZ PW.1 ; NAIT UNTIL (f£ IS SET
4819 0IIE5 36 IN STATUS ;READ U'I STATUS AGAIN
481B E681 37 fill 0Ilf ; IllS IT OIIF?
481D C23848 18 JNZ . RX ; YES. GO 00 RECEIVER

19 ; r«J. ItJST BE lRfflSItlTTER
4828 78 48 PKIY A.B ,GET /£Xl CIt! FER IllITPUI
4821 03£4 41 IllIT DBSIN ; IllITPUT 10 U'I DBSIN
4823 FE5A 42 Cl'1 'Z' ; NAS IT LAST CIt!?
4825 CRl348 43 JZ NEIll ; YES. RESl:T REG. B
4828 84 44 I~ B ; OTHERWISE. It«: B
4829 08E5 45 POLl2: IN STATUS ; TEST IF IBF STILL SET
4828 E682 46 fill IIIF ,TEST .IBF
4I!2D C22948 47 JNZ POLL2 ; NAIT UNTIL 11IF=8
4838 C31248 48 JIll POLU ; 8EF~ Loonl«l AT STATUS fOUN

49 ;
4831 8628 58 NEIll: ItVI B.28H ,RESET REG.
4835 Cl2948 51 JIll P0LL2 ,GO SOCK

52;

6-928

LOC OOJ

4838 D8E4
483R 4f
4838 OOED
4831) E681
48JF Cffi848
4842 79
4843D3EC
4845 C31248

PlIlLIC S'MnS

USER S'MnS
CII) A 98E5
IElII A 4833
STAT51 A 8eEJ)

APPLICATIONS

SEQ SWlCE STAIDENT

53 RX: IN
54 IllY
55 RX1: IN
56 ANI
57 JZ
58 IllY
59 M
60 JIf'
61 ;
6200

DBSWT
C,A
STAT51
mDY
RX1
fl,C

DATA51
PO..L1

CNT8 A Il80C
(J3f A 8081
STATUS A 98E5

DATA51 A 89EC
P(ll1 A 4812
TXINT A 8828

; RfR) DII800T FIR RECEIVED ~
; SR'/E IT IN C
; RfR) 8251 STATUS
; TEST mDY
; WAIT OOIL READY
diET ~
; OOTPUT ~ TO CIIISOI.E
; GO TEST UPI AGAIN

DllSIN A 89E4
P!ll2 A 4829
mDY A 8981

DII800T A l!8E 4
RX A 4838

ASSEIIlL y Cl1tPl£TE, If) ERRORS

6-929

Ifjf
RX1

H 11082
A 4838

1IlOE53 A 88VF
ST~T A 4800

APPLICATIONS

PROGRAMMABLE KEYBOARD INTERFACE

• Simultaneous Keyboard and Display
Operations

• Interface Signals for Contact and
Capacitive Coupled Keyboards

• 128-Key Scanning Logic

• 10. 7msec Matrix Scan Time for 128 Keys
and 6MHz Clock

• Eight Character Keyboard FIFO

This application is a general purpose programmable
keyboard and display interface device designed for
use with 8-bit microprocessors like the MCS-80 and
MCS-85. The keyboard portion can provide a
scanned interface to 128-key contact or capacitive­
coupled keyboards. The keys are fully debounced
with N-key rollover and programmable error genera­
tion on. multiple new key closures. Keyboard entries
are stored in an 8-character FIFO with overrun sta-

RL Vcc

x, CLR

X2 B3

RESET B2

NC B,

Cs BO

GND KCL

RD M6

AO M5

WR M4

SYNC M3

DO M2

D, M,

D2 MO

D3 VDD

D, NC

D5 ERROR

D6 IRQ

D7. HYS

GND BP

Figure 1. Pin Configuration

• N-Key Rollover with Programmable
Error Mode on Multiple New Closures

• Sixteen or Eight Character Seven­
Segment Display Interface

• Right or Left Entry Display RAM

• Depress/Release Mode Programmable

• Interrupt Output on Key Entry

tus indication when more than 8 characters are en­
tered. Key entries set an interrupt request output to
the master CPU.

The display portion of the UPI-41A provides a
scanned display interface for LED, incandescent
and other popular display technologies. Both nu­
meric displays and simple indicators may be used.
The UPI-41A has a 16X4 display RAM which can be

DATA
BUS

6-9.30

INTERRUPT
REQUEST

RD

WR
Cs
AO

x,

X2

+5-
PWR _

GND ---+-

INTERNAL
BUS

Figure 2. Block Diagram

SCAN
OUTPUTS

,-L-,
M6

MO

TO
DISPL'AY
DIGITS

APPLICATIONS

loaded or interrogated by the CPU. Both right entry
calculator and left entry typewriter display formats
are possible. Both read and write of the display
RAM can be done with auto increment of the display
RAM address.

PRINCIPLES OF OPERATION
The following is a description of the major elements
of the Programmable Keyboard/Display interface
device. Refer to the block diagram in Figure 1.

1I0.Control and Data Buffers
ORDERING INFORMATION: The I/O control section uses the CS, AO, RD, and

WR lines to control data flow to and from the var­
ious internal registers and buffers (see Table 2). All
data flow to and from the 8278 is enabled by CS. The
8-bits of information being transferred by the CPU
is identified by AO. A logic one means information is
command or status. ~ic zero means the informa­
tion is data. RD and WR determine the direction of
data flow through the Data Bus Buffer (DBB). The

This part may be ordered as an 8041A with ROM
code number 8278. The source code is available
through Insite.

Throughout this application of the UPI-41A, it will
be referred to by its ROM code number, 8278. The
8278 is packaged in a 40-pin DIP. The following is a
brief functional description of each pin.

Table 1. Pin Description

Signal Pin. No. Type Name and Function

DO-D7 12-19 I/O Data Bus: Three-state, bi-directional data bus lines used to transfer data and com-
mands between the CPU and the 8278.

WR 10 I Write: Write strobe which enables the master CPU to write data and commands be-
tween the CPU and the 8278.

RD 8 I Read: Read strobe which enables the master CPU to read data and status from the
8278 internal registers.

CS 6 I Chip Select: Chip select input used to enable reading and writing to the 8278.

AO 9 I Control/Data: Address input used by the CPU to indicate control or data.

RESET 4 I Reset: A low signal on this pin resets the 8278.

X1,X2 2,3 I Freq. Reference Inputs: Inputs for crystal, L-C or external timing signal to deter-
mine internal oscillator frequency.

IRQ 23 0 Interrupt Request: Interrupt Request Output to the master CPU. In the keyboard
mode the IRQ line goes low with each FIFO read and returns high if there is still infor-
mation in the FIFO or an ERROR has occurred.

Mo-M6 27-33 0 Matrix Scan Lines: Matrix scan outputs. These outputs control a decoder which
scans the key matrix columns and the 16 display digits. Also, the Matrix scan outputs
are used to multiplex the return lines from the key matrix.

RL 1 I Keyboard Return Line: Input from the multiplexer which indicates whether the key
currently being scanned is closed.

HYS 22 0 Hysteresis: Hysteresis output to the analog detector. (Capacitive keyboard configu-
ration). A "0" means the key currently being scanned has already been recorded.

KCL 34 0 Key Clock: Key Clock output to the analog detector (capacitive keyboard configura-
tion) used to reset the detector before scanning a key.

SYNC. 11 0 Output Clock: High frequency (400 kHz) output signal used in the key scan to detect
a closed key (capacitive keyboard configuration).

BO-B3 35-38 0 Display Outputs: These four lines contain binary coded decimal display information
synchronized to the keyboard column scan. The outputs are for multiplexed digital
displays.

ERROR 24 0 Error Signal: This line is high whenever two new key closures are detected during a
single scan or when too many characters are entered into the keyboard FIFO. It is reset
by a system RESET pulse or by a "1" input on the CLR pin or by the CLEAR ERROR
command.

CLR 39 I Clear Error: Input used to clear an ERROR condition in the 8278.

BP 21 0 Tone Enable: Tone enable output. This line is high for 10ms following a valid key
closure; it is set high and remains high during an ERROR condition.

VCC, VDD 40,26 I Power: +5 volt power input: +5V ± 10%.
GND 20,7 I Ground: Signal ground.

6-931

APPLICATIONS

DBB register is a bi-directional 8-bit buffer register
which connects the internal 8278 bus buffer register
to the external bus. When the chip is not selected
(CS = 1) the DBB is in the high im~ance state.
The DBB acts as an input when (RD, WR, CS) = (1,
0, 0) and an output when (RD, WR, CS) = (0, 1, 0).

Table 2. 1/0 Control and Data Buffers

CS AO WR RD Condition

0 0 1 0 Read DBB Data
0 1 1 0 Read STATUS

0 0 0 1 Write Data to DBB
0 1 0 1 Write Command to DBB
1 X X X Disable 8278 Bus,

High Impedance

Scan Counter>
The scan counter provides the timing to scan the
keyboard and display. The four MSB's (M3~M6)
scan the display digits and provide column scan to
the keyboard via a 4 to 16 decoder. The three LSB's
(MO-M2) are used to multiplex the row return lines
into the 8278.

Keyboard Debounce and Control
The 8278 system configuration is shown in Figure 3.
The rows of the matrix are scanned and the outputs

are multiplexed by the 8278. When a key closure is
detected, the debounce logic waits about 12 msec to
check if the key remains closed. If it does, the ad­
dress of the key in the matrix is transferred into a
FIFO buffer.

FIFO and FIFO Status
The 8278 contains an 8X8 FIFO character buffer.
Each new entry is written into a successive FIFO lo­
cation and each is then read out in the order of entry.
A FIFO status register keeps track of the number of
characters in the FIFO and whether it is full or emp­
ty. Too many reads or key entries will be recognized
as an error. The status can be read by a RD with CS
low and AO high. The status logic also provides a
IRQ signal to the master processor whenever the
FIFO is not empty.

Display Address Registers and Display RAM
The Display Address registers hold the address of
the word currently being written or read by the CPU
and the two 4-bit nibbles being displayed. The
read/write addresses are programmed by CPU com­
mand. They also can be set to auto increment after
each read or write. The display RAM can be directly
read by the CPU after the correct mode and address
is set. Data entry to the display can be set to either
left or right entry.

TO TONE GENERATOR

ANALOG
DETECTOR

TO
8080. B085 OR 8048

MASTER
PROCESSOR

a

RlHYS~ BP
ERROR KCl
ClR M.'

IRQ M3
B041Ai
8741A

00-07

WR
iiD

SYNC

AD
'"!6

CS
RESET "0 83"··· oSo

8 OR 16 DIGIT DISPLAY

J
ANALOG J

MULTIPLEXER

--B--

-
4 TO 16 !

~ DECODE 16

~
-

I
I

I

CAPACITIVE
KEYBOARD

MATRIX

~~TSCAN
Figure 3. System Configuration for Capacitive-Coupled Keyboard

6-932

APPLICATIONS

TO
B080, 8085 OR 8048

MASTER
PROCESSOR

a

BP Rl

ERROR

ClR
M2

IRQ MO
8041A/
8741A

00-0 7

WR -
RD

~6
AD

Cs
RESET M3

83-··· .BO

TO TONE GENERATOR

I
DIGITAL I

MULTIPLEXER

--8--

-
I

ll. 4TO 16 I
DECODE 16

i

I I 4 TO 16 -
DECODE

I
I

I

CONTACT

~- 16 --I 16 DIGIT SCAN
KEYBOARD

MATRIX

8 OR 16 DIGIT DISPLAY

Figure 4. System Configuration for Contact Keyboard

COMMANDS
The 8278 operating mode is programmed by the
master CPU using the AO. WR and DO-D7 inputs as
shown below:

AD. Cs 3 _____ vA_L�_D ___ ~X'_ __ '_NV_A_Ll_D_

WR \ /
00-0 7 INVALID X VALID X INVALID

The master CPU presents the proper command on
the DO-D7 data lines with AO =1 and then sends a
WR pulse. The command is latched by the 8278 on
the rising edge ofthe WR and is decoded internally
to set the proper operating mode. See the
8041A/874IA data sheet for timing details.

Command Summary

KEYBOARD/DISPLAY MODE SET

CODe

Where the mode set bits are defined as follows:
K-the keyboard mode select bit

O-normal key entry mode
I-special function mode: Entry on key closure

and on key release
D-the display entry mode select bit

O-left display entry
I-right display entry

I-the interrupt request (IRQ) output enable bit.
O-enable IRQ output
I-disable IRQ output

E-the error mode select bit
O-erroron mUltiple key depression
I-no error on multiple key depression

N-the number of display digits select
0-16 display digits
1-8 display digits

NOTE:
The default mode following a RESET input is all bits zero:

READ FIFO COMMAND

CODe 1011101010101010

READ DISPLAY COMMAND

CODe I 0 I 1 I 1 I AI I A3 I A2 I Al I Ao I
6-933

APPLICATIONS

Where AI indicates Auto Increment and Aa-Ao is
the address of the next display character to be read
out.

AI = 1 AUTO increment
AI = 0 no AUTO increment

WRITE DISPLAY COMMAND

CODE I 1 I 0·1 0 I AI I Asl A2 I Al I AO I

Where AI indicates Auto Increment and Aa-Ao is
the address of the next display character to be
written.

CLEAR/BLANK COMMAND

CODE I 1 I 0 I ' I uo I BO I col CF I CE I

Where the command bits are defined as follows:
CE = Clear ERROR
CF = Clear FIFO
CD = Clear Display to all High
BD = Blank Display to all High
UD = Unblank Display

The display is cleared and blanked following a
Reset.

Status Read
The status register in the 8278 can be read by the
master CPU using the AO, RD, and DO-D7 inputs as
shown below:

AO.CS ~ VALID

RD \'---_/

The 8278 places 8-bits of status information on the
DO-D7 lines following (AO, CS, RD) = 1,0,0 inputs
from the master.

Status Format

I Sa I S2 I S, I So I BIKE I'SF IOBF I .
07 De 05 04 Oa 02 0, DO

Where the status bits are defined as follows:
IBF = Input Buffer Full Flag
OBF = Output Buffer Full Flag
KE = Keyboard Error Flag (multiple depression)
B = BUSY Flag
Sa-So = FIFO Status

STATUS DESCRIPTION

The Sa-So status bits indicate the number of entries
(0 to 8) in the 8-level FIFO. A FIFO overrun will lock
status at 1111. The overrun condition will prevent
further key entries until cleared.

A multiple key closure error will set the KE flag and
prevent further key entries until cleared.

The IBF andOBF flags signify the status of the 8278
data buffer registers used to transfer information
(data, status or commands) to and from the m,aster
CPU.

The IBF flag is set when the master CPU writes
Data or Commands to the 8278. The IBF flag is
cleared by the 8278 during its response to the Data
or Command.

The OBF flag is set when the 8278 has output data
ready for the master CPU. This flag is cleared by a
master CPU Data READ.

The Busy flag in the status register is used as a
LOCKOUT signal to the master processor during re­
sponse to any command or data write from the
master.

The master must test the Busy flag before each read
(during a sequence) to be sure that the 8278 is ready
with valid DATA.

The ERROR and TONE outputs from the 8278 are
set high for either type of error. Both types of error
are cleared by the CLR input, by the CLEAR ER­
ROR command, or by a reset. The FIFO and Display
buffers are cleared independently of the Errors.

FIFO status is used to indicate the number of char­
acters in the FIFO and to indiate whether an error
has occurred. Overrun occurs when the entry of an­
other character into a full FIFO is attempted. Un­
derrun occurs when the CPU tries to read an empty
FIFO. The character read will be the last one en­
tered. FIFO status will remain at 0000 and the error
condition will not be set.

Data Read
The master CPU can read DATA from the 8278
FIFO or Display buffers by using the AD, RD, and
DO-D7 inputs.

The master sends a RD pulse with AO = 0 and CS = 0
and the 8278 responds by outputting data on lines
!2ll:D7. The data is strobed by the trailing edge of
RD.

6-934

APPLICATIONS

DATA READ SEQUENCE

Before reading data, the master CPU must send a
command to select FIFO or Display data. Following
the command, the master must read STATUS and
test the BUSY flag and the OBF flag to verify that
the 8278 has responded to the previous command. A
typical DATA READ sequence is as follows:

BUSY J L
DBF '--__ --'I

t
READ DISPLAY FIRST MASTER NEXT

OR FIFO COMMAND OAT A BYTe READS DATA BYTe READY
FROM MASTER READY 8278

PROCESSING
NEXT BYTe

After the first read following a Read Display or Read
FIFO command, successive reads may occur as soon
as OBF rises.

Data Write
The master CPU can write DATA to the 8278 Dis­
play buffers by using the AO, WR imd DO-D7 inputs
as follows:

AO, cs 3 ___ VA_Ll_D ___ -JX INVALID

WR \'-----'/

The master CPU presents the Data on the DO-D7
lines with Ao=O and then sends a WR pulse. The
data is latched by the 8278 on the rising edge of WR.

DATA WRITE SEQUENCE

Before writing data to the 8278, the master CPU
must first send a command to select the desired dis­
play entry mode and to specify the address of the
next data byte. Following the commands, the master
must read STATUS and test the BUSY flag (B) and
IBF flag to verify that the 8278 has responded. A
typical sequence is shown below.

-J L
IBF

WRITE DISPLAY 8278 MASTER 8278 8278
COMMAND READY DATA WRITE READY READY

FOR FIRST BYTE
COM,..AND MASTER WRITES
OR DATA NEXT BYTE

INTERFACE CONSIDERATIONS

Scanned Keyboard Mode
With N-key rollover each key depression is treated
independently from all others. When a key is de­
pressed the debounce logic waits for a full scan of
128 keys and then checks to see if the key is still
down. If it is, the key is entered into the FIFO.

If two key closures occur during the same scan the
ERROR output is set, the KE flag is set in the Status
word, the TONE output is activated and IRQ is set,
and no further inputs are accepted. This condition is
cleared by a high signal on the CLEAR input or by a
system RESET input or by the CLEAR ERROR
command.

In the special function mode both the key closure
and the key release cause an entry to the FIFO. The
release is entered with the MSB=1.

Any key entry triggers the TONE output for 10ms.

The HYS and KCL outputs enable the analog multi­
plexer and detector to be synchronized for interface
to capacitive coupled keyboards.

Data Format
In the scanned keyboard mode, the code entered
into the FIFO corresponds to the position or address
of the switch in the keyboard. The MSB is relevant
only for special function keys in which code "0" sig­
nifies closure and "I" signifies release. The next four
bits are the column count which indicates which col­
umn the key was found in. The last three bits are
from the row counter.

BIT

Display

543 o

1 FOR SPECIAL FUNCTION
MODE AND KEY RELEASED
o FOR KEY DEPRESSED

Display data is entered into a 16X4 display register
and may be entered from'the left, from the right or

6-935

APPLICATIONS

COUNT

Yo I

I
HY. ('--_--JX'--_--J X X X
KCL l'--____ --In'--_--I n n n

RL SAMPL:ED t t

Figure 5. Keyboard Timing

..
SCANCVCLE I

IRQ

BP

--------------------~
ERROR

KEY 1
DEPRESSED

KEY 1 KEY 1
ENTERED READ BY MASTER

X
n

t

KEY 2 KEY 3
DEPRESSED DEPRESSED

Figure 6. Key Entry and Error Timing

DISPLAY
CHARACTER

Me

I

------------------1
M5 __ --I1

X
~

t

Bo-B. \\.-----J! \'------J! '\...-----J! \\...-----J! \\.-----J! \\.-----J! \'-----_

Figure 7. Display Timing

6-936

APPLICATIONS

into specific locations in the display register. A new
data character is put out on BO-Bg each time the
M6-Mglines change (i.e., once every.O.75ms with a 6
MHz crystal). Data is blanked during the time the
column select lines change by raising the display
outputs. Output data is positive true.

LEFT ENTRY

The left entry mode is the simplest display format in
that each display position in the display corresponds
to a byte (or nibble) in the Display RAM. ADDRESS
o in the RAM is the left-most display character and
ADDRESS 15 is the right-most display character.
Entering characters from position zero causes the
display to fill from the left. The 17th character is en­
tered Qack in the left-most position and filling again
proceeds from there.

RIGHT ENTRY

Right entry is the method used by most electronic
calculators. The first entry is placed in the right­
most display character. The next entry is also placed
in the right-most character after the display is
shifted left one character. The left-most character is
shifted off the end and is lost.

DISPLAY
14 15 0 RAM

1ST ENTRY 11
1 ADDRESS

3 15 0

2ND ENTRY
1

1 1 2

3 4 0

3RD ENTRY
1

1 1 2 I 3

0 13 14 15

16TH ENTRY 11 1 2 1141151161

14 15 0

17TH ENTRY 2 1 3 1151161171

3 15 0

16TH ENTRY 1 3 1 4 116117 1 16 1

Note that now the display position and register ad­
dress do not correspond. Consequently, entering a
character to an arbitrary position in the Auto Incre­
ment mode may have unexpected results. Entry
starting at Display RAM ADDRESS 0 with sequen­
tial entry is recommended. A Clear Display com­
mand should be given before display data is entered
if the number of data characters is not equal to 16 (or
8) in this mode.

AUTO INCREMENT
In the Left Entry mode, Auto Incrementing causes
the address where the CPU will next write to be in­
cremented by one and the character appears in the
next location. With non-Auto Incrementing the en­
try is both to the same RAM address and display po­
sition. Entry to an arbitrary address in the Left
Entry-Auto Increment mode has no undesirable
side effects and the result is predictable:

1ST ENTRY

2ND ENTRY

COMMAND
10010101

1

1

0

1

0

1 1 2

0

DISPLAY
3 4 5 6 RAM

1 ADDRESS

3 4 6

2 4 5 6

ENTER NEXT AT LOCATION 5 AUTO INCREMENT

0 3 4

3RD ENTRY
1

1 1 2 1 3

0 3 5

4TH ENTRY 1 1 2 1 3 1 4

In the Right Entry mode, Auto Incrementing and
non-Incrementing have the same effect as in the Left
Entry except that the address sequence is inter­
rupted.

1ST ENTRY

2ND ENTRY

COMMAND
10010101

3

3

4

4 5 6

4 5 6

DISPLAY
6 0 RAM

11
1 ADDRESS

0

I 1 1 2

0

ENTER NEXT AT LOCATION 5 AUTO INCREMENT

3 4 6 6 0

3RD ENTRY 1 3 1 1 2

4 5 6 0 3

4TH ENTRY 1 3 1 4 1
1 1 2

6-937

APPLICATIONS

Starting at an arbitrary location operates as shown
below. .

DISPLAY
o 3 4 5 7 RAM

COMMAND
10010101 r----r"1 1---'--1 --r----11 1r----r"1---'--1 --r---11 1 ADDRESS

ENTER NEXT AT LOCATION 5 AUTO INCREMENT

2 3 4 5 0

1ST ENTRY I 1 I
3 4 6 0

2ND ENTRY I 1 I 2 I

6TH ENTRY . I 4 I 5 I 6 I 7 I 6 I 1 I 2 I 3 I

9TH ENTRY I 5 I 6 I 7 I 8 I 9 I 2 I 3 1,4 I
Entry appears to be from the initial entry point.

6-938

® INTEL CORPORATION, 1983

APPLICATION
NOTE

6-939

AP-161

September 1983

NOVEMBER 1983
ORDER NUMBER: 230795-001

COMPLEX PERIPHERAL
CONTROL WITH THE
UPI-42

AP-161

TABLE OF CONTENTS

INTRODUCTION
DOT MATRIX PRINTING
THE PRINTER MECHANISM
HARDWARE INTERFACE
TECHNICAL BACKGROUND
SOFTWARE

Introduction
Functional Overview.
Memory and Register Allocation
Description of Functional

Blocks and Flowcharts
CONCLUSION

APPENDICES
Appendix A. Software Listing
Appendix B. Printer Enhancements
Appendix C. Printer Mechanism

Drive Circuit Schematics

FIGURES

1. UPI-42 Pin Configuration
2. UPI-42 Block Diagram
3. UPI-41A, 42 Functional

Block Diagram
4. Character E in 5 x 7 Dot

Matrix Format
5. Carriage Stepper Motor Assembly
6. Print Head Solenoid Assembly
l Hardware Interlace Block Diagram
8. Hardware Interlace Schematic
9. UPI-42 and 8243 I/O Port Map

10. Siepper Motor Step
Sequence Waveforms

11. Carriage Stepper Motor
Step Sequence

12. Paper Feed Stepper Motor
Step Sequence

13. Carriage Stepper Motor
Drive Timing

14. Carriage Stepper Motor
Predetermined Time Constants

15. Paper Feed Stepper Motor
Predetermined Time Constants

16. PTS Lags PT Timing
1l PTS Leads PT Timing
18. Components of Print Head Assembly

Line Motion and Printing
19. Data Memory Allocation Map
20. Register Bank 0

Register Assignment
21. Register Bank 0 Status

Byte Flag Assignments

6-940 230795-001

AP-161

22. Register Bank 1
Register Assignment

23. Register Bank 1 Status
Byte Flag Assignments

24. Program Memory Allocation Map
25. ASCII Character Code TEST

Output and Print Example
26. Carriage Stepper Motor

Phase/Step Data

FLOWCHARTS

1. Main Program Body
2. Power-On/Reset Initialization
3. Home Print Head Assembly
4. External Status Switch Check
5. Character Buffer Fill
6. Carriage Stepper Motor Drive

and Line Printing
7. Carriage Stepper Motor

Acceleration Time Storage
8. Process Characters for Printing
9. Translate Character-to-Dots

10. Decelerate Carriage
Stepper Motor

11. Paper Feed Stepper Motor Drive

Addtional sources of information on Intel's UPI
devices;

"UPI User's Manual"
Includes the following Application Notes;

Programmable Keyboard Interface
Using the 8295 Dot Matrix Printer Controller
An 8741 Al8041 A Digital Cassette Controller

"8048 Family Applications Handbook"

"1983 Microprocessor and Peripheral Handbook"

"MCS-48 and UPI-41A/42 Assembly Language
Manual"

"Specifications for Impact Dot Matrix Printer
Model-3210", Epson, Jan 8,1981

6-941 230795-001

AP-161

INTRODUCTION
The UPI-42 is the newest member of Intel's Universal
Peripheral Interface (UPI) microcomputer family. It
represents a significant growth in UPI capabilities
resulting in a broader spectrum of applications. The
UPI-42 incorporates twice the EPROM/ROM of the
UPI-41 A, 2048 vs 1024 bytes"twice the RAM, 128 vs 64
bytes, and operates at a maximum speed twice that of
the UPI-41A, i.e. 12 MHz vs 6 MHz. The ROM based
8042 and the EPROM based 8742 provide more highly
integrated solutions for complex stepping motor and
dot matrix printer applications. Those applications
previously requiring a microprocessor plus a UPI chip
can now be implemented entirely with the UPI-42.

The software features of the UPI-42, such as indirect
Data and Program Memory addressing, two inde­
pendent and selectable 8 byte register banks, and
directly software testable I/O pins, greatly simplify the
external interface and ~oftware flow. The software and
hardware design of the UPI-42 allows a complex
peripheral to be controlled with a minimum of external
hardware.

TEST 0 Vee

XTAL1 TEST1

XTAl2 P27 6Aci<

REsEr P28 ORO

!is P25 iiF

Os P24 OBF

EA P17

Ali p,.
AO P,s

WA p,.
SYNC P'3

Go P'2

D, PII

D2 P,o

D3 VDD

D. MOO

DS P23

Do P22

D, P2,

Vss P2.

Figure 1. UPI-42 Pin Configuration

Many microcomputer systems need real time control of
peripheral devices such as a printer, keyboard, complex
motor control or process control. These medium speed
but still time consuming tasks require a fair amount of
system software overhead. This processing burden can
be reduced by using a dedicated peripheral control
processor

Until recently, the dedicated control processor approach
was usually not cost effective due to the large number of
components needed; CPU, RAM, ROM, I/O, and
Timer/ Counters. To help make the approach more cost
effective, in 1977 Intel introduced the UPI-4I·family of
Universal Peripheral Interface controllers consisting of
an 8041 (ROM) device and an 8741 (EPROM) device.
These devices integrated the common microprocessor
system functions into one 40 pin package. The UPI-42
family, consisting ofthe 8042 and 8742, further extends
the UPl's cost effectiveness through more memory and
higher speed.

Another member of the UPI family is the Intel 8243
Input/ Output Expander chip. This chip provides the
UPI-4IA and UPI-42 with up to 16 additional inde­
pendently programmable I/O lines, and interfaces
directly to the UPI-41 A/ 42. Up to seven 8243s can be
cascaded to provide over 100 I/O lines.

The U PI is a single chip microcomputer with a standard
microprocessor interface. The UPI's architecture, illus­
trated in Figure 3, features on-chip program memory,
ROM (804IA/8042) or EPROM (874IA/8742), data
memory (RAM), CPU, timer/counter, and I/O. Spe­
cial interface registers are provided which enable the
UPI to function as a peripheral to an 8-bit central
processor.

Using one ofthe UPI devices, the designer simply cod'es
his proprietary peripheral control algorithm into the
UPI device itself, rather than into the main system
software. The UPI device then performs the peripheral
control task while the host processor simply issues
commands and transfers data. With the proliferation of
microcomputer systems, the use of UPIs or slave
microprocessors to off load the main system micropro­
cessor has become quite common.

This Application Note describes how the UPI-42 can be
used to control dot matrix printing and the printer
mechanism, using stepper motors for carriage/print
head assembly and paper feed motion. Previous Intel
Application Notes AP-27, AP-54, and AP-91 describe
using intelligent processors and peripherals to control
single solenoid driven printer mechanisms with 80
'character line buffering and bidirectional printing. This
Application Note expands on these previous themes
and extend's the concept of complex device control by
incorporating full 80 character line buffering, bidirec­
tional printing, as well as drive and feedback control of
two four phase stepper motors.

The Application Note assumes that the reader is famil­
iar with the 8042/8742 and 8243 Data Sheets, and
UPI-4IA/42 Assembly Language. Although some back­
ground information is included, it also assumes a basic
understanding of stepper motors and dot matrix printer
mechanisms. A complete software listing is included in
Appendix A.

6-942 230795-001

AP-161

,,~;~i{;, 1"~;
Wi<
Ril-

" "

CRYSTAL,
Le, OR
CLOCK

CONTROL
LOGIC

POWER Vee --_ +S5UPPLY {

'>0 --_ PROM PROGAAM SUPPLY

", --_ GROUND

DATA
MEMOAY

lKX82KX8
PROM ROM
PROGR ... '"
MEMORY

I/O PlO~
PORT 1 P17

PORT 4·7
EXPANDER
INTEAFACE

8-BIT
TIMER

EVENT COUNTER

PERIPIiERAL
INTERFACE

Figure 2. UPI-42 Block Diagram

DOT MATRIX PRINTING
A dot matrix printer print head typically consists of
seven to nine solenoids, each of which drives a stiff wire,
or hammer, to impact the paper through an inked rib­
bon. Characters are formed by firing the solenoids to
form a matrix of"dots" (impacts of the wires). Figure 4
shows how the character "E" is formed using a 5 x 7
matrix. The columns are labeled CI through C5, and
the rows R I through R 7. The print head moves left-Io­
right across the paper, so that at time Tl the head is over
column Cl. The character is formed by activating the
proper solenoids as the print head sweeps across the
character position.

Dot matrix printers are a cost effective way of provid­
ing good quality hard copy output for microcomputer
systems. There is an ever increasing demand for the
moderately priced printer to provide more functional­
ity with improved cost and performance. Using stepper
motors to control the paper feed and carriage/ print
head assembly motion is one way of enabling the dot
matrix printer to provide more capabilities, such as
expanded or contracted characters, dot or line gra­
phics, variable line and character spacing, and subscript
or superscript printing.

However, stepper motors require fairly complex contol
algorithms. Previous solutions involved the use of a

main CPU, UPI, RAM, ROM, and I/O onboard the
peripheral. The CPU acted as supervisor and used
parallel processing to achieve accurate stepper motor
control via a UPI, character buffering via the I/O
device, RAM, and ROM. The CPU performed real­
time decoding of each character into adot matrix patt­
ern. This Application Note demonstrates that the
increased memory and performance of the UPI-42 facil­
itates integrating these control functions to reduce the
cost and component count.

THE PRINTER MECHANISM
The printer mechanism used in this application is the
Epson Model 3210. It consists of four basic sub­
assemblies; the chassis or frame, the paper feed mecha­
nism and stepper motor, the carriage motion mecha­
nism and stepper motor, and the print head assembly.

The paper feed mechanism is a tractor feed type. It
accomodates up to 8.5 inch wide paper (not including
tractor feed portion). There is no platen as such; the
paper is moved through the paper guide by two sprock­
eted wheels mounted on a center sprocket shaft. The
sprocket shaft is driven by a four phase stepper motor.
The rotation of the stepper motor is transmitted to the
sprocket shaft through a series of four reduction gears.

6-943 230795-001

Rl

R2

R3

R4

R5

R6

R7

AP-161

I CLOCK I
! !

1024 x 8, 2048 x 8
8-BITCPU PROGRAM 64 x 8, 128 x 8 8-BIT

MEMORY DATA MEMORY TIMERICOUNTER
(ROM/EPROM)

I II II I
I U II I

8-BIT 8-BIT 8-BIT 18 DATA BUS DATA BUS STATUS
INPUT REGISTER OUTPUT REGISTER REGISTER 1/0 LINES

I II II
v

SYSTEM PERIPHERAL INTERFACE
INTERFACE AND

1/0 EXPANSION

Figure 3. UPI-41A, 42 Functional Block Diagram

Cl C2 C3 C4 C5

DODD
DODD

DODD
DODD

The carriage motion mechanism consists of another
four phase stepper motor which controls the left-to­
right or right-to-left print head assembly motion. The
print speed is 80 CPS maximum. Both the speed of the
stepper motor and the movement of the print head
assembly are independently controllable in eitherdirec­
tion. The rotation of the stepper motor is converted to
the linear motion of the print head assembly via a series
of reduction gears and a toothed drive belt. The drive
belt also controls a second set of red uction gears which
advances the print ribbon as the print head assembly
moves.

Two optical sensors provide feedback information on
the carriage assembly position and speed. The first of
these optical sensors, called the 'HOME RESET' or
HR, is mounted near the left-most physical positic'l to
which the print head assembly can move. As the print
head assembly approaches the left-most position, a
flange on the print head assembly interferes with the
light source and sensor, causing the output ofthe sensor
to shift from a logic level one to zero. The right-most
printer position is monitored in software rather than by
another optical sensor. The right-most print position is
a function of the number of characters printed and the
distance required to print them.

Figure 4. Character E In 5 X 7 Dot Matrix Format

The second optical sensor, called the'PRINTTIMING
SIGNAL' or PTS, provides feedback on carriage
stepper motor velocity and relative position within a

6-944 230795-001

AP-161

PRINT HEAD ASSEMBLY
TOOTHED DRIVE BELT

OPTICAL SENSOR

STEPPER MOTOR

~

REDUCTION GEARS

Figure 5. Carriage Stepper Motor Assembly

given step of the motor. The feedback is generated by
the optical sensor as an "encoder disk" moves across it.
Figure 5 illustrates the carriage stepper motor, optical
sensor, encoder disk and reduction gears, and drive belt
assembly. The optical sensor outputs a pulse train with
the same period as the phase shift signal used to drive
the stepper, but slightly out of phase with it when the
motor is at a constant speed (see Software Functional
Block: Phase Shift Data for additional details). The
disk acts as a timing wheel, providing feedback to the
UPI software of the carriage speed, position, and opti­
mum position for energizing the print head solenoids.
The two optical sensors are monitored under software
and provide the critical feedback needed to control the
print head assembly and paper feed motion accurately.
The process of stepper motor drive and control via
feedback signals is called "closed loop" stepper motor
control, and is covered in more detail in the software
discussion.

The print head assembly consists of nine solenoids and
nine wires or hammers. Figure 6 illustrates a print head
assembly. The available dot matrix measures 9 x 9. This
large matrix enables the Epson 3210 print mechanism to
print a variety of character fonts, such as expanded or

6-945

contracted characters, as well as line or block gra phics
(see Appendix B, Printer Enhancements). It also facili­
tates printing lower case ASCII characters with "lower
case descenders." That is to say, certain lower case
letters (e.g. y, p, etc.) will print below the bottom part of
all upper case letters.

DOT WIRE

I

MAGNETIC POLE

Figure 6. Print Head Solenoid Assembly

230795-001

AP-161

w

" " ili c
z
~
~
~
C
0..

, l' ·5V
..... _--0 'o---l

ON LINE/SELECT

a:
w'" ... '"
:::>'"
Ol

oj DATA STROBE
..J
..J

UPI-42

WR

T.8

T1

STEPPER MOTOR
CONTROL

P40-43

CONTROL: P50-53
(CURRENT LIMITING)

HR OPTICAL SENSOR

PT3 OPTICAL SENSOR

PRINT
MECHANISM

DRIVE
CIRCUIT

" a:
if P24

P25

P27~ ____ ~P~R~IN~T~H~E~A~D~T~R~IG~G~E~R~ ________ ~-;

f0-
CI)

o
J: P10-17 ~----------------------------------'

PRINT HEAD SOLENOID DATA

P26~----------------,

Figure 7. Hardware Interface Block Diagram

HARDWARE DESCRIPTION

Figure 7 shows a block diagram of the UPI-42 and 8243
interface to the printer mechanism drive circuit. A
complete schematic is shown in Figure 8. The UPI-42
provides all signals necessary to control character buf­
fering and handshaking, paperfeed and carriage motion
stepper motor timing, print head solenoid activation,
and monitoring of external status switches.

The, Epson 3210 printer mechanism manual recom­
mends a specific interface circuit to provide proper
drive levels to the stepper motors windings and print
head solenoids. The hardware interface used for this

Application Note followed those recomendations
exactly (see Appendix C, Printer Mechanism Drive
Circuit Schematics).

I/O Ports
The lower half of the U'PI-42 Port 2, pins 0-3, provides
an interface to the 8243 110 expander. The PROG pin
of the UPI-42 is used as a strobe to clock address and
data information via the Port 2 interface. The extra 16
110 lines of the 8243 become PORTS 4, 5, 6, and 7 to
the UPI software. Combined, the UPI-42 and 8243
provide a total of 28 independently programmable 1/0
line. These lines are, used as follows:

6-946 230795-001

DATA
STROBE

Port

1
2
2
2
4
5
5
6
6
7

EDGt
CONNECTOR

No of
lines Bils

8 0-7
6
7

2 4,5
4 0-3
3 1-3
1 0
1 1
3 0,2,3
5 0-3

AP-161

."

"b " TEST

ONiOFI

.~. LINE s:T:~~~s·

.,--------I'E(P!l.PEAENOh ...
,.!'-'M>-----

, .. !'-'M>-----

'''r'M>-----

,,,p.'M>-----

\ "M'~m

\ M~"'''' .• \,:.,rI,,· ~
PA00I""'--__ ----' ~$K _5.

19 08, T,I""'--------->~+-Cw::"':r. .. :::t#1 HA AESET, IHA)

10 WR

114~~~.U 101-"-------.;H>7--« '"r. ISII ___ P'!"f PRINTHEAO

'CII(Y~::-I<I HOME

H
P" 3'

P" Pn 31

~

'" 1S.~IIOCOLlcURAENT
HI(LIMITER 1>--4.-4> ____ Il2CCL . CII. S.M

<J nss ,

r
"'.

'---------- HTHE.ADPAOGEAO

Figure 8. Hardware Interface Schematic

1/0 Description

0 Character dot column data to print head solenoids
0 (same)
0 Print head solenoid trigger
0 Host system data transfer handshaking (ACKIBUSY)
0 Carriage & paper feed stepper motors
0 Stepper motor select and current limiting
I Paper End sense
0 Print head trigger reset

(unused)
External status switches; (LF, FF, TEST,

ON/OFF Line)

Figure 9. UPI-42 and 8243 1/0 Port Map

Note: The notation used in the balance of this Applica­
tion Note, when referring to a port number and a par­
ticular pin or bit, is Port 23 rather than Port 2 bit 3,

The two printer mechanism optical sensors, discussed
in the Printer Mechanism discription, are tied to the
two "Test Input" pins, TO and TI, of the UPI-42
through a buffer circuit for noise supression. These
inputs are directly testable in software.

6-947 230795-001

AP-161

Host System Interface
The host system interfaces to the printer through a
parallel port to the UPI-42 Data Bus. Four handshak­
ing signals are used to control data transfer; Data
Strobe (STBf), Acknowledge (ACK), Busy (BUSY),
and Online or Select. The Data Strobe line of the host
parallel port is tied directly to the UPI-42 WRI pin.
This provides a low going pulse on the UPI-42 WRI pin
whenever a data byte is written to theUPI-42. The ACK
and BUSY handshake signals are tied to two UPI-42
110 port lines for software control of data transfer. The
"On Line" handshake signal is tied to a single-pole
single-throw fixed position switch, which externally
enables or disables character transfer from the host
system. Characters transmitted to the UPI-42 by,the
host are loaded into the UPI-42 Data Bus Buffer In
(DBBIN) register, and the Input Buffer Full (IBF) inter­
rupt and UPI-42 status flag are set (see Figure 9. UPI-42
and 8243 110 Ports).

Stepper Motor Interface
Port 4 (41-43) of the 8243, provides both carriage and
paper feed stepper motor phase shift signals to the
printer mechanism drive circuit. Each of the two
stepper motors is driven by 2 two phase excitation
signals (4 phases). Figure JO shows the wave form for
each stepper motor. Each signal consists of two compo­
nents (Sig. I AI B & Sig. 2 Cj D) 180 degrees out of
phase with the other. Each of these signal pairs (AI B &
Cj{) is 90 degrees out of phase with the other pair. For
each signal pair, one port line supplies both halves by
using an inverter.

Each of the resulting eight stepper motor drive signals is
interfaced to a discrete drive transistor through an
inverter. The emitter of the drive transistor is tied to the
open collector of the inverter to provide high current
sinking capability for the drive transistor. Each half of
the motor winding is tied to the collector of the drive
transistor (see Appendix C, Printer Mechanism Drive
Circuit Schematic).

Each stepper motor requires two current levels for
operation. These levels are called "Rush" current and
"Hold" current. Rush current refers to the high current
required to cause the rotor to rotate within its windings
as the polarity of the power applied to the windings is
changing. Each change in the polarity of the power
applied to the motor windings is called a step or phase
shift. Hold current refers to the low level of current
required to stabilize and maintain the rotor in a fixed
position when the the polarity applied to the windings is
not changing. Hold current is simply Rush current with
a current limiting transistor switched in. Switching
from Hold to Rush current "selects" or enables that
stepper motor to move with the next step signal output.
In the balance of this Application Note, the term
"select"will be used to refer to turning on Rush current,
and "deselect" will refer to switching to Hold currrent.

8 PHASECRA~
PHASE CRB : :
PHASE CRe I I I

I
PHASE CRD I I L

CARRIAGE STEPPER MOTOA DRIVE SIGNALS (FORWARD)

8 PHASELFA~:
PHASE lFB : :
PHASE lFC I I I
PHASE LFD

I
I I L

PAPER FEED STEPPER MOTOR DRIVE SIGNALS

Figure 10. Stepper Motor Step Sequence
Waveforms

Three 8243 port lines are dedicated to the select I dese­
lect control of the two stepper motors. One line is for
the paper feed stepper motor, and two lines are for the
carriage motion stepper motor (80 and 132 column).
These lines are labeled SLF, 80Col, and 132Col, and are
8243 PORT 53, 52, and 51, respectively.

By varying the voltage applied to the stepper motor
biasing circuit and the current, it is possible to vary the
distance the motor moves the print head assembly with
each step. Enabling one of two different voltage biasing
levels, and changing the timing rate at which the motor
is stepped, facilitates either 80 or 132 character column
printing. Only 80 character column printing is imple­
mented in the software design. Appendix B, Printer
Enhancements, details the software algorithm forhan­
dling 132 character printing.

Print Head Interface

A total of eleven 110 lines are used to control the print
head solenoids and solenoid (iring (see Figure 9 above).
Nine are used for character dot data, one for the Print
Head Trigger, and one for Reset of the Print Head
Trigger circuit. Each of the nine character dot data lines
is buffered by an open collector hex inverter.

6-948 230795-001

inter AP-161

The Print Head Trigger output is tied to the Trigger
input of a 555 Monostable Multivibrator. The output
pulse generated by the 555 triggers the print head sole- .
noids to fire. The 555 Output pulse width is independ­
ent of the input trigger waveform. The pulse width is
determined by an RC network across the 555 inputs and
the voltage level applied to the Control Voltage 555
input. The 555 Output is tied to the base of a PNP
transistor through an inverter, biased in a normally off
configuration. The PNP transistor supplies enough
drive to pull up the open collector inverter on each print
head solenoid line, Port 10-17 and 26. The 555 output
pulse momentarily enables the print head solenoid line
open collector inverter output, turning on the solenoid
drive transistor, and firing the print head hammer. The
555 Ouput pulse width is approximately400 us. Further
details ofthe print head firing operation can be found in
the software description below.

Miscellaneous Interface Signals

The 8243 Port 5 pin 0 is tied to the Paper End Detector,
a reed switch located on the printer paper guide. This
sensor detects when the paper is nearly exhausted.

Three LED status lights complete the hardware inter­
face design. One status light is used for each of the
following: Power ON/OFF, On/Off Line, and Out of
Paper.

BACKGROUND

Before a detailed discussion of the software begins, a
few terms and software functions referenced through­
out the software need introduction.

A. What is a Stepper Motor?

A stepper motor has the ability to rotate in either
direction as well as start and stop at predetermined
angular positions. The stepper motor's shaft (rotor)
moves in precise angular increments for each input step.
The displacement is repeated for each input step com­
mand, accurately positioning the rotor for a given
number and sequence of steps.

The stepper motor controls position, velocity, and
direction. The accuracy of stepper motors is generally 5
percent of one step. The number of steps in each revolu­
tion of the shaft varies, depending on the intended
application.

B. Open/Closed Loop Stepper Motor Drive and
Control

The carriage stepper motor is closed loop driven. The
paper feed stepper motor is open loop driven.

There are two major types of stepper motor control
known by the broad headings of open and closed loop.

Open loop is simply continuous pulses to drive the
motor at a predetermined rate based on the voltage,
current, and the timing of the step pulses applied.
Closed loop control is characterized by continuous
monitoring of the stepper motor, through feedback
signals, and adjusting the motor's operation based upon
the feedback received.

C. Stepper Motor Drive Phase Shift
or Step Sequence

Each change in the polarity of the power applied to the
motor windings is called a step or phase shift. The
sequence of the steps or phase shifts, and the pattern of
polarity changes output to the stepper motor, determines
the direction of rotation.

Figure 10 shows the waveforms for each of the two
stepper motors. Figure II lists the step sequence for
carriage motor clockwise rotation, which moves the
print head assembly Left-to-Right. Figure II also lists
the step sequence for counterclockwise rotations; the
print head assembly moves Right-to-Left. Figure 12
lists the step sequence for the paper feed stepper motor
clockwise drive. The phase sequence, for either stepper
motor, may begin at any point within the sequence list,
but must then continue in order.

Step No. A-Step B-Step C-Step D-Step

1 On Off Off On

2 On Off On Off

3 Off On On Off

4 Off On Off On

Carriage stepper motor rotates clockwise
Print head assembly moves from left to right

Step No. A-Step B-Step C-Step D-Step

1 On Off On Off

2 On Off Off On

3 Off On Off On

4 Off On On Off

Carriage stepper motor rotates counter clockwise
Print head assembly moves from right to left

Figure 11. Carriage Stepper Motor Step
Sequence

6-949 230795-001

AP-161

Step No. A-Step B-Step C-Step D-Step

1 On Off On Off

2 On Off Off On

3 Off On Off On

4 Off On On Off

Figure 12. Paper Feed Stepper Motor Step
Sequence

C. Acceleration and Deceleration
of Stepper Motors

The carriage stepper motor starts from a fixed position,
accelerates to a constant speed, maintains constant
speed, and then decelerates to a fixed position. Printing
may occur from the time and position the print head
assembly reacj1es constant speed, until the time and
position the print head assembly begins to decelerate
from constant speed. Whether printing occurs during
any carriage stepper motor drive sequence is controlled
by software. Figure 18, below, illustrates these com­
ponents of print head assembly line motion.

Due to inertia, a finite time interval and angular dis-

placement is required to accelerate a stepper motor to
its full speed. Conversely, deceleration must begin some
time before the final angular position. The time interval
and angular displacement of the carriage stepper motor
translates into the distance the print head assembly
travels before it reaches a constant speed. The distance
traveled during acceleration is constant. The distance
the print head assembly travels during. deceleration
must be the same as the distance traveled during accel­
eration in order to accurately align the character dot
columns from one line to the next.

E. Stepper Motor Predetermined
Time Constant

Whenever the stepper motor is stepped, or energized,
the angular velocity of the rotor is greater than the
constant speed which is ultimately required. This is
called "overshoot." The frictional load of the carriage
assembly (motor rotor, reduction gears, drive belt and
print.head assembly, or paper feed sprocket shaft and
wheels) provides damping or frictional load. Damping
slows the motor to less than the required constant speed
and is called "undershoot" (see Figure 13, Carriage
Stepper Motor Drive Timing). A constant rate of speed
is achieved through the averaging of the overshoot and
undershoot within each step.

~H~R!S!.'.:IG:!:N~A!:.L ____ -::-__ -::-__ -:-_--::-_:-_:;:--:;::---:;::--:;::-_:;:::-~ T12 T'3 T14 T'5
TN

PT.

Tx Tx Tx TX TX
TX ~uJDS~~.~t'Ns

... ..IL
DOT COLUMN
PRINT

PTe - OVER ACCELERATES. NOTE: PT. MOVES FROM LAGGING

I

I·

NEXT PTe STABILIZES S.M. PTe TO LEADING PTe ,

I . If 1 I n t t ttl I 1
ACCELERATION CONTROL PERIOD . .\ S.M. STABILIZES

T & PTe T LEADS PTe
PTe = T S.M. OVER ACCEL. I T eo PTe

/ OVERSHOOT ! +
LCONSTANT SPEED

UNDERSHOOT 7

EQUATIONS:

PTe = PREDETERMINED TIME .CONSTANT
PT. = T,- TN

T, ... T, TIME = PTe + Tx
T, TIME = PTe
Ta ... T11 Time::: PTe

Figure 13. Carriage Stepper Motor Drive
Timing

6-950

STEP
SIGNAL
OUTPUT

230795·001

AP-161

The Predetermined Time (PT) Constant is the time
required to average the overshoot and undershoot of
the particular stepper motor for a desired constant rate
of speed. The PT also is the time required to move the
print head assembly a specific distance, acounting for
both overshoot and undershoot of the stepper motor.

Changing the Predetermined Time Constant changes
the angular displacement of the stepper motor rotor,
this in turn changes the output. Figure 14 lists the Time
Constants for both standard and condensed character
printing. Figure 15 lists the paper feed stepper motor
Time Constants used for various line spacing formats.
This Application Note implements standard character
print and paper feed (6 lines per inch) Time Constants.
See Appendix B, Printer Enhancements, for details on
implementing non-standard Time Constants.

Character mode Predetermined time

Standard or Enlarged 2.0Bms +10%
Character -4%

Condensed Character 4.16ms +10%
-4%

Figure 14. Carriage Stepper Motor
Predetermined Time Constants

Paper feed pitch

Paper feed time
150ms/4.23mm
113ms/3.18mm
100ms/2.B2mm

0.12mm(1/216") 11 pulse
4.23mm(1I6") 136 pulses
3.1Bmm(1/B") 127 pulses
2.B2mm(1I9") 124 pulses

Approx. 6.6 lines/s (continuous feed)
Approx. B.8 lines/s (continuous feed)
Approx. 10 linesls (continuous feed)

Figure 15. Paper Feed Stepper Motor
Predetermined Time Constants

D. Relationship Between PTS and PT

Figure 13 illustrates how PTS lags PT at the start of
acceleration, and moves to lead PT as the motor
achieves constant speed. Figure 13 also illustrates the
relationship between HR, PTS, PT, acceleration, con­
stant speed, and printing. Figure 16 and 17 illustrate the
relationship between PTS and PT during acceleration
and at constant speed.

6-951

n. I
PTS SIGNAL - . . mJ} I SOLENOID DRIVE PULSE

(PRSO TEAMINED TIME) r' .0----
SOLENOID ~
DRIVE PULSE I I i

I I~
r-i II

II

MOTOR A PHASE

B PHASE

C PHASE

o PHASE

Figure 16. PTS Lags PT Timing

PTS SIGNAL (PREDETERMINED TIME)

SOl.ENOID
DRIVE PULSE

SOLENOID DRIVE PULSE (O.4m. 241,11

I I

I I
I

B PHASE ---r------j
CPHASE Jt-I _-.1 __
o PHASE

MOTOR A PHASE

Figure 17. PTS Leads PT Timing

PTS is the point of peek angular velocity within a step
of the motor. PTS is a function of the slot spacing on
the encoder disk, shown in Figure 5. The spacing is
determined by the mechanics of the printer mechanism.

When the carriage stepper motor is accelerated from a
fixed position, the effects of damping slows the angular
velocity of engergizing the stepper motor. This causes
PTS to occur after the PT, or PTS lags PT. When PTS
lags PT, the next step signal is output at PTS rather
than at PT. If the step signal is outputted at PTS, the
rotor could be. midway through a rotation. Energizing
the motor at PT could cause it to bind or shift in the
wrong direction. When the carriage stepper motor is at
a constant rate of speed, PTS leads PT and the step
signal is output at PT (see Figure l3).G. Stored Time
Constants.

230795-001

AP·161

The time between each step, for a constant number of
steps, required for the motor to reach a constant speed,
is calculated and stored in Data Memory during accel­
eration. The values stored are used, in reverse order,
during deceleration as the Predetermined Time (PT)
Constants. This ensures that the acceleration and decel­
eration distance traveled by the print head assembly is
the same, and that it accurately aligns character dot
columns from one line to the next during printing. The
time values stored are called "Stored Time Constants."
Steps T I through T II in Figure 13, represent the Stored
Time Constants.

The equations for the Stored Time Constants are given
at the bottom of Figure 13, Carriage Stepper Motor
Drive Timing.

Left-to-Right Printing:

Acceleration
Begins

Constant
Speed, Printing
Can Begin

..

H. Print Head Assembly "Home" Position

The "logical" Home position for the print head assem­
bly is the left-most position at which printing begins
(for L-to-R motion) or ends (for R-to-L motion). The
"physical" Home position is the logical HOME posi­
tion, plus the distance required by the carriage stepper
motor to fully accelerate the print head assembly to a
constant speed. Printing can only occur when the print
head is moving at a constant speed. The printer mecha­
nism manual stipulates eleven step time periods are
required to ensure the the print head assembly is at a
constant speed. These eleven step time periods are the
Stored Time Constants described above. Figure 18
illustrates the components of print head assembly line
motion and character printing.

Deceleration
Begins

I (direction of printing)

I Store Time Output I Constants Stored
Time Constants

I

Physical Home Space Available For Printing Right-most Physical
Left-most (HR) Print Right-most
Position Position Position

Right-to-Left Printing:

Output
Stored
Constants

I Sto" Tlm'l Constants

.. I I (direction of printing)
Constant
Speed, Printing
Can Begin I

Deceleration Acceleration
Begins Begins

Figure 18. Components of Print Head
Assembly Line Motion and Printing

6-952 230795-001

AP-161

SOFTWARE
Introduction
The software description is presented in three sections.
First, a brief overview of the software to familiarize the
reader with the interdependencies and overal1 program
flow. Second, data and program memory al1ocation and
s~atus register flag definitions. And third, each of the ten
software blocks is presented with its own flowchart.

Softwar.e Overview
The software is written in Intel UPI-4IA/42 Assembly
Language. A block structure approach is used for ease
of development, maintance, and comprehension. The
software is divided into five principal parts. ,

1. Initialization
2. Character Buffering or Input
3. Stepper Motor Drive and Control
4. Character Processing
5. Character Printing or Output

MAIN PROGRAM BODV

CARRIAGE STEf'PER MOTOR DRIVE' LINE PRINTING
(FLOWCHART -6)

The five princip!ll parts are incorporated into ten soft­
ware blocks, Iisteq below.

1. Power Onl Reset Initialization
2. Home Print Head Assembly
3. External Status Switch Check
4. Character Buffer Fill
5. Carriage Stepper Motor Drive and

Line Printing
6. Accelerate Stepper Motor Time Storage
7. Process Characters for Printing
8. Translate Character-to-Dots
9. Decelerate Carriage Stepper Motor
10. Paperfeed Stepper Motor Drive

Flow Chart No. I il1ustrates the overal1 software algo­
rithm. Below, is a description of the algorithm.

Flow Chart No.1. Main Program Body

6-953 230795-001

inter Ap·161

Upon power-on 'or reset, a software and. hardware
initialization is performed. This stablizes and sets inac­
tive the printer hardware and electronics. The print
head assembly is then moved to establish its HOME
position. The' default status registers are set for charac­
ter pliffering, carriage, and paper feed stepper motor
drive. The External Status switches are checked;
FORMFEED, LINEFEED, ON/OFF LINE, and
Character Print TEST. If the printer is ON LINE, the
software will loop on filling the Data Memory Charac­
ter Buffer.

Character or data input to the UPI-42 is interrupt
driven. Charac~ers sent by the host system set the Input
Buffer Full (lBF) interrupt and the IBF Program Status
flag. Character input servicing (completed during the
Paper feed and carriage stepper motor drive end Delay
subroutine) tests for various ASCII character codes,
loads characters into the Character Buffer (CB), and
repeats until orie of several conditions sets the CB Full
status flag. Once the CB Full flag is set, further charac­
ter translIlission by the host system is inhibited and
printing can begin.

The carriage stepper motor is initialized, and drive
begins for the direction indicated. The motor is acceler­
ated to constant speed, printable character codes are
translated to dot patterns and printed (if printing is
enabled), and the motor is decelerated to a stop. Two
timing loops guarantee both constant speed and protec­
tion (Failsafe Time) against stepper motor burn out due
to high current ove'rload. The two optical sensors, des­
cribed in the Printer Mechanism section above, are
constantly monitored to maintain constant speed, and
trigger print head solenoid firing.

Once the line is printed and the carriage stepper motor
drive rQutine has been completed, a Linefeed is forced.
The paper feed stepper motor drive subroutine tests the'·
number of lines to move, and energizes the paper feed

. stepper motor for the required distance. The lines per
page default is 66; if 66 lines have been received, a
Formfeed to Top-of-Next-Page is performed. The Top­
Of-Page is set at Power On/ Reset.

When the EOF code is received, the EOF status flag is
set. When the last line has been printed, the EOF check
will force the print head assembly to the HOME posi­
tion. The EOF flag is tested following each Paper Feed
stepper motor drive. The next entry to the External
Status Check subroutine begins a loop which waits for
input from either the external status switches or the
host system.

The software character dot matrix used in this applica­
tion is 5 x 7 of the available 9 x 9 print head solenoid
matrix. Although lower case descenders and block/ line
graphics characters are not implemented, Appendix B,
Printer Enhancements, discusses how and where these
enhancements could be added. The software imple­
ments the full 95 ASCII printable characters set.

Memory and Register ~lIocatlon

Data Memory Allocation (RAM) ,
The UPI-42 has 128 bytes of Data Memory. Sixteen
bytes are used by the two 8 byte register banks (R BO and
RBI). Sixteen additional bytes are used for the Pro­
gram Stack. The Stored Time Constants utilize 11
Qytes, while the stepper motor phase storage requires 4
bytes. Below is a detailed description of Data and Pro­
gram Memory

Hex Address Description

2F-7FH

25·2EH

MH

DH

22H

21H

ZOH

18-'F

8-17H

H

1>07H

-

-

~-

80 Charlcle, Line Bufler (10 Bytes)

Slared Time Conlllnll Butfer (1' Byle.)

Unused

Character Print ,..., ASCII Code
Starl Temporary 810Rl9_

Pleudo Regl,te,: Papert.ed Slepper
Molor Lilt Ph ... Incter.ct Add,. ..

P .. udo Regllter: Carrilg' Stepper
Motor Forwerd/Reve,.. La,t Phi"

Pleudo RIslller: Ult Phi" 01
Slepper Motor Nol Selng Drl""

Regl,ter Sank 1: Chlracter Procelll"g

8LevelSlllck

"egls,e, Bank 0: Slepper Motor
Forward/Rererle Accelerallon/Drlve

figure 19. Da.- Memory A"ocatlon Map

Register Bank 0 is used for stepper motor drive functions.
Register Bank I is used for character processing. Each
register bank's register assignments is listed in Figure 20
and 22, respectively. Each register bank has one register
allocated as a Status Register. Figure 21 and 23 detail the
Status Register flag assignments. Note that bit 7 of each
Status Byte is used as a print head assembly motion
direction flag. This saves coding of the Select Register
Bank (SEL RBn) instruction at each point the flag is
checked.

Register

RO
R1
R2
R3
R4
R5
R6
R7

RegIster Bank 0

Program
Label

TmpROO
TStrRO
GStR20
PhzR30
CntR40
TConRO
LnCtRO
OpnR70

Description

RBO Temporary Register
Store Time Register
General Status Register
Stepper Motor Step Register
Count Register
Time Constant Register
Line Count Register
Available, Scratch

Figure 20. Register Bank 0 Register Assignment

6-954 230795-()()1

AP-161

Bit Definition

Accel/Decelerate Drive
Ready::: l/NotRdy::.O

1 'Do Not Print/Do-Print
1 Form Feed/Q~ Line Feed

L... ___ 1 FaiiSafeiO-oConstanl
Time Window

L-____ Accel/Deceleralion Initialization
1 Done/O:: Not Done .

Stepper Motor at Speed and
Pnnt Head Not Left of Home

1 Sync!O:.:Not Sync"d, Print
Head Initiaiize and Fire

Stepper Motor Direction
L-to-R- 1, R-to-L-=Q

Figure 21. Register Bank 0 Status Byte
Flag Assignments

Register Program Description
Label

RO TmpR10 RBO Temporary Register
R1 CAdrR1 Character Data Memory

Address Register
R2 ChStR1 Character Processing

Status Byte Register
R3 COtCR1 Character Dot Count Register
R4 COotR1 Character Dot Temporary

Storage Register
R5 CCntR1 Character Count Temporary

Register
R6 StrCR1 Store Character Register
R7 OpnR71 Available/Scratch

Figure 22. Register Bank 1 Register Assignment

Bit Definition

CB Registers; 1=lnitialize
10=00 Not Initialize.

1=CR/(LF)/0=Not CR/(LF)
Character Buffer

Full= 1/Not Full=O,
1=EOF/OoNat EOF
(unused)

"'"-_____ Character Lookup Table Page:
1=Pg. 1, O=Pg. 2

Character Initialized.
1= Done/O=Not Done

'-------__ Carnage Stepper Motor Direction:
L-ta-R-1, R-ta-LoO

Figure 23. Register Bank 1 Status Byte
Flag Assignments

Program Memory Allocation (EPROM/ROM)

The UPI-42 has 2048 bytes of Program Memory
divided into eight pages, each 256 bytes. Figure 24

illustrates the Program Memory allocation map by
page,

Page

Page 7

Page 6

Page 5

Page 4

Page 3

Page 2

Page 1

Page 0

Hex Address Description

1792·2047

1536·1791

1280·1535

1024·1279

768·1023

51-767

256·511

0-255

Character to Dot Pattern
Lookup Table: Page 2:
ASCII 50H·7EH

Character to Dot Pattern
Lookup Table: Page 1:
ASCII 20H·4FH (sp·M)

Miscellaneous Subroutines:
InitAl/AIiOIt
Clear Data Memory
Home Print Head Assembly
Character Print Test
Initialize Carriage Stepper

Motor
Delay

Stepper MOlor Deselect

Paper Feed Stepper
Motor Drive

Stepper Motor Step LookUp
Table(lndexed)

Character Processing and
Translation

Print Head Firing

Carriage Stepper Motor
Acceleration

Time Calculation and
Storagp

Stepper Motor Deceleration

Carriage Stepper Motor Drive

Initialization ~ Jump-an-Reset
Main Program Body
External Status Switch

Check
Character Buffer Fill

Figure 24. Program Memory Allocation Map

Software Functional Blocks

Below is a decription and flow chart for each of the ten
software blocks listed above,

1. Power-On/Reset Initialization

The first operational part in Flow Chart No. I is the
Power-On or Reset Initialization, Flowchart No, 2
illustrates the Initialization sequence in detail.

6-955 230795·001

inter Ap·161

(

I

I

START)

I
DISABLE INTERRUPTS J
l

t

RESET PRINT HEAD TRIGGER
TURN DF' ALL PRINT HEAD SOLENOIDS

SET PRINT HEAD TRIGGER INACTIVE
SET HOST S'/STEM HANDSHAKE ACTIVE

CLEAR RBO/RB1 STATUS REGISTERS

CLEAR DATA MEMORY (2OH·7FH) I

I INITIALIZE CARRIAGE AND PAPER FEED STEPPER MOTORS. I

!
/ HOME PRINT HEAD ASSEMBLV

(FLOWCHART '4)

l
I 41ET DEFAULT REGISTERS AND FLAGS

!
I RETURN I

/

J

Flow Chart No.2. Power-On/Reset Initialization

Initialization first disables both interrupts. This is done
as a precaution to prevent the system software from
hanging-up should an interrupt occur before the proper
registers and Data Memory values are initialized.

Initialization then deactivates the system electron­
ics. This is also a precaution to protect the printer
mechanism and includes the print head solenoid (trigger
and data) lines and the stepper motor select lines. The
host system handshake 'Signals are activated to inhibit
data transfer from the host until the printer is ready to
accept data:

Next, Data Memory is cleared from 20H to 7FH. This
includes; the 80 byte Character Buffer, the II byte
Stored Time Constants buffer, and the 4 bytes used as
pseudo registers. The pseudo registers are Data Memory
locations used as if they were registers. They serve as
storage loacations for step data used in accurately'
reversing the direction of the carriage stepper motor,
and stablizing either of the stepper motors not being
driven.

The Data Memory locations OOH through I FH are not
cleared. These locations are Register Bank 0 (OOH-
07H), Program Stack (08H-17H), and Register Bank I
(18H-I FH) (see Figure 19). Clearing the Program Reg­
isters-or Stack would cause the initialization subroutine
to become lost. The registers are used from the begin­
ning of the program. Care is taken to initialize the
registers and stack accurately prior to each program
subroutine as required.

Upon power-on, it is necessary to initialize the two
stepper motors, verify their operation, and locate the
print head assembly in the left-most 'HOME' position.
This sequence serves as a system checkout. If a failure
occurs, the motorS are deselected and tlie external status
light is turned on. Each stepper motor is selected and
energized for a sequence of four steps. This serves to
align and stabilize each stepper motor's rotor position,
preventing the rotor from skipping or binding when the
first drive sequence begins.

At the end of each stepper motor's initialization, the last
step data address. is stored in one of the Data Memory
pseudo registers. The last step data address is recalled at
the beginning of the next corresponding stepper motor
drive sequence, and used as the basis of the next step
sequence. This ensures that the stepper motor always
receives the exact next step data, in sequence, to garan­
tee smooth stepper motor motion. This also garantees -
the motor never skips or jerks, which would misalign
the start, stop, and character dot column positions. A
stepper motor not being driven has its last phase data
output held constant to stabilize it.

Following any stepper motor drive sequence of either
motor, a delay of 30-60 ms occurs by switching the
current to Hold Current, stabilizing the motor before it
is deselected.

2. Home Print Head Assembly

At the end of the carriage stepper motor four step
initialization, the output of the HR optical sensor is
tested. The level of the HR signal indicates which drive
sequence will be required to 'HOME' the print head
assembly. If the print head-assembly is to the right of
HR, HR is high, the print head assembly need only be
moved to from Right-to-Left until HR is low, then
decelerated to locate the physical home position. If HR
is low, the print head assembly must be moved first
Left-to-Right until HR is high, then RighHo-Left to
locate both the logical and physical 'HOME' positions.
In each case, the software accelerates the carriage
stepper motor, generating the Stored Time Constants
then decelerates the stepper motor using the Stored
Time Constants (see Background section above). Flow
Chart No.3 details the HOME print head assembly
subroutine. Figures 13 and 18 illustrate the components
of acceleration and print head assembly line motion.--

6-956 230795-001

inter AP-161

Flow Chart No.3. HOME Print Head Assembly

The carriage stepper motor drive subroutines used to
HOME the print head assembly and to print, are the
same. A status flag, called Do-Not-Print, determines
whether the Character Processing subroutine is called.
The flag is set by the subroutine which calls the Carriage
Stepper Motor Drive subroutine. Details of the car­
riage and paper feed stepper motor drive and character
processing subroutines are covered separately below.

3. External Status Switch Check

Once the system is initialized and the print head is at the

HOME position, the software enters a loop which con­
tinually monitors the four external status switches, and
exits if anyone is active. Flow Chart No.4 details the
External Status Switch Check subroutine.

Flow Chart No.4. External Status Switch Check

If the LlNEFEED or FORM FEED switch is set, the
Paper Feed subroutine is called. The Paper Feed sub­
routine is discussed in detail below. If the ONLINE
switch is set, the Character Buffer (CB) Fill subroutine
is called.

If the Character Print TEST switch is set, the Data
Memory Character Buffer(CB) is automatically loaded
with the ASCII code sequence, beginning at 20H (a
Space character), the first ASCII printable character
code. The software then proceeds as if the CB had been
filled by characters received from the host system. The
External Status Switch Check subroutine is exited and
character printing begins. When the line has finished
printing, a linefeed occurs (as shown in the main pro­
gram Flow Chart No.1) and the program returns to the
External Status Switch Check subroutine. If the TEST
switch remains active, the ASCII character code is
incremented and program continues as before. This will
eventually print all 95 ASCII printable characters. An
example of the TEST printer output, the complete
ASCII character code printed, is shown in Figure 25.

CHARACTER BUFFER FILL
(fLOWCHART 1151

Flow Chart No.4. External Status Switch Check

230795-001

AP-161

4. Caracler Buffer Fill

The Character Buffer (CB) Fill subroutine is called
from three points within the main program; External
Status Switch subroutine, and the Delay subroutine
following the carriage and paper feed stepper motor
drive subroutines. Flowchart No.5 details the Charac­
ter Buffer Fill subroutine operation.

cy
<CHARACTER BUFFER

FULL , RETURN

t" r-v< I,,;HARA~T5R BUFFEH>

N~

I ENABLE INTERRUPTS I

• < INPUT BUFFER FULL
N

RETURN I
t'

CHARACTER BUFFER "- INITIALIZE CHARACTER I INITIALIZATION DONE ,/N BUFFER FILL

" I DECREMENT CHARACTER J
BUFfER SIZE

J
< END Of CHARACTER BUFFER , SET EXIT FLAGS

N

t
< CHARACTER BUFFER PAD , LOAD CB WITH 20H 1-

t N

l ACKNOWLEDGE & READ CHARACTER I
t

< ASCII PR~NTABLE CHARACTER >Nt
<; CR OR IF ~ N

I LOAD CHARACTER INTO I LOAD CB WITH CR
CHARACTER BUFFER seT CB PAD FLAG

ENABLE INTERRUPTS
READ NEXT CHARACTER

ASSUME IT'S IF & IGNORE

< EOF

~. N

SET EOF & CB FUll FLAGS
CLEAR C8 PAD FLAG

t
RETURN

< FORM FEED >v--t N

seT FF & CB fULL FLAGS
CLEAR CB PAD FLAG

~
RETURN

LOAD CB WITH 20H J

DECREMENT CB ADDRESS

t
CB FULL OR "- RETURN I CB PAD /'

• N

I ENABLE INTERRUPTS I

RETURN

Flow Chari No.5. Character Buffer Fill

The approximate 80 ms total pre-deselect delay at the
end of each stepper motor drive sequence, 40 ms car­
riage and 40 ms paper feed stepper motor pre-deselect
delay, is sufficient to load an entire 80 character line.
Half the CB is filled at the end of printing the current
line, and the second half is filled at the end of a paper
feed. There is no time lost in printing throughput due to
filling the character buffer.

Character input is interrupt driven. When the IBF
interrupt is enabled, a transmitted character sets the
IBF interrupt and IBF Program Status flag. Three
instructions make up the IBF interrupt service routine.
This short routine disables further interrupts, sets the
BUSY handshake line active, inhibiting further trans­
mission by the host, and returns. The subroutine can be
executed at virtually any point in the software flow
without effectinll the printer mechanism operation.
Processing of the received character takes place during
one of the three program segments mentioned above.
The BUSY line remains active until the character is
processed by the CB Fill subroutine.

The CB is 80 bytes frbm the top of Data Memory
(30H-7FH). It is a FIFO for forward, left-to-right print­
ing, and a LIFO for reverse, right-to-left, printing.
Loading the CB always begins at the top, 7FH. One
character may be loaded into the buffer each time the
CB Fill subroutine is called.

The CB is always filled with 80 bytes of data prior to
printing. If the total number of characters input up to a
Carriage Return (CR)/ Linefeed (LF), does not com­
pletely fill the CB, the CR code is loaded into the CB
and the balance of the CB is padded with 20H (Space
Character) until the CB is full. A Linefeed (LF) charac­
ter [ollowing.a Carriage Return is ignored. A LF is
always forced at the end ofa printed line. When the CB
is full, the CB Full status byte flag is set and printing can
begin.

A LF character alone is treated as a CR/ LF at the end
of a full 80 character line. This is a special case of a
printed line and is handled during character processing
for printing (see No.7, Processing Characters for Print­
ing, below). A Formfeed (FF) character sets the FF
status byte flag. The flag is tested at each paper feed
stepper motor drive subroutine entry.

When the software is available to load the CB with a
character, entry to the CB Fill subroutine checks three
status flags; CB Full, CB Pad, and IBF flag. If the CB
Full flag is set, the program returns without entering the
body of the CB Fill subroutine. The CB Pad flag will
cause another Space character to be loaded. If the IBF
flag is not set, the program returns. If the IBF flag is set,
the character is read from the Data Bus Buffer register,
tested for printable or non printable ASCII code, and, if
printable, loaded into the CB. If the character is a
non-printable ASCII code and not an acceptable
ASCII control code (CR, LF, FF, EOF), a 20H (Space
Character) is loaded into the CB.

Exiting the CB Full subroutine with the CB Full or CB

6-958 230795-001

AP-161

:: ,,' r I'*$.'~:?: . I,:)l+, - •. ,' ~312:3456~789 ,i < == >'7"t?14BC [JEFGH I ·JKL"'lt·KIPG.!RSTUI.)~'J~<Y2[", j .. ",_" abcde:f9h.i. j k 1 (rl
"',' I tI#:t~<~:: 'I.: :-'1.+, -. ····Ci!::: :::456;:'89: ,: -:.: == >'?I?~i8CDEFGH I .-'~:.:L"'lHClF'OF~STUI)L'J::<'l2[....] _ -3bcde:f''9h.i j k ll")n

! "#:t~,~~~: ''::)::t:+, '. ", ~_:112'~:4567:=:9: ,: = >?tI-'ABC:[.'EFCiH 1.-'~<L.t·1t·~OPO~:~=;TUI,ll·l~<'lZ["-"] _ ' .. :=.bcdE:f9h.i. j k 1 ((Inc,
! "#$%~'(,)f+.-. "0123456~~89: j:~=:;1'@~8CDEFGHIJ~~LMNOPQRSTU~J~JX\'Z['J"'_~abcdEf'9hlj~~lr~t'o~
"#$~'~~; ',.: :':*:+" --. ,"Ci'l -.:.34:i67:::9 ; == >';: 'PAE:C['EFGH r .-'kl_.t·lt·~OF·OR:~;TUI)l,J::::\'Z[J __ 3bcdE:f·:lh.i.,j k l"(lnol='~
#$%&','):t.+,.-. Dl~3456'789:~',:=)1eA8C[)EFGHI,JkLMt~OPQRS1-UI,IWXY2[~,.]·"_"abcde~3hij~~lMno~~r

j:~.~:!., '':: /t·+, -- •. ' 0 1';'::"::4567:::9 ; = ':"'';;'f~HE:CDEFGH I , ... W:L_t'1HOF'OP~':;TUI)~,t'::'·.·'2["', J _ ab,=def";;I~-1 i j k l"'tt"lOF'-=ir-s
%&,,~)*+,--.,,~01234567:~:9 :~:=)1'~A8C~EFGHIJ~~LM~~OPQRSTUl,JW~<Y2[],~_ abc,~ef3hi.j~~lMno~-=irst

:~; '(>:t:+" -. (1.1 :2::::45~?:::~74 .: .:,' = >";:'I!-'ABC[!EFGH I ·JVl_r·lHOF'c!P:~:TUI)l'J;:<·"'Z[]., .. _. ?tbcde:f·3h i j k 1 L'·Ir-toF·-=lr-st. u
, ().,'+. '--. ,"'C'Il 2:,::4::i6-;-"::::9 ; =.:: '?("~iE:C:['EFCiH I .J~::Lt'1t'KIP()F:'=:TUI)H>::\'Z[], .. _." =:tbcd€:f·:th.i.. .. :i k 1 f'·It"tC,j:::·-::j t-:::t IJ' .. I

()l+ ... - _ ,,' (1 t:..: .::4 ':;67:'::'3 . = ,:' '/'I?":'IE:C ['EFGH I J~':Lt'ltKIPC!F::~,TUI.ll'J>::""·Z[J .. ' __ ,;:jbcdE:f··=,h.i j k 1 f··WICtF·,=it·st U', .. '1.0.1

,., = >'';;'I?~iE:C:DEFGH 1 , .. H:::l_r·1t·~C1F'c!P'::;TUI ... ll·J:":""':T ". J' __ .:1bf=dE.:f '='~'I i j k 11·'·It"lop·=i t-st.IY.H.J)-(

.. ~ I~'HE:I.::["E~~:(~H 1 . .Jkl...t·1t·IOF·("F·:~; TUI)l,J>::'{Z[] :;b,=def·'3h.i j k l"·ln.:,i==,·=i t-st U',,II .. ,I:t<::I

". ';'I?H8C[)EF~C:iH J ..It-::l.t·lt'~I~IF·c!R:::;TU1.ll·I::<· .. '2r: J .. _ ,;j,bcd.::~ f"3h.i j k I "'It"lOP"=i t-:::t· U' .. ·'I.,.I)(~::

.":4:+., "". ,"'(11~: ::456 ;':::9
,:+., _. _ ~.) I ~::.::::4:i67::::~
+ . -. ,,~~~ 1.~: '::45r;'?:~:::~

• -"0 ~~ 1. ~:' ~:4~it:7:.::·..":j

-- ~ /0 1. :~:' ~::,.~~r:::?:::'3

~ ~31.~·'~:4':::;'~~ ?:~:':~ .

~::11 :2 ,~:4, 5 t-: ;"::::~?

~ ""~HF:t:C'EFGH I H'L!'ltl(IF'CIF""TUI'l,j; .. :',=C J
"'?Hr:C['F:FC;H I JfI.JItKIF'I:oF:'" T 1J"l,r:'i=[J'

'3bc,~ef9hi,jk10ltlO~'~rstUt,llJ~:::IZ(

:;bcd.::~f :3h.i. j I:: ll''-It"i,:,,:: .. =i t·.st 1_". ' •. ,I:H· ~I::: -(:
:otl--",,::d~-:: f ::If-. i. i k 1,'·wLoj::: .. =i t·:-:t, IY,'1",I:H: ::'~z <: : J

:;:I~:,,::.::!+:=:f 3h.i j k It"'II'"I()t,:·::j I·::;;t Iy.' }<: :"001= :~ : :~

1"'~~IE:Cr!EFI..~H I ,I.: ,L t·lt·~OF'C'F'·~, TI .. II.rl·J~::\'Z[J
,0 ','I?;,[':; [:oEFGH 1 JI'l,I'ltl0F'I,:'P',-,HII,I\,j;:','=C J

(1.1 '::3"~ ~'~:~-"'::::::~ 'i·t!"H[:I' ["FFI:'H'[J~, L l'lt'~I-:tF'i")F:::, TIJI)l'J;'=:·.-'::~["'" J :=.b..-::: ,:.--1,::: f '~h ,i. j I: l'-"It"tof: '=i t· .~t., 1_II.'I .. ,':H:::I7: :': : =:- .-.,

12345t~~'?:::::? -::: ,': '?(!-'~~r-:i" {"!:=FGH I rL L,I··1t'~ClF'I}F"~:,TUII!'J;:":'''''Z[J _ ::,jbc,.-j.~t' 3h i j ~: l lnc'j::' =it·:=t I_I' . .!I.,): ... ::.-:I:: { : J- '-'.' !
~?:=:,~ 56 ?::::::,~
~:4'5tS·;··,:::·;.

'l::~f:~::':.~:·.-:'

,,' 1";<[:" ['EFC;H 1 IfTt'lt IOr'l 'F'::,TU' '1,1:':',':,[
''-'';'>,E:CI -FFCH 1 ,If lJ,lt 1'''iPCq;':''TlJ',ll,r:','.?['J'

_ :=!bcdE. f ,Ih., j k l'''ln.:.;:: =.J t·~·1: 1.)'.'1".1:-':::1:: C ~ } '-'.' !"
:~b.::,::i>:~f;:ll". J . .i k l'-'-ltv:I~,:·:.--i t'st U'.' •. ,I:.';:.-:I::: {: j .'" I "*I

:::: .. ;: 1.;;'~1E:Cr'FF'~r.:,H I J~:':Lr·1t-~I')F'I~!P'::·1 !..It ,ll,I:":'I";-;{
=" '"liE"', [,EH;H I ,II Lt'It1Clf":'F:',.-nlll l,l::·,'::T

":"I',:,nE:I~ [!EFI,~H I rl,,'Lt'1t~nF't:IF"::, rrJI IH: :,-:"'::'[J
",I?HF:C ['E:FC,H I If Lt'1tlC1F'C'F:'"TU''i,C:',',7[J

""HE:(['I:'F(;11 [II Lt·lt II)F":'F"', [,-,111,1:- :',':',[, J

1 ::IL·,c,.::I"O·f":::'.·I.i..:i k ll'-Ir'p:,;'-::' =I t'::::t 1..1',.'10.''''" ',~:: :: : =: ' I "=I'Ll
] . ~b,=,::h:::-t· 3h.i j k 1 ("Inoj:::·::j t-.:::t U',.'I.,I)(:-:17: { : } ,'" t "#:r·:

::..bc,:::h:"::t· 3h.i.) k ll'-lnc:I~':"'''i t-~-7:t 1 . ..1'.,".',I:H: :017 <. : ::; I "#:t~·~:!:

'1t:.cd,::: f 3h j. j 1:' 11'wl':'P :::; t·s.t U'.,II,',I·o' :'--1::::-: :: : :::.-" I "#~i:\::~ ,
~L.o::,:Jo:: f ==ih ~ j k 11'1t'1'::'f:':;:1 t·:=,-·1: 1),.-'10.1),: :""'= :::: ,,, t "#:t\~::· '.

, I?HE~C['EFCH I II "J'lt'10F'C'F""TI.I' 1\·1: :','::[
=, "'I~;iE':C['E-F C;H r ..If I t·ltl0F""'FSnll,'I·C:',':T 1

J

:'..t::,,::dE'_f'~h;, j 1,:.i'-"Lt"iOj;:--:,-1t-Stl.J'!I".I:":'jZ{:::' ! "#l:~'~~':' '.: :1
~bC".:I.~:f ?h,~ j L 1 f"lnoi'" '::'it· _=::1: U'., 'I.' I:H' '::1:0:: :: : ::: ... , I "#~l~~S:: ', .. :' t·

:::.I:,cdef ';:Ih J, j I: 11"'lt ... o;'-:: ::'1 f' .~t. 1,.I' .. ,'I',I·H: :.~::: -:: : ::: = >'i·!?HE:C["EFCH 1 J~·:L!·lt'~OF'C1F'·-:::TUI.II·J::':""·:,:~[
':" ",,?,'IE:C['I'TCH I _WLt'lt ICIF'OF"" TU"l,J:-:"(:T
= >"'!'AE:C['EH~H I ..,IfU,ItH:,IF'C'F:::,TU')1'1:,,:','2T
," I?AE":C'EFC;H I ,'f'Lt-ItK'f"I:'F':"TU"I·I:-:",':':C

~!::·,.::dE f"~h.i. j k l lnc'~~ ::j t':;:::1: 1-" 'I".I'H: :01:7 -:: : J- ... , I "#$~~~':' ,,:)l+.
:.:il:::·cd-=. f' 3h.i.. j k 1 1'''1 t"I0 t"" =i t-.ST. '.-,'·.!I.,':":::-tz -:: : }... ! "#l:~'~~::''-: : :-t.,.-

3b,-:::d+:=~f·:;Ih.i..j kll'-Ino~~,,::jt .. :~t U'·,'I'.I:·1: ':1:7 (: ::- .. ,' ! ,,#=·t~~~~· 0:: :,,:t:+ -.
·?t'?(iBC(!ETC.iH 1 J~', L..t'1t·Klr-'I,·IF"~; TI..rr.II·J;:'·;·'I''Z[J :~b::d,:::f ~h.i. j k 1 f"II'"I(:,f''':'1 t-::::1; I..P,..'I,'.I:,,: :;~::: { : ~ J "#:t~,~:=,,'':: >:t:+., - •
t:,".:iE:C['EF(;iH.l .JkL.Nt·KrF·CI~;':~; I UI.IH~<·/:::T] :':Ir.:,cd.::: t"'3h.i..j k 1 f'lno::.i:::"';:1 ~- ::·t, IYII".I:H: ::lZ -:: : .}.. .! "#:t~,~:=,: . ',: \t.-t·" ---. ""'0

HE:C(>FFCiH I ,_HO:LJ·H'~OPCtF"':;TUJ"q·J>::""'Z[].... :::~bo::dE:f ':,Ih.i. j k 1"·H"1!:'~":":-.J ~':st U'"'I,,.I:H·:.-:I:: { : =: .'" ! "#$~'~~:: '0::):t:1-., '-' •. ····01
BCe,EF:CiH I , ... W'L.t·1t·~CtFCIF':~; I"LII.)I·.I::<' :::T '~1b,.:,::::Io:::f '3h.i. J ~.: 1 f"In.:,F,,"!",II·S1:, U'·.'I,',I:H: :~2'. -:: : ~j .".' ! "#~t~·~~~:: '< >:t:+ .. '- ~ , 012
CDEFI::=:iH I . .J~::Lt·lt·KIi=-·r}F~';::TI.Jt,II·I><·""Z[] ::Ibcd('.:t' 3h.i.. j k 1. It"tO~': '=i t·.;t·U' .. 'I ... I: .. : ::..~= -:: : j- .'" ! "#$~'~~:: ''::):4::+.,'- ~?ll:2:3
DE:FCiH I ... 1."', Lr'1t·~crF'OR:::;TUI..rt'J~':\'Z[J.. ... ~bcd~=:f ·=:.h i. j \:: ll'It"tOf:' =1t-st '-".-".,.1:": :=':: :: : =: ,".' I "#~t~·~:~:, ''-: >:t+ ... - 0 1234
EF:CH I ..rt-::L..t,1t·~ClF'C!F"::;TUI...rt,~::,:\·Z[".] ,,_ ~bcdt!::f··9h.i...j k I L·"lnOf:,·=i t-:::t U',)I .. .I·H: ~z. { : =:- ,'., ! "#:;-~::.~~::'':: :.'l+,,·- .. ""(112345
FC;H I .JkL_t'1HOF'c!P:::;TUI')l'J::<\'::~["". J' _._ 3bcdE~f' :;tl-l ,; j k 1 .. ··lno;::··=lt":::t.I,J',) •.. ,.:O.(:='z <: : .'} ,'" I I'tt:t~,~~~: ''::):*:+., - • ..-- (1 .l.23456
GH I . .J~:::U-'H·lCIPC!F:~.:"rut')l'J::·::·r'~:[],' ,~bcdE:f"3h.i. j k 11""lnoj:~"=i t"st U'·.,'I, .. I}(~~= { : } ".' ! "#$~'~~:; '''-: >:t:+ .. --. , ~) 1234567
HI ·J~<L.I·"I~'·I()F'I}P:':;TUI.)t'J~<\·Z[], __ '. 3b.:::dE.:f"3h.i.j k 11"lno~':"=1 r·st. U··..'I,I:~(::IZ { : J- "'.' ! "#~t;~·~~::' 0::):4::+ .. '-' ~~112::::4'5'::;7:3
I .JkLl"'1t·~OF'c!P:':;TUI)H::<\';:[J ;:jbcd.~f·;:Ih i j k l lnl:'I:;:'·=-.; t-st. U' I, . .t: .. ::.-:IZ -::: } .".' ! "#$~'~:.?:'''-:):t:+ .. - [11 :2:34567:3:3
.J~:::l.Nt··ICtF'OR:.~;TUI,)t·J>:;\·Z[],.,.,._ ,:;b,=dE:.f'3h ... j k l .. ··.t"lc'j:::··::jt·~:;1:. U'· ... I.,.I)(::..~::: { : ::- ,",' ! "#:t~.~~: ''::):t:·+" -- M .···(112:34567:~:9 :
~<Lr'1t-lOPG!F~~=;TUI')LIJ:'·':'lZ["'.], " :::.bcdef··;:th.i. j k 1 f .. lnl:'j:::··::jt·:s1:.I...I' ' .•. t:H:::IZ -:: : :::- ! I'#$~'~:!~ . ():t:+ .. _. ~ ./~Z112:34567:::9 : .i

L. fo1t·IOPOP:::;TUI.)t,.I::<· Z[..... J __ .. 3bcde:f"3h.i. j k l .. ··lnol:::··=it-st U'.)I.,.I:H: ~= -::: } ,".' ! "#$~'~~::'''-: :.I:t:+., - 0 .···~?t.1234567:=:9: <
t·lt·KtPC~F.::=;TUI ... IL·J::<·· .. ·Z[' J ,_, .. 3bcde:f:3h.i.. j k 1 ("lncd::"=1 t-st· U'.)I.,.I:04: ~= (: } I·... ! "#$~'~:!':'':: .:ol+ '-. ,"012:;:4567:39: .i -<;:::

Figure 25. ASCII Character Code TEST
Output and Print Example

Pad flag set does not re-enable IBF interrupts or reset
the BUSY line. If neither of these flags is set, exiting the
CB Fill subroutine sets BUSY inactive and IBF inter­
rupts are enabled. Once the CB Full status byte flag is
set, IBF interrupts are disabled until the CB has been
entirely emptied, the line printed, or the system Reset.

5. Carriage Stepper Motor Drive and Line Printing

The carriage stepper motor drive subroutine controls

both L-to-R and R-to-L print head assembly motion.
Upon entering the subroutine, the HR signal level is
tested to determine the direction of print head assembly
motion and the Direction status flag is set. The default
control register values are loaded and balance of the
default status flags are set for stepper motor control and
character processing. The default control register values
include PT and the step sequence look-up table start
address for the direction indicated.

6-959 230795-001

AP-161

The direction flag is tested throughout the carriage
stepper motor drive and character processing subrou­
tines. This enables the same subroutines to control
activities for either direction, simplifying and shorting
the overall program. Flow Chart No.6 illustrates the
I~arriage stepper motor drive subroutine.

5H\n> NEXT :;TEP DATA TO OUTPUT
INITIALIZE TIME CONSTANT REGISTER
SELECT CAflR1AGE STEPPER MOTOR

LOAD TIIoIIER WITH PT
MASK PAP£R FHO LAST STEP , CARRIAGE

Nur ST!:P DATA
OUTPUT STEP OATA

START TIMER

CARRIAGE STEPPER MOTOR
AT CONSTANT SI'EED

Flow Chart No.6. Carriage Stepper
Motor Drive/Line Printing

Next, the carriage and paper feed stepper motor step
data is initialized. The last step data output to the paper
feed stepper motor is loaded into the Last Phase pseudo
register. This data is masked with each step data output
to the carriage stepper motor. Masking the step data in
this manner guarantees the paper feed motor signals do
not change as the carriage stepper motor is being
driven.

Figure 26 illustrates the carriage stepper motor step
sequence verses the actual step data output for clock­
wise rotation, Left-to-Right motion, and counterclock­
wise rotation, Right-to-Left print head assembly
motion. An eight step sequence is depicted in the figure.
Note that the sequence for Right-to-Left motion is the
reverse of the sequence for Left-to-Right motion. Note
also, that for the L-to-R sequence step 4 is the same as
step 0, step 5 the same as step I, etc., through step 7
matching step 3. The four step sequence simply repeats
itself until the motor is stopped via the Deceleration
subroutine.

L-to-R Phase/Step R-to-L BCD
Motion Data Motion

Sequence (3210) Sequence (3210)

0 1001 7 0000
1 1010 6 0001
2 0110 5 0010
3 0101 4 0011

4 1001 3 01 00
5 1010 2 01 01
6 0110 1 01 1 0
7 0101 0 0111

Figure 26. Carriage Stepper Motor
Phase/Step Data

When the carriage stepper motor is driven for a specific
direction of print head assembly motion, the step
sequence must be consistant for the motion to be
smooth and accurate. The same holds true for the tran­
sition from one direction of motion to the other. Since
the sequence for one direction is the opposite for the
other direction, incrementing the sequence for L-to-R
and decrementing for R-to-L provides the needed step
data flow. For example, referring to Figure 26, if the
print head assembly moved L-to-R and the last step
output was#l, the first step for R-to-L motion would be
#7. Thus, when the carriage stepper motor is initialized
for a clockwise (L-to-R) or counterclockwise (R-to-L)
rotation, the last step sequence number is incremented
or decremented to obtain the proper next step. In this
way, the smooth motion of the stepper motors is
assured.

The step data is referenced indirectly via the step
sequence number. The step data is stored in a Program
Memory look-up table whose addresses correspond to
the step sequence numbers. For example, as shown in

6-960 230795-001

AP-161

Figure 26, at location 0 the step data" JOOI" is stored.
This method is particularly well suited to the UPI-42
software. The UPI-42 features a number of instructions
which perform an indirect move or data handling oper­
ation. One of these instructions, MOVP3 A,@A, unlIke
the others, allows data to be moved from Page 3 of
Program Memory to any other page of Program
Memory. This instruction allows the step data to be
centrally located on Page 3 of Program Memory and
accessed by various subroutines.

Each time the carriage stepper motor step data is out­
put, the step data lookup table address is incremented
or decremented, depending upon the direction of rota­
tion and tested for restart of the sequence. The address
is te~ted because the actual step data, Figure 26, is not a
linear sequence and thus is not an easily testable condi­
tion for restarting the sequence. The sequence number
is tested for rollover of the sequence count from 03H to
04H and clockwise motor rotation via the Jump on
Accumulator Bit instruction (JBn), with OOH loaded to
restart the sequence. The same bit is tested when decre­
menting the sequence count for counterclockwise motor
rotation, R-to-L motion, because the count roBs over
from OOH to OFFH, with 03H loaded to restart the
sequence.

At this point the UPI-42 Timer/ Counter is loaded, the
step signal is output, and the timer started. The next
step data to be output has been determined and the
At-Speed flag is tested for entry to one of two subrou­
tines; Stepper Motor Acceleration Time Storage or
Character Processing.

The firstentry to the Acceleration Time Storage sub­
routine initializes the subroutine and returns. All other
entries to one of the two subroutines perform the neces­
sary operations, detailed below (Blocks 6 and 7), and
returns. The program loops until the PT times out or the
PTS level change is detected. PTS is tied to TO of the
UPI-42. The level present on TO is directly tested via
conditional jump instrunctions. The software loops on
poBing the timer Time Out Program Status flag and the
TO input level.

As described in the Background section above (shown
in Figure 13), ifPT times out before PTS is detected, the
software waits for PTS before outputing the next step
signal. If PT times out before PTS, a second timer
count value is loaded into the UPI-42 timer. The timer
value is called "Failsafe."This is the maximum time the
stepper motor can be selected, with no rotor motion,
and not damage the motor. If PTS is not detected,
either the carriage stepper motor is not rotating or the
optical sensor is defective. In either case, program excu­
tion halts, the motor is deselected, and the external
status light is turned on to indicate a malfunction. A
system reset is required to recover from this condition.
The Failsafe time is approximately 20 milliseconds,
including PT.

The Failsafe time loop also serves as a means of track­
ing the elapsed time between PT time out and PTS.

6-961

Entry to the Failsafe time loop sets the Failsafe/ Con­
stant Time Window status flag. This flag is tested by the
Acceleration Time Storage subroutine for branching to
the proper time storage calculation to be perf?r~ (see
Figure 13 and Block 6 below for further descnptIon).

During the Failsafe timer loop, if PTS is detected and
verified as true, the Failsafe timer value is read and
stored in the Time Storage register. This value is used
during the next Acceleration Time Storage subroutine
call to calculate the Stored Time Constant (see Block 6
below). If PTS is invalid, the flow returns to the timer
loop just exited, again waiting for PTS or Failsafe time
out.

During the PT time loop, if PTS is detected and veri­
fied, the Sync flag is tested for entry to the print h~ad
solenoid firing subroutine. This flag is set by the fmt
entry to the Character Processing subroutine. The flag
synchronizes the solenoid firing with charact~r ~roces.s­
ing. Only if characters are processed for pnntm~ :-VIII
the solenoids be enabled, via the Snyc flag, for fmng.
This prevents the solenoids from being fired without
valid character dot data present.

As described in the Background section "Relationship
Between PTS and PT," PTS is the point of peek angular
velocity within a step of the motor. After PTS. is
detected the motor speed ramps down, compensatmg
for the overshoot of the rotor motion. PTS is the opti­
mum time for print head solenoid firing, as shown in
Figure 13. This is the most stable point of ~otor rota­
tion and, thus, the print head assembly motIon. If PTS
is detected during PT, printing is enabled, the Sync flag
is set, and the solenoid trigger is fired.

The firing of the solenoid trigger, following PT~, is .v~ry
time critical. The time between PTS and solenOid fmng
must be consistant for accurate dot column alignment
throughout the printed line. The software is designed to
meet this requirement by placing all character proces.s­
ing and motor control overhead before t~e solen?ld
firing subroutine is called. The actual .mst~uctlO.n
sequence which fires the print head solenOid tngger IS

plus or minus one instruction for any call to the
subroutine.

Once the timer loop is complete, the software tests for
Exit conditions. If the Exit conditions fail, the software
loops to output the next step signal, starts the PT timer,
and continues to accelerate the carriage stepper motor,
or process, and print characters. If the Exit test is t.rue,
the carriage stepper motor is decelerated to a fixed
position, and the program returns to the main program
flow (see Flowchart I).

The exit conditions are different for the two directions
of print head assembly motion. For L-to-R printing, if a
Carriage Return (CR) character code is read from CB,
the carriage stepper motor drive terminates and the
motor is decelerated to a fixed position. There are two
conditions for terminating carriage stepper motor drive
upon detecting a CR during L-to-R motion. If les~ than
half a character line (40 characters) has been pnnted,

230795-001

inter AP-161

the print head assembly returns to the HOME position
to start the next printed line. Otherwise, the print head
assembly continues to the right-most position for a full
80 character line, and then begins printing the next line
from R-to-L. R-to-L printing always returns the print
head assembly to the HOME position before the next
line is printed L-to-R. When HR is high, character
printing always stops and the carriage stepper motor
drive subroutine exits to the deceleration subroutine.

6. Accelerate Stepper Motor Time Storage

As described above, when the carriage stepper motor is
accelerated the step time required to guarantee the
motor is at a constant rate of speed translates to a
specific distance traveled by the print head assembly
(see Figure 18). In order to position the print head
assembly accurately for bi-directional printing, the dis­
tance traveled during deceleration must be the same as
during acceleration. The Carriage Motor Acceleration
Time Storage subroutine calculates the step times
needed to accelerate the carriage stepper motor, and
stores them in Data Memory for use as PT during
deceleration.

The first call of the Carriage Stepper Motor Accelera­
tion Time Storage subroutine initializes the required
registers and status flags. The time calculation begins
with the second carriage stepper motor step signal out­
put. The program returns to the carriage stepper.motor
drive subroutine and loops on PT. Each subsequent call
of the Acceleration Time Storage subroutine tests the
Failsafe! Constant flag and branches accordingly (see
Flow Chart 7). The Acceleration Time Storage subrou­
tine has two parts which correspond to PTS leading or
PTS lagging PT.

y
ry< TIME STORAGE INITIALIZATION DONE ;:>

~N

I INITIALIZE TIME STORAGE REGISTERS I
.1 . +

r;;< TIME STORAGE DONE

r
I INITIALIZE CHARACTER PROCESSING J REGISTERS

t
< FAILSAFE TIME WINDOW ENTERED

~ P

If the Failsafe! Constant flag is set, PTS lagged PT. The
time from PT time out toPTS, Tx(see Figure 13), must
be added to the PT and stored in Data Memory. As
described above, if PT lagged PT, the Failsafe time is
loaded and PTS is again polled during the time loop.
When PTS occurs within the Failsafe time, the timer is
stopped and the timer value stored. The UPI-42 timer is
an up timer, which means that the value stored is the
time remaining of the Failsafe time when PTS occured.
The elapsed time must be calculated by subtracting the
time remaining (the value stored) from the Failsafe time
constant. This is done in software by using two's
complement arithmetic. If the Failsafe flag is not set
PTS led PT, and PT is the Stored Time Constant stored.

Indirect addressing of Data Memory is used to reference
the Stored Time Constant Data Memory location. The
Data Memory location address is decremented each
time the AccelerationTime Storage subroutine is exited
and a Stored Time Constant has been generated.

The last Acceleration Time Storage subroutine exit sets
the At-Speed status flag and initializes the character
processing registers and flags.

3. Process Characters for Printing

The Character Processing subroutine is entered only if
the Home Reset (HR) optical sensor signal is high and
printing is enabled. Otherwise, the software simply
returns to the Carriage Stepper Motor Drive subrou­
tine. There are two cases when printing is not enabled;
during the HOME subroutine operation, and when the
print head assembly returns to the HOME position
after printing less than half an 80 character line. If
printing is enabled, the Sync status flag is set.

I CALCULATE TIME TO STORE I I STORE PT J

All character processing operations use the second UPI-
42 Data Memory Register Bank, RBI. Register Bank I
is independent of Data Memory Register Bank 0, used
for stepper motor control. The use of two independent
register banks greatly simplfies the software flow, and
helps to ensure the accuracy of event sequences that
must be handled in parallel. Each register bank must be
initialized only once for any entry to either the Carriage
Stepper Motor Drive or Character Processing subrou­
tines. A single UPI-42 Assembly Language instruction
selects the appropriate register bank. Initializing the
character processing registers includes loading the max­
imum character count (80), dot matrix size count (6),
and CB start address. The CB start address is print
direction dependant, as described in Block 4, above.

(PT -+- TX) RESET FAILSAFE FLAG

I 1
+

I DECREMENT DATA MEMORY ADDRESS I DECREMENT STEPS TO seTRE COUNT

• I RETURN I
Flow Chart No.7. Carriage Stepper Motor

Acceleration Time Storage

Character processing reads a character from the CB,
tests for control codes, translates the character to dots,
and conditionally exits, returning to the Carriage
Stepper Motor Drive subroutine. Flow Chart 8 details
the character processing subroutine.

6-962 230795-001

AP-161

9
< INITIALIZATION DONE

~ .N

l seT SYNC STATUS FLAG

I
+

ry-<: SAME CHARACTER RE-ENTRY >
N~

READ CHARACTER FROM CB

+ v< ASCII PRINTABLE >
N.

< CR

IN
V •

t N
LESS THAN HALF OF LINE PRINTED>

I REPLACE CHARACTER I r
WITH 20H (SPACE)

1 I
RESET STATUS FLAGS
CB fULL, REGISTER

INITIALIZATION,
SYNC, EOLN I TRANSLATE CHARACTER I

TO DOTS

~ (FLOWCHART 119)

~ -N< L-TQ_R PRINTING >
r I GET CHARACTER DOT I COLUMN DATA I SET DO NOT PRINT I

•
STATUS FLAG

~ CHARACTER DOT MATRIX
N COMPLETE t

Vt RETURN

I
RESET CHARACTER

I INITIALIZATION
STATUS FLAG

t
< 80 CHARACTERS PRINTED

N

r
I RESET STATUS FLAGS

J I ADVANCE CB FOR

I CB FULL, SYNC, DIRECTION OF
PRINT NOT READY PAINTING

I .
+

1 ADVANCE CHARACTER ,I DOT MATRIX ADDRESS
FOR DIRECTION OF PRINTING

GET CHARACTER DOT COLUMN
DATA AND OUTPUT

L

RETURN

Flow Chart No.8. Process Characters for Printing

Each character requires six steps of the carriage stepper
motor to print; five for the 5 character dot columns and
I for the blank dot column between each character.
Reading a character from the CB and character-to-dot
pattern translation takes place during the last character
dot column, or blank column, time.

The first character line entry to the Character Process­
ing subroutine appears to the software as if a last cha,r-

acter dot column (blank column) had been entered. The
next character, in this case the first character in the line,
is translated and printing can begin. This method of
intiializing the Character Processing subroutine utilizes
the same software for both start-up and normal charac­
ter flow. Once a character code has been translated to a
dol matrix pattern starting address in the look-up table,
all subsequent entries to the Character Processing sub­
routine simply advance the dot column data address
and outputs the data.

The decision to translate the character to dots during
the blank column time was an arbitary one. As was the
choice of the blank column following rather than
preceding the actual character dot matrix printing.

4.' Translate Character-to-Dots

Character-to-dot pattern translation involves convert­
ing the ASCII code into a look-up table address, where
the first of the five bytes of charcter dot column data is
stored. The address is then incremented for the next
column of dot pattern data until the full character has
been printed.

The dot pattern look-up table occupies two pages, or
approximately 512 bytes of Program Memory. A prin­
table ASCII character is tested for its dot pattern loca­
tion page and the offset address, from zero, on that
page. Both the page test and page offset calculations use
two's complement arithmetic, with a jump on carry or
not carry causing the appropriate branching. Once the
pattern page and address are determined the indirect
addressing and data move instructions are used to read

, and output the data to the print head solenoids. Flow-
'chart 9 details the Character-to-Dots Translation sub­
routine .

In the case of R-to-L printing, although the translation
operation is the same, the character is printed in
reverse. This requires that the character dot pattern
address be incremented by five, before printing begins,
so that the first dot column data output is the last dot
column data of the character. The dot pattern look-up
table address is then decremented rather that incre­
mented, as in L-to-R printing, for the balance of the
character. Translation still takes place during the last
character dot column, the blank column, and the blank
column follows the character matrix.

Only one control code, a Carriage Return (CR), is
encountered by the character translation subroutine.
Linefeed (LF) characters are stripped off by the CB Fill
subroutine. If a CR code is detected the software tests
for a mid-line exit condition; less than half the line
printed exits the stepper motor drive subroutine and
HOMEs the print head assembly before printing the
next line. If the test fails, more than half the line has
been printed, the CR is replaced by a 20H (Space char­
acter) and printing continues for the balance of the line;
the space characters padding the CB are printed.

6-963 230795-001

inter AP-161

Flow Chart No.9. Translate Character-to-Dots

As mentioned above, the character dots are printed and
the print .head trigger is fired when the PTS signal is
detected and verified and the carriage stepper motor is
At Speed.

When the character to print test fails the CB Buffer size
count equals zero, the Carriage Stepper Motor Drive
subroutine exit flags are set, and the flow passes to the
Deceleration and Delay subroutines and programs
returns to the main program flow.

9. Decelerate CarrIage Stepper Motor

The transition from the Carriage Stepper Motor Drive
subroutine to the Deceleration subroutine outputs the
next step signal in sequence, and then initializes the
Deceleration subroutine registers; Stored Time Con­
stants Data Memory buffer end address and size. The
Stored Time Constant Buffer is a LIFO for deceleration
of the carriage stepper motor. The buffer size is used as
the step count. When the step count decrements to zero,
the step signal output is terminated, and the last step
sequence number is stored in the carriage stepper motor
Next Step pseudo register. The last step sequence
number is recalled, during initialization of the next
carriage stepper motor drive, as the basis of the next
step data signal to be output. See Flow Chart 10.

I INlnt,LIZE DECELERATION REGISTERS

OUTPUT NEXT STEP SIGNAL
LOAO" STAAT TIMER

DECREMENT STORED TIME CONSTANT
DATA MEMORY ADDRESS

SETUP NEXT STEP

STEP SEQUENCE DONE

IN
t

<~---"-:~'M-'-OU-'--~~
I'

~ DECELERATION DONE ">
1 '

STORE lAST STEP AODRESS

I r RETURN 1

RESTART SEQUENCE

I

Flow Chart No. 10. Decelerate Carriage
Stepper Motor

When the carriage stepper motor is decelerated, Fail­
safe protection and PTS monitoring are not necessary.
The Deceleration subroutine acts as its OWIl failsafe
mechanism. Should the stepper motor hang-up, the
subroutine would exit and deselect the motor in suffi­
cient time to protect the motor from burnout. Since
neither Failsafe nor print head solenoid firing take
place during deceleration, PTS is not needed. PT is
replaced by the Stored Time Constant values in Data
Memory. The Deceleration subroutine determines the
next step signal to output, loads the Timer with the
Stored Time Constant, starts the UPI-42 Timer, and
loops until time out. The subroutine loops to output the
next step until all of the Stored Time Constants have
been used. The program returns to the Carriage
Stepper Motor Drive subroutine and the motor is dese­
lected following the Delay subroutine execution. The
Delay subroutine is called to stablize the stepper motor
before it is deselected. During the DELAY subroutine,
the IBF interrupt is enabled and characters are pro­
cessed. A paper feed is forced following the carriage
stepper motor being deselected.

10. Paper Feed Stepper Motor Drive

The paper feed stepper motor subroutine outputs a
predefined number of step signals to advance the paper,
in one line increments, for the required number of lines.
The number of step signals per line increment is a func­
tion of the defined number of lines per inch, given the
distance the paper moves in one step. Figure 16 lists
three step (or pulse) count and line spacing configura-

6-964 230795-001

inter AP-161

tions, as well as the distance the paper moves in one
step. Standard 6 lines per inch spacing has been imple­
mented in this Application Note (Appendix B details
how variable line spacing could be implemented).
Flowchart II illustrates the Paper Feed subroutine.

Flow Chart No. 11. Paper Feed Stepper Motor
Drive

The number of lines the paper is to be moved is called
the "Line Count." The Line Count defaults to one
unless the Formfeed flag is set, or the total number of
lines previously moved equals a full page. The default
total lines per page for this application is 66. When the
total number of lines moved equals 66, the paper is
moved to the top of the next page. The Top-of-Page is
set at power-on or reset.

If the Formfeed flag has been set in the Character Buffer
Fill subroutine, the software calculates the number of
lines needed for a top of next page paper feed. The
resulting line count is loaded in the Line Count Regis­
ter. The Paper Feed subroutine loops on the line count
until done and then returns to the main program body.

Once the Paper Feed subroutine is complete, the soft­
ware loops to test the End of File (EOF) Flag (see
Flow Chart I). If EOF is set, the print head assembly is
moved to the HOME position, the program again
enters the External Status Switch Test subroutine, and
begins polling the external status switches. If EOF is not
set, the program directly calls the External Status
Switch Check subroutine, and the program repeats for
the next line.

CONCLUSION
Although the full speed, 12 MHz, of the UPI-42 was
used, the actual speed required is approximately 8-9
MHz. 1400 bytes of the available 2K bytes of Program
Memory were used; 500 bytes for the 95 character
ASCII code dot pattern look-up table, 900 bytes for
operational software. This means that the UPI-42 has
excess processing power and memory space for imple­
menting the additional functions such as those listed
below and discussed in Appendix B.

Special Characters or Symbols
Lower Case Descenders
Inline Control Codes
Different Character Formats
Variable Line Spacing

The software developed for this Application Note was
not fully optimized and could be further packed by
combining functions. This would require creating
another status register, which could also serve to
implement some of the features listed above. Since the
full 16 byte stack is not used for subroutine nesting,
there are 6-8 bytes of Program Stack Data Memory that
could be used for this purpose. In several places, extra
code was added for clarity of the Application Note. For
example, each status byte flag is set with a separate
instruction, using a equate label, rather than setting
several flags simultaneously at the same point in the
code.

This Application Note has demonstrated that the UPI-
42 is easily capable of independently controlling a com­
plex peripheral device requiring real time event moni­
toring. The moderate size of the program required to
implement this application attests to the effectiveness of
the UPI-42 for peripheral control.

6-965 230795-001

AP-161

APPENDIX A.
SOFTWARE LISTING

1 SMOD42 TITLE('UPI 42 APP NOTE'li
2 .MACROFILE NOSYMBOLS NOGEN DEBUG
3
4 'INCLUDE(:Fl:ANECD.OV1)

= 5 PG
6
7

= 8
9

= 10
= 11
= 12

13
14

= 15

=

=
=

16
17
18
19
20
21
22
23
24
23
26
27 ,
28
29 ,
30
31
32
33

34
33

36
37 ,
38

= 39
40

= 41
42

=. 43;
44 ,
45
46 J
47 ,
48 J

49 J
30 J

51 J
32 ,
53
54
55 ,
56 ,
57
58 J
59
60 J
61

• 62 J
63

• 64
65

• 66 I
67
68 ,

= 69 I

70

* Complex Peripheral Control With the UPI-42

Intel Corporation
3065 Bowers Avenue
Santa Clara, Ca. 95051

Written By Christopher Scott

* * * * * * * * * * * * * * * * * * *"* * * * * * * * *' * * * * * * * * * *

PG

Notes and Comments
Th~'e Assembly Language files comp~i.e the full Application
Note sau~c. codeJ

1. ANECD. OVl

2. 42ANC.SRC

3. CHRTBL.OVl

App Note E<luat Constanh. Decl.~.tion •. Ovnleu

UPI-42 App Note Code Sou~ce

Ch.~acte~ Table . Ove~lay (Ch,,~acte~ Lookup Tables)

* Equates. Constants and System Definitions
* * * *. *

Data & Program Memory AllDcations
Program Memory
Page No. He. Add~

Pege 6

Page :5

Page 4
Page 3

Page 2

Page

Page 0

1792-2047

1536-1791

1280-1535

1024-1279
768-1023

512-767

256-511

0-255

DescT'iption

Cha~ to Dot patte~n lookup t.bl.
Page 2: ASCII 50H-7FH (N-~)

.Ch.~ to Dot patte~n lookup table
Page 1: ASCII 20H-4FH (sp-M)

Mise called routines:
InitAI/AllOff
Clea~ Data Memo~y
CR Home
'Cha~ P~int Test - load Ascii cha~ code.
Initialize CR Stp~ Mt~
Delay: sho~t/long/ve~y long
Stp~ Mt~ deselect

Pape~Feed Stp~ Mt~ Init and D~ive
Stp~ Mt~ Pha.e LookUp Table - Inda.ad
Cha~acte~ T~"n.lation and ~~oc.ssing
P~intHead U~ing
Stpr Mt,. A~cel. Time calc. and m.mo~iz.tiDn
Stp~ Mt~ Dec.le~ation
SMD~Iv (FAccaI/RAccal) - Fo~wa~d & R.v.~ ••

Stp~ Mt~ .ccele~ation & d~ive
Inltlalzatlon ~mp-on-Raset
P~og~am Body - all calls
Ch,,~acte~ Input test and Cha~ Duff.~ fill loop
Inte~~upt se~vice ~outin ••

6-966 230795-001

0050
00D9

007F
0080
002F
0051

002F
000:3
OOOA
002F
0025
007F
005D

0020
0021
0022
0023

0000
0001
0002
0003
0004

0005
0006

0007

AP-161

= 71 PG
72 I ---

= 73 Data Memory

=

=

=

74
75
76
77
78
79
80
81
82
83 I

84
85
86 I

87
88 I

89
90 I

TOP

Dec.

48-127
37-47

36
35
34
33
32

24-31
8-23
0-7

Hex

2F-7FH
25-2EH

24H
23H
22H
21H
20H

18-1FH
8-17H
0-07H

Description

80 Character Line Buffer
Stpr Mtr Accel/Decel time, memorization
lJnused
Char Print test ASCII code start tmp store
LF SM last Phz Inderect Addr psuedo reg
CR SM Forward/Reverse last Phz psuedo reg
Psuedo Reg: Last Phase of stpr mtr not

being driven
Register Bank 1: Character Handling
8 Level Stack
Register Bank 0: Stpr Mtr FIR Accel/Drive

91 I

92
BOTTOM

93 I

94
95
96 CHBFSZ
97 HlfCp 1
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

117

FCBfSt
FCBfIS
RCBfIS
ChBfIS

ENDBUF
ASBfSz
DSBfSz
5MBFST
SMIlEnd
DMTop
DMSize

LastPh
CPSAdr
LPSAdr
PTAscS

PG

Data Memory Equates:

EClU 50H
E'l.u OD9H

E'l.u 7fH
E'l.u 80H
E'l.u 2FH
E'l.u 81

EClU 2FH
EClU OBH
E'l.u OAH
EClU 2FH
E'l.u 25H
Equ 7FH
Equ 93

Equ 20H
EClU 21H
Equ 22H
Equ 23H

lchar buffer size 0-79 = 80
ICpl(1/2 CbBfSz) =~ cpl of 27H OD9H

istart of char buffer
j init CB strt-allows xtra Dec by 1
j init CB strt-allows xtra Inc by 1
i load char cnt reg w/char bufT Jnit

lEND OF CHAR BUFFER
iAccelerate stpr mtr bUT count
iDecelerate stpr mtr bUT count
ISTPR MTR BUFFER START
;Stpr Mtr Data Memory Address end
iData Memol'1j Top

Size

iOata Memorq Size (less two working reg's)

I; last phz psuedo reg addr
iCR phz psuedo reg
iLF phz psuedo reg
iChar Print Test code start tmp store

118 * * * * * * * * w * * * * * * * * * * * * *' * * * * * * * * * * * * * * * *
119
120
121
122
123 I

124
125 I

126

127

Register allocation
*

All Indirect Data Memory Addressing via @Rn Inst must use
only registers 0 & 1 of either register bank. Any other will
be reJected b~ the Assembler

Last character iff la~le indicates Re~i~ter Bank referenced

Register Ban~ (J
= 128

129 TmpROO Equ RO iRBO Temporary Register
= 130 TStrRO EClU Rl i Store Time Register RBO

131 GStR20 EClU R2 i General Status Register RBO
132 PhzR30 EClU R3 , Stpr Mtr Phase Register RBO
133 CntR40 Equ R4 i Count Reg. Phase CDunt-Stpr Mtr loops
134 I Accel/Decel Count
135 TConRO E'lu R5 i Time constant reg RBO
136 LnCtRO Equ R6 i Line count
137
138 OpnR70 EClU R7 i available
139
140 Register Bank o Data Memory Address
141

6-967 230795-001

0000
0001
0002
0003
0004

0005
0006

0007

0000
0001
0002
0003
0004
0005
0006

0007

142 TmpAOO
143 TStrAO

= 144 GStRAd
= 145 PhzA20
= 146 CntRAO

147
148 TConAO

= 149 LnCtAO
150
151 OpnA70

= 152
153

= 154 PG
= 155)

= 156
= 157

158
1~9

= 160
161
162
163

= 164
165
166
167
168)
169)
170
171
172
173
174
175

= 176
177
178

= 179
180
181
182
183
184

= 185
= 186
= 187
= 188
= 189
= 190
= 191

192
193

= 194

= 195

LRPrnt
RLPrnt
SnkSet
ClrSnk
AtSpdF
NAtSpd
ADlntD
ADlntN

FsCTm
ClrFsC
FrmFd
LineFd
DoNotP
OkPrnt
Ready
NotRdy

PG

AP-161

Equ OOH
EGU 01H
Equ 02H
EGU 03H
Equ 04H

Equ 05H
Equ 06H

EGU 07H

;Temporary Register DM address
iTime Store Register OM address
JRBO Char Status Reg DM address
)Stpr Mtr Phase Register DM address
}Count Reg. Phase CDunt-Stpr Mtr loops

Accel/Docel Count DM address
iTime constant reg OM address
iLine Count Register OM address

iavailable

RBO Status Byte Bit Definition

Bit

7
6
5
4

3
2
I
o

Definition

Stpr Mtr Direction: L-to-R = 1. R-to-L = 0
1 = Sink I 0 = Not Sinkod. Print Head Init and Fire
Stpr Mtr at speed and CR not loft of Homo
Accel/Decel Init, 1 = Dane I 0 == Not Done

1 = FailSafe / 0 = Constant, Time WindQw
1 = Form Feed / 0 = Line Feed
1 = Do Not Print I 0 = Print
FAccel/DAccel drive Ready = l/NotRdy = 0 (exit

drive & decel stpr mtr)

Bit Masks: RBO
Stepper Motor control bit masks function on GStRl0

Equ
Equ
Equ
Equ
Equ
Equ
Equ
Equ

Equ
Equ
E~u
Equ
Equ
Equ
Equ
Equ

80H
7FH
40H
OBFH
20H
ODFH
10H
OEFH

08H
OF7H
04H
OFBH
02H
OFDH
01H
OFEH

)Loft to Right Printing (ORL)
)Right to Left Printing (ANL)
JReady Print flag
)clear Ready to Print Bit
;Stpr Mtr at constant speed
IStpr Mtr Not at speed
i Aceel/Oeee! lnit Done
JAccel/Docel Init Not Done

iFailSafe/Constant Time
iCIesr FailSafe/Const time flag
ido formfeed
) do line feed
,.otDo Not Print Stat bit
iReset - Ok to Print
iReady drive stpr Mtr
iNot Ready exit Stpr Mtr drive

196 * = 197 Register allocation (cant)
= 198

199
200

*

= 201
202
203

= 204
= 205
= 206

207
208
209
210

TmpRl0
CAdrRI
ChStRI
CDtCRI
CDotRI
CCntRI
StrCRI

= 211 OpnR71
= 212
= 213 J

214

Register Bank 1
Equ RO
EQU Rl
EGU R2
EGU R3
Equ R4
E~u R5
EGU R6

EGU R7

lchar data memory addr register
I char processing status byte register

. ,Char Dot count register
IChar dot temp storage register
IChar count temp register
;Store Char Register

J Available

Register Bank 1 Data Memory Address

6-968 230795-001

inter
0018
0019
OOIA
0011l
OOIC
0010
OOIE

OOIF

0080
007F
0040
OOBF
0020
OOOF
0010
OOEF

0008
00F7
0004
OOFB
0002
OOFO
0001
OOFE

0004

0020
007F

00F3
00F6
00F4
00E5
OOEO
00C8
0000
0020

0081
0082
007F
0042
00C4
OOIB

215 TmpAIO
216 ChARRI

= 217 ChStAd
= 218 COtCAI

219 COotAI
= 220 CCntAI
= 221 StrCAI
= 222

223 OpnA71
224
225

= 226 PG

Equ 24
EQU 25
Equ 26
EQU 27
Equ 28
Equ 29
EQU 30

EQU 31

AP-161

itemporary/scratch register
;char data memory addr register
,RBI Char 8tatus Reg addre.s
IChar Dot count register
IChar dot temp storage register
;Char count temp register
iStore Char Register

J Available

= 227 , --
= 22B RBI 5tatus Byte Bit Definition
= 229 , --

230
231

= 232
233
234

= 235 ,
236 ,

= 237
= 238
= 239
= 240

241
= 242

243
= 244

245
246
247
248
249

= 250
251
252

ChrPrn
ClrCPr
ChlntO
ClntNO
ChOnPI
ChOnP2
TstPrn

253 NrmPrn
254
255
256
257
258
259
260

= 261
262
263
264

= 265

EOF
ClrEOF
CRLF
ClrCR
CBFLn
NCBFLn
IntCBR
ClICIlR

PG

Bit

7
6
5
4

3
2
I
o

Definition

Stpr Mtr Oireotion: L-to-R = I. R-to-L = 0
Char Init, 1 = Done I 0 = Not Done
Char Lookup Tabl. Page: I = PgI. 0 = Pg2
1 = Jest / 0 = Normal char print/input

I = EOF I 0 = Not EOF
Full = l/Not Full = 0, Line in Char Buffer
I CR/(LF) I 0 = Not CR/(LF)
1 = Init I 0 = Do Not Init, CB registers done

Bit Masks: RBI
Character printing bit masks function on ChStRl

Equ 80H
Equ 7FH
Equ 040H
Equ OBFH
Equ 20H
Equ ODFH
Equ 10H
Equ OEFH

Equ 08H
Equ OF7H
Equ 04H
Equ OFBH
Equ 02H
Equ OFDH
Equ OIH
Equ OFEH

j Stpr Mtr Direction: L-to-R = 1
,Stpr Mtr Direotion: R-to-L = 0
;Set Char Init Dane
iReset Char 1nit Not Done
IPage 1 char, set rentry bit (ORL)
j Page 2 char. reset rent,..y bit (ANL)
iChar print test
;Normal char input

,set EOF Flag
,olear EOF flag - Not EOF
,CR/LF
,Clear CR/LF
iFul1 Line in Char Buffer
INot Full Line in Char Buffer
i Init of CB registers done
i Init of eB registers not done

= 266 * = 267
268

= 269
= 270

271
= 272

273
274

= 275
= 276
= 277

278
= 279

280
281

= 282
283

= 284
= 285
= 286
= 287

288
= 289

290
= 291

292
293
294

Equates (cant)
*

Mise
I --
RLPShf ,R-to-L print lookup table addr shift Equ 04H

Asc i i
AscLst

CRCpl
LFCpl
FFCpl
EsoCpl
AsoCpl
FTCpl
CR
Space

LA5End
PAsEnd
AscStp
PgLnCt
PgLCpl
EOFCpl

Equ 20H
Equ 7FH

Equ OF3H
Equ OF6H
Equ OF4H
Equ OE5H
Equ OEOH
Equ OC8H
Equ ODH
Equ 20H

Equ 81H
Equ 82H
Equ 7fH
Equ 66
Equ OC4H
Equ IEH

Loop count values

6-969

ihex nmbr of first Ascii Char
Ihex nmbr of last Ascii Char

iASCII control code 2'5 complement

iAscii code (hex)
iAseii code (hex)

IAscii End 2'5 cpl - test line start
iAseii End 2's cpl - within line print
iAseii mask, strip off MSB
,Page Line Count: Default = 66
iPrinted lines per page test
iEOF ascii code cpI

230795-001

inter
0006
OOOA
0004

0004
0024
OOIB
0018

0001
0042
0003

0080
0030
OOCC
0000
OOCC
OODA
0092
OOCO
0098

OODF
0020
OOEF
0010

OOOC
0003

0040
OOCO

0000
0003
0008

0001
0003
0002
0000

0004
OOOC
0006
0000

- 295 NDtCCt
296 EDtCCt
297 PHCntl
298
299 ILFCnt
300 LPI6p6
301 LPI8p8

= 302 LPIIO
303

= 304 Lin.Ct
305 FmFdCt

= 306 Status
= 307
= 308

309
= 310 PG
= 311

Equ 06H
Equ OAH
EGU 04H

Equ 04
Equ 36
Equ 27
Equ 24

Equ 01
Equ 66.
EGU 03H

AP-161

INormal Dot Column Caunt
1Expanded Dot Column Count
,NUMBER OF SM PHASES ON INIT

; Init LF step/phz count
illnes Per Inch 6.6
'Line. Per Inch 8.8
illne! Per Inch 10

; linefeed count
; lines per formfeed count
; SEE BELOW FOR STATUS BYTE DEF.

TEST: SET FOR CR STPR MTR CONTROL

= 312 , *'* * * * * * * * * * TIMER VALUES - UPI Tlmer/Counte1' is UP Counte1'
c 313 J * = 314 , 12 MHz Clk timings
= 315
= 316
= 317
= 318
= 319
= 320
= 321
= 322
a 323
= 324
= 325
a 326
= 327
= 328
= 329

330
331
332

= 333
= 334
= 335

DLYCL
DLYCS
DlyTim
FailTm
CrTmrl
CrTmr2
CrTm1'3
IntTm2
LFTMRI

,
NotBsv
Busy
Ack
ReSAck

,
StrpLF
StrpCR

= 336 ,
337 ,

= 338 PTRGLO
339 PTRGHI

= 340

EGU
EGU
EGU
EGU
EGU
EGU
EQU
EGU
EGU

80H
30H
256-52
256-256
256-52
256-70
256-110
256-64
256-104

,DELAY COUNT Long
,DELAY COUNT Sh01't
;TIME DELAY constant ~2.0mS
;FallSafe TIME = ~17.0mS
,CR Stpr Mt1' Pha •• TIME =
;CR Stpr Mtr Phas. TIME =
,CR Stpr Mt1' Phase TIME =
,Inlt Stpr Mt1' Phase TIME
;LF Stpr Mtr Phase TIME =

~2.08mS

~2.40mS

~4. 16mS
= ~2.40mS
~4. 16mS

I/O
Equ
Equ
Equ
Equ

port bit
ODFH
20H
OEFH
10H

masks

Misc bit Mask.
Equ OCH
Equ 03H

Print
bit

EGU
EGU

Head 'f11"e5
119 in dot

40H
OCOH

,Not Busy
; Buslj
, Ack

,Strip off all bits but LF Stpr Mtr
;Strip off all bits but CR Stpr Mtr

on low going edge of Trigger
column is masked off, always:

,PH TRIGGER BIT - LOW
,PH TRIGGER BIT - HIGH

P2, bit 6

= 341
342 , * * * * * * * * * • * Stepper Motor Ph a •• State Equat ••
343 J * = 344

Pha •• Shift Inde, Off •• t Offset
iF CR stpr mtr phase data start add,..

= 345
346
347

= 348

FStCRP
RStCRP
STLFF

Stepper
EGU
EGU
Equ

Motor
OOH
03H
08H

,R CR stpr mtr phase data sta1't addr
IPaper feed stpr mt,.. phase data start addr

349
350

= 351 ,
352 CRMFPI
353 CRMFP2
354 CRMFP3

= 355 CRMFP4
= 356
= 357

358
= 359
= 360
= 361
= 362
= 363

LFMFPl
LFMFP2
LFMFP3
LFMFP4

= 364 i PG

CARRIAGE STEPPER MOTOR
Forward (1 th1'u 4) &
EGU 01B
EGU 11B
EGU lOB
EGU OOB

PHASE EGUATES
Reverse (4 th1'u 1) :

,CR STPR MTR PHASE 1
,CR STPR MTR PHASE 2
;CR STPR MTR PHASE 3
;CR STPR MTR PHASE 4

, LINE FEED STEPPER MOTOR PHASE EGUATES
Forward:
EGU 0100B , LF STPR MTR PHASE 1
EGU 1100B , LF STPR MTR PHASE 2
EGU 1000B ,LF STPR MTR PHASE 3
EGU OOOOB , LF STPR MTR PHASE 4

6-970 230795-001

"Int _I® •• 'eII AP-161

0008

OOOC

0006

OOOE

0000

0000 040E

0003
0003 1425
0005 93

0007
0007 1429
0009 C5
OOOA 83

OOOE 15
OOOC 35
0000 E40F
OOOF B42F

0011 B44B
0013 9400

0015 E422

0017 E400
0019 142C

365 * = 366 STEPPER MOTOR SELECT ~ CONTROL [CURRENT LIMITING]
367
368
369

*
PORT BIT ASSIGNMENT:

370
371
372
373
374
375
376 ,
377
378
379
380
381
382
383
384

CODING:

385
386
387
388
389
390
391
392 SCR80
393
394 SCR132
395
396 SLF
397
398 SMOFF
399
400

401 PG

SLF
SCR80
SCR132
SMOFF

EGU

EGU

EGU

EGU

\ \ \
S S S -
L C C
F R R

8 1
0 3

2

5 5 5 5
3 2 1 0

o 1 1 0 06H
1 0 0 0 OAH
1 1 0 0 OCH
1 1 1 0 OEH
W/SCR80 ~ seR132 '0' [BOTH SELECTED)

DEFAULT IS TO 80 COL.
[DO NOT KNOW WHETHER SCR80='0' WILL
SELECT 80 COL ONLY) - REGUIRES TEST.

08H , SELECT
Ui/LF

OCH , SELECT
Ui/LF

06H , SELECT
Ui/CR

OEH , SELECT

CR STPR MTR - 80 COL
STPR MTR OFF
CR STPR MTR - 132 COL
STPR MTR OFF
LF STPR MTR ON
STPR MTR OFF
CR & LF STPR MTR OFF

402 * 403 MAIN PROGRAM BODY
404 I * 405

406 Power On / Reset Program Entry
407
408 ,
409
410
411
412 START:
413
414 ,
415
416 IBFIV:
417
418
419
420 TMRIV:
421
422
423

424
425
426 ReseT:
427
428
429
430
431
432
433

434
435 ,
436
437 Home:
438
439
440 CBInpt:
441
442

PROGRAM START

Org

JMP

INPUT
ORG
Call
RETR
TIMER
ORG
Call
SEL
Ret

Dis
Dis
Call
Call

Call
,Call

Call

Call
Call

OOH

RESET

BUFFER FULL INTERRUPT CALL ENTRY AND VECTOR
03H
IBFIS

OVERFLOW INTERRUPT CALL ENTRY AND VECTOR
07H
TMRIS
REO

INITIAL! ZATION

I
TCnti
InitAI

·ClrDM

InitCR
InitLF

iset all critical Dutputs inactive
,clear all data memory - 93H to 7FH

do not clear RBO. RBI or Stack
,CALL CR SM POWER ON INIT
,CALL LF SM POWER ON INIT

MAIN PROGRAM LOOP
All program segments are called from here

CRHome

Defs 1 t
ESCBfF

6-971

leall Home CR routine -
fixes logical and physical CR Home

iset default register values
,Stat SUiitch I CB Input Service Test
, test far: CB full/fill. LF. FF.

Char Prnt Test

230795-001

0018 3400
OOID 940D
OOIF D5
0020 FA
0021 7215
0023 0419

0025 8A20
0027 15
0028 83

0029 15
002A 35
0028 83

002C D5
002D FA
002E 53EF
0030 AA
0031 C5

0032 OF
0033 123D
0035 3245
0037 5249
0039 725E
0038 042C

003D FA
003E 4304
0040 AA
0041 940D
0043 042C

0045 940D
0047 042C

0049 D5
004A FA
0048 4310
004D AA
004E 8823
0050 FO
0051 0381
0053 9657

0055 8020
0057 FO
0058 AF
0059 10
005A 8439
005C C5
005D 83

443
444
445
446
447
448
449

450

Repeat:

PG

Call
Call
SEL
Mov
,)B3·
,)mp

SMDriv
LFDriv
RBI
A.ChStRI
Home
CBInpt

AP-161

.Call Forward Stpr Mtr Drive

.Call Linefeed Stpr Mtr Drive

;get the Char Status Register RBI
• Jump to CR SM Home if EOF bit •• t
ilo~p to Ch.~ Buf9.~ Input_ test

451 * 452 Interrupt Service Routine
453 * 454
455 • --
456 Input Buffer Full Interrupt Service Routine
457
458
459
460
461
462
463
464
465
466

467
468

.469
470
471
472
473
474
475
476

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

IBFIS:

Acknowledge Char input and set Hold/BusV Active
ORL P2 •• BusV .get & set DBB ACK/BusV Bits
Dis I idisable IBF inte~~upts
Ret

Timer / Counter Interrupt Service Routine
ITF interrupt service routine disables all intr during

stpr mtr phase shifting
TMRIS: Dis I ;disable IBF interrupts

Dis TCntI ,dicable ITF interrupts
Ret

PG
* .* * * External Status Switch Check/Char. BuHn Fill
* ESC8fF: ;Prep for normal character handling/input

SEL
Mov
ANL
Mov
SEL

Test
MovD
')BO
,)81
,)82
')83
,)mp

FormFd: Mov
ORL
Mov
Call
')mp

LinFd: Call
,)mp

RBI
A.ChStRI
A,#NT'mPrn
ChStRI. A
R80

External Status
A.P7
FormFd
LinFd
ChrTst
OnLine
ESC8fF

A.GStR20
A •• FrmFd
GStR20.A
LfDriv
ESC8fF

LfDriv
ESC8fF

;get the character sht reg byte
.I set normal character input
j stare the stat byte

Port
,get the stat switch port bih

service Formfeed
service Linefeed
service Character TEST
service Char Buffer Check/Fill

j Loop

.get the status byte
;set the formfeed stat flag
istore trhe statu. byte
i do a formf.ed

; do a I ina drive

; --
ChrTst: SEL RBI

Mov A.ChStRl 'get the character stat reg bvte
ORL A,#T~tPrn J set character test flag
Mov ChStRI. A • store the stat byte
Mov TmpRIO •• PTAstS iload the psuedo Ascii code tmp reg addr
Mov A.@TmpRIO .get the inc'd ascii code
ADD A •• LAsEnd ; test for code end
,)NZ AscCLd ; if nat code end Jmp to load

, if end re.tart ascii at begining
Mov <!TmpRl0, .. A5cii ; store the ascii code .tart

AstCLd: Mov A. I!TmpRIO . .get the .scii code again
Mov OpnR71.A iplace in the empty register
Inc @TmpRl0 I Inc start ASCII chal" in data memo1"'.!
Call PrnTst i call the OM load pl"ocedu1"e
SEL R80 ;1"eselect'reg bank 0
Ret

6-972 230795-001

005E 05
005F 05
0060 FA
0061 3267
0063 1460
0065 0460
0067 C5
0068 83

0069 05
006A FA
006B 32EC
0060 527C

006F 05
0070 D6EC

0072 FA
0073 127C

0075 4301
0077 AA
0078 B97F
007A BD50

007C ED86
007E FA
007F 4302
0081 53FB
0083 53FE
0085 AA
0086 FA
0087 52EI

0089 9AEF
008B 22
008C 537F
008E A8
008F 8AIO

0091 03EO
0093 F697
0095 049C
0097 97
0098 F8
0099 Al
009A 04E3

009C F8
0090 03F3
009F C6C3
OOAI F8
00A2 031B
OOM 96AA
00A6 F8
00A7 Al
00A8 04B9
OOAA F8
OOAB 03F4
OOAO 96El
OOAF C5
OOBO FA
OOBI 4304
00B3 AA
00B4 05
00B5 FA
00B6 4304

00B8 AA
00B9 FA

520
521
522
523
524
525
526
527
528

529

OnLine:

CBfCkl:

IBfCk:

CBC kE"

PG

SEL
EN
Mav
JBl
Call
Jmp
SEL
Ret

RBI
I
A,ChStRI
CBCkE,
CBFill
CBFCkl
RBO

AP-161

,select cha~ buffer registers
ienable interrupts
,get the Cha~ Stat Byte
J if Chr Buf has full line exit
JTead a char into Char Buffer
; loop to Char Suf Ful test

530 --
~31 Character Input
532 J --
533 Input Buffer Full service routine: test for Char buffer full-exit
534
535 IBFS~v:
536
537

else load char into char buffer
SEL RBI
Mov A,ChStRI Iget the RBO stat byte
JBI CBFull

538 CBFi II: JB2 CBPad
I if Do Not P~int Bit Set - EXIT
itest for CB padding flag

539
540
541
542
543

EN
JNIBF CBFIE,

if not pad enable char input
tell the host to send charls

Acknowledge Char input and set Hold/Busy Active
Mov A,ChStRI Iget the RBI Cha~ Stat Byte
~BO Skplnt itest for CB has been Initialized

all Char handling registers

544
545
546
547
548
549
550
551
552

Init of
ORL A,#IntCBR iset en Reg skip Initialization stat bit

553 CBPad:

Mov
Mov
Mov

554 Skplnt: DJNZ

ChStRl.A isave the altered stat byte
CAdrRl,#FCBfSt iload char reg wlchar bufr strt
CCntRl,#ChBfSz i load char cnt reg wlchar bufr size

I DECREMENT BUFFER SIZE
iget the status byte
iset Char Buffer Full Line stat bit
Iclea~ the CR/ILF) stat bit

Mov
ORL
ANL
ANL
Mov

LdCha~: Mov
JB2

555
556
557
558
559
560
561
562
563
564
565
566
567
568
569 ,
570
571

CCntRI,LdCha~

A,ChStRI
A,tlCBFLn
A,tlCI~C~

A,tlCIICBR
ChStRl,A
A,ChStRI
CBPadl

,reset eB Init bit: init eB reg on entry
istore the status byte

ANL
In
ANL
Mov
ORL

test
ADD
JC

P2,tlAck
A,OBB
A,tlAscStp
TmpRIO,A
P2,tlReSAck

iget the status byte
ICB not full but CR/LF p~.viously

received so pad CB
ioutput DBB Ack low
iread the Char
I st~ip off MSB
i temp save char
loutput DBB ACK High

for ASCII printable character
A,#ASCCpl ;test for Carriage Return
AsciiC ; Jmp to service

572 Jmp
573 A.ciiC: Cl~

Ch~Chk

C
A,TmpRIO
@CAd~RI,A

IBFS~E

iclear carry flag
'get the char back Mav

Mov
Jmp

;load data memory wlChar

test fo~ CR/LF: if CR/LF St~ip off LF and e,it setting
Char Buffe~ Init Stat bit

574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

Ch~Chk: Mov A, TmpRIO I get the cha~ back

589 Ch~Ckl:
590
591
592
593
594
595
596
597
598
599

ADD A,#CRCpl itest for Carriage Return
~Z CRChr ; if CR' go service it
Mov A,TmpRl0 ;get the char back
ADD A,tlEOFCpl .test fo~ End Of File
JNZ Ch~Ckl , if not EOF Jmp to CB Pad
Mov A, TmpR10 ; if EOF, place it in CB
Mov @CAdrRl,A j load data memory wIeR Char
Jmp E,tSet IE,it
Mov A,TmpRl0 iget the status byte
ADD A,#FFCpl itest for FormFeed
JNZ CBPadl I if not FF Pad the CB
SEL RBO
Mov A,GStR20
ORL A,tlF~mFd
Mov GStR20,A
SEL RBI
Mov A,ChStRI
ORL A,tlCRLF

;get the status byte
;set the formfeed flag
istore the status byte

get the status byte
set CRLF stat bit: pad balance of CB

with Spaces until fill
600 Mov
601 ExtSet: t10v

ChStR1.A
A,ChStRI

store the status byte
get the status byte

6-973 230795-001

intel®
OOBA 4302
OOBC 53FB
OODE 53FE
OOCO AA
OOCI 04EC

00C3 FB
00C4 Al
00C5 C5
00C6 IE
00C7 FE
OOCB 03C4

OOCA E6DO
OOCC FA
OOCD 4304
OOCF AA
0000 05
0001 05
0002 9AOF
0004 0604
0006 9AEF
OODB 22

0009 FA
OOOA 4304

OODC AA
0000 BAIO
OOOF 04E3

OOEI 9120

00E3 C9
00E4 FA
00E5 32EC
00E7 52EC

00E9 05
OOEA 9ADF

OOEC B3

0100

0100 3622

0102 FA
0103 539F
0105 53DF
0107 4380
0109 4301
010B 53EF
0100 AA
OIOE 05
OIOF FA
0110 4380
0112 AA
0113 C5

0114 B821
0116 FO
0117 AB

ORL
ANL
ANL
Mov
Jmp

AP-161

A.4ICBFLn
A.4IClrCr
A.4ICIICDR
ChStRI. A
CDFIEx

iset Char Buffer Full Line stat bit
Iclear the CR/(LF) stat bit
Ireset CD Init bit: init CD reg on entry
lstore the status byte
i Ex i t

602
603
604
605
606
607
60B
609
610
611
612
613
614
615
616
617
61B
619
620
621
622

I --
I

CRChr:

NoFmFd:

623 LFTest:
624
625
626
627
62B SetPad:
629
630
631
632
633

Store
Mov
Mov
SEL
INC
Mov
Add

JNC
Moy
ORL
Mov
SEL
En
ANL
JNIBF
ANL
In

Mov
ORL

Mov
ORL
Jmp

CR char read
A.TmpRIO
@CAdrRI. A
RBO
LnCtRO
A.LnCtRO
A.4IPgLCpl

NoFmFd
A.GStR20
A.4IFl'mFd
GStR20.A
RBI
I
P2.INotas~
LFTest
P2.IAck
A.DBB

A.ChStRI
A.ICRLF

ChStRI.A
P2.IReSAck
IBfSI'E

in LF char (assume its always there) and 19no1' it
iget the char back
;load data memory wIeR Char

line the line count
iget the line count
itest for page feed In cnt

if LnCt =~ PgLnCt set formfeed flag
j if not at end of page skip
Iget the status byte
iset the form feed status flag
isave the status byte

ienable the IBF service
ioutput a not busy to Host
I loop to next char
10UtPUt DBB Ack low
iget next Char - assume it's a LF

and ignor it (LF is forced upon
detection of CR at print time)

'get the status byte
Iset CRLF stat bit: pad balance of CD
, with Spaces ~ntil fill
latore the status byte
10UtPUt DBB ACK High
J Jmp to addr step & &xit

634 I --
635 fill Char .Duffer with space
636 CBPadl: Mov @CAdrRI.ISpace, load data memor~ w/Char

637 , --
63B step
639 IDFSrE: DEC
640
64i
642

Mov
JDI
JD2

the char address
CAdrRI
A.ChStRI
CBFul1
CBFIEx

test for CB full &/01' pad
iD.crement dat memory location
,get the status byte
,test for CB Full
Jtest for CB pad - exit w/BulY set

643 I --
644
645
646

Set Busy Line Low - Not Busy
EN I
ANL P2.4INotDs~ Joutput a not busy to Host

647 , --~-----
64B , exit wi BUIY Still set high
649 CBFul1:
650 CBFIEx: Ret
651

652 PG
653 *
654 L-to-R/R-to-L Carriage Stepper Motor Drive
655 and Line Printing
656 J *
657
658
659

ORG 100H

660 SMOriv: JTO RAcc11 I if Print Head at I.ft drivi right
661 else drive left
662 I Faa.a=a= •• a •••••• =_ •••••••••••••••••••• =_ ••••••••• _ •••••••••••••••
663 FAccel: IL-to-R Acceler.te Stepper Motor
664 I Forward accellration/drive Entry status bit.
665 A.GStR20 Iget the Itatus byte
666 A.4IClrSnk, .. t not at speed flag = 0
667 A.4INAtSpd Iset Not At Spe.d flag = 0
668 A.ILRPrnt IS.t L-to-R prnt stat bit·
669 A.4IReady I •• t stpr mtr ready - Drive On
670 A.4IADlntN , •• t AID Init Not Done
671 GStR20.A I.tor. the status byte
672 CBROir: RBI
673 A.ChStRI
674 A.4ILRPrnt
675 ChStRI.A
676 RBO

Iget the Char Stat Reg Data Mem Addr
,Set L-to-.R print bit
,save the Char Stat byte

677
678
679
680
681
6B2

Restore
Mov

the phAse register index addresses
TmpROO.4ICPSAdr ,get Ph, Storage Addr psuedo reg

Mov A.@TmpROO get stored CR last phase index addr
Mov Ph,R30.A ,place I •• t LF phase index addr in Ph,

6-974

Reg

230795-001

0118 lB
0119 FB
011A 521E
011C 2440
OIIE DIlOO
0120 2440

0122 FA
0123 53DF
0125 53DF
0127 537F
0129 4301
012B 53EF
012D AA
012E D5
012F FA
0130 537F
0132 AA
0133 C5

0134 B821
0136 FO
0137 AB

0138 CB
0139 FB
013A 523E
013C 2440
013E BB03

0140 B822
0142 FO
0143 E3
0144 B820
0146 AO

0147 BDBA

0149 2308
014B 3D

014C FD
014D 62
014E FB
014F E3

0150 B820
0152 40
0153 3C
0154 55

0155 740C

0157 FA
0158 F264

015A CB
015B FB
015C 5260
015E 2462
0160 BB03
0162 246C

AP-161

683 Set up for next phase bit output before entering timing loops
684 INC PhzR30 .STEP PHASE DB ADDRESS
685 MOV A.PhzR30 ,CHECK THE PHASE COUNT REG
686 JB2 IAFZrP ,CHK FOR COUNT BIT ROLLOVER
687 JMP SMDflt ,skip adr index reset
688 IAFZrP: MOV PhzR30.#FStCRP ,ZERO CR SM PHASE REGISTER
689 Jmp SMDflt
690
691 • R===
692 RAccel: iR-to-L Accelerate Stepper Motor

693 --
694 Reverse acceleration/drive Entry status bits
695 A.GStR20 'get the status byte
696 A,#ClrSnk icieaT' Print Ready bit
697 A.#NAtSpd ,set Not At Speed flag = 0
698 A,#RLPrnt j set R-to-L prnt status bit
699 A,#Ready jset stpr mtr ready - Drive On
700 A.#ADlntN .set AID Init Not Done
701 GStR20.A .store the status byte
702 RCBRDr: RBI
703 A.ChStRI 'get the Char Stat Reg Data Mem Addr
704 A.#RLPrnt .Set R-to-L print bit
705 ChStRl.A ,save the Char Stat byte
706 RBO
707 • --
708 i Restore the phase register index address
709 Mov TmpROO.#CPSAdr 'get Phz Storage Addr psuedo reg
710 Mov A.@TmpROO get stored CR last phase index addr
711 Mav PhzR3Q,A iplace last LF phase index addr in Phz Reg
712 I Set up for next phase bit output before entering timing loops
713 Dec PhIR30 ,STEP PHASE DB ADDRESS
714 MOV A.PhzR30 ,CHECK THE PHASE COUNT REG
715 JB2 IARZrP ,CHK FOR COUNT BIT ROLLOVER
716 JMP SMDflt
717 IARZrP: MOV PhzR30.#RStCRP ,ZERO CR SM PHASE REGISTER
718
719 SMDflt:
720 --
721 for stablization of unused stpr mtr during CR stpr mtr drive,
722 store the unused stpr mt~ current phase bits
723 Mov TmpROO.#LPSAdr 'get the CR phI storeage addr
724 Mov A.@TmpROO 'get the byute stored there
725 MovP3 A.@A 'get the phI data byte
726 Mov TmpROO.#LastPh, load Last PhI psuedo reg to Temp Reg
727 Mov @TmpROO,A isto~e Last Phase bits - inde~ect

728
729 SetUp Stpr Mtr Time Constant
730 MOV TConRO,#C~Tmr2 ,Load time constant Reg
731
732 Select: ;Select the Stpr Mtr
733 MOV A.*SCR80 ,GET CR SM SELECT BITS
734 MOVD P5.A ,SELECT SM [SCR80J
735 , --
736 Setup Stpr Mt~ Phase Shift index add~ess ~egister
737 Output next phase and init timer to Std Time constant
738 STRTT: MOV A.TConRO 'get time constant from reg
739 MOV T.A 'load the timer
740 MOV A.PhzR30 'get the phI reg indirect addr index
741 MovP3 A.@A ,do indirect get of phI bits
742
743 --
744 patch together the CR last and LF next phase bits
745 Mov TmpROO.*LastPh, load Last Phz psuedo reg to Temp Reg
746 ORL A.@TmpROO 'patch together CR existing & ne~ LF
747 MOVD P4.A ,OUTPUT BITS
748 STRT T • START TIMER
749
750 J At start of timing loop do all Stpr Mtr Accel/Decel o~
751 J Character SetUp overhead
752 Call ADPTst .call Accel/Decel/Print Test
753
754 Set up for next phase bit output before ente~ing timing loops
755 PNRdy1: jtest for forwa~d / reve~se phase sta~t indirect index to load
756 Mov A,GStR20 ;store stat byte
757 JB7 AclF2
758
759 reverse:
760 Set up for next phase bit output before entering timing loops
761 Dec Ph zR30 ,STEP PHASE DB ADDRESS
762 MOV A.PhzR30 ,CHECK THE PHASE COUNT REG
763 JB2 ARZroP ,CHK FOR COUNT BIT ROLLOVER
764 JMP ARNxtP
765 ARZroP: MOV PhzR30.#RStCRP ,ZERO CR SM PHASE REGISTER
766 ARNxtP: Jmp ANxtPh

6-975 230795-001

0164 IB
0165 FB
0166 526A
0168 246C
016A BBOO

016C 1682
016E 5672
0170 246C
0172 00
0173 5677
0175 246C

0177 FA
017B D27C
017A 247E
017C 74CA

017E 1698
OIBO 247E

0182 2300
0lB4 62
0lB5 55

0lB6 FA
0lB7 430B
0lB9 AA
OIBA 5690
OIBC 16AC
OIBE 24BA
0190 00
0191 5695
0193 24BA
0195 65
0196 42
0197 AI

019B FA
0199 F2A7

0198 26AC
019D FA
019E 124C

OIAO 4302
0lA2 53BF
0lA4 AA
0lA5 244C

0lA7 FA
0lA8 124C

OIAA 24AC

OIAC 5437

OIAE FA
OlAF F2B3

767
768
769
770
771
772
773

; forllla"d:
, Set up
Ac IF2: INC

MOV
JB2
JMP

774 AFZroP:
775 ANxtPh:

MOV

AP-161

for next phase
PhzR30
A.PhzR30
AFZroP
ANxtPh
PhzR30.IIFStCRP

bit output be~or. entering timing
,STEP PHASE DB ADDRESS
,CHECK THE PHA8E COUNT REG
,CHK FOR COUNT BIT ROLLOVER
,skip ad,. index rsset
,ZERO CR SM PHASE REGISTER

loops

776 , -----------------------------~---------------------------------
777
778
779 TLOOP2:
780
7BI
782 tCHKI:
783
7B4
785 tTruWI:
7B6 ,
787
78B
7B9
790
791
792
793
794
795

RdyPr2:
PNRdy2:
SkpPHF:
tTruW2:

stage one timer
wait ~or time

loop
out

T occurs before Std timeout

JTF FAILSF
JT1 tCHKI

,JMP ON TIME OUT-t DOES NOT OCCUR 1ST
, IS T HIGH-JMP TO tCHK

JMP TLOOP2
NOP
JT1
JMP

tTruWI
TLOOP2

,LOOP FOR JTI OR JTF
,delay. thon double check T signal
,JUMP T TEST TRUE-WAIT FOR JTF

test ~or Print Ready bit - was Print Head Fire Setup Done?
insert acceleration time/store time count done/notdone ~lag
Mov A.GStR20 ,get the status byte - prop for prnt
JB6 RdyPr2 'if Ready Print bit set call PHFiro
Jmp SkpPHF , els. skip Print He.d Fire
Call PHFir. 'print head solenoid fir. routine

JTF
JMP

NXTPHZ
tTruW2

,JUMP TO SM ERROR
, LOOP TO TLOOP3

bit

796 , ---797 ,
79B ,
799
BOO,
BOI FAILSF:
B02
B03

Step into failsafe/startup tim.r setup - T doe. not
occurs be~or. Std Time timeout. load failsafe SM protection
time and wait for faillaf. timeout or T. If T occurs
output ph ••• immediately after T verify.

MOV A.IIFailTm ,LOAD TIMER W/~15.0mS
MOV T.A , SM PROTECTION TIMEOUT
STRT T ,START TIMER

804 , ---
B05 ,
806
B07
808
809 TLOOP3:
810
811
812 tCHK2:
813
814
815 StrTml:
816
817
818
819
820

set the
Mov
ORL
Mov
JT1
JTF
JMP
NOP
JT1
JMP
Stop
Mov
MOV

Status bit
A.GStR20
A.IIFSCTm
GStR20.A
tCHK2
DSLECT
TLOOP3

StrTml
TLOOP3
TCnt
A.T
(!TStrRO.A

for Store time tnt
'get the status byte
ilat Failsafe/constant time flag
,"tore the statuI byte
, IS THIGH
,IF TIME OUT GO SM ERROR
,LOOP UNTIL T HIGH OR T-OUT
, WAIT
; Jump out and store elapsed time
, JMP TO FAILSF LOOP
,stop the failS.f. Timor
; re.d the timer
JStore the time read in indexed addT'
; - next entry to AID Memorize Time
; routine will add time constant to it

821, Test is CR Stpr Mtr Drive is ~ini.h.d prior to next phase output
822 , --
823 NXTPHZ:
824 test for forward / reverse phase start indirect index to load
825 Mov A.G8tR20 ,.tore stat byte
826 JB7 FDrive
827 ,
828 ,
829

Reverse test fo~ Reve~se Stp~ Mt~ D~ive p~oc.dure exit

830
831
832
833
834
835
836
837

ALWAYS drive the CR to the left most HOME pOSition
JNTO EOLn ,t,"t if home position Jmp stop
Mov A.GStR20 'get the st.tu. byte
JBO StrtT ,test Read~ stat bit:

ORL
ANL
Mov
Jmp

A.IIDoNotP
A.IIClrSnk
GStR20.A
StrtT

i~ bit 0 = 1 then Print More
,.et the do not print flag
iclea~ Print Ready bit

isave the status byte
icontinul CR SM d~ive

- only exit is HR
838 , Forward
839 FDrive:
840 Mov

test fo~ Fo~wa~d Stpr Mt~ Drive procedure exit

A.GStR20 'gat the status byte
841
842
843
844
845 DSLECT:
846 EOLn:

JBO

Jmp

Call

StrtT

EOLn

DeclSM

,test Ready stat bit:
iOP bit 0 l1li I then Print MOT'e
else Jmp to End Of Line exit

, Jump to start timer again

; call Sptr Mtr Deceleration
847 , --
848 test fo~ forward / reverse phase start indirect index to load
849 Mov A.GStR20 ,stOl'l stat byte
850 JB7 FDrvFS 'Jmp to f drive flag set

6-976 230795-001

OIBI 53FD

0lB3 53BF

0185 53DF
0lB7 AA
018B B3

0200

0200 '120C

0202 B'I2F
0204 BCOB
0206 FA
0207 4310
0209 AA
020A 4436

020C EC26

020E FA
020F 4320
0211 AA

0212 3226

0214 D5
0215 FA
0216 4340
021B AA
0219 F21F

021B B'I2F
0210 4421

021F B'IBO

0221 BD51
0223 BBOI
0225 C5

0226 722C

022B FD
0229 Al
022A 4435

022C FI
022D 03CB
022F 6D

0230 Al

0231 FA
0232 53F7

ANL

, update
FD,.vFB: ANL

AP-161

A.410kp,.nt

the status byte
A.IICI,.Bnk

lreset print flag - Ok Print
j only if printing R-to-L

iciear Print Ready bit

B51
852
B53
B54
B55
B56
B57
B5B
B5'1
B60

ANL A.41NAtSpd
lset the Status bit for Store time test
,Clea,. At p,.int Speed Bit

Mov GStR20.A ; save the status byte
RET

861 PG
862 *
863 Stepper Motor Accel, Time Storeage
B64
B65 *
B66
B67

ORG 200H

B6B ADMmTS: JB4 DADInt
Ent,.y has Gen Stat Byte in A

iis AID init done - then Jmp
B6'1
B70 ,
B71
B72
B73
B74
B75
B76
B77
B7B

1st
Mov
Mov
Mov
ORL
Mov
Jmp

Entr~ initializes the AID Time store working registers
TSt,.RO.415MBf5t ,Load the 5tpr Mtr Buf'er Start Addr
CntR40.IASBfSz iLoad the Buffer Size
A.G5tR20 'get the status byte
A,IIADIntD ,set not 1st Accel Entry Flag
GStR20.A ,store the status byte
ADExit lexit - 1st entry has not generated

a closed time window

B7'1 Step the AID Sto,.e count
880 DADlnt: D~NZ CntR40,StorCt Idee Times to store count
BBI
BB2
BB3
BB4
BB5
BB6
BB7
BBB
BB'I
B'IO
B'II
B'I2 ,
B'I3
B'I4
B'I5
B'I6
B'I7
B'IB
B'I'I LdCBR:
900
901
902 LdCBRI:
903
904 LdCBR2:
905
906
907

Mov
ORL
Mov

A.GStR20
A.IIAtSpdF
GStR20.A

i if not 0 store the count
ielse at end-set done flag
iget the status byte
;set at speed/no more to store
;store the status byte

flag

Initialize Char Print Registers: if printing enabled
JBI StO,.Ct ,if Do Not Print stat bit set

Skip the Char register init

Initialize all Char Reg's
Test for L-to-R (forward) or R-to-L (reverse) printing
SEL RBI
Mov A.ChStRI
ORL A.IICHIntD
Mov ChStRI.A
JB7 LdCBRI

Mov CAdrRI.IIRCBfI5
Jmp LdCBR2

Mov CAd,.Rl.IIFCBfI5

Mov CCntRI.IIChBfIS
Mov CDtCR 1.1101
SEL RBO

'gat the status byte
iset Char Init Done flag - bypass
I.ave the status byte
,ta.t Ch,. Stat Byte Retu,.ned

if bit 7 = 1 then Print L-to-R
; load char reg w/char bufr strt R-to-L

I load char rag w/char bufr strt L-to-R

i load char cnt reg w/char bufr size
iset the chr dot column cnt

'lOB Test fo,. t > Tc 0,. t < Tc
909 StO,.Ct: JB3 FailST ,test '0,. 'ailsafe time switch

t < Tc Constant in use ..
910
'III
912
913
914
915
916
917 ,
'lIB
919
920
921 ,
922
923
924
925
926
927
92B
929
930
931
932

Mov
Mov
Jmp

= store Time
A.TConRO
@TSt,.RO.A
ADPRet

iGet time constant currently in use
iMemorize/Store the time - indirect addr

t J Tc = store Time Constant + FailSafe Time Elapsed
rsee Accel/Cnst Speed/Decel WaveFormJ
equation is: Trd - FailSafe Time = Tx

FaiIST: Mov
Add
Add

=> Trd + CplCFailSafe Time) = T,
Tx + Tcnst = T
Store/Memorize T

A.@TSt,.RO
A.IIFTCp 1
A,TConRO

get the stored time
2'5 cpl add
Add: Time stored + Time constant

currently in use
Mov @TStrRO,A Memorize/Store the time
Reset the Status bit for Store time test

Mov
ANL

A.GStR20
A,IIClrFSC

6-977

get tho status byte
reset Failsafe/constant time flag

assumes entry via constant time

230795-001

0234 AA
0235 C9
0236 83

0237 B925
0239 BCOA
023B FB
023C E3

023D B820
023F 40
0240 3C
0241 Fl
0242 62
0243 55
0244 19

0245 FA
0246 F252

0248 CB
0249 FB
024A 524E
024C 445A
024E BB03
0250 445A

0252 lB
0253 FB
0254 5258
0256 445A
0258 BBOO

025A FB
025B E3

025C B820
025E 40
025F 1663
0261 445F
0263 3C
0264 EC41

0266 B821
0268 FB
0269 AO
026A 8478
026C B490
026E 83

0300

AP-161

istore the status byte 933 Mov
934 ADPRet: Dec
935 ADExit: Ret
936

GStR20.A
TSt~RO istep the AID time data store addr

937 PG
938 *' * * * * * * * * *
939 Carriage 5tepper Motor Deceleration
940 j *~* * * * * 941
942 Dec 15M:
943
944
945
946
947
948
949
950
951
952 St~tTD:
953
954
955
956
957
958
959

SetUp the Deceleration registers
110v TSt~RO. tlSMBEnd ,Load the Stp~ Mt~ Buffe~ End Add~

Mov CntR40,#DSBfSz iLoad the Buffer Size
MOV A,PhzR30 iget phase index address
MovP3 A,@A iget phase from indexed address
patch together the CR last and LF next phase bits
Mov TmpROQ,#LastPh iload Last Phz psuedo reg to Temp Reg
ORL A,@TmpROO ipatch together CR existing & new LF
MOVD P4.A ,OUTPUT BITS
MOV Ai@TStrRO iget time from indexed data memory
MOV T,A j load timer
STRT T ,START TIMER
Inc TStrRO istep the Memorized time addr index reg
test for forward reverse phase start indirect index to load
Mov A.GStR20 'sto~e stat byte
JB7 DclF2

960 reverse:
961 Set up
962 Dec
963 MOV
964 JB2
965 JMP
966 DRZ~oP: 110V
967 Jmp
968
969 ; fOT'ward:
970 Set up
971 Dc lF2:
972
973
974
975
976
977
978
979

DZ~oPh :
DNx tPh:
Dc lR2:

Inc
MOV
JB2
JMP
MOV

MOV

fOT"'next phase
PhzR30
A.PhzR30
DRZ~oP

DNxtPh
PhzR30.tlRStCRP
DclR2

for next phase
PhzR30
A.PhzR30
DZroPh
DNx tPh
PhzR30.tlFStCRP

bit output before entering timing
idecrement the phase addT"
;Get the phz data addr
,CHK FOR COUNT BIT ROLLOVER

,ZERO CR SM PHASE REGISTER

bit output before entering timing
j increment the phase addr
iGet the phz data addr
,CHKFOR COUNT BIT ROLLOVER
iskip adr index reset
,ZERO CR SM PHASE REGISTER
i5et up for next phase shift

A,PhzR30 ;get phase index address
A,@A iget phase from indexed address

together the CR last and LF next phase bits

loops

loops

980

MovP3
patch
Mov
ORL
JTF
JMP
MOVD
DJNZ

TmpROO, #LastPh i load Last Phz psuedo reg to Temp Reg
981
982 TLoopD:
983
984 NxtPD2:
985
986
987
988
989 SetRN:
990
991
992 DMExit:
993
994
995
996 PG

A,@TmpROO ipatch together CR existing & new LF
NxtPD2 ,JMP ON TIME OUT TO NEXT PH
TLoopD ,LOOP UNTIL TIME OUT
P4.A ,OUTPUT BITS
CntR40.St~tTD ,Exit Test

Set·Storeage of next phase data in psuedo addT'o This insures
next phase is sequence correct for stpr mtr drive direction
Mov TmpROO,#CPSAdr iget Phz Storeage Addr psuedo reg
MOV A,PhzR30 iget Phz data
Mav @TmpROO,A ;store CR Next phase index 'addr'
Call DlyLng
Call DeS1SM
RET

997 *
998 5tepper Motor Phase 5hift Definitions

All program procedures call this data. 999
1000
1001
1002
1003
1004
1005
1006
1007 ,
1008
1009 ,
1010
1011

*
ORG 300H

DEFINE PHASE ADDRESSES:
THE PHA5E'DATA IS ENCODED TO THE ADDRE5S CALLED DURING THE
5TPR,MTR ENERGIZE SEQUENCE CORRESPONDING TO THE NEXT PHASE
OF THE,SEQUENCE REQUIRED.

CARRAGE MOTOR ENCODING: FORWARD
REVERSE

6-978

LEFT-to-RIGHT
RIGHT-to-LEFT

230795-001

0300 01
0301 03
0302 02
0303 00

0308

0308 04
0309 OC
030A 08
0305 00

030C FA
0300 5211

030F 4400

0311 2668
0313 326A
0315 0215
0317 FA
0318 4340
031A AA
0318 05
031C FA
0310 D23A

031F FI
0320 03F3
0322 C626
0324 6437
0326 FA
0327 F22B

0329 6432

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034

AP-161

Reverse direction ENCODING is t~e same bytes accessed in
reverse direction

DB CRMFPl
DB CRMFP2
DB CRMFP3
DB CRMFP4

*

PG

LF MOTOR PHASE ENCODE & DECODE: FORWARD (CLOCKWISE)
Forward direction ENCODING:

ORG 308H

DB LFMFPl
DB LFMFP2
DB LFMFP3
DB LFMFP4

1035 *
1036 Accel/Decel I Character Handling Test
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048

1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059

* TEST > Is CR Stpr Mtr At Speed ??
Yes - SetUp do Character Processing
No - Calculate / Store the Acceleration Phase Shift Time (11)

ADPTst: Mov
JB5

Jmp

A,GStR20
PHFSet

ADMmTS

iget the status byte
,test if Stpr Mtr At Speed

Jmp to Prnt Head Fire Setup
ielse Call Accel/Decel Memory Time StoTe

* Process Characters for Printing
*

Character dot matrix - normal char
d Dot Column
b = Blank Column

b d d d d d
(Char Matrix)
000 0 b
000 1 d

1060 , 0 0 I 0 d
1061
1062 ,
1063
1064
1065
1066 PHFSet:
1067
1068
1069
1070
1071
1072 SinkSt:
1073
1074
1075
1076

1077 PG
1078
1079
1080
1081 GetChr:
1082
1083 CRChCk:
1084
1085
1086
1087 CRLnCk:
1088
1089
1090

0 0 I I
0 1 0 0
0 I 0 I

JNTO
JEI
JE6
Mov
ORL
Mov
SEL
Mov
JE6

d
d
d

Ret,..n
NPRet
SinkSt
A,GStR20
A,#SnkSet
GStR20,A
RBI
A,ChStRI
PageCk

i if R=O not read~ to print-exit
J if -Do Not Print stat bit set - EXIT
j if bit previously set-skip setting it
;get the status 'byte
;set Prnt Ready Sink bit
isave the status byte

;get char status register addl'
; test Char Init Done, 1 = Print Dot

o ;. Get Char

Call for Individual charactel' pl'ocessing: mid line test if CR/(LF)

test for CR/(LF)
Mov A.@CAdrRI
ADD A,IICRCpl
JZ CrLnCk
Jmp AsciCI
Mov A.ChStRI
JE7 HHLn

Jmp SpFill

if it is the test position in the line
iget ChaT'Bctel'
,test for Carriage Retul'n

'if CR go service it
'if not CR Insert Space Char
iget char status l'egister addr
j test Chr Stat Byte Returned

if bit 7 = 1 then Print L-to-R
j if R-to-L print skip exit upon CR detect

1091 ---~----------~------------~---

6-979 230795-001

inter

0328 FD
032C 0309
032E F632

0330 648A

0332 97
0333 2320
0335 6438

0337 FI
0338 7498

033A FA
033B 8241
0330 F4EB
033F 6443
0341 D4FO

0343 .EB61

0345 FA
0346 53BF
0348 AA
0349 ED 58
0348 53FD
0340 53FE
034F AA

0350 C5
0351 FA
0352 53FE
0354 AA
0355 05
0356 6468

0358 FA
0359 F25E

035B 19
035C 6468
035E C9
035F 6468

0361 FA
0362 F267

0364 CC

0365 6468
0367 IC

1092
1093 HlfLn:
1094

AP-161

if L-to-R printing exit the line if less than 1/2 line p~inted
i load char cnt reg w/chal' bu~r size
iadd the 2'5 cpI of 1/2 thr buf size

Mev AfCCntRl
ADD A.#HlfCpl

1095 JC LnPad
1096

, if CB)1/2 full set CR/LF stat bit for pad
, If CB<1/2 set buffer full stat bit

1097 Jmp MdLnEx J mid-line exit
1098 SpFill:
1099 LnPad: Clr C Jclear carry flag
1100 Moy A,ttSpace j insert a space char
1101 Jmp Chlsrt I char inserted Jmp over get char
1102 I ___ M ________ ----------------

1103
1'104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119

Asc iel: Mov A, @CAdrRl ; get character
ChIsrt: Call GCharl ., call the char lookup/trns table
j --,
PageCk:

FxJmpl:

PG

fetch th e char dot

Moy A.ChStRI
JB5 FxJmpl
Call ChrPg2
Jmp MtxTst
Call ChrPgI

column data
lpage test for balance of char
iget the status byte
ifix Jmp over page boundries
IAseii char 50 - 7F Hex
i Jump to Matrix Test
iAscii cha~ 20 - 4F Hex

fall th~u to p~int matrix
and en count tests

test the Char dot column print matrix count and Char buffer count

1120 MtxTst:
1121

DJNZ CDtCRI.PrntDt itest for dot calor blank
i.tatus byte in A upon entry here
iget the status byte 1122

1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

Moy A.ChStRl
ANL A.IIClntND
Moy ChStRl. A
DJNZ CCntRl,NotLCh
ANL A.#NCBFln
ANL A.#ClICBR
Moy ChStRI.A

SEL RBO
Moy A.GStR20
ANL A,IINotRdy
Moy GStR20.A
SEL RBI
Jmp Ret~n

iset Cha~ lnit NotDane stat Flag
;store the status byte
idec char cnt-Jmp if Not Last Char
J if 0 reset stat bit Not CB Full Line
; reset CB Reg Init Flag - do Init
iSBve the status byte

iget Gen Status register addr
;clesr the ready bit
;store the General Status ~yte

, EXit

Test for L-to-R (forward) or R-to-L (reve~se) p~inting

(see GCha~l ASCII char code translation procedure)
J --
NotLCh: ,A contains LR/RL bit properly set

Mov A,ChStRl iget char status register. addr
JB7 StpCh2 'test Chr stat Byte Returned

if bit 7 = 1 then Print L-to-R
1144 StpCh I: Inc
1145 Jmp
1146 StpCh2: Dec
1147 Jmp
1148

CAdrRl
Retrn
CAdrRl
Retrn

J Increment char data memory ad dr.

;Oecrement char data-memory addr,
fall thru to Get Char

1149
1150
1151
1152

Re-Entry Exit point for same char:
(before returning step the matrix)

1153 , --
1154
1155
1156
1157

Test for L-to-R (forward) Dr R-to-L (reverse) printing
(see GCharl ASCII char code translation procedure)

1158 PrntDt:
1159 PrnDi r: Moy
1160 J87
1161
1162 StpCDI: Dec
1163
1164 Jmp
1165 StpCD2: INC
1166
1167
1168

1169 PG

A.ChStRl
StpCD2

CDotRl

Retrn
CDotRI

6-980

iget char status byte
itest ChI' Stat Byte Returned
, if bit 7 = 1 then Print L-to-R
ireverse step char dot col index

addr if R-to-L print
iskip over L-to-R print addr inc
I forward step char dot col index

addr if L-to-R print
, EXIT

230795-001

0368 C5
0369 83

036A D5
036B FA
036C F27C

036E C5
036F FA
0370 53BF
0372 83

0373 D27C

0375 4340
0377 AA
0378 B807
037A 6488
037C E888
037E FA
037F 53BF
0381 AA
0382 C5
0383 FA
0384 53FE
0386 AA
0387 83
0388 C5
0389 83

038A FA
038B 53FD
038D 53FE
038F AA
0390 C5
0391 FA
0392 4302
0394 53BF
0396 AA
0397 83

0398 AE

0399 03EO
039B F69F
039D 64C9
039F 97
03AO FE

03AI 0380
03A3 F6AE

03A5 FA
03A6 4320
03A8 AA
03A9 FE
03AA 03EO
03AC 64B8

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
'1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252

AP-161

I --
Character PT'int SetUp Ex i t Procedures

--
Clean Standard Exit

--
Retrn: SEL RBO

Ret i EXIT - return wi Reg Bank 0 Reset

Do Not Print ex i t: set Stpr Mtr drive routine count loop
NPRet: SEL RBI

Mov A,ChStRI ; get th e status byte
JB7 SkpNPI ; test print direction

Revel'"se
SEL RBO
Mov A,GStR20 , get the status byte
ANL A,IIClrSnk ; reset the print ready bit- skips PHFire call
Ret

Forward
JB6 SkpNPI ; test for first PHFSet entry reg init
Initialize register variables upon first entl'Y

end of count clears char to print bit in status byte
ORL A,IIChIntD ; set Char Reg Init Done stat bit
Mov ChStRI,A ; save the status byte
Mov TmpR10,1I07H , load CR stpr mtr count during NoPrnt
Jmp NPExit

SkpNPI: DJNZ TmpRIO, NPExit
Mov A,ChStRl , get th e status byte
ANL A,IICIntND ; reset - char init not done
Mov ChStRI,A ; save the status byte
SEL RBO
Mov A,GStR20 ; get Gen status register addr
ANL A,tlNotRdy ;clear th e ready bit
Mov GStR20,A ; store the General Status Byte

NSetEx: Ret
NPExit: SEL RBO

Ret

Mid-Line Exit
--

EXIT if CR and not :> 1/2 line done during L-to-R print
MdLnEx: Mov A, ChStR I i get the status byte

ANL A,IINCBFln ; if 0 reset stat bit Not CB Full Line
ANL A,IIClICBR i reset CB Reg Init Flag - do ·Init
Mov ChStRI, A j save the status byte
SEL RBO
Mov A,GStR20 i get the RBO status byte
ORL A,ttDoNotP ; set the Do Not Print FlagCfor RAccel)

PG

GCHARI:

ANL A,tlClrSnk ; reset
Mov GStR20,A j save
Ret

Character Dot Generator Math
Look-up Table Page Vectoring
Print Head Firing

MOV StrCRI, A

the print ready bit-exit
th e status byte

i STORE THE CHAR

screen for printable char [char +(cpl 20 Hex + I = EO Hex)]
ADD A,1I0EOH
JC PrntCh

FAccel

Jmp
PrntCh: Clr

CntlCh
C

j Jmp to control char lookup table
;clear carry flag

Mov A,StrCRl iget the char again

screen for char page (char +(cpl 50 Hex + 1 = BO Hex»)
if carry char on page 2 else page 1

Pagel:

ADD A,1I080H
JC Page2

Page Character -- ASCII 20 Hex thru 4F Hex
CorT'ect offset foT' lookup table page
{(char + EO Hex)*5 = Page 1 index addr}

Mov A,ChStRI
OrL A,IIChOnPI
Mov ChStRI, A
Mov A,StrCRI
ADD A,IIOEOH
Jmp Multi5

6-981

get the status byte
set the page rentry flag bit
store the status byte
get the char agian
set page 1 relative 00 offset
Jump to address math function

230795-001

"n+_I® -111'e'

03AE 97
03AF FA
03BO 53DF
03B2 AA
03B3 FE
0384 0380
0386 64B8

03B8 AE
0389 E7
038A E7
03B8 6E
03BC AC

03BD FA
038E F2C4

03CO FC
03Cl 0304

03C3 AC

03C4 FA
03C5 4340
03C7 AA
03C8 83

03C9 83

03CA D5
03CB FB
03CC 96D2

03CE 8B06
03DO 64D8
03D2 2340
03D4 3A
03D5 23CO
03D7 3A
03D8 C5
03D9 83

0400

0400 BC04
0402 B822
0404 2308
0406 AO

0407 BEOI

0409 841B

1253
1254 ,
1255
1256
1257

AP-161

Page 2 Character -- ASCII 20 Hex thru 4F Hex
Correct offset for lookup table page two's complement
of ASCII chr code LookUp Table page base char of 50H plus
char * 5 {(char + BO Hex)*5 = Page 2 index addr)

1258 Page2: Clr C
A,ChStRI
A,IIChOnP2
ChStRl, A
A,StrCRI
A,1I0BOH

Jclear carry flag
;get the status byte 1259

1260
1261
1262
1263
1264
1265
1266
1267 MULTI 5:
1268
1269
1270
1271
1272

Mov
AnL
Mov
Mov
ADD
.imp

Compute
r10v
RL
RL
ADD
MOV

Multi5

c:hal"acteT'
StrCR1, A
A
A
A,StrCRI
CDotRl, A

_page

,set the page rentry flag bit
;store the status byte
iget the char sgian
,set page 2 relative 00 offset
'fall thru to address math function

Dffs~t dot pattern index address
lstore the zero offset char
,MULTIPLY CHR 8Y 5 TO

FIND THE ADDRESS
,ADD 1 TO COMPLETE 5X
,SAVE THE ADDRESS

1273
1274 ,

Test for L-to-R (forward) or R-to-L (reverse) printing
(see GCharl ASCII char -code translation procedul'e)

1275
1276 Mov
1277 .iB7
1278
1279 MOV
1280 ADD
1281
1282 MOV
1283
1284 , Set
1285
1286 LRPrn: Mov
1287 ORL
1288
1289

Mav
Ret

the

A,ChStRI
LRPrn

A,CDotRI
A,IIRLPShf

CDatRl, A

status byte

A, ChStRl­
A,IIChIntD
ChStRl, A

far

1290 I test for non printable
1291 CntlCh: Ret
1292

j get char status byte
,test Chr Stat Byte Returned

H bit 7 = 1 then Print L-toR
iget the char index addr
,add char offset - start at
,of chaT', print it R-to-L
,SAVE THE ADDRESS

ChaT'acter SetUp done

'get the status byte
i5et 1st char col test bit
istore the status byte
ireturn w/status byte in A

cha~acte~s goes here

end

= 0

1293 ; * 1294 Print Head Fire
1295
1296 *
1297
1298
1299
1300
1301
1302

Entry point for print head solenoid firing
- test 'faT status byte faT dot/blank column position

PHFire: SEL RBI
Mav A,CDtCRI
.iNZ Fire

1303 SetCnt: Mov
1304 .imp
1305 Fire: MOV
1306 OUTL
1307 MOV
1308 OUTL
1309 Retrnl: SEL
1310
1311

1312 PG

Ret

CDtCRl,IINDtCCt
Retrnl
A,IIPTrgLa
P2,A
A,!lPTrgHi
P2,A
RBO

;set the chr dot column cnt
i if chaT cnt not 0 - Fire Head Sol .
i if Chr Dot Cnt 0, reset the

char dot column
;skip PH Fire
,get the Prnt Head
,FIRE PRINT HEAD

count

Trigger byte

'get the Prnt Head Trigger byte
.FIRE PRINT HEAD

,EXIT - return wI Reg Bank 0 Reset

1313 J * 1314 PaperFeed Stpr Mtr Drive
1315
1316-
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331

*
ORG 400H

Init psuedo registeT with' LF inderect add,. staTt - subseq,uent
exchanges of the psueda Tegister will yield correct value

InitLF: MOV CntR40,IIILFCNT ,INIT PHASE COUNT REG
Mav TmpROO,IILPSAdr 'get Phz Inderect Addr psueda reg
MOV A,#StLFF 'get LF starting addr
Mav @TmpROO,A ;stoTe LF phase index addr start

in psuedo register
Mav LnCtRO,#LineCt iset line count reg faT 1 In

I enables exit following LF SM init
~mp LfDrv1 ; Jump over line/form feed amd variable

line spaCing tests & setups

LineFeed / Fo~mFeed Drive

6-982 230795-001

0408 BCIB

0400 FA
040E 5214
0410 BEOI
0412 8418
0414 FE
0415 37
0416 0301
0418 0342

041A AE

041B B821
0410 FO
041E E3
041F B820
0421 AO

0422 8822
0424 FO
0425 AB
0426 8098

0428 2306
042A 3D

042B FB
042C E3

0420 8820
042F 40

0430 3C

0431 FO
0432 62
0433 55

0434 IB
0435 FB
0436 523A
0438 843C
043A BB08

043C F8
0430 E3

043E B820
0440 40

0441 1645
0443 8441

0445 3C
0446 EC31

0448 BCIB
044A EE31

044C FA
0440 53FB
044F AA

0450 8822

AP-161

load step count constant for standard line spacing

test for various line/inch spacing would go here
(and removal of constant setup below)

MOV CntR40, #LPI8pB j init cnt reg for standard line feed

LineFeed/FormFeed Test
LfOriv: t10v A, GStR20

JB2 FmFd
LnCtLd: Mov LnCtRO,#LineCt

Jmp LfOrvl
FmFd: Mov A,LnCtRO

Cpl A
Add A,IIOI
Add A,IIPgLnCt

Mav LnCtRO,A

;"get the status byte
; if linefeed Jmp to cnt load
;5et line count reg for 1 line
; Jmp to Start of Drive
;get the line count
;2'5 cpl Line Count

iAdd 2'5 cpI 'for Paging
PgLnCt - LnCt = n Lines to move
PgLnCt+CcplCLnCt) = n lines to move

j set the line count for FF

for stablization of unused stpr mtr during CR stpr mtr drive,
store the unused stpr mtr current phase bits

LFDrv1: Mav TmpROO,#CPSAdr iget the CR phz stareage addr
Mav A,@TmpROO iget the byute stared there
MovP3 A,@A 'get the phz data byte
Mev TmpROO,#LastPh i load Last PhI psuedo reg to Temp Reg
Mov @TmpROQ,A istere Last Phase bits - inderect
exchange/store the phase register index addresses
Mav .TmpROQ,#LPSAdr iget Phz Inderect Addr psuedo reg
Mov A,@TmpROO iget LF last phase index addr

1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389

Mov PhzR30,A jplace last LF phase index addr in Phz Reg

StrtLF:
STRLFT:

1390 ZROPHL:
1391

MOV TConRO,#LFTMRI ,Load time constant Reg

Select the Stpr Mtr
MOV A,IISLF ,GET CR SM SELECT BITS

,SELECT SM [SCRBOJ MOVO P5,A

LineFeed / FormFeed Drive Loop

MOV
MovP3
patch
Mov
ORL
start
MOVO

MOV
MOV
STRT
setup
INC
MOV
J82
JMP
MOV

A,PhzR30 iget the phz reg indirect addr index
A,@A j do indirect get of phz bits

together the CR last and LF next phase bits
TmpROO.#LastPh j Ibad Last PhI psuedo reg to Temp Reg
A,@TmpROO ipatch together CR existing & new LF

timer and step mator
P4,A ,OUTPUT BITS

A.TConRO , get time constant from reg
T,A j load the timer
T ,START TIMER

the next phase to output
PhzR30 , STEP PHASE 08 ADDRESS
A,PhzR30 iget th e phase index address
ZROPHL ; test phase
NXTPHL
PhzR30,IISTLFF ; re-init phase register

1392 NXTPHL: MOV
1393 MovP3

patch
Mov
ORL

A,PhzR30 jget the phI reg indirect addr index
A,@A i do indirect get of phz bits

1394
1395
1396
1397
1398 TLoopL: JTF
1399 JMP
1400
1401 NXPHLF: MOVO
1402 OJNZ
1403
1404

together the CR last and LF next phase bits
TmpROO,#LastPh 'load Last Phz psuedo reg to Temp Reg
A.@TmpROQ ipatch together CR existing & new LF

NXPHLF
TLOOPL

P4,A
CntR40,StrLFT

i Jmp on time out to output nxt phz
i loop until timer times out

,step motor - OUTPUT BITS
itest for end of phase count for line
iprep for next line

1405
1406
1407
1408
1409
1410
1411
1412

test for various line/inch spacing would go here

1413 ,

MOV CntR4Q, #LPIBp8 i init cnt reg for standard line feed
O~NZ LnCtRO.StrtLF itest for end of line count

Mov
ANL
Mov

A,GStR20
A,#LineFd
GStR20,A

,Get the status byte
ireset for line feed
,save the status byte

~store the phase register index addresses
Set LineFeed Stpr Mtr Next Phase index address 1414

1415 S@tLRN: Mov TmpROO,IILPSAdr 'get Phz Storage Addr psuedo reg

6-983 230795-001

0452 FB
0453 AO
0454 B478
0456 B490

0458 83

0500

0500 05
0501 FA
0502 53F7
0504 AA
0505 B823
0507 B020
0509 C5

050A FA
050B 53FO
0500 AA
050E 83

050F C5
0510 230F
0512 3E
0513 23FF
0515 39
0516 23CO
0518 3A
0519 8A03
051B BAOO
0510 05
051E BAOO
0520 C5
0521 83

0522 FA
0523 4302
0525 AA
0526 362A

0528 3402
052A 3422

052C B474
052E 83

052F B87F
0531 B950
0533 BOOO

1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428

Mov
Mov
Call
Call

AP-161

A.PhzR30
@TmpROO.A
OlyLng
OeSISM

iget the phase index add~ess
istore LF Next phase index addr

Check if Char Buffer contains full line (80 char or nChar & CR)
exit otherwise continue to read in characters

Mov A.GStR20 'get the stat byte
,JBl ByPa.l , if Do Not Print Bit Set - EXIT
Call CBFck

ByPasl: Ret

PG
1429 j * 1430 Minor Software Subroutines
1431
1432 *
1433
1434
1435
1436
1437
1438 Oefalt:
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454 InitAI:
1455 AllOH:

ORG 500H

System initialization subroutines

reset/set EOF status fl~g bit = 0
SEL RBI
Mov A.ChStRI
ANL' A •• ClrEOF
Mov ChStRI.A
Mov TmpRIO.8PTAscS
Mov @TmpR10,.Ascii
SEL RBO

reset/set Ok-to-Print
Mov A.GStR20
ANL A •• OkPrnt
Mov GStR20.A
RET

;get the char status byte
'clear the EOF flag bit
i.tore the char status byte
iget the Ascii code tmp store addr
;load th. tmp stor reg w/eseii start

status flag bit = 0
iget the status byte
ireset print flag - Ok
isave the status byte

Print

1456 , ---
1457 CLEAR all outputs
1458 SEL RBO
1459 MOV A •• OFH
1460 MOVD P6.A
1461 MOV A •• OFFH
1462 OUTL Pl.A
1463 MOV A •• PTRGHI
1464 OUTL P2.A
1465 ORL P2 •• 03
1466 Mov GStR20 •• 00H
1467 SEL RBI
1468 Mov ChStRl •• 00H
1469 SEL RBO
1470 RET
1471
1472 PG

,FORCE PORT HI - R/ OF 555

,TURN ALL PRNT SOL's OFF

iprint head fire tirgger inactive

,set comm hdsk to ACK hi/Busy hi
iclear the status registers

; RETURN TO INIT. ROUTINE

1473
1474 , * Home Carriage / Print Head Assembly
1475
1476 *
1477 CRHome:
1478
1479
1480
1481
1482
1483 RtoL:
1484
1485
1486
1487

Mov
ORL
Mov
,JTO

Call
Call

Call
Ret

A.GStR20
A •• OoNotP
GStR20.A
RtoL

FAccel
RAccel

DlyVLg

'get the status byte
j set the do' not print flag
I save the status bVte
itest for position of PH assembl~

drive accordingly
;drive CR Stpr Mtr
'find the logical left home CR pOSition
ldelay a long time before continuing

1488
1489 * Clear Data Memory
1490
1491
1492

* * * * ~ *

1493
1494 ClrDM:
1495
1496 ClrDM1:

At PowerUp or Reset, following CR & LF Stpr Mtr Init, this
procedure clears data memory above RBO, Stack and RBt.
MOV RO •• DMTop ;GET.BUFFER START LOCATION CHEXI
MOV Rl •• 0MSIZE
MOV @RO •• OOH ; ZERO MEMORY LOCATION

6-984 230795-001

0535 C8
0536 E933
0538 83

0539 B97F
053B BD50

053D FF
053E Al
053F C9
0540 IF
0541 0382
0543 9647
0545 BF20
0547 ED3D
0549 C5
054A 83

054B BC04
054D 2308
054F 3D
0550 BDCO
0552 BBOO
0554 FB
0555 E3
0556 3C
0557 FD
0558 62
0559 55
055A lB
0553 FB
055C 5260
055E A462
0560 BBOO

0562 FB
0563 E3
0564 1669
0566 A464
0568 3C
0569 EC57

056B B821
056D FB
056E AO
056F B478
0571 B490
0573 83

0574 B87F
0576 A47E

0578 B880
057A A47E

1497
1498
1499
1500

1501 PG

DEC
DJNZ
RET

AP-161

RO
Rl.ClrDMl idee buffer, loop if not zero[end]

,RETURN TO INIT ROUTINE

1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524

* Character Print TEST

*

1525

PrnTst:
TEST

CTInt: Mev

ChTst:
Mev

Mev
Mev
DEC
INC
ADD
JNZ
Mev

ChrTGo: DJNZ
SEL
RET

PG

load the char buffer with successive increments of
the ascii code start. test for end of ascii
printable chars and reinit the char stream loaded.

CAdrRl.41FCBfSt
CCntRl.41ChBfSz

A,opnr71
@CAdrRl.A
CAdrRl
opnr71
A,ttPAsEnd
ChrTGo
OpnR71. "Ascii
CCntRl.ChTst
RBO

j load char reg withal' bufr strt
; load char cnt reg wIthal' burr size
,Test char buffer fill with ASCII Char Code
1get the ascii char
I load data memory wlChar
iDecrement dat memory location
; Increment Ascii char number
itest for ascii code end
• if not end Jmp over code restart

i dec buffer, loop if not zero[endJ

,ELSE RETURN TO INIT ROUTINE

1526
1527 * CR Stpr Mtr Power On Initialization and
1528
1529 * This routine drives the CR or LF stpr mtr for four phase
1530
1531 INITCR:
1532
1533
1534
1535
1536
1537
1538
1539
1540 STRTTR:
1541
1542
1543
1544
1545
1546
1547 ZroRg2:
1548 NxtPhR:
1549
1550
1551 TLoopR:
1552
1553
1554 NXPHR 1:
1555
1556 ,
1557
1558
1559
1560
1561
1562
1563

1564 PG
1565
1566

shifts for initialization.

MOV
MOV
MOVD
MOV
MOV
MOV
MovP3
MOVD
MOV
MOV
STRT
INC
MOV
JJl2
JMP
r10V

MOV
MovP3
JTF
JMP
MOVD
DJNZ

store
Mov
Mov
Mov
Call
Call
RET

CntR40.41PhCntl
A.41SCR80
P5.A
TConRO.41IntTm2
PhzR30.41FStCRP
A.PhzR30
A,;M
P4.A
A.TConRO
T.A
T
PhzR30
A.PhzR30
ZroRg2
Nx tPhR
PhzR30.41FStCRP

A.PhzR30
Ad!A
NXPHRI
TLoopR
P4.A
CntR40.STRTTR

,POWER ON INIT STPR MTR
i load phase cnt reg for INIT
,GET CR SM SELECT ,BITS
,SELECT SM [SCR80]
;Load time constant Reg
• zero 8M phase reg - forward
.get phase index register byte
'load indexed phase shif~ byte
,OUTPUT BITS
,GET TIMER CONSTANT

,START TIMER
;step phase index register
,CHECK THE PHASE COUNT REG

i zero 8M phase reg - forward

iget phase index register byte
J load indexed phase shift byte
,JMP ON TIME OUT TO NEXT PH
,LOOP UNTIL TIME OUT
,OUTPUT Jl ITS

the last phase register index addresses
TmpROO,#CPSAdr ;get Phz Storage Addr psuedo reg
A,PhzR30 ,place last CR phase index addr in
@TmpROO.A store CR last phase index addr
DlyLng
DeSISM

Time" Delay Subroutines
1567 , --
1568
1569
1570
1571
1572

Very Long
DlyVLg: MOV TmpROO.417FH

Jmp DlyST

1573 Long
1574 DlyLng: MOV
1575
1576

Jmp
TmpROO.41DlyCL
DlyST

6-985

,LOAD DELAY COUNT IN REG,

,LOAD DELAY COUNT IN REG,

Phz Reg

230795-001

inter
057C B830

057E 23CC
0580 62
0581 55

0582 1680

0584 05
0585 FA
0586 928A

0588 1469
058A C5
058B A482
0580 E880
058F 83

0590 230E
0592 3D
0593 83

0600

AP-161

; Not So Long - Sho~t
DlySht: MOV TmpROO.~DlyCS ',LOAD DELAY COUNT IN REG.

Start
DlyST: MOV
NxtTLd: MOV

STRT

DlyLop: JTF

Char
SEL

Delay
A. ~Dl yTim
T.A
T

DlyTO

buffer fi 11
REI

,GET MAX TIMER DELAY
,LOAD TIMER
,START TIMER

, LOOP

during time loop:

1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606

Mov
JB4

A.ChStRI
SkpCI

;get the character stat reg b~te
test for normal char input

Call
SkpCI: SEL

JMP
DlyTO: DJNZ

RET

IBFSrv
or skip if char prnt test

;service the char buffer fill
REO,
DlyLOP
TmpROO.NxtTLd idee delay count & test for exit

Stpr Mtr Deselect

Stepper Motor DeSelect
DESLSM:
SMERDR: MOV

MOVD
RET

A.ISMOFF
P5.A

$INCLUDE(:Fl:CHRTBL.OV1)

Routine
,DESELECT LF/CR SM
,GET LF/CR SM DE-SELECT
,DE-SELECT CR SM

BITS

=1607
=1608 * =1609 Character Dot Generator Look-up Table Page 1
=1610
=1611
=1612

*

=1613 Character Table Page 1, contains
=1614
=1615 ,
=1616
=1617
=1618
=1619
=1620
=1621
=1622
=1623

20H --> 4FH

" (sp)!"I$%8<'()*+.-. 10123456789:J<=>?@ABCDEFGHIJKLM "

=1624
=1625
=1626
=1627 $NoList
=1676 $List
=1677
=1678
=1679

DRG 600H

Page 1 Character Dot Pattern Fetch
<<< actual assembled character table code not listed

Listing below is for reference only, actual code is not listed
at assembly time.

=1680 J ---
=1681
=1682
=1683
=1684
=1685
=1686
=1687
=1688
=1689 J
=1690
=1691
=1692
=1693
=1694
=1695 J
=1696 J
=1697 J
=1698
=1699
=1700
=1701
=1702 J
=1703 J
=1704
=1705 J

asc20:
asc21 :
85C22:
asc23:
a5c24:
85C25:
asc26:
a5c27:
a5c28:
851:29:
asc2A:
asc2B:
asc2C:
asc2D:
asc2E:
asc2F:
asc30:
asc31 :
asc32:
asc33:
asc34:
asc35:
asc36:
asc37:
asc38:

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DE
DB
DE
DB
DE
DE
DE
DB
DE
DB
DB
DB
DE
DB
DB

7FH, 7FH,
7FH, 7FH,
7FH, 7FH,
6BH. OOH,
5BH, 55H,
5CH, 6CH,
19H, 26H,
7FH, 7FH.
63H, 5DH,
7FH, 7FH.
5DH, 6BH.
77H, 77H,
7FH, 3FH.
77H. 77H.
7FH, lFH.
5FH, 6FH,
41H, 2EH,
7FH, 3DH,
3DH, lEH,
5DH, 3EH,
67H. 6BH,
58H, 3AH,
43H, 35H,
7EH. OEH,
49H, 36H,

6-986

7FH, 7FH, 7FH , SPACE
20H~ 7FH, 7FH j!
78H, 7FH. 78H J"
6BH, DOH, 6BH ,I
OOH, 55H, 6DH ,$
77H, lBH, lDH ,%
26H, 59H. 2FH ,I!c
7CH, 7FH, 7FH
3EH, 7FH, 7FH , (
3EH, 5DH, 63H ,)
OOH, 6EH, 5DH ,*
41H, 77H, 77H ,+
4FH, 7FH, 7FH , .
77H. 77H. 77H , -
lFH, 7FH, 7FH ,.
77H. 7BH. 7DH , I
36H. 3AH. 41H ,0
OOH, 3FH, 7FH , 1
2EH, 36H. 39H ,2
36H, 36H. 49H J 3
6DH, OOH, 6FH ,4
3AH, 3AH, 46H ,5
36H, 36H, 4EH ,6
76H, 7AH, 7CH ,7
36H, 36H, 49H ,8

230795-001

inter

06FO FC
06Fl A3

06F2 4380
06F4 39
06F5 83

0700

=1706
=1707
=1708
=1709
=1710
=1711
=1712
=1713
=1714
=1715
=1716
=1717
=1718
=1719
=1720
=1721
=1722
=1723
=1724
=1723
=1726
=1727
=1728
=1729
=1730
=1731
=1732
=1733
=1734

=1735
=1736
=1737
=1738
=1739
=1740
=1741
=1742
=1743
=1744
=1745
=1746
=1747
=1748
=1749
=1750
=1751
=1752

=1753
=1754
=1755

=1756
=1757
=1758
=1759
=1760
=1761
=1762
=1763
=1764
=1765
=1766

=1767
=1768
=1769
=1770
=1818
=1819
=1820
=1821
=1822
=1823
=1824
=1825
=1826
=1827
=1828
=1829
=1830
=1831
=1832

AP-161

asc39: DB 39H. 36H. 36H. 56H. 61H 19
asc3A: DB 7FH. 7FH. 6BH. 7FH. 7FH ; :
asc3B: DB 7FH. 3FH. 4BH. 7FH. 7FH ;;
asc3C: DB 77H. 6BH. 5DH. 3EH. 7FH I(
asc3D: DB 6BH. 6BH. 6BH. 6BH. 6BH ; =
asc'3E: DB 7FH. 3EH. 5DH. 6BH. 77H I>
asc3F: DB 79H. 7EH. 26H. 7AH. 7DH ;1
asc40: DB 41H. 3EH. 22H. 36H. 71H I@
asc41 : DB 03H. 6DH. 6EH. 6DH. 03H I A
asc42: DB OOH. 36H. 36H. 36H. 49H IB
asc43: DB 41H. 3EH. 3EH. 3EH. 5DH I C
asc44: DB OOH. 3EH. 3EH. 5DH. 63H 10
asc45: DB OOH. 36H. 36H. 36H. 36H IE
asc46: DB OOH. 76H. 76H. 76H. 76H IF
asc47: DB 41H. 3EH. 3EH. 2EH. ODH I G
asc48: DB OOH. 77H. 77H. 77H. OOH ,H
asc49: DB 7FH. 3EH. OOH. 3EH. 7FH I I
asc4A: DB 5FH. 3FH. 3FH. 3FH. 40H 'v

I asc4B: DB OOH. 77H. 6BH. 5DH, 3EH IK
asc4C: DB OOH. 3FH. 3FH. 3FH. 3FH I L
asc4D: DB OOH. 7DH. 73H. 7DH. OOH , M
asc4E: DB OaaH, OdfH. OefH, Of7H. OaaH J test
asc4F: DB 55H. OdfH. OefH. Of7H. 55H ; test
asc4E: DB OOH. 7BH. 77H. 6FH. OOH ,N
asc4F: DB 41H. 3EH. 3EH. 3EH. 41H ,0

End Page 1 Character Dot Pattern Fetch

Character Dot Pattern Fetch

ChrPgl: MOV
MOVP

A.CDotRl
A.@A

;'get char index address offset
iget column dot patern byte

this bit fix necessary to "not underline each character
this saves fixing each bit in the look up table

ORL
OutL
RET

A.tl80H
Pl. A

END Page 1

;char bit fix
ioutput the dot pattern
iexit with byte in acc

Character Dot Pattern Fetch

PAGE 2 -- Character Dot Generator Look-Up Table

Character Table Page 2, contains
50H --> 7EH

" NOPGRSTUVWXYZ[\lA_C?)abcdefghiJklmnopqrstuvwxyz{I}·

SNoLIST
SList

asc50
asc51
asc52
asc53
asc54
asc55
asc56
asc57
asc58
asc59

ORG 700H

Page 2 Character Dot Pattern Fetch
«< Actual assembled character table code not listed »>

Listing belo~ is for reference only, actual code is not listed
at assembly time.

DB OOH. 76H. 76H. 76H. 79H P
DB 41H. 3EH. 2EH. 5EH. 21H G
DB OOH. 76H. 66H. 56H. 39H R
DB 59H. 36H. 36H. 36H. 4DH 5
DB 7EH. 7EH. OOH. 7EH. 7EH T
DB 40H. 3FH. 3FH. 3FH. 40H U
DB 60H. 5FH. 3FH. 5FH. 60H V
DB OOH. 5FH. 67H. 5FH. OOH W
DB lCH. 6BH. 77H. 6BH. lCH X
DB 7CH. 7BH. 07H. 7BH. 7CH Y

6-987 230795-001

07EB FC
07EC A3

07ED 4380
07EF 39
07FO 83

=1833
=1834
=1835
=1836
=1837
=1838
=1839
=1840
=1841
=1842
=1843
=1844
=1845
=1846
=1847 ,
=1848
=1849
=1850
=1851
=1852
=1853
=1854
=1855
=1856
=1857
=1858
=1859
=1860
=1861
=1862
=1863
=1864
=1865
=1866
=1867
=1868
=1869
=1870
=1871

=1872

AP-161

8sc5A: DB IEH. 2EH. 36H. 3AH. 3CH , Z
asc5B: DB OOH. 3EH. 3EH. 3EH. 7FH , [
asc5C: DB 7DH. 7BH. 77H. 6FH. 5FH , \
ase 50: DB 7FH. 3EH. 3EH. 3EH. OOH ,]
asc5E: DB 6FH. 77H. 7BH. 77H. 6FH ,A
ase SF: DB 3FH. 3FH. 3FH. 3FH. 3FH
a5e60: DB 7DH. 7BH. 77H. OFFH. OFFH , \
Bsc61 : DB ODFH. OABH. OABH. OABH. 087H , a
a5c62: DB 080H. OB7H. OB7H. OB7H. OCFH , b
a5c63: DB OC7H. OBBH. OBBH. OBBH. OBBH , c
a5c64: DB OCFH. OB7H. OB7H. OB7H. 080H , d
a5c65: DB OC7H. OABH. OABH. OABH. OB7H , .
85C66: DB OF7H. 081H. OF6H. OFEH. OFDH , f
85C67: DB OF7H. OABH. OABH. OABH. OC3H , 9
a.c68: DB 080H. OF7H. OFBH. OFBH. 087H , h
asc:69: DB OFFH. OBFH. 08BH. OBFH. OFFH ; i
asc6A: DB ODFH. OBFH. OBBH. OC2H. OFFH , J
asc6B: DB OFFH. 080H. OEFH. OD7H. OBBH , k
Bsebe: DB OFFH. OBEH. 080H. OBFH. OFFH , 1
asc6D: DB 087H. OFBH. OE7H. OFBH. 087H , m
BsebE: DB 083H. OF7H. OFBH. OFBH. 087H , n
asc6F: DB· OC7H. OBBH. OBBH. OBBH. OC7H , °
85C70: DB 084H. OEBH. OEBH. OEBH. OF7H , P
Bsc71 : DB OF7H. OEBH. OEBH. OEBH. 084H , q
85C72: DB OFFH. 083H. OF7H. OFBH. OFBH '" 85C73: DB OB7H. OABH. OABH. OABH; ODBH , .
a5c74: DB OFBH. OCIH. OBBH. ODFH. OFFH , t
85C75: DB OC3H. OBFH. OBFH. OBFH. OC3H , u
85c76: DB OE3H. ODFH. OBFH. ODFH. OE3H 'v
asc77: DB OC3H. OBFH. OCFH. OBFH. OC3H , ..
a5c78: DB OBBH. OC7H. OEFH. OC7H. OBBH , x
85C79: DII OFFH. OB3H. OAFH. OAFH. OC3H , Y
asc7A: DB OBBH. 09BH. OABH. OB3H. OBBH , z
ASC7B: DB 07FH. 0'77H. 049H. 03EH. 03EH , {
ASC7C: DB OFFH. OFFH. 088H. OFFH. OFFH ,I
ASC7D: DB 03EH. 03EH. 009H. 077H. 07FH , }
ASC7E: DB 067H. 07BH. 067H. 05FH. 067H , ~

--
Chal'act~l' Dot Patt~l'n F~tch

---1873
=1874
=1875
=1876
=1877
=1878
=1879
=1880

·=1881
=1882
=1883

Ch"Pg2: MOV
MOVP

A.CDotRI
A.@A

iget char index add~ess offset
Jget co'lumn dot patern byte

1884
1885
1886
1887

lSSS

this bit fix necessary to not underline each character
this saves fixing each bit in the look up table

ORL
OutL
RET

A.lI80H
PI. A

ichar bit fix
,output the dot patte"n
iexit with byte in ace

* Program End
1889 *
1890
1891 END

ASSEMBLY COMPLETE. NO ERRORS

6-988 230795-001

inter AP-161

APPENDIX B.
SOFTWARE PRINTER
ENHANCEMENTS

This section describes several software enhancements
which could be implemented as additions to the soft­
ware developed for this Application Note. Space is
available for most of the items described. Approxi­
mately 5 bytes of Data Memory would be required to
implement most of the features. Two bytes would be
used for status flags, and two bytes for temporary data
or count storage. It is possible to use less than five bytes,
but this would require the duplicate use of some flags,
or other Data Memory storage, which will significantly
complicate the software coding and debug tasks.

Special Characters or Symbols

Dot matrix printing lends itself well to the creation of
custom characters and symbols. There are two aspects
to implementing special .characters. First, a character
look-up table, and second, additional software for dec
oding and processing the special characters or symbols.
Special characters might be scientific notation, mathe­
matical symbols, unique language characters, or block
and line graphics characters.

The character look-up table could be an additional
page of Program Memory dedicated to the special
characters, or replace part, or all, of the existing look­
up tables. If an additional look-up table is used, a third
page test would be needed at the beginning of the Char­
acter Translation subroutine. There is fundamentillly
no difference between the processing of special charac­
ters and standard ASCII printable characters. If the
characters require the same 5 x 7 dot matrix, the bal­
ance of the software would remain the same. If, how­
ever, the special characters require a different matrix, or
the manipUlation of the matrix, the software becomes
more complex.

In general, the major software modification required to
implement special characters is the size of the dot
matrix printed or the dot matrix configuration used. In
the case of scientific characters, it would often be
necessary to shift the 5 x 7 matrix pattern within the
available 9 x 9 matrix. Block orline graphics characters,
on-the-other-hand, would require using the entire 9 x 9
print head matrix and printing during normally blank
dot columns. This would require suspending the blank
column blanking mechanism implemented in this Appli­
cation Note. This would be the most complex aspect of
implementing special characters. It would possibly
change the number of required instructions, and thus
the timing between PTS detection and print head
solenoid trigger firing. This could cause the dot colunms
to be misaligned within a printed line and between lines.

In the case of a matrix change, two approaches are
possible: dynamically changing the matrix, in line, as

standard ASCII characters are being printed, or
isolating the special characters to a separate processing
flow where special characters are handled as a unique
and complete line of characters only. A discussion of in
line matrix changes for special characters is beyond the
scope of this Appendix. It is sufficient to say that the
changes would require the conditions setting the EOLN
flag, character count, and dot column count software be
modified during character processing and printing.

Lower Case Descenders

The general principle of implementing lower case des­
cenders is to shift the 5 x 7 character dot matrix within
the available 9 x 9 print head solenoid matrix. Imple­
menting lower case descenders requires two software
modifications and the creation of status flag for the
purpose. First, the detection of characters needing des­
cenders and setting a dedicated status flag during the
character code to dot pattern translation subroutine.
Second, the character dot column iJata output to the
print head solenoids must be shifted for each dot
column of the character. At the end of the character, the
flag would be reset.

Inline Control Codes
Inline control codes are two to three character sequen­
ces, which indicate special hardware conditions or
software flow control and branching. The first charac­
ter indicates that the control code sequence is beginning
and is typically an ASCII Escape character (ESC),
I BH. Termination of the inline code sequence would be
indicated by a default number of code sequence charac­
ters. This would decrease the buffer size available for
characters. Full 80 character line buffering would
require loading the Character Buffer with a received
character as a character is removed from it and
processed.

The Inline Control Code test would be performed in
two places: in the Character Buffer Fill subroutine and
in the Character Processing (translation) subroutine.
The test would be performed in the same manner that a
Carriage Return (CR) character code test is imple­
mented. Examples are horizontal tabs and expanded or
condensed character, fonts. In the case of horizontal
tabs, 20H (Space Character) would have to be placed in
the Character Buffer for inline processing during char­
acter processing and printing. Unless fixed position
tabs are used, a minimum of a nibble of Data Memory
would be required to maintain a "spaees-to-tab" count.
Fixed tab positions could be set via another inline
control code, by default of the printer software, or
through the use of external hardware switch settings.
The control code method of setting the tab positions is
the most desireable, but the most complex to implement.

Different Character Formats

Figure Bl illustrates three different character fonts;
standard, condensed, and enlarged or expanded'char­
acters. As the the figure illustrates, condensed and

6-989 230795-00t

AP-161

enlarged characters are variations in either the number
of dots and/ or the space used to print them. Th us, each
character is a variation of the stepper motor and/ or
print head solenoid trigger timings. Figure B2 illus­
trates the timings required to implement the additional
character printing.

In addition to the three character fonts shown, it is
possible to print each in bold face by printing each dot
twice per dot column position. This would require little
software modification, but would require a status flag.
Again, care must be used to ensure that the delay in
retriggering th-.,solenoids is precisely the same for each
type of event. Without this precise timing the dot
column alignment will not be accurate. The software
modifications needed to implement enlarged or con­
densed characters is essentially the same. The carriage
and print head solenoid firing software flow is the same,
but the timing for each changes. For condensed charac­
ters, the step Time Constant is doubled to approxi­
mately 4.08 ms, and the solenoids are fired four times
within each step time. The step rate actually becomes a
multiple of the solenoid firing time, and a counter
incrementing once for each solenoid firing would be
needed. At the count offour, the carriage stepper motor
is stepped and the counter reset.

In the case of condensed characters, PTS does not play
the same roll as in standard or enlarged character print­
ing. PTS is not used to indicate the optimum print head
solenoid firing time. Solenoid firing is purely a time
function for condensed characters. PTS would only be
used for Failsafe protection.

Enlarged characters would require the solenoids be
fired twice per dot column data, in two sequential dot
columns, at the same rate as standard characters. The
character dot column data and dot column count would
not be incremented at each output but at every other
output. A flag could be used for this purpose.

When printing either condensed or enlarged characters,
the maximum character count would have to compen­
sate for the increased or decreased characters per line
count. When printing enlarged characters, the maxi-

mum characters per line would be 40. The Character
Buffer could hold two complete lines of characters. But,
condensed characters presents a quite different situa­
tion. The available character per line increases to 132,
well beyond the 80 character Character Buffer size. The
solution is to re-initialize the Character Buffer Size
Count register count during condensed character pro­
cessing. This will effectively inhibit the carriage stepper
motor drive EOLN detection.

Two status flags would be required; one for standard or
enlarged characters, and the second for condensed
characters. A third status flag would be required to
implement bold face printing. Activating one of the
alternate character fonts could be either through the use
of external status switches or through inline control
code sequences, as detailed above. Note, that if the
alternate character fonts are implemented in such a way
that format changing is to occur dynamically during
any single line being printed, the same control code
problems described above also apply. In addition, the
effect on the timing and dot column alignment must
also be investigated.

Variable Line Spacing

Variable line spacing is another feature which could be
implemented either through the use of external status
switches or inline control codes. The line spacing is a
function of the number of steps the stepper motor
rotates for a given line. Figure 15, Paper Feed Stepper
Motor Predetermined Time Constants, in the Back­
ground section above, lists the Time Constants required
for three different line spacings; 6, 8, and 10 lines per
inch. At the beginning of the Paper Feed Stepper
Motor Drive subroutine, the default line step count is
loaded. The software required is a conditional load for
the line spacing, indicated by a status flag set in the
External Status Switch Check subroutine or the Char­
acter Buffer Fill subroutine. Implementing the three
different line spacings would require two additional
status flags.

6-990 230795-001

AP-161

APPENDIX C.
PRINTER MECHANISM
DRIVE CIRCUIT

PRINT PULSE 1
500 ± 20115

PRINT PULSE 9 I

TRIGGER PULSE
200115 OR LESS

RESET PULSE

PARTS NO.

IC1-IC10

IC11

D1-D9

01-09

010

011

R1-R9

R10

R11

R12

R13

VR1

C1

C2

C3

C4

C5

ZD1

ZD2

SOLENOID 1

~~--~--~~~4

SOLENOID 9

24V~10%

....... r--;::::::i;::::::;---'-1:=:;--,--<j> 5V~5%
C4

Recommended Solenoid Drive Circuit

TYPE MAKER

SN7406 TI

(.JA555 Fairchild

DIODE S5277B Toshiba

TRANSISTOR 2SD986 NEC

TRANSISTOR 2SA1015 Toshiba

TRANSISTOR 2SD633 Toshiba

RESISTOR 1.2kn \4

RESISTOR 22n \4

RESISTOR 580n 2

RESISTOR 15kn \4
Carbon fil=

RESISTOR 1.2kn \4

VARIABLE RESISTOR 20kn \4

CAPACITOR 1(.JF 100V

CAPACITOR 0.01(.JF

CAPACITOR 0.001(.JF

CAPACITOR 10(.JF 16V

CAPACITOR 0.1(.JF fil=

ZENOR DIODE HZ24 . Hitachi

ZENOR DIODE HZ5C1 Hitachi

6-991 230795-001

AP-161

Recommended Carriage Motor Drive Circuit

HOLD SIGNAL DRIVE SIGNAL
A

5V±5%~----~-----+---t------r---'-----~--~----~~-,

R6

R9

R8 PHASE A (RED) (GREEN) 0 (YELLOW) (GREEN)
24V±10%
INCASE OF Tc=4.16ms
(CONDENSED CHARACTER
PRINTING), V=14±20%

r-- ----- -..,
B (WHITE) I

@ I
PULSE MOTOR I

~--

PARTS NO. TYPE MAKER
R1 Resistor 1kn±10% v.

R2-R5 Resistor 220n±10% v.
R6 Resistor 10kn±10% v.
R7 Resistor 470n±10% 3

R8 Resistor 130n±10% 7

R9 Resistor 330n±10%'3

01 Transistor 28C1815 Toshiba

02-05 Transistor 28D526-Y Toshiba

06 Transistor 288669 Matsushita

01-04 Diode 18954 NEC

6-992

QTY

1

4

1

1

1

1

1

4

1

4

230795-001

AP-161

Recommended Paper Feed Motor Drive Circuit

HOLD SIGNAL DRIVE SIGNAL

5Vo:5% ---..... ---+-...... ---1---.---+-_----11---.

R8 PHASE

r--
I
I
I
I
I
I

R9

A (RED) (GREEN) C (BLUE)

B (WHITE)

(GREEN) 0 (YELLOW) --..,

I
I
I
I
I
I
I
I
I l _____________________________ y~~!~~~T2!_ __ _

PARTS NO. TYPE MAKER QTY
R1 Resistor 1kO±10% V. 1

R2-R5 Resistor 2200±10% V. 4

R6 Resistor 10kO±'10% V. 1

R7 Resistor 4700±10% 3 1

R8 Resistor 1300±10% 7 1

R9 Resistor 3300±10% 3 1

01 Transistor 28C1815 Toshiba 1

02-05 Transistor 28D526-Y Toshiba 4

06 Transistor 28B669. Matsushita 1

D1-D4 Diode 18954 NEC 4

6-993 230795-001

Hl

H2

H3

H4

H5

H6

H7

H8

H9

FP

5550

HEAD TRIGGER

CR A

-

CR B_

CR C

CR D

80_

140

32

LF A_

FB_

LF C_

FD_

S LF
24

G P

3.3K 'f

AP-161

9 x 3.3K

~

~
~ ~

02

~ - ~
~

~ ~
~

~

~
~ l:i±:::t

06 J'o .vt.

~ ~ ..::.
--C:

-....QZ.. ~
...J. ·06
~

~ ,-.Q2.. LW

6 TO
2W

GN~ 680

*~~16V
L2r'cmovCc 152057K

o 555
20K 15K

100 2
T VTH

~ J . O.D1" .1 D15
R V, T 1000p

.5 t 1 0.1"

1.2K
Dl0 ~

I
r""'"'

1.2K.J::::::::' all ~'
1.2K~ 012 e l

~
1.2K r"'"' 013 --

2W -820
12K,t ~5a~\'Li

-.1
2W 1;,'6KI~ ~ 620

~i 014 O.O~II 1.2K r"""'
1.2K.J:'"""": 015 ~I
1.2Kr"'"' 016 ~I

!..N.. ~
~ 017 ----

2W

RY ~'''i 620

6-9.94

1

1

120SW

1205W~

Hl (U)

H2

H3

H4

H5

H6

H

H

H 9 (L)

S OL

CRA

CRB

CRC

CRD

SCA

LFA

LFB

LFC

LFD

SLF

230795-001

APPLICATION
NOTES

6-995

AP-90

May 1980

231314-001

APPLICATIONS

INTRODUCTION

The microcomputer system designer requiring a
low-cost, non-volatile storage medium has a difficult
choice. His options have been either relatively
expensive, as with floppy discs and bubble memories,
or non-transportable, like battery backed-up RAMs.
The full-sized digital cassette option was open but
many times it too was too expensive for the applica­
tion. Filling this void of low-cost storage is the
recently developed digital mini-cassette. These
mini-cassettes are similar to, but not compatible
with, diCtation cassettes. The mini-cassette trans­
ports are inexpensive (well under $100 in qmmtity),
small (less than 25 cu. in.), low-power (one watt),
and their storage capacity is a respectable 200K
bytes of unformatted data on a 100-foot tape. These
characteristics make the mini-cassette perfect for
applications ranging from remote datalogging to
program storage for hobbyist systems.

The only problem associated with mini-cassette
drives is controlling them. While these drives are
relatively easy to interface to a microcomputer
system, via a parallel I/O port, they can quickly
overburden a CPU if other concurrent or critical
real-time I/O is required. The cleanest and probably

the least expensive solution in terms of development
cost is to use a dedicated single-chip controller.
However, a quick search through the literature
turns up no controllers compatible with these new
transports. What to do? Enter the UPI-41A family
of Universal Peripheral Interfaces.

The UPI-41A family is a group of two user­
programmable slave microcomputers plus a com­
panion I/O expander. The 8741A is the "flag-chip"
of the line. It is a complete microcomputer with
1024 bytes of EPROM program memory, 64 bytes of
RAM data memory, 16 individually programmable
I/O lines, an 8-bit event counter and timer, and a
complete slave peripheral interface with two inter­
rupts and Direct Memory Access (DMA) control.
The 8041A is the masked ROM, pin compatible
version of the 8741A. Figure 2 shows a block
diagram common to both parts. The 8243 I/O port
expander completes the family. Each 8243 provides
16 programmable I/O lines.

Using the UPI concept, the designer can develop a
custom peripheral control processor for his par­
ticular I/O problem. The designer simply develops
his peripheral control algorithm using the UPI-41A
assembly language and programs the EPROM of

Figure 1. Comparison of Mini-Cassette and Floppy Disk Transports and Media.

6-996 231314-001

APPLICATIONS

SVSTEMBUS PERIPHERAL BUS

Figure 2. 8741A/8041A Block Diagram

the 8741A. Voila! He has a single-chip dedicated
controller. Testing may be accomplished using
either an ICE-41A or the Single-step mode of the
8741A. UPI-41A peripheral interfaces are being
used to control printers, keyboards, displays, custom
serial interfaces, and data encryption units. Of
course, the UPI family is perfect for developing a
dedicated controller for digital mini-cassette tran­
sports. To illustrate this application for the UPI
family let's consider the job of controlling the
Braemar CM-600 Mini-Dek®.

THE CM-600 MINI-DEK*

The Braemar CM-600 is representative of digital
mini-cassette transports. It is a single-head, single­
motor transport whiah operates entirely from a
single 5-volt power supply. Its power requirements,
including the motor, are 200ma for read or write
and 700ma for rewind. Tapes speeds are 3 inches
per second (IPS) during .read or write, 5 IPS fast
forward, and 15 IPS rewind. With these speeds and
a maximum recording density of 800 bits per inch
(BPI), the maximum data rate is 2400 bits per
second (BAUD). The data capacity using both sides
of a 100-foot tape is 200K bytes. On top of this,

the transport occupies only 22.5 cubic inches
(3 I x3 I x2.5").

All I/O for the CM-600 is TTL-compatible and can
be divided into three groups: motor control, data
control, and cassette status. The motor group con­
trols are GO/STOP, FAST/SLOW, and FORWARD/
REVERSE. The data controls are READ/ WRITE,
DATA IN, and DATA OUT. The remaining
group of outputs give the transport's status: CLEAR
LEADER, CASSETTE PRESENCE, FILE PRO­
TECT, and SIDE SENSOR. These signals, shown
schematically in figure 3 and table 1, give the pin
definition of the CM-600 16-pin I/O connector.

RECORDING FORMAT

The CM-600 does not provide either encoding or
decoding of the recorded data; that task is left for
the peripheral interface. A multitude of encoding
techniques from which the user may choose are
available. In this single-chip dedicated controller
application, a "self-clocking" phase encoding scheme
similar to that used in floppy discs was chosen. This
scheme specifies that alogic "0" is a bit cell with no
transition; a cell with a transition is a logic "1."

6-997 231314-001

APPLICATIONS

Table 1. CM·600· I/O Pin Definition

Pin 1/0 Function
1 - Index pin-not used
2 - Signal ground
3 0 Cassette side (O-side B, I-side A)
4 I Data input (O-space, I-mark)
5 0 Cassette presence (O-cassette, I-no

cassette)
6 I Read/Write (O-read, I-write)
7 0 File protect (O-tab present, I-tab

removed)
8 - +5v motor power
9 - Power ground

10 - Chassis ground
11 I Direction (O-forward, I-rewind)
12 I Speed (O-fast, I-slow)
13 0 Data output (O-space, I-mark)
14 0 Clear leader (O-clear leader, I-off

clear leader)
15 I Motion (O-go, I-stop)
16 - +5v logic power

INPUTS BLOCK DIAGRAM OUTPUTS

+5V MOTOR POWER----+-
.. 5V LOGIC POWER---+-
TAPE DIRECTION (I WDIREW)+- BRAEMAR CASSETTE SIDE TAPE MOTION (STOP/GO)--+
TAPE SPEED (FAST/SLOW)--.. eM-SOO'" =: ~lk~::T~~EpCRTESENCE
SELECT READ/WRITE--'-'

OIGITAl

DATA INPUT
MINI CASSETTE ~ CLEAR LEADER

POWER GROUND II
TRANSPORT DATA OUTPUT

SIGNAL GROUND •
CHASSIS GROUND~

Figure 3. Braemar CM·600· Block Diagram

Figure 4 illustrates the encoding of the character
3AH assuming the previous data ended with the
data line high. (The least significant bit is sent.
first.) Notice that there is always a "clocking"
transition at the beginning of each cell. Decoding is
simply a matter of triggering on this "clocking"
transition, waiting 3/4 of a bit cell time, and
determining whether a mid-cell transition has
occurred. Cells with no mid-cell transitions are data
O's; cells with transitions are data l's. This encoding
technique has all the benefits of Manchester en cod­
ingwith the added advantage that the encoded data
may be "decoded by eyeball:" long cells are always
O's, short cells are always l's.

Besides the encoding scheme, the data format is also
up to the user. This controller uses a variable byte
length, checksum protected block format. Every
block starts and ends with· a· SYNC character

Figure 4. Modified Phase Encoding of
Character 3A Hex

(AAH), and the character immediately preceeding
the last SYNC is the checksum. The checksum is
capable of catching 2 bit errors. The number of data
characters within a block is limited to 64K bytes.
Blocks are separated by an I nter-Record Gap (IRG).
The IRG is of such a length that the transport can
stop and start within an IRG, as illustrated in the
data block timing, figure 5. Braemar specifies a
maximum start or stop time of 150ms for the
transport, thus the controller uses 450ms for the
IRG. This gives plenty of margin for controlling the
transport and also for detecting IRGs while skipping
blocks .

THE UPI.41 ATM CONTROLLER

The goal of the UPI software design for this applica­
tion was ,to make the UPI-41A microcomputer into
an intelligent cassette control processor. The host
processor (8086, 8088, 8085A, etc.) simply issues a
high-level command such as READ-a-block or
WRITE-a-block. The 8741A accepts the command,
performs the requested operation, and returns to
the host system a result code telling the outcome of
the operation, ego Good-Completion, Sync Error,
etc. Table 2 shows the command and result code
repertoire. The 8741A completely manages all the
data transfers for reading and writing.

As an example, consider the WRITE-a-block com­
mand. When this command is issued, the UPI-41A
expects a 16-bit number from the host telling how
many data bytes to write (up to 64K bytes per
block). Once this number is supplied in the form of
two bytes, the host is free to perform other tasks; a
bit in the UPI's STATUS register or an interrupt
output will notify the host when a data transfer is
required. The 8741A then checks the transport's
status to be sure that a cassette is present and not
file protected. If either is false, a result code is

6-998 231314-001

APPLICATIONS

r-1_.-----BLOCKWRITEOPERATlON----o·.,1

. I SYNC I DATA II
r--450MS-"\

I CHECKSUM I SYNC I I SYNC I DATA

r--450MS~1
'START TRANSPORT 'STOP TRANSPORT

Figure 5. IRG/Block Timing Diagram (not to scale)

Table 2. Controller Command/Result Code Set

Command Result
Read (OlH) Good-Completion (OOH)

Buffer Overrun Error (4IH)
Bad Synchl Error (42H)
Bad Synch2 Error (43H)
Checksum Error (44H)
Command Error (45H)
End of Tape Error (46H)

Rewind (04H) Good-Completion (OOH)
Skip (03H) Good-Completion (OOH)

End of Tape Error (47H)
Beginning of Tape Error (48H)

Write (02H) Good-Completion (OOH)
Buffer Underrun Error (8IH)
Command Error (82H)
End of Tape Error (83H)

returned to the host; otherwise the transport is
started. After the peripheral controller checks to
make sure that the tape is off the clear leader and
past the hole in the tape, it writes a 450ms IRG, a
SYNC character, the block of data, the checksum,.
and the final SYNC character. (The tape has a clear
leader at both ends and a small hole 6 inches from
the end of each leader.) The data transfers from the
host to the UPI -41A slave microcomputer are double
buffered. The controller requests only the desired
number of data bytes by keeping track of the count
internally.

If nothing unusual happened, such as finding clear
leader while writing, it returns a Good-Completion
result code to the host. If clear leader was encoun­
tered, the transport is stopped immediately and an .
End-of-Tape result code is returned to the host.
Another possible error would be if the host is late in
supplying data. If this occurs, the controller writes

an IRG, stops the drive, and returns the appropriate
Data-Underrun result code.

The READ-a-block command also provides error
checking. Once this command is issued by the host,
the controller checks for cassette presence. If
present, it starts the transport. The data output
from the transport is then examined and decoded
continuously. If the first character is not a SYNC,
that's an error and the controller returns a Bad­
First-SYNC result code (42H) after advancing to
the next IRG. If the SYNC is good, the succeeding
characters are read into an on-chip 30 character
circular buffer. This continues until an IRG is
encountered. When this occurs, the transport is
stopped. The controller then tests that the last
character. If it is a SYNC, the controller then
compares the accumulated internal checksum to
the block's checksum, the second to the last character
of the block. If they match, a Good-Completion
result code (OOH) is returned to the host. If either
test is bad, the appropriate error result code is
returned. The READ command also checks for the
End-of-Tape (EaT) clear leader and returns the
appropriate error result code if it is found before the
read operation is complete.

The 30 character circular buffer allows the host up
to 30 character times of response time before the
host must collect the data. All data transfers take
place thru the UPI-41A Data Bl.!$ Buffer Output
register (DBBOUT). The controller continually
monitors the status of this register and moves
characters from the circular buffer to the register
whenever it is empty.

The SKIP-n-blocks command allows the host to skip
the transport forward or backward up to 127
blocks. Once the command is issued, the controller
expects one data byte specifying the number of

6-999 231314-001

APPLICATIONS

blocks to skip. The most significant bit of this byte
selects the direction of the skip (O=forward,
l=reverse). SKIP is a dual-speed operation in the
forward direction. If the number of blocks to skip is
greater than 8, the controller uses fast-forward (5
IPS) until it is within 8 blocks of the desired
location. Once within 8 blocks, the controller
switches to the normal read speed (3 IPS) to allow
accurate placement of the tape. The reverse skip
uses only the rewind speed (15 IPS). Like the READ
and WRITE commands, SKIP also checks for EOT
and beginning-of-tape (BOT) depending upon the
tape's direction. An error result code is returned if
either is encountered before the number of blocks
skipped is complete.

The REWIND command simply rewinds the tape to
the BOT clear leader. The ABORT command allows
the termination of any operation in progress, except
a REWIND. All commands, including ABORT,
always leave the tape positioned on an IRG.

THE HARDWARE INTERFACE

There's hardly any hardware design effort required
for the controller and transport interface in figure
6. Since the CM-600 is TTL compatible, it connects

1 874'A 8041A
eLoe~ XTAL'

~l .,,,, vee
vee

SS

~
!ill TEST1
WI!
AD p"

PI1
00-07 P12

P13
P14

OBF
p"

P24 p"

fI!F P25 P20

RESET EA
VSS

P21

~

directly to the I/O ports of the UPI controller. If the
two are separated (Le. on different PC cards), it is
recommended that TTL buffers be provided.) The
only external circuitry needed is an LED driver for
the DRIVE ACTIVE status indicator.

The 8741A-to-host interface is equally straightfor­
ward. It has a standard asynchronous peripheral
interface: 8 data lines (Do-D7), read (RD), write
(WR), register select (AO), and chip select (CS).
Thus it connects directly to an 8086, 8088, 8085A,
8080, or 8048 bus structure. Two interrupt outputs
are provided for data transfer requests if the
particular system is interrupt-driven. DMA transfer
capability is also available. The clock input can be
driven from a crystal directly or with the system
clock (6MHz max). The UPI-41A clock may be
asynchronous with respect to other clocks within
the system.

This application was developed on an Intel iSBC I

80/30 single board computer. The iSBC 80/30 is
controlled by an 8085A microprocessor, contains
16K bytes of dual-ported dynamic RAM and up to
8K bytes of either EPROM or ROM. Its I/O comple­
ment consists of an 8255A Programmable Parallel
Interface, an 8251A Programmable Communica-

eM-6OO

MOTOR POWER
L lOGIC POWER

DATA OUT

DIRECTION
MOTION
SPEED
READ/WRITE
CLEAR LEADER
FILE PROTECT
PRESENCE

DATA IN

r ~~":.~~~~~
~,-L~"'''~

DRIVE
ACTIVE

Figure 6. Controller/Transport System Schematic

6-1000 231314-001

APPLICATIONS

tions Interface, an 8253 Programmable Interval
Timer, and an 8259A Programmable Interrupt
Controller. The iSBC 80/30 is especially convenient
for UPI development since it contains an uncom­
mitted socket dedicated to either an 8041A or
8741A, complete with buffering for its I/O ports.
The iSBC 80/30 to 8741A interface is reflected in
figure 8. (Optionally, an iSBC 569 Digital Controller
board could be used. The iSBC 569 board contains
three uncommitted UPI sockets with an interface
similar to that in figure 8.)

Looking at the host-to-controller interface, the host
sees the 8741A as three registers in the host's I/O
address space: the data register, the command
register, and the status register. The decoding of
these registers is shown in figure 7. All data and
commands for the controller are written into the
Data Bus Buffer Input register (DBBIN). The state
of the register select input, AO, determines whether
a command or data is written. (Writes with AO set
to 1 are commands by convention.) All data and
results from the controller are read by the host from
the Data Bus Buffer Output register (DBBOUT).

Cs R5 WR AO Register

0 0 I a DBBOUT
0 0 I I STATUS
0 I 0 a DBBIN (DATA)
0 I 0 I DBBIN (COMMAND)
I x X X NONE

Figure 7. 8741A/8041A Interface Register
Decoding

STATUS

OBF-OUTPUT BUFFER FULL
ISf-INPUT BUFFER FULL
FO-FLAG a

L-___ F1-FLAG 1

l~~§~~~~DRIVE ACTIVE FilE PROTECT
CASSETTE PRESENCE
BUSY

Figure 8. Status Register Bit Definition

The Status register contains flags which give the
host the status of various operations within the con­
troller. Its format is given in figure 8. The Input
Buffer Full (IBF) and Output Buffer Full (OBF)
flags show the Status of the DBBIN and DBBOUT
registers respectively. IBF indicates when the'
DBBIN register contains data written by the host.
The host may write to DBBIN only when IBF is O ..
Likewise, the host may read DBBOUT only when
OBF is set to a 1. These bits are handled automa­
tically by the UPI-41A internal hardware. FLAG 0
(F 0) and FLAG 1 (F 1) are general purpose flags
used internally by the controller which have no
meaning externally.

The remaining four bits are user-definable. For this
application they are DRIVE ACTIVE, FILE PRO­
TECT, CASSETTE PRESENCE, and BUSY flags.
The FILE PROTECT and CASSETTE PRESENCE
flags reflect the state of the corresponding I/O lines
from the transport. DRIVE ACTIVE is set whenever
the transport motor is on and the controller is
performing an operation. The BUSY flag indicates
whether the contents of the DBBOUT register is
dataor a result code. The BUSY flag is set whenever
a command is issued by the host and accepted by the
controller. As long as BUSY is set, any character
found in DBBOUT is a result code. Thus whenever
the host finds OBF set, it should test the BUSY flag
to determine whether the character is data or a
result code.

Notice the OBF and IBF are available as interrupt
outputs to the host processor, figure 6. These outputs
are self-clearing, that is, OBF is set automatically
upon the controller loading DBBOUT and cleared
automatically by the host reading DBBOUT. Like­
wise IBF is cleared to a 0 by the host writing into
DB BIN: set to a 1 when the controller reads DBBIN
into the accumulator.

The flow charts of figure 9 show the flow of sample
host software assuming a polling software interface
between the host and the controller. The WRITE
command requires two additional count bytes which
form the 16-bit byte count. These extra bytes are
"handshaked" into the controller using the IBF flag
in the STATUS register. Once these bytes are
written, the host writes data in response to IBF
being cleared. This continues until the host finds
OBF set indicating that the operation is complete
and reads the result code from DBBOUT. No
testing of BUSY is needed since only the result code
appears in the DB BOUT register. .

The READ command does require that BUSY be
tested. Once the READ command is written into the

6-1001 231314-001

APPLICATIONS

controller, the host must test BUSY whenever OBF
is set to determine whether the contents of DBBOUT
is data from the tape or the result code.

THE CONTf:lOLLER SOFTWARE

The UPI-41A software to control the cassette can be
divided up into various commands such as WRITE,
READ and ABORT. In a previous version of this appli­
cation note (May 1980), software was described that

implemented these commands. This code however did
not adequately compensate for speed variations of the
motor during record and playback nor for data distor­
tion caused by the magnetic media. Since then, new
code has been written to include these effects. This
revised software is now available through the INTEL
User's Library, INSITE. For more information on this
software or INSITE, contact your local INTEL Sales
Office.

6-1002 231314-001

June 1985

Applications Using the
8042 UPI™ Microcontroller

1. The 8042 in the IBM PC/AT
2. Using the 8042 vs. using microcontrollers
3. Custom serial protocol with the 8042

Joe Froelich

©Intel Corporation, 1985 Order Number: 231600-001

6-1003

8042 UPI™ MICROCONTROLLER

APPLICATION #1
THE 8042 UPI™ MICROCONTROLLER IN THE IBM PC/AT

The following example is an important application of UP Is but there are many more. It is truly a universal device that can
be customized to all those "non-standard" peripheral control problems. Applications are limited only by imagination.
Think UPIs for non-standard peripherals!!

IBM PC/AT (BEFORE) ...

KEYBOARD

NEW FUNCTIONS

The 8042 also brings new functions to the PC/AT:

• Keyboard lockup security (front panel key)
• CRT type input to the system
• Diagnostics/ self testing of keyboard interface
• Parity check and retry
• PC and PCIAT keyboard interchangeability
• Reset CPU to compatible mode
• Address wrap-around" protect in compatible

mode

... IBM PC/AT (AFTER)

KEYBOARD

THE FUTURE IS THE KEY
Modifications and upgrades are easy because of the
8042's programmable flexibility and power:

• Change keyboard scan codes (in 8042 ROM)
• Increase functionality of keyboard interface

through software andlor unused 110 lines on
8042

• Control other PC/ AT functions with these 1/0
lines

Summary

In short, IBM used the 8042 since it:

• Offloads housekeeping details from the CPU
• Facilitates modular system design
• Offers a customized peripheral
• Provides a clean, efficient upgrade path

These benefits can apply to many of your applications
also.

6-1004

8042 UPI™ MICROCONTROLLER

APPLICATION #2
USING THE 8042 VS. USI~G MICROCONTROLLERS

PROBLEM

What do you do when you're making SBX and VME
modules for a voice digitizing board and you need:

I) an interface to an AI D Converter with
2) 12 MHz operation,
3) an absolute minimum chip count, and
4) very low cost (for the PC market).

A leading vendor was faced with exactly this problem.
Here is what they started with, and the bottom figure
shows how they improved things with the 8042 UPI'·
microcontroller.
SOLUTION
BEFORE .. .

AFTER .. .

SYSTEM

MICROPHONE

SYSTEM

MICROPHONE

The 8042 integrates two latches and the microcontroller
into a single-chip solution.

WHY THE SWITCH

After studying the four requirements for this module, it
is easy to see why they switched. The first two (AI D
interface and 12 MHz) were met by both solutions.
However, it is clear the second alternative is much
better on board space and on overall cost. There are
fewer chips, so they could avoid a multi-layer board
and thus save a lot in total cost. Actual chip costs are

'within 10% of each other (a typical microcontroller like
a Z8 or 6801 plus 2 latches compared to an 8042), and
they do the same thing.

WHAT'S THE DIFFERENCE

People tend to think of microcontrollers whenever
there is a "non-standard" device to control. CRTs, disk
drives and DRAMs all have dedicated controllers, but
printers, front panels, displays and keyboards don't,
because they are all "non-standard" devices. Micro­
controllers can be customized to these applications.

The problem is when the device is a "slave" or a
peripheral, regular microcontrollers need the extra cir­
cuitry shown previously. That's why we invented U PIs.
They are simply microcontrollers with the slave inter­
face built in. They are, therefore, more efficient to use
in peripheral,-type configurations.

UPI

SLAVE INTERFACE

MICROCONTROLLER

UPls may be misunderstood because of the funny
name. They shouldn't ,be. It's really simple. When faced
with non-standard device control, think microcontrol­
lers.

If it's a master-only configuration, think regular micro­
controllers. If it's a slavel peripheral configuration, think
IJPls.

6-1005

inter 8042 UPI™ MICROCONTROLLER

APPLICATION #3
CUSTOM SERIAL PROTOCOL WITH THE 8042 UPI™ MICROCONTROLLER

BACKGROUND

The 8042 UPI Microcontroller, because of its program­
mability is being used everywhere, and here is another
example. A leading board vendor was designing a
communications concentrator board. They wanted a
way to:

I) interface 8 serial channels to a minicomputer bus
2) operate these at 4800 baud
3) use one board
4) provide a custom serial protocol that

- communicated commands and data packets
- assembled the data packets
- provided handshaking signals
- checked for framing, timing, parity, noise,

modem and synchronization errors
- provided self-test diagnostics

THE 8042 SOLUTION

There certainly wasn't an "off-the-shelf" chip that would
satisfy the above requirements, and using the main

CPU would have caused tremendous system perfor­
mance ·degradation. They needed all of these features to
offer a competitive product, so they looked to the 8042
U PI Microcontroller. Since the speed requirements were
not too great (4800 baud), they could implement the
protocol in software. The 8042's programmability gave
them all the flexibility needed to incorporate the format­
ting, handshaking and error checking desired. More­
over, the on-chip slave interface made communication
with the minicomputer's bus a snap.

SUMMARY

In short, the 8042 allowed this company to implement
a custom serial communication protocol that in turn
allowed them to offer a customized, competitive inter­
face board to their customers.

,Don't some of your applications need customized
interfaces?

6-1006

in1er ICE™ -42
8042 IN-CIRCUIT EMULATOR

• Precise, full-speed, real-time emulation • Full symbolic debugging
Load, drive, timing characteristics
Full-speed program RAM
Parallel ports
Data Bus

• User-specified breakpoints

• Execution trace
User-specified qualifier registers
Conditional trigger
Symbolic groupings and display
Instruction and frame modes

• Emulation timer

• Single-line assembly and disassembly
for program instruction changes

• Macro commands·and conditional
block constructs for automated
debugging sessions

• HELP facility: ICETM-42 command
syntax reference at the console

• User confidence test of ICETM-42
hardware

The ICeM-42 module resides in the Intellec Microcomputer Development System and interfaces to
any user-designed 8042 or 8041 A system through a cable terminating in an 8042 emulator micropro­
cessor and a pin-compatible plug. The emulator processor, together with 2K bytes of user program
RAM located in the ICE-42 buffer box, replaces the 8042 device in the user system while maintaining
the 8042 electrical and timing characteristics. Powerfullntellec debugging functions are thus extended
into the user system. USing the ICE-42 module, the designer can emulate the system's 8042 chip in
real-time or single-step mode. BreakpOints allow the user to stop emulation on user-specified
conditions, and a trace qualifier feature allows the conditional collection of 1000 frames of trace data.
USing the single-line 8042 assembler the user may alter program memory using the 8042 assembler
mnemonics and symbolic references, without leaving the emulator environment. Frequently used com­
mand sequences can be combined into compound commands and identified as macros with user­
defined names.

©INTEL CORPORATION. 1983 6-1007
MAY 1983

ORDER NUMBER: 210818-002

inter ICE™ -42 IN-CIRCUIT EMULATOR

FUNCTIONAL DESCRIPTION

Integrated Hardware and Software
Development

The ICE-42 emulator allows. hardware and soft­
ware development to proceed interactively. This
approach is more effective than the traditional

. method of independent hardware and software
development followed by system integration.
With the ICE:42 module, prototype hardware
can be added to the system a~ it is designed.
Software and hardware integration occurs while
the product is being developed. Figure 1 shows
the ICE-42 emulator connected to a user
prototype.

The ICE-42 emulator assists four stages of
development:

SOFTWARE DEBUGGING

This emulator operates without being connected
to the user's system before any of the user's
hardware is available. In this stage ICE-42 de­
bugging capabilities can be used in conjunction
with the Intellec text editor and 8042 macro­
assembler to facilitate program development.

HARDWARE DEVELOPMENT

The ICE-42 module's precise emulation charac­
teristics and full-speed program RAM make it a
valuable tool for debugging hardware.

SYSTEM INTEGRATION

Integration of software and hardware begins
when any functional element of the user system
hardware is connected to the 8042 socket. As
each section of the user's hardware is
completed, it is added to the prototype. Thus,
each section of the hardware and software is
"system" tested in real-time operation as it be­
comes available.

SYSTEM TEST

When ·the user's prototype is complete, it is
tested with the final version of the user system
software. The ICE-42 module is then used for
real-time emulation of the 8042 chip to debug
the system as a completed unit.

The final product verification test may be 'per­
formed using the 8742 EPROM version of the

8042 microcomputer. Thus, the ICE-42 module
provides the ability to debug a prototype or pro­
duction system at any stage in its development
without introducing extraneous hardware or soft­
ware test tools.

Symbolic Debugging

The ICE-42 emulator permits the user to define
and to use symbolic, rather than absolute, refer­
ences to pr·ogram and data memory addresses .
Thus, there is no need to recall or look up the ad­
dresses of key locations in the program, or to

. become involved with machine code.

When a symbol is used formemory reference in
an ICE-42 emulator command, the emulator sup­
plies the corresponding location as stored in the
ICE-42 emulator symbol ta.ble. This table can be
loaded with the symbol table produced by the as­
sembler during application program assembly.
The user obtains the symbol table during soft­
ware preparation simply by using the "DEBUG"
switch in the 8042 macroassembler. Further­
more, the user interactively modifies the emula­
tor symbol table by adding new symbols or
changing or deleting old ones. This feature pro­
vides great flexibility in debugging and minimizes
the need to work with hexadecimal values.

Through symbolic references in' combination
with other features of the emulator, the user can
easily:

• Interpret the results of emulation activity col­
lected during trace.

• Disassemble program memory to
mnemonics, or assemble mnemonic instruc­
tions to executable code.

• Reference labels or addresses defined in Ii
user program.

Automated Debugging and Testing

MACRO COMMAND

A macro is a set of commands given a name. A
group of commands executed frequently can be
defined as a macro. The user executes the
group of commands by typing a colon followed
by the macro name. Up to ten parameters may
be passed to the macro.

Macro commands can be defined at the begin­
ning of a debug session and then used through­
out the whole session. One or more macro defini­
tions can be saved on diskette for later use. The
Intellec text editor may be used to edit the macro
file. The macro definitions are easy to include in
any later emulation session.

6-1008 210818-002

intel' ICETM_42 IN-CIRCUIT EMULATOR

The power of the development system can be
applied to manufacturing testing as well as
development by writing test sequences as
macros. The macros are stored on diskettes for
use during system test.

COMPOUND COMMAND

Compound commands provide conditional exe­
cution of commands (IF command) and execu­
tion of commands repeatedly until certain condi­
tions are met (COUNT, REPEAT commands).

Compound commands may be nested any
number of times, and may be used in macro
commands.

Example;

"DEFINE .1 =0
"COUNT 100H

.*IF .1 AND 1 THEN

.. "CBYTE.I=.I

. .*END

.* .1-.1 + 1

.*END

; Define symbol.1 to 0
; Repeat the following
commands 1 OOH times.

; Check If .1 is odd
; Fill the memory at

location .1 to value .1

; Increment.1 by 1.
; Command executes
upon carriage-return
after END

(The asterisks are system prompts; the dots
indicate the nesting level of compound
commands.)

Operating Modes

The ICE-42 software is an Intellec RAM-based
program that provides easy-to-use commands
for initiating emulation, defining breakpoints,
controlling trace data collection, and displaying
and controlling system parameters. ICE-42 com­
mands are configured with a broad range of
modifiers that provide maximum flexibility in de­
scribing the operation to be performed.

EMULATION

The ICE-42 module can emulate the operation of
prototype 8042 system, at real-time speed (up to
12M Hz) or in single steps. Emulation commands
to the ICE-42 module control the process of set­
ting up, running, and halting an emulation of the
user's 8042-based system. Breakpoints and tra­
cepoints enable the ICE-42 emulator to halt emu­
lation and provide a detailed trace of execution
in any part of the user's program. A summary of
the emulation commands is shown in Table 1.

Table 1 Major Emulation Commands

Command Description

GO Begins real-time
emulation and optionally
specifies break
conditions.

BRO, BR1, BR Sets or displays either or
both Breakpoint Registers
used for stopping
real-time emulation.

STEP Performs single-step
emulation:

QRO, QR1 Specifies match
conditions for qualified
trace .

TR Specifies or displays
trace-data collection
conditions and optionally
sets Qualifier Register
(QRO, QR1).

Synchronization Sets and displays status
Line Commands of synchronization line

outputs or latched inputs.
Used to allow real-time
emulation or trace to start
and stop synchronously
with external events.

Breakpoints

The ICE-42 hardware includes two breakpOint
registers that allow halting of emulation when
specified conditions are met. The emulator con­
tinuously compares the values stored in the
breakpoint registers with the status of specified
address, opcode, operand, or port values, and
halts emulation when this comparison is
satisfied. When an instruction initiates a break,
that instruction is executed completely before
the break takes place. The ICE-42 emulator then
regains control of the console and enters the in­
terrogation mode. With the breakpoint feature,
the user can request an emulation break when
the program:

• Executes an instruction at a specific address
or within a range of addresses.

6-1009 210616-002

inter ICE™ -42 IN-CIRCUIT EMULATOR

• Executes a particular opcode.

• Receives a specific signal on a port pin.

• Fetches a particular operand from the user
program memory.

• Fetches an operand from a specific address
in program memory.

Trace and Tracepoints

Tracing is used with real-time and single-step
emulation to record diagnostic information in the
trace buffer as a program is executed. The infor-

. malion collected includes opcodes executed,
port values, and memory addresses. The ICE-42
emulator collects 1000 frames of trace data.

If desired this information can be displayed as
assembler instruction mnemonics for analysis
during interrogation or Single-step mode. The
trace-collection facility may be set to run condi-

tionally or unconditionally. Two unique trace
qualifier registers, specified in the same way as
breakpoint registers, govern conditional trace
activity. The qualifiers can be used to condition
trace data collection to take place as follows:

• Under all conditions (forever),

• Only while the trace qualifier is satisfied.

• For the frames or instructions preceding the
time when a trace qualifier is first satisfied
(pre-trigger trace),

• For the frames or instructions after a trace
qualifier is first satisfied (post-triggered
trace) .

Table 2 shows an example of trace display.

INTERROGATION AND UTILITY

Interrogation and utility commands give conve­
nient access to detailed information about the

Table 2 Trace Display (Instruction Mode)

FRAME LOC OBJ INSTRUCTION Pl P2 TO T1 DBYIN YOUT YSTS TOVF

0000: 100H 2355 MOV A,#55H FFH FFH 0 0 66H DFH 02H 0
0004: 102H 39 OUTL Pl,A FFH FFH 0 0 66H DFH o2H 0
0008: lO3H 3A OUTL P2,A 55H FFH 0 0 66H DFH o2H 0
0012: lO4H 22 IN A,DBB 55H 55H 0 0 66H o2H 0
0014: lO5H 37 CPL A 55H 55H 0 0 DF.H o2H 0
0016: 106H 02 OUT DBB,A 55H 55H 0 0 66H DOH 0
0018: lO7H BA03 MOV R2,#03H 55H 55H 0 0 66H 99H DOH 0
0022: 109H . B840 MOV RO,#.TABLEO 55H 55H 0 0 66H 99H 01H 0
0026: lOSH B91Hl MOV Rl,#.TABLEl 55H 55H 0 0 66H 99H 01H 0
.LOOP

0030: loDH Fo MOV A,@Ro 55H 55H 0 0 99H olH 0
0032: 10EH Al MOV @Rl,A 55H 55H 0 0 66H olH 0
0034: 10FH 18 INC Ro 55H 55H 0 0 99H olH 0
0036: 110H 19 INC Rl 55H 55H 0 0 66H olH 0
0038: l11H EAoD DJNZ R2, .LOOP 55H 55H 0 0 66H 99H 01H 0
·LOOP
0042: lODH FO MOV A ,@RO 55H 55H 0 0 99H 01H 0
0044: 10EH Al MOV @Rl,A 55H 55H 0 0 66H 01H 0
0046: 10FH 18 INC RO 55H 55H 0 0 99H olH 0
0048: 110H 19 INC Rl 55H 55H 0 0 66H 01H 0
0050: l11H EAOD DJNZ R2, .LOOP 55H 55H 0 0 66H 99H 01H 0
.LOOP
0054: lODH FO NOV A ,@RO 55H 55H 0 0 99H olH 0
0056: loEH Al NOV @Rl,A 55H 55H 0 0 66H 01H 0
0058: 10FH 18 INC RO 55H 55H 0 0 99H 01H 0
0060: 110H 19 INC Rl 55H 55H 0 0 66H 01H 0
0062: l11H EAOD DJNZ R2, .LOOP 55H 55H 0 0 66H 99H 01H 0

'0066: 113H 00 NOP 55H 55H 0 0 99H 01H 0

6-1010 210818-002

ICETM_42 IN-CIRCUIT EMULATOR

user program and the state of the 8042 that is
useful in debugging hardware and software.
Changes can be made in memory and in the
8042 registers, flags, and port values. Com­
mands are also provided for various utility opera­
tions such as loading and saving program files,
defining symbols, displaying trace data, controll­
ing system synchronization and returning control
to ISIS-II. A summary of the basic interrogation
and utility commands is shown in Table 3. Two
additional time-saving emulator features are dis­
cussed below.

Single-Line Assembler/Disassembler

The single-line assembler/disassembler (ASM
and DASM commands) permits the designer to
examine and alter program memory using as­
sembly language mnemonics, without leaving
the emulator environment or requiring time­
consuming program reassembly. When assem­
bling new mnemonic instructions into program
memory, previously defined symbolic references
(from the original program assembly, or subse­
quently defined during the emulation session)

Table 3 Major Interrogation and Utility Commands

Command Description

HELP Displays help messages for ICE-42 emulator command-entry assistance.

LOAD Loads user object program (8042 code) into user-program memory, and
user symbols into ICE-42 emulator symbol table.

SAVE Saves ICE-42 emulator symbol table and/or user object program in ISIS-II
hexadecimal file.

LIST Copies all emulator console input and output to ISIS-II file.

EXIT Terminates ICE-42 emulator operation.

DEFINE Defines ICE-42 emulator symbol or macro.

REMOVE Removes ICE-42 emulator symbol or macro.

ASM Assembles mnemonic instructions into user-program memory.

DASM Disassembles and displays user-program memory contents.

Change/Display Change or display value of symbolic reference in ICE-42 emulator symbol
Commands table, contents of key-word references (including registers, I/O ports, and

status flags), or memory references.

EVALUATE Evaluates expression and displays resulting value.

MACRO Displays ICE-42 macro or macros.

INTERRUPT Displays contents for the Data Bus and timer interrupt registers.

SECONDS Displays contents of emulation timer, in microseconds.

Trace Commands Position trace buffer pOinter and select format for trace display.

PRINT Displays trace data pOinted to by trace buffer pointer.

MODE Sets or displays the emulation mode, 8041 A or 8042.

6-1011 210818-002

ICE™ -42 IN-CIRCUIT EMULATOR

Table 4 HELP Command

*HELP
Help is available for the following items. Type HELP followed by the item name.
The help items cannot be abbreviated. (For more information, type HELP HELP, or
HELP INfO.)
Emulation:
GO GR SYO
BR BROBR1
STEP

Change!
<CHANGE>
<DISPLAY>
REGISTER

SECONDS
DEFINE

Macro:
DEFINE
DISABLE
INCLUDE

Trace Collection:
TR QR QRO QR1 SY1

Trace Display:
TRACE MOVE PRINT
OLDEST,NEWEST

Mi sc:
BASE
DISABLE
ENABLE
ERROR
EVALUATE
HELP

Display! Define! Remove: INFO
REMOVE CBYTE <LIGHTS>
SYMBOL
RESET

WRITE'
STACK

DBYTE

Compound
DIR Commands:
ENABLE COUNT
PUT IF

DASM
ASM

SY

LIST
LOAD
MODE
SAVE
SUFFIX
SYMBOLIC

<MACRO$DISPLAY> REPEAT
< MACRO$INVOC ATION >

*
*
*HELP IF

<address>
<CPU$keyword>
<expr>
<ICE42 #keyword>
< identi fier>
< instruction>
< maske d#cons ta nt >
<match$cond>
< numer i c $c ons tant >
<partition>
<string>

<string$constant>
<symbolic$ref>
<mode>
< trace $re ference >
< unl i m i ted$matc h$cond >
<user$symbols>

IF - The conditional command allows conditional execution of one or more commands
based on the values of boolean condi tions.

IF <expr> '.THEN <cr> <true$list>: :='<command> <cr> @

<true$list> <false$list>;;='<command> <cr> @

'ORIF <expr> <;.cr> <command>: :=An ICE-42 command·
<true$list> @

'ELSE <cr>
<false$list>
END

The <expr>s are evaluated in order as 16-bit unsigned ,integers. If one is
reached whose value has low-order bit 1 (TRUE), all commands in the <true$list>
following that <expr> are then executed and all commands in the other <true$­
list>s and in the < false$list> are skipped. If ,all <expr>s have value with low­
order bit 0 (FA L S E) , the naIl com man d sin all < t rue $1 is t > s are ski pp e d and, i f
ELSE is present, all commands in the <false$list> are executed.

*
*
*
*
*EXIT

(EX: IF .LOOP=5 THEN
STEP
ELSE
GO
END)

6-1012 210818-002

inter ICETM_42 IN-CIRCUIT EMULATOR

may be used in the instruction operand field.
The emulator supplies the absolute address or
data values as stored in the emulator symbol
table. These features eliminate user time spent
translating to and from machine code and
searching for absolute addresses, with a corre­
sponding reduction in transcription errors.

HELP

The HELP file allows display of ICE-42 command
syntax information at the Intellec console. By
typing "HELP", a listing of all items for which
help messages are available is displayed.
Typing "HELP < Item>" then displays relevant
information about the item requested, including
typical usage examples. Table 4 shows some
sample HELP messages.

EMULATION ACCURACY

The speed and interface demands of a high­
performance single-chip microcomputer require
extremely accurate emulation, including full­
speed, real-time operation with the full function
of the microcomputer. The ICE-42 module
achieves accurate emulation with an 8042
emulator chip, a special configuration of the
8042 microcomputer family, as its emulation
processor.

Each of the 40 pins on the user plug is connected
directly to the corresponding 8042 pin on the
emulator chip. Thus the user system sees the
emulator as an 8042 microcomputer at the 8042
socket. The resulting characteristics provide ex­
tremely accurate emulation of the 8042 including.

SPECIFICATIONS

ICETM-42 Operating Requirements

Inteliec Model 800, Series Ii, Series iii, or Series
IV Microcomputer Development SYstem (64K
RAM required)

System console (Model 800 only)

Inteliec Diskette Operating System: ISIS
(Version 3.4 or later).

Equipment Supplied

• Printed circuit boards (2)

• Emulation buffer box, Intellec interface
cables, and user-interface cable with 8042
emulation processor

speed, timing characteristics, load and drive
values, and crystal operation. However, the
emulator may draw more power from the user
system than a'standard 8042 family device.

Additional emulator processor pins provide sig­
nals such as internal address, data, clock, and
control lines to the emulator buffer box. These
signals let static RAM in the buffer box substitute
for on-chip program ROM or EPROM. The emula­
tor chip also gives the ICE module "back-door"
access to internal chip operation, allowing the
emulator to break and trace execution without in­
terfering with the values on the user-system
pins.

Figure 1 A Typical 8042 Development
Configuration. The hOst system is
an Inteliec Series IV. The ICE-42
module is connected to a user pro­
totype system.

• Crystal power accessory

• Operating instructions manuals

• Diskette-based ICE-42 software (single and
double density)

Emulation Clock

User's system clock (up to 12MHz) or ICE-42
crystal power accessory (12 MHz)

Environmental Characteristics

Operating Temperature - 0° to 40°C

Operating Humidity - Up to 95% relative humidi­
ty without condensation.

6-1013 . 210818-002

ICE™ -42 IN-CIRCUIT EMULATOR

Physical Characteristics

Printed Circuit Boards

Width: 12.00 in. (30.48 em)
Height: 6.75 in. (17.15 em)
Depth: 0.50 in. (1.27 em)

Buffer Box
Width: 8.00 in. (20.32 em)
Length: 12.00 in. (30.48 em)
Depth: 1.75 in. (4.44 em)
Weight: 4.0 lb. (1.81 kg)

ORDERING INFORMATION

Part Number Description

ICE-42 8042 M icrocontroller In-Circuit
Emulator, cable assembly and in­
teractive diskette software

Electrical Characteristics

DC Power Requirements
(from Intellec® system)

Vcc = +5V, ± 5%
Icc = 13.2A max; 11.0A typical
VDD = +12V, ±5%
IDD = 0.1 A max; 0.05A typical
Vss = -10V, ±5%
Iss = 0.05A max; 0.01 A typical

User plug characteristics at 8042 socket -
Same as 8042 or 8742 except that the user
system sees an added load of 25 pF capacitance
and 50ILA leakage from the ICE-42 emulator
user plug at ports 1,2, TO, and T1.

6-1014 210818-002

MCS@-48
DISKETTE·BASED SOFTWARE

SUPPORT PACKAGE

• Extends Intellec microcomputer
development system to support MCS-48
development

• MCS-48 assembler provides conditional
assembly and macro capability

• Takes advantage of powerful ISIS-II file
h'andling and storage capabilities

• Provides assembler output in standard
Intel hex format

The MCS-48 assembler translates symbolic 8048 assembly language instructions into the appropriate machine
operation codes, and provides both conditional and macroassembler programming. Output may be loaded
either to an ICE-49 module for debugging or into the iUP Universal PROM Programmer for 8748 PROM
programming. The MCS-48 assembler operates under the ISIS-II operating system on Intel Development
systems.

©INTEL CORPORATION, 1983. MAY 1983

6-1015 Order Number: 231323-001

intJ MCS·48

FUNCTIONAL DESCRIPTION

The MCS-48 assembler translates symbolic 8048
assembly language instructions Into the appropriate
machine operation codes. The ability to refer to program
addresses with symbolic names eliminates the errors of
hand translation and makes it easier to modify programs
when adding or deleting instructions. Conditional
assembly permits the programmer to specify which por­
tions of the master source document should be includ­
ed or deleted in variations on a basic system design,
such as the code required to handle optional external
devices. Macro capability allows the programmer use of
a single label to define a routine. The MCS-48 assembler
will assemble the code required by the reserved routine
whenever the macro label Is Inserted in the text. Output
from the assembler Is in standard Intel hex format. It
may be either loaded directly to an In-circuit emulator
(ICE-49) module for integrated hardware/software
debugging, or loaded into the iUP Universal PROM
Programmer for 8748 PROM programming. A
sample assembly listing is shown in Table 1.

The MeS 48 assembler supports the 8048, 8049, 8050, 8020,
8021, 8022, 8041 and 8042. The MCS 48 assembler can also
support CMOS versions of the 8048 family.

SPECIFICATIONS

Operating Environment
(All) Intel Microcomputer Development Systems

(Series II, Series iii/Series IV)
Intel Personal Development System

Ordering Information

Part Number

MDS-D48'

Description

MCS-48 Disk Based Assembler
Requires Software License

Table 1. Sample MCS·48 Diskette·Based

151$·118048 MACROASSEMBLER. VI ,0

LOC OBJ

00'" 00'"
0002

0100 self
0102 8928
0104 BAJ2
0106 91
01071"0
010871
010957
010A AI
0108 18
cloe 19
0100 EA07

USER SYMBOLS
ALPHA 0001E BETA 0028
Ll 0102

PAGEl

SOURCE STATEMENT

:DECIMAL ADDITION ROUTINE, ADO BCD NUMBER
;AT LOCATION 'SETA' TO BCD NUMBER AT 'ALPHA' WITH
.RESULT IN "ALPHA: LENGTH OF NUMBER IS 'COUNT' DIGIT

.. :PAIRS IASSUME BOTH BETA ANO Alf'HA ARE SAME LENGTH
5 ;o\NO HAVE EveN NUMBER OF DIGITS OR MSO 150 IF
a 0001
7 INIT ,
9 "

" " " 13 Alf'HA EOU
'4 8ETA EOU
15 COUNT EOU
16 ORG
17 INIT
lS+ MQV
19+LI MOV
20+ Mav
21 elR
22 LP MOV
23 ADOr.
24 0",
2~ Mav
26 INC
27 INC
28 DJNZ

END

AUGNO,AOONO,CNT
RO .• AUGNO
Rl, 'AOONO
R2.ICNT

30

" ,
'00"
ALPHA, BETA. COUNT
RO .• ALPHA
Rl .• BeTA
R2 .• COUNT
C
A, <lcRO
A, ~.Rl ,
~oRO_A

" R2, LP

ASSEMBLY COMPlETE, NO ERRORS

ISIS-II ASSEMBLER SYMBOL CROSS REFERENCE. VI a

SYMBOL CROSS REFERENCE

ALPi'iA 13. 17
BETA 14' 17
COU~T 15' 17
INIT 7. 17
Ll 1'H
lP 22. 28

Documentation Package
Titles of: User Guides

Operating Instructions
Reference Manuals

SUPPORT:

PAGE \

Hotline Telephone Support, Software P'erformance
Reports (SPR), Software Updates, Technical
Reports, Monthly Newsletters are available.

*MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of
Mohawk Data Sciences Corporation.

6-1016 231323-001

iUP·,200A/iUP·201 A UNIVERSAL
PROM PROGRAMMERS

MAJOR iUP-200A/iUP-201 A FEATURES:

• Support for all Intel PROM families
through multiple-device personality
modules, which may also be used with
the Intel personal development
system {iPDS™).

• Serial interface to allintellec®
development systems.

• Powerful PROM programming
software (jPPS).

• iUP system self-tests plus device
integrity checks.

• Support for new personality modules
that provide state of the art fast
programming algorithms, the
inteligent Identifier™, and a security
bit.

ADDITIONAL iUP-201 A FEATURES:

• Off-line editing, device duplication,
and PROM memory locking.

• 32K-byte iUP RAM.

• 24-character alphanumeric display.

• Full hexadecimal plus 12-function
keypad.

The iUP-200A ,and iUP-201 A universal programmers program and verify data in all the Intel pro­
grammable ROMs (PROMs). They can also program the PROM memory portions of Intel's single-chip
microcomputer and peripheral devices, When used with any Intellec® development system, the
iUP-200A and iUP-201 A universal programmers provide on-line programming and verification using
the Intel PROM programming software (jPPS). In addition, the iUP-201 A universal programmer sup­
ports off-line, stand-alone program editing, PROM duplication, and PROM memory locking, The
iUP-200A universal ~rogrammer is expandable to an iUP-201 A model.

The following are trademarks of Intel Corporation and may be used oniy to describe Intel products: CREDIT, Index, Intel, Insite, Intellec,
Library Manager, Megachassis, Mlcromap, MUL TlBUS, PROMPT, UPI, I'Scope, Promware, MCS, ICE, iRMX, ISBC, iSBX, intellgent
Identifier, MUL TlMODULE and ICS. Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied
In an Intel product. No other circuit patent licenses are implied.
'INTEL CORPORATION, 1964 6-1017 March,1984

Order Number: 210319·003

IUP 200A/iUP 201 A

FUNCTIONAL DESCRIPTION

The iUP-200A universal programmer operates in
on~line mode. The IUP-201A universal program­
mer operates In both on-line and off-line mode.

On-line System Hardware

The IUP-200A and iUP-201 A universal program­
mers are free-standing units that, when connect­
ed to any Intel development system having at
least 64K bytes of host memory, provide on-line
PROM programming and verification of Intel pro­
grammable devices. In addition, the universal
programmer can read the contents of the ROM
versions of these devices.

The universal programmer communicates with
the host through a standard RS-232C serial data
link. A serial converter is needed when using the'
MOS 800 as a host system. (Serial converters
are available from other manu.facturers.)

Each universal programmer contains an 8085
CPU, selectable power supply, 4.3K bytes of
static RAM, a programmable timer, an interface
for personality modules, an interface for the host
system, and 12K bytes of programmed EPROM.
The iUP-201A also has a keyboard and display.
The programmed EPROM contains the firmware

needed for all universal programmer editing and
control functions.

A personality module adapts the universal pro­
grammer to a family of PROM devices; it contains
all the hardware and firmware necessary to pro­
gram either a family of Intel PROMs or a single
Intel device. The user Inserts the personality
module Into the universal programmer front
panel. The personality module comes ready to
use; no additional sockets or adapters are
required.

Figure 1 shows the1UP-200A on-line system
configuration, and Figure 2 shows the on-line
system data flow.

On-line System Software

The Intel PROM programming software (IPPS) Is
included with both the IUP-200A and iUP-201 A
models of the universal programmer. Created to
run on any Intellec development system, the

, IPPS software provides user control through an
easy-to-use Interactive Interface. The IPPS soft­
ware performs the/'followlng functions to make
PROM programming quick and easy:

• Reads PROMs and ROMs

• Programs PROMs dlrect!y or from a file

Figure 1 On-Line System Configuration

6-1018 Order Number: 210319-003

iUP 200A/iUP 201 A

HOST DEVELOPMENT SYSTEM

r
1-iPPS I--J IPPS ISIS

BUFFER SOFTWARE FILE

~, .;-

RS-232 INTERFACE

UNIVERSAL PROGRAMMER
(iUP-200A OR iUP-201 A)

PERSONALITY r '\ r------,
MODULE ~ UNIVERSAL ~--l I

I iUP-201A

PROM I
PROGRAMMER

URAM I
~

FIRMWARE f--~ I DEVICE(S)
"- ../ L ______ ...l

0026

Figure 2 On-Line System Data Flow

• Verifies PROM data with buffer data

It Locks EPROM memory from unauthorized
access (on devices which support this
feature)

• Prints PROM contents on the network or de­
velopment system printer·

• Performs interactive formatting operations
such as interleaving, nibble swapping, bit
reversal, and block moves

• Programs multiple PROMs from the source
file, prompting the user to insert new PROMs

• Uses a buffer to change PROM contents

All iPPS commands, as well as program address
and data information, are entered through the
development system ASCII keyboard and dis­
played on the system CRT. Table 1 summarizes
the iPPS commands.

The iPPS software lets the user load programs
into a PROM from Intellec system memory or

directly from a disk file. Access to the disk lets
the user create and manipulate data in a virtual
buffer with an address range up to 16M .. This
large block of data can be formatted into dif­
ferent PROM word sizes for program storage
into several different PROM types. In addition, a
program stored in the target PROM, the Intellec
system memory, or a system disk file can be in­
terleaved with a second program and entered
into a specific target PROM or PROMs.

The iPPS software supports data manipulation
in the following Intel formats: 8080 hexadecimal
ASCII, 8080 absolute object, 8086 hexadecimal
ASCII, 8086 absolute object, and 80286 absolute
object. Addresses and data can be displayed in
binary, octal, decimal, or hexadecimal. The user
can easily change default data formats as well
as number bases.

The user invokes the iPPS software from the
ISIS operating system (lntellec 800, Series II,
and Series III, versions V3.4 and later; Series IV,
versions V1.0 and later). The software can be
run under control of ISIS submit files, thereby
freeing the user from repetitious command entry.

6-1019 Order Number: 210319-003

iUP 200A/iUP 201 A

Table 1 iPPS Command Summary

Command Description

PROGRAM CONTROL GROUP CONTROLS EXECUTION OF THE iPPS SOFTWARE.
EXIT Exits the iPPS software and returns control to the ISIS operating

system.
<ESC> Terminates the current command.
REPEAT Repeats the previous command.
ALTER Edits and re-executes the previous command.

UTILtTY GROUP DISPLAYS USER INFORMATION AND STATUS AND SETS
DEFAULT VALUES.

DISPLAY Displays PROM, buffer, or file data on the console.
PRINT Prints PROM, buffer, or file data on the local printer.
QUEUE Prints PROM, buffer, or file data on the network spooled printer.
HELP Displays user assistance information.
MAP Displays buffer structure and status.
BLANKCHECK Checks for unprogrammed PROMs.
OVERLAY Checks whether non-blank PROMs can be programmed.
TYPE Selects the PROM type.
INITIALIZE Initializes the default number base and file type.
WORKFILES Specifies the drive device for temporary work files.

BUFFER GROUP EDITS, MODIFIES, AND VERIFIES DATA IN THE BUFFER.
SUBSTITUTE Examines and modifies buffer data.
LOAD DATA Loads a section of the buffer with a constant.
VERIFY Verifies data in the PROM with buffer data.

~ ..
FORMATTING GROUP REARRANGES DATA FROM THE PROM, BUFFER, OR FILE.

FORMAT Formats and interleaves buffer, PROM, or file data.

COPY GROUP COPIES DATA FROM ONE DEVICE TO ANOTHER.
COPY (file to PROM) Programs the PROM with data in a file on disk.
COPY (PROM to file) Saves PROM data in a file on disk.
COPY (buffer to PROM) Programs the PROM with data from the buffer.
COpy (PROM to buffer) Loads the buffer with data in the PROM.
COPY (buffer to file) Saves the contents of the buffer in a file on disk.
COpy (file to buffer) Loads the buffer from a file on disk.
COPY (file to URAM) Loads file data into the iUP RAM (iUP-201 A model only).
COPY (URAM to file) Saves iUP URAM data in a file on disk (iUP-201 A model only).
COPY (buffer to URAM) Loads the buffer into the iUP URAM (iUP-201 A model only).
COpy (URAM to buffer) Loads iUP URAM data into the buffer (iUP-201 A model only).

SECURITY GROUP LOCKS SELECTED DEVICES TO PREVENT UNAUTHORIZED
ACCESS.

KEYLOCK Locks the PROM from unauthorized access.

6-1020 Order Number: 210319-003

iUP 200A/iUP 201 A

System Expansion

The iUP-200A universal programmer can be
easily upgraded (by the user) to an iUP-201 A
universal programmer for off-line operation. The
upgrade kit (jUP-PAK-A) is available from Intel
or yourlocallntel distributor.

Off-line System

The iUP-201 A universal programmer has all the
on-line features of the iUP-200A universal pro­
grammer plus off-line editing, PROM
duplication, program verification, and locking of
PROM memory independent of the host system.
The iUP-201A universal programmer also ac­
cepts Intel hexadecimal programs developed on
non-Intel development systems. Just a few key­
strokes download the program into the iUP RAM
for editing and loading into a PROM.

I frup READY

Ii. COMMAND

Off-line commands are entered using the off-line
command keys summarized in Table 2.-

In addition to the hardware components included
as part of the iUP-200A, the iUP-201 A contains
a 24-character alphanumeric display, full hexa­
decimal 12-function keypad, and 32K bytes of
iUP RAM. Figure 3 illustrates the iUP-201 A key­
board and display.

The two logical devices accessible during off­
line operation are the PROM device and the iUP
RAM. A typical operation is copying the data
from a PROM (or ROM) into the iUP RAM, modify­
ing this data in iUP RAM, and programming the
modified data back into a PROM device. The ad­
dress range of the iUP RAM is automatically
determined by the universal programmer when
PROM type selection is made. Figure 4 shows
the off-line system data flow.

000000

ADDRESS I DATA

ss

--~-- _________ ~~---------_--------~~--L-~­
.-~-----------,.----,--.--

D·~ , T
; E

I R

© POWER

Figure 3 iUP-201 A Keyboard and Display

6-1021

0157

Order Number: 210319-003

Key

~: ON
: .LlNE
: ,

: DEVICE
: SELECT

p
~

B
[!]: ROM
: TO

:~~~.

B
E
N
T
E

"

B:· [!]:.
: SHIFT : ADDR · . 0
~ ~
----B:· [!]:
: SHIFT : DATA · . 1
i ,....... ,~

Bm : SHIFT : FILL · . 2
~ ;

B·· ffi · .
: SHIFT : LOAD · . 3
~ ::
~----

SrI]

iUP 200A/iUP 201 A

Table 2 Off-Line Command Keys Summary

Function

Selects either on-line or off-line operation. When on-line, all other function keys
are disabled.

Selects the PROM type when using a personality module able to program
multiple PROM devices.

Verifies the contents of the installed PROM device with the contents of the iUP
RAM. The universal programmer display indicates the address and the XOR of
any mismatches.

Performs (I device blank check and then programs the target PROM with data
from the iUP RAM. If the blank check fails, pressing PROG again performs an
overlay check to verify that non-blank PROMs can be programmed.

Loads the iUP RAM with the data from the PROM device installed in the
personality module.

Terminates the current off-line function, clears a user entry, or restores the
display after an error.

Transfers information from the universal programmer display (addresses, data,
or baud rate) into the iUP RAM.

Selects an address field for display.

Selects a data field for keypad editing and entry.

Loads a contiguous section of iUP RAM locations with a constant.

Downloads Intel hexadecimal data from any development system which has an
RS-232C port.

Locks a PROM from unauthorized access.

6-1022 Order Number: 21 0319~003

iUP 200A/iUP 201 A

UNIVERSAL PROGRAMMER (lUP·201 A)

PERSONALITY /' UNIVERSAL
,

-----1 PROGRAMMER I-MODULE
IUp·201 A

FIRMWARE URAM
PROM I
DEVICE(S)

~ (MANUAL FRONT I---
'- PANEL CONTROL) ./

RS·232 INTERFACE

HOST
SYSTEM
(OPTIONAL)

0027

Figure 4 Off· Line System Data Flow

SYSTEM DIAGNOSTICS

Both the iUp·200A and iUP-201A universal pro­
grammers include self-contained system diag­
nostics that verify system operation and aid the
user in fault isolation. Diagnostics are performed
on the power supply, CPU internal firmware
ROM, internal RAM, timer, the iUP-201A
keyboard, and the iUP RAM. In addition, tests
are made on any personality module installed in
the programmer the first time the module is
accessed. The personality module tests include
the power select circuitry and up to 4K of
module firmware. Straight-forward messages
are provided on the development system display
in on-line mode and on the iUP-201 A display in
off-line mode.

PERSONALITY MODULES

A personality module is the interface between
the iUP-200A/iUP-201A universal programmer
(or an iPDS system) and a selected PROM (or
ROM). Personality modules contain all the hard­
ware and firmware for reading and programming
a family of Intel devices. Each personality
module is a single molded unit inserted into the
front panel of the universal programmer. No addi­
tional adapters or sockets are needed. Table 3
lists the available personality modules.

Each personal'ity module connects to the univer­
sal programmer through a 41-pin connector.
Module firmware is uploaded into the iUP RAM
and executed by the internal 8085A processor.

Table 3 iUP Personality Modules

Personality Module PROM Type PROMs and ROMs Supported

iUP-Fast 27/K EPROM 2764,2764A,27128,27256
iUP-F27/128 E2/EPROM 2716,2732,2732A,2764,27128,2815,2816
iUP-F87 151 A Microcontroller 8748, 8748H, 8048, 8749H, 8048H, 8049, 8049H,

8050H,8751,8751H,8051
iUP-F87/44A Peripheral 8741A,8041A,8742,8042,8744H,8044AH,8755A

6-1023 Order Number: 210319-003

inter iUP 200A/iUP 201 A

The personality module firmware contains rou­
tines necessary to read and program a family of
PROMs. In addition, the personality module
sends specific information about the selected
PROM to the universal programmer to help per­
form PROM device integrity checks.

LEOs on each personality module indicate
operational status. On some personality
modules a column of LEOs indicate which PROM
device type the user has selected. On .some per­
sonality modules an LEO below the socket indi­
cates which socket is to be used. A red indicator
light tells the user when power is Qeing supplied
to the selected device. Figure 5 shOwS the per­
sonality mod ules ~supported on the universal
programmer.

In addition to the testing done by the iUP system
self-tests, each personality module contains di­
agnostic firmware that performs selected PROM

tests and indicates status. These tests are per­
formed in both on-line and off-line modes. The
PROM installation test verifies that the device is
installed in the module correctly and that the ZIF
socket is closed. The PROM blank check deter­
mines whether a device is blank. The universal
programmer automatically determines whether
the blank state is all zeros or all ones. The over­
lay check (performed when a PROM is not
blank) determines which bits are programmed,
compares those bits against the program to be
loaded, and allows programming to continue if
they match. As with the system self-tests,
straight-forward messages are provided. The
user can invoke all of the PROM device integrity
checks except the installation test (which
occurs automatically any time an operation is
selected).

Figure 6 illustrates a typical testing sequence.

-
., :--, \~ ".

' ' "

Figure 5 Personality Modules

6-1024 Order Number: 210319-003

iUP 200A/iUP 201 A

PERFORM
BLANK CHECK

YES

PROGRAM
A

LOCATION

PERFORM
VERIFY

NO

PERFORM
OVERLAY

CHECK

Figure 6 PROM Testing Sequence

6-1025

DISPLAY
MESSAGE

Order Number: 210319-003

iUP 200A/iUP 201 A

iUP·200A/iUP·201 A SPECIFICATIONS

Control Processor
Intel 8085A microprocessor
6.144 MHz clock rate

Memory
RAM - 4.3 bytes static
ROM - 12K bytes EPROM

Interfaces
Keyboard - 16-character hexadecimal and 12-
function keypad (iUP-201 A model only)
Display 24-character alphanumeric
(iUP-201A model only)

Software
Monitor - system controller in pre-programmed
EPROM
iPPS -Intel PROM programming software on
supplied diskette

Physical Characteristics
Depth - 15 inches (38.1 cm)
Width ~ 15 inches (38.1 cm)
Height - 6 inches (15.2 cm)
Weight - 15 pounds (6.9 kg)

Electrical Characteristics
Selectable 100, 120, 200, or 240 Vac ± 10%;
50-60 Hz
Maximum power consumption - 80 watts

Environmental Characteristics
Reading temperature - 10°C to 40°C
Programming temperature - 25°C ± 5°
Operating humidity - 10% to 85% relative
humidity

Reference Material
164852 - iUP-200A1201A Universal Program­

mer User's Guide.

ORDERING INFORMATION

Part number

iUP-200A

iUP-201A

Description

Intel on-line universal
programmer

Intelon-line/off-line
universal programmer

164861 - iPPS PROM Programming Software
User's Guide.

164853 - iPPS PROM Programming Soft­
wareliUP-200A1201A Universal Pro­
grammer Pocket Reference.

PERSONALITY MODULE
SPECIFICA TIONS

Memory
EPROM - up to 4K bytes

Physical Characteristics
Width - 5.5 inches (1.4 cm)
Height - 1.6 inches (4.1 cm)
Depth - 7.0 inches (17.8 cm)
Weight - 1 pound (.45 kg)

Electrical Characteristics
Maximum power consumption (module) - 7.5
watts
Maximum power consumption (device) - 2.5
watts
Maximum power consumption (total from iUP) -
10watts

Environmental Characteristics
Reading temperature - 10°C to 40°C
Programming temperature - 25°C ± 5°
Operating humidity - 10% to 85% relative
humidity

Reference Material
Appropriate personality module user's guide:

164376 - iUP-Fast 271K Personality Module
User's Guide.

162848 IUP-F271128 Personality Module
User's Guide.

164855 iUP-F8 7151 A Personality Module
User's Guide.

164853 iUP-F87144A Personality Module
User's Guide.

iUP-Fast 27/K*

iUP-F27/128

6-1026

EPROM personality
module

EPROM and E2PROM
personality module

Order Number: 210319-003

iUP-F87 151 A

iUP-F87/44A

iUP-200/201 U 1
Upgrade Kit

iUP-PAK-A Upgrade
Kit

iUP 200A/iUP 201 A

Microcontrolier
personality module

Peripheral personality
module

Upgrades an
iUP-200/201 universal
programmer to an
iUP-200Al201 A
universal programmer

Upgrades an iUP-200A
universal programmer
to an iUP-201 A
universal programmer

'The iUP-Fast 27/K personality module can be used only with an iUP-200A/201 A universal programmer or an iUP-200
liUP-201 universal programmer upgraded to an A with the iUP-200/201 U1 upgrade kit. If used in an iPDS, this per­
sonality module requires version 1.4 or later of the iPPS-iPDS software. All iPDS-140 units shipped after June 1984
will contain this software.

6-1027 Order Number: 210319-003

Video Display

inter
8275H

PROGRAMMABLE CRT CONTROLLER

• Programmable Screen and Character
Format

• 6 Independent Visual Field Attributes

• 11 Visual Character Attributes
(Graphic Capability)

• Cursor Control (4 Types)

• Light Pen Detection and Registers

• MCS-51®, MCS-85®, iAPX 86, and
iAPX 88 Compatible

• Dual Row Buffers

• Programmable DMA Burst Mode

• Single + 5V Supply

• High Performance HMOS-II

The Intel<l!l 8275H Programmable CRT Controller is a single chip device to interface CRT raster scan displays
with Intel<l!l microcomputer systems. It is manufactured on Intel's advanced HMOS-II process. Its primary
function is to refresh the display by buffering the information from main memory and keeping track of the
display position of the screen. The flexibility designed in the 8275H will allow simple interface to almost any
raster scan CRT display with a minimum of external hardware and software overhead.

CCLK

LC3 vce
LC2 LAO

LCl LAl

OBO_7 CCO_6 LCo LTEN

ORO RVV

DACK VSP

HRTC GPAl

VRTC GPAO

AD HLGT

ORO LCO_J
WR IRO

DACK LPEN eCLK

IRO DBa eC6

DBl CCs

iID
DB2 ee4

DB3 CC3
WIi LAO_l

DB4 CC2 HRTe
VRTe DBS CCl HLGT
RVV DB6 CCo
LTEN
VSP DB7 cs os GPAO_l

AO GND

LPEN

Figure 1_ Block Diagram Figure 2. Pin Configuration

Inlel Corporation Assumes No Responsibilty for the Use of Any Circuitry Other Than Circuitry Embodied in an Inlel Product. No Other Circuit Palent Licenses a7e Implied.
~INTEL CORPORATION, 1984 7-1 SEPTEMBER 1984

210464-002

intel' 8275H

Table 1, Pin Descriptions

Pin Pin
Symbol No. Type Name and Function Symbol No. Type Name and Function

LC3 1 0 Line Count: Output from the line count· Vcc 40 +5V Power Supply.
LC2 2 er which is used to address the charac·
LC, 3 ter generator for the line positions on the
LCo 4 screen.

LAo 39 0 Line Attribute Codes: These attribute
LA, 38 codes have to be decoded externally by

the dot/timing logic to generate the
ORO 5 0 DMA Request: Output signal to the horizontal and, vertical line combina-

8257 DMA controller requesting a DMA tions for the graphic displays specified
cycle. by the character attribute codes.

DACK 6 I DMA Acknowledge: Input signal from
the 8257H DMA controller acknowledg-

LTEN 37 0 Light Enable: Output signal used to
enable the video signal to'the·CRT. This

ing that the requested DMA cycle has output is active at the programmed
been granted. underline cursor position, and at posi·

HRTC 7 0 Horizontal Retrace: Output signal tions specified by attribute codes.

which is active during the programmed RVV 36 0 Reverse Video: Output signal used to
horizontal retrace interval. During this indicate the CRT circuitry to reverse the
period the VSP output is high and the video signal. This output is active at the
L TEN output is low. cursor position if a reverse video block

VRTC 8 0 Vertical Retrace: Output signal which
is active during the programmed
vertical retrace interval. During' this

cursor is programmed or at the posi·
tions specified by the field attribute
codes.

period the VSP output is high and the VSP 35 0 Video Suppression: Output signal
L TEN output is low. used to blank the video signal to the

RD 9 I Read Input: A control signal to read CRT. This output is active:

registers. -during the horizontal and vertical re-

WR 10 I Write Input: A control signal to write
commands into the control registers or
write data into the row buffers during a
DMA cycle.

LPEN 11 I Light Pen: Input Signal from the CRT
system signifying that a light pen signal
has been detected.

trace intervals.
-at the top and bottom lines of rows if

underline is programmed to be num·
ber 8 or greater.

-when an end of row or end of screen
code is detected.

-when a DMA underrun occurs.

DBo 12 I/O BI·Dlrectional Three·State 'Data Bus
DB, 13 Lines: The outputs are enabled during
DB2 14 a read of the C or P ports.
DB3 15
DB, 16
DBs 17
DB. 18

-at regular int!,!rvals (1/16 frame fre-
quency for cursor, 1/32 frame fre-
quency for character and, field attri-
butes)-to create blinking displays as
specified by cursor, character attri-
bute, or field attribute programming.

GPA, 34 0 General Purpose Attribute Codes:

DB7 19 GPAo 33 Outputs which are enabled by the gen-

Ground 20 Ground.
eral purpose field attribute codes.

HLGT 32 0 Highlight: Output signal used to inten-
sify the display at particular positions on
the screen as specified by the character
attribute codes or field attribute codes.

IRO 31 0 Interrupt Request.

CCLK 30 I Character Clock (from dol/timing logic),

CC. 29 0 Character Codes: Output from the
CCs 28 row buffers used for character selection
CC, 27 in the character generator.
CC3 26
CC2 25
CC, 24
CCo 23

CS 22 I Chip Select: The read and write are en-
abled by CS.

Ao 21 I Port Address: A high input on Ao
selects the "c" port or command regis-
ters and a low input selects the "P"
port or parameter registers.

7-2 210464-002

8275H

FUNCTIONAL DESCRIPTION

Data Bus Buffer

This 3-state, bidirectional, 8-bit buffer is used to interface the
8275H to the system Data Bus.

This functional block accepts inputs from the System Con­
trol Bus and generates control signals for overall device
operation. It contains the Command, Parameter, and Status
Registers that store the various control formats for the
device functional definition.

AO OPERATION REGISTER

0 Read PREG

0 Write PREG

1 Read SREG

1 Write CREG

0 1 0 0 Write 8275H Parameter
0 0 1 0 Read 8275H Parameter
1 1 0 0 Write 8275H Command
1 0 1 0 Read 8275H Status
X 1 1 0 Three-State
X X X 1 Th ree-State

RD (Read)

A "low" on this input informs the 8275H that the CPU is
reading data or status information from the 8275H.

WR(Wrlte)
A "low" on this input informs the 8275H that the CPU is
writing data or control words to the 8275H.

7-3

CS (Chip Select)
A "low" on this input selects the 8275H. No reading or writing
will occur unless the device is selected. When CS is high, the
Data Bus in the float state and RD and WRwili have no effect
on the chip.

ORa (DMA Request)

A "high" on this output informs the DMA Controller that the
8275H desires a DMA transfer.

DACK (DMA Acknowledge)

A "low" on this input informs the8275H thata DMAcycle is in
progress.

IRa (Interrupt Request)

A "high" on this output informs the CPU that the 8275H
desires interrupt service.

210464-002

8275H

FUNCTIONAL DESCRIPTION

Character Counter

The Character Counter is a programmable counter that is
used to determine the number of characters to be displayed
per row and the length of the horizontal retrace interval. It
is driven by the CCLK (Character Clock) input, which
should be a derivative of the external dot clock.

Line Counter
The Line Counter is a programmable counter that is used to
determine the number of horizontal lines (Sweeps) per
character row. Its outputs are used to address the external
character generator ROM.

Row Counter

The Row Counter is a programmable counter that is used to
determine the number of character rows to be displayed per
frame and length of the vertical retrace interval.

Light Pen Registers

The Light Pen Registers are two registers that store the con·
tents of the character counter and the row counter when·
ever there is a rising edge on the LPEN (Light Pen) input.

Note: Software correction is required.

Raster Timing and Video Controls

The Raster Timing circuitry controls the timing of the
HRTC (Horizontal Retrace) and VRTC (Vertical Retrace)
outputs. The Video Control circuitry controls the genera·
tion of LAO_l (Line Attribute), HGLT (Highlight), RVV
(Reverse Video), LTEN (Light Enable), VSP (Video Sup·
press), and GPAO_l (General Purpose Attribute) outputs.

Row Buffers
The Row Buffers are two 80 character buffers. They are
filled from the microcomputer system memory with the
character codes to be displayed. While one row buffer is
displaying a row of characters, the other is being filled with
the next row of characters.

OBO_7
DATA
BUS

BUFFER

DRa ___ -.,

OACK

IRa

WR_

AO-

READI
WRITE/

CO~~~OL W
LOGIC

CCLK

CC0-6

LCO_3

LAO_1

HATe
VAle
HLGT
RVV
LTEN
VSP

GPAO_1

LPEN

Figure 3. 8275H Block Diagram Showing Counter
and Register Functions

FIFOs
There are two 16 character FIFOs in the 8275H. They are
used to provide extra row buffer length in the Transparent
Attribute Mode (see Detailed Operation section).

Buffer Input/Output Controllers

The Buffer I nput/Output Controllers decode the characters
being placed in the row buffers. If the character is a charac·
ter attribute, field attribute or special code, these can·
trollers control the appropriate action. (Examples: An
"End of Screen-Stop DMA" special code will cause the
Buffer Input Controller to stop further DMA requests. A
"Highlight" field attribute will cause the Buffer Output
Controller to activate the HGLT output.)

7-4 210464-002

8275H

SYSTEM OPERATION

The 8275H is programmable to a large number of different
display formats. It provides raster timing, display row
buffering, visual attribute decoding, cursor timing, and light
pen detection.

It is designed to interface with the 8257 DMA Controller
and standard character generator ROMs for dot matrix
decoding. Dot level timing must be provided by external
circuitry.

MEMORIES

If
SYSTEM BUS (

OBO_7
II'fE'M'f! AO
lOW DBO_7
MEMW WR
lOR RJj
CS CS
HRa IRa
HACK

DRa LCO_3
8257 VIDEO SIGNAL
DMA CHARACTER

CONTROLLER DACK GENERATOR

8275H CCO_6
HORIZONTAL SYNC

CRT DOT

CONTROLLER TIMING VERTICAL SYNC
CCLK AND

INTERFACE
INTENSITY

VIDEO CONTROLS

Figure 4. 8275H Systems Block Diagram Showing Systems Operation

7-5 210464-002

8275H

General Systems Operational Description

The 8275H provides a "window" into the microcomputer
system memory.

The number of lines per character row, the underline
position, and blanking of top and bottom lines are program­
mable. (See Programming Section.)

Display characters are retrieved from memory and displayed
on a row by row basis. The 8275H has two row buffers. While
one row buffer is being used for display, the other is being
filled with the next row of characters to be displayed. The
number of display characters per row and the number of
character rows per frame are software programmable,
providing easy intetfaceto most CRT displays. (See Program­
ming Section.)

The 8275H provides special Control Codes which can be
used to minimize DMA or software overhead. It also provides
Visual Attribute Codes to cause special action or symbols on
the screen without the use of the character generator (See
Visual Attributes Section).

The 8275H also controls raster timing. This is done by
generating Horizontal Retrace (HRTC) and Vertical Retrace
(VRTC) signals. The timing of these signals is programmable.

The 8275H requests DMA to fill the row buffer that is not
being used for display. DMA burst length and spacing is
programmable. (See Programming Section.)

The 8275H can generate a cursor. Cursor location and
format are programmable. (See Programming Section.)

The 8275H displays character rows one line at a time. The 8275H has a light pen input and registers. The light pen
input is used to load the registers. Light pen registers can be
read on command. (See Programming Section.)

1st 2nd 3,d 4th 5th 6th 7th
Character Character Character Character Character Character Character -------------­OO •••• ODO.OODO.OO ••••• OOOODODDO •••• OOOO ••• ODo.noo.o

First Line of a Character Row

1st 2nd 3,d 4th 5th 6th 7th
Character Character Character Character Character Character Character --------------00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0

0.0000_00 •• 000_00.0000000000000_000.00.000.00_000.0

Second Line of a Character Row

1st 2nd 3,d 4th 5th 6th 7th
Character Character Character Character Character Character Character --------------00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0

0.0000.00 •• 000_00_0000000000000.000.00.000.00.000.0
0.0000.00.0000.00.0000000000000.000.00.000.00.000.0

Third Line of a Character Row

1st 2nd 3,d 4th 5th 6th 7th
Character Character Character Character Character Character Character --------------00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0

0.0000.00 •• 000.00_0000000000000.000.00.000_00.000.0
0.0000.00.0.00.00.0000000000000.000.00.000.00.000.0
0.0000.00.0000.00 •••• 0000000000 •••• 000.000.00.0.0.0
0_0000_00.00.0.00_0000000000000.0.0000.000.00.0.0_0
0.0000.00.000_.00.0000000000000.00.000.000.00.0_0.0
00 •••• 000.0000.00 ••••• OODOODODO. 0 O. DODD ••• 0000.0. 00

Seventh Line of a Character Row

Figure 5. Display of a Character Row

7-6 210464-002

8275H

Display Row Buffering
Before the start of a frame, the 8275H requests DMA and one
row buffer is filled with characters.

CCLK

CCO_6

LCO_J

LAO_l

HATe
VRle
HLGT
RVV
LTEN
vsp
GPAO_l

LPEN

Figure 6. First Row Buffer Filled

When the first horizontal sweep is started, character codes
are output to the character generator from the row buffer
just filled. Simultaneously, DMA begins filling the other
row buffer with the next row' of characters.

DRa ____ ~

OACK~

IRO--, ,

AD READI
WRITEI

WR - ca~~;oL CJ
AO-- LOGIC

CCLK

ceO_6

LCO_3

LAO_l

HATe
VRTe
HLGT
Rliv
LTEN
vsp

.,..-----,r~ GPAO_l

LPEN

Figure 7. Second Buffer Filled, First Row
Displayed

7-7

After all the lines of the character row are scanned, the
roles of the two row buffers are reversed and the same
procedure is followed for the next row.

080_7

ORa

OACK

IRa

AD

WR

cs-----.J

CCLK

ceo_a

LCO_3

LAO_l

HRTe
VRle
HLGT
RVV
LTEN
vsp

I.,------,r GPAO_l

LPEN

Figure 8. First Buffer Filled with Third Row,
Second Row Displayed

This is repeated until all of the character rows are dis­
played.

210464-002

intJ 8275H

Display Format

Screen Format

The 8275H can be programmed to generate from 1 to 80
characters per row, and from 1 to 64 rows per frame.

123456789 80
2
3
4
5
6
7
8
9

64

Figure 9. Screen Format

The 8275H can also be programmed to blank alternate rows.
In this mode the first row is displayed, the second blanked,
the third displayed, etc. DMA is not requested for the
blanked rows.

123456789. 80

2

3

4

5

64

Figure 10. Blank Alternate Rows Mode

7-8

Row Format

The 8275H is designed to hold the line count stable while
outputting the appropriate character codes during each
horizontal sweep. The line count Is incremented during
horizontal retrace and the whole row of character codes are
output again during the next sweep. This is continued until
the whole character row is displayed.

The number of lines (horizontal sweeps) per character row
is programmable from 1 to 16.

The output of the line counter can be programmed to be in
one of two modes.

In mode 0, the output of the line counter is the same as the
line number.

In mode 1, the line counter is offset by one from the line
number.

Note: In mode ". while the first line (line number 0) is being dis·
played, the last count is output bV the line counter bee
examples).

Line Line
Line Counter Counter

Number Mode 0 Mode'

0 0 0 0 0 0 0 0 0 0 0000 1 1 1 1
1 0 0 0 0 • 0 0 0 0 0001 0000
2 0 0 0 • 0 • 0 0 0 0010 0001
3 0 0 • 0 0 0 • 0 0 001 1 0010
4 0 • 0 0 0 0 0 • 0 0100 0011
5 0 • 0 0 0 0 0 • 0 0101 0100
6 0 • • • • • • • 0 0110 0101
7 0 • 0 0 0 0 0 • 0 01 1 1 0110
8 0 • 0 0 0 0 o • 0 1000 01 1 1
9 0 • 0 0 0 0 0 • 0 1001 1000

10 0 0 0 0 0 0 0 0 0 rOl0 1001
11 0 0 0 0 0 0 0 0 0 1011 1010
12 0 0 0 0 0 0 0 0 0 1100 101 1
13 0 0 0 0 0 0 0 0 0 1101 1100
14 0 0 0 0 0 0 0 0 0 1110 1 101
15 0 0 0 0 0 0 0 0 0 1 1 1 1 1110

Figure 11. Example of a 16-Llne Format

Line Lin.
Line Counter Counter

Number Mode 0 Mode'

0 0 0 0 0 0 0 0 0000 1001
0 0 0 • 0 0 0 0001 0000

2 0 0 • 0 • 0 0 0010 0001
3 0 • 0 0 0 • 0 0011 0010
4 0 • 0 0 0 • 0 0100 001 1
5 0 • • • • • 0 0101 0100
6 0 • 0 0 0 • 0 01 10 01 01
7 0 • 0 0 0 • 0 01 1 1 01 1 0
8 0 0 0 0 0 0 0 1000 01 1 1
9 0 0 0 0 0 0 0 1001 1000

Figure 12. Example of a10-Llne Format

Mode 0 is useful for character generators that leave address
zero blank and start at address 1. Mode 1 is useful for char­
acter generators which start at address zero.

210464-002

8275H

Underline placement is also programmable (from line num­
ber 0 to 15). This is independent of the line counter mode.

If the line number of the underline is greater than 7 (line
number MSB = 1), then the top and bottom lines will be
blanked.

Line Line
line Counter Counter

Number Mode 0 Mode 1

0 0 0 0 0 0 0 0 0 0 0000 1011
1 0 0 0 0 • 0 0 0 0 0001 0000
2 0 0 0 • 0 • 0 0 0 0010 0001
3 0 0 • 0 0 0 • 0 0 0011 0010
4 0 • 0 0 0 0 0 • 0 0100 0011
5 0 • 0 0 0 0 0 • 0 0101 0100
6 o • • • • • • • 0 0110 0101
7 0 • 0 0 0 0 0 • 0 0111 0110
8 0 • 0 0 0 0 0 • 0 1000 0111
9 0 • 0 0 0 0 0 • 0 1001 1000

10 • • • • • • • • • '1010 1001
11 0 0 0 0 0 0 0 0 0 1011 1010

Top and .Bottom
Lines are Blanked

Figure 13. Underline In Line Number 10

If the line number of the underline is less than or equal to 7
(line number MSB ,; 0), then the top and bottom lines will
not be blanked.

Line
Number

0

2
3
4
5
6

0 0 0 • 0 0 0

0 0 • 0 • 0 0

0 • 0 0 0 • 0

0 • 0 0 0 • 0

0 • • • • • 0

0 • 0 0 0 • 0

o • 0 0 0 • 0

• • • • • • •
Top and Bottom
Lines are not Blanked

Line Line
Counter Counter
Mode 0 Mode 1

0000 0111
0001 0000
0010 0001
0011 0010
0100 0011
0101 0100
0110 0101
0111 0110

Figure 14. Underline In Line Number 7

If the line number of the underline is greater than the maxi­
mum number of lines, the underline will not appear.

Blanking is accomplished by the VSP (Video Suppression)
signal. Underline is accomplished by the L TEN (Light
Enable) signal.

7-9

Dot Format

Dot width .and character width are dependent upon the
external timing and control circuitry.

Dot level timing circuitry should be designed to accept the
parallel output of the character generator and shift it out
serially at the rate required by the CRT display.

VIDEO

Figure 15. Typical Dot Level Block Diagram

Dot width is a function of dot clock frequency.

Character width is a function of the 'character generator
width.

Horizontal character' spacing is a function of the shift
register length.
Nota: Video control and timing signals must be synchronized with

the video signal due to the character generator access delay.

210464-002

inter 8275H

Raster Timing
The character counter is driven by the character clock input
(CCLK). It counts out the characters being displayed
(programmable from 1 to 80). It then causes the line
coun,er to increment, and it 'starts counting out the hori­
zontal retrace interval (programmable from 2 to 32). This
is constantly repeated.

CCLKL
HRTC - •

\----11

PROGRAMMABLE 1 TO 80 CCLKS

LCI).3 ____ PR_E_SE_N_T _L'_NE_CO_UN_T __ -J
NEXT .

LINE COUNT

Figure 16. LIne Timing

The line 'counter is driven by the character counter. It is
used to generate the line address outputs (LCO_3) for the
character generator. After it counts all of the lines in a
character row (programmable from 1 to 16). it increments
the row counter, and starts over again. (See Character For·
mat Section for detailed description of Line Counter
functions.)

7-10

The row counter is -an internal counter driven by the line
counter. It controls the functions of the row buffers and
counts the number of character rows displayed.

ONE CHARACTER ROW . . .
HRTe --u-LJU-U-

. -~f1CX
~"o':~~~~TER~~ . ,

PROGRAMMXBLE 1 TO 16
LINE COUNTS

Figure 17. Row Timing

After the row counter counts all of the rows in a frame
(programmable from 1 to 64), it starts counting out the
vertical retrace interval (programmable from 1 to 4).

ONE fRAME .
ROW'~~~~~~~ Jcx:xx:x2<:XXx

FIRST LAST FIRST LAST
DISPLAV DISPLAY RETRACE RETRACE

ROW .Rqw' RO~ ROW

T
PROGRAMMABLE

1 TO 64 ROW COUNTS

i
PROGRAMMABLE

1 TO 4 ROW COUNTS

Figure 18. Frame Timing -

The Video Suppression Output (VSP) is active during
horizontal and vertical retrace intervals.

Dot level timing circuitry must synchronize these outputs
with the viqeo signal to the CRT Display.

210464-002

8275H

. DMA Timing

The 8275H can be programmed to request burst DMA
transfers of 1 to 8 characters. The interval between bursts is
also programmable (from 0 to 55 character clock periods
±1). This allows the user totailor his DMA overhead to fit his
system needs.

The first DMA request of the frame occurs one row time
before the end of vertical retrace. DMA requests continue as
programmed, until the row buffer is filled. If the row buffer is
filled in the middle of a burst, the 8275H terminates the burst
and resets the burst counter. No more DMA requests will
occur until the beginning of the next row. At that time, DMA
requests are activated as programmed until the other buffer
is filled.

The first DMA request for a row will start at the first char·
acter clock of the preceding row. If the burst mode is used,
the first DMA request may occur a number of character
clocks later. This number is equal to the programmed burst
space.

If, for any reason, there is a DMA underrun, a flag in the
status word will be set.

INHAN~l

"'. COUNTER
LAST IUIAACE ROW X. fiRST DISPLAV ROW

\
\\~ 1---

__ ~t:::-\..Jv\.J\

'" ROW BUFFER
FILLED

Figure 19. DMA Timing

NEXT
ROWBUFHR

fiLLED

The DMA controller is typically initialized for the next
frame at the end of the current frame.

Interrupt Timing

The 8275H can be programmed to generate an interrupt
request at the end of each frame. This can be used to
reinitialize the DMA controller. If the 8275H interrupt enable
flag is set, an interrupt request will occur at the beginning of
the last display row.

INTEANAL~
ROW

COUNTER

VRTe ~\-__ ~_.J

IRO

Figure 20. Beginning of Interrupt Request

I RQ will go inactive after the status register is read.

Figure 21. End of Interrupt Request

A reset command will also cause IRQ to go inactive, but this
is not recommended during normal service.

Another method of reinitializing the DMA controller is to
have the DMA controller itself interrupt on terminal count.
With this method, the 8275H interrupt enable flag should not
be set.

Note: Upon power-up, the 8275H Interrupt Enable Flag may be set. As a
result, the user's cold start routine should write a reset command to
the 8275H before system interrupts are enabled.

210464-002

8275H

VISUAL ATTRIBUTES AND SPECIAL
CODES

The characters processed by the 8275H are 8-bit quantities.
The character code outputs provide the character generator
with 7 bits of address. The Most Significant Bit is the extra bit
and it is used to determine if it is a normal display character
(MSB = 0), or if It is a Visual Attribute or Special Code
(MSB = 1).

. There are two types of Visual Attribute Codes. They are
Character Attributes and Field Attributes.

HOR1Z, RIGHT
HALF

Chlilracter Attribute Codes
Character attribute code.s are codes that can be used to gen­
erate graphics symbols without the use of a character
generator. Th is is accomplished by selectively activating the
Line Attribute outputs (LAO_1), the Video Suppression
output (VSP), and the Light Enable output. The dot level
timing circuitry can use these signals to generate the proper
svmbols.

Character attributes can be programmed to blink or be
highlighted individually. Blinking is accomplished with the
Video Suppression output (VSP). Blink frequency is equal
to the screen refresh frequency divided by 32. Highlighting
is accomplished by activating the Highlight output (HG L T).

Character Attributes

MSB LSB
1 1 C C C C B H

I I L HIGHLIGHT
BLINK

L.-----CHARACTER ATTRIBUTE CODE

ool------I ~....t:====D
CHAR, GEN.

8275

LAl

LAO

VSP

lTEN

HalT

ENA8LE

oll--=~t---; ~-+====D
o,~---~t:=i~~~~::::::::~:>

CHARACTER

GENERATOR, -----I--;~\-~~:::::j:==F~f"") ~~,~ 03r

HORIZ. LEFT HALF

PIPELINE

SHIFT
REGISTER

Figure 22. Typical Character Attribute Logic

7-12

VIDEO

210464-002

8275H

Table 2. Character Attributes
Character attributes were designed to produce the following graphics:

CHARACTER ATTRIBUTE OUTPUTS
SYMBOL

CODE "CCCC" LA1 LAo VSP LTEN

Above Underl ine 0 0 1 0

0000 Underline 1 0 0 0 I Below Underline 0 1 0 0
Above Underline 0 0 1 0

0001 Underline 1 1 0 0 I Below Underline 0 1 0 0
Above Underline 0 1 0 0 L 0010 Underline 1 0 0 0
Below Underline 0 0 .1 0
Above Underline 0 1 0 0 ..--J 0011 Underline 1 1 0 0
Below Underline 0 0 1 0
Above Underline 0 0 1 0

0100 Underline 0 0 0 1 -r-Below Underline 0 1 0 0
Above Underline 0 1 0 0

-1 0101 Underline 1 1 0 0
Below Underline 0 1 0 0
Above Underline 0 1 0 0 r-0110 Underline 1 0 0 0
Below Underline

,
0 1 0 0 :

Above Underline 0 1 0 0
~ 0111 Underline 0 0 0 1

Below Underline 0 0 1 0
Above Underl ine 0 0 1 0

1000 Underline 0 0 0 1 ---
Below Underline 0 0 1 0
Above Underline 0 1 0 0

I 1001 Underline 0 1 0 0
Below Underline 0 1 0 0
Above Underline I 0 1 0 0 + 1010 Underline 0 0 0 1
Below Underline 0 1 0 0
Above Underline 0 0 0 0

1011 Underline 0 0 0 0
Below Underl ine 0 0 0 0
Above Underline ! 0 0 1 0

1100 Underline 0 0 1 0

~Ol
Below Underline 0 0 1 0
Above Underline

Underline I Undefined
I

Below Underline I I
Above Underline I

1110 Underline Undefined
Below Underline I
Above Underline

Iund~fined 1111 Underline
Below Underline

DESCRIPTION

Top Left Corner

Top Right Corner

Bottom Left Corner

Bottom Right Corner

Top Intersect

Right Intersect

Left Intersect

Bottom Intersect

Horizontal Line

Vertical Line

Crossed Li nes

Not Recommended *

Special Codes

Illegal

Illegal

Illegal

'Character Attribute Code 1011 is not recommended for
normal operation. Since none of the attribute outputs are
active, the character Generator will not be disabled, and
an indeterminate character will be generated.

Character Attribute Codes 1101, 1110, and 1111 are illegal.

Blinking is active when B = 1.

Highlight is active when H = 1.

7-13 210464-002

8275H

Special Codes

Four special codes are available to help reduce memory,
software, or DMA overhead.

Special Control Character

MSB
1 1 1 1

S

0
0

LSB
o 0 S S

~ SPECIAL CONTROL CODE

S FUNCTION

0 End of Row

1 End of Row·Stop DMA

0 End of Screen

End of Screen·Stop DMA

The End of Row Code (00) activates VSP and holds it to
the end of the line.

The End of Row·Stop DMA Code (01) causes the DMA
Control Logic to stop DMA for the rest of the row when it
is written into the Row Buffer. It affects the display in the
sa(l1e way as the End of Row Code (00).

The E~d of Screen Code (10) activates VSP and holds it to
the end of the frame.

The End of Screen·Stop DMA Code (11) causes the DMA
Control Logic to stop DMA for the rest of the frame when
it is written into the Row Buffer. It affects the display in
the same way as the End of Screen Code (10).

If the Stop DMA feature is not used, all characters after an
End of Row .character are ignored, except for the End of
Screen character, which operates normally. All characters
after an End of Screen character are ignored.

Note: If a Stop DMA character is not the last character in a burst or
row, DMA is not stopped until after the next character is
read. In this situation, a dummy character must be placed in
memory after the Stop OMA character.

Field Attributes

The field attributes are control codes which affect the
visual characteristics for a field of characters, starting at the

character following the code up to, and including, the
character which precedes the next field attribute code, or
up to the end of the frame. The field attributes are reset
during the vertical retrace interval.

There are six field attributes:

1. Blink - Characters following the code are caused
to blink by activating the Video Suppression out·
put (VSP). The blink frequency is equal to the
screen refresh frequency divided by 32.

2. Highlight - Characters following the code are
caused to be highlighted by activating the High·
light output (HGLT).

3. Reverse Video - Characters following the code are
caused to appear with reverse video by activating
the Reverse Video output (RVV).

4. Underline - Characters following the code are
caused to be underlined by activating the Light
Enable output (L TEN).

5,6. General Purpose - There are two additional 8275
outputs which act as general purpose, independ·
ently programmable field attributes. GPA(J..1 are
active high outputs.

Field Attribute Code

LSB MSB
1 0

'U

1

RI TG G i L-HIGHLIGHT
L·---BLINK

GENERAL PURPOSE
L. ______ REVERSE VIDEO

'--------UNDERLINE

H = 1 FOR HIGHLIGHTING
B = 1 FOR BLINKING
R = 1 FOR REVERSE VIDEO
U = 1 FOR UNDERLINE

GG = GPA1, GPAO

"More than one attribute can be enabled at the same time.

7-14

If the blinking and reverse video attributes are enabled
simultaneously, only the reversed characters will blink.

210464-002

8275H

The 8275H can be programmed to provide visible or invisible
field attribute characters.

If the 8275H is programmed in the visible field attribute
mode. all field attributes will occupy a position on the screen.
They will appear as blanks caused by activation of the Video
Suppression output (VSP). The chosen visual attributes are
activated after this blanked character.

ABC D E F G H I J K L M
NOPORSTUV

1 2 3 4 5 6 7 8 9

Figure 23. Example of the Visible Field Attribute
Mode (Underline Attribute)

If the 8275H is programmed in the invisible field attribute
mode. the 8275H FIFO is activated.

080_7
DATA
BUS

BUFFER

RD READ!
WRITE!

WR- CO~~~OL W
AO--

LOGIC

ceLK

CCO_6

LCO_3

LAO_l

HATe
vAle
HLGT
RVV
LTEN
VSP
GPAO_l

LPEN

Figure 24. Block Diagram Showing FIFO
Activation

7-15

Each row buffer has a corresponding FIFO. These FIFOs
are 16 characters by 7 bits in size.

When a field attribute is placed in the row buffer during
DMA, the buffer input controller recognizes it and places
the next character in the proper FIFO.

When a field attribute is placed in the Buffer Output Con­
troller during display, it causes the controller to immedi­
ately put a character from the FIFO on the Character Code
outputs (CCo-6i. The chosen Visual Attributes are also
activated.

Since the FIFO is 16 characters long, no more than 16 field
attribute characters may be used per line in this mode.
If more are used, a bit in the status word is set and the first
characters in the FIFO are written over and lost.

Note: Since the FIFO is 7 bits wide, the MSB of any characters put
in it are stripped off. Therefore. a Visual Attribute or Special
Code must not immediately follow a field attribute code. If
this situation does occur, the Visual Attribute or Special
Code will be treated as a normal display character.

ABC D E F G H I J K L M
NOPORSTUV

1 234 5 6 7 8 9

Figure 25. Example of the Invisible Field Attribute
Mode (Underline Attribute)

Field and Character Attribute Interaction

Character Attribute Symbols are affected by the Reverse
Video (RVV) and General Purpose (GPAO_l) field attri·
butes. They are not affected by Underline, Blink or High­
light field attributes; however, these characteristics can be
programmed individually for Character Attribute Symbols.

210464-002

8275H

Cursor Timing

The cursor location is determined by a cursor row register
and a character position register which are loaded by com­
mand to the controller. The cursor can be programmed to
appear on the display as:

1. a blinking underline
2. a blinking reverse video block
3. a non·blinking underline
4. a non·blinking reverse video block

The cursor blinking frequency is equal to the screen refresh
frequency divided by 16.

If a non-blinking reverse video cursor appears in a non­
blinking reverse video field, the cursor will appear as a
normal video block.

If a non-blinking underline cursor appears in a non-blinking
underline field, the cursor will not be visible.

Light Pen Detection

A light pen consists of a micro switch and a tiny light
sensor. When the light pen is pressed against the CRT screen,
the micro switch enables the light sensor. When the raster
sweep reaches the light sensor, it triggers the light pen
output.

If the output of the light pen is presented to the 8275H LPEN
input, the row and character position coordinates are stored
in a pair of registers. These registers can be read on
command. A bit in the status word is set, indicating that the
light pen signal was detected. The LPEN input must be a 0 to
1 transition for proper operation.

Note: Due to internal and external delays, the character position
coordinate will be off by at least three character positions.
This has to be corrected in software.

. Device Programming

7-16

The 8275H has two programming registers, the Command
Register (CREG) and the Parameter Register (PREG). Italso
has a Status Register (SREG). The Command Register can
only be written into and the Status Registers can only be
read from. They are addressed as follows:

AO OPERATION REGISTER

0 Read PREG

0 Write PREG

1 Read SREG

1 Write CREG

The 8275H expects to receive a command and a sequence of
o to 4 parameters, depending on the command. lithe proper
number of parameter bytes are not received before another
command is given, a status flag is set, indicating an improper
command.

INSTRUCTION SET

The 8275H instruction set consists of 8 commands.

COMMAND

Reset

Start Display

Stop Display

Read Light Pen

Load Cursor

Enable Interrupt
Disable Interrupt

Preset Counters

NO. OF PARAMETER BYTES

4

o
o
2
2
o
o
o

In addition, the status of the 8275H (SREG) can be read by
the CPU at any time.

210464-002

8275H

1. Reset Command:
DATA BUS

OPERATION AO DESCRIPTION MSB LSB

Command Write 1 Reset Command a a a a a 0 a a -- .-
Screen Camp

Write a 5 H H H H H H H
Byte 1

Write a Screen Camp
V V R R R R R R

Byte 2
Parameters

Write a Screen Camp U U U U L L L L
Byte 3

Write a Screen Camp M F C C Z Z Z Z
Byte 4

Action - After the reset command IS written, DMA reo
quests stop, 8275 interrupts are disabled, and the VSP
output is used to blank the screen. HRTC and VRTC can·
tinue to run. HRTC and VRTC timing are random on
power·up.

As parameters are written, the screen composition is
defined.

Parameter - S Spaced Rows

S FUNCTIONS

o Normal Rows

Spaced Rows

Parameter - HHHHHHH Horizontal Characters/Row

NO. OF CHARACTERS
H H H H H H H PER ROW

a a a a a a a
a a a a a a 1 2
a a a a a a 3

a a 1 1 1 1 80
a a a a a Undefined

1 1 Undefined

Parameter - VV Vertical Retrace Row Count

V V NO. OF ROW COUNTS PER VRTC

a a
o

a
2

3
4

Parameter - RRRRRR Vertical Rows/Frame
R R R R R R NO. OF ROWS/FRAME

o 0 a 0 a a
a 0 0 a a
o 0 000

64

Parameter - UUUU Underline Placement

LINE NUMBER OF
U U U U UNDERLINE

0 0 0 0 1

a a 0 2

0 0 0

16

Parameter - LLLL

L L L L

Number of Lines per CharaCter Row

NO. OF LINES/ROW

000 a
a a 0
000

16

Parameter - M Line Counter Mode

M LINE COUNTER MODE

o Mode 0 (Non·Offsetl

Mode 1 (Offset by 1 Countl

Parameter - F Field Attribute Mode
F FIELD ATTRIBUTE MODE

o Transparent
Non-Transparent

Parameter - CC
C C

o a
a

o
1

Cursor Format
CURSOR FORMAT

Blinking reverse video block

Blinking underline

Nonblinking reverse video block

Nonblinking underling

Parameter - ZZZZ Horizontal Retrace Count
NO. OF CHARACTER

Z Z Z Z COUNTS PER HATC

a 0 a 0
a a 0 4

0 0 0 6

32

"Note: uuuu MSB determines blan'king of top and bottom lines
(1 = blanked, a = not blanked!.

7-17 210464-002

8275H

2. Start Display Command:

iOPERATION
DATA BUS

Ao DESCRIPTION MSB LSB

Command 1 Write 1 Start 0 isplay 0 0 1 S S S B B

No parameters

SSS BURST SPACE CODE

NO. OF CHARACTER CLOCKS
S S S BETWEEN DMA REQUESTS

0 0 0 0
0 0 1

0 0 15

0 23
0 0 31
0 1 39

0 47
55

BB BURST COUNT CODE

NO. OF DMA CYCLES PER
B B BURST

0 0
0

0 4
8

Action - 8275 interrupts are enabled, DMA requests begin,
video is enabled, Interrupt Enable and Video Enable status
fl ags a re set.

3. Stop Display Command:

iOPERATION
DATA BUS

AO DESCRIPTION MSB LSB

Command I Write 1 Stop Display 0 1 0 0 0 0 0 0

No parameters

Action - Disables video, interrupts remain enabled, H RTC
and VRTC continue to run, Video Enable status flag is
reset, and the "Start Display" command must be given to
re·enable the display.

4. Read Light Pen Command
DATA BUS

OPERATION AO DESCRIPTION MSB LSB

Command Write 1 Read Light Pen 0 1 , 0 0 0 0 0

Parameters
Read 0 Char. Number (Char. Position in Row~

Read 0 Row Number {Row Numbed

Action - The 8275H is conditioned to supply tile contents of
the light pen position registers in the next two read cycles of
the parameter register. Status flags are not affected.

Noto: Software correction of light pen position is required.

5. Load Cursor Position:

DATA BUS
OPERATION AO DESCRIPTION MSB LSB

Command Write 1 Load Cursor 1 0 0 0 0 0 0 0

Parameters
Write 0 Char. Number {Char. Position in Rowl

Write 0 Row Number (Row Numbed

Action - The 8275H is conditioned to place the next two
parameter bytes into the cursor position registers. Status
flags not affected.

7-18

6. Enable Interrupt Command:

10PERATION
DATA BUS

AO OESCRIPTION MSB LSB

Command I Write 1 Enable Interrupt 1 0 1 0 0 0 0 0

No parameters

Action - The interrupt enable status flag is set and inter·
rupts are enabled.

7. Disable Interrupt Command:

I OPERATION
DATA BUS

AO DESCRIPTION MSB LSB

Command! Write 1 Disable Interrupt 1 , 0 0 0 0 0 0

No parameters
- .

Action - Interrupts are disabled and the interrupt enable
status flag is reset.

8. Preset Counters Command:

I OPERATION
DATA BUS

AO DESCRIPTION MSB LSB

Command I Write 1 Preset Counters 1 1 1 0 0 0 0 0

No parameters

Action - The internal timing counters are preset, corre·
sponding to a screen display position at the top left corner.
Two character clocks are required for this operation. The
counters will remain in this state until any other command
is given.

This command is useful for system debug and synchroniza­
tion of clustered CRT displays on a single CPU. After this
command. two additional clock cycles are required before

the first character of the first row is put out.

210464-002

8275H

Status Flags

DATA BUS
MSB LSB

Command OlE IR LP ICVE DU FO

IE - (Interrupt Enable) Set or reset by command. It
enables vertical retrace interrupt. It is auto·
matically set by a "Start Display" command
and reset with the "Reset" command.

IR - (Interrupt Request) This flag is set at the begin·
ning of display of the last row of the. frame if
the interrupt enable flag is set. It is reset after
a status read operation.

LP - This flag is set when the light pen input (LPEN)
is activated and the light pen registers have been
loaded. This flag is automatically reset after a
status read.

7-19

IC - (Improper Command) This flag is set when a
command parameter string is too long or too
short. The flag is automatically reset after a
~tatus read.

VE - (Video Enable) This flag indicates that video
operation of the CRT is enabled. This flag is
set on a "Start Display" command, and reset
on a "Stop Display" or "Reset" command.

DU - (DMA Underrun) This flag is set whenever a
data under run occurs during DMA transfers.
Upon detection of DU, the DMA operation is
stopped and the screen is blanked until after
the vertical retrace interval. This flag is reset
after a status read.

FO - (FIFO Overrun) This flag is set whenever the
FIFO is overrun. It is reset on a status read.

210464-002

8275H

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias o°c to 70°C
Storage Temperature -65°C to +150°C
Voltage On Any Pin

With Respect to Ground -0.5V to +7V
Power Dissipation 1 Watt

'NOTlCE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied.

D.C. CHARACTERISTICS (TA = occ to 70oe, Vee = SV ±S%)

Symbol Parameter Min, Max. Units Test Conditions

VIL Input Low Voltage -0.5 0.8 V

VIH Input High Voltage 2.0 Vee+0.5V V

VOL Output Low Voltage 0.45 V IOL = 2.2 mA

VOH Output High Voltage 2.4 V IOH = -400 /lA

IlL Input Load Current ±10 /lA VIN = Vee to OV

IOFL Output Float Leakage ±10 /lA VOUT = Vee to O.4SV

Icc Vee Supply Current 160 mA

CAPACITANCE (TA = 25°C, Vee = GND = OV)

Symbol Parameter Min. Max. Units Test Conditions

CIN Input Capacitance 10 pF fc=lMHz

CliO I/O Capacitance 20 pF Unmeasured pins returned to Vss.

A.C. CHARACTERISTICS (TA = ooe to 70°C, Vee = S.OV ±5%, GND = OV)

Bus Parameters

READ CYCLE

Symbol Parameter Min. Max. Units
tAR Address Stable Before READ a ns

tRA Address Hold Time for READ a ns

tRR READ Pulse Width 250 ns

tRO Data Delay from READ 200 ns CL

tOF READ to Data Floating 100 ns CL

WRITE CYCLE

Symbol Parameter Min. Max, Units

tAW Address Stable Before WR ITE a ns

tWA Address Hold Time for WR ITE a ns -
tww WR ITE Pulse Width 250 ns

tow Data Setup Time for WR ITE 150 ns

two Data Hold Time for WR.lTE a ns

7-20

Test Conditions

150 pF

1S0 pF

Test Conditions

210464-002

intel 8275H

A.C. CHARACTERISTICS (Continued)

CLOCK TIMING

8275 8275·2

Symbol ~ameter Min. Max. Min. Max. Units Test
Conditions

~-

tCLK Clock Period 480 320 ns

tKH Clock High 240 120 ns

tKL Clock Low 160 120 ns

tKR Clock Rise 5 30 5 30 ns
- --~-----

tKF Clock Fall 5 30 5 30 ns
----- _._----- --

OTHER TIMING

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

INPUT OUTPUT

,4

0.45

2.0 2.0

> TEST POINTS .. ~
$ --...

- O.B 0,6

DEVICE
UNDER

~c TEST

-=
CL INCLUOES JIG CAPACI~ANCE

7-21 210464-002

8275H

WAVEFORMS

TYPICAL DOT LEVEL TIMING

EXT DOT eLK

CCLK-lL. ______ --'

CCO_6

CHARACTER
GENERATOR

FIRST CHARACTER CODe

i
\ r-AOMACCESS-

SECOND CHARACTER CODe

FIRST CHARACTER SECOND CHARACTER OUTPUT ________J '-_____________ J '-_________ _

ATTRIBUTES
& CONTROLS

VIDEO
/FAOM SHIFT

REGISTER}

ATTRIBUTES
81 CONTROLS

{FADM
SYNCHRONIZER)

LINE TIMING

CCO_6

HATe

VIDEO
CONTROLS

AND ATTRIBUTES·

FIRST CHARACTER

ATTRIBUTES & CONTROLS FOR FIRST CHAR.

·ceLK IS A MULTIPLE OF THE DOT CLOCK AND AN INPUT TO THE 8275.

~ ________ ~~ __ -....JA

SECOND CHARACTER

ATTRIBUTES 81 CONTAOLS
FOR 2ND CHAR.

PRESENT LINE COUNT X NEXT LINE COUNT

-LAO_l. VSP, l TEN, HGL T, RVV, GPAo_ 1

7-22 210464-002

8275H

WAVEFORMS (Continued)

ROW TIMING ---'l __ _
---i I~'HR

HRTe

LCO_3

---" PROGRAMMABLE FROM 1 TO 16 LINES ,.- -

J~:~:~i~ ____ /1' ____ PR_'_SE_N_T_R_OW ___ ----\, \-:j ____ ---"~

FRAME TIMING

INTERNAL
ROW

COUNTER

INTERRUPT TIMING

AO

-----\
}------

RD Ir--_____ _

------'1
I-'RI-I

IRa \-

7-23 210464-002

8275H

WAVEFORMS (Continued)

DMATIMING

ORO .-I

LPEN-,.1J------
WRITE TIMING READ TIMING

INVALID

INVALID

CLOCK TIMING

CCLK

'KF

7-24 210464-002

8276H
SMALL SYSTEM CRT CONTROLLER

• Programmable Screen and Character
Format

• 6 Independent Visual Field Attributes

• Cursor Control (4 Types)

• MCS-51®, MCS-85®, iAPX 86, and
iAPX 88 Compatible

• Dual Row Buffers

• Single +5V Supply

• 40-Pin Package

• 3 MHz Clock with 8276-2

• High Performance HMOS-II

The Intel 8276H Small System CRT Controller is a single chip device intended to interface CRT raster scan displays
with Intel microcomputers in minimum device-count systems. Its primary function is to refresh the display by
buffering character information from main memory and keeping track of the display position of the screen. The
flexibility designed into the 8276H will allow simple interface to almost any raster scan CRT display. It can be used
with the 8051 Single Chip Microcomputer for a minimum IC count design. It is manufactured on Intel's advanced
HMOS-II process.

090 "7

BRDY---.-,

READI

WR- c~~':'1'ik
LOGIC

CIP- RASTER TIMING
AND

VIDEO CONTROL

Figure 1. Block Diagram

CCLK

CCo- s

LCO-3

HRTe
VRTC
HLGT
RVV
LTEN
VSP
GPAO- 1

LC3 Vee

LC2 NC

LC, NC

LCD LTEN

BRDY RW

as vsp
HATe GPA,

VRTe GPAo
iiij HLGT

WR INT

HC eCLK

DBo ec.

DB, ec,

DB2 ec,

DB3 eC3

DB, eC2

DB, CC,

DB. eco

DBr cs
GND CIP

Figure 2. Pin Configuration

i;,";;IC~rporation Assumes No ResponsibHty for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No OthtU Circuit Patent Licenses Bfa Implied
< INTEL CORPORATION. 1984 ORDER NUMBER: 210668-002

7-25

8276H

Table 1. Pin Descriptions

I Symbol
Pin

/ No. Type Name and Function

LC3 1 a Line count. Output from the line count-

LC2 2 er which is used to address the charac-

LC1 3 ter generator for the line positions on
LCo 4 the screen.

Name and Function

1

Vee 140 I I j·SV power supply.

NC 139 I I No connection.

NC 138 I i No connection.

LTEN 37 a Light enable. Output signal used to

BRDY

I
5

I
a

I
Buffer ready. Output signal Indicating
that a Row Buffer is ready for loading of
character data.

enable the video signal to the CRT. This
output is active at the programmed
underline cursor position, and at posi-
tions specified by attribute codes.

BS

I

6

I

I I ~!Ier select. Input signal enabli ng
WR for character data into the Row
Buffers.

RVV 36 a Reverse video. Output signal used to
activate the CRT circuitry to reverse the
video Signal. This output is active at the
cursor position if a reverse video block

HRTC 7 a Horizontal retrace. Output Signal
which is active during the programmed
horizontal retrace interval. During this

cursor is programmed or at the posi-
tions specified by the field attribute
codes.

period the VSP output is high and the VSP 35 a Video suppression. Output signal

LTEN output is low. used to blank the.video signal to the
CRT. This output is active:

VRTC 8 a Vertical retrace. Output signal which
is active during the programmed verti-
cal retrace interval. During this period
the VSP output is high and the LTEN
output is low.

- during the horizontal and vertical re-
trace intervals.

- at the top and bottom lines of rows if
underline is programmed to be num-
ber 8 or greater.

- when an end 01 row or end of screen

FlO

1
91

I I Read input. A control signal to read
registers. .

code is detected.
- when a Row Buffer underrun occurs.

- at regular intervals (1/16 frame fre-

WR

1

10

I

I

1

Write input. A control signal to write
commands into the control registers or
write data into the row buffers.

quency for cursor. 1/32 frame fre-
quency for attributes)-to create
blinking displays as specified by
cursor or field attribute programming.

NC 1111 1
No connection.

1

DBa 12 1/0 Bidirectional data bus. Three-state

GPA1

I ~~ I
a General purpose attribute codes.-

GPAo Outputs which are enabled by the gen-
eral purpose field attribute codes.

DB1 13 lines. The outputs are enabled during a
DB2 14 read of the C or P ports.
DB3 15
DB4 16

I I
HLGT

1

32

1

a 1 Highlight. Output signal used to inten-
sify the display at particular positions
on the screen as specified by the field
attribute codes.

DB5 17
DB6 18 INT 131 I a I Interrupt output.

DB? 19 CCLK
1

30
1

I 1 Character clock (from dot/timing
logic).

Ground 20 Ground. CC6 29 0 Character codes. Output from the
CC5 28 row buffers used for character selec-
CC4 27 ticn in the character generator.
CC3 26
CC2 25
CCi 24
cCo 23

CS
/22/

I I Chip select. Enables RD of status or
WR of command or parameters.

C/F' 21

I

I Port address. A high input on this pin
selects the "c" port or command regis-
tersand a low inputselects the "P" port
or parameter registers.

I

ORDER NUMBER: 210668·002 7-26

8276H

FUNCTIONAL DESCRIPTION

Data Bus Buffer

This 3-state, bidirectional, 8-bit buffer is used to
interface the 8276H to the system Data Bus.

This functional block accepts inputs from the Sys­
tem Control Bus and generates control signals for
overall device operation. It contains the Command,
Parameter, and Status Registers that store the vari­
ous control formats for the device functional
definition.

C/P OPERATION REGISTER

0 Read RESERVED

0 Write PARAMETER

1 Read STATUS

1 Write COMMAND

RD (READ)
A "low" on this input informs the 8276H that the CPU is
reading status information from the 8276H.

WR(WRITE)
A "low" on this input informs the 8276H that the CPU is
writing data or control words to the 8276H.

CS (CHIP SELECT)
A "low" on this input selects the8276H for RD orWRof
Commands, Status, and Parameters.

BRDY (BUFFER READY)
A "high" on this output indicates that the 8276H is ready
to receive character data.

BS (BUFFER SELECT)
A "Iow" on this input enables WR of character data to
the 8276H row buffers.

INT (INTERRUPT)
A "high" on this output informs the CPU that the 8276H
needs interrupt service.

C/F' RD WR CS BS

0 0 1 0 1 Reserved
0 1 0 0 1 Write 8276H Parameter
1 0 1 0 1 Read 8276H Status
1 1 0 0 1 Write 8276H Command
X 1 0 1 0 Write 8276H Row Buffer
X 1 1 X X High Impedance
X X X 1 1 High Impedance

7-27

Character Counter

The Character Counter is a programmable counter
that is used to determine the number of characters
to be displayed per row and the length of the hori­
zontal retrace interval. It is driven by the CCLK
(Character Clock) input, which should be derived
from the external dot clock.

Line Counter

The Line Counter is a programmable counter that is
used to determine the number of horizontal lines
(Raster Scans) per character row. Its outputs are
used to address the external character generator.

Row Counter

The Row Counter is a programmable counter that is
used to determine the number of character rows to
be displayed per frame and length of the vertical re­
trace interval.

Raster Timing and Video Controls

The Raster Timing circuitry controls the timing of
the HRTC (Horizontal Retrace) and VRTC (Vertical
Retrace) outputs. The Video Control circuitry con­
trols the generation of HGL T (Highlight), RVV (Re­
verse Video), L TEN (Light Enable), VSP (Video Sup­
press), and GPAO~1 (General Purpose Attribute)
outputs.

Row Buffers

The Row Buffers are two 80-character buffers. They
are filled from the microcomputer system memory
with the character codes to be displayed. While one
row buffer is displaying a row of characters, the
other is being filled with the next row of characters.

Buffer Input/Output Controllers

The Buffer Input/Output Controllers decode the
characters being placed in the row buffers. If the
character is a field attribute or special code, they
control the appropriate action. (Example: A "High­
light" field attribute will cause the Buffer Output
Controller to activate the HGL T output.)

OAi:>ER NUMBER: 210668-002

8276H

SYSTEM ,OPERATION

The 8276H is programmable to a large number of
different display formats, It provides raster timing,
display row buffering, visual attribute decoding and
cursor timing.

It is designed to interface with standard character
generators for dot matrix decoding. Dot level timing
must be provided by external circuitry.

General Systems Operational Description

Display characters are retrieved from memory and
displayed on a row-by-row basis. The 8276H has two
row buffers. While one row buffer is being used for
display, the other is being filled with the next row of
characters to be displayed, The number of display
characters per row and the number of character rows
per frame are software programmable, providing easy
interface to most CRT displays. (See Programming
Section.)

INT BRDY
8088

MICRO-
PROCESSOR ss

1
8278H
CRT cs CONTROLLER

~

l 8205 J DECODER ,

II Jr

LCo J

ceo 6

SYSTEM BUS

"" ?- .. r-

-.:' !'::.

8253·5
COUNTERI 8251A

TIMER USART

t SERIA~
COMMUNICATIONS

CHANNEL

The 8276H uses BRDY to request character data to fill
the row buffer. that is not being used for display,

The 8276H displays character rows one scan line at a
time. The number of scan lines per character row, the
underline position, and blanking of top and bottom
lines are programmable, (See Programming Section.)

The 8276H provides special Control Codes which can
be used to minimize overhead. It also provides Visual
Attribute Codes to cause special action on the'screen
without the use of the character generator. (See Visual
Attributes Section.)

The 8276H also controls raster timing, This is done by
generating Horizontal' Retrace (HRTC) and Vertical
Retrace (VRTC) Signals. The timing of these signals is
also programmable,

The 8276H can generate a cursor. Cursor location and
format are programmable. (See Programming Section.)

VIDEO SIGNAL

CHARACTER J.
GENERATOR HIGH HORIZONTAL SYNC (ROM OR SPEED

RAM) DOT
TIMING TO CRT
LOGIC VERTICAL SYNC AND

~ClK INTERFACE

INTENSITY

VIDEO CONTROLS

.. r- '4 r-

~ ::::
PROGRAM 82SSA·5

DISPLAV KEYBOARD
MEMORY CONTROLLER

11
I KEYBOARD STA TUS

Figure 3. CRT System Block Diagram

7-28 AFN-00224B

intel 8276H

1st 2nd 3rd 4th 5th 6th 7th
Character Character Character Character Character Character Character

--.--.--.--.--.--------.... " . .'. '
First Line of a Character Row

1st 2nd 3rd 4th 5th 6th 7th
Charactp.r Character Character Character Character Character Character --------------.------------c...:[' •••• LLI i.,' ; J, 1., ••••• ,

::.l.::'d-:-!.'I •• i"I':. '.~_,!.l~·'-"ill
I~ ii, i •••• 12UCJU ••• [.: UU.IJU'J. U
i l)~ i. U [-_jU.~] u.u r jU.:J I J.LJOU8 [1

Second Line of a Character Row

1 st 2nd 3rd 4th 5th 6th 7th
Character Character Character Character Character Character Character --.----------------------. ,·: •••• ·1'-' ',.' i ;.' I •••• ~ HI,) J •••• l i~-' ••• l-JI]~.[H.~iJ.U , .' .Dt •• " '." " , I. :., ,.

" '.i I. ~ i: J:.:.,;
• 'm n " .. '.' '. • '.' '. " I.

Thiru LlIle of <1 Character Row

1 st 2nd 3rd 4th 5th 6th 7th
Character Character Character Character Character Character Character --------.--.------.----

Seventh Line of a Character Row

Figure 4. Display Of A Character Row

Display Row Buffering

Before the start of a frame, the 8276H uses BRDY and
BS to fill one row buffer with characters,

When the first horizontal sweep is started, character
codes are output to the character generator from the
row buffer just filled, Simultaneously, the other row
buffer is filled with the next row of characters.

After all the lines of the character row are scanned,
the buffers are swapped and the same procedure is
followed for the next row.

This process is repeated until all of the character
rows are displayed.

D90 ·· 7 ceo· 6

Row Buffering allows the CPU access to the display
memory at all times except during Buffer Loading
(about 25%). This compares favorably to alternative
approaches which restrict CPU access to the display
memory to occur only during horizontal and vertical
retrace intervals (80% of the bus time is used to re­
fresh the display,) Figure 5. First Row Buffer Filled

7-29 ORDER NUMBER: 210668-002

intel· 8276H

080 _ 7

Figure 6. Second Row Buffer Filled, First Row
Displayed

080 __ 7 CCO-6

Figure 7. First Row Buffer Filled With Third Row,
Second Row Displayed

Display Format

SCREEN FORMAT
The 8276H ca(l be programmed to generate from 1 to
80 characters per row, and from 1 to 64 rows per frame.

ORDER NUMBER: 210668·002 7-30

123456789 , 80
2
3
4
5
6
7
8
9

64

Figure 8. Screen Format

The 8276H can also be programmed to blank alternate
rows. In this mode, the first row is displayed, the
second blanked, the third displayed, etc. Display data is
not requested for the blanked rows.

123456789 80

2

3

4

5

64

Figure 9. Blank Alternate Rows Mode

ROW FORMAT
The 8276H is designed to hold the line count stable
while outputting the appropriate character codes during
each horizontal sweep. The line count is incremented
during horizontal retrace and the whole row of char­
acter codes are output again during the next sweep.
This is continued until the entire character row is
displayed.

The number of lines (horizontal sweeps) per charac­
ter row is programmable from 1 to 16.

The output of the line counter can be programmed
to be in one of two modes.

In mode 0, the output of the line counter is the same
as the line number.

8276H

In mode 1, the line counter is offset by one from the
line number.

Note: In mode 1, while the first line (line number 0) is being dis­
played. the fast count is output by the line counter (see
examples).

Line
Number

o

4
5
6

8
9

10
II
12
13
14

15

Line Line
Counter Counter
Mode 0 Mode 1

: J U LJ LJ [] U Cl lJ LJ

:.! '1 L.; • fJ rJ Li U

0000
0001

~l I! !..J • • U [") LJ 001 a
LJ[:.UIJL1BUU 0011
'.1 • !~ ,--; ~ I lJ lJ .. 0100
~J • :.J LJ Ll [[;.1 • L J 0 1 0 1
••••••• [J 0110
.CJOOClrlB00111

1 • Ii _ ,J :J [1 • [] 1 000
~J • 11 ~! U U J • U 1 001

U 1-] ;J u 0 Li [J 1 0 1 a
[Jri~UD'lULl 1011
: I LJ [J U L-J U LJ ill 100

U [-I [j II II LJ II 1 101

II :1 U 1 1 10
li L; 1111

1111
0000
0001
0010
001 I
0100
010 I
0110
0111
1000
1001
1010
101 1
1 100
1 101
1110

Figure 10. Example of a 16-Line Format

Line
Number

o

2

3
4

5
6
7

8
9

lJ

~l I U [I

lJ • L.l .J U

II • [, • U lJ

i.1 • [J U [I • I"':

• L. [! • Ii

Ii ••••• [I

[I • i I [I r I • ['

I J • 11 [I LJ • Ij

lULl I' lJ

,.I [] [J 1.1 [] II

Line Line
Counter Counter
Mode 0 Mode 1

0000
0001
0010
001 1
0100
0101
0110
01 1 1
1000
1001

100 I
0000
0001
0010
001 1
0100
0101
0110
011 1
1000

Figure 11. Example of a 10-Line Format

Mode 0 is useful for character generators that leave
address zero blank and start at address 1. Mode 1 is
useful for character generators which start at
address zero.

Underline placement is also programmable (from
line number 0 to 15). This is independent of the line
counter mode.

7-31

If the line number of the underline is greater than 7
(line number MSB = 1), then the top and bottom
lines will be blanked.

Line
Number

o

4
5
6

9
10
11

Line Line
Caunter Counter
Mode 0 Mode 1

I IJ IJ rJ Ll lJ I-I II 000 a
IJ l J [J [1 • IJ I] [.: I i 000 1
iJI1IJ.rJ.11IJ I1 0010
o 1I • n IJ •

11 • [l r:J 11 !1

[I • [1 :-] II

II • []

• [!

001 1
0100
0101

[1 ••••••• !! 0110
il • [! r.J I I r1 • I: 0111

1000
(] • II [J ~ r 1. 1 00 1

• • • • • • • • • '010
[1 ',J ~J ! I .J 1 01 1

Top and Bottom
Li nes are B I an ked

101 1
0000
0001
0010
001 1
0100
0101
0110
01 1 I
1000
1001
1010

Figure 12. Underline in Line Number 10

If the line number of the underline is less than or
equal to 7 (line number MSB = 0), then the top and
bottom lines will not be blanked.

Line
Number

o

2

3
4
5
6

[-J [J • lJ •

II • U].

IJ • Ll [] : 1 •

IJ •••••

[] • [-J LJ 11 •

[J • (I [I [-I • II

line Line
Counter Counter
Mode a Mode 1

0000
0001
0010
001 1
0100
0101
a 110

• • • • • •• 0 11 1

01 I 1
0000
0001
0010
a 0 I I
0100
0101
01 10

Top and Bottom
lines are not Blanked

Figure 13. Underline in Line Number 7

If the linenumber of the underline isgreater than the
maximum number of lines, the underline will not ap­
pear.

Blanking is accomplished by the VSP (Video Sup­
pression) signal. Underline is accomplished by the
L TEN (Light Enable) signal.

ORDER ~UMBEA: 210668·002

8276H

DOT FORMAT
Dot width and character width are dependent upon
the external timing and control circuitry.

Dot level timing circuitry should be designed to ac­
cept the parallel output of the character generator
and shift it out serially at the rate required by the CRT
display.

VIDEO

Figure 14. Typical Dot Level Block Diagram

Dot width is a function of dot clock frequency.

Character width is a function of the character
generator width.

Horizontal character spacing is a function of the
shift register length.

Nole: Video control and timing signals must be synchronized
with the video signal due to the character generator ac­
cess delay.

Raster Timing

The character counter is driven by the character
clock input (CCLK). It counts out the characters
being displayed (programmable from 1 to 80). It then
causes the line counter to increment, and it starts
counting out the horizontal retrace interval (pro­
grammable from 2 to 32). This process is constantly
repeated.

CClKL· ..
HRTe

\----11

PROGRAMMABLE 1 TO 80 CCLKS

leo 3 ___ '_AE_S_EN_T_Ll_N_E "_O_UN_' __ --1

Figure 15. Line Timing

ORDER NUMBElt 210668-002

NEXT
LINE COUNT

7-32

The line counter is driven by the character counter. It
is used to generate the line address outputs (LCO- 3)

for the character generator. After it counts all of the
lines in a character row (programmable from 1 to
16), it increments the row counter, and starts over
again. (See Character Format Section for detailed
description of Line Counter functions.)

The row counter is an internal counter driven by the
line counter. It controls the functions of the row buf­
fers and counts the number of character rows
displayed.

ONE CHARACTER ROW .
r ~

HATC~VU-

lCO'3~~
INTERNAL
ROW COUNTER PRESENT ROW NEXT ROW

• PROGRAMMABLE 1 TO 16
LINE COUNTS

Figure 16. Row Timing

After the row counter counts all of the rows in a
frame (programmable from 1 to 64), it starts count­
ing out the vertical retrace interval (programmable
from 1 to 4).

ONE FRAME .

VATC~~~
• .. I

.. T
PROGRAMMABLE PROGRAMMABLE

, TO 64 ROW COUNTS 1 TO 4 ROW COUNTS

Figure 17. Frame Timing

The Video Suppression Output (VSP) is active dur­
ing horizontal and vertical retrace intervals.

Dot level timing circuitry must synchronize these
outputs with the video signal to the CRT Display.

infel' 8276H

Interrupt Timing

The 8276H can be programmed to generate an interrupt
request at the end of each frame. If the 8276H interrupt
enable flag is set, an interrupt request will occur at the
beginning of the last display row.

INTERNAL~
ROW

COUNTER
LAST F'RST

DISPLAY RETRACE
ROW ROW

VRTC ~\---.:r--J

'NT

Figure 18. Beginning of Interrupt

INT will go inactive after the status register is read.

'NT }

RD~~r-
Figure 19, End of Interrupt

A reset command will also cause INT to go inactive,
but this is not recommended during normal service ..

Note: Upon power-up, the 8276H Interrupt Enable Flag may be set.
As a result, the user's cold start routine should write a reset
command to the 8276H before system interrupts are enabled.

VISUAL ATTRIBUTES
AND SPECIAL CODES

The characters processed by the 8276H are 8-bit
quantities. The character code outputs provide the
character generator with 7 bits of address. The Most
Significant Bit is the extra bit and it is used to determine
if it is a normal display character (MSB = 0), or if it is a
Field Attribute or Special Code (MSB = 1).

7-33

Special Codes

Four special codes are available to help reduce bus
usage.

SPECIAL CONTROL CHARACTER

M5B L5B

1111 0055
~ SPECIAL CONTROL CODE

5 5 FUNCTION

o 0 End of Row

o 1

o
End of Row-Stop Buffer Loading

End of Screen
End of Screen-Stop Buffer Loading

The End of Row Code (00) activates VSP and holds it
to the end of the line.

The End of Row-Stop Buffer Loading (BRDY) Code
(01) causes the Buffer Loading Control Logic to stop
buffer loading for the rest of the row upon being
written into the Row Buffer. It affects the display in
the same way as the End of Row Code (00).

The End of Screen Code (10) activates VSP and
holds it to the end of the frame.

The End of Screen-Stop Buffer Loading (BRDY)
Code (11) causes the Row Buffer Control Logic to
stop buffer loading for the rest of the frame upon
being writt~n. It affects the display in the same way
as the End of Screen Code (10).

If the Stop Buffer Loading feature is not used, all
characte'rs after an End of Row character are ig­
nored, except for the End of Screen character,
which operates normally. All characters after an End
of Screen character are ignored.

Note: If a Stop Buffer Loading is not the last character in a row,
Buffer Loading is not stopped until after the next character
is read. In this situation, a dummy character must be
placed in memory after the Stop Buffer Loading character.

Field Attributes

The field attributes are control codes which affect
the visual characteristics for a field of characters,
starting at the character following the code up to,
and including, the character which precedes the
next field attribute code, or up to the end of the
frame. The field attributes are reset during the verti­
cal retrace interval.

ORDER NUMBER: 210668~002

inter 8276H

;rhe 8276H can be programmed to provide visible field
attribute characters; all field attribute codes will occupy
a position'on the screen, These codes will appear as
blanks caused by activation of the Video Suppression
output (VSP). The chosen visual attributes are activated
after this blanked character.

There are six field attributes:

1. Blink-Characters following the code are
caused to blink by activating the Video Sup­
pression output (VSP). The blink frequency is
equal to the screen refresh frequency divided
by 32.

2. Highlight-Characters following the code are
caused to be highlighted by activating the High­
light output (HGL T).

3. Reverse Video-Characters following the code
are caused to appear with reverse video by ac­
tivating the Reverse Video output (RVV).

4. Underline-Characters following the code are
caused to be underlined by activating the Light
Enable output (L TEN).

5,6. General Purpose-There are two additional 8276H
outputs which act as general purpose, indepen­
dently programmable field attributes. GPA0-1 are
active high outputs.

ABC D E F G H I J K L M
NOPORSTUV

1 234 5 6 7 8 9

Figure 20. Example of a Visible Field Attribute
(Underline Attribute)

FIELD ATTRIBUTE CODE

MSB

1 0

LSB

U R G G B H

L_~~~~~~~~~~~ ~i~RAL PURPOSE II TILl ---- HIGHLIGHT

. . REVERSE VIDEO
'----------- UNDERLINE

ORDER NUMBER: 210668-002 7-34

H = 1 FOR HIGHLIGHTING
B = 1 FOR BLINKING
R = 1 FOR REVERSE VIDEO
U = 1 FOR UNDERLINE

GG = GPA1 , GPAo

Note: More than one attribute can be enabled at the same time.
If the blinking and reverse video attributes are enabled
simultaneously, only the reversed characters will blink.

Cursor Timing

The cursor location is determined by a cursor row
register and a character position register which are
loaded by command to the controller. The cursor
can be programmed to appear on the display as:

1. a blinking underline
2. a blinking reverse video block
3. a non-blinking underline
4. a non-blinking reverse video block

The cursor blinking frequency is equal to the screen
refresh frequency divided by 16.

If a non-blinking reverse video cursor appears in a
non-blinking reverse video field, the cursor will ap­
pear as a normal video block.

If a non-blinking underline cursor appears in a non­
blinking underline field, the cursor will not be
visible.

Device Programming

The 8276H has two programming registers, the Com­
mand Register and the Parameter Register. It also has a
Status 'Register. The Command Register can only be
written into and the Status Register can only be read
from. They are addressed as follows:

cip OPERATION REGISTER

0 Read Reserved

() Write Parameter

1 Read Status

1 Write Command

The 8276H expects to receive a command and a
sequence of 0 to 4 parameters: depending on the
command. If the proper number of parameter bytes are
not received before another command is given, a status
flag is set, indicating an improper command.

Instruction Set

The 8276H instruction set consists of 7 cOmmands.

COMMAND

Reset
Start Display
Stop Display
Load Cursor
Enable Interrupt
Disable Interrupt
Preset Counters

NO. OF PARAMETER BYTES

4
o
o
2
o
o
o

8276H

In addition, the status of the 8276H can be read by the
CPU at any time.

1. RESET COMMAND
DATA BUS

OPERATION C/P DESCRIPTION MSB LSB

Command Write 1 Reset Command 00000000

Write 0 Screen Camp SHHHHHHH
Byte 1

Write 0 Screen Camp VVAARRRR Byte 2
Parameters

Screen Camp
Write 0 Byte 3

UUUULLLL

Write 0 Screen Camp M 1 CCZZZZ
Byte 4

Action-After the reset command is written, BRDY
goes inactive, 8276H interrupts are disabled, and the
VSP output is used to blank the screen. HRTC and
VRTC continue to run. HRTC and VRTC timing are
random on power-up.

As parameters are written, the screen composition is
defined.

Parameter-S Spaced Rows

S FUNCTIONS

o Normal Rows

Spaced Rows

Parameter-HHHHHHH
Horizontal Characters/Row

NO. OF CHARACTERS
H H H H H H H PER ROW

o 0 0 0 0 0 0 1
o 0 0 0 0 0 1 2
00000 1 0 3

0 0 1 1 1 1 80
0 1 0 0 0 0 Undefined

1 1 1 1 1 1 Undefined

7-35

Parameter-VV Vertical Retrace Row Count

V V NO. OF ROWCOUNTS PERVRTC

o 0
o 1
1 0
1 1

1
2
3
4

Parameter-RRRRRR Vertical Rows/Frame

R R R R R R NO. OF ROWS/FRAME

o 0 0 0 0 0
o 0 0 001
00001 0

111111

1
2
3

64

Parameter-UUUU Underline Placement

LINE NUMBER OF
U U U U UNDERLINE

0 0 0 0 1
0 0 0 1 2
0 0 1 0 3

1 1 16

Parameter-LLLL Number of Lines
per Character Row

L L L L NO. OF LINES/ROW

o 000
000 1
001 0

1
2
3

1 1 16

Parameter-M Line Counter Mode

M LINE COUNTER MODE

o Mode 0 (Non-Offset)
1 Mode 1 (Offset by 1 Count)

Parameter-CC Cursor Format

C C CURSOR FORMAT

o 0
o 1
1 0
1 1

Blinking reverse video block
Blinking underline
Non-blinking reverse video block
Non-blinking underline

ORDER NUMBER: 210888-002

intel' 8276H

Parameter-ZZZZ Horizontal Retrace Count 6, DISABLE INTERRUPT COMMAND

z z z z
o 0 0 0
000 1
001 0

1 1

NO, OF CHARACTER
COUNTS PER HRTC

2
4
6

32

Note: uuuu MSB determines blanking of top and bottom lines
(1 = blanked, 0 = not blanked).

2. START DISPLAY COMMAND

Actlon-8276H interrupts are enabled, BRDY goes
active, video is enabled, Interrupt Enable and Video
Enable status flags are set.

3. STOP DISPLAY COMMAND
DATA 8US

Msa LSB

01000000

Action-Disables video, interrupts remain enabled,
HRTC and VRTC continue to run, Video Enable
status flag is reset, and the "Start Display" com­
mand must be given to reenable the display.

4, LOAD CURSOR POSITION
DATA BUS

OPERATION C/P DESCRIPTION MSB LSB

Command Write Load Cursor 1 0 0 0 0 0 0 0

Parameters Write Char. NlJmber (Char. Position in Row)
Write Row Number (Row Number)

Action-The 8276H is conditioned to place the next
two parameter bytes into the cursor position registers.
Status flag not affected.

5. ENABLE INTERRUPT COMMAND

Actlon-The inter.rupt enable flag is set and inter­
rupts are enabled.

OROER NUMBER: 21_002 7-36

Command

Action-Interrupts are disabled and the interrupt
enable status flag is reset.

7. PRESET COUNTERS COMMAND

DATA BUS
MSB LS~

11100000

Action-The internal timing counters are preset,
corresponding to a screen display position at the top
left corner. Two character clocks are required for
this operation. The counters wi" remain in this state
until any other command is given.

This command is useful for system debug and syn­
chronization of clustered CRT displays on a single
CPU. After this command, two additional clock cycles
are required before the first character of the first row is
putout.

Status Flags

DATA BUS
Msa LSB

Command o IE IA X Ie VE BU X I

IE - (Interrupt Enable) Set or reset by command.
It enables vertical retrace interrupt. It is auto­
matica"y set by a "Start Display" command
and reset with the "Reset" command.

IR - (Interrupt Request) This flag is set at the be­
ginning of display of the last row of the frame
if the interrupt enable flag is set. It is reset
after a status read operation.

IC - (Improper Command) This flag is set when a
command parameter string is too long or too
short. The flag is automatically reset after a
status read.

VE - (Video Enable) This flag indicates that video
operation of the CRT is enabled. This flag is
set on a "Start Display" command, and reset
on a "Stop Display" or "Reset" command.

BU - (Buffer Underrun) This flag is set whenever a
Row Buffer is not filled with character data in
time for a buffer swap required by the display.
Upon activation of this bit, buffer loading
ceases, and the screen is blanked until after
the vertical retrace interval.

intel 8276H

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias ooe to 70ce
Storage Temperature -65°e to +150oe
Voltage On Any Pin

With Respect to Ground -O.5V to -t-7V
Power Dissipation 1 Watt

'NOTICE: Stresses above those listed under "Absolute Maxi­
mum Ratings" may cause permanent damage to the device. This
is a stress rating only and functional operation of the device at
these or any other conditions above those indicated in the opera­
tional sections of this specification is not implied.

D.C. CHARACTERISTICS (TA = OCC to 70 C C; Vce = 5V 0:5%)

SYMBOL PARAMETER MIN_ MAX_ UNITS TEST CONDITIONS
-

Vil Input Low Voltage --0.5 0.8 V
I

VIH Input High Voltage 2.0 Vee + 0.5V V
r------

VOL Output Low Voltage 0.45 V IOl = 2.2 mA

VOH Output High Voltage 2.4 V IOH = --400 f.lA

III Input Load Current 2:10 f.lA VIN = Vce to OV
~

IOFl i Output Float Leakage :0:10 f.lA I VOUT = Vee to O.45V

lee Vee Supply Current 160 mA

CAPACITANCE (TA = 25'C; Vee ~ GND = OV)

[SYMBOL I PARAMETER MIN_ MAX_ UNITS TEST CONDITIONS

I CIN Iinput CapaCitance 10 pF fe = 1 MHz

I CliO 11/0 CapaCitance 20 pF Unmeasured pins returned to VSS.

A_C_ TESTING LOAD CIRCUIT

DEVICE
UNDER !fcc TEST

-::-

CL INCLUDES JIG CAPACITANCE

7-37 ORDER NUMBER: 210668-002

intel 8276H

A.C. CHARACTERISTICS (TA = O°C to 70°C; VCC = 5,OV ±5%; GND = OV)

Bus Parameters

READ CYCLE

Symbol Parameter Min. Max. Units

tAR Address Stable Before READ' 0 ns

tRA Address Hold Time for READ 0 ns

tAA READ Pulse Width 250 ns

Test Conditions

tAD Data Delay from .READ 200 ns CL = lS0pF

tOF READ to Data Floating 100 ns

WRITE CYCLE

Symbol Parameter Min. Max. Units Test Conditions

tAw Address Stable Before WRITE 0 ns

tWA Address Hold Time for WRITE 0 ns

tww WRITE Pulse Width 250 ns

tDW Data Setup Time for WRITE 150 ns

two Data Hold Time for WRITE 0 ns

CLOCK TIMING

8276H 8276·2

Symbol Parameter Min. Max. Min. Max. Units Test
Conditions

tCLK Clock Period 480 320 ns

tKH Clock High 240 120 ns

tKL Clock Low 160 120 ns

tKR Clock Rise 5 30 5 30 ns

tKF Clock Fall 5 30 5 30 ns

OTHER TIMING
8276H 8276-2

Symbol Parameter Min. Max. Min. Max. Units Test
Conditi~ms

tcc Character Code Output Delay 150 150 ns CL = 50 pF

tHR Horizontal Retrace Output Delay 200 150 ns CL = 50 pF

tLC Line Count Output Delay 400 250 ns CL = 50 pF

tAT Control/Attribute Output Delay 275 250 ns CL = 50 pF

tVR Vertical Retrace Output Delay 275 250 ns CL = 50 pF

tRI INTJ from RD! 250 250 ns CL =50 pF

tWQ BRDY! from WRT 250 250 ns CL = 50 pF

tRQ BRDYJ from WRJ 200 200 ns CL = 50 pF

tLR BSJ toWRJ 0 0 ns
..

tRL WRI to BST 0 0 ns

ORDER NUMBER: 210668·002 7-38

8276H

WAVEFORMS

Typical Dot Level Timing

Line Timing

EXT DOT elK

CCLK4l
'--------'

CCO_6 FIRST CHARACTER CODE SECOND CHARACTER CODE

ROM ACCESS

GENERATOR FIRST CHARACTER SECOND CHARACTER CHARACTER ________ --'X X
OUTPUT '-____________ -' '-_________ _

ATTRIBUTES -V X V--
& CONTROLS -A ATTRIBUTES & CONTROLS FOR FIRST CHAR I.. ______________ ~

VIDEO
{FROM SHIFT

REGISTERI

ATTRIBUTES
& CONTROLS

(FROM
SYNCIIRONIZEA)

SHIFT REGISTER SETUP ~

FIRST CHARACTER

A TTA IBUTES 8. CONTROLS FOR FIRST CHAR.

*CCLK IS A MULTIPLE OF THE DOT CLOCK AND AN INPUT TO THE 8276.

eeLK \J\J\J\J\JV

CCO_6

.. tHR

SECOND CHARACTER

ATTRIBUTES & CONTROLS
FOR 2ND CHAR.

PROGRAMMAblE FROM 1 TO 80 CHARACTERS PROGRAMMABLE FROM 2 TO 32 ceLKS ~-

'HR

HRTe \'---------",",--, _--.II
'Le

----------~\rl ----------~ r-----
LCo 3 _____ PR_E_SE_N_T_L_'N_E_C_O_UN_T ___ -', "r' _____________ --'X NEXT LINE COUNT

ANaATTe~~~~~~~ =x=x------.... ::\-I ______ >C
VSP, l TEN, HGL T, RVV. GPAO_1

7-39 ORDER NUMBER: 210668-002

8276H

Row Timing

CCLK

HATe

LCO_3

INTERNAL ----'\ ... -----------\ \-....,..----,"""'\
ROW

COUNTER ___ -' 1'------------\ \-____J

Frame Timing

CCLK

INTERNAL
ROW

COUNTER ~AST
. RETRACE

ROW

VRle

Interrupt Timing

CCLK

0-6 CHARACTER

\

FIRST RETRACE
CHARACTER

cc LAST RETRACE X
-------~~ ~-------

lCO_3 FIRST LINE COUNT

\'----
HATe

INTERNAL
ROW LAST DISPLAY ROW

COUNTER --------f-j _______ _

INT ----+--'1 t''"
ORDER NUMBER: 210668-002

C/PJ \

cs""'\ I
RO

t~ \

INT

7-40 AFN-Q02248

8276H

Timing for Buffer Loading

CCLK

~'Kot
BRDY --.r----------.

Write Timing

85, Cli', CS INVALID

___ --.'ow -1 'wo

OBO-7 INVALID INVALID

Clock Timing

CCLK

tKF"

7-41

Read Timing

CfP. CS ==x- VALID
I E=

=.jtAR~ - _tRA -
! i'RR------, I

RO-~ y-
I-'R01

OBO_7

Input and Output Waveforms for A.C. Tests

'.4 J"O> TESTPOINTS <"0X==
O.B O.B

0.45

FOR A.C. TESTING. INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC ", ..
AND OA5V FOR A LOGIC 0 'TIMING MEASUREMENTS FOR INPUT
AND OUTPUT SIGNALS ARE MADE AT 2.0V FOR A LOGIC "' , AND
O.BV FOR A LOGIC o·

ORDER NUMRER: 210668·002

© In1el Corporation, 1979

APPLICATION
NOTE

7-42

AP-62

November 1979

207780-001

APPLICATIONS

1. INTRODUCTION

The purpose of this application note is to provide the
reader with the design concepts and factual tools
needed to integrate Intel peripherals and microproc­
essors into a low cost raster scan CRT terminal. A
previously published application note, AP-32, pre­
sented one possible solution to the CRT design
question. This application note expands upon the
theme established in AP-32 and demonstrates how
to design a functional CR T terminal while keeping
the parts count to a minimum.

For convenience, this application note is divided
into seven general sections:

I. Introduction
2. CRT Basics

3. 8275 Description
4. Design Background
5. Circuit Description

6. Software Description
7. Appendix

There is no question that microprocessors and LSI
peripherals have had a significant role in the evolu­
tion of CRT terminals. Microprocessors have
allowed design engineers to incorporate an abun­
dance of sophisticated features into terminals that
were previously mere slaves to a larger processor. To
complement microprocessors, LSI peripherals have
reduced component count in many support areas. A
typical LSI peripheral easily replaces between 30
and 70 SSI and MSI packages, and offers features
and flexibility that are usually not available in most
hardware designs. In addition to replacing a whole
circuit board of random logic, LSI circuits also
reduce the cost and increase the reliability of design.
Fewer interconnects increases mechanical reliability
and fewer parts decreases the power consumption
and hence, the overall reliability of the design. The
reduction of components also yields a circuit that is
easier to debug during the actual manufacturing
phase of a product.

Until the era of advanced LSI circuitry, a typical
CRT terminal consisted of 80 to 200 or more SSI
and MSI packages. The first microprocessors and
peripherals dropped this component count to be­
tween 30 and 50 pac.kages. This application note
describes a CRT terminal that uses 20 packages.

2. CRT BASICS

The raster scan display gets its name from the fact
that the image displayed on the CRT is built up by
generating a series of lines (raster) across the face of
the CRT. Usually, the beam starts in the upper left
hand corner of the display and simultaneously
moves left to right and top to bottom to put a series

7-43

---,,-
S~:-::,===::-:::~~ __ --

----~~:::::=-~~~-
'-'-'-

'" '-
'-~

-

- - RETRACE LINES
--- DISPLAYED LINES

Figure 2-1. Raster Scan

of zig-zag lines on the screen (Fig. 2.1). Two simul­
taneously operating independent circuits control the
vertical and horizontal movement of the beam.

As the electron beam moves across the face of the
CRT, a third circuit controls the current flowing in
the beam. By varying the current in the electron
beam the image on the CRT can be made to be as
bright or as dark as the user desires. This allows any
desired pattern to be displayed.

When the beam reaches the end of a line, it is
brought back to the beginning of the next line at a
rate that is much faster than was used to generate
the line. This action is referred to as "retrace".
During the retrace period the electron beam is
usually shut off so that it doesn't appear on the
screen.

As the electron beam is moving across the screen
horizontally, it is also moving downward. Because
of this, each successive line starts slightly below the
previous line. When the beam finally reaches the
bottom right hand corner of the screen, it retraces
vertically back to the top left hand corner. The time
it takes for the beam to move from the top of the
screen to the bottom and back again to the top is
usually referred to as a "frame". In the United
States, commercial television broadcast use 15,750
Hz as the horizontal sweep frequency (63.5 micro­
seconds per horizontal line) and 60 Hz as the vertical
sweep frequency or "frame" (16.67 milliseconds per
vertical frame).

Although, the 60 Hz vertical frame and the 15,750 Hz
horizontal line are the standards used by commercial
broadcasts, they are by no means the only frequency
at which CRT's can operate. In fact, many CRT
displays use a horizontal scan that is around 18 KHz
to 22 KHz and some even exceed 30 KHz. As the

207780-001

APPLICATIONS

horizontal frequency increases. the number of hori­
zontallines per frame increases. Hence, the resolution
on the vertical axis increases. This increased resolu­
tion is needed on high density graphic displays and
on special text editing terminals that display many
lines of text on the CRT.

Although many CRT's operate at non-standard
horizontal frequencies. very few operate at vertical
frequencies other than 60 Hz. If a vertical frequency
other than 60 Hz is chosen, any external or internal
magnetic or electrical variations at 60 Hz will
modulate the electron beam and the image on the
screen will be unstable. Since. in the United States.
the power line frequency happens to be 60 Hz. there
is a good chance for 60 Hz interference to exist.
Transformers can cause 60 'Hz magnetic fields and
power supply ripple can cause 60 Hz electrical
variations. To overcome this, special shielding and
power supply regulation must be employed. In this
design, we will assume a standard frame rate of 60 Hz
and a standard line rate of 15,750 Hz.

By dividing the 63.5 microsecond horizontal line
rate into the 16.67 millisecond vertica'l rate. it is
found that there are 262.5 horizontal lines per
vertical frame. At first, the half line mav seem a bit
odd. but actually it allows the resolution·on the CRT
to be effectively doubled. This is done by inserting a
second set of horizontal lines between the first set
(interlacing). In an interlaced system the line sets are
not generated simultaneously. In a 60 Hz system.
first all of the even-numbered lines are scanned: O. 2.
4, ... 524. Then all the odd-numbered lines: 1,3.5, ...
525. Each set of lines usually contains different data
(Fig. 2.2).

-----------..: ----------------.. ------------------
-. ----.-------- -. ---..... _---- ------- ,----------....

--- EVEN FIELD
--ODDFIELD

RETRACE LINES
NOT SHOWN

Figure 2-2. Interlaced Scan

Although interlacing provides greater resolution, it
also has some distinct disadvantages. First of all. the
circuitry needed to generate the extra half horizontal
line per frame is quite complex when compared to a
noninterlaced design. which requires an integer
number of horizontal lines per frame. Next, the
overall vertical refresh rate is half that of a noninter­
laced display. As a result, flicker may result when the
CRT uses high speed phosphors. To keep things as
simple as possible. this design uses the noninterlaced
approach.

The first thing any CRT controller must do is
generate pulses that define the horizontal line timing
and the vertical frame timing. This is usually done by
dividing a crystal reference source by some appro­
priate numbers. On most raster scan CRT's the
horizontal frequency is very forgiving and can vary
by around 500 Hz or so and produce no ill effects.
This means that the CRT itself can track a horizontal
frequency between 15250 Hz and 16250 Hz. or in
other words. there can be 256 to 270 horizontal lines
per vertical frame. But. as mentioned earlier, the
vertical frequency should be 60 Hz to insure stability.

The characters that arc viewed on the screen are
formed bv a series of dots that are shifted out of the
controllc~ while the electron beam moves across the
face of the CRT. The circuits that create this timing
are referred to as the dot clock and character clock.
The character clock is equal to the dot clock divided
by the number of dots used to form a character along
the horizontal axis and the dot clock is calculated by
the following equation:

DOT CLOCK (Hz) ::; (N + R) * D * L * F
where N is the number of displayed characters per
row.
R is the number of retrace character time
increments.
D is the number of dots per character.
L is the number of horizontal lines per frame and

F is the frame rate in Hz.

In this design N ::: 80. R ::: 2P, D ::: 7, L ::: 270, and
F ::: 60 Hz. If the numbers are plugged in. the dot
clock is found to be 11.34 MHz.

The retrace number, R, may vary from system to
system because it is used to establish the margins on
the left and right hand sides of the CRT. In this
particular design R ::: 20 was empirically found it be
optimum. The number of dots per character may
vary depending on the character generator used and
the number of dot clocks the designer wants to place
between characters. This design uses a 5 X 7 dot
matrix and allows 2 dot clock periods between
characters (see Fig. 2.3); since 5 + 2 equals 7, we find
that D ::: 7.

7-44 207780-001

APPLICATIONS

The number of lines per frame can be determined by
the following equation:

L=(H*Z)+V
where, H is the number of horizontal lines per
character,

Z is the number of character lines per frame and

V is the number of horizontal lines during vertical
retrace. In this design, a 5 X 7 dot matri; is to be
placed on a 7 X 10 field, so H = 10. Also, 25 lines are
to be displayed, so Z = 25. As mentioned before,
V = 20. When the numbers are plugged into the
equation, L is found to be equal to 270 lines per
frame.

The designer should be cautioned that these numbers

OB0-7

DRa ___ --,

DACK

IRa

BLOCK DIAGRAM

CHARACTER
COUNTER

....,... ____ ..,.....----of

CCLK

ceO·6

LCO·3

LAO·1
HRTe
VRTe
HLGT
RW
LiEN
vsp
GPA!)'l

lPEN

are interrelated and that to guarantee proper opera­
tion on a standard raster scan CRT, L should be
between 256 and 270. If L does not lie within these
bounds the horizontal circuits of the CRT may not
be able to lock onto the driving signal and the image
will roll horizontally. The chosen L of 270 yields a
horizontal frequency of 16,200 KHz on a 60 Hz
frame and this number is within the 500 Hz tolerance
mentioned earlier.

The V number is chosen to match the CRT in much
the same manner as the R number mentioned earlier.
When the electron beam reaches the bottom right
corner of the screen it must retrace vertically to the
top left corner. This retrace action requires time,
usually between 900-1200 microseconds. To allow
for this, enough horizontal sync times must be
inserted during vertical retrace. Twenty horizontal
sync times at 61.5 microseconds yi(!ld a total of
1234.5 microseconds, which is enough time to allow
the beam to return to the top of the screen.

The choices of Hand Z largely relate to system
design preference. As H increases, the character size
along the vertical axis increases. Z is simply the
number of lines of characters that are displayed and
this, of course, is entirely a system design option.

PIN CONFIGURATION

LC3 Vcc

LC, LAO

LC, LA,
LCO LiEN

DRa RW

DAE"i< vsp

HRTe GPAl

VRTe GPAO

1!15 HLGT

WR IRa

LPEN . CCLK

DBa CCa

DB, CCs

DB, CC,

DB3 CC3

DB, CC,

DBS CC,

DBa CCo

DB, Os
GND A,

Figure 3-1. 8275 Block Diagram/Pin Configuration

7-45 207780-001

APPLICATIONS

3. 8275 DESCRIPTION

A block diagram and pin configuration of the 8275
are shown in Fig. 3.1. The following is a description
of the general capabilities of the 8275.

3.1 CRT DISPLAY REFRESHING

The 8275. having been programmed by the designer
to a specific screen format, generates a series of
DMA request signals, resulting in the transfer of a
row of characters· from display memory to the 8275's
row buffers. The 8275 presents the character codes
to an external character generator ROM by using
outputs CCO-CC6: External dot timing logic is then
used to transfer the parallel output data from the
character generator RO M serially to the video input
of the CRT. The character rows are displayed on the
CRT one line at a time. Line courit outputs LCO-LC3
are applied to the character generator ROM to
perform the line selection function. The display
process is illustrated in Figure 3.2. The entire
process is repeated for each display row. At the
beginning of the last displayed row, the 8275 issues
an interrupt by setting the IRQ output line. The
8275 interrupt output will normally be connected to
the interrupt input of the system central processor.

The interrupt causes the CPU to execute an interrupt
service subroutine. The service subroutine typically
re-initializes DMA controller parameters for the
next display refresh cycle, polls the system keyboard
controller, and! or executes other appropriate func-,
tions. A block diagram of a CR T system implemented
with the 8275 CRT Controller is provided in Figure
3.3. Proper CRT refreshing requires that certain
8275 parameters be programmed prior to the begin­
ning of display operation. The 8275 has two types of
programming registers, the Command Registers
(CREG) and the Parameter Registers (PREG). It
also has a Status Register (SREG). The Command
Registers may only be written to and the Status
Registers may only be read. The 8275 expects to
receive a command followed by a sequence offrom 0
to 4 parameters, depending on the command. The
8275 instruction set consist of the eight commands
shown in Figure 3.4.

To establish the format of the display, the 8275
provides a number of user programmable display
format parameters. Display fbrmats having from I
to 80 characters per row, I to 64 rows per screen, and
I to 16 horizontal lines per row are available.

Inaddition to transferring characters from memory

1st 2nd 3rd 4th 5th 6th 7th
Character Character Character Character Character Character Character
..-"-....-"-..---..--..-"-....-"-....-"-..
00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0

. First Line of a Character Row

1st 2nd 3rd 4th 5th 6th 7th
Character Character Character Character Character Character Character

..-"-....-"-....-"-....-"-....-"-....-"-....-"-..
00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0
o.oooo.oo •• oooaoo.ooooooooooooo.oooaooaooo.ooaoooao

Second Line of a Character Row

1st 2nd 3rd 4th 5th 6th 7th
Character Character Character Character Character Character Character

..-"-....-"-....-"-....-"-....-"-....-"-....--.;......
00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0
o.oooo.oo •• ooo.oo.ooooooooooooo.ooo.oo.ooo.oo.oooao
o.oooo.oo.oooo.oo.oooooooooooooaooo.oo.oooaooaooo.o

Third line of a Character Row

1st 2nd 3rd 4th 5th 6th 7th
Character Character Character Character Character Chara'cter Character
~..-"-....-"-....-"-....-"-....-"-..

00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0
o.oooowoo •• ooo.oo.ooooooooooooo.ooo.oo.ooo.oo.ooo.o
o.oooo.oo.o.oo.oo.oooooooooooooaoooaoo.ooo.oo.ooo.o
0.0000.00.0000.00 •••• 0000000000 •••• 000.000.00.0.0.0
o.oooo.oo.oowoaoo.ooooooooooooo.o.oooo.ooo.oo.o.o.o
o.ooooaooaooo •• oo.ooooooooooooo.oo.ooo.ooo.oo.o.o.o
00 •••• 000.0000.00 ••••• 000000000.000.000 ••• 0000.0.00

Seventh line of a Character Row

Figure 3-2. 8275 Row Display

7-46

207780-001

APPLICATIONS

HOLD ORO
LCO-3

BOSSA TRANSFER CHARACTER
MICRO· DECODE CCO-6 GENERATOR HIGH

PROCESSOR HACK LOGIC t5ACK 8275 ROM SPEED

CRT
OaT

TIMING CONTROLLER
LOGIC

CCLK AND
INTERFACE

VIDEO CONTROLS

7 7 J1
SYSTEM BUS

"" :0- "'" :0-

"" ""' 7

8253-5 8251 PROGRAM! 8255A-5
COUNTER/ USART DISPLAY KEYBOARD

TIMER MEMORY CONTROLLER

LJ t~
COMMUNICATIONS KEYBOARD

CHANNEL

Figure 3-3. CRT System Block Diagram

to the CRT screen, the 8275 features cursor position
control. The cursor position may be programmed,
via X and Y cursor position registers, to any
character position on the display. The user may
select from four cursor formats. Blinking or non­
blinking underline and reverse video block cursors
are available.

3.2 CRT TIMING

The 8275 provides two timing outputs, HRTC and
VRTC, which are utilized in synchronizing CRT
horizontal and vertical oscillators to the 8275
refresh cycle. In addition, whenever HRTC or VRTC
is active, a third timing output, VSP (Video Sup­
press) is true, providing a blinking signal to the dot
timing logic. The dot timing logic will normally
inhibit the video output to the CRT during the time
when video suppress signal is true. An additional
timing output, L TEN (Light Enable) is used to
provide the ability to force the video output high
regardless of the state of VSP. This feature is used
by the 8275 to place a cursor on the screen and to
control attribute functions. Attributes will be
considered in the next section.

COMMAND

RESET

START
DISPLAY

STOP
DISPLAY

READ
LIGHT
PEN

LOAD
CURSOR

ENABLE
INTERRUPT

DISABLE
INTERRUPT

PRESET
COUNTERS

NO. OF
PARAMETER

BYTES

4

0

0

2

2

0

0

0

VIDEO SIGNAL

HORIZONTAL SYNC

TO CRT
VERTICAL SYNC

INTENSITY

I STATUS I

NOTES

Display format pa·
rameters required

DMA operation pa·
rameters included
in command

Cursor X,Y posi·
tion parameters reo
quired

Clears all internal
counters

The HLGT (Highlight) output allows an attribute
function to increase the CRT beam intensity to a
level greater than normal. The fifth timing signal,
RVV (Reverse Video) will, when enabled, cause the
system video output to be inverted.

Figure 3-4. 8275'5 Instruction Set

7-47 207780-001

APPLICATIONS

Character attributes were designed to produce the following graphics:

CHARACTER ATTRIBUTE OUTPUTS
SYMBOL DESCRIPTION

CODE "CCCC" LA, LAo VSP LTEN

Above Underline 0 0 1 0
0000 Underline 1 0 0 0 I Top Left Corner

Below Underline 0 1 0 0
jAbove Underlihe 0 0 1 0

0001 Underline 1 1 0 0 I Top Right Corner
Below Underline 0 1 0 0
Above Underline 0 1 0 0 L 0010 Underline 1 0 0 0 Bottom Left Corner
Below Underline 0 0 1 0
Above Underl ine 0 1 0 0 .-J 0011 Underline 1 1 0 0 Bottom Right Corner
Below Underline 0 0 1 0
Above Underline 0 0 1 0

0100 Underline 0 0 0 1 -----r- Top Intersect
Below Underline 0 1 0 0
Above Underline 0 1 0 0

---1 0101 Underline 1 1 0 0 Right Intersect
Below Underline 0 1 0 0
Above Underline 0 1 0 0

~ 0110 Underline 1 0 0 0 Left I nterseet
Below Underline 0 1 0 0
Above Underline 0 1 0 0 -L 0111 Underline 0 0 0 1-,----- Bottom Intersect
Below Underl ine 0 0 1 0
Above Underl ine 0 0 1 0

1000 Underline 0 0 0 1 --- Horizontal Line
Below Underl ine 0 0 1 0
Above Underline 0 1 a a

I
1001 Underline 0 1 0 a Vertical Line

Below Underline 0 1 0 0
Above Underline a 1 a a + 1010 Underline a 0 0 1 Crossed Lines
Below Underline 0 1 a a
Above Underline a a a a

1011 Underline 0 a 0 a Not Recommended'
Below Underline a a a a
Above Underline 0 a 1 0

1100 Underline 0 0 1 0 Special Codes
Below Underline a a 1 0
Above Underline

1101 Underline Undefined Illegal
Below Underline J
Above Underline

Und~fined 1110 Underline Illegal
Below Underline I
Above Underline I ,

1111 Underline Undefined Illegal
Below Underline I

'Character Attribute Code 1011 is not recommended for
normal operation. Since none of the attribute outputs are
active, the character Generator will not be disabled, and
an indeterminate character will be generated.

Character Attribute Codes 1101, 1110, and 1111 are illegal.

Blinking is active when B = 1.

Highlight is active when H = 1.

Figure 3-5. Character Attributes

7-48 207780-001

APPLICATIONS

ABC D E F G H I J K L M
NOPORSTUV

1 234 5 6 7 B 9

EXAMPLE OF THE VISIBLE FIELD ATTRIBUTE MODE
(UNDERLINE ATTRIBUTE)

ABC D E F G H I J K L M
NOPORSTUV

1 234 567 B 9

EXAMPLE OF THE INVISIBLE FIELD ATTRIBUTE MODE
(UNDERLINE ATTRIBUTE)

Figure 3-6. Field Attribute Examples

3.3 SPECIAL FUNCTIONS

VISUAL ATTRIBUTES-Visual attributes are
special codes which, when retrieved from display
memory by the 8275, affect the visual characteristics
of a character position or field of characters. Two
types of visual attributes exist, character attributes
and field attributes.

Character Attribute Codes: Character attribute
codes can be used to generate graphics symbols
without the use of a character generator. This is
accomplished by selectively activating the Line
Attribute outputs (LAO-LA I), the Video Suppres­
sion output (VSP), and the Light Enable output
(L TEN). The dot timing logic uses these signals to
generate the proper symbols. Character attributes
can be programmed to blink or be highlighted
individually. Blinking is accomplished with the
Video Suppression output (VSP). Blink frequency is
equal to the screen refresh frequency divided by 32.
Highlighting is accomplished by activating the
Highlight output (HGL T). Character attributes
were designed to produce the graphic symbols
shown in Figure 3.5.

Field Attribute Codes: The field attributes are
control codes which affect the visual characteristics
for a field of characters, starting at the character
following the field attribute code up to, and includ­
ing, the character which precedes the next field
attribute code, or up to the end of the frame.

There are six field attributes:

I. Blink - Characters following the code are
caused to blink by activating the Video Sup­
pression output (VSP). The blink frequency is
equal to the screen refresh frequency divided
by 32.

7-49

2. Highlight - Characters following the code are
caused to be highlighted by activating the
Highlight output (HGL T).

3. Reverse Video - Characters following the
code are caused to appear in reverse video
format by activating the Reverse Video output
(RVV).

4. Underline - Characters following the code are
caused to be underlined by activating the Light
Enable output (L TEN).

5. General Purpose - There are two additional
8275 outputs which act as general purpose,
independently programmable field attributes.
These attributes may be used to select colors or
perform other desired control functions.

The 8275 can be programmed to provide visible or
invisible field attribute characters as shown in Figure
3.6. If the 8275 is programmed in the visible field
attribute mode, all field attributes will occupy a
position on the screen. They will appear as blanks
caused by activation of the Video Suppression
output (VSP). The chosen visual attributes are
activated after this blanked character. If the 8275 is
programmed in the invisible field attribute mode,
the 8275 row buffer FIFOs are activated. The FIFOs
effectively lengthen the row buffers by 16 characters,
making room for up to 16 field attribute characters
per display row. The FIFOs are 126 characters by 7
bits in size. When a field attribute is placed in the
row buffer during DMA, the buffer input controller
recognizes it and places the next character in the
proper FIFO. When a field attribute is placed in the
buffer output controller during display, it causes the
controller to immediately put a character from the
FIFO on the Character Code outputs (CCO-6). The
chosen attributes are also. activated.

207780-001

APPLICATIONS

LIGHT PEN DETECTION - A light pen consists
fundamentally of a switch and light sensor. When
the light pen is pressed against the CRT screen, the
switch enables the light sensor. When the raster
sweep coincides with the light sensor position on the
display, the light pen output is input and the row and
character position coordinates are stored in two
8275 internal registers. These registers can be read
by the microprocessor.

SPECIAL CODES - Four special codes may be
used to help reduce memory, software, or DMA
overhead. These codes are placed in character
positions in display memory.

I. End Of Row Code - Activates VSP. VSP
remain's active until the end of the line is
reached. While VSP is active, the screen is
blanked.

2. End Of Row-Stop DMA Code - Causes the
DMA Control Logic to stop DMA for the rest
of the row when it is written into the row buffer.
It affects the display in the same way as the End
of Row Code.

3. End Of Screen Code - Activates VSP. VSP
remains active until the end of the frame is
reached.

4. End Of Screen-Stop DMA Code - Causes the
DMA Control Logic to stop DMA for the rest
of the frame when it is written into the row
buffer. It affects the display in the same way as
the End of Screen Code.

PROGRAMMABLE DMA BURST CONTROL­
The 8275 can be programmed to request single-byte
DMA transfers of DMA burst transfers of 2,4, or 8
characters per burst. The interval between bursts
is also programmable. This allows the user to tailor
the DMA overhead to fit the system needs.

4. DESIGN BACKGROUND

4.1 DESIGN PHILOSOPHY

Since the cost of any CRT system is somewhat
proportional to parts count, arriving at a minimum
part count solution without sacrificing performance
has been the motivating force throughout this design
effort. To successfully design a CRT terminal and
keep the parts count to a minimum, a few things
became immediately apparent.

I. An 8085 should be used.
2. Address and data buffering should be eliminated.
3. Multi-port memory should be eliminated.
4. DMA should be eliminated.

Decision I is obvious, the 8085's on-board clock
generator, bus controller and vectored interrupts
greatly reduce the overall part count considerably.

7-50

Decision 2 is. fairly obvious; if a circuit can be
designed so that loading on the data and address
lines is kept to a minimum, both the data and address
buffers can be eliminated. This easily saves three to
eight packages and reduces the power consumption
of the design. Both decisions 3 and 4 require a basic
understanding of current CRT design concepts.

In any CRT design, extreme time conflicts are created
because all essential elements require access to the
bus. The CPU needs to access the memory to control
the system and to handle the incoming characters,
but, at the same time, the CRT controller needs to
access the memory to keep the raster scan display
refreshed. To resolve this conflict two common
techniques are employed, page buffering and line
buffering.

In the page buffering approach the entire screen
memory is isolated from the rest of the system. This
isolation is usually accomplished with three-state
buffers or two line to ope line multiplexers. Of
course, whenever a character needs to be manipu­
lated the CPU must gain access to the buffered
memory and, again, possible contention between the
CPU and the CRT controller results. This contention
is usually resolved in one oftwo ways, (I) the CPU is
always given priority, or; (2) the CPU is allowed to
access the buffered memory only during horizontal
and vertical retrace times.

Approach I is the easiest to implement from a hard­
ware point of view, but if the CPU always has
priority the display may temporarily blink or
"flicker" while the CPU accesses the display memory.
This, of course, occurs because when the CPU
accesses the display memory the CRT controller is
not able to retrieve a character, so the display must
be blanked during this time. Aesethically, this
"flickering" is not desirable, so approach 2 is often
used.

The second approach eliminates the display flicker­
ing encountered in the previously mentioned tech­
nique, but additional hardware is required. Usually
the vertical and horizontal blank signals are gated
with the buffered memory select lines and this line is
used to control the CPU's ready line. So, if the CPU
wants to use the buffered memory, its ready line is
asserted until horizontal or vertical retrace times.
This, of course, will impact the CPU's overall
through put.

Both page buffered approaches require a significant
amount of additional hardware and for the most
part are not well 'suited for a minimum parts count
type of terminal. This guides us to the line buffered
approach. This approach eliminates the separate
buffered memory for the display, but, at the same
time, introduces a few new problems that must be
solved.

207780-001

APPLICATIONS

ClOD'tVCLES

10
10
I"
Ie
10
4

·16
6
7
4

4C~

4
4

10
10

·OPTIONAL

VIDEO OUT

PAGE BUFFERING
TECHNIQUE

1'----_..VIDEO OUT

LINE BUFFERING
TECHNIQUE

Figure 4-1. Line Buffering Technique

~E!) SO!.lf.'CE ~TRTEi::m

F'USH F'~lJ ; S,c{/[A F.~I) FlR'JS
f'U:·4 H ; S~;','[H Iil:S- l
t'USl! 0 i ;:.F~',,!£ D F,j;:i I:
l:a H, C':j~lCH iZ!:J't", H A:lli L

r'R~' 5P ; f'~IT SWT F"O!IHEr: HI H filII) L
~CH!j .HIT ::'H~J~ !II D I-~'[' E
Lf~i..D CI.:rn[' ;(·'T FOHfiEr:
SPHL iPVi ('.i~~~!;1 LIi;, IIHO SF'
/'I'll A, llCUH ;SST l1i:::.I:'i)"; sm

1'J ~JIi ;SEl Sf-i:C1Fil, T"AnS~ER BIT
11 pelp iC")'W 1-'1).'5
12 FPC ;5£iurn
13 sm ,GO 8:':CV '10 r;O:;iiR I'~:');:

H LXI H. D\.Ia~i1 ,2Ehl HL
IS DP,r, '" ;f,[;[·51tlCK
Ie ~;nlG ;PUT S'IFr.1< !II H Hi;[! L
17 SF'Hl ;r.t:S·II:'c'~ SH,I:i'

10 18 LX] H·lf<S1 ;P,Ji E;I)T1Ctl [.EPLtW.!U H P,);:; L
4 19 XCHG ; S~:iiP 1";:G:Sl[F-,:;
4 20 110\/ R.D ;f"llT HIGH (t1(>Ef· HIlt
4 21 O~ H dE IF 5i=:1l~ AS H

7/Hl 22 JNZ KPTI: ; IF I)OT lEfr"~

4 23 tJ:)',I R.E ,PU1 LO~ 0r,,'[R WA
4 24 niP l ;;1£ IF sr~';E liS l

7/10 2S JIJ2]:PTK j JF ~iCIT LHNi::
ifJ 16 l:<.l H, Tf'DIS ·LGH[, H rill{'l L ~ITH lGP OF SC ~ a~ liEr~(irS

16 27 KPn:: SH!.D C!J:;HD i P~T [ito: cu::'mn AC':,PESS
7 28 HVI A,18H .GO r:ASl~ ~:'r'iE

4 23 SIN JSET mm-:PUFr l'1:iSK
Ii)0 f'OP j G[r, 0 n!l(J E
10 31 FOP jGD H f,liC. l
18 J2 POP PSU iCiET 11 HI;;:' FLfj':iS
4 3J EI ; E)lr::8l~ IHTEFPUrrS

10 34 RET j GO E:';C~

TOTRL CLOa: C'IClES = t'0C U~I)F:ST CASE)

WIn; A G.144 MHZ CRYSTAL TOTAL TIME TO FILL

ROW BUFFER otl 8275 = 650 * . ?:'S = 211 25 mr.rOSEC0~1[IS

Figure 4-2. Routine To Load 8275'5 Row Buffers

In the line buffered approach both the CPU and the
CRT controller share the same memory. Every time
the CRT controller needs a new character or line of
data, normal processing activity is halted and the
CRT controller accesses memory and displays the
data. Just how the CRT controller needs to acquire
the display data greatly affects the performance of
the overall system. Whether the CRT controller
needs to gain access to the main memory to acquire a
single character or a complete line of data depends
on the presence or absence of a separate line or row
buffer.

If no row buffer is present the CRT controller must
go to the main memory to fetch every character. This
of course, is not a very efficient approach because
the processor will be forced to relinquish the bus
70% to 80% of the time. So much processor
inactivity greatly affects the overall system perform­
ance. In fact terminals that use this approa..:h are
typically limited to around 1200 to 2400 baud on
their serial communication channels. This low baud
rate is in general not acceptable, hence this approach
was not chosen.

7-51

If a separate row buffer is employed the CRT
controller only has to access the memory once for
each displayed character per line. This forces the
processor to relinquish the bus only about 20% to
35% of the time and a full 4800 to 9600 baud can be
achieved. Figure 4.1 illustrates these different
techniq ues.

The 8275 CRT controller is ideal for implementing
the row buffer approach because the row buffer is
contained on the device itself. In fact, the 8275
contains two 80-byte row buffers. The presence of
two row buffers allow one buffer to be filled while
the other buffer is displaying the data. This dual row
buffer approach enhances CPU performance even
further.

4.2 USING THE 8275 WITHOUT DMA

Until now the process of filling the row buffer has
only been alluded to. In reality, a DMA technique is
usually used. This approach was demonstrated in
AP-32 where an 8257 DMA controller was mated to
an 8275 CRT controller. In order to minimize
component count, this design eliminates the DMA
controller and its associated circuitry while replac­
ing them with a special interrupt-driven transfer.

The only real concern with using the 8275 in an
interrupt-driven transfer mode is speed. Eighty
characters must be loaded into the 8275 every 617
microseconds and the processor must also have time
to perform all the other tasks that are required. To
minimize the overhead associated with loading the
characters into the 8275 a special technique was
employed. This technique involves setting a special

207780-001

APPLICATIONS

transfer bit and executing a string of POP instruc­
tions. The string of POP instructions is used to
rapidly move the data from the memory into the
8275. Figure 4.2 shows the basic software structure.

In this design the 8085's SOD line was used as the
special transfer bit. In order to perform the transfer
properly this special bit must do two things: (I) turn
processor reads into DACK plus WR for the 8275
and (2) mask processor fetch cycles from the 8275, so
that a fetch cycle does. not write into the 8275.
Conventional logic could have been used to imple­
ment this special function, but in this design a small
bipolar programmable read only memory was used.
Figure 4.3 shows a basic version of the hardware.

Ad
Wi

TRANSFER
BIT

A12

M1
(FETCH
CYCLE)

:::0-Ce

AO

A1

A2

A3

A4

BIPOLAR
PROM 8275 DACK

8275 Ad

8275 Wr

8275 Cs

Figure 4-3. Simplified Version of Hardware Decoder

At first, it may seem strange that we are supplying a
DACK when no DMA controller exist in the
system. But the reader should be aware that all Intel
peripheral devices that have DMA lines actually use
DACK as a chip select for the data. So, when you
want to write a command or read status you assert
CS and WR or RD,but when you want to read or
write data you assert DACK and RD or WR. The
peripheral device doesn't "know" if a DMA control­
ler is in the circuit or not. In passing, it should be
mentioned that DACK and CS should not be
asserted on the same device at the same time, since
this combination yields an undefined result.

This . POP technique actually compares quite
favorably in terms of time to the DMA technique.
One POP instruction transfers two bytes of data to
the 8275 and takes 10 CPU clock cycles to execute,
for a net transfer rate of one byte every five clock
cycles. The DMA controller takes four clock cycles
to transfer one byte but, some time is lost in
synchronization. So the difference between the two
techniques is one clock cycle per byte maximum. If
we compare the overall speed of the 8085 to the

speed of the 8080 used in AP-32, we find that at 3
MHz we can transfer one byte every 1.67 micro­
seconds using the 8085 and POP technique vs. 2
microseconds per byte for the 2 MHz 8080 using
DMA.

5. CIRCUIT DESCRIPTION

5.1 SCOPE OF THE PROJECT

A fully functional, microprocessor-based CRT
terminal was designed and constructed using the
8275 CRT controller and the 8085 as the controlling
element. The terminal had many of the functions
found in existing commercial low-cost terminals and
more sophisticated features could easily be added
with a modest amount of additional software. In
order to minimize component count LSI devices
were used whenever possible and software was used
to replace hardware.

5.2 SYSTEM TARGET SPECIFICATIONS

The design specifications for the CR T terminal were
as follows:

7-52

Display Format

• 80 characters per display row
• 25 display rows

Character Format
• 5 X 7 dot matrix character contained within a

7 X 10 matrix
• First and seventh columns blanked
• Ninth line cursor position
• Blinking underline cursor

Special Characters Recognized

• Control characters

• Line feed
• Carriage Return
• Backspace
• Form feed

Escape Sequences Recognized

• ESC, A, Cursor up
• ESC, B, Cursor down
• ESC, C, Cursor right
• ESC, D, Cursor left
• ESC, E, Clear screen
• ESC, H, Home cursor
• ESC, J, Erase to the end of the screen
• ESC, K, Erase the current line

Characters Displayed

• 96 ASCII alphanumeric characters
• Special control characters

207780-001

APPLICATIONS

CRT TERMINAL
SERIAL INPUT LINE

CHARACTER
GENERATOR ROM

Figure 5-1. CRT Terminal Block Diagram

Characters Transmitted

• 96 ASCII alphanumeric characters
• ASCII control characters

Program Memory

• 2K bytes of 2716 EPROM

Display/ B/ifler/ Stack Memory
• 2K bytes 2114 static memory (4 packages)

Data Rate

• 9600 BAUD using 3MHz 8085

CRT Monitor
• Ball Bros TV-12, 12MHz B.W.

Keyboard
• Any standard un-encoded ASCII keyboard

Screen Rej;'esh Rate

• 60 Hz

5.3 HARDWARE DISCRIPTION

A block diagram of the CRT terminal is shown in
Figure 5. I. The diagram shows only the essential
system features. A detailed schematic of the CR Tis
contained in the Appendix. The terminal was
constructed on a simple 6" by 6" wire wrap board.
Because of the minimum bus loading no buffering of
any kind was needed (see Figure 5.2).

The "heart" of the CRT terminal is the 8085
microprocessor. The 8085 initializes all devices in
the system, loads the CRT controller, scans the
keyboard, .assembles the characters to be trans-

7-53

Worst case bus loading:

Data Bus: 8275
8255A-5
8253-5
8253-5
8251A

2x 2114
2716
8212

20pf
20pf
20pf
20pf
20pf
10pf
12pf
12pf

114pf max

Only As - A15 are important since Ao - A7 are
latched by the 8212

Address Bus: 4x 2114 20pf
2716 6pf

26pf max

This loading assures that all components will be
compatible with a 3M Hz 8085 and that no wait
states will be required

Figure 5-2. Bus Loading

mitted, decodes the incoming characters and deter­
mines where the character is to be placed on the
screen. Clearly, the processor is quite busy.

A standard list of LSI peripheral devices surround
the 8085. The 825 I A is used as the serial communi­
cation link, the 8255A-5 is used to scan the keyboard
and read the system variables through a set of

2077S0-001

APPLICATIONS

switches, and the 8253 is used as a baud rate
generator and as a "horizontal pulse extender" for
the 8275.

The 8275 is used as the CRT controller in the system,
and a 2716 is used as the character generator. To
handle the high speed portion of the terminal the
8275 is surrounded by a small handful of TTL. The
program memory is contained in one 2716 EPROM
and the data and screen memory use four 2114-type
RAMs.

All devices in this system are memory mapped. A
bipolar PROM is used to decode all of the addresses
for the RAM, ROM, 8275, and 8253. As mentioned
earlier, the bipolar prom also turns READs into
DACK's and WR's for the 8275. The 8255 and 8253
are decoded by a simple address line chip select
method. The total package count for the system is
20. not including the serial line drivers. If this same
terminal were designed using the MCS-85 family of
integrated circuits, additional part savings could
have been realized. The four 2114's could have been
replaced by two 8185's and the 8255 and the 2716
program PROM could have been replaced by one
8755. Additionally. since both the 8185 'and the
2716 have address latches no 8212 would be needed.
so the total parts count could be reduced by three
or four packages.

5.4 SYSTEM OPERATION

The 8085 CPU initializes each peripheral to the
appropiate mode of operation following system
reset. After initialization, the 8085 continually polls
the 8251 A to see if a character has been sent to the
terminal. When a character has been received, the
8085 decodes the character and. takes appropriate
action. While the 8085 is executing the above "fore­
ground" programs, it is being interrupted once every
617 microseconds by the 8275. This "background"
program is used to load the row buffers on the 8275.
The 8085 is also interrupted once every frame time,
or 16.67 ms, to read the keyboard and the status of
the 8275.

As discussed earlier, a special POP technique was
used to rapidly move the contents of the display
RAM into the 8275's row buffers. The characters are
then synchronously transferred to the character code
outputs CCO-CC6, connected to the character
generator address lines A3-A9 (Figure 5.3). Line
count outputs LCO-LC2 from the 8275 are applied
to the character generator address lines\AO-A2. The
8275 displays character rows one line at a time. The
line count outputs are used to determine which ,line
bf the character selected by A3-A8 will be displayed.
F allowing the transfer of the first line to the dot
timing logic. the line count is incremented and the
second line of the character row is selected. This

process continues until the last line of the row is
transferred to the dot timing logic.

The dot timing logic latches the output of the
character generator ROM into a parallel in, serial
out synchronous shift register. This shift register is
clocked at the dot clock rate (11.34 MHz) and its
output constitutes the video input to the CRT.

.-______ ~C~HA~RC~LO~C~K ________ ,

lCO-LC2 t=~===j AO - A2

2708
CHARACTER
GENERATOR

ROM

I
I

HOAIZ DR

VERT DR

____________ J

Figure 5-3 Character Generator/Dot Timing Logic
Block Diagram

Table 5-1

PARAMETER RANGE

Vertical Blanking Time 900 J,lsec nominal

(VRTC)

Vertical Drive Pulsewidth 300 J,lsec .;; PW .;; 1.4 ms

Horizontal Blanking Time 11 J,lsec nominal
(HRTC)

Horizontal Drive Pulsewidth 25 J,lsec .;; PW .;; 30 J,lsec

Horizontal Repetition Rate 15,750 ±500 pps

5.5 SYSTEM TIMING

Before any specific timing can be calculated it is
necessary to determine what constraints the chosen
CRT places on the overall timing. The requirements
for the Ball Bros. TV -12 monitor are shown in Table.
5.1. The data from Table 5.1, the 8275 specifications,
and the system target specifications are all that is
needed to calculate the system's timing.

7-54

LlNE1_ •••• 0 •••••••••••••••••

- -- .' ..
UNDERLINE •

POSITrON_ •

" c' (•• (

o ••

, .. .
LINE 10 -_ •••••••••••••••••••••

-.-.- -..-- --
CHARACTER 1 CHARACTER 2 CHARACTER 3

Figure 5-4. Row Format

207780-001

APPLICATIONS

First, let's select and "match" a few numbers. From
our target specifications, we see that each character
is displayed on a 7 X 10 field, and is formed by a 5 X
7 dot matrix (Figure 5.4). The 8275 allows the
vertical retrace time to be only an integer multiple of

the horizontal character line. This means that the
total number of horizontal lines in a frame equals 10
times the number of character Jines plus the vertical
retrace time, which is programmed to be either I, 2,
3, or 4 character lines. Twenty-five display lines

CHARACTER

COUNTER
STATE

OOT_

r-r,g:g;;;~~~~-617ns ------1

H

,~;~:. iii' 1..-;-1 ----'i-7---~~----'iJ---.:,1111
CHARAC~~~ OC1: III CLOCK ~I------------~' ~------------~

aD r7------------~~---

CHARACTER 1-10 15t.dMAX II I
CLOC~i7~ 1il1/-------i-ii--....J I ... I ____ -;-~I

I

6275
CHARACTER

OUTPUT
(CCO·CC6)

SHIFT
REGISTER
OUTPUT
(74166)

FIRST CHARACTER SECOND CHARACTER THIRD CHARACTER

FIRST CHARACTER VIDEO QUT SECOND CHARACTER VIDEO OUT

+V

VIDEO OUT ,--------,

Figure 5-5. Dot Timing Logic

7-55

HORI­
ZONTAL
DRIVE

VERTICAL
DRIVE

CRT
MONITOR

207780-001

APPLICATIONS

require 250 horizontal lines. So, if we wish to have
a horizontal frequency in the neighborhood of
15,750 Hz we must choose either one or two
character lines for vertical retrace. To allow for a
little more margin at the top and bottom of the
screen, two character .lines were chosen for vertical
retrace. This choice yields a net 250 + 20 = 270
horizontal lines per frame. So, assuming a 60 Hz
frame:

60 Hz * 270 = 16,200 Hz (horizontal frequency)

This value falls within our target specification of
15,750 Hz with a 500 Hz variation and also assures
timing compatibility with the Ball monitor since, 20
horizontal sync times yield a vertical retract time of:

61.7 microseconds X 20 horizontal sync times =
I. 2345 milliseconds

This number meets the nominal VRTC and vertical
drive pulse width time for the Ball monitor. A
horizontal frequency of 16,200 Hz implies a
ljl6,200 = 61.73 microsecond period.

It is now known that the terminal is using 250
horizontal lines to display data and 20 horizontal
lines to allow for vertical retrace and that the
horizontal frequency is 16,200 Hz. The next thing
that needs to be determined is how much time must

be allowed for horizontal retrace. Unfortunately,
this number depends almost entirely on the monitor
used. Usually, this number lies somewhere,between
15 and 30 percent of the total horizontal line time,
which in this case is 1/16,200 Hz or 61.73
microseconds. Since in most designs a fixed number
of characters can be displayed on a horizontal line, it
is often useful to express retrace as a given number
of character times. In this design, 80 characters can
be displayed on a horizontal line and it was
empirically found that allowing 20 horizontal
character times for retrace gave the best results. So,
in reality, there are 100 character times in every
given horizontal line, 80 are used to display
characters and 20 are used to allow for retrace. It
should be noted that iftoo many character times are
used for retrace, less time will be left to display the
characters and the display will not "fill out" the
screen. Conversely, if not enough character times
are allowed for retrace, the display may ~'run off' the
screen.

One hundred character times per complete horizontal
line means that each character requires

61.73 microseconds /100 character times = 617.3
nanoseconds.

If we mUltiply the 20 horizontal retrace times by the

I 1 1 "'," 1 "'," 1 1 ":6'

HRTe
(82751

CHAR CODe
182751

LINe COUNT
182751

LATCH
CHARI ~ . I ,

SHIFT--I--+-t--f--t---t-+--+--t---t--+--t-t--t--t-H 1.---j'
REGISTER LOAD LOAD

LO,O,"O 'T ' '"'1"
VIDEO

OUTPUT 'I--j.---.t--i--~I-

: I
Figure 5·6. CRT System Timing

7-56 207780-001

APPLICATIONS

617.3 nanoseconds needed for each character, we find

617.3 nanoseconds * 20 retrace times = 12.345
microseconds

This value falls short of the 25 to 30 microseconds
required by the horizontal drive of the Ball monitor.
To correct for this, an 8253 was programmed in the
one-shot mode and was used to extend the horizontal
drive pulsewidth.

Now that the 617.3 nanosecond character clock
period is known, the dot clock is easy to calculate.
Since each character is formed by placing 7 dots
along the horizontal.

DOT CLOCK PERIOD = 617.3 ns
(CHARACTER CLK PERIOD)! 7 DOTS
DOT CLOCK PERIOD = 88.183 nanoseconds
DOT CLOCK FREQUENCY = I!PERIOD =
11.34 MHz

Figures 5.5 and 5.6 illustrate the basic dot timing
and the CRT system timing, respectively.

6. SYSTEM SOFTWARE

6.1 SOFTWARE OVERVIEW

As mentioned earlier the software is structured on a
"foreground-background" basis. Two interrupt­
driven routines, FRAME and POPDAT (Fig. 6.1)
request service every 16.67 milliseconds and 617
microseconds respectively, frame is used to check
the baud rate switches, update the system pointers
and decode and assemble the keyboard characters.
POPDAT is used to move data from the memory
into the 8275's row buffer rapidly.

The foreground routine first examines the line-local
switch to see whether to accept data from the
USART or the keyboard. If the terminal is in the
local mode, action will be taken on any data that is
entered through the keyboard and the USART will
be ignored on both output and input. If the terminal
is in the line mode data entered through the
keyboard will be transmitted by the USART and
action will be taken on any data read out of the
USART.

When data has been entered in the terminal the
software first determines if the character received·
was an escape, line feed, form feed, carriage return,
back space, or simply a printable character. If an
escape was received the terminal assumes the next
received character will be a recognizable escape
sequence character. If it isn't no operation is
performed.

After the character is decoded, the processor jumps
to the routine to perform the required task. Figure
6.2 is a flow chart of the basic software operations;
the program is listed in Appendix 6.8.

7-57

SWITCHED
CHANGED

EXIT

EXIT

Figure 6-1. Frame and Popdat Interrupt Routines

207780-001

· APPLICATIONS

LINE

Figure 6-2. Basic Terminal Software

6.2 SYSTEM MEMORY ORGANIZATION

The display memory organization is shown in
Figure 6.3. The display begins at location 0800H in
memory and ends at location OFCFH. The 48 bytes
of RAM from location OFDOH to OFFFHare
used as system stack and temporary system storage.
2K bytes of PROM located at OOOOH through
07FFH contain the systems program.

6.3 MEMORY POINTERS AND SCROLLING

To calculate the location of a character on the
screen, three variables must be defined. Two of these
variables are the X and Y position of the cursor
(CURSX, CURSY). In addition, the memory
address defining the top line of the display must be
known, since scrolling on the 8275 is accomplished
simply by changing the pointer that loads the 8275's
row buffers from memory .. So, if it is desired to
scroll the display up or down all that must be
changed is one 16-bit memory pointer. This pointer
is entered into the system by the variable TOPAD
(TOP Address) and always defines the top line of the
display. Figure 6.4 details screen operation during
scrolling.

7-58

1 st Column 2nd Column 80th Column

ROW 1 0800H 0801 H 084FH
ROW2 0850H 0851H 089FH
ROW3 08AOH 08A 1 H 08EFH
ROW4 08FOH 08F1 H 093FH
ROW5 0940H 0941H 098FH
ROW6 0990H 0991 H 090FH
ROW7 09EOH 09E1 H OA2FH
ROW8 OA30H OA31H OA7FH
ROW9 OA80H OA81H OACFH
ROW 10 OAOOH OA01 H OB1 FH
ROW 11 OB20H OB21 H OB6FH
ROW 12 OB70H OB71 H OBBFH
ROW 13 OBCOH OBC1 H OCOFH
ROW 14 OC10H OC11H OC5FH
ROW 15 OC60H OC61 H OCAFH
ROW 16 OCBOH OCB1 H OCFFH
ROW 17 OOOOH 0001H 004FH
ROW 18 0050H 0051H 009FH
ROW 19 OOAOH OOA1H OOEFH
ROW 20 OOFOH OOF1 H OE3FH
ROW 21 OE40H OE41H OE8FH
ROW 22 OE90H OE91 H OEOFH
ROW 23 OEEOH OEE1 H OF2FH
ROW 24 OF30H OF31 H OF7FH
ROW 25 OF80H OF81 H OFCFH

Figure 6-3. Screen Display After Initialization

Subroutines CALCU (Calculate) and ADX (ADd X
axis) use these three variables to calculate an
absolute memory address. The subroutine CALCU
is used whenever a location in the screen memory
must be altered.

6.4 SOFTWARE TIMING

One important question that must be asked about
the terminal software is, "How fast does it run". This
is important because if the terminal is running at
9600 baud, it must be able to handle each received
character in 1.04 milliseconds. Figure 6.5 is a
flowchart of the subroutine execution times. It
should be pointed out that all of the times listed are
"worst case" execution times. This means that all
routines assume they must do the maximum amount
of data manipulation. For instance, the PUT routine
assumes that the character is being placed in the last
column and that a line feed must follow the placing
of the character on the screen.

How fast do the routines need to execute in order to
assure operation at 9600 baud? Since POPDAT
interrupts occur every 617 microseconds, it is
possible to receive two complete interrupt requests
in every character time (1042 microseconds) at 9600

207780-001

APPLICATIONS

ROW 1 0800H 0801 H 084FH ROW2 0850H 0851H 089FH
ROW 2 0850H 0851 H 089FH ROW3 08AOH 08A1H 08EFH
ROW3 08AOH 08A1H 08EFH ROW4 08FOH 08F1 H 093FH
ROW4 08FOH 08F1 H 093FH ROW5 0940H 0941H 098FH
ROW5 0940H 0941H 098FH ROW6 0990H 0991 H 090FH
ROW6 0990H 0991 H 090FH ROW7 09EOH 09E1 H OA2FH
ROW7 09EOH 09E1 H OA2FH ROW8 OA30H OA31H OA7FH
ROW8 OA30H OA31H OA7FH ROW9 OA80H OA81H OACFH
ROW9 OA80H OA81H OACFH ROW 10 OADOH OAD1 H OB1 FH
ROW 10 OADOH OAD1H OB1FH ROW 11 OB20H OB21 H OB6FH
ROW 11 OB20H OB21H OB6FH ROW 12 OB70H OB71H OBBFH
ROW 12 OB70H OB71H OBBFH ROW 13 OBCOH OBC1 H OCOFH
ROW 13 OBCOH OBC1 H OCOFH ROW 14 OC10H OC11H OC5FH
ROW 14 OC10H OC11H OC5FH ROW 15 OC60H OC61H OCAFH
ROW 15 OC60H OC61H OCAFH ROW 16 OCBOH OCB1H OCFFH
ROW 16 OCBOH OCB1H OCFFH ROW 17 ODOOH OD01H OD4FH
ROW 17 ODOOH OD01H OD4FH ROW 18 OD50H 0051 H OD9FH
ROW 18 OD50H OD51H OD9FH ROW 19 ODAOH ODA1H ODEFH
ROW 19 ODAOH ODA1H ODEFH ROW 20 ODFOH ODF1 H OE3FH
ROW 20 ODFOH ODF1H OE3FH ROW 21 OE40H OE41H OE8FH
ROW 21 OE40H OE41H OE8FH ROW 22 OE90H OE91H OEDFH
ROW 22 OE90H OE91H OEDFH ROW 23 OEEOH OEE1H OF2FH
ROW 23 OEEOH OEE1H OF2FH ROW 24 OF30H OF31 H OF7FH
ROW 24 OF30H OF31 H OF7FH ROW 25 OF80H OF81H OFCFH
ROW 25 OF80H OF81 H OFCFH ROW 1 0800H 0801 H 084FH

After Initialization After 1 Scroll

ROW3 08AOH 08A1H 08EFH ROW4 08FOH 08F1 H 093FH
ROW4 08FOH 08F1 H 093FH ROW 5 0940H 0941 H 098FH
ROW5 0940H 0941 H 098FH ROW6 0990H 0991H 090FH
ROW6 0990H 0991H 090FH ROW7 09EOH 09E1H OA2FH
ROW7 09EOH 09E1H OA2FH ROW8 OA30H OA31H OA7FH
ROW8 OA30H OA31H OA7FH ROW9 OA80H OA81H OACFH
ROW9 OA80H OA81H OACFH ROW 10 OADOH OAD1H OB1FH
ROW 10 OADOH OAD1 H OB1 FH ROW 11 OB20H OB21 H OB6FH
ROW 11 OB20H OB21 H OB6FH ROW 12 OB70H OB71H OBBFH
ROW 12 OB70H OB71H OBBFH ROW 13 OBCOH OBC1H OCOFH
ROW 13 OBCOH OBC1 H OCOFH ROW 14 OC10H OC11H OC5FH
ROW 14 OC10H OC11H OC5FH ROW 15 OC60H OC61H OCAFH
ROW 15 OC60H OC61H OCAFH ROW 16 OCBOH OCB1 H OCFFH
ROW 16 OCBOH OCB1 H OCFFH ROW 17 ODOOH OD01H OD4FH
ROW 17 ODOOH OD01H OD4FH ROW 18 OD50H OD51H OD9FH
ROW 18 OD50H 0051 H OD9FH ROW 19 ODAOH ODA1H ODEFH
ROW 19 ODAOH ODA 1 H ODEFH ROW 20 ODFOH ODF1H OE3FH
ROW 20 ODFOH ODF1H OE3FH ROW 21 OE40H OE41H OE8FH
ROW 21 OE40H OE41 H OE8FH ROW 22 OE90H OE91H OEDFH
ROW 22 OE90H OE91H OEDFH ROW 23 OEEOH OEE1H OF2FH
ROW 23 OEEOH OEE1H OF2FH ROW 24 OF30H OF31H OF7FH
ROW 24 OF30H OF31H OF7FH ROW 25 OF80H OF81H OFCFH
ROW 25 OF80H OF81H OFCFH ROW 1 0800H 0801H 084FH
ROW 1 0800H 0801 H 084FH ROW 2 0850H 0851H 089FH
ROW 2 0850H 0851H 089FH ROW3 08AOH 08A1H 08EFH

After 2 Scrolls After 3 Scrolls

Figure 6-4. Screen Memory During Scrolling

7-59 207780-001

APPLICATIONS

baud. Each POPDA T interrupt executes in 211
microseconds maximum. This means that each
routine must execute in:

1042 - 2 * 211 = 620 microseconds

By adding up the times for any loop, it is clear that
all routines meet this speed requirement, with the
exception of ESC J. This means that if the terminal
is operating at 9600 baud, at least one character time
must be inserted after an ESC J sequence.

(START)

I
INITIALIZE

21'1.25~s

iii i i
esc A esc B esc C esc 0 esc E
78.7~s 324~s 107~s 119~s 316~s

NO

P011
53~s

I
CHREC

T r r
esc H esc J esc K
105~s 862~s 310~s

Figure 6-5. Timing Flowchart

7-60

i
LF

306~s

i i
CR OUT
42~s 456

207780·001

8212

IC2

"8 eLA
MD

II ST8

30 ALE

6.1:~~~X,

ijj:,.,
ICC 10
7474 ~ 10~ RESET

fs!
8085

IC1

L~~!l ~
~~SlD
-=

APPLICATIONS

"'I 4 .---
"'2

,
r--

"'3
, r-

""
10

IC5 15
"'5 ~cs

""
17 2716

DO, J9

21 7 A£ "SA4 A3A2 A1 A() AS AgAlOOEDO 01 02 03 °405 0607 CE A,'
"" I 2 3 4 51'1'1' 2322 1 0' 1011 1314 1516 1 IT 22 ,
01,

I 1 DlI 2D

1 01, J8

DiS "

ADD
ADlf'~3--~~-+-+--r-r-+---------------------------------~-+~~~~+-~~+--+-+---­
AD2~1~4----~-+-+--r-r-+----------------------------------~_+4---~~+-~~~--+_+---­
AD3f'~5------~-+--r-r-+---------------------------------~-+~----~+-~--r+--+-+---­
AD4~1~'--------~--r-r-+----------------------------------~_+4----------~~+--+_+---­
AD5pl~'----------~~r-+---------------------------------~_+4-------~~~+-_f_+---­
AD,pl~'------------~~+---------------------------------~-+~--------__ ~+-_f-+---­
ADI~I~'----------------__ --------------------------------~_+4-----------~+--+_+---­

A8 21

A9 22

AIO~2~3--------------~------------------------------------~4-------------+-_f_+----
'"p2~'--------------~-'------------------------------------~----________ +-_f-+----
AJ2~ ___ --~----~~~--------~------------------------+-------------t--+-r---
'13P2~'~~----------~-+-+----------------------------------~------------+-_f-+----

:~S:~~ ~ RESET OUT A14 p2,-' ~~----------+_+-+----------------------------------~------------+--+_+----
ORO 8275 -------.! RST '5 'IS p2~8 ~~----------+_+-+----------------------------------4-------------+--+_+----
IRQ 8275~ RST 5_5 AD 32

,~:D3:1 S~D ~WA 31 '~;;04
7400

Ie 4 7400 7400
IC4

,-....r--'-A IC 4 __

ADDRESS r"iA4;--'A;D ~e~s-AA:l1 ,..--______________ J I
DECODE .

PROM A2r-------------------'
A3r--------------------"

Ce 2716 UK
r---~~~ __ _f_+_VV~

CS 2114 HIGH UK

CS 2114 lOW 4,7K

r---~~----~8275WR

r---------------~----------------~~8275DACK

r----------------+--------------------------------------+-.---~CS8255

~.,
r----------------+-.--------------~~8275CS

L_~~~~~-~----------------j_ITI_r_~,---------~8275RD
L':~ __

4_7K""",, .. v--l
'----__ 4"'.7"'K Vll'v-lT +5

Appendix 7.1
CRT TERMINAL SCHEMATICS

7-61 207780-001

APPLICATIONS

IC6 IC7 IC8 ICg

CS
2114

-C CS
2114 Lecs 2114 Lc CS 2114

A7 AS AS A4 Aa A2 AlAn As AgIO I lOziOalO4WE AT AS AS A4 A3 AZ A,An AS AgIO,IOz10aI04WE AT AS AS A4 A3 A AlAn As AgIO,IDZI03104WE AT A6 AS A4 Aa AZA,AO As AgIO,IOZI03104WE
171 23 '17 65 161

I
1

---'-'!

UK ----.1!!

?B 4.7K

~ +5 12

23

LJ=

51' 13121t 0 171 23 '1716r 161

11

1

-

~1 7404

B' 65' 321

DoD,DzDaD4DsD6D721

'0 191 CS~
AlIBI 8253

IC 20
o 1l.--PG 2 Ie 14 GATE

GAUZ DUTO flL--PG 2 IC 11
9

ClKO-- PG 2 Ie 10

iiii

Wii DUll 17

ClK2

." TOIC10
8085 ClK 7 2

51413 1211 0 171 23 , '16 5161 51' 1312, 0 1712' 3 'l'I6r 161514 1312\ 0

1 11

1

-
'------

-

len
7404

2728 12'56 , B

°0,°,°2°3°4°5 06 07 11
--..!.? c/o CSO-

~RO 8251A

10 WR IC1'
no ~SERIAl OUT

TO RESET OUT.--!
8085

9

U

7-62

RESET RIO J..-- SERIAL IN

TiC
RiC

t
TO ClK OUT

ON 8085

207780-001

Au SHEET 1

A1 SHEET 1

DO SHEET 1

01 SHEET 1

02 SHEET 1

03 SHEET 1

04 SHEET 1

5 SHEET 1 o
o
o
R
W

6 SHEET 1

7 SHEET 1

o SHEET 1

R SHEET 1

VCC

~C

:=::~
:=::~ -. 1-0' __ '::

~~

'*
BAUD RATE SENSE

SWITCHES AND
LINE-LOCAL

SWITCH

APPLICATIONS

27 28 29 30 31 32 33 34

07 06 05 04 03 02 01 00
Wii 36

~ iiii 5

ES 6

14 PCO AO
9

15 PCI AI
8

16 PC2 IC17 3S

17 PC3 8255A-5 P80 18

13 PC4 PSI 19

12 PCS P82 20

II PC6 P83
21

10 PC7 'PB4
22

PBS 23

VCC -1!! P86
24

~ P87
PAO PAl PA2 PA3 PA4 PAS PA6 PA7

4+ 3+ 2+ 1+ 40+ l3* 37+

, SLO SL I SL2 SL3 SL4 SLS SL6 SL 7

KEYBOARD
RETURN LINES

Appendix 7.1

2S

CRT TERMINAL SCHEMATICS

7-63

TO 05 IC 3

1 ?'

KEYBOARD
SCAN LINES

TO RESET OUT 808S

RLO

RLI

RL2

RL3

RL4

RLS

RL6

RL7

10 K!l

Vcc

207780-001

APPLICATIONS

11.34 MHz
XTAL 10pF

UI I +5

330n 330n

(4)

7404 7404
"::"

DOTOSC

7410

DOT CLOCK

IC 10 7474

10
11 ClK PAESET

_12

19 18 17 16 15 14 13 12 IC15 7 IC 16

21 07 06 05 04 03 02 01 DO 29 22 A9 DO 9 14 ClK
AD CC6

28 23 A8 01 10 12 15
CC5 lOAD

TO IC3 07 AD CC4
27 I A7 02 II II

CC3
26 2 A6 03

13 10

TO IC3 03 WA CC2 25 3 A5 2716 04
14 74166

CCI 24 4 A4 05 15 TO CClK
8275

TO IC3 06 22 CS CCo 23 5 A3 06 16
8275
IC 13 l2 2 A2 07 17 2 A TO ClK 0

8253 PG 1
TO IC3 04 oACK II 3 AI

lO 4 AD
TO ICI AST 6.5 5 OAO OH

13

31 lAO
HATC 7 TO GATE 0

TO ICI AST 5.5
VATC B

8253 PG 1 +5

TO Ilio PIN 5 30 CClK
lTEN 37 1K

VSP 35
VERTICAL DRIVE

IC13 +5

1K

VIDEO OUT

+5

7410

74175 7404
1K

OUTO IC14 HORIZONTAL
8253 PG 1 CRT TERMINAL (5) (6) DRIVE

IC 11

207780-001
7-64

APPLICATIONS

Appendix 7.2
KEYBOARD INTERFACE

The keyboard used in this design was a simple
unencoded ASCII keyboard. In order to keep the
cost to a minimum a simple scan matrix technique
was implemented by using two ports of an 8255
parallel 110 device.

When the system is initialized the contents of the
eight keyboard RAM locations are set to zero. Once
every frame, which is 16.67 milliseconds the contents
of the keyboard ram is read and then rewritten with
the contents of the current switch matrix. If a non­
zero value of one of the keyboard RAM locations is
found to be the same as the corresponding current
switch matrix, a valid key push is registered and

SPACE BAR

action is taken. By operating the keyboard scan in
this manner an automatic debounce time of 16.67
milliseconds is provided.

Figure 7.2A shows the actual physical layout of the
keyboard and Figure 7.2B shows how the individual
keys were encoded. On Figure 7.2B the scan lines are
the numbers on the bottom of each key position and
the return lines are the numbers at the top of each
key position. The shift, control, and caps lock key
were brought in through separate lines of port C of
the 8255. Figure 7.3 shows the basic keyboard
matrix.

In order to guarantee that two scan lines could not
be shorted together if two or more keys are pushed
simultaneously, isolation diodes could be added as
shown in Figure 7.4.

/

Figure 7-2A. Keyboard Layout

TOP NUMBER = RETURN LINE

BOTTOM NUMBER = SCAN LINE

Figure 7-28. Keyboard Encoding

7-65 207780-001

BIT

0000

0001

0010

0011

0100

0101·

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

NOTE:

:
;:

APPLICATIONS

Appendix 7.3
ESCAPE/CONTROL/DISPLAY CHARACTER SUMMARY

CONTROL
CHARACTERS

000 001

@

NUL OLE

A lOCI
SOH

B
STX DC2

ETX t DC3

0
EOT DC4

E
ENQ NAK

ACK F SYN

: : : TB

::

:
:: CAN

I
HT . EM

010

p
SP

Q.
!

R
"

s

T
$

U
%

v
&

w

X
(

'y
)

DISPLAYABLE
CHARACTER

011 100
101 110

q, @ p

I A Q A

2 B R B

3 C S C

4 0 T D

5 E U E

6 F V F

7 G W G

8 H X H

9 I Y I

ESCAPE.
SEQUENCE

111 010 011 100
10

P

Q f A

R + B -S C

T - 0

U CLR E

V

W

X HOME H

y.

:::,:::::::,:::::::::::::,:::::: Z
::::,t:,~f.!':::':::':::~ SUB . : J Z J Z EOS I

VT KJII + ; K [K EL J

L /
FF FS < L \ L

::::::: : "

:; " GS - = M 1 M

N A
SO RS > N /\ N

0
Sl us - / ? 0 - 0

: ,
Shaded blocks "' functions terminal will re,act to. Others can be generated but are illnored up on receIpt.

7-66

1 110 111

207780-001

APPLICATIONS

SCAN LINES

o 2 3 4 5 6 7
+5

8 9 o \ as BREAK 10K

10K

10K

10K

10K

10K

10K

10K

Figure 7-3. Keyboard Matrix

Appendix 7.4
PROM DECODING

As stated earlier, all of the logic necessary to convert
the 8275 into a non-DMA type of device was
performed by a single small bipolar prom: Besides
turning certain processor READS into DACKS and
WRITES for the 8275, this 32 by 8 prom decoded
addresses for the system ram, rom, as well as for the
8255 parallel I/O port.

Any bipolar prom that has a by eight configuration
could function in this application. This particular
device was chosen simply because it is the only "by
eight" prom available in a 16 pin package. The
connection of the prom is shown in detail in Figure
7.5 and its truth table is shown in Figure 7.6. Note
that when a fetch cycle (M I) is not being performed,
the state of the SOD line is the only thing that
determines if memory reads will be written into the
8275's row buffers. This is done by pulling both
DACK and WRITE low on the 8275.

Also note that all of the outputs of the bipolar prom
MUST BE PULLED HIGH by a resistor. This
prevents any unwanted assertions when the prom is
disabled.

7-67

SCAN LINES

10k
--------~~~------~--~----~~5V

RETURN LINES

10k
----------r-~------_r--~----~VVV5V

Figure 7-4. Isolating Scan Lines With Diodes

207780-001

APPLICATIONS

SOD
(8085)

Al0
(8085)

All
(8085)

A12
(8085)

Ml
(8085)

VCC VCC

GND GND

ENABLE

CE2716

CE 2114
0800H·OBFFH

CE2114
OCOOH·OFFFH

Wi
8275

DACK
8275

cs
8255

cs
8275

iffi
8275

Figure 7-5. Bipolar Prom (825123) COnnection

'" o"c
i < 4: :;x: ~

A4 A3 A2 A1 AO 07 06 05 04 03 02 01 DO

o O' 0 0 0 1 1 1 1 1 1 0
o 0 0 0 1 1 1 1 1 1 1 0
o 0 0 1 0 1 1 1 1 1 1 0
o 0 0 1 1 1 1 1 1 1 1 0
o 0 1 0 0 1 1 1 i 1 1 1 0 1
o 0 1 0 1 1 1 1 1 1 1 0 1
o 0 1 1 0 1 1 1 1 1 0 1 1
o 0 1 1 1 1 1 1 1 1 0 1 1
o 1 0 0 0 1 0 1 1 0 1 1 1
o 1 0 0 1 1 0 1 1 0 1 1 1
o 1 0 1 0 o 0 1 1 1 1 1 1
o 1 0 1 1 o 0 1 1 1 1 1 1
o 1 1 0 0 1 1 0 1 1 1 1 1
o 1 1 0 1 1 1 0 1 1 1 1 1
o 1 1 1 0 1 1 0 1 1 1 1 1
o 1 1 1 1 1 1 0 1 1 1 1 1
1 0 0 0 0 1 1 1 1 1 1 1 0
1 0 0 0 1 1 1 1 0 0 1 1 0
1 0 0 1 0 1 1 1 1 1 1 1 0
1 0 0 1 1 1 1 1 0 0 1 1 a
1 0 1 0 0 1 1 1 1 1 1 0 1
1 0 1 0 1 1 1 1 0 0 1 0 1
1 0 1 1 0 1 1 1 1 1 0 1 1
1 0 1 1 1 1 1 1 0 0 0 1 1
1 1 0 0 0 1 0 1 1 0 1 1 1
1 1 0 0 1 1 a 1 1 0 1 1 1
1 1 0 1 0 o 0 1 1 1 1 1 1
1 1 0 1 1 o 0 1 1 1 1 1 1
1 1 1 0 0 1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 0 1 1 1 1 1
1 1 1 1 0 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 a 1 1 1 1 1

Figure 7-6. Truth Table Bipolar Prom

7-68

Appendix 7.5
CHARACTER GENERATOR

As previously mentioned, the character generator
used in this terminal is a 2716 or 2758 EPROM. A
I K by 8 device is sufficient since a 128 character 5 by
7 dot matrix only requires 8K of memory. Any
"standard" or custom character generator could
have been used.

The three low-order line count outputs (LCO-LC2)
from the 8275 are connected to the three low-order
address lines of the character generator and the
seven character generator outputs (CCO-CC6) are
connected to A3-A9 of the character generator. The
output from the character generator is loaded into a
shift register and the serial output from the shift
register is the video output of the terminal.

N ow, let's assume that the letter "E" is to be
displayed. The ASCII code for "E" is 45H. So, 45H
is presented to address lines A2-A9 of the character
generator. The scan lines will now count each line
from zero to seven to "form" the character as shown
in Fig. 7.7. This same procedure is used to form all
128 possible characters.

It should be obvious that "custom" character fonts
could be made just by changing the bit patterns in
the character generator PROM. For reference,
Appendix 7.6 contains a HEX dump of the
character generator used in this terminal.

45H = 01000101
Address to Prom = 01000101 SL2 SL 1 SLO

= 228H - 22FH

Depending on state of Scan
lines.

Character generator output

Rom Address
228H
229H
22AH
22BH
22CH
22DH
22EH
22FH

Rom Hex Output Bit Output*
3E 0 1 2 3 4 5 6 7

02
02
OE
02
02
3E
00

Bits 0, 6 and 7 are not used.

• note bit output is backward from convention.

Figure 7-7. Character Generation

207780-001

APPLICATIONS

Appendix 7.6
HEX DUMP OF CHARACTER GENERATOR

7-69 207780-001

APPLICATIONS

Appendix 7.7
COMPOSITE VIDEO

In this design, it was assumed that the monitor
required a separate horizontal drive, vertical drive,
and video input. However, many monitors require a
composite video signal. The schematic shown in
Figure 7.8 illustrates how to generate a composite
video signal from the output of the 8275.

The dual one-shots are used to provide a small delay
and the proper horizontal and vertical pulse to the
composite video monitor. The delay introduced in
the vertical and horizontal timing is used to "center"
the display. VR I and VR2 control the amount of
delay. IC3 is used to mix the vertical and horizontal
retrace and Q 1 along with the R 1, R2, and R3 mix
the video and the retrace signal and provide the
proper DC levels.

HRTC

2.2K

7486

VIDEO)-----Wlr--'

. Figure 7-8. Composite Video

Appendix 7.8
SOFTWARE LISTINGS

ISIS-II 8083/8385 MACRO ASSEMBLER, X1~8

Lac: CBJ

1803
1801
18~2
1803
M01
A0~3
6003
61'l01
6032
6~03
1001
1003
1401
0800
0F80
0FD0
0018
0050
I'JFE0

1'J001'J F3
001'J1 3H:00F
1'J1'J04 210038
3307 22E33F
1'J30A 22E80F
I'JIIlIlD 3E30
1'J1'J0F 32ElI'JF
1'J1'J12 32E2I'JF
31'J15 32EBI'JF
1'J1'J18 32E73F
1'J31B 32EMF

SEQ

1 $1'10005
2
3
4
5
6
7
8
9

II'J PORTA
11 PORTB
12 PORTC
13 CNWD55
14 usn"
15 USTD
If) CN'f0
17 CNTI
18 CN'f2
19 CN'II'!
20 CRTS
21 CRTM
22 INT75
23 TPDIS
24 BTDIS
25 LAST
26 CURBOf
27 LNGfH
28 STPTR
29
31'J
31
32
33
34
35
36
37
38
39
40
41
42
43

SOURCE STATEMENr

MACROFlLE
:NO rw. 8275 SOF1WARE ALL I/O IS IoIEMOOY MAPPED
:SYSTEM RO'! 1l00I'JH TO 1'J7FFH .
:SYSTEM RA/.I 1'J811llllH TO I'JFFFH
:8275 WRITE 1I'JIIllllH TO 13FFH
:8275 READ 141'J0H TO 17FFH
:8255 READ/WRITE 1801lH TO IFFF
:8253 ENABLED BY A14
L8251 EN~qLED BY A15
1:000 1811l3H
EOO 1801H
EOO 1802H
EOO 18rBH
EQU I'JMlllllH
EOO M000H
EOO f)QJIl0H
EQU 6001H
EOO 6002H
EQU 6033H
EQU .1001H
EQU 131lllH
EOO 141l1H
EQU 1l800H
EQU 3F8QJH
EQU 3FD(JH
EOO 18H
EOO 01l50H
EOO 0FE0H

; START PROGRAIoI
: ALL VARIABLES ARE

bI
LXI
LXI
SHLD
SHLD
MVI
STA
STA
s'rA
STA
STA

Sp,STPTR
~~IS
ClRAD
A,0IlH
CURSY
CURSX
KBCHR
USCHR
KEYIJfIN

:8255 PORT A ADDRESS
:8255 PORT B ADrnESS
:8255 PORT C ADDRESS
:8255 CONTROL PORT ADDRESS
:8251 FLAGS
:8251 DATA .
:8253 COlJlll·rER 0
:8253 COlJlllTER 1
:8253 COlJlllTER 2
:8253 iIIODE WORD
:8275 CONTROL ADDRESS
:8275 MODE ADDRESS
:8275 INTERRUPT CLEAR
:TOP OF DISPLAY ~~
:BOrl'O'l OF DISPLAY ~101
:FIRST BYTE AFTER DISPLAY
:BOrl'O'l Y CURSOR
:LENGrH OF ONE LINE
:LOCATION OF STACK POINTER

INITIALIZED BEFORE ANVrHING ELSE

'DISABLE IN'rERRUPTS
; LOAD STACK POINTER

7-70

:LOAD H&L WI'rH TOP OF DISPLAY
:SET 'rap = TOP OF DISPLAY
:STORE THE CURRENT ADrnESS
;ZERO A
:ZERO CURSOR Y POIN'rER
;ZERO CURSOR X POI~rER
:ZERO KBD CHARACTER
:ZERO USART CHAR BUFFER
:ZERO KEY OOIIN

VRTC

COMPOSITE
VIDEO
OUT

207780-001

001E 32ED0F
0021 32EE0F
0024 C3980~

002C
002C C35701

0034
0034 F5
0035 E5
0036 D5
0037 210000
003A 39
003B EB
003C 2AE80F
"'03F F9
0040 3EC0
0042 3'"

0043 E1
0044 E1
0045 E1
0046 E1
0047 E1
0~48 E1
0049 E1
004A E1
004B E1
"'~4C E1
004D E1
004E E1
004F E1
0"'50 E1
0051 E1
0052 E1
0053 E1
0054 E1
0055 E1
0056 E1
0057 E1
0058 E1
0~59 E1
00SA E1
"'~5B E1
005C E1
0115D E1
005E E1
015F E1,
01161'l E1
0061 E1
0062 E1
0063 E1
0064 E1
0065 E1
0066 E1
0067 E1
0068 E1
01169 E1
00SA E1
006B 0F
006C 30
006D 210000
0070 39
0071 EB
0072 F9
0073 21D00F
0076 EB
0077 7A
0078 BC
0079 C2840a

~~~g.~~ 
007E C28400 
0081 2100~8 
0084 22E80F 
0087 3E18 
0089 30 

44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
fi1 POPDAT: 
62 
63 
64 
65 
66 
67 
58 
69 
70 
71 
72 
73 
74+ 
75+ 
76+ 
77+ 
78+ 
79+ 
80+ 
81+ 
82+ 
83+ 
84+ 
85+ 
86+ 
87+ 
88+ 
89+ 
90+ 
91+ 
92+ 
93+ 
94+ 
95+ 
9fi+ 
97+ 
93+ 
99+ 

100+ 
101+ 
102+ 
103+ 
104+ 
105+ 
106+ 
107+ 
108+ 
109+ 
110+ 
111+ 
112+ 
113+ 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 KPTK: 
130 
131 

APPLICATIONS 

STA KEYOK ;ZERO KEYOK 
STA ESCP ;ZERO ESCAPE 
JMP LPK8D ;JU'IP AND SET EVER'l1'HING UP 

;THIS JU~P VECTOR 15 LOCATED AT THE Rs'r 5.5 LOCATION 
·OF THE 8085. IT 15 USED 'ro READ 'rnE 8275 STATUS AND 
;READ THE KEYBG\RD. THIS ROUrlNE 15 EXECUfED ONCE EVERY 
; 11;.667 i'lILLISECONCG. 
; 
mG 0~2CH 
JMP FAA'lE 

;THIS ROU'rlNE 15 LOCATED AT THE RST 6.5 LOCATION OF THE 
;8085 AND IS USED TO LOAD THE o\TA TO BE DISPLAYED INTO 
;THE 8275. THIS ROUrINE IS EXECUfED ONCE EVERY 617 MICRCEECONCG. 

6RG 34H 
PUSH P5W 
PUSH H 
PUSH D 
~f, ~p00fHlH 
XCIIG 
LHLD 
SPHL 
I>1VI 
SIM 

CUMO 

A,OC0H 

~5r (L~1V2) 
ENIl'I 
POP 
Pop 
Pop 
Pop 
POP 
POP 
pop 
POP 
POP 
Pop 
POP 
POP 
PoP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
Pop 
POP 
Pop 
Pop 
Pop 
Pop 
Pop 
POP 
PoP 
POP 
Pop 
POP 
RRC 
SIM 
LXI 
DAD 
XCIIG 
SPHL 
LXI 

-XCIIG 
MOV 
CMP 
JNZ 
MOV 
CI>\P 
JNZ 
LXI 
SHill 
MIll 
SIM 

H 
H 
H 
H 
H 
H 
H 
Ii 
Ii 
Ii 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
Ii 
H 

H,0000H 
SP 

H,LAST 

~,D 
KPTK 
A,E 
L 
KPTK 
H,TPDIS 
CLRAD 
A,18H 

7-71 

;SAVE A .a.ND FLAGS 
;SAVE HAND L 
;SAVE D AND E 
;ZERO H AND L 
; pu'r STACK POIN'rER IN H AND L 
;pu'r STACK IN D AND E 
;GET POINTER 
;pur CURRE1'l1' LINE INTO SP 
;SET MASK FOR S1M 

;SET UP A 
;GO BACK TO NCRlI\AL MODE 
;ZERO HL 
;ADD STACK 
;PUT STACK IN H AND L 
; RESTORE STACK 
;pu'r BaITO~ DISPLAY IN HAND L 
·SWAP RElJISTERS 
; pu'r HIGH OHDER IN A 
;SEE IF SAME AS H 
• IF NOT LEAVE 
; pu'r W!I ORDER IN A 
;SEE IF SA'IE AS L 
; IF NOT LEAVE 
;LOAD Ii AND L I'IITH 'rap OF SCREEN rIIEMCRY 
;pu'r BACK CURREN'r ADDRESS 
;SET I>!ASK 
;ou'rPUTMASK 

207780-001 



APPLICATIONS 

1'J1'J8A 01 132 I?OP 0 ·GET 0 AND E 
01l8B El 133 POI? H ;GE'T HAND L 
038C F1 134 POI? I?SW ·GET A I'.ND FLI'.GS 
1'J380 FB 135 EI ;'ruRN ON IN'rERRU?l'S 
1ll08E C9 136 RET ;GO BJICK 

137 
;'THIS IS THE EXIT ROU'fINE FeR THI': FAAME IN'TERRUPT 138 

139 ~VI ;SET MASK 1ll1ll8F 3E18 141ll BYPASS: A,18H 
1ll1l91 311 141 SI"I ;Ol1TPUT THE MASK 
1ll1l92 C1 142 POP 8 ·GE'T B AND C 
1ll1'J93 Dl 143 POP 0 ;GEO 0 A.ND E 

. 1ll1l94 El 144 POP H ;GET H AND L 
11395 F1 145 POP PS,o/ ;GET A AND FLACO 
1l1l9'i FB 141'; EI ; ENABLE IN'l'ERRUPr5 
1l097C9 147 RET ;GO BACK 

148 
;THIS CLEARS 'rHE AREA OF AA'I THA'r IS USED 149 

1511 ;FOR KEYB~RD nEBOUNCE. 
151 

§TA 111398 32EFIlF 152 LPKBD: SHCON ;ZERO SHIFT COOfROL 
1l1l9B 32FIlllF 153 S'TA RETLIN ;ZERO RE'ruHN LINE 
1'J1l9E 32F1IlF 154 S'TA SCNLIN ;ZEHO SCAN LINE 

155 
;THIS ROl1fINE CLEARS THE ENTIRE SCREEN BY PlJrTING 156 

157 ;SPACE CODES (2I'1H) IN EVERY LOCATION ON THE SCREEN. 
158 

LxI 1l1lA1 211ll1l38 159 H,'IPDIS ; PU'f TOI? OF SCREEN IN HL 
1'J1lA4 IllDl'Jl'lF 161'1 LXI a, LAST ; PU'f BOM'O'l IN BC 
1l1lA7 36211 161 LOOPF: MVI M,2I'1H • !?U'r SPACE IN '''' 
1l1lA9 23 1fi2 INX H ; INCREMEN'r POIN'TER 
IllIlM 7C 1fi3 !'1OV A,H ;GE'r H 
00AB B8 164 CI",P 8 ;SEE IF ~'1E AS B 
IllIlAC C2A7~11 165 JNZ LOOI?F ;IF NOT [DOP AG!\IIII 
IlW' 70 16'; ,'1OV A,L ;GET L 
1l0BIl B9 167 CM!? C ;SEE IF ~'1E AS C 
IlIlBl C2A7~11 168 JNZ LOOPF ; IF NOT LOOP AGAIIII 

169 
;8255 INITIALIZATION 17ilJ 

171 
,:WI IlllB4 3E8B 172 A,8BH ;MOVE 8255 CONIROL WOOD IN'ro A 

111186 32"318 173 STA CNWD55 ; I?u'r COOfROL WOOD IN'ro 8255 
174 

; 8251 175 INITIALIZATION 
17fi 

LXI Ill"B9 211ll1AI'J 177 H USTF ·GE'r 8251 FLI'.G AOIRESS 
"0BC 3681'1 178 MVI "I:83H ; OlJ"',"I'i S'roHE 'ro 8251 
"38E 360" 179 MVI M,0IlH ;RESET 8251 
"oc" 364" 100 I."IVI M,4I'1H ;RESET 8251 
IllOC2 Illlll 181 NO!? ·WAIT . 
3OC3 36EA 182 MYI M,0EAH ;LOAD 8251 MODE WOOD 
I'JOC5 361'15 183 MVI "I,"5H ;LOAD 8251 CO'otMANf) WOOD 

184 
;8253 185 INI'rIALIZATION 

185 
AvI IlOC7 3E32 187 ~N~~H ·CONTROL WOOD FOO 8253 

IllOC9 32"363 188 S'TA ;I?u'r CONTROL WOOD IN'ra 8253 
IllOCC 3E32 189 MVI A,32H ;ISB 8253 
IllOCE 3211360 19I'J STA CN'rlll ;pu'r IT IN 8235 
"1'101 3E"3 191 MVI A,0IlH ;MSB 8253 
1'11'103 32"1ll6I'J 192 STA Cm'0 ;I?u'r IT IN 8253 
1ll"06 CDDeIllIll 193 CALL STBAUD ;GO 00 BAUD RATE 
IlllllD9 C3F903 194 J'II? IN75 ;GO 00 8275 

195 
;THIS ROU'fINE REAOO THE BAUD RATE S',;ITCHES FRO>! PORT C 196 

197 ;OF THE 8255 AND LOOKS UI? THE NlM8ERSNEEOEO TO LOAD 
198 ;THE 8253 'TO !?ROVIDE THE !?ROI?ER BAUD RATE. 
199 LIl\ "IlDe 3A1'J218 21ll1l S1BAUD: PORTC ;READ BAUD RATE S',;ITCHES 

Illlll0F E61lF 201 ANI "FH ;STRII? OFF 4 MSB'S 
1ll3E1 32ECIlF 21'12 STA BAUD ;SAVE IT 
"IlE4 1'J7 2"3 RLC ;MOVE BITS OVER ONE !?LACE 
0"E5 21C51'15 21114 LXI H,BDLK ;GET BAUD RATE LOOK UI? TABLl'.: 
IlllllE8 161l1ll 21'15 MVI O,"IlH ;ZERO D 
"0EA SF 206 MOV ~,A ·p\J'r A IN E 
""EB 19 207 DAD ;GET OFFSET 
lll"Ee 11"361'1 2"8 LXI O,CN'I'M ;I?OIN'r DE TO 8253 
01llEF 3EB6 2"9 MVI ~,"B6H . ;GE'r CONTROL WOOD 
1ll3F1 12 21O STAX ;s'rollE IN 8253 
IllllF2 IB 211 DCX D ;POIN'r AT #2 COUIIITER 
IlllllF37E 212 MOV S,M ·GET ISB BAUD RATE 
IlllllF4 12 213 STAX ;Pl1T IT IN 8253 
IlllllF5 23 214 INX H ;I?OIN'r AT MSB BAUD RATE 
01llF6 7E 215 MOV A,M ;GET MSB BAUD RA'rE 
"IllF7 12 216 STAX D ;I?UT IT IN 8253 
33F8 C9 217 RET ;GO 8ACK 

218 

7-72 207780-001 



00F9 210110 
00FC 3600 
00FE 2B 
00FF 364F 
0101 3658 
0103 3689 
0105 3600 
0107 23 
0108 CllB811J3 
019B 36E0 
0111JD 3623 

1IJ10F 3E18 
0111 30 
0112 FB 

0113 20 
0114 E680 
0116 C22101 
0119 3A01A0 
011C E602 
011E C2SC01 
0121 3AEA0F 
0124 E680 
0126 C23191 
0129 3E00 
012B 32ED0F 
012E C31301 
0131 3AEDBF 
0134 4F 
0135 3AmQJF 
0138 89 
0139 CAl301 
013C 32EDClJF 
013F 32E711JF 
0142 20 
ClJ143 E680 
0145 CA4B01 
0148 C34E02 
014B 3A01A0 
014E E601 
0150 CMB01 
0153 3AE70F 
0156 3200A0 
0159 C30F01 
01SC 3A00A0 
015F E67F 
0161 32E70F 
0164 C34E02 

0167 F5 
0168 E5 
0169 D5 
016A C5 
016B 3A0114 

016E 2AE3I1JF 
0171 22E80F 

0174 3A0218 
0177 E611JF 
0179 47 
017A 3Aa::0F 
017D B8 
017E C4OC00 

0181 3AEA0F 
0184 E640 
0186 C2C201 
0189 CD8F01 
018C C38F00 

APPLICATIONS 

219 
220 
221 IN75: 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 SETUP: 
238 
239 

;8275 INITIALIZATION 

LxI H,CRTS 
MVI M

H
,00H ;RE;ET AND STOP DISPLAY 

OCX 'HL=1C1JQJ0H 
MVI M,4FH iSCREEN PARAMETER BY'rE 1 
MVI M,58H ;SCREEN PARAMETER BY'rE 2 
MVI M,89H ;SCREEN PARAMETER 8YTE 3 
MVI MH,0DDH ;SCREEN PARAMETER 8YTE 4 
INX ;HL=1QJ01H 
CALL LOC~ ;LOo\D THE CUR~ 
MYI M,0E0H ;PRE;ET COUNTERS 
MVI M,23H 'START DISPLAY 

;'rHIS ROUrINE REAli; BarH THe KEYBOo\RD AND 'rHE USART 
;AND TAKES PROPER ACTION DePENDING ON HOW THE LINE-LOCAL 
;SWITCH IS SET 

AVI A,18H 
SIM 
EI 

;SET MASK 
'LOo\D MASK 
i ENABLE IN'rERRUPl'S 

~a~ : READ THE lSART 

~a~ RXRDY: kIM 'GET LINE LOCAL 
244 ANI 80H iIS IT ON OR OFF? 
245 JNZ KEYINP ;LEAVE IF IT IS ON 
246 Lll". lSTe' ;READ 8251 FLACE 
247 ANI 02H 'LOOK AT RXRDY . 
248 JNZ OK7 i IF HAVE CHARAC'I'ER 00 TO WORK 
249 KEYINP: Lll". KEYDIIN ;GET KEYBOo\RO CHARAC'I'ER 
250 ANI 8AH 'IS IT 'rHERE 
251 JNZ KEYS iIF KEY IS PUSHED LEAVE 
252 MVI AL0QJH ;ZERO A 
253 STA K~lt'OK ;CLEAR KElt'OK 

~~~ KEYS: ~ ~~~ !~J.P K~~ 
256 MOV £LA iSAVE A IN C
257 Lll". KlSCHR 'GET KEYBOo\RO CHARAC'I'ER
258 CMP C i IS IT THE SAME AS KElt'OK
259 JZ RXRDY ;IF SAME LOOP AGAIN
260 s'rA KElt'OK ; IF NOT SAVE IT
261 STA USCHR 'SAVE rr
262 RIM iGET LINE LOCAL

~~~ ~I ~ !~~~ 1~\INE 
265 JMP CHRa:: iTIME TO 00 SCJ'o1E WORK 
266 TRANS: Lll". lS'lF ;GET USART FLAGS 
267 ANI 01H 'READY TO TRANSMIT? 
268 JZ 'lRI\.NS ; LOOP IF NOT READY 
269 LOr\ lSCHR 'GET CHARACTER 
270 STA USTD ipu'r IN UST\RT 
271 JMP SETUP • LEAVE 
272 OK7: LOr\ USTD ;READ USART 
273 ANI 07FH 'STRIP j~SB 
274 STA lSCHR i pu'r IT IN M~ORY 
275 JMP CHRa:: ; LEAVE 

~~~ hHIS ROUTINE CHECKS THE BAUD RATE S'I/ITCHES, RElSE'm THE 
278 ;SCREEN POIN'I'ERS A.tIID REAOO AND LOOKS UP THE KEYBOo\RD.
279 •
280 FRAME: PuSH PSW ;SAVE A AND FLACE
281 PUSH H ;SAVE H AND L
282 PUSH D ;SAVE D AND E
283 PUSH B 'SAVE B AND C
284 Lll". INT75 ;READ 8275 TO CLEAR INl'ERRUP'r

~~~ ~SET UP THE POIN'1'ERS 

~3~ LHLD TO~ 
289 SHLD CIJW) 

~~~ ~SET UP BAUD RATE 

~~~ leA PORTC 
294 ANI 0FH 

~~~ ~ ~~D 
297 CMP B
298 CNZ STBAUD
299 •
300 ; READ KEYBo\RO
301 •
302 f.o\ KEYlHI
303 ANI 40H
304 JNZ KYOOWN
305 CALL RIl<B
306 JMP BYPASS

7-73

'LOAD TOP IN H AND L
;STalE TOP IN CURRENT ADCRE;S

;READ BAUD RATE S'~ITCHES
;STRIP OFF 4 MSB'S
'SAVE rill B
~GET BAUD RATE
;SEE IF SAME AS B
; IF NOT SAME 00 SCMETHING

;SEE IF A KEY IS D)~
'SET THE FLAGS
;IF KEY IS OOWN JU!4P AROUND
;GO READ 'mE KEYBOo\RO
; LEAVE

207780-001

APPLICATIONS

fIl18F 21EFfIlF 3f1l7 RDKB: LXI ~~~ON ;POIN'f HL AT KEYBOI\RD RN1 0192 JAfIl218 3f1l8 LI)I\ ;GET CQlITffiOL AND SHIFT fIl195 77 309 l'lOV I'I,A ;SAVE IN I..,EMORY fIl196 3EFE 310 MYI A,0FEH ;SET UP A .
fIl198 32f1l018 311 LOOPK: STA PORTA ;OUTPJT A 019B 47 312 I'IOV !i:s~TB ;SAVE A IN B fIll9C JAfIl1l8 313 LI)I\ ; READ KEYBQ\RD 019F 2F 314 CMA ;INVERT A 01M B7 315 ORA A ;SET THE FLAm 01Al C2AFfIll 316 JNZ SAVKEY ; LEAVE IF KEY IS JXJ.oIN 01M 78 317 I'IOV A,B ;GET SCAN LINE BACK fIlIA5 07 318 RLC ;ROTATE IT OVER ONE 01A6 DA981H 319 JC LOOPK ;00 IT AGAIN 01A9 3E0f1l 320 MVI A,00H ;ZERO A
01AB 32EA0F 321 STA KEYIJIlN ;SAVE KEY OONN 0lAE C9 322 RET ; LEAVE
0lAF 23 323 SAVKEY: INX Ii ;POINT AT RETURN LINE 0180 2F 324 CMA ;PJT A BlICK
0181 77 325 MOV i'l,A ;SAVE RE'NRN LINE IN ,..,EMORY fIlIB2 23 326 INX H ;POIN'f H AT SCAN LINE fIl183 7f1l 327 I'IOV i'l,B ;SAVE SCAN LINE IN MEt'lORY
fIlIB4 3E4f1l 328 N\VI ~f~ ;SET A fIl186 32EAfIle 329 STA ;SAVE KEY OONN fIlIB9 C9 33f1l RET ; LEAVE 01BA 3E01'l 331 KYCHNG: MVI A,0f'lH ;ZERO fIl fIlIBC 32EA0F 332 STA KEYIJIlN ; RES E'f KEY DCJ.oiN fIlIBF C38FfIll'l 333 JMP BYPASS ; LEAVE 01C2 21Flf1lF 334 KYOOtIN: LXI H,SCNLIN ;GET SCAN LINE I'llC5 7E 335 MOV %~TA ; PU'f SCA"I LINE IN A fIlIC6 32f1lfIJ18 336 STA ;OUTPJT SCAN LINE TO PORT A fIlle9 2B 337 DeX H ;POIN'f AT RE'NRi'J LINE fIllCA 3AfIl118 338 LI)I\ PORTS ;GET RETURN LIi'JES fIlICD B6 339 ORA M ; ARE TljEy 'fHE S,a,'1E? fIllCE 2F 34f'l CMA ·INVERT A Il1CF B7 341 ORA A ;SET FLAm fIllOIl CABAfIll 342 JZ KI(CHIIIG ; IF DIFFffiENf Kgy H,a,s CHANGED fIl103 3AEAfIlF 343 LI)I\ Kgl(lJllN ;GE'f KEY OONN fIl106 E601 344 ANI fIllH ;HAS THIS BEEN OONE BEFORE? fIl!D8 C28FfIlfll 345 JNZ BYPASS ;LE:AVE IF IT HAS fIllDB 3M118 346 LI)I\ PORTB ;GE'f RETURN LINE fIllDE fIl6FF 347 MYI B,fIlFFH ;GET READY TO ZERO B 'HE0 fIl4 348 UP: INR B ;ZERO B 'HEI fIJF 349 RRC ;ROfATE A fIlIE2 DAE"'''l 35fIJ JC UP ;00 IT AGAIi'J fIlIE5 23 351 INX Ii ;POIN'f H AT SCAN LINES ,nE6 7E 352 ,'lOV AM ;GE'f SCAN LINES 'HE7 0EFF 353 "IVI C;0FFH ;GE'r READY TO LOOP 'HE9 fIlC 354 UPl: INR C ; START C COUi'J'fING fIllEA fIlF 355 RRC ;ROTATE A fIllEB I)I\E901 356 JC UPI ;JU''1P TO LOOP fIlIEE 78 357 MOV A,B ;GE'r RE'ruRN LINES fIllEF fIl7 358 RLC ·MOVE OVER ONCE fIllFfIl fIl7 359 RLC ;MOVE OVER 'IWICE fIlIF! fIl7 360 RLC ;MOVE OVER THREE TIMES fIlIF2 Bl 361 ORA C lOR SCAN AND RETURN LINES I'llF3 47 362 :>lOV ~~TC ;SAVE A Ii'J B 01F4 3M218 363 LI)I\ ;GE'r SHIFT CONTROL fIlIF? E641'l 364 ANI 4f1JH ; IS CONTROL SET I'llF9 4F 365 MOV ~~ON ;SAVE A IN C I'lU'A 3AEFI'lF 356 LI)I\ ;GE'r SHIFT CONTROL fIlIFD 57 367 MOV D,A ;SAVE A IN D l'liFE E641'l 368 ANI 4f1lH ; sm I P COIlf1'ROL fIl21l1l Bl 369 ORA C ;SET BIT fIl21'l1 CAJEfIl2 37f1l JZ CNTIJIlN ; IF SET LEAVE fIl2f1l4 3AfIl218 371 LDA PORTC ; READ IT AGAII'J 1l2f1l7 E621l 372 ANI 2f1JH ;smIP SHIFT fIl2f1l9 4F 373 ,'lOV C,A ·SAVE A fIl21lA 7A 374 MOV A,D ;GET SHIFT CONTROL 02f1lB E620 375 ANI 2f1JH ;smIP CONTROL fIl2fIJD Bl 376 OM C ; ARE THEY 'fHE SA.'1E? fIl21lE CA47f1l2 377 JZ SHIlNN ;IF SE'f LEAVE fIl211 58 378 SCR: MOV E,B ; PU'f TARGET IN E
S~H ~Y~~flJ5 379 I'IVI o flJlIlH ·ZERO D

380 LXI H;K':lLKIJP ;GET LOOKUP TABLE fIl217 19 381 DAD D ;GET OFFSET flJ218 7E 3112 I'IOV A,M ;GE'f CHARACTER
1'l219 47 383 '1OV ~~TC ; PUT CHARACTER IN B 1l21A 3A0218 384 LI)I\ ;GET PORTC flJ21D E61fIJ 385 ANI If1lH ;S"rnIP BIT fIl21F CA2E1Il2 386 JZ CAPLOC ·CAPS LOCK fIl222 78 387 MOV ~~HR ;GET A BlICK flJ223 32EBflJF 388 STI<EY: STA ;SAVE CHARACTER fIl226 3ECl 389 MVI ~f~ ;SET A fIl228 32EAfIlF 390 STA ;SAVE KEY OONN fIl22B C38FI'lfll 391 JMP BYPASS ; LEAVE

392
; IF THE CAP LOCK BurTON IS PUSHED THIS ROUTINE SEES IF 393

394 ;THE CHARACTER IS BE'IWEEN 61H AND 7AH AND IF IT IS THIS

7-74 207780-001

APPLICATIONS

395 ;ROUfINE ASSUMES THAT THE CHARACTER IS WIlER CASE ASCII
396 ;AND SUBrnACTS 2'lH, WHICH CONVERTS THE CHARACTER TO
397 ;UPPER CASE ASCII
398 ;

022E 78 399 CAPLOC: MOV A,B ;GET A BACK
0221." FE60 400 CPI 60H ;HOIl BIG IS IT?
0231 0A2302 401 JC STKEY ;LEAVE IF IT'S roo SI'IALL
0234 FE76 402 CPI 7BH ;IS l'f 'fOO BIG
0236 022302 403 JNC STKEY ;LEAVE IF TOO BIG
0239 D620 404 SUI 20H 'AQJUST A
023B C32302 405 JMP STKEY ;S'IDRE THE KEY

406
;'fHE ROUfINES SHlJ.oIN AND CNTMN SET BIT Ii AND 7 RESPECTIVLY 407

408 ;IN THE ACC.
409 1.wr 023E 3E80 410 CN'fMN: A,8IlH ;SET BIT 7 IN A

0240 B0 411 ORA B lOR ;.lITH CHARACTER
0241 E6BF 412 ANI 0BFH ;MAKE SURE SHIFT IS NOT SET
0243 47 413 MOV ~~ ; pu'r IT BACK IN B
0244 C31102 414 JMP ;GO BACK
0247 3E40 415 SHMN: MVI A,40H ;SET BIT 6 IN A
0249 80 416 ORA B lOR WITH CHARAC'rER
024A 47 417 MOV B A ; PU'f IT BACK IN B
024B C31102 418 JMP SCR ;GO BACK

419
;'fHIS ROllfINE CHECKS LF, CR, 420 FCR ESCAPE CHARACTERS,

421 ; FF, AND BACK SPACE
422 loA 024E 3AEE0F 423 CHKEC: ESCP ; ESCAPE SET?

0251 ~'E80 424 CPI 8~H ;SEE IF IT IS
0253 CA7B!lJ2 425 JZ ESS~ ;LEAVE IF IT IS
0256 3AE70F 426 LOA USC ;GE'f CHARAC'rER
!lJ259 FE0A 427 CPI 0AH ;LINE FEED
!lJ25B CAF6!lJ3 428 JZ LNFD ;e) TO LINE FEED
025E FEOC 429 CPI OCH ;FClRi'l FEED
0260 CACM3 43!lJ JZ FMFD ;GO 'fO FCRM FEED
0263 FE0D 431 CPI 000 ;~ A CR 0265 CMD!lJ3 432 JZ CGRT
0268 FE!lJ8 433 CPI 0BH ;BACK SPACE
026A CA6E03 434 JZ LEFT ;00 A BI'CK SPACE
!lJ26D FE1B 435 CPI lBH ; ESCAPE
!lJ26F CAA503 436 JZ ESKAP ;00 AN ESCAPE
0272 B7 437 ORA A ; CLEAR CARRY
0273 C6E!lJ 438 ADI 0E0t! ;SEE IF CHARAC'rER IS PRINTABLE
!lJ275 Ci\7704 439 JC CffiPUT ;11." PRINTABLE DO IT
0278 C30F!lJ1 44!lJ JMP SETUP ;GO BACK AND READ USART AGAIN

441 ;
442 ;THIS ROUfINE RESETS THE ESCAPE LOCATION AND DECODES
443 ;THE CHAHACTE:RS FOLWIIING AN ESCAPE. THE COMMA.NI:6 ARE
444 ;COMPATABLE WITH INTELS CREDIT 'TEXT EDITOR
445 f.m 0278 3E01l 446 ESSQ: ~~gH ;ZERO A

027D 32EE0F 447 STA ;RESET ESCP
"280 3AE7~F 448 LD\ USCHR ;GET CHARAC'I'ER
0283 FE42 449 CPI 42H !~~ CURSOR IDNN 0285 CME02 450 JZ IDNN
0288 I."E45 451 CPI 45H ;CLEAR SCREEN CHAR!\C'fER
028A CACF02 452 JZ CLEAR ;CLEAR THE SCREEN
028D FE4A 453 CPI 4AH ;CLEAR REST OF SCRE~
0281." CAD502 454 JZ CLRST ;GO CLEAR THE REST OF THE SCREEN
0292 FE4B 455 CPI 4BH ;CLEAR LINE CHARACTER " 0294 CA27fl3 456 JZ CLRLIN 'GO CLEAR A LINE
0297 ~'E41 457 CPI 41H ;CURSOR UP CHARACTER
0299 CA3303 458 JZ UPCUR ·MOVE CURSOR UP
029C FE43 459 CPI 43H ;CURSCR RIGItT CHARAC'rER
029E CA451l3 46!lJ JZ RIGH'f ;MOVE CURSOR TO 'rHE RIGH'T
02A1 FE44 4~1 CPI 44H ;CURSCR LEFT CH.ARACTER
02A3 CA6E03 4~2 JZ LEFT ;MOVE CURSOH TO 'fHE ~'T
02A6 FE48 41i3 CPI 4!3H ; HO'IE CURSOR CHARACTEH
02A8 CA9703 464 JZ HOME ;HCJ>IE THE CURSOH
02AB C30F!lJl 465 JMP SETUP ; LEAVE

456
;THIS ROurINE MOVES THE CURSOR IDNN ONE CHARACTER 467 LINE

4Fi8
LOA 02AE 3AE10F 459 DOliN: CURSi' ;PU'f CURSOR Y IN ,A

02B1 FE18 470 CPI CURBor ;SEE IF ON BO'rro1 OF SCREEN
02B3 CAflF01 471 JZ SE'l'UP ;LEAVE IF ON BO'rTOM
!lJ2B6 3C 472 INR A ;INCREMENr Y CURSOR
02B7 32E10F 473 S'fA CURSi' ;S.AVE !\E'N CURSOR
02BA Cl)3B~3 474 CALL LOCUR ;LOAD THE CURSOR
02BD CD\5~4 475 CALL CMCU ;CMCULATE ADr:RESS
02C0 7E 476 MOV ~~~H ;GE'f FIRST LOCATION OF THE LINE
1!2C1 FEf0 477 CPI ;SE!;; IF CLEAR SCREEN CHARACTER
!lJ2C3 C2I!F!H 478 JNZ SETUP ;LEAVE IF IT IS Nor
1!2C6 22E50~' 479 SHLD LOC80 ;SAVE BEGINNING OF THE LINE
02C9 CD15~4 480 CALL CLLINE ;CLEAR '!'HE LINE
02CC C3~f01 481 J"IP SETUP ; LEAVE

482

7-75 207780-001

APPLICATIONS

483 ;THIS ROl1rINE: CLE:ARS 'rHE: SCRE:E:N.
484

CALL ;GO CLE:AR THE: SCRE:E:N 02CF ClE403 485 CLE:AR: CrsCR
02D2 C30F01 486 JMp SIIT'UP ;GO BACK

487
~THIS ROl/rINE: CLEARS ALL LINES BE:NE:ATH 'rHE: LOCATION 488

489 ; OF THE: CURSOR.
490

tALL 'CALCULATE: ADLRE:SS 02D5 CIl".504 491 CLRST: CALCU
02D8 COCD04 492 CALL ADX ;ADD X POSITION
02DB 01204F 493 LXI BcJF20H ;ptJ'r SPACE AND LAST X IN B AND C
02DE 3AE20F 494 LIl". C SX 'GE:'r X crnsCR
02E:l B8 495 CMp B iSEE IF AT E:ND OF LINE:
02E:2 CAE:C02 495 JZ OVRI ;LE:AVE IF X IS AT E:ND OF LINE:
02E:5 3C 497 LLp: INR A ;MOVE A OVER ONE X POSITION
02E:6 23 498 INX H ; INCR~E:N'f "'IEI~CRY POIN'rE:R
02E:7 71 499 'IOV ,'I,C ; pu'r A SPACE IN ME}~ORY
02E8 B8 500 CMp B ;SEE: IF A = 4FH
02E:9 C2E502 501 JNZ LLp ; IF Nar WOP AGAIN
02EC 0lD00F 502 OVRl: LXI ~,LAST • pu'r LAST LINE IN BC
02E:F 23 503 INX ;pOINT HL TO LAST LINE:
02F0 78 504 MOV ~,B 'GE:T B
02F1 BC 505 CMp iSA"'IE: AS H?
02F2 C2FOO2 506 JNZ CONeL ;LE:AVE IF Nor
02F5 79 507 l'lOV t,C 'GE:T C
02F6 BD 5"8 CMp iSAME AS L?
02F7 C2FD02 5<19 JNZ CONeL ; LE:AVE IF No'r
02FA 210038 510 LXI ~6;rs~IS ;GE:T TOP OF DISPLAY
02FD 3AE:10F 511 CONCL: LIl". 'GE:T Y CURSOR
0300 FE18 512 CpI CURBor i IS l'r ON 'rHE BOrro'>!
0302 CMF01 513 JZ SE:TUp ;LE:AVE IIi' IT IS
0305 3C 514 INR A ;MOVE Ir oo.oJN ONE: LINE:
0306 47 515 MOV B,A ;S.AVE CURSCR IN B FOR LATE:R
0307 115030 516 LXI D,lNGrH ;pu'r LENGrH OF ONE: LINE IN D
030A 31;F0 517 CLOOp: MVI M,0F0H ; PUT E:OO INI'IE}'ICRY
030C 78 518 ,'\OV A,B ;GET CURSOR Y
030D FE18 519 CpI CURBor ; ARE: WE CN 'rHE 80l'TQ>\
030F CA0F01 520 JZ SETUP ;LE:AVE IF WE: ARE:
0312 3C 521 INR A • MOVE CUR SCR !X1tIN ONE
0313 19 522 DAD D ;GE:T NE:X'r LINE
0314 47 523 MOV B,A ;SAVE A
0315 7C 524 MOV ~F~ ·pu'r H IN A
0316 FE:0F 525 CpI ;CO"'1pARE: 'fa HIGH LAST
0318 C20M3 521; JNZ CWOI' ;[EAVE IF IT IS Nor
031B 7D 527 I'IOV ~D~H ,pu'r L IN A
031C FEOO 528 CPI IcO'lpARE 'fa IDtI LAST

, 031E: C20A03 529 JNZ CWOI' 'LEAVE IF IT IS NO'r
0321 210008 530 LXI HL6bDIS ;pu'r 'rOP DISPLAY IN H ,AND L
0324 C3AA03 531 J!1p C I' ;LOOp AGAIN

532
;'rHIS ROU'fINE CLEARS 'rHE LINE: THE: CURSOR IS ON. 533

534
bALL 0327 CIl".504 535 CLRLIN: CALCU ;CALCULATE ADCRE:SS

032A 22E50F 536 SHLD LOC80 ;STORE: H .AND L TO CLE:AR LINE
032D CD1504 537 CALL CLLINE ;CLEAR THE LINE
0330 C30F01 538 JMp SIIT'UP ;GO BACK

539
hHIS ROl1fINE MOVES THE: CURSOR UP ONE: LINE. 540

541
tIl". 0333 3AE10F 542 UPCUR: CUHSY ;GE:T Y CURSOR

0336 FE00 543 CpI 00H 'IS IT ZE:RO
0338 CAC!JF01 544 JZ SETUP ;IF IT IS LEAVE
033B 3D 545 OCR A ;MOVE crnSOR UP
033C 32E10F 546 STA CURSY -SAVE I£W CURSOR
033F cre803 547 CALL Locrn : LOAD THE CURSOR
0342 C30F01 548 JMp SETUP ;LE:AV<!

549
hHIS ROl1rINE I'IOVES THE: CURSOR ONE LOCATION 'ro 'rHE: RIGHr 550

551
ina. 0345 3AE20F 552 RIGH'r: CURSX -GE'r X CURSOR

0348 FE4F 553 CpI 4FH ;IS IT ALL THE: WAY OVER?
034A C26403 554 JNZ !llroVER ;IF Nar JUMP AROUND
034D 3AE10F 555 LIl". CURSY -GE:T Y CURSOR
0350 FE18 556 CPI CURBor :SEE:IF ON BO'IrO"'I
0352 CA5903 557 JZ GD18 ; IF WE ARE: JU:'''P
0355 3C 558 INR A ;INCH~E:NT Y CURSOR
0356 32E10r' 559 STA CURSY ;SAVE IT
0359 3E00 560 GDl8: MV! A,""'H ;ZERO A
035B 32E2"F 561 STA CURSX • ZERO X CURSCR
ri135E COO803 562 CALL LOCrn ;LDAD THE: CURSOR
0361 C30F01 563 J'>!P SE:TUP ; LE:AVE
0364 3C 51;4 NTOVER: INR A ; I NCRE}>!E:N'r X CURSCR
0365 32E:20F 565 STA CURSX ;SAVE Ir
0368 CDB803 565 CALL LOCrn ;LOAD THE CURSOR
"36B C30F01 567 JMP SE:TUP ; LE:AVE

568
;THIS ROUrINE: MOVES THE: CURSOH LE:FT ONE CHARACTER POSl'rION 569

7-76 207780-001

APPLICATIONS

570
L!}lI. 036E 3AE20F 571 LEFT: CUR.SX ;G ET X CURSffi

0371 FE00 572 CPI 0"'H ; IS I'r ALL THE WAY OVER
0373 C28D03 573 JNZ IDVI':R ;IF NOT JW1P AROUND
0376 3AEl0F 574 LI)\ CURSY ;GET CURSOR Y
0379 FE00 575 CPI 00H ·IS IT ZERO?
037B CAIlF0l 576 JZ SETUP : IF IT IS JUMP
037E 3D 577 OCR A ;MOVE CURSOR Y UP
037F 32E10F 578 STA CUil.SY ·SAVE rr
0382 3E4F 579 MVI A{j4FH iGET LAST X LOCATION
0384 32E20F 580 STA C RSX ;SAVI': rr
0387 COO803 581 CALL LOClfR ; LOAD THE CURSOR
0381'1 C30F01 582 JMP SETUP
038D 3D 583 NOVER: OCR A ; ADJUST X CURSffi
038E 32E20F 584 STA CURSX ;SAVE CURSOR X
0391 COO803 585 CALL LOCLR ;LOAD THE CURSOR
0394 C30F01 586 JMP SETUP ; LEAVE

587
;THIS RourINE HaolES THE CURSOR. 588

589 Avr 0397 3E00 59lil HCl'IE: A,00H ;ZERO A
0399 32E20F 591 STA CURSX ·ZERO X CURSffi
039C 32E10F 592 STA CURSY ; ZERO Y CURSOR
039F CDB8{B 593 CALL LDCUR ; LOAD THE CURSOR
031'.2 C30F01 594 JMP SETUP ; LEAve

595
;THIS ESCAPE BIT 596 ROU'rINE SETS THE

597
~vr 031'15 3E80 599 ESKAP: ~~gH ;LOAD A WITH ESCAPE BI'r

031'.7 32EE0F 599 s'rA ;SET ESCAPE LOCATION
03M C30F01 600 JMP SETUP ;GO BACK AND READ US,ART

6tH
;'rHIS RWrINE DOES 602 A CR

603 hvr 03AD 3E00 604 CGR'r: A,0IlH ;ZERO ,A
03AF 32E21lF 605 STA CURSX ; ZERO CURSOR X
03B2 COO803 606 CALL LOCLR ;LOAD CURSOR INTO 8275
03B5 C31lF01 607 JMP SETUP ;POLL USAR'r AGAIN

6(!8
;THIS 609 ROurINE [J)AlE THE CURSOR

f;10 hvr 03B8 3E80 611 LOCUR: A,8IlH ;PU'r 80H INTO A
03BA 320111l 612 STA CRTS ;LOAD CURSOR INTO 8275
i!J3BD 3AE20F 613 LI)\ CURSX ;GE'r CURSOR X
03C0 320010 614 STA CR'IM ; PU'f IT IN 827<;
03C3 3AEI0F 615 L!}lI. CURSY ;GET CURSOR Y
03C6 320010 616 STA CR'JM ; PU'f IT IN 827<;
03C9 C9 6D RET

618
; THIS ROV-fINE 619 DOES A FffiM FEED

620
CALL 03CA ClE403 621 FMFD: CISCR ;CALL CLEAR SCREEN

03CD 210008 622 LXI ~TPDIS ;PU'f TOP DISPLAY IN HL
03D0 22E50F 623 SHLD 80 ; PUT I'r IN [])cB0
03D3 CDl504 624 CALL CLUNE ;CLEAR TOP LINE
03D6 3E00 625 MVI ~~~~ ;ZERO A
03D8 32E20F 626 STA ; ZERO CURSOR X
0300 32E10F 627 STA CURSY ;ZERO CURSOR Y
030E C00803 628 CALL LDCLR ;LOAD THE CURSOR
03El C30F01 629 JMP SETUP ; BJ\CK TO USART

630
hHIS ROlJrINE CLEARS THE SCREEN BY WRITING END OF ROIl 631

632 ;CHARACTERS INTO 'fHE FIRS'f [J)CATION OF ALL LINES 00
633 ;THE SCREEN.
634

~vr 03E4 3EF0 635 CISCR: A,0F0H ;PU'f EOO CHARACTER IN A
03E6 %18 636 MVI B,CURBOf ;LOAD B WITH I~AX Y
03E8 04 637 INR 8 ;GO 'ro MAX PLUS ONE
03E9 210008 638 LXI H,TPDIS ;LOAD' H AND L WITH 'fOP OF R""'1
03EC 115000 639 LXI D,UlGTH ;MOVE 50H = 800 INTO D AND E
03EF 77 640 LOADX: MOV ,ti,A ;MOVE EOl< IN'fO MEl'IOOY
03F0 19 fi41 DAD ;CIJ!I.N3E POINTER BY 80D
03F1 05 642 OCR B ;colJ'll'r THE [j)QpS
03F2 C2EF03 643 JNZ LOADX ;CONTINUE IF NOT ZERO
03F5 C9 644 RET ;GO BACK

645
;'fHIS ROU'fINE DOES A'LINE FEED 646

647
tALL 03F6 CDFC03 648 LNFD: LNFDl ;CALL ROurINE

03F9 C3I!JFI!Jl 649 JMP SETUP ;POLL FLAGS
650

~LINE FEED 651
652

~ 03FC 3ABI0F 653 UlFDl: CURSY ;Gt';'r Y LOCATION OF CURSOO
1!J3FF FEl8 654 CPI CURBOT ;SEE IF AT B01'I'()II OF SCREEN
0401 CA5304 655 JZ ONBor ;IF WE ARE, LEAVE
0404 3C 656 INR A ;INCREl'IENT A
0405 321;a0F 657 STA CURSY ; SA VI': !lEW CURSOR

7-77 207780-001

APPLICATIONS

0408 CJl1'\504 658 CALL CALCU ·CALCULATE ADll<ESS 040B 22E:50F 659 SHW LOC80 iSAVE TO CLE:AR LINE: 0411E: CDl5\!4 660 CALL CLLINE: ;CLE:.I\R THE LINE: 0411 COO8"'3 661 CALL LOCUR ; LOAD 'rHE: CU~SOR 0414 C9 662 RET ; LEAVE
663

;THIS ROl1rINE CLE:ARS THE LINE: WHOSE FIRST ADll<ESS 664
665 ; IS IN LOC80. PUSH INSTRUCTIONS ARE: 113W TO RAPIDLY
666 ;CLEAR THE LINE
667

hI 0415 F3 668 CLLINE: ;NO INTEAAUP'l'S HE:RE: 0416 2AE:53F 669 LHW LOC83 ·GE:T £DC80 0419 11531111 670 LXI D,l.NGrH iGE:T OFFSET 041C 19 671 DAD. D ·ADD OFFSE:T 041D E:B 672 XCHG i PUT STAR'r IN DE: 041E 210300 673 LXI ~p3111l1'lH ;ZERO HL 0421 39 674 IlI\I) ;GE:T STACK 0422 EB 675 XCHG ·pu'r STACK IN DE 0423 F9 676 SPHL ;PU'r STAR'r IN SP 0424 212020 677 LXI H,20211H ; PU'f SPACES IN HL 678
;NCJN 00 40 PUSH INsrnUCTIONS TO CLE:AR THE LINE 679

680
hEP'r (LNGrH/2) 681

682 PUSH H
683 EN!loI

0427 E5 684+ PUSH H
0428 E5 685+ PUSH H
0429 E5 686+ PUSH H
042A E5 687+ PUSH H 042B E:5 688+ PUSH H
042C E5 689+ PUSH H
042D E5 690+ PUSH H
042E E5 691+ PUSH H
04211' E5 692+ PUSH H
0430 E:5 693+ PUSH H 0431 E5 694+ PUSH H 0432 E5 695+ PUSH H
0433 E5 6%+ PUSH H
0434 E:5 697+ PUSH H
0435 E5 fi9B+ PUSH H
0436 E5 699+ PUSH H
0437 E:5 703+ PUSH H
0438 E5 71H+ PUSH H
0439 E5 702+ PUSH H
1114311. E5 71113+ PUSH H
11I43B E:5 71114+ PUSH H
11I43C E:5 7115+ PUSH H
11I43D E:5 706+ PUSH H
11I43E: E:5 707+ PUSH H
043F E5 708+ PUSH H
0440 E5 709+ PUSH H
111441 E5 710+ PUSH H
0442 E5 711+ PUSH H
111443 E5 712+ PUSH H
111444 E5 713+ PUSH H
0445 E:5 714+ PUSH H
111446 E:5 715+ PUSH H
111447 E5 716+ PUSH H
111448 E:5 717+ PUSH H
0449 E5 718+ PUSH H
11144A E:5 719+ PUSH H
044B E:5 720+ PUSH H
11I44C E:5 721+ PUSH H
044D E5 722+ PUSH H
11I44E: E:5 723+ PUSH H
1114411' EB 724 XCHG ;pu'r STACK IN HL 045111 F9 725 SPHL ;pu'r IT BlICK IN SP 111451 FB 726 E:I ; ENABLE: IN'fERRUP'l'S 111452 C9 727 RET ;GO BACK

728
; IF CURSOR IS ON 'fHE BOrrO'1 OF THE SCREEN 'rHIS RourINE 729

73111 ;IS USED TO IMPLEM~r 'rHE LINE FEED
731 iRw 0453 2AE30F 732 ONBO'f: TOPAD ;GE:T TOP ADl:RESS 0456 22E50F 733 SHW LOC80 ;SAVE rr IN LOC81! 0459 11511100 734 LXI D,l.NGrH ;LINE LENGrH 11145C 19 735 DAD D ;ADD HL + DE 0450 IHD00F 736 LXI B,LAST ;GE:T BO'ITO'1 LINE: 0460 7C 737 i'lOV A,H ;GE:T H 111461 B8 738 CMP B ;SA,.,E l>S B 04fi2 C26D04 739 JNZ ARND ;LE:AVE IF NOr SA"'E 111465 7D 740 MOV A,L ;GE:T L 0466 89 741 CMP C ;SA"IE AS C 0467 C26D04 742 JNZ ARND ;LEAVE IF Nor SAlliE 11146A 211111111118 743 LXI ~o~K8IS ;LOAD HL WITH 'rop OF DISPLAY 046D 22E:30F 744 ARND: saw ;SAVE IlEW TOP ADrRESS

7-78 207780-001

APPLICATIONS

13470 CD1534 745 CALL CLLINE ;CLEAR LINE
0473 COO803 746 CALL LDCUR ;LOAD THE CURSOR
0476 C9 747 RET

748
l THIS ROlJ'rrNE PUTS A CHARAC'l'ER ON THE SCREEN AND 749

750 ; INCR&lEN'l'S THE X CURS<R roSITION. A LINE FEED IS
751 ; INSERTED IF THE INCR&lENTED CURSOR EQJAts 810
752

tALL 0477 CI}\504 753 CHRPUT: CALCU ;CALCULATE SCREEN POSITION
047A 7E 754 MOV ~F~H ;GET FIRST CHARACTER
0478 FEF0 755 CPI ; IS I'f A CLEAR LINE
0470 22E53F 756 SHLD LOC8~ ; SAVE LINE TO CLEAR
0480 CC1534 757 CZ CLLINE ;CLEAR LINE
0483 2AE50F 758 LHLD LOC80 'GET LINE
0486 CDCD04 759 CM.L ADX ;ADD CURSOR X
0489 3AE70F 761:l LDA USCiR ;GET CHARACTER
048C 77 761 MOV ~U~SX ;PU'f IT ON SCREEN
0480 3AE20F 762 LI}\ 'GET CURSOR X
0490 3C 763 INR A ;INCR&lENT CURSOR X
0491 FE 50 764 CPI LNG'rH ; HAS I'f GONE 'l'CX) FAR?
13493 C29C134 765 JNZ OK1 ;IF NOT GOOD
0496 C~C133 766 CALL LNFDl ;DO A LINE FEED
13499 C3AD03 767 JMP CGRT ;DO A CR
1349C 32E213F 768 OKl: STA CURSX 'SAVE CURSOR
1349F CDB803 769 CALL LDCUR ;LOAD THE CURSOR
134A2 C313F131 7713 JMP SETUP ; LEAVE

771
l'fHIS ROlJ'fINE TAKES THE TOP ADffiESS AND THE Y CURSOR 772

773 ; LOCATION AND CALCULATES THE ADffiESS OF 'rHE LINE
774 ;THAT THE CURSOR IS ON. THE HESULT IS RETURNED IN H
775 ;AND L AND ALL REGISTERS ARE USED.
776

lxI 134A5 210504 777 CALCU: ~rJi§~'fAB ;GET LINE TABLE INTO H AND L
134A8 3AElI:lF 778 LI}\ ;GET CURSOR I~rO A
34AB 37 779 RLC ;SET UP A FOR LOOKUP 'rABLE
134AC 1:l603 7813 ,'\VI B,l:lelH ;ZERO B
I:l4AE 4F 781 MOV C,A ; PU'f CURSOR mro A
1:l4AF 139 782 DAD B ;ADD LINE TABLE 'ro Y CURSOR
34813 7E 783 MOV A,M ;PU'f UJtI LINE TABLE IN'rO A
3481 4F 784 MOV C,A ; PUT LC),>/ LINE '!'ABLE IN'rO C
13482 23 785 INX H ;CHANGE MEMCRY roINTER
13483 7E 786 MOV A,M ;pu'r HIGH LINE TABLE INTO A
3484 47 787 MOV B,A ; PUT HIGH LINE TABLE INTO B
3485 211l0F8 788 LXI H,0FRflI:lH ;'lWCG CO'lPLEMENT SCREEN LOCATION
3488 09 789 DAD B ;SUBTRACT OFFSE'f
3489 Eo 791:l XCrK; ;SAVE HL IN DE:
1:l48A 2AE30F 791 LHW 'roPAD 'GET TOP ADffiESS IN H AND L
13480 19 792 DAD 0 ;GET DISPLACED ADffiESS
1:l48E EB 793 XCHG ;SAVE IT IN 0
1:l48F 21331"0 794 LXI H,0F030H ;'lWCG COMPLEI'IE~r SCREEN LOCATION
34C2 19 795 I}\D 0 ;SEE IF ~E ARE OFF THE SCREEN
04C3 DAC804 796 JC FIX ; I I" 'lIE ARE FIX IT
1:l4C6 EB 797 XCrK; ;GET DISPLAC:ED ADffiESS BACK
04C7 C9 798 RET ;GO BACK
04C8 213e1F8 799 FIX: LXI H,0F83flH ;SCREEN 80UNlRV
34CB 19 333 DAD 0 ;AmUST SCREEN
el4CC C9 8e11 RET ;GO 8ACK

802
hHIS ROurINE ADOS 'fHE X CURS<R LOCATION 'ro 'rHE ADDRESS 803

804 ;THAT IS IN THE H AND L REGISTERS AND RETURNS 'mE RESUL'r
805 ;IN HAND L
806

ina. 1:l4CD 3AE2I:lF 807 ADX: CURSX ;GE'r CURSOR
0400 0600 808 I'\VI 8,1:l3H ;ZERO 8
0402 4F 809 MOV C,A ; P'J'f CURSOR X IN C
3403 09 813 DAD 8 ;ADD CURSOR X 'ro H AND L
3404 C9 811 RET ; LEAVE

812 ; .
813 ;'fHIS TABLE CONTAINS THE OFffiET ADDRESSES FOR EACH
814 ;OF THE 25 DISPLAYED LINES.
815

LrNNU'I SET 3 3300 816 LINTAB:
817 REl?'f (CURBOT+I)
818 ow TPDIS+(LNGTH*LINNU\1)
819 LINNUM SET (LINNU'I+l)
820 EN[)~

3405 0008 821+ ow TPDIS+(LNGTH*LINNU'I)
0301 822+ LINNUM SET (LIN"lUMl)
0407 5008 823+ ow TIDIS+(LNG'rH*LINNU'I)
0002 824+ LINNU'I SET iLINNU'I+l)
0409 A338 825+ ow TPD S+ ~NGTH*LINNU'l)
13 ell:l 3 826+ LINNUI'I SET iLl UM+l)
1:l4DB F01:l8 827+ DW 'rPD S+(LNGrH*LINNU'I)
0004 828+ LINNU'I SE'r iLINNU'I+l)
0400 4039 829+ ow TPD S+~NGrH*LINNU'l)
0305 830+ LINNUlI\ SET iLl UlI\+I)
0401" 9009 831+ ow TPD s+ (LNGTH*LINNU>1)

7-79 207780-001

APPLICATIONS

0006 832+ LINNU~ SET iLINNU~+ll
04El E009 833+ OW TPD S+ (LNGfH LINNU~)
0007 834+ LlNNW1 ssr iLINNll!~+l1
04E3 300A 835+ OW TPD S+(LNGfHIrLINNU'1)
0008 836+ LINNll~ SET iLINNllM+ll 04E5 800A 837+ OW TPD S+ g;NGl'H LINNU'1)
0009 838+ LINNUj'l SET iLl lJM+l~ 04E7DIlM 839+ OW TPD S+ (LNGl'H LINIIIU>I)
0~0A 841l+ LlNNU>I SBT iLINNU'1+1~ o E9 200B 841+ OW TPD S+g;NGfH LINNU~) 000B 842+ LINNUM SET iLl ll!>I+1l 04EB 700B 843+ OW TPD S~NGl'H LINNU>I) 01lOC 844+ LINNUM SBT iL U.'1+ll 04ED C00B 845+ OW TPD S+ ~LNGTH LINNU~) 0000 846+ LINNUM SET iLl ll!>I+l1 04EF 100C 847+ OW 'fPD S+ (LNGl'H LINNU>I)
000E 848+ LINNU'1 SET iLINIIIU'1+11
04Fl 600C 849+ OW TPD S+ g;NGfHIrLIN"lU'1) 000F 850+ LINNlJ'oI SET iLl ll!>I+l1
04F3 B00C 851+ OW 'fPD S+ (LNGl'HIrLINIIIU>I)
0010 852+ LIN"lU'1 SET iL1NNU'1+ll 04F5 0000 853+ DN TPD S+(LNGl'H LINIIIlJ'oI)
0011 854+ LINIIIU'1 SET iLINNll!>I+ll . 04F7 5000 855+ OW 'fPD S+(LNGfH LINIIIU'1)
01H2 85'1+ LINNur'l SE'r iL1NNU"I+l1
04F9 MilD 857+ OW 'fPD S+ (LNGfH LINNlJ'1)
0013 858+ LINNUM SET iLINIIIll!>I+ll I'l4FB FI'lI'lD 859+ OW TPD S+(LNGfH LINNU"I)
0014 850+ LINNU"I SET lLINNU"I+11
"'4FD 4"''''E 8'11+ OW TPD S+(LNGl'H LINNU"I)
0"'15 8152+ LINNUM SET lLINNlJM+l1
"'4FF 90"'E 863+ OW TPD S+ ~Gl'H LINNU'1'
"'016 8154+ LlNNUM SET iLl ,U"I+1)
0501 E00E 8r,5+ OW TID S+ g;NGfH*LlNNU'1' 0017 866+ LINNUM SET iLl u>I+1l 05e)3 300F 8'17+ OW TPD S+(LNGfH LINNU"I' 0018 868+ LINNUM SET·iLlNNlJM+11 0505 800F 869+ DW TPD S+JLNGrH LINNU~) 0019 870+ LINNU'1 SET (LI NU'1+1)

871
~ KEYl3Q1\RD LOOKUP 'rABLE 872

873 ;THIS TABLE CONTAINS ALL THE ASCII CHARACTERS
874 ·'rHAT ARE TRANSMITTED BY THE 'rERMINAL
875 ;THE CHARACTERS ARE ORGANIZED SO 'rHAT BITS 0,1 AND 2
876 ;ARE THE SCA"l LINES, BITS 384 AND 5 ARE 'fBE RETURN LINES
877 ; BIT 6 IS SHIFT AND BIT 7 I CONl'ROL .
878 be 0507 38 879 KYLKUP: 38H,39H ;8 AND 9 0508 39

0509 30 88'" DB 30H,2DH ;0 AND -05"'A 20
050B 3D 881 DB 3DH,SCH ;= AND \ 050C SC
0500 "'8 882 DB 08H,00H ; BS AND BREAK 050E 00
050F 75 883 DB 75H,69H ; LrNlER CASE U AND I 0510 69
0511 6F
0512 7lcl

884 DB 6FH,70H ; LONER CASE 0 AND P
0513 58 885 DB SBH,SCH ; [AND \ 0514 SC
0515 0A 886 DB MH,7FH ;LF AND DELETE 0516 7F
0517 6A 887 DB GAH,6BH ;LOIIER CASE J AND K 0518 68
0519 6C 888 DB GCH,3BH ; LrNlER CASE L AND 051A 3B
051B 27 889 DB 27H,00H ;' AND NO'rHING 051C 00
0510 00 890 DB 0DH,37H ;CR AND 7 051E 37
051F 50 891 DB 6DH,2CH ; LOIIER CASE M AND COIolMA 0520 2C
0521 2E 892 DB 2EH,2FH ;PERIOD A"lO StASH 0522 2F
0523 00 893 DB 00H,00H ;BLANK AND NO'rHING 0524 00
0525 00
0526 00

894 DB 00H,00H ;NOTHING AND NO'rHING
0527 00 895 DB 00H,61H ;NOTHING AND LONER CASE A 0528 61
0529 7A 895 DB 7AH,78H ;LOIIER CASE Z AND X 052A 78
052B 63 897 DB 53H,71iH ;LOIIER CASE C A~ V 052C 76
0520 62 898 08 62H,6EH ; LONER CASE B AND N 052E 6E

7-80 207780-001

APPLICATIONS

052F 79 899 DB 79H,00H ; LOdER CASE Y AND NOTHING
0530 00
0531 00 900 DB 0~H,2~H ;NOrHING AND SPACE
0532 20
0533 64 9~1 DB 64H,61jH ; LOdER CASE 0 AND F
0534 66
0535 67 902 DB 67H,68H ;LONER CASE G AND H
0536 68
0537 00 9~3 DB "0H,71H ;'rAB AlIID LOdER CASE Q
0538 71
0539 77 904 DB 77H,73H ; LOdER CASE WANDS
1i153A 73
1i153B 65 905 DB 55H,72H ; LOdER CASE E: AND R
053C 72
1i153D 74 91i16 DB 74H,1iI0H ; LOdER CASE 'r AND NamING
1i153E IiIIiI
053F IB 907 DB IBH,31H ; ESCAPE AND 1
1i1540 31
1i1541 32 908
0542 33

DB 32H,33H 2 AND 3

1i1543 34 909 DB 34H,35H ; 4 AND 5
0544 35
0545 36
1i1546 00

911i1 DB 35H,00H ; 6 AND NOTHING

1i1547 2A 911 DB 2AH,28H ;* AND)
1i1548 28
0549 29 912 DB 29H,5FH ; (AND -
054A 5F
054B 2B
1i154C IiIIiI

913 DB 2BH,00H ;+ AND NOTHING

0540 08 914 DB 08H,0?lH ;BS Al"D BREAK
054E 1i10
1i154F 55 915 DB 55H,49H ;U AND I
0550 49
0551 4F 916 DB 4FH,50H ;0 AND P
0552 50
1i1553 50 917 DB 5DH,00H ; 1 AND NO CHARACTER
0554 1i10
0555 0A 918 DB 0AH,7PH ;LP AND DE:LETE
0556 7F
1i1557 4A
0558 4B

919 DB 4AH,4BH ;J AND K

0559 4C 920 DB 4CH,3AH ;L AND:
055/\ 3A
055B 22
055C 00

921 DB 22H,01ilH ;" AND NO CHARACTER

0550 00 922 DB 0DH,26H ;CR .-'1..1110 &
055E 26
1i155F 40 923
0560 3C

DB 4DH,3CH ;M AND <
1i1561 3E
0562 3F

924 DB 3E:H,3FH ;> AND?

1i1563 00 925 DB 00H,00H ;BLANK AND NOTHING
0564 00
0565 1i10
0566 0"

926 DB 1il0H,1il0H ;NOTHING AND NO'l'HING

0567 00
1i1568 41

927 DB 00H,41H ;NOTHING AND A

1i1569 5A 928 DB SAH,58H ;Z AND X
056A 58
056B 43
056C 56

929 DB 43H,56H ;C AND V

0560 42 930 DB 42H,4E:H ;B AND N
056E 4E
1i156P 59
0570 01i1

931 DB 59H,00H ;Y AND NOTHING

0571 01i1 932 DB 00H,20H ;NO CHARACTER AND SPACE
0572 21i1
0573 44 933
1i1574 46

DB 44H,46H ;0 AND F

0575 47 934 DB 47H,48H ;G AND H 1i1576 48
1i1577 lilril 935 DB 01lH,51H ;'rAB AND Q
0578 51
1i1579 57 936 DB 57H,53H ;W AND S
1i157A 53
057B 45
1i157C 52

937 DB 45H,52H ;E AND R

0570 54 938 DB 54H,1iI0H ; 'r AND NO CONNECTION 1i157E 01i1
1i157F lB 939 DB IBH,21H ;ESCAPE AND 1i1580 21
1i1581 40 940 DB 40H,23H ;@ AND ~
1i1582 23
0583 24 941 DB 24H,25H ;$ AND %
0584 25
0585 5E 942 DB 5EH,00H ;~ AND NO CONNEc'rION

7-81 AFN.()l:J04A

APPLI CATIONS

0586 00
943

~ THIS IS WIfERE 'rIfE CONl'ROL CHARACTERS ARE LOOKED UP 944
945

bB 0587 00 946 00H,00H :NOTHING
0588 00
1/1589 00 947
1/158A 1/10

DB 00H,00H : NOTHING

058B 00
058C 1/11/1

948 DB 00H,00H ;NOTHING

0580 00 949
058E 00

DB 1/10H,00H :NOTHING

058F 15
0590 09

951/1 DB 15H,09H :CONTROL U AND I

:CONl'ROL 0 AND P 0591 I/IF 951 DB I!FH,10H
0592 10

:COm'ROL [AND \ 1/1593 I!B 952 DB 0BH,OCH
1!594 oc
0595 0A
0596 7F

953 DB 0AH,7FH ;LF AND DELETE

;CONl'ROL J AND K 0597 0A 954 DB 0AH,0BH
0598 0B
0599 OC
059A 00

955 DB OCH,00H ;CONl'ROL L AND NO'rHING

059B 00 956 DB I!I!H,1!0H ;NOTHING
059C 00
0590 00 957 DB 0DH,0mi ;CR AND NOTHING
059E 00
059F 00 958 DB 0DH,00H ;CONTROL ", AND COMMA
051\0 00
0SAl 00 959 DB 00H,00H ;NOTHING
051\2 00
05A3 00 960 DB I!;:H,00H ; NOTHING
051\4 00
05A5 00
051\6 00

961 DB 00H,1l0H ;NOTHING AND NO'rHING

0SA7 lA 962 DB lAH,18H ;CONTROL Z AND X
0SA8 18
0SA9 03
05I\A 16

963 DB 03H,HiH ;C01ll1'ROL C AND V

05AB 02 964 DB 02H,0EH ;CONI'ROL B AND N 0SAC 0E
051\0 19 965 DB 19H,00H ;CO!lTl'ROL Y AND NOTHING 0SAE 00
0SAP 00 955 DB 00H,21!H ;NOTHING AND SPACE 0580 20
05B1 04
0582 06

967 DB 04H,01iH ;CciNl'ROL 0 AND F

05B3 07
05B4 08

%8 DB 07H,08H ;C01ll1'ROL G AND H

05B5 00 969 DB 00H,llH :NOTHING AND CONl'ROL Q 0585 11
0587 17 970 DB 17H,13H ;CONI'ROL WANDS
0588 13
0589 06 971 DB 06H,12H ;CONTROL E .~ R 058A 12
0588 14
058C 00

972 DB 14H,0mi :CONI'ROL W AND NO'fHING

05BO 1B 973 DB 1BH,lOH ;ESCAPE AND HO'-1E(CREDIT) 05BE 10
05BF IE 974 DB 1EH,lCH ;CURSOO UP AND rooJN(CREDIT) 0SC0 1C
0SC1 14 975 DB 14H,lFH ;CURSOO RIGHT AND LEFT(CREDIT) 0SC2 IF
0SC3 00 976 DB 01lH,00H ;NOTHING 0SC4 1!0

977
~l.DOK UP 'fABLE FOO 8253 BAUD RATE GENERATOR 978

979 !l3 0SC5 00 980 BOCK: 00H,05H,69H,03H ;75 AND 110 BAUD 0SC6 05
0SC7 69
0SC8 1!3
05C980 981 DB 80H,02H,40H,01H ; 150 AND 31!0 BAUD 0SCA 02
05ce 40
05CC 01
05C0 AI! 982 DB 0A0H,00H ;600 BAUD 0SCE 00
05C1l' 50 983 DB 50H,00H ;1200 BAUD 0500 00
0501 28
1!502 00

984 DB 28H,01!H ;2400 BAUD

0503 14
050400

985 DB 14H,01!H ;481!0 BAUD

0505 I!A 986 DB 0AH,0I!H ;9600 BAUD 0506 01!

7-82 207780-001

APPLICATIONS

PUBLIC SYMBOLS

EXTERNAL SY:'1BOLS

USER SYMBOLS
ADX A 04CD
CAPLOC A 022E
ClRLIN A 0327
CNIM A 6~03
CUfl.SX A 0FE2
FMFD A 03CA
KEYlM'N A 0FEA
KYLKUP A 05217
LNFD A 03F6
LPKBD A 01198
POPDAT A 111134
RXlIDY A 1!I13
S'mAlID A I'Imx;
UPI A I'IIE9

987
988
989
991'1
991 CURSY:
992 CUfl.SX:
993 'rOPAD:
994 LOC80:
995 USCHR:
996 CURAD:
997 KEYlM'N:
998 KBCHR:
999 BAUD:

11'11'111 KEYOK:
11'11'11 ESCP:
111112 SHeON:
101'13 RE:rLIN:
11'104 SCNLIN:
11'11'15

;DATA AREA

6RG I'IFEIH
C6 1
C6 1
C6 2
C6 2
C6 1
C6 2
OS 1
C6 1
C6 1
C6 1
C6 1
C6 1
C6 1
C6 1
END

ARND A 0460 BAUD A elFEC
CHREC A 024E
C['SCR A 1'13E4
CONCL A 1'12FD

CGRT A 1'131'.0
CLRST A 1'1205
CN'tID55 A 181!J3
CURS'l A elFEl
FRAME A 1'1167
KEYINP A 1'1121
LAST A I!JFD0
LNFDI A 03FC
NOVER A 1'1380
PORTA A IB2I:;'
SAVKEY A 01AP
STKEY A 1'1223
UPCUR. A 1'1333

IXMN A 1'12AE
GDIB A 0359
KE'lOK A I'IFED
LOCUR A 1'136g
LNGTH A 01'151'1
NTCNER A 0364
POR'ffi A 18~1
SCNLIN A 0FF1
STPrR A 0FE0
USCHR A 0FE7

ASSEMBLY COI'lPLE'rE, NO ERROI~

7-83

BDLK A 05C5
CHRPUT A 0477
CN'rf! A <;0011
CR'IM A 1000
ESCP A t'lFEE
HO'IE A 0397
KEYS A 1'1131
LEFT A 036E
LOADX A el3EF
OKI A 1!J49C
PORTC A 18\12
SCR A 0211
TOPAD A I'IFE3
U5TD A Ml00

BTDIS A IIF80
CLEAR ,1\ 02CF
CNT1 A <;1101
CRTS A 1001
ESKAP A el3A5
IN75 A 00F9
KPTK A 0084
LINNUI'I A 0019
LOC80 A 0FE5
OK7 A t'l15C
RDKB A 018F
SITUP A el10F
TPDIS A I'IR~0
US'W A MHll

BYPASS A 008F
CLLINE A 0415
CNT2 A <;002
CUR.l\!) A 0FE8
ESSQ A el27B
INT7, A 141n
KYCHNG A 016A
LIN'rAB A 0405
LOOPF A 00.1\7
ONBOT A 0453
RE'rLIN A elFFI'I
SHCON A elFEF
TRANS A 014B

207780,-001

intJ ARTICLE
REPRINT

AR·178

September 1983

Reprinted with permission from Electronic Design', Vol.29, No.9; copyright Hayden Publishing Co., Inc., 1981

@lnte'Corpor.toon,1981. ORDER NUMBER: 210507-001

7-84

Fewer parts make a microprocessor-based, CRT controller cost-effective,
and interrupt-driven software cuts overhead on the system's Cpu.

Low-cost CRT control
does more with less

The multitude of components and the CPU OI'er­
head long associated with cathode-ray-tuhe ('on­
trollers are rapidly becom ing conspicuous h:, their
absence. In particular, an intelligent terminal based
on Intel's iAPX 88/10 (80881 microprocessor and 8276
small-system CRT c.ontroller eliminates all but 22
of the nearly 40 chips requim\ by other CRT con­
trollers (even those with microprocessors and inte­
grated peripherals). It also cuts overhead on the
processor to less than 25'Jf, so that the 88/10 is free
to implement such intelligent terminal functions as
local data processing.

tions. Three manual switches on the PC board select
the haud rate, and one of the 825:3's three independent
programmahlp interval timers generates the 8251A's
baud-rate clock under software control.

The three PC-hoard swit('hes arC' monitored by the
iAPX 88/10 to determ ine the desired baud rate.
When the CPU detects a change in the switch
positions, thl' 82ii3 is loaded with the appropriate
count for the new haud rate.

An 8255A provides three 8-bit parallel 110 ports.
Two 110 ports contribute kC~'board scanning, and the

sync

The iAPX 88/10 implementation supplies charac­
ters directly to the 8276 by means of interrupt-driven
software, eliminating the need for a direct-memor~'­
access (DMA) controller. The design interfaces
directly with standard CRT monitors, contact­
closure keyboards, and RS-232C serial-communica­
tion links (asynchronous or bisynchronous). to pro­
vide a complete stand-alone operator interface.

VIdeo To
Vert«J"

Although the primary design goal-implementing
a low-cost CRT terminal-has excluded some useful
CRT features, these are easily made available
through additional external hardware. For example,
composite video is added with two TIL packages, a
transistor, and some resistors and capacitors. Anoth­
er simple option involves the two general-purpose
attribute outputs on the 8276 and lets users select
anyone of four colors on a color monitor.

Basic system configuration and architecture

Central to the 22-chip CRT controller design is an
iAPX 88/10 8-bit microprocessor operating at 5 MHz
and supported by two 8185 l-kbit x 8 static RAMs
and a 2716 control software PROM (Fig. 1). An 8251A
programmable communication interface provides
synchronous or asynchronous serial communica-

Thom •• Ro •• I, Applications Mgr- Peripheral Components
Intel Corp.
3065 Bowers Ave., Santa Clara, CA 95051

HOrizontal
_sync

(lrom8253)

1. Intelligent termlnats, built with Intel's IAPX 88/10 (8088)
microprocessor and new 8276 small-system CRT controller,
take this basic configuration to reduce parts count and
minimize overhead on the system CPU.

7-85 Electronic Design. April 30, 1981
210507-001

CRT

Low~CRT

third port senses option-switch settings and the
vertical-retrace signal from the 8276 (for CRT syn­
chronization upon reset).

The CRT dot and character timing is generated
by an 8284A clock generator. Another 8253 timer
provides the appropriate horizontal-retrace timing
for the CRT monitor. In its programmable one-shot
mode, this timer generates a 32-lLs horizontal-retrace
pulse for the CRT monitor (Ball Brothers TV-12). A
simple user-initiated change in the software will
modify this delay time to suit different CRT
monitors. The third and last timer in· the 8253 is
available for any user-defined need.

A 2716 EPROM on the controller board serves as
a user-programmable character generator. A shift
register transforms the data from the character
EPROM into a serial-bit stream to illuminate dots
on the CRT screen. The 2716 character generator
helps to create special symbols and characters for
word processing, industrial-control applications, or
foreign-language displays.

The controller hardware is divided into processor
and support, serial and parallel IIO, and CRT-control
sections. The proceRsor and sl.!pport section consists
of an iAPX 88/10 microprocessor, which is supported
by two 8185 1-kbit x 8 static-RAM devices, and
another 2716 EPROM (containing 2 kbytes of control
firmware). The iAPX 88/10 uses a 15-MHz crystal
(with an 8284A) to operate at a 5-MHz clock rate.
The 8185 memories attach directly to the iAPX 88/10
multiplexed bus. An 8282 latches eight address lines
(Ao-A,) from the multiplexed bus for 2716-program
memory access (Fig. 2).

The serial and parallel I/O section of the terminal
includes the 8255A programmable peripheral in­
terface, and the CRT section contains the 8276 CRT
controller and support circuits. All of the controller's
I/O operations are memory mapped (see table).

How the controller board communicates

The CRT-controller board communicates to com­
puter systems and other CRT units through a serial
interface. Both RS-232C and TTL-compatible in­
terfaces are available at the J1 connector. The unit's
standard software supports eight data-transmission
rates: 9600, 4800, 2400, 1200, 600, 300, 150, and 110
baud. These rates are switch-selectable on the PC
board. Since the baud-rate clock is generated by an
8253, baud rates may be easily modified in software.

Keyboard scanning is supported through the A and
Bports of a 8255A programmable peripheral in­
terface. Therefore, low-cost .unencoded keyboards
can be used. The eight scan lines (port B) and eight
return lines (port A) support a 64-contact closure­
key matrix. The three switches attached to port C
permit baud-rate selection. Four general-purpose

Etectronlc De.19n • April 30, 1981

210507-001

Memory map of controller I/O operations
Acldre .. Selected
... nee device COmm

00000 - 00003 RAM Interrupt v.ect(H'
00004 - 00029 RAM Stack, local varlabllla
00030 • 007FF RAM Display buffer
01000 • 01001 8276 ii 8278 commancflwlatut.

01900 8276 8276 row buff ...
12000 • 12001 8251A Serial channel
14000 • 14003 8253 Baud-rata timer
18000 • 18003 8255A Keyboard, switch ..
FF800 • FFFFF 2715 Program storage

ADDRe·•s t-T8 ~---F----,,"'I.;-i

8088

ADDAIDAT~ ,I->'~------+----+".

If

ALE/----...r

2. The processor and support seclion olthe intelligent
terminal's hardware contains two 8185 RAMs attached
directly to the iAPX 88110 multiplexed bus. An 8282 latches
eIght addre·ss lines (Ao·A,) Irom the multiplexea bus lor 2716.
program memory access.

C8o·.,

Mev
C8T

CPU
!NT

control

Ro

ClP

3, Here are the majorlunctlonal blocks olthe 8276
programmable CRT controller. This devIce permIts software
speCification 01 most CRT ·screen lormatcharacterlstlcs
(cursor position, characters/row, rows/lrame).

7-86

inputs on port C permit the software to sense
depression of the caps-lock key, the control key, and
the shift key, as well as the position of the line/local
switch. The last input on port C senses the status.
of the vertical retrace (VRTC) output of the 8276, so
that the controller can synchronize with the CRT
display on power up or after a hardware reset.

All keyboard I/O connects to the terminal board
by means of a 40-pin header on its edge. All seven
option-switch inputs are also brought to the connec­
tor, so that option switches may be installed on the
keyboard if desired.

Software spec Illes Ihe screen formal

The CRT display is controlled by the 8276 program­
mable CRT controller (Fig. 3). With this device, most
CRT screen-format characteristics-such as the
cursor position, the number of characters per row,
and the numher of rows per frame-can be specified
through software. The 8276 handles all displa:-' tim­
ing including retrace time delays.

In the current design, 2000 characters are dis­
played on the CRT screen (25 rows of 80 characters).
Each character is formed as a5 x 7-dot matrix within
a larger 7 x 10 matrix (Fig. 4). Other screen formats
(e.g., 16 rows of 64 characters) can be easily im­
plemented with a few software changes and no
hardware changes.

The 8276 contains two 80-character row buffers
(see "Row Buffers Reduce System Overhead"). While
one buffer displays the current character line on the
screen, the 8276 fills the other row buffer from

Line
number

0
0
0

0

0
0
0

0

0
0

0 0

0 0
0 • • 0

• 0

• • • [J

• 0
0 0
0 0

o 0 0 0

• 0 0 0
B088

o • 0 0 RD

0 0 • 0
o 0 • 0

• • • 0

0 0 • [J

0 0 • 0
o 0 0 0
o 0 o 0

memory. This data transfer begins when the 8276
issues a data request (by means of the BRDY pin),
causing an interrupt to the CPU. In response to this
interrupt, the CPU activates the RAM's CS and RD
inputs, while simultaneously activating the 8276 BS
and WR inputs (Fig. 5). Through this technique, a
single bus cycle suffices to transfer each byte from
the RAM into the CRT row buffer. After the row
buffer is filled, the CPU exits the interrupt-service
routine.

But the 8276 can do more than simply paint
characters on a CRT screen. Its end-of-row-stop
buffer-loading code allows the control software to
blank individual display lines. Also, the end-of-the­
screen-stop huffer-loading code initiates an erase to
the end of the screen.

The 8276 supports software selection of visible­
field "attributes" that can blink. underline, or high­
light (intensif:-') characters on the screen and can
reverse the video-character fields (black letters on
a white background). Two general-purpose attribute
outputs are provided to control the user-defined
display capabilities.

Hardware provides Ihree supporl functions

The 8276 is supported by three hardware func­
tions: a dot/character-clock oscillator, an EPROM
character generator, and a character-shift register
(Fig. 6). The dot/character-clock oscillator consists
of an 8284A operating at 11.34 MHz and providing
an 88.2-ns dot clock. A 74LS163 divill('s this clock
b:; 7 to generate a 1.62-MHz (617-ns) character clock.

WR cs RD

8276 8185
4. The dot-matrix character lont used
In the low-cost CRT controller creates
a 5 X 7 character In a 7 X 10 matrix
(example shown is an upper-case A).
Top and bottom lines are blanked lor
character separation, and the
remaining line Is reserved lor
cursor/underline display.

5. Row-buller loading lor the 8276 begins when a single 8088 string Instruction
moves data bytes Irom the 8185 RAM to the 8276 row buller. The 8088 CPU "thinks"
Ills loading the AX register.

7-87 Etectronlc Dellgn • April 30, 1981
210507-001

Low-cost CRT

The 8276 is programmed to display one raster line
every 61.7 Ils-a complete character line every 617
IlS (ten raster lines). The 8276 is also programmed
to refresh the screen every 16.7 ms (60 Hz).

Each character row consists of ten raster lines.
Seven lines display the 5 X 7-character matrix, two
lines are blanked for row spacing, and one line
displays the cursor and underline.

The 8276 uses the line count (LCo-LC3) outputs to
indicate the current raster line during the display
of each character. These outputs, combined with the
character-code outputs (CCo-CCG), are sent to the
2716, which generates the dot pattern for display.
This dot pattern is loaded into the shift register and
is serially clocked for display by the 1l.34-MHz dot
clock.

During the vertical-retrace interval, the row buf­
fer for the first line of the next frame is loaded by
the iAPX 88/10. When the frame starts, the 8276
outputs the first character on its CCO-CCG pins; the
LC outputs are all zero. Exactly 617 ns later, the next
character code is emitted by the 8276. This process
continues every 617 ns until all 80 characters have
been output. Then the 8276 generates a horizontal­
retrace pulse, which is converted to the appropriate
pulse width for the CRT monitor by the 8253.

At the end of the first raster line, the 8276
increments the LC outputs. The next nine raster lines

are similar to the first-the 8276 outputs the same
80 character codes on the CCO-CCG pins for each of
the raster lines, and the LC outputs are incremented
after each raster line.

While the ten raster lines are being displayed, the
8276 is also filling the next row buffer. After the
tenth raster line is completed, the 8276 resets the
LC count and outputs character codes for the second
row on the CCO-CC6 pins. As this row is displayed,
the first row buffer is filled with information for
the third row. The 8276 alternates row buffers until
all 25 rows are displayed. At this time, the vertical­
retrace signal is activated, and the scanning process
is repeated for the next frame.

During display, the 8276 automatically activates
the video-suppress pin (vsP) andlor light-enable
out[Juts ILTE~I, as appropriate. to control retrace
blanking. genprate the cursor, or underline charac­
ters.

Software is split between two priorities

The software for the CRT controller is divided into
high and low-priority sections. The high-priority
"foreground" software is activated each time the
8276 requests (through the iAPX 88/10 NMI inter­
rupt) that an 80-character row buffer be filled. The
8276 row buffer is filled by performing 80 sequential
memory reads. As each read is performed, the

vsp

LTEN

From
8276

HATe
Horizontal

out

VATe
Vertical out

6. CRT control logic supports the 8276. Three hardware functions are'lnvolved: a doticharacter clock OSCillator,
an EPROM char8ctergenerator, and a character-shift register.

Electronic D •• lgn • April 30, 1981
210507-001 7-88

Low-cost CRT

Row buffers reduce system overhead
If no row buffer is present, the CRT controller must

go to main memory to fetch every character during
every dot scan line. Thus, the central processing unit is
forced to relinquish the system bus 90 to 95o/c of the
time. That CPU inactivity (overhead) greatly de­
grades total system performance and efficiency. CRT
terminals using this approach are typically limited to
between 1200 and 2400 baud on their serial-com­
munications channels.

However, with the 8276's row-buffered architec­
ture, the CRT controller need only access the main
memory once for each diHplayed character row. This
approach reduces system bus overhead for CRT re­
freshing to 25':1: (maximum). The CPU is then free to
perform other local-processing functions, for instance,
processing data at 9600 baud on a serial-communica­
tions channel.

PUSHF save registers
PUSH SI used by
PUSH CX subroutine

MOV SI,CURAD point to current line
ADD SI,OFFSET
CLD auto increment
MOv CX,40

REP LaDS WDPTR move 40 words
CMP SI, LAST check for end of screen
JNZ KTPK jump if not at end
MOv SI,TOPDIS end-set to top

KTPK MOv CURAD,SI

POP CX restore
POP SI
POPF

7. A screen-refresh routine illustrates how the IAPX 88/10
load-string (LODS) instruction fills an 8276 row buffer. The
15 lines take 167 ~s and are run every ten CRT lines
(every 617 ~s),

XOR
MOV
MOV
CMP
JL
CMP
JG
XLAT

AX,AX
BX, ESCTBL
AL, USCHR
AL, 41 H
SETUP
AL,48H
SETUP

JMP (AX)

clear AX
load table, pointer
read character
check for 41 H
not valid
check for 48H
not valid
translate to routine
address

B. This routine checks the keyboard character to see lilt Is
a valid escape-sequence command (41 H through 4BH), "the
character Is valid, a translate table lumps to a service routine,
With the powerlullAPX BB/l0 translate InstrUction, the service
routine takes lust 7 ~s,

Elselronle Dsolgn • April 30, 1981
210507-001

hardware automatically sends a write (over buffer­
select and write pins) to the 8276.

The simultaneous memory-read and 8276-write
commands transfer characters from the 8185 RAM
to the 8276 in a single memory cycle-without a
direct-memor~'-access (DMA) con troller, The 80
reads are under the control of the CPU load string
(LODS) instruction, which handles 40 word loads with
iAPX 88/10 code (Fig. 7). The complete refresh
sequence for one line requires approximately 167 /lS.

As a result, processor overhead for refresh opera­
tions is approximate I>, 27%.

Foreground software also involves keyboard scan­
ning that is performed only at the end of each display
frame (after 25 rows or 16.7 ms). If a key depression
is noted during one of these scans, the information
is stored for further background processing. An
iAPX 88/10 routine checks the character to de­
termine whether it is a valid escape-character com­
mand (Fig. 81. In this procedure, the iAPX 88/lO's
translate instruction (XLAT) takes care of table
lookup.

The low-priority software section handles "back­
ground" processing. It monitors the 8251A serial I/O
port and provides processing for characters entered
via the keyboard or with the serial interface. Back­
ground software executes continuously except when
interrupted for the higher-priority foreground proc­
essing.

Cumbersome scrolling technique avoided·

A refresh-buffer memory stores all 2000 charac­
ters that can be displayed on the CRT screen. The
foreground software transfers one row (of 80 charac­
ters) at a time to the 8276. Two pointers are employed
during normal operation. Under the control of fore­
ground processing software, the current-row pointer
contains the address of the next row to be displayed.
This pointer must always be correct, so that a row
can be transferred to the 8276 when requested. The
buffer pointer contains the address of the next CRT
buffer location to be written into (from either the
keyboard or the serial port). Controlled by the
background software, the buffer pointer indicates
the cursor's actual location.

The simplest refresh-buffer organization as­
sociates the first memory address with the upper left
position on the CRT screen. All other characters are
stored sequentially (Fig. 9). But this method makes
CRT screen scrolling difficult. Scrolling requires that
each display line be moved up one row. The top line
of the CRT is lost, the bottom line is blanked, and
the cursor is placed at the beginning of the bottom
line.

With this fixed sequential organization, all charac­
ters in the refresh buffer must be moved forward

7-89

Low<ostCRT

Memory address

30H
80H

750H
7AOH

-.,
odd

30H

31H

32H

SOH
81H

7FFH

ASCII
A

space

I

C

space

HOI NolH

41 First character, first row

73

20

49 First character, second row
43

ro last screen characler

9. This memory/screen·character relationship exists when all
characters are stored sequentially, making scrOlling difficult.

Memory ad~ress
SOH
DOH

7AOH
30H

Memory -.... ASCII
30H

31H

32H

SOH I

81H C

7FFH space

He. Noln
61 Firsl character, 25th row

6E

84

49 First character, first row

43

20 lasl character, first row

10. If sequential memory orientation Is retained but
characters do not have to be moved In memory, scrolling can
be much more efficient. Here, scrolling Is accomplished
simply by changing the display-start pointer. The
memory/screen-character relationship Is shown after a scroll 0' one line 'rom the positions Illustrated In Fig. 9.

Electronic Dellgn • April 30. 19B1
210507-001

by 80 characters (memor~' locations) to scroll the
screen. (Each line moves up one row on the CRT and
the last 80 characters in the buffer are blanked.)
Moving 1920 characters each time the screen scrolls
a single IinC' is very slow and cumbersome.

The low-cost CRT controller avoids this problem
with a slight modification of the fixed-sequential
scrolling technique. Here, sequential memory orien­
tation is retained while the need to move characters
in memory is eliminated. This approach requires an
additional display-start pointer that points to the
memory location of the first character to be dis-
played. .

At system initialization. the display-start pointer
is set t.o SOH, the huffer-start address. During each

. vertical-retrace inten-al, the current-row pointer is
initialized from the display-start pointer. Scrolling
is performed h~' merel~' changing the display-start
pointer.

For a single row scroll, the display-start pointer
moves ahead 80 characters to location 80H, and the
first 80 characters in the huffer arc hlanked. During
the next vertical retrace, the foreground software
sets the current-row pointer to the display-start
location (80H), and hegins transferring characters to
the 8276 from this address.

The character in memory-location 80H (previously
the first character in the second row) now occupies
the first display position on the CRT screen (first
character of the first row). When the foreground
software reaches the end of the display buffer, the
next row is read from the hC'ginning of the buffer
(location SOH). Thus, the first 80 chara(,ters in the
buffer appear on the last displa~' row (Fig. 10).

Each subsequent scroll moves the display start
pointer forward by.80 characters. Buffer olJerations
automatically "roll over" to thl1 physical beginning
of the buffer after passing the last buffer location.

Since the row-by-row character display is con­
trolled by iAPX 88/10 software, other display tech­
niques may be used. In particular, a linked list struc­
ture is extremely adaptable to word-processing and
text-editing functions. This method allows each row
within a file to be changed independently of other
rows.

Because the rows are linked or "chained together"
by pointers. rows may be easily inserted or deleted
by simply changing pointers. To display a CRT
frame, the processor simply follows the pointer chain
from one row to the next.D

7-90

How useful?
Immediate design application
Within the next year
Not applicable

Circle
547
548
549

intel~

82720
GRAPHICS DISPLAY CONTROLLER

• Displays Low-to-High Resolution
Images

• Draws Characters, Points, Lines, Arcs,
and Rectangles

• Supports Monochrome, Gray Scale, or
Color Displays

• Zooms, Pans and Windows Through a
4 Mpixel Display Memory

FUNCTIONAL DESCRIPTION

Introduction

• Extremely Flexible Programmable
Screen Display, Blanking, and Sync
Formats

• Compatible with Intel's Microprocessor
Families

• High-Level Commands Off Load Host
Processor from Bit Map Loading and
Screen Refresh Tasks

• Supports Graphics, Character, and
Mixed Display Modes

The 82720 Graphics Display Controller (GOG) is an intelligent microprocessor peripheral designed to drive high­
performance raster-scan computer graphics and character CRT displays. Positioned between the video display
memory and Intel microprocessor bus, the GOC performs the tasks needed to generate the raster display and
manage the display memory. Processor software overhead is minimized by the GOC's sophisticated instruction
set, graphics figure drawing, and OMA transfer capabilities. The display memory directly supported by the GOC
can be configured in any number of formats and sizes up to 256K 16-bit words. The display can be zoomed and
partitioned screen areas can be independently scrolled and panned. With its light pen input and multiple controller
capability, the GOC is ideal for most computer graphics applications. Systems implemented with the GOC can
be designed to be compatible with standards such as VOl, NAPLPS, GKS, Core, or custom implementations.

'" w. C>--< ___ ---'

COMMAND
PROCESSOR

CO~~:~~:OM

+5V 0---­
aND 0----

2KWCU< 0---

Figure 1. Block Diagram

.... "
"0.13

CBIN
HSYNC

'IIEXT SYNC

ORa
DAci(

Oa.5
oa..

.."
AD-1S

Figure 2. Pin Configuration

Intel Corporation Assumed No Responsibility for the Use 01 Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses are Implied. Information
contained herein supersedes previously published specifications on these devices from Inlel. January 1985
©Intel Corporation, 1985 7-91 Orqer Number: 210655-003

82720

Table 1. Pin Description

Symbol Pin No. Type Name and Description

2XWCLK 1 I Clock Input

DBIN 2 0 Display Bus Input: Read strobe output used to read display memory data into the GDC.

HSYNC 3 0 Horizontal Sync: Output used to initiate the horizontal retrace of the CRT display.

V/EXT 4 1/0 Vertical Sync: Output used to initiate the vertical retrace of the CRT display. In slave
SYNC mode, this pin is an input used to synchronize the GDC with the master raster timing

device.

BLANK 5 0 Blank: Output used to suppress the video signal.

RAS (ALE) 6 0 Row Address Strobe (Address Latch Enable): Output used to start the control timing
chain when used with dynamic RAMs. When used with static RAMs, this signal is used
to demultiplex the display addressldata bus.

DRO 7 0 DMA Request: Output used to request a DMA transfer from a DMA controller (8237) or
110 processor (8089).

DACK 8 I DMA Acknowledge: Input used to acknowledge a DMA transfer from a DMA controller
or 1/0 processor.

RD 9 I Read: Input used to strobe GDC Data into the microprocessor.

WR 10 I Write: Input used to strobe microprocessor data into the GDC.

AO 11 I Register Address: Input used to select between commands and data read or written.

DBO 12 1/0 Bidirectional Microprocessor Data Bus Line: Input enabled by WR. Output enabled
by RD.

DBI 13
DB2 14
DB3 15
DB4 16
DB5 17
DB6 18
DB7 19

GND 20 Ground.

Vee 40 + 5V Power Supply

A1? 39 0 Graphics Mode: Display Address Bit 17 Output
Character Mode: Cursor and Line Counter Bit 4 Output
Mixed Mode: Cursor and Image Mode Flag

A,6 38 0 Graphics Mode: Display Address Bit 16 Output
Character Mode: Line Counter Bit 3 Output
Mixed Mode: Attribute Blink and Line Counter Reset

AD,s 37' 1/0 Graphics Mode: Display AddresslData Bits 13-15

AD'4 36 Character Mode: Line Counter Bits 0-2 Output
AD,3 35 Mixed Mode: Display AddresslData Bits 13-15

AD,2 34 1/0 Display AddresslData Bits 0-12
AD" 33
ADm 32
ADs 31
ADs 30
AD? 29
AD6 28
ADs 27
AD4 26
AD3 25
AD2 24
AD, 23
ADo

, 22

LPEN 21 I Light Pen Detect Input

7-92 210655-003

82720

FUNCTIONAL DESCRIPTION (Continued)

Microprocessor Bus Interface

Gontrol of the GOG by the system microprocessor is
achieved through an 8-bit bidirectional interface.
The status register is readable at any time. Access to
the FIFO buffer is coordinated through flags in the
status register.

Command Processor

The contents of the FIFO are interpreted by the com­
mand processor. The command bytes are decoded, and
the succeeding parameters are distributed to their
proper destinations within the GOG. The bus interface
has priority over the command processor when both
access the FIFO simultaneously.

DMA Control

The OMA Gontrol circuitry in the GOG coordinates data
transfers when using an external OMA controller. The
OMA Request and Acknowledge handshake lines inter­
face with an 8257 or 8237 OMA controller or 8089 1/0
processor, so that display data can be moved between
the microprocessor memory and the display memory.

Parameter RAM

The 16-byte RAM stores parameters that are used
repetitively during the display and drawing processes.
In character mode, the RAM holds the partitioned dis­
play area parameters. In graphics mode, the RAM also
holds the drawing pattern and graphics character.

Video Sync Generator

Based on the clock input, the sync logic generates
the raster timing signals for almost any interlaced,
non-interlaced, or "repeat field" interlaced video for­
mat. The generator is programmed during the idle
period following a reset. In video sync slave mode, it
coordinates timing between the GOG and another
video source.

Memory Timing Generator

The memory timing circuitry provides two memory
cycle types: a two-clock period refresh cycle and the
read-modify-write (RMW) cycle which takes four
clock periods. The memory control signals needed to
drive the display memory devices are easily
generated from the GOG's RAS(ALE) and OBIN
outputs.

Zoom and Pan Controller

Based on the programmable zoom display factor and
the display area parameters in the parameter RAM,
the zoom and pan controller determines when to
advance to the next memory address for display
refresh and when to go on to the next display area. A
horizontal zoom is produced by slowing down the
display refresh rate while maintaining the video sync
rates. Vertical zoom is accomplished by repeatedly
accessing each line a number of times equal to the
horizontal repeat. Once the line count for a display
area is exhausted, the controller accesses the start­
ing address and line count of the next display area
from the parameter RAM. The system microproces­
sor, by modifying a display area starting address,
allows panning in any direction, independent of the
other display areas.

Drawing Processor

The drawing processor contains the logic necessary
to calculate the addresses and positions of the pixels
of the various graphics figures. Given a starting point
and the appropriate drawing parameters, the draw­
ing processor needs no further assistance to com­
plete the figure drawing.

Display Memory Controller

The display memory controller's tasks are numerous.
Its primary purpose is to multiplex the address and
data information in and out of the display memory. It
also contains the 16-bit logic units used to modify the
display memory contents during RMW cycles, the
character mode line counter, and the refresh counter
for dynamic RAMs. The memory controller appor­
tions the video field time between the various types
of cycles.

Light Pen Debouncer

Only if tworising edges on the light pen input occur
at the same pOint during successive video fields are
the pulses accepted as a valid light pen detection. A
status bit indicates to the system microprocessor
that the light pen register contains a valid address.

. System Operation

7-93

The GOG is designed to work with Intel microproces­
sors to implement high-performance computer
graphics systems. System efficiency is maximized
through partitioning and a pipelined architecture. At
the lowest level, the GOG generates the basic video

210655-003

intel· 82720

raster timing, including sync and blanking signals.
Partitioned areas. on the screen and zooming are
also accomplished at this level. At the next level,
video display memory is modified during the figure
drawing operations and data moves. Third, display
memory address are calculated pixel by pixel as
drawing progresses. Outside the GDC at the next
level, preliminary calculations are done to prepare
drawing parameters. At the fifth level, the picture
must be represented as a list of graphics figures
drawable by the GDC. Finally, this representation
must be manipulated, stored and communicated.
The GDC takes care of the high-speed and repetitive
tasks required to implement graphics systems.

GENERAL OVERVIEW

In order to minimize system bus loading, the 82720 uses
a private video memory for storage of the video image.
Up to 512K bytes of video memory can be directly sup­
ported. For example, this is sufficient capacity to store
a 2048 x 2048 pixel x 1 bit image. Images can be
generated on the screen by:

-Drawing Commands
-Program-Controlled Transfers
-DMA Transfers from System Memory

The 82720 can be configured to support a wide vari­
ety of graphics applications. It can support:

-High Dot Rates
-Color Planes
-Horizontal Split Screen
-Character-oriented Displays
-Multiplexed Graphic and Character Display

GRAPHIC DISPLAY CONFIGURATIONS
The 82720 provides the flexibility to handle a wide
variety of graphic applications. This flexibility results
from having its own private video memory for storage
of the graphics image. The organization of this
memory determines the performance, the number of
bits/pixel and the size of the display. Several different
video memory organizations are examined in the fol­
lowing paragraphs.

In the simplest 82720 system, the memory can store up
to a 2048 x 2048 x 1 bit image. It can display a 1024
x 1024 x 1 bit section of the image at a maximum dot
rate of 44 MHz, or 88 MHz in wide mode. In this con­
figuration, only 1 bit/pixel is used.

By partitioning the memory into multiple banks, color,
gray scale and higher bandwidth displays can be sup­
ported. By adding various amounts of external logic,

many cost/performance tradeoffs for both display and
drawing are realizable.

The video memory can be partitioned into 4 banks,
each 1024 x 1024 bits. By selecting all 4 memory
banks during display, 4 bits/pixel can be provided by
a single 82720. Each bank of video memory con­
tributes 1 bit to each pixel. This configuration can
support color monitors, again with a maximum dot shift
rate,of 44 or 88 MHz.

Higher performance may be achieved by using multi­
ple 82720s. Multiple 82720s can be used to support
mutliple display windows, increased drawing speed,
or increased bits per pixel. For display windows,
each. 82720 controls one window of the display. For
increased drawing speed, multiple 82720s are
operated in parallel. For increased bits/pixel, each
82720 contributes a portion of the number of bits
necessary for a pixel.

CHARACTER DISPLAY CONFIGURATION
Although the 82720 is intended primarily for raster­
scan graphics, it can be used as a character display
controller. The 82720 can support up to 8K by 13 bits
of private video memory in this configuration (1 char­
acter = 13 bits). This is sufficient memory to store 4
screens of data containing 25 rows by 80 characters.
The 82720 can display up to 256 characters per row.
Smooth vertical scrolling of each of 4 independent
display partitions is also supported.

MIXED DISPLAY CONFIGURATION
The GDC can support a mixed display system for
both graphic and character information. This capa­
bility allows the display screen to be partitioned be­
tween graphic and character data. It is possible to
switch between one graphic display window and one
character display window with raster line resolution.
A maximum of 256K bytes of video memory is sup­
ported in this mode: half is for graphic data, half is for
character data. In graphic mode, a one megapixel
image can be stored and displayed. In character mode,
64K, 16-bit characters can be stored.

DETAILED OPERATIONAL DESCRIPTION

The GDC can be used in one of three basic modes
-Graphics Mode, Character Mode and Mixed Mode.
This section of the data sheet describes the following
for each mode:

1. Memory organization
2. Display timing
3. Special Display functions
4. Drawing and writing

7-94 210655-003

82720

Graphics Mode Memory Organization

The Display Memory is organized into 16-bit words
(32-bit words in wide mode). Since the display memory
can be larger than the CRT display itself, two width
parameters must be specified: display memory width
and display width. The Display width (in words) is
selected by a parameter of the Reset command. The
Display memory width (in words) is selected by a para­
meter of the Pitch command. The height of the Display
memory can be larger than the display itself. The height
of the Display is selected by a parameter of the Reset
command. The GDC can directly address up to 4Mbits
(O.5Mbytes) of display RAM in graphics mode.

Graphics Mode Display Timing

All raster blanking and display timings of the GDC are
a function of the input clock frequency. Sixteen or
32 bits of data are read from the RAM and loaded into
a shift register in each two clock period display cycle.
The Address and Data busses of the GDC are multi­
plexed. In the first part of the cycle, the address of the
word to be read is latched into an external demultiplexer.
In the second part of the cycle the data is read from
the RAM and loaded into the shift register. Since all 16
(32) bits of data are to be displayed, the dot clock is
8 x (16 x) the GDC clock or.16 x (32 x) the Read cycle
rate.

Parameters of the Reset or Sync command determine
the horizontal and vertical front porch, sync pulse, and
back porch timings. Horizontal parameters are specified
as multiples of the display cycle time, and vertical para­
meters as a multiple of the line time.

Another Reset command parameter selects interlaced
or non-interlaced mode. A bit in the parameter RAM can
define Wide Display Mode. In this mode, while data is
being sent to the screen, the display address counter
is incremented by two rather than one. This allows the
display memory to be configured to deliver 32 bits from
each display read cycle.

The V Sync command specifies whether the V Sync
Pin is an input or an output. If the V Sync Pin is an
output, the GDC generates the raster timing for the
display and other CRT controllers can be synchro­
nized to it. If the V Sync pin is an input, the GDC can
be synchronized to any external vertical Sync signal.

7-95

Graphics Mode Special Display Functions:

WINDOWING
The GDC's Graphics Mode Display can be divided
into two windows on the screen, upper and lower.
The windows are defined by parameters written into
the GDC's parameter RAM. Each window is specified
by a starting address and a window length in lines. If
the second windciw is not used, the first window
parameters should be specified to be the same as the
active display length.

ZOOMING
A parameter of the GDC's zoom command allows
zooming by effectively increasing the size of the dots
on the screen. This is accomplished vertically by
repeating the same display line. The number of times
it is repeated is determined by the display zoom fac­
tor parameter. Horizontally, zoom is accomplished by
extending each display word cycle and displaying
fewer words per line, according to the zoom factor. It
is the responsibility of the microprocessor control­
ling the GDC to provide the shift register clock cir­
cuitry with the zoom factor required to slow down the
shift registers to the appropriate speed. The fre­
quency of the 2XWCLK should not be changed. The
zoom factor must be set to a known state upon
initialization.

PANNING
Panning is accomplished by changing the starting
address of the display window. In this way, panning is
possible in any direction, vertically on a line by line
basis and horizontally on a word by word basis.

Graphics Mode Drawing and Writing

The GDC can draw solid or patterned lines, arcs, circles,
rectangles, slanted rectangles, characters, slanted char­
acters, filled rectangles. Direct access to the bit map
is also provided via the DMA Commands and the Read
or Write data commands.

MEMORY MODIFICATION
All drawing and writing functions take place at the
location in the display RAM specified by the cursor.
The cursor is not displayed in Graphics Mode. The
cursor location is modified by the execution of draw­
ing, reading or writing commands. The cursor will
move to the bit following the last bit accessed.

210655-003

82720

Each bit is drawn by executing a Read-Modify-Write
cycle on the display RAM. These RlMrN cycles normally
require four 2XWCLK cycles to execute. If the display
zoom factor is greater than two, each R/MrN cycle will,
be extended to the width of a display cycle. Write Data
(WDAT), Read Data (RDAT), DMA write (DMAW) and
DMA read (DMAR) commands can be used to exam­
ine or modify one to 16 bits in each word during each
R/M/W cycle. All other graphics drawing commands
modify one bit per R/M/W cycle.

An internal 16-bit Mask register determines which bites)
in the accessed word are to be modified. A one in the
Mask register allows the corresponding bit in the display
RAM to be modified by the R/MrN cycle. A zero in the
Mask register prevents the GDC from modifying the cor­
responding bit in the display RAM.

The mask must be set by the Mask Command prior to
issuing the WDAT or DMAW command. The Mask reg­
ister, is automatically set by the CURS command and
manipulated by the graphics commands.

The display RAM bits can, be modified in one of four
ways. They can be set to 1, reset to 0, complemented
or replaced by a pattern.

When replace by a pattern mode is selected, lines,
arcs and rectangles will be drawn using the 16-bit
pattern in parameter RAM bytes 8 and 9.

In set, reset, or complement mode,. parameter RAM
bytes 8 and 9 act as another level of masking for line
arc and rectangle drawing. As each 16-bit segment
of the line or arc is drawn, it is checked against the
pattern in the parameter RAM. If the pattern RAM bit
is a one, the display RAM bit will be set, reset, or
complemented per the proper modes. If the pattern
RAM bit is a zero, the display RAM bit won't be
modified.

When replace by pattern mode is selected, the
graphics character and fill commands will cause the
8 x 8 pattern in parameter RAM bytes 8 to 15 to be
written directly into the display RAM in the appropri­
ate locations.

In set, reset, or complement mode, th'e 8 x 8 pattern in
parameter RAM bytes 8 to 15 act as a mask pattern
for graphics character or fill commands. If the appro­
priate parameter RAM bit is set, the display RAM bit
will be modified. If the parameter RAM bit is zero, the
display RAM bit will not be modified. These modes
are selected by issuing a WDAT command without

, parameters before issuing graphics commands. The
pattern in the parameter RAM has no effect on WDAT,
RDAT, DMAW, or DMAR operations.

7-96

READING AND DRAWING COMMANDS
After the modification mode has been set and the
parameter RAM has been loaded, the final drawing
parameters are loaded via the figure specify (FIGS)
command. The first parameter specifies the direc­
tion in which drawing will occur and the figure type to
be drawn. This parameter is followed by one to five
more parameters depending on the type of character
to be drawn.

The direction parameter specifies one of eight oc­
tants in which the drawing or reading will occur. The
effect of drawing direction on the various figure
types is shown in Figure 9.

RDAT, WDAT, DMAR, and DMAW Operations move
through the Display memory as shown in the "DMA"
Column.

The other parameters required to set up figure reading
or drawing are shown in Figure 3.

DRAWI~G TYPE DC D D2 Dl DM

INITIAL VALUE' -1 -1

LINE Idll 21dDI - Idll 2(ldDI - Idll) 21dDI

ARC" rsln 411 r-1 2(,-1) -1 rsln 91

RECTANGLE A-I B-1 -1 A-I

AREA FILL B-1 A A

GRAPHIC B-1 A A
CHARACTER'"

WRITE DATA W - 1

DMAW D-l C-l

DMAR D-l C-2 (C-2)12f

READ DATA W

'INITIAL VALUES FOR THE VARIOUS PARAMETERS ARE LOADED
WHEN THE FIGS COMMAND BYTE IS PROCESSED,

"CIRCLES ARE DRAWN WITH 8 ARCS, EACH OF WHICH SPAN 45',
SO THAT SIN ~ = 1/../2 AND SIN, = 0,

"'GRAPHIC CHARACTERS ARE A SPECIAL CASE OF BIT,MAP
AREA FILLING IN WHICH B AND A ,,8. IF A = 8 THERE IS NO
NEED TO LOAD bAND D2. . .

WHERE:
- 1 = ALL ONES VALUE.

ALL NUMBERS ARE SHOWN IN BASE 10 FOR CONVENIENCE, THE GDC
ACCEPTS BASE 2 NUMBERS (2. COMPLEMENT NOTATION WHERE
APPROPRIATE), .

- = NO PARAMETER BYTES SENT TO GDC FOR THIS PARAMETER,
dl= THE'LARGER OF dx OR "y,

dD = THE SMALLER OF dx OR I>.y,
,= RADIUS OF CURVATURE, IN PIXELS.
~ = ANGLE FROM MAJOR AXIS TO END OF THE ARC,. ,,45',
,= ANGLE FROM MAJOR AXIS TO START OF THE ARC, f/ "45',
I = ROUND UP TO THE NEXT HIGHER INTEGER.
I = ROUND DOWN TO THE NEXT LOWER INTEGER,

A= NUMBER OF PIXELS IN THE INITIALLY SPECIFIED DIRECTION.
B = NUMBER OF PIXELS IN THE DIRECTION AT RIGHT ANGLES TO

THE INITIALLY SPECIFIED DIRECTION.
W = NUMBER OF WORDS TO BE ACCESSED.
C = NUMBER OF BYTES TO BE TRANSFERRED IN THE INITIALLY

SPECIFIED DIRECTION, (TWO BYTES PER WORD IF WORD
TRANSFER MODE IS SELECTED,)

D = NUMBER DF WORDS TO BE ACCESSED IN THE DIRECTION AT
RIGHT ANGLES TO THE INITIALLY SPECIFIED DIRECTION.

DC = DRAWING COUNT PARAMETER WHICH IS ONE LESS THAN
THE NUMBER OF RMW CYCLES TO BE EXECUTED,

DM = DOTS MASKED FROM DRAWING DURING ARC DRAWING,
t = NEEDED ONLY FOR WORD READS.

Figure 3. Drawing Parameter Details

210655·00~

intel· 82720

After the parameters have been set, line, arc, circle, rec­
tangle or slanted rectangle drawing operations are
initiated by the Figure Draw (FIGD) command.
Character, slanted character, area fill and slanted area
fill drawing operations are initiated by the Graphics
Character Draw (GCHRD) command. DMA transfers are
initiated by the DMA Read or Write (DMAR or DMAW)
commands. Data Read Operations are initiated by the
Read Data (RDAT) Command. Data Write Operations
are initiated by writing a parameter after the WDAT
command.

The area fill operation steps and repeats the 8 x 8
graphics character pattern draw operation to fill a
rectangular area. If the size of the rectangle is not an
integral number of 8 x 8 pixels, the GDC will auto­
matically truncate the pattern at the edges furthest
from the starting point.

The Graphics Character Drawing capability can be
modified by the Graphics Character Write Zoom Fac­
tor (GCHR) parameter of the zoom command. The
zoom write factor may be set from 1 to 16 (by using
from 0 to 15 in the parameter). Each dot will be
repeated in memory horizontally and vertically
(adjusted for drawing direction) the number of times
specified by the zoom factor.

The WDAT command can be used to rapidly fill large
areas in memory with the same value. The mask is set
to all 1 's, and the least significant bit of the WDAT
parameter replaces all bits of each word written.

Character Mode Memory Organization

In character mode, the Display memory is organized
into up to 8K characters of up to 13 bits each. Wide
mode is also available for characters of up to 26 bits.

The display memory can be larger than the display
itself. The display width (in characters) is a parameter
of the reset command. The display memory width (in
characters) is a parameter of the Pitch Command.
The height of the display (in lines) is a parameter of
the Reset Command. The display memory height is
determined by dividing the number of display
memory words by the pitch.

In character mode, the display works almost exactly as
it does in graphics mode. The differences lie in the fact
that data read from the display RAM is used to drive
a character generator as well as attribute logic if
desired. In Character mode, address bits 13-16 become
line counter outputs used to select the proper line of
the character generator, and the address 17 output
becomes the cursor and line counter MSB output.

7-97

Character Mode Display Timing

In character mode, the display timing works as it does
in graphics mode. In addition, the Address 17 output
becomes cursor output. The characteristics of the cur­
sor are defined by parameters of the cursor and
Character Characteristics (CCHAR) command. One bit
allows the cursor output to be enabled or disabled. The
height of the cursor is programmable by selecting the
top and bottom line between which the cursor will
appear. The blink rate is also programmable. The
parameter selects the number of frame times that the
cursor will be inactive and active, resulting in a 50%
duty cycle cursor blinking at 2 x the period specified
by the parameter.

The cursor output pin also provides the line counter bit
4 signal, which is valid 10 clocks after the trailing edge
of HSYNC.

Character Mode Special Display Functions

WINDOWING
The GDC's Character Mode display can be par­
titioned into one to four windows on the screen. The
windows are defined by parameters written into the
GDC's Parameter RAM. Each window is specified by
a starting address and a window length in lines.

If windowing is not required, the first window length
should be specified to be the same as the active
display length.

ZOOMING AND PANNING
In character mode, zooming and pan handling com­
mands function the same way as in Graphics Mode.

Character Mode Drawing and Writing

The GDC can read or write characters of up to 13
bits into or out of the Display RAM.

All reading and writing functions take place at the
display RAM location specified by the cursor. The cur­
sor location can be read by issuing the CURD com­
mand. The cursor can be moved anywhere within the
display memory by the CURS command. The cursor
location is also modified by the execution of character
read or write commands.

Each character is written or read via a
Read/Modify/Write cycle. The mask register contents
determine which bit(s) in the character are modified.
The mask register can be used to change character
codes without modifying attribute bits or vice-versa. The
Replace with pattern, Set, Reset and Complement

210655-003

82720

modes work exactly as they do in graphics mode, with
the exception that the parameter RAM Pattern is not
used. The pattern used is a parameter of tile WDAT
command.

The Figure Specify (FIGS) command must be set to
Character Display mode, as well as specify the direc­
tion the cursor will be moved by read or write data
commands.

In character mode, the FIGD and GCHRDcommands
are not used.

Mixed Mode Memory Organization

In mixed mode, the display memory is organized into
.. two banks of up to 64K words of 16 bits each (32 bits
in wide mode).

The display height and width are programmable by the
same Reset or Sync command parameters as in the
graphics and character modes. The display memory
width (in words) is a parameter of the Pitch Command
and the height of the display memory is determined by
dividing the number of display memory words by the
pitch.

An image mode signal is used to switch the external
circuitry between graphics and character modes in
two display windows.

In a graphics window, the GDC works as it does in
pure graphics mode, but on a smaller total memory
space (64K words vs 512K words).

In a character window, the GDC works as it does in
pure character mode,. but the line counter must be
implemented externally. The counter is clocked by
the horizontal sync pulse and reset by a signal sup­
plied by the GDC.

In mixed mode, the GDC provides both a cursor and·
an attribute blink timing signal.

Mixed Mode Display Timing

In mixed mode, each word in a graphic area is accessed
twice in succession. The AW parameter of the Reset
or Sync command should be set to twice its normal
value, and the video shift register load Signal must be
suppressed during the extra access cycle.

In addition, A16 becomes a Multiplexed Attribute and
Clear Line Counter signal and A17 becomes a multi­
plexed cursor and image mode signal. A16 provides an

7-98

active high line counter reset signal which is valid
10 clocks after the trailing edge of HSYNC. During the
active display line time, A16 provides blink timing for
external attribute Circuitry. This signal blinks at 1/2 the
blink rate of the cursor with a 75% on, 25% off duty
cycle. A17 provides a signal which selects between
graphics or character display, which is also valid
10 clocks after the trailing edge of HSYNC. During the
active display time, A17 provides the cursor signal. The
cursor timing and characteristics are defined in exactly
the same way as in pure character mode.

Mixed Mode Special Display Functions

WINDOWING
The GDC supports two display windows in mixed mode .
They can independently be programmed into either
graphics or character mode determined by the state of
two bits in the parameter RAM. The window location
in display memory and size are also determined by
parameters in the parameter RAM.

ZOOMING AND PANNING
In mixed mode, zooming and panning commands
function the same as in graphics and character
mode.

Mixed Mode Drawing and Writing

In mixed mode, the GDC can write or draw in exactly
the same ways as in both graphics and character
modes. In addition, the FIGS command has a para­
meter GO (Graphics Drawing Flag) which sets the
image mode signal to select the proper RAM bank.

DEVICE PROGRAMMING

The GDC occupies two addresses on the system micro­
processor bus through which the GDC's status register
and FIFO are accessed. Commands and parameters
are written into the GDC FIFO and are differentiated by
address bit AO. The status register or the FIFO can be
read as selected by the address line.

AO READ WRITE

STATUS REGISTER PARAMETER INTO FIFO
0 I I I I I I I I I I I I I I I I I I

FIFO READ COMMAND INTO FIFO
1 I I I I I I I I I I I I I I I I I I

Figure 4. GDC Microprocessor Bus Interface
Registers

210655-003

82720

Commands to the GOC take the form of a command
byte followed by a series of parameter bytes as
needed for specifying the details of the command.
The command processor decodes the commands,
unpacks the parameters, loads them into the appro­
priate registers within the GOC and initiates the re­
quired operations.

The commands available in the GOC can be organ­
ized into five categories as described in figure 5.

VIDEO CONTROL COMMANDS
1. RESET: RESETS THE GDC TO ITS IDLE STATE.
2. SYNC: SPECIFIES THE VIDEO DISPLAY FORMAT.
3. VSYNC: SELECTS MASTER OR SLAVE VIDEO

SYNCHRONIZATION MODE
4. CCHAR: SPECIFIES THE CURSOR AND CHARACTER ROW

HEIGHTS.
DISPLAY CONTROL COMMANDS

1. START: ENDS IDLE MODE AND UNBLANKS THE DISPLAY.
2. BCTRL: CONTROLS THE BLANKING AND UNBLANKING OF

THE DISPLAY.
3. ZOOM: SPECIFIES ZOOM FACTORS FOR THE DISPLAY AND

GRAPHICS CHARACTERS WRITING.
4. CURS: SETS THE POSITION OF THE CURSOR IN DISPLAY

MEMORY.
5. PRAM: DEFINES STARTING ADDRESSES AND LENGTHS OF

THE DISPLAY AREAS AND SPECIFIES THE EIGHT
BYTES FOR THE GRAPHICS CHARACTER.

6. PITCH: SPECIFIES THE WIDTH OF THE X DIMENSION OF
DISPLAY MEMORY.

DRAWING CONTROL COMMANDS
1. WDAT: WRITES DATA WORDS OR BYTES INTO DISPLAY

MEMORY.
2. MASK: SETS THE MASK REGISTER CONTENTS.
3. FIGS: SPECIFIES THE PARAMETERS FOR THE DRAWING

PROCESSOR.
4. FIGD: DRAWS THE FIGURE AS SPECIFIED ABOVE.
5. GCHRD: DRAWS THE GRAPHICS CHARACTER INTO DISPLAY

MEMORY. DATA READ COMMANDS
1. RDAT: READS DATA WORDS OR BYTES FROM DISPLAY

MEMORY.
2. CURD: READS THE CURSOR POSITION.
3. LPRD: READS THE LIGHT PEN ADDRESS.

DMA CONTROL COMMANDS
1. DMAR: REQUESTS A DMA READ TRANSFER.
2. DMAW: REQUESTS A DMA WRITE TRANSFER.

Figure 5. GDC Command Summary

111 r 1 t ~~~~~DY
~FIFOEMPTY

L _____ DRAWING IN PROGRESS

DMAEXECUTE
VERTICAL SYNC ACTIVE

. ~~:~~A~E~~c':K ACTIVE

Figure 6. Status Register (SR)

Status Register Flags

SR-7: Light Pen Detect: When this bit is set to 1, the
light pen address (LAD) register contains a de­
glitched value that the system microprocessor may
read. This flag is reset after the 3-byte LAD is moved
into the FIFO in response to the light pen read
command.

7-99

SR-6: Horizontal Blanking Active: A 1 value for
this flag signifies that horizontal retrace blanking is
currently underway.

SR-5: Vertical Sync: Vertical retrace sync occurs
while this flag is a 1. The vertical sync flag coor­
dinates display format modifying commands to the
blanked interval surrounding vertical sync. This
eliminates display disturbances.

SR-4: DMA Execute: This bit is a 1 during OMA data
transfers.

SR-3: Drawing in Progress: While the GOC is draw­
ing a graphics figure, this status bit is a 1.

SR-2: FIFO Empty: This bit and the FIFO Full flag
coordinate system microprocessor accesses with
the GOC FIFO. When it is 1, the Empty flag ensures
that all the commands and parameters previously
sent to the GOC have been processed.

SR-1: FIFO Full: A 1 at this flag indicates a full FIFO
in the GOC. A 0 ensures that there is room for at least
one byte. This flag needs to be checked before each
write into the GOC.

SR·O: Data Ready: When this flag is a 1, it indicates
that a byte is available to be read by the system
microprocessor. This bit must be tested before each
read operation. It drops to a 0 while the data is trans­
ferred from the FIFO into the microprocessor inter­
face data register.

FIFO Operation & Command Protocol

The first-in, first-out buffer (FIFO) in the GOC
handles the command dialogue with the system mi­
croprocessor. This flow of information uses a half­
duplex technique, in which the single 16-location
FIFO is used for both directions of data movement,
one direction at a time. The FIFO's direction is con­
trolled by the system microprocessor through the GOC's
command set. The microprocessor coordinates these
transfers by checking the appropriate status register
bits.

The command protocol used by the GOC requires
the differentiation of the first byte of a command
sequence from the succeeding bytes. This first byte
contains the operation code and the remaining bytes
carry parameters. Writing into the GOC causes the
FIFO to store a flag value alongside the data byte to
signify whether the byte was written into the com­
mand or the parameter address. The command pro­
cessor in the GOC tests this bit as it interprets the
entries in the FIFO.

210655-003

82720

The receipt of a command byte by the command
processor marks the end of any previous operation.
The number of parameter bytes supplied with a com­
mand is cut short by the receipt of the next command
byte. A read operation from the GDC to the micropro­
cessor can be terminated at any time by the next
command.

The FIFO changes direction under the control of the
system microprocessor. Commands written into the
GDC always put the FIFO into write mode if it wasn't
in it already. If it was in read mode, any read data in
the FIFO at the time of the turnaround is lost. Com­
mands which require a GDC response, such as RDAT,
CURD and LPRD, put the FIFO into read mode after
the command is interpreted by the GDC's command
processor. Any commands and parameters behind
the read-evoking command are discarded when the
FIFO direction is reversed.

Read-Modify-Write Cycle

Data transfers between the GDC and the display
memory are accomplished using a read-modify-write
(RMW) memory cycle. The four clock period timing of
the RMW cycle is used to: 1) output the address, 2)
read data from the memory, 3) modify the data, and 4)
write the modified data back into the initially se­
lected memory address. This type of memory cycle is
used for all interactions with display memory includ­
ing DMA transfers, except. for the two clock period
display and RAM refresh cycles.

The operations performed during the modify portion
of the RMW cycle merit additional explanation. The
circuitry in the GDC uses three main elements: the
Pattern register, the Mask register, and the 16-bit
Logic unit. The Pattern register holds the data pat­
tern to be moved into memory. It is loaded by the
WDAT command or, during drawing, from the param­
eter RAM. The Mask register contents determine
which bits of the read data will be modified. Based on
the contents of these registers, the Logic unit per­
forms the selected operations of REPLACE, COM­
PLEMENT, SET, or CLEAR on the data read from
display memory.

The Pattern register contents are ANDed with the
Mask register contents to enable the actual modifica­
tion of thememory read data, on a bit-by-bit basis.
For graphics drawing, one bit at a time from the
Pattern register is combined with the Mask. When
ANDed with the bit set to a 1 in the Mask register, the
proper single pixel is modified by the Logic Unit. For
the next pixel in the figure, the next bit in the Pattern
register is selected and the Mask register bit is

moved to identify the pixel's location within the word.
The Execution word address pointer register, EAD, is
also adjusted as required to address the word con­
taining the next pixel.

In character mode, all of the bits in the Pattern regis­
ter are used in parallel to form the respective bits of
the modify data word. Since the bits of the character
code word are used in parallel, unlike the one-bit-at­
a-time graphics drawing process, this facility allows
any or all of the bits in a memory word to be modified
in one RMW memory cycle. The Mask register must
be loaded with 1 s in the positions where modification
is to be permitted.

The Mask register can be loaded in either of two
ways. In graphics mode, the CURS command con­
tains a four-bit dAD field to specify the dot address.
The command processor converts this parameter
into the one-of-16 format used in the Mask register
for figure drawing. A full 16 bits can be loaded into
the Mask register using the MASK command. In addi­
tion to the character mode use mentioned above, the
16-bit MASK load is convenient in graphics mode
when all of the pixels of a word are to be set to the
same value. '

The Logic unit combines the data read from display
memory, the Pattern register, and the Mask register
to generate the data'to be written back into display
memory. Anyone of four operations can be selected:
REPLACE, COMPLEMENT, CLEAR or SET. In each
case, if the respective Mask bit is 0, that particular bit
of the read data is returned to memory unmodified. If
the Mask bit is 1, the modification is enabled. With
the REPLACE operation, the modify data simply
takes the place of the read data for modification
enabled bits. For the other three operations, a 0 in
the modify data allows the read data bit to be re­
turned to memory. A 1 value causes the specified
operation to be performed in the bit positions with
set Mask bits.

Figure Drawing

The GDC draws graphics figures at the rate of one
pixel per read-modify-write (RMW) display memory
cycle. These cycles take four clock periods to com­
plete. At a clock frequency of 5 MHz, this is equal to
800 ns. During the RMW cycle the GDC simulta­
neously calculates the address and position of the
next pixel to be drawn.

The graphics figure drawing process depends on the
display memory addressing structure. Groups of 16
horizontally adjacent pixels form the 16-bit words

7-100 210655-003

82720

which are handled by the GDG. Display memory is
organized as a linearly addressed space of these
words. Addressing of individual pixels is handled by
the GDG's internal RMW logic.

During the drawing process, the GDG finds the next
pixel of the figure which is one of the eight nearest
neighbors of the last pixel drawn. The GDG assigns
each of these eight directions a number from 0 to 7,
starting with straight down and proceeding
counterclockwise.

Figure 7. Drawing Directions

Figure drawing requires the proper manipulation of
the address and the pixel bit position according to
the drawing direction to determine the next pixel of
the figure. To move to the word above or below the
current one, it is necessary to subtract or add the
number of words per line in display memory. This
parameter is called the pitch. To move to the word to
either side, the Execute word address cLirsor, EAD,
must be incremented or decremented as the dot ad­
dress pointer bit reaches the LSB or the MSB of the
Mask register. To move to a pixel within the same
word, it is necessary to rotate the dot address pointer
register to the right or left.

Figure 8 summarizes these operations for each
direction.

Whole word drawing is useful for filling areas in
memory with a single value. By setting the Mask
register to all 1s with the MASK command, both the
LSB and MSB of the dAD will always be 1, so that the
EAD value will be incremented or decremented for
each cycle regardless of direction. One RMW cycle will
be able to affect all 16 bits of the word for any drawing
type. One bit in the Pattern register is used per RMW
cycle to write all the bits of the word to the same value.
The next Pattern bit is used for the word, etc.

DIR ADDRESS OPERATION(S)

EAD=EAD+P

EAD = EAD + P
If dAD.MSB = 1 then EAD = EAD + 1 dAD - RR (dAD)

else dAD = LR(dAD)

If dAD.MSB = 1 then EAD = EAD + 1 dAD - RR (dAD)
else dAD = LR(dAD)

EAD = EAD -P
If dAD.MSB = 1 then EAD = EAD + 1 dAD - RR (dAD)

else dAD = LR(dAD)

4 EAD = EAD - P

EAD = EAD - P
If dAD.LSB = 1 then EAD = EAD - 1 dAD - LR (dAD)

else dAD = RR(dAD)

If dAD.LSB = 1 then EAD = EAD - 1 dAD - LR (dAD)

else dAD = RR(dAD)

7 EAD = EAD + P
If dAD.LSB = 1 then EAD = EAD - 1 dAD - LR (dAD)

else dAD = RR(dAD)

WHERE
P = PITCH, LR = LEFT ROTATE, RR = RIGHT ROTATE

CAD = CURSOR ADDRESS
dAD = DOT ADDRESS
LSB = LEAST SIGNIFICANT BIT
MSB = MOST SIGNIFICANT BIT

Figure 8. Address Calculation Details

7-101 210655-003

intel' 82720

For the various figures, the effect of the initial direction
upon the resulting drawing is shown in figure 9.

Note that during line drawing, the angle of the line
may be anywhere within the shaded octant defined
by the OIR value. Arc drawing starts in the direction
initially specified by the OIR value and veers into an

Dir Line Arc Character

000 ~~ ~.-,:,:- •
001 ~

~ ~ I ,
I ,

I' ..
A

,
Ii I ,

010
,

I ,
I ,

~

011 ~ r:~~,. ~
100 'V~ .e,~~,) •

A
.f

~ 101 ' I
" I

~

110 Y r: I ,
, I

, I

"
111 ~ ~~'~J ~

arc as drawing proceeds. An arc may be up to 45
degrees in length. OMA transfers are done on word
boundaries only, and follow the arrows indicated in
the table to find successive word addresses. The
slanted paths for OMA transfers indicate the GOC
changing both the X and Y components of the word
address when moving to the next word. It does not
follow a 45 degree diagonal path by pixels.

Slant Char Rectangle DMA , 0 N\l
~ 0 ~
/ 0 ~

1 <> j ~
~. 0 m
~ 0 ~
F 0 ~ - -- - .
f <> -#

Figure 9. Effect of the Direction Parameter

7-102 210655-003

82720

Drawing Parameters

In preparation for graphics figure drawing, the GDC's
Drawing Processor needs the figure type, direction
and drawing parameters, the starting pixel address,
and the pattern from the microprocessor. Once these
are in place within the GDC, the Figure Draw com­
mand, FIGD, initiates the drawing operation. From
that point on, the system microprocessor is not in­
volved in the drawing process. The GDC Drawing
Processor coordinates the RMW circuitry and ad­
dress registers to draw the specified figure pixel by
pixel. -

The algorithms used by the processor for figure
drawing are designed to optimize its drawing speed.
To this end, the specific details about the figure to be
drawn are reduced by the microprocessor to a form
conducive to high-speed address calculations within
the GDC. In this way the repetitive, pixel-by-pixel
calculations can be done quickly, thereby minimizing
the overall figure drawing time. Figure 3 summarizes
the parameters.

Graphics Character Drawing

Graphics characters can be drawn into display
memory pixel-by-pixel. The up to 8-by-8 character is
loaded into the GDC's parameter RAM by the system
microprocessor. Consequently, there are no
limitations on the character set used. By varying the
drawing parameters and drawing direction,
numerous drawing options are available. In area fill
applications, a character can be written into display

7-103

memory as many times as desired without reloading
the parameter RAM.

Once the parameter RAM has been loaded with up to
eight graphics character bytes by the appropriate
PRAM command, the GCHRD command can be used
to draw the bytes into display memory starting at the
cursor. The zoom magnification factor for writing,
set by the zoom command, controls the size of the
character written into the display memory in integer
multiples of 1 through 16. The bit values in the PRAM
are repeated horizontally and vertically the number
of times specified by the zoom factor.

The movement of these PRAM bytes to the display
memory is controlled by the parameters of the FIGS
command. Based on the specified height and width
of the area to be drawn, the parameter RAM is
scanned to fill the required area.

For an 8-by-8 graphics character, the first pixel drawn
uses the LSB of RA-15, the second pixel uses bit 1 of
RA-15, and so on, until the MSB of RA-15 is reached.
The GDC jumps to the corresponding bit in RA-14 to
continue the drawing. The progression then advances
toward the LSB of RA-14. This snaking sequence is con­
tinued for the other 6 PRAM bytes. This progression
matches the sequence of display memory addresses
calculated by the drawing processor as shown in
figure 9. If the area is narrower than 8 pixels wide, the
snaking will advance to the next PRAM byte before the
MSB is reached. If the area is less than 8 lines high,
fewer bytes in the parameter RAM will be scanned. If
the area is larger than 8 by 8, the GDC will repeat the
contents of the parameter RAM in two dimensions.

210655-003

intel' 82720

Parameter RAM Contents

The parameters stored in the parameter RAM,
PRAM, are available for the GDC to refer to
repeatedly during figure drawing and raster­
scanning. In each mode of operation the values in the
PRAM are interpreted by the GDC in a predeter­
mined fashion. The host microprocessor must load
the appropriate parameters into the proper PRAM
locations. PRAM loading command allows the host
to write into any location of the PRAM and transfer as
many bytes as desired. In this way any stored param­
eter byte or bytes may be changed without influenc­
ing the other bytes.

The PRAM stores two types of information. For
specifying the details of the display area partitions,
blocks of four bytes are used. The four parameters
stored in each block include the starting address in
display memory of each display area, and its length.

In addition, there are two mode bits for each area
which specify whether the area is a bit-mapped
graphics area or a coded character area, and
whether a normal or wide display cycle is to be used
for that area.

The other use for the PRAM contents is to supply the
pattern for figure drawing when in a bit-mapped
graphics a'rea or mode. In these situations, PRAM
bytes 8 through 16 are reserved for this patterning
information. For line, arc, and rectangle drawing
(linear figures) locations 8 and 9 are loaded into the
Pattern register to allow the GDC to draw dotted,
dashed, etc. lines. For area ,filling and graphics bit­
mapped character drawing locations 8 through 15
are referenced for the pattern or character to be
drawn.

Details of the bit assignments are shown on the fol­
lowing pages for the various modes of operation.

7-104 210655-003

82720

RA.0

1

S_
I
____ SA�_Dl_L ---~

. I ' DISPLAY PARTITION AREA 1 STARTING
SADI H ..l- ADDRESS WITH LOW AND HIGH

~~ __ ~ __ ~~~~I __ ~I __ ~ __ ~ :~DN~~~S~~CEFIELDS(WORD

RA-4

RA-B

9

10

11

RA-12

13

14

LENGTH OF DISPLAY PARTITION 1
(LINE COUNn WITH LOW AND HIGH
SIGNIFICANCE FIELDS.

THE IMAGE BIT AFFECTS THE
OPERATION OF THE DISPLAY ADDRESS
COUNTER IN CHARACTER MODE. IF

'------------- ~~E~~NACGREE~IJ~~ ~~~N~TAFTER
EACH READ CYCLE. IF THE IMAGE
BIT IS SET, IT WILL INCREMENT
BY ONE AFTER EVERY TWO
READ CYCLES.

A WIDE DISPLAY CYCLE WIDTH
OF TWO WORDS PER MEMORY CYCLE
IS SELECTED FOR THIS DISPLAY

'--------------- ~~~MpI~~ :J~~~~n~~~T~R IS

SAD2L

THEN INCREMENTED BY 2 FOR EACH
DISPLAY SCAN CYCLE. OTHER MEMORY
CYCLE TYPES ARE NOT INFLUENCED.

DISPLAY PARTITION 2 STARTING
-- ADDRESS AND LENGTH

DISPLAY PARTITION 3 STARTING
ADDRESS AND LENGTH

DISPLAY PARTITION 4 STARTING
ADDRESS AND LENGTH

15 '-__________________ . __ J
Figure 10. Parameter RAM Contents-Character Mode

7-105 210655·003

RA·O

82720

~~ __ ~ __ ~S_A~~_I_"~ __ ~ __ ~~I~
DISPLAY PARTITION AREA 1
STARTING ADDRESS WITH LOYol
MIDDLE, AND HIGH SIGNIFICANCE·
FIELDS (WORD ADDRESS).

2 LI __ ~_L_E~~I_"~ __ ~ __ ~ __ ~S_A.~_I_H~

RA-4

6 i LE~2l_1

7 WD211M I

RA-l0

11

12

13

14

15

SAD2l
-1

SAD2H
..L -1

I
o I o ISA~2M

L~2H -1 -1

GCHR 6

GCHR 5

GCHR 4

GCHR3

GCHR 2

LENGTH OF DISPLAY PARTITION
AREA 1 WITH LOW AND HIGH
SIGNIFICANCE FIELDS (LINE COUNT)

IN MIXED MODE, A 1 INDICATES AN
IMAGE OR GRAPHICS AREA, AND A 0
INDICATES A CHARACTER AREA. IN
GRAPHICS MODE THIS BIT MUST BE O.

WIDE DISPLAY CYCLE MODE BIT

DISPLAY PARTITION AREA 2
~ STARTING ADDRESS AND LENGTH WITH

IMAGE IDENTIFY BIT AS IN AREA 1.

}

PATTERN OF 16 BITS USED FOR
FIGURE DRAWING TO PERFORM
DOTTED, DASHED, ETC. LINES

GRAPHICS CHARACTER BYTES
TO BE MOVED INTO DISPLAY
MEMORY WITH GRAPHICS
CHARACTER DRAWING

Figure 11. Parameter RAM Contents-Graphics and Mixed Graphics and Character Modes

7-106 210655·003

82720

RESET: 0 1 0 0 1 0 0

SYNC: 0 0 0 11 1
I

VSYNC: o 1 0 11 1

CCHAR:

START:

BCTRL: 0 0
1

ZOOM: 0
1

CURS: o 1 0 11

PRAM: o I 1 I SA
I

PITCH: 0
1

0

I
0 WDAT:

I DE MASK:

I M FIGS:

FIGD:

GCHRD:

I DE RDAT: 1 1

CURD:

LPRD:

DMAR: 1 1

DMAW: 1 1

TYPE 1 0 1 I

0 I 0

0 I 0

TYPE 11 I ,

TYPE 11 1 ,

MOD
I

MOD
I

MOD
I

MOD ,

Figure 12. Command Bytes Summary

VIDEO CONTROL COMMANDS

RESET: I 0 ! 0 ! 0 ! 0 ! 0 I 0 I 0 ! 0 I BLANK THE DISPLAY, ENTER IDLE MODE,
AND INITIALIZE WITHIN THE GDC:
-FIFO
-COMMAND PROCESSOR
-INTERNAL COUNTERS

Figure 13. Reset Command

RESET COMMAND
This command can be executed at any time and does
not modify any of the parameters already loaded into
the GOC.

7-107

If followed by parameter bytes, this command also
sets the sync generator parameters as described
below. Idle mode is exited with the STARTcommand.

210655-003

82720

P1 0 0lcl FIIIDIGIS
_ MODE CONTROL BITS.

SEE FIGURE 15.

P2 AW _ ACTIVE DISPLAY WORDS PER LINE -2. MUST
BE EVEN NUMBER WITH BIT 0 ~ O.

P3 VS, I HS

\ ~ HORIZONTAL SYNC WIDTH.-1
VERTICAL SYNC WIDTH, LOW BITS

P4 I HFP I V~H j.-- VERTICAL SYNC WIDTH, HIGH BITS
I I I I I

~ HORIZONTAL FRONT PORCH WIDTH -1.

P5 0 01 HBP _ HORIZONTAL BACK PORCH WIDTH -1.

P6 0 OJ VFP 4--- VERTICAL FRONT PORCH WIDTH

P7 AL, 4--- ACTIVE DISPLAY LINES PER VIDEO FIELD,
LOW BITS

P8 I VBP I AL j.-- ACTIVE DISPLAY LINES PER VIDEO FIELD,
I I I I I I H HIGH BITS

~ VERTICAL BACK PORCH WIDTH

Figure 14. Optional Reset Parameters

In graphics mode, a word is a group of 16 pixels. In
character mode, a word is one character code and its
attributes, if any.

The number of active words per line must be an even
number from 2 to 256.

An ali-zero parameter value selects a count equal to
2n where n = number of bits in the parameter field for
vertical parameters.

Ali horizontal widths are counted in display words.
Ali vertical intervals are counted in lines.

Sync Parameter Constraints

HORIZONTAL FRONT PORCH CONSTRAINTS
1. In general:

HFP ;0:2 words
2. If DMA is used, or the display zoom factor is greater

than one in interlaced display mode:
HFP ;0:3 words

3. If the GDC is used in slave mode:
HFP ;0:4 words

4. If the light pen input is used:
HFP ;0:6 words

HORIZONTAL Sync CONSTRAINTS
1. If dynamic RAM refresh is used:

HS ;0:2 words
2. If interlaced display mode is used:

HS ;0:5 words

HORIZONTAL BACK PORCH CONSTRAINTS
1. In general:

HBP ;0:3 words
2. If interlaced display mode is used, or the IMAGE or

WIDE mode bits change within one video field:
HBP2 5 words

MODE CONTROL BITS (FIGURE 15)

Repeat Field Framing: 2 Field Sequence with Y2
line offset between other­
wise identical fields.

Interlaced Framing: 2 Field Sequence with Y2
line offset. Each field dis­
plays alternate lines.

Noninterlaced Framing: 1 field brings ali of the in­
formation to the screen.

Total scanned lines in interlace mode is odd. The
sum of VFP + VS + VBP + AL should equal one less
than the desired odd number of lines.

Dynamic RAM refresh is important when high display
zoom factors orDMA are used in such a way that not
ali of the rows in the RAMs are regularly accessed
during display raster generation and for otherwise
inactive display memory.

Access to display memory can be limited to retrace
blanking intervals only, so that no disruptions of the
image are seen on the screen.

7-108 210655-003

82720

CG DISPLAY MODE

0 0 MIXED GRAPHICS & CHARACTER

0 1 GRAPHICS MODE

1 0 CHARACTER MODE

1 1 INVAliD

I S VIDEO FRAMING

o 0 NONINTERLACED

0 1 INVALID

1 0 INTERLACED REPEAT FIELD
FOR CHARACTER DISPLAYS

1 1 INTERLACED

D DYNAMIC RAM REFRESH CYCLES ENABLE

0 NO REFRESH-STATIC RAM

1 REFRESH-DYNAMIC RAM

F DRAWING TIME WINDOW

0 DRAWING DURING ACTIVE DISPLAY TIME
AND RETRACE BLANKING

1 DRAWING ONLY DURING RETRACE BLANKING

Figure 15. Mode Control Bits

SYNC, 10,0 10 10 l' 111110L
THE DISPLAY IS ENABLED BY
A 1, AND BLANKED BY A O.

P1
P2 t--L-'--~!::,-'--'--L.:..j

MODE CONTROL BITS.
SEe FIGURE 15.

ACTIVE DISPLAY WORDS PER LINE -2. MUST
BE EVEN NUMBER WITH BIT 0 ;;:;; O.

P3 L....J.-.J-....L.....l.-J.....L-r-'-...J

L-L-I.-..... "'-..L......l...VS.JI_"...Jr----- VERTICAL SYNC WIDTH. HIGH BITS

HORIZONTAL FRONT PORCH WIDTH -1.

HORIZONTAL BACK PORCH WIDTH -1.

VERTICAL FRONT POACH WIDTH

ACTIVE DISPLAY LINES PER VIDEO FIELD,
LOW BITS

'-'-'--\:-..L......l......J...A...J~L-"...Jr----- ~~T~Vilf~SPLAY LINES PER VIDEO FIELD,

'------- VERTICAL BACK PORCH WIDTH

Figure 16. Sync Command

7-109 210655-003

infel' 82720

SYNC Format Specify Command

This command loads parameters into the sync
generator. The various parameter fields and bits are
identical to those at the RESET command. The GOC

, is not reset nor does it enter idle mode.

Vertical Sync Mode Command

When using two or more GOCs to contribute to one
image, one GOC is defined as the master sync
generator, and the others operate as its slaves. The
VSYNC pins of all GOCs are connected together.

Slave Mode Operation

A few considerations should be observed when
synchronizing two or more GOCs to generate over­
layed video via the VSYNC INPUT/OUTPUT pin. As
mentioned above, the Horizontal Front Porch (HFP)

must be 4 or more display cycles wide. This is equiva­
lent to eight or more clock cycles. This gives the slave
GOCs time to initialize their internal video sync
generators to the proper point in the video field to
match the incoming vertical sync pulse (VSYNC).
This resetting of the generator occurs just after the
end of the incoming VSYNC pulse, during the HFP
interval. Enough time during HFP is required to allow
the slave GOC to complete the operation before the
start of the HSYNC interval.

Once the GOCs are initialized and set up as Master
and Slaves, they must be given time to synchronize. It
is a good idea to watch the VSYNC status bit of the
Master GOC and wait until after one or more VSYNC
pulses have been generated before the display pro­
cess is started. The START command will begin the
active display of data and will end the video
synchronization process, so be sure there has been
at least one VSYNC pulse generated for the Slaves to
synchronize to.

~ I VSYNC: 0110111M , , , , I I O-ACCEPT EXTERNAL VERTICAL
L-- SYNC-SLAVE MODE

l-GENERATE & OUTPUT VERTICAL
SYNC-MASTER MODE

Figure 17. Vertical Sync Mode Command

CCHAR: I 0 , 1 , 0 ! 0 , 1 " 0 , 1 , 1 I
Pl loci 0 I 0 I LR r-- LINES PER CHARACTER ROW - 1

I I
i DISPLAY CURSOR IF 1

P2 I BrL Isci CTOP I- ~g~SOR TOP LINE NUMBER IN THE
I I

t ~ O-BLINKING CURSOR
l-STEADY CURSOR
BLINK RATE. LOWER BITS

P3 CBOT BRu I- BLINK RATE, UPPER BITS
I I I I
i CURSOR BOTTOM LINE NUMBER IN

THE ROW

Figure 18. Cursor & Character Characteristics Command

7-110 210655-003

82720

Cursor and Character Characteristics
Command

In graphics mode, LR should be set to o. For interlaced
displays in graphics mode, SR should be set to 3. The
blink rate parameter controls both the cursor and attrib­
ute blink rates. The cursor blink-an-time = blink-olf-time
= 2 x SR (video frames). The attribute blink rate is
always 112 the cursor rate but with a 3/.1 on-1/4 off duty
cycle.

DISPLAY CONTROL COMMANDS

Zoom Factors Specify Command

Zoom magnification factors of 1 through 16 are avail­
able using codes 0 through 15, respectively.

Cursor Position Specify Command

In character mode, the third parameter byte is not
needed. The cursor is displayed for the word time in
which the display scan address (DAD) equals the
cursor address. In graphics mode, the cursor word
address specifies the word containing the starting
pixel of the drawing; the dot address value specifies
the pixel within that word.

START DISPLAY & END IDLE MODE

START: I 0 ! 1 I 1 ! 0 ! 1 ! 0 , 1 , 1 I
DISPLAY BLANKING CONTROL

BCTRL: I 0 I 0 I 0 I 0 I 1 I 1 I 0 IDL

ZOOM FACTORS SPECIFY

200M: I 0 I 1 , 0 ! a , 0 ! 1 ! 1 ! 0 I

Parameter RAM Load Command

From the starting address, SA, any number of bytes
may be loaded into the parameter RAM at increment­
ing addresses, up to location 15. The sequence of
parameter bytes is terminated by the next command
byte entered into the FIFO. The parameter RAM
stores 16 bytes of information in predefined loca­
tions which differ for graphics and character modes.
See the parameter RAM discussion for bit
assignments.

Pitch Specification Command

This value is used during drawing by the drawing
processor to find the word directly above or below
the current word, and during display to find the start
of the next line.

The Pitch parameter (width of display memory) is set
by two different commands. In addition to the PITCH
command, the RESET (or SYNC) command also sets
the pitch value. The "active words per line" param­
eter, which specifies the width of the raster-scan dis­
play, also sets the Pitch of the display memory. In
situations in which these two values are equal there
is no need to execute a PITCH command.

THE DISPLAY IS ENABLED
BY A 1, AND BLANKED BY
A O.

P1 I I Dr I I I GCrR I I-- ~~~~:C'T~TRo~~~rNgR~I~J~~
~-------- DISPLAY ZOOM FACTOR MINUS 1

CURSOR POSITION SPECIFY

CURS: 0 , 1 , 0 I 0 I 1 , 0 , 0 I 1 I
P1 EAD L EXECUTE WORD ADDRESS, LOW BYTE ::::==1 ;:::;1 =1 ~r-
P2 EAD 1- EXECUTE WORD ADDRESS, MIDDLE BYTE

~;::::::I ;:::;1 :;::;:;::r-
diD I I 0 I 0 I E~Dj ... - (GRAPHICS MODE ONLY)

T ~ WORD ADDRESS, TOP BITS
'--------- DOT ADDRESS WITHIN THE WORD

P3

Figure 19. Display Control Commands

7-111 210655-003

PRAM: I 0 ! 1 ! 1 ! 1 I

82720

SA

i<-----STARTING ADDRESS IN
PARAMETER RAM

P, I 1-1 TO 16 BYTES TO BE LOADED '-. =======~. INTO THE PARAMETER RAM
,- STARTING AT THE RAM ADDRESS

Pn I SPECIFIED BY SA

Figure 20. Parameter RAM Load Command

PITCH: I 0 , 1 ! 0 I 0 I 0 I 1 I 1 I 1 I
P1 I I I I r I I I I--NUMBER OF WORD ADDRESSES

IN DISPLAY MEMORY IN THE
HORIZONTAL DIRECTION

Figure 21. Pitch Specification Command

WRITE DATA INTO DISPLAY MEMORY

WDAT: I 0 0 1 I TYPE I 0 I MOD I

o
o
1
1

t~ ___ RMW MEMORY CYCLE LOGICAL
OPERATION:

_ REPLACE WITH PATTERN
_ COMPLEMENT
_ RESET TO ZERO
_SETT01

'--------- DATA TRANSFER TYPE

o 0 ~~~~~~~WORD' LOW THEN HIGH BYTE 1 O' LOW BYTE OF THE WORD
1 1" HIGH BYTE OF THE WORD
o 1 • INVALID

P1 L.....I ___ _W.l.0_RD_L'-O_R ... BI..YT_E-'I......r._ ... I---WORD LOW DATA BYTE OR . I I I I _ SINGLE BYTE DATA VALUE

P21L--.......... _ WO ... II..RD_"...II_ ---aI- ~~~DDl~:~~~R ONLY:

Figure 22. Write Data Command

DRAWING CONTROL COMMANDS

Write Data Command
Upon receiving a set of parameters (two bytes for a
word transfer, one for a byte transfer). one RMW
cycle into Video Memory is done at the address
pointed toby the cursor EAO. The EAD pointer is

,advanced to the next word, according to the previ-

In graphics bit-map situations, only the LSB of the
WDAT parameter bytes is used as the pattern in the
RMW operations. Therefore it is possible to have only
an all ones or all zeros pattern. In coded character
applications all the bits of the WDAT parameters are
used to establish the drawing pattern.

ously specified direction. More parameters can then
be accepted.

For byte writes, the unspecified byte is treated as all
zeros during the RMW memory cycle.

The WDAT command operates differently from the
other commands which initiate RMW cycle activity. It
requires parameters to set up the Pattern register
while the other commands use the stored values in
thp ,)arameter RAM. Like all of these commands, ,the

7-112 210655-003

82720

Figure 23_ Mask Register Load Command

WDAT command must be preceded by a FIGS com­
mand and its parameters. Only the first three para­
meters need be given following the FIGS opcode, to set
up the type of drawing, the DIR direction, and the DC
value. The DC parameter + 1 will be the number of
RMW cycles done by the GDC with the first set of WDAT
parameters. Additional sets of WDAT parameters will
see a DC value of 0 which will cause only one RMW
cycle to be executed.

FIGS: I 0 I 1 0 0 1 1 0 0
I I I I I I I

P1lsLl Rl A jGcl Lj DIRi J- DRAWING DIRECTION BASE

l 1 t FIGURE TYPE SELECT BITS:
LINE (VECTOR)
GRAPHICS CHARACTER
ARC/CIRCLE
RECTANGLE

SLANTED GRAPHICS CHARACTER

=10 ~~ ; D:LD~H : ;
L DC DRAWING PARAMETER

GRAPHICS DRAWING FLAG FOR USE IN
MIXED GRAPHICS AND CHARACTER MODE

::10;01 : :L ~M : ;

~ 0 DRAWING PARAMETER

:10;0 i ; D:L O~M ; ;

~ 02 DRAWING PARAMETER

::10; 0 i ; D;
1Lo

iM: ;
~D1 DRAWING PARAMETER

P1°1

P11 : 0 ; 0 i : D:"O~M; :
~ OM DRAWING PARAMETER

VALID FIGURE TYPE SELECT COMBINATIONS

.aL R A .!it. !. ~

0 0 0 0 0 CHARACTER DISPLAY MODE
DRAWING, INDIVIDUAL DOT
DRAWING, DMA, WDAT, AND
RDAT

0 0 0 0 1 STRAIGHT LINE DRAWING [""-'''' : COMBINATIONS 0 0 0 1 0 GRAPHICS CHARACTER ASSURE
DRAWING AND AREA FILLING CORRECT DRAWING
WITH GRAPHICS CHARACTER OPERATION
PATTERN

0 0 1 0 0 ARC AND CIRCLE DRAWING

0 1 0 0 0 RECTANGLE DRAWING

1 0 0 1 0 SLANTED GRAPHICS
CHARACTER DRAWING AND
SLANTED AREA FILLING

Figure 24. Figure Drawing Parameters Specify Command

7-113 210655-003

82720

FIGD: 10 ,1 , 1 ! 0 ! 1 ! 1 10 ! 0 I

Figure 25. Figure Draw Start Command

GCHRD: I 0 I 1 , 1 , 0 , 1 ! 0 , 0 ! 0 I

Figure 26. Graphics Character Draw
and Area Filling Start Command

Mask Register Load Command

This command sets the value of the 16-bit Mask reg­
ister of the figure drawing processor. The Mask regis­
ter controls which bits can be modified in the display
memory during a read-modify-write cycle.

The Mask register is loaded both by the MASK com­
mand and the third parameter byte of the CURS
command. The MASK command accepts two param­
eter bytes to load a 16-bit val ue into the MASK
register. All 16 bits can be individually one or zero,
under program control. The CURS command on the
other hand, puts a "1 of 16" pattern into the Mask
register based on the value of the Dot Address value,
dAD. If normal single-pixel-at-a-time graphics figure
drawing is desired, there is no need to do a MASK com­
mand at all since the CURS command will set up
the proper pattern to address the proper pixels as
drawing progresses. For coded character DMA, and
screen setting and clearing operations using the
WDAT command, the MASK command should be'
used after the CURS command if its third parameter
byte has been output. The Mask register should be set
to all ones for any "word-at-a-time" operation.

Figure Draw Start Command

On execution of this instruction, the GDC loads the
parameters from the parameter RAM into the draw­
ing processor and starts the drawing process at the .

pixel pointed to by the cursor, EAD, and the dot
address, dAD.

Graphics Char. Draw and Area Fill Start
Command

Based on parameters loaded with the FIGS com­
mand, this command initiates the drawing of the
graphics character or area filling pattern stored in
Parameter RAM. Drawing begins at the address in
display memory pointed to by the EAD and dAD
values.

DATA READ COMMANDS

Read Data Command

Using the DIR and DC parameters of the FIGS com­
mand to establish direction and transfer count,
multiple RMW cycles can be executed without
specification ofthe cursor address after the initial
load (DC = number of words or bytes).

As this instruction begins to execute, the FIFO buffer
direction is reversed so that the data read from dis­
play memory can pass to the microprocessor. Any
commands or parameters in the FIFO at this time will
be lost. A command byte sent to the GDC will imme­
diately reverse the buffer direction back to write
mode, and all RDAT information not yet read from the
FIFO will be lost. MOD should be set to 00.

Cursor Address Read Command

The Execute Address, EAD, points to the display
memory word containing the pixel to be addressed.

The Dot Address, dAD, within the word is represented
as a 1-of-16 code.

Light Pen Address Read Command

The light pen address, LAD, corresponds to the dis­
play word address, DAD, at which the light pen input
signal is detected and deglitched.

RDAT: 11 I 0 I 1 I TyeE I 0 1 MCj>D 1 r-DATA TRANSFER TYPE

o 0 _ WORD, LOW THEN HIGH BYTE
1 0 _ LOW BYTE OF THE WORD ONLY
1 1 _ HIGH BYTE OF THE WORD ONLY
o 1-INVALID

Figure 27. Read Data from Display Memory Command

7-114 210655-003

82720

CURD: 11 ! 1 , 1 ! 0 , 0 1 0 ! 0 ! 0 I
THE FOLLOWING BYTES ARE RETURNED BY THE GOG: lPRD: I, ! 1 ! Q ! 0 ! 0 ! 0 , 0 ! 0 I

x = Undefined

, t DOT ADDRESS (dADI. LOW BYTE

DOT ADDRESS (dAD). HIGH ByrE

THE FOLLOWING BYTES ARE RETURNED BY THE Goe:

JA7, , L~DL, ,AD I~ LIGHT PEN ADDRESS, LOW BYTE

~IA:':7 ::::' :LA:, 0:":, ~=,:A8~J.- LIGHT PEN AODRESS. MIDQLE BYTe

I x I X I X I X ! X I X I LAPH 1..-LIGHT PEN ADDRESS, HIGH BITS

x = Undefined

Figure 28. Cursor Address Read Command Figure 29. Light Pen Address Read Command

DMA READ REQUEST

DMAR: 11 0 1 1 TYPE 11 1 MOD 1

~I------ DATA TRANSFER TYPE:

o 0 ~.o------ WORD, LOW THEN HIGH BYTE

O~ .. o------LOW BYTE OF THE WORD

1 ~ .. o------ HIGH BYTE OF THE WORD

1 ~ .. t-----INVALID

DMA WRITE REQUEST

DMAW: 1 0 0 1 1 TYPE 11 1 MOD 1

.-b--RMW MEMORY LOGICAL OPERATION:

o 0_ REPLACE WITH PATTERN

1_ COMPLEMENT

0_ RESET TO ZERO

1_SETTOONE

1«------ DATA TRANSFER TYPE:

0 ... 0----- WORD, LOW THEN HIGH BYTE

0 ... 0----- LOW BYTE OF THE WORD

1 • HIGH BYTE OF THE WORD

1 o------INVALID

Figure 30. DMA Control Commands

7-115 210655-003

82720

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias O"C to 70"C
Storage Temperature -65'C to 150"C
Voltage on any Pin with Respect

to Ground -0.5V to + 7V
Power Dissipation 1.5 Watt

DC CHARACTERISTICS
TA = O"C to 70" C; Vee = 5V ± 10%; GND =OV

Symbol Parameter
Min.

Vil Input Low Voltage -0.5

VIH Input High Voltage Except DACK 2.2

VOL Output Low Voltage

VOH Output High Voltage 2.4

102 I/O Pin Leakage Current

III Input Pin Leakage Current

Vel Clock Input Low Voltage -0.5

VeH Clock Input High Voltage 3.5

Icc Vee Supply Current

VIH1 Input High Voltage DACK Only 2.4

CAPACITANCE (2)

TA = 25'C; vee = GND = OV

Symbol Parameter
Min.

CIN Input Capacitance

CIO I/O Capacitance

COUT Output Capacitance

Co Clock Input Capacitance

'COMMENT: Exposing the device to stresses above
those listed in Absolute Maximum Ratings could cause
permanent damage. The device is not meant to be
operated under conditions outside the limits described in
the operational sections of this specification. Exposure to
absolute maximum rating conditions for extended peri­
ods may affect device reliability.

Limits
Unit Conditions

Max.

0.8 V

Vee + 0.5 V

0.45 V 10l = 2.2 mA

V 10H = -400/LA

±10 /LA VSS+0.45,,;;VI ,,;;
Vee

±10 /LA VSS ,,;;VI ,,;;Vee

0.6 V

VCC + 0.5 V

270 mA Typical = 150 mA

Vee + 0.5 V Typical = 150 mA

Limits
Unit Conditions

Max.

10 pF

20 pF Ic = 1 MHz

20 pF V = 0

20 pF

(1) Suggest pull up resistor to reduce noise sensitivity on DACK only.
(2) Sample tested initially.

7-116 210655-003

intel' 82720

A.C. CHARACTERISTICS (TA = O'C to +70'C, vss = OV, vcc = +5V ±10%)

DATA BUS READ CYCLE

82720 82720·1 82720·2
Test

Symbol Parameter Units
Conditions

Min. Max. Min. Max. Min. Max.

TAR Ao setup to RD I 0 0 0 ns

TRA Ao hold aHer RD I 0 0 0 ns

TRR RD Pulse Width TRD+20 TRD+20 TRD+20 ns

TRD RDI to Data Out Delay 120 80 70 ns CL=50pF

TDF RD I to Data Float Delay 0 120 0 100 0 90 ns

TRV RD Recovery Time 4 Tcv 4 Tcv 4 Tcv ns

DATA BUS WRITE CYCLE

82720 82720·1 82720·2
Test

Symbol Parameter Units
Conditions

Min. Max. Min. Max. Min, Max,

TAW Ao Setup to WR I 0 0 0 ns

TWA Ao Hold after WR I 0 0 10 ns

Tww WR Pulse Width 120 100 90 ns

TDW Data Setup to WR I 100 80 70 ns

TWD Data Hold after WR I 10 10 10 ns

TRV WR Recovery Time 4 Tcv 4 Tcv 4 Tcv ns

DISPLAY MEMORY TIMING

82720 82720-1 82720-2
Test

Symbol Parameter Units
Conditions

Min. Max, Min. Max. Min. Max.

TCA AddresslData Delay from 2XWCLK I 30 160 30 130 30 110 ns CL=50pF

TAC AddresslData H91d Time 30 160 30 130 30 110 ns CL=50pF

TDC Input Data Setup to 2XWCLK I 0 0 0 ns

TCD Input Data Hold Time TIE TIE TIE ns

TIE 2XWCLKI to DBIN 30 120 30 90 30 80 ns CL=50pF

TCAH 2XWCLK I to ALE I 30 125 30 100 30 90 ns CL=50pF

TAL ALE Low Time Tcv+30 Tcv+30 Tcv+ 3O ns

TAH ALE High Time TCH-20 T CH -20 TCH -20 ns

Tco Video Signal Delay from 2XWCLK I 150 120 100 ns

TLLAX Address Valid Hold Time After ALE! 30 30 30 ns

TAVAL Address Valid Hold Time Before ALEJ 20 10 5 ns

7-117 210655-003

intel· 82720

A.C. CHARACTERISTICS (Continued)

OTHER TIMING

82720 82720·1 82720·2
Test Symbol . Parameter Units

Conditions
Min. Max. Min. Max. Min. Max.

Tpc LPEN or VSYNC Input Setup to 2XWCLK I 30 20 t5 ns

Tpp LPEN or VSYNC Input Pulse Width Tcy TCY TCY ns

CLOCK TIMING

82720 82720·1 82720·2
Test Symbol Parameter Units

Conditions
Min. Max. Min. Max. Min. Max.

TCY Clock Period 250 2000 200 2000 t80 2000 ns

TCH Clock High Time t05 90 70 ns

TCl Clock Low Time t05 80 70 ns

TR Rise Time 20 20 20 ns

TF Fall Time 20 20 20 ns

DMA TIMING

82720 82720·1 82720·2
Test

Symbol Parameter Units
Conditions

Min. Max. Min. Max. Min. Max.

TACC DACK Setup to RD I or WR I 0 0 0 ns

TCAC DACK Hold from RD I or WR I 0 0 0 ns

TRR' RD Pulse Width TRD' +20 TAD' +20 TRD' +20 ns

TAD' RD I to Data Out Delay 1.5 TCY 1.5 TCY 1.5 TCY ns CL=50pF

+120 +80 +70

TKO 2XWCLK I to DREO Delay 150 120 100 ns CL=50pF

TROAK DREO Setup to DACK I 0 0 0 ns

TAKRO DACK I to DREOI Delay TCy+150 TCY+ 120 TCy+100 ns CL=50pF

TAKH DACK High Time TCY TCY TCY ns

TAK1 DACK Cycle Time, Word Mode 4 TCY 4 TCY 4 TCY ns

TAK2 DACK Cycle Time, Byte Mode 5 TCY 5 TCY 5 TCY ns

7-118 210655-003

82720

A.C. TEST CONDITIONS

Input Pulse Levels (except 2XWCLKj ... 0.45V to 2.4V
Input Pulse Levels (2XWCLK). O.3V to 3.9V
Timing Measurement Reference Levels (except 2XWCLK) .. O.BV to 2.0V
Timing Measurement Reference Levels (2XWCLK) ... O.6V to 3.5V

WAVEFORMS

QATA .BUS TIMING
READ CYCLE

TAR-II

DATA BUS
(OUTPUT)

WRITE CYCLE

\

"'-TRD~

...c~

TRR
l_TRA

-....-T OF----+-

~- DATAVALlD_ "-
./

TRV

DATA BUS DATA DATA
(INPUT) ___ M""A..;.;If...:C"'H;;.;.AN"'G;;;;;E:...-__ -' 1< ______ --" '-___ ..;;M;;;.A::..If..:.CH;.;;A,;;.N:..;:G"'E ___ _

7-119 210655-003

WAVEFORMS (Continued)

DMATIMING
READ

2XWCLK

DREQ

82720

fool.o------TAKRa-----., --------

i-----TRRt----.J

DB~7-------------~---------~1

\---------- TAK1 , TAK2 --------+1

WRITE

2xWCLK

DREQ ~
''""'--1--------------

TCAC--'

7-120 210655-003

WAVEFORMS (Continued)

DISPLAY MEMORY TIMING·
READ/MODIFY/WRITE CYCLE

S1

2xWCLK

ADo-15 --+---<1 VALID

OUTPUT ADDRESS

A16,A17

82720

S2 53 S4

TCA ~

VALID

OUTPUT DATA

VALID

I----------TAL----------I~I

ALE

7-121 210655-003

WAVEFORMS (Continued)

DISPLAY MEMORY TIMING (Continued)
READ CYCLE

2xWCLK

ADo-AD" --+--<1

A16,A17

ALE

82720

51 52

H5YNC __ ~
TCO

m~i ---------~

OTHER TIMING

CLOCK TIMING

LCo-3

g~~IMAGE ---------~
Af,IllARRICI:C

2xWCLK

LPEN

WYNC----------

2xWCLK

7-122 210655-003

inter

WAVEFORMS (Continued)

DISPLAY AND RMW CYCLES (1X ZOOM)

~
Display
Cycle

91-1-

2xWCLK:

ALE:

DBIN:

ADO·15

A16.17:

HSVNC:
BLANK:

YlEXT SYNC:

82720

7-123

RMW
Cycle

Display or RMW
Cycle

~10655-003

WAVEFORMS (Continued)

DISPLAY AND RMW CYCLES (2X ZOOM)

2xWCLK:

ALE:

Zoomed Display
Cycle

82720

Zoomed Display
Cycle

RMW
Cycle

Display or RMW
Cycle

$1

DmN: _1----------------------_i----------------------_i----------~ ____ ~----_i--------

ADO·15: --Jr<0!l;"~,,";r,B"~',,:! .. ;)_--------+-G:O":li"~"'B"~',:! ... :>---------+-G:o"~'.";r'B"~',,:! .. ;)_-_C::'"E."'!:!'::!".D~:!o!E!"'E."'!:!'~ •• ::x!o!:!"'E."!2"!!:"::!"!!">-

A16117::j~::::::::::::::::::::::::~x:::::::::::::::::::::::~:x::::::::::::::::::::::::~c:::::::

Blank:

ZOOMED DISPLAY OPERATION WITH RMW CYCLE (3X ZOOM)

2xWCLK:

ALE:

Zoomed Display
Cycle

Display or RMW
Cycle

$1

DmN: -t-------------------------------------t----------~ ____ ~--------------~--_1---------

ADO·15: _+~0!E!"'E."!2"!!:"::! .. E">_---------------H:2:0"~":!I"'B"~',E,,,:>_-_C~:!:E!!:H~0!E!"'E'"::l"!E!,,·:::r-----_+_€O":!!"::!"':!";';"::!"!}''''

A16,17::4:X::::::::::::::::::::::::::::::::::::::~C:::::::::::::::::::::::::::::::::::::~C:::::::

Blank: ~~-------------------~'--------------------r=::::=

210655-003

7-124.

82720

WAVEFORMS (Continued)

VIDEO SYNC SIGNALS TIMING
I' 1H 1

2xWClD: ~ ____ ~ __ ../\.fV ___ ./"\/"\.. __ ./"\..

HBlANK: J ----"'-- __ J
HSYNC:

ADO-15:

lCO-':

ADO-15:

LCO-4:

Row:

Row:

VBLANK:

VSYNC:

------------------~I \
----v---v----~----_.Ir_ J, ____ -J'~ __ _J~ ______ ~ ____ J~ ____ ~ ___ ~ ___ ~ ____ ~

::::x ! \
I--~~ ___ ~= ______ =~:_-:_-_-_~=~=:~ _-:_-_~~==~~_-_--_ -- _ -_~ -- J Jt.:xx--~--)(J()(X ___________________________ :x:x::xx __ :x:x::

---iI- - -- -v--- - ---y-- ----------- ------------ -- ::::x::::---:x:: -)'---- ___ -"'-- ___ -A--._ ______ __ _ ____ _____ _ _ ____ _ __

~ ~
~ __ J

=*===*==x:::::::::x::::=x-------:::: ===:::x:
I , '--________ ~/r------------------------------

-r--~I I
t-1·---------------1V(Fle,dl----------------J

INTERLACED VIDEO TIMING

HBLANK:

VBlANK:

VSYNC;
(Interlace)

VSYNC:
(No Intel1ace)

JL __ ..JLJL __ JUL __ JLJL __ JL __ JL __ JUL __ -1U"L_
I 1 I 1 , I 1 1 1-__ ...r--- -,---- ---,---- --L. __ S--- -,--, -- - - --, -,---
I I I I 1 I 1 I

: I! I II I L-
, I
, I

I Odd Fleld---;------!.If-------Even Fle,dl----:----_
I ' I I __________ ~I L---

7-125 210655-003

82720

WAVEFORMS (Continued)

VIDEO HORIZONTAL SYNC GENERATOR PARAMETERS

1~'----------------------lH----------------------~
I
I
I

HBLANK:~
~ __________________________ ~r--

I
I

HSYNc: __:I~_....IIlL. ___ + ________________ .J-_

I I
I I
I I

---1 =-r: ~HBP-+.I--AW----,-----{
VIDEO VERTICAL SYNC GENERATOR PARAMETERS

1----------1V-----------(

I

VBLANK: __ ---:~ __ I
I I L
I I I
I I I
, I I

VSYNC:--I"I~---=-_-----------_:_-____!Il I
I I I, I
I I 'I ,
I iVFPr' I
r--VBP-i-----------AL-----------1-l ! iVBP-l

-Ivsf--

CURSOR-IMAGE BIT FLAG

2xWCLK

-l !-TCY
.Jl.IUU1

H::::::_-H[;:.t-"==P=
A17 b Invalid ~

Image

7-126 210655-003

82720

VIDEO FIELD TIMING --n _____ ---iiiHS;:.;Y.;.:NC:;.,O~u"tP:::ut'------__!;L_
BLANK Output

Horizontal
SYNC­
Pulse

Horizontal
Back Porch
Blanking

DRAWING INTERVALS

Vertical SYNC Lines

Vertical Back Porch Blanked Lines

Active
Display
Lines

Horinzontal
Front Porch­
Blanking

-!- - --

""" ~ Vertical Front Porch Blanked Lines

~~-------------~~-

DMA REQUEST INTERVALS !=;:::=========t-

7-127

VSYNC Output

~ Drawing Interval

~ Additional Drawing Interval When
~ In Flash Mode

. m Dynamic RAM Refresh if Enabled, Otherwise
_ Addltlonal Drawing Interval

OMA Request Interval

Additional DMA Request Intervals
When in Flash Mode

210655-003

ARTICLE
REPRINT

AR-255

By managing tasks like graphics generation and CRT refreshing, a
dedicated VLSI display controller simplifies the design of intelligent
graphics work stations.

DedicatedVLSI chip lightens
graphics display design load

The role of graphics is becoming increasingly im­
portant for unscrambling the communications traf­
fic between people and computers. Thanks to micro­
processors and dedicated control lCs, designing
high-reliability graphics work stations is now eas­
ier and less expensive than in the days of small­
scale integration and expensive discrete-circuit
CRT technology. Microprocessors simplify work­
station design by transferring some graphics con­
trol tasks from hardware to software. However, a
dedicated VLSl controller such as the 82720-with
an on-board graphics processor-can push another
step forward toward fast and economical design of
high-quality intelligent graphics systems.

A typical application for the controller is a
graphics work station aimed at high-end business
and low-end engineering systems. Since such a
station usually fits on the top of a desk, all of the
electronics must be contained within a single

Gary DePalma, Field Applications Engineer
Mark Olson, Product Marketing Engineer
Roger Jollis, Design Engineer
Intel Corp.
2625 Walsh Ave., Santa Clara, Calif. 95051

printed-circuit board. This type of system requires
a resolution of about 512 by 512 pixels and is
frequently called on to display three-dimensional
objects in various .perspectives. To minimize the
distortion of rotating objects, horizontal and verti­
cal pixels should be equally spaced.

A typical display (500 vertices) must be drawn on
the screen in less than 1 second to provide satis­
factory interaction with the operator. The display
may consist of lines, arcs, filled areas, and colors­
seven colors are acceptable (see "A Look into
Graphics Fundamentals").

Serial link interlaces station

An intelligent work station usually interfaces
with a mainframe host via a serial communications
link, a keyboard, and a serial link with an optional
graphics tablet: Thistype of graphics input/output
subsystem is diagrammed in Fig. 1. Two 51/4-in.
floppy disks can satisfy the mass-storage needs of
the system. Disk formatting must be compatible
with the requirements of an IBM personal comput­
er. Moreover, general-purpose software written for

7-128

from ELECTRONIC DESIGN· January 20, 1983

Copyrighl1983 Hayden Publishing Co .. Inc.

Order Number: 231310-001

Computer Graphics: Graphics display controller

this computer must also be able to run on the work
station.

Two of the most basic functions of a graphics
system are generating and refreshing images on
the CRT screen. Information pertaining to the
images is stored in the bit-map memory, where
monochrome pixels are represented by single bits
and color pixels by groups of bits. Lines and arcs
defined in normalized screen coordinates must be
converted into images of the physical object.

In a bit-mapped raster graphics system, lines

Serial 110

described by a transformed display list are reduced
to a series of dots and placed in the image memory.
The selection of the dots that will be activated is
achieved through a scanning conversion algorithm,
which must create lines that appear very smooth,
start and end as expected, and look symmetrical no
matter in which direction they are drawn. The
algorithm is repeated thousands of times to draw a
single picture and thus must operate as quickly as
possible. At the same time, the image in memory
must be repainted on the screen 30 times/s for

Universal peripheral
interface (UPI-42)

and slave processor

Multiprotocol
serial controller

(8274)

Floppy-disk
controller
(8272A)

(a)

Deyice- ---1- Devlce-
Independent I dependent

Transformation
processing

(b)

I
I
I

CRT control

Microprocessor
(iAPX 186)

CAT,

1. A graphics 1/0 subsystem for an intelligent work station consists of input peripherals
(a keyboard and tablet), a serial communications link, and mass storage (lioppy disks).
Intelligence is provided by the microprocessor and the peripheral and memory controllers
(a). The three basic tasks performed-ItO, transformation processing, and CRT control-all
require data in the form of display lists stored in a data base (b).

7-129 231310-001

interlaced frames and 60 times/s for noninterlaced
frames. Simple tasks, they nevertheless demand a
high memory bandwidth.

Unlike other system control tasks, generating
graphics figures requires both bit-manipulation
and mathematics capabilities. Integer addition and
multiplication operations calculate the coordinates
of points on Ii line or a circle. But since pixels
generally are neither complete words nor bytes,
logical operations must be performed on the bits
within the word that contains the selected pixel.

The inner loop of a so-called Bresenham line­
drawing algorithm requires two or three addition
operations, two comparisons or tests, and the mask­
ing of the correct value into the word for each pixel.
Algorithms for drawing circles or filling areas are
even more complex. In the inner loop of a filling
algorithm, for example, the old word must be read
from the bit map to determine whether some, all,
or none of the pixels are within the area to be filled.
If they are, the algorithm tests whether the pixels
must be modified and then returns the word to the

2. The 82720 graphics display controller separates the .tasks 01 graphics generation and CRT
refreshing from other system tasks. That permits much greater system bandwidth, leading to
graphics work stations that not only draw sharp pictures, but also oller color.

3. Three mamory planes are implamented in the interlace batween the bit map and the graphics display
controller. Three primary colors-red, green, and blue-ara" provided, with the controller's upper address bits
responsible for selecting the memory planes during read/modify/write cycles.

7-130
23131()'{)()1

computer Graphics: Graphics display controller

bit map. Because such algorithms are heavily exer­
cised, they must execute at extremely high speeds
to avoid an adverse impact on the system's overall
efficiency.

Memory bandwidth is the most precious com­
modity in a graphics system. In this application,
screen refreshing requires that 750,000 bits be read
60 times/s, equating to a bandwidth of almost 6
Mbytes/s. The picture refreshing, therefore, has
the highest-priority access to memory because any
missed readings show up as noise in the picture, a
situation that sometimes occurs with simple sys­
tems possessing a single-microprocessor, single­
memory scheme.

In the latter type of design, one processor handles
all functions except refreshing, which is imple-

men ted by a discrete counter arrangement or a
simple CRT controller chip. Nevertheless, the re­
fresh memory bandwidth always slows down the
microprocessor. That loss of speed can be elimi­
nated simply by separating the processor's memory
system from the bit map, a process that effectively
doubles system memory bandwidth.

The 82720 graphics display controller can provide
the means of separating graphics generation and
CRT refreshing from the other tasks and also
perform the two tasks quickly and concurrently
with the others. Residing between the micro­
processor and the bit-map memory and video logic,
the controller refreshes the CRT like other CRT
controllers, converts high-level commands into im­
ages by placing the proper data into the correct bit

A look into graphics fundamentals
The graphics data found in graphics display lists

typically describes objects in the real-world Cartesian
coordinate system conforming to the axes X, Y, and Z
(see the figure). Graphics data does not take the form
of one bit for every point on a line; rather it represents
higher-level forms such as the end points of a line and

WALL: OBJECT
MOVE TO [X, Y, Z)
DRAW LINE TO 11<2, Y2, Z2)
DRAW LINE TO IX:!, Y3, Z3)
DRAW LINE TO 1X4, Y.,Z4)
DRAW LINE TO lXI, Vl,ZI)

END WALL
ROOF: OBJECT

HOUSE: OBJECT
WALLATIT1)
WALLAT[T2)
WALLAT[T3)
WALLAT(T.)
ROOF AT ITs)
WINDOW AT ITs)
WINDOW AT IT7)
DOORAT(Ta)

END HOUSE

the starting, ending, and center points of an arc.
The coordinate· system handles physical mea­

surement units such as inches, feet, or meters, which
'are typically represented in a computer by 16- or 32-bit
integers or by floating-point formats. Ultimately, com­
plex graphics structures are stored in a data base in a
hierarchical form consisting of lists of X, Y, and Z
coordinates. ,

The first step in designing a CRT s~bsystem involves
se!eetingthe resolution and scanning rates. All con­
ventional raster-scanning monitors have a display area

7-131

that is wider than it is high in the ratio of 4 to 3 (called
the aspect ratio). For pixels to be square-equally
spaced in both the X and the Y direction-the number
of horizontal pixels must be 4/3 the number of vertical
pixels. This is expressed as 4H-3V, where H and V
represent the number of horizontal and vertical pixels
respectively. Resolution depends on the total quantity
of pixels, which must be a power of two. If it is not, the
number of pixels must be rounded to the next highest
power of two, in which case some bits will be wasted.
Furthermore, the number of horizontal pixels must be
organized as an even number of I6-bit words.

To prevent wasted bits, the number of vertical and
horizontal pixels are chosen as large as possible without
exceeding a power of two. For the display in question,
512H by 512V = 218 = 262,144 pixels. A screen format
of 576H by 432V normally meets all requirements. The
total number of pixels is then 248,832, and the ratio of
horizontal to vertical pixels (576/432) is correct. Fur­
thermore, the number of horizontal pixels makes ex­
actly 3616-bit words.

After figuring the aspect ratio, the format of the
bit-map memory is the next item to be considered. The
screen contains about 250,000 pixels, each of which can
be either black or one of seven colors. These eight',
shades.canberepresented by three bits/pixel (2s = 8)"
meaning that the bit-map memory must handle about.
750,000 bits. The organization of the memory, however,
must be determined according to the various tradeoffs.

The el\tire memory must be accessed 60 times/ s since;
that is the rate at which the image must be painted to '
prevent flickering. That equates to a refresh rate of 16.7
ms; As a l"\)le of thumb, the monitor displays informa­
tjon75<)bllfthe time and is blanked fllr retracing
operatioll~,25%of the tjm~. Thus the wholemelXlory.
must be read and .8e,nt to the CRT during a 12.5"ms
interval (16;7 X 0.75), whichconstitutes~he active!

231310-001

map, and interfaces easily and simply with propri-­
etary microprocessors.

The 82720 accepts high-level commands (such as
DRAW LINE, DRAW ARC, and FILL RECTANGLE) and
executes them at much faster speeds than general­
purpose microprocessors, primarily because it is a
dedicated graphics hardware processor. Burst
drawing rates as high as 1 pixel every 800 ns can be
achieved. Screen refreshing is handled directly by
the controller. The displayed portion of the bit-map
memory can be configured to allow the display to be
scrolled through memory in any direction. The hor­
izontal and sync periods both are fully pro­
grammable, as is the position of the sync pulse in
the blanking interval. Furtherinore, the controller
can be programmed to refresh low-cost dynamic

RAMs. In the design being considered, the 82720
offloads the microprocessor from low-level graphics
tasks, as shown in Fig. 2. -

For the bit-map interface, the memory is imple­
mented as three planes, each 16 kwords by 16 bits,
with each plane driving red, green, or blue (Fig. 3).
The upper address bits-Al6 and Al7-select the
memory. planes during read/modify/write cycles
but are ignored during screen refreshing cycles.

The graphics display controller generates' the
Row Address Strobe (RAS) signal for the dynamic
RAMs, but the remaining timing signals must be
supplied by external devices. These signals are
produced by a state-machine timing generator con­
sisting of a 4-bit counter and two flip-flops. The
state machine synchronizes itself with RAS after

pOrtiOh ot'afrarile. •, •. , ' •. ' ".' .. '." Dispja; Jistsandcommands pass fro~ the I/O sub- "
: _To,il!~ttheseXllquirements, it is helpful to break the. . syg'teril to a unitthilt executes the transformatiort tasks.'
!:lit inapin~ three planes of 432 by 576 bits. While the.· Tr.ansformations are primarily mathematie~oper-
screen is being refre~hed, data is read from .the same ations performed on the display units: Depimdhig on the

: aqdress 'ip each of the three planes and sent serially to commarid, this module edits display lists,organizes
; tile screen. The memories can then be arranged as three them for display on the screen, or edits the digplay,list
_16-kword-by-16-bit arrays, requiring a memory cycle data base. By editing a display list, objects in the phys<
',time of 800.ns ~rid conSequently permitting the use of ical coordinate system. can be created,destroyed"
• relatively,slow,low~cost 16-kbitdynamic RAM chiPs.. moved, or changed. Transforming a displaylist intO a>
. When .drswinggraphics figures,memory can be form compatible with the display is necessary, as the

., treated as asjngle large plane divided into three prima- data. base can have an unU~ited real~world !:.oordinilte
ry, colQrs: l'ed,~een; and blue. Thus the low-order system in three dimensions,but the CRT screen islim~ ...

;memolj'ieowd representthecoior red;thelniddle-order lted to .only twodimensioDs.' ..., ...,..'
; memory, green; and the high-order memorY; blue. Each Transfotmatilin tasks place ahea~ .bur4eIH~n a.lli.i~,
prImary cOlor requires the setting of just 1 bit/pixel: croprocessor. For instance., in a tyPicaltrarislormatillD,
How~ver; a secondary color-cyan,yellow, or a matrixmuitiplication is performed Cor every pOint on

ifD!lgent\{,",:n(!Ces!\itates setting 2 bits/pixeL '!'herefore, an object's display list . .Jrt.three (iimensioil~1 each poiht
;drifwihgjn a,sllcondary colortllkes two memory requires multiplying a 4~element 'lector bya:4-by-4
;c~cleS/pixel.;lnd i&.slowerthan drawing primary. colors. matrix. Some otthe elel!lentsare alwayszero,butthe
: If. this. creates$ystem problems, additional hardware operation still. takes 13 multiplications and 9 additi9nS.
,~rtbe use4 to draw more than onephine at a time. Atwo-dimensiorial display list requires 4 additionu'nd
iHowever •. j~ the . system example,. drawing speeds are 4 multiplications; A, typical display can containhiln-
(notonly]l'let;but als~:exCeeded without relying on extra dredsor thousands .oflines; each of which has/two end
'nardwifre ' points: Ther~forethespeedof matriXlIiultiplication
:,.Startiri~'With .the:verticalrefresh . rate of 16.67 significantly influences systenrpeffoflDance,
! l)lij/traJIte,;ihe .!»isie timing can be analyzed. From the . The coordinate system suppOrted by th(ldesignexam~
i,i6.67·msfigufe;subtract the 1.25 ms. required by the pIe is thre.e-'liimensional and employs 82"bi(.integers, .
1~onitorfor itS ver~eaI blanking. That leave815.42 msThe system CPU.el!:ecute~ 32-bit inteltermatrix.multi- .
i'£orscanningthe 432 litlei\ ori the active Portion of the plicatiolls at high speed, Inconjunctiollwiththe ~rl1~hic'
~4ifipjily:,Djviding15.42mBbY 432 lines gives .33.5 displllycontrol14ir; thedraWininai!k is offioade'(frillJi
rifS(l~~~i;eq~.yale~~.t9ah~rizolltar sc.an rate 9£ 28:kH~: ' ...• theCfU, which int1irnlllaxi!lli~s the.llell.tra,l'l!~b~• ;
i:'V~~1 re~lIJ:greqUires, 7.l's/~ne,and the active . .. time thai: can .be ··allocated for· those. ·lIiatrixlI\ulti,··i:
[,JW~~(il8chlinl\i~~t7!is ... suptracting :!,sfrQri1 8l?7 . plicatiotis.Waitin~ time is now muCh lower'thanin.i:On~"•
~'/l. ~19aY~~ ... :~ ~ .. 'I'll, . '. J)Uri .. '.'~., .·.t.hlS ti.m~ 576 P. ~xels are .-dl. s~ ventional.8fs~ms .. Howe~er, "If';~' 'systerrft~ui$.<·:;
¥~l~~o.r: ~pilCel~rioji .of ~.1I'Sl576 or 49.8~B: Th!s fl()ating-point .. ;transCormatlolls; thebe8~:.high':S~:':

.' . ,W.ado~.qllll:~~teo.f2Q.07 MH2;,whlC!t18.. peiforln:lirice:isacliieved With the M:ditiQnOflllilimef~\;';

A-is.t)Je.:.~Y:llten:l's~<lelQck raj;e: .. ' .~ ... ',. icaleO,pr.or;> . ". ':. :, : ". :'.,·,:' ... ,:j ... '.i,;:".'.,.'.',·.'::.:,:., •. ',:, •.. '_.,1.', .. '.:.'.;.·.:,\,:,.,'

:~") >:,":.~ ':" ",f':: ': '. :'::~!::'::fV}::' ,;,~::., , ': " ,".

7-132 231310-001

Computer Graphics: Graphics display controller

the 82720 has been initialized. Figure 4 shows the
complete schematic for each plane of the bit-map
interface.

The remainder of the hardware design interfaces
the graphics display processor, the processor
memory, and the other peripherals with the 80186
microprocessor. The task is simplified by the pro­
cessor's on-board chip-selection logic and wait­
state generators. Furthermore, because of the pro­
cessor's highly integrated architecture, the size of
the overall hardware is quite small.

Joining processor and controller

Connecting the graphics display controller to the
microprocessor is a simple task, as the processor's
Data, Read, and Write signals are completely com­
patible with those of the 82720. However, because
the controller has no chip-selection input, the Read
or Write signals must be qualified through external
hardware.

A number of chip-selection lines on the micro-

processor can be programmed to place peripherals
either in memory or in the processor's I/O space.
Two gates are added to qualify the Read and Write
signals. The DMA channel on the 80186 uses a
second chip-select input as the Acknowledge signal,
and data buffers are used to prevent bus contention
at the end of a processor read cycle (Fig. 5).

Without buffers, the display controller must re­
move its data from the multiplexed address and
data lines before the processor puts out the next
address. At an 8-MHz clock rate, the processor
requires that peripherals and memory vacate the
bus in less than 85 ns; however, the standard speed
of the controller is 100 ns. A faster version, the
82720-1, can be used, but it requires faster memory
chips. A more cost-effective solution is simply add­
ing buffers, if board space permits.

Serial communications to both the host and the
optional tablet are handled by a multi protocol
serial controller (the 8274), which takes care of the
host's synchronous and the tablet's asynchronous

\ Ot"c-D,~t(, D, D, D, D"

~ ,-- 12118)

-D::-- Video
A.-Po. Ao-Aa RAM

out

RAM (2118

AAS AAS RAM 12118)
r--12118) ---, Sculj>~t

CAS CAS _f--
Write r= In!s

We - -
2X74166

T In,

SS~L:::::::r; '-

In,

Ino
DBIN ~ ,

t I r::: Clock
2X74LS244 ~"~,

Ootc!ock
... ShifVLoad T

+ t t I
I D, D, D, D"

ShifVl.oad

4. The bit-map memory interlace contains three address planes (one 01 which is shown here) to complete
the graphics system. The RAS Signal lor the RAMs is generated by the graphics disptay controller.

7-133 231310-001

Computer Graphics: Graphics display controller

5. The interface between the 82720 and the system
microprocessor is simple to implement because all of the
processor's signals are compatible with the controller. It is
necessary, however, to use external gates to qualify the RD
or WR signals.

requirements. Interfacing is accomplished simply
by connecting the buffered data bus, the latched
lower-address lines, the Read and Write signals,
and the chip-select. A final link brings the micro­
processor's counter-timer output into the multi­
protocol serial controller as a baud-rate clock. No
buffering of the TTL support circuitry is necessary.

Universal chip interlaces keyboard

A universal peripheral interface chip (the UPI-
42) serves as the keyboard interface and is pro­
grammed to scan the keyboard and interrupt the
processor only on detection of a valid debounced
keystroke. Mass-storage subsystems are managed
by the 8272A floppy-disk controller. An external
phase-locked loop circuit generates all of the timing
signals reequired to connect a 51/4-in. drive to the
system. On the microprocessor side, a DMA channel
provides the link to the floppy-disk controller. Thus

6. A complete graphics control system is centered around an 80186 microprocessor and the 82720 controller.
Local storage is provided by 32 kbytes 01 EPROM and 16 kbytes 01 RAM. The system comprises 85 chips and
is housed on a single 12-by-12-in. printed-circuit board.

7-134 231310-001

the processor has a high-speed disk interface,
which loads it lightly.

To complete the graphics system illustrated in
Fig. 6, 32 kbytes of EPROM and 16 kbytes of RAM
support the microprocessor's program and display
lists. The two EPROMs (27128s) come in 28-pin
packages, thereby saving board space.

Hooking up the RAM chips is almost as straight­
forward. Since the microprocessor is a fully byte­
addressable device,. it can write bytes as well as
words to the RAM. The chip-select input for the low
(even) address RAM must be qualified with address
Ao at a logic zero, and the high (odd) address RAM
must be qualified by the processor's Byte High
Enable signal (BHE). The RAMs, designated 2186,
have built-in controllers.

Since dynamic RAMs latch addresses on the
leading edge of the chip-select signal, they must be
qualified with the processor's Address Latch En­
able signal to ensure that selection is made only
after the address is valid. Then, a RAM latches the
data to be written on the leading edge of the write
pulse. The microprocessor's write signal must be
delayed by one-half of a clock cycle to guarantee
that data is valid at the correct time.

At this point, the design meets all of its per­
formance goals. The system draws lines and circles

T-1408/5K/0383/HP RM

at about 120,000 bits/so That is approximately
82,000 pixels for a display consisting of even
amounts of the three primary colors, as well as
three secondary colors, and white. The 500 vectors
of 25 pixels each can be drawn in about 0.15 s, six
times faster than the I-s requirement. The worst
case-drawing all lines in white-can be accom­
plished in about one-third of a second. These spec­
ifications are satisfied when the graphics display
controller is running from a 2.5-MHz clock. Draw­
ing is performed only during retracing and the
82720 is programmed to use three memory cycles of
each horizontal retrace for memory refreshing.

All of the components fit on a board measuring
12 by 12 in., so that the desktop size requirements
are satisfied. The electronic components occupy
about 100 in.2 of the low-cost, double-sided printed­
circui t board. 0

Bibliography:
Bresenham, J.E., "Algorithm for Computer Control of a Digital

Plotter," IBM System Journal, 1965,4(1) pp. 25-30.

7-135 231310-001

ARTICLE
REPRINT

AR-298

Graphics Chip'Makes
Low-Cost, High Resolution
Color Displays Possible
by Mark Olson and Brad May

The making of displays that are
both high-resolution and low-cost is
the key to producing equipment for
both the automated office and the
engineering workstation. Through
the introduction of 16-bit ,-"Ps such
as Intel's iAPX 8088, 80186 and
80286, the processing power has
been made available to perform
very sophisticated functions for the
user while making the human inter­
face very simple.

That processing power can be
unnecessarily drained, however, if
the ,-"P is burdened with the entire
task of graphics display. Such a
burden can fill up a significant part
of the processor's 110 bandwidth,
slow down the refresh rate of the
display, and decrease the computa­
tional power of the CPU.

Intelligent
peripheral rcs

offload processing
tasks from the CPU.

mented in hardware at the device
level.

Such a chip is Intel's 82720
Graphics Display Controller (GDC).
It has features that give systems a
fast drawing speed while reducing
graphics display costs by 60% or
more. It achieves these results by
taking over the drawing and refresh
functions from the CPU, by allow­
ing the use of dynamic RAM's in­
stead of static RAM's, and by re­
ducing the overall parts count
needed to create a complete graph­
ics system.

The implementation of the draw­
ing task is a major feature of the
GDC. Other graphics chips per­
form only the display refresh func­
tion, leaving the more complicated
drawing function entirely to the
CPU. Since the CpU is doing every
pixel of the drawing function on
these systems, they also require fas-

ter bit map RAM than with the
GDC. The GDC, on the other
hand, is capable of handling the
drawing function itself, drawing
such objects as characters, slanted
characters, points, lines, arcs, rec­
tangles, and slanted rectangles
based only upon lengths, slopes,
and arc centers supplied by the
CPU. The GDC's processing,
moreover, takes place concurrently
with the processing of the CPU.

2048 X 2048 Resolution
With its 4 Megapixel addressability,
one GDC can handle a mono­
chrome display with resolution as
high as 2048 x 2048, and multiple
GDC's can be linked to provide
even higher resolution, such as col­
or displays at 2048 x 2048. The
chances are, however, that the
GDC's full power will not be used
in most applications. The typical

The logical way to avoid such
limitations is to dedicate a special­
ized processor to the handling of
display function. It should be capa­
ble of accepting high-level com­
mands to minimize the burden on
the CPU, as well as optimizing
the execution of such commands
through raster operations imple-

Operating System

o From Independent
Software Vendor

Mark Olson and Brad May are 0 From Intel

Product Marketing Engineers for
Peripheral Components Operation, Figure I: General graphics commands are translated into the VDI interface level
Intel Corp., Santa Clara, CA 95051. and then into driver device commands.
Reprinted from DIGITAL DESIGN © April 1983, Morgan-Grampian Publishing Company, Boston, MA 02215
231315-001 7-136 Di91tal Design - April 1983

, Graphil:s Chip

82720 BIT MAP INTERFACE

I GREEN MEMORY

1

I BLUE MEMORY :n '} 114 INTO 7 7/
ADO- MUX I RED MEMORY BLUE ...
A015 2 ' 74LS157 AO-AS r-V -82720 / I

16 GREEN ...
00-016 4r-----v -

I

LS - VIDEO RED ...
ALE

32 RAS OUT

4~ -
2XCLK CAS

TIMING
DOT CLOCK 0

LOGIC LOAD SHIFT BANK

0-- WRITE SELECT
DBIN

I 081N I
,-'"' YO

~ LS
~ Yl

SYNC ~ Y2 H V ~
139

OY3

lBLANK
--

'--- ... '"'
BLANK

~ ~

SYNC

SYNC
LS ...
32 -

Figure 2: The memory is brokell up into three plalles, with each plalle feedillg Olle o[.the primary color gUlls of the CRT,

product considered high resolution
for office automation applications
is a 512 x 512 pixel monochrome
or color display,

These latter restrictions are not
imposed by the GDC, but rather
have more to do with the cost of
display monitors, the amount of
RAM memory needed to support
such displays, and the adequacy of
such displays for most applications.
It is possible to build "super graph­
ics" boards with a GDC, such as
the lK by lK pixel by 8 color plane
graphics display designed by Phoe­
nix Computer Graphics (Lafayette,
LA). Such a display is capable of
rendering 256 different colors on a
high resolution screen.

Even higher performance can be
achieved through the use of multi­
ple GDe's to support multiple dis­
play windows, increased drawing
speed, or increased bits per pixel.
For multiple display windows, each
GDC can be used to control one
window of the display. For in-

Digital Design - April 1983

creased drawing speed, multiple
GDe's can be operated in parallel.
For increased bits/pixel. each GDC
can contribute a portion of' the
number of bits necessary for a
pixel.

. Although the GDC is intended
primarily for raster-scan graphics, it
can also be used as a character dis­
play controller. It is capable of sup­
porting up to four screens of data
containing 25 rows by 80 columns,
or one screen containing up to 100
rows by 256 characters.

Office Automation Display
High performance applications can
stretch the usage of the GDC from
low-end to high-end engineering
displays, but research has shown
that for office automation prod­
ucts, a 512 x 512 pixel display is
quite acceptable, and that color is
often a requirement. These require­
ments mesh with a major factor in
display-the cost of the CRT. In

7-137

OEM quantities, for example, one
could expect to find a 512 x 512
monochrome display for under
$100, a 256 x 256 color display
(TV quality) for about $150, a 512
x 512 color CRT in the $300 range,
and a I K x I K color display in the
$800-$ 1000 category.

To give an example of the type of
display that can be built for new of­
fice products using the GDC, con­
sider a 512 x 512 pixel by 3 color
plane combination CPU and graph­
ics display on a single 12" by 12"
board. Such a display is capable of
generating 8 colors.

The list of parts (Table 2) comes
to about $175 for 85 Ie's taking up
104 square inches of board space.
Even that parts count could be re­
duced by replacing the 48 16K
DRAMs with 12 64K DRAMs-if
a 4K x 16 bit DRAM were avail­
able. A very important note about
the parts list is that the design is
implemented with inexpensive 2118
dynamic RAMs. The design does

231315-001

Graphics Chip

not require the faster, more expen­
sive, and less dense static RAMs,

The parts count is low enough so
that the processor and graphics
controller can be placed together in
a single 12" by 12" board. This is
important because small overall
size and footpad are selling points
for desktop workstations. System
speed is also enhanced when the
graphics controller and CPU are on
the same board, because their com­
munication need not take up bus,
inter-board bandwidth or experi­
ence any additional delays.

Pipelining 'fransformations
More important than putting the
graphics display on the same board

as the CPU is the level of commu­
nication between the CPU and
graphics controller. If the burden of
transformation processing is left
entirely to the CPU while the
graphics chip is used only as a CRT
controller, then the CPU must com­
municate one bit per pixel to up­
date a display. With the GDC, the
CPU input takes higher level forms
such as the slope and length of a
line, the length and center point of
an arc, or the key coordinates of a
rectangle. Since the average line on
a screen is about 25 pixels, that
means that 25 times fewer CPU bus
cycles are required to draw a
graphical object with the GDC.
These CPU cycles (an average of
50 f.Ls each to calculate the graphi­
cal object and communicate it to

the GDC) are the determining fac­
tor in drawing rate.

Viewed from a larger perspec­
tive, there are four tasks that must
be performed by a CPU-graphics
chip .combination:

(I.) The CPU must calculate the
higher-level graphics operations.
This is done by the CPU and it in­
volves the processing of macro-op­
erations such as the CORE, GKS,
PMIG or other graphics protocols.
These general graphics commands
are translated into an intermediate
level, the VOl interface level (Fig­
ure!) and then into device driver
commands by software in the CPU.

(2.) Then, these lower-level
graphical objects such as the key
parameters for lines, arcs, charac­
ters, and rectangles, must be trans-

VLSI Takes Aim At Text Processing
The concept of co-processing is not a new one. Intended
as a way of offloading computationally intensive tasks from
a host CPU, it has been around at Intel since the introduc­
tion of the 8087 numerics processor and the 8089 I/O ma­
chine. A more recently developed product, the 82720
Graphics Display Contreller is designed to bolster system
performance by offloading graphics control chores from
the CPU. The chip accepts high level commands from the
CPU and, using its own drawing processor, accesses the
required positions in the bit-map and handles the process­
ing and display control functions.

Building on the success of these parts come two new
co-processors designed to partition system intelligence
even further. The 82586 is a communications co­
processor designed to bridge the characteristics of CPU
and network data rates. Its FIFO buffer and DMA facilities
make it possible for a CPU to operate at the full Ethernet
10 Mbits/s transfer rate even in the face of continuous
bursts of network data traffiC.

Intel's most recent introduction is the 82730 text co-pro­
cessor. Printers and other hard copy peripherals have sup­
ported additional text processing features such as propor­
tional spacing and simultaneous superscript and subscript
for some time. Implementing these features on the display
screen has traditionally been a costly procedure. Thus, it is
typically not done and screen displays often are not identi­
cal to their hard-copy printouts. Aimed to solve this design­
ers headache, the 82730 has its own DMA capability and
communicates asynchronously with the CPU via shared
memory messages. It supports the generation of high
quality text displays through features like proportional
spacing, simultaneous superscript/subscript, dynamically
reloadable fonts and user programmable field and charac­
ter attributes. In addition, when coupled with the 82720
Graphics Display Controller (Figure 1) the 82730 provides
flexible mixing of text and graphics simultaneously on the
same display.

-Wilson

231315-001 7-138

,--------,
I 8E~~6 I
I Coprocessor I
L _______ _

,--------
I
I
I

82720
Graphics
Processor

IL....-_-I
82730
Text

Coprocessor I L _______ _

,APX 186
General
Purpose

Processor

Memory

r-;------­
I
I
I
I
I

iAPX 286
Hi·Performance

Processor

80287
Numerics
Processor

L _______ --'

Data
Communications
Block

Display
Processing
Block

Data
Processing
Btock

Figure 1: Offioading system tasks is simplified by new V LSI
devices.

'Digilal Design - April 1983

Graphics Chip

DRAWING SPEED

- 50 ILsec - 50 ILsec
Sel up Draw 1 Set up Draw 2 Set up Draw 3 Set up draw 4

80186 (.--------------------------) (.---------._.---) (---------------------------) (.--------------------------)

GDC (2.5MHz)
Calculate
Next bit

GDC
RIMIW

(25 pixels)

-50 ILsec
Set up draw 1

(100 pixels)

Draw1 Draw1 Draw1 Draw2
<---------)(---------> . <--------.)<---------)

Bit 2 Bit 3 Bit 25 Bit t

•· .. ·---.. ---40 ILsec------------------------·-----)

Drt Drt Drt Drt
. <--------->(--------->

Bitt Bit2 Bit24 Bit25

< ------------40 j..lsec ------------------------------)

Calculate R/M/WBitt Calc

Draw2
<--------->,

Bit 2

Dr2 Dr2
(.--------> <---------)

Bitt Bit100

-50 ILsec
R/M/W Set up draw 2

Other
CPU

c. __________________________) (_________________) (_________________)(_________________) < _________________) (--------------------------.>
Bitt Bit2 Bit25

• ------------------375-500 ILsec---)

Table 1: The 80186 and the GDC lVork together to accomp!t.\·" the drawlIlg fllllctlOll.

formed into changes in the actual
bits. This function is performed in
hardware in the GDC concurrently
with any level one processing done
by the CPU. Other graphics con­
trollers leave this task to the CPU
to execute in software. The con­
trast is that, in such systems, the
CPU must resolve the graphical ob­
ject down to every point on a line,
while with the GDC it need only
designate the endpoints.

(3.) With the actual bits for the
bit map calculated, they must be
placed in the bit map memory. This
involves a read-modify-write oper­
ation that requires three CPU cy­
cles using other methods. With the
GDC these operations are not the
responsibility of the CPU. The
GDC pipelines its execution so that
it is calculating the next bit to
change while it is executing the
read-modify-write cycles.

(4.) Finally, the bit map memory
must be dumped into the CRT. This
is the refresh function performed
by other graphics chips as well as
the GDC.

The summation is that other sys­
tems require the CPU to process
steps one to three serially, leaving
only step four for the graphics con­
troller. Systems with the GDC re­
quire the CPU to process only step
one, with the GDC concurrently

Digital Design _ April t983

processing steps two through four.
The GDC has another advantage in
that during the transformation pro­
cess in step three, the GDC ex­
ecutes the algorithms in hardware
while a CPU must execute the al­
gorithms in software. The algo­
rithms are exactly the same in both
cases. They are the Bresenam algo­
rithms from IBM, in which the next
pixel to be drawn becomes a binary
decision between two pixels_

The execution of these algo­
rithms is a crucial drawing time fac­
tor, because they are invoked many
times for each updated screen_
Consider that, in the inncr loop of
Bresenam's "line drawing algo­
rithm," there are two or three addi­
tions, two comparisons or tests,
and the masking of the proper val­
ue into the word for each pixel.
The algorithms for drawing circles
or filling areas are even more com­
plex. In the inner loop of a fill algo­
rithm, the old word must be read
from the bit map, then tested to see
if all, some, or none of the pixels
are within the area to be filled.
Next, it tests whether some or all of
the pixels must be modified. Final­
ly, the word must be returned to the
bit map.

These algorithms are heavily
used and the speed with which they
can be executed has a direct effect

7-139

upon the overall system efficiency.
If they must be executed by a (.LP,
the in~truction fetching process
slows down the calculations to a
drawing rate of 15-20 (.LS per pixel.
With a hardware implementation of
these algorithms in the GDC, the.
calculations can be speeded up to
achieve a drawing rate of 1600 ns
(2_5 MHz version) or 800 ns (5
MHz version) per pixel.

Methods Of Refresh
In the fourth step, the dumping of
bit map memory into the CRT,
there are some differences between
graphics controller chips. Motoro­
la's MC6845 CRT controller, for ex­
ample, uses a split-cycle refresh.
method in which each refresh cycle
is alternated with a drawing cycle
in which the (.LP lIpdates the bit
map. This gives the MC6845 a 50%
drawing bandwidth.

With the GDC there are two
drawing modes. The first is a "draw
anytime" mode which replaces
CRT refresh cycles with drawing
cycles. This is the fastest mode, but
it does result in on-screen disrup­
tions. The second mode, which
does not disrupt the on-screen dis­
play, draws only during the vertical
and horizontal retracing periods.
This gives the GDC about a 25%

2313t5-001

Grdphil s Chip

1 80186 1 74LS04 1 20 MHz Clock
1 82720 1 74LS73 2 27128
2 74LS157 9 74LS244 2 2.186
1 74LS139 8 74LS166 1 8274
1 74LS161 3 74LS32 1 8042
1 74LSll 2 8286 3 Connectors
1 74LSOO 1 8 MHz Crystal 1 12x 12 2 Layer PC

SUMMARY:

4 VLSI Controliers 80186 Processor
82720 Graphics
8274 Serial Link
8042 Keyboard

4 VLSI Memory 27128 EPROM
2186 IRAM

4816K DRAMs 2118 DRAM

29 Msi/sSI Buffers/Glue

TOTAL: 85 IC'S 104 Sq. Inches

Parts Cost About $175

Table 2: Parts list for 512 x512 X 4 Color Display.

16 MHz To Oat Clock

-"~D~ (2.5 MHz)

X, X, 2XCCLK
WA WA

AD r AD
PCSl -;:I)Ir-, Al AO

1 I I
80186 Data 82720

ADO·7 Buffer DBO·7
rm.i I DTIA

peS1 1 DACK

DAOO DAEO

• Asynchronous Processors
• DMA Access to Bit Map
.4 Buffers. 1 Glue IC

Figure 3: The two chip selects are OR'd together to qualify the RIW signals.

drawing bandwidth. At first glance
that gives the GDC a disadvantage
in drawing rate, but the fact is,
with its pipelining and hardware
execution of· transformations, the
GDC makes much more efficient
use of its bandwidth. The critical
timing factor is the amount of CPU
participation in the drawing pro­
cess, not the refresh bandwidth of
the graphics controller. Another
tradeoff is that, with its split-cycle
architecture, the MC6845 requires
RAM memory that is twice as fast
as that required by the GDC in the

same application.

Inexpensive RAM Is Fast
Enough
Applying this perspective, one can
begin to build the display with parts
listed in Table' 2. First one notes
that a square display, as indicated
by the.512 x 512 pixel initial specifi,
cation, is not pleasing to the eye. It
is much more appealing to have an
aspect ratio of about 4:3, in which
the number of pixels horizontally is
4/3 the number vertically. If the res­
olution is such that the total num-

7-140

ber of pixels is not a power of two,
it will be necessary to round up to
the next power of two and waste
the extra bits.

The pixel arrangement which
best meets this requirement is .one
with a 432 x 576 pixel format. It
also meets the requirement that the
number of pixels horizontally be an
even number of 16-bit words. With
three color bits per pixel (red,
blue, and green), the total display
memory is then about 500 x 500 x 3,
or 750k bits.

It makes the most sense to break
the memory up into three planes,
with each plane feeding one of the
primary color guns of the CRT
(Figure 2). This leads to a memory
arrangement of 16K x 16 x 3,
using 16K dynamic RAMs with a
1K x 16 architecture. When draw­
ing graphics figures, the memory
can be treated as one large plane,
split into the three primary colors.
Drawing in low-order memory

. could represent red, middle-order
could be used for green, and high­
order for blue.

One advantage of this 3D mem­
ory is that drawing with a primary
color requires setting only one bit
per pixel. Drawing with a secon­
dary color such as cyan, yellow;or
magenta would take two GDC cy­
cles, and creating white from all
three colors would take three GDC
cycles. If this were an issue, addi­
tionalhardware could be used to
draw more than one plane at a
time. As the results 'will show, how­
ever, the drawing speed require­
ments can be exceeded without any
added hardware.

Calculate The Drawing Rate
To see if the proposed design is
practical, one should first calculate
the drawing rate to see what the
user interface will be like. Then
one should check the refresh rate
to make sure the design is uninter­
rupted and without flicker.

The proof of the assumption that
CPU participation is the dominat­
ing factor lies in the 50 f.l.s average
time that it takes the CPU to calcu­
late a graphical object and commu­
nicate its key parameters to the
GDC. Assume that the graphical
object is an average line containing

231315-001

25 pixels, and that there are about
500 vectors on the average screen
display.

The GDC's normal clock rate is
2.5 MHz, giving it a 400 ns period
(the maximum clock rate is 5 MHz,
with a 200 ns period.) It takes four
GDC cycles to execute a read­
modify-write on a bit (because two
read cycles are required), so that
the GDC's normal drawing rate is
one pixel per 1600 ns. To draw the
25 pixels involved in the average
line, then, would take 25 x 1600 ns,
or 40 IJoS. Since this operation is
done concurrently with CPU pro­
cessing, the GDC will be waiting
for the next graphical object by the
time the CPU is ready.

If the screen were filled with
nothing but 25-pixel vectors, then
the drawing rate would be deter­
mined by the 50 IJoS average CPU
calculation and transfer cycle, aver­
aging about 2 IJoS per pixel. If all
the vectors were white (worst
case), then it would take 1.5 secs of
drawing time to update the white
screen. Since, in the undisturbed­
screen mode, drawing is only done

oRCO

peso
DROl

TMR OUT 0.1

~
RD

I ALE I---
~

during the 25% of the time that the
screen is undergoing horizontal or
vertical blanking, this would mean
6 secs between updates.

In reality, however, the screen
will not be filled with vectors. It
will have an average of 500 vectors,
and the color distribution could be
presumed to be evenly distributed
as one-third primary colors, one­
third secondary colors, and one­
third white. The 500 vectors will re­
quire the drawing of 12.5K pixels
in monochrome, or 25K pixels with
distributed colors. At a drawing
rate of 2 IJoS per pixel, this takes 50
ms to draw. Drawing only during
blanking, the screen would be up­
dated in 200 ms.

Under these conditions, it would
not help to use the maximum clock
rate GDC (5 MHz), but if in some
applications the average vector
length is 100 pixels, then the CPU
calculation-and-bus cycle (50 IJos)
would remain the same and the
GDC's draWIng cycle (I600 ns x
\00 = 160 IJos) would become a
limiting factor. Using the 5 MHz
GDC would cut that drawing time

ADR ADDRESS BUS
LATCH ,..-- peS3

- PCS2

- ARDY

80186

eP ,.-
AD
sus DATA

DATA BUS -

Graphics Chip

down to 800 ns/pixel, or 80 IJos/vec­
tor. The 500 vector average screen
would then contain lOOK pixels
with distributed colors and could
be drawn in 80 ms. Multiplying by
four because the drawing is done
during blanking (25% of the time),
that is 320 ms. That is a screen up­
date in less than one-third second
for a "busy" screen.

Calculate The Refresh Rate
These calculations are of little im­
portance if the display flickers due
to lack of refresh. This exercise is
actually a demonstration of how
the basic GDC clock rate was de­
rived. Assume a non-interlaced dis­
play that must be refreshed 60
times per second. That gives a
screen refresh rate of 16.67 ms, but
on a typical CRT some 4.27 ms of
that is blanked, leaving 12.4 ms of
active display time. The dot sweep
period is the 12.4 ms divided by the
number of pixels (432 x 576 =
248.8K), or 49.8 ns. The inverse
gives a 20.07 MHz dot clock.

Since the GDC dumps 16 bits
from the bit map memory into the

DREO

DACK

-
WR

RD
(MONITOR

1 1 82720
GDe

I VIDEO J REFRESH
LOGIC

I
DBO-7 MEMORY BUS

DEN r---- BUFFER ~ LeS

I
1-- ,-- ,---

e- ves oT R f:::::=_

'EPA£"' I E~1 ~
Rxe
Txe

IRAM IRAM 8279
27128 I-- 27128 2186 I-- 2186 KEY- 8274

RDYB TXDROA
BOARD SERIAL 16K· 16

~ LOW f-- HIGH I-- LOW f--- HIGH CON- 10

8K . 8 r--- 8K . B r--- 8K . B I--- 8K . B 'yfLER r-
eE TeE WE TesT READyTes READY es es BIT MAP MEMORY

16K· 16
3 PLANES

TO oMA
MONITOR SERIAL PORT

KEYBOARD TO HOST ,
TO

OPTIONAL
TABLET

Figure 4: Completed graphics system uses the 80186 and 82720 CDC.

Digital Design _ April 1983
7-141 231315-001

Graphics Chip

'\. OINO·DIN15 D, D, D, D"

I

D,N
2118

A~-A6 • Ao·A6 •
VIDEO

2118 OUT

AAS
-

~ • AAS 2118

2118 r-
--

CAS • CAS f--
- IN1~

WRiTE
32 P WE - 2X

Dour r- 74166

IN,

IN,

IN,

BSEL "'j 32

,CLOCK

-
I t I

SINPUT
DBIN

2X74LS244
SL ~

•••
DOT elK --

t
L D, D, D, D"

SH 1FT LOAD 900173

Figure 5: Since the 186 is a flllly byte addressable machine, it is possible to write bytes as well as words illto the RAMs_

16-bit shift register during each
read, and since the shift register
then feeds these bits out serially to
the CRT, it makes sense that the
GDC's read period should be 16
times the dot sweep period. That
gives a GDC read period of about
800 ns. With each GDC read taking
two cycles, the basic GDC clock
period is then 400 ns, or 2.5 MHz.
This gives a rock-solid display, and
one would only want to go to the 5
MHz GDC to improve drawing
rate.

For those who want to examine
the blanking intervals to see if the
CRT is indeed "typical," the blank­
ing can be further broken down.
The vertical blanking interval is
1.25 ms, leaving 15.42 ms to scan
the 432 lines on the active portion
of the display. Dividing 15'.42 ms by
432 lines gives a 35.7 fLS period per
line, or a horizontal sweep rate of
28 KHz. Time is also needed for
horizontal retrace, in this case, 7
fLS of horizontal blanking per line.
This leaves 28.7 fLS to scan the 576

231315-001

pixels on each line, resulting in the
dot sweep period of 49.8 ns. Using
a 20 MHz CRT helps keep the costs
down, but the GDC can use CRT
displays as fast as 80 MHz when
higher resolution is required.

Mixed Mode
While it is possible to generate
8 x 8 characters and slanted charac­
ters in the graphics mode, the GDC .
also offers a mixed mode memory
organization to display both charac­
ters and graphics drawn from sepa­
rate windows in the display mem­
ory. The advantage of this mode is
that it allows characters to be ma­
nipulated as 8-bit entities instead of
the 64 bits that each would require
in graphics mode. Of necessity, the
graphics window display memory is
reduced in this mode (64K 16-bit
words instead of 256K), but even
the reduced maximum graphics
memory is still a megapixel and
quite sufficient for both office auto­
mation and engineering display
purposes.

7-142

In the character window, the
G DC operates as it does in the
pure character mode, with the ex­
ception that the line counter must
be implemented externally. In addi­
tion to the two windows used for
graphics and characters in the
mixed mode, two other windows
can be supported. These can be
designated as either character or
graphics windows by a selection on
the A17 line.

Panning, Zooming, Light Pen
As special features, the GDC al­
lows both panning and zooming in
either graphics, character, or mixed
modes. The zoom is accomplished
by effectively increasing the size of
the dots on the screen. Vertically,
this is done by repeating the same
display line. The number of repeat
times is determined by the display
zoom parameter. Horizontally,
zoom is accomplished by extending
each display word cycle and dis­
playing fewer words per line, ac­
cording to the zoom factor.

Digital Design _ April 1983

inter
82730

TEXT COPROCESSOR

• High Quality Display for Text and • Extremely Flexible; Programmable
Graphics Applications Features Include Screen and Row

• Provides Proportional Spacing, Formats, Two Cursors, Character and
Simultaneous Superscript/Subscript, Field Attributes and Smooth
Soft Font Support and Bit Map Scrolling
Graphics • Supports Multiple Windows

• High Performance Manipulation of • High Resolution Display; Up to 200
Text/Graphics Strings Characters/Graphics Cells per Row

• Programmable Bus Interface and 2048 Scan Lines per Frame
Handles 8 or 16 Bit Data and 16 or 32 • Separate Bus and Video Clocks
Bit Addressing; iAPX 86/88/186/188 Allow Optimization of Overall System
Compatible Performance

• On-Chip Processing Unit Simplifies • Provides a Complete LSI Solution for
Software Design by Executing High Display Control when Used in
Level Commands and Supporting Conjunction with the 82731 Video
Linked List Data Structures Interface Controller

The 82730 Text Coprocessor is a high performance VLSI solution for raster scan text and graphics displays.
The 82730 works as a coprocessor and has processing capabilities specifically tailored to execute data
manipulation and display tasks. It provides the designer the ability to functionally partition his system
thereby offloading the system CPU and achieving maximum performance through concurrent processing.
The 82730 supports the generation of high quality text displays through features like proportional spacing,
simultaneous superscript/subscript, dynamically reloadable fonts and user programmable field and
character attributes. It supports high quality graphics with fast manipulation and display of bit map strings.
An intelligent system interface and efficient software capabilities makes 82730 based systems easy to design.

BUS CONTROLS

CA

SINT

ADII-AD15

MICROCONTROLLER
UNIT DISPLAY

CHARACTERISTICS
REGISTERS

MEMORY INTERFACE UNIT _1_ DISPLAY GENERATOR

Figure 1. 82730 Block Diagram

DISPLAY
GENERATOR

CONTROL

CHAR
DATA

VIDEO
CONTROLS

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit
Patent Licenses are Implied.

©INTEL CORPORATION. 1984 7-143
AUGUST 1984

ORDER NUMBER: 210931-004

inter

TOP

82730

CA 5.
so
51

READY
SINT
IRST

RESET
BCLK

VSS
ALE

RD
WR

HLDA
HOLD

DEN
AEN

BonOM

UALE ~-''''''nr'''''',..,r''''''nr'n'nn

PIN NO.1 MARK

Figure 2. 82730 Pinout Diagram

Table 1. 82730 Pin Description

CRVV
BLANK
CHOLD
LPEN
RRVV
VSYNC
CSYNC
CCLK
Vss
RCLK
SYNCIN
HSYNC
LC4
LC3
LC2
LC1

" LCO

The 82730 is packaged in a 68 pin JEDEC Type A ceramic package.

Symbol Pin Number Type Name and Function

AD15-ADO 1-8 I/O Address Data Bus; these lines output the time
10-17 multiplexed address (TU, T1 states) and data (T2, T3,

T4 and TW) bus. The bus is active HIGH and floats to
3-state OFF when the 82730 is not driving the bus (i.e.
HOLD is not active or when HOLD is active but not
acknowledged, or when RESET is active).

BCLK 59 I Bus clock; provides the basic timing for the Memory
Interface Unit.

RD 62 0 Read strobe; indicates that the 82730 is performing a
memory read cycle on the bus. RD is active low for T2,
T3 and TW of any read cycle and is guaranteed to re-
main high in T2 until the address is removed from the
bus.ADis active low and floats to 3-state OFF when
82730 is not driving the bus. RD will return high before
entering the float state and will not glitch low when
entering or leaving float.

210931-004

7-144

82730

Table 1. 82730 Pin Description (Continued)

Symbol Pin Number Type Name and Function

WR 63 0 Write strobe; indicates that the data on the bus is to
be written in a memory device. WR is active for T2, T3
and TW of any write cycle. It is active LOW and floats
when 82730 is not driving the bus. WR will return high
before entering the float state and will not glitch low
when entering or leaving float.

ALE 61 0 Lower Address Latch Enable; provided by the 82730
to latch the address into an external address latch
such as 8282/8283 (active HIGH). Addresses are
guaranteed to be valid on the trailing edge of ALE.

UALE 68 0 Upper Address Latch Enable; it is similar to ALE
except that it occurs in upper address output cycle
(TU).

AEN 67 0 Address Enable; AEN is active LOW during the entire
period when 82730 is driving the bus. It can be used to
unfloat the outputs of the Upper and Lower Address
latches.

DEN 66 0 Data enable; provided as a data bus transceiver out·
put enable for transceivers liKe the 8286/8287. DEN is
active LOW during each bus cycle and floats when
82730 is not driving the bus. DEN will not glitch when
entering or leaving the float state.

SO,S1 53,54 0 Status pins; encoded to provide bus·transaction
information:

S1 SO Bus Cycle Initiated

0 0 - - - (Reserved)

0 1 Memory Read

1 0 Memory Write

1 1 Passive (No bus cycle)

These pins are directly compatible with iAPX 86,186
status outputs S1 and SO. The status pins are floated
when 82730 is not driving the bus. They will not glitch
when entering or leaving the 3·state condition.

READY 55 I READY; Signal to inform the 82730 that the data
transfer can be completed. Immediately after RESET,
READY is asynchronous (internally synchronized)
but can be programmed during initialization to bus
synchronous.

210931-004
7-145

82730

Table 1. 82730 Pin Description (Continued)

Symbol Pin Number Type Name and Function

HOLD 65 0 HOLD; indicates that the 82730 wants bus access.
HOLD stays active HIGH during the entire period
when 82730 is driving the bus.

HLDA 64 I Hold Acknowledge; indicates to 82730 that it is
granted the bus access as requested. HLDA may be
asynchronous to 82730 clock. If HLDA goes inactive
(LOW) in the middle of an 82730 bus cycle, the 82730
will complete the current bus cycle first, then it will
drop HOLD and float address and bus control
outputs.

CA 52 I Channel Attention; used to notify 82730 that a com-
mand in the command block is waiting to be proc-
essed. CA is latched on its falling edge.

SINT 56 0 Status Interrupt; used to inform the processor that an
unmasked interrupt has been generated in the 82730
status register.

IRST 57 I Interrupt Reset; SINT is cleared by activating the
IRST pin.

RESET 58 I Reset; causes 82730 to immediately terminate its
present activity and enter a dormant state. The signal
must be active HIGH for at least 4 BCLK cycles and is
internally synchronized to the bus clock.

CCLK 27 I Character clock; input used to clock row buffer data,
attribute, cursor and line count out of 8'2730. When
more than one 82730 is connected in cluster mode,
CCLK is used to synchronize output from both
master and slave chips. A character data word will be
output at every rising edge of CCLK.

RCLK 25 I Reference clock; input used to generate timings for
the screen layout and to define screen columns for
data formatting. All raster output signals are
specified relative to the rising edge of RCLK.

DATO-DAT14 36-42 0 Video data bus output; the least Significant 15 bits of .
44-51 the character data words are passed through the

82730 row buffer and made available on the pins
DATO-DAT14. The user has the flexibility to partition
the data word into character and attribute bits per his
requirements. The bits that are assigned for inter-
nally generated attributes may also be available at
pin DATO-DAT14. New character data will be shifted
to these output pins at every rising edge of the CCLK.
Together with LCO-LC4, they may be used to address
the character generator or as attribute controls.

7-146 210931-004

inter 82730

Table 1. 82730 Pin Description (Continued)

Symbol Pin Number Type Name and Function

WDEF 35 0 Width Defeat; is used to indicate when the character
is allowed to be a variable width or must be of fixed
width. WDEF is LOW if the character being output is
normal, but is HIGH if it is a superscript/subscript
character or visible attribute (TAB or GPA). Option-
ally, WDEF can be held high by user command.

LCO-LC4 18-22 0 Line count outputs; used to address the character
generator for the line positions in a row. The line
number output is a function of the display mode and
character attributes programmed by the user.

CSYNC 28 0 CCLK synchronization output; used to synchronize
external character clock generator to reference clock
timing. This output is active (high) outside the display
field.

CHOLD 32 0 CCLK Inhibit output; used by external logic to inhibit
CCLK generation. This output is active (low) during
the tab and end-of-row function.

SYNCIN 24 I Synchronization input; used to synchronize the ver-
tical timing counters to an externally generated
VSYNC signal. Used by slave mode 82730 to syn-
chronize to a master mode 82730 and by the master
82730 to lock the frame to an external source such as
the power line frequency.

HSYNC 23 o (MASTER) Horizontal Sync; in master mode, it is used to gener-
I (SLAVE) ate the CRT monitor's horizontal sync signal. It is

active HIGH during the programmed horizontal sync
interval. In interlace slave mode it is used in conjunc-
tion with SYNCIN to indicate the start of the even
field for timing counter reset. At RESET, pin is set as
an output in the LOW state.

VSYNC 29 0 Vertical Sync; active HIGH during the programmed
vertical sync interval and used to generate the CRT
monitor's vertical sync signal.

BLANK 33 0 Blanking output; used to suppress the video signal to
the CRT. BLANK is clocked by CCLK.

CRVV 34 0 Character Reverse Video (CCLK output); used to ex-
ternally invert video data output. CRVV is clocked by
CCLK.

RRVV 30 0 Reference Reverse Video (RCLK output); to exter-
nally invert video in the field and border area if so pro-
grammed by user. It is LOW outside the border area,
RRVV is clocked by RCLK.

7-147 210931-004

82730

Table 1. 82730 Pin Description (Continued)

Symbol Pin Number Type Name and Function

LPEN 31 I Light Pen Input; used to latch the position of a light
pen. At the rising edge of this input, the column posi·
tion and the row position of the 82730 will be loaded
into the LPENROW and LPENCOL locations in the
Command block.

Vcc 9,43 Power; + 5 volts nominal potential.

Vss 26, 60 Power; ground potential.

FUNCTIONAL DESCRIPTION

Figure 1 shows a basic block diagram of the
82730 Text Coprocessor. The chip is divided into
two main sections, the Memory Interface Unit and
the Display Generator. The Memory Interface
Unit controls fetching of the data and commands
and handles interrupts and status. The Display
Generator takes the data fetched by the Memory
Interface Unit and presents it to the Video Interface
logic which in turn drives the CRT monitor.

Memory Interface Unit

The Memory Interface Unit is divided into two
sections: the Bus Interface Unit and the Micro­
controller Unit. The Bus Interface Unit does the
actual interfacing to the memory bus. It fetches or
writes data .under the control of the Microcon­
troller Unit. The Microcontroller Unit is a micro­
programmed controller which is designed to effi­
ciently fetch data from memory (up to 4
Mbytes/sec), and decode and execute various
control and data handling commands. The Bus
Interface Unit may be configured for 8 or 16 bit
bus operation. With 8 bit bus selection, the user
may specify either 8 or 16 bit character data. It
also handles address manipulation automatically
after being loaded from the Microcontroller Unit.

Display Generator

The Display Generator takes the data fetched
from memory plus the modes prog rammed into it
at initialization and produces all the video timing
and the data transfers to support the CRT monitor
at the character level. The 82730 works with an
external character generator and the 82731 Video
Interface Controller. The d.ata is passed to the
Display Generator from the Memory Interface
Unit through the dual row buffers (similar in

7-148

operation to the one in the 8275 CRT controller).
The row buffers allow the userto use cheaper and
slower main memory for display needs, provide
on-chip attribute and display function gener­
ation, and avoid the conflict of access to the dis­
play memory (that would otherwise take place)
by using an ordinary DMA access mechanism.

SYSTEM BUS INTERFACE

The Memory Interface Unit provides communi­
cation with system processor as well as memory
interactions. Communication between the pro­
cessor and the 82730 is performed via messages
placed in communication blocks in shared
memory. The processor can issue commands by
preparing message blocks and directing the
82730's attention to them by asserting a hardware
channel attention. The 82730 can cause inter­
rupts on certain conditions, if enabled by the pro­
cessor by activating its System Interrupt output,
with status and error reporting taking place
through the communication block in memory.

BUS INTERFACE UNIT:

The 82730 Bus Interface Unit provides an 8086
compatible bus interface which consists of:

a 16/32 bit multiplexed Address/Data Bus:
ADo - AD15
A complete set of local bus controJ...§ignRls
compatible with 8086 min mode: RD, WR,
ALE, DEN and READY
Two status signals SO and S1, compatible
with 8086 max mode so that a bus con­
troller (8288) can be shared for Multibus®
access.
Local bus arbitration through HOLD/ HLDA
Two .Y.Q..I2.er Address Latch controls: UALE
and AEN

210931·004

82730

The BUS INTERFACE UNIT (BIU) utilizes the same
Bus structure as the 80186 or basically the same
bus structure as the 8086 in both Min. and Max.
mode, (with the exception of RQ/GT) and it per­
forms a bus cycle only on demand (e.g., to fetch a
command from the command block, or fetch a
character from display data memory). The same
set ofT-states (T1, T2, T3, T4and TW) of 8086 are
used to handle the time multiplexed address/data
bus. However, adaptations are made to handle 32
bit addresses as explained in the following sec­
tions where specific details of the BIU operation
are described. Those details not mentioned can
be assumed to be the same as those of the 80186.

ADDRESS BUS

The 82730 can be programmed during initial­
ization to operate on either 16 bit or32 bit (includ­
ing any length between 17 and 32) physical
addresses. Note that the 82730 does not use
memory segmentation. The programmer must
calculate physical addresses from segment and
offset values to manipulate data structures.

To support 32 bit physical addresses with a 16 bit
physical bus, multiplexing is again used. An
upper address output cycle, TU, is inserted bet­
ween T4 and T1 to output the upper 16 bits of
address. The upper address latch enable, UALE,
is used to latch the upper addresses during TU.
Figure 3 shows the configuration of a 32 bit
address bus.

TU occurs only when the 32 bit mode is specified
and the upper address register of BIU is reloaded
by MCU. This may result from:

i} Initialization

ii} Manipulation of display data or command
pointers, for example, when a new string
pointer is loaded during the execution of
the END OF STRING command.

iii} DMA address incrementing across a 64K
byte segment boundary.

iv} Regaining the bus after losing itto a higher
priority master.

Timing of UALE is identical to that of ALE. AEN is
equivalent to the active period of 82730 driving
the bus.

If 16 bit address mode is programmed, TU will
never occur in any bus cycle since the MIU treats
all display pointers as 16 bit quantities and load­
ing of internal upper address register is bypassed

during address calculation. UALE always stays
inactive, but AEN still goes active to indicate the
82730 has control of the bus.

DATA BUS

The 82730 is capable of operating on either an 8
bit or a 16 bit Data bus, as programmed during
initialization on the SYSBUS byte.

When an 8 bit data bus is specified, the address
present on AD15 to AD8 Address/Data lines is
maintained for the complete bus cycle. There­
fore, compatibility with 80188, 8088, 8089 and
8085 multiplexed address peripherals is main­
tained. Since the internal processing of the 82730
generally operates on 16 bit data quantities, two
Bus fetch cycles are performed for each 16 bit
data item. The first cycle fetches the low order
byte, the second cycle the high order byte. These
2 fetch cycles are always executed back to back.
If HLDA drops during the first cycle, the 82730will
not respond until the second cycle is completed.
An 8 bit data mode can be selected in an 8 bit bus
system that requires only 8 bit character data be
fetched.

In 16 bit bus system, the 82730 requires all 16 bit
quantities to start on even address boundary.
Word transfer to or from odd boundary is not
allowed since this type of transfer not only dou­
bles the use of bus bandwidth but also can be
easily avoided in application software. All that is
required is to make sure all address pointers be
an even number (AO=O).

,-l<::==:;-;=:======> AOO~15
82730

A16-31

ClK CE

UALE

Figure 3. Address Extension up to 32 Bits

210931-004

7-149

82730

BUS CONTROLS

The 82730 BIU provides both the 8086 MIN. Mode
(Local Bus Control) and MAX. mode bus control
signals simultaneously in any bus cycle. By
providing a complete set of Local Bus control
signals, the component count of the Local pro­
cessing module is minimized.

Because only two types of Bus operations,
Memory Read and Memory Write, are executed in
the 82730 BIU, the 8086's S2 status signal is
omitted from the Max. mode controls. S2 could be
set to "1" during any 82730 Bus cycle. AEN can
be used to produce S2 since it stays active
whenever 82730 is driving the bus. The status
signals become valid at the middle of the cycle
before T1 which could be either T4 or TU.

BHE is not provided o.n the 82730 because, the
82730 only writes words to even address boun­
daries and bytes to the upper byte position. For
these writes BHE is always high. A pUIiK 'Nsistor
or a three-state buffer controlled by E. can
provide this signal. .

DT/R is also not provided on the 82730 because
its function can be replaced with S1, latched by
ALE.

After RESET is applied, READY is set to be an
asynchronous input An on-board synchronization
circuit provides reliable operation for any type of
system. During initialization, READY may be
programmed to be bus synchronous. For those
systems that can meet the set-up time specifi­
cations, this mode provides more efficient bus
utilization.

. LOCAL BUS ARBITRATION

The 82730 BIU is designed to function as a bus
master in a multimaster Local bus environment
using the HOLD/HLDA protocol for Bus arbi­
tration.

In the Self Contained Arbitration scheme, one
processor and one 82730 share access to the
local bus. The 82730 raises its HOLD request
whenever it needs bus access. After HLDA is
granted from the processor, the 82730 will not
start driving the bus until2 clock cycles later. This
latency allows sufficient time for the 8086 or
80186 processor to get off the bus. When 82730
completes its bus accesses, it will first float its
output drivers before dropping the hold request

In a Local bus configuration with three or more
bus masters, a higher priority DMA Peripheral

device can preempt the HLDA from a 82730which
is the current bus master. The 82730 will complete
its current bus cycle, then float its output drivers
and drop the HOLD request. However, the 82730
may raise the HOLD request again 2 clock cycles
later if it still needs the bus to complete the
interrupted burst DMA activities.

DMA BURST AND SPACE

Some system configurations using the 82730
would be adversely affected by the long burst
data transfers which the Memory Interface Unit
(MIU) may occasionally desire. Since the 82730
will normally be configured as one of the higher
priority bus masters, burst lengths must be limited
for these systems. For this reason, the length of a
burst transfer and the number of memory cycles
between burst transfers are both programmable
via the mode registers:

7-150

15 14' 8 7 6 0
MPTR - BRSTLEN - BRSTSPAC

BRSTLEN- Burst Length.Determines the num­
berof contiguous word-fetch cycles which may
be requested. Programmable from 1 to 127.
Note that in an 8 bit bus, 16 bit data system, the
burst counter only increments once for the 2 bus
cycles required to complete a word fetch. (Note:
burst length = 0 is not defined and should not be
programmed with a non-zero burst space)

BRSTSPAC - Burst Space. Determines a mini­
mum number of bus clocks to occur between
burst accesses. Programmable from 0-511 in
increments offour. Zero space selects an infinite
burst length .

A DMA burst could be terminated before the
programmed burst length is reached in the
following circumstances:

i) The MIU does not need any more bus
accesses, for example, when the row
buffer is filled.

ii) A datastream command is encountered
and the MIU must execute the command
first before it resumes data accessing.

iii) The bus is taken away by a higher priority
device in multi-master bus configuration.

In these cases, the burst counter is cleared. The
BIU must complete a full burst before it waits
through the SPACE cycles. DMA Burst/Space
will be set to zero space until the completion of
the first MODESET command.

210931-004

82730

INITIALIZATION OF BIU

Upon activation of the RESET input, the 82730
BIU will stop all operations in progress and
deactivate all outputs. It will stay in this quiescent
state until memory access is requested by the
MCU after MCU receives its fi rst channel attention
after RESET The following table shows the state
of all MIU outputs during and after reset.

Table 2. 82730 Bus During and After Reset

Signals Condition
AD15-0 Three-state

RD, WR, DEN Driven to '1' then three-state
SO, S1 Driven to '1' then three-state

ALE,UALE Low

AEN High
HOLD Low
SINT Low

82730 COMPATIBILITY ISSUES

82730 Bus Clock Compatibility

The 82730 uses the 50% duty cycle output of the
iAPX-186 at 8 MHz or that generated by a clock
generator such as the 82285. A different duty
cycle clock may be used at lower frequencies, so
the 82730 is also useable with the iAPX-86, 88
family.

82730 Bus Interface Compatibility

The bus interface compatibility between the 82730
and another bus master has four main issues:
data bus width, addressability, control bus struc­
ture and local bus mastership arbitration.

Data Bus

Data Bus width compatibility with all 85/86 family
processors (8085, 8086, 8088, 80188, 80186, and
80286) is being supported by the 8/16 data bit
programmability already discussed. This allows
interfacing to the above processors either directly
or through a Multibus-like interface.

Address Bus

The 82730 uses real 32-bit addresses. The user's
software must calculate real addresses; this gen­
eral addressing scheme allows the 82730 to be
used with any microprocessor.

7-151

Control Bus

The 82730 implements both 8086 minimum and
maximum mode bus control structures. This was
done to maximize compatibility with the 80186
which has the same structure. This allows the
82730 to be run locally (minimum mode) with a
8085,8086, 8088, 80188, or 80186. The 80186/188
and 82730 can run together at 8MHz because of
clock duty cycle considerations. The 82730 can
only communicate to an 80286 via a system bus
(such as MULTI BUS), bus interface, or dual-port
RAM.

INITIALIZATION SEQUENCE

The first CA (Channel Attention) after Reset
causes an Initialization Sequence to be executed.
The system processor must set up the appro­
priate initialization information in memory and set
the BUSY flag in the Intermediate Block to a non­
zero value prior to issuing this CA.

Initially, 32-bit addressing and 8-bit data bus
width are assumed until the corresponding in­
formation is fetched during the initialization. First
the SYSBUS byte is fetched from memory location
FFFF FFF6. (When the address bus is less than 32
bits wide, the higher order bits are unused.) The
format for SYSBUS byte is shown in Figure 4 and
is the same as that used for 8089. The data bus
width is specified by the least significant bit w,
with w=Q indicating an 8-bit· bus and w= 1
signifying a 16-bit bus.

A 32-bit real address pointer is then fetched from
memory locations FFFF FFFC through FFFF FFFF,
with lower bytes of the pointer residing in lower
addresses. This pointer is used as an Interme­
diate Block Pointer (IBP).

The Intermediate Block Pointer (IBP) is incre­
mented by two and is used to locate the Command
Block Pointer (CBP). Four bytes are fetched
irrespective of whether a 16-bit or 32-bit address­
ing option is used. The System Configuration
byte (SCB) isthen fetched from location (IBP+ 6).

The least significant bit, (U of the SCB) specifies
16 or 32-bit addressing option, with U=O indi­
cating 16 bit addressing and U=1 specifying 32-bit
addressing. The SCB also contains information
about cluster operation. Since up to four 82730's
can be connected in a cluster with their respective
data interleaved in memory, cluster information is
needed for the data access task. The SCB speci­
fies Cluster Number (CL NO), which is the
number of 82730's connected in a cluster and
Cluster Position (CL POS) which is the position

210931-004

inter 82730

of this particular82730 within the cluster. CL NO =
0,1,2 or3 indicates a cluster containing 1,2,3 or 4
82730's respectively. Similarly, CL POS = 0, 1,2 or
3 indicates 1st, 2nd, 3rd or 4th position respect:
ively. Each 82730 adds an offset equal to 2 •
CLPOS to the SPTR fetched from memory and
increments the pointer by 2 • (CL NO + 1). The

~ 7

0 0 0 0 0

W

0
1

7 6 5 4
SRDY DTW16 MIS CL

SRDY READY MODE

0 Asynchronous
1 Synchronous

MIS Mode

0 Slave
1 Master

No. of 82730's
CLNO. In Cluster

00 1
01 2
10 3
11 4

programming of CL NO and CL POS is indepen­
dent. No checking is done for CL POS greater
than CL NO on the 82730. Note that at least one
82730, in a cluster (even if it is a cluster of one),
must be assigned as cluster position zero (CL
POS = 0) for Virtual Display mode to work properly.

0

0 0 W SYSBUS Byte

Data Bus Width

8-Bit
16-Bit

3 2 0
POS CL NO U SCB Byte

DTW16 Display Data Mode

0 8-bit data
1 16-bit data

Position in
CLPOS Cluster

00 1st
01 2nd
10 3rd
11 4th

U AD DR BUS WIDTH

0 16-bit
1 32-bit

Figure 4. SYSBUS and SCB Encoding

7-152 210931-004

82730

The SCB also contains an Mis bit which specifies
a master or slave mode. The MIS bit is stored
int~rnally for use by the Display Generator .LDG).
MIS = 1 indicates a master mode and MIS = 0
specifies a slave mode. The format for the System
Configuration Byte (SCB) is shown in Figure 4.
Following these actions, the BUSY flag in the
Intermediate Block at address I BP is cleared
and a normal Channel Attention sequence is
then executed.
The last two bits in the SCB are DTW16 and
SRDY. DTW16 specifies whether the display data
in 8 bit bus mode (W=O) is 8 or 16 bit. If a 16 bit
system is specified (W=1) then DTW16 is ignored
and forced internally to a "one". SRDY specifies
whether the clock synchronization circuit for the
READY pin is internal (SRDY=O) or external
(SRDY=1).

The Initialization Control Blocks in memory are
illustrated in Fig. 5a. How these fit into the control
structure of the 82730 is shown in Figure 5b.

INTERMEDIATE

BLOCK POINTER

15 8

Channel Attention Sequence

When the processor activates CA, an internal
latch in 82730 is set on the falling edge of CA
input and this latch is sampled by the MCU. The
first CA activation after reset causes the 82730 to
execute an initialization sequence. Any subse­
quent activation will cause the MCU to start pro­
cessing the command block byfetching a channel
command.
If a display is in progress, the MCU will sample CA
at each end of frame, otherwise it will sample CA
every cycle until it is found active. When CA is
found active, the MCU will fetch the command
byte from "COMMAND" location in the command
block execute the command and clear the BUSY
flag ~pon completion. The internal CA latch is
also cleared by the MCU. An invalid command
code has the effect of NOP and the BUSY flag is
cleared. It will also cause the Reserv"ed Channel
Command (RCC) status bit to be set.

7 o
IBP UPPER FFFF FFFE

FFFF FFFC IBP LOWER

(RESERVED)SYSBUS FFFF FFF6

INTERMEDIATE

BLOCK

COMMAND
BLOCK

(RESERVED) SCB

CBP UPPER

CBP LOWER

(RESERVED) BUSY

COMMAND BUSY

LOW SYSTEM MEMORY

Figure Sa. Initialization Control Blocks

7-153

IBP + 6

IBP + 4

IBP + 2

IBP

CBP

210931-004

~
01

"""

'" ~
~

INITIALIZATION BLOCK

ADDRESS I
FFFF6:

/-----
I SYSTEM BUS WIDTH

INTERMEDIATE B

INTERMEDIATE B

LOCK POINTER lOW

LOCK POINTER HIGH

rJ
INTERMEDIATE BLOCK

CONFIGU RATION BYTE

COMMANDBL' OCK POINTER LOW

COMMANOBLI OCK POINTER HIGH

Q

~\""'UMMAr.lU DLU "

V 15 . . 8 7 6 5 0

COMMAND BUSY

LIST SWITCH AUTO LINE FEED

MAX OMA COUNT

LIST BASE 0 LOWER

LIST BASE 0 UPPER ~
LIST BASE 1 LOWER

LIST BASE 1 UPPER

COMMAND BLOCK POINTER LOWER

COMMAND BLOCK POINTER HIGHER

STATUS

INTERRUPT GENERATION CODe

INTERRUPT MASK

LIGHT PEN ROW LIGHT PEN COLUMN

CURSOR 1 ROW CURSOR 1 COLUMN

CURSOR 2 ROW CURSOR 2 COLUMN

MODE POINTER LOWER

MODE POINTER UPPER

STATUS ROW POINTER LOWER

STATUS ROW POINTER UPPER

TO MODE BLOCK

Figure 5b. Control Structure of the 82730

STRING POINTER
LIST

STRING POINTER 1

STRING POINTER 2 ~

DISPLAY
DATA STRINGS

DATA

END OF ROW

END OF STRING

DATA

END OF STRING

DATA

END OF ROW

END OF STRING

~

l

(X)
N
~

'@
2$
IfiiiI
IP

~
~
~ :w
~

§

82730

82730 TEST FEATURES

The 82730 has built in Self-Test features that
provide testability at the component or at the
board level. These features include the test com­
mands and the output pin force capability and
are described below.

Output Pin Force Capability

A capability to force logic states (high, low, high
impedance) on all output pins is provided in the
82730 Text Co-Processor. This is accomplished
by providing a stimulus on pins LCO-LC2 during
chip reset. This feature is used for dc parametric
tests on the output pins.

The state of pins LCO-LC2 is monitored during
chip reset. The state of these pins is latched
internally on the falling edge of chip reset. If no
external inputs are applied during reset, the state
observed will be all 1 's and no action will be taken
by the 82730. If any external inputs are applied to
pins LCO-2 during reset, the resulting action will
depend upon the state latched on the falling
edge of reset. The 82730 maintains pins LCO-LC2
in high impedance state for the duration of chip
reset to avoid contention with external inputs.
Also internal pull-ups ensure that a state of all 1 's
will be detected if no external inputs are applied.

The actions corresponding to each of the ob­
served states of pins LCO-LC2 are summarized in
Fig.6a.

State of Pins LCO-LC2
During Chip Reset

LC2 LC1 LCO
0 X X

0 0

0 1

0

Stand-Alone Self Test
The built-in Self Test capability of the 82730 can
be invoked in a stand-alone mode by applyi ng an
external stimulus through pins LCO-LC2 during
chip reset. This is the same mechanism as the
one used for forcing logic states on output pins.
Fig.6a.
If pin LC2 is pulled low during chip reset, the
82730 executes a built-in self test. Upon comple­
tion of the self-test, a 16-bit signature, generated
internally as the test result, is output via pins
WDEF, DAT14-DATO. The completion is signalled
by providing a logic "0" output on pin LC3 as a
completion flag. The signature will remain on the
output pins until the next chip reset. The 82730
will enter an idle state awaiting chip reset and will
not respond to any external inputs until a reset
signal is applied. During the process of pre­
senting the signature onto WDEF, DAT14-DATO,
the signature will also appear briefly on the AD
bus in the form of a bus cycle with two 8-bit
accesses to addresses, AAAAH, AAABH. How­
ever, this phenomenon is only incidental. Pins
WDEF, DAT14-DATO should be used for ob­
serving the signature.

The stand-alone self test includes the testing of
internal address pointer registers. These registers
are not tested when the self test is invoked by
issuing a "Self Test" command. (See under Chan­
nel Commands below). Therefore, the signature
generated during stand-alone self test will be
different from that generated by the "Self Test"
command.

Action

Invoke Stand-Alone Self Test

Force all Outputs to High Impedence State

Force all Outputs to Logic High State

Force all Outputs to Logic Low State
NOP

Figure 6a. Output Pin Forcing and Stand-Alone Self Test Invocation

7-155 210931-004

82730

82730 CHANNEL COMMANDS

Table 3. Channel Commands

COMMAND

1 START DISPLAY

2 START VIRTUAL DISPLAY

3 STOP DISPLAY

4 MODE SET

5 LOAD CBP

6 LOAD INTMASK

7 LPEN ENABLE

8 READ STATUS

9 LD CUR POS

0 SELF TEST

1 TEST ROW BUFFER

2 NOP

3 (RESERVED)

The system processor issues channel commands
to 82730 via the Command Block. The processor
first checks if the BUSY flag in the command
block has been cleared. It should wait for the
BUSY flag to be cleared before proceeding with
the issuing of a command. When the BUSYflag is
cleared, the processor places a command byte in
the "COMMAND" location in command block,
sets the BUSY flag to a non-zero value and asserts
Channel Attention (CA), by activating the CA
input to 82730. A Channel Attention should not be
issued, if the BUSY flag has not been cleared.

START DISPLAY

0000 0001 CMD Byte

LlSTSWITCH, Auto Linefeed, Max DMA Count
and Cursor Position values are fetched from the
Command Block and stored internally after this
command is received. The BUSY flag. is cleared
and the normal display process is activated.

The MCU fetches strings of data from the memory,
using the parameters LlSTSWITCH, LBASEO and
LBASE1. The data fetched is interpreted as data-

OPCODE

0000 0001 01 H

0000 0010 02 H

0000 0011 03 H

0000 0100 04 H

0000 0101 05 H

0000 0110 06 H

0000 0111 07 H

0000 1000 08 H

0000 1001 09 H

0000 1010 OA H

0000 1011 DB f;i

0000 0000 00 H

From: 0000 1100 DC H
To: 1111 1111 FF H

stream commands or character data to be dis­
played by the Display Generator. The MCU loads
the data into one of the two Row Buffers in the
CRT controller, while the Display Generator
displays the data from the other buffer, the buffers
being swapped at the end ofthe row. Any data­
stream commands encountered during data fetch
are immediately executed.

The display process is continued until it is deacti­
vated by a STOP DISPL.AY command or a Reset.
Other channel commands can be issued while a
display is in progress and they will be executed
when CA is found active at one of the periodic
samplings at each end of frame.

The DIP (Display in Progress) status bit is set and
the VDIP (Virtual Display in Progress) is cleared
upon receiving a START DISPLAY command.
Both bits are reset upon receiving a STOP DIS­
PLAY command or a Reset.

It is necessary to load in proper mode information
through a MODESET command before activating
the display. Following Reset, START DISPLAY
command will not be executed, i.e., will result in a
NOP until a MODESET command has been
issued.

7-156 210931·004

82730

START VIRTUAL DISPLAY

0000 0010 CMD Byte

LlSTSWITCH, Auto Linefeed, Max DMA Count
and Cursor Positions are fetched from the
Command Block and stored internally upon re­
ceiving this command. The BUSY flag is cleared
and the Virtual Screen display process is activated.

The operation of Vi rtual Screen display process is
similar to that of a regular display process, except
for following a different data access mechanism.
The parameters LlSTSWITCH, LBASEO and
LBASE1 in the command block represent AC­
CESS SWITCH, ACCESS BAS EO and ACCESS
BASE1 respectively, in virtual screen display.

The VDIP (Virtual Display in Progress) status bit
is set and the DI P status bit is cleared upon
receiving a START VIRTUAL DISP command:
Both DIP and VDIP are reset upon receiving a
STOP DISPLAY command or a Reset.

START VIRTUAL DISPLAY command will not
activate a display and results in a NOP until a
MODESET command is issued after a Reset.

STOP DISPLAY

0000 0011 CMD Byte

The display process is deactivated upon receiving
this command. The DIP and VDIP status bit are
reset and the BUSY flag is cleared.

This command blanks the display. HSYNC and
VSYNC are not affected.

MODESET

0000 0100 CMD Byte

The Mode Pointer contained in command block
location (CBP + 30) is used to access the Mode
Block and the modes are fetched sequentially
and loaded into the corresponding internal regis­
ters in 82730. LlSTSWITCH, Auto Linefeed, Max
DMA Count and Cursor Positions are fetched
from the Command Block and stored internally
upon completion and the BUSY flag is cleared.

The organization of mode words in the mode
block and the parameters supplied by them are
shown below (See Figure 10). Some of these
parameters which are critical to the operation of a

text coprocessor are required to remain un­
changed over most of normal operation. No
provision is made to prevent MODESET from
changing these parameters and it is left to the
designer to insure that they are not changed.

The modes provide horizontal and vertical mode
display parameters, interlace information, DMA
burst and spacing specifications, cursor charact­
eristics as well as attribute enables and bit­
selects. Typically, this would be the first command
issued after initialization. The Mode Block pro­
vides all the parameters needed for a complete
initialization of the 82730 for display. Thus a
single Modeset command can fully initialize the
chip. Note that until the first Modeset command is
sent, certain functions such as VSYNC and
HSYNC are not enabled.

It is necessary to set up proper mode information,
before activating a display. Therefore, a display
activating commands should not be issued unless
proper mode information has been loaded through
a MODESET command. START DISPLAY and
START VIRTUAL DISPLAY commands will result
in a NOP if a MODESET command has not been
issued since the most recent Reset.

LOAD CBP

0000 0101 CMD Byte

The address pointer"NEW CBP" contained in the
command block is fetched and stored in the CBP
register in the text coprocessor, replacing the old
CBP. This effectively moves the command block
in the memory. The Command byte from the new
Command Block is fetched and the specified
channel command is executed. The BUSY flag in
the new Command Block is cleared upon com­
pletion.

LOAD INTMASK

0000 0110 CMD Byte

The interrupt mask contained in location "INT
MASK" in the command block is fetched and
stored internally in the CRT controller. When a
particular mask bit is set, the interrupt is disabled
for a status bit inthe corresponding bit position.
An interrupt is generated by the text coprocessor
by activating the SINT pin, if a status bit is 1 and
the corresponding bit in the interrupt mask is O.
The BUSY flag is cleared upon completion.

7-157 210931-004

inter 82730

Interrupts can be enabled for the following status bits.

7 6 5 4 3 2 1 a BIT
RDC RCC FDE EOF DBOR LPU DUR STATUS WORD

ROC: Reserved Datastream Command Encountered
RCC: Reserved Channel Command Executed
FOE: Frame Data Error (Fetching characters past physical End of Frame)
EOF: End of "n" frames (Logical end of nth frame)

DBOR: Data Buffer Overrun (Row Buffer filled completely without
encountering END OF ROW command)

LPU: Light Pen Update
OUR: Data Underrun (Buffer swap initiated before finishing Row Buf

loading)

READ STATUS LD CUR POS

0000 1000 CMD Byte

The internal status register is written to"STATUS"
location in the command block. The status
register is then cleared, however DIP and VDIP
status bits are not cleared. LlSTSWITCH. Auto
Linefeed, Max DMA Count and Cursor Posi­
tions are fetched from the Command Block and
stored internally. The BUSY flag is then cleared.

STATUS WORD

0000 1001 CMD Byte

Thedisplay row and column positions of cursors
1 & 2 as set in locations "CUR1 ROW," CUR1
COL;' "CUR2 ROW" and "CUR2 COL" in the
command block are loaded into internal regis­
ters in the CRT controller. Also LlSTSWITCH
Auto Linefeed and Max DMA Count are loaded
from the Command Block and the BUSY flag is

15-9 8 7 6 5 4 3 2 a
I· - VDIP DIP RDC RCC FDE EOF DBOR LPU DUR

LPEN ENABLE

0000 0111 CMD Byte

The Light Pen detection process is enabled to
search for a rising edge on the LPEN pin. The
BUSY flag is then cleared.

If the display process is active and a rising edge
is detected on the LPEN input, the corre­
sponding row and column position on the
screen is stored internally. At the next end of
frame, the LPEN position is written to locations
"LPENROW" and "LPENCOL" in the command
block and the LPU (Light Pen Update) status bit
is set.

If the display process is not active, this com­
mand has no immediate effect. However, the
LPEN detection process remains enabled and
will take effect if a display is activated subse­
quently.

cleared. This command is used to change the
cursors only. Note that the cursor positions are
also updated with the execution of other channel
commands.

The cursor characteristics for display are defi ned
by the mode. During the display process, a
cursor will be displayed accordingly at the
position specified above. .

TEST COMMANDS

The test commands for the 82730 are issued in
the same manner as the normal channel com­
mands. However, the parameters used by test
commands are different from those used by the
channel commands in normal operation. There­
fore, a Test Block which is similar in format to the
Command Block is defined. Switching between
Command Block and Test Block is accomplished
using the "Load CBP" command. The Test Block
differs only in the parameter locations associated

7-158 210931-004

82730

with the command. The locations for New CPB,
command byte and busy flag are the same for
both Command Block and Test Block. The "Test
Result" location in Test Block corresponds to the
"Status" location in Command Block.

The test commands can be executed, following
chip reset, only until the first Modeset command
is issued. Once a Modeset command has been
executed following chip reset, any subsequent
test commands will not be executed and will
result in a NOP.

"Self Test" Command

0000 0010 CMD Byte

A built-in Self test is performed using an internal
test pattern. The signature generated during the
test is written to the Test Result location (TBP+18)
in the Test Block. The Busy Flag in the Test Block
is then cleared. The Self Test command must be
immediately preceded by a chip reset in order to
ensure a consistent signature.

The Test Block format for issuing the Self Test
command is shown in Figure 6b.

"Row Buffer Test" Command

0000 1011 CMD Byte

The Load Pointer in Test Block is fetched. It
points to the system memory area storing the test
pattern to be used for testing the on-chip RAM
(i.e. - the Row Buffers). The Store Pointer, which
points to memory area where the data read back
from the RAM will be written, is also fetched from
Test Block.

Successive words are fetched from memory and
written to the Row Buffer, until it is completely
filled. Note that three extra words beyond the
maximum Row Buffer capacity will be fetched. If
N = Max Row Buffer capacity, (N+3) words will be
fetched from memory. The extra words fetched
will be ignored. The Row Buffer contents are
then read back and are written to successive
locations in memory area pointed to by the Store
Pointer. The test is then repeated on the second
Row Buffer. Note that the (N+4)th word in the
pattern stored in memory constitutes the first
word written to the second Row Buffer. The data
storage for the Row Buffer test patterns is illus­
trated in Figure 6c.

15 8 7
BIT
o TEST BLOCK

PARAMETER

LOCATIONS

NOT USED

FOR SELF TEST

COMMAND

COMMAND BUSY

NEW CBP LOWER

NEW CBP UPPER

TEST RESULT

Figure 6b. Test Block Format for "Self Test" Command
(For both 16-bit and 32-bit addressing modes)

7-159

POINTER (TBP)

TBP+2

TBP+4

TBP+6

TBP+8

TBP+1Q

TBP+12

TBP+14

TBP+16

TBP+18

210931-004

82730

Internally, the Row Buffers are 17-bits wide, while
the data path is 16-bits wide. During the writing of
data to Row Buffers, a complement of bit 15 is
written to bit 16 of the Row Buffer in order to test
all 17 bits. During the read back, two data words
are stored in system memory for each location in
the Row Buffer. The first word will consist of bits
0-15 read from the Row Buffer, while the second
word will consist of bits 0-14 and bit 16 from the
Row Buffer. Thus a total of 4*N words will be
stored back in system memory as a result of the
Row Buffer Test (2*N for each Row Buffer).

LOAD POINTER········ WORD 1

WORD2

WORD3

WORD n

WORD n+3

WORD n+4

WORD n+5

WORD 2n+2

WORD 2n+3

WORD 2n+6

A signature is generated during the test and is
written to Test Result location in Test Block upon
completion. The BUSY flag in the Test Block is
then cleared.

The Test Block format for issuing the Row Buffer
Test command is illustrated in Figures 6d.1 and
6d.2. Note that the locations for Load Pointer and
Store Pointer parameters are different for 16-bit
and 32~bit ~ddressing modes.

n WORDS

n WORDS

TEST PATTERN

FOR ROW BUFFER 1

TEST PATTERN

FOR ROW BUFFER 2

n = MAX ROW BUFFER

CAPACITY

Figure 6c. Data Storage for Row Buffer Test Command

7-160 210931-004

82730

. 15 8 7
BIT
o TEST BLOCK

15

COMMAND BUSY

(RESERVED)

LOAD POINTER LOWER

LOAD POINTER UPPER

STORE POINTER LOWER

STORE POINTER UPPER

(RESERVED)

NEW CBP LOWER

NEW CBP UPPER

TEST RESULT

POINTER (TBP)

TBP+2

TBP+4

TBP+6

TBP+8

TBP+10

TBP+12

TBP+14

TBP+16

TBP+18

Figure 6d.1 Test Block Format for "Row Buffer Test" Command
(32-bit addressing mode)

BIT
8 7 0 TEST BLOCK

COMMAND BUSY POINTER (TBP)

(RESERVED) TBP+2

(RESERVED) TBP+4

LOAD POINTER TBP+6

(RESERVED) TBP+8

STORE POINTER TBP+10

(RESERVED) TBP+12

NEW CBP LOWER TBP+14

NEW CBP UPPER TBP+16

TEST RESULT TBP+18

Figure 6d.2 Test Block Format for "Row Buffer Test" Command
(16-bit addressing mode)

7-161

NOP

0000 0000 CMD Byte

LlSTSWITCH, Auto Linefeed, Max DMA Count,
and Cursor Positions are fetched from the com­
mand block and stored internally as in all other
channel commands. TheBusyflag is then cleared.

210931-004

82730

82730 DATASTREAM COMMANDS

Datastream Commands

Datastream Commands are commands embed­
ded in the data fetched from memory by the
data access task. These commands are differ­
entiated from character data by the command
bit. The most significant bit (MSB) of each data
word is designated as the command bit. If the
com mand bit is "1 ", the lower 15 bits of the data
word are interpreted as a datastream command,
while if the command bit is "0" the lower 15 bits
(or 7 bits if DTW16=0) are interpreted as char­
acter data.
Datastream Command Operation

During the data access task, the Micro Controller
Unit (MCU) examines the command bit of each
data word fetched. If the command bit is 1, it
executes the datastream command specified in
the data word. Otherwise, it stores the lower 15

Datastream Command List

bits of the data word in the Row Buffer as
character data. This process is repeated for
each data word fetched.

Datastream commands can be used for changing
Row Characteristics on a row by row basis, for
carrying out editing functions and for format­
ting data into rows and frames. These com­
mands are executed by the MCU immediately
after they are encountered. As a convenience
for the user, the set of all possible command
codes starting with "11" in the two most signif­
icant bits has been designated as NOP com­
mands. The user can use these command codes
for any desired purpose. All other command
codes which are not presently defined, are
reserved for future expansion and should not be
used by the user. The currently undefined
codes cause the RDC (Reserved Datastream
Command) status bit to be set and also generate
an interrupt, if enabled. Reserved command
codes should not be used.

Table 4. 82730 Datastream Commands

COMMAND CODE
COMMAND OP CODE

OP CODE PARAMETERS
,

1 ENDROW 1000 0000 XXXX XXXX 80
2 EOF 1000 0001 XXXX XXXX 81
3 END OF STRING & END OF ROW 1000 0010 XXXX XXXX 82
4 FULROWDESCRPT 1000 0011 lin" 83
5 SL SCROLL STRT 1000 0100 XXX SCR LINE 84
6 SL SCROLL END 1000 0101 XXX END LINE 85
7 TAB TO n 1000 0110 lin" 86
8 LD MAX DMA COUNT 1000 0111 COUNT 87
9 ENDSTRG 1000 1000 XXXX XXXX 88

10 SKIP n 1000 1001 lin" 89
11 REPEAT n 1000 1010 lin" 8A
12 SUB SUP n 1000 1011 "n" 8B
13 RPT SUB SUP n 1000 1100 "n" 8C
14 SET GEN PUR ATTRIB 1000 1101 GPAOP 8D
15 SET FIELD ATTRIB 1000 1110 XXXX XXXX 8E
16 INIT NEXT PROCESS 1000 1111 XXXX XXXX 8F

(Command process command)
17 (RESERVED) 10XX XXXX XXXX XXXX 90-BF
18 NOP 11XX XXXX XXXX XXX X CO-FF

7-162 210931-004

82730

The preceding commands are recognized as
valid datastream commands. The corresponding
command codes are also indicated. It should be
noted that the most significant bit of the command
bit is always 1, in order for the word to be
interpreted as command.

The "Init Next Process" command can be issued
only through a command process in Virtual
Screen Display. It is included in this list because
its operation is analogous to a datastream com­
mand in a virtual screen access environment.
Also, in virtual screen display certain datastream
commands are interpreted differently, depending
upon whether they are encountered in a process
datastream or as command process commands.
When a command is ignored (becomes a NO-OP)
in a virtual display, any parameters that are asso­
ciated with it are also ignored. The command
process command operation is discussed separ­
ately. The operation of all other datastream com­
mands is described below.

ENDROW
15 14 8 7 a
·1 000 0000 xxxx xxxx

This command signifies that no more charac­
ters will be loaded in the Row Buffer for this row
and an End of Row indicator is stored according­
ly. When the row currently being loaded is
displayed, the Display Generator (DG) will blank
the screen from the end of row character position
until the physical end of row.

The Micro Controller Unit (MCU) stops fetching
data and waits for DG to swap the Row Buffers.
The data access task is resumed following the
buffer swap. If a physical end of frame is reached
while the MCU is waiting for a buffer swap the
MCU ceases to wait and executes an EOF (End of
Frame) command.

In virtual display, this command is interpreted as a
VEOR (Virtual End of Row) if encountered in a
virtual process datastream.

VEOR
ENDROW command in a virtual process data­
stream is interpreted' as VEOR (Virtual End of
Row) and it terminates a virtual row. The current
LPTR is stored in the process header addressed
by the "Process Addr" register. The Max Count
register is also stored in the Max DMA Count
location in the process header. Similarly, the Field
Attribute Mask is also stored in the header. In

7-163

addition, in auto linefeed mode (ALF = 1) other
parameters characterizing the process state are
also saved in the header. The "Process Addr"
register is loaded with the address of the header
of the next process fetched from the Access table.
The "Access Tab Addr" register is post-incremented
by two if a 16-bit addressing option is used and by
four if 32-bit addressing is used. The data access
task is then resumed for the next process.

EOF
15 14 8 7 a

000 0001 xxxx xxxx
This command (End of Frame) signifies that no
more characters will be loaded in the Row Buffers
for this frame. The Micro Controller Unit (MCU)
stops fetching data words and waits for the
physical end of frame. If a virtual display is in
progress, this command is interpreted as VEOS
(Virtual End of Frame), if encountered in a virtual
process datastream.

The Display Generator (DG) swaps the row
buffers at the end of the current display row and
starts displaying the row containing the EOF
command. When the character preceding the
EOF command is displayed, the DG blanks the
screen until the physical end of frame. The MCU
fetches the Status Row data then waits until its
display is completed. It then performs the actions
described below.

If LPEN has been enabled and a rising edge on
the LPEN input has been detected, the LPENROW
and LPENCOL positions in the command block
are updated and the LPU status bit is set. If a
Channel Attention has occurred, i.e., if CA has
been activated, the command byte is fetched
from command block and the specified channel
command is executed. If the command issued is a
"Stop Display" command, the MCU will terminate
the display process and wait for the next channel
attention. Otherwise, the MCU resumes the data
access task by reinitializing pointers for the new
frame and continues to fill the Row Buffers.

VEOF
EOF command in a virtual process datastream is
interpreted as VEOF (Virtual End of Frame). 'It
provides for reinitialization of LPTR using LlST­
SWITCH, LBASEO and LBASE1 for each process,
analogous to the automatic reinitialization of
LPTR at each end of frame in a Normal Display.

210931-004

lPTR forthe current process is reinitialized using
LlSTSWITCH, LBASEO and LBASE1 contained
in the process h.eader. The End of Display (EOD)
bit in the header is set to 1. The current process is
terminated as in a VEOR and the next process in
Access Table is accessed.

EOl

15 14 8 7 o
1 000 0010 XXXX XXXX

The EOl (End of Line) command has a combined
effect of NXTROW and NXTSTRG commands. All
the actions performed in a END OF ROW com­
mand are carried out. In addition a END OF
STRING command is executed before resuming
the data access task. Thus, following the end of
row, the data access is continued with the next
data string. In virtual process datastream, this
command has the combined effect of VEOR and
END OF STRING.

82730

FUlROWDESCRPT

15 14 8 7 o
1 000 0011 n

The next "n" words fetched from memory are
loaded into the Row Characteristics holding
registers. "n" is specified by the lower order byte
of the command word and should be between 0
and 7.
The parameters loaded by this command will be
used to define the row characteristics at the time
the row currently being loaded is displayed. The
data words defining these characteristics which
follow the FULROWDESCRPT command must
be ordered and organized in memory in a specifc
format. The format for FULROWDESCRPT para­
meters is shown below in Figure 6e starting with'
"Lines Per Row" as the first parameter loaded.
This command will be ignored if encountered in a
virtual process datastream. The MSB of all the
parameters must be zero for proper operation in
virtual display.

Upper Byte lower Byte
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Lines per row
Normal Start/Stop
Superscript Start/Stop
Subscript Start/Stop
Cursor 1 Start/Stop
Cursor 2 Start/Stop
Underline Line Selects

RVV BLK DBL W
ROW ROW HGT DEF

NRMSTRT
SUPSTRT
SUBSTRT

CUR1STRT
CUR2 STRT

UL2 LINE SEL

RVV ROW, when this bit is set the CRVV pin will be inverted for the next full row.
BLK ROW, when this bit is set the row will be blanked (BLANK high).

LPR
NRMSTOP
SUPSTOP
SUBSTOP

CUR1STOP
CUR2STOP

Ul1 LINE SEL

DBLHGT, when the double height bit is set, all character are displayed with twice the scan lines per row.
WDEF, when the width defeat bit is set, the WDEF pin is activated for the entire row.

The following can be programmed from 0 to 31 yielding a range of 1 to 32 lines.
LPR specifies number of lines per row.
NRMSTRT, SUPSTRT, SUBSTRT specify" line numbers in a display row which mark the start of

normal, superscript and subscript characters respectively.
NRMSTOP, SUPSTOP, SUBSTOP specify line numbers in a row where normal, super script and

subscript characters .end respectively.
CUR1 STRT, CUR2 STRT specify the starting line numbers in a row for cursor 1 and cursor 2

respectively.
ULlNE1 SEL, ULlNE2 SEL specify the line numbers in a row where underline 2 will appear

respectively.

All FULROWDESCRPT parameters affect the row in which they are programmed and stay in effect
until changed by another FULROWDESCRPT command.

Figure 6e. Format for FULROWDESCRPT

7-164 210931-004

82730

SL SCROLL STRT

15 14 8 7 5 4 0

000 0100 xxx SCR LINE

The Slow Scan register in 82C3 is loaded with the
scroll line specified by the five least significant
bits of the command word. When the row cur­
rently being loaded is displayed, the line countfor
that row will start with the value specified by the
Slow Scan register. A "Margin" (MGN) parameter,
loaded by MODESET, specifies the number of
blank lines plus one to be added at the top of the
slow scroll field on the screen. This ensures the
availability of sufficient DMA time for fetching the
next row, when only a small number of scan lines
are displayed in the top row of slow scroll window.
This command is used for starting a slow scroll.
(Note: MGN = 0 results in no margin buffer lines)

This command will be ignored if encountered in a
virtual process datastream or if a SL SCROLL
END command is encountered later on the same
row.

SL SCROLL END

15 14 8 7 5 4 0
000 0101 xxx END LINE

The scroll location in row characteristics holding
registers is loaded with the number of lines
specified by the five least significant bits of the
command word. This number specifies the num­
ber of lines to be displayed when the row currently
being loaded is displayed. This is used instead of
the regular LPR (Lines Per Row) characteristics,
for this particular row. This command is used in
the last row of a slow scroll for termi nating a slow
scroll. The Margin (MGN) parameter, loaded by
MODESET, is used in the same way as in slow
scroll start except that the specified number of
blank lines are inserted at the bottom of the slow'
scroll in this case. This command will be ignored
if encountered in a virtual process datastream or
if followed by a SL SCROLL STRT on the same
row.

TAB TO n

15 14 8 7 o
000 0110 "n"

The lower byte of the command word specifies
the column (RCLK count) after SYNCSTRT at
which a Tab should occur. At display time, after
the character preceding the Tab command is

7-165

displayed, the screen is blanked until the RCLK
count specified by the command ("n") is reached.
After reaching the specified count, display is
resumed by displaying the character following
the TAB command.

If the RCLK count specified by the Tab command
has already occurred before beginning the
blanking for Tab, the display will be blanked until
the end of the row.

This command is ignored, if encountered in a
virtual display process datastream.

LD MAX DMA COUNT

15 14 8 7 o
000 0111 MAX COUNT

The Max Count register in 82730 is loaded with
the Max DMA Count specified by the lower byte
of the command word. The DMA Counter is also
reinitialized with the Max Count value in the
Command Block after all channel commands.

MAX DMA Count is programmable in the range of
1 to 256 (MAX COUNT value 0 equals 256). How­
ever, counts greater than the row buffer capacity
will cause row buffer overruns if the data strings
depend on MAX DMA to terminate the fetching.

The DMA counter is decremented for each data
word as the Row Buffer is being loaded. Data­
stream~commands and words supplying para­
meters for datastream commands as in FULROW­
DESCRPT, are not counted. Superscript/Subscript
characters are counted in pairs, i.e., a pair of
characters causes only one count.

In virtual screen display, every time a new process
is accessed, the DMA counter is initialized with
the Max DM.A Count contained in the process
header. This value is also stored in a Max Counter
register.

At virtual end of row (VEOR) the Max Count
register is written to the process header. The "LD
Max DMA Count" command is ignored if encoun­
tered in a virtual process datastream.

ENDSTRG

15 14 8 7 o
1 000 1000 XXXX XXXX

The SPTR register in the 82730 is loaded with a
new String Pointer (SPTR) value fetched from the
memory location indexed by the List Pointer
(LPTR), which is stored in the LPTR register. The

210931-004

82730

LPTR register is incremented by two if a 16-bit
addressing option is used and by four if 32-blt
addressing is used. When more than one 82730 Is
connected in a cluster, each of them adds an
offset, determined by its position in the cluster, to
the pointer fetched from memory, before storing
it in its SPTR register.

This command directs the data access tothe next
data string in the list of strings indexed by LPTR.
The operation of this command is identical for a
Virtual or Normal Display. In virtual display, the
next data string within the current display pro­
cess is accessed.

SKIPn
15 14 8 7 o

000 1001 n

The next "n" data words fetched from memory are
ignored. "n" is specified by the lower byte of the
command word and is programmable from 0 to 255.
If n equal to 0 is specified, no words are skipped.
Any datastream commands encountered in the data
fetch are not counted towards these n words. Also
parameters following the datastream command as
in FUlROWDESCRPTare not counted. All embedded
datastream commands are executed with the follow­
ing exceptions.

If a Tab To N data stream command is encountered
during the execution of a Skip N command, the Tab
command will result in a Nap, i.e. a Tab embedded
in the data to be skipped will be ignored.

If an EOl (End Of Line) data stream command is
encountered during the execution of a Skip N
command, it will be executed with the following
effect. In non-auto line feed mode, (AlF = 0) the
EOl command has the combined effect of End Of
Rowand End Of String commands. In auto line feed
mode, (AlF = 1) the EOl command has the effect of
an End Of String command only.

If the data words skipped include any superscript­
subscript characters, they are skipped in pairs and a
pair of characters is counted as only one count in
"n". If another skip command is encountered its
value of "n" is added to the present skip count and
skipping continues.

REPEAT n

15 14 8 7 o
000 1010 n

The next data word (byte, if DTW16=0) fetched
from memory is stored in the Row Buffer "n"
times, where "n" is specified by the lower byte of
the command word. "n" is programmable from 0

7-166

to 255. If n equal to 0 is specified no repetitions
will occur, and the word following the Repeat n
command will be ignored. This character will
eventually be displayed n times. The DMA counter
is also made to count n times. In non-auto

linefeed mode (ALF= 0), reaching Max DMA
Count before the n repetitions are completed will
result in a termination of the Repeat n command.
This command will also be terminated if the Row
Buffer gets filled completely before the n repe­
titions are completed.

It should be noted that the data word immediately
following the Repeat n command is treated .as
character data, irrespective of the value of its
command bit.

SUP/SUB n

15 14 8 7 o
000 1011 n

The next "n" pairs of data words (bytes, if DTW16
= 0) fetched from memory are treated as super­
scripts or subscript characters. "n" is specified by
the lower byte of the command word. These n
pairs are assumed to be ordered with the super­
script preceding the subscript.

No datastream commands are permitted in the 2n
words following this command. Allofthese words
are interpreted as superscript-subscript pairs.
The DMA counter is made to count only once for
each pair of characters .. In non-auto linefeed
mode (AlF=O), reaching the Max DMA Count will
result in a termination of this command. If n equal
to zero is specified, no action will result.

RPT SUB/SUP n

15 14 8 7 o
000 1100 n

The operation of this command is similar to that
of the "Repeat n" com mand except that the pai r of
characters following the "RPT SUB/SUP n" com­
mand is repeated n times. "n" is specified by the
lower byte of the command word and is pro­
grammable from 0 to 255. If n equal to zero is
specified, no repetitions will occur, ·and the two
data words following the "RPT Sub/Sup n" com­
mand will be ignored. The two data words (bytes,
if DTW16=0) immediately following the command
word are interpreted as a superscript-subscript
pair and are repeated. The DMA counter is made
to count only once for each repetition of the Pllir.
In non-auto linefeed mode (ALF=O), reaching
Max DMA Count prior to completion of n repeti­
tions will cause a termination of this command.

ORDER NUMBER: 210931-004

inter 82730

SET GEN PUR ATTRIB

15 14 8 7 o
000 1101 GPAOPERAND

This command provides control over the output
pins assigned to General Purpose Attributes,
GPA1 through GPA4.

GPA
OPERAND

7
GPA4
DATA

6
GPA4

EN

5
GPA3
DATA

Datastream Command Conventions

The reaching of Max DMA Count, encountering
of terminating commands such as ENDROW,
EOF, etc. and occurrences of these while exe­
cuting a "skip n" command give rise to various
possible combinations of events. The behaviour
of 82730 under these circumstances is described
below:

4 3 2 0
GPA3 GPA2 GPA2 GPA1 GPA1

EN DATA EN DATA EN

ENCODING GPAx GPAx
DATA

0
1
0
1

The GPA in the Process Header is updated each
time a SET GPA command is executed. Thus the
GPA state in the header is updated to reflect any
changes caused by the "Set Gen Pur Attrib" com­
mand. The GPA command occupies a character
space on the screen. Consequently, a GPA com­
mand is counted as a character towards MAX DMA
count. However, a GPA command nested in a Skip N
or a TAB to N command is skipped, i.e., it has no
effect.

The encoding of the operand, specifying GPA
operation, is sholNn below.

SET FIELD ATTRIB

15 14 8 7 o
000 1110 XXXX XXXX

o FIELD ATTRIBUTE MASK

The word following this command is fetched.
This word is used as a Field Attribute Mask in
storing all subsequent display data words in
row buffer. The bits in the data words fetched
from memory corresponding to the bit positions
containing a "1" in Field Attribute Mask are all
set to 1 before storing the data word in row
buffer. The Field Attribute Mask is used on all
display data words fetched from memory. The
mask register will contain all O's upon reset and
is cleared at the beginning of each frame.

NOP
15 14 8 7 0
1 1XX XXXX XXXX XXXX ---------------------------

No action is taken. The data access task is
resumed by fetching the next data word.

EN
0
0
1
1

7-167

FUNCTION
ROW BUFFER DATA
ROW BUFFER DATA
GPA DATA 0
GPA DATA = 1

i) When Max DMA Count is reached, it has
the effect of a VEOR command if a Virtual
Display is in progress or a ENDROW com­
mand if a Normal Display is in progress. It
also causes an automatic end of string
i.e., the effect of a NXTSTRG command in
non-auto linefeed mode (ALF = 0).

.'i) In non-auto linefeed mode, "Repeat n",
"Sub/Sup n" and Rpt Sub/Sup n" com­
mands are terminated upon reaching a
max DMA count, even if "n" is not reached.

iii) "Skip n" command is terminated if EOF
command is encountered. It is also ter­
minated upon encountering a ENDROW
command in non-auto linefeed mode
(ALF = 0).

iv) "Repeat n" "Sub/Sup n" and "RPT Sub/
Sup n" commands can be nested within a
"Skip n" command. If superscript-subscript
characters are skipped, each pair of char­
acters counts as one skipped character. If
the above commands are encountered
during a "skip n" and if the specified
count (n) in these commands is not
reached by the end of execution of the
"skip n" command, the execution of the
nested command is continued beyond
the termination of "skip n" command until
the remaining portion of the count speci­
fied in the nested com mand is completed.

ORDER NUMBER: 210931-004

inter 82730

VIRTUAL SCREEN MODE
Command Process Commands
In Virtual Screen Display, 82730 accesses dis­
play processes and command processes through
the Access table. The command processes
enable the 1/0 Driver process to direct 82730 to
execute certain data stream commands by in­
serting an appropriate command process
address in the Access table. This capability en­
ables the preservation of uniformity and con­
sistency of operation between normal and virtual
environments, by assigning different inter­
pretations to the command according to the
access environment. It is especially useful for
termination and initialization commands. The
operation of command process commands is
~nalogous to that of data stream commands
except for a different access environment.

Command Process Command List

The commands allowed in command processes
can be divided into two subsets. The first subset
consists of commands that can be issued only
through a command process, while the second

one consists of normal datastream commands
that can also be issued through a command
process. The command code for a datastream
command issued through a command process
is the same as that for the normal datastream
command embedded in the data. However,
certain datastream commands are interpreted
dif(erently when they are issued through a com­
mand process as opposed to embedding in the
datastream of a virtual display process. The
most significant bit (MSB) of the command
word must be a "1". In the datastream, this bit
distinguishes acommand word from character
data. In the process environment, this bit distin­
guishes a command process from a display
process. The commands permitted in command
processes are listed below. No other com mands
will be recognized if encountered in a command
process and will result in a NOP. All undefined
command codes apart from those designated
as NOP are reserved and should not be used.
Encountering an illegal command code causes
the RDC (Reserved Datastream Command)
status bit to be set and will generate an interrupt,
if enabled.

Table 5. Command Process Command List'

INTERPRETATION COMMAND CODE
COMMAND IN VIRTUAL OP CODE

PROCESS OP CODE PARAMETERS
DATASTREAM

Command Process Only Command:

1 INIT NEXT PROCESS NOP 1000 1111 XXXX XXXX 8F

Command Process or Datastream Commands:
2 ENDROW VEOR 1000 1000 XXXX XXX X 80
3 EOF VEOR 1000 0001 XXXX XXXX 81
4 EOL VEOR + NXTSTRG 1000 0010 XXXX XXXX 82
5 FULROWDESCRPT NOP 1000 0011 "n" 83
6 SL SCROLL STRT NOP 1000 0100 XXX "SCR LINE" 84
7 SL SCROLL END NOP 1000 0101 XXX "END LINE" 85
8 TAB TO n NOP 1000 0110 "n" 86
9 LD MAX DMA COUNT NOP 1000 0111 "COUNT" 87

10 (RESERVED) RESERVED 10XX XXXX XXXX XXXX 90-BF
11 NOP NOP 11XX XXXX XXXX XXXX CO-FF

210931-004

7-168

82730

INIT NEXT PROCESS

15 14 8 7 o
1 000 1111 XXXX XXXX

This command can be used only in a command
process to initiate a virtual display "window".

not directly loaded from the LPTR location in the
process header. Instead, LlSTSWITCH in the
process header is examined and LPTR is initial­
ized with the value LBASE 0 or LBASE 1 depend­
ing upon whether LlSTSWITCH is 0 or 1 respec­
tively. Both LBASEO and LBASE1 are contained
in the header.

The process header format is shown in Figure 7.
Also the End of Display Bit (EOD) in the header is
reset. Upon receiving this command, the command

process is terminated and the next process in
Access Table is accessed by fetching the new
process address. However, the LPTR register is

The data access task for a virtual display is then
resumed, with this value of LPTR.

15 14 13 8 7 6 0 LOCATION
0 ---- EOD ---- PROCESS ADDR

LS: LlSTSWITCH ---- LSALF PROC ADDR + 2
ALF: AUTO LINE ---- MAX DMA COUNT PROC ADDR + 4

FEED LBASEO LOWER PROC ADDR + 6

LBASEO UPPER PROe ADDR + 8

LBASE 1 LOWER PROC ADDR + 10

LBASE1 UPPER PROe ADDR + 12

1 ---- GPA PROe ADDR + 14
1 FIELD ATTRIBUTE MASK PROC ADDR + 16

LPTR LOWER PROC ADDR + 18

LPTR UPPER PROC AD DR + 20

SPTR LOWER PROC AD DR + 22

SPTR UPPER PROC ADDR + 24
SAVE RPT
AREA SIS SIS RPT -- REPT COUNT PROC ADDR + 26

1 REPT CHAR PROC ADDR + 28

l' REPT CHAR 2 PROC ADDR + 30

15 14 8 7 o
PROCESS ADDR COMMAND

C/D

Figure 7. Process Header for Display and Command Process

7-169
210931-004

82730

ENDROW

15 14 8 7 a
000 0000 XXXX XXXX

The actions performed by a ENDROW data­
stream command in a Normal Display are
carried out. The next process in Access Table is
accessed and the data access task is resumed,
after the next Row Buffer swap

'EOF

15 14 8 7 a
000 0001 XXXX XXXX

The actions performed by an EOF (End of
Frame) data stream command in a Normal
Display are carried out.

EOl

15 14 8 7 a
000 0010 XXXX XXXX

This command is identical to ENDROW com­
mand in Virtual Display in Command Process
environment. ENDSTRG, which is strictly a data
operation within a display process is meaning­
less in the command process environment.

FULROWDESCRPT

15 14 8 7 a
000 0011 "n"

The actions performed by the FULROWDES­
CRPT datastream command are carried out.
The data access task is resumed by accessing
the next process in the Access Table.

SL SCROLL STRT

15 14 8 7 5 4 a
1 000 0100 xxx "SCR LINE"

The same actions as the SL SCROLL STRT
datastream command. The data access is
resumed with the next process in Access Table.

SL SCROLL END

15 14 8 7 5 4 a
000 0101 xxx "END LINE"

The actions performed by a SL SCROLL END
datastream command, in a Normal display, are
carried out. The data access task is resumed
with the next process in Access Table.

TAB TO n

15 14 8 7 a
000 0110 "n"

The effect of this command process command
is identical to that of the TAB TO n datastream
command. The TAB can be used to establish the
left edge of a virtual display "window".

LD MAX DMA COUNT

15 14 8 7 a
1 000. 0111 MAX COUNT

The Max Count register on 82730 is loaded with
the value specified by the lower byte of the
command word. The DMA counter is also initial­
ized with this Max Count Value.

The next process in the Access Table is accessed.
However, the Max DMA Count value in the
process header is not used for initializing the
DMA counter. Instead, the DMA counter as
initialized by the LD Max DMA Count command
is used for this process. The virtual display data
access task is then resumed normally. When the
process is terminated, the new Max Count value
is written to the process header. Thus the Max
Count value in the header is updated as a result
of this command.

NOP

15 14 8 7 a
1XX XXXX XXXX XXXX

No action is taken. Data access task is resumed
by fetching the next process address from
Access Table.

ERROR AND STATUS HANDLING

Error Conditions

Since the MCU and DG function asynchronous­
ly with respect to each other, different relative
timings in MCU and DG operation are possible,
some of which result in error conditions. The
lack of appropriate termination commands for
row or frame data in the datastream also gives
rise to certain error conditions. These types of
situations occurring in display process oper­
ation are described. below.

In normal operation, DG initiates a buffer swap
at the physical end of a display row. If the MCU
has not finished loading its row buffer by that
time, a "Data Underrun" occurs. This results in

~10931-004
7-170

82730

blanking of the screen until physical end of frame
by DG and execution of an EOF (End of Frame)
command by MCU. Data underrun also occurs
when the first row of the frame has not finished
loading by the start of the character field. The
entire frame will be blanked in this case.

If a physical end of frame is reached prior to
encountering an EOF datastream command, a
"Frame Data Error" occurs, which results in the
execution of an EOF command by MCU. (Note
that this does not disrupt the visible display
action, and may not constitute an error for certain
data structures. The error indication is included
as a flag where knowledge of this condition is
desired.) Similarly, when the MCU fills up a row
buffer completely, without encountering a END­
ROW command, the "Data Buffer Overrun" flag is
set.

All of the above conditions result in the setting of
an appropriate status bit and generation of an
interrupt if the corresponding interrupt has been
enabled.

15 9 8 7 6 5
(RESERVED) VDIP DIP ROC RCC

Status and Interrupt Handling
A status word is maintained in an internal register
by 82730 and it is written to the "STATUS"
location in command block when the "Read
Status" channel command is executed. The pro­
cessor can th us read status information by issuing
this command. the processor can also enable
interrupts for certain status bits by specifying an
interrupt mask which is loaded in 82730 as a
result of a "Load Int Mask" channel command.
This establishes a communication mechanism
between 82730 and the processor for error and
status reporting.

Status Word
The format for the status word is shown below.
The function of each of the status bits is described
below.

The status bits get set under the conditions
described above. I nterrupts can be enabled for all
status bits except DIP and VDIP bits. The interrupt
status bits are cleared at the beginning of each
new display field. DIP and VDIP bits are cleared
only after receiving a "STOP DISPLAY" command
or a Reset.

All status bits are cleared by a Reset.

7-171

VDIP:
DIP:
RCC:
RDC:
FDE:

Virtual Display In Progress
Display I n Progress
Reserved Channel Command
Reserved Datastream Command
Frame Data Error

OUR: Data Under Run

This status bit is set by Display Generator if the
Microcontroller Unit (MCU) has not finished
loading its Row Buffer when the DG initiates a
buffer swap at the physical end of a display row.
This condition is defined as data underrun and
causes the MCU to execute an EOF command
and the DG to blank the screen until the
physical end of frame.

LPU: Light Pen Update

This status bit is set by the MCU after updating
the LPENROWand LPENCOL locations in com­
mand block. The detection of LPEN input is
enabled by the LPEN ENABLE channel com-

4
FOE

EOF:
DBOR:
LPU:
DUR:

3 2
EOF DBOR

End of Frame
End of Row
Light Pen Update
Data Under Run

o
LPU OUR

mand. The detection of a rising edge on the
LPEN input causes the current row and column
position to be stored internally. The MCU
updates the LPEN ROWand LPEN COL loca­
tions in command block at the next end of frame
and sets the LPU status bit. Further updates of
these command block locations are inhibited
until another LPEN ENABLE command is issued.

DBOR: Data Buffer Over Run

This status bit is set when the MCU tries to fill a
row buffer beyond its capacity. The MCU will
stop fetch i ngcharacters after this point and the
display is blanked following the completion of
the row currently being displayed.

210931-004

82730

EOF: End of Frame

This bit is set by the DG at the physical end of
the nth frame, where 'n' is specified by the
MODESET parameter FRAME INTERRUPT
COUNT. This provides the means for timing
frame related events such as slow scrolls.

FDE: Frame Data Error

This status bit is set by the DG at the physical
end of frame if no EOS datastream command
has been encountered until then. This also
results in the execution of the EOS command
by the MCU.

RCC: Reserved Channel Command

This bit is set by the MCU upon encountering
an illegal datastream or command process com­
mand. This can be used to trap software errors
during program development.

RDC: Reserved Datastream Command

This bit is set by the MCU upon encountering
an illegal datastream or command process com­
mand. This can be used to trap software errors
during program development.

DIP: Display In Progress

This bit is set by the MCU immediately after
receiving a "Start Display" channel command.
It remains set as long as the display process is
active and is reset upon receiving a "Start
Virtual Display" or "Stop Display" command or
a Reset. Interrupts cannot be enabled for this
status bit.

VDIP: Virtual Display In Progress

This bit is set by the MCU immediately after
receiving a "Start Virtual Display" channel com­
mand and is reset upon receiving a "Start
Display" or "Stop Display" command or a Reset.
This bit remains active as long as the virtual
display process is active. Interrupts cannot be
enabled for this status bit.

Interrupt Processing
The system processor can enable interrupts on
any of the status bits, with the exception of DI P
and VDIP bits, by specifying an interrupt mask.
A "1" in a bit position in the interrupt mask
disables (masks out) interrupts on the status bit
located in the corresponding bit position in the
status word. The format for Interrupt Mask is
shown below. The Int Mask can be loaded into
82730 from the INTMASK location in command
block by a "Load Int Mask" channel command.

If the interrupt is enabled for a particular status
bit by programming a "0" in the corresponding
bit position in I NTMASK and if the status bit
gets set during the course of the display, an
interrupt will be generated by 82730 at the next
end of frame. At the end of frame, the 82730 will
first perform the tasks of updating LPEN posi­
tion (if required) and servicing the Channel
Attention (if CA was activated). Then the status
word in the internal register will be written to
the INT GENERATION CODE location in the
Command Block and the SINT output will be
activated. The SINT pin is not deactivated until
an interrupt reset signal is received at the I RST
pin.

82730 continues to perform its normal display
task after activating the SINT pin. If no interrupt
reset is received until the next end of frame then
any new interrupts that might have been gen­
erated at that end of frame will be lost. There­
fore, it is essential for the system processor to
issue an interrupt reset within a frame time after
an interrupt is generated.

When the display is not activated, the only
interrupt that can occur is the Reserved Channel
Command interrupt. Upon receiving an invalid
channel command, 82730 will write the status
word to I NT Generation Code location in the
Command Bl.ock and activate SINT output, if
that interrupt is enabled.

The processor can use the interrupt capability
to get status information from 82730. A possible
interrupt service routine for the system pro­
cessor is shown in flow chart form in Figure 9.

210931-004
7-172

inter 82730

15 7 6 5 4 3 2 0
ROC RCC FOE EOF DBOR LPU OUR

(RESERVED) INT INT INT INT INT INT INT
MASK MASK MASK MASK MASK MASK MASK

INT MASK = 0 Enables the corresponding interrupt.
INT MASK = 1 Masks or disables the corresponding interrupt.

Figure 8. Interrupt Mask

INTERRUPT

READ STATUS FROM
"INT GENERATION CODE"
LOCATION IN CMD BLOCK

PERFORM APPROPRIATE
SERVICE TASKS

ISSUE INT RESET (IRST) SIGNAL
TO 82730

END

Figure 9. Interrupt Service Routine For System Processor

7-173 210931-004

82730

82730 VIDEO INTERFACE

The Mode Pointer in the Command Block points to a parameter block containing the Mode information
required for the display. The organization of the mode words in the Mode Block is shown below.

n ,".M M.", .. ,"" ~ COMM"" "

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 LOCATION

DMA - BURST LENGTH - I BURST SPACE MPTR

- LINE LENGTH HSYNCSTP MPTR =2

HORIZONTAL HFLDSTRT HFLDSTP MPTR=4
MODES

HBRDSTRT HBRDSTP MPTR=6

- - - - - - - - - - - SCROLL MARGIN MPTR=8

- - - - RW BLK,I DBL I W - - - LPR
MPTR= 10 CHAR ROW ROW ROW HGT DEF

CHARACTERISTICS - - - NRMSTRT - - - NRMSTP MPTR= 12

- - - SUPSTRT - - - SUPSTP MPTR = 14

(FULROWDESCRPn - - - SUBSTRT - - - SUBSTP MPTR = 16

- - - CUR1STRT - - - CUR1STP MPTR = 18

- - - CUR2STRT - - - CUR2STP MPTR= 20

- - - U2 LINESEL - - - U1 LINE SEL MPTR= 22

- FIELD ATTRIBUTE MASK MPTR= 24

- - - - - FRAME LENGTH MPTR =26

VERTICAL - - - - - VSYNCSTP MPTR=28

MODES - - - - - VFLDSTRT MPTR= 30

- - - - - VFLDSTP MPTR=32

(RESERVED) MPTR =34

(RESERVED) MPTR= 36
BLINK
CONTROL - DUTYCYC CURSOR BLINK - - - - FRAME INT COUNT MPTR=36

- DUTYCYC CHAR BLINK ILEJRFEJ B BUE CR2 CR1 CR2 CR1 MPTR =40
POL CD CD BE BE

REVERSE VIDEO BLINKING CHAR - - - - CR2 CR1 CR2 CR1 MPTR=42
ATTRIBUTE BIT RW RW OE OE
SELECTS

ABS LINE COUNT INVISIBLE CHAR UNDERLINE 2 UNDERLINE 1 MPTR=44

Figure 10. Mode Block Organization

210931-004
7-174

82730

CAM ARRAYS

Three Content Addressable Memory arrays are
used for generating ti ming parameters to control
the video display: the HORIZ MODE CAM, the
VERT MODE CAM andthe CHAR ROW CAM.
The user has the flexibility to define his own
timing parameters by loading them into the CAM
arrays via the M I U. All of these parameters can be
modified at the end of every frame. All the
parameters in the CHAR ROW CAM, except
MARGIN, are changeable on a row by row basis.
Each of the three CAM arrays is described
separately below:

Timing Sources

RCLK and CCLK inputs are provided by the
external video logic to the 82730. The RCLK is
used to increment the HORIZ COL CNTR and
hence generates all horizontal timing parameters.
CCLK is used to clock the character and attribute
data output from the 82730 to the external display
dot logic. Data changes on the positive going
edge of RCLK or CCLK.

Initialization

Upon activation of the RESET input, the 82730
display generator will stop all operations in pro­
gress and deactivate all outputs. It will stay in this
quiscent state until the MI U executes the MODE­
SET command. The following table shows the
states of all the Display Generator outputs during
and after RESET.

Pin Name Condition
DATO-14 Low
WDEF Low
LCO-4 High

BLANK Low
CSYNC High
CHOLD High
HSYNC Low
VSYNC Low
CRVV Low
RRVV Low

After reset of the 82730, the CAM arrays are in
undetermined states. The CAM arrays are set
upon the execution by the MIU of the MODESET
command. The HORIZ and VERT MODE CAM
contents are especially critical since they are
used to generate timing control signals to the
external video logic. Without the generation of
the timing signals, no display process can take
place. Hence, START DISPLAY command cannot
be executed before the first MODESET command
after the device reset. The START DISPLAY
command will be ignored if it precedes the
MODESET command.

The row buffers also contain unknown infor­
mation after power up and reset. In executing the
START DISPLAY command, the MIU would first
load the two row buffers with the first two rows of
character data to be displayed. Upon completion
of loading of both buffers, it will signal the DG to
begin the display process. In this way, only ~alid
character data will be output to the external video
logic.

Timing Parameters

The timing parameters read from the MODESET
Block and stored in the VERT MODE GAM and
HORIZ MODE CAM are used to control the video
display and they can be best illustrated in· the
Map of Timing Parameters shown below. All of
these timings have to be defined after power up
and reset and can be changed on a frame by
frame basis during display.

210931-004
7-175

82730

~ ~
1'~ " ~

r--.L----------------L-L--+-IHSYNCSTRTI

BORDER \ '/'''---'-'''\1 -----,----=:::--------,
/ AI; BO'OEA

HBRDSTRT

~
~

..-/ ' l/

~~
n'
!;~
!:+ ! ..

BORDER
HBROSTP

'--__________________ .J.-.LINELEN

Figure 11. Timing Parameters

Row Timing Parameters

The row timing parameters are stored in HORIZ
MODE CAM and are programmable from 0 to 255
RCLK times. These parameters are:

(a) HSYNCSTRT - Horizontal Sync Start. The
RCLK count on each scan line where
HSYNC pin is activated. This parameter is
not programmable. The RCLK period that
follows the rising HSYNC edge is defined
as column zero. It is used as the reference
for all other horizontal timing parameters.

(b) HSYNCSTP - Horizontal Sync Stop. The
RCLK count on each scan line where the
HSYNC pin is deactivated. The falling edge
of HSYNC occurs at the leading edge of the
programmed RCLK period.

(c) LlNELEN - Line Length. This parameter
defines the total number of RCLK's in each
scan line including display time, border
and horizontal retrace time. There are
LlNELEN + 1 RCLK periods per horizontal
line scan.

(d) HBDRSTRT - Horizontal border start. The
RCLK count on a scan line where the
border begins. The border begins at the
leading edge of the programmed RCLK
period.

7-176

(e) HBDRSTP - Horizontal Border Stop. The
RCLK count on a scan line where the
border ends. The border terminates at the
leading edge of the programmed RCLK
period.

(f) HFLDSTRT - Horizontal Field Start. The
RCLK count on a scan line where the
character display field begins. If the row
buffer is ready to be displayed, the CSYN
pin will be deactivated at this point. This
field begins at the leading edge of the
programmed RCLK period.

(g) HFLDSTP - Horizontal Field Stop. The
RCLK count on a line where the character
display field stops. When this timing
point is reached, CSYN will be activated.
This field ends at the leading edge of the
programmed RCLK period.

There is also one pseudo parameter, SYNCDLY.
It is fixed at one half LlNELEN and is used as
the start and end timing for VSYNC in odd
frames in interlaced displays. VSYNC starts at
HSYNCSTRT in even frames for interlaced
displays and all frames for non-interlaced
displays.

210931-004

82730

There are certain restrictions in the programming
of HFLDSTRT and HFLDSTP and those restric­
tions are best illustrated below. There has to be at
least 4 RCLKS in between HFLDSTRT and
HFLDSTP of the same scan line and 15 RCLKS in
between HFLDSTP of one line and HFLDSTRT of

Ii: 11.
l- I-
m 4 m 15

the next. The minimum delay of 15 RCLKS is for
the charging of the pipeline from the row buffer to
the character data output DATO-DAT14 as well as
the setting of the correct value for the scan line
output LCO-LC4.

I-a: 11.
l- I-
m m

c c c C
....I RCLKSI RCLKSII

La.. La.. La.. MIN MIN La..
J: J: J: J:

--
I.

I~ ~I·

J.
~I I

J
LINE 1 LINE 2

Figure 12. Horizontal Timing Restrictions

Frame Timing Parameters

Frame timing parameters are stored in the VERT
MODE CAM and are programmable from 0-2047
scan lines. These parameters are:

(a) VSYNCSTRT - Vertical Sync Start. The line
count where the VSYNC is activated. This
occurs at the end of a field automatically.
This parameter is not programmable. The
rising edge of VSYNC occurs with the
rising edge of HSYNC for all non-interlace
fields and for odd fields in the interlace
mode.

(b) VSYNCSTP - Vertical Sync Stop. The line
count at which the VSYNC pin is normally
deactivated. VSYNC changes at the rising
edge of HSYNC normally. However it occurs
at SYNCDLY at the beginning of odd fields
of an interlaced display.

(c) FRAMELEN - Frame Length. This para­
meter defines the total number of scan
lines per frame. It is used to reset the
FRAME LINE CNTR. In an interlaced dis­
play, FRAMELEN must be an even number.
If an odd number is programmed, one
additional line will occur automatically.

7-177

There will be FRAMELEN + 1 scan lines per
frame. (Note that interlace mode contains
two fields per frame).

(d) VFLDSTRT - Vertical Field Start. Programs
the scan line count where the character
display field begins.

(e) VFLDSTP - Vertical Field Stop. Programs
the scan line count where the regular
character display field ends. VFLDSTP
times the beginning of the Status .Row. The
chan nel attention seq uences, i nterru pt
handling, row buffer swap and intial­
ization for the next frame are started after
the display of the Status Row is completed.
See * below.

(Character Field Boundrydefinition: The starting
or ending event is defined to occur at HFLDSTP
on the scan line following the programmed value.
Thus the visible character field effectively begins
two scan lines below the programmed start value
and ends one scan line below the programmed
stop value.)

210931-004

82730

Status Row
The Vertical Frame Timing Parameters have no
border controls, unlike the Horizontal Row Timing
Parameters. The top and bottom borders can be
replaced with regular display rows that are video­
reversed and contain no data. The top border is
easily timed from VFLDSTRT. The bottom border
is more difficult without help from the Vertical
Timing generators. If there were no help, the user
would have to keep track of the number of scan
lines used in each row to know when to stop
regular display and create the bottom border.
This would also preclude his ending his regular
display with an EOF command before the border.
The 82730 provides this help with the Status Row
feature. The display of the Status row is timed
from VFLDSTP and allows the user to display a
row in a fixed position at the bottom of the screen
that is independent of the regular data and any
display errors (display ended by an EOF com­
mand or the DURN, DBOR, or FDE errors).
(There is one dependency on the regular display
data: the row format. The last FULROWDESCRPT
(FRD) set in the regular data will be used on the
Status Row unless a new command is issued for
the row. It is recommended that the user include
a new FRD command in the Status Row data to
eliminate this dependency).
Status Rowdisplay starts SCROLL MARGIN plus
one scan line after VFLDSTP. This margin is
provided to insure enough DMA time if the
regular display runs up to VFLDSTP. The user can
create a bottom border or any end-of-display row
that he chooses. A display status or system status
line, or special programmable key function de­
finition line can be implemented with this feature.

CHARACTER ATTRIBUTES
The 15 bits of the character word can be parti­
tioned into character address and attribute bits.
Some common attributes may be individu'ally
defined and enabled or disabled by fields in the
attribute parameter registers. Each attribute has
two means of being enabled. The enable bits
defined below are set during the MODESET
channel command and are used as a global
enable. The user does not have to enable the
provided attributes. He may free more data bits
for his own use this way. The second enable bit is
contained in each character loaded to the row
buffer to enable the attribute ona character by
character basis. They are individually described
in detail in the following sections.

7-178

Reverse Video

When a character with the reverse video attribute
is displayed, the CRVV pin will be inverted during
the time the character is being displayed. The
reverse video affects the entire height of the row
forthat character space. For superscript/subscript
pairs, the reverse video effect is controlled by
superscript until SUBSTRT when the subscript
attribute bit takes control. The parameter for this
attribute is:

RVBS - Reverse Video Bit Select. This
parameter selects one of the 15 bits of a
character data word. Values 0 through 14
select the corresponding bit. Value 15
disables the Reverse Video attribute.

Blinking Character

When a character with the blinking character
attribute is displayed, the BLANK pin will be
activated and deactivated during the character
display time according to programmable rate and
duty cycle. The parameters for this attribute are:

(a) BCBS - Blinking Character Bit Select. Selects
one of the 15 bits of a character data word
as the blinking character attribute control.
As with Reverse Video above, the value of
the select determines the controlling bit or
disables the attribute.

(b) CHAR BLNK FREQ - Selects one of the 32
blinking frequencies available for the
blinking character and blinking underline.
The character blink rate is calculated as
below:

Frame Refresh Rate
Blink Rate = 4 x CHAR BLNK FREQ

(c) CHAR DUTY CYCLE - A 2-bit register to
select 4 duty cycles available for blinking
character and blinking underline. The
selection logic is defined to be as follows:

00=100% always on
11= 75% on
10= 50% on
01= 25% on

Underline #1
When a character with underline is displayed, the
BLANK Pin will be activated and the CRVV pin will
be inverted during the time the scan line specified

210931-004

82730

by the underline select register is displayed. The
parameters used to define underline #1 are:

(a) ULS1 - Underline Line Select 1. It deter­
mines which scan line of a character row
will be used for the underline #1. This
parameter is modifiable on a row by row
basis by the FULROWDESCRPT command.

(b) ULBS1 - Underline Bit Select 1. This para­
meter can only be changed by MODESET.
It selects one of the 15 bits of a character
data word as the underline #1 attribute
control. Again, a value of 15 in the select
field disables this attribute.

Underline #2 (Blinking)

Underline #2 can be made to blink. When its
blinking feature is deactivated, its visual effect is
exactly the same as underline #1. When it is
enabled to blink, its blink rate and blinking duty
cycle are the same as those defined for blinking
character. The parameters used to define this
attribute are:

(a) UL2SEL - Underline Line Select 2. This
parameter determines which scan line of a
character will be the 2nd underline. It is
changeable on a row by row basis by the
FULROWDESCRPT command.

The next two parameters can only be modified by
the MODESET Command.

(b) ULBS2 - Underline Bit Select 2. Selects one
of the 15 bits of a character data word or
GPA 1 as the second underline attribute
control. A bit select value of 15 disables the
second underline.

(c) BUE- Blinking Underline Enable. Activation
of this bit will cause the second underline
attribute to start blinking.

Invisible

A character with this attribute will occupy its
character position on the screen but will not be
displayed (i.e. BLANKwil1 be active). This attribute
does not affect the Reverse Video attribute if they
are programmed together. The parameter that is
used to implement this attributes:

I BS - Invisible Bit Select. Selects one of the
15 bits of a character data word as the
invisible attribute control. Value 15 disables
the invisible attribute.

7-179

Absolute Line Cntr Attribute
This character attribute allows the display of
special graphic characters, or may be used to
upshift normal characters to implement displays
with overlapping superscript and subscript fields.
When a character with this character attribute
enabled is being displayed, its LCO-LC4 pins will
reflect the output from the CHAR ROW LNE
CNTR which counts the absolute line count of a
row. The activation of this attribute overrides the
line count mode of both normal and subscript!
superscript characters. The parameter used to
select the attribute is:

ABS LINE BIT SEL. This four bit register selects
one of the 15 bits of a character data word as the
absolute line counter output attribute control.
Select value 15 disables the ABS Line attribute.

Cursor Generation
The cursor characteristic parameters are change­
able on a frame by frame basis by MODESET.

(a) CUR FREQ - Cursor frequency. Selects the
blinking frequency for both cursors. The
selection logic is similar to CHAR BLNK
FREQ

(b) CUR DUTY CYCLE - Cursor duty cycle.
Selects the blinking duty cycle for both
cursors. Its selection logic is similar to
CHAR DUTY CYCLE.

(c) CR1 RVV ~ Cursor 1 Reverse Video Enable
selects a reverse video type cursor as
opposed to a solid (blanking) cursor.

(d) CR1 BE - Cursor 1 Blink Enable changes
the cursor 1 block or underline to a blinking
block or underline. Enabling this bit also
causes DAT 14 pin to "blink" as well, if the
CR10E bit is set.

(e) CR10E - Cursor 1 Output Enable recon­
figures the DAT 14 pin to indicate when
cursor 1 is active. CR20E enabled directs
the cursor 2 signal to DAT 13 pin in a similar
fashion.

(f) CR1 CD - Cursor 1 Light Pen Cursor Detect
directs the CCLK cursor #1 position to be
translated to its nearest equivalent RCLK
pOSition through the LPEN facility.

An identical set of parameters (c) through (f) is
available for the generation of CURSOR 2. The
two cursors share the same FREQ and DUTY
CYCLE parameters.

210931-004

inter 82730

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature under Bias O·C to 70·C

Storage Temperature. - 65·C to + 150·C

Voltage on Any Pin with
Respect to Ground - 1.0V to + 7V

Power Dissipation 3 Watts

'NOTICE: Stresses above those listed under
"Absolute Maximum Ratings" may cause perma­
nent damage to the device. This is a stress rating
only and functional operation of the device at
these or any other conditions above those indi­
cated in the operational sections of this specifica­
tion is not implied. Exposure to absolute maxi­
mum rating conditions for extended periods may
affect device reliability.

D.C. CHARACTERISTICS TA = O·C to 70·C, Vcc = 5V ± 10%

Symbol Parameter Min. Max.

Vil Input Low Voltage -0.5 +0.8

VIH Input High Voltage 2.0 Vee +0.5

VOL Output Low Voltage 0.45

VOH Output High Voltage 2.4

Icc Power Supply Current 400

III Input Leakage Current 10

ILO Output Leakage Current ±10

IlCl LCO, LC1, LC2 Input Low Current -125 -4';('1

VSLI Bus Clock Input Low Voltage -0.5 0.8

VSHI Bus Clock Input High Voltage 2.0 Vee + 1.0

VCLI Character Clock Input Low Voltage -0.5 0.8

VCH1 Character Clock Input High Voltage 2.2 Vee +0.5

VRLI Reference Clock Input Low Voltage -0.5 0.8

VRH1 Reference Clock Input High Voltage 2.2 Vee +0.5

NOTE:
1. IOl = 2.6 rnA on the 51 and SO pi ns.
2. Measured after at least 5 BCLK cycles after RESET = High

A.C. CHARACTERISTICS

TA =: Q·C to 70·C, Vce = 5V ± 10%. All timings in nanoseconds. CL = 50 pF.

82730 Bus Interface Input Timing Requirements

Symbol Parameter Min. Max.

TCLCL BCLK Cycle Period 125 2500

TCLCH BCLK Low Time 52

TCHCL BCLK High Time 52

TCH1CH2 BCLK Rise Time 30

TCL1CL2 BCLK Fall Time 30

TDVCL Data in Set-Up Time 20

7-180

Units Test Conditions

Volts

Volts

Volts IOl =2 mA (1)

Volts IOH = -400/LA

mA @TA=O·C

/LA VIN =O-Vee

/LA Vour = 0.45 - Vee

/1A I VIN = 0 Volts,

Reset = "1" (2)

Volts

Volts

Volts

Volts

Volts

Volts

Units Test Conditions

ns

ns

ns

ns 0.45V - 2.4V (1)

ns 2.4V - 0.45V (1)

ns

ORDER NUMBER: 210931-004

82730

A.C. CHARACTERISTICS (Continued)

82730 Bus Interface Input Timing Requirements (Continued)

Symbol Parameter Min. Max. Units Test Conditions

TCLDX Data in Hold Time 5 ns

TARYHCH Async. READY Active Set·Up Time 35 ns

TSRYHCL Sync. READY Active Set·Up Time 20 ns

TRYLCL READY Inactive Set·Up Time 10 ns

TCLRYX READY Hold Time 20 ns

TCTVCL HLDA, RESET Set·Up Time 35 ns

TCLCTX HLDA, RESET Hold Time 10 ns

TCAVCAX CA Pulse Width 100 ns

TRIVRIX IRST Width 100 ns

TRLLCH LCx Input Hold Time 5TCLCL ns (2)

82730 Bus Interface Output Timing Response

Symbol Parameter Min. Max. Units Test Conditions

TCLAV Address Valid Delay 0 55 ns
1---

TCLAX Address Hold Time 0 ns

TAVAL Address Valid to ALE/UALE Inactive TCLCH - 30 ns

TLLAX Address Hold to ALE Inactive TCHCL- to ns

TCLAZ Address Float Delay TCLAX 45 ns
--

TAZRL Address Float to RD Active 0 ns

TLHLL ALE/UALE Width TCLCH -10 ns

TCLLH ALE/UALE Active Delay 0 45 ns

TCHLL ALE/UALE Inactive Delay 0 45 ns

TCVCTV Control Active Delay (DEN,WR,AEN) 0 70 ns
.-

TCVCTXW Control Inactive Delay (WR,AEN) 0 80 ns
--

TCVCTXD Control Inactive Delay (DEN) 5 80 ns

TCLDOV Data Out Valid Delay 0 50 ns
--

TCLDOX Data Out Hold Time 0 ns
--

TWHDX Data Out Hold Time After WR TCLCL-60 ns

TCLHV Hold Output Delay 0 85 ns

TRLRH RD Width 2TCLCL-50 ns

TCLRL RD Active Delay 0 95 ns
--

TCLRH RD Inactive Delay 5 70 ns

TRHAV RD Inactive to Next Address Active TCLCL-40 ns

NOTE:
2. Applies only to test mode invocation.

7-181 210931-004

82730

A.C. CHARACTERISTICS (Continued)

82730 Bus Interface Output Timing Response (Continued)

Symbol Parameter Min. Max. Units Test Conditions

TCLSIN SINT Valid Delay 0 70 ns

TRIHSIL RINT Active to SINT Inactive 250 ns

TCHSV Status Active Delay 0 75 ns

TCLSH Status Inactive Delay 0 70 ns

TWLWH WRWidth 2TCLCL-40 ns

TFLHL Bus Float to HOLD Inactive 0 ns

82730 Display Generator Input Timing Requirements

Symbol Parameter Min. Max. Units Test Conditions

TRCHRCH RCLK Cycle Period 100 2500 ns

TRCHRCL RCLK High Time 40 ns

TRCLRCH RCLK Low Time 40 ns

TRRCK RCLK Rise Time 30 ns 0.45V-2.4V (1)

TFRCK RCLK Fall Time '30 ns 2.4V-0.45V(1)

TCCHCCH CCLK Cycle Period 100 None ns

TCCHCCL CCLK High Time 30 ns

TCCLCCH CCLK Low Time 40 ns

TRCCK CCLK Rise Time 30 ns 0.45V -2.4V (1)

TFCCK CCLK Fall Time 30 ns 2.4V -0.45V (1)

TVCVCR HSYNC,SYNCIN Set-Up Time 30 ns

TCRVCX HSYNC. SYNCIN Hold Time 10 ns

TLPVCF LPEN Set-Up Time 30 ns

TCFLPX LPEN Hold Time 10 ns

TRCHCCH CCLK/RCLK Skew During CSYNC -10 10 ns

82730 Display Generator Output Timing Response

Symbol Parameter Min. Max. Units Test Conditions

TCCHDV Data, Line Count and Attribute and Output Valid 60 ns CL =100pF
Delay from the Delay from the Rising Edge of CCLK

TCCHDX Data, Line Count and Attribute and Output Hold Time 5 ns CL = 100 pF

TRCHCV Delay of Outputs CSYNC, VSYNC, HSYNC or RRVV 70 ns CL = 100 pF
from the Rising Edge of RCLK .

TCCHCL CCLK Rising to CHOLD Low 75 ns CL =50pF

TRCLCH RCLK Falling to CHOLD High 60 ns CL =50 pF

NOTE:
1. Clock maximum rise and fall times are for functionality only. AC timings are not tested at this condition.

2. Applies only to test mode invocation.

7-182 ORDER NUMBER: 210931-004

82730

WAVEFORMS

BUS TIMING T4

DIAGRAM BCLK

TU T2 11 T1 T3 T4

-,r~ -,nr -, r---I~~rl.-l -I \.......J ~

_-:.{ TCVCTV

SO,51
- r TCHSj - tTCLSH - r- TCHSV

t i- t
- 1+ TCHLL

I
~ - TLHLL l-
f-UALE

ALE

TLHLL- 1+ r- I--.TCLAZ,
TCLLH- ~ h I- TCrLL

.J\... TCLLH- l- f- -' r -
T AD1S-ADO
I
I
I
c
<I RD UJ
a:
I

I
I
I DEN l

T AD15-ADO

I-TAV1L TCLAV-- t=_ -- TCLDX-

; "-i-p -I A31-A16 -i AIS-AO ~. -- t DATAIN j
TCLAV- I- I--I-TAZRL !-TDVCL- -ITRHAV

I
~

-TfLRH f- { TCVCTV -

I
I

--JCVCTXD

TCLRL- I-

- .t.TCLA~ -- r TCLD?V -
f A31-A16 f~ AIS-Ao _f~ DATA OUT AIS-Ao

·-~CLAV--1 '1= ---l -- TCVCTV -- TCLDO x
W
t:

WR a:
~

I
I

TCVCTV -- j+-TCLARYX -TWHDX_

1 DEN -\-
TARYHCH +- TCVCTXW -- --- -TCVCTXD

TCLRYX

TCLRYX

7-183 ORDER NUMBER: 210931-004

......
~
00
.j>.

o
"" c
'" "" z
c:
;:
III

'"
"" '" <5
"' ~
b
o ...

I

WAVEFORMS (Continued)

HOLD, RESET, SINT AND CA TIMING

BCLK

HOLD

HLDA

ADDRESS
DATA

CONTROL I ,
RESET

LCX •

~reN} (L-

i

-I tTRLLCH

_\J---

l

CD
I\) ...
8

"@
2EJ
Iiiiil
F

~
~
~
2EJ
~

..

WAVEFORMS (Continued)

DISPLAY GENERATOR INTERFACE TiMING l
"

RCLK

CSYNC
RRW

HSYNC
(VSYNC)

-..j

hiHCCL1-i nK1HlTFn 011
~

TRCHCCH -Ir TCC~CCHh II:.
CX>
(J1 r-\ r-\ ~ CCLK

DATO-DAT14
LCO-LC4

BLANK
CRVV
WDEF

CHOLD

I' :j 1-- TRCLCH

"\§)
~
Iiiiil
IP =
~ =
~
~
~
~

inter 82730

WAVEFORMS (Continued)

DISPLAY GENERATOR INTERFACE TIMING

RCLK

HSYNC, SYNC IN

LPEN

TRCHCCH

CCLK

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT OUTPUT

'.'=X x= 2.0 2.Q > TEST POINTS <
0.8 0.8 0.,

A C f[511NG INPUTS ARE DRIVEN AT ? 4V H)~ A lOGIC I AND 0 ..\..,v ~ IIR
A LUGIC (l TIMING MEASURE Mf NTS ARf MA.DE AT ? 0\1 ~OR A UJGll \
AND (\ RV FuR A lOGIC 0

TVCVCR
TCRVCX

TCFLPX

TLPVCF

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER

~c, TEST

C, INCLUOES JIG CAPACITANCE

7-186 ORDER NUMBER: 210931-004

inter APPLICATION
NOTE

The 82786

AP-259

November 1985

CHMOS Graphics Coprocessor
Architectural Overview

Order Number: 122711-001
7-187

PREFACE

82786 FEATURES AND
PERFORMANCE

The 82786 is a powerful, yet flexible component which
will be a candidate as a standard for microcomputer
graphics applications including personal computers, en­
gineering workstations, terminals, and laser printers.
Its advanced software interface contrasts sharply with
existing products by making applications and systems
level programming efficient and straight-forward. Its
performance and high-integration make it a cost­
effective component while improving the performance
of nearly any design.

The following list is a summary of the 82786's capabili­
ties (assuming 10 MHz system clock and 25 MHz video
clock):

Windows:

Colors:

Lines, Polylines,
Polygons:

Circles, Arcs:

Fills:

Practically unlimited support

Up to 1024 displayable simutane­
ously with support for 4 external
color palettes

2.5 Million pixels per second

2.0 Million pixels per second

Supported via horizontal line
command (30 Million bits per sec-
ond)

Bit Block Transfer: 24 Million bits per second

Bit-map Memory: Up to 4 MBytes· of directly ac­
cessed DRAM

Resolution:

Zoom:

Up to 200 MHz monitors support­
ed; this is equivalent to configura­
tions such as 640 x 480 x 8 or
1024 x 1024 x 2 @ 60 Hz (non-in­
terlaced); up to 4096 x 4096 x I or
2048 x 1536 x 8 with video
DRAMs. .

I to 64 times vertical and horizon­
tal

Character Drawing: 25 thousand per second with col­
ors, path, and rotation attributes

Character Fonts: Unlimited number from bit-map
or system memory

Character Size: 16 x 16 maximum hardward size;
unlimited with bit-block transfer

Scroll, Pan: Instantaneous in any direction
with no external logic

The performance of the 82786 is of little value without
applications and system-level software to use it. Cus-

tomers can write their own software following the sug­
gestions of the 82786 Software Interface Applications
Note or the appropriate third-party vendors' software
packages. Intel has evaluated several major products
and presently recommends Microsoft. Windows™,
Digital Research GEMTM, Novagraphics Nova CGI
and GKSTM, and Graphic Software Systems CGI and
GKSTM, Window Manager™, and GKSTM. These
packages appear to be easily adapted to 82786-based
systems, are likely to emerge as de facto industry stan­
dards, and would permit a wide array of applications to
run with little or no modification on 82786-based prod­
ucts.

For more information on these products, please contact
these vendors directly:

Digital Research, Inc.
P. O. Box DRI
Monterey, CA 93942
(408) 649-3896

Graphic Software Systems
P. O. Box 673
Wilsonville, OR 97070
(503) 682-1606

Microsoft Co'rporation
Bo'x 97200
Bellevue, W A 98009
(206).828-8080

Novagraphics International Corporation
1015 ,Bee Cave Woods
Austin, TX 78746
(512) 327-9300

The 82786 was designed to permit compatibility with
de facto hardware standards. Use of the 82786 with
appropriate Intel microprocessors permits the design of
systems which can emulate the family of IBMTM per­
sonal computer products. The 82786's support of the
IBM Color Graphics Adapter-compatible bit-map eases
the task of running existing applications software on
new video hardware.

For details please refer to the 82786 PC Compatibility
Applications Note. Additional documentation available
for the 82786 includes the Data Sheet, the User Manual
and Application Notes.

For all questions, clarifications, or requests for addi­
tional documentation please contact your local Intel
sales office or authorized distributor.

7-188

AP-259

CHAPTER 1
INTRODUCTION

1.1 OVERVIEW

This document provides the reader with an introduc­
tion to the architecture and key features of the Intel
82786 Graphics Coprocessor from Intel. The 82786
serves such applications as graphics terminals and work
stations, personal computers, printers, and other prod­
ucts requiring the capability to create, store, and output
bit-map graphics.

The 82786 works with all Intel microprocessors, and is
a high-performance replacement for sub-systems and
boards which have traditionally used discrete compo­
nents and/or software for graphics functions. The
82786 requires minimal support circuitry for most sys­
tem configurations, and thus reduces the cost and
board space requirements of many applications. The
82786 is based on Intel's advanced CHMOS process.

The advanced performance and ease-of-use of the
82786 make it a candidate for an industry standard for
applications in microcomputer graphics markets. Some
of the leading features of the 82786 are:

• Fast polygon and line drawing

a Hardware windows

• High speed character drawing

• Interface designed for device independent software
standards

~ Virtual Device Interface

- Graphics Kernal System

-NAPLPS

• Advanced DRAM controller for graphics memory
up to 4 Mbytes

• Fast bit-block copies between system and bit-map
memories

• Supports up to 200 MHz CRTs or higher

• Up to 1024 simultaneous colors per frame

• Programmable video timing

• High Integration

• Third-party software support

• 88 pin leaded chip carrier and pin grid array

• Provides support for rapid filling with patterns

• IBM Personal Computer Color Graphics Adapter-
compatible bit-map

• International character support

• Advanced CHMOS technology

• Integral video DRAM support

1.2 ARCHITECTURAL MODEL

The 82786 architecture fits with traditional computer
graphics models. A typical subdivision of the tasks is:

• Graphics task partitioned into:

Drawing (line, polygons, characters, block image
copies)

Windowing (concurrent windows on the screen)

Refresh (CRT timing, video data output)

• Typical integrated solutions to these functions have
been:

First generation IC: 6845, 8275 - refresh

Second generation LSI: 82720 - drawing + refresh

Third generation VLSI: 82786 - drawing + window­
ing + refresh

The 82786 is a co-processor with two separate on-chip
processing units, the graphics processor and display
processor, which operate concurrently with the system
CPU. Instructions to the display and graphics proces­
sors are placed in memory by the CPU. Registers on
the 82786 are dedicated to pointing to the starting ad­
dresses of the first memory blocks of instructions con­
trolling the on-chip processors, and each memory block
points to subsequent blocks in a linked-list architecture.
Access by the CPU to these registers may be 1/0- or
memory-mapped, and portions of memory may be
shared between the 82786 and the CPU.

7-189

intJ AP·259

1.3 BIT MAPS AND WINDOWS

The 82786 concepts of "bit maps" and "windows" are
based upon definitions from the ANSI work on win­
dows.

The 82786 can create and maintain multiple sets of
graphics 'images in memory. These sets of images in
memory are called "bit maps". 82786 can combine sub­
sets of these bit-maps into a viewable, multi-region dis­
play screen. Each of these separate areas on the screen
are called "windows".

MEMORY

Most graphics systems today use software to generate a
bit-map representation of the full contents of the dis­
play called a "frame buffer". The 82786 uses a high­
level window descriptor list and specialized hardware

. to generate the screen contents using portions from sep­
arate bit maps of memory (Figure 1-1). This permits
the display to be instantaneously altered, eliminating
the time required to update a similar frame buffer im-
age using software alone. '

BIT MAP 2 BIT MAP 3

BIT MAP 1

(D [DiI1J
ABeD
EFGH
IJKL
MNOP
QRST
UVWX
YZ

WINDOWS

DISPLAY
122711-1

Figure 1-1. Bit Maps and Windows

7-190

inter AP-259

1.4 FUNCTIONAL OVERVIEW

The 82786 performs many functions within a single integrated circuit. Figure 1-2 identifies a block diagram of the
component and explanations of each function module.

62766

r - - - - - I r - - - - - ., VIDEO INTERFACE

I p~~~~I~gR I I p~6~~~6R I 1----'-----.,

The major functions of each block are:

L _____ .JL _____ .J

r - - - - - - -: .. :::: .. :::: ... ::: .. :: ... :::: __ 1
I BUS INTERFACE i DRAM i I

UNIT (BIU) : CONTROLLER I L ______ ..! _____ U

Figure 1-2.82786 Block Diagram

• Graphics Processor (GP): - draws lines, circles, polygons, and other primitives

- draws characters

- executes block image
manipulation instructions

• Display Processor (DP): - manages windows including zoom

- provides cursor

- refreshes screen (up to 200 MHz dot rate)

- loads shift register of video DRAMs

122711-2

• DRAM Controller: - controls up to 4 Mbytes of interleaved graphics memory including page-, static
column-, and fast page-mode DRAMs (interleaved or non-interleaved banks)

• BIU: - allows the CPU to access the graphics memory and the 82786 to access the system
memory

7-191

Intel AP-259

CHAPTER 2
GRAPHICS PROCESSOR

2.1 OVERVIEW

The graphics processor creates and updates all of the
graphics and text in each of the bit maps within graph­
ics memory. It is responsible for all of the geometric
drawing, character drawing and image movement with­
in and between the bit maps. Some features of the
graphics processor are: '

• permits bit maps to begin at any word in system or
graphics memory; only one bit map is active for GP
drawing at one time although many bit maps may
reside in memory simultaneously. '

• permits bit maps to be any size (up to 32K x 32K
pixels) and use 2, 4, 16, or 256 colors (i.e. I, 2, 4, or
8 bits per pixel);

• draws geometric shapes with attributes such as tex­
ture and color, into bit maps;

• draws characters with attributes such as color, path,
rotation, and proportional spacing using user­
defined fonts into bit maps;

• combines one rectangular portion of an image with
another area, within the same bit map or into anoth­
er bit map. (BIT Block Transfer or Bit-Bit);

• all drawing allows logical operations between source
and destination (for example Exclusive-Or of the
Complement of Source with Destination);

• all drawing can be clipped to a rectangular region;

• supports picking, a mechanism for advanced user
interfaces which allows the issuing commands via
the selection of "graphic menus" (called icons) ,by
manipulating pointing devices.

The Graphics Processor fetches its instructions directly
from a linked list in memory which is created and up­
dated by the CPU. The initial address of the list is con­
tained in a dedicated register in the 82786 and the ad­
dresses of subsequent instructions are pointed to by the
contents of previous instructions. Each instruction con­
tains a bit which indicates to the graphics processor
that it should stop (if set) and await new instructions. '
More detail on the command format is given in section
2.8 "Graphics Processor Command List Format."

2.2 BIT MAPS

All graphics and text creation is written into bit maps.
Bit maps are rectangular drawing area composed of bits
of pixel-oriented memory. The bit maps may be up to
32,000 pixels in each direction and contain from one to
eight bits of color or gray scale information. Bit maps

may be started on any even address in the 4 Mbyte
space and the number of bit maps in memory is unlim­
ited (except by the amount of memory available). The
variable bits per pixel feature permits the use of several
bits per pixel for multicolor graphics while using only a
single bit per pixel for efficient text memory.

2.3 GRAPHICS PROCESSOR
INSTRUCTION SET

The graphics processor instruction set is divided into
five classes:

1. Non-Drawing Commands

2. Drawing Control Commands

3. Geometric Commands

4. Bit Block, Transfer (BIT-BLT) Commands

5. Character Block Transfer (CHA-BLT) Commands

2.3.1 Non-Drawing Commands

The first class of commands are used to control the
method in which the commands are fetched. Also in­
cluded in this list are commands to load and dump
82786 internal registers. These commands are:

• NOP - No Operation

• LINK - Link To Next Command (Unconditional
Jump)

• ENTELMACRO - Enter Macro ,(Subroutine
Call)

• EXIT~ACRO - Exit Macro (Subroutine Return)

• INT~GEN - Generate Interrupt

• DUMP_REG - Dump Internal Register

• LOAD.-REG - Load Internal Register

2.3.2 Drawing Control Commands

The graphics processor works in only one bit map and
with one set of attributes at a time. The graphics proc­
essor maintains an imaginary cursor, GCPP (Graphics'
Current Position Pointer), which points to a particular
position (x, y coordinates) within' the bit map from
which all relative coordinates are calculated. The
GCPP is updated at the end of each drawing command.

7-192

AP·259

The following commands are used to define the current
bit map and attributes and set the Current Position
Pointer:

• DEFJIT~AP - Define Bit Map
• DEF _CLIP ~ECT - Define Clip Rectangle (see

2.4)

• DEF _COLORS - Define Colors

• DEF _TEXTURE - Define Texture

• DEF JOGICAL_OP - Define Logical Operation
(see 2.6)

• DEF _CHAR-SET - Define Character Set

• DEF _CHAR-ORIENT - Define Character Ori­
entation

• DEF_CHAR-SPACE - Define Inter Character
Spacing

• ABS_MOV - Absolute Move GCPP

• REL_MOV - Relative Move GCPP

• ENTER-PICK - Enter Pick Mode

• EXIT_PICK - Exit Pick Mode

2.3.3 Geometric Commands

These commands allow the 82786 to draw points, lines,
and arcs in a variety of ways:

• POINT - Draw Point
• INCR-POINT - Draw Incremental Points

• CIRCLE - Draw Circle

• LINE - Draw Line

• RECT - Draw Rectangle

• POLYLINE - Draw Polyline

• POLYGON - Draw Polygon

• ARC - Draw Arc
• SCANJINES - Draw Series of Horizontal Lines

2.3.4 Bit Block Transfer (Bit-Bit)
Commands

These commands allow rectangular image pieces to be
combined from piece of bit-map memory to another.
The graphics processor automatically inserts the new
data in the correct order in the destination so that each
line of pixels remains consecutive for both existing and
new data.

• BITJLT - Bit Block Transfer within bit map

• BITJLT_M - Bit Block Transfer between bit
maps

The command specifies the origin of the source rectan­
gle as well as the height and width. The destination
origin is the GCPP coordinates. For Bit-Bits between
bit maps, the destination is the active bit map and the

memory address of the source origin and source bit
map size is specified. Bit-Bits between bit maps can
only use bit maps with the same number of bits per
pixel.

2.3.5 Character Command

This command allows character fonts stored in memo­
ry in pixel form to be drawn into the bit map by an
application using character codes such as ASCII:
• CHAR - Draw Character String

The CHAR command dermes transparency/opaque­
ness for a character string, the pointer for the character
string, and the number of character in the string. The
pixel contents of the character to be drawn maybe
located anywhere in the memory space of the 82786
and accessed with either an 8- or 16-bit reference to the
specific character. The string range specifies the 8- or
16-bit references for each'character to be drawn. Sec-'
tion 2.7 discusses the use of character fonts.

Standard character fonts can be flexibly drawn because
path and rotation are defined with a DEF _CHAR­
ORIENT command and inter-character spacing is de­
fined with a DEF _CHAR-SPACE command. This
permits the variable spacing of text, direction of text,
and rotation of characters to be specified by the appli­
cation without making alteration of the font necessary.
Simple one-bit per pixel character font definitions can
be used in color applications because foreground and
background colors are specified by the DEF _COLOR
command and the necessary bits are written for each
pixel during the drawing process.

2.4 DRAWING ATTRIBUTES

A drawing operation refers to the act of modifying pix­
els within a bit map during the execution of the GP
commands. All drawing that the GP performs (includ­
ing lines, arcs, characters and Bit-Bits) is subject (with
exceptions noted) to six attributes which should be de­
fined before any drawing commands are executed. The
attributes are:

1. Pixel Plane Mask;

2. Logical Operation;

3. Clipping Rectangle;

4. Foreground and Background color (not applicable to
Bit-Bit);

5. Transparent or Opaque mode (not applicable to Bit­
Bit);

6. Pattern mask of 16 bits (not applicable to Bit-Bit or
characters).

The pixel plane mask is helpful in restricting the graph­
ics primitives to update a subset of the bits per pixel.

7-193

inter AP-259

This permits one set of drawings to exist in one or more
colors and allow other text or graphics information to
reside in different color bits of the same bit map. Raster
operations can be used to .combine existing pixel infor­
mation in the bit map with the new pixel information
generated as a result of the new drawing operation,
such as displaying only the overlapping regions of two
shapes. The clipping rectangle limits the effects of
drawing operations to a subset of the bit map.

Foreground and background colors set the two colors
drawn by all drawing operations (if both are needed).
The transparent mode draws only the foreground color
into the bit map (for dotted lines or characters) and
leaves the pixels between the dots or characters un­
changed. The opaque mode draws the foreground color
and fills in the background color between the dots or
characters. The pattern defined in the mask cause a
logical operation with drawing commands and permit
dotted and dashed lines, arcs, and other shapes. DEF _
PATTERN sets transparent! opaque for drawing oper­
ations other than character, which is defined in CHAR.

2.5 CLIPPING

The clipping rectangle is used to prevent drawing out­
side a specified rectangular region. The clipping rectan­
gle can be any rectangle within a bit map or the entire
bit map. Pixels are not drawn beyond the limits of the
clipping rectangle and characters which would be par­
tially clipped are not drawn at all.

In a special mode, "pick mode," the clipping rectangle
is used to perform a different function. The clipping
rectangle may be controlled by software to support the
selection of objects on the display with a pointing de­
vice. When in pick mode the drawing commands are
executed but pixels are not updated in memory. In­
stead, a flag is set in a register if any of the pixels gener­
ated by the command lie within the clipping rectangle.
In this way it is easy to set the clipping rectangle to
correspond to the location of a graphics pointing device
(such as a mouse) and re-process the graphics com­
mand list to find which drawing command corresponds
to the selected area.

2.6 LOGICAL OPERATION

The logical operation is an attribute that applies to all
subsequent pixel update operations (line, arc, character,
Bit-BIt etc.). It is an operation which can logically com­
bine the contents of separate bit-map locations to pro­
duce new bit-map patterns. All sixteen binary functions
are permitted between both the source and destination.

• AND

• OR
• EXCLUSIVE-OR

Six of the combinations provided are special:

• REPLACE destination with source

• REPLACE destination with complement of source

• SET all destination bits to 0

• SET all destination bits to I

• REPLACE destination with complement of destina­
tion

• REPLACE destination with destination (NOP)

2.7 CHARACTER FONTS

The Graphics Processor supports an unlimited number
of character fonts, that can reside anywhere in the 4
Megabyte address space. The character string to be
written can be defined either as a string of bytes or as a
string of words depending upon the type of font used.
The active font type and upper and lower memory ad­
dresses of the font to be used are set via the DEF_
CHAR_SET command.

Each character in the character font has an indepen­
dently programmable size of up to 16 by 16 pixels, al­
lowing individual characters to have different sizes for
proportional spacing. Each character resides in a block
containing n + I words of memory where n is the pixel
height of the character. The first word contains four­
teen bits to define the height and width of the charac­
ter. The remaining two bits specify if the following
character should be an overstrike or if the character
exceeds sixteen pixels in either dimension to cause a
software trap. Overstriking is useful for efficient imple­
mentation of underline and accents, and prevents up­
dating the GCCP after the character is drawn.

For larger characters than 16 by 16, the trap bit in the
font can cause an interrupt to the CPU so that software
can specially process that character such as a Bit-Bit.
The perception of larger characters than 16 by 16 can
also be created by dividing characters into subsets such
as quadrants, and executing multiple character drawing
commands. Software use of the DEF _CHA~
SPACE command supports negative inter-character
spacing to permit kerning, such as for italic fonts.

The byte or word strings used as parameters for the
CHAR command are used in conjunction with the 22-
bit pointer defined in a register by the DEF _CHA~
SET command. Use of 16-bit, or word-mode, charac­
ters causes an add between the 22-bit pointer and the
16-bit reference value to access the starting address of
the specific character. Because maximum character
block size is seventeen words of data, approximately
four thousand -characters may be contained in one 16-
bit font (worst case). Supplementary software in the
form of a look-up table can be used to access as many
as 65,000 characters in a single font. Bit-Bit can move
characters of unlimited size.

7-194

inter

CHARACTER
STRING

CHARACTER
STRING

WORD MODE

16 BIT

BYTE MODE

8 BIT

AP-259

FONT POINTER

FONT POINTER

CHARACTER FONT

CHARACTER FONT

-CHARACTER
BITMAP

-OFFsET­
__ T~LE __

122711-3

Figure 2-1. Word and Byte Mode

Use of byte· mode permits eight bit references to charac·
ters. This is important to permit existing software using
ASCII and EBCDIC to be converted to 82786·based
systems. 256 words of the font are reserved for a look·
up table. Adding the 8·bit string parameter to the font
pointer determines the word for the specific character
within this table. The word is then added to the pointer
to locate the character information in the font. Byte·
mode permits only 256 characters in each 8·bit font.
Figure 2·1 shows a description of word and byte mode.

2.8 GRAPHICS PROCESSOR
COMMAND LIST FORMAT

The graphics processor executes a sequence of instruc·
tions resident in memory and runs only when an appli·

cation needs to change bit·map contents or support
some special function such as picking. The general for·
mat of an instruction is shown in Figure 2-2.

15141312111009 OB 07 06 05 04 03 02 01 00

OPCODE GECLbit

PARAMETER 1

PARAMETER 2

I
P.ARAMETER N

Figure 2-2. Instruction Format

7·195

inter AP-259

Each opcode resides in the high byte of the word with a
GECL (Graphics End of Command List) bit in the
least significant bit of the low byte and followed by a
varying number of parameters in consecutive words.
The graphics processor tests the GECL of each instruc­
tion and sends the graphics processor into Poll Mode
when set to "1" for any opcode. Poll mode haIts the
graphics processor until a LINK command and upper-

CONTROL REGISTER

LINK 0 I
LINK ADDRESS LOWER
LINK ADDRESS UPPER

STOP

,

and lower-memory values for a link address are loaded
into three reserved registers. The graphics processor
then begins executing a new linked-list of instructions
starting at the specified address when the GECL bit
with the LINK instruction in the register is reset to O.

An example of a graphics command block using linked­
lists is shown in Figure 2-3.

EXTERNAL MEMORY

GECL

OPCODE 1 0

PARAMETER 1

OPCODE 2 0

PARAMETER 1

PARAMETER 2

PARAMETER 3

OPCODE 3 0

POINTER

ENTER MACRO -
OPCODE 7 0

OPCODE 8 0

PARAMETER 1

PARAMETER 2

OPCODE 9 0

OPCODE 10 1

GRAPHICS SUBROUTINE -OPCODE4 0

OPCODE 5 0

OPCODE 6 0

PARAMETER 1

PARAMETER 2

EXIT MACRO

PARAMETER 1

PARAMETER 2 (LINK)

122711-4

Figure 2-3. Graphics Processor Command Block

7-196

inter AP-259

CHAPTER 3
DISPLAY PROCESSOR

3.1 OVERVIEW

The display processor has five main functions in gener­
ating the display contents for output:

1. To retrieve the memory contents of selected bit maps
and output corresponding pixels into separate re­
gions on the display screen (windows);

2. To permit selected portions of bit maps to be magni­
fied on the display (zooming) horizontally and/or
vertically via pixel replication;

3. To provide a "pointing symbol" (cursor);

4. To generate control and video data signals to the
display hardware;

5. Load the shift registers of video DRAMs.

Control of the display processor is programmed via on­
chip registers. Content of the display is dynamically
altered by the application (or system software) without
causing unacceptable display blinking. Using memory­
mapped CPU alteration of parameters, the DP will load
the register set with the new parameters during vertical
retrace. By altering the registers to point to a new dis­
play list, the change of display lists can occur between
refresh cycles.

STRIP 1 TILE 1.1

STRIP 2 TILE 2.1 TILE 2.2

-
STRIP 3 TILE 3.1 TILE 3.2

STRIP 4 TILE 4.1

STRIP 5 TILE 5.1

3.2 WINDOWS

Windows are the portions of bit maps which are output
by the display processor. Up to 16 window segments or
tiles can be displayed on the same scan line of the CRT,
while there may be as many windows vertically as the
number of scan lines.

The 82786 treats the screen as divided into horizontal
strips (Figure 3-1) of arbitrary width, where the hori­
zontal format of window tiles across the strip remains
constant for the whole strip. This divides the region
into rectilinear areas, which are easy to manage. By
combining strips, overlapping windows can easily be
obtained.

Windows may essentially be arbitrarily shaped (circu­
lar, irregular, etc.) because a new strip may be defined
every display line, similar to the format shown in Fig­
ure 3-2.

TILE 2.3

TILE 3.3 TILE 3.4

-I TILE 4.2 TILE 4.3

122711-5

Figure 3-1. Sample Display Implementation of
Two Overlapping Windows

7-197

inter AP-259

STRIP

STRIP

STRIP 3

STRIP 4

STRIP 5

STRIP 6

STRIP 7

STRIP 8

STRIP 9

STRIP 10

STRIP 11

STRIP 12

STRIP 13

STRIP 14

STRIP 15

STRIP 16

STRIP 17

STRIP 18

STRIP 19

STRIP 20

STRIP 21

STRIP 22

STRIP 23

STRIP 24

STRIP 25

STRIP 26

STRIP 27

STRIP 28

STRIP 29

STRIP 30

ROUND WINDOW USING ONLY THIRTY STRIPS:
USE OF 200 OR MORE STRIPS WOULD
SIGNIFICANTLY REDUCE" JAGGIES."

122711-6

Figure 3-2. Sample Display of Irregular Window

The information needed for the display processor is
contained in strip descriptor tables, each made up of a
header and one or more tile descriptors. The header
contains:

• the number of lines in the strip;

• the number of tiles in the strip;

• upper and lower addresses of the next strip descrip­
tor

Each tile descriptors (which are consecutive in memo·
ry) contains:

1. the width of the bit map from which the window is
being retrieved (in words);

2. the start address of the bit-map data to be displayed
(word in memory and first bit location);

3. the number of words to fetch for the tile;

4. the first and last bit locations of the bit-map data to
be displayed;

5. the number of bits per pixel;

6. four bits to indicate border presence for top, bot­
tom, left, and right edges (I indicates show border,
o indicates show bit-map for those pixels);

7. window status information which can be used to
select color palettes or other attributes (2 bits);

8. two bits to indicate bit-map configuration is byte
rather than word·oriented with byte order switched
and if bit-map is non·linear (for PC compatibility);

9. bit to indicate if window is to. be zoomed by pixel
replication of the bit-map data;

10. bit to indicate if tile if field background data.

A one-pixel border can be displayed on any or all sides
of each viewport tile. This border color is defined in an
8-bit register and is the same user-definable color for all
windows. Borders may be turned on or off for individu­
al tiles.

7-198

intJ AP-259

In the absence of windows, the field background color
is displayed. This single color is definable by the user in
an 8-bit register. The use of background on the display
minimizes system bandwidth because data is only
fetched for windows and not for background, and thus
saves bit-map memory.

The display processor provides padding bits when bit
maps to be displayed have fewer bits/pixel than the
hardware display, with no performance decrease. This
allows windows of various bits/pixel to be shown
simultaneously on the same display. The user programs
the desired 8-bit color patterns into three registers, one
serving to map each of 1-, 2-, and 4-bits per pixel infor­
mation into full colors on the display.

All video output from the 82786 can be defined to begin
and end at any pixel (except when in accelerated mode
using external shift logic). This includes the positioning
of every window and the cursor.

The display processor instruction list is controlled by
the CPU. The double-word location of the first strip
descriptor block is located in a register. The locations
of subsequent strip descriptor tables are based upon a
linked-list architecture and are provided in the preced­
ing descriptor table. This descriptor linked-list needs
only to be updated by the CPU when the window ar­
rangement on the screen changes. New strips and seg­
ments are easily inserted into the display list by simply
modifying the linked-list pointers of the preceding
strips, or segments.

The use of redundant lists is possible because the de­
scription of a typical display is memory-efficient and
requires only about 1,000 bytes. This would permit the
CPU to alter the contents of one list while the second is
being used to control display processor. When the crea­
tion of the new list is complete, the registers pointing to
the first strip descriptor table may be switched to the
locations for the new list during vertical retrace. This
permits the application to alter the display list without
causing temporary swimming or blinking of the dis­
play.

3.3 CURSOR

The display processor supports a single hardware cur­
sor which may be up to 16 x 16 pixels. This cursor may
be positioned by the user anywhere on the screen. The
cursor may be defined to be transparent or opaque, and
may be either a block cursor or a cross-hair cursor one
pixel across stretching the width and height of the
screen. The color of the cursor is user-definable, as is
the block cursor's pattern. Eight bits of register memo­
ry define the color and sixteen 16-bit words of register

define the pattern, which is then padded with the cur­
sor color register. Support for a blinking cursor is pro­
vided with a register for CURSOR_ON which can be
toggled by the CPU as often as necessary to cause an
appropriate blink rate. MUltiple cursors can be simulat­
ed by drawing them in software, especially using bit-bit.

3.4 ZOOM

The display processor allows selected windows to be
zoomed (using pixel replication) up to 64 times hori­
zontally and vertically (independently, in steps of one).
The setting of the zoom bit in the tile descriptor table
causes replication of the pixels in memory according to
horizontal and vertical scaling factors contained in reg­
isters.

3.5 VIDEO INTERFACE

Eight parallel video data output lines provide video
output which may be used as eight bits pixel on the
CRT, or externally shifted to boost maximum display
resolution. The dot rate output is controlled by an inde­
pendent video clock which may be up to 25 MHz. Hor­
izontal signals are programmable from I to 4096 cycles
of the video clock and vertical sync signals from I to
4096 scan lines. Use of eight external video data pins
allow up to 256 different colors to be directly displayed.
Other CRT control lines provided by the display proc­
essor are VSYNC, HSYNC, BLANK.

Several 82786s can be used together for higher perform­
ance graphics. For multiple 82786 Systems, one 82786
acts as a master generating VSYNC and HSYNC, and
the other 82786s act as slaves using the master synch
signals for timing through the use of their own VSYNC
and HSYNC as inputs. Each 82786 has its own bit-map
memory with separate graphics processor lists to form a
bit-plane architecture, but use the same display list. The
BLANK signal is not used by slave 82786s.

External color palettes are supported, and, by use of the
two window status lines, the application may select one
of four color combinations for any window. This sup­
ports a maximum of 1024 simultaneous colors per
frame. The palette may be programmed by latching the
default video data when the BLANK pin is high. The
display processor can support non-interlaced, and inter­
laced-synch displays. Selection of the interlacing, con­
trol to support external shifting of the video data, de­
fault video data contents, and slave/master status for
each 82786 are controlled via dedicated registers. The
82786 may be synchronized to an external source
("Gen-Locking").

7-199

inter AP-259

CHAPTER 4
82786 SYSTEMS

4.1 TYPICAL SYSTEM
CONFIGURATIONS

The 82786 can be used in many different configura­
tions, each providing cost and performance appropriate
for different applications and markets.

Three typical applications in which the 82786 could be
used are:

1. Low-priced personal computer (Figure 4-1);

2. Multi-tasking office workstation (Figure 4-2);

3. High-performance workstation for processing-inten­
sive, high-resolution applications in engineering (Fig­
ure 4-3).

4.2 DRAM CONTROL

The DRAM controlJer on the 82786 supports an array
of up to 32 memory chips without extra logic and up to
a 4 megabyte address space. DRAMs supported have
densities ranging from 8K to I megabit and organiza-

MEMORY

I
I 80186 f-- 82786 .-(MONITOR)

80286

80286/80386

Figure 4,1. Low End Personal Computer

SYSTEM
MEMORY

Figure 4-2. Desktop PC/Graphics Terminal

SYSTEM
MEMORY

Figure 4·3. High End Workstation

7-200

122711-7

(MONITOR)

122711-8

122711-9

inter AP-259

tions of xl, x4, or x8. The bandwidth of the memory
system can be increased by interleaving memories and/
or using the Ripplemode TM or static-column mode
supported by Intel CHMOS DRAMs. Both inter-leav­
ing and Ripplemode TM are completely handled on
chip and require no extra external circuits. Use of stat­
ic-column DRAMs requires one 74X373 latch per
bank. Interleaving refers to the use of multiple DRAM
banks with one set of memories receiving new CAS sig­
nals while the other outputs data. Table 4-1 shows
memory burst-bandwidth for the different configura­
tions at 10 MHz.

DRAM refresh is done automatically by the DRAM
controller. The memory array can be accessed both by
82786 internal processors (GP, DP) and by external
masters (CPUs) through the BID. The 82786 DRAM
controller can be used to control system memory within
its 4 megabyte address space, provided the target appli­
cation -can accept the decreased bandwidth of system
memory. The portions of the address space dedicated to
graphics and system memory are configured at initiali­
zation in the DRAM_CONTROL_REGISTER.
Graphics memory is assumed to start at OH and con­
tinue up to the configuration limit. Memory addresses
above this are used for system memory.

4.3 BUS INTERFACE

The Bus Interface Unit of the 82786 is designed to sup­
port all 8-, 16-, and 32-bit microprocessors from Intel,
with optimization for the 80286. This permits the

82786 to run synchronously with the 80286, increasing
throughput by eliminating wait states. A special 8-bit
mode allows 82786 to also work with 8-bit data bus
microprocessors. The 80386 itself makes interfacing to
the 82786 possible. Interfacing to Intel CPUs is detailed
in the Hardware Configurations Applications Note.

The bus interface allows slave access by the CPU to the
graphics memory controlled through the 82786 DRAM
controller. This allows the CPU to update the graphics
processor instruction list and the display processor de­
scriptor lists in the graphics memory where maximum
throughput can be supported. Low-end systems could
use only a single memory shared by both the 82786 and
CPU and use the 82786 DRAM controller for this
memory.

For performance reasons, many systems will have at
least two sections of memory: the 82786 graphics mem­
ory (using the on-chip DRAM controller) and the sys­
tem memory. In this configuration, the 82786 can exe­
cute bus cycles on the system bus so the 82786 can
access the CPUs own memory. This master mode is
designed in accordance with the 80286 definitions. This
configuration allows the best of both worlds, the system
and graphics memories are split for performance rea­
sons, but the split is transparent to the software for
flexibility. Character fonts and graphic objects may be
retrieved from disk and placed in system memory loca­
tions reserved for access by the 82786 using a virtual
mode 80286 or 80386 configuration with appropriate
system software.

Table 4·1. 82786 DRAM Bandwidths

Page mode Ripplemode
DRAM DRAM

Non 10 Megabyte/sec 20 Megabyte/sec
Interleaving (diagnostics or (640 x 480 x 4 or
DRAM banks 640 x 480 x 2) 1 K x 1 K x 1 noninterlaced)

Interleaving 20 Megabyte/sec 40 Megabyte/sec
DRAM banks (640 x 480 x 4 or (2K x 2K x 1 interlaced:

1Kx1KX1 1K x 2K x 1.
noninterlaced) 1K x 1K x 2.

800 x 600 x 4.
640 x 480 x 8 noninterlaced)

7-201

AP-259

CHAPTER 5
PACKAGE AND PIN DESCRIPTION

5.1 OVERVIEW

The 82786 is an eighty-eight pin component due to the large number of functions integrated within the device. It is
available in both pin grid array and leaded chip carrier versions. The pinout of a pin grid array is shown in Figure 5-1
and a description of the pins is shown in Table 5-1.

0 0 0 0 0 0 0 0 0 0 0 0 0
Vss DRA1 DRA3 DRA5 DRA7 DRA9 Vee RAS1# CAS1# WEl# BEN1# 015 Vss

0 0 0 0 0 0 0 0 0 0 0 0 0
VDATQ DRAO DRA2 DRA4 DRA6 DRAB RAS2# RASO# CASO# WEH# BENO# 014 013

0 0 0 0
VOAT2 VDAT1 012 011

0 0 0 0
VOAT4 VDAT3 010 09

0 0 0 0
VDAT6 VOAT5 DB 07

0 0 0 0
VClK VDAT7 06 05

0 0 0 0
VSYNC HSYNC 04 03

0 0 0 0
BLANK AO 01 02

0 0 0 0
Ai A2 ROY# 00

0 0 0 0
A3 A4 CSIt RO#

0 0 0 0
A5 A6 MIO WRit

0 0 0 0 0 0 0 0 0 0 0 0 0
A7 AB A10 A12 A14 A16 A1B A20 ClK INTR MEN HREQ BHEIt

0 0 0 0 0 0 0 0 0 0 0 0 0
Vss A9 A 11 A13 A15 A17 Vee A19 A21 RESET SEN HlDA Vss

122711.,.10

Figure 5·1. PGA Pinout

7-202

AP-259

Table 5·1. 82786 Pin Names and Descriptions

Symbol Type Description

A21-0 1/0 ADDRESS LINES FOR THE LOCAL BUS: Normally inputs for Slave Mode
accesses of the 82786 supported DRAM array or internal memory or 1/0
mapped registers. Driven by the 82786, when it is the Local Bus Master.

D15-0 1/0 DATA BUS: For the 82786 DRAM array and the Local Bus.

BHE# 1/0 BUS HIGH ENABLE: An input of the 82786 Slave Interface: driven LOW by
the 82786 when it is Local Bus Master. Determines asynchronous vs.
synchronous operation for RD#, WR# and HLDA inputs at the falling
(trailing) edge of RESET. A HIGH state selects synchronous operation.

RD# 1/0 READ STROBE: An input of the 82786 Slave Interface: driven by the
82786 when it is Local Bus Master. Asynchronous vs. synchronous input
determined by state of BHE# pin at falling RESET.

WR# 1/0 WRITE STROBE: An input of the 82786 Slave Interface: driven by the
82786 when it is Local Bus Master. Asynchronous vs. synchronous input
determined by state of BHE# pin at falling RESET.

Mia 1/0 MEMORY 11/0 INDICATION: An input of the 82786 Slave Interface:
driven HIGH by the 82786 when it is the Local Bus Master. Selects 286
Status or Command Mode vs. 8086/186 Status Mode of the 82786 Slave
Interface at the falling (trailing) edge of RESET. A LOW state selects the
286 Status or Command Mode.

CS# I CHIP SELECT: Slave Interface input qualifying the access.

MEN a MASTER ENABLE: Driven HIGH when the 82786 is in control of the Local
Bus, (i.e. HLDA received in response to a 82786 HREQ). Used to steer the
data path and select source of bus cycle status commands.

SEN a SLAVE ENABLE: Driven HIGH when 82786 is executing a Slave bus cycle
for an external master on the Local Bus. Used to enable the data path and
as a READY indication to the Local Bus Master.

READY# I SYNCHRONOUS INPUT: To the 82786 when executing Local Bus cycles.
Identical to 80286 timing.

HREQ a HOLD REQUEST: Driven HIGH by the 82786 when an access is being
made to the Local Bus by the Display or Graphics Processors. Remains
HIGH until the 82786 no longer needs the Local Bus.

HLDA I HOLD ACKNOWLEDGE: Input in response to a HREQ output.
Asynchronous vs. synchronous input determined by state of BHE# pin at
falling RESET.

INTR a INTERRUPT: The logical OR of a Graphics Processor and Display
Processor interrupt. Cleared with an access to the BIU Interrupt Register.

CASO# a COLUMN ADDRESS STROBE 0: Drives the CAS inputs of the even word
DRAM bank if interleaved: identical to CAS1 # if non-interleaved DRAM.
Capable of driving 16 DRAM CAS inputs.

CAS1# a COLUMN ADDRESS STROBE 1: Drives the CAS inputs of the odd word
DRAM bank if interleaved; identical toCASO# if non-interleaved DRAM.
Capable of driving 16 DRAM CAS inputs.

RAS2-0# a ROW ADDRESS STROBE: Drives the RAS input pins of up to 16 DRAMs.
Drives the first three rows of both banks of DRAM.

DRA91 a MULTIPLEXED MOST SIGNIFICANT DRAM ADDRESS LINE AND
RAS3# RAS3#: Support of 1 Mb DRAMs requires DRAg. When 1 Mb DRAMs are

used, four rows of DRAMs cannot be supported (RAS3 # unnecessary)
due to 82786 addressing limit of 4 Mbytes being exceeded.

WEL# a WRITE ENABLE LOW BYTE: Active LOW strobe to the lower order byte
of DRAM.

WEH# a WRITE ENABLE HIGH BYTE: Active LOW strobe to the higher order byte
of DRAM.

7-203

intJ AP-259

Table 5·1. 82786 Pin Names and Descriptions (Continued)

Symbol Type Description

DRA8-0 0 MUTIPLEXED DRAM ADDRESS: DRAM row and column address are
multiplexed on these lines. Capable of driving 32 DRAMs without buffers.

BEN1-0# 0 BANK ENABLE 1 AND 0: Enables the output of the DRAM array on to the
82786 data bus (015-0). BEN 1 # controls Bank 1. BENO # controls
BankO.

BLANK I/O OUTPUT USED TO BLANK THE DISPLAY AT PARTICULAR
POSITIONS ON THE SCREEN: May also be configured as inputs to allow
the 82786 to be synchronized with external sources.

VDATA7-0 0 VIDEO DATA OUTPUT.

VClK I VIDEO CLOCK INPUT: used to drive the display section of the 82786. Its
maximum frequency is 25 MHz.

HSYNC/ I/O HORIZONTAL SYNC: Window status may be multiplexed on this pin. Can
WSTO also be configured as input to allow the 82786 to be synchronized with

external sources. Even as input, window status still output when BLANK is
low.

VSYNC/ I/O VERTICAL SYNC: Window status can be multiplexed on this pin. Can also
WST1 be configured as input to allow the 82786 to be synchronized with external

sources. Even as input, window status still output when BLANK is low.

RESET I RESET INPUT: internallysynchronized. Halts all activity on the 82786 and
brings it to defined state. The leading edge of RESET synchronizes the
clock to PH 1. The trailing edge latches the state of BH E # and M 10 to
establish the type of Slave Interface. It also latches RD# and WR# to set
certain test modes.

ClK I DOUBLE FREQUENCY CLOCK OUTPUT: Clock input to which pin timings
are referenced. 50% duty cycle.

Vss,Vcc 4 Vss AND 2 Vee PINS.

7-204

E '"'~~ -~"'" D
'M~W"~~"",OO"'~'G."~~~~"~'" Ie §Igo

COMPONENTS SPECIAL
• Capacitors • Precision resistors • Shielding materials

• Selecting electrolytics • Power MOSFETs for switchers

Design AR-305

The first chip dedicated to text manipulation, the 82730 operates
as a coprocessor to a host CPU and executes many high-level
commands that reduce the software needed for processing text.

Text coprocessor brings
quality to CRT displays

The quality of text in
raster-scanning CRT
displays has always
been a tradeoff against
the complexity, perfor­
mance, and cost of the
associated video sys­
tem. By allocating
many 'of the complex
display functions to
firmware, a dedicated
text coprocessor chip,
the first of its kind, re­
places printed-circuit
boards that contain
more than 100 ICs
while increasing sys~
tem performance by re­
lieving many of the
host processor's text
manipulation tasks.
The chip thus makes
possible the high qual­
ity and high perfor­
mance sought, without
the need to compro­
mise because of high design complexity and high
cost of text-processing hardware.

Though its speed makes the 82730 text co­
processor beneficial on its own, its utility can be
enhanced considerably when working with the
82731 video interface controller. Together they pro­
vide proportional spacing, simultaneous subscript
and superscript displays, dual cursors, dynamically
reloadable character fonts, and user-programmable
field and character attributes. By adding still an-

Anand Balaram, Product Marketing Engineer
Andrew Volk, Project Manager
Intel Corp.
3065 . Bowers Ave., Santa Clara, Calif. 95051

other chip, the 82720
graphics . display con­
troller, the device can
display high-resolution
graphics and text at the
same time.

Housed in a 68-pin
package, the 82730 text
coprocessor combines a
direct memory access
channel and a processor
bus interface that per­
mit it to fetch its own
instructions and data
from the host system's
memory, independent
of and in parallel with
the host CPU.

The two processors
communicate through
messages-commands,
parameters, and status
words-which are
placed in a communica­
tion block inside a
shared memory. The

host issues commands by preparing messages, stor­
ing them in the communication block, and directing
the coprocessor's attention to them by activating a
Channel Attention signal, which is implemented in
hardware, In return, the coprocessor sets a flag in
the shared memory that notifies the host when it
has executed the command.

The 29 high-level commands built into the 82730
breakdown into two groups: channel commands,
which work at the system level to start and stop the
display and to communicate status and similar
information, and data-stream commands, which
are incorporated directly into the display-data
strings to govern the DMA process and control row

Reprinted from ELECTRONIC DESIGN- February 17, 1983 7-206 Copyright t983 Hayden Publishing Co., Inc.

OROER NUMBER: 210932

Text coprocessor

characteristics, character attributes, and so on.
The 82730 resides on a local system bus with the

host microprocessor, such as the 80186 CPU, and
therefore provides the same address, data, and
control signals as the main processor. By handling
several of the tasks typically done by the host
processor-like DMA control and display
formatting-it leaves the host free for other tasks.

For example, when the coprocessor is configured
to share the CPU bus, a portion of the host micro­
processor bus bandwidth must be devoted to the
DMA process that refreshes the CRT. However, the
82730's high-speed intelligent DMA controller
(operating at a maximum data rate of 4 Mbytes/s)
helps minimize the time spent executing the re­
fresh operation, while simultaneously handling the
formatting of the display data. A different ap­
proach involves a dual-ported memory architec­
ture, which places the memory between the CPU
and the coprocessor. That completely frees the
processor bus of the refresh activity, allowing the
host more time to execute other tasks. It has become
a more cost-effective method, as some dynamic
memory controllers now contain dual-ported arbi­
tration logic on chip.

Inside the chip

The basic architecture of the coprocessor is di­
vided into two main parts: a memory interface and
a display generator section (Fig. 1). The memory
interface lets the coprocessor and the system pro-

Microcontroller
unit

cessor communicate via the shared memory. The
display generator, in turn, responds to the data
provided by the memory interface and carries out
the display operations.

The memory interface actually comprises two
smaller subsections, a bus interface unit and a
microcontroller unit. The bus interface provides an
intelligent connection from the 82730 to the host
processor bus and also buffers the data transfer
requests from the microcontroller. Upon initial­
ization, the bus interface can be programmed for 8-
or 16-bit data and 16- or 32-bit addresses. Further­
more, the host interface can be configured for 8- or
16-bit-wide data buses, making the coprocessor
compatible with 8- or 16-bit host processors, like
the 8088/80188 and the 8086/80186. Running at 8
MHz maximum in 16-bit systems, the 82730 handles
the maximum DMA rate of 4 Mbytes/s.

The microcontroller unit stores the micro­
instructions for the 82730's high-level operations.
The microcontroller's internal processor manages
the memory transfers, interprets the commands
embedded in the data stream, and executes those
commands by sending data to the appropriate con­
trol registers or display data buffers. To optimize
the transfer of data between the system and the
CRT interface, the coprocessor uses three clocks­
one for the host interface, the other two for video
data. The memory interface section runs from the
bus clock, the CRT interface operates from a refer­
ence and a character clock.

1. Divided into two main sections-a memory interface unit and a display generator-the
82730 text coprocessor can operate at optimum speed since each section can function
independently at a different clock speed.

7-207 210932

Although the coprocessor packs a considerable
amount of processing power on a single NMOS chip,
it cannot handle the high video dot rate needed to
deliver high character counts to the CRT display.
For that, it needs the 82731 video interface control­
ler, which gains its high speed and drive capability
from bipolar technology. In addition, the combina­
tion of the 82730 and 82731 succeeds in reducing the
video interface to just a few latches and a software
character generator residing in RAM or ROM
(Fig. 2).

Inside the 82731 are the reference- and character­
clock generators, a video shift register, and all
attribute logic (Fig. 3). Housed in a 40-pin package,
the circuit offers TTL-compatible inputs and out­
puts except for the video output, which is ECL­
compatible and provides a dot-shift clock rate of 50
MHz maximum on characters up to 16 dots wide.
The circuit proportionally spaces characters by
accepting the width sent from the character gener­
ator and sending an appropriate character-clock
output whose period determines the variable width
of the character to be displayed.

The video interface controller can employ an
inexpensive, low-frequency crystal and internally
multiply that frequency to generate the high­
frequency dot clock. It also supports control func­
tions such' as screen reverse video, synchronized
character field, and tabbing operations. The dot
clock drives the internal video shift register, the
character clock controls the unloading of data from

the row buffers in the 82730, and the reference clock
establishes the raster and screen formats. The
reference clock also supplies the basic timing for
the horizontal sync, blanking, border, and active
display time. The corresponding vertical
attributes-except border-are driven by thehori­
zontal line time. All seven of these screen parame­
ters are programmable by the system designer with
the 82730.

System interlaces are simple

As a coprocessor, the 82730 has the same bus­
control signals as an 80186 host processor and thus
can share the system-bus controllers, drivers, and
latches. The host processor and the 82730 arbitrate
for control of the local bus through the Hold and
Hold Acknowledge lines (HLD/HLDA). The Chan­
nel Attention (CA) and System Interrupt (SINT)
control lines complete the wired interface. With
this configuration, the 82730 has access to all the
memory that the 80186 CPU has available.

Anytime the CPU wants to send a message to the
82730, it writes the command and busy flag into the
82730 command block and then pulses the co­
processor's CA input to inform it that a message is
waiting. The 82730 then raises the HOLD output
and waits for access to the bus. When the CPU
relinquishes the bus, it raises the HLDA input of
the 82730. '

Once the 82730 becomes active, it transmits the
command block address that was stored in its

2. A typical system built around the 82730 and the 82731 video interlace controller requires very lew
additional les to mate with a host proca .. or like the 80188. Only the sy.tem bus drivers, soma latches, and
a character generator are 'needed.

7-208 210932

Text coprocessor

registers during initialization. That address, in
conjunction with the appropriate memory control
signals-including read or write strobes, lower or
upper address latch enables, upper address output,
or data enable output-will either read the com­
mand block or write to it. All these signals are
coordinated by the bus clock.

Whenever the 82730 must send status informa­
tion to the host CPU, it gains control of the bus and
places the data into the status location in the
command block. The bus is then released and the
coprocessor notifies the CPU through the SINT
signal. When the coprocessor is using a dual-ported
memory to communicate with the 82730, the HOLD
and HLDA signals are not employed. Instead, the
82730 accesses the dual-ported memory directly
rather than acquiring the bus from the CPU.

When the display process is activated, the co­
processor uses its built-in DMA capability to fetch
display data from the memory. The data consists of
character data mixed with data-stream commands;
embedded data-stream commands provide the fle~­
ibility to manipulate data on the fly.

Soft fonts loaded

The 82730 also permits soft fonts to be auto­
matically loaded into RAM-based character gener­
ators. Addresses and data stored in the system
memory are then loaded into the row buffers of the
coprocessor. During blanked rows (generally during
the vertical retrace), address information is loaded
into a latch and data is written to the character
generator.

'fhe 82730's dual row buffers help reduce the
bandwidth and access time requirements for the
system memory. The data stored in one buffer is
being used to display a row on the screen while the
second buffer is being loaded, by the micro­
controller, with the next display row from the
system memory. Up to 200 characters can be stored
and displayed by each row buffer. Furthermore,
since the display generator section operates asyn­
chronously with the microcontroller unit, each can
operate at optimal speed. Processing is syn­
chronized by internal flags and, shared internal
storage, and data that will be displayed is ex­
changed through the row buffers.

The coprocessor's display generator handles the
data that defines the timing and the operation of
the CRT interface. That data, which is stored in the
display characteristics registers of the chip, con­
trols every aspect of the display-from the screen's
format to the blink rates of the characters and
cursors. All the parameters that define the initial
display characteristics can be set by one
command-MODEST -thus reducing the time and

3. The 82731 video interface controller is manufactured with
bipolar technology, enabling it to handle video dot rates of
50 MHz and higher, which are needed by high-character­
count displays. The controller serializes the parallel
character out puis from the coprocessor and adds the
desired attributes to each character.

effort required to establish a screen format.
Beneath the simplicity of the hardware shown in

Fig. 2 are the high-level instructions-channel
commands-and the data-stream commands. When
combined with a table-driven linked-list data struc­
ture, they ease software development.

Central to the software is the command block,
through which all channel commands are trans­
ferred between the coprocessor and the host. This
block is located within the shared memory, and its
exact position is set during the 82730's initialization
routine (Fig. 3a). Once established, it contains all
the information needed to start the display-data
fetch; to communicate status, interrupt, and cursor
position information; and to give the location of the
mode block, which contains all the parameters for
setting up the display. The START DISPLAY channel
command begins the sequence (Fig. 3b).

Since the display data is set up within linked
lists, the coprocessor can rapidly change any of the
lists without shifting huge amounts of data. The
display fetch starts with the value of the list-switch
bit which selects one of two list-base pointers in the
command block. The pointer points to its string
pointer list; the pointers in that list direct the
on-chip DMA to the data strings containing the
desired display data and data-stream commands.
The programmer can modify one pointer list while

7-209 210932

',:

displaying .from the other, and can also switch
screens merely by changing the list-switch bit, thus
eliminating time-critical data manipulations.

Two data-stream commands-End of String
(EOS) and End of Row (EOR)-are key to the linked
list and DMA activities. Strings are a logical con­
cept: they contain blocks of contiguous data stored
anywhere in memory. In contrast, rows are a phys­
ical concept and represent a block of characters
that make up a physical row on the screen. Many
strings can exist in a display row, or many rows in
a string. (Only the extra DMA overhead of fetching
the new string pointer sets a practical limit on the
number of strings in each row.)

The actions of the two. commands are indepen-
. dent. End of String tells the 82730 to get the next
string pointer from the list, and from there, the
next data string. End of Row suspends the DMA
until the row buffers are swapped at the end of the
current row. The DMA then takes over, into the
new row buffer.

String manipulation tasters high speed

Strings are commonly the next level of text
organization above single characters. With the
82730, a string can be as small as a character or it
can be a word, row, sentence, paragraph, or a page
of characters. These high-level entities can be
moved merely by manipulating a small string
pointer table (Fig. 5) .. The heart of the algorithm
for word wraparound, a common feature in text
processors, can easily be accommodated by a single
command such as the String Compare command of
the 80186. Word wraparound is then achieved by
scanning the data (not moving it) and manipulating
a few pointers. Earlier system designs would have
required a multiple-instruction software loop that
scanned and moved every individual character.

An extension of the linked list allows pro­
grammers to set up several independent data win­
dows on the CRT screen in a virtual screen mode.
That feature is especially helpful if a user wants
both a menu window and one or more work-space
windows. Such a scheme saves a lot of time for the
end user-eliminating the back-and-forth move­
ment between menus and working text. To set this
up, several data structures, each with its own
command block, can be accessed in a table-driven
sequence to put data in a given window on the
screen (Fig. 6).

The string list and data strings are the same for
regular or virtual modes; only the structure of their
command blocks differs. Thus, each virtual window
can be an independent software entity in the sys­
tem, and the 82730 can present these independent
data bases simultaneously.

4. Both the host CPU and the coprocessor go through an
initialization sequence when Ihe compuler sY81em i8 r88el
(a). The coproce8sor Ihen looks tor a START DISPLAY
command so Ihal il can load Ihe various dala slrings tram
Ihe syslem memory inlo Ihe display generalor. seclion,
attach attrlbules, and display Ihe dala on Ihe CRT (b).

7-210 210932

Text coprocessor

Multiple 82730s can also be used in a single
system. Up to four devices can be clustered in a
single system, with one serving as a system master
and the others as slaves. The data for this cluster
can be interleaved, permitting the cluster to work
from one data base to get more characters per
screen or more bits per character. Also, in the slave
mode, the 82730's video outputs can be synchronized
to an external video signal, giving the system such
capabilities as mixed text and graphics, broadcast
subtitling (text overlay), and overlays for video
recording.

Attributes enhance display quality

The designers of the 82730 have given it the
ability to highlight various areas of an on-screen
document through the use of character and field
attributes. In the 16-bit data word, for example,
only the most significant bit is committed; it serves
as the command or data designator. If set to 1, the
word is a data-stream command, with the remain­
ing 15 bits becoming one of the predefined in­
structions. However, if the MSB is 0, the other bits
are at the discretion of the designer, who. may
choose which and how many are needed for charac-

ter codes, attributes, or user-defined functions.
The 82730's six predefined attributes-reverse

video, invisible, blinking character, two underlines, .
and a special graphics character-can be pro­
grammed to respond to any of the 15 bits, or they
can be completely disabled. In addition, they can be
set character by character or through a field­
attribute mask. All can be attached to any charac­
ter. The blinking clJaracter can be programmed for
a wide range of duty cycles and blink rates. The two
underlines can be independently positioned any­
where in the row height, and the position can be
changed from row to row. Thus the underline can
be doubled or serve as a strike-through line, a
fraction line, or an overbar. One of the underlines
can also be programmed to blink at the same rate
as a blinking character.

The graphics character is relatively important,
since it permits character information to be dis­
played to the full height of the row. It causes the
chip's line-counter output to count from zero at the
top of the display row continuously through to the
bottom of the row. When used with special charac­
ters, this attribute allows business forms and
graphs to be easily constructed.

S~ring List pointer 1 ' String

5. If a character or word must be inserted near the beginning of a screen of text, only the
list pointers must be changed to add the item. In older systems, all the characters following
the insertion ~r deletion were shilled in the memory to revise the display.

7-211 210932

Text coprocessor

Another capability of the 82730 is subscript and
superscript characters, done by manipulating the
line-counter outputs. The SUB SUP N data-~tream
command declares which and how many pairs of
characters will be displayed simultaneously as sub­
scripts and superscripts.

Proportionally spaced displays could cause some
subscript and superscript characters to have differ­
ent widths and thus disrupt the vertical alignment
of a character pair. A special output of the 82730
called Width Defeat prevents that misalignment by
causing the 82731 video interface controller to en­
force a predefined width-programmed upon sys­
tem initialization-during the display of subscript
and superscript characters.

The proportional spacing is performed by the
reference and the character clock. Used to shift out
the character and attribute data, the character
clock operates during the display field. Its fre­
quency can vary character by character, up to a rate
of 10 MHz, to set the width of the character
currently being displayed. The video interface con­
troller takes the character width information that
has been supplied by the character generator and

6. The virtual window capability of the 82730 lets the user
arrange independent areas in the system memory that can
be displayed simultaneousl! on the CRT monitor.

produces a variable width character clock that
supports the proportional spacing. This approach
also greatly reduces system complexity and cost
compared with previous designs.
Screen and row formals are flexible

The reference clock signal in a system that con­
tains the 82730 and 82731 chips is a constant­
frequency clock that forms the time base to gener­
ate the horizontal scan lines and vertical frame
periods. One scan line can last for 256 reference
clock periods, and one frame can contain up to 2048
scan lines. Within these periods, the respective
synchronization pulses and the border and charac­
t~r fields can be set anywhere within that range.
All these timing relationships, including the scan
and frame periods, can be changed on a frame-by­
frame basis to suit changing applications.

The screen format is flexible all the way down to
the row level. For instance, the height of a row (up
to 32 scan lines) and the vertical position of the
characters within that row can be changed from
row to row by a single data-stream command called
FULROWDESCRPT. In addition, the command lets
the programmer set the starting and ending scan
lines within the row for the normal, subscript, and
superscript character fields and the two cursors.

The same data-stream command that defines the
row characteristics can also be used to blank the
row, display it as reverse video, double its height
(for up to 64 scan lines per row), or eliminate the
proportional spacing.

Graphics, too, can be handled by the 82730, al­
though flexibility and resolution are not as high as
with the 82720 graphics display processor. Business
applications typically need graphics that are no
more complex than two- or three-dimensional
charts or business forms. These formats can be
stored as special characters in a standard font set
for the character generator. Even more complex
graphics can be handled through the use of mosaic
graphic celis, which can be stored in RAM to permit
alterations. Of course, as in most systems using
floppy-disk systems for main storage, the desired
fonts or graphics forms can be saved on the disks
and downloaded as needed for the display.

There are many applications that also require a
simple graphic display along with text-signature
verification on banking terminals and general­
purpose credit verification, for example.o

7-212 210932

PROCESSING

ARTICLE
REPRINT

VLSI Coprocessor

AR-297

Delivers High Quality Displays
Many microprocessor-based systems
today use VLSI technology in pro­
cessing and memory components.
However, designers of subsystems
have, up until now, not been able to
incorporate this technology into
their products because of the lack of
available ICs. When, in 1981, NEC
introduced the 7220 graphics display
controller, users found that they
could bolster system performance
by off-loading graphics control
chores from the system CPU. Sec­
ond-sourced by Intel as the 82720,
the chip uses its own drawing
processor to access the required
positions in the bitmap and han­
dles both processing and display
functions.

gories based on their architecture
and operation. One type expands
the microprocessor's own architec­
ture by adding additional hardware
and instructions. This type of tight­
ly coupled coprocessor can be
thought of as a transparent expan­
sion of the microprocessor's archi­
tecture and works in sychronization
with the CPU. Intel's first such co­
processor, the 8087, was designed

Bus controls ADO·AD15

I

for numerics processing and in­
creased the microprocessor's math
performance as much as 100 times.

The second type of coprocessor
independently fetches its own data
and sends instructions in parallel to
the microprocessor. It therefore al­
lows the microprocessor to process
the tasks it handles best and dele­
gate to the coprocessor the task it is
best equipped to handle. In this cate-

Char
data

Video
controls

Now, Intel is poised to introduce
a text coprocessor, the 82730, which
is specifically tailored to execute.
data manipulation and display tasks.
Lucio Lanza of Intel explains, "In
an intelligent terminal or worksta­
tion, the CPU spends a lot of its
time manipulating both graphics
and text. We have identified these
areas in terms of CPU use and we
have distributed these blocks so that
the CPU is not overburdened.» Memory interface Unit ..--1 ~ Display generator

Coprocessors fall into two cate-

Andrew Wilson
Technical Editor FIGURE 1: Block diagram of the 82730.
Reprinted from ELECTRONIC IMAGING © April 1983, Morgan·Grampian Publishing Company, Boston, MA 02215
50 Order Number: 231307-001 7-213 Electronic Imaging 0 April 1 SB3

gory are 110 channel coprocessors
and others that deal with communi·
cations and text processing tasks.

"The 82720 is not yet at this lev·
el," Lanza said, "since it does not
have the capability of going to mem·
ory and extracting its own instruc·
tion and executing it-it needs
something to spoon feed it."

Coprocessors of the second cate·
gory do not monitor the CPU in·
struction stream. Instead, they are
linked to the CPU via messages pre·
pared and stored in shared memory.
The CPU will prepare data and high
level directives and then place them
in memory. Upon completion of this
control block, the CPU will alert the
coprocessor by signaling it through a
common channel attention line.
From that point on, the coprocessor
works on its own, fetching required
data and instructions and· then ex·
ecuting those instructions.

It is not synchronized with the
CPU but works asynchronously and
independently. When the coproces·
sor completes its task, it informs the
CPU by signaling on the CPU's in·
terrupt line.

The rationale for designing a co·
processor with one or the other ar·
chitectures depends on the applica·
tion requirement. Tightly coupling
the coprocessor with the CPU gives
the advantage of a short coprocessor
preparation time but has the draw·
back of consuming the CPU's bus
bandwidth.

In the case of numeric process·
ing, the speed of executing the float·
ing point algorithm is of paramount
importance. Reducing the prepara·
tion time of the coprocessor task is
the key because of the number of
microseconds it takes to execute the
task. Rapid algorithmic execution
requires tight coupling. In the appli·
cation of the 110 related coprocessor,
the task execution time is much
longer and the requirement for bus
time can be much higher. And, for
110 operations the preparation time
is not critical. A shared memory

52

FIGURE 2: Building block approach.

coupling is preferred for those types
of applications because it provides
greater flexibility in the design of
the bus structure.

Text coprocessing
"In the design of the 82730," said
Lanza, "we have tried to eliminate
all the known differences between
what is visible on the screen and
what is obtained on the printed
page. In word processing systems to·
'day, even the length of a row on the
CRT is sometimes not the same as
the length seen in print. Clearly,
when you are editing text this be·
comes a major problem."

The 82730 supports the genera·
tion of text displays through features
which include proportional spacing,
simultaneous superscript/subscript,
dynamically reloadable fonts and
user programmable field and charac·
ter attributes. Editing capabilities
are further enhanced by features
such as split screen, virtual win·
dows, smooth scrolling and table·
driven linked lists.

Figure 1 shows a block diagram
of the 82730. The chip is divided
into two main sections-the mem·
ory interface unit and the display
generator. The memory interface
unit provides the communication
between the 82730 and the system
processor, while the display gener·
ator acts on the display data and car·
ries out the display operation. ,

Communication between the
82730 and the CPU takes place
through messages placed in commu·
nication blocks in shared memory.
The processor issues channel com·

7-214

mands by preparing these message
blocks and directing the 82730's at·
tention to them by activating a hard·
ware channel attention signal (CA).
The memory interface unit fetches
and executes these commands.
When the display process is activat·
ed, the 82730 repeatedly fetches dis·
play data and embedded datastream
commands from memory utilizing
its built·in DMA capability, ex·
ecutes any datastream commands as
encountered on the fly, and loads the
row buffers with the display data.
After executing these· commands, .
the 82730 dears a busy flag in mem·
ory, to inform the host CPU that it
is ready for the next command.

The memory interface unit is di·
vided into two sections-the bus
unit and the microcontroller unit.
The bus interface unit provides the
electrical interface to the system
bus and the timing signals required
for the microcontroller Unit oper·
ations, making these operations
transparent, to the microcontroller
unit. The 82730 can be programmed
during initialization to provide 8 or
16 bit data, and 16 or 32 bit
addressing.

The microcontroller unit contains
the microinstruction store and the
associated circuitry required for the
execution of all channel and data·
stream commands. It uses the bus
interface unit in carrying out its
memory access tasks such as loading
the row buffers with display data.

The interaction between the mi·
crocontroller unit and the display
generator takes place through shared
internal storage. The microcon·

231307·001 Electronic Imaging 0 April 1983

"The device provides the ability
to independently maximize the

performance of the CPU."

troller unit fetches data from mem­
ory and writes it in the internal stor­
age, while the display generator
reads from the internal storage and
carries out the display operation.
The microcontroller unit and display
generator operate asynchronously
with respect to each other. Synchro­
nization is accomplished through
communication via internal flags
and display timing signals generated
by the display generator. The inter­
nal shared storage consists of row
buffers which store the display data
and internal registers which store
display. parameters. There are two
row buffers each capable of storing
up to 200 characters. The data in
one row buffer is used by the dis­
play generator to display one com­
plete character row on the screen,
while the microcontoller unit is
loading the second row buffer with
display data fetched from memory.
At the end of the row being dis­
played, the buffers are swapped and
the microcontroller unit and display
generator resume their tasks.

The display characteristics regis­
ters contain all the information used
to control every aspect of display
characteristics from screen size to
blink rates. A major portion of this
register set is the three content
addressable memory (CAM) arrays
that allow flexible timing control for
row and screen characteristics. The
user has the power to set the param­
eters for the entire screen by invok­
ing a single high-Ievel'command.

By separating the video interface
clocks from the bus interface clock,
the 82730 provides the designer with
the ability to independently maxi­
mize the performance of the CPU
and video sections of the system.

The video interface consists of
two independent clocks: the Refer­
ence Clock (RCLK) and the Charac­
ter Clock (CCLK). While the
RCLK controls the raster timing
and defines the screen layout, the
CCLK independently shifts charac­
ter and attribute information out of

54

the 82730, which allows proportion­
al spacing to be achieved.

Combining text and graphics
A major requirement in the design
of engineering workstations is the si­
multaneous display of both text and
graphics. In terms of graphics re­
quirements, the designer of such
systems needs a drawing processor
for fast geometric primitives, a math
processor for fast transformations
and a general purpose processor for
access to the graphics database.

For text, string processing is
needed for manipulation of text prim­
itives and database processing is
needed for access to the document
files. The solution to this problem
can be solved by using both the 720
graphics coprocessor and the 730
text coprocessor (Figure 2).

Both coprocessors work with In­
tel's new 82586 communications co­
processor. This works in conjunc­
tion with a CPU and the appropriate
software to provide local area net­
work (LAN) control capabilities.
Message data to be placed on the
network by a microprocessor-based
work station is stored in shared
memory in transmit blocks. Pointers
(starting address information) to
these blocks are stored along with
processing instructions in other
shared memory blocks. Status infor­
mation and overall directives are
stored in system control blocks
which serve as the mailbox between
the CPU and the 82586.

When alerted by a channel atten­
tion signal, the 82586 will perform a
host of tasks involved in accessing
data to be transmitted from its loca­
tion in memory, framing the mes­
sage packets containing the data and
seeing to the transmission on the
network medium. In addition, the
82586 receives and buffers incoming
data which it then stores in shared
memory for the CPU to collect. It is
the CPU's job to allocate the blocks
of memory for the LAN coprocessor
to store the received packet data~ ,.

7-215 231307-001
Electronic Imaging 0 April 1983

ARTICLE
REPRINT

"Repn!1te:d by permission of PC World from Volume 1, Issue 5, published at 555 De Haro Street, San FrancIsco,
CA94107."

"Subscription rates $24/yr. PC World Circulation Department, PO Box 6700, Bergenfield, NJ 07621

7-216

AR-296

September 1983

Order Number 230810-001

Something exciting is going on. But like most significant
events, it is not happening quickly. Spurred on by
developments in integrated circuit technology, a new
generation of personal computers is taking shape, and the
IBM PC and its clones are at theforefront.

As IBM PC users, it's sometimes hard to remember that
the inanimate metal boxes in front of us are susceptible to
evolution. But occasionally a product is introduced that
forces the complete redesign of our personal computers.

Integrated circuits (lCs), the devices that bring intelligence
to our machines, have reached a new level of technological
achievement, and now the computers that use them must
advance as well. Strange as it seems, these small silicon
chips are setting the guidelines for the next generation of
personal computers.

THE CHIP MAKERS

Now that personal computers have caught on, the semi­
conductor manufacturers who make ICs are eyeing the
swelling market for personal computer ICs.

Dozens of newly developed semiconductor chips are being
aimed at the personal computer market. These chips range
from hard disk controllers that speed access time to linear
predictive coding processors for speech recognition. With
these new ICs driving personal computer design, we'll
soon see machines we once only reasoned would exist:
diskless computers running a wide array of software
loaded over telephone lines; computers that display text
exactly as it will be printed, with justified margins,
superscripts and subscripts, and bold and italic typefaces
on screen; and systems with greater, more accessible
graphics.

As computer design is simplified by these advanced ICs,
product differentiation will become greater. This portends
the death of those PC clones capable only of basic
spreadsheet and word processing operations. Instead, to
survive in the increasingly cost-competitive, standardized
personal computer market, small-system manufacturers
will tailor their products for niche markets.

BIG BLUE

Intel Corporation, located in Northern California's re­
nowned Silicon Valley, is one of the largest and most
innovative chip manufacturers in the industry. IBM has
been committed to Intel products for years; the PC is built
around Intel's 8088 microprocessor and, as recently as late
1982, IBM invested $225 million in a minority share of
Intel stock. A commitment this size is a good indicator of
IBM's faith in Intel products. IBM's good faith and
multimillion-dollar investment is guaranteed by Intel's
long-standing promise that software written for the 8088
will run on all its future processors.

By taking a close look at the Intel ICs, we can gain valuable
insight into the capabilities of the IBM PCs that will be
built around them. The design philosophy of Intel's IC
family differs radically from that of competitors Motorola,

7-217

National Semiconductor, and Zilog. Diverse chip designs
mean that the system designs of the IBM PC and its
competitors, such as Apple's Lisa (based on the Motorola
6800 microprocessor), will also be radically different.

THE MICROPROCESSORS

Of the many Intel chips being produced, some will have a
greater impact on the computer industry than others. In
the vanguard will be the new microprocessors.

Design of the PC was shaped by IBM's surprising selection
ofthe 8088. This choice caught most industry observers off
guard since IBM, also the world's largest semiconductor
manufacturer, had traditionally used its own designs for
computer logic. Once Big Blue settled on the 8088, Intel's
design philosophy was firmly implanted in the PC-from
the 8088's segmented memory scheme to its 16-bit registers
and 8-bit bus.

Like the 8088, each of the four microprocessors Intel is
now readying for production could dramatically influence
the design and performance of tomorrow's PCs.

The 80186. The recipe for putting an entire central
processing unit (CPU) board on one chip is easy. Take an;
8086 (the 16-bit bus big brother of the 8088), speed it up,
and then add most of the support chips essential to making
the 8086 run in a personal computer. Reduce the size with
the help of computer-aided design until all the chips fit
onto one sliver of silicon, and voila. you have the 80186
(186), an entire motherboard on a chip.

While firming up plans for full-scale production of the 186,
Intel is currently providing samples of the chip to computer
manufacturers, including MAD Computer and Durango
Systems. The rewards for using this newest chip are many:
manufacturing costs are cut since a single IC is less
expensive to buy than a boardful of them; physical CPU
size is reduced, opening the way to shrink overall computer
size or to put more power in the same box; and develop­
ment time is cut for computer designers, which means
considerable savings for system makers.

The 80188. If the 186 is too rich for your taste, the 80188
(188) may be more suitable. As with the 186; the 188 's core
CPU and support chips are melded on a single IC; like the
8088, however, the 188 has an 8-bit interface to the outside
world (the 186 has a 16-bit interface). The 188 decreases
costs by allowing computer manufacturers to use less
expensive 8-bit peripherals. Although the 186 has received
more publicity so far, the 188, aimed squarely at the
massive 8-bit computer market, is expected to be used in
greater numbers, at least in the short term.

The 80286. Powerful multiuser systems will benefit the
most from the 80286 (286), possibly the most powerful
microprocesor commercially available to date. Squeezing
150,000 transistors on a chip, the 286's designers have
integrated a pair of HMOS-III (Intel's own proprietary
process technology) 8086s and numerous other very large
scale integration (V LSI) components. The resultant chip is
two to three times faster than the Motorola 68000 even
though both chips can address about the same amount of

230810-001

memory. The 286 has very high speed (1.5 million instruc­
tions per second, five to six times faster than the 8086),
about 16 megabytes worth of addressable physical memory,
the ability to address a virtual memory of I gigabyte per
task (equal to the capacity of 100 IBM XT Winchester
drives), and the ability. to provide several layers of
muiltiuser security on chip.

The 80386. Not yet built, the 80386 (386) is promised for
1984, but the release date may slide to 1985. If the 286 is
vastly more powerful than the 8088 or 8086, then the 386 's
potential is staggering. Complementary metallic oxide
semiconductor(CMOS) process technology, which lowers
power consumption, is being used to build this 32-bit chip.
Intel, Motorola, and National Semiconductor are already
jockeying for position in what will be an intense compe­
tition for the 32-bit market. Motorola is claiming that its
68020 will be the first widely available 32-bit micro­
processor when it is introduced later this year, although
NCR has already scooped the industry with its 32-bit chip.
Hewlett-Packard, not to be outdone, has put 450,000
transistors on a single proprietary 32-bit microprocessor,
which is used in the $20,000 to $30,000 HP 9000 work
station.

How will these processors impact the personal computers
that use them? The most obvious effect will be faster
performance. Even the budget model 188 boasts two to
five times the instruction and execution speed of the 8088
in today's PC. A 286 is about twice again as fast as the 188,
and next year's data-gobbling 386 will have more speed
than anyone can immediately use.

Since the 188 is ideal for low-priced portable computers, it
ceates the ironic probability that a PC-compatible portable
may soon by available that will run the IBM PC's full line
of software and run it faster than the full-sized PC.

SOFTWARE ON SILICON
One chip ready to plug into the next generation of personal
computers is the 80150 (150) CPj M software-in-silicon
operating system. A complete CPj M-86 operating system
is stored in ROM on this chip, along with drivers forinput
and output devices.

Use of a 150 CPj M chip will eliminate the traditional
booting up procedure of loading an operating system disk
and reading its contents into operating RAM. Instead, the
user will simply turn on the computer and press a CPj M-
86 button. Again and more importantly, this chip lowers
overall computer production costs since a disk drive and
attendant control circuits are replaced by a solitary chip.

Another chip, similar to the 150, has Intel's proprietary
RMX operating system in silicon. This little-known RMX
chip is also suitable for present and future IBM PCs.

Many people question the wisdom of putting software in
silicon. "Software should be soft," says Bill Gates, chair­
man of the board at Microsoft. He points out that
operating systems are constantly updated; for instance,
Microsoft will soon offer a revised version of MS-DOS
that supports networking. Such updates can't readily be
added to a hardware production line and certainly won't
help the ROM chips already in users' computers.

Ir--________ ~
I
I
I

CLOCK

8088
Or

8086

I . L-__ ~IN~T~ER~R~U~PT~S~C~~~u~s----------~~~

8384A
CLOCK
DRIVER

ROY

I
I
I
I

INTERRUPT STATUS

CLOCK

'-------'---I ACKNOWLEDGE

BAUD RATE
riMER

DELAY
TIMER

80150

SYSTEM
TIMER

J~'"''''
IAPX 86/50. 88/50

PROGRAM
MEMORY

DATA
MEMORY

BLOCK DIAGRAM OF INTEL'S 80150 CP/M ON A CHIP WITH THE 8088 OR 8086 MICROPROCESSPR

7-218 230810-001

Still, Intel argues that its choice of CP/ M makes the ISO
practical. "We picked CP/ M because it is a mature
operating system," Says Intel's product marketng engineer
for software on silicon, Carl Buck. "We'd have more
difficulty with a less developed product." The many
versions of MS-DOS helped eliminate that operating
system from consideration. Yet according to Digital
Research President John Rowley, Intel left some room on
·the ISO chip to add to CP/M in the future.

Also, use of the 150 CP/M chip doesn't preclude the use of
other operating systems. PC-DOS could still be loaded
into a system and run, making use ofthe ISO's input/ output
drivers.

PORTABLES

Having software on silicon opens the way for very
powerful diskless portable computers. The minimum
configuration for a 188-based unit with the ISO CP/ M
operating system could include one or two BASIC
applications programs in ROM, providing spreadsheet
and word processing power in a unit the size of a keyboard
with a small flip-up screen. Intel Product Marketing
Engineer Tony Zingale suggests we may soon see truly
usable portables selling for around $500.

More ambitious and expensive portables could accept
applications software over telephone lines, loading them
into a variety of media. Several memory technologies will
compete for room in portable computers, including mag­
netic bubble memories, already being used in the Grid and
Teleram computers. Commercially available.bubbles have
4 megabit capacity, while 10- to 16-megabit bubbles are
projected for the near future. Japan's NEC reported a
major breakthrough that within 5 years will allow bubbles
to store I gigabit of data. Of course, 8 of those bits are
needed to store I byte of data.

Vying with bubbles in some applications and comple­
menting them in others are electronically programmable
read-only memories, or EPROMs. Like ROM, EPROMs
are nonvolatile chips. Unlike ROM, EPROMs can be
reprogrammed. Intel now offers 256K EPROMs, and it is
anticipated that other companies will offer 256K EPROMs
before the year's end.

GRAPHICS

The space created on the motherboard by the 186 and
friends will enable computer designers to add more
graphics capability to their systems. Like the 150 there are
co-processor chips ready for the task.

A pair of Intel ICs, the 82720 (720) graphics display
controller and the 82730 (730) text co-processor, are
touted as providing vastly enhanced and simplified dis­
plays. With the 730, text can be displayed on the computer
screen as it will be printed out. Italics can be mixed with
straight text, and superscripts and subscripts are shown
without the annoying and often misleading arrows
common in today's software.

Editing can be speeded up by the 730's support for split
screens, multiple windows, dual cursors, smooth scrolling,
and table-driven linked lists. Displays of up to 200
characters per row and 128 lines per screen can be
supported, and unique character sets, such as Arabic or
Japanese, can be built.

Even more capability can be added though the 720, an IC
that works with or without the 730. Introduced in
September 1982, the 720, a joint effort between Intel and
NEC, is said to be integral to graphics plans for NEC's
8086-based Advanced Personal Computer.

One application in which the 720 and 730 will shine is
opening windows on-screen. Most computer users are
familiar with the ability of Apple's Lisa to link spread­
sheets, graphics, and word processing through mUltiple
displays, or windows, on one screen. Lisa uses memory­
hungry software and dedicated hardware. Apple's initial
release uses I full megabyte of RAM, and Lisa will soon be
offered with 4M of internal memory in addition to a
mandatory 5M hard disk.

For comparison, the IBM PC, limited by the range of the
8088, can address I M tops. VisiCorp's Visi/ ON promises
Lisa-like graphics and program-linking capabilities for the
IBM PC, with lower memory demands and no dedicated
hardware other than a mouse. Although Visa/ ON sup­
posedly runs faster with an 8087 math co-processor,
VisiCorp will not comment on whether its software will
make use of the 720 or the 730.

BIT-MAPPED GRAPHICS

Both Lisa and Visa/ ON use bit-mapping, a process that
the 720 and the 730 are said to simplify. In plain words, to
create an image on-screen, the electron gun that illumi­
nates the screen must be positioned and then turned on
and off. Data to do this is stored in RAM as a bit-map
memory corresponding to positions of pixels lit on the
screen. For one-level monochrome displays, I memory bit
describes each pixel; for color and levels of grey, several
bits must be used to describe each pixel.

Creating images is a lengthy chain of simple operations. In
a system that uses the 8088 alone, the microprocessor is
heavily burdened and the software runs slowly. Using
complementary chips to take up part of the processing
chore will speed up the process considerably. This is where
the 720 and the 730 come in By doing tasks such as looking
up and manipUlating a library of commonly used figures,
quickly accessing the bit-map memory, and rewriting the
bit map, both chips speed text and graphics operations.

FLAT VS. SEGMENTED MEMORY

Use of the 720 and the 730 demonstrates Intel's design
philosophy and how this philosophy impacts the IBM PC.
Computers such as Lisa that are based on the Motorola
68000 have a flat memory, while computers based on the
8088 or 8086 use segmented memory. According to Intel,

7-219 230810-001

segmented memory (see "How the PC thinks," PC World.
Vol. I, No. I) works better for text and graphics manipu­
lation than its flat counterpart. Ordinarily in processing
any string of characters, changing a single letter in a string
of text means repositioning every character in a document.
But since segmentation uses pointers to locate data in
memory, only the pointers locating the beginning and the
end of a passage of text have to be changed. Similarly,
pointers in memory can be used to position bit-map data
corresponding to mUltiple windows on-screen, eliminating
the need to recalculate and manipulate the entire bit map.
Segmented vs. flat memory has become somewhat of a
religious issue in the semiconductor industry.

Intel and Motorola also differ on how much burden to put
on the CPU. Motorola's 68000 is faster than the 8088 and
the 8086 and can address more memory than either of
those chips or the 188 or the 186. But the 186 and the 286
are substantially faster than the 68000. Also, the 286's
ability to address 16M opens the way to using large
memory segments, strengthening Intel's case for seg­
mented memory.

In many 68000-based high-end systems the computer
designers have decided to use a co-processor, either bit
slice, or in one case, an 8086, to do graphics. Many people
are skeptical of Intel's graphics approach, but Intel
maintains that its approach will allow computer designers
greater flexibility. In an ultimate system, mUltiple 720s and
730s could be combined to handle interactive windows
under the direction of a 286 processor, while more
complex imagery (beyond the practical ability of bit­
mapping) could be managed by an 80287 math co­
processor, the next generation cousin of the 8087. The
creation of three-dimensional graphics that can be rotated
on screen foradvanced computer-aided designand manufacturing
systems, for instance, is best handled by Vector Graphics
rather than bit-mapping.

7-220

SOFTWARE DEMANDS

Yet there is more to computer design than hardware.
Software must be written to take advantage of the new
IC's promise. In the case of the 286, no operating system
yet exists that can take full advantage of its operating
capabilities. Plug-ins currently on the market that add the
286 to the IBM PC provide little more than a faster 8086.
Only new opera ting software will use the new chips to their
fullest potential.

One solution on the horizon is a 286 version of XENIX
due to be introduced mid-1983. XENIX, a multiuser
operating system with a visual shell similar to MS-DOS, is
a takeoff on Bell Labs' UNIX operating system. A
licensing agreement among Intel, Bell Labs, and Microsoft,
the author of XENIX and MS-DOS, is reported being
negotiated. Negotiations between Intel and Digital Re­
search to provide a CPI M variant for the 286 have been
underway for some time but have reportedly stagnated.

For lower-end systems Microsoft is said to be upgrading
MS-DOS to accommodate networking. This advance
comes at the right time, as the 188 and 186 open up sockets
that could be used for local area network chips such as the
programmable Ethernet chip from Intel.

As long as software and hardware keep growing rapidly
together, PC users will be offered a continuing stream of
improved computers and ever more capable plug-in
boards. The variety seems endless and next year's crop
exciting.

230810-001

Eraseable/Programmable 8
Logic Devices

5C121
1200 GATE CHMOS

H-SERIES ERASABLE PROGRAMMABLE LOGIC DEVICE
• High Performance LSI Semi-Custom

Logic Replacement for Gate Arrays and
Conventional Fixed Logic

• EPROM Technology Based. UV
Erasable

• Programmable Macrocell and I/O
Architecture; up to 36 Inputs or 24
Outputs, 28 Macrocells Including 4
Burled Registers

• All Inputs are Latchable with a
Programmable Latch Feature

• High Speed tpD (Max) 50 ns Operating
Frequency (Max) 15 MHz

• Advanced Architecture Features
Including Programmable Output
Polarity (Active High/Low), Register
By-Pass and Reset Controls

• Programmable Clock System for Input
Latches and Output Registers

• Product-Term Sharing and Local Bus
Architecture for Optimized Array
Performance

• Compatible with LS TTL and 74HC
CMOS Logic

• Register Pre-Load and Erasable Array
for 100% Generic Testability

• Low Power; 15 mW Typical Standby • Programmable "Security Bit" allows
Dissipation total protection of proprietary designs

• Typical Usable Gate Count of 1200 • Available In a 40-Lead Window Cerdlp
2-lnput NAND Gates Package (See Packaging Spec, Order #231369)

The Intel 5C121 H-EPLD (H-series Erasable Programmable Logic Device) is an LSI logic circuit that is user
customizable through programming, This device can be used to replace gate arrays, multiple programmable
logic arrays and LS TIL and 74HC CMOS SSI and MSI logiC devices, The logic capacity of the 5C121 is
typically equal to 1200 two-input NAND gates,

The 5C121 H-EPLD uses CHMOS· EPROM (floating gate) cells as logic control elements instead of fuses,
Use of Intel's advanced CHMOS II-E EPROM process technology enables greater logic densities to be
achieved with superior speed and power performance. The EPROM technology also enables these devices to
be 100% factory tested by the programming and the erasure of all the EPROM logic control elements in the
device.

The architecture of the 5C121 is based on the 'Sum of Products' PLA (Programmable LogiC Array) structure
with a programmable AND array feeding into a fixed OR array. Flexibility in accommodating logical functions
without the overhead of unnecessary product terms or speed penalties of programmable OR structures is
achieved through the provision of a range of OR gate widths as well as through product term sharing. The use
of a segmented PLA structure with local and global connectivity allows for further improvements in perform­
ance. The 5C121 also contains innovative architectural features that provide extensive Input/Output flexibility.
·CHMOS is a patented process of Intel Corporation.

RECOMMENDED OPERATING CONDITIONS
Symbol Parameter Min Max Units

VCC Supply Voltage 4.75 5.25 V

VI INPUT Voltage 0 VCC V

Vo OUTPUT Voltage 0 Vcc V

TA Operating Temperature 0 70 ·C

tR INPUT rise Time 500 ns

tF INPUTfall Time 500 ns

ILLUSTRATIONS COURTESY OF ALTERA CORPORATION.

Pin Configuration

elK1

'" 111 I

',2 7
1/0, a
1/°2
I/O,
I/0 ..
I/O~
I/O.
I/0, 14

I/O, 15
I/Oi

1/°10
1/°11

1/012

290098-1

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. September 1985
@) Intel Corporation, 1985 8" 1 Order Number: 290098-001

inter 5C121

ARCHITECTURE DESCRIPTION

The 5C121 H-EPLD has 12 dedicated inputs as well
as 24 Input/Output pins. All inputs to the circuit
(both dedicated and lID inputs) may be latched us­
ing transparent 7475 type latches. In addition to
these 36 input latches, 28 D type registers are also
provided.

The internal architecture of the 5C121 H-EPLD is
based on 28 macrocells. Each macrocell (see Figure
1) contains a PLA structure (programmable AND ar­
ray product terms connected to an OR gate) and an
lID architecture control block (with a D flip flop) that
can be programmed to create many different output
logic structures. This powerful lID architecture can
be configured to support both active-high, active­
low, 3-state, open drain and bi-directional data ports
all on a 4-bit wide basis. They can also act as inputs
on a nibble wide basis with optional input latching.

Macrocells in each half of the circuit are grouped
. together for lID architecture programming. Each
bank of four macrocells can be further programmed
on an individual macrocell basis to generate active
high or active low outputs of the logic function from
the PLA.

The primary logic array of the 5C121 is segmented
into two symmetrical halves that communicate via
global bus signals. The main array contains some
15104 programmable elements representing 236
product terms (AND gates) each containing 64 input
signals.

The macrocells share a common programmable
clock system (described in a later section) that con­
trols clocking of all registers and input latches. The
device contains 8 modes of clock operation that al­
low logic transition to take place on either rising or
falling edges of the clock signals.

The circuit further contains four macrocells whose
outputs are not tied to any lID pin but feedback into
the array to create buried state-functions. The feed­
back path may be either the registered or combina­
tional result of the PLA output. The use of the buried
state macrocells provides maximum equivalent logic
density without demanding higher pin-count pack­
ages that consume valuable board space.

8-2

MACROCELL 1/0 ARCHITECTURE

The Input/Output architecture of the 5C121 macro­
cell (see Figure 1) can be programmed using both
static and dynamic controls. The static controls re­
main fixed after the device is programmed whereas
the dynamic controls may change state as a result
of the signals applied to the device.

The static controls set the inversion logic (i), register
by-pass (ii) and input feedback multiplexers (iii). In
the latter two cases these controls operate on four
macrocells as a bank.

The buried-state registers have simpler controls
which determine if the feedback is to be registered
or combinational.

The inversion control logic, marked (i) in Figure 1, is
achieved by programming the EPROM control bit
connected to the same XOR gate as the output from
the PLA structure. ProgramlT'i'lg or erasure of this
EPROM element toggles the OR gate output of the
PLA between active-high and active-low. The inver­
sion control operates on an individual macrocell ba­
sis.

The register by-pass control, marked (ii) in Figure 1
allows the PLA output to either flow through the D
flip flop as a registered output or by-pass the flip flop
and be a combinational output.

The dynamic controls consist of a programmable in­
put latch-enable as well as reset and output enable
product terms. The latch-enable function is common
throughout the 5C121 and once chosen this function
will latch all the inputs. This function is programmed
by the clock control block but may also be driven by
input signals applied to pin 1 (see clock modes-Ta­
ble 1).

The reset and output-enable controls are logically
controlled by single product terms (the logic AND of
programmed variables in the array). These terms
have control over banks of four macrocells.

The output-enable control may be used to generate
architecture types that include bi-directional, 3-state,
open drain or input only structures.

intJ 5C121 .

I/O ARCHITECTURE BLOCK EPROM
CONTROL
BIT

290098-2

Figure 1. 5C121 Macrocelll/O Architecture

INTERNAL BUS STRUCTURE

The two identical halves of the 5C121 communicate
via a series of busses. The local bus structure that is
used for communication within each half of the chip
contains 16 conductors that carry the TRUE and'
COMPLEMENT of 8 local macrocells. In the block
diagram (Figure 2) of the 5C121 the local macrocells
are B-1 and B-2 on one half and A-1 and A-2 on the
other half.

8-3

The global busses (Input bus & Global feedback
from A-3 & B-3 macrocells & buried registers) are
made up of 48 conductors that span the entire chip.
These 48 conductors carry the TRUE and COMPLE­
MENT of the twelve primary inputs (pins 2 through 7
and 33 through 38), signals from 4 Buried Registers
as well as the global outputs of 8 macrocells in
groups A-3 and B-3.

inter

@@@
WODE Cklor IYCl(2 rYe", Ill: elK

cw ill!
elK1 elK1

1 coo
1 elK1

ctKi ill2
elK1 ru2
CiJ('i ClK2
elK' CLK2

[=[RAS£D
P",PROGRAIIIWtO

elK

IlE

5C121

A-1 MACROCELLS

B-1 MACROCELLS

Figure 2. 5C121 Block Diagram

8-4

290098-3

inter 5C121

A-2 MACROCELLS A-3 MACRO CELLS

290098-4

Figure 2. 5C121 Block Diagram (Continued)

8-5

inter

In this illustration a small group of 4 product-terms is
shared by groups containing 8 product-terms each.
This feature is most useful in counter applications
where common terms exist in the functions.

DETAILED CIRCUIT
REPRESENTATION

-0- = 64 INPUT AND GATE
(ONE PRODUCT TERM)

5C121

Figure 3. Shared Product-Term Circuits

8-6

LOCAL GLOBAL INPUT
BUS BUS BUS

290098-5

intJ 5C121

SHARED PRODUCT TERMS

Macrocells 9 & 10,11 & 12, 17 & 18 and 19 & 20 (in
groups A-3 and 8-3-the macrocells with global
feedback) have the facility to share a total of 16 ad­
ditional product terms. This sharing takes place be­
tween pairs of adjacent macrocells. This capability
enables, for example, macrocells 9 and 10 to ex­
pand to 16 and 8 effective product terms respective­
ly, and for macrocells 11 and 12 both to expand to
12 effective product terms. Figure 3 shows this shar­
ing technique in detail. This facility is primarily of use
in state machine and counter applications where
common product terms are frequently required
among output functions.

MACROCELL-BUS INTERFACE

As discussed earlier, the macrocells within the
5C121 are interconnected to other macrocells and
inputs to the device via three internal data busses.

The product terms span the entire bus structure (lo­
cal feedback, global feedback and input buses) that

At each intersecting point in the logic array there exists an
EPROM-type programmable connection. Initia/ly, a/l connections
are complete. This means that both the true and complement of a/l
inputs are connected to each product-term. Connections are
opened during the programming process. Therefore any product
term can be connected to the true or complement of any input.
When both the true and complement connections of any input are
left intact, a logical false results on the output of the AND gate. If
both the true and complement conn9ctions of any input are pro­
grammed open. then a logical "don't care" results for that input. If
a/l inputs for a product term are programmed open, then a logical
true results on the output of the AND gate.

is adjacent to their macrocell (see Figure 4) so that
they may produce a logical AND of any of the vari­
ables (or their complements) that are present on the
busses.

All macrocells have the ability to return data to the
local or the global bus. Feedback data may originate
from the output of the macrocell or from the 110 pin.
Feedback to the global bus communicates through­
out the part. Macrocells that feedback to the local
bus communicate only to their half of the 5C121.
Connections to and from the signal busses are
made with EPROM switches that provide the repro­
grammable logic capability of the circuit.

Macrocells in groups A-3 and 8-3 and the buried
registers all have global bus connections while mac­
rocells in groups A-1, A-2 and 8-1, 8-2 have only
local bus connections (see 810ck Diagram, Figure 2).
Advanced features of the Intel Programmable Logic
Development System will, if desired, automatically
select an appropriate macro cell to meet both the
logic requirements and the connection to an appro­
priate signal bus to achieve the interconnection to
other macrocells.

64 INPUT AND GATE

"-...

EPROM@
CELL II

CONNECTION

EPROM CELL LOCAL GLOBAL INPUT
ARCHITECTURE FEEDBACK BUS BUS BUS
SWITCH SIGNALS

290098-6

Figure 4. Macrocell·Bus Interface

8-7

inter 5C121

CLOCK MODE CONTROL

The 5C121 contains two internal clock data paths
that drive the input latches (transparent 7475 type)
and the output registers. These clocks may be pro­
grammed into one of 8 operating modes (see clock
mode Table 1). Figure 1 shows a typical macro cell
which is driven by the master clock signal ClK and
the ·input latch-enable signal I LEo

The master clock signal is input via pin 1. If pro­
grammed modes 4, 5, 6 & 7 are chosen, a second
clock signal is required which is input via pin 38 (see
Figure 5). Table 1 shows the operation of each clock
programming mode.

If modes 0, 1, 4, 5, 6 or 7 are chosen (Le. latching of
the inputs is required), all inputs, both dedicated and
liD, are latched with the same IlE signal. Data ap­
plied to the inputs when ClK1 is low (high) is latched
when ClK1 goes high· (low) and will stay latched as
long as ClK1 stays high (low). levels shown in pa­
renthesis are for modes 1, 5 & 7 and levels shown
outside parenthesis are for modes 0, 4 & 6.

Care is required when using any of the clock modes
4, 5, 6 or 7, that require two input clock Signals to
ensure that timing hazards are not created.

ERASURE CHARACTERISTICS

The erasure characteristics of the 5C121 are such
that erasure begins to occur upon exposure to light
with wavelengths shorter than approximately 4000A.
It should be noted that sunlight and certain types of
fluore~cent lamps have wavelengths in the 3000-
4000A. Data shows that constant exposure to room
level fluorescent lighting could erase the typical
5C121 in approximately three years, while it would
take approximately one week to cause erasure when
exposed to direct sunlight. If the 5C121 is to be ex­
posed to these types of lighting conditions for ex­
tended periods of time, conductive opaque labels
should be placed over the window to prevent unin­
tentional erasure.

The recommended erasure procedure for the 5C121
is exposure to shortwave ultraviolet light which has
the wavelength bf 2537 A. The integrated dose (Le.,
UV intensity x exposure time) for erasure should be

8-8

a minimum of fifteen (15) Wsecl cm2. The erasure
time with this dosage is approximately 15 to 20 min­
utes using an ultraviolet lamp with a 12,000 p.W/cm2

power rating. The 5C121 should be placed within
one inch of the lamp tubes during erasure. The maxi­
mum integrated dose the 5C121 can be exposed to
without damage is 7258 Wsec/cm2 (1 week @

12,000 p. W I cm2). Exposure to high intensity UV light
for longer periods may cause permanent damage.

FUNCTIONAL TESTING

Since the logical operation of the 5C121 is con­
trolled by EPROM elements, the device is complete­
ly factory tested. Each programmable EPROM bit
controlling the internal logic including the buried
state registers are tested using application-indepen­
dent test program patterns and erased before ship­
ment to customers.

To enable functional evaluation of counter and
state-machine applications, the 5C121 contains reg­
ister pre-load circuitry. This can be activated by in­
terrupting the normal clocked sequence and apply­
ing Vpp on pin 2 to engage the pre-load state. Under
these conditions the flip flops in the 5C121 can be
set to any logical condition and then return to normal
operation. This process simplifies the input se­
quences necessary to evaluate the counter and
state machine operations.

DESIGN RECOMMENDATIONS

For proper operation it is recommended that input
and output pins be constrained to the range GND <
(VIN or VOUT) < Vee. Unused inputs should be tied
to an appropriate logic level (e.g. either Vee or GND)
to minimize device power consumption.

When utilizing a macrocell with an liD pin connec­
tion as a buried macrocell (Le. just using the macro­
cell for feedback purposes to other macrocells), its
liD pin is a 'reserved pin'. (The Intel Programmable
logic Development System will label the pin 'RE­
SERVED' in the utilization report that it generates.)
Such an liD pin will actually be an output pin and
should not be grounded. It should be left unconnect­
ed such that it can go high or low depending on the
state of the macrocell's output.

In normal operation VeelVpp (pin 40) should be
connected directly to Vee (pin 39).

intJ 5C121

Table 1. Clock Programming (Key: L = Latched; T = Transparent)

Programmed
Mode

0

1

2

3

4

5

6

7

IlE

ClK
(PIN 1)

Input Signals
. Are Latched When:

CLK1

...1""-(Pin 1)

CLK1 --v-(Pin 1)

Inputs Not Latched

Inputs Not Latched

CLK1

...1""-(Pin 1)

CLK1 --v-(Pin 1)

CLK1

...1""-(Pin 1)

CLK1 --v-(Pin 1)

CLOCK SIGNALS TO
'A' HALF OF CIRCUIT

L
T

T
L

L
T

T
L

L
T

T
L

Output Registers Clock
Change State When: Configuration

CLK1

'--
1 Clock

(Pin 1)

CLK1

f
1 Clock

(Pin 1)

CLK1

'-
1 Clock

(Pin 1)

CLK1

f
1 Clock

(Pin 1)

CLK2

'-
2 Clocks

(Pin 38)

CLK2

'-
2 Clock

(Pin 38)

CLK2

f
2 Clocks

(Pin 38)

CLK2

.£
2 Clocks

(Pin 38)

ClK = REGISTER CLOCK
IlE = INPUT lATCH ENABLE

ClK ------,

"CLOCK CONTROL
lOGIC"

ClK

IlE

13 14 15 r-;;ClK2
OPTIONAL SECOND I '(~IN 38)

CLOCK INPUT
290098-7

Figure 5. Programmable Clock Control System

8-9

intJ 5C121

ABSOLUTE MAXIMUM RATINGS* • Notice: Stresses above those listed under ''Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for
extended periods may affect device reliability.

Symbol Parameter Min Max Units

Vcc Supply Voltage(l) -2.0 7.0 V

Vpp Programming -2.0 13.5 V
Supply Voltage(l)

VI DC Input Voltage(l)(2) -0.5 VCC+ 0.5 V

ICC DC VCC Current(4) 100 mA

Tstg Storage Temperature -65 + 150 'c
Tamb Ambient Temperature(3) -10 +85 'c
NOTES:
1. Voltages with respect to ground.
2. Minimum DC input is -0.3V. During transitions, the in­
puts may undershoot to - 0.2V for periods less than 20 ns
under no load conditions.
3. Under bias.
4. With outputs tristated.

D.C. CHARACTERISTICS TA = 0' to 70°C VCC = 50V + 5% -
Symbol Parameter Conditions Min Typ Max Unit

VIH HIGH Level 2.0 Vcc+ 0.3 V
Input Voltage

VIL LOW Level -0.3 0.8 V
Input Voltage

VOH HIGH Level 10 = -4.0 mA DC 2.4 V
Output Voltage

VOL LOW Level 10 = 4.0 mA DC 0.45 V
Output Voltage

II Input Leakage Current VI = Vcc or GND ±10.0 p.A

loz 3-State Output Vo = Vcc or GND ±10.0 p.A
Off-State Current

ICCl '. Vcc Supply Current (Standby) VI = VCC or GND CMOS Inputs 3 mA
(Note 6) 10 = 0 TTL Inputs 30

ICC2 Vcc Supply Current (Active) No Load CMOS Inputs 50 mA
f=10MHz TTL Inputs 100

los Output Short Circuit Current (Note 5) 130 rnA

NOTE:
5. Output shorted for no more than 1 sec. and no more than one output shorted at a time. lOS is sampled but not 100%
tested.
6. Chip automatically goes into standby mode if logic transitions do not occur. (Approximately 50 ns after last transition.)

A.C. TESTING LOAD CIRCUIT

341!l

DEVICE INPUT
RISE AND FALL
TIMES < 6nS

CL = 30 pF

5V

855!l

CL Includes Jig Capaci1ance

290098-8

8-10

A.C. TESTING INPUT, OUTPUT WAVEFORM

2.4 ==><2.0:::>TEST POINTS<::2.0)C
0.45 O.B O.B

290098-9

A.C. Testing: Inputs are Driven at 2.4V for a Logic "1" and O.4SV
for a Logic "0". Timing Measurements are made at 2.0V for a
Logic "1" and 0.8V for a Logic "0".

inter 5C121

A.C. CHARACTERISTICS T A = 0° to 700 e, Vcc = 5.0V + 5% -

Symbol Parameter

tpo Non-Registered Input or 1/0
Input to Non-Registered Output

tpzx Non-Registered Input or 1/0
Input to Output Enable

tpxz Non-Registered Input or 1/0
Input to Output Disable

tsu Non-Registered Input or 1/0
Input to Output Register Setup

tH Non-Registered Input or 1/0
Input to Output Register Hold

tCH Clock High Time

tCl Clock Low Time

tCOl Clock to Output Delay

tpl Minimum Clock Period (Register Output Feed-
back to Register Input-Internal Path)

fl Maximum Frequency (1 Itpl)

tp2 Minimum Clock Period (tsu + tC01)

f2 Maximum Frequency (1 ItP2)

tRST Asynchronous Reset Time

tC02 Registered Feedback Through PLA
to output. Relative to External Clock.

tlLs Set Up Time for Latching Inputs

tlLH Hold Time for Latching Inputs

tclC2 Minimum Clock 1 to Clock 2 Delay

tllOFS Input Latch to D-FF Setup Time

tOFllS D-FF to Input Latch Setup Time

tp3 Minimum Period for a
2-Clock System (TC1C2 + tC01)

f3 Maximum Frequency (1 Itp3)

SWITCHING WAVEFORMS

nwlot REGISTER
TO OUTPUT

FRO .. REGISTER VIA FEEOBACK
TO COIrolBIH.ATIONAL OUTPUT

tRST I-­
----------~~W--~A~S~~C~HR~ON~O~US~LY----~ If\ RESET OUTPUT

NOTES:
tR & tF = 6 ns
tCl & tCH measured at 0.3V & 2.7V.
All other timing at 1 .3V.

NOTE:

290098-10

Device 5C121-50 5C121-65

Conditions Min Max Min Max

50 65

Cl = 30pF 50 65

50 65

37 47

0 0

20 25

Cl = 30pF 20 25

28 33

50 55

20.0 18.2

65 80

15.0 12.5

50 65

70 75

0 0

15 20

40 50

Mode 0,1
40 50

25 30

65 85

15.0 12.0

INPUT OR I/O INPUT

CO~BINATIONAL OUTPUT)I(

COMBINATIONA.L
OR REGISTERED OUTPUT

HIGH IMPEDANCE
3-STATE

5C121-90
Unit

Min Max

90 ns

90 ns

90 ns

62 ns

0 ns

30 ns

30 ns

38 ns

75 ns

13.3 MHz

100 ns

10.0 MHz

90 ns

100 ns

0 ns

25 ns

65 ns

65 ns

35 ns

100 ns

10.0 MHz

HIGH IMPEDANCE
3-STATE

VALID OUTPUT

290098-11

Above waveforms shown for clock modes 2 or 3 (tsu & tH are as in modes 2 & 3; no ILE signal is used).

8-11

inter
CLOCK MODES
SWITCHING WAVEFORMS

1-t:LOCK SYSTEM: MODES 0 AND 1

r-'ILDFS- I "FlLS I
ClK' (P'H') ~ ~

tIL:j, ~"lj
~ 'HPUTS OR)I()I(X I/O IHPUTS_ r---' - teo,.!:

REGISTERED X OUTPUT

I---- 'PO-====1
COloiBINATIONAL)I(

5C121

COMBINATIONAL i-------.PXZ~ I--- 'PIX ==k::
OR REGISTERED

OUTPUT

290098-12
INVERT CLK1 FOR MODE 0

1-CLOCK SYSTEM: MODES 2 AND 3

teH r 'Cll r-----I
ClK' (PlH') \ 1\'-___ _

.CS~H-= .t
IHPUTS OR --"")I(.Jr---k'"'Jr-------
I/o IHPUTS __ ..11''-__ 1'''''·,'-______ _

- 'CO'.I:.
REGISTERED ------f-;..~Wlr------

OUTPUT ------f--"'r''\.------
rEEOBACK

OUTPUT

-te021_---_

INPUTS OR ~ t I/O INPUTS ____ _

CO~BIHATIOHAl ·PO f
OUTPUT -_::::::::::1:'P:XI...J~ 'PIX 1:

CO~BIHATIOHAl •
OR REGISTERED

OUTPUT

290098-13
INVERT CLK1 FOR MODE 2

8-12

2-t:LOCK SYSTEMS: MODES 4 THROUGH 7
CLK1 PIN 1 CONTROLS THE INPUT LATCH CLOCK

CLK2 PIN 38 CONTROLS THE D-FF CLOCK.

ClK'(PlH').,~: ~
'HPUTS OR ------1-----I/O 'HPUTS _______ 1-___ _

,--te'C2

ClK2 (PlH3B) __ of-___ '1I
tco~.1::..

REGISTERED --of--';';"--'\I)1(,---+-----
OUWUT __ of-___ ~I'"-__ _+-----

I-- 'PO-==1.
CO"BIHATlOHAl --+--=--'\1,""---+-----OUWUT __ +-___ ...J,"'I\... __ -+ ____ _
COWBINATlONAL
OR REGISTERED

OUTPUT

-'PIX=C

290098-14
INVERT CLK1 FOR MODES 5 & 7
INVERT CLK2 FOR MODES 4 & 5

inter 5C121

Intel Programmable Logic
Development System (iPLDS)

The iPLDS provides all the tools needed to design
with Intel H-Series EPLDs or compatible devices. It
contains comprehensive third generation software
that supports four different design entry methods,
minimizes logic, does automatic pin assignments
and produces the best design fit for the EPLD se­
lected. It is user friendly with guided menus, on-line
Help messages and soft key inputs.

In addition, the iPLDS contains programmer hard­
ware in the form of an expansion card for the PC
with programming software to enable the user to
program EPLDs, read and verify programmed de­
vices and also to graphically edit programming files.
The software generates industry standard JEDEC
object code output files which can be downloaded to
other programmers as well. The iPLDS includes
5C121 H-series EPLD samples.

8-13

The iPLDS has interfaces to popular schematic cap­
ture packages (Dash series from Futurenet and PC
CAPS from PCAD) to enable designs to be entered
using schematics. However, hand-drawn schematics
can be entered just as easily using the Logic Builder,
interactive netlist entry program included in iPLDS.
The other design entry formats supported are Boole­
an equation entry and State Machine design entry.

The iPLDS is compatible with IBM PC, PC XT or PC
AT and other equivalent machines with the following
configuration:

(1) Dual floppy disk drive or hard disk drive

(2) MS-DOS Operating System Version 2.0 or later
release

(3) 384K Memory

(4) Intel device programming card and unit (supplied
with iPLDS).

Detailed information on the Intel Programmable Log­
ic Development System is contained in a separate
Intel data sheet on this product.

=0
_.

r- ef c en
z
-t
m
r-
"U
::rJ
0
G)
::rJ
l>
s::::
s::::
l>
m
r-
m
r-
0
G)

0 U1

~ 1t=:2lI~r II .ur02ncCO'P I I -~ I~
n ...

.j>. I\)

< ...
m
r-
0
"U
s:::: ~ m z {§1

PIN I I u:V I~ ~ UST
FIlE ~ < en © -t ffiiiI m

s:::: =
~
'1iil
©

290098-19 I 2$
~
~
~ = ©
~

SC060
600 GATE CHMOS

H-SERIES ERASABLE PROGRAMMABLE LOGIC DEVICE

• High Performance LSI Semicustom • Programmable Clock System with Two
Logic Replacement for TTL and 74HC Synchronous Clocks as well as
SSI and MSI Logic Asynchronous Clocking Option on All

• CHMOS EPROM ":echnology Based. Registers

UV Erasable • Programmable Registers. Can be

• 16 Macrocells with Programmable 1/0 Configured as 0, T, SR or JK Types

Architecture; up to 20 Inputs (4 • Programmable 'Security Bit' Allows
Dedicated, 16 1/0) or 16 Outputs Total Protection of Proprietary Designs

• High Speed tpd (max) 35 ns. • Register Pre-Load and Erasable Array
Operating Frequency (max) 33.3 MHz for 100% Generic Testability

• Low Power; 10 JJ-W Typical Standby • Small Footprint 24-Pin 0.3" Cerdip
Dissipation Package

High Performance Upgrade for
(See Packaging Spec., Order #231369) • Commonly Used 24 Pin PLDs

The Intel SC060 H-EPLD (H-Series Erasable Programmable Logic Device) is an LSI logic circuit that is user
customizable through programming. The SC060 is ideally suited for replacing TIL and 74HC type SSI and MSI
logic devices as well as conventional 20 and 24 pin programmable logic devices .. This device is socket
compatible with most 24 pin programmable logic devices and has the additional benefits of low power and
increased flexibility. The logic capacity of the SC060 is typically equal to 600 two-input NAND gates.

The SC060 H-ELPD uses CHMOS EPROM (floating gate) cells as logic control elements instead of fuses. Use
of Intel's advanced CHMOS II-E EPROM process technology enables greater logic densities to be achieved
with superior speed and power performance_ The EPROM technology also enables these devices to be 100%
factory tested by the programming and the erasure of all the EPROM logic control elements in the device.

The architecture of the SC060 is based on the 'Sum of Products' PLA (Programmable Logic Array) structure
with a programmable AND array feeding into a fixed OR array. The SC060 has unique architectural features
that allow programming of all 16 registers to D, T, SR or JK configurations without sacrificing product terms.
These registers can be either clocked asynchronously or in banks with two synchronous clocks.

ClK! vee
INPUT INPUT

I/O I/O
I/O I/O
I/O I/O
I/O I/O
I/o I/O
I/o I/o
I/O I/O
I/O I/O

INPUT INPUT

GND CLK2

290104-1

Pin Configuration

Intel Corporation assumes no responsibility for the use of any circuitry other than Circuitry embodied in an Intel product. No other circuit patent
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. November 1985
@ Intel Corporation, 1985 8-15 Order Number: 290104-001

