

To order Intel literature write or call:

Intel Literature Sales
P.O. Box 58130
Santa Clara, CA 95052-8130

Intel Literature:
(800) 548-4725

Use the order blank on the facing page or call our Toll Free Number listed above to order literature.
Remember to add your local sales tax and a 10% postage charge for U.S. and Canada customers, 20% for
outside U.S. customers.

1987 HANDl8l0m{S

Product line handbooks contain data sheets, application notes, article reprints and other design information.

'PRICE IN
NAME ORDER NUMBER U.S. DOLLARS

COMPLETE SET OF 9 HANDBOOKS 231003 $125.00
Save $50.00 off the retail price of $175.00

MEMORY COMPONENTS HANDBOOK 210830 $18.00

MICROCOMMUNICATIONS HANDBOOK 231658 $20.00

EMBEDDED CONTROLLER HANDBOOK 210918 $18.00
(includes Microcontrollers and 8085,80186,80188)

MICROPROCESSOR AND PERIPHERAL HANDBOOlI 230843 $25.00
(2 Volume Set)

DEVELOPMENT TOOLS HANDBOOK 210940 $18.00

DOS DEVELOPMENT SOFTWARE CATALOG 280199 N/C

OEM BOARDS AND SYSTEMS HANDBOOIC 280407 $18.00

MILITARY HANDBOOK 210461 $18.00

COMPONENTS QUALITY /RElLIABILITY HANDBOOIC 210997 $20.00

SYSTEMS QUALITY/RELIABILITY HANDBOOK 231762 $20.00

PRODUCT GUIDE 210846 N/C
Overview of Intel's complete product lines

LITERATURE PRICE LIST 210620 N/C
List ofIntel Literature

INTEL P ACICAGING OUTLINES AND DIMENSIONS 231369 N/C
Packaging types, number of leads, etc.

*These prices are for the U.S. and Canada only. In Europe and other international locations, please contact
your local Intel Sales Office or Distributor for literature prices.

inter
LITERATURE SALES ORDER FORM

NAME:_~ ______ ~ ____ ~ ______________________________________ __

COMPANY:~~ ____________ ~ ______________________________ ~ __ ___

ADDRESS: ______ ~------~---------------------------------------
CITY: ______________________ -.,---:-_____ STATE: _-'--__ -'-'- ZIP: ________ _

COUNTRY: __________ ~ __ ___

PHONE NO.: (!-__ ---!.. ____________________ "'--______________________ __

ORDER NO • .

I

Must add appropriate postage to subtotal
(10% U.S. and Canada, 20% all other)

TITLE

. ,

, QTY. PRICE TOTAL
___ x ___ =

_. _. _ X ___ =

____ X ___ =

____ X ___ =

____ X ___ =

____ X ___ =

. ' ____ X ___ =

____ X ___ =

___ X ___ =

___ X ___ =

Subtotal

Must Add Your
Local Sales Tax'

~ Postage

Total

Pay by Visa, MasterCard, American' Express, Check, Money Order, or company purchase order payable
to Intel Literature Sales. Allow 2-4 weeks for delivery. .
o Visa 0 MasterCard 0 American Express Expiration Date ________ __
AccountNo. ___________________ ~ __ -----------------------

Signature: _________ -'-__ -:-:-_________________ _

Mall To: Intel Literature Sales
P.O. Box 58130
Santa Clara, CA
95052-8130

International Customers outside the U.S. and Canada
should' contact their local Intel Sales Office or Distributor
listed in the back of most Intel literature.
European Literature Order Form in back of book.

Call Toll Free: (800) 548·4725 for phone .orders
Prices good until 12/31/87.

Source HB

We Bring
'OurWorld
to Your Door
Intel's New Product
Literature Subscription Service.

Keeping up with today's technology takes alot of time
and effort. With Intel's new Literature Subscription
Service you will receive a package of.current literature
plus automatic quarterly updates on all the latest
product and service news from Intel. From micropro­
cessors - to peripherals and memories, - to OEM
boards, systems and software, you can choose to receive
information from one, or all three, product categories
for an entire year at a low one-time cost.

Save Time and Money.
Subscribe Today.
Save 10% when ordering two or more packages.

Each Literature Package Contains:

To order, use the literature order
form provided in this book or
call TOLL FREE 800-548-4725

Newly published Data Sheets, Fact Sheets, Application Notes,
Reliability Reports, Errata Reports, Article Reprints,
Promotional Offers, Brochures, Flyers, Benchmark Reports,
Technical Papers and more ...

The charge for this serv.ice covers, our printing, postage and
handling costs only.

In Addition, Each Individual
Package Contains:

Product Line Handbooks on Micropro­
cessors, Development Tools and
Embedded Controliers.
plu.
Quality/Reliability Information, The
Product Guide, Literature Guide and
Packaging Information.
plu.
Three Quarterly Updates containing ali
new documentation on these products.
(Retail Value of Handbooks alone: $81)

Your price for the complete package with
quarterly updates: $70

Order Number 555100

inter

Product Line Handbooks on Per;pher­
als, Microcommunications. Memories,
and EPLD
plu.
Quality/Reliability Information, The
PrOduct Guide, The Literature Guide,
Packaging Information and other
supporting information.
plu.
Three Quarterly Updates containing ali
new documentation on these products.
(Retail value of Handbooks alone: $83)

Your price for the complete package wtth
quarterly updates: $70

Order Number 555101

Produce Line Handbooks on OEM
Boards and Systems
plu.
Quality/Reliability Information, The
Product Guide, The Literature Guide, and
other supporting information.
plu.
Three Quarterly Updates contain'ing ali
new documentation on these products.
(Retail Value of Handbo,oks alone: $38)

Your price for the complete package with
quarterly updates: $60

Order Number 555102

Customers outside the U.S. and canada should order directly from the U.S. on the U.S. literature
order form.

Offer expires 12131187

FREE

DEVELOPMENT
SOFTWARE

CATALOG

Intel's DEVEWPMENT SOFTWARE CATAWe con­
tains a complete description of Intel's high level
languages, utilities, assembly languages, editors and
debuggers running on DOS, VMS, ISIS, and iNDX.

Call or write today for your FREE COPY

Call TOLL-FREE 1-800-87-INTEL for your free copy, or fill out
the coupon below:

Clip and mail to:

Intel Corporation
p.D. Box 58065
Santa Clara, CA 95052-8065

(H89) 0 YES! I want my free copy of
Intel's Development Software Catalog.

o Have an Intel Sales Representative Call Me.

Name __ --'-___________ Title ____ _
Company Mailstop ___ _
Address _...,---_________________ _
Phone (__________________ _
City ___________ State ____ ZIP __ _

DID-355B-BR-CP Expires 12187

DEVELOPMENT TOOLS
HANDBOOK

1987

About Our Cover:
Intel's open environment provides developers with a portable set of dedicated tools with

networking capabilities resulting in greater productivity, expandability, upgraqeability and a shorter
time to market Our powerful dedicated and proven set of software development tools are

abstractly represented here as another familiar set of dedicated and proven tools.
Concept/Design: Hall Kelley, Concept/Photography: R. J. Muna

-, ~ . "

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors
which may appear in this document nor does it make a commitment to update the information contained
herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

TheJ9Uowing are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BITBUS, COMMputer, CREDIT, Data Pipeline, FASTPATH,
GENIUS, i, t ICE, iCEL, iCS, iDBP, iDIS, 121CE, iLBX, Inboard, im, iMDDX,
iMMX, Insite, Intel, intel, intelBOS, Intelevision, inteligent Identifier,
inteligent Programming, InteUec; Intellink, iOSP, iPDS, iPSC, iRMX,
iSBC, iSBX, iSDM, iSXM, KEPROM, Library Manager, MAP-NET, MCS,
Megachassis, . MICROMAINFRAME, MUL TIBUS, MULTICHANNEL,
MUL TIMODULE, MultiSERVER, ONCE, OpenNET, OTP, PC-BUBBLE,
Plug-A-Bubble, PROMPT, Promware, QUEST, QueX, Quick-Pulse
Programming, Ripplemode, RMX/80, RUPI; Seamless, SLD, UPI, and
VLSiCEL, and the combination of ICE, iCS, iRMX, iSBC, iSBX, iSXM,
MCS, or UPI and a numerical suffix 4-SITE.

Ethernet is a trademark of Xerox.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered
trademark of Mohawk Data Sciences Corporation. •

*MUL TIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Literature Department
SCEi~59 . .

. P~O.:. Box 58065 ..
Santa Clara, CA 95052-8065.

@) INTEL CORPORATION 1987

Table of Contents

Alphanumeric Index ix
Intel's Development Environment-The Complete Solution. xi

CHAPTER 1
Microcomputer Development Languages

DATA SHEETS
386 Software Tools. 1-1
80286 Software Development Package .. 1-14
PASCAL286 ... 1-19
PL/M 286.. 1-22
iC 286 ,...................................... 1-26
8086/8088 Software Development Package for Series II/PDS 1-30
8086/8088/80186/80188 Software Packages................................ 1-40
FORTRAN 808080/8085 ANS FORTRAN 77 Intellec® Resident Compiler 1-61
Pascal 80 Software Package .. , .. ;... 1-65
PLIM 80 High-Level Programming Language................................. 1-70
8087'Support Library ... '.' . • . 1-73
80287 Support Library ' . 1-77

--Yc- 8051 Software Packages. 1-81
MCS®-48 Diskette Based Software Package. 1-90

X MCS®-96 Software Development Packages 1-92
VAx*7VMS* Flesident Software Development Packages for 80286 1-100
VAX· /VMS· Resident 8086/8088/80186 Software Development Packages. 1-106

PRODUCT BRIEFS
Ada 286 Compilation -System ... , ... 1-113

FACT SHEETS .
Intel Microprocessor Languages '...... 1-115

ARTICLE REPRINTS
AR-59 Modular Programming in PLIM 1-117
AR-136 PLIM 86 Combines Hardware Access with High-Level Language

Features. .. 1-124
AR-200 Compiler Organization Techniques. 1-131
AR-239 PLIM 51: A High Level Language for the 8051 Microcontroller Family. 1-137
AR-377 Integrated Tools Accelerate Code Development 1-144
AR-388 Ada Task Synchronization in a Multiprocessor System with Shared

Memory .. 1-150
AR-390 Ada Capabilities for Today's Microprocessors 1-161
AR-501 .OBJ Lessons : " '. 1-165

CHAPTER 2
Microcomputer Software Development Tools

DATA SHEETS
PSCOPE Monitor 386ES (P-MON 386ES) 2-1
PSCOPE-86 for DOS High~Level Application Program Debugger. 2-5
PSCOPE High-Level Program Debugger for iRMXTM, XENIX*, Series III and

Series IV .. 2-12
DeblJg MONitor 386 (D-MON 386P) ... 2-20
8086 Handyman ...•....................... ;................................ 2-23
AEDIT Source Code and Text Editor for PC-DOS. • . . 2-28
iPATTM Performance Analysis Tool. 2-31

PRODUCT BRIEFS .'
80386 Development Environment • . 2-44

APPLICATION NOTES
AP-243 Debugging with Intel on the VAX· 2-46

vi

Table of Contents (Continued)

AP-253 Adding Value to Intel's NDS II Development System Network with
CP/M-80. 2-56

ARTICLE REPRINTS
AR-225 Debugging Catches up with High-Level Programming 2-64
AR-319 Software Development... 2-70
AR-352 Integrated Environment Speeds System Development. 2-75

CHAPTER 3
In Circuit Emulators

DATA SHEETS
-~<iSBE-96 Development Kit Single Board Emulator. 3-1

. 121CE Integrated Instrumentation and In-Circuit Emulation System. 3-9
7\VLSiCETM_96P !n-~ircuit Emulator for the MCS®-96 Family of Microcontrollers ... ~ 3-62

ICETM-386 In-CircUit Emulator for the 80386 3-73
ICETM-51 00/044 In-Circuit Emulator for the RUPITM-44 Family 3-83

-;~f ICETM-51 00/252 In-Circuit Emulator for MCS®-51 Family of Microcontrollers. 3-91
ICETM-51 00/452 In-Circuit Emulator for the UPITM 452 Family of Programmable

I/O Processors... 3-101
APPLICATION NOTES

AP-239 Customer Applications of the EMV-88 Emulation Vehicle. 3-110
AP~262 Using Procedures to Speed 121CETM System Debugging ; 3-123
AP-273 Developing MCS®-96 Applications Using the SBE-96 3-174

CHAPTER 4
Network Development Systems

DAiASHEETS
OpenNETTM Network Resource Manager (NRM) iMDX 460 4-1
Compilengine iMDX 485CE . 4-6
OpenNETTM Personal Computer Link. 4-11
NDS liN AX'" Link Networking Software '.. 4-17
iMDX 555 NDS-II NRM OpenNETTM Upgrade. 4-20
iMDX 581 ISIS Cluster Board Packages....................... 4~24
Intel Asynchronous Communications Link . 4-28
NDS II/Series IV/OpenNETTM Toolbox...................................... 4-31

PRODUCT BRIEFS
VAX*NMS*/OpenNETTM Networking Software ,........ 4-36

FACT SHEETS
Networking for the Development Environment 4-39

APPLICATION NOTES
AP-240 Using Archive to Efficiently Control a Network. 4-42
AP-242 Additional Printer Support for the NDS-II System 4-54
AP-244 Distributed Job Control the Key to Increased Network Productivity. 4-66
AP-246 Setting Up an Efficient Hierarchical File System. 4-79
AP-247 Adding Capability to the NDS-11 System with Cluster Boards. 4-93
AP-278 Integrating the PC AT into the Intel Development Environment........... 4-105

ARTICLE REPRINTS
AR-204 Smartlink comes to the Rescue of Software-Development Managers 4-124
AR-425 Helping Computers Communicate. .. 4-129

CHAPTERS
Microcomputer Development Systems

DATA SHEETS
iMDX 430/431/440/441 Intellec® Series IV Microcomputer Development

System.. 5-1
iPDSTM Personal Development System .. '.................................... 5-6

vii

Table of Contents (Continued)

iPDSTM-130 Optional Flexible External Disk Drive for the iPDSTM Personal
Development System. 5-18

iPDSTM Proto Kit . 5-22
APPLICATION NOTES

AP-156 Designing Modules for the iPDSTM and iUP Systems. 5-24
AP-245 Using Command Files to Speed Program Development 5-46

CHAPTER 6
System Design Kits

DATA SHEETS
SDK-86 MCS®-86 System Design Kit . 6-1

CHAPTER 7
PROM Programming

DATA SHEETS
iUP-200AliUP-201A Universal PROM Programmers........................... 7-1
iUP/iPDSTM Programming Modules. 7-11

APPLICATION NOTES
AP-179 PROM Programming with the Intel Personal Development System

(iPDSTM) . 7-20

CHAPTER 8
EPLD Development Tools

DATA SHEETS ,
iPLDS Intel Programmable Logic Development System. 8-1

APPLICATION NOTES
AP-279 Implementing and EPLD Design Using Intel's Programmable Logic

Development System. 8-9

viii

Alphanumeric Index

386 Software Tools.· .. ' '; :.'; .. " " 1-1
80286 Software Development Package•.............. , . 1-14
80287 Support Library ' , '.' 1-77
80386 Development Environment ; •.......•........ , 2-44
8051 Software Packages ' ..•.... , ;. , ' .. ' ;; . ."; ... '.... . 1-81
8086 Handyman '.' '.' ... , . , , ' " ' . ; . '..... 2-23
8086/8088/80186/80188 Software Packages. 1-40
8086/8088 Software Development Package for Series II/PDS :: . 1-30
8087 Support Library ...•. ~ .. ~ . ; .. ~ 1'-73
Ada 286 Compilation System , ,"1-113
AEDIT Source Code and Text Editor for PC-DOS " .. ~ 2-28
Compilengine iMDX 485CE ... ; . 4;,6
Debug MONitor 386 (D-MON 386P) , , .. '" , 2-20
FORTRAN 80 8080/8085 ANS FORTRAN 77lntellec® Resident Compiler•.. ; ... 1~61
121CE Integrated Instrumentation and In~Circuit Emulation.?ystem•... , .. , ... ,.. . 3-9
iC 286 ... ·•............ ' •. '. 1-26
iMDX 430/431/440/441 Intellec® Series IV Microcomputer Development System -:~ 5-1
iMDX 555 NOS-II NRM OpenNETTM Upgrade " ~ ... : , .. ' 4-20
iMDX 581 ISIS Cluster Board Packages•...• ; • . . 4-24
iPATTM Performance Analysis Tool , ., 2-31
iPDSTM Personal Development System.' 5"6
iPDSTM Proto Kit , " ; ".' .. 5~22
iPDSTM-130 Optional Flexible External Disk Drive for the iPDSTM Personal Development '.

System " ; ' ' .. ' ' ;"
iPLDS Intel Programmable Logic Development System , . ~' .. .
iSBE-96 Development Kit Single Board Emulator
iUP-200A/iUP-201 A Universal PROM Programmers , ., ' ... ; ... ,
iUP/iPDSTM Programming Modules ,
Intel Asynchronous Communications Link .. .
Intel Microprocessor Languages .. .
ICETM-386 In-Circuit Emulator for the 80386 .. .
ICETM-51 00/044 In-Circuit Emulator for the RUPITM-44 Family
ICETM-51 00/252 In-Circuit Emulator for MCS®-51 Family of Microcontrollers
ICETM-51 00/452 In-Circuit Emulator for the UPITM 452 Family of Programmable I/O

Processors .. .
MCS®-48 Diskette Based Software Package
MCS®-96 Software Development Packages .. .

, Networking for the Development Environment
NOS II/Series IV /OpenNETTM Toolbox .. ;
NOS IIIVAX* Link Networking Software .. .
OpenNETTM Network Resource Manager (NRM) iMDX 460
OpenNETTM Personal Computer Link '
Pascal 80 Software Package .. .
PASCAL 286•........... ~ ,
PL/M 286 .. ,
PLIM eo High-Level Programming Language
PSCOPE High-Level Program Debugger for iRMXTM, XENIX*, Series III and Series IV
PSCOPE Monitor 386ES (P-MON 386ES) .. .
PSCOPE-86 for DOS High-Level Application Program Debugger
SDK-86 MCS®-86 System Design Kit .. .
VAX· IVMS· Resident Software Development Packages for 80286
VAX"IVMS* Resident 8086/8088/80186 Software Development Packages ,
VAX*IVMS*/OpenNETTM Networking Software
VLSiCETM-96P In-Circuit Emulator for the MCS®-96 Family of Microcontrollers

ix

5-18
8-1
3-1
7-1

7-11
4-28

1-115
3-73
3-83
3-91

3-101
1-90
1-92
4-39
4-31
4-17

4-1
4-11
1-65
1-19
1-22
1-70
2-12

2-1
2-5
6-1

1-100
1-106

4-36
3-62

CUSTOMER SUPPORT
CUSTOMER SUPPORT

Customer Support is Intel's complete support service that provides Intel customers with hardware support, software
support, customer training, and consulting services. For more information contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major factors in
determining whether that product will continue to meet a customer's expectations. Such support requires an interna­
tional support organization and a breadth of programs to meet a variety of customer needs. As you might expect,
Intel's customer support is quite extensive. It includes factory repair services and worldwide field service offices
providing hardware repair services, software support services, customer training classes, and consulting services.

HARDWARE SUPPORT SERVICES

Intel is committed to providing an international service support package through a wide variety of service offerings
available from Intel Hardware Support.

SOFTWARE SUPPORT SERVICES

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Information
Phone Service), updates and SUbscription service (product-specific troubleshooting guides and COMMENTS Maga­
zine). Basic support includes updates and the SUbscription service. Contracts are sold in environments which repre­
sent product groupings (i.e., iRMX environment).

CONSULTING SERVICES

Intel provides field systems engineering services for any phase of your development or support effort. You can use
our systems engineers in a variety of ways ranging from assistance in using a new product, developing an application,
personalizing training, and customizing or tailoring an Intel product to providing technical and management con­
sulting. Systems Engineers are well versed in technical areas such as microcommunications, real-time applications,
embedded microcontrollers, and network services. You know your application needs; we know our products. Work­
ing together we can help you get a successful product to market in the least possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementation. In
just three to ten days a limited number of individuals learn more in a single workshop than in weeks of self-study.
For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we can take our
workshops to you for oil-site instruction. Covering a wide variety of ~opics, Intel's major course categories include:
architecture and assembly language, programming and operating systems, bitbus and LAN applications.

x

intJ
INTRODUCTION

Intel recognizes that developing a product based on an
advanced microprocessor creates major challenges for
an engineering group. Intel helps you meet these chal­
lenges and keep your project under control with a set of
development tools tailored to the architecture you are
using. These tools help you get your product develop­
ment done with your schedule and budget targets by
solving problems that waste valuable engineering time.

The first key to productive development is to work on
your product instead of developing and integrating
tools. Intel has tools for each phase of your project, and
each of them works smoothly with the others to form
an effective, integrated tool set. And the tools work on
popular industry-standard systems, including the IBM
PC AT and PC XT and compatible personal computers
and Digital Equipment Corporation V AX!VMS * sys­
tems.

HIGH-LEVEL LANGUAGE SUPPORT

Each Intel microprocessor and microcontroller is sup­
ported by a set of high-level languages that have the
three important elements of well-integrated tools:

The most important integration is between the tools
and the processor. Intel assemblers and compilers
are optimized around the architectures they sup­
port: that means better performance for your prod­
uct. And efficient compilers mean you can write
more of your code in high-level languages instead of
assembly language.

Effective coding generally requires a family of com­
patible translators so that you can draw on the most
appropriate language to implement. each part of a
design. PL/M, Pascal, C, FORTRAN, and assem­
bly language enjoy certain advantages over each
other, depending on the application. You can link
object modules from any of the Intel translators
without further modifications.

The symbolic debugging power of Intel's debuggers
is enhanced by communication between the transla­
tors and debuggers.

Development Languages and Utilities
Assemblers All Intel assemblers-and there's one for

every . major Intel component-provide
full macro support.

xi

PL/M

C

PL/M was the first high~level language
designed expressly for microprocessors. It
is a procedure-oriented language with data
structuring facilities that gives. the engi­
neer full control over microprocessor-de­
pendent architecture features. It is one of
the most widely used tools in the micro­
processor and microcontroller world.

C-86 is a true implementation of the C
programming language defined. by Kering­
han and Ritchie. C is known for its flexi­
bility and portability.

Pascal Pascal-86 and Pascal-286 are supersets of
ISO Pascal, with extensions for indepen­
dent compilation and port I/O. They also
embody advanced code optimization tech­
niques to achieve extremely efficient pro­
grams.

FORTRAN FORTRAN-86 and FORTRAN-286 .are
ANSI-77 standard compilers augmented
with full 8087/80287 support and the abil­
ity to handle very large arrays (over 64
KB).

Utilities Intel linkage utilities allow independent
assembly and compilation of program
modules. Library managers allow the
management of standard modules and
routines. In the case of the 80286, a sys­
tem builder is provided to allow easy con­
figuration of a complex, protected, memo­
ry-managed system.

HARDWARE AND SOFTWARE
DEBUGGERS

Most of the unpleasant surprises that can delay a proj­
ect attack in the debugging phase. Intel has made de­
buggers a part of each microprocessor family package,
beginning with ICE 80, the world's original in-circuit
emulator. Intel's debuggers have the power to let you
find bugs early, while they are still cheap and easy to
fix, imd to find many bugs that would not otherwise be
fixed without a major waste of engineering time and
schedule time.

Intel's popular ICETM In-Circuit Emulators continue
their key role in development projects, with. full-speed,
transparent debugging for Intel components. Intel ICE
debuggers feature symbolic debugging, the ability to
stop execution under user-determined conditions, trace
collection, and emulation memory for program execu­
tion.

intJ INTRODUCTION

DEBUGGERS FOR 8086, 80186, AND
80286 FAMILY MICROPROCESSOR
APPLICATIONS

Intel's debugging product line for the 8086, 80186, and
80286 families of IDicroprocessors features a pair of
powerful tools covering the full range of development
needs: ;,'

Debugging Task Tool

Host-resident, high-level PSCOPE
software debugging

Full-Speed, transparent 121CETM Emulator
software-hardware
integration and debug

The took share a common user interface and high-level
language debuggmg capability. Symbolic debugging au­
tomates a' task that can eat up valuable development
time and introduce error into the debug process. Sym­
bolic debugging builds on the debug records loaded
from the output of Intel assemblers and compilers-yet
another 'example of the added' debugging power gained
from integration of development toolS. Using user-de­
fmed names, the engineer has access to memory loca­
tions and program variables (including dynamicvari­
ableli. and high-level-language data structures).

PSCOPEHlgh-Level Language
Debugger

PSCOPE is a host-resident debugg~r that lets you exe­
cute and debug programs at the source code level. You
can set break and trace points, examine memory, or
simply follow' progr!llll flow at the, instruction, state­
ment or procedure level for programs written in,Ft/M,
Pascal, C, FORTRAN, 8086 assembly langUage, or
80286 assembly language. PSCOPE even lets you make
high-level language patches and store them for later use
in updating source files.

The PSCOPE syntax, including debug procedures, is
the lIame used by the I2ICE and TargetSCOPE sys­
telD.\!, so that when you move from soft:ware develop­
ment to software-hardware integration, the user inter.
face stays the same. There's no new learning curve to
ascend, no lag in the development cycle.

121CETM Integrated Instrumentation
and In-Circuit Emulation System

I2ICE is unmatched in its ability to kill hardware and
software bugs across the entire development process. Of
course, PICE offers the high-leve~ language symbolic

debugging expected of a software debugger. It also inte­
grates transparent emulation support for all members
of Intel's 8086 and 80286 families of microprocessors.

A full PICE configuration can simultaneously'emulate
four separate processors, stopping execution on an indi­
vidual event, on an address range, on conditional events
and on inter_processor events. The system then displays
a trace of execution or bus activity. Full-speed execu­
tion is possible using either target system memory or up
to 288 K-bytes of emulator memory for each processor.

PERFORMANCE ANALYSIS

The iPAT Performance Analysis Tool provides real­
time performance analysiS and real-time coverage of
programs running on 8086/88, 80186/88, and 80286
microprocessors to help software engineers optimize
code and improve software reliability.

Object code generated by Intel assemblers and compil-
. ers (C, PL.M, Pascal, and FORTRAN) can be ana­

lyzed symbolically to improve software efficiency and
to validate test coverage. Any object code that lacks
compiler information--but that can be run by Intel em­
ulators and for which an absolute program map is
available-can also be analyzed non-symbolically by
the iP Ai' analyst.

xii

DEBUGGERS FOR 80386 FAMILY
MICROPROCESSOR APPLICATIONS

Users of Intel's 80386 advanced, 32-bit microprocessor
have a compatible set of software ,and hardware debug­
ging tools available for their projects:

Debugging Task Tool

High-level software PSCOPE Monitor
debugging 386 (P-MON 386)

Software debugging Debug Monitor
monitor 386 (D-MON 386)

Full-speed, transparent ICETM 386
software-hardware Emulator
integration and debug

PSCOPE Monitor (P-MON 386)

P-MON 386 is' a high~level. hosted software debugger
for 80386-based systems. It can access and control all of
the80386's visible user hardware resources without any
assistance from the operating system. It can also be
used to debug applications running under the control of
an operating system.

INTRODUCTION

P-MON 386 allows symbolic debugging of programs
written in high-level languages. With the help of this
debugger, a user can download an application program
into the target prototype memory, set hardware and
software breakpoints at symbolically specified address­
es, trace program execution, and write patches to the
program under development.

Debug Monitor 386 (D-MON 386)

D-MON 386 is an unhosted, EPROM-based software
debug monitor that provides system-level debug sup­
port for 80386 systems. Using D-MON 386, a user can
set hardware and software breakpoints, examine and
modify memory and registers, and control program ex­
ecution. This monitor can be configured to run on any
80386-based target board with a user-supplied commu­
nication driver and hardware initialization' routine.

ICE 386™ lri-Circuit Emulator

The ICETM 386 In-Circuit Emulator provides hard­
ware and software debugging for 80386-based designs.
Its capabilities include emulation for the 80386 CPU
and the 80287 and 80387 numeric processors. With
ICE 386, programs can execute continuously at speeds
up to 16 MHz or in a single-step mode. And it includes
symbolic debugging to let users work in the context of
their original programs.

Intel designed the 80386 and ICE 386 interactively to
get the debugging power required of an advanced, 32-
bit microprocessor, including non-intrusive' access to
internal processor activity. Breakpoints allow stopping
emulation on specified instruction execution addresses
or data addresses. Trace capability lets a user, record
program execution history prior to the break.

DEBUGGERS FOR
MICROCONTROLLER APPLICATIONS

Microcontroller applications are typically characterized
by high performance requirements, a variety of asyn­
chronous events, and a lot of on-chip activity. All of
these characteristics add to the challenge of debugging
your product. Each Intel microcontroller family has in­
circuit debugging support to meet the challenges. The
ICE and VLSiCE emulators share a user interface with
I2ICE and PSCOPE, which saves learning time for
projects with multiple processor types.

ICETM 5100 In-Circuit Emulator

The ICE 5100 emulator gives its user, real-time, non­
obtrusive control over 805 I-family system debugging at
clock speeds up to 16 MHz. It includes the ability to
view and modify system activity at' a symbolic, high-

xiii

level language level. ICE 5100/252 debugs HMOS and
CHMOS versions of the 8051, the 8052, and the 80C52
including on-chip RAM and ROM. The ICE 5100/044
supports the 8044, including BITBUSTM systems.

VLSiCETM-96 In-Circuit Emulator

VLSiCE 96 provides real-time, non-obtrusive debug­
ging support for the MCS-96 family of 16-bit microcon­
troller components. It features full symbolic debugging;
64 K-bytes of mappable ICE memory; dynamic execu­
tion and data trace, including internal RAM accesses;
and a break/state machine which allows stopping emu"
lation or enabling trace on user specified combinations
of execution addresses, opcodes, data addresses and val­
ues, and' selected PSW bits.

iSBE 96 8096 Emulator

The iSBE 96 debugger permits basic execution and de­
bug of programs written for the MCS 96 family of 16-
bit microcontrollers, within the emulator or in the us­
er's target system.

GENERAL TOOLS FOR ALL
COMPONENT FAMILIES

EPROM Programming Support

Intel offers a full line of EPROM programmers for
Intel devices. Through parallel development efforts,
Intel is able to provide the earliest programming sup­
port for new Intel EPROMs, EEPROMs, KEPROMs
and microcontrollers-with the fastest programming
algorithms in the industry. The modular architecture of
Intel EPROM programmers allows new support to be
added with low-cost add-ons, as they become available.

EPLD Development Tools

Intel's iPLDS Programmable Logic Development Sys­
tem makes it easy to use an erasable, programmable
logic device (EPLD) in your design. The iPLDS pro­
vides all of the software, programming hardware, and
documentation needed to convert random logic into a
fully optimized, tested, and document device.

AEDIT Text Editor

AEDIT is a full-screen text editor that can be either
menu- or command-driven. It offers the ability to
switch easily between two files or to view two files
simultaneously through windows. Text entry and edit­
ing are further simplified through the use of macros,
which allow you to save command clusters for later
use.

c}l
2-
IIJ
rn
c
'tJ
'tJ
0
~
0
:::J

0
'tJ
CD·
:::J

~. ~
-I
r-
0
()

!!!.
~ ..
CD
I»
z

il

DEVELDPMENT ON NOS II

RDOIJIICE

-.......

!RF3H

D-11,-. --

E5~
PICI!

--

I :L
....".

.­-

JHOSTSJ

1=1
JTOOLSJ

ICEftL51GO

DEVElOPMENT ON INDUSTW­
STANDARD HOSTS WITH
OpenNET CONNECTION

I CIponNET'O

I VAX·

1IIIIIIIilllllllill
1111111111111111111

L..LJ

IIEVELOPIENT 8OF1WARE

EJd~

I CIponNET'O

....".

VLIICE ICE"LI1IO -

ON-TARGET
DEVElOPMENT ON

INTEL SYSTEM 2861310

I CIponNET'O

_. -"'

DEYELoPIIENr SOI'TWAIE

280336-1

(

z
-f ::u
0
C c::
C')
-f
0
Z

INTRODUCTION

Development Host Selection

Intel's development tools are available on a selection of
industry-standard host systems, giving users of Intel
microprocessors and microcontrollers the ability to ap­
ply a combination of valuable elements in their develop­
ment projects:

• design and debug tools built around the needs of the
specific microprocessor or microcontroller.

• host systems optimized around installed equipment
or the experience and needs of the development
team:

V AX/VMS Centralized development and
project control for large
teams, on an industry stan­
dard system.

PC AT, PC XT (DOS) Versatile, standard, high-per­
formance workstation.

• continued use of Intellec Series, II, III, and IV and
Model 800 dedicated development systems.

• an open network to link tools across the various host
environments.

Whether you run the Intel tools on a VAX minicom­
puter, a PC AT or XT, or an Intel system, the integra­
tion work is done before you install the tools on the
system-you don't waste time getting the tools ready
for the project.

Network Connections

Your host workstations can be a part of a complete
development network using Intel's OpenNETTM imple­
mentation of the high-performance Ethernet local area
network.

The OpenNET network is based on open, ISO OSI
standard protocols. In a development application it lets
your PC- and V AX-based development stations share
files resident on the VAX system. The OpenNET con­
nection also (1) lets PC users share files resident on
Intel's NDS II Network Resource Manager and (2)
gives users doing on-target development on Intel
iRMX® and XENIX' systems access to files resident
on a V AX/VMS, iRMX, XENIX, or DOS system from
an iRMX, XENIX, or DOS system.

Component Support on Industry Standard Host Systems

Components Supported

Development 8086/80186 80286 80386 8096 8044
Languages 8088/80188 8051

Assembler PC PC PC PC PC
VAXIVMS VAXIVMS VAXIVMS Series IV Series 11
Series IV Series IV Series IV

PL/M PC PC PC PC PC
VAXIVMS VAXIVMS VAXIVMS Series IV Series 11
Series IV Series IV Series IV

C PC PC PC PC
VAXIVMS VAXIVMS VAXIVMS
Series IV Series IV

Pascal PC PC
VAXIVMS VAXIVMS
Series IV Series IV

FORTRAN PC
VAXIVMS
Series IV

Debuggers

PSCOPE PC Series IV

121CETM PC Series IV PC Series IV

VLSiCETM PC Series IV

ICETM PC PC
Series IV

NOTES:
Tools that run on Series IV or Series II also run on Series III.
Intel also offers versions of development languages that run on iRMXTM- and Xenix-based systems for on-target develop­
ment.

'VAX and VMS are trademarks of Digital Equipment Corporation.
'XENIX is a trademark of Microsoft Corporation.

xv

Microcomputer Development 1
Languages

386 SOFTWARE TOOLS
PL/M 386 Software Package

• Systems Programming Language for
the Protected Virtual Address Mode
386

• Upward Compatible with PL/M 286,
PL/M 86, and PL/M 80 Assuring
Software Portability

C 386

• Implements Full C Language and New
Extensions

• Produces High Density Code Rivaling
Assembler

• Supports Intel Object Module Format
(OMF)

386 Relocation, Linkage and Library Tools ASM 386
• Provides System Development

Capability for High-Performance 386
Applications

• Allows Creation of Multi-User Virtual
Memory, and Memory-Protected
Systems

• Instruction Set and Assembler
Mnemonics Are Upward Compatible
with ASM 286 and ASM 86

• Type~Checking at Assembly Time Helps
Reduce Errors at Run-Time

~ f5 PROTECTED, MULTI-

/~ @ ~i '~
OPERATING SYS~EM ~ "\

SOFTWARE ,.....0:-.....,
/ TARGET

~~ SYSTEM

261637-1

Figure 1, Development Environment Tools for the 386

386 Software tools are available on industry standard hosts, including VAXIVMS, PC· DOS, and XENIX·

1·1
November 1986

Order Number: 231637·002

inter 386 Software Tools.

ASM 386
• Instruction Set and Assembler

Mnemonics Are Upward Compatible
with ASM 286 and ASM 86 .

• Powerful and Flexible Text Macro
Facility

• Type-Checking at Assembly Time Helps
Reduce Errors at Run-Time

• Structures and Records Provide
Powerful D~ta Represel"ltation

• "High-Level" Assembler Mnemonics
Silnpllfythe LanSiuage

• Supports Full Instruction Set of the
386, Including Memory Protection 'and
Numerics .

• Supports 286 Addressing Modes

ASM 386 is the "high-level" macro assembler for the 386 assembly language. ASM 386 translates symbolic
assembly language mnemonics into relocatable object code. The assembler mnemonics are a superset of
ASM 286/86/88 mnemonics; new ones have also been added to support the new 386 instriJctions. The
segmentation directives have been greatly simplified.

The 386 assembly language includes approximately 275 instruction mnemonics. From these few mnemonics
the assembler can generate over 40,000 distinct machine instructions. Therefore, the software development
task is simplified, as the programmer need' know only 275 mnemonics to generate all possible machine
instructions. ASM 386 will generate the shortest machine instruction possible (given explicit information as to
the characteristics of any forward referenced symbols).

The powerful macro facility in ASM 386 saves development and maintenance time by coding common pro­
gram sequences only once. A macro substitution is made each time the sequence is to be used. This facility
also allows for conditional assembly of certain program sequences.

ASM 386 offers many features normally found only in high-level languages. The assembly language is strongly
typed, which means it performs extensive checks on the usage of variables and labels. This means that many
programming errors will be detected when the program is assembled, long before it is being debugged.

ASM 386 object modules conform to a thorough, well-defined format used by all 386 high-level languages and
utilities. This means.it is easy to call (and be called from) HLL object modules.

SUPPORT

Hotline Telephone Support, Software Performance Report.(SPR), Software Update, Technical Reports, and
Monthly Technical Ne~sletters are available.

ORDERING INFORMATION
Part Number

X286ASM386
D86ASM386

Documentation Package

Description

386 Assembler
386 Assembler

ASM 386 Assembly Language Reference Manual
ASM 386 Macro Assembler Operating Instructions for XENIX· 286 Systems
ASM 386 Pocket Reference for XENIX 286 Systems

·XENIXTM is a trademark of Microsoft.

1-2

Operating
Environment

286/310XENIX· System
PC-DOS 3.0 or greater

386 Software Tools

386 RELOCATION, LINKAGE ANDLIBRARV TOOLS
• System Development Capability for

High-Performance 386 Applications

• Allows creation of Multi-User, Virtual
Memory, and Memory-Protected
Systems

• System Utilities for Program Linkage
and System Building

• Package Supports Program
Development with ASM 386, PL/M 386,
C 386, Ada 386 and FORTRAN 386.

The 80386 is a 32-bit microprocessor system with 32-bit addressing, integrated memory protection, and
instruction pipelining for high performance. The 386 Relocation, Linkage, and Library Tools are a cohesive set
of software design aids for programming the 386 microprocessor system. The package enables system pro­
grammers to design protected, mUlti-user and multi-tasking operating system software, and enables applica­
tion programmers to develop tasks to run on a protected operating system.

The 386 Relocation, Linkage and Library tools include a program binder (for linking separately compiled
modules together), a system builder (for configuring protected multiple-task systems), a cross reference map­
per, a program librarian, and the 287/387 support library.

APPLICATION
SOFTWARE

DEBUGGERS:
ICET,"MONITOR. ETC.

Figure 1. Development Environment Tools for the 386

1-3

261637-2

386 Software Tools

386 SYSTEM BUILDER
• Supports Complete Creation of

Protected, Multi-task Systems

• Resolves PUBLIC/EXTERNAL
. Definitions (between protection levels)

• Supports Memory Protection by
Building System Tables, Initializing
Tasks, and Assigning Protection Rights.
to Segments

• Creates a Memory Image of a 386
System for Cold-start Execution

• Target System may be Boot-Ioadable,
Programmed Into ROM, or loaded from
Mass-store.

• Generates Print File with Command
Listing and System Map

BLO 386 is the utility thatlets system programmers configure multi-tasking, protected systems from an operat­
ing system and discrete tasks. The Builder generates a cold-start execution module, suitable for ROM-based
or disk-based systems.

The Builder accepts input modules from .386 translators or the 386 Binder. It also accepts a "Build File"
containing definitions and initial values for the 386 protection mechanism - descriptor tables, gates, segments,
and tasks. BL0386 generates a Loadable or bootloadable output module, as well as a print file with a detailed
map of the memory-protected system.

Using the Builder command Language, system programmers may perform the following functions:

- Assign physical addresses to segments; also set
segment access rights and limits.

- Create Call, Trap, and Interrupt "Gates" (entry­
points) for inter-level program transfers.

- Make gates available to tasks; this is an easier
way to define program interfaces than using in­
terface libraries.

- Support Page tables for boot files.

- Create Global (GOT), Interrupt (lOT), and any Lo-
cal (LOT) Descriptor Tables.

1-4

- Create Task State Segments and Task Gates for
multi-task applications.

- Resolve inter-module and inter-level references,
and perform type-checking.

- Automatically select required modules from li­
braries.

- Configure . the memory image into partitions in
the address space.

- Selectively generate an object file and various
sections of the print file.

inter 386 Software Tools

386 BINDER
• Links Separately Compiled Program • Resolves PUBLIC/EXTERNAL Code and

Modules Into an Executable Task Data References, and Performs

• Makes the 386 Protection Mechanism Intermodule Type-Checking

Invisible to Application Programmers • Provides Print File Showing Segment

• Works with PL/M 386, C 386, FORTRAN Map, Errors and Warnings

386 and ASM 386 Object Modules • Assigns Virtual Addresses to Tasks in

• Performs Incremental Linking with the 232 Address Space

Output of Binder and Builder • Generates Linkable or Loadable Module
for Debugging

The Binder is the only utility an application programmer needs to develop and debug an individual task. Users
of the Binder need not be concerned with the architecture of the target machine, making application program
development for the 386 very simple.

BND 386 combines 386 object modules into executable tasks. In creating a task, the Binder resolves Public
and External symbol references, combines segments, and performs address fix-ups on symbolic code and
data.

The Binder takes object modules written in ASM 386, PL/M 386, C 386 and FORTRAN 386 and generates a
loadable module (for execution or debugging), or a linkable module (to be re-input to the Binder later; this is
called incremental binding). The binder accepts library modules as well, linking only those modules required to
resolve external references. BND 386 generates a print file displaying a segment map and error messages.

The Binder will be used by system programmers and application programmers. Since application programmers
need to develop software independent of any system architecture, the 386 memory protection mechanism is
"hidden" from users of the Binder. This allows application tasks to be fully debugged before becoming part of
a protected system. (A protected system may be debugged, as well.) System protection features are specified
later in the development cycle, using the 386 System Builder. It is possible to link operating system services
required by a task using either the Binder or the Builder. This flexibility adds to the ease of the 386 utilities.

1-5

inter 386 Software Tools

80287 SUPPORT LIBRARY
• Library to support floating point

arithmetic in C 386, PL/M 386, ADA 386,
ASM 386, and FORTRAN 386

• Decimal conversion module supports
binary-decimal conversions

• Supports proposed IEEE Floating POint
Standard for high accuracy and
software portability

• Common elementary function library
provides trigonometriC, logarithmic and
other useful functions

• Error-handler module simplifies floating
point error recovery

The 80287 Support Library providesC 386, PLIM 386, ADA 386, ASM 386 and FORTRAN 386 users with
numeric data processing capability. With the Library, it is easy for programs to do floating point arithmetic.
Programs can bind in library modules to do trigonometric, logarithmic and other numeric functions; and the
user is guaranteed accurate, reliable results for all appropriate inputs. Figure 1 below illustrates how the 80287
Support Library can be bound with PL/M 386 and ASM 386 user code to do this. The 80287 Support Library
supports .the Proposfild IEEE Floating Point Standard. Consequently, by using this Library, the user not only
saves software development time, but is guaranteed that the numeric software meets industry standards and
is portable-the software investment is maintained. .

The 80287 Support Library consists of the common elementary function library (CEL287.LlB), the decimal
conversion library (DC287,LlB), the error handler module (EH287.LlB) and interface libraries (80287.LlB),
(NUL287.LlB). . .

B.PLM

A.PLM

m~:tTI~~ ~~~!~:fJTHETA) REAL OOERNAL.:
ENDmqerTNH:

DECLARE (INPUT VALUE, OUTPlrr VALUE) REAL;

INPliT VAlUE"O.62;/or .. t Vlllu."/
OU'WUT VAlUE=mq.rnlH(INPUT VALUE);

6:~,501~ ;:t3!" test Input, OUTPUT VALUE Is about

D.ASM

C.ASM
~T~\:.[XTRN mu.t appear outsld. of all SECMENT~ENDS

tXTllN mqer TNH: FAR

INPUT VALUE DQ(~O.62) ;lnltlglllgtlDn r. 0 t .. t
:volut

OUTPUT VALUE DO ?

;~r;~~":~~~t~~~.dnUt~":.~:~tt~it~bLc:t~(tt
;variable.

FlO INPUT VALUE :laod tI" pcram.ter Into the 80287
:stock

~t~ OU'\P~~~AlUE ~~~ \1111" hl"p;:::I~~~~~:nt~.
:602811tock

:W1th Ih. last Input, OUTPUT VALUE II now about
;-0.55112803

ASM-386

COMPILED
SOURCE MODULES

ASSEMBLED
SOURCE MODULES

80287 SUPPORT
LIBRARY

Figure 2. Use of 80287 Support Library with PL/M 386 and ASM 386.

1-6

LINKED USER
OBJECT MODULE

231637-3

386 Software Tools

386 MAPPER
• Flexible Utility to Display Object File

Information

• MAP 386 Selectively Purges Symbols
from a Load Module .

• Provides Inter-Module Cross­
Referencing for Modules Written in All
Languages

• Supports OS Information

• Mapper Allows Users to Display:
Protection Debug
Information Information
SEGMENT MODULE

TABLES NAMES
GATE PROGRAM

TABLES SYMBOLS
PUBLIC LINE

ADDRESSES NUMBERS

The cross-reference map shows references between modules, simplifying debugging. The map also lists and
controls all symbolic information in one easy-to-read place.

386 LIBRARIAN
• Fast, Easy Management of 386 Object

Module Libraries

• Only Required Modules Are Linked,
When Using the Binder or Builder

•. Librarian Allows Users to: Create
Libraries, Add Modules, Replace
Modules, Delete Modules, Copy
Modules from Another Library, Save
Library Module to Object File, Create
Backup, Display Module Information
(creation date, publics, segments)

Program libraries improve management of program modules and reduce software administrative overhead.
(386 Librarian provides efficient use of program libraries.)

SUPPORT:

Hotline Telephone Support, Software Performance Report (SPR), Software Updates, Technical Reports, and
Monthly Technical Newsletters are availabl~.

ORDERING INFORMATION:
Part Number Description

X286RLL386 386 Relocation, Linkage and Library Tools

VVSRLL386 386 Relocation, Linkage, and Library Tools

D86RLL386 386 Relocation, Linkage, and Library Tools

Documentation Package

386 Utilities User's Guide for Xenix' 286 System
386 System Builder User's Guide for Xenix· 286 System
80287 Support Library Reference Manual

'XENIX is a trademark of Microsoft.

1-7

Operating
Environment

286/310 XENIX' System

VAXIVMS 4.3 and Later

PC-DOS 3.0 or Greater

386 Software Tools

PL/M 386 SOFTWARE PACKAGE
• Systems programming language for the

protected virtual address mode 386

• Upward compatible with PL/M 286,
PL/M 86 assuring software portability

• Enchanced to support design of
protected, multi-user, multi-tasking,
virtual memory operating system
software

• Produces relocatable object code
which is linkable to object modules
generated by all other 386 language
translators

• Advanced, structured system ..
implementation language for algorithm
development

• Supports Intel Object Module Format
(OMF)

PL/M 386 is a powerful, structured, high-level system implementation language for the development of system
software for the protected virtual address mode 386. PL/M 386 has been enhanced to utilize 386 features­
memory management and protection-for the implementation of mUlti-user, multi-tasking virtual memory oper­
ating systems.

PL/M 386 is upward compatible with PL/M 286, PLlM 86 and PLIM 80. Existing systems software can be re­
compiled with PLIM 386 to execute in protected virtual address mode on the 80386.

PL/M 386 is the. high-level alternative to assembly language programming on the 80386. For the majority of
386 system programs, PL/M 386 provides the features needed to access and to control efficiently the underly­
ing 386 hardware and consequently it is the cost-effective approach to develop reliable, maintainable system
software. .

The PL/M 386 compiler has been designed to efficiently support all phases of software development. Fea­
tures such as a built-in syntax checker, multiple levels of optimization, virtual symbol table and four models of
program size and memory usage for efficient code generation provide the total program development support
needed.

FEATURES

Major features of the Intel PLIM 386 compiler and
programming language include:

Structured Programming

PL/M source code is developed in a series of mod­
ules, procedures, and blocks. Encouraging program
modularity in this manner makes programs more
readable, and easier to maintain and debug. The
language becomes more flexible by clearly defining
the scope of user variables (local to a private proce­
dure, for example).

The use of modules and procedures to break down
a large problems leads to productive software devel­
opment. The PL/M 386 implementation of block
structure allows the use of REENTRANT proce­
dures, which are especially useful in system design.

1-8

Language Compatibility

PL/M 386 object modules are compatibtewith .ob­
ject modules generated by all other 386 translators.
This means that PL/M programs may be linked to
programs written in any other 386 languages.

Object modules are compatible with In-Circuit Emu­
lators; DEBUG compiler control provides the In-Cir;­
cuit Emulators with full symbolic debugging capabili­
ties.

PL/M 386 language is upward compatible with PLIM
286, PL/M 86 and PL/M 80 so that application pro­
grams may be easily ported to run on the protected
mode .80386.

inter 386 Software Tools

Supports Fourteen Data Types Numerics Support

PLIM makes use of fourteen data types for various
applications. These data types range from one to
eight bytes and facilitate various arithmetic, logic,
and addressing functions:

-BIT(n): 1 to 32 bit unsigned number

-BYTE: 8 bits unsigned number

-HWORD: 16 bits unsigned number

-WORD: 32 bits unsigned number

-DWORD: 64 bits unsigned number

-OFFSET: 32 bits memory address

-CHARINT: 8 bits Signed nUl1Jber

-SHORTINT: 16 bits signed number

-INTEGER: 32 bits signed number

-LONGINT: 64 bits signed number

-REAL: 32 bits floating-point number

-SELECTOR: 16 bits segment name

-POINTER: 48 bits selector, offset

-LONG REAL: 64 bits floating-point number

Another powerful facility allows the use of BASED
variables which permit run-time mapping of variables
to memory locations. This is especially useful for
passing parameters, relative and absolute address­
ing, and dynamic memory allocation.

Data Type Compatibility

PL/M 286 programs may be recompiled and retar­
getted to the 386 by use of the WORD16 control.
With this control, PL/M 386 provides transparent ac­
cess to the seven data types provided by PLIM 286.

Two Data Structuring Facilities

In addition to the 14 data types and based variables,
PL/M supports two powerful data structuring facili­
ties. These help the user organize data into logical
groups.

- Array: Indexed list of same type data elements

- Structure: Named collection of same or different
type data elements

- Combinations of both: Arrays of structures or
structures of arrays and structures within struc­
tures.

1-9

PLIM programs that use 32-bit REAL data are exe­
cuted using the 80287 Numeric Data Processor for
high performance. All floating-point operations sup­
ported by PL/M are executed on the 80287 accord­
ing to the IEEE floating-point standard. PLIM 386
programs can use built-in functions and predefined
procedures-INIT$REAL$MATH$UNIT, SET$REAL
$MODE, GET$REAL$ERROR, SAVE$REAL$
STATUS, RESTORE$REAL$STATUS-to control
the operation of the 80287 within the scope of the
language.

Built-In Port 1/0

PLIM 386 directly supports input and output from
the 386 ports for Single BYTE, HWORD and WORD
transfers. For BLOCK transfers, PLIM 386 programs
can make calls to predefined procedures.

Interrupt Handling

PL/M 386 has the facility for generating and han­
dling interrupts on the 386. A procedure may be de­
fined as an interrupt handler through use of the IN­
TERRUPT attribute. The compiler will then generate
code to save and restore the processor status on
each execution of the user-defined interrupt handler
routine. The PL/M statement CAUSE$INTERRUPT
allows the user to trigger a software interrupt from
within the program.

Protection Model '

PL/M 386 support the implementation of protected
operating system software by providing built-in pro­
cedures and variables to access the protection
mechanism of the 386. Predefined variables­
TASK$REGISTER, LOCAL$TABLE, MACHINE$
STATUS, CONTROL$REGISTER, etc.-allow'direct
access and modification of the protection system.
Untyped procedures and functions-SAVE$
GLOBAL$TABLE, RESTORE$GLOBAL$TABLE,
SAVE$INTERRUPT$TABLE, RESTORE$INTER­
RUPT$TABLE, CLEAR$TASK$SWITCHED$FLAG,
GET$ACCESS$RIGHTS, GET$SEGMENT$LlMIT,
SEGMENT$READABLE, SEGMENT$WRITABLE,
ADJUST$RPL-provide all the facilities needed to
implement efficient operating system software.

386 Software Tools

Complier Controls
The PLIM 386 compiler offers controls that facilitate
such features as:
.-.:. Interface to other 386 languages

- Optir:nization
- Conditional compilation
- The inclusion of additional PL/M source-files

from disk
- Cross-reference of symbols
- Optional assembly language code in the listing

file
- The setting of overflow conditions for run-time

handling.
- WORD16/WORD32
.-.: Interface to 286 languages

Addressing Control
ThePLlM 386 compiler uses the SMALL and COM­
PACT controls to generate optimum addressing in­
structions for programs. Programs of any size can
be easily modularized into "subsystems" to exploit
the most· efficient memory addressing schemes.
This lowers total memory requirements a:nd im­
proves run-time execution of programs.

Code Optimization
The PLiM 386 compiler offers four levels of opti­
mization for significantly reducing.overall program
size .
- Combination or "folding" of constant expres­

sions; and short-circuit evaluation of Boolean ex­
pressions

- "Strength reductions": a shift left rather than
multiply by 2; and elimination of common subex­
pressions within the same block

- Machine code optimizations; elimination of su­
perfluous branches; removal of 'unreachable
code

- Optimal local register allocation ,

Error Checking
The PL/M 386 compiler has a very powerful feature
to speed up compilations: If a syntax or program er­
ror is detected, the compiler will skip the code gen­
eration and optimization passes. This usually yields
a 2X performance increase for compilation of pro­
grams with errors.

A fully detailed and helpful set of programming and
cOmpilation error messages is provided by the com­
piler and user's guide.

Cost-Effective Alternative to Assembly Language
PL/M 386 programs are code efficient. PLIM 386 combines all of the benefits of a high-level language (ease
of use, high productivity) with the ability to access the 386 architecture. Consequently, for the development of
systems software, PLIM 386 is the cost-effective alternative to assembly language programming.

Support
Hotline Telephone Support, Software Performance Report (SPR), Software Updates, Technical Reports, and
Monthly Technical Newsletters are available.

ORDERING'INFORMATION
Part Number

X286PLM386
D86PLM386

Documentation Package

Description

PL/M 386 Compiler
PL/M 386 Compiler

PL/M 386 User's Guide for Xenix· 286 System

'XENIX is a trademark of Microsoft.

Operating
Environment

XENIX· 286/310
PC-DOS 3.0 or Greater

inter 386 Software Tools

C 386
C COMPILER FOR THE 386

• Implements full C Language • Supports IEEE Floating Point Math with

• Produces High Density Code Rivaling 80287 Coprocessor

Assembler • Supports Bit Fields

• Supports Intel Object Module Format • Supports Full Standard I/O Library
(OMF) (STDIO)

• Written In C

Intel C 386 brings the full power of the C programming language to the 386 microprocessor system. Intel C386
supports the full C language as described in the Kernighan and Ritchie book, "The C Programming Lan­
guage", (Prentice-Hall, 1978). Also included are the latest enhancements to the C language: structure assign­
ments, functions taking structure arguments and returning structures, and the "void" and "enum" data types.

Intel C 386 Compiler Description

The C 386 compiler operates in several phases: preprocessor, parser and code generator. The preprocessor
phase interprets directives in C source code, including conditional compilations (# define). The parser phase
converts the C program into an intermediate free form and does all syntactic and semantic error checking. The
code generator phase converts the parser's output into an efficient intermediate binary code, performs con­
stant· folding, .. and features an extremely efficient register allocator, ensuring high quality code. The code
generator outputs relocatable Intel Object Module Format (OMF) code, without creating an intermediate as­
semblyfile. The C386 compiler eliminates common code, eliminates redundant loads and stores, and resolves
span dependencies (shortens branches) within a program.

The C 386 runtime library consists of a number of functions which the C programmer can call. The runtime
system includes the standard 1/0 library (STOIO), conversion routines, routines for manipulating strings, and
(where appropriate) routines for interfacing with the operating system.

C 386 uses Intel's Binder and Builder and generates debug records for symbols and lines on request, permit­
ting access to Intel's PSCOPE Monitor/lCETM emulator to aid in program testing.

1-11

386 Software Tools

FEATURES

Preprocessor Directives
.\ " ',j

#define-defines a macro

include-includes code· outside· of the program
source file

#if-conditionally includes or excludes code

Other preprocessor directives include #undef, #if­
def, #ifdef, #else, #endif, and # line.

Statements

The C language supports a variety of statements:

Conditionals: If, IF-ELSE

Loops: WHILE, DO:WHILE, FOR

Selectibnof bases: SWITCH, CASE, DEFAULT

Exit from a function: RETURN

Loop Control: CONTINUE, BREAK

·Branching: GOTO

Expressions and Operators

The C language includes a rich set of expressions
and operators.

Primary expression: invoke functions, select ele­
ments from arrays, and extract fields from structures
or unions.

Arithmetic operators: add, subtract, multiply, divide,
modulus .

Relational operators: greater than, greater than or
equal, less than, less than or equal, not equal

Unary operators: indirect through a pointer, compute
an address, logical negation, ones complement, pro­
vide the size in bytes of an operand.

Logical operators: AND, OR

Bitwise operators: AND, exclusive OR, inclusive OR,
bitwise complement

1-12

Data Types and Storage Classes

Data.in C is described by its type and storage class.
The type determines its representation and use, and
the storage class determines its lifetime, scope, and
storage allocation. The following data types are fully
supported by C 386.

char: an 8 bit signed integer

Int: a 32 bit signed integer

short: a 16 bit signed integer

'lcmg:a-32 bit signed integer

unsigned: a modifier for integer data types (char,
int, short, and long) which doubles the positive
range of values

float: a 32 bit floating point number which utilizes
the 80287

-double: a 64 bit floating point number

vOid:. a special type that cannot be used as an
operand in expressions; normally used for func­
tions called only for effect (to prevent their use in
contexts where a value is required).

·enum: an enumerated data type

These fundamental data types may be used to cre­
ate other data types including: arrays, functions,
structures, pointers, and unions.

The storage classes available in C 386 include:

register: suggests that a variable be kept in a
machine register, often enhancing code density
and speed

extern: a variable defined outside of the function
where it is declared; retaining its value through­
out the entire program and accessible to other
modules

auto: a local variable, created when a block of
code is entered and discarded when the block is
exited

static: a local variable that retains its value until
the termination of the entire program

typedef: defines a new data type name from ex­
isting data types

inter 386 Software Tools

BENEFITS

Faster Compilation

Intel C 386 compiles C programs substantially faster
than standard C compilers because it produces Intel
OMF code directly, eliminating the traditional inter­
mediate process of generating an assembly file.

Portability of Code

Because Intel C 386 supports the STDIO and pro­
duces Intel OMF code, programs developed on a
variety of machines can easily be transported to the
386.

ORDERING INFORMATION
Part Number

X286C386PP
VVS386
D86C386

Description

C 386 Compiler
C 386 Compiler
C 386 Compiler

Documentation Package
C 386 User's Guide for Xenix· 286 System

·XENIX is a trademark of Microsoft.

1-13

Full Manipulation of the 386

Intel C 386 enables the programmer to utilize fea­
tures of the C language to control bit fields, pointers,
addresses and register allocation, taking full advan­
tage of the fundamental concepts of the 386.

Support

Intel offers several levels of support for this product
which are explained in detail in the price list. Please
consult the price list for a description of the support
options available.

Operating
Environment

XENIX' 286/310 System
VAXIVMS 4.3 and later
PC-DOS 3.0 or greater

inter
286 SOFTWARE DEVELOPMENT TOOLS

AVAILABLE ON CHOICE OF INDUSTRY STANDARD
HOSTS

INCLUDING PC-DOS AND VAX/VMS*
• 286 Software Development Package

- Complete System Development
Capability for High-Performance 286
Applications

-Allows Creation ,of Multi-User, Virtual
Memory, and Memory-Protected
Systems ' " '

-:' Macro Assembler for Machine-Level
Programming

• Pascal-286 Software Package
- High-Level Programming Language

for the Protected Virtual Mode of the
286

-Implements ISO Standard Pascal

()
APPLICATION

SOFTWARE

• PL/M 286 Software Package
- Systems Programming Language for

the Protected Virtual Address Mode
of the 286

- Advanced Structured Sy~tem
Implementation Language for

, Algorithm Development'
• IC-286, C Compiler for the ;80286' '

-Implements FullC Language "
- Runs Under the Intel UDI, IBM PCs,

VAX/VMS·, and Intel Development
Systems

PROTECTED,MULTI­
TASK SYSTEM

DEBUGGER
ICE'", MONITOR, etc,

231665-1

The iAPX 286 Software Development Package keeps the protection mechanism invisible to the application
programmer, yet easy to configure for the systt:;m programmer_

'VAXIVMS are trademarks of Digital Equipment Corporation.

1·14
October 1986

Order Number: 231665-002

inter 286 SOFTWARE DEVELOPMENT TOOLS

80286 MACRO ASSEMBLER

• Instruction Set and Assembler • Structures and RECORDS Provide
Mnemonics Are Upward Compatible Powerful Data Representation
with ASM-86/88 • "High-Level" Assembler Mnemonics

• Powerful and Flexible Text Macro Simplify the Language
Facility • Supports Full Instruction Set of the

• Type-Checking at Assembly Time Helps 80286120, Including Memory Protection
Reduce Errors at Run-Time and Numerics

ASM-286 is the "high-level" macro assembler for the 80286 assembly language. ASM-286 translates symbolic
assembly language mnemonics into relocatable object code. The assembler mnemonics are a superset of
ASM-86/88 mnemonics; new ones have also been added to support the new 80286 instructions. The segmen­
tation directives have been greatly simplified.

The 80286 assembly language includes approximately 150 instruction mnemonics. From these few mnemon­
ics the assembler can generate over 4,000 distinct machine instructions. Therefore, the software development
task is simplified, as the programmer need know only .150 mnemonics to generate all possible machine
instructions. ASM-286 will generate the shortest machine instruction possible (given explicit information as to
the characteristics of any forward referenced symbols).

The powerful macro facility in ASM-286 saves development and maintenance time by coding common pro­
gram sequences only once. A macro substitution is made each time the sequence is to be used. This facility
also allows for conditional assembly of certain program sequences.

ASM-286 offers many features normally found only in high-level languages. The assembly language is strongly
typed, which means it performs extensive checks on the usage of variables and labels. This allows many
programming errors to be detected when the program is asembled, long before it is being debugged.

ASM-286 object modules conform to a thorough, well-defined format used by all 286 high-level languages and
utilities. This makes it easy to call (and be called from) HLL object modules.

Key Benefit

For programmers who wish to use assembly language. ASM-286 provides many powerful "high-level" capabil­
ities that simplify program development and maintenance.

1-15

intJ 286 SOFTWARE DEVELOPMENT TOOLS

80286 BINDER

• Links Separately. Compiled Program • Resolves PUBLIC/I;XTERNAL C,ode and
Modules Into an Executable Task Data. Reference-s; and Performs

• Makes the 80286 Protection Mechanism Intermodule Type-Checking. .

Invisible to Application Programmers • Provides Print File Showing Segment

• Works with PL/M-286, Pascal-286, Map, Errors and Warnings

FORTRAN-:-286, ASM-286 'Object .. • Asslgns.Vlrtual Addresses to Tasks In ,
Modules and'IC-286 . the 232 Addr.ess Space'

• Performs Incremental Linking with • Generates Linkable or Loadable Module
Output of Blnder- and Builder for Debugging

BND-286 is a utility that combines 80286 object modules into executable· tasks; In creatinga.taskj,the Binder
resolves Public and External symbol references, combines segments; and performs address ·fix-ups on sym­
bolic code and data.

The Binder takes object modules written in ASM-286, PL/M-286, Pascal-286, FORTRAN-286or iC-286' and
generates aloadable module (for execution or debugging), or a linkable module (to be re-input to the Binder
later; this is·called incremental binding). The binder accepts library modules as well, liriking.only those modules
required to resolve external references. BND-286 generates a print file displaying a'.segment map, and error
messages.

The Binder is used by system programmers and application programmers. Since application programmers
need to develop software independent of any system architecture, the 286 memory protection mechanism is
"hidden" from users of the Binder. This allows application tasks to be fully debugged before becoming part of
a protected system. (A protected system may be debugged as well.) System protection features are specified
later in the development cycle, using the 286 System Builder. It is possible to link operating system services
required by a task using either the Binder or the Builder. This flexibility adds to the ease of use of the 286
utilities.

Key Benefits

The Binder is the only utility an application programmer needs to develop and debug an individual task. Users
of the Binder need not be concerned with the architecture of the target machine, making applicationprogram
development for the 286. very simple.

80286 MAPPER

• Flexible Utility to Display Object File
Information

• MAP-286 Selectively Purges Symbols
from a Load Module

• Provides Inter-Module Cross­
Referencing for Modules Written in All
Languages

Key Benefit

• Mapper Allows Users to Display:
Protection Information:

Segment Tables
Gate Tables
Public Addresses

Debug Information:
Module Names
Program Symbols
Line Numbers

A cross-reference map showing references between modules simplifies debugging; the map also lists and
controls all symbolic information in one easy-to-read place.

inter 286 SOFTWARE DEVELOPMENT TOOLS

80286 LIBRARIAN
• Fast, Easy Management of' 80286

Object Module Libraries

• Only Required Modules Are Linked,
When Using the Binder or Builder

Key Benefit

• Librarian Allows User to:
Create Libraries
Add Modules
Replace Modules
Delete Modules
Copy Modules from Another Library
Save Library Module to Object File
Create Backup
Display Module Information
(Creation Date, Public, Segments)

Program libraries improve management of. program modules, and reduce software administrative overhead.

80286 SYSTEM BUILDER
• Supports Complete Creation of

Protected, Multi-Task Systems

• Resolves PUBLIC/EXTERNAL
Definitions (Between Protection Levels)

• Supports Memory Protection by
Building System Tables, Initializing
Tasks, and Assigning Protection Rights
to Segments

• Creates a Memory Image of a 286
System for Cold-Start Execution

• Target System may be Boot-Loadable,
Programmed into ROM, or Loaded
From Mass-Store

• Generates Print File with Command
Listing and System Map

BLO-286 is the utility that lets system programmers configure mutli-tasking, protected systems from an operat­
ing system and discrete tasks. The Builder generates a cold-start execution module, suitable for ROM-based
or disk-based systems. '

The Builder accepts input modules from 80286 translators or the 80286 Binder. It also accepts a "Build File"
containing definitions and initial values for the 286 protection mechanism-descriptor tables, gates, segments,
and tasks. BLO-286 generates a Loadable or bootloadable output module, as well as a print file with a detailed
map of the memory-protected system.

USing the Builder command Language, system programmers may perfrom the following functions:
- ASSign physical addresses to segments; also set segment access rights and limits. '
- Create Call, Trap, and Interrupt "Gates" (entry-points) for inter-level program transfers.
- Make gates available to tasks; this is an easier way to define program interfaces than using interface

libraries.
- Create Global (GOn, Interrupt (IOn, and any Local (LOn Oescriptor Tables.
- Create Task State Segments and Task Gates for multi-task applications.
- Resolve inter-module and inter-level references, and perform type-checking.
- Automatically select required modules from libraries.
- Configure the memory image into partitions in the address space.
- Selectively generate an object file and various sections of the print file.

1-17

286 SOFTWARE DEVELOPMENT TOOLS

Key Benefit

Allows a system programmer to define the configu­
ration of a protected system in one place, with one
easy-to-use Utility. This specification may then be
adopted by all project members, using either the
Builder or just the Binder. The flexibility simplifies
program development for all users.

SPECIFICATIONS

Documentation

ASM 286 Language Reference Manual
ASM 286 Macro Assembler Operating Instructions
80286 Utilities User's Guide
80286 System Builder User's Guide
Pocket Reference for all the above:

ASM 286
Utilties

1-18

SUPPORT AVAILABLE

Hotline Telephone Support, Software Updates,
Technical Reports

ORDERING INFORMATION

Product Code Operating Environment
186 ASM 286 Series III/Series IV

086 ASM 286 IBM PC XT I AT running PCDOS 3.0
or later

iMDX 371 VX VAX, VMS

X286 ASM 286 Xenix for Intel 286/3XX Systems

R286 ASM 286 RMX 286 for Intel 286/3XX Sys-
tems

PASCAL-286 SOFTWARE PACKAGE
• High-Level Programming Language for

the Protected Virtual Mode iAPX 286
• Implements ISO Standard Pascal Many

Useful Extensions may be Enabled via
a Compiler Switch

• Choice of Industry Standard Hosts
• Supports Full Symbolic Debugging with

iAPX 286 Software and ICETM
Debuggers

• Upward Compatible with Pascal-86 for
Software Portability

• Produces Relocatable Object Code
Which is Linkable to Object Modules
Generated by Other iAPX 286
Translators

• Fully Supports the 80287 Numeric
Processor using the IEEE Floating
Point Standard

Pascal-286 is a powerful, structured, applications programming language for the protected virtual address
mode of the iAPX 286. Pascal-286 is upward compatible with Pascal-86 so that 8086 Pascal source code can
be ported to the iAPX 286 in protected mode.

Pascal-286 implements strict ISO standard Pascal, but with many useful extensions. These include separate
compilation of modules, interrupt handling, port 1/0, and 80287 numerics support. A control is provided in the
compiler to flag all non-ISO features used.

Pascal-286 produces relocatable object code which can be linked with object code produced by other iAPX
286 translators such as ASM-286 and PL/M-286. Thus, a combination ·of translators can be used to provide
great programming flexibility.

Type and symbol information needed by software and in-circuit debuggers is add~d to the object code by the
Pascal-286 compiler. This information can be stripped off by the compiler or linker for the final production
version.

The Pascal-286 compiler runs on the Intel Microcomputer Development Systems (Series IIl/Series IV) as well
as the IBM PC XT I AT running PC DOS version 3.0 or later.

1-19

230863-1·

November 1986
Order Number: 230863-001

inter 286 SOFTWARE DEVELOPMENT TOOLS

FEATURES

Conforms to ISO Standard Pascal

Pascal has gained wide acceptance as a portable
language for microcomputer applications. However,
portability can result only if standards are adhered
to. Pascal-286 is a strict implementation of ISO stan­
dard Pascal. Extensions are provided to make the
language more powerful for microprocessor applica­
tions. All extensions are clearly highlighted in the
documentation. In addition, the compiler provides a
control to flag any non ISO feature used. Pascal-286
will evolve to track future enhancements to standard
Pascal.

Upward Compatible with Pascal-86

The Pascal-286 compiler produces object· code for
the protected virtual address mode of the iAPX 286
language. However, no 286 architecture specific
features have been added to the Pascal-286 lan­
guage. This makes Pascal~286 source code upward
compatible with Pascal-86, which allows for porting
of 8086 software to the protected 286 with relative
ease.

Compatible With Other iAPX 286
Translators

All Intel iAPX 286 translators output object code in a
standardized format. This allows 286 programs to be
written in a mixture of languages. Systems routines
which need access to architectural features can be
coded in PL/M-286 or ASM-286. Pascal-286 may be
better suited for the applications routines. The sys­
tems and application routines can then be combined
using the 286 linker (BIND-286).

Standardized Run Time Support

Programs compiled with Pascal-286 can be moved
from the development host environment to the tar­
get environment with ease. This is the result of stan­
dardizingrun-time operating system interfaces re­
quired by the compiled program into a well defined
and well documented set of routines. After programs
are developed on a development host, they can
then be executed in the target using the same set of
system interfaces.

1-20

Extensions for Microprocessor
Programming

Pascal-286 provides extensions that make it power­
ful· for microprocessor applications. Built-in proce­
dures allow I/O directly from the ports of the iAPX
286. This speeds up I/O as it is done by direct
communication with the microprocessor. Interrupt
processing is also supported by built in procedures.
Examples are: ENABLEINTERRUPTS, DISABLE­
INTERRUPTS, CAUSEINTERRUPT. Many built in
procedures and variables are provided for communi­
cating with the 80287 for numeric computations.

Compiler Controls
The Pascal-286 compiler provides many controls
which can be used at invocation time to enhance
programming flexibility.' Examples are: CODE/NO­
CODE, DEBUG/NODEBUG, INCLUDE (file), LlST/
NOLlST, OPTIMIZE (n), EXTENSIONS/NOEXTEN­
SIONS. All controls have default.values that are ac­
tive unless the opposite is specified during. invoca­
tion. Thus, for most compiles, no controls need be
specified.

Support for IEEE Standard Numerics

Pascal-286 provides full support ·for the 80287 nu­
merics co-processor. All. floating point operations
are done according to the IEEE floating, point stan­
dard. The benefits are predictable, accurate and
consistent results. Built-in procedures to support the
80287 include GET8087ERRORS and' MASK
8087ERRORS. A full set of 80287 library routines
are supplied with the compiler.

Optimizations
The Pascal-286 compiler produces highly optimized
code, both in size and execution time. This is
achieved by: .

- Use of powerful iAPX 286 instructions, in particu­
lar, for string handling, 80287 numerics and sub­
routine linkage

- Short circuit evaluation of boolean expressions,
constant folding and strength reduction of mUlti­
plications and additions

- Elimination of superfluous branches, optimization
of span dependent jumps

286 SOFTWARE DEVELOPMENT TOOLS

Support Available

Hotline service, Software Updates and technical
newsletters.

ORDERING INFORMATION

Product Code
186 PAS 286
086 PAS 286

Operating Environment
Intel Series III/Series IV
IBM PC XT/AT running PCOOSversion 3.0
or later

1-21

Documentation Package
Pascal-286 User's Guide
Pascal-286 Pocket Reference

intJ PL/M 286 SOFTWARE PACKAGE
• System Programming Language for the

Protected Virtual Address Mode 80286
• Upward Compatible with PL/M 86 and

PL/M 80 Assuring Software PortablHty
Ii Enhanced to Support Design of

Protected, Multi-User, Multi-Tasking,
Virtual Memory Operating System
Software .

• Multiple Levels of Op.timlzation

• Advanced, Structured System .
Implementation Language for Algorithm

. Development .
• Produces Relocatable Object Code

Which is Linkable to Object Modules
Generated by all Other 80286 Language
Translators' .

• Wide Choice of Industry Standard
Hosts '

PL/M 286 is a powerful, structured, high-level system implementation language for the development of system
software for the protected virtual address mode 80286. PLIM 286 has been enhanced to utilize 80286 fea­
tures-memory management and protection-for the implementation of multi-user, multi-tasking virtual memo­
ry operating systems.

PL/M 286 is upward compatible with PL/M 86 and PLIM 80. Existing systems software can be recompiled
with PL/M 286 to execute in protected virtual address mode on the 80286.

PL/M 286 is the high-level alternative to assembly language programming on the 80286. For the majority of
80286 systems programs, PL/M 286 provides the features needed to access and to control efficiently the
underlying 80286 hardware and consequently it is the cost-effective approach to develop reliable, maintaina­
ble system software.

The PL/M 286 compiler has been designed to efficiently support all phases of software development features
such as a built-in syntax checker, multiple levels of optimization, virtual symbol table and four models of
program size and memory usage for efficient code generation provide the total program development support.
needed.

The PL/M 286 compiler runs on the Intel Microcomputer Development Systems (Series III/Series IV) as well
as the IBM PC XT I AT running PC DOS version 3.0 or later, Digital Equipment VAXIVMSt Systems, and Intel
XENIX" 286 and RMX 286 based systems.

tVAX, VMS are trademarks of Digital Equipment Corporation.
"XENIX is a trademark of Microsoft Corporation.

1-22

280335-01

December 1986
Order Number: 280335-001

inter PL/M 286 SOFTWARE PACKAGE

FEATURES

Major features of the Intel PLIM 286 compiler and
programming language include:

Structured Programming

PLIM source code is developed in a series of mod­
ules, procedures, and blocks. Encouraging program
modularity in this manner makes programs more
readable, and easier to maintain and debug. The
language becomes more flexible by clearly defining
the scope of user variables (local to a private proce­
dure, for example).

The use of modules and procedures to break down
a large problem leads to productive software devel­
opment. The PL/M 286 implementation of block
structure allows the use of REENTRANT proce­
dures, which are especially useful in system design.

Language Compatibility

PL/M 286 object modules are compatible with ob­
ject modules generated by all other 286 translators.
This means that PL/M programs may be linked to
programs written in any other 286 language.

Object modules are compatible with In-Circuit Emu­
lators; DEBUG compiler control provides the In-Cir­
cuit Emulators with full symbolic debugging capabili­
ties.

PLIM 286 language is upward compatible with PL/M
86 and PLIM 80 so that application programs may
be easily ported to run on the protected mode
80286.

Supports Seven Data Types

PL/M makes use of seven data types for various
applications. These data types range from one to
four bytes and facilitate various arithmetic, logiC, and
addressing functions:

- Byte: 8-bit unsigned number

- Word: 16-bit unsigned number

- Dword: 32-bit unsigned number

- Integer: 16-bit signed number

- Real: 32-bit floating-point number

- Pointer: 16-bit or 32-bit memory address
indicator

- Selector: 16-bit pointer base

Another powerful facility allows the use of BASED
variable which permit run-time mapping of variables

1-23

to memory locations. This is especially useful for
passing parameters, relative and absolute address­
ing, and dynamic memory allocation.

Two Data Structuring Facilities

In addition to the seven data types and based vari­
ables, PL/M supports two powerful data structuring
facilities. These help the user to organize data into
logical groups.

- Array: Indexed list of same type data elements

- Structure: Named collection of same or different
type data elements

- Combinations of both: Arrays of structures or
structures of arrays

Numerics Support

PL/M programs that use 32-bit REAL data are exe­
cuted using the 80287 Numeric Data Processor for
high performance. All floating-point operations sup­
ported by PLIM are executed on the 80287 accord­
ing to the .IEEE floating-point standard. PL/M 286
programs can use built-in functions and predefined
procedures-INIT$REAL$MATH$UNIT, SET$REAL­
$MODE, GET$REAL$ERROR, SAVE$REAL$­
STATUS, RESTORE$REAL$STATUS,-to control
the operation of the 80287 within the scope of the
language.

Built-In String Handling Facilities

The PL/M 286 language contains bUilt-in functions
for string manipulation. These byte and word func­
tions perform the following operations on character
strings: MOVE, COMPARE, TRANSLATE, SEARCH,
SKIP, and SET.

Built-In Port 1/0

PL/M 286 directly supports input and output from
the 80286 ports for single BYTE and WORD trans­
fers. For BLOCK transfers, PLIM 286 programs can
make calls to predefined procedures.

Interrupt Handling

PL/M 286 has the facility for generating and han­
dling interrupts on the 80286. A procedure may be
defined as an interrupt handler through use of the
INTERRUPT attribute. The compiler will then gener­
ate code to save and restore the processor status
on each execution of the user-defined interrupt han-

inter PL/M 286 SOFTWARE PACKAGE

dler routine. The PL/M statement CAUSE$
INTERRUPT allows the uSer to trigger a software
interrupt from within the program.

Protection Model

PLIM 286 supports the implementation of protected
operating system software by providing built-in pro­
cedures and variables to access the protection
mechanism of the 80286. Predefined variables­
TASK$REGISTER, LOCAL$TABLE, MACHINE$­
STATUS, etc.-allow direct access and modification
of the protection system. Untyped procedures and
functions-SAVE$GLOBAL$TABLE, RESTORE$­
GLOBAL$TABLE, SAVE$INTERRUPT$TABLE,
RESTORE$INTERRUPT$TABLE, CLEAR$TASK$­
SWITCHED$FLAG, GET$ACCESS$RIGHTS,
GET$SEGMENT$LlMIT, SEGMENT$READABLE,
SEGMENT$WRITEABLE, ADJUST$RPL~provide
all the facilities needed to implement efficient oper­
ating system software.

Compiler Controls

The PL/M 286 compiler offers controls that facilitate
such features as:

- Optimization

- Conditional compilation

- The inclusion of additional PL/M source files
from disk

- Cross-reference of symbols

- Optional assembly language code in the listing
file

- The setting of overflow conditions for run-time
handling

Addressing Control

The PL/M 286 compiler uses the SMALL, COM­
PACT, MEDIUM, and LARGE control to generate
optimum addressing instructions for programs. Pro­
grams of any size can be easily modularized into
"subsystems" to exploit the most efficient memory
addressing schemes. This lowers total memory re­
quirements and improves run-time execution of pro­
grams.

Code OptimIzation

The PL/M 286 compiler offers four levels of opti­
mizationfor significantly reducing overall program'
size.

1-24

- Combination or "folding" of constant expres­
sions; and short-circuit evaluation of Boolean ex­
pressions .

- "Strength reductions": a . shift left rather than
multiply by 2; and elimination of common sub-ex­
pressions within the same block

- Machine code optimizations; elimination ofsu~
perfluous branches; reuse of duplicate code; re,
moval of unreachable code

-Optimization of based-variable operations and
cross-statement loadl store

Error Checking

The PLIM 286 compiler has a very powerful feature
to speed up compilations; If a syntax or program er~
ror is detected, the compiler will skip the code gen­
eration and optimization passes. This usually yields
a 2Xperformance increase for compilation of pro­
grams with errors.

A fully detailed and helpful set of. programming and
compilation error messages is provided by the com­
piler and user's guide.

BENEFITS

PL/M 286 is designed to be an efficient, cost-effec­
tive solution to the special requirements of protected
mode 80286 Microsystem Software Development,
as illustrated by the following benefits of PL/M use:

Low Learning Effort

PL/M 286 is easy to learn and use, even for the
novice programmer.

Earlier Project Completion

Critical projects are completed much earlier than
otherwise possible because PLIM 286,a structured
high-level language, increases programmer produc­
tivity.

Lower Development Cost

Increases in programmer productivity translate im­
mediately into lower . software development costs
because less programming resources are required
for a given programmed function.

inter PL/M 286 SOFTWARE PACKAGE

Increased Reliability

PL/M 286 is designed to aid in the development of
reliable software (PLIM 286 programs are simple
statements of the program algorithm). This substan­
tially reduces the risk of costly correction of errors in
systems. that have already reached full production
status, as the more· simply stated the program is, the
more likely it is to perform its intended function.

Easier Enhancements and
Maintenance

Programs written in PL/M tend to be self-document­
ing, thus easier to read and understand. This means
it is easier to enhance and maintain PL/M programs
as the system capabilities expand and future prod­
ucts are developed.

Cost-Effective Alternative to Assembly
Language·

PL/M 286 programs are code efficient. PLIM .286 .
combines all of the benefits of a high-level language
(ease of use, high productivity) with the ability to ac­
cess the 80286 architecture. This includes language
features for control of the 80286 protection mecha­
nism. Consequently, for the development of systems
software, PL/M 286 is the cost-effective alternative
to assembly language programming.

1-25

SPECIFICATIONS

Support Available

90 Days:
Hotline Telephone Support, Software Updates,
Subscription Service

Documentation Package

PL/M 286 User's Guide
PL/M 286 Pocket Reference

ORDERING INFORMATION

Ordering Code Operating Environment
186PLM286 Intel Series III/Series IV

D86PLM286 IBM PC x:r/AT running PCDOS
version 3.0 or later

iMDX373VXVAX, VMS

X286PLM286 Xenix for Intel Systems 286/3XX

R286PLM286 iRMXTM 286· for Intel ~ystems
286/3XX

inter iC-286
C COMPILER FOR THE 80286

• Implements Full C Language • Supports Both Small and Large Models

• Produces High Density· Code Rivaling of Computation

Assembler Ii Supports PSCOPE and 121CETM

• Supports Intel Object Module Format • Supports IEEE Floating Point Math with
~M~ . Intel Math Coprocessor

• Runs under the Intel UDI on Intel II Supports Bit Fields
Development Systems and IRMXTM 286 • Supports Full Standard I/O Library

• Available for the VAX/VMS· Operating (STDIO)
System and for PCDOS • Written in C

The C Programming Language was originally designed in 1972 and has become increasingly popular as a
systems development language. C is not a "very high level" language and is not tied to any specific application
area. Although it is used for writing operations systems, it has been used equally well to wri~e numerical, text­
processing and data base programs. C combines the flexibility and programming speed of a higher level
language with the efficiency and control of assembly language.

Intel iC-286 brings the full power of the C programming language to 80286 based microprocesso~ systems.

Intel iC-286 supports the full C language as described in the Kernighan and Ritchie book, "The C Programming
Language", (Prentice-Hall, 1978). Also included are the latest enhancements to the C language; structure
assignments, functions taking structure arguments and returning structures, and the "void" and "enum" data
types.

C is rapidly becoming the standard microprocessor system implementation language because it provides:

1. the ability to manipulate the fundamental objects of the machine (including machine addresses) as easily as
assembly language.
2. the power and speed of a structured language supporting a large number of data types, storage classes,
expressions and statements.
3. processor independence (most programs developed for other processors can be easily transported to the
80286), and
4. code that rivals assembly language in efficiency.

INTEL iC-286 COMPILER
DESCRIPTION

The iC-286 compiler operates in four phases; pre­
processor, parser, code generator, and optimizer.
The preprocessor phase interprets directives in C
source code, including conditional compilations (#
define). The parser phase converts the C program
into an intermediate free form and does all syntactic
and semantic error checking. The code generator
phase converts the parser's output into an efficient
intermediate binary code, performs constant folding,
and features an extremely efficient register allocator,
ensuring high quality code. The optimizer phase
converts the output of the code generator into relo­
eatable Intel Object Module Format (OMF) code,
without creating an intermediate assembly file. Op­
tionally, the iC-286 compiler can produce a symbolic

1-26

assembly like file. The iC-286 optimizer eliminates
common code, eliminates redundant loads and
stores, and resolves span dependencies (shortens
branches) within a program.

The iC-286 runtime library consists of a number of
functions which the C programmer can call. The run­
time system includes the standard 1/0 library
(STOIO), conversion routines, routines for manipu­
lating strings, special routines to perform functions
not available on the 80286 (32-bit arithmetic and
emulated floating point), and (where appropriate)
routines for interfacing with the operating system.

iC-286 uses Intel's linker and locator and generates
debug records for symbols and lines on request, per­
mitting access to Intei's PSCOPE and 121CE to aid in
program testing.

November 19.
Order Number: 280334-001

intJ IC-286

FEATURES

Support for Small and Large Models

Intel. iC-286 supports both the SMALL and LARGE
modes of segmentation. A SMALL mo·del program
can have up to 64K bytes of code and 64K bytes of
data, with all pOinters occupying two bytes. Because
two byte pointers permit the generation of highly
compact and efficient code, this model is recom­
mended for programs that can meet the size restric­
tions. The LARGE segmentation model is used by
programs that require access to the full addressing
space of the 80286 processors. In this model, each
source file generates a distinct pair of code and data
segments of up to 64K bytes in length. All pointers
are four bytes long.

Preprocessor Directives

#define-defines a macro
#include-includes code outside of the program
source file
if-conditionally includes or excludes code
Other preprocessor directives include #undef, #if­
def, #ifndef, #else, #endif, and #line.

Statements

The C language Supports a variety of statements:

Conditionals; IF, IF-ELSE
Loops: WHILE, DO-WHILE, FOR
Selection of cases: SWITCH, CASE DEFAULT
Exit from a function: RETURN
Loop control: CONTINUE, BREAK
Branching: GOTO

Expressions and Operators

The C language includes a rich set of expressions
and operators.

Primary expression: invoke functions, select ele­
ments from arrays, and extract fields from structures
or unions

Arithmetic operators: add, subtract, multiply, divide,
modulus

Relational operators: greater than, greater than or
equal, less than, less than or equal, not equal

Unary operators: indirect through a pointer, compute
an address, logical negation, ones complement, pro­
vide the size in bytes of an operand.

Logical operators: AND, OR

Bitwise operators: AND, exclusive OR, inclusive OR,
bitwise complement

1-27

Data Types and Storage Classes

Data in C is described by its type and storage class.
The type determines its representation and use, and
the storage class determines its lifetime, scope, and
storage allocation. The following data types are fully
supported by iC-286.

char
an 8-bit signed integer

Int
a 16-bit signed integer

short
same as int (on the 80286)

long
a 32-bit integer

unsigned
a modifier for integer data types (char, int, short, and
long) which doubles the positive range of values

float
a 32-bit floating point number· which utilizes the
80287 or a software floating pOint library

double.
a 64-bit floating point number

void·
a special type that cannot be used as an operand in
expressions; normally used for functions called only
for effect (to prevent their use in contexts where a
value is required).

enum
an enumerated data type
These fundamental data types may be used to cre­
ate other data types including: arrays, functions,
structures, pointers, and unions.

The storage classes available in iC-286 include:

register
suggests that a variable be kept in a machine regis­
ter, often enhancing code density and speed

extern
a variable defined outside of the function where it is
declared; retaining its value throughout the entire
program and accessible to other modules

auto
a local variable, created when a block of code is
entered and discarded when the block is exited

static
a local variable that retains its value until the termi­
nation of the entire program

typedef
defines a new data type name from existing data
types

IC-286

BENEFITS

Faster Compilation
Intel. iC-286 compiles. C programs substantially fast­
er than standard C compilers becaus~ it produces
Intel OMF code directly, eliminating the traditional
intermediate process of generating an assembly file.

Portability of Code

Because Intel iC-286 supports the STDIO and pro"
duces Intel OMF code, programs developed. on a
variety of machines can easily be transported to the
80286.

Rapid Prog~am ·Development
Intel iC-286 provides the programmer with' detailed
error messages and access to PSCOPE arid 121CE
to speed program development. .

Full Manipulation of the 80286

Intel iC-286 enables the programmer to utilize fea­
tures of the C language to control bit fields, pointers,
addresses and register allocation,taking full advan­
tage of the fundamental concepts of the'80286.

SPECIFICATIONS
.

Operating Environment

The iC-286 compiler runs host resident on both the
Intel Series III Microcomp\Jter DevelopmentSy,stem
under ISIS-II and on the System 286/310 under the
iRMXTM 286 operating system iC-286 can also·run '
as a cross compiler on a VAX. 11/780 computer un~
der the VMS operating system l28K bytes of User
Memory is required on all versions. The PCDOS sys­
tem is also a supported environment. Specify de­
sired version when ordering.

Required Hardware

Development System Version
..:... Intellec@ Microcomputer Development System;

Series III or Series IV
- Dual Diskette Drives, Single or Double Density

1-28

- System Console; CRT or Hardcopy Interactive
Device '

iRMX 2~6version:
:- Any iAPX 286, iSBCiI> 286 or based system capa­

bleofrunning the ,iRMX 286 Operating System

VAX. version: '
..;;.. Digital Equipment CorporationV AX. 11/780 or

compatible, computer '

PCDOSversion:
- PCXT or AT usingPCDOS V3.0 or later

Optional Hardware

ISIS-II version:
- ICE-86, 121CE-86

iRMX-286 version:
'-' Numeric Data Processors for support of the

REALMATH standard

VAX. version:
- None

Required Software

ISIS-II version:
- ISIS-II Diskette Operating System
- Series III or Series IV Operating

iRMX 286 version:
- iRMX 286 Realtime Multiprogramming Operation
- iRMX 286 Utilities Package

VAX. version:
- VMS Operating System

Optional Software,
Development System version:

- None

iRMX 286 versipn:
- None

VAX version:
....:. MDS~-384Kit"Mainframe Link for distributed de­

velopment, or iM'DX-394 Asynchronous Commu­
nications Link.

- VAX. iAPX 286 MACRO Assembler and utilities
package (iMDX-371 VX)

inter iC-286

Shipping Media

Development System version:

- Two single and one double density ISIS-II format
8" diskettes, one 5%" Series IV Format

iRMX286 version:

- Double Density iRMX 286 format 5%" diskette

VAX version:

- 1600 bpi, 9 track Magnetic tape

DOS version:

- Double Density PC-DOS format 5%" diskette

ORDERING INFORMATION
Order Code Description
i86C286 iC-286 Compiler for ISIS-II, Series IV
R286C286 iC-286 Compiler for iRMX 86
iMDX-377 iC-286 Cross Compiler for VAXIVMS
D86C286 iC-286 Cross Compiler for PCDOS

Intel Software License required.

1-29

Documentation Package

The C Programming Language by Kernighan and
Ritchie (1978 Prentice-Hall)

iC-286 User Manual

SUPPORT

Intel offers several levels of support for this product
which are explained in detail in the price list. Please
consult the price list for a description of the support
options available.

'MDS Is an ordering code only and is not used as a product name or
trademark. MDS is a registered trademark 01 Mohawk Data Sciences
Corporation. VAX, VMS are trademarks .01 Digital Equipment Corpora­
tion.

intJ
8086,8088

SOFTWARE DEVELOPMENT PACKAGES
FOR SERIES II/PDS

• PLIM 86/88 High Level Programming
Language

• ASM 86/88 Macro Assembler for 8086,
8088 Assembly Language Programming

• LINK 86/88 and LOC 86/88 Linkage and
Relocation Utilities

• CONY 86/88 Converter for Conversion
of 808018085 Assembly Language
Source Code to 8086,8088 Assembly
Language Source Code

• OH 86/88 Object-to-Hexadecimal
Converter

• LIB 86/88 Library Manager

The 8086/8088 Softw!!re Development Packages for Series II provide a set of software development tools for
the 8086, 8088 CPUs and the iSBC 86/12A single board comp'uter. The packages operate under the ISIS-II
operating system on Intel Microcomputer Development Systems-Model 800, Series II or the Personal Devel­
opment System (PDS)-thus minimizing requirements for additional hardware or training for Intel. Microcom­
puter Development System users.

These packages permit 8080/8085 users to efficiently upgrade existing programs into 8086/8080 code from
either 8080/8085 assembly language source code or PL/M 80 source code.

For the new Intel Microcomputer Development System user, the packages operating on a PDS or an Intellec
Series II, such as a Model 235, provide total 8086, 8088 software development capability.

1-30

280380-1

December 1986
Order Number: 280380-002

inter 8086,8088

PL/M 86/88 COMPILER
FOR SERIES II/PDS

• Language Is Upward Compatible from • Produces Relocatable Object Code
PL/M 80, Assuring MCS-80/85 Design Which Is Linkable to All Other 8086
Portability Object Modules

• Supports 16-blt Signed Integer and • Supports Full Extended Addressing
32-blt Floating Point Arithmetic In Features of the 8086/10 and 8088/10
Accordance with IEEE Proposed Microprocessors (Up to 1 Mbyte)
Standard • Code Optimization Assures Efficient

• Easy-to-Learn, Block-Structured Code Generation and Minimum
Language Encourages Program Application Memory Utilization
Modularity

Like its counterpart for MCS-80/85 program development, PL/M 86/88 is an advanced, structured high-level
programming language. The PL/M 86/88 compiler was created specifically for performing software develop­
ment for the Intel ,8086, 8088 Microprocessors.

PLiM 86/88 has significant new capabilities over PLiM 80 that take advantage of the new facilities provided
by the 8086, 8088 microsystem, yet the PL/M 86/88 language remains compatiable with PL/M 80.

With the exception of hardware-dependent modules, such as interrupt handlers, PLiM 80 applications may be
recompiled with PLiM 86/88 with little need for modific!ltion. PL/M 86l88" like PLiM 80, is easy to learn,
facilitates rapid program development, and reduces program maintenance costs.

PLiM is a powerful, structured, high-level system implementation language inwhich program statements can
naturally express the program algorithm. This frees the programmer to concentrate on the logic of the program
without concern for burdensome details of machine or asembly language programming (such as register
allocation, meanings of assembler mnemonics, etc.).

The PL/M 86/88 compiler efficiently converts free-form PLiM language statements into equivalent 86/88
machine instructions. Substantially fewer PLiM statements are necessary for a given application than if it were
programmed at the assembly language or machine code level.

The use of PL/M high-level language for system programming, instead of assembly language, results in a high
degree of engineering productivity during project development. This translates into significant reductions in
initial software development and follow-on maintenance costs for the user. '

FEATURES

Major features of the Intel PL/M 86/88 compiler and
programming language include:

Block Structure

PLiM source code is developed in a series of mod­
ules, procedures, and blocks. Encouraging program
modularity in this manner makes programs more
readable, and easier to maintain and debug. The
language becomes more flexible by clearly defining
the scope of user variables (local to a private proce­
dure, global to a public module, for example);

The use of procedures to break down a large prob­
lem is paramount to productive software develop­
ment. The PL/M 86/88 implementation of a block

1-31

structure allows the use of REENTRANT which is
especially useful in system deSign.

Language Compatibility

PLiM 86/88 object modules are compatible with ob~
ject modules generated by all other 86/88 transla­
tors. This means that PL/M programs may be linked
to programs written in any other 86/88 language.

Object modules are compatible with ICE-88 and
ICE-86 units; DEBUG compiler control provides the
In-Circuit Emulators with symbolic debugging capa­
bilities.

PL/M 86/88 Language is upward-compatible with
PLiM 80, so that application programs may be easily
ported to run on the 8086 or 8080.

intJ 8086,8088

Supports Five Data Types

PLIM makes use of five data types for variousappli~
cations. These data types range from one to four
bytes, and facilitate various arithmetic, logic, and ad­
dressing function~:

- Byte: 8-bit unsigned number

- Word: 16-bitunsigned number,

- Integer: 16-bit signed number

- Real: 32-bit floating 'point number '

- Pointer: 16-bit or 32-bit memory address "
indicator

Another powerful facility ailows the use 'of BASED
variables that map more than one variable to the
same memory location. This is especially useful for
passing parameters, relative and absolute address-
ing, and memory allocation. '

Two Data Structuring Facilities

" Interrupt Handling

'PLlMhas the facility for generating interrupts to the
8086 or 8088 via software. A procedure may be de­
fined with the INTERRUPT attribute, and thecompil~
er will automlltically initialize an, interrupt, vector at
the appropriate memory location. The, compiler', will
also generate code to same and restore the proces­
sor status, for execution oftheuser-defined il'1terrupt
handler routine. The, procedureSET$INTERRUPT,
the function retuning ~nINTE~RUPT$PTR, and the
PLIM statement CAUSE$INTERRUPT all add flexi­
bility to user programs involving interrupt handling.

Segmentation Control

The PLIM 86/88 compiler takes full advantage of
p~ogram addressing with the SMALL, COMPACT,
MEDIUM, and LARGE segmentation controls. Pro­
grams with less than 64 KB total code space can
exploit the ,most efficient memory addressing
schemes, which lowers total memory,requirements.
Larger programs can exploit the flexibility of extend­
ed one-megabyte addressing. In addition to the five data types and based vari­

ables, PLIM supports two data structuring facilities.
These add flexibility to the referencing of data stored
in large groups. ' Code Optimization
- Array: Indexed list of same type data elements '
_ Structure: Named collection of same 'or different, ' " The PL/M 86/88 compiier offers four levels of opti-

type data elements mization ,for significantly reducing overall program
size. ' '

- Combinations of Each: Arrays of structures or
f ' - Combination or "folding" of constant expres-

s~ructures 0 arrays sions; and short-circuit evaluation of Boolean ex-

8087 Numerics Support

PL/M programs that use 32~bit REAL data may be
executed using the Numeric Data Process,or for im­
proved performance. All floating-point operations
supported by PLlM' may be executed on the 8087
NDP, or the 8087. Eniulator (a software module) pro­
vided with the package. Determination of use of the
chip or emulator takes place at link-time, allowing
compilations to be run-time independent.

Built-In String Handling Facilities
;. ".,

The PLlM.86/88 language contains built-infunc­
tions for string ,manipulation. These byte and word
functions perform the following operations on char­
acter strings: MOVE, COMPARE, TRANSLATE,
SEARCH, SKIP, and SET.

1-32

, pressions.

-:. "Strength reductions" (such as a shift left rather
than multiply by 2); and elimination of common
sub~expressions within the same block.

- Machine code optimizations; elimination of suo
, perfluous branches; re-use of duplicate code; re­

moval of unreadable code.

- Byte comparisons (rather than 20-bit address
, calculations) for pointer variables; optimization of '
based-variable operations.

Complier Controls
The PL/M ,86/88 compiler offers more than 25 con­
trols that facilitate such features as:

- Conditional compilation

~ Intra- ~lI,d Inter-module cross reference

"""':' Corresponding assembly language code in the
listing file' '

- Setting overflow conditions for run-time handling

inter 8086,8088

BENEFITS

PL/M 86/88 is designed to be an efficient, cost-ef­
fective solution to the special requirements of iAPX
86 or 88 Microsystem Software Development, as ii­
lustratedby the following benefits of PL/M use:

Low Learning Effort

PL/M 86/88 is easy to learn and to use, even for the
novice programmer.

Earlier Project Completion

Critical projects are completed much earlier than
otherwise possible because PL/M 86/88, a struc­
tured high-level language, increases programmer
productivity.

Lower Development Cost

Increases in programmer productivity translate im­
mediately into lower software development costs

because less programming resources are required
for a given programmed function.

Increased Reliability

PL/M 86/88 is designed to aid in the development
of reliable software (PL/M 86/88 programs are sim­
ple statements of the program algorithm). This sub­
stantially reduces the risk of costly correction of er­
rors in systems that have already reached full pro­
duction status, as the more simply stated the pro­
gram is, the more likely it is to perform its intended
function.

Easier Enhancements and
Maintenance

Programs written in PL/M tend to be self-document­
ing, thus easier to read and understand. This means
it is easier to enhance and maintain PLIM programs
as the system capabilities expand and future prod­
ucts are developed.

8086,8088 MACRO ASSEMBLER
. FOR· SERIES II/PDS

• Powerful and Flexible Text Macro
Facility with Three Macro Listing
Options to Aid Debugging

• Highly Mnemonic and Compact .
. Language, Most Mnemonics Represent

Severa.1 DistinctMachil1e Instructions

• "Strongly Typed" Assembler Helps
Detect Errors at· Assembly Time

• High-Level Data Structuring Facilities
Such as "STRUCTUREs"and
"RECORDs"

• Over 120 Detailed and Fully
Documented ~rror Messages

• Produces Relocatable and Linkable
Object Code

ASM 86/88 is the "high-level" macro assembler for the 8086/88 assembly language. ASM 86/88 translates
symbolic 86/10, 88/10 assembly language mnemonics into 86/10, 88/10 relocatable object code.

ASM 86/88 should be used where maximum code efficiency and hardware control is needed. The 8086, 8088
assembly language includes approximately 100 instruction mnemonics. From these few mnemonics the as­
sembler can generate over 3,800 distinct machine instructions. Therefore, the software development task is
simplified, as the programmer need know only 100 mnemonics to generate all possible 86/10, 88/10 machine
instructions. ASM 86/88 will generate the shortest machine instruction possible given no forward referenCing
or given explicit information as to the characterisitics of forward referenced symbols.

ASM 86/88 offers many features normally found only in high-level languages. The 8086, 8088 assembly
language is strongly typed. The assembler performs extensive checks on the usage of variables and labels.
The assembler uses the attributes which are derived explicitly when a variable or label is first defined, then
makes Sure that each use of the symbol in later instructions conforms to the usage defined for that symbol.
This means that many programming errors will be detected when the program is assembled, long before it is
being debugged on hardware.

1-33

8086,8088

FEATURES

Major features of the Intel 8086/8088 assembler
and assembly language include:

Powerful and Flexible Test Ma:cro
Facility"

- Macro calls may appear anywhere

- Allows user to define the syntax of each macro

- Built-in functions
conditional assembly (IF-THEN-ELSE, WHILE)
repetition (REPEAT)
string processing functions (MATCH)
support of assembly time 1/0 to console (IN,
OUT)

- Three Macro Listing Options include a GEN
mode which provides a complete trace of all
macro calls and expansions.

High-Level Data Structuring Capability

- STRUCTURES: Defined to be a template and
then used to allocate storage. The familiar dot
notation may be used to form instruction ad­
dresses with structure fields.

- ARRAYS: Indexed list of same type data ele-.
ments.

- RECORDS: Allows bit-templates to be defined
and used as instruction operands and/or.to allo­
cate storage.

Fully Supports 8086, 8088
Addressing Modes.

- Provides for complex address expressions in­
volving base and indexing registers and (struc­
ture) field offsets.

- Powerful EQU facility allows complicated expres­
sions to be named and the name can be used as
a synonym for the expression throughout the
module. .

Powerful STRING MANIPULATION
INSTRUCTIONS

- Permit direct transfers to or from memory or the
accumulator.

1-34

- Can be prefixed with a repeat operator for repeti­
tive execution with a count-down and condition
test.

Over 120 Detailed Error Messages

- Appear both in regular list file and error print file.

- User documentation fully. explains .the occur"
rence of each error and suggests a method to
correct it.

Support for ICE-86™ Emulation and
Symbolic Debugging , . .

...:. Debug options for inclusion of symbol· table in
object modules for In-Circuit Emulation with sym-
bolic debugging. .

Generates Relocatable and Linkable
Object Code-Fully Compatible with '
LINK 86/88,~OC 86/88 and LIB 86/88

- Permits ASM 86/88 programs to be developed
and debugged in small modules. These modules
can be easily linked with other ASM 86/88 or
PL/M 86/88 object modules and I or library rou­
tines tQform a complete application system.

BENEFITS

The 8086/8088 macro assembler allows the exten­
sive capabilities of the 86/88 CPU's tobe fully ex"
ploited, In any application, time and space critical
routines can be effectively written in ASM 86/88.
The 86/88 assembler' outputs relocatable and link­
able object modules. These object modules may be
easily combined with object modules written in PL/M
86/88-lntel's structured. high-level programming
language. ASM 86/88 compliments PL/M 86/88 as
the programmer may choose to write each module in
the language most appropriate to the task and then
combine the modules into the complete applications
program using the 8086/8088 relocation and linkage
utilities.

8086,8088

CONV 86/88
MCS®-80/85 TO 8086, 8088 ASSEMBL Y LANGUAGE

CONVERTER UTILITY PROGRAM
• Translates 8080/8085 Assembly

Language Source Code to 8086, 8088
Assembly Language Source Code

• Provides a Fast and Accurate Means to
Convert 8080/8085 Programs to the
8086, 8088 FaCilitating Program
Portability

,

• Automatically Generates Proper ASM
86/88 Directives to Set Up a "Virtual
8080" Environment that is Compatible
with PL/M 86/88

In support of Intel's commitment to software portability, CONY 86/88 is offered as a tool to move 8080/8085
programs to the. 8086, 8088. A comprehensive manual, "MCS-86 Assembly Language Coverter Operating
Instructons for ISIS-II Users", covers the entire conversion process. Detailed methodology of the conversion
process is fully described therein.

~ CONY 86/88 will accept as input an error-free
8080/8085 assembly"language source file and
optional controls, and produce as output, option­
al PRINT and OUTPUT files.

- The PRINT file is a formatted copy of the
8080/8085 source and the 86/88 source file
with embedded caution messages.

- The OUTPUT file is an 86/88 s9urce file ..

- CONY 86/88 issues a caution message when it
detects a potential problem in the converted
86/88 code.

- A transliteration of the 8080/8085 programs oc­
curs, with each 8080/8085 construct mapped to
its exact 86/88 counterpart:

Registers
Condition flags
Instruction
Operands
Assembler directives
Assembler control lines
Macros

1-35

Because CONY 86/88 is a transliteration process,
there is the possibility of as much as a 15%-20%
code expansion over the 8080/8085 code. For com­
pactness and efficiency it is recommended that crit­
ical portions of programs be re-coded in 8086, 8088
assembly . language.

Also, as a consequence of the transliteratiOn,some
manual· editing may be required for· converting in­
struction sequences dependent on:

- instruction length, timing, or encoding

- interrupt processing"

- PL/M parameter passing conventions'

"Mechanical editing procedures for these are sug­
gested in the converter manual.

The accompanying figure illustrates the flow of the
conversion process. Initially, the abstract program
may be represented in 8080/8085 or 8086, 8088
assembly language to execute on· that respective
target machine. The conversion process is porting a
source destined for the 8080/8085 to the 86/88 via
CONY 86/88.

intJ 8086,8088

SOURCE CODE
ABSTRACT PROGRAM SOURCE CODE

IN 8080/8085 IN 88110, 88/10
ASSEMBLY LANG ALGORITHM ASSEMBLY LANG

ASSEMBLE ASSEMBLE
FOR CONV 88/88 FOR

8080/8085 86/10,88110

EXECUTE -..,----------- EQUIVALENT ------------ EXECUTE
ON ON

8080/8085 FUNCTION 86/10, 88/10 ------------ ------------
280380-2

Figure 1. Porting 8080/8085 Source Code to the 80861W and 8088/10

LINK 86/88
• Automatic Combination. of Separately

Complied or Assembled 8086, 8088
Programs Into a Relocatable Module

• Automatic Selection of Required
Modules from Specified Libraries to
Satisfy Symbolic References

• Extensive Debug Symbol Manipulation,
Allowing Line Numbers, Local Symbols,
and Public Symbols to be Purged and
Listed Selectively

• Automatic Generation of a Summary
Map Giving Results of the LINK 86/88
Process

• Abbreviated Control Syntax

• Relocatable Modules may be Merged
into a Single Module Suitable for
Inclusion in a Library

• Supports "Incremental" Linking

• Supports Type Checking of Public and
External Symbols

LINK 86/88 combines object modules specified in the LINK 86/88 input list into a single output module. LINK
86/88 combines segments from the input modules according to the order in which the modules are listed.

LINK 86/88 will accept libraries and object modules built from PL/M 86/88, ASM 86/88, or any other transla­
tor genera.ting Intel's 8086, 8088 Relocatable Object Modules.

Support for incremental linking is provided since an output module produced by LINK 86/88 can be an input to
another link. At each stage in the incremental linking process, unneeded public symbols may be purged.

LINK 86/88 supports type checking of PUBLIC and EXTERNAL symbols reporting an error if their types are
not consistent.

LINK 86/88 will link any valid set of input modules without any controls. However, controls are available to
control the output of diagnostic information in the LINK 86/88 process and to control the content of the output
module.

LINK 86/88 allows the user to create a large program as the combination of several smaller, separately
compiled modules. After development and debugging of these component modules the user can link them
together, locate them using LOC 86/88 and enter final testing with much of the work accomplished.

1-36

inter 8086,8088

LIB 86/88

• LIB 86/88 Is a Library Manager
Program which Allows You to:

Create Specially Formatted Files to
Contain Libraries of Object Modules

Maintain These Libraries by Adding or
Deleting Modules

Print a Listing of the Modules and
Public Symbols in a Library File

• Libraries Can be Used as Input to LINK
86/88 Which Will Automatically Link
Modules from the Library that Satisfy
External References in the Modules
Being Linked

• Abbreviated Control Syntax

Libraries aid in the job of building programs. The library manager program LIB 86/88 creates and maintains
files containing object modules. The operation of LIB 86/88 is controlled by commands to indicate which
operation LIB 86/88 is to perform. The commands are:

CREATE: creates an empty library file

ADD: adds object modules to a library file

DELETE: deletes modules from a library file

LIST: lists the module directory of library files

EXIT: terminates the LIB 86 program and returns control to ISIS-II

When using object libraries, the linker will call only those object modules that are required to satisfy external
references, thus saving memory space.

Loe 86/88
• Automatic Generation of a Summary

Map. Giving Starting Address, Segment
Addresses and Lengths, and Debug
Symbols and their Addresses

• Extensive Capability to Manipulate the
Order and Placement of Segments In
8086, 8088 Memory

• Abbreviated Control Syntax

• Automatic and Independent Relocation
of Segments. Segments May Be
Relocated to Best Match Users Memory
Configuration

• Extensive Debug Symbol Manipulation,
Allowing Line Numbers, Local Symbols,
and Public Symbols to be Purged and
Listed Selectively

Relocatability allows the programmer to code programs or sections of programs without having to know the
final arrangement of the object code in memory.

LOC 86/88 converts relative addresses in an input module to absolute addresses. LOC 86/88 orders the
segments in the input module and assigns absolute addresses to the segments. The sequence in which the
segments in the input module are assigned absolute addresses is determined by their order in the input
module and the controls supplied with the command.

LOC 86/88 will relocate any valid input module without any controls. However, controls are available to control
the output of diagnostic information in the LOC 86/88 process, to control the content of the output module, or
both.

The program you are developing will almost certainly use some mix of random access memory (RAM), read­
only memory (ROM), and/or programmable read-only memory (PROM). Therefore, the location of your pro­
gram affects both cost and performance in your application. The relocation feature allows you to develop your
program on the Intellec development system and then simply relocate the object code to suit your application.

1-37

intJ 8086,8088

OH 86/88
• Converts an 8086, 8088 Absolute

Object Module to Symbolic
Hexadecimal Format

• Facilitates Preparing a File for Later
Loading by a Symbolic Hexadecimal
Loader, such as. the iSBCTM Monitor
SDK-86 Loader, or Universal PROM
Mapper

• Converts an Absolute. Module to a More
Readable Format that can be Displayed
on a CRT or Printed for Debugging

The OH 86/88 utility converts an 86/88 absolute object module to the hexadecimal format. This conversion
may be necessary to format a module for later loading by a hexadecimal loader such as the iSBC 86/12
monitor or Universal PROM Mapper. The conversion may also be made to put the module in a more readable
format than can be displayed or printed.

The module to be converted must be in absolute format; the output from LOC 86/88 is in absolute format.

280380-3

Figure 2. 808S; 8088 Software Development Cycle

8086,8088

SPECIFICATIONS

Operating Environment

Intel Microcomputer Development Systems
Intel Personal Development System

Documentation
PL/M-86 Programming Manual

ISIS-1/ PL/M-86 Compiler Operator's Manual

MCS-86 User's Manual

MCS-86 Software Development Utilities Operating
Instructions for ISIS-1/ Users

MCS-86 Macro Assembly Language Reference
Manual

MCS-86 Macro Assembler Operating Instructions for
ISIS-1/ Users

MCS-86 Assembly Language Converter Operating
Instructions for ISIS-1/ Users

Universal PROMProgrammer User's Manual

1-39

ORDERING INFORMATION

8086, 8088 Software Development
Packages for Series II:

Part No. Description
MDS-30S* Assembler and Utilities Package

MDS-311* PL/M compiler, Assembler, and Utilities
Package

A" Packages Require Software Licenses

SUPPORT:

Hotline Telephone Support, Software Performance
Reports (SPR), Software Updates, Technical Re­
ports, Monthly Newsletters are available.

• MDS is an ordering code only and is not used as a product
name or trademark. MDS@ is a registered trademark of Mo­
hawk Data Sciences Corporation.

8086/8088/80186/80188
SOFTWARE PACKAGES

8086 Software Development Package

• Macro Assembler with Complete
System Development Capability for
8086 Designs

• Complete Set of Utilities for Object
Module Management and Program
Linkage

FORTRAN 8086/8088/80186/80188
Software Package

• Features High-Level Language Support
for Floating-Point Calculation,
Transcendentals, Interrupt Procedures,
and Run-Time Exception Handling

• Meets ANSI FORTRAN 77 Subset
Language Specifications

• Supports Complex Data Types

-.." --

2

PASCAL 8086/8088/80186/80188
Software Package

;; Object Compatible and Linkable. with
PLIM 8086/8088,ASM8086/8088 and
FORTRAN 86/88

• Supports Large Array Operation

PL/M 8086/8088/80186/80188 Software
Package

• Advanced Structured System
Implementation Language for Algorithm
Development

• Easy-to-Learn Block-Structured
. Language Encourages Program
Modularity

iC-86 Compiler for the 8086

• Implements Full C Language

• Produces High Density Code Rivaling
Assembler

210669-6

Figure 1. Program modules complied with any of the 8086 languages may
be linked together. Each language Is compatible with Intel's debug tools

and Is available hosted on a selection of industry standard systems.

1-40
November 1986

Order Number: 210689-007

inter 8086 SOFTWARE DEVELOPMENT PACKAGE

8086 SOFTWARE DEVELOPMENT PACKAGE
• Complete System Development

Capability for High-Performance 8086
Applications

• Macro Assembler for Machine-Level
Programming

• System Utilities for Program Linkage
and Relocation

• Package Supports Program
Development with PLM-86, Pascal-86,
FORTAN 86, & IC 86

• Available on a Choice of Hosts

The 8086 Software Development package contains a macro assembler, a program linker (for linking separate­
ly compiled modules together, a system locator, library manager, an object to hex code converter, and a
conversion utility to create DOS executable files.

All the utilities in the Software Development Package run on the Intel Microcomputer Development Systems
(Series III/Series IV) as well as the IBM PC XT/AT DEC VAXt Minicomputer under the VMSt Operating
System, and Intel systems 86/3XX under iRMX™86, and Intel System 286/3XX under iRMXTM286.

210689-7

tVAX, VMS are trademarks of Digital Equipment Corporation.

intJ 8086 SOFTWARE DEVELOPMENT PACKAGE

8086/8088/80186/80188 MACRO ASSEMBLER

• Produces Relocatable Object Code
Which is Linkable to All Other Intel
8086/8088/80186/80188 Object
Modules, Generated by Intel 8086
Compliers

• Powerful and Flexible Text Macro
Facility with Three Macro Listings
Options to Aid Debugging

• Highly Mnemonic and Compact
Language, Most Mnemonics Represent
Several Distinct Machine Instructions

• "Strongly Typed' Assembler Helps
Detect Errors at Assembly Time

• High-Level Data Structuring Facilities
Such as "STRUCTURES" and
"RECORDS"

• Over 120 Detailed and Fully
Documented Error Messages

ASM·86 is the "high·level" macro assembler for the 8086/8088/80186/80188 assembly language. ASM·86
translates symbolic 8086/8088/80186/80188 assembly language mnemonics into 8086/8088/80186/80188
relocatable object code.

ASM·86 should be used where maximum code efficiency and hardware control is needed. The
8086/8088/80186/801.88 assembly language includes approximately 100 instruction mnemonics. From these
few mnemonics the assembler can generate over 3,800 distinct machine instructions. Therefore, the software
development task is simplified, as the programmer need know only 100 mnemonics to generate all possible
8086/8088/80186/80188 machine instructions. ASM·86 will generate the shortest machine instruction possi­
ble given no forward referencing or given explicit information as to the characteristics of forward referenced
symbols.

ASM·86 offers many features normally found only in high·level languages. The 8086/8088/80186/80188
assembly language is strongly typed. The assembler performs extensive checks on the usage of variables and
labels. The assembler uses the attributes which are derived explicitly when a variable or label is first defined,
then makes sure that each use of the symbol in later instructions conforms to the usage defined for that
symbol. This means that many programming errors will be detected when the program is assembled, long
before it is being debugged on hardware.

1·42

inter 8086 SOFTWARE DEVELOPMENT PACKAGE

LlNK-86

• Automatic Combination of 8086 • Automatic Generation of a Summary
Programs Separately Translated Using Map Giving Results of the LlNK-86
Intel Compilers or Assemblers into Process

. Relocatable Object Module • Abbreviated Control Syntax

• Automatic Selection of Required • Relocatable Modules May Be Merged
Modules from Specified Libraries to into a Single Module Suitable for
Satisfy Symbolic References Inclusion in a Library

• Extensive Debug Symbol Manipulation, • Supports "Incremental" Linking
allowing Line Numbers, Local Symbols,
and Public Symbols to be Purged and • Supports Type Checking of Public and
Listed Selectively External Symbols

L1NK-S6 combines object modules specified in the L1NK-S6 input list into a single output module. L1NK-S6
combines segments from the input modules according to the order in which the modules are listed.

L1NK-S6 will accept libraries and object modules built from any Intel translator generating SOS6 Relocatable
Object Modules.

Support for incremental linking is provided since an. output module produced by L1NK-S6 can be an input to
another link. At each stage in the incremental linking .process, unneeded public symbols may be purged.

L1NK-S6 supports type checking of PUBLIC and EXTERNAL symbols reporting a warning if their types are not
consistant.

L1NK-S6 will link any valid set of input modules without any controls. However, controls are available to control
the output of diagnostic information in the L1NK-S6 process and to control the content of the output module.

L1NK-S6 allows the user to create a large program as the combination of several smaller, separately compiled
modules. After development and debugging of these component modules the user can link them together,
locate them using LOC-S6 and enter final testing with much of the work accomplished.

1-43

inter 8086 SOFTWARE DEVELOPMENT PACKAGE

LOC-S6
• Automatic Generation of a Summary

Map Giving Starting Address, Segment
Addresses and Length, and Debug
Symbols and Their Addresses

• Abbreviated Control Syntax

• Segments May be Relocated to Best
Match Users Memory Configuration

• Extensive Debug Symbol Manipulation
Allowing Line Numbers, Local Symbols,
and Public. Symbols to be Purged and
Listed Selectively

Relocatability allows the programmer to code programs or sections of programs without having to know the
. final arrangement of the object code in memory.

LOC-86 converts relative addresses in an input module in 8086/8088/80186/80188 object module format to
absolute addresses. LOC-86 orders the segments in the input module and assigns .absolute addresses to the
segments. The sequence in which the segments in the input module are assigned absolute addresses is
determined by their order in the input module and the controls supplied with the command.

LOC-86 will relocate any valid input module without any controls. However, controls are available to control the
output of diagnostic information in the LOC-86 process, to control the content of the output module, or both.

The program you are developing will almost certainly use some mix of random access memory (RAM), read­
only. memory (ROM), and/or programmable read-only memory (PROM). Therefore, the location of your pro­
gram affects both cost and performance in your application. The relocation feature allows you to develop your
program and then simply relocate the object code to suit your application.

1-44

8086 SOFTWARE DEVELOPMENT PACKAGE

LlB-86

• LlB·86 is a Library Manager Program
which Allows You to:
- Create Specifically Formatted Files

to Contain Libraries of Object
Modules

- Maintain These Libraries by Adding
or Deleting Modules

- Print a Listing of the Modules and
Public Symbols in a Library File

• Libraries Can be Used as Input to
LINK·86 which Will Automatically Link
Modules from the Library that Satisfy
External References in the Modules
Being Linked

• Abbreviated Control Syntax

Libraries aid in the job of building programs. The library manager program LlB-86 creates and maintains files
containing object modules. The operation of LlB-86 is controlled by commands to indicate which operation
LlB-86 is to perform. The commands are:

CREATE:
ADD:
DELETE:
LIST:

creates an empty library file
adds object modules to a library file
deletes modules from a library file
lists the module directory of library files

EXIT: terminates the LlB-86 program and returns control to VMS

When using object libraries, the linker will call only those object modules that are required to satisfy external
references, thus saving memory space.

OH-86

• Converts an 8086/8088/80186/80188
Absolute Object Module to Symbolic
Hexadecimal Format

• Facilitates Preparing a File for Loading
by Symbolic Hexadecimal Loader (e.g.
iSBCTM Monitor SDK·86 Loader), or
Universal PROM Mapper

• Converts an Absolute Module to a More
Readable Format that can be Displayed
on a CRT or Printed for Debugging

The OH-86 utility converts an 8086/8088 absolute object module to the hexadecimal format. This conversion
may be necessary for later loading by a hexadecimal loader such as the iSBC 86/12 monitor or the Universal
PROM Mapper. The conversion may also be made to put the module in a more readable format that can be
displayed or printed.

The module to be converted must be in absolute form; the output from LOC-86 is in absolute format.

1-45

inter 8086 SOFTWARE DEVELOPMENT PACKAGE

SPECIFICATIONS

Documentation Package

ASM-86 Assembly Language Reference Manual

8086/87/88 Macro Assembler Operating Instructions

iAPX 86 Family Utilities User's Guide

Support Available

Software Updates, Subscription Service, Hotline Support

ORDERING INFORMATION

Order Code

186ASM86

D86ASM86

VVSASM86

MVVSASM86

R86ASM86

R286ASM286

Operating Environment

Intel Series Ili/Series IV

IBM PC XT I AT running PC DOS Version 3.0 or later

VAXtlVMSt

MICROVAXt IVMSt

Intel 86/3XX Systems running: iRMXTM 86

Intel 286/3XX Systems running: iRMXTM 286

tMICROVAX, VAX, VMS are trademarks of Digital Equipment Corporation.

"IBM, AT are registered trademarks of International Business Machines Corporation.

1-46

FORTRAN 8086/8088/80186/80188
SOFTWARE PACKAGE

• Features High-Level Language Support • Offers Upward Compatibility with
for Floating-Point Calculations, FORTRAN SO
Transcendentals, Interrupt Procedures, • Provides FORTRAN Run-Time Support
and Run-Time Exception Handling for SOS6, SOSS, S01S6, S01SS-Based

• Meets ANSI FORTRAN 77 Subset Design
Language Specifications • Provides Users Ability to do Formatted

• Supports SOS6/20, SOSS/20 Numeric and Unformatted 1/0 with Sequential or
Data Processor for Fast and Efficient Direct Access Methods
Execution of Numeric Instructions • 121CETM Symbolic Debugging Fully

• Uses REALMATH Floating-Point Supported
Standard for Consistent and Reliable • PSCOPE Source Level Debugging Fully
Results Supported

• Supports Arrays Larger Than 64K • Supports Complex Data Types

• Unlimited User Program Symbols • Choice of Industry Standard Hosts

FORTRAN 8086/8088/80186/80188 meets the ANSI FORTRAN 77 Language Subset Specification and
includes many features of the full standard. Therefore, the user is assured of portability of most existing ANS
FORTRAN programs and of full portability from other computer systems with an ANS FORTRAN 77 Compiler.

FORTRAN 8086/8088/80186/80188 is available to run on the Intel Microcomputer Development Systems
(Series IIllSeries IV) as well as the IBM PC XT/AT running PC DOS Version 3.0 or later, Digital Equipment
VAXtIVMS1' and Intel System 86/3XX running iRMXTM 86 operating system.

FORTRAN 86/88/186/188 is one of a complete family of compatible programming languages for 8086,8088,
80186, 80188 development: PL/M, Pascal, FORTRAN, C, and Assembler. Therefore, users may choose the
language best suited for a specific problem solution.

tvAX, VMS are trademarks of Digital Equipment Corporation.

·IBM, AT are registered trademarks of International Business Machines Corporation.

1-47

\

inter FORTRAN 8086/8088/80186/80188 SOFTWARE PACKAGE

FEATURES

Extensive High-Level Language
Numeric Processing Support

Single (32-bit), double (64-bit), .and double extended
precision (80-bit) complex (two 32-bit), and double
complex (two 64-bit) floating-point data types

REALMATH Proposed IEEE Floating-Point Stan­
dard) for consistent and reliable results

Full support for all other data types: integer, logical,
character

Ability to use hardware (8086/20, 8088120 Numeric
Data Processor) or software (simulator) floating­
point support chosen at link time

ANS FORTRAN 77 Standard

liltel® Microprocessor Support

FORTRAN 8086/8088/80186/80188 language fea­
tures support of 8086/20, 8088/20 Numeric Data
Processor

Compiler generates in-line iAPX 8086/20, 8088/20
Numeric Data Processor object code for floating­
point arithmetic (See Figure 2)

Intrinsics allow user to control iAPX 8086/~Oi 80881
20 Numeric Data processor

8086, 8088, 80186, 80188 architectural advantages
used for indexing and character-string handling

Symbolic debugging of application using ICE emula­
tors

Source level debugging using PSCOPE

FLOATING-PC;>INT-STATEMENT

TEMPER = (PRESS - VOLUM 1 QUEK) - 3.45 1 (PRESS - VOLUM 1 QUEK
& - (PRESS - VOLUM 1 QUEK) • (PRESS - VOLUM 1 QUEK)

I OBJECT CODE GENERATED

Intel FORTRAN 8086 Compiler

8086/20, 8088/20 I ASSEMBLER MNEMONICS MACHINEoCODE
STATEMENT # 2

0013 9BD9060COO FLD VOLUM
0018 9BD8360000 FDIV QUEK
OOlD 9BD82E0800 FSUBR PRESS
0022 9BDDDl FST TOS+1H
0025 9B2ED83EOOOO FDIVR CS:@CONST
002B 9BD9C9 FXCHG TOS+1H
002E 9BDDD2 FST TOS+2H
0031 9BDEE9 FSUBRP
0034 9BD9Cl FLD TOS+1H
0037 9BD8C8 FMUL TOS
003A 9BDDC2 FFREE TOS+2H
003D 9BDEEl FSUBP
0040 9BD91E0400 FSTP TEMPER
0045 9B WAIT

Figure 2. Object code generated by FORTRAN 8086/8088/80186/80188 for a floating-point
calculation using 8086/20, 8088/20 Numeric Processor.

1-48

FORTRAN 8086/8088/80186/80188 SOFTWARE PACKAGE

Microprocessor Application Support
- Direct byte- or word-oriented port I/O

- Reentrant procedures
- Interrupt procedures

BENEFITS

FORTRAN 8086/8088/80186/80188 provides a
means of developing application software for the In­
tel 8086/8088/80186/80188 products lines in a fa­
miliar, widely accepted, and industry-standard pro­
gramming language. FORTRAN 8086/8088/
80186/80188 will greatly enhance the user's ability
to provide cost-effective software development for
Intel microprocessors as illustrated by the following:

Early Project Completion

FORTRAN is an industry-standard, high-level nu­
merics processing language. FORTRAN program­
mers can use FORTRAN 8086/8088/80186/80188
on microprocessor projects with little retraining. Ex­
isting FORTRAN software can be compiled with
FORTRAN 8086/8088/80186/80188 and programs
developed in FORTRAN 8086/8088/80186/80188
can run on other computers with ANS FORTRAN 77
with little or no change. Libraries of mathematical
programs using ANS 77 standards may be compiled
with FORTRAN 8086/8088/80186/80188.

Application Object Code Portability for
a Processor Family .

FORTRAN 8086/8088/80186/80188 modules
"talk" to the resident Intellec development operating
system using Intel's standard interface for all devel­
opment-system software. This allows an application
developed under the ISIS-II operating system to exe­
cute on iRMX/86, or a user-supplied operating sys­
tem by linking in the iRMX/86 or other appropriate
interface library. A standard logical-record interface
enables communication with non-standard I/O de­
vices.

1-49

Comprehensive, Reliable and Efficient
Numeric Processing

The unique combination of FORTRAN 8086/8088,
8086/20, 8088/20 Numeric Data processor, and
REALMATH (Proposed IEEE Floating-Point Stan­
dard) provide universal consistency in results of nu­
meric computations and efficient object code gener­
ation.

SPECIFICATIONS

Documentation Package

FORTRAN 8618811861188 User's Guide

ORDERING INFORMATION
Order Code
186FOR86

D86FOR86

R86FOR86

VVS

Operating Environment
Intel Series III/Series IV

IBM PC XT/AT running PC. DOS
Version 3.0 or later

Intel System 86/3XX running
iRMX 86

For 86 VAXIVMS 4.3 and later

SUPPORT AVAILABLE

Software updates, Subscription. Service, Hotline
Support.

•
•

•
•
•
•

PASCAL 8086/8088/80186/80188
SOFTWARE PACKAGE

Choice of Industry Standard Hosts • Unlimited User Program Symbols

Object Compatible and Linkable with • Supports 8086/20, 8088/20 Numeric
PL/M 8086/8088, ASM 8086/8088, Data Processors
C8086/8088 and FORTRAN 8086/8088 • Strict Implementation of ISO Standard
121CETM Symbolic Debugging Fully Pascal
Supported • Useful Extensions Essential for
PSCOPE Source Level Dubugglng Fully Microcomputer Applications
Supported • Separate Compilation with Type-
Implements REALMATH for Consistent Checking Enforced Between Pascal
and Reliable Results Modules
Supports Large Array Operation • Complier Option to Supp~rt Full Run-

Time Range-Checking

PASCAL 8086/8088/80186/80188 conforms to and implements the ISO Draft Proposed PASCAL standard.
The language is enhanced to support microcomputer applications with special features, such as separate
compilation, interrupt handling and direct port 110. To assist the development of portable software, thecompil­
er can be directed to flag all non-standard features.

The PASCAL 8086/8088/80186/80188 compiler runs on Series III and Series IV Microcomputer Development
Systems, as well as the IBM· XT/AT* running PC DOS Version 3.0 or later, Digital Equipment VAXIVMSt, and
Intel System 8086/3XX running iRMXTM 86.

A well-defined 110 interface is provided for run-time support. This allows a user-written operating system to
support application programs as an alternate to the development system environment. Program modules
compiled under PASCAL 8086/8088/80186/80188 are compatible and linkable with modules written in
PL/M 8086/8088/80186/80188, ASM 8086/8088/80186/80188, C86 or FORTRAN 8086/B0881
80186/80188. With a complete family of compatible programming languages for the iAPX 808618088/801861
80188 one can implement each module in the language most appropriate to the task at hand.

PASCAL 8086/8088/80186/80188 object modules contain symbol and type information for program debug­
ging using ICE emulators and PSCOPE source language debugger. For final production version, the compiler
can remove this extra information and code.

tv AX, VMS are trademarks of Digital Equipment Corporation.

1-50

intJ PASCAL 8086/8088/80186/80188

FEATURES

Includes all. the language features of Jensen & Wirth
Pascal as defined in the ISO Draft Proposed Pascal
Standard.

Supports required extensions for microcomputer ap­
plications.

- Interrupt handling

- Direct port 1/0

Separate compilation extensions allow:

- Modular decomposition of large programs

- Linkage with other Pascal modules as well as
PL/M 8086/8088/80186/80188, ASM 80861
8088/80186/80188, C86 and FORTRAN
8086/8088180186/80188

- Enforcement of type-checking at LINK-time

Supports numerous compiler options to control the
compilation process, to INCLUDE files, flag non­
standard Pascal statements and others to control
program listing and object modules.

Utilizes the IEEE standard for Floating-Point Arith­
metic (the Intel REALMATH standard) for arithmetic
operations.

Well-defined and documented run-time operating
system interfaces allow the user to execute the ap­
plications under user-designed operations systems.

Predefined type extensions allow:

- Create precision in read, integer, and unsigned
calculations.

- Means to check 8087 errors

- Circumvention of rigid type checking on .calls to
non-Pascal routines

BENEFITS

Provides a standard Pascal for 8086/80881
80186/80188 based applications.

- Pascal has gained wide acceptance as a porta­
ble application language for microcomputer ap­
plications

- It is being taught in many colleges and universi­
ties around the world

- It is easy to learn, originally intended as a vehicle
for teaching computer programming

1-51

- Improves maintainability: Type mechanism is
both strictly enforced and user extendable

- Few machine specific language constructs

Strict implementation of the proposed ISO standard
for Pascal aids portability of application programs. A
compile time option checks conformance to the
standard making it easy to write conforming pro­
grams.

PASCAL 808618088/80186/80188 extensions via
predefined procedures. for interrupt handling and di­
rect port 1/0 make it possible to code an entire ap­
plication in Pascal without compromising portability.

Standard Intel REALMATH is easy to use and pro­
vides reliable results, consistent with other Intel lan­
guages and other implementations of the IEEE pro­
posed Floating-Point standard.

Provides run-time support for co-processors. All
real-type arithmetic is performed on the 86/20 nu­
meric data processor unit or software emulator. Run­
time library routines, common between Pascal and
other Intel languages (such as FORTRAN), permit
efficient and consistently accurate results.

Extended relocation and linkage support allows the
user to link Pascal program modules with routines
written in other languages for certain parts of the
program. For example, real-time or hardware depen­
dent routines written in ASM 8086/8088/801861
80188 or PL/M 8086/8088/80186/80188 can be
linked to Pascal routines, further extending the us­
er's ability to write structured and modular programs.

PASCAL 8086/8088/80186/80188 programs "talk"
to the resident operating system using Intel's stan­
dard interface for translated programs. This allows
users to replace the development operating system
by their own operating systems in the final applica­
tion.

PASCAL 8086/8088 takes full advantage of
8086/8088/80186/80188 high level language archi­
tecture to generate efficient machine code.

Compiler options can be used to control the program
listings and object modules. While debugging, the
user may generate additional information such as
the symbol record information required and useful
for debugging using PSCOPE or ICE emulation. After
debugging, the production version may be stream­
lined by removing this additional information.

inter PASCAL 8086/8088/80186/80188

SPECIFICATIONS

ORDERING INFORMATION

Ordering Code
186PAS86

Operating Environment
Intel Series 1111 Series IV

DB6PAS86

RB6PAS86

VVSPAS86

MVVPAS86

IBM PC XT/AT running PC DOS Version 3.0 or later

Intel System 86/3XX running iRMXTM 86

VAXIVMS

MICROVAXIVMS

Documentation Package

PASCAL 86 User's Guide

1-52

SUPPORT

Hotline Telephone Support, Software Performance
Report (SPR), ·Software Updates, Technical Re­
ports, and Monthly Technical Newsletters are avail­
able.

PL/M 8086/8088/80186/80188 Software Package

• Systems Programming Language for • Improved Compiler Performance Now
the 8086/8088/80186/80188 Processors Supports More User Symbols and

• Language is Upward Compatible from Faster Compilation Speeds

PLIM 80, Assuring MCS®-80/85 Design • Produces Relocatable Object Code
Portability Which Is Linkable to All Other 8086

• Advanced Structured System Object Modules

Implementation Language for Algorithm • Code Optimization Assures Efficient
Development Code Generation and Minimum

• Supports 16-Blt Signed Integer and 32- Application Memory Utilization

Bit Floating Point Arithmetic in • Built-In Syntax Checker Doubles
Accordance with IEEE Proposed Performance for Compiling Programs
Standard Containing Errors

• Easy-to-Learn Block-Structured • Resident on Choice of Hosts
Language Encourages Program • 121CE Symbolic Debugging Fully
Modularity Supported

• PSCOPE Source Level Debugging Fully
Supported

PL/M 8086 is an advanced, structured, high-level systems programming language. The PLIM 8086 compiler
was created specifically for performing software development for the Intel 8086, 8088, 80186 and 80188
Microprocessors. PL/M was designed so that program statements naturally express the program algorithm.
This frees the programmer to concentrate on the logic of the program without concern for burdensome details
of machine or assembly language programming (such as register allocation, meanings of assembler mnemon­
ics, etc.).

The PL/M 8086 compiler efficiently converts free-form PLIM language statements into machine instructions.
Substantially fewer PL/M statements are necessary for a given application than if it were programmed at the
assembly language or machine code level.

The use of PL/M high-level language for system programming, instead of assembly language, results in a high
degree of engineering productivity during project development.. This translates into significant reductions in
initial software development and follow-up maintenance costs for the user.

PL/M 8086 is available to run on the Intellec® Microcomputer Development Systems (Series IIl/Series IV) as
well as the IBM PC XT/AT, DEC VAXtIVMSt, and Intel System 8086/3XX running iRMXTM 86.

tVAX, VMS are trademarks of Digital Equipment Corporation.

1-53

inter PL/M 8086/8088/80186/80188 SOFTWARE PACKAGE

FEATURES

Major features of the Intel PL/M 8086 compiler and
programming language include:

Block Structure

PL/M source code is developed in a series of mod­
ules, procedures, and blocks. Encouraging program
modularity in this manner makes programs more
readable, and easier to maintain and debug. The
language becomes more flexible, by clearly defining
the scope of user variables (local to a private proce­
dure).

The use of procedures to break down a large
problem is paramount to productive software
development. The PLIM 8086 implementation of a
block structure allows the use of REENTRANT (re­
cursive) procedures, which are especially useful in
system design.

Language Compatibility

PL/M 8086 object modules are compatible with ob­
ject modules generated by all other 8086 transla­
tors. This means that PL/M programs may be linked
to programs written in any other 8086 language.

Object modules are compatible with In-Circuit Emu­
lators; DEBUG compiler control provides the In-Cir­
cuit Emulators with symbolic debugging capabilities.

PL/M 8086 Language is upward compatible with
PL/M 80, so that application programs may be ea~ily
ported to run on the 8086.

Supports Seven Data Types

PL/M makes use of seven data types for various
applications. These data types range from one to
four bytes, and facilitate various arithmetic, logic,
and addressing functions:

- Byte: 8-bit unsigned number

- Word: 16-bit unsigned number

- DWORD: 32-bit unsigned number

- Integer: 16-bit signed number

- Read: 32-bit floating point number

- Pointer: 16-bit or 32-bit memory address
indicator

- Selector: 16-bit base portion of a pointer

1-54

Another powerful facility allows the use of BASED
variables that map more than one variable to the
same memory location. This is especially useful for
passing parameters, relative and absolute address­
ing, and memory allocation.

Two Data Structuring Facilities

In addition to the five data types and based vari­
ables, PLIM supports two data structuring facilities.
These help the user to organize data into logical
groups.

- Array: Indexed list of same type of data elements

- Structure: Named collection ,of same or different
type data elements

- Combinations of Each: Arrays of structures or
structures of arrays

8087 Numerics Support

PL/M programs that use 32-bit REAL data may be
executed using the Numeric Data Processor for im­
proved performance. All floating-point operations
supported by PL/M may be executed on the
8086/20 or 8088/20 NDP, or the 8087 Emulator (a
software module) provided with the package. Deter­
mination of use of the chip or Emulator takes place
at linktime, allowing compilations to be run-time in­
dependent.

Built-In String Handling Facilities

The PL/M 8086 language contains built-in functions
for string manipulation. These byte and word func­
tions perform the following operations on character
strings: MOVE, COMPARE, TRANSLATE, SEARCH,
SKIP, and SET.

Interrupt Handling

PL/M has the facility for handling interrupts. A pro­
cedure may be defined with the INTERRUPT attri­
bute, and the compiler willi automatically initialize an
interrupt vector at the appropriate memory location.
The compiler will also generate code to save and
restore the processor status, for execution of the
user-defined interrupt handler routine. The proce­
dure SET$INTERRUPT, the function retuning an IN­
TERRUPT$PTR, and the PL/M statement CAU­
SE$INTERRUPT all add flexibility to user programs
involving interrupt and handling.

intJ PL/M 8086/8088/80186/80188 SOFTWARE PACKAGE

Compiler Controls

Including several that have been mentioned, the
PL/M 8086 compiler offers more than 25 controls
that facilitate such features as:

Conditional compilation

Including additional PL/M source files from disk

Corresponding assembly language code in the
listing file
Setting overflow conditions for run-time handling

Segmentation Control

The PL/M 8086 compiler takes full advantage of
program addressing with the SMALL, COMPACT,
MEDIUM, and LARGE segmentation controls. Pro­
grams with less than 64 KB total code space can
exploit the most efficient memory addressing
schemes, which lowers total memory requirements.
Larger programs can exploit the flexibility of extend­
ed one-megabyte addressing.

Code Optimization

The PL/M 8086 compiler offers four levels of opti­
mization for significantly reducing overall program
size.

Combination or "folding" of constant expres­
sions; and short-circuit evaluation of Boolean ex­
pressions
"Strength reductions" (such as a shift left rather
than multiply by 2); and elimination of common
sub-expressions within the same block

Machine code optimizations; elimination of su­
perfluous branches; re-use of duplicate code; re­
moval of unreachable code

Byte comparisons (rather than 20-bit address
calculations) for pointer variables; optimization of
based-variable operations

Error Checking

The PL/M 8086 compiler has a very powerful fea­
ture to speed up compilations. If a syntax or program
error is detected, the compiler will skip the code
generation and optimization passes. This usually
yields a 2X performance increase for compilation of
programs with errors.

. A fully detailed set of programming and compilation
errors is provided by the compiler.

M:DO; /" Beginning of module-/

SORTPROC: PROCEDURE (PTR, COUNT, RECSIZE, KEYINDEX)~
DECLARE PTR POINTER, (COUNT, RECSIZE, KEYINDEX) INTEGER,

PUBLIC and EXTERNAL attributes promote
program modularity.

/" Parameters:
PTA is pointer to first record.
COUNT is number of records to be sorted.
RECSIZE is number of bytes in each record-max is 128.
KEYINDEX is br~eb~o~~~~na:~~~ ::~~/ecord of a BYTE scalar "Based" Variables allow manipulation of e)(~ernal data by

DECLARE' ~R~E..'!C~O~R~D'!.B~AS~E!.!D~ptT2--R(1/)-B-YT-E-,---------1 ~~f~i~~~~h~a~~%h~:pdaa~! ~~~g~~~ep~r~~I~t~pp:sh;i~9. and
CURRENT (128) BYTE, the execution time to perform many STACK operations.

(I. J)INTEGER:

SORT: DO J~1 TO COUNT·l:

FIND:

END M:

~~~L MOVB(@RECORD(J'RECSIZE), ""'-=='-'-, 
DO WHILE 1>0 

AND RECORD((I- 1)·RECSIZE.KEYINDEX) 
>CURRENT(KEYINDEX): . 

CALL MOVB(@RECORD((I-1)'RECSIZE), 
@RECORD(I'RECSIZE), 

1=1- 1: 
RECSIZE): 

END FIND: 

END s8~i:L MOVB (@CURRENT, @RECORD(I'RECSIZE), RECSIZE): 

END SORTPROC: 

rEnd of module', 

The "AT" operator returns the address of a 
yariabl~. inste:ad of its contents. This is very useful 
In passmg pomters for based variables. 

One of several PLJM built-in procedures for string 
manipulation. 

210689-5 

Figure 3. Sample PL/M 8086 Program 

1·55 



PL/M 8086/8088/80186/80188 SOFTWARE PACKAGE 

BENEFITS 

PL/M 8086 is designed to be an efficient, cost-effec­
tive solution to the special requirements of 8086 Mi­
crosystem Software Development, as illustrated by 
the following benefits of PL/M use: 

Cost-Effective Alternative to Assembly 
Language 

PL/M 8086 programs are code efficient. PL/M 8086 
combines all of the benefits of a high-level language 
(ease of use, high productivity) with the ability to ac­
cess the 8086 architecture. Consequently, for the 
development of systems software, PL/M 8086 is the 
cost-effective alternative to assembly language pro­
gramming. 

Low Learning Effort 

PL/M is easy to learn and to use, even for the nov­
ice programmer. 

Earlier Project Completion 

Critical projects are completed much earlier than 
otherwise possible because PL/M 8086, a struc­
tured high-level language, increases programmer 
productivity. 

Lower Development Cost 

Increases in programmer productivity translate im­
mediately into lower software development costs 
because fewer programming resources are required 
for a given programmed function. 

Increased Reliability 

PL/M 8086 is designed to aid in the development of 
reliable software (PL/M 8086 programs are simple 
statements of the program algorithm). This substan­
tially reduces the risk of costly correction of errors in 
systems that have already reached full production 
status, as the more simply stated the program is, the 
more likely it is to perform its intended function. 

1-56 

Easier Enhancements and 
Maintenance 

Programs written in PL/M tend to be self-document­
ing, thus easier to read and understand. This means 
it is easier to enhance and maintain PI,./M programs 
as the system capabilities expand and future prod­
ucts are developed. 

SPECIFICATIONS 

Documentation Package 
PL/M-8086 User's Guide for 8086-based Develop­
ment Systems 

SUPPORT: 

Hotline Telephone Support, Software Performance 
Reporting (SPR), Software Updates, Technical Re­
ports, Monthly Newsletter available. 

ORDERING INFORMATION 

Order Code 
186PLM86 

D86PLM86 

R86PLM86 

WSPLM86 

MVVSPLM86 

Operating Environment 
Intel Series IIl/Series IV 

IBM PC XT I AT running PC DOS 
Version 3.0 or later 

Intel System 8086/3XX running 
iRMXTM 86 

VAXIVMS 

MICROVAXIVMS 



ie-86 
C COMPILER FOR THE 8086 

• Implements Full C Language II!I Supports Both Small and Large Models 

• Produces High Density Code Rivaling of Computation 

Assembler I!\lI Supports IEEE Floating Point Math with 

• Supports Intel Object Module Format 8087 Coprocessor 

(OMF) • Supports Bit Fields 

• Runs under the Intel UDI on Intel .1i!I Supports Full Standard 1/0 Library 
Development Systems and iRMXTM 86 (STDIO) 

• Available for the VAX/VMS* Operating .. Written in C 
System 

• Supports PSCOPE-86 and 121CETM 

The C Programming Language was originally designed in 1972 and has become increasingly popular as a 
systems development language. C is not a "very high level" language and is not tied to any specific application 
area. Although it is used for writing operation systems, it has been used equally well to write numerical, text­
processing and data base programs. C combines the flexibility and programming speed of a higher level 
language with the efficiency and control of assembly language. 

Intel iC-86 brings the full power of the C programming language to 8086 and 8088 based microprocessor 
systems. 

Intel iC-86 supports the full C language as described in the Kernighan and Ritchie book, "The C Programming 
Language", (Prentice-Hall, 1978). Also included are the latest enhancements to the C language: structure 
assignments, functions taking structure arguments and returning structures, and the "void" and "enum" data 
types. 

C is rapidly becoming the standard microprocessor system implementation language because it provides: 

1. the ability to manipulate the fundamental objects of the machine (including machine addresses) as easily as 
assembly language. 

2. the power and speed of a structured language supporting a large number of data types, storage classes, 
expressions and statements, 

3. processor independence (most programs developed for other processors can be easily transported to the 
8086), and 

4. code that rivals assembly language in efficiency 

INTEL iC-86 COMPILER 
DESCRIPTION 

The iC-86 compiler operates in four phases: pre­
processor, parser, code generator, and optimizer. 
The preprocessor phase interprets directives in C 
source code, including conditional compilations 
(# define). The parser phase converts the C pro­
gram into an intermediate free form and does all 

1-57 

syntactic and semantic error checking. The code 
generator phase converts the parser's output into an 
efficient intermediate binary code, performs con­
stant folding, and features an extremely efficient reg­
ister allocator, ensuring high quality code. The opti­
mizer phase converts the output of the code gener-



inter IC-86 C COMPILER FOR THE 8086 

ator into relocatable Intel Object Module Format 
(OMF) code, without creating an intermediate 
assembly file. Optionally, the· iC-86 compiler can 
produce a symbolic assembly like file. The iC-86 
optimizer eliminates common code, eliminates 
redundant loads and stores, and resolves span de­
pendencies (shortens branches) within a program. 

The iC-86 runtime library consists of a number of 
functions which the C programmer can call. The run­
time system includes the standard 1/0 library 
(STDIO), conversion routines, routines for manipu­
lating strings, special routines to perform. functions 
not available on the 8086 (32-bit arithmetic and em­
ulated floating point), and (where appropriate) rou­
tines for interfacing with the operating system. 

iC-86 uses Intel's linker and locator and generates 
debug records for symbols and lines on request, per­
mitting access to Intel's PSCOPE AND 121CETM to 
aid in program testing. 

FEATURES 

Support for Small and Large Models , 

Intel iC-86. supports both the SMALL and LARGE 
modes of segmentation. A SMALL model program 
can hav.e up to 64K bytes of code and 64K bytes of 
data, with all pointers occupying two bytes. Because 
two byte pOinters permit the generation of highly 
compact and efficient code, this model is recom­
mended for programs that can meet the size restric­
tions. The LARGE segmentation model is used by 
programs that require access to the full addressing 
space of the 8086/8088 processors. In this model, 
each source file generates a distinct pair of code 
and data segments of up to 64K bytes in length. All 
pointers are four bytes long. 

Preprocessor Directives 

#define-defines a macro 

#include-includes code outside of the program 
source file 

#if-conditionally includes or excludes code 

Other preprocessor directives include #undef, 
#ifdef, #ifndef, # else, #endif, and # line. 

Statements 

The C language supports a variety of statements; 

Conditionals: IF, IF-ELSE 

Loops: WHILE, DO-WHILE, FOR 

Selection of cases: SWITCH, CASE, DEFAULT 

Exit from a function: RETURN 

Loop control: CONTINUE, BREAK 

Branching: GOTO 

Expressions and Operators 

The C language includes a rich set of expressions 
and operators. 

Primary expression: invoke functions, select ele­
ments from arrays, and extract fields from structures 
or unions 

Arithmetic operators: add, subtract, multiply; divide, 
modulus 

Relational operators: greater than, greater than or 
equal, less than, less than or equal, not equal 

Unary operators: indirect through a pOinter, compute 
an address, logical negation, ones complement, pro­
vide the size in bytes of an operand. 

Logical operators: AND, OR 

Bitwise operators: AND, exclusive OR, inclusive OR, 
bitwise complement 

Data Types and Storage Classes 

Data in C is described by its type and storage class. 
The type determines its representation and use, and 
the storage class determines its lifetime, scope, and 
storage allocation. The following data types are fully 
supported by iC-86. 

char 
an 8-bit signed integer 

1-58 

int 

a 16-bit signed integer 

short 
same as int (on the 8086) 

long 

a 32-bit signed integer 

unsigned 

a modifier for integer data types (char, int, short, 
and long) which doubles the positive range of 
values . 

float 
a 32-bit floating point number which utilizes the 
8087 or a software floating point library 

double 

a 64-bit floating point number 



inter IC-86 C COMPILER FOR THE 8086 

void 

a special type that cannot be used as an oper­
and in expressions; normally used for functions 
called only for effect (to prevent their use in con­
texts where a value is required). 

enum 

an enumerated data type 

These fundamental data types may be used to 
create other data types including: arrays, func­
tions, structures, pointers, and unions. 

The storage classes available in iC-86 include: 

. register 

suggests that a variable be kept in a machine 
register, often enhancing code density and 
speed 

extern 

a variable defined outside of the function where 
it is declared; retaining its value throughout the 
entire program and accessible to other modules 

auto 

a local variable, created when a block of code is 
entered and discarded when the block is exited 

static 

a local variable that retains its value until the 
termination of the entire program 

typedef 

defines a new data type name from existing data 
types 

BENEFITS 

Faster Compilation 

Intel iC-86 compiles C programs substantially faster 
than standard C compilers because it produces Intel 
OMF code directly, eliminating the traditional inter­
mediate process of generating an assembly file. 

Portability of Code 

Because Intel iC-86 supports the STDIO and pro­
duces Intel OMF code, programs developed on a 
variety of machines can easily be transported to the 
8086. 

1-59 

Rapid Program Development 

Intel iC-86 provides the programmer with detailed er­
ror messages and access to PSCOPE-86 and 121CE 
to speed program development. 

Full Manipulation of the 8086 

Intel iC-86 enables the programmer to utilize fea­
tures of the C language to control bit fields, pointers, 
addresses and register allocation, taking full advan­
tage of the fundamental concepts of the 8086. 

SPECIFICATIONS 

Operating Environment 

The iC-86 compiler runs host resident on both the 
Intel Series III Microcomputer Development System 
under ISIS-II and on the System 86/330 under the 
iRMXTM 86 operating system. iC-86 can also run as 
a cross compiler on a VAX 11/780 computer under 
the VMS operating system 128K bytes of User Mem­
ory is required on all versions. The PC DOS Operat­
ing Environment is also supported. Specify desired 
version when ordering. 

Required Hardware 

Development System Version 

- Intellec® Microcomputer Development System; 
Series III or Series IV 

- Dual Diskette Drives, Single or Double Density 

- System Console; CRT or Hardcopy Interactive 
Device 

iRMX 86 version: 

- Any 8086/8088, iSBC® 86/88, iTPS 86/XXX, or 
SYS 86/3XX based system capable of running 
the iRMX 86 Operating System 

VAX version: 

- Digital Equipment Corporation VAX 11/780 or 
compatible computer 

PC DOS version: 

- PC XT or AT using PC DOS 3.0 or later 



inter IC-86 C COMPILER FOR THE 8086 

Optional Hardware 

ISIS-II version: 

- ICE-86, 121CE-86 

iRMX 86 version: 

- Numeric Data Processors for support of the 
REALMATH standard 

VAX version: 

- None 

Required Software 

ISIS-II version: 

- ISIS-II Diskette Operating System 

- Series III or Series IV Operating 

iRMX 86 version: 

- iRMX 86 Realtime Multiprograr:nming Operating 
System 

- iRMX860 Utilities Package 

VAX version: 

- VMS Operating System 

PC DOS version: 

- PC DOS Release 3.0 or later Operating System 

Optional Software 

Development System Version: 

- None 

iRMX 86 version: 

- None 

VAX version: 

- MDS*-384 Kit-Mainframe Link for distributed de­
velopment, or iMDX-394 Asynchronous Commu­
nications Link. 

- VAX 8086/8088/80186 MACRO Assembler and 
utilities. package (iMDX-341VX) 

1-60 

Documentation Package 

The C Programming Language by. Kernighan and 
Ritchie (1978 Prentice-Hall) 

iC-86 User Manual 

Shipping Media 

Development System Version: 

- Two single and one double density ISIS-II format 
8" diskettes, one 5%" Series IV Format 

iRMX 86 version: 

- Double Density iRMX 86 format 8" diskette 

- Double Density iRMX 86 format 5%" diskette 

VAX version: 

- 1600 bpi, 9 track Magnetic tape 

PC DOS version: 

- 5%" PC DOS format diskette 

ORDERING INFORMATION 

Order Code Description 

186C86 

R86C86 

iC-86 Compiler for ISIS-II 

iC-86 Compiler .for iRMX 86 

iMDX-347 iC-86 Cross Compiler for VAXIVMS 

D86C86 iC-86 Cross Compiler for PC DOS 

Intel Software License required 

SUPPORT 

Intel offers several levels of support for this product 
which are explained in detail .in the price list. Please 
consult the price list for a description of the support 
options available. 

*MDS is an ordering code only and is not used as a product 
name or trademark. MDS is a registered trademark of Mo­
hawk Data Sciences Corporation. 

VAX, VMS are registered trademarks of Digital Equipment 
Corporation. 



intJ 
FORTRAN 80 

8080/8085 ANS FORTRAN 77 
INTELLEC® RESIDENT COMPILER 

• Meets ANS FORTRAN 77 Subset • Supports Full Symbolic Debugging with 
Language Specification Plus Adds ICE-80TM and ICE-85TM 
Intel® Microcprocessor Extensions • Produces Relocatable and Linkable 

• Supports Intel Floating Point Standard Object Code Compatible with Resident 
with the FORTRAN 80 Software PLIM 80 and 8080/8085 Macro 
Routines, the iSBC-310TM High Speed Assembler 
Mathematics Board, or the ISBC-332TM • Provides Optional Run-Time Library to 
Math Multimodule Execute in RMX-80TM Environment 

• Executes on Intellect Microcomputer • Has Well Defined 1/0 Interface for 
Development System, Intellec Series II Configuration with User-Supplied 
Microcomputer Development System Drivers 
and Personal Development System 

FORTRAN 80 isa computer industry-standard,high-Ievel programming language and compiler that translates 
FORTRAN statements into relocatable object modules. When the object modules are linked together and 
located into absolute program modules, they are suitable for execution on Intel 8080/8085 Microprocessors, 
iSBC-80 OEM Computer Systems, Intellec Microcomputer Development Systems and Personal Development 

, Systems. FORTRAN 80 meets the ANS FORTRAN 77 Language Subset Specification.(1) In addition, exten­
sions designed specifically for microprocessor applications are included. The compiler operates on the Intellec 
Microcomputer Development System and Personal Development System under the ISIS-II Disk Operating 
System and produces efficient relocatable object modules that are compatible for linkage with PL/M 80 and 
8080/8085 Macro Assembler modules. 

The ANS FORTRAN 77 language specification offers many powerful extensions to the FORTRAN language 
that are especially well suited to Intel 8080/8085 Microprocessor software development. Because FORTRAN 
80 conforms to the ANS FORTRAN 77 standard, the user is assured of compatibility with existing FORTRAN 
software that meets the standard as well as a guarantee of upward compatibility to other computer systems 
supporting an ANS FORTRAN 77 Compiler. 
(1) ANSI X3J3/90 

400610-1 

'MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk 
Data Science~ Corporation. 

1-61 
November 1986 

Order Number: 4006111-001 



inter FORTRAN 80 

FORTRAN 80 LANGUAGE FEATURES 

Major ANS FORTRAN 77 features supported by the 
Intel FORTRAN SO Programming Language include: 

• Structured Programming is supported with the IF 
. . . THEN ... ELSE IF ... ELSE .•.. END IF con­
structs. 

• CHARACTER data tYpe permits alphanumeric 
data to be handled as strings rather than charac­
ters stored in array elements. 

• Full 1/0 capabilities include: 

- Sequential and Direct Access files 

- Error handling facilities 

- Formatted, Free-formatted, and Unformatted 
data representation . 

- Internal (in-memory) file units provide capability 
to format and reformat data in internal memory 
buffers 

- List directed formatting 

- S!lpports arrays of up to seven dimensions. 

- Supports logical operators 
.EQV. - Logical equivalence. 
.NEQV. - Logical nonequivalence 

Major extensions to FORTRAN 77 in Intel FOR­
TRAN-SO include: 

• Direct SOSO/SOS5 port 1/0 supported by intrinsic 
subroutines. 

• Binary and Hexadecimal integer constants. . . 

• Well defined interface to FORTRAN-SO liO state- . 
ments (READ, OPEN, etc.) allowing easy use of 
user-supplied 1/0 drivers. 

• User-defined INTEGERstorage lengths of 1, 2 or 
4 bytes. 

• User-defined LOGICAL storage lengths of 1, 2 or 
4 bytes. . 

• REAL STORAGE lengths of 4 bytes. 

•. Bitwise Boolean operations using logical opera­
tors on integer values. 

• Hcillerith data constants. 

• Implicit extension of the length of an integer or 
logical expression to the length of the left-hand 
side in an assignment statement. 

• A· format descriptor to suppress carriage return 
on a terminal output device at the end of the rec­
ord .. 

FORTRAN 80 COMPILER FEATURES 
• Supports multiple compilation units in single 

source file. 

• Optional Assembly Language code listing. 

1-62 

• Comprehensive cross-reference, symbol attribute 
and error listing. 

• Compiler controls and directives are compatible 
with other Intel language translators. 

• Optional Reentrancy . 

• User-defined default storage lengths. 

• Optional FORTRAN 66 Do Loop semantics. 

• Source files may be prepared in free format. 

• The INCLUDE control permits specified source 
files to be combined into a compilation unit at 
compile time. 

• Tranparent interface for software and hardware 
floating point support, allowing either to be cho­
sen at time of linking. 

FORTRAN .80 BENEFITS 

FORTRAN SO provides a means of developing appli­
cation software for Intel MCS-SO/S5 products in a 
familiar, widely accepted, and computer industry­
standardized programming language. FORTRAN SO 
will greatly enhance the user's ability to provide 
cost-effective solutions to software development for 
Intel microcoprocessors as illustrated by the follow­
ing: 

• Completely Complementary to Existing Intel Soft­
ware Design Tools -. Object modules are link­
able with new or existing Assembly Language 
and PLIM Modules. 

• Incremental Runtime Library Support - Runtime 
overhead is limited only to facilities required by 
the program. 

• Low Learning Effort - FORTRAN SO, like PLIM, 
is easy to learn and use. Existing FORTRAN soft­
ware can be ported to FORTRAN SO, and pro­
grams developed in FORTRAN SO can be run on 
any other computer with ANS FORTRAN 77. 

• Earlier Project Completion - Critical projects are 
completed earlier than otherwise possible be­
cause FORTRAN SO will substantially increase 
programmer productivity, and is complementary 
to. PLIM Modules by providing comprehensive 
arithmetic, 1/0 formatting, and data management 
support in the language. 

• Lower Development Cost - Increases in pro­
grammer productivity translates into lower soft­
ware development costs because less program­
ming resources are required for a given function. 

• Increased Reliability - The nature of high-level 
. languages, including FORTRAN SO, is that they 

lend themselves to simple statements of the pro­
gram algorithm. This substantially reduces the 
risk of costly errors in systems that have already 
reached production status. 



intJ FORTRAN 80 

SAMPLE FORTRAN-SO SOURCE PROGRAM LISTING 

.. THIS PROGRAM IS AN EXAMPLE OF ISIS-I! FORTRAN-SO THAT 

.. CONVERTS TEMPERATURE BETWEEN CELSIUS AND FARENHEIT 

PROGRAM CONVRT 

CHARACTER'l CHOICE, SCALE 

PRINT 100 
.. ENTER CONVERSION SCALE (C OR F) 

10 PRINT 200 
READ (5,300) SCALE 

IF (SCALE ,EQ. 'C·) 
THEN 

PRINT 400 
., ENTER THE NUMBER OF DEGREES FARENHEIT 
READ (5,*) DEGF 
DEGC = 5./9.'(DEGF-32) 
.. PRINT THE ANSWER 
WRITE (6,500) DEGF ,DEGC 
•• RUN AGAIN? 

20 PRINT 600 
READ (5,300) CHOICE 

IF (CHOICE ,EQ. 'Y') 
THEN 

GOTO 10 
ELSE IF (ChOICE .EQ. 'N') 

THEN 
CALL EXIT 

ELSE 
GOTO 20 

END IF 
ELSE IF (SCALE .EQ. 'F') 

THEN 

ELSE 

•• CONVERT FROM FARENHEIT TO CELSIUS 
PRINT 700 
READ (5,') DEGC 
DEGF = 9.15. 'DEGC. 32. 
.. PRINT THE ANSWER 
WRITE (6,800) DEGC,DEGF 
GOTO 20 

.. NOT A VALID ENTRY FOR THE SCALE 
WRITE (6,900) SCALE 
GOTO 10 

END IF 
100 FORMAT ( , TEMPERATURE CONVERSION PROGRAM' ,II, 

.' TYPE C FOR FARENHEIT TO CELSIUS OR' ,I, 
+, TYPE F FOR CELSIUS TO FARENHEIT' ,II) 

200 FORMAT{/,' CONVERSION? ',$) 
300 FORMAT(A 1) 
400 FORMAT{/, 'ENTER DEGREES FARENHEIT: ',$) 
500 FORMAT(f,F7.2,' DEGREES FARENHEIT = ',F7.2,' DEGREES CELSIUS') 
600 FORMAT(f,' AGAIN (Y OR N)? ',$) 
700 FORMAT (I,' ENTER DEGREES CELSIUS: ',$) 
800 FORMAT{/,F7.2, DEGREES CELSIUS = ',F7.2,' DEGREES FARENHEIT',/) 
900 FORMAT{/ ,lH ,Al,' NOT A VALID CHOICE - TRY AGAIN I , ,I) 

END 

• Easier Enhancements and Maintenance - Like 
PL/M, program modules written in FORTRAN 80 
are easier to read and understand than assembly 
language. This means it is easier to enhance and 
maintain FORTRAN 80 programs as system ca­
pabilities expand and future products are devel­
oped. 

• Comprehensive, Yet Simple Project Development 
- The Inteliec Microcomputer Development Sys­
tem and Personal Development System, with the 
8080/8085 Macro Assembler, PL/M 80 and 
FORTRAN 80 are the most comprehensive soft­
ware design facilities available for the Intel MCS-
80/85 Microprocessor family. This reduces de-

1-63 

400610-2 

velopment time and cost because expensive (and 
remote) timesharing or large computers are not re­
quired. 

The FORTRAN 80 Compiler is an efficient, mUlti­
phase compiler that accepts source programs, 
translates them into relocatable object code, and 
produces requested listings. After compilation, the 
object program may be linked to other modules, lo­
cated to a specific area of memory, then executed. 
The diagram shown below illustrates a program de­
velopment cycle where the program consists of 
modules created by FORTRAN 80, PL/M 80 and the 
8080/8085 Macro Assembler. 



FORTRAN 80 

ISIS·II 
TEXT 

EDITOR 

ISIS·II 
TeXT 

EDITOR 

FORTRAN CO 
SOURCE 

PUM80 
SOURCE 

ISIS-II ASSEMBLY 
TeXT LANGUAGE 

EDITOR SOURCE 

SPECIFICATIONS 

OPERATING ENVIRONMENT 

Required Hardware: 

1. Intel Microcomputer Development Systems 

2. Personal Development Systems 

DOCUMENTATION PACKAGE 

FORTRAN·ao Programming Manual 

RELOCATABLE 
OBJECT 
MODULE 

1515·11 FORTRAN·aO Compiler Operator's Manual 

FORTRAN·aO Programming Reference Card 

1-64 

r- ISI$·II 
LOADER 

DEBUG 

I-- VIA 
MONITOR 

OPTIONAL 
ICE·8QTM 

I---- rCE·8S™ 
IN·CIRCUIT 
EMULATOR 

'-- PROM 
PROGRAMMER 

400610-3 

ORDERING INFORMATION 
Part Number 

Model MDS·301 

Description 

FORTRAN aD Compiler for Intel· 
lect Microcomputer Development 
Systems. 

Requires Software License. 

SUPPORT 

Intel offers several levels of support for this product 
which are explained in detail in the price list. Please 
consult the price list for a description of the support 
options available. 



PASCAL 80 SOFTWARE PACKAGE 

• Offers a Superset of Standard Pascal • Provides a Utility to Produce 

• Provides High Structured Language Relocatable Object Modules 

with Powerful Data Type Definitions to Compatible with Other Intel® 

Suit Applications Languages 

• Compiles Pascal Source Code into • Allows Modular Breakdown of Large 

Intermediate Code to Optimize Programs and Separate Compilation of 

Execution Speed and Storage Individual Modules 

• Executes Compiler and Interprets the • Gives Application Control Over Run-

Intermediate Code on Intellec® Time Errors by Providing User-Declared 

Microcomputer Development Systems Error Procedures 

• Can Call Routines Written in PL/M 80, 
FORTRAN 80, or 8080/8085 Macro 
Assembler 

PASCAL 80 Software Package consists of a compiler and an interactive Run-Time System designed to provide 
the Pascal programming language as a software development tool for Intellec Development System Users. 

Pascal is a highly-structured, block-oriented programming language that is now gaining wide acceptance as a 
powerful software development tool. Its rigid structure encourages and enforces good programming tech­
niques which, combined with a high level of readability, helps produce more reliable software. 

Standard Intel development tools, such as CREDIT editor can be used to create and modify Pascal source 
programs. The compiler compiles this source and creates a P-Code file. The Run-Time System executes this 
P-Code in an interpretive manner under ISIS-II. 

• Pascal language as defined in PASCAL User Manual and Report, Second Edition, Kathleen Jenson and Niklaus Wirth . 

• oMDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk 
Data Sciences Corporation. 

1-65 

280379-1 

November 1986 
Order Number: 280379..(J02 



intJ PASCAL 80 

LANGUAGE FEATURES 

Data Structures 

Pascal allows the user to define labels, constants, 
data types, variables, procedures, and functions. 

Variable Types 

Variables can be defined according to the following 
system-defined data types: boolean, integer, real, 
character, array, record, string, set, file, and pointer. 

User-Defined Types 

New types can be defined by the user for added 
flexibility. 

File Handling Procedures 

Pascal provides procedures to allow a user's pro­
gram to interface with the ISIS-II file manager. Rou­
tines provided are: RESET, REWRITE, CLOSE, 
PUT, GET, SEEK, and PAGE. 

Input/Output Procedures 

Routines are provided to interact with the console or 
an ISIS file. These procedures are: READ, WRITE, 
READLN, WRITELN, plus BUFFER and BLOCK 
Read and Write. 

Dynamic Memory Allocation 

The procedures NEW, MARK, and RELEASE allow 
the user to obtain and release memory space at run­
time for dynamically allocating variable storage. 

String Handling 

Pascal provides powerful tools for defining and ma­
nipulating strings and character arrays. These facili­
ties enable concatenation of strings, character and 
pattern scans, insertion, deletion, and pointer manip­
ulation. 

Recursion 

Pascal allows a PROCEDURE defintion to include a 
call to itself, a powerful construct in many mathemat­
ical algorithms. 

1-66 

PROGRAM TRACING FACILITY 

The PASCAL 80 System incorporates a program 
traCing facility which allows for selectively monitoring 
the execution of a Pascal program. When the 
TRACE flag is set, the line number of each program 
statement being executed is output to the console. 

The TRACE flag may be manipulated in two ways: 

- The TRACEON command (of the Run-Time Sys­
tem) will set the flag, and the TRACEOFF com­
mand will reset the flag. 

- Pressing the Interrupt 4 switch on the Intellec 
System front panel will toggle the TRACE flag; 
i.e., the flag will be set if it was reset, and vice­
versa. 

COMPILER DIRECTIVES (PARTIAL 
LIST) 

Compiler Command Line Directives 

NO LIST 

No list file is produced; used for fast compilation of 
"clean" programs. 

NOCODE 

No code file is produced; used for syntax error 
checking. 

ERRLIST 

List file is limited to only those Pascal lines that con­
tain errors, along with the error messages produced. 

LIST (file-name) 

Specifies the name of the list file. 

CODE (file-name) 

Specifies the name of the code file. 

NOECHO 

Error lines are echoed on the console unless this 
directive is specified. 



inter PASCAL 80 

Embedded Compiler Directives 

$C text 

Causes text to appear in code file (allows for com­
~ents, copyrights, etc.). 

$1+ 

Causes checking for I/O completion after each I/O 
transfer. Failure results in a run-time error. ($1-
causes no checking, and no errors on I/O failure.) 

$R+ 

Causes Range Checking to occur, so that an out-of­
range value causes a run-time error. ($R - sup­
presses generation of code for Range Checking.) 

The source program is 
created on diskette with 
the ISIS·1I' text editor. 

-PASCAL 

..• Loads the Run-Time System 
which executes compiled PASCAL 
programs. 

·COMPPROG .•. 
•.• Loads the complier to convert 
the source program into an 
interpreted object form known 
as intermediate code, or P-code . 

. 'PROG ... 

... Loads the Run· Time System 
which executes complied Pascal 
programs. 

$0+ 

Causes the compiler to operate in overlay. mode. 
Overlays allows less source code to reside in memo­
ry. ($0- causes no overlays, which decreases com­
pile time, since there are fewer disk accesses.) 

$T+ 

Causes the compiler to generate tracing instructions 
to be used by the TRACE facility. ($T - suppresses 
tracing instructions.) 

BENEFITS 

Brings Pascal to Intellec Microcomputer Develop­
ment Systems: 

- Pascal is a block-structured, highly-readable pro­
gramming language, suitable for a wide-range of 
applications. 

EDITOR 

PASCAL-80 
RUN·TIME SYSTEM 

PASCAL·BO 
COMPILER 

LOADED 
APPLICATION 

PROGRAM 

280379-2 

Figure 1. Program Development Cycle 

1-67 



inter PASCAL 80 

- Pascal is being acclaimed as the programming 
language of the future; it is being taught in many 
colleges and universities around the country. 

- PASCAL 80 Run-Time System provides great 
ease in programming formatted 1/0 operations. 

PASCAL 80 provides a portable language for appli­
cation programs running under ISIS-I~. 

PASCAL 80 can be used to evaluate complicated 
algorithms using a natural language. 

PASCAL 80 compiler generates intermediate Pseu-
do-code. . 

- P-code is optimized for speed and storage 
space. 

- P-code is approximately 50% to 70% smaller 
than corresponding machine code. 

- P-code is machine independent. providing code 
portability to any CPU. 

Makes the Intellec Development System a more val­
uable tool. Extension of software support to include 
Pascal makes software development and resource 
management more flexible. 

Table 1. Sample Program Listing Showing Nesting Levels 

BUFFER. PAS Program Listing 
Line Seg Proe Lev Disp 

1 1 1 1 program example; 
2 1 1 3 
3 1 1, 3 { Example uSing bufferread and bufferwrite with break oharaoters J 
4 1 1 3 
5 1 1 3 
6 1 1 44 
7 1 1 64 
8 1 1 65 
9 1 1 ~7 

1011 108 

var buffer: string; 
disk_storage: file; 
break: ohar; 
new_len, len: integer; 
buff_array: paoked array[0 •• 80]of char; 

11 1 1 0 0 begin 
12 1 1 1 0 
1311127 
1411168 
,15 1 1 1 87 
16 1 1 1 109 
17 1 1 2 109 
18112116 
19 1 1 2 132 
20 1 1 2 179 
21 1 1 2 197 
22113208 

rewrite (disk_storage, 'data'); 
wri teIn ( 'Input a line of text:') ; 
readIn(buffer) ; 
len :=bufferwrite(disk_storage, buffer[l],length(buffer»; 
repeat 

reset (disk_storage) : 
writeIn;writeIn; 
write('Input break char [cntrl Z to stop]:'); 
readIn(break) ; 
if not eof(input)then 

begin 
23 
24 
25 
26 
27 
28 
29 
30 

1 
1 
1 
1 
1 
1 
1 
1 

1 4 208 new_len: =bufferread(disk_storage,buff_array,len,ord(break»; 
1 4 226 writeIn('The buffer read:'); 
1 4 262 writeIn(copy(buffer,l,abs(new_len») ; 
1 4 292 writein('Length:',abs(new_len) :0); 
1 ·4 331 if ne,w_len < 0 then writeIn(' (Break char not found)') ; 
1 3 378 end; 
1 1 378 until eof(input) ; 
1 0 388 end. 

1-68 



inter 
SPECIFICATIONS 

Operating Environment 

REQUIRED HARDWARE 

Intellec Microcomputer Development Systems 

- Model 800 (Series II, Series III, Series IV) 

- Intel Personal Development System 

REQUIRED SOFTWARE 

ISIS-II Diskette Operating System 

- Single-or Double-Density 

OPTIONAL SOFTWARE 

ISIS-II CREDITTM (CRT-Based Text Editor) 

PASCAL 80 

1-69 

Documentation Package 

PASCAL 80 User's Guide (9801015-01) 

PASCAL User Manual and Report, Second Edition, 
Kathleen Jensen and Niklaus Wirth 

Shipping Media 

Flexible Diskettes 

- Single- and Double-Density 

ORDERING INFORMATION 

Part Number Description 
MDS-381** PASCAL 80 Software Package 

Requires Software License 

SUPPORT CATEGORY: Level D 



PL/M 80 
HIGH LEVEL PROGRAMMING LANGUAGE 

• Provides Resident Operation on • Speeds Project Completion with 
Intellec® Microcomputer Development Increased Programmer Productivity 
System and intellec® Series II • Cuts Software Development and 
Microcomputer Development Systems Maintenance Costs 
and Personal Development Systems 

Improves Product· Reliability with (PDS) • 
• Produces Relocatable and Linkable 

Simplified Language and Consequent 

Object Code 
Error Reduction 

Sophisticated Code Optimization • Eases Enhancement as System • Capabilities Expand 
Reduces Application Memory 
Requirements 

The PL/M 80 High Level Programming Language Intellec Resident Compiler is an advanced, high level 
programming language for Intel 8080 and 8085 microprocessors, iSBC-80 OEM computer systems, and Intel­
lec microcomputer development systems. PLIM has been substantially enhanced since its· introduction in 
1973 and has become one of the most effective and powerful microprocessor systems implementation tools 
available. It is easy to learn, facilitates rapid program development and debugging, and significantly reduces 
maintenance costs. PL/M is an algorithmic language in which· program statements naturally express the 
algorithm to be programmed, thus freeing programmers to concentrate on system development rather than 
assembly language details (such as register allocation, meanings of assembler mnemonics, etc.). The PL/M 
compiler efficiently converts free-form PLIM programs into equivalent 8080/8085 instructions. Substantially 
fewer PL/M statements are necessary for a given application than would be using assembly language or 
machine code. Since PL/M programs are problem oriented and thus more compact, programming in PL/M 
results in a high degree of productivity during development efforts, resulting in significant cost reduction in 
software development and maintenance for the user. 

MDSTM is a registered trademark of Mohawk Data Sciences Corporation. 

1-70 

210327-1 

November 1986 
Order Number: 210327-002 



inter PL/M 80 

FUNCTIONAL DESCRIPTION 

The PL/M compiler is an efficient multiphase compil­
er that accepts source programs, translates them 
into object code, and produces requested listings. 
After compilation, the object program may be first 
linked to other modules, then located to a specific 
area of memory, and finally executed. The diagram 
shown in Figure 1 illustrates a program development 
cycle where the program consists of three modules: 
PL/M, FORTRAN, and assembly language. A typical 
PL/M compiler procedure is shown in Table 1. 

Features 

Major features of the Intel PL/M 80 compiler and 
programming language include: 

Resident Operation-on Intellec microcomputer 
development systems eliminates the need for a 
large in-house computer or costly timesharing sys­
tem. 

Object Code Generation-of relocatable and link­
able object codes permits PLIM program develop­
ment and debugging in small modules, which may 
be easily linked with other modules and/or library 
routines to form a complete application. 

Extensive Code Optimization-including compile 
time arithmetic, constant subscript resolution, and 
common subexpression elimination, results in gener­
ation of short, efficient CPU instruction sequences. 

Symbolic Debugging-fully supported in the PL/M 
compiler and ICE-85 in-circuit emulators. 

Compile Time Options-includes general listing 
format commands, symbol table listing, cross refer­
ence listing, and "innerlist" of generated assembly 
language instructions. 

Block Structure-aids in utilization of structured 
programming techniques. 

Access-provided by high level PL/M statements to 
hardware resources (interrupt systems, absolute ad­
dresses, CPU input/output ports). 

Data Definition-enables complex data structures 
to be defined at a high level. 

Re-entrant Procedures-may be specified as a 
user option. 

Benefits 

PL/M is deSigned to be an efficient, cost-effective 
solution to the special requirements of microcomput­
er software development as illustrated by the follow­
ing benefits of PL/M use: 

Low Learning Effort-even for the novice pro" 
grammer, because PL/M is easier to learn. 

Earlier Project Completion-on critical projects 
because PL/M substantially increases programmer 
productivity while reducing program development 
time. 

210327-2 

Figure 1. Program Development Cycle Block Diagram 

1-71 



PL/M 80 

Lower Development Cost-because increased 
programmer productivity requiring less programming 
resources for a given function translates into lower 
software development costs. 

easier to understand than assembly language, and 
thus are easier to enhance and maintain as system 
capabilities expand and future products are devel­
oped. 

Increased Reliabiliiy-because of PLlM's use of 
simple statements in the program algorithm, which 
are easier to correct and thus substantially reduce 
the risk of costly errors in systems that have already 

Simpler Project Development-because the Intel­
!ect microcomputer development system with resi­
dent PL/M 80 is all that is needed for developing 
and debugging software for 8080 and 8085 micro­
computers, and the use of expensive (and remote) 
timesharing or large computers is consequently not 
required. 

reached full production status. . 

Easier Enhancement and Maintenance-because 
programs written in PLIM are easier to read and 

Table 1" PL/M-80 Compiler Sample Factorial Generator Procedure 

10 
11 
12 
13 
14 
15 

16 
17 
18 
20 
21 
22 

24 

25 

SPECIFICATIONS 

OPERATING ENVIRONMENT 

SOBJECT(:F1:FACT.OB2) 
SDEBUG 
SXREF 
$TITLE('FACTORIAL GENERATOR - PROCEDURE') 
$PAGEWIDTH(BO) 

FACT: 
DO; 

DECLARE NUMCH BYTE PUBLIC; 

FACTORIAL: PROCEDURE (NUM,PTR) PUBLIC; 
DECLARE NUM BYTE, PTR ADDRESS; 
DECLARE DIGITS BASEDPTR (161) BYTE; 
DECLARE II,C,M) BYTE; 

NUMCH = 1; DIGITS(1) = 1; 
DOM=1TONUM; 

C=O; 
DO 1=1 TO NUMCH; 

DIGITS(I) = DIGITSII)"M + C; 
C= DIGITSIIY10; 
DIGITSII) = DIGITSII) - 10·C; 

END; 

IF C<>O THEN 
DO; 

NUMCH = NUMCH + 1; DIGITS(NUMCH) = C; 
C= DIGITSINUMCHY10; 
DIGITSINUMCH)= DIGITSINUMCH) - 10·C; 

END 
END; 

END FACTORIAL; 

END; 

ORDERING INFORMATION 

Product Code 
MDso-PLM 

Description 

210327-3 

Intel Microcomputer Development Systems 
(Series II, Series III, Series IV) 

PLIM 80 High Level Language 
Compiler. Needs Software License. 

Intel Personal Development System 

DOCUMENTATION 

PL/M 80 Programming Manual 
ISIS-II PL/M 80 Compiler Operator's Manual 

1-72 

SUPPORT 

Hotline Telephone Support, Software Performance 
Report (SPR), Software Updates, Technical Re­
ports, and Monthly Technical Newsletters are avail­
able. 

°NOTE: 
MDS is an ordering code only and is not used as a 
product or trademark. 



8087 SUPPORT LIBRARY 

• Library to Support Floating Point 
Arithmetic in Pascal-86, 
PL/M-86, FTN-86 and ASM-86 

• Decimal Conversion Library Supports 
Binary-Decimal Conversions 

• Supports Proposed IEEE Floating Point 
Standard for High Accuracy and 
Software Portability 

• Common Elementary Function Library 
Provides Trigonometric, Logarithmic 
and Other Useful Functions 

• Error-Handler Module Simplifies 
Floating Point Error Recovery 

The 8087 Support Library provides Pascal-86, FORTRAN-86, PL/M-86 and ASM-86 users with numeric data 
processing capability. With the Library, it is easy for programs to do floating point arithmetic. Programs can 
bind in library modules to do trigonometric, logarithmic and other numeric functions, and the user is guaranteed 
accurate, reliable results for all appropriate inputs. Figure 1 below illustrates how the 8087 Support Library can 
be bound with PL/M-86 and ASM-86 user code to do this. The 8087 Support Library supports the proposed 
IEEE Floating Point Standard. Consequently, by using this Library, the user not only saves software develop­
ment time, but is guaranteed that the numeric software meets industry standards and is portable-the software 
investment is maintained. 

The 8087 Support Library consists of the common elementary function library (CEL87.LlB), the decimal con­
version library (DC87.LlB), the emulator interface library E8087.LlB, the error handler module (EH87'LlB) and 
interface libraries (8087.LlB, NUL87.LlB). 

B.PLM 

A.PLM 

m~:cTI~k Pr~~!O~~EL~THtTA) REAL EXTrRNAl: 
ENO m~uTNH: 

OECLARE (INPut V"LUI:. OUTPUT VAl.U£) REAL; 

INPUTVALUE=O.62:/"Tut val".·/ 
OUTPUT VALUr"'mq.rnlH(INPUT VALUE); 

t~N;'l ;Jlr3!~' 1,,1 Input, OUTPUT VALUE Is ab~ut 

D.ASM 

C.ASM 
:Thll EXTRN mud (lpp.or outside Clf gil SEGj,j[IH-ENOS 

i'X'¥RN mqlrTNH: FAR 

INPUT VALUE 00(-0,G2) ;rnlUQII~ClUon Is (I t •• t 
;volue 

OUTPUT VALUe: DO '1 

;~~~~:~~~i.t~~:r~n::::;Iu:.it~bL~Nd'~f!t 
;vClrlobln 

FLO INPUT "''''LUI: :l.ood tke poram.tlr IntCl the 80S7 
:.teck 

~~ OU~m~Al.UE ~::. \hh', ':!.f.~~~~c..~a~~:nt~. 
:8087 111I~k 

;~bt.~mi~,'npul, OUTPUT VALUE It now cooul 

PL/M-86 

ASM-86 

COMPILED 
SOURCE MODULES 

ASSEMBLED 
SOURCE MODULES 

8087 SUPPORT 
LIBRARY 

LlNK-86 

LINKED USER 
OBJECT MODULE 

231613-1 

Figure 1. Use of 8087 Support Library with PL/M·86 and ASM-86 

1-73 
August 1985 

Order Number: 231613-001 



8087 SUPPORT LIBRARY 

CEL87.LlB 
THE COMMON ELEMENTARY FUNCTION LIBRARY 

FUNCTIONS 

CEL87.LlB contains commonly used floating point 
functions. It is used along with the 8087 numeric co­
processor. It provides a complete package of ele­
mentary functions, giving valid results for all appro­
priate inputs. Following is a summary of CEL87 func­
tions, grouped by functionality. 

Rounding and Truncation Functions: 
mqerlEX, mqerlE2, and mqerlE4. Round a real 

number to the nearest integer; to the 
even integer if there is a tie. The. an­
swer returned is real, a 16-bit integer 
or a 32-bit integer respectively. 

mqerlAX, 

mqerlCX, 

mqerlA2, mqerlA4. Round a real num­
ber to the nearest integer, to the inte­
ger away from zero if there is a tie; the 
answer returned is real, a 16-bit inte­
ger or a 32-bit integer, respectively. 

mqerlC2, mqerlC4. Truncate the frac­
tional part of a real input; the answer 
is real, a 16-bit integer or 32-bit inte­
ger, repectively. 

Logarithmic and Exponential 
Functions: 
mqerLGD 

mqerLGE 

mqerEXP 
mqerY2X 

mqerY12 

mqerY14 

mqerYIS 

computes decimal (base 10) loga­
rithms. 

computes natural base (base e) loga­
rithms. 

computes exponentials to the base e. 

computes exponentials to any base. 

raises an input real to a 16-bit integer 
power. 

is as mqerY12, except to a 32-bit inte­
ger power. 

is as mqerY12, but it accommodates 
PL/M-286 users. 

Trigonometric and Hyperbolic 
Functions: 
mqerSIN, mqerCOS, mqerTAN- compute sine, 

cosine, and tangent. 

mqerASN, mqerACS, mqerATN compute the 
corresponding inverse functions. 

1-74 

mqerSNH, mqerCSH, mqerTNH compute the 
corresponding hyperbolic functions. 

mqerAT2 is a special version of the arc tangent 
function that accepts rectangular co­
ordinate inputs. 

Other Functions (of real variables): 
mqerDIM is FORTRAN's positive difference 

function. 

mqerMAX 

mqerMIN 

mqerSGH 

returns the maximum of two real in­
puts. 

returns the minimum of two real in­
puts. 

combines the sign of one input with 
the magnitude of the other input. 

mqerMOD computes a modulus, retaining the 
sign of the dividend. 

mqerRMD computes a modulus, giving the value 
closest to zero. 

Complex Number Functions: 
mqercCMUL, and mqercCDIV perform complex 

multiplication and division of complex 
numbers. 

mqercCPOL converts complex numbers from rec­
tangular to polar form. mqercCREC 
converts complex numbers from polar 
to rectangular form. 

mqercCSQR, and mqercCABS compute the com­
plex square root and real absolute 
value (magnitude) of a complex num­
ber. 

mqercCEXP, and mqercCLGE compute the com­
plex value of e raised to a complex 
power and the complex natural loga­
rithm (base e) of a complex number. 

mqercCSIN, mqercCCOS, and mqercCTAN com­
pute the complex sine, cosine, and 
tangent of a complex number. 

mqercCASN, mqercCACS, and mqercCATN com­
pute the complex inverse sine, co­
sine, and tangent of a complex num­
ber. 

mqercCSNH, mqercCCSH, and mqercCTNH com­
pute the complex hyperbolic sine, co­
sine, and tangent of a complex num­
ber. 



intJ 8087 SUPPORT LIBRARY 

mqercCACH, mqercCASH, and mqercCATH com­
pute the com pies inverse hyperbolic 
sine, cosine, and tangent of a com­
plex number. 

mqercCC2C, mqercCR2C, mqercCC2R, mqercCCl2, 
mqercCCl4, and mqercCCIS return 
complex values of complex (or real) 
values raised to complex (real, short 
integer, or long integer) values. 

DC87.LIB 
THE DECIMAL CONVERSION LIBRARY 

DCB7.L1B is a library of procedures which convert 
binary representations of floating pOint numbers and 
ASCII-encoded string of digits. 

The binary-to-decimal procedure mqcBIN_DE­
CLOW accepts a binary number in any of the for­
mats used for the representation of floating point 
numbers in the BOB7. Because there are so many 
output formats for floating point numbers, mqcBIN_ 
DECLOW does not attempt to provide a finished, 
formatted text string. Instead, it provides the "build­
ing blocks" for you to use to construct the output 
string which meets your exact format specification. 

The decimal-to-binary procedure mqcDEC_BIN ac­
cepts a text string which consists of a decimal num­
ber with optional sign, decimal point, and/or power­
of-ten exponent. It translates the string into the call­
er's choice of binary formats. 

Decimal-to-binary procedure mqcDECLOW~BINis 
provided for callers who have already broken the 
decimal number into its constituent parts. 

The procedures mqcLONG_TEMP, mqcSHORT_ 
TEMP, mqcTEMP _LONG, and mqcTEMP _SHORT 
convert floating point numbers between the longest 
binary format, TEMP_REAL, and the shorter for­
mats. 

EH87.LlB 
THE ERROR HANDLER LIBRARY 

EHB7.L1B is a library of five utility procedures for 
writing trap handlers. Trap handlers are called when 
an unmasked BOB7 error occurs. 

The BOB7 error reporting mechanism can be used 
not only to report error conditions, but also to let 
software implement IEEE standard options not di­
rectly supported by the chip. The three such exten­
sions to the BOB7 are: normalizing mode, non-trap­
ping not-a-number (NaN), and non-ordered compari­
son. The utility procedures support these extra fea­
tures. 

DECODE is called near the beginning of the trap 
handler. It preserves the complete state of the BOB7, 
and also identifies what function called the trap han­
dier, and returns available arguments and/or results. 
DECODE eliminates much of the effort needed to 
determine what error caused the trap handler to be 
called. 

NORMAL provides the "normalizing mode" capabili­
ty for handling the "D" exception. By calling NOR-

1-75 

MAL in your trap handler, you eliminate the need .to 
write code in your application program which tests 
for non-normal inputs. 

SIEVE provides two capabilities for handling the "I" 
exception. It implements non-trapping NaN's and 
non-ordered comparisons. These two IEEE standard 
features are useful for diagnostic work. . 

ENCODE is called near the end of the trap handler. 
It restores the state of the BOB7 saved by DECODE, 
and performs a choice of concluding actions, by ei­
ther retrying the offending function or returning a 
specified result. 

FILTER calls each of the above four procedures. If 
your error handler does nothing more than detect 
fatal errors and implement the features supported by 
SIEVE and NORMAL, then your interface to 
EHB7.L1B can be accomplished with a single call to 
FILTER. 



inter 8087 SUPPORT LIBRARY 

SOS7.LIB, NULS7.LIB, ESOS7.LIB 
INTERFACE LIBRARIES 

E80B7.LlB, 80B7.LlB and NUL87.LlB libraries config­
ure a user's application program for his run-time 

FULL 8087 EMULATOR 

The Full 8087 Emulator is a 16~kilobyte object mod­
ule that is linked to the application program for float­
ing-point operations. Its functionality is identical to 
the B087 chip, and is ideal for prototyping and de­
bugging floating-point applications. The Emulator is 
an alternative to the use of the 8087 chip, although 
the latter executes floating-point applications up to 
100 times faster than an 8086 with the 80B7 Emula­
tor. Furthermore, since the 8087 is a "coprocessor," 
use of the chip will allow many operations to be per­
formed in parallel with the BOB6. 

ORDERING INFORMATION 

Part Number 

iMDS 319 

Requires SoftWare License 

SUPPORT 

Description 

8087 Support Library 

Intel offers several levels of support for this product 
which are explained in detail in. the price list. Please 

1-76 

environment; running with the 80B7 component or 
without floating point arithmetic, respectively. 

SPECIFICATIONS 

Operating Environment 

Intel Microcomputer Development Systems (Series 
III, Series IV) 

Documentation Package 

8087 Support Library Reference Manual 

consult the price list for a description of the support 
options available. 



80287 SUPPORT LIBRARY 

• Library to support floating point 
arithmetic in Pascal-286, PL/M-286 and 
ASM-286 

• Decimal conversion library supports 
binary-decimal conversions 

• Supports proposed IEEE Floating Point 
Standard for high accuracy and 
software portability 

• Common elementary function library 
provides trigonometric, logarithmic and 
other useful functions 

• Error-handler module simplifies floating 
point error recovery 

The 80287 Support Library provides Pascal-286, PLlM-286 and ASM-286 users with numeric data processing 
capability. With the Library, it is easy for programs to do floating point arithmetic. Programs can bind in library 
modules to do trigonometric, logarithmic and other numeric functions, and the user is guaranteed accurate, 
reliable results for all appropriate inputs. Figure 1 below illustrates how the 80287 Support librarY can be 
bound withPL/M-286 and ASM-286 user code to do this. The 80287 Support Library supports the proposed 
IEEE Floating Point Standard. Consequently, by using this Library, the user not only saves software develop­
ment time, but is guaranteed that the numeric software meets industry standards and is portable-the software 
investment is maintained. 

The 80287 Support Library consists of the common elementary function library (CEL287.LlB), the decimal 
conversion library (DC287.LlB), the error handler module (EH287.LlB) and interface libraries (80287.LlB, 
NUL287.LlB). 

B.PLM 

A.PLM 

m~ltTI~~ ~~lD#:LfTH[lA) REAL txTtRNAL; 
[NDmqIrTNH: 

DECLARE (INPUT VALUE,OUTPUY VALUE) REAL: 

INPUT VAlU£=O.B2:/·r,st volu'-I 

OUTPUT VAlUE=mqlrTHH(INPUT VALUE): 

6~!5N~t'2s~h3:" tul I"put. OUTPUT VALUE I, about 

D.ASM 

C.ASM 
:Thl,DCTRN mUltapPlarout,rd, of all S[Q.4[NY"ENDS 

~Nmq.rTNH:rAR 
INPUT VALUE 00("0.62) :Inltlallzatlon I, a test 

;volul 
OUTPUT VALUE DC? 

~~;~~=~~t~!:~t~.O:::tt~~:t~:c'"~{!t 
:vortoblu . 

FLO INPUT VALUE :LoadU,lparom.t.rlnlolhla0287 
;slock 

~i~ ;Ly..~~~ALUE ~~~. til ':r.r.-:,~~~~a~~:nl~' 
1802871tac:k 

;!,g.~~~ht;~~'npLit. OUTPUT VALUE II now obot.lt 

PLM-286 

COMPILED 
SOURCE MODULES 

ASSEMBLED 
SOURCE MODULES 

80287 SUPPORT 
LIBRARY 

LINKED USER 
OBJECT MODULE 

231041-1 

Figure 1. Use of 80287 Support Library with PL/M-286 and ASM-286 

1-77 
October 1986 

Order Number: 231041-002 



infef 80287 SUPPORT LIBRARY 

CEL287.LlB 
THE COMMON ELEMENTARY FUNCTION LIBRARY 

FUNCTIONS 

CEL287.LlB contains commonly used floating point 
functions. It is used along with the 80287 numeric 
coprocessor. It provides a complete package of ele­
mentary functions, giving valid results for all appro­
priate inputs. Following is a summary of CEL287 
functions, grouped by functionality. 

Rounding and Truncation Functions: 
mqerlEX, mqerlE2, and mqerlE4. Round a real 

number to the nearest integer; to the 
even integer if there is a tie. The an­
swer returned is real, a 16-bit integer 
or a 32-bit integer respectively. 

mqerlAX, mqerlA2, mqerlA4. Round a real num­
ber to the nearest integer, to the inte­
ger away from zero if there is a tie; the 
answer returned is real, a 16-bit inte­
ger or a 32-bit integer, respectively. 

mqerlCX, mqerlC2, mqerlC4. Truncate the frac­
tional part of a real input; the answer 
is real, a 16-bit integer or 32-bit inte­
ger, repectively. 

Logarithmic and Exponential 
Functions: 
mqerLGD 

mqerLGE 

mqerEXP 

mqerY2X 

mqerY12 

mqerY14 

mqerYIS 

computes decimal (base 10) loga­
rithms. 

computes natural base (base e) loga­
rithms. 

computes exponentials to the base e. 

computes exponentials to any base. 

raises an input real to a 16-bit integer 
power. 

is as mqerY12, except to a 32-bit inte­
ger power. 

is as mqerY12, but it accommodates 
PL/M-286 users. 

Trigonometric and Hyperbolic 
Functions: 
mqerSIN, 

mqerASN, 

mqerCOS, mqerT AN compute sine, 
cosine, and tangent. 

mqerACS, mqerATN compute the 
corresponding inverse functions. 

mqerSNH, mqerCSH, mqerTNH compute the 
corresponding hyperbolic functions. 

mqerAT2 is a special version of the arc tangent 
function that accepts rectangular co­
ordinate inputs. 

Other Functions (of real variables): 
mqerDIM is FORTRAN's positive difference 

function. 

mqerMAX returns the maximum of two real in­
puts. 

. mqerMIN rettjrns the minimum of two real in­
puts. 

1-78 

mqerSGH combines the sign of one input with 
the magnitude of the other input. 

mqerMOD computes a modulus, retaining the 
sign of the dividend. 

mqerRMD computes a modulus, giving the value 
closest to zero. 

Complex Number Functions: 
mqercCMUL, and mqercCDIV perform complex 

multiplication and division of complex 
numbers. 

mqercCPOL converts complex numbers from rec­
tangular to polar form. mqercCREC 
converts complex numbers from polar 
to rectangular form. 

mqercCSQR, and mqercCABS compute the com­
plex square root and real absolute 
value (magnitude) of a complex num­
ber. 

mqercCEXP, and mqercCLGE compute the com­
plex value of e raised to a complex 
power and the complex natural loga­
rithm (base e) of a complex number. 

mqercCSIN, mqercCCOS, and mqercCTAN com­
pute the complex sine, cosine, and 
tangent of a complex number. 

mqercCASN, mqercCACS, and mqercCATN com­
pute the complex inverse sine, co­
sine, and tangent of a complex num­
ber. 

mqercCSNH, mqercCCSH, and mqercCTNH com­
pute the complex hyperbolic sine, co­
sine, and tangent of a complex num­
ber. 



intJ 80287 SUPPORT LIBRARY 

Complex Number Functions: (Continued) 
mqercCACH, mqercCASH, and mqercCATH com­

pute the comples inverse hyperbolic 
sine, cosine, and tangent of a com­
plex number. 

mqercCC2C, mqercCR2C, mqercCC2R, mqercCCl2, 
mqercCCl4, and mqercCCIS return 
complex values of complex (or real) 
values raised to complex (real, short 
integer, or long integer) values. 

DC287.LlB 
THE DECIMAL CONVERSION LIBRARY 

DC287.LlB is a library of procedures which convert 
binary representations of floating point numbers and 
ASCII-encoded string of digits. 

The binary-to-decimal procedure mqcBIN_DE­
CLOW accepts a binary number in any of the for­
mats used for the representation of floating point 
numbers in the 80287. Because there are so many 
output formats for floating point numbers, mqcBIN_ 
DECLOW does not attempt to provide a finished, 
formatted text string. Instead, it provides the "build­
ing blocks" for you to use to construct the output 
string which meets your exact format specification. 

The decimal-to-binary procedure mqcDEC_BIN ac­
cepts a text string which consists of a decimal num­
ber with optional sign, decimal point, and/or power­
of-ten exponent. It translates the string into the call­
er's choice of binary formats. 

Decimal-to-binary procedure mqcDECLOW_BIN is 
provided for callers who have already broken the 
decimal number into its constituent parts. 

The procedures mqcLONG_TEMP, mqcSHORT_ 
TEMP, mqcTEMP _LONG, and mqcTEMP _SHORT 
convert floating point numbers betwaenthe longest 
binary format, TEMP_REAL, and. the shorter for-
mats. . 

EH287.LIB 
THE ERROR HANDLER LIBRARY 

EH287.LlB is a library of five utility procedures for 
writing trap handlers. Trap handlers are called when 
an unmasked 80287 error occurs: 

The 80287 error reporting mechanism can be used 
not only to report error conditions, but also to let 
software implement IEEE standard options not di­
rectly supported by the chip. The three such exten­
sions to the 80287 are: normalizing mode, non-trap­
ping not-a-number (NaN), and non-ordered compari­
son. The utility procedures support these extra fea­
tures. 

DECODE is called near the beginning of the trap 
handler. It preserves the complete state of the 
80287, and also identifies what function called the 
trap handler, and returns available arguments 
and/or results. DECODE eliminates much of the ef­
fort needed to determine what error caused the trap 
handler to be called. 

NORMAL provides the "normalizing mode" capabili­
ty for handling the "D" exception. By calling NOR-

1-79 

MAL in your trap handler, you eliminate the need to 
write code in your application program which tests 
for non-normal inputs. 

SIEVE provides two capabilities for handling the "I" 
exception. It implements non-trapping NaN's and 
non-ordered comparisons. These two IEEE standard 
features are useful for diagnostic work. 

ENCODE is called near the end of the trap handler. 
It restores the state of the 80287 saved by DE­
CODE, and performs a choice of concluding actions, 
by either retrying the offending function or returning 
a specified result. 

FI L TER calls each of the above four procedures. If 
your error handler does nothing more than detect 
fatal errors and implement the features supported by 
SIEVE and NORMAL, then your interface to 
EH287.LlB can be accomplished with a single call to 
FILTER. 



inter 80287 SUPPORT LIBRARY 

80287.LIB, NUL287.LIB 
INTERFACE LIBRARIES 

80287.LlB and NUL287.LlB libraries configure a us­
er's application program for his run-time environ-

SPECIFICATIONS 

Operating Environment 

Intel Microcomputer Development Systems (Series 
III, Series IV) 

Documentation Package 

80287 Support Library Reference Manual 

Related Software 

A 80287 software emulator is available as part of the 
8086 software toolbox (iMDX364) 

1-80 

ment; running with the 80287 component or without 
floating point arithmetic, respectively. 

ORDERING INFORMATION 
Part Number Descripti9n 
iMDX329 80287 Support Library 

Requires Software License 

SUPPORT 

Intel offers several levels of support for this product 
which are explained in detail in the price list. Please 
consult the price list for a description of the support 
options available. 



8051 
SOFTWARE PACKAGES 

• Choice of hosts: 
PCDOS 3.0 based IBM* PC XT/AT*, 
iPDSTM System, Series II, Series III, and 
Series IV 

• Supports all members of the Intel 
MCS® ·51 architecture 

PL/M51 Software Package Contains the 
following: 

• PL/M51 Compiler which is designed to 
support all phases of software 
implementation 

• RL51 Linker and Relocator which 
enables programmers to develop 
software in a modular fashion 

• LlB51 Librarian which lets 
programmers create and maintain 
libraries of software object modules 

LEGEND 

o 
fO----: 
I I , _____ 1 

o 

INTEL DEVELOPMENT 
TOOLS AND OTHER 
PRODUCTS 

MCS~·5' 
SOFTWARE TOOLS 

USER-CODED 
SOFTWARE 

8051 Software Development Package 
Contains the following: 

• 8051 Macro Assembler which gives 
symbolic access to 8051 hardware 
features 

• RL51 Linker and Relocator program 
which links modules generated by the 
assembler 

• CONV51 which enables software 
written for the MCS® ·48 family to be 
upgraded to run on the 8051 

• LlB51 Librarian which lets 
programmers create and maintain 
libraries of software object modules 

162771-1 

Figure 1. MCS® ·51 Program Development Process 

'IBM and AT are registered trademarks of International Business Machine Corporation. 

1-81 
October 1986 

Order Number: 162771·004 



inter 8051 Software Packages 

PL/M 51 SOFTWARE PACKAGE 
• High-level programming language for • Allows programmer to have complete 

the Intel MCS® -51 single-chip control of microcomputer resources 
microcomputer family I!! Extends high-level language 

• Compatible with PL/M 80 assuring· programming advantages to 
MCS® -80/85 design portability microcontroller software development 

. . 

• Enhanced .to support boolean • Improved reliability, lower maintenance 
processing costs, Increased programmer 

• Tailored to provide an optimum productivity and software portability 

balance among on-chip RAM usage, • Includes the linking and relocating 
code size and code execution time utility and the library manager 

• Produces relocatable object code • Supports all members of the Intel 
which Is linkable to object modules MCS® -51 architecture 
generated by all other 8051 translators 

PL/M 51 is a structured, high-level programming language for the Intel MCS-51 family of microcomputers. The 
PLIM 51 language and compiler have been designed to support the unique software development require­
ments of the single-chip microcomputer environment. The PL/M language has been enhanced to support 
Boolean processing and efficient access to the microcomputer functions. New compiler controls allow the 
programmer complete control over what microcomputer resources are used by PL/M programs. 

PLIM 51 is largely compatible with PL/M 80 and PL/M 86. A significant proportion of existing PL/M software 
can be ported to the MCS-51 with modifications to support the MCS-51 architecture. EXisting PL/M program­
mers can start programming for the MCS-51 with a small relearning effort. 

PLIM 51 is the high-level alternative to assembly'language programming for the MCS-51. When code size and 
code execution speed are not critical factors, PLIM 51 is the cost-effective approach to developing reliable, 
maintainable software. 

The PL/M 51 compiler has been designed to support efficiently all phases of software implementation with 
features like a syntax checker, multiple levels of optimization, cross-reference generation and debug record 
generation. 

ICETM 5100, ICE 51, and EMV51 are available for on-target debugging. 

Software available for PC DOS 3.0 based IBM· PCXT/AT* Systems, iPDSTM, Series II, Series III and Series IV 
Systems. 

LEGEND 

o 
fO--"-: 
I I ,,_ .. __ .1 

o 

INTEL DEVELOPIENT 
TOOLS AND OTHER 
PRODUCTS 

tlCS·.J1 
SOFTWARE TOOLS 

IJSER.CODED 
SOFTWAlll! 

Figure 2. PL/M51 Software Package 

1-82 

162771-2 



8051 Software Packages 

PL/M 51 COMPILER 
FEATURES 

Major features of the Intel PUM 51 compiler and 
programming language include: 

Structured Programming 

PUM source code is developed in a series of mod­
ules, procedures, and blocks. Encouraging program 
modularity in this manner makes programs more 
readable, and easier to maintain and debug. The 
language becomes more flexible, by clearly defining 
the scope of user variables (local to a private proce­
dure, for example). 

Language Compatibility 

PL/M 51 object modules are compatible with object 
modules generated by all other MCS-51 translators. 
This means that PL/M programs may be linked to 
programs written in any other MCS-51 language. 

Object modules are compatible with In-Circuit Emu­
lators and Emulation Vehicles for MCS-51 proces­
sors: the DEBUG compiler control provides these 
tools with symbolic debugging capabilities. 

Supports Three Data Types 

PL/M makes use of three data types for various ap­
plications. These data types range from one to six­
teen bits and facilitate various arithmetic, logic, and 
address functions: 

- Bit: a binary digit 

- Byte: 8-bit unsigned number or, 

- Word: 16-bit unsigned number. 

Another powerful facility allows the use of BASED 
variables that map more than one variable to the 
same memory location. This is especially useful for 
passing parameters, relative and absolute address­
ing, and memory allocation. 

Two Data Structuring Facilities 

PL/M 51 supports two data structuring facilities. 
These add flexibility to the referencing of data stored 
in large groups. 

- Array: Indexed list of same type data elements 

- Structure: Named collection of same or different 
type data elements 

- Combinations of Both: Arrays of structures or 
structures of arrays. 

1-83 

Interrupt Handling 

A procedure may be defined with the INTERRUPT 
attribute. The compiler will generate code to save 
and restore the processor status, for execution of 
the user-defined interrupt handler routines. 

Compiler Controls 

The PL/M 51 compiler offers controls that facilitate 
such features as: 

- Including additional PL/M 51 source files from 
disk 

- Cross-reference 

- Corresponding assembly language code in the 
listing file 

Program Addressing Control 

The PL/M 51 compiler takes full advantage of pro­
gram addressing with the ROM (SMALL/MEDIUMI 
LARGE) control. Programs with less than 2 KB code 
space can use the SMALL or MEDIUM option to 
generate optimum addressing instructions. Larger 
programs can address over the full 64 KB range. 

Code Optimization 

The PL/M 51 compiler offers four levels of optimiza­
tion for significantly reducing overall program size. 

- Combination or "folding" of constant expres-
sions; "Strength reductions" (a shift left rather 
than multiply by 2) 

- Machine code optimizations; elimination of su­
perfluous branches 

- Automatic overlaying of on"chip RAM variables 

- Register history: an off-chip variable will not be 
reloaded if its value is available in a register. 

Error Checking 

The PL/M 51 compiler has a very powerful feature 
to speed up compilations. If a syntax or program er­
ror is detected, the compiler will skip the code gen­
eration and optimization passes. This usually yields 
a 2X performance increase for compilation of pro­
grams with errors. 

A fully detailed set of programming and compilation 
error messages is provided by the compiler and us­
er's guide. 



intJ 8051 Software Packages 

BENEFITS 

PL/M 51 is designed to be an efficient, cost-effec­
tive solution to the special requirements of MCS-51 
Microsystem Software Development, as illustrated 
by the following benefits of PL/M use: 

Low Learning Effort 

PLIM 51 is easy to learn and to use, even for the 
novice programmer. 

Earlier Project Completion 

Critical projects are completed much earlier than 
otherwise possible because PL/M 51, a structured 
high-level language, increases programmer produc­
tivity. 

Lower Development Cost 

Increases in programmer productivity translate im­
mediately into lower software development costs 
because less programming resources are required 
for a given programmed function. 

Increased Reliability 

PL/M 51 is designed to aid in the development of 
reliable software (PL/M programs are simple state­
ments of the program algorithm). This substantially 
reduces the risk of costly correction of errors in sys­
tems that have already reached full production 
status, as the more simply stated the program is, the 
more likely it is to perform its intended function. 

Easier Enhancements and 
Maintenance 

Programs written in PL/M tend to be self-document­
ing, thus easier to read and understand. This means 
it is easier to enhance and maintain PL/M programs 
as the system capabilities expand and future prod­
ucts are developed. 

RL51 LINKER AND RELOCATOR 
• Links modules generated by the 

assembler and the PL/M compiler 

• Locates the linked object to absolute 
memory locations 

• Enables modular programming of 
software-efficient program 
development 

• Modular programs are easy to 
understand, maintainable and reliable 

The MCS-51 linker and relocator (RL51) is a utility which enables MCS-51 programmers to develop software in 
a modular fashion. The utility resolves all references between modules and assigns absolute memory loca­
tions to all the relocatable segments, combining relocatable partial segments with the same name. 

With this utility, software can be developed more quickly because small functional modules are easier to 
understand, design and test than large programs. 

The total number of allowed symbols in user-developed software is very large because the assembler number 
of symbols' limit applies only per module, not to the entire program. Therefore programs can be more readable 
and better documented. RL51 can be invoked either manually or through a batch file for improved productivity. 

Modules can be saved and used on different programs. Therefore the software investment of the customer is 
maintained. 

RL51 produces two files. The absolute object module file can be directly executed by the MCS-51 family. The 
listing file shows the results of the link/locate process. 

1-84 



inter 8051 Software Packages 

LlB51 LIBRARIAN 
The LlB51 utility enables MCS-51 programmers to 
create and maintain libraries of software object mod­
ules. With this utility, the customer can develop stan­
dard software modules and place them in libraries, 
which programs can access through a standard in­
terface. When using object libraries, the linker will 

ORDERING INFORMATION 

call only object modules that are required to satisfy 
external references. 

Consequently, the librarian enables the customer to 
port and reuse software on different projects-there­
by maintaining the customer's software investment. 

Order Code 

D86PLM51 

Operating Environment 

PL/M51 Software for PC DOS 3.0 Systems 

iMDX352 

186PLM51 

PLlM51 Software for Intel 8-bit Development Systems (iPDS, Series II) 

PLlM51 Software for Intel 16-bit Development Systems (SERIES III, Series IV) 

Documentation Package 

PL/M 51 User's Guide 

MCS-51 Utilities User's Guide 

1-85 

SUPPORT: 

Hotline Telephone Support, Software Performance 
Report (SPR), Software Updates, Technical Re­
ports, and monthly Technical Newsletters are avail­
able. 



intJ 8051 Software Packages 

8051 SOFTWARE DEVELOPMENT PACKAGE 
_ Symbolic relocatable assembly _ Macro Assembler features conditional 

language programming for 8051 assembly and macro capabilities 
microcontrollers _ CONV51 Converter for translation of 

_ Extends Intellec® Microcomputer 8048 assembly language source code 
Development System to support 8051 to 805 i assembiy ianguage source 
program development code· 

_ Produces Relocatable Object Code _ Provides upward compatibility from the 
which is linkable to other 8051 Object MCS-48TM family of single-chip 
Modules microcontrollers 

_ Encourage modular program design for _ Supports all members of the Intel 
maintainability and reliability MCS® 51 architecture 

The 8051 software development package provides development system support for the powerful 8051 family 
of single chip microcomputers. The package contains a symbolic macro assembler and MCS-48 source code 
converter. 
The assembler produces relocatable object modules from 8051 macro assembly language instructions. The 
object code modules can be linked and located to absolute memory locations. This absolute object code may 
be used to program the 8751 EPROM version of the chip. The assembler output may also be debugged using 
the new family of ICE 5100 emulators or with the ICE-51TM in-circuit emulator. . 
The converter translates 8048 assembly language instructions into 8051 source instructions to provide soft­
ware compatibility between the two families of microcontrollers. 
Software available for PC DOS 3.0 based IBM' PC XT/AT Systems, iPDSTM Systems, Series II, Series III and 
Series IV Intel Development Systems. 

162771-3 

1-86 



intJ 8051 Software Packages 

8051 MACRO ASSEMBLER 
II Supports 8051 family program 

development on Intellec® 
Microcomputer Development Systems 

II Gives symbolic access to powerful 
8051 hardware features 

II Produces object file, listing file and 
error diagnostics . 

II Object files are linkable and locatable 

II Provides software support for many 
addressing and data allocation 
capabilities 

II Symbolic Assembler supports symbol 
table, cross-reference, macro 
capabilities, and conditional assembly 

The 8051 Macro Assembler (ASM51) translates symbolic 8051 macro assembly language modules into link­
able and locatable object code modules. Assembly language mnemonics arE! easier to program and are more 
readable than binary or hexadecimal machine instructions. By allowing the programmer to give symbolic 
names to memory locations rather than absolute addresses, software design and debug are performed more 
quickly and reliably. Furthermore, since modules are linkable and relocatable, the programmer can do his 
software in modular fashion. This makes programs easy to understand, maintainable and reliable. 

The assembler supports macro definitions and calls. This is a convenient way to program a frequently used 
code sequence only once. The assembler also provides conditional assembly capabilities. 

Cross referencing is provided in the symbol table listing, showing the user the lines in which each symbol was 
defined and referenced. 

ASM51 provides symbolic access to the many useful addressing features of the 8051 architecture. These 
features include referencing for bit and byte locations, and for providing 4-bit operations for BCD arithmetic. 
The assembler also provides symbolic access to hardware registers, I/O ports, control bits, and RAM address­
es. ASM51 can support all members of the 8051 family. 

Math routines are enhanced by the MUltiply and DIVide instructions. 

If an 8051 program contains errors, the assembler provides a comprehensive set of error diagnostics, which 
are included in the assembly listing or on another file. Program testing may be performed by using the iUP 
Universal Programmer and iUP F87/51 personality module to program the 8751 EPROM version of the chip. 

ICE 5100, ICE51 and EMV51 are available for program debugging. 

RL51 LINKER AND RELOCATOR PROGRAM 
II Links modules generated by the 

assembler 

II Locates the linked object to absolute 
memory locations 

II Enables modular programming of 
software for efficient program 
development 

II Modular programs are easy to 
understand, maintainable and reliable 

The 8051 linker and relocator (RL51) is a utility which enables 8051 programmers to develop software in a 
modular fashion. The linker resolves all references between modules and the relocator assigns absolute 
memory locations to all the relocatable segments, combining relocatable partial segments with the same 
name. 

With this utility, software can be developed more quickly because small functional modules are easier to 
understand, design and test than large programs. 

The number of symbols in the software is very large because the assembler symbol limit applies only per 
module not the entire program. Therefore programs can be more readable and better documented. 

Modules can be saved and used on different programs. Therefore the software investment of the customer is 
maintained. 

1-87 



inter 8051 Software Packages 

RL51 produces two files. The absolute object module file can be directly executed by the 8051 family. The 
listing file shows the results of the link/locate process. 

CONV51 
8048 TO 8051 ASSEMBLY LANGUAGE 

CONVERTER UTILITY PROGRAM 
• Enables software written for the 

MCS-48TM family to be upgraded to 
run on the 8051 

• Maps each 8048 instruction to a 
corresponding 8051 instruction 

• Preserves comments; translates 8048 
macro definitions and calls 

• Provides diagnostic information and 
warning messages embedded in the 
output listing 

The 8048 to 8051 Assembly Language Converter is a utility to help users of the MCS-48 family of microcom­
puters upgrade their designs with the high performance 8051 architecture. By converting 8048 source code to 
8051 source code, the software investment developed for the 8048 is maintained when the system is 
upgraded. 

The goal of the converter (CONV51) is to attain functional equivalence with the 8048 code by mapping each 
8048 instruction to a corresponding 8051 instruction. In some cases a different instruction is produced be­
cause of the enhanced instruction set (e.g., bit CLR instead of ANL). 

Although. CONV51 tries to attain functional equivalence with each instruction, certain 8048 code sequences 
cannot be automatically converted. For example, a delay routine which depends on 8048 execution speed 
would require manual adjustment. A few instructions, in fact, have no 8051 equivalent (such as those involving 
P4-P7). Finally, there are a few areas of possible intervention such as PSW manipulation and interrupt pro­
cessing, which at least require the user to confirm proper translation. The converter always warns the user 
when it cannot guarantee complete conversion. 

CONV51 produces two files. The output file contains the ASM51 source program produced from the 8048 
instructions. The listing file produces correlated listings of the input and output files, with warning messages in 
the. output file to point out areas that may require users' intervention in the conversion. 

NOTE: 
CONV51 is not available with DOS hosted versions. 

LIB51 LIBRARIAN 
The L1B51 utility enables MCS-51 programmers to create and maintain libraries of software object modules. 
With this utility, the customer can develop standard software modules and place them in libraries, which 
programs can access through a standard interface. When using object libraries, the linker will call only object 
modules that are required to satisfy external references. 

Consequently, the librarian enables the customer to port and reuse software on different projects-thereby 
maintaining the customer's software investment. 

1-88 



intJ 8051 Software Packages 

ORDERING INFORMATION 

Order Code 

D86ASM51 

Operating Environment 

8051 Assembler for PCDOS 3.0 Systems 

MCI51ASM 

186ASM51 

8051 Assembler for 8-bit Intel Development Systems (iPDSTM Systems, Series II) 

8051 Assembler for 16-bit Intel Development Systems (SERIES III, Series IV) 

Documentation Package: 

MCS-51 Macro Assembler User's Guide 

MCS-51 Utilities User's Guide for 8080/8085 
Based Development System 

MCS-51 8048-to-8051 Assembly Language Con­
verter Operating Instructions for ISIS-II Users 

1-89 

SUPPORT: 

Hotline Telephone Support, Software Performance 
Reporting (SPR), Software Updates, Technical Re­
ports, Monthly Newsletter available. 



inter 
MCS®-48 

DISKETTE-BASED SOFTWARE 
SUPPORT IlACKAGE 

• Extends Intellec® Microcomputer 
Development Systems to Support 
MCS®-48 Development 

• Takes Advantage of Powerful ISI5-11 
File Handling and Storage Capabilities 

• MCS-48 Assembler Flrovldes 
Conditional Assembly and Macro 
Capability 

• Provides Assembler Output In Standard 
Intel Hex Format 

The MCS-48 assembler translates symbolic 8048 assembly language instructions into the appropriate ma­
chine operation codes, and provides both conditional and macroassembler programming. Output may be 
loaded either to an ICE-49 module for debugging or into the iUP Universal PROM Programmer for 8748 PROM 
programming. The MCS-48 assembler operates under the ISIS-II operating system on Intel Development 
systems. . ' 

Table 1. Sample MCS-48 Diskette-Based 

ISIS·" 8048 MACROASSEMBLER. V1 ,0 PAGE 1 

LOC OBJ SEO SOURCE STATEMENT 
\ 

1 :DECIMAL ADDITION ROUTINE, ADD BCD NUMBER 
2 :AT LOCATION 'BETA' TO BCD NUMBER AT 'ALPHA' WITH 
3 :RESULT IN 'ALPHA: LENGTH OF NUMBER IS 'COUNT' DIGIT 
4 :PAIRS. (ASSUME BOTH BETA AND ALPHA ARE SAME LENGTH 
5 :AND HAVE EVEN NUMBER OF DIGITS OR MSD IS 0 IF 
6 :0001 
7 IN IT MACRO AUGND,ADDND,CNT 
8 MOV RO, .AUGND 
9 U: MOV R1, .ADDND 

10 MOV R2, .CNT 
11 ENDM 
12 

0001E 13 ALPHA EOU 30 
0028 14 BETA EOU 40 
0032 15 COUNT EOU 5 
0100 16 ORG 100H 

17 INIT ALPHA, BETA, COUNT 
0100 881E 18+ MOV RO, .ALPHA 
0102 B928 19+ L1: MOV R1. 'BETA 
0104 BA32 20+ MOV 
0106 97 21 CLR 
0107 FO 22 LP: MOV 
010e 71 23 ADDt; . 
010g 57 24 DA 
010A A1 25 MOV 
0108 18 26 INC 
010C 19 27 INC 
0100 EA07 28 DJNZ 

END 
USER SYMBOLS 
ALPHA 0001E BETA 0028 COUNT 0005 LP 0107 
L1 0102 

ASSEMBLY COMPLETE. NO ERRORS 

ISI5-" ASSEMBLER SYMBOL. CROSS REFERENCE. V1.0 

SYMBOL CROSS REFERENCE 

ALPHA 13. 17 
BETA 14, 17 
COUNT 191 17 
INIT 7. 17 
L1 191 
LP 22. 28 

R2 •• COUNT 
C 
A.I1olRO 
A.@R1 
A 
@RO.A 
RO 
R1 
R2, LP 

PAGE 1 

280381-2 

°MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of Mohawk 
Data Sciences Corporation. 

1-90 
October 1986 

Order Number: 280391-002 



inter MCS®-48 

FUNCTIONAL DESCRIPTION 

The MCS-48 assembler translates symbolic 8048 
assembly language instructions into the appropriate 
machine operations codes. The ability to refer to 
program addresses with symbolic names eliminates 
the errors of hand translation and makes it easier to 
modify programs when adding or deleting instruc­
tions. Conditional assembly permits the programmer 
to specify which portions of the master source docu­
ment should be included or deleted in variations on 
a basic system design, such as the code required to 
handle optional external devices. Macro capability 
allows the programmer use of a single label to de­
fine a routine. The MCS-48 assembler will assemble 
the code required by the reserved routine whenever 
the macro label is inserted in the text. Output from 
the assembler is in standard Intel hex format. It may 
be either loaded directly to an in-circuit emulator 
(ICE-49) module for integrated hardware/software 
debugging, or loaded into the iUP Universal PROM 
Programmer for 8748 PROM programming. A sam­
ple assembly listing is shown in Table 1. 

The MCS-48 assembler supports the 8048, 8049, 
8050, 8020, 8021, 8022, 8041 and 8042. The 
MSC-48 assembler can also support CMOS ver­
sions of the 8048 family. 

SPECIFICATIONS 

Operating Environment 

(All) Intel Microcomputer Development Systems 
(Series II, Series III/Series IV) 

Intel Personal Development System 

Documentation Package 

Titles of: User Guides 
Operating Instructions 
Reference Manuals 

, Ordering Information 

1-91 

Part Number Description 
MDS-D48 MCS-48 Disk Based Assembler 

Requires Software License 

SUPPORT 

Hotline Telephone Support, Software Performance 
Reports (SPR), Software Updates, Technical Re­
ports. Monthly Newsletters are available. 



MCS®-96 SOFTWARE DEVELOPMENT PACKAGES 

• Choice of Hosts 
• MCS®·96 Software Support Package 

• Supports All Members of the MCS®·96 
Family 

• PL/M·96 Software Package 

MCS®-96 SOFTWARE SUPPORT PACKAGE 

• Symbolic relocatable assembly 
language programming for the 8096 
microcontroller family 

• System Utilities for Program Linking 
and Relocation 

• Extends Intellec® Microcomputer 
Development System to support MCS-
96 program development 

• Encourages modular 'program design 
for maintainability and reliability 

The MCS®·96 Software Support Package provides development system support for the MCS·96 family of 16· 
bit single chip microcomputers. The support package includes a macro assembler and system utilities. 

The assembler produces relocatable object modules from MCS·96 macro assembly language instructions. 
The object modules then are linked and located to absolute memory locations. 

The assembler and utilities run on the Intellec® Series III or equivalent Microcomputer Development System 
and PC DOS 3.0 IBM' PC XT/AT* Systems. 

LEGEND 

D 
fD----: 
I I ,, _____ 1 

o 

INTEL DEVELOPMENT 
TOOLS AND OTHER 
PRODUCTS 

MCS$-96 
SOFTWARE SUPPORT 
PACKAGE 

USER·CODED 
SOFTWARE 

Figure 1. MCS®·96 Software Development Process 

·IBM and AT are registered trademarks of International Business Machines Corporation. 

1·92 

230613-1 

October 1986 
Order Number: 230613·005 



MCS®-96 SOFTWARE DEVELOPMENT PACKAGES 

8096 MACRO ASSEMBLER 
• Supports 8096 Family Program 

Development onlntellec® 
Microcomputer Development System or 
IBM PC XT/AT 

• Gives Symbolic Access to Powerful 
8096 Hardware Features 

• Object Flies are Linkable and Locatable 

• Symbolic Assembler Supports Macro 
Capabilities, Cross Reference, Symbol 
Table and Conditional Assembly 

ASM-96 is the macro assembler for the MCS family of microcontrollers. ASM-96 translates symbolic assembly 
language mnemonics into relocatable object code. Since the object modules are linkable and locatable, ASM-
96 encourages modular programming practices. 

The macro facility in ASM-96 allows programmers to save development and maintenance time since common 
code sequences only have to be done once. The assembler also provides conditional assembly capabilities. 

ASM-96 supports symbolic access to the many features of the 8096 architecture. An "include" file is provided 
with all of the 8096 hardware registers defined. Alternatively, the user can define any subset of the 8096 
hardware register set. 

Math routines are supported with mnemonics for 16 x 16-bit multiply or 32/16-bit divide instructions. 

The assembler runs on a Series III/Series IV Intellec Development System or on a PC-DOS 3.0 IBM PC 
XT/AT. 

RL96 LINKER AND RELOCATOR PROGRAM 
• Links Modules Generated by 

ASM-96 and PL/M-96 

• Locates the Linked Object Module to 
Absolute Memory Locations 

• Encourages Modular Programming for 
Faster Program Development 

• Automated Selection of Required 
Modules from Libraries to Satisfy 
Symbolic References 

RL96 is a utility that performs two functions useful in MCS-96 software development: 

- The link function which combines a number of MCS-96 object modules into a single program. 

- The locate functions which assigns an absolute address to all relocatable addresses in the MCS-96 object 
module. 

RL96 resolves all external symbol references between modules and will select object modules from library 
files if necessary. 

RL96 creates two files: 

- The program or absolute object module file that can be executed by the targeted member of the MCS-96 
family. 

- The listing file that shows the results of link/locate, including a memory map symbol table and an optional 
cross reference listing. 

The relocator allows programmers to concentrate on software functionally and not worry about the absolute 
addresses of the object code. RL96 promotes modular programming. The application can be broken down into 
separate modules that are easier to design, test and maintain. Standard modules can be developed and used 
in different applications thus saving software development time. 

1-93 



. MCS®-96 SOFTWARE DEVELOPMENT PACKAGES 

FPAL96 FLOATING POINT ARITHMETIC LIBRARY 
• . Implements IEEE Floating Point 

Arithmetic 

II Basic.Arithmetic Operations 
+, -, x, I, Mod Plus Square Root 

• Supports Single Precision 32 Bit 
Floating Point Variables 

= Includes an Error Handler library 

FPAL96 is a library of single precision 32-bit floating point arithmetic functions. All math adheres to the 
proposed IEEE floating point standard for accuracy and reliability. An error handler to handle exceptions (for 
example, divide by zero) is included. 

The following functions are included: 

ADD NEGATE 

SUBTRACT ABSOLUTE 

MULTIPLY SQUARE ROOT 

DIVIDE INTEGER 
COMPARE REMAINDER . 

LIB 96 
The LIB 96 utility creates and maintains libraries of software object modules. The customer can develop 
standard modules and place them in libraries. Application programs can then call these modules using prede­
fined interfaces. 

LIB 96 uses the following set of commands: 

-CREATE: Creates an empty library file. 
-ADD: Adds object modules to a library file, 
-DELETE: Deletes object modules from a library file. 
-LIST: Lists the modules in the .library file. 
-EXIT: Terminates LIB 96 

When using object Iibraries,RL96.will include only those object modules that are required to satisfy external 
references, thus saving memory space. 

ORDERING INFORMATION 

Operating Environment 

96 Assembler for PC DOS 3.0 Systems 

Order Code 

D86AsM96 

186ASM96 96 Assembler for Intel Development Systems (Series III and Series IV) 

Documentation Package: 

MCS-96 Macro Assembler User's Guide 
MCS-96 Utilities User's Guide 
MCS-96 Assembler and Utilities Pocket 
Reference Card 
8096 Floating Point Arithmetic· Library 

1-94 

SUPPORT: 

Hotline Telephone Support, Software Perfomiance 
Report (SPR), Software Updates, Technical Re­
ports, and Monthly Technical Newsletters are avail­
able. 



intJ MCS®·96 SOFTWARE DEVELOPMENT PACKAGES 

PL/M-96 SOFTWARE PACKAGE 

• Choice of Hosts • Resident on iAPX·86 Intel 

• Block Structured Language Design Microcomputer Development Systems 

Encourages Module Programming for Higher Performance 

• Provides Access to MCS®·96 on Chip • Includes a Linking and Relocating 

Resources Utility and the Library Manager 

• Produces Relocatable Object Code • IEEE Floating Point Library included for 

which is Linkable to Object Modules Numeric Support 

Generated by Other MCS®·96 • Compatible with PL/M·86 Assuring 
Translators Design Portability 

PL/M-96 is a structured, high-level programming language useful for developing software for the Intel MCS-96 
family of microcontrollers. PLlM-96 was designed to support the software requirements of advanced 16 bit 
microcontrollers. Access to the on chip resources of the MCS-96 has been provided in PLlM-96. 

PLlM-96 is compatible with PL/M-86. Programmers familiar with PL/M will find they can program in PLlM-96 
with little relearning effort. 

The PL/M-96 compiler translates PL/M-96 high level language statements into MCS-96 machine instructions. 
By programming in PL/M an engineer can be more productive in the initial software development cycle of the 
project. PL/M can also reduce future maintenance and support cost because PL/M programs are easier to 
understand. PLlM-96 was designed to complement Intel's ASM-96. 

PL/M-96 is available for Intel Series III and Series IV Development Systems and for PC DOS 3.0 based IBM' 
PC XT/AT* Systems. 

LEGEND 

D 
.. ----. 
:0' I I ,,-----, 

o 

INTEL DEVELOPMENT 
TOOLS AND OTHER 
PRODUCTS 

PUM-96 
SOFTWARE PACKAGE 

USER-CODED 
SOfTWARE 

230613-2 

Figure 2. PL/M·96 Software Package 

1-95 



intJ MCS®·96 SOFTWARE DEVELOPMENT PACKAGES 

PL/M·96 COMPILER 

FEATURES 
Major features of the PL/M-96 compiler and pro­
gramming language include: 

Structur.ed Programming 

Programs written in PL/M-96 are developed as a 
collection of procedures, modules and blocks. Struc­
tured programs are easier to understand, maintain 
and debug. PL/M-96 programs can be made more 
reliable by clearly defining the scope of user vari­
ables (for example, local variables in a procedure). 
REENTRANT procedures are also supported by 
PL/M-96. 

Language Compatibility 

PL/M-96 object modules are compatible with all oth­
er object modules generated by Intel MCS-96 trans­
lators. Programmers may choose to link ASM-96 
and PL/M-96 object modules together. 

PLlM~96 object modules were designed to work 
with other Intel support tools for the MCS-96. The 
DEBUG compiler control provides these tools with 
symbolic information. 

Data Types Supported 

PL/M-96 supports seven data types for programmer 
flexibility in various logical; arithmetic and address­
ing functions. The seven data types include: 

-BYTE: a-bit unsigned number 

-WORD: 

-DWORD: 

-5HORTINT: 

-INTEGER: 

-LONGINT: 

-REAL: 

16-bit unsigned number 

32-bit unsigned number 

a-bit signed number 

16-bit signed number 

32-bit signed number 

32-bit floating point number 

1-96 

Another powerful feature are BASED variables. 
BASED variables allow the user to map more than 
one variable to the same memory location. This is 
especially useful for passing parameters, relative 
and absolute addressing, and memory allocation. 

Data Structures Supported 

Two data structuring facilities are supported by 
PL/M-96. The user can organize data into logical 
groups. This adds flexibility in referencing data. 

- Array: Indexed list of same type data elements 

- Structure: Named collection of same or different 
type data elements 

- Combinations of Both: Arrays of structures or 
structures of arrays 

Interrupt Handling 

Interrupts are supported in PL/M-96 by defining a 
procedure with the INTERRUPT attribute. The com­
piler will generate code to save and restore the pro­
gram status word when handling hardware interrupts 
of the MCS-96. . 

COJTIpiler Controls 
Compile time options increase the flexibility of the 
PL/M-96 compiler. These controls include: 

- Optimization 

- Conditional compilation 

- The inclusion of common PL/M-96 source files 
from disk 

- Cross reference of symbols 

- Optional assembly language code in the listing 
file 



MCS®·96 SOFTWARE DEVELOPMENT PACKAGES 

Code Optimizations 

The PL/M-96 compilers has four levels of optimiza· 
tion for reducing program size. 

- Combination of constant expressions; "Strength 
reductions" (e.g.: a shift left rather than multiply 
by two) 

- Machine code optimizations; elimination of su­
perfluous branches; reuse of duplicate code, re­
moval of unreachable code 

- Overlaying of on chip RAM variables 

- Optimization of based variable operations 

- Use of short jumps where possible 

Built in Functions 

An extensive list of built in functions has been sup· 
plied as part of the PL/M-96 language. Besides 
TYPE CONVERSION functions, there are built in 
functions for STRING manipulations. Functions are 
provided for interrogating the MCS-96 hardware 
flags such as CARRY and OVERFLOW. 

Error Checking 

If the PL/M-96 compiler detects a programming or 
compilation error, a fully detailed error message is 
provided by the compiler. If a syntax or program er· 
ror is detected, the compiler will skip the code gen· 
eration and optimization passes. This powerful 
PL/M-96 feature can yield a two times increase in 
throughput when a user is in the initial program de' 
velopment cycle. 

1-97 

BENEFITS 

PLM-96 is designed to be an efficient, cost·effective 
solution to the special requirements of MCS-96 Mi· 
crocontroller Software Development, as illustrated 
by the following benefits of PL/M use: 

Low Learning Effort 

PL/M-96 is easy to learn and to use, even for the 
novice programmer. 

Earlier Project Completion 

Critical projects are completed much earlier than 
otherwise possible because PL/M-96, a structured 
high·level language, increases programmer produc· 
tivity. 

Lower Development Cost 

Increases in programmer productivity translate im· 
mediately into lower software development costs 
because less programming resources are required 
for a given programmed function. 

Increased Reliability 

PL/M-96 is designed to aid in the development of 
reliable software (PLIM programs are simple state· 
ments of the program algorithm). This substantially 
reduces the risk of costly correction of errors in sys· 
tems that have already reached full production 
status. The more simply the program is stated, the 
more likely it is to perform its intended function. 

Easier Enhancements 
and Maintainance 

Programs written in PLIM tend to be self·document· 
ing, thus easier to read and understand. This means 
it is easier to enhance and maintain PL/M programs 
as the system capabilities expand and future prod· 
ucts are developed. 



inter MCS®-96 SOFTWARE DEVELOPMENT PACKAGES 

RL96 LINKER ANDRELOCATOR PROGRAM 
• Links Modules Generated by ~SM~96 

and PL/M-96 ' 

• Locates the Linked Object Module to 
Absolute Memory Locations 

• r:ncourages Modular Programming for 
. Faster Progra,m Development 

." Automated Selection of Required 
Modules from Libraries to Satisfy 
Symbolic References 

RL96 is a utility that performs two functions useful in MCS software development: 

- The link function which combines a number of MCS object modules ir;Jto a single program. 

- The locate function which assigns an obsolute address to all relocatable addresses in the MCS-96 object 
module. . 

RL96 resolves all external symbol references between modules and will select object modules from library 
files if necessary. ' 

RL96 creates two files: 

- The program or absolute object module file that can be' executed by the targeted member of the MCS 
family. 

- The listing file that shows the results of link/locate, including a memory map symbol'table and an optional 
cross reference listing. 

The relocator allows programmers to concentrate on software functionality and not worry ,about the absolute 
addresses of the object code. RL96 promotes modular programming. The application can be broken down into 
separate modules that are easier to deSign, test and maintain. Standard modules can be developed and used 
in different applications thus saving software development time. " .' 

FPAL96 FLOATING POINT ARITHMETIC LIBRARY 
• Implements IEEE Floating Point 

Arithmetic 

• Basic Arithmetic Operations 
+, -, x, I, Mod Plus Square Root 

• Supports Single Precision 32 Bit 
Floating Point Variables 

• Includes an Error Handler Library 

FPAL96 is a library of single precision 32-bit floating pOint arithmetic functions. All math adheres to the 
proposed IEEE floating pOint standard for accuracy and reliability. An error handler to handle exceptions (for 
example, divide by zero) is included. 

The following functions are included: 

ADD NEGATE 

SUBTRACT ABSOLUTE 

MULTIPLY SQUARE ROOT 

DIVIDE INTEGER 

COMPARE REMAINDER 

1-98 



MCS®-96 SOFTWARE DEVELOPMENT PACKAGES 

LIB 96 

The LIB 96 utility creates and maintains libraries of software object modules. The customer can develop 
standard modules and place them in libraries. Application programs can then call these modules using prede­
fined interfaces. 

LIB 96 uses the following set of commands: 

-CREATE: Creates an empty library file 

-ADD: 

-DELETE: 

-LIST: 

-EXIT: 

Adds object modules to a library file 

Deletes object modules from a library file 

Lists the modules in the library file 

Terminates LIB 96 

When using object libraries, RL96 will include only those object modules that are required to satisfy external 
references, thus saving memory space. 

ORDERING INFORMATION 

Operating Environment Order Code 

D86PLM96 

186PLM96 

PL/M-96 Compiler for PC DOS 3.0 based Systems 

PLlM-96 Compiler for Intel Series III and Series IV Development Systems 

Documentation Package: 

PL/M-96 User's Guide 
MCS-96 Utilities User's Guide 
MCS-96 Assembler and Utilities Pocket 
Reference Card 
8096 Floating Point Arithmetic Library 

1-99 

SUPPORT: 

Hotline Telephone Support, Software Performance 
Report (SPR), Software Updates, Technical Re­
ports, and Monthly Technical Newsletters are avail­
able. 



VAX*/VMS* RESIDENT SOFTWARE DEVELOPMENT 
PACKAGES FOR 80286 . 

• Hosted on DEC VAX*/MicroVAX 
Minicomputers Under the VMS· 
Operating System 

• Allows Development of System and 
Application Software for the Protected 
Virtual Address Mode of the 80286 

• Packages include PL/M-286, BUILD-286, 
BIND-286, LlB-286 and MAP-286 

• Compatible with Corresponding Intel 
Development System Resident 
Products 

These packages provide the capability of developing software on a VAX*IVMS* host for the 80286 in protect­
ed virtual address mode. With these packages a user can assemble and compile 286 programs, configure 
system and application software and create and manage 286 object libraries. Figure 1· illustrates the process 
of 286 software development on VAX"IVMS" hosts. 

Two packages are available: 

1. A PLlM-286 package which contains the PL/M-286 compiler and run time support libraries. 

2. An ASM-286 package which contains the 80286 Assembler (ASM-286) and programming utilities. These 
utilities include the 80286 System Builder (BLD-286), the System Binder (BND-286), a Library Utility (LlB-
286) and an Object Map Utility (MAP-286). 

These packages are compatible with corresponding products which are hosted on Intel development systems. 
Correspondence can be established via version numbers. For example, BND~286 V2.0 offers the same set of 
features on VAXIVMS and Intel development systems. . . 

Owing to this compatibility, 80286 software developed on VAXIVMS can be linked to 80286 software from 
development systems. Moreover, 80286 programs developed on the VAX can then be downloaded to devel­
opment systems and debugged using 286 debuggers like the 121CETM_286 system. 

ASM·286 
PROGRAMS 

PUM·286 
PROGRAMS 

PASCAL·286 
PROGRAMS t 

FORTRAN-286 
PROGRAMS t 

OPERATING SYSTEM 

SOFTWARE 

APPLICATION SOFTWARE 

~o ~ DOWNLOAD 
~ TO· 

DEVELOPMENT 
SYSTEM OR 

PROTECTED MULTI·TASK TARGET SYSTEM 
SYSTEM FOR EXECUTION 

OR DEBUGGING 

231038-1 

Figure 1. 286 Software Development on VAX * IVMS * 

"VAX, VMS are trademarks of Digital Equipment Corporation 

tCurrently Available on Intel Development Systems Only 

1-100 
October 1986 

Order Number: 231038-002 



inter VAX'/VMS' RESIDENT SOFTWARE DEVELOPMENT PACKAGES 

VAX* IVMS* RESIDENT PL/M-286 

• Hosted on DEC VAX'/MicroVAX • Provides Multiple Levels of 
Minicomputers Under the VMS' Optimization to Produce Efficient Code 
Operating System • Produces Relocatable Object Code 

• Systems Programming Language for Linkable to Object Modules Generated 
the Protected Virtual Address Mode by Other Intel 286 Language 
80286 Translators 

• Enhanced to Support Design of • Upward Compatible with PL/M-86 and 
Protected, Multi-User, Multi-Tasking, PL/M-80 to Allow Software Portability 
Virtual Memory Operating System • Compatible with Development System 
Software Resident PL/M-286 

PL/M-286 is a powerful, structured, high-level system implementation language for the development of system 
software for the protected virtual address mode 80286. PL/M-286 has been enhanced to utilize 80286 fea­
tures-memory management and protection-for the implementation of mUlti-user, multi-tasking virtual memory 
operating systems. . . 

PL/M-286 is upward compatible with PL/M-86 and PL/M-80. Existing systems software can be re-compiled 
with PL/M-286 to execute in protected virtual address mode on the 80286. 

PL/M-286 is the high-level alternative to assembly language programming on the 80286. For the majority of 
80286 system programs, PL/M-286 provides the features needed to access and to control efficiently the 
underlying 80286 hardware, and consequently it is the cost-effective approach to develop reliable, maintaina­
ble system software. 

The PL/M-286 compiler has been designed to efficiently support all phases of software development. Fea­
tures such as built-in syntax checker, multiple levels of optimization, virtual symbol table and four models of 
program size and memory usage for efficient code generation provide the total program development support 
needed. The compiler also provides complete symbolic debug capability to the various 286 debuggers and 
emulators. 

VAXIVMS resident PL/M-286 is completely feature compatible with development system resident PLlM-286 
with the same version number. 

1-101 



inter VAX* IVMS* RESIDENT SOFTWARE DEVELOPMENT PACKAGES 

VAX*/VMS* RESIDENT 80286 MACRO ASSEMBLER 
• Supports Full Instruction Set of the 

80286 including Memory Protection and 
Numerics (with 80287) 

• Structures and RECORDS Provide 
Powerful Data Representation 

• Type Checking at Assembly Time Helps 
Reduce Errors at Run-Time 

• Powerful and Flexible Text Macro 
FaCility 

• Upward Compatible with ASM-
86/881186 

• Compatible with Development System 
Resident 80286 Macro Assembler 

ASM-286 is the "high-level" macro assembler for the 80286 assembly langLlage. ASM-286 translates symbolic 
assembly language mnemonics into relocatable object code. The assembler mnemonics are a superset of 
ASM-86/88 mnemonics; new ones have also been added to support the new 80286 instructions. The segmen­
tation directives have been greatly simplified. 

The 80286 assembly language includes approximately 150 instruction mnemonics. From these few mnemon­
ics the assembler can generate over 4,000 distinct machine instructions. Therefore, the software development 
task is simplified, as the programmer need know only 150 mnemonics to generate all possible machine 
instructions. ASM-286 generates the shortest machine instruction possible (given explicit information as to the 
characteristics of any forward referenced symbols). 

The powerful macro facility in ASM-286 saves development and maintenance time by coding common pro­
gram sequences only once. A macro substitution is made each time the sequence is to be used. This facility 
also allows for conditional assembly of certain program sequences. 

ASM-286 offers many features normally found only in high-level languages. The assembly language is strongly 
typed, which means it performs extensive checks on the usage of variables and labels. This means that many 
programming .errors will be detected when the program is assembled, long before it is being debugged. 

ASM-286 object modules conform to a thorough, well-defined format used by 286 high-level languages and 
utilities. This makes it easy to call (and be called from) HLL object modules. 

ASM-286 also provides support for the 80287 numerics co-processor. The complete instruction set of the 
80287 is available through high-level mnemonics. 

VAXIVMS resident ASM-286 is completely feature compatible with development system resident ASM-286 
with the same version number. 

1-102 



VAX' /VMS' RESIDENT SOFTWARE DEVELOPMENT PACKAGES 

VAX* IVMS* RESIDENT 80286 SYSTEM BUILDER 

• A Tool for Configuring Multi-Tasking • Target System May Be Bootloadable, 
Protected, Virtual Memory Systems Programmed into ROM or Loaded from 
Software for the 80286 Mass Storage 

• Links.SeparatelyCompiled Modules • Generates Print File with Command 
Resolves EXTERNAL/PUBLIC Listing and System Map 
Definitions • Compatible with Development System 

• Creates a Memory Image of a ·286 Resident 80286 System Builder 
System for Cold Start Execution 

BLD-286 is the 80286 System Builder. It allows systems programmers to configure multi-tasking and memory 
protected 80286 software. The configuration is specified by the user in a "Build file" using a symbolic meta­
language. BLD-286 thus provides the programmer a high-level symbolic interface to the. multi-tasking and 
,memory protection features of the 80286 architecture. . 

BLD-286 accepts as inputs object modules from the 80286 translators, the 80286 Binder and itself (for 
incremental building). Using the programmer's specifications in the Build File, it produces a bootloadable or 
load able module, as well as a print file with a map of the configured module. 

Using the builders command language, system programmers may perform the following functions: 

- Assign physical addresses to segments; also set segment access rights and limits. 
- Create Call, Trap, and Interrupt "Gates" (entry-points) for inter-level program transfers. 
- Make gates available to tasks; this is an easier way to define program interfaces than using interface 

libraries. 
- Create Global (GDT), Interrupt (lDT), and any Local (LDT) Descriptor Tables. 
- Create Task State Segments and Task Gates for multi-tasking applications. 
- Resolve inter-module and inter-level references, and perform type-checking. 
- Automatically select required modules from libraries. 
- Configure the memory image into partitions in the address space. 
- Selectively generate an object file and various sections of the print file. 

VAXIVMS BLD-286 is completely feature compatible with development system resident BLD~286 with the 
same version number. 

1-103 



VAX* /VMS* RESIDENT SOFTWARE DEVELOPMENT PACKAGES 

VAX* /VMS* RESIDENT 80286 BINDER 

• Links Separately Complied Program • Resolves PUBLIC/EXTERNAL Code and 
Modules into an Executable Task Data References, and Performs 

II Makes the 80286 Protection Mechanism Intermodule Type-Checking 

Invisible to Application Programmers • Provides Print File Showing Segment 

• Assigns Virtual Addresses to Tasks Map, Errors and Warnings 

• Performs Incremental linking with • Generates Linkable or Loadable Module 

Output of Binder and Builder for Debugging 

• Compatible with Development System 
Resident 80286 Binder 

BND-286 is a utility that combines 80286 object modules into executable tasks. In creating a task,the Binder 
resolves Public and External symbol references, combines segments, and performs address fix-ups on sym­
bolic code and data. 

The Binder takes object modules, produced by the 286 translators', and generates a loadable modole (for 
execution or debugging), or a linkable module (to be re-input to the Binder later; this is called incremental 
binding). The binder accepts library modules as well, linking only those modules required to resolve external 
references. BND-286 generates a print file displaying a segment map, and error messages. 

The Binder is useful for system as well as application programmers. Since application programmers need to 
develop software independent of any system architecture, the 286 memory protection mechanism is "hidden" 
from users of the Binder. This allows application tasks to be fully debugged before becoming part of a 
protected system. (A protected system may be debugged, as welL) System protection features are specified 
later in the development cycle, using the 286 System Builder. It is possible to link operating system services 
required by a task using either the Binder or the Builder. This flexibility adds to the ease of use of the 286 
utilities. 

VAXIVMS resident BND-286 is completely feature compatible with development system resident BND-286 
with the same version number. 

VAX*/VMS* RESIDENT 80286 LIBRARIAN 
• Allows Creation and Management of 

80286 Object Libraries 

• Library Functions include Create, 
Delete, Add, Replace, Copy, Save, 
Backup and Display 

• Only Required Modules Linked in When 
Using Binder or Builder 

• Compatible with Development System 
Resident 80286 Librarian 

LlB-286 is the 80286 Librarian. It can be used to create and manage 80286 Object Libraries. By placing often 
used object modules into libraries, the administrative overhead of managing software modules can be re­
duced. 

VAXIVMS based LlB-286 is completely feature compatible with development system resident LlB-286 with the 
same version number. 

1-104 



inter VAX*/VMS* RESIDENT SOFTWARE DEVELOPMENT PACKAGES 

VAX* /VMS* RESIDENT 80286 MAPPER 
• Flexible Utility to Display Object File 

Information in Symbolic Form 
• Compatible with Development System 

Resident 80286 Mapper 

MAP-286 is a cross reference utility for 80286 object modules. It provides a symbolic listing of the 
EXTERNAL and PUBLIC symbols in the specified object modules. 

VAXIVMS resident MAP-286 is completely feature compatible with development system resident MAP-286 
with the same version number. 

SPECIFICATIONS 

Operating Environment 

DEC VAX· 11/780 or compatible model running 
VMS· operating system V3.4 (or upward compatible 
versions) 

Documentation 

Installation guide and user's manuals for the soft­
ware are supplied with the products. 

'VAXIVMS are trademarks of Digital Equipment Corporation 

SUPPORT 

Hotline Telephone Support, Software, Performance 
Report (SPR) Software Updates, Technical Reports 
and Monthly Newsletters are available. 

ORDERING INFORMATION 

Product Code 

iMDX-371VX 

iMDX-373VX 

Description 

ASM-286, BLD-286, 
BND-286, LlB-286, 
MAP-286 

PLlM-286 

1-105 



VAX* IVMS* RESIDENT 
8086/88/186 

SOFTWARE DEVELOPMENT PACKAGES 
!!I Executes on DEC VAX' Minicomputer 

under VMS' Operating System to 
translate PL/M-86, Pascal-86 and 
ASM-86 Programs for 8086, 88 
and 186 Microprocessors. 

II Packages include Pascal-86; PL/M-86; 
ASM-86; Link and Relocation Utilities; 
OH-86 Absolute Object Module to 
Hexadecimal Format Converter; and 
Library Manager Program. 

• Output linkable with Code Generated 
on Intellec® Development Systems. 

The VAXIVMS Resident Software Development Packages contain software development tools for the 8086, 
88, and 186 microprocessors. The package lets the user develop, compile, maintain libraries, and link and 
locate programs on a VAX running the VMS operating system. The translator output is object module compati­
ble with programs translated by the corresponding version of the translator on an Intellec Development 
System. 

Four packages are available: 

1. An ASM-86 Assembler Package which includes the Assembler, the Link Utility, the Locate Utility, the 
absolute object to hexadecimal format conversion utility and the Library Manager Program. 

2. A PLlM-86 Compiler Package which contains the PL/M-86 Compiler and Runtime Support Libraries. 

3. A Pascal-86 Compiler Package which contains the Pascal-86 Compiler and Runtime Support Libraries. 

4. A C-86 Compiler Package which contains the C-86 Compiler and Run-Time Libraries. 

The VAXIVMS resident development packages and the Intellec Development System development packages 
are built from the same technology base. Therefore, the VAXIVMS resident development packages and the 
Intellec Development System development packages are very similar. 

Version numbers can be used to identify features correspondence. The VAXIVMS resident development 
packages will have the same features as the Intellec Development System product with the same version 
number. 

Support for the 80186 processor will be provided as an update to the 8086, 88 software. 

The object modules produced by the translators contain symbol and type information for programming debug­
ging using ICETM translators and/or the PSCOPE debugger. For final production version, the compiler can 
remove this extra information and code. 

'VAX, DEC, and VMS are trademarks of Digital Equipment Corporation. 

1-106 
October 1986 

Order Number: 210643-003 



inter VAX*/VMS* RESIDENT 

VAX*-PL/M-86/88/186 SOFTWARE PACKAGE 
• Executes on VAX*/MICROVAX 

Minicomputers under the VMS* 
Operating System 

• Supports 16-Bit Signed Integer and 
32-Bit Floating Point Arithmetic in 
Accordance with IEEE Proposed 
Standard 

• Easy-To-Learn Block-Structured 
Language Encourages Program 
Modularity 

• Produces Relocatable Object Code 
Which is Linkable to All Other, Intel 
8086 Object Modules, Generated on 
Either a VAX*, a PC XT/AT running 
PC-DOS Version 3.0 or Intellec® 
Development Systems 

• Code Optimization Assures Efficient 
Code Generation and Minimum 
Application Memory Utilization 

• Built-In Syntax Checker Doubles 
Performance for Compiling Programs 
Containing Errors 

• Source Input/Object Output Compatible 
with PL/M-86 Hosted on an Intellec® 
Development System 

• ICETM; PSCOPESymbolic Debugging 
Fully Supported 

Like its counterpart for MCSIIil~80/85 program development, and Intellecllil hosted 8086 program development, 
VAX-PLlM-86 is an advanced, structured high-level programming language. The VAX-PL/M-86 compiler was 
created specifically for performing software developmentfor the Intel 8086, 88 and 186 Microprocessors. ' 

PLIM is a powerful, structured, high-level system implementation language in which program statements can 
naturally express the program algorithm. This frees the programmer to concentrate on the logiC of the program 
without concern for burdensome details of machine or assembly language programming (such as register 
allocation, meanings of assembler mnemonics, etc.). 

The VAX-PL/M-86 compiler efficiently converts free-form PLIM language statements into equivalent 
8086/88/186 machine iristructions. Substantially fewer PL/M statements are necessary for a given applica­
tion than if it were programmed at the assembly language or machine code leveL 

The use of PLIM high-level language for system programming, instead of assembly language, results in a high 
degree of engineering productivity during project development. This translates into significant reductions in 
initial software development and follow-on maintenance costs for the user. 

·VAX, DEC, and VMS are trademarks of Digital Equipment Corporation. 

1-107 



VAX*/VMS* RESIDENT 

VAX*·PASCAL·86/88 SOFTWARE PACKAGE 

• Executes VAX*/MICROVAX • Strict Implementation of ISO Standard 
Minicomputers under the VMS* Pascal 
Operating System • Useful Extensions Essential fo'r 

• Produces Relocatable Object Code Microcomputer Applications 
Which Is Linkable to All Other Intel • Separate Compilation with Type-
8086 Object Modules, Generated on Checking Enforced between Pascal 
EI~her a VAX·, a PC XT/AT running PC- Modules ", 
DOS Version 3.0 or Intellec@ 
Development Systems • Complier Option to Support Full Run-

• ICETM, PSCOPE Symbolic Debugging 
Time Range-Checking 

Fully Supported • Source Input/Object Output Compatible 
with Pascal~86 Hosted on a Intellec@ • Implements REALMATH for Consistent Development System 

and Reliable Results 

• Supports 8086/20, 88/20 Numeric Data 
Processors 

VAX-PASCAL·86 conforms to and implements the ISO Pascal standard. The language is enhanced to support 
microcomputer applications with special features, such as separate compilation, interrupt handling and direct 
port I/O. Other extensions include additional data types not required by the standard and miscellaneous 
enhancements such as an allowed underscore in names, an OTHERWISE clause in CASE construction and 
so forth. To assist the development of portable software, the compiler can be directed to flag all non·standard 
features: 

The VAX-PASCAL-86 compiler runs on the Digital Equipment Corporation VAX under the VMS Operating 
System. A well-defined I/O interface is provided for run-time support. This allows a user-written operating 
system to support application programs on the target system as an alternate to the development system 
environment. Program modules compiled under PASCAL-86 are compatible and linkable with modules written 
in PL/M-86, and ASM-86. With a complete family of compatible programming languages for the 8086, 88, and 
186 one can implement each module in the language most appropriate to the task at hand. 

·VAX, DEC, and VMS are trademarks of Digital Equipment Corporation. 

1-108 



VAX*/VMS* RESIDENT 

VAX* 8086/88/186 MACRO ASSEMBLER 

• Executes on VAX*/MICROVAX • "Strongly Typed" Assembler Helps 
Minicomputers under The VMS· Detect Errors at Assembly Time 
Operating System • High-Level Data Structuring Facilities 

• Produces Relocatable Object Code Such as "STRUCTURES" and 
Which Is Linkable to All Other Intel "RECORDS" 
8086/88/186 Object Modules, • Over 120 Detailed and Fully 
Generated on Either a VAX·, a PC Documented Error Messages 
XT/AT running PC-DOS Version 3.0 or 
Intellec® Development Systems • Produces Relocatable and Linkable 

• Powerful and Flexible Text Macro 
Object Code 

Facility with Three Macro listing • Source Input/Object Output Compatible 
Options to Aid Debugging with ASM-86 hosted on an Intellec® 

• Highly Mnemonic and Compact 
Development System 

Language, Most Mnemonics Represent 
Several Distinct Machine Instructions 

VAX-ASM-86 is the "high-level" macro assembler for the 8086/88/186 assembly language. VAX-ASM-86 
translates symbolic 8086/88/186 assembly language mnemonics into 8086/88/186 relocatable object code. 

VAX-ASM-86 should be used where maximum code efficiency and hardware control is needed. The 
8086/88/186 assembly language includes approximately 100 instruction mnemonics. From these few mne­
monics the assembler can generate over 3,800 distinct machine instructions. Therefore, the software develop­
ment task is simplified, as the programmer need know only 100 mnemonics to generate all possible 8086/88/ 
186 machine instructions. VAX-ASM-86 will generate the shortest machine instruction possible given no for­
ward referencing or given explicit information as to the characteristics of forward referenced symbols. 

VAX-ASM-86 offers many features normally found only in high-level languages. The 8086/88/186 assembly 
language is strongly typed. The assembler performs extensive checks on the usage of variable and labels. The 
assembler uses the attributes which are derived explicity when a variable or label is first defined, then makes 
sure that each uSe of the· symbol in later instructions conforms to the usage defined for that· symbol. This 
means that many programming errors will be deteced when the program is assembled, long before it is being 
debugged on hardware. 

·VAX, DEC, and VMS are trademarks of Digital Equipment Corporation. 

1-109 



inter VAX*/VMS· RESIDENT 

VAX*-LIB-86 

• Executes on VAX*/MICROVAX 
Minicomputers under the VMS· 
Operating System 

• VAX-LIB-86 is a Library Manager 
Program which Allows You to: 
Create Specifically F.ormatted Files to 
Contain Libraries of Object Modules 
Maintain These Libraries by Adding or 
Deleting Modules 
Print a Listing of the Modules and 
Public Symbols in a Library File 

• libraries Can be Used as Input to 
VAX-lINK-86 Which Will Automatically 
Link Modules from the Library that 
Satisfy. External References in the 
Modules Being Linked 

• Abbreviated Control Syntax 

Libraries aid in the job of building programs. The library manager program VAX-LlB-86 creates and maintains 
files containing object modules. The operation of VAX-LlB-86 is controlled by commands to indicate which 
operation VAX-LlB-86 is to perform. The commands are: 

CREATE: creates an empty library file 

ADD: adds object modules to a library file 

DELETE: deletes modules from a library file 

LIST: lists the module directory of library files 

EXIT: terminates the LlB-S6 program and returns control to VMS 

When using object libraries, the linker will call only those object modules that are required to satisfy external 
references, thus saving memory space. 

VAX-OH-86 
• Executes on VAX·/MICROVAX 

Minicomputers under the VMS· 
Operating System 

• Converts an 8086/88/186 Absolute 
Object Module to SymboliC 
Hexademical Format 

. • Facilitates Preparing a file for Loading 
by Symbolic Hexadecimal Loader (e.g. 
ISBC® Monitor SDK-86 Loader),or 
Universal PROM Mapper 

• Converts an Absolute Module to a More 
Readable Format that can be Displayed 
on a CRT or Printed for Debugging 

The VAX-OH-86 utility converts an 86/88 absolute object module to the hexadecimal format. This conversion 
may be necessary for later loading by a hexadecimal loader such as the iSBC 86/12 monitor or the Universal 
PROM Mapper. The conversion may also be made to put the module in a more readable format that can be 
displayed or printed. 

The module to be converted must be in absolute form; the output from VAX-LOC-86 is in absolute format. 

'VAX, VMS are trademarks of Digital Equipment Corporation. 

1-110 



infef VAX·/VMS· RESIDENT 

VAX*-LlNK-86 

• Executes on VAX*/MICROVAX • Automatic Generation of a Summary 
Minicomputers under the VMS· Map Giving Results of the LINK-86 . 
Operating System Process 

• Automatic Combination of Separately • Abbreviated Control Syntax 
Compiled or Assembled 86/88/186 • Relocatable modules may be Merged 
Programs into a Relocatable Module, into a Single Module Suitable for 
Generated on Either a VAX, a PC Inclusion in a Library 
XT/AT running PC-DOS Version 3.0 or 
an Intellec® Development System • Supports "h1crt:!mental" Linking 

• Automatic Selection of Required • Supports Type Checking of Public and 
Modules from Specified Libraries to External Symbols 
Satisfy Symbolic References 

• Extensive Debug Symbol Manipulation, 
allowing Line Numbers, Local Symbols, 
and Public Symbols to be Purged and 
Listed Selectively 

VAX-LiNK-86 combines object modules specified in the VAX-LiNK-86 input list into a Single output module. 
VAX-LiNK-86 combines segments from the input modules according to the order in Which the modules are 
listed. . . 

VAX-LiNK-86 will accept libraries and object modules built from VAX-PL/M-86, VAX-PASCAL-86, VAX-ASM-
86, or any other Intel translator generating 8086 Relocatable Object Modules, such as the Series III resident 
translators. 

Support for incremental linking is provided since an output module produced byVAX-LiNK-86 can be an input 
to another link. At each stage in the incremental linking process, unneeded public symbols may be purged. 

VAX-LiNK-86 supports type checking of PUBliC and EXTERNAL symbols reporting a warning if their types are 
not consistent. 

VAX-LiNK-86 will link any valid set of input modules without any controls. However, controls are available to 
control the output of diagnostic information in the VAX-LiNK-86 process and to control the content of the 
output module. 

VAX-LiNK-86 allows the user to create a large program as the combination of several smaller, separately 
compiled modules. After development and debugging of these component modules the user can link them 
together, locate them using VAX-LOC-86 and enter final testing with much of the work accomplished. 

·VAX, DEC, and VMS are trademarks of Digital Equipment Corporation. 

1-111 



intJ VAX·/VMS· RESIDENT 

VAX*-LOC-86 
• Executes on theVAX·/MICROVAX 

Minicomputers under the VMS· . 
Operating System 

• Automatic Generation of a Summary 
Map Giving Starting Address, Segment 
Addresses and Length, and Debug . 
Symbols and their AddresSes 

• Extensive Capability to Manipulate the 
Order and Placement of Segments In 
8086/8088 Memory 

• Abbreviated Control Syntax 

• Automatic and Independent Relocation 
of Independent Relocation of 
Segments. Segments May be Relocated 
to Best Match Users Memory 
Configuration . 

• Extensive Debug Symbol Manipulation, 
Allowing Line Numbers, Local Symbols, 
and Public Symbols to be Purged and 
Listed Selectively 

Relocatability allows the programmer to code programs or sections of programs without having to know the 
final arrangement of the object code in memory. 

VAX·LOC·86 converts relative addresses in an input module in iAPX-86/88/186 object module format to 
absolute addresses. VAX-LOC-86 orders the segments in the input module and assigns absolute addresses to 
the segments. The sequence in which the segments in the input module are assigned absolute addresses is 
determined by their order In the input module and the controls supplied with the command. 

VAX-LOC-86 will relocate any'valid input .modulewithout any controls. However, controls are available to 
control the output of diagnostic information in the V AX·LOC-86 process, to control the content of the output 
module, or both. 

, . .' " 

The program. you are developing will almost certainly use some mix of random access memory. (RAM), read­
only memory (ROM), and/or programmable read-only memory (PROM). Therefore, the location of your pro­
gram affects both cost and performance in your application. The relocation feature allows you to develop your 
program and then simply relocate the object code to. suit your application. 

SPECIFICATIONS 

Operating Environment 

Required Hardware 
, . . . 

VAX· 1117~O, 11/782, 111750, or 111730' 9 Trac~. 
Magnetic Tape Drive, 1600 BPI 

Required Software 

VMS Operating System V3.0 or Later. All of the de­
velopment packages are delivered as unlinked VAX 
object code which can be linked to VMS as de­
signed for the system where the development pack­
age is to be used. VMS command files to perform 
the link are provided. 

Documentation Package 

iAPX-86, 88 Development Software Installation Man­
ual.and User's Guide for V AXIVMS, Order number 
121950-001 

Shipping Media 

9 Track Magnetic Tape 1600 bpi 

ORDERING INFORMATION 

Part Number Description 
iMDC-341VX VAX-ASM-86, VAX-LlNK-86, VAX­

LOC-86, VAX-LIB-86, VAX-OH-86, 
Package 

iMDX-343VX VAX-PLM·86 Package 

iMDX-344VX VAX-PASCAL-86 Package 

REQUIRES SOFTWARE LICENSE 
'Vf!;X, DEC, and VMS' are trademarks of Digital Equipment Corporation. 



Ada* 286 Compilation System 

The Ada* 286 compilation system is a full, 
production-quality implementation of the Ada 
language designed to generate compact, high­
quality code for embedded 80286 applications. 
The compiler will be validated in accordance 
with U.S. DoD validation requirements, to insure 
a correct implementation. Two separate runtime 
environments are provided, giving the flexibility 
of developing for either bare 80286 or. iRMX™ 
286 target systems. The Ada 286 development 
support features full compatibility with existing 
Intel linking utilities, languages, debuggers and 
networking, as well as the 80287 coprocessor. 

Product Highlights 

-Ada'" features directly supported by 80286 
hardware wherever possible 

- Protected mode bare 80286 and iRMX™ 286 
targets available 

- Highly optimized for efficient 80286/80287 code 
generation 

- Configurable runtime environments can be 
customized to the application 

- Linkable with other Intel languages 

- Completely compatible with existing Intel high-level 
debuggers (PICE and PSCOPE) 

-VAX"'/VMS hosted 

'Please note: 
Ada is a trademark of the Dept. of Defense 
VAX .is a registered trademark of Digital Equipment Corporation 

1-113 

PRODUCT BRIEF 

Intel Ada* 286 Compilation System 

Product Description 

Ada 286 is a highly integrated compilation system designed 
to provide both highly optimized target code and an 
efficient software development environment. 

The compilation system consists of an Ada 286 compiler, 
program library manager, pre-linker, and 2 separate target 
environments. All of the Ada 286 components use the 
common 80286 Object Module Format (OMF) to permit 
linking of Ada object modules with modules from other 
translators, as well as on-line code debugging. 

Additionally, the Ada 286 compiler and runtime environ­
ments map Ada language constructs onto 80286 hardware 
features wherever possible, thus giving the performance 
benefits that a direct hardware implementation allows. This 
allows complex software systems to be built taking 
advantage of Ada constructs such as built-in tasking and 
interrupt handling with optimal performance. 

Support is provided for real-time embedded systems 
development by providing the runtime environments, one 
for a bare 80286 (no target operating system) and one for 
an iRMX286 target environment, which are modularly 
constructed to be able to be reconfigured to support each 
unique embedded configuration. 

Ada 286 is directly integrated into the standard Intel 80286 
software development environment as shown below. 

ORDER NUMBER: 231672"{)01 



80286 Software Development Environment 

FORTRAN 286 
PROGRAMS 

APPLICATION 
SOFTWARE 

DEBUGGER 
ICE", MONITOR, ETC. 

PASCAL 286 
PROGRAMS 

PLM 286 
PROGRAMS 

TARGET 
SYSTEM 

1-114 

ASM 286 
PROGRAMS 

ADA' 286 
PROGRAMS 

OPERATING SYSTEM 
SOFTWARE 



inter 

INTEL 
MICROPROCESSOR 

LANGUAGES 

1-115 

• Wide choice of mature languages: ASM, 
PLIM, C, Pascal, FORl'RAN 

• Optimized for Intel microprocessor 
architectures 

• Available on industry-standard hosts: 
VAXlMicroVAX-VMS* and PC-DOS 

• Optimized for embedded software 
development 

• High-level symbolic debugging with Intel 
emulators 

• Worldwide support 

OCTOBER 1986 
ORDER NUMBER: 280330-001 

I 



intel 

A wide variety of mature, 
professional languages 
Intel supports each of its micro-
processors and microcontrollers with a 
set of high-level languages specifically 
designed to take adyantage of that 
component's features and performance. 
Whether you're designing with the 
8086, the 80286, 80386, or a member 
of the 8051 or 8096 families, there's a 
wide variety of language tools 
available to you, from assembler to 
PLlM, Pascal, FORTRAN or C. 

What makes Intel languages so 
special? They've been tuned for peak 
performance on Intel microprocessors, 
reSUlting in better code qUality. No 
other language vendor can claim that. 
Also, they've been around for a long 
time, used in thousands of software 
development labs around the world. 
They're fully debugged, mature, 
stable. And they're supported by 
one of the most reputable names in 
the microprocessor development 
business: Intel. 

We're committed to making our 
customers successful with our pro-
ducts, so we provide extensive train-
ing, on-site application support, 
telephone hot-line support, user pro-
gram libraries and programming tips. 

Optimized for embedded 
software development 
Intel languages are designed for the 
professional software developer, par-
ticularly those doing embedded soft-
ware development: programming close 
to the hardware, such as designing 

-VAX and VMS arc tndemarkl of DISIII.I equipment CorporatiOn. 
OpenNET and Insite are trademlrb of Intel Corporation, 

operating systems, real-time factory Compilers that fit your 
automation systems and other applica- environment 
tions requiring extremely fast, 

Intel compilers are not only powerful, 
compact code. Intel compilers support 
the special requirements of embedded 

th.ey're flexible, too. Intel compilers 
are available on the industry hosts of 

software development such as 
choice: the VAX (including 

ROMability, fast interrupt handling 
MicroVAX), and the IBM PC and 

and library reentrancy, and code 
compatibles, allowing you to better 

optimization. 
allocate hardware resources. DOS 

Intel's PLiM is particularly well suited tools can be used for interactive pro-
to microprocessor development. It was gram development, and VMS tools for 
the first high-level language designed batch compilation and source 
expressly for microprocessors and is management. 
still one of the most widely used tools 

The VAX-hosted versions of Intel 
in the microprocessor and micro-

compilers are tailored to the VMS 
controller world. It rivals assembly 

environment: they follow the DCL 
language in efficiency, and is 25-50% 

command invocation style and use 
more efficient than C. 

"VMS Intall" installation procedures, 
Because all Intel languages use the with thorough on-line help. All Intel 
same object module format, modules compilers have been optimized in 
written in different languages (such as VMS environments for fast 1/0 
C or PLlM) can be linked together performance. 
into a single executable program. Or, 

Using Intel networking protocols 
modules written on a PC can be 
linked with modules written on a 

such as NOS II and OpenNET"', PCs 

VAXIVMS*. 
and VAXs can be linked together for 
maximum productivity in the develop-

Also, all Intel languages provide full ment lab. 
symbolic information for use with 

Hardware, software support Intel debuggers and emulators, such as 
PICE™, ICE™ 5100, VLSiCE 96, and in one call 
PSCOPE. Intel's TYPDEF, DEBSYM 

There's security in designing with 
and LOCSYM records contain a 

Intel microprocessors and languages: 
wealth of information about external 
and public variables, code blocks, 

you know that all your development 

local symbols and debugging symbols. 
questions will be answered by Intel's 
worldwide staff of trained hardware 

Such information allows symbolic and 
and software engineers. Our support 

high-level langauge debuggers to pro-
includes maintenance, consulting and 

vide additional services to program-
training for both VMS and DOS' 

mers, such as displaying local varl-
hosted tools. 

abies or producing structure dumps. 

1-116 



ARTICLE 
REPRINT 

1-117 

AR-59 

June, 1978 

280324-1 



AR-59 

Modular Programming 
in PliM* 
William Brown 
Intel Corporation 

Various methodologies have been used to control 
the high-and rising-cost of developing software 
products. Among these, one technique that. has proved 
effective entails constructing programs from small, 
well-defined modules. This technique, called modular 
programming, can be used in any programming lan­
guage; however, without language support to enforce 
module boundaries, errors often occur. 

The PLiM language and compiler are designed to 
bring the advantages of modular programming to 
microprocessor software systems. Since the funda­
mental PLiM language facility for organizing a pro­
gram is the module, software systems can be parti­
tioned into manageable units. The PLIM module can 
hold data and procedures and, if properly used, pro­
vide encapsulation of programming abstractions. In 
this way it is related to several other language 
mechanisms that provide for grouping operations 
logically related to a single data structure-for exam­
ple, the Simula'class,' the Alphard form,' the CLU 
cluster,' and the Mesa module.' 

Modularity 

The basic motivation for modularizing a software 
system is to divide the system into partitions 
understandable to the implementer. There are many 
techniques for designing a partitioning. The oldest 
one applies a functional decomposition of the 
system into subroutines or procedures. However, 
in truly large systems, such decomposition usually 
results in a large number of procedures which, 
though easily understood, have complex inter­
dependencies. 

Encapsulation. Another technique, suggested by 
Parnas,' is based on encapsulation of information. 
A software system is partitioned in terms. of the 

• Adapted from a paper presented at COMPSAC 77. Chicago. 

abstractions which make it most understandable. 
Thus, a text editor might be expressed as manipula­
tions of strings or a logic simulation as a structure 
of logic cells. By encapsulating, or hiding, the 
implementation details of the abstraction, interde­
pendencies are limited to the properties of the 
abstraction (for example, concatenate, find, etc., 
for strings, or inputs and outputs for logic cells). 
Thus, the system is more understandable. 

Hiding information also enhances the long-term 
utility of the system by making programs easier 
to maintain and modify. First, the source text 
is encapsulated so that any program changes are 
localized. Second, if the engineering requirements 
of the system change, the implementation of the 
abstraction can be replaced without affecting any 
other part of the system. For example, the 
implementation of logic cells might initially be 
optimized for minimum memory-space requirements. 
Later, if speed becomes important, the imple­
mentation can be replaced by one optimized 
for speed. 

PL/M modules share two aspects of encapSUlation 
with the facilities of Alphard, CLU, and Mesa. 
First, the module localizes the source text which 
implements the abstraction. Second, the module 
hides implementation details. It thereby provides a 
certain amount of protection. 

The PLlMsystem 

This description of the PLiM language and the 
software development environment concentrates on 
those features important to modular programming. 
It is intended to provide enough background so that 
someone familiar with similar languages and sys­
tems can understand the examples. For further 
information, Intel's PUM-80 Programming Manual' 
provides a complete description of the language, 
and McCracken' provides a tutorial introduction to 

0018·916217810300-0040$00.75 '" 1978 IEEE COMPUTER 

Reprinted with permission from COMPUTER MAGAZINE. Copyright by the IEEE Computer Society 

280324-2 

1-118 



inter AFt·59 

PL/M and the ISIS-II diskette operating system. 
Intel's ISIS·1I System User's Guide' describes the 
file management services and general facilities of 
this operating system. 

PUM is a block·structured procedural language. 
It is intended as a system implementation language 
for the Intel 8080 microprocessor. Syntactically. it 
closely resembles XPL' or PLlI.1O However, the 
statement structure should be understandable to 
anyone familiar with a block·structured language. 

The data types which PL/M manipulates are pro· 
bably not familiar to some readers. PL/M has only 
two basic data types: BYTE and ADDRESS. A BYTE 
is an 8·bit unsigned value. An ADDRESS is a I6·bit 
unsigned value. In addition to these data types, 
PL/M allows singly dimensioned arrays and single· 
level data structures. 

An example declaration for a RYTE variable 
ICIlI and two ADDRESS variables (B1 and B2) is 
given below: 

f)~:CLARE CIl BYTE. 
1Il1. R21 ADDRESS, 

PL/M takes a primitive approach to the problems 
presented by references to objects. A reference to 
an object is simply the memory address of the ob· 
ject. PL/M uses a dot to denote the operation "ad· 
dress of." Thus. ".CH" yields the address of "CH." 

PUM also allows for accessing variables by their 
references. This is provided by the BASED notation 
in declarations. For example. with the declaration 

DECLARE R ADDRESS. 
CH BASED B BYTE. 

N BYTE, 

and the assignments 

B = .N: 

CH = 0: 

the value of N is 5. 
The HASED variable concept is important to the 

procedure mechanism. Only objects of type HYTE 
or AOf)RESS may be passed to a procedure and all 
parameters are passed by value. Therefore, to pass 
a large object like an array or to implement a return 
parameter requires a HASED declaration. In this 
fashion, PL/M implements call by reference. 

The last facility to be discussed is the LITERALLY 
declaration. A LITERALLY defines a parameterless 
macro or string substitution in the source text. 
Thus. with the declaration 

DECI.AIIE "'ERO I.ITERALLY '0': 

the appearance ~f the identifier ZERO is equivalent 
to writing the constant O. 

PL/M modules. A module is a labeled block which 
is not enclosed in any other block. Data objects 

March 1978 

and procedures can be declared in the module, and 
in one distinguished module (the main program mod· 
ule) an executable statement sequence may appear. 
Since a module is a block. names declared in it are' 
normally limited to the extent of the block. Thus, 
all objects are a priori hidden inside the module. 
However, PL/M's PURLIC and EXTERNAL attributes 
provide mechanisms to make names in one module 
explicitly visible in another. (This formulation paral· 
leis the Mesa facilities.) 

A procedure or data object ina module may be 
given the PURI.IC attribute. This makes the name of 
the object visible outside the module. Only objects 
declared at the first nesting level may be declared 
PUBLIC. This restriction, and the fact that modules 
are statically allocated, assures that PURLIC proce· 
dures have a consistent environment for efficient 
execution. 

A module may access PURLIC information in 
another module by including a matching Exn:RNAI. 
declaration. For a procedure, the EXTERNAL decla· 
ration appears as a procedure with only parameter 
declarations in the body. The attribute EXTERNAL 

appears as, the last item in the procedure head. For 
data, PUBLIC or EXTERNAl. appears as an attribute 
in the declarations. For example, the declaration 

DEClARE NAM~:REC STRUCTUREI 

1201 Byn:. 

1201 RYTK 

LAST 
FIRST 

MI BYr~:1 PURI.IC: 

declares a structure variable. NAMEREC, which has 
three fields. The fields LAST and FIRST are arrays 
of 25 BYTr:S. The field MI is a single BYTE. The 
matching EXTERNAL declaration is 

f)ECI.AR~: NAMEIIEC STRUCTUREI 
1201 BYTr:. 
1251 BYTr:. 

LAST 
FIRST 

MI BYTr:1 EXTERNAL: 

The names of structure fields and procedure pa· 
rameters hi EXTERNAL declarations need not match 
those in the PUBI.IC declaration. Only the types and 
order must match. 

The compiler and linkage system. The current 
PL/M compiler has two features which are impor' 
tant to implementing modular abstractions. First. 
the module is the natural unit of compilation. Thus, 
an implementation of an abstraction can be compiled 
once and then used for many applications. Second, 
the compiler supports a textual inclusion facility. 
This facility is provided by a compiler control having 
the following general form 

$1 NCLUDE (filename) 

The compiler will read the file given by the file· 
name. The text read will be inserted into the source 
program. replacing the INCLUDE control. The 

280324-3 



inter AR·59 

EXTERNAL and LITERALI.Y declarations for a modille 
may be included' this way. Thus. an abstraction 
may be referenced by ii'single name. Textual inclu­

'sion is the mechanism used by Mesa for static 
binding of implementations of an abstraction to 
users of the abstraction. ' 
, The linkage system is responsible for binding 
modules together'. It matches all EXTERNAL declara­
tions to the appropriate PUBLIC declarations. Un­
fortunately. this matching is'done by name, only. 
No type checking is performed. ' 

Example abstraction-strings. The abstraction 
to be implemented is' that of variable-length charac­
ter strings. The absttac,tion has the following opera­
tions: LENGTH. COPY. CONCAT. FRONT. REST. F.IND. 

BLANKS. PUT. and GET. It is possible to define each 
of these operations in precise mathematical te~ms. 
However. for the purpose of this example. only 
informal descriptions with a minimum' of formal 
notation are given. Where Ii functional notation is 
necessary. Swill represent a string and N' will 
represent a non-negative integer. '. , 

LENGTH returns the number of charadersin the 
argument string. The empty string has a len,~th of 
zero. 

COpy returns a duplicate of the argument string. 
CONCAT returns a string which is a concatenation 

of its arguments. The order of concatenation is the 
first argument string followed by the second. The 
two argument strings are not affected. 

FRONT returns a string which is a copy of the first 
N characters of the argument string. The value of N 
must be in the inclusive range from 0 to the length 
of the string. If N is zero an empty string is returned. 

REST returns a string such that CONCAT IFKC)N'ns.NI. 
RESTIS.NII is a copy of the string S. 

FIND locates a character in the argument string 
and returns the length of the substring ended by 
that character. If the character is not in the string. 
zero is returned. 

BLANKS returns a string of blanks of a specified 
length. RLANKS (01 returns an empty string. 

PUT outputs a string as a line on a specified file. 
t:;ET inputs a line from a specified file and converts 

it to a string. 

The implementation 

Before implementing the string abstraction.' con­
crete PL/Minterfaces for the, abstract operations 
must be specified. Figure I contains the EXTERNAL 
and LITERALLY declarations which define strings 
to the user. These declarations correspond' to a de­
finition module in Mesa or the specification part of 
an Alphard form, To produce these declarations two 
implementation details had to be fixed. 

First. since PL/M allows only scalar parameters. 
the concept of "references to a string" has beert in­
troduced. The LITERALLY declaration defines 
REFSSTRING 'as ADDRESS, This does not imply. 

Declare Ref$string Literally 'Address', 
, Character Literally 'Byte': ' 

Length: 
, Procedure (ReI) Address ExternaL 

,'Declare Ref RelSString: 
End Length: " 

Blanks: 
Procedure (N) Ref SSt ring Externat: 

Declare N Address:' 
End Blanks: 

Copy: 
Procedure (ReI) Ref$string External: 

Declare ReI RelSstring: 
End Copy: 

Concat: ,'" ' 
Procedure (Relt. Re12) RelSString Externat: 

Declare (Reft, Ref2) RelSstring: 
End Concat: . 

Front: 
Procedure,(Rel, Ind) RelSstring External: 

Declare ReI RelSstring, 
Ind Address: 

End Fronl: 

Rest:, ,,' " 
Procedure (Ref. Ind) R~tSstring External: 
, Declare RefRel$string, 

Ind Address: ' 
,End Rest: 

Find: , 
Proclidure (ReI, ChI Address Externai: 

Declare RefRel$strin~, 
Ch Character: 

End Find: 

Put: 
Procedure (Ref. FI) External: 

Declare ReI RelSstring, 
FI Address: 

End Put: 

Get: 
Procedure (FI) RelSString External: 

Declare FI Address: 
End Get: 

Delete: 
Procedure IRel) External: 

Declare ReI RelSstring: 
En~ DeiAle' 

Figure 1. The user's view of strings defined by external 
declarations. 

however. th~t a reference to a string IS necessarily 
the memory address of the representation. The ac­
tual representation of the object is hidden by the 
module structure. This I.ITERAI,I,Y provides for 
visually distinguishing declara tions of string ref­
erences from other variables of type ADDRESS. 

However. the language does not enforce any dis-
tinction. ' ' 

Second, an additional operation. m:Lt:Tt:. hasbeE!n 
specified. The abstraction was not concerned with 
the problem of dynamic storage management. It 
is possible to implement strings with implicit 

COMPUTER 
280324-4 

1·120 



inter AR·59 

storage management. However, that would compli­
cate the representation. Therefore, the user is re­
sponsible for deleting unused strings. 

Representation. The user's view of strings is de­
fined by the declarations in Figure 1. These declara­
tions do not imply anything about the represeenta­
tions of strings or string references; the module 
structure is used to hide these details. Several alter­
natives are possible. A string might be represented 
as a linked list of characters or as a dynamically 
allocated BYTE array_ String references might be the 
address of the string representation or an index into 
a hidden array maintained by the module. 

The representation chosen implements a string 
reference as the address of a dynamically allocated 
BYTE array. However, to illustrate encapsulation 
and the effect of engineering decisions on an imple­
mentation, two forms of this representation are sup­
ported. For strings of less than 255 characters, the 
first entry in the dynamic array is the length of the 
string. Thus, short strings are handled efficiently in 
minimum space. For strings of 255 or more charac­
ters, the first entry in the dynamic array is 255 and 
the end of the string is indicated by another 255. 
Thus, long strings pay a slight penalty in both 
space and time. If a more efficient representation 
for long strings is required, the representations can 
be changed without impacting the user of the ab­
straction. 

Completed module. The source text for the com­
pleted module to implement strings is in the appen­
dix. This module corresponds to a program module 
in Mesa or the representation and implementation 
parts of an Alphard form. The implementation is not 
completely representative of good software develop­
ment in that the source text is not adequately 
documented and it has been validated only to the 
extent necessary to run the example. 

Notice that the STRINGS module accesses two 
other abstractions by INCLUDE. The first of these 
provides EXTERNAL declarations for the ISIS-II in­
put/output facilities, described in the user's guide.' 
The second abstraction, referenced by the file name 
MEMMAN.DEF, provides for dynamic storage manage­
ment. This module contains two operations, ALLOC 

and DEALLOC, which allocate and deallocate contigu­
ous blocks of memory. 

The module contains several useful LITERALLY 

declarations_ In addition to REFSSTRING and 
CHARACTER declarations, the type STRING is declared 
literally. Since this type is always applied to BASED 

items, the array length specifier of 1 is only a 
formality. 

The procedure NEW is hidden inside the STRINGS 

module. It takes as a parameter the length of a 
string to be created and allocates space for the ap­
propriate representation type. It also initializes the 
length or boundary markers. 

The PUBLIC procedure LENGTH defines the length 
operation. It is typical of the procedures imple­
menting the operations. The first line names the 

March 1978 

procedure and formal parameter, and the word 
AllllHESS indicates this is a function returning an 
AODHESS value. The word 1'(11I1.1e' indicates the pro­
cedure is to be accessible outside the module. Next 
comes the declaration of the parameter and two 
local variables. The first is a STIIINC; based on the 
reference parameter. The second is a counter for a 
loop. The body of the I.f:NC;TII procedure follows. 

The remaining procedures follow the same pattern. 
However; two points should be mentioned. First, 
several procedures call MOVE, a built-in PLiM pro­
cedure for moving bytes from one memory area to 
another. Second, the llELf:n: procedure does not 
free all the storage for unused strings. The length 
of the string is set to zero and the remaining storage 
is freed. This action helps avoid problems arising 
from inadvertently referencing a deleted string. It 
is, of course, hidden from the user of the abstraction. 

Example program. Figure 2 shows a program 
using the string abstraction. The input to this pro­
gram is a text file, Tf:ST.SIIC containing tab charac­
ters. Tabs are represented in the text by the char­
acter 'f'. The program processes the file and outputs 
the text file ·1'EST.OIJ'l'. The output has the tab char­
acters replaced by enough blanks to implement tab 
stops at columns 8, 16, 24, 32, etc. 

The INC[,lJDf:S of the files IO.DEF and STHING.IlEF 

at the beginning of the program supply the F.X­

TF.RNAL declarations for the abstractions. The text 
of STRING.OEF is exactly that given in Figure 1. The 
text of IO.DEF is described in the discussion of the 
module STRINGS. 

Next is the procedure declaration for CONCATD. 

This declaration provides a local extension to the 
string abstraction. It implements a concatenation 
operation which deletes the argument strings. Note 
that this extension is defined in terms of the opera­
tions of the string abstraction, and not in terms of 
the actual representation. Thus, the encapsulation 
of the implementation is preserved. 

Following the procedure declaration are the de­
clarations for the variables used by the program. 
The variables LINE and OUTLINE are references to 
the input . string and output string, respectively. The 
rest of the variables are various. temporaries. and 
counters. 

The body of the algorithm is an iteration which 
terminates when a null string is encountered. Each 
LINE is processed in turn until all tabs have been 
found. When a tab is found (by FIND), all the char­
acters in the line in front of the tab are concatenated 
to the output string (referenced by OUTLINE). 

Next, the length of this new string is determined 
and the proper number of blanks to be inserted is 
calculated (as LH). This number of blanks is conca­
tenated to the output string. Finally, the original 
string I,INE is replaced by the RF.ST of the string and 
a new tab is located. 

When no more tabs are found, the remaining 
part of the input string is concatenated to the out­
put string. This string is output. A new LINF. is in­
put and the outer iteration is repeated. 

280324-5 

1-121 



inter AR-59 

Tabs:Do: 

Sinciude (Strlng.Def) 
Sinciude (10. Del) 

Concatd: 
Procedure (Refl ,Ref2) Ref$Strlng: 

Declare (Refl.R~f2,Retref) RefSString: 
Retref ~ Concat (Refl ,Ref2): 
Call Delete (Refl): 
Call Delete (Ref2): 
Return Retref: 

EndCllncatd: 

Declare (Llne,Outllne,Tmp) RefSString .. 
(I,L.Lb) Address.' . 
(lnfile,Outfile,Status) Address: 

Declare Tab LlteraHY ,i '/' ":' 

Call Open '. . • 
(.lnflle .. ('TEST.SRC '),1 ,256,.StatuS): 

Call Open ' -
(.Outfile .. ('TEST.OUT '),2,0, .Status): 

Line - Get(lnfilei: ' 
Do While l.ength(Llne)<>'0:· 

Outline aBlanks(8): 
I =Flnd(Line.Tab): 
00 While I <> B: 
, Outline, - " , 

Concatd(Ouillne,Front(Une, 1·1)): 
L - Length(Outline): .', . 
Lb - «((LIS) + 1 )OSHL+ 1): 
Outllne- ' 

Concatd(Outline,Blanks(Lb)): 
T!"p,;= ',t,ine:",: ' 
Line - Rest(Une,I):, 
Call,DeIBte(Tmpj: 

, , I '. Flnd(Line,Tab):'" 
End: 
Outline -' Concatd(Ou'!IIne: Line): 
Call Put(Outllne,Outfile):,' 
Call,Delete(Outline): 
Line '. Get(lnfile): 

End: ' 

Call Exit: 
End Tabs: ' 

Figure 2. Examj)le program using the ,Siring,; 
.. • abslra,ctlon. , 

Figure 3 shows an input file arid the corresponding 
output file, The output was obtained by supplying 
a reasonable implementation, of the memory manage­
ment module and executing the TABS program, 

count/amount/total: 
25/5,25/56.25 . 
5/S.421S2.10 , 
7/S3.20/$22.48 

.count amount 
'25 ' $.25 
5 S.42 
7 "S3.2Q 

total 
$6.25 
$2.10. 
$22.40 ' 

. Figure 3. InpuJ,tlle wl,th the corr .. pondlng outj)ut file, 

Conclusion 

As the example program shows,' the PLiM module 
is a simple, efficient encapsulation mechanism that 
,can emulate many of the abstraction facilities 'of 
Alphard, Mesa, and CLU. Thus, a number of benefits 
inherent in such languages, including better readi­
bility and maintainability, are available to the PLIM 
programmer, Discipline is required, however, since 
existing implementations of PL/M -unlike those of 
the other languages-do not check for consistent 
use of abstractions. 

The language facilities and methodology exem­
plified by the STRINGS module can be successfully 
applied to real software products, They have been 
used, for example, in constructing the foundation 
of ,.Intel's RMX-80 real-time operating system 
which coordinates programs performing real-time 
control functions." • 

, Acknowledgments 

I wish til thank Kevin Kahn,and John Doerr for 
their, many comments and suggestions during the 
writing of this article. 

Appendix_ Source text for the completed 
module which Implements the strings 
example. 

Slrlngs:Oo: 

Sinciude (10, Del) 
Sinciude I Memman, Del) 

Declare RelSStrlng Lilerally' Address', 
Siring' Lilerally 'II) Byle'. 
Characler Lilerally 'Byle'. 
Cr Lilerally"3'. ' 
U Lilerally'10':_ 

New: 
Procedure ILn) RelSString: 

Declare Ln Address. 
Retrel RelSSlring, 
Sir Ba~ed Relrel Siring: 

II Ln > = 255 Then Do: 
Retrel - AIiOCILn+ 2): 
Sir 10l.SIriLn + I) '= 255: 

End: Else Do: ' 
Relrel • AliocILn+I): 
Sir (0) = Ln: 

End: 
Relurn Relrel: 

end New: 

Le~gth: . , 
Procedur.'IRe!) Address Public: 

Declar. Rei RelSString. 
Sir Based ReI Siring. 
I Address: 

II Sir 101 < 255 Then Relurn Sir 10): 
1.'1: 
Do While Sir III <> 255: 

1=1+1: 
End: 
Relurn II·'): 

End Lenglh: 

COMPUTER 
280324-6 

1-122 



inter 
BI,nks: 

Procedure (N) RelSString Public: 
Declare (N.I) Address. 

Relrel RelSString. 
Str Based Relrel String: 

Retrel - New(N): 
II N <> eThen 

Do I - I To N: 
Str(l) - ": 

End: 
Return Retret: 

End Blanks: 

Copy: 
Procedure (ReI) RelSString Public: 

Declare (Rel.R,trel) RelSString. 
Ln Address: 

Ln - Length(Rel): 
Relrel - New(Ln): 
II LN <> B Then 

C,II Move(ln.Rel ... I.Retrel ... 0: 
, Return Retrel; 
End Copy: 

Conca!: 
Procedure (Rell.Rel2) RelSSlring Public: 

Oeclare (Rell.ReI2.Relrel) RelSstring. 
(Lnl.Ln2) Address: 

Lnl - Length(Rell): 
ln2 = Length(ReI2): 
Retrel - New(Lnl +Ln2): 
II Lnl <> B Then 

Call Move(Lnl.Rell ... I.Relrel ... I): 
II Ln2 <> B Then 

Call Move(Ln2.ReI2+ I.Relrel ... Lnl + 0: 
Return Retrel: 

End Concat: 

Front: 
Procedure (Rel.lnd) RelSstring Public: 

Declare (Rel.ReI,,1) RelSslring. 
Ind Address: 

Retrel - Newlind); 
IIlnd <> B Then 

Call Move(lnd.Rel ... I.Retrel ... 0: 
Return Retrel: 

End Front: 
Rest· . 
Procedure (Rel.lnd) RelSstring Public: 

Declare (Rel.Retrel) RelSstring. 
. (Ln.Reslin.lnd) Address: 

Ln = Length(Rel): 
Reslin = In·lnd: 
Retrel _ New(Reslin): 
II Reslln <> B Then 

Call Move(Reslln.Rel ... Ind ... I.Retrel + 0: 
Return Relrel: 

End Rest: 

Find: 
Procedure (Ref.CI1) Address Public; 

Declare Rei RelSstring. 
Sir Based Rei String. 
Ch Character, 
(In.1) Address: 

Ln = Length(Rel): 
II Ln = B Then Return B: 
1- I: 
Do While 1<= In and SIr (I) <> Ch: 

1=1+1: 
End: 
II str III = Ch Then Return I: 
Return 0: 

End Find: 

Put: 
Procedure (Ref.Ftl PUblic: 

Declare Ref ReISSUing. 
(Fl. Ln.Status)" Address' 

Ln - length(Rell: 
II Ln <> 0 Then 

Call WritelFI.Rel ... I.Ln. statusl: 
Call WriteIFI .. ICr.UI.2 .. status): 

End Put: 

March 1978. 

AR-59 

1-123 

Get: 
Procedure (FI) RefSSfring Public: 

Declare Relrel RefSSlring, 
(FI.Actual.Status) Address. 
Buller(128) 8yte: 

Call Read 
(Ff. .8uller.128 .. Actual .. slatus): 

II Actual ... "then Return New(O): 
Relrel = New(Actual·21; 
Call Move(AClual·2 .. Buller.Relrei + 0: 
Return Relrel; 

End Get: 

Delete: 
Procedure (Ref) Public: 

Declare Ref RelSString, 
Str 8ased RelSSlrlng: 

Call Dealloe(Rei ... !.length(Rell): 
str (0) = 0: 

End Delele: 

End Sirings: 

References 

I. O. J. Dahl. B. Myhrhaug. and K. Nygaard. The 
SIMULA 67 Common Base Language. Publication 
8-22. Norwegian Computing Center. Oslo, 1970. 

2. A. Wulf. "ALPHARD: Toward a Language to Sup· 
port Strudured Programming." Carnegie-Mellon 
University Tech Report AD-785417. April 1974. 

3. B. Liskov and S. ZiUes. "Programming with Abstract 
Dat~ Types," SIGPLAN Notices, Vol. 9, No.4, 
Apro11974. pp. 50·59. 

4. C. M. Geschke. J. H. Morris, Jr., and E. H. Satterth· 
waite. "Early Experience with Mesa," CACM. Vol. 
20. No.8. August 1977. pp. 540·552. 

5. D, Pamas. "A Technique for Software Moo.ule Speci­
lication." CACM. Vol. 15. No.5. May 1972. pp. 330· 
336. 

6. Intel Corp .. PUM.fKJ Programming Manual, Document 
No. 98·268B. 1977. 

7. D. D. McCracken. A Guide to PLiM Programming 
for Microcomputer Applications. Addison·Wesley 
Publishing Co" Reading. Mass" 1978. 

8. Intel Corporation. ISIS·II System User's Guide, 
Document No. 98·306A. 1976. 

9. W. M. McKeeman. J. J. Horning. and D. B. 
Wortmann. A Compiler Generator, Prentice-Hall. 
Englewood Cliffs. New Jersey, 1970. 

10. ANS Committee X3. Draft Proposed Standard Pro­
gramming Language PUI, February 1975. 

11. Kevin Kahn, "A Small-Scale Operating System 
Foundation for Microprocessor Applications." Proc. 
IEEE. Vol. 66. No.2. February 1978. pp. 75·89. 

V William L. Brown is a senior software 
engineer in Intel's Microcomputer 
Systems Division in Aloha. Oregon. 
His past work includes the revision 
and enhancement of the PL/M lan­
guage and -the development support 

t software for Intel's bit slice proces-
"',. 'f sor. He received his MEE from Rice '. .. c· , ... "" ,,, •. '" , --', 

,. an active member of the ACM 
and the IEEE Computer ~ociety. 

280324-7 



· ARTICLE 
REPRINT 

Reprmted with permiSSion from ElectrOniC Design. Vol. 28. NO.9. cOPYright Hayden PubhShlnQ Co .. Inc. 1980 

1·124 

AR-136 

June 1980 

ORDER NUMBER:45114S.Q01 

451145-1 



AR-136 

PL/M-86 combines hardware access 
with high-level language features 

PL/M-86, a systems-implementation language, is 
the first high-level language (HLL) designed spe­

cifically for the special requirements of micro­
computers. The user gets not only high-level access 
to the I'P hardware, and thus control over the proces­
sor and its peripheral components, but also such.HLL 
advantages as the ability to write code in English-like 
statements, more efficient software design and easier 
debugging and maintenance. Major features include: 

• High-level constructs for machine control, espe­
ciall~' interrupt handling, direct-port 1/0 and access 
to absolute memory locations 

• Pointers and based variables 
• String manipulation 
• LOCK SET, a procedure for multiprocessing en­

vironments. 
Designed to be executed by Intel's 16-bit 8086 

(ELECTRO~IC DESIGN, March I, 1980, p, 97), PL/M-86 
is upward-compatible with PL/M-80. Exceptfor inter­
rupts, hardware flags and time-critical code se­
quences, PL/M-80 programs may be recompiled under 
PL/M-86 with little or no conversion. 

Block·structured language 

Both versions are block-structured, encouraging a 
structured approach to programing with well-struc­
tured branching and control statements. They provide 
a OO-E~O construct for simple block structures, as well 
as DO WHILE, DO CASE, an iterative DO, binary decision 
mechanisms IF-THEN-ELSE and nested IF-THEN-ELSE. 

PLlM-86 procedures isolate well-defined tasks 
where local variables, valid only within their pro­
cedure, can be used to avoid unwanted interactions 
between procedures (Fig. 1). By making it easy to 
divide the programming tasks.into subtasks, PL/M-86 
encourages top-down design and permits several soft­
ware designers to work in parallel. Since programs 
under development tend to keep changing, modularity 
also simplifies program maintenance. With PL/M-86, 
programs can be designed in such a way that one 
program function can be modified without unexpected 
repercussions elsewhere in th.e program. 

In addition, as an SIL, PLlM-86 includes special 
features for writing systems software: 110 handlers, 
device drivers, system monitors-in short, an~' ex­
ecutive program that directly controls hardware, even 
if imbedded in application software (for instance, in 
machine or instrument control). 

An SIL like PL/M-86 allows the system designer 
to control hardware with HLL constructs rather than 
error-prone assembly language. Specifically, the s~'s­
tem designer can write interrupt-handling routines 
and routines to input or output data directly to CPU 
ports. PL/M-86 also allows the programmer to access 
memory locations directly and provides a flexible 
means of manipulating data and procedure pointers. 
Built-in procedures give access to the hardware stack 
pointer and CPU flags. 

Unlike application-oriented languages, PLlM-86 

DO;I'Segjnl>!"J101 mOII.,,'1 
DE<:t.AA~RI!<::()fU) ,1"1 STRUCTURE (KEV eYTE. tNl'O WORD}, 

····ilec!,.O.1I1i .cUI\AENTSTI\UC1UR£ (KEv BYTE, 1""0 WORO); 
OEt;LARE (J. (i INTE!l£R, 

O:O'J"·~:'r:ro'1:2'J!: 
COAAeNt-::ltEiV);;;:::ReCO~IK),KEY; 
CIII\I\ENT.lN!'O- RECOAo(~p""O; 
I.:J~ 

00 WHILE 1>0 AND AECORD!I-11 KEV>CURRENT KE.V 
RECQRO(l).KEY = AECQRD(I·l}.KEV: 
RECQRO(l}.INFO = RECORDCI.1),INFO: 
1=1-1: 

END FINO: 

1. Three nested blocks illustrate block hierarchy: Block 
M includes the whole screened area; block Sort 
includes all the code with medium and light screen; 
block Find Is outlined by the white area only. 

451145-2 

1-125 



inter AR-136 

lets the programmer interface directly with the sys­
tem hardware, without having to bring additional 
modules in at execution time to interface with the 

H'TEMP, I'ROCfOUAE < '''fI'ERFlUP<T(5\; 
DECLARE INTERRUPT$ID BYTE. 

INDex, QUTDEX BYTE. 
CURRENTSST ATUS 'NORD: 

INTERRUPTSIO' ... INPUT(lNDE)(l: 

IF INTERRUPTSID '" 00000001 B THEN 
DO, 

DUTPUT(DUTDEX1"" 110000008 '"ALARM AND SHUTDOWN" I 
OUTOEX .. OUTDEX + 1 
GO$FLAG + FALSE 

END: 
IF INTERRUPTSlD + 000010008 THEN 
00: 

OUTPUTjOUTOEX) '" 100000008 '''WARNING LIGHT"' 
ENgUTOEX = OUTDEX +1 ',' 

ELSE 00: 

END 

END HITEMP; 

2. Although a high-level language, PL/M-86 provides 
direct access to hardware. In this example, a peripheral 
Signals INTERRUPT(5)whenever a certain temperature 
exceeds Its limit. The shown interrupt procedure activates 
warning signals and stops the process. 

SOAT: 00 J:: 1 TO COUNT-': 
CAlLt.lOYe (@~~COF\D(J'~eC$lzEi,@cu"aeNT.REC$jlE" 
I"'J. 

FIND: DO WHILE 1 
AND RECORD (1.1)"RECStZE + KEY 

CUARENT(KEV): 
CALlMOVB(@RECORD(l.,)ORECSIZE). 

@RECQRO(l°RECSIZE). 
RECStZE: 

1'':1_1: 

END FIND: 

CALL', MOVB(@CURRENT.@RECORD(1-RECSIZE).RECSIZE): 
END SbRT: 

3. In this fragment from a SORTroutlne, the predefined 
procedure MOVB is called several times. Being a built-In 
procedure, It does not have to be declared. In the first 
call (highlighted), the parameter (, RECORO{JoRECSIZE) 
specifies the starting address of the byte sequence to be 
copied; ~, CURRENT is the location to which the first byte 
will be copied; RECSIZEis the number of bytes In the stream 
of data to be transferred. 

.' 

hardware. While Pascal or Fortran requires an operat­
ing system or run-time support to perform system­
level functions, PL/M,86's "bare-machine" program­
ming saves memory, as the code overhead for an 
operating or run-time system is eliminated. This SIL 
thus offers the best of two worlds-the memory 
efficiency of system-level cOde and the programming 
effieil'ney of an HLL. 

Interrupts make. it possible to break into the execu­
tion sequence of a running program to carry out other 
tasks and then resume' execution of the interrupted 
program. Sometimes, the external event is repetitive 
-for instance, a clock pulse that only needs to be 
counted before other processing resumes. At other 
times, the external event can be a signal indicating 
that data are ready to be input or that some process 
has exceeded allowable limits. 

Since I'C applications involve processing of inter­
rupts to some degree, an SIL must include provisions 
for interrupt-handling routines. In an 8086-based 
system, an interrupt may be generated by some 
peripheral device that sends an interrupt signal and 
number to the 8086 CPU (Fig. 2). 

The CPU processes an interrupt by: 
• Completing the machine instruction currently 

under execution 
• Disabling the interrupt mechanism 
• Activating an interrupt procedure corresponding 

to the number sent by the peripheral device. 
After executing a RETURN or END statement, the 

interrupt procedure automatically reenables the inter~ 
rupt· mechanism and returns control to' the point 
where the interrupt occurred. 

For I/O operations, PL/M-86 provides built-in pro­
cedures that let the programmer access the CPU's I/O 
ports directly. This includes support for byte or word 
110 and constant or variable port numbers. Toinput 
a byte from an 8086 110 port, use 

INPUT (expression) 
The value of "expression" specifies one of the input 
ports of the 8086 CPU. The value returned bylNPllT 
is the byte value found in the specified input port (see 
Fig. 2). 

To access specific m'emory locations, PL/M-86 pro­
vides the AT attribute: 

AT (location) 
where "location" may be either a whole-number con­
stant in the range of 0 through 1,048,575 or a location 
reference. The latter uses the "(!z operator" to indiCate 
where a specific variable will reside at execution time. 
For example, (ioRESULT represents the run-time loca­
tion of the variable RESULT. The statement 

DECLARE (CHARM, CHAR$B) BYTE AT (4096); 
causes the BYTE variable CHAR$A to be stored at 
location 4096. The variable CHAR$B follows in the next 
two bytes. 

On the other hand, the construct 

451145-3 

1-126 



AR·136 

DECLARE DATUM WORD 
DECLARE ITEM BYTE AT «(i' DATUM) 

causes ITEM to be declared a BYTE variable, located at 
the location of DATUM. PL/M-86's ability to access 
absolute memory locations is especially important for 
memory-mapped 110 or other hard-wired memory 
locations. 

What are based variables? 

Sometimes a direct reference to a variable is either 
impossible or inconvenient-for example, when the 
location of a data element remains unknown until it 
is computed at run time. It may then be necessary 
to manipulate the locations of data elements rather 

than the data elements themselves. PL/M-86 provides 
this indirect form of reference with "based variables." 
The base of a based variable is another variable 
pointing to the based variable. Both must be declared 
separatel~', with the base coming first. For instance, 
in 

DECLARE ITEM$PTR POINTER; 
DECLARE ITEM BASED ITEM$PTR BYTE; 

ITE~I$PTR is base and ITEM is the based variable. The 
construct 

ITEM$PTR=34AH; 
ITEM 77H; 

loads the value 77 (hex) into,the memor~' location 34A 
(hex). 

One variable name can refer to many different data 

DECLARE B BYTE. C CBYTE. 
TEST BYTE. 
A WORD; 

IF TEST THEN 
DO; 

OUTWARD (OF6H)-OFFFFH; 
A=B 

1. 
2. 
3. 
4. 

5. 
6. 

7. 
8. 
9. 

10. 

11. 
12. 
13. 

14. 

1. 
2. 
3. 
4. 

5. 
6. 
7. 
8. 

9. 
10. 
11. 

12. 

@1: 

@2: 

@3: 

@1: 

@2: 
@4: 

@3: 

MOV 
RCR 
JB 

JMP 

MOV 
OUTW 

MOV 
MOV 
MOV. 
JMP 

MOV •• ~g~\ .•••.•••.. 

(a) 

MOV 
RCR 
JE! 

JMP 

MOV 
OUTW 
MOV 
JMP 

MOV 
MOV 
MOV 

(c) 

END; 
ELSEA=C 

AL.TEST 
AL,1 
@1 
@2 

AX,OFFFFH 
OF6H 

AL,B 

····.··.~~AI~ 
@3 

···.····ir~im. 

AL,TEST 
AL,1 
@1 

.. @2 

AX,OFFFFH 
OF6H 
AL,B 
@4 

AL,C 
AH,OH 
A,AX 

4. An ASM86 prolram-before optimization (a), after 
croll·jumplnl (b), after elimination of unreachable code 
(c) and aft.r rev.rslnl a branch condition (d). 

1. 
2. 
3. 
4. 

5. 
6. 
7 
8. 
9. 

10. 
11. 

12. 
13. 
14. 

.15. 

1. 
2. 
3. 

4. 
5. 
6 
7. 

8. 
9. 

10. 

11. 

1-127 

@1: 

@2: 
@4: 

@3: 

@2: 
@4: 

MOV 
RCR 
JB 

JMP 

MOV 
MOV 
MOV 

(b) 

MOV 
RCR 
JNB 

MOV 
OUTW 
MOV 
JMP" 

MOV 
MOV 
MOV 

(d) 

AL.TEST 
AL.1 
@1 
@2 

AX.OFFFFH 
OF6H 
AL.B 
, 4 

AL.C 
AH.OH 
A.AX 

AL.TEST 
AL.1 
@2 

AX.OFFFFH 
OF6H 
AL.B 
@4 

AL.C 
AH.OH 
A.AX 

451145-4 



AR-136 

items depending on the \'alue of the base, For instance, 
the loop 

TOTAL = 0; 
DO ITEM$PTR = 2l00H to 2199H; 
TOTAL TOTAL + ITEM 
END; 

places in TOTAL the sum of the 256bytes found in 
memor~' locations 2100H through 2199H. 

Based variables are even more powerful when the 
"«, operator" is used to supply values for bases. For 
example, suppose there are three different real vari­
ables, A$ERROR. B$ERROR. and C$ERROR, which should 
be accessible at different times via the single identifier 
ERROR. This can be done as follows: 

DECLARE (A$ERROR, B$ERROR, C$ERROR) REAL; 
DECLARE ERROR$PTR POINTER; 
DECLARE ERROR BASED ERROR$PTR REAL; 
ERROR$PTR = {iI A$ERROR; 

A t this point, the value of ERROR$PTR is the location 
of address A$ERROR. A reference to ERROR is, in effect, 
a reference to A$ERROR. Later in the program, the 
statement ERROR$PTR = «, C$ERROR; turns a reference 
to ERROR into a reference to C$ERROR. This technique 
is useful not only for manipulating complicated data 
structures but also for passing locations to procedures 
as parameters. 

With strings attached 

One of the key features built into the 8086 is the 
abilit,' to handle large-scale string-manipulation as­
signments far more easil~' than the 8080 and the 8085. 
PL/M-86 exploits this feature, with very powerful 
string-handling procedures to scan, translate or move 
blocks of bytes or words in ascending or descending 
order. The system designer thus has access to the 
8086's string capabilities without having to worry 
about absolute memory locations and register con­
tents, as an assembly-language programmer would 
(Fig. 31. 

Another feature designed into the 8086 architecture 
is multiprocessing capability, accessible via the 
LOCKSET procedure, Through it, the system designer 
gains control over shared resources by locking other 
processors out while, for instance, a memory blo.c.k 
is being updated. In a system where an 8086 processor 
offloads its 1/0 control tasks to an 8089 1/0 processor, 
some memory locations may be used by both proces­
sors. 

While the 8086 is accessing and updating that 
memory location, the 8086 should not be outputting 
data from that location or writing new data into that 
location. So a flag is set or reset depending on whether 
or not the processor. seeking access to the critical 
,resource can obtain that access. 

An optimizer saves memory 
Memory may be cheap, but in a large production run 

every b~,te still counts. So, an optimizinl( compiler will 
soon pa~' for itself. PL/M-86 uses a number of op­
timization techniques: 

Folding of constant expressions 
Calculating the value of constants in expressions at 

compile time rather than generating code to calculate 
it at run time sa\'es both time and memor~·. In the 
expression 

A = 6 + 3 + A; 
the compiler will add 6 and 3 first and produce code to 
add 9 to A. 

Strength reduction 
This term applies to the replacement of certain 

instructions with faster, shorter ones. For example, 
performing a left-shift of one bit replaces a multi­
plication by two; n left-shifts correspond to a multi­
plication with 2". 

Elimination of common expressions 
If an expression appears more than once in the same 

block, its value is saved rather than recomputed each 
time. For example, in 

A = B + C'D/3 
C = E + C'D/3 

the value of C'D/3 need not be computed a second 
time. 

Short-jump optimization 
When there's a choice of different jump-instruction 

t~'pes, the compiler selects the smallest one possible. 

Branch optimization 
Branch chaininl( reduc'es a branch to another branch 

to a single branch instruction: 

BEFORE 
JMP LAB1 

LABl: JMP LAB2 
LAB2: 

AFTER 
JMP LAB2 

LABl: JMP LAB2 
LAB2: 

451145,..5 

1-128 



AR-136 

Having defined a BYTE variable (called LOCK. for 
example), the LOCKSET instruction sets that variable 
to a value that denies memory access. 

If LOCK = 1 means "access not available" and LOCK=O 
means "access allowed," and if all processors in the 
system have been programmed to recognize that 
convention, the following code segment gives access 
to a critical memory location while preventing other 
processors from doing so until the operation is fin­
ished: 

/*BEGIN CRITICAL REGION*/ 
DO WHILE LOCKSET (0 LOCK. 1): 
END: 

LOCK=O: 
/"END CRITICAL REGION*/ 

In this segment, the processor loops until memory 
location LOCK is reset by another processor-Le., 
LUCKSET returns ZERO until that processor sets LOCK 
to prevent other processors from accessing the memo­
ry area. The processor carries out its program, then 
u'nlocks the memor~; area (LOCK=O). The first ex­
ecutable line of the program segment (DO WHILE ... ) 

8080/8085 
ASSEMBLY 
LANGUAGE 

SOURCE CODE 

8086 
ASSEMBLY 
LANGUAGE 

SOURCE coDe 1 
I 

'-----.......Jl 
r------------------------------~ 

8086 
ASSEMBLY 
LANGUAGE 

SOURCE CODE 

8086 
·PL/M 

SOURCE CODE 

LIBRARY 

RELOCATABLE 

\Ai;~~;~~t'm'l OBJECT MODULE 

AELOCATABLE 
OBJECT MODULE 

5. The PL/M-86 package (screen) contains, in addition 
to the compiler, an 8086 assembler and many important 

1-129 

references the variable LOCK and assigns the value 1 
to that location. 

If the value returned is 0, LOCK had not already been 
set and the current processor has now set it. But if 
the value returned is 1, the LOCK had already been 
set and the· processor must wait until the busy 
processor releases the memory lock. Since the locking 
mechanism uses a simple BYTE variable, there is no 
practical limit to the number of locks available. 

A language isn't enough 

PL/M-86 is implemented as a compiler, not as an 
interpreter, because in the normal!-,C design process 
a debugged program is loaded into PROMs for the 
prototype system. A compiler produces object modules 
in a form that can be directly executed by the CPU. 

The PL/M-86 compiler boasts many compile-time 
options to help with coding and debugging. Most 
important is co//ditio//al compilatio//, which permits 
the compiler to skip over selected portions of the 
source code if certain conditions are met. This feature 
enables the designer to produce different object mod­
ules for different applications of the program. An 
I~(,Ll'DE command, on the other hand, allows the user 

USER 
SYSTEM 

ICE·S6 
IN·CIRCUIT 
EMULATOR 

SDK·B6 
SYSTEM 

DESIGN KIT 

iSBC 86/12 
SINGLE·BOARD 

COMPUTER 

UPP/UPM 
UNIVERSAL PROM 

PROGRAMMER 

utilities. The final machine code can be loaded into a 
number of optional hardware items. 

451145-6 



AR-136 

to include routines from a different source file as well. 
An(1ther compiler option, CODE/NOCODE, provides 

listings of the generated object code. in assembly­
language format, interleaved with. the PL/M 
statements for easier debugging. The PL/M-86 com­
piler also prQvides a flexible cross-reference of pro­
gram symbols between PL/M-86 modules. 

The PL/M-86 compiler also includes sophisticated 
code-optimization techniques to produce efficient ob­
ject modules. A compile-time OPTIMIZE control pro­
vides three levels of optimization: Level 0 skips op­
timization for a quick compilation. Level-I optimiza­
tion is the PL/M-86 default and provides constant­
folding, strength reduction and elimination of com­
monexpressions. Level 2 adds jump Qptimization, 
branch chaining, cross-jumping and deletion of un­
reachable code (seeUAn Optimizer Saves Memory"). 

An example incorporating several optimization 
techniques is shown in Fig. 4. The program determines 
whether the byte variable TEST is true (i.e., the least 
significant bit is 1). If it is, the hex value OFFFF will 
be output to port OF6H and the value of the BYTE 
variable B will be assigned to the WORD variable A. 
If the variable TEST is not true, variable A will be 
assigned the value C. 

The assembly code produced by the short PL/M-86 
module contains 57 bytes (Fig. 4a). Cross-jumping 

inserts a JUMP (line 8, Fig. 4b) to combine the identical 
code at the end of two converging paths (lines 8 and 
9 and 12 and 13 in Fig. 4a) and diverts the program 
flow to the second occurrence of the two lines. The 
first occurrence is now unreachable and can be deleted 
(Fig. 4c). Another line of code is saved by reversing 
a branch condition, which produces line 3 of Fig. 4d. 

The PL/M-86 compiler, which runs on Intel's In­
teJlec /iC-development system, is not a "stand-alone" 
design tool but part of an integrated set of design~ 
aid tools for the 8086 or 8088. These tools include an 
assembler for ASM86, a high-level assembly language 
that produces object modules compatible with those 
from PL/M-86 (both can be combined using the 
8086/8088 relocation and linkage tools). 

ASM86 complements PL/M-86 since it lets the 
programmer choose the language most appropriate for 
a task and then combine the modules. Commonly used 
PL/M-86 and ASM86 object modules can be stored and 
managed using LIB86, the 8086 object-modulelibrar­
ian. PL/M-86 or ASM86 object modules may be loaded 
by the ICE-86 in-circuit emulator, and the software 
may then be debugged and integrated with the hard­
ware. After hex conversion, InteJlec's PROM program­
mer aJlows the debugged. object modules to be stored 
in EPROMs (Fig. 5) .•• 

451145-7 

1-130 



AR-200 

I'ITE.IEIII./~®~~ffiill~ 

COMPILER OPTIMIZATION 
TECHNIOUES 
Techniques used within the PL/M-86 compiler make the 
programmer's job easier while supplying highly efficient code 

by Armond Inselberg and 
Stan Mazor 

Increasing demands for software development have 
combined with continuing shortages of programming 
personnel to create a crisis situation. Shortages of 

skilled programmers can be partially relieved by careful 
choice among available programming languages and 
their compilers. High level languages can make pro­
gramming easier. Compilers can reduce time spent 
coding and make up for a shortage of experience by pro­
viding the techniques needed to optimize both size and 
execution speed of machine level code. 

Whit il I compiler? 
Software implementation environments can be divided 
into two levels, as shown in Fig 1: the program machine 
level and the hardware machine level. Although actual 
code execution takes place at the hardware machine 
level, a software engineer cannot efficiently com­
municate directly with this level. Iljstead, a program­
ming language, such as PL/M-86, is used as the com­
munication link with the programming machine. The 
compiler is responsible for translating language input to 
the programming machine into the language of the 
hardware machine. In this regard, the maturity of the 
PL/M·86 compiler as a powerful tool for 8086 software 
development is revealed. 

Thl compilltion proCIU 
During the compilation process, the compiler closely 
binds the input program, determines its syntactic 

Stanley Mazor is with Intel Corp. 1350 Bordeaux Dr. 
Sunnyvale. CA 94086. where he has participated in 
the designs of the MCS-4. MCS-8. 8080. and several other 
microcomputers. Prior to joining Intel in 1969. he was 
assistant manager of the computer center at San 
Francisco State Col/ege and a principal designer of the 
Symbol computer at Fairchild. Mr Mazor has 
published over 30 articles and papers on 
microcomputers and shares patents on the 8080 and 
MCS-4. He is a senior member oj the IEEE. 

~INTeLCORPORATION, 1982. 
Reprinted with permission from Computer Design, November 1981 issue. 
Copyright 1981 by Computer Design Publishing Company. 

correctness, and- gen­
erates efficient hardware 
machine code. Closely 
binding a program 
means to fix the types of 
variables, the forms of 
the expressions, and the 
program's structure. To 
generate efficient hard­
ware machine code, 
various optimization techniques are used. 

The two major steps of the compilation process are 
the parsing of the input source program and the genera­
tion of the output object code. (See Fig 2.) Parsing is 
achieved by a lexical and syntactic analysis. Lexical 
analysis separates individual components or tokens 
making up the program's symbols. These symbols in­
clude variable names, key words, and operators. Syn­
tactic analysis checks the program for any syntax errors 
by determining the structure of the source program in 
terms of its blOCks, statements, and expressions. Results 
of the parsing are an intermediate text string and a dic­
tionary of variables used in the program. 

Generation of the dictionary, or symbol table, is cen­
tral to the compilation process as it provides a reference 
for the variable names and their properties. Built during 
examination of the data declarations, the symbol table 
is continually referenced during the remainder of the 
compilation. 
- The second step of the compilation first performs 
optimization over the intermediate text, independent of 
the target hardware. Final object code is then generated, 
with consideration for hardware machine dependent op­
timization. 

Armond Inselberg is a senior consultant at the 
Institute for Software Engineering. Suite 200, 535 
Middlefield Rd, Menlo Park, CA 94025. He is 
involved in data processing capacity management for 
workload analysis and forecasting. PreViously, he 
worked at Intel. Stanford University, and IBM. He has 
a PhD in computer science from Washington 
UniverSity and an MBA from the University of Santa 
Clara. 

MARCH 1982 
ORDER NUMBER: 210397-001 

210397-1 

1-131 



inter AR-200 

Optimization philolophy 
Efficiency of the gen­
erated object code is a 
primary objective of 
the compilc;r. Providing 
correct . code is, 0 f 
course, the primary ob­
jective, but it. is never 
stated explicitly. As with 
most compilers, the 
PL/M·86 compiler is 
geared toward optimiz­
ing programs written us­
ing good programming 
practices. 

There is a tradeoff 
between thes~ of 

..... ;.... ________ ~compilation and the op-
FIg 1 Software timization of the re-
Implemealatioa eamameal. suiting object. code. 
Proaiammer commaalcales Although optimized 
with propam macldae level, . 
wldle adu" *e eXecatioa code IS most desirable 
oceun al lIardwaie macblae . for finalized production 
level. CompUer serves as software, the preference 
laterraCe belwaa ·Iwo !evels during development is 

for fast compilation. 
Since·a conflict e~i~tli between the speed of compilation 
and code optimization, a compromise must be made. 

With PL/M-86, the u~er can select the level of op· 
timization. Level 0 is the most basic, and level 3, the 
most advanced. Each successive .level provides all op­
timization techniques of the lower levels,while adding 
further techniques. If an optimization level is not 
specified at compile time, the system defaults to level I. 

Specific techniques used within the PL/M·86 compiler 
serve to optimize the amount of code generated, the exe~ 
cution time of the code, or. both the amount of ~ode and 

Fla 1 CompUalloa pi'0ces8. Puslal of source proan­
prodaces symbol lable aad lalermediale texl slrlag. Texl 
slrl .. Is Ibea optimized, resultiag la gmentioa of obJecl 
code . 

the execution time. Hardware machine independent and 
machine dependent optimization techniques make up a 
secondary classification of the techniques. Machine 
independent techniques optimize object code, indepen­
dent of the target processor. Machine dependent op­
timization takes advantage of the architecture of the 
target processor. A third classification is based on 
.whether the techniques optimize over a single program 
stateinent or over a range of statements. Table 1 sum· 
marizes PL/M-86 optimization techniques for these three 
classifications .. 

Amount of code ganarltld 
When only a limited amount of memory is available to 
hold the program, optimizing the amount of code is par­
ticularly relevant. Three techniques within the compiler 
work to reduce the amount of generated code . 

Branching to duplicate code-Removing code which 
occurs more than once, this technique can be used when 
the paths through duplicate copies of code have the 

PATHS 

-,.a;tJ 
(I) (b) 

FlI3 Brancblal to dupUcale code opllmization. Bolb 
copies of code have same termlnatioa polnl (a); durlna 
compHatiou, second copy of code Is replaced by Jump 10 
fint copy (II) 

same termination point in the program; In this case, as 
shown in Fig 3, the second copy of code is replaced with 
a jump to the original copy. .. 

An example of two program paths that have portions 
of identical code and terminate at the same point can ·be 
found in an IF-THEN-EI..SE statement. . 
IF X > Y MOV AL, Y 

THEN ])O~ CMP X,AL 
X=Y ~ cOmpiles to JBE . iJ. 
X=X+],~ MV· X,AL 
EN])~ IlL: INC X 

ELSE X=X+]'~ 

In the example, the common program statement 
X = X + ], ~ is compiled to INC X and is used by both paths 
through the compiled IF statement. If X is less than or 
equal to Y, the JBE (jump below or equal) instruction is 
executed, causing a jump to the INC instruction. If X is 
greater than Y, INC is reached even though the JBE is 
not executed. 

Removal of unreachable code-This technique causes 
the compiler to skip those parts of the program that will 
never be executed. For example, unlabeled program 
statements that follow aGO T 0 statement cannot be 
reached, and therefore will never be executed. Thus, 

GO TO LABELZ~ 
not IF X > V compiles to JMP LABELZ . 
compiled THEN X=X+l; LABELZ: INC V 

LABELZ: V=Y+],; 

210397-2 

1-132 



AR·200 

TABLE 1 

PL/M·88 Optimization Technique. 

Both Amount of Code 
Amount of Code Execution Sosed and Execution Saeed 

Hardware Hardware Hardware Hardware Hardware Hardware 
Independent Dependent Independent Dependent Independent Dependant 

Single Instruction Strength 
statement size reduction 

Range of Branching 
statements to duplicata 

code 

Removal of 
unreachable 
coda 

Although this optimization technique reduces the 
amount of code generated, it is needed only when the 

. programmer is careless. 
Instruction size-The compiler in this case selects the 

shortest encoding of the instruction. Instructions in· 
volving a hardware register can be shortened by one 
byte if the register is the accumulator. In addition, 
jumps to locations within 127 bytes require shorter in­
structions because the increment rather than the target 
address is specified. For example, if a J A conditional 
jump instruction jumps to a label il2 that is 14 bytes 
away, the distance of 14 bytes is stored in the instruc­
tion. Thus, the instruction uses one byte to specify an 
offset rather than four bytes to indicate the target ad­
dress .of il2. 
JA il2 encoded as Z]!.'!, 

/~ 

POINTER 
VARIABLE 

POINTER 
VARIABLE 

opcode offset 

: T 
~. ·~64'.BYl[ 
• ADDRESS 

I~----.~ . slPACE 

~2.m~ : 

!--- 4 BYTES -----I : T 
I '-§. lM.BYlE ADDRESS 

SPACE 

1 
Fig 4 Instruction size optimization. If address space Is 
restricted to 64k (top), complier allocates 2 bytes for type 
pointer variable; otherwise, variables require 4 bytes 
(bottom) 

Folding of 
constants 

ExpreSSion 
arrangement 

Short circuit 
of Boolean 
expressions 

Function 
evaluation 

Address Elimination Peephole 
pointer of common 
comparison subexpressions 

Elimination of Indeterminant 
superfluous storage 
branches operations 

Another aspect of this optimization technique is that 
the compiler will allocate two bytes to variables deciared 
to be of type pointer, if the address spaces for code and 
data are restricted to 64k bytes each. Otherwise, as 
shown in Fig 4, variables of type pointer require four 
bytes. The programmer indicates the size of the address 
space to the compiler through a compiler control switch. 

Execution speed 
Optimizing the ellecution speed can be critical for time­
dependent processing. Two optimization techniques 
available for improving execution speed are strength 
reduction and address pointer comparison. 

Strength reduction-Execution is optimized by 
replacing certain operations with faster executing opera­
tions. For example, the compiler replaces "multiply a 
variable Y by two" with a shift left operation. The result 
is the same, but a shift left executes faster than a mul­
tiply. 

compiles to MOV AL,Y 
SHL AL d, 
MOV X,AL 

Address pointer comparison-This optimization 
technique generates code to compare two 32-bit pointer 
variables. Physical addresses are actually 20 bits, but are 
stored as a l6-bit base and a 16-bit offset field. When 
the base is shifted left by 4 bits and added to the offset, 
it yields a 20-bit address (Fig 5). Execution speed is im­
proved because, instead of calculating the 20-bit address 
to compare pointers, code is generated to first compare 
the base parts. Only if the base parts are equal is it 
necessary to compare the offset parts. 

210397-3 

1-133 



AR-200 

!':!'!'.!.!!~~{2~~!:~'~ SEGMENT] 
r-__ -'-.Lf-,--. 0 BASE LOGICAL 

ADDRESS 

.!:-----;--'_=__! 2 2 orrSET 

o 
+ 

TO MEMORY 

Fig 5 Address pointer comparison. 31-b1t pointer variables 
are stored as 16-blt base and 16-blt offset. Shifting base left 
4 bits and adding it to offset results In lO-blt address 

For example, two .variables, PTR]' and PTR2, are 
declared to be of type pointer. If PTR]' is greater than 
PTR2, then X is set equal to O. 
DECLARE (PTR]',PTR2) POINTER~ 
If PTR]' > PTR2 

THEN X=D~ compiles to LES 
PUSH 
LES 
MOY 
POP 
CMP 
JNE 
CMP 
JBE 
MOY 

AX,PTR]' 
ES 
»x,PTR2 
DI,ES 
SI 
SI,DI 
.+lfH 
AX,DX 
iii]. 
X,DH 

In this example, the LES instruction loads the AX 
register with the offset of PTR]'. The base is loaded into 
the E S register, then moved to the S I register by means 
of the stack. The offset of PTR2 is loaded into the DX 
register and the base is moved to the DI register. The 
two base values in the S I and D I registers are compared 
by the CMP instruction. If the results are not equal, the 
JNE instruction Gump not equal) is executed, skipping 
the code used to compare the offsets, and jumping to 
the instruction that sets X to O. 

When only a limited amount of 
memory is available to hold the 
program, optimizing the amount of 
code isparticularly relevant. 

Optimizing both Imount of coda 
Ind IXleutian splld 
Most optimization techniques reduce the amount of 
generated code and improve execution speed. Eight 
techniques accomplish this within the PLlM-86 compiler. 

Folding of constants~ This technique causes the com­
piler to perform arithmetic operations at compile time 
rather than at execution time. For example, a statement 
with the expression b + 3 +'111 would be coded as "I + III. 
Thus, 
Y = b+3+1II~ compiles to MOY AL,W 

ADD AL,"IH 
MOY Y,AL 

Expression arrangement-Code for expression 
evaluation is generated such that the operations are per­
formed in that order which produces the most efficient 
code. If expressions I times J andK times L are to, be 
calculated, and their results subtracted, then 
Z = (!*J) - (K*Ll~ 'compilesto MOY AL,J 

MUL I' 
PUSH AX 
MOY AL,L 

K MUL 
POP 
SUB 
MOY 

ex 
eX,AX 
Z,CL 

In this example, the result of I * J is pushed onto the 
stack, freeing the accumulator for a second multiply. 
After K * L is evaluated, the result of I * J is popped 
into the CX register. The registers are then subtracted. 
This process is much more efficient than having the. 
compiler first save the two multiplication results in tem­
porary variables, then move these results to registers, 
and finally subtract the registers. 

Short circuit of Boolean expressions-Generated 
code terminates the evaluation of a Boolean expression 
as soon as its outcome is established. For example,con­
sider the expression (Y > X AND I> J), If Y is not greater 
than X, the expression will be false, regardless of the 
results of the rest of the expression; therefore, the re­
mainder of the expression need not be evaluated. Thus, 
If (Y > X AND I > J) compiles to MOY AL,Y 

THEN B=]' ~ CMP AL, X 
JBE i], 
MOY AL,I 
CMP AL,J 
JBE i], 
MOY B,J.H 

iI].: 

In this example, the generated code tests Y for greater 
than X. If this comparison is false, the JBE Gump on 
below or equal) to label iI]' is executed. This label is 
generated by the compiler to go around the If state­
ment without executing the remaining code of the 
Boolean expression. This technique not only saves exe­
cution time but reduces the number of generated in­
structions required to evaluate the expression. 

Function evaluation-The compiler evaluates several 
specific functions as they are encountered in the source 
program at compile time. For example, for a lO-element 
array named III, the LAST function obtains the value "I, 
the last subscript of the array. Arrays are indexed 
starting with D. 
DECLARE W(lD) BYTE~ 

I=LAST(W)~ compiles to MOY I,"IH 

By evaluating such functions, the compiler saves execu­
tion time and storage space, and makes the program­
mer's job easier by permitting the functions to be 
referenced. 

210397-4 

1-134 



intJ AR-200 

Elimination of common subexpresslons-The com­
piler recognizes multiple occurrences of an expression 
and saves the value of the expression in a register or 
stack so that it need not be recalculated. For example, 
the expression J + I or I + J may occur several times but 
will be evaluated only once. 

X '" J + I; compiles to 
Y .. I + J; 

MOV 
ADD 
MOV 
MOV 

AL,J 
AL,I 
X,AL 
Y,AL 

By saving the result of J + I in the AL register, rather 
than recalculating each time it is encountered, generated 
object code and execution time are greatly reduced. 

Optimizing the execution speed can be 
critical for time-dependent processing. 

Elimination of superfluous branches-Optimization 
using this technique reduces the number of jumps that 
must be executed. In the first example, jumping to a 
LABEL X that contains a jump to LABELZ transforms the 
first jump into a branch directly to LABELZ. 

If X > Y compiles to 
THEN GOTO LABELX\ 

LABELX: GOTO LABELZ\ 

LABELZ: 

MOV AL,X 
CMP AL,Y 
JA LABELZ 

LABELX: JMP LABELZ 

LABELZ: 

Another example is the selection of a single condi­
tional jump instruction based on the result of a com­
parison. This optimization can occur frequently, 
eliminating an unconditional JMP instruction each time 
through the selection of the appropriate conditional 
jump. Consider the IF statement that executes some 
code only if X > Y. 

IF X > Y 
THEN DO; 

Z-R; 
R"R+L; 

END; 

compiles to 

compiles to 
without use of 
optimization 
technique 

ilL 

ilL: 

MOV 
CMP 
JBE 
MOV 
MOV 
INC 

MOV 
CMP 
JA 
JMP 
MOV 
MOV 
INC 

AL,X 
AL,Y 
ilL ] 
AL,R 
Z,AL 
R 

AL,X 
AL,Y .+SH] 
ilL 
AL,R 
Z,AL 
R 

In this example, the J A (jump above) and J MP (uncondi­
tional jump) instructions are replaced by a single JBE 
(jump below or equal) instruction. 

Peephole-This optimization attempts to discard 
redundant instructions. One such action might be 
loading a register with a value that it contains already. 
For example, if Y is set equal to X + L, the value of Y is 
currently in the accumulators since it was last used to 
calculate X + L. If Y is again used in the next statement, 
there is no need to fetch the value of Y. Thus, 
Y"X+L; compiles to MOV 
Z.~+Y; INC 

MOV 
ADD 
MOV 

AL,X 
AL 
Y,AL 
AL,III 
Z,AL 

Since the value of Y is currently in the accumulator as a 
result of the calculation of X + L, it need not be reloaded 
into the accumulator for the calculation of III + Y. 

Indetermlnant storage operation-The compiler does 
not reload the starting point of a based data structure 
each time· that it is referenced. For example, consider 
PART to be an array of structure elements based by the 
pointer variable PARTPTR. 

DECLARE PART BASED PARTPTR (~O) 
STRUCTURE (PARTNO WORD, 

AMT BYTE, 
COST WORD) \ 

PART(2) .PARTNO=bC"H\ compiles to MOY BX,PARTPTR 
PART (~) • AMT-7'H\ MV PART[BX, OAHl ;~C4H 

MV [BX'20Hl,7'H 

The first reference to the array structure places the base 
of the array, contained in PARTPTR, in the ex register. 
Further references to the array structure do not require 
that the BX register be reloaded. 

Evaluation example. 
PL/M·86 offers four levels of optimization. Optimization 
techniques provided at each of these levels are classified 
in Table 2. To indicate how much storage is actually 

TABLE 2 

Optimization Technique. Provided 
In Each Complier Level 

Optimization Technique Optimization Level 
0 1 2 3 

Folding of constants X X X X 
Expression arrangement X X X X 
Short circuit of Boolean expression X X X X 
Function evaluation X X X X 
Strenath reduction X X X 
Elimination of common subexpressions X X X 
Elimination of superfluous branches X X 
Removal of unreachable code X X 
Branching to duplicate code X X 
Instruction size X X 
Peephole X X 
Indeterminant storage operations X 
Address pointer comparisons X 

210397-5 

1-135 



TABLE 3 

Object Code (byte.) Genefated 
FOf Each OptlmllatlonLevel 

LevlllO~ 

Program A: Mastermind 1668 1559 
Program B: General sort 1953 1789 
Program C: Frequency count 849 765 
Program D:. Process simulation 7955 7951 
Program E: Service queue 289 250 
Average % size reduction 

from previous level 7.9% 

!:!Y!!2 ~ 
1450 1450 
1503 1503 
694 694 

7083 7083 
212 185 

12.28% 2.55% 

saved by these techniques, five sample programs were 
compiled at each level using version 2.1 of the compiler; . 
Table 3 provides the size in bytes of resultingcompila­
tions. The reduction in size obtained in going from one 
level to the next higher level is due to the additional 
optimization techniques used at the higher level. 

Programs used in this study demonstrate the com­
piler's ability to optimize various types of instructions. 
Program A plays the game of mastermind with the 
operator performing a large amount of input/output 
with the cathode ray tube. Program B performs a sort 
on an array of 1000 records, making extensive use of 
structures and pointers. Performing a frequency word 
count on an arbitrary text file, Program C uses string 

move instructions and pointers. Program D uses simple 
coding with no structures or pointer addressing to per­
form a process simulation. Service queue simulation us­
ing linked data structures is done in Program E. 

For each successive level .. of. optimization, the in­
dividual percentages in size reduction of the programs 
were averaged. From Table 3, it .becomes apparent that 
Level 3 optimization provides nearly a 2511,70 reduction in 
storage requirements. 

Conclusion 
As the demand for microprocessor software increases,. 
the selection of the implementation langUage will receive 
more attention. In choosing a language, users must con­
sider not only high level constructs of the language 
itself, but also the capabilities of available compilers to 
translate the resulting programs. 

210397-6 

1-136 



Originally prepared for and presented at Wescon182 
@lINTEL CORPORATION, 1983, 

ARTICLE 
REPRINT 

·1-137 

AR-239 

November 1983 

ORDER NUMBEA:210806-001 

210836-1 



AR·239 

PUM·51: A HIGH·LEVEL LANGUAGE FOR THE 8051 MICROCONTROLLER FAMILY 

High-level language advantages are fairly well recognized now. Developing software for embedded microcontrollers 
using assembly language is labor intensive and therefore an expensive task. It is not easy to come up with a sequence of 
well-defined stages to go from the system design stage to the system implementation software. The transformation of an 
algorithm flowchart to the actual assembly-language code requires considerable intuitive guesses and inventiveness on the 
part of the programmer. Also, assembly language is difficult to read and inspect. Because assembly language projects are 
difficult to manage, there has been a widespread movement towards using high-level languages. High-level languages 
provide, in general, improved programmer productivity, and reliable, maintainable, portable software. 

In the microcontroller environment, the major considerations for a high-level language are efficient code, close control 
over hardware resources and optimum use of scarce on-chip data memory (RAM is very expensive in terms of silicon real 
estate). Intel developed PUM-51 for the 8051 single-chip microcontrollers with the specific goal of trying to meet these 
criteria with minimal impact on the traditional high-level language benefits of reliability and maintainability. 

OVERVIEW OF THE 8051 ARCHITECTURE 

The 8051 is a stand-alone high-performance single-chip computer intended for use in sophisticated real-time applications 
such as instrumentation, industrial control and intelligent computer peripherals. It provides the hardware features, 
architectural enhancements and new instructions that make it a powerful and cost effective controller for applications 
requiring up to 64K-bytes of program memory and/or up.to 64K-bytes of data storage. Figure I shows the 8051 Functional 
Block Diagram. 

The 8051 microcomputer integrates on a single chip the CPU, 4K x 8 read-only program mc;:mory, 128 x 8 read/write data 
memory, 32 I/O lines, two 16-bit timer/event counters, a five-source, two-priority level, nested interrupt structure, serial 
I/O port for either mUlti-processor communications, 110 expansion, or full duplex UART, and on-chip oscillator and clock 
circuits. 

The 8051 has four address spaces tailored to support a wide range of control applications efficiently-program memory, 
on-chip and external data memory, and the bit memory space. This complex (but sophisticated) memory architecture is 
supported by a rich (but unorthogonal) set of addressing modes for efficient memory access-register addressing, direct, 
indirect, immediate and base-register plus index-register indirect addressing. To support this complex memory architec­
ture, a high-level language's syntax must mirror the underlying microcontroller architecture. The challenge is to imple­
ment this without compromising the language's readability and maintainability. 

The popular 8051 architecture forms the core of the MCS-51 T. microcontroller family. The need to base processors on a 
popular, industry-standard architecture is dictated by the cost of developing processor support hardware and software 
tools, as well as a desire to maintain the customer's investment in engineering resources and capital equipment. The 
upgradeability requirement has to be traded off against providing optimum functionality in the processor for the target 
market segment. Consequently, the 8051 family consists of straight-line enhancements-RAM, ROM memories and 
clock rates-as well as microcontrollers like the 8044 remote universal peripheral interface processor (RUPI), which has 
the 8051 core architecture but supports an interrupt structure and I/O functions tailored to the distributed processing 
environment. The cost of developing a new support environment for processors targeted to specific (and smaIl) market 
niches would make the processor an unviable product. Consequently, software tools for proliferation processors should be 
configurable from the core processor support products. 

210836-2 

1-138 



inter AR-239 

U:~K 
-

I :~ .,l,.,.",.,!, ~ ~ · § .cc u 
~ .. ROTATE CON'ROl~ ; .PC 

INTEAAUP · CONTAOL 
~ IfC 

lJ.-, ; ,au' RRIAL 

rY SCON 
POAT 

r 
f rHI 

U fLl I · ~ fHO 
flMEA 

5 fLO CONTAOL 

5 TMOD 

TCON 

D'H ... .. 
· ~ 12818 

• •• M 
U 

~ 
~f------------
:: REGISTER 'ANK 1 
~ 1-------------
o REGISTER 'ANK 2 

: I-- - -;e"GISTP U;; -;---
= r - -:- -;[-;.;;;; ia;;; - -

DRIVERS 

'..('f. ~ ... 

I .sc 1 • TIMING 
CIRCUI,,,,, 

! ! 
f f 

M 
• • • , 

• • o 
c 

• s 

7 . 
I p, J u-

pOAT I 

I--

I-

<t 
I~ ... 

J'; 7 
p. I 

D 
PORT 1 

J ;. 
'AOGAAM CONTROL 

'CH 

.c, 

CONTROL P,. 
CONTROL 

ENGINE 

INSTAUCTION lA 
DECODEA IV 

~ :Jr ~ 

I .. J 

·D 
POAT 2 

Figure 1. 8051 Functional Block Diagram 
Copyright INTEL CORPORATION, 1981 

1-139. 

"-

V 

11: 
I PI' 

D 
POAT 0 

.1(.& 
NONE .10311 
AOM flDS'~ 

(PAOMI.n'l 

DRIVERS 

,J 
... 

7 M I 

· • • s C s 
f C S 

· • o 

210836-3 



inter AR-239 

PLJM-51 

PUM-51 was developed to facilitate the design of reliable, maintainable microcontroller systems. This goal translates into 
a programming language which encourages and enforces good software engineering practices such as structured program­
ming, top-down design and implementation, step-wise refinement and software walk-throughs. However, this goal has to 
be traded off against the exigencies of the microcontroller environment-high performance requirements, scarce memory 
resources and control over the hardware facilities. PUM-51 tries to satisfy these conflicting requirements by enforcing 
block structured software design, providing control-flow statements for structures programming (if-then-else, do case, do 
While, ... ) as well as by supporting 8051 architecture specific attributes at the language level, for example-the 
REGISTER and AUXILIARY variable attributes, and the specifics of interrupt handling. 

SOFTWARE ORGANIZATION WIIH PLJM-51 

Most applications are decomposed into logically related functions which can be programmed more or less independently 
of other functions. Interactions between functions are via a few well-defined data parameters and system level status 
blocks which are globally accessible to all functions at all times. PUM-51 program structure maps very well into this 
structured software organization. PUM-51 programs consist of one "main" module and several functional modules which 
are independently compilable units and consequently can be independently developed and debugged. Each module 
consists of one or more procedures. A procedure contains variable declarations and a sequence of executable statements. 
Variables have restricted scope to the block they are defined in, unless the scope has been extended by the 
PUBLIC/EXTERNAL attribute. The advantage of block scoping of variables is that programming errors of duplicate 
variable use are quickly identified. Figures 2 and 3 show the organization of PUM-51 programs for heirarchical tree­
structured real-time software systems. PUM-51 does not enforce a tree-structured organization, but it provides a modular 

. organization facility for implementing it. 

Level 

Level 2 

SYSTEM 
EXECUTIVE 

FIgure 2. HierarchIcal Real-tIme Software Syateme 

1-140 

210836-4 



inter 

MAIN$MODULE : nn; 
(A system reset starts 
softwarp execution at 

AR-239 

the first executahle statement of this module) 
ENfl MAIN$~OnULE 

MODULESI : DO; 
PROC$A : PROCEDURE ExTERNAL; ••••.•••..•••.•..•...••... Extprnal procedures to 

~nnULE$l 

END PROC$A; 

DECLARE VAR$A BYTE EXTERNAL; .......................... VAR$A is a public symbol 
DECLARE VAR$B BYTE; .................................. VAR$B is known to all 

procedures in MODULE$l 
PROC$l : PROCEDURE;................... .. ............. P.ROC$l is prncedu re at 

morlule level and can be 
accessed from other 
modules 

DECLARE VAR$C ByTE; ......•••••.••.•.............. VAR$C is private to 
procerlure PROC$l 

VAR$C = VAR$B; 
END PROC$l; 
PROC$2 : PROrEDURE; .•....•............................ PROC$2 can he accessed 

. by other mnrlu 1 es 
PROC$2$A: PROCEDURE; ••••••••••....•...•..........•.. PROC$2$A can only he 

accessed within PROC$2 

END PROCS2$N; 
VARIB = 1; 
CALL PROC$l; 

END PROC$2; 
END MODULE$l; 

Figure 3. Organization of PL/M·51 Programs 

1·141 

210836-5 



intJ AR-239 

DATA TYPES 

8051 microcontroller software requires intimate knowledge of the machine representation of data variables because a 
significant amount of processing is done at the bit level. Consequently. the basic types of data in PUM-SI are BIT. BYTE 
and WORD-as oppOsed to INTEGER. REAL ... COMPLEX machine-independent data types in other high-level 
languages. With the three basic data types of PUM-SI. the state of each variable is known to the programmer-at the bit 
level. This is important. ifPUM-S L programs are to take advantage of the powerful boolean instructions on the 8051. 

BUILT-IN FUNCTIONS 

The PUM-SI language has been enhanced with a number of useful standard functions which provide information about 
data representation at run-time to programs. do type conversions and provide machine level functions at a high,level 
language. 

The LENGTH and index of the LAST element in an array and the SIZE of a variable in bytes can be obtained by a 
program at run-time. This facility permits the development of program libraries which can be reused on other projects. 

System programs require the ability to manipulate data at the machine representation level as well as at. the logical level. 
Consequently. PLIM-SI provides type conversions BIT to BYTE to WORD as well as machine level instructions like 
rotate and shift for variable manipulation. 

The 8051 architecture has a powerful instruction repertoire for conditional execution on bit states. PUM-SI provides a 
TESTCLEAR function to support process synchronization primitives-for example. semaphores require uninterruptible 
test-set atomic operations. 

8051 ARCHITECTURE SPECIFIC ATTRIBUTES 

The 8051 architecture is designed to provide optimum performance over a wide range of control applications. Conse­
quently. it has a sophisticated (and complex) memory organization. and four register banks in the central processing unit 
(CPU) for rapid task switching during interrupts. PUM-51 supports programming for this environment by embracing 
architecture specific attributes within the language syntax. 

Memory mapping of variables is done by specifying a suffix attribute during data declaration. The possible attributes are 
CONSTANT. AUXILIARY. REGISTER AT (128-255). MAIN and IDATA. CONSTANT variables reside within the 
code memory. while AUXILIARY variables are assigned to off-chip data memory. The default memory assignment or 
MAIN variables reside within the directly-addressable on-chip data memory. IDATA variables are indirectly-addressable 
over the entire on-chip data memory (0-255). The REGISTER attribute maps the variable to the pre-defined mapped 
registers. 110 ports and functions on-chip. The compiler generates the appropriate addressing instructions to access these 
variables. The key benefit of letting the compiler generate addresses (mechanically) is that when decisions to move 
variables from one memory space to another are made. only the declaration attribute has to be modified. and the module 
recompiled. The impact of such an action is an assembly language program would require identifying all references to the 
affected variable and changes in its code an error-prone and laborious job. 

Rapid response to events are key to high performance in control applications. The 8051 architecture provides four register 
banks and task-switching requires only the program counter. program status word. A. Band DPTR registers to be saved. 
PUM-SI allows procedures to be associated with a particular register bank. Only the program counter. not the RO-R7 
register bank. needs to be saved on the stack during a subroutine call. since they use the same register bank. Task 
switching and the associated register bank switching is supported by the interrupt mechanism for external and internal 
events. 

Interrupt service routines are identified by associating the hardware INTERRUPT number attribute t~ a procedure. The 
register bank too should be identified for the interrupt service routine. To prevent data corruption. interrupt service 
routines should usedifferent register banks than non-interrupt code. Also. low and high priority interrupts should not use 
the same register bank. Since it is illegal to call procedures using different register banks. communication of information 
from interrupt events have to be handled via shared global data areas. 

210836-6 

1-142 



intJ AR-239 

A GENERIC COMPILER 

The rapid development of silicon technology allows semiconductor houses to optimize processors to specific market 
segments. For example. the 8044 slave processorS 'provide intelligent peripheral control and are based onthe 8051 CPU 
architecture. PUM-51 can be configured to support the 8044 by inputting to the compiler a processor definition file which 
has information about register names and memory mapping of I/O functions and bits. Configurable compilers provide an 
optimum approach to managing the costs of maintaining system software. as well as supporting proliferation processors 
based on successful CPU architectures. 

CONCLUSIONS 

Software development for microcontroller applications can be executed in a planned methodiciI manner. PUM-51 
provides software engineers with, a tool for promoting structured software design for the 8051 microcontroller family. 
PUM-51 provides an environment for controlled system development. 

210836-7 

1-143 



IIIIEIIEII •• / AR-377 

INTEGRATED TOOLS 
ACCELERATE CODE 
DEVELOPMENT 
Integrated source and version control,electronic mail, and 
standard interfaces for programming languages and operating 
systems can move the software task faster than using 
additional programmers. 

by Dennis Carter 

If a project is running behind schedule, adding staff 
members is not always the best tactic for getting it 
back on schedule. As the saying goes, adding man­
power to a late software project makes it later. Often 
the best solution is to coordinate programming 
efforts and project management through an inte­
grated development environment. This type of sys­
tem stimulates greater efficiency by combining 
management, programming, and debugging tools in 
one environment. Productivity increases especially 
for microprocessor systems with separate target and 
host development systems. As a result, industries can 
meet critical delivery schedules without needing. 
additional programmers. 

System development is a complex process involv­
ing several different stages that continually pass 
information between each other. The development 
environment should be more than a collection of 
assorted tools that are poorly linked. It must effi-

Dennis Carler is software product marketing manager 
for Intel (Santa Clara, Calif). HI! holds an MBA 
from Harvard Unil'ersity and an MS in electrical 
engineering from Purdue University. 

Reprinted with permission from Computer Design. January 1985 issue. 

ciently coordinate the diverse stages of development 
in a single environment, allowing information to 
flow easily between different tiers of the project. 

An efficient development cycle has two parts. 
Managers must have a clear view of the project from 
inception through test and implementation. Thus, 
planning work schedules and anticipating design 
bottlenecks are easier. Software engineers must share 
their ideas, designs, and programs-passing infor­
mation throughout the different development stages. 

Yet, in developing products for other target 
machines, an integrated environment for the host 
developmerit system alone is not enough. Unless a 
smooth transition to the final target environment 

Order Number 231433001 

231433-1 

1-144 



intJ AR-377 

OE~HOP~tNl 
IDOLS I DESIGN I 

I 
MANAGEMENT 

I AND CONTROl. 

r ~ 
lOGICAL 

CODING LOGICAL" OESIGN f- f- SOfTWARI r-- INIARGEI 
,"0 AND DEBUG 

DOCUMENTATION TRANSLATION DEBUG 

An inlegraled developmenl environmenl must do 
more Ihan acl as a librar~' for developmenl lools. 
II musl ensure Ihal informalion flows smoolhl~' 
b.lween componenls. As organizalions shil'l 10 new 
dev.lopmenl policies and expand d .... lopmenl 
hardware. Ihe s~'slem musl be able 10 migrale 
smoolhl~ 10 Ihe new hosl environmenl. 

is provided, the project will bog down during the 
critical target system integration and test. The transi­
tion from host to target development environments 
is one of the two major factors affecting the project 
cost. According to Randall W. Jensen, chief scien­
tist at H\lghes Aircraft Co, changing environments 
can increase costs as much as 122 percent. 

Host hardware environments also change as the 
company expands its development resources. Rather 
than losing previous investments in tools or training, 
the company must be able to shift the entire environ­
ment smoothly. Some workstations are built to make 
this transition easy. For example, engineers using 
Intel's Intellec! Series IV workstation maintain the 
same fundamental development environment when 
they move to the NDS-II distributed development 
environment . 

With its multiple stages, system development can 
turn into a logistical headache for managers and 
engineers alike. Managers supervising several pro­
gramming teams, each developing different versions 
of programs, can easily lose the thread of revisions 
to the source code. Similarly, programmers can find 
themselves working at cross-purposes in their at­
tempts to generate and test the most recent versions 
of code, rather than a hybrid of current and obso­
lete co.de versions. 

An integrated system can help prevent these prob­
lems by combining different tools and making them 
work well together. For example, Intel's configura­
tion management tools, Source Version Control Sys­
tem (SVCS) and MAKE, manage multiple versions 

of a program. The tools can automatically combine 
the most current versions of several modules in larger 
programs. Similarly, Intel's debugging aids, 
PSCOPE and Integrated Instrumentation and In­
Circuit Emulation (I2ICETM) package, use informa­
tion implanted by compilers to permit programmers 
to debug during the integration process at the source 
level. Such an integrated environment increases effi­
ciency through good allocation of available resources. 

Management and control 
Modular design helps software engineers break a 

large complex problem into a set of small simple pro­
grams. Unfortunately, a modular design system re­
quires more overhead for managing a large number 
of modules and different versions of the same 
module. If the logistics become too troublesome, 
programmers might even collapse several modules 
into a single file to save themselves the trouble of 
manipulating the separate modules. Project manage­
ment tools can free engineers from the housekeeping 
chores associated with program development. 

Programmers keep track of major changes in their 
programs by either creating copies of the new version 
or changing an older version. The result is a series 
of similar programs that lack proper documentation 
to indicate the change and reason for the change. 
SVCS provides an automated approach to this 
record keeping. It tracks changes to the baseline ver­
sion of a program, and demands that programmers 
record their reasons. 

When software engineers need a particular version 
of a file, whether the current or some older copy. 
SVCS automatically retrieves the correct version 
from its data base of updates and baseline versions. 
Similarly, after the programmers have added changes, 
SVCS records the updates and the reasons for the 

, 
MANAGER ~ 

1 1 

~~ \=) 
PROllel ~ 

MANAGEME~I 
100lS 

--.. IARGET 
SYSTEM 

1I",idc, "lInlrollin)! chan)!es In Ihe source files in 
ii, dala ha",. S\('S helps mana~crs audil source 
"I'dal,'", .\lIll1malicall) )!eneralin~ Ihe software for 
Ih" lar~el ,),1"111. !\I'\KE reduces ~eneralion lime b)' 
ahll,,1 SII p,'rcc"l. Ica,in)! engineers more lime 10 
l'Ulu.'I.'llln"l' on dl·\l'Iupmt.'nl. 

231433-2 

1-145 



inter AR·377 

changes, adding as little as a 3 percent overhead. In 
addition, SVCS helps project managers exercise pre­
cise control in large team projects'by preventing cer­
tain engineers from making changes independently. 

While programmers work directly with SVCS to 
manage different program versions, MAKE works 
closely with SVCS facilities to generate current ver­
sions of systems. While generating large systems 
from several different modules, programmers often 
find that one or two modules have been updated 
since the last compilation. This problem is com­
pounded when modules depend on a series of other 
submodules. MAKE automates the manual proce­
dures often resorted to by software engineers to track 
current object modules. 

Management tools can jreeengineers 
from housekeeping chores. 

Using templates that detail the modules' interde­
pendence~ MAKE ensures that only current versions 
of mo,jules are included in the system generation. 
Ifit finds that a required object module is obsolete, 
MAKE will automatically compile the appropriate 
sOurce module to produce the current version of the 
object module. Furthermore, if source modules de­
pend on submodules, MAKE will continue search­
ing through its templates to ensure it recompiles 
modules using the current submodules for these 
source modules. 

MAKE selectively compiles the needed modules. 
Only if a module or one of its submodules is obsolete 
does MAKE execute a recompilation. This cuts the 
inefficient massive compilation procedures commonly 
used to ensure that object modules are current. 

In addition to the project management tools han­
dling version control and system generation, a com­
plete integrated development environment should 
also facilitate communication among users. Acting 
as an electronic central distribution center, the 
NOS-II electronic mail facility maintains mailboxes 
for individual users and groups of users on the net­
work, and an electronic bulletin board for all users. 
In addition to supporting document distribution, 
electronic mail manages a file transfer facility. Team 
members can transmit both source and object mod­
ules to any other user on the network. 

Another feature, NOS-II's network resources 
manager (NRM), provides extensive support for file 
management and resource sharing. The NRM man­
ages fil~s with a hierarchical structure that arranges 
files into volumes and multiple subdirectories. The 
NRM also improves allocation of resources through 
its distributed job control (OJC) facility. OJC per­
mits users on private workstations to export a batch 
job to the NRM for remote execution. The NRM 

then moves the job to a free workstation for execu­
tion, returning the completed job status to the user's 
directory. 

Logical design 
An integral part of the software development envi­

ronment and its primary interface with the user is 
the text editor. B~cause software engineers typically 
spend 40-50 percent of their time using a system edi­
tor, it is a critical element in software development 
and can greatly enhance productivity if used well. 
For example, programmers often need to work 
simultaneously on two separate files, such as two 
different source programs or a program and a speci­
fication document. Editors such as Intel's AEOIT 
permit them to edit two files of any size simulta­
neously and transfer text between them. 

AEDIT'sability to store a sequence of edit com­
mands also simplifies the use of edit macros. With 
AEOIT, programmers build macros simply by typing 
in their commands. They can reexecute the command 
series or save it on disk for later use. AEDIT also 
helps software engineers with structured program­
ming techniques through its automatic text inden­
tation. Furthermore, AEOIT protects programmers' 
efforts by optionally creating backup copies of files 
being edited. 

Although a text editor serves as the primary inter­
face between the development system and program­
mer, programming languages serve as the principal 
interface between design concepts and the target 
hardware. With the right set of programming lan­
guages and support tools, software professionals can 
develop the optimal solution fora particular situa­
tion, without the design bias often . seen when de­
signers plan projects with an eye on their eventual 
implementation. 

For example, different programming languages 
like assembler, PL/M, C, Pascal, and Fortran enjoy 
certain advantages over each other. Software devel­
opers should be able to draw on the most appropriate 
language to implement the different facets of a 
design. In order to support this kind of free choice, 
however, the development environment must be able 
to coordinate the use of a mix of programming.lan­
guages, so that prqgrammers can use different lan­
guages without Clmcern about how the different 
modules will eventually be combined. 

Like spoken languages, the virtue of programming 
languages lies in their ability to represent abstract 
ideas in concrete terms. Just as it may be easier to 
express a certain idea with a particular spoken lan­
guage than another, programming languages vary 
in their ability to represent certain design concepts. 
For example, software engineers. find that Pascal 
represents structured designs more faithfully than 
a language like Fortran .. Also, languages like PLIM 

231433-3 

1-146 



inter AR-377 

or C, which closely reflect the hardware base of a 
design; or assembly language, which provides the 
ultimate visibility into the hardware, are powerful 
tools for developing realtime embedded systems. 

Still, programming languages share another fea­
ture with natural languages-varying degrees of 
popularity. For example, Fortran remains'one of the 
most popular programming languages. Its continued 
strong momentum translates into a large installed 
base of software. For managers, this large installed 
base provides a ready source of existing code. On 
the other hand, managers must remain ready to 
incorporate newer languages like Ada into designs 
without starting from scratch. 

In many software development projects; managers 
often look for a way to juggle several programming 
languages simultaneously. Software engineers can 
usually adapt quickly to new programming lan­
guages-particularly when they are supported by 
project management tools. On the other hand, the 
development environment often acts as a bottleneck 
in mixing several different languages in the same 
target system because of its inability to match the 
varying program and system interfaces of different 
languages. 

The Intel development environment integrates dif­
ferent languages through a common object module 
format (OMF). A standard OMF works at several 
levels. During link time, OMF presents a standard 
method for indicating data type information, which 
the linker uses to build its memory allocation tables. 
Furthermore, debuggers exploit OMF's standard 
arrangement of symbolic information for handling 
symbolic debugging. 

Two other aspects of the standard development 
environment include the definition of standard con-

APPLICATION 
PROGRAM 

• CALL DQIAllOCA IE 

UNIVERSAL 
OEVELOPMENT 
ENVIRONMENT 

TARGET 
OPERATING 

ENVIRONMENT 
(RMX. XENIX. ISIS) 

ALLOCATE MEMORY 

Where applicalion slandards do nol alread~' exisl, a 
de,elopmenl s~'slem should ·follow some haseline. The 
uniwrsal de"elopmenl interface sets a haseline I'or 
inleractions between application programs and . 
opera ling sot'lware •• 'or e,ample, an application thai 
requires memor~ uses a l.'IU call (l)Q$AI.I.OCATE), 
which is laler Iranslaled inlo Ihe appropriale call for 
Ihe largel operating en"ironmenl. 

ventions for passing parameters between different 
programs-regardless of their implementation lan­
guage-and standard interfaces to the operating 
environment. Besides accounting for critical imple­
mentation details another key measure of the effec­
tiveness of a development environment is its support 
of application level standards like IEEE 754 for 
floating point operations or IEEE 802 for Ethernet. 

System·independent interface 
For those areas currently without standards, the 

development environment takes the initiative with 
a baseline for the operating environment. Here, 
Intel's universal development interface (UDI) defines 
a system-independent interface between application 
programs and the operating environment. Rather 
than write their programs with system-dependent 
calls to operating system utilities, software devel­
opers use the same UDI call to allocate memory, for 
example; regardless of the target operating system. 
During link-time, the linker uses this UDI call to link 
in the appropriate system utility in RMX, for 'exam­
ple. Consequently, programs that use the UDI can 
be ported between ISIS, RMX, and Microsoft's 
Xenix simply by loading the modules into the new 
environment. Thus, if the design calls for a realtime 
operating environment like RMX, engineers can 
develop the application under ISIS without fear that 
their work will be lost when the system is transported 
to the RMX environment. 

For the manager trying to improve productivity, 
no faster method exists than simply porting existing 
code to a new environment Besides IEEE standards, 
which provide a common application environment, 
the use of a OMF and UDI provide ai:lear migra­
tion path between different operating environments. 

In ,the kind of cross-development environments 
commonly used for creating microprocessor-based 
products, engineers work most effectively if they are 
able to split debugging into two phases. In the first 
phase, debugging occurs in parallel for the target 
hardware system and for the software. Here, engi­
neers use the host environment to debug the basic 
logic of the software system. Once they are satisfied 
both with the logic of the software and with the oper­
ation of the hardware, the engineers then load the 
software into the target system for the second phase­
integration and test. 

This in-target phase is the critical step where hard­
ware, and software are finally integrated as a total, 
system. As noted earlier, differences between the 
host and target environments canmore than double 
costs. Consequently, a key feature oran int'egrated 
environment is a common debug interface between 
host and target. 

Intel's PSCOPE debugger permits programmers 
to check out programs at the sO,urcelevel both during 
logic debug and during in-target test. Because 

231433-4 

1-147 



AR·377 

Debugger Command Language 

Command 

GO/Listed/P;nep 

, Define 
Display 
Modify 

, Remove 

. ' CalliReturn 

Cali/Return 

, Write/CI 

Do/End 

l'Iepeat/Count 

If/Then/Else 

. Input/Put/Append' 

Action 

Control ,program execution 

Manipulate debugger 
or program objects 

Execute debugger procedures 

Execute debugger procedures 

Console input/output 

Define command blocks 

Repetition of commands 
or command blocks 

Conditional execution 
of commands or blocks 

Save/restore to and from disk 

PSCOPE shows up again as one ,of the three major 
components of the PICE system, software engi­
neersare assured of a smooth transition between host 
and target. Along with PSCOPE, the PICE and 
the logic timing analyzer (L T A) give developers a 
full view simultaneously into the hardware and soft­
war.e components of their systems. Without this kind 
of coordinated approach to system integration and 
test, devel9pers can never deal with the hardware 

. and software as an integrated system, but are forced 
to switch.coJltillually between hardware testing and 
software, debugging. 

,Supporting system integration at the most funda­
mental level, in-circuit emulation provides a trans­
par!:nt, full speed emulation of the iAPX 86 and 
iAPX 286 families of processors. Besides handling 
multiple level breakpoints and traces in single micro­
processors, PICE extends its support to multi pro­
cessor environments. Developers can emulate a 
system of up to four microprocessors and examine 
complex processor interactions like synchronization. 
For example, PICE lets engineers define events like 
breaks and traces conditionally, so that a micropro­
cessor. will break when another defined event occurs 
in a different microprocessor. 

While I2ICE and PSCOPE provide the funda­
mental support for a system's underlying hardware 
and software, the L T A also serves as a key element 
of the system's integrated package. Displaying 16 
channels of logic·and timing information, the L T A 
helps isolate critical state and timing problems. In 
order to ·speed. the analysis process, this menu­
oriented system also permits engineers to save debug­
ging setups and waveforms· on disk. 

A key advantage of an integrated environment is 
its ability to present information, through a consis-

tent command language, in a familiar form. With 
12ICE, this feature extends to logic and timing 
analysis. R.ather than present a morass of digits, the 
L T A displays most information in easy to under-
stand waveform diagrams. . 

Source·level debugging 
~ ust as the L T A has moved system integration and 

test above the bit level, PSCOPE shortens software 
debugging by permitting engineers to test programs 
using their own symbols, rather than machine code . 
With the traditional machine code debugger, if they 
wanted to patch a section of machine code, program­
mers would spend hours converting machine code 
between different formats, like binary and hex, and 
calculating the machine code equivalents of assem­
bler instructions. Even somewhat more sophisticated 
debuggers that disassemble machine code are little 
help in retaining the sense of a program as expressed 
through its use of symbols. 

Instead, even though it helps software engineers 
deal with machine code when necessary, PSCOPE 
can handle debugging at the level of the original 
source code. Consequently, programmers can set an 
unlimited number of breakpoints by statement 
number, step through a single source statement at 
a time, and trace execution' by statement number, 

I L _________ _ 

." 

In Ihe pasl, engineers hu,'e needed 10 ilerale Ihrough 
a lenglh~' de"elopmenl c~ ele in order 10 dehllg sourc,' 
code in Ihe largel s~'slem (a)., On Ihe olher hand. 
PSCOPt: leis engineers use source-Ie,el code 10 
debug and palch Ihe largel syslem and conli,!ue 
debugging. Then, afler man~ bu~s are '·ound. 
PSCOPt: saws Ihe source-Ie,el palchcs on disk for 
laler addition 10 Ihe original source mes (h). 

231433-5 

1-148 



inter AR-377 

procedure name, or label (regardless of whether they 
are working with the host or target system). 

From the user's point of view, the utility of 
PSCOPE lies in its built-in, CRT-oriented editor and 
in its.command language that resembles a high level 
structured programming language. Using PSCOPE's 
editor, engineers can write extensive procedures 
in the command language for testing code and even 
for patching existing code with new or revised 
source statements. 

The many advantages of an integrated 
environment include source-level 
debugging tools, such as PSCOPE. 

PSCOPE's ability to handle source-level patches 
avoids the conventional development scenario where 
software developers go through a continual cycle of 
edit-compile-Iink-test-debug. Source-level patching 
short-circuits this loop; programmers can remain in 
the debug phase-patching at the source-level and 
even saving the source-level patch on disk for later 
incorporation into the original source-code files 
maintained under SVCS. 

The advantages of an integrated environment 
show up here dramatically. During compilation, the 

compiler places symbolic information associated 
with a program into the object modules it generates. 
In turn, the linker carries this information along into 
the runtime image. Both PSCOPE and 121CE draw 
on this symbolic information for their source-level 
debugging. Consequently, during system debugging, 
developers see familiar procedure and data names, 
rather than a confusing series of machine codes or 
disassembled mnemonics. Furthermore, because it 
maintains this symbolic information in a virtual 
table, PSCOPE is able to handle arbitrarily long 
symbol tables-it just brings a new page of symbols 
from disk, if necessary. 

As a result of its ability to coordinate its tools for 
the various stages of development, the Intel develop­
ment environment lets system engineers concentrate 
on product development, rather than on administra­
tive chores. For the development manager, this trans­
lates into on-time product delivery, without the costs 
of additional resources. 

231433-6 

1-149 



AR~388 Ada Task 
,Synchronization in a 
:Multiprocessor SysteDl 

",ith Shared Me'Dlory 

Timothy E. Lindquist and Richard C. Joyce 
, . Department ofC~mputer Science. Virginia Tech. Blacksburg. VA 24061, 

Ada provides a means for concurrent processing 
within a program through tasking. Several asyn· 
chronously e:r:ecuting tasks may constitute a single 
Ada program. I ntertask communication and synchro­
nization is provided through a rendezvous mecha­
nism. This article presents an implementation of Ada 
tasking for a multiprocessor system having a shared 
memory. The INTEL 80286 processor is used as an 
example basis for such a system. The code needed to 
implement synchronization and communication 
among tasks (rendezvous) executing on possibly dis­
tinct processors is presented. Intertask message pass­
ing is an important aspect of the applications for 
which Ada will be used. This article addresses effi­
cient message transmittal in the conte:r:t of shared 
memory. 

INTRODUCTION 

The implications of using the Ada program­
ming language to produce software for a strict real­
time environment are largely unknown. This lack of 
experience is compounded when the target system 
has distributed or multiprocessing characteristics. 
Since Ada will be the common high-order language 
for use in future Department of Defense embedded 

Journal of Pascal. Ada, & Modula·2, Vol. 4, No. I, pp. !H9 (1985) 
1>1985 by John Wiley & Sons, Inc. Reprinted with pennission. 

systems, efficient implementations of Ada facilities 
on architectures critical to embedded applications 
are important; 

Architectures representing increased diffi­
culty of Ada implementations include single-proces­
Sor ,systems, multiprocessor systems with shared 
memory, and multiprocessor systems without shared 
memory. When matching these variations with the 
possible levels of distribution of an Ada program, 
several combinations of systems exist. The distribu­
tion of an Ada program may range from (1) no dis­
tribution-a single Ada main program together with 
all its tasks run on a single processor, (2) fixed as­
signment of program parts to processors-for exam­
ple, on program initiation all tasks are assigned a 
processor and that assignment remains throughout 
program execution, (3) dynamic assignment of pro­
gram parts to processors-in this case the assign~ 
ment of a program part to a processor may change 
during execution; for example, tasks may migrate 
among processors. 

For fixed and dynamic assignment, the Ada 
object of distribution need not be the task. Based on 
the programmer's view of the application, assign­
ment may be done ~or packages or data structures. 
For example. Comhill [11 is considering program dis­
tribution based on programmer-defined names. Oth­
ers, such as Roberts l51. have ellamined the Ada task 

eee 0735·1232/85/010009-11$04.00 

231543-1 

1-150 



inter AR-388 

as the object of distribution. In this article we ex­
amine efficient synchronization of tasks assuming 
there is a fixed assignment of tasks to processors. 
Our approach builds upon the ideas presented by 
Habermann [21, in which scheduling points are min­
imized for task synchronization. While Habermann's 
solution is tuned to message-passing applications of 
Ada in which replies are not expected, our solution is 
not tuned to a specific application of tasking. We as­
sume a multiprocessor architecture based on the IN­
TEL 80286, with a shared memory. The shared 
memory allows techniques used in single-processor 
systems to be adapted, but presents efficiency prob­
lems in synchronizing and communicating among 
processors. 

ADA TASKING 

An Ada program is made up of one or more 
tasks each of which executes on its own logical pro­
cessor. Tasks are executed asynchronously except at 
points of programmer-specified synchronization (and 
communication). A task is declared and initiated in 
an Ada program by (1) declaring a task type, (2) de­
tailing a task body for the type, (3) creating an object 
of the task type. 

A task type is declared through a task speci­
fication, which includes entries for the type. Entries 
may be parameterized and called by other tasks in 
much the same way as procedures are called. Below 
is an example task specification for the task type 
BUFFER with two entry points SEND and RE­
CEIVE. In this example, a BUFFER task synchro­
nizes transmittal of messages from a sending task to 
a receiving task. 

task type BUFFER is 
entry SEND (CH : in MESSAGE); 
entry RECEIVE (CH : out MESSAGE); 

end BUFFER; 

A task body is the section of code that is as­
sociated with a task type. The body details the ac­
tions that are to take place within instances of the 
task. Accept statements are placed in the body to cor­
respond with entries; A rendezvous occurs between 
two tasks when one executes an entry call and an­
other executes a corresponding accept ,statement. 
The caller does not continue' until the accept has 
completed. The calling and called tasks stay syn­
chronized until the accept completes, after which 
each continues asynchronously. Below is a task body 
for BUFFER in which messages are obtained from 

the sending task and relayed to the receiving task 
one at a time (buffer..size = 1). 

task body BUFFER is 
MSG : MESSAGE; 
begin 

loop 
accept SEND (CH : in MESSAGE); 

MSG:= CH; 
end SEND; 
accept RECEIVE (CH : out MESSAGE); 

CH:= MSG; 
end RECEIVE; 

end loop; 
end BUFFER; 

Figure 1 demonstrates one possible use of the 
BUFFER task shown above. The MSGJlANDLER 
task buffers a single message, the PRODUCER task 
places messages in the buffer using SEND, and the 
CONSUMER procedure, which runs as a separate 
task, reads messages from the buffer using 
RECEIVE. 

A task body may contain more than one accept 
statement for an entry, but all accept statements 
within a task must be for its own entries. If an entry 
is called before a corresponding accept statement is 
encountered, the call is queued for the entry. When 
an accept statement is executed before any entry call 
is made, the accepting task suspends until a task 
calls the entry. 

Consider the following example execution of 
Figure 1 that demonstrates an accept before an entry 
call. CONSUMER is invoked, and the task objects 

procedure CONSUHER is 

HSG_HANDLER , BUFFER: 

task PRODUCER: 
task body PRODUCER is 

HSG , HESSAGE: 
begin 

loop 
-- build a message in HSG 
HSG.HANDLER.SEND(HSG) : 
-- exi t when no more messages 

end loop; 
end PRODUCER t 

HSG I li!SSAG£; 

begin 
loop 

HSG_HANDLER.RECEIVE(HSG) : 
-- use the menage in HSG 
-- exit when no more messages 

end loop; 
end CONSUMER: 

FiI(Ul'e 1. Ali example of Ada tasking. 

Journal of Pascal, Ada; & Modula-2, January/February 1985 

231543-2 

1·151 



inter AR·388 

MSGJiANDLER and PRODUCER are elaborated. 
These tasks are activated before execution of the first 
statement of procedure CONSUMER Assuming 
that PRODUCER has not yet executed a call to 
SEND, when MSGJiANDLER executes the accept 
statement for SEND it will suspend. When PRO­
DUCER makes a call to MSGJiANDLERSEND, 
the accept body executes. MSGJiANDLER receives 
the character CH and stores it in the local variable 
MSG. After the accept statement concludes MSG_ 
HANDLER and PRODUCER continue execution. 

Synchronization Constructs 

Three different forms of the select statement 
are available to control task synchronization. The 
first is the selective-wait, which is used to coordinate 
among possibly several accepts for a task. The selec­
tive-wait provides the ability to conditionally accept 
only when there isa pending entry call or to wait for 
an entry call for· a prespecified amount of time. 
Timed and conditional entry calls are the remaining 
two forms of the select statement. These forms allow 
for no waiting for a prespecified wait when issuing an 
entry call. 

The Selective-Wait 

The selective-wait statement is made up of 
one or more alternatives each specifying actions. 
One alternative is selected and executed each time 
the construct is encountered. Alternatives can be in­
cluded for conditionally/immediately accepting en­
try calls or for specifying contingency actions if an 
entry call cannot be accepted. 

One or more accepting alternatives can exist 
in a select. Accept alternatives may be guarded al­
lowing the programmer to specify the task conditions 
needed to execute the accept. Statements may also be 
placed following the accept body of a select alterna­
tive. These statements are executed after the ren­
dezvous has completed. 

Contingency alternatives describe what to do 
when an accept alternative cannot be executed. If 
they are present, contingency alternatives may take 
one (only) of the following forms: (1) an else, (2) one 
or more delay alternatives, (3) a terminate alterna­
tive. As with accept alternatives, the delay and ter­
minate alternatives may be guarded by a 
conditional. The delay and else may also include 
statements to be executed when selected. 

task body BUFFER is: 
POOL_SIZE I constant INTEGER := 100; 
POOL: array(! •• POOL_SIZE) of HESSAGE: 
COUNT ; INTEGER range 0 •• POOL_SIZE 1= 0: 
FRONT. REAR I INTEGER ranae 1 •• ,POOL_SIZE ,. 1: 

begin 
loop 

select 
when COUNT < POOL_SIZE' => 

accept SEND (C : in MESSAGE) do 
POOL (REAR) :R C; 

end: 
REAR :. (REAR +, 1) mod POOL_SIZE: 
COUNT : = COUNT + 1: 

or when COUNT > 0 => 
accept RECEIVE (C : out HESSAGE) do 

C 1= POOL (fRONT) : 
end: 
FRONT := (FRONT + 1) mod POOL_SIZE: 
COUNT I = COUNT - 1: 

end select; 
end loop: 

end BUFFER; 

Figure 2. BUFFER using a selective wait to queue mes­
sages. 

Execution of a select begins by evaluating the 
guards in an undetermined order. All· alternatives 
having a true guard and alternatives having no 
guards are said to be open. If one or more accept al­
ternatives are open and also have queued entry calls 
then one is arbitrarily selected and executed. If an 
immediate rendezvous .is not possible then selection 
depends on the contingency alternative. 

No (open) contingency alternative: If there are 
open accepts then the task waits until an entry call 
is made to one of the open entries. When there are no 
open alternatives the exception PROGRAM...ERROR 
is raised. 

An else is present: The else part is executed if 
no open accept alternative can be immediatelyse­
lected. 

One or more delay alternatives are present: De­
lays specify a time to wait for an entry call and ac­
tions to be performed should the wait time expire. 
The open delay alternative with minimal time delay 
is selected (arbitrarily if more than one have the 
same delay) ifno entry call is made to an open accept 
beforehand. 

Terminate: An open terminate is selected and 
the task is terminated if the language-defined con­
ditions for termination are satisfied before an entry 
call is made on an open accept. 

Figure 2 shows how the BUFFER task pre­
sented previously can use the selective-wait to. allow 
messages to be queued as they are transmitted from 
the PRODUCER to the CONSUMER This example 
is similar.to that appearing in the Ada Language 
Reference Manual [4]. 

Journal of Pascal, Ada, & Modula-2. JanuarylFebruary 1985 
231543-3 

1-152 



inter AR-388 

Timed Entry Call Statement 

This fonn of the select provides the program­
mer with the ability to specify, upon making im entry 
call, the time to wait for a rendezvous to begin. The 
syntax of the timed entry call is 

TIMED....ENTRY _CALL :: = 
select 

or 

ENTRY _CALL...STATEMENT 
[SEQUENCE_OF .-STATEMENTS] 

DELA LSTATEMENT 
[SEQUENCE_OF .-STATEMENTS) 

end select; 

If possible, the rendezvous is initiated before the 
time specified in the delay statement. If this is not 
possible, the statements following the delay are ex­
ecuted and the entry call is canceled. Ada also pro­
vides a continental entry call as another fonn of the 
select statement. The conditional entry call has the 
same semantics as the timed entry call except that 
no time delay is specified. If a rendezvous cannot im­
mediately begin then the else part is executed. 

THE INTEL 80286 

The iAPX286 from INTEL is an 8086 upward 
compatible VLSI microprocessor system based on the 
80286 CPU. The iAPX286 provides many hardware 
features for today's large multiuser and real-time 
multitasking systems. Hardware protection, virtual 
address spaces of up to 1 gigabyte per task, mutual 
exclusion of these address spaces, on-chip memory 
management, and virtual memory support are a few 
of the features of this system. 

The 80286 CPU consists of four separate pro­
cessing units. An address unit performs pipelined 
calculation of effective addresses while making 
hardware protection checks based on cache protec­
tion infonnation. A bus unit manages a demulti­
plexed bus structure using pipelining techniques to 

bytes 

I INTEL reserved I 7-6 
-t----- .. --+ ....... _ ..... _+ 

I access I bue I 5-4 
+----- .. --. J 

address I 3-2 .- .... ----_ ........... _--. 
size 1-0 

Figure 3. Segment descriptor for the INTEL 80286. 

provide a bus bandwidth of 10 megabytes per second 
using a lO-MHz clock (3). An instruction unit de­
codes instruction codes received from the bus unit 
and manages a prefetch queue. The execution unit 
executes decoded instructions that are received from 
the instruction unit. 

Real and Protected Address Modes 

The iAPX286 can run in either of two address­
ing modes. In the real address mode the virtual ad­
dress space is identical to the physical address space, 
and programs manipulate physical memory loca­
tions. Up to 1 megabyte of physical memory may be 
addressed, and in this mode the 80286 appears to be 
a fast 8086. 

Protected Virtual Address Mode 

In protected virtual address mode, the 80286 
provides additional features while maintaining close 
to the same baseline architecture as the 8086. The 
major additional features provided are virtual ad­
dress translation, memory protection, and multi­
tasking support. 

The total virtual address space fora task is 1 
gigabyte, which is mapped into 16 megabytes of 
physical memory. Each task has its own Local De­
scriptor Table (LDT). Additionally, there is a Global 
Descriptor Table (GDT) common to all tasks. Infor­
mation may be referenced only through these de­
scriptor tables, thus providing mutual exclusion of 
local address space. 

Descriptor Tables 

A descriptor table may contain two types of de­
scriptors, segment descriptors and control descrip­
tors. A segment descriptor is shown in Figure 3. 
Bytes 6 and 7 of the descriptor are INTEL reserved 
for upward compatibility, and byte 5 is the access 
rights byte. The 24-bit base address field (bytes 2-4) 
points to the start of the segment in the 16-megabyte 
physical memory. The I6-bit size field indicates the 
current length of the segment and is used to insure 
that all references are in range. 

The second type of descriptor in a descriptor 
table is a control descriptor. Control descriptors ref­
erence special system data segments. These seg­
ments include descriptor tables, descriptors for task 
state segments (segments that define the current 
state of a task), and call the task gates which are 
used for transfer of control. Control descriptors are 

Journal of Pascal, Ada, & Modula-2, January/February 1985 

231543-4 

1-153 



inter AR-388 

differentiated from segment descriptors by the access 
rights byte. Although control de'scriptors may reside 
in the GDT, they are not accessible to tasks. 

Address Translation 

A task references the location of a byte of 
memory using a 32-bit virtual address, although the 
instruction itself may not contain all 32 bits. Of the 
32 bits, 16 are used to select a segment descriptor and 
16 are used to index into the selected segment. The 
top 16 bits are the value of the segment register and 
select a descriptor from either the GDT or the LDT of 
the task. A 16-bit offset into the segment is added to 
the base address field of the, descriptor to complete 
the 32-bit virtual to 24-bit physical address trans· 

·Iation. 

The Register Set 

The register set of the 80286 consists of gen· 
eral·purpose registers, segment registers, status reg· 
isters, and special·purpose registers. There are eight 
116-bit) general·purpose registers, four of which are 
addressable as byte or word registers, and the other 
four ~f which are default registers for operands of 
many instructions and are addressable only as word 
registers. Tasks running in the 80286 environment 
usually consist of several code segments, data seg· 
ments, and a stack segment. The four segment reg· 
isters leS, DS, ES, and SS) are used to provide 
immediate access to four of the segments of a task. 
Each is a pointer into the descriptor tables for the 
currently executing task. Most memory references 
are simple 16-bit offsets to the segments referenced 
by the DS, ES, and SS registers. If the data desired 
do not reside in a currently referenced segment, a full 
32-bit address is needed to first reload the segment 
register, and thel1 offset into the newly referenced 
segment. The SS can be loaded explicitly for dynamic 
stack reconfiguration. There are three (16-bit) status 
and control registers including an instruction 
pointer, a machine status word, and a flags register. 
Finally, there are three (I6-bit) special·purpose reg· 
isters which keep track of the locations of the current 
local descriptor table (LDTR), the global descriptor 
table (GDTR), and the segment that contains infor· 
mation on the state of the current task (TR). 

Task Management 

Each process running in an 80286 environ· 
ment is called a task, and among other features, the 

GDT 
GDTR ---- ........ ) +-- ....... -----------+ 

I ) 
) ) LDTi 
I I + .... > +-_ .. _-_ ... 

1 1 1 1 LDT 1 
1 1 1 1 for 1 
1 1 1 1 tuk 11 
+----------------+ I 

TR ----------> I r5S descriptor 1-+ I 
+ .. --_ .. __ ......... -- .. --+ I I 
1 1 1 1 TSSi 
I I +-1> +----- ...... -------- .... -+ 
I I I I Task LOT selector 1-+ 
1 1 1 + ••••••••••••••••••• + 1 
+---------........... - .. + I I 

LDTR---------> I LDT descriptor 1---+ register values I 
I +-----------_ .. _--+ I 

stack locations I 
back llnk to ISS I 

+-------- ...... --------. I 
task state ngment I 

.------ .. ---------. for task .1 I 
1 

+--------- ......... ---_ ... -------------------_ .. -----------+ 

Figure 4. Task management information. 

system provides an efficient task switch mechanism. 
Each task is defined by a special segment known as 
a Task State Segment (TSS) as shown in Figure 4. 
Descriptors for the TSSs uniquely identify a task and 
are stored in the GDT. A special·purpose register, 
the Task Register (TR), always contains a selector 
into the GDT for the current TSS descriptor. The TSS 
defines the execution state of a task through register 
values, stack locations, and a backpointer to the pre· 
vious task. The address spa\!e of a task is also defined 
in its TSS. The TSS contains a selector into the GDT 
where a descriptor for the task's LDT can be found. 

The Target Architecture 

The target system consists of several 80286 
processors, denoted (Pn), each with its own local 
memory (Ml) as shown in Figure 5. All processors 
address a global memory (Mg) through a high·speed 

Pc 

HLi --- Pi _____ w .. ___ Mg ------_ .. -- Pn _ .. - HLn 

/ 
/ 

/ 
P2 P3 

/ \ 
/ \ 

HL2 HL3 

Figure 5. Hypothetical multiprocessor with shared 
memory. 

Journal of Pascal, Ada; & Modula-2, January/February 1985 

231543-5 

1·154 



inter AR·388 

hardware connection. The address space (both phys­
ical andvirtuall of each processor has local memory 
and global memory addressable through its LOT and 
GOT, respectively. Additionally, there is a control­
ling processor (Pc) dedicated to running system 
scheduling and other systemwide functions. This 
processor has a link to all other 80286 processors that 
allows it to force a task switch (i.e., interrupt and 
load the CS:IP register pair). As in all tightly coupled 
systems, memory contention can be a major bottle­
neck. Without precluding other methods, global 
memory synchronization is assumed through the use 
of the LOCK prefix for memory accesses (assuming a 
multiported RAM for global memory). The LOCK 
prefix asserts a bus lock for the duration of the mem­
ory access. Using this approach, global memory con­
tains (1) the system Global Oescriptor Table (GOT), 
(2) all local 'descriptor Tables (LOTs), (3) all Task 
State Segments (TSSs), (4) the system scheduler, (5) 
code segments for each accept statement, (6) seg­
ments for all identifiers referenced by any accept 
statement, and (7) the data structures used for con­
trolling synchronization. 

EXECUTING SYNCHRONIZATION 
CONSTRUCTS 

In this section we present the code needed to 
implement synchronization among tasks of an Ada 
main program. The technique provides for an Ada 
program to be distributed across the target architec­
ture such that tasks of the program may execute on 
different processors. A single task, however, is not 
distributed across processors, and multiprocessing is 
not precluded as a .level of control above that de­
scribed here. 

Data Structures to Support Synchronization 

The data structures for managing a task's en­
tries are accessed by both the caller and the called . 
tasks in a controlled manner to provide for synchro­
nization. A handshaking mechanism is used to ini­
tiate the rendezvous, whereby the task arriving at 
the synchronization point last will execute the accept 
statement code. The data structures coordinating the 
rendezvous are kept in global memory where they 
may be accessed by tasks as necessary through their 
GOT. A segment of code, called ENTRY-CALL, is ex­
ecuted by the calling task to determine whether it 
must be queued for the call or the accept body may 
be immediately executed. In a manner similar to 

CODE_ S.A 
SELECTOR S.R 

WHO_TO_UNBLOCK 

DELAY_ACCEPT 

QUEUE 

number 
of 

entries 
+--- ... _--- ---- --_ ....... -_ .... --_ ............... -- --_ ... _+ 

+-- --_ .. --_ ..... --_ .... -_ .... -_ ............ -_ .... -_ ........ - .. -+ 

....... --- -oo-_ ....... __ .... ___ ... __ ....... __ ............................. _+ 

SEH I STACK I 
+-,_ .. _-------+ 

Figure 6. Rendezvous management data for a task. 

Habermann's solution, the accept code is treated as 
a callable procedure, but in our solution either the 
calling or the called task may execute the accept 
statement. To make the procedure visible to either 
task, the procedure is placed in global memory to­
gether with all identifiers it references. In the ac­
cepting task, a section of code named SELECTIVE_ 
WAIT is executed to perform the, corresponding ac­
tions for the called task. SELECTIVE_WAIT is ex­
ecuted each time an acceptJseiect is encountered. 
While all accept statement code must be placed in 
global memory, any select code that is not textually 
contained within an accept statement may be placed 
in separate local code segments. 

There are three compiler-generated data 
structures for each task that are used to provide the 
synchronization necessary to implement the rendez­
vous mechanism. The structures, as shown in Figure 
6, consist of a table of entry variables, a synchroni­
zation semaphore, and a stack of tasks and return 
pointers. 

The task's table contains state information 
about each entry in the task. The table's OPEN_ 
CLOSEO field is used to indicate whether an accept 
statement's guard is true. Since a task may have 
many accept .statements for a single entry, the field 
COOE..sELECTOR is used to indicate which accept 
is currently active. Select statements having delay 
alternatives use the Boolean variable OELA Y -AC­
CEPT to indicate a call must arrive within a speci­
fied time. OELAY...ENTRY-LIST is 'a list of tasks 
having a conditional or time entry call ouu,tanding 
for the entry. Since accepts may be nested and since 
either the calling or the called task may execute the 

Journal of Pascal. Ada. & Modula-2. January/February 1985 
231543-6 

1-155 



intJ AR-388 

accept statement code, the variable WHO_TO_ 
UNBLOCK is needed to indicate the task to be ac­
tivated after an accept statement completes. An en­
try queue, QUEUE, is kept for each entry in a task 
to retain entry calls that occur prior to a matching 
accept. 

The task's semaphore, called RENDEZ­
VOUS.SEM, is used to control access to the syn­
chronizatiion data structure for the task. A stack 
IRENDEZVOUS.STACK), whose depth is equal to 
the maximum nesting level for accept statements, is 
used to coordinate returns from nested accepts. Ini­
tially, all OPEN_CLOSED are CLOSED, all Boo­
leans are FALSE, the queues are empty, all code 
selectors are null. the stack is empty, and the ren­
dezvous semaphore is A V AILABLE. 

The data structures are grouped together in a 
single record in global memory. Each task has its 
own record. which is accessed through a selector 
called RENDEZVOUS. A task's RENDEZVOUS se­
lector is made available to all other tasks that may 
call it through their GDT. 

The algorithms that manipulate this data 
structure are expressed in Ada-like code. Queue,list, 
and stack operations are assumed to exist as needed. 
Exclusive use of the RENDEZVOUS data. structure 
is enforced using P and V operations, which we as­
sume are implemented without scheduler interac­
tions I i.e .. busy wait for PI. BLOCK and UNBLOCK, 
however, assume system scheduler intervention. 

Acc~pt and Selective-Wait Statements 

An accept statement may be either part of a 
selective-wait statement or a free-standing accept 
statement. To avoid considering the two cases sepa­
rately, the free-standing accept is treated as being in 
a select statement with only one alternative. This 
simplifies the design and removes the need for ad­
ditional synchronization overhead. 

The code associated with each accept state­
ment in a task body is placed in a global code seg- ' 
ment called S.A(i), where S, A, and i indicate the 
accept statement part of the ith alternative within 
the selective-wait S. All identifiers referenced by an 
accept statement S.A(i) are also placed in a global 
segment. Access to the accept statement code and the 
needed identifiers is provided. to the accepting task 
through run-time initialization of its GDT. When a 
calling task needs access to the synchronization code, 
it is provided through the RENDEZVOUS record's 
CODE_SELECTOR field for the task. 

If an accept alternative within a selective-

wait contains code that is not in the accept statement 
(i.e .• the rest of a select alternative), that code is 
placed in a local code segment called S.R(i). S.RW is 
the rest of the ith alternative within the selective­
wait S. S.R(i) is always executed by the accepting 
task and is also stored in the CODE-.SELECTOR 
field. 

The prologue code, called SELECTIVE_ 
WAIT, is executed by a task each time it encounters 
an accepting construct. The code for SELECTIVE_ 
WAIT is shown in Figures 7 and 8. The routine is 
passed a selector for the compiler-generated syn­
chronization data structures (RENDEZVOUS) and 
information about the select statement consisting of 
(a) for each accept alternative its accept statement 
IS.A<il I; (b) for each accept alternative the rest of the 
alternative IS.R<il1 (Note: if an alternative has no 
"rest" part S.R<il is the first statement following the 
selective wait): (c) code selectors for the body of each 
delay or else contingency alternative 1 S.D( i). S.E I; I d) 
the code for evaluating the Boolean. expressions 
guarding accept, delay, and terminate alternatives. 

SELECTIVE_WAIT first performs a P opera­
tion on RENDEZVOUS.SEM to prohibit other tasks 
from accessing the synchronization data for the task. 
SELECTIVE_WAIT then evaluates the. guard for 
each alternative. A missing guard is taken as true, 

procedure SELECTIVE_WAIT(RENDEZVOUS ,S.A,S.R .S • .o ,5 .E,GUARDS) is 

begin 
P(RENDEZVQUS.SEH) --d.on't let anyone else ace,ess the 

..... synchronizatl.on data until its 
--update lS-complete. 

CALL EVALUATE(GUARDS) 
for ALL 1 HAVING TRUE GUARDS loop 

RENDEZVOUS • OPEN_CLOSED ( i) : =OPEN: 
end loop; 
case SELECT ENtRY SUCH THAT 1 

INOTEMPTY(QUEUE(ENTRY)) ~D OPEN_CLOSEDIENTRYl=OPENl i. 
--if multiple entries satisfy the 
--condition then arbitrarily select 
"-one. 

when ENTRY FOUND => .... entry call before accept 
for ALL ENtRIES i loop 

RENDEZVOUS • OPEN_CL05ED ( i) :cCLOSED: 
end loop: 
ACCEPT _ST~TEHENT I ~ RENDEZVOUS. S.A (ENTRY) : 
DEQUEUE( CALLER_TSS. ARGUMENTS. CALLER_RETURN. 

FROM'> RENDEZVOUS. QUEUE (ENTRY) ), 
PUSH ( CALLER_TSS. CALLER_RET .ON'>RENDEZVOUS. STACK), 
if NOT ISEMPTY(RENDEZVOUS.DELAY_ENTRY_LIST(ENTRY)) 

then CANCEL_TIHER(CALLER_TSS); 
REMOVE ( CALLER_TSS, FROH-> 

RENDEZVOUS .DELAY_ENTRY_LIST(ENTRY)), 
end if; 
V (RENDEZVOUS. SEM) , 
CALl- ACCEPT_STATEMENT(ARGUMENTS), 
P (RENDEZVOUS. SEM) 
I CALLER_TSS. CALLER_RETURN) ,= POP(RENDEZVOUS_STACK), 
V (RENDEZVOUS. 5EH) 
UNBLOCK ( CALLER. TSS ,AT=>CALLER. RET) 

Figure 7. Accept prologue for entry call before accept. 

Journal of Pascal, Ada, & Modula-:!, JanuarylFebruary 1985 

231543-7 

1-156 



AR·388 

when ENTRY NOT FOUND AND NO OPEN CONTINGENCY ALTERNATIVES a) 
for ALL i SUCH THATI OPEN_CLOSED(i)=OPEN loop 

RENDEZVOUS .CODE_sELECTOR( i) ,=(5 .A( 1) .s.R( i»: 
RENDEZVOUS ,WHO_TO_UNBLOCK{i) I'" HE. TSS: 

end loop: 
V(RENDEZVOUs .sEH): 
BLOCK; 

when ENTRY NOT FOUND AND OPEN CONTINGENCY ALTERNATIVES -> 
clSe ON TYPE OF OPEN CONTINGENCY ALTERNATIVES is 

when ELSE I TERMINATE ID) 

for ALL ENTRIES i IN RENDEZVOUS DATA loop 
RENDEZVOUS • OPEN_CLOSED (i) I ""CLOSED ; 

end loop; 
V(RENDEZVOUs.sEH) : 
if TYPE = ELSE then goto S.E; 

else term1nate(me) 1 

end if I 

when OPEN DELAY ALTERNATIVES -> 
for ALL ACCEPT GUARDS i THAT WERE TRUE loop 

RENDEZVOUS.DELAY_ACCEPT(i} 1= TRUE, 
RENDEZVOUs.COD,_sELECTOR(i) " (s.A(i) .s.R(i»: 
RENDEZVOUS. WHO_TO _UNBLOCK (i) ::11 HE. TSS ; 

end loop; 
for ALI. OPEN DELAY ALTERNATIVES i loop 

EVALUATE~sELEcr(DURATION( i) .WHICH. TIHE): 
--eva.luate durations(arbitnrily) 
--selecting the minimum 

end loop; 
START TIHER(TIME .WHICH.WAKEUP .RENDEZVOUs.sEH) 
V(RENDEZVOUs .sEH): 
BLOCK: 

WAK£UP(WHICH) 1 --P(SEH) obtained with wake-up. 
(or ALL ENTRIES i IN RENDEZVOUS DATA loop 

RENDEZVOUS. DELAY_ACCEPT( 1) 1 = nUll: 
RENDEZVOUS.OPEN_CLOSED(i) 1= CLOSED; 

'RENPEZVOUS.WHO TO UNBLOCK(i) l::i null: 
RENDEZVOUS. CODE sELECTOR( i) :" (null.null): 

end loop ~ -
V (RENDEZVOUS .sEH): 
RETURN to S.D(which) 

end case: --on contingency alternative 
end case; --on ENTRY found 

end SELECTIVE_WAIT; 

Figure 8. Accept prologue when a rendezvous is not im­
mediate. 

For each accepting alternative present in the con­
struct, its OPEN/CLOSE indicator is bound. 

Next, an examination is made to determine 
whether any open accept alternatives have calling 
tasks queued on their wait list. If a calling task is 
found then the code of Figure 7 is executed, which 
causes the task calling SELECTIVE_ WAIT to exe­
cute the accept statement code. If a calling task is not 
found then the code of Figure 8 is executed. In this 
case the task acting on behalf of the caller will exe­
cute the accept statement code. 

If a waiting caller is found (see Fig. 7) then the 
necessary initializations are made, the exclusion 
on the rendezvous data is released, and the accept 
statement code is invoked as a subroutine of 
SELECTIVE_WAIT. After the rendezvous code is 
completed, exchision is again obtained on the syn­
chronization data structures to determine the iden­
tity of the calling task. This task is then unblocked 
and the exclusion is released. 

If no open accept alternatives have queued en-

try calls (see Fig. 8) and no contingency alternatives 
exist (else, delay, or terminate), the accepting task 
must wait for an entry call. In this case the accepting 
task will not execute the rendezvous code, so the 
CODE-BELECTOR fields of the rendezvous data 
structute are set to give a future calling task access 
to the code. The accepting task then blocks itself un­
til a caller arrives. The caller will execute the accept 
statement and perform the unblock (indicating 
where control is to continue by specifying AFTER... 
ACCEPr). 

If no calling tasks were found for an open ac­
cept alternative and open contingency alternatives 
are present then Ada select semantics depend on the 
type of contingency alternative. When an else or ter­
minate alternative exists, the synchronization data 
structures are reset to indicate that the selecting 
task is no longer able to rendezvous. Setting all 
OPEN_CLOSED fields to CLOSED indicates that 
the task is not accepting. At this point the data struc­
tures are released and the action associated with the 
contingency is performed. That is, the else clause is 
executed or the conditions for termination are ex­
amined. 

When one or more delay alternatives are open 
then the task must block for the shortest duration 
specified. Delays are accomplished by calling the 
routine 

START_TIMER(HOW-LONG,WHICH, 
WHERE_TO_ WAKE,SEM) 

which will unblock the task at WAKEUP after TIME 
has expired. The argument WHICH is provided so 
the task may determine the delay alternative that 
has expired. If the timer. expires, control is returned 
indicating the timer has completed. If an open entry 
is called during the delay, the calling task will cancel 
the delay, execute the rendezvous code, and unblock 
the called task at the appropriate S.R(i). 

As an indivisible part of waking a task up on 
completion of the timer, exclusion is obtained on the 
semaphore SEM. Treating waking up a task and ob­
taining exclusion on the rendezvous data as a single 
operation is one example of indivisible operations 
that must be performed. In this case the operation is 
necessary to prohibit another rendezvous statement 
from altering the data structure between the wake­
up and obtaining the semaphore.·Another example 
occurs when a V operation is followed by a BLOCK. 

EntryCaUs 
According to our design, the last task to arrive 

at the rendezvous, whether it is the calling or ac-

Journal of Pascal, Ada, & Modula-2, January/February 1985 

231543-8 

1-157 



inter AR·388 

c:epting task, is responsible for executing the, syn­
chronized code. Since the acCept statement itself is 
textually a part of the called task, certain provisions 
must be made to allow it to, be executed by the caller. 
Aside from placing the accept statement code and the 
identifiers it references in global memory, any inter­
nipts that occur during the rendezvous must be held. 
Additionally, Ada task priorities (defined by a 
PRAGMA) and the rules for prioritization are not 
considered by our algorithms. Ada also specifies that 
any exceptions raised during a rendezvous should be 
raised in both tasks. The run-time support for excep­
tions can most conveniently accomplish this through 
access to the rendezvous management data. 

Ada provides conditional and timed entry 
calls, in addition to the standard entry call. Seman­
tically, a conditional entry call can be expressed as a 
timed entry call with a zero delay. A standard entry 
call could also be represented as a timed entry call 
with an infinite delay, and this simplification is 
made so that a single algorithm can be presented. 

procedvre ENTRY_CALL (TASK. ENTRY ,ARGUKENTS. 
AFTER_WL;DELAY_STATEHENT) is 

be;in 
Il£ND!ZVOUS 1= selector to access rendezvous data of the 

TASK owning the· entry: 
P (RENDEZVOUS. SEH) : ' 
if ISEI1PTY (RENDEZVOUS. QUEUE (ENTRY) 

and RENDEZVOUS .OPEN_CLOSED(ENTRY)'OPEN) 
then --Accept before call. 

ACCEPT_STATEMENT 0= REN~EZVOUS.S.A(ENTRY), 
PUSH(RENDEZVOUS. WHO_TO_UNBLOCK. RENDEZVOUS. S .R(ENTRY) • 

ONc>RENDEZVOUS. STACK) : 
for ALL ENTRIES i IN RENDEZVOUS DATA loop 

RENDEZVOUS.OPEN_CLOSED(i) ,= CLOSED, 
RENDEZVOUS.CODE_SELECTOR(i) ,= (null.null), 
RENDEZVOUS.WHO_TO_UNBLOCK(i) 1- null: 
if RENDEZVOUS.DELAY_ACCEPT(i) 

then ::~:iy~~:~~~~;~!~~~;(~O-;:OF::~~' i) : 

end if: 
end loop; 
V (RENDEZVOUS. SEH) : 
CALL ACCEPT_STATEHENT(ARGUHENTS): 
P(RENDEZVOUS.SEH), , 
(ACCEPTOR. ACCEPTS_REST) OR POP (RENDEZVOUS. STACK) : 
V(RENDEZVOUS.SEH) , 
UNBLOCK(ACCEPTOR; AT=>ACCEPTS_REST), 
GOTO AFTER_CALL: 

else 
ENQUEUE (HE. TSS. ARGUHENTS .AFTER_CALL. 

ON=>RENDEZVOUS. QUEUE (ENTRY) ) : 
ADDLIST(HE. TSS • RENDEZVOUS .DELAY_ENTRY_LIST(ENTRY», 
START _TIHER (DURATION. ENTRY. WAKE,-Up • RENDEZVOUS. SEH) , 
V(RENDEZVOUS. SEN l: 
BLOCK, .. 

WAKE_UP(ENTRY) I --if awakened here then wait time 
"-expired and exclusive acc'ess to 
... -data has been· obtained. 

REHOVE(HE. TSS. FROH=>RENDEZVOUS .DELAY_ENTRY:'LIST(ENTRY» : 
DEQUEUE (HE. TSS. FROH=>RENDEZVOUS.QUEUE(ENTRY», 

,V(RENDEZVOUS.SEHji , 
GaTO DELAY_STATEHENT or AFTER_CALL: 

end if, 
.nd, ENTRY_WL, 

Fipre 9. Prologue code for entry calls. 

.The prologue code for all three forms of entry 
call is shown in Figure 9. This procedure, ,called 
ENTRY_CALL, has parameters indicating the 
called task, the entry within the task, arguments to 
the call, the first statement after the call. the time 
duration to wait for an accept, and, if present, the de­
lay statement. Access to the globai segment contain­
ing the called task's rendezvous management data is 
established wiing TASK. This selector is called REN­
DEZVOUS. Exclusive access to the data is next ob­
tained. To determine whether the caller or the 
accepting task will execute the rendezvous, the 
proper entry QUEUE and OPEN_CLOSED indicator 
of the called task are examined. The caller will exe­
cute the rendezvous if the ,QUEUE is empty and the 
indicator. is OPEN. Otherwise the caller places itself 
on the queue, releases exclusion on the rendezvous 
data, and blocks itself. Before calling BLOCK, a 
timer is set to indicate how long a matching accept is 
to be awaited. 

If the caller will execute the accept statement 
then the rendezvous data is set accordingly. Before 
releasing exclusion on the rendezvous data, the 
caller checks whether a delay contingency is active 
in the called task. If one is active all timers in the 
called task are disabled. After completing the accept 
statement, the rendezvous data are used to deter­
mine the appropriate return point within the called 
task, and the task is unblOcked: 

Parameters and Shared Variables 

Parameters 

The Ada language allows for various param­
eter implementation mechanisms to, be used for sub­
routine linkage. Parameters used in tasking follQw 
the same rules. Parameter modes orIN, OUT, and IN 
OUT may all be used to pass information ,between 
the calling and the called tasks. For IN OUT param­
eters, either copy restore or call by reference may be 
used. Any Ada program that would execute differ­
ently for one implementation than the other is er­
roneous. Although parameters are not included 
explicitly in the algorithms for SELECTIVE_WAIT 
and·ENTRY ~CALL, they may best be handled using 
call by reference. 

Parameters of mode IN use only a copy . 
Within ENTRY _CALL, IN only arguments would be 
evaluated and copied to either the appropriate wait 
queue or the parameter. Arguments to a rendezvous 
may be kept in local :memory if they are copied by the 
synchronization primitives. If an entry call exists 

Journal OfPIISCld, Ada, & Modula-2, January/February 1985 , 
231543-9 

1-158 



inter AR·388 

within an accept statement, however, recall that all 
identifiers referenced from within an accept must be 
kept in global memory. 

To implement parameters of mode OUT or IN 
OUT using call by reference requires that all argu­
ments reside in global memory. ENTRY_CALL must 
convey a selector to the global segment containing 
the arguments. If the call needs to be queued then 
the selector is placed on the queue, otherwise the se­
lector is conveyed directly to the accept statement. 

Shared Variables 

Using the multiprocessor 80286 architecture, 
the synchronization primitives suggested, and the 
parameter mechanisms discussed above, an exces­
sive amount of data copying is required to transfer a 
message from the calling task to the caller. For ex­
ample, in the buffered message task of Figure 2, the 
message to be transferred is an IN parameter to 
SEND and an OUT parameter from RECEIVE. As­
suming the select is encountered before the entry call 
to SEND and RECEIVE, the following copies of the 
message would be made in its transmission: ( 1) from 
sender's local memory to the parameters in global 
memory, (2) from the parameter of accept SEND to 
the buffer task's POOL, (3) from POOL to the global 
segment containing the consumer task's argument. 
These copies represent the best case, as an additional 
copy is required when the entry call to SEND must 
be queued. The additional copy is placed on the wait 
queue for SEND. 

While message passing using an IN and OUT 
parameter has the advantage that the message can 
be created in local storage, the cost of copying large 
messages can be reduced. If SEND's parameter mode 
were IN OUT, global storage would be used to create 
the message, but the first copy could be eliminated. 

A more desirable solution can be found if we 
assume that only one producer and one consumer use 
a single buffer, and by generalizing the Ada defini­
tion of synchronization points between tasks. In this 
instance a solution in which messages are both cre­
ated and consumed using the same global memory 
can be constructed. This solution, which does not re­
quire any copying of the message for single-processor 
implementations and distributed implementations 
with shared memory, is shown in Figure 10. No cop­
ies of the message are required to transfer it from the 
producer to the consumer. SEND and RECEIVE are 
used to synchronize access to messages and to allow 
messages to be queued/buffer. 

In Figure 10 the following data sharing takes 

.... shared objects 
POOL SIZE : constant INTEGER I- 100; 
POOL-: array (0 •• POOL_SIZE-l) of MESSAGE: 
FRONT. REAR, INTEGER ranqe 0 .. POOL_SIZE"l I"" (0,1); 

producer task I 
loop 

.... load POOL(REAR) with t.he message; 
BUFFER.SEND: 
exit when no more messages: 

end loop; 

conlumer task I 
BUFFER. RECEIVE: 
--usc message in POOL(FRONT); 
exit when no more mess,ges: 

end loop; 

buffer tuk I 
loop 

select 
when «REAR+1) mod POOL SIZE) />= FRONT => 

accept SEND -
REAR :a (REAR+l) mod POOL_SIZE; 

end: 
when (FRONT-tl) mod POOL_SIZE) 1= REAR w> 

accept RECEIVE 
FRONT I"" (FRONT+l) mod POOL_SIZE; 

end: 
end select: 

end loop: 

Figure 10. Message passing without copying the mes­
sage. 

'place: (j) The producer task shares REAR with the 
buffer task. Notice that both tasks may examine 
REAR between synchronization points, but REAR is 
only updated by the buffer task during synchroni­
zation. (ii) The.consumer task shares FRONT with 
the buffer task. Again, notice that both the consumer 
and the butTer may examine FRONT between syn­
chronization points, but FRONT is only updated by 
buffer during synchronization with the consumer. 

The producer and the consumer tasks share 
access to the queue of messages in POOL. A single 
element of POOL may be updated by the producing 
task and read by the consuming task between syn­
chronization points of the tasks (where synchroni­
zation points are defined by the Ada language l4Jl. 
Although Ada does not allow this type of sharing, 
these two tasks (and their access to POOL) are prop­
erly synchronized indirectly by the buffer task. A dis­
tributed implementation without shared memory 
could maintain integrity of the shared variable 
POOL by examining access at every synchronization 
point. By recording reads and updates to shared data, 
and by comparing these records at synchronization 
points, proper use of this generalized form of shared 
data could be enforced. 

If POOL, FRONT, and REAR are placed in 
global memory, each task/processor may access mes­
sages efficiently. Although their placement in global 
memory places an additional burden on its use, a ma-

Journal of Pascal, Ada. & Modula-2. January/February 1985 
231543-10 

1-159 



inter AR·388 

jority of message-passing applications require sig­
nificant local processing in creating and consuming 
messages. One such example, although not an 
embedded application, is a compiler's lexical and 
syntactic analysis phases. In this case, messages are 
tokens or streams of tokens that are recognized and 
created by the lexical analyzer. The syntax analyzer 
receives the tokens and uses them to produce input 
to the next compilation phase. In this case, the to­
kens represent the input and output to the phases 
with significant additional processing required to 
create and use the tokens. 

SUMMARY 

An important criticism orAda tasking is that 
transmission of data from a sender task to a receiver 
task requires excessive scheduler interactions. Ha­
bermann (2] has offered an implementation tech­
nique that requires fewer scheduler interactions 
than required in a straightforward implementation. 
Habermann reduces interactions by making the ac­
cept statement code a subroutine invoked by the call­
ing task. This approach correctly assumes that a 
majority of the applications using tasking will be ar­
ranged in a manner similar to the BUFFER task of 
Figure 2. The property relied upon is that the ac­
cepting task will arrive at the rendezvous before any 
entry calls have been queued. In this article we pres­
ent a technique to execute the accept statement code. 
This approach minimizes scheduling requirements 
independent of whether the calling or accepting task 
arrive at the rendezvous first. 

Of critical importance to the use of Ada in 

embedded applications is the. implementability of 
tasking in mutiiprocessor architectures. While the 
techniques this article presents do not apply to 
loosely coupled multiprocessor systems, the example 
architecture we discuss shows how tasking can be 
implemented efficiently for multiprocessors with 
shared memory. For systems in which heavy mes­
sage traffic occurs between tasks, such as real-time 
embedded applications, minimizing the overhead in 
message transmittal is equally as important as min­
imizing scheduler interactions. This article presents 
a form of message passing that would minimize mes­
sage overhead. The solution requires sharing mem­
ory among sending and receiving tasks in a manner 
that violates Ada assumptions about shared varia­
bles, but which is implementable with reasonable ef­
ficiency. 

References 

l. D. Cornbill, "A survivable distributed computing sys­
tem. for embedded application programs written in 
Ada," Ada Letters, III (3), 79-87 (December 1983). 

2. A.N. Habermann, "Efficient implementation of Ada 
tasks," Technical Report CMU-CS-80-103, Department 
of Computer Science, Carnegie-Mellon University. 
1980. 

3. INTEL Corp., Introduction to the iAPX286. Santa 
Clara, CA, 1982. 

4. Reference Manual for the Ada programming language. 
ANSIIMIL-STD 1815 A, U.S. Department of Defense. 
January 1983. 

5. E.S. Roberts, A. Evans, Jr., and C.R. Morgan, "Task 
management in Ada-a critical evaluation for real­
time mUltiprocessors," Software-Practice and Experi­
ence, 11, 1019-1051 (1981). 

Journal of Pascal, Ada, & Modula-2, January/February 1985 

231543-11 

1-160 



intJ ARTICLE 
REPRINT 

AR-390 
ADA IMPLEMENTATION 

Ada Capabilities for 
T oday's Microprocessors 

An Ada implementation demonstrates how the DOD's high-order language can. 
take full advantage of advanced microprocessors in real-time applications. 

The primary goal pursued by the 
Department of Defense in developing 
the Ada high-order language (HaL) is 
to reduce software life cycle costs. The 
DOD is attempting to do this by using 
one HaL that ensures standardization 
in all areas-design, documentation, 
interfaces to the outside world, train­
ing, testing, and capabilities and func­
tionality available to programmers. 
Ada's portability and maintainability, 
as well as the ongoing emphasis on 
validation to ensure strict compliance 
with the language definition, also con­
tribute to reducing the software costs 
that play such a major role in today's 
embedded systems programs. In par­
ticular, development costs can be 
reduced by using proven programming 
practices such as top-down design, 
modular Ptogniinming, information 
hiding and machine independence. 

By Liz Parrish 

Despite these benefits, many people 
are still asking, "Is Ada really useful 
today?" But perhaps the more impor­
tant question-one that more pro­
grammers, designers and managers are 
asking-is, "Is Ada really usable 
today?" As more compilers become 
validated, and as the use of Ada con­
tinues to grow, especially in embedded 
real-time systems, programmers are 
voicing some basic concerns about 
Ada. Specific;: questions include: "How 
does Ada work to produce portable 
and maintainable code?" "If I must use 
Ada, what advantages will I realize?" 
"Can Ada programs work on micro­
processors in real-time :applications?" 
"Will Ada and microprocessors con­
tinue to evolve to help solve design 
problems?" These questions must be 
resolved in order for Ada to achieve 
widespread acceptance. 

Analomy of a m/croprocN.Or: Intel's iAPX 286 microprocessor provides many optimizations 
to support high·order languages such as Ada. . 

Ada Language Features 
Ada is considered to be a derivative 

of and a superset to PASCAL, and 
thus has many of the same features. 
PASCAL's capabilities such as the 
availability of various data types 
(Boolean, Record, Double F1oat)~ flow 
control statements (Do While, Case), 
and block structuring have their coun­
terparts in Ada. Ada also contains a 
rich set of constructs that foster the 

:ieprinted with permission from Defense Electronics, June 1985 
Copyright EW Communications, Inc., 1985 

1-161 

use of modern programming practices. 
Ada has inherent features to' handle 
datal code' encapsulation, tasking, 
bounds and type checking~ and hard­
ware dependencies. These features can 
provide an answer to the question: 
"What advantages will I realize by 
using Ada?" 

liz Parrish is product manager, Development 
Systems Operation, at Intel Corp., Santa 
Clara, Ca. .' . 

ORDER NO. 231601'()Ol 



ADA IMPLEMENTATION 

Encapsulation, the explicit separa­
tion of items, applies to an Ada pro­
gram at several levels. On the most 
general level, the language itself shields 
the application program from the 
underlying operating system and / or 
hardware. Other languages assume 
that certain services are provided by 
the operating system, and the applica­
tion must access the hardware. Ada 
defines and provides these accesses and 
services, freeing the application pro­
grammer from worrying about the 
underlying configuration or changes to 
it. This independence yields true porta­
bility and maintainability, because the 
program's only external dependency is 
on the compiler itself. 

Encapsulation and the information 
control it provides are important tools 
for modular, top-down design and 
complex system development. Encap­
sulation within' the application pro­
vides controlled sharing and hiding of 
information as necessary among the 
various program components. This 
feature is implemented for code via the 
packages construct, and for data by 
strong data typing. 

Packages are program elements that 
have two parts, a specification and a 
body. The body is the actual imple­
mentation code, while the specification 
is the external view of the module­
input, output, module relationships 
and resources-that any other module 
needs to know about it. The module is 
really a "black box," with its specifi­
cation being the description of how to 
interact with it. Thus, sensitive infor­
mation can be controlled, and mistakes 
that result from misusing a module are 
avoided. Strong data typing and the 
use of enumerated data types provide 
built-in design and programming 
checks and independence from the 
underlying implementation. 

The tasking mechanism in Ada is a 
primary example of an operating sys-' 
tem service being incorporated into the 
language definition to ensure porta­
bility and compatibility. A multitask­
ing capability, in which tasks are 
viewed 'as concurrent sequential pro­
,cesses, is inherent to real-time systems. 
The Ada language has a full tasking 
mechanism, which standardizes tasking 
and its uses for all Ada developers. 
This embedded tasking mechanism 
also ensures that tasking is available to 
allow portability of Ada programs and 

Through encapsu/allon, 0,. the eKplicit separation of. items, the Ada language shields the 
application program from the underlying operating system and/or hardware. 

Create Procedure 
Leave Procedure 

ENTER 
LEAVE 
PUSHA 
POPA 

Save All Reg isters on Stack 
Restore All Registers from Stack 

BOUND 
LAR 
LSL 
VERR 
VERW 

Detect Value Out of Range 
Load Access Rights 
Load Segment Limit 
Verify Read Access 
Verify Write Access 

Move String 
Compare String 
Scan String 
Load String 
Store String 

MOVS 
CMPS 
SCAS 
LODS 
STOS 
REP Repeat String Instructions to Process a Block of Memory 

Hlgh-orde, language support Instrucllons offered by the 286 are particularly useful for 
efficient Ada implementation. 

complete compatibility among pro­
grams using the same tasking imple-. 
mentation. 

Ada has special facilities for han­
dling machine dependencies, including 
r~presentation specifications (how to 
represent data types in a configura­
tion), interrupt constructs, exception 
handling, and certain pragmas (pre­
defined compiler directives). There is a 
hierarchy of machine independence 
within any Ada program; this separa­
tion of machine dependencies offers 
the benefits of encapsulation, as well 
as increased reliability and efficiency. 
By providing a standard, controlled 
machine interface instead of a myriad 
of special cases, Ada allows these 
dependencies to be highly optimized, 
as implemented by the compiler writer, 
to take advantage of the underlying 
configuration's features. This elimi­
nates the low-level implementation 
details and gives the program designer 

1-162 

freedom to concentrate on solving any 
higher-level problems. . 

Implementing Ada on the iAPX 286 
Ada provides many features and 

constructs that support the develop­
ment of complex, real-time systems, 
but can the hardware match it? In 
particular, can today's microprocessor 
architectures support efficient Ada 
imolementations? 

The answers to this question go 
beyond clock speed, bus bandwidth 
and simple throughput. As an ex­
ample, Intel's iAPX 286 offers an 
architecture that has been optimized 
for general HOL development, with­
out Ada specifically in mind. The 
features provided by the 286 are all 
necessary for an efficient Ada imple­
mentation, and Ada is the first lan­
guage with the constructs to take full 
advantage of these features. 



ADA IMPLEMENTATION 

The machine Independence hierarchy in Ada programs is depicted. This separation 01 
machine dependencies offers the benefits of encapsulation, reliability and efliciency. 

While the application programmer 
is removed from the target machine 
configuration, the compiler imple­
menter works extensively with the con­
figuration and uses a variety of 
methods to generate tight, efficient 
code. The 286 provides many optimi­
zations-including on-chip memory 
management, hardware tasking, fault 
trapping and specific machine instruc­
tions-to support high-order lan­
guages. 

The memory management features 
of the 286. are useful in Ada program­
ming. In the Protected Virtual Address 
mode, each task has a separate, com­
pletely independent virtual address 
space (up to I gigabyte) providing the 
capacity to support large Ada appli­
cations. Integrating Ada with the 286's 
memory management permits pack­
ages to· be placed automatically in 
separate segments, located arbitrarily 
and moved in memory. This produces 

When Integrated with Ada, the iAPX 286 memory management features permit packages to 
be placed automatically in separate segments. located arbitrarily and moved in memory. 

1-163 

all of the advantages of a segmentation 
model designed to optimally execute 
code for software composed of inde­
pendent modules, and software de­
signers get the benefits of an automatic 
enforcement of their top-down design 
and program modularity. 

Hardware protection features 
offered by the 286 apply to the full 
virtual address space of the system and 
can take several forms. On one hand, 
each variable-length segment contains 
its own program or data structure and 
has its own type (execute-only, execute 
and read, read-only, or read and 
write), which is checked upon each seg­
ment use; this ensures that the instruc­
tion is not in violation of the segment 
usage defined by the system designer. 
On the other hand, the task can con­
tain code in any of four privilege levels 
to allow code being developed to be 
linked in with the rest of the system 
without corrupting it. Furthermore, 
the operating system and/ or Ada run­
time support is included in each task's 
address space, access to those services 
can be accomplished via a simple 
instruction rather than through a time­
consuming context switch. 

The 286's protection features pro­
vide task isolation, which is an impor­
tant part of software debugging that 
lets the programmer isolate bugs and 
their effects at the applications code 
leveL This feature is especially impor­
tant to Ada developers in production 
systems. Hardware protection simpli­
fies the security aspects of embedded 
systems by putting mission-critical or 
secure tasks at higher privilege levels. 

The taskirig model of the 286, as 
implemented in the hardware, directly 
supports the Ada tasking mechanism. 
The definition of tasks and the syn­
chronization and communication 
mechanisms are completely compatible 
with Ada tasking, which offers a straight­
forward and efficient implementation. 
The task switch mechanism is also 
highly optimized and requires only one 
instruction cycle-17 microseconds 
using a 10-MHz 286. Thus, the hard­
ware can support a high-performance 
implementation of the Ada tasking 
mechanism. 

The 80287 Numeric Processor Ex­
tension provides additional processing 
power and functionality, and it en­
hances Ada code in several ways. For 
example, it supports the proposed 



ADA IMPLEMENTATION 

The hardware prol8cllon mechanism 01 the 286 provides task isolation-an important aspect 
01 software debugging. 

The 286's tasking modal as implemented in the hardware directly supports the Ada tasking 
mechanism. 

IEEE standard 754 for binary and 
floating point arithmetic to ensure 
consistent and valid results. It supports 
the full range of model and safe num­
bers in the Ada language definition 
and will automatically carry out type 
conversions as needed (all INT types to 
all FLOAT types, and vice-versa). The 
80287 offers any parallelism with the 
286, including simultaneous execution, 
that is needed to take full advantage of 
the increased speed and higher-level 

interface of numeric functionality. 
Finally, all addressing is done via the 
286 memory management, providing 
numerics support with the built-in pro­
tection mechanisms. 

Several operations that fall into Ada 
low-level machine dependencies are 
highly optimized on the 286. Fault 
trapping is done automatically to en­
hance encapsulation and exception­
handling performance. Stack and page 
faults are generated automatically, 

1-164 

allowing the exception handler to cor­
rect and restart the instruction. The 
286 also provides automatic bounds 
checking for limits, fast interrupt re­
sponse and complete isolation of the 
exception handler. 

Finally, the 286 has several machine 
instructions that are de~gned specifi­
cally to enhance HOL implementation. 
These instructions allow greater code 
density by using one of the multi­
operation programming functions. 
Although these features are standard 
on the 286, Ada is the first language to 
offer enough built-in power to enable 
the generated code to take full ad­
vantage of them easily and directly. 

Ada's Future 
Systems development is becoming 

increasingly complex; the ,problems 
that will have to be solved in the years 
ahead are not even being considered 
today. Greater effort is needed to pro­
vide better and more powerful tools, to 
standardize and to develop method­
ologies that can handle these complex 
situations. A standard HOL such as 
Ada is an important part of this effort. 
Ada has the facilities for standardiza­
tion, portability, maintainability and 
cost savings. Ada's rich feature set can 
make the most effective use of current 
hardware such as Intel's iAPX 286. 

What lies ahead? Ada is a big first 
step, but it is not the "final" language; 
it is still maturing, and other languages 
will eventually be developed from it. A 
variety of techniques, such as software 
verification that proves the correctness 
of a program, and the use of software 
components (code viewed as "black 
boxes" with guaranteed functionality, 
analogous to off-the-shelf les in hard­
ware), will be important parts of the 
growing software methodology. 

However, Ada standardization will 
remain a central theme in' real-time 
embedded systems software develop­
ment. And just as Ada will continue to 
evolve, its targeted microprocessors 
will also evolve, becoming more com­
plex and providing a higher level of 
interface and functionality to keep 
pace with HOL development. Ada as 
it is today takes advantage of the effi­
ciencies available on modem micro" 
processors, and it will continue to be a 
tool that system and software designers 
can use as they strive to find -the right' 
solutions-the first time around. • 



ARTICLE 
REPRINT 

.OBJ LESSONS 
STEVEN ARMBRUST AND TED FORGERON 

1-165 

AR-501 

July 1986 

Order Number: 280318-001 



1·166 



1-167 



.OBJ LFS50NS 
nation illustrates exactly what kind of 
information each object module con· 
talns and points out areas in which the 
Microsoft standard deviates from the 
way Intel originally intended for object 
modules to appear. 

THE OBJECT MODULE 
The object module is the standard unit 
of information produced by a program 
translator (such as a compiler or as· 
sembler). The module is used as input 
to a program linker, which combines 
object modules and produces an execu· 
table file (such as an .EXE file on the 
IBM PC). The module. can also be used 
by a program librarian to create a Ii· 
brary of modules for selective linking. 

When a library is linked with other 
object modules, not all of the modules 
in the library are used in the creation 
of the final file; the linker selects those 
referenced by the modules being 
linked. Figure 1 shows this transforma· 
tion of source code into object modules 
and finally into an executable file. 

Each object module consists of 
groups of data called records. The basic 
structure of a record is shown in figure 
2. The Record Type field is asingle byte 
indicating a record typ~. The Microsoft 
object niodule format has 15 different 
kinds of records. Refer to table 1 for a 
list of those records and a brief over· 
view of each. The complete linel stan· 
dard defines 30 types of records. Table 
2 contains a list of the addition'al rec· 
ords supported by Intel. 

The Contents field is the meat of 
the record. For example, in data rec· 
ords, this portion can contain the actual 
machine code and an indication of the 
segment in which that code resides. 
'The Record Length field isa two·byte 
value (a word) that specifies the num· 
ber of bytes in the variable· length Con· 
tents field. The Checksum field helps 
the linker or loader identify data errors 
when reading the module from disk. 

Every record in the object module 
has this basic format. The Contents field' 
varies widely among record types, but 
the Record Type field identifies the type 
of record and how the Contents field is 
used. Figure 3 lists the formats of all 
Microsoft object module records. 

Listing 1, called WORDC, is a sim· 
pIe Pascal program that counts the 
number of words in a text file and dis· 
plays that number on the screen. 
WORDC was compiled using MS·Pascal 
version 3.20. The following commands 
were used to compile the program: 
PAS! WORDC.PAS, WORDCOBJ, 

WORDC.LST, NUL; 

PAS2 

FIGURE 1: Lmking l'rucess 

A translator, such as MS·Pascal, transfornis the source code into object code (a). 
The object code can be added to a library of object modules (b), or it can be used 
as input to a linker (c). The output from the linker is an executable file (d). 

FIGURE 2: Record St1"llcture 

CHECKSUM 

The Contents field is tbe meat of the record. The Record Length field·is a two·byte 
value that specifies the number of bytes in. tbeContents field. The Checksum field 
helps the linker or loader identify data errors when reading the module from disk. 



The following command links an 
object code to a Pascal runtime library 
and produces an executable file: 

LINK WOROC.OBJ, WOROC.EXE, 

WOROC.MAP, PASCAL.LIB; 

The object module that results 
from the compilation of this program 
(WORDC.OB]) is shown in figure 4. The 
left portion of the listing is a hexadeci­
mal dump; the right portion is the cor­
responding ASCII translation. The start 
of each record and the record type are 
noted in the listing. 

For clarity, this article refers to 
each record type by a six·character rec­
ord name, rather th~n by a record type 
number. Intel and Microsoft also use 
these names to refer to the records in 
their documentation. 
TIlEADR record (ofl5et 08). The first rec­
ord in the object file is a translator 
header record. It lists the name of the 
object module witbout a file extension 
(in this case, WORDC). 

The TIlEADR record in figure 4 
starts at the first byte of the listing (off­
set OHio This byte, and any others in the 
listing, can be found by using the num­
bers in the OFFSET column (the left· 
most column). Each OFFSET entry lists 
the hexadecimal byte offset of the first 
byte in that row. 

The format of a THEADR record is 
shown in figure 3-a. The Length and 
Checksum fields (which every record 
contains) in this example are structured 
as described earlier. In the TIlEADR 
record in figure 4, the two· byte value 
listed in the Length field is 07H OOH. 
This value might be misinterpreted to 
be 0700H, an awfully large header rec­
ord. However, word values on Intel· 
based computers are interpreted with 
the low·order byte first, followed by the 
high-order byte. Thus, the length of this 
record is seven bytes, which defines the 
length of the Module Name field (a type 
of Contents field). 

The Module Name field in the 
THEADR record is variable in length; 
the first byte defines the number of 
bytes remaining in the Module Name 
field (a number between a and 40), and 
this number is followed by hexadecimal 
representations of ASCII characters. 

In figure 4, the Module Name field 
starts with the value 05, indicating that 
the next five bytes make up the module 
name. The ASCII characters represented 
iE' those bytes are WORDe, which is the 
.9!,me of the sample program. 
COMENT record (offset OAH). The next two 
record, are COMENT records, which 
contain comments that do not affect 
program execution. COMENT records 

TABLE 1: Microsoft Object Record 7)1)t!s 

NUMBER 
(HEX) ME 

7A 

7C 
80 
88 
SA 
8C 
8E 
90 
94 

96 
98 
9A 
9C 

AO 
.A2 

BLKEND 
THEADR 
COMENT . 

MQD~ 
EXTDEF 
TYPDEF 
PUBOEF 
UNNUM 

LNAMES 
SEGOEF 
GRPOEF 
FIXUPP 

DESCRIPTION 

Indicates the Start. of a program block, listing Its loca­
tion .MO .return iQfQrtlJ3tiQQ. 
Indicates the end of a program block. 
IOentifies start of modules generated by a translator. 
Denotes a nonexecutable comment. 
DenOl.es.I"e t;n<l ofa modUle. 
Lists the external variables to which a program refers. 
Describes a variable type. ' 
Definesa.program's public symb9ls, 
AsSOCiateS sourC!! ~?<le line nll,lU~ with cqrrespot\(\-
ing object code. . 
Lists names of segments, classes, overlays, and groups. 
Describes a program segment. 
Defines the segments·thatlnake ull ag£9up. 
Identifies places in the data records at which the loader 
must change references to locations. 
Lists logical, enumera«xl data. 
liSts logi<:l!1,iterateo data 

The object module is the unit of information produced by a program translator. 
Each object module consists of records such as those described here. 

NUMBER 
(HEX) ME 

6E RHEADR 

70 REGINT 
72 REDATA 
74 R1DATA 
76 OVLDEF 
78 ENDREC 
7E DEBSYM 

82 LHEADR 

84 PEDATA 
86 PIDATA 
92 l.OCSYM 
A4 UBHED 
A6 L1BNAM 
AS L1BLOC 
M UBDIC 

DESCRIPTION 

lOe.~tlfi¢; the stan ofa 1ll04t;le ~~(hastxlen prbcesseti 
byJntt;!'s link(!r, Tl:t~ js;l rtllom!JIbl~'I"\f1\IlI/e thatCAA 
be loaded directly by Imel's loader. 
Provides information about processor registers. 
Lists reiocalable, enumerated. data' 
~rel0C3table,lte!"atedqata., 
Names and describes a program overlay. 
Indicates the end of block or overlay. 

" Oesqibesthe program:slooilsYl1l~ls,Jn<;ludlng' Slaci<: 
.a,t"l(j based symbols.' " ...... ;' ./.).'; ' .. ' ... ,.... . .. ' 
Identifies the start of a module that has been processed 
by Intel's linker. 

. Listsp"}:'f;lpll, enuni~leOdala. 
Lists P"ysicaJ,itenlted data. '.' . , 
Describes the program's local symbols. 
Denotes the start of a library file. 

'. Lists the names of the modulesln a library file, 
Lists thelocatibns .of aHm,e m(jduJes in the/ibrary. 
Names all the public symbols in the library. 

The complete Intel standard defines 30 different rypes of records--IS more than 
Microsoft's standard uses. These additional record types are described here. 

are created by pr<)grain translators for 
use with other utility programs or for 
personal reference. COMENT records 
a~e used more by Intel than by Micro­
soft development tools. Refer to figure 
3·b for the format of a COME NT record. 

When the No Purge bit is set to I, 
object file utility programs (such as 

1-169 

linkers and librarians) should never 
delete this COMENT record. When the 
bit is set to 0, however, the utility pro· 
grams may delete the record. When the 
No List bit is set to 1, it indicates that 
utility programs that normally list 
COMENT records should not list the 
text of this particular record. 



.0Bj LESSONS 

FIGURE 3: POnJwt\ qIMnJY)so/i Of~i(!ct Record, 

The Class field tells which kind of 
comment this record contains; this var­
ies depending on which translalOr gen­
erated the object code, The field is not 
important, except that Intel normally re­
serves values 2-155 for its internal use, 
Notice that Microsoft uses a restricted 
value here (8tH, or 129 decimal), This 
probably corresponds to a value that In­

_tel uses in similar circumstances, 
The variable-length Comment field 

contains the text that this record wa, 
created lO represent. The twO comment 
record, in this object module start at 
b}~es OAH and 19H. respectively, They 

are used to identify the Microsoft Pascal 
compiler, as indicated by the text M5 
PASCAL and PASCAL in the respective 
Comment fields, 
!.NAMES record (offset 258). LNAME5 rec­
ords contain a list of segments, classes, 
groups, and overlays that are used for 
reference by other record types, A seg­
ment is an area of memory that can be 
accessed with a 16-bit address, at most 
64KB long, The starting address of a 
segment is referenced through one of 
the segment registers (C5, 05, E5, or 
55), A class is several segments that are 
referenced by a common name (the 

1-170 

class name), A group is one or more 
segments that fit into a Single 64KB area 
of memory, can be referenced by a 
common name (the group name), and 
share the same segment register value, 
Overlays are separate sections of code 
that share a given memory area in or­
der to optimize program size,. Overlays 
sharing the same memory area cannot 
execute Simultaneously, 

Instead of duplicating the complete 
names of segments, classes, groups, and 
overlays.in record after record, other 
object module records refer to these 
names by a number that indicates the 



The formats of all the Microsoft Object records are shown bere. The complete Intel standard offers another 15 record types. 

order in which the names appear in the 
LNAMES records. Number 1 is the first 
name in the first LNAMES record; the 
last number is the last name in the last 
LNAMES record. The format of an 
LNAMES record is shown in figure 3-c. 

Each Name field consists of a one­
byte length followed by the characters 
that specify the name of a segment, 
class, group, or overlay. As many name 
fields as necessary are allowed, with 
each one having the same structure. 

The LNAMES record contained in 
figure 4 starts at byte 25H. It has a 
length of 44H bytes. The first name in 

the record is HIMEM and is five bytes 
long. The other names are LARGE, 
CONST, COMADS, DATA, STACK, MEM­
ORY, HEAP, CODE, WORDC, a null 
name (as indicated by a length of 0), 
and DGROUP. Of all these names, only 
WORDC (the name of the program) is 
defined by the program shown in list­
ing 1; the others are internally gener­
ated by the Microsoft. Pascal compiler. 
SEGDEF record (offset 6CH). SEGDEF (seg­
ment definition) records describe the 
segments that make up the program. 
Figure 3-d shows th~ format of a SEG­
DEF record. The first field after the 

1-171 

standard Length field is Align, a three­
bit field that specifies the alignment of 
the segment. The possible values in this 
field are described in table 3. Anotber 
three-bit field, the Combine field, de­
scribes the rules the linker must follow 
in order to combine this segment with 
others of the same name. This field has 
the values shown in table 4. 

The Big field is a one-bit field that, 
if set to 1, indicates that the segment is 
exactly 64KB (65,536 bytes) long (note 
that a segment cannot be greater than 
64KB in length). If the segment is less 
than 64KB long, this field is O. 



.OBJ LESSONS 
The Frame Num and Offset fields 

are present only for absolute segments 
(Align field contains 0). They identify 
the starting ~ddress of the absolute seg­
ment. The Frame Num field specifies 
the number of the frame containing the 
segment. A frame is a type of segment, 
using Intel terminology. It is a 64KB 
area of address space that begins on an 
even, 16-byte boundary (Intel defines 
this as a paragraph boundary). The 
frame beginning at address 0 is frame 0, 
the one beginning at address 10H (16 
decimal) is frame 1, etc. The Offset 'is 
the number of bytes from the start of 
the frame at which the segment ,begins. 

The Seg Length field is a word that 
lists the .length of the segment in bytes. 
Because the largest value that a wbrd 
can contain is 6$,535, if the segment is 
exactly 64KB (65.535 bytes) long, this 
field is set to 0 and the Big field (de~ 
scribed earlier) is set to 1. 

The Seg Name Index, Class Name 
Index, and Ovl Name Index fields are 
single-byte fields that identify the seg· 
ment's name, class, and overlay by 
specifying the numbers of the appro­
priate names in the \.NAMES record. For 
example, a 2 indicates the second name 
in the \.NAMES record, a 3 indicates the 
third name in the record, etc. 

An examination of the first SEGDEF 
record in figure 4 will help to explain 
how SEGOEF records work. This record 
starts at byte 6CH. The first byte in the 
record (98H) identifies the record as a 
SEGDEF, while the next two bytes, 07H 
OOH, indicate the length of the rest of 
the record (7 bytes). 

The next byte, 40H, represents the 
Align; Combine, arid Big fields. To pick 
out the individual fields, 40H must be 
translated into its binary equivalent: 010 
000 00. The leftmost three bits, binary 
010 (or 2, in decimal form), give the 
value for the Align field. This indicates 
that the segment is a relocatable, word-
aligned segment. . . 

The rest of the biis are 0; there­
fore, the segment is a private segment 
(Combine field is 000) less than 64KB 
long (Big field is 0). Because theseg­
ment is not 'an absolute segment, ,the 
Frame and Offset fields are absent: The 

, next word, EFH OOH, gives the length of 
the segmeDt(239 deCimal bytes). 

The next three bytes (OAH, 09H, 
and' OBH) indicate the names of the seg­
ment, the class, and the overlay, respec­
tively. These values are indices into the 
list of names in the \.NAMES record., To 
interpret the names, go back to the 
\.NAMES record (it starts at byte 25H in 
figure 4) and count to the tenth, ninth, 
and eleventh names. Counting to the 

TABLE 3: l'(}w/!/e l/zp,ll \ ,,/JI(', 

The Combine field, which can have the values listed above, describes the rules the 
linker, must' follow to combine the Align segment with others of the same name. 

tenth name reveals the segment name 
to be WORDe. The'ninth name (the 
class name) is CODE, and the eleventh 
name, the overlay name, is null (this 
program has no overlays). 

Examining the rest of the SEGDEF 
records (there are seven of them in all) 
shows that the program contains seg­
ments named WORDC,. HEAP, STACK, 
DATA, COMADS, CONST, and H1MEM. 
GRPDEF record (ofI5et 8m). The record 
that follows the SEGDEF records is a 
GRPDEF (group definition) record. This 
record defines a group, by naming it 
and by identifying all the segments that 
make up the group. (A group consists 
of several segments that fit into one 
64KB area of memory. When these seg­
ments are combined as a group, one 
segment register can access any one of 
the individual segments.) , 

Figure 3-e illustrates the format of 
a GRPDEFrecord. In this record, the 

1·172 

Grp Name Index, much like the other 
indexes that were described previously 
in this article is an index that specifies 
which of the names in the \.NAMES rec­
ord are used to identify the group. 

The Segment Index identifies a 
segment that helps make up the group. 
It is a byte whose value is 'an index into 
the list of SEGDEF records discussed 
earlier. For example, a 1 indicates the 
first SEGDEF record, a 2 indicates the 
second SEGDEF record, and so on. As 
many Segment indexes as necessary are 
allowed and each is preceded by the 
hexadeCimal value FFH. 

The GRPDEF record in figure 4 
starts at byte B2H. It is' 12 bytes long 
(OCH OOH), and its name is DGROUP 
(the twelfth name in the \.NAMES list). 
This group has five segments, referenc­
ing the sixth, fifth, fourth, third, and 
second SEGDEF records in the module 
(HEAP, STACK, DATA, COMADS, and 



.08) LESSONS 
CONST). (This is the normal DGROUP 
produced by the MS·Pascal compiler. 
MS-Pascal loads the segment address for 
DGROUP into the OS register during 
the program's initialization.) 
1YPDEF record (offset C1H). The next rec­
ord is a type definition record. In the 
complete Intel format. lYPDEF records 
contain a wealth of information about 
public variables. external variables, 
code blocks, debugging symbols, and 
local symbols. These records do not af­
fect program execution, but they do 
proVide useful information to.high-level 
language debuggers. 

Microsoft translators, however, 
usually generate just a single dummy 
lYPDEF that is used as a placeholder 
reference for fields in other object 
module records. (Some other records 
need to reference a lYPDEF, and those 
records can always refer back to this 
dummy lYPDEF.) In cases in which a 
null lYPEDEF is used, almost all 
lYPDEFs can be ignored. 

The one time lYPDEF records do 
contain meaningful information is when 
communal variables are involved. A 
communal variable is an uninitialized 
public variable whose size is not fixed 
at compilation time (such as a 
FORTRAN common block). With com­
munal variables, the same variable 
might be defined with different size 
declarations in several different mod­
Ules. (The only PC language that uses 
communal variables is FORTRAN.) 

lYPDEF records appear for com­
munal variables, describing the type 
and size of each. The linker then allo­
cates space for the largest such variable 
defined, and all references to a given 
communal variable have an identical 
starting address and varying lengths. 

The format of a lYPDEF record is 
shown in figure 3-f. In this record, the 
Leaf Descriptor has one of rwo formats, 
depending on whether the communal 
variable is a near l'ariable (its address 
is described only with a 16-bit offset 
value) or afar l'ariable (its 32-bit ad­
dress contains both segment and otfset 
values). For near variables, the first b)1e 
of the Leaf Descriptor is 62H (see figure 
3-g). The Variable Type field is a b)1e 
that describes the type of the communal 
variable with the following values: 

77H Array 
79H Structure 
7BH Scalar 

The Variable Length field lists the 
length of the variable in bits. The Sub· 
type, in the full Intel format, then speci­
fies additional information about the 
variable. In the Microsoft format, this 

tield has no meaning and, therefore, 
usually is not present. 

If the communal variable is a far 
variable (figure 3-h), the first b)1e of 
the Leaf Descriptor field has a value of 
6lH. The next b)1e, 77H, means the 
variable is an array (see the list of vari­
able types above). The MS-DOS Pro­
grammer's Reference states that arrays 
are the only far variables to appear. 

The Number of Elements field lists 
the number of entries in the array. The 
Element Type Index is an index into 
the list of preViously defined lYPDEF 
records. For example, a 2 would indi­
cate the second lYPDEF record; the 
lYPDEF pointed to is a lYPDEF for a 
near variable, and it identifies the type 
of the array elements. 

Examining the lYPDEF record 
shown in figure 4 (beginning at b)1e 
CIH) illustrates that this lYPDEF is 
simply a dummy record and can be 
ignored. The length (aSH OOH) is five 
b)1es. The next rwo b)1es (OOH OOH) 
are the a b)1es shown in the lYPD EF 
format. The next byte (7BH) indicates 

In Microsoft object records, 
the Type Index field refers to 
the dummy TYPDEF, because 
Microsoft languages do not 
generate TYPDEF records. 

that this variable is a scalar. The a b)1e . 
that follows indicates that the length of 
the scalar is O. Therefore, this lYPDEF 
record does not provide any real infor­
mation; it merely defines a variable with 
length O. 
PUBDEF record (offset C9H). Next cOmes a 
PUBDEF (public names definition) rec­
ord, which describes all the public sym­
bols in this object module. Puhlic -'ym­
balr.:; are names of variables, procedures, 
and functions that are defined in this 
module and that can be referenced by 
other modules. PUBDEF records pro­
vide information about these symbols in 
order that the linker can match them 
with external symbols that appear in 
other modules. 

PUBDEF record, list the names of 
public symbols, the group and segment 
in which they reside, and their offset 
from the start of the segment. Figure 3-i 
shows the format of the PUBDEF rec­
ord. The Group Index is an index into 
the LNAMES record that identifies the 

1-173 

name of the group associated with this 
public symbol. A value of a indicates 
that the symbol has no associated 
group. The Segment Index identifies 
the segment containing this symbol by 
referencing a SEGDEF record (a 1 indi­
cates the first SEGDEF, a 2 indicates the 
second, and so on). 

If both the Group Index and the 
Segment Index are 0, the Frame Num­
ber field is present; otherwise, the 
Frame Number field does not appear. If 
present, the Frame Number lists the 
number of a frame containing the 
public symbol. (Remember, a frame is 
a 64KB block of memory that starts 
on a l6-b)1e boundary. Frame a goes 
from a to 64K; frame 1 goes from 1011 
to 64K+IOH; and so on.) 

The Public Name, Public Offset, 
and Type Index fields are repeated for 
each public name defined in this rec­
ord. The Public Name field lists the 
name of the public symbol; the first 
b)1e lists the number of b)1es in the 
name, followed by an ASCII representa­
tion of the name. The Public Offset field 
(a word value) specifies the number of 
b)1es (the offest) from the start of the 
segment or frame containing the symbol. 

The Type Index field identifies the 
lYPDEF record that describes this sym­
bol. Like the Segment Index field this 
field lists the number of a preViously 
defined lYPDEF record (a 1 indicates 
the first lYPDEF, a 2 indicates the sec­
ond, etc.). In Microsoft object records, . 
this field refers back to the dummy 
lYPDEF, because Microsoft languages 
do not generate lYPDEF records. 

The sample program shown in list­
ing 1 did not expliCitly define any pub­
lic symbols, but the compiler generated 
rwo of them. An examination of the 
PUBDEF record in figure 4 follows, be­
ginning at b)1e C9H. 

The record length (l6H GOH) is 22 
b)1es. The Group Index is OOH (no 
group is associated with these symbols). 
The Segment Index is OlH, indicating 
that the symbols are contained in the 
first segment that is defined in a SEG­
DEF record (WaRDe). 

The name of the first symbol is 
next. It is five b)1es long and is called 
WORDC (the program name). Its otI,et 
is I (OlH OOH), and its Type Index is 
aiso 1 (there is only one lYPDEF). 

The next public symbol is six b)1es 
long and has the name ENTGQQ. It 
also has an offset of 1 as well as a Type 
Index of l. This means that the compil­
er has defined two different names for 
the same symbol. ENTGQQ is used by 
the Pascal runtime library as a common 
method for identifying the beginning of 



.08} LESSONS 
the main program. (Any symbols that 
end with the letters QQ most likely 
have been generated by MS-Pascal.) 
ElITDEF record (o!l5et E2H). The E.X1DEF 
record, which appears next in figure 4, 
defines the names of external symbols 
to which this program refers. External 
symbols are the names of variables or 
'~ubroutines that a program uses but 
does not define (they are defined in 
other object modules and declared pub­
lic there). Figure 3-j illustrates the 
format of an EXIDEF record. 

The sample program declared no 
external subroutines or variables, but 
the compiler generated external refer­
ences to some of its library routines. 
The EXIDEF record beginning at byte 
E2H of figure 4 lisl~ them. 

The fitst word (71H OOH) indicates 
the length of the record (113 bytes). 
The remaining portion of the record 
names the externally defined variables 
and identifies their 1YPDEF records. 
This record lists symbols named 
BEGXQQ, WlLFQQ, WfIFQQ, 
WfSFQQ, RTCFQQ,EOFFQQ, PPEFQQ, 
RTAFQQ, PPMFQQ, NEWFQQ; INIFQQ, 
INPFQQ, OUTFQQ, and RESFQQ, all 
referencing 1YPEDEF record 1 (which 
in'ilicates a null record). 

These external variables are de­
fined in .the P;IScal runtime library. Be­
cause the compiler always generates its 
own external references, programmers 
must always link their Pascal programs 
to the PascaiJibraries that accompany 
the MS-Pascal compiler. 
LEDATA and LIDATA records (offset 164H). 
The next, record in figure 4 is a FIXUPP 
record, which identifies locations in the 
data that must be changed before a pro­
gram can be loaded into memory. To 
understand FIXUPP records, the user 
must know how data records work. 

Data records contain the actual ma­
chine code and data that get loaded 
into memory. Two kinds of data records 
can appear in a Microsoft object mod­
ule: LEDATA (logical enumerated data) 
and LlDATA (logical iterated data). An 
LEDATA record contains data just as 
they will appear when loaded into 
memory (except where they will be 
modified by FIXUPP records). The 
LlDATA record is encoded to compress 
repeated data, thereby making the ob­
ject module smaller. 

The format of an LEDATA record is 
shown in figure 3-k. In this record, both 
the Segment Index and Enumerated 
Data Offset fields help identify where 
the data will reside in memory. The 
Segment Index is the number of a pre­
Viously defined SEGDEF record. The 
Enumerated Data Offset is a word that 

indicates where the data begin, relative 
to the start of that segment. The vari­
able-length DATA field gets loaded into 
memory at the address specified by the 
Segment Index and Data Offset. 

The first LEDATA record in listing 2 
starts at byte 164H. This record is eight 
bytes long (OSH OOH). The Segment In­
dex (04H) identifies the fourth SEGDEF 
(DATA) as the segment containing this 
data. The address offset from the start 
of that segment is 0 (OOH OOH). The re­
maining bytes of the record are the data 
that get loaded intd the DATA segment. 
Other LEDATA records in this module 
can be interpreted in the same way. 

Several LEDATA records are listed 
for this sample program. The largest of 
the records contains the program's 
code, which will reside in the code seg­
ment. Each LEDATA record can contain 
only 1,024 bytes of information; thus, 
if the sample program's code were 
longer, additional LEDATA records 
would be present. Other LEDATA rec­
ords designate information for other 
segments, includingptogram data such 

Data blocks can be nested 
as many as 17 levels deep, 
but the size of the iterated 
data block field cannot 
exceed 512 bytes. 

as the text word count =, which is 
placed into the CONST segment. (List­
ing 1 shows that t!lese are words that 
the program displays on the screen.) 

The term logical enumerated data 
implies rwo characteristics of the data in 
the record. First, the data are logical. In 
Intel terminology, that means relocat­
able; the loader is free to load the data 
wherever necessary, based on available 
system memory and the software that is 
already executing. 

Second, the data are enumerated, 
which means that'every byte is listed, 
even if many consecutive bytes contain 
the same value. Another type of data 
(iterated) is encoded to decrease the 
size of the data record. Iterated data 
records compress consecutive bytes that 
contain the same value. Although the 
sample program contains no iterated 
data records, programs that load a lot of 
repeated data might. 

The Segment Index and Iterated 
Data Offset fields contained in the 

1-174 

LIDATA record are exactly the same as 
the Similarly named fields in the 
LEDATA record (refer to figure 3-1); 
they identify an address for loading 
data. The next three fields in LlDATA 
(Repeat Count, Block Count, and Con­
tent) are called an iterated data block 
and specify the iterated data. Repeat 
Count is a word that indicates the num­
ber of times the Content field is to be 
repeated. If the Repeat Count is 3, three 
copies of the Content field will be 
loaded into memory. 

The next field, Block Count, is a 
word that identifies whether the Con­
tent field contai'1s only data or whether 
the Content field itself is made up of 
iterated data blocks (Repeat Count, 
Block Count, and Content field~). If the 
Block Count field is 0, the Content field 
contains only data, which are loaded 
into memory as many times as indicated 
by the Repeat Count field. However, if 
the Block Count field is not 0, the Con­
tent field itself contains iterated data 
blocks; that is, the iterated data blocks 
are nested. The number in the Block 
Count field specifies the number of iter­
ated data blocks in the Content field. 

If the Content field contains only 
data, the first byte indicates the number 
of bytes of data in the rest of. the field. 
However, if the Content field does not 
contain data, .it is interpreted as another 
iterated data block, with the first word 
being a Repeat Count. 

Figure 5 illustrates how the iterated 
data block can be nested to compress 
the repeated data. The first part of the 
figure shows a simple iterated data 
block with a single Repeat Count and 
Block Count. The second part of the fig­
ure illustrates an iterated data block 
with three levels of nesting. This nest­
ing of data blocks can go as many as 17 
levels deep, as long as the size of the 
iterated data block field does not ex­
ceed 512 bytes (this is a limitation of 
the Microsoft linker). 

If a program loads a great deal of 
repeated data (such as defining a large 
array initialized to a common value), 
L1DATA records allow that repeated data 
be stored in very few bytes. Of course, 
LlDATA records are not appropriate 
when no repeated data are present. 
Compilers and assemblers are free to 
decide which record to use; they may 
determine which will cause the result­
ing object file to be smaller. 
FlXUPP record (offset 156H), FIXUPP rec­
ords identify data in either LEDATA or 
LlDATA records that refer to symbols 
whose locations will change as a result 
of the linker deciding how to relocate 
everything. FIXUPP records are notes to 



FIGURE 4: Ohjf!d Module./j·om \'(fORDG.O!3] . 

01l\l 1000 04 05 00 51 ., 52 44 4l 2£ SO 41 " 20 20 ••••• _.Pi'I' 

. OFfSET 'EX ASCII 

\/'THEADR \/·CCf4ENT 

0000 .ifM~uU.444lft~~~~OO~ 4 ••• WOJtOC •••••• M 

>._ ,,,,' _" _, _ _ ,-, _,~ ,~,V',~N~ 
0010 53 20 50 " 53 43 41 4C Fa 88 09 00 00 81 50 41 S PASCAL. •••• ,PA 

\I-LHANES 

t '0020 $3 4J 4t ',c 1.\. '" 00 05'48 49 4D.r,S "OS 4c $CA1.1.D .. HIMEM.L 
0031) 41 5Z or., oS 43 U '03 54 06>13 "4/) .,.. .....COII".C<IIAJ) 

0QIf. ",.114 ,44,4154 " .05 n,5441 4) •• O!\ <II .5 '" 1.,~".JTAt1\.",,~ 
0050 4f 52 59 04 48 45 41 50 04 43 4F 44 45 05 57 4F ORY .HEAP.COOE.~ 

\/'SEGOEF 

,~ 5244 43 00 04 44 47 '2., '5 50 £498 0700.0 AOC •• DGROUP •••• a 

v· .... ~, 
UOO~~OOM~~OO"OOOOoo~ooro ........ ~ ..... . 

\I-SEGDEF \I-SEGDEF 

~if.~OOOO~04~~~~";'U~. 

\/'TYPOEF \/-PUaOEF 
_ w~.oooooonOOnWUOOOOM.~U 

• 0000 -4F_"~ -4443',01 00'01 (h$ 4S 4e 54' 475151 0100 

\/'EXTCEf 
ODED 01 FB Be 71 00 06 42 45 47 58 51 51 01 06 57 54 

aOFO 4C 46 51 51 01 06 57 54 4946 51 51 01 06 57 54 
01D053 46 SHI 01 04 52 54 4J 44 51 51 01 06 45 4f 

- 0"0: ,":';'4)1'51' 0106 50 '50, ,4~'46,'S1',51 ;:01 G6 52,$4 
'!Il~< :41«~~LSl 01 06 ~9< SD loi! ~surO;.04~~ 45 
0130 5746 51 51 01 06 49 4E 4946 S1 51 01 06 49 4E 

0140 50 46 51 51 01 06 4F 55 54 46 51 51 01 06 52 45 

V',H'XlJPP, ,',' 
51' of 19 9C'OB 0It'00- D6 0\-04 0202 0] SfQQ ......... '~ •• 

V·LEDAYA V·LEDAYA 
0160 01 44 01 01 AD 08 00 04 00 00 42 57 02 00 B9 AD .O •••••••• B'" •••• 

V'LEOATA V'LEDATA 

0180 20 56 AD 05 00 04 04 00 DC 47 AD 10 00 06 02 00 v ...... . G •••••• 

V;L~iA 
0'90 0749'41 S' ~ 49 4(: 4$'4(: 41 4(: 00 52 AO 3f 00 .'M-"UlA\..A.l • 
. 01.0 91 01 00 55. ~~l •• e 0400 ",,!io,oO}1.0 00 II ••• U ..... , .......... . 
0190 90 02 50 98 50 00 SO 98 01 00 50 9A 00 00 .aD 00 •• P.P.P •• ,P •••.• 
oteo 98 14 00 50 98 50 00 SO 98 01 0050 9A 00 00 00 ••• P.P.P ••• P •••• 

V'FlxUPP 

0100 00" 07 OO~ II lIS 00 50 9000011001 00'0" .... P.~ .......... ' 
01[0 1A 00 cr: l" 56 oe. III 00 .. CC 19 56<!ltCl1e" .... v ...... V ... :,. 

V'LEDATA 

OHO CC 2A 56 OA C4 33 8C cc 37 56 09 eB AD 12 00 06 .*v •• 3 •• TV •• ,_ •• 

0200 OE,90,OO,!' 6,F 72 64 ~,O ,63 6,F, ~",~,,~,~.2~ ~ 20" ••• word COU'It· 

OO!.'.O 
0220 

0230 00 00 C7 06 DC 05 00 00 C6 06 10 05 00 88 14 00 

0240 

0250 
, 0260 

OO!?!I 
0260 

50 9A 00 00 00 00 01 E8 72 4A 98 14 00 50 98 OE P ....... rJ ••• P •• 

l)S<l.SD~.Ql5<!"!r09 SD",,<OO.ti9;:~ljUO ' •• 3 ••• : ....... . 
lIliE45~14 IS iolf;IIl1l$.OO~~lI1!~~ Of < >". t,;':"., .. ', 

, . ."OO.r4,Ot"".lI<\lI!,"<~J'1r"~~IIl!::t.~;!!b:, .• ,"'.! ..• <.~; •• ,, •. ,', 
E9 10 F6 06 10 05 01 75 09 e6 06 10 05 01 ff 06 ....... u •••••••• 

0290 DC 05 EB A9 B8 00 00 50 B8 Do 00 50 B8 OF 00 1E ....... P ... P •••• 

The first· byte of each record comprising WORDC.OB) is marked with a V symbol, with the record type written beside it. 

the linker that essentially say, "Here is a 
place (called a locatioll) where the 
code refers to a symbol (called a tar· 
get). If the target is muved around, the 
location's reference. in the code should 
be changed accordingly." 

FIXUPP records supply several 
pieces of information that the linker 
needs to fix up 3 location's reference. 
Figure 6 illustrates such information. 
First, the FIXUI'P record identifies the 
location to be fixed up. It specifies this 
as an of [set into the data portion of the 
data record (a FlXUPP always applies to 
the closest previous LEDATA or LIDATA 
record). Next, the FIXlJPP record iden· 
tifies the target-that is, the symbol he· 
ing referenced by the location. 

Once the target and location are 
identified, the FlXUPP record provides 
information about the framework of the 
lix-up, that is, how to change the loca· 
tion so that it accurately refers to the 
target There are (\VO sllch pieces of in· 
formation: the mode and the frame. 

The mode tells the linker whether 
to change the location'.s reference to 
the target using a value relative to the 
location itself (self-relative mode) or to 
make the change in the target reference 
relative to the start of some segment 
(segment·relative mode). In self-relative 
mode, the location and target reside in 
the ~ame segment, and the linker..is re­
qUired to change only the offset portion 
of the location '5 reference to the target. 

1-175 

In segment·relative mode, the linker 
needs to change both the base and the 
offset reference to the target. 

The frame is a 64Kll area of memo 
ory starting on a 16-byte,houndary. It 
provides the information the linker 
needs to change the hase portion of the 
target's address. For self·relative refer· 
ences. this frame is usually the segment 
referenced in the address of the loca­
tion and target. For segment -relative ref­
erences, the frame is the segment refer· 
enced in the address of the target. 

Knowingthe mode and the frame, 
the linker is ahle to change any loca· 
tion's reference accurately, whether or 
not the target resides in the same seg­
ment as the location. 



.OB} LFSSONS 

FIGURE 5: Itew/cd Oil/a !ilUck 

The iterated data block can be nested to compress repeated data. In the UDA TA record, this block can be nested 17 levels deep. 

FIXUPP records are of two types: 
thread and explicit fix·up. A thread 
FIXUPP record defines locations in 
memory and the symbols to which they 
refer. Explicit FlXUPP records reference 
threads in the same manner a~ SEGDEF 
record~ establish the relationship be­
tween a location, target, and fmme. By 
defining commonly used information 
only once, thread record~ aliow explicit 
'FIXUPP record~ to be shorter. The 
format of thread aM explicit FlXUPP re­
cord~ is shown in figures 3-m and 3-n. 

In a thread FlXUPP, the Dfield is a 
single bit that indicates the kind of 
thread in question. If D is 0, the thread 
is a target thread, and the information 
supplied here is used to identify the tar­
get of the fix-up (the symbol to which 
the location in memory refers). If D is 
1, the thread is a fmme thread, which 
supplies information about the f!"Jffie (a 
segment, a 64KB area of memory start­
ing on a ItS-byte boundary). The linker 
needs to know the frame in order that 
it can correctly adjust the location's ref­
erence to, the target. 

The Method field is a three-bit field 
that lists the method the linker must 
use to identify the target or the frame, 
based on the value of the D field. If 
D=O, (a target thread), Meth04 can have 
one of the values shown in table 5. If 
D= 1 (a frame thread), Method can have 
one' of the values shown in table 6. 

The Thread field is a two-bit field 
that assigns a number (from 0 to 3) to 
the thread being defined. Later, FlXUPP 
records can refer 10 targets or f!"Jffies 

using these numbers, instead of having 
to define the target or frame explicitly. 
A single thread FIXUPP record can de­
fine up to four target threads and four 
frame threads. If a later thread FIXUPP 
record assigns the same number' to a 
new thread, it redefines that thread 
number for remaining FlXUPP records. 

The Index field identifies the SEG­
DEF, GRPDEF, or EXTDEFind"x re' 
ferred to by the Method field. For ex­
ample, If this is a target thread that uses 
method TO (see table 5), the Index field 
is an index into the list of SEGDEF rec­
ords (a 1 indicates the first SEGDEF de­
fined, a 2 indicates the second SEGDEF, 
and so on). Likewise, if this thread were 
a frame thread that used method F2, the 
Index field would' be an index into the 
EXTDEF list of external symbols. 

The Index field always appears ex­
cept for frame threads that use methods 
F3, F4, or F5. In those cases, the Index 
field is unnecessary. The combination 
of D, Method, Thread, and Index fields 
defines a single thread. Each thread 
FlXUPP can define four target threads 
and four frame threads. 

An examination of one of the 
threads in the first FIXuPP record in fig­
ure 4 (starting at byte 156H) will help 
explain how thread FIXUPPs work. The 
length of the record (OBH OOH) is 11 
decimal bytes. The next byte (OOH) con­
tains the D, Method, and Thread fields 
for the first thread. Because the byte is 
all Os, the hexadecimal value does not 
need to be expanded into binary. It is 
easy to see that b=o (this is a target 

1-176 

thread), Method is TO (the target is 
specified by a SEGDEF index and an 
offset), and the thread number is O. 

The next byte (06H) is an index 
that identifieS this target. Because the 
Method field indicates a SEGDEF index, 
the 06H value is an index into the list 
of SEGDEF records. It identifies the 
Sixth SEGDEF defined (the CONST seg­
ment). When later FIXUPP records refer 
to target thread 0, they will be referring 
to the CONST segment. 

The other four 'threads in this rec­
ord can be inter-preted in the same way. 
Target thread 1 refers to segment 4 (the 
DATA segment). Target thread 2 refers 
to segment 2 (the HEAP segment). Tar­
get thread 3 refers to segment 1 (the 
WORDC segment). F!"Jffie thread 0 re­
fers to group 1 (DGROUP). , 

A thread FrXuPP record merely 
provides common information to be 
used by other explicit FlXUPP records: 
'An explicit FIXUPP record identifies the 
location that is to be fixed up, the sym­
bol (or target) 10 which the location 
refers, and the context (or f!"Jffie) in 
which this fix-up is to take place. ,Using 
this information, the linker is then able 
to adjust the addresses. 

In the explicit FIXUPP record in 
figure 3-n, the Mode field is a single bit 
that indicates whether the fix-up is self­
relative (mode 0) or segment-relative 
(mode 1). A self-relative FlXUPP lets the 
linker know that it needs to support 8-
and 16-bit offsets without segment val­
ues (because the program uses only 
call, jump, and short jump instructions). 



Segment-relative FIXlJPPs, however, re­
quire, the linker to support all 8088 
addressing modes. 

The Lac field is a three-bit field 
that identifies the kind of location to be 
fixed up. The possible values for this 
field are shown in table 7. 

The Data Rec Offset field is a lO-bit 
field that identifies the start of the loca­
tion to be fixed up. It is the offset from 
the start of the data portion of the pre­
ceding data record (either LEDATA or 
L1DATA). For example, if the Lac field 
identified the location as a /obyte and 
the Data Rec Offset were 2, the FlXUPP 
record would tell the loader to change 
the address of the second byte in the 
previous data record; Instructions for 
changing this byte are supplied later in 
the FIXlJPP record. 

The F field in the FIXlJPP record is 
a single bit that indicates how the frame 
for this fix-up is specified. The frame is 
the context in which the fix-up occurs; 
that is, it idenifies a 64KB block of 
memory address space, starting on a 16-
byte boundary, that will eventually con­
tain the target as soon as the data are 
loaded into memory. During system op­
eration, the current frame depends on 
the contents of a segment register. 
Therefore, the frame provides a starting 
point (or base) that the linker can use 
in order to generate an accurate ad­
dress when it performs the fix-up. If 
F=O, the FIXlJPP record specifies the 
frame explicitly. If F= 1, the FIXlJPP rec­
ord refers to the previous thread FIX­
UPP for the location of the frame. 

The Frame field Is a three-bit field 
whose meaning depends on the setting 
of the F field. If F=O (an explicit 
frame), the Frame field contains a num­
ber from 0 to 5 that lists the method of 
Identifying the frame. These methods of 
identifying frames (FO through F5) are 
the same as those discussed earlier with 
the thread FIXlJPP record. 

If F= 1 (reference to a previous 
thread), the Frame field identifies the 
number of a previously defined frame 
thread. For example, if the Frame field 
is 1, then the frame of this fix-up is 
frame thread number 1, as defined in 
the previous thread FIXlJPP record. 

The T field is a single bit that tells 
whether the target of this fix-up (the 
symbol to which the location refers) is 
specified expliCitly (T=O)or in a pre­
vious thread FIXlJPP (T= I). 

The P field is a single bit that tells 
whether the target is specified in a' pri­
mary way (P=O) or a secondary way 
(P = 1). Primary ways correspond to 
methods TO through n outlined ear­
lier. They require both an index (to 

TABLE 5: I'o\sihie .He/bod Values (D~()) 

VALUE MEANING 

o The Wget is identified by a SEGDEF index and an o1fset. (TO) 
1 . The wget Is identified by a GRPDEF Index and an offset (Tl) 

The target is identified by an EXTDEF index and an otI~et. (1'2) . 
The target is identified by a frame number and an otI~et. (n) 
1be.iatget Is ideriiified by a SBGDEF index oilly: The target startS at' 
. tile be8innlng of the, segment (T 4) . 

·2 
3 
.4 

5 The target is identified by a GRPDEF index oniy. (T5) 
6 
7, 

The target is identified by an EXIDEF index only. (T6) 
The(arget isldenfUied, by a friulle number only, (17) 

The Method field lists the method the linker must use to identify the target or 
frame based on the value of the D field. IF D = 0, Method can have any value shown 
here. 

TABLE 6: Possible Me/bod Values (D'o;= n' 

The Loc field is a three· bit field that identifies the kind of location ,to be fixed up by 
the FIXUPP record. The possible values for this field are shown here. . 

identify the segment, group, or external 
symbol) and an offset. Secondary ways 
correspond 10 methods T4 through T7 
and do not require an offset (or the 
presence of the Target Displacement 
fieid in the FIXlJPP record). 

The Targt field is a two-bit fieid 
whose meaning depends on the value 
of the T field. IfT=O (explicit specifica­
tion), Targt indicates the method of 
identifying the target. The possible val­
ues, 0 through 3, correspond to meth­
ods TO through T3 if P = 0 and T4 
through T7 if P = I. These methods 
were described earlier in the discussion 

1-177 

of thread FIXlJPPs. If T= 1 (reference to 
a previous thread), the Targt field iden­
tifies a previousiy defined target thread. 
In this case, the number is the same 
number of a target thread defined in 
the previous thread FIXUPP. 

The Frame Datum field appears 
oniy when the frame is specified ex­
pliCitly (F= 1). It is an index into the 
list of SEGDEFs, GRPDEFs, or EXTDEFs 
(which list is used depends on the 
method identified in the Frame field). 

The Target Datum field is similar 
to the Frame Datum field. It appears 
when the target is specified exp!icitly 



·08J LESSONS 
(T=I) and is an index into the list of 
SEGDEFs, GRPDEFs, or EX1DEFs. 

Finally, the TargetDisplacement 
field is a two-byte field that appears 
only when p=o (the primary method of 
specifying a target). In this case, the 
Target Displacement is an offset from , 
the start of the SEGDEF, GRPDEF, or 
EX1DEF (whose index appeared either 
in the Target Datum field or in an ear­
lier thread FIXUPP). 

The first record in the sample pro­
gram serves as an example of how an 
explicit FIXUPP record works. This rec­
ord starts at byte lDFH. Its length (IAH 
OOH) is 26 decimal bytes. The next two 
bytes (CCH 08H) specify the Mode, Lac, 
and Data Rec Offset fields. The binary 
format of the hexadecimal numbers is 
as follows: 

1 1 0 011 0000001000 

The leftmost bit indicates that this 
actually is an explicit FIXUPP record (a 
o would have indicated a thread FIX­
UPP). The next bit, the Mode bit, indi­
cates that the mode is segment-relative. 

The third bit is always set to 0, and 
the three bits that follow make up the 
Lac field. The value of these bits (all 
binary or 3 decimal) indicates that the 
location to be fixed up is a pointer. 

The next 10 bilS specify the loca­
tion to be fixed up. This value (8 deci­
mal) means that the location starts at 
the eighth byte from the start of the 
data portion of the previous data record 
(anLEDATA record starting at byte 
19DH in figure 4). The data portion of 
that LEDATA record starts at byte lAl H 
in figure 4, and the eighth byte is byte 
lA8H (whose value is 04). This byte 
then becomes the first byte of a pointer 
the compiler has indicated for change. 

The next byte in the FIXUPP record 
(56H) contains the values for the F, 
Frame, T, P, and Targt fields. To inter­
pret these fields, this byte must be 
translated into binary, as follows: 

o 101 0 1 10 

The first bit is the F bit. Because it is set 
to 0, it indicates that this record speci­
fies the frame explicitly, rather than by 
referring to a thread FIXUPP. Therefore, 
the next field (101) 'indicates the meth­
od of specifying the frame. Because 101 
binary translates into 5 decimal. the 
method F5 is used. F5 says the frame is 
determined by the target. So for tllis fix­
up, the information that specifies the 
target will also specify the frame. 

The T bit is next. Because it is set 
to 0, it indicates that the target will also 
be speCified expliCitly and not by refer­
ring to a thread FIXUPP. The bit that 

nGURE 6: 77Je FlX{ '1'1' Rec'(Hd 

. FIXUPP records supply pieces of information the linker, nee,ds to fix up a location',s 
reference. The relationship between these pieces of information is shown ,here. 

follows is the P bit. Because it is 1, the 
target specification is made in the sec­
ondary way. That is, the index (in the 
Target Datum field) alone specifies the 
target. No displacement is needed, and 
therefore no Target Displacement field 
appears in this fix-up. 

The last two bits in this byte (10) 
indicate the method of specifying the 
target. This value (2 decimal) means 
that method T6, an index into the list of 
external symbols, is used. 

The next byte (OBH), the last one 
in this fix-up, is the Target Datum field. 
Notice that the Frame Datum field does 
not appear in this fix-up because the 
frame is specified impliCitly by the tar­
get. The Target Displacement field does 
not appear either, because the target is 
specified in a secondary way. The re­
maining bytes in the record are addi­
tional complete fix-ups. Thus, this Tar­
get Datum field is an index that identi­
fies both the target and the frame. Be­
cause the method of specifying the tar­
get was listed as T2, this is an index 
into the list of external symbols de­
scribed in the EX1DEF record, and it 
identifies symbol OBH (or 11 deci'mal). 
In the EX1DEF record (beginning at 
byte E2 in figure 4), the eleventh sym­
bol listed is INIFQQ. 

If the P bit had been set to 1, an 
additional displacememfield would 
have identified the displacement from 
INIFQQ to which the fix-up should 
refer. Because P was set to 0, the loca­
tion to be fixed up (identified earlier) 
depends solely on the address of the 
external symbol INIFQQ. 

1-178 

.~---

Thus, to summarize the first fix-up 
in this FlXUPP record, the location to 
be fixed up is a pointer that begins 
eight bytes into the previous data rec­
ord and that points to the external sym­
bol INIFQQ .. When the location of 
INIFQQ becomes known (by linking 
the program to another module that de­
clares INIFQQ as a public symbol). the 
linker will change the pointer to refer 
directly to INIFQQ. The linker knows 
exactly how to change the reference be­
cause it also knows the frame (the seg­
ment register value) that is in effect 
when the target is loaded into memory. 

This FIXUPP record contains six 
more fix-ups. The one just outlined did 
not refer to any of the thread, defined 
earlier, but some of the later ones do. 
To see some of the variations in fix-ups, 
just continue this process and translate 
some of the others shown in. this listing. 
BLKDEF and BLKENDrecords (offsets 332H 
and 346H). After some more LEDATA and 
FIXUPP records. a BLKDEF (block deli- . 
nition) and a BLKEND (block end) rec­
ord appear. Together, these two records 
describe a program block. A program 
block cah define such language, con­
structs as procedures, loops, and multi­
line if-then-else statements, depending 
on the language and compiler imple­
mentation, A BLKDEF and a BLKEND 
record exist for every procedure and 
for every program block that has it' 
own local variables. 

The BLKDEF record identifies the 
group and segment containing the 
block. It also lists the name of the 
block, the block's offset from the start 



,OBJ~NS 

of the segment, and the length of the 
block. In addition, if the BLKOEF record 
describes a procedure, the record pro­
vides information about the type of pro­
cedure. The format of a BLKDEF record 
is shown in figure 3-0. 

The Group Index indexes the 
names in the LNAMES record. It identi­
fies the group assoCiated with the block. 
The Segment Index is an index into the 
list of SEGDEF records. It identifies the 
segment containing the block. If both 
these values are 0, a Frame Number 
field is present, indicating the number 
of the frame containing the block. 

The Name field identifies the name 
of the block. As in all name fields, the 
first byte indicates the 'number of bytes 
in the rest of the name. The remaining 
bytes are ASCII values. 

The Block Offset field is a word 
that indicates the block's offset from the 
stan of the segment containing the 
block. The Block Length field is a word 
that lists the number of bytes in ihe 
block. The Procedure bit indicates 
whether the block is a procedure. If the 
bit is 1, the block is a procedure; how­
ever, if it is 0, the block is some differ­
ent type (such as a DO loop), 

The Long bit has meaning only if 
the Procedure bit' is set to 1. When the 
Long bit is set to 1, it implies [/tat the 
procedure's return address is a four­
byte value (both CS and IP). When the 
bit is set to 0, the procedure has a two­
byte return address (IP only). 

The Return Address Offset field is 
present only if the block is a procedure. 
This field is a word that gives the loca­
tion of the procedure's return address 
on the stack. The return address gets 
pushed onto the stack when the proce­
dure is called. The Return Address Off­
set is interpreted as an offset from the 
BP register, which points to the return .. 
address on the stack. 

As usual, the Type Index field iden­
tifies the number of the lYPDEF record 
that defines this block. 

The BLKOEF record in figure 4 
starts at byte 332H. The length (llH 
OOH) is 17 decimal bytes. The Group 
Index is DOH; thus, this block is not a~­
sociated with a group. The Segment [n­
dex (OIH) point~ back to the first 
SEGDEF defined, indicating this block is 
part of the segment WORDC. 

The next field is the Name field, 
The first byte (05H) gives the number 
of bytes in the name. The next five 
(57H 4FH 52H 44H 43H) are ASCII 
codes for the block name (WORDC). 

Next comes the Block Offset (OlH 
OOH), indicating that the block starts 
one byte after the s~n of the segment. 

TABLE 8: l./}/I' :v'lIl1l/)er'LIJle Number Ofr,et Pall's 

SOURCE LINE NUMBER OBJECT CODE OFFSET 

l1H(17 deciIiW) 
J2;!i(18~) 
13H (19 decimal) 
14H (20 decimal) 
lilH (22 dCCImaI) 

" 4EH 
57li 
SDH 
62H 
6fH 

J7'H~~} 
IBH (27 decimal) 
lCH (28 decimal) 
iEl:f(;o~iinid) . 
J.~.(3t~): . 
20H (32 decimal) 
21H (33 decimal) 

;;~~~!~~:"~;~" 

.B:4!I ... L .... ~ ...... " •••• ". • ..... , •••• 

AOH 
A7H 
AIlli, ',', , ... , 
~I:l.;.:,,~::n, i>:,;." 
B7H 

Each Une Number and Une Number Offset pair identifies the location of one line of 
source code. One such pair exists for each executable source line in the program. 

TABLE 9: 1'ossI17/e Attrtb Values 

The Attrib field of the MOOENO record is a two-bit field that specifies the attrib­
utes ofthe module. Possible values for this field are listed here. 

. The Block Length (EEH OOH) indicates 
that the block is 238 decima!· bytes long. 
The next byte (60H) contains the set· 
tings for the Procedure and Long bits. 
In. binary, this byte translates into 
1100000. Therefore, this .block is a pro­
cedure; appropriately, it does have a 
four-byte return address. 

Because the block is a procedure, 
the next word (DOH OOH) is the Return 
Address Offset. This value indicates that 
the procedure's return addfess is at 
BP+O. The byte that follows (OOH) is 
the Type Index. The 0 value here indi­
cates that no lYPDEF record is ass0-

ciated with this block. 
A BLKEND record appears next, in­

dicating the end of the block defint;d by 
the previous BLKDEF record. [n the full 
Intel object module format, the combi-

. nation of BLKOEF and BLKEND records 
provides information about the scope of 
variables. Beiween the BLKDEF and 
BLKEND records appear debugging 
symbol records that describe each sym­
bol defined in the block. However, the 
Microsoft format does not currently 
suppon these debugging records; 
BLKEND records therefore serve no 
useful purpose. 

1-179 

The format of a BLKEND record is 
shown in figure 3-p and contains no 
special fields. The BLKEND record in 
figure.4 starts at byte 346H. 
LINNUM record (oO'5et 34AH), After the 
BLKEND record comes a line numbers 
record that lists the address of each ex­
ecutable line of source code. Although 
not necessary for program execution, it 
provides information debuggers can use 

. to' associate the source code with the 
translated object code. 

The format of a L1NNUM record is 
shown in figure 3-q. In this record, the 
Group Index field is an index into the 
LNAMES record and indicates the group 
containing this code. Likewise, the St;g­
ment Index is an index into the list of 
SEGDEF records, identifying the seg­
ment containing the code . 

Each Line Number and Line Num­
ber Offset pair identifies the location of 
one line of source code. The Line Num­
ber field is a word that lists the source 
line number. The Line Number Offset 
field is a wOrd that lists the address of 
that line, relative to the stan of the seg­
ment. A Line NumberlLine Number Off­
set pair exists for each executable 
source line in the program. 



,OBJ LESSONS 
The LINNUM record of the sample 

program startS at byte 34AH of figure 4. 
ItS length (3BH OOH) is 59 decimal 
bytes. Its Group Index is OOH (no 
group), and its Segment Index is OlH 
(the first SEGDEF, WORDC). Next come 
the Line NumberlLlne Number Offset 
pairs. These pairs are listed in table 8. 

To see those lines included in this 
record, compile the source code in list­
ing 1 and look at the file WORDC.LST. 
MODEN» record (otrsel388H), The last rec­
ord in the file is the module end rec­
ord. It indicates the end of the module 
that was begun by THEADR, whether 
that module is a main module or a sub­
program, and sometimes the module's 
starting address. Figure 3-r shows the 
record's format. 

The AttriD field of the MODEND 
record is a two-bit field that specifies 
the attributes of the module. Possible 
values for this field are listed in table 9. 

The rest of the fields (F, Frame, T, 
P, Targt, Frame Datum, Target Datum, 
and Target Displacement) specify the . 
starting address. 'these fields appear 
only if the Anrib field indicates that the 
starting address is listed. The fields are 
interpreted in the same way as the 
equivalent fields in the FIXUPP record. 

In figure 4, the MODEND record 
startS at byte 3BBH. The length of the 
record (02H OOH)is two bytes. The At­
trib field is 0, which indicates a non­
main module with no starting address 
listed. The other fields are not present. 
If this sample program had included 
more than one module, another 
THEADR record would have appeared 
to indicate the start of the next module. 

THE EXPANDED STANDARD 
Even though Microsoft defines 15 dif­
ferent record types, these are just a sub­
set of the record types available in the 
full Intel set (see table 2). What do 
these extra records provide, and why 
did Microsoft choose to omit them? 

LISTING 1: WORDC.PAS 
C YI:DC ~ .. Cculta the rube,. of wotda In _ fll. ) 

CDIST 

t.tll -9; 
If. 10 ;. 
cr. 13 : 

VAl 

'"-flt.,out_fn. : tnt; 
count l tnt ..... -.. : 
i"4M_chlr I chi,. ; 
trword : boot • .., : 

B5GIN (yordc) 

rtJUtU"-fll.) : 

Some of the records (such as 
PEDATA, PIDATA, .REDATA, RIDATA, 
RHEADR, lliEADR) indicate kinds of 
relocatable or absolute data that Micro­
soft deals with in other ways. For exam­
ple, Intel's relocatable object modules 
(REDATA and RIDATA) correspond to 
Microsoft's .EXE files. Intel's absolute 
object modules (PEDATA and PIDATA) 
correspond to Microsoft's .COM files. 
The correspondence is not exact,·but 
.EXE and .COM files provide enough 
features that Microsoft does not need to 
support those additional records. 

Other object records, such as the 
full Intel implementation of 1YPDEF, 
DEBSYM, or LOCSYM, are debugging 
records with information about the 
source program. Such information al­
lows symbolic and high-level language 
debuggers to provide additional ser­
vices to programmers, such as display-' 
ing local variables or producing format­
ted dumps of structures. 

Two probable reasons Microsoft 
decided not to include these debugging 
records are code size and compiler de­
velopment time. The object files gener­
ated by the Intel compilers contain 
more information, so they are larger. In 
the early days of the PC, when DOS 
supported only Single-sided (160KB) 
floppy disks, it was more important to 
ensure that a program would fit on a 
disk than it was to provide elaborate 
debugging information. Therefore, all 
unnecessary .records were elimin\lt~. 
Although larger-capacity disks are now 
supported by the PC, most compilers 
and linkers have not yet been modified 
to add the extra records. 

The other reason for the lack of 
these extra records might be the time 
necessary to write a cbmpiler. Requir­
ing a compiler to generate extra rec­
ords means additional effort by the 
compiler writer. Further, because IBM 
DEBUG, the first debugger for the PC 
(and the only one for a long time) does: 

comt :_ 0 ; 
IIWOMI :- fat .. ;-

not use this information, adding records 
probably seemed like wasted effort. 
Omitting the extra records got the com­
pilers out to the public sooner with no 
noticeable loss of features. 

Today's market, however, demands 
debugging tools that are more advanced 
than IBM DEBUG. High-level language 
debuggers, which allow programmers 
to debug while viewing source code 
(not an assembly language version of 
it), are possible, but they require that 
object modules contain more informa­
tion than current PC compilers now 
generate. To lay the groundwork for 
these advanced debugging tools, Micro­
soft and other companies soon may add 
debugging records to the object mod­
ules generated by their compile;s. 

The format of the object module is 
the key to compatibility between differ­
ent compilers, assemblers, linkers, and 
librarians. Products from many different 
companies use the same format (the 
one recognized by the LINK program). 
This standard format allows program­
mers to combine code generated by 
many different products. 

Besides linking object modules, 
programmers can also combine them 
into libraries so. that 'the individual 
modules can be pulled out selectively 
by the linker. These library files contain 
additional records that provide this se­
lective linking capability. 

REFERENCES 
Intel Corporation. 8086 Relocatable 

Object Module Formats. An Intel Tech­
nical Specification. (Santa Clara, CA: 
Intel Corp., 1981). 

Microsoft Corporation.MS-DOS Program­
mer's Reference Manual. (Bellevue, 
WA: Microsoft Corp., 1984). 1",,-1 

Steven Armbrust is a freelance tecbrJical 
writer. Ted Forgeron is a microcomputer soft­
ware consultant. Thry work primanly in the 
''Sil/con Forest" near Portland, Oregon. 

WHILE NOT eofCln_file) DO 

H80 

BEGIN 
reed(ln_flle,lnp.lt_char-) ; 
IF (l1"flUt_chllr-' I) c»: 

(lf1IU\:_dlar-chr(tabn 01 
(1~_charachr(c:r» c. 
(I~t_ch.r.c:hr(l f» THEN 

irword. :- fll .. 
ELSE IF ( NOT Inword) THEN 

HGltI 

COU"It I- CCU'lt + , ; 
END: : 

END : (while) 
Nrfteln('word count. I,COW'It) : 

..... (-.Ie) 



Microcomputer Software 2 
Development Tools 





PSCOPE MONITOR 386ES 
(P-MON386ES) 

• Program Execution Control, Including 
Breakpoints and Single-Step Execution 
through Assembly Level Instructions in 
Both Real arid Protected Mode 

• Examine and Modify.Memory, I/O 
Ports, and Processor Registers 

• Examine and Modify Descriptor Tables 
and the Task State Segment 

• Download 8086, 80286, and 80386 code 
in Intel Object Module Format 

• Disassemble Memory in 386 Instruction 
Mnemonic Form 

• Host Software Executable on the Intel 
System 286/310 with Intel XENIX* 
Release 3.0, Update 3 

• User-Friendly Human-Interface 
Provides Command Line Editing, On­
Line Syntax Guide, On-Line Syntax 
Builder, and a Command History 

The Intel PSCOPE Monitor 386ES (P-MON386ES) is a debug monitor for 80386-based systems, and is de­
signed to provide software development aid for systems programmers. It can access and control all of the 
80386 visible user-hardware resources without any assistance from an operationg system. With the help of 
this monitor, a user can download a program into the target prototype memory, set hardware and software 
breakpoints, examine/modify memory and processor registers, and control program execution. This monitor is 
supplied with a serial driver for the 8251 and the 8274, but it can be configured to run on any 80386-based 
target board .with a user-supplied communication driver. 

The P-MON386ES package includes the diskettes that contain the host software to be loaded into the Intel 
System 286/310, the diskettes that contain the target software to be loaded into the 80386-based target 
board,· and the PSCOPE Monitor 386ES User's Guide, order number 166184-002. 

·XENIX is a trademark of Microsoft Corporation. 

2·1 
October 1986 

Order Number: 280198-001 



intJ PSCOPE MONITOR 386ES ~@\Yl~OO©(g OOOIF@OOIMl~iiO@OO 

FUNCTIONAL DESCRIPTION 

Overview 
P-MON386ES provides early design aid and debug 
support for Intel customers who are designing soft­
ware to run on the 80386 high performance micro­
processor with integrated memory management. 
P-MON386ES is hosted on the Intel System 286/ 
310 with XENIX release 3.0, with Update 3, and al­
lows the user to perform the following tasks: 

• Download Intel 8086, 80286, and 80386 object 
module formats (with no symbolics) 

• Examine/modify memory, I/O ports, processor 
registers, descriptor. tables, and the task state 
segment 

• Convert addresses from virtual to linear, linear to 
phYSical, and virtual to physical 

• Evaluate expressions 

• Control execution both in real and protected 
mode 

• Set software breakpoints on execution addresses 

• Set hardware breakpoints on execution and data 
addresses 

• Disassemble memory 

Formatted Displays 

The P-MON386ES allows the user to view all of the 
80386 visible hardware resources and pre-defined 
data structures in easy-to-read formats. These dis­
plays include contents of the global descriptor table 
(GOT), the local descriptor table (LOT), the interrupt 
descriptor tables (lOTs), the task state segments 
(TSSs), the extended flags, register (EFLAGS), the 
segment registers (SR), and the set of the most 
commonly accessed 80386 registers (REGS). 

Command Execution 
Figure 1 illustrates a typical software development 
environment with the 80386-based target board con­
nected to the Intel System 286/310 via a serial link. 
P-MON386ES commands are entered interactively 
from the terminal attached to the Intel System 
286/310. 

BENEFITS. 

Shortened Development Cycle 

With P-MON386ES, you can use control constructs, 
which provide repetitive or conditional execution of 
P-MON386ES commands, and you can make code 

2-2 

patches by directly writing to memory. These fea­
tures help to shorten the development cycle by easi­
ly isolating software bugs and by quickly testing pro­
gram changes. 

Improved Debugging Productivity 
With the P-MON386ES monitor you can display and 
modify program variables. In addition, it allows you 
to define, display, modify, and remove debugger ob­
jects (such as break registers and literallys). 

More Reliable Software 
The control constructs can be used to repeatedly 
generate test values, execute the program with input 
values, and record the results. Running more com­
prehensive tests yields more reliable software. 

Easy to Learn and Use 
An extensive command language, Which is similiar to 
block-structured languages such as PL/M, Pascal, 
and C, is very easy to use in an interactive debug 
session. The operators and control constructs are 
similiar to those in the C .programming language. 
121CETM system-like syntax is also provided. 

The syntax guide is extremely helpful in constructing 
P-MON386ES commands and considerably short­
ens the learning cycle. The syntax builder enables 
the user to construct commands by entering single 
keystrokes to select co.mmand options. The ability to 
define literallys allows the user to extend and tailor 
the command language to suit individual needs. . 

FEATURES 

Execution Control 
The GO command is used to begin execution or to 
resume execution at the current execution point or 
at a specified address. The P-MON386ES monitor 
provides the ability to break using either software 
code patch breaks or hardware debug register 
breaks provided on the 80386 chip. The software 
breaks allow breaks on instruction execution only. 
The hardware register breaks allow breaks on exe­
cution and data access (access or write). 

Stepping Through Programs 
ISTEP alloWs you to single-step through your pro­
gram by machine-level instructions. Tracing can be 
simulated by entering the command sequence 
ISTEP; ASM CS:EIP, 



inter PSCOPE MONITOR 3S6ES A\@WA\OO©[§ O~IP©rru!MlA\'jj'O@OO 

---=~ .. ==== 

( 

280198-2 

Figure 1. Software Development System 

Debugger Command Language 

ASM/USE-For disassembling code 

DO/END-For defining command blocks 

DT /GDT /LDT /IDT -For allowing access to descrip­
tor tables 

ECHO-For console output 

FOR, IF/THEN/ELSE, WHILE and UNTIL-For con­
ditional execution of commands or blocks 

GO/SWBREAK/SWREMOVE/ISTEP-For control· 
ling program execution 

INCLUDE/SAVE/LOG/NOLOG-For saving/restor· 
ing commands and definitions to and from disk 

ORD1 /ORD2/0RD4/INT1 /INT2/INT4-For ac-
cessing memory 

PHYSICAL/LINEAR-For converting addresses to 
. physical or linear addresses 

2-3 

PORT /DPORT /WPORT -For accessing I/O ports 

REGS/80386 registers-For accessing all of the 
80386 registers 

REPEAT/COUNT-For repetition of commands or 
blocks 

SWITCH-For branching execution to one of several 
case statements 

TSS-For accessing the task state segment 

SPECIFICATIONS 

Host Development System 
Environment 

The host development system for the P-MON386ES 
requires the following minimum configuration, which 
can support up to two P-MON users: 

• Intel 266/310 System 

• XENIX Release 3.0, Update 3 



inter PSCOPE MONITOR 3S6ES ~[Q)W~OO©~ OOOI?@Iru~~liO@OO 

• 2M bytes of main memory 

• 40M-byte hard disk 

• Intelligent four-channel communication controller 

Target System Environment 

The P-MON386ES is designed to be used in any 
80386-based target system that includes the follow­
ing: 

• At least 80K bytes of EPROM space 

• At least 16K bytes of RAM space 

• A serial communications interface 

The starting locations for the software loaded into 
the EPROMs and RAM space is user-specified. 

ORDERING INFORMATION 
Order Code Description 
X286PMON386ES The P-MON386ES monitor pack­

age includes host and target 
software diskettes and a user's 

2-4 

guide. The host software is 
shipped on 5%" 360KB TAR for­
mat diskettes and the target firm­
ware is shipped on 5%" 360KB 
DOS diskettes, 5%" iNDX disk­
ettes. 

The purchase of the P-MON386ES package in­
cludes a gO-day support service, which also includes 
the Software Problem Report Service. 

Registered customers will be automatically upgrad­
ed with the pre-production version of this product on 
release. 

As with all Intel software, purchase of any of these 
options requires the execution of a standard Intel 
Master Software license. The specific rights granted 
to users depends on the specific option and the li­
cense signed. 



PSCOPE-86 FOR DOS 
HIGH-LEVEL APPLICATION PROGRAM DEBUGGER 

• Debugs PL/M-86, Pascal-8S, iC-8S, • Offers Symbolic Debugging 
FORTRAN-86, and ASM86 Programs Capabilities: 

• Displays Program Text on the Screen - Supports Access to Memory by 

During Debugging: Program Defined Variable and 

- Uses the Listing File to Display Program Names 

Program Text - Maintains Type Information About 

- Displays Source Code on Program Variables 

Step, at Execution Break Points, or - Allows Definition of User-defined 

on User Request Debugging Variables and Procedures 

• Disassembles Memory and Provides an • Single-steps Through Assembly 

Interactive Assembler Language Instructions, High-level 
Language Statements, or Procedures 

• Permits Creation of Program Patches 
Sets Break Points and Traces Program Using High-level Language Constructs • Execution 

• Supports Access to DOS Operating 
Runs Under the PC-DOS Version 3.0 or System Commands • Greater 

PSCOPE·86 for DOS is an interactive, symbolic debugger for high·level language programs written in iC·86, 
PL/M·86, Pascal·86, and FORTRAN·86, and for assembly language programs written in ASM86. PSCOPE·86 
for DOS runs under the PC· DOS operating system, version 3.0 or greater. 

'LIST a:debug.log 
*LOAD \progdir\leapyr .86 
'SET :leapyr to \listdir\leapyr .1st lang pascal 
*DIR LINE 
DIR of :LEAPYR 
#1 #5 #6 #7 #8 #9 #10 #11 #12 #13 
#14 #15 #16 #17 #18 #21 #22 #23 #25 
*PRESRC= 0 ;POSTCRC= 0 ;SOURCE= true ;GO TIL #13 
Enter the number of a month. 
2 
Enter any year, like 1985. 
1984 
[Break at :LEAPYR#13] 
=> 13 24 0 2 
+LSTEP 
[Step at LEAPYR#161 
=> 16 27 0 3 

IF (year mod 4 

CASE month of 

2: (* leap year *) 
= 0) AND ((year mod 100 < > 0) DR 

(year mod 400 = 0)) 

280194-1 

2·5 
October 1986 

Order Number: 280194·002 



PSCOPE-86 

MAJOR FEATURES 

With PSCOPE-86 for DOS, a user can load an application program, set break points at symbolic or numeric 
addresses, trace program execution, and view source code text. Program bugs can be patched using high-lev­
el PSCOPE commands or assembly code. The corrections can be tested without leaving the PSCOPE soft­
ware. 

Other debugging aids include the ability to single-step a program through assembly language instructions, 
high-level-language statements, or procedures, to display and modify program variables, to inspect files, and 
to personalize the debugging environment. . 

The following sections describe some of the major features of PSCOPE-86 for DOS. 

Source Display 

With the DOS version of PSCOPE-86, a user can correlate a module under debug to a source code file. Then, 
when break points are encountered, source text is displayed along with the break message and line numQer of 
the break point. The number of source lines displayed before and after a break point can also be defined by 
the user. 

View all or part of the listing file on command. The following example uses the PSCOPE command to list the 
current module. The asterisk (*) is the PSCOPE prompt, the command follows, and after pressing < Enter> , 
PSCOPE responds with a list file. 

'SHOWSRC #1 LENGTH 28 
1 1 0 0 program leapyr (input,output); 

(0 Input month and year, receive number of days 0) 
2 5 0 0 
3 6 0 0 
4 7 0 0 

5 9 0 0 

5 11 0 1 
6 12 0 1 
7 13 0 1 

8 15 0 1 
9 16 0 1 

10 17 0 1 

11 19 0 1 

11 21 0 2 
12 22 0 2 

13 24 0 2 
14 25 0 3 
15 26 0 3 
16 27 0 3 

17 31 0 3 

19 33 0 3 

21 35 0 2 

22 37 -0 2 
23 38 0 2 

25 40 0 1 

var year :integer; 
month :integer; 
nrdays :integer; 

begin 

month := 0; 
year := 0; 

nrdays := 0; 

writeln('Enter the number of a month.'); 
readln(month) ; 

while month < > 999 do 

begin 

writeln( 'Enter any year, like 1985.') ; 
readln(year) ; 

CASE month of 
4,6,9,11 :nrdays : = 30; 

1,3,5,7,8,10,12 :nrdays : = 31; 
2: (0 leap year 0) 

IF (year mod 4 = 0) AND ((year mod 100 < > 0) OR 
(year mod 400 = 0)) 

THEN nrdays : = 29 
ELSE nrdays : = 28; 

end; 

writeln('Number of days in the month is',nrdays); 

writeln('Enter the number of a month.'); 
readln(month) 

end; 
end. 

2-6 



inter PSCOPE-86 

Single-Stepping 

PSCOPE has two commands to single-step through high level instructions and display source code. The 
commands differ in how they handle program calls. The following example illustrates the LSTEP command. 

"LSTEP 
[Step at 
=> 17 

19 
"LSTEP 

:LEAPYR#17] 
31 0 3 
33 0 3 

ELSE nrdays .- 28 ; 
end; 

[Step at :LEAPYR#21] 
=> 21 35 0 2 write1n('The number of days in the month is',nrdays); 

PSCOPE can single-step through code at assembly level and display assembly mnemonics as in the following 
example which uses the ISTEP command. 

*ISTEP 
:LEAPYR 
512A:00FEH C70600000000 

Symbolic Debugging 

MOV WORD PTR OOOOH,O 

With symbolic debugging, a user can examine or modify a memory location by using its symbolic reference. A 
symbolic reference is a procedure name, variable name, line number, or program label that corresponds to a 
location in the user program's memory space. For example, to display the value of the program variables, 
users need only execute the program until the variable is active and type that variable's name. 

"LSTEP 
[Step at :LEAPYR#22] 
=> 22 37 0 2 write1n('Enter the number of a month.'); 
"month 
+2 
"year 
+1900 
*nrdays 
+28 

Define the Debug Environment 

With the PSCOPE high-level program debugger, a user can define the debugging environment within PSCOPE 
software. You can define break points and trace points. With PSCOPE, you can write macros that set the 
debug environment when PSCOPE is invc;>ked, or these macros can be included at any time during the 
debugging session. Shorten commands with literal definitions, try program bug fixes with patches and proce­
dures, or write procedures to control program execution. All debug variables and procedures can be saved in 
files and reused. 

BREAK REGISTERS AND TRACE REGISTERS 

Breaks occur at addresses in the program under execution. The user can enter physical addresses or symbolic 
addresses to halt program execution. With PSCOPE, you can easily break at executable statement addresses 
by using line numbers. Simply use the PSCOPE directory command with the line option (OIR LINE) to get a 
directory of line numbers. Then define a break register or a trace register to stop at these addresses. 

A break register (BRKREG) stops program execution and returns a PSCOPE prompt ("). A trace register 
(TRCREG) displays a message and continues program execution. Following are examples of how to define a 
break register and a trace register. 

"DEFINE BRKREG stop = #22 
"DEFINE TRCREG stop2 = #17 

2-7 



intJ PSCOPE-86 

DEBUGGING PROCEDURES 

Debugging procedures are groups of PSCOPE commands that have been labeled. Writing procedures with 
PSCOPE commands is much the same as writing high-level language procedures. A procedure can be used 
for any definable function during a debugging session, and it can be used with a program under execution. 

In the LEAPYR program, the while loop continues until 999 is entered for a month number. The following 
example of a PSCOPE procedure (PROC) that querys the user about halting execution. If the answer is yes (,Y' 
or 'y'), the procedure sets month to 999. 

'DEFINE PROC query = DO 
.·WRITE USING ('Do you want to quit? Enter Y for yes.') 
• 'DEFINE CHAR ccc = CI 
.·WRITE ccc 
• 'IF ccc = = 'Y' or 'y' then 
• • 'month = = 999 
• • 'RETURN = true 
• • 'else RETURN = false 
• 'endif 
• 'END 

To call this procedure while the program is executing, define a break register and use it with the GO command 
as follows: 

'DEFINE BRKREG stop = #22 CALL query 
'GO USING stop 

PSCOPE PATCHES 

A PSCOPE patch is used to temporarily correct run-time errors in the program under debug. A patch can be an 
additional line (or lines) in a program, or can be used to replace lines in a program. PSCOPE enables both 
high-level patches (the PATCH command) and assembly-level patches (the ASM command). 

High-Level Patch 

In the LEAPYR program, the way to exit the program is to enter 999 for the month. However, nothing instructs 
the user to do this. With a high-level patch, it is simple to add a line of code to the program. Following is an 
example. 

'DEFINE PATCH #22 = WRITE 'To exit the program, enter 999.' 

When the program is executed, the patch is used automatically. There is no need for a break register. Program 
execution stops at line number 22, the patch message is displayed, and program execution continues at line 
number 22. It is also possible to replace lines by using the TIL option in a high-level patch. Then program 
execution continues from the line number, or address, defined after the TIL. To simply eliminate lines of code, 
set the line to NOP as follows: 

'DEFINE PATCH # 18 ":' NOP 

Assembly-Level Patch 

Assume there is a typo in the LEAPYR program. Instead of the else condition setting nrdays to 28, it sets 
nrdays to 29, making every year leap year. Use the ASM command first to display assembly code as in the 
following example. 

'ASM #17 LENGTH 4 
:LEAPYR 
521A:OIEOH C70600001DOO 
521A:OIE6H EB06 
=> 17 31 0 3 
521A:OIE8H C70600001DOO 
521A :OlEEH EBOO JMP $ + 0002H 

MOV WORD PTR OOOOH,OOlDH ;+29T 
JMP $+0008H ; A=OlEEH 

ELSE nrdays : = 29; 
MOV WORD PTR OOOOH,OOlDH ;+29T 

; A=OlFOH 

2-8 



intJ PSCOPE-86 

Notice that source code can be displayed to assist you in finding the ELSE statement. However, source 
display can be eliminated simply by setting the variable SOURCE to false. After finding the address for the 
correct line of code, use the ASM command to change the second 29 to 28. Notice in the following example, 
'word' is sufficient for the assembly mnemonic. The 'ptr' mnemonic is unnecessary. 

'ASM 521A:OIE8H = 'mov word OOOOH,OOlCh' 
521A:OIE8H C70600001COO MOV WORD OOOOH,OOlDH 

LITERALLY DEFINITIONS 

LITERALLY definitions are shortened names for previously defined character strings. LITERALLY definitions 
save keystrokes or improve clarity. For example, the following LITERALLY definition replaces the command 
DEFINE with the abbreviation DEF. 

"DEFINE LITERALLY der = 'DEFINE' 

Save and Restore the Debug Environment 

All debug variables and procedures can be saved in a file for future debug sessions. To save everything in a 
file, use the PUT command as follows: 

'PUT a:debug.mac DEBUG 

The saved file can be used as a macro and invoked automatically with PSCOPE by using the following 
invocation command to start PSCOPE. 

C :>PSCOPE MACRO (a :debug.macl 

After PSCOPE is loaded, a list of all the commands in the macro will print to the screen and will be included in 
the debug environment. It is also possible to include a macro after PSCOPE is loaded. The following example 
uses the NOLIST option to prevent the commands from writing to the screen. 

"INCLUDE a:debug.mac NOLIST 

The Internal Editor 

PSCOPE has an internal editor that is a version of Intel's Aedit. Use this editor to correct source code as 
program fixes are confirmed with PSCOPE. The editor can also be used to create macros, procedures, or 
correct command lines. 

Escape to DOS 

PSCOPE has an escape function to enable access to the DOS operating system commands. This is very 
useful to verify a file location or print a file. Any DOS operating system command is accepted after entering the 
'bang', explanation point, (!). The following is an example of the ESCAPE command. 

*!print a:debug.mac 

The DOS print message will appear on the screen, and then the PSCOPE prompt. Once the printing is 
complete, you are again in PSCOPE withoutaltering the debug environment. 

The PSCOPE Command Language 

The syntax of PSCOPE commands resembles that of a high-level language. The PSCOPE command language 
is versatile and powerful while remaining easy to learn and use because commands are often self explanatory 
like GO. GO starts execution of the user program. 

2-9 



PSCOPE-86 

The PSCOPE command language can be divided into functional categories. 

• Emulation commands instruct PSCOPE to execute the user program. They consist of GO and the three 
stepping commands, ISTEP, LSTEP, and PSTEP. 

• Debugging environment commands define PATCHes, debugging PROCedures, debugging variables, LlT­
ERALL Ys, break registers (BRKREG), and trace registers (TRCREG) using the DEFINE command. A user 
can also delete these definitions with the REMOVE command. 

• Block commands consist of DO-END, COUNT-END, REPEAT-END, and IF-THEN-ELSE constructs. They 
can be used alone or within debugging procedures and patches. 

• String functions concatenate strings (CONCAT), return the string length (STRLEN), return a substring 
(SUBSTR), and accept console input (CI). 

• Utility commands are general-purpose commands for use in a debugging environment. They consist of the 
following: 

$ 
ACTIVE 

ASM 

BASE 

CALLSTACK 

DIR 

EDIT 

EVAL 

EXIT 

HELP 

NAMESCOPE 

accesses the DOS operating system commands. 

is a pseudo-variable that represents the current execution point. 

is a function that determines whether a specified dynamic variable is currently defined on 
the stack. 

assembles or disassembles memory. 

sets or displays the current radix. 

displays the dynamic calling sequence stored on the stack. 

displays all objects of a specified type. 

invokes the internal, menu-driven text editor. 

returns the value of a symbol in binary, decimal, hexadecimal, and ASCII. 

returns control to the host operating system. 

provides on-line help for selected topics and selected error messages. 

is pseudo-variable that represents the current scope of a variable. It gives access to 
variables without requiring a fully qualified symbolic reference. . 

OFFSET$OF is a function that returns the offset of a specified address (virtual or symbolic). 

SELECTOR$OF is a function that returns the selector of a specified address (virtual or symbolic). 

WRITE writes variables and strings to the console's screen. 

• File handling commands access disk files. The user can load program files to be debugged (LOAD), save 
patches, debugging procedures, debugging variables, LlTERALL Ys, and debugging registers in a disk file 
(PUT and APPEND), read-in these definitions during later debugging sessions (INCLUDE), and record a 
debugging session in a disk file for later analysis (LIST and NOLlST). 

• Register access commands provide access to the 8086/8088 regIsters and flags. 

The REGS command displays the 8086/8088 registers and flags. Users can also inspect or change an 
individual register by specifying its mnemonic. For example, CS represents the code segment register. 

The FLAG pseudo-variable represents the 8086/8088 flag word. The user can also inspect or change each 
flag separately as a Boolean variable. (For example, TFL represents the trap flag). 

PSCOPE provides register access for programs that perform real arithmetic. There is a built-in 8087 math 
coprocessor emulator, or there is a CH8087 option with the LOAD command to tell PSCOPE to access the 
hardware (8087 math coprocessor chip) registers. Access or change the 8087 registers by name. 

• Source display commands are used to view a specified number of lines of source text at break points or on 
demand. LPATH or SET directs PSCOPE to the source text file. SOURCE is the pseudo-variable used to 
determine if source text will be displayed at break points. With PRESRC and POSTSRC, the user can 
determine how many lines of source code will be displayed before and after the line at the break point. The 
SHOWSRC command enables the display of source code outside of program execution. 

2-10 



intJ PSCOPE-86 

SPECIFICATIONS 

Memory Requirements 

PSCOPE-86 for DOS requires approximately 300KS of memory for PSCOPE software and buffers. 

DOS Version 

PSCOPE is designed to run on the DOS operating system version 3.0 or greater. 

Language Support 

iC-86 

PLlM-86 

FORTRAN-86 

ASM86 

PASCAL-86 

ORDERING INFORMATION 

Order Code Description 

o 86 PSC 86 High-Level Software Debugger 

2-11 



PSCOPE 
HIGH-LEVEL PROGRAM DEBUGGER 

FOR iRMXTM, XENIX*, SERIES III AND SERIES IV 

• Provides Source Level Debugging • Symbolic Debugging Capabilities 
Capabilities for High-Level Languages -Maintains Type Information about 
and Assembly-Level Languages Variables 

• Permits Creation of High-Level Program - Supports Symbolic Access to 

Patches using PSCOPE High-Level Dynamic Local Variables 

Language Constructs '-Maintains a Virtual Symbol Table for 
Program Variables 

• Sets Breakpoints and Traces Program - Allows Definition of User-Defined 
Execution Debugging Variables and Procedures 

• On-Line Help Facilities - Accesses Memory Locations and 

• Code Disassembly I Assembly and 
Program Variables using Program-

Assembly-Level Patching 
Defined Names 

• Single Stepping 

PSCOPE is an interactive, symbolic debugger for high-level-language programs written in PL/M, Pascal, and 
FORTRAN. The iRMXTM PSCOPE and XENIXTM PSCOPE products support debug of programs written in 
assembly language. XENIX PSCOPE provides additional C language support and can use XENIX operating 
system commands without leaving or altering the debug environment. 

DEBUGGING 
WITHOUT 
PSCOPE 

REPEATED 
ITERATIONS 

280266-1 

'XENIX is a trademark of Microsoft Corporation. 

2-12 

DEBUGGING 
WITH 

PSCOPE 

280266-2 

October 1986 
Order Number: 280266-002 



inter PSCOPE 

PSCOPE OVERVIEW 

With PSCOPE, a user can load an application pro­
gram into host system memory, set breakpoints at 
symbolic or numeric addresses, trace program exe­
cution, and create patches. Other debugging aids in­
clude the ability to single-step a program through 
high-level-language statements or procedures, to 
display and modify program variables, to inspect 
files, and to personalize the debugging environment. 

MAJOR FEATURES 

The following sections describe the major features 
of the PSCOPE high-level debugger. 

Symbolic Debugging 

With symbolic debugging, a user can examine or 
modify a memory location by using its symbolic ref­
erence. A symbolic reference is a procedure name, 
variable name, line number, or program label corre­
sponding to a location in the user program's memory 
space. For example, to display the value of the pro­
gram variable linesend, users need only GO TIL the 
variable is active, and type the variable's name. 
Note that * is the PSCOPE prompt. 

*linesend 
50 

Notice that PSCOPE returns the variable value with­
out the user having to indicate the variable's type. 
The capability to recognize a vari'able's type and 
scope is a special feature of PSCOPE's support of 
symbolics. Few other debuggers offer this feature. 

Consider another example. Suppose the user's pro­
gram has an array of employee records called 
emprec that includes salary and other employee in­
formation. Using PL/M, the user might declare it as 
follows: 

DECLARE emprec (100) STRUCTURE 
(name (20) BYTE; 
ss (10) BYTE, 
number INTEGER, 
salary REAL); 

With PSCOPE, to determine the salary of the nth 
employee, the user need only type: 

emprec [n].salary 

PSCOPE would then respond: 

2.200E + 03 

Patch 

A patch is a set of PSCOPE high-level commands 
that augments or replaces a section of the user's 
program. With patching, the user can modify a pro­
gram's algorithm and verify the effect of modifica­
tions without having to edit source, recompile and 
relink. 

For example, the following patch indicates that if the 
value of the variable x is 0, then the current execu­
tion point ($ is a PSCOPE pseudo-variable for the 
current execution point) will be line #39. If x is not 0, 
the value of y will be set to the value of linesend 
minus the value of x. The execution point will not 
change. 

'DEFINE PATCH #37 TIL #39 = DO 
. 'IF x = 0 THEN $ = #39 
.·ELSE 
.'y = linelength - x 
.·ENDIF 
'END 

A patch can also be used to bypass statements. The 
following command causes lines # 13 through # 15 
to be skipped, resuming execution at line #16. 

'DEFINE PATCH #13 TIL #16 = nop 

Breakpoints 

Breakpoints suspend program execution at specified 
locations. The user can then enter PSCOPE com­
mands,construct patches, examine or change pro­
gram variables and registers. PSCOPE for the 
XENIX and iRMX operating systems also allow 
memory disassembly. Execution can be resumed 
from the breakpoint or from any other point. 

. A breakpoint speCification is the address where pro­
gram execution stops. The address can be specified 
as a symbolic address, segment/offset pair, or as a 
high-level-language statement number. 

2-13 

For example: 

'GO TIL: counLlines 
[Break at counLlines] 

Debug Procedures 

A debug procedure is a group of PSCOPE com­
mands that are invoked by a name. Debug proce­
dures can be saved and then recalled for use/in later 
debug sessions. 



infef PSCOPE 

Following is the definition of a debug procedure 
called sum. It consists of a DO command block that 
returns the sum of all the parameters passed to it. It 
contains two local variables, nand i. 

·DEFINE PROe sum = DO 
. 'DEFINE LONGINT n = 0 
. 'DEFINE INTEGER i = 0 
.·COUNT % np 
.. on = n + %(i) 
.. oi = i + 1 
.. ·ENDCOUNT 
."RETURN n 
.·END· 

To execute the debug procedure, invoke it by name 
as follows: 

·sum(2,3,5) '"Executing the debug procedure·' 

The benefits of debug procedures include simplifica­
tion of command invocation for groups of com­
mandsand automation of the software verification 
process. A procedure can be defined to iteratively 
generate test values, execute the program with new 
input values, and record results. Thus, debug proce­
dures can be used to develop and run comprehen-
sive "batched" tests. . 

Break Registers 

A break register is a named set of one or more 
breakpoint,specifications. After defining the contents 
of break registers, the user can execute a program 
using the specifications in one or more of these 
break registers. For example, here is the definition of 
a break register called break1: 

"DEFINE BRKREG break1 = error_check 

To execute and break just before procedure error_ 
check, specify use of break register break1 in the 
GO command. 

·GO USING break1 

Break registers are useful for storing sets of specifi­
cations to be recalled in later debug sessions. They 
also enable users to call a previously defined debug­
ging procedure when a specification in a break regis­
ter is met. This gives the user a powerful tool for 
creating conditional constructs to observe program 
behavior. For example, assume a user wants to 
break at three breakpoints, term, value, and at line 
#68. Before breaking at the procedures term, and 
value, the user wants to ·execute a debug procedure. 
The following example first defines the procedure 
(pr1) and· then defines the break register (break2) 
that calls the procedure. 

2-14 

·DEFINE PROC prt1 = DO 
. ·IF x > 0 THEN RETURN true 
. ·ELSE RETURN false 
..ENDIF 
.·END 

·DEFINE BRKREG break2 = (term, value) call 
prt1; #68 

To run the program using this break register, enter: 

·GO USING break2 

Trace Registers 

The PSCOPE trace feature displays a trace mes­
sage when the program it is executing reaches a 
specified address. The trace message identifies the 
current execution point, but no break occurs. 

The following example defines a trace register 
named trace1 that contains tracepoints at state­
ments # 80, # 124, and at the procedure error in the 
current module: 

'DEFINE TRCREG trace1 = #80, #124, error 

A GO command using trace1 displays a message 
each time statements #80, #124, or procedure 
error is executed. 

On-Line Help 

PSCOPE provides on-line help. In addition to obtain­
ing help on topics from a help list, extended versions 
of PSCOPE error messages can be displayed. 

Stepping 

With PSCOPE commands users can single-step 
through high-level-language statements (the LSTEP 
command), and procedures (the PSTEP command). 
The LSTEP and PSTEP commands display the 
statement number of the next high-level-language 
statement. For example: 

° LSTEP 
[Step at :PAGER#42j 

The iRMX and XENIX PSCOPE debuggers also have 
the capability to step through machine instructions 
(the ISTEP command). 



inter PSCOPE 

Literally Definitions 

LITERALLY definitions are shorthand names for pre­
viously defined character strings. They give the user 
the convenience of being able to customize the de­
bug environment. For example: 

'DEFINE LITERALLY lit = 'literally' 
'DEFINE lit def = 'define' 
"def lit stacktop = 'word ss:sp' 

The Editor 

PSCOPE includes an internal editor which provides 
a subset of Intel's AEDIT text editor's features. With 
this editor, users can create and modify debug con­
structs such as patches, debug procedures, and LlT­
ERALL Y definitions. The internal editor can be used 
to view source program files on the screen. 

THE PSCOPE COMMAND LANGUAGE 

The PSCOPE commands are versatile and powerful, 
yet easy to learn and use. With them, the user can 
build a high-level environment in which to examine 

. and modify execution of the program under develop­
ment. 

The PSCOPE commands can be divided into func­
tional categories. 

Emulation commands instruct PSCOPE-86 to exe­
cute the user program. They consist of GO and the 
two stepping commands, LSTEP, and PSTEP. 

Debug environment commands define PATCHes, 
debug PROCedures, debug variables, LlTERALL Ys, 
break registers (BRKREG), and trace registers 
(TRCREG) using the DEFINE command. A user can 
delete these definitions with the REMOVE com­
mand. 

Block commands consist of DO-END, COUNT­
END, REPEAT-END, and IF-THEN-ELSE con­
structs. They can be used alone or within debugging 
procedures and patches. 

String functions concatenate strings (CONCAT), 
return the string length (STRLEN), return a substring 
(SUBSTR), and accept console input (CI). 

Utility commands are general-purpose commands 
for use in a debugging environment. They consist of 
the following: 

$ is a pseudo-variable that repre­
sents the current execution point. 

2-15 

ACTIVE is a function that determines 
whether a specified dynamic vari­
able is currently defined on the 
stack or not. 

BASE sets or displays the current radix. 

CALLST ACK displays the dynamic calling se­
quence stored on the stack. 

DIR displays all objects of a specified 
type. 

EDIT invokes the internal, menu-driven, 
text editor. 

EVAL returns the value of a symbol in bi­
nary, decimal, hexadecimal, and 
ASCII. 

EXIT returns control to the host operat­
ing system. 

HELP provides on-line help for selected 
topics and error messages. 

NAMESCOPE This pseudo-variable represents 
the current scope of a variable. 
Gives access to variables without 
need to use the fully qualified sym-
bolic reference. . 

OFFSET$OF is a function that returns the offset 
of a specified address (virtual or 
symbolic). 

SELECTOR$OF is a function that returns the selec­
tor of a specified address (virtual or 
symbolic). 

WRITE writes variables and strings to the 
console's screen .. 

File handling commands access disk files. The 
user can load program files to be debugged (LOAD), 
save patches, debugging procedures, debugging 
variables, LlTERALL Ys, and debugging registers in a 
disk file (PUT and APPEND), read-in these defini­
tions during later debugging sessions (INCLUDE), 
and record a debugging session in a disk file for later 
analysis (LIST and NOLlST). 

Register access commands provide access to the 
microprocessor registers and flags. The REGS com­
mand displays the registers and the set flags. Users 
can also inspect or change an individual register by 
specifying its· mnemonic. FLAG· repr.esents the flag 
word. The user can inspect or change each flag sep-
arately as a Boolean variable. . 



infef PSCOPE 

ADVANCED PSCOPE COMMANDS 
FOR iRMXTM AND XENIX OPERATING 
SYSTEMS 

In addition to the basic PSCOPE capabilities, iRMX 
and XENIX PSCOPE offer complete debugging sup­
port for assembly language programs. This support 
includes the ISTEP single step command, an assem­
bler/disassembler, and register examination and 
modification for both the main processor and the 
math coprocessor as follows: 

XENIX 80286/80287 
iRMX 8086/8087 

XENIX PSCOPE also supports debugging of C lan­
guage programs. Another feature of XENIX PSCOPE 
allows the use'r to invoke anyXENIX operating sys­
tem command and return to debugging without alter­
ing the state of the debug session. 

The Disassembler and Single-Line 
Assembler 

With the disassembler, memory can be displayed as 
assembly language mnemonics. The next example 
shows how the ASM command displays the first as­
sembly language instruction that makes up the high­
level-language statement #26. 

*ASM #26 
3348H:00CCH FF36000000 PUSH WORD PTR OOOH 
3348H:00DOH B020 MOV AL,20H 

An instruction can be changed using the single-line 
assembler as follows: . 

*ASM 3348H:00DOH = 'MOV AL, 25H' 

SAMPLE DEBUG SESSION 

The following sample debug session illustrates 
some of PSCOPE's capabilities. The example pro­
gram (Figure 1) is written in Pascal. To utilize 
PSCOPE's symbolic debugging capabilities, the pro­
gram was compiled with the debug option. After the 
program is linked and bound (bind option), the exe­
cutable code can be debugged on PSCOPE. 

The following example of the debugging session 
demonstrates the use of the LITERALLY command 
to personalize the debug environment. This example 
assumes PSCOPE has been invoked and the 
PSCOPE prompt (') is present on the screen. 
PSCOPE keywords are in uppercase for the exam-

2-16 

pies, but case is not significant in the PSCOPE com­
mand language. No devices or directories will be in­
cluded.with file access commands. 

'DEFINE LITERALLY d = 'DEFINE' 
*d LITERALLY I = 'LITERALLY' 
*d I br = 'BRKREG' 
*d I tr = 'TRCREG' 

Next the load time locatable code is loaded, and a 
directory of the module is requested. In the directory, 
program symbols are listed with their types. The 
types corresond to PSCOPE memory object types. 

'LOAD maxmin.86 
*DIR 
DIR of:CALC 
PQ_OUTPUT ................... TEXT (file) 
PA_INPUT ...................... TEXT (file) 

~ :::::::::::::::::::::::::::::::::: :~~:~:~ 
SUM ............................ procedure 

~ : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ': : : :~~:~:~ 
z ................................ integer 

DIFFERENCE .................... procedure 
X ................................ integer 
Y ................................ integer 
Z ................................ integer 

MAXMIN ......................... procedure 

~ : : : : : : : : : :: : : : : : : : : : :: : : : : : : : : : : :~~:~:~ 
The next example illustrates using the PSTEP step­
ping command. PSTEP executes procedures as a 
single step. When the program requests input, the 
user must enter values for the stepping to continue. 
PSCOPE responds with a break message inside 
brackets ([ ]). 

'PSTEP 
[Step at :CALC#21] 
*PSTEP 

Input two integers 
[Step at :CALC#22] 

[Step at :CALC#23] 
'PSTEP 

The sum is 76 
*PSTEP 
[Step at :CALC#24] 

The difference is 15 
[Step at :CALC#24] 
'PSTEP 

The maximum is 19 
The minimum is 4 

19 +- user input 
4 +- user input 

+- note 



PSCOPE 

Source File: MAXIN.PAS 
Object File: MAXIN.OBJ 
Controls Specified: DEBUG . 

(* This program reads two integers and *) 
(* determines which is greater. *) 

STMT LINE NESTING SOURCE TEXT: MAXMIN.PAS 
1 1 0 0 program calc(input,output); 
2 2 0 0 var a,b:integer; 

3 4 0 0 procedure sum(s,y:integer); 
4 5 1 0 . var z:integer; 
5 6· 0 begin 
5 7 0 z: = x'y; 
6 8 writeln(,The sum is',z); 
7 9 end; 

8 11 0 0 procedure difference(s,y:integer); 
9 12 0 var z:integer; 

10 13 1 0 begin· 
10 14 1 0 z: = abs(x-y); 
11 15 1 writeln("The difference is',z); 
12 16 1 end; 

13 18 0 0 procedure maximum(x,y:integer); 
14 19 1 0 begin 
14 20 1 if x < y then writeln ('The maximum is' ,y), 

The minimum is',x); . 
16 21 if Y < x then writeln ('The maximum is',x, 

The minimum is',y); 
18 22 1 if x = y then writeln ('The inputs are equivalent') 
20 23 1 end; 

21 25 0 0 begin 
21 26 0 1 repeat ('forever') 
21 27 0 2 write('lnput two integers'); 
22 28 0 2 readln(a,b); 
23 30 0 2 sum(a,b); 
24 .31 0 2 difference(a,b); 
25 32 O· 2 maximum(a,b); 
26 33 0 2 until 1 < 0 
27 34 0 2 end. 

Figure 1. Sample Program 

2-17 



PSCOPE 

There is a bug in the program. The procedure sum 
should add the input values, 19 and 4. Instead, it 
multiplies them. The code on line #5 should specify 
x+y instead of x·y. With PSCOPE, it is easy to 
patch this line of code and immediately execute the 
program without recompiling and relinking. 

'DEFINE PATCH #5 TIL #6 = Z = x+y 

, The next example uses the GO TIL command to iI· 
lustrate that the patch works. 

'TO TIL #21 
Input two integers 4 

19 
The sum is 23 
The difference is 15 
The maximum is 19 
The minimum is 4 

[Break at #21] 

The final example illustrates the use of a PSCOPE 
PROC (debug procedure). The PROC is named pr1. 
Then a BRKREG (break register) is defined to call 
the procedure. Notice the use of the LtTERALL Y 
definitions in the examples. 

'd PROC pr1 = DO 
.OWRITE 'numbers and product are: ',a,b,a,ob 
. 'WRITE USING ('0, > ') 'break?' 
. 'IF CI = = 'y' THEN RETURN true 
, ELSE RETURN false 

.. 'ENDIF 

.'END 
°d br b3 = #21 CALL pr1 
'GO USING b3 

Input two integers 23 
24 

The sum is 47 
The difference is 1 
The maximum is 24 
The minimum is 23 

numbers and the product ar~: + 23 + 24 + 552 
break? y 
[Break at #211 

When a debugging session is' complete, exit 
PSCOPE as follows. The debugger will close any 
open files, write a message to the screen and return 
to the operating sys1em. 

'EXIT 
PSCOPE terminated 

2-18 

BENEFITS 

As an interactive, symbolic, high·level language de· 
bugger, PSCOPE brings to debugging the same type 
of productivity enhancements that high·level Ian· 
guages bring to writing software. PSCOPE's benefits 
are listed below: 

- A sho'rtened development cycle. Breakpoints, 
tracing, and patching decrease the number of 
edit/compile/link iterations. 

- Improved debugging productivity. Since PSCOPE 
language constructs enable the use of high·level 
functions and procedures, symbolics and data 
structures, improvement in debugging productivity 
is analogous to programming in high·level Ian· 
guages. 

- Increased software reliability; Debugging proce· 
dures can automate the software testing process. 

- Improved project management. Software engi· 
neers can debug modules separately. Procedures 
can be substituted for program stubs. 

SPECIFICATIONS 

PSCOPE for the IRMXTM Operating 
System 

(for iRMX operating system release 5 or greater on 
Systems 86/310, 86/330A, and 80/380) 

Languages: -PL/M-86 -Pascal-86 

-FORTRAN-86 -ASM86 

Documentation: PSCOPE-86 High.Level Program 
Debugger User's Guide (for iRMX 
Operating Systems) Order number: 
165496 

Memory: 

Order Code 

iPSC86RMX 

110K bytes for iRMX PSCOPE-86 
software and buffers 

Description 

PSCOPE Program 
Debugger for the iRMX 
Operating System 



inter PSCOPE 

PSCOPE for the XENIX Operating 
System 

(PSCOPE requires an 80286-based system running 
the Intel XENIX 286 operating system.) 

Languages: Supports any Intel or ISV-supplied 
80286 language generating Intel 
286 object module format load-time 
locatable modules. These include: 

-PLIM -C -FORTRAN 

-Pascal -ASM 

Documentation: PSCOPE 286 User's Guide for 
XENIX Systems, Order Number: 
122281. PSCOPE 286 Pocket Ref­
erence, Order Number: 122282. 

Memory: 286 bytes for XENIX PSCOPE soft­
ware and buffers. 

Order Code Description 

iPSC286XNXSU Single-user license 
iPSC286XNXRO Incorporation license 
iPSC286XNXRF Royalty fees for 

incorporations 
iPSC286XNXBY Buy-out license 

2-19 

PSCOPE for the Series IIIISeries IV 
Operating System 

(PSCOPE-86 runs on an Intellec® system, either 
stand-alone or in an NOS-II network configuration.) 

Languages: -PL/M 86/88 -Pascal 86/88 

-FORTRAN 86/88 

Documentation: PSCOPE-86 High-Level Program 
Debugger User's' Guide, Order 
number 121790 

Memory: 

Order Code 

iMDX-333 
111-951A 

111-951 B 

111-951C 

. The system configuration must in­
clude 512K bytes of application 
memory space. The debugger re­
quires 96K bytes of memory. 

Description 

for Series III and Series IV 
121CE software for Series III 
8" single density disk drive 
121CE software for Series III 
8" double density disk drive 
121CE for Series IV with 5 1/4" 
double density disk drive 

An enhanced version of PSCOPE with source-code 
display is available for the PC-DOS operating sys­
tem. See Data Sheet order number 280194 for infor­
mation on PSCOPE-86 for DOS operating systems. 



D-MON386P 
Debug Monitor 386 

• Unhosted Monitor Configurable on Any 
80386-Based Board 

• Provides Program Execution Control, 
Including Software Breakpoints and 
Single-Step Execution through 
Assembly Level Instructions in Both 
Real and Protected Mode 

• Supports Four On-Chip Breakpoints to 
Recognize Instruction Execution 
Addresses or Data Access Addresses 

• Allows User to Examine and Modify 
Memory, I/O Ports, and 80386 
Registers 

• Allows User to Examine Descriptor 
Tables, Task State Segment, and Page 
Table 

• Allows Dis~ssembly of Memory in 
86/286/386 Instruction Mnemonics 

• Supports Virtual, Linear, and Physical 
Addressing 

• Supports Real, Protected, and Page 
Protected Modes of 80386 

• Pre-Configured for Intel SBC386/20 

• Provides Ten 32-Bit Scratch Registers 
for Storing Intermediate Values During 
the Debug Process 

• Provides User-Friendly Human 
Interface with Command Line Editing 
and Command History 

The D-MON386P is an unhosted EPROM based software debug monitor for 80386-based systems and pro­
vides system level debug support. D-MON386P does not require a host system for its operation; it can access 
and control all of the 80386 visible user-hardware resources without any assistance from an operating system. 
With the help of this monitor, you can set hardware and software breakpoints, examine/modify memory arid 
processor registers, .and control program execution. This monitor can be configured to run on any 80386-
based target board with a user-supplied communication driver and hardware initialization routine. 

The D-MON386P package includes the diskettes that contain the target software to be loaded into the 80386-
based target board, and the D-MON386P User's Guide, order number 166186-001. . 

2-20 

166187-1 

November 1986 
Order Number: 166187-001 



inter D-MON386P 

FUNCTIONAL DESCRIPTION 

Overview 

D-MON386P provides design aid and debug support 
for Intel customers who design software to run on 
the 80386. D-MON386P allows you to perform the 
following tasks: 

• Examine and modify memory, 1/0 ports, 80386 
registers, and display descriptor tables, task state 
segment, and page table 

• Control execution both in real and protected 
mode 

• Set four on-chip breakpoints to recognize instruc­
tion execution addresses or data access ad­
dresses 

• Set software program breakpoints 

• Single-step through 80386 instruction execution 

• Disassemble program code in 86/286/386 in­
struction mnemonics 

• Evaluate expressions 

Processor/Memory Examination and 
Modification 

80386 registers can be accessed mnemonically (e.g. 
EAX) with the D-MON386P software. Data can be 
displayed or modified in one of four bases: hexadeci­
mal, decimal, octal, or binary. Program code can be 
disassembled and displayed as 80386 assembly in­
struction mnemonics. 

Execution Control 

The GO command is used to begin execution or to 
resume execution at the current execution point or 
at a specified address. The D-MON386P monitor 
provides the ability to break on execution addresses 
using either software code patch breaks or hardware 
debug register breaks provided on the 80386 chip. 
The software breaks allow breaks on instruction ex­
ecution only. These breakpoints can be placed on 
the RAM-based program code. The hardware regis­
ter breaks allow recognition of the following condi­
tions: 

• An instruction boundary 

• A data write to a user-specified linear or virtual 
address 

• A data access at a user-specified linear or virtual 
address 

D-MON386P allows you to single-step through your 
program code by referencing machine-level instruc­
tions. 

2-21 

Disassembler 

The D-MON386P monitor allows you to disassemble 
and display user target memory contents in the 
80386 assembly instruction mnemonics. 

Formatted Displays 

The D-MON386P allows you to display all of the 
80386 visible hardware resources and pre-defined 
data structures in easy-to-read formats. These dis­
plays include contents of the global descriptor table 
(GDTs), the local descriptor table (LDTs), the inter­
rupt descriptor tables (IDTs), the task state seg­
ments (TSSs), the extended flags register, the seg­
ment registers, the 80386 registers, Control Regis­
ters (CREGs), page directory, and page tables. 

Debugger Command Language 

ASM - For disassembling code. 

BASE - For changing the default base for com­
mand line entry. 

COUNT - For repetition of commands or blocks. 

DT IGDT ILDT IIDT - For allowing display of de­
scriptor tables. 

EVAL - For evaluating expressions. 

GO/SWBREAK/SWREMOVE - For controlling 
program execution. 

HELP - For printing all command keywords. 

ISTEP - For single-step through machine level user 
program. 

ORD1 IORD2/0RD4/1NT1 IINT2/1NT4 - Data typs 
used accessing' memory. 

PORT IDPORT IWPORT - For accessing 1/0 ports. 

REGS - For displaying 80386 registers. 

TSS - For accessing the task state segment. 

VERSION - For displaying D-MON386P software 
version being used. 



inter D·MON386P 

SPECIFICATIONS 

Required System Resources 

D-MON386P monitor requires exclusive use of the 
B0386's on-chip debug registers, INT1, and the trap 
flag. 

Target System Environment 

The D-MON386P is designed to be configured on 
any 80386-based target system that provides the 
following: 

• At least 128K bytes of EPROM space 

• At least 64K bytes of RAM space 

• A.serial communications interface 

The starting location for the software loaded into the 
EPROMs and RAM space is user configurable. 

Other Required Tools/Systems 

The D-MON386P comes pre-configured for Intel 
SBC386/20 board which uses Intel 8251 and 8254 
devices at 1.23 MHz clock rate. Baud rate supported 
is 9600. 

Example drivers are included in User's Guide to aid 
in writing a custom driver. The following are required 
to write a custom driver, link it with the monitor code, 
build the target code, and burn EPROMs: 

For writing a custom driver, 

• ASM-386 

• RLL-386 
• Intel System 286/310 running XENIX Rei 3. Up-

date 3 to link driver and build the target code 

For burning EPROMs, 

• Intel PROM Programmer 

• iPPS version 2.1 (hosted on DOS or iNDX) 

2-22 

ORDERING INFORMATION 

D-MON386P is a pre-production level release. Pro­
duction level D-MON386 is'scheduled for 1987 and 
will add support for virtual 86 mode of the 80386. 
Pre-production level customers who also buy Intel 
software support contract will be automatically up­
graded to the production level product upon release. 

Order Code Description 
DMON386P The D-MON386P monitor pack­

age includes the target software 
diskette containing linkable ob­
ject code and a user's guide. 
Single user. 
(Requires Class I license) 

DMON386PCOPY Right to make additional 8 cop­
ies. 

DMON386PSRC D-MON386P source code. 

DMON386PRO 

DMON386PRF 

DMON386PBY 

D-MON386P. License to incor­
porate. 
Class II/Class III license. 

D-MON386P. Royalty fees. 

D-MON386. Incorporation fee 
buyout. 

Purchase of the D-MON386P package includes a 
90-day support service, which also includes the Soft­
ware Problem Report SerVice. 

Purchase of any of these options requires the exe­
cution of a standard Intel Master Software license. 
The specific rights granted to users depends on the 
specific option and the license signed. 

Shipping Media 

PC-DOS Format DS/DD 5%,' diskette 



8086 HANDYMAN 

8086 SOFTWARE TOOLBOX 
• PSCAN Reduces Time Spent Doing 

Software Entry and Editing 

• SCRIPT and SPELL Assist Text 
Preparation 

• OMC286 and E80287 Aid 80286 and 
80287 Software Development 

• Many Other Valuable 16-Bit Software 
Tools Are Included 

• Runs Under ISIS/iNDX (Series III and 
IV) and iRMXTM86 Operating Systems 

AEDIT~ 

AEDIT-86 
• Full Screen Editing 

• Menu-Driven, Easy To Use 

• Powerful Macro Facility 

• Dual File Editing 

• Split-Screen Windowing 

• Automatic File Back-Up 

• Runs Under ISIS/iNDX (Series III and 
IV) and iRMX86 Operating Systems 

SCRIPT 

PSCAN 

SPELL 

SCRIPT 
DOES PAGING. 
UNDERLINING, 
BOLDFACE. 
AND 

CENTERING 

231364-1 

This attractively priced kit of products, AEDIT and the 8086 Software Toolbox, provides the developer 
with powerful tools for text and code editing, file management, and program development. To find out 

more about these individual tools please read the data sheets which follow this cover page. 

ORDERING INFORMATION 

Product Code 
MDX374 

RMX86HAN 

2-23 

Description 
8086 Handyman under 
ISIS/iNDX Operating System 

8086 ,Handyman under 
iRMX86 Operating System 

March 1985 
Order Number: 231364·001 



8086 HANDYMAN 

8086 SOFTWARE TOOLBOX 

• Collection of Tools That Speed • OMC286 and E80287 Aid 80286 and 
Software Development 80287 Software Development 

• MPL, a Standalone Macro Processor, is • Many Other Valuable 16-Bit Software 
Ideal for Debugging Macros Tools are Included 

• PSCAN Reduces Time Spent Doing • Runs on Series III and Series IV 
Software Entry and Editing Microcomputer Development Systems 

• SCRIPT and SPELL Assist Text • Runs Under iRMX™86 Operating 
Preparation System 

The 8086 Software Toolbox is a collection of 16-bit software tools that can significantly improve programmer 
productivity. These tools are valuable for text formatting, editing, and preparation, software testing and per­
formance analysis, 286/287 software development, and a multitude of other applications. 

Text processing tools ease document formatting and preparation. PSCAN is a syntax-scanning editor for the 
PL/M language. It catches syntax errors in the editing stage and provides automatic formatting of PL/M code 
and more .. SCRIPT is a text formatting program that uses commands embedded in text to do paging, centering, 
left and right margins, subscripts, etc. SPELL finds misspelled words in a text file and comes with a user 
expandable dictionary. COMP prepares two text or source files and displays their differences. 

Test and performance analysis tools aid software testing and performance evaluation. PERF, a performance 
analysis tool for 8086 software, ideal for isolating code "hot spots." PASSIF is a general-purpose assertion 
checking and reporting tool perfect for running test suites. 

Software development for 286/287 components is assisted by two software tools: OMC286, an 8086 to 80286 
object module convertor, andE80287, an 80287 emulator that runs on the 80286. 

Additional tools are included that aid 16-bit software development efforts. 

PSCAN 
SCRIPT 
MPL 
SPELL 
WSORT 

OMC286 
E80287 

Text Editing and Processing 

286/287 Development 

Performance Measurement & Testing 

PERF 
GRAFIT 
PASSIF 

COMP 
FUNC 
XREF 
DC 
HSORT 
ESORT 

Miscellaneous Tools 

8086 SOFTWARE TOOLBOX TOOLS 

2-24 



8086 HANDYMAN 

FUNCTIONAL DESCRIPTION 

Text Editing and Processing 

PSCAN-syntax scanning editor that supports all 
the functions of AEDIT-86 Release 1.0 plus special­
ized functions for entering and editing PL/M source 
programs. PSCAN verifies correct code entry as you 
type, suppressing time consuming recompilations. In 
addition, PSCAN provides facilities to automatically 
format PL/M code, and can perform editor functions 
on statements, blocks or procedures. 

SCRIPT-text formatting program that does paging, 
centering, left and right margins, justification, page 
headers and footers, underlines, boldface type, sub­
scripts and superscripts, upper and lower case, and 
much more. Formatting commands are embedded in 
text. 

MPL-standalone macro processor that processes 
the macro language used in 8086, 80286, 8089, and 
8051 assemblers. Can be used interactively which 
makes it ideal for debugging macros. MPL can be 
used to preprocess any text file. 

SPELL-finds misspelled words in a text file. Dic­
tionary of correctly spelled words is user expand­
able. 

WSORT -utility for creating the SPELL dictionary. 

COMP-performs line-oriented text file comparison 
(shows source changes). Also understands 8086 ob­
ject module formats for comparing 8086 object files. 

Performance Measurement and 
Testing 

PASSIF-general-purpose assertion checking, test­
ing, and reporting tool. Helps automate the software 
testing process. 

PERF-performance analysis tool for 8086 soft­
ware. Monitors references in the code segment; 
segment monitored is user defined. Works with 
small or compact bound loadable modules. Ideal for 
isolating code "hot spots." Will only run on the Se­
ries III. 

GRAFIT-graphing utility for use with PERF. 

Miscellaneous Tools 

OMC286-object module convertor that converts 
8086 object modules into 80286 object modules. 

2-25 

E80287-an 80287 emulator that runs on the 
80286. 

FFUNC-allows user to redefine the keys on a 
Series III keyboard and define function keys. Re­
quires the iMDX 511 firmware. 

XREF-produces cross-reference tables from trans­
lator list files. Cross-references all symbols-vari­
ables, labels, literallys, and quoted strings. 

DC-floating point desk calculator program; allows 
variable definitions. 

HSORT-in memory heap soft utility. 

ESORT -very flexible sort program. 

SPECIFICATIONS 

Operating Environment 

ISIS Operating System with RUN or INDX Operating 
System executing on Series III or Series IV Micro­
computer Development Systems. 

iRMX86 Operating System executing in SYS X861 
3XX environment. 

Documentation 

"8086 Software Toolbox" 
(122203) 

Software Support 

This product includes a 90-day initial support con­
sisting of new software releases, updates, subscrip­
tion services (software performance reports and 
technical reports), and telephone hotline support. 
Additional software support services are available 
separately. 

ORDERING INFORMATION 
Product Code Description 
MDX 374 Handyman Kit, including 8086 

Software Toolbox, running on 
ISIS/iNDX 

RMX86TLB 

RMX86 HAN 

8086 Software Toolbox under 
iRMXTM86 

Handyman Kit, including 8086 
Software Toolbox, under 
iRMXTM86 



intJ 8086 HANDYMAN 

AEDIT TEXT EDITOR 
• AEDIT -80 Operates on Any Intellec® 

Series II, Model 800 or iPDSTM 
Development System 

• Full Screen Editing 

• Menu-Driven, Easy To Use 

• Easy Handling of Large Blocks of Text 

• Dual File Editing 

• AEDIT-86 Operates on Any Intellec® 
Series III, Series IV, or iRMXTM System 

• Powerful Macro Facility 

• Split-Screen Windowing 

• Designed for the Programmer and 
Technical Writer 

AEDIT is a full screen editor for use on any Intellec® Development or iRMXTM system. It is designed to be easy 
to learn and easy to use. At all times the user is guided by a menu which is used not only to select commands, 
but also to select options to commands. There is no need to constantly refer to or memorize detailed manuals. 

AEDIT provides full screen editing capabilities and offers features to easily handle (move, copy, delete) large 
blocks of text. In addition to the basic editing abilities, AEDIT supports tagging positions in. the text, string 
search and replace commands, and the option of automatic text identation, spilling, and formatting. AEDIT is 
able to edit files of any length and optionally creates back-up copies of the file being edited. 

With AEDIT, two files can be edited during one session. The user can easily switch between the files for quick 
reference, editing, or to transfer text from one file to the other. Using the windowing capabilities available with 
AEDIT-86, both of these files may be displayed simultaneously in a split-screen format. 

AEDIT supports a powerful macro facility. AEDIT can create macros by simply keeping track of what a user is 
executing, "learning" the function the macro is to perform. The editor remembers the user's actions for later 
execution, and can store them in a file if requested. Alternatively, a user may enter a macro using AEDIT's 
macro language, or modify any existing macro interactively. 

These and many other features combine to make AEDITthe editor of choice. 

231364-2 

2-26 



8086 HANDYMAN 

MANUALS 

AEDIT is supplied with a user manual documenting 
all the aspects of the editor, and a pocket reference 
card. The manual includes an introductory tutorial. 

HOST SYSTEM 

AEDIT-80 is an 8080/8085-based utility and can be 
run on any intellec Development System, Series liE, 
Series II, Model 800, or IPDS, .as well as on ISIS 
Cluster workstations. . 

The higher-performance AEDIT-86 is an 8086-based 
utility that can be run on any Intellec Series IIIE, Se­
ries III, or Series IV Development system. Any Series 
liE, Series II or Model 800 system can be upgraded 
to Series III functionality. AEDIT-86 is also available 
for the iRMX Operating Systems. 

AEDIT can be configured to run with non-Intel termi­
nals. Tested configurations are available for the fol­
lowing popular terminals: 

ADDS Regent 200, Viewpoint 3A + 
Beehive Mini-Bee 
DEC VT52, VT100 
Hazeltine 1510 
Lear-Seigler ADM-3A 
Zentec ZMS-35 

Regent 200 is a trademark of ADDS 
Mini-Bee is a trademark of Beehive 
DEC deSignated Digital Equipment Corporation 
ADM-3A is a trademark of Lear-Siegler 

2-27 

ORDERING INFORMATION 
Product Code Description 
iMDX-335 AEDIT-80 Text Editor. In­

cludes 8" single and double­
density diskettes for Series liE, 
Series II, or Model 800, and a 
5%" diskette for iPDS. 

iMDX-334 AEDIT-86 Text Editor. In­
cludes 8" single and double 
density diskettes for Series III 
and a 5%" double density 
diskette for the Series IV. 

iRMX864 AEDIT-86 Text Editor under 
iRMX86 includes 5%" and 8 " 
double density RMX format 
diskettes. 



AEDIT 
SOURCE CODE AND TEXT 

EDITOR FOR PC-DOS 

• A Full-Screen Source Code Editing and 
, Documentation Tool Designed 
Specifically for Software Programmers 
and Technical Writers 

• Full Macro Support for Complex or 
Repetitive Editing Tasks 

• Dual File Support with Optional Split­
Screen Windowing 

• Complete Range of Editing Support­
from Document Processing to HEX 
Code Entry and Modification 

• No Limit to File Size or Line Length 

• Quick Response with an Easy to Use, 
Menu-Driven Interface 

• Supports System Escape for Quick 
Execution of PC-DOS System Level 
Commands 

• Conflgurable and Extensible for 
Complete Control of the Editing 
Process 

convert_decimai_di gi t: PROCEDURE (decima i_digi t) ; 

DECLARE Split-screen windowing 
for file comparison and 
dual file editing 

1----11-- decimaL_digit BYTE, 

Menu interface for 
quick reference and 
easy use 

DOS system escape command 
for quick access to DOS 
level command and programs 

ascii_digit BYTE; 

ascii_digit=decimal_digit+ 'O'i 1* Character '0' isHEX30*1 
CALL wri te (~asci i_digi t, 1); 

END convert_decimal_digi t ; 

app 1 i cat i ens, eventuall y e 1 im i nat i n9 the need to pi ace humans in 
tasks which are repetitive and unfulfilling. The system works by 
reading the bar-code on all retai 1 goods bein purchased, looking up 
the price, determining the cash tendered, and calculating the 
change. 

The CONVERT_DECIMAL_DIGIT procedure is used to output a 
formatted string containing the decimal value and the denomination 
of that value in u.s. currency (dollars, quarters .. dimes, nickles" 
pennies). When the procedure is entered, it is passed an integer 
value. Calculations are performed to determine whether or not the 
value is 

280170-1 

• IBM is a registered trademark of International Business Machines. 

2-28 
October 1986 

Order Number: 280170-001 



infef AEDIT 

PRODUCT FEATURES 

Programmer Support 

AEDIT is a full-screen text editing system designed 
specifically for software engineers and technical 
writers. With the facilities for automatic program 
block indentation, HEX display and input, and full 
macro support, AEDIT is an essential tool for any 
programming environment. And with AEDIT, the out­
put file is the pure ASCII text (or HEX code) you 
input-no special characters or proprietary formats. 

Dual file editing means you can create source code 
and its supporting documentation at the same time. 
Keep your program listing with its errors in the back­
ground for easy reference while correcting the 
source in the foreground. Using the split-screen win­
dowing capability, it is easy to compare two files, or 
copy text from one to the other. The DOS system­
escape command eliminates the need to leave the 
editor to compile a program, get a directory listing, or 
execute any other program executable at the DOS 
system level. 

There are no limits placed on the size of the file or 
the length of the lines processed with AEDIT. It even 
has a batch mode for those times when you need to 
make automatic string substitutions or insertions in a 
number of separate text files. 

Powerful Text Editor 

As a text editor, AEDIT is versatile and complete. In 
addition to simple character insertion and cursor po­
sitioning commands, AEDIT supports a number of 
text block processing commands. Using these com­
mands you will be able to easily move, copy, or de­
lete both small and large blocks of text. AEDIT also 
provides facilities for forward or reverse string 
searches, string replacement and query-replace. 

AEDIT removes the restriction of only inserting char­
acters when adding or modifying text. When adding 
text with AEDIT you may choose to either insert 
characters at the current cursor location, or over­
write the existing text as you type. This flexibility sim­
plifies the creation and editing of tables and charts. 

User Interface 

The menu-driven interface AEDIT provides makes it 
unnecessary to memorize long lists of commands 
and their syntax. Instead, a complete list of the com­
mands or options available at any point is always 
displayed at the bottom of the screen. This makes 
AEDIT both easy to learn and easy to use. 

2-29 

Full Flexibility 

In addition to the standard PC terminal support pro­
vided with AEDIT, you are able to configure AEDIT 
to work with almost .any terminal. This, along with 
user-definable macros and fully adjustable tabs, 
margins, and case sensitivity, combine to make 
AEDIT one of the most flexible editors available to­
day. 

Macro Support 

AEDIT will create macros by simply keeping track of 
the commands and text you type, "learning" the 
function the macro is to perform. The editor remem­
bers your actions for later execution, or you may 
store them in a file to use in a later editing session. 

Alternatively, you can design a macro using AEDIT's 
powerful macro language. Included with the editor is 
an extensive library of useful macros which you may 
use or modify to meet your individual editing needs. 

Text Processing 

For your documentation needs, paragraph filling or 
justification simplifies the chore of document format­
ting. Automatic carriage return insertion means you 
can focus on the content of what you are typing in­
stead of how close you are to the edge of the 
screen. 

DOCUMENTATION 

AEDIT is supplied with a complete user manual (or­
der number: 122717) that documents all aspects of 
the editor and includes an introductory tutorial. Addi­
tionally, a pocket reference (order number 122721) 
is provided fo~ quick command look-up. 

HOST SYSTEM 

AEDIT for PC-DOS has been designed to run on the 
IBM' PC XT, IBM PC AT and compatibles. It has 
been tested and evaluated for the PC-DOS 3.0 (or 
greater) operating system. 

Versions of AEDIT are available for the Intel Intel­
lec® Series-II, Series III, and Series IV development 
workstations, as well as the iRMXTM 86 and iRMX 
286 operating systems. 



AEDIT 

ORDERING INFORMATION 

Order Code Description 
D86EDIEU AEDIT Source Code Editor Release 

2.2 for PC-DOS with supporting docu­
mentation 

122717 AEDIT-DOS User's Guide 

122721 AEDIT-DOS Pocket Reference 

2-30 



intel' iPATTM PERFORMANCE ANALYSIS TOOL 

• Provides Real· Time Performance • Complements Emulator by Allowing 
Analysis and Real· Time Test Coverage Simultaneous Debugging and 
of Code Written for 8086/8088, Performance Analysis 
80186/80188, and 80286 Processors • Permits Activation of Analysis using 

• Displays Performance·Analysis Emulator Procedures 
Histograms to Isolate Slow Code • Handles Up to 24-Bit Execution 

• Displays Test Coverage Tables to Address Space 
Isolate Untested Code; Permits Saving • Permits Specification of Analysis 
and Updating Test Results Address Ranges Symbolically or with 

• Measures Interrupt Latency Absolute Addresses 

• Does not Intrude Into Program Being • Provides Flexible Isolation of Code 
Analyzed Ranges, Windowed Events, and 

• Collects 100% of Execution Data Interrupt Activity 

The Intel Performance Analysis Tool (iPATTM) helps software engineers optimize code and improve software 
reliability. Software object code generated by Intel assemblers and Intel compilers (e.g., for C, PL/M, Pascal, 
Ada, and FORTRAN) can be analyzed symbolically to improve software execution efficiency and to validate 
test coverage. Any object code that lacks Intel compiler information-but that can be run by Intel emulators 
and for which an absolute program map is available-can also be analyzed (nonsymbolically) by the iPAT 
analyst. iPAT operation is currently supported via a target interface to the 121CETM Integrated Instrumentation 
and In-Circuit Emulation System. 

Mode: PROfILE ABS TRUE 
PTIMEBASE: 10us HISTO TIME 
Include calls SORT ADDRESS 
Status: OK fILTER fALSE 

Event :Time(ms)o% 5% 10% 15% 
---------------------+--------+---------+---------+---------+--------. 
GET_LOADING_INfO 
fIND_3D_POSITION 
READ_SURfACE_SENSORS 
GET_AIRSPEED 
GET_THROTTLE_SETTING 
GET_AILERON_POSITIONS: 
GET_RUDDER_POSITION 
GET_fLAP_POSTIONS 
CALCULATE_fEASIBILITY: 
REfRESH_PILOT_DISPLAY: 
GET_PILOT_RESPONSE 
SELTHROTTLE 
SELAILERONS 
SELRUDDER 
SELf LAPS 
*Background* 

470 
620 
580 

o 
380 
120 

60 
130 
300 
740 
190 

80 
310 

o 
180 

28 

:­:­:-
:-
: . 

---------------------+--------+---------+---------+---------+--------. 
Total: : 4188 0% 5% 

2-31 

10% 15% 
280165-1 

October 1986 
Order Number: 280165-001 



intJ iPATTM 

PERFORMANCE ANALYSIS 
INTRODUCTION 

The size and complexity of software has increased 
with each new generation of microprocessors. As a 
result, it has become increasingly important to opti­
mize software and to ensure its reliability. The iPAT 
analyst answers these needs. 

Optimizing Software 

Optimizing software 'means maximizing software 
speed without sacrificing functionality or reliability. 
To increase speed, execution bottlenecks need 
careful attention. But, how can the crucial slow code 
be located? 

Without the iPAT analyst, you might analyze the vari­
ous paths in the source code and make educated 
guesses where the bottlenecks will occur. Or you 
might place count statements in the code to learn 
how often the various paths are entered. Neither of 
these methods can ensure that you really will isolate 
the bottlene'cks. Furthermore, the second method is 
intrusive-with the extra statements, real-time oper­
ation of your original code cannot occur. 

The iPAT analyst provides the solution to the soft­
ware engineering problem of locating crucial code. 
With the iPAT analyst, you can quickly and easily 
show (with histograms or tables) timing and count 
information for specified program modules, proce­
dures, lines, or absolute address ranges.- Because it 
fully supports symbolic information from Intel high­
level languages, the iPAT analyst enables you to use 
the names of procedures and modules to specify 
ranges that you want to analyze. (For object code 
that lacks symbolic information, consult your code's 
absolute program map and then specify absolute ad" 
dress ranges of interest.) 

Furthermore, the iPAT analyst is nonintrusive and 
operates in real-time. It does not sample program 
operation on a statistical basis; rather, it has avail­
able to it each address that is executed so that no 
potentially troublesome code will be overlooked. 
(The iPAT analyst can also monitor when interrupts 
occur.) 

Software teams currently doing their coding in as­
sembly language (to ensure speed of, program exe­
cution) can now consider writing future code in high­
level languages. Since much code does not have a 
significant effect on overall program speed, after the 
code is written in high-level language, the bottle­
necks can be located by the iPAT analyst. Then, if 
need be, the code causing the bottlenecks can be 
redone in assembly language. This method of 

software development means faster product devel­
opment, since coding can progress much faster us­
ing a high-level language. 

Measuring Hardware-Interrupt-to­
Software-Response Time (Latency) 

The iPAT analyst not only allows you to acquire tim­
ing and count information on software events; it also 
allows you to examine hardware-interrupt-to-soft­
ware interactions. For example, you can measure 
how long it is before the appropriate service routine 

,is executed in response to a hardware interrupt. If 

2-32 

the measured hardware-interrupt-to-software laten­
cy period is not acceptable" the iPAT analyst can 
help you isolate the causes. 

Coordinating Performance Analysis 
with Emulator Controls 

Using the emulator with the iPAT analyst also en­
ables you to analyze program execution as a func­
tion of differing target-system conditions. You can 
set up the conditions in the target system with the 
emulator, set up iPAT data collection for a section of 
code, then run the program with the iPAT analyst 
activated. Change the target conditions and repeat 
program execution and performance analysis. 

You can also create emulator procedures (PRGCs) 
containing emulator commands that trigger perform­
ance analysis as a function of selected software or 
hardware events. 

Ensuring Software Reliability 

As code is developed, there is a need to ensure that 
it has no defective code. Typically for this purpose, 
test suites are developed by software engineers. 
The engineers use their theoretical understanding of 
the software to devise test suites that will exercise 
the code paths. Then, the program under test is run 
with the test suites, and the program's output is ex­
amined. If the desired values are present in the out­
put, it is assumed that the paths were tested. But 
this is an inference; the test results do not them­
selves show whether the paths were all exercised. 

Thus, without the help of the iPAT analyst, testers 
cannot be confident that their tests exercised all the 
code. Asa result, there may be a tendency to re­
strict designs to familiar algorithms and techniques, 
so that previously successful test suites can be 
reused. 

By contrast, the coverage mode in the iPAT analyst 
enables you to identify easily and quickly which lines 
or procedures in your software are not being 



inter iPATTM 

exercised by the test suites. Thus, you need not re­
strict your test suites or your coding techniques and 
options. Furthermore, when the iPAT analyst reveals 
untested code, you can modify your test suites until 
the iPAT analyst shows that all code is tested. 

How the iPATTM Analyst Affects 
Development 

As your code is being developed, preliminary analy­
ses can be made with the iPAT analyst. Then, when 
your system hardware is developed to the point that 
code can be loaded into it and run, the iPAT analyst 
can make real-time measurements. Refinements of 
software and test suites can occur up until product 
release, with each new modification being checked 
by the iPAT analyst for execution efficiency and reli­
ability. 

But, the iPAT analyst's usefulness to the product is 
not at an end, because most products are enhanced 
after the first release. As new releases are being 
prepared (to add new features), the iPAT analyst will 
be available to analyze the new code and the new­
est test suites. 

The iPAT analyst can also be used to enhance exist­
ing products-products that were developed before 
performance' analysis was available. you can exam­
ine existing code with the iPAT analyst to identify 
slow code; recode; re-examine; then, when perform­
ance (and reliability) have been improved, release 
the enhanced products. 

The iPAT analyst provides a way for software engi­
neers to check whether the software meets perform­
ance specifications. In addition, in the future you will 
be able to write more meaningful specifications that 
cite desired iPAT measurements. 

If portions of code are likely to be reused, the iPAT 
analyst can provide measurements of the reusable 
code's performance characteristics. Then, future us­
ers of the code will know in advance what to expect 
from the code. 

Another use of performance analysis is encouraging 
engineers to engage in "what-if" thinking. They can 
ask, "What if this portion of the code was deSigned 
this way?" Then, after they complete several ways 
of coding, the various versions can be analyzed by 
the iPAT analyst to reveal which has the greatest 
efficiency. 

2-33 

PHYSICAL DESCRIPTION 

The iPAT system consists of hardware and software. 

Figure 1 shows the iPAT hardware connected to the 
121CE emulation system and hosted by an IBM PC 
AT. The iPAT hardware includes the following: 

• Power supply (with AC and DC power cables) 

• Core module 

• Emulator-specific target interface (which enables 
the core module to function with a specific emula­
tor) 

• Cable for connecting the core module to the tar­
get interface 

• RS-232 serial cable for connecting the core mod­
ule to the host system 

iPAT software is integrated with the emulator soft­
ware. Thus, with the iPAT 1121CE system target inter­
face you receive 121CE system host software. (You 
do not receive 121CE system probe software; contin­
ue to use the probe software-version 1.7 or later­
supplied with the 121CE system.) In addition, you re­
ceive iPAT diagnostic and tutorial software. 

FUNCTIONAL DESCRIPTION 

Users will begin analysis of their code by obtaining 
an overview of their software's operation, and then 
restrict their focus as they home in on the problem 
areas in their code. Five analysis modes are avail­
able: 

• profile 

• coverage 

• windowed event count 

• duration 

• linkage 

Of these, the profile and coverage modes can be 
used to acquire both overviews and more localized 
inspection of your software behavior. The iPAT win­
dowed-event-count" duration, and linkage modes 
each provide specific perspectives on localized soft­
ware behavior. 

GAINING AN OVERVIEW OF 
SOFTWARE OPERATION 

Gaining an overview 6f your software operation is 
simple with the iPAT analyst. If you want an overview 
of program activity, you load your program, select 



intJ iPATTM 

2801.65-2 

Figure 1. The iPATTM Analyst Used with an IBM PC AT 

2-34 



iPATTM 

the profile analysis mode, and then run the program. 
To do so, you need only enter the following com­
mands: 

LOAD new_program 
PAT INIT PROFILE 
GO 

To display the results (during or after program exe­
cution), enter: 

PAT DISPLAY 

iPAT options and controls provide considerable flexi­
bility in monitoring and displaying information about 
your code. Yet the default settings have been de­
signed with a view to typical applications and ease-

of-learning. Default operation in the profile mode 
monitors all procedures in the user program and 
measures their real-time characteristics. 

The default display for profile mode is a histogram 
that shows the time spent in each of your program's 
procedures. See Figure 2 for a sample default profile 
display. 

Acquiring an overview of test coverage is also sim­
ple. First set up the coverage mode. 

PAT INIT COVERAGE 

Example: The procedure REFRESH 
PILOT_DISPLAY consumes about 17.5% r­
of the program execution time. 

Mode: PROFILE ABS TRUE 
PTIMEBASE: 10us HISTO TIME 
Include calls SORT ADDRESS 
Status: OK FILTER FALSE 

Event :Time(mslO% 5% 10% 15% 
---------------------+--------+---------+---------+---------+---------
GET_LOADING_INFO 
FIND_3D_POSITION 
READ_SURF ACE_SENSORS 
GET_AIRSPEED 
GET_THROTTLE_SETTING 
GET_AILERON_POSITIONS: 
GET_RUDDER_POSITION 
GET_FLAP_POSTIONS 
CALCULATE_FEASIBILITY: 
REFRESH_PILOT~DISPLAY: 
GET_PILOT_RESPONSE 
SET_THROTTLE 
SET_AILERONS 
SELRUDDER 
SET_FLAPS 
*Background* 

470 
b20 
580 

o 
380 
120 

bO 
130 
300 
740 
190 

80 
310 

o 
180 

28 

:­:­:-
:-
: ..... 

---------------------+--------+-- ------+---------+---------+---------
Total: : 4188 0% 5% ' 

lData concerning execution of the maln·line I 
code is included in the Background line. 

10% 

Figure 2. Profile Mode: Time Histogram Display 

2-35 

15% 

280165-3 



iPATTM 

Then, run your program with the data inputs from 
your tests suites, and request a display of results 
using the following commands: 

GO FROM top 
PAT DISPLAY 

By default, the coverage display lists all procedures 
and indicates whether each was executed. Figure 3 
shows a sample coverage display. It indicates that 
no code in the procedures GET JIR_SPEED and 
SET_RUDDER was executed by the test suites. 

GETTING OTHER VIEWS OF 
SOFTWARE OPERATION 

To obtain more refined information about program 
operation and test coverage, you can use all five 
analysis modes. For all modes, the basic display 
command is the same: 

PAT DISPLAY 

You can select whether the display should be re­
newed periodically during real-time program execu­
tion. If you select periodic renewal, you can also se­
lect how frequently (in seconds) it is renewed. 

Data collection occurs with one of five selectable 
time bases: 100 j.ts, 10 j.ts, 1 j.ts, and 200 ns. The 
default value is 10 j.ts. 

The following sections describe how each of the five 
analysis modes and their associated displays can be 
used to obtain other kinds of overviews and how to 
localize the collection of data. 

Mode: COVERAGE 

Coverage Mode 

The default features of the coverage mode have al­
ready been described. Once you have a coverage 
overview, you may want to restrict the data dis­
played. 

For example, if the default coverage information 
shows that all procedures were executed by test 
suites, you may next wish to determine whether all 
lines in certain procedures were executed. You 
would then request a display (for the address range 
desired) of the lines not executed. Using this meth­
od, you can obtain very refined test-coverage infor­
mation and thus help ensure software reliability. 

Profile Mode 

For profile mode there are a number of ways you 
can control analysis and the display of data. 

Profile-Mode Analysis: For profile mode, data, by 
default, is collected on program procedures. If you 
want to acquire an even wider overview, you can 
change the focus to program modules. Or, for a very 
close view, you can request that data be collected 
on the lines executed. 

After you have examined your program's profile dis­
play, you may notice that several procedures are us­
ing excessive time. You will next want to use the 
iPAT analyst to determine whether the time spent is 
really attributable to those procedures or rather to 
calls by those procedures to other procedures. In 
the default case, when a procedure calls another, 
the time spent in the called procedure is accumulat-

I Example: SET --.AILERONS was executed ~ 
but SET_RUDDER was not. I 

SHOW ALL PROC 

:Exec: Event :Exec: Event :Exec: Event 
+----+-----------------+----+-----------------+----+------------------+ • :GET_LOADING_INFO • :GET_AILERON_POSI : • :GET_PILOT_RESPONSE: 

• :FIND_3D_POSITION • :GET_RUDDER~POSIT • :SELTHROTTLE 

• :READ_SURFACE_SEN • :GET_FLAP_POSTION • :SET_AILERONS 
:GET_AIRSPEED • :CALCULATE_FEASIB :SELRUDDER 

• :GET_THROTTLE_SET • :REFRESH_PILOT_DI iii :SET_FLAPS 
280165-4 

Figure 3. Coverage Mode: Display Showing Procedures Executed and Not Executed 

2-36 



intJ iPATTM 

ed by the iPAT analyst as part of the calling proce· 
dure's time. If you do not want time charged to the 
caller, change the control so that the time accumu· 
lated by calling procedures excludes time used by 
called procedures. Then rerun the program and col· 
lect new data. Now, by comparing the time charged 
to the calling procedure in the two cases, you can 
determine to what extent calls by the procedure use 
excessive time. 

When you use profile mode, you need not collect 
data on the whole program. You can restrict the 
range of modules, procedures, or lines that are pro· 
filed. In addition, you can restrict the profile to speci· 
fied absolute·address ranges or to an interrupt·ad· 
dress pair. 

Profile-Mode Displays: The default profile display 
(shown in Figure 2) provides a histogram of the time 
used by program procedures. Once you notice that 
some procedures are taking too long, you will want 

to determine how often those procedures are called. 
Is the excessive time a result of their being called 
frequently or the result of slow code? To find out, 
you need only select a display of count information. 
A histogram appears immediately (derived from al­
ready·acquired data). In the histogram, the lines for 
the procedures that are taking too long will show 
whether their counts are small (implying slow code) 
or large. 

You can also display count and time information 
simultaneously by selecting the table display option. 
To do so, simply change the HISTO control to false 
and request a new display. Figure 4 shows a sample 
profile table display. 

Another display control allows you to specify in what 
order data is presented. By default, data is present· 
ed in address order. But you can also direct the iPAT 
analyst to arrange results in time order or count or­
der, with highest values first. 

Example: GET _ THROTTLLSETTING was 
executed 49 times. Total execution time was 380 
ms, with 7.8 ms as the average execution time. 

Mode: PROfILE 
PTIMEBASE: 10us 
Include calls 
Status: OK 

ABS 
HISTO 
SORT 
fILTER 

TRUE 
fALSE 
ADDRESS 
FALSE 

Event :Count :Time(ms) :Time Min :Time Ave :Time Max 
---------------------+------+---------+---------+---------+---------+ 
GET_LOADING_INfO 3 470 50 156.7 360 
fIND_3D_POSITION 14 620 14 44.3 181 
READ_SURfACE_SENSORS 31 580 7 18.7 21 
GELAIRSPEED 0 0 0 0 0 
GET_THROTTLE_SETTING 49 380 2 7.8 16 
GET_AILERON_POSITIONS: 26 120 1.1 4.6 11 
GET_RUDDER_POSITION 14 60 1.0 4.3 9 
GET_fLAP_POSTIONS 12 130 9 10.8 34 
CALCULATE_fEASIBILITY: 26 300 7 11.5 14 
REfRESH_PILOT_DISPLAY: 2 740 38 370.0 702 
GET_PILOT_RESPONSE 3 190 44 63.3 80 
SELTHROTTLE 2 80 35 40.0 45 
SELAILERONS 3 310 33 103.3 168 
SELRUDDER 0 0 0 0 0 
SELf LAPS 11 180 11 16·4 19 
*Background* 7 28 3 4.0 4 
---------------------+------+---------+---------+---------+---------+ 
Totals: 203 : 4188 

280165-5 

Figure 4. Profile Mode: Table Display 

2-37 



iPATTM 

Duration Mode 

Duration-Mode Analysis: With the duration mode 
you can focus on timing information for one block of 
code or one interrupt-address pair. If you wish to 
determine how regularly a procedure meets perform­
ance specifications for timing, duration mode will 
provide the answer. This mode also is useful when 
you want information on how widely response time 
varies between the arrival of an interrupt and the 
execution of a particular service routine. 

Duration mode collects data from repeated execu~ 
tions of a specified block of code or interrupt-ad­
dress pair. The data is then placed in a number of 
bins (selectable as 8,16, or 32 bins). You can select 
whether the bins have equal intervals or bin size in­
creases logarithmically (use the latter when you ex­
pect a wide variation in time values). 

Figure 5 shows a sample duration-mode default dis­
play. It assumes that a user wishes to find out the 
variation in response time for a specific interrupt-ad­
dress sequence. In this case, the user is interested 
in the elapsed time between an interrupt caused 

by ground contact of an airplane's landing gear and 
the execution of the first statement in the procedure 
that controls thrust shutdown. The display shows, 
for example, that the bin for the elapsed time interval 
4 /Ls to 7 /Ls recorded 17 instances of the interrupt­
procedure execution pair. Note that in this case the 
performance specification indicated that elapsed 
time should never exceed 64 /Ls, the duration dis­
play shows that the current design does not meet 
the specification. 

Duration-Mode Displays: The default duration dis­
play (as shown in Figure 5) provides a time histo­
gram. A table display can also be selected. 

In duration mode, you are not restricted to learning 
only about timing that occurs between two events. 
You can also learn about timing that occurs outside 
the event pair-the demand for the event pair. Sup­
pose, for instance, RAM memory in your operating 
system is currently filled, and you want to determine 
whether one of the processes stored there is used 
too infrequently to justify its placement in RAM. Col­
lect data on this process using the duration mode. 
Then use the duration-mode OUTER display option. 

Example: This bar shows that on 17 occasions 
STOP_THRUST required between 4 and 7 /LS to f­
execute. 

Mode: 
Event: 
Bin Range: 
PTIMEBASE: 
Type: 
Status: 

DURATION 
Interrupt to STOP_THRUST 
1 us to 256 us 
1 us 
Logarithmic 
OK 

Frequency-> 

SELECT 
HISTO 

INNER 
TIME 

o 4 8 12 16 20 24 
IntervalCus)+-------+-------+-------+--------+--------+--------+--------

< 1 :. 
1 - 1 :. 

2 - 3 :::::~::::::::::~ .......... ~------------------~ 4 - 7 
8 - 15 

16 - 31 
32 - 63 
64 - 127 

128 - 256 
> 256 

:­:­:­:. 
--------~---+-------+-------+-------+--------+--------+--------+---------

o 4 8 12 16 20 24 
280165-6 

Figure 5. Duration Mode: Histogram Display 

2-38 



inter iPATTM 

By dOing so, you select a display of binned timing 
data that shows the distribution of the specified pro­
cess's demand. If the process is infrequently used 
(contrary to original expectations), it could be moved 
to disk and RAM space made available for other, 
more frequently used, routines. 

Windowed-Event-Count Mode 

The windowed-eve nt-count mode counts how often 
a specified begin-end pair (window) is entered-and 
how often, once the window is entered, an interrupt 
occurs or a specified address is executed. (A count 
is also kept of how often the selected event occurs 
outside the window.) As with the duration mode, 
data is binned. The begin-end pair can be two ad­
dresses (specified absolutely or symbolically) or an 
address and the occurrence of an interrupt. 

This mode is useful for obtaining refined count data. 
For example, if profile mode indicates that proce­
dure A is using excessive time and that much of the 
time is attributable to' procedure calls, you can use 

this mode to get a better understanding of the situa­
tion. Use procedure A as the window and the name 
of a procedure it calls (B) as the event of interest. 
Data will then be gathered and placed in bins. The 
resulting display will show the distribution of how of­
ten procedure B is called each time procedure A is 
executed. Thus, you can see whether procedure B is 
the procedure causing procedure A to use so much 
time. 

Because the event is counted both inside and out­
side the window, you can use this mode to deter­
mine whether an undesired event occurs excessive­
ly within a given block of code. If, for example, one 
procedure consumes too much time and you sus­
pect that interrupts are occuring excessively during 
the procedure, use this mode to corroborate your 
suspicions. Specify the procedure as the window 
and interrupts as the event. Then display the results 
both for interrupts within the procedure and those 
outside the procedure. By comparing the two dis­
plays, you can determine whether interrupt frequen­
cy within the procedure is skewed. Figure 6 shows a 
sample display for interrupts that occur inside the 
window., 

Example: This bar shows that for 15 executions of 
STOP_THRUST, Interrupts inside of 
STOP_THRUST occurred between 25 and 29 times. 

Mode: 
Window: 
Event: 
Bin Range: 
Type: 
Status: 

WINDOW 
STOP_THRUST 
Interrupt 
5 to 44 
Linear 
OK 

Frequency-> 
o 4 8 12 16 

SELECT 
HISTO 

20 

INNER 
COUNT 

24 
Interval 

< 5 
+-------+-------+-------+--------+--------+--------+------- -

5 - 9 
10 - 14 
15 - 19 
20 - 24 
25 - 29 
30 - 34 
35 - 39 
40 - 44 
> 45 

:­:. 
------------+-------+------~+----~--+--------+--------+--------+---------

o 4 8 12 16 20 24 
280165-7 

Figure 6. Wlndowed·Event·Count Mode: Interrupt Latency Histogram 

2-39 



inter iPATTM 

Aswith the duration mode, you can select the granu­
larity of data collection for the windowed-event­
count mode (8, 16, or 32 bins), and you can specify 
linear or logarithmic binning. . 

Linkage Mode 

Linkage mode has two options, the many-to-one op­
tion and the many-to-many option. Both options al­
low you to focus on inter-procedure activity. 

Many-to-One Option: With this linkage option, you 
can focus on one procedure or block of code (the 
one) and determine its linkage to other procedures 
or blocks of code (the many) that call it. 

For example, suppose .that profile mode has re­
vealed procedure SCALE_DISTANCE to be using 
excessive time and is called often (see Figure 7), ·If 
many of the calls to it are from. one or two proce­
dures, to improve execution' speed SCALLDIS~ 
TANCE could be optimized and moved in lineinto 
the procedures that call it often. The· many-to-one 
option can help in this case. You simply enter the 
PAT LINKAGE analysis command and specify the 

names of the procedure that call SCALLDIS­
TANCE (the many) and specify SCALLDISTANCE 
as . the one. Then, when· the program is executed, 
appropriate. count and time data is collected. Figure 
7 shows a sample count histogram display for the 
many-to-one option. For each of the calling proce­
dures, Figure 7 shows the average number of invo­
cations of SCALLDISTANCE. We see that proce­
dure DRAW_MAP, on the average; invokes 
SCALLDISTANCE 10.2 times. 

The many-to-one display can also be changed to a 
time histogram (showing, for each of the many pro­
cedures, the average time the one procedure uses) 
or to a table. 

Many-to-Many Option: This linkage option allows 
you to collect information on the linkage between 
many event pairs. 

In the other modes, you cannot use an interrupt or 
the same address to specify .both members of an 
event pair. For the many-to-many option, there is no 
such restriction. Thus, with this option you can col­
lect timing and count information on recursive proce­
dures and interrupt-to-interrupt activity. 

Example: This bar shows that DRAW_MAP 
invokes SCALE_DISTANCE 10.2 times, on the 
average - more times than any other procedure. 
Note that the label "0" stands for One and 10M" 
stands for Many. 

Mode: LINKAGE (many-to-one) HISTO COUNT 
PTIMEBASE: 100us 
Status: OK 
To (0): SCALE_DISTANCE 

: O-Cbunt 
Event (M) ': M-Count 0.0 2.0 6.0 8.0 10.0 
---------------------+----------+-----+-----+-----+-----+-----+----
DRAW_MAP 
DRALFLIGHLPATH 
DRAW_OTHER_ACRFT_PATH: 
DRAW_GRND_TURBULANCE : 
DRAW_DISTANCE_MARKERS: 

10.2 
1.6 
0.7 
1.4 
6.8 

:­:. :-
------------~--------+----------+-----+-----+-----+--~--+-----+----

0.0 2·0 8.0 10.0 
280165-8 

Figure 7. Linkage Mode (Many-to-One): Count Ratio Histogram 

2-40 



intJ iPATTM 

Data for the many-to-many option is displayed in a 
table. See Figure 8 for a sample display. 

USER INTERFACE 

The iPAT software is integrated with the emulator 
software. For example, iPAT command options are 
integrated in the emulator syntax menu at the bot­
tom of the screen. 

In addition, the emulator LITERALLY command can 
be used to abbreviate frequently used commands. 
The history buffer is also available to retrieve previ­
ous commands. 

As already noted, the iPAT analyst requires only one 
command line to set up an analysis-mode (PAT 
INIT) and one to request a data display (PAT DIS­
PLAY). There are also six display pseudo-variables 
used to set display options: SHOW, ABS, SELECT, 
FILTER, SORT, and HISTO. 

Users can save test-coverage data collected for 
subsequent reviewing. Jhe command PAT SAVE 
saves coverage data to a user-specified file; the 
command RECALL enables you to restore the file 

and then update the test information with additional 
test runs. 

Displays for all modes can be saved to a file using 
the emulator LIST command. 

To speed command entry, you can create registers 
that save frequently used commands. Then use the 
names of the desired registers with your analysis 
and display commands. 

The emulator's screen editor can be used to exam­
ine and modify source code that the iPAT analyst 
has pinpointed as needing improvement. 

SPECIFICATIONS FOR iPATTM AN 
121CETM SYSTEM 

Host Requirements 

Intel Series III or Series IV development system; or 
an IBM PC XT or PC AT system 

At least 512K bytes of RAM (of which 384K bytes 
must be available for the iPAT 1121CE system soft­
ware) 

Example: This line shows how often interrupts occur 
and provides timing information about the intervals 
between interrupts. In this case 220 interrupts 
occurred; the average interrupt-to-interrupt time 
interval was 250 fls. 

Mode: LINKAGE (many-to-many) 
Timebase: lOus 
Status: OK 

Events : Count:Time (us) :Time Min:Time Ave:Time Max: 
-----------------+------+---------+--------+--------+--------+ 
DRAW_MAP 
DRAW_MAP 30 2700 80 90 100 

INTERRUPT 
INTERRUPT 220 55000 130 250 31O~ 

SET -FLAPS 
SET_RUDDER 25 325 10 13 20 

SET -FLAPS 
SET_AILERONS 3 970 288 323 417 
-----------------+------+---------+--------+-----~--+--------+ 

280165-9 

Figure 8. Linkage Mode (Many-to-Many) Display 

2-41 



iPATTM 

Available serial channel that operates at 300, 1200, 
9600, or 19200 baud. (For a Series IV host, the avail­
able channel must be the iEU channel and, to use 
the iPAT analyst at baud rates greater than 300, an 
SPU board must be installed.) 

Two double-density diskette drives or a hard disk 

121CETM System Requirements 

Version 1.7 (or greater) probe software 

iPAT software does not support 121CE system opera­
tion with the Intel Logic Timing Analyzer (iL TA) and 
iLTA software does not support iPAT operation. 

After the iPAT analyst interface board is installed, 
space is available in the 121CE system instrumenta­
tion chassis for only one optional board. (Thus the 
user can install only one optional high-speed (OHS) 
memory board.) 

Only one iPAT analyst will function in a multiple­
probe 121CE system. 

iPATTM Analyst Software 

121CE host software that includes iPAT software 

iPAT confidence tests 

iPAT tutorial software 

System Performance 

Address Range Specification: Address ranges can 
be specified symbolically (for code compiled by Intel 
compilers) or with absolute addresses. Addresses 
anywhere within processor address space can be 
used. . 

Speed: The iPAT analyst captures instruction ad­
dresses at full processor speeds (however, when us­
ers specify many short intervals that are frequently 
executed, iPAT processing overflow may occur). 

Timebase: Data collection timebase selectable as 
200 ns, 1 ILs, 1 ° ILs, or 100lLs. 

Display Updates: Users can specify how frequently 
(in seconds) displays are updated. 

Status: If time-count, bin-count, or FIFO overflow 
occurs, the display indicates the overflow. 

2-42 

Profile Mode: Collects time and count information 
on specified entry-exit pairs. Permits specification of 
125 entry-exit pairs when calls to other procedures 
are included in data collection and a minimum of 63 
pairs when calls are excluded. Data collection can 
focus on modules, procedures, lines, absolute ad­
dress pairs, or interrupt-address pairs. Displays are 
selectable as histograms or tables; data displayed 
can be sorted by address, count, or time. 

Coverage Mode: Provides up to 252K bytes of cov­
erage, mappable anywhere within the processor .ad­
dress space. Results are displayed in a table; users 
can select whether the table shows modules, proce­
dures, or lines executed (and/ or not executed). 

Linkage Mode: The linkage mode has two options: 

Many-to-One Option: Collects count and time data 
about interaction of one specified entry-exit pair with 
respect to other specified entry-exit pairs. Permits 
specification of 63 entry-exit address pairs for the 
many and one entry-exit address pair for the one. 
Displays are selectable as histograms or tables; 
data displayed can be sorted by address, count, or 
time. 

Many-to-Many Option: Collects count and time 
data on one or more pairs of events. Permits specifi­
cation of 63 event pairs; each member of a pair can 
be an address or interrupt. Measurements of recur­
sion and interrupt to interrupt are supported. Display 
is a table. 

Modes that Organize Data into Bins: The following 
two iPAT modes organize collected data into bins. 
Users can select bin granularity (8, 16, or 32 bins) 
and the highest and lowest values for the outer bins. 
Users can also select whether bin intervals are 
equal or increase logarithmically. 

Windowed-Event Count Mode: Collects count 
data concerning an event that occurs within a speci­
fied window. Permits selection of the window entry­
exit pair as an address pair, interrupt-address pair, or 
address-interrupt pair. The event selected can be an 
address or an interrupt. Resulting binned count data 
can be displayed as a histogram or table. 

Duration Mode: Collects time information for a se­
lected entry-exit pair. Permits selection of an entry­
exit pair as an address pair, interrupt-address pair, or 
address-interrupt pair. Resulting binned timing infor­
mation can be displayed as a histogram or table. 



inter iPATTM 

PHYSICAL CHARACTERISTICS 

Target-Interface Board (to be 
installed in 121CE system 
instrumentation chassis): 

Length 30 cm (12 in) 
Width 30 cm (12 in) 

iPAT Core Module: 

Length 35 cm (13% in) 
Width 21 cm (8114 in) 
Height 4 cm (1% in) 

iPAT Power supply: 

Length 28 cm (11 in) 
Width 11cm(4%in) 
Height 19 cm (7% in) 

AC power cord for the power supply: 3.0 m (10ft) 

Power-supply-to-core DC power cable: 1.8 m (6 ftl. 
10 conductor 

Emulation-clips jumper cable: 20 cm (8 in), 40. con­
ductor 

Execution-trace jumper cable: 10 cm (4 in), 60 con­
ductor 

iPAT-to-emulator cable: 0.9 m (36 in), 60 conductor 

RS232 serial cable (for connecting the iPAT core to 
the host system): 3.7 m (12 ft). This cable is shipped 
with the iPAT software. 

Electrical Characteristics 

Selectable AC power source: 100V, 120V, 220V, 
240V 

47-63 Hz 

2 amps (AG) at 100V or 120V, 1 amp at 220V or 
240V 

2-43 

Environmental Requirements 
Operating Temperature: 10·C to 40·C (50· to 104·F) 

Operating Humidity: Maximum of 85% relative hu-
midity, non-condensing 

ORDERING INFORMATION 
Order Code 

iPATCORE 

iPAT86PC 

iPAT86S3 

Description 

iPAT core unit that supports Intel 8-
and 16-bit microprocessors. It must 
be used with the appropriate emulator 
target interface, cables, and software. 

iPAT-12ICE system target interface, 
cables, and DOS software for IBM PC 
AT and PC XT host 

iPAT-12ICE system target interface, 
cables, and ISIS software for Series III 
host 

iPAT86S4 iPAT-12ICE system target interface, 
cables, and iNDX software for Series 
IV host 

iPAT86DOS iPAT DOS software (for use with IBM 
PC AT and PC XT hosts) and serial 
cables 

iPAT86NDX iPAT Series IV (iNDX) software and 
serial cable 

iPAT861SS iPAT Series III (ISIS) software and se­
rial cable 



80386 
DEVELOPMENT 
ENVIRONMENT 

INTEL HAS THE COMPLETE 
DEVELOPMENT SOLUTION FOR 
YOUR 80386 DESIGN: 

• Languages 
-Assembler 
-C 
-PL/M 

• Debuggers 
-PSCOPE Monitor, P-MON 386 
_ICE™ 386 In-Circuit Emulator 

• Development Hosts 
-XENIX* System 310AP 
-VAX**/VMS system 
-IBM PC AT or compatible 
-Intellec Series IV and Compilengine 

• Execution Environment 
-iSBC® 386120 Single-Board Computer 
-iSBC® 386/100 Single-Board Computer 

ORDER NUMBER 280177·002 

2·44 



intel" , 
80386 DESIGN ENVIRONMENT- TO GET STARTED TODAY 

You can begin your design based on the 80386 microprocessor today with a powerful set of design tools optimized 
for the 80386. Intel offers a full set of tools, including languages and debuggers, that let you apply the full power 
of the advanced, 32-bit 80386 to your product and get your project done quickly and smoothly. 

Hosting for the tools is available today on Intel's System 310 running the XENIX' 286 operating system. 

Product Description 

80386 Languages 
-80386 Assembler 

ORDERING INFORMATION 

-80386 Relocation, Linkage and Library Tools 
-PLIM 386 Compiler 
-C 386 Compiler 

80386 Debuggers 
-PSCOPE Monitor, P-MON 386ES. Basic 80386 debugging functions 

including download from host system. Will be updated to pre-production 
level in late 1986. 

-ICE'M 386 In-Circuit Emulator 

Development Host 
-XENIX' System 286/3JOAP-44. Includes System 3JOAP, XENIX Operating 

System, OpenNET networking hardware and software, and four-channel 
communications controller. 
Requires I MByte memory expansion. 

- or -

-XENIX' System 286/3JOAP-46. Includes System 3JOAP, XENIX Operating 
System, Open NET networking hardware and software, twelve-channel 
communications controller and 2 MBytes memory. 

Execution Environment 
-iSBC 386120 Starter Kit ES. Includes iSBC 386120P Single-Board 

Computer, 2MB memory board, 386 debug monitor, cables, and 
documentation. 

-iSBC 386/JOOES Kit. Includes iSBC 386/JOOES Single-Bdard Computer, 
1MB memory board, 386 debug monitor, cables, and documentation. 

Hosting Options for 80386 Development Tools 

Host System 310 
XENIX· 

80386 Languages NOW 

PSCOPE Monitor, 
P-MON 386ES NOW 

PSCOPE Monitor, 
P-MON 386 2H86 

ICE'" 386 2H86 

'XENIX is a trademark of Microsoft Corporation 

• 'VAXfI/M$ are trademarks 01 Digital Equipment Corporation 

tUNIX is a trademark of Bell Laboratories 

PC AT VAX·· VAX·· 
DOS VMS·· UNIXt 
2H86 2Q86 IH87 

- - -

2H86 - -

2H86 - -

2-45 

Series IV 

IH87 

-

IH87 
IH87 

Order Code 

X286ASM386PP 
X286RLL386PP 
X286PLM386PP 
X286C386PP 

X286PMON386ES 
(Available mid-1986) 

PSYS3 JOAP44XN 
SBCOJOEX 

PSYS310AP46XN 

SBC38620SPKG 

SBC386JOOES 

Compilengine 

IH87 

-

-

-

.. 



inter APPLICATION 
NOTE 

Debugging with Intel 
on the VAX* 

BRIAN VALENTINE AND STEVE CAPlE 
DSO APPLICATIONS ENGINEERING 

AP-243 

November 1986 

Order Number: 231479-001 
2-46 



AP-243 

I. INTRODUCTION 

The V AX*/VMS mainframe computer has always been 
popular for large team software development. Its ability 
to serve many users and the quality software tools 
available make it a natural choice in the engineering 
lab. The introduction of quality microprocessor devel­
opment languages, such as the 8086, 80186 and 80286 
series from Intel Corporation, has increased the versa­
tility of the VAX, further strengthening its position as 
the large team software development standard machine. 

However, microprocessor development is not solely 
software development. At some time, the VAX devel­
oped software must be integrated and debugged in the 
target microprocessor environment. There are no suit­
able V AX tools for this integration/debug phase, so the 
developer must turn to a development system supplied 
by the microprocessor manufacturer. Intel, for exam­
ple, provides a Series IV development system, coupled 
with a sophisticated in-circuit emulator and integrated 
instrumentation system, to solve this difficult integra­
tion/debug phase. Consequently, software developers 
must use both a VAX computer and microcomputer 
development system (MDS) workstation to perform 
their microprocessor development. 

Currently V AX software developers need two key­
boards to perform their work efficiently:a V AX key­
board for software generation and a microcomputer de­
velopment system workstation for debugging and in­
circuit emulation. Often these two keyboards are not 
located in the same working environment. While the 
microcomputer development system workstation is 
generally placed in an engineering laboratory, the VAX 
keyboard is typically found in the software developer's 
office. Having to work in both environments creates 
two problems for the software developers. First, debug­
ging or using an in-circuit emulator requires him to 
leave his office, second, he's required to learn two key­
board environments. 

One solution to both these problems is to allow soft­
ware developers to perform debugging and in-circuit 
emulation from their offices using their VAX keyboard. 
With Intel's new V AX program called CONNECT, 
this is now possible. CONNECT allows software devel­
opers to use their VAX keyboards as a virtual MDS 
workstation. Software developers can now run 
PSCOPE, ICE TM and 12ICE TM debuggers from 
their V AX keyboard. 

Some of the highlights of CONNECT include: 

1. A user friendly human interface 
- help command 
...:.... informative and easy to understand system mes­

sages 

2. A flexible menu for selecting MDS workstation. 

3. The support of a VAX environment with multiple 
V AX/MDS workstations (performs keyboard lock 
out). 

4. Source code is supplied with package; therefore, 
CONNECT may be customized to your needs. 

With CONNECT, software developers can now do the 
following: 
1. Spend less time walking from keyboard to keyboard, 

and spend more time developing software. 

2. By only using their fingertips, access any MDS 
workstation connected to the VAX. 

3. Perform the entire development process in the com­
fort of their own office. 

CONNECT is another innovative feature to add to the 
Intel-VAX microprocessor development environment. 
Intel already provides cross software which includes 
compilers, linkers and locators. In addition, for file 
transfer between the VAX environment and the MDS 
environment, Intel provides a serial communication 
link (ACL) and an Ethernet communication link 
(NVL). 

The remainder of this application note will cover the 
following material: 

II. CONNECT environment 

A. Hardware considerations 

B. Software considerations 

III. CONNECT SETUP - for the VAX system manag­
er 

A. How to create CONNECT:CONNECT.dat 
configuration file 

IV. USING CONNECT-for the VAX software de­
veloper 

A. How to run program CONNECT with qualifi­
ers 

B. How to choose and select MDS workstation 

C. How to use VAX keyboard as a virtual MDS 
workstation 

D. Additional CONNECT commands 

II. CONNECT ENVIRONMENT 

A. Hardware considerations 

The V AX system manager must connect all desired 
MDS workstations to the VAX, using RS-232 serial 
cables. These cables are connected from any V AX seri­
al port to serial channel 1 on the MDS. 

MDS is used in this applications note as an abbreviation for Microcomputer Development System· 
MDSTM a trademark of Mohawk Data Sciences 
*V AX is a trademark of Digital Equipment Corporation 

2-47 



AP-243 

Example: Connect an RS-232 cable from port TTA1:on 
the V AX to serial qhannel 1 on the MDS Series IV 
development system. 

Each MDS to be used with the CONNECT requires a 
serial cable from serial channel I to a port on the VAX. 
The RS-232 connection is defined as: 

Pins Pins 
1 ~ 1 
2 ~ 2 
3 ~ 3 
4 ~ 4 
5 ~ 5 
6 ~ 6 
7 ~ 7 

20 ~ 20 

NOTE: 
If there are problems with CONNECT communicat­
ing to the MDS, it is likely a serial cable problem. De­
pending on the jumper configuration of theMDS seri­
al channel I, a different configuration of the serial ca-. 
ble may be . needed. The serial cable' above will work 
with a factory standard jumper configuration of serial 
channel 1 on the MDS. Consult the Intellec Series II 
Microcomputer Development System Hardware Refer­
ence Manual #980556-002 for more information on 
the serial channel 1 configurations for a Series II, III 
or IV. 

B. Software considerations 

Now that a serial cable is installed linking the MDS to 
the V AX, all normal console input and output of the 
MDS should be redirected to serial channel 1. 

To redirect console input and output of a Series II or 
Series III to serial channel 1 perform the following 
steps: 

1. With the ISIS prompt (-) on the screen type: 

-SPEED 300 I 600 I 1200 I 2400 I ~800 I 9600 
-CONSOL :TI:,:TO: 

SPEED is used to set the baudrate of serial channel 1 
while CONSOL is used to redirect console input and 
console output to serial channel 1 on the Series II or 
III. Running CONNECT, while if there is a need to 
restore the console input and output back to the MDS 
screen, enter the following command: 

-CONSOL :CI:,:CO: 

NOTE: 
If at any time the' Series II or III encounters an error 
that requires a warm boot (Example:ERROR 30), the 
console will be automatically switched back to the 

normal console input and output. Consequently, any 
time a warm boot occurs, the console input and output 
must be redirected to serial channel 1. 

To redirect console input and output of a Series IV to 
serial channell, run the STTY program with the baud­
rate no greater than 2400 baud. See the Intellec Series 
IV Operating and Programming Guide #121753-004 
for more detail on the STTY program. Example SIV / 
STTY command: 

>STTY BAUDRATE (2400) 
CONFIG (VTlOO. CFG) REMOTE 

When running CONNECT, if there is a need to restore 
the console input and output on the Series IV, enter the 
following command: 

>STTY LOCAL 

Please note that while the Series II or Series III is run­
ning CONSOL and the Series IV is running STTY, no 
user may work at these workstations. 

NOTE: 
All V AX serial ports that are used to connect the 
MDS to the VAX should be configured at a constant 
baud rate. The autobaud feature should be disabled. 
The suggested baudrate is 2400 baud for Series IV and 
9600 baud for Series II. 

III. CONNECT SETUP - FOR THE 
VAX* SYSTEM MANAGER 

A: How to create 
CONNECT:CONNECT.DAT 
configuration file 

(Only a System Manager needs to read this) 

NOTE: 
CONNECT requires a system logical' name to be as­
signed to the directory on the V AX where the CON­
NECT image and configuration files will be stored. 
The logical name must be "CONNECT:". Also, see 

. APPENDIX A for a listing of the CONNECT. CLD 
command definition file. This file should be added to 
the system-wide DCL command file. If this is done, 
any V AX user may access and execute CONNECT. 

2-48 

A system manager must create an. ASCII file named 
"CONNECT:CONNECT.DAT". This file contains all 
the configuration information of the MDS workstations 
connected to the V AX. This file is used by connect to 
determine what type of MDS systems have been con­
nected to the VAX. ego Series II, III, etc. One of the 
features of CONNECT is that a user may select differ-



inter AP-243 

ent workstations to use during debugging; CONNECT 
uses the configuration file to determine which port on 
the VAX the corresponding workstation is connected. 

The file· consists of the following configuration parame­
ters: system, id, ice, port. 

"System" refers to the type of MDS workstation. ego 
Series 2/3/4. 

"Id" refers to the identification number of the worksta­
tion (system manager chooses this). This ID number is 
any number from 00 to 99. Each system entered in the 
configuration file must have a unique ID number. It is 
suggested that when building the configuration file, the 
first system entered is given id = 00, the second system 
id = 01, etc. 

"Ice" refers to the type of ICE module connected to the 
MDS. 

"Port" refers to the serial address to which the work­
station is connected to the VAX (e.g. TTAO:). For ex­
ample, if you connected a Series IV to the port 
TTA7:on the VAX, you would enter port=tta7:in the 
configuration file. 

NOTE: 
The maximum line length for a line in the CON­
NECT.DATconfiguration file is 128 characters. 

These four configuration parameters accompanied by 
their input values form a single MDS workstation rec­
ord. 

Each parameter and its input value are specified on a 
SINGLE LINE of input in the file. Each record must 
contain both the system and port configuration param­
eters. Both id and ice are optional. THE SYSTEM 
PARAMETER MUST ALWAYS OCCUR FIRST IN 
EACH RECORD. to add comments in the file, enter a 
semicolon in the first position of a new line. The syntax 
for each parameter and it's input value is as follows: 

S(ystem) 21 two I ii 
3 threel iii ] 
4 four I iv] 

ID [ 0 •• 9 ] [ 0 .. 9 ] 

The system manager should now perform the following 
steps: 

1. Go into a VAX editor (e.g. EDT) and create a new 
file called CONNECT:CONNECT.DAT 

2. Follow the rules in forming the MDS workstation 
records. If there is a Series III with an ICE-51 con­
nected to the VAX and a Series IV with an ICE-86, 
the configuration file created could look as follows 
(the semicolons are in column zero): 

: This series 3 is in SJC'soffice 
: Has a 557 board (224K addition) 
system : 3 
id : 00 
ice : 51 
port : ttbO 

This series IV is in LAB 2 
Note .the next record uses the 
abbreviations for the parameters 

s : 4 
id : 01 
ic : 86 
p : ttb1 

3. After the configuration file has been created, exit 
the editor. Now it is time to check the data entered 
to be sure it is in a form CONNECT can under­
stand. To do this, run the program VCONFIG 
supplied with the CONNECT package. Example: 
RUN CONNECT:VCONFIG 

4. If any errors were found, VCONFIG will print the 
line number, the line with the error, and a message 
explaining what error occurred. Fix the error by 
re-editing the CONNECT:CONNECT.DAT and 
re-run VCONFIG. 

5. If no errors were detected, then VCONFIG will 
repOl;t 

NO ERRORS DETECTED IN ASCII FILE. SYS­
TEM SUCCESSFULLY CONFIGURED! 

6. Be sure to set world read protection on the CON­
NECT:CONNECT.DAT file. 

~ REQUIRED --

~ optional --
IC(e) [ 42 I 44 I 49 I 51 I 85 I 86 I 88 ] 

[ i2ice ] - [ 86 I 88 I 186 I 188 I 
~ optional --286 

P(ort) : tt[ a •• z ] [ 0 •• 9 ] ~ REQUIRED --

NOTE: 
IF the MOS configuration cannot be specified with the given parameters. it is suggested that the user assign the SYS­
TEM. 10 and PORT parameters. Therefore. when a development engineer connects to the system with CONNECT. the 
10 number may be specified. Also. if the system is not a II. III. or IV. any number type may be assigned to the system 
(e.g. II. II or IV). but when the system is connected to with CONNECT. the 10 number must be used instead of the 
system type. 

2-49 



AP-243 

IV. USING CONNECT - FOR THE VAX 
SOFTWARE DEVELOPER 

A. How to run the program CONNECT 
NOTE: 

The CONNECT.CLD file must be installed on the 
V AX before CONNECT will run. 

With the dollar sign ('$') prompt present, type in the 
following format to run CONNECT: 

$CONNECT [/baudrate = (SPEED)] 
[/macrofile = (FILENAME)] [/[NO]VT100] 

SPEED is one of the following: 300, 600, 1200, 2400, 
4800,9600 

FILENAME is any legal filename on the V AX 

If the baudrate qualifier is omitted, then the default is 
set to 2400 baud. If the NOVTlOO qualifier is omitted, 
then the default is set to VT100. The macrofile qualifier 
is explained later. 

B. , How to choose and select 
workstations when running 
CONNECT 

When running the program CONNECT, the following 
header will appear: 

CONNECT Version (X$$$) 

At this point CONNECT checks the validity of· the 
CONNECT:CONNECT.DAT file. This is done by 
running the VCONFIG program. If an error was 
found, CONNECT will display to the user: 

AN ERROR WAS FOUND IN THE FILE 

CONNECT:CONNECT.DAT PLEASE REPORT THIS 

TO THE SYSTEM MANAGER 

At this point, the system manager must find and 
correct any error(s) in the file CONNECT:­
CONNECT.DAT. Otherwise, the same error message 
will be printed to the screen each time CONNECT is 
run. 

If the user typed in the macrofile qualifier, then the 
development system search parameters are read from 
the file entered for the qualifier. Otherwise, the user is 
prompted with the CONNECT menu screen. The 
screen is as follows: 

--------------------> CONNECT MENU <--------------------
The CONNECT Options are the following: 

E(xit) 
H(elp) 
S(ystem)=attribute, IC(e)=attribute, ID=attribute 

To select MDS workstation, enter any combination of the following MDS search 
parameters: 

Please enter MDS Option: 

The MDS options available to the user are the following: 

S(ystem) = attribute Distinguishes among a Series 2,3 or 4 
ID = attribute Identifies a workstation with an id 

number 
IC(e) = attribute Chooses between an ICE and 12ICE 

workstation 

The attributes for each option are as follows: 

S (system) =[2Itwolii] 
=[3 threeliii] 
=[4 fourliv] 

ID 

IC(e) 

=[8bit] (Either a Series 2 or Series 3) 
=[16bit] (Either a Series 3 or Series 4) 

=[0 •• 9] [0 •• 9] 

= [42144149151185186188] . 
= [i2ice] - [86188118611881286] 

2-50 



inter AP-243 

None, one, two or any possible combinations of these 
three options may be used. When two or more of these 
options are used, THE COMMA IS REQUIRED AS 
THE DELIMITER. Any option which is omitted will 
be treated as a wildcardl 

<EXAMPLES OF MDS OPTION INPUT FROM THE 
CONSOLE INPUT> 

1. If the user wants to connect to any available MDS 
. workstation with an ICE-86 workstation: 

Please enter MDS Option:ic = 86 

2. If the user wants to connect to the Series II with an 
ICE-51 workstation: 

Please enter MDS Option:s = ii, ice = 51 

3. If the user wants to connect to any 8-bit workstation. 

Please enter MDS Option:s = 8bit 

4. If the user wants to connect to a Series IV with an 
12ICE-186. 

Please enter MDS Option:s=four, ic=i2ice-186 

5. If the user wants to connect to any available MDS 
workstation. 

Please enter MDS Option:(cr) 

6. If the user wants to use a particular system, to con­
tinue a previous debug session, he should specify the 
station ID number: 

Please enter the MDS option:id = 10 

Notice that whether the search parameters are read 
from the user interactively or from the macrofile, there 
should be NO LEADING, TRAILING, OR ANY 
SPACES WHAT-SO-EVER ON THE MDS OPTION 
LINE (NO EXCEPTIONS!!!). 

If the input is expected from the macrofile (specified 
with the MACROFILE qualifier when running CO~­
NECT), CONNECT ONLY LOOKS AT THE VERY 
FIRST LINE IN THE FILE. The first line MUST 
END WITH A CARRIAGE RETURN. If the car­
riage return is not included CONNECT will be unable 
to properly interpret the line and will print an error to 
the- screen. If the first line in the macrofile only con­
tains the End Of File (EOF) marker, CONNECT will 
display the error: 

ERROR IN GETTING LINE FROM 
(FILENAME) 
<FILENAME> ONLY CONTAINS THE EOF 
MARKER 
EITHER PUT THE MDS SEARCH 
PARAMETER(S) INTO THE FILE OR DELETE 

IT ENTIRELY! 
< < CONNECT TERMINATED> > 

<EXAMPLE OF MDS OPTION INPUT FROM 
MACROFILE> 

ic=i2ice-86,s=four(cr) 
[EOF] 

The previous example would be used if the user wants a 
series IV with an i2ice-86 workstation. 

At this point, CONNECT interprets the line (from ei­
ther console input or froin the macrofile). If any errors 
were found, CONNECT will show the-error, show the 
user what he/she typed, and give him/her the correct 
syntax of the incorrect MDS search parameter. If there 
were no errors, then one of the five following conditions 
(and possibly displayed messages) will occur: 

1. The MDS options could not be met. The message is: 

NO WORKSTATION WAS FOUND THAT MET YOUR 
MDS OPTION REQUIREMENT (S) • 

This means that the system specified by the user was 
not found in the CONNECT.DAT file. The system 
manager must be notified to add the system to the 
configuration file. 

2. The particular device choseD. (Le. id number) is cur­
rently being used. The message is 

PARTICULAR DEVICE IS ALREADY IN USE, 
PLEASE PICK ANOTHER. 

This indicates that some other user is currently using 
the system specified. 

3. If the first workstation found is busy, CONNECT 
continues its search. If no other workstation is 
found, then the message is: 

ALL DEVICES THAT MEET YOUR MDS OPTION RE­
QUIREMENT(S) ARE CURRENTLY BEING USED. 

4. A workstation was found, but its port address does 
not exist on the VAX system. The message is 

THE SPECIFIED DEVICE (TT··) DOES NOT EX­
IST IN THE HOST SYSTEM. PLEASE TELL SYS­
TEM MANAGER OF THE ERROR IN 
CONNECT :CONNECT .DAT « CONNECT TERMI­
NATED)) 

This last message is fatal and will therefore exit CON­
NECT. All other messages will re-prompt the user with 
the MDS option line. 

5. A workstation was found and a connection can be 
madelll 
The MDS workstation is now ready for use. 

CONNECT will display to the screen the MDS charac­
teristics of your workstation and prompt you for verifi­
cation. 

2-51 



infef AP-243 

--------MDS Workstation 
Characteristics--------

System is a Series (ALWAYS APPEARS) 
Identification number is _____ _ 
ICE workstation is _________________ _ 

ARE- THESE CHARACTERISTICS ACCEPTABLE 
(YIN) : 

In response to the question on the screen, pressing any 
key other than 'Y' will re-display the entire CON­
NECT menu screen. Otherwise, you will be connected 
via serial channel I to the debug workstation. If your 
screen remains blank, do not worry. If no data is trans­
ferred back to your terminal from the workstation 
within five seconds, the following error message will be 
displayed: 

TIMEOUT ERROR: THOUGH THE PORT ADDRESS 
EXISTS <TT··>, THERE IS 
NO MDS WORKSTATION CON­
NECTED TO THE VAX SYSTEM. 

NOTE: IF YOU KNOW FOR A FACT THAT THERE IS A 
MDS WORKSTATION CONNECTED TO THAT 
PORT THEN EITHER THE SERIES IV IS NOT 
FUNCTIONING IN STTY PROGRAM 

OR 

$ERIES IIIIII IS NO LONGER IN CONSOL 
MODE 

PLEASE REPORT THIS TO SYSTEM 
MANAGER!! ! 

< <CONNECT TERMINATED> > 

2-52 

Otherwise, the Series II/III prompt or the Series IV 
prompt and menu line will be displayed. 

C. How to use VAX keyboard as a 
virtual MDS workstation -

Now that you are connected to the MDS workstation, 
any key you press or command you type will be inter­
preted by that workstation. Therefore, your VAX ter­
minal now looks and acts like the console of ihe MDS. 

D. Additional CONNECT commands , 
The following are additional CONNECT commands 
which are supported ,!\,hile the VAX keyboard is acting 
as a virtual MDS workstation: 

vbreak or control-b Breaks connection with MDS 
workstation and prompts you with 
the CONNECT menu 

vdev Tells you the system and; if possi­
ble, the ID number and ICE work­
station 

vhelp Explains all the CONNECT com­
mands listed here 

vquit or control-p Exits the program CONNECT 



intJ AP-243 

APPENDIX A 
Source code modules for CONNECT 

CONNECT is written using the V AX/VMS C Compil­
er. It is included in the Network/Series IV toolbox or 
can be purchased from Intel's Insite Users Program Li­
brary. 

Insite Part Number: CONNECT, Part #AD26 

Insite Mailing Address: 
Intel Corporation 
3065 Bowers Avenue 
Santa Clara, CA 95051 
Attn:Insite User's Program Library GRI-2-78 
Te1ephone:408-987-7256 

CONNECT C source code modules: 

CONNECT.C -main module for CONNECT 

VSUBMIT.C -reads macro file 

CONFIGCH.C - checks errors of CON-. 
NECT.DAT configuration file 

CCONNECT.C - searches the configuration file 
for user's MDS 

INTERACT.C - handles the communications 
of VAX to MDS 

STRUTlL.C -string parsing routines 

VCONFIG C source modules: 

VCONFIG.C 

STRUTlL.C 

Executables: 

CONNECT.EXE 

VCONFIG.EXE 

- checks for errors in the CON­
NECT.DAT configuration file 

-string parsing routines 

CONNECT command definition file: 

CONNECT.CLp 

Command fIles to generate CONNECT: 

V.COM -generates CONNECT.EXE 

VCONFIG.COM -generates VCONFIG.EXE 

Sample CONNECT configuration fIle: 

CONNECT.DAT 

Sample CONNECT macro fIle: 

CONNECT. MAC 

Series IV Keys Defined on VAX Terminal 

The following shows you how to simulate the function keys and toggle key on the Series IV while running CON­
NECT on your VAX terminal: 

Control sequence on VAX terminal 
control-f (unshifted) 0 
control-f (un shifted) 1 
control-f (unshifted) 2 
control-f (un shifted) 3 
control-f (unshifted) 4 
control-f (unshifted) 5 
control-f (unshifted) 6 
control-f (unshifted) 7 
control-f (shifted) 0 
control-f (shifted) 1 
control-f (shifted) 2 
control-f (shifted) 3 
control-f (shifted) 4 
control-f (shifted) 5 
control-f (shifted) 6 
control-f (shifted) 7 
control-f t(oggle) 

2-53 

Series IV equivalent key 
FO (unshifted) 
F1 (unshifted) 
F2 (unshifted) 
F3 (unshifted) 
F4 (unshifted) 
F5 (unshifted) 
F6 (unshifted) 
F7 (unshifted) 
FO (shifted) ON LINE HELP 
F1 (shifted) ON LINE HELP 
F2 (shifted) ON LINE HElP 
F3 (shifted) ON LINE HELP 
F4 (shifted) ON LINE HELP 
F5 (shifted) ON LINE HELP 
F6 (shifted) ON LINE HELP 
F7 (shifted) ON LINE HELP 

toggle switch 



\* Intel Corporation 1984 
VT100 configuration file 

AP-243 

APPENDIX B 

This file contains the VT100 configuration information for the program 
STTY *\ 

\* Default configuration for NRM console or Series IV "secondary console" 
(serial channell) : *\ 

AV=25, 
AW=F: 
AX=F, 
AI=T: 
AC=T, 
AO=20, 
AFBK=20; 
AFIG=; 
AFKM=FF; 
AFPM=FF, 
AFDC=T; 
AFHG=T; 
AFLO=F; 
AFSE=T; 
AP'TX=04; 

\* NUMBER OF LINE (DECIMAL) *\ 
\ * WRAPPER *\ 
\* X FIRST *\ 
\* INVISIBLE ATTRIBUTES *\ 
\* CHARACTER ATTRIBUTES *\ 
\* OFFSET FOR CURSOR ADDR *\ 
\* BLANK CHARACTER *\ 
\* IGNORE CHARACTER *\ 
\ * KEY MASK *\ 
\ * PRINT MASK *\ 
\* DCl - DC3 PROTOCOL *\ 
\* HANG UP MODEM ON SW LOCAL *\ 
\* LOGOFF ON CONSOLE SWITCH *\ 
\* SLOW LINE EDIT MODE *\ 
\* TRANSMIT READY MASK VALUE *\ 

\* The following commands are used to convert keyboard sequences on your 
terminal to Series IV codes. *\ 

AFCU=lB41: \* CURSOR UP *\ 
AFCD=lB42; \* CURSOR DOWN *\ 
AFCR=lB43: \* CURSOR RIGHT *\ 
AFCL=lB44: \* CURSOR LEFT *\ 
AFCH=0F: \* CURSOR HOME, *\ 
AFXZ=lB5B324B, \* DELETE LINE *\ 
AFXA=lB5B4B: \* DELETE RIGHT *\ 
AFXU=15, \* UNDO *\ 
AR=7F: \* RUBOUT '*\ 
AFSS=13: \* SCREEN SUSPEND *\ 
AFSR=ll: \* SCREEN RESUME *\ 
AFCA=03: \* COMMAND ABORT *\ 
AFDB=04: \* DEBUG *\ 
AFJA=lB4F53: \* JOB ABORT *\ 
AB=lB: \~ ESCAPE *\ 
AFSO=: \* SCREEN ON/OFF TOGGLE *\ 
AFC1=: \* CLEAR SCROLL PART OF SCREEN *\ 
AFC2=: \* CLEAR MESSAGE PART UF SCREEN *\ 
AFC3=: \* CLEAR PROMPT PART OF SCREEN *\ 
AFCC=: \* CAUSE INTERRUPT 3 (NMI) *\ 

231479-1 

2·54 



inter AP·243 

\* The following commands are output sequences which convert screen control 
character sequences from the Series IV sequence to the sequence expected 
by your terminal *\ 

AFNU=lB4l; 
AFMD=lB42; 
AFMR=lB43; 
AFML=lB44; 
AFMH=lB48; 
AFMB=0D; 
AFER=lBSB4A; 
AFEL=lBSB4B; 
AFAC=lB20; 

AFAT=; 
AFRV=; 
AFNV=; 

AFIL=; 
AFDL=; 

\* CURSOR UP *\ 
\* CURSOR DOWN *\ 
\* CURSOR RIGHT *\ 
\* CURSOR LEFT *\ 
\* CURSOR HOME *\ 
\* RETURN (LF) *\ 
\* ERASE FRON CURRENT POSITION TO END OF SCREEN *\ 
\* ERASE FROM CURRENT POSITION TO END OF LINE *\ 
\* CURSOR CONTROL LEAD IN -- CONNECT EXPECTS 20H *\ 

\* THERE WILL BE NO INVERSE VIDEO ON ANY OF THE *\ 
\* VAX TERMINALS. *\ 

\* INSERT LINE *\ 
\* DELETE LINE *\ 

\* ------------------------------------------------------------------------- *\ 
\* THE FOLLOWING UNSHIFTED/SHIFTED FUNCTION CODES AND TOGGLE SWITCH "MUST" 

REMAIN ON ALL VAX TERMINALS. ONCE AGAIN, DO NOT CHANGE ANY OF THESE CODES *\ 

AFL0=80; \* UNSHIFTED FUNCTION KEY 0 *\ 
AFLl=8l; \* UNSHIFTED FUNCTION KEY 1 *\ 
AFL2=82; \* UNSHIFTED FUNCTION KEY 2 *\ 
AFL3=83; \* UNSHIFTED FUNCTION KEY 3 *\ 
AFL4=84; \* UNSHIFTED FUNCTION KEY 4 *\ 
AFLS=8S; \* UNSHIFTED FUNCTION KEY 5 *\ 
AFL6=86; \* UNSHIFTED FUNCTION KEY 6 *\ 
AFL7=87; \* UNSHIFTED FUNCTION KEY 7 *\ 
AFU0=90; \* SHIFTED FUNCTION KEY 0 *\ 
AFUl=9l; \* SHIFTED FUNCT ION KEY 1 *\ 
AFU2=92; \* SHIFTED FUNCTION KEY 2 *\ 
AFU3=93; \* SHIFTED FUNCTION KEY 3 *\ 
AFU4=94; \* SHIFTED FUNCTION KEY 4 *\ 
AFUS=95; \* SHIFTED FUNCTION KEY 5 *\ 
AFU6=96; \* SHIFTED FUNCTION KEY 6 *\ 
AFU7=97; \* SHIFTED FUNCTION KEY 7 *\ 
AFTS=8A; \* TOGGLE SCREEN *\ 

\* END OF COMMANDS WHICH CANNOT BE CHANGED FOR ANY VAX TERMINAL *\ 
\* ------------------------------------------------------------------------- *\ 

231479-2 

2-55 



APPLICATION 
NOTE 

AP-253 

September 1985 

Adding Value to Intel's 
NOS-II Development System 

Network with CP IM-80 

BRIAN VALENTINE 
DSO APPLICATIONS ENGINEERING 

Order Number: 231533-001 
2-56 



inter AP-253 

INTRODUCTION 

Word processing has long been a desired, if not neces­
sary, feature of a microprocessor development system. 
Although most systems can support high-level lan­
guages, in-circuit emulators, and many other tools to 
develop microprocessor software and hardware, few 
support advanced word processing. 

A typical microprocessor design project consists of 
three general phases: design and staffing, implementa­
tion, and test and integration. Word processing plays a 
major part in all three phases. Each phase requires an 
advanced editor, such as Wordstar by Micropro, to 
generate the supporting documentation that accompa­
nies a project. 

Microcomputer Development Systems for the design 
engineers should have the capability to access word 
processing tools. This feature would eliminate the need 
for a second system or terminal on the engineer's desk. 
The engineer also should have the ability to share his or 
her word processing database with other engineers in­
volved in the project. 

The design and staffing phase also requires electronic 
spreadsheets, such as Multiplan by Microsoft, to track 
potential problems or determine the number of engi­
neers required for the project. The typical engineering 
support staff are all running upon various different sys­
tems. This application note will show how added capa­
bilities to Intel's Network Development System (NDS­
II) will provide each engineers workstation with word­
processing and spreadsheet capabilities. In addition, 
since all workstations are connected via the NDS-II 
and Ethernet, each engineer will have access to other 
engineers' word-processing databases. 

The NOS-II Network 

Intel's NDS-II enables development system mainframes 
to be connected into a network using Ethernet. Addi­
tionally, each mainframe can host several ISIS clusters 
that use low-cost serial lines to support terminals. The 
complete. product line is described in the NDS-II Sys­
tem Description (See AppendixC for complete details). 

Low-cost terminals allow everyone to share and manip­
ulate files and data directly on the network. This fea­
ture eliminates many intermediate steps required in 
producing a final document. The addition of CP/M-SO 
for the NOS-II, combined with word processing and 
spreadsheet programs, further increases word-process­
ing efficiency. Figure 1 shows a typical NDS-II envi­
ronment. 

2-57 

SOLUTION 

The problem is to add word-processing capability to the 
NDS-II network. Since CP/M-SO already runs on an 
Intel Series-II development station in standalone mode, 
the solution is to modify CP /M-80 to access remote 
files located on the NDS-II file server instead of local 
floppies. This solution will provide networking to CP / 
M-80 and also increase the I/O performance, since all 
files are now accessed over Ethernet, rather than from 
slower floppy disk drives. 

The method chosen to modify CP/M-SO is to modify 
the BIOS of CP/M-SO. (For more information, see 
"CPM Alteration Guide," (c) 1979 Digital Research 
and Appendix C.) 

OVERVIEW OF CP/M·SO 

CP/M-80 contains five sections: 

• BIOS - basic I/O system 
• BDOS - basic disk operating system 

• CCP - console command processor 

• TP A - transient program area 

• SPA - system parameter area 

Figure 2 shows where each of the sections reside in 
memory on a Intel Series II station. Each section exe­
cutes specific functions. The BIOS section is responsi­
ble for the I/O options to all the system-specific periph­
erals. When CP/M-SO is ported from one system to 
another, the BIOS is the only section that changes 
(length: variable). 

The BDOS section is responsible for the general non 
system-specific operation of the peripherals. BDOS 
functions call BIOS functions to operate the peripher­
als. The BIOS and BDOS are collectively know as the 
full disk operating system (FDOS) (length: fixed). 

The CCP section reads commands from the user. It has 
the following built-in commands: DIR, ERA, REN, 
SA VB, TYPE and USER (length: fixed). 

The TPA section is used as user program space. Appli­
cation programs are loaded and operate in this section 
(length: available memory - size of BIOS, BDOS and 
SPA). Note: Ifneeded, the TPA can occupy space up to 
the beginning of the BDOS. If this happens, <;:CP must 
be reloaded when the program running in the TPA ex­
its. 



I\) 

0, 
CX> 

"TI 
IE" 
c 
; 

z 
c 
~ 
o o 
:::I -IE" 
c 
~ 
0" 
:::I 

SERIES IV 

SERIES IV 

SPOOLED 
LINE 
PRINTER~ 

NRM 
TERMINAL 

ETHERNET CABLE 

CLUSTER 
WORKSTATION 

UP TO TWO PERIPHERAL 
ATTACHMENT SUBSYSTEMS 

NRM 

SERIES \I 

231533-1 

( 

l> 
"U 
I 

N 
C1I 
Co) 



inter AP-253 

The SPA section contains operating system information 
such as the current disk, user number, peripheral as­
signments, the start address of the BIOS and BOOS 
sections, restart locations and the default buffer. Figure 
3 shows a breakdown of the SPA (length: 256 bytes). 

MONITOR 

BIOS 

BOOS 

CCP 

TPA 

SPA 

FFFF 

F800 

0100 

0000 

} PROM 

hex 

Figure 2. Series II Memory Map of CP/M-80 

BIOS FUNCTIONS 

Now that CP/M-SO has been broken down, the prob­
lem is how to port the Series II standalone version of 
the BIOS to process all I/O requests over the NOS-II 
network instead of local floppies. Due to legal reasons, 
BOOS and CCP cannot not be changed; therefore, we 
must modify the BIOS only. 

The BIOS can be broken down into three sections: 

• A jump table to BIOS functions 
.• Disk parameter/description blocks 

• The code to execute the BIOS functions. 

The jump table contains all the entry points into the 
BIOS functions. The disk parameter section contains 
blocks that describe how each disk (A:-P:) is format­
ted, for example, disks can be formatted as· single densi­
ty, double density, or Winchester. The last and largest 
section of the BIOS is the code that executes the BIOS 
functions. 

In Figure 3, location 0000 hex in the SPA stores the 
address of the first position (or function) in the BIOS 
jump table. Therefore, any program running under 
CP/M may access all the BIOS functions by using the 
jump vector stored at this address. 

DEFAULT DISK 
BUFFER 

DEFAULTFCB 

RESTART AREA 

JUMPTO BOOS 

CURRENT DRIVE AND USER 

10BYTE 

JUMP TO BIOS 

0100 

0080 

005C 

0008 

0005 

0004 

0003 

0000 hex 

Figure 3. Breakdown of SPA 

NOTE: 
Any program accessing the BIOS jump vector must 
access it with a CALL statement, not a JMP state­
ment, since all BIOS functions will use a RET state­
ment to return to the calling program. 

The following list of functions are contained in the 
BIOS and accessed via the BIOS jump table: 

• Initial cold start 

• Warm boot 
• Console status 

• Console input 

• Console output 

• Printer output 

• Punch output 

• Reader input 

Beginning of disk routines 

• Home - Restore current disk to A: 

• Select disk - select a particular disk to be the cur­
rent disk 

• Select track - select a track in the current disk 

• Select sector - select a sector in the current disk/ 
track 

• Select disk buffer address - address of where to 
read/write the sector from/to the disk to/from 
memory 

• Read sector - read the current sector from the cur­
rent track on the current disk into memory starting 
at address stored via the BIOS function number 13 

• Write sector - write the sector from memory to disk 



inter AP-253 

• List status 
• Convert current logical track/sector into real track/ 

sector 

NOTE: 
If you are modifying the BIOS, all functions must be 
supplied. 

The Series II standalone version of BIOS currently uses 
the above, functions to access local floppy drives. To 
modify the BIOS to access NDS-II files, you do not 
need to change the first eight functions. However, the 
remaining functions process I/O to the local floppies 
and must be changed to access I/O over the NDS-II 
network. 

NETWORK CP/M DISK IMAGES 

The first problem that must be solved is the accessing of 
disks. Since Network CP/M does not use the local flop­
pies, a similar storage device(s) must be supplied at the 
NDS-llfile server (NRM). 

The NRM Winchester drives are formatted using an 
extended iRMXTMS6 structure. This operating system 
is not similar to CP/M-SO. Each NRM drive has a hier­
archical file structure and supports multiusers, with in­
dividual home directories. Disk storage at the NRM 
may total four 84 Mb drives. The problem is how to set 
up a file or disk system on the NRM that will allow 
CP/M-SO file/disk structures and also support multius­
er acceSs to these CP/M-SO disks. 

The first design decision in porting CP/M-SO to the 
NDS-I1 was to limit Network CP/M-SO to four disks 
(A:-D:). This decision is two-fold: 

• Standalone CP/M-SO only supports A:-D: 

• Network CP/M BIOS only has space for four disk 
parameter blocks. 

It was also decided to store these disks at the NRM as 
data files. These data files will be structured as if they 
were CP/M floppy disks. Therefore, when CP/M-SO 
thinks it is accessing a floppy, by track and sector, it 
will really be accessing a. file on the NRM. When a 
CP/M program wants to read a sector on the disk, our 
modified BIOS will instead seek into the NRM file to 
the position where the desired sector is stored and read 
the sector from the file. 

This design creates more problems that must be ad­
dressed. The frrst is the format of the "disk images". 
The second is the location on these disk images on the 
NRM to give multiuser support for Network CP/M. 

2-60 

The disk images will be similar to a double density 
CP/M floppy. Figure 4 shows a layout of a Network 
CP/M disk image. Network CP/M disks have the fol­
lowing design: 

• Each disk has 254 tracks 

• Tracks 0 to 3 are reserved for the CP/M operating 
system 

• Track 4 is reserved for directory 

• Track size is 2K 

• Block size is 2K 

• Sector size is 12S bytes 

• There are 16 sectors per track 

• There is a Maximum of 64 directory entries 

• Total disk size is 'I. Mbyte 

Since the BIOS contains the disk parameters blocks. we 
must supply four parameter blocks (A:- D:) in the Net­
work CP/M BIOS. These blocks are all identical and 
describe each disk with the above format. 

NOTE: 
The Network CP/M utility MAKDSK is used tocre­
ate disk iniages. The disk image is created with only 
the first five tracks (system and directory). As data is 
added to the disk image, the disk image file will grow 
by the size of the data. This space-saving feature al­
lows for many CP/M disk images to reside on the 
NRM file structure, taking only as much disk space as 
the valid data they contain. 

Tracks 

1 1 
253 - Maximum size 

DATA 1 AS APPROPRIATE 

5 - Minimum size 
4 

DIRECTORY TRACK 

1 RESERVED FOR CP 1M SYSTEM 

231533-2 
0 

Figure 4. Disk Image Format 

Multiuser access to data can be sub-divided into two 
problems. The first concerns storing all the system files, 
so that only one copy of the files is on the system, and 
all users have access to this copy. System files are files/ 
programs like STAT, PIP, Wordstar, etc. The second 
problem is that users must have access to private data. 



Ap·253 

A specific design decision solved these problems. A: 
disk image will be read only and contain all system 
files. Therefore, each user on the network will access 
the same A: disk. B:-D: disks will be private and 
unique to each user, will store private data, and will 
have read/write access. 

At the NRM all ISIS users access a system directory 
called ISIS.SYS. This directory is assigned to device 
:FO: on each workstation and contains all the ISIS sys­
tem files. Therefore, this is a logical place to store the 
CP/M disk image A:. The name adopted for the disk 
image is :FO:ADISK.CPM. 

The NRM assigns a directory, called the user's home 
directory, to each user. This home directory, unique to 
each user, is assigned to device :F9: on the workstation 
when the user logs on to the network. Therefore, the 
home directory is a.logical choice to place the disk im­
ages B:-D:. The names adopted for B:-D: are: 

B:-:F9:BDISK.CPM 
C:-:F9:CDISK.CPM 
D:-:F9:DDISK.CPM 

We have now solved the Network CP/M disk image 
problem by designing the disk image format and allow­
ing multiusers to access these disk images. 

LOADING CP/M OVER ISIS 

Normally when a Series II or ISIS cluster is powered 
on-and boots from-the NRM, the workstation is 
booted with ISIS. Therefore, our next problem is when 
running ISIS on the workstation to load CP/M into the 
workstation memory from disk image A:. We also must 
be able to restore ISIS when the user is finished with 
CP/M and wiches to return to ISIS mode. 

CP/M-SO is similar to ISIS if both are displayed in 
their memory map diagrams. Although both operating 
systems contain the same sections, (see Figure 2 and 
Figure 5) ISIS and CP/M-SO store the sections in dif­
ferent parts of memory. 

In Figure 5, the CLI (command line interpreter) is 
equivalent to the CP/M CCP region. The ISIS CLI, 
however, is loaded into the TPA. A command loaded 
by the CLI starts at address 3680 hex. Therefore, the 
ISIS CLI is overwritten with the command. When the 
command or program exits, ISIS will reload and CLI 
into the TP A region. 

Also, a region called the OVERLAY REGION begins 
at address E800 hex. This area of memory is used by a 
program that supports overlays. A program that does 
not require overlays may use memory up to the SPA. 

2-61 

FFFF 

} 
MONITOR 

F800 
SPA 

F7BO 
PROM 

OVERLAY REGION 
E800 

TPA 

eLI 
3680 

SPA BUFFER REGION 
3000 

BIOS & 
BOOS 

0000 hex 

Figure 5. ISIS Memory Map 

The problem of how to load CP/M from the disk image 
A:, saving ISIS, and reloading ISIS when the user is 
ready to return to ISIS now can be solved. First, create 
an ISIS program called LOADCPM. This program is a 
CP/M-80 loader, which: . 

• Opens file connections to the four CP/M disk im­
ages. A: is opened read only; B:-D: are opened 
read/write access. Note:These disk images are 
stored at the NRM as normal data files. 

• Opens a fifth file called :FO:ISIS.SA V. 

• Saves the contents· of memory from address 0000 
hex to 8FFF hex, and from FOOO to FFFF. This is 
done by writing the contents of the memory into the 
file ISIS.SA V. This saves the current status of ISIS 
and the LOADCPM program that is running in the 
TPA. The ISIS program LOADCPM will not con­
sume the TP A past the address SFFF; therefore, to 
save the program the address 8FFF was selected as 
the upper bound. 

• Loads CP 1M now that ISIS is saved. The next step 
is to load the CP/M BIOS, BDOS, and CCP into 
high memory from the disk image A:. 

• Stores the file connections for the disks A:-D: into a 
BIOS table. This allows the BIOS to read or write to 
these connections. Therefore, when a CP/M pro­
gram requests data from disk, the network BIOS 
will use the file connections to seek into the disk 
image and read/write the sector. 

• Turns control over to CP/M. This is done by calling 
the first address in the BIOS jump table (cold boot 
vector). BIOS will first store the return address to 
the ISIS program called LOADCPM and then tum 
control over to the CP/M CCP. At this point, the 
CP/M prompt A will be printed on the console. The 
user is now running CP/M. 



Ap·253 

NOTE: 
When the last step is finished, the user's workstation 
,(Series II or cluster) is running the CP/M operating 
system. All CP/M cOmmands/programs are available. 
Network CP/M is not a CP/M simulator that runs on 
top of ISIS. 

The second part of the solution is how to restore ISIS 
. when the user is ready to return to ISIS. This is done by 
creating a CP/M program called ISIS. COM. The pro­
. gram operates as follows: 

• The program ISIS. COM will reload ISIS and the 
, ISIS LOADCPM program from the ISIS.SA V file. 

• At this point, the' contents of memory are exactly 
equal to the point at which the LOADCPM' pro-

. gram saved it. ISIS and the program LOADCPM 
are restored. Now, ISIS. COM will load the PC with 
the return address to the LOADCPM program, 
which was saved by the BIOS at the start-up of 
CP/M. This effectively does a return to the 
LOADCPM program. 

• LOADCPM closes all the disk image files and exits. 
The exit loads the ISIS CLI, and the user is running 
ISIS. 

Finally, to make the system easier to use, the 
LOADCPMprogram is renamed to CP/M. The ISIS 
user who wishes to run Network CP/M enters the ISIS 
command: -CPM and·when finished, enters the CP/M 
command: A> ISIS 

NETWORK CP/M UTILITIES. 

Specific ISIS and Network CP/M utilities are supplied 
with the Network CP/M package. They weredevel­
oped either as a tool in writing Network CP/M or as a 
necessary utility needed by the Network CP/M user. 

Command syntax: 

ISIS programs are MAKDSK, ADDSYS, CDIR, 
.CCOPY, CP/M, SUCPM, CPMOMF 

Network CP/M programs are ISIS. COM, 
SPOOL. COM 

MAKDSK allows the user to create Network CP/M 
disk images. The image created will be an empty/non­
system CP/M disk. 

Command syntax: 
MAKDSK <CPM_DISK> 

Example: 
MAKDSK C: 

ADDSYS allows the user to add the CP/M operating 
system to the disk image A: created using MAKDSK. 
This makes the disk image a CP/M system disk. ADD­
SYS requires that CPM60.COM and BIOS be located 
in the ISIS.SYS directory on the NDS-II. 

Command syntax: 
ADDSYS 

Example: 
ADDSYS 

CDIR allows an ISIS user to list a directory of a Net­
work CP/M disk image or a CP/M-80 diskette in 
Drive 1 of a Series II with a 720 drive. 

Command syntax: 
CDIR <CPM_DISK> 

Example:' 
CDIR E: 

CCOPY is a utility that allows an ISIS user to read or 
write to/from CP/M disk images from/to ISIS files. 
CCOPY can be used to read data files from the Net­
work CP/M disk images to ISIS files, so that they may 
be copied to:the spooler, etc. 

CCOPY READ <CPM_FILE> TO <ISIS_FILE> 
WRITE <ISIS_FILE> TO <CPM_FILE> 

Examples: 
CCOPY READ B:MY. DAT TO :Fl :MY. DAT 
CCOPY READ E: STAT. COM TO :Fl: STAT. COM 
CCOPY READ A :PIP. COM TO PIP. COM 
CCOPY WRITE :Fl:STAT.COM TO A: 
CCOPY WRITE PIP.COM TO A:PIP1.COM 
CCOPY WRITE :Fl:MY.DAT TO B:MYSTUFF.DAT 

CPM is an ISIS program that loads Network CP/M onto the Series II or ISIS cluster. 

2-62' 



inter AP-253 

Command syntax: 
CPM [<C_DISK> [ <D_DISKGT 1 1 

Examples: 
CPM 
CPM :F4:BDISK.CPM 
CPM :F4:BDISK.CPM :F5:BDISK.CPM 

SUCPM is identical to the CP/M utility, except that A: 
disk is opened for read/write access. This program 
should have SUPERUSER access rights only. Only one 

Command syntax: 

user may run SUCPM. While the user is running 
CP/M via SUCPM no other users will have access to 
Network CP/M. The SUPERUSER can use this pro­
gram to delete files from, or add files to, A: while run­
ning Network CP/M. 

CPMOMF allows the ISIS user to convert a program 
developed under ISIS (ie. compiled by PL/M-80 or as­
sembled by ASM-80) to a CP/M executable program. 
The program compiled/assembled will be written 
knowing the CP/M environment. 

CPMOMF source_file TO destination_file 

Example: 
CPMOMF SPOOL TO SPOOL. COM 

SPOOL.COM is a CP/M program that copies a CP/M 
file to the NOS-II spooler. This utility enables the 
CP/M user to obtain listings quickly and efficiently. 
Note: The CPM LST: is not supported in Network 
CP/M. Listings should be directed to a disk file then 
spooled to the Network printer. 

MODIFYING THE. BIOS 

At this point, you should have agood idea of how the 
Network CP/M BIOS accesses NRM disk im~ges in-

2-63 

stead of local workstation floppy drives. The strategy 
used to modify the BIOS is the following: 

• Use the existing workstation standalone version of 
the BIOS 

• Remove the code used in the BIOS to access the 
local floppies 

• Add the code in the new BIOS to access disk images 
instead of local floppies. 

Due to Intel Corporation Proprietary Information used 
and contained in the Network CP/M BIOS, the code 
for the BIOS cannot be released. 



Rej:Ulnied wIth permIssIon from ElectrOniC Design Volume 30, 
No. 13, copyright Hayden Publishing Co. Inc .. 1982. 

ARTiCLE 
REPRINT 

2-64 

AR-225 

August 1982 

Order Number: 210671-001 

210671-1 



inter AR-225 

Software debugging at the statement and procedure level gives 
a high-level view of programs from creation to implementation. 

Debugging catches up 
with high-level programming 

Although high-level languages for microcomputers 
have made software design a state-of-the-art proce­
dure, debugging technology has. lagged behind. A high­
level program debugger brings that technology up to 
date. By allowing users to monitor and scrutinize PLIM-
86, Pascal-86, and Fortran-86 programs at the source 
level, it addresses some of the key p~blems faced by 
high-level language programmers. 

The debugger, called Pscope, offers three major 
improvements over conventional tools: . 

-High-level debugging at the source statement and 
procedure level, in addition to the machine level. 

-A powerful,reliable code-patching facility, which 
reduces editing-compiling-linking cycles. 

-Symbolic access to all aspects of a user's program, 
including complex data structures, user-defined data 
types, dynamic variables, and numerics. 

In the past, when microprocessor designs were pri­
marily replacements of simple configurations that used 
logic gates, the software part of an application was 
usually written in assembly language. It made perfect 
sense to debug the appiication at the machine level, 
using in-circuit emulators, simulators, logic analyz­
ers, and other discrete tools that worked at the CPU 
level. However, the increasing size and complexity of 
microprocessor software has generated a new set of 
requirements for program debugging. 
. Although most microprocessor applications today 

are programmed in high-level language, they employ 
the debugging tools used for assembly-level programs. 
In fact, most debuggers reduce high-level language 
programs to assembly-language equivalents, making 
debugging more difficult than programming. 

An BOB6-based software program, Pscope runs on 
a Series llI, Series IV microcomputer development 
system, XENIX 310, RMX 86, and IBM PC XT, PC 
AT, al~ng with the user's program being debugged. 
(It will be used as the software executive for future 

Stuart \'IInn.rlOn, Software Product Manager 
Intel Corp. 
3065 Bowers ·Ave .. Santa Clara. Calif. 95051 

in·circuit emulators, to combine the benefits of 
high.level debugging with real time emulation.) 
Pscope's main advantage is that the user's view of 
the program during debugging is the same as dur­
ing its implementation. Stepping, break'pointing, 
and tracing execution flow are performed on high­
level constructs such as statements, procedures, 
and labels. 

tracking down bugs 

The first thing a designer does once a program has 
been created, compiled, and linked for execution it' to 
run it. What usually happens is that, due to some 
logic error, a program takes an incorrect bl'anch and 
winds up executing in a place it is not supposed to. 
The designer's first inclination is to find out where 
that occurred and why. 

This is where it is helpful to have some form of trace 
command. An emulator lets the designel' examine the 
contents of a trace buffer, which gives the past 100 or 
so CPU instructions executed, plus other information. 
It even allows disassembly of the contents of the trace 
buffer. However, if the program went off into some 
infinite loop, the trace buffer will be filled with just 
those isolated addresses, and the place where the in­
correct branch occurred will have been lost. 

The trace facility within Pscope allows setting of 
trace points at high-level source statements, proce­
dures, and labels. By putting a trace point on each 
procedure call, for example (as opposed to each CPt: 
instruction), a programmer can look at the trace con­
tents and see exactly the sequence oCcalls that led to 
the incorrect branch. 

As an example of Pscope's trace capability, consider 
a program that takes a numeric expression, parses it 
into tokens, and evaluates it (Fig. 1). By selecting dif­
ferent combinations of its 11 procedure calls to trace, 
the programmer can change the "granularity" of trace 
information. While parsing the nuineric expression 
23 + (19-5·3), and tracing 3, then i, then all 11 pro-

210671-2 

2-65 



AR-225 

High-level software debugging 

cedures, Pscope generates first 12, then 23, then 74 
trace messages, respectively. Tracing CPU instruc­
tions, although providing finer granularity, would be 
much less meaningful in this case. 

A programmer debugging at the machine level might 
try single-stepping to find an incorrect branch. How­
ever, just like execution tracing, single stepping is 
done at the machine level. Working at this level is 
acceptable when the location of the bug has been de­
termined, but offers little help in finding it. It would 
take several thousand steps to go through the parsing 
program in the previous example. 

With Pscope, single stepping (like tracing) is done 
at the source level, using high-level statements and 
procedures. The LSTEP command executes a program 

SERIES-III pascal-e6, V2.0 

one high-level statement at a time. The PSTEP com­
mand does the same, only it treats procedure calls as 
if the whole procedure were a single statement. In the 
example (Fig. 2), it takes five PSTEPs to step through 
the program. In this case, the procedures Sum, Dif­
ference, and Maxim were each executed with one 
PSTEP. If LSTEP were used, the' procedures them­
selves would have been stepped through, and it would 
have taken 19 LSTEPs. A CPU-level debugger, how­
ever, would have stepped through each of the pro­
gram's 177 machine instructions. It also would have 
stepped through the run-time routines that were linked 
in with the program and with the operating system, 
too. Pscope, in contrast, can differentiate between the 
user's program module and the run-time routines, 

prc.g ram dc (Input, output); 

procedure error(e : error_cbss); (* print error' restart *) 
end (* error *); 

procedure get line; (* Input line' set c to 1st char c.f line 
ena (* get_line *); 

prc.cedure get_token; (* sean line , set t to Its value *) 

function dlglt(c: char) : boolean; (* true If c Is a digit *) 
end; 

function upper_ case(c: char): bc.c.lean; (* true if c Is upper 
end; 

*) 

case *) 

function lc.wer_case(c: char) I boolean; (* true If c Is lc.wer case *) 
end; 

prc.ceduie get char; (* set ~ tc. next char In line *) 
end (* get_char *); 

begin (* get tc.ken: scan line & set t tc. Its value *) 
end (* get_tC;ken *); 

procedure factor(var factor_value 
begin (*, factor *) 
end (* factor *); 

Integer) / 

procedure term(var term_value 
begin (* term *) 

Integer) / 

end (* term *)/ 

prc.ceuure expression (var expression value Integer); 
begin (* expression *) 
end (* expression *); 

procedure statement; 
begin t* state~ent *) 
end (* statement *)/ 

begin (* main prc.quIA *) 
repeat (* forever *1 

get 1 ine; 
qet-t(lken; 
statement; 

unti 1 false; 
end. 

2-65 

(a) 

210671-3 



inter AR-225 

High-level software debugging 

eliminating a lot of tedious or wasted effort. 
All of Pscope's commands allow users to examine 

and manipulate a program (both code and data) using 
the same symbolic constructs in which the program 
was developed. Breakpoints, like trace points, may be 
placed at procedure calls, procedure returns, state­
ments, and labels. Thus, to debug a program with 
Pscope, all a programmer needs is a listing. Linkage 
maps, memory dumps, locate· maps, and the like are 
unnecessary. In addition, the number of high-level 
breakpoints (and trace points) is unlimited with Pscope. 
On the other hand, since emulators use hardware 
breakpoints, they are limited to just a few. 

Now suppose that the programmer has determined 
the specific procedure where the program took an 

incorrect branch. The next job is to find out why. 
Jumps and calls are usually based on the outcome of 
a particular condition-if the condition evaluates true, 
the program goes one way; if false, another. The con­
ditions are often complex, however; they may involve 
several Boolean expressions and elements of some ob­
scure data structures. 

To track down the cause of the bug, a programmer 
begins examining the contents ofthese data elements, 
compares them with what he or she expected them to 
be, and moves a step further. This procedure usually 
involves stepping a statement at a time and looking at 
data values. 

Unfortunately, the traditional low-level debuggers 
provide only symbolic access to variables of some basic 

*1.0dfl :fl:dc!'i.Bfl *define trcreg tt = crrur,get_line,get_tuken ( ) 
*define trcreg t2 = factvr,term,expressivn,~tate~ent C 

*oir prc.cedure 
;)101 o[ :OC 
EHHOR 
GET LINE 
GET-TOKEN 
uf:T-TOKE~. Ole IT 
r;ET-TOKEN. UPPEH CAS E 
SP.T-TOKEN.LOWER-CASE 
~P.T-TOKEN.GP.T CHAR 
FACTOR -
T£H~ 

EXPRESS IUN 
STATEMENT 

(b) 

1. Pacope, a high-level program, 
allows different levels of "granularity" 
In high-level debugging. The program 
(a) contains 11 procedures, displayed 
(b) In their nested form with the DIR 
command. Three trace registers with 
different trace pOints In them have 
been defined (c). Executing the 
progrem with the trace points of t2 
prints out 12 trace messagea (d). 
Tracing more of the procedures during 
execution dlsplaya more trace 
mess.ge_23 and 71 (e and f). A low-
level debugger would have traced 
thousands of CPU Instructions, 
providing a lot of unnecessary data 
and probably overflowing the capacity 
of the trace buffer. 

*namescope = get token 
:define trcreg t3' = digit,upper_case,luwer_case',qet_char 

*go using tl til get_line 
[At get token) 
[At get-token) 
[At get-token) 
[At get-token) 
[At get token) 
[At get token) 
[At get-token) 
[At get-token) 
[At <jet-token) 
[At get-token) 
[Break at get_line) 

(d) 

*g0 using tl,t2 
[At get token) 
[At statement) 
(At expressiCtn] 
[At term) 
[At factor) 
[At get token) 
[At get-token) 
[At get-token) 
[At term) 
[At factor) 
[At get token) 
(At expressi",n] 
[At term) 

*go using tl,t2,t3 tll get_line 
[At get token) 
[At lc.wer_casel [At upper casel 
[At upper case) [At digi tT 
[At digitT [At dig i t) 
[At dig! t) [At get Char) 
[At get char) [At digit) 
[At digIt) [At get cha r] 
[At get_char) [At digit) 
[At digit) [At expression] 
[At statement) [At term) 
[At expression) [At factor) 
[At term) [At get token) 
[At facto r) [At lower case] 
[At get token) [At upper-case) 
[At lClwer_caseJ [At dig itT 
[At upper case) [At get_char) 
[At digitT [At get token) 
[At get char) [At tc;,wel_case) 
[At get:tc.ken) [At upper_ca.e) 
[At lower_case) [At di9 i t) 
[At upper_case) [At r1ig i t) 
[At dig i tl [At get chari 
[At get char) [At digit) 
[At term) [At term) 
[At factor) [At factor) 
[At get t"ken) [At 'let t"ken) 
[At lower_case) [At l<Jwer_caseJ 

2-67 

ti 1 qet_l ine 

[At factor) 
[At get token) 
[At geCtoken) 
[At term) 
[At factor) 
[At get token) 
[At get-token) 
[At factor) 
[At 'let_token) 
[At get tOken) 
[Break at get_line) 

(e) 

[At upper_casel 
[At d i'J i t) 
[At get_char) 
[At get token) 
[At lc.o\,,;er_casel 
[At upper case) 
[At digitT 
[At di~i t) 
[At get_char] 
[At dig it) 
[At factor) 
[At qet_tCJkenJ 
[At luwer casel 
[At upper:ca::o:ej 
[At dig it) 
[At 'let_char) 
[At 'let_token) 
[At luwer_caseJ 
[At upper_casel 
[At digit) 
[Break at get_ 1 inel . 

(f) 

210671-4 



AR-225 

High-level software debugging 

program types. Complex structures, user-defined data 
types, stack-based' dynamic variables, and numerics 
all are examples of data that requires more complex 
handling. For example, to access a field within a record 
using the ICE-B6A emulator, users must give the byte 
offset from the beginning of the record (e.g., 
user_ree·+ 14). On the other hand, Pscope allows the 
designer to access fields by name, for example, user_ 
ree. age. Representation of floating-point numbers re­
quires binary-to-decimal conversion, a luxury many 
debuggers leave off. Pscope lets a designer examine 
and modify real numbers at three precision levels, 
providing conversion from binary into decimal back 
into binary. Examination and modification of all data 
is done symbolically in Pscope. 

The advantage of all this is that data references are 
easier, and fewer mistakes are made (the designer 
does not have to calculate offsets). Thus the process 
of stepping, looking at data, evaluating expressions, 
and continuing are speeded up. In other words, bugs 
are tracked down faster. 

Fixing bugs 

Tracking down the location of bugs quickly is only 
half the battle. Correcting the problem is the other, 
time-consuming half. 

For large applications the program-change cycle can 
be lengthy. Program changes are made with an editor; 
then the source is recompiled and the module linked 
with the run-time routines and other modules. Since 
programs can initially contain a lot of bugs, going 
through an editing-compiling-linking cycle for each 
bug can become extremely wearing after a while. 

*pstep 
[Step at ,EXAMPI21j 
*pstep 

INPUT TWO INTEGERS' 
[Step at ,EXAMPI22j 
·pstep 

(Input) 319 46 
[Step at ,EXAMPI23j 
*pstep 

THE SU", IS 365 
[Step at ,EXAMPI24j 
*pstep 

THE DIFFERENCE IS 273 
[Step at ,EXAMPI25j 
*pstep 

THE MAXIMUN IS 319 
THE MINI",UM IS 46 

[Step at ,EXAMPI21j 
* 

2. This program illustrating the stepping features of 
Pacope, contalna five statements In the main body, three of 
Which are procedure calls. Five procedure steps are required 
to go through the program. It would have taken 19 
ltatemlnt-Ievel steps, as each procedure would have been 
stepped though. In contrast, a CPU-level debugger would 
have stepped through all 177 Instructions, as well .s through 
the run-time system. 

Programmers typically go to great measures to avoid 
such a necessity. Instead, they often try to patch the 
object module, in order to continue debugging. 

Patching object code, however, may be difficult for 
a variety of reasons. First of all, the desired patch 
must be written in hex code or assembler mnemonics. 
Those debuggers that disassemble object code usually 
offer a line-by-line assembler as well. Patching a high­
level program at the machine level can be a horrendous 
mess, though. The high-level language compiler may 
have adopted certain stack conventions, code optimi­
zations, and register usage that make it difficult to 
understand what to patch, let ,alone how to patch it. 

The patch is frequently a different size than the 
code to be patched, and that introduces more compli­
cations. An unfortunately common solution is to jump 
to an unused location, perform the patch, and jump 
back to the return address. Another problem is that 

. even though the machine-level patch may work, incor­
porating the change into the source file later may 
generate entirely different code from that of the patch. 
Because of all these complications, patches are used 
only in simple cases, where programmers can easily 
determine the results. It is unfortunate, too, because 
a good patching mechanism could eliminate a lot of 
programmers' headaches. 

In lieu of machine-level patching, the common meth­
odology is to set a breakpoint at the location of the 
bug and correct the problem by hand. Correcting the 
problem usually means reassigning variables or re­
versing the outcome of some IF ... THEN conditions. 
These methods are simpler than patching but intro­
duce problems of their own: If the bug is located inside 
a loop, the "breakpoint and change by hand" approach 
must be done too frequently. Also, if the manual changes 
are more than a few assignments, the process becomes 
tedious. Lastly, only a few bugs can be changed in 
this fashion before it becomes difficult to keep track 
of them. As a result, programmers quickly resort back 
to extensive editing-compiling-linking cycles. . 

Pscope's approach to the problem is to provide an 
automated way of writing and managing high-level 
code patches. Rather than define changes to the pro­
gram at the machine level, users may define code 
patches at statement numbers. With Pscope, the ac­
tual contents of the patch may be complex as well-
DO ... END blocks, IF ... THEN ... ELSE conditions, and 
REPEAT ... WHILE ... UNTIL loops make the command 
language as powerful as Pascal or PLiM. 

Using high-level code patches is simple (Fig.3). After 
determining the location and cause of a partiCUlar bug, 
the programmer defines a patch. In this example, a 
multiplication took place at line 5, rather than an 
addition. The command define patch #5 til #6 = Z = x + y 
causes the contents of the patch to be executed in 
place of the statement at line 5. The designer can 

·210671-5 

2-68 



inter AR-225 

High-level software debugging 

specify any starting point and any point to continue 
execution. Furthennore, patches are executed in all 
GO, LSTEP, and PSTEP commands without having to 
specify them. Perhaps the biggest help in managing 
patches is that it is easy to see where they are (DIR 
PATCH); in addition, they may.be written out to disk 
(PUT filename PATCH). Thus, it becomes very easy to 
incorporate them into the source file later. Because 
the patch language is so similar to the source lan­
guage, a patch that worked in Pscope is most likely 
to work in the modified program as well. 

Many utility commands will be part of most simple 
debugging sessions. Pscope's "literally" feature allows 
users to abbreviate, redefine, and tailor the command 
language to suit their needs. For example, define lit­
erally d = 'define' lets the programmer use d for the 
define command. The HELP command displays (on the 
console) the usage and syntax of most commands and 
facilities in Pscope, The PUT and INCLUDE commands 
let users write and retrieve commands (usually defi­
nitions of break and trace registers, program patches, 
and "literally's") on disk, to use in later Pscope de­
bugging sessions. 

Pscope's command language is a powerful progam­
ming language that is used for generating new com­
mands (debugging procedures), the same way high­
level code patches are defined. Debugging procedures 
allow you to define compound and conditional com-

*load :fl:maxmin.86 
* 
*90 til '21 
[Break at : EXAMP'21j 
*90 

INPUT TWO INTEGERS: 19 4 
THE SUM IS 76 

THE DIFFERENCE IS 15 
THE MAXIMUN IS 19 
THE MINIMUM IS 4 

[Break at :EXAMP'21j 
* • · ,. •• •• • • 

looking at statement 15 in 
the program, notice we multiplied 
instead of added. Let's patch it 

:deflne patch 15 til '6 ~ z=x+y 

·90 
INPUT TWO INTEGERS: 19 4 

THE SUM IS 23 
THE DIFFERENCE IS 15 

THE MAXIMUN IS 19 
THE ~INIMUM IS 4 

[Break at :EXAMP,21j 
• 

*' 

3. Hlgh·level code patching can fix the bug In statement 5, 
which calls for multiplying, Instead of adding, two Integer •. 
A patch Is defined to replace this statement, and the 
program now executes correctly. Patches remain active 
during all LSTEP, and PSTEP, and GO command. until the 
patch Is remov~. 

mands. Like procedures in high-level language, these 
procedures may have parameters, may supply return 
values, and may have their own local variables. Thus 
Pscope is in fact a programming language in its own 
right. 

Debugging procedures may be called automatically 
upon reaching a breakpoint or a trace point. When a 
breakpoint is reached, Pscope can call a procedure 
that contains any sequence ofPscope commands. Con­
ditional break and trace points may be set up this way. 
By evaluation on condition in the procedure, a return 
value of ''true'' or "false" determines whether the break 
(or trace message) should take place or not. 

Debugging procedures (and code patches) are cre­
ated with Pscope's built-in editor and may be stored 
on .disk.The editor is a menu-driven, CRT-oriented 
program that is used to edit not only debugging pro­
cedures, but command lines as well. For example, 
when a syntax error occurs on a long command line, 
the user just hits < esc > on the keyboard and the 
editor comes up. The command will then be reexe­
cuted when it is corrected. 

The command language has conditional constructs 
(IF ... THEN ... ELSE), looping control (REPEAT ... 
WHILE ... UNTIL ... COUNT), calls and re­
turns for procedure nesting, and a full set of program 
data types. The data types correspond to the recog­
nized types of the user's program (PLIM and Pascal). 
Debugging procedures can also access user-program 
variables (for example, debuQ-variable = proQ­
count + t). 

These procedures also allow program stubs to be 
expanded. Rather than resolve external program ref­
erences with fully coded modules, subsystems can use 
empty stubs for resolving externals. During debug­
.ging, then, a procedure can be used to supply input 
values, take outputs and process them, supply return 
values and conditions, and so on. In essence; proce­
dures can be set up so that all or part of a software 
system is modeled. Such flexibilty affords much greater 
independence in software implementation, as separate 
software modules can be developed and then debugged 
independently. 

Lastly, debugging procedures can be used to auto­
mate the software testing process. Complete (or in. 
complete) systems may be executed over and over 
again, each time with new parameters and each time 
recording the results. The parameters can be selected 
by the designer or derived algorithmically using de­
bugging procedures.D 

210671-6 

2-69 



Integrated software·develop· 
ment Instrumentation can 
significantly reduce the de·. 
velopment costs involved in 
bringing a product to market. 
The Intel I'ICE system com· 
prises an in·circuit emulator 
for 16·bit microprocessors, a 
logic·timing and state ana· 
Iyzer and a high·level langu· 
age debugger connected to a 
host development computer. 

Software development 
PAUL MARITZ, Intel Corp. 

New tools and approaches are boosting 
software-development productivity 

The past year has seen a transformation in software 
development for microprocessor systems, involving 
more sophisticated processors, increased software 
content in the end product and a growing shortage of 
software talent. The integration of common human 
interfaces across heterogeneous systems, coupled with 
a tremendous focus on "friendly" and "productivity-. 
based" features and the incorporation of classic hard­
ware tools, such as in-circuit emulators, into the 
software-development environment have changed the 
very structure of the software lab. While in 1982 the 
concept of an integrated workstation' combined an 
emulator with a logic analyzer, in 1984 an integrated 
workstation will combine software tools with hardware 
assistance to boost software productivity. 

The cost to a company of a malfunctioning or poorly 
designed product can prove far more expensive than 
doubling its R&D expenditures or absorbing a signifi­
cant increase in the 'product's cost. This is equally true 
for the software-development process. "Time to market 
is everything," and this consideration will become 
significantly more important over the next few years. 

Increasing software productivity 

During 1984, changes in computer systems will 
continue the evolution outlined above. Software tools 
will become available to guide the documentation and 

building of software systems, hardware will help 
software engineers evaluate software "completeness,': 
and performance analysis and high-quality local-area 
networks (LANS) will be pervasive in every medium and 
large software environment. Just as logic analyzers, 
oscilloscopes and emulators have assisted hardware 
engineers, documentation aids, very high-performance 
distributed processing and the adaptation of emulators 
to software-intensive environments will lead the way to 
a greater measure of software productivity in the 
mid-1980S. 

The key to software productivity lies in minimizing­
or eliminating-a focus on learning to use the tools and 
maximizing the development and convenience of com­
mon human interfaces, high-level software tools and 
automated documentation and software-version con­
trol. No matter how well each individual tool works in 
and of itself, the effectiveness of the design aids 
available to the software engineer depends more on the 
interaction and interdependence of each tool than on 
anyone to'Ol's features. 

The single most time-consuming task in the software­
development cycle (Fig. 1) is verifying that the 
software works-that is, detecting and correcting 
bugs. One reason this process is so inefficient is that 
debugging is done at a low level. Most programs today 
are written in a high-level language. A software 

2-70 ORDER NUMBER: 230978 



TECHNOLOGY 

DEFINE 
SOFTWARE 
FUNCTIONS 

COMPILE 
CODE 

D 
VERIFY 
USING 

DEBUGGER 

D 
INTEGRATE 
HARDWARE 
SOFTWARE 

D 
MAINTENANCE 

Fig. 1. In a typical software-development cycle, problems in 
compiling the code, verifying it with a debugger and integrating 
hardware with software send a project back to the editing stage. 
Problems become more difficult to correct as development proceeds 
and particularly difficulUo rectify after hardware is involved. A project 
that fails to use the appropriate tools throughout its life cycle risks 
siipping all the way back to the definition and design/writing phase. 

engineer uses a language translator that translates 
high-level terms and constructs that are closer to an 
application into low-level or processor-specific terms. 
For. example, a programmer might write his program 
in Pascal, considering such entities as procedures, 
records and expressions. However, when he d~tects a 
bug in his program, he is forced by the available tools to 
operate at the processor level and to deal with such 
entities as hex numbers, registers and flags. Because 
the programmer has to translate manually back from a 
low level to a high level, productivity is lost. 

Implementing high-level debugging 

Why 'not, instead, have the debugging tool do a 
reverse translation? After all, the programmer submit­
ted the high-level description (source code) of his 
program to a translator (compiler) to have it converted, 

2-71 

into low-level, processor-specific (object) code. The 
compiler could pass information about the program to 
the debugger, so that it could present the software 
engineer with information about the program in 
high-level terms (Fig. 2). This is an example of a human 
interface that is efficient, not just friendly. 

The cost to a company of a 
malfunctioning or poorly designed 
product can prove far more expensive 
than doubling its R&D expenditures or 
absorbing a significant increase in the 
product's cost. 

In microprocessor development, it is often necessary 
to complete the verification of the software by running 
the program in the target environment-the real-world 
environment of the application to be controlled. This is 

G 

COMPILERS 

/ 
DEBUGGING 

INFORMATION 

LOW,LEVEL 
PROCESSOR·SPECI FIC 

OBJECT CODE 

INFORMATION 
STANDARDS 

DEBUGGING 
TOOLS 

Fig. 2. Using a high-level debugger, such as Intel Corp. 's PSCOPE, 
in the software-development process allows a "eveloper to correct 
problems with code in a high-level language instead of in lOW-level. 
processor-specific terms. Such tools can greatly increase the 
effiCiency of the debugging process. 

usually a necessary step because the interaction of the 
microprocessor and its external environment might be 
very complex and exceedingly difficult to simulate. For 
example, consider a microprocessor controlling a robot 
arm. The microprocessor must receive instructions on 
where to move the arm and, at the same time, monitor 
sensors reporting the state of the motors driving the 
arm. These inputs arrive in an unpredictable sequence 
and must be s~rviced within certain time limits if the 
robot arm is to perform as expected. 

Simulating such an environment would be as much 
trouble as writing the target program. The ideal 
approach therefore involves. simulating only those 
program modules that have a well-defined and simple 
input and output sequence and hence can be debugged 
easily in a simulated environment. The complete 
program, with its complex, time-dependent inter-



inter 
module relationships, carithen be debugged in the 
actual targetenvirorimertt. 

This two-stage approach requires two types 'of 
related debuggers: a software debugger that allows the 
software developer to simulaie modules on his worksta­
tion and an in-circuit emulator that allows him to debug 
the software running in the target environment. To be 
most effective, these two types of debuggers should 
share the same human interface (Fig. 3), permitting an 
engineer to move easily from module-level simulation to 
in-target debugging without mentally shifting gears; 

B 
e 
e 
COMPILERS, 

OBJECT 
CODE 

INFORMATION 
STANDARDS 

I 
EVELOPER 

USES ICE 
TO CHECKOUT 

FINAL PROGRAM 
RUNNING IN 

TARGET ENVIRONMENT 
DEBUGGING 

TOOLS 

fig. 3. High-level software and hardware debuggers (yellow) 
sharing the same human interface speed software developmeht. A 
developer can use a high·/evel debugger to exercise a software 
module on a workstation before all the modules of a program are 
available or before a prototype target system is constructed. When all 
modules and the prototype are ready, an in·circuit emulator, such as 
Inters 121CE, can be employed to debug the code running in real time 
in its rea/·word environment. Using a variety of compilers allows the 
developer to choose the optimum language for each sub·task and, in 
many cases, to use off·the·shelf software components written in a 
standard language, ' 

Managing software development 

Typically, programmers generate at least three 
classes of information: documentation, source and 
object (processor-specific) code: More than one individ­
ual usually generates the information produced by a 
development project. In addition, the information 
usually undergoes changes over time, resulting in 
several different ve'rslons of the software. Further­
more, a typical project involves many variants of the 
information produced, such' as one for floppy disks or 
one for Winchester disks. 

On a multiengineer software-development project, 
the management of these different levels of information 
can become problematic. And, although the cause of the 
problems is usually simple, their effect is very costly. 
An engineer might waste days building a test system 

EXISTING INTEL 
DEVELOPMENT SYSTEMS 

COMMUNICATIONS PROTOCOLS 
USED BY NDS II 

Layer In . Protocol used Future 
ISO model today evolution 

upper level Intel network public standard 
protocols architecture 

transport Intel network ISO standard 
protocol architecture 

physical and Ethernet EthernetllEE-802 
data link protocol 

Fig. 4. An LAN can Integrata aharad and dadlcated software· 
development rasources. A shared" aimtral database allows the 

, storage and management of project information. Dedicated, single· 
user workstations provide team members with processing power, 
large memory space and quick response. An LAN linking individual 
workstations furnishes communications between s9ftware develop· 
ers and common access to database information through a network 
resource manager. An efficient, LAN, such as Inters NOS·II, will 
eventually be able to connect workstations from differentmailUfactur· 
ers, to serve changing software,development needs. This goal, 
however, requires further standardization of communications proto· 
cols, the aim of the International Standards Organization (ISO) and 
other groups. 

with an out-of-date dOcument. .Another problem that 
frequently arises is that of a "mysterious" change-an 
engineer changes a ,module and then fails to notify 
others of the modification. 

Although these are simple management problems, a 
week lost on a lO-man engineering project because of 
an incorrect source file can mean $20,000 to $30,000 in 
direct staff costs and a serious slip in the product­
development schedule. 

Solving development problema 

Automating software-management procejiures can 
solve these types of problems by providing project 
members with a database in which to hold and control 
project information. It can also furnish the software­
generation tools needed to build the correct software 

2-72 



TECHNOLOGY 

systems from information held in the database (see 
"Automating software management," below). 

A project database should be able to provide: 
• automatic separation of information according to 

type, version and variant. For example, a user must be 
able to extract from the database "the source associated 
with module x, version 2-the floppy disk variant" or 
"the test data for module Y, version 3." 

• control of access to information. A software 
developer must be able to lock, or "freeze," certain 
versions to prevent problems arising from mysterious 
changes to the base information. 

• a guaranteed audit trail for all information-what 
changes were made, by whom, why and when-making 
it easier to track the changes made in going from 
"version 2.0 to version 3.0." 

A software engineer should also be able to specify the 
desired software mix fol' the end product: the modules 
to be compiled and linked, the versions and variants to 
be used and the modules that rely on each other. From 
this description, a utility can extract the correct 
information modules out of the database and compile, 
assemble and link the source and object files to create 
up-to-date, consistent software. Ideally, the utility 
should be able to avoid redundant steps if the required 
information already exists. For example, there should 
be no need to recompile the source of module x as long 
as a good copy of the object for module x exists in the 
database. A single change in one module should not 
require the recornpilation of all 60 modules in a project. 

Shared resources + dedIcated resources 

In today's software-development environment, two 
conflicting requirements are placed on host systems. 
First, software developers must be able to communi­
cate and share resources. Information-management 
tools typically require that members of a project share 
a central database in which project information is 
stored and managed. Software engineers must be able 
to communicate information, performing such functions 

AUTOMATING SOFTWARE MANAGEMENT 

Creating a new software product is 
a complex, multistage process usually 
involving many software­
development team members. three 
kinds of information and code 
(documentation, source and object 
code) and several versions and 
variants of a package. For example, 
developing an Intel Corp. compiler for 
the 8086 microprocessor involved 175 
modules totaling 200K bytes of code, 
four engineers and 10 hours of 
program-generation time. Correctly 
managing such a project and avoiding 
costly mistakes increasingly requires 
automated project-management tools 
(A), such as Intel's Software Version 
Control System (svcs) and MAKE. The 
svcs system furnishes a database 
that permits project members to track 
and control versions and variants of 
the software. Database information 
can be protected against accidental or 
simultaneous changes by two or more 
developers. The system can also 
record when a change in a software 
module was made and the reason for 
and initiator of the change. The MAKE 
facility can determine what compiles, 
assembles and links must be per­
formed on various modules to 
construct a software product from its 
constituents. The utility uses module­
dependency information (what mod­
ules affect certain other modules) to 

(B) 8 CHECK SOURCE MODULE OUT 
svcs OF DATABASE (FURTHER CHANGES « CANNOT BE MADE UNTIL MODULE IS 

CHECKED BACK) 

~ MAKE THE CODE CHANGES 
~ USING EDITOR 

~ 8 PUT THE MODULE BACK 
svcs (SYSTEM RECORDS CHANGES: 

. WHO MADE THEM, WHEN, WHY) 

~. B GENERATE NEW VERSION OF SYSTEM 
MAKE (GUARANTEEING CONSISTENT, 

UP-TO-DATE VERSION, AVOIDING 
REDUNDANT STEPS. SAVING TIME) 

ensure consistent, updated software 
and eliminate redundant steps. A 
programmer, for example, can use 
these project-management tools to 

alter a program module, put the 
module back in the system and 
generate anew, consistent version of 
the system (B)_ 

2-73 



TECHNOLOGY 

as sending and receiving electronic mail. This trend 
favors the use of minicomputers that let users share a 
database, cqmmunicate and cooperate. 

Second, software developers' tools are becoming 
increasingly sophisticated. The price of this sophistica­
tion, however, is more powerful computing resources. 
These tools require dedicated processing power, large 
memory space and quick response to perform efficient­
ly. This means newer tools will have to be hosted 
single-user workstations, in which software developers 
can be guaranteed a certain level of computing 
resources. 

Single-user workstations connected to a local-area 
network (LAN) can resolve these conflicting trends (Fig. 
4). Such a distributed-processing approach offers the 
best of both worlds. Each user has a dedicated set of 
computing resources in his workstation, uses a central, 
shared database located at the file server and can easily 
communicate with other users. 

!fthe LAN architecture is correctly designed, distrib­
uted processing can offer other benefits as well. 
Different types of workstations can be attached to the 
network, according to user needs. Thus, in a software­
engineering environment, most of the workstations 
could be optimized for software developers, with only a 
few reserved for hardware debugging. To meet these 
needs, the LAN should become the standard information 
bus of the software-development team. 

The distributed processing afforded by an LAN will 
also provide a /lleasure of protection against obsoles­
cence. Newer stations can be added to replace older 
ones, as required. Now, the unit of growth for 
software-development systems is the workstation, not 
the mainframe. . 

The trend toward workstations connected by an LAN 

weighs heavily against the cost advantage of timeshar­
ing over distributed processing. The push for software 
productivity will thereforebe the most pressing reason 
for the adoption of distributed processing in modern 
software-development environments. 0 

Paul Maritz is software tools planning chairman at Intel 
Corp.'s Development Systems Operations, Santa Clara, Calif. 

Reprinted from MINI-MICRO SYSTEMS December 1983 
©1983 CAHNERS PUBLISHING COMPANY 

2-74 



inter ARTICLE 
REPRINT 

Reprinted from Computer Design, November 1984 

2-75 

AR·352 

ORDER NUMBER:231257·001 

231257-1 



intJ AR-352 

INTEGRATED ENVIRONMENT 
SPEEDS SYSTEM 
DEVELOPMENT 
By integrating source and version control, electronic 
mai/, standard inter/aces/or programming languages, 
and common inter/aces to operating systems, a to/al 
development environment can accelerate the software 
task faster than adding staff. 
by Kenneth Pomper and Dennis Carler 

'If a project is running behind schedule, adding staff 
members is not always the best tactic for getting it 
back on schedule: as the saying goes, adding man­
power to a late software project makes it later. Often 
the best solution is to coordinate programming efforts 
and project management through an integrated devel­
opment environment. This type of system stimulates 
greater efficiency by combining management, pro-

DEVELOPMENT 
TOOLS 

gramming, and debugging tools in one environment. 
Productivity increases especially with microprocessor 
systems with separate target and host development 
systems. As a result, industries can meet critical deliv­
ery schedules without needing additional program­
mers. 

System development is a complex process involving 
several different stages that continually pass informa­
tion between each other. The development environ­
ment should be more than a collection of assorted 
tools that are poorly linked. It must efficiently coordi­
nate the diverse stages of development in a single 
coherent environment, allowing information to flow 
easily between different tiers of the project (Fig I). 

An efficient development cycle has two parts. Manag­
ers must have a clear view of the project from incep­
tion through test and implementation. Thus, planning 

DESIGN 
MANAGEMENT 
AND CONTROL 

~ ~ 
LOGICAL 
DESIGN CODING LOGICAL 

IN·TARGET AND - AND SOFTWARE 
DOCUMENTATION TRANSLATION DEBUG DEBUG 

1 
HOST 

ENVIRONMENT 

Fig 1. An Integl1lted development environment must do more than act as a library for development 
tools. It must enaul1l tIuIt In'OI'IMtion flows smoothly betWeen components. As organizations 
shift to new development poIJoIes .1Id expand development hardware, the system must be able 
to migrate smoothly to the .... ho.t ..... .ronment. 

231257-2 

2·76 



inter AR-352 

work schedules and anticipating design bottlenecks is 
easier. Software engineers must share their ideas, 
designs, and programs, passing information through­
out the different development stages. 

Yet, in developing products for other target machines, 
an integrated environment for the host development 
system alone is not enough. Unless a smooth transi­
tion to the final target environment· is provided, the 
project will bog down during the critical target system 
integration and test. The transition from host to target 
development environments is one of the two major 
factors affecting the project cost. According to R. W. 
Jensen, changing environments can increase costs as 
much as 122 percent. 

Not only must engineers deal with different target 
hardware in different projects, but also they must 
work on a shifting host hardware base as companies 
expand their development resources. Rather than los­
ing previous investments in tools or training, the com­
pany must be able to shift the entire environment 
smoothly as the company shifts to different develop~ 
ment strategies. For example, engineers using Intel's 
Intellec® Series IV workstation maintain the same 
fundamental development environment when they 
move to the NDS-II distributed development environ­
ment. 

With its multiple stages, development can turn into a 
logistical headache for managers and engineers alike. 
Managers supervising several programming teams, 
each developing different versions of programs, can 
easily lose the thread of revisions to source code. Simi­
larly, programmers can find themselves working at 
cross-purposes in their attempts to generate and test 
the most recent versions of code, rather than a hybrid 
of current and obsolete code. versions. 

An integrated system can help prevent these problems 
by combining different tools and making them work 
well together. For example Intel's configuration man­
agement tools, Source Version Control System 
(SVCS) and MAKE, manage multiple versions of a 
program. The tools can automatically combine the 
most current versions of several modules in larger pro­
grams. Similarly, Intel's debugging aids, PSCOPE 
and Inte~rated Instrumentation and In-Circuit Emu­
lation (I ICE™) package, use information implanted 
by compilers to permit programmers to debug during 
the integration prOcess at the source-level. Such an 
integrated environment increases efficiency through 
good allocation· of available resources. 

MANAGEMENT AND CONTROL 

Modular design helps software engineers break a large 
complex problem into a set of small simple programs. 
Unfortunately, a modular design system requires 
more overhead for managing a large number of 

2·77 

modules and different versions of the same module. If 
the logistics become too troublesome, programmers 
might even collapse several modules into a single file 
to save themselves the trouble of manipulating the 
separate modules. Project management tools can free 
engineers from the housekeeping chores associated 
with program development (Fig 2). 

ENGINEER 

PROJECT 
MANAGEMENT 

TOOLS 

TARGET 
SYSTEM 

Fig 2. Besides controlling changes to the source 
files in its data base, SVCS helps 
managers audit source updates. Auto­
matically generating the software for the 
target system, MAKE reduces generation 
time by about 50)ercent, leaving engln· 
eers more time to concentrate on devel· 
opment. 

Programmers keep track of major ·changes in their 
programs by either creating copies of the new version 
or changing an older version. The result is a series of 
similar programs that lack· proper documentation to 
indicate the change and reason for the change. SVCS 
provides,an auiomated approach to this record keep­
ing. It tracks changes to the baseline version of a pro­
gram, and· demands that programmers record their 
reasons. 

When software engineers need a particular version of 
a file, whether the current or some older copy, SVCS 
automatically retrieves the correct version from its 
data base of updates and baseline versions. Similarly, 
after the programmers have added chanles, SVCS 
records the updates and the reasons for the chanJes, 
adding as little as a 3 percent overhead. In addition, 
SVCS helps project manaaers exercise precise control 
in large team projects by preventinacerlain enaineers 
from making changes independently. 

231257-3 



intJ AR-352 

While programniers work directly with SVCS toman­
age different versions' of programs, MAKE works 
closely with SVCS facilities to generate current ver­
sions of systems. While generating large systems from 
several different modules, programmers often 'find 
that one or two modules have been ·updated since the 
last compilation. This problem is compounded when 
modules depend on a series of other submodules. 
MAKE automates the manual procedures often 
resorted to by software engineers to track current 
object modules. 

Using templates that det.ail the modules' interdepen­
dence, MAKE ensures that only current versions of 
modules are included in the system generation. If it 
finds that a'required· object module is obsolete, 
MAKE automatically compiles the appropriate source 
module to produce the current version of the object 
module. Furthermore, if source modules depend on 
submodules, MAKE continues searching through its 
templates to ensure it recompiles modules using the 
current submodules for these source modules. 

MAKE selectively compiles the needed modules. Only 
if a module or one of its submodules is obsolete does 
MAKE execute a recompilation. This cuts the ineffi­
cient massive compilation procedures commonly used 
to ensure that object modules are current. 

In addition to the project management tools handling 
version control ,and system generation, a complete 
integrated development environment should also facil­
itate communication among users. Acting as an elec­
tronic central distribution center, the NOS-II electron­
ic mail facility maintains mailboxes for individual 
users and groups of users on the network, and an elec­
tronic bulletin board for all users. In addition to sup­
porting document distribution, electronic mail man­
ages a file transfer facility. Team members can trans­
mit both source and object modules to any other user 
on the network. 

Another feature, NOS-II's network resources mane 
ager (NRM), provides extensive support for file man­
agement and resource sharing. The NRM manages 
files with a hierarchical structure that arranges files 
into volumes and multiple sub'directories. The NRM 
also improves allocation of resources through its dis~ 
tributed job control (OJC) facility. OJC permits users 
on private workstations to export a batch job to the 
NRM for remote execution. The NRM then moves the 
job to a free workstation for execution, returning the 
completed job status to the user's directory .. 

LOGICAL DESIGN 

An integral part orihe software development environ­
ment and its primary interface with the user is the text 
editor. Because software engineers typically spend 40-
SO percent of their time using a system editor, it is a 

critical element in software development and can 
greatly enhance productivity if used well. For exam­
ple; programmers often need to work simultaneously 
on two separate files, such as two different source pro­
grams or a program and a specification document. 
Editors 'such as Intel's AEOIT permit theni toedittwo 
files of any size simultaneously and transfer text 
between them. 

AEDlT's ability to store a sequence of edit commands 
also simplifies the use of edit macros. With AEOIT, 
programmers build macros simply by typing in their 
commands. They can re-execute the command series 
and even save it on disk for later use. AEDIT also 
helps software engineers with structured programming 
techniques through its automatic text indentation. 
Furthermore, AEOIT protects programmers' efforts 
by optionally creating back-up copies of files being 
edited~ . 

Although a text editor serves· as the primary interface 
between the development system and programmer, 
programming languages serve. as the principal inter~ 
face between design concepts and the target hardware; 
With the right set of programming languages and sup­
port tools, software professionals can develop the 
optimal solution for a particular situation, without the 
design bias often seen when designers plan projects 
with an eye on their eventual implementation. 

For example, different programming languages like 
assembler, PL/M, C, Pascal, and·Fortran enjoy cer­
tain advantages over each other: Software developers 
should be able to draw on the most appropriate lan­
guage to implement the different facets of a design. In 
order to support this kind of free choiCe, however, the 
development environment must be able to coordinate 
the use of a mix. of programming languages, so thaI' 
programmers can use different languages without con­
cern about how the different modules will eventually 
be combined. 

2-78 

Like natural languages, the virtue of programming 
languages lies in their ability to .represen't abstract' 
ideas in concrete terms. Just as it may be easier to 
express a. certain idea with a particular natural lan­
guage than another, programming languages vary in 
their ability to represent certain design concepts. For 
example, software. engineers find that Pascal repre­
sents· str\lctured designs more faithfully than a lan­
guage like Fortran. Also, languages like PL/M or C; 
which closely reflect the hardware base' of a design, or 
assembly language, which provides the ultimate visi­
bility into the hardware, are powerful tools for devel­
oping,real-time embedded systems. 

Still, programming languages share another feature 
with natural languages-varying degrees .of popular­
ity .. For example, Fortran r,emains one' of the most 
popular programming languages. Its continued strong 
momentuni translates into a large installed base of 

231257-4 



inter AR·352 

software. For managers, this large installed base pro­
vides a ready source of existing code. On the other 
hand, managers must remain ready to incorporate 
newer languages like ADA into designs without start­
ing from scratch. 

In many software development projects, managers 
often look for a way to juggle several programming 
languages simultaneously. Software engineers can 
usually adapt quickly to new programming languages 
-,-particularly when they are supported by project 
management tools. On the other hand, the develop­
ment environment often acts as a bottleneck in mixing 
several different languages in the same target system 
.because of its inability to match the varying program 
and system interfaces of different languages. 

The Intel development environment integrates differ­
ent languages through a common object module for­
mat (OMF). A standard OMF works. at several levels. 
During link time, OMF presents a standard method 
for indicating data type information, which the linker 
uses to build its memory allocation tables. Further­
more, debuggers exploit OMF's standard arrangement 
ofsymbolic information for handling symbolic debug­
ging. 

Two other aspects of the standard development envi­
ronment include the definition of standard conven­
tions for passing parameters between different pro­
grams-regardless of their implementation language 
-and standard interfaces to the operating environ­
ment. Besides accounting for critical implementation 
details another key measure of the effectiveness of a 
development environment is its support of application 
level standards like IEEE 754 for floating point opera­
tions or IEEE 802 for Ethernet. 

For those areas currently without standards, the devel­
opment environment takes the initiative with a base­
line for the operating environment. Here, Intel's uni­
'versal development interface (VOl) defines a system­
independent interface between application programs 
and the operating environment. Rather than write 
their programs with system-dependent calls to operat­
ing system utilities, software developers use the same 
VOl call to allocate memory, for example, regardless 
of the target operating system. During link-time, the 
linker uses this VOl call to link in the appropriate sys­
tem utility in iRMX™,for example (Fig 3). Conse­
quently, programs that use the VOl can be ported 
between ISIS, iRMX, and Microsoft's Xenix simply 
by loading the modules into the new environment. 
Thus, if the design calls for a realtime operating envi­
ronment like iRMX, engineers can develop the appli­
cation under ISIS without fear that their work will be 
lost .when the system is transported to the iRMX envi, 
ronment. 

For the manager trying to improve productivity, no' 
faster method exists than simply porting existing code 
to a new environment. Besides ]EEE standards, which 

2-79 

APPLICATION 
PROGRAM 

CALL DQ SALLOCATE 

UNIVERSAL 
DEVELOPMENT 
ENVIRONMENT 

"ALLOCA TE MEMORY" 

TARGET 
OPERATING 

ENV~ONMENT 
(iRMXT ,Xenlx, Isis) 

Fig 3. Where applications standards do not 
already exist, a development system 
should follow some baseline. The univer­
sal development interface (UDI) sets a 
baseline for interactions between appli­
cation programs and operating software. 
For example, an application that requires 
memory uses a UDI' call (DQS ALLOCATE) 
which is later translated into the appro· 
priate call for target operating environ­
ment. 

provide a commol! application environment, the use 
of a common object format and universal develop­
ment interface provide a clear migration path between 
operating environments. 

SAME INTERFACE 

In the kind of cross-development environments com­
monly used for creating microprocessor-based prod­
ucts, engineers work most effectively if they are able 
to split debugging into two phases. In the first phase, 
debugging occurs in parallel for the target hardware 
system and for the software. Here, engineers use the 
host environment to debug the basic logic of the soft­
ware system. Once they are satisfied both with the 
logic of the software and with the operation of the 
hardware, the engineers then load the software into 

231257-5 



AR-352 

the target system for the second phase-integration 
and test. 

This in-target phase is the critical step where hardware 
and software' are finally integrated as a total system. 
As noted earlier, differences between the host and tar­
get environments can more than double costs. Conse­
quently, a key feature of an integrated environment is 
a common debug interface between host and target. 

Intel's PSCOPE debugger permits programmers to 
check out programs at the source-level both during 
logic debug and during in-target test. Because 
PSCOPE shows up again as one of the three major 
components of the 121CE system, software engineers 
are assured of a smooth transition between host and 
target. Along with PSCOPE, 121CE's in-circuit emu­
lation and logic timing analyzer (LTA) give developers 
a full view simultaneously into the hardware and soft­
ware components of their systems. Without this kind 
of coordinated approach to system integration and 
test, developers can never deal with the hardware and 

a) 

b) 

\ 
EDIT 

EDIT 

• I 
I 
I 

- COMPILE f-

- COMPILE -

software as an integrated system, but are forced to 
switch continually between hardware testing and soft­
ware debugging. 

Supporting system integration at the most fundamen­
tal level, in-circuit emulation provides a transparent, 
full speed emulation of the iAPX 86 and iAPX 286 
families of processors. Besides handling multiple level 
breakpoints and traces in single microprocessors, 
121CE extends its support to multiprocessor environ­
ments. Developers can emulate a system of up to four 
microprocessors and examine complex processor in­
teractions like synchronization. For example, 121CE 
lets engineers define events like breaks and traces con­
ditionally, so that a microprocessor will break when 
another defined event occurs in a different micr<~­
procesor. 

While 121CE and PSCOPE provide the fundamental 
support for a system's underlying hardware and soft­
ware, the LTA also serves as a key element of the sys­
tem's integrated package. Displaying 16 channels of 

LINK f-

LINK -

TEST 

J 
TEST 

! 
I 
t 

1 
- DEBUG 

, 
-- DEBUG 

L _____________________ _ 
SAVE 

SOURCE· LEVEL' 
PATCHES 

Fig 4 alb. In the past, engineers have needed to iterate through a lengthy development cycle in order to 
debug source code in the target system (a). On the other hand, PSCOPE lets engineers use 
source level code to debug and patch target systems and continue debugging, then finally, 
after many bugs are found, save the source· level patches on disk for later addition to the 
original source files (b). 

231257-6 

2-80 



inter AR-352 

logic and timing information, the LTA helps isolate 
critical state and timing problems. In order to speed 
the analysis process, this menu -oriented system also 
permits engineers to save debugging setups and wave­
forms on disk. 

A key advantage of an integrated environment is its 
ability to present information, through a consistent 
command language, in a familiar form. With 121CE, 
this feature extends to logic and timing analysis. 
Rather than present a morass of digits, the LTA dis­
plays most information in easy to understand wave-
form diagrams. ' 

Just as the LTA has moved system integration and test 
above the bit level, PSCOPE shortens software debug­
ging by permitting engineers to test programs using 
their own symbols, rather than machine code. With 
the traditional machine code debugger, if they wanted 
to patch' a section of machine code, programmers 
would spend hours converting machine code between 
different formats, like binary and hex, and calculating 
the machine code equivalents of assembler instruc­
tions. Even somewhat more sophisticated debuggers 
that disassemble machine code are little help in retain­
ing the sense of a program as expressed through its use 
of symbols. 

Instead, even though it helps software engineers deal 
with machine code when necessary, PSCOPE can han­
dle debugging at the level of the original source code. 
Consequently, programmers can set an unlimited 
number of breakpoints by statement number, step 
through a single source statement at a time, and trace 
execution by statement number, procedure name, or 
label (regardless of whether they are working with the 
host or target system). 

From the user's point of view, the utility of PSCOPE 
lies in its built-in, CRT-oriented editor and in its 
command languge that resembles a high level struc­
tured programming language (see the Table). Using 
PSCOPE's editor, engineers write extensive proce­
dures in the command language for testing code and 
even patch existing code with new or revised source 
statements. 

2-81 

PSCOPE's ability to handle source-level patches 
avoids the conventional development scenario where 
software developers go through a continual cycle of 
edit-compile-link-test-debug [Fig 4(a)). Source-level 
patching short-circuits this loop; programmers can 
remain in the debug phase-patching at the source­
level and even saving the source-level patch on disk 
for later incorporation into the original source-code 
files maintained under SVCS [Fig 4(b)). 

The advantages of an integrated environment show up 
here very dramatically. During compilation, the com­
piler places symbolic information associated with a 
program into the object modules it generates. In turn, 
the linker carries this information along into the run 
time image. Both PSCOPE and 121CE draw on this 
symbolic information for their source-level debug­
ging. Consequently, during system debugging, devel­
opers see familiar procedure and data names, rather 
than a confusing series of machine codes or disassem­
bled mnemonics. Furthermore, because it maintains 
this symbolic information in a virtual table, PSCOPE 
is able to handle arbitrarily long symbol tables-it just 
brings a new page of symbols from disk, if necessary. 

As a result of its ability to coordinate its tools for the 
various stages of development, the Intel development 
environment lets system engineers concentrate on 
product development, rather than administrative 
chores. For the developinent manager, this translates 
into on-time product delivery, without the costs of 
additional resources. 

231257-7 





In-Circuit Emulators 3 





• 

• 

• 

iSBE-96 DEVELOPMENT KIT 
SINGLE BOARD EMULATOR AND ASSEMBLER 

FOR THE MCS®-96 FAMILY OF MICROCONTROLLERS 
Hosts • Single Line Assembler/Disassembler 
-Intellec@ Series III/IV Development • MCS®-96 Software Support Package 

Systems 
-IBM· PC AT, PC XT, and Compatibles • Configurable Serial I/O 

(3.0) • 17.75 of On-Board User Memory 
Eight Software Execution Breakpoints • Optionally Expandable to 64K of On-
That Can Selectively Be Turned On and Board User Memory 
Off 

12 MHz Emulation Speed 

The iSBE-96 emulator supports the execution and debugging of programs for the MCS-96 family of microcon­
trollers at speeds up to 12 MHz. The MCS-96 family configurations are shown in Table 1. The iSBE-96 
emulator consists of an 8097 microcontroller, a serial port and cables, and an EPROM-based monitor that 
controls emulator operation and the user interface. 

The iSBE-96 emulator is a combination of hardware and software that permits programs written for the 
MCS-96 family of microcontrollers to be run and debugged in the emulator'S artificial environment or in the 
user's prototype system. As Ii result, development time can be reduced by the early integration of hlijrdware 
and software. 

3-1 

231015-1 

October 1988 
Order Number: 231015-005 



inter iSBE·96 

FUNCTIONAL DESCRIPTION 

Integrated Hardware and Software 
Development 

The iSBE-96 emualtor allows hardware and software 
development to proceed simultaneously. This ap­
proach is more time- and cost-effective than the al­
ternate method: independent hardware and soft­
ware development followed by system integration. 
With the iSBE-96 emulator, prototype hardware can 
be added to the system as it is designed; software 
and hardware integration occurs while the product is 
being developed. The emulator aids in the recogni­
tion of hardware and software problems. 

Emulation is the. controlled execution of the proto­
type software in the prototype hardware or in an arti­
ficial hardware environment that duplicates the mi­
crocontroller of the prototype system. The iSBE-96 
emulator permits reading and writing of system 
memory, and control of program execution, The em­
ulator also allows interactive debugging of the proto­
type software and can externally control program ex­
ecution while operating in the prototype system. 
When the prototype system memory is not yet avail­
able, the iSBE-96 emulator's on-board memory per­
mits software debugging. 

Table 1. The Configurations of the MCS®-96 
Family of Mlcrocontrollers 

68 Pin 48 Pin 

ROMLESS 8096 8094 

Digital 1/0 ROM 8396 8394 

EPROM 8796 8794 

ROMLESS 8097 8095 
Analog and ROM 8397 8395 Digital 1/0 

EPROM 8797 8795 

iSBE-96 Software 

The iSBE-96 emulator software is available for use 
with the following host systems: 

- Intellec Series III and Series IV development sys­
tems 

-IBM PC/AT and PC/XT computer systems 

The iSBE-96 emulator software is also available 
from U S Software" for. use on the Intel Personal 
Development System (iPDSTM) and the Intellec Se­
ries II development system. 

°NOTE: 
US Software is a registered trademark of United 
States Software Corporation. 

. 3-2 

The iSBE-96 emulator is supplied with a driver rou­
tine that communicates with the monitor software on 
the iSBE-96 emulator board through serial channel 1 
or 2 (com1/com2). The driver interrupts the 8097 
using the non-maskable interrupt (NMI) line for in­
coming keyboard input. The commands associated 
with the driver and the monitor are described in the 
following sections. 

iSBE-96 Driver 

iSBE-96 emulator is shipped with driver software for 
use on the Series IIIIIV development systems and 
the IBM PC AT/XT running PC DOS, version 3.0 or 
greater. The driver software provides a few easy-to­
use commands. These commands are described in 
Table 2. ASM/DASM available on DOS version only. 

Table 2. iSBE-96 Driver Commands 

Driver Command Function 
... 

ASM Loads memory with MCS-96 
assembly mnemonics. 

DASM Displays memory as MCS-96 
assembly mnemonics. 

EXIT Exits the driver and returns to 
the host operating system. 

<CONTROL> C Same as for the EXIT 
command. 

HELP Displays the syntax of all 
commands. 

INCLUDE Specifies a command file. 

<CONTROL> I Turns the command file on 
and off. 

<TAB> Same as <CONTROL> I 
(turns the command file on 
and off). 

LIST Specifies a list file. 

<CONTROL> L Turns list file on and off. 

<CONTROL> S Stops scrolling of the screen 
display. 

<CONTROL> Q Resumes scrolling of the 
screen display. 

<CONTROL> X Deletes the line being 
entered. 

<ESCAPE> Aborts the command 
executing. 

ISBE-96 MONITOR 

The iSBE-96 monitor performs the following func­
tions: 

- Loads and saves user programs. 

• Independently emulates user programs. 



inter 
Table 3. iSBD Monitor Commands 

Monitor 
Function 

Command 

BAUD Sets up the baud rate. 
BR Permits display and setting of 

up to eight software 
breakpoints. 

BYTE Permits display and changing 
of a single byte or range of 
bytes of memory or a single 
byte of the 8097 internal 
registers. 

CHANGE Permits display and changing 
of a series of memory words 
or bytes. 

<CONTROL> S Stops scrolling of the screen 
display. 

<CONTROL> Q Resumes scrolling of the 
screen display. 

<CONTROL> X Deletes the line being 
entered. 

<ESCAPE> Aborts the command 
executing. 

GO Begins emulation and 
continues until an enabled 
breakpoint is reached or the 
escape key is pressed. 

LOAD Loads programs and data 
from disks. 

MAP Permits mapping of several 
preprogrammed memory 
maps; also permits 
configurable serial 110 and 
selective servicing of the 
watchdog timer. 

PC Displays and changes the 
program counter. 

PSW Displays and changes the 
program status word. 

RESET CHIP Resets the 8096 to power-up 
conditions. 

SAVE Saves programs and data to 
disks. 

'SP Displays and changes the 
stack pointer. 

STEP Provides single-step 

I emulation with selective 
display formats. 

VERSION Displays the monitor version 
number. 

WORD Permits display and changing 
of a single word or range of 
words of memory or a single 
word of the 8097 internal 
registers~ 

iSBE-96 

3-3 

• Examines and changes memory contents. 

• Examines registers. 

• Maps the file capabilities of the serial ports (DS/ 
DT). 

• Maps different memory configurations. 

The monitor commands are described in Table 3. 

Integrating Hardware and Software 

When the prototype system hardware is developed, 
the iSBE-96 emulator interfaces to the prototype 
through two 50-pin ribbon cables. The emulator can 
then execute code from the iSBE-96 on-board RAM 
(or from user-provided memory) and exercise the 
prototype system hardware. . 

BLOCK DIAGRAM 

Figure 1 is a block diagram showing the iSBE-96 
emulator. The following sections describe each 
block. ' 

The Processor 

The 68-pin processor of the iSBE-96 emulator is 
used only in the 8097 external-access mode. An 
8097BH will be supported in 16-bi! bus mode only. 

An adapter board is provided for the 68-pin PGA ver­
sion of the 8096 and 8097 microcontrollers. When 
debugging a 68-pin package, the two 50-pin ribbon 
cables plug into the 68-pin adaptor board which 'is 
plugged into the 68-pin socket on the prototype sysc 
tem. 

When debugging a 48-pin package, the two 50-pin 
cables plug into the 48-pin adaptor board, which is 
then plugged into a 48-pin socket in the prototype 
system. A 68-pin PLCC Adaptor may be ordered. 

iSBE-96 Emulator I/O 

The iSBE-96 emulator's memory-mapped I/O devic­
es are used to manage the system. These I/O devic­
es are mapped into memory between locations 
01 FOOH and 01 FFFH. 

Included as part of the I/O are two serial ports. One 
-is configured as data set (DS) and the other as data 
terminal (DT). When operating with an Intellec® de­
velopment system, the data set port is used as the 
system console and the link for exchanging files. 



iSBE-96 

i-----__ J3 

8097 

12MHZ 

J4 

J6 

J7 

231015-2 

Figure 1. Block Diagram for the iSBE-96 Single Board Emulator 

The serial ports are serviced under control, of the 
NMI interrupt. The NMI interrupt has highest priority 
on the microcontroller and interrupts the user pro· 
gram when characters are entered from the key­
board. When in emulation, the monitor will still serv­
ice inputs from the keyboard and execute certain 
monitor commands. Monitor activity is not totally 
transparent to the user. 

Simulated ROM (ROMSIM) 

There are eight 28-pin JEDEC byte-wide· sockets 
with 2K-by-8 static RAMS present on the board. The 
partition on the user's prototype system that will be 
ROM is simulated by RAMon the iSBE-96 emulator 
board. This RAM facilitates easy program devliIlOP­
ment, allowing users to correct and test problems in 
their. programs. . 

ROMSIM can be expanded by replacing the iSBE-96 
RAMs with 8K-by-8 static RAMs. 

3-4 

Port 3·4 LogiC 

The port 3-4 logic has two functions: to provide bus 
expansion and to provide I/O ports. The port 3-4 
logiC is controlled by a software switch available with 
the MAP command. . 

The iSBE-96 emulator reconstructs ports 3 and 4 of 
the 8394, 8395, 8396, and 8397 microcontrollers 
when the logic is.defined by the MAP command as 
port 3-4. This port function should be selected when 
one of these four microcontrollers is intended as the 
target microcontroller. 

When tt'le BUS switch of the MAP command is spec­
ified, the iSBE-96 address/data expansion bus is 
available tp the prototype system. 

THE iSBE·96 EMULATOR MEMORY 
MAP 

The target system should be designed with a memo­
ry map that is compatible with one of the iSBE-96 



inter iSBE-96 

FFFFH 

USER 

6000H 

ROMSIM 

2012H 
TRAP VECTOR-

2010H RESERVED FOR MONITOR 

ROMS 1M 
2000H 

RESERVED 
1FOOH 

USER 

OBOOH 

DATARAM 
OR 

OPEN 
0100H 

INTERNAL REGISTERS! 
MONITOR ROUTINES 

OOOH 

Figure 2. iSBE-96 Emulator Default Mapping 

memory maps. Figure 2 shows the default address 
mapping. The following sections describe the areas 
of memory. 

Internal Registers/Monitor Routines 

Normally locations OOOH through OFFH contain the 
internal register space of the 8097. However, in­
struction fetches from these locations access exter-

3-5 

nal memory. This memory space contains the moni­
tor's non-maskable interrupt service routine and utili­
ty routines. 

For the monitor to access the user memory, the ad­
dress and data is passed to the interrupt or utility 
routines. The routines then modify the mode register 
to enable user memory, disable all of the monitor's 
memory (except page.zerol, and perform the appro­
priate operation. After an operation is complete, the 
service and utility routines restore the mode register 
to its previous state and return to the main monitor 
code. The NMI service routine is used to handle the 
keyboard input on the serial port. 

DATARAM 

Locations 100H to 7FFH are mapped as the DA­
TARAM space. This RAM is for general purpose use 
and is optionally enabled by using the MAP com­
mand. When the DATARAM buffer is not enabled, 
any access to this partition results in an access to 
user prototype system memory. 

User Area 

Locations 800H to 1 EFFH are a user area. If an ac­
cess is made to this partition, it is directed to the 
user's prototype system. Any memory mapped as 
I/O in the user system should be placed in this parti­
tion. With 8K-by-8 static RAMs, this area is located 
and available on the iSBE-96 board. 

Reserved Area 

Locations 1 FOOH to 1 FFFH are reserved by the 
monitor for on-board I/O devices. 

ROMSIM 

Because some of the MCS-96 family of microcon­
trollers are ROM LESS parts, a user program can be 
loaded for execution into the on-board RAMS of the 
iSBE-96 emulator. Locations 2000H to 5FFFH are 
mapped to this RAM space; the space is called 
ROMSIM. 

Trap Vec.tor 

Locations 2000H to 2010H are the interrupt vector 
locations. Vector address location 201 OH is used by 
the iSBE-96 monitor for NMI. 



inter iSBE-96 

User Area 

The partition 6000H to OFFFFH is mapped to the 
user prototype area. During emulation any access to 
this partition is directed to the user's prototype sys­
tem. 

EXPANDING ON-BOARD MEMORY 

On-board memory can be expanded to a full 64K 
bytes by replacing the supplied 2K-by-8 static RAMs 
with 8K-by-8 static RAMs or PROMs. The user may 
also replace on-board ROMSIM memory with 2K-by-
8 PROMs or even locate all 64K bytes of memory on 
the prototype system. 

DESIGN CONSIDERATIONS 

Designers should note the following considerations 
for designing with the iSBE-96 emulator: 

• The iSBE-96 software uses 6 bytes of userstack 
space. 

• Analog signal accuracy is impaired when driven 
over the emulator cable (up to ± 50 mV loss of 
AID conversion accuracy). 

3-6 

• The iSBE-96 emulator has some acldc paramet­
ric differences from the 8097 chip. 

• The NMI vector is used for console service (Intel 
reserved interrupt). 

• Keyboard activity during emulation affects real­
time emulation because a 50 to 100 microsecond 
interrupt service routine is executed for every 
keystroke. 

• The only hardware reset available for the iSBE-96 
emulator is the system reset momentary switch 
(switch 1 on the emulator board). 

• User system memory should be configured to the 
iSBE-96 memory map (see Figure 2). 

• The iSBE-96 emulator does not support a user 
system crystal as shipped. 

• The iSBE-96 driver software provided by Intel is 
not compatible with the Intellec Model 800 or Se­
riesll Development Systems. 

• The IBM PCI AT and PC/XT have been evaluated 
and accepted by Intel as compatible hosts for its 
development systems. Intel has not evaluated 
any ohter PC DOS machines (3.0). However, Intel 
knows of no reason why these PC DOS machines 
would not be compatible hosts for its develop­
ment systems. 



inter iSBE·96 

SPECIFICATIONS 

Equipment Supplied 

Standard MUL TIBUS®-size board assembly 

EPROM-based monitor 

Auxiliary power cable 

RS-232 serial cables 

Two standard, 18 in., 50-pin ribbon cables for con­
nection to the user's prototype system 

Adapter board for the 48-pin DIP and 68-pin PGA 
versions of the MCS-96 microcontroller 

MCS-96 software support package 

One 8 in. single-density software disk for the Series 
III 

One 8 in. double-density software disk for the Series 
III 

One 51;4 in. software disk for the Series IV 

One 51;4 in. software disk for the IBM PC AT/XT 

Documentation 

ISBE-96 User's Guide (Order number 164116) 

iSBE-96 Pocket Reference (Order number 164157) 

Developing MCS-96 Applications USing iSBE-96 (Or­
der Number 280249-001, AP-273) 

3-7 

Emulation Clock 

12 MHz supplied crystal 

Physcial Characteristics 

Width: 6.75 in. (17.15 cm) 
Length: 12 in. (30.48 cm) 
Height: 0.75 in. (1.91 cm) 

DC Electrical Requirements 
Voltage Current 

+5V ± 5% 3.5amax 
+12V±5% 0.06amax 
-12V ± 5% 0.05amax 

Environmental Characteristics 
Operating Temperature: 10'C to 40'C 

Operating Humidity: 10% to 85% relative hu­
midity, without condensa­
tion 

IBM PC XT/AT Host Requirements 
• PC ~OS, version 3.0 or greater 

• External power supply 

• Serial channel Com1 



iSBE-96 

ORDERING INFORMATION 

Intel 3065 Bowers Ave. 
Santa Clara, CA 95051 

Part Number 

SBE96SKIT 

Description 

iSBE-96 single board emulator for 
use with the Series III/IV develop-
ment systems. The kit contains the 
following parts: 

• iSBE-96 single board emulator 

• MCS-96 software support package 
for the Series III/IV development 
systems 

• iSBE-96 Series III/IV upgrade kit 
(cables and software needed to 
run on Intel Hosts) 

SBE96DKIT iSBE-96 single board emulator for 
use with the IBM PC/AT and PC/XT 
computer systems. The kit contains 
the following parts: 

• iSBE-96 single board emulator 

• MCS-96 software support package 
for PC DOS 

• iSBE-96 DOS upgrade kit (cables 
and software needed to run on the 
IBM PC/AT or PC/XT) 

3-8 

SBE96DU 

SBE96SU 

TASBEE 

US Software 

iSBE-96 DOS upgrade kit for those 
customers who wish to upgrade their 
Series III/IV kit to run on the IBM PC 
AT or PC XT. 

iSBE-96 Series III/IV upgrade kit for 
those customers who wish to up­
grade their DOS kit to run on Intel 
Hosts). 

68-pin PLCC Adaptor Board. 

5470 N. W. Innisbrook 
Portland, OR 97229 
Phone: 503-645-5043 
International Telex 4993875 

Part Number 

XASM96 

ATOP96 

Description 

Performs assembly of MCS®-96 pro­
grams written on the iPDS. 

iPDS and Series II software for iSBE-
96 host communications. Performs 
host communications and assembly/ 
disassembly of iSBE-96 instructions. 
The XASM Host Cross Assembler 
software must be ordered with this 
software. 



121CETM Integrated Instrumentation 
and In-Circuit Emulation System 

• Provides Real-Time In-Circuit Emulation 

• Offers Symbolic Debugging Capabilities 
- Accesses Memory Locations and 

Program Variables (Including 
Dynamic Variables) Using Program­
Defined Names 

- Maintains a Virtual Symbol Table 

• Offers Multi-Condition, Multi-Level, 
Multi-Probe Break and Trace Capability 

• Provides Built-In AEDIT Editor to Allow 
Editing of Development System Files 
without Exiting from 121CE Operation 

• Provides Low Cost Conversions Among 
8086,8088,80186,80188 and 80286 
Microprocessors 

• Simultaneously Controls up to Four 
Microprocessors for Debugging 
Multiprocessor Systems for a Single 
Work Station 

• Supports Common Memory between 
Processor without Any User System 
Hardware 

• Offers an Integrated 16-Channel 100-
MHz Logic Timing Analyzer 

• Maps User Program Memory into a 
Maximum of 288K Zero-Wait-State RAM 
(Zero Wait-States up to 10 MHz) 

• Maps User 1/0 to Console or to 
Debugging Procedures 

• Provides Disassembly and Single-Line 
Assembly to Help with On-Line Code 
Patching 

• Common Human Interface Provided by 
the PSCOPE-86 Debugging Language 
and the 121CE Command Language 

• Uses Integrated Command Directory, 
ICDTM, for Command Syntax Directionl 
Correction to Ease Debug Operations 

The Intel Integrated Instrumentation and In-Circuit Emulation (l2ICETM) system aids the design of systems that 
use the 8086,8088,80186,80188, and 80286 microprocessors. The 121CE system combines symbolic soft­
ware debugging, in-circuit emulation, and the optional Intel logic Timing Analyzer (il TA). Support features for 
the 8087 and 80287 coprocessors are also included. For the 8086/8088,80186/80188, and 80286 proces­
sors, the 121CE system support programs written in "C", PUM, FORTRAN, Pascal, Ada', and assembly 
language. Up to four 121CE system instrumentation chassis can be hosted by one of Intel's Intellec® microcom­
puter development systems or by an IBM PC AT or PC XT. 

"Ada is a tiademark of the Joint Ada Program Office. U.S. Department of Defense. 

3-9 

210469-1 

November 1986 
Order Number: 210469-006 



inter 121CETM 

PHYSICAL DESCRIPTION 

The 121CE system hardware consists of the host in­
terface board, the 121CE system instrumentation 
chassis, the emulation base module, the emulation 
personality module, a host/chassis cable, inter­
chassis cables (for multiple chassis systems), a user 
cable, optional high-speed memory boards, and an 
optional logic timing analyzer. The 121CE system 
software consists of 121CE system host software, 
121CE system probe software, confidence tests, 
PSOPE 86,and optional ilTA software. Table 1 
shows elements of the 121CE system. 

The host interface board resides in the host devel­
opment system. A cable connects the host interface 
board to the 121CE system instrumentation .chassis. 
Another cable connects the 121CE system instrumen­
tation chassis to the buffer box. 

The instrumentation chassis contains high,speed 
zero-wait,state emulation memory, break-and-trace 
logic, memory and 1/0 maps, and the emulation 
clips assembly. 

The chassis may also contain the optional. logic tim­
ing analyzer and optional high-speed memory. High­
speed memory is expandable from 32K bytes to 
288K bytes in 128K increments. 

The buffer box contains the emUlation personality 
module. This module configures the 121CE system· 
for a particular iAPX microprocessor. The user cable 
connects the buffer box to user prototype hardware. 

The host development system may host up to four 
121CE system instrumentation chassis. Each chassis 
may have its own buffer box, user cable, emulation 
clips, optional high-speed memory boards, and logiC 
timing analyzer. 

FUNCTIONAL DESCRIPTION 

Resource Borrowing 

The 121CE system memory map allows the prototype 
system to borrow memory resources from the 121CE 
system. 

If prototype memory is not yet available, the user 
program may reside in 121CE system memory. Be­
cause this memory is RAM, changes can be made 
quickly and easily. For example, if the prototype con­
tains EPROM, it does not need to be erased and 
reprogrammed during development. 

later, as prototype memory becomes available, the 
verified user program can be reassigned, memory 
block by memory block to prototype memory. 

3-10 

The 121CETM System Memory Map 

The 121CE system can direct (map) an emulated mi­
croprocessor's memory space (the user program 
memory) to any combination of the following: 

• High-speed 121CE system memory""'-this consists 
of 32K bytes of programamble wait-state memory 
(programmable from 0 to 15). This memory re­
sides in the 121CE system chassis on the map-I/O 
board. 

• Optional high-speed 121CE system memory-this 
consists of up to 256K bytes of programmable 
wait-state memory (0 waitcstates up to 10 MHz). 
This memory resides in the 121CE system chassis 
on one or two optional high-speed memory 
boards (128 K bytes each). 

• rvlUl TIBUS® bus memory (host system memo­
ry)---,.this resides in the host develoPl11ent system 
itself. (Any amount of unused host memory can 
be used in 1 K increments.) Note that this feature 
is not available for a PC host. 

• User memory-this resides in the user prototype 
hardware. 

When a user program runs in 121CE system memory 
or user memory, the 121CE system emulates in real 
time. A memory access to MUl TIBUS bus memory, 
however, inserts approximately 25 wait-states into 
the memory cycle. 

Access Restrictions 

In addition to directing memory accesses, the follow­
ing access restrictions can be specified: 

• Read-only-the 121CE system displays an error 
message if a user program attempts to write to an 
area of memory designated as read-only. The 
user can, however, write to a read-only area with 
121CE system commands. 

• Read/write, no verify-normally, the 121CE sys­
tem performs a read-after-write verification after 
program loads and after writing to memory with 
an 121CE system command. The 121CE system 
can suppress this verification. For example, if a 
prototype has memory-mapped 110, a verifying 
read may change the state of the 110 device. 

• Guarded-initially, the 121CE system puts all 
memory in a guarded state. Neither the user pro­
gram nor the 121CE system user can access 
guarded memory. 

The 121CETM System I/O Map 

The 121CE system can direct (map) an emulated mi­
croprocessor's 110 space to the host development 



inter 121CETM 

Table 1.12ICETM System Overview 

OPTIONS 

210469-3 

HOST DEVELOPMENT SYSTEM HOST·TQ.jIICETII SYSTEM CHASSIS AND EMULATION IoI0DULE 
INTERFACE BOARD 

----­EMULATION 

Name 

Host Development 
System 

AND CABLE 

Description 

Required for all applications. Use one of the following: 
• Intellec Series III development system 
• Intellec Series IV development system 

PERSONALITY 
MODULE 

210469-2 

• IBM PC AT or PC XT (with 512K bytes of available memory and version 3.0 of 
PC DOS) 

• IBM 50 system (available in Japan; features kanji) 

3-11 



121CETM 

Table 1.12ICETM System Overview (Continued) 

Name Description 
Host-to-12ICE System Required for communication between the host and the 121CE system. 
Interface Board, Cable, • MUL TIBUS® bus interface board for Series III and Series IV (product code 
and Host Software 111520) 

• Host-to-12ICE system cable for .Series III and Series IV (product code 111530 or 
111531) 

• 121CE system hO!jt software for the Series III and Series IV (product code 
111951A, B, or C) 

• Package with PC host interface board, cable and PC DOS version of 121CE 
host software (product code 111520AT954D) 

Instrumentation Chassis Required for real-time microprocessor emulation, break and trace capability, and 
and Emulation Module memory and ilO capability. 

• Instrumentation chassis (product code 111514B) has four board slots: 
1 slot for breakltrace board 
1 slot for map-I/O board 
2 slots for 1 (or 2) optional high-speed memory board(s) andlor 1 optional 
logic timing analyzer board' ' 

• Maximum of four chassis for multi-probe applications 
• Emulation module (product code 111620) includes breakltrace board, map-I/O 

board, and buffer base box 
Emulation Personality Required for emulation of specific microprocessors: 808618088, 80186/80188, 
Module (Probe) and Probe or 80286 . 
Software .• Module includes personality board, buffer box cover, and user cable 

• Series III or IV: Order probe and probe software separately 
• PC host: Probe and probe software packaged together 

Logic Timing Analyzer Required for acquisition and storage of events and glitches for signal 
(iL T A) [not shownl measurement applications. 

• Complete with iL TA board (mounts in instrumentation chassis), probe pods, 
and cables 

• User Series III or Series IV host (cannot be used with the IBM PC AT and PC 
XT) 

Optional High-Speed Required for memory expansion. 
Memory Board (OHS) [not • 128K bytes of programmable (0 to 15) wait-state memory 
shownl • One or two boards mount in the instrumentation chassis 

system's console, to the prototype system, to de­
bugging procedures, or to a combination of these. 

SIMULATING 1/0 WITH 121CETM SYSTEM 
DEBUGGING PROCEDURES 

SIMULATING 1/0 WITH THE HOST 
DEVELOPMENT CONSOLE 

Suppose a user program requires input from an 1/0 
device not yet part of the prototype. Map the input 
port range assigned to that device to the host devel­
opment systems' console. Then, when the user pro­
gram requires input, it halts and the 121CE system 
console displays a message requesting the data. 
When you enter the required data. at the keyboard, 
the user program continues. 

Procedures that supply the needed input data can 
be written in the 121CE system command language. 
When setting up the 1/0 map, the user specifies that 
the 1/0 procedure is invoked when certain 1/0 ports 
.are accessed. . 

I/O ports are mapped in blocks of 64 byte~wide 
ports or 32word-wide ports. A total of 64K byte-wide 
ports or 32K word-wide ports can be mapped. 



inter 121CETM 

Symbolic Debugging 

With symbolic debugging, a memory location can be 
referenced by specifying its symbolic reference. A 
symbolic reference is a procedure name, line num­
ber, or label in the user program that corresponds to 
a location in the user program's memory space. 

TYPICAL SYMBOLIC FUNCTIONS 

Symbolic functions include: 

• Changing or inspecting the value and type of a 
program variable by using its program-defined 
name, rather than the address of the memory lo­
cation where the variable and a hexadecimal val­
ue for the data are stored. 

• Defining break and trace events using source­
code symbols. 

With symbolic debugging, the user. can reference 
static variables, dynamic (stack-resident) variables, 
based variables, and record structures combining 
primitive data types. The primitive data types are 
ADDRESS, BOOLEAN, BYTE BCD, CHAR, WORD, 
DWORD, SELECTOR, POINTER, three INTEGER 
Types, and four REAL types. 

THE VIRTUAL SYMBOL TABLE 

The 121CE system maintains a virtual symbol table 
for program symbols; that is, the entire symbol table 
need not fit into memory at the same time. (The size 
of the virtual symbol table is constrained only by the 
capacity of the storage device.) 

The 121CE system divides the symbol table into 
pages. If a program's symbol table is large, the 121CE 
system reads only some of the symbol table pages 
into memory. When the user references a variable 
whose symbol is not currently defined in memory, 
the 121CE system reads the needed symbol table . 
page from disk into memory. 

Breakpoint, Trace, and Arm 
Specifications 

With 121CE system commands, breakpoint, trace, 
and arm specifications can be defined. . 

Breakpoints allow halting of a user program in order 
to examine the effect of the program's execution on 
the prototype. With the 121CE system, a breakpoint 
can be set at a particular memory location or at a 
particular statement in a user program (including 
high-level language programs). A break can also be 
set to occur when the user program enters or ac-

3·13 

cesses a specified memory partition or reads or 
writes a user program variable. When the user pro­
gram resumes execution, it picks up from where it 
left off. 

Normally, the 121CE system traces while the user 
program executes. With a trace specification, how­
ever, the user can choose to have tracing occur only 
when specific conditions are met. 

An arm specification describes an event or combina­
tion of events that must occur before the 121CE sys­
tem can recognize certain breakpoint and trace 
specifications. Typical events are the execution of 
an instruction or the modification of a data value. 

The 121CE system command language allows you to 
specify complex, multilevel events. For example, you 
can specify that a break occurs when a variable is 
written, but only if that write occurs within a certain, 
procedure. The execution of the procedure is the 
arm condition; the variable modification is the break 
condition. The 121CE system command language al-, 
lows users to specify complex events with up to four 
states with four conditions and to use such events 
as arm, break, or trace conditions; a specified num­
ber of events can be used as a condition. 

Coprocessor Support 

The 8086/8088 emulation personality module pro­
vides transparent RQ/GT and MN/MX pin emulation 
to support real-time prototype systems that use the 
8087 as a coprocessor. The 8086/8088 (and the 
80186/80188) emulation personality module also 
provides debugging features specific to the 8087. 
121CE system commands provide access to the 
8087's stack, status registers, and flags. The 121CE 
system's disassembly and: trace features extend to 
8087 instructions and data types. 

The 80186 and 80286 emulation personality mod­
ules also allow the prototype hardware to contain 
coprocessors. The 80186 probe can qualify break 
points and collect trace information when the co­
processor drives the status lines (SO-52) in the pre­
scribed manner. The 80286 personality module al­
lows the hardware to contain the 80287 processor 
extension and provides special debugging fea­
tures-the user can' enable and disable the 80287 
and change and examine its registers. 

DUBUGGING WITH THE 121CETM 
SYSTEM 

The 121CE system allows both hardware and soft­
ware debugging (see Figure 1). 



inter 

SOFTWARE 
DEBUGGING 

HARDWARE 
DEBUGGING 

PSCOPE 86 r--------, 
I l6·BIT iAPX I 
I SOFTWARE DEBUGGING 
I , 
I , 
I , 
I , 
I I 

I 
HOST I 
DEVELOPMENT , 
SYSTEM I 

I , 
L ______ ---' 

121CETM 

I'ICE'" SYSTEM r- ----------------1 
I 8086/8088 EMULATION I 
I 80186/8018B EMULATION I 
I B0286 EMULATION I 
, I 
I I 
I USER : 

I I 
'HOST FICE'" I 
I, DEVELOPMENT SYSTEM I, 

SYSTEM CHASSIS , , 
L __________________ ~ 

I'ICE'" SYSTEM 
~B6~~~MuLAn~---------' 

,B0186/801B8 EMULATION I 
,B028B EMULATION . I 
iLTA I 

i EMULATION CLIPS I 

f 

I 
I 
I 
I 
I 
I 
I 

HOST 
DEVELOPMENT 
SYSTEM 

r 
I'ICE'· 

SYSTEM 
CHASSIS 

ilTA PROBE 

I 
I 
I 

BUFFER USER I CABLE_[ 
BOX 

I 
I L _________________ ~ 

Figure 1.12ICETM System Debugging Capabilities 

~.~ 
USER 
PROTOTYPE 

210469-4 

• Software debugging-12lCE system commands 
permit symbolic debugging of user programs writ­
ten in high-level languages as well as assembly 
language. By looping the user cable back into the 
buffer box, a user program can be debugged 
even if no prototype hardware is present. In a 
multi-probe environment, the 121CE system can 
map common memory from the host develop­
ment system and support semaphore operation 
even with no user system prototype hardware. 
This feature makes possible detailed debugging 
of multi-processor software before the hardware 
is available. 

not intrude into user program space. The option­
al iL TA adds the high-speed timing and data ac­
quisition of a logic timing analyzer. 

• Hardware debugging-the 121CE system is a real­
time, in-circuit emulator. Trace data are collected 
in real time, and 121CE system software does 

3-14 

The userfulness of an 121CE system extends 
throughout the development cycle, beginning with 
the symbolic debugging of prototype software and 
ending with the final integration of debugged soft­
ware and prototype hardware. 

PSCOPE 86 

PSCOPE 86 is a high-level language, symbolic de­
bugger, designed for use with Pascal 86, PL/M 86, 
and FORTRAN 86. It is a separate product included 
with Series III and Series IV versions of the 121CE 



inter 121CETM 

system; it runs in the host development system. 
PSCOPE 86 is field-proven, familiar to Intel custom­
ers, and suited for the debugging of applications 
software when the hardware capabilities of the 121CE 
system are not needed. The PSCOPE 86 and 121CE 
system command languages are similar. (Note that 
PSCOPE 86 is available as an option for use with the 
PC AT or PC XT.) 

Designing a product that contains a microcomputer 
requires close coordination of hardware and soft­
ware development. A typical design process takes 
advantage of both the 121CE system and PSCOPE 
86. Use PSCOPE 86 for debugging software before 
downloading the software into a target environment; 
use the 121CE system for debugging and emulation in 
the target system. 

THE 121CETM SYSTEM COMMAND 
LANGUAGE 

The syntax of 121CE system commands resembles 
that of a high-level language. The .121CE system 
command langauge is versatile and powerful while 
remaining easy to learn and use. 

The Integrated Command Directory (ICDTM) assists 
users with command syntax. 

• The ICD directory directs the user in choosing 
commands from display on the bottom line of the 
screen. As commands are entered, the bottom 
line indicates syntax elements available for use in 
the commands. 

• The ICD directory flags syntax errors. Syntax er­
rors are flagged as they occur (rather than after 
the carriage return is pressed). 

• The ICD directory provides on-line help with the 
HELP command. 

. Automatic expansion of LITERALLY expressions is 
available. When the feature is activated, each char­
acter string defined by a LITERALLY definition is au­
tomatically expanded to its full length. 

The 121CE system command language deals with 
user-created, debugging objects. By manipulating 
debugging objects, the user can streamline complex 
debugging sessions. 

Debugging objects are uniquely named, user-creat­
ed, software constructs that the 121CE system uses 
to manage the debugging environment. The four 
types of debugging objects are: debugging proce­
dures, LITERALLY definitions, debugging registers, 
and debugging variables. In the following examples, 
121CE system keywords are shown in all caps. 

3-15 

• Debugging procedures (named groups of 121CE 
system commands) can simulate missing soft­
ware or hardware, collect debugging information, 
and make troubleshooting decisions. For exam­
ple, consider a debugging procedure (called Inlt) 
that simulates input from 1/0 ports 2 and 4. 

The procedure and MAPIO command are given 
first, followed by an explanation. 

'DEFINE PROCEDURE init = DO 
.·IF %0 = = 2 THEN 
•• ·PORTDATA = lOOT 
•• 'ELSE IF %0 = = 4 THEN 
••• ·PORTDATA = 65T ••• ·END 
•• ·END 
• "END 
'MAPIO 0 LENGTH 64K ICE (init) 

Whenever the MAPIO command maps 1/0 ports 
to an 121CE system procedure, three parameters 
are made available to the procedure (even if the 
procedure does not use them): %0, % 1, %2. The 
parameter %0 passes the port number; % 1 
passes a Boolean value that indicates whether 
read or write 1/0 activity will occur; and %2 pass­
es a Boolean value that indicates whether the 
1/0 is a byte-wide or a word-wide port. PORTDA-' 
T A is a pseudo-variable that contains the actual 
port data. This procedure specifies that if port 2 is 
used, the procedure returns 100 (base ten); if, 
however, port 4 is used, the procedure returns 65 
(base ten). 

• LITERALLY definitions are shorthand names for 
previously defined character strings. LITERALLY 
definitions can save keystrokes and improve clar­
ity. For example, here is the definition of a LlTER­
ALLY that saves keystrokes. This LITERALLY al­
lows the user to type DEF for DEFINE. 

'DEFINE LITERALLY DEF = "DEFINE" 
These definitions may be saved to disk and auto­
reloaded. In addition, an automatic LITERALLY 
expansion feature can be turned on and off. 

• Debugging registers are user-created, software 
registers that hold arm, breakpoint, and trace 
specifications. The 121CE system can be ordered 
to emulate the user program and specify one or 
more debugging registers. There is no need to re­
enter the specificatoin for each emulation. For 
example here is the definition of a debugging reg­
ister called pay that contains a trace specifica­
tion. This example takes advantage of the previ­
ous LITERALLY definition. 

'DEF TRCREG pay = :cmaker.payment 



inter 121CETM 

To emulate a user program and trace only during 
the procedure payment, specify the debugging 
register pay as part of the GO command. 

"GO USING pay 

• Debugging variables are user-created variables 
used with 121CE system commands. For example, 
here is the definition of a debugging variable 
called begin. Its type is POINTER. 

"DEFINE POINTER begin = 0020H:0006H 
During a debugging session, the user can set the 
execution point to this pointer value by typing: 

'$ = begin 
The 121CE system pseudo-variable $ repre­
sents the current execution point. 

Example of a Debugging Session 

Figures 2, 3, and 4 illustrate some of the key capabil­
ities ofths"12lCE system. The user program is written 
in Pascal-86. It was compiled, linked, and located on 
an Intellec Series III development system. The re­
sulting file consists of absolute code and is called 
CMAKER.86. Figure 2 shows the Pascal listing; Fig­
ure 3 shows a sample debugging session; and Fig­
ure 4 briefly explains the debugging steps shown in 
Figure 3. 

The CMAKER.86 program controls an automatic 
changemaker. The program reads the amount ten­
dered (the variable paid) and the amount of the pur­
chase (the variable purchase). It calculates the 
coins needed for change and asserts control signals 
to a change release mechanism by writing an output 
port. Each of the lower four bits of the output port 
controls the release of a different coin denomina­
tion. 

3 0 Q = quarters 
D = dimes 
N = nickels 
P = pennnies 

121CETM System Command Functions 

The 121CE system command language contains a 
number of functional categories. 

• Emulation commands-:-the GO command in­
structs the 121CE system to begin emulation. The 
user can also command the 121CE system to 
break or trace under certain specified conditions. 

• Utility commands-these are general purpose 
commands for use in a debugging environment. 
For example, one use of the EVAL command is to 

3-16 

calculate the nearest" source-code line number 
that corresponds to the address of an assembly 
language instruction. The HELP command pro­
vides on-line assistance. The EDIT command in­
vokes a menu-driven text editor (AEDIT) that al­
lows updating of debugging object definitions 
and "editing of development system files without 
exiting from the 121CE system. A command line 
editior and history key are also provided. 

• Environment commands-these are commands 
that set up the debugging environment. For ex­
ample, the MAP command sets up the memory 
map. Another environment command (WAIT­
STATE) inserts wait-states into memory access­
es, allowing the simulation of slow memories. 

• File handling commands-these are commands 
that access disk files. Debugging object defini­
tions can be saved in a disk file and loaded in 
later debugging sessions. Debugging sessions 
can also be recorded in a disk file for later analy­
sis. 

• Probe-specific commands-:-these are commands 
whose effects are different for different probes. 
For example, the PINS command displays the 
state of selected signals lines on the current 
probe. 

• Option-specific commands-these are com­
mands that control an optional test/measure­
ment device, such as the logic timing analyzer. " 

121CETM SYSTEM INSTRUMENTATION 
SUPPORT 

121CETM System Emulation Clips 

Eight external input lines are sampled during each 
processor bus cycle. The 121CE system records the 
values of these lines in it trace buffer during each 
execution cycle. The 121CE system can use these 
values when defining events. 

Four additional output lines synchronize 121CE sys­
tem events with external hardware. Two lines are 
active and programmable with 121CE system com­
mands. Two other lines, break and trace, anow an 
121CE system chassis to be linked to other 121CE sys­
tem chassis. 

Intel Logic Timing Analyzer (IL TA) 

The iL TA analyzer is a chassis-resident, test/mea­
surement module designed to extend the capability 
of the 121CE system to recognize events and conect 
data. The iLTA and the 121CE system emulator work 
together. They can trigger and arm/disarm each oth­
er. In addition, waveforms acquired by the 



121CETM 

SERIES·III Pascal-86, V2.0 
Source File: CMAKER.SRC 
Object File: CMAKER.OBJ 
Controls Specified: XREF, DEBUG, TYPE 

STMT LINE NESTING SOURCE TEXT: MAKER.SRC 
1 1 0 0 PROGRAM cmaker; 
2 2 0 0 VAR change, coins :integer; 
3 3 0 0 quarters,nickels,dimes,pennies :integer; 
4 4 0 0 paid,purchase :word; 

5 6 0 0 PROCEDURE payment; 
6 7 1 0 VAR numberofcoins :integer; 
7 8 1 0 release :woi"d; 
8 9 1 0 BEGIN (*payment*) 
8 10 1 1 numberofcoins: = quarters + dimes + nickels + pennies; 
9 11 1 1 while numberofcoins < > 0 do 

10 12 1 1 BEGIN 
10 13 1 2 release: = 0; 
11 14 1 2 if quarters < > 0 then 
12 15 1 2 BEGIN 
12 16 1 3 release: = release + 8; 
13 17 1 3 quarters: = quarters-1 

END; 

15 19 2 if dimes < >0 then 
16 20 2 BEGIN 
16 21 3 release: = relea~e + 4; 
17 22 3 dimes:=dimes-1 

END; 
19 24 2 if nickels < > 0 then 
20 25 2 BEGIN 
20 26 3 release: = release +2; 
21 27 3 nickels: = nickels-1 

END; 
23 29 2 if pennies< >0 then 
24 30 2 BEGIN 
24 31 3 release: = release + 1 ; 
25 32 3 pennies: = pennies -1 

END; 
27 34 2 numberofcoins: = quarters + dimes + nickels + pennies; 
28 35 2 OUTWRD(130,release); 
29 36 2 END; 
31 37 1 END; (*payment*) 

32 39 0 0 BEGIN (*main*) 
32 40 0 1 INWRD(2,paid); 
33 41 0 1 INWRD(70,purchase); 
34 42 0 1 change : = paid - purchase; 
35 43 0 1 coins : = change mod 100; 
36 44 0 1 quarters: =coins div 25; 
37 45 0 1 coins : = coins mod 25; 
38 46 0 1 dimes : =coins div 10; 
39 47 0 1 coins : =coins mod 10; 
40 48 0 1 nickels : =coins div 5; 
41 49 0 1 pennies : =coins mod 5; 
42 50 0 1 payment; 
43 51 0 1 END. (*main*) 

210469-5 

Figure 2. Listing of CMAKER.86 

3·17 



(1) 'BASE 
DECIMAL 

(2) 'MAP OK LENGTH 32K HS 
'MAPIO OT LENGTH 192T ICE 
'MAP 
MAP OK LENGTH 32K HS 

121CETM 

MAP 32K LENGTH 992K GUARDED 
'MAPIO 
MAPIO OOOOOH LENGTH OOOCOH ICE 
MAPIO OOOCOH LENGTH OFF40H USER 

(3) 'LOAD :F1:CMAKER,86 

(4) 'DEFINE POINTER begin = $ 
'DEFINE BRKREG pay = :cmaker #9 
'DEFINE PROC display = DO 
,'WRITE USING (' "quarters = ",T,O,>~)quarters 
,'WRITE USING (' "dimes = ",T,O')dimes 
,'WRITE USING (' "nickels = ",T,O,>')nickels 
,'WRITE USING (' "pennies = ",T,O')pennies 
,'RETURN TRUE 
,'END 

(5) 'GO USING pay 
?UNIT 0 PORT 2H REQUESTS WORD INPUT (ENTER VALUE)'100 
?UNIT 0 PORT 46H REQUESTS WORD INPUT (ENTER VALUE)'65 
Probe 0 stopped at :CMAKER #9 + 4 because of execute break 

Break register is PAY Trace Buffer Overflow 

(6) *quartersjdimes;numberofcoins 
+1 
+1 
+2 

(7) 'DEFINE SYSREG wr_number = WRITE AT ,:cmaker,payment.numberofcoins & 
"CALL display 
'GO USING wr_number , 

quarters = + 1 dimes = + 1 
nickels = + 0 pennies = + 0 

Probe 0 stopped at :CMAKER # 28 + 3 because of bus break 
Break register is WR_NUMBER 

(8) *numberofcoins 
+0 
'EVAL release 
1100Y 12T CH' . .' 

(9) 'CLIPSOUT = 11Y 

(10) 'GO FOREVER 
?UNIT 0 PORT 82H OUTPUT WORD OC 
?Probe 0 stopped at location 0033:00AEH because of bus not active 

Bus address = 0203DE 
*$ = begin , 

Figure 3, Sample Debugging Session (Explanations in Figure 4) 

3-18 



intJ 121CETM 

(1) Checking to see that the default radix is decimal. 

(2) Mapping user program memory to 121CE high-speed memory and user I/O ports to the 121CE system 
console. 

(3) Loading the user program. 

(4) Defining debugging objects. 

The debugging variable begin is set to $, an 121CE pseudo-variable representing the current execution 
point. At this point is the debugging session, $ is the beginning of the user program. 

The break register pay specifies a breakpoint at statement 9 in the user program. 

The debuggning procedure display displays the value of some user program variables on the console. 

(5) Beginning emulation with the debugging register pay. The console requests the two input values, paid 
and purchase. Then, the break occurs. 

(6) Displaying three user progran:' variables. 

(7) Defining another debugging register. The specified event is the writing of the user program variable 
numberofcoins. When that event occurs, the 121CE system calls the debugging procedure display. In 
addition to displaying some user program variables, this debugging procedure returns a Boolean value. 
Because this value is TRUE, the break occurs; if the value were FALSE, emulation would continue. 

(8) Displaying the two user program variables, numberofcoins and release. The _EVAL command dis­
plays release in binary, decimal, hexadecimal, and ASCII. Unprintable 'ASCII characters appear as 
periods (.). 

(9) Asserting both output lines on the emulation clips. These lines are input to the prototype hardware and 
control a change release mechanism. 

(10) Resuming emulation. The console displays the write of release to the output port. The user program 
finishes exeucting, and the probe stops emulating because of bus inactivity. The $ is set back to the 
beginning of the user program in preparatiOn for another emulation. 

Figure 4. Explanation of Sample Debugging Session in Figure 3 

iL TA can be time~aligned with 121CE system traces. 
(Note that iL T A is not available for use with the PC 
AT or PC XT.) 

The iL T A analyzer brings the flexibility of high-speed 
triggering and glitch' detection to the 121CE system. 
The iL T A is a general purpose logic timing analyzer, 
supplemented with special features for microsystem 
debugging and 121CEsystem integration. Following 
are some of iL TA's features. 

• 16-channel, 100 MHz asynchronous operation 

• 16-channel, 50 MHz asynchronous operation 

• Single- or double-height timing waveforms pre­
sented with data scrolling, magnification, and del-
ta-time read-out features. ' 

3-19 

• Minimum 3 nanosecond glitch detection (3 ns + 
1 ns/volt for signal swings greater than 3 volts) 

• A dual-threshold acquisition mode, with program­
mable logic level thresholds. 

• A burst acquisition mode with window boundary 
indicators. 

• User-defined channel labels and state display ra­
dixes. 

• Disk storage for preservation and restoration of 
analyzer setups and acquired waveforms . 

• Logic waveform comparison features (compares 
current acquisitions with pervious traces stored in 
auxiliary memory or on disk). 



inter 121CETM 

• Menu-driven operation and user-friendly display. 
The display takes advantage of screen highlight­
ing, blinking characters, and reverse video. 

• Powerful post-processing data analysis com­
mands that are part of the 121CE· system com­
mand language . 

• Multiple emuiator break/trace and iLTA trigger/ 
trace conditions may be shared with as many as 
four emulators and four iL T As. 

121CETM SYSTEM SPECIFICATIONS 

Host Requirements 

Series III, Series IV, Model 800, or IBM PC AT or PC 
XT. 

512K bytes in host development system memory 
space. 

Two double-density diskette drives. or. a hard disk. 

For the iL TA to run on a Series III, the 111-820 board 
must be installed. Model 800 systems and the IBM 
PC AT and PC XT systems do not support the iL T A 
option. 

121CETM System Software 

121CE system host software 
121CE system probe software 
121CE system confidence tests 
121CE tutorial 
PSCOPE 86 (not currently available for PC-DOS) 
Optional iLTA software and iLTAconfidence tests 

(not available for PC-DOS) 

System Performance 

Mappable zero wait-state 
memory (zero wait-states 
up to 10 MHz for. 8086; 
8 MHz for 8088 and 
80186/80188; and 60r 
8 MHz for 80286): 

Trace buffer: 

Virtual symbol table: 

. Minimum 32K bytes, 
maximum 288K!>ytes 

1023 x 48 bits 

The number of user 
program symbols is 
limited only by avail­
able disk space 

3-20 

Physical Characteristics 

INSTRUMENTATION CHASSIS 
Width: -17.0 in (43.2 cm) 

Height: 8.25 in (21.0 cm) 

Depth: 24.13 in (61.3 cm) 

Weight: 48 Ibs (21.9 kg). 

HOST/CHASSIS CABLE 

10ft (3.0m) and 40 ft (12.2 m) options for 
Series III/Series IV host 

15 ft (4.6m) for PC host 

INTER-CHASSIS CABLE SET 

2 ft (61 cm) and 10ft (3.0m) options 

BUFFER BOX 
Width: 8.5 in (21.6 cm) 

Height: 3.0 in (7.6 cm) 

Depth: 10.0 in (25.4 cm) 

Weight: 8 Ibs (3.7 kg) 

Electrical Characteristics· 

90-132Vor 180-264V(selectable) 
47-63 Hz 
12 anips (AC) 

Environmental Requirements 
Operating Temperature: O°C to 40°C (32°F to 

104°F) 

Operating Humidity: Maximum of 85% relative 
humidity; non-condensing 



inter 121CETM 

Emulation Clips 

Emulation clipsin lines are sampled once every bus 
cycle when the address bits become valid on the 
address bus. During emulation, the 121CE system 
records the value of the clipsin lines in the trace 
buffer once very execution cycle. 

Table 2. 121CETM Emulation Clips-DC Characteristics 

Input Voltage Input Current Output Current 

Signal 
Low High Low High Low High 
VIL VIH IlL IIH IOL OH 
V V p.A p.A mA mA 

Clipsout Lines . 33 at 0.7V 4.8 at2.0V 

SYSBREAK 38 atO.7V 1.0 at2.0V 
SYSTRACE 

Clipsin Lines 1.05 2.5 50 50 

3·21 



121CETM 

121CETM SYSTEM 8086/8088 PROBE HIGHLIGHTS 
• Provides up to 10 MHz real-time emulation • Emulates both Minimum and Maximum modes 

• One-megabyte addressing • Provides SOS7 coprocessor support 

Table 3_ 121CETM System 8086/8088 User Interface-DC Characteristics 

Input Output Input Output 
Voltage Voltage Current Current 

Signal 3-State 3-State 
Max Min Max Min Max Max Max Max Max Max 
Vil VIH VOL VOH III IIH IOl IOH IOZl IOZH 
V V V V mA mA mA mA mA mA 

AD15-ADO O.S 2.0 0.5 2.0 -0.20 0.02 24 -12.0 -0.20 0.02 

A 19-A 16, SHE/S7 O.S 2.0 0.55 2.0 -0.25 0.07 63.9 -15.0 -0.07 0.07 

RD NA NA 0.55 2.0 NA NA 63.9 -15.0 -0.S4 0.05 

DEN (SO), 
DT/R (S1), O.S 2.0 0.55 2.0 -1.20 0.12 1S.S -6.6 -1.30 0.12 
M/iO(S2) 

WR (lOCK) NA NA 0.55 2.0 NA NA 63.9 -15.0 -0.94 -0.05 

INTA (OS1) NA NA 0.5 2.4 NA NA 19.1 -6.50 NA NA 

ALE (OSO) NA NA 0.5 2.4 NA NA 19.9 -6.54 NA NA 

MN/MX O.S 2.0 NA NA -1.6 0.04 NA NA NA NA 

NMI 0.77 2.0 NA NA -0.4 0.05 NA NA NA NA 

ClK, READY' O.S 2.0 NA NA -3.2 0.04 NA NA NA NA 

INTR 0.77 2.0 NA NA -0.4 0.05 NA NA NA NA 

TEST O.S 2.0 NA NA -0.60 0.04 NA NA NA NA 

RESET O.S 2.0 NA NA -2.2 0.07 NA NA NA NA 

HOLD (RO/GTO), 
0.72 2.0 O.SO 2.0 -1.60 -0.11 7.60 -7.06 NA NA 

HOLDA (RO/GT1) 

"NOTES; 
IlL = -0.8 mA and IIH = 0.1 mA if a 748244 is used at U30 for CLOCK and READY inputs. 

Negative currents (-) are defined as currents flowing out of a terminal, and positive currents are defined as currents flowing 
into a terminal. "NA" means "not applicable." 

The 8086 and 8088 chip specifications indicate that the chips have an output drive capacity of IOH = - 400 p.A and IOL = 
2.5 mA (2.0 mA for the 8088); the chips' input and 3-state loading specification is ± 10 p.A. As can be seen from the table, 
the 8086/8088 probe has a greater output drive capacity and presents greater input loading than the 8086 or 8088 chip. 

The 8086/8088 probe does not draw any current from the user Vcc. 

Capacitive Loading-8086/8088 Probe 
• The SOS6/S0SS probe presents the user system 

with a maximum load of 70 pF (135 pF for iNTR, 
NMI). 

3-22 

• All SOS6/S0SS probe outputs are capable of driv­
ing 0 pF while meeting all the probe's timing 
specifications. The SOS6/S0SS probe will drive 
larger capacitive loads, but with possible perform­
ance degradation. Derate the timing specifica­
tions by 0.04 ns/pF corresponding to input ca­
pacitance of the user system. 



inter 121CETM 

Coprocessor Operation-SOS6/S0SS 
Probe 
• During emulation with external coprocessors, a 

two-clock delay precedes each RQ, GT, and RlS 
pulse in MAX mode and each HOLD and HOLDA 
assertion in MIN mode. 

• The user can choose to have the coprocessor 
run only during emulation or all the time. If the 

coprocessor runs all the time, then during inter­
rogation mode,the coprocessor may have as 
much as a one-microsecond delay in addition to 
the two-clock delay mentioned above. 

• The 121CE system ignores a coprocessor when 
the probe is in the reset state. If a coprocessor 
asserts RQ during this time, the RQ/GT se­
quence may get out of synchronization. The 
probe is reset when the 121CE host software loads 
121CE probe software. 

A.C. CHARACTERISTICS FOR THE 121CETM SYSTEM SOS6 PROBE 
Tables 4 through 7 provide timing information for the 8086 probe. Figures 5 through 12 define the timing 
symbols. 

Table 4 Minimum Complexity System Timing Requirements 

Min Mode Parameter 
5 MHz (8086) 10 MHz (8086-1) 8 MHz (8086-2) 

Symbol Minns Maxns Minns Maxns Minns Maxns 
TClCl ClK Cycle Period 200 500 100 500 125 500 

TClCH ClK Cycle low 118 53 68 
Time 

TCHCl ClK High Time 69 39 44 

TCH1CH2 ClK Rise Time 10 10 10 

TCl2Cl1 ClKFaliTime 10 10 10 

TDVCL(1) Data in Setup Time 21.1 21.1(5) 21.1(20) 

TClDX(2) Data in Hold Time 13.5(10) 13.5(10) 13.5(10) 

TR1VCL(3,4) ROY Hold Time 35 35 35 
into 8284A 

TClR1X(3,4) ROY Hold Time 
0 0 0 

into 8284A 

TRYHCH(5) READY Setup 
44.5 44.5 44.5 

Time into 8086 

TCHRYX(6) READY Hold Time 20.5 20.5(20) 20.5(20) 
into 8086 

TRYlCL(5) READY Inactive -18.5 -18.5 -18.5 
toClK 

THVCH(1) HOLD Setup Time 12.7 12.7 12.7 

TINVCH INTR, NMI, TEST 
NMI(1) Setup Time 50.5 + 50.5 + 50.5 + 

TClCH(30) TClCH(15) TClCH(15) 
INTR(1) 20 20(15) 20(15) 
TEST(1) 21.5 21.5(150 21.5(15) 

TILIH Input Rise Time 
20 20 20 

(Except ClK) 

TIHll Input Fall Time 
12 12 12 

(Except ClK) 
Numbers followed by parentheses deviate from the 8086 chip specification; the 1985 Microsystem Components Handbook 
chip specification timing is given in the parentheses. -

NOTES: 
1. Timings are calculated with a 74F244 as the buffer for CLOCK or READY. If a 745244 is used, add 0.7 ns to the timings. 
2. TImings are calculated with a 74F244 as the buffer for CLOCK or READY. If a 745244 is used, add 2.5 ris to the timings. 
3. The signal at 8284 is for reference only. 
4. The setup requirement, for asynchronous signal is only to guarantee recognition at the next ClK. 
5. If BTHRDY = TRUE, READY must be set up 0.3 ns before the rising edge of T2. 
E. If BTHRDY = TRUE, READY must be held 16.5 ns after the rising edge of T2. 

3-23 



inter 121CETM 

A.C. CHARACTERISTICS FOR THE 121CETM SYSTEM 8086 PROBE (Continued) 

Table 5. Minimum Complexity System Timing Responses 

Min Mode 
Parameter 

5 MHz (8086) 10 MHz (8086-1) 8 MHz (8086-2) 
Symbol Minns Maxns Minns Maxns Minns Maxns 

CLAV(1) Address Valid 17.5 64.5 17.5 64.5(50) 17.5 64.5(60) Delay 
CLAX(2) Address Hold 17.5 17.5 17.5 Time 

trCLAZ(1) Address Float 14.6 61.5 14.6 61.5(40) 14.6 61.5(50) Delay 

r-lHll ALE Width TClCH-17.5 
(TClCH-20) TClCH-17.5 TClCH-17.5 

trCllH(1) ALE Active Delay 42 42(40) 42 

trCHlU1) ALE Inactive 35 35 35 Delay 

r-lLAX Address Hold Time 
to ALE Inactive TCHCl-8.5 TCHCl-8.5 TCHCl-8.5 

trClDV(1) Data Valid Delay 17.5 69.5 17.5 69.5(50) 17.5 69.5(60) 

trCHDX(2) Data Hold Time 17.5 17.5 17.5 

r-wHDX Data Hold Time TClCH-34 TClCH-34 TClCH-34 
afterWR (TClCH-30) (TClCH-25) (TClCH-30) 

r-CVCTV Control Active 
DEN (READ, Delay(1) 15.6 63.5 15.6 63.5(50) 15.6 63.5 
INTA~ 
DEN(WR)(1) TCHCl+15.6 TCHCl+63.5 TCHCl+15.6 TCHCl+63.5 TCHCl+15.6 TCHCl+63.5 

(110) (50) (70) 
WR(1) 16.9 59.5 16.9 59.5(50) .16.9 59.5 
INTA(1) 15.9 55 15.9 55(50) 15.9 55 

trCHCTV Control Active 
M/iO(1,3) Delay 2 19 77 19 77(45) 19 77(60) 
DT/A(1,4) 18.4 73.5 18.4 73.5(45) 18.4 73.5(60) 

r-CVCTX Control Inactive 
DEN(1) Delay 15.6 63.5 15.6 63.5(50) 15.6 63.5 
WR(1) 16.9 59.5 16.9 59.5(50) 16.9 59.5 
INTA(1) 15.9 55 15.9 55(50) 15.9 55 

r-AZRl Address Float -37.2(0) -37.2(0) -37.2(0) to READ Active 

r-ClRU1) RD Active Delay 15.9 80.5 15.9 80.5(70) 15.9 80.5 
r-ClRH(1) RD Inactive Delay 15.9 70.5 15.9 70.5(60) 15.9 70.5 

r-RHAV RD Inactive to 
, 

Next Address Active (Note 5) (Note 5) (Note 5) 

trClHAV(1) HlDA Valid Delay 11.3 57 11.3 57 11.3 57 

r-RlRH RDWidth 2TClCl-52.5 2TClCl-52.5 2TClCl - 52.5 
(2TClCl-40) (2TClCl-50) 

r-WlWH WRWidth 2TClCl-27.5 2TClCl-27.5 2TClCl-27.5 

r-AVAl Address Valid TClCH-47.2 TClCH-47.2 TClCH-47.2 
to ALE low (TClCH-35) (TClCH-40) 

trOlOH Output Rise Time 20 20 20 

trOHOl Output Fall Time 12 12 12 

Numbers followed by parenthese deviate from the 8086 chip specification; the 1985 Microsystem Components Handbook 
chip specification timing is given in the parentheses. 

NOTES: . 
1. Timings are calculated with a 74F244 as the buffer for CLOCK or READY. If a 745Z44 is used, add 2.5 ns to the timings. 
2. Timings are calculated with a 74F244 as the buffer for CLOCK or READY. If a 745244 is used, add 0.7 ns to the timings. 
3. When performing consecutive 1/0 cycles (I.e., word 110 to an odd address), .the MilO line goes high for a short time 
during T4. The 8086 microprocessor keeps MilO low between consecutive 1/0 cycles. 
4. When performing consecutive reads to program memory, the DT /A line of the probe microprocessor (at the end of the 
user cable) goes high for a short time between reads. The 8086 microprocessor keeps DR/A low between consecutive 
reads. 
5. The address data lines are only floated during T 4 when RD is active. 

3-24 



inter 121CETM 

A.C. CHARACTERISTICS FOR THE 121CETM SYSTEM 8086 PROBE (Continued) 

Table 6. Maximum Complexity System Timing Requirements 

Min Mode Parameter 
5 MHz (8086) 10 MHz (8086·1) 8 MHz (8086-2) 

Symbol Min Maxns Minns Maxns Minns Maxns 

TClCl ClK Cycle Period 200 500 100 500 125 500 

TClCH ClK low Time 118 60(53) 68 

TCHCl ClK High Time 69 39 44 

TCH1CH2 ClK Rise Time 10 10 10 

TCl2Cl1 ClK Fall Time 10 10 10 

TDVCL<l) Data in Setup Time 21.1 21.1(5) 21.1(20) 

TClDX(2) Data in Hold Time 13.5(10) 13.5(10) 13.5(10) 

TR1VCL(3,4) RDY Setup Time 
35 35 35 

into 8284A 

TClR1 X(3, 4) RDY Hold Time 
0 0 0 

into 8284A 

TRYHCH(5) READY Setup Time 
44.5 44.5 44.5 

into 8086 

TCHRYX(6) READY Hold Time 
20.5 20.5(20) 20.5(20) 

into 8086 

TRYlCL(5) READY Inactive 
-18.5 -18.5 -18.5 

toClK 

TINVCH Setup Time for 
NMI(l) Recognition (INTR, 50.5 + 50.5 + 50.5 + 

NMI, TEST) TCLCH(30) TClCH(15) TClCH(15) 
INTR(l) 20 20(15) 20(15) 
TEST(l) 21.5 21.5(15) 21.5(15) 

TGVCH(l) RQ/GT Setup Time 12.7 12.7(12) 12.7 

TCHGX(2) RQHoldTime 
16.1 16.1 16.1 

into 8086 

TILIH Input Rise Time 
20 20 20 (Except ClK) 

TIHll Input Fall Time 
12 12 12 

(Except ClK) 

Numbers followed by parentheses deviate from the 8086 chip specification; the 1985 Microsystem Components Handbook 
chip specification timing is given in the parentheses. 

NOTES: 
1. Timings are calculated with a 74F244 as the buffer for CLOCK or READY. If a 745244 is used, add 0.7 ns to the timings. 
2. Timings are calculated with a 74F244 as the buffer for CLOCK or READY. If a 745244 is used, add 2.5 ns to the timings. 
3. The Signal at 8284 or 8288 is for reference only. 
4. The setup requirement, for asynchronous signal is only to guarantee recognition at the next ClK. 
5. If BTHRDY = TRUE, READY must be 'set up 0.3 ns before the rising edge of T2. 
6. If BTHRDY = TRUE, READY must be held 16.5 ns after the rising edge of T2. 

3-25 



inter 121CETM 

A.C. CHARACTERISTICS FOR THE 121CETM SYSTEM 8086 PROBE (Continued) 

Table}. Maximum Complexity System Timing Responses 

Min Mode 
Parameter 

5 MHz (8086) 10 MHz (8086-1) 8 MHz (8086-2) 
Symbol Minns Maxns Minns Maxns Minns Maxns 

TCLML(1) Command Active 
10 35 10 35 10 35 Delay 

TCLMH(1) Command Inactive 
10 35 10 35 10 35 Delay 

TRYHSH(2, 3, 4) READY Active to 
37.5 37.5 37.5 Status Passive 

TCHSV(4) Status Active Delay 17 66.5 17 66.5(45) 17 66.5(60) 
TCLSH(4) Status Inactive Delay 10.5 42.5 10.5 42.5 10.5 42.5 

TCLAV(4) Address Valid Delay 17.5 64.5 17.5 64.5(50) 17.5 64.5(60) 
TCLAX(5) Address Hold Time 17.5(10) 17.5(10) 17.5(10) 
TCLAZ(4) Address Float Delay 14.6 61.5 14.6 61.5(40) 14.6 61.5(50) 

TSVLH(1) Status Valid to ALE 
15 15 15 High 

TSVMCH(1) Status Valid to 
15 15 15 MCEHigh 

TCLLH(1) CLK Low to ALE 
15 15 15' Valid 

TCLMCH(1) CLK Low to MCE 
15 15 15 High 

TCHLL(1) ALE Inactive Delay 15 15 15 
TCLMCL(1) MCE Inactive Delay 15 15 15 
TCLDV(4) Data Valid Delay 17.5 . 69.5 17.5 69.5(50) 17.5 69.5(60) 
TCHDX(5) Data Hold Time 17.5 17.5 17.5 
TCVNy(1) Control Active Delay 5 45 5 45 5. 45 
TCVNX(1) Control Inactive Delay 10 45 10 45 10 45 

TAZRL Address Float to -37.2(0) -37.2(0) -37.2(0) 
Read Active 

TCLRL(4) RD Active Delay 15.9 80.5 15.9 80.5(70) 15.9 80.5 
TCLRH(4) RD Inactive Delay 15.9 70.5 15.9 70.5(60) 15.9 70.5 

TRHAV RD Inactive to 
(Note 6) (Note 6) (Note 6) Next Address Active 

TCHDTL(1) Direction Control 
50 50 50 Active Delay 

TCHDTH(1) Direction Control 
30 30 30 Inactive Delay 

TCLGL(4) GT Active Delay 12.9 54.5 12.9 54.5(45) 12.9 54.5(50) 
TCLGH(4) GT Inactive Delay 14.9 65 14.9 . 65(45) 14.9 65(50) 

TRLRH RDWidth 
2TCLCL-52.5 2TCLCL - 52.5 2TCLCL - 52.5 

(2TCLCL - 40) (2TCLCL ~ 50) 

TOLOH Output Rise Time 20 20 20 

TOHOL Output Fall Time 12 12 12 
.. 

Numbers followed by parentheses deViate from the 8088 chip specification; the 1985 Mlcrosystem Components Handbook 
chip specification timing is given in the parentheses. 

NOTES: 
1. The signal at 8284 or 8288 is for reference only. 
2. If BTHRDY = TRUE, READY must be set up 0.3 ns before the rising edge of T2. 
3. For BTHRDY = TRUE, TRYH8H = TRYHCH + 47. 
4. Timings are calculated with a 74F244 as the buffer for CLOCK or READY. If a 748244 is used, add 2.5 ns to the timings. 
5. Timings are calculated with a.74F244 as the buffer for CLOCK or READY. If a 748244 is used, add 0.7 ns to the timings. 
6. The address data lines are only floated during T 4 when RD is active. 

3-26 



inter 121CETM 

A.C. CHARACTERISTICS FOR THE 121CETM SYSTEM 8088 PROBE 

Tables 8 through 11 provide timing information for the 8088 probe. Figures 5 through 12 define the timing 
symbols. 

Table 8. Minimum Complexity System Timing Requirements 

Min Mode Parameter 
5 MHz (8088) 8 MHz (8088-1) 

Symbol Minns Maxns Minns Maxns 

TClCl ClK Cycle Period 200 500 125 500 

TClCH ClK low Time 118 68 

TCHCl ClK High Time 69 44 

TCH1CH2 ClK Rise Time 10 10 

TCl2Cl1 ClK Fall Time 10 10 

TDVCL!I) Data in Setup Time 21.1 21.1(20) 

TClDX(2) Data in Hold Time 13.5(10) 13.5(10) 

TR1VCL!3,4) ROY Setup Time 
35 35 

into 8284 

TClR 1 X(3, 4) ROY Hold Time 
0 0 

into 8284 

TRYHCH(5) READY Setup Time 
57.8 57.8 

into 8088 

TCHRYX(6) READY Hold Time 
20.5 20.5(20) 

into 8088 

TRYlCL(5) READY Inactive 
-16.5 -16.5 

to ClK 

THVCH(I) Hold Setup Time 12.7 12.7 

TINVCH INTR, NMI, TEST 
NMI(I) Setup Time 50.5 + 50.5 + 

TClCH(30) TClCH(15) 
INTR(I) 26 26(15) 
TEST(I) 27.5 27.5(15) 

TILIH Input Rise Time 20 20 

TIHll Input Fall Time 12 12 

Numbers followed by parentheses deviate from the BOBB chip specification; the 1985 Microsystem Components Handbook 
chip specification timing is given in the parentheses. 

NOTES: 
1. Timings are calculated with a 74F244 as the buffer for CLOCK or READY. If a 748244 is used, add 0.7 ns to the timings. 

·2. Timings are calculated with a 74F244 as the buffer for CLOCK or READY. If a 748.244 is used, add 2.5 ns to the timings. 
3. The signal at 82B4 is for reference only. 
4. The setup requirement, for asynchronous signal is only to guarantee recognition at the next ClK. 
5. For BTHRDY = TRUE, READY must be set up 0.3 ns prior to the rising edge of T2. 
6. For BTHRDY = TRUE, READY must be held 16.5 ns after the rising edge of T2. 

3-27 



121CETM 

A.C. CHARACTERISTICS FOR THE 121CETM SYSTEM 8088 PROBE (Continued) 

Table 9. Minimum Complexity System Timing Responses 

Min Mode Parameter 
5 MHz (8088) 8 MHz (8088·2) 

Symbol Minns Maxns Minns Maxns 
TCLAV(1) Address Valid Delay 17.5 72 17.5 72(60) 
TCLAX(2) Address Hold Time 17.5 17.5 
TCLAZ(1) Address Float Delay 13.6 61.5 13.6 61.5(50) 

TLHLL ALE Width TCLCH - 17.5 TCLCH - 17.5 
(TCLCH - 20) 

TCLLH(1) ALE Active Delay 41 .41 
TCHLL(1) ALE Inactive Delay 35 35 

TLLAX Address Hold Time TCHCL - 8.5 TCLCH - 8.5 
to ALE Inactive 

TCLDV(1) Data Valid Delay 17.5 70.5 17.5 70.5(60) 
TCHDX(2) Data Hold Time 17.5 17.5 

TWHDX Data Hold Time TCLCH - 34 TCLCH - 34 
afterWR (TCLCH - 30) (TCLCH - 30) 

TCVCTV Control Active 
DEN(RD, Delay 1 15.6 63.5 15.6 63.5 
INTA)(1) 
DEN(WRITE)(1) TCHCL + 13.6 TCHCL + 63.5 TCHCL + 13.6 TCHCL + 63.5 

(110) (70) 
WR(1) 16.9 59.5 16.9 59.5 
INTA(1) 15.9 55 15.9 55 

TCHCTV Control Inactive 
550(1) Delay 2 16.3 104 16.3 104(60) 
10/M'(1,3) 19.1 81 19.1 81(60) 
DT/R(1,4) 18.3 77.5 18.3 77.5(60) 

TCVCTX Control Inactive 
DEN(1) Delay 15.6 63.5 15.6 63.5 
WR(1) 16.9 59.5 16.9 59.5 
INTA(1) 15.9 55 15.9 55 

TAZRL Address Float to -37.2(0) -37.2(0) 
READ Active 

TCLRL(1) RD Active Delay 15.9 110.5 15.9 110.5(100) 
TCLRH(1) RD Inactive Delay 15.9 90.5 15.9 90.5(80) 

TRHAV RD Inactive to Next 
(Note 5) (Note 5) 

Address Active 
TCLHAV(1) HLDA Valid Delay 13.3 57 13.3 57 

TRLRH RD Width 2TCLCL - 82.5 2TCLCL - 82.5 
(2TCLCL - 75) (2TCLCL - 50) 

TWLWH WRWidth 2TCLCL - 27.5 2TCLCL - 27.5 

TAVAL Address Valid to TCLCH - 52.2 TCLCH - 52.2 
ALE Low (TCLCH - 40) 

TOLOH Output Rise Time 20 20 

TOHOL Output Fall Time 12 12 
.. 

Numbers followed by parentheses deViate from the 8088 chip specification; the 1985 Mlcrosystem Components Handbook 
chip specification timing is given in the parentheses. 
NOTES: 
1. Timings are calculated with a 74F244 as the buffer for CLOCK or READY. If a 748244 is used, add 2.5 ns to the timings. 
2. Timings are calculated with a 74F244 as the buffer for CLOCK or READY. If a 748244 is used, add 0.7 ns to the timings. 
3. When performing consecutive 1/0 cycles (Le., word 1/0 to an odd address), the MIlO line goes high for a short time 
during T4. The 8088 microprocessor keeps 101M low between consecutive 1/0 cycles. 
4. When performing consecutive reads to program memory, the DT/R line of the probe microprocessor (at the end of the 
user cable) goes high for a short time between reads. The 8088 microprocessor keeps DR/R low between consecutive 
reads. 
5. The address data lines are only floated during T4 when RD is active. 

3-28 



intJ 121CETM 

A.C. CHARACTERISTics FOR THE 121CETM SYSTEM 8088 PROBE (Continued) 

" Table 10. Maximum Complexity System Timing Requirements 

Min Mode 5 MHz (8088) 8 MHz (8088-2) 
Symbol . Parameter 

Minns Maxns Minns Maxns 

TClCl ClK Cycle Period 200 500 125 500 

TClCH ClKlowTime 118 68 

TCHCl ClK High Time 69 44 

TCH1CH2 ClK Rise Time 10 10 

TCl2Cl1 ClKFallTime 10 10 

TDVCL(1) Data in Setup Time 21.1 21.1 (20) 

TCLDX(2) Data in Hold Time 13.5(10) 13.5(10) 

TR 1 VCL<3, 4) ROY Setup Time 35 35 
into 8284 

TClR1 X(3, 4) Rby Hold Time 
0 0 

into 8284 

TRYHCH(5) READY Setup Time 
57.8 57.8 

into 8088 
TCHRYX(6) READY Hold Time 20.5 20.5(20) 

into 8088 

TRYlCL(5) READY Inactive -16.5 -16.5 
toClK 

T1NVCH Setup Time for 
NMI(1) Recognition __ 50.5 + 50.5 + 

(INTR, NMI, TEST) TClCH(30) TClCH(15) 
INTR(1) 26 26(15) 
TEST(1) 27.5 27.5(15) 

TGVCH(1) RQ/GT Setup Time 12.7 12.7 
TCHGX(2) RQHoldTime 16.1 16.1 

into 8088 

TILIH Input Rise Time 
20 20 

(Except ClK) 

TIHll Input Fall Time 
12 12 (Except ClK) , 

Numbers followed by parentheses deviate from the 8088 chip specification; the 1985 Microsystem Components Handbook 
chip specification timing is given in the parentheses. 

NOTES: 
1. Timings are calculated with a 74F244 as th"e buffer for CLOCK or READY. If a 748244 is used, add 0.7 ns to the timings. 
2. Timings are calculated with a 74F244 as the buffer for CLOCK or READY. If a 748244 is used, add 2.5 ns to the timings. 
3. The signal at 8284 or 8288 is for reference only. 
4. The setup requirement, for asynchronous signal is only to guarantee recognition at the next ClK. 
5. If BTHRDY = TRUE, READY must be set up 0.3 ns before the rising edge of T2. 
6. If BTHRDY = TRUE, READY must be held 16.5 ns after the rising edge of T2. 

3-29 



121CETM 

A.C. CHARACTERISTICS FOR THE 121CETM SYSTEM 8088 PROBE (Continued) 

Table 11. Maximum Complexity System Timing Responses 

Min Mode Parameter 
5 MHz (8088) 8 MHz (8088-2) 

Symbol Minns Maxns Minns Maxns 
TCLMU1) Command Active 10 35 10 35 

Delay 
TCLMH(1) Command Inactive 10 35 10 35 

Delay 
TRYHSH(2, 3, 4) READY Active to 37.5 37.5 

Status Passive 
, TCHSV(4) Status Active Delay 16.3 70.5 16.3 70.5(60) 
TCLSH(4) Status Inactive Delay 10.5 42.5 10.5 42.5 
TCLAV(4) Address Valid Delay 17.5 72 17.5 72 (60) 
TCLAX(5) Address Hold Time 17.5 17.5 
TCLAZ(4) Address Float Delay 13.6 61.5 13.6 61.5 (50) 

TSVLH(1) Status Valid to 15 15 
ALE High 

TSVMCH(1) Status Valid to 15 15 
MOE High 

TCLLH(1) CLK Low to ALE Valid 15 15 
TCLMCH(1) CLK Low to MCE High 15 15 
TCHLU1) ALE Inactive Delay 15 15 

TCLMCU1) MCE Inactive Delay 15 15 
TCLDV(4) Data Valid Delay 17.5 70.5 17.5 70.5 (60) 
TCHDX(5) Data Hold Time 17.5 17.5 
TCVNV(1) Control Active Delay 5 45 5 45 
TCVNX(1) , Control Inactive D~lay 10 45 10 45 

TAZRL Address Float to -37.2(0) -37.2(0) 
READ Active 

TCLRU4) RD Active Delay 15.9 110.5 15.9 110.5 (100) 
TCLRH(4) RD Inactive Delay 15.9 90.5 15.9 90.5 (80) 

TRHAV RD Inactive to (Note 6) (Note 6) 
Next Address 

TCHDTU1) Direction Control 50 50 
Active Delay 

TCHDTH(1) Direction Control 30 30 
Inactive Delay 

TCLGU4) GT Active Delay 12.9 54.5 12.9 54.5 (50) 
TCLGH(4) GT Inactive Delay 14.9 65 14.9 65 (50) 

TRLRH RDWidth 2TCLCL - 82.5 2TCLCL-82.5 
(2TCLCL -75) (2TCLCL - 50) 

TOLOH Output Rise Time 20 20 

TOHOL Output Fall Time 12 12 

/ 

Numbers followed by parentheses deviate from the BOBB chip specification; the 19B5 Microsystsm Components Handbook 
chip specification timing is given in the parentheses. 

NOTES: 
1. The Signal at B2B4 or B2BB is for reference only. 
2. If BTHRDY = TRUE, READY must be set up 0.3 ns before the rising edge of T2. 
3. For BTHRDY = TRUE, TRYH5H = TRYHCH + 47. 
4. Timings are calculated with a 74F244 as t~e buffer for CLOCK or READY. If a 745244 is used, add 2.5 ns to the timings. 
5. Timings are calculated wit~ a 74F244 as the buffer for CLOCK or READY. If a 745244 is used, add 0.7 ns to the timings. 
6. The address data lines are only floated during T4 when RD is active. 

3-30 



intJ 121CETM 

8086/8088 PROBE WAVEFORMS 

MINIMUM MODE 

T, T, TJ Tw T4 
_TClCl_ 

=t-=t=r~ VCHr--\ 
~ b£L-vt ':--"'" 

....:;: TCHCTV - - TCHCL 

elK (8284A OUTPUT) 

550, MIlO 

SHE 57186 ONLY). A,ii SC-A'G S l 

ALE 

) ROY (8284A INPUT 
SEE NOTE4 

READY (8086. 8088 INPUT) 
SEE NOTE 2 { 

READ CYCLE 

0 A07·AD 
(86.88) 

A,S·AS 
{S8 ONLY ) 

lOu,ADa 
(86 ONLY ) 

(NOTE 11 AD 
tWR, INTA = YOH) 

TClAV-

TCllH+ 

TCLAV~ 

-- TClAX-
TClDV 

~ TCHDX_ 

SHE. AIII-Aul j 
51-53 

I: TLHll=: I.-TLlAX 

'- TAL 
TCHll-i l:: l1 I-TR1VCl 

Vltt_ 

\. 
"IL-r-"":;: f-TCLR1X 

TRYLCl- I-- h 

-+ I-- TCHRYX 

-- TAVAl - TRYHCH I-
TLLAX_ I--TCLAZ 

r:::::::.'DVC L-:-TCLD~ I-- '-- I--TClAX 

ADDRESS V OATllN 

FLOATi 11 

TCHDX-/. 

A15-A8 ;1 i 
TAZRL __ 1-/ TClRH __ ,-J-

V 
~ 

=~TCHCTV TeLRl lRLRH ,-1+ 

I OT'R 

TCVCTV- TCVCTX-- 1:.1 
JJ DEN 

Figure 5. (Continued on next page) 

3-31 

I-

r--
/ ---

r 
FLOAT '-

X 
-TRHAV_ 

TCHCTY 

210469-6 



121CETM 

8086/8088 PROBE WAVEFORMS (Continued) 

MINIMUM MODE (Continued) 

T1 T2 T3 Tw T. 

- TCLCL ~~CH1CH2JrrJTCL2TCL1~ 
VC"v--; r---\ "-

elK 18284. OUTPUT) \. J 
VClJ ~ ~TCHCL i!-TCLCHt 

~ TCHCTY .~ 

TCLAY" _ -::: CLDV~ 
TCHDX.... .1:. 

BHI"/S71s8 ONLY), 41111/80-.18/83 ifR1:.All11-A'8 l.~_ 

WRITE CYCLE 

("*,~,l.W 
DTiR-VOH) 

INTA CYCLE 
(NOTES 1 & 3) 

(Rbh~~:~~~ 

SOFTWARE HALT-
RD, WR, INTO'" YOH 
DTIA slNDETERMINATE 

NOTES: 

f.-TLLAX 
r--

I 

TCLLM.. I: TLHLL-::::; 

ALE I . .1. ...... 1---1-, .. ~~ TAVAL ~f---+--,-------I---+--..&._--
TCHLL" _ 

AD,·ADo TClAV- I-- ~~~~~.. 1:= TCHDX'" --

(86,88) --C 
ADDRESS DATA OUT 

~~'~:~~, __ I---I--' '-+-+-+-"'�'-+--------+----+-'� 

A15-A8 

(880HlY)_+-_-+_~I'-+-~~~~-~A-'-•. A-·------~-~~~JI'~---­
!-TWHDX. 

.... .....TCVCTX . r-
'~+----r-----------+~--~ 

-f ____ ~--~~~~,r_--r_---TWlWH------r_1r--~-------

TCVCTX .... 

t;..TDVCl-

r-
Io- TClDX 

POINTER 

/~ ) FLOAT 

;\ FLOAT I ~ 
~ TCHCTV / .. \ ~rTCHCTV 

DTlfi .'I------+-~-,4-----lr\-~' TCVCTV- ./l 

INY. ----!-------,I 'v_r"::::'~/---

DEN 

TCVCTV .... ~.'_ ____ T_C_VC_T_X_-_J(j,...+------

INVALID ADDRESS SOFTWARE HALT 

210469-7 

1. All signals switch between VOH and VOL unless otherwise specified. 
2. READY is sampled near the end of T 2. T 3. T W to determine if T W machines states are to be inserted. Timing shown is 
for BTHRDY = FALSE; see Figure 12 for BTHRDY = TRUE. 
3. Two INTA cycles run back-to-back. The 8086 LOCAL ADDR/DATA BUS is floating during both INTA cycles. Control 
signals shown for second INTA cycle. 
4. Signals at 8284A aer shown for reference only. 

Figure 5. (Continued) 

3-32 



intJ 121CETM 

8086/8088 PROBE WAVEFORMS (Continued) 

MAXIMUM MODE 

Tl I T2 3 • 

~ ---.!CH'CH2 -lH I-TCl2TCl' Tw 
Ve",,' TClCn r,"", ~ 

ClK .j 
VCL-' ~ - - I\-----J 

TClAV_ ,I::. - TCHCL I-TCl,C_H-I-___ ~ 

050.05, X 

S2. 8" SO (EXCEPT HALT) 

SHE/S7 (88 ONLY). Au~/Se-A1t1/S3 

{

ALE 1.2 •• OUTPUT) 

SEE NOTE5 

RDY (8284,\ INPUT) 

READY (8086. 8088 INPUT) { 
SEE NOTE 2 

READ CYCLE 

ADr-ADo (B6. 88) 

A"·,,, 118 ONLY) 

AD 

{ 

DT/R 

8288 OUTPUTS MADe OR lORe 
SEE NOTES 5. 8 

DEN 

_____ TCHSV _TClSH 

/SEE NOTE 7 \-----

I~.,--+--+-~-+--+--+--+-' '-----
-- .!:..TCWlU_ ~,...:.T";;CFlD;;,;V;""'-I_+-_....j.. __ +_T_C_HD_X_-I-"'I:--J_---

1. bH!.A"J-Al~ 57-53 

TCllH.... ·.1 
TSVlH_ ~ ..... I+- TCHll 

r--
----¥I '~--"""~-r~--~--+-r-/~/ __ -

::l_I-TR'VCl 

-~ " 
- ..... I""'T::C::"l"::Rt'X:--+---+--+----

TR~ ~ __ 

- TLHSH Irf~=-1--'" 
--TClAX~I- ;f 

!"YHCH.-I 

f- TeHAVX 

-- TClAZI-- I TDVCl- -TClDX~ 

ADDRESS -' FLOAT /I\,,-___ D_A_T_A_'N+ __ ..J\I FLOAT I"--
TAZRl:.J 1--/ __ TClRH t--...... +--tfll_ThHA".-....1 ___ _ 

,.--­A AwAa 

___ TClA_V-+-+~IV ~~/ __ __ 

~ ~~==~==~T~RUlR"Hr=====t=~~~ 
_____ T_C_HD_T_l_~\1 ~ TClRl y- I:,TCHDTH 

I 
\ / ,'"-+-+--------I...J 

TClMl_ TClMH .... 

TCVNV_ Ir 
~~I"----+-'" 

------------' '------TCVNX ..... 

210469-8 

Figure 6. (Continued on next page) 

3·33 



121CETM 

8086/8088 PROBE WAVEFORMS (Continued) 

MAXIMUM MODE (Continued) 

WRITE CYCLE 

veN 
elK 

VeL 

Sa. S,. So (EXCEPT HALTI 

ADr·ADo (88, aa) 

AOn-AD,(laONLY) 

.'5·AIIB8 ONLY) 

DEN 

8288 OUTPUTS AMwc OR .IOwe 
SEE NOTES 5,8 

INTACYCLE 

MWWTC OR lOwe 

AD'S,AD, (Ia ONL~) 

AwA, (" ONLY) 
SEE NOTES 3.4 

MeE! 
PDEN 

DT" 

8Z880UTPUTI 
SEE NOTES 5, 8 INTA 

DE. 

SOFTWARE HALT -

T, T, 

TClAY 

relAY 

(DEN" VOLifHi,MlIbc.IOtlC,M'NTC.AMWC.AIOWC.INTA, .. vo.d 
----+-'I~----~------

"Ou·ADO INVALID ADDAEIIIS 

'TClAY 

FLOAT 

FLOAT 

------'\. . /'"---------\ - ----
\~----~ ~----

NOTES: 
1. All signals switch between VOH and VOL unless otherwise specified. 

. r-

210469-9 

2. READY is sampled near the end of T 2, T 3, T w to determine if T w machines states are to be inserted. Timing shown is 
for BTHRDY = FALSE; see Figure 12 for BTHRDY = TRUE. 
3. Cascade ~ddress is valid between first and second INTA cycle. . .... '. . . 
4. Two INTA cycles run back-to-back. The 8086 LOCAL ADDR/DATA BUS is floating during both INTA cycles. Control 
for pOinter address is shown for second INTA cycle. . . . .... . 
5. Signals at 8284A and 8288 are shown for reference only. 
6. The issuance of the 8288 command and control signals (MRDC, MWTC, AMWe, IORC, lOWe, AIOC, iN'i'A, and ~) 
lags the active high 8288 CEN. 
7. Status inactive in state just prior to T 4. 

Figure 6. (Continued) 

3-34 



inter 121CETM 

8086/8088 PROBE WAVEFORMS (Continued) 

ASYNCHRONOUS SIGNAL RECOGNITION 

CLK 

NMI 

}" .. " INTR 

TEST 
210469-10 

NOTE: 
1. Setup requirements for asynchronous signals only to guarantee recognition at next eLK. 

BUS LOCK SIGNAL TIMING 
(MAXIMUM MODE ONLY) 

CLK 

TCLA~r­

LOCK "-
______ ....J 

FigureS 

210469-11 

Figure 7 

RESET TIMING 

Vee 

CLK 

RESET 

REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLY) 

eLK 

IIlfIIlT 

PREVIOUS GRANT 

AD .. AD,(".", .. , -------------4 
ADrAD,.(H) 
ArA,,(II) r,,'alS,I 

iRfIs,(II) 

NOTE: 

1011,8088 

;;.4 CLK CYCLES 

210469-12 

Figure 9 

210469-13 

1. The coprocessor may not drive the buses outside the region shown without risking contention. 

Figure 10 

3-35 



intJ 
8086/8088 PROBE WAVEFORMS (Continued) 

HQLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLy) 

~
2CKLCYCLE 

eLK 

1~ 
HOLD~ 

HLDA 
.1 

, Ii: ADo-AD. (aa, aa) BOBS OR BOBS , 
~-AD .. (aa) . ., 
IlREis MIlO ,_-------41----
DT/Jr,\W; D'EIi 

READY TIMING FOR BTHRDY = TRUE 

eLK 

READY 
(8086/8088 
Inpul) 

Figure 11 

1 

;s.--~-4--./ 

--~3i~:'i----- -
, i 

Figure 12 

3-36 

210469-14 

210469-15 



inter 121CETM 

121CETM SYSTEM 80186/80188 PROBE HIGHLIGHTS 
• One megabyte addressing. 

• Supports standard and queue status modes. 

• Keyword access to the internal peripheral control 
block and the relocation register. 

Table 12.121CETM 80186/80188 User Interface-D.C. Characteristics 

Input Output Input Output 
Voltage Voltage Current Current 

Pin Name Max Min Max Min Max Max Max Max 
VIL VIH VOL VOH IlL IIH IOL IOH 
V V V V rnA rnA rnA rnA 

X1 0.6 3.0 -0.0055 0.0055 

RES 0.6 3.0 -0.0114 0.0082 

TEST 0.6 2.2 -0.6 0.07 

TMRINO, TMRIN1, DRQO 0.6 2.2 -0.4 0.05 
DRQ1, NMI 

HOLD 0.6 2.2 -1.6 0.04 

INTO,INT1 0.6 2.2 -0.21 0.03 

ARDY,SRDY 0.6 2.2 -2.0 0.07 

INT211NTAO,INT311NTA1 0.6 2.2 0.6 2.2 -0.21 0.03 2.0 -0.4 

ADO-AD15 0.6 2.2 0.6 2 .. 2 -0.45 0.1 64 -15 

CLKOUT, A19/S6-A/16/S3, 0.6 2.2 64 -15 
TMROUTO, TMROUT1, 
SHE/S7, ALE/QSO, 
WR/QS1, RD/QSMD, 

. LOCK, SO, 51, S2, 
HLDA, UCS, LCS, 
MCSO-S, PC50-4, 
PCS5/ A 1, PCS6/ A2, 
DT/R,DEN 

RESET 0.6 2.2 9.1 -15 

NOTES: 
1. Negative currents (-) are defined as currents flowing out of a terminal, and positive currents are defined as currents 
flowing into a terminal. 
2. The 80186 and 80188 chip specifications indicate that the chips have an output drive capacity of IOH = -400 IJA and 
IOL = 2.0 mA (2.5 mA for SO-52); the chips' input and 3-state loading specification is ±10 pA As can be seen from the 
table, the 80186/80188 probe has a greater output drive capacity than the 80186 or 80188 chip; it also presents greater 
input loading than the 80186 or 80188 chip (except for X1 and the IIH value for RES). 
3. The 80186/80188 probe does not draw any current from the user Vee. 

3-37 



inter 121CETM 

Capacitive Loading-80186/80188 
Probe 
• The 80186/80188 probe presents the user sys­

tem with a maximum load of 80 pF (120 pF for 
ARDY, SRDY, and TEST). 

Coprocessor Operation-80186/80188 
Probe 
• The user can choose to have the coprocessor 

run only during emulation or all the time. If the 
·coprocessor runs all the time, then during interro­
gation mode, the coprocessor may have as much 
as a one-microsecond delay. 

AC CHARACTERISTICS FOR THE 121CETM SYSTEM 80186/80188 PROBE 

All timings are measured at 1.5V unless otherwise noted. Tables .13 through 17 provide timing information for 
the 80186/80188 probe. Figures 13 through 15 define the timing symbols. 

Table 13. Timing Requirements 

8 MHz 

Symbol Parameter Min Max Test Conditions. 
ns ns 

TDVCL Data in Setup (AID) 41.0 (20) 

TCLDX Data in Hold (AID) -1.6 

TARYHCH AR.EADY Active Setup Time 40.2 (20) 

TARYLCL AREADY Inactive 
55.2 (35) 

Setup Tirne 

TCHARYX AREADY Hold Time 2.7 

TSYRCL SREADY Transition 
45;2 (35) 

Setup Time 

TCLSRY SREADY Transition 
2.7 

Hold Time 

THVCL Hold Setup 42.5 (25) 

TINVCH NMI Setup 76.0 (25) NMIOnly 

TINVCH INTO-INT3 Setup 37.0 (25) INTO-INT3 Only 

TINVCH TEST, TIMERIN Setup 46.0(25) All Others 

TINVCL DRQO; DRQ1 Setup 41.0 (25) 

Numbers followed by parentheses deviate from the 80186/80188· chip specification; the 1984 Microsystem 
Components Handbook chip specification timing is given in the parentheses. 

3-38 



inter 121CETM 

A.C. CHARACTERISTICS FOR THE 121CETM SYSTEM 80186/80188 PROBE 
(Continued) 

Table 14. Master Interface TImIng Responses 

8 MHz 

Symbol Parameter MIn Max Test Conditions 
ns ns 

TCLAV Address Valid Delay -2.2 (5) 51.2 (44) 

TCLAX Address Hold -2.2 (10) 

TCLAZ Address Float Delay 15.1 99.7 (35) During HLDA Cycles Only 

TCLAZ Address Float Delay 14.8 52.0 (35) During AD Cycles only 

TCLAZ Address Float Delay -51.2 (TCLAX) 54.7 (35) During INT A Cycles 

TCHCZ Command Lines Float 
151.7 (45) 

Delay 

TCHCV Command Lines Valid 
66.2 (55) 

Delay (after Float) 

TLHLL ALE Width TCLCL-13.6 
(TCLCL-35) 

TCHLH ALE Active Delay 21.2 

TCHLL ALE Inactive Delay 41.3 (35) 

TLLAX Address Hold to ALE TCHCL-34 
(TCHCL - 25) 

TCLDV Data Valid Delay -2.2 (10) 43.2 

TCLDOX Data Hold Time -2.2 (10) 

TWHDX Data Hold after WA TCLCL - 28.2 

TCVCTV Control Active Delay(1) -2.2 (5) 69.2 ForDEN 

TCVCTV Control Active Delay(1) 14.1 35.5 ForWA 

TCVCTV Control Active Delay(1) -4.0 (5) 60.2 For INTA 

TCHCTV Control Active Delay(2) -2.2 (10) 62.2 (55) 

TCVCTX Control Inactive Delay -2.2 (5) 62.2 (55) ForDEN 

TCVCTX Control Inactive Delay 14.1 ·35.5 ForWA 

TCVCTX Control Inactive Delay -4.0 (10) 3.2 ForlNTA 

TCVDEX DEN Inactive Delay 69.2 
(Non-Write Cycle) 

TAZRL Address Float to AD -35.6 (0) 
Active 

Numbers followed by parentheses deviate from the 80186/80186 chip specification; the 1984 Microsystem 
Components Handbook chip specification timing is given in the parentheses. 

3-39 



intJ 121CETM 

A.C. CHARACTERISTICS FOR THE 121CETM SYSTEM 80186/80188 ,PROBE 
(Continued) 

Table 14. Master Interface Timing Responses (Continued) 
, , 

8MHz 

Symbol Parameter Min Max Test Conditions 
ns ns 

TCLRL RD Active Delay 14.1 35.5 

TCLRH RD Inactive Delay 14.1 35.5 

TRHAV RD Inactive to TCLCL-37.2 
Address Active 

TCLHAV HLDA Valid Delay 2.B (10) 54.7 (50) 

TRLRH RDWidth 2TCLCL '-19.3 

TWLWH WRWidth 2TCLCL 

TAVAL Address Valid to TCLCH-2S.S 
ALE Low (TCLCH-25) 

TCHSV Status Active Delay 2.B (10) 57.2 (55) 

TCLSH Status Inactive Delay 2.B (10) S2.2 (55) 

TCLTMV Timer Output Delay 59.2 

TCLRO Reset Delay 52.5 

TCHQSV Queue Status Delay 34.2 

'Numbers followed by parentheses deviate from the B01 BS/B01 BS chip specification; the 19B4 Microsystem 
Components Handbook chip specification timing is given in the parentheses. 

Table 15. Chip-Select Timing Responses 

8 MHz 

Symbol Parameter Min Max 
ns ns 

TCLCSV Chip-Select Active Delay , S5.2 

TCXGsX Chip-Select Hold from Command Inactive 17.B (35) 

TCHCSX Chip-Select Inactive Delay -2.2 (5) 42.2 (35) 

Numbers followed by parentheses deviate from the B01BS/B01BB chip specifica­
tion; the 19B4 Microsystem Components Handbook chip specification timing is 
given in the parentheses. ' 

3-40 



121CETM 

A.C. CHARACTERISTICS FOR THE 121CETM SYSTEM 80186/80188 PROBE 
(Continued) 

Table 16. ClKIN Requirements 

8MHz 

Symbol Parameter Min Max Test Conditions 
ns ns 

TCKIN ClKIN Period 62.5 . 250.0 

TCKHl ClKIN Fall Time 10.0 3.5Vto 1.0V 

TCKlH ClKIN Rise Time 10.0 1.0Vto 3.5V 

TClCK ClKIN low Time 25.0 

TCHCK ClKIN High Time 25.0 

Table 17. ClKOUT Timing 

8 MHz 

Symbol Parameter Min Max Test Conditions 
ns ns 

TCICO ClKIN to ClKOUT Skew 97 (50) 

TClCl ClKOUT Period 125 500 

TClCH ClKOUT low Time 1 12TClCl -7.5 

TCHCl ClKOUT High Time 1 12TClCl -7.5 

TCH1CH2 ClKOUT Rise Time 15 1.0Vto 3.5V 

TCl2Cl1· ClKOUT Fall Time 15 3.5Vto 1.0V 

Numbers followed by parentheses deviate from the 80186/80188 chip specification; the 1984 Microsystem 
Components Handbook chip specification timing is given in the parentheses. 

3-41 



121CETM 

80186/80188 PROBE WAVEFORMS 

MAJOR CYCLE TIMING 

WRl'leyeLE 

IN'ACYCLE 

IRI".Vo~'1"'OHL" 
IIIf,Wlr-Y .. ltlIAND till 

WJI 

aOFTWAIlIHALT_I5IIr. Vo~. 
IIIF. ww: IRTI; DT/Ir - YOM 

Figure 13 (Continued on next page) 

3-42 

210469-16 



inter 121CETM 

80186/80188 PROBE WAVEFORMS(Continued) 

MAJOR CYCLE TIMING (Continued) 

CLKOUT 

S .. ·S., 

IIlIl"/S7 C188 ONLYI 
A.,JS"oA.,./S1(SOTH 188AND 188) 

V,~ 

v! 
-- TCHSV 

TCUh. 

-T,--.. 'T,--:-;--': 
TCLCL TCH~H r---'I 

"-----J TCHCL 1'----1 .. .. -
~---. TCL~ TCLDV:--

4-
EiRE/A'i·A,~ 

r-- TL~I:.L-::: ~TLLAX 

;t- TALL -; . 
~ TCHLL -t 

ALE 

TCHLH 

TLLAX_ --TCLAV- !--TAVAL":" _TCLAZ 

.. -T,/T.-· 

tTCL2r 
r--:--Tci.SH 

1-4= CNOTE 31 

l- / 

STATUS 

.04___ -TDvel 

J AD.~·ADI' (188 ONLY) 
AD.·AD .1188 AND 1881 ADDRESS 

FLOAT r DATA IN 

A .• ·A~ (188 ONLY) A,~·A" 
READ CYCLE 

vi, TAZRL_ TCLRH_ 

RII 

-TCHCTV --=-{ TCLRL TRLRH 

TCVCTV ..... {l TCVDEX ....... 

.... 1- TCLCSV 

NOTES: 

~-T,--

r-\ 
"---TCLCH 

TCHDX __ 

i 
r-

I ---

TCLDX 

FLOAT , 
'--
'~ 

'-

I- c-TRHAV --

~ 

1- !::..TCHCTV 

I r , 
_ TCHCSX 

.. TCXCSX ---
210469-11. 

, 1. Following a Write cycle, the Local ,Bus is floated by the 80186/80188 only when the 80186/80188 enters a "Hold 
Acknowledge" state, 
2. INTA occurs one clock later in RMX-mode. 
3. Status inactive just prior to T. 

Figure 13 (Continued) 

3-43 



inter 12ICETM· 

80186/80188 PROBE WAVEFORMS(Continued) 

MAJOR CYCLE TIMING (Continued) 

ClKOUT 

........ TelAV -- TClAV -

LoCK' 

210469-18 

. ClKOUT 

TINVCH -
TINVCL- -

T~;~ 
INTO-3, 

TIMERIN'--_______ J 

210469-19 

CLKOUT 

TCHQSV 

aso, aS1 

210489-20 

Figure 13 (Continued) 

3-44 



inter 121CETM 

80186/80188 PROBE WAVEFORMS (Continued) 

HOLD-HLDA TIMING 

T, T, 

CLKOUT 

ARDY 

CLKOUT 

SRDY 

CLKOUT 

HLDA 

AD I5-ADe (1880NLY) ----
AD 7·ADo(1S8AND 188) 80188/80188 

A1soAeU880M-. ___ _ 

........ TCHCZ 

A,slS ,,-A Ie/5 3 ---­

Jm;WJr 80188/80188 
a,----

DT/If 
I;.~ 

Figure 14 

3·45 

T, 

-- .... 
)--- __ J 

TCHCV-.. 

-- .... 
)--- __ J 

T, 

TARYLCL.- -

210469-21 

210469-22 

T, 

r-
801 a8/80188 

80188/80188 

210469-23 



inter 121CETM 

80186/80188 PROBE WAVEFORMS (Continued) 

TIMER 

I ... t------TcKIN ----<o •• ~-TClCK_ 

ClKIN 

TCKHl _ 

TCHICH2- - - -TCH2CH1 

ClKOUT TCICO ~~--TClCH--~~~---TCHCl--~~ 

TIMERIN 

TIMEROUT 

I 

---' 
TINVCH 

~-------------TClCl-------------~.~1 

1------------------- 2-6 CLOCKS 

Figure 15 

3·46 

210469-24 

_""M'~ 

I ~ 
210469-25 



inter 121CETM 

121CETM SYSTEM 80286 PROBE 
HIGHLIGHTS 

Both 6 MHz and 8 MHz probes are available. Each 
probe has the following features: 

• Supports real and protected mode (software). 

• Includes an object code loader for both 8086 and 
80286 object files. 

• Supports multiprocessing (with coprocessor and 
with the 80287 processor extension). 

• Supports local descriptor tables (lOTs). 

• Provides full 24-bit address mapping (with option­
al 16K granularity). 

• Provides the capability to read/write normally in-
visible portions of segment and table registers .. 

• Supports multitasking. 

• Ooes not slip on breakpoints. 

• DMA (Hold/Hold Acknowledge) is supported in 
both emulation and interrogation modes. 

Table 18. 121CETM 80286 User Interface-D.C. Characteristics: 6 MHz Probe/8 MHz Probe 

Input Output Input Output 
Voltage Voltage Current Current 

Pin Name Max Min Max Min Max Max Max Max 
VIL VIH VOL VOH IlL IIH IOL IOH' 
V V V V mA mA mA mA 

AO-A23 0.6/0.6 2.2/2.2 12/12 -3/-3 

00-015 0.6/0.6 2.2/2.2 0.6/0.6 2.2/2.2 -0.1/-0.7 0.02/0.07 12/20 -3/-3 

SO,S1 0'.75/0.75 2.2*/2.2" 64/64 -3.4/-3.4 

M/IO 0.75/0.75 2.2/2.2 64/64 -3.0/-3.0 

lOCK 0.75/0.75 2.212.2 64/64 -3.0/-3.0 

COO/INTA 0.75/0.75 2.2/2,2 64/64 -1/-3 

BHE 0.75/0.75 2.2/2.2 64/64 -1/-3 

ERROR 0.6/0.6 2.2/2.2 -2.15/-3.7 0.05/0.04 

BUSY 0.6/0.6 2.2/2.2 -0.4/-0.7 0.05/0.02 

PEACK 0.75/0.75 2.5/2.2 64/64 . -1/-3 

HlOA 0.75/0.75 2.5/2.2 64/64 -1/-3 

HOlO 0.5/0.5 2.3/2.3 -0.4/-0.7 0.05/0.02 

PEREQ 0.6/0.6 2.2/2.2 -1.6/-0.7 0.02/0.02 

INTR 0.5/0.5 2.3/2.3 -1.6/-0.7 0.02/0.02 

NMI 0.6/0.6 2.2/2.2 -1.6/-0.7 0.02/0.02 

ClK 0.6/0.6 2.2/2.2 -2.0/-0.7 0.Q7/0.02 

REAOY 0.5/0.5 2.2/2.2 -3.6/-2.4 0.09/0.06 

NOTES: 
·50 and 51 have 5.1 K pullup resistors. 
1. DC characteristics are given in the form m/n, where m is the characteristic for the 6 MHz 80286 probe and n is the 
characteristic for the 8 MHz probe. Negative currents (-) are defined as currents flowing out of a terminal, and positive 
currents are defined as currents flowing into a terminal. . . 
2. The 80286 chip specificatkm indicates that the chip has an output drive capacity of IOH = - 400 /LA and IOL = 2.0 rnA; 
the chip's input and 3-state loading specification is ± 10 /LA. As can be seen from the above table, the 80286 probe has a 
greater output drive capacity and presents higher input loading than the 80286 chip. 
3. The 80286 probe does not draw any current from the user Vee. 

3-47 



intJ 121CETM 

Capacitive Loading-80286 Probe 
• The 80286 probe presents the user system with a 

maximum capacitive load of 80 pF (100 pF ti0r 
READY, HLDA, '[(5'Ci(; 130 PJ for HLD, ERR R, 
PEREa, NMI RESET, INT, B SY; and.160 pF for 
BHE). . 

• All 80286 probe outputs are capable of driving 
o pF while meeting all the probe's timing specifi­
cations. The 80286 probe will drive larger capaci­
tive loads, but with possible performance degra­
dation. Derate the timing specifications by 
0.04 ns/pF corresponding to input capacitance of 
the user system. 

A.C. CHARACTERISTICS FOR THE 121CETM 80286 SYSTEM PROBE 
Table 19 provides timing information on the 80286 probe. Figures 16 through 19 define the timing symbols. 

Table 19. Calculated Worst Case Timing Information 

6MHzProbe 8 MHz Probe 

Symbol Parameter Min. Max. Min. Max. 
ns ns ns ns 

t1 System Clock Period 83 250 62 250 

t2 System Clock Low Time 20 225 15 225 

t3 System Clock High Time 25 230 225 235 

t17 System Clock Rise Time . 10 10 

t18 System Clock Fall Time 10 10 

t4 NMI, ITR, PEREa, ERROR, 27 20 
BUSY Setup Time 

t4 HOLD Setup Time 40 (30) 28 (20) 

t5 NMI, INTR, PEREa Hold Time 30 20 

t5 ERROR Hold Time 34 (30) 21 (20) 

t5 BUSY HoldTime 34 (30) 20 

t5 HOLD Hold Time 28 20 

t6 RESET Setup Time 12 28 

t7 RESET Hold Time 13 (5) 13 (5) 

t8 Read Data in Setup Time 20 11 (10) 

t9 Read Data in Hold Time 10 (8) 10 (8) 

t10 READY Setup Time 50 38 

t11 READY Hold Time 35 25 

t12 STATUS Valid Delay 10(1) 55 1 44 (40) 

t13 Address Valid Delay 10 (1) 80 1 65 (60) 

t14 Write Data Valid Delay 9 (0) 65 0 59 (50) 

t15 Address/STATUS/Data Float Delay - - - -
(See Tables 20-23) 

t15 Write Data Float Delay 10 (0) 34 0 50 

t16 HLDA Valid Delay 9 (0) 80 0 60 

t23 PEACK Valid Delay 10 (1) 80 (55) 1 48 (40) 
Numbers followed by parentheses deviate from the 80286 chip specification; the 1985 Microsystem Components Handbook 
chip specification timing is given In the parentheses. 

NOTE: 
1. The symbols tl, t2, t3 ... are references for the circled numbers on Figures 16, 17, 18, 19, and 24. For example to find 
t14 "Write Data Valid Delay" in Figure 16, look for a circled 14 on the figure. 

3-48 



intJ 121CETM 

80286 PROBE WAVEFORMS 

MAJOR CYCLE TIMING 

BUS CYCLE TYPE 

210469-26 

NOTE: 
Write data hold time can be increased by mapping memory to high-speed (HS) or optional high-speed (OHl?)· memory 
and using the WAITSTATE command to specify more waitstates than the number requested by the target system 
READY. Write data hold time can be extended even further by mapping memory to MUL TIBUS memory. Mapping 1/0 to 
the 121CE system (using the ICE option with the MAPIO command) also causes write data hold time to increase for 110 
write cycles. 

Figure 16 

80286 ASYNCHRONOUS INPUT 
SIGNAL TIMING 

BUS CYCLE TYPE 

ClK---.' 

PClK 
ISEE NOTE 11 

INTR,NMI 

~~~DI~~E~ ~~~~~~~~~~~~ 

ERROR,BUSY ""'~J'-'1-\II",T7'lrJI.''''''-_ 8177
(SEE NOTE 21 ~Jj\o-+---'r"~~JI'---'"",,,"

210469-27

NOTES:
1. PCLK indicates which processor cycle phase will oc­
cur on the next CLK. PCLK may not indicate the cor­
rect phase until the first bus cycle is performed.
2. These inputs are asynchronous. The setup and hold
times shown assure recognition for testing purposes.

Figure 17

3-49

80286 RESET INPUT TIMING AND
SUBSEQUENT PROCESSOR CYCLE PHASE

VeH - __ - ... 1

ClK

Vel

VeH . --0 -...1
ClK

Vel

::..®-/
;;>

RESET

0~ (SEE NOTE 11

------'1'0
210469-28

NOTE:
1. When RESET meets the setup time shown, the next
CLK will start or repeat 02 of a processor cycle.

Figure 18

inter 121CETM

80286 PROBE WAVEFORMS (Continued)

80286 PEREQ/PEACK TIMING FOR ONE TRANSFER ONLY

BUS CYCLE TYPE

A23-Ao--'r~,~-----------+-----+~r __ ~r __ ~~ ____________ 'r ____________ _
M/Ri,COD/iNi'A

.PEm------t~1

(SEE NOTE 2~ (j) ~
PEREO ~ \\\~ \S~,'0\~,»w.~~0 JIIIi/llllI/j/)j)lll1/ !//jill//I)!j)!///j /l11J/i)! III

NOTES:

ASSUMING WORD-ALIGNED MEMORY OPERAND. IF ODD ALIGNED, 80286
TRANSFERS TO/FROM MEMORY BYTE-AT -A-TIME WITH TWO MEMORY CYCLES.

210469-29

1. PEACK always active during the first bus operation of a processor extension data operant transfer sequence. The first
bus operation will be either a memory read at operand address or I/O at port address OOFA(H).
2. To prevent a second. processor ex1ension pata operand transfer, the worst case maximum time (shown above) is:
3 x CD - @ max. - 4 min. The actual, configuration-dependent, maximum time is: 3 x CD - @ max. - 0 min. +
A x 2 x CD. A is the number of ex1ra T c states added to either the first 'or second. bus operation of the processor
ex1ension data operand tr.ansfer sequence.

Figure.19

Interrupt Acknowledge Sequence Timing

Figure 20 shows an interrupt acknowledge sequence for the 80286 probe. Table 20 provides timing informa­
tion_

Table 20. Interrupt Acknowledge Timing

6 MHz Probe 8MHzProbe

Symbol Definition Min. Max. Min. Max.
ns ns ns ns

TIA1 Address Float Delay 14 59 19 60

TIA2 Address Valid Delay 23 79 23 68

TIA3 SHE Float Delay 14 56 18 51

TIA4 SHE Valid Delay 18 68 17 51

3-50

inter 121CETM

80286 PROBE WAVEFORMS (Continued)

INTERRUPT ACKNOWLEDGE SEQUENCE TIMING

!:sINTACYCLE 1~1 1~INTACYCLE2~1
BUS CYCLE TYPE Tc Ts Tc Tc T, T, T, T5 Tc Te Ts I 01 I 02 01 I ...,2 Ilbl ,¢2 I 01 m2 01 I 02 I 01 I r/l2 lli'll I 1."12 (,,1 102 I 01 I 02 I '.'11 I (12 1 ,()2

CLK

MIlO. CODIiNTi(

TIAl T'A2 ~ I~
A" • Ao \\'\\'\~~\\\I _______________________ ~ _____ k'777'««'1'77;< «'777« «777<<<777"<<

r--T1Al T'A4 ~ I~
BHE ~»>m:"':»>~»»m:"':> »~»»I _____________________________ K"",<<<<777<<(777<<<77T«('T7T<<('7T'<<

210469-30

NOTE:
See pages 4-33 in the 1985 Microsystem Components Handbook.

Figure 20

3-51

inter 121CETM

80286 PROBE WAVEFORMS (Continued) state during RESET can be found in the
iAPS-286/10 data sheet. The effects of the two­
clock delay and other emulator pin-state differences
(as a function of target system RESET) are shown in
Table 22. It should be noted that target system RE­
SET has no effect if RSTEN is FALSE. The timing
symbols used in Table 22, and Figures 21 and 22,
are defined in Table 21.

Reset Differences Between the 80286
and the 121CETM System 80286 Probe

There is a two-clock cycle delay that the 121CE sys­
tem 80286 probe adds to the RESET that it receives
from the target system. This delay affects the initial
80286 pin state during reset as seen in the target
system. A diagram showing the normal 80286 pin

Table 21. Timing Signal Definitions for Table 22 and Figures 21 and 22

Timing Definitlori
Signal

TR1 User RESET Setup Time to User CLOCK Falling Edge.

TR2 User RESET Hold Time after User CLOCK Falling Edge.

TR3 ADDRESS Float Delay Due to RESET High. (1)

TR4 ADDRESS Active after RESET Goes Low. (1)

TR5 BHE Float Delay Due to RESET High. (1)

TR6 BHE Active Delay after RESET Low. (1)

TR7 MilO, SO and S1 Float Delay after RESET High (1,2)

TRB MilO, SO and S1 Active Delay after RESET Low (1,2)

TR9 DATA Float Delay after RESET High. (1)

TR10 LOCK High after RESET High. (1)

TR11 COD/INTA Low after RESET High. (1)

TR12 PEACK High after RESET High. (1)

NOTES:
1. RESET must meet setup and hold requirements T R1 and T R2.
2. SO and Sl are pulled up with 5.1 K resistors on the emulator. The float delay in this case is
the delay until status is no longer actively driven by the emulator. The active delay is the time
until status is actively driven high.

Table 22. Emulator Pin State Differences Due to RESET

Calculated Worst-Case

6 MHz Probe 8 MHz Probe Number of CLOCK Edges
Symbol After User RESET Goes

Min. Max. Min. Max. High or Low
ns ns ns ns

TRl 12 23 Not Applicable

TR2 13 13 Not Applicable

TR3 31 97 35 85 2 (high)

TR4 32 102 41 95 2 (low)

TR5 32 109 35 79 2 (high) .

TR6 33 101 35 78 2 (low)

TR7 26 83 32 72 2 (high)

TRB 26 85 32 71 2 (low)-See Note 2 at Bottom of Table 21.

TR9 19 62 28 66 2 (high)

TR10 9 72 10 61 8 (high)

TR11 10 76 10 61 9 (high)

TR12 10 76 10 48 8 (high)

3-52

inter 121CETM

80286 PROBE WAVEFORMS (Continued)

Figure 21 and 22 show the RESET pin timing differences between the 121CE 80286 probe and 80286 chip,

PIN TIMING DIFFERENCES DUE TO RESET FOR TR1 TO TR

--- - - - -- - - --- -16CLOCKMINIMuM------ --- - ----- --I

r--------------:II--------------------------~~ 6028~:~E~DOUT _______ -+-'

ADDRESBO-23 ________ -+--.- --------- FLOATiNG --.----------- -- ------- -----'-- ---1
---------+--.----------FLOiiiiio-- ------ -- --- ---- ----- -- ---.---

i.-TR5 ---t
M/m---------+--J,----------FLOAniio------------------------------

TR

1I0,ill
(SEE NOTE 21 _____ '--__ -+--.-- - -------jii:(fATINii· --.------- - --- -:. - ---- ---------

i.-TR7
DATA-------+-"'"'"
0·15 ----------FLOATiiio- -- -------------- - ---- --------

i.--TR8

210469-31

Figure 21

3·53

121CETM

80286 PROBE WAVEFORMS (Continued)

PIN TIMlNG DIFFERENCES DUE TO RESET FOR TR10 TO TR12

TARGET SYSTEM
CLOCK

TARGET SYSTEM
RESET

LOCK __ ~

TR10

CODI~ __ r_----r__f--------

TR11

PEACK, ____________________________ ------------------------~~

TR12

210469-32

Figure 22

3·54

121CETM

HOLD/HLDA Differences Between the
80286 and the 121CETM System 80286
Probe

COENAS is TRUE, the pseudo-variable CPMODE
controls when HOLD is recognized. If CPMODE
equals 1, HOLD will only be recognized when the
probe is in emulation. If CPMODE is equal to 2,
HOLD will always be recognized, even when the
121CE system is in interrogation mode (not emulat­
ing). Table 24 gives the specification for the 121CE
80286 pin timing as a function of HLDA. The timing
signals used in Table 24, and Figures 23 and 24, are
defined in Table 23.

There are differences in the pin timing parameters of
the 121CE 80286 probe and the 80286 as a function·
of HLDA. A diagram showing the pin timing while
exiting and entering HOLD can be found in the
iAPX-286/10 data sheet. There are two 121CE pseu­
do-variables that control when a HOLD request will
be honored. When COENAS is FALSE, HOLD re­
quests from the target system are disabled. When

Table 23. Timing Signal Definitions for Table 22 and Figures 23 and 24

Timing
Definition Signal

TH1 LOCK Float Delay from HLDA High.(2)

TH2 LOCK Active Delay from HLDA Low.(2)

TH3 SHE Float Delay from HLDA High.

TH4 SHE Active Delay from HLDA Low.

TH5 MilO Float Delay from HLDA High.

TH6 MilO Active Delay from HLDA Low.

TH7 COD/INTA Float Delay from HLDA High.

TH8 COD/INTA Active Delay from HLDA Low.

TH9 ADDRESS 0-23 Float Delay from HLDA High.

TH10 ADDRESS 0-23 Active Delay from HLDA Low.

TH11 DATA 0-15 Float Delay from READY of Last Write
Cycle before HLDA Goes High. (80286 t15)

TH12 DATA 0-15 Active Delay from HLDA Low. (80286 t14)

TH13 SO and S1 FloatDelay from HLDA High.(1)

TH14 SO and S1 Active Delay from HLDA Low.(1)

TH15 PEACK Float Delay from HLDA High.

TH16 PEACK Active Delay from HLDA Low.

TH17 HLDA High to Low Valid Delay.(3)

TH18 HLDA Low to High Valid Delay.(3)

NOTES:
1. 80 and 81 are pulled up with 5.1 K resistors on the emulator. The float delay in this case is the delay until status is no
longer actively driven by the emulator. The active delay is the time until status is actively driven high.
2. The specified active delay indicates the time from the falling edge of target system clock until the 121CE actively drives the
signal. In some cases, the signal may not become valid until after the valid delay specified for normal (no HLDA) bus cycles.
One such case is LOCK.
3. All float delays and active delays (except TH11 and TH12) are due to a combinational delay from HLDA.

3-55

121CETM

Table 24. Pin Timing Differences Due to HOLD

Calculated Worst·Case

Symbol 6 MHz Probe 8 MHz Probe

Min Max Min Max
ns ns ns ns

TH1 19 112 20 81

TH2 19 112 19 78

TH3 21 120 22 85

TH4 21 11,5 21 82

TH5 18 113 17 78

TH6 20 113 17 75

TH7 17 106 17 75

TH8 19 106 16 72

TH9 21 119 22 91

TH10 22 127 21 82

TH11 • ' ... • •
TH12 • • • •
TH13 18 113 17 78

TH14 19 113 17 75

TH15 17 106 17 75

TH16 17 105 16 72

TH17 9 80 0 60

TH18 9 80 0 60
'See Figures 23 and 24.

3·56

inter 121CETM

80286 PROBE WAVEFORMS (Continued)

ENTERING AND EXITING HOLD

TARGET SYSTEM CLOCK

HLDA

TH1 B HLDA VALID DELAY HLDA VALID DELAY

FLOATING
--+--"1

TH1 i:'OCK

TH3 lrnE

TH5 MliO

TH7 CODliNfA

TH9 ADDRESS 0-23

TH13 IDlI,~

TH15 PEACK

210469-33

Figure 23

3-57

80286 PROBE WAVEFORMS (Continued)

EXITING AND ENTERING HOLD (Continued)

TARGET SYSTEM
CLOCK

HLDA--r-J

50-- - - ---h ,-----t---t----- - - - - -

@
_____________ __ ,~~E!4.?.!~L

WRITE
~~ ___ W~R~IT~E~DA~~~--~~-----------------

NOTE:

DATA VALID DELAY_
TH12 (B02B6@)

READY----------------------~

1. The data bus will remain 3-state OFF if a read cycle is performed.

Figure 24

Available Documentation

AEDITTM Text Editor User's Guide
PSCOPE 86 High-Level Program Debugger User's Guide
121CETM System User's Guide
f2ICETM System Reference Manual

-@

122143
121790
166298
166302
166305
166306
163256
163257
163258
210350
230839

Installation Supplement for flCETM System User's Guide for Intel hosts
Installation Supplement for flCETM System User's Guide for IBM PC hosts
iL TA User's Guide
iL TA Reference Manual
iL TA Learner's Guide
PSCOPE 86 data sheet
iL TA data sheet

ORDERING INFORMATION

Order Code Description: Kits for Series III Host

WRITE DATA FLOAT DELAY
THll (802B6@)

210469-34

III010KITB 121CE system B086/B088 support kit for Series III host. Includes 1II086A902B (8086/80B8
probe and software), 111515 (instrumentation chassis and emulation base module), and
111520B952B (host interface module and host software).

1II110KITB 121CE system B01 B6/B01 BB support kit for Series III host. Includes 11I186A912B
(80186/B0188 probe and software) 111515 (instrumentation chassis and emulation base mod­
ule), and 11I520B952B (host interface module and host software).

11I210KITB 121CE system 6 MHz 802B6 support kit for Series III host. Includes 1112B6A922B (6 MHz
B02B6 probe and software), 111515 (instrumentation chassis and emulation base module),
and 111520B952B (host interface module and host software).

3-5B

inter 121CETM

Order Code Description: Kits for Series III Host (Continued)

IIIOLAKITB 121CE system iL TA-OHS support kit for Series III host. Includes 111707 (OHS memory board),
111515 (instrumentation chassis and emulation base module), 111810A982B (logic timing ana­
lyzer and iLTA host software), and 111520B952B (host interface module and host software).

111811KITB Series III iLTA kit, includes 111810A9B2B (iLTA hardware and software) and IIIB20 (IOC board)

Order Code Descri~tion: Probes and Interface Module with Required Software
for Series III Host .

IIIOB6A902B ' 121CE system 8086/B088 emulation personality module (probe) and probe software (B-in.
single-density and double-density disks).

1111B6A912B 121CE system 801B6/B01BB emulation personality module (probe) and probe software (B-in.
single-density and double·density disks).

1112B6A922B 121CE system 6 MHz B02B6 emulation personality module (probe) and probe software (8-in.
single-density and double-density disks).

11128689228 121CE system B Mhz B0286 emulation personality module (probe) and probe software (8-in.
single-density and double-density disks).

111520B952B Series III host interface module; includes host interface board, cables, and 121CE system
host software (B-in. single-density and double-density disks).

Order Code Description: Kits for Series IV Host
1II010KITC 121CE system 8086/B088 support kit for Series IV host. Includes 111186A903C (B086/80B8

probe and software), 111515 (instrumentation chassis and emulation base module), and
1115208953C (host interface moduie and host software). '

111110KITC 121CE system B01B6/B01BB support kit for Series IV host. Includes IU186A913C
(B01B6/B01B8 probe and software), 111515 (instrumentation chassis and emUlation base
module), and 1115208953C (host interface module and host software).

111210KITC 121CE system 6 MHz B02B6 support kit for Series IV host. Includes 1112B6A923C (6 MHz
B02B6 probe and software), 111515 (instrumentation chassis and emulation base module),
and 1115208953C (host interface module and host software). .

IIIOLAKITC 121CE system iLTA-OHS software kit for Series IV host. Includes 111707 (OHS memory board),
111515 (instrumentation chassis and emulation base module), and IIIB10A9B3C (logic timing
analyzer .and iLTA host software), and 11I5208953C (host interface module and host soft­
ware).

Order Code Descri~tion: Probes and Interface Module with Required Software
for Series IV Host .

1II086A903C

111186A913C

111286A923C

121CE system BOB6/BOBB emulation personality module (probe) and probe software (51,4-in.
double-density diSk).

121CE system 80186/B01 BB emulation personality module (probe) and probe software (51,4-
in. double-density disk).

121CE system 6 MHz 80286 emulation personality module (probe) and probe software (51,4-
in. double-density disk).

,3-59

inter 121CETM

Order Code Description: Probes and Interface Module with Required Software
for Series IV Host (Continued)

111286B923C 121CE system 8 MHz 80286 emulation personality module (probe) and probe software (5%­
in. double-density disk).

111520B953C Series IV host interface module; includes the host interface board, cables, and 121CE system
host software (5%-in. double-density disks).

Order Code Description: Kits for IBM PC Host
1II010KITD 121CE system 8086/8088 support kit for IBM PC host. Includes 1II086A904D (8086/8088

probe and software), 111515 (instrumentation chassis and emulation base module), and
1I1520AT954D (host interface module and host software).

111110KITD 121CE system 80186/80188 support kit for IBM PC host. Includes 111186A914D
(80186/80188 probe and software), 111515 (instrumentation chassis and emulation base
module), and 11I520AT954D (host interface module and host software).

111210KITD 121CE system 6 MHz 80286 support kit for IBM PC host. Includes 111286A924D (6 MHz.80286
probe and software), 111515 (instrumentation chassis and emulation base module), and
111520AT954D (host interface module and host software).

Order Code Description: Probes and Interface Module with Required Software
for IBM PC Host

1II086A904D 121CE system 8086/8088 emulation personality module (probe) and probe software for PC­
DOS (5%-in. double-density disks).

111186A914D 121CE system 80186/80188 emulation personality module (probe) and probe software for
PC-DOS (5%-in. double-density disk).

111286A924D 121CE system 6 MHz 80286 emulation personality module (probe) and probe software for PC­
DOS (5%-in. double-density disk).

11I286A924D 121CE system 8 MHz 80286 emulation personality module (probe) and probe software for PC­
DOS (5%-in. double-density disk).

111520AT954D IBM PC host interface module; includes the host interface board, cable, and 121CE system
host software for PC-DOS .(5%-in. double-density disks).

Order Code Description: 121CE System Instrumentation Chassis and Optional
High Speed Memory for .series III and IV and IBM PC Hosts

111515 121CE system instrumentation chassis and emulation base module; includes the instrumenta­
tiCln chassis, emulation base module with memory map 1/0 board, breakltrace board, emu­
lator base, and emulation clips assembly.

111707 121CE system optional high speed (OHS) memory board, 128K bytes.

Order Code Description: iLTA Logic Timing Analyzer, Cables, and Accessories
11I810A982B

11I810A983C

121CE system logic timing analyzer and software for operation with a Series III host (8-in.
single-density and double-density disks).

121CE system logic timing analyzer and software for operation with a Series IV host (5%-in.
double-density disks).

3-60

inter
Order Code

111530

111531'

111531A*

11I532A

111533A*

111621

111815

121CETM

Description: iLTA Logic Timing Analyzer, Cables, and Accessories
(Continued)

Cable, host-to-chassis, 3 m (10ft.) [only for use with Model 800 hosts].

Cable, host-to-chassis, 12.8 m (42 ft.) [only for use with Model 800 hostsl.

Cable, host-to-chassis (for Series III and Series IV hosts); 12.2 m (40 ft).

Cable set, inter-chassis; 0.6 m (2 ft).

Cable set, inter-chassis; 3 m (10ft).

121CE system emulator clips assembly.

121CE system micro hook set (40).

111820 IOC board upgrade for iLTA on Series III development system.
*00 not use 111531 qr 111531A with 11I533A because total cable length must be less than 15.2 m (50 ft.)

Order Code Description: Extra 121CE System Software
9028 121CE system 8086/8088 probe software for Series III (8-in. single-density and double-densi-

ty disks).

903C 121CE system 8086/8088 probe software for Series IV (5%-in. double-density disk).

9040 121CE system 8086/8088 probe software for PC-DOS (51,4-in. double-density disk).

9128 121CE system 80186/80188 probe software for Series III (8-in. single-density and double-
density disks).

913C 121CE system 80186/80188 probe software for Series IV (51,4-in. double-density disk).

9140 121CE system 80186/80188 probe software for PC-DOS (5%-in. double-density disk).

9228 121CE system 80286 probe software for Series III (8-in. single-density and double-density
disks).

923C 121CE system 80286 probe software for Series IV (51,4-in. double-density disk).

9240 121CE system 80286 probe software for PC-DOS (5%-in. double-density disk).

9528 121CE system host software for Series III (8-in. single-density and double-density disks).

953C 121CE system host software for Series IV (51,4-in. double-density disks).

9540 121CE system host software for PC-DOS (51,4-in. double-density disks).

982B 121CE system iL TA software for Series III (8-in. single-density and double-density disks).

983C 121CE system iL T A software for Series IV (5%-in. double-density disks).

Order Code Description: PSCOPE on IBM PC-DOS
iPSC86DOS PSCOPE software that runs on IBM PC-DOS.

III

III

III

•

III

VLSiCETM·96P
IN-CIRCUIT EMULATOR FOR THE MCS®·96

FAMILY OFMICROCONTROLLERS
Precise Real· Time Emulation of the III Shadow Registers Allow Reading Many
MCS®-96 Family of Components 8096 Write-Only and Writing Many

64K of Mappable Memory for Early Read-Only Registers

Software Debug and (EP)ROM III Symbolic Debugging Allows Accesses
Simulation to Memory Locations 'and Program

A 4K-Entry Trace Buffer for Storing a Variables (Including Dynamic Variables)

Real-Time Execution History, Including Using Program-Defined Names

Both Code and Data Flows III Equipped with the Integrated Command

Multistate Break and Trace Qualified on Directory (ICD) Which Provides

Execution Addresses, Data Addresses, - An On-Line Help File

and Values (Both External and Internal - A Dynamic Syntax Menu

RAM), Opcodes and Selected PSW - Dynamic Command-Entry Error

Flags Checking

Fast Break and Dynamic Trace III Serially Linked to Intel Series III II V
Hosts or IBM* PC-XT and AT

The VLSiCETM-96P In-Circuit Emulator is a debugging and test tool that is used for d~velopment of the
hardware and software of a prototype system based on the MCS®-96 family of microcontrollers.

'IBM is a trademark of International Business Machines.

3-62

280140-1

November 1986
Order Number: 280140-003

infef VLSiCETM·96P

INTRODUCTION

The VLSiCE-96P emulator allows hardware and soft­
ware development of a design project to proceed
simultaneously. With the VLSiCE-96P emulator, pro­
totype hardware can be added to the system as it is
designed and software can be developed prior to
the completion of the hardware prototype. Software
and hardware integration then occurs while the
product is being developed.

The VLSiCE-96P emulator assists four stages of de­
velopment:

• Software debugging

• Hardware development

• System integration

• System test

Software Debugging

The VLSiCE-96P emulator can be operated without
being connected to the user's prototype or before
any of the user's hardware is available. In this stand­
alone mode, the VLSiCE-96P emulator can be used
to facilitate program development.

Hardware Debugging

The VLSiCE-96P emulator's precise characteristics
that match the controller and full-speed operation
make it a valuable tool for debugging hardware, in­
cluding time-critical serial port and timer interfaces.

System Integration

Integration of software and hardware can begin
when the microcontroller socket is connected to any
functional element of the user system hardware. As
each section of the user's hardware is completed, it
can be added to the prototype. Thus, each section
of the hardware and software can be system tested
in real-time operation as it becomes available.

System Test

When the prototype is complete, it is tested with the
final version of the system software. The VLSiCE-
96P emulator is then used for real-time emulation of
the microcontroller to debug the system as a com­
pleted unit.

The final product verification test may be performed
using the ROM or EPROM version of the microcon­
troller. Thus, the VLSiCE-96P emulator provides the

3-63

ability to debug a prototype or production system at
any stage in its development without introducing ex­
traneous hardware or software test tools.

PHYSICAL DESCRIPTION

The VLSiCE-96P emulator consists of the following
components (see Figure 1):

• Power supply

• AC and DC power cables

• Serial cable (host-specific)

• Controller pod

• User cable assembly (consisting of the user ca-
ble and processor module)

• Crystal power accessory (CPA)

• Multi-synchronous accessory (MSA)

• 48-pin DIP adaptor
68-pin PGA adaptor
68-pin PLCC adaptor (optional)

• Software (includes the VLSiCE-96P emulator
software, diagnostic software, and tutorial)

The power supply connects to the controller pod via
the DC power cable. There are several voltage op­
tions available for the power supply determined by
the settings of the switches on the back of the sup­
ply.

The controller pod contains 64K of ICE memory, a
4K-entry trace' buffer, and circuitry which provides
communication between the host and the emulator.

The serial cable connects the host system to the
controller pod. The serial cable has electrical specifi­
cations similar to the RS-232C standard.

The processor module contains a special version of
the Intel 8096 microcontroller, called the emulation
processor. This chip performs real-time and single­
step execution of a program's object code for de­
bugging purposes and replaces the target system
microcontroller.

The crystal power accessory (CPA) is a small de··
tachable board that connects to the back of the con­
troller pod and is used to run the VLSiCE-96P emu­
lator in the stand-alone mode. It is also used when
running customer confidence tests. In the stand­
alone mode, the user plug on the user cable is con­
nected through the 68-pin PGA adaptor to the CPA.
The CPA supplies clock and power. Stand-alone
mode is used to test and debug software prior to the
availability of hardware.

The multi-synchronous accessory can be used to
connect up to 21 multi-ICE compatible emulators to-

l

."
~ c
;
=-....
:::r " CD
<

<
~

Co) In m (;
.j>. m

(;

i: .
m

CD en

-t

"'U
DC

II: •

POWER

CD
G)
."

m CABLE
3
C
iii -0 ..

280140-2

inter VLSiCETM·96P

gether for synchronous GO and BREAK emulation.
It can also be used with other debug equipment
such as logic analyzers and oscilloscopes.

Figure 1 shoWs a drawing of the VLSiCE-96P emula­
tor.

VLSiCE software fully supports all mnemonics, ob­
ject file formats, and symbolic references generated
by Intel's ASM 96, PLIM 96, and C96.

The on-line tutorial is written in VLSiCE-96P com­
mand language. Thus, the user is able to interact
with and use the VLSiCE-96P emulator while execut­
ing the tutorial.

A comprehensive set of documentation is included
with the VLSiCE-96P emulator.

VLSiCETM·96P EMULATOR FEATURES

The VLSiCE-96P emulator has been created to as­
sist a product designer in developing, debugging and
testing deSigns incorporating the MCS-96 family of
microcontrollers. The following are some of the
VLSiCE-96P features:

Emulation

Emulation is the controlled execution of the proto­
type software in the prototype hardware or in an arti­
ficial hardware environment that duplicates the mi­
crocontroller of the prototype system. Emulation is a

- transparent process that happens in real-time. The
execution of prototype software is facilitated through
the VLSiCE-96P command language.

Memory Mapping

There is 64K of zero-waitstate, high-speed mappa­
ble memory available. This memory· space can be
mapped to either the user prototype system or to the
on-board VLSiCE-96P memory space in 1 K-byte
blocks on 1 K-byte boundaries. Mapping memory to
the VLSiCE-96P system allows software develop­
ment to proceed before prototype hardware is avail­
able. Memory mapping also gives the VLSiCE-96P
emulator the capability to simulate the BK-bytes of
(EP)ROM on those versions of the chip for code ver-
ification and validation. .

Memory Examination and Modification

The memory space for the MCS-96 component and
its target hardware is accessible through the emula­
tor. The VLSiCE-96P software allows the compo-

3-65

nent's special function registers to be accessed
mnemonically (e.g. AD RESULT, INT MASK). A sig­
nificant benefit to the user is the ability of the
VLSiCE~96P software to read many of the write-only
registers (e.g. AD_COMMAND, PWM_CONTROL)
and to write many of the read-only registers (e.g.
AD_RESULT, SBUFRX). Data can be displayed or
modified in several bases: hex, decimal, and binary,
and in these formats: ASCII, real and integer. Pro­
gram code can be disassembled and displayed with
opcode mnemonics. It also can be modified with
standard assembler statements.

Symbolic debugging is used to specify memory loca­
tions by their symbolic references. A symbolic refer­
ence is a procedure name, line number, or label in
the user program that corresponds to a location. Us­
ing symbolics to reference program locations is a
mnemonic way of accessing the program.

Some typical symbolic functions include:

• Changing or inspecting the value of a program
variable by using its symbolic name, rather than
the address of the memory location.

• Defining break and trace events using symbolic
references.

• Referencing static variables, dynamic (stack-resi­
dent) variables, based variables, and record
structures combining primitive data types. The
primitive data types are ADDRESS, BOOLEAN,
BYTE, CHAR (character), WORD, DWORD (dou­
ble word), INTEGER, LONGINT, SHORTINT, and
REAL.

The VLSiCE-96P system maintains a virtual symbol
table for program symbols making it possible for the
table to exist without fitting entirely into host RAM
memory. The size of the virtual symbol table is cone
strained only by the capacity of the disk ..

Breakpoint Specifications

Breakpoints allow halting of a user program in order
to examine the effect of the program's execution on
the user prototype system. Breakpoints can be de­
fined as execution addresses, data addresses and
data values (both external and internal RAM, op­
codes, and selected bids of the PSW flag. These
breaks can also be arranged to occur. over a range
of addresses. After a break the user program can
resume execution from where it left off.

Trace Specifications

Tracing can be triggered with the same conditions
set for breaking. The trace buffer is displayed as dis­
assembled instructions, data fetches and stores,
and with the timetag showing the relative time at

VLSiCETM·96P

h1t> PRINT NEWEST 8 CYCLES
FRAME ADDRESS CODE MNEMONIC OPERANDS TIME

(1020)300A C82A PUSH 2A
[002AH]=0087H(R) [0018H]=0028H(R)

, [0026H]=0087H(W)

(1021) 300C 64322A ADD 2A,32
[0032H]=0010H(R) [002AH]=0087H(R)

(1022) 300F 6975002A SUB 2A,#75
[002AH]=0097H (R) [OO2AH]=0022H (W)

(1027) 3010 CC2A0002 POP 2A
[0018H]=0026H(R)' [0026H]=0087H(R)
[002AH]=0087H(W)

172 JA.s
[0018H]=0026H(W)

175 JA.s
[002AH=0097H (W)

180 /Ls

205 /Ls
[0018H=0028H(W)

Figure 2. The Trace Buffer Display

which the program executed each instruction. Figure
2 shows a trace display as a result of the PRINT
command. '

Normally, the VLSiCE-96P system traces program
activity while the user program executes. With a
trace specification, tracing can be specified to occur
only when specific conditions are met during execu­
tion. The trace is collected in a buffer that can col­
lect data on up to 4K entries of information during
emulation.

The trace buffer can' be examined during halt mode
or if non-stop emulation is desired, the trace can be
examined while emulation continues. If this second
option is selected, trace collection stops briefly while
the trace buffer is uploaded to the host.

Arming and Triggering

The VLSiCE-96P command language allows specifi­
cationof complex events with up to 8 states, each
with several conditions. For example, a specification
can be made that causes a break to occur when a
variable is written only within a certain procedure.
The execution of the procedure is the arm condition;
the variable modification is the break condition. The
arm condition is an optional part of a break/trace
sequence in the VLSiCE emulator. A set of arm con­
ditions can be used to ensure that a system break is
not possible until all required qualifying conditions
are satisfied.

3-66

Procedures

Debugging procedures (PROCS) are a user-named
group of VLSiCE commands that are execiJted se­
quentially. Procs can simulate missing hardware or
software, collect debug information, and make trou­
bleshooting decisions. They can be copied to text
files on disk, then included from the file into the com­
mand seq~ence in later test sessions.

Procedures can also serve as programmable diag­
nostics, implementing new emulator commands for
special purposes or to increase generality.

Dynamic Tracing

The trace buffer can be dynamically accessed dur­
ing emulation. Any form of the PRINT command can
be entered and the specified portion of the trace
buffer is displayed. This allows real-time display of
processor activity. However, displaying the trace
buffer during emulation stops collection of trace and
some trace information could be lost.

On-Line Syntax Guide

A special syntax guide called the Integrated Com­
mand directory (ICD), at the bottom of the display
screen, aids in creating syntactically correct com­
mand lines. Figure 3 shows an example of the ICD
for the GO command.

intJ VLSiCETM·96P

GO

FOREVER USING TIL <execute>

hIt> GO FROM

< address> • : < modul e-name > • < symbo I> # < 1 i ne- number> < ex pr >

hI t> GO FROM 2D8DH

FOREVER TIL USING <execute>

hI t> GO FROM 2D8DH USING

<brkreg name>

hI t> GO FROM 2D8DH USING br1

, TRACE; <execute>

280140-3

Figure 3. The Integrated Command Directory for the GO Command

HELP
This feature provides assistance with the emulator
commands through the host system terminal. HELP
is available for most of the commands. Figure 4
shows one of the commands HELP can be obtained
for.

DESIGN CONSIDERATIONS

There are design considerations that the user
should be aware of before designing with the
VLSiCE-96P emulator.

Electrical Considerations

The user pin timings and loadings are identical to the
8096 component except as noted below. Also, the
RESET and CLKOUT pins have an additional load­
ing of 1 /LA and 10 pF. The Non-Maskable Interrupt
(NMI) is not supported.

3-67

Clock Frequency
Vee
lec!1)

NOTE:
1. All outputs disconnected.

Min.
6MHz
4.75V

Mechanical Considerations

Max.
10 MHz
5.25V
400mA

The user plug is at the end of a three foot flexible
cable. Mequate spacing must be provided on the
target system to allow the processor module to be
inserted into the target system.

The height of the processor module and target
adaptor may pose a problem for multiple board sys­
tem prototypes that need to be debugged and test­
ed. Be sure that the space between the boards is
greater than 1 %" to allow for the processor module
and target adaptor.

VLSiCETM-96P

hI t > HELP ASM
The ASM command displays or modifies memory as 8096 assembler mnemonics.
The syntax is:

ASM<partition> : :=<partition> [= I <asm96-inst> I

<address> <cr>
[, I <asm-96ins+'> "]]

where:

<partition>specifies the area of memory to be displayed and modified.

<asm96-inst> specifies the 8096 assembly instruction to be assembled.'

<address> is any valid 8096 address.

<cr> indicates a carriage return.

The "ASM <address>=" syntax puts the user in line-mode, displaying the
current address at which the instruction will be placed and not requiring the
quotes around the instructions.

Please see the VLSiCE-96P Reference Manual for more detailed information.

Figure 4. HELP Screen

Figure 5 shows the dimensions for the processor
module and target adaptor. In the figure, please note
the location of pin 1 on each target adaptor.

Limitations and Restrictions

• The non-maskable interrupt (NMI) is not support­
ed.

@ 1"'-'1 1"'-'1

(

@ u-u o.ru

J

• High Speed Input/Output (HSIO) is emulated, but
can not be read or written to during interrogation
mode.

I
• If a break occurs immediately before the JVT in-

struction, the VT flag is cleared. There is no way
to then tell if the flag was set before re-entering
emulation.

68 PIN PGA
TARGET

ADAPTOR
000000000

00000000000

~g ~g
00 00
00 00
00 00
00 000
00 00

PIN 1- ~~ooooooooo
000000000

3.2"

48 PIN DIP
TARGET

ADAPTOR

PIN1
!-

r.-I. ----- 4.8" -------.l.1

Figure 5. Dimensions for the Processor Module and Target Adaptor

3-68

280140-4

intJ VLSICETM·96P

• If a read access of SP_STAT or IOS1 occurs at
the same time that an interrupt sets a bit in the
accessed register, there is a possibility that the
new interrupt flag will be lost, because read ac­
cesses to the SP_STAT or IOS1 registers clear
these registers. A software work-around for this
problem is provided.

• Bit 7 of Port 0 is inverted when the digital value of
the port is read.

• The counters for the pulse width modulator
(PWM) and hardware Timer 1 can be out of sync
if either are disabled during interrogation. They
can be re-synced with a user reset of the system.

• The READY pin is not supported. It should be tied
high (+SV).

• The system presently operates up to 10 MHz.

• Ports 3 and 4 cannot be read by code during em­
ulation or by the host during interrogation when
they are used as ports (EAt = 1).

The VLSiCE-96P system has some limitations that
are inherent in the 809X-90 core of the emulation
processor. These limitations are:

• The displacement portion of an indexed, three
word multiply may not be in the range of 200H
through 17FFH inclusive. '

• The EXT instruction never sets the. N flag, and
always sets the Z flag. The EXTB instruction
works correctly.

• The zero flag is either set or cleared by the Add
or Subtract with carry instructions as appropriate.

• Trying to read, mOdify, or write the interrupt pend­
ing register may cause interrupts to be missed
during execution of the instruction.

• The V and VT flags may indicate an overflow af­
ter a signed divide when no overflow has oc­
curred.

• If an event on' an HSI pin set to look for every
eighth transition occurs less than 16 state times
after an event on any other pin, then the divide by
8 event is recorded twice in the HSI FIFO; The
time tag of the duplicate FIFO entry is equal to
that of the initial entry plus one.

• An event occurring within 16 state times of a prior
event on the same HSI line may not be recorded.
Additionally, an event occurring within 16 state
times of a prior event on another HSI line may be
recorded with a time tag one count earlier than
expected. Events are defined as the condition the
line is set to trigger on.

• Software timer interrupts cannot be generated by
the HSO commands that reset Timer 2 or start an
A to D conversion.

3-69

• The serial port is not tested in. mc;>de O. The re­
ceive function in this mode does not work cor­
rectly.

• Loading the baud rate register with 8000H (maxi­
mum baud rate, internal clock) may cause an 11
millisecond delay (at Fosc = 12 MHz) before the
port is properly initialized. After initialization the
port works properly.

• To be used as outputs, ports 3 and 4 each must
be 8!1dressed as words but written to as bytes.
To write to Port 3 use 'ST temp, 1ffeh', where the
low byte of 'temp' contains the data for the port.
To write to Port 4, use the DCB operator to gen­
erate the opcode sequence OC3H, 001 H, OFFH,
01 FH, (temp), where the high byte of temp con­
tains the data for the port. Ports 3. and 4 do not
work as inputs.

• The watchdog timer does not run after a chip re­
set until a 01 EH followed by a OE1 H is written to
the watchdog timer register. When this is done,
the watchdog timer functions as described in the
8096 Users Manual until the next chip reset. This
feature permits disabling of the watchdog by not
writing to it. .

• External interrupts on PO.7 are sampled every
state time instead of every eight state times.

• The baud rate generated in the external clock
can be computed using this formula:

Baud Rate = Input Frequency/(1S0B)

This formula does not work in mode 0 and assumes
T2CLK is the source of the input frequency.

• When more than one HSO event occurs with in­
terrupts occurring at the same time, multiple HSO
interrupts may occur. This is because HSO inter­
rupts are internal events and are not synchroniz­
ed to Timer 1.

• Locations 2012H through 207FH in external
memory must be filled with the hex value OFFFFH
to ensure compatibility with future parts. The in­
ternal locations in this range are still reserved for
the factory test code.

• Neither the source nor the destination addresses
of the Multiply or Divide instructions can be a writ­
able special function register.

• The special function registers may not be used as
base or index registers for indexed or indirect in­
structions.

• Several of the special function registers can only
be accessed as words, while others only as
bytes. These restrictions are listed in the 8096
Users Manual.

intJ VLSiCETM·96P

SPECIFICATIONS

Host Requirements

Disk drives- Duai. floppy or 1 hard disk and 1 floppy
drive required (10M-byte Winchester
optional).

An IBM PC XT or PC AT with 512K RAM and hard
disk. Intel recommends PC-DOS 3.0 or .Iater. Earlier
versions of PC-DOS may be acceptable.

Other peripherals as desired.

VLSiCE·96P Software Package

VLSiCE-96P emulator software

VLSiCE-96P confidence tests

VLSiCE-96P tutorial software

System Performance

Mappable zero
wait-state memory
(zero wait-states
up to 12 MHz)

Min. OK-bytes
Max. 64K-bytes

Trace buffer 4K x 48 bits

Mappable to
user or ICE
memory in
1K blocks
on 1K
boundaries.

Virtual symbol table---A maximum or 61 K-bytes of
host memory space is avail­
able for the virtual symbol ta­
ble (VST). The rest of the
VST resides· on disk and is
paged in and out as needed.

Physical Characteristics

Controller Pod

Width: 8%" (21 cm)

Height: 1 %" (3.8 cm)

Depth: 13%" (34.3 cm)

Weight: 4 Ibs (1.85 kg)

3-70

Power Supply

Width: 7%" (18.1 cm)

Height: 4" (10.06 cm)

Depth: 11" (27.97 cm)

Weight: 15 Ibs (6.1 kg)

User Cable

3' (.944m)

Serial Cable

12' (3.6m)

Electrical Characteristics

Power Supply

100-120V or 220-240V (selectable)
50-60 Hz
2 amps (AC max)@ 120V
1 amp (AC max)@ 240V

Environmental Characteristics

Operating temperature: O°C to 40°C (32°C to 104°F)

Operating humidity: Maximum of 85% relative
humidity, non-condensing

DOCUMENTATION

VLSiCE-96P In-Circuit Emulator User's Guide, order
number 165814.

VLSiCE-96P In-Circuit Emulator Installation Supple­
ment for Intel Hosts, order number 166477.

VLSiCE-96P In-Circuit Emulator Installation Supple­
ment for IBM Hosts, order number 166478.

infef VLSiCETM·96P

ORDERING INFORMATION

Base Hardware and Software

Order Code Description
V096S96A VLSiCE-96P emulation base and soft­

ware on 8" single density media for
hosting on an Intel Series III. [Re­
quires software license].

V096S96B VLSiCE-96P emulation base and soft­
ware on 8" double density media for
hosting on an Intel Series III. [Re­
quires software licensel.

V096S96C VLSiCE-96P emulation base and soft­
ware on 5%" media for hostingonan
Intel Series IV. [Requires software Ii­
censel.

V096S96D VLSiCE-96P emulation base and soft­
ware on 5%" media for hosting on an
IBM PC-AT under PC-DOS 3.0. [Re­
quires software licensel.

Serial Cables (must be ordered for
complete system)

Order Code Description
SCOM1 Serial communications cable is a 25-

pin male to 9-pin male for hosting
VLSiCE-96P on Intel Series 1I1/1V.

SCOM2

SCOM3

TA096E

Serial communications cable is a 25-
pin female to 9-pin male for hosting
VLSiCE-96P on IBM PC-XT.

Serial communications cable is a 9-
pin female to 9-pin male for hos~ing
VLSiCE-96P on IBM PC-AT.

68 pin PLCC adaptor board.

Software Only

Order Code Description
S096AP Software for host, probe, diagnostic

and tutorial on 8" single sided media
for use with a Series III. [Requires
software licensel.

S096BP Software for host, probe, diagnostic
and tutorial on 8" double sided media
for use with a Series III. [Requires
software licensel.

3-71

S096CP

S096DP

Software for host, probe, diagnostic
and tutorial on 5%" media for use
with a Series IV. [Requires software
license].

Software for host, probe, diagnostic
and tutorial on 5%" media for use
with a IBM PC AT or PC XT (requires
PC DOS 3.0 or later). [Requires soft­
ware licensel.

Other Useful Intel MCS®·96 Debug
and Development Support Products

Order Code

186ASM96

186PLM96

D86ASM96NL

Description
Consists of the ASM 96 macro as­
sembler that translates symbolic as­
sembly language mnemonics into
relocatable object code, and the
RL96 linker and relocator program
that links modules generated by
ASM 96 and PLIM 96 and locates
the linked object modules to abso­
lute memory locations. System re­
quirements . and Intellec® System
running iNDX.

Consists of the PL/M 96 compiler
that provides high level program­
ming language support, the LIB 96
utility that creates and maintains li­
braries of software object modules,
the FPAL96 floating point arithmetic
library, and the RL96 linker and relo­
cator program that links modules
generated by ASM 96 and PL/M 96
and locates the linked object mod­
ules to absolute memory locations.
System requirements and Intellec®
System running iNDX.

ASM/R&L 96 for PC-DOS. It con­
tains a macro assembler, a linkerl
locator utility, a floating point utility
and a librarian. System require­
ments are an IBM PC AT or PC XT
with 512 K of RAM and PC-DOS 3.0
or greater.

intJ VLSICETM·96P

Order Number Description
D86PLM96NL PLIM 96 and R&L for PC-DOS. It

contains a compiler, a linker/locator
utility, a floating point utility and a
librarian. System requirements are
an IBM PC AT or PC XT with 512K
of RAM and PC-DOS 3.0' or greater.

D86C96NL C96 and R&L for PC-DOS. Contains
a compiler linker/locator utility, and
all standard C libraries, including

. STDIO. System requirements are an
IBM PC AT or PC XT with 512K of
RAM and PC-DOS 3.0' or greater.

SBE96SKIT iSBE-96 single board emulato~ for
use with the Series IIIIIV develop­
ment systems. The kit contains:

iSBE-96 Single Board Emulator

MCSIB>-96 software support pack­
age for the Series IIIIIV develop­
ment systems.

iSBE-96 Series IIIIIV upgrade kit
(cables and software needed to run
on Intel Hosts).

3-72

SBE96DKIT iSBE-96 single board emulator for
use with the IBM PC AT and PC XT
computer systems. The kit contains:

iSBE-96 single board emulator

MCSIB>-96 software support pack­
age for PC-DOS.

iSBE-96 DOS upgrade kit (cables
and software needed to run on the
IBM PC AT or Pc. XT).

Running the iSBE-96 emulator on the Series·1I and
IPDS system requires software from:

U.S. Software Corporation
5470' N.W. Innisbrook
Portland, OR 97229
Phone: 50'3-645-50'43
International Telex: 4993875

ICETM-386
In-Circuit Emulator for the 80386

• Provides Real-time Emulation of the • Provides Real-time Execution Trace
80386 at Speeds up to 16 MHz With Time Tags That Can Be Used to

• Maps User Program Memory into a Analyze Execution Time of User Code

Maximum of 128 KB of Memory in 4 KB • Supports Coprocessor Debugging
Increments • Stores over 2000 Frames of Program

• Allows Zero Wait-state Operation From Execution History
User System Memory • Allows User to Assemble and

• Provides Full Debug Support of 8086 Disassemble Program Code in 80386
Absolute Intel OMFs, and the 80286 and Instruction Mnemonics
80386 Bootloadable Intel OMFs • Provides Human Interface with

• Hosted on the Intel 286/310 System Command Line Syntax, Guidance,
Running XENIX' or on the IBM PC AT Command Line Editing, Control
Running DOS Constructs, Debug Procedures, Debug

• Allows User to Examine and Modify Variables, and Shell Escape to the Host

Memory, I/O, and the 80386 Registers Operating System

• Allows User to Examine and Modify • Uses the Four On-chip Breakpoints to

Descriptor Tables, Page Tables, the Recognize Instruction Execution

Interrupt Table, and the Task State Addresses or Data Access Addresses

Segment Which Can Be Used to Trigger Break,
Trace, or Change the State of External

• Allows User to Set Breakpoints on Task Sync Lines
Switching, External Inputs, Trace Buffer
Full, and Instruction Execution

The ICE-386 In-Circuit Emulator provides sophisticated hardware and software debugging capabilities for
80386-based designs. These capabilities include emulation of the 80386 CPU and the ability to examine and
modify registers in optional numeric coprocessors.

·XENIX is a registered trademark of Microsoft Corporation.
:l:UNIX is a registered trademark of AT&T Bell Laboratories.

3-73

280316-1

November 1986
Order Number: 280316-002

inter ICETM-386

PHYSICAL DESCRIPTION

The ICE-386 emulator consists of the following (see
Table 1):

• Power supply with three power cables (an AC ca­
ble and two DC cables)

• Control unit (CU) with an RS-232C communica­
tion cable

• User cable assembly with Processor Module
(PM)

• Stand-alone/self-test (SAST) unit

• Optional isolation board (OIB)

• A signal access board (SAB)

• SAB removal tool
• Software (includes the emulator software and di­

agnostic software)

The power supply powers the control unit and the
stand-alone self-test unit (SAST).

The control unit (CU) controls the processor module
and communicates with the host. The control unit
has 128 KB of emulation memory, over 2000' frames
of trace storage, and a control processor. The fol­
lowing connectors are on the control unit:

• Power supply connector

• GPIB connector

• RS-232C serial connector

• User cable connector

• Four BNC connectors, two for SYNCIN and two
for SYNCOUT signals (used as qualifiers for trig­
gering external events with the GO command).

The RS-232C cable or the (optional) GPIB cable
connects the control unit to the host computer.

The user cable assembly comprises the processor
module (the PM, which includes the 80386 emula­
tion processor and IC buffers) and a cable that con­
nects to the control unit. A target adaptor, mounted
to the bottom of the PM, provides pin compatibility
with the target 386 socket. The PM also has a sock­
et for connecting the OIB or SAST unit to the emula­
tor.

The stand-alone self-test (SAST) unit permits stand­
alone operation of the ICE-386 emulator by supply­
ing power and a 16MHz CLK2 to the processor mod­
ule. The SAST unit provides self-test and diagnostiC
tests for the ICE-386 emulator and the optional iso­
lation board (OIB). Sockets are provided for plugging
the OIB into the SAST unit and also for using the
ICE-386 emulator with math coprocessors.

3-74

The optional isolation board (OIB) is a circuit board
that is installed between the processor module and
the target system to protect the 80386 emulation
processor from an untested target system. This en­
sures proper operation of the ICE-386 emulator
even if the user bus fails. When it is determined that
the target system will not electrically damage the
80386 emulation processor, the OIB can be re­
moved and the emulation processor can operate at
full speed. Use of the OIB limits the operating speed
of the emulator to a maximum frequency of 8 MHz.
See Table 3 for complete details on OIB timing.

The signal access board (SAB) provides access to
all the 80386 Signal pins for attaching external in­
struments, e.g., a logic analyzer. It can be installed
between the processor module and the OIB board,
or between the processor module and the target
system.

The SAB removal tool is used to separate the signal
access board from the processor module.

FUNCTIONAL DESCRIPTION

16 MHz Emulation

The ICE-386 emulates the 80386 at speeds up to 16
MHz, thus providing early detection of subtle timing
problems that may arise at full speed. Intel's bond­
out technology stresses the tightest possible con­
formance between timing parameters of the emula­
tor and the target processor.

Event Recognition and Emulation
Control

The ICE-386 emulator is capable of recognizing the
following conditions:

• An instruction boundary

• A data write to a user-specified linear or virtual
address

• A data access at a user-specified linear or virtual
address

• Trace buffer full

• Task switch

• External input

Data breaks can be of BYTE, WORD, and DWORD
length and are aligned on boundaries equal to the
range size.

intJ

Name

Control Unit

User Cable Assembly

SASTUnit

OIB

SAB

SAB Removal Tool

ICETM·386

Table 1.ICETM-386 System Overview

280316-2

Description

Contains an 80188 control processor, serial and GPIB communications, 128
KB mappable memory, and a trace buffer.

Includes the user cable and the processor module, which contains the
80386 emulation processor and the OIB/SAST connector.

Allows stand-alone operation and self-diagnosis of the ICE-386 emulator.

Protects the processor module from user-target-board bus failures during
early prototype development. .

Provides access to the labeled 80386 pins for use with external instruments.

Allows easy removal of the SAB from the emulation processor.

Based on the preceding events, the ICE-386 emula­
tor can take the following actions:

applications requiring extensive emulation breaking.
These breakpoints have the following characteris- .
tics: • Halt emulation

• Sequence through events; maintain a count of
such occurrences

• Assert SYNCOUT lines

• Turn trace on/off

In addition, software breakpoints, which allow
breaks on instruction execution only, are useful in

. 3-75

• Software breakpoints are placed only on RAM­
based program code.

• Software breakpoints are valid in any addressing
mode; however, if they are placed on a virtual/lin­
ear address, they will be translated to a physical
address.

• Software breakpoints cannot be altered by the
GO command; they can only be removed .

intJ ICETM·386

The ICE-386 emulator requires exclusive use of the
80386's on-chip debug registers and INT1 under
normal usage.

Memory Mapping

Memory can be mapped either to the user hardware
(USER) or to the ICE-386 emulator (ICE). The 80386
microprocessor can address four gigabytes of mem­
ory space. Partitions anywhere within this four giga-.
bytes processor space can be mapped to ICE. Thus,
you can replace blocks of user address space to ICE
and begin software development prior to completion
of the target hardware. A maximum of 128 KB of
mapped memory with an average of six wait states is
mappable in 4· KB increments on 4 KB boundaries.
Program code can be executed at zero wait-state'
from the target memory. When using mapped mem­
ory, paging cannot be enabled because both func­
tions share the same resources on the 80386.

Mapping memory to ICE enables software develop­
ment to begin before a user memory system is avail­
able. If the target system uses EPROMs, ICE-386
memory can repla.ce the EPROM memory space so
that you need not program the EPROMs during de­
velopment.

Program Tracing

Over two thousand frames of program execution his­
tory can be stored in the trace buffer. Each trace
frame holds a linear address of the branch address
(or old TS!:) and new TSS for task switch), the byte
count between branches, and a time-tag. This infor­
mation is used to reconstruct a history of program
execution. The ICE~386 emulator runs at about 93%
of its full speed (when trace is enabled) assuming
that a program discontinuity occurs every seven in­
structions. Turning the trace option off enables true
full-speed emulation of the. 80386 microprocessor.
Trace data can also be displayed during emulation.
However, enabling this feature may degrade emula­
tor performance by causing the 80386 to enter a
ready hang while the ICE-386 control processor is
accessing the trace buffer.

Processor/Memory Examination and
Modification

80386 registers can be accessed mnemonically
(e.g., EAX) with the ICE-386 emulator software. Data
can be displayed or modified in one of four bases:
hexadecimal, decimal, octal, or binary, and in ASCII
format. Program code can be disassembled and dis-

3-76

played as 80386 assembly instruction mnemonics,
or it can be disassembled and displayed in 8086 or
80286 mode.

The 80386 microprocessor can operate in four
modes: real, protected, page protected, and virtual
86. These modes modify the operation of the emula"
tion processor to provide compatibility with the 8086,
80186, and 80286 microprocessors and to provide
support for a variety of system architectures. The
ICE-386 emulator can be used to debug in all of
these microprocessor operating modes.

Program Stepping

With the ICE-386 emulator, you can single step
through program code by referencing machine-level
instructions, line numbers, or high-level language
statements.

Symbolic Debugging

ICE-386 software takes advantage of the special de­
bug information provided by Intel compilers, provid­
ing superior debug ability. It allows the software de­
veloper to examine or modify memory locations us­
ing symbolic references. A symbolic reference is a
program' procedure name, line number, or program
label that corresponds to a location in the prograrn
space. Symbolic debugging allows you to work in the
context of the original program, helping to meet the
most critical schedules.

The ICE-386 emulator maintains a virtual table for
program symbols making it possible for the tabie to
exist without fitting entirely into the host RAM memo­
ry.

ICETM·386 Emulator Operating Modes

The ICE-386 emulator software has two operating
modes; interrogation and emulation. Interrogation
mode allows you to enter any ICE-386 command.
Emulation mode allows execution of the user pro­
gram code and execution of commands not requir­
ing interaction with the emulation processor.

Debug Procedures

Debug procedures (PROCs) are named, user-de­
fined groups of ICE-386 emulator commands. They
can be stored on disk and recalled in later debug­
ging sessions, thus saving you from having to re-en-
ter commands. .

intJ ICETM-386

One advantage of PROCs is that they allow you to
automate the software testing process. The PROC
may repeatedly generate test values, execute the
user program with varied input values, and record
the results. PROCs aid in the development of com­
prehensive batch tests.

ICETM-386 Human Interface Features

The ICE-386 emulator software includes features to
help enter commands, set up the debug environ­
ment, and display command options. Also, there are
features similar to those found in the UNIX:f:/XENIX
operating system environment. These features in­
clude input/output redirection, command piping, and
escaping from the shell. The ICE-386 emulation soft­
ware has a set of mathematical operators and con­
trol constructs similar to those found in Intel's
121CETM emulator and the C programming language.

Coprocessor Support
ICE-386 emulator commands provide access to the
coprocessor's stack, status registers, and flags. In
addition, the disassembly command extends to the
math coprocessor's instructions and data types.

Language Support

The ICE-386 supports all 8086 absolute and 80286/
80386 bootloadable Intel OMFs. These include the
following Intel languages: . .

ASM86
PLlM-86
C-86
Pascal-86
FORTRAN-86

ASM286
PL/M-286
C-286
Pascal-286
FORTRAN-286

ASM386
PL/M-386
C-386

ICE-386™ EMULATOR COMMAND
FUNCTIONS .

The ICE-386 emulator command language can be
divided into the following functional categories.

• Emulation commands - The GO, LSTEP,
PSTEP, and ISTEP commands instruct the emu­
lator to begin emulation. The GO command also
has many options that allow recognition of a com­
plex set of conditions.

• Utility commands - These are general purpose
commands for use in a debugging environment.
For example, the PRINT command displays se­
lected frames of trace data. A command line edi­
tor and history buffer are also provided for ease
of command entry.

3·77

• Environment commands - These commands set
up the debug environment. For example, the
MAP command sets up the memory map. The
DEFINE command is used to create PROCs and
definitions.

• File handling commands - These commands
are used to access disk files. Debug object defini­
tions can be saved to a disk file for use in later
debug sessions. Debug sessions can be record­
ed to a disk file or a line printer for later analysis.

• Register access commands - These commands
enable you to access the 80386 processor regis­
ters. Registers may be displayed or modified by
name (e.g., EAX, EBX, etc.) or may be displayed
in groups (REGS, CREGS, and SREGS).

• Descriptor access commands - These com­
mands enable you to display descriptor tables
and to symbolically display or modify individual
desciiptor components (e.g., GDT[10].Iimit,
DT[CS].base).

• Memory and I/O access commands - These
commands provide access to user memory
space. Input and output are interpreted according
to a set of data types and the requested numeric
base.

• Stack frame access command - CALLSTACK
allows you to display the current chain of proce­
dure calls in the user program being executed.

SPECIFICATIONS

Host Specifications

The following lists the minimum host requirements
for the Intel 286/310 and the IBM PC AT.

• Intel System 286/310 - 2 MB of RAM, 40 MB
fixed disk, at least one floppy disk drive, and the
XENIX 286 operating system (version 3.0 with
Update 3).

• IBM PC AT - 2 MB of RAM (Lotus·, Intel, and
Microsoftt extended memory specifications) (In­
tel's ABOVE Board with 1.5 MB is required), 20
MB fixed disk, at least one floppy disk drive, a
serial interface, and the DOS operating system
(version 3.1).

For enhanced upload/download performance, an
optionallEEE-488 (GPIB) adaptor can be purchaseci
for the IBM PC AT. Please contact your local Intel
Salesperson for details.

inter ICETM·386

Mechanical Specifications'

PROCESSOR MODULE/OPTIONAL ISOLATION'
BOARD DIMENSIONS

The height of the processor module (with OIB or
SAB installed) requires 1 Y4 inches (3.18 cm) of
space between boards to connect the processor
module to the OIB, or to connect the processor
module to the SAB. If the processor module is con­
nected to both the OIB and the SAB, 1% inches
(3.18 cm) are required on both .sides, thus increasi~g
the space requirement to 2% Inches (6.35 cm). FIg­
ure 1 shows the dimensions of the procesor module,
the OIB and the SAB in the three possible configura-.
tions.

Table 2 lists the physical characteristics of the ICE-
386 emulator components.

Electrical Specifications

SYNC LINE SPECIFICATIONS

The SYNCIN lines must be valid for at least one in­
struction cycle because they are only sampled on
instruction boundaries. The SYNCOUT lines are
driven by TTL open collector outputs that have
4.75K-ohm pull-up resistors. The SYNCIN lines are
standard TTL inputs.

AC SPECIFICATIONS

Table 3 lists the ICE-3B6 emulator's AC specifica­
tions with the OIB installed. In Table 3, the numbers

shown in the column titled '~Maximum" are derived
from. using the timing symbols (t1, t2a, t2b, etc.) in
the AC Specification Tables in the 80386 High Per­
formance 32-8it Microprocessor With Integrated
Memory Management data sheet and adding the a~­
ditional time required to operate when. the OIB IS .
installed. The asterisks following the timing symbols
in the. column titled "Symbol" indicate that these
timing symbols relate to the timing symbols of the
80386 microprocessor operating at 16 MHz. Active
low is indicated by the overscore (e.g., LOCK).

The AC specifications for the ICE~386 emulator are
the same as those for the B03B6 microprocessor,
with .the 01 B removed, except for t25 and t26, as
shown in Table 4.

DC SPECIFICATIONS

Table 5 lists the DC specifications of the ICE-3B6
emulator at the processor module with the OIB in­
stalled.

Table 6 lists the DC specifications of the ICE-386
user probe with the OIB board removed.

The ICE-386 emulator's buffer circuitry adds addi­
tional DC loadings to thEi 80386 pins listed in Table
7.

Power Supply

100-120V or 220-240V (selectable)
. 50-60 Hz

2 amps (AC Max) @ 120V
1 amp (AC Max) @ 240V

Table 2 ICETM·386 Physical Characteristics

Width
Unit Inches

Control unit 10.5
Processor modulet 3.8
SAST" 6.0
OIB 3.8
Power supply 2.8
User cable
Serial cable
SAB 4.6.

tMeasurement includes target adapter
·Measurement includes user cable

Height
cm Inches

26.7 1.5
9.6 1.3

15.2 2.0
9.6 .9
7.1 4.15

11.7 .8

3-78

Length Weight
cm Inches cm Ibs kg

3.8 16.0 40.0 6.0 2.72
3.3 5.1 13.0
5.1 8.0 20.3 3.5 1.59
2.3 5.1 13.0

10,7 11.0 27.9 4.7, 2.14
22.0 55.9

.. 12.0" 3.66m
2.0 4;1 10.7

ICETM·386

SIDEVIEW

1 ... ------ 5.100 ------~·I

.80 WIO COVER
1.00 W/COVER

t
.13J

~m _9 t
1.20 W/O COVER

1.40 W/COVER

t

TOPVIEW

0

[.t TO r 2

t 1
PINl

!.J.

~
'-- '-- '-- / 0

~ .-+ ~15
0.188 ~ ,80

r-
3.80

L
00

00

2PL
PROCESSOR MODULE

SIDEVIEW

TOPVIEW

I'
5.100 •

r
a a a a

~ °0 •. 200

PIN 1] 3.800

T
PINl

2'jO 1
Do IT 0[I o a a a

.150-.1 4- .150. ~
- .80

OPTIONAL ISOLATION BOARD
0.188
2PL

280316-3

280316-4

Figure 1. Board Dimensions

3-79

inter ICETM-386

Table 3. AC Specifications With the Optional Isolation Board Installed

Symbol Parameter Minimum Maximum Notes

t1* CLK2 period . 62.5 ns tl Max
t2a" CLK2 high time t2a Min + 2 ns @2V
t3b" CLK210w time t3b Min + 2 ns @O.SV
tS' . A2-A31 valid delay tS Min + 2 ns tS Max + lS.l ns CL = 120 pf
t7' A2-A31 float delay t14 Min + 6 ns t14 Max + 14.S ns
tS' BEO-BE3, LOCK valid delay tS Min + 2ns tS Max + 14.S CL = 75 pf
t9' BEO-BE3, LOCK float delay t14 Min + 6 ns t14 Max + 27
tl0' W/R, MIlO, O/C, AOS valid delay tl0 Min + 2 ns tl0 Max + 14.S CL = 75pf
tl1' W/R, MilO, O/C, AOS float delay t14 Min + 6 ns t14 Max + 27
t12" 00-031 write data valid delay t12 Min + 3 ns t12 Max + 12.1 CL = 120 pf

46ns Note 1
t13" 00-031 write data float delay 10 ns 41 ns
t14' HLOA valid delay t14 Min + 1 ns t14 Max + S ns
t16" NA hold time t16 Min + 6 ns
tlS' BS16 hold time t18 Min + 6 ns
t20' REAOY hold time t20 Min + 6 ns
t21* 00-031 read setup time t21 Min + 9 ns
t22' 00-031 read hold time t22 Min + 3 ns
t23" HOLO setup time t23 Min + .5 ns
t24* HOLO hold time t24 Min + .5 ns
t25* RESET setup time t25 Min + .5 ns Note 2 .
t26" RESET hold time t26 Min + .5 ns Note 2
t27" NMI, INTR setup time t27 Min + .5 ns
t2S* NMI, INTR hold time t2S Min + .5 ns
t29* PER EO, ERROR, BUSY setup time t29 Min + .5 ns
t30' PER EO, ERROR, BUSY hold time t30 Min + .5 ns

Note 1: t12" Max is the larger of the two entries.
Note 2: To calculate t25" or t26", use the value of t25 or t26 in Table 4.

Table 4. ICETM-386 Emulator AC Specifications With the OIB Removed

Symbol Parameter Minimum Maximum Notes

t25 RESET setup time 12 ns - 1
t26 RESET hold time 3 ns 1

..
Note 1: These setup and hold speCifications must be satisfied to ensure proper syncronization of the ICE-386 emulator to
the target system. The RESET Signal is delayed two or four CLK2 cycles before arriving ,at the RESET input of the 80386.

3-S0

inter ICETM-386

Table 5. ICETM-386 Emulator DC Specifications With OIB Installed

Symbol Parameter Minimum Maximum Notes

OIB-Icc Supply current PM-Icc + 500 mA 1

Vol Output low voltage. 101148 ma, A2-A31, 0.5V
00-031, BEO-BE3, ADS, W/R, D/C, MilO,
LOCK, HLDA

Voh Output high voltage. loh = 3ma, A2-A31, 2.4V
00-031, BEO-BE3. ADS, W/R, D/C,
MilO, LOCK, HLDA

Iii Input low current. CLK2, RESET, HOLD READY .5mA
.26mA

lih Input high current. CLK2, RESET, HOLD READY 20 }La

40 }La

110 Output leakage current. A2-A31, 00-031, ±20/.i.a
BEO-BE3, ADS, W/R, D/C, MilO, LOCK

Note 1: alB-Icc IS the supply current of the ICE-SB6 user probe with the alB Installed. PM-Icc IS the supply current of the
user probe with the alB removed.

Table 6. ICETM-386 Emulator DC Specifications Without OIB Installed

Symbol Parameter Maximum Notes

PM-Icc Supply current. CLK2 = 16 MHz: with 80386-12 80386-lcc + 800 mA
Cin' Input capacitance Cin + 15pf 1,2
Cout' Output or 110 capacitance Cout + 15 pf 1,3
Cclk* CLK2 Capacitance Cclk + 15 pf 1

.. Note 1: Symbols followed by an asterisk are ICE·SB6 user-probe specifications and are given In terms of the corresponding
BOSB6 specifications plus a constant.
Note 2: Specification applies to the READY and RESET Signals.
Note S: Specification applies to t he A2-AS1, DO-DS1, BEO-BES, W/R, MIlO, ADS, and HLDA signals.

Table 7. Additional DC Loading

Signal IlhMaximum InMaximum

A2-A31, 00-031, BE2, BE3 0.02mA 0.1 mA
ADS,BEO,BE1,HLDA O.02mA 1 mA
MilO 0.02mA 0.5mA
W/R 0.04mA 1 rnA
READY O.02mA 0.02mA
CLK2 0.05mA 2mA

Note: For more information on these signals, refer to the BOSB6 data sheet.

3-81

ICETM·386

Environmental Specifications

Operating temperature - 10°-40°C (50°-104°F)

Operating humidity - maximum of 85% relative hu­
midity, non-condensing

DOCUMENTATION

ICETM-386 In-Circuit Emulation User's Guide, Order
Number 166182

80386 High Performance 32-8it Microprocessor with
Integrated Memory Management, data sheet, Order
Number 231630

ORDERING INFORMATION
Order Code

ICE386XP
ICE386X

Description

The complete ICE-386 emulator
system including control unit,
processor module, power supply,
SAST, OIB, SAB, a serial commu­
nication cable (SCOM5), and soft­
ware (S386XP/S386X). (Requires
software license, Class I)

3-82

ICE3860P
ICE3860

SCOM4

S3860P
S3860

SCOM5

S386XP
S386X

The complete ICE-386 emulator
system including control unit,
processor module, power supply,
SAST, OIB, SAB, a serial commu­
nication cable (SCOM4), and soft­
ware (S3860P/S3860). (Re­
quires software license, Class I).
Note: A GPIB adapter card and
cable for the IBM PC AT is option­
ally available. Please contact your
Intel Field Applications Engineer
for more information.

A 12-foot serial cable for the ICE-
386 -IBM PC AT connection

ICE-386 software for hosting on
the IBM PC AT running 00S3.1

A 12-foot serial cable for the ICE-
386 - Intel 286/310 connection

ICE-386 software for hosting on
the Intel System 286/310 running
XENIX release 3.0 with Update 3

•

•
•

•

•
•

ICETM-5100/044 In-Circuit Emulator
for the RUPITM-44 Family

Precise, Full-Speed, Real-Time • Symbolic Debugging Enables Access to
Emulation of the RUPITM-44 Family of Memory Locations and Program
Peripherals Variables

64 KB of Mappable High-Speed • Four Address Breakpoints Plus In-
Emulation Memory Range, Out-of-Range, and Page Breaks

254 24-bit Frames of Trace Memory (16 • Equipped with the Integrated Command
Bits Trace Program Execution Directory (ICDTM) That Provides
Addresses and 8 Bits Trace Eternal - On-Line Help
Events) - Syntax Guidance and Checking

Serial Link to Intel Series III/IV or IBM' - Command Recall

PC AT or PC XT (and PC DOS • On-Line Disassembler and Single-Line
Compatibles) Assembler to Help with Code Patching

ASM-51 and PL/M-51 Language • Provides an Ideal Environment for
Support Debugging BITBUSTM Applications

Built-in CRT-Oriented Text Editor Code

The ICETM-5100/044 in-circuit emulator is a high-level, interactive debugger that is used to develop and test
the hardware and software of a target system based on the RUPITM-44 family of peripherals. The ICE-
5100/044 emulator can be serially linked to an Intellec® Series III/IV or an IBM PC AT or PC XT. The emulator
can communicate with the host system at standard baud rates up to 19.2K. The design of the emulator
supports all of the RUPI-44 components at speeds up to and including 12 MHz.

'IBM is a registered trademark of International Business Machines Corporation. Intel Corporation assumes no responsibility
for the use of any circuitry other than circuitry embodied in an Intel product. No other patent licenses are implied. Information
contained herein supersedes previously published specifications on these devices from Intel.

3-83

280325-1

November 1986
Order Number: 280325-001

inter , ICETM·5100/044

PRODUCT OVERVIEW

The ICE-51 00/044 emulator provides full emulation
support for the RUPI-44 family of peripherals, includ­
ing 8044-based BITBUSTM 'board products. The
RUPI-44 family consists of the 8044, the 8744, and
the 8344.

The ICE-5100/044 emulator enables hardware and
software development to proceed simultaneously.
With the ICE-5100/044, prototype hardware can be
added to the system as it is designed and software
can be developed prior to the completion of the
hardware prototype. Software and hardware integra­
tion can occur while the product is being developed.

The ICE-5100/044 emulator assists four stages of
development:

• Software debugging

• Hardware debugging

• System integration

• System test

Software, Debugging

The ICE-5100/044 emulator can be operated with­
out being connected to the target system and before
any of the user's hardware is available (provided ex- '
ternal data RAM is not needed). In this stand-alone
mode, the ICE-5100/044 emulator can be used to
facilitate program development.

Hardware Debugging

The ICE-5100/044 emulator's AC/DC parametric,
characteristics match the microcontroller's. The em­
ulator'S full-speed operation makes it a valuable tool
for debugging hardware, including time-critical serial
port, timer, and external, interrupt interfaces.

System Integration

Integration of software and hardware can begin
when the emulator is plugged into the microcontrol­
ler socket of the prototype system hardware. Hard­
ware can be added, modified, and tested immediate­
ly. As each section, of the user's hardware is com­
pleted, it can be added to the prototype. Thus, the
hardware and software can be system tested in real­
time operation as each section becomes available.

System Test

When the prototype is complete, it is tested with the
final version of the system software. The ICE-
5100/044 emulator is then used for real-time emula-

tion of the microcontroller to debug the system as a
completed unit.

The final product verfication test can, be, performed
using the ROM or EPROM version of the microcon­
troller. Thus, the ICE-5100/044 emulator. provides
the ability to debug a prototype or production system
at any stage in its development without introducing
extraneous hardware or software test tools.

PHYSICAL DESCRIPTION

The ICE-51 00/044 emulator consists of the follow­
ing components (see Figure 1):

• Power supply,

• AC and DC power cables

• Controller pod
• Serial Cable (host-specific)

• User probe assembly (consisting of the proces-
sor module and the user cable)

• Crystal power accessory (CPA)

• 40-pin target adaptor

• Clips assembly

• Software (includes the ICE-5100/044 emulator
software, diagnostic software, and a tutorial)

The controller pod contains 64 KB of emUlation
memory, 254- by 24-bit frames of trace memory, and
the control processor. In addition, the controller pod
houses a BNC connector that can be used to con­
nect up to 10 multi-ICE compatible emulators for
synchronous starting and stopping of emulation.

The serial cable connects the host system to the
controller pod. The serial cable supports a subset of
the RS-232C signals.

The user probe assembly consists of a user cable
and a processor module. The processor module

'houses the emulation processor and' the interface
logiC. The target adaptor connects to the processor
module and provides, an electrical and mechanical
interface to the target microcontroller socket.

The crystal power accessory (CPA) is a small, de­
tachable board that connects to the controller pod
and enables the ICE-5100/044 eniulator to run in '
stand-alone mode. The target adaptor plugs into the'
socket on the CPA; the CPA then supplies clock and
power to the user probe.

The clips assembly enables the user to trace exter­
nal events. Eight bits of data are gathered on the
rising edge of PSEN during opcode fetches. The
clips information can be displayed using the CLIPS
option with the PRINT command.

3-84

intJ ICETM·5100/044

280325-2

Figure 1. The ICE·TM·S100/044 Emulator Hardware
The ICE·51 00-044 emulator software supports mne- troller of the target system. Emulation is a transpar-
monics, object file formats, and symbolic references ent process that happens in real-time. The execution
generated by Intel's ASM-51 and PLlM-51 program- of the user software is facilitated with the ICE-
ming languages. Along with the ICE-51 00/044 emu- 5100/044 command language.
lator software is a customer confidence test disk
with diagnostic routines that check the operation of
the hardware. Memory Mapping

The on-line tutorial is written in the ICE-5100 com­
mand language. Thus, the user is able to interact
with and use the ICE-5100/044 emulator while exe­
cuting the tutorial.

A comprehensive set of documentation is provided
with the ICE-5100/044 emulator.

ICETM·5100/044 EMULATOR
FEATURES

The ICE-51 00/044 emulator has been created to as­
sist a product deSigner in developing, debugging and
testing designs incorporating the RUPI-44 family of
peripherals. The following sections detail some of
the ICE-5100/044 emulator features.

Emulation

Emulation is the controlled execution of the user's
software in the target hardware or in an artificial
hardware environment that duplicates the microcon-

3-85

There is a 64 KB of memory that can be mapped to
the CODE memory space in 4 KB blocks on 4 KB
boundaries. By mapping memory to the ICE-
5100/044 emulator, software development can pro­
ceed before the user hardware is available~

Memory Examination and Modification

The memory space for the 8044 microcontroller and
its target hardware is fully accessible through the
emulator. The ICE-5100/044 emulator refers to four
physically distinct memory spaces, as follows:

• CODE-references program memory

• IDATA-references internal data memory

• RDATA-references special function register
memory

• XDATA-references external data memory

ICE-5100/044 emulator commands that access
memory use one of the special prefixes (e.g., CODE)
to specify the memory space.

inter ICETM·5100'044

The microcontroller's special function registers and
register bits can be accessed mnemonically (e.g.,
DPL, TCON, CY, P1.2) with the ICE-5100/044 emu­
lator sofn'llare.

Data can be displayed or modified in one of three
bases: hexadecimal, decimal, or binary. Data can
also be displayed or modified in one of two formats:
ASCII or unsigned integer. Program code can be dis­
assembled and displayed as ASM-51 assembler
mnemonics. Code can be modified with standard
ASM-51 statements using the built-in single-line as­
sembler.

Symbolic references can be used to specify memory
locations. A symbolic reference is a procedure
name, line number, program variable,or label in the
user program that corresponds to a location.

Some typical symbolic functions include:

• Changing or inspecting the value of a. program
variable by using its symbolic name to access the
memory location.

• Defining break and trace events using symbolic
references.

• Refer~ncing variables as primitive data types.
The primitive data types are ADDRESS, BIT;
BOOLEAN, BYTE, CHAR (character), and
WORD.

The ICE-51 00/044 emulator maintains a virtual sym­
bol table (VST) for program symbols. A maximum of
61 KB of host memory space is available for the
VST. If the VST is larger than 61 KB, the excess is
stored on available host system disk space and is
paged in and out as needed. The size of the VST is
limited only by the disk capacity of the host system.

Breakpoint Specifications
Breakpoints are used to halt a user program in order
to examine the effect of the program's execution on
the target system. The ICE-51 00/044 emulator sup­
ports three different types of break specifications:

• Specific address break-specifying a si'lgle ad­
dress point at which emulation is to be stopped.

• Range break-an arbitrary range of addresses
can be specified to halt emulation. Program exe­
cution within or, optionally, outside the range
halts emulation.

• Page break-up to 256 page breaks can be spec­
ified. A page break is defined as a range of ad­
dresses that is 256-bytes long and begins on- a
256-byte address boundary.

Break registers are user-defined debug definitions
used to create and store breakpoint definitions.
Break registers can contain multiple breakpoint defi­
nitions and can optionally call debug procedures.
when emulation halts.

Trace Specifications

Tracing can be triggered using specifications similar
to those used for breaking. Normally, the
ICE-5100/044 emulator· traces program activity
while the user program is executing. With· a trace
specification, tracing can be triggered to occur only
when specific conditions are met during execution.
Up to 254 24-bit frames of trace information are col­
lected in a buffer during emulation. Sixteen of the 24
bits trace instruction execution addresses, and 8 bits
capture external events (CLIPS).

~ ,. Print newest tour instructions in the butter ., ~
, (hlt>PRINT NEWEST 4

FRAME ADDR CODE INSTRUCTIONS
(2S) 300A C02A PUSH 2AH
(30 300C 2532 ADD A. 32H

. (32) 300E F52A MOV 2AH. A
(34) 3010 B53210 CJNE A.32H. $+lOH
hlt>
hlt>PRINT CLIPS OLDEST 2 ,. Butter display showing clips .,
FRAME ·ADDR CODE INSTRUCTIONS CLIPS (76543210)
(00) 007AH 050S INC INDX PTR 10101111
(01) 007CH SOES SJMP (#2S) 00100010

Figure 2. Selected Trace Buffer Displays

3-86.

-280325-3

inter ICETM·5100/044

The trace buffer display is similar to an ASM-51 pro­
gram listing as shown in Figure 2. The PRINT com­
mand enables the user to selectively display the
contents of the trace buffer. The user has the option
of displaying the clips information as well as dissas­
sembled instructions.

ARM FOREVER TIL USING

hI t > GO FROM I3H

Procedures
Debugging procedures (PROCs) are a user-defined
group of ICE-5100/044 commands that are execut­
ed as one command. PROCs enable the user to de­
fine several commands in a named block structure.
The commands are executed by entering thename
of the PROC. The PROC bodies are a simple DO ...
END construct.

TRACE <execute>

<operator> ARM FOREVER TIL USING TRACE

hI t > GO FROM I3H USING

hI t > GO FROM I3H USING brl

TRACE <execute>

hlt> GO FROM I3H USING brl TRACE

<expr> OUTSIDE PAGE FROM TIL <trcreg name> <execute>

hIt>GO FROM I3H USING brl TRACE traceit

<execute>

Figure 3. The Integrated Command Directory for the GO Command
3-87

280325-4

inter ICETM-51 00/044

PROCs can simulate· missing hardware or software,
set breakpoints, collect debug information, and exe­
cute high-level software patches. PROCs can' be
copied to text files on disk, then recalled for use in
later test sessions. PROCs can also serve as pro"
gram diagnostics, implementing ICE-51 00/044 emu"
lator commands or user-defined definitions for spe-
cial purposes. .

On-Line Syntax Menu
A special syntax menu, called the Integrated Com­
mand directory (lCD), similar to the one used for the
121CETM system and the VLSiCE-96 emulator, aids in
creating syntactically correct command lines. Figure
3 shows an example of the ICD and how it changes
to reflect the options available for the GO command.

Help
The HELP command provides ICE-51 00/044 emula­
tion command assistance via the host system termi­
nal. On-line HELP is available for the ICE-5100/044
emulator commands shpwn in Figure 4.

BITBUSTM Applications Support
The ICE-5100/044 emulator provides an ideal envi­
ronment for developing applications code for BIT­
BUS board products such as the RCB-44/10, the
RCB-44/20, the PCX-344, and theiSBXTM-344
.board. .

The BITBUS firmware, available separately as BIT­
WARE, can be loaded into the ICE-51 00/044 emula-

II
hlt>HELP

HELP is available for:

tor's memory along with the user's code to enable
rapid debug of S044 BITBUS applications code.

DESIGN CONSIDERATIONS
The height of the processor module and the target
adaptor need to be considered for target systems.
Allow at least 1 Yz inches (3.S cm) of space to fit the
processor module and target adaptor. Figure 5
shows the dimensions of the processor modu.le.

Execution of user programs that contain interrupt
routines causes incorrect data to be stored in the
trace buffer. When an interrupt occurs, the next in­
struction to be executed is placed into the trace buff­
er before it is actually executed. Following comple­
tion of the interrupt. routine, the instruction is execut­
ed and again placed into the trace buffer.

ELECTRICAL CONSIDERATIONS
The emulation processor's user-pin timings and
loadings are identical to the S044 component, ex­
cept as follows.

• Up to 25 pF of additional pin capacitance is con­
tributed by the processor module and target
adaptor assemblies.

• Pin 31, EA, has approximately 32 pF of additional
capacitance loading due to sensing circuitry.

• Pins.1S and 19, XTAL1 and XTAL2 respectively,
have approximately 15-16 pF of additional capac­
itance when configured for crystal operation.

ADDRESS APPEND ASM BASE BlT BOOLEAN BRKREG
COUNT
DIR

1\

BYTE CHAR CI . CNTL_C 'COMMENTS CONSTRUCTS
CURHOME CURX CURY DCI DEBUG DEFINE
DISPLAY DO DYNASCOPE EDIT ERROR ' EVAL
EXPRESSION GO HELP IF INCLUDE INVOCATION
KEYS LABEL LINES LIST LITERALLY LOAD
MAP MENU MODIFY MODULE MSPACE MTYPE
OPERATOR PAGING . PARTITION PRINTPROC PSEUDO_VAR
REFERENCE REGS REMOVE REPEAT RESET RETURN
STRING SYMBOLIC SYNCSTART TEMPCHECK TRCREG TYPES
VERIFY VERSION WAIT WORD WRITE'
hlt>

Figure 4. HELP Menu .•
3·S8

EXIT
ISTEP
LSTEP
NAMESCOPE
PUT
SAVE
VARIABLE

280325-5

ICETM·5100/044

TOP VIEW
PROCESSOR MODULE ""-. P~N1

~ H ~.. ~ fi T I!I~~! .. 3':'11."

ai =l5 ~ rem)
j ~oZ !' ,

j. CABLEBDDY

I 4" --l 39" (10.2 em) (99 em)

SIDE VIEW
PROCESSDR MODULE

~u:s;ic .. ~
TARGET ~

ADAPTOR

280325-6

Figure 5. Processor Module Dimensions

HOST REQUIREMENTS

• IBM PC AT or PC XT (or PC DOS compatible)
with 512 KB of available RAM and a hard disk

. running under the DOS 3.0 (or later) operating
system.

• Intellec Series III/IV microcomputer development
system running the ISIS or iNDX operating sys­
tem respectively, with at least 512 KB of applica­
tion memory resident..

• Disk drives-cfual floppy or one hard disk and one
floppy drive required.

ICETM-5100/044 EMULATOR
SOFTWARE PACKAGE

• ICE-51 00/044 emulator software

• ICE-51 00/044 confidence tests

• ICE-51 00 tutorial $oftware

EMULATOR PERFORMANCE

Memory
Mappable 64 KB
full-speed
emulation code
memory

Trace memory

Virtual Symbol
Table

Mappable to user or ICE-
5100/044 emulator mem­
ory in 4 KB blocks on 4 KB
boundaries.

254 x 24 bit frames

A maximum of 61 KB of
host memory space is
available for the virtual
symbol table (VST). The
rest of the VST resides on
disk and is paged in and
out as needed.

3-89

PHYSICAL CHARACTERISTICS

Controller Pod

Width: 8-%" (21 cm)

Height: 1-112" (3.8 cm)

Depth: 13-112" (34.3 cm)

Weight: 41bs (1.85 kg)

User Cable

The user cable is 3 feet (approximately 1 m)

Processor Module
(With the target adaptor attached)

Width: 3-10/,6" (9.7 cm)

Height: 4"

Depth: 1-%"

Power Supply

Width: 7-%"
Height: 4"

Depth: 11"

Weight 151bs

Serial Cable

(10.2 cm)

(3.8 cm)

(18.1 cm)

(10.06 cm)

(27.97 cm)

(6.1 kg)

The serial cable is 12 feet (3.6 m).

inter ' ICETM·5100/044

ELECTRICAL CHARACTERISTICS

Power Supply

100-t20V or 200-240V (selectable)
.50-60 Hz
2 amps (AC max) @ 120V
1 amp (AC max) @ 240V

ENVIRONMENTAL
CHARACTERISTICS

Operating temperature

Operating humidity

+ WC to + 40°C (50°F to
104°F)
Maximum of 85% relative
humidity, non-condensing

ORDERING INFORMATION

Emulator Hardware and Software
Order Code Description

1044KITAD This kit contains the ICE-51001044
user probe assembly, power supply
and cables, serial cables, target
adaptor, . CPA, ICE-5100 controller
pod, software,' and documentation for
use with an IBM PC AT or PCXT. The
kit also includes the 8051 Software
Development Package and the
AEDIT text editor for use on DOS
systems. [Requires software license.]

1044KITD This kit is the same as the 1044KIT AD
excluding the 8051 Software Devel­
opment Package and the AEDIT text
editor. [Requires software license.]

1044KITAS This kit contains the ICE-51001044
user probe' assembly, power supply
and cables, serial cables, target
adaptor, CPA, ICE-5100 controller
pod, software, and documentation. for
use with Intel hosts (Series 1I111V).
The kit also includes the 8051 Soft­
ware Development Package and the
AEDIT text editor for use on the Se­
ries III1IV. [Requires software li­
cense.]

1044KITS This kit is the same as the 1044KITAS
excluding the 8051 Software Devel­
opment Package and the AEDIT text
editor. [Requires software license.]

Software Only
. Order Code Description

3-90

SA044D This kit contains the host, probe, di~
agnostic, and tutorial software on
5%" disks for use on an IBM PC AT
or PC XT (requires DOS 3.0 or later) .
[Requires software license.]

SA044S This kit contains the host, probe, di­
agnostic, and tutorial software on 8"
disks (both single-density and dou­
ble-density) for use on a Series III,
and on 5-%" disks for use on a Se­
ries IV. [Requires software license.]

Other Usefullntel® MCS®·51 Debug and
Development Support Products
Order Code Description

D86ASM51 8051 Software Development Pack·
age (DOS version)-Consists of the
ASM-51 macro assembler which
gives symbolic access to B051 hard­
ware features; the RL51 linker and
relocator program that links modules
generated by ASM-51; CONV51
which enables software written for
the MCS-4B family to be up-graded to
rim on the B0.51, and the LlB51 li­
brarian which programmers can use
to create and maintain libraries of
software object modules. Use with
the DOS operating system (version
3.0 or later).

D86PLM51 PL/M·51 Software Package (DOS
version)-Consists of the PLlM-51
compiler which provides high-level
programming language support; the
LlB51 utility that creates and
maintains libraries of software object
modules, and the RL51 linker and
relocator program that links modules
generated by ASM-51 and PL/M-51
and locates the linked' object mod­
ules to absolute memory locations.
Use with the DOS operating system
(version 3.0 or later).

IB6ASM51 8051 Software Development Pack·
age" (ISIS versiori)-Same as the
DB6ASM51 package except this one
is for use with the Series III.

IB6PLM51 PL/M·51 Sofware Package-Same
as the DB6PLM51 package except
this one is for use with the Series III
and Series IV.

DB6EDINL AEDIT text editor for use with the
DOS operating system.

•

•
•

•

•
•

ICETM -51 00/252
In-Circuit Emulator for the

MCS®-51 Family of Microcontrollers
Real-time Emulation of Selected • Symbolic Debugging Enables Access to
MCS®-51 Microcontroller Components Memory Locations and Program
at Speeds up to 16 MHz Variables

64 KB of Mappable High-Speed • Four Address Breakpoints Plus
Emulation Memory In-Range, Out-of-Range, and Page

254 24-Bit Frames of Trace Memory Breaks

(16 Bits Trace Program Execution • Equipped with the Integrated Command
Addresses and 8 Bits Trace External Directory (ICDTM) that Provides
Events) - On-Line Help

Serial Link to Intel Series III/IV or - Syntax Guidance and Checking

IBM* PC AT and PC XT (and PC-DOS - Dynamic Command-Entry

Compatibles) - Error Checking
- Command Recall

ASM-51 and PL/M-51 Language
On-Line Disassembler and Single-Line Support • Assembler to Help with Code Patching

Built-In CRT-Oriented Text Editor

The ICETM-5100/252 In-Circuit Emulator is a high-level, interactive debugger that is used to develop and test
the hardware and software of a target system based on the MCS-51 family of microcontrollers. The
ICE-5100/252 emulator can be serially linked to an Intellec® Series III/IV or an IBM PC AT or PC XT. The
emulator can communicate with the host system at standard baud rates up to 19.2K. The design of the
emulator supports selected MCS-51 microcontroller components at speeds up to 16 MHz.

'IBM is a registered trademark of International Business Machines Corporation.

3-91

280200-1

November 1986
Order Number: 280200-001

inter ICETM·5100/252

PRODUCT OVERVIEW

The ICE-5100/252 emulator provides full emulation
support for the MCS-51 family members listed in Ta­
ble 1.

The ICE-5100/252 emulator enables hardware and
software development to proceed simultaneously.
With the ICE-5100/252 emulator, prototype hard­
ware can be added to the system as it is. designed
and software can be developed prior to the comple­
tion of the hardware prototype. Software and hard­
ware integration can occur while the product is being
developed.

The ICE-5100/252 emulator assists four stages of
development:

• Software debugging

• Hardware debugging

• System integration

• System test

Software Debugging

. The ICE-5100/252 emulator can be operated with­
out being. connected to the target system or befOre
any of the user's hardware is available (provided ex­
ternal data RAM is not needed). In this stand-alone
mode, the ICE-5100/252 emulator can be used to
facilitate program development.

Hardware Debugging

The ICE-5100/252 emulator's AC/DC parametric
characteristics match the microcontroller's; its full­
speed operation makes it a valuable tool for debug­
ging hardware, including time-critical serial port, tim­
er, and external interrupt interfaces.

System Integration

Integration of software and hardware can begin
when the emulator is plugged into the microcontrol­
ler socket of the prototype system hardware. Hard­
ware can be added, modified, and tested immediate­
ly. As each section of the user's hardware is com­
pleted, it can be added to the prototype. Thus, the
hardware and software can be system tested in real­
time operation as it becomes available.

System Test

When the prototype is complete, it is tested with the
final version of the system software. The ICE-51001
252 emulator is then used for real-time emulation of
the microcontroller to debug the system as a com­
pleted unit.

The final product verification test can be performed
using the ROM orE PROM version of the microcon­
troller. Thus, the ICE-5100/252 emulator provides
the ability to debug a prototype or production system
at any stage in its development without introducing
extraneous hardware or software test tools .

PHYSICAL DESCRIPTION

The ICE-5100/252 emulator consists of the follow­
ing components (see Figure 1):

.• Power supply

• AC and DC power cables

• Controller pod

• Serial cable (host-specific)

• User probe assembly (consisting of processor
module and user cable)

• Crystal power accessory (CPA),

Table 1. MCS®-51 Family Support Offered by the ICETM·5100/252 Emulator

Part On·Chip Program Memory On-Chip Data Memory

8031 None 128 bytes
80C31 None 128 bytes
8032 None 256 bytes
8051 4 KB-ROM 128 bytes
80C51 4 KB-ROM 128 bytes
8052 8 KB-ROM 256 bytes
80C252 None 256 bytes
83C252 8 KB-ROM 256 bytes
8751 4 KB-EPROM 128 bytes
87C51 4 KB-EPROM 128 bytes
8752 8 KB-EPROM 256 bytes
87C252 8 KB-EPROM 256 bytes

3-92

inter ICETM-5100/252

• 40-pin DIP target adaptor

• Clips assembly
• Software (includes the ICE-5100/252 emulator

software, diagnostic software, and tutorial).

The controller pod contains 64 KB of emulation
memory, a 254-frame trace buffer, and the control
processor. In addition, the controller pod houses a
BNC connector that can be used to connect up to 10
multi-ICE compatible systems together for synchro­
nous GO and BREAK emulation.

The serial cable connects the host system to the
controller pod. The serial cable supports a subset of
the RS-232C signals.

The user probe assembly consists of a user cable
and a processor module. The processor module
houses the emulation processor and provides the
logic needed to support mapped memory, break­
points, emulation, interrogation, and modification of
registers and memory. The target adaptor connects
to the processor module and provides an electrical
and mechanical interface to the target microcontrol­
ler socket.

The crystal power accessory (CPA) is a small, de­
tachable board that connects to the controller pod
and enables you to run the ICE-5100/252 emulator
in a stand-alone (loop-back) mode of operation. In
stand-alone mode, the target adaptor plugs into the
socket on the CPA; the CPA then supplies clock and
power to the user probe.

The clips assembly enables the user to trace exter­
nal events. Eight bits of data are gathered on the
rising edge of PSEN during opcode fetches. The
clips information can be displayed using the CLIPS
option with the PRINT command.

The ICE-51 00/252 emulator software supports mne­
monics, object file formats, and symbolic references
generated by Intel's ASM-51 and PL/M-51 program­
ming languages. Along with the ICE-51 00/252 emu­
lator software is a customer confidence test disk
with diagnostic routines that check the operation of
the hardware.

The on-line tutorial is written in the ICE-5100/252
command language. Thus, the user is able to inter­
act with and use the ICE-5100/252 emulator while
executing the tutorial.

A comprehensive set of documentation is included
with the ICE-51 00/252 emulator.

260200-2

Figure 1. The ICETM-5100/252 Emulator Hardware

3-93

inter ICETM·5100/252

ICETM·5100/252 EMULATOR
FEATURES

The ICE-51 00/252 emulator has been created to as­
sist a product designer in developing, debugging and
testing designs incorporating the MCS-51 family of
microcontrollers. The following sections detail some
of the ICE-51 00/252 emulator features.

Processor Selection

The ICE-51 00/252 emulator enables you to emulate
the microcontrollers listed in Table 1. Selecting a
processor type changes the following characteristics
to match the micro controller selected:

• Internal RAM size

• Internal ROM size

• Idle and power down mode enable

• Special function register symbolic map

• Memory map
• L.atched or unlatched EA

• Serial port framing error detection

Emulation

Emulation is the controlled execution of the user's
software in the target hardware or in an artificial
hardware environment that duplicates the microcon­
troller of the target system. Emulation is a transpar­
ent process that happens in real-time. The execution
of the user software is facilitated through the ICE­

.5100/252 command language.

Memory Mapping

There is 64 KB of memory that can· be mapped to
the CODE memory space in 4 KB blocks on 4K
boundaries. By mapping memory to the ICE-51001
252 emulator, software development can proceed
before user hardware is available.

Memory Examination and Modification

The memory space for the MCS-51 component(s)
and its target hardware is fully accessible through
the emulator. The microcontroller has four physically
distinct memory spaces: '

• CODE - references program memory

• IDATA - references internal data memory

• RDATA - references special function register
memory

3-94

• XDAT A - references external data memory

ICE-5100/252 emulator commands that access
memory must use one of the special prefixes (e.g.,
CODE) to specify the memory space in which the
partition lies.

The microcontroller's special function registers and
register bits can be accessed mnemonically (e.g.,
DPL, TCON, CY) with the ICE-5100/252 emulator
software.

Data can be displayed or modified in one of three
bases:hexadecimal, decimal, or binary and in ASCII
and unsigned integer formats. Program code can be
disassembled and displayed as ASM-51 assembler
mnemonics. Code can be modified with standard
ASM-51 statements using the built-in single-line as­
sembler.

Symbolic debugging is used to specify mernory loca­
tions by their symbolic references. A symbolic refer­
ence is a procedure name, line number, or label in
the user program that corresponds to a location. Us­
ing symbolics to reference program locations isa
mnemonic way of accessing the program.

Some typical symbolic functions include:

• Changing or inspecting the value of a program
variable by using its symbolic name to access the
memory location.

• Defining break and trace events using symbolic
references.

• Referencing variables as primitive data types.
The primitive data types are ADDRESS, BIT,
BOOLEAN, BYTE, CHAR (character), and
WORD.

The ICE-51 00/252 emulator maintains a virtual sym­
bol table for program symbols making it possible for
the table to exist without fitting entirely into host
RAM memory. The size of the table is constrained
only by the disk capacity. \

Breakpoint Specifications

Breakpoints are used to halt a user program in order
to examine the effect of the program's execution on
the target system. The ICE-51 00/252 emulator sup­
ports three different types of break specifications in
real-time mode:

• Specific address break - Specifying a single ad­
dress point at which emulation is to be stopped.
This address can be an executable program
statement or a program label.

inter ICETM·5100/252

• Aange break - An arbitrary range of addresses
can be specified to halt emulation. Program exe­
cution within or outside the range halts emulation.

• Page break - Up to 256 page breaks can be
specified. A page break is defined as a range of
addresses that is 256-bytes long and begins on a
256-byte address boundary.

Break registers arc user-defined debug definitions
used to create. and store breakpoint definitions.
Bre.ak registers can contain multiple breakpoint defi­
nitions and can optionally call debug procedures
when emulation halts.

Trace Specifications

Tracing can be triggered using specifications similar
to those used for breaking. Normally, the ICE-51001
252 emulator traces program activity while the user
program is executing. With a trace specification,
tracing can be triggered to occur only when specific
conditions are met during execution. Up to 254 24-
bit frames of trace information are collected in a
buffer during emulation. Sixteen of the 24 bits trace
instruction execution addresses, and 8 bits capture
external events (CLIPS).

The trace buffer display is similar to an ASM-51 pro­
gram listing as shown in Figure 2. The PAINT com­
mand enables the user to selectively display the
contents of the trace buffer. The user has the option
of displaying the clips information as well as disas­
sembled instructions.

Procedures

Debugging procedures (PAOCS) are a user-named
group of ICE-5100/252 commands that are execut­
ed sequentially. PAOCs can simulate missing hard­
ware or software, collect debug information, execute
high-level software patches, or make troubleshoot­
ing decisions. PAOCs can be copied to text files on
disk, then included from the file into the command
sequence in later test sessions.

PAOCs can also serve as programmable diagnos­
tics, implementing ICE-5100/252 emulator com­
mands or user-defined definitions for special purpos­
es.

On-Line Syntax Menu

A special syntax menu, called the Integrated Com­
mand Directory (ICD), aids in creating syntactically
correct command lines. Figure 3 shows an example
of the ICD and how it changes to reflect the options
available for the GO command.

HELP

The HELP command provides assistance with ICE-
5100/252 emulation commands through the host
system terminal. On-line HELP is available for the
ICE-51 00/252 emulator commands shown in Figure
4.

hlt>PRINT NEWEST 4 1* Print newest four instructions in

FRAME
(028)
(030)
(032)
(034)
hI t>

ADDRESS
300A
300C
300E
3010

buffer *1
CODE INSTRUCTION
C02A PUSH 2AH
2532 ADD A,32H
F52A MOV 2AH,A
B53210 CJNE A,32H,$+10H

hI t>PRINT CLIPS OLDEST 2 1* Buffer display showing clips *1
FRAME ADDRESS CODE INSTRUCTION CLIPS (76543210)
(000) 300A C02A PUSH 2AH 01110011
(001) 30 DC 2532 ADD A, 32H 11110101
hI t>

280200-3

Figure 2. Selected Trace Buffer Displays

3-95

inter ICETM·5100/252

DESIGN CONSIDERATIONS

The height of the processor module and the target
adaptor may pose a problem for multiple board tar­
get systems that need to be debugged. Allow at
least 1 % inches (3.8cm) of space between boards
to fit the processor module and target adaptor. Fig­
ure 5 shows the dimensions of the processor mod­
ule.

The following are limitations of the A-step emulation
processor and should be kept in mind when using
the ICE 5100 emulator. These problems will be fixed
with the B-step version.

hI t > GO

• The stack pointer of the emulation processor
does not operate properly when pointing to ad­
dresses beyond 07FH. Internal data memory
above 07FH can be addressed using standard in­
direct instructions.

• Execution of user programs that contain interrupt
routines will cause incorrect data to be stored in
the trace buffer. When an interrupt occurs, the
next instruction to be executed is placed into the
trace.buffer before it is actually executed. Follow­
ing completion of the interrupt routine, the in­
struction is executed· and again placed into the
trace buffer. There is no workaround for this bug
at this time.

fROM ARM fOREVER TIL USING TRACE <execute>

h It > GO fROM 13H

<operator> ARM fOREVER TIL USING TRACE <execute>

hI t> GO fROM 13H USING

BRKREG <brkreg name>

hI t > GO fROM 13H USING br1

TRACE <execute>

hI t> GO fROM 13H USING br1 TRACE

<expr> OUTSIDE PAGE fROM TIL <trcreg name> <execute>

, h1t> GO fROM 13H USING br1 TRACE traceit

<execute>

280200-4

Figure 3. The Integrated Command Directory for the GO Command

3-96

inter ICETM·5100/252

HELP is available for:

ADDRESS APPEND ASM BASE BIT BOOLEAN
BRKREG BYTE CHAR CI CNTL_C COMMENTS
CONSTRUCTS COUNT CPU CURHOME CURX CURY
DC! DEBUG DEFINE DIR DISPLAY DO
DYNASCOPE EDIT ERROR EVAL EXIT EXPRESSION
GO HELP IF INCLUDE INVOCATION ISTEP
KEYS LABEL LINES LIST LITERALLY LOAD
LSTEP MAP MENU MODIFY MODULE MSPACE
MTYPE NAMES COPE OPERATOR PAGING PARTITION PRINT
PROC PSEUDO_VAR PUT REFERENCE REGS REMOVE
REPEAT RESET RETURN SAVE STRING SYMBOLIC
SYNCSTART TEMPCHECK TRCREG TYPES VARIABLE VERIFY
VERSION WAIT WORD WRITE
hit>

280200-5

Figure 4. HELP Menu

PROCESSOR MODULE ~ PIN 1
TOP VIEW j

U H :1!L T ~:> Q' ~.

~~~::~ , :;:~~m --0" 3 13/16" 

g~~~ I" ii 
rem) ~~~ ~;~ -~-

I CABLE BODY 

I 4' ---1 39" 
(10.2em) (99cm) 

SIDE VIEW 
PROCESSOR MODULE 

~~9r".-, 
TARGET ~ 

ADAPTOR 

280200-6 

Figure 5. Processor Module Dimensions 

3-97 



inter ICETM·5100/252 

ELECTRICAL CONSIDERATIONS Emulating HMOS Components 

The emulation processor's user-pin timings and 
loadings are identical to the 80C252 component ex­
cept as follows. 

Maximum Operating ICC (ma)' 

Vee 4V 5V 6V 

Frequency 
0.5 MHz 2.4 3.3 4.5 
3.5 MHz 6.5 8.5 11.0 
8.0 MHz 13.0 17.0 21.0 

12.0 MHz 18.0 24.0 30.0 
16.0 MHz 23.0 31.0 39.0· 

"ICC IS measured with all output PinS disconnected. 
XT AL 1 driven with TCLCH, TCHCL = 10 ns, Vii = V ss + 
.5V, Vi~ Vee - .5V. XTAL2 not connected. 
EA = RST = PortO = V ce. 

Maximum Idle ICC (ma)" 

VCC 4V 5V 6V 

Frequency 
0.5 MHz 0.9 1.4 1.8 
3.5 MHz 1.6 2.4 3.3 
8.0 MHz 2.7 4.1 5.5 
12.0 MHz 3.7 5.6 7.5 
16.0 MHz 4.7 7.1 9.5 

Oldie ICC IS measured with all output pins disconnected. 
XTAL 1 driven with TCLCH, TCHCL = 10ns, Vii = VSS + 
.5V, Vih = Vee - .5V. XTAL2 not connected. EA = 
PORTO = Vee, RST = Vee, internal clock to PCA gated 
off. 

• Up to 25 pf of additional pin capacitance is con­
tributed by the processor module and target 
adaptor assemblies. 

• Pin 31, EA, has approximately 32 pf of additional 
capacitance loading due to sensing circuitry. 

• Pins 18 and 19, XTAL1 and XTAL2 respectively, 
have approximately 15-16 pf of additional capaci­
tance when configured for crystal operation. 

The ICE-51 00/252 emulat()r is based on a CHMOS 
emulation processor. There are minor differences 
between how the ICE-5100/252 emulator supports 
CHMOS and HMOS designs as shown in Table 2. 

Refer to the Mirocontroller Handbook, order number 
210918, for further information on CHMOS and 
HMOS design considerations. 

HOST REQUIREMENTS 

• IBM PC AT or PC XT (or PC-DOS compatible) 
with 512 KB of RAM .and a hard disk running un­
der the DOS 3.0 (or later) operating system. 

• Intellec Series IIIIIV Microcomputer Development 
System running under the ISIS or iNDX operating 
system respectively, with at least 512 KB of appli­
cation memory resident. 

Disk drives - Dual floppy or one hard disk and 
one floppy drive required. 

ICE·252 SYSTEM SOFTWARE 
PACKAGE 

• ICE-51 00/252 emUlator software 

• ICE-51 00/252 confidence tests 

• ICE-51 00/252 tutorial software 

SYSTEM PERFORMANCE 

Memory 
Mappable high- Min 0 KB 
speed emulation Max 64 KB 
code memory 

Mappable to user or 
ICE-51 00/252 
emulator memory in 
4 KB blocks on 
4 KB boundaries. 

Trace Buffer 254 x 24 bits frames 

Table 2. CHMOS and HMOS Design Differences 

Chip Function HMOS Component 8031 CHMOS Component 80C31 

RST trigger threshold 2.5V 70% Vcc (3.5V @ Vcc = 5V) 
RST input impedance 4K - 10K ohms 50K - 150K ohms 
Port Iii -800p.A -50 p.A 
Clock threshold 2.5V 70% Vcc (3.5V @ Vcc = 5V) 

3-98 



ICETM-5100/252 

Virtual Symbol 
Table 

A maximum of 61 KB of host 
memory space is available 
for the virtual symbol table 
(VST). The rest of the VST 
resides on disk and is paged 
in and out as needed. 

PHYSICAL CHARACTERISTICS 

Controller Pod 

Width 
Height 
Depth 
Weight 

8%" (21 cm) 
1%" (3.8 cm) 
13%" (34.3 cm) 
4 Ibs (1.85 kg) 

User Cable 

3' (.944 m) 

Processor Module 

(with target adaptor attached) 

Width 
Length 
Height 

313/ 16" (9.7 cm) 
4" (10.2 cm) 
1 %" (3.8 cm) 

Power Supply 

Width 
Height 
Depth 
Weight 

7%" (18.1 cm) 
4" (10.06 cm) 
11" (27.97 cm) 
15 Ibs (6.1 kg) 

Serial Cable 

12' (3.6 m) 

ELECTRICAL CHARACTERISTICS 

Power Supply 

100 - 120V or 200 - 240V (selectable) 
50 - 60 Hz 
2 amps (AC max) - 120V 
1 amp (AC max) - 240V 

3-99 

ENVIRONMENTAL 
CHARACTERISTICS 

Operating temperature + 10° C to +40°C (37,SOF 
to 104°F) 

Operating Humidity Maximum of 85% relative 
humidity, non-condensing 

ORDERING INFORMATION 

Emulator Hardware and Software 
Order Code Description 
1252KITAD __ Consists of: ICE-51 00/252 user 

probe assembly, power supply and 
cables, serial cables, target adaptor, 
CPA, ICE-5100 controller pod, soft­
ware, and documentation for use with 
an IBM PC AT or PC XT. Kit also in­
cludes the 8051 Software Develop­
mentPackage and the AEDIT text ed­
itor for use on DOS systems. [Re­
quires software license.] 

1252KITD Same as the 1252KIT AD package ex­
cept this one does not include the 
8051 Software Development Pack­
age or AEDIT text editor. [Requires 
software license.] 

1252KITAS Consists of: ICE-51001252 user 
probe assembly, power supply and 
cables, serial cables, target adaptor, 
CPA, ICE-5100 controller pod, soft­
ware, and documentation for use with 
Intel hosts (Series III, IV). Kit also in­
cludes the 8051 Software Develop­
ment Package and the AEDIT text ed­
itor for use on Series III and Series IV. 
[Requires software license.] 

1252KITS Same as the 1252KITAS package ex­
cept this one does not include the 
8051 Software Development Pack­
age or AEDIT text editor. [Requires 
software license.] 

Software Only 
Order Code Description 
SA252D Kit contains the software for the host, 

probe, diagnostic, and tutorial on 
5%-inch disks for use on an IBM PC 
AT or PC XT (requires DOS 3.0 or lat­
er). [Requires software license]. 



ICETM-5100/252 

SA252S Kit contains the software for the host, 
probe, diagnostic, and tutorial on 8-
inch disks (both single-density arid 
double-density) for use on a Series III, 
and on 51,t4-inch disks for use on a 
Series IV. [Requires software li­
cense]. 

Other Useful Intel MCS-51 Debug and Development 
Support Products 

Order Code 

D86ASM51 

Description 

8051 Software Development Pack­
age (DOS version) - Consists of the 
ASM-51 macro assembler which 
gives symbolic access to 8051 hard­
ware features, the RL51 linker and re­
locator program that links modules 
generated by ASM-51, CONV51 
which enables software written for 
the MCS-48 family to be up-graded to 
run on the 8051, and the LlB51 Li­
brarian which programmers can use 
to create and maintain libraries of 
software object modules. Use with 
the DOS operating system (version 
3.0 or later). 

D86PLM51 PL/M-51 Software Package (DOS 
version) - Consists of the PL/M-51 
compiler that provides high-level pro­
gramming language support, the 
LlB51 utility that creates and main­
tains libraries of software object mod­
ules, and the RL51 linker and reloca­
tor program that links modules gener­
ated by ASM-51 and PL/M-51 and 10-
cates the linked object· modules to 
absolute memory locations. Use with 
the DOS operating system (version 
3.0 or later). 

186ASM51 8051 Software Development Pack­
age (ISIS version) - Same as the 
D86ASM51 package except this one 
is for use with the Series III and Se­
ries IV. 

186PLM51 PL/M-51 Software Package - Same 
as the D86PLM51 package except 
this one is for use with the Series III 
and Series IV. 

D86EDIEU AEDIT text editor for use with the 
DOS operating system. 

3-100 



ICE™-5100/452 IN-CIRCUIT EMULATOR 
FOR THE UPITM-452 FAMILY 

OF PROGRAMMABLE I/O PROCESSORS 

• Precise, full-speed, real-time emulation 
of the UPITM-452 family of I/O 
processors 

• 64 KB of mappable high-speed 
emulation memory 

• 254 24-blt frames of trace memory (16 
bits trace program execution addresses 
and 8 bits trace external events) 

• Serial link to the IBM· PC AT, PC XT 
(and DOS compatibles), and the 
Intellec· Series IIIJlV 

• ASM-51 and PLlM-51 language support 

• Full emulation and debug support for 
the FIFO buffer 

• Built-in CRT-oriented text editor 

• Symbolic debugging enables access to 
memory locations and program 
variables 

• Four address breakpoints with in-range, 
out-of-range, and page breaks 

• Equipped with the Integrated Command 
Directory (ICDTM) that provides: 
- On-line help 
- Syntax guidance and checking 
- Dynamic command entry 
- Error checking 
- Command recall 

• On-line disassembler and single-line 
assembler to help with code patching 

The ICETM-5100/452 in-circuit emulator is a high-level, interactive debugger that is used to develop and test 
the hardware and software of a target system based on the UPITM-452 family of I/O processors. The ICE-51001 
452 emulator can be serially linked to an Intellec· Series III/IV or an IBM PC AT or PC XT. The emulator can 
communicate with the host system at standard baud rates up to 19.2K. 

"IBM is a registered trademark 01 International Business Machines Corporation. 

3-101 
October 1986 

Order Number: 280338 



intel' ICETM·5100/452 IN·CIRCUIT EMULATOR 

PRODUCT OVERVIEW of the microcontroller to debug the system as a 
completed unit. 

The ICE-5100/452 emulator provides full emulation 
support for the UPI-452 family of 1/0 processors. The 
UPI-452 family consists of the 83452, 87452, and the 
80452. 

The ICE-5100/452 emulator enables hardware and 
software development to proceed simultaneously. With 
the ICE-5100/452 emulator, prototype hardware can 
be added to the system as it is designed and software 
can be developed prior to the completion of the hard­
ware prototype. Software and hardware integration can 
occur while the product is being developed. 

The ICE-5100/452 emulator assists four stages of 
development: 

• Software debugging 

• Hardware debugging 

• System integration 

• System test 

SOFTWARE DEBUGGING 

The ICE-5100/452 emulator can be operated without 
being connected to the target system and before any 
of the user's hardware is available (provided external 
data RAM is not needed). In this stand-alone mode, 
the ICE-5100/452 emulator can be used to facilitate 
program development. 

HARDWARE DEBUGGING 

The ICE-5100/452 emulator's AC/DC parametric 
characteristics match the microcontroller's. The 
emulator's full-speed operation makes it a valuable 
tool for debugging hardware, including time-critical 
serial port, timer, and external interrupt interfaces. 

SYSTEM INTEGRATION 

Integration of software and hardware can begin when 
the emulator is plugged into the microcontroller socket 
of the prototype system hardware. Hardware can be 
added, modified, and tested immediately. As each sec­
tion of the user's hardware is completed, it can be 
added to the prototype. Thus, the hardware and soft­
ware can be system tested in real-time operation as 
each section becomes available. 

SYSTEM TEST 

When the prototype is complete, it is tested with the 
final version of the system software. The ICE-51001 
452 emulator is then used for real-time emulation 

The final product verification test can be performed 
using the ROM orf EPROM version of the micro­
controller. Thus, the ICE-5100/452 emulator provides 
the ability to debug a prototype or production system 
at any stage in its development without introducing 
extraneous hardware or software test tools. 

PHYSICAL DESCRIPTION 

The ICE-5100/452 emulator consists of the following 
components (see Figure 1): 

• Power supply 

• AC and DC power cables 

• Controller pod 

• Serial cable (host-specific) 

• User probe assembly (consisting of the pro-
cessor module and the user cable) 

• Crystal power accessory (CPA) 

• 68-pin PGA target adaptor 

• Clips assembly 

• Software (includes the ICE-5100/452 emulator 
software, diagnostic software, and a tutorial) 

The controller pod contains 64 KB of emulation 
memory, 254- by 24-bit frames of trace memory, and 
the control processor. In addition, the controller pod 
houses a BNC connector that can be used to connect 
up to 10 multi-ICE compatible emulators for syn­
chronous starting and stopping of emulation. 

The serial cable connects the host system to the con­
troller pod. The serial cable supports a subset of the 
RS-232C signals. 

The user probe assembly consists of a user cable and 
a processor module. The processor module houses 
the emulation processor and the interface logic. The 
target adaptor connects to the processor module and 
provides an electrical and mechanical interface to the 
target microcontroller socket. 

The crystal power accessory (CPA) is a small, 
detachable board that connects to the controller pod 
and 'enables the ICE-5100/452 emulator to run in 
stand-alone mode. The target adaptor plugs into the 
socket on the CPA; the CPA then supplies clock and 
power to the user probe. 

The clips assembly enables the user to trace exter­
nal events. Eight bits of data are gathered on the ris­
ing edge of PSEN during opcode fetches. The clips 
information can be displayed using the CLIPS option 
with the PRINT command. Trace qualification input 

3-102 



ICETM-5100/452 IN-CIRCUIT EMULATOR 

and output lines are also provided on the clips pod 
for connection to test equipment. 

The ICE-5100/452 emulator software supports 
mnemonics, object file formats, and symbolic ref­
erences generated by Intel's ASM-51 and PUM-51 pro­
gramming languages. Along with the ICE-5100/452 
emulator software is a customer confidence test disk 
with diagnostic routines that check the operation of 
the hardware. 

The on-line tutorial is written in the ICE-5100 com­
mand language. Thus, the user is able to interact with 
and use the ICE-5100/452 emulator while executing 
the tutorial. 

A comprehensive set of documentation is provided 
with the ICE-5100/452 emulator. 

ICETM-5100/452 EMULATOR FEATURES 

The ICE-5100/452 emulator has been created to assist 
a product designer in developing, debugging and 
testing designs incorporating the UPI-452 family of 
I/O processors. The following sections detail some of 
the ICE-5100/452 emulator features. 

EMULATION 

Emulation is the controlled execution of the user's 
software in the target hardware or in an artificial hard­
ware environment that duplicates the microcontroller 
of the target system. Emulation is a transparent pro­
cess that happens in real-time. The execution of the 
user software is facilitated with the ICE-5100/452 com­
mand language. 

MEMORY MAPPING 

The memory space for the 452 microcontroller and 
its target hardware is fully accessible through the 
emulator. The ICE-5100/452 emulator refers to four 
physically distinct memory spaces, as follows: 

• CODE - references program memory 

• IDATA - references internal data memory 

• RDATA - references special function regis­
ter memory 

• XDATA - references external data memory 

ICE-5100/452 emulator commands that access 
memory use one of the special prefixes (e.g., CODE) 
to specify the memory space. 

Figure 1. The ICETM-5100/452 Emulator Hardware 

3-103 



intel' ICETM·5100/452 IN·CIRCUIT EMULATOR 

The ICE-5100/452 emulator has the following FIFO 
buffer access commands: 

• FCLR Resets the entire FIFO buffer, or 
resets either the input portion or the 
output portion. 

• FDUMP Performs a non-destructive read of 
the input or output FIFO buffer. 

• FWRITE Loads values into the input or out­
put FIFO buffer . 

• FREAD Simulates a component read or a 
host system read of the FIFO buffer. 

• FREEZE Enables or disables the FIFO buffer 
access to the host CPU. 

The microcontroller's special function registers 
and register bits can be accessed mnemonically 
(e.g., DPL, TCON, CY) with the ICE-5100/452 emula­
tor software. 

Data can be displayed or modified in one of 
three bases: hexadecimal, decimal, and binary. Data 
can also be displayed or modified in 'one of 
two formats: ASCII and unsigned integer. Program 
code can be disassembled and displayed as ASM-51 
assembler mnemonics. Code can be modified with 
standard ASM-51 statements using the built-in single­
line assembler. 

Symbolic references can be used to specify memory 
locations. A symbolic reference is a procedure name, 
line number, program variable, or label in the user pro­
gram that corresponds to a location. 

Some typical symbolic functions include: 

• Changing or inspecting the value of a program 
variable by using its symbolic name to access 
the memory location. 

• Defining break and trace events using symbolic 
references. 

• Referencing variables as primitive data types. 
The primitive data types are ADDRESS, BIT, 
BOOLEAN, BYTE, CHAR (character), and 
WORD. 

The ICE-5100/452 emulator maintains a virtual sym­
bol table (VST) for program symbols. A maximum of 
61 KB of host memory space is available for the VST. 
If the VST is larger than 61 KB, the excess is stored 
on available host system disk space and is paged in 
and out as needed. The size of the VST is limited on­
ly by the disk capacity of the host system. 

BREAKPOINT SPECIFICATIONS 

Breakpoints are used to halt a user program in order 
to examine the effect of the program's execution on 
the target system. The ICE-5100/452 emulator sup­
ports three different types of break specifications: 

• Specific address break - a single address point 
can be specified to halt emulation. 

• Range break - an arbitrary range of addresses 
can be specified to halt emulation. Program ex­
ecution within or, optionally, outside the range 
halts emulation. 

• Page break, - up to 256 page breaks can be 
specified to halt emulation. A page break is 
defined as a range of addresses that is 256-bytes 
long and begins on a' 256-byte address 
boundary. 

Break registers are user-defined debug definitions us­
ed to create and store breakpoint definitions. Break 
registers can contain multiple breakpoint definitions 
and can optionally call debug procedures when 
emulation halts. 

TRACE SPECIFICATIONS 

Tracing can be triggered using specifications similar 
to those used for breaking. Normally, the ICE-5100/452 
emulator traces program activity while the user pro­
gram is executing. With a trace specification, tracing 
can be triggered to occur only when specific condi­
tions are met during execution. Up to 254 24-bit 
frames of trace information are collected in a buffer 
during emulation. Sixteen of the 24 bits trace instruc­
tion execution addresses, and 8 bits capture exter­
nal events (CLIPS). 

3-104 



ICETM-5100/452 IN-CIRCUIT EMULATOR 

The trace buffer display is similar to an ASM-51 pro­
gram listing as shown in Figure 2. The PRINT com­
mand enables the user to selectively display the con­
tents of the trace buffer. The user has the option of 
displaying the clips information as well as disassem­
bled instructions. 

PROCEDURES 

Debugging procedures (PROCs) are a user-named 
group of1CE-5100/452 commands that are executed 
as one command. PROCs enable the user to define 
several commands in a named block structure. The 
commands are executed by entering the name of the 
PROC. The PROC bodies are a simple DO ... END 
construct. 

PROCs can simulate missing hardware or software, 
collect debug information, and execute high-level soft­
ware patches. PROCs can be copied to text files on 
disk, then recalled for use in later test sessions. 
PROCs can also serve as program diagnostics, im­
plementing ICE-5100/452 emulator commands or 
user-defined definitions for special purposes. PROCs 
can also be used to set breakpoints. 

ON-LINE SYNTAX MENU 

A special syntax menu, called the Integrated Com­
mand Directory (ICD), similar to the one used for the 
I2ICpM system and the VLSiCE-96 emulator, aids in 
creating syntactically correct command lines. Figure 
3 shows an example of the ICD and how it changes 
to reflect the options available for the GO command. 

HELP 

The HELP command provides ICE-5100/452 emula­
tion command assistance via the host system terminal. 
On-line HELP is available for the ICE-5100/452 emu­
lator commands shown in Figure 4. 

DESIGN CONSIDERATIONS 

The height of the processor module and the target 
adaptor need to be considered for target systems. 
Allow at least 1112 inches (3.8 cm) of space to fit the 
processor module and target adaptor. Figure 5 shows 
the dimensions of the processor module. 

h1t>PRINT NEWEST 4 1* Print newest four instructions in 

FRAME 
(028) 
(030) 
(032) 
(034) 
hIt> 

ADDRESS 
300A 
300C 
300E 
3010 

buffer *1 
CODE INSTRUCTION 
C02A PUSH 2AH 
2532 ADD A,32H 
F52A MOV 2AH,A 
853210 CJNE A,32H,$+10H 

h1t>PRINT CLIPS OLDEST 2 1* 8uffer display showing clips *1 
FRAME ADDRESS CODE INSTRUCTION CLIPS (76543210) 
(000) 300A C02A PUSH 2AH 01110011 
(001) 300C 2532 ADD A, 32H 11110101 
hI t> 

Figure 2. Selected Trace Buffer Displays 

3-105 



ICETM-5100/452 IN-CIRCUIT EMULATOR 

hI t> GO 

FROM ARM FOREVER TIL 

~ :~::::'ROM 

hIt> GO FROM 13H 

<operator> ARM FOREVER 

hI t > GO FROM 13H USING 

BRKREG <brkreg name> 

hIt> GO FROM 13H USING brl 

TRACE <execute> 

USING 

TIL USING 

hIt> GO FROM 13H USING brl TRACE 

TRACE 

TRACE 

<expr> OUTSIDE PAGE FROM TIL <trcreg name> 

hIt> GO FROM 13H USING brl TRACE tracei~ 

<execute> 

<execute> 

<execute> 

<execute> 

Figure 3. The Integrated Command Directory for the GO Command 

3·106 

)) 



G 
I 

ICETM·5100/452 IN·CIRCUIT EMULATOR 

HELP is available for: 

ADDRESS APPEND 
BRKREG BYTE 
CONSTRUCTS COUNT 
DEBUG DEFINE 
EDIT ERROR 
FCLR FDUMP 
IF INCLUDE 
LINES LIST 
MENU MODIFY 
OPERATOR PAGING 
PUT REFERENCE 
RETURN SAVE 
TRCREG TYPES 
WORD WRITE 
hit> 

ASM 
CHAR 
'CURHOME 
DIR 
EVAL 
FREAD 
INVOCATION 
LITERALLY 
MODULE 
PARTITION 
REGS 
STRING 
VARIABLE 

BASE 
CI 
CURX 
DISPLAY 
EXIT 
FWRITE 
ISTEP 
LOAD 
MSPACE 
PRINT 
REMOVE 
SYMBOLIC 
VERIFY 

Figure 4. HELP Menu 

BIT 
CNTL_C 
CURY 
DO 
EXPRESSION 
GO 
KEYS 
LSTEP 
MTYPE 
PROC 
REPEAT 
SYNCSTART 
VERSION 

BOOLEAN 
COMMENTS 
DCI 
DYNASCOPE 
FREEZE 
HELP 
LABEL 
MAP 
NAMESCOPE 
PSEUDO_VAR 
RESET 
TEMPCHECK 
WAIT 

TOP VIEW 
PROCESSOR MODULE ~ jN1 

H 
L T 1-a~O~ ~~ I 

,g~~mlP OJ! 313/16" 

Im~ I 1em
) 

"'ztl 0 :~_. : Ii 0 Z ,:, 

~" .. 

CABLE BODY 

I 4" ---1 39" (10.2 em) 
(99 em) 

SIDE VIEW 
PROCESSOR MODULE 

~~9J,::,,,·, 
TARGET ~ 

ADAPTOR 2482 

Figure 5. Processor Module Dimensions 

3-107 



ICETM-5100/452 IN-CIRCUIT EMULATOR 

ELECTRICAL CONSIDERATIONS 

The emulation processor's user-pin timings and 
loadings are identical to the 452 component. except 
as follows: 

• Up to 25 pf of additional pin capacitance is con­
tributed by the processor module and target 
adaptor assemblies. 

HOST REQUIREMENTS 

• IBM PC AT or PC Xl (or DOS compatible) with 
512 KB of available RAM and a hard disk run­
ning under the DOS 3.0 (or later) operating 
system. 

• Intellec Series III/IV microcomputer development 
system running the ISIS or iNDX operating 
system respectively, with at least 512 KB of ap-
plication memory resident. . 

• Disk drives - dual floppy or one hard disk and 
one floppy drive required. 

ICETM-452 EMULATOR SOFTWARE 
PACKAGE 

• ICE-5100/452 emulator software 

• ICE-5100/452 confidence tests 

• ICE-5100 tutorial software 

EMULATOR PERFORMANCE 

Memory 

Mappable full­
speed emula­
tion code 
memory 

Trace memory 

Virtual Symbol 
Table 

64 KB Mappable to user or 
ICE-5100/452 emulator 
memory in 4 KB blocks on 
4 KB boundaries. 

254 x 24 bit frames. 

A maximum of 61 KB of 
host memory space is 
available for the virtual 
symbol table (VST). The 
rest of the VST resides on 
disk and is paged in and 
out as neded. 

PHYSICAL CHARACTERISTICS 

CONTROLLER POD 

Width 
Height 
Depth 
Weight 

USER CABLE 

SV4" 
1112" 
13V2" 
41bs 

(21 cm) 
( 3.S cm) 
(34.3 cm) 
( 1.S5 kg) 

The user cable is 3 feet (approximately 1 m). 

PROCESSOR MODULE 

(With the target adaptor attached.) 

Width 3-13/16" 
Height 4" 
Depth 1112" 

POWER SUPPLY 

Width 
Height 
Depth 
Weight 

SERIAL CABLE 

7-5/S" 
4" 
11" 
151bs 

The serial cable is 12 feet (3.6 m). 

( 9.7 cm) 
(10.2 cm) 
( 3.S cm) 

(1S.1 cm) 
(10.06 cm) 
(27.97 cm) 
(6.1 kg) 

ELECTRICAL CHARACTERISTICS 

POWER SUPPLY 

100-120 V or 200-240 V (selectable) 
50-60 Hz 
2 amps (AC max) 9 120 V 
1 amp (AC max) 9 240 V 

ENVIRONMENTAL CHARACTERISTICS 

Operating temperature +10°Cto +40°C (50°F to 
104°F) 

Operating humidity Maximum of S5% relative 
humidity, non-condensing 

3-10S 



intel· ICETM-5100/452 IN-CIRCUIT EMULATOR 

ORDERING INFORMATION 

EMULATOR HARDWARE AND SOFTWARE 

Order Code Description 
1452KITAD This kit contains the ICE-5100/452 user 

probe assembly, power supply and 
cables, serial cables, target adaptor, 
CPA, ICE-5100 controller pod, soft­
ware, and documentation for use with 
an IBM PC AT or PC )(T. The kit also 
includes the 805'1 Software Develop­
ment Package and the AEDIT text edi­
tor for use on DOS systems. (Requires 
software license.) 

1452KITD This kit is the same as the 14521<ITAD 
kit excluding the 8051 Software 
Development Package and the AEDIT 
text editor. (Requires software license.) 

1452KITAS This kit contains the ICE-5100/452 user 
probe assembly, power supply and 
cables, serial cables, target adaptor, 
CPA, ICE-5100 controller pod, soft­
ware, and documentation for use with 
Intel hosts (Series III/IV). The kit also 
includes the 8051 Software Develop­
ment Paci<age and the AEDIT text 
editor for use on the Series IIII1V. (Re­
quires software license.) 

1452KITS This kit is the same as the 1452KITAS 
kit excluding the 8051 Software Devel­
opment Package and the AEDIT text 
editor. (Requires software license.) 

SOFTWARE ONLY 

Order Code Description 
SA452D This kit contains the host, probe, diag­

nostic, and tutorial software on 5%" 
disks for use on an IBM PC AT or 
PC XT (requires DOS 3.0 or later). 
(Requires software license.) 

SA452S This kit contains the host, probe, diag­
nostic and tutorial software on 8" disks 
(both single-density and double­
density) for use on a Series III, and on 
5%" disks for use on a Series IV. (Re­
quires software license.) 

Other Use'iul Debug and Development 
Suppor~ Products 

Order Code Description 
D86ASM51 6051 Software Development Pack­

age (DOS version) - Consists of the 
ASM·5·1 macro assembler which gives 
symbolic access to 8051 hardware 
features; the RL5i linker and relocator 
program that links modules generated 
by ASM-51; CONV51 which enables 
software written for the MCS-48 fami­
ly to be upgraded to run on the 8051, 
and the LlB51 Librarian which pro­
grammers can use to create and main­
tain libraries of software object 
modules. Use with Ihe DOS operating 
system (version 3.0 or later). 

D86PLM5i PLlM-51 Software Package (DOS ver­
sion) - Consists of the PUM compiler 
which provides high-level programm­
ing langujage support; the LlB51 utili­
ty that creates and maintains libraries 
of software object modules, and the 
RL51 linker and relocator program that 
links modules generated by ASM-5i 
and PUM-51 and locates the linked ob­
ject modules to absolute memory loca­
tions. Use with the DOS operating 
system (version 3.0 or later). 

186ASM5i 8051 Software Development Pack­
age (ISIS. version) - Same as the 
D86ASM5i package except this one is 
for use with the Series III. 

186PLM5i PL/M Software Package - Same as 
the D86PLM51 package except this 
one is for use with the Series III and 
the Series IV. 

D86EDINL AEDIT text editor for use with the DOS 
operating system. 

3-109 



. 

APPLICATION 
NOTE 

Ap ... 239 

November 1986 

Customer Applications of the 
EMV-88 Emulations Vehicle 

BILL ALLEN 
DSO PRODUCT MARKETING 

FRED MOSEDALE 
DSO TECHNICAL PUBLICATIONS 

3-110 
Order Number: 280105-001 



AP-239 

r--------------------------, 
I SCOPE OF INTEL PERSONAL DEVELOPMENT SYSTEM 

WITH AN EM\LS8 EMULATOR 

I 

I 
I 
I 
I 
I 
I 

I 
I 

L ___________________________________ ~ 

280105-1 

Figure 1. Typical Microcomputer Process 

INTRODUCTION 

Early customers' experiences with the EMV-88 emula­
tion vehicle have shown the power, versatility, and ben­
efits of this emulator. The EMV-88 emulator plugs into 
an Intel Personal Development system (iPDSTM) and 
aids in the development and debugging of user-designed 
8088 systems. 

To aid new and potential users of the EMV-88, this 
application note summarizes applications and debug­
ging procedures of several early users of the'EMV-88 
emulator .. 

THE MICROCOMPUTER 
DEVELOPMENT 
PROCESS 

Designing a product that contains a microcomputer re­
quires close coordination of two separate but highly de­
pendent design efforts: hardware development and soft­
ware development. 

Hardware development involves planning the micro­
processor chip's interaction with associated logic, mem­
ory, peripheral circuits, and specialized circuits. 

Software development involves programming the mi­
crocomputer system to perform the required tasks. The 
resulting program eventually resides in the product's 
memory. 

These two development efforts can be accomplished in­
dependently, but it is more efficient to work on them 
together. Successful designs make maximum use of the 
hand-in-hand nature of hardware and software. In ad­
dition, real-world designing is an iterative process. 

3-111 

Each step in the design process may involve the debug­
ging and re-design of previous steps. A change in hard­
ware may involve a corresponding change in software 
and vice versa. 

Figure 1 illustrates a typical microcomputer develop­
ment process. The iPDS system and the EMV-88 
emulator are two major de,sign aids that Intel offers to 
hardware and software designers. Note the areas of the 
design process where a microcomputer development 
system and an emulator aid in the design of a product. 
(Numbers 1 through 4 shown in Figure 1 are used later 
in this application note.) 

Features of the iPDSTM System and the 
EMV-88 Emulator . 

The iPDS system and EMV-88 emulator offer thefol­
lowing resources. 

• A stand-alone computer with dual processors (op­
tional), memory, mass storage, and a disk-based op­
erating system. 

• Development system software such as assemblers, 
high-level language compilers, and EMV-88 debug­
ging software. 

• An interface (using the EMV-88 cable) to the proto­
type hardware. This allows you to check each piece 
of your prototype hardware as it is developed. 

• The EMV-88 mapping capability. This allows you to 
borrow the memory form the EMV-88 until proto­
type hardware is available. 

• The EMV-88 break and trace ability. This allows 
you to specify the conditions under which emulation 
stops or tracing occurs. 



inter AP-239 

280105-2 

Figure 2. The iPDSTM System and the EMV-88 Emulator Connected to a User Prototype 

• Availability of other plug-in modules for PROM 
programming and for emulation,of other processors 
(8051, 8044, and 8085), 

Figure 2 shows the EMV-88 emulator inserted in the 
side of the iPDS system. The EMV-88 emulator is 
shown connected to a user prototype board. 

THE USERS 

To obtain information for this application note, three 
early EMV-88 users were visited. Users were asked a 
variety of questions: How did the EMV-88 system save 
them time? What debugging procedures were especially 
useful? What EMV-88 features proved important in de­
veloping the users' designs? In retrospect, what features 
or techniques might have been used earlier to speed 
development and debugging even more? 

The customers visited were the following: 

- An established company originally specializing in 
water and waste water control devices. Now it is 
expanding to provide automatic control and moni­
toring devices. This company recently began de­
signing microcontrollers and microprocessors into 
its products. 

- An established communications and antenna com­
pany that was designing an 8088-based system to 
control the antenna for a satellite communications 
system. 

- A new company that was designing a computerized 
system for monitoring automatic manufacturing 
process control machines. 

All the customers had iPDS systems with EMV-88 
plug-in emulators. (The customers also had other iPDS 
plug-in options, including PROM programming mod­
ules.) 

USER APPLICATIONS AND 
DEBUGGING PROCEDURES 

New and potential EMV-88 users will be interested in 
two kinds of information supplied by the early EMV-88 
users: 

.(1) the different functions the EMV-88 emulators can 
be used to perform in early phases of a product's life 
cycle, and 

(2) some specific EMV-88 debugging techniques that 
proved useful to the users. The following two main 
sections focus on these topics. 

EMV-88 Emulator Functions In Early 
Phases of a Product's Life Cycle 

As a product is developed, debugged, and released to 
customers, the EMV-88 emulator can accomplish a va­
riety of tasks during early phases of the product's life 
cycle. In particular, the iPDS system with the EMV-88 

3-112 



inter AP-239 

emulator proved to be especially productive in complet­
ing the following tasks. (The task numbers are also 
shown in circles in Figure 1.) 

Task I Verifying hardware 

Task 2 Verifying software 

Task 3 Integrating prototype hardware and software 

Task 4 Production testing 

The EMV-88 system helped early users accomplish 
these tasks as described below: 

• Exercised hardware and software in real time (tasks 
1,2, and 3): Without an emulator, users would only 
have been able to check their prototypes by loading 
their programs into EPROMs and running the pro­
grams. Then, when bugs were detected and correct­
ed, the revised programs would have to be loaded 
into the EPROMs. This cycle would have to be re­
peated each time a bug was found. However, with 
the EMV-88 emulator, users did not need to load 
programs into EPROMs. The program resided in 
emulator memory and could easily be modified and 
retested. Thus, the emulator saved users time and 
provided flexibility in modifying programs. 

• For a prototype system with large programs, the 
EMV-88 emulator was used to supplement main de­
velopment systems (task I): One user had very large 
programs under development. The user's large de­
velopment systems were tied up with software devel­
opment and could not be used with their emulators 
to test hardware. To speed up debugging, the iPDS 
system with its EMV-88 emulator was pressed into 
service. Short EMV-88 macros were written to exer­
cise particular portions of the hardware. Thus, hard­
ware development and testing could continue 
despite the unavailability of emulators on the large 
development systems. 

• Patched around missing sections of code to allow 
emulation (tasks 2 and 3): Because the EMV-88 em­
ulator allows users to patch co~e, whenever a sec­
tion of code is incomplete or contain~ a bug, users 
can patch around it. One user was able to begin 
debugging the prototype before software develop­
ment was completed. At the end of sections of com­
pleted code, EMV-88 commands were used to patch 
in a command to jump from the last line of code in 
one section to the first line of code in the next avail­
able section. Some of the activities of the still-to-be­
completed code were also simulated withEMV-88 
commands in the patch. 

• Resolved disputes about whether bugs were in hard­
ware or software (task 3): Because the iPDS system 
and its EMV-88 emulator can control and examine 
both user hardware and user software, it is relatively 
easy to determine whether a bug originates in soft­
ware or hardware. For example, users took advan-

tage of the EMV-88 emulator's single-stepping ca­
pability to determine at which line of code unde­
sired values were generated. Then, carefully con­
trolled emulation combined with the use of a logic 
analyzer allowed users to pinpoint the source of the 
problem. As a result, fingerpointing by software 
and hardware team members quickly came to an 
end. . 

• Provided remote site testing of prototype hardware 
and software (task 3): One user could not fully test 
the prototype hardware and software because the 
environment in which the prototype was intended to 
run could not be duplicated in the development 
area. Because the iPDS system and the EMV-88 are 
portable, they were easily moved to a site remote 
from the development area. Then, a full debugging 
session in the prototype's intended environment 
took place. 

• Tested early manufactured systems (task 4): When 
the earliest boards have been manufactured, there 
must be a way to test them. If a complete board-test­
ing system is not yet in place, the EMV-88 can act 
as a hardware tester. After test programs are written 
for the EMV-88, and the emulator is connected to a 
new board, users can quickly determine whether 
flaws exist in the manufacturing process. If tests are 
skillfully written, hardware areas that are failing can 
be pinpointed. 

• Used to troubleshoot early customer systems (task 
4): Despite careful quality control, not all bugs in 
the design and manufacturing processes may be de­
tected. Early customers may report problems they 
are having with the product. If swapping hardware 
and/or software corrects the problem, the defective 
hardware and/or software can be returned for trou­
bleshooting. The EMV-88 emulator can track down 
the problem. It is important to determine the source 
of the problem so that, if need be, design changes or 

. manufacturing changes can quickly be initiated. 

As is evident from the preceding list, early users found 
a variety of tasks for the EMV-88 emulator to perform 
during product development and manufacturing. One 
user noted that the iPDS system is an excellent develop­
ment system for both young and mature companies. Its 
low price, versatility, and portability make the iPDS 
system with the EMV-88 emulator an investment that 
returns its cost many times. 

Early EMV-88 Users' Debugging 
Techniques 
Six debugging problems early users encountered have 
been selected to illustrate a variety of EMV-88 emula­
tor's capabilities. 

3-113 



inter 

*DEFINE :move 
• *BASE=Y 
• *SUFFIX=Y 
• *BYTEOT00111 =0 
.*BYTEOT00111 
• *DEFINE .n = 0 
• *DEFINE .k = 1 
• *REPEAT 
• *UNTIL .k=100000000 
• * REPEAT 
• *UNTIL.n = 1000 
• *BYTE.n =.k 
• *.n=.n+1 
.*END 
• *BYTE 0 to 0111 
• *.k= .k*10 
.*END 
.*EM 

* 

AP-239 

;Macro name is :move (* is the EMV-88 prompt) 
;Sets display radix to binary 
;Sets input radix to binary 
;Ini tializes first 8 bytes to 0 
;Displays first 8 bytes 
;Sets memory location variable to 0 
;Sets memory content variable to 1 
;8egins first repeat loop 
;Hal ts first loop when. k=100000000 
;8egins second loop 
;Halts second loop when.n reaches 8 (decimal> 
;Sets memory location. n=value . k 
;Increments. n 
;Ends second loop 
;Displays values in first 8 memory locations 
;Multiplies .k by 2 (decimal> 
;Ends first loop 
;Ends macro 

280105-3 

Figure 3. Sample Macro for Testing Memory 

PROBLEM 1: INITIAL CHECK OF PROTOTYPE 
HARDWARE (Task 1: Verify Hardware) 

One early user made an initial check of prototype hard­
ware with the EMV-88 emulator. Once the user's 
RAM, USART, and registers were in place in the hard­
ware prototype, an initial hardware check was sched-. 
uled. Were the components installed and connected 
properly? (To ease hardware-software integration, ef­
forts should first be made to isolate hardware defects 
independently of the prototype softwar~) 

PROBLEM 1 SOLUTION 

The EMV-88 user performed the following steps to 
check out prototype hardware. 

I. Identified the addresses of all hardware elements to 
be tested. 

2. Devised EMV -88 hardware test macros: Macros 
. were created that wrote patterns of I's and O's to the 
memory devices and registers. The macros also were 

designed to read and display memory and register 
contents .. (See Figures 3 and 4' for a sample macro 
that writes patterns of I's and O's to a small portion 
of memory. Also, see the appendix for information 
on EMV-88 commands.) 

3. Executed the macros and observed the results on the 
IPDS system display screen. 

4. Identified defective hardware areas: When an output 
value was different from an input value, the user 
executed memory interrogation commands (e.g., 
BYTE, WORD, DUMP) to confirm the location of 
defective hardware. 

PROBLEM 2: WRONG INSTRUCTION 
EXECUTION SEQUENCE (Task 2: Verify Software) 

When this user's prototype program was emulated, a 
portion of the program ran properly, but then it per­
formed strangely-it "ran in the weeds." How can the 
EMV -88 emulator locate the area of program Code 
where the execution sequence first begins to go wrong? 

3-114 



AP-239 

*:move iUsing macro name causes macro to be executed 
BYT DDDDDH=DDDDDDDDY DDDDDDDDY DDDDDDDDY DDDDDDDDY 
BYT DDDD4H=DDDDDDDDY DDDDDDDDY DDDDDDDDY DDDDDDDDY 
BYT DDDDDH=DDDDDDD1Y DDDDDDD1Y DDDDDDD1Y DDDDDDD1Y 
BYT DDDD4H=DDDDDDD1Y DDDDDDD1Y DDDDDDD1Y DDDDDDD1Y 
BYT DDDDDH=DDDDDD1DY DDDDDD1DY DDDDDD1DY DDDDDD1DY 
BYT DDDD4H=DDDDDD1DY DDDDDD1DY DDDDDD1DY DODD DO lOY 
BYT DDDDDH=DDDDD1DDY DDDDD1DDY DDDDD1DDY DDDDD1DDY 
BYT DDDD4H=DDDDD1DDY DDDDD1DDY DDDDD1DDY DDDDD1DDY 
BYT DDDDDH=DDDD1DDDY DDDD1DDDY DDDD1DDDY DDDD1DDDY 
BYT DDDD4H=DDDD1DDDY DDDD1DDDY DDDD1DDDY DDDD1DDDY 
BYT DDDDDH=DDD1DDDDY DDD1DDDDY DDD1DDDDY DDD1DDDDY 
BYT DDDD4H=DDD1DDDDY DDD1DDDDY DDD1DDDDY DDD1DDDDY 
BYT DDDDDH=DD1DDDDDY DD1DDDDDY DD1DDDDDY DD1DDDDDY 
BYT DDDD4H=DD1DDDDDY DD1DDDDDY DD1DDDDDY DD1DDDDDY 
BYT DDDDDH=D1DDDDDDY D1DDDDDDY D1DDDDDDY D1DDDDDDY 
BYT DDDD4H=D1DDDDDDY D1DDDDDDY D1DDDDDDY D1DDDDDDY 
BYT DDDDDH=lDDDDDDDY lDDDDDDDY lDDDDDDDY lDDDDDDDY 
BYT DDDD4H=lDDDDDDDY lDDDDDDDY lDDDDDDDY lDDDDDDDY 

* 

280105-4 

Figure 4. Sample Display Resulting from Figure 3 Macro 

PROBLEM 2 SOLUTION 

The user performed the following steps to locate the 
area of code where code begins defective operation. 

1. Emulated the program: The user executed the GO 
command with the FROM option; the program 
starting address was entered after FROM. (See the 
appendix for information on EMV-88 commands.) 

4. Re-emulated. When emulation occurred using the 
new breakpoint, emulation halted at the point the 
previous trace buffer started collecting trace infor­
mation. Now, the new trace buffer contained the 
preceding lK bytes of executed instructions 

2. Examined the trace buffer: The PREVIOUS com­
mand was used to scan through the lK byte trace 
buffer. (See Figure 5 for a sample display using the 
PREVIOUS command. In Figure 5, the first 16 in­
structions in the lK byte trace buffer are displayed.) 
The instructions stored at the very beginning of the 
buffer were incorrect. This implied that the problem 
was further back in program execution. The instruc­
tion address at the beginning of the trace buffer was 
noted. 

3. Set a breakpoint: To make possible examination of 
the previous lK bytes of the program execution se­
quence, the user set an execution breakpoint at the 
address identified in step 2. 

5. Examined the trace buffer: Scanning through the 
new trace buffer contents the user came upon the 
program section where the execution sequence went 
awry. Study of the program section showed a pro­
gramming error. 

6. Patched code: Using the ORG (originate) and ASM 
(assemble) commands, the user created a patch. (See 
Figure 6 for a display of sample EMV-88 patching 
commands.) First the instruction pointer was moved 
to the location of the defective line of code using the 
ORG command. Then, the ASM command inserted 
a jump command to an unused area of memory. Us­
ing ORG and ASM, a patch of correct code was 
created at the unused memory location; .the patch 
included a jump back to the instruction next after 
the line of defective code. 

3-115 



inter AP-239 

f,PREVIOUS 1024TlENGTH 16 ;])isplays first 16 instructions in trace bUffe~ 
0040BH MOV ])S, AX 8ED8 PREV 
0040])H MOV AX, 0060H B86000 PREV 
00410H MOV ES,AX 8ECO PREV 
00412H NOP 90 PRE V 
.. ])ATA_AN])_CO])E.XlATE 
00413H '. MOV H,0028H BF2800 PRE V 
00416H MOV SI,OOOOH BEOOOO PRE V 
00419H MOV ' BX, 00S2H BBS200 PRE V 
0041CH Cl]) FC PRE V 
0041])H CALL 0440H ; SHORT E82000 PREV 
.. ])EMO_PROCS.SPOT1 
00440H LO'])S BYTE (SI) AC PREV 
00441H XlAT BYTE (BX) ])7 PREV 
00442H STOS BYTE (H) AA PRE V 
00443H lOOP 0440H ; SHORT E2FB PRE V 
.. ])EMO_PROCS.SPOT1 
00440H lO])S BYTE (SI) AC PREV 
00441H XlAT BYTE (BX) ])7 PRE V 
00442H STOS BYTE (H) AA PREV 
00443H lOOP 0440H ; SHORT E2FB PREV 
0044SH RET ; SHORT C3 PREV 
.. ])ATA_AN])_CO])E.REVERSE 
00420H MOV CX,WOR]) OOSOH 8BOESOOOPREV 

.~ -!) 

280105-5 

Figure 5. Sample Display Using the PREVIOUS Command 

7. R~emulated: Emulation stopped at the breakpoint 
set in step 3. 

8. Examined the trace buffer: This time the trace buff­
er showed that program execution followed the cor­
rect sequence. Thus, the patch fixed the problem. 

PROBLEM· 3: DEBUGGING IN A MULTI­
TASKING ENVIRONMENT 
(Task 2: Verify Software) 

Programs that support multi-tasking can be difficult to 
debug,when interrupts arrive that place the current task 
on the stack while another task is undertaken. One 
EMV -88 user peifonned the following steps to over­
""me this problem. 

PROBLEM 3 SOLUTION 
1. Cleared the int~Pt enable flag: By entering IFF 
~ 0, the 8088 interrupt. enable flag waS cleared. See 
Figure 7 for a display of register settings that shows 
the resulting IFF setting. 

2. Emulated the code of interest: The user used the GO 
command with the FROM option to set a break­
point and thus control emulation of the desired sec­
tion of code. (See the appendix for information on 
EMV-88 !X>IIlmands.) With the hiterrupt enable flag 
cleared, trace information was collected without 
other t8sksintermpting the trace data collection. 

3. Re-enablCd the interrupt enable flag. 

PROBLEM 4: MEMORY NOT BEING ZEROED 
(Task 3: Integrate Hardware and Software) 

This user first employed the EMV-88 emulator to test a 
section of code that was supposed to zero memory. The 
test showed that memory was not being zeroed. What 
prevented the memory initialization? 

PROBLEM 4 SOLUTION 

Once it was clear that memory was not being zeroed, 
the user (whose iPDS system had the optional dual 
processors) followed these steps to identify what was 
preventing memory from being initialized. 

3-116 



inter AP-239 

*ORG419 
ASM IP= o0419H 
*ASM JMP OAOO 
ASM IP=00419H 

;Sets address for assembly to 419H 

;Inserts instruction to jump to AooH 
E9E4oS 

*DASM419 ;Disassembles instruction at 419H 
o0419H 
*ORGOAOO 

JMP oAooH ; SHORT E9E405 DASM 
;Sets address for assembly to AooH 

ASM IP=ooAooH 
*ASM MOV BX,52 ;Inserts MOV instruction 
ASM IP=ooAooH BBS200 
*ASM MOVCX,WORD .MAX. ; Inserts MOV instruction 
ASMIP=00A03H 8BoE50oo 
*ASM JMP 41C ; Inserts jump back to 41CH 
ASM IP=00A07H E912F A 
*DASMOAOOTOOA07 ;Disassembles patch 
ooAooH MOV BX,00S2H BB5200 DASM 
00A03H MOV CX, WORD DO SOH 8BoESooo DASM 
00A07H JMP o41CH ; SHORT E912FA DASM 
·GOFROM400 ;Emulates beginning at 400H 
•• DATA_AND_CODE.REVERSE 
o0420H MOV CX, WORD OoSoH 8BOE5000 EX 

* 

280105-6 

Figure 6. Sample Patch Commands 

1. Used the B processor to locate code: The iPDS file 
display command (@) was used to scroll through the 
code listing to locate the line of code where memory 
zeroing began. The line that completed the zeroing 
operation was also located. 

2. Set up a trace point and a breakpoint: After switch­
ing to the A processor, the user set a trace point and 
a breakpoint that began trace at the first line identi­
fied in step 1 and caused emulation to break at the 
other line identified in step L (See the appendix for 
information on EMV-88 commands.) 

3. Initiated emulation using the GO command. 

4. Examined the trace buffer: The trace buffer showed 
tha the expected data (FC) was read from program 
memory. 

5. Connected a logic analyzer to an EMV-88 controller 
test signal: A logic analyzer was connected to the 
BRK test signal available on the EMV-88 controller 
module; the signal is useful in triggering a logic ana­
lyzer to capture data on the bus. 

6. Re-emulated. 

7. Examined the logic analyzer display: The logic ana­
lyzer display showed that FF was being received by 
the processor even though FC was being sent. 

8. Connected an oscilloscope to the bus: The oscillo­
scope showed ringing on the bus. (The ringing was 
traced to a faulty extender card.) The ringing caus~d 
bus signals to be near threshold values. Low signals 
could be interpreted by the processor as high or low. 
Thus FC (1111 1100) could be interpreted as FF 
(11111111), . 

PROBLEM 5: DISPLAY UPDATE SIGNAL IS 
SLOW 
(Task 3: Integrate Hardware and Software) 

This user developed a system with a display that must 
be updated every second. However, in each five minute 
period, the display was updated one time less than it 
should be. The user needed to determine whether a 
counter implemented in software was not generating 
the correct update signal or whether the output from a 
separate timer board (that incremented the counter) 
was too slow. 

PROBLEM 5 SOLUTION 

This is a problem that became evident to the product 
development team after software and hardware were 

3-117 



Ap·239 

*IFF=O 
*REGISTER 

;Clears the interrupt enable flag 
;Displays current register settings 

*REGISTER DISPLAY* 

RAX=OOOOH 
RBX=OOOOH 
RCX=OOOOH 
RDX=OOOOH 

RAH=OOH 
RBH=OOH 
RCH=OOH 
RDH=OOH 

RAL=OOH 
RBL=OOH 
RCL=OOH 
RDL=OOH 

SP=OFFFH 
CS=FFFFH 

BP=OOOOH 
DS=OOOOH 

SI=OOOOH 
SS=OOOOH 

DI=OOOOH 
ES=OOOOH 

IP=OOOOH 

RF=F002H 

* 

OF=O 
SF=O 

DF=O 
ZF=O 

IFF=O 
AF=O 

TF=O 
PF=O CF=O 

280105-7 

Figure 7. Sample REGISTER Display that Shows the New IFF Setting 

integrated. It was unclear whether it was a software or 
hardware defect. The team employed the following 
steps with the EMV-88 emulator to locate the source of 
the problem. 

1. Created a counter macro: A macro was created that 
counted each time the external board sent a signal to 
a specific input port of the 8088. (See the appendix 
for information on EMV-88 commands.) The macro 
also sent a signal to an ouput port when the counter 
reached the correct count. The team reasoned that if 
the problem still existed when they used the macro 
counter, the counter in the prototype software 'could 
be eliminated as the source of the problem. 

2. Executed the macro and checked the output signal: 
The output port signal interval was slightly longer 
than the desired one second interval. Thus, the 
problem must be caused by the signal input to the 
counter. 

.3. Measured the input signal: The input signal was ex­
pected to occur at 0.500 second intervals. However, 
measurements showed that it occurred at longer in­
tervals. It seemed, then, that the count board was to 

blame. However, examination of the board's specifi­
cations showed that the output of the board was 
ambiguously specified. In one place it gave the timer 
output as occurring at 0.500 intervals and in other 
places the interval was specified with a + 0.016 sec­
ond tolerance. So the cause of the slow display up­
date was neither a hardware defect nor a software 
defect. Rather, to blame were an ambiguous specifi­
cation and the failure of the designers to look for 
and to take into account the tolerance of the timer's 
interval. 

PROBLEM 6: READ-ONLY MEMORY IS 
WRITTEN TO 
(Task 3: Integrate Hardware and Software) 

One user encountered a situation in which a read-only 
area of memory was written to during program execu­
tion. The EMV-88 user performed the following steps 
to isolate the error. . 

3-118 



AP-239 

*BREAK ;Displaysbreakpointsettings 

*BREAKPOINT SETTINGS* TYPE 

BRO= OFF 
BRR= OFF 
BRB= OFF 
BV=OFF 

MO=EX 

BR1= OFF BR2= OFF BR3= OFF : location 
:range 

(GO mode on 1 y) : branch 
(STEPmodeonly) :value 

NOTE: Be will clear all breakpoints and set MO=EX 

NOTE: MO affects BRR and BRO,1,2,3. Legal MO settings are: 
DR-data read DW-data wri te DRW-data read or wri te EX-execution 
IR-IO read IW-IO wri te IRW-IO read or wri te 

* 

280105-8 

Figure 8. BREAK Display 

PROBLEM 6 SOLUTION 
1. Set a range breakpoint: By using the BREAK com­

mand (or FUNCTION-2), the current breakpoint 
settings were displayed. (See Figure 8 for a display 
of EMV-88 breakpoint settings. Also, see the appen­
dix for information on EMV-88 commands.) The 
breakpoint mode was set to data write (MO = 
OW), and the range breakpoint was set to the mem­
ory range of interest. As a result of these settings, 
emulation breaks if a data write occurs within the 
specified memory range. 

2. Emulated. 

3. Examined the trace buffer: Examined the previous 
16 instructions in the trace buffer (by entering PRE­
VIOUS 16). Defective code was discovered. 

4. Patched and tested the code. See Problem 2 for an 
account of patching procedures. 

SUMMARY 

Early users of the EMV-88 emulator used the emulator 
to perform the following functions in the early stages of 
their products; life cycles. 

• Exercised hardware and software in real time. 

3-119 



intJ AP-239 

• For a prototype system with large programs, the 
EMV-88 emulator was used to supplement main de­
velopment systems. 

• Patched around missing sections of code to allow 
emulation when some portions of code were unavail­
able. 

• Resolved disputes about whether bugs were in hard­
ware or software. 

• Tested prototype hardware and software at a remote 
site. 

• Tested early manufactured systems. 

• Helped in troubleshooting early customer system re­
turns. 

In addition, early users showed that the resources of 
the EMV-88 software and hardware can be used to 
cope with a wide variety of debugging problems. The 
EMV-88 emulator performed the following tasks: 

• Made an initial check of prototype hardware. 

• Located code that caused the instruction execution 
sequence to be wrong. 

• Devised a way to· debug in a multi-tasking environ­
ment. 

• Identified the reason that memory was not being 
zeroed. 

• Isolated the cause for a counter counting too slowly. 

• Located code that was permitting writing to read­
only memory. 

Finally, early EMV-88 customers also niade use of oth­
er iPDS plug-in modules. They used other emulation 
vehicles to debug other portions of their hardware and 
software that were designed around other Intel proces­
sors; they also used PROM programming modules to 
load their debugged code into their prototype system 
PROMs. 

New users of the iPDS system and EMV-88 emulator 
are encouraged to make full use of these systems' capa­
bilities and resources to perfect their products. Only 
some of the capabilities of the EMV-88 emulator and 
the iPDS system have been described here. Review the 
iPDS system and EMV-88 emulator manuals to gain 
full lalowledge of the command sets and options. 

3-120 



inter Ap·239 

APPENDIX: SUMMARY OF EMV-88 COMMANDS AND 
COMMAND CATEGORIES 

APPENDIX: SUMMARY OF EMV·88 
COMMANDS AND COMMAND CATEGORIES 

DISPLAY/MODIFY COMMANDS 

The EMV -88 emulator is a full symbolic emulator, and 
hence all commands and displays can be entered sym­
bolically. The EMV-88 emulator and the user can thus 
communicate by referring to symbols defined in the us­
er's source program or symbols defined during the de­
bugging session. Ths following sections describe the 
command categories and Table 1 summarizes the 
EMV-88 commands. 

These commands change or display any register, port, 
or memory addressable by the iAPX-88 target system. 
They provide access to specific areas of the processor or 
target system and thus minimize extraneous display in­
formation. 

EMULATION COMMANDS 

Commands that control program execution or initiate 
emulation fall into this category. The GO, BREAK, 
and TRACE commands are in this category. UTILITY COMMANDS 

Utility commands performs functions not directly relat­
ed to the task of emulation and debugging. These com­
mands gain access to the iPDS system resources and 
display information about the emulator. 

ADVANCED COMMANDS 

The advanced commands offer an easy way to increase 
the debugging capability of this product. These ad­
vanced features allow the EMV-88 emulator command 
sequences to be combined, executed, and stored. 

Table 1. Summary of EMV-88 Commands 

Command Category Command Command Definition 

Utility Commands DEFINE Defines symbol or macro. 
DOMAIN Establishes default module. 
ENABLE/DISABLE Controls expanded display. 
EVALUATE Evaluates any expression. 
EXIT Terminates EMV-BB session. 
HELP Displays command syntax. 
INCLUDE Loads a macro definition or a command file. 
LINE Displays statement numbers and associated absolute addresses. 
LIST Generates copy of emulation work session. 
LOAD Loads object file in mapped memory. 
MODULE Displays module names in EMV-BB module table. 
REMOVE Deletes symbol or macro. 
RESET Resets emulation processor. 
SAVE Saves memory to file. 
SYMBOLS Displays symbols. 
SUFFIX/BASE Sets input and displays numeric base. 
TYPE Sets/displays data type for symbol name. 

3-121 



intJ Ap·239 

Table 1. Summary of EMV·88 Commands (Continued) 

Command Category Command Command Definition 

Emulation BR Displays breakpoint menu. 
Commands BRO,BR1, BR2, BR3 Breakpoint register for execution address. 

BRB Breaks on branch. 
BRR Breakpoint register for execution range. 
BV Breaks on value. 
BC Clears all breaks. 
DTR Displays trace menu. 
GO Enters real-time emulation mode. 
MO Break qualifier. 
PREVIOUS Displays execution trace. 
STEP Enters slow-down emulation mode. 
TO Enable/disables display of code disassembly. 
TR Enable/disables display of registers. 
TRO, TR1, TR2, TR3 Enable/ disables display by execution address. 
TS Enable/disables display of PSW. 
TV Enable/ disables display by register value. 

Display/Modify ASM/DASM Changes/displays code memory in assembly language 
Commands mnemonics. 

ORG Sets address for assembling instructions. 
DUMP Displays memory as ASCII and hexadecimal. 
MEMORY Displays menu for memory access. 
PORT Changes/displays ports. 
REGISTER Displays 8088 registers menu. 
BYTE 

} WORD 
POINTER Change/display memory. 
SINTEGER 
INTEGER 
REAL } TREAL 8087 commands 
OREAL 

Advanced Commands DIR Displays names of all available macros. 
FUNCTION Invokes macro assigned to function key. 
MACRO Displays.macro text. 
MAP Sets/displays memory map. 
PUT Stores macro definitions. 
WRITE Evaluates and displays expressions and strings. 
IF THEN 

} COUNT 
REPEAT Control constructs. 
WHILE 
UNTIL 

3-122 



inter APPLICATION 
NOTE 

Using Proced~res to 
Speed 121CETM 

System Debugging 

LAKSHMI JAYANTHI 
DSO APPLICATIONS 

AP-262 

October 1986 

Order Number: 280722-001 
3-123 



intJ AP-262 

INTRODUCTION 

Every engineering manager in charge of developing a 
microprocessor based product worries about the critical 
phase of the project when the hardware and software 
pieces are integrated. The integration portion of a de­
velopment task can take as much as 40 percent of the 
design team's time, and some projects have been known 
to die at this point, succumbing to problems too expen­
sive to solve. 

Today's high-peformance 16-bit microprocessors make 
the integration phase more critical than ever. The move 
from 8-to 16-bit microprocessors has added considera­
ble complexity to bus structures and memory manage­
ment techniques. These processors address such large 
ampunts of memory, the 80286 can access 16 mega­
bytes of physical memory, that development of a prod­
uct based on such a processor is software-intensive. 

This additional complexity makes crucial the need for 
tools that can help hardware and software integrators 
gather, correlate, and evaluate data. Integrating the, 
hardware and S<)ftware of the microprocessor based sys­
tem often ends in failure because of a classic communi­
cation gap between hardware and software designers. 
Each uses different methods to debug the system. The 
gap has been narrowed by such software development 
aids as an In-Circuit emulator (lCETM) system, 
PSCOPE, and TargetSCOPE-186 and such hardware 
tools as logic analyzers, but a full solution calls' for a 
common interface that enables designers to go back and 
forth between hardware and software domains. 

Such an interface is the PICETM (Integrated Instru­
mentation And In-Circuit Emulator) System. ~is new 
system integrates a logic analyzer, a high-level software 
debugger, and a sophisticated in-circuit emulator, per­
mitting hardware and software developers to interact in 
the debugging process without learning each others I8n­
guage. 

INTEGRATED INSTRUMENTATION AND IN­
CIRCUIT EMULATOR (l2ICE system) is a very pow­
erful Hardware and Software debugging tool used to 
debug the hardware board or the software code. In or­
der to aCllieve the debugging you need, numerous 
PICE system features are available suc~ as the follow­
ing: 

• Integrated Command Directory (lCD) 

• Coprocessor Suppprt 

• Pseudo-variables 

• Debug Procedures 

• Logic Clips 

note deals with procedures that can be used on an 
PICE system. The numerous techniques that can be 
used in creating and developing these procedures are 
explained in detail with specific examples, flow charts, 
diagrams, displays, and actual procedure listings. 

USEFUL DEFINITIONS 

Before looking into the actual procedural language, it is 
extremely helpful to study some useful definitions. It is 
important to understand these definitions and their us­
age m the PICE system in order to understand their 
role in the development of procedures. Each relevant 
command is defined and explained in some detail with 
examples. At the end of this section you will under­
stand these defmitions and their role in the procedural 
language. ' 

Procedure 

A procedure operates like a single command because it 
enables you to Use several commands in Ii block struc.: 
ture and declare local variables. Also, the procedures 
can be several nested blocks. The size of procedures is 
limited only by the amount of memory space available. 
Defining procedures is like adding commands to 'the 
PICE language and you can create commands of par­
ticular relevance to your debug situation. 

INCLUDE 

The INCLUDE command retrieves a command file 
from a mass storage device and loads it into memory. 

LIST 

A LIST file is an FICE system utility file. Typically, a 
list file is used as a debug session log. 

LITERALLY 

LITERALLY definitions are abbreviations for previ­
ously defined character strings. 

WRITE 

The WRITE command is most often used in proce­
dures to add explanatory text to returned values in a 
more useful form, such as a table. 

Attribute Codes 

• Logic Timing Analyzer Attribute codes are used to add clarity or distinction to 
text written to the screen. These attribute codes are 

This application note focuses on the various ways to accessible using the CONCAT command. The CON-
write debug procedures with an PICE system for hard- CAT command builds strings by concatenating all or 
ware and software debugging purposes. Iii. general this parts of old strings, to form a new string. 

,3-124 



inter AP-262 

,'----------~--------~/ 
HOST DEVELOPMENT SYSTEM 

PCBOAAD 
ANDCA8LE 

HOST-TO-I'ICE'" SYSTEM 
INTERFACE BOARD 

AND CABLE 

/ 

CHASSIS AND EMULATION MODULE EMULATION 
PERSONALITY 

MODULE 

260722-1 

Figure 1. 121CE System 

Boolean-Condition 

A Boolean condition is either a value of type BOOLE­
AN (TRUE or FALSE) or an expression that uses one 
of the relational operators: 

CI 

The CI (console input) function enables a debug proce­
dure to read one character from the system terminal. 

IF 

An IF command conditionally executes a command or 
group of commands. 

PROBLEM DEFINITION 

Now that we understand some of the relevant PICE 
definitions, we may move to the problem definition. All 
the preceding definitions will be used with examples of 

3-125 



AP-262 

COMMAND REG DATA IN REG 

STATUS REG DATA OUT REG 

Figure 2. Registers in Asynchronous Mode 

the procedural language. Debug procedures will be 
built-up in a variety of forms and their tremendous 
leverage and flexibility will be demonstrated. The 
countless number of ways commands like INCLUDE, 
LIST, WRITE are used and the numerous functions 
that they perform will be illustrated. 

In this example we will debug a program which con­
tains driver code interacting with peripheral compo­
nents. The interaction with two of these peripherals 
(the simple 8251A Programmable Communications In­
terface and the more complex 82530 Serial Communi­
cations Controller) will be dealt with and also how 
these debug procedures can simplify and speed our 
work will be shown. We will develop techniques for 
working with these components and reduce frustration 
and constant thumbing through data catalogs. 

The 825lA Programmable Communications Interface 
is a simple component as viewed by the software de­
signer. It consists (in Asynchronous mode) of four reg­
isters as shown in Figure 2. When we read the status 
port, the mUltiple bits must be decoded to know what 
the 8251A is doing. Our first debug procedure will do 
this decoding for us and we will never confuse the bits 
again. 

8251A Procedure 

Prior to starting data transmission or reception, the 
825lA must be loaded with a set of control words gen-

erated by the CPU. These control signals define the 
complete functional definition of the 825lA and must 
immediately follow a reset operation (internal or exter­
nal). The control words are split into two formats: 
mode instruction and command instruction. 

In data communications it is often necessary to exam­
ine the "status" of the active device to ascertain if er­
rors have occurred or other conditions that require the 
processor's attention. With the 825lA facilities, the 
programmer can "read" the status of the device at any 
time during the functional operation. 

The following procedure executes a status read of the 
8251A and displays it on the PICE system screen. The 
status read of the 825lA will be at some port location 
depending on the hardware configuration of the 8251A. 
This procedure, by way of example, requests the user to 
enter the port address of the 825lA from which the 
status information can be read. Operationally, you 
would define this once as a GLOBAL variable. The 
procedure then displays the byte value stored at that 
memory location in binary form on the screen. The cor­
responding messages for each of those eight bits with 
complete information about their status appears on the 
screen. 

There are two procedures under one filename. They are 
GETHEX and 18251A, respectively. GETHEX is a 
procedure used to change the user input at the console 
to a hexadecimal value, to print this value on the 
screen, and to ring a bell if you make an improper selec­
tion. 18251 A is the main procedure that reads in the 
hexadecimal value of the port address of the 825lA and 
(after you choose the port number) displays the eight 
bits of information in binary form with detailed expla­
nation. The actual display on the PICE System termi­
nal screen is as shown in Figure 3. 

3-126 



inter 
'define PROC gethex = DO 
• .define WORD num 
• .define CHAR chr 
·.define CHAR bell - 07h 
·.num - 0 
• . repeat 
• .. chr -= ci 
• .. if (chr > ~ '0') and (chr < ~ '9') then 
• ... num = num'lOh + (chr-30h) 
•... write using (,1, > ') chr 
• ... else 
•.... if (chr > = 'A') and (chr < - 'F') then 
• ..•. num - num'lOh + (chr-37h) 
• .... writc using (,1, > ') chr 
• .... else 
• •.... if (chr > - 'a') and (chr < = 'f) then 
• ..•.. num - num'IOb + (chr-S7h) 
• ..... write using CI,> ') chr 
• ..... else 
, ..... .if chr < > Odh then write usingCO, > ') bell 
• ...... end 
• ..... end 
• .... end 
• ... end 
• ... until chr = = Odh 
·,.end 
* .. retumnum 
·.end 
'derme PROC 182S IA = do 
'.define WORD wreg 
• .derme WORD numget 
'.define BYTE temp 
'" .curhome;c1eareos 

AP-262 

'. write concat(hibl;ENTER THE PORT NUMBER OF THE 82SIA and < cr> ',norm) 
"'. wreg l1li: getbex 
'.temp - port(wreg) 
'" .curhomc;cleareos 
'.write concat(hi; 82SIA STATUS REGISTER',norm) 
"'. write concat(hi,' ••••••••••••••••••••••• ' ,norm) 
'.write using C2c:' = > .. ,2,y,Sx,I,y,Sx,I,y,Sx,I,y,Sx,I,y,Sx,I,y,Sx,I,y,Sx,I,y') & 
"(temp and 80h) 18Oh, & 
"(temp and 4Oh) 14Oh, & 
"(temp and 20h) 120h, & 
"(temp and IOh) IlOh, & 
"(temp and 08h) 108h, & 
"(temp and 04h) l04h, & 
"(temp and 02h) 102h, & 
"(temp and Olh) 10lh 
'. write concat(norm: ') 
'. write concat(norm; I D7 I D6 I DS I D4 I D3 I D2 I D1 I DO I ') 
"'. write concat(norm,' ----------_____________________________________ ') 

-. write' D7 - DATA SET READY D3 - PARITY ERROR' 
-.write' D6 = SYNDETIBRKDET D2 _ TxEMPrY' 
-.write' DS - FRAMING ERROR DI _ RxRDY' 
-.write' D4 = OVERRUN ERROR DO _ TxRDY' 

3-127 

280722-2 



• .if (temp and 8Oh)/BOh ~ = I then 
•.. write'DATA SET READY is SET' 
• .. end 
• .if (temp and 8Oh)/BOh - = 0 then 
• .. write'DATA SET READY is NorsET' . 
• .. end 
·.if(tempand4Oh)/4Oh = =Oll1en 
... write'BRKDET is NorsET - We have not received a break' 

• .. end 
• .if (temp and 4Oh)/40h = = I then 
•.. write'BRKDET is SET - We have received a break' 

• .. end 
• .if (temp and 20h)/20h = = I then 

AP-262 

•.. write'FRAMING ERROR is SET - A miSSing stop bit was detected' 

• .. end 
• .if (temp and 20h)/20h = = 0 then 
•.• write'FRAMING ERROR is NorsET - A missing stop bit was not detected' 

• .. end 
• .. if (temp and lDh)/lDh = = I then 
•.. write'OVERRUN ERROR is SET - We have overwritten a previous character' 
• .. end· 
·.if (temp and IOh)IlOh - - 0 then 
... write'OVERRUN ERROR is NorsET - We have not overwritten a previous character' 
• .. end 
• .if (temp and 8h)/8h = = 0 then 
... write'PARITY ERROR is NorsET - We have not detected a parity error' 

• .. end 
• .if (temp and 8h)/8h = = I then 
• .. write'PARITY ERROR is SET - We have detected a parity error' 
* .. end 
·.if (temp and 4h)/4h • = 0 then 
... write'TxEMPI'Y is NorsET - The characters have not been sent down the serial line' 
• .. end 
• .if (temp and 4h)/4h • = I then 
••. write'TxEMPI'Y is SET - All the characters have been sent down the serial line' 
• .. end 
·.if (temp and 2h)/2h = = 0 then 
* .. write'RxRDY is NorsET - A character is not ready \0 be input \0 the CPU' 
* .. end 
• .if (temp and 2h)/2h = = I then 
• .. write'RxRDY is SET - A character is ready to be input \0 the CPU' 
" .. end 
·.if(tempand Ih)/lh • • 0 then 
.;. write'TxRDY is NorsET - The transmitter is not ready \0 accept a data character' 
• .. end 
•. if (temp and ·lh)llh • = 1 then 
•.. write'TxRDY is SET - The transmitter is ready to accept a data character' 
• .. end 
•• write concat(hibl; PLEASE HIT ANY KEY TO RETURN',norm) 
*.temp=ci 
*.end 

3-128 

280722-3 



inter AP-262 

0YPE IN THE HEXADECIMAL STATUS READ ADDRESS FOR THE 8251A and <cr> '\ 

OH 

OH 
UNIT 0 PORT OOOOH OUPUT BYTE OObH 
UNIT 0 PORT OOOOH REQUESTS BYTE INPUT (ENTER VALUE) : 12 

=> 0 0 

8251A STATUS REGISTER 
********************* 

I D7 I Db I D5 I D4 I D3 I D2 I D1 I DO I 

D7=DATA SET READY D3=PARITY ERROR 
Db=SNDET/BRKDET D2=TxEMPTY 

D5=FRAMING ERROR D1=RxRDY 
D4=OVERRUN ERROR DO=TxRDY 

DATA SET READY is NOTSET 
BRKDET is NOTSET -Ide have not received a break 
FRAMING ERROR is NOTSET - A missing stop bi t was not detected 
OVERRUN ERROR is SET - We have overwri tten a previous character 
PARITY ERROR is NOTSET - ~e have not detected a pari ty error 
TxEMPTY is NOTSET - The characters have not been sent down the serial line 
RxRDY is SET - A character is ready to be input to the CPU 
TxRDY is NOTSET - The transmitter is not ready to accept a data character J 
~ PLEASE HIT ANY KEY TO RETURN ....1..01 

280722-4 

Figure 3. 8251A Status Register Display 

The 8251A is a very simple component. How could 
these techniques be used on a more complex chip such 
as the 82530 SCC? A procedures disk for the 82530 
Serial Communications Controller (SCC) had been cre­
ated (See Appendix B for availability). For those de­
signs that do not utilize an 82530 SCC, it would still be 
beneficial to follow the text and deduce how the tech­
niques developed could be used in your design. The 
purpose of creating this procedures disk is to minimize 
the usage of the 82530 Handbook. If you are using an 
82530 chip in your design and also using an PICE sys­
tem to debug your design board, then all you need to do 
is invoke this set of procedures onto the PICE system 
screen and all the required information will be given 
about the 82530. This drastically reduces the usage of 
the 82530 Handbook so that you can spend more time 
debugging and less hunting information. 

The different techniques that have been used in creating 
this disk are explained in detail in the following sec­
tions. Refer to Figure 4 which shows a flow diagram 
which describes the interaction of the four main blocks 
representing four different procedures. They are 
MAIN. INC, SUPJOB.INC, JOB. INC and • .INC 
where the ,*' indicates any of the subset procedures. 
Every procedure built has two segments of that corre­
sponding procedure. An overlay, as well as an include 
version, has been created. 

The overlay (OVO) version contains the main contents 
of the material while the include (INC) file contains 
information about the procedure invocation, execution, 
and removal. The include file will be' explained in a 
later section. 

PROCEDURES DESCRIPTION 

Procedures for the following pieces of information have 
been created from the 82530 Handbook. 

Apart from the preceding set of procedures, some main 
procedures have also been created which are instru­
mental in managing the entire set of procedures. Those 
procedures are as follows: 

280722-5 

Figure 4. Flow Diagram 

3-129 



inter Ap·262 

Handbook Description 
• Pin Description 
• Register Function Description 
• Time Constant Values Description 
• Data Encoding Methods Description 
• Register Addressing Description 
• SCC Protocols Description 
• Register Bit Functions 

I2ICE.MAC-Initializes the drives and includes the 
main procedure, MAIN.OVO, and executes it. 

MAIN.OVO-Handles the remainder of the procedural 
management. It contains the main core and acts as a 
supervisor. 

MAIN.INC-Executes the procedure MAIN.OVO and 
includes another procedure, JOB.INC. 

JOB.INC-Used as a temporary storage file. 

SUPJOB.INC-Used as a temporary storage file. 

Each sub-procedure is loaded into memory when re­
quired and then removed following its execution. This 
technique saves memory, increases flexibility, and ·is 
faster in operation. 

In the following sections we wi11look at each of these 
procedures in detail to understand the mechanism of 
operation and how they all fit into the conglomerate 
functionality picture. 

82530 Procedure Explanation 

COMMON F.EATURES 

In all the procedures that have been created uniformity 
has been maintained in certain definitions and func­
tions. In all the procedures the following concepts and 
notations have been used: 

• A message flashes on the screen at the beginning 
indicating that the procedures are 
"LOADING .... ". 

• CURHOME and CLEAREOS are invoked after ev­
ery major operation within the procedure. 

• All the titles are in highlight code. 

• All the console input requests are in blinking high­
light code. 

• A message in reverse video code appears on the 
screen in the end, displaying information on restart­
ing the procedures. 

• A BELL will ring if you make a selection that is not 
on that menu. 

Procedures Created 
PINDES.OVO PINDES.INC 
REGDES.OVO REGDES.INC 
TIMVAL.OVO TIMVALINC 
DATENC.OVO DATENC.INC 
REGADD.OVO REGADD.INC 
PRTCOl.OVO PRTCOLINC 
PINFUN.OVO PINFUN.INC 

• One filename that contains more than one proce­
dure, performs different functions interactively, but 
by itself performs a specific task. 

• All procedures are removed when they are no longer 
. required. This saves user memory space. (This is 
done by using the REMOVE command and saves 
user memory). 

• If .... THEN .... ELSE command statements test 
the different conditions within a procedure. 

• Overlay files explain the main contents of the 82530 
Handbook. 

• Include files execute the corresponding procedures 
execution. 

• All the local definitions are in the beginning of the 
procedure. 

12ICE.MAC 

This is the marco file that has been created for a Series 
III/Series IV, with the PICE system software, a partial 
listing of this file is shown. This macro file resides in 
the same directory as the PICE system software. This 
macro file asks for the drive number that you have as­
signed for the procedures disk. The drive number is 
echoed onto the screen by the command "WRITE DE­
VICE". Depending on the drive selected, literals are 
defined for "INCLUDE" and "LIST" commands. At 
the end of the procedure the procedure MAIN.OVO is 
invoked using the "INCLUDE" command and then 
executed. The temporary storage file, SUPJOB.INC, is 
also invoked using the "INCLUDE" command. The 
next menu tthat appears on the terminal is the main 
menu which is invoked by the procedure MAIN.OVO. 

MAIN.OVO 

This is the main operational procedure. All the other 
procedures are supervised by this procedure. Every 
time you are finished with a specific procedure, you are 
returned to the main menu. From the main menu you 
can go to the next menu screen or exit to the PICE 
system main interrogation menu if you so desire. Under 
the MAIN.OVO filename, there are partitions into two 
smaller procedures, "W-COM" and "MAIN". 

3-130 



• .1 

inter AP·262 

4: 'define BOOLEAN nag = FALSE 
5: '.define CHAR device 
6: '.define GLOBAL BYTE drive 
7: * .drive = 0 
8: '.cury = lOt 
9: '.write concat(hibl.·ON WHICH DRIVE IS THE PROCSDlSK LOCATED'!(O-9)"norm) 

II: * ,device = ci 
12: .... write device 
13: *.repeal while not flag 
14: "'.if device = = '0' then 
15: * .. drive=O 
16: ' .. define LITERALLY inec = 'include :ill' 
17: * .. define LITERALLY 1st = 'list :ill' 
63: ' .. end 
64: "'.flag = true 
65: '.define LITERALLY i82530 = 'incc:main.inc nolist' 
66: '.end 
67: *incc:main,QvO nolist 
68: "'main I"'execute the procedure"'! 
69: *incc:supjob,inc flotist 

The procedure "W-COM" contains· the LIST and 
NO-LIST files. If you want to exit from the procedures 
menu and enter the PICE system interrogation menu, 
then the message "scc Procedures can be restarted by 
typing "182530" appears on the screen in reverse video 
code. 

However, if you make a choice from the main menu 
then the LIST command writes to SUPJOB.INC. The 
procedure corresponding to that particular choice is in­
cluded. The overlay, as well the include portions of the 
procedure, are included. Then the NOLIST command 
closes the LIST file. 

Note that in the W-COM procedure listing a parame­
ter is being passed into the LIST file, SUBJOB.INC, 
using the WRITE USING option, The parameter that 
is being passed depends on the choice you make. 

MAIN.INC 

The procedure MAIN.INC contains the following two 
commands, 

176: "'main 
177: "'incc:supjob.inc nolisl 

280722-64 

This procedure does nothing but execute its own proce­
dure MAIN and include the temporary storage file, 
SUPJOB.INC, Note that SUPJOB.INC contains the 
include files of your choice, In the preceding example 
above we have chosen TIMV AL. Hence SUPJOB.INC 
contains the following two commands: 

INCC:TIMV AL.OVO 
INCC:TIMV AL.INC 

3-131 

280722-47 

This part of the procedure is the main part of the proce­
dure MAIN,OVO whose display is shown in Figure 5. 
In this part your selection appears on the terminal and 
your choice is echoed onto the screen. If you make a 
wrong choice, then a "Bell" rings. Depending on the 
choice made, the corresponding procedure is invoked, 
As mentioned previously that particular procedure is 
passed into SUPJOB.INC and executed, 

Depending on the selection made by you that particular 
procedure is invoked. 

Example: 

If you choose to see the TIME CONSTANT VALUES 
description, then type in 3. The number 3 appears on 
the screen and the procedure name, TIMV AL, is 
passed into the procedure W-COM as a parameter. 
The procedure W-COM then includes the overlay as 
well as the' include portions of the time constant value 
procedures using the LIST/NOLIST commands, If you 
choose the number 8 then you exit to the PICE system 
main menu, 

126: *.chr = ci 
135: '.ifchr = = '3'then 
136: ' .. write using ('0') chr 
137: * .. w_com('timval');return 
155: * .. ifchr = = '8' then 
156: "' ... write using ('0') chr 
157: * .. ,w_com('e');return 
158: ' ... else 
159: ' ... bell 
160: • ... end 
161: • .. end 

TIMVAL.OVO 

280722-48 

All the procedures that contain the 82530 descriptions 
are built containing the same format except for the pro-



83: 'define PROC w_com = DO 
84: .... curhome;c1eareos 
85: '.if %0 = = 'e' then 
86: "' .. curhome;c1eareos 

AP-262 

87: - .. write concat(revbl:SCC Procedures can be restarted by typing"i82530") 
88: ..... norm 
89: - . .lst:supjob.inc 
90: * .. nolist 
91: * . .lst:job.inc 
92: * .. nolist 
93: * .. else 
94: * .. Ist:supjob.inc 
95: ..... write using ("iDee:" ,0," .ovO Dolist") %0 
96: "' .. write using C·incc: ... O .... inc nolist") %0 
97: * .. curhome;c1eareos 
98: "' .. nolist 
99: ..... end 

100: "'.end 
280722-49 

cedure describing REGISTER BIT FUNCTIONS, 
PINFUN.OYO. Hence let us consider the TIME CON­
STANT YALUES DESCRIPTION procedure as an 
example to explain the techniques that have been used. 
The only procedure that is different, the REGISTER 
BIT FUNCTION procedure, will be explained later in 
this section. . 

TIMEVAL.QYO contains a message "LOADING ... " 
that flashes on the terminal when this procedure is be­
ing included into the PICE system memory. The rest of 

the procedure contains the information contained in the 
82530 Handbook. The WRITE command is used to 
type all the information on the screen. Towards the end 
of the procedure is a LIST. command file. This LIST 
file lists the storage file, JOB. INC. The JOB.INC file 
contains the command that removes the procedure 
TIMYAL from the PICE system memory and invokes 
the procedure MAIN and also executes it so that you 
can choose a different option or return to the PICE 
system main menu. Note that 182530 is defmed as a 
literal in the procedure PICE. MAC. 

(r 

II 

**************************************** 
• 82530/82530-6 • 

- -_SERIAL COMMUNICATIONS CONTROLLER (SCC)' 
**************************************** 

1. PIN DESCRIPTIONS 
2. REGISTER FUNCTIONS 
3. TIME CONSTANT VALUES 
4. DATA ENCODING METHODS 
5. REGISTER ADDRESSING 
6. SCC PROTOCOLS 
7. REGISTER BIT FUNCTIONS 
8. EXIT TO 12ICE MAIN MENU 

PLEASE TYPE YOUR CHOICE 

(DESCRIPTION( 
(DESCRIPTION) 
(DESCRIPTION) 
(DESCRIPTION) 
(DESCRIPTION) 
(DESCRIPTION) 

(INTERROGATE 82530) 

Figure 5. Main Menu Register 

3-132 

280722-6 



inter 
455: 'define PROC timva! - DO 
456: '. write concat(hibl:LOADlNG ... .') 
457: -.nonn 
458: '" .curhome;clearcos 

AP-262 

459: - .write concat(hi:TIME CONSTANT VALUES FOR STANDARD BAUD RATES AT BR CLOCK _ 3.9936MHz') 
460: "'. write concat(hi:"'·············· ... "'···*················**·****·· ..... * ••••••• "' .................. ') 
461: -.nonn 
462: '.write ' 
463: -.write ' 
464: -.write' 
465: ".write' 
466: "'.write 1 

467: "'.write· 
468: -. write ' 
469: -.write' 
470: -. write' 
471: -.write ' 
472: "'.write' 
473: -.write' 
474: '.write· 
475: -.write' 
476: -.write' 
477: "'.write' 
478: ·.write ' 

BAUD RATE 
19200 
9600 
7200 
4800 
3600 
2400 
2000 
1800 
1200 
600 
300 
ISO 
134.5 
110 
75 
SO 

479: ·.write concat(hibl: 
480: -.nonn 
481: -.define CHAR yyy = ci 
482: ".lst:job.inc 
483: "'.write 'remove timval' 
484: '. write 'i82530' 
485: -.nolist 
486: '" .curhome;c1eareos;end 

TIME CONSTANT ERROR' 
102 
206 
275 
414 
553 
830 
996 

1107 
1662 
3326 
6654 

13310 
14844 
18151 
26622 
39934 

-' 
-' 
0.12%' 

0.06%' 

0.04%' 
0.03%' 
-' 
-' 

-' 
0.0007%' 
0.0015%' 
-' 

PLEASE HIT ANY KEY m RETURN m SCC MENU') 

3-133 

280722-7 



inter AP-262 

rfrrME CONSTANT VALUES FOR STANDARD BAUD RATES AT BR CLOCK = 3.9936M~ 
* * * * * * ** **** * * * * * * ** * * * * * * * * * * *** * * * * * * * *** * * * * * * * * * * * * * * * * ** * * 

BAUD RATE TIME CONSTANT ERROR 
19200 102 

9600 206 
7200 275 0.12% 
4800 414 
3bOO 553 O.Ob% 
2400 830, 
2000 996 0.04% 
1800 1107 0.03% 
1200 16b2 

bOO 3326 
300 6b54 
150 13310 
134.5 14844 0.0007% 
110 18151 0.0015% 

75 2bb22 
50 39934 

\ 
PLEASE HIT ANY KEY TO RETURN TO SCC MENU -Jj 

280722-8 

Figure 6. Time Constant Values Description 

TIMVAl.lNC 

The procedure TIMY AL.INC contains the following 
two commands: 

493: "'timval 
494; *incc:job.inc nolist 

280722-65 

This procedure, as well as all the other .INC proce­
dures contains the preceding two commands. The first 
command executes that specific procedure and the next 
command includes the storage procedure JOB.INC. As 
mentioned previously the procedure JOB.INC removes 
that particular procedure from the PICE system mem­
ory and also invokes and executes the main procedure. 

PINFUN.OVO 

This is the. procedure that explains the register bit func­
tions of the 82530 Serial Communications Controller. 
This procedure is very involved and performs all the 
functions that are required by the 82530 handbook. 
This procedure, PINFUN.OYO, is divided into a subset 
of procedures contained within the same file #. The 
following sections explain the different interactive pro­
cedures and their functions, respectively. 

GETNUM-This is a procedure that changes the num­
ber entered at the console into decimal base. If an inap­
propriate number is input then the bell rings. The deci­
mal base number is returned to the procedure that calls 
it. The console inut is echoed onto the screen. 

736: "define PROC getnum = DO 
737: *.define BYTE num 
738: *.define CHAR chr 
739: ".define CHAR hell = 07h 
740: ".num = 0 
741: ".repeat 
742: * .. chr = ci 
743: " .. if (chr > = '0') and (chr < = '9') then 
744: * ... num = num*lOt + (chr-30h) 
745: * ... writeusing(,I,>')chr 
746: ' ... else 
747: .... if chr < > Odh then write using('O, > ') bell 
748: • .... end 
749: • ... end 
750: ... until chr = = Odh 
751: * .. end 
752: '" .retum num 
753: '.end 

280722-50 

GETP1-This procedure sets the I/O ports for the 
PICE system as well as the starting addresses for the 
82530, If you have not mapped the I/O ports, then the 
method to port is explained on the screen along with 
menu prompts so that type only the starting address 
and number of bytes either mapped to ICE memory or 
USER memory. This procedure also requests your in­
put for the hexadecimal starting address for the 82530. 

3-134 



inter 

755: 'define PROC getpl - DO 
756: • .curhome;c1eareos 
757: ·.define CHAR zzz 

AP-262 

758: ·.write concat(hi,'MAPIO COMMAND DISPLAYS OR SETS PHYSICAL LOCATION FOR 110 PORTS') 
759: '.write concat(nonn," ,hibl) 
760: '. write using('" HAVE YOU MAPPED THE 110 PORTS?(YIN)" ,> ') chrin 
761: ·.nonn 
762: • .repeat 
763: .,.chrin - ci 
764: ' .. ifnot«chrin • = 'N') or (chrin = = 'n') or (chrin = - 'Y') or (chrin - • 'y'» then 
765: • ... bell 
766: • ... endif 
767: ' .. until (chrin - = 'N') or (chrin = = 'n') or (chrin = = 'Y') or (chrin = = 'y') 
768: • .. end 
769: '.if (chrin • - 'N') or (chrin • = 'n') then do 
770: ' .. write using('O') chrin 
771: • .. curhome;cleareos 
772: ' .. write' THE 110 PORTS CAN BE MAPPED THE FOLLOWING WAY' 
773: • .. write' , 
774: • .. write' MAPIO[(partition) <USER or ICE>]' 
775: • .. write" 
776: ' .. write' MAPIO - displays the current map of 110 pan address blocks' 
777: • .. write" 
778: ' .. write' partition - is an entry specifying a range of addresses such as:' 
779: ' .. write' Starting pan-address LENGTH number of bytes' 
780: • .. write" 
781: ' .. write' USER - Maps 1/0 to the user system' 
782: • .. write" 
783: ' .. write' ICE - Maps 110 to the PICE probe' 
784: • .. write" 
785: ' .. write concat(hibl,'PLEASE TYPE MAPIO STARTING HEXADECIMAL PORT-ADDRESS and <cr> ') 
786: ' .. norm 
787: ' .. paddr = gethex 
788: ' .. write 'H' 
789: • .. write concat(hibl,' PLEASE TYPE NUMBER OF BYTES and <cr> ') 
790: • .. nonn 
791: •.. paddr1 = gethex 
792: • .. write 'H' 
793: • .. write concat(hibl,' PLEASE TYPE "U" FOR USER or "I" FOR ICE') 
794: • .. nonn 
795: ' .. repeat 
796: ,.. .. zzz = ci 
797: * .. ifnot«zzz = = 'U') or (zzz = = 'u') or (zzz = = '1') or (zzz = = 'i'» then 
798: • ... bell 
799: • ... endif 
800: • ... until (zzz = = 'U') or (zzz = = 'u') or (zzz = = '1') or (zzz = = 'i') 
801: • .. end 
802: • . .if (zzz = = '1') or (zzz = = 'i') then 
803: • .. MAPIO PADDR LENGTH PADDRI ICE 
804: ' .. write using("MAPIO ",O,H," LENGTH" ,O,H," ICE ''')paddr,paddrl 
805: * .. write" 
806: • .. write concat(hibl,' PLEASE HIT ANY KEY TO CONTINUE') 
807: - .. Donn 
808: '" .. zzz = ci;else 
809: * .. if (zzz = = 'U') or (zzz = = 'u') then 
810: • ... MAPIO PADDR LENGTH PADDRI USER 
811: • ... write using("MAPIO ",O,H," LENGTH" ,O,H," USER "')paddr,paddrl 
812: • ... write " 
813: * ... write concat(hibl,' PLEASE HIT ANY KEY TO CONTINUE') 
814: • ... nonn 

3·135 

280722-9 



Ap·262 

815: " ... cbrin - ci;endif;end 
816: • ... end 
817: " .. end 
818: ".curholne;cleareos 
819: • .wrlte concat(hibl:TYPE IN THE HEXADECIMAL ADDRESS fOR THE 82530 and < cr> ') 
820: ".norm 
821: '. wreg - gelbex 
822: ·.write 'H' 
823: ·.wrlte" 
824: ·.end 

GETPl - This procedure asks for console input on your choice of whether you want to read a register, or write to one, or 
change the 82530 port address, or return to the main menu. 

826: 'deflne PROC getp2 - DO 
827: • .cumome;cleareos 
828: ·.wrlte concat(hi,' ....................... ') 
829: ·.wrlte concat(hi,' 'PIN FUNCflON MENU") 
830: ".write concat(hi: ....................... ') 
831: ·.norm 
832: .,write t , 

833: ·.write ' , 
834: '.wrlte' 
835: ·.write' 
836: ·.wrlte' 
837: ·.write' 
838: ·.write ' , 
839: ·.wrlte' , 

"R" - READ A REGISTER' 
"W" - WRITE TO A REGISTER' 
HN" - CHANGE 82530 PORT ADDRESS' 
HE" -'EXIT ro MAIN MENU' 

840: *. write concat(hibl,' 
841: ·.norm 

PLEASE TYPE YOUR CHOICE') 

842: ·.end 

GETP3 - This procedure gives the choices of the READ and WRITE REGISTERS that are available for selection and 
asks for console input. 

844: "define PROC getp3 = DO 
845: ".curhome;cleareos 
846: ". write ' , 
847: ". write concat(hi,' 
848: '. write concat(hi,' 
849: '. write concat(hi,' 
850: -.norm 

••••••••••••••••••••••••••••••••••••••••••• ** •••••••••• ') 
THE CHOICES Of REGISTERS fOR YOUR SELECTION ARE :') ....................................................... ') 

851: ·.if (chrin .. a 'R') or (cbrio .. _ 'r') then 
852: " .. write' O. RRO 1. RRI 
853: • .. write' 3. RR3 8. RR8 
854: " .. write' 12. RRI2 13. RRI3 
855: • .. else 
856: ' .. write ' 
857: ' .. write ' 
858: ' .. write ' 
859: • .. wrlte' 
860: • .. write ' 
861: ' .. write' 
862: • .. end 
863: -.wrlte' , 
864: -.wrlte' , 

O.WRO 
3.WR3 
6.WR6 
9.WR9 

12. WRI2 

I.WRI 
4.WR4 
7.WR7 

10.WRIO 
13. WRI3 
IS. WRIS 

2.RR2' 
10. RRIO' 
IS. RRIS' 

2. WR2' 
5. WRS' 
8. WR8' 

II. WRU' 
14.WR14' 

865: -.write concat(hibl: 
866: ·.norm 

PLEASE TYPE YOUR CHOICE and <cr> ') 

3-136 

280722-10 



intJ 

867: ·.regnum = getnum 
868: "'.write 'r 
869: "'.write'" 
870: ·.end 

AP-262 

280722-66 

GETMENI-This procedure accepts your choice for the pin function menu and, depending on the choice you have 
made, calls the appropriate procedure. If you want to read or write to a register then the procedure GETP3, which 
displays the read and write register selection is invoked, On the other hand, if you want to change the 82530 port 
address then the procedure GETPl, which maps the I/O ports of the PICE system, is invoked, 

872: 'define PROC getmen I = DO 
873: •. if check then 
874: • .. getpl 
875: ' .. check = false 
876: ' .. end 
877: ·.repeat 
878: ·.getp2 
879: * .chrin = ci 
880: ".if (chrin = = 'E') or (chrin = = 'e') then write using ('0') chrin;return end 
881: ' .. if (chrin .. = 'R') or (chrin = = 'r') or (chrin = = 'W') or (chrin = = 'w') then 
882: • .. write using CO') chrin 
883: "' . . curhome;c1eareos 
884: • .. getp3 
885: "' .. return 

886: • .. else 
887: • .. if (chrin = = 'N') or (chrin = = 'n') then 
888: .... write using ('0') chrin 
889: • ... getpl 
890: • ... else 
891: • ... if(chrin = = Ibh) then return end 
892: • .... bell 
893: • .... end 
894: ' ... end 
895: • .. end 
896: ·.end 

280722-51 

W_COMl_This procedure uses LIST/NOLIST as well as INCLUDE and REMOVE to perform numerous 
functions, Once the usage of these procedures 'is complete, all the corresponding procedures are removed using the 
REMOVE command listed in the procedure JOB.lNC and the main menu is invoked. If you choose to read or write 
to a particular register then that particular procedure containing the register'S contents is included. After the register 
is read or written into, then this procedure removes this particular procedure from the PICE system memory and re­
invokes the register bit function menu for you to make the next selection, 

898: 'define PROC w_coml = DO 
899: ... curhome;cleareos 
900: ' . .if %0 = = 'e' then 
901: ' .. Ist:job.inc 
902: ' .. write 'remove done,gethex,getnum,getmenl ,w_coml ,getpl ,getp2,getp3' 
903: .... write 'remove chrin,check, wreg,regnum,paddr,paddrl' 
904: ' .. write 'i82530' 
905: ' .. nolist 
906: ' .. else 
907: • .. Ist:job.inc 
908: .,.write using ("ioee:" ,0," notist") %0 
909: ' .. write using ('0') %0 
910: • .. write using ("remove ",a') %0 
911: • .. write 'incc:pinfun.inc nolist' 
912: * .. nolist 
913: ' .. end . 
914: '.end 

3-137 

280722-52 



intJ AP-262 

DONE-This procedure is the main body of the file PINFUN.OYO. This is the nucleus which controls the opera­
tions of all the other procedures within this filename and inter-acts with them. Depending on your selection, the 
procedure W _COMI is executed with the corresponding register value passed as a parameter. If a wrong selection 
is made, then the message "UNABLE TO READ REGISTER" appears on the screen. Your choice is echoed onto 
the screen. An inappropriate selection will ring the bell. For example, if you want to read a register "RRO" invoke 
the procedure W _COMl and pass the read register procedure RRO as a parameter as shown in the following listing. 
Similarly if you want to write to register "WRO", invoke the procedure. 

916: 'define PROC done = DO 
917: *.curhome; cleareos 
918: ·.getmenl 
919: • .. if (chrin = = 'E') or (chrin = = 'e') then 
920: • .. w_coml(·e·) 
921: • .. return 
922: • .. end 
923: • .. repeat 
924: • .. .if (chrin = = 'R') or (chrin = = 'r') then 
925: • ... do 
926: • ... .if regnum = = 0 then 
927: • .... w_coml('rrO·) ; return 
928: • .... end 
957: • ... getp3 
958: • ... end 
959: ... .if (chrin = = ·W·) or (chrin = = 'w') then 
960: • ... do 
961: * .. .ifregnum = = o then 
962: • ... w_coml('wrO·); return 
963: • ... end 
1013: * ... getp3 
1014: • ... end 
lOIS: • .. end 
1016: ·.end 

PINFUN.INC 

This procedure contains the following two commands: 

1023: 'done 
1024: *incc:job.inc Dolist 

280722-67 

This procedure executes the main procedure under the 
filename PINFUN.OYO, DONE, and then includes the 
temporary storage file, JOB.INC. 

RRO 

280722-53 

This procedure reads a value from the console which is written into WREG. This procedure also displays this read 
value in binary form and explains what each of these bits correspond to in an actual 82530. 

1031: *curhome;cleareos 
1032: 'write concat(hibl,'LOADlNG ... .') 
1033: *norm 
1034: *define PROC rrO = DO 
1035: ·.define CHAR yyy 
1036: •. define BYTE temp 
1037: ·.temp = port(wreg) 
1038: '" ,curhome ;c1eareos 
1039: ·.write concat(hi: READ REGISTER 0') 
1040: '" .write concat(hi,' *",*********"'***",**1) 

280722-54 

3-138 



inter AP-262 

1041: ·.nonn 
1042: • .write using (,2c," = > ",2,y,Sx, I ,y,Sx, I ,y,Sx,1 ,y,Sx,I ,y,Sx,l,y,Sx,1 ,y,Sx, I ,y') & 
1043: ·.(temp and 80h) /80h, & 
1044: • .(temp and 4Oh) /40h, & 
1045: •. (temp and 20h) /20h, & 
1046: ·.(temp and IOh) /lOh, & 
1047: ·.(temp and 08h) /08h, & 
1048: • .(temp and O4h) /04h, & 
1049: • .(temp and 02h) /02h, & 
1050: ·.(temp and Olh) /Olh 
1051: ·.write concat(nonn,' ') 
1052: ·.write concat(nonn,' I 071 D61 DS I 041 031 021 DII DO I ') 
1053: •. write concat(norm,' --------------------------------------------------------------') 
1054: ·.write ' D7 = BREAK/ABORT' 
1055: ·.write' D6 = Tx UNDERRUN/EOM' 
1056: ".write' D5 = CTS' 
1057: ·.write ' 04 - SYNC/HUNT' 
1058: ·.write ' . D3 = CD' 
1059: ·.write ' D2 = Tx BUFFER EMPl'Y' 
1060: ·.write ' DI .. ZERO COUNT' 
1061: ·.write ' DO .. Rx CHAR. AVAIL.' 
1062: ·.write ' , 
1063: ·.write concat(hibl,' PLEASE HIT ANY KEY TO RETURN') 
1064: ·.nonn 
1065: ·.yyy=ci 
1066: ·.end 

WRO 

280722-11 

This procedure writes to a register fro~ the console. The eight different bits in the 82530 write register are explained 
and the console requests for an input from you. 

1427: ·curhome;cleareos 
1428: ·write concat(hibl,'LOADING ... : ,nonn) 
1430: ·define PROC wrO = DO 
1431: •. define CHAR yyy 
1432: ·.define BYTE temp 
1433: • .curhome;cleareos 
1434: •. write concat(hi,' WRITE REGISTER 0' 
[435: * .write concat(hi,' ******IiI********oII**' 
1436: '" .write concat(norm; ') 
1437: ·.write concat(nonn,' I D71 D61 OS I 041 D31. D21 DII DO I ') 
1438: •. write concat(nonn,' -----------------------'---------------------------------- ') 
1439: ·.write' D7 D6' 
1440: -. write' 00 = NULL CODE' 
1441: ·.write' 0 1= RESETRx CRC CHECKER' 
1442: -.write' 10 .. RESETTx CRC GENERA'IOR' 
1443: ·.write ' I I = RESET Tx UNDERRUN/EOM LATCH' 
1444: ·.write' DS 04 D3 D2 DI DO' 
1445: ·.write' 0 0 0 .. NULL CODE 0 0 0 
1446: •. write '0 0 - I .. POINT WGH REGISTER GROUP 0 0 I 
1447: •. write' 0 I 0 = PRESET EXT/STATUS INTERRUPTS 0 I 0 
1448: '. write' 0 I I = SEND ABORT 0 I I 
1449: ". write' I 0 0 = ENABLE INT ON NEXT Rx CHAR. I 0 0 
1450: •. write' I 0 I = RESET TxINT PENDING I 0 I 
1451: •. write' I I 0 = ERROR RESET I I 0 
1452: ·.write' I I I = RESET WGHEST IUS I I I 
1453: ·.write concat(hibl,'PLEASE TYPE THE VALUE TO BE WRITTEN and <cr> ',nonn) 
1455: ".temp = gethex 

3-139 

= 00r8' 
= lor9' 
= 20r 10' 
= 30rll' 
= 40r 12' 
= 5 or 13' 
= 60r 14' 
= 70r IS' 

280722-12 



inter 

1457: -,port(wreg) ~ 0 
1458: -,port(wreg) = temp 
1460: -,write concat(hibl,' 
1462: -,yyy = ci 
1463: -,end 

Example 

AP-262 

Let us go through the entire menu with a specific example, 

• Select "REGISTER BIT FUNCTION", (Figure 7) 

280722-68 

• Select N for "HAVE YOU MAPPED THE.VO PORTS?" (Figure 8) 

• Select 0 for "PLEASE TYPE MAPIO HEXADECIMAL PORT ADDRESS and <cr>", (Figure 8) 

• Select 40 for "PLEASE TYPE NUMBER OF BYTES and <cr>" (Figure 8) 

• Select I for "PLEASE TYPE 'U' FOR USER OR 'I' FOR ICE" (Figure 9) 

• Select 0 for "TYPE IN THE HEXADECIMAL ADDRESS FOR THE 82530 and <cr>", (Figure 10) 

• Select Rfor READ A REGISTER (Figure 11) 

• Select 0 for ''THE CHOICES OF REGISTER FOR YOUR SELECTION ARE:" (Figure 12) 

• Select E to "EXIT TO THE MAIN MENU", (Figure 13) 

• Select E to "EXIT TO THE PICE MAIN MENU", (Figure 14) 

(/ 
************************* ••• *.*.*******. * 82530/82530-b * 
* * *SERIAL COMMUNICATIONS CONTROLLER (SCC)* 
********************************.*****.* 

1, PIN DESCRIPTIONS [DESCRIPTION! 
2, REGISTER FUNCTIONS [llESCRIPTION! 
3, TIME CONSTANT VALUES [llESCRIPTION! 
4, llATA ENCODING METHODS [llESCRIPTION[ 
5, REGISTER ADDRESSING [DESCRIPTION[ 
b, SCC PROTOCOLS [»ESCRIPTION) 
7, REGISTER BIT FUNCTIONS [INTERROGATE 82530) 
8, EXIT TO 12ICE MAIN MENU 

PLEASE TYPE YOUR CHOICE 

,u\----~--~ ________ ----------~ 
Figure 7. Main Menu Display 

3-140 

280722-13 



inter AP-262 

(? 
MAPIO COMMAND DISPLAYS OR SETS PHYSICAL LOCATION FOR I/O PORTS 

~ _____________ H_A_VE--YO_U_M_A_P_P_E_D_T_H--EI-/O--PO_RT-S-1-CY_I_N_' ______________ ___ 

{r 

Figure 8. 1/0 Port Display 

THE IIO PORTS CAN BE MAPPED THE FOLLOWING WAY 

MAPIO [Cpartitian' <USER or ICE>I 

MAPIO - displays the current map of IIO port address blocks 

partition - is an entry specifying a range of addresses such as: 
Starting port-address LENGTH number of bytes 

USER - Maps IIO to the USER system 

ICE - Maps IIO to the I2ICE probe 

PLEASE TYPE MAPIO STARTING HEXADECIMAL PORT-ADDRESS and <cr> 

OH 
PLEASE TYPE NUMBER OF BYTES and <cr> 

40H 
P~EASE TYPE ·U' FOR USER or 'I' FOR ICE 

ll---------_________ --------~ 

Figure 9. MAPIO Conditions 

TYPE IN THE HEXADECIMAL ADDRESS FOR THE 82530 and <cr> 

Figure 10. Hexadecimal Port Address 

3·141 

280722-14 

280722-15 

280722-16 



AP·262 

******************* 
'PIN FUNCTION MENU_ 
* *** * * ** ******** *** 

"R" - READ A REGISTER 
"W" - WRITE TO A REGISTER 
"N" - CHANGE &2530 PORT ADDRESS 
"E" - EXIT TO MAIN MENU 

PLEASE TYPE YOUR CHOICE 

Figure 11. Pin Function Menu 

*********************************************** 
THE CHOICES OF REGISTERS FOR ,YOUR SELECTION ARE 
*********************************************** 
O. RRO 
3. RR3 

13. RR12 

1. RRl 
&. RR& 

13. RR13 

PLEASE TYPE YOUR CHOICE and <cr> 

Figure 12. Register Selections 

****** * *** ********* 'PIN FUNCTION MENU' 
******************* 

"R" - READ A REGISTER 
"W" - WRITE TO A REGISTER 
"N" - CHANGE &2530 PORT ADDRESS 
"E" - EXIT TO MAIN MENU 

PLEASE TYPE YOUR CHOICE 

Figure 13. Pin Function Menu 

3-142 

2. RR2 
10. RR10 
15. RR15 

280722-17 

280722-18 

280722-19 



Ap·262 

* *. * * * * * * * * * * * * * * *. * * * * * * * * * *** * * * * * * ** * • 8253C/8253C-b 
• • .SERIAL COMMUNICATIONS CONTROLLER (SCC). 
* * * * ** * * ** * *. *. * * ** * * * * *** * * * * * * ** * * * * * * 

1. PIN DESCRIPTIONS ~ESCRIPTIO~ 
2. REGISTER fUNCTIONS ~ESCRIPTIO~ 
3. TIME CONSTANT VALUES ~ESCRIPTIO~ 
~. DATA ENCODING METHODS ~ESCRIPTIO~ 
5· REGISTER ADDRESSING- IDESCRIPTION) 
b. SCC PROTOCOLS ~ESCRIPTIO~ 

~: ~mSw Iml~~Wmu )INTERROGATE 825301 

PLEASE TYPE YOUR CHOICE 

280722-20 

Figure 14. Main Menu 

CONCLUSION 

The trend in microprocessor instrumentation is toward 
complete integration of hardware and software design 
and test components. Debugging systems, system de­
sign, and program control utilities will be integrated 
into one development tool designed to bring users clos­
er to a completely virtual engineering environment. 

the chip and to communicate with it through the PICE 
system. This enhances the debugging capabilities of 
PICE system. 

The PICE system combines in-circuit emulation, high­
level language software debugging and logic analysis in' 
a system designed to improve productivity in the devel­
opment and integration of complex microprocessor sys­
tems. One of the major features of an PICE system is 
the usage of procedures. Given an PICE system, proce­
dures can be written to debug any peripheral chip oil 
the target system by building procedures to simulate 

This application note has mu'strated the numerous fea~ 
tures of procedural implementation using a very simple 
peripheral component, 825lA, and a complicated com­
ponent such as the 82530. We have shown that the 
PICE system is able to debug procedures as well as 
standard microprocessor code. Now you can write your 
procedures for any periph~ra1 component and hence aid 
in debugging your design using the PICE system. You 
will spend less time in referring to the data .books and 
more time in your design. This will help to deliver your 
product on schedule. 

3-143 



PROCEDURE 

AP-262 

APPENDIX A 
GLOSSARY 

A procedure operates like a single command because it enables you to use several commands in it block structure and 
declare local variables. Also, the procedures can be several nested blocks. The size of procedures is limited only by 
the amount of memory space available. Defming procedures is like adding commands to the PICE language and you 
can create commands of particular relevance to your debug situation. 

Although a debug procedure is not executed until its name is invoked, the PICE system checks the syntax when the 
'procedure is defmed and determines the type of all referenced objects. Changing the type and/or definition of an 
object in the procedure before it is executed can cause errors when the procedure is executed. 

Procedures can be defined within other procedures. The inner procedure is not visible to the PICE system until the 
outer procedure is executed. Once procedureS become visible to the system, they are always global, even when nested 
inside other procedures.'A debug procedure cannot forward reference a debug object. Values can be returned from 
the procedures, and parameters can be referenced in procedures. The RETURN command is used to return the 
procedure values to the terminal. . 

The percent sign (%) signals the PICE system to expect an expression. 

%NP is a predefmed system parameter equal to the number of parameters passed in the debug procedure. 

%Number defines a parameter number which selects that parameter from the list following the debugprJ'wure 
invocation. Numbers range consecutively from Oto 99. ' 

%(Expression) is used instead of a number but requires parentheses. The expression must evaluate toa number 
between 0 and 99. 

The slash asterisk combination (/* .......... *1) defmes a comment. 

Example: 

In the following example we will defme an averaging procedure. Data is supplied by the parameter list. This 
procedure, retUflls the average value of all the parameters. 

·DEFINE PROC average = DO /"Define the debug procedure"' 
.·DEFINE INTEGER sum = 0 
.·DEFINE BYTE I = 0 /"Initialize v'ariables* 
.·Count %NP ,·Count is equal to the # of parameters·, 
•• • sum = sum + %(1) /"Add I to the sum·, 
••• ·1 = I + 1 ,"Increment I·, 
•• ·ENDCOUNT ,·Defines the extant of the COUNT loop·, 
.·RETURN sum,%NP ,·Return the parameter average·' 
.·END 

3·144 



inter AP-262 

Enter the following command to display the debug procedure on the terminal screen. 

·PROC average ,"Display the debug procedure definition", 

define proc AVERAGE = do 
define integer SUM = 0 
define byte I = 0 
count %NP 
SUM = SUM + %(1) 
I = I + 1 
endcount 
return 
SUM'%NP 
end 

The following command executes this debug procedure to find the average of the three numbers. 

" AVERAGE (4, 5, 21T) 
+10 

,"Execute the debug procedure", 

But this is only a simple example. PICE contains many features which enable us to produce comprehensive proce­
dures. Features such as INCLUDE, LIST, LITERALLY, WRITE, BOOLEAN CONDITIONS and much more. 

INCLUDE 

The INCLUDE command retrieves a command fIle from a mass storage device and loads it into memory. 

Command fIles may be created in two ways: by creating a fIle with the integrated I2ICE screen editor or by saving 
definitions created during a debug session to a fIle with the PUT or APPEND command. 

Note that INCLUDE has the following restrictions: 

• You can nest INCLUDE commands (limited by available memory), but they must be the last item on a line. 

• An INCLUDE command cannot appear in block structures (Le., REPEAT, COUNT, IF, DO/END, or a debug 
procedure). 

• Input cannot originate at the terminal (i.e., INCLUDE :CI:) 

• The INCLUDE command must be the last command on the line. 

LIST 

A LIST fIle is an PICE system utility fIle. Typically, a list fIle is used to create a permanent log of a debug session. 
All interactions between the PICE system and the terminal (except edits) are recorded in an open LIST fIle. Only 
one list file can be opened at a time. The list fIles can be closed by issuing the NOLIST command or by terminating a 
debugging session. 

Example: 

The following commands open and close a LIST fIle to record the debug session. 

"LIST UL16.85 
"<Record the debug session> 
"NOLIST 

3·145 



intJ 
LITERALLY 

LITERALLY definitions are abbreviations for previously defined character strings. LITERALLY definitions save 
keystrokes and improve clarity. For example, the following definition saves three keystrokes. Once this LITERAL­
L Y is defined you can type DEF for DEFINE. 

"DEFINE LITERALLY DEF = 'DEFINE' 

These definitions may 'be saved to disk and auto-reloaded. In addition, an automatic LITERALLY expansion feature 
can be turned on and off. The examples that follow use this LITERALLY feature extensively. 

WRITE 

The WRITE command is often used in procedures to add explanatory text to returned values in a more useful fonn, 
such as a table. 

The WRITE command displays a maximum of 200 bytes of data. Unless specified in the fonnat string by the 
continuation symbol (&), the infonnation in the write buffer is deleted at the end of every write. If the write-list 
contains more items than are specified by the fonnat string, the fonnat string is reused from the beginning, until all 
write-items are displayed according to the format 

Example: 

The following example shows the WRITE USING option. The procedure SQUAREIT squares a number specified. 
when the procedure is ca:1led (%0). 

PRoe squareit = DO 'DEFINE 
.·WRITE 
.·END 

USING("The square of ",X,T,O,X,nis·,X,T,O, ')%0,%0'%0 

Call the procedure and specify the number to be squared. 

'squareit(7) , 
The square 'of 7 '1's 49 

ATTRIBUTE CODES 

Attribute codes are used to add clarity or distinction to text written to the screen. These attribute codes are used with 
the CONCAT command. The CONCAT command builds strings by concatenating a:11 or part of old strings to fonn 
a new string. Placing a CONCAT function inside of a debug procedure saves the construction and prints it when the 
procedure is executed. The .various codes that are available on a host system are: 

Attribute Codes Series IIIISerles IV IBM·PC 
Blinking Code 8211 5 
Reverse Video 90H 7 
Highlight Code 81H 1 
Blinking/Reverse Video 92H 7;5 
Blinking/Highlight 83H 1;5 
Normal 80GH 0 

Example: 

In this example "Hello!" is written in blinking code and the screen returns to the nonna:1 attribute code immediately 
afterwards. The following steps perfonn these functions. Note that the rest of the screen will stay in the specified 
attribute mode until the mode is changed or turned off. 

3-146 



infef AP-262 

Serieslll/SerieslV 

'define global CHAR esc = lbh 
'define global CHAR blink = concat. (esc, 'L',82H) 
'define global CHAR norm = concat(esc, 'L',80H) 
"write concat(blink, 'Hello', norm) "BLINKI~G CODE', 
Hello! 

IBM PCXT/AT 

'define global CHAR esc = lbh 
"define global CHAR blink = concat (esc,4eh,esc,"[Om',esc,"[5m') 
"define global CHAR norm = concat(esc,"[Om",esc,4eh) 
"write concat(blink, "Hello! "',norm) ,'BLINKING CODE", 
Hello! 

BOOLEAN-CONDITION 

A Boolean condition is either a value of type BOOLEAN (TRUE or FALSE) or an expression that uses one of the 
following relational operators: 

= = equal to 
> greater than 
< less than 
> = greater than or equal to 
< = less than or equal to 
< > not equal to 

CI-

The CI (console input) function enables a debug procedure to read one character from the system terminal. The 
procedure pauses until the character is entered. No prompt is displayed while the system is waiting for the CI 
character, and the entered character is not echoed to the screen. No carriage return is required after the character 
has been keyed in. 

IF 

An IF command conditionally executes a command or group of commands. Debug objects are local only in memory 
type defmitions and DOIEND blocks. Literals and debug procedures are always global. 

Syntax: 

If boolean-condition THEN 
[I2ICE commands) 
[ELSE[I2ICE commands)) 
END [IF) 

3-147 



inter 

1. 
2. 
3. 

AP-262 

APPENDIX B 
PROCEDURES LISTINGS 

*IaIl;e. "I.e 0 ' . ......... . 
,. define BOOLEAN flay- • FALSE 
!lor define ":nAR device 
6. deflne GLOMAL BVfe drive 
7. drive - 0 
at cury - lOt 
9. writ_ c:nncat(l.Dh.'L',93h), • 0. MUICII DRIVE IS THE P"OC;jDISIT LOCATED1(O - 9) • 

10' write ooneat(lbh,'L',HOh).'· 
II. device. 01 
1::l1 write device 
13. repeat wbile not flat/ 
14. 1t clavier-'O' then 
lSI drive-O 
161 d.efine LrreRALLt incc·'inclUde ItO' 
I" define LI'fERALLY lat - 'Ust ItO' 
UB e1ae 
19 I 1f devlce--' l' then 
20i drive-l 
211 clefine LITERALLY incc-' inc l\lde I fl' 
221 define LITERALLY 1st •• Uat .fl' 
23. elae 
241 if -device·.'2' then 
251 drive-2 
261 define LITERALLY inee-' lnclncte I f2.' 
27 J d.efine LlfERALLY lat - t list t f2' 
281 else 
29. 11 Cleviee-·'J· then 
l()1 <1rive-3 
31' Clef.ine LITeRALLY iDC~'1nol'lde .f3' 
32: ctefine LITERALLY 1st - 'Uat If3' 
l3: else 
3': if device •• ·.' then 
35. drive-. 
361 clefine LIfERALLY inca'" inc 111de I I.' 
371 Clefine LIfERAlLY lat· 'liat :f.' 
le. else 
39: if device··' 5' then 
.0' drive-S 
41: define LITERALLY inco-' include. IS' 
421 d.efine LlfERALLY lat. 'li.t ItS' 
43: else . ' ," 
,.. 1f devioe··'6' then 
45' 4rive-, ,6. define LITERALLY inee "'! ' include .f" 
47: de.fine LITERALLY l.t. 'ust Uei' 
48. else 
4': 11 48vice--'7' then 
:5o()1 drive-'i 
51. define LITERALLY inQ~.'ino lllde : 17' 
52. deUne LIIERALLY lot - 'u_t U7' 
53. else 
54: if 4e"10e--'8' tben 
~51 drlve-8 
S6. define LIreRALLY lnCOoio'include I fB' 
S7: 4efine lIfERALLY l.t • I u..t .1'8' 
S81 else 
591 if device-.'9' t.hp.ft 
bO: driv_9 
61: define LITERALLY :l.nco.- :l.no1'1d8 : f9' 
62. define LITERALLY 1st· 'list :f9' 
63: end. end., enn, end, end, roo, encl, end,end.,endif 
!lii4: flaq. true 
65: define LITERALLY i82530 • 'ineel.in.lnc noUat' 
66. end 
6"/: incelmaiD.avO noliet 
69: Hin /·execute the pr()Cfldure*1 
69: incclsupjob.inc nol1st 
7(J: 
71. 
72. 
73: -ItAIM.OVO-
'74 I •••••••• ** 
75: 
76. eury. 20t 
17. wr.ite concat(IDh,'L',83h), 'LOADItrC ••• ,· 
78: write concat(1bh, 'Lf,HOh)," 
79: def1ne PR·le main. 00 
t'jUI C1etlne (';aAR Pell • ()7h 
U I define CHAR chr 
82. 

3-148 

280722-21 



dl. 
8,. 
85. 
861 
~1. 

a9. 
89. 
90. 
911 
92' 
93' 
941 
95. 
9til 
91. 
9A. 
~9' 

1:10' 
lUll 
1O~' 
11l3. 
104. 
1O!>' 
106. 
1()7' 
108' 
109. 
11(11 

111 • 
1121 
l1l. 
114. 
115. 
116. 
117: 
118' 
119. 
12(11 
121 : 
1~2' 

12l' 
124 • 
1:l~1 

1261 
127. 
1213' 
129' 
130. 
131. 
132. 
133' 
134' 
135. 
136. 
137. 
138' 
139. 
HO' 
141 : 
142. 
143' 
144' 
145. 
146. 
U7I 
148. 
149. 
1501 
151: 
152' 
1~3' 
1541 
l~!»: 

156. 
157. 
lS9. 
159. 
100' 
1611 

, 162. 
'1631 

1 ... 

aefine PROC w_coa • DO 
curbom.,cleareos 
1f '(J .- 'e' th9ft 
curhome.ol •• reo. 
write concAt(lbh,'L'.90h), 'sec 
writ_ onncat(lDh,'L',SOh),' I 

lstlsupjoo.lnc 
noU.t 
1st I job. inc 
nolbt 
else 
bt '.upjoD.1nc 
write \lsin'JI (' -inacl-,O, -.nYU 
write u.ln~ C·-'noor-,(),-.1nc 
curbomft,cle~reo5 

nnl1.t 
end 
ena 

curhome,oleareoa 
write • • 
write cnncat(lDh,'L',81h),' 
write concatClbh,'L',81h),' 
write concat(lbh,'L',81h),' 
write concat(lbh,'L',81h),' 
write concat(lbh,'L',81h),' 
:~~~: ;o~c .. t(lOh. 'L',eOh). 

wri te • 
wr1te • 
write • 
write • 
write • 
write • 
write I 

write • 
write 
write • 

1. 
2. 
3. 
4. 
S. 
6. 
1. 
~. 

wr1 te c0nc:lt( 1 oh.. IL·. dl h) •• 
wri te concat( Ibn, • L', A3h), I 

write conc4t(lbh,'L',81h),' 
write conca.t(lbh,'L',9()h),· , 
repeat 
ehr - 01 
if chr*-'l' then 
write 1191nl1 ('0') chr 
w_cnm('p1n~eB'),return 
else 
if ohr -- '2' then 
write usin.j ('0') chr 
,,_comC'regdes'),return 
else 
if chr -- '3' then 
vrite \lSinq (' 0') chr 
w_c omc't1nval').return 
else" 
if cnr _. '4' then 
write usinq e '0') chr 
,,_come ·~atenc·),return 
else 
if chr -- '5' tnen 
write using e '0') ahr 
v_come'reqadd')Jreturn 
else 
if chr-- 'ti' then 
write using e '0') chr 
w_coaC'prtcol')Jreturn 
else 
if ahr -- 'i' tnen 
wrj,te tJ!d.nq ('0') ahr 
,,_comC'p1nfun')Jreturn 
else 
1t cnr -- 'B' then 
write uBin</ C '0') chr 
",_comC'e'),return 
else 
bell 
ena 
ena 
ena 
ena 
end 

Ap·262 

ProcedUTAS oan be restarted by typ1nq -iA2$]O·· 

nol:l.st-·) \0 
nI'111at-') \0 

. ................•..•...•............... 
• 82530/82530-6 .' .' 'SERIAL COMMUNICATIONS CONTROLLER(SCC)" 
************.********.*****************' 

PIN DESCRIPTIONS 
REGISTER fUNCTIONS 
TIllE CONSTANT VALUES 
DATA ENCODING METnODS 
RP'ISTER ADDResSING 
S,;C p aoroCoLS 
lIE<! IS fEU BIT FUKCTIoNS 
EXIT TO I2ICE MAIN MENU 

I DesCRIPTION) , 
I DESCRIPTION)' 
(DESCRIPTION) • 
(DESCRIP'rION) , 
I DESCRIPTION) , 
I DESCRIPTION J' 

! INTERROGAT E 92~3())' 

PLEASE TrPE rOUR CnOICE' 

-----------------------, 

3-149 

280722-22 



intJ 

16:)1 
166' 
167. 
169, 
1691: 
110' 
171' 
172. 
173' 
1741: 
11S. 
1161 
117. 
17iH 
119. 
180: 
1B1, 
182. 
1831 
1641 
1B5. 
1861 
1871 
1~8. 

189. 
UO. 
1911 
192' 
H3. 
1941 
195. 
1961 
197. 
UB, 
199, 
200, 
201' 
202, 
203. 
204. 
20S' 
2061 
207. 
20B' 
209. 
210' 
211' 
212. 
213. 
2141 
215. 
2161 
217. 
218. 
219, 
220' 
:l2l. 
222. 
223. 
224 • 
2251 
~261 

227. 
l26. 
229' 
230' 
231' 
2321 
233' 
234. 
23" 
236. 
237. 
23B, 
2391 
UO, 

end 
end 
en<l 
en<l 
en<l 

main 
lncc:sUPJob.1nc no list 

curhoma,cleareos 

AP-262 

*IIAIII.INC* .......... 

*PDIDSS.OVO* . .......... . 
writs concat( lbh. 'L·. 8lh). 'LOADINn •••• ' 
write concat(lbh, 'L',SOh).·· 
<Ie Un .. CIIAa ppp 
define PRO~ pinds • DO 
curhome,clear.eos 
write conc .. t(lbh,'L!,Slh),"tJ2530/B2530-6 SERIAL COl'lllUIIICATIONS CONTROLLER (SCC)" 
write concat(lDh,'L',81h),'*******.".***********************.******************** • 
write concat( lbh. 't·. 8lh). • PIN DeSCRIPTION' 
write concOIt(lbh,'L',81h).· •••••••••••••••• 
write con=t(lbh, 'L ',B1h),' SYIIBOL .. IN NO. TYPE llAIIE AND FIJ IICTl ON , 
write concat(lbh,'L',81h),' e~~.~~ @~@@@~@ ~~~@ ~@~~@~'@@@~@@@'@@' 
write concatClbh. 't ',BOh),' • 
end 
define PROC pin<les - DO 
plnds 
write' 
writa • 
write' 
write • 
write • 
wr1te • 
write' 
write • 
write •• 
write • 
write • 
write • 

DBO 
OBI 
DBa 
DllJ 
DB4 
DBS 
D136 
DB1 

INT 

40 
1 

39 
2 

38 
3 

31 
4 

5 

write concat(lbh,'l',8lh),' 
write concat(lDh, 'L',J)()h). II 
a>PP - c1 
pinel. 
write • 
write • 
writa • 
write ' 
write 
write ' 
write • 
write' 
write • 
write' 
write • 
write • 

IEO 

lEI 

IIITA 

6 

7 

B 

write conc-st(lDh,'L',R3h),' 
write concat(lOh,'L',80b.)," 
ppp - ct 
pinds 
write , vec 9 
write , 
write , RDYa/REQa lO 
wr .. t. , 
write , RDvb/ii~QD 
write , 
write , SYII';a 11 
write , 
write , 

I/O 
1/0 
I/O 
1/0 
1/0 
1/0' 
IIO' 
I/O' 

o 

o 

o 

o 

I/O 

DATA BUS 1: file Data nus l1nes are ' 
D1-clirectional 'three-state 11nes' 
which interface with the systems' 
Data Bus. Th.ese lines carry data' 
and cnmmsnda to and fr~A the sec.' 

IIITERRUPT REQUEST'The interrupt siqnal' 
ls activated when the SCC requests' an' 
interrupt. It ia an open drain, output.' 

PLEASE HIT ANY lEY To COIITINUE' 

IN'rERRUPT ENABLE OUT,i .. niqh only if lEI' 
is Hiqh and the CPU is not servicinq an' 
S~C interrupt or the SCC is not requestinq' 
an interrupt.' 

INTERRUPT EIIAI3LE I'''is use<! with lEO to fora' 
an interrupt daisy chain when there is .ore' 
than one intarrupt-driven aevice.' 

INTE9aUPT AC~NOWLEDGE.iD<lioates .~ active' 
lnter~upt aCknDwledqa oycla. Durinq thi. ' 
cycle, the, SCC interrupt daisy ohain sett.les.' 

PLEASE nIT AllY KEY TO CONTIIIUE' 

PONERISV pnwer .Upply' 

READY IREQUES1'I (Output, open-drain wilen ' 
proqra •• ed for a Ready function. ariven' 
alqb or ~w when program.ed for a Request tunc.' 

SYlfCnROHIIA'1'IOII. '1'lIes. pins can attract' 
either as inputs, outputs or part of the' 
crystal oscillator circuit.' 

Llt write' 
242: write' HTx~. 12 
243: write' 
24.. write' iTiCo 
2'51 write conc4t(lbh,'L',H3h),, 
24'1 write cnncat(lbh, 'L',SOh), II 

o RECEIVE/'1'RAIISIIIT CLOCKS. Theae pins can be' 
be proqram.ed in several different .odes at' 
nperatinn. • 

PLEASE nIT ANY KEY '1'0 CONTINUE' 

3-150 

280722-23 



H7, 
248' 
2'9' 
2~O' 
251, 
252: 
253' 
2:;"1 
25!): 
2,6' 
25"': 
25~, 

259: 
200: 
.261 : 
202: 
263' 
2li4. 
26S, 
266, 
267: 
268, 
269: 
27()I 
271. 
272: 
273' 
2H: 
27~: 

276 : 
2771 
278, 
279 : 
~801 

2i31: 
282. 
283: 
28" 
2tl5. 
29ti: 
2!l7: 
288. 
289: 
29(H 
2911 
292, 
293: 
294 : 
295. 
296 : 
297: 
2~e: 

~99: 

300: 
31l1' 
302' 
31l3, 
30' , 
30S' 
306: 
31l7, 
31lR, 
31l9, 
310. 
3U: 
312' 
313' 
314' 
315. 
316: 
317' 
318, 
319. 
32()I 
3211 
322: 
JlI3' 
324: 
325. 
3261 
327: 
32~1 

llPp· 01 
pind. 
wrlte • 
writ •• I/O 
write • 
write • 
"rite' 
wrlte • 

2.; IIO 

w"lt. ' 
writa I 

write • 
writ_ cnnc~t(lDh,·1·.83h).' 
write concat(lbh. '[,',80h)," 
Pi';> - ci 
end 
aetlne PROC pnd3aa • DO 
pind. 
write • fxDa 15 
write' . Txna 2~ 
write • 
write' orR.'iiEQ. 16 
write • 
write' OrR.REDb 2' 
write • 
write • 
write ' Rfsa 11 
write • 
wrlte • ~HSa 23 
.... rite • 
write • 
write concat(lbh,'l',1J3h),' 
write concat(lDh, 'L',80h). " 
sh)" - c1 
pinus 
write • 
write ' 
write • 
write • 
write I 

write • 
write • 
write • 
"ri.t •• 
write • 
wri te ' 
write' 
write • 

RxDa 
RxDb 

CiS" 

CiS. 

(;Da 

6)0 

11 
;2"1 

la 

22 

19 

21 

write conC4t (lOh, 'L I, a.]h), • 
write concat(lbh. ILl ,80h)." 
ppp - ci 
pinds 
"r ita ' ClK 21l 
write • 
write • 
write • 
wr1te • 
wr1te I 

wr1t8 ' 
write' 

D/L: 

write • C;S 33 
write • 
write concat(lbh. 'L',83h).' 
write conc.Jt( 1 bh •• L', SOb) ••• 
ppp - ci 
pillels 
write • 
write ' Ala 34 
write • 
write ' 
write • 
write ' WR 3~ 
writl • 
wrlte • 
write' 
write • 
write' , 

RD 36 

write ' QI/l) 31 
write conoat(lbh,'l',83h),, 
write concat(lbh.'L',8(Jh). ' • 
ppp - ci 
lat.job.1nc 
write 'remove vpp' 

o 
o 

o 

o 

o 

AP-262 

TRAHSMIT/RECEIVE ClOC15:Ther.oe pins can be' 
~~oqramm.a in several different modea ott 
operation. fhe rec~ivp. clock or the transmit' 
clock in the input mode or the the output of' 
the Diyital Phase LockArt Loop, the crystal' 
C'>!'Icillator, the baud rate 'lenerator, or the' 
transftit clock in the output mode may be' 
supplied •• 

PLEASE Ill'!' AI/Y KEY TO CON'l'INuE' 

l'RANSPlIT DATAlfhesp. outPUt slqnals transmit' 
~eri.l data' at _tandar<t III level •• ' 

DATA TERMINAL READY IRE!lUES1".Tbese outputs' 
tollow the state proqrammftd' 1nto thB DTR b1t' 
They can also be used as general purpose' 
outputs or aa Request lines tnr a DMA contr.' 

REQUEST 1"0 SelD:llben tbe RTS bit in write' 
Reqiater 5 is set, the 91qnal qoes low. ' 
When the'RTS bit 1S reset in tne Async mode' 
and Auto enable is Dn, the signal qoes hlqh' 
after the transmitter is empty.' 

PLEASE HIT ANY ~EY TO CONTINUE' 

RECEIVE DATA:"fbese l1nes receive serial' 
data at standard TTL levels' 

CLEAR TO SEND: If th.ese p1ns are proqrammed.· 
&s Auto 'Enablea, a Low on the inputs enables· 
the respevtive transmitters. If not' 
programmed as Auto" Enables, they may be used' 
as qeneral pur~se inputs.' 

~A~RIER ,DETECT.These pins function as' 
receiver enables it they are proqra~med' 
for Auto Enables, ntherwise they may be used' 
as qeneral pur~se input 'pins.' 

PLEASE HIT ANY KEY TO CONTINDE' 

ClOCII:I"fhis is tbe system SCC clock used to' 
synChronize internal siqnals.('!''!'L level)' 

DA"rAlCOMHAND SELEC'!'.'!'bia signal deUne. tbe' 
type ot information transferred to or from· 
the sec. ni~b means data is transferred, .' 
Low in~icat~s a oo~mand.' 

~aIP SELECT:'!'bis siqnal select~ tbe sec for ' 
a read or write operation.' 

PLEASE aI,!, ANY EEY '!'O (;ON'!'IUUE' 

CaANNEL A/CnANNEL n SELEC'!':Tbis si~al ' 
selects the channel 1n whioh the read or' 
writ_ operation occurs.' 

~RITE.Wben the SCC 1. selected thi. siqnel' 
in4ioaces a write operation.' . 

READITbl •• iqnal inelicatea a read Operation anel' 
wben tbe S~C is seleotp.d. enables its tus elrivers.' 

QIIOUIII>' 
PLEASE tilT AllY lEY TO RETURII "f0 scc MENU' 

280722-24 

3-151 



inter 
3291 
:l3l)' 
3U. 
332. 
u:u 
3341 
US. 
3161 
337' 
3JHI 
3l9. 
340. 
341' 
3.2. 
343. 

3'" 
3.5. 
3401 
3..,. 
348. 
349: 
3S0' 
3SH 
3!)2: 
3~3' 
3541 
.]:..5: 
3,6. 
3!n. 
3~8. 

J'9I 
360' 
3,;1 : 
3021 
363: 
3U. 
J6':i1 
Joti: 
367. 
3~9: 
309. 
310' 
3711 
312. 
3'13. 
3741 
J7~: 
3761 
311. 
378: 
3H. 
380. 
3811 
382. 
383. 
384. 
HS' 
386. 
3811 
J~8' 

38!1' 
39tH 
3911 
392' 
393, 
3941 
3!1b. 
39h 
397. 
398. 
399. 
40tll 
.01. 
'02' 
• 03. 
'0". 
.05. 
4UtiI 

"07' 
.UIII 

'0" ,uU. 

write 're .. ove p.i.nlJ. ••• pnd .. Cl.pind..· 
write 'U!2S30' 
nnlbt 
ead 

AP-262 

·PIIIDEs.IIIC· 
************ 

pindes 
pnd.acI 
inceljob.inc nolist 

curhome,c!earens 

*REGDES.OVO. ............ 
wrlt~ ooncat(lbh.·L·.83h).·LOADI.G •••• • 
write c('Jncat( lbh, 'L ',aOt\)," 
define PRO~ r9~des • DO 
rftpeat,curhom~,cle.ren. 
write concdt(lbh, IL',,/ollh), I •••••••••••••••••••••••••••••••• ' •••••• 

write concat(lbh.'L'.Blh).· .READ AND.WRITE REGISTER DESCRIPTION.' 
write concai(lDh,'L',Slh),' •••••••••••••••••••••••••••••••••••••• 
write concat(lbh,'L',HOh). I • 

write • 1 .• READ .II:GISIER DESCRIP1l0N' 
write • ~. WRITE lIEGI5~ER DESCRIPTION' 
write' 3. ::~.If 1'0 SCC lIAIII IIEIIU' 
write I • 

write cnnc"t(lb".'L'.a3h).· PLEASE 'fVPE YOUR CIIOICE' 
write aonC.:it(lbb,'L',8()h),· • 
deUne CRAil 'tyy • 01 
until Y'.IY .- '3' 
it yyy --'1' then 
curho~e,cleareos 
writ .. cnnc.t( lbh.·L·. 8111) •• READ REGISTER DESClIIPTlOIi 
write concat(lbh.'L',SOh), •• 
write 'RRU fr.n."'it/~ecelv! -bllff~r ~tatu. and. Extl!rnal status' 
write 
write 'RRl. Speci .... l .te·ce1ve Cond.ltlon status' 
write 
write 'RR2 Modiflen Interrupt vector (~hannel B only)' 
write' Unmodified Interrupt (Channel A nnly)' 
write 
~~!~: 'RRl Int.errupt Pendin9 bits (Cb.n .. el A only)' 

write 'RR8 ~ecelve buffer' 
write 
write 'Rll,) Itlsaellaneous status' 
write 
writ_ 'RR12 Lo~.r byte of baua rBt~o.ner.tor time constant' 
write • • 
write 'RRl] Up?er byte of baud ratA ~.n.rator tt •• constant' 
write 
writ .. 'RR1S External/Statu. interrupt infor .. ation' 
write cnnOdt(lbh.'L'.R3h).· PLEASE nIT AllY KEY TO RETURII' 
write concat( lbh. 'L'. AUh). ., 
define ~nAn ZZZ • oi 
else 
if yyy' •• '2' then 
curho.8Jcledreo~ 

write cnnc.t(lI>h.·L'.alh).'''RITE .lEGISfER DESCRIPfIOIl' 
write concat( lbh, 'L'. Bt)h,., I 

write 'WRU CRe initializ.e. in:LtlaU .•• t:ion co.m.nel$ for the various IIOdes,' 
writ. ' "hUt riqht/llhUt l.ft co ..... nd.' . 
"Tlte 
write '''Rl I"r.na",it/Recei_ int.rrupt .nd <I.t. tr ... .,er ..,de definition' 
write 
write 'WR2 Interrupt Vector (accessed throuqh either cbannel)' 
write' • 
write 'NRl ~ec.iY~ par ••• teTs and oofttrol' 
write 
write 'WR. Trans.it/Receive .isoall.naous para .. ters an4 804e5' . 
write' , 
write 'IIRS Tr.n_it p ........ t.r •• n·1 control.' 
write 
wr.te 'IIR6 Sync Ch.~cters or SDLC ~d~ •• lisld' 
write oonc.t(lDb.'L',83h).' !PLEASE ijl~ All! IEf TO COII~I.UE' 
write COIlC.t.( lb ... 'L '. lOb), •• 
de'lns CaAR ZZZ • Ol 

3·152 

280722-25 



inter 

'wa7 .. 
'NRd 

AP-262 

4111 
4121 
4131 
414 I 
41~1 

"ltd 
4111 
U6' 
4191 
420. 
421: 

write 
writa 
write 
write 
wrlte 
write 
write 
write 
wr.i.te 
w.rite 

'WR9 , Master 1riterru~t control anQ reset (.cces~ed through either' 
chd.nnel)· 

'NRlO Mi9gel1aneous trans~tter/rece1ver contrnl bits' 

'WRll 
4221 writA 
4231 writ_ 'N~12 Lower Byte 01: baud rate oenerator time conllt.nt· 
424' write" 
4351 write 'NRl] Up~.r Byte of b~ud rate ~ener.tor time canat.nt' 
4261 writ .. 
4271 write 'NRl" Hisaellaneous control bits' 
426: .. rit .. 
4291 
430. 
431: 
432' 
4331 
4Jet 

write 'WRIS External/Status interrupt control' 
write conC4t(lbh,'L',93h),' 
write concat(lbh.'L',BOh), 
define CHAR azz • c1 
end 
end 

"]~1 end 
4361 lseljolhlnc 
431. write 'r_nve reqUest 
438: write' 182:)30' 
439. nol1st 
UOI end 
"11 
4421 

"3' 
444. *REGDES.IIIC* 
445. • ••••••••••• 
4461 
447. 
~46' 
,,9. 
4~(J1 

451t 
452. 

rayde. 
1nccljob.inc nollst 

4531 •••••••••••• 
4:;4. 
455. deline PROC tlmval - ao 
4~61 write conc~t(1~h,·L·.83h).·LOADING •••• • 
'51: writ.e concatClbh, 'L',SOh). It 

,~ijl curhome,eleareos 

PLEASE HIT AllY J: EY TO RErURII' 

4SH wrlte concat(lbh,'L',81h),'TIHE CONirAIIT VALDES FOR SIAltDARD BAUD l?AnS 
",oc): write concat(lDh.·L·,alh).·~······················*········· ••••••••••• 
4611 write concatClbb .. 'L',80h), I • ' 

4021 wrlt .. ' BAUD RAfE fIHE eONSTANf ERROR' 
463: write' 1920() 1()2 -' 
46" 206-' write , 

9b()() 

"c:i~t 275 0.12" write , 7200 
46f;d: 414 -' write , 

4HOO 
467. 553 0.06%' write , 301)() 
.661 1l30-' write , 24m) 
.';9: 996 O,04'a' write . 2000 
47()1 1107 0.03\' write , 1BO(J 
4"71: 
4721 
47.1: 
4741 
4/51 
4761 
4771 
471:11 
4791 
4!lO' 
48lf 
482. 
4831 
484. 
HS. 
4661 
497. 
48B. 

'U. 
"0' 
491. 
02. 

write r l?(}O 
write • bOO 
write • lOU 
write' 150 
write • 13.,5 
write • IlO 
writa • 75 
wrlte • 50 
write conCAt( Ibh, 'L I ,83h),' 
write conc::at( lbh, 'LI ,SOh), •• 

define enAR yyy - ci 
lstljob.ina 
writ_ 'reMove tinva!' 
write '182S30' 
noU .. t 
curhO_e,oleareos,ena 

1662 
3326 
66S4 

1J310 
14844 
181S1 
26622 
39934 

PLEASE 1II'f 

otTIHVAt.,IIIC. ...........• 

3-153 

-' 
-' 
-' 
-' 
O.(lO(l7" 
(l.OO1S" 

-' 
-' 

AllY KEY IO RErURII TO sec IIEIIU' 

280722-26 



inter 

"931 

"U 
4951 
4~" 
4971 
H6. 
499. 
500. 
SOl. 
502. 
S031 
~OU 

50S: 
!JObt 
507. 
soa. 
509' 
slO' 
5111 
SUI 
~131 

5141 
5151 
516. 
5171 
518. 
5191 
520' 
521. 
522' 
!;231 
524. 
525. 
5261 
5271 
528. 

5291 
530: 
!fo311 
532. 
5331 
!>3U 
535. 
530' 
537. 
5381 
53'. 
540. 
54l. 
5421 
5431 
su. 
5451 
5461 
5471 
548. 
549. 
5S0' 
5511 
,521 
5531 
:)541 
!)551 
556: 
!)S'7t 
5581 
:'591 
56(): 
561. 
562' 
5631 
5641 
5651 
:itt" 
567. 
568: 
569. 
570. 
5711 
!>721 
57)' 
~7U 

AP-262 

tillv.l 
inCCI job. inc nolist 

"DA'fE :ic. OVO" 
*.* ••••••••• 

curhoa.,cleareoa 
write concat(lbh.'L·.83h),·LOADING •••• • 
write cnftcat( lbn, It I ,SOh)," 
define PRO~ dateno - DO 
repeat 
curhone,al •• re09 
write oonc.t(lbh.~L·,81h),· 
writ. concat(lbh,'L',81h),' 
write concat(lbh,'L',81h),' 
wr~t. Conoa t( IDh. 'L' ,SOh). • 
write •• 

1. DATA TABLE ' 

* ***** *** ***** * * ** ** ***' 
* DATA EIICODING /lIITIIODS* , 
****************.******' 

wrlte 
write • 
write' 
write • 
wrlte 
write 

2. TIllING DIAGRAK' 

write' • 
write' • 
write 
write • • 
write 
vrl~e concat(lbh,'L',83h),' 
write concat(lJ:)h, 'L ',SOb)," 
define CoAR a~. - 01 
until z%z •• ']' 
if ... --'1' then 
curho ••• olaareo8 
write concat(lbh.'L'.81h).'MODE 
write conoat(lbti.'L'.Alh).' 
write concat(lbb.'L'.81h).'**** 
write concat(ibtl.'L'.SOh). 
writ_ 'Serial 4Maz 
write 'cloCkS 
write 'qenerated 
write 'externally 6MD. 
write 
write ' 
write ' 
write' 
write 

6Kliz 

write 'Self-cloCkec.1 • 
write 'Operatlon' 
;,rlte 'lUlU 
write I 

"rite 

4KHz 

write 'fK 4Mnz 
write ' 6Mas 

3. E~IT TO SC~ /lAIN KENU' 

4.5 

SYSTEK 
CLOCK 
.***** 

4.5 

32 
32 

16 
16 

PLEASE TYPE YOUR ~nOI~E' 

SISTEK ~LOCK 
5 Ell IAL CLOCI 

SERIAL 
BIT RATE 

************ 

1.5 IIbps 

BBO Kbps 

1.3 IIbps 

125 'bps' 
167 lbp.' 

250 lbps' 
375 lbps' 

Serial clock.' 
synchronlzea wlth' 
systell cloCk' 
Salle as abOve' 

Serlal clocts an~' 
system clock async' 
Salle &$' above l 

CONDITIOIIS 

write cono4t(lbh..'l',83h). I 

write ooncat(lbb,'LI,~)h).'1 
aeflbe CHAR yyy-cl 

PLEASE HIT AllY lEY TO RIITURII' 

else if ••• --'2' then 
curhoae,cleareos 
wrlte coneat(lb", 'L',8lh),' 
write ooncat (lbb. 'l' .81b), ' 
write coneat(lbh,ll',80h), 
wrlte 'DATA 1 , 1 
write I 

write I lfRZ 

o o 

TIIIIIIG DIAGRAII ' 
****'.*.******* ' 

() 

-,---, HIGH - l' , 
-------------- --------LOM - ()' 

IIRZ 1 ________ , _, _______ , , 110 CHAIICE-l ' 
write ' 
write ' 
write • 
write' 
"rUe' FKl 

-------- --------CHAIIGE • 0' 

write ' , ;--; " "it"~i!N;m~:: 
write ' 
write ' 
wrlte ' FIIO 
write I 

write' 
wrlte 'KAII-
write 'CaE-

------- -------TRAliSITIOIl-1 ' 

, , -,--, , , 
110 TRANS ITIOII-()' 
110 TliANS I'fIOIl-l' 

,TRAIISITIOII-O' 
-----, 
__ LOil-HIGH-o' 
, nIGa-LOW-l' 

write 'SIER ------- --------, 
write concat(l.bh. 'I' ,83h), ' PLEASE aIT ANY lEY TO RETURII' 

3-154 

280722-27 



575. 
tt,', 
5n. 
S7Bs 
579: 
58(H 
~81. 
5fl2. 
583' 
5841 
565. 
566: 
S~7' 
SitS, 
~89' 
590' 
5911 
592: 
593: 
5941 
S95. 
596: 
597. 
598. 
!:)Sl9a 
600' 
601. 
602. 
603. 
604. 
60S. 
606. 
li07' 
608. 
0\)9: 
HO. 
6ll. 
612. 
613. 
til". 
615. 
616. 
617' 
tHBI 
6l9. 
1i20' 
6211 
022. 
ti23: 
6241 
625. 
t:i26: 
627. 
628. 
629. 
630. 
031. 
6321 
6331 
63., 
635. 
636. 
637. 
636. 
1i39. 
' .. OJ 
6411 
042. 
643: 
6U. 
645. 
646. 
647. 
64B. 
64" 
t;;S()1 

6511 
652. 
653' 
6S4I 
6~5. 

656. 

write concat-(ibb. "It',SOh),' I 

define CnAR yyy-ci 
end 
end 
end 
1st. j"b. inc 
... ri.te " rellove clatenc' 
wrlte ':1.92530' 
noU.st 
c::urhome,cleareoB,end 

clatenc 
inccljob.1nc nolist 

cur home , cleareos 

AP-262 

·DMENC. Il/C' --* ..... _._.-* 

*REGAi>D.OVO* . ... _.-.-*_. 
write concat(lDn,·L'.9]h).·LOADIN~ •••• ' 
write oonc4t(lbn, fL',gOh)," 
clef ine PROC reqac1d. • DO 
curbome , oleareos 
write concat(lbh.'L'.81h).'O/C 'POINT HIGU" COOE 
write concat(lbh.· L' .. 8lh), f IN' WHO 
write c::oncat(lbn,'L',80h), •• 
write' n1yh Either way x x X 
wri te' Low Not truA 
wri te I Low Nnt true 
write' Low Not. t.rue 
write I Low Not true 
write I Low lfot true 
wri te I LoW' rIot true 
write' Low Not true 
write' Low Trup. 
write' Ln", True 
write' Low True 
\'r:Ue' Low [rue 
wrt t.' Low True 
write' Low frue 
write' Low frue 
write' Lnw 'rrue 
write I Low frue 
write concat(lbh, 'L·,Blh).· 
write concat(lbh,'L',HOh), • , 
define CHAR yyy • c1 
1st I jOb. inc 
write 'remove reqada' 
wr ite 'i625 30' 
Dolist 
curhone,clearens 
end 

reqadd 
1nccljQb.1nc DO list 

Curbo .. ,oleareos 

o 
o 
() 

o 
1 
1 
1 
1 
() 

() 

o 
o 
1 

o () 
o 1 
1 0 
1 1 
o 0 
o 1 
1 0 
1 1 
o 0 
o 1 
1 0 
1 1 
o 0 
o 1 
1 0 
1 1 

PLE.\S E flIT 

*REGAOD. INt:* . ........... . 

*PRTt:OL.OVO* . .......... . 
write ooncat(lbh,'L',83h), 'LOADIllG •••• ' 
write concat C Ux" It' ,"SOh), •• 
define PRO~ prtcol- DO 
curbome,cleareo. 
write ooncatClbh,'L',8lh),. 
wr1te oonoat(lbh, 't',8()h), I Start Parity' 

:;~~: :ii8rki:h9i iData-,,-", ,0''''.''''1:"''.-:--:---''--: 
write 'Line ------------ ___________ _ 

3-155 

02 01 00 ~RrrE READ· 
I~ WRO REGISTER REGISrER' 

nata Data' 
0 0' 
1 1 ' 
2 .' 3 3· 
4 (0)' 
5 0)' 
6 (2)· 
7 (3)' 

Data Data' 
9 -' 

lO lO' 
II OS) , 
12 12' 
13 13 

, 
14 (10l ' 
15 15' 

ANY KEY TO RETURN TO sec MENU' 

S';C PROTOCOLS' 

iii.t. Plarkinq , 
Line' 

280722-28 



inter 

tiS7. 
658. 
659. 
66U. 
li61 t 
662. 
063. 
664. 
665. 
606. 
607. 
668. 
66'. 
ci7()1 
6711 
672. 
6731 
6H. 
675. 
676. 
677. 
678' 
67.9. 
6BO' 
6811 
tia2' 
683. 
'BU 
685. 
6B" 
687. 
688. 
689. 
69U. 
6911 
69:11 
"3. 
6\14' 
6115. 
696. 
6.97. 
t;i98. 
699. 
700' 
7011 
7U2. 
703. 
704. 
705. 
70" 
707' 
70B: 
7091 
UO: 
7U. 
712. 
713. 
714. 
715. 
7161 
717. 
718. 
719. 
720. 
721. 
722. 
723. 
7241 
725. 
726. 
727. 
728." 
72111 
730' 
731. 
732. 
733' 
7"14. 
135. 
736' 
737. 
738. 

AP-262 

"rUe ' "ASUC .. RONOUS"' 
write • I I,~ ________ ~~~ __ ~~~~~~~~ 
"rite' 'SYNC ,DATA' "IICl110SYNC' ,DATA, CRC! 'CRC2" 
write' --------------------------/ 1-----------------------------------' 
:~!~: :-,-'--S-Y-N-~--'--D-A-,T-~--.------eaI~t~~C~"-------, DATA ,CRel ,CRC2 " 
write ,----------------------------1 1-----------------------------------, 
vrt t. . 5'9Oa1 • 

:~!~: : 'DATA' ·ElC(E~N~;L-;;SUY;;N;:;C;:'"--~'-D:A::"T;:-A:---:':--;C:::R:':C:::l;--::'''C:;R:-;:C:::2~" write I __________________ 1 I--_______________________ ~ _________ • 

wrlte • I I 

~!~: :!-~~~ ___ ~ ______________ ~:~R~'.~~:~~;:;~;;~--------------------__ --_-__ -;,~_'::::~:':::::~~_-_-__ -::,":~~:-;:::::~~_-::~-_-_-_-__ .,: 
"jolt_ 'FLAC ·SDLCIHDLCfX.2S"' " 
write concat(lbh.'L'.83b),, PLEASE nIT ANY lEY TO RETURN TO sec MENU' v ___ te concat(lbh,'L',8()h)," 
<leline CnAR yyy - oi 
l.t.job.ino 
write 'remove prtaol' 
write '18253U' 
noU.t 
ourho~e,cle.reos 
end 

·PRICOL.INC· 
_**ltlt*It.**.* 

prtool 
incoljob.inc noliat 

·PINFUN.OVO· 
_. ___ It __ *.*. 

curhoae,oleareos 
write dancat(1~h.·L·.83h).·LOADIKG 
wr:l.ee ooncat(lbh,'L',80h), •• 
curbom.,el •• reos 

define liaRD paddr 
d.efine !lORD paddrl 
deUne CHAR chrin 
d..t.ine BOOLEAN cheok - true 
deUne liaRD vreCJ 
deflne BYTE reqnua 
define CHAR bell - 07h 

define PROC qethex • DO 
define NOR!) num 

deUne CHAR chr 
nu. - () 
repeat 
chr • 01 
if (ohr )- • 0') and. (ehr <-' 9') tben 
nUIn • Qu.-IOb + (Chr-JOh) 
write usin; ,'1,)') ahr 
els8 
if (enT >- 'A~) ~n4 (cbr <- 'F') then 
num • num-IOb + (chr-31h) 
write uslnq (~l.)') cnT 
else . 
1t Cenr >- 'a') .n~ (ehr <- "') then 
nu. - nu.*lOn + (abr-S'7h) 
write US:l.ftJ ('1,)', anT 
el •• 
U obr () Odh then write uSinq('O.)') bel1 
en<l 
en<l 
en<l 
end 
untll cbr -- Od.b 
end 
return nurn 
end 

define PRO~ qetnu. - DO 
deUne BY fE nUll 
define CnAR ohr 

3·156 

280722-29 



7391 
HU' 
741. 
742. 
743. 
'IU. 
It!il 
146. 
147. 
Hil' 
7." 
ISO. 
7:;1. 
752. 
733. 
7541 
7!:o:>, 
756. 
757. 
lsa. 
7591 
1601 
76lt 
162' 
763. 
764. 
765. 
766. 
767. 
7tiit! 

7U. 
170' 
77lt 
772. 
173' 
7741 
775. 
176. 
1'17. 
178' 
77~. 

"1(11 
781. 
782. 
7S3' 
7S4: 
785. 
786. 
"1S7I 
788. 
7." 
?SlO. 
791. 
7f;U 
793. 
7~U 

795. 

"" ".,. 
."S. 
799. 
SOli. 
SOli 
S02. 
S03' 
bU4. 
SUS. 
Il()<;. 

tlO'" 
dOS. 
80u 
B1(1I 
Illl. 
812' 
813. 
IU4. 
IUS. 
8161 
817' 
81S. 
sn. 
S2U' 

deUne CHAR bell· ()71l 
nUll • n 
repeat 
ahr - 0:1. 

Ap·262 

l' (ohr >- 'U I ) and (chr C.'9') then 
DUll - num-1Ut + (Chr-30h) 
write usinq ('1,)') chr 
.1 •• 
it cbr () nelll tllen write I&sinq(' 0,)') bell 
end 
enel 
I&ntll allr (lcIll 
en.:l 
return nu. 
enel 

define PRO~ qetpl • DO 
curho.e,alearen. 
deUne CalIR ZZZ 
"rUe oonc4t(lbb,'L',B11I),'I!APIO CO.IItAND DISPLAYS OR SETS PHYSICAL LO~ATIOIl I'OR I/O.i'OR'1'S' 
writ_ cnncatClbh,'L',83h),' • 
write I&sin'l('" "AYE rou MAPPED 'InE 110 POR'l'S7(Y/If)",>') cbrin 
write coneat, lbh. 'L' ,SOh),' • 
repeat 
ohrin • 01 
if not«cbrln •• 'H'). nr (ctlrin - 'n') or (CJhr:l.n -- 'r') t)r (olar!n .- 'yl» ttl.,n 
,bell 
en<Ut . 
uotil (cbJ;"1n~ ••• ') or (chrin.i. 'n')" or (cllrin _. 'J") or (chrin .- 'y') 
end 

if CCbriD -- 'JI') or Cohrin - .. 'n') thea ,do 
write I&sinq( '0') cbrin 
curho .. ,clearen. 
wute ' .'1'aE 1/0 POR'1'S CAN BE MAPPED '1'nE fOLLOWllfa WAY' 
writ_ 
"rite' IIAPIO ((partition) .(USER or ICE>" 
write 
write' MAPIO - <Uaplays tile c'Jrrel1t map ot 110 port aeldre •• blocu' 
write 
wr1t. ' pdrt1t1oft - 18 4n entry specityinq a 'ran~. nf addres ... suCh .lIt' 
write I Starting port-a~~ress LENeTa nu8ber of bytes' 
write 
write I USER - .'taps 1/0 to the USER syste.· 
write 
:~!~: :,. I~~ - Maps: 110 ~o ~b. 12ICE prObe' 

write concat(lDIl.!L',83b),' PLEASE '1'YPE MAPIO S~R'1'IlfG "eXADEClMAL POR'l'-ADDRESS and (cr)' 
write conaat(lbh. 'L' ,SOh), •• 
pa.:lelr • "etbex 
write I D' 

wrUe aonc.t(1bh,'L'.83b),, PLEASE TYPE NUMBER OF BYTES anel <cr>' 
write conc4tClbt .. 'L',t3C:Jh), , • 
paddrl • qethex 
writ_ 'n' 
wri~e concat(lbb,'L',S3b),' PLEASE TYPE "u" I'OR USER or "I" FOR ICE' 
writ .. concat(l.bh,'L',SClh),'1 
repea~ 

zz.z ~ ai 
it not(Cz.2I _. lU') or C-••• 'U') or C •••• - 'I') or-C •• II-- Ii'») theD 
Dell 
e,,<l.if '.' 
until ( •••• - '0') or (z •••• 'u') or C •••• - 'I') or '(3:18 .- 'it) 
enel 
it C •• z-·'I·) or C ••• -·'i') then 
IIAPIO I'ADDII LElla'fH PADDRl ICE 
:~!:: ~~in~.IC •• ... APIO ·,U,o, - LEHGTn ·,n,D,· ICE .' )pauclr,paddrl 

write aonaat(lDll, 'L',B3h),' PLEASE HI'1' AIfY lEY 'l'O COIiTINUE' 
write concatClbh,'L',8Uh), I I 

zzz • ci,el.e 
if C.aa-·'U I ) or (azz··'u' ) theft 
IIAo'IO PAnlla LEIIG'fri PADDRl USER 
write uSinq( I·"A .. IO ·,U,n, - LENGTn -,n,n,- USER .' )p.ddr.p~ddrl 
write II ' 

"rite conaat(lbb, 'L',1l3b),' PLEASE ,,1'1' AllY lEY '1'0 COIl'l'IIIDE' 
write concat(lbh, 'L',BOh), I' 
Qbrin • ci,en~if,.nd 

end 
enel 
curboae,cleareos 
writ. c~ncdt(lbh,IL',~3h),1 
write concat(lbh, 'L~,8()b),' • 

TYPE IN 'fHE HEXADECIMAL ADDREss 1'01/ THE B2SJCl and (cr> , 

280722-30 



inter 

821. 
1122. 
823. 
82" 
825. 
d26. 
827. 
828. 
829. 
630. 
831. 
832. 
8331 
834. 
635. 
836. 
H37. 
83BI 

~3" 
840. 
~U. 

wreq - qethex 
write In' 
write •• 
en<l 

<leflna PROC qatp2 • DO 
curhome,dleareos 
write concat(lbb,'L',91h),' 
write conoat(lDb.'L',81h),' 
write concat(lbh,'L',81h),' 
writ_ cnncat(lbh,'l',80h),' • 
writ •• I ' 

wTite 
write • -n-
write I .W. 
writ. ' -N-
write • -e-
write 
write 
wr i t. C(')nca t ( 1 bl\ ; • L '. tJ]h ), • 

write coftcat(ibh,'L',90h.'" I 

9421 end 
843. 
84.. <leflne PROC qetp] • DO 
ij4~1 ourho •• ,ole.reos 
8461 wr'ite 

AP-262 

.************* ••• *.' 
'PJII I'V"C'l'IO" /lEIIU" 
***************** •• ' 

READ A REGISTER' 
_RITE TO A REGISTER' 
CHAMO E 82530 PORT ADDRESS' 
EXIT TO KAIN IIENU' 

PLEASE: TYPE YOUR CHOICE' 

8471 write ooncatClbh,'L',Hlh),' •••••••••••••••••••••••••••••••••••••••••••••••• 
848. write concat(lbb,'L',61h),' TaE CaOICES 01' REGIS'rERS FOR rOUR SELECTION ARE .' 
94.91 wr:l.t_ concat(lbh,"L','81h), I ••• .,' •••••••••• ' ......... _ ••••••••••••••••.•••••••••• 

!iSOI write concat(lbb, 'L',B;Jh), •• 
8'Sl'I 1f (chr1n -- 'R') or (chr1n -- 'r' ) then 
8521 writ_' O. RHO 1. RRl 2, RR2' 
8531 wrlte' 3. R.R3 8. IIRf! 10. RRlO' 
asu ,, .. It_' 12. Ral2 13. IIR13 15. R01S' 
8:i51 else 
dS61 wrlta' O. IIRO 1. IIRl 2. IIR2' 
8571 wr1te' 3. WR3 4. IIR4 5 •. WRS' 
assl wr1te' 6. WR6 7. IIR7 8. WRS' 
tjS91 write' 9. WfR9 10. WRlO U. IiRU' 
66(): wrlte .. 12. IIR12 13. WRll ' U. MR1.'· 
861: write t 15. WRIS' 
862. en<l 
863: write 
86U wrlte 
86:;. "rite cI)nca t(lDIl,'L',83h),, PLEASE TiPE YOUR CHOICE an<l (or)' 
t:3661 write concat(lOh,'L',80h),.' • 
a67: re'=lnu. - qetnull . 
t:J681 write ''1'" 
e691 write" 
870. en<! 
871. 
872. <leflne PROC qetmenl • DO 
ij731 if cheCk then 
874. qetpl 
8751 check. talae 
876. en<l 
677. re_t 
878. qetp2 
879 I chrin - 01 
BSOI if (abT!n -- 'E') or (cbr1n 'e') then write us1nq ('U') ohr1n,return enel 
8811 if (Cbr1n -- 'R') or (Chr1n •• ',r') or .<ehr1n ,-~ 'W') or (chr1n ••. 'we) ttlen' 
BB2. Write \lSlnq ('0') ellrln' 
dS31 curbo .. ,c!eareo9 
884. qetp3 
885. return 
886. else 
1J811 if (ahrin -- 'N') or (onrin •• 'D') then 
868. write \lslnl/ ('0' j chrln 
01811. qetpl 
6110. a1.e 
e'll if (ehrin -- lbtl) t-hen return enel 
892. !leU 
8'3' end. 
894. eD<I 
8'5. eDd. 
896. ...d. 
8117. 
898. d.ef1ne PIlOC w_coal • DO 
8991 curho .. ,cleareos 
'001 if '0 -- 'e' then 
9011 lstl job.lnc ' 
t()21 write 'reltOV8 clone,qetbmr:.qetnu.,qetaen1,,,_ooal.qetpl.qetp2"Qfttp'3' 

280722-31 

3-158 



AP-262 

903: 
904: 
905: 
906: 
907: 
908: 
909: 
no: 
~11. 

1Il2. 
~13. 

~U. ,15. 
1Il61 
U1. 
U8. 
~19. 
~(). 

~al. 

~l2. 
~2l. 

'241 
93!;. 

write ~renove chrln.check,wreg,regnum,paddr,paddrl­
wrlte "t82S)O" 
nolist 
el.e 
lsc:job.tnc 
write uBing (-"lncc:",O," no118t""') :0 
write ulIRa ("'0") :0 
write usine ("·rc~ov~ ~.O .. ) ~O 

write 'lnQClpinfUh41QC no!lat' 
noU,st-
enel 
enel 

define PRO~ done • DO 
curb08 •• oleareo. 
~t_nl 

If (ohrln •• 'E') or (cbr1n -- Ie') eben 
v_cO.l ( 'e' ) 
return 
enel 
repeat 
if (ohrin -- 'R') or (c:hrln -- 'r') then 
elo 

~36' 
931. 
9016. 
~29. 

9l()' 
9311 
932. 
9331 
9l4. 
9l5. 
~36. 

937. 
936. 
939. 
9401 
941. 
942: 
943. ,." 
945. 
'4cis 
9471 
946. 
9.9: 
95(H 

9:i1: 
~~2' 
953. 

1f Teg'nua -- () then 
",_ooal ('rrO') , return 
enel 
if reqnua -- It thon 
v_ooalC'rrl'),return 
enel 
if reqnum -- 2t then 
w_oo.1C'rr2'" return 
enel 
if reqnum -- Jt then 
",_comIC'Trl'), return 
enel 
if reqnum -- dt tben 
w_comlC'rrs'), return 
enel 
if reqnum -- lOt then 
",_collll('rrIO'), return 
enel 
it reqnum -- l2t then 
w_co.l('rr12'), return 
enel 
if reqnum -- IJt tnen 
v_ooelC'rr13'), return 
enel 
if reqnua •• 15t then 
.W 00.1 ( 'rrlS')J return 
end 
enel 

9!:i4. end 
955: if Cchr1n -"'!' 'a') or (chr1n •• 'r') then 
956' write UBinlJ ('·UNABLE TO ~EAD REGIS'I'ER -#0,)') reqnum 
951. Iletpl 
958: ond 
959. it Cchr1n •• 'W') or (ohrin •• 'w") then 
9601 do 
901: it reqnum •• () then 
~62. w_Cl('I.l ( 'wrO' )' return 
96l. enel 
~4' if r8llnu" -- It tnen 
965. w_com1C 'wr1 t ), return 
906. end. 
967. if reqnu. •• 2t then 
9681 ,,_oOal( 'wr2'). return 
969. end. 
,70J it reqnua -- 3t then 
,7,11 ,,_coal ( '"r3'), return 
912. enel 
9731 it reqnum -- 4t then 
97.: w_oomlC 'wr4'), return 
1115. enel 
976: it r.~nu •• - 5t then 
977. v_coalC '"rS'), return 
'78. ena. 
.79. if raqnu. -- 6t then 
9SO I ,,_coal C • wr6 ' ), return 
lI811 enel 
982: if reqnu_ -- 7t then 
9831 w_coalC'wr7'), return 
lI84' enel 

3-159 

280722-32 



9fj~. 

986. 
9H7, 
9dB; 
9!:!9, 
990, 
:;f911 
9921 
993. 
99., 
~951 

996 : 
997. 
99tH 
)199: 

lOOO: 
WOlt 
l002. 
101131 
lO04 : 
1d051 
IIH)" • 
lOO?1 
lOOS; 

10tl9. 
LOlIlI 
lOll. 
IOl2 , 
L013, 
lOl4 , 
LOIS: 
tUl6 : 
lOll: 
L018. 
lOU. 
1020, 
to:! 1 : 
1022: 
1023: 
1024, 
1025: 
1026: 
1027: 
1028: 
1029: 
10301 
l()3l' 
1032' 
1033: 
1034' 
L03S: 
1036. 
1037. 
1038, 
1lJ39. 

lO'O' 
IOU: 

10'2' 
10.31 
L044. 
10,5. 
lO'.: 
10,7: 
lO'S, 
10'9. 
10:;)0: 
1051. 
lO:;2. 
LOS3. 
10::)4' 
1O~S' 
1056. 
ll):;7' 
1053. 
1059: 
1060' 
lU61 : 
1062' 
L063. 
LOU. 
l()o~ I 
1006: 

11 r~n\l.. -- Ht then 
",,_cnrnlC'wrd')J return 
ena 
if retJnum _. 9t then 
w_comlC'wr9'), rAturn 
end 
it rey'nula -- lOt then 

. ""_COlli ( 'wrlO'), return 
on<1 
it reqnum -- llt then 
"_comlC'wrl"l',, return 
end 
if re~nu. -- 12t then 
w_comlC'wr12'), return 
end 
if reqnum -- llt then 
w_comlC'wr13'), return 
ena 
if reqnum _. l4t then 
w_oOlllC '"rl"'), return 
end 
if reqnu_ -- 1St then 
w_co.l(·vrl~·)' return 
end 
end 
end 

AP-262 

if (cnrin _. 'Wi) or (chrln -- 'w') then 
write uSlnq C'·UNABLE TO WRI'J."E TO REG ISlER ·,0,>') reqnum 
getp3 
end 
end 
end 

done 
Incc:job.lnc nolist 

curbomelcleareos 

*PINrUN .INt,;* 
*****11****** 

write ooncat(lbh,·L·,tl3h),·LOADING •••• • 
write' concat(lbh, 'l'.BOh),·' 
C1etlne PRO"": rro - DO 
d" fine CHAR yyy 
defino BITE temp 
temp· port(wreq) 
ourhome Iclearens 
write conc.lt(lbh,'L'.81h).' 
write concat(lbh.·L'.Slh).' 
write concat(lbh, 'L'.80h).' , 

READ REGISTER 0' 

write usinq (·2c.·.>·,~,y,Sx.l.i,Sx.l.y,Sx.l.y.Sx.l.Y.5x.l.y.5x.l.y.5x,1.y') , 
(temp and HOh) I~OIl. &. 
(temp and. -IOn) 140h, , 
(temp and 20h) 120h, ~ 

(temp and. IOh) I10b. , 
(temp and OSh) IOSh, ., 
(temp and. ~)4h) 10"h. , 
(temp <ina 02h) 102h, 0; 

(temp and (111) 10111 
write concat( IOh. 'L', SOh). ' 
write ooncat(lDh.'L'.HOh)."D? ,!)6 , D5 ,- D4 , D3 t D2 , D1 , DO " 
write concat (lbb, • L'. SOh). ,------------------_______________ ~ ____________ • 

write' In UREAk/ABOR'r' 
write ' D6 'Ex Ut'DERRUN/EOI1' 
write' 05 CIS' 
write • n4 
write • 
write • 
write • 

SYNC/nUNT' 
CD' 

D2 Tx BUFFER EKPTY' 
01 ZERO COONT' 

write • D() Rx (;aARACTER AVAILABLE' 
write 
write concat(lBn.'L'.83h),· 
write conc4t(lbh.'L' .. SOh), 
:JYY-C1 
end 

PLEASE nIT ANY KEY TO RETURN 

280722-33 

3-160 



inter 
Illn. 
lillie. 
l(llill' 
11l71l. 
lun. 
I1l72' 
IU731 
I1l74. 
lU7S. 
ICl7Ii. 
1077. 
lon. 
l07l1. 
loell' 
l08U 
lOB2' 
11l83. 
11l8 •• 
IIlBS' 
1Utl6. 
IOB7. 
IOBB. 
lUtlll. 
10llO. 
19'1' 
11lll2. 
1Ulll. 
11l9 •• 
Ill'S. 
11l96' 
11,,7. 
11lll8. 
11lU. 
llllll. 
lIlll. 
llU2. 
11llll 
111l4. 
11IlS, 
111161 
1107. 
111lB. 
11Il'. 
111111 
1111. 
1112. 
1113. 
1114. 
IllS. 
1116. 
1117. 
1118. 
l11l1. 
1121l. 
1121. 
1122. 
1123. 
11241 
l1:lS. 
1126. 
1127. 
112B. 
11291 
1131l. 
1131. 
11321 
1133. 
Ill •• 
1135. 
1136. 
1137. 
1138. 
113" 
114111 
liul 
1142. 
11.31 
1144. 
1145, 
1146: 
1147. 
1148 : 

AP-262 

-H.'· -**-. 
curboaft,oleareos 
write oona.t(lDh.·l· •• lh) •• tOADIHG ••••• 
write conoat(lbh. 'L'.S()h)." 
QefiDe paoc rr1 - DO 
defiD. ~nAR 7YY 
defiDe ByrE ~e~ 
te~ - portCwregl 
curho.,. 
cl •• r.os 
vri.te cODca~(lbb, 'L' ,81blo' READ REGISTER l' 
writ_ conoat(l .... 'L',alb).· •••••••••••••••• 
write CODciJ.t.(lbb. 'L',8Uh),' • 
w~it. u.iftg C ·2C1.·-~·~2 .)'.5x. l.y.SlI, 1.y.5X.l.y, 5x,1.y. Sx.l .. y. 5x.l.y. 5x,l.y·) , 
I~e ....... 81lbl 18011, • 
I~e.p a"" 40") ,.011. , 
ct.1IIj> .D" 211111 12011. , 
I~e.p a ..... 10") 111lb. , 
C t •• p ...... IlB" I IIII1b. , 
c~e. a ..... Il.bl III.b. , 
C t •• p ...... Cl2b I lllab. , 
C~,; .. aDd Ulbl IlIlb 
"rite cnnc.t(U~h.·L· •• C')h).· 
..ric. OOftc&CClbb,~L;,lIlIb)," 1)7 '!l6 • 1)5 ,D. ,D3 , .. 1)2 • Dl • DO ': 
write concat(lbb. 'L',8C)b),"------------------------------------
writ_' D7 - END ot= PRA"E' 
wrue ' Dli ~1I';;/F2AIIJIIC EllaoR' 
write ' D!5 lIz O'1ERRUII ERROR' 
..rite ' D. PARITr ERROR' 
writ. ' l>3 - RCSIDUE CODE 0' 
..rUe ' D2 RESIDUE CODE l' 
..rit. ' Dl. RESIDUE CODE 2' 
vri~e D:I ALL SEII'l" 
v .. it. 
write OODo4t(lBn.'L'.8Jb).' PLEASE nIT ANY KEY TO qETURN' 
.... it. CODCat I 1I>b, '1'. 8Ilb I, 
tellP - 01 
eD.!. 

aurboa.,cleareos 
writ. CODoat(l~.'L·.83b).·LoADI.O •••• , 
write concat(lblh'L',8:)h)," 
d.fi •• 'ROC .. r2 - DO 
det"'e CIIAR Y:lY 
detiDe ByrE cellp 
t.mp - po .. tl ..... ;) 
aurbo •• 
cl.areo • 
.. rice ODDCacl1bb,'L',81b),' READREOISTER 2' 
writ. aoaoat(lbb,'l;',81h>.' •••••••••••••••• 
write ClDDaat(l .. b. 'L',SOb),' , 
writ. u.iD~ C'2a.·.)-.2.y,5x.1.y,SX.l.y.Sx.l.y.Sx.l.y,5X,1.y,5x,l,y,Sx,l,y') , 
(~ .... a ..... 80b) leilb, • ' . 
(~ •• aDd 40b) '.Ob, i 
(t •• a ..... 2CIb) lallb, , 

. (talli> aDd lOb) Illlb, , 
ct.~ a ..... lle"l III8b, , 
C~ellp aDd 0.11) III.b, , 
Ita. aad !lab) lliab. , 
(~e. ADd Illb) .. IIllb 

.... it. OODC.tl1bb"L',8IIb)";-~~~~~ ..... ~~~~~;,;~~;,r-.-nr--.~n--. 

..rit. aoacatClbb,'L',8Clb),', D7 'D6 t .D5 ,Dol 'D3 ,D2 'Dl ,DO ,: 
write coiI .. a~ (1 lib , 'L' .8Ilb).' -------------------------------
.. rit.' D7 IftE ... P\' 91C'I'01I 97' 
v .. i te D6 IIITERRUIl' VECTOR vii' 
vri t. D5 IIITERRUPT VEC'IOR V5' 
.. rite ' D4 . - llITERROPI VECrOR v,, 
vrite ' D3 IIITERRUPT VECTOR V3' 
.. ri~. ' D2 _ III'1ERRUPl' VECTOR V2' 
writ. ' Dl IIITERROpT VECTOR V1' 
.. rUe ' DO INTERRUP\' VEC'I'OR VO' 
• .. it. 

280722-34 

3-161 



116" 
11S0. 
11511 
1152' 
1153' 
11S .. 
1155. 
1156. 
1157. 
1Ub. 
115" 
116U' 
1loill 
1162. 
1163. 
1164. 
1165' 
1160;, 
110;7. 
1168. 
11691 
lUll: 
1171' 
1172' 
1173. 
117" 
1175. 
1176. 
1177. 
1178. 
un. 
U8U. 
11U' 
1182. 
1193' 
118 .. 
1US. 
11861 

, 1187. 
1198. 
11891 
1un. 

11'11 
1192: 
1193' 
11'" 
119~' 
1196: 
1197 • 
1198. 
1199. 
1211U1 
12111. 
12n2. 
12U]. 
1204. 
12115. 
lZ1l6. 
12m. 
1208. 
121l" 
12W. 
1211. 
1212. 
12131 
12141 
1215. 
13lb' 
12171 
1218. 
l.ll9. 
12211. 
1221. 
1222. 
12231 
122'" 
122S. 
12261 
1227. 
1228. 
12291 
12311. 

AP·262 

write ·.orE. Interrupt' Vect~r is mo4ified in 8 Cbann.l· 
write' • 
writ. aonoat(lBn,'L',8Ja),' PLEASE nIT ~r lEI TO RETUR.· 
write concat(lbh .. 'I' .8.'bJ. 
t •• p-cl 
end 

ourho .. ,c!eareo. 
write conc.t(lbb~·L'.8lh).'LOADIKQ •••• • 
write conaat(lbh,'L',8()h).·' 
define PRO~ rr3 • DO 
deUne Cfi,\R Y'IY 
deUne 8ITE tell!> 
teap· port (wreg), 
our-honie ' 
olaareos 
writ. cnncat(lDb,'L',81b),' READ REGISTER 3' 
write ooncat(lbh,'L',81h),' *******~*******. 
write cDncat(lbh,'L'"SUh).' • . 
write using' (. 2<: ••• )-.2.". 5x.l.y.5x,l,y"sx.l.Y" SX"l,y"S'X"l r.,Y,5x,,1.Y.'X,,1,,'Y') 5 
(temp and 81l1l) lallll, , 
<temp and 4(11) 16(111, , 
(temp and 20b) 12011, , 
(temp and lOll) 11011, , 
(teml' and (811) In811. " 
(te.,p and 11.11) 111411. , 
(te .. p and. (211) 111211. , 
(temp and (1111) I n1b 
write coftCat(lDh, 'LI,RUh). •. ____ _ 
Write concat(lbll.·L·,8(III),·' D1', 'DO; ,DS D4' D3 • D2 'Dl • DO " 
wri te anna. t (lbb , • L' , 8C:)h·), • --------------------------------------. 
writ.e· D7 (J' 

write' D6· O' 
write • D5 CnA,fIlEL A Rx IP' 
wr it.. • D,4 ., CHA •• EL A Ix IP',' ' 
write • 1)3 CnAll.EL A EX'l:/STAT IP' 
writ. • D2 CHAIl.EL B RX IP' 
write '. D1 CnAJlNEL n '1'x IP' 
write • DO CHANNEL B EXTlSrA'C IP' 
write' • 
write 'llorE: Alway. 1n B Cllannel' 
write' • 
write concatUeH.·L·. 83H), • PLEASE 'IiII A.Y lEY TO HErDR.· 
write aonoat(lbtl,'l',80h), , , 
te.,p-c1 
end 

curhoae,oleareos 
write anncat( Ibh, 'L', alh)" 'LOADIH'G •••• • 
write CORoat(lbh, 'L',RUh)," ,. 

,deUne PROC rri! • DO 
deUna (;nAR 'IIY 
.teUne BY', Ii tAmp 
temp. port(wreg) 
curbome 
ole.reos 
writ.e concat(lbh,'L',Rlh),, READ REGISTER 8' 
write concat(lbb, 'L',8Ih),' ••••••••• *: •••••.• , 
writ.e concat(lbJl,' L' ,RUh),' • 
'Write u8in", ('20,-->- ,2,y, 5x,l,y,Sx,l.,y, 5x,l.y, 5x,l,y, 5x,l,y:' 5x,1,y, 5x,l.y') , 
'(te .. p and BIIII) IBOn. ,_ " , 
(temp and '(111) 141111. , 
(t.~ and 211b) 12(lh. , 
(tsap and Il1h) 111111. , 
(t.ap and IIBII) 11I8b. 10 
(t •• p .nd (1411) 111411. , 
(teap and (1211) In2b. , 
(Uap and (1111) 111111 
wr it. cOlICat (1l1li •• L '. 8nh) •• ':"'"=:-=-;::';'_=-:::;'-:~~-:~::::--:::-::;:--:::-:::--:-:::--= 
"rit ....... oat(1b11.·L·.8CIII).·' D1 ,D' ,DS 'D4 'D3 'D2 'D1 'DII " 
IIrite OODcatC lbh. 'L', BOh),' ----------------------..:..---~-. 
;'r~t. •• ~ " 

3·162 

280722-35 



inter 
1:131. 
1a32. 
1233. 
1a34. 
1a35. 
123~' 
12371 
1238. 
1a39. 
124Cl. 
1a41. 
1242. 
1243. 
1244' 
1a45. 
12.6: 
1a47. 
1248. 
la49. 
125Cl. 
1251. 
1252. 
1253. 
1254. 
1255: 
1256: 
1a51. 
1258. 
1259. 
126Cl. 
1261. 
1262. 
1263. 
1264: 
1265: 
12'6: 
1267: 
1266. 
12b91 
1270. 

1271. 
1272. 
1273. 
1274. 
1275: 
1276. 
12"/7 : 
1278. 
1279: 
1280. 
1281. 
1282. 
1283. 
1284. 
1285. 
1286. 
1287. 
1288. 
1289. 
1290. 
12U. 
1292, 
1293. 
1294' 
1295 " 
1296. 
1297. 
1298, 
12991 
130(1I 
1301, 
UCl2' 
1303. 
13Cl" 
1305. 
130 ... 
1301, 
UCl8. 
13Cl9. 
1310' 
1311' 
1312. 
U13: 

wrlte 
writ_ 
write 
writ_ 
write 
write 
write 
writ. 
write 
writ. 

AP-262 

write concat(lBa,'L',R30),' 
writ_ CObC4t(lbb, '1',SOb), 
te_p-c1 

PLEASE nIT ANl KEY TO RETURN' 

end 

curhome,cleareos 

*RRI0* 

** ** ** 

writ_ conaat(lbh,·l'.Olh).·LOADING •••• ' 
write concat(lbb,'L',ROh)," 
deUne PROC rrW- DO 
deUDe CnAR yyy 
define BY IE temp 
t •• p - portCwreq) 
CUrhOlft9 

.01eareoa 
write concat(lbh,'L',81h),' 
write cOhCat(lDh,'L',91h),' 
write concat(lbh.'L',80h).' t 

READ REGISTER 10' .. _ ..... _._ ..... -
write using ('20, -·>-,2 ,y. Sx, l"y,!:)x.l .. y. 5X,l .. y, 5X,l.y, 5", 1.,)", Sx,.1,y,5x, l.y') , 
(temp and 80b) 180b. , 
(temp and 40h) 140h, , 
(temp and 20h) 120h, , 
(temp and 10h) 110h. , 
(t,,"I> IIDd OSh) 1()8h. , 
(temp and 04h) ICl4b. , 
(temp anel 02b) I02h. , 

(temp anel 01h) 101h 
wr.ite aoncat(lllll. 'L ',SOh),' 
write concat(lbh, 'L',80b),', D7 ,06 ,D5 ,D4 'D3 ,D2 'D1 'DO, " 
write concat (lbb. I L·. B()h) •• ----------------------------------------------. 
writ..' D7 ONE CLOC! III;;SING' 
write ' D6 TWO CLOCKS IIISSING' 
write' D5 Of 
write I D" LOOP SENDING' 
write • 
wr1te • 
write ' 
write • 
write 

D3 0' 
D2 0' 

D1 ON' LOOP' 
DO 0' 

write concat(lbo,'L',B3h),, 
write cnncat(lOh,,'L',80h), 
tellp-ot 

PLEASE aIr ANY KEY ro ~ETURN' 

end 

ourhoae,oleareos 
write concatclbb.·L •• 83h) •• LOADING ••••• 
write concat( lbh, 'L' .BOb),·· 
define PDOC rr12- DO 
deUae CnAR yyy 
deUne BHE teap 
temp - port(wreq) 
curholl8 
clear.oa 
write concat(lbh,'L',81h),' READ REGISTER 12' 
write cnncatClbh,'L',81h),' ••••••••••••••••• 
write concat(lbb,'L',80h),' • 
write uainq ('2c,-.)-,2,y,5X,l,y,sx,1.y,5X,l.y,5x,1,y,5x,l,y,5X,l,flSx,l,y') , 
(t"ap and 80h) 18oh. , 
(temp and 40h) 14Uh, , 
(temp and 2Un) 120h. , 
(te"p anel IOn) /lClh. , 
(tamp and Cl8n) IClSh. , 
(te.p and 04h) ICl4n. , 
(t .... P and 02n) ICl2h. , 

280722-36 

3-163 



U14. 
131S, 
U16. 
1317. 
1318. 
U1" 
13:10. 
1321. 
1322. 
1323. 
1324. 
1325. 
1326. 
1327. 
13:181 

U:l9. 
UlO' 
13311 
1332. 
1333' 
U34. 
1335' 
13]6. 
1337. 
1338. 
13311. 
134111 
13411 
1342. 
U43. 
13U' 
13&5. 
13461 
1347. 
1348. 
134" 
13S0. 
13S1. 
1352. 
1353. 
135" .. 
U55. 
US6I 
US7. 
1358. 
1359. 
1360' 
13611 
1362. 
1363. 
U64. 
1365. 
U66. 
Uti7. 
1]68. 
130. 
13701 
1371. 
1372. 
1373. 
U74. 
1375. 
13761 
1317. 
1318. 
1]79. 
13BO. 
1381. 
1382. 
138]. 
U84. 
1385: 
1386. 
1387: 
1]B8. 
1389: 
1390: 

13!>1' 
1392. 
1393. 
1394. 
139S. 

AP-262 

(talOP and Ull1) 10111 
write corlCat(lDb. 'L' .8nh), ._ 
wnt. COftcat(lD11,'L',BOh),', D7 'D6 ,DS 'D' ,D3 ,D:I ,Dl 'DO " 
write concat( Ibb •• L·. 8()h) •• -------------------------------------------, 
write' D1 TC1' 
write' DEi Ie,' 
write' DS TCS' 
write • D.t ore,,' 
write' D3 TC3' 
write I D2 TC2' 
write ' Dl TC1' 
write ' DO TCO' 
write 
writa 'BOTE' Lower Byte of TIME COKSTAST' 
writa •• 
writ_ oonoatC18a,'L',83a),' 
write ooncat(lbh,' l' .SOh), 
te.p-ci 

PLEASE BIT ASY lEY TO RETURN' 

en<l 

curho ... cl .. reo8 
write cono.t(lbh.·L·.83b).·LOADIMG •••• • 
writ. concat(lDlh 'L',SOh)," 
<lefine PR~ rr13- DO 
<laUne CHAR 11Y 
<lefin. BYTE t •• p 
te.p - port(wreq) 
ourho_ 
ele_reos 
writ_ OODcat(lbh,'L',Blh),' READ REGISTER 13' 
write concat(lbb,'L',81h),' ****************' 
write concat(lbh.'l'.8ml,.' • 
write usinq (120.-->·.2.y.5x.l.y.5x.l.y,5x.l.y.5x.l.y.5x.l.y.5x.l.y.5x.l.y') 
(telOP an<!. 8(111) 18011, , 
(temp an<!. 40h) 14(111, a 
(temp an<l 20b) 120b, I 
(tellp an<l lOll) 11(111, , 
(talOP anel· (JSII) IOBh~ , 
(talOP anel 0'") 10'", , 
(tellp an<l (211) 10211, , 
(temp an<l (111). 10111 
write cone at (lbb. IL' ,8()h),' 
write c(')ncat(1bll,'L',IIUh),', D7 'Dli ,DS ,D' ,D] ,D2 , Dl ,DO " 
wri te conca t ( 1 Db. I L' • 8()h ), . ---------------------------------------. 
write I IY7 TC15' 
wri,te ' D6 TCl4 • 
wrlte • »5 TC13' 
write' D4 TC12' 
write • D3 Tell' 
write ' D2 TC10' 
write ' D1 Te,' 
write ' DO TC8' 
write 
write 'NOTE. upper Byte Of TIME CONSTANT' 
write 
write concat(lB~, 'L', 83H), " , PLEASE HIT ASY KEY TO RETURN' 
write concat( U)h. '1' , BUh), 
t_c1 
en<l 

curhome,cleareos 

·RRlS* 
****** 

write cnncat(lDh.·L·,83b),·LOADINr. •••• • 
write concat(lbh. 'L',SOh).·· 
<lefine PROC rrlS- DO 
elefina CoAR tYY 
<lefine BYTE temp 
temp - port(wreq) 
cu.rho_e 
cleareos 
write concat(lbh.'L',Blh),' 
write concat(lDh,·L'.81h),' 
write concat(lbb. 'L',BOh).' • 

3-164 

READ REGISTER lS' . ........• _._ ... ' 
280722-37 



intJ 

1396. 
1397. 
1390. 
1399. 
uoo. 
U01. 
U02. 
U03. 
lt04. 
uos. 
UOtS. 
14Cl7. 
140B. 
140 .. 
1410. 
1411. 
1412. 
1413. 
1414' 
1415. 
1416' 
1417. 
141B. 
au. 
1420. 
1421. 
1422. 
1423. 
1424. 
1425. 
14261 
1427. 
142B. 
1429. 
1430. 
1431. 
1432. 
1633. 
14341 
1435. 
1436. 
1437. 
1438. 
1439. 
lUCl. 
14611 
1442. 
1643. 
1"41 
1445. 
lU6. 
1447. 
144B. 

1'49' 
U5(lI 
1451. 
1452. 
1453. 
1454. 
1455. 
1456. 
1457. 
145B. 
1459. 
U6n. 
1461. 
1462. 
1463. 
14". 
1465. 
146" 
1467. 
146B. 
1469. 
1470. 
1471. 
1472. 
14731 
14741 
1475. 
1476. 

AP-262 

write u • .inoJ ('2e, -.)-,2 ,y,5X, 1.y,5X, 1"y,5x,l,y, Sx,l.y. 5x,l.y.5x.l.y, 5x,l.y') , 
(t .... p Anel BOh) I!lOh, , 
(temp anel 40h) 140h, , 
(temp anel 20h) nOh, , 
(t.emp and lOb) tlUh. , 
(temp anel OBh) IO!lh, , 
(t8llp anel 04") I04b, , 
(te8P anel 02h) I02h, , 
(tall!> anel 01h) 101 h 
writ_ oonoat(lbh,'l',aOh),' 
write conoat(lDh,'L',BOhh" D7 'Dfi ,D5 '1l4 'Ill ,D2 'Dl 'DO " 
write cone.te Ibh.· L', 8()h).· ------ .. -----------------------------------, 
writ_' D7 B~EA "ABORT IE' 
write ' D6 Tx UNDERRUN/EOII IE' 
write ' D5 crs IE' 
writ_ ' D4 SYNC/AUNT IE' 
write • ~3 CD IE' 
writ. . D2 0' 
Write' Dl ZERO COUNT IE' 
,IOr.t.te ' DO 0' 
.. rite 
write oonoatCIBJi,'l',83H),', , PLEASE HIT ANY ~EY TO RETUR/I' 
writ.e conoat(lbh. 'I' ,BOh). 
temp-ot 
en<l 

curbo .. ,cleareos 
write concat(lbh. 'L' .83h), I LOADING .••• ' 
write concat( lbh,'L I, BOh), • , 
<letlne PltO~ tIro - DO 
<lefine CH.\R yyy 
define BYTE temp 
curhome.oleereos 
writ. concat(lbb,'L',Alh),' 
write concat(lbh,'L',Blh),' 
write concat(lbh.'L',9()b),· 

IIRI'rE REGISTER 0' 
****************' 

write conoat(lbh,'.L',B()h).', 1>7 '1>6 'D5 ,D4 • DJ ,D2 ,Dl ,DI) " 
write concat (1 bh, 'L' ,8()h), ,-----~----------------------------------, 
writ_ ' 1>7 D" 
write' () 0 NULL CODE' 
writ_ ' () 1 RESET Rx eRC CHECIER' 
write' 1 0 
write ' 1 1 

RESET Tx CRC GENERATOR' 
RESET Ix UNDERRUN/EOII lATCH' 

write ' D5 D4 D3 D2 Dl DI)' 
write 'I) () () trULl CODE n 0 () 0 or 
write ' () 0 1 POINT "IGA REGIS'rER GROUP o I) 1 1 nr 
write '0 1 0 PRESE! EX'f/STAI US INTERRUPTS o 1 0 2 or 
write '0 1 1 SEND ABORT () 1 1 J or 
write' 0 0 ENABLe INT 011 IIEXT Rx CnAR. 1 0 0 4 or 
write' 0 1 RESET TxIN r PEl/DIIiG 1 0 1 5 or 
write' 1 0 ERROR RESET 1 0 6 or 
write '1 1 1 REsET HIGHEST IUS 111' 70r 
wrlte conoat(lbh,'l',83h),' PLEASE TYPE IHE VALUE TO BE WRITTEN and 
wr.1t:.e coneat(lbb, 'L' ,6()h),' 
temp - qethex 
write 'a' 
port(wreq )-0 
port(wreg) - te.p 
vrJ.te ' • 
vrite concat(lBa,'L',83a),, 
write concat( lllb. 'I' ,ROh), 
yyy·ci 
enel 

curb08e,cleareos 

·WR1* 
***** 

PLEASE AIT ANY lEY TO RETURN' 

write concat(lbh.·l·,83h),·LOADINO •••• • 
write eoncat,(lbb.'L' ,8Uh)'" 
aetine PROC wrl - DO 
eleflne CAAR yyy 
eletina BYTE te.p 
curhome,cleareo8 

3-165 

8' 
9' 

10' 
U' 
12' 
13' 
14' 
IS' 
(or)' 

280722-3B 



intJ 

1411. 
1418. 
14U. 
14801 
U81. 
U82. 
1483. 
14e .. 
U8S. 
1486. 
1481. 
1488. 
1489, 
149(11 
1491' 
1492' 
1493. 
lOU 
1495, 
1496' 
14111. 
149B. 
14991 
IS0(a 
!SOl: 
1S02' 
1S03. 
1S04' 
UUS' 
1506: 
1501, 
lS0a, 
1S09. 
1510' 
1';11' 
1512. 
1513. 
1516. 
IS1S, 
1S16. 
1511. 
15181 
1519. 
1520' 
15211 
152Z. 
15Z3. 
15Z4I 
152S. 
15Z6. 
1521. 
15Z8. 
1529. 
15]0' 
15311 
153Z. 
1533. 
1S3." 
15]5' 
1S]6. 
15]1' 
1538. 
153" 
15401 
15411 
1542. 
1543. 
154 •• 
1545. 
1:>66. 
1541. 
1548. 
1549' 
1550. 
1551. 
1552. 
1553. 
15541 
1555. 
1556. 
1551. 
1558. 

AP-262 

write oonca~(lb~,·L·,81b).· WRITE RE~ISTER l' 
writ_ cnncat(lbh,'L',81h),' ••••••••••••••••• 
write concat(lbb,'L',8()h),,' ______ _ 
writ. concat(lbb.'V.IJ()b)," D1 'Il6 ,D5 ,D4 ,D3 ,D2 ,Dl t DO " 
writ_ conaat(lbb,'L',ffl)h),'----------------------------------------------------, 
write' D1 !lEADY/DKA REQUEST EIiABlE' 
write ' D6 READY/DM :IEQUCST FUKCTIOII' 
write' DS READY/DKA REQUEST 011 RECEIVE/TRAIISIIIT' 
write ' D4 Il3 0 0 - Rx tilT DISABLE' 
wrue ' 0 1 Rx lIlT, 011 I'IRST CnAR OR COIIDII' 
write ' 1 0 lilT 011 ALL Rx CHAR OR COIIDII' 
write' 1 1 Rx lIlT 011 SPECIAL COIIDII OIlLY' 
wrUe ' D2 PARITY IS SPECIAL COIIDn lOll' 
write • 01 Tx INT ENABLE' 
writ. ' ~) EXT. lilT ENABLE' 
wri.te concut(lbh,'L',,63h).' PLEASE TrPE 'rnE VALUE TO BE WRITTEN and <or)' 
write concat(lbh" 'L',SOh),' • 
temp • qetbex 
writa • H' 
port(wr"ll) - 1t 
port(wr8J) - temp 
write Qoncat (1 Btl , 'L '.8.1H),' PLEASE HIf ANY lEY TO RETuRlI' 
wrJ.te concat(lbb,'l',8Uh), • 
.yyy - 01 
end 

curhome,c!.areoa 
write ooncat(lbh,·L·.83h),·LOADING •••• • 
write. concat( lbh. 'L', IJOh) ••• 

aefine PRO~ wr2 - DO 
define CHIlli IYY 
define BITE temp 
curboae,cleareos 
write concat(lbh,'L',91h),' ~RITE REGISTER 2' 
write concat(lbh,'L',81h),' ****************' 
write conca t( Ibh. 'L', BOh), ' ____ _ 
write concat(lbh,'L',80h),', D7 1 D6 , D5 D4, DJ 1 1>2 ,Dl , DII " 
write concat(lbb.·L·,~)h),·-------------------------------------------------, 
write' D1 INTERRUPT VECTOR V1' 
wri te ' D6 III fERRUPI VECTOR V6' 
wrUe ' D5 IHTERRun VECTOR YS' 
write' D4 INTERRUpT VECTOR V,, 
write ' D3 IlIrERRuPT VECTOR V3' 
write ' D2 INTERRun VECTOR Y2' 
wri te ' D1 IIiTEllRUPT VECTOR V l' 
write' DO IIiTERRUPT. VECTOR II()' 
wrUe conoat(lDh, 'L'.83h),' PLEASE TYPE THE VALUE TO BE WRITTEN and (cr> , 
write c:onca.t(lbh.'L',80h),· • 
teliP • qethex 
write 'II' 
port(wreq) - 2t 
port (wreq) • temD 
write concat(18a,'L',8Ja),' PLEASE nIT ANY lEY TO RETDRN' 
write conaatc Ibh, '1' .. SOh.). 
Jly.,-ci 
end 

CQrbo.e,eleareos 
writa ooncat(lbb.·L·.B3h).·LOADIKG •••• • 
write conc:at(lbb.·L'.SOh),·' 
aefine PROC wrl - DO 
define CnIIR YYY 
define BYTE teilp 
curho ••• oleareos 
write concat(lbb.'L',81h),' WRITE REGISTER 3' 
write concat(lbh.'L·.81b).· ••••••••••••••••• 
write concat(lbb, 'L',80h), • _____ _ 
w .. 1te concat(lbb,'L',80h),', D1 'D6 ,D5 , D4 'D3 ,DZ t Dl ,~) " 
writ. ooncat(lbb.·L'.B)h),'--------------------------______________________ • 
write' D1 D6 - 0 () Ilx 5 BITs/CnIIRACTER' 
wri te ' 0 1 - Rx 1 BITS CHARACTER' 
write ' 1 () Rx 6 BITS CnIIRACTER' 

3-166 

280722-39 



inter 

1559. 
1561l. 
15n. 
1562. 
1563. 
15641 
1565. 
15U. 
156'1. 
1568. 
1569. 
15'1U. 
15'111 
1572. 
15'13' 
15'14' 
1575. 
157" 
157'1' 
15'16' 
157', 
1561l. 
15611 
1582. 
1563' 
15841 
1565. 
1586. 
156'1' 
1588. 
156" 
1511U' 
15'11 
15'2' 
15'3' 
15'4' 
1595. 
15'6' 
1597. 
15'8' 
15". 
161l1l' 
161l1l 
161l2' 
161l3' 
161l4. 
1005' 
160U 
101l'1' 
1606. 
161191 
1611l. 
1611. 
1b121 
1613' 
16141 
1615. 
10;16. 
1617. 
1618. 
16191 
1621l' 
16211 
1622' 
1623' 
1624' 
1625. 
16261 
162'1' 
1628. 
1629. 
1630. 
16311 
1632. 
lU3. 
1634. 
1635. 
lU6. 
163'1' 
1638. 
163g. 
lUO. 

writ_ • 1 
write' D5 
write • 

AP-262 

ax 8 BITS CHARACTER' 
AUTO EIIAIILES' 

IU ElITER HUIIT RODE' 
write • D3 Rx CRC EMAIILE' 
wr1ta • D2 ADDRESS SEARCH 1I0DE(SDLC)' 
write' Dl srwc CHAR, LOAD IIIHIRIT' 

DIl Rx EIIAIILE' write • 
writ.ooDCatC1 Ah.'L',83h),' 
write ooDcat(l!Jb.'L',tJ:)h).· • 
te.p - Q8ttlex 

PL!:IoSE TYpE THE YALuE TO BE "IITTEII .nd <or)' 

write 'a' 
port(wr8l1) - Jt 
port (wreq) - te.p 
write oonoat(lBa,'L',Bln),, 
write aotlc.t(lbb.'lI.SOb). 
yyy-oi 
eDd 

ourbo .. ,cleareoa 

-MR4-

***** 

write OOQo.t(lbh.·L·.83b).'LOADING •••• • 
write concat(lbb,'L'.ac)h),'· 
deUDe PROC wr4 - DO 
deUDe CHAR· YYY 
deU"e BYTE t •• p 
aurboae ,aleareos 
write CODCI&t(1bh, 'L',6111),' "RITE REGISTER 4' 
vrite oonoat(lbb,'L',81h),' ****************' 
write oonc.t(lbb.·L· •• )b).·~~ __ ~~~ __ ~~ __ ~~~~~~~~~~~~~~~ 
write CODCIlt(1bh.'L',60b),', 0'1 '06 ,D5 • D4 '03 • 02 'Dl I DO " 
write coftcat(lbb,'l',8Ub),'------------------:...-..-----------, 
write' D7 D6 - Il Il - Xl CLOCIC 1I0DE' 
write ' () 1 - XU CLO(;E IIOOE' 
write ' 1 () - X32 CLOCE lIoDE' 
write • 1 1 - X4i .. CLOCK "ODE' 
writ. ' DS IU Il () 8 BIT SYIIC CHARACTER' 
write ' 0 1 16 BIT SlllC C .. AIlACTER' 
write' 10 SDLC lIooE(IlI111110 FLAG)' 
write ' 1 1 EXTERKAL SYNC 1I00E ' 
write' D3 02 0 Il SYIIC 1I0DES EIIABLE' 
write' Il 1 1 STOP BIT/(;""RACTER' 
write' 1 Il 1.5 STOp BITS/CaAR.' 
write' 1 1 2 STOP BITS/CHAR.' 
write ' Dl PARITY EYEK/OOD' 
writ.. ' 00 PARITY EIIABLE' 
write 'wo're I Interrupt Vect.or Is aoc1it1ed in B Channel' 
write o""oat(lbb.'L',9311),' PL!:IoSE TYPE TIlE YALOE TO BE "RITTEII ."d <or>' 
write concat(lbh,'L',BOh),' • 
te_p - qetbex 
write 'H' 
port(wreg) • 4t 
port(wreg) - t ... p 
write ooncat(lBn,'L',6Ja).' PLEASE .. ITAlIl ICE! TO RETORR' 
write cnnc«t(lbb. 'l',aOh) ••• 
YYY-Ci 
e"d 

curboms,oleareos 

·"15* 
***** 

writ. conoat( lJlh. 'L' ,8311), 'LOADIHG •••• • 
write concat( lbh,' L'. ~)h), •• 
aefine PROC wrS- DO 
deUD. CftAll riY 
deUDe BYIE t ... p 
ourhom. ,oleareo. 
write concKt(lbh,'L',81h),' 
write conc4t(lbh,'L',81h),' 

"RITE REGISTER 5' .••••...•....•.•. 
:~!~: ~~:~:i~~::: :t: :=~:~: :,DT'06--,"""'0=C5=--:--:D""4'"""""",'-:D"3'-"', DZ ,D1 'DC) ,. 
writ. conc.t(lbh,IL·.~)h).·-~~---------------------------~---------------___ , 
write' D1 nTa' 
writ_ . D6 
write I 

writ_ ' 

rwo CLOCIS ~ISSIHG' 
D5 D4 Il Il -

Il 1 

3-167 

Tx 5 BITS(OR LESS)/~ .. ARA~TER' 
Tx '1 BITS/CHARACTER' 

280722-40 



inter 
16'1. 
lei421 
16.3. 
16&4' 
1.4~' 
16461 
1647. 
lei'S 1 
1649. 
1.~O' 
lti'1. 
16~2. 
1.53. 
loS •• 
16,5' 
16,6' 
1657. 
16'H' 
16~' • 
lb6UI 
10611 
lb62a 
16631 
16661 
1665. 
1600. 
Ib~7: 
1668. 
16b9: 
167(J, 
1671: 
Ib72 : 
16"3. 
16'14 : 
167~. 

1676. 
16'17. 
1678. 
1679. 
16tlO. 
1681. 
1682: 
1683' 
16a4. 
1685. 
16861 
1687. 
16118. 

loa9. 
1690. 
1691 : 
1692. 
1693. 
1694. 
1695. 
16961 
1697. 
1698. 
16991 
noo. 
1701. 
1702. 
1703' 
n04. 
nos. 
1706. 
1707. 
1708. 
17()9I 
1710' 
1711. 
1712' 
1713. 
1714. 
1715. 
17161 
1717. 
l71B' 
1719, 
1720, 
1721. 
1722. 

write • 
write ' 
write' 
write' 
write' 
write' 
write concat(lbh,'L',Hlh),' 
write concat(lbh,'L',90h),' 
temp - tJ8thex 
writp' '/I' 
port(wrelJ) • !at 
~ort ("re~) - tem~ 
write concdt(1~rl.·L·,83H),· 
write cone ... t(lbh .. 'I' .ROh) ••• 
yyy-ci . 
end 

curhome. cleareos 

AP-262 

10· 
1 1 

n3 

f)( 6 DrTS/t:nARA('" rER' 
rx 8 HII'S/CIiARACTER' 

Tx F.!fABLE' 
D2 (NO'/')5DLC/CRC-U' 

D1 Il'l'S' 
DO Ix CNe ENABL~' 

PLEASE TrPE 'mE VALUE TO BF WHn'rEif and (cr) , 

PLEASE HIT ANY lEY TO REruRN' 

write conc.t(lbh,·L',H3b),·LOADING •••• • 
write concat(lbh,'L',IJOh)," 
ctefine PRO~ wr6 • DO 
deUne CriA'.! YYY 
detine BITE temp 
curhoae ,cleareos 
write cnncat(lbb,'L',81h),' WRITE nEGISTER 6' 
write concat (lbh •• L', 81 h), • _. *** .*_** •••••• ' wri te conca t (lbh, 'L', BOh), • _________________________ ' 

write conaat(lbh,'L',80h)," D7 I Do I DS I D, ,DJ , D2 , 01 'DO ,t 
write concat('lbh, tl' ,8()h),' --------------------------------------------, 
.. rHo' SYNC7 SttI(;6 SYN":S SYNC4 SrNC3 SYNC2 SYNC1 smco 1I01lOSYNC 8 BITS' 
wrUe' SY~';1 SYflCO ~YN';5 SY!IC4 SnlC3 SrNCZ SYNC1 SrNCO 1I0NOSYN(; 8 BI '1'5 , 
write' • 
wrlte' SYN';7 srll(;6 ~rN-:5 srllC4 :;rN(;3 SrNC2 srN(;1 SrNCO BISYIIC 16 BITS' 
wrHe' SYNC3 SYIIC2 SYNC1 SYNCO I 1 1 1 BISYNC U sns' 
write 
wrHe' hDR7 ADR6 ADI!5 ADR4 ADR3 ADR2 ADR1 ADRO SDLC' 
wr:ite' ADR1 ADRo ADRS ADR4 1 1 1 1 SDLC(ADI>RESS ()' 
write 
wrHe ooncat(lbh.'L'.~3h).' PLEASE TYPE THE VALUE TO BE WRITTEN an<S (or>' 
write conoat(lbh,'L',BOt'l),,' • 
te.p • qetbex 
write '0' 
port(wraq) • 6t 

port(vreq) • temp 
write cOriOat(lBa,'L',81o),' 
write concat(lbb,'l',80h). 
yyy-ci 
and 

OUTho_e,cle_reas 

·WR7· 

**.** 

PLEASE nIT ANY lEY TO RETURN' 

write conc.t(lbh,·L·,8Jb),·LOADIUG •••• • 
write ooncat( Ibb.·L' ,SOh) •• " 
aefine PROC wr7 - DO 
.. eUne CnAR· YYY 
<SeU". BY fE teap 
cur home ,cleareo. 
write concat(lbh,'L',81h),' WRITE REGISTER 7' 
write concat(lbh,'L',81h),' ••••••••••••••••• 
write ooncat(lbb,·L·.~)b).' ________ _ 
write concat(lbb,'L'.8()b)." D1 , D6 ,D5 , Dot , D3 1 D2 " Dl , DC) " 
writ. concat(IDh.'L',8)h),'-------------------------------------------------, 
wUte' SYItC7 SYNC6 SYNCS SYN':, SYNC3 SYNC2 SYNC1 SYNCO 1I0NOSYNC 8 BI'l'S' 
write' srNC5 SrlfC4 srlfC3 SYNC')' SYNC1 SYNCO 1 1 1I0NOSYNC 8 BITS' 
write 
wrlte' SrNC5 SiNC14 SYNC13 SYNC12 SYIICll SYIICIO SYNC9 SYNCS BISYNC 16 BITS' 
wrHe' srN':U StNC10 srN~9 SYN(;H srNC7 srNC6 SYItCS SYNC' BISrNC 12 BITS' 
write 
write' 0 
write 
write concat(lDh,'L'.UJh),· 
write ooncat(lbh,·L'.80b),,' , 
temp • qetnex 

1 () sDle' 

PL6IIsE YfPE THE VALUE TO :BE WRITrEN and (or>' 

280722-41 

3-168 



infef 

1723. 
172 •• 
172S. 
1726. 
17271 
1728. 
17291 
1730. 
1731. 
173:U 
1733. 
173 •• 
1735. 
1736. 
1737. 
1738. 
1739. 
1140. 
17H. 
1142. 
17.3. 
17U. 
17451 
17&6. 
17H. 
17.8. 
1149. 

1750' 
17511 
1752. 
1753. 
175U 
1755. 
1756. 
1757. 
1758. 
17591 
1760' 
11,111 
1762. 
1763' 
17641 
1765. 
1766. 
1767. 
1768. 
1719. 
177Cl' 
17711 
1772. 
1773. 
177 •• 
1775. 
1776. 
1777. 
1778' 

·1779. 
178Cl. 
17811 
1782' 
1783. 
1784' 
1785. 
1786. 
1787. 
1788. 
1789. 
179Cl. 
1791. 
1792. 
1793. 
17'4' 
17,5. 
17'6' 
1797. 
17P8. 
17'" 
18ClCl. 
UCll. 
18Cl2. 
UO]' 
1804. 

writ_ 'a' 
pon:(wreq) - 7t 
port(wreq) - t.ap 

AP-262 

write ooncat(lBa.'L',83a),· 
write conca.t(lbh.,'l',80b), 
yyy-oi 

PLEASE aIT ANI lEI TO RETURK' 

8M 

curhoae.cleareos 

·WRS­--*_.-
writ_ conc.t(lbh,·L·,83h),·lOADIMG •••• • 
write concat( Ibb.· L', BOh), •• 
define PROC wrB - DO 
<leUn. CnAB :iYY 
eleUne BYTE teoop 
curhon.,el_areoa 
write ooncat(lbh., 'L' .8lh).· WRITE REGISTER 8' 
writ_ concat(lbh,'L',81h.),' ** •••••••••••••• ' 
write concat(lbh,'L',8Uh),' _______________________ • 

write concat(1bb.'L',80h). " D7 'D6 ,D5 , D4 , D3 , D2 ,D1 ,DO " 
write concat(lbn.·L'.~)h). '-------------------------------------------------, 
write' • 
writ_ 
write I I 

write 
write •• 
writ_ 
write 
wr1te 
wr1te concat(lbh.·L·,8Jh),· PLEASE TfPE TnE VALUE TO BE WRITTEN ana (cr)' 
write conc.t(lbh.·L·.80h),· , 
te.p - qe th ex 
wT1t.e • H' 
pnrt(wre .. ) - 2t 
port(wreq) - temp 
writ_ eoncat(l8a. ·L',83a).' PLEASE aIT ANY lEY '1'0 "ETURU' 
write coneat( lbb. '1' .BOh). 
yyy.at 
end 

*H'R9* 

ourbo •• ,cleareos 
writ_ ooncat(lbh.·L·.83h).·LOADIN'G •••• • 
write coneat(lbh. ·L·.8()h),'· 
4e!lne PROC wr9- DO 
deUne CnAR yyy 
define ByrE teap 
curho.e ,cleareos 
write oonoat(lbb.'L'.81h).· 
write ooncat(lbn.'L',81h),' 
write concat(lbh, ·L· .. S()h).· 

HBITE· ReGISTeR 9' . ......•......... 
write oonaat(lbh,'V.B<lh),', D7 ,D6 ,D5 D4, D3 ,D2 ,Dl 'DO " 
wri t. eoncat (1 bh •• L' • 8()h) •• ---------------------------------------------, 
write' D7 D6 0 0 - KO RESET' 
writ.. ' 0 1 CHAIIMEL RESET B' 
write' 1 () - t:n.A!-INEL RESET A' 
write ' 1 1 FORCE HARDWARE RESET' 
write' D5 o· 
write ' D4 
write ' 
write ' 
wtite ' 
write • 

STATUS HIGH/(HOT)STATus LOW' 
t>3 "IE' 

D2 DLC' 
Dl KV' 

DO VIS' 
write conoat(lDh,'L' .. 93h).· 
·write coDcat.(lbb. 'L' .. 8)h).' , 
teap - qethex 

PLEloSE TYPE THE YALO·E To BE IIBITTEK and <ar>' 

writ_ '.a' 
port(wreq) - 9t 
port(wreq) - t •• p 
write concat(lBa.'L·.83.a),' 
writ_ concat(lbh. '1',aUh), 
yyy-ct 
enel 

PLEASE aIT AKY lEY TO RETURK' 

3-169 

280722-42 



·1805. 
111(" • 
1807. 
1808. 
1aoPi 
18101 
1811: 
1812' 
1B13' 
1814. 
1815. 
1816. 
1B17. 
1Bl81 
1819. 
1B20' 
1B21' 
1822' 
1823. 
1824. 
1825. 
18261 
11127. 
1928, 
182" 
1B30. 
11131. 
1932, 
11133. 
11134. 
1835: 
111361 
1~37' 
lIl3B: 
18391 
18.0' 
laU, 
111.2. 
1943' 
18 ••• 
1a.5' 
1846. 
1847, 
1848. 
1849' 
11150. 
1a51, 
1852. 
1853. 
185., 
1855. 
1856. 
1B57. 
18SB' 
1!l~9' 
1B60' 
1861. 
1862. 
ld63' 
18641 
la6S. 
lb66. 
lB67' 
186B. 
ltl69 I 
11170' 
11171. 
1672. 
11:173. 
18741 
11:175. 
111761 
1877. 
11178. 
lJ79. 
ltltlO' 
18Bl. 
1882. 
1883' 
1BB4I 
1B8S. 
1BB6' 

Ap·262 

carbo.alOle_reos 
write cnnoat(lbh.·L·.83h).·LOADIHG •••• • 
write oonoat(lbb,'L',80h).·· 
c1eUne PROC wr10 - DO 
deUne CIIAR yyy 
deUne BYIE te.p 
ourho_ ,al_reoB 
write conc.t(lb~.·L·.81b).· 
writ_ conoatClbh,'L',81h),' 
write conoat(lbb,'L',BOh,,' 

\tRITE REGISTER l()' 
*****************' 

write conoat(lbb,·I.·,80b),·' D7 '06 ,D5 D., D1 ,D2 ,D1 ,DO " 
wr'lte concat. C"lbh, • L', S()h), • ------------------------------------------. 
write' D7 CRC PRESE'r If(NOT)O' 
write • D6 D5 () () NRZ' 
write • 0 1 HRZI' 
write • 1 0 Fft1 (TRAHSftISSIOH·1)· 
write • 1 1 FftO CCRAIISICISSIOH 0)' 
write ' D4 GO ACTIVE OH ROLL' 
write' 03 ftARK/(NOT)FLAO IDEL' 
write' D2 ABORT/(NOT)FLAG ON UHDERRRUH: 
writ.. ' D1 LOOP ftODE 
write • DO 6 BIT/B BIT SYHC' 
write Qoncat(lbb.·L·.B3h).' PLEASE TYPE THE VALUE TO BE IIRITfEN and <or>' 
writ_ concat(lbb,'L',8()b),' • 
temp - qethex 
write 'HI 
port(wreq) - lOt 
port (wreQ) - t ... p 
write CODcatC1Bn,'L',83a),' 
writ_ ooncat( lbh. 'l'.SOh), 
yyy-oi 
en<1 

curhoae,cleareos 

*WRll* 
****** 

PLEASE nIT AliT KEY '1'0 RETURN' 

write cnnC.t(lbh.·L·.83h),.LOADIKG •••• • 
write conc.t(lbb,~L'.8C)h)." 
c1 .. tine PROC wrl1 - DO 
<1eU .... C .... R yyy 
<1eti .. e BHE te"" 
curhome ,cle.reo. 
write oonoat(lbh.·L',81h),· IIRITE REGISTER 11' 
writ_ ooncat(lbh,·L'.81h).' *****.***********' 
write concat(l,bh,'L',Ek)h),.______ _ ____ _ 
write concat(lbh.'L·.80h)." D7 '1)15 'DS ,D4 ,D3 ,D2 ,Dl , DO " 
writ. ·ooncat(lbh.·L',~)h).'----------------------------------_______________ , 
write' D7 (1I0T)RTxC XTAL/(NOTlHO fiAL • 
write D15 D5 0 0 RECEIVE CLOC~RTxC PIN' 
wUte 0 1 RECEIVE CLOCI( - (HOT)TRxC PIN' 
write 1 0 RECEIVE CLOCK - BR GENERATOR OUTPUT' 
write 1 1 RECEIVE CLOCK - DPLL OUTPUT' 
writ.. D4 D3 0 0 TRANSMIT CLOCE - (lIo"f)RTxC PIH' 
writ.. 0 1 TRANSMIT CLOCE - (HOT)TRxC PIH' 
write 1 0 TRANSIIIT CLOCK - BR GEN. OUTPUT' 
write 1 1 TRANSftIT CLOCK - OPLL oUT~ur' 
write D2 (If CIT )TRxC OIl' 
write 01 DO - 0 0 - lCI' AL OUJI'TU' 
wrLte ' • () 1 _ TRANSMIT CLO(;X' 
"rite' _ 1 0 _ BR GENERATOR OfP' 
write ' _ 1 "1 - DPLL OUTPUT' 
write cc>ncat(lDh,·L·.e3h),' I'LF.Ao;E YIPE THE VALUE 10 BE IIRIITEN an<1 <or>' 
wr:Lte concfat(10h, ·L'.BOh), •• 
temp .-qethex 
wri.te 'a' 
port(Wrev) - llt 
pc>rt(wr .. q) - temp 
writ.eooncat( lB .. ,· L·. Aln), , PLEASE nIT AllY leY '1'0 RETURN' 
write concat(lbh.'l',80h). 
yyy-oi 
.. nc1 

280722-43 

3-170 



intJ 

1887. 
IBaSI 
lIIBil 
IStUt 
len. 
18'2. 
1a'3. 
IB'.' 
1a9S' 
18'" 
1897. 
18,al 
18'" 
1,(JO' 
l,UI. 
1'112' 
1'[)31 
UUt. 
19()SI 
U06. 
Itn1 r 
IJinB. 
19(J'1 
Ul(ll 
1911' 
U12. 
U13. 
Ulu 
Ul!U 
In .. 
1;17. 
1918. 
191'1 
192UI 
19211 
1'22' 
1'2.1' 
l'a4 • 
1925, 
1'26 • l,a·,. 
15128, 

192'. 
IU(U 
U31' 
1132. 
Ul3_ 
11.3,61 
11351 
193" 
1931. 
l'l81 
U3', 
1"01 
1'41' 
1"'2' 

1'''3' Ut •• 
U4Sr 
1'461 

1"" 19481 

1"" Ut5{U 
1951. 
u~a. 

1'53. 
1954_ 
1955. 
19561 
1957. 
1959' 
U5'. 
1"(" 
1,611 
1'52' 
1'631 

11'.' 
19fi!t1 1,'5. 
19'67' 
lH1i1l 

CNrboa.uo!eareos 

"'1112-....... 
writ_ gon~t( Ibh. "l" .Ilh) I 'LOADIHU •••• • 
writ. oonc:at(1Dh. 'L'"l$Oh).'" 
d..fibe PiilOC _r12- DO 
def iDe enAR yyy 
!lefiae eyrE t •• p 
curb.,_ ,01 •• ,..0. 

AP·262 

write oonoat(U)h,'L',81h),' InUrE UEGIST(A 13' 
writ_ oonoat(lDb. 'L'.8Ih),· •••••••••••••••••• 
write ooncat(l.bh. 'L'.ROh), ' _____ :_--,,-:--:--:: 
writ. aoncat(lbb,'L',BlUb)," D1 'Dii ,D5 , D" • 01 ,D2 .01 , DO " 
VI' i t. conca t (1 bh, 'L' r Bllb ), ,-.. ---.... -------------------------------------. 
writ.,' D7. TC7" 
writ. tid • TCti' 
"rite D5· rC5' 
writ. D'· "CCt' 
write ' D3 - Te3' 
VI' At. DOl • TC2' 
vrite • Dl - 'l'Cl', 
writ. ' DO - TCO' 
write' 
writ. 'KOTE_ Lower Byte of rI"E COKsTANT' 
writ. cOlloat(lbb,'L',83h)," fLEASe TrfE TnE VALUE TO BE WRITTEN alu1 (or)' 
write oonoat(1bb, 'l', BOh), , I 

t •• p· - ~th.X' 
write 'a' 
port(w~) • 12t 
port(wreq) • te.p 
writ. cObcat(1.bb,·L',83H),· PLEASE HI"! ABY lEY To REfURM' 
write ooncat(U:ab,'1',8Uh), , 
yy,y-ci 
0.4 

curho.,ol •• "o. 
vrite cnncat(lbb. '1.' ,83b), 'LOADlm •••• ' 
write aonOllt(lbb. 'l", BUb)," 
define PROC vr13- DO 
deUDe ellA .. yyy 
d.fSAe BYTE t •• p 
our.bo_ .ol •• ~o. 
vrite ooncet(lbh,'L' .8lb),' MRITE REGISTER 13' 
write oonoat(lbb, 'L',81h).' •••••••••••••••••• 
write cOIlcat(lbh, 'L',SOb),' 
vrite concat(1.bb,'L',90b),·, D'1 , D6 , D5. , Cf, 'tl3 ,D2 'til ,D() ,. 

write concet( l.blt., 'L' ,8C:)h), ,-----------------------------, 
vrite' rn - lCIS' 
write' DIS - ~lf,' 
vrit, • DS - TC13' 
vri te D4 - TC12' 
writ, D3 - TCII' 
writ. D2 - TelO' 
writ, ' Dl - 'l'Cg' 
vrit_ DO - rcs' 
vrit.e ' , 
wr1t. 'KofEI upper Byte Of TIllE COUSTAHT' 
vrit.. cODCat(1bh, 'L',53h),' PLEASE 'llPE 'l'aE VALUe TO BE WRITTEK an4 (or)' 

wr1te concat(lbb,'L',aUh),' 
teltp - qetbex 
write 'H' 
pol"t(vr-.r) • 13t 
port(vreg) • te.p 
write cODcat(lBH,'L',83H),' PLEASE HXT uY lEV To RErU.' 
write conC4t(lbb."l',8CJh.), • 
yyy-ci 
•• 4 

."'81'. 

c:uz:IlOII.'c! ..... O. 
write concat(lbh,' L',B3h), 'LOADING •••• ' 
"rit. concat(lbh.,'L',BOh)'" 

3-171 

280722-44 



inter 

11'691 
11'701 
19711 
19721 
19731 
19741 
U7S. 
19761 
19771 
1976. 
19791 
1990. 

19611 
19B2. 
19631 
19641 
19B5I 
191161 
19B7. 
191161 
19B91 
19901 
19911 
1992. 
19931 
19941 
1995I 
19961 
19971 
199B. 
1999. 
20001 
20011 
2002. 
200]' 
2004' 
ZOOS. 
ZOO';, 
Z()U7. 
200B. 
Z0091 
ZUlCH 
20U. 
20l2' 
ZOU' 
20U. 
201S1 
ZCI1 ... 
2Ul7. 
201B. 
2019. 
ZOZOI 
Z0211 
2022. 
20231 
202U 
202S1 
Z026. 
2()27 • 
ZU2B. 

Z029. 
ZO:JUI 
20311 
2U]21 
20ll' 
20341 
203S1 
ZU36 I 
ZO]7' 
Z036. 

2039 
2040 
2041 
2042 
2043 
2044 
2045 
2046 
2047 
2048 

~efine PRO~ wrl' - DO 
~eUDe CHAR YYY 
~e Une BUE t •• p 
curho.e ,cleareos 

AP-262 

write concat(lI>b, 'L',61b),' WRITE REGISTER U' 
write ooncat(lbb,'L',81h),' *****************' 
writ_ cODcat(lbh,'L',90h),' 
writ. ooncat(U>b, 'L',60h),', D7 'D6 'OS 'D4 '0] ,D2 • 01 • DO " 
write concat ( 1 bb. 't .• SC)b) • • -----------------------------------------. 
write' D7 06 05 0 () 0 - RULL COKIIAIID' 
write ' () () 1 ER'I'ER SEARCnllOOE' 
wri te ' 0 1 0 RESEr III,;sSING CLOCK' 
write ' () 1 OISABLE DPLL' 
write 1 0 (I SET SOORCE - BR GENERATOR' 
write' 1 () 1 SE'I' SOURCE- (RO'l')R'I' x C' 
write ' 1 1 0 SET I'K 1I0DE' 
wri te ' 1 1 1 SET NRZI IIODE' 
write' D4 LOCAL LOOPBACI' 
write ' D3 Aoor ECHO' 
write ' D2 (RO'l')O'l'A REQUEST I'URCTIOR' 
write ' Dl BR CENERATOR SOURCE' 
write • DO BR· GEII. ENABLE' 
write concat(l bb,'L',nh),, PLEASE TYPE THE VALUE TO BE IIRITTER an~ <or>' 
write concat(lbh,'L",80h),' • 
ttellP • qethex 
wri.te 'II' 
port(wreq) - 14t 
port(wreO') • t.mp 
write concat(lBft,'L',63n),' PLEASE oIT ANY KEY ~o RETURN' 
write concat(lDh,'l· .. S()h) .. 
YYY-Ci 
en~ 

curhoaa,Cleareos 
writ_ annc.t(lbh.·L·.81h).·LOADI.O •••• • 
write coDcat(lbh .. ·L'.R()h).·· 
4efine PROC wr14 • DO 
~efine enAR YYY 
~eUne BYrE te.,j:, 
aurboma ,cleareo. 
write conc.t(lbn.·L·.81h) .. •. WRITE REGISTeR 14' 
writ. ooncat(lbb .. ·L'.91h).· ••••••••••••.•••••• 
write- concat(lbb.·L·.eOh) .. ·_ 
write cnncat(lbh .. ·L· .. 8()h)." 1)7 'Dei • DS t l>4 '03 ,D2 , .. 1)1 1 DO ,. 
vri t. concat (lbb ... L' .. BOh. ) ... ------------------------__ ' _____________ • 
write' D7 D6 05 () II () 1I0LL COIlIlARD' . 
write ' () () 1 ENTER SEARCH 1I00E' 
write ' () 1 () RESET IIISSSIRG CLOCII:' 
write' () 1 1 DISABLE DPLl' 
write ' 1 () 0 SET SOURCE - BR GERERA'I'OR' 
write ' 1 () 1 SET SOORCE - (ROT)RT x C' 
Write' 1 1 () SET FK 1I0DE' 
write ' 1 1 1 SeC RRn KODE' 
write ' DI LOCAL LOOPBACI' 
wri te ' D3 AUOT ECHO' 
write ' D2 (1I0T)D'I'R REDUES'I' PURC'I'IOII' 
write' 01 BA GERERATOR SOORCE' 
Write' DO BR GER, ERABLE' 
write co""at(lbb, 'L', 83b), ' PLEASE TYPE THE VALUE TO BE IIRITTER ancl <or)' 
write CODCAt( lbh.' L' .. BOh).' , 
te.p - qetbex . 

write 'a' 
port(wreq) - 14t 
port(wreq) - te.p 
write OODcat( lBD .. • L' .. 830)..' 
write cnncat(lbb .. '1' .SOb). 
.yy~i 
en~ 

curho~e;cleareoB 

·llR15* 
****** 

write concat(lbll,~L'.83h),'LOADlUC •••• ' 
write coneat(lbh,'L'.COh),~' 
def1ne PROC vr15- 00 
de fine CllAR 111 
def1ne BYTE temp 
curhome;cleareo8 

3·172 

280722-45 



inter 

2049. 
2050. 
2051. 

2052. 

205l. 

2054. 
2055. 
2056. 
2057. 
2058. 
2059. 
2060. 
2061. 
2062. 
2063. 
2064, 
2065, 
2066. 
2067, 
206S. 
2069, 
2070. 
2071, 

write concat(lbh,"L" ,81h) ," 
writo concat(lbh,"L",81h)," 

AP-262 

WRITE RECIST!R 15" ••• * ••••••• * ••••• ~ 
writo concat(lbh,"L",BOh)," ______________________________________________ __ 

writa concat(lbh,"L" ,BOh) ,"I 07 1 06 1 05 1 D4 1 Dl 1 D2 1 DilDO 

writo concat(lbh,"L",80h),"------------------------------------------~------. 

write II 

writl • 
write • 
write 
write .. 
write .. 
write ... 
write II 

07 BREAK/ ABORT IE" 
06 Tx UNOERRUN/EOK IE" 

05.. CTS IE" 
04 SYNC/HUNT IE" 

Dl CD IE" 
D2 0" 

01 ZERO COUNT IE" 
DO 0" 

writa concat(lbh,"L",83h)," 
writ. concat(lbh,"L",80h)," 
temp • gethex 

PLEASE TYPE THE VALUE TO BE WRITTEN and (or)' 

write '"'H-
.ort(wres) - 15t 
port(wres) • temp 
vrite coacat(lBll.'L-,33U),· 
write concat(lbh,"1",80h), 
yyy-.! 
end 

PLE.\SE nIT ANY KEY TO RETURN" 

3·173 

280722-48 



inter APPLICATION 
NOTE 

AP-273 

November 1986 

Developing 
MCS®-96 Applications 

Using the SBE-96 

DAVE SCHOEBEL 
DSO APPLICATIONS 

3·174 
Order Number: 280249·001 



Ap·273 

INTRODUCTION 

With the increasing demands of industrial and comput­
er control applications, today's designers are looking 
for solutions whose performance extends beyond that of 
conventional 8-bit architectures. Traditionally, these 
control system architects must depend upon expensive 
and complex multi-chip microprocessors to achieve this 
high performance, but now a 16-bit single chip micro­
controller can offer a much more cost-effective solu­
tion. Microcontrollers are microprocessors specially 
configured to monitor and control mechanisms and 
processes rather than manipulate data. They include 
CPU, program memory, data memory and a array of 
specialized peripherals on chip to produce a low com­
ponent count solution. The MCS-96 family uses 
120,000 transistors to implement a high performance 
16-bit CPU,8K bytes of program memory, 232 bytes of 
data memory and both analog and digital I/O features. 
Supporting this device are a suite of development tools 
hosted on both Intel development systems (Series III 
and IV) and industry standard hosts (IBM PC XT and 
PC AT). 

This application note includes a brief description of the 
MCS-96 family of microcontrollers, its software devel­
opment environment and hardware debugging centered 

around the iSBE-96 Single Board Emulator. Also in­
cluded are helpful hints and programs to enable you to 
get the most from your investment dollars. The applica­
tion note is partitioned into two sections. The first sec­
ion introduces the MCS-96 architecture and develop­
ment environment while the later section provides in-

. depth details of the iSBE-96 including its customization 
to your particular environment. 

MCS®·96 MICROCONTROLLER 
.OVERVIEW 

Introduction to the MCS®-96 
Architecture 

The MCS-96 architecture consists of a 16-bit central 
processing unit (CPU) and a multitude of peripheral 
and I/O functions integrated into a single silicon com­
ponent as shown in Figure 1. The CPU supports bit, 
byte and word operations. Double words (32-bits) are 
also supported in a subset of the instruction set. With a 
12 MHz input crystal frequency, the MCS-96 micro­
controller can perform a 16-bit addition in 1.0 micro­
seconds (,..,s) and a 16 x 16 bit multiply or 32/16 bit 
divide in just 6.5 ,..,s. 

n:c VBB VPD XTAL I XTAL Z CLKOUT 

-
I 
I 
I 
I 
I 
I 
I 

OIH:HIP 
11011 

L_-'-________ _ 

HSI HSO 

Figure 1. Block Diagram of the MCS®·96 Mlcrocontro"er 

3-175 

280249-1 



Ap·273 

There are four high-speed trigger inputs that can record 
the times at which external events occur as often as 
every 2 IJ-s (at 12 MHz crystal frequency). Up to six 
high-speed pulse generator outputs can trigger external 
events at pre-selected times. Additionally, the high­
speed output unit can simultaneously perform timer 
functions. Up to four 16-bit software timers can be in 
operation simultaneously, in addition to the two 16-bit 
hardware timers. This makes the MCS-96 microcon­
troller particularly useful in process and control appli­
cations. 

There is an optional on-chip analog to digital (AID) 
converter which can convert up to four (in the 48-pin 
version) or eight (in the 68-pin version) analog input 
channels (IO-bits resolution) in only 22 IJ-s for the 
8x9xBH parts or 42 IJ-s for the 8x9x-90 parts. 

Also provided on-chip is a full duplex serial port, dedi­
cated baud rate generator, 16-bit watchdog timer, and a 
pulsewidth modulated output signal. Table I shows the 
features summary for the MCS-96 microcontroller. Ta­
ble 2 shows the different configurations for the MCS-96 
family of microcontrollers. 

The following sections briefly describe some of the fea­
tures of the MCS-96 microcontroller. 

High Speed 110 Unit (HSIO) 

The HSIO unit consists of the High-Speed Input unit 
(HSI), the High-Speed Output unit (HSO), one coun­
ter, and one timer. The "high-speed" means that the 
units can perform functions based on the timers with­
out CPU intervention. The HSI unit records times 
when events occur and the HSO unit triggers events at 
preprogrammed times. All actions within the HSIO 
units are synchronized to the timer or counter. 

The HSI unit can detect transitions on any of its four 
input lines. When one occurs, it records the time from 
Timer I and which input lines made the transition. The 
time is recorded with a 2 IJ-s resolution and is stored in 
an eight-level first-in-first-out buffer (FIFO). The unit 
can activate an interrupt when the holding register is 
loaded or the 6th entry to the FIFO has been made. 

Table 1. MCS®·96 Mlcrocontroller Features and Benefits Summary 

Features Benefits 

16-BitCPU Efficient machine with higher throughput. 

8K Bytes ROM Large program space for. more complex, larger programs. 

232 Bytes RAM Large on-board register file. 

Hardware MULIDIV Provides good math capability 16 by 16 multiply or 32 by 16 divide in 
6.5 IJ-s @ 12 MHz. 

6 Addressing Modes Provides greater flexibility of programming and data manipulation. 

High Speed 1/0 Unit Can measure and generate pulses with high resolution (2 /Ls @ 

4 dedicated 1/0 lines 12 MHz). 
4 programmable 1/0 lines 

1 O-Bit AI D Converter Reads the external analog inputs. 

Full Duplex Serial Port Provides asynchronous serial link to other processors or systems. 

Up to 40 110 Pins Provides TIL compatible digital data 110 including system expansion 
with standard 8 or 16-bit peripherals. 

Programmable 8 Source Priority Respond to asynchronous events 
Interrupt System 

Pulse Width Modulated Output Provides a programmable pulse train with variable duty cycle. Also 
used to generate analog output. 

Watchdog Timer Provides ability to recover from software malfunction or hardware 
upset. 

48 Pin (DIP) & 68-Pin (Flatpack, Pin Offers a variety of package types to choose from to better fit a specific 
Grid Array) Versions application need for number of 1I0s and package size. 

3-176 



intJ AP-273 

The HSO unit can be programmed to set or clear any of 
its six output lines, reset timer 2, trigger an AID con­
version, or set one of four software timer flags at a 
selected time. An interrupt can be enabled for any of 
these events and either Timer 1 or Timer 2 can be refer­
enced for the programmed time value. Also, up to eight 
commands for preset actions can be stored in the Con­
tent Addressable Memory (CAM) file. After each ac­
tion is carried out at the preset time, the command is 
removed from the CAM, making room for another 
command. The CPU is kept informed with a status bit 
that indicates if there is room for another command in 
the CAM. 

AID Converter 

The analog-to-digital (AID) converter is a lO-bit, suc­
cessive approximation converter with an internal sam­
ple and hold circuit. It has a fixed conversion time of 88 
CPU state times. A state time is one complete crystal 
frequency period. With a 12 MHz crystal, a state time 
is 250 nanoseconds (ns) so the conversion will take 
22 IJ-s. 

The analog input needs to be in the range of 0 to VREF 
(nominally VREF = 5V) and can be selected from any 
of the eight analog input lines. The conversion is then 
initiated by either setting the control bit in the AID 
command register or by programming the HSO unit to 
trigger the conversion at some specified time. 

Serial Port 

The on-chip serial port is compatible with the MCS-51 
family (8051, 8031, etc.) serial port. It is a full duplex 
port and there is double-buffering on receive. Addition­
ally, the serial port supports three asynchronous modes 
and one synchronous. mode of operation. With the 
asynchronous modes eight or nine bits of data can be 
selected and even parity can optionally be inserted for 
one of the data bits. Selectable interrupts for transmit 
ready, receive ready, ninth data bit received, and parity 
error provide support for a variety of interprocessor 
communications protocols. 

Baud rates in all modes are determined by an indepen­
dent 16-bit on-chip baud rate generator. The input to 
the baud rate generator can come from either the 
XTALI or the T2CLK pins. The maximum baud rate 
provided by the generator in asynchronous mode is 
187.5K baud and in synchronous mode is 1.5M baud. 

Watchdog Timer 

The watchdog timer is a 16-bit counter which, once 
started, is incremented every state time. The watchdog 

timer is optionally started, and once started it cannot be 
stopped unless the system is reset. To start or clear the 
watchdog timer simply write a lEH followed by a 
OEIH to the WDT register (address OAH). If not 
cleared before it overflows, the watchdog timer will pull 
the RESET pin low for two state times, causing the 
system to be reinitialized. With a 12 MHz crystal, the 
watchdog timer will overflow after 16 milliseconds 
(ms). 

The watchdog timer is provided as a means of graceful 
recovery from a software upset. The counter must be 
cleared by the software before it overflows or the timer 
assumes that an upset has occurred and activates the 
RESET pin. Since the watchdog timer cannot be turned 
off by software, the system is protected against the up­
set inadvertently disabling the watchdog timer. The 
watchdog timer has also been designed to maintain its 
state through power glitches on VCC. The glitches can 
be as low as OV or as high as 7V for as long as 1 IJ-s to 1 
ms. 

Pulse Width Modulator (PWM) 

The PWM output can produce a pulse train having a 
fixed period of 256 state times and a programmable 
width of zero to 255 state times. The width is pro­
grammed by loading the desired value, in state times, to 
the PWM control register. 

Table 2. Configurations of the 
MCS®-96 Family of Microcontrollers 

Options 68 Pin 48 Pin 

Digital 110 ROM LESS 8096 8094 

EPROM 8796 8794 

ROM 8396 8394 

Analog ROM LESS 8097 8095 
and EPROM 8797 8795 
Digital 1/0 

ROM 8397 8395 

Memory Space 

The addressable memory space of the MCS-96 micro­
controller consists of 64K bytes. Although most of this 
space is available for general use, some locations have 
special purposes (OOOOH through OOFFH and IFFEH 
through 207FH). All other locations can be used for 
either program or data storage or for memory mapped 
peripherals. A memory map is shown in Figure 2. 

The internal register locations (OOOOH through OOFFH) 
on the 8096 are divided into two groups, a register file 
and a set of Special Function Registers (SFRs). 

3-177 



AP-273 

85535 

18384 

8320 

8210 

8192 

8190 

256 
255 

00 

EXTERNAL MEMORY 
, OR 

VO 

INTERNAL PROGRAM 
STORAGE ROM 

FACTORY TEST CODE 

8 
INTERRUPT i 
VECTORS 0 

PORT 4 
PORT 3 

EXTERNAL MEMORY 
OR 
VO 

INTERNAL RAM 
REGISTER FILE 
STACK POINTER 

SPECIAL FUNCll0N REGISTERS 
(WHEN ACCESSED AS 

DATA MEMORy) 

FFFFH 

4000H 

2080H +- RESET 

2012H 

2000H 

1FFEH 

0100H 
OOFFH 

OOOOH 

.------,..---....,----,255 
EXTERNAL MEMORY RESERVED 
FOR USE BY INTEL DEVELOPMENT 
SYSTEMS 
(WHEN ACCESSED AS PROGRAM 
MEMORy) 
~ _________ ... OO 

280249-2 

Figure 2. Memory Map 

REGISTER FILE 

Locations lAH through OFFH contain the register file. 
The register file memory map is shown in Figure 3. 
Additionally, locations OFOH through OFFH can be 
powered separately so that they will retain their con­
tents when power is removed from the 8096 VCC pin. 
There are no restrictions on the use of the register file 
except that code cannot be executed from it. If an at­
tempt to execute instructions from locations OOH 
through OFFH is made, the instructions will be fetched 
from external memory. This section of external memo­
ry is reserved for use by Intel development tools. Exe­
cution of a nonmaskable interrupt (NMI) will force a 
call to external location OOOOH, therefore, the NMI is 
also reserved for Intel development tools. 

SPECIAL FUNCTION REGISTERS (SFRs) 

Locations OOH through l7H are used to access the 
SFRs. Locations 18H and 19H contain the stack point­
er. All of the I/O on the 8096 is controlled through the 
SFRs. Many of these registers serve two functions; one 
if they are read from, the other if they are written to. 
Figure 3 shows the locations and names of these regis­
ters. A summary of the capabilities of each of these 
registers is shown in Figure 4. Note that these registers 
can be accessed only as bytes unless otherwise indicat­
ed. The stack pointer must be initialized by the user 
program and can point anywhere in the 64K memory 
space. The stack builds down, that is, it is a post-incre­
ment (POP), pre-decrement (PUSH) stack. 

RESERVED MEMORY SPACES 

Locations lFFEH and lFFFH are reserved for Ports 3 
and 4 respectively. This enables easy reconstruction of 
these ports if external memory is used in the system. 
This also simplifies changing between the ROMless, 
EPROMed, and ROMed parts without changing the 
program addresses for ports 3 and 4. If ports 3 and 4 
are not going to be reconstructed, these locations can be 
treated as any other external memory location. 

The nine interrupt vectors are stored in locations 
2000H through 2011H. The ninth vector (201OH-
2011H) is reserved for Intel development systems. Fig­
ure 5 shows the interrupt vector locations and priority. 
When enabled, an interrupt occurring on any of these 
sources will force a call to the location stored in the 
vector location for that interrupt source. Internal loca­
tions 2012H through 207FH are reserved for Intel's 
factory test code and for use by future components. To 
ensure compati1;>ility with. future parts, external loca­
tions 2012H through 207FH (if present) should contain 
the hex value FFH. 

SOFTWARE DEVELOPMENT 
OVERVIEW 

MCS®-96 Microcontroller Software 
Development Packages 

The MCS-96 Microcontroller Software Support Pack­
age provides 8096 development system support specifi-

3-178 



inter AP-273 

cally designed for the MCS-96 family of single chip 
micro controllers. The package consists of a symbolic 
macro assembler (ASM-96), Linker/Relocator 
(RL-96), Floating Point Arithmetic Library (FPAL96) 
and the librarian (LIB-96). 

19H 
18H 

17H 

16H 

15H 

14H 
13H 
12H 

11H 

10H 

OFH 

OEH 

ODH 

OCH 

OBH 

OAH 

09H 

OSH 

07H 

06H 

05H 

04H 

03H 

02H 

01H 

OOH 

OFFH 255 

POWER-DOWN 
RAM 

OFOH 240 
OEFH 239 

INTERNAL 
~ 

REGISTER FILE 

lAHT 

(RAM) 

T~ 
280249-3 

STACK POINTER STACK POINTER 

PWM CONTROL 

10Sl 10Cl 

10SO lOCO 

RESERVED RESERVED 

SP STAT SP CON 

10 PORT 2 10 PORT 2 

10 PORT 1 10 PORT 1 

10PORTO BAUD RATE 

TIMER2" (HI) 

TIMER 2 (LO) RESERVED 

TIMER 1 (HI) 

TIMER 1 (LO) WATCHDOG 

INT PENDING INT PENDING 

INT MASK INT MASK 

SBUF(RX) SBUF (TX) 

HSI STATUS HSO COMMAND 

HSI TIME (HI) HSO' TIME (HI) 

HSI TIME (LO) HSO TIME (LO) 

AD RESULT (HI) HSI MODE 

AD RESULT (LO) AD COMMAND 

RO(HI) RO(HI) 

RO(LO) RO(LO) 

(WHEN READ) (WHEN WRITTEN) 

Figure 3. Register File Memory Map 

25 
24 

23 

22 

21 

20 
19 
18 

17 

16 

15 

14 

13 

12 

11 

10 

9 

8 
7 

6 

5 
4 

3 
2 

1 

o 

The PL/M-96 Software Package provides 8096 high­
level language development system suport. The package 
consists of a structured high-level language compiler 
(PL/M-96), Linker/Relocator (RL-96), Floating Point 
Arithmetic Library (FP AL96) and the librarian 
(LIB-96). 

Both software packages run on the IBM PC XT and 
AT (with DOS 3.0 or greater) and on Series III/IV 
Intellec® development systems. 

A detailed description of the tools contained in the 
packages is given in the following sections. 

ASM-96 MACRO ASSEMBLER 

The 8096 macro assembler translates the symbolic as­
sembly language instructions into relocatable object 
code. Since the object modules are linkable and locata­
ble, ASM-96 encourages modular programming prac­
tices. The macro facility in ASM-96 enables program­
mers to save development and maintenance time, since 
common code sequences only have to be done once. 
The assembler also provides conditional assembly capa­
bilities. ASM-96 supports symbolic access to the many 
features of the 8096 architecture as described previous­
ly. A file is provided with all of the 8096 hardware 
registers defined. Alternatively, the user can define any 
subset of the 8096 hardware register set. Math routines 
are supported with instructions for 16 x 16-bit multiply 
or 32/16-bit divide. 

Modular programs divide a rather complex program 
into smaller functional units that are easier to code, to 
debug, and to change. The separate modules can then 
be linked and located as desired'into one program mod· 
ule of executable code. Standard modules can be devel­
oped and used in different applications thus saving soft­
ware development time. 

PL/M-96 

PL/M-96 is a structured, high-level programming lan­
guage used for developing software for the Intel 
MCS-96 family of microcontrollers. Symbolic access to 
the on-chip resources of the MCS-96 microcontroller is 
provided in PL/M-96. The PL/M-96 compiler trans­
lates the PL/M-96 language into 8096 relocatable ob­
ject code, compatible with object code -generated by 
other MCS-96 translators (such as ASM-96). This en­
ables improved programmer productivity and applica­
tion reliability. PL/M-96 has been efficiently designed 
to map into the machine architecture, so as not to trade 
off higher programmer productivity with inefficient 
code. PL/M-96 is also compatible with PL/M-86 thus 
assuring design portability and minimal learning effort 
for programmers already familiar with PL/M. 

COMBINING PL/M-96 AND ASM·96 

For each procedure activation (CALL statement or 
function reference) in the source, the Object code uses a 
calling sequence. The calling sequence places the proce­
dure's actual parameters (if any) on the stack, then acti­
vates the procedure with a CALL instruction. The pa­
rameters are placed on the stack in left to right order. 
Since the direction of stack growth is from higher loca­
tions to lower, the first parameter occupies the" highest 
position -on the stack and the last parameter occupies 



intJ AP-273 

Register Descripti~n 

RO Zero Register-Always read as a zero, useful for a base when indexing and as a 
constant for calculations and compares. 

AD_RESULT AID Result Hi/Low-Low and high order Results of the AID converter (byte read 
only) 

AD_COMMAND AID Command Register-Controls the AID 

HSI_MODE HSI Mode Register-Sets the mode of the High Speed Input unit. 

HSI_TIME HSI Time Hi/Lo-Contains the time at which the High Speed Input unit was triggered. 
(word r~ad only) 

HSO_TIME HSO Time Hi/Lo-Sets the time f,or the High Speed Output to execute the command_ 
"' in the Command Register. (word write only) 

HSO_COMMAND HSO Command Register-Determines what wiii happen at the time loaded into the 
HSO Time registers. 

HSLSTATUS HSI Status Registers-Indicates which HSI pins were detected at the time in the HSI 
Time registers. 

SBUF (TX) Transmit buffer for the serial port, holds cOntents to be output. 

SBUF (RX) Receive buffer for the serial port, holds the byte just received by the serial port. 

INT_MASK Interrupt Mask Register-Enables or disables the individual interrupts. 

INT _PENDING Interrupt Pending Register-Indicates when an interrupt signal has occurred on one 
of the sources. 

WATCHDOG Watchdog Timer Register-Written to periodicaiiy to hold off automatic reset every 
64K state times. 

TIMER1 Timer 1 Hi/Lo-Timer 1 high and low bytes. (word read only) 

TIMER2 Timer 2 Hi/Lo-Timer 2 high and low bytes. (word read only) 

10PORTO Port 0 Register-Levels on pins of portO. 

BAUD_RATE RegisW which contains the baud rate, this register is loaded sequentiaiiy. 

IOPORT1 Port 1 Register-Used to read or write to Port 1. 

IOPORT2 Port 2 Register-Used to read or write to Port 2. 

SP_STAT Serial Port Status-Indicates the status of the serial port. 

SP_CON Serial port control-Used to set the mode of the serial port. 

10SO I/O Status Register O-Contains Information on the HSO status. 

IOS1 I/O Status Register 1-Contains information on the status of the timers and of the 
HSI. 

lOCO I/O Control Register O-Controls alternate functions ot HSI pins, Timer 2 reset 
sources and Timer 2 clock sources. 

IOC1 I/O Control Register 1-Controls alternate functions of Port 2 pins, timer interrupts 
and HSI interrupts. 

PWM_CONTROL Pulse Width Modulation Control Register-Sets the duration of the PWM pulse. 

Figure 4. SFR Summary 

the lowest position. Note that a BYTE or SHORTINT 
parameter value occupies two bytes on the stack, with 
the value in the lower (even address) byte. The contents 
of the higher byte are undefmed. A parameter of type 

WORD orINTEGER (16 bits) is pushed as a word" A 
parameter of type DWORD, LONGINT or REAL (32 
bits) is pushed as two words; the high-order word is 
pushed first. 

3-180 



inter Ap·273 

Vector 

Source 
Location 

Priority 
(High (Low 
Byte) Byte) 

Software 2011H 2010H Not Applicable 
Extint 200FH 200EH 7 (Highest) 
Serial Port 200DH 200CH 6 
Software Timers 200BH 200AH 5 
HSI.O 2009H 2008H 4 
High Speed 2007H 2006H 3 

Outputs 
HSI Data 2005H 2004H 2 

Available 
AID Conversion 2003H 2002H 1 

Complete 
Timer Overflow 2001H 2000H o (Lowest) 

Figure 5. Interrupt Vector Locations 

After the parameters are passed, the CALL instruction 
places the return address on the stack. Function results 
are returned via a global PL/M-96 double-word regis­
ter, PLM$REG located at ICH. If a byte value is re­
turned, the low-order byte is used; if a word value is 
returned, the low-order word is used; otherwise, the full 
register is used. PL/M-96 uses the eight byte registers 
at addresses ICH-23H for temporary computations. 
The library PLM-96LIB defines the public symbol 
PLM$REG. 

Table 3 describes symbol type matching between a 
PL/M-96 global variable and an ASM-96 global vari­
able. Note that except for NULL, no matches occur 
between any ASM-96 type stamp and the PL/M-96 
type stamps ARRAY and STRUCTURE. A mismatch 
warning can be prevented by attaching the type stamp 
NULL to the variable in question in the ASM-96 mod­
ule. 

The easiest way to ensure compatibility between 
PL/M-96 programs or procedures and ASM-96 sub­
routines is simply to write a dummy procedure in 
PL/M-96 with the same argument list as the desired 
assembly language subroutine and with the same attri-

butes. Then, compile the dummy procedure with the 
specified CODE control. This will produce a pseudo-as­
sembly listing of the generated MCS-96 code, which 
can then be copied as the prologue and epilogue of the 
assembly language subroutine. 

OTHER SOFTWARE DEVELOPMENT TOOLS 

The RL96 linker and relocator program is a utility that 
performs two functions useful in MCS-96 software de­
velopment. First, the link function combines a number 
of object modules generated by ASM-96, PL/M-96, 
and system libraries (such as PLM96.lib and 
FPAL96.lib) into asingle program. Secondly, the lo­
cate function assigns an absolute address to all relocat­
able addresses in the linked MCS-96 object module. 
RL96 resolves all external symbol references between 
modules and will select object modules from library 
files if necessary. besides the absolute object module 
file, RL96 produces a listing file that shows the results 
of the link/locate, including a memory map symbol ta­
ble and an optional cross reference listing. With the 
relocator the programmer can concentrate on software 
functionality and not worry about the absolute address­
es of the object code. All program symbols are passed 
through into the object module as debug records. The 
FPAL96 floating point arithmetic library contains sin­
gle precision 32-bit floating point arithmetic functions. 
All math complies with the IEEE floating point stan­
dard for accuracy and reliability. FPAL96 includes the 
basic arithmetic operations (i.e., add, subtract, multi­
ply, divide, mod, square root) and other widely used 
operations (i.e., compare, negate, absolute, remainder). 
An error handler is included to handle exceptions com­
monly encountered during arithmetic operations such 
as divide by zero. 

The LIB96 utility creates and maintains libraries of 
software object modules. The user can develop standard 
modules and place them in libraries. Application pro­
grams can then call these modules using predefined in­
terfaces. LIB96 has a streamlined set of commands 
(create, add, delete, list, exit) to provide ease of use. 
When using object libraries, RL906 will only include 
those object modules that are required to satisfy exter­
nal references, thus saving memory space. 

Table 3 ASM96-PL/M-96 Symbol Type Matching 

PL/M-96 
Byte Word Dword 

Short 
Integer 

Long Struc- Proce-
Real Array Label 

ASM96 Int Int ture dure 

BYTE M M 
WORD M M 
LONG M M 
REAL M 
ENTRY M M 
NULL M M M M M M M M M M M 

3-181 



inter Ap·273 

iSBE.96 EMULATOR OVERVIEW and a software program for interfacing to a host com­
puter. Intel currently supports an IBM PC XT and AT, 
and the Series IIIIIV Intellec development systems as 

Introduction to the iSBE·96 Emulator hosts. 

The iSBE-96 Single Board Emulator supports the exe­
cution and debugging of programs for the MCS-96 fam­
ily of microcontrollers at speeds up to 12 MHz. Figure 
6 shows a block diagram of the iSBE-96 emulator. The 
iSBE-96 emulator consists of an 8097 microcontroller, 
a 12 MHz execution clock, 16K of zero wait state 
RAM memory, and a user cable which connects the 
MCS-96 pin functions to the user's prototype system. 
The iSBE-96 emulator also supports an 8096 extended 
addressldata bus for users with off chip memory and 
reconstructs port 3 and 4 for the users of the ROMed 
parts, 839x, and the EPROM parts, 879x. Additionally, 
the iSBE-96 emulator provides two RS-232 serial ports, 
serial communications cable, an EPROM based moni­
tor for fundamental emulator control and functionality, 

8097 

iSBE·96 Emulator 1/0 

The iSBE-96 emulator's on-board input and output 
(1/0) devices are used to manage the emulator's re­
sources. These 1/0 devices are mapped into memory at 
locations IFOOH through IFFFH. This memory block 
(IFOOH through IFFFH) is reserved for use by the 
iSBE-96 emulator. Table 4 shows the iSBE-96 memory 
mapped 1/0 address assigmnents. Since this memory 
block is in all possible memory configurations of the 
iSBE-96 emulator (see Figure 7 for the iSBE-96 memo­
ry map), it is possible for user programs to utilize any 
or all of the. system I/O devices. 

1------------ J3 

J4 

J6 

J7 

280249-4 

Figure 6. Block Diagram for the ISBE·96 Single Board Emulator. 

3-182 



inter AP-273 

Table 4. iSBE-96 Memory Mapped 
I/O Address Assignments 

Address Function 

01FEO Data set USART data register 

01FE2 Data set USART control/status 
register 

01FE4 Data terminal USART data 
register 

01FE6 Data terminal USART 
control/status register 

01FE8 Timer counter 0 

01FEA Timer counter 1 

01FEC Timer counter 2 

01FEE Timer mode control register 

01FFO iSBE-96 mode register 

01FF2 Port 3/4 control register 

01FFE Port 3 reconstruction 

01FFF Port 4 reconstruction 

RS-232 SERIAL PORTS 

Included as part of the on·board I/O are two RS·232 
serial ports. One is configured as Data Communica­
tions Equipment (DCE) and the other as Data Termi­
nal Equipment (DTE). When operating with the host 
software provided with the iSBE·96 emulator, the DCE 
port is used for the system console and the link for 
exchanging files. Table 5 shows the pin configuration of 
the two serial port connectors. 

The serial ports are serviced under control of the on­
board 8097 non·maskable interrupt (NMI). The NMI 
has the highest priority of all interrupts on the 8097 
microcontroller. While in emulation (user program is 
executing) the user program will be interrupted if moni­
tor commands are entered from the console. Valid com­
mands input on the console will be executed by the 
monitor even during emulation. Therefore, the iSBE-96 
emulator provides full.speed 12 MHz emulation, only if 
no commands are entered until emulation is halted. 

MCS®-96 PORT 3/4 AND EXTENDED 
ADDRESS/DATA BUS 

With the MCS-96 microcontroller, ports 3 and 4 pins 
can be used as actual port pins or as an extended ad-

ress and data bus. For the convenience of the users of 
the ROMed parts and the EPROMed parts (839x and 
879x respectively) the iSBE-96 emulator provides are· 
construction of ports 3 and 4. Additionally, for users of 
the ROMless parts or parts in external access mode, the 
iSBE·96 emulator provides an extended address and 
data bus. The selection of what the port pins are used 
for is left to the user via the MAP BUSPINS command. 
On power-up ofthe iSBE-96 emulator, the default map­
ping is for port 3/4. 

iSBE-96 Emulator Memory Map 

The iSBE-96 emulator has a number of memory map 
options. All of the memory maps are compatible with 
the MCS-96 microcontroller. Figure 7 shows the differ­
ent memory map selections available. Each memory 
map is selected by the MAP MODE command, which 
changes the memory map currently recognized by the 
iSBE-96 emulator. Table 6 summarizes the physical 
memory configurations of the iSBE-96 emulator needed 
to implement the various memory maps. Note that 
modes (memory maps) 1 through 3 require that the 
eight 2K x 8 RAM chips (16K bytes of RAM) on the 
iSBE-96 emulator be replaced by 8K x 8 RAM or 
PROM chips. 

The memory map is controlled by two bipolar PROMs 
and an eight bit register (the mode register at OlFFOH). 
The format of the mode register is shown in Figure 8. 
The mode register is a write only register and any 
writes to this register need to be done with caution. In 
addition to the memory map, the mode register is used 
to enable each of the five possible sources of interrupts 
connected to the NMI. 

Monitor Command Summary 

The iSBE-96 monitor is capable of executing a number 
of commands without being connected to a host devel­
opment system. It is possible to connect only a video 
terminal to the iSBE-96 emulator and still have signifi­
cant debug capability. Table 7 summarizes the monitor 
commands. The load and save command will not work 
with the iSBE-96 emulator connected to a terminal. 
Load and save requires the iSBE-96 emulator to be con­
nected to a host development system. If a non-Intel 
suported host is used a software program will need to 
be written for that computer to provide the mass stor­
age/retrieval access and the proper communications in­
terface protocol to the iSBE-96 emulator. 

3-183 



inter 

FFFF 

6000 
5FFF 

2000 
1FFF 

1FOO 
1EFF 

1000 
FFF 

600 
7FF 

100 
OFF 

000 

MONITOR 
MODE 

w 
<II 
:::I 

'" 0> .u 
ID 
!!! 
II: 
0 
II. 
Q 
w 
> 
II: w 
<II w 
II: 

0 

ROMSIM 

ROMSIM 

• 
DATARAM 

DATARAM 

DATARAM 

• 
1 

AP-273 

ROMSIM ROMSIM 

ROMSIM ROMSIM 

NOT NOT 
AVAIL· AVAIL· 
ABLE ABLE 

NOT NOT 
AVAIL· AVAIL· 
ABLE ABLE 

NOT 
AVAIL· DATARAM 
ABLE 

2 3 

USER USER USER USER 

ROMSIM ROMSIM USER USER 

MONITOR 110 
RESERVED AREA 

USER USER USER USER 

USER USER USER USER 

USER DATARAM USER DATARAM 

NMI SERVICE RESERVED AREA 

4 5 6 7 

280249-5 

Figure 7. iSBE-96 Memory Map and Monitor Modes 

Design Considerations 

When debugging MCS·96 designs with the iSBE·96 em· 
ulator, there are some features of the emulator that 
should be considered or taken into account as early in 
the design process as possible. 

MEMORY 

The user's prototype memory should be mapped to be 
compatible with one of the iSBE·96 memory maps (il· 

Table 5. DS/DT RS-232 Pin-Out Configuration 

Pin Number 
Signal Name/Connector 

DCE/J7 DTE/J6 

1 GND GND 
2 TXD·I TXD·O 
3 RXD·O RXD·I 
4 RTS·I RTS·O 
5 CTS·O CTS·I 
6 DSR·O DSR·I 
7 GND GND 
20 DTR·I DTR·O 

lustrated in Figure 7) or else a new memory map for the 
iSBE·96 emulator must be generated. External address 
locations OOOOH through OOFFH and locations IFOOH 
through IFFFH are reserved for development system 
use and should not be used when using an Intel emula· 
tor. 

Program code or memory mapped peripherals should 
be temporarily relocated before debugging with the 
iSBE·96 emulator. 

Table 6. Memory Configurations for Each Mode 

Mode Allowable Memory Configurations 

0 Monitor 

1 8K x 8 Static RAMs or PROMs installed 

2 8K x 8 Static RAMs or PROMs installed 

3 8K x 8 Static RAMs or PROMs installed 

4 User prototype may be RAM or PROM 

5 User prototype may be RAM or PROM 

6 All memory is on prototype, RAM or PROM 

7 All memory above 7FFH is on prototype, 
RAM or PROM 

3·184 



Ap·273 

7 6 5 4 3 2 o 

I J 
l MO 

M1 

M2 

Reserved for future use 

DT TxRDV Int Enable 

DT RxRDV Int Enable 

DS TxRDV Int Enable 

DS RxRDV Int Enable 

280249-6 

Figure 8. MODE Register Format 

BREAKPOINTS 

When emulation breakpoints or single-step emulation is 
used, the iSBE-96 monitor requires six bytes of the us­
er's stack space. Since the ASM-96 assembler and the 
PL/M-96 compiler do not automatically take this into 
account, an extra six bytes of stack space needs to be 
allocated either explicitly in the code or implicitly with 
the STACKSIZE control of RL-96. 

Since the trap vector (locations 2010H and 2011H) is 
utilized by the iSBE-96 emulator to provide break­
points in emulation and single-step emulation, the trap 
vector locations must remain in RAM space or break­
points and single stepping will not work. The iSB~-96 
emulator could still go into emulation if these locatIOns 
are in ROM or EPROM, but the ability to set break­
points and single-step would be lost. In this case, emu­
lation would be halted by sending an escape « esc» 
command to the iSBE-96 emulator. 

When breakpoints are set, the instruction at the break­
point is executed in single-step mode and not !n real 
time. All other instructions up to the breakpOint are 
executed in real time. Here is one example of how the 
implementation of breakpoints affects debugging pro­
grams. Normally, a break on a PUSHF instruction at 
the start of a low priority interrupt service routine 
should enable the service routine to continue executing 
when emulation is resumed. Because the last instruc­
tion at the breakpoint is executed in non-real time, a 
higher priority interrupt could occur bef?r~ the 
PUSHF instruction is actually executed. If thiS IS the 
case, the higher priority interrupt would be serviced 

before the breakpoint at the PUSHF instruction. The 
breakpoint should be set on the instruction after t~e 
PUSHF if the higher priority interrupts need to be dis­
abled. 

MCS®·96 MICROCONTROLLER INTERRUPTS. 

All interrupt vector locations (2000H-200EH) should 
be initialized. This is a good practice even if the 
iSBE-96 emulator is not used for debug. This will pre­
vent a system lock-up or crash in the event that the 
program unexpectedly enables interrupts. ,!he vectors 
contain random addresses upon power up since the de­
fault memory map for the vector locations is in RAM. 
When a breakpoint is encountered during emulation, or 
while single-stepping, the monitor temporarily writes a 
trap instruction (OF7H) at all locations stored i~ the 
interrupt vectors. This could have adverse effects I~ the 
vector happened to contain the address of a regtster 
location, program data location or an instruction oper­
and. 

Any of the 8097 programmed events based on timer 1, 
timer 2 or external interrupts will continue to occur 
even while emulation ofthe-iSBE-96 emulator has been 
stopped. When resuming emulation,. thes~ interrupts 
may be pending and would be serviced In order of 
priority. This could possibly cause an endles~ loop of 
service routines, overflow of the stack or differences 
between real-time emulation and emulation with break­
points. Any code involving ~eal-time. events that has 
been debugged using breakpOints or slngle-~tep emula­
tion should be verified in full speed, non-Interrupted 
emulation. 

3-185 



inter AP-273 

Table 7. iSBE·96 Monitor Commands 

Monitor Command Function 

BAUD Sets up the baud rate. 

BR Enables display and setting of up to eight software breakpoints .. 

BYTE Enables display and changing of a single byte or range of bytes of memory or a 
single.byte of the 8097 internal registers. 

CHANGE Enables display and changing of a series of memory words or bytes. 

<CONTROL>S Stops scrolling of the screen display. 

<CONTROL>Q Resumes scrolling of the screen display. 

<CONTROL>X Deletes the line being entered, 

<ESCAPE> Aborts the command executing. 

GO Begins emulation and continues until an enabled breakpoint is reached or 
the escape key is pressed. 

LOAD . Loads programs and data from disks. 

MAP Enables mapping of several preprogrammed memory maps; also enables 
configurable serial 110 and selective servicing of the watchdog timer. 

PC Displays and changes the program counter. 

PSW Displays and changes the program status word. 

RESET CHIP Resets the 8096 to power-up conditions. 

SAVE . Saves programs and data to disks. 

SP Displays and changes the stack pointer. 

STEP Provides single~step emulation'with selective display formats. 
.. 

VERSION Displays the monitor version number. 

WORD Enables display and changing of a single word or range of words of'memory.or a 
single word of the 8097 internal registers. 

MCS®·96 Microcontroller Port 3/4 

For anyone reconstructing port· 3 and 4 (lFFEH and 
IFFFH) on their target system,more care must be tak­
en to debug the system. Since partof the port 3/4 re­
construction is an address decoder for IFFEH imd 
IFFFH, the easiest thing to do is to temporarily change 
the mapped address for port 3/4 out of the reserved 
memory block. This means that both the hardware as 
well as the software has to be modified, but this enables 
debugging· the integrated hardware and software. The 
software could automatically change the port i1ddresses 
for debugging with the use of conditional assemble or 
coIripilestatements. 

The other method for debugging port 3/4 requires that 
the hardware and software be debugged separately or at 
least in stageS. The user system, except for the port 3/4 
reconstruction and any code utilizing port 3/4, would 

have to be debugged first. Then, with the iSBE-96 emu­
lator in port 3/4 configuratiOli (using MAP BUSPINS 
= PORT 34), the iSBE-96. emulator would be connect~ 
ed directly to the user's system port 3/4 pins. That is, 
the iSBE-96 port 3/4 pinson connector J4 would be 
connected on the port side of the user's port 3/4 recon­
struction, bypassing it altogether. 

CONNECTING THE iSBE-96. 
EMULATOR TO THE 
IBM PC XT AND AT 

Introduction 

A communications program (driver) is supplied with 
the iSBE-96 emulator so that it can be. used with. an 



Ap-273 

IBM PC XT and AT, as well as an Intel Series III or 
Series IV development system. This driver provides an 
enhanced command set (extensions shown in Table 8) 
for the iSBE-96 emulator and provides access to the 
host system's mass storage. 

The following sections describe the additional features 
provided by the driver. 

iSBE-96 Emulator Additional 
Commands Available 

In addition to the command set provided by the 
iSBE-96 monitor, the driver provides a set of computer 
system interface commands. The additional commands 
provided by the driver are summarized in Table 8. The 
driver provides the proper communications protocol to 
complete the implementation of the iSBE-96 monitor 
LOAD and SAVE command. The LIST command will 
save a copy of everything displayed on the console to a 
system file, creating a complete log of the emulation 
session for future reference. Also, the INCLUDE com­
mand will redirect command input to come from a sys­
tem file. 

iSBE-96 Emulator Symbolic Support 

The iSBE-96 monitor supports the use of symbolics for 
the program counter (PC), program status word 
(pSW), and stack pointer (SP). Additionally, the driver 
supports symbolics for the MCS-96 special function 
registers in the ASM and DASM commands. With this 

feature, the symbolic reference can be to a special func­
tion register when using the ASM and DASM com­
mands rather than the register address, which can be 
cumbersome to remember or look up. Figure 9 contains 
a list of the symbolics supported by the ASM and 
DASM commands. These symbols are compatible with 
the MCS-96 symbols listed in Figure 4. 

MODIFYING THE iSBE-96 EMULATOR 
CLOCK SPEED 

Introduction 

Although it comes standard with a 12 MHz crystal, the 
iSBE-96 emulator is designed to operate at crystal fre­
quencies from 6 MHz to 12 MHz. The iSBE-96 moni­
tor power-up diagnostics include board-level serial port 
tests that take advantage of the 12 MHz crystal fre­
quency. Therefore, to operate the iSBE-96 emulator at 
other crystal frequencies, it is necessary to disable the 
power-up diagnostics. Only two simple modifications 
are needed: altering the monitor code and changing the 
crystal itself. 

iSBE-96 Monitor Patch 

The first modification disables the power-up diagnos­
tics. This is completed by changing the monitor's 3-byte 
CALL instruction to the diagnostics to NOP (no-oper­
ation) instructions. The call to diagnostics is located at 

Table 8. Driver Commands 

Driver Command Function 

ASM Loads memory with translated MCS-96 assembler mnemonics. 

DASM Displays memory as MCS-96 assembler mnemonics. 

EXIT Exits the driver and returns to the host operating system. 

<CONTROL>C Same as for the EXIT command, but will not properly close the system serial port. 

HELP Displays the syntax of all commands. 

INCLUDE Specifies a command file. 

<CONTROL> I Turns the command file on and off. 

<TAB> Same as <CONTROL> I (turns the command file on and off). 

LIST Specifies a list file. 

<CONTROL>L Turns list file on and off. 

<CONTROL>S Stops scrolling of the screen display. 

<CONTROL>Q Resumes scrolling of the screen display. 

<CONTROL>X Deletes the line being entered. 

<ESCAPE> Aborts the command executing. 

3-187 



AP-273 

EPROM address 1046H (monitor address 20SCH). 
The following is a step-by-step explanation of w;bat to 
do to the monitor, version 1.1, to make the patch. 

1. Remove the low-byte monitor EPROM (US3) and, 
using a PROM programmer, copy its contents to the 
PROM prograIrimer data bUffer. 

2. Change bytes 1046H and 1047H; in the data buffer 
from OEFH and 32H, respectiveiy, to OFDH. 

3. Using another 27128 EPROM with 250 nanosecond 
access tUne, program a new monitor ,PROM and 
install it in the iSBE-96 emulator as US3. 

4. Remove the high-byte monitor EPROM (U6l) and, 
using a PROM programmer, copy its contents to the 
PROM programmer data bUffer. ' 

S.Change byte 1046H in the data bUffer from 2CH to 
OFDH. 

6. Using another 27128 EPROM with 250 nanosecond 
access time, program a new monitor PROM and 
install it in the iSBE-96 emulator as U6L 

With this change in place the DIAGS LED on the 
iSBE-96 emulator will not go off after power-up. If for 
any reason you suspect a problem with the iSBE-96 
emulator, reinstall the original monitor PROMs and 
use the power-up diagnostics for system checkout or 
before servicing the iSBB-96 emulator. 

AD_COMMAND 
AD_RESULT 
AD_RESULT _HI 
AD_RESULT _LO 
BAUDRATE 
HSI_MO.DE 
HSI_STATUS 
HSI_TIME 
HSI_ TIME_HI 
HSI_TIMLLO 
HSO_COMMAND 
HSO_TIME 
HSO-':"TIMLHI 
HSO_TIMLLO 
INT_MASK 
INT _PENDING 
lOCO 
IPC1 
10PORTO 
IOPORT1 

iSBE-96 Crystal Modification 
There are now two ways to modify the iSBB-96 emula­
tor to operate at different clock, speeds. The first is by 
far easier and the second involves more work. 

The first method of modifying the iSBB-96 emulator is 
to Simply replace the 12 MHz crystal, Yl, with the 
desired crystal. The only restriction is that the new 
crystal must be between 6 MHz and 12 MHz. 

The second method is to modify the iSBE-96 emulator 
to use the target system crystal frequency. To do this, 
carefully remove crystal Yland capacitors C6 and C7 
from theiSBE-96 emulator. 'The target system crystal 
oscillator should be bUffered with the circnit shown in 
Figure 10. The bUffer output connects to the empiy Yl 
board connection Closest to the edge of the board, as 
shown in Figure 11. The target system clock is also 
limited to 6 MHz through 12 MHz. ' 

Vee 
+5V 

5K 

FROM TARGET 
SYSTEM CRYSTAL 

OSCILLATOR 
:>O-4H~ TO ISBE-96 

280249-7 

Figure 10. External Clock Drive 

IOPORT2 
IOPORT3 
IOPORT4 
10SO 
IOS1 
PWM_CONTROL 
SBUFRX 
SBUFTX 
SP 
SP_CONN 
SP_STAT 
TIMER1 
TIMER1_HI 
TIMERL..;LO 
TIMER2 
TIMERLHI 
TIMERLLO 
WATCHDOG 
ZERO 

Figure 9. ASM and DASM Command Symbol Support LIst 

3-188 



infef AP-273 

E~g:R':J' --

J~7 
CONNECT EXTERNAL 1-/ ISBE-96 
DRIVE CIRCUIT HERE 

8~~~ 

280249-8 

Figure 11_ External Clock Connection 

Care should be taken to ensure adequate digital ground 
connections between the target system and the iSBE-96 . 
emulator. The user cable connected to J4 can be used 
for that purpose. All even numbered pins on J4 (except 
for pin 2) are connected to digital ground on the 
iSBE-96 emulator. 

Before having your iSBE-96 emulator serviced by Intel, 
it should be restored to its original condition. 

MODIFYING THE iSBE-96 
MEMORY MAP 

Introduction 

The iSBE-96 emulator provides seven user memory 
map (mode) selections. There are eight total, but the 
monitor reserves the use of one map, mode zero. The 
iSBE-96 memory maps are illustrated in Figure 7. Even 
though these memory maps fulfill the majority of the 
user's needs, there will be times when a custom memo­
ry map is desired. This can be done easily if you follow 
the guidelines in this section. 

The memory space for the MCS-96 microcontroller, as 
well as the 8097 used on the iSBE-96 emulator, has a 
range from 0 to 64K (OFFFFH) bytes. The 8097 has a 

linear memory space, but the data bus from the off-chip 
memory's even bytes are connected to the low eight 
data pins of the 8097 and the odd bytes are connected 
to the upper eight data pins. Therefore, if the memory 
map needs to be changed, it should be changed along 
even byte boundaries (2K, 4K, 16K, 32K) and should 
account for pairs of byte-wide memory chips (i.e., 
2-2K x 8 and 2-8K x 8). 

There are only two blocks of memory that have restric­
tions on them with the iSBE-96 emulator. These blocks 
are locations 0 through OFFH and IFOOH through 
IFFFH. These blocks are reserved for use by the 
iSBE-96 emulator and should always be mapped ac­
cordingly. 

iSBE·96 Memory Map PROM 

Before changing the iSBE-96 memory map PROM, it 
will help to know what it is and what it does. 

The iSBE-96 memory map PROM (U39) is a 2K x 8 
bipolar PROM. Since PROMs are one-time program­
mable, chances are that any changes will require re­
placement of the PROM. There is one key parameter 
when finding a replacement for the iSBE-96 memory 
map PROM, the time required from valid address on 
the input pins of the PROM to valid data on the output 
pins (tavdv). The iSBE-96 memory map PROM requires 
a tavdv time of 35 nanoseconds or better. An Intel 
3636B-I or any PROM satisfying the time require­
ments and having the standard JEDEC pin configura­
tion can be used. Figure 12 shows the pin out and func­
tional connections of the iSBE-96 memory map 
PROM. 

Since the iSBE-96 memory map PROM is 2K bytes 
and there are eight memory maps, the memory map 
PROM is functionally segmented· into eight blocks of 
256 bytes each. Figure 13 illustrates the map PROM 
block assignments. Each block contains the map for 
one of the eight iSBE-96 monitor memory maps 
(modes) and each byte within a block contains the 
'map' for 256 bytes of the total 64K byte address range. 
Figure 14 shows what the map byte contents should be 
to enable the different memory areas that are re-mappa­
ble. 

The DA T ARAM (locations lOOH through 7FFH) is 
not totally re-mappable. The DA T ARAM can be relo­
cated to any 4K area in the 64K address range, but it 
always has to be at locations 100H through 7FFH in 
that 4K area. 

3-189 



MAP PROM 
Address 

O-OFFH 
100-1FFH 
200-2FFH 
300-3FFH 
400-4FFH 
500-5FFH 
600-6FFH 
700-7FFH 

ADDR8 

ADDR9 

ADDR10 

ADDR 11 

ADDR12 

AD DR 13 

ADDR14 

AD DR 15 

MODE 0 

MODE 1 

MODE 2 

TO +5VTHRU 

10K RESISTOR 

GND 

8 

7 

6 

5 

4 

3 

2 

23 

22 

21 

18 

19 

20 

AP-273 

AO 

A1 

A2 ~ 01 

A3 

A4 

A5 

A6 

A7 

A8 

A9 

A10 

eS3 

eS2 

CS1 

U39 

3636 B-1 

ADDRMAP 

02 

03 

04 

05 

06 

07 

08 

MONITOR PROM SELECT 

MONITOR RAM SELECT 

ROMSIM U49, U57 SELECT 

ROMSIM U52, U60 SELECT 

ROMSIM U50, U58 SELECT 

ROMSIM U48, U56 SELECT 

ROMSIM SELECT 

USER BUS SELECT 

Figure 12. iSBE-96 Address Map PROM 

Monitor 

280249-9 

Memory Mode 

Sample iSBE-96 Memory Map 
Modification 

0 
1 
2 
3 
4 
5 
6 
7 

As an example, let's say I have an iSBE-96 memory 
map that matches the map of the system I am develop· 
ing. The map that I want needs to have locations 100H 
through 10FFH for mapped I/O devices, 1100H 
through 17FFH for scratch pad RAM, and 2000H 
through OFFFFH for my EPROM application. 

Figure 13. MAP PROM Blocks 

The I/O in my system is working, but I don't have the 
scratch pad RAM working yet and I don't want to 
program EPROMs until I have debugged my applica· 
tion program. So, what I really want is the scratch pad 
RAM mapped to iSBE-96 DATARAM and my 
EPROM memory area mapped to iSBE-96 RAM 
(ROMSIM). To accomplish the mapping for the 
EPROM, the iSBE-96 ROMSIM will have to be reo 
placed by larger RAMs, as shown in Figure 15. 

Chip MAP Current MAPPED 
Location Byte Address 

U49-U57 OBBH 2000-2FFFH 
U52-U60 OB7H 3000-3FFFH 
U50-U5B OAFH 4000-4FFFH 
U4B-U56 9FH 5000-5FFFH 

User 7FH -
DATA RAM OBDH 100,...7FFH 

Figure 14. iSBE-96 Map PROM Key 

After looking at the different map modes (see Figure 7) 
I can see that mode 2 is close, but not quite it. So, mode 
2 is the mode that I decide to change. 

3-190 



inter AP-273 

The following are the steps necessary to make the 
change. 

1. Remove U48-USO, US2, US6-US8, and U600n 
the iSBE-96 emulator. 

2. Install 8K x 8, ISO nanosecond tavdy static RAMs in 
their place and jumper the iSBE-96 emulator per 
Table B-2 in the iSBE-96 User's Guide, shown here 
as Table 9. 

3. Remove the iSBE-96 map PROM (U39) and, using 
a PROM programmer, copy its contents to the 
PROM programmer data buffer. 

8Kx8 

U58,U48 

f FFFFH 

U58,U50 

ON 
BOARD 
ROMSIM 

U80,U52· 

U57,U49 

2000H 

4. Change bytes lOOH through IOFFH to 7FH, and 
llOOH through l7FFH to OBDH. 

S. Program a new map PROM and install it as U39. 

The new memory map could now be accessed by enter­
ing MAP MODE = 2 on the iSBE-96 console. 

As you did with the monitor PROMs, the original ad­
dress map PROM should be retained in case the 
iSBE-96 needs to be serviced by Intel. 

2Kx8 

FFFFH 

OFF BOARD 
EXTENDED 
MEMORY 
SPACE 

6000H 

5000H U56,U48 ON BOARD 

4000H U58,USO ROMSIM 

3000H U60,U52 

2000H U57,U49 

280249-10 

Figure 15. 8K x 8 Address Map 

Table 9. 8K X 8 Replacement Jumper Configuration 

Jumper Change 
Function Incorporated by the Change 

Default Replacement 

E13-E14 E14-E15 Connects MA 12 to U48 
E16-E17 E17-E18 Connects MA 12 to U49 
E22-E23 E23-E24 Connects MA 12 to U50 
E31-E32 - E32-E33 Connects MA 12 to U52 
E39-E40 E40-E41 Connects MA 12 to U56 
E47-E48 E48-E49 Connects MA 12 to U57 
E58-E59 E59-E60 Connects MA 12 to U58 
E77-E78 E78-E79 Connects MA 12 to U60 
E19-'E20 OPEN Disconnects U49, U57 pin 26 from VCC(1) 
E36-E37 OPEN Disconnects U48, U56 pin 26 from VCC(1) 
E55-E56 OPEN Disconnects U50, U58 pin 26 from VCC(1) 
E74-E75 OPEN Disconnects U52, U60 pin 26 from VCC(1) 

NOTE: 
1. It may be desirable to leave pin 26· connected to Vee. Check pin out for BKx B device. used. 

3-191 



intJ Ai'-273 

HELPFUL MCS®-96 PROGRAMS FOR 
THE ISBE-96 

Introduction 

During operation we discovered that the iSBE-96 emu­
lator would be even more useful if it had a few more, or 
slightly different, commands. The following sections 
describe some helpful MCS-96 programs that can be 
used on the iSBE-96 emulator to make debugging your 
programs a little easier. ' 

Memory Write Without Read Verify 

As you may have already discovered, the iSBE-96 
BYTE, WORD, and CHANGE commands do a read 
verify after writing the specified memory locations. 
This is very useful for determining if the memory is 
functioning, but requires that the memory be RAM. 
What then do you do if your system has memory 
mapped peripheral devices that access different regis­
ters for a read and write operation? The BYTE and 
WORD commands will write the location(s) correctly, 
but they will display a read verify error message. 

Figure 16 illustrates an ASM-96 program that will per­
form the write to memory without a read verify .. The 
program is located at 100H to correspond to the 
iSBE-96 DataRAM and thereby not intrude into user 
memory space. The program also uses eight bytes of 
internal 8097 register space. Again, so that the program 
does not intrude, the eight register bytes are pushed 
onto the stack and restored upon exit. You will have to 
ensure that there is sufficient stack available. The data 
structure containing the bytes and their respective ad­
dresses is assumed to be structured as follows: 150H 
byte containing the count of data bytes, 152H first data 
byte, '152H + byte count (+ 1 if byte count is odd) 
address for first data byte. ,. 

To use the prograIil, first make sure you ilre in an 
iSBE-96 memory mode that provides DataRAM, then 
load the program object code. Once the program is 
loaded, put the data into the data structure at 150H: 
byte count, data bytes followed by data addresses. To 
execute the program simply type "00 FROM 100 TO 
140". When the program stops at the breakpoint, the 
data bytes will have been written to the specified ad­
dresses. 

Block Memory Move 

If you have ever put something into memory and then 
decided that it should be located at another address, 
then you've probably wanted a block move program. It 
becomes tedious to move data structures or code a byte 
or word at a time. Sometimes it is inconvenient to relo­
cate or link the original object code so that it can be 
loaded at the new location. 

Since the MCS-96 instruction set utilizes relative offsets 
for the majority of the jump and branch instructions, it 
is feasible to move code blocks around. Of course, the 
block of code that you intend to move has to be either 
self-contained or small enough to fit Within that mode 
of addressing. That is; the block of code moved should 
not contain a relative jump or branch to anywhere out­
side the block. 

Figure 17 illustrates an ASM-96 program that will per­
form a block memory move. The program is located at 
200H to correspond with the iSBE-96 DataRAM and 
so that it will not interfere with the write program de­
scribed previously in "Memory Write Without Read 
Verify" section which is located at 1ooH. The program 
uses eight bytes of internal 8097 register space. So that 
t~e program is nonintrusive, the eight register bytes are 
pushed onto the stack and restored upon exit. You will 
have to ensure that there is sufficient stack available. 
The data structure containing the start, stop and desti­
nation addresses is assumed to be structured as follows: 
230H start address, 232H stop address, and 234H desti­
nation address. 

To use the program, f1l'St make sure you are in an 
iSBE-96 memory mode that provides DataRAM, then 
load the program object code. Once the program is 
loaded, put the data into the data structure at 230H: 
start address,' stop address and finally destination ad­
dress. To execute the program simply type "00 
FROM 200 TO 22C". When the program stops at the 
breakpoint, the block of memory will have been moved 
to the 'specified location. 

Writing/Reading an ISBE-96 Terminal 
in Emulation 

There may be times while a program is executing that 
you would like to know how far it has progressed. But, 
you may not wish to use breakpoints to check the prog-

, ress because they change the overall execution speed. 
This is particularly true for programs using real-time 
interrupts, since it may not be possible to use break­
points. Since the iSBE-96 serial ports (DCE and DTE) 
are accessible during emulation, you can include pro­
gram routines that write to a terminal or from the ter­
minal to relay program status or dynamically change 
the program flow, provided you do it with Care. 

The iSBE-96 emulator uses the on-board 8097 NMI 
interrupt to service the DCE and DTE'serial ports. 
This occurs even in emulation since there are some 
commands that are valid during emulation. Therefore, 
care should be taken when utilizing the unused serial 
port for dynamic program status. Since the iSBE-96 
emulator is always connected to the host development 
system via the DCE serial port" a terminal can be con­
nected to the unused DTE serial port. Incidentally, if 
you want to see what you're typing yoUr program will 
need to echo it to the terminal. 

3-192 



inter AP-273 

MCS-96 MACRO ASSEMBLER 8096 Write with no Read Verify Routine 01/14/86 

DOS MCS-96 MACRO ASSEMBLER, V1.0 

SOURCE FILE: WRITE.A96 
OBJECT FILE: WRITE.OBJ 
CONTROLS SPECIFIED IN INVOCATION COMMAND: < none> 

ERR LOC OBJECT LINE SOURCE STATEMENT 
1 $TITLE ('8096 Write with no Read Verify Routine') 
2 
3 
4 Write MODULE MAIN 
5 

0100 6 CSEG at 100h 
7 

0100 C820 8 start: push 20h ;save working registers 
0102 C822 9 push 22h 
0104 C824 10 push 24h 
0106 C826 11 push 26h 
0108 B301500120 12 Idb 20h,150h ;Ioad byte count 
0100 990020 13 cmpb 20h,#0 ;make sure there are 

;bytes to write 
0110 DF26 14 je J3 
0112 B10021 15 Idb 21h,#0 ;initialize registers 
0115 A1520122 16 Id 22h,#152h 
0119 C02420 17 st 20h,24h 
011C 302004 18 jbc 20h,0,J1 ;see if byte count is odd 
011F 65010024 19 add 24h,#1 ; if odd, add 1 for even 

;boundary 
0123 65520124 20 J1: add 24h,#152h ;Ioad location of first byte 

;address 
0127 A22426 21 J2: Id 26h,[24h) ;Ioad data byte address 
012A B22321 22 Idb 21h,[22h) + ;Ioad data byte and 

;increment pointer 
0120 C62621 23 stb 21h,[26h) ;write the byte 
0130 65020024 24 add 24h,#2 ;increment pointer to next 

;address 
0134 1520 25 decb 20h ;done yet? 
0136 D2EF 26 jgt J2 
0138 CC26 27 J3: pop 26h ;restore working registers 
013A CC24 28 pop 24h 
013C CC22 29 pop 22h 
013E CC20 30 pop 20h 
01.40 27FE 31 J4: br J4 ;wait here 

32 
0142 33 END 

280249-11 

Figure 16 

3-193 



inter AP-273 

MCS-96 MACRO ASSEMBLER 8096 Block Memory MOVE Routine 01/14/86 

DOS MCS-96 MACRO ASSEMBLER, V1.0 

SOURCE FILE: MOVE.A96 
OBJECT FILE: MOVE.OBJ 
CONTROLS SPECIFIED IN INVOCATION COMMAND: <none> 

ERR LOC OBJECT LINE SOURCE STATEMENT 
1 $TITLE ('8096 Block Memory MOVE Routine') 

0200 

0200 C820 
0202 C822 
0204 C824 
0206 C826 
0208 A301300220 
0200 A301320222 
0212 A301340224 
0217 882022 

021A DE08 

021C B22126 

021F C62526 

0222 27F3 
0224 CC26 
0226 .CC24 
0228 CC22 
022A CC20 
022C 27FE 

022E 

SYMBOL TABLE LISTING 

N A M E 
J1 .............. . 
J2 .............. . 
J3 .............. . 
MOVE ............ . 
START. .......... . 

ASSEMBLY COMPLETED, 

2 
3 
4 Move 
5 
6 
7 
8 start: 
9 

10 
11 
12 
13 
14 
15 J1: 

16 

17 

18 

19 
20 J2: 
21 
22 
23 
24 J3: 
25 
26 END 

MODULE MAIN 

CSEG at200h 

push 
push 
push 
push 
Id 
Id 
Id 
cmp 

jlt 

Idb 

stb 

br 
pop 
pop 
pop 
pop 
br 

20h 
22h 
24h 
26h 
20h,230h 
22h,232h 
24h,234h 
22h,20h 

J2 

26h,[20h)+ 

26h,[24h)+ 

J1 
26h 
24h 
22h 
20h 
J3 

VALUE. 
0217H 
0224H 
022CH 

0200H 

NO ERROR(S) FOUND. 

Figure 17 

3-194 

;save working registers 

;Ioad start address 
;Ioad end address 
;Ioad destination address 
;make sure there is 
;something to move 
;if equal then only one 
;byte to move 
;Ioad byte and increment 
;source pOinter 
;store byte and increment 
;destination pointer 
;go see if done 
;restore working registers 

;wait here 

ATTRIBUTES 
CODE ABS ENTRY 
CODE ABS ENTRY 
CODE ABS ENTRY 
MODULE MAIN STACKSIZE(O) 
CODE ABS ENTRY 

280249-12 



intJ AP-273 

Figure 18 illustrates the PL/M-96 procedures to read 
and write a terminal connected to the DTE serial port 
on the iSBE-96 emulator and a sample calling program. 
The sample program uses an initial delay to ensure that 
the iSBE-96 NMI line has stabilized so that spurious 
NMI interrupts are not caused by accessing the DTE 
serial port. Figure 19 illustrates steps to compile and 
link the sample program. 

To run the program, first load the sample program ob­
ject code into the iSBE-96 emulator using the LOAD 
command. Then, type "GO FROM 2080 FOREVER". 
When you are ready to stop, press the escape key ,and 
emulation will halt. 

iSBE-96 SERIAL PROTOCOL FOR 
LOAD AND SAVE 

Introduction 

The iSBE-96 emulator has ,a number of resident moni­
tor commands, as described in Table 7. Normally, the 
iSBE-96 emulator is hosted by an IBM PC XT or AT, 
or an Intel Series III or Series IV development system. 
If you have a different host, you must write your own 
software program (driver) that meets the software 
handshaking protocol required by the iSBE-96 emula­
tor. In that way, the resident monitor commands can be 
executed with any computer or terminal connected to 
the iSBE-96 DCE or the DTE serial ports. 

The normal configuration is for the iSBE-96 emulator 
to be attached to a host computer system on the DCE 
port. Alternately, the iSBE-96 emulator can be at­
tached to a terminal on the DTE port, which leaves the 
DCE port free to be connected to a computer. The ter­
minal would be used to enter iSBE-96 debug commands 
(including LOAD and SAVE) and the computer used 
solely for loading and saving MCS-96 program files. 

Whichever way you do it, the proper iSBE-96 serial 
port (DCE,DTE) needs to be mapped appropriately for 
loading, saving, and console connections. The MAP 
CONSOLE command is used to change the serial port 
connection for the console device. The iSBE-96 emula­
tor will default to the port that the console is connected 
to at power up. The MAP SEND command is used to 
designate which serial port the iSBE-96 monitor uses 
for data transfer (sending) for the SAVE command. 
The MAP RECEIVE command is used to designate 
which serial port the iSBE-96 monitor uses for data 
transfer (receiving) for, the LOAD command. 

The next three sections describe the handshaking proto­
col used by the iSBE-96 emulator for loading and sav­
ing files. They provide sufficient information to write 
your own program to load and save programs with the 
iSBE-96 emulator. 

Handshaking Characters 

There are two characters that are used for control dur­
ing the actrial file transfer, EOF (IAH) and ESC 
(IBH). Determination that one ofthe two control char­
acters has been encountered requires the use of a third 
character, DLE (1OH). When transferred as data, the 
DLE, EOF and ESC characters must be prefixed by a 
DLE character. Additionally any data byte when 
ANDed with 7FH that yields one of the control charac­
ters (90H,9AH, and 9BH) also needs to be prefixed by 
a DLE. DLEs sent as prefixes should not be included in 
the byte count and should not be stored as data. 

Loading Files 

The following describes the protocol required by the 
iSBE-96 emulator for loading files. The following ter­
minology is used: <cr> denotes a carriage return; 
Console is the terminal or computer mapped to the 
iSBE-96 CONSOLE device; Sender is the computer 
mapped to the iSBE-96, SEND device; Receiver is the 
computer mapped to the iSBE-96 RECEIVE device. 

1. Console sends 'LOAD <cr>' to the iSBE-96. 

2. iSBE-96 sends an XON (11H) to Console. 

3. Sender sends up to 16,384 bytes and waits for 
iSBE-96 to send an XON (11H). 

4. iSBE-96 processes the, transferred bytes and sends 
an XON (1IH) to Sender. 

5. Steps 3 and 4 are repeated until the transfer is com­
plete. 

6. Sender sends ,an EOF (IAH) to iSBE-96. 

7.' iSBE-96 sends a prompt ('.') to Console. 

If, during the transfer, theiSBE-96 emulator receives 
an unprefixed ESC (IBH) from the Sender or from the 
Console, the load is aborted and an ESC is sent to the 
Sender. The Sender should then respond with an XON 
(llH) to acknowledge the ESC. 

If the end of file is reached at any time during the load, 
the transfer is terminated. The full 16,384 (16KH) 
bytes do not necessarily have to be transferred. 

3-195 



AP-273 

DOS PUM-96V1.0 COMPILATION OF MODULE SAMPLE 
OBJECT MODULE PLACED IN TERMRW.OBJ 
COMPILER INVOKED BY: C:\UDI\PLM96.EXE TERMRW.P96 

2 

3 1 
4 2 
5 3 
6 2 
7 2 
8 2 

9 1 
10 2 
11 2 
12 3 
13 2 
14 2 

15 1 
16 1 

17 1 
18 1 
1~ 1 
20 2 
21 2 
22 1 
23 1 
24 2 
25 3 
26 3 

$tille (' iSBE-96 Terminal Read/Write Sample Program') 
$optimize (3) 
sample: DO; 

1* local declarations *1 
DECLARE msg1(*) 

msg2(*) 
msg3(lIC) 
(I ,char) 

BYTE 

BYTE 
BYTE 
BYTE; 

DATA(44H,61 H, 76H,65H,20H,53H,63H,68H, 
6FH,65H,62H,65H,SCH,20H,69H,73H, 
20H,47H,52H,45H,41 H,54H), 

DATA(OdH,OaH), 
DATA(72H,69H,67H,68H,74H,3FH), 

dLdata . ADDRESS AT (1 FE4H), 
dLstatus ADDRESS AT (1 FE6H), 

bell LITERALLY '07H'; 

1* Procedure declarations *1 
ci: PROCEDURE BYTE PUBLIC; 
DO WHILE «dLstatus AND 02H) = OH); 

END; 
char = dLdata AND 7FH; 
RETURN char; 
ENDci; 

.co: PROCEDURE (char) PUBLIC; 
DECLARE char BYTE; 
DO WHILE «dLstatus AND 1) = 0); 

END; 
dLdata = char; 
END co; 

1* Program starts here *1 
CALL TIME(SO); 
dLstatus = 37H; 

CALL TIME(1); 
char = dLdata; 
DO I =1 TO LENGTH(msg1); 

CALL co(msg1 (1-1 »; 
. END; 

char = 'n'; 
DO WHILE (char = 'n'); 

DO i = 1 TO LENGTH(msg2); 
CALL co(msg2(1-1»; 
END; 

Figure 18 

3-196 

1* wait till RxRDY *1 

1* wait till TxRDY *1 

1* clear any errors on the DTs 8251 A 
USART *1 

1* clear the DT receive buffer *1 

280249-13 



intJ 
27 2 
28 3 
29 3 
30 2 
31 2 
32 2 
34 3 
35 3 
36 3 
37 2 

AP-273 

DO I = 1 TO LENGTH(msg3); 
CALL co(msg3(1-1»; 
END; 

char = ci; 
CALL co(char); 
IF «char< > 'Y') AND (char< > 'y'»THEN DO; 

char = 'n'; 
CALL co(bell); 
END; 

END; 

38 1 DO WHILE 1; 
END; 

1* wait here when done *1 
39 2 

40 END sample; 

MODULE INFORMATION: 

CODE AREA SIZE 
CONSTANT AREA SIZE 
DATA AREA SIZE 
STATIC REGS AREA SIZE 
OVERLAY ABLE REGS AREA SIZE 
MAXIMUM STACK SIZE 
60 LINES READ 

= OODBH 
= 001EH 
= OOOOH 
= 0003H 
= OOOOH 
= 0004H 

2190 
300 
00 
3D 
00 
40 

PUM-96 COMPILATION COMPLETE. o WARNINGS, o ERRORS 

C:\SBE96 >plm96termrw.p96 

DOS PUM-96 COMPILER V1.0 
Copyright Intel Corporation 1983 

Figure 18 (Continued) 

PUM-96 COMPILATION COMPLETE. 0 WARNINGS, 0 ERRORS 

C: \ SBE96 > rl96 termrw.obj,plm96.1ib to termrw.abs stacksize(16) 

DOS MCS-96 RELOCATOR AND LINKER, V2.0 
Copyright 1983 Intel Corporation 
RL96 COMPLETED, 0 WARNING(S), 0 ERROR(S) 

C:\SBE96 > 

Figure 19 

3-197 

280249-15 

280249-14 



inter AP-273 

Saving Flies 

The following describes the protocol required by the 
iSBE-96 emulator for saving files. The following termi­
nology is used: <cr> denotes a carriage return; parti­
tion denotes an address range, specified as 'address TO 
address'; Console.is the terminal or computer mapped 
to the iSBE-96 CONSOLE device; Sender is the com­
puter mapped to the iSBE-96 SEND deviCe; Receiv­
er is the computer mapped to the iSBE-96 
RECEIVE device. 

1. Console'sends 'SAVE partition <cr>' to iSBE-96, 

2. iSBE-96 sends an six (02H) to Receiver. 

3. Receiver acknowledges with an XON (11H) to 
iSBE-96. 

4. iSBE-96 sends up to 16,384 bytes and waits for Re­
ceiver to send an XON (11H). 

5. Receiver processes the'transferred bytes and sends 
an XON (1IH) to the iSBE-96. ' 

6. Steps 4 and 5 are repeated until the transfer is com-
plete. 

7. iSBE-96 sends an EOF (IAH) to Receiver. 

8. iSBE-96 sends a prompt ('.') to Console. 

If, during the transfer, the iSBE-96 emulator receives 
an ESC (IBH) from the Receiver or from the Console, 
the load is aborted and an ESC is sent to the Receiver. 
The Receiver should then respond with an XON (11H) 
to acknowledge the ESC. ' 

If the end of file is reached at iuiy time during the load, 
the transfer is terminated. The full 16,384 (16KH) 
bytes do not necessarily have to be transferred. 

SAMPLE DEBUG SESSION WITH THE, 
iSBE-96 EMULATOR 

The following sample program requires the use of 
PL/M-96, ASM-96, and an iSBE-96 emulator. It as­
sumes the iSB&96 DCE serial port is connected to an 
IBM PC XT or AT and a terminal is connected to the 
iSBE-96 DTE serial port. The terminal should be set 
for full-duplex and 9600 baud operation. 

Sample Program Description 

The MCS-96 program chosen for the sample debug 
session combines and utilizes many of the features 
described throughout this applications note and was 
designed to show as many of the iSBE-96 emulator's 
features as possible. The sample program uses both 
a PL/M-96 main module and an ASM-96 module and 
demonstrates how to link them together. The sample 
program also uses the terminal input/output proce­
dures discussed in the Block Memory Move Section for 

, input to the program and to display status in real-time. 
'Finally, the program makes use of one of the MCS-96 

software timers for basic program timing. 

The PL/M-96 main module is illustrated in Figure 20. 
As shown, the main module contains local declarations, 
procedure declarations,' and the maiuline PL/M-96 
program. Functionally, the program uses software tim­
er 1 to keep a real time clock which is then displayed to 
the terminal connected to the iSBE-96 DT serial port. 
Initially the 'clock' is set by entering the current time 
through the terminal connected to the iSBE-96 DT 
port. 

The ASM-96 module is shown in Figure 21. It contains 
the interrupt service routine for the software timer in­
terrupt which actually does the timing for the 'clock'. It 
also dermes all of the other MCS-96 interrupt vectors 
(2000H to 200FH) to help guard against program run­
away and to avoid program anomolies when debugging 
with the iSBE-96 emulator. ' 

Figure 22 illustrates the ,DOS batch file 
(CLOCK. BAT) used to compile, assemble, and link the 
sample program. The STACKSIZB(20H) control is 
added to the RL96 invocation to allow sufficient stack 
space for the sample program and the six bytes required 
by the iSBE-96 emulator. This batch file assumes that 
PL/M-96, ASM-96 and the utilities, and ,libraries are 
located in a directory called 8096,DIR while the sample 
program modules and batch file are in the home direc­
tory. After entering the sample program modules and 
batch file using a word processor such as ABDIT, the 
sample program can then be assembled, compiled, and 
linked by typing CLOCK followed by an enter. 

If a word processor other than AEDiT is used, you 
should insure that the word processor did not put an 
end of file character(lAH) at the end of the source 
code files since the Intel assemblers and compilers can~ 
not handle it. It can be removed using the DOS copy/b 
command. 

Sample Program Discussion 

Before beginning the sample debug session it may be 
helpful to have a brief synopsis of what the sample pro­
gram does and why, The MCS-96 software timers are 
incremented once every eight state times and the maxi­
mum count possible for the software timers is 65,535 
(64KH). For a 12 MHz input crystal frequency, a state 
,time is 250 ns. Therefore, orie second can be expressed 
as: 1 = 1/(250E-9 • 8 • 65,535 • X) where X is the 
number of times the software timer completes the speci­
fied number' of counts (time-outs). If you solve for X 
you will find that X = 7.6295. This tells us that we 
need seven time-outs at the maximum count and 
one time-out at a count of 41,254 (65,535 * 0.6295). 

3-198 



inter AP-273 

PUM-96 COMPILER iSBE-96 Sample Debug Program 

DOS PUM-96 V1.0 COMPILATION OF MODULE CLOCK 
OBJECT MODULE PLACED IN CLOCK.OBJ 
COMPILER INVOKED BY: C:\UDI\PLM96.EXE CLOCK.P96 

2 

$title (' iSBE-96 Sample Debug Program') 
$optimize (3) 
clock: DO; 

1* local declarations *1 
DECLARE bell '07H', 

'08H', 
'WHILE 1', 
'0', 
'NOT FALSE', 
'BYTE', 
DATA(OdH,OaH), 
DATA(O,O,':',O,O,':',O,O), 
FAST, 

BS 
FOREVER 
FALSE 
TRUE 
BOOLEAN 
msg1(*) 
msg2a(*) 
msg2(8) 
msg3(*) 
(I,char) 
seconds 
minutes 
hours 

LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE, 
BYTE, 
BYTE, 
BYTE, 
BYTE 
WORD 
BYTE 
BYTE, 
BOOLEAN, 
BOOLEAN, 
WORD 
BYTE 
BYTE 
BYTE 
WORD 
ADDRESS 
ADDRESS 

DATA('sel time - hh:mm:ss <cr> '), 

tick 
tock 
count 
count1 
not$done 
not$first 
HSO_TIME 
HSO_CMD 
INT_MASK 
INLPENDING 
TIMER1 
dLdata 
dLstatus 

1* Procedure declarations *1 
3 1 ci: PROCEDURE BYTE PUBLIC; 
4 2 DO WHILE «dLstatus AND 02H) = OH); 
5 3 END; 
6 2 char = dLdata AND 7FH; 
7 2 RETURN char; 
8 2 END ci; 

9 1 co: PROCEDURE (char) PUBLIC; 
10 2 DECLARE . . char BYTE; 
11 2 DO WHILE «dLstalus AND 1) = 0); 
12 3 END; . 

Figure 20 

3-199 

FAST PUBLIC, 
PUBLIC, 
EXTERNAL, 

AT (04H), 
AT (06H), 
AT (08H), 
AT (09H), 
AT (OAH), 
AT (1FE4H), 
AT (1FE6H); 

1* wail till RxRDY *1 

1* wait till TxRDY *1 

280249-16 



inter 
13 2 
14 2 

15 1 
16 2 

17 2 
18 2 
19 2 

20 1 
21 2 

22 2 
23 2 
24 2 
25 2 
26 2 

27 1 
28 2 
29 2 
30 3 
31 3 
32 2 

33 

34 
35 
36 
37 
38 
39 
40 
41 1 
42 2 
43 2 
44 1 
45 1 
46 2 
47 2 

49 3 
50 3 
51 4 
52 4 
53 4 

AP-273 

dLdata = char; 
END co; 

init$DT: PROCEDURE PUBLIC; 
dLstatus = 37H; 

CALL TIME(1); 

1* clear any errors on the DTs 
8251A USART *1 

char = dLdata; 1* clear the DT receive buffer *1 
END init$DT; 

ascii: PROCEDURE (value,dest$ptr) PUBLIC; 
DECLARE (value,temp) BYTE, 

dest$ptr ADDRESS, 
(dest BASED dest$ptr) (2) BYTE; 

value = SHL«value/10).4) + (value MOD 10); 1* convert to BCD *1 
temp = value; 
dest(O) = SHR(temp.4) + 30H; 1* convert to ASCII decimal value *1 
dest(1) = (value AND OFH) + 30H; 
END . ascii; 

print$msg1: PROCEDURE; 
DECLARE I BYTE; 
DO I = 1 TO LENGTH(msg1); 

CALL co(msg1(1·1)); 
END; 

END print$msg1 ; 

1* Program starts here *1 
CALL TIME(50); 

CALL init$DT; 
count,count1 = 0; 
not$done = TRUE; 
not$first,tick = FALSE; 
seconds,minutes,hours = 0; 
CALL movb(.msg2a,.msg2,LENGTH(msg2a)); 
CALL print$msg1 ; 
DO I = 1 TO LENGTH(msg3); 

CALL co(msg3(1·1 )); 
END; 

CALL print$msg1; 
DO WHILE not$done; 

char = ci; 
IF «char> = 30H) AND (char< = 39H)) THEN 

DO; 
CALL co(char); 
DO CASE count1; 

1* delay to insure iSBE·96 NMIline 
is stable *., 
1* initialize DT serial port *1 
1* Initialize variables *1 

1* query for initial time *1 

1* input initial time values *1 

hours = SHL(hours.4) + (char -30H); 1* inputASCIl and convert to BCD *1 
minutes = SHL(minutes,4) + (char - 30H); 
seconds = SHL(seconds.4) + (char - 30H); 

280249-17 

Figure 20 (Continued) 

3·200 



intJ AP-273 

54 4 END; 
55 3 END; 
56 2 ELSE IF (char = ':') THEN DO; 
58 3 count1 = count1 + 1; 
59 3 CALL co(char); 
60 3 END; 
61 2 ELSE IF (char = ODH) THEN not$done = FALSE; 
63 2 ELSE CALL co(bell); 
64 2 END; 
65 1 CALL print$msg1 ; 
66 hours = (SHR(hours.4) * 10) + (hours AND OFH); 1* convert BCD to hex *1 
67 minutes = (SHR(minutes.4) * 10) + (minutes AND OFH); 
68 seconds = (SHR(seconds,4) * 10) + (seconds AND OFH); 
69 CALL print$msg1; 
70 HSO_CMD = 38H; 1* set-up software-timer1 interrupt and TIMER1 as clock source *1 
71 tock = TIMER1 + 62500; 1* load initial timer count for 

interrupt *1 
72 HSO_TIME = tock; 
73 INLMASK= 20H; 1* set mask to select only software timer 

interrupts *1 
74 INLPENDING = 0; 1* clear interrupt pending register *1 
75 1 ENABLE; 1* enable interrupts *1 
76 1 DO FOREVER; 1* start the 'clock' *1 
77 2 IF tick THEN DO; 
79 3 tick = FALSE; 
80 3 seconds = seconds + 1; 

$CODE 
81 3 IF (seconds = 60) THEN DO; 
83 4 seconds = 0; 
84 4 minutes = minutes + 1; 
85 4 IF (minutes = 60) THEN DO; 
87 5 minutes = 0; 
88 5 hours = hours + 1; 
89 5 IF (hours = 24) THEN hours = 0; 
91 5 END; 
92 4 END; 
93 3 CALL ascii(seconds,.msg2(0»; 1* convert hex times to decimal 

ASCII *1 
94 3 CALL ascii(minutes,.msg2(3»; 
95 3 CALL ascii(hours,.msg2(6»; 
96 3 IF not$first THEN DO; 
98 4 DOl == 1 TO 8; 1* backspace to beginning of line *1 
99 5 CALL co(BS); 

100 5 END; . 
101 4 END; 
102 3 DO I = 1 TO LENGTH(msg2); 1* print the 'clock' time *1 
103 4 CALL co(msg2(1»; 

280249-18 

Figure 20 (Continued) 

.3-201 



inter AP-273 

104 4 END; 
$NOCODE 

105 3 not$first = TRUE; 
106 3 END; 
107 2 END; 

108 END clock; 

PUM-96 COMPILER iSBE-96 Sample Debug Program 
ASSEMBLY LISTING OF OBJECT CODE 

; STATEMENT 81 
01E7 993COC R CMPB SECONDS,#3CH 
01EA D714 BNE. @0019' ,. 

; STATEMENT· , 83 
'01EC 110C R .CLRB SECONDS 

; STATEMENT 84 
01EE 170D R INCB MINUTES 

; STATEMENT, 85 
01FO 993COD R CMPB MINUTES,#3CH 
01F3 D70B BNE @0019 

; STATEMENT 87 
01F5 110D R CLRB MINUTES·. 

; STATEMENT , 88 
01F7 170E R INCB HOURS 

; STATEMENT 89 
01F9 99180E R CMPB HOURS,#18H 
01FC D702 BNE @OO19 

; STATEMENT 90 
01FE 110E R CLRB HOURS 

; STATEMENT 93 
0200 @0019: 
0200 ACOC1C R LDBZE TMPO,SECONDS 
0203 C81C PUSH. TMPO 
0205 C90000 R PUSH #MSG2 
0208 2E60 CALL ASCII 

; STATEMENT 94 
020A ACOD1C. R LDBZE TMPO,MINUTES 
020D C81C PUSH TMPO 
020F C90300 R ,PUSH #MSG2+3H 
0212 2E56 CALL AS,CII· 

; STATEMENT 95 
0214 ACOE1C R LDBZE TMPO,HOURS 
0217 C81C PUSH TMpO· 
0219 C90600 R PUSH #MSG2+6H 
021C 2E4C CA\..L ASCII 

280249-19 

Figure 20 (Continued) 

3-202 



inter AP-273 

STATEMENT 96 
021E 301211 R BBC NOTFIRST,OH,@OO1C 

STATEMENT 99 
0221 B1010A R LOB 1,#1H 
0224 @0010: 
0224 99080A R CMPB 1,#8H 
0227 0909 BH @001C 
0229 C90800 PUSH #8H 
022C 2EOB CALL CO 

STATEMENT 100 
022E 170A R INCB I 
0230 07F2 BNE @001O 

STATEMENT 102 
0232 @001C: 

STATEMENT 103 
0232 B1010A R LOB 1,#1H 
0235 @001F: 
0235 ACOA1C R LOBZE TMPO,I 
0238 8908001C CMP TMPO,#8H 
023C 0910 BH @0020 
023E ACOA1C R LOBZE TMPO,I 
0241 AF1000001C R LOBZE TMPO,MSG2[TMPO] 
0246 C81C PUSH TMPO 
0248 20EF CALL CO 

, STATEMENT 104 
024A 170A R INCB I 
024C 07E7 BNE @001F 
024E @0020: 

MOOULE INFORMATION: 

COOE AREA SIZE = 0231H 5610 
CONSTANT AREA SIZE = 0022H 340 
OATA AREA SIZE = OOOOH 00 
STATIC REGS AREA SIZE = 0019H 250 
OVERLAYABLE REGS AREA SIZE = OOOOH 00 
MAXIMUM STACK SIZE = OOOAH 100 
145 LINES REAO 

PUM-96 COMPILATION COMPLETE. o WARNINGS, o ERRORS 
280249-20 

FIgure 20 (Continued) 

3-203 



AP-273 

MCS-96 MACRO ASSEMBLER Sample Debug Program -Interrupt Service Routine 

DOS MCS-96 MACRO ASSEMBLER, V1.0 

SOURCE FILE: TIMER.A96 
OBJECT FILE: TIMER.OBJ 
CONTROLS SPECIFIED IN INVOCATION COMMAND: < none> 

ERR LOC OBJECT LINE SOURCE STATEMENT 

0004 
0006 
boOA 

0000 

0000 

2000 

2000 
2002 
2004 
2006 
2008 
200A 
200C 
200E 

1800 R 
1800 R 
1800 R 
1800 R 
1800 R 
0000 R 
1800 R 
1800 R 

1 $TITLE (,Sample Debug Program -Interrupt Service 
Routine') 

2 
3 
4 
5 
6 
7 
8 

9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

TIMER MODULE 

;Externals 

EXTRN tick 

EXTRN took 

;Publics 

PUBLIC count 

;Local variables 

HSO_TIME 
HSO_CMD 
TIMER1 

RSEG 

count: 

Eau 
EaU 
EaU 

DSB 

:BYTE ;tick is declared FAST 
so will be in internal RAM 
:WORD ;contains first 
HSO_TIME setting 

04H:WORD ; Write only 
06H:BYTE ; Write only 
OAH:WORD ; Read only 

;vector table - only the software timer should be accessed 

CSEG at 2000h 

DCW 
DCW 
DCW 
DCW 
DCW 
DCW 
DCW 
DCW 

;service routines 

Figure 21 

3-204 

oops 
oops 
oops 
oops 
oops 
tovfl 
oops 
oops 

;timecOverflow 
;ADdone 
;HSLDatLAvaiiable 
;HSO_Execution 
;HSIO 
;SW_timers 
;SeriaUO 
;ExternaUnterrupt 

280249-21 



intJ AP·273 

39 
0000 40 CSEG 

41 
0000 F2 42 Tovfl: PUSHF 

0001 1700 R 43 INCB count 

0003 990800 R 44 CMPB count,H8 

0006 0706 45 JNE 100p1 

0008 B1FFOO E 46 LOB tick,HOFFH ;set 'tick' = TRUE 

OOOB B10000 R 47 LOB count,HO 

OOOE B13806 48 100p1: LOB HSO_CMD,H38H ;reload HSO 
CAM 

0011 4524F40004 E 49 ADD HSO_TIME,tock,H62500 

0016 F3 50 POPF 
0017 FO 51 RET 

52 
0018 F2 53 Oops: PUSHF ;arriving here means an 

interrupt occurred which 

0019 FD 54 NOP ; should not have occurred. 
This is also used to 

001A FD 55 NOP ; initialize all the interrupt 
vectors for bebugging 

001B F3 56 POPF ; with the iSBE·96. 

001C FO 57 RET 
58 

0010 59 END 

MCS·96 MACRO ASSEMBLER Sample Debug Program ·Interrupt Service Routine 

SYMBOL TABLE LISTING 

NAME 

COUNT ................ ; ................ . 
HSO_CMD .............................. . 
HSO_TIME .............................. . 
LOOP1 ................................. . 
OOPS .................................. . 
TiCK ................................... . 
TIMER .................................•. 

VALUE 

OOOOH 
0006H 
0004H 
OOOEH 
0018H 

TIMER1 ................................ ; . OOOAH 
TOCK ................................... . 
TOVFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OOOOH 

ASSEMBLY COMPLETED, NO ERROR(S) FOUND. 

Figure 21 (Continued) 

3·205 

ATTRIBUTES 

REG RELPUBLIC BYTE 
NULL ABS BYTE 
NULL ABS WORD 
CODE REL ENTRY 
CODE REL ENTRY 
NULL EXTERNAL BYTE 
MODULE STACKSIZE(O) 
NULL ABS WORD 
NULL EXTERNAL WORD 
CODE REL ENTRY 

280249-22 



AP-273 

Since it is much easier to have an integer number for a 
loop counter, by setting the number of time-outs to 
eight we fmd that the count needed is 62,500. This 
number may eventually have to be tweaked because we 
did not account for the time required to service the 
interrupt itself or the tolerance of the 12 MHz crystal 
on the iSBE-96 emulator, but for our purposes it is 
close enough. 

After prompting for the initial time, the sample pro­
gram converts the input ASCII characters to hexadeci­
mal. It then initializes software timer 1 to use TIMER 
1 as a clock source and signal· for an interrupt upon 
reaching the specified time (a count of 62,5(0), which is 
then input to the HSO time register. The software timer 
interrupt service routine keeps count of the number of 
times it is activated and on the eighth pass it sets a flag 
which allows the mainline program to increment the 
'clock'. The current 'clock' time is then converted to 
decimal ASCII and displayed on the terminal connect­
ed to the iSBE-96 DTE serial port. 

Sample Debug Session 

After generating the files CLOCK.P96 and 
TIMER.A96 as shown in Figures 20 and 21 respective­
ly, use the DOS batch file as show to generate the abso­
lutely located object code (CLOCK.ABS). Figure 20 
contains a partial assembly code listing of the PL/M-96 
program module (compiled with the CODE and 
NOCODE controls). The code listing is needed for de­
bugging with the iSBE-96 emulator since it does not 
support PL/M-96 symbols or line numbers. For the 
sake of a manageable illustration only part of the as­
sembly code was generated for the PL/M-96 module. 
The segment map and symbol table generated by RL96 
for the sample program (CLOCK.M96) is shown in 
Figure 22. The segment map shows the address of the 
instructions of the program since the addresses of the 
relocatable code in the listing are only relative module 
addresses. 

Once the linked object module has been generated, in­
voke the iSBE-96 driver software which will sign on 
with the version number and establish communications 
with the iSBE-96 emulator. The sample program can 
then be loaded by typing LOAD CLOCK.ABS <cr>. 
After the sample program object code has been loaded, 
begin emulation by typing GO. 

You will now be prompted on the terminal to set the 
current time, 'set time hh:mm:ss <cr>' where <cr> 

plm96 clock.p96 
asm96 timer.a96 

represents a carriage returu or enter. After entering the 
time and carriage return, you will notice that the 'clock' 
display appears to ):lackup across the screen on the ter­
minal. If you look closely, the hours and seconds also 
appear to be transposed. Press the escape key on the 
IBM PC XT or AT, (referred to from now on as the 
console) to stop emulation. It should be clear that our 
sample program has two separate problems, relative 
clock print-out position and transposed hours and sec­
onds. 

First let's tackle the print-out position problem. By re­
ferring to the PL/M-96 module listing (Figure 20), we 
discover that the current time is printed out by the DO 
loop in lines 102 through 104. H you compare these 
lines with procedure 'print$msgl', you will see that the 
message index in line 103 should be 1-1. This would 
cause us to only print out 7 of the eight characters. But, 
the DO loop in lines 98 through 100 backspaces eight 
characters. These could very well cause the position 
problem. . 

To confirm this we first need to consult the assembly 
code listing section of the PL/M-96 module listing and 
the link map (Figures 20 and 23), to obtain the address 
of line 102. The associated line number is printed on 
the right-hand margin in the assembly code section of 
thePL/M-96 listings (Figure 20). Since PL/M-96 al-. 
ways places procedures and constants at the beginning 
of code, the start address for line 102 is 0232H + 
2084H = 22B6H. To verify this we can type DASM 
22B6 to 2205 on the console. The resultant dissassem­
bly display is shown in Figure 24. After comparing the 
display to the listing we can verify that we have the 
correct address. 

To correct the problem we need to load TMPO (ICH) 
with 1-1 (2EH) and, because TMPO is then used as an 
index, we need to ensure that the high byte (lOH) for 
word pointer lCH is clear. As you probably already 
have guessed, the three byte instruction at 22C2H does 
not give us enough room to do all that. Therefore, we 
must branch to a non-used area (above 230DH from 
the link map), add the necessary instructions, and then 
branch back into the instruction stream. This can. be 
done by typing the following on the console: 

ASM 22C2 = BR +4AH <cr>,<cr> 
ASM 230E = LOB 1C,2E <cr> 
OECB 1C <cr> . 
CLRB 10 <cr> 
BR -53H <cr>,<cr> 

rl96 clock.obj,tlmer.obj,plm96.lib to clock.abs stacksize(20H) 

Figure 22 

3-206 



intJ 

DOS MCS-96 RELOCATOR AND LINKER, V2.0 
Copyright 1983 Intel Corporation 

AP-273 

INPUT FILES: CLOCK.OBJ, TIMER.OBJ, PLM96.LlB 
OUTPUT FILE: CLOCK.ABS 
CONTROLS SPECIFIED IN INVOCATION COMMAND: 

STACKSIZE(20H) 

INPUT MODULES INCLUDED: 
CLOCK.OBJ(CLOCK) 01/14/86 13:28:27 
TIMER.OBJ(TIMER) 01114/86 13:28:38 
PLM96.LlB(PLMREG) 11/02183 
PLM96.LlB(TIME) 11/02183 

SEGMENT MAP FOR CLOCK.ABS(CLOCK): 

TYPE BASE LENGTH ALIGNMENT MODULE NAME 

**RESERVED* OOOOH 001AH 
REG- 001AH 0001H BYTE TIMER 

*** GAP *** 001BH - 0001H 
REG 001CH 0008H ABSOLUTE PLMREG 
REG 0024H 0019H WORD CLOCK 

*** GAP *** 003DH 0001H 
STACK 003EH 0020H WORD 

*** GAP *** 005EH 1F86H 
DATA 1FE4H 0002H ABSOLUTE CLOCK 
DATA 1FE6H 0002H . ABSOLUTE CLOCK 

*** GAP *** 1FE8H 0018H 
CODE 2000H 0010H ABSOLUTE TIMER 

*** GAP *** 2010H 0070H 
CODE 2080H 0OO3H ABSOLUTE CLOCK 

*** GAP *** 2083H 0001H 
CODE 2084H 0253H WORD CLOCK 
CODE 22D7H 001DH BYTE TIMER 
CODE 22F4H 0019H BYTE TIME 

***GAP *** 230DH DCF3H 

ATTRIBUTES VALUE NAME 

SYMBOL TABLE FOR CLOCK.ABS(CLOCK): 

PUBLICS: 
REG BYTE 0033H TICK 
REG WORD 002CH TOCK 
CODE ENTRY 20A6H CI 

280249-23 

Figure 23 

3-207 



AP-273 

CODE ENTRY 20BDH CO 
CODE ENTRY 20DAH INITDT 
CODE ENTRY 20EEH ASCII 
REG BYTE 001AH COUNT 
REG NULL 001CH PLMREG 
CODE ENTRY 22F4H ??TIME 
NULL NULL 005EH MEMORY 
NULL NULL 1F86H ?MEMORY _SIZE 

MODULE: CLOCK 

MODULE: TIMER 

MODULE: PLMREG 

MODULE: TIME 

RL 96 COMPLETED, o WARNING(S), o ERROR(S) . 

Figure 23 (Continued) 

*dasm 22b6 to 22d5 

ADDRESS DATA MNEMONIC OPERANDS 
22B6H B1012E LDB 2E,#01 
22B9H AC2E1C .. .LDBZE 1C,2E 
22BCH 8908001C CMP 1C,#0008 
22COH D910 JH $+12 
22C2H AC2E1C LDBZE 1C,2E 
22C5H AF1D24001C LDBZE 1 C,0024 [1 C] 
22CAH C81C PUSH 1C 
22CCH 2DEF SCALL $-020F 
22CEH 172E INCB 2E 
22DOH D7E7 JNE $-17 
22D2H B1FF36 . LDB 36,#FF 

* 

Figure 24 

3-208 



inter AP-273 

We must now restart emulation to see if this patch fixes 
the position problem. To restart emulation type GO 
FROM 2080 on the console. After setting the time on 
the terminal, we see that this did fix the position prob­
lem. 

Now to fix the problem with the hours and seconds 
transposed on the 'clock' print-out. By consulting the 
PL/M-96 module listing (Figure 20), we see that the 
times are converted and put into printable message for­
mat by lines 93 through 95. Comparing those lines with 
the format declarations of messages 2a and 3 in line 2, 
we see that lines 93 and 95 use the wrong index into 
message 2 for storing seconds and hours. 

To confirm this we again need to consult the assembly 
code listing section of the PL/M-96 module listing and 
the link map (Figures 20 and 23), to obtain the address 
of line 93. The address for line 93 turns out to be 0200H 
+ 2084H = 2284H. We verify this by typing DASM 

*dasm 2284 to 22aa 

ADDRESS DATA MNEMONIC 
2284H AC301C LDBZE 
2287H C81C PUSH 
2289H C92400 PUSH 
228CH 2E60 SCALL 
228EH AC311C LDBZE 

. 2291H C81C PUSH 
2293H C92700 PUSH 
2296H 2E56 SCALL 
2298H AC321C LD8ZE 
229BH C81C PUSH 
229DH C92AOO PUSH 
22AOH 2E4C SCALL 
22A2H 303611 JBC 
22A5H B1012E LDB 
22A8H 99082E CMPB 

2284 TO 22AA on the console .. After comparing the 
resultant display (Figure 25) and the code listing, we 
can see that we have the correct address. To correct the 
problem we need to swap the instruction at 2289H with 
the instruction at 229DH. This can be done by typing 
the following on the console: 

ASM 2298 = PUSH #2A <cr>,<cr> 
ASM 2290 = PUSH #24 <cr>,<cr> 

We must now restart emulation to see if this fixes the 
problem. To restart emulation where we left off, type 
GO on the console. Checking the terminal, we can see 
that this does fix the transposition problem and the 
'clock' print-out is correct. 

Now that we have confirmed that our fixes correct the 
problems, the PL/M-96 module should be updated' to 
incorporate those corrections. The debugged PL/M-96 
module is illustrated in Figure 26. 

OPERANDS 
1C,30 
1C 
#0024 
$-019E 
1C,31 
1C 
#0027 
$-01A8 
1C,32 
1C 
#002A 
$-0182 
36,00,$+14 
2E,#01 
2E,#08 

Figure 25 

3-209 



inter 
$title (' iSBE-96 Sample DebugProgram') 
$optimize (3) 

. clock: DO; 

1* local declarations *1 
DECLARE bell 

BS 
FOREVER 
FALSE 
TRUE 
BOOLEAN 
msg1(*) 
msg2a(*) 
msg2(8) 
msg3(*) 
(I,char) 
seconds 
minutes 
hours 
tick 
tockWORDPUBLlC, 
count 
count1 . 
not$done 
not$first 
HSO_TIME 
HSO_CMD 
INLMASK 
INLPENDINGBYTEAT (09H), 
TIMER1 
dLdata 
dLstatus 

1* Procedure declarations *1 

AP-273 

LITERALLY 
LITERALLY 

. LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE, 
BYTE, 
BYTE, 
BYTE, 
BYTE 

BYTE 
• BYTE, 
..BOOLEAN, 

BOOLEAN, 
WORD 
BYTE 
BYTE 

WORD 
ADDRESS 
ADDRESS 

'07H', 
'08H', 
'WHILE 1', 
10', 
'NOT FALSE', 
'BYTE', 
DATA(OdH ,OaH), 
DATA(O,O, ':',0,0, ':',0,0), 
FAST, 
DATA('set time - hh:mm:ss < cr > '), 

FAST PUBLIC, 

EXTERNAL, 

AT (04H), 
AT (06H), 
AT (08H), 

AT (OAH), 
AT (1FE4H), 
AT (1FE6H); 

ci: PROCEDURE ' BYTE PUBLIC; 
DO WHILE «dLstatus AND 02H) = OH); 

END; 
char = dLdata AND 7FH; 
RETURN char; 
END ci; 

co: PROCEDURE (char) PUBLIC; 
DECLARE char BYTE; 
DO WHILE «dLstatus AND 1) = 0); 

END; 
dLdata = char; 
END co; 

init$DT: PROCEDURE 
dLstatus = 37H; 

PUBLIC; 

Figure 26 

3-210 

1* wait till RxRDY *1 

1* wait till TxRDY *1 

1* clear any errors on the DTs 8251A USART *1 
280249-24 



inter Ap·273 

CALL TIME(1); 
char = dLdata; 1* clear the DT receive buffer *1 
END init$DT; 

ascii: PROCEDURE (value,dest$ptr) PUBLIC; 
DECLARE (value,temp) BYTE, 

dest$ptr ADDRESS, 
(dest BASED dest$ptr) (2) BYTE; 

value = SHL((value/10),4) + (value MOD 1 0); 1* convert 10 BCD *1 
lemp = value; 
desl(O) = SHR(temp,4) + 30H; 1* convert 10 ASCII decimal value *1 
dest(1) = (value AND OFH) + 30H; 
END ascii; 

print$msg1: PROCEDURE; 
DECLARE I BYTE; 
DO I = 1 TO LENGTH(msg1); 

CALL co(msg1(1-1)); 
END; 

END prinl$msg1 ; 

1* Program starts here *1 
CALL TIME(50); 
CALL init$DT; 
count,count1 = 0; 
not$done = TRUE; 
not$first,tick = FALSE; 
seconds,minutes,hours = 0; 
CALL movb(.msg2a,.msg2,LENGTH(msg2a)); 
CALL print$msg1; 
DO I = 1 TO LENGTH(msg3); 

CALL co(msg3(1-1 )); 
END; 

CALL print$msg1; 
DO WHILE not$done; 

char = ci; 
IF ((char> = 30 H) AND (char< = 39H)) THEN DO; 

CALL co(char); 
DO CASE count1 ; 

hours = SHL(hours,4) + (char - 30H); 
minutes = SHL(minutes,4) + (char - 30H); 
seconds = SHL(seconds,4) + (char - 30H); 
END; 

END; 
ELSE IF (char = ':') THEN DO; 

count1 = count1 + 1; 
CALL co(char); 
END; 

ELSE IF (char = ODH) THEN not$done = FALSE; 

1* delay to insure iSBE-96 NMIline is stable *1 
1* initialize DT serial port *1 
1* initialize variables *1 

1* query for initial time *1 

1* input initial time values *1 

1* input ASCII and convert to BCD *1 

280249-25 

Figure 26 (Continued) 

3-211 



Ap·273 

ELSE CALL co(bell); 
END; 

CALL print$msg1; 
hours = (SHR(hoursA) * 10) + (hours AND OFH); 1* convert BCD to hex *1 
minutes = (SHR(minutesA) * 10) + (minutes AND OFH); 
seconds = (SHR(secondsA) * 10) + (seconds AND OFH); 
CALL print$msg1; 
HSO_CMD = 38H; 

tock = TIMER1 + 62500; 
HSO_TIME = tock; 
INT _MASK = 20H; 

INT _PENDING = 0; 
ENABLE; 
DO FOREVER; 

IF tick THEN DO; 
tick = FALSE; 
seconds = seconds + 1; 

$CODE 
IF (seConds = 60) THEN DO; 

seconds = 0; 
minutes = minutes + 1; 
IF (minutes = 60) THEN DO; 

minutes = 0; 
hours = hours + 1; 
IF (hours = 24) THEN hours = 0; 
END; 

END; 
CALL ascii(seconds,.msg2(6»; 
CALL ascii(minutes,.msg2(3»; 
CALL ascii(hours,.msg2(0»; 

IF not$first THEN DO; 
DO 1= 1 TO 8; 

CALL co(BS); 
END; 

END; 
DO I = 1 TO LENGTH(msg2); 

CALL co(msg2(1-1»; 
END; 

$NOCODE 
not$first = TRUE; 
END; 

END; 

END clock; 

1* set-up software-timer1 interrupt and 
TIMER1 as clock source *1 
1* load initial timer count for interrupt *1 

1* set mask to select only software timer 
interrupts *1 
1* clear interrupt pending register *1 
1* enable interrupts *1 
1* start the 'clock' *1 

1* convert hex times to decimal ASCII *1 

1* backspace to beginning of line *1 

1* print the 'clock' time *1 

280249-26 

Figure 26 (Continued) 

3-212 



Network Development 
Systems 4' 





OpenNETTM 
NETWORK RESOURCE MANAGER (NRM) 

iMDX 460 

• Ethernet-Based File Server to Connect 
-Intellec Series II/III/IV 
-Model 800 
- Compilengine 
-Intel XENIX· and iRMXTM-Based 

System 
-VAX*/MicroVAX· Running VMS 
- DOS 3.1 (and up)-Based PCs 

• Runs 8- and 16-Bit Languages 

• Protected Hierarchical File System 

• Remote Job Execution for Distributed 
Processing . 

·XENIX is a registered trademark of the Microsoft Corp. 

• Shared Resources 
- Central Disk Storage up to 560 MB 
- 60 MB Streaming Tape 
- Shared Spooled Line Printer 

• High-Performance Hardware 
-iSBC® 286/12, 8 MHz CPU Board 

with One Megabyte of Zero Wait­
State RAM 

-iSBC® 214 Disk Controller with a 
Dedicated 80186 CPU and Track 
Caching 

280173-1 

·V AX. MicroV AX. VMS and DEC are registered trademarks of Digital Equipment Corp. 

4·1 
November 1986 

Order Number: 280173·002 



inter iMDX460 

OVERVIEW 

The OpenNET NRM is a network file server opti­
mized for a distributed development systems envi­
ronment. Workstations on the network address the 
hardware engineer's needs by providing the base 
environment for tools such as in-circuit emulators 
and PROM programmers. Furthermore, workstations 
support software' engineering teams-hosting soft­
ware tools such as compilers, software debuggers, 
and project management tools. For a project team, 
the OpenNET NRM creates a network that provides 
the dual advantage of a powerful desk-top computer 
and access to shared resources on a high-speed 
standard network. These capabilities include trans­
parent file access to shared files, remote job execu­
tion, and print spooling. The OpenNET NRM is plug­
compatible with the original NOS-II NRM. 

FUNCTIONAL DESCRIPTION 

The OpenNET NRM manages all workstation re­
quests for centralized network resources. These 
tasks include service of workstation file access re­
quests, print spooling, management of remote job . 
execution queues, and network maintenance func­
tions such as user creation/authentication, file ar­
chiving, and system configuration. 

The iNOXoperating system on the OpenNET NRM 
uses. a hierarchical file system providing file sharing 
and protection features. With this file organization, 
files can be logically grouped into directories and 
sub-directories. File protection is implemented in the 
form of access rights for each file or directory. 

For messages or simple file transfers among work­
stations, Electronic Mail is included for Series II/III/ 
IV, Model 800 and ISIS cluster users. 

In addition .to the management of communications 
between shared disks and. workstations, the NRM 
maximizes the use of all network resources with a 
remote job execution facility' called Distributed Job 
Control (OJC). Any Series II/III/IV, Model 800, ISIS 
cluster or V AXIVMS user on the network can export 
a batch job through the NRM for remote execution 
on other idle workstations or a specialized system 
called the Compilengine. The Compilengine is an In­
tel product that specializes in the importation of 
large compilations and link/locates from other net­
work workstations. Alternatively, the NRM can ac­
cept medium compile and link/locate jobs when it is 
not loaded down with file requests. 

4-2 

NOS-II Plus OpenNETTM Network 
Communications Enable Data Sharing 
In Mixed Vendor Environments 

The OpenNET NRM communicates with other sys­
tems over the industry standard Ethernet network. 
The Op~nNET NRM supports two Intel network pro­
tocols used on Ehternet: the NOS-II and OpenNET 
network protocols. Installed in the NRM, and iSBC 
550 communications board set supports the NOS-II 
protocols. An iSXM 552 supports the ISO 8073 com­
patible iNA960 transport software for the OpenNET 
network. Intellec Series II/IIIIIV systems, Model 800 
workstations, Compilengines, communicate with the 
NRM via the NOS-II protocols while XENIX, iRMX 
and PC-DOS systems communicate via the 
OpenNET network. The VAX and MicroVAX running 
VMS connect to the NRM via VAX Link. ' 

All data that is stored at the NRM is visible to, and 
can be transparently accessed by, all workstations 
in the network. VAXIVMS users have file transfer 
capability. For example, PCs or 286/310 systems 
(running .the iRMX or XENIX operating system) can 
share files on the NRM with Series IVs with the ca­
pability to upload those files to the VAX for back-up. 

Network Managment Facilities 

The NRM provides your network administrator with 
tools such as hardware diagnostics, network status 
and configuration commands to help optimize your 
Liser environment. These capabilities include the dis­
play all network users and transaction counts, defini­
tion of the number of multitasking jobs and allocate 
communication memory. For example, for a network 
with 2-3 Series IVs and 4-5 PCs, the NRM can be 
configured with maximum communication buffer 
memory. This is to maximize throughput for'a few 
workstations. Alternatively, for a network with' 4-5 
Series IVs and 20 PCs, the NRM can be configured 
with smaller buffers but large numbers of users. This 
is to maximize the.number of users on the network. 

A Comprehensive Set of Development 
Tools Supported '. 

All current Intel development tools' such as lan­
guages, assemblers, linker/locators, PROM pro­
grammers, debuggers and in-circuit emulators can 
be used on networked workstations. In addition, the 
NRM can run 8- and 16-bit compile and link/locate 
jobs to maximize the computing power of your NRM 
when it is relatively idle from communication tasks. 
These jobs can be sent from any workstation on the 
network. 



IMDX460 

Series 1=====11 
IV 

VAXNMS 
System 

VAX Link Software 

LEGEND 

Transparent File Access, OJC 

File Copy, OJC 

OpenNET Transparent File Access 

280173-2 

Figure 1. Share Flies Transparently on the OpenNETTM NRM From Any Workstation 

State-of-the-Art System Components 
means Performance . 

The OpenNET NRM is a high performance 80286-
based microcomputer. Two mOdels are offered: the 
MAXI and MINI. The MAXI has a fast 140 MB disk 
with a 60 MB streaming tape drive while the MINI 
has a 40 MB disk with no tape. Each system con­
tains an iSBC 286/12 8 MHz CPU board with one 
megabyte of zero wait-state on-board Random Ac­
cess Memory (RAM). Also contributing to the high 
system performance is the iSBC 214 multiprocess­
ing peripheral controller. This controller features its 
own 80186 microprocessor and 32 KB of software 
transparent cache memory. The 80186 offloads the 
80286 CPU from virtually all peripheral controller 
tasks, while the cache memory greatly reduces ap­
parent access times to hard disk memory. The iSBC 

4-3 

214 controller is used to support the Winchester and 
640 KB half-height floppy disk drives in both· the 
MAXI and MINI models. The iSBC 214 controller ad­
ditionally supports the streaming tape drive in the 
MAXI model. 

Interconnecting Hardware Is Standard 

To connect workstations to the OpenNET NRM, 
standard Ethernet transceivers, transceiver cables, 
and Ethernet coaxial cables are used. Intel's Intellink 
module may also be·used to connect multiple work­
stations to Ethernet. The same (one) Intellink mod­
ule can be used to connect Series 1I/III1IVs, VAXs 
via VAX Link, and OpenNET workstations, as long 
as cables from both the iSBC 550 and iSXM 522 



iMDX460 

boards are connected to that Intellink module. The 
Series 1I/1li/IVs, VAXs will respond to messages 
from the iSBC 550 board while the OpenNET work­
stations will respond to messages from the iSXM 
552 board. This helps the user optimize usage of 
current and new interconnect hardware. 

The OpenNETTM NRM Expands To Fit 
Growing Develops:nent Environments 

Creating a network in your development lab is ac­
complished by adding an NRM and upgrade kits for 
Intellec, 286/310 XENIX. and iRMX, PC-DOS and 
V AXIVMS systems. The network grows with your 
development environment. Workstations can be 
added, mass storage increased, and multiple net­
works connectecl--giving your development environ­
ment maximum flexibility. You only need to acquire 
as much development equipment as you require to­
day, knowing that you will be able to grow in incre­
ments tomorrow. 

SPECIFICATIONS 

Hardware 

Dimensions: 6%" x 17" x 22" 

Weight: 55 Ibs. 

Electrical: User selectable AC power with either 
88-132V, 60 Hz or 180~264V, 50 Hz 

Software 

iNDX R3.2 Operating System . 

OPERATING ENVIRONMENT· 

Environmental Characteristics 

~emperature: 10·C to 35·C 

Humidity: 20-80% relative humidity 

Altitude: Sea Level to 8000 Feet 

Hardware Required 

User supplied ANSI 3.64 standard terminal 
Workstation interconnecting hardware: 
Intellink module, transceivers, transceiver cables, 
Ethernet coaxial cables (depending on number of 
workstations and distance) . 

4-4 

NDS-II Workstations 

Workstation Hardware/Software 
Products Required 

Compilengine . -
Model 800 PIMDX455 
Series II/III PIMDX455 
Series IV PIMDX456 
VAXIVMS IMDX 392 & DEUNA* board 
p.VAXIVMX iMDX 392 & DEQNA· board 

• A DEC product 

OpenNETTM Workstations 

Workstation Hardware/Software 
Products Required 

PC-DOS V3.1 System PCLNK 
System 310 XENIX XNX-NET &. iSXM 552 

board 
System 310 iRMX 86/286 iRMX-NET 8 iSXM 552 

board 
VAXIVMS VMSSVR 
p.VAXIVMS MVSSVR 

DOCUMENTATION 

iNDX User's Guide 
(order #: 138809-001) 

iNDX System Installation Guide 
(order #: 138810-001) 

ORDERING INFORMATION 

Product Order Code Description 
iMDX 460-140T OpenNET NRM 

(MAXI model) 

iMDX460-40 

iSYP312 

OpenNET NRM 
(MINI model) 

Floor stand which encloses 
either the OpenNET NRM ot 
the $YS 311 (see peripheral 
upgrades section) peripheral 
expansion box 



iMDX460 

Interconnecting Hardware Product Order Code Description 

Product Order Code Description 
PIMDX 456 NDS-II Workstation Upgrade 

Kit for the Series IV 
PIMDX457/458 Transceiver cables (10/50 PIMDX581 

MVMSSVR 

ISIS Cluster Board Package 

VAXIVMS-OpenNET Link 
S/W and Controller Board 

PMDX3015 

iDCM 91-1 

PIMDX 3016-1/ 
3016-2 

Workstation Kits 

Product Order Code 

PIMDX455 

meters) (two are required for 
an OpenNET NRM) 

Transceiver for Ethernet co­
axial cables (at least two are .. 
required unless an Intellink is 
used) 

Intellink module (the 
OpenNET NRM uses 
two ports) 

Ethernet coaxial cable 
(25/50 meters) 

Description 

NDS-II Workstation Upgrade 
Kit for any Series 11/85, Se­
ries III, or Model 800 to con­
nect to the OpenNET NRM 

VMSSVR 

PCLNK 

MicroVAXIVMS OpenNET 
Link S/W and Controller 
Board 

OpenNET PC Link hardware 
and software kit to connect 
the PC XT, PC AT, and com­
patible systems to theNRM 
via the OpenNET network; 
requires DOS 3.1 or higher 

RMXNT961 KITWSU iRMX Networking Software 
for a 286/310 system run­
ning the iRMX 86 Operating 
System to connect to the 
NRM via the OpenNET net­
work 

SXM 5524 

XNXNETKRIKIT 

Ethernet-based Single Board 
Transport Engine for 310 
systems 

OpenNET-XenixNET iNA 
961 iSXM 552 and XenixNET 
Pass-through Kit 

STORAGE EXPANSION SUB-SYSTEMS 

Winchester Storage Size With Tape No Tape 

OMB PSYS311A02 -
PSXM311TCBL 

40MB PSYS311A14 PSYS311A13 
PSXM311 WDCBL PSXM311 WDCBL 
PSXM311TCBL 

2x40 MB PSYS311A17 PSYS311A16 
PSXM311WDCBL PSXM311 WDCBL 
PSXM311TCBL 

140MB PSYS311A34 PSYS311A33 
PSXM311WDCBL PSXM311WDCBL 
PSXM311TCBL 

2x 140 MB PSYS311A37 PSYS311A36 
PSXM311WDCBL PSXM311WDCBL 
PSXM311TCBL 

3x140MB - PSYS311A39 
PSXM311WDCBL 

NOTE: 
Check product catalog (under PSYS311) for add-on Winchester disk drive ordering information 

4-5 



inter 
COMPILENGINE 

iMDX 485CE 

• Fast, D~dicated Import Station on the • High Performance System Containing 
Network· . an 8 MHz 80286 CPU with One 

• Off-Loads Compilations and Linkl Megabyte of Zero Wait-State RAM 

Locates from other Intellec® • Fast Disk Access via iSBC® 214 Disk 
Development Workstations on the Controller with 32 KB Track Caching 
NetworkUs!ng Remote Job Execution • 640 KB Half-Height Floppy Disk Drive 

• Off-Loads Compile Jobs from a PEC for Initial Software Load 
VAX/VMS**vla the NRM and VAX Link • Supports Optional Standard Terminal 

• Supports 8051, 8086, 8096, 80186, for System Maintenance and Direct Job 
80286 Languages Including ASM,C, Execution 
PL/I\/!, Pascal, and Fortran 

TheCompilengineis a286-based .supermicrocomputer system designed to improve productivity of a net­
worked development team. Connected to a NetWork Resource Manager (NRM), it is optimized to off-.load large 
compile arid link/locate jobs from the Series II/III/IV, Model 800, and DEC's VAXIVMS systems. PC-DOS and 
XENIX' systems connected via the OpenNETTM network to the NRM can also export compiles and link/lo~ 
cates ontotheCompilengine. The Compilengine performs compilations and link/locate jobs faster· than any 
single workstation on the network. By exporting time-consuming jobs to a shared Compilengine, workstations 
are tree to perform other tasks such as editing or debugging. 

~---

Series 1=== .... 
IV 

VAXNMS'" 
System 

VAX Link Software 

• hared file •• 
OJe 

management 

LEGEND 

Transparent File Access, DJC 

File Copy, OJC 

OpenNET Transparent File Access 

Indicates direction of exported job .... 

280174-1 

Offl~ad Your Non-Interactive Software Jobs from any System to the Compllenglne 

'XENIX is a registered trademark of the Microsoft Corporation. 
··V AX, VIvIS, DEC are registered trademarks of Digital Equipment Corporation. 

4-6 

L 

October 1988 
Order Number: 280174-002 



inter iMDX485CE 

FUNCTIONAL DESCRIPTION 

The Compilengine adds more performance to your 
networked development environment by off-loading 
time consuming tasks from workstations. These 
tasks are execued by a powerful 286-based system 
hardware running the iNDX operating system. By us­
ing Intel's remote job execution facility called Distrib­
uted Job Control (DJC), Intellec Series II/III/IV and 
Model 800 workstations as well as V AXIVMS sys­
tems connected via optional VAX Link software can 
export compile and/or link/locate jobs to one or 
more Compilengines. Remote job execution is also 
possible from OpenNET systems via an NRM sup­
porting the OpenNET network and an export utility in 
the Network Toolbox product. The user can now 
compile or link, during the workday, those long, 
CPU-intensive jobs that traditionally have been exe­
cuted off-hours. 

Easy to Start, Easy to Use 

The Compilengine is connected to the ne.twork just 
like any other workstation on the NDS-II network, via 
the iSBC 550 communication board set (included) 
and a transceiver cable. Once physically connected 
and configured (system generated) onto the NRM, 
the Compilengine starts automatically with a simple 

4-7 

280174-2 

switch on of the power. The system auto boots from 
the floppy disk drive or the network. Sending jobs to 
this execution vehicle is equally as simple. By exe­
cuting the EXPORT command on a batch job con­
taining the compile or link/locate task, DJC on the 
NRM takes over and completes the job at the 
Compilengine. 

The Right Location of Files Maximizes 
Performance 

To maximize the performance of compiles and link/ 
locates sent to the Compilengine, frequently ac­
cessed but stable files (compiler, linker/locators, 
and language libraries) should reside on the 
Compilengine's local 40 MB Winchester drive. This 
will help reduce network traffic. On the other hand, 
frequently changed files such as source code, in­
clude files, and user object libraries should reside on 
the NRM for version control. For the best perform­
ance on large compiles, files may be copied to the 
Compilengine as part of an exported job. All shared 
files should reside on the NRM so that the most up­
to-date copy of the files are visible to all network 
users. During off-hours the NRM can update or re­
place compilers, linker/locators, or other commonly 
used files with the latest versions. 



iMDX485CE 

State-Of-The-Art System Components 
Means Performance 

The Compilengine is a high-performance super-mi­
crocomputer with state-of-the-art technology. Each 
system contains the advanced iSBC 286/12 8 MHz 
CPU board with one megabyte of zero wait-state on 
board Random Access Memory (RAM). Also contrib­
uting to the high system performance is the iSBC 
214 Multiprocessing Peripheral Controller. This con­
troller features its own 80186 microprocessor and 
32 KB of software transparent cache memory. The 
80186 offloads the 80286 CPU from virtually all pe­
ripheral controller tasks, while ·the cache memory 
greatly reduces apparent access times to hard disk 
memory. The iSBC 214 Controller is used to support 
a 40 MB Winchester drive and 640 KB 5%" floppy 
disk drive. To communicate with the NRM, the Com­
pilengine uses the iSBC 550 Communication Board 
set for the standard high-speed (10MB per second) 
Ethernet network. 

Comprehensive Software 
Development Tools Supported 

Since the Compilengine is a very fast, specialized 
iNDX system, all languages; macro assemblers, and 
linker/locaters currently supported on the Series IV 
and the NRM are also supported on the Com­
pilengine. This includes popular high-level lan­
guages such as PL/M, Pascal, Fortran, and C, as 
well as powerful "high-level" macro assemblers 
such as ASM86. These languages support develop­
ment for 8051, 8086/8088, 80186/188, 80286, and 
8096 architectures. 

For More Flexibility 

Although a terminal is not required to operate the 
Compilengine, the capability to connect an ANSI 
standard terminal is provided. This feature gives the 
customer the ability to perform file maintenance on 
the local storage devices (40 MB Winchester and 
floppy disk drives). The user can also initiate jobs 
directly on the Compilengine. 

APPLICATIONS 

As shown in Figure 1, any workstation configured on 
the NDS-II network can export jobs to the Com­
pilengine using DJC. For example, on a Series IV, 
the user can simply execute the EXPORT command 
on a batch file containing a compile job. Then, edit 
or debug other programs while the Compilengine 
compiles that job. 

4-8 

Use of the Compilengine(s) from a VAX connected 
via VAX Link R2.0 is similar to use from a Series IV. 
The only requirement is that the source files to be 
compiled or the object modules/library routines to 
be link/located reside on the NRM. This is easily 
achieved by creating a batch file on the VAX. Each 
time a DJC command for remote compiles is execut­
ed under VMS, this batch file copies files to be com­
piled from the VAX onto the NRM and returns the 
compiled code back to the VAX. (See Figure 2.) 

Systems connected on the OpenNET network can 
access the Compilengine via the NRM. To use the 
Compilengine, the PC or XENIX user simply copies 
the submit file to a special directory on the NRM. An 
export program in the Network Toolbox that runs on 
the NRM will scan that directory and send that job to 
the DJC queue for remote execution at the Com­
pilengine. (See Figure 3.) 

SPECIFICATIONS 

Hardware 

Dimensions: 6%" x 17" x 22" 
Weight: Less than 55 pounds 
Electrical: User selectable AC power with either 

88-132V, 60 Hz or 180-264V, 50 Hz 

Software 

iNDX operating system 

OPERATING ENVIRONMENT 

Environmental Characteristics 

Temperature: 10°C to 35°C 
Humidity: 20-80% relative humidity 
Altitude: Sea level to 8000 feet 

Hardware Required 
• An NDS-II NRM (iMDX 450) or OpenNET NRM 

(iMDX 460) with the iSBC 550 communications 
board set installed. 

• Interconnecting hardware (one of the following): 

- One transceiver cable and one port on an In­
tellink module 

- One transceiver cable, one transceiver and an 
Ethernet coaxial cable 

• Optional: ANSI 3.64 standard terminal 



inter 

Series F==-,.,.,a 
IV 

IMDX485CE 

NRM 
shared files. 

OJe 
management 

Figure 1. Series II/III/IV and ModelSOO Environment 

Com II nine 

Com II nine 

Com II nine 

In·Circuit 
Emul.tor 

.--- VAXNMS 
Sy~tem 

VAX Link Softw.r. 

management 

Figure 2. VAX/VMS and Other InteUec® Workstations 

4-9 

In-Circuit 
Emulator 

280174-3 

280174-4 



iMDX485CE 

Series 
II,III,IV 

Compilengine 
£ ~ 
I Ii 

Compi1engine 
I iS8C"SSO board I 

NOS II 

iSXM'"SS2 board I 
OpenNEnM 

protocol 

F ~ II I • t t I II 
NRM XENIX iRMX™ 

286· 86· IpC.DOS I 
shared files, 

.y.tem based based 
system system 

OJC' 
management 

280174-5 

Figure 3. OpenNETTM Systems and Other Intellec® Development Systems 

Software Required 

High·level language compilers and/or assemblers 
on 5W' iNDX·formatted (96 tpi) diskettes. 

SUPPORT DOCUMENTATION 

iNDX User's Guide 
(order # 138809) 

iNDX System Installation Guide 
(order # 138810) 

4·10 

ORDERING INFORMATION 

Product 
Order Code Description 

iMDX 485CE Compilengine 
iMDX 460·140T OpenNET NRM (maxi model) 

iMDX 460·40 OpenNET NRM (mini model) 

iMDX 457/458 Transceiver cables (10/50 meters) 

iDCM 911·1 Intellink module 

iMDX3015 

iMDX3016 

Transceiver for Ethernet coaxial 
cables 

Ethernet coaxial cables (25 or 50 
meters) 

iSYP 312 Floor stand for the Compilengine 

iMDX460·140T OpenNET NRM file server 

iMDX460·40 

(Maxi Model) 

OpenNET NRM file server 
(Mini Model) 



OpenNETTM 
PERSONAL COMPUTER LINK 

• Connects an IBM" PC AT, PC XT (and • Supports the 1501051 Seven Layer 
PC-DOS Compatibles) to the Networking Standards 
OpenNETTM Network • Enables a PC System to Access 

• Works with Standard DOS Commands Remote Storage and Printer Devices 

• Interconnects a PC System to iRMXTM, • Provides Transparent-File-Access 
XENIX', and NDS IIINRM Systems Capability Between a PC System and 
Offering OpenNET Server Capability Remote Servers 

• Uses an 80186/82586 Processor-Based • Uses ISO 8073 Transport and Ethernetl 
Network Controller Board IEEE 802.3 Standard Communication 

• Contains Power-Up Diagnostics Protocols 

• Intelligent Board Uses Only 44K of PC's 
Memory 

The OpenNET Personal Computer Link (OpenNET PC Link) enables users to connect their IBM PC AT and PC 
XT computer systems to the OpenNET network. This connection enables a PC system to be configured as a 
consumer workstation on the OpenNET network, and to transparently access and share files and printers on 
an OpenNET network resource manager (NRM), NDS-II (with the OpenNET upgrade installed) NRM. iRMX. 
and XENIX-based remote server systems. The OpenNET PC Link is an 80186/82586 microprocessor-based 
expansion board, which is easily installed in an expansion card slot of the PC system. On-board jumpers and a 
user configurable software package enable .the OpenNET PC Link to be used with a wide-range of expansion 
boards currently available for the PC system. The OpenNET PC Link incorporates the Microsoft· Networks 
(MS-NET) networking software and iNA 960 (ISO 8073 compatible) transport software as a part of its software 
package. 

'IBM is a registered trademark of the International Business Machines Corporation. 
"MS-DOS is a trademark of the Microsoft Corporation. 
"Microsoft is a registered trademark of the Microsoft Corporation. 
'XENIX is a trademark of the Microsoft Corporation. 

4-11 

280164-1 

October 1986 
Order Number: 280164-002 



intJ OpenNET 

PRODUCT OVERVIEW 

The OpenNET PC Link is a member of Intel's Open­
NET networking product family. The OpenNET prod­
ucts incorporate a set of system and component lev­
el LAN products covering all seven layers of the ISO 
(International Standards Organization) Open System 
Interconnect (OSI) model, and the protocols on 
which they are based. OpenNET network protocols 
are established industry standards for each function. 
Therefore, OpenNET network products can connect 
and operate not only with each other, but with the 
most popular networking products from other ven­
dors. OpenNET networks provide a high level of in­
teroperability between heterogeneous systems (MS­
DOS·, PC-DOS, iNDX, XENIX, and iRMX operating 
system versions are available). Thus, users can tai­
lor their networks to meet their specific needs by 
incorporating any combination of the capabilities of 
these diverse systems. 

The OpenNET network application protocols imple­
mented by OpenNET PC Link software are those 
adopted by Intel, Microsoft, and IBM for their com­
puter networking products. The OpenNET PC Link 
software is compatible with and will operate with 
iNDX, XENIX, and iRMX networking software at the 
application layer. 

PHYSICAL DESCRIPTION 

The OpenNET PC Link consists of a network con­
troller board and a 5% inch disk that contains the 
software necessary for the PC system to communi­
cate across the OpenNET network. The following 
sections describe the hardware and software com­
ponents of the OpenNET PC Link. 

OpenNET PC Link Network Controller 
Board 

The network controller board is an adaptor board 
that can be installed in any available expansion slot 
of a PC system. The board implements the industry 
standard ISO 8073 transport protocol (a modified 
version of iNA 960) and Ethernet/IEEE 802.3 physi­
cal data link technology (see Figure 1). The board 
uses an Intel 80186 microprocessor in combination 
with an 82586 LAN communication controller. The 
board includes the following major components: 

• 80186 microprocessor 

• 82586 LAN communications controller 
• 8 KB of EPROM 

• 128 KB of RAM shared between the PC system 
and the 80186 microprocessor on the network 
controller board 

• 82501 Ethernet serial interface 

• Fujitsu MB502A encoder decoder 

• 15-pin Ethernet D connector 

• 8-bit parallel DMA interface arid control register 
set 

• Power-up diagnostics 

The network controller board performs all network 
communication functions for the first two layers of 
the ISO/OSI model (see Figure 2). Layers three and 
four reside in the modified iNA 960 transport soft­
ware. The remaining layers (five through seven) re­
side in the MS-NET networking software on the PC 
system. 

POWER· UP DIAGNOSTICS 

An effective diagnostic function is implemented in 
firmware on the network controller board. This func­
tion is invoked at system initializatiion during both 
power-up and system reset time. The following list 
summarizes the functions tested: 

• 80186 and 82586 microprocessors 

• I/O ports 
• Shared memory window 

• I nterrupt channels 

• DMA channel 
. • Ethernet connection 

4-12 

An on-board LED indicates whether the network 
controller board failed any of the various test func­
tions. 

OpenNET PC Link Software 

The software is supplied on a 5% inchdouble-densi­
ty disk (360 KB). The following files are included as 
part of the OpenNET PC Link: 

• A specially configured version of iNA 960 trans­
port layer software, called UBCODE.MEM, which 
operates on the network controller board. 

• A DOS interface driver, called XPORT.EXE, 
which enables. DOS programs to access the net­
work controller board. 

• The Microsoft Networks (MS-NET) networking 
software, release 1.0, which enables users to 
connect with and access remote file servers on 
the OpenNET network system. 



-inter 

XENIX 
SYSTEM 

IRMX'" 
SYSTEM 

00 rn 
_'~~ .... AT ... '/X .... T ...... 0 nNET'" 

PC Link CD rc Link .., 
& & 

DOS 3.1 DOS 3.1 

"~;"'" 

DEVELOPMENT 

s~r 
PROM 

P2Sif ~PE 

OpenNET 

PRINTER PRINTER 

I 
I 
I 
I 
I 

! rn 
,_~.:rIXT ... 
: PCLlnk CJJ 
I & 
: DOS 3.1 
I 
I . 
J ~ • . 

I --_-----1...-... 
/,,/.... ...... .... , ... 

/ '. 
/ INTELLlNK'" 

I MODULE 
/ \ 

/ \ 
/ \ 
I \ 
, I 

'; I 

I I 

I I 

: I t ~ :S : 
i I A.' I 1 T l 
I : 
I I 
I I 
I / 
I I 
\ I 
\ / 

, I 

\'" ,/1 

'...... .,.";,,,/ 

.... _------' 
Figure 1. The OpenNETTM PC Link Environment 

4-13 

280164-2 



OpenNET 

NETWORK APPLICATION (7) 
MANAGEMENT 

PRESENTATION (6) MS·NET NETWORKING 
SOFTWARE 

SESSION (5) 
OpenNEP· PC LINK 

SOFTWARE INA 960 
(ISO 8073) TRANSPORT (4) 

NETWORK 

DATA LINK 
ETHERNET/IEEE 802 

SPECIFICATIONS 
PHYSICAL 

(3) 

(2) 

(1) 

OPTIONAL 
INTELLlNK'· MODULE, 

TRANSCEIVER, 
AND CABLES 

280164-3 

Figure 2. ISOIOSI OpenNETTM PC Link Implementation 

PC SYSTEM REQUIREMENTS 

For the PC system to function as a workstation on 
the OpenNET network, it must contain at least 192 
KB of memory. A 32 KB memory window is shared 
between the PC system and the network controller 
board. The starting address of this window must be 
placed in an area of memory that does not conflict 
with the PC system's internal memory address 
space. The network controUer board is jumpered at 
the factory to reflect a setting which is compatible 
with the PC system and most of the expansion 
boards available for use with the PC system. 

In order for the network controller board and the 
OpenNET software to function properly, the PC sys­
tem must use the DOS (MS-DOS or PC-DOS) oper­
ating system, version 3.1 or later. 

FUNCTIONAL DESCRIPTION 

The OpenNET PC Link enables a PC system to be 
configured as a consumer workstation in the Open­
NET network environment. This enables a PC sys­
tem to access and share files and remote printers on 
a remote file server. After establishing a connection 
with a remote server, the user can access different 
directories by connecting drive letters at the PC sys­
tem to the desired directories. 

4-14 

Creating a PC System Consumer 
Workstation 

The PC system is easily configured as a consumer· 
workstation on the OpenNET network. The following 
steps summarize how to configure the PC system for 
use as a workstation: 

• Install the OpenNET PC Link network controller 
board in the PC system and connect the PC sys­
tem to an Ethernet transceiver or IntellinkTM 
module. 

• Configure the OpenNET PC Link software to re­
flect the name and network address assigned to 
the PC system and each remote server system 
that the PC system will access. 

• Define the PC system user as a valid user of the 
remote server system. 

To connect with and access remote resources over 
the OpenNET network, perform the following steps: 

• Invoke the PC system's consumer networking 
software. 

• Execute a connect-to-server command. 

• Execute standard DOS commands. 

The PC system user can now access remote re­
sources (files, directories, or printers) at remote 
servers on the network. 



intJ OpenNET 

The user has the option of automatically connecting 
to a remote server each time the DOS operating sys­
tem is booted. This is done by placing networking 
commands in a DOS AUTOEXEC.BAT file. 

Remote Server Access 

The PC user gains access to a remote server by 
connecting an unused drive letter at the PC system 
to a remote home directory at the server. The server 
validates the PC system user by comparing the user 
name offered in the connect-to-server command 
with the server's user definition file. If the name is 
valid, the user is logged on to the server, and can 
access any file within the home directory. Multiple 
subdirectories may be created within the home di­
rectory. The user is restricted from accessing direc­
tories or files located above the user's home directo­
ry. 

Transparent Access to Multiple 
Directories 

A PC system user may access multiple directories at 
a file server. This is done by defining multiple users 
(giving users access to different directories) at the 
server. After establishing a connection to the server, 
the user can access different directories by connect­
ing drive devices at the PC system to the desired 
directories. 

Data and resource sharing are implemented via 
transparent remote file access. This enables the 
user to work with remote data files and resources 
residing at server systems on the network as if they 
were resident on the PC system. Users of a remote 
server may be given access to the same home di­
rectory, enabling multiple users to access and share 

remote data files. The access rights of remote data 
files can be changed to enable all or some of the 
users to read, write, or delete files in that directory. 

Using DOS Commands Across the 
OpenNET Network 

Once the PC system has been connected to a re­
mote server on the network, almost any DOS com­
mand can be used with remote files and directories. 
The exceptions are commands that manage physi­
cal devices (e.g., FORMAT). The MS-NET software 
reports an error message if an invalid DOS com­
mand is sent across the network. Using DOS com­
mands, the user can manipulate drives, files, and 
directories as follows: 

• Look at and list remote directories and files. 

• Copy files back and forth between a PC system 
and a remote server. 

• Redirect print requests to a remote printer. 

• Set and reset the read-only attribute. of remote 
directories and files. 

• Map drive assignments to remote directories. 

• Set the path to remote directories and files. 

Shared Printer Access 

The PC system can be linked to a remote printer that 
is connected to a server on the OpenNET network. 
This enables the user to take advantage of the re­
mote printer services, thus freeing the user from 
having to install a printer at the PC system. 

A PC system user can print local or remote data files 
by first connecting the PC system's logical printer 
device to the remote server's printer spool. Then, 
the MS-NET networking software command NET 
PRINT is used to print the file on the remote printer 
device. 

Table 1. MS-NET Networking Commands 

Command Description 

APPEND Locates a file which is outside the current directory. 
NET CONTINUE Restarts the disk redirector or print redirector programs. 
NET HELP Displays a help file with information about MS-NET commands. 
NET NAME Displays the name assigned to your PC system. 
NET PAUSE Temporarily halts the disk redirector and print redirector programs. 
NET PRINT Prints a file on a remote printer. 
NET START REDIRECTOR Invokes the OpenNET PC Link consumer networking software. 
NET USE Connects a device at the PC system to a remote server or printer. 

4-15 



inter OpenNET 

Microsoft Networks Software 

The Microsoft Networks (MS;NET) networking soft­
ware is included as part of the OpenNET PC Link 
software. The MS-NET software manages the trans­
fer of information between the PC system and a re­
mote server. Once a connection is made between 
the PC system and a remote server or printer, the 
user uses the MS-NET software (in conjunction with 
DOS commands) to access and manipulate remote 
files or printers. Table '1 presents a list of MS-NET 
commands and a description of each command. 

The MS-NET networldng software displays a mes­
sage each time a command is successfully complet­
ed.lf an error is made, the software displays an error 
message listing the probable cause of the error and 
suggestions for correcting it. On-line help files en­
able the user to quickly reference MS-NET com­
mands and obtain the correct syntax for entering 
commands. 

OpenNET PC LINK SPECIFICATIONS 

Host Requirements 

IBM PC AT or PC XT computer system 

- 192 KB of system memory 

- DOS (MOS-DOS or PC-DOS) operating system, 
version 3.1 or later 

Physical Characteristics 

NETWORK CONTROLLER BOARD 

Width: 13.315 in. (33.82 cm) 

Height: 4.15 in. (10.54 cm) 

Weight: 35 oz. (0.99 kg} 

4-16 

SOFTWARE 

5% inch double-density disk (360 KB) 

POWER REQUIREMENTS 

+5V at 2.7 Amps 

+ 12V at 0.5 Amps 

Environmental Characteristics 

Operating Temperature: 0° to 55°C (32° to 
131°F) 

Operating Humidity:, Maximum of 90% relative 
humidity, non-condensing 

Convection Cooling 

Documentation 
166664 OpenNETTM PC Link User's Guide 

Optional Equipment 
The following items can be ordered for use with the 
OpenNET PC Link: 

PCLNK20F Transceiver cable, 20 ft (6.1 m) 

PCLNK164F Transceiver cable, 164 ft (50 m) 

DCM911-1 Intellink module 

iMDX3015F Transceiver 

ORDERING INFORMATION 
PCLNK OpenNET PC Link: Consists of a net­

work controller board, a PC XT card 
support, software, and a user's guide 



inter 
NDS-II/VAX* LINK NETWORKING SOFTWARE 

• Links VAX/VMS· to both NDS-II and • Authenticates User File Access 
OpenNETTM Development Privileges for All Network Resource 
Environments Manager (NRM) File Operations 

• Transfers Data via High-Speed • Requires a Digital Equipment 
Standard Ethernet/IEEE 802.3 Corporation DEUNA or DEQNA 

• Enables File Transfer Between the NRM Communication Board for Operation 

and VAX or MlcroVAX II· (Not Supplied) 

• Offers VAX Users Access to All NRM • Co-Exists with DECNET on the Same 

File Services DEUNA or DEQNA Board 

• Optimizes Computing Resources with • Supports Multiple VAXs and Network 

Distributed Job Control Resource Managers (NRMs) In a Single 
Network 

NDS-IIIVAX Link is an Ethernet-based communication link between Intel's Network Resource Manager (NRM) 
and a Digital Equipment Corporation (DECO) VAX and MicroVAX II minicomputer. The NDS-IIIVAX Link en­
ables users to transfer files to/from the Series II/III/IV, Model 800, and the high-performance 286/310 based 
Compilengine. VAX users also have access to systems connected on the OpenNET network via the NRM. All 
data that is stored at the NRM is visible to, and can be accessed by, VAX users. 

A major advantage of the NDS-IIIVAX Link is its ability to optimize computing resources on the network via 
Distributed Job Control (DJC). DJC allows VAX users to queue jobs for remote execution upon the NRM. 
Similarly, NRM users can send jobs for remote execution upon the VAX. For example, CPU intensive jobs, 
such as compiles, can be sent from the VAX to idle Intel workstations for execution, saving valuable computa­
tional power for other activities. Or engineers using Intel development workstations can send special jobs to 
the VAX. . 

Compllenglne 

SERIES IV t-a;En:i--r--

ICETII 

SYSTEM 

1111111111111111111 
1111111111111111111 

VAXNMS· VAX Link 
SYSTEM SollWere 

NOS-II PROTOCOLS OpenNET'" PROTOCOLS ETHERNET 

231299-2 

Figure 1. NOS-II/VAX Link Enables High Speed Ethernet Data Transfers 
between the NOS-II, OpenNETTM and VAX Development Environments 

NOTE: 
All connections are on the same Ethernet cable. 

"DEC, VAX, MicroVAX II and MicroVMS are trademarks of Digital Equipment Corporation. 

4-17 
August 1986 

Order Number: 231299-003 



NOS-II/VAX· LINK 

NDS-IIIVAX Link" supports numerous commands 
that are initiated at the VAX. These commands are 
similar to Digital Command' Language (DCL) com­
mands and execute at the DCL command level. Us­
ers can obtain information on all coml1lands by using 
the standard VMS· help faCility. Commands cover 
general link operations (NVOPEN, NVCLOSE~ 
NVLOGON,' NVBYE, NVMESSAGE), distributed file 
system services (NVCOPY, NVDIRECTORY, 
NVCREATE, NVRENAME, NVDELETE, NVSET) 
and Distributed Job Control functions (NVCREATEI 
QUEUE; NVCREATE/IMPORT, NVEXPORT; 
NVCANCEL, NVSTATUS). Summaries of the more 
important commands follow below: 

General Link Commands: 

NVOPEN allows aV,AX user with OPERATOR privi­
lege to startup the link. NVCLOSE allows a VAX user 
to gracefully shutdown the link. 

NVLOGON gives a VAX user access to the NDS~II 
files on a given NRM. The user must provide an , 
NDS-II username and password. NVBYE logs a user 
off from a given NRM. 

Distributed File System Commands: 

NVCOPY copies a single file or a group of files from 
the VAX to the NRM or vice versa. The command 
accepts wildcard filename specifications and. sup­
ports common sequential VAXIVMS file types. 

NVDIR lists the directory entry of the NRM file(s) 
specified. The directory listing is in iNDX format. The 
user can request an expanded directory listing con­
sisting of the filename, owner name, length, type, 
and owner and world access rights. 

NVDELETE deletes one or more files or directories 
from the NRM file system. The invoker must have 
DELETE permission on each file or directory speci~ 
fied. A directory must be empty before it is deleted. 

NVCREATE creates anew directory in the NRM file 
system. The inVOker must have write acc~ss to the 
parent directory where the new directory is being 
created. 

NVSET displays and/or' changes the protection 
mask for files in the NRM file system. The user must 
have the appropriate access rights to the files in 
question when using the NVSET command. 

Distributed JobC,ontroICommands: 

NVCREATE/QUEUE creates NRM queues. Queues 
must be created before they are used by either 
NVCREATE/IMPORT or NVEXPORT. 

NVCREATE/IMPORT creates an import station on 
the VAX that serves the specified existing NRM 
queue. This is a privileged command that can only 
be. executed by users having' OPERATOR privilege. 

NVEXPORT queues a job for execution in the NRM 
queue specified in the. command parameters. The 
,exported Job will be executed by an import station 
serving the specified queue. 

NVST ATUS lists NRM queues; the number of jobs 
; waiting in the queues, and the number of import sta­
tions serving the queues. By specifying the IFULL 
qualifier the user can display detailed information on 
each job in the queue(s). 

NDS-IIIVAX Link supports up to 16 users on the.link 
at a given time. With multiple users the link is operat­
ed in time-sharing fashion thus, giving each user 
the appearance of a dedicated connection to the 

, NDS-II. 

NDS-IIIVAXLink also supports multiple VAXs and 
multiple NRMs in a single network. Users on sepa­
rate VAXs can access the same NRM simultaneous­
ly, and users on the same VAX can access different 
NRMs. Multiple NRMsupport is only supported un­
der VAXIVMS· version 4.0 (and later versions). 
Separate NDS-IIIVAX Link software licenses must 
be purchased for each VAX connected in a multiple 
VAX/NRM environment. 

NDS-IIIVAX Link requires a DEC DEUNA-AA or 
DEQNA communication assembly that must be pur­
chased from and installed by DEC. In addition, a 
standard external Ethernet transceiver cable is re­
quired to connect the DEUNA or DEQNA assembly 
to the Intel NDS-lIlntellinkTMModule. 



intJ NOS·II/VAX' LINK 

SPECIFICATIONS 

Operating Environment: 

REQUIRED HARDWARE: 

NDS-II NRM or OpenNET NRM 

DEC' VAX 111730, 11/750, 11/780, 111782, or 
11/785, or MicroVAX II Minicomputer 

DEC DEUNA-AA or DEQNA Assembly (from DEC) 

Ethernet Transceiver Cable (Intel iMDX-457 or 
equivalent) 

REQUIRED SOFTWARE: 

iNDX Network Operating Software, Version 3.0 or 
later 

VAXIVMS' or MicroVMS' Operating Software, Ver­
sion 4.2 or later 

4-19 

Documentation: 

NDS-IIIVAX Link User's Guide (Order Number 
122301-002) 

Software Support: 

This product includes a 90-day initial support con­
sisting of subscription services and telephone hot­
line support. Additional software support services 
are available separately. 

Future Update Kits are not covered under warranty 
and must be purchased separately. 

ORDERING INFORMATION 
Part Number Description 

iMDX392 NDS-IIIVAX' Link 
9 track magnetic tape media 

iMDX 393F NDS-Il/MicroVAX II Link 
RX 50 5%" Floppy Media 

iMDX 393T NDS-Il/MicroVAXIl Link 
TK 50 Cartridge-tape Media 



iMDX 555 
NOS-II NRM OpenNETTM UPGRADE 

• Provides Series II/III/IV, Model 800 and 
VAX*/VMS Development Customers an 
Upgrade Path into the OpenNETTM 
Networking Environment 

• NDS-II NRM now Becomes a File Server 
for OpenNET Users Including XENIX, 
iRMX™ 86, and PC-DOS Systems 

• Supports Large Number of OpenNET 
Workstations up to the Physical 
Connection Limit for Ethernet (100 
Direct Connections via Transceivers or 
over 800 via Intellink TM) Boxes with the 
Ability for 30 to Simultaneously Access 
the NRM . 

• Transparent File Access to the NDS-II 
NRM from XENIX', iRMX 86, and 
PC-DOS Systems 

• Additional OpenNET Workstations Can 
Be Added without Reconflguring the 
Network 

• Authenticates OpenNET User File· 
Access Privileges for all NRM 
Resources 

• Shared Resources, e.g., Spooled Line 
Printer, up to 336 MB Winchester 
Central Disk Storage, Tape Archive 

• Uses ISO 8073 Transport and 
Ethernet/IEEE 802.3 Standard 
Communication Protocols 

The NOS-II NRM OpenNET Upgrade contains software and hardware that allow the Network Resource Man­
ager (NRM) to function as a file server in an OpenNET network environment. The Intellec® Series II/III/IV and 
Model 800 development systems, and Digital Equipment Corporation's VAX minicomputers can now share 
files residing on the NRM with XENIX, iRMX 86, and PC-DOS systems. XENIX, iRMX 86, and DOS system 
users can also take advantage of the NRM resources such as the spooled line printer, tape archive, and fast 
disks. 

NETWORKS 

HOSTS 

OPERATING 
SYSTEMS 

TOOLS 

NOS-II PROTOCOL 
r 

argelSCOPE 

OpenNETTM PROTOCOL 

IRMX\..NET XENdi.NET MS·NET 
SOFTWARE SOFTWARE SOFTWARE 

0. Q 0 
~II ~ '=-11 

I 
286/310 ~ 

I 
IRMXTM 86/286 XENIX 286 

OPERATING SYSTEM lJ _~ 

I i I ~lI II 9,' liIru:tSCOPE 

'i. I'ICE W w~:~i~i1~[jJJ 

DEVELOPMENT SOFTWARE DEVELOPMENT 
SOFTWARE 

280141-1 

NOS-II NRM Links Series 1I/III/IVand VAX/VMS to iRMXTM 86, XENIX, and DOS Systems Via OpenNET 

'VAX is a registered trademark of Digital Equipment Corporation 
'XENIX is a trademark of Microsoft 
'IBM is a trademark of International Business Machines 

4-20 
October 1986 

Order Number: 280141·002 



inter iMDX 555 

FUNCTIONAL DESCRIPTION 

The NOS-II NRM OpenNET Upgrade provides the 
capability for existing NOS-II users to expand into 
the OpenNET networking world. OpenNET ne.t~ork 
file access is based on protocols developed JOintly 
by Intel, Microsoft, and IBM" to interconnect sys­
tems running different operating systems. This in­
cludes systems running XENIX, iRMX 86, PC-DOS, 
VAXIVMS, and now iNDX (on the NRM) oper~ting 
systems. Alternatively, new NOS-II owners can Inte­
grate development tools running on XENIX, iR~X 
86, and PC-DOS workstations, with the NRM file 
server. 

These capabilities are achieved by combining the 
iNDX OpenNET software and OpenNET transport 
engine-the iSXMTM 552 board. The iSXM 552 
board implements the industry standards ISO 8073 
transport protocol (iNA 961) and Ethernet/IEEE 
802.3 physical data link technology. 

The NOS-II and OpenNET networks utilize separate 
communication boards (i.e., iSBC® 550 and iSXM 
552 boards, respectively); therefore, there is no con­
tention for communication resources. 

Some limitations (e.g., formatting remote disks from 
a local workstation) do apply to iNDX OpenNET. See 
iNDX OpenNET User's guide for specific command 
support. 

Number of Users Supported on the 
OpenNETTM Network 

Each time an OpenNET workstation connects or 
"logs on" to the NRM (e.g., for file or printer ac­
cess), a virtual circuit is created between the work­
station and the NRM. iNDX OpenNET supports up to 
30 simultaneous NRM users (virtual circuits) on the 
OpenNET side (one virtual circuit per OpenNET con­
sumer node). When that limit is reached, no new 
circuit will be established until one of the existing 
circuits is closed. This means that although the num­
ber of physical OpenNET workstations on the net­
work is potentially the limit of Ethernet connections 
(e.g., 100 via transceivers or over 800 via cascaded 
Intellink boxes), only 30 can access the NRM at any 
given time. 

Because of this limit, iNDX OpenNET implements a 
least-recently-used algorithm to maximize virtual cir­
cuit availability. An idle OpenNET consumer (no out­
standing file requests or log-ons) is automatically 
disconnected when the 31 st network connection re­
quest is made. Alternatively, a workstation that !s 
turned off without disconnecting from the NRM IS 
automatically disconnected approximately 10 min­
utes after it is turned off. 

4-21 

Under normal file usage, the number of users on the 
OpenNET side should not affect the number of us­
ers on the NOS-II side ( i.e., Series II/III/IV, 
VAXIVMS etc.) 

NRM User Creation/File Access 

The NOS-II NRM OpenNET Upgrade allows Open­
NET workstations to transparently access files on 
the NRM without physically copying those files onto 
local disk. Files to be shared between NOS-II work­
stations (e.g., the Model 800, Series 111111, Series IV) 
and OpenNET workstations (e.g., PC-DOS, XENIX, 
iRMX) reside on the NRM. 

Every OpenNET user is created on the NRM con­
sole with two simple commands: 

• USERDEF DEFINE gives each user a unique log­
on 10 and home directory (it is mandatory to 
specify a home directory) 

• CHPASS creates the user password. 

These two commands allow the NRM Administrator 
(i.e., SUPER USER) to control access by other 
OpenNET users to files as well as other resour?es 
(e.g., print spooler) residing on the NRM. Each time 
an OpenNET user attempts to access an NRM re­
source, an automatic log-on process occurs. Those 
users who do not have the proper log-on 10 and 
password will be denied access to the requested 
NRM resource. 

For file sharing at the NRM, users can. be created 
with the same home directory. Then, the access 
rights of the home directory can be changed to allow 
all the users to read, add or delete files in that direc­
tory. The iNDX hierarchical protected file system 
supports owner and world access rights to files 
(READ, WRITE and DELETE) and directories (DIS­
PLAY, ADD-ENTRY, and DELETE). These access 
rights may be set by the owner of the file/directory, 
or by the SUPER USER (on the NRM). The SUPER­
USER on the NRM terminal has access rights to all 
resources at the NRM as well as the authority to 
create and delete users. 

iNDX supports concurrent read access to files and 
single write access to files (i.e., while a file is opened 
for writing by a user, no other user can read from or 
write to that file). 

OpenNETTM Consumers 

To become a valid network user under OpenNET, 
the user configures his/her OpenNET workstation 



infef iMDX555 

as an NRM OpenNET consumer. This involves per­
forming three simple steps at the workstation: 

• Adding the NRM's communication address in the 
workstation's session data base. 

• Activating the workstation's consumer network 
software 

• Executing a connect-to-NRM command 

This establishes connection between the worksta­
tion and the home directory specified during user 
creation at the NRM (with the USERDEF DEFINE 
command). 

A user may access different directories residing on 
the NRM. This can be done by defining multiple 
NRM users (giving access to different directories) at 
the NRM console. After establishing a connection 
with the NRM, a user at that workstation can access 
different directories with different log-ons. 

NRM Print Spooler Access 

An OpenNET user can print files on the NRM by first 
connecting the workstation's printer logical device to 
the NRM print spooler (with the NET USE com­
mand). Then,local and/or network files are printed 
by using the workstation's local network print com­
mand. 

For example, a DOS user would enter the NET 
PRINT command from the DOS workstation. A 
XENIX user, on the other hand, would simply use the 
RPRINT command with the specified NRM destina­
tion to print a file at the NRM. Alternatively, the 
XENIX user can use the copy command (CP) to 
copy local printfiles to the NRM print spooler (:SP:). 

Once a file has been sent to the NRM print spooler, 
that print job can be cancelled with the DELETE 
command at the NRM terminal by the network ad­
ministrator. 

The OpenNETTM Communications 
Engine (iSXM 552 Board) 

The iSXM 552 board integrates a high performance 
processor, the 80186,and a powerful Local Area 
Network (LAN) coprocessor, the 82586, on a single 
MUL TIBUS® board. With the iNA 961 transport soft­
ware, this solution set provides the implementation 
of the first 4 layers of the ISO OSI (7-layer) network 
communications model. 

This Intel LAN solution offers reliability and easy ex­
pandibility. iNA 961 provides internal detection and 
correction of communication mediums and worksta­
tions so that a malfunction at a given point will not 
cause total network failure. Moreover, stations can 

4-22 

be added or deleted· from an existing network with­
out reinitialization or reconfiguration· of all other 
workstations. 

OpenNETTM and Interconnection 
Hardware 

Although the OpenNET connection requires a com­
munications board (iSXM 552) different from NOS-II 
(DFS/ISIS) communications boards (iSBC 550 
board), all existing Intellink™ boxes, transceivers, 
and cables remain the same. Furthermore, the same 
(one) Intellink can be used. to connect Series 
1I111111Vs, VAXes, and OpenNET workstations, as 
long as cables from both the iSBC 550 and iSBC 
552 boards are connected to that Intellink box. The 
Series 1I/IIIIIV's, VAXes will only respond to the 
messages from the iSBC 550 board while the Open­
NET workstations will only understand the mes­
sages from the iSBC 552 board. This helps the user 
maximize usage of current interconnect hardware. 

SPECIFICATIONS 

Hardware Supplied 

iSXM 552A OpenNET communication board 
iSBC028A 128K RAM board 
Internal cable assembly 

Software Supplied 

iNDX OpenNET software 
iNDX Operation System 

Operating Environment 
• Hardware required: 

NOS-II NRM with 2 unoccupied MUL TIBUS board 
slots 

• OpenNET workstation connection requirements 
Personal Computer: 

PCLNK OpenNET PC Link hardware 
and software kit to connect the 
PC XT, PC AT, and compatible 
systems. to the NRM via the 
OpenNET network; requires 
DOS 3.1 or higher 

XENIX System: 

XNXNETNRIKIT OpenNET-XenixNET, iNA 961, 
iSXM 552 and Xenix-NET 
Pass-through Kit 



inter iMDX555 

RMX System: 

RMXNETKITWRI iRMX Networking Software 
for a 286/310 system running 
the iRMX 86 R6.0 Operating 
System to connect to the 
NRM via the OpenNET net­
work, SXM 552S. 

VAX or MicroVAX running VMS: 
-VAX OpenNET server slw and controller board 

4-23 

• Documentation: 

NOS-II OpenNET User's Guide 
(order no. 138809-001) 

ORDERING INFORMATION 
Part Number Description 
iMDX 555 NOS-II NRM OpenNET Upgrade 

Package 



inter, 
iMDX-581 

ISIS CLUSTER BOARD PACKAGES 
• Converts Spare Slots In Series II, III, IV, 

or Model 800 Workstations Into 
Additional Workstations 

• Up to Seven Additional NDS-II 
Workstations May Reside In One 
Development System Host . 

• Utilizes the Powerful ISIS-III(C) 
Operating System 

• Supports 16-blt Development with 
Local ASM-86 and PL/M-86, and Via 
ND5-11 Distributed Job Control 

• Supports 8-blt Macroassemblers and 
High-Level Languages 

• Supports all 8-blt ISIS-Based Software 
Development Tools Including the 
AEDIT-80, Text Editor, Program 
Management Tools, and NDS-II 
Electrorilc Mall 

• Provides Execution Environment for 
8085-Based Application Programs 

• Compatible with a Variety of 9.6K or 
19.2K Baud Terminals 

The ISIS Cluster Board Package is an NOS-II upgrade that cost effectively supports incremental software 
workstations on the network. Each Cluster board provides an 8085 CPU, 4K of ROM and 64K of RAM, and 
must reside in a Series II, Series III, Series IV, or Model 800 development system host. When attached to a 
user-supplied terminal, an ISIS Cluster workstation will boot onto the NOS-II and provide an ISIS environment 
which allows users to log on to the network and run Intellec~-supported 8-bit software, as well as "export" 
jobs to other network resources. \ 

Figure 1. Example of an NDS-n Configuration 

4-24 

SHARED MASS 
STORAGE 

231408-1 

December 1885 
Order Number: 231408-001 



inter iMDX-581 

FUNCTIONAL DESCRIPTION 

Summary: The ISIS Cluster board is a single-board 
computer centered around an 8085AH-2 CPU run­
ning at 4.0 MHz. 64K bytes of dual-ported RAM are 
provided on-board, along with 4K of ROM prepro­
grammed with a bootstrap program and self-test 
diagnostics. 

The ISIS Cluster MUL TIBUS® interface provides 
data and address interface latches. The serial I/O 
interface provides a full duplex RS232C serial data 
communications channel that can be programmed 
to handle serial data transmission at 19.2K or 9.6K 
baud. Software reset may be accomplished using 
the BREAK key on the terminal. 

A block diagram of the ISIS Cluster board is shown 
in Figure 2. 

Central Processing Unit 

Intel's powerful 8-bit 8085AH-2 CPU running at 
4.0 MHz is the central processor for the Cluster 
board. It is fully software compatible with all 8-bit 
ISIS-based languages and utilities which run on the 
Intellec Model 800, Series 11/80, Series 11/85, or Se­
ries liE. 

System ROM 

4K bytes of non-volatile read only memory are in­
cluded on the Cluster board using Intel's 2732A 
EPROM. Preprogrammed with the ISIS Cluster Boot 
program, the system ROM provides boot-up and di­
agnostic capabilities, and a generalized I/O system. 

The Boot program communicates with the operator 
via an interactive console. Upon reset of the Cluster 
system, execution is handled by the bootstrap 
PROMs which overlay 4K bytes of system RAM, ini­
tialize Cluster board devices, run self-test diagnostic, 
and perform· a communication handshake before 
prompting the user. 

RAM 

The Cluster board uses eight 2164 RAMs and a dual 
port RAM controller to provide 64K of dual-ported 
dynamic read/write memory. Slave RAM decode 
logic allows extended MUL TIBUS addressing with a 
1 Megabyte address space, so that RAM accesses 
may occur from either the Cluster board or from the 
network communication boards interacting via the 
MUL TIBUS interface. Since on-board RAM access­
es do not require MUL TIBUS accesses, the bus is 
available for other concurrent operations. Dynamic 
RAM refresh is accomplished automatically by the 
Cluster board. 

DATA/ADDRESS/CONTROL BUS 

MULTIBUS' 

231408-2 

Figure 2. Block Diagram of the ISIS Cluster Board 

4-25 



intJ iMDX-581 

Serial 1/0 

A programmable communications interface using 
the Intel 8251A USART (Universal Synchronous/ 
Asynchronous Receiver/Transmitter) is on the Clus­
ter board, and provides a full duplex RS232C serial 
communications channel. The transmit and receive 
lines are link exchangeable to enable a data set or 
data terminal to be used with the Cluster board. The 
board is pre-set for 9600 baud, but may be jumpered 
for 19.2K baud. 

Programmable Timers 

The interval timer capability is implemented with an 
Intel 8254 Programmable Interval Timer. The 8254 
includes three 16-bit BCD or binary counters. The 
first two counters are not used. The output from the 
third counter is applied to the serial I/O interface 
and provides the baud rate frequency for serial com­
munications. 

Interrupt Controller 

The Cluster board also includes an Intel 8295A In­
terrupt Controller. It is pre-configured with Interrupt 1 
triggered by the BREAK key on the user-supplied 
terminal. 

MUL TIBUS® Interface 

The Cluster board is a complete computer on a sin­
gle board, capable of supporting a variety of 8-bit 
development tools. For applications requiring addi­
tional processing capacity, the Cluster board pro­
vides full MUL TIBUS arbitration control logic. The 
bus arbitration logic operates synchronously with a 
MUL TIBUSclock. All memory references made by 
the CPU refer to the on-board RAM. The Cluster 
board cannot access devices local to the host devel~ 
opment system, but all of the shared network re­
sources are accessible. 

The Cluster board communicates with the Network 
Resource Manager via the MUL TIBUS interface and 
the network communication board set· in the host 
development system. 

System Configuration 

Each ISIS Cluster board requires one master slot in 
an Intellec cardcage. The host development system 
may be a Model 800, Series IV, Series II or liE, or 
Series III or IIIE with an optional expansion chassis. 
A Series II or liE with an expansion chassis will sup­
port a maximum of seven ISIS Cluster workstations, 
since the Integrated Processor Card ·and Network 
Communication boards occupy three of the ten card-

4-26 

cage slots. A Model 800 will support a maximum of 2 
ISIS Cluster workstations, and Series IV workstation 
will support a maximum of 4 ISIS Cluster worksta­
tions. Each ISIS Cluster workstation counts as one 
additional network workstation, so the maximum 
number" of Cluster workstations on a network is con­
strained only by the total number of users supported 
by the NDS-II Network Resource Manager. NDS-II 
iNDX Release 2.8 or later will support ISIS Cluster 
workstations in any Intellec development system 
host, including the Series IV. 

Programming Capability 

The Cluster workstation's ISIS environment supports 
all 8-bit Intellec-supported ISIS-based software, in­
cluding the programmer-oriented AEDIT-80 text edi­
tor, PMT-80 Program Management Tools, NDS-II 
Electronic Mail, 8-bit macroassemblers, and PLlM, 
FORTRAN, PASCAL, and BASIC high-level 8-bit lan­
guages. 16-bit development is supported by the 
ASM86 cross assembler and the PL/M-86 cross 
compiler, or by "exporting" any 16-bit job to a 16-bit 
workstation for execution. 

SPECIFICATIONS 

CPU: 4.0 MHz 8085AH-2 

MEMORY: 
On-board RAM, 64K bytes, dual-ported 
On-board ROM, 4K bytes preprogrammed with 
the ISIS Cluster Bootstrap Program 

Interfaces 
SERIAL 110: RS232C compatible, program­

mable interface 

BUS: 

TIMER: 

MUL TIBUS compatible, TTL level 

3 programmable 16-bit BCD or bi­
nary counters, 1 used as baud rate 
timer 

INTERRUPTS: 1 interrupt level available to user 
via the BREAK key on the terminal 

Physical Characteristics 

Two-sided printed circuit board fits into Intellec card­
cage: 

Length: 
Width: 
Depth: 

12 inches 
6.75 inches 
0.062 inches 

Internal flat ribbon cable connects ISIS Cluster 
board edge connector to the development system 
rear panel. 

External 10-foot RS232C compatible cable connects 
the development system rear panel to a user-sup­
plied terminal. 



iMDX·581 

Electrical Characteristics 

DC Power Requirements (from Mainframe) 

Vee = + 5V, 4.5 Amps 
Voo = +12V, 25 mA 
VAA = -12V, 23 mA 

Environmental Specifications 

Operating Temperature: O·C to 55·C 
Humidity: up to 90%, without condensation 

Documentation 

iMDX-581 Installation, Operation, and Service Manu­
al (#122293) 

NDS-II ISIS-III(e) User's Guide Supplement 
(#122098) 

Equipment Required 

Recommended Terminals' (one per ISIS Cluster 
Board) 

The following terminals have been tested arid found 
to be interface compatible with the ISIS Cluster 
board; configuration files are provided for these ter­
minals. Customers are advised to select terminals to 
meet their own environmental specifications. 

Hazeltine, Model 1510 
Televideo, Model 910+, 925, 950 
Lear Seigler, Model ADM 3A 
Adds Viewpoint, Model 3A + 
Qume, Model 102 
Zentec, Model ZMS-35, Cobra 

• All of the recommended terminals run at 9.6K or 
19.2K baud. 

CAUTION: Other RS232C-compatible devices may 
not meet Intel environmental specifications, and 
could degrade overall system performance. 

Host Development System (requires one open 
6.75 x 12 in. master slot in system cardcage per 
ISIS Cluster board): 

Series II/S5 or Series liE' 
Series III or Series 1I1E" 
Model SOO" 
Series IV 
'with optional Expansion Chassis 
"supports maximum of 2 ISIS Cluster Boards 

4-27 

Workstation Upgrade Kit (one per host system): 

iMOX-455 for Series II, III, or Model SOO 
iMOX-456 for Series IV 

NOS-II Network Resource Manager with Hard 
Disk Mass Storage 

Software Required 

For Series II, III, or Model BOO Host: 

NOS-II iNOX Operating System, Release 2.0 or 
later 

ISIS-III(N)/III(C) Operating System, Version 2.0 or 
later" 

For all Development System Hosts, 
Including Series IV: 

NOS-II iNOX Operating System, Release 2.B or 
later 

Series IV iNOX Workstation Operating System, 
Release 2.S or later" 

ISIS-III(N), version 2.2 or later" 

ISIS-III(C), version 2.2 or later" 

'included with NOS-II Release 2.0 
···included with NOS-II Release 2.S 

ORDERING INFORMATION 

Part Number Description 
iMDX-581 ISIS Cluster Board Package for 

Series II, Series III, Series IV, or 
Model SOO-includes processor 
board, cables, and documen­
tation. Must be installed on 
NOS-II in a Model BOO, Series II. 
Series III, or Series IV worksta­
tion and connected to a user­
supplied terminal. 



illtel~ 
INTEL ASYNCHRONOUS COMMUNICATIONS LINK 

• Communications So.tware for VAX· 
Host Computer and Intel 
Microcomputer Development.Systems 

• Compatible with VAX/VMS· and UNIXt 
Operating Systems 

• Supports Intel's Model 800, Intellec® 
Series II, Series III, s,ries IV and. . 
iPDSTM Microcomputer Development 
Systems 

• Supports NDS-II Workstations 

• Allows Development System Console 
to Function as a Host Terminal 

• Operates through Direct Cable 
Connection or over Telephone Lines 

• Software Selectable Transmission Rate 
from 300 to 9600 Baud 

Intel's Asynchronous Communications Link (ACL) enables Intel microcomputer development systems to com­
municate with a Digital Equipment Corporation VAX family computer. The link supports Intel Model 800, 
Intellec Series II, Series III, Series IV or iPDS development systems. Programmers can use the editing and file 
management tools of the host computer and then download to the Intel microcomputer development system 
for debugging and execution. Programmers can use their microcomputer development system as a host 
terminal and control the host directly without changing terminals. 

NOS-II Example 

IPDS 

VAX SERIES II. 
SERIES 1117XX 

ASYNCHRONOUS III.IV OR 
III 

COMMUNICATION 
MODEL BOO 

LINK 

I NDS·II VAX LINK I ETHERNET 

I I 
MODEL NRM SERIES 

800 IV 

210903-1 

NOTE: 
NOS-II VAX Link is an Ethernet Link between VAX'IVMS and Intel's Network Resource Manager. This product is also 
available from Intel. 

'VAX and VAXIVMS are trademarks of Digital Equipment Corporation. 
tuNIX is a trademark of Bell Laboratories. 
ttVADIC is a trademark of RacaJ-Vadic Inc. 

4-28 
October 1986 

Order Number: 210903-003 



inter INTEL ASYNCHRONOUS COMMUNICATIONS LINK 

FUNCTIONAL DESCRIPTION 

The Asynchronous Communications Link (ACL) con­
sists of cooperating programs: one that runs on the 
VAX computer, and others that run on each micro­
computer development system. The development 
system programs execute under the ISIS-II .or ISIS­
III(N), ISIS-IV, ISIS-II(W), or ISIS-PDS operating sys­
tem. They invoke the companion program on the 
VAX-11 /7XX, which runs under either the VAXIVMS 
or UNIX operating system. 

The link provides three modes of communication: 
on-line transmission, single-line transmission, and 
file transfer. In on-line mode, the development sys­
tem functions as a host terminal, enabling the pro­
grammer to develope programs using the host com­
puter's editing, compilation, and file-management 
tools directly from the development system's con­
sole. Later, switching to file transfer mode, text files 
and object code can be downloaded from the host 
to the development system for debugging and exe­
cution. Alternatively, files can be sent back to the 
host for editing or storage. In single line mode, the 
programmer can send single-line commands to the 
host computer while remaining in the ISIS environ­
ment. 

The user can select transmission rates over the link 
from 300 to 9600 baud. The linktransmits in encap­
sulated blocks. The receiver program validates the 
transmission by checking record-number and check­
sum information in each block's header. In the event 
of a transmission error, the receiving program recog­
nizes a bad block and requests the sender to re­
transmit the correct block. The result is highly reli­
able data communications. 

SOFTWARE PACKAGE 

The Asynchronous Communications Link Package 
contains either a VAXIVMS or UNIX compatible 
magnetic tape, a single 8", double 8", Series-IV 
5%", and PDS 5%" diskette compatible with the 
Intellec development system, and the Asynchronous 
Communications Link User's Guide containing in­
stallation, configuration and operation information. 

4-29 

HARDWARE CONNECTION 

The Link sends data over an RS232C cable. The 
communication line from the host computer con­
nects directly to a development system port. 

TELECOMMUNICATIONS USING THE 
LINK 

The ACL is ideal for cross-host program develop­
ment using a commercial timesharing service. This 
configuration requires RS232C compatible modems 
and a telecommunications line. Depending on the 
anticipated level of usage, wide-area telephone 
service (WATS), a leased line, or a data communica­
tions network may be chosen to keep operating 
overhead low. 

NOS-II ACCESS USING THE LINK 

The ACL is ideal for interconnecting VAX host com­
puters with NOS-II. This configuration requires that 
an NOS-II workstation be connected to the VAX host 
computer using the RS232C interface a,nd to NOS-II 
using the Ethernet interface. 

All three modes of communication operate identical­
lyon NOS-II. In the on-line mode, the development 
workstation operates as a host terminal, and concur­
rently, as an NOS-II workstation. It is an easy tran­
sition between the VAX and ISIS operating system 
environments as LOGON/LOGOFF sequences are 
not required to re-enter environments. 

In file transfer mode, text and object files can be 
transferred from the VAX directly to the Winchester 
Disk at the NRM without first copying the files to the 
workstation local floppy disk. Similarly, files residing 
on the NOS-II Network File System (the Winchester 
Disk at the NRM) can be transferred directly to the 
VAX without using local workstation storage. 

Using the EXPORT /IMPORT mechanisms of NOS­
II, a network workstation which is not directly con­
nected to the VAX can cause files to be transferred 
between the VAX and NRM. For example, any NOS­
II workstation can "EXPORT" ACL commands to 



inter INTEL ASYNCHRONOUS COMMUNICATIONS LINK 

another "IMPORT"ing NDS-II workstation which is 
physically connected to a VAX. The "IMPORT"ing 
workstation executes the ACL command file causing 
the desired action to occur. 

VAX ACCESS USING THE LINK 

Users who want multiple workstations concurrently 
operating as VAX terminals (ONLINE mode) must 
physically connect each workstation to the VAX. 
However,users who want multiple workstations to 
be able to upload/download files, for example, must 
only physically connect one workstation to the. VAX. 
By using the EXPORT/IMPORT mechanism of 
NDS-II as described above, the user can have multi­
ple workstations accessing the VAX using only one 
connection. 

SPECIFICATIONS 

Software 

Asynchronous Communications Link development 
system programs 

VAXIVMS or UNIX companion program 

Media 

Single- .or double-density ISIS 8" and Series-IV, 
iPDS 5%" compatible diskette 

600-ft. 1600 bpi magnetic tape, VAXIVMS or UNIX 
compatible 

Data Transfer Speeds 

All systems up to 9600 bps 

Online Terminal Mode Speeds 

Series II, Series III, Series IV - 2400 bps max PDS 
- 9600 bps max 

Model 800 - equal or less than the Terminal speed 

Manual 

Asynchronous Communications Link User's Guide 
Order No. 172174-001 

4-30 

Required Host Configuration 

VAX-11/7XX running VAXIVMS (Version 4.1 and 
later) or fourth Berkley distribution of UNIX 4.2 

Required Intel Development System 
Configuration 

Model 800, Series II, Series III, Series IV, or iPDS 
under ISIS 

Required Connection 

RS232C compatible-cable 3M-3349/25 or equiva­
lent; 25-pin connector 3M-3482-1000 or equivalent 

Recommended Modems for 
Telecommunications 

300 baud-Bell.103 modem; VADICtt 3455 modem 
or equivalent 

1200 baud-Bell 202 modem; VADIC 3451 modem 
or equivalent 

9600 baud-Bell 209A (full duplex, leased line) or 
equivalent 

NOTE: 
Since one of the two Model 800 ports uses a cur­
rent loop interface, Model· 800 users need a termi­
nal or modem that is current loop compatible, or a 
current 100p/RS232C converter. 
The model 800 might require modification by a 
qualified hardware technician. Intel does not repair 
or maintain boards with these changes. 

ORDERING INFORMATION 

Product Name 

Asynchronous Communications Link 

Ordering Code:!: 

iMDX 394 for VAXIVMS systems 

iMDS 395 for UNIX systems 

t See prtce book for proper suffixes for options and media selections. 



NDS-Ii/Series-IV IOpenNET™ Toolbox 

• Multiple NRM Communication 
• Remote Series-IV from VAX· Terminal 

• Series-IV Menu Compiler 

• MS-DOS*'Serles.IV Disk Read Utility 

• XENIX Services for Any Workstation 
that can Access an OpenNETTM NRM 

• Access to NOS " DJC for OpenNETTM 
Workstations 

• Allow 8080 Based Intel Tools on 8086 
Family Systems 

The NOS-II/Series-IV/OpenNET Toolbox is a software only product that contains valuable collection of tools 
developed for the NOS-II, Series-IV and OpenNET user. These tools have been designed to make hybrid 
development system environments work together and to more fully automate the software developer's task. 
Many tools are provided with source to allow the engineer to customize these products to their own environ­
ment. 

Note: However, this is not a supported product. 

NRMTOOlS 

NRM 
1 

MAilMAN 

NRM 
2 

OpenNET'" 
NRM 

. FilE 
TRANSFER 

XENIX IRMX" ISIS B051 

BOOTUP 
SERVER 
10 
SLEEP 
REPORT 
DBllST 

f----- OpenNEP" PROTOCOLS ------+I 

SERIES IV TOOLS 

TREE 
MENU COMPilER 
OS LIBRARIES 
SLEEP 
DIRT 
liST 
CLOCK 
CHECK 

SERIES II 
OR 

SERIES III 
OR 

SERIES IV 

ISIS CLUSTER 

MODEM 

231466-2 

Example of the Many Possible Connections Available with NDS-Ii/Series-IV IOpenNETTM Toolbox 

"MS-DOS is a trademark of Microsoft Corporation 
"VAX is a trademark of Digital Equipment Corp. 
CP/MIiI> is a registered trademark of Digital Research Inc. 

4-31 
May 1986 

Order Number: 231488-002 



NDS-II/SERIES-IV IOpenNETTM TOOLBOX 

CONNECT 

CONNECT allows software developers to use their 
VAX terminal as a virtual terminal for their Series-II 
or Series-IV work station. Software developers can 
now run PSCOPE, ICETM and 121CETM emulators 
from their VAX terminal, eliminating the need to 
switch terminals when debugging a program. This 
serial communications based program runs at 9600 
baud for the Series-II and 2400 baud for the Se­
ries-IV. Complete support of the Series-IV menu line 
is available on the VAX terminal. CONNECT does 
not provide file transfer capability, this is provided for 
in either the VAX Link or ACL products. A separate 
serial cable, not supplied with Toolbox, is required 
for connecting the development system to the VAX. 
Source and generation are provided. 

NRM to NRM Communications 

The NRM to NRM communications package pro­
vides file transfer and printer spooling from one 
NDS-II network to another via ethernet. Two new 
commands are provided, NNCOPY and NNDIR, for 
Series-IVs running iNDX version 2.5 or greater. 
These commands do not function on the MDS-SOO 
development system, ISIS Cluster, Series II, or Se­
ries III; although an ISIS work station may use export 
to run NNCOPY or NNDIR remotely. Full file protec­
tion is provided by this application. This product also 
requires that the NRM terminal run the slave pro­
gram, NNL. The system administrator can prevent 
access to the NRM from remote systems by not exe­
cuting NNL. 

TREE 

TREE is a program for the SIV or NRM that provides: 
ARCHIVE over the network, listing of a directory 
tree, searching a directory tree for a specified file, 
deletion of an entire directory tree, wildcard deletion 
of files from a directory tree, or displaying the total 
disk space used by a particular user or directory 
tree. Commands provide for OWNedby, MODIFIED­
BEFORE or SINCE controls. 

MENU COMPILER 

Allows users of the Series IV or NRM to modify the 
command level menu to include their own com­
mands or to remove commands not often used. 
Source for the current Series-IV menu line is provid­
ed as well as the additional information needed to 
add Toolbox commands. Menu compiler input is pro­
vided in the form of an LL 1 parse tree which will 
require some knowledge of compiler technology to 
modify. 

4-32 

MSCOPY 

MSCOPY is an iNDX utility that allows manipulation 
of an MS-DOS disk on a Series IV or NRM. Using 
this program, the Series-IV or NRM can read and 
write MS-DOS files. Source and generation are pro­
vided. 

NETWORK CP/M-80 

Network CP/M is a package that allows a Series-II 
or ISIS cluster to run CP/M®-SO and use the NDS-II 
as a remote file server. A separate license is re­
quired for CP/M on each work station. This package 
is only an interface that allows to use the NDS-II as a 
file server, the CP/M operating system is not provid­
ed. CP/M is available separately as Intel part num­
ber SD01 CPMSO-S-SU. Source is provided for utili­
ties only. 

NETWORK CP/M UTILITIES 

CP/M - loads Network CP/M onto the Series 
II or ISIS cluster. 

MAKDSK - creates a blank Network CP/M disk 
image. 

CDIR - gives directory of a Network CP/M 
disk image or CP/M-SO diskette in drive 
1 of a Series II. 

ADDSYS - adds CP/M OS to disk image A: 
created using MAKDSK. 

CCOPY - allows an ISIS user access to CP/M 
files. 

CPMOMF - converts a program developed under 
ISIS to a CP/M executable program. 

SUCPM -"" SUPERUSER facility for CP/M. 

BOOTUP 

SOOTUP allows an iMDX-5S0/5S1 ISIS cluster 
board to be used in any SSC chassis instead of only 
a microcomputer development system. SOOTUP is 
a special monitor PROM which is installed on a stan­
dard ISIS cluster board. This board is then installed 
into any SSC system chassis to provide a diskless 
work station. The cluster board accesses the NDS-II 
file system via an iSSC®550 communication control­
ler also installed in the system chassis. Additional 
ISIS cluster boards may be installed in the same 
chassis to provide for more users instead of using a 
Series-II, III, or IV. Up to eight clusters can be used 
in a single system chassis. 

NOTE: 
Only object. files are provided, the customer must 
provide his own 2732A PROM. Object files are pro­
vided for all formats of Intel PROM programmers. 



inter NDS-IIISERIES-IV IOpenNETTM TOOLBOX 

SERVER 

SERVER allows an ISIS Cluster to automatically log­
on to the NOS-II network by supplying a username 
and password from PROM. ISIS will then execute 
the corresponding initialization file (:f9: ISIS.lNI). A 
useful application of SERVER is to provide addition­
al spooled printer capability to the network by exe­
cuting PRINCE, another Toolbox application, in an 
infinite loop from the ISIS initialization file. Some 
source and generation are provided. All object files 
are supplied. 

PRINCE 

PRINCE is an ISIS based spooling program for use 
with a Series-II, III, IV, or ISIS cluster board in either 
the stand-alone or networked environments. 
PRINCE provides support for both parallel and serial 
printers, including complete XON/XO~F or 
OTR/OSR printer ready protocols. PRINCE IS most 
effective when used with an ISIS Cluster board and 
the SERVER PROM. The program features exten­
sive logging capabilities. Source and generation are 
provided. 

PRMSlO 

PRMSLO is a PROM image for an ISIS Cluster that 
sets the default baud rate to 300 or 1200 baud. This 
enables the cluster board to be used with a modem. 
Object files only supplied. 

UOXCOM.lIB 

System library for iNOX specific UOI extensions. 
This library provides support for MUL TIBUS® hard­
ware and software interrupt calls, enable/disable in­
terrupts, read directory expanded, and more. Object 
code and documentation are provided for this li­
brary. 

OSXCOM.LlB 

System library for internal iNOX operating system 
extensions. This extensive internal system library 
provides many system level calls, such as create di­
rectory, enable/disable break, change acc~ss, 
change owner, change password, MIP communIca­
tion calls, and many more. Object code and docu­
mentation are provided forthis library. 

BVOSX.lIB 

This library provides operating system support for C 
language programs in the SMALL model. Normally 
the programmer would use OSXCOM.LlB and the 
COMPACT model of compilation. The functions in 

4-33 

BVOSX.LlB are the same for the corresponding calls 
in OSXCOM.LlB, although not all functions are pro­
vided. Source and generation are provided. 

BVCllB 

BVCLlB is a useful set of C language functions con­
tained in the libraries BVCSLB.LlB and BVCLLB.LlB. 
BVCSLB.LlB is SMALL model, and BVCLLB.LlB is 
large model. Functions included are: parse, wmatch, 
strtok, valid, creat, open, read, write, seek, close, 
conn_num, str_to_uppercase, str_to_lower­
case, plm_to_c_str, c_to_plm_str, err_chk, 
marLend. All references to strings are assumed to 
be C format strings. Source and generation are pro­
vided. 

SLEEP 

This program puts a Series-IV or NRM to SLEEP for 
the time specified in the (time) parameter. SLEEP 
can be used in a submit file to execute a program at 
a certain time. For example, automatically archiving 
at midnight and then returning to sleep until the next 
day at midnight and repeating the archive. Source 
and generation are provided. 

10 

10 is an iNOX utility that lists the name of the current 
user to the current console. It is useful if you forget 
who you are or need to know who is executing a 
particular submit file (MAILMAN is a good example 
of this). Source and generation are provided. 

MOS-800 FPORT 

INIT800.86 and FPRT are iNOX and ISIS utilities that 
allow file transfer between an MOS-800 develop­
ment system and Series-IV over a serial line. Re­
quires S4FPRT.86 (supplied standard with the Se­
ries-IV). Source and generation are provided. 

OBLIST 

OBLIST is an ISIS utility that enhances the operation 
of the SVCS programming. tool set. It can list the 
entire SVCS database to an output device and may 
be used to remove deleted variants from a data 
base directory. Source and generation are provided. 

REMOTE Comrriunicationwith iPDS, Series-II, 
III, IV 

This program gives the remote iPOS, Series-II, III, or 
IV user complete access to an NOS-II system 
through an ISIS Cluster board; includin.g file uplo~d 
and download capability. The program IS menu dnv-



inter NDS·II/SERIES·IV IOpenNETTM TOOLBOX 

en and includes: serial channel select, 8253 clock 
select, break-key select, baud rate select, modem 
present/not present select, dial/touchtone select, 
add-to-out call list option. Source and generation are 
provided. 

REMOTE Communication with IBM PC running. 
MS/DOS 

This program enables an IBM Personal Computer 
running MS/DOS to act as a dumb terminal for an 
ISIS Cluster board connected to an NDS-II network. 
The ability to upload and download files from the PC 
to the network is supplied. Source and generation 
are provided. 

REPORT 

REPORT is an ISIS utility that reports back on the 
status of a job that has been EXPORTED to the 
NDS-II network for execution on a remote job sta­
tion. The user can add messages to the command 
file at appropriate positions in the job sequence, and 
these messages are returned to the ISIS user when 
encountered. Source and generation are provided. 

DIRT 

DIRT is an iNDX utility which provides a directory 
listing with time and date of file creation and modifi­
cation. Source and generation are provided. 

VIEWPASS 

VIEWPASS is an iNDX utility provided exclusively for 
the SUPER USER. It lists all the usernames on the 
system, their associated passwords, and their id 
number. Source and generation are provided. 

FDUMP 

FDUMP is an iNDX utility that is used to print the 
contents of a file on the console in one of four possi­
ble formats: HEX, BINARY, OCTAL, or DECIMAL. 
The default is HEX if no option is specified; all for­
mats include a display of the file in ASCII (reverse 
video on the Series-IV). Source and generation are 
provided. 

CLOCK 

CLOCK is a desk clock for use when you have noth­
ing else to worry about. CLOCK displays the current 
system time on the console of a Series-II, III, IV 
(iNDX) or ISIS Cluster. Eight and sixteen bit versions 
are supplied for ISIS and iNDX systems. Source and 
generation are provided. 

4-34 

IFILES 

IFILES is an ISIS-III (N) utility used to identify date/ 
time stamped files in a directory. All of the files that 
conform to the defined specification will be listed in 
a savefile. This file can further be used in command 
files for manipulating the identified files. Source and 
generation are provided. 

LIST 

LIST is a utility that copies files to the system printer 
(:SP: or :LP:). LIST has the following features as en­
hancements over a normal copy to :SP:. 

1) No form feed at the very beginning of a file. 

2) Assumes '.LST' for an extension if none is given. 

3) Supports multiple copies. 

4) Supports multiple files. 

5) Supports page breaks. 

6) Supports printing of the filename at the beginning 
of the listing. 

7) Converts tabs to spaces if necessary. 

Source and generation are provided for ISIS and 
iNDX versions. 

TA 

T A is an ISIS based type-ahead utility for the Se­
ries-II/III. TA provides a 255 character type-ahead 
buffer on the Series-II/III. TA requires the iMDX-511 
enhanced IOCupgrade, available on most systems 
manufactured after 1983. Source and generation are 
provided. 

MAILMAN 

MAILMAN is an extensive command file that. sup­
ports multiple network electronic mail when used 
with more than one NRM and NRM to NRM commu­
nications. Source is provided. 

CHECKEXIST and CHECKTIME 

CHECKEXIST and CHECKTIME are iNDX utilities 
used to assist the automation of iNDX command 
files. CHECKEXIST provides a true or false system 
variable (%status) depending upon the existance of 
a specified file. A following check of %status within 
the command file will control the flow of the com­
mand file based upon the existance of the specified 
file. CHECKTIME provides a greater or less than 
%status by comparing an input time with the system 
clock for conditional execution of commands in the 
command file at specified times. Source and genera­
tion are provided. 



NDS-Ii/SERIES-IV IOpenNETTM TOOLBOX 

XID 

XID, (pronounced "zid") the (X)enix (I)mport (D)ae­
mon, provides XENIX services for any workstation 
that can access an OpenNET NRM. Thinking of it in 
another way, XID provides yet another resource for 
NRM users; a resource much like a spooled line 
printer or mass storage. In this case, the resource 
provided is "any job or service that a XENIX box can 
do; you, as an NOS-II user can. gain access to". 
Source and generation are provided. 

REEXPORTER 

Reexporter is an iNDX utility that allows OpenNET 
users (PC's, Xenix, iRMX Systems) to execute batch 
jobs on NOS-II systems (i.e., VAXIVMS, Model 8001 
Series II, III, IV). The utility will execute on a Series­
IV, Compilengine or the NRM itself. In brief, it scans 
special user directories on the NRM looking for com­
mand files. If a command file is found, it re"EX­
PORT"s the command file to a DJC job queue. A log 
file is· generated to allow the OpenNET user to 
check the success/failure of the job. Source and 
generation are provided. 

XTAR 

XTAR is a program that will let you manipulate a 
XENIX tar diskette at a Series IV. XTAR works only 
with disks formatted by the /dev/dvfO device driver 
on a 286/310 box, or with the /dev/fd048ds96 de­
vice driver on a PC/AT. This version will not handle 
files physically bigger than a single flippy (367104 
bytes). Source and generation are provided. 

ISIS 

The ISIS environment is designed to allow 8080 
based Intel tools (such as ASM, PLM LINKER/LO­
CATOR) to run on an 8086 family system, either 
iRMX or PCDOS based system. The ISIS environ­
ment does not support all ISIS calls, but is sufficient 
to run 8051 translators and utilities. Hosting ISIS on 
Xenix-286 systems is possible and installation in­
structions are included. All object files are supplied. 

4-35 

OAP 

OAP is a utility that for security reasons masks the 
username and password in the PC-Link net use 
command for increased security. The utility also dis­
plays all available servers, by looking at the NE­
TADDR file. Source and generation are provided. 

SPECIFICATIONS 

Operating Environment 

ISIS, iNDX, RMX, XENIX, or PC-DOS operating sys­
tem. Check description of each tool for specific re­
quirements. 

Documentation 

"NDS-II/Series-IV /OpenNET Toolbox" 
(122336) 

ORDERING INFORMATION 
NDS2 TLB NDS~II/Series-IV/OpenNET 

Toolbox 



VAXIVMS* NETWORKING SOFTWARE 
Member of the OpenNETM· Product, Family 

As a·member of Intel's OpenNETTM faDtily 
of network software, VAX/VMS* Networking 
software (VMSNET) lets you connect a VAX 
or MicroVAX 11* system to other OpenNET 
systems. This includes the mM PC AT, 
PC XT, Intel's OpenNETNRM (Network 
Resoprce Manager), NDS~II NRM (with the 
OpenNET _~pgrade·kit installed), iRMX®, 
and XENIrsystems. VMSNET enables a 
(Micro)VAX system to be conftgured as a 
Server System on the OpenNET network, 
thus allowing any OpenNET Consumer 
workstation (iRMX, XENIX, MS-DOS) 
to transparently access flies residing at 
remote (Micro)VAX systems. In addition, 
VMSNET supports bidirectional file transfer 
initiated from a (Micro)VAXto all other 
OpenNET serVers. .. .. 

Product Highlights 

- Connects a VAX and MicroVAXll to the 
OpenNET Network 

- Interoperation between VAX/VMS and MS-DOS, 
iRMX, XENIX, and iNDX systems over a Local 
Area Network (LAN) 

- Conforms to the ISO-OSI networking standards 

- Adheres to ISO 8073 Transport and 
Ethernet/IEEE 802.3 Standard 
Communication Protocols 

- Uses 80186/82586 Processor-based Unibus and 
Qbus Network Controller Boards 

- All data stored at the (Micro)VAX is visible to, 
and can be transparently accessed by, all 
consumer workstations on the OpenNET network 

- Enables high speed file transfer/file copy between 
the (Micro)VAX and OpenNET workstations 

- Compatible with DECnet* 

PRODUCT BRIEF 

OpenNET Overview 

Intel'~ OpenNET product family incorporates a set of 
system and component level LAN products covering all 
seven layers of the ISO (International Standards Organiza­
tion) Open Systems Interconnect (OSI) model, and the 
protocols on which they are based, OpenNET protocols are, 
whenever possible, established industry standards for each 
function. Therefore; OpenNET network products can inter­
connect and interoperate not only with each other, but with ' 
the other vendors' ISO-OSI based LANs. An OpenNET 
network provides a high level of interoperability between 
heterogenous systems: MS-DOS, VMS, iNDX, XENIX,and 
iRMX operating system versions are available; Thus, users 
can tailor their networks to meet their specific needs by 
incorporating any combination· of these diverse systems. 

·XENIX is a trademark of Microsoft Corporation. VAXNMS, MlcroVAX II, DECnet are trademarks of Digital equipment Corp. 

ORDER NUMBER 280329-001 

4-36 



Physical Description 

The VAXIVMS Networking Software package consists of 
the appropriate network controller board and the software 
necessary for the (Micro)VAX to communicate over the 
OpenNET network. The following sections describe the 
hardware and software components of VMSNET. 

VMSNET Hardware 

VMS NET comes with one of two types of Ethernet 
controller boards: a Unibus* board for the high-end VAX or 
a Qbus board for the MicroVAXII system. Both boards 
implement the industry standard ISO 8073 transport protocol 
and Ethernet/IEEE 802.3 physical data link technology. 
Both boards are high performance, intelligent communica­
tions controllers featuring onboard, dedicated Intel 
80186/82586 processors which support layers 1 through 4 of 
the ISO OSI Reference Model. Thus, the Unibus and Qbus* 
boards perform the CPU tasks associated with lower layer 
LAN communications protocols, thereby freeing the 
(Micro)VAX host CPU to concentrate on applications 
requirements. 

Power-up, self-test diagnostics are resident on both the 
Unibus and Qbus controller. Extended host resident 
diagnostics are also provided which can be loaded onto the 
boards to aid in problem resolution. In addition, appropriate 
internal cables, and chassis mounting hardware are included. 

VMSNET Software 

The software is supplied on either a 9 track magnetic tape 
(for high-end VAXs) or on both a TKSO cartridge tape and 
RX50 5!.4-inch disk (for MicroVAXIIs). The following soft­
ware components are included as part of the VAXIVMS 
networking software: 

- A specially configured version of iNA 960 transport layer 
software which operates on the network controller boards 

- A VMS interface driver which enables VMS programs to 
access the network controller' board 

- An implementation of the Network File Access (NFA) 
protocols (jointly developed by Intel, IBM, and Microsoft) 
which enables (Micro)VAX users to interoperate with 
other nodes on the OpenNET network 

APPLICATION (7) 

NETWORK FILE 
ACCESS (NFA) -

iNA 960 I { 
~~~(~IS~O~8~W~3~) __ ~-

ETHERNETIIEEE 802.3 1
L---=S:.:.,P-=E-=C,;";,IF-'CIC,,,,/i.,;,,;,J.;,;;IO:;..;,N.;,;;S,--... -

PRESENTATION (6)

SESSION (5)

TRANSPORT (4)

NETWORK (3)

DATA LINK (2)

PHYSICAL (1)

ISo-OSI VAXIVMS OpenNET Implementation

OpenNET, IRMX are trademarks 01 Inlel Corporation .
• Unibus and Qbus are trademarks of Digital Equipment Corporation.

4-37

VMSNET NETWORKING
- SOFTWARE

Functional Ik$cription

Transparent File Access

VMSNET provides transparent remote file acces~ capabilitY
to the (Micro) VAX through a file server module. The server
receives, interprets and executes the command acting as a
user to its local file system. Consequently, a PC, iRMX, or:
XENIX user can work with data files and resources '
residing at the VAX as if they were resident on hislher
system.

File Transfer

VMSNET also provides a set of file transfer utilities that
allow (Micro) VAX users with the ability to transfer files '
that reside on other OpenNET server. nodes to the
(Micro)VAX or vice-versa. These utilities Include copying
files, deleting files, listing directories, and a help facility.

DECnet ,Access •

VMS NET will alloW consumer access to a file residing on
DECnet nodes. The only protocol restriction is that the
server will not allow file locking or compatibility mode
opens on DECnet file access. The consumer may use
logical names to,define DECnet pathnames. For example, if
"dev" is defined in login.com with an equivalence string of
"isodev" user mypasswork"::dra l[userl", the consumer can
use "dev" as the first patbname component; the server will
automatically use' DECnet for the file access:

- net use, vms IIvms/user mypasswork
- Ie IIvms/dev
- cp IIvms/dev/test.objlusr/bin

Network Management

A set of network management utilities provide (Micro)VAX
users with infoilnatioil and statistics of VMSNET along
with the capability to control the execution of the VMSNET
server and file transfer utility. To invoke the network utility,
the user simply needs to type "NET" in response to the
DCL (Digital Command Language) prompt. .

Host Requirements

- VAX 750, 780, 782, 785
- VAX 8xxx family
-MicroVAXn
- (Micro)VMS operating system, version 4.2 or later

Physical Characteristics

Software

1. 9 track 1600 bpi magnetic tape
or

2. TKSO cartridge tape and RXSO 5 \4 -inch disk

Power Requirements

Unibus controller: +5 vdc (±5 %) at 4.5 amps typical,
6 amps maximum
-15 vdc (±IO%) at .5 amps, 3 amp
surge

Qbus controller: +5 vdc (±5 %) at 6 amps typical
+12 vdc (±IO%) at .5 amps, 3 amp
surge

Enviromnental Characteristics

Operating TemperatUre: 0° to 50°C (32° to 122"F)

Operating Humidity: Maximum of 90% relative humidity,
non-condensing

Forced air cooling

Ordering Information

VMSNET VAXIVMS Networking Software for installa­
tion on a high end VAX: consists of a Unibus
network controller board with 256KB RAM, a
5 J1. and 10 ft flat transceiver cables, software
on a 9' track 1600 bpi magnetic tape, and an
installation and user's guide.

MVMSNET VAX/VMS Networking Software for installa­
tion on a MicroVAXll: consists of a Qbus net­
work controller board with 256KB RAM, an
18 inch flat transceiver cable, software on both
TKSO cartridge tape and RX50 5 \4 inch disk,
and an installation and user's guide.

4-38

VAXNMS

NETWORKING FOR
THE DEVELOPMENT

ENVIRONMENT

UUnllijllllllllllllllllllllll~11I!1
~IIlIlIlIllIlIUII!IIIIUIIIIIIIIIIIII

• OpenNETTM Network Resource Manager (NRM)
provides shared file storage for all workstations

• OpenNET PC Link connects personal computers
to the network

• Compilengine off\(1ds compiles from any system
on the network

• VAX Link for VAX/VMS* network
communication

• NDS·II NRM OpenNET Upgrade

• Ethernet communication speeds

• Conforms to industry communication standards
(ISO/IEEE)

4·39
ORDER NUMBER 280258-001

The total network
development solution bas~d'
on standards '

Intel's open development networkiilg
encompasses the, needs for existing as
well as new Intel OpenNEPM
development users. In the lab, Intel
protects your investment by allowing
you to interconnect existing Intel
development workstations and other
industry-standard hosts, such as the
VAX/VMS' and the IBM PC. This
network integrates OpenNET, Intel's
open systems strategy for local area
networks (LANs). It also ties the
development lab, factory and office
into a coherent environment.

The OpenNET family implements
standards at each level of the
International Standards
Organization's seven-layer Open
Systems Interconnect (OSI) model.
For the lab, this includes a range of
special networking services to provide
your development lab with the power
and flexibility needed to solve
today's and tomorrow's problems.

A file server tailored to lab
requirements
The OpenNET Network Resource
Manager file server manages all
network workstation requests for
central resources, including file
access, print spooling, tape back-up,
'remote job execution queue
management, program management
and network maintenance'functions.
The NRM, unlike many office file
servers, features a full~featured,
protected, hierarchial·file ~ystem.
The NRM supports transparent
access to this file system from any
OpenNET consumer (e.g., MS-NET,
XENIX', iRMXTM 86) as well as
from Intel's Intellec Model 800,
Series II, III and IV Systems.

Two OpenNET models are available:
the MAXI, with a 140MB Winchester
and a 60MB tape storage, and the
MINI, with a 40MB Winchester only,
Both are 8 MHz, 80286-based super­
microcomputers with I MB of zero
wait-state RAM. And, both are
optimized for file access using
techniques such as caching of most
recently used tracks, very fast disks,
fast disk-seeking algorithms and
communications boards with their
own d~dicated microprocessors.

Program Management Tools (PMTs)
decrease the time spent tracking

·

programimodule' changes and
manuaily generatingprqgrams,
giving software engineers more time
for design, development and testing.

A remote job execution facility
provides automatic network load'
balancing.

Transform your PC from an
individual workstation to
team member
The OpenNET PC Link enables users
to connect their IBM PC XT / AT or
compatibles to the OpenNET
Network and to transparently access
and share files and printers on an
OpenNET NRM, NDS-II NRM,
iRMX and XENIX-based file servers.
OpenNET PC Link features an
80186/82586 microprocessor-based
Ethernet/IEEE 802.3 expansion
board, Microsoft networking

Workstation requirements

software (MS-NET) and iNA960
transport software .
(IS08073-compatible).

Compilengine: a shared
network resource
Compilenghie is a shared, networked
systemoptimiied to offload compile
and link/locatejobs from any
workstation or VAX on the network.
It is an 80286-based supermicro­
computer that compiles faster than
any workstation and requires no
terminal to operate. Moreover,
because it supports two partitions, it
can be used as a software work­
station at the same time it is being
used as a shared resource.

This product can be connected to an
NDS-II NRM or OpenNET NRM.

SOFTWARE HARDWARE
WORKSTATioN REQUIREMENTS REQUIREMENTS

NDS-II workstations
Compilengine
Model 800 PIMDX455
Series II/III PIMDX455
Series IV PIMDX456
Cluster Chassis NDS2TLB PIMDX455
VAX IMDX 392; [VMS V4.2) [DEUNA· Board)

OpenNET workstations
PC DOS DOS V3.1 PCLNK
System 310 XENIX XNX-NET RI.O iSXM 552
System 310 RMX 86 RMX-NET RI.O iSXM 552

[) Available from DEC
NOTE: Interconnecting hardware (cables, transceivers) requirements are not

included in the above chart.

Ordering Information
iMDX 460-140T

iMDX460-40

iMDX 555

iMDX485CE

NDS2TLB

iSYP312

4-40

OpenNET NRM (MAXI model).

OpenNET NRM (MINI model).

NDS-II NRM OpenNET Upgrade Kit.

Compilengine.

Network Software Toolbox.

Floor stand which encloses either the OpenNET NRM
or the SYS 311 peripheral expansion box.

NOS-liN AX Link
This Ethernet-based link between an
OpenNET NRM or an NDS-II NRM
and a DEC' V AX/VMS micro­
computer allows VAX users to copy
files from the VAX to the NRM for
debugging, in-circuit emulation and
testing. With the remote job
execution feature, VAX users can
send CPU-intensive jobs to idle
workstations (such as the
Compilengine) for execution.
Conversely, NRM users can send
jobs for remote execution on the
VAX.

NOS-II NRM OpenNETTM
Upgrade

This product allows your NDS-II
NRM to double as an OpenNET file
server for PC, XENIX and iRMX
workstations; files on the NRM may
be transparently accessed by any
workstation on the network.

Peripheral Expansion
Option
The OpenNET NRM supports 40 or
140MB of Winchester storage on a
single disk drive. Mass storage can be
expanded to 460MB on the MINI
NRM and 560MB on the MAXI
NRM, using the 311 peripheral
system.

·VAXNMS, DEC & DEUNA are trademarks of
Digital Equipment Corp.
XENIX is a trademark of Microsoft Corp.

Workstation Kits
PIMDX455

PIMDX 456

PIMDX 581

IMOX 392

PCLNK

RMXNETKITWRI

SXM 552S

XNXNETNRIKIT

NDS-II Workstation Upgrade Kit for any
Series H/85, Series III, or Model 800 to connect to
the OpenNET NRM or NDS-II NRM.

NDS-II Workstation Upgrade Kit for the Series IV.

ISIS Cluster Board Package.

VAX Link R2.1 for VAX/VMS connection to the
NRM.

OpenNET PC Link hardware and software kit to
connect the PC XT, PC AT, and compatible systems
to the NRM via the OpenNET network; requires DOS
3.1 or higher.

iRMX Networking Software for a 286/310 system
running the iRMX 86 operating system to connect to
the NRM via the OpenNET network.

Ethernet-based Single Board Network
Communication Engine for 310 systems.

OpenNET-XenixNET Networking Kit. Includes
iNA 961, SXM 552 and XenixNET pass-through
networking software.

Interconnecting Hardware

PIMOX 457/458

PM OX 3015

iDCM 911-1

PIMOX 3016-1/
3016-2

4-41

Transceiver cables (10150 meters) (two are required
for an OpenNET NRM; one is required for a
Compilengine).

Transceiver for Ethernet coaxial cables (at least two
are required unless an Intellink is used).

Intellink module (the OpenNET NRM uses two
ports).

Ethernet coaxial cable (25150 meters).

inter APPLICATION
NOTE

AP-240

October 1986

Using Archive To Efficiently
Control a Network

SRIVATS SAM PATH
DSO APPLICATIONS ENGINEERING

Order Number: 231476·001 .
4·42

inter AP-240

INTRODUCTION

The onset of large scale software projects has generated
additional needs in all levels of the development envi­
ronment. The need for a sophisticated source and ver­
sion control system and efficient disk management be­
comes particularly important as the project team
grows. This need is more pronounced at the software
management level, where operating the project on
schedule is of prime importance. Efficient disk manage­
ment includes keeping the disk free of redundant files
and keeping copies of older versions somewhere other
than the disk itself. In other words "ARCHIVING" all
previous versions onto another storage media that is
inexpensive, reliable and transportable is key. One stor­
age media that meets all these requirements is the NDS
II tape sub-system which forms an integral part of
the development environment. Moreover, the actual
archive process should be easy to use, preferably
automatic and should not be a drain on resources. The

SHARED
PRINTER

NRM

ability to manage mass storage devices efficiently trans­
lates into a substantial increase in productivity for
everyone. Intel realizes this need and has developed a
solution that is tailored towards helping the NDS-II
system manager efficiently control the development
project. We introduced the TAPE SUB-SYSTEM on
our Network to provide an inexpensive, reliable and
transportable media, and a utility called ARCHIVE to
make actual disk management both user friendly and
automatic.

ARCHIVE

The ARCHIVE utility performs file backup and resto­
ration by copying files and directories to magnetic tape
or other secondary storage devices. This utility is exe­
cuted at an NRM console, and with its powerful set of
options, it positions itself as an invaluable tool for effi­
cient disk management.

INTELLlNKTM
MODULE

TRANSCEIVER

ETHERNET CABLE

231476-1

Figure 1. The Network and Its Components

4-43

AP-240

WHY USE A TAPE?

Magnetic tape. is regarded as the most useful storage
device in the computer industry. In spite of its sequen­
tialstructure, tape answers a number of requirements
that can not be met by any other conventional mass
storage devices. The most strong argument in favor of
tape is its portability - the ability to transport tape with
the minimum overhead and damage during transit
makes it an extremely attractive media. Moreover, stor­
ing tapes is much more organized and efficient than
storing diskettes. All these arguments lead to a single
conclusion: "The Magnetic Tape should form an inte­
geral part of any development environment". The AR­
CHIVE utility and the· tape drive together form the
foundation for effective disk management, bringing
about a more productive environment for any develop­
ment project.

Additionally, the tape is a safety net for one of those
rare disk crashes. Having backups on tape will reduce
the amount of data loss in the event of a fatal disk
crash. Additionally, completed projects can be saved on
ape to provide more disk work space. Having these
projects on tape minimizes the effort in reloading all
the data if major bugs are found, or if an update is
involved. Multi-project sites can benefit from the fact
that tape allows easy transporting of data.

Tape backup can be classified into incremental backup
and tape streamer. Tape streamer allows volume copies,

with every record on the disk copied onto tape. It is a
mass data transfer from one storage device to another.
This brings about a lot of overheads when. only some
parts of the disk need to be backed up or restored.

Incremental tape backup treats the tape as a random
access device similar to a disk. Files can be added, ap­
pended or deleted, just as in a disk. This. feature allows
selective backup onto tape; thus eliminating the need
for a mass copy operation when only a few files need to
be.archived or restored.

The tape drive on the NRM is an incremental backup
device and ARCHIVE has been designed to use this to
the fullest extent.

HOW DOES ARCHIVE HELP?

ARCHIVE has. been designed to let the NDS II system
manager operate the development project at maximum
efficency. Using its various options, the system manag­
er can selectively archive files and directories onto tape,
employing various qualifiers such as date accessed, cre­
ated, modified, before, since, on, etc .. These qualifiers
will be discussed in a later chapter (Invocation and
Syntax) with examples. The options are essential for
NDS-II system managers to perform selective archives
of files and directories.

THE NRM MANAGES NDS-II SHARED RESOURCES AND SHARED FILE SYSTEM.

'Il;;!ff;: :=='~-:(,i§tI1EIIJ

SYSTEM CONSOLE

INTELLINK'·
MODULE

TAPE

SHARED LINE
PRINTER PORT

Figure 2. Network Resource Manager (NRM)

4-44

PERIPERHAL
ATTACHMENT

FOR
MASS STORAGE

(OPTIONAL)

231476-2

AP·240

ARCHIVE can also be used in a submit or a batch file.
This saves the NDS II system manager from having to
type in the whole command syntax every time an AR­
CHIVE must be performed adding another step toward
improved productivity.

Utilities like SLEEP, wakes up the system at a specified
date or time,goes a long way in automating AR­
CHIVE. A submit file is invoked at the NRM that
wakes up the system at a specified time (preferably near
midnight when system load is low), archives all quali­
fied files onto tape, then 'goes back to sleep' again. This
is an important factor eliminating the need for operator
intervention at any time and automating the entire pro­
cess.

ARCHIVE frequency depends on .the particular appli­
cation and .system load. It is recommended that AR­
CHIVE be performed at least once a week. However, in
large project implementations (i.e 6 or more design en­
gineers involved in generating or modifying more than
lOOK of code), ARCHIVE should be performed auto­
matically each night. This ensures that even if a disk
crash occurs, data loss is restricted to a single day's
work. .

START OF TAPE

VOLUME HEADER RECORD

All the features incorporated in ARCHIVE make it an
attractive solution for effective version control and disk
management. It is a productivity tool that no system
manager should do without.

DATA LAYOUT ON TAPE

Tape is a sequential structured media, with all files and
directories sequentially stored, but it maintains the hi­
erarchic file structure of a disk. Every time an AR­
CHIVE is performed, a LOGICAL VOLUME is creat­
ed, containing any number of files, from NULL to a set
of files residing on a device. Each LOGICAL VOL­
UME has a VOLUME NUMBER and a HEADER
associated with it. VOLUME NUMBERS start with I
upwards. The HEADER is the source path name. For
example:

ARCHIVE /WDO/USERS.DIR TO CTO

creates the first record onto tape and gives it the VOL­
UME NUMBER I and HEADER /wDOI
USERS.DIR. Files and sub-directories under
USERS.DIR will be copied in a TOP DOWN order.
The same rules apply to all the subsequent sub-directo­
ries. The data layout on tape is shown in Figure 3.

(CONTAINS VOLUME NUMBER AND HEADER INFORMATION)
VOLUME HEADER
toR SECOND
VOLUME.

t
t

tilE HEADER END DATA RECORD

tilE DATA STORED HERE

I
REPEAT toR EACH tiLE

t

I

tiLE DATA STORED HERE

tiLE HEADER

REPEAT toR EACH VOLUME

Figure 3. Format of Data on the Tape

4-45

DATA END RECORD

t
231476-3

AP-240

INVOCATION AND SYNTAX,

ARCHIVE, with its powerful set of options, gives the
user flexibility in effectively managing the disk. The
syntax of ARCHIVE is given below. During operation
at the NRM, the system syntax builder prompts the
user for options so none of the options have to be mem';
o~d. '

The ARCHIVE syntax consists of a set of qualifiers
and a set of. switches. QUALIFIERS are options that
qualify a tile or directory for copying, allowing the user
to selectively choose files and directories for archiving.
SWITCHES are sets of controls that enable the user to
actually control the I/O operatiOn. '

SYNTAX:

ARCHIVE source TO destination
< OPTIONS:>

OPTIONS ARE:
1. QUALIFIERS:
INCLUDE, EXCLUDE (tiles that were ...)

ACCESSED /CREA TED /MODIFIED
BEFORE / SINCE / ON

TODAY / date
hour

DIREcrORY (directory name, ...)
()WNEDBY (Owner name, ...)

FILE'(path-name,; ..)
AND/OR ...

2. SWITCHES: APPEND
DELETE
ERASE
LOG log-tile-name
NAME physical volume name ,
NOUPDATE
QUERY
UPDATE
VO~UME (logical volume numbel')

ARCHIVE- QUALIFIERS

Qualifiers enable the user restrict the number of tiles to
be archived. and discriminate against any fue by time
stamps (time created, modified, etc), the owner, tile
names and even by parent directory. These qualifiers
have no limit to their length or order of appearance, an

may be specified using the keywords INCLUDE/EX- -
CLUDE.

Include/Exclude

INCLUDE specifies the tiles that are to be included in
the command, whil" EXCLUDE lists the tile that can
no~ be archived if the qualifying condition is met. EX­
CLUDE has precedence over INCLUDE; therefore,
when both keys are used (INCLUDE tiles, EXCLUDE
til!lS) the following set of tiles will be archived: '

SET OF ALL FILES

I : indicates files
included

EXCLUDE

231476-4 I

The following is the list of all acceptable keyWords for
INCLUDE/EXCLUDE: '

1. ACCESSED/CREATED/MODIFIED

, These switches compare the time specified in the time
qualifier to the last time the tile was accessed, or the
time it was created, or the time it was last modified. If
this time agrees with the time qualifier condition, then
the tile is qualified. The time qualifier is required for
ACCESSED and CREATED and is 'Optional for
MODIFIED. If the 'time is' not specified with the­
MODIFIED switch, a default value of SINCE LAST­
ARCHIVE-DATE will be used. This default value will
qualify all the tiles which:

4-46

a. Were modified since last ARCHIV&

b. Were created since last ARCHIVE.

c. Were created or modified prior to last AR­
CHIVE but, through use of qualifiers, they were
somehow EXCLUDED from being archived
earlier. '

intJ AP-240

Time Qualifiers:

The time qualifiers allow the user to specify an instant
in time which is used in a comparison with the time a
file was last accessed, created, or last modified to quali­
fy the file for archiving:

- BEFORE Allows specifying a file accessed, created,
or modified BEFORE a specific date.

- SINCE Allows specifying a file accessed, created, or
modified SINCE a specific date. '

- ON Allows specifying a file accessed, created, or
modified ON a specific date within a 24 hour period.

Examples:

- datelTODA Y

For neither BEFORE, SINCE, and ON a does
default date value exist. Date could be specified
in two forms, either by using TODAY switch,
which would read the current date from the sys­
tem, or by actually specifying the date in the
form of mm/dd/yy. An optional time of the day
(in hours) in hh:mm:ss form with a default value
of 00:00:00 can be used.

-hour

Time of the day can be specified in hh or hh:mm
or hh:mm:ss. The hour qualifier is to be in paren­
thesis.

ARCHIVE /WDO TO CTO INCLUDE CREATED BEFORE 12/21/84
;would archive all files created before DEC 21.
;a time default of 00:00:00 would be used.

ARCHIVE /WDO TO CTO EXCLUDE MODIFIED SINCE 10/10/83 (10:11:22
:archives all files, exclude those which were modified
:since 10:11:22 on October lOth, 1983.

ARCHIVE /WDO TO CTO INCLUDE ACCESSED ON TODAY , EXCLUDE & CREATED BEFORE
10/26/83 AND MODIFIED SINCE 10/24/83 (10:11:12) I

:archives all thefiles which were accessed today, and
:exclude those which were created before October 26th
:and were somehow modified since 11 minutes and 12 seconds
:after 10 AM on October 24th.

ARCHIVE CTO TO /WD1/DIRl INCLUDE ACCESSED ON TODAY , EXCLUDE & CREATED
BEFORE 10/24/83 AND MODIFIED SINCE 10/26/83 (10:11:12)

:all files on the tape which were last accessed today
:(exclude archive access itself) will copied to the
:/WD1/DIRl directory. Files which were CREATED before
:October 24,83 and were MODIFIED since October 26, 83
:will be excluded.

2. DIRECTORY/FILES/OWNEDBY

Allows the user to specify qualifiers other than time
such as owner of files, directories, etc.

- DIRECTORY Allows the user to specify particular
directories to be included or excluded in AR­
CHIVE. The directory could either be the full path
name of the directory or partial name from where
source-name left off. DIRECTORY does not accept
wildcard characters. However, logical names are al­
lowed.

- FILE Allows the user to specify particular files to
be included or excluded in archive. The file name,
in order to be recognized, should only be the file­
name, not a path name. Wildcard characters are
accepted.

- OWNEDBY Allows archive select files on the basis
of owner's name.

4-47

3. ANDIOR

AND/OR allows the extension of the qualifying condi­
tions within a qualifying set. AND/OR can not be in­
termixed within a qualifier set dermed by one IN­
CLUDE or EXCLUDE.

4. COMMA

Comma is the separator (delimiter) between IN­
CLUDE and EXCLUDE. In English, it makes sense to
use AND in between INCLUDE and EXCLUDE.
However, in ARCHIVE, you can not use anything oth­
er than Comma to separate INCLUDE/EXCLUDE.
Example: '

ARCHIVE /WDO TO CTO INCLUDE ACCESSED
ON TODAY , EXCLUDE & CREATED BEFORE
10/26/83 AND MODIFIED SINCE 10/24/83
(10:ll:12)

intJ AP-240

ARCHIVE SWITCHES

SWITCHES. are controls that ARCHIVE gives the
user to selectively copy files and directories to/from
tape or any other storage device. We will discuss each
of these switches in depth to highlight the versatality of
ARCHIVE.

1.0 Append, Volume

Every time ARCHIVE is issued onto tape, a Logical
Volume is created. This logical volume can consist of
one file or as many as all files residing on a particular
device. Unless otherwise specified ARCHIVE always
starts from the beginning of a tape. The tape is rewound
and the header information is written followed by the

Examples: (WITH A NEW TAPE)

actual copy operation which copies all qualified files
from the beginning of tape. Using the Append switch
allows the user to have more than one volume or a
related group of files on a single tape .Now instead of
starting from the beginning of a tape ARCHIVE
searches through the tape for the volume name speci­
fied. Default for Append is the last volume on tape.

ARCHIVE will always overwrite an existing volume if
Append switch is not specified. Append to an empty
tape is not valid as ARCHIVE will not know what to
Append the new record to.

Recommendation: The tape should be dismounted only
after ARCHIVE signs back on with the message 'AR­
CHIVE COMPLETE'. Use the ERASE option when
writing to a new tape.

ARCHIVE /WINIO/USERS.DIR TO TAPEO APPEND

ARCHIVE

ARCHIVE

; This is an ERROR. No previous volume on tape
; to append new volume to

/WINIO/USERS.DIR TO TAPEO
; This will create header for Volume 11 and then
; copies all the USERS.DIR files and sub-directories
; to the tape.

/WINIO/SYSTEM.DIR TO TAPEO APPEND
This creates a new volume on the tape (Volume 1 2)

; and adds all SYSTEM.DIR files and sub-directories
; to the tape at Volume 12

ARCHIVE /WINIO/ISIS.SYS/FILES TO TAPEO APPEND VOLUME 3
;. This skips to the third volume on tape ,writes

the header for Volume 13 and then copies all
files and sub-directories to Volume 13

2.0 Delete

This switch instructs ARCHIVE to delete all qualified
files on the disk after they have been copied onto tape
or disk. It is very useful when backups of older versions
are performed. Once the archive process has been com­
pleted, all the old files are deleted from the source disk
giving the user a better control over managing disk
files. This is a disk only option.

Recommendation:

It is recommended that the user archive to tape first,
using a LOG option and ascertaining that the files exist
on tape. Then, he repeats the ARCHIVE to :BB: with
the delete switch on to delete all the qualified files from

4-48

disk. This will eliminate any possibility of deleting files
without first archiving them.

3.0 Erase

This option causes the tape to be erased before any
write operation is performed. ERASE goes over all
tracks on the tape and erases everything written on it.
ERASE and APPEND cannot be used simultaneously,
since one erases the tape and the other tries to append
to non-existent volumes. ERASE is a tape otion.

Recommendation:

Use the ERASE switch when archiving onto tape the
first time. Use Append for subsequent logical volumes.

inter AP-240

4.0 Log file-name

The LOG option will redirect all console messages to a
specified LOG file. Errors generated because of LOG
file existence will not abort ARCHIVE. (i.e. if a log file
already exists it will be automatically overwritten by
ARCHIVE)

Recommendation:

It is good practice to redirect console output to a LOG
file when a sufficiently large ARCHIVE is being per­
formed, keep a record of all succesful archives. This
LOG file should be listed and stored along with the
tape.

5.0 Name physical_volume_name

The first time an ARCHIVE is issued to a tape, using
the NAME option will associate the physicaLvol­
ume_name with that tape. This option ensures that the
right tape is used when reading from or writing to the
tape. When the NAME switch is specified the name on
tape will be compared against the name on the AR­
CHIVE command line. ARCHIVE will not continue if
names do not match. The default physicaL volume_
name is ARCHIVE, meaning that if a NAME option
was not specified during the first write operation to
tape, it will be named ARCHIVE.

Recommendation:

The use of logical sounding names for the physical­
volume-name of the tape is good practice. This helps
in fast identification of the tape being used. Names like
PROJECTl and VERSION1.0 are good names while
THIS.IS.IT and LATEST are not. The physical-vol­
ume-name should not be more than 14 characters
long.

6.0 Noupdate

When archiving information from any source to a hard
disk, if an existing file is encountered, NOUPDATE
instructs ARCHIVE not to copy over the existing files.
Thus if a file is on the disk and there is a matching file
name on that tape, archive from the tape to the disk
will not update the contents of the file when the
NOUPDATE switch is used. This option is a default
switch in submit files. If neither UPDATE nor NOUP­
DATE is used, the user will be queried whether the
existing file should be deleted.

Recommendation:

The specified default for ARCHIVE in a submit file is
NOUPDATE. However, the default for ARCHIVE in
a submit file is similar to the QUERY command. If
files being restored already exist, ARCHIVE will
prompt the user for deletion. It is recommended that
UPDATE or NOUPDATE option be specified within a
submit file.

7.0 Query

This causes ARCHIVE to prompt the user for every
data and directory file in the source directory, then
waits for confirmation. When the user is prompted re­
garding a directory file, and the user chooses not to
copy that directory file, none of the files and sub-direc­
tories in that directory can be archived. The default is
no QUERY. QUERY used in conjuction with NOUP­
DATE prompts the user for every qualified file in the
source directory. When confirmed that the file exists in
the destination directory, the user will be informed that
the file exists at the destination directory, but the file
will not be copied over. QUERY used in conjunction
with UPDATE prompts the user for each file in the
source directory. Once confirmed, it will copy the qual­
ified files to the destination regardless of their existence.

ARCHIVE /WDO/USERS.DIR TO CTO NAME TAPEl

ARCHIVE

ARCHIVE

ARCHIVE

;archives every file and directory in USERS.DIR
;onto the tape. .The tape will be named TAPEl
;from now on. If an attempt is made to access
;or write more files onto the tape with the
;NAME switch on, TAPEl is the only name that will
;be accepted by ARCHIVE.

/WDO/USERS.DIR/MINE.DIR TO CTO NAME TAPEl APPEND
;would append MINE.DIR to the tape.

/WDO/USERS.DIR/YOURS.DIR TO CTO APPEND
;would still work fine and appends the
;new d'irectory YOURS.DIR to the tape.

/WDO/USERS.DIR/WHOSE.DIR TO CTO NAME TAPEO
;would be rejected with the message:
;RIGHT VOLUME EXPECTED •••••••

4-49

inter AP-240

8.0 Update

This switch is the exact opposite of the NOUPDATE
switch. If UPDATE is specified, all the qualified files
on the tape will be copied to the destination directory,
despite the previously existing files in the destination
directory.

Assume that files FI and F2 are in /WIIDI and dirt~c­
tory file D2 is in /WI. Also assume F2 exists at /w2I
DI.

Example:

> ARCHIVE /W1 TO /W2 QUERY <CR>
iNDX-N11 (V2.8) ARCHIVE. V2.8
10/26/84 11:12:33 DIRECTORY = /W1
COPY /W1/D1 TO /W2/D1 ? Y <CR>

DIRECTORY = /W1/D1
COPY /W1/D1/F1 TO /W2/D1/F1 ? Y @
COPIED /W1/D1/F1 TO /W2/D1/F1
COpy /W1/D1/F2 TO /W2/D1/F2 ? Y <CR>
File Already Exists
Pathname = /W2/D1/F2
Delete Existing File ? Y . <CR>
COPIED /W1/D1/F2 TO /W2/D1/F2
COPY /W1/D2 TO /W2/D2 ? N <CR>
ARCHIVE COMPLETE

> ARCHIVE /W1 TO /W2 QUERY NOUPDATE @
iNDX-N11 (V2.8) ARCHIVE. V2.8
10/26/84 11:12:33
DIRECTORY = /W1
COPY /W1/D1 TO /W2/D1 ? Y <CR>
DIRECTORY = /W1/D1
COPY /W1/D1/Fl TO /W2/D1/F1 ? Y <CR>
COPIED /W1/D1/F1 TO /W2/D1/F1
COPY /W1/D1/F2TO /W2/D1/F2 ? Y <CR>
File Already Exists Pathname
= /W2/D1/F2
COPY /W1/D2 TO /W2/D2 ? N < CR>
ARCHIVE COMPLETE

> ARCHIVE /W1 TO /W2 QUERY UPDATE <CR>
iNDX-N11 (V2.8) ARCHIVE. V2.8
10/26/84 11:12:33
DIRECTORY = /W1
COPY /W1/D1 TO /W2/D1 ? Y < CR>
DIRECTORY = /W1/D1
COPY /W1/D1/F1 TO /W2/D1/F1 ? Y <CR>
COPIED /W1/D1/Fl TO /W2/D1/F1
COPY /W1/D1/F2 TO lW2/D1/F2 ? Y <CR>
COPIED /W1/D1/F2 TO /W2/D1/F2
COPY /W1/D2 TO /W2/D2 ? N <CR>
ARCHIVE COMPLETE

4-50·

inter AP-240

9.0 Volume
The first time an ARCHIVE command is issued, one
logical volume will be created on the tape. Subsequent
ARCHIVE's to the tape using the APPEND switch
create additional logical volumes on the tape. For.in­
stance, one ARCHIVE without APPEND and three
more ARCHIVE's with APPEND create four logical

volumes on the tape. If the user is restoring information
from the tape, not specifying volume number restores
all the logical volumes on the tape. Specifying a non-ex­
istent number causes an error message arid aborts the
command. A valid volume number searches that p'artic­
ular logical volume for the qualified files and restores
only files from that specific logical volume.

Example:

ARCHIVE

then
ARCHIVE

then

/WDO/USERS.DIR TO CTO
;erases the tape and copies USERS.DIR to
;the tape as logical volume 1.

/WDO/MISC.DIR TO CTO APPEND VOLUME 3
;causes an error message, because logical
;volume number 2 is not created yet. .

ARCHIVE /WDO/MISC.DIR TO CTO APPEND or
ARCHIVE /WDO/MISC.DIR TO CTO APPEND VOLUME 2

then
ARCHIVE

then
ARCHIVE

;creates the second logical volume and
;copies all the files from MISC.DIR to it.

CTO TO /WDO/DIRI VOLUME 3
;generates an error message because
;logical volume 3 does not exist.

CTO TO /WDO/DIRI VOLUME 2
. ;copies to DIRI all the data and directory
;files which were under /WDO/MISC.DIR and
;were archived to the tape. In a sense, the
;subtree starting from /WDO/MISC.DIR will
;be added to DIR!. .

4-51

intJ AP-240

DATA RESTORATION FROM TAPE associate files and sub-directories. Finally one can spec­
ify a particular VOLUME and restore information
stored under that volume. Examples: ARCHIVE allows data restoration from tape onto disk,

facilitating easy recovery from a disk crash without a
significant .loss of data. Reopening a project simply in­
volves reloading all data archived onto tape. This also
simplifies multi-site projects, where data can be trans­
ported and reloaded from one site to another.

In order to restore data from a tape, the user can use
the device name CTO and restore all information from
tape to disk. Or the user can specify a pathname to a
directory on tape and restore only that directory and

Assuming that /WDO/USERS.DIR/TEMP.DIR is
empty and the tape has three records (Le. LOGICAL
VOLUMES)

APPEND and ERASE are switches that can be used
only when archiving onto tape. DELETE, NOUP­
DATE and UPDATE switches can only be used with a
disk.

Record 11 (Volume Number 1)
Header /WD1/USERS.DIR/TEMP1.DIR
FILES and DIREC.TORIES

/WD1/USERS.DIR/TEMP1.DIR/FILEl
/WD1/USERS.DIR/TEMP1.DIR/FILE2
/WD1/USERS.DIR/TEMP1.DIR/FILE.DIR/FILE3
/WD1/USERS.DIR/TEMP1.DIR/FILE.DIR/FILE4
/WD1/USERS.DIR/TEMP1,DIR/FILE.DIR/PASCAL.DIR/FILE5

RECORD 12 (Volume Number 2)
Header /WDO/MISC.DIR/TEMP2.DIR/TEMP3.DIR/ Fl
FILES and DIRECTORIES

/WDO/MISC.DIR/TEMP2.DIR/TEMP3.DIR/FILEl
/WDO/MISC~DIR/TEMP2.DIR/TEMP3.DIR/FILE2

-- ARCHIVE CTO TO /WDO/USERS.DIR/TEMP.DIR

would copy all files from tape onto disk.
-~ ARCHIVE CTO TO /WDO/USERS.DIR/TEMP.DIR VOLUME 2

would copy ~ll files in VOLUME 2 to disk.

4-52

intJ AP-240

APPENDIX A

SLEEP:

SLEEP is a utility, available in the Network/Series IV toolbox, that executes at an NRM or SERIES IV, allowing
the user to delay the execution of certain programs until a certain time. This can be included in a submit file and
made to execute continuously. The sample/submit file looks like this:

Repeat

Sleep til 23:30:00

ARCHIVE /WDO/USERS.DIR TO CTO INCLUDE ACCESSED ON TODAY APPEND

End

This submit file will run forever at the NRM console and will wake up at midnight do all the archives, then go back
to sleep again. Since sleep runs on the foreground at the NRM, a Cntr-C has to be performed if the user must utilize
the NRM terminal for some other purpose.

This is a very useful utility in conjunction with ARCHIVE as it makes the whole process automatic and eliminates
the need for operator intervention.

ACKNOWLEDGMENTS:

I would like to take this opportunity and thank Bahram Saghari in DSO Software Support for his contribution
towards this Application Note. All examples on ARCHIVE were supplied by his. group.

4-53

intJ APPLICATION
NOTE

AP-242

October 1985

Additional Printer Support
for the NOS-II System

CHRIS FEETHAM
DSO APPLICATIONS ENGINEERING

Order Number: 231478-001

AP-242

INTRODUCTION

Using printers for hard copy of data has long been nec­
essary in most computer systems. Software engineers
use printers primarily for software program listings, but
increasingly, letter quality printers are being used to
generate memos, reports, and other business docu­
ments, . rather than queueing them up at the secretary's
typewriter. Additionally, with the cost of computer ter­
minals and network connections declining, it is becom­
ing rare for the business professional not to have imme­
diate or direct access to a terminal with some type of
word processor available. The ability to send hard copy
directly to a printer rather than waiting for a typist to
re-type the input is a productive benefit for everyone.

THE NDS-II NETWORK

With Intel's advanced Network DeveJopment System
II (NDS-II), development systems are connected into a
network using Ethernet. Additionally, each develop­
ment system has the ability to host several ISIS Clus­
ters that use low cost serial lines to support the termi­
nals. The complete product line is described in the
NDS-II System description (refer to Appendix D for
complete details).

With low cost terminals available to everyone, includ­
ing engineers, managers, and secretaries, files and data
can be shared and manipulated directly on the network,
reducing the many intermediate steps required in pro­
ducing a final document. The addition of CPM/80 cou­
pled with the industry standard Wordstar word pro­
cessing package, available for the NDS-II system (refer
to Appendix D for details), further increases secretarial
efficiency.

Engineers, managers and secretaries all benefit from the
advanced editors and tools provided with Intel's sys­
tems. Getting the output to a printer is the next step in
the process, and is the subject of this application note.

GETTING THE DATA PRINTED

Virtually every computer sold today, from the most in­
expensive PC to the largest mainframe, has serial and! '
or parallel ports for connections to printers and other
devices. Intel's development systems are no exception,
providing hardware ports for both serial and parallel
printer types.

Intel's operating systems supplied with the NOS-II net­
work and development mainframes, INDX and ISIS

4-55

respectively, provide software "devices" which the user
can copy files to. The software device designations are
:LP: for the parallel line printer, and :TO: for the serial
device. However, varying types of serial printers and
their associated protocols render the simple "Copy file
to :TO:" inadequate. Additionally, printers are some­
what expensive and noisy. The desired method of oper­
ation is to provide one or two printers accessible by a
group of people, located in a separate room away from
the immediate working area.

This application note shows how Intel's NDS-II net­
work, combined with ISIS Clusters and terminals pro­
vide a solution for the desired method of operation. The
NDS-ll's INDX operating system provides a print
spooler that allows. users to copy files to a central spool
printer (:SP:). Files copied from the remote stations
(ISIS Clusters , Series-II/III and Series-IV develop­
ment systems) are then copied to a parallel line printer
connected to the NDS-II.

This print' spooling feature is not a new concept for
computers, and is only one of many excellent features
of the NDS-II system. Many users would like to sup­
port additional printers on the network, both parallel
and serial, but the NDS-Il's built in spooler does not
provide for this.

SOLUTION-Prince

Prince is a versatile spooling program designed for use
with Intel's Series-II, Series-III, and Series-IV develop­
ment systems, either in standalone or network mode,
and for ISIS Clusters operating with an NOS-II net­
work. Using a dedicated ISIS Cluster is perhaps the
most effective and efficient method of operation. The
ISIS Cluster solution provides for the cheapest and
most automatic operation, which is detailed in Appen­
dix C.

HOW IT WORKS

Prince is an ISIS-based program operating in the 8085
environment of the Development System or ISIS Clus­
ter. After extensive initialization, Prince continually
polls the directory that is ASSIGNed to :F8:, and any
files in this directory are PRINTED, then DELETED.
As this is an ISIS based program, files to be printed
must conform to the ISIS file name format:a maximum
of six characters, plus an optional three character ex­
tension, separated by a period.

AP-242

:F8: can be assigned to a directory created on a Series­
IV for standalone operation, or to a directory on the
Network Resource Manager. If the Network Resource
Manager is used, and the NRM has no parallel printer
attached, you may assign :F8: to l(root)/SPOOL, the
main print spooler directory. A workstation could then
copy directly to :SP: instead of :F8:. This saves each
workstation from having to assign :F8: to a specific
directory.

Prince has been designed for optimal use of network
resources, and provides additional capabilities and flex­
ibility above and beyond the automatic print spooler
provided with the NDS-II. Prince also provides useful
capabilities for Series-IV system operating in stand"
alone mode.

Other applications might include operation of a parallel
printer at a development. system host for ISIS Cluster
users, or even communication interface that automati­
cally copies files from one system or network to another
system connected via a serial or parallel line.

Upon invocation, Prince automatically checks its envi­
ronment to determine the type of system it is loaded on.
Valid systems are Series-II, Series-III, Series-IV, and
the ISIS Cluster; Prince then sets up the appropriate
serial channel for output, unless output has been direct­
ed elsewhere. For the Series-II and Series-III, this is
serial channel 1. The Series-IV uses serial channel 2,
and the ISIS Cluster uses the on-board serial channel
normally used for the console.

Series-IV systems can use serial printers, but the con­
trol interface for the serial device, specifically the
XON/XOFF (cntl-s I cntl-q) protocol, is currently not
provided with a simple copy to the system serial file
(designated :TO:). Prince solves this problem by pro­
viding the XON/XOFF protocol, and optionally
checks for a hardware printer ready signal if desired, by
selectively monitoring Data Set Ready (DSR) on the
serial line.

The Intel development systems set the serial channel
used for the serial device (:TO:) to a specific file trans­
fer rate, better known as baud rate. Prince can selec­
tively output serial data at user specified baud rates of
110, 300, 600, 1200, 2400, 4800, 9600, and 19200. This
allows faster devices and devices that can "buffer up"
data to take advantage of the full capabilities of the
serial line, while the controls mentioned· previously
(XON/XOFF and DSR) provide the desired control
protocol to run the serial devices and the development
systems at their fastest rate.

For management tracking and control, Prince keeps a
log of all activity, including error messages, initializa­
tion defaults, and information about each file printed.
File PRINT. LOG is created in the directory assigned

4-56

to :F9:, and contains relevant information about the
files being printed: the file name, time that the file was
printed, owner of the file, and the number of bytes actu­
ally printed. The log information can be re-directed to
another file, including the console, line printer, or disk
file. If the log file specified is a disk file, it can be
viewed, copied, or deleted at any time. If the log file is
deleted, Prince creates the log file again, using the origi­
nallog file name, at the next file detected for printing.

Prince allows re-direction of the output to a file rather
than the printer connected to the serial line. Spooling to
a. parallel line printer is accomplished by specifying
:LP: as the output path. The output re-direction can
also go. to a disk file, or any other valid ISIS output file
name except :TO:. If a disk file is specified for output, it
can be viewed, copied, or deleted at any time. Files
being copied to the output file are added to the end of
the file. For orderly printing, Prince automatically out­
puts a form feed before printing each file.

This version is initialized for use with a Diablo 630
serial interface and supports the XON/XOFF protocol
at 2400 baud.· These parameters may be changed by
command line controls.

The ISIS.lNI, or submit file that invokes this program,
must contain a directory assignment to :F8:, for the
files to be printed, and also an assignment to :F9: for
the log file, unless it has been re-directed.

The defanlt log file name, if none other is specified, is
:F9:PRINT.LOG. Any file specified for the optional re­
direction of the log file and/or the output path must be
a valid ISIS output file name (refer to the NDS-II ISIS
III User's Guide # 121765-004 for a definition of valid
ISIS output filenames).

INVOCATION AND CONTROL
OPTIONS

Invocation of Prince is best accommodated in a com­
mand file, or SUBMIT file. For Intel systems, use of a
user 'init' file is recommended, and essential for auto­
matic use with an ISIS Cluster. User Init files are auto­
matically submitted for execution upon LOGON to the
system. This file contains assignments, and the com­
mand line that starts Prince.

Control options are all single letter characters, followed
immediately by an "=" sign, then the actual option.
Controls can be entered in any order, upper or lower
case, can be separated' by spaceS or commas, but must
contain no imbedded spaces. If Output is redirected to
a file, as opposed to the default serial channel, then
DSR and Baudrate controls have no effect, and the se­
rial channel is not initialized.

Ap·242

Control Description and Examples

Controls:
L=logfile

P=output$file

D=T

B=baudrate
110
300
600
1200
2400
4800
9600
19200

Examples:

Control Description:
Valid ISIS filename - log file re-direction
:F9:PRINT.LOG is the default
Valid ISIS filename - output re-direction
can be :LP: for the local line printer, etc.
DSR control. Any character other than 'T' will
not set the DSR control - pin 6 on the RS-232
line is monitored for printer ready. No DSR is
the default.
valid number. Only the first two characters
are checked to determine uniqueness.
Any following characters are ignored.

1. To set log file to console out and output to line printer:

:F9:PRINCE 1 = :co: p = :lp:

2. To setbaudrate to 9600 and initialize DSR control (defaults to :F9:print.log):

:F9:PRINCE b=9600 d=t
Example ISIS.INI:

ASSIGN 8 to /w/prntspool.dir
ASSIGN 9 to /w/printlog.dir
ISIS
:F9:PRINCE

CONCLUSION

ISIS.INI file for S~rieS-II/III
and ISIS Cluster
copy files to be printed to :F8:
:f9:also contains the program
Invoke ISIS-IV - for Series-IV
Invoke print spooler

Prince is a versatile utility that enhances the operation of standalone Series-IV systems or NDS-II networks. Prince
is available separately from Intel's INSITE Library, (order PRINTS, Insite order code BG61) and is also available
along with many other useful tools in Intel's NOS-II Software Tool Box. .

4-57

Ap·242

APPENDIX A

PROGRAM FLOW CHART

START PRINT$fILES;

A B
231478-1

4-58

intJ AP-242

PROGRAM FLOW CHART (Continued)

GET DIRECTORY INFO. CHECK FOR FILES IN (:FB:) SPOOL DIR

PERFORM SMALL DELAY

C D E
231478-2

4·59

AP-242

PROGRAM FLOW CHART (Continued)

c o E

231478-3

4-60

inter AP·242

APPENDIX B
PROGRAM LISTING

PL,M-80 COMPILER PRINT FILES PAGE 1
ISIS-II PL,M-80 V4.0 COMPILATION OF MODULE PRINTFILES
COMPILER INVOKED BY: :fl:plm80 :F3:prince.p80 PAGEWIDTH(80)

1
$nolist
$list

$TITLE ('PRICE') PAGEWIDTH(80)
Prince: do;

include(:f3:procs.p80)

,*.*************************** Program Start ************************* /
/*
Read input line and set log file. Signon to log file, then determine
system type. Check for optional baud rate control, and DTR,DSR control.
Then set up the 8251'USART per the system type.

450 i
451 1
452 2
453 2
454 1
455 1
456 1
458 2
459 2

460 1
461 1
463 2
464 2
465 2
467 3
468 3
469 3
470 2
471 2

472
473

1
1

"' call read (i,. input$buffer, 128, • in$buffer$actual,. status) ;
do i = 0 to in$buffer$actual-l; /* UPPER CASE the input buffer.",

input$buffer(i) = set$upper$case(input$buffer(i));
end;

call setlogfile; " Set up the log file. *'
call print$message(O) ; '* Signon to log file. *'
if (high$byte<l) or (high$byte>5) then do;/* .Exit if invalid *'

call print$message(ll); /* system type.",
end; '* Check if Line Printer specifieG in command.',

call set$device;
if lp$flag < > true then do;/* If not line printer, set USART. *'

call set$baud; /* Set baud rate. "
call set$dsr; '* Check for DTR,DSR control. *'
if systemisSII or systemisSIVthen do;

serial$output=.s$serial$output; '* Use SeriesII,IV *'
waitforprinter=.s$wait$for$printer; '* serial chn. *'
end; . ,

call initialize$usart;
end; '* How much free memory below the Overlay base? "'

limit = OE87FH - .memory;
do forever; '* Any files to be printed? *'

4-61

inter
474 2
475 2
476 2
477 2
478 2
479 2

481 3
482 3
483 4
485 5
486 5
487 5
488 4
489 3
491 4
492 4
493 4
494 5
496 6
497 6
498 6
499 5
500 4
501 3

502 3
503 4
.status) ;
504 4

505 3
506 3
507 3
508 3
509 3
510 3
511 3

512 3
513 3

AP-242

call 10ad(. ('ISIS.OVO '), 0, 0, .entry, .status);
call check$status(l) ;
start = 0;
call getd(8, .start, 1000, .actual, • dir$dump , .status);
call check$status (2) ;
if actual < > 0 then do index = 0 to actual - 1;

/* Something to be printed */
/* Format the filename ./

j = 4;
do i = 0 to 5;

if dir$dump(index) .filename(i)<> 0 then do;
filename (j) = dir$dump (index) • filename (i) ;
j = j + 1;
end;

end;
if dir$dump(index).filename(6) <> 0 then do;

filename(j) = '.';
j = j + 1;
do i = 6 to 8;

if dir$dump(index).filename(i) <> 0 then do;
f'ilename (j) =dir$dump (index) • filename (i) ;
j = j + 1;
end;

end;
end;

filename (j) = ' ';
/' Filename formatted, get the file "'
do while status < > e$file$open;

call. open (• aftn, • filename, read$only, no$line$edi t,

end;
/* Get information for the header "'

file$table.aftn = aftn;
call spath(.file$name,.file$table.device$number,
call check$stat,us (4) ;
call load(. ('ISIS.OVl '), 0, 0, .entry, .status);
call check$status (3) ;
call filinf (• file$table, 1, • file$info, • status) ;
call check$status(6) ;

/* Load ISIS.OV2 to get the TIME! *'
call load(. ('ISIS.OV2 'j', 0, 0, .entry, • status) ;

• status) ;

PL/M-80 COMPILER
call check$status(5) ;

PRINT FILES PAGE 3

r Print
514 3
515 3
516 3
517 3
518 3
519 3
520 3

$eject
the header - form feed to printer, header to log file or :co:'/

call print (. (FF) , 1); ..
call open$file$safely (.aftnl,.logfile,wr$only$log);
call write (aftnl, .header$l, length(header$l),. status) ;
call write(aftnl,.filename(4) , (j-4) ,.status);
call write (aftnl, .header$2, length (header$2) , • status) ;
call move(4, • zero$time , .dt.system$time);
call de$time(.dt.system$time, .status);

4·62

inter
521 3
522 3
523 3
524 3
525 3
526 3
527 3

528 3
529 3
530 4
531 4
532 4
534 4
535 4

536 3
537 3
538 3
539 3
540 3
541 3
542 3
543 3
544 3
545 3

546 2
547 3
548 4
549 4
550 3
551 2
552 1

AP-242

call writ.(attnl,.~t.time(O), 8,.status);
call write(attnl,.(' on 'I, 4,.status);
call write (attnl,.dt.date (0) , 8,.status);
call write(attnl,.header$3, length(header$3),.status);
call write (attnl, .t1leinto.owner(l), t1leinto.owner(O) , • status) ;
call write(attnl, • (cr,lt) ,2, • status) ;
call olose (attnl, .status) ;
'" Print the tile "'
t1le$bytes = 1;
do wh1le t1le$bytes < > 0;

oall read(attn, .memory, 11mlt, • t1le$bytes , .status);
call oheok$status(8) ;
it memory(O) = FF then memory(O) = 0;
oall print (.memory, t1le$bytes);
end;

'" File has been printed "'
oall olose(attn, • status) ;
oall oheok$status(9) ;
oall open$t1le$sately (. attnl, .10gt1le, wr$only$log) ;
oall write(attnl,.header$4,length(header$4),.status);
oall print$size (tile$into.len$hi,tile$into.len$lo):
call write(attnl, .(cr,lt),2,.status);
call close(attnl, .status);
call delete(.tilename .status);
call check$status(lO) ;
end; '" Look tor next tile "'

'" No tiles to be printed, Wait a minute or so 0'
else do i = 0 to 60;

do j = 0 to 500;
call time (10) ;
end;

end;
end: ,. ot Do torever "'

end Prince;

4-63

AP-242

APPENDIXC ...
ISIS CLUSTER BOARD PREPARATION

Used with an ISIS Cluster, Prince can be driven from
the ISIS Cluster board's serial channel, which is nor­
mally used for a "tenriinal. With the addition of the
special SERVER PROM for the ISIS Cluster, the
Prince program can be automatically invoked and be­
gin copying files from a network spool directory to a
serial printer or other serial device, immediatley upon
power-up. In this mode of operation, there is no console
connected to the ISIS Cluster. Instead, the serial prin­
ter or other seria1 device is connected to the console
port, and the SERVER PROM installed on the Cluster
board automatically .logs the Cluster board. onto the
NOS-II network, then submits the ISIS.INI command
file. This command file contains the necessary assign­
ments, as well as the Prince program invocation.

To prepare the NOS-II to support the Prilice spooler, a
username and home directory for the Prince program
and SERVER prom must exist. To provide trouble free
spooling, the usemame for the SERVER prom should
be declared as a Superuser. This way, file access rights
need not be set each time a file must be spooled, print­
ed, and deleted.

The SERVER PROM image is included with the
Prince program. The SERVER PROM image can be
modified to change the usemame or password. Bytes
OFFO to OFFC (inclusive) are reserved for the SERV­
ER username, password, and string terminator (OOH).
(Note that these are PROM addresses - this PROM
image is moved to a different location in RAM on ini­
tialization.)

byte OFFOH: PROM checksum

byte OFFEH: resreved

byte OFFFH: system ID (05 for Cluster - 00 NOT
CHANGE!)

The following strings are stored in the PROM image:

usemame: SERVERO<CR>

password: @

checksum: 082H

FFO
o 234567

53 45 52 56 45 52 30 00
S ERVEROCR

If you change the LOGON name and/or password, re­
member to· change the checksum, which is stored in
byte OFFDH. NOTE:The checksum is actually the
two's compliment of the checksum calculated by. the
boot code. Thus,· if you change the usemame to
SERVER2 from SERVER 1 (increment byte OFF6H),
you must decrement byte OFFDH. Changing the
PROM image can easily be accomplished using Intel's
IPPS software, which is supplied with the iUP-200
PROM programmer.

CLUSTER BOARD PREPARATION - PROM
BURNING

1. The PROM image is written in 286 format. Remem­
ber to initialize the iPPS properly.

2. Read in PROM image, modify LOGON strings,
modify checksum, and bum a 2732 or 2732A.

3. Remove ihe old monitor prom from the Cluster
board (A25) and place in the next-door socket (A37)

, for safe keeping (may be needed by CE).

4. Install new SERVER prom in A25.

5 . .Install a jumper between pins 67 and 68. This ties
. Clear~to-Send/ Request-to-Send together on-board.
Prince uses XON/XOFF or XON/XOFF and OSR
for 'control, so CTS/R TS is not required between de­
vices.

6. If the printer·to be used operates with the hardware
OTR/DSR protocol, configure the serial cable such
that the printer ready line comeS in on pin 6 (DSR)
of the serial cable to the Cluster board.

7. Refer to the ISIS Cluster installation manual for fur­
ther Cluster installation instructions.

8. Set up ISIS.INI file to make assignments and invoke
PRINCE, plug it. all in and go.

89ABCOEF

OD 00 spare 82 00 05 HEX
CR ASCII

inter
APPENDIX D RELATED PUBLICATIONS

1. ISIS Users Guide 9800306 3. CP/M-BO on the NDS-II - Application NoteAP 253

2. Network Development System II iMDX 4. ISIS Cluster Installation instructions
450 210937-004

APPENDIX E ERROR MESSAGES
Prince returns messages and error conditions if certain
external conditions prevent normal functioning of the
spooler. All messages are directed to the log fIle, unless
a fatal ISIS error occurs, preventing Prince from han­
dling the error. ISIS will trap the fatal error and re-boot
itself. Some error conditions that are not fatal ISIS er­
rors are considered fatal by Prince, and after logging
the error message in the log fIle, Prince will exit. The 18
messages given by Prince are as follows:

1. Serial printer driver xxx'

Non-fatal message - The normal sign-on message at
Prince invocation.

2. 'ISIS.OVO not present on system disk'

Fatal error, Prince will exit. ISIS overlay 0 must be
present on :FO:for Prince to function properly.

3. 'GETD system call failed'

Non-fatal - Prince uses this system call to deter­
mine the presence of fIles to be printed in directory
:F8:. Possible causes for failure:a damaged or in­
correct ISIS.OVO, fIle access rights, etc.

4. 'ISIS.OVI not present on system disk'

Non-fatal - Prince must load ISIS.OVI to support
the file$info system call. ISIS.OVI is not on :FO:,
or access rights are insufficient.

5. 'SPATH system call failed'

Non-fatal - SPATH returns information about the
fIle to be printed for log file status of the fIle.

6. 'ISIS.OV2 not present on system disk'

Non-fatal - ISIS.OV2 is used to provide time and
date information that is placed in the log file for all
fIles printed, and all messages.

7. 'FILINF system call failed'

Non-fatal - The fIle$info call returns fIle informa­
tion to be used in the log fIle, such as the owner of
the fIle, etc. If this call fails, meaningful file infor­
mation will be absent from the log.

B. 'Could not open the file to be printed'

Non-fatal - Most common causes of this malfunc­
tion are insufficient access rights to the file. or an
invalid ISIS file name. Rename the file name, or
give access rights to the Prince user.

9. 'Could not read the print file'

4-65

Non-fatal - This error will occur only during the printing
of the file. before the print has completed. but after the
first successful open.

10. 'Could not close the print file'

Non-fatal - Prince could not close the fIle just
printed.

11. 'Could not delete the print file'

Non-fatal - Prince attempts to delete the print file
after printing. Most common cause of this error is
insufficient (delete) access rights. Give Delete Ac­
cess rights to the Prince user.

12. 'Unknown System Type - not supported'

Fatal error. Prince will exit. PrintfIles checks byte
OFFFFH to discern system type. Valid types are:
01 = Series-II 02 = Series-IV 05 = ISIS Cluster

13. 'BAUD control defaulted to 2400 baud'

Non-fatal message- An attempt was made to set a
different baud rate per the baud rate control
(B = number) and number was invalid. Valid num­
bers are:1l0. 300. 600, 1200, 2400, 4800, 9600,
19200.

14. 'LOG control defaulted to :F9:print.log'

Non-fatal message - An attempt was made to redi­
rect the log fIle, but the log file name was greater
than 14 characters. Prince does a gross check on
the pathname specified to assure a correct ISIS file
name.

15. 'DTR/DSR control activated'

Non-fatal message - The DSR control is active.

16. 'DTR/DSR control not activated'

Non-fatal message - An attempt was made to set
DSR other than true - DSR not true is the default.

17. 'OUTPUT file defaulted to :F9:print.out'

Non-fatal message - An attempt was made to re-di­
rect the output file, but the file name was greater
than 14 characters. Prince does a gross check on
the pathname specified to assure a valid ISIS fIle
name.

18. 'Could not write OUTPUT file'

Fatal Error, Prince will exit. Prince could not write
to the output fIle specified, so spooling is suspend­
ed.

infef . APPLICATION
NOTE

AP-244

.. October 1985

.. Distributed Job Control
the Key to Increased Network

Productivity

SRIVATS SAMPATH
DSO APPLICATIONS ENGINEERING

Order Number: 231480-001
4-66

inter AP-244

INTRODUCTION

Large software projects and shorter production sched­
ules generate the need for a more flexible and produc­
tive development environment, which allows users full
access to all available resources.

Recognizing this need, Intel designed the Distributed
Job Control (DJe) Facility into the NDS-U system.
DJC allows currently idle networked development sys­
tems to be supplied to the network as public resources.
This is essentially a remote job execution unit to which
jobs can be sent by other users on the network. Remote
job execution offers higher throughput and increased
efficiency, since more than one computer on the net­
work can be controlled and used by a single user. This
ability to manipulate idle systems on a network and
convert them into productive systems for other users
directly translates into increased project productivity.

DJC consists of a set of system utilites that enable the
NDS-U system manager to more efficiently run the net­
work. When all idle systems on the network are allocat­
ed to other active users, the throughput and efficiency
of the network dramatically increases. The Network
Resource Manager (NRM) is the nerve center for the
distributed job control system (DJC). All jobs are
scheduled and queued by the NRM. The NRM also
coordinates job cancellation and maintains a system log
of job queue activity. DJC, with its powerful set of op­
tions, positions itself as an invaluable tool for increased
network productivity.

WHY DISTRIBUTED JOB CONTROL?

The need for distributed job control (remote job execu­
tion) is apparent in a networked environment where a
number of teams are working on different projects.
With DJC, all idle systems can be channeled towards
the particular time-critical project. As a result, the en­
gineers have control over more than one system and
increase their efficiency and productivity.

Figure 1 shows a typical NDS-U system. This network
includes the NRM configured with two 84 MB Win­
chester drives, a 600-LPM line printer, three Series IV
Microcomputer Development Systems (one of which
has four cluster boards), two Series Us with one cluster
board each, and an assortment of ICETM and
I2ICETM modules. Although the development systems

4-67

are functionally similar, they are logically different as
viewed by the NRM. Figure 2 illustrates the difference.
Two teams are working on this network. Team I is an
8-bit development team, and Team 2 is a 16-bit devel­
opment team. Both teams are meeting tight deadlines
and need all the system time that they can get. One
engineer working on the 8086 project is on vacation, as
a result, one Series IV is underused. The other two Se­
ries IV s do not have anything running in their back­
ground. On an average of the 14 computers available to
this network, (the Series IVs being counted as two each
with foregroundlbackground capabilities), only 10 are
being used. The percentage use rate is only' 60 percent
when it should be close to 100 percent. Percentage use
rate can be defined as:

(Total Number of Nonidle Systems/Total Number of
Systems) * 100

Key-F = Series IV Foreground
B = Series IV Background
C = ISIS cluster board

231480-2

Figure 2_ Non-Idle Computers are Shown Shaded

Meanwhile, the 8-bit team is trying to meet a very tight
schedule and needs all the system time possible. This
team requires a dedicated compile engine that will free
its systems for interactive work, such as debugging and
editing. DJC can help the 8-bit team by converting the
idle machine and the backgrounds of the other two Se­
ries IV systems to productive work doers. This enables
Team 1 to have all their compiles remotely executed
while they concentrate on editing and debugging other
modules. These remote execution units can serve both
teams, since the Series IV can operate in both 8-bit and
16-bit modes. This results in definite increase in overall
team and network productivity.

./>.

~

SPOOLED
LINE
PRINTER~

NRM
TERMINAL

ETHERNET CABLE

CLUSTER
WORKSTATION

UP TO TWO PERIPHERAL
ATTACHMENT SUBSYSTEMS
~~

SERIES II

Figure 1. A Typical NOS-II Network

231480-1

l

»
"U .
N
.co.
.co.

AP·244

A CLOSER LOOK AT DISTRIBUTED
JOB CONTROL

The DJC system recognizes that the network has three
types of stations: the NRM, private workstations, and
import workstations. The NRM is the nerve center of
the DJC system, and it maintains all t'he state informa­
tion of remote jobs and status of workstations. A pri­
vate workstation is one that can send jobs to the NRM
and have them executed at other workstations on the
network. However, it does not accept jobs from the
NRM. These are c1asified as work generators. Exam­
ples of work generators are Model-800, Series II, Series
III, Series IV and ISIS clusters.

An import workstation that can accept jobs from the
NRM is called a work doer. Examples of work doers
are Model-800, Series II, Series III, Series IV and ISIS
clusters. Work generators and work doers use the same
hardware. The software executing at the workstation
determines if it is a generator or doer. The mix of gen­
erators/doers may be flexibly altered through the day/
week/project to best suit the user's needs. Normally,
when a workstation is first powered up or reset, it con­
figures itself as a private workstation. (The workstation
can also be configured to power up as an import sta­
tion. See Appendix A).

A private workstation can be turned into a work doer
for the network withth e IMPORT command. The im­
port command informs the NRM that the private
workstation is now capable of doing some type, or
types, of jobs. A station remains an import station until
the keys CONTROL and C are pressed from its key­
board. If an import' station is executing a remote job
when the CONTROL and C keys are pressed, it contin­
ues executing the job until the job is finished. Only
then, does it return to private workstation mode. A
Series IV stationthat supports both foreground and
background partitions can import into either fore­
ground, background, or both. Thus, a physical station
can appear as two import stations to the DJC system.

DJC UTILITIES

Understanding Job Queues

Since the network consists of heterogeneous worksta­
tions, some type of mechanism is needed to match the

Example:

job with the type of workstation it can execute on. This
generated the concept of a job queue. A job queue can
be envisioned as a waiting place for all work doers and
a depository for workgener ators. Job queues are creat­
ed and deleted using the QUEUE utility, and their sta­
tis is monitored using the SYSTAT utility. Each net­
work can have up to 10 queues. The system does not
support any predefined queues. While any name may be
used, descriptive names based on the work doer's capa­
bilities are recommended. 8-bit.q, 16-bit.q, and print.q
are good names, while ONE.queue and compile.queue
are not.

The system does not guarantee that a job is sent to a
queue capable of doing the job. A Series II or ISIS
cluster is only capable of doing 8-bit work. Therefore,
the work generator is responsible for ensuring that the
work doer chosen can execute the job. Multiple work
generators can export to the same queue, and more
than one work doer may import from a queue to get
jobs done quicker.

Queues are maintained using files at the NRM. The
DJC system uses these queue files to maintain job and
queue status. These files are shared files and should not '
be tampered with.

Remote Job Execution

A job is scheduled for remote execution using the EX­
PORT command. An in depth discussion on the syntax
and use of job queues is discussed in Chapter 5 (DJC
Utilities). The export command must specify a job
queue capable of executing the job. Export checks if the
queue exists and displays an exception message if the
job is not queued. It also warns the user if there are no
importers (work doers) currently serving the chosen
queue. The job will wait indefinitely at the job queue
until a work doer is assigned to import from t,his queue.

The exported job may have to wait for some time before
it can be executed, since other jobs arrived at the queue
earlier might not have been executed. The' queue is a
first-in-first-out (FIFO) file.

In this way, the DJC system keeps a track of all jobs at
the queue and executes them on a FIFO basis.

QUEUE NAME: 16BIT.Q QUEUE NAME: 8BIT.Q

JOB NAME STATUS JOB NAME STATUS

FOUR.CSD WAITING PRINT.CSD WAITING
THREE.CSD WAITING LOCATE.CSD EXECUTING
TWO.CSD EXECUTING LINK.CSD DONE
ONE.CSD DONE COMPILE.CSD DONE

4-69

Ap·244

When it successful1y finds an importer for the specified
job queue, the NRM will send the job over to that sta­
tion. At the station, an implicit logon takes place using
initialization options that are identical to a normal user
logon; For example, the station will take the user's
INIT.CSD file and execute it first and then execute the
job. The environment set up at the import station is
exactly as that at normal logon. The import station,
a"reincarnation" of the user who exported the job, has
access to al1 of files the user has. It looks just as if a user
is inputting information at the import station. The only
difference is that, in this case, input is from a file speci­
fied by the user exporting the job.

DJC Commands

DJC system on .the NDS-II system has a number of
commands that help theuser in effectively configuring
an efficient remote job execution system. These
are:QUEUE, IMPORT, EXPORT, CANCEL, and
SYSTAT ..

Each of these commands perform unique and impor­
tant tasks to make the network distributed job control
system a very productive and efficient solution.

QUEUE

QUEUE is a command for managing and displaying
job queues at the NRM. The QUEUE command dis­
plays the name, number of jobs outstanding and the
number of servers. After this information is displayed,
the user is prompted to:

ADD DELETE LIST EXIT

ADD option creates new queues. Up to 10 queues
can exist at the NRM

DELETE option deletes a queue

LIST redisplays previously displayed information

EXIT terminates QUEUE

For example:

>QUEUE <cr> will bring up the fol1owing display

,NAME OF QUEUE # OF SERVERS
16BIT.Q 2
8BIT.Q 1
PRINT.Q 1

Anyone can delete these queues. Since there is no pro­
tection offered, the use of the QUEUE ·command
should be restricted to a SUPERUSER. This may be
accomplished simply by removing world access rights
on QUEUE.86. However, a queue that has jobs waiting
cannot be deleted; in this example, only 8BIT.Q can be
deleted.

IMPORT

The syntax for the IMPORT command is the follow­
ing:
IMPORT FROM queue ,queue ••••••• TO
BACKGROUND

where

queue is a character string up to 14
characters long, which names
the queues from which the im­
port station can execute jobs.
Up to five queues may be speci­
fied in the command line.

TO BACKGROUND is an option that will. execute
the job in a background mode.
This is a Series IVoption only.

The IMPORT. c()mmand declares the given worksta­
tion to be a public resource on the network, converting
it from a work generator into a work doer. This public
resource can now receive jobs from the various queues
in the NRM. If the user enters the name of a queue that
does not exist at the NRM, an exception message will
be displayed. The queues are searched for jobs accord­
ing to the order in which they were listed in the com­
mand line (left to right). If jobs are available on any
queues, the import station starts processing them. The
importing station starts by performing an implicit log­
on for the user, whose job is first at the head of the
queue. Then it processes the commands within the
command file. At the end of the command file, the
importing station logs off the user and looks for jobs
from the queues to process (left to right).

OF WAITING JOBS
1
o
2

4-70

intJ Ap·244

For example, the import station is configured to exe­
cute jobs from 16bit.q, 8bit.q, and iNDXutility.q. Ini­
tially, there is only one job on 8bit.q, so execution of it
commences at the import station. During theexecution
of this job, three more jobs arrive at 8bit.q and one at
16bit.q. The job on 16bit.q will be the next to execute,
since the command line in import mode is always
scanned left to right.

All output messages from the remote job, displayed on
the screen of the import station, may be put in a log file
if the LOG option is specified with the EXPORT com­
mand. When a station is in import mode, no local pro­
cessing is possible. To reconvert the import station back
to a private station, the user must enter CONTROL-C
by pressing both the CONTROL andC keys.

EXPORT

The syntax for the EXPORT command is the follow­
ing:
EXPORT pathname [parameters] TO queue
[(LOG/NOLOG I]
where
pathname is a valid pathname for a command

file

Listing
ee86
link86

for:COMPILE.CSD
%O.e debug
%O.obj, &
C/sqmain.obj, k
C/selib.lib, &
C/small.lib, &
C/87null.lib &.
to %0.86 &
bind &
ss(staek(+800h) ,memory(+1200h))

parameters is a list of up to 10 parameters

queue is the queue to which the job is to be
sent

LOG, NOLOG specifies whether a log is to be kept of
all console activity on a mass storage
device.

The EXPORT command allows a.command file com­
posed at one workstation to be executed on another
workstation. The command file must be on a public
volume, so that the import workstation can access it.
An example of a public volume is a volume resident at
the NRM and not a local mass storage device. If the
queue does not exist at the NRM, an exception message
is displayed and the job does not get queued. LOG,
NOLOG determines whether a log file is to be main­
tained of all console activity, at the import station dur­
ing the execution of that particular job.

The optional parameters specified in the command line
are actual parameters to be substituted for the formal
parameters embedded within the command file. In the
example below, %0 will be replaced by the name of the
source file specified in the command line. This way, one
compile command file can handle programs with differ­
ent names.

In this example, the command file links, and binds a
"C" program. .

> EXPORT
> EXPORT

COMPILE (/C--SOURCE--DIR/ISTIME) TO
JOB NUMBER :0027H

16BIT.Q LOG

4-71

intJ AP·244

This will export the job to the specified queue (in this
case 16BIT.Q), print an export job number, and return
control to the user, so that he or she may continue with
productive work. Meanwhile, the import station acting
as a server for 16BIT.Q will log on as the user, process
his or her initialization file, and process the command
file COMPILE.CSD. After all commands inCOM­
PILE.CS D have been processed, the import station
goes back into waiting mode and waits for other jobs to
be sent from the NRM.

CANCEL
CANCEL [BACKGROUND/REMOTE] queue
{(job name) (# job number)}

where

queue is the queue where the job has been queued
for execution

job name is the final component name of the remote
job to be cancelled

(in the previous case, the job name will be
COMPILE)

job number is the assigned value of the remote job (this
can be displayed by the SYSTAT com­

. mand discussed next).

The . CANCEL cOmmand is used to cancel a back­
ground or remote job. If the user wants to abort a re­
mote job, the job name .and job number must be en­
tered. If the job name is selected and multiple instances
of the job name are in the queue, the first one encoun­
tered is deleted (this may not be the first one queued).
To avoid this, the unique name job number may be
used,

Example:
> CANCEL REMOTE l6BIT.Q . (COMPILE) will
result in
iNDX-W4l (V2.S) CANCEL VERSION V2.S
··COMPILE" CANCELLED

The job name can be substituted with thejob number.
In this case, it will be 0027H (see example under EX­
PORT). Once the job is cancelled, the import station
will execute the next job in the queue it is serving. If no
jobs exist in the queue, it will.go into a waiting mode
for the next job.

SYSTAT.

The syntax for the SYSTAT command is the following:
SYSTAT [{QUEUE/MY JOB} (queuename
[•••••])] TO PATHNAME [EXPAND] [ALL]

where·

queuename(s) designates the name(s)· of the queue(s)
for which jobs are to be listed

pathname

QUEUE

MYJOB

EXPAND

designates the file where the information
. is listed .

displays information for all queues, or
for only those queues explicitly listed af­
ter the queue specifier. If this option is
specified, the queuenames must be sepa­
rated by commas.

parallels the queue option but lists infor­
mation about jobs belonging onlyEX­
PAND specifies that complete informa­
tion is displayed for each job. If expand
is not specified, condensed information
will be displayed for each job ..

specifies that complete information is
displayed for each job. If expand is not
specified, condensed information will be
displayed for each job.

ALL displays appropriate information for all
jobs in the specifiedqueue(s). If ALL is
not specified, information is displayed
only for waiting or executing jobs. •

The SYSTAT command is used to display information
about the DJC subsystem to the user. There are many
options which are best discussed by examples.

Examples:
< SYSTAT < or >
SYSTAT VERSION V2.S
QUEUE # OF JOBS # OF IMPORT
NAME WAITING STATIONS
·16BIT.Q ·0 1

4-72

SBIT.Q 0 1
iNDXUTILITY.Q 1 0

This command displays the status of all queues and
information on the number of jobs waiting·and number
of import stations serving any quelie. No detailed infor­
mation of actual job status is shown here.

inter

< SYSTAT QUEUE
SYSTAT VERSION V2.8

JOB STATUS FOR: 16BIT.Q

JOB NAME JOB # OWNER DATE

No jobs are waiting or executing in this queue.

JOB STATUS FOR: 8BIT.Q

JOB NAME JOB # OWNER DATE

No jobs are waiting or executing in this queue.

JOB STATUS FOR: iNDXUTILITY.Q

JOB NAME JOB # OWNER DATE

AP-244

TIME

TIME

TIME

PRINTFILE #0028 JOHN 11/30/84 16:20:22

STATUS

STATUS

STATUS

WAITING

This command lists by queue all jobs waiting in a queue. This helps in quickly determining the status of jobs
in a queue.

<SYSTAT QUEUE ALL
SYSTAT VERSION V2.8

JOB STATUS FOR: 16BIT.Q

JOB NAME JOB # OWNER DATE TIME STATUS

COMPILE #1003 SRIVAT 11/30/84 12~12 30 DONE
COMPILE #1002 SRIVAT 11/30/84 12:05 19 DONE
COMPILE #1001 SRIVAT 11/30/84 11 :30 20 DONE

JOB STATUS FOR: 8BIT.Q

JOB NAME JOB # OWNER DATE TIME STATUS

COMP #2008 WAYNE 11/28/84 18:12 30 DONE
COMP #2007 WAYNE 11/28/84 15:10 20 DONE
LINK #2006 NORI 11/27/84 10:10 23 DONE

JOB STATUS FOR: iNDXUTILITY.Q

JOB NAME JOB # OWNER DATE TIME STATUS

PRINT #2002 JOHN 11/30/84 18 10 20 WAITING
PRINT #2001 SRIVAT 11/29/84 12 10 22 DONE
PRINT #2000 WAYNE 11/29/84 10 10 10 DONE

4-73

inter AP-244

This command lists the status of all jobs done or wait­
ing in the queue since the queue was created. This is
useful to the system administrator to study queue use.

This command lists the status of all of the jobs that
users have submitted. Queue mes are circular mes 256
jobs long. For example, SYSTAT will display the last
255 jobs done or waiting. If the number of jobs exceeds
256, the first entries Gobs) into the queue me are delet­
ed to make room for the new entries. The expand op­
tion, which displays all these jobs, is useful for system
administration purposes. Information containing aver­
age wait time for each job, the average length of a job,
may be obtained. The system administrator may use
this information to install another work doer on a par­
ticular job queue, thereby optimizing the system for his
or her particular environment. This queue can be delet­
ed and then recreated once this information is recorded
to clear this log of queue activity.

RECOMMENDATIONS FOR AN
EFFICIENT DJC SYSTEM

The following discussion outlines recommendations for
a useful DJC system for a network. A number of con-

4-74

siderations should be made before your DJC system is
implemented on the network.

A minimum of three queues should exist at the
NRM:one queue for 8-bit work, one for 16-bitwork,
and the other an indxutility queue. Normally, one serv­
er is enough to serve these queues. However, if the load
on any particular application increases, having a dedi­
cated server for that queue will be more efficient.

In the example following, it is assumed that the high
16-bit workload requires a dedicated server for the 16-
bit work being done on the network. Therefore, a dedi­
cated server for 16BIT.Q has been generated using the
IMPORT command. The other server imports from all
three queues. Private workstations can also be convert­
ed into import stations whenever they are not being
used. The background of one of the private worksta­
tions should come up in automatic import mode on
powerup. This is discussed in Appendix D.

inter Ap·244

APPENDIX A
Looping in Export Files

Often, a job needs to be run continuously to do a prede­
termined task like checking mail. The versatility of the
DJC system allows the user to do this in just one sub­
mit file. For example, an import station can export a
job to· itself or any other server on the network.

Example:
Mail Box(%O)
Save 1 msg.file
EXIT .
checkexlst msg.fl1e
if %status I 0 then

report YOU HAVE MAIL IN BOX %0
end
export mal1check (%0) to Indxutl1lty.q
nolog
end

This is an example of ail. export file that constantly
checks for mail in a user's box. If a mail message exists,
a message is sent to the user. Checkexist is a program
that looks for a specified file and sees the value of

4-75

%status to 1 if the file exists and 0 otherwise. Report is
a utility that sends a message to the user's console.
These utilities are explained in depth in the Application
Note AP-245:"Using Command Files to speed program
development."

The submit file is exported using the command:
EXPORT MAILCHECK(SRIVAT) TO
INDXUTILITY.Q

The import station will execute this command file and
later reexport the job back to the queue. This job will be
put at the end of the job queue behind all others waiting
at this queue. It will not totally dominate the job queue.
The only way to stop MAIL CHECK once it is running
is to use the CANCEL command. There is no limit to
the number of times an export job can be looped.

Conditional exports can also be done from within an
exported job. The IF, THEN, ELSE constructs of com­
mand files are used. The above example is just one of
the different ways DJC can be used. This feature is very
useful if some remote job has to be done continuously.

AP-244

APPENDIX B
REPORT.86

Since all exported jobs are remotely executed, the only
method of monitoring their status is by using the SYS­
TAT utility. The need for a more interactive status re­
porter becomes more pronounced. REPORT.86 has
been designed to answer this need. REPORT is a utility

that should be included in all export files. The syntax
for REPORT is the following:

REPORT <any message>

The following command file example shows how REPORT is used:

cc86 %O.c debug
if %status < > 0 than

REPORT Error in compile of %O.c
else

Compile the program
If error in compile
Send message to user
and exit.

REPORT Successful compile.
link86 %O.obj, &
l/sqmain.obj, &

Proceeding with LINK

l/sclib.lib, &
l/small.lib, &
1/87null.lil:i &
to %0.86 &
bind &
ss(stack(+800h) ,memory(+2800h))
if %status I 0 then

REPORT Successful Link. End of Job.
Check for error in link
If no error inform user

else
REPORT Error while linking ••••• If error inform user and

and exit. end

REPORT.86 writes the message specified into the us­
er's home directory in a file called REPORT.DAT. All
the messages get appended on to this file. The ISIS and
iNDX command line interpreters (CLI) have been ex­
tended to check for the existence of the file
REPORT.DAT in the user's home directory. Ifthe file
exists, the contents of the file are displayed on the us­
er's screen. The CLI then deletes this file. This gives the
user the ability to constantly monitor the execution of a
remote job. In the above example, if there was an error
in compilation of the program, REPORT will write the
message "Error in Compile of filesheck.c" and the re­
mote job will terminate. This message will then come
up on the user's terminal anywhere on the network, and
the user can take corrective action. All messages are
held until the user returns to the command level. They
are not displayed instantaneously in the middle of an
AEDIT session, for example.

4-76

The REPORT function used throughout the submit file
will keep the user constantly informed on the success of
all required operations. This results in greater produc­
tivity, since the user does not have to wait until the
whole submit file is over and then examine the log file.
The extensive use of the variable %STATUS in this
submit file requires explanation. All Intel utilities, such
as PL/M86, C86, and LINK86, exit with a UDI ,call
DQ$EXIT(O) if the operation is successful and
DQ$EXIT(n) if the operation was not successful (N is
any number). This value passed into the DQ$EXIT call
is stored in a variable called STATUS. This variable
can be accessed from any submit file. Conditional oper­
ations can be done by accessing this variable.

Ap·244

APPENDIX C
CHECKTIME.C

Often, a program must be executed at a particular time.
CHECKTIME.86 is a utility that allows a program to
be executed at a particular time from within a submit
file. The concept of STATUS and looping in submit
files are used here again. This program obtains from the
user a particular time, which can be set to,be less or
greater than system time. When the defined condition is
satisfied, the program will 'exit with a return code of L
Otherwise, it will exit with a return code of O. For ex­
ample, a match condition will exit with DQ$EXIT(O).
This return code is passed on to the' %STATUS vari­
able that can be accessed by a submit file.

This program has been designed for doing jobs at a
particular time of day in an export file.

The syntax for CHECKTIME.86 is the following:
CHECKTIME greater 22:23:45 or
CHECKTlME greater 22:23 or
CHECKTlME greater 22 or
CHECKTIME g 22:23:45 or
CHECKTIME g 22:23 or
CHECKTlME g 22

This will return with a return code of l' if the system
time is greater than the time specified and 0 for all
other cases.

CHECKTIME less
CHECKTlME less
CHECKTlME less
CHECKTlME 1
CHECKTlME 1
CHECKTlME 1

22:23:45
22:23
22
22:23:45
22:23
22

4-77

This will return with a return code of 1 if the system
time is less than the time specified and 0 for all other
cases.

For example, backup needs to be done only at a partic­
ular time, preferably during the night, when the system
load is lighter. This can be done in an export file using
the CHECKTIME.86 utility.
File: BACKUP.CSD

CHECKTlME g 22:59:00
if %STATUS = 1 then

TREE BACKUP /APS--WO/USER.DIR/
SRIVAT.DIR/" to /APS1/SRIVAT.DIR
else
EXPORT BACKUP to iNDXUTILITY.Q
end

In the above submit file, CHECKTIME compares the
given time with the system time. If a match is found, it
will exit with STATUS set to 1; otherwise it will exit
with STATUS set to O. If STATUS is set to 0, a match
has not been found and the submit file will export itself
to the queue. In this way, the jobs get stacked up on the
queue. When the CHECKTIME condition does get sat­
isfied, the export file will back up all files in the volume

APS-WO/USER.DIR/SRIVAT.DIR to the /APSl/
SRIVAT.DIR.

inter AP-244

APPENDIX D
Configuring a Station to Come Up

as an IMPORT Station

A workstation (Series IV) can be configured to power
up as an import station through the SYSGEN com­
mand at the NRM. SYSGEN, restricted only to the
SUPERUSER, will not allow any other user to modify
the system configuration. Invoke SYSGEN by typing:
SYSGEN

SYSGEN will then clear the screen and display all the
workstations on the network and their Ethernet ad­
dresses. Select the soft key labelled "Options". Next,
select the node that has to come up as an import sta­
tion. SYSGEN will then display another screen with
one of the options being: ' ,

4-78

(7) Automatic Import to , Partition. 1 , Partition 2

Select the partition needed to to come up in import
mode. Both partitions can be selected. SYSGEN will
next ask for queue names that will serve that import
station. ,List the queues (maximum of 10) and then exit
from SYSGEN. Reset the network and the Series IV
will come up as an import station on powerup. To ter­
minateimport mode, do a Control-C at the import sta­
tion keyboard by pressing the Control andC keys
simultaneously.

APPLICATION
NOTE

AP-246

October 1985

Setting Up an Efficient
Hierarchical File System

WAYNE ROSEN
DSO APPLICATIONS ENGINEERING

Order Number: 231482-001
4-79

Ap·246

INTRODUCTION

Software development has become a team activity.

- Team members need an efficient file management
scheme.

- Team members need to share common databases,
but need to be protected against unauthorized file
access.

Intel provides a superior hierarchical file system for file
management, protection, and sharing in a totally con­
trolled environment.

This Application Note is directed to the NDS-II or Se­
ries IV SUPERUSER who is setting up the system's

hierarchical file system (HFS) and software develop­
ment environment. We will be using some hypothetical
products to illustrate our recommendations for this
HFS.

Intel's NDS-II Network Resource Manager (NRM)
and Series IV, running the iNDX operating system, en­
courage a logically constructed HFS. However, unless
set up in a well-structured manner, an HFS can cause
many problems. As software tasks grow larger and
more complex, a properly structured file system will
speed overall system development.

An HFS, (a tree-type file system opposed to a flat file
system), promotes system protection and project parti­
tioning and allows users to quickly find needed files.
Figure I shows a stylized HFS.

"/" (BACKS LASH) ROOT

ETC.

NOTE:

PHYSICAL
DEVICES
(VOLUMES)

DIRECTORIES I'<
DATA FILES

ETC. FOREVER

231482-1

1. A "volume" is a mountable, physical device. The system maintains device names for these, which should not be
confused with the names you give them. For example:
Device name WFO is the 85 MB Winchester drive controlled by the disk controller board's first driver circuit.
Device name WF1 is the 84 MB Winchester drive controlled by the disk controller board's second driver circuit.

Figure 1. A Stylized HFS

4-80

inter AP-246

ADVANTAGES OF AN HFS

The following are properties of Intel's HFS (See Figure
1).

• All files have a unique pathname starting from the
root.

• Each physical device represents a directory at the
root.

• Directories may contain data files or more directo­
ries.

Where the root (represented by"/") is the symbolic
connection point for all physical volumes of an HFS.

To determine the physical volumes available to you as a
user, enter the command "DIR I". For example:

DIR /
iNDX-W4l (V2.8) DIR V2.8
DIRECTORY OF /

FILE_NAME LOCATION

SYS
APSO
APSl
WLR.BACKUP

remote
remote
remote
local

ACCESSIBILITY

;an NDS-II device
••
" .

;a local device on
my Series IV

A Logical Place to Put "Things"

A big advantage to using an HFS is the ability to group
files according to user-defined relationships. Let's illus­
trate this important feature with a story.

We live in a disorganized universe. The laws of entropy
tend to maintain and promote this disorganized state.
Human beings fight the forces of entropy and try to
maintain order in the small niche they carved out for
themselves.

In our small corner of the universe, some people like "a
place for everything and everything in its place;" that
is, they expend some energy organizing their life and
surroundings, while others do not bother. Joe Slobot­
nick (a very bad NDS-II manager) leans towards maxi­
mum entropy. Joe does not bother to expend the mini­
mal energy necessary to maintain order on his system.

Joe is the only one in the world who might know where
something is kept on the system. Occasionally, even Joe
forgets where something needed is stored ("I swear I
put that file in the TEMP3 directory along with the
other prototypes") At this point, a mad, random-access
search begins. This frantic search follows no known
rules (like a binary or Shell sort), and no maximum
search time can be calculated to tell Joe how long the
search will take. Thus, the frantic search may take con-

4-81

siderable time, may not be worth the effort, and may
have disastrous side effects (like never finding the ob­
ject of the search).

How much simpler it is for Joe, and for anyone work­
ing on his system, if a logical structure is imposed on
the system. More importantly, how much simpler for
all if a minimal effort is exerted to maintain this logical
order.

Protection

Another advantage to using INTEL's HFS properly is
file protection. iNDX provides the capability to protect
critical files not only from malicious tampering, but
from accidental changes (accidents do happen!). For ex­
ample, all users (even SUPERUSER) should be able to
use a compiler; but they should not be able to change or
delete it.

Every file in INTEL's HFS has an "owner" associated
with it. This owner is someone the SUPERUSER has
defined as a system user (see the USERDEF utility).
This owner controls access rights to his or her files by:

• Setting the individual access rights

• Setting the world's (the rest of the users on the sys­
tem) access rights.

Superuser (including those people with secondary Super­
user rights) can override the built-in protections and do
anything to your files. This is a good reason to restrict
the use of Superuser authority to the absolute mini­
mum.

The Software Version Control System (SVCS), Intel's
database manager, maintains another level of protec­
tion over that provided by the HFS. Features of this
utility are discussed in Application Note AP 162 - a
PMT tutorial.

Your Home Directory

You will want to keep your personal files in a protected
directory that you own. This directory should be your
home directory defined at USERDEF time.

When you log on, the iNDX operating system will au­
tomatically assign the logical names' , (the NULL logi­
cal name) and WORK: to your home directory.

LNAME Path
iNDX-W4l (V2.8) LNAME V2.8
LOGICAL NAME PATHNAME
• , /volume/USER.DIR/WAYNE.DIR
:WORK: /volume/USER.DIR/WAYNE.DIR

intJ AP-246

Utilities will default their operations to the NULL logi­
cal name if no directory is specified, that is, the DIR
command will give a directory listing of my home di­
rectory. PLM86 SOMEFILE.PLM will look for the file
SOMEFILE.PLM in my home directory. In addition,
the NULL logical name is the starting point to easily
reference subdirectories located in your home directo­
ry. For example:

DIR MEMOS.DIR ;MEMOS.DIR is
a sub-directory
iNDX-W41 (V2.8) DIR V2.8 ;in my home
directory
DIRECTORY OF /volume/USER.DIR/

WAYNE.DIR/MEMOS.DIR -full pathname
FILE_NAME FILE_NAME FILE_NAME
MANPOW.D14 MAILD.323 UPGRAD.D12
CONF.305 SUNEWS .127 HFS. 612
VACATION.N14

The NULL logical name can be redefined, but we do
not recommend it.

The :WORK: logical name is used by various utilities
(including translators) for workspace. We do recom­
mend redefining this logical name. For example, if you
are logged onto a network and have an Series IV with a
Winchester (a fast device), defining :WORK: to some
working directory on your local Winchester will speed
you own processing and will reduce overall network
Ethernet traffic. In fact, any temporary files created by
you should be dispatched to this :WORK: directory. At
the end of the day, you can clean up your workspace by
simply deleting this working directory.

As you accumulate additional files in your home direc­
tory, you should break off related files into subdirecto­
ries, such as:

MEMOS.DIR ;all memos
KEYRESULTS.DIR;those memos that are

key results

In fact, we recommend that, other than needed initiali­
zation or configuration files, only put other directories
in your home directory. Figure 2 is a sample home di­
rectory.

Under iNDX, the maximum directory name is 14 al­
phanumerics. Periods as readability delimeters count as
one of the 14 characters.

Under ISIS-III(N), the maximum directory name is 6
dot 3. That is, six alphanumerics, a period and three
alphanumerics for the optional extension. Also, it is
convenient to name memos in the following form:

name.date_code

Where date_code = Mdd (three alphanumerics)

M = month code
(1-9 for Jan through Sep, 0 for Oct, N for Nov, D for
Dec)
dd = day of the month (01 - 31)

/VOLUME/USER.DIR/WAYNE.DIR

ETC.

Figure 2. A Sample Home Directory
4-82

DIRECTORIES
ONLY

DIRECTORIES &
DATA FILES

231482-2

intJ AP·246

One Place For Tools

Tools (compilers, linkers, editors, etc.) should be kept
in only one location. The world and owner should have
DISPLAY ACCESS rights only.

This centralized tool directory is very convenient. Since
there is only one copy of each of the tools, the system
manager can guarantee that:

• Everyone is using the same version of the tools

• Tool updates need be made in one place only

• When a system generation is done, it can be proven
that every module was generated using the same
tools.

This last point is very important when it comes to sys­
tem validation and certification. The Department of
Defense (DOD), the Federal Aviation Administration
(FAA), and others require such version control guaran­
tees.

What takes place inside the computer when a command
is invoked? For example:

PLM86 some.file Debug

Based on user and system-defined search rules (dis­
cussed later in this note), the operating system will be­
gin searching specific directories for the PL/M86 com­
piler. If the compiler is not found in the first directory,
the operating system will then search subsequent direc­
tories.

How does the operating system know if a file is in a
directory? The operating system performs a linear
search through the file entries until a match is found.
Files marked as "deleted" and subdirectories count as
entries too. The average "match time" is:

('/2) X (total # of file entries) X (time to perform the
match function)

To optimize system performance, you will want to:

• Make certain that the most frequently used utilities
are located in the first directory searched

• Order the utilities in this first directory to minimize
"match time" for very frequently used utilities"
such as AEDIT, DIR, and COPY (put them into
the tools directory first)

• Minimize the total number of files in a directory
(especially the tools directory). The maximum num­
ber of files that iNDX will allow in a directory is
1,024.

The Problem With Dir

Doing a directory (DIR) listing has to be one of the
most frequently used commands of any computer sys-

4-83

tem. However, doing a DIR on an unsorted directory
that contains 756 files not only takes a lot of time, but
limits the probability of locating all desired files. Y our­
brain and eyes have a difficult time scanning pages of
scrolling directory listings. Approximately 75 files (one
page of a three-column DIR listing) is the recommend­
ed maximum amount of files to be scanned at one time.

How do you pick out subdirectories in a DIR listing?
Unless you know the names of those subdirectories, an
expanded DIR is the only way to find those directories.
Expanded DIRs take a long time and degrade overall
network performance. The answer? Where possible,
suffix all directories with .DIR. Under iNDX, you have
up to 14 characters to specify a directory name. This
way, you will be able to find your subdirectories with a
standard DIR listing. Or,You can search for occurrenc­
es of .DIR only. For example:

DIR directory_name FOR *.DIR

However, you might prefer having 756 files (or more)
in your directories. When you look for a particular
file(s), you will use wildcard characters and match for a
particular pattern. Unfortunately, this also takes time.
Then, there is the problem of possibly missing a needed
file that does not quite match the search pattern (or
getting other extraneous files that do match the. pat­
tern).

The bottom line is this: If you have a system that sup­
ports an HFS, use it wisely! And, be sure to:

GROUP RELATED FILES UNDER A
MEANINGFULL Y
NAMED DIRECTORY!!

A SAMPLE PROJECT

The following sample project will help illustrate how to
set up an NDS-II hierarchical file system. There are
many projects being developed on our NDS-II network.
The one project our group is working on is:

ROBOTWELDER a dual 186-based project

Our development environment has the following com­
ponents:

• One NDS-II

• built-in tape cartridge (for back-up)

- One 35 MB Winchester (what we originally or­
dered)

- One 84 MB Winchester (we bought this unit when
we needed more disk space)

• Two Series IVs
- One flippy/winny

- One flippy/flippy

intJ Ap·246

• Two Series lIs (our original boxes, pre-network)

• One Series III

• Four ISIS cluster stations

• Intel in-circuit emulators as 'needed.

A MODEL HFS

Software is divided into three worlds:

• U program equivalent •• *

TOOLS: editors, compilers, linkers, etc. (code)

USERS: you, me, and our projects (data)

SYSTEM: network· operations (operating system)

In general, the tools operate on output from the users,

Users' files = Tools (users' files)

The system software is responsible for the operation of
the computer. The system software manages the tools,
the users' files, and itself.

Networkoperation = System (Tools, users' files, system)

Under iNDX, the system software is responsible for file
protection, distributed job control, resource sharing,
electronic mail, etc.

Using The Winchesters
Since we have this particular Winchester configuration
(see "Sample Project"), we will use the 35 MB Win­
chester as the boot and system device. In fact, we will
make this disk "read only". All of our tools (which
have read permission only) will reside on this disk. We
get a performance benefit by making this disk read
only. A disk write takes approximately seven times
longer than a disk read (reduced head thrashing). In
our particular configuration, we gain added perform­
ance, since there are separate disk controllers for the 35
MB and 84 MB Winchesters (each type of controller
can support up to four disks).

Since this 35 MB disk has our tools, contains our sys­
tem software, and is the boot disk, we will name it
something meaningful. For example:

/5Y5
not simply /W or /WO.

Later, we will show why limiting this name to three
alphanumerics is useful. An early hint:14 characters is
the maximum that the SEARCH CUSP presently ac­
cepts.

• Wordstar is a trademark of Micropro .
•• Multiplan is a registered trademark of Microsoft Corp.

4-84

You should always have at least 2 MB of spare room on
the boot disk. iNDX creates many temporary files,
some quite large, and puts them on this boot disk. For
example, the SPOOL directory is the temporary hold­
ing space for print jobs. If you have sent 500k worth or
listings (all at once) to be printed, you will need at least
500k free on the boot disk.

Tools
Let us take an in-depth look at these software tools. As
far, as our NDS-II and workstations are concerned,
these tools are divided between:

8-bit tools

- These tools run on the 8085 microprocessor.

- The Series II, cluster board, and Model-800 can.run
ONLY these tools.

- The hosted 8-bit operating systems are ISIS and
CP/M.

16-bit tools

- These tools run on the 8088/8086 microprocessors.

- The Series III and Series IV run these tools (in ad-
dition to being able to run all the 8 bit tools).

- The hosted 16-bit operating systems are iNDX and
ISIS RUN.

As far as CP/M is concerned, Intel's development tools
do not run under CP/M. CP/M is useful if you wish to
include others into the development process for exam­
ple, the professional 'using Wordstar* and the financial
planner using Multiplan. * * CP/M running on a work­
station on the network is discussed in depth DSO Ap­
plication Note AP-253:Adding Value to Intel's NDS-ll
Development System Network with Network CP/M-
80.

It is a misconception to believe that tools running on a
8-bit machine can only generate objects that an 8-bit
microprocessor can use. Intel supplies a 8-bit PL/M
compiler (i.e., runs under ISIS) that generates object
code for an 8088/8086 microprocessor.

Due to the inertia of history or tradition, the 8-bit
world is called:

1515.5Y5 (it would have been nice to
call it 8B1T.D1R).

However, we can call our 16-bit world:

l6BIT.D1R.

inter Ap·246

16BIT.DIR

It is useful and very convenient to subdivide ISIS.SYS
and 16BIT.DIR into logical groups. Under ISIS, we
have great flexibility to do this. A Series IV can specify
one additional Search path right now.

We would like to digress a bit and talk about the iNDX
SEARCH CUSP. Under ISIS, when a CUSP is invoked
or referenced by just its name, the command line inter­
preter (CLI) looks for the CUSP in the defaultdirecto­
ry, :FO:. For example:

DIR (this is the same as typing
:FO :DIR)

Similarly, under iNDX, when a CUSP is invoked or
referenced by just its name, the CLI:

• First looks in the system volume directory (in our
example, this is called ISYS).

• If not found, the CLI then looks in the directory
specified by the NULL logical name ("). The
NULL Logical name is defaulted to your home di­
rectory and should not be changed.

It is convenient to have additional search paths. The
current SEARCH CUSP gives us one more, which we
can use to point to 16BIT.DIR:

SEARCH /SYS/16BIT.DIR

Thus, for our Series IVs, our search paths are:

/SYS/16BIT.DIR
/SYS iboot

device
/WORK/USER.DIR/home_directory ithe

NULL logical name

The CLI will first search ISYS/16BIT.DIR, then the
boot device, and finally our home directory. A CUSP
found in any of our search directories with an entry in
the menu compiler, will be able to:

- Access its syntax builder

- Complete command lines (FILL ON)

- Display HELP messages for any portion of the
command line.

Why did we limit the system volume name to three
alphanumerics? Currently, the search pathname,
ISYS/16BIT.DIR, cannot be longer than 14 alphanu­
merics (including backslash delimeters). Our way to get
around this limitation (if you have a longer volume
name) is to use an LNAME.

LNAME define l6BIT.DIR for
/long_volume_name/16BIT.DIR,

But then:

- You use one more LNAME

- This LNAME cannot be removed or redefined

- All users have to set up this LNAME.

ISIS.SYS

It seems that everyone sets up his or her. own virtual
floppy assignments in individual ISIS.INI files. We rec­
ommend that the group adopt a common standard and
stick with it. We suggest the following:

••• 8-bit workstation •••
ASSIGN :FO:to /SYS/ISIS.SYS
ASSIGN :Fl:to :F9:today's_project.DIR (your working directory)
ASSIGN :F2:to /work_volume/PROJECT.DIR/xxx.DIR/DATABASE.DIR/MODULE.dir

iXXX is the project you're working on
imodule is the particular piece of the proje\lt you're working on at the
moment (if a large project)

ASSIGN :F3:to /SYS/ISIS.SYS/LIB.DIR
ilibraries, system $INCLUDE files

ASSIGN :F4:to /SYS/ICE.DIR/which_ICE_you're_using.DIR

ASSIGN :F9:to /work_volume/USER.DIR/home_directory.DIR

NEVER, NEVER re-ASSIGN :F9:, your home directory.

4-85

inter Ap·246

16·BIT WORKSTATION (SERIES III)

This is a Series III in RUN mode. In addition to the assignments above, add the following:

ASSIGN
ASSIGN

:F7:to ISYS/16BIT.DIR/LIB.DIR
:F8:to ISYS/16BIT.DIR

;16-bit librarieS
;16-bi t CUSPS

DIRECTORY STRUCTURE FOR TOOLS

We will put all interactive software tools under one of
the following directories: .

ISYS/ISIS.SYS, or
ISYS/16BIT.DIR

based on whether the tools are hosted on an 8-bit or a
16-bit processor.

Since commonly used $INCLUDE files (.R files for
you "C" people) and libraries are nonexecutable and
are usually brought in during a SUBMIT file, we can
put them into subdirectories: .

ISYS/ISIS.SYS/LIB.DIR, and
ISYS/16BIT.DIR/LIB.DIR

Project-related $INCLUDE files should be stored in
the project database.

There are other files that have nothing to do with the
host processor, such as configuration files that set up a
terminal for an editor or PSCOPE or configure a termi­
nal for a second user (Series IV). These we will put
under:

ISYS/CONFIG.DIR

ISYS
116BIT.DIR

ILIB.DIR
IISIS.SYS

lLIB.DIR
ICONFIG.DIR

IICE.DIR

IAEDIT.MAC.DIR
ISTTY/CFG.DIR

IICE51.DIR
IICE.86.DIR
II2ICE.DIR

Our target processor (the processor(s) in oUf product)
has nothing to do with the host processor that our de­
velopment system is running. For this reason and for
modularity and partitioning purposes, we have elected
to break out all of the ICE emulator software and lump
it under a separate directory:

ISYS/ICE.DIR

For convenience, certain CUSPs should be kept in the
root directory of the boot device. We suggest that all
you need to leave behind are:

LOGON ;Never remove from the root
(see Appendix A)
DIR.86
LOGOFF.86

You may be wondering why we chose to remove as
many CUSPs out of the root as possible. The root di­
rectory of the boot device· is already cluttered with
many system files; the total number can be substantial.
(See Appendix 1 for a list of these system files.)

Figure 3 contains our suggested directory structure for
tools.

;volume name
;16-bi t tools
;libraries
;8-bi't tools
; libraries
;configuration files

for various terminals
; .AEDIT
; Series IV users
;in-circuit emulators

Figure 3. Directory Structure for Tools.

infef Ap·246

The first thing your INIT.CSD (Series IV LOGON ini­
tialization file) should do is:

SEARCH /SYS/16BIT.DIR

THE CASE OF THE MISSING CUSPS

You have looked everywhere on your disk, but you sim­
ply cannot find the EXPORT.86 file. Has someone de­
leted it? No! This iNDX CUSP, and other "hidden"
'CUSPs listed below, are built directly into the iNDX
CLI.

"""COMMAND FILE PROCESSING

BATCH command file editor with syntax
help

SUBMIT executes the command file in­
stantaneously

EXPORT executes the command file at an­
other time and place

BACKGROUND executes the command file in my
background now

•• "COMMAND FILE CONTROLS

COUNT allows multiple executions of
commands

REPEAT allows multiple executions of
commands

UNTIL used by COUNT and REPEAT

WHILE used by COUNT and REPEAT

ENDJOB terminates this command file
now

OPEN opens a parameter file

READ gets a parameter from a file

PEOPLE

/WORKl
. /USER.DIR

/SUPERUSER.DIR

/WAYNE.DIR

SET allows (re-)definition of CLI
variables

IF conditional execution

ORIF conditional execution

ELSE conditional execution

"""MISCELLANEOUS CUSPS

SEARCH enables or lists CLI search paths

FILL

LOG

END

RUN

VIEW

enables disables CLI command
completion

saves all console output to a file

noop command for ISIS compat­
ability

noop command for ISIS compat­
ability

scan a file (AEDIT-like inter­
face)

The command file controls (IF, UNTIL, etc) are very
useful for controlling command file (SUBMIT) execu­
tion. (Refer to the Application Note AP 245 for further
discussion.)

Users
The next part of our software world is for the users.
The first part of this world contains all our personal,
home directories. The second part of this world con­
tains all the project files.

The following example shows setting up this directory.
We are using our 84 MB Winchester as our work disk
and, therefore, are naming it WORKl.

;volume name
;main directory
;with relea.se 2.8 of iNDX, the
superuser

;gets his or her own home directory

/MEMO.DIR
/KEYRESULTS.DIR
/APNOTES.DIR

/BRIAN.DIR
/CHRIS.DIR
/DEBBIE.DIR

;as an example
as an example

;as an example

Figure 4. Setting Up Home Directories

4·87

intJ AP-246

USER,DIR contains all the home directories for every­
one using the system. These directories should be as­
signed at USERDEF time;

USERDEF define WAYNE id 20000 DIR
/WORK1/USER.DIR/WAYNE.DIR .

The names of the home directories should be the user­
names (the name asked for at logon time) plus the suf­
fix .DIR.

NOTE:
For normal operation, I will logon as WAYNE. When
superuser priviledges are required, I can logon as

/WORKl
/PROJECT.DIR

/ROBOTWELDER.DIR
/DATABASE.DIR

/SYSTEM.DIR

SUPERW A YNE (previously defined as a secondary
superuser). If you reserve logging on as SUPERUSER
for the times you need to do a USERDEF, you can let
the system protect you as it was designed to do.

PROJECTS

The n~xt major directory is for our projects. Our group
is working on ROBOTWELDER. Other' groups are
also' using the NDS-I1 .. Lump their project directoricis
under PROJECT.DIR, too.

;volume name

;a main project

Only put SVCS-type
/ASM.DIR

;overall system database
files in this directory.

Only put SVCS-type
/DISPLAY.DIR

files in this directory.

files in this directory. Only put SVCS-type
/database4.DIR
Only put SVCS type files in this directory.

/yet--another--project.DIR
/DATABASE.DIR

/SYSTEM.DIR ;overall system .database
files in this directory. Only put SVCS-type

/database.2.DIR
Only put SVCS-type files in this directory.

Figure 5. Project Directories

Put all files associated with your projects into a protect­
ed SVCS database. These file include source and ob­
jects, SINCLUDE files, MAKE files, and documents.

Break the database into many databases, each support­
ing a particular function or system block. In our exam­
ple for the ROBOTWELDER project, one major sys­
tem building block is called DISPLAY. We lump all
files connected to DISPLAY into a subdirectory. DIS­
PLAY is just one basic function of our slick new micro­
processor-based ROBOTWELDER machine.

Each database should contain no more than 50-related
modules to reduce database contention. The system da­
tabase contains the files. associated with overall project
maintenance and organization. These files include

block diagrams, documents and memos, timetables, and
system integration test procedures.

You should not keep .LST files in a database or even on
the Winchesters. They take up alot of space, and can
always be regenerated when needed.

NOTE:
Only people using the network should have user
names. Do not set up a user name, for example, called
ROBOTWELDER.
We believe that if you do set up a project user name,
such as ROBOTWELDER, with people logging on
with this user name, you will lose control over your
sources. It will be difficult to know who made changes
on meso (Refer to the Applications Note. AP. 162 for
further discussion.)

inter AP-246

APPENDIX A

SYSTEM FILES

Appendix A contains a list of description of those files
that the iNDX operating system maintains in the boot
disk. Files beginning with r?DUP are duplicate files
maintained by the operating system in case a disk
"glitches." The original files are kept near the physical
front of the disk, and the duplicates are kept near the
back of the disk.

OJCQueues

If the operating system detects that an original file is
bad, a warning message will be printed and the dupli­
cate files will be used. At this time, save all your files
onto another device and reFORMAT the suspect disk.
Otherwise, you might lose everything on your disk.

CAUTION: unless you really know what you are doing:

LEAVE ALL THE FILES LISTED BELOW ALONE!!!

1. Information about DJC queues. These file can grow to contain a maximum of 256 job entries.

l6BIT.Q ;an import queue we created for l6-bit jobs
8BIT.Q ;an import queue we created for 8-bit jobs

etc
HINT: Give your queues meaningful names, not like:

FOOWAFFLE or BOZO.

2. DJC header file.

DJC--CHK--PT ;contains names of queues, which stations service
;which queues, and the protocol version number

Series IV Temporary Files

1. SUBMIT jobs.

88--CMD--l8
88--CMD--l9

88--CMD--Y9
etc.

and

;as an example
;the naming format is 83--CMD--xy

88--STACK--l8 ;as an example
88--STACK--l9

88--STACK--Y9
etc

2. LNAMES (logical names the Series IV people are using)

88--LNAME--l

88--LNAME--J
etc

4-89

inter
Series IV and NRM Cli File

CLI-HELP
PRM_HELP

CLI-SYN_TBL
PRM_SYN_TBL

Series IV and NRM logon Files

"·Series IV

LOGON

LOGON_HELP
LOGON.SYN

···NRM

PLOGON_HELP
PLOGON.SYN

Electronic Mail

AP-246

;large Series IV text file
;large NRM help text file

;used by the Series IV menu compiler
;used by the NRM menu compiler

;Series IV error messages
;NRM CLI error message

;logon CUSP
;delete this and no one can logon to Series IV
;online HELP text
;logon menu line

;logon CUSP
;delete this and no one can log on at NRM)
;online HELP text
;logon menu line

1. MAIL.DIR is a directory. In this directory, electronic mail will set up individual mailbox directories.

MAIL.DIR

As an example:

WAYNE

BRIAN

iNDX Operatin S stem

osaa.RESIDENT
osaa.OVERLAY

Communication Software

SYSTEM
CONFIG
MUSER. INFO
COMMIDOS
COMM3.X02
COMM3.X03
INDX.W31
INDX.W41

;all of Wayne's messages will be put in this
;directory
;Brian's mailbox (MAIL uses USERDEF usernames)

;NRM operating system, iNDX.Gll (no overlays)
;empty (length 0)

;a directory that contains the following files
;SYSGEN info (including Ethernet addresses)
terminal configuration info

;communication info
;Ethernet communication software
;Ethernet communication software
;OS downloaded to a SeriesIV/3
;OS downloaded to a Series IV/4

4-90

inter
Disk Maintenance

VERIFYFIX
r?BADBLOCKMAP
r?DUPBADBLOCK
r?SPACEMAP
r?DUPSPACEMAP
r?FNODEMAP
r?DUPFNODEMAP
r?DUPFNODE

r?DUPBLOCKZERO
r?VOLUMELABEL

System Files

UDF
BAK~UDF

HOME
BAK.HOME

PUBLIC.UDF
BAK.PUBLIC.UDF

SPOOL
r?ACCOUNTING
r?ISOLABEL
r?RESERVEDI
r?RESERVED2

Ap·246

;a directory used by the VERIFY CUSP
;which parts of the disk not to use
; duplicate
;which parts of the disk are used
; duplicate
;which directory entries are used
; duplicate
;contains all file information (redundant)
; Note:an iNDX disk is RMX-86-compatible
;a copy of the first block on the boot disk
;name of the disk

;user-definition file (NAMES + PASSWORDS)
;a duplicate copy you should make every time
; you do a USERDEF
;user names and home directories
;a duplicate copy you should make every time
; you do a USERDEF
;public versions of UDF NAMES and home directories
;a duplicate copy you should make every time
; you do a USERDEF
;the directory behind :SP:device
;not currently used
;standard ISO label
;reserved for future use
;reserved for future use

4-91

inter Ap·246

APPENDIX B

Acronyms and Definitions
iNDX (i)ntel (N)etwork (D)istributed e(X)executive

Intel's proprietary 16-bit operating system
that runs on the NRM and the Series IV.

ISIS (i)ntel's (S)ystems (I)mplementation (S)uper-
visor

Intel's proprietary 8-bit operating system
that runs on the Model-BOO, Series II, Se­
ries III, Series IV and cluster stations.

RMX (R)eal time (M)ultitasking (E)xecutive

Intel's real-time proprietary system (B-bit
and 16-bit versions).

CLI (C)ommand (L)ine (I)nterpreter

CUSP (C)onnonly (U)sed (S)ystem (p)rogram

NDS-II (N)etwork (D)evelopment (S)ystem, version II

4-92

NRM (N)etwork (R)esource (M)anager

PL/M (P)rogramming (L)anguage for (M)icroproc­
essors

Intel's system's implementation language.

PMTs (p)rogram (M)anagement (T)ools

SVCS (S)oftware (V)ersion (C)ontrol (S)ystem, one
of the PMTs '

An automated means of tracking changes
to program source code, maintaining vari­
ants of the source and objects modules for
a program, and recording access to the
source and object modules in a multipro­
grammer environment.

MAKE not an acronym, one of the PMTs

A program designed to generate a submit
file that can be used to construct the most
current version of the requested software.

APPLICATION
NOTE

Adding Capability
to the NOS-II System
. with Cluster Boards

CHRIS FEETHAM
DSO APPLICATIONS ENGINEERING

AP-247

November 1986

Order Number: 231483·001
4·93

intJ AP-247

INTRODUCTION

The ISIS cluster board (iMDX 581) was introduced
into the NDS-II product line to reduce dramatically the
cost of a personal workstation. It achieved this goal and
gave the network numerous expansion 'opportunities.
All of the applications discussed in this note are avail­
able through the NDS-II toolbox.

ADDING ADDITIONAL USERS

The cluster board is a single MultibusR board with an
8085-2 processor, 64 K of RAM, an RS232 serial port,
and other supporting circuitry. Figure 1 shows a block
diagram, and a complete circuit diagram is included in

Appendix A. A cluster board may be installed into any
master slot of a network Model 800 or Series II, III, or
IV development system to support an additional net­
work user via a dumb terminal. This low-cost method
of adding extra users to the network served as the pri­
mary motivator for the development of the cluster
board. .

With the exception of Multibus slot; some power, and
access to the host's Ethernet controller board, the clus­
ter board uses none of its host development system's
resources. The cluster board does not slow the host,
which generally has no knowledge of its presence in the
system. A host may support multiple cluster boards.
Figure 2 shows the maximum number that may be add­
ed to each host system.

USER
TERMINAL

DUAL
PORT

,--....,..+1 CONTROL

231483-1

Figure 1. Cluster Board Block Diagram

During initialization of the host system, an operating
system is loaded from the network resource manager
(NRM) into the RAM of the cluster board. While ISIS
operating system was chosen to ensure compatability
with previous development environments, CP/M-80
may also be used (see AP 253). During operation, ISIS
accesses data mes and programs from the protected hi­
erarchical me system of the NRM using the Ethernet
controller boards. Access to local host devices, such as
floppy disks or Winchester disks, is not permitted.

4-94

In normal use, a dumb CRT would be connected to the
RS232 port of the cluster board. The user would then
have access to all of the 8-bit network tools, including
full-screen editors, program management tools, and
electronic mail. While some 8-bit compilers are also
available, the cluster board is generally used for interac­
tive 'work supportng the engineer (or the support stafi).
Access to 16-bit advanced tools is available via the Ex­
port facility of the networks' distributed job-control
system, where the cluster user may generate a job using

Ap·247

local tools and then request its execution on a more
capable system upon the same network. This produc­
tive shared-tool environment is described further in AP
244.

It is not mandatory to install a dumb CRT. In fact, any
RS232 device will suffice. The possibilities are endless,
since RS232 is one of the few standards in the electron­
ics industry today. Although this article will discuss
various applications, the solution is general in nature,
and anysystem with an RS232 interface could be con­
nected to the cluster board.

REMOTE NETWORK OPERATION

Figure 3 shows the connection of an Intel iPDSTM
portable development system. The iPDS system is espe­
cially suited to 8-bit microprocessor applications devel­
opment. It has many tools for individual development
but does not include advanced network tools, such as
electronic mail or program management. In this appli­
cation, the iPDS system is at a remote site, and a mo­
dem link connects the iPDS system to the NDS-II net­
work.

A dumb terminal emulator program called REMOTE
has been written for the iPDS system. This program, as
part of the network toolbox, includes autodialing a
Hayes smart modem. While running in terminal emula­
tion mode, the iPDS can access all facilities of the net­
work, including electronic mail and distributed job con­
trol facilities. REMOTE also includes a file-transfer
protocol that enables data transfer between the iPDS
system and the NRM.

If the iPDS system is at a service location, you need a
diagnostic program from the NRM. Or, the iPDS could
have data gathered from a remote site to be analysed
back at base. The possibilities are endless.

System Maximum
Clusters

Model BOO 2
Series II 3
Series III 1
Series IV 3
Expansion Chassis 4

Figure 2. Adding Cluster Boards
to Host Systems

4-95

ETHERNET

HOST

RS232
CLUSTER I------i LOCAL FACILITY

CLUSTER

REMOTE LOCATION

231483-2

Figure 3. Attaching the iPDSTM System to the
Network via an ISIS Cluster Board

ADDING AN ADDITIONAL PRINTER

An additional printer is often required on an NDS-II
system. Letter quality printers are popular and their
RS232 connection makes them a natural for connection
to the cluster board. One problem - how does an output
device such as a printer LOGON to the network and
initiate file transfer from file to paper.

Server is a slight modification of the standard cluster
PROM - it includes a PROM based console to solve the
initialization problem. After power-up the LOGON
program calls the console input routine to input the
user name and password - within server a user name
and password is supplied from PROM (Refer to the
AP-242 - Additional printer support for the NDS II
- for more complete information.)

inter AP-247

Once logged on the system executes an initialization file
ISIS.INI from the users home directory. In this server
example a program that never exits will be chosen -
PRINCE, a versatile serial printer driver, is such a pro­
gram. Following initial drive assignments PRINCE
polls a directory looking for files, once a file is identi­
fied it is copied to the serial printer and then deleted -
simple but most effective.

AUTOBOOT CLUSTER BOARD

BOOTUP is an extensively modified cluster PROM.
Rather than rely upon a host system to provide its op­
erating system BOOTUP allows a cluster board to load
its own ISIS operating system from the network. Fol­
lowing power-up BOOTUP initializes an SBC550
Ethernet controller and then logs on to the NRM under
a predefined name of ISIS. Once logged on BOOTUP
loads its operating system from the network. Before
passing control to the user BOOTUP seeks out and
initializes any other cluster boards also installed within
the same chassis.

BOOTUP provides the network user with a low cost
method of adding software developers - take any iSBC
chassis, add an Ethernet Comm set and a cluster board
containing the BOOTUP PROM and the system is
complete. Up to seven additional cluster boards may be
added to provide a very low cost eight-user environ­
ment as shown in Figure 4. BOOTUP also supports the
server concept. The BOOTUP PROM is provided with
the Network/Series IV Toolbox product.

CONCLUSION

I hope I have explained some of the versatility of the
ISIS cluster board. Think of it as a universal interface
board between the complex multi-protocol world of
Ethernet and the straight forward start-data-stop world
of RS232. I am sure this will prompt many new appli­
cations for the product - feel free to experiment and
benefit from your findings.

CLUSTER WITH BOOTUP PROM

1---------- } THREE ADDITIONAL USERS

1-_________ } SBC® 550 ETHERNET BOARDS

'----------- ISBC®CHASSIS
231483-3

Figure 4. BOOTUP Allows a Low Cost iSBC® Chassis to Act as a Host for Software Developers

4-96

.r:-
eD,

~ ;r
I!IiJ c:a

H<# ".
C~.e­...... -....... ~

·Sl:.ar£.
ISV 1''IOIj

t.IOT!~' ~!6 OTtIe~ 7'Ec.o~
I.C..-.cIT""";E'IIIII.I.Ie~"'E"hIIICaCF_

L~T c.cY~"..n!IN~V<lw.'S

NOTES: unless otherwise specified
1. Capacitance values are in microfarads.
2. Resistance values are in n, 1/4W, 5%.
3. CuStomer installed capacitor.

c,n·u,s,
~.:: .

~ft.IU'-1,,:n.!IS~
'"

A I

231483-4

l
0 r-c:
tA
-I m
::rJ
a:J
0»
»"U ::rJ"U em ».
»z "U .

N

eS! .j:Io
c><
tA»
0 »
"U »
a:J
r---I
-<

..

,,~
~-.. '

Q

,
~
!

AP-247

.. . .,
~~§
• i

4·98

III

~ .

. i ..
§ iii

I -
~ "',
~
~

...

..

III

! \
! I

.... i \

!
- I-

I ~

-

-

-

-

~

-

"' w
w
~

-

ifi'
G) I!!I;}

liili~f
l!,iiti
~i!!iif

o I

~g i]
~

~s ~

r:~g ~
• "
~~g • •
£

<

"
~~ '"

~

~g " ~

~

" ~ •
;; .

o

AP-247

u + ID

88 ~
t:i~

~.
.
~

" "" ~
~~ Q

~. ~
~~ "

a
~ •

~ .
g~

5 "
" 8 ~
~-...

8~
I- •

6~
" ~
g~X • ~

§~

il
w B

~ ~

"
~

~

a
~

I u t ID

4"99

[<

~ • ~ 8 ~ ~
~ ri ~ ..

0
fi ~ ~ S ~ ~ -
~ n ~s ,,.
~~ ~ 3 It g ~ S 11

P1 a 8
~ I--
0

~~ ~ ,
• 0
S

L--- ..

f-

I-

'"
~ -.
:i:!!:

.... 0Il
~2~B ~~~ I-

..
~ ~ ~ ~ ~ " S ~ ~ ~ ~ H " " " ~ .. ~

!
~ ~ u U II H!

0 f .I 0: ~ : :: ~ :. ;: f-
~

2" -. - 9 - . -~

~ ~ Q · - - Q Q - -

~ . • • . - - - -

,
'" ~ !l ~ :: ~ ~ < ; •

~ ~ , - f-
a co 9 ~ - . ~

~ ~ ~ ~;;2 ;
~ ~ -

g ~ 2 ~ ; 0)

~ ~ ~ g e
~ ~ '" g

I <

Ap·247

....
0 () CD C I

CO
C ~ • CO s a s ~ '" ~ U Q

§ , .. ; ..
& , ,

~ J ~
~ ~ ~ t §
!!

~ ~ ~! 3 §
~

~ 'J

r r •

N

I-
~

i

.. ..

... ...

.. ..

..

..

r ~~K • • e,
~ a ~ ~ R Ui ~~~'~~~'i ~ 3 Ii 0

B g li~ is J a
g ~ ~ 5 i I ..

a~ an a ~ ~ ~ ~ ~
§

8
U~ a ~

0 () CD c

4-100

intJ

co

..

Q

N • .. .
C

:J G

AP-247

(J .. <

..

•

..

•

4-101

:!:
o
I\:)

6

IElf ,.
PI

''10 If,jil 'I'IITI\ 71 .. ,e'
ilIl!!11

IN"TRbj ~. ". ull!':;'! ,., ,e'
II,nl\41 07

'"' lit IN.T''~1 ... Ie.: o d"l1 INTRLI ,., , ..
INTI"! 41 _lei
Ir·JTl<al .,

pr:--:;~T I H¥f-~
o

<?v "L,~J.>~:,~~,~,,~,~~,i7:"
3Z01 PlOIZI-DI07 ~ ·-rA1Ll~ b''Z. I'iZlle Ic. g'Z.]'c

";)\n~ I\.lTR 51CI

Tv-P "Z.l.&tI
lW1E.1.'=' 'llCe
1~T2c...~ 'l1C.~

1)Jn:.~.S '1.1.CO
51TJI,i. IIJT£. SICI

c

B

A

~~ ~~ ! ~ ~
0104
0000 13Cl

DID&> Ii!.'
0101 Ize

'tun 'tuf"".~~~~~~~~F~i IZ'r J &v>'L BZ!:I,,)C!!) / •
nc'l IJOWl:T /

'llb'l 110£0/

'1UTl I>.ZJZ.1t.E;J1 ~;------------------i--t-tti--i=====l=t= HJl'E:' 'Z'lce r ME"'''' sIC'

L-l-------II--+I~- w~TIlAeOIlT/41.&'2!I

51. ... ' M'#4C5,~:==~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'~'~0nlll :~ ___ ~_
~HV

6

'p~>3

5Ol::l
•• L..::::::~===~

+sv
IK

L.. __ ~ _______________________________ et.~1 Cl.K s!.e~

"....,
.. " 'k

- &~~ C,LK ~zoe, al.c..e

c

B

A

231483-9

cl

»
'U
I

1'1)
......

inter AP-247

a I

-

-

.
= ,
i!_ '"

'"

..

..

j ..
a

a I c.> ID I

4-103

Ap·247

0 (,) ID C ~

'i
! I CO

~ ~ ~ II ~
01 ~

! \ ~ S i ~
,; , t 'S \ ~ ,

i 5 i
,

~~. , ~ , i ill ~ I'll

I ~ L I ~ i~
I ~

J
t • .. . -

~
! , N

ii
~

...

~ i~ if i~ 'il" :l !
i .. ,

II U !~ a i! so&! 'c '
; S Wi" ,i 8 q~ ~~ u~ fi ; ~ aI ~ ~ ga~ * ID

~ ; i!
.. ID

~~ ~ ·c a
5E=1tZ~

~

u' ID c

4·104

APPLICATION
NOTE

Integrating the PC AT
Into the Intel

AP-278

October 1986

. Development Environment

SRIVATS SAM PATH
DSO APPLICATIONS

4-105
Order Number: 280272-001

inter AP-278

INTRODUCTION

In recent years the Personal Computer has become a
popular vehicle for delivering computing power to the
engineers. IBM's latest offering the Personal Computer
AT (Advanced Technology) incorporating INTEL's
80286 16-bit microprocessor, brings about a high level
of technical sophistication into a personal computer.
The power, speed and memory addressability of the
80286 microprocessor is now available to the user to do
tasks which at one time could be run only on a mini or
mainframe.

Intel has recognized this growing trend and has intro­
duced translators, debuggers and networking for the
PC AT. The same tools that have in the past, been
offered only on Intel's proprietary development systems
are now available on the PC AT under PC-DOS 3.0 or
greater. Language translators are available for the com­
plete spectrum ofIntel microcontrollers (MCS®-51 and
MCS-96 families) and microprocessors (8086, 80186,
80286). 80386 tools will be introduced early 1987. This
is the first time powerful software debuggers like
PSCOPE and TSCOPE, hardware debuggers like
12ICETM have been made available on a personal com­
puter. Intel already supports it broad range of worksta­
tions which may be networked to form a productive
network. This application note discusses the multiple
methods in which the PC AT may be integrated into
this development environment.

All software discussed in this application note is avail­
able (except where listed) in the Network Toolbox, Part
No NDS2TLB 2.0, as discussed in Appendix D.

THE INTEL DEVELOPMENT
ENVIRONMENT

The Intel development environment consists of iPDSTM
Personal Development System, Series-II's,Series-III's,
Series-IV's all of which can be operated standalone or
networked through a file sever using the NRM (Net­
work Resource Manager). Intel also supports industry
standard hosts such as the DEC V AX and now we
include the PC AT as a supported host. Figure 1 shows
all combinations of the Intel development environment
while Figure 2 illustrates the possible inclusion points
of the personal computer.

This appliction note assumes that the reader is familiar
with the current Intel Development Environmanet. For
more information on the Intel Development Envion­
ment please refer to:

1. AP Note Number AP-244 DJC A Key To Increased
Network Productivity

2. AP Note Number AP-245 Creating an Efficient HFS

These application notes are also available in the 1986
DSO Handbook, Order Number 210940.

This application note deals with integrating the PC AT
into an existing Intel development environment. The
enclosed details will allow the reader to choose the
method that best suits the project. This applications
note will discuss three methods of data transfer-serial
interconnect, media transfer and networking. Of these,
serial transfer is the most universal, media transfer is
the most straightforward and Ethernet transfer is the
most efficient.

SERIAL INTERCONNECTS
The simplest method of integrating the PC AT into the
Intel development environment is through serial inter­
connects. This method is inexpensive albeit slow. Serial
interconnects also allows the user the flexibility to use
modems to interconnect with systems which are not
in the same location. It allows for both terminal emula­
tion and file transfer at speeds of up to 9600 baud.
Serial connections have always been a popular method
of linking different computers. Unfortunately this has
resulted in a variety of serial communication software
being developed that are incompatible over different
operating systems. Intel recognized this incompatibility
and decided to advocate serial communication software
that was compatible over a range of operating systems.
The KERMIT file transfer protocol developed by Co­
lumbia University, addressed all the needs of serial
interconnects, and resolved most inadequacies in previ­
ously available serial software. It also solved the multi­
ple operating system incompatibility issue. KERMIT,
is available for all hosts shown in Figure 1. Note how­
ever that all KERMIT implementations are not equal.
The specification details a minimal set of and also spec­
ifies numerous additional features which may be added.
Currently, the ISIS implementation on the iPDS sys­
tem, Series II, III and Series IV is a minimal set while
the V AX and PC implementations are both extensive.
The XENIX and iRMX versions are good and being
improved. KERMIT is public domain software and
cannot be charged for. Versions for the Intel hosts are
available from Insite for a small disk copying fee (see
Appendix C).

The following paragraphs discuss the different methods
of integrating the PC AT using the KERMIT file trans­
fer protocol. Intel, with help from a number of custom­
ers presently using our systems, has developed KER­
MIT software for the following systems:

• iPDS-Serial port
• Series-II or III-Serial port

• Series-IV-Serial port 2
• ISIS cluster board-Directly into the ISIS cluster

board

4-106

AP-278

NRM

SERIES II SERIES III SERIES IV

~ CLUSTER BOARD

ISBC·
CHASSIS

VAX
VMS

IRMXTM
SYSTEM

280272-1

Figure 1. The Intel Development Environment

KERMIT

KERMIT is a file transfer and tenninal emulation pro­
tocol developed by Columbia University in 1981. Since
then KERMIT has been ported to over 30 different
systems and is on its way in becoming an industry stan­
dard protocol. The KERMIT protocol is designed
around character oriented transmission over serial
lines. The design allows for peculiarities in transmission
medium and requirements of different operating envi­
ronments. The KERMIT protocol incorporated fea­
tures and ideas from protocols like DIALNET, DEC­
NET and APPANET. Currently KERMIT has been
implemented in over 26 systems. A detailed discussion
on the KERMIT protocol is covered in Appendix A.

The following list shows the different systems and oper­
ating systems that support the KERMIT protocol.

System OIS
Series-II, III, IV, iPDS ISIS
IBM 370 Series VM/CMS, MVS/TSO,

MTS
CDCCyber NOS
DEC VAX-11 /7XX VSM, UNIX
PC MS-DOS, PC-DOS
Apollo Aegis
PRIME PRIMOS
HP 3000, 1000
Apple 11 6502 Apple DOS

KERMIT is a two ended protocol. It needs the remote
system to have KERMIT running on it too, to do file
transfers. The KERMIT executing on the PC is MS­
KERMIT and the one on the Series-II, III, IV, iPDS is
the ISIS-KERMIT. The following chapters will detail
how this serial interconnect is established.

KERMIT can communicate over either port on the PC
AT. Switching between the PC ports can help the PC
user communicate with two different systems alterna­
tively.

MS-KERMIT

MS-KERMIT is a program that implements the KER­
MIT file transfer protocol for the IBM PC AT and
several other machines using the same processor family
(Intel 8088 or 8086) and operating systems family (PC­
DOS or MS-DOS 2.0 or greater).

MS-KERMIT has an extensive command set. A brief
summary is shown in Figure 4 wih a more detailed
explanation in Appendix A.

ISIS KERMIT

ISIS KERMIT is a minimal KERMIT implementa­
tion. This is also available in Insite as described in Ap­
pendix C.

4-107

inter AP-278

THE OpenNET'·
NETWORK

SERIES II SERIES III

NRM

SERIES IV ISBC·
CHASSIS

VAX
VMS

IRMX"
SYSTEM

I IPDS" ~
~r-----------i\ SYSTEM W

~ CLUSTER BOARD
SERIAL CABLES TO PC COMMUNICATIONS PORT

280272-2

Figure 2. Including the PC

It operates under the ISIS operating system. The basic
command set supported by ISIS KERMIT are:

CONNEcr-enters terminal mode fOf.communication
with host.

DEBUG-toggles debug mode on/off. Prints messages
during transfers. Normally used only during trouble­
shooting.

EXIT-Return back to ISIS.

SEND filename-specifies the.file to be transferred to
host. May use the ISIS :fn: drive designation to open
file on any logical drive in the system. That drive desig­
nator will be stripped from the name before it is sent to
the host.

RECEIVE [n1-After commanding the host to send a
particular file, or a group of files (wildcards can be used
on hosts if they're smart enough), press 'HOME' or
'control l' to drop back to ISIS-KERMIT and enter

the 'RECEIVE'command. If the command is followed
by a number (0-9) the files(s) will be sent to that logi­
cal drive. For example, 'REC 4' will cause the file­
name(s) to be prefixed by :f4: when opened. Thenum­
ber of drives varies, depending on which system is used.

Since there are only 5 commands, a single letter is all
that is required to use them.

'r 3' is euivalent to 'RECEIVE 3'

KERMIT is invoked as follows:

KERMIT [baud-rate1 [port numberl

The default baud rate is 2400, Others available are 300,
1200,9600.

The port number selection is effective only on Series II.
The iPDS system has only one port, and the Series IV
must use to port 2, since it is global in multi-user mode.

4-108

AP-278

Series II, Series III,
Series IV, or ISBC'" Chassis

CLUSTER
BOARD

-
IPOST ..

SYSTEM

PCAT COMl :PORT PCAT COM2:PORT

c:=:::J c:::::::::J
1111111111111111111111111111111111111 c=J

280272-3

Figure 3. How to Connect the PC
to a Remote Host Using KERMIT

A TYPICAL KERMIT SESSION

With the availability of 8051 and 8044 languages on
DOS, an existing user may need to move existing soft­
ware from the iPDS system to the PC AT. The follow­
ing paragraphs serve both as an example, and as a
method to help the iPDS user set up his serial intercon­
nects to do the migration. The various steps, which are
explained in detail, include setting up the iPDS system
for serial communications, setting up the PC and the
actual terminal emulation and file transfer sequence.
The steps illustrate the ease with which this migration
is brought about.

Command Explanation
CONNECT To connect as a remote

terminal to a remote system.
DELETE Delete local files
LOCAL Prefix for local file

management commands
RECEIVE Receive files from remote

system
SEND Send files to remote system
QUIT Quit from MS-KERMIT
RUN Execute a MS-DOS program
SET Set parameters like baud

rate, serial channel
SHOW Display all parameters
EXI Exit from MS-KERMIT
DIRECTORY Directory of local PC

Figure 4. KERMIT Command Set

STEP 1.

Install ISIS KERMIT on a iPDS diskette, and create a
CSD file ABOOT.CSD that looks like this:

SERIAL A B = 9600

:Set the serial port in ASYNC mode at 9600

ASSIGN :CO:TO :SO:
;Redirect console out to the serial port

ASSIGN :CI:TO lSI:
;Redirect console in to the serial port

This step sets up the iPDS for serial communication by
initializing the serial port to communicate asynchro­
nously at 9600 baud. The console I/O redirection is
done to enable KERMIT-MS to control the iPDS.
Placing these commands in theABOOT.CSD file help
bring up the iPDS system in the right mode whenever it
is reset.

STEP 2.

Install DOS KERMIT on the PC AT and invoke it by
typing KERMIT from the command line.

C: \> KERMIT

IBM-PC KERMIT-MS VER 2.26

TYPE? FOR HELP

KEMIT-MS > SET BAUD 9600

KERMIT-MS >connect

Once a successful connection has been made to the
iPDS the PC AT terminal will display the iPDS
prompt.

AO>

Now the user can do any operation like DIR, ASSIGN,
etc., on the iPDS system from the PC keyboard.

STEP 3.

FOR FILE TRANSFER.

Invoke the iPDS KERMIT by typing in KERMIT

AO>KERMIT 9600 1 ;9600= baud rate and
l=port

The ISIS KERMIT prompt will appear ISIS-KER­
MIT>

For receiving files type in

ISIS-KERMIT>RECEIVE :FO:

4-109

AP-278

Exit back to the PC by typing in CNTRL] C at the
same time. The user is now back to the KERMIT­
MS> prompt. Now type in

KERMIT-MS>SEND EXAMPLE.BAT

A Screen comes up showing data transfer status and on
successful completion on file transfer will give back the
prompt. More information on setting the number of
retries on error packets and timeouts are explained in
Appendix A.

KERMIT-MS>

MEDIA TRANSFER UTILITIES

Diskettes constitute the main source for data and infor­
mation storage. Most software is kept on diskettes for
ease of storage, transportability, and safekeeping. Mi­
grating from one host system to another involves trans­
ferring this data on to the new host system media. Me­
dia transfer is useful OIily if both hosts are at the. same
site and support a compatible peripheral device. Ifboth
these conditions are met, media transfer provides a fast
convenient way for casual data transfer.

Handling diskettes and interacting with two host com­
puter systems is error-prone and inconvenient. I recom­
mended the other two methods of file transfer in a pro­
duction environment where the two computers may
converse without operator intervention. One major
problem with media transfer is the lack of industry
standl!rds. There is an 8 inch smgle density standard
(IBM 3740) but not for other densities nor for 5% inch
media. To solve this problem, special host dependent
utility programs must be written to permit the reading
of another systems diskettes. This was addressed for the
PC by developing a set of utilities that allow file trans­
fer from 5% inch and 8 inch. This gives the user the
ability to move between the Series-IV environment and
the PC-DOS environment with the least overhead and
loss of productivity. A key factor in projects these days.

MSCOPY is program that manipulates a MS-DOC
disk on a Series IV or NRM. It also helps the PC AT
user access the NRM print spooler. The user can copy
software both to and from a Series-IV. MSCOPY ex­
pects the MS-DOS diskette. in FLO. While running
MSCOPY do NOT change the disk as MSCOPY keeps
the Disk allocation table in memory and will not re­
read them from a new disk but will write out the old
table and directory.

MSCOPY supports 48 or 96 TPI disks; 8 or 9 sectors
per track, lor 2 heads, MS-DOS verso 1,2 or 3. It does
not support 1.2 Mb high density diskettes.

It has two modes of operation, interactive and non-in­
teractive. In the non-interactive mode you may enter
only one command and it must deal only with the
MS-DOS root directory. To use the non-interactive
type the command on the invocation line.

In the interactive mode, (entered by invoking
MSCOPY with no parameters) MSCOPY will prompt
you for a command. Currently there are seven legal
commands.

The seven commands are:

READ msfile indxfile-Copies msfile to indxfile. msfile
must be in the current directory. indxfile can be any
valid iNDX pathname up to 40 characters long.

WRITE indxfile msflle-Copies indxfi1e to msfile,
msfile will be added to the current directory. indxftle
can be any valid iNDX pathname up to 40 characters
long.

CD msdir-Changes the current directory to the direc­
tory msdir. This command will only go up or down the
tree one node at a time. To go back one level say "CD".
To go deeper say "CD name" where name is a dir entry
in the current directory. Typing in "CD \" will jump to
the root directory.

DELETE msfile-Removes msfile froni the current di­
rectory and reclaims the space it occupied.

RELAB label name-Will change or add the volume
name of the MS-DOS disk. Label name may be lip to
eleven characters long.

DIR-Will display the current directory.

EXIT-To return to iNDX.

8" ISIS Media

Flagstaff Engineering in PhoeniX, Arizona have a set of
tools that allow direct transfer from 8" ISIS (SS/SD)
media to PC's. The tool set consists of a add-on board
for the PC, an 8" drive and the driver software to do
the required transfer. File transfer is bidirectional. The
program ISS8T05 copies files from 8 inch media to PC,
and ISS5T08 copies the other way. An example is
shown in Figure 5.

Please note that Intel does not sell, support or warrant
reliability of this product. Intel's evaluation sample has
proved reliable and Flagstaff technical support has been
good.

For more information please contact:

Flagstaff Engineering
Box 1970

Flagstaff, AZ 86001

4-110

intJ AP-278

> ISSST05
COPY INTEL ISIS DISKETTE FILE TO IBM PC-DOS FILE PROGRAM
COPYRIGHT FLAGSTAFF ENGINEERING 10/17/S3

THIS PROGRAM WILL COpy A FILE FROM A S" ISIS SINGLE DENSITY DISKETTE TO AN IBM
PC-DOS DATA FILE. THE FI~ES MUST BE CREATED USI~G ISIS-II OR RMX/SO SYSTEMS.

INSERT 8" ISIS DISKETTE--ENTER DRIVE(1/2) WHEN READY.?
FILE DIRECTORY FOR DISKETTE 164539001
01-ISIS .DIR(025) 02-ISIS .MAP(002) 03-ISIS .TO(023)
04-ICE51 (253) 05-ICE51 .OVO(020) 06-ICE51 .OV1(01l)
07-ICE51 .OV3(027) OS-ICE51 .OV4(00S) 09-ICE51 .OV5(036)
10-ICE51 .OVE(OS2) ll-ICE51 .OVH(49S) 12-ICE51 .OVS(049)

ENTER ISIS FILE' NUMBER (1-96/99=ALL)--PRESS ENTER IF NONE?
DO YOU WANT TO COpy FROM ANOTHER ISIS DISKETTE (N/Y)?

Figure 5

NETWORKING THE PC AT WITH THE
OpenNETTM SYSTEM

OpenNETTM Architecture

OpenNET is Intel's Local Area Network architecture.
OpenNET conforms to the Open Systems Interconnect
(OSI) model defined by the International Standards Or­
ganization (ISO). The major objective of ISO is to cre­
ate an open systems networking environment where
any vendor's computer system can be connected to any
network and freely share data with the network.

The OSI ISO architecture is based on a seven layer
model (see Figure 6). The seven layers isolate indepen­
dent functions so that the network can better make use
of new software and hardware without adversely affect­
ing the other layers. The upper three layers (5 through
7) provide interoperation functions, while the lower
four layers (1 through 4) provide interconnect functions
and the bottom two layers (1 through 2) are concerned
with the transmission through physical medium.

OpenNETTM Family

As part of Intel's Open Development Environment
(ODE), OpenNET supports a number of industry stan­
dard hosts and operating systems. To date, OpenNET
runs on the IBM PC family with PC-DOS 3.1 or great­
er, iRMX, XENIX and iNDX as shown in Figure 7.

Since all of the above mentioned systems conform to
the ISO seven layer model, they can all interoperate
and interconnect over the same network.

OpenNETTM PC Link: Overview

Intel's PC connection on the OpenNET system, named
OpenNET PC Link, consists of an add-in controller
board for the PC, XT or AT (Layers 1-2), the iNA960
ISO transport software (layers 3-4) and the MS-NET
software (layers 5 - 7).

PC AND THE NRM FILE SERVER ON THE
OpenNETTM SYSTEM

The remainder of this application note discusses the use
ofa PC on the OpenNET system with Intel's Nework
Resource Manager (NRM) as the OpenNET file server.

The current NDS-II NRM can be converted into an
OpenNET file server by installing the iSXMTM 552
board and iNDX R3.0 or greater software (the board
and the software have been kitted into the "NDS-II
OpenNET Upgrade Kit", Part # "iMDX555"). New
users have the choice of a Mini OpenNET NRM with a
40 Mb disk or a Maxi OpenNET NRM with a 140 Mb
disk (upgradeable to 4 140 Mb disks) and a 60 Mb tape.

DETAILED EXPLANATION OF CONNECTING PC
TO THE OpenNETTM SYSTEM

The OpenNET system uses concepts such as SERV­
ERS and CONSUMERS which allow a building block
approach to creating a network that can be tailored to
your particular specification. The following chapters
will discuss indepth the various concepts of the Open­
NET system and on how to implement PC's and iNDX
systems on an OpenNET network.

4-111

infef AP-278

ISO MODEL
IBM

COMPATIBLE ISO STANDARD USED IN MAP/TOP

APPLICATION
SERVICES

NETWORK FILE I I ACCESS (NFA) FTAM CASE OTHERS

MESSAGE
DELIVERY

PRESENTATION

SESSION

TRANSPORT

NETWORK

I -- SESSION J

I ISO 8073 TRANSPORT I = THE "LAN BUS"
I ISO NETWORK I

DATA LINK IEEE 802.3 IEEE 802.4 IEEE 802.5 GAN "MEDIA"
OTHER MEDIA

PHYSICAL
ETHERNET TOKEN BUS TOKEN RING (l.e.,X.25)
STARLAN BROADBAND

280272-4

Figure 6

A server is defmed as a system on which network re­
sources like files, directories and a printer are kept. A
Server usually has a number of hard disks. It is called a
"SERVER" because it serves the other systems on the'
network when they request for files and printer service.
There may be a number of servers on the network. The
NRM with the' iSXM 552 board and iNDX 3.0 in­
stalled in it acts as a SERVER for the other systems on
the OpenNET network. XENIX and iRMX system can
also be servers.

PC·DOS IRMX'"
SYSTEM

THE OpenNE""

Computers that are linked to a server and use it as a
resource for files and printer service are called CON­
SUMERS. CONSUMERS can also operate indepen­
dent of a SERVER. An example of a CONSUMER on
the OpenNET network is the PC. It can operate inde­
pendently as a workstation and also uses the NRM for
file services. XENIX and iRMX are capable of operat­
ing as consumers too.

XENIX

NETWORK -,r- ~ ~

NRM ,
NRM

DFS/ISIS 11 IL
II II I II II I

I" i"

SERIESII SERIES III SERIES IV ISBC" VAX IRMX"
CHASSIS, VMS SYSTEM

280272-5

Figure 7

4-112

inter AP-278

n . . SERVER 1 I I I PRINTER SHARED FILES TAPE

c:::J I SPOOLER

J
I NIWSERVICE

'---II
II II 1f

1'\

CONSUMER CONSUMER CONSUMER

" " 280272-6

Figure 8. Server and Consumer

A list of all servers and consumers on an OpenNET
system is stored in a database file called the
NETADDR file. This is discussed in Appendix C.

Figure 8 illustrates how the server and consumers inter­
act on a network.

A SAMPLE OpenNETTM SESSION FROM THE
PC TO THE NRM

The following paragraphs will describe how the PC
user can access files at the NRM. But before going into
the details a few hints on making the process automatic
and easy.

Since the Open NET system uses the concept of virtual
drives, it will be beneficial to have as many virtual
drives as possible. Refer to the Virtual Drives section
under the Chapter "Connecting PC's to OpenNET".
DOS 3.1 has a default number of virtual drives 5 (A:
through E:), however for OpenNET more drives may
be needed. This can be achieved through modifying the
CONFIG.SYS file in the root directory of the PC. Edit
this file to include the command:

lastdrive = z ;increase the number of
virtual drives to 26.

A typical CONFIG.SYS file is shown in Figure 9.

On boot up, DOS 3.1 will read this file and automati­
cally configure the PC as specified.

Now start the PC as a consumer by entering:

C:NET START RDR <this PC name>

This is specified in the NETADDR file discussed in
Appendix C.

This command loads the PC-LINK communication
software onto the PC-Link board, and sets up the envi­
ronment for communicating with any server. This sets
up the session layer on the controller board.

If all the steps went through successfully, the network
software will be loaded into the PC-Link board and will
sign on with:

**

*
*

OpenNETTM PC Link

Copyright 1985, Intel Corporation

*
*
*

**

C:>

Now connect to the NRM using the NET Use com­
mand. The syntax for this command is:

C:> NET USE <virtual drive>\\<server name>

\username password

Example:

C:> NET USE J:~APPS--NRM1/GUEST WELCOME

The above command creates a virtual drive J: which
points to the home directory of the user GUEST with a
password WELCOME at APPS-NRMl. This drive J:
is like any PC drive except that it points to a directory

4-113

AP-278

lastdrive = z ;Set the number of virtual drives to 26

device = \sys\ansi.sys ;Set the terminal characteristics to ANSI

files = 20

buffers = 20

break on

;Number of files open at one single time

;Number of buffers for file 1/0

;set break key on

Figure 9

at a remote NRM. The user can do any DOS function
like copy, dir, etc. even execute DOS applications pro­
grams that are stored at the NRM in this directory.
Just by having this capacity the PC becomes a very
powerful and flexible workstation. By sitting at one PC
the user can . have access to several file servers.

The command will come back with a message "com­
mand successfully completed" if it was successful, oth- .
erwise it will wait about 4 minutes before timing out
and giving back the DOS prompt.

The user can now use this virtual drive just as if it was
any other PC drive. For example a DIR command on
drive J: will look like this.

C:>dir J:

Volume in drive J has no' label
Directory of J:/

INIT BAK 83
INIT CSD 290
CDISK CPM 401408
NNMAC MAC 74
HILIB <DIR>
DJC <DIR>
DATABASE DIR <DIR>
KERMIT DIR <DIR>
IMPORT DIR <DIR>
OPENNET DIR <DIR>

9,..06-85
9-06-85
9-06-85
9-06-85
9-06-85
9-06-85
9-06-85
9-06-85
9-06-85
9-06-85

10File(s) 30642176 bytes free

9:23a
9:23A
9:24a
9:24A
9:26a
9:26a
9:55a
9:57a

10:15a
10:28a

This is the home directory of the user GUEST at the
NRM. Users familiar with the Intel development envi­
ronment, will notice that the OpenNET network trans­
lated the output of the DIR command at the NRM to
DOS format. The user can change directories at this
drive, invoke DOS applications from this drive, if they
are stored at the NRM, store data files on this drive.
The underlying OpenNET protocol is transparent so all
existing DOS applications programs can access this
drive just as if it was stored locally.

Any time a user wants to fiind out which of his virtual
drives are connected to which servers he enters the
NET USE command.

C:> NET USE
Local Network
Status Device Name

E: ~APPS_NRM1\GUEST

F: ~APPS_NRM2\GUEST

,G: ~APPS_NRM1\GUEST

Command completed suocessfully.

More information on the NET USE commands are giv­
en in the OpenNET PC Link manuals.

DISTRIBUTED JOB CONTROL
SYSTEM FOR THE PC

The Distributed Job Control system on the NDS-Il al­
lows currently idle networked development systems to
be supplied to the network as public resources. This is a
remote job execution unit to which jobs can be sent by
other users on the network. Remote job execution of­
fers higher throughput and increased efficiency, as
more than one computer can be controlled by a single
user. For more information on DJC, refer to Applica­
tion Note 244, "DJC A key to increased network pro­
ductivity". It is recommended that this Application
Note be read since a number of concepts explained in
the following paragraphs assumes that the user has
knowledgeof the DJC system at the NRM.

The Network Resource Manager (NRM) is the nerve
center of the DJC system. All jobs are scheduled and
queued by the NRM. Traditionally the PC user had to
wait for his compiles to be finished locally before doing
anything else on the PC. With the introduction of the
OpenNET network, a mechanism has been designed to
let the resources of DJC at the NRM be made available
to the PC user. This feature enables the PC user to edit
files at.he PC and send the compiles over to the NRM.
An efficient tracking system. has also been designed to
help keep the user informed at all times on the status of
his job. With the introduction of the 286/310 iNDX
based Compile Engine shown in Figure 10, the

4-114

inter AP-278

Series
II.III.IV

Compil"nqine
1£ ~

I I III
i5XM'"S52 board I I i5BC"s50 board OpenNEPM

Compi1ell9ine
N0511 protocol

£ ~ 1 J J + + I -]1
NRM XENIX iRMX"

286· 86-IpC.DOS I
shared files,

system based based
system system

OJe
management

280272-7

Figure 10. PC's, Compilengine, DJC and the OpenNETTM Systems

Reexporter ;invoke the REEXPORTER utility

Export Reexport to iNDXUTILITY.Q nolog ;now export this job again

Figure 11. Contents of REEXPORT.CSD

throughput on such 'exported jobs increases dramatical·
ly. This directly translates ,into increased productivity
and efficiency for the PC user.

The PC·Export package consists ofa utility that runs at
an iNDX station on the DFS side of the NRM (i.e.,
NRM itself, Series·IV or 286/310 compile Engine).
This package called REEXPORTER.86 checks
through a specified' directory of all users on the net·
work and if any jobs from the PC exist it will export it
to the, appropriate queue at the NRM and then will
delete the file. Each OpenNET PC user who needs ac·
cess to the DIC manager at the NRM must create a
directory NRMDIC.DIR under hislher HOME direc·
tory. It is advisable to limit the above operation to only
those users who need to access the DIC system at the
NRM. This will help the REEXPORTER utility in
having II faster turnaround rate, by not checking redun·
dant directories.

The Superuser then has to create an export file REEX·
PORT.CSD shown in Figure 11.

It is assumed that the NRM has three queues, 8bit.q
(for 8 bit jobs), 16bit.q (for 16 bit jobs) and iNDXUT·
ILITY.Q (for utilities other than compiles, limited to
doing system administrative jobs). For more informa·
tion please read Application Note #244 "OIC a Key to
increased network productivity". The Superuser must
bring up a Series·IV workstation, or a 286/310 Com-

pile Engine in Import mode, importing from all the
three queues. This is shown in Figure 12.

>Import from 8bit.q, l6bit.q, indxutility.q

Figure 12

The command now puts the workstation as a network
resource that all user can acess.

Now export REEXPORT.CSD to iNDXUTlLITY.Q

>Export REEXPORT.CSD to iNDXUTILITY.Q Nolog

Exporting from the PC

To export jobs from the PC, the user must first connect
to the NRM using the NET USE command explained
in previous chapters. One of the design considerations

'was to make this utility as easy to use as possible. The
following paragraphs illustrate how this has been
brought about.

Consider this example file that does a compile and link,
COMPILE.CSO. A requisite is that the file must have
a .CSO extension, as it is this extension that informs the
NRM that it is a command file.

4-115

inter AP-278

;queue = nlSbit.q"

lname define 1 for/winiO/libs.dir

lname define p for /winiO/strng.dir

plm8S example.p8S debug optimize (2)

if % status = 0

Hnk8S example.obj,l/compac.lib,&:

p/hstrng.lib,l/osxcom.lib &:

to example.BS bind

end

The first line in the command file is a comment, which
also indicates the queue where this job is to be execut­
ed. As far as the DJC manager is concerned, this is just
a comment. But the REEXPORTER utility uses this
field to find out the queue name. This comment field
must exist within the first 128 bytes of the command
file. An absence of this field will result in the job not
being sent to any queue. The queue name must be en­
closed within double quotes.

Since there is no way by which the NRM can access
files stored on the PC, all source, libraries and objects
must reside on the network. Note the two commands
after the comment which set up the logical names for
directories used in the job. Doing this will ensure that
the right libraries are used.

Now all the PC user has to do is to copy this file to the
directory NRMDJC.DIR under their home directory
at the NRM. The REEXPOR TER utility does the rest.
For example if virtual drive G: has been connected to
the NRM.

C: \Copy COMPILE.CSD G: \NRMDJC.DIR

Once the job has been reexported it will be deleted from
the directory. This helps the user in determining if the
job got exported or not. The REEXPOR TER utility
also creates a log file in the NRMDIC.DIR directory
for each job exported. This allows the user to find out if
his job was successful or not. The COMPILE.CSD file
will be replaced by a COMPILE. LOG file once the job
has been completed. The COMPILE. LOG file is a
LOG file of all the operations by the job.

The REEXPORTER utility was designed and imple­
mented to allow the OpenNET PC user access to the
powerful Distributed Job Control mechanism at the
NRM. The utility has the capability to determine all
the users on the network, work out their home directo­
ries and look for jobs sent from PC's. On finding a job,
the utility determines the appropriate queue and reex­
ports the job to that queue. The status of each job is

displayed on the screen at all times. Status information
includes username, jobname, queue and the status of
the exported job. The use of this utility is restricted to
the Superuser. A normal user invoking REEXPORT­
ER.86 will generate an insufficient access rights excep­
tion.

REEXPORT.CSD is a batch file configured as a job
that runs forever. It first uses REEXPORTER to check
for jobs in the directory NRMDJC.DIRof all users and
exports them to appropriate queues. It then reexports
itself to the same queue. Due to the way the DJC mech­
anism is structured, the import station will start execut­
ing all the jobs found by the REEXPORTER utility,
and on completing all of them will execute the REEX­
PORT.CSD job once again to look for more work to
do. The cycle keeps repeating forever.

Referring back to the IMPORT command in Figure 12,
highest priority is given to 8bit.q and lowest to iNDX­
UTILITY.Q. This way the system manager makes sure
that all jobs waiting in the first two queues are executed
before the REEXPORT.CSD job is started again. This
helps the NRM in controlling the queues, and not over­
loading them at one single time. A point to note at this
time is that the REEXPORTER utility is capable of
exporting up to 23 jobs a minute.

The REEXPORT utility combined with OpenNET net­
working opens out a completely new environment for
the PC AT user. An environment where compiles, links
and locates can be done remotely. The PC user has at
his/her disposal the power. of, the iNDX Distributed
Job Control subsystem. This help in bringing about an
increase in productivity that normally could not have
been achieved without Intel's OpenNET network. The
PC AT user can spend more time on interactive work
such as program generation or debugging, while the
compiles are being done elsewhere. This feature set
should be used by developers doing system designs in
todays world where "Time to Market" is key.

Summary

This application note has discussed in detail all the dif­
ferent methods by which the PC AT can be integrated
into the Intel Development Environment, from serial
interfaces to networking. These different methods can
be intermixed to suit your needs. Serial interfaces and
disk transfers support the low end needs while Open­
NET brings about a powerful new environment to the
PC AT. This coupled with the REEXPORTER utility,
can help increase the productivity of the PC AT user
dramatically.

4-116

infef AP-278

APPENDIX A
THE KERMIT PROTOCOL

THE KERMIT PROTOCOL

The KERMIT protocol is designed around character
oriented transmissidn over serial lines, and incorporates
features from decnet, arpanet, dialnet etc.

File transfer takes place over transactions. A transac­
tion is an exchange of packets. A successful transaction
is done when one system sends a packet and the remote
system acknowledges it.

Transmission begins with a send~nit packet(s) and
ends with a breaLtransmission (b) or error (e) packet.
All communication is done through packets, even if no
data is being sent.

The Kermit packet is built around the following for­
mat.

I mark I length I seq I type I data check

All the fields are ASCII characters.

Mark

This is the synchronization character that marks the
beginning of a packet. This is normally a cntrl-a and
cali be redefined.

Length

The number of ASCII characters within the packet fol­
lowing this field.

Seq

The packet sequence number, ranging from 0 to 63.
Sequence numbers wrap around to 0 after each group
of 64.

Type

The packet type is represented in a single ASCII char­
acter. The different packet types are:

D data packet
Y acknowledge

N negative aoknowledge
S send initiate
B break transmission
F file header
Z end of file
E error

Data

The contents of this packet.

Check

A checksum on the characters between, but not includ­
ing the mark and check. The check for each packet is
computed by each host and must be equal for the pack-
et to be accepted. .

KERMIT File Transfer Sequence

File transfer is initiated by the sender sending a senL
initiate packet, where parameters like packet length,
time out limits are specified.

The receiver than sends an ack (y) with its own param­
eters in the data field.

The sender then transmits a file-header packet which
contains the filename in the data field. The receiver
then sends an ack.

The sender then sends the contents of the file in data
packets (d), any data that is not in the printable range is
prefixed and replaced by a printable equivalent. Each d
packet has to be acknowledged before the next one is
sent.

After all the file data has been sent the sender then
sends an eof packet. The receiver acks it.

End_of_transmission packet (b). The receiver acks it
and the transaction is over.

4-117

AP-278

KERMIT-MS Commands

CONNECT

The CONNECT command connects the PC as a termi­
nal to the remote system. KERMIT-MS uses either
communications port lor' 2 and uses full duplex and no
parity. These can be changed using the SET command.
To get back to KERMIT from terminal emulation type
in the escape character followed by the letter C. The
escape character by default is CENTRL-J. This can be
modified by the SET ESCAP~ commnd. SET BAUD
changes the baud rate, SET PORT changes the serial
port. For example:

C:\KERMIT <cr>

KERMIT-MS>SET PROT 1 ;select port 1

KERMIT-MS> SET BAUD 9600

KERMIT-MS>C ;connect

SEND

The SEND command causes a file or a group of files to
be sent from the local PC to the KERMIT on the re~
mote system. The remote KERMiT must be running'in
either server or interactive mode; in the latter case the
user must have already given a RECEIVE command
and escaped back to the PC.

SEND filespec I [filespec2]

If filespec I contains a wildcard then all matching files
will be sent in the same order that the DOS would show
them on a directory listing. If filespec1 contains a single
file, the user may direct KERMIT-MS to send that file
with a different name.

SEND KERMIT.ASM TEST.ASM would send the file
KERMIT.ASM as TEST.ASM

or

SEND *.ASM will send all files with the extension
.ASM to the remote system.

Once the SEND command has been invoked the name
of each file will be displayed, packets transferred, re­
tries and other counts will be displayed along with oth­
er informational messages. If file transfer is successful a
"COMPLETE" message will be displayed else an error
message will be displayed. When the specified operation
has been done the program will sound a beep.

Several single character commands can be given while a
file transfer is in progress.

CNTRL-X Stop sending the current file and go on
the next one.

CNTRL-Z Abort file transfer.

CNTRL-C Return to KERMIT-MS.

CNTRL-E Send an ERROR packet to the remote
server in an attempt to bring it back to
server or interactive mode.

RECEIVE

The RECEIVE command tells KERMIT-MS to re­
ceive a file ora group of files from the remote KER­
MIT. KERMIT-MS simply waits for the file or files to
arrive. The user should have already issued, a SEND
command at the remote KERMIT and escaped back to
the PC before issuing the RECEIVE command.

Syntax:

RECEIVE filespec

If the optional filespec is provided the incoming file is
stored under that name. The filespec may include a
device designator or may consist only of a device desig­
nator. For example:

RECEIVE TEST. ONE ;will name the incoming file
as TEST.ONE

RECEIVE A:TEST.ONE ;will name the incoming file
as TEST.ONE and store it
in drive A:

RECEIVE A: ;will store all incoming files
in Drive A

If an incoming file does not arrive in its entirety, KER­
MIT-MS will normally discard it. This may be changed
by the SET INCOMPLETE KEEP command, which
will keep as much of the file that arrived successfully.

If the incoming file has the same name as a file, that
already exists and "WARNING" is set ON, KERMIT­
MS will change the incoming file name and inform the
user of the new name. If WARNING has been SET
OFF using the SET WARNING OFF command, files
with the same name as incoming files will not survive.

SET

The SET command allows the user to modify various
parameters for file transfer and terminal emulation.­
These parameters can be displayed with the SHOW
command.

4-118

AP-278

APPENDIX B
SETTING UP OpenNETTM CONNECTIONS

BETWEEN PC & NRM

APPS_NRM1
APP8_NRM2
APP8JENIX_1
DIAG_NRM
MFNG_RML1
MKTG_NRM
APPS_PCAT _88

:address = Ox80000a0100000000aa00003510000000
:address = Ox80000a0100000000aa000034deOOOOOO
:address = Ox80000a0100000000aa00002de2000000
:address = Ox80000a0100000000aaOOOOOcOfOOOOOO
:address = Ox80000a0100000000aa000006e4000000
:address = Ox80000a0100000000aa00000304000000
:address = Ox00010a0100000000dd00002584000000

Figure 13

OpenNETTM CONCEPTS

To enable the PC to talk DFS-OpenNET protocol, the
user must install a PC-Link card in the IBM PC, and
the networking software PC-LINK supplied by Intel.
The prerequisite is that the PC should have PC-DOS
Version 3.1 or greater. Follow the installation instruc­
tions given in the PC-Link manual. It is advisable to
create a directory on the PC called COM (short for
Communication S/W) and install all the PC-LINK
software in this directory.

Once the hardware and software have been installed on
the system the user can now use the PC as a consumer
off of the NRM. Before going into a discussion on the
actual use, a number of concepts have to be explained,
to give the reader a better understanding of how
PC's work when networked to the NRM using the
OpenNET protocols.

The NETADDR File

Each computer on the network is assigned a name, to
identify it. These computers can be named anything,
but it is preferable to have one standard naming con­
vention. This makes it easier for the users to connect up
to the server of choice. The NET ADDR file is a text
file that contains the names of these servers and their
addresses on the network. This is extensively used by
the PC-LINK software to connect to the desired server.
This gives the user the flexibility to connect to anyserv­
er just by giving its name, and the PC-LINK software
automatically directs the connection to that server. A
sample NET ADDR file is shown in Figure 13.

The NETADDR file above has the lists of 6 servers on
the OpenNET network. Note the naming convention.
The first four letters in the name indicate the depart­
ment where the server is stationed. For example APPs
is short for Applications Engineering, DIAG for Diag­
nostics Engineering, MFNG Manufacturing etc. The
rest of the name indicates the type of server (NRM,
XENIX or RMX). This naming convention helps in
connecting up to the different servers without any con­
fusion. This file is created by each individual PC con­
sumer using any standard text editor (one which does
not put control characters in the file). One of the entries
in the NETADDR file is the name of the users PC
where this file resides. This is important as the
PC-LINK software cannot be invoked without this in­
formation. The name and ethernet address of the con­
sumer station is necessary for the NRM OpenNET file
server to send message packets back to the correct orig­
inating consumer (i.e., the NRM should know which
consumer station has requested for a particular process
for sending back the response to it).

The rest of the numbers following each computer name
are the Port address and the iSXM 552 Ethernet ad­
dress of the server. An example is shown in Figure 14.

The Ethernet address of the iSXM 552 is obtained from
the NRM on boot up. Refer to the Chapter "Installing
the iSXM 552 in the NRM" for further details.

The MSNET.INI File

The MSNET.INI file is the PC-LINK initialization file
for setting up the help flies and loading the PC-Link

4-119

AP-278

APPS is the department where the server is located
NRM2
80
00aa000034de

is the NRM name (2 is used to differentiate it from the other NRM)
is the port address (always 80)
is the ethernet address of the iSXM552 board at NRM2.

Figure 14

board with the communication software. Any time a
PC station is brought up as a consumer this file is
parsed and executed. The file may need a little modifi­
cation if the communication software is located in some
other directory. The sample MSNET.lNI file is used as
an example, see Figure 15.

Virtual Drives

PC-LINK uses the concept of virtual drives to connect
to the NRM file server through the OpenNET network.
When a connection to a NRM server is made the PC­
LINK software creates a virtual drive, which is identi­
cal to the PC drives. The only difference is that it does
not physically exist on the PC. The user treats this as
any other drive on the PC. The number of virtual drives
that can be used is limited to the English alphabet (26).
The user can connect different virtual drives to differ­
ent directories at the NRM file server and all these
drives can be used just as if they existed on the PC.

Configuring PC Link

PC Link as shipped uses default settings for its memory
window, number of connections, interrupt levels and
number of servers that it can access. The following par­
agraphs will discuss various· configuration parameters
that will allow. the user to configure PC link to suit his
environment.

CONFIGURING THE BASE FOR THE
PC LINK BOARD

All communication with the PC link board takes place
via a dual-port memory, which is a 32K window that
may start on any 64K window within the first mega­
byte of addressable memory. The default base is

. OAOOOh. In some cases the window might clash with an
existing board or application. This default can be
changed by jumpers on the PC link board and by mak­
ing modifications to the MSNET.INI file. Figure 16
indicates all possible bases and associated jumpers.

After the jumpers have been selected, the MSNET.INI
file has to be changed to inform the PC link software
about. the new window being ·used. Referring to Figure
15:

start redirector $1
start rdr $1
\command.com/c type \com\pc1ink.msg
chknet
xport/sys:at/base:d

Ifi1e:c:\com\ubcode.mem
session \com\netaddr
redir
setname $1
\command.com/c psclose

The string of commands following the start redirector
$1 or start rdr $1 indicate the sequence of events in

use $*
use $* 1*

print $*
printq $*

name
setname

start redirector $1
start rdr $1

\command.com Ictype \com\pclink.msg
chknet
xport/sys:at Ibase:d

Ifile:c:\com\ubcode.mem\nvcs:5
session \com\netaddr
redir
setname $1
\command.com Ic psclose

Figure 15. (Sample MSNET.INI file)

loading the PC link board and starting the network.
XPORT is the network program that loads the PC link
board and the driver. One of the options that can be
specified in the xport commands is the base option. In
the previous example the base was set to D. This base
should reflect the base. at which the PC link board is
strapped.

Configuring Connection Limits

PC link allows the user to have simultaneous connec­
tions to a number of file servers which is configurable.

4-120

inter AP-278

The PC link defaults allow the user to connect to two
file servers simultaneously and have up to 5 active vir­
tual circuits. The MSNET.lNI file supplied with PC
link has to be modified for users who need access to
more than two file servers and more simultaneous con­
nections.

For example:

A user needs connections to three different servers. The
first two NET USE commands will come back success­
fully, however the third command will come back im­
mediately with a message "Connection Refused". This
is due to the fact that the PC link software uses a de­
fault value of 2 for the number of servers it can simulta­
neously access.

Starting Address E5 E8 E11

00000 E4 E7 E10
10000 E4 E7 E10
20000 E4 E7 E10
30000 E4 E7 E10
40000 E4 E9 E10
50000 E4 E9 E10
60000 E4 E9 E12
70000 E4 E9 E12
80000 E6 E7 E10
90000 E6 E7 E10
AOOOO (OEFAUL T) E6 E7 E12
80000 E6 E7 E12
COOOO E6 E9 E10
00000 E6 E9 E10
EOOOO E6 E9 E12
FOOOO E6 E9 E12

Figure 16

C:\ NET USE H: ~APPS_NRM\JOHN PASSME
Command completed successfully
C:\ NET USE I: ~DEMO_NRM\JOHN PASSME
Command completed successfully
C:\ NET USE LPTl: ~DIAG_NRM\JOHN PASSME
Command Refused

E14

E13
E15
E13
E15
E13
E15
E13
E15
E13
E15
E13
E15
E13
E15
E13
E15

In the above case the user tried to access more than one
server and since the default was set at 2, the PC link

4-121

network management facility came back with an error.
To change this default value, edit the MSNET.INI file
and modify the REDIR specification to read:

REDIR IS:5 ;connection available for up to
5 servers

Reboot the PC and PC link will now allow the user to
connect to up to 5 servers simultaneously.

Another variable that can be configured is the number
of active virtual circuits at the PC. As a default PC link
will allow up to 5 net uses (Logons) to a server. Again
when the default limit is exceeded the system will come
back with a "CONNECTION REFUSED" message.
For example consider the following NET USES:

C:\ NET USE F: ~APPS_NRM\SRIVATS PASSME
Command completed successfully
C:\ NET USE G: ~APPS_NRM\APl PASSAPl
Command completed successfully
C:\ NET USE H: ~APPS_NRM\SYl PASSSYl
Command completed successfully
C:\ NET USE I: ~APPS_NRM\SYO PASSSYO
Command completed successfully
C:\ NET USE J: ~APPS_NRM\APO PASSAPO
Command completed successfully
C:\ NET USE K: ~APPS_NRM\JOHN PASSME
Connection Refused.

In the above example the number of simultaneous con­
nections was set at a default of 5. Modify the REDIR
command to include the following option.

REDIR /S:5/L:1O ;connection available for up to 5
servers and 10 simultaneous con­
nections.

Reboot the system and PC link will allow the user to
connect up to 5 servers with up to 10 simultaneous
connections.

inter Ap·278

APPENDIX C
INSITE LIBRARY PROGRAM

MS-KERMIT and ISIS KERMIT are available from:

Intel Corporation
2402· West Beardsley Road
Phoenix, Arizona 85027

ATTN: Insite User's Program Library

Telephone: (602) 869-3805

This is a public domain software and is available for a nominal charge of $25 each.

4-122

inter AP-278

APPENDIX D
NDS-II/SERIES IV
TOOLBOX V2.0

NOS-IIISERIES-IV TOOLBOX V2.0

The NDS-II/Series-IV Toolbox V2.0 is a set of 7 disk­
ettes with useful programs for NDS-II/Series-IV and
OpenNET users. The programs used from this toolbox
were MSCOPY.S6, ReExporter, NET CONNECT. It
contains many other useful utilities. An index listing
the various programs in the Toolbox are listed below.

NOS-II/Series IV Toolbox 2.0

Chapter I-CONNECT 1-1
Chapter 2-NDS-II to NDS-II Communications. 2-1
Chapter 3-TREE 3-1
Chapter 4-MENU COMPILER 4-1
Chapter 5-MSCOPY 5-1
Chapter 6-NETWORK CP/M-SO 6-1
Chapter 7-BOOTUP 7-1
Chapter S-SER VER S-1
Chapter 9-PRINCE 9-1
Chapter 100PRMSLO 10-1
Chapter l1-SLEEP 11-1
Chapter 12-ID 12-1

Chapter 13-MDS-SOO FPORT 13-1
Chapter 14-DBLIST ... " 14-1
Chapter 15-REMOTE 15-1
Chapter 16-PC REMOTE 16-1
Chapter 17-REPORT 17-1
Chapter IS-DIRT 18-1
Chapter 19-VIEWPASS " 19-1
Chapter 20-FDUMP 20-1
Chapter 21-CLOCK 21-1
Chapter 22-IFILES 22-1
Chapter 23-LIST 23-1
Chapter24-TA 24-1
Chapter 25-MAILMAN 25-1
Chapter 26-CHECKEXIST 26-1
Chapter 27-CHECKTIME 27-1
Chapter 2S-BVCLIB 28-1
Chapter 29-UDXCOM.LIB 29-1
Chapter 30-0SXCOM.LIB .. , 30-1
Chapter 31-BVOSX.LIB 31-1
Chapter 32-XID 32-1
Chapter 33-REEXPORTER 33-1
Chapter 34-XTAR 34-1
Chapter 35-ISIS ENVIRONMENT 35-1
Chapter 36-0AP 36-1

4-123

ARTICLE
REPRINT

AR-204

Technical articles __________ _

Smart link comes to the rescue
of software-development managers

Resource-management hardware and software join existing development systems
into an Ethernet-based network that eases software creation and control

by James P. Schwabe, 'nt., Corp .• Santa Clara. Calif.

o A strong lifeline in a sea
of complexity, the new NOS
II network development sys­
tem will help manage the
writing of complex software
for tomorrow's powerful mi­
crosystems. It builds on
existing Intellec develop­
ment systems and the speci­
fications of the Ethernet
protocol to create a local
network for distributed soft­
ware development.

Considerable intelligence
is contained within the NOS
II system, linking program­
mers' work stations and
managing the interactive
flow of software develop­
ment that results. Commu­
nications control, via
Ethernet or an even simpler
alternative, is split between
the central manager and the
work stations.

At the heart of the system
is the network resource
manager, which both con­
trols the net of work stations
and lets the user configure it
to suit the development task
under way. The NRM. will
also manage a powerful sys­
tem memory of Winchester­
technology disk drives.

The manager itself is an
example of the boons of
well-thought-out and com­
plex software, for it contains
powerful system tools.
Among these features are a
hierarchical file structure that is also distributed and a
file-protection setup that offers the maximum flexibility
in access to files while guaranteeing their integrity.

Important program-man­
agement tools include a rou­
tine that oversees the rewrit­
ing of software during de­
yelopment and another that
automates the generation of
a complete' program' from
the most current modules:

The NOS II is the second
step in the evolution of
Intel's network architecture,
iLNA [Electronics, Aug. 25,
1981, p.1201. It connects
Intellec development sys­
tems together so they can
share large-capacity Win­
chester disk drives and a
line printer located at the
NR M.. It will also serve as
the basis for a whole new
line of modular development
system tools such as remote
emulators, logic analyzers,
and more.

Both the NRM and each
work station can be connect­
ed directly to the Ethernet
coaxial cable by a transceiv­
er or by the Intellink com­
munications module (Fig.
1). By itself, the Intellink
module provides nine ports
for interconnection, creating
a local network of nine sys­
tems (eight work stations
and one NRM). To another
controller, the Intellirik rep­
resents a segment of
Ethernet cable that has nine
transceivers already in place
and working.

For networks with a radius of 50 meters or less,
Intellink is a simple, low-cost alternative to installing
Ethernet cabling and transceivers. Any work station can

REPEATER
ETHERNET CABLE SEGMENT 1500 METERS)

NOS'II
FUTURE
WORK

STATIONS

10· OR 50'METER
CABLES

NOS'II
OROTHER

WORK
STATIONS

1. Developing net. The NDS II brings existing Intel development systems. or work stations. into an Ethernet. A new network resource manager

and the Intellink communications manager make management of distributed software development possible.

be installed by simply plugging a 50-m transceiver cable
directly into the Intellink - a 5-second operation.

For expansion beyond nine systems or to a distance
greater than a 50-m radius, the Intellink provides a
built-in port for connecting the local cluster to Ethernet
cable by means of a transceiver. Connection to the
Ethernet allows communication with other work sta­
tions, NOS II networks, or other Ethernet-compatible
devices that use the iLNA network architecture.

No matter which physical setup is chosen, each work
station has independent access to, and can be directly
accessed from, the Ethernet and the NOS II network.
Each has a unique work-station identifier, distinguishing
it from every other terminal in the world and ensuring
correct communication between stations on the various
local networks.

For multiple-net environments, each network can have
a unique network identifier to allow their coexistence on
one Ethernet. In. a single net, the network identifier is
not used, but its assignment ensures an orderly pro­
gression to a multi-net environment.

All current I ntellec development systems can be
upgraded to NOS II work stations. An upgrade consists
of a communication-controller board set, software, and
either 10- or 50-m cables.

The communication controller, a two-board set that
plugs into any Intel Multibus chassis, provides many of
the data- and physical-link functions of the six-layer
standard reference model for open-systems interconnec­
tion (Fig. 2). The data-link functions performed are
framing, link management, and error detection. Physi­
cal-link functions include preamble generation and
decoding and bit encoding and decoding.

One board contains as-megahertz 8086. microproces­
sor with local random-access and read-only memory and
interval timers, as well as direct-memory-access channels
for sending and receiving data at 10 megabits per
second. The second board contains bit-serial send-and­
receive logic, packet address-recognition logic, and

error-detection logic. The boards ensure that bad packets
resulting from a collision are ignored.

The NRM coordinates all the work stations' activities
and manages file access to the shared disks. Initially, it
will support one 8-inch 35-megabyte Winchester disk
subsystem, as well as Intel cartridge-module disks. Mul­
tiple-disk support is in the wings,' along with a larger
84-megabyte disk. It will be possible to attach six disks
to one NRM, providing more than enough on-line shared
storage for large program development and archiving. In
addition, each work station can contain 2.5 megabytes of
floppy-disk storage as a local resource.

Control contingent

The NRM (Fig. 3) comprises 13 Multibus slots, power
supply, 8086-based system-processor board, input/out­
put board based on the 8088 and 8089, 512-K-byte
memory board with error checking and correction, two
communication boards, and one Sif4-in. floppy-disk drive.
The cabinet also has space for a cartridge-tape unit,
expected to be delivered in mid-1982, which will give full
intelligent archival backup for the Winchester disks
housed in the attached cabinet.

To protect the integrity of the network, access to the
NRM is restricted: a special supervisory terminal con­
nected to the unit's serial port provides an interface with
its commands and utilities. These facilities include sys­
tem generation, intelligent archiving, and normal net­
work maintenance such as the creation of any necessary
user identifications.

The most important utility for system configuration is
called Sysgen, an interactive routine designed to assist
the supervisor, or project manager, in creating the NRM
operating system. Sysgen makes it possible to create,
modify, or delete system parameters, peripheral-devices
configuration, and network configuration. It allows the
project manager to tailor the network configuration on
the fly in order to fit the changing needs of microproces­
sor development projects.

4-125

USER INTERFACE

t NOS II
DEFINED

I ETHERNET
t DEFINED

2. New 'ayers. To the hardware layers of Ethernet. NDS II adds
software layers that permit up to eight users to work together. The

network layer need not be present if NDS II is not linked to the

Ethernet. simplifying the operating system.

From the work-station perspective, the NRM is a
remote file system. Each station functions as a stand­
alone development system for all tasks not requiring
NRM resources. When access to these resources is
required, the user simply logs onto the network. The
work station's resident operating system formats the
appropriate file request, which the NRM processes inter­
actively with other stations' demands.

The NRM operating system is multitasking, allowing a
work station to access a file on the shared disk while
other stations concurrently access other disk files. The
interleaving of disk accesses, as well as the high-speed
packet transmissions on the Ethernet, enables each work
station to share equally the large file store-its being
accessed by one user does not prevent other work stations
from gaining access.

In an eight-station environment, the performance deg­
radation due to network contention and the NRM operat­
ing system will be no more than 10%. This performance
is one of the major reasons why distributed development
systems provide a more cost-effective method for micro­
processor development than time-shared systems; the
former are much less susceptible to saturation under
concurrent loading than are the latter.

Managing the work

To ensure efficient software development, high per­
formance must be combined with tools to manage soft­
ware complexity. For example, large software projects
are often broken down into small tasks, and efficient file
sharing becomes essential to project coordination. The
shared-file system on NDS II is built on the RMX-86
volume-based hierarchy in which each user directory
represents a node on a hierarchy of directories, common­
ly referred to as a hierarchial file system (Fig. 4).

Hierarchical file systems can contain a multitude of
directories and data files. At the apex is the root volume,
a conceptual file from which all directories emanate. The
root volume contains all the volumes of the directories.

Each volume can contain as many directories or files as
available disk space will allow, and any directory may
contain other directory files or data files. Each file
(directory or data) can be traced through the hierarchy
by its own path name. The NDS II hierarchical file
system goes one step further b'y extending from the NRM
to include the directories at the user's work station.
When the user logs off the network, the only directories
available are those on the work-station disks. When the
user logs on, he or she gains access to the NRM system
directories.

Thus each programmer has access to a common data
base without the confusion of sifting through one mas­
sive directory. What's more, the structure keeps other
users' files out of the way. Tn addition, it permits logical­
ly separate types of software within a user's directory. A
programmer can create subdirectories to separate source
files from object files, from backup files, and so on.

As a project's size increases, the number of directories
and the complexity of path names in the system also
increases. To simplify the task of accessing any particu­
lar directory, the user can assign a less cumbersome
name-what amounts to a macroinstruction. Then, the
user simply types in this macroname. Maximum flexibil­
ity is maintained, as each programmer can assign
macronames to any directory.

An added benefit from macron arne assignment is
device transparency: the user concerns himself only with
directories, irrespective of physical location. Physical
devices are fixed in size and location, as opposed to
directories, which can be adjusted to organize the con­
tents in an optimal fashion.

File protection

Before accessing the network, each user must be iden­
tified to the NRM through a log-on .procedure. This setup
establishes a unique user identification that is subse­
quently used to control access to files and directories in
the hierarchical file system. Each directory and data file
has specific "owner" and "world" access rights, which
protect against accidental modification or deletion.

A file has three possible access rights for both the
owner and the world: read, write, and delete. A directory
also has three similar access rights for both the owner
and the world: list a directory, add a directory entry, and
delete a directory entry.

The access rights in file systems improve coordination
during software development by allowing complete mod­
ules that have been tested and debugged in a user's work
space to be converted into read status for the world.
Then these modules can be integrated and tested with
other independently developed software modules. Thus
modules declared as read-only are guaranteed to be the
most current debugged versions, and a common data
base of completed modules is ensured. '

Extended to multiple-project environments, the file
system can provide logically separate work spaces for
each project group. Specific directories can be set aside
for complete modules for various projects. Each user can
develop portions of the program in a private work space
with guaranteed file protection and can use. the public
files (or directories) for integration and testing of the

4-126

3. Manager. The network resource manager (NRM) in the cabinet's
left side governs access to the 35·megabyte Winchester drive on the

right. Access to network·managing software is gained only through a
supervisory terminal attached directly. to the NRM.

module under development. Commonly used utilities and
compilers can be accessible in a specific directory as
public files (read-only for world access) to eliminate the
necessity of redundant files at each work station. As a
result, all programmers can proceed without fear of
inadvertent modification of private files either by others
or by themselves.

As well as managing communications between shared
disks and work stations, the NRM maximizes the usc of
all network resources with distributed job control. Dle
allows the user of any work station to export a batch job
to the NRM for remote execution.

To accomplish this, the NRM classifies each work
station into one of two groups-private and public. It
keeps track of the public work stations and uses them to
execute the queue of batch-type jobs. A user can declare
any work station as public: available for use by the NRM

for remote execution. Also, a programmer can send a job
to a specific queue at the NRM by using the export
command. The NRM executes the job on a public work
station and return the results to the user directory.

With OlC, the resources of the entire network can be
shared to maximum advantage. A typical project
involves program-module editing and debugging at Intel­
lec series" or model 800 work stations, while a 8086-
based I ntellee series III unit can provide a host execution
environment to compile completed modules quickly. OlC
allows the user to export the compilation process to the
high-performance series III work station, then return
immediately to other tasks while the NRM oversees the
compilation. At any time, the users can check on job
status or queue status by typing a command from their
work stations.

New work stations

Currently, I ntellec development systems provide a sin­
gle·task environment and therefore can be declared pub­
lic to the NRM as users finish on-line work. Later this
year, Intel will introduce high-performance work sta­
tions with foreground-background capability to allow a
user to run a job in the foreground while making the
background public so that jobs exported by other pro­
grammers can be executed through Ole. Foreground­
background capability with OJ(' will effectively double
the usefulness of the work station and substantially cut
the cost of development time.

In-house benchmark tests indicate that the perform­
ance of each work station connected to the NRM is much
improved. For example, a compilation executed with all
file requests from the N RM hard disk is twice as fast as
requesting files from the work station's floppy disk. Each
station enjoys hard-disk performance during compila­
tion, assembly, and any file manipulation-at a fraction
of the cost of a dedicated disk system.

User's tools also speed program development, as well
as make management easier. The most important pro­
grammer tools on NDS II are svcs (software-version
control system) and MAKE, an automatic software­
generation tool. They provide a superset of the functions

offered by the svcs and
MAKE found in the Unix
programmers workbench.

svcs controls and docu­
ments changes to software
products, handling both
source and object files. It
contains facilities for storing
and retrieving different ver­
sions of a given program
module, for controlling up­
date privileges, and for re­
cording who made what
changes, when, and Why.

4. Climbing an inverted trea. To find a file in the NOS II. the user first goes to the root volume of this

Documentation of module
status and of the levels, or
versions, involved is the key
factor determining the suc­
cess of program develop­
ment by group effort. Valu-

hierarchical file structure. From that volume. he .or she can go to the project volume assigned by the

project manager and access other directories or files that have been declared accessible.

4-127

MAKElng It easy to revise programs
NOS-ii's MAKE facility is a development tool for both
generation and documentation of a software system. Sup­
pose, for example, a software system called PGM.86
consists of three separate programs linked together, and,
for simplicity, that each program consists of only one
compiled source file, rather than a subsystem of multiple
files. This relationship forms a dependency that would be
graphed by the user as in the figure below.

With the MAKE facility, a user can create an automated­
generation procedure for the system PGM.86 tnat checks
the currency of each subprogram. A MAKE command file
that does so is Illustrated in the accompanying table.

When the command file is invoked, the commands It
contains are executed In top-down fashion. In step 1 of
the table, the facility first checkS if the PGM.86 is older
(represented by the greater-than sign) than any of its
dependent object-code modules. The facility checks and
compares the date and time stamp of each module with
that of PGM.86. Date and time stamps are updated autc­
matically whenever a file Is modified.

able development time can be lost trying to work some­
one else's modified modules if documentation specifying
what, where, when, and vvhy changes were made is not
available. In fact, as programs become more complicat­
ed, even the module writer may not exactly remember
the history of the module.

Automatic documentation

svcs provides a tool for automatic documentation' of
these facts. When a new module is created, it is set to
level 1. All subsequent versions of the module are main­
tained with in a single file. Changes to the module are
stored as "deltas" to the original. svcs automatically
records what changes were made and when they were
made, and it requires the modifier to specify a reason for
the change. The project manager may create a software
checkpoint at any time by declaring the module as the
next release level; subsequent deltas will then be applied
to only this new release level.

Other capabilities in svcs also increase project con­
trol. Restrictions may be placed on who is allowed to

If any of the object modules are newer versions, then
MAKE is instructed to link together the latest versions of
the object modules to form the latest version of. the
software system. Before executing the link, routine, the
MAKE facility must first check to see If any of the object
flies are older than the related source files given In the
dependency graph, as shown in steps 2, 3, and 4.

The MAKE facility goes through each step and executes
the speCified task only If the specified condition is true.
Once the dependency graph is created, the MAKI: facility
can quickly and automatically generate the latest version
of a software system under development even when .
source files change frequently.

The MAKE facility removes much of the guesswork
surrounding software-system generation by ensuring the
latest versions of source code is incorporated Into the final
software system. The dependency graph in its current
form can also be printed by NOS II to document the
software-system construction without having to keep an
out-of-date sketch taped to the laboratory wall.

Steps

MAKE PROGRAM FOR PGM.86

Statements

IF PGM.86 > A.OBJ. B.OBJ. C.OBJ THEN
RUN LlNKB6 A.OBJ. B.OBJ. C.OBJ TO PGM.86
END

IF A.OBJ > A.SRC THEN
RUN PLM86 A.SRC
END

IF B.OBJ > B.SRC THEN
RUN PLM86 B.SRC
END

IF C.OBJ > C.SRC THEN
RUN ASM86 C.SRC
END

make changes to which modules.and at which levels. An
identification facility is also included, allowing the sys­
tem to stamp modules containing object code with ver­
sion information. From this information alone, a user
can determine the level of source code used to generate
the object module and thereby determine exactly which
level of software is current and which level is being
executed. To aid support groups in future maintenance
of the program, any level of a software system can be
regenerated from the original modules.

The secc;md' important program management tool on
NDS-II is called MAKE, (see "MAKEing it easy to revise
programs," above). When MAKE is invoked, a software
system is automatically generated from the most current
version of specific modules delineated by a dependency
graph. MAKE ensures that the software generation is
current and correct, while recompiling only program
modules that need to be updated. To coincide with the
concept of modular program development, any compo­
nent of a MAKE could invoke another MAKE to generate
a lower-level component such as a library. 0

Reprinted from ELECTRONICS. March 10. 1982. copyright 1982 by McGraw·Hili. Inc., with all rights reserved.

4-128

intJ

IEEE SPECTRUM

ARTICLE
REPRINT

Helping Computers
Communicate

JOHN VOELCKER

4-129

AR-425

March 1986

Order Number: 280271-001

Helping cOIllputers
cOIllIllunicate
The Open Systems Interconnection model promises compatibility jor a variety
oj computer systems, although not all its junctions are yet defined

Computers made by different companies ordinarily ••• 1111 ••• years, it will replace proprietary protocols in its
do not "talk" to one another. This aloofness some- II DECnet network with OSI protocols. A number of
times applies even to different types of computers suppliers have banded together in a new group, the
made by the same company. And when it comes to Corporation for Open Systems, to promote accep-
computerized systems, like machine tools and auto- tance and use of OSI protocols. In short, the out-
matic teller machines, the communications prob- look for OSI is promising.
lems can be nightmarish. Aside from expensive cus- No one contends, of course, that all computer-
tomized adapters and software links, compatibility ized equipment should be covered by OSI. There
remains an elusive target of the computer industry. seems little need, for example, to allow the

Even when two computers or computerized sys- """"""""""''''""'"''"'"'''''''''... microprocessor in a new refrigerator to communi-
tems can be made to talk to each other, problems may arise in get- cate with the international banking industry's funds-transfer net-
ting networks-whether telephone, satellite, or microwave-to work. But in many industries, the ability to interconnect many
handle the conversation. Will universal compatibility among different computer systems and communications networks could
computers, computerized equipment, and communications net- radically improve the way business is done.
works ever become reality?

Many industry leaders believe that the Open Systems Intercon- Frustrations abound
nection (OSI) model is the key to making .users' dreams come Consider the plight of a design engineer who must use a newly
true. The set of OSI standards being developed by the Interna- installed computer-aided engineering (CAE) system to analyze
tional Organization for Standardization (ISO) in Geneva, Swit- the deformation of a cylindrical strut with a load applied. The
zerland, is a framework for defining the communications process strut was designed on an older computer-aided design (CAD)
between systems. It includes a Reference Model, with seven system made by another company; the system uses a different
layers that define the functions involved in communicating; and graphic descriptor language to represent cylinders than the CAE
definitions of the services required to perform these functions. system does. The design engineer must enter the description of

To implement the OSI model, the ISO also describes protocols
-specifications for how information is coded and passed be­
tween parties in a communication. Only protocols can actually
be implemented; both the Reference Model and the service defi­
nitions are merely structures for discussing the functions in­
volved in communications between dissimilar equipment.

Standards are emerging gradually
Computers, computerized equipment, and communications

networks are all covered by OSI. This has created considerable
confusion among users, because systems that manufacturers
claim "conform to as!" may not necessarily be compatible with
other systems for which the claim is made. What the label means
is that the equipment uses some of the OSI standards-a subset
of those that have been defined so far. Testing for OSI confor­
mance is just beginning.

Many of the protocols to implement OSI are now complete,
and some manufacturers offer products to implement various of
these standards. The ISO will continue to expand the functions
covered by OSI as new communications network architectures
and technologies emerge. But the revisions are being made, the
architects say, so that older equipment will not be rendered ob­
solete.

Some companies-General Motors and the Boeing Co., for
example-already specify the use of OSI protocols in certain
computer networks. IBM is examining how it can make its own
computers and network standards communicate with OSI equip­
ment. Digital Equipment Corp. has announced that within three

John Voelcker Associate Editor

4-131

Defining terms
ApplIcatIon process: a part within an open system that pro­
cesses Information and uses OSI communication services to
communicate with other application processes in other open
systems.
Channel: the part of a communications system that connects a
message source to a message link; a path for electrical trans·
mission between two or more points.
Conversation: an interactive exchange of information between
two systems or systems users.
Function: an action performed to further the communications
process by parts of a communications system.
Gateway: devices or systems to connect different network ar­
chitectures having different protocols by providing protocol
translation. Gateways may use all seven layers of the OSI
model, but must include Layers 1 through 4.
Layer: a set of network-related services within an OSI network-
ing architecture. ,
Open system: a computer processor or set of connected pro­
cessors, for which standards are published, that allows an ap­
plication running in the system to communicate with other ap­
plications in the same or other systems.
Packet-switching: the use of software to route messages dy­
namically from source to destination within a communications
network. '
Protocol: a specification for coding messages exchanged be­
tween two communications processes.
Service: a function offered by some part of an open system to
communicating application processes.

[I} The OSI ReferenceModel breaks the process'of communicat­
ing into an orderly sequence of seven layers.

the strut into the CAE system to analyze it. But if he makes any
specification changes, he will have to enter them into the old
CAD system, which will ultimately generate the drawings to pro­
duce the part ..

These drawings will be sent to the machine shop, where a pro­
totype part will be produced on a digitally controlled lathe. Once
again, the part description must be entered into a computer ter­
minal-that of the machine tool-before the next step in the pro­
duction process can be completed. If all of these machines could
communicate, the engineer could change the specification and
transmit the design automatically to the machine tool.
" The systems designer who must conneCt automated office
equipment from several manufacturers faces a similarly challeng­
ing task. While compatible personal computers can be connected
to one of the many local-area networks, other types of computers
are not so easily attached. . '. .

An IBM mainframe used for accounting and 'corporate rec­
ord-keeping, for example, cannot easily exchange information
with the company's personal computers. Even the physical media
for data storage differ-large tape drives for the mainframe,
5 !4 -inch floppy diskettes for the personal·computer.

To "hardwire" the personal computers to the mainframe
would require, among other accomm04ations, the ability to
translate every file .from one character set to another: The same
obstacle applies to most minicomputers, which might be used for
other applications like inventory control in a small warehouse.

This lack of compatibility has remained essentially unchanged
for at least 20 years. Families of computers or computerized
equipment from a single manufacturer can be connected by
proprietary comnmnications protocols, but this ties users to a
particular supplier's equipment, locking out competing
manufacturers.

osr to the rescue
Th~ OSI model offers a way to establish unity in the fragment­

ed computer and communications .. fields. It provides .a frame­
work for connecting open systems; allowing any supplier to con­
struct a system that communicates with another made by a differ­
ent company.

Richard desJardins, chairman of the ISO .subcommittee re-

sponsible for OSI, notes, "The OSI Reference Model simply de­
scribes the many functions involved in a communication between
two computers or systems, and the terms used to define those
functions."

Implementations of these functions consist of software written
to span the gap between the application process, which starts the
communication-a program in an automated teller machine, say,
that responds to a customer's balance request-and the physical
medium over which the communication travels-the bank's pri­
vate telephone lines, in this case. Often this software is embedded
in special-purpose circuitry that is included in computers or other
ctlmmunications equipment.

The physical medium is simply the "channel" over which the
message is sent. It includes not only the wires in a telephone
system, but also transmitting and receiving stations for satel­
lite and microwave communications, as well as local-area net­
works ..

In each layer of the Reference Model, major functions have
been defined. International standards define the services and the
protocols to implement them .. The OSI Reference Model, de­
fined by ISO 7498, is complete and was adopted by the ISO in
1984 [Fig. IJ.

The bottom layer of the Reference Model, Layer I, is called
the Physical Layer. It includes the functions to activate, main­
tain,and deactivate the physical connection. It defines both the
functional and procedural characteristics of the interface to the
physical circuit; the electrical and mechanical specifications arc
considered to be part of the medium itself.

Layer 2, the Data Link Layer, covers synchronization and er­
ror control for the information transmitted over the physical
link, regardless of the content. This can be thought of as "point­
to-poil\t error checking."

Layer 3 is the Network Layer. Its functions include routing
communications through network resources to the system where
the communicating application resides; segmentation and
reassembly of data units; and some error correction. .

The Network Layer acts as the network controller by deciding
where to route data-either out along a physical network path or
up to an application process. Data routed between networks or
from node to node within a network requires only the functions
of Layers 1 to 3 [Fig. 2J. The network node is called a relay
system.

End-to-end reliability ensured
The Transport Layer, Layer 4, includes such functions as mul­

tiplexing a number of independent message streams over a single
connection when desired, and segmenting data into appropriate­
ly sized units for efficient handling by the Network Layer.
Through these functions, it compensates for differences in the
network services that have been provided. It also provides end­
to-end control of data reliability, regardless of the type or quality
of the network used.

The functions of Layer 5, the Session Layer, are to manage
and synchronize conversations between two application process­
es. Data streams, for example; are marked and resynchronized to
ensure that dialogues are not cut off prematurely. The.Iayer pro- .
vides two main styles. of dialogue: two-way alternating (half­
duplex), in which two parties alternate in·sending messages to
each other; and two-way simultaneous (full-duplex); ·in which
two parties may send and receive at the same time.

The Session Layer's control functions are analogous to the use
of control language to run a computer system. While Layer 5
selects the type of service, the Network Layer chooses appropri­
ate facilities and the Data Link Layer formats the messages.

Layer 6, the Presentation Layer, ensures. that inforrn;ltion is
delivered in a form that the receiving system can understand and
use. The format and language (syntax) .of messages can be deter­
mined by the communicating parties; the functions of the Pre­
sentation Layer translate if required. The meaning (semantics) of·
the message is preserved. If, for example, one application process,

4-132

transmitted a file in ASCII code, while another used IBM's EBC­
DIC, the two sides would negotiate which encoding to use and
which side would perform translation.

The top of the Reference Model, Layer 7, is the Application
Layer. To support distributed applications, its functions manipu­
late information. It provides resource management for file trans­
fer, virtual file and virtual terminal emulation, distributed pro­
cessing, and other functions. It is the layer that will contain the
most functionality, and it is certainly the one in which the widest
variety of work is being done at present.

Viewed as a system, the layers of the Reference Model can be
broken into two groups. The bottom three layers-Physical,
Data Link, and Network-cover the components of the network
used to transmit the message. The top three layers, however,
generally reflect the characteristics of the communicating end
systems. Their functions take place without regard for the physi­
cal medium actually used, whether it is a satellite, an X.25 net­
work, or a local-area network (LAN). Only the two parties to a
communication invoke the functions of the Session, Presenta­
tion, and Application layers. The Transport Layer acts as the liai­
son between the end system and the network.

Freedom of services provided
At each layer of the Reference Model, there are services to

carry out the functions. For instance, a service such as requesting
initialization of a conversation is needed to initiate the control
function for a conversation between two end systems.

The services defined for each layer are performed by building
on services provided by the layer directly underneath. Converse­
ly, the services at each layer are called upon by those at the next
higher layer. Thus when an application process initiates a com­
munication, it passes its' message down through each layer. The
functions of each layer add value by providing services that
enable the communication to be completed.

One shining feature of OSI is that these service definitions are
independent. In other words, any service can be implemented re­
gardless of the methods used to implement services in the layers
above and below it. Error checking, for instance, may be provid­
ed in different systems by dissimilar devices or by unique soft­
ware. As long as the device or software provides the service de­
fined by OSI, using an approved protocol, it will perform the
same function for the end user.

Specifying independent services allowed protocols for several
layers of the model to be developed in parallel, before Subcom­
mittee 21 of ISO's Technical Committee 97 had defined the entire
set of services. In theory, it also allows individual service defini­
tions to be modified without disturbing other layers in the model.
However, few users are likely to implement protocols in such a
way that their interfaces correspond to all the service boundaries.
Instead, for instance, a single ROM chip might provide the func­
tions of two or three layers together.

The ISO specifies protocols for each service definition within
the layers of the model. These are descriptions of the bit coding
formats in which specific information is passed between process­
es, as well as the procedures to interpret it. Protocols operate bet­
ween "peer entities"-the parts of a system providing services
for a given layer-in the different end systems. Thus information
about Network Layer protocols in a message sent by one system
is used only by the Network Layer in the receiving system.

A number of protocols may implement a given service, and
more than one service may be provided by each layer of the Ref­
erence Model. In this respect, OSI can be viewed as a collection
of worldwide engineering design activities, with overall coordina­
tion provided by the ISO Reference Model. Thousands of engi­
neers from hundreds of organizations worldwide participate, in­
cluding all major computer and network manufacturers.

The service definitions and protocols are in various states of
development for each layer [Fig. 3). Service definitions have been
completed for Layers 2,3, and 4, and work on other layers is well
underway. Protocols for some layers are already international

standards, including Network, Transport, and Session layers.
The working group's goal is to complete the initial set of proto­
cols for the Application and Presentation layers of the Reference
Model by the end of 1986.

Some manufacturers have already moved to implement OSI
protocols that have been completed. General Motors, for exam­
ple, is using one set of OSI protocols in its Manufacturing Auto­
mation Protocol (MAP). Boeing is proposing a similar set for its
Technical and Office Protocols (TOP). [The MAP and TOP
standards will be covered in the April issue of IEEE Spectrum.)

An application using a different set of OSI protocols, however,
mayor may not be able to communicate with MAP and TOP.
OSI does not allow all computers and communications networks
to communicate automatically and at will. Rather, OSI users will
form "communities of interest" to limit the options. They will
define a set of services to be provided by communicating ma­
chines in their particular industry and then implement those ser­
vices in a handful of protocol options for each level.

Lower layers based on existing standards
The initial set of protocols for the lower aS! layers are based

on existing international standards and thus the protocols are
already widely implemented. There are a number of physical
medium standards for aS! communication over short distances,
including the traditional analog RS-232C, the more recent digital
CCITT X.21, and the IEEE 802 LAN standards (ISO 8802.3,
8802.4, and 8802.5). [For a comparison of the IEEE LANs with
the aS! model, see "Lining up against the layers," p. 68.)

For longer-distance communication among aS! applications,
the physical interface for the Integrated Services Digital Network
(ISDN) may become the dominant standard [see "A universal
plug already developed," p. 70).

The set of protocols that provides the services of Layer 2 over
X.25 networks is called the High-level Data Link Control. Sev-

End user
A

Network I (physical medium)

End user
B

Network 11 (physical medium)

{21 A message may pass through many relay systems on its way
between application processes. In an OSI application, the path
taken is invisible to the end users. Only a relay system "knows"
what route a message is using.

4-133

[3J The "OSI wineglass" oj protocols shows the many junctions cov­
ered by upjJer layers and the multiple options jor physical media at the
lower layers. The Session and 1/"ansportLayers, however, havejewer
alternatives and are now international standards.

release functions. Expedited data and receipt-confirrnation
services, are optional and are specified when, a netWork
connection is established. The receipt-confirmation service
supports conformance to the CCITT X.25 standard. An ad­
dendum to ISO 8348 is now being developed to add connec­
tionless network service-the simple transfer of a data unit.

The Network Layer must provide for many network
types, only some of which have been fully identified. Each
type or family of protocols within the layer has a unique
identifier, so the protocol can be identified and changed dur­
ing the transmission of a message. AU protocols in the 1984
revision of X.25 are accommodated without change.

The service definition (ISO 8072) and protocol specifica­
tion (ISO 8073) are now approved fOf Layer 4, the
ltansport Layer. ISO 8073 specifies several classes of pro­
tocol for conn'ection-oriented communication, with, a wide
range of functionality-from the simple (Class 0), for use
with highly reliable X.25 networks, to high-quality service
(Qass 4), with error detection and recovery for possibly
unreliable networks.

Specifically, Qass 4 service' ensures that data is not lost,
duplicated, or corrupted in transit and that it arrives at its
destination in the right order. The ltansport Layer can also
provide end-to-end error checking between communicating

, parties, or it may rely on the quality of service provided by
the Network Layer. Work is now underway on ltansport
Layer service definition and protocol specification for con­
nectionless data transmission.

The service defmition (ISO 8326) and protocol specifica­
tion (ISO 8327) are also approved for Layer 5, the Session
Layer. While this layer is fuD of options among the fa,cilities
available to the users, initial implementations will contain

eral subsets have been defmed; work is proceeding on others. The
first to be defined was the CCITT X.25 Link Access Procedure
B, for balanced connection-oriented communication-that is, a
one-to-one link over a dedicated circuit between two parties.

two subsets of service definitions: the session kernel, for
establishing and releasing a session; and the basic combined
subset, which adds token management-a request for use of
resources-to the kernel.

Next to come was an option allowing multilink communica­
tion, or splitting a single communication among several p/lysical
channels. And most recently a new subset provides mUltiplexing
fUnctions-allowing several communications to use a single phy­
sical channel. Three types of service are provided by the High­
ievel Data Link Control: connection-oriented, connectionless,
and single-frame transmission.

Connection-oriented service requires a connection to be
established between the two end systems before the communica­
tion is transmitted. The connection can be either physical-a set
of wires-or "virtual" -preplanned routes over which packets
wiD travel. A good analogy here is a telephone call; a line is
established and dedicated to a particular conversation before the
two parties begin talking.

Connectionless service involves communication in which each
data unit, or packet, travels independently. The path may be es­
tablished in advance-as on certain LANs-or as the message ar­
rives at each network junction. A good analogy for this type of
service'is mailing a letter, since it wiD travel to its destination in­
dependently of any others sent to the same address, regardless of
whether the saine route is used.

Single-frame transmission sends only one frame of data at a
time. AD example of this is aremote sensor that transmits a signal
to a guard station if it detects motion. '
, Layer 2 protocols may break a stream of data up into frames,

whic!t are transmitted sequentially, and may require a frame ac­
knowledgment signal from the receiving system. If so, the frame
is'retransmitted if the, signal is not received. The Data Link Layer
may also provide flow control-monitoring the rate of frame
trarisfer':"'so that systems can exchange data at different speeds. ,

How to connect networks
As for Layer 3, the Network Layer, its service definition in­

cludes network connection, data transfer, reset, and connection-

For Layer 6, the Presentation Layer, an Abstract Syntax Nota­
tion 1 developed by CCITT has been adopted as ISO 8824 to pro­
vide rules for defming and recording the meaning, or semantic
content, of messages. Associated with this are a basic encoding nile
(ISO 8825), as weD as custom encodings registered with ISO, to
turn such notations into actu~ messages for transfer.

Layer 7, the Application Layer, is the only one that provides
services directly to the application process. It does so by drawing
on the services of all six layers below it. Conceptually, the Appli­
cation Layer is broken down into three parts: a user element,
common-application service elements (CASEs), and specific-ap­
plication service elements (SASEs).

The user element represents functions specific to the applica­
tion process that needs to communicate. It selects among the ser­
vices offered by the rest of the layer, including the CASEs and
SASEs, on behalf of the application program.

The CASEs are general-use capabilities needed by nearly all
applications. Included among CASE functions are commitment,
concurrency, and recovery for distributed processing.

The SASEs include file transfer, access, and management; job
transfer and manipulation, for distributed batch jobs; message
handling facilities; virtual terminal systems, which allow remote
systems to communicate as terminals; and directory services.

Serving 'communities of interest'
These functions serve specific industries, known as communi­

ties of interest. The financial services and banking industry is one
example of a broad community of interest; another is the users of
automated industrial' equipment. Each group has unique needs
and requires Application Layer services specific to the industry.

For example, industrial automation applications may not have
a high volume of on-line inquiry. But because factory communi­
cation must occur in real time-as opposed to sending messages
in batches-the maximum permissible waiting time between

4-134

commands sent to the machine tools must be very low. In this en­
vironment, real-time "foreground" protocols will be carefully
designed for high performance. For "background" pro­
cessing-analyzing production data, for 'instance-the job
transfer and manipulation function,of the SASE might be used.

The message from the Application Process, plus information
added by each layer below, forms the frame that is sent out over
the network [Fig. 4]. At each layer, header control information is
appended to the data unit received from the layer above. This in­
formation identifies the protocol options used and gives other
data about the message and its routing. At the receiving end, the
header information is removed and processed by each layer.
Then the remaining data unit is passed up to the next layer, where
a similar operation takes place.

A good analogy to show how the functions of the OSI model
operate is the production and transmission of a simple business
letter. It parallels the OSI process, using only the language of
business communications; no computer terminology is needed
[Fig. 51.

The thank-you letter
Imagine that the president of a West German company has

agreed to buy SO tons of wheat from a firm in Wichita, Kan. Be­
cause he got a good price, he asks the public relations manager to
send a thank-you note to the sales director of the Wichita frrm.

The West German executive represents the application process
that initiates a communication. He deals in terms of the meaning
of the communication, or the semantics; he merely tells the PR
manager to send a thank-you note. The PR manager actually
gets the machinery going. He is the Specific Application Ser­
vice Element of the Application Layer, calling on the services
of the layers below him to meet his needs in transmitting the
message.

The West German PR manager dictates the note onto a cas­
sette tape and gives it to his secretary-who acts as the Presenta­
tion Layer. She translates the message into English and types it as
a formal business letter. In OSI terms, she has prepared the
Transfer Syntax-a string of data in a language common'to the
sender and the receiver-in this case, English.

After typing it, the secretary hands the letter to her administra­
tive assistant-the Session Layer. He records the letter in the Ger­
man company's file on Wichita Wheat Co., ensuring that the
right person has been addressed, with the correct title and spell­
ing, exact office number, and other details. This checking allows
both ends of the communication to organize and synchronize
their dialogue, by noting where the message goes and when it was

teeing end-to-end transmission. If something untoward happens
during transmission, he will recover by sending another copy of
the letter-hence he always copies a letter before sending it.

After copying the letter, he assigns a sequence number (in this
case, "I of I"). Then he passes the shipment-tagged with both
destination address and phone sequence number-to a shipping
clerk. He tells the clerk to establish a route over which the note
will be sent to Kansas. The Network Layer (the shipping clerk)
will select the routing and advise the Transport Layer (the trans­
port manager) of it.

The shipping clerk calls his counterpart in the German com­
pany's New York City office. He learns that the company's inter­
nal mail service can take the shipment to the New York office,
and Federal Express will deliver it to Wichita the next day. Note
that OSI applies to communications over private networks (the
company's internal mail operation) and public networks (Federal
Express). '

He attaches a routing slip and puts the letter with others into a
mail cart labeled "New York." Then he sends the cart to the
mailroom, which serves as the Data Link Layer.

The mailroom workers also make copies of everything they re­
ceive, bag the mail, and weigh it on a very accurate scale. They
note the destination and weight of each mailbag on a tag attached
to the bag. Then they move the bag to' the loading dock-the
Physical Layer, or the interface to the physical medium (the
trucks, trains, and airplanes to take it to the United States).

The workers on the dock call the trucks and load the mailbags
onto them when they arrive. At this point, the "bits" have left the
machine and are in transit on the medium-the communication
has been sent on its journey.

When the mailbag arrives in New York City, the workers on the
New York loading dock-the Physical Layer-pass the mailbag to
the workers in their mailroom-the Data Link Layer. This mail­
room has a scale identical to the one in West Germany, which can
detect the loss of even one letter from the mailbag. If the weight of
the bag does not match that on the label, the whole shipment is re­
jected and the mailroom in Germany is notified to send replace­
ment copies of all the letters, using the duplicates they have kept.

This task represents "frame check sequences" performed by
the Data Link Layer. In this case, the weight of the letters match­
es exactly, so the New York mailroom sends word back to Ger­
many that the mailbag is OK. Then the shipment goes to the
routing clerk in New York-the Network Layer-who opens the
mailbag and sorts the mail.

Mail for employees in the New York office gets passed along to
the transport manager - the Transport Layer - for processing up

sent. lfthere is back-and-forth exchange
of information, the Session Layer will
manage the dialogue. '

Application
processX Outgoing frame

construction
Incoming frame
reduction

Application
processY

The next layer-Transport-is provid­
ed by the manager of shipping and receiv­
ing. His job is to negotiate the quality of
service available from the Network Layer,
approve the connection, and provide re­
ceipt and delivery. He is really guaran-

[4J A message passed Jrom Application
Process "X" down through the layers to
an X.25 network acquires header inJor­
mation Jrom the Junctions oj each layer.
The receiving Application Process "Y"
does not see this, however; its Application
Layer passes along only the message sent
by "x. .. The message is stripped oj all its
headers and Jrame information by the
layers below the application process. The
bitstream actually sent over the network is
an X.25 dataJrame.

- -- ---- -- --I~t!j AP~~~liO" i n - - -, ,
----------I PH f;?j!li;"ii;~i\it ,:,'\ '1-----
---------��� Daleu"1t ~-:---

------'!~~ ~~----
I ,

- - - -lij,~li~f(!ltl~~~~Ji~,::" '/i, - , 1- ---
:.--X.25 packet_____..l

-1III;":·i:,f~9~~Y~I:it·F'oeIiI) '"UJj- -
: .. X.25 frame • :

-I11III1 Ii "fIII~.~lf~l--

4-135

o

in the organization. Other mail remains at the Network Layer to
be rerouted. The routing clerk recognizes the thank-you letter as
one to be sent through Federal Express, so she tags it for Federal
Express and sents it back to the mailroom.

The mailroom groups together (multiplexes) all mail for
Federal Express delivery to the Wichita fIrm, as there are many
letters concerning the grain deal. Again the contents are copied,
weighed, sealed (in a Federal Express package),and tagged with
a new shipment number and address. The bags go out onto the
loading dock and away in the Federal Express trucks.

Assuming Federal Express and the Wichita fIrm use an OSI

Application process
(company president)

" ... Danke schon ... "

WEST GERMANY

model, they will go through a similar process to route the
package. In all the cases, only the lower three layers-Network,
Data Link, and Physical-are involved when a message is routed
via intermediate networks. The upper layers - Transport and
above-are involved only at the origination and destination of a
communication.

When the Federal Express package· arrives in Wichita, the
routing clerk passes it up to the transport manager, who checks
the packing slip and telephones her counterpart in Germany to let
him know that the letter has arrived in good order.

In this way the Transport Layer acknowledges "end to end"
communications. All previous acknowledgments have been at
the Data Link Layer, from one leg of a journey back to the pre­
vious, leg. This fInal acknowledgment connects the end of the
journey to the beginning, no. matter what carriers - reliable or
not -'- have been used in between.

Once the communication has been received and acknowledged
by the Transport Layer, it is paSsed along to the Session Layer. A
fIle clerk logs the letter in the file for the German wheat buyer
and takes the letter to the Presentation Layer - the sales
director's secretary. She reads the letter and determines that it is
in English; no translation from German is necessary.

The secretary gives it to a vice president of Wichita Wheat, who
serves as the Application Layer. At a staff meeting, the VP informs
the sales director that the German fIrm has thanked him for the
good price they got. The receiving application process-the sales
director of Wichita Wheat-receives the semantics of the message
but not the message itself, which was "danke schon. "

OSI and ISDN
The protocols associated with OSI may seem to be merely new

entries in a sea of often conflicting communications standards, but
they were not created in a vacuum. Many of them have been de­
fIned to incorporate existing standards; others are aimed at the like­
ly future of international telecommunications. In particular, ongo­
ing work on the Integrated Services Digital Network (ISDN) is
closely related to work on as!.

The architecture of the ISDN· standards closely follows the
OSI Reference Model. Although these standards do not map ex­
actly OnlO existing OSI protocols, ISDN may be considered a
prototype for the evolution of OSI standards. As work on ISDN

implementations continues, further re­
quirements to be incorporated into OSI

, protocols will emerge.
The idea benind ISDN is that in a digi­

tal comm\lnications world, the same
basic. switched telecommunications sys­
tems can integrate telephone voice ser­
vice with a number of other services.
These include digital data,transmission,
personal computer interfaces, iocal'area
networks, private automatic branch ex­
changes (PABXs), videoconferencing,

o
DO

(5J The journey of a thank-you letter 0 0
from the president of a West German
bread comany to the sales director of his 0
wheat supplier in Wichita, Kan., is anal-
ogous to the operation of 081 functions
during a communication.

4-136

and joint-use remote applications, like automatic teller machines
and self-service fuel pumps.

Only the lower three layers of OSI are applicable to initial
ISDN work [Fig. 6]. The basic ISDN interface is composed of a
16-kilobit-per-second signaling channel (D-channel) plus two
circuit-switched 64-kb/s digital channels (B-channels). Depend­
ing on the characteristics of connecting networks, ISDN offers
access to the D-channel alone or in combination with one or both
B-channels.

In the basic service, the ISDN Physical Layer operates with a
bit stream of 192 kb/s and provides a multiplexing arrangement.

Network layer.
- Establishes new route
- Attaches routing slip
-' Puts in mail cart .

Of this, 48 kb/s is control information that facilitates the
multiplexing.

The signaling channel uses the Link Access Procedure 0 pro­
tocol for Data Link Layer services. It provides mUltiplexing for
three functions: signaling information that controls switching
connections on the B-channels; low-speed packet-switched ser­
vices; and optional channels that can be used for sporadic low­
bandwidth transmission, like burglar-alarm signaling.

The OSI Network Layer protocol for the D-channel is
specified by CCITT recommendation Q.931. It provides the
mechanism for making and breaking connections on tlie

Application process
(sales director)

"Herr Schmidt says
thank you."

4-137

4-138

B channels
B-channels and for other ISDN control
functions. For the packet-switching func­
tion, Layer 3 is the packet level of X.25.
The protocols for optional functions will be
defined by the CCITT at a later date or may
be specified as a national option.

/r ________ ~A~ ________ ~,
D channel

/r.B~'C~h~an~n-el~~Lo~wJ~~pe-ed~------~'
B1 82 control packet-switched Optional
Channel Channel Information service functions

The data link and network protocols are
unspecified for the B-channels; these chan­
nels provide a "transparent" facility that
may use whatever protocols are appropriate
for the application.

Above the Network Layer, ISDN pro­
tocols depend on the application being us­
ed. CCITT Recommendation 1.212 covers
the upper four layers of ISDN services,
referring to them as Teleservices. Protocol
recommendations for Layers 4 through 7
have been developed by CCITT.

But will it work?
Computer users - many stung in the past

by false promises of compatibility-may be
inclined to greet claims of compatibility with
skepticism. If OSI is to catch on, there must
be a way to verify that products conform to
its definitions. Work on testing products for
OSI conformance has just begun but is
developing rapidly.

Layer 3-
Network

medium
The main influence in the United States

to date has been the National Bureau of
Standards, headquartered in Gaithersburg,
Md. A newly formed group of equipment
manufacturers, the Corporation for Open
Systems in Washington, D.C., is also likely

[6J Initial ISDN work is concentrated in the Physical, Data Link, and Network layers of
as!. Above the network services, protocols for ISDN will depend on the application.
For example, teletex terminal equipment interface specifications, character sets, and
mixed-mode terminal capabilities are included in the OSI Application Layer protocols.

to become an important factor in OSI testing.
The NBS does not provide testing services to manufacturers; it

simply develops methods and software to test conformance to
various OSI protocols and sells them through the National
Technical Information Service. Currently, software to test the
complete set of protocols for the OSI 1l"ansport Layer and the
upper-or Internet -portion of the Network Layer are available.

Under development at NBS are tests for the messaging, file
transfer, and virtual-terminal protocols for the Application
Layer; the agency is developing these test programs under a
Department of Defense contract. Also being developed are pro­
grams to test the Physical Layer and the bottom half of the Data
Link Layer for the IEEE token-bus local-area network standard.

The NBS hopes to bring on line shortly a service called Osinet,
a nationwide network for manufacturers interested in OSI
testing. There are three immediate goals, according to John E
Heafner, chief of the systems and network architecture division
at the NBS: to promote the development and dissemination of
testing systems; to allow vendor-to-vendor testing of products,
or interoperability testing; and to offer demonstrations of OSI
testing services and products.

A more distant goal is to tie together OSI testing centers
around the world, Heafner said, noting: "We would like to be
able to offer testing for worldwide product conformance, but
only if we can be assured that there will be no trade barriers
created to protect individual markets."

The goals of the Corporation for Open Systems are equally
ambitious. Initiated by the Computer and Communications In­
dustry Association (CCIA), the corporation will encourage the
development of test capabilities that manufacturers can use dur­
ing product development, to reassure customers that products
being marketed conform to the appropriate standards.

The corporation, formed late last year by a group of 18 sup­
pliers of computer and communications equipment, is not a stan­
dard-setting body, noted Jack Biddle, president of the CCIA.
But it does intend to promote development of a universally ac-

cepted set of OSI protocols for individual applications, including
such standard data processing functions as file transfer and
management and electronic message handling.

The group does not plan to provide testing services, Biddle
said, but instead will develop testing programs and services or
subcontract this development to others. A possible provider of
those services, he noted, is the Industrial Technology Institute of
Ann Arbor, Mich. This not-for-profit organization is currently
involved in testing compatibility with the MAP specification
among suppliers of factory automation equipment.

Over the long term, the corporation hopes to convince execu­
tives in the ciJmputer and communications industries of the strate­
gic importance of a single open network architecture. "There is a
need for greater voluntary efforts in the standards community,"
Biddle said. "These activities are not yet accepted as an integral
part of product planning strategies by many companies."

Biddle is confident that testing for OSI conformance will
become vitally important to the world electronics market, but he
expects "a long struggle to make it happen." Asked whether users
were really demanding OSI<ompatible equipment, he said: "You
should have heard my phone ringing off the hook after the word
got out about the corporation. They are frustrated, they don't like
buying from just one vendor, and they want solutions."

IBM pursuing OSI
A big question is how OSI will affect IBM. For a quarter of a

century, IBM has been the leader in the computer industry. Its
ll-year-old Systems Network Architecture (SNA) is the most
widely implemented communications architecture for mainframe
computers, and IBM has often functioned as a de facto standard­
setting body for computer networking.

At the start of work to define the OSI Reference Model in the
late 19705, IBM participated in standards meetings and technical
sessions. "IBM contributed very significantly and very construc­
tively," said Harold Folts, president of Omnicom Inc. in Vienna,
Va., a telecommunications consulting and education concern.

4-139

"And there is no question that many competitors, the company
they are moving in the direction
of OSI for the European
market.' ,

A universal plug already developed will be forced to compete in­
creasingly on the technological
merits of its products and per­
haps on price. In a sense IBM
will lose some control over the
direction of computer equip­
ment and design that it has en­
joyed - particularly in the
United States - for the last
quarter of a century.

In some ways the promise of
OSI has been oversold. It is not a
magic cure-all that will allow
every variety of computer equip­
ment to be plugged together as
stereo components are,

Last year Digital Equipment
Corp. announced that it would
gradually modify its Digital Net·
work Architecture to conform
to OSI protocols as they are
developed. The 12 major Euro·
pean computer manufacturers
have indicated that they too will
adopt OSI protocols. To pro·
mote OSI, some European
governments have introduced
regulations requiring OSI com·
patibility in new data network
installations. With a significant
presence in Europe - as indeed
it has anywhere - IBM has an­
nounced plans to support OSI
there.

The company stated: "As
standards for Layers 6 and 7 are
agreed upon over the next two
years, based on business con­
siderations, IBM will develop
products that will meet the re­
quirements of both the custo­
mers and OSI standards." IBM
said.that "OSI will complement
the well·proven SNA architec­
ture" and that "OSI and SNA
can supplement each other to
provide a balanced solution for
the management of networks
and for the transfer of informa­
tion between them."

The RJ-45 minimodular connector is likely to be ap·
proved as the universal interface for the Integrated Ser·
vices Digital Network (ISDN), and thus Ideally would be
used for many Open Systems Interconnection (OSI) ap­
plications. Developed by AT&T Bell Laboratories, it is
an elght·wire version of the familiar RJ·11 jack and plug
widely used In U.S. telephone terminals and instru·
ments (see photo).

But OSI probably has a better
chance than most of living up to
its potential. For one thing, the
group of potential users for OSI
implementations spans many
countries and diverse industries.
Many suppliers will compete to
supply conforming equipment.

OSI users can also decide
which protocols are appropriate
for their own needs. The best ex­
amples so far are the MAP and
TOP standards, and there will
be more as OSI gains public at­
tention. The banking commun­
ity, for instance, is working hard
to apply OSI to electronic funds
transfer and other services.

The pins are arranged as follows: 1 and 2 are power
sources, 3 and 6 transmit, 4 and 5 receive, and 7 and 8
are power sinks. Because the plug centers itself In the
socket, the current four·pin plug would contact pins 3
to 6, allowing customer premises in the United States
to be wired with the new socket and still remain com·
patible with existing telephone equipment.

While it may appear to be fragile, the plug has
proved to be quite rugged, and It meets a number of
criteria: it Is small, keyed, self'orienting, and can be
released without any tools. The connector set is now
an International Organization for Standardization draft
standard, and chances for final approval appear good.

Finally, OSI leaves room for
inevitable growth and change in
a most elegant way. Standard­
izing protocols between func-IBM Europe offers OSI capa­

I?ility through Layer 5, which in·
dicates that the company will offer OSI implementations in addi­
tion to its own SNA architecture. [For a comparison of SNA with
the layers of OSI, see "Lining up against the layers," p. 68.1 The
oompany's center for research on OSI implementations is the IBM
European Networking Center in Heidelberg, West Germany.

IBM's Open-systems 'I\'ansport and Session Support software,
first shipped last December, supports most functions of OSI
Layers 4 and 5 on the IBM/370 mainframe. The company has
also offered several products for Layers 1 to 3 of OSI, mainly in­
terfaces for various equipment to connect to X.21 and X.25 com­

: munications networks. But the Open-systems 'I\'ansport and Ses­
sion Support software is IBM's first comprehensive offering for
OSI connectability above the Network Layer.

Currently the company is testing the X.400 messaging stan­
dard, a set of CCITT recommendations developed within the
OSI framework. IBM may attempt to provide a bridge between
its own document architectures and X.400. There will ultimately
be a host of applications to which IBM's massive array of equip­
ment will have to be connected, including electronic mail, teleiex,
videotex, and other such European services.
. Many observers feel that ultimately IBM will offer not only
full OSI implementations but also gateways to allow OSI to inter­
connect with existing SNA networks. "There will be a migration
of SNA to OSI standards, probably without a lot of flag
waving," said Folts of Omnicom. "They will offer two standards
to start with, then they will merge-they can afford to make ma­
jor leaps without worrying about backward compatibility." IBM
has also recently joined the Corporation for Open Systems.

The implications are profound. If IBM's equipment uses
essentially the same communications protocols as those of its

-J.v.

tions - but not the design for
implementing those functions - ensures compatibility between
different systems while leaving room for innovative engineering.

One communications design engineer told Spectrum that' 'the
only interesting question provoked by OSI is whether we end up
with communications provided by the computer industry, or
computers made by the communications industry." The answer
may not be clear for decades. But OSI will provide a giant step
toward the worldwide integration of computing and communica­
tion. From any perspective, Open Systems Interconnection pro­
mises to affect every part of both industries. It is, in the words of
the same designer, "the only game in town."

To probe further
Over 20 articles in the Proceedings of the IEEE for December

1983 cover virtually all aspects of Open Systems Interoonnection in
detail. This issue can be ordered from the IEEE Service Center, 445
Hoes Lane, Piscataway, N.J. 08854.

An index of standards relating to OSI is available from Om­
nicom Inc., 501 Church SI. NE, Suite 304, Vienna, Va. 22180. Pro­
posed, draft, and approved ISO.standards are available from the
American National Standards Institute, 1430 Broadway,New
York, N.Y. 10018.

The IEEE 802 LAN standard documents (802.2, 802.3, 802.4,
and 802.5) are available from the IEEE Service Center. For fur­
ther discpssion of IEEE 802 LANs, see "Local area nets: a pair
of standards," by Maris Graube in the June 1982 issue of Spec­
trum.For more details on ISDN, see "The innovation revolution
awaits," by Paul Wallich and Glenn Zorpette, in the Nov. 1985
issue of Spectrum. Copies of both issues are available from the
IEEE Service Center. •

4-140

Microcomputer Development 5
Systems

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

iMDX 430/431/440/441
INTELLEC® SERIES IV

MICROCOMPUTER DEVELOPMENT SYSTEM

• Gomplete Microcomputer Development
System for the IAPX 86/87/88/186/
188/286, the MCS® -80/85 and the

. MCS -48/51/96 Family Microprocessors

• Advanced, Friendly Human Interface
with Menu-Driven Function Keys, HELP,
and Syntax Builder/Checker
Capabilities for Increased User
Productivity

• Foreground/Background
MultiproceSSing for Simultaneous
Execution of Two Jobs by a Single
Userj Increasing System Throughput

• Multi-User Capability for Simultaneous
Operation by Two Users, Significantly
Reducing System Cost per User

.. Hierarchical File System Provides File
Sharing and Protection for Large
Software Projects

.. Software Compatible with Both Series
liE and Series IIIE Development
Systems

• Supports PL/M, Pascal, C, and
FORTRAN, and Basic High-Level
Languages as well as Assemblers

• Provides Program Management Tools
(PMTs), Advanced AEDIT Text Editor
and Supports Powerful PSCOPE
Symbolic, Source Level Debugger

• Can be Fully Integrated Into the NOS-II
Network Development System

The Intelleclfil Series IV is a new generation development system specifically designed for supporting the iAPX
family of advanced microprocessors. It also supports the MCS-80/85 and the MCS-48/51 families.

230625-1

Figure 1. InteUeclfil Series IV Microcomputer Development System

5-1
October 1986

Order Number: 230625-005

inter iMDX 430/431/440/441

Series IV provides a state-of-the-art, easy-to-use,
high performance host environment for running a
wide variety of hardware and software development
tools. A unique combination of tools provides an in­
tegrated microcomputer system design that results
in highly improved designer productivity and consid­
erable shortening of time to market. The length of
the compile-link-Ioad-debug-edit cycle is minimized
by the friendly human interface, powerful and easy­
to-use editors, a wide selection of language transla­
tors, source level debuggers, program management
tools. The advanced operating system features a hi­
erarchical file system, foreground/background multi­
tasking, and multi-user capability. Furthermore, the
Series IV can serve as a powerful workstation on the
NOS-II distributed processing network for high per­
formance milti-user software development. The net­
working architecture supports a distributed co-oper­
ative processing environment. Tasks like compila­
tions can be executed in the background mode or
exported to an idle workstation while the user is in
the middle of an interactive edit session. The key
benefit of this approach is a much higher system
throughput and programmer productivity than, for in­
stance, a system designed for raw-performance and
fast compilations only.

The Series IV is offered in four different versions,
providing a range of storage and performance op­
tions so that the user may select the configuration to
suit his/her stand-alone or networking development
station needs. The four versions are not only com­
patible with one another, but are also software com­
patible with the current generation enhanced Series
IIE/IlIE systems. Existing ISIS-compatible software
can run directly on the Series IV under the ISIS oper­
ation system. Finally, the NOS-II network provides
an ideal means for the various hosts, e.g., Series
II/III/IV to work with each other, protecting the us­
er's past, and present, and future investment.

FUNCTIONAL DESCRIPTION

Systems Components

The Intellec Series IV model 430/431 Microcomput­
er Development System is an easy-to-use high-per­
formance system in one package. I~ includes a CPU
board for each of the iAPX SS and MCS S5· proces­
sors and 640K bytes of system RAM. The system
has eight function keys included in its detachable
standard ASCII keyboard that also has cursor con­
trols and uppercase/lowercase capability.

5-2

These function keys are menu driven and, with the
use of the syntax builder/checker, greatly reduce
user keystrokes. Peripheral configurations include:
Model iMDX430WD, 440WD-two floppy disks, one
35MB Winchester; and Model iMDX 431, 441- one
floppy disk, one 10MB Winchester.

The 5.25" drives, a green phosphor screen, and a
detachable keyboard are all integrated into the sys­
tem. The main chassis has ten MUL TIBUS® slots
(three 12" x 12", seven 6%" x 12") power sup­
plies, fans and cables.

Operating System Environments/
Features

The Series IV provides both an SOB6/S0SS-based
development environment and an SOBO/SOS5 based
development environment. The host execution
mode is. the SOS6/S0SS, which runs under the iNDX
operating system. To execute an SOSO/SOS5 pro­
gram, the ISIS-IV utility is invoked, entering the SOS5
execution mode. All ISIS-compatible S-bit software
can thus be run directly on the Series IV, through a
user interface that is compatible with ISIS-based dec
velopment systems such as the Series II and the
Series III.

HIERARCHICAL FILE SYSTEM

The iNDX operating system employs a hierarchical
file system, providing file sharing and protection fea­
tures. The hierarchical structure allows logical
grouping of data. The structure resembles an invert~
ed tree. The root of the system is called the logical
system root. The system root logically "connects"
the volumes within the file system. Each volume cor­
responds to a physical mass storage device. Vol­
umes are further divided into files. Files can be ei­
ther directory files or data files. Directory files con­
tain references to further directory or data files. Data
files contain only data.

It is not necessary to know the physical location of
files to address them. Each file can beaddressed by
a path name, which is a character string recognized
by the operating system.

The iNDX file system provides file protection fea­
tures in the form of access rights. The owners of a
file may set their access rights to their own files and
separately set the WORLD's access rights (every­
one else) to their files. File may thus be shared and
also protected from accidental or deliberate ad­
dressing or destruction.

iMDX 430/431/440/441

SINGLE-USER FOREGROUND/
BACKGROUND PROCESSING

Foreground/background processing capability al­
lows the simultaneous execution of two jobs, result­
ing in improved system throughput. While a program
is executing in the background, another program
could be run in the foreground. For example, an in­
teractive editor could be executing in the foreground
while a compilation is taking place in the back­
ground.

A toggle key on the Series IV keyboard can be used
to instantaneously move from one region to the oth­
er, allowing interactive operations in both foreground
and background regions. For example, while a soft­
ware debug session is taking place in the fore­
ground, listing files can be displayed from the back­
ground.

MULTI-USER CAPABILITY

A low cost terminal can be attached to serial port 1.
This terminal operates as an independent system,
accessing one region, while the console and key­
board access the other region. In this mode two us­
ers will be able to perform software development
tasks simultaneously at a significantly reduced cost
per user.

The Human Interface

The Series IV is one of the easiest systems to learn
and to use, as its human interface is designed to be
friendly to both novice and expert users.

It offers eight softkeys that cut the number of key­
strokes required to perform a function. On-line HELP
provides instantaneous access to command defini­
tion. The menu-driven screen interface allows the
user to see where he/she is at and to select the next
operation. In conjunction with the soft function keys,
it allows single key command invocation. The syntax
builder and checker completes commands and in­
sures proper command syntax before execution.
Features such as type-ahead, auto-repeat keys, and
quick view file facility are some of the many other
human interface factors that improve programmer
productivity.

The AEDIT Text Editor

The AEDIT text editor is one of the most poweful
and easy-to-use editors available. It runs under the
iNDX opeating system and offers features such as:

• Display and scroll text on the screen

5-3

• Move to any character position in the text file or
to any point on the screen instantly

• Correct typing mistakes as you type

• Rewrite text by typing new characters over old
ones

• Make insertions and deletions easily at any point
in a file

• Find any string of characters and substitute an­
other string, querying the operator if desired

• Move or copy sections of text within a file or to/
from another file

• Create macros to execute several commands at
once, thereby simplifying repetitive editing tasks

• Edit two files simultaneously

• Indent text and delimit long lines automatically

• View lines over 80 characters long

Languages and Utilities

The Series IV supports popular high-level languages
such as PLlM, Pascal, FORTRAN, and C, as well as
powerful "high-level' macro assemblers such as
ASM86. In addition, iRMXTM utilities such as ICU-86,
PATCH utility, Files Utility, Crash analyzer and SDM
86 System Debug Monitor are supported by the Se­
ries IV.

The high-level language compilers produce code for
the target processors. They also contain runtime
floating-point arithmetic support for the 8087 Numer­
ic Data Processor.

PSCOPE, the High-Level
Language Debugger

The Series IV supports the PSCOPE debugger, an
interactive, symbolic debugger for FORTRAN, Pas­
cal, and PL/M programs. Operations are performed
on source statements, procedure entry points, la­
bels, and variables, as opposed to machine instruc­
tions memory addresses. PSCOPE improves pro­
ductivity in the debug phase of development and
produces more reliable software. It allows the user
to peform extensive tests and consistency checks
on the programs, and it automates much of the test­
ing.

In-Circuit Emulators

The Series IV supports a host of ICE modules in­
cluding the powerful 121CETM for iAPX family-based

iMDX 430/431/440/441

development. These tools allow the debugging of
microcomputer system hardware and software con­
currently, saving considerable development cost
and time.

Network Capability

The Series IV may be used as a high-performance
workstation for use on the NDS-II Network Develop­
ment System. It has complete access to all the net­
work resources and facilities on the NDS-II. A stand­
alone Series IV can be upgraded to an NDS-II work­
station with the addition of an Ethernet Communica­
tion Board Set. The background partition of the Se­
ries IV may be made available as a network re­
source.

When configured as an NDS-II workstation, the Se­
ries IV can also serve as a host for up to four iMDX-
590 ISIS cluster boards, providing a cost effective
means for supporting. incremental 9-bit software
workstations on the network.

System Configurations

Series IV Systems are available in 110V, 60 Hz;
220V and 100V, 50 Hz models.

STAND-ALONE

iMDX 431
Stand-alone Intellec Development system with
detachable keyboard and integral green CRT. In­
cluded in the main chassis is one 5.25" floppy
and one 5.25" 10MB Winchester drive.

iMDX 441 Kit
The same configuration as the iMDX 431, this
model has an additional higher performance
9096 CPU.

NETWORK

IMDX 430WS Kit
A two floppy workstation that includes Ethernet
NDS-II boards for network operation.

iMDX 440WS Kit
The same configuration as the iMDX 430WS, this
system includes a high-performance option for
resident 9096 execution and faster performance.

5-4

iMDX 430 TO 440 UPGRADE

IMDX 434
High-performance add-on option. Converts a
model iMDX 430 or iMDX 431 to a model iMDX
440 or iMDX 441.

NETWORK UPGRADE

iMDX 456
Communication board set converts any Series IV
stand-alone system to an NDS II workstation.

ND2TLB

The NDSII/Series IV Toolbox is a software only
product that contains a valuable collection of tools
developed for the NDSII and SIV user. These tools
have been designed to make hybrid development
system environments work together and to move ful­
ly automate the software developer's task. Many
tools are provided with source to allow the engineer
to customize these products to their own environ­
ment.

SECOND-USER TERMINALS

The following terminals have been tested and found
to be interface-compatible with the Series IV CPIO
board and can be used as second-user terminals.

LEAR SEIGLER, Model ADM 3A
TELEVIDEO, Model 910+

The following terminals have been successfully test­
ed for interface-compatibility, however they do. not
meet Intel environmental specifications: adverse
electrostatic conditions may produce unpredictable
screen output, requiring terminal or system reset.

Televideo, Model 925, 950
Adds Viewpoint 3A +
Qume102
Hazeltine 1510

PHYSICAL CHARACTERISTICS
Chassis
Width
Height
Depth
Weight

26.5" (67.3 cm)
16.5" (41.9 cm)
19.5" (47.0 cm)
51 lb. (23.4 kg)

Keyboard
20.0" (50.9 cm)

3.0" (7.6 cm),
9.0" (20.3 cm)

7 lb. (3.1 kg)

intJ iMDX 430/431/440/441

ELECTRICAL CHARACTERISTICS

DC Power Supplies
Volts Supplied

+5.1 ± 1%
+ 12 ± 5%
-12± 5%
-10 ± 5%
+ 12 ± 5%

AC Requirements

110V, 60 Hz
220V, 50 Hz

Amps Supplied

45.0
3.0
2.0
0.5
5.0

Environmental Characteristics

Operating Temperature: 10°C to 35°C (50°F to 95°F)
Humidity: 10%-95% (non-condensing)

Documentation Supplied

Equipment Supplied

Series IV System

Series 11/111 to Series IV link software diskettes and
cable •

Series IV Software

- iNDX OS

- ISIS IV OS

- AEDIT

- Macroassemblers and utilities

- ICETM software

- Prom Programmer Software

- Debug 88

- Program Management Tools (MAKE, SVCS)

- Diagnostics

• Intel/ec Series IV Microcomputer Development System Overview, Order Number 121752

• Intel/ec Series IV Microcomputer Development System Instal/ation and Checkout Manual, Order Number
121757

• Intel/ec Series IV Operating and Programming Guide, Order Number 121753

• Intel/ec Series IV Pocket Reference, Order Number 121760

• Intellec Series IVC ISIS-IV User's Guide, Order Number 121880

• Intellec Series IV ISIS-IV Pocket Reference, Order Number 121890

• AEDIT Text Editor User's Guide, Order Number 121756

• AEDIT Text Editor Pocket Reference, Order Number 121767

• DEBUG-BB User's Guide, Order Number 121758

• iAPX BB Book, Order Number 210200

• iAPX B6, BB User's Manual, Order Number 210201

• iAPX B6, BB Family Utilities User's Guide, Order Number 121616

• MCS-BO/B5 Family User's Manual, Order Number 121506

• MCS-BO/B5 Utilities User's Guide for BOBO/BOB5-Based Development Systems, Order Number 121617

• BOBO/BOB5 Floating-Point Arithmetic Library User's Manual, Order Number 9800452

• An Introduction to ASMB6, Order Number 121689

• ASMB6 Macro Assembler Operating Instructions for BOB6-Based Systems, Order Number 121628

• ASMB6 Language Reference Manual, Order Number 121703

• ASMB6 Macro Assembler Pocket Reference, Order Number 121674

5-5

iPDSTM
PERSONAL DEVELOPMENT SYSTEM

• Completely Integrated Computer • Desk Top Computer for CP/M* Based
System Packaged in a Compact Applications
Rugged Enclosure for Portability • 640 KByte Integral Flexible Disk Drive;

• Comprehensive Design Tool for 8-Bit Expandable to 2.56 Million Bytes
Microprocessors and Microcontrollers • Powerful ISIS-PDS Disk Operating

• Microprocessor Emulator (EMV) . System with Relocating Macro-
Functions Assembler, and CRT-Based Editor

• EPROM Programming Functions • Optional High Level Languages

• Dual Processing Capability FORTRAN 80, PL/M 80, PL/M 88/86 and
Basic

• Expandable using Standard
Software Compatible with Previous MUL TIMODULETM Cards • Intellec® Systems

• Bubble Memory Option

The iPDS Development System is a completely integrated computer system supporting the development of
products incorporating Intel microcontrollers or a-bit microprocessors. Used with its optional emUlation vehi­
cles (EMVs) and iUP PROM Programming Personality Modules, the iPDS system provides comprehensive
support for integrated hardware and software development, product testing during manufacture, and customer
support after the product is in the field. The unit is designed with portability in mind permitting the iPDS
Development System to be conveniently transported around the laboratory and into the field. Extensive soft­
ware is available thereby simplifying and speeding up product development. The software is deSigned to make
the iPDS system easy to use for the novice as well as satisfying the needs of the experienced user. Used with
the optional CP/M operating system, the iPDS system becomes a desk top computer that can execute CP/M
compatible application programs.

'Registered Trademark of Digital Research Inc.

5-6

220390-1

October 1986
Order Number: 210390-003

inter iPDSTM.

FUNCTIONAL DESCRIPTION

Hardware Components

The iPDS case comprises two high impact, shock
resistant, poly-carbonate plastic enclosures, that
when fitted together, provide a compact and fully
enclosed unit. The main enclosure houses a CRT,
flexible disk-drive, power supply, and base processor
printed board assembly. The second enclosure
houses the keyboard. On the right side of the unit a
spring loaded door allows insertion of an emulator
module or an iUP PROM programming module. On
the top, a hinged panel covers the storage space for
cables and plug-in modules. The carrying handle is
attached to the front of the main enclosure and folds
away when the system is in use. In the closed posi­
tion, the iPDS system is 8.15" high, 16" wide, 20"
long, and conveniently fits under an airline seat. The
basic unit weighs 27 pounds.

BASE PROCESSOR PRINTED BOARD
ASSEMBLY·BPB

The Base Processor Board (BPB) contains the pow­
erful 8085A microprocessor, 64 Kbytes of RAM,
CRT/keyboard controller, floppy disk controller, seri­
al I/O port, and parallel 1/0 port. There are inter­
faces for connection to the Optional Processor
Board, MUL TIMODULE Adaptor Board, and the
EMV /PROM Programming Adaptor Board.

INTEGRAL CRT

The CRT is a 9 inch green phosphor (P42) unit that
displays 24 lines of 80 characters/line with a nomi­
nal 15.6 KHz vertical sweep rate. The CRT control­
ler, based on an Intel 8085 and 8275 Programmable
Controller Chip is located on the BPB. A single cable
containing the signals, power, and ground connects
it to the CRT. The contrast adjustment is accessible
at the rear of the unit. A pull out bail allows the CRT
to be placed in a comfortable operating position of
24 degrees to the horizontal. The standard ASCII set
of 94 printable characters is displayable, including
upper and lower case alpha characters, and the dig­
its 0 through 9. Another 31 characters for character
graphics are defined. If the Optional Processor
Board is installed, the second processor shares the
CRT with the base processor. The bottom part of the
screen is assigned to the processor communicating
with the keyboard. The top part of the screen dis­
played in reverse video is assigned to the other
processor. The number of lines appearing on the
screen for each processor can be completely con­
trolled by the user via speCial function keys.

5-7

KEYBOARD

The keyboard is housed in a separate enclosure and
a flat shielded cable connects it directly to the key­
board controller on the BPB. This 5" cable provides
the flexibility to place the keyboard in a comfortable
operating position relative to the main enclosure. A
total of 61 keys include a typewriter keyset, cursor
control keys, and function keys. Auto repeat is avail­
able for all keys and is implemented by the keyboard
controller. If the Optional Processor Board is in­
stalled, it shares the keyboard with the base proces­
sor. Initially, the keyboard is aSSigned to the base
processor. It can be assigned to the optional proces­
sor by pressing the special function key, FUNC­
HOME. Subsequent use of the FUNC-HOME key al­
ternates the keyboard assignment between the two
processors.

INTEGRAL FLOPPY DISK DRIVE

The integral floppy disk drive is a 5%" , double-sid­
ed, 96 tracks-per-inch drive. Diskettes are written
double-sided, double density and' provide 640
Kbytes of formatted storage in the built-in drive. The
floppy disk controller located on the BPB is based
on the Intel 8272 floppy disk controller chip, and can
control three additional drives. The ISIS-PDS operat­
ing system supports the disk drives. If the Optional
Processor Board is installed, the integral disk drive is
shared by the two processors or it can be exclusive­
ly assigned to one of the processors. When shared,
only one processor can access a drive at a time.
However, the disk drive sharing is transparent to the
user since the ISIS-PDS operating system controls
the accessing of the drive and automatically re­
solves file contention.

INPUT/OUTPUT

The iPDS Development System contains two 110
channels located at the rear of the base enclosure
and wired to the I/O ports on the base processor
board. The serial channel is an EIA RS-232-C inter­
face for asynchronous and synchronous data trans­
fer and is based on the Intel 8251 USART and 8253
timer. The interface can be software configured us­
ing the SERIAL command. Full duplex asynchronous
operation from 110 to 19.2K baud is selectable.

The parallel I/O interface is an 8-bit parallel I/O port
supporting a Centronics type printer. The interface is
implemented with an Intel 8255 Programmable Par­
allel Interface chip. A maximum transfer rate of 600
cps is supported.

iPDSTM

CPU

8085A-2

LINE PRINTER
INTERFACE

SERIAL
INTERFACE

BOOT!
DIAGNOSTIC

2K

PROGRAMIIABLE
8AUDAATE

GENERATOR

EXTERNAL
FLOPPV

CONNECTOR

INTERNAL DRIVE
51/4" FLOPPY

840KB

OPTIONAL'
PROCESSOR

PORT

EMVIPROM
PROGRAMMER

PORT

MULTIMODUlEN

PORT

210390-2

Figure 1. iPDSTM Block Diagram

Software Components

ISIS-PDS OPERATING SYSTEM

The ISIS-PDS operating system included with the
basic iPDS system is deSigned with a major empha­
sis on ease of use and simplification of microcom­
puter development. It is based on the proven ISIS II
operating system available on all Intellec Microcom­
puter Development Systems.

ISIS-PDS has a comprehensive set of commands to
control system operation. These commands can be
divided into five functional groups.

• System Management Commands

• Device Management Commands

• File Management Commands

• Program Development Commands

• Program Execution Commands

5-8

Table 1 summarizes these commands. The HELP
commands are especially useful, providing the user
with on-line assistance, eliminating frequent refer­
encing of the manual.

ISIS-PDS CREDITTM TEXT EDITOR

Included with iPDS is the Intel CRT-based text edi­
tor, CREDIT. It is used to create and edit ASCII text
files on the Intel Personal Development System.
Once the text has been edited, it can be directed to
the appropriate language processor for compilation,
assembly, or interpretation. CREDIT features, shown
in Table 2, are easy to use and simplify the editing
and manipulation of text files.

The two editing modes in CREDIT are screen mode
and line mode. In screen mode and text being edited
is displayed on the CRT and corrected by either typ­
ing the new text or using the single stroke character

inter

HELP

?

FUNC-R

FUNC-S

FUNC-T

iPDSTM

SYSTEM MANAGEMENT COMMANDS

displays help information for operating system commands.

displays the version number of the current Command Line Interpreter.

software resets the processor to which the keyboard is currently assigned.

switches the CRT display speed between a slow and fast speed.

switches the keyboard between typewriter mode and locked upper case mode.

FUNC-HOME switches the current foreground and background processors.

FUNC- i increases the display for the foreground processor by one line and decreases the back­
ground processor display by one line.

FUNC- .!

IDISK

ASSIGN

FUNC<n>

/

SERIAL

AnACH

DETACH

DIR

AnRIB

COPY

DELETE

RENAME
@

LIB
LINK
LOCATE

HEXOBJ

OBJHEX

DEBUG

decreases the display for the foreground processor by one line and increases the back­
ground processor display by one line.

DEVICE MANAGEMENT COMMANDS

initially prepares disks and bubble memory for use with the operating system.

displays or assigns the mapping of physical to logical devices.

re-assigns the system output to the CRT display screen.

changes the system input from the keyboard to the file named JOB <n> CSD where <n>
is a one-digit number from 0 to 9.

changes the system input from the keyboard to a file or device which is specified by the
user.

initializes the serial I/O port.

assigns a row of mullimodules to a processor.

releases a row of multimodules from a processor.

FILE MANAGEMENT COMMANDS

displays a list of the files stored on a disk or on bubble memory.

displays and modifies the attributes of a file.

transfers files and appends files.

removes files from the disk.

changes the filename and/or extension of a file.

displays the contents of a file on the screen.

PROGRAM DEVELOPMENT COMMANDS

allows the user to manage a library of MSC-80/85 program modules.

combines a number of object modules into a single object module in an output file

converts relocatable object programs into absolute object programs by supplying memory
addresses throughout the program.

converts a program from hexadecimal file format to absolute object format.

converts a program from absolute object format to hexadecimal file formal.

provides a minimum set of 8080/8085 debugging commands.

Table 1. Functional Summary of ISIS-PDS Commands

5-9

intJ iPDSTM

PROGRAM EXECUTION COMMANDS

<filename> loads and executes the object program named <filename>.

SUBMIT reads an input SUBMIT file, creates a command file containing ISIS commands, and exe­
cutes commands in sequence from the file created.

• is a fast form of the SUBMIT command. One command line is read from the SUBMIT file,
transformed into an ISIS command in memory, and executed. No intermediate file is created.

/ reads ISIS commands from a disk job file and executes them in sequence. The / command
is also considered a device management command.

JOB stores a sequence of frequently used ISIS commands in a job file as they are entered from
the keyboard without executing them until the sequence is completely entered. Two job files,
ABOOT.CSD and ElBOOT.CSD, deserve special mention. If either of these files is present
(ABOOT.CSD for Processor A and BBOOT.CSD for Processor B) when the system is initial~
ized, commands are automatically executed from the file. This feature can be used to config­
ure a system.

ENDJOB stops the automatic execution of commands from a JOB file and returns control to the
keyboard.

ESC edits the previously entered or the current command line and allows the new command line
to be executed.

Table 1. Functional Summary of ISIS"PDS Commands (Continued)

control keys. Single character control keys are used
for changing, deleting, inserting, paging forward, and
paging backwards.

In command line mode, high level commands are
used for complex editing. Examples of the functions
available in the command line mode are searching,
block moves, copying, macro definitions, and manip­
ulating external files.

The AEDIT text editor used in all Intellec Develop­
ment Systems, is available as an option for the iPDS .
System.

5-10

8080/85 MACRO ASSEMBLER

The iPDS also includes the INTEL 8080/85 Macro
Assembler. This marco assembler translates pro­
grams written in 8080/8085 assembly language to
the machine language of the microprocessor. It also
produces debug data. The debug utility can be used

iPDSTM

CREDITTM Editor features two editing modes: cursor-driven
screen editing and command line context editing

CRT Editing Includes:

• Displays full page of text

• Single control key commands for insertion, deletion, page forward and backward

• Type,over correction and replacement

• Immediate feedback of the results of each operation

• The current state of the text is always represented on the display

Command Line Editing Includes:

• String search and substitute

• String delete, change, or insert

• Block move

• Block copy

• User-defined macros

• External file handling

• Change CREDIT features with ALTER command

• Conditional iteration

• Use-defined tab settings

• Symbolic tag positions

• Automatic disk full warning

• Runs under ISIS-II SUBMIT facility

• Option to exit at any time with original file intact

• HELP command

Table 2. Summary of CREDITTM Editor Features

to troubleshoot the assembler-produced machine
language using features such as software break­
points, single step execution, register display, disas­
sembly, and 1/0 port access. This reduces the time
spent troubleshooting the software and supports
modular program development.

UTILITIES

Utility programs included with iPDS are: DEBUG, LI­
BRARY, LINK and LOCATE. These programs aid in
software development and make it possible to com­
bine programs and prepare them for execution from
any memory location.

DIAGNOSTICS

The iPDS System includes system diagnostic rou­
tines executed during system initialization. These
routines verify the correct operation of the system
and aid the user in fault isolation. Any failures in the
basic system components, base processor, CRT I
Keyboard, optional processor, or the power supply

5-11

are indicated by four diagnostic LED indicators
mounted on the base processor boards. These
LED's are viewed through the spring loaded door on
the right side of the unit. When basic system compo­
nents are operational, additional errors are indicated
by messages to the CRT display screen.

After ISIS-PDS is loaded and started, additional con­
fidence tests are available to verify correct system
operation. These tests included on the system disk,
run as utilities under the operating system and can
be selectively executed to verify individual functions
on the main processor board, optional processor
board, bubble memory MULTIMODULEs and EMVI
PROM programmer adaptor.

iPDSTM HARDWARE OPTIONS

Add-On Mass Storage

Mass storage can be increased by adding up to
three external flexible disk drives. This adds 640

infef iPDSTM

Kbytes of formatted mass storage per additional
drive. The maximum disk storage available on iPDS
is 2.56 Mbytes. The optional drive is vertically
mounted and housed in a plastic enclosure with its
own power supply. A 20" cable connects the option­
al floppy drives to the external disk drive connector
on the rear of the iPDS system.

The iPDS system also supports Intel's iSBXTM 251
Bubble Memory MUL TIMODULE. A maximum of two
bubble MUL TIMODULEs can be added. Each con­
tain 128 Kbytes of non-volatile memory. Bubble em­
ory MUL TIMODULEs can only be added to a system
containing the MUL TIMODULE Adaptor Board. The
bubble memory is treated by the ISIS-PDS and
CP/M operating system as an additional disk drive
with the same file structure and directory structure
as a diskette. The bootstrap ROM is programmed to
boot the operating system from the bubble. The
iSBX 251 MUL TIMODULE has no moving parts,
making it ideal for applications where ruggedness is
an important consideration. The bubble memory is
also recommended for systems requiring portability,
since it is completely enclosed in the iPDS main unit.

Optional Processor Board

The Optional Processor Board provides dual pro­
cessing capabilities and increases the processor
power of the iPDS system. A different program can
be run on each of the processors at the same time,
providing a greater processing throughput. Each
processor operates under ISIS-PDS control. The
Optional Processor Board also provides a conve­
nience feature for accessing directories, file displays
and HELP without interrupting the main processor
task.

The Optional Processor Board contains functions
identical to the base processor. There is an 8085A
CPU with 64 Kbytes of dynamic RAM and an addi­
tional 2 Kbytes of bootstrap ROM.

Both processors share the keyboard, the CRT dis­
play unit, the disk drives, and the MUL TIMODULEs.
Serial or parallel 1/0 ports can be added to the op­
tional processor through iSBX MUL TIMODULEs.
Each processor runs the ISIS-PDS operating system
and applications programs in its own 64 Kbyte mem­
ory space, independent of the other processor. Spe­
cial hardware function keys are provided to facilitate
procedures necessary in the dual processing envi­
ronment. These procedures include independent ini­
tialization of each processor, sharing of the CRT dis­
play, and assignment of the keyboard. The ISIS-PDS
commands facilitate sharing of disk drives, MUL TI­
MODULEs, and files.

5-12

Emulation Vehicles (EMVs)

Emulation vehicles (EMVs) for use with the iPDS De­
velopment System, are available for debugging a va­
riety of Intel microprocessor families, such as the
8088, 8051, or 8044. Emulators consist of hardware
and software. The EMV hardware is inserted into the
EMV liUP Personality Module port of the iPDS Sys­
tem. The optional EMV IProm Programming Adaptor
Board is required to install the EMV's. The emulator
software runs under the ISIS-PDS operating system
and provides the user's interface to the emulator.

An EMV contains features used to debug microproc­
essor designs quickly and efficiently. It provides a
controlled environment for exercising a user deSign
and monitoring the results. It exactly duplicates the
behavior of a target microprocessorlmicrocontoller
in the user's prototype system while providing infor­
mation to the user to aid in integrated hardware and
software development. EMV's provide features for
real time full speed emulation as well as single step
execution of a user's design. Breakpoint features al­
low the user to specify a portion ofthe program to
execute and then stop for interrogation. During exe­
cution, the EMV automatically collects execution his­
tory in the trace buffer. Once stopped at the break­
point, the emulator acts as a window to the internal
registers and logic signals inaccessible from the
connector pins. This provides for examination and
alteration of the internal state of the microprocessor.

The emulator accepts symbolic debug data, such as
symbol tables produced by the language translators.
Therefore, when debugging, the programmer can
reference locations in the program elements with
the symbol names used in the source program, rath­
er than absolute memory addresses.

Another advantage of using an emulator is function­
al prototype hardware is not required to begin soft­
ware debugging. The emulator duplicates the behav­
ior of the target microprocessor and provides some
resources, such as memory, that can be used until
the hardware prototype is closer to completion.

The software controlling the emulator comprises a
set of commands the user enters to directly control
interactive debugging sessions. The command fami­
lies are listed in Table 3. Also, sequences of emula­
tor commands can be executed automatically from a
file, providing a basis for manufacturing and field test
routines. '

inter IPDSTM

Emulation Commands
BR-Display breakpoint menu

BRO, 1, 2, 3-Change/display breakpoint register for execution address

BRR-Change/display breakpoint register for execution range

BRB-Change/display break on branch

BV-Change/display break on, value

BC-Clear all breaks

TBO, 1, 2, 3-Enable/disable display by bit value

TRO, 1, 2, 3-Enable/disable display by execution address

TV-Enable/disable display by register value

TR-Enable/disable display of registers

TS-Enable/disable display of PSW

TD-Enable/disable display of code disassembly

STEP-Enter slow down emulation mode

GO-Enter real-time emulation mode

Advanced Commands
MACRO-define, and display macro

~~~~::} CONTROL CONSTRUCTS 

WHILE 

UNTIL 

FUNCTION KEY-invoke macro assigned to function key 

Utility Commands 
HELP-Displays command syntax 

LOAD-Loads object file in mapped memory 

LIST-Generates copy of emulation work session 

DEFINE-Defines symbol or macro 

SYMBOL-Displays symbols 

REMOVE-Deletes symbol or macro 

ENABLE/DISABLE-Control for expanded display 

EVALUATE-Evaluate any expression 

SUFFIX/BASE-Sets input and display numeric base 

SAVE-Save code memory to file 

RESET-Resets emulation processor 

EXIT-Terminate emulation session 

Display/Modify Commands 
REGISTER-Menu for change/display registers 

MEMORY-Menu for change/display memory 

DUMP-Display memory as ASCII and Hexadecimal 

ASM/DASM-change/display code memory as assembly language mnemonics 

Table 3. Summary of Typical Emulator Commands 

5-13 



iPDSTM 

Plug-in emulators with identical user characteristics 
and software to Intel's EMV products are also avail­
able from third party vendors for additional micro­
processors, such as the 8085. 

iUP Personality Modules 

The iPDS System accepts most Intel PROM Pro­
gramming Personality Modules from our 
iUP-200Al201A product line. These modules pro­
vide all the hardware and firmware needed for pro­
gramming entire families of Intel EPROMS, 
E2PROMS, and microcontrollers containing on-chip 
EPROM. The optional EMV /PROM Programming 
Adaptor Board is required to use the iUP Personality 
Modules. Intel Prom Programming Software (IPPS) 
runs under the ISIS-PDS operating system and is 
included with the EMV/PROM Programming Adap­
tor Module. This software provides a set of com­
mands to control the programming and verification 
of the devices. 

EMV IPROM Programming Adaptor 
Board 

The EMV /PROM Programming Adaptor Board pro­
vides an interface between the Base Processor 
Board and EMV or PROM programming modules. 
This option is required before either of these mod­
ules can be operated with the iPDS. 

MUL TIMODULETM BOARDS 

The iPDS is expanded by utilizing a variety of Intel 
iSBX MUL TIMODULE boards. The MUL TIMODULE 
Adaptor Board allows a maximum of four MUL TI­
MODULE boards to be added. MUL TIMODULE 
boards are small, special function boards using the 
iSBX bus to interface to the CPU. The available iSBX 
MUL TIMODULE boards include: 

• iSBX 251 Bubble Memory MUL TIMODULE Board 

• iSBX 350 Parallel Port MUL TIMODULE Board 

• iSBX 351 Serial Port MUL TIMODULE Board 

• iSBX 488 IEEE-488 Interface MUL TIMODULE 
Board 

• iSBX 344 BITBUSTM Controller MUL TIMODULE 
Board 

The Insite™ Software Library contains many soft­
ware routines for these MUL TIMODULEs. The iPDS 
user manual contains technical information for writ­
ing custom I/O driver routines. 

MUL TIMODULETM Adapter Board 

The MUL TIMODULE Adapter Board provides an in­
terface between the base processor board and the 
MUL TIMODULE options. It is required before any 
MUL TIMODULE options can operate with the iPDS 
system. 

210390-3 

Figure 2.iPDSTM System wit Ii Optional Modules Installed 

5-14 



inter iPDSTM 

iPDSTM SOFTWARE OPTIONS 

High Level Languages 

High level languages help reduce system design ef­
fort and maintenance cost by allowing the program­
mer to design software at a more abstract level. A 
block structured language. PL/M 80, is available for 
the 8085, along with FORTRAN 80, PASCAL 80 and 
BASIC 80. 

Software Support for Additional 
Microprocessor 

Assemblers and high level languages for different 
target microprocessors are available to aid the soft­
ware development effort. These include ASM-51, 
PLIM 88/86, ASM 88/86, ASM 8048/49, and PLIM 
51. 

General Purpose Computing Software 

The iPDS can also be used as a general purpose 
desk top computer. The widely used CP/M micro-

COMMAND 

computer operating system is available for the iPDS 
from Intel. It supports iPDS systems with single or 
multiple disk drives, and iPDS systems using bubble 
memory for mass storage. CP/M compatible soft­
ware will come from three sources; vendors of 
CP/M based software programs, independent soft­
ware makers, and Intel. The software programs 
available from Intel include high level languages, 
word processing software and an electronic spread­
sheet. 

File Transfer Package 

Transferring files between the iPDS system and any 
of Intel's Intellec Development System is accom­
plished using the iPDS-FTRANS option. This prod­
uct uploads/downloads files via the RS232C serial 
link and under control of software running on both 
the iPDS and the Intellec system. Data transmission 
is monitored and any errors are displayed. Transfer 
rates up to 19.2K baud can be selected. FTRANS 
can also be used to transfer .files between remote 
systems using telephone modems. 

LINE 
INTERPRETER 

HIGH 
LEVEL 
LANGUAGES 

MACRO 
ASSEMBLERS 

DEBUG 
MONITOR 
COMMANDS 

PROM 
PROGRAMMING 
COMMANDS 

Figure 3. Overview of iPDSTM System Software Environment 

5-15 

210390-4 



inter IPDSTM 

SPEciFICATIONS 

Host Processor 
8085A-2 based, operating at 5.0 MHz 

Memory 
RAM-64K of user memory on BPB 
ROM-2K (Boot/diagnostic) 

1/0 Interfaces 

110 Serial Channel; RS-232 at 110-1B.2K baud 
(asynchronous) or 150-56K baud (synchronous). 
Baud rate and serial format software controlla­
ble .. 

110 Parallel Channel; 8-bit parallel supporting Cen­
tronics • type printer. Transfer rate up to 600 
characters per second. 

Data Transfer Rate 
250 Kbits/sec. 

System Access Time 
Track to Track: 6 msec. 
Rotational Speed: 300 rpm 
Motor Start Time: 0.4 sec. max 

Media 
51,4" disk with 1 index hole 

Physical Characteristics 

Closed Unit (without options) 

Height: 8.15 in. 

Width: 16 in. 

Depth: 20 in. 

Weight: 27 Ibs. 

Power Requirement 

Input Voltage: 
115/220 VAC Selectable Single Phase Memory Access Time 

RAM"450 ns. 
115 VAC (BOVACf132 VAC) 47-63 Hz, 1 amp 
220 VAC (180 VAC-264 VAC) 47-63 Hz, 0.5 amp 

Integral Flexible Disk Drive 

System Storage Capacity 
. OS/00-640 Kbytes (formatted) 

Optional Electrical Requirements 
Optional Electrical Requirements (Max. In Amperes) 

Power Supply Optional EMV/PROM MULTIMODULETII ISBXTII 350 ISBXTII 351 

Voltsge Processor Adaptor Adaptor BOARD BOARD 

+5 volts 1.0· 0.3 0.6 0.62 0.53 

+12 volts - 0.18 - - 0.03 

-12 volts - 0.05 - - 0.03 

ISBXTM 251 ISBXTII 488 

BOARD BOARD 

0.37 0.6 

0.4 -
- -

Maximum option power requirements must not exceed 33.6 watts for any configuration. 

5-16 

EMVs IUP 

2.5 0.7 

- 0.85 

- 0.4 



iPDSTM 

ENVIRONMENTAL 
CHARACTERISTICS 

Operating 

Temperature: 10°C to 30°C 

Relative Humidity: 20% to 80% 

Maximum wet bulb: 25.6°C 

Non-Operating 
Temperature: 40°C to 62°C 

Relative Humidity: 5% to 95% (non-condensing) 

Operating Vibration 

o to 0.004 inches peak to peak excursion from 10 to 
55 Hz. 

Non-Operating Shock 

15 G with shock wave of 20 ms duration, % sine 
wave. 

Equipment Supplied 

iPDS System Enclosure including: 

• Base Processor Board (BPB) 

• CRT 1 Keyboard 

• Integral Flopy Disk Drive 

• System Diskette with ISIS-PDS operating system 

• MSC-80/MSC-85 Macro Assembler 

• Debug-85, Link, Locate and Library Utilities 

• CREDIT CRT-based text editor 

• System confidence tests 

5-17 

iPDS System Literature Kit including: 

• Intel Personal Development System User's Guide 
162606 

• Intel Personal Development System Pocket Ref­
erence 162607 

• 8080/8085 Assembly Language Programming 
Manual 9800301 

• 8080/8085 Assembly Language Reference Card 
9800438 

• MSC-8085 Utilities User's Guide for 8080/8085 
Based Development System 121671 

• ISIS II 8080/8085 Macro Assembly Operating 
Manual 9800292 

Reference Manuals 

• ISIS-II System User's Guide 9800306 

• iPDS Demonstration Kit 210745-002 

ORDERING INFORMATION 

Part Number 
iPDS-100 

iPDS-110 

iPDS-120 

iPDS-130 

iPDS-140 

iPDS-FTRAMS 

Description 
iPDS System 

Optional Processor Board 

MUL TIMODULE Adapter Board 

Add-On Disk Drive 

EMV IPROM Programming 
Adaptor Board 

iPDS/iMDX File Transfer Pack­
age 

iPDS-PROTO KIT Design aid for developing plug­
ins 



THE iPDSTM·130 OPTIONAL FLEXIBLE 
EXTERNAL DISK DRIVE FOR THE iPDS 
PERSONAL DEVELOPMENT SYSTEM 

III Each Disk Drive Provides 640 Kbytes of 
Formatted Mass Storage 

III Daisy-Chaining up to 3 Disk Drives 
ProVides a Total of 2.56 Mbytes 
Storage Capacity 

III Each Disk Drive Has Its Own Power 
Supply· 

III Disk Drives are Industry-Standard 5% 
Inch Flexible Diskettes as the Storage 
Medium 

III Disk Drive Has Transfer Rate of 
4 !LsI Bit, a Recording Pensityof 5922 
bpi, and Dual Heads 

.. Use of External Disk Drive Eliminates 
Disk Swapping when Making Duplicate 
Disks 

When using the iPDS personal development system, applications may be developed that require more storage 
capacity than is provided by the integral disk drive of the system. The iPDS-130 optional external flexible disk 
drive provides the needed additional mass storage. Up to three disk drives may be added to the iPDS system, 
with each additional disk drive providing 640 Kbytes of (formatted) capacity. This means that a maximum disk 
storage of 2.56 Mbytes is available. The photograph below shows the iPDS-130 external disk drive with the 
iPDS system. Figure 1 shows some features of the iPDS-130 disk Drive. 

5-18 

231020-1 

October 1986 
Order Number: 231020-001 



inter iPDSTM 130 

f<t> 

<t> 
J~ 

ii 
II 

~ \9> 

:8 
FOR CONTINUED 

MAIN 
POWER 

p~~~~~m~t~~~Nl~T @ J2 
WITH SPECIFIED TYPE F-=g 
AND RATING OF FUSE 0

1 
ACPOWER I 

i~i ii Fir ~~1~1 0
1 
i 

240 50 .5A ~ 

@ 

SEE BOTTOM OF UNIT 
FOR LISTING AND LABELS 

=r~ 

231020-2 

Figure 3. iPDSTM·130 Optional Flexible External 
Disk Drive Rear Panel 

Power Supply 

The flexible disk drive unit contains a linear power 
supply with a maximum power input of 40 watts. The 
output consists of two regulated dc voltages (5V and 
12V). 

I/O SPECIFICATIONS 

Floppy Disk Interface 

The floppy disk interface controls up to four 5-1,4 in. 
double-sided 96 tpi floppy disk drives. 

The floppy disk is a 5-1,4 in., 96 tpi, dual-headed unit. 
With a total of 80 tracks of sixteen 256-byte sectors 
per side, the formatted capacity of the unit is 640 
Kbytes. The interface is the industry standard for 
5-1,4 in. drives. 

OPTIONAL FLEXIBLE EXTERNAL 
DISK DRIVE SPECIFICATIONS 

The specifications for the optional flexible external 
disk drive are given in Tables 1 through 4. 

5-19 

Table 1. Environmental Characteristics 

Temperature 
Operating 
Non-operating 

Humidity 
Operating 

Non-operating 

Cooling 

10°C to 35°C 
-40°C to 62°C 

20% to 80% 
non-condensing 
5% to 95% 
non-condensing 
Up to 60 watts are dis­
sipated by fan cooling 

Table 2. Physical Characteristics 

Width 
Height 
Depth 
Weight 

6.1 in (155.4 mm) 
7.3 in (174.2 mm) 
13.8 in. (350.6 mm) 
11.0 Ibs. (5.0 kg) 

Table 3. Electrical Characteristics 

Input Power 

Drive Power 
Logic Power 
Adjustable Range 
Power Dissipation 

90 VACto 132 VAC, 
47 Hz to 63 Hz; or 
198 VAC to 264 VAC, 
47 Hzto 63 Hz 
12VDC ±1% 
5 VDC ±1% 
± 5%, drive and logic 
25 watts average, 34 
watts maximum 

Table 4. Functional Specifications 

Transfer Rate 
Rotational Speed 
Track Density 
Number of Cylinders 
Number of Sides 
Recording Density 
Encoding Method 
Unformatted Capacity 
Formatted Capacity 
Motor Start Time 
Track·to-Track Step Rate 
Side-to-Side Delay Time 
Head Loading Time 
Head Setting Time 
Medium 

4/Ls/bit 
300 rpm ±1.5% 
96 tpi 
80 
2 
5922 bpi 
MFM 
6.25 Kbytes/track 
640 Kbytes 
0.4 sec Maximum 
6ms Maximum 
0.2 ms Maximum 
35 ms Maximum 
15 ms Maximum 
I ndustry standard 5-1,4 
in. with Single Hole 



intJ IPDSTM 130 

DRIVE DOOR 

DISKETTE SLOT 

231020-3 

Figure 1.IPDSTM-130 Flexible Disk Drive 

Creating back-up diskettes is good programming 
practice and the iPDS-130 disk drive provides the 
means to create these back-ups. It shortens the 
time required and lessens the trouble associated 
with this task by eliminating the need to swap disks 
during the duplication process. The master diskette 
can be inserted in the iPDS system's integral disk 
drive and the duplicate diskette in the external disk 
drive. 

The first external disk drive attaches to the rear of 
the main enclosure, and the other two external 
drives are connected to the rear of the previous ex­
ternal drive. Each additional drive has its own power 
supply and is mounted in its own housing. Figure 2 
shows the iPDS unit with all three external drives. 

HARDWARE 

Each drive is 7.3 in. high and weighs approximately 
11 Ibs. The front of each disk drive contains a door, 
a door release mechanism, and a drive indicator that 
is lit during disk I/O operations. The drive is mount­
ed in the vertical pOSition. Different ac voltage 
ranges may be selected. The rear panel of the drive 
contains the ac power connector, the power ON/ 
OFF switch, a fuse holder, a voltage selector card, 
and two I/O cable connectors. Figure 3 shows the 
disk drive's rear panel. 

I/O Cable 

The I/O cable is used to interconnect the iPDS sys­
tem and the external disk drives. The external por­
tion of the input cable is 30 in. long and connects to 
the flexible disk connector on the rear of either the 
iPDS unit or the previous optional disk drive. The 
output connector of the daisy-chain mounts on the 
rear panel of the disk drive and provides thE! connec­
tor to the next disk drive. 

231020-4 

Figure 2. iPDSTM System with External Flexlble.Disk Drives 

5-20 



inter iPDSTM 130 

ORDERING INFORMATION 

Part Number Description 
iPDS-130 Optional external flexible disk drive 

5-21 



iPDSTM·PROTO KIT 

• Design Aid for Developing Your Own 
Specialized Plug-In Modules for the 
IPDSTM Development System and for 
the iUP-200/201 System, such as: 
- Emulation Vehicle (EMV) Modules 
- PROM or Programmed Logic Array 

(PLA) Programming Modules 
-Instrumentation Modules (Logic or 

Signature Analyzers) 

- Specialized Communications 
Modules 

- Analog Interface Modules 
- Program Storage Modules 

• iPDX Bus Interface 

• Easy-to-Follow Assembly Instructions 

The iPDS-PROTO Kit is a complete kit for engineers who want to enhance the iPDS development system and 
the iUP-200/201 Universal Programmer system by developing their own specialized plug-in modules such as 
those noted above. The module case and PROTO board are specifically designed to plug into both the iPDS 
system and the iUP-200/201 system. 

5-22 

280046-1 

June 1986 
Order Number: 280046-001 



intJ iPDSTM·PROTO KIT 

KIT COMPONENTS 

The iPDS-PROTO Kit comprises the module case, 
the PROTO board, and a hardware kit. The hard­
ware kit includes one iPDS bus connector, five isola­
tion capacitors, wire-wrap pins, screws, washers, 
and lock nuts. Also included are the iPDsrM-PROTO 
Kit Assembly Manual and the application note, 
Designing Modules for the iPDsrM and iUP Systems 
(Order Number #230682). 

The PROTO board can accept up to 30 integrated 
circuits and associated discrete components. 

5-23 

iPDX BUS INTERFACE 

The iPDX bus is a byte-wide, parallel interface be­
tween the plug-in module and the iPDS development 
system or the iUP-200/201 system. For further infor­
mation on the iPDX bus, refer to the Designing Mod­
ules for the iPDsrM and iUP Systems. 

ORDERING INFORMATION 
Part Number 

iPDS-PROTO Kit 

Description 
iPDS-PROTO board, module cov­
er, hardware kit, and assembly 
manual. 



inter APPLICATION 
NOTE 

Designing Modules 

AP-156 

October 1986 

for iPDSTM and iUP Systems 

DALE OLLILA 
DSHO TECHNICAL PUBLICATIONS 

Order Number: 230682-001 
5-24 



AP-156 

INTRODUCTION 

The Intel Personal Development System (iPDSTM) is a 
new development tool concept. It provides a subset of 
the capability of an Intel1ec® Series II/III development 
system, in a portable, and less expensive package. One 
of the features offered by the iPDS system is the expan­
sion capability designed into the product. The basic 
iPDS system can be expanded to include a parallel 
processor, a wide range of serial (RS232C interface) 
and parallel (Centronics interface) devices, numerous 
MULTIMODULETM (iSBXTM interface) devices, ad­
ditional flexible disk drives, and a growing line of plug­
in 'emulator and PROM programming modules. 

The plug-in modules for the iPDS system communicate 
over an interface referred to as the Intel Personal De­
velopment Expansion bus (iPDS bus). The iPDX bus is 
also used iIi another Intel product, theiUP-200/201 
Universal Programmer (iUP). There are 'some differ­
ences in iPDX bus implementation between the iUP 
and iPDS systems, but the basic interface is the same. 
Intel PROM programming modules can be used in ei­
ther system. 

THE iPDX BUS 

The iPDX bus is a byte-wide, parallel interface between 
a plug-in module and the iPDS or the iUP system. The 
iPDX bus allows a variety of plug-in modules to be 
added to the iPDS system. (The iUP system normally is 
used with PROM programming modules.) Some of the 
possible types of plug-in modules are: 

• PROM programming modules 
• Emulator (EMV) modules for various microproces­

sor or microcontrol1er families 

• Test instrumentation modules (e.g., logic or signa-
ture analyzers) . 

• Analog interface modules (e.g., analog/digital or 
digital/analog converters) 

• Serial communication modules (e.g., modem or cas­
sette controller modules) 

• Parallel communication modules (e.g., direct inter­
face to other CPU buses) 

• Program storage modules (e.g., modules storing al­
ternate operating systems, diagnostic programs, or 
games) 

Intel Corporation produces plug-in modules that allow 
PROM programming and emulation for a variety of 
Intel chips. The special needs of individual users may 
not be satisfied by the plug-in modules that are avail­
able. This application note presents the specifications 
and design criteria for user-designed plug-in modules 
using the iPDX bus. User-designed plug-in modules 
can expand· the usefulness of the iPDS system in the 
design lab, on the production floor, and in field applica­
tions. 

5-25 

iPDX Bus Features 

The iPDX bus's capabilities are nearly equal to the ca­
pabilities of the iSBXTM bus. In some respects the 
iPDX bus is more powerful than the iSBX bus, due to 
the variable and switched supply voltages included on 
the bus. The features of the iPDX bus are: 

• The controlling (iPDS or iUP) system supplies 
+ SVDC and ground to the iPDX bus. 

• The controlling (iPDS or iUP) system supplies 
switched voltages of + S.7VDC, -12VDC, and 
+ 8VDC to + 27VDC to the plug-in modules. In 
addition, the' iUP system controls a variable 
switched voltage (+ 8VDC to + ISVDC) and the 
iPDS system controls a + I~VDCswitched voltage 
to the plug-in modules. The switched voltages are 
turned on and off under program control. 

• A number of options are available for controlling 
iPDX bus transactions. These options include: 

I) Using iPPS software to supervise the upload­
ing and execution of firmware from the plug"in 
module. 

2) Using a user-written driver program to super­
vise the uploading and execution of firmware 
from the plug-in module. 

3) Using a user-written driver program to con­
-trol all iPDX bus activity. 

4) Using a user-written monitor program to al­
low control of iPDX bus activity from the sys­
tem console. 

• The plug-in modules that interface with the iPDX 
bus enable easy: and fast changes of entire I/O sub­
systems. 

• A prototyping tool (product code iPDS-PROTO) al­
lows users to quickly design and build custom plug-
in modules. . 

• The resources of a powerful, general-purpose devel­
opment system (the iPDS system) are available to 
plug-in modules that use the iPDX bus. 

Advantages and Limitations of iPDX 
Bus Implementation 

The system (iUP or iPDS) that the iPDX bus is iInple­
mented on offers advantages for and imposes limita­
tions on plug-in module use. The user's design require­
ments may dictate that the plug-in module be used with 
only one of the available systems. Plug-in modules that 
are universal must be designed to avoid the limitations 
of both systems. 



inter AP-156 

iUP/iPDX BUS ADVANTAGES AND 
LIMITATIONS 

Plug-in modules used with the iUP system are normally 
restricted to PROM-type programming functions. Ta­
ble 1 lists the advantages and limitations of the 
iUP /iPDX Bus. 

iPDSTM/iPDX BUS ADVANTAGES AND 
LIMITATIONS 

Plug-in modules used with the iPDS system can make 
use of all the features listed in the iPDX Bus Features 
section on page 4. The limitations for an iPDS/iPDX 
bus plug-in module are in the amount of power avail­
able from some of the voltage supply lines. Table 2 lists 
the advantages and limitations of the iPDS/iPDX Bus. 

iPDX Bus Functional Description 

The iPDX bus is an extension to the CPU bus of the 
iUP or iPDS system. The iPDX bus is active in the I/O 
address range lOH-IFH of the controlling CPU. Fig­
urel is a functional block diagram of the iPDX bus as 
implemented on the iUP system. Figure 2 is a function­
al block diagram of the iPDX bus as implemented on 
the iPDS system. 

iUP/iPDX BUS IMPLEMENTATION 

The iPDX bus . is the only I/O interface for the 
iUP-200/201 Universal Programmer, other than the se­
rial interface of the iUP system. The iUP system nor­
mally performs one function, the programming of 
PROM-type devices. Intel PROM-type devices include 
EPROMs, E2PROMs, and the EPROM portion 

Table 1. iUP/iPDX Bus Implementations 

Advantages Limitations 

The iUP system provides ample power for Direct control of CPU operation is only possible 
programming any type of PROM device. using uploaded plug-in module firmware. 

Two variable supply voltages are available for The Vee line supplies a maximum of 1.0A to the 
plug-in module use. plug-in module. 

The I/O space of the iUP system is mostly unused, 
so operation in unused I/O space is possible . 

. Table 2. iPDSTM/iPDX Bus Implementations 

Advantages Limitations 

The resources of the iPDS system (RAM, console, Only one of the variable supply voltages 
mass storage, etc.) are available to the plug-in. ( + VHSW) is available on the iPDS bus. The other 

The user has the option of using iPPS software or variable line (+ VLSW) has as fixed output of 

user-written programs to control the plug-in + 12VDC. 

module. Power supplied to the iPDX bus is not adequate for 

Any PROM programming module that works with gang programming modules. 

the iPDS system and iPPS software also works 
with the iUP system. The Vee supply line can 
handle up to 2.5A draw. This draw is adequate for 
most user applications. 

5-26 



AP-156 

r-------------------------------------------------------------------~ 
I 

~--~HI~O~/ME:==~i2~::=F~~~----------__i I> DI 
8085 ~W~R~/~--------~:t-F------------1 
CPU 

RSTIN 
RDY 

-+ 

-+ 

-+ 

ADO-AD7 > -

+28V 
+8V - +28V 
VARIABLE 
SUPPLY 
VOLTAGE 

REF 

+5.7VSWEN 
-12V EN 

+VHEN 
+VLEN .... 

.... 

AIORDI 

AIOWRTI 

AAO-
AA7 

ADO-
AD7 

ARDY 
ARSTI 

+5.7VSW 

-V LOW 

+VHIGH 

~--------~------------~+- +VHSEL 

+19V 
+8V - +13V 
VARIABLE· 
SUPPLY 
VOLTAGE 

REF 

+VLOW 

~----------------------~----~~+- +VLSEL I +5V 

-+ +5V 

L· --. .:... 
____________ !!I!'Jl'!.l!U.PtL ________________________________ J 

GND 

Figure 1 .. iUP/iPDX Bus, Functional Block Diagram 

IPDX 
BUS 

230682-1 

of various microcontrollers. The iUP system can pro­
gram non-Intel PROM-type devices, but in most cases 
a personality plug-in module for the non-Intel device 
must be designed by the user. Note, however, that the 
Intel iUP-Past 27IK PROM programming module 
(with firmware change) can program imy 28-pin 
JEDEC device. 

The switched voltage lines are turned on and off under 
program control by the controlling CPU. The switched 
voltages are: 

The iPDX bus implementation on the iUP system is 
optimized for maximum programming power capabili­
ties. Each of the switched voltage supply lines from the 
iUP system provides at least twice the power of the 
corresponding line from an iPDS system. Refer to the 
Power Specifications (page 10) section for specific pow­
er capabilities. 

5-27 

• +5.7VSW 

• +VHIGH 

• +VLOW 

• -VLOW 

Two of the switched voltages ( + VHIGH and 
+ VLOW) are variable. The + VLOW line provides 
+ 8V to + 15V at 700 rnA as determined by a precision 
resistance on the + VLSEL line. The + VHIGH line 
provides + 8V to + 27V at 300 rnA as determined by a 
precision resistance on the + VHSEL line. 



AP·156 

r--------------------~------------------------------- --------
IPDX 
BUS 

RDY 

10/11 
WRI 

RD/lft==~_..l\. 

1--oI_--I::.eSET 

IOWRI 

IORDI 

paW4 

.t-------i- VHSEL 
.5V 

t------"-------I- Vee 

r---;- 'DSI 

t-----I ..... AGND 

.... --- - ........ -_ ...... ~7'"-"''' --!l!~-'~~!'~.!'!--- .. _ .. __ .. _____ .... : ______ .... 1 

IPDSSYSTEM 

230682-2 

Figure 2. IPDSTM/IPDX Bus, Functional Block Diagram 

Refer to the Power Considerations (page 14) section for 
details on the control of the variable supply voltages. 

The iUP /IPDX bus implementation provides not only 
program control of the switched voltage lines. It also 
allows monitoring of the on/off condition of these lines. 
The I/O ports used to control and monitor the 
switched voltages are discussed in the Switched Voltage 
Programming section (page 22). 

Buffered data (ADO-AD7) is placed on the iPDX bus 
each time address line 4 (A4) is 'I' during I/O accesses 
by the controlling CPU. This ensures that the data lines 
will be active for I/O addresses of 10H to IFH. It also 
places data on the bus for addresses of 3XH, 5XH, 
7XH, 9XH, BXH, DXH and FXH. The iPPS software 
only uses I/O addresses of lXH when initially contact­
ing the plug-in module, so there is no problem with this 
I/O addressing. 

5-28 

The address, read, write, reset and ready lines feed di­
rectly from the iUP system to the plug-in module on 
the iPDX bus. Figure 1 is a functional block diagram of 
the iUP system that shows the iPDX signals, their di­
rection of flow, and the controlling circuitry in the iUP 
system. Refer to other sections of this application note 
for specific details on iUP /iPDX bus implementation. 

IPDSTM/IPDX BUS IMPLEMENTATION 

The iPDS system implementation of the iPDX bus is a 
powerful, general-purpose interface to plug-in modules. 
The iPDS interface has less power handling capabilities 
than the iUP interface, but it has additional system re­
sources. 

The iPDX/iPDX bus interface uses it separate b~a~d in 
the iPDS. system. The iPDS-l40 option for the iPDS 
system is an interface between the iPDX bus and 



AP-156 

the base processor board of the iPDS system. The 
iPDS-140 option buffers all address, data, and control 
signals that go to the iPDX bus. The top address nibble 
is decoded on the iPDS-140 option to enable data trans­
fers during reads or writes to I/O addresses lOH to 
IFH. 

The switched voltages for the iPDX bus are developed 
on the iPDS-I40 option. The iPDS-I40 option uses 
+ 12VDC and -12VDC from the iPDS system to gen­
erate the switched voltages. Refer to the Power Specifi­
cations and Power Considerations sections (pages 10 
and 14) for details on the power available for the iPDX 
bus. . 

The switched voltages are under program control of the 
CPU in the iPDS system. These control signals are sent 
through an 8255 PPI chip to the iPDS-I40 option. Re­
fer to the Programming Switched Voltages section 
(page 22) for details on switched voltage control. 

The Vee (+ 5VDC) and ground lines from the base 
processor board are fed directly to the iPDX bus. The 
PDS/ and AGND lines of the iPDX bus are connected 
to the ground line within the iPDS-I40 option. The 
PDS/ line is used by PROM programming plug-in 
modules to indicate the controlling system to iPPS soft­
ware. All PROM programming plug-in modules feed 
the PDS/ line (J1-20) back so iPPS software can read 
its 'I' or '0' status. Refer to the iPPS Software Protocol 
section (page 14) for details on the module status byte. 

The address, read, write, reset, clock, and ready lines 
are buffered on the iPDS-I40 option, but they are not 
modified by the iPDS system. Figure 2 is a functional 
block diagram of the iPDS system that shows the iPDX 
signals, their direction of flow, and the controlling cir­
cuitry in the iPDSsystem. Refer to other sections of 
this application note for specific details on iPDS/iPDX 
bus implementation. 

IPDX BUS SPECIFICATIONS 

The specifications for the iPDX bus are divided into 
four categories: 

• Signal listings and descriptions. 

• Detailed power (DC) specifications. 

• Detailed timing (AC) specifications. 
• Outline drawings and detailed mechanical specifica­

tions. 

iPDX Bus Signal Descriptions 

Table 3 presents the pinout of the iPDX bus and gives 
the associated signal names for both the iPDS and iUP 
systems. 

Table 4 lists the signal names (iPDS and iUP systems) 
of the iPDX bus and gives a short description of each 
group of signals. 

Table 3 iPDX Bus Pinout 

Pin 
iPDS iUP Input! 

Pin 
iPDSTM iUP Input 

Mnemonic Mnemonic Output Mnemonic Mnemonic Output 

1 GND GND 0 22 GND GND 0 
2 GND GND 0 23 Reserved Reserved N/A 
3 BAO AAO 0 24 BDO ADO I/O 
4 BA1 AA1 0 25 BD1 AD1 1/0 
5 BA2 AA2 0 26 BD2 AD2 1/0 
6 BA3 AA3 0 27 BD3 AD3 1/0 
7 BA4 AA4 0 28 BD4 AD4 1/0 
8 BA5 AA5 0 29 BD5 AD5 1/0 
9 BA6 AA6 0 30 BD6 AD6 1/0 
10 BA7 AA7 0 31 BD7 AD7 1/0 
11 Vee +5V 0 32 Reserved Reserved N/A 
12 Vee +5V 0 33 +VHSW +VHIGH 0 
13 +VSW +5.7VSW 0 34. +VlSW +VlOW 0 
14 +VSW +5.7VSW 0 35 Reserved Reserved N/A 
15 elK Not Used 0 36 -VlSW -VlOW 0 
16 10WR-Ai AIOWRTI 0 37 AGND AGND 0 
17 lORD-AI AIORDI 0 38 +VHSEl +VHSEl I 
18 RESETI ARSTI 0 39 Not Used +VlSEl I 
19 XRDY - ARDY I 40 GND GND 0 
20 PDSI PDSI O(iPDS) 41 GND GND 0 
21 GND GND 0 

5-29 



AP·156 

Table 4. iPDX Bus Signal Descriptions 

Signal Name(s) 
Description 

IPDSTM iUP 

GND GND Reference potential for all signals and supply voltages. 

AGND AGND Analog ground. Reference potential for the programmable high voltage signal 
(+VHSWor +VHIGH). 

BAO-BA7 AAO-AA7 Address lines from the iPDS system or the iUP system that define the 1/0 
register to be accessed 

BDO-BD7 ADO-AD7 Bi-directional, parallel data lines between the plug-in module, and the iPDS or 
the iUP system. 

Vee +5V Supply voltage for plug-in module circuitry. 

CLK Not Used Clock signal (20 MHz) from theiPDSsystem. 

10WR-Ai AIOWRTI 1/0 write signal from the iPDS or the iUP system. An active low indicates that 
output data from the iPDS or the iUP system is on the data lines. Data is 
sampled on the trailing edge of this signal. 

lORD-AI AIORDI 1/0 read signal from the iPDS or the iUP system. An active low indicates that 
input data from the plug-in module should be placed on the data lines. Data is 
sampled on the trailing edge of this signal. 

RESETI ARSTI Reset signal from the iPDS or the iUP system. 

XRDY ARDY Asynchronous ready signal from the plug-in module. An active high indicates 
that the plug-in module has accepted write data from, or presented valid read 
data to, the iPDS or the iUP system. A low level causes the iPDS or the iUP 
system to enter a wait state after either the lORD-AI (AIORD/) or 10WR-AI 
(AIOWRT I) line is activated. 

PDSI Not A ground from the iPDS system. This signal is sampled by iPPS software and 
connected .indicates that a PROM programming module is installed in an iPDS system. 

+VSW +5.7VSW Switched + 5.7VDC that can be turned on or off by the iPDS or the iUP system 
under program control. 

+VHSW +VHIGH Switched + 8VDC to + 26VDC that can be turned on or off by the iPDS or the 
iUP system under program control. The actual voltage is determined by the 
+ VHSEL signal from the plug-in module. 

+VLSW +VLOW Switched + 8VDC to + 13VDC that can be turned on or off by, the iPDS or the 
iUP system under program control For the iUP system the actual voltage is 
determined by the + VLSEL signal from the plug-in module. The iPDS system 
outputs only a fixed voltage of + 12VDC on the + VLSW line. 

-VLSW -VLOW Switched ,...12VDC that can be turned on or off by theiPDS or the iUP system 
under program control. 

+VHSEL +VHSEL High plus programming voltage select (iPDS and iUP systems). A precision 
resistance in the plug-in module determines the voltage on the + VHSW 
(+VHIGH) line. 

Not Used +VLSEL Low plus programming voltage select (iUP system only). A precision resistance 
in the plug-in module determines the voltage on the + VLOW line. 

5-30 



AP-156 

Power Specifications Table 5 lists the supply signals available at the iPDX 
bus and the specifications for each signal. 

The + 5VDC line is always active on the iPDX bus. 
This line normally powers plug-in module circuitry; 
Switched voltages are also available to power plug-in 
module circuitry. The user must first set up appropriate 
driver routines and programming voltages before the 
switched voltage lines become active. 

Figure 3 shows the power available on the iPDS 
+ VHSW signal line for the programmable voltages. 
The other power supply signals give rated power over 
their full range. 

t 
IMAX 

135m. 

130ma 

120ma 

110mB 

15V 

IMAX-71 +3.63 (VOUT) 
IMAXln ma 

V OUT In volts 

20V 

Figure 3. Power Available (iPDSTM + VHSW Signal) 

Table 5. IPDXBus Power Specifications 

230682-3 

Signal Name Supply Voltage and Tolerance Maximum Current 
Notes 

iPDSTM IUP IPDS I iUP iPDS iUP 

Vee +5V +5VDC ±2.5% 2.5 amps 1.0 amps 
+VSW +5.7VSW +5.7VDC ±50 mv 250mA 1.5 amps 1 

+VHSW +VHIGH + SVDC to + 27VDC ± 2% 135mA 300mA 1,2 

+VLSW +VLOW + 12VDC ±1.0V I +SVDCto 200mA 700mA 1,3 
+15VDC ±2% 

-VLSW -VLOW -12VDC ± 0.5V 50mA 100 mA 1 

NOTES: 
1. This voltage is switched and is under program control of the iPDS or the iUP system. 
2. The voltage is controlled by the + VHSEL signal. Figure 3 shows the derating required for each selected voltage of 
+VHSW. 
3. The voltage is controlled by the + VLSEL signal (iUP system only). 

5-31 



intJ Ap·156 

Electrical (DC) Specifications 

Tpe signal names for the iPDX bus indicate whether or 
not the signals are active high or active low. If the name 
ends with a slash (I), the signal is active low. If the 
name has no slash following it, the signal is active high. 
Table 6 shows the electrical specifications for the iPDX 
bus. 

The electrical characteristics for the iPDX bus signals 
are shown in Table 7. The voltage and current specifi­
cations refer to the TTL high or TTL low state of the 
iPDX bus signal. The signal type (input or output) is 
the signal direction when viewed from the iPDS or the 
iUP system side of the iPDX bus. Positive currents are 
defined as currents entering the interface. 

Timing (AC) Specifications 

Figure 4 shows the timing specifications for the iPDX 
bus. Table 8 lists definitions of the timing parameters 
used for the iPDX bus. Refer to the MCS@-80/85 Fam­
ily User's Manual or the 8085A-2 data sheet for specific 
details on the timing specifications for the iPDX bus. 

The + VHSEL/ + VLSEL signals, the data bus signals, 
and the ready (XRDY or ARDY) signal originate in 
the plug-in module. The voltage select and data .bus 
signals have straightforward timing requirements, but 
the timing requirements for the ready signal need expla­
nation. 

230682-4 

Whenever the ready signal (XRDY or ARDY) goes 
low, the CPU generates wait-states until the ready 
signal returns high. The ready signal should not be 
driven low for more than a few bus cycles unless 
complete suspension of all CPU bus activity is al­
lowable in the user's application. 

The ready signal is normally high for all read/write 
transfers over the iPDX bus. The ready signal can be 
driven low to insert one or more wait-states in the CPU 
bus cycle, in cases where the plug-in module uses slow 
memory devices or slow peripheral devices. 

Table 6 iPDX Bus Electrical Specifications 

Active Logical Electrical 
State State Signal Level 

At Receiver At Driver 

LOW 
0 H = TTL High State S.2SV z H z 2.0V S.2SV z H z 2.4V 

1 L = TTL Low State O.8V z L z -O.SV O.SV z L z O.OV 

HIGH 
0 L = TIL Low State O.8Vz L z -O.SV O.SV z L z O.OV 

1 H = TIL High State S.2SV z H z 2.0V S.2SV z H z 2.4V 

Table 7. Electrical Characteristics of iPDX Bus Signals 

Signal Type IOL IlL IOH IIH VOL VIL VOH VIH 
Max Max Max Max Max Max Min Min 

All Outputs 24mA -SmA O.SV 2.4V 

Inputs (except -12.8 mA SO,..,A O.8V· 2.0V 
ROY signal) 

AROY (input) -4mA SO,..,A O.8V 2.0V 

S-32 



inter 

Symbol 

tAC 

tARY 

tCA 

tec 
tow 

tRO 

tROH 

tRYH 

two 

Valid 
Addr ••• 

"TWAIT 

Ap·156 

ADDRESS 

tCA -125 n. 
tcc m 370 nl M�n.-----.:;.:.:,.afl Min. 

I ~--------------Itwo D 115 nl 

BDII-7 ___ ~ ______ "1 
(ADII-7) 

tow - 350 nl Mln.-----<.af! Mln.~r-

DATA OUT .>--
~~==~tA~C:D!24~0~n:!.!M~ln:· .... ~I= .. \jl •• ----tcc x370 nl Mln.----..... ,0011 ,. ___ _ 

lORD-AI 
(AIORD/) 

~ --tR-O-=-~---------;Jl+tRON -Ons 

"XRDY 
(ARDY) 

RESETI 
ARSTI 

255 nl Max< DATA IN ) Min. 

TRYN - 0 ns Min. 

---""""IJ 
1:--10m~~ 

'One or more wait states (TWAIT) are Insert­
ed in the CPU bus cycle after the ready sig­
nal (XROY or AROY) goes low. 

Figure 4. IPDS Bus Read/Write Timing 

Table 8. IPDX Timing Definitions 

Description 

230682-5 

The time between valid address (AO-A7) and the leading edge of the control signal. 

The time between valid address (AO-A7) and the trailing edge of the ready Signal. 

The time between the trailing edge of the control signal and the end of valid address. 

The width of the control signal. 

The time between the start of valid data (00-07) and the trailing edge fo the write control 
Signal. 

The. time between the leading edge of the read control signal and the start of valid data 
(00-07). _. 

The time between the trailing edge of the read control signal and the end of valid data 
~-07). . . 

The time between the end of T WAIT and the leading edge of the ready signal. 

The time between the trialing edge of the write control signal and the end of valid data 
(00-07). 

5-33 



inter AP-156 

Mechanical Specifications 
The mechanical specifications define the connector re­
quirements and the outline and mounting dimensions 
for plug-in modules using the iPDX bus. Figure 5 is an 
outline drawing of a plug-in module for the iPDX bus. 
All plug-in modules for the iPDX bus must comply 
with the dimensions specified in Figure 5, 

I:L 

J. 
5 .50 

5.070 

.. 

1f .Irs ..... 
t 

HARDWARE DESIGN 
CONSIDERATIONS 

Plug-in modules designed around the iPDX bus must 
follow certain design rules.· These desigu rules are: 

• The first four inches (measured from the connector 
end) of the plug-in module must meet the mechani­
cal and outline specifications shown in Figure 5. 

230682-6 

rt~'V 1---r 
~ DDDDDDDDDDDD DO N'i+ 

~~A--------------------------C-O-N-N-E-C~TO-R~-------J 
C/L ...- KA 

I J / 
HYPERTRONICS 

41/1271BPMCT 
R EQUIVALENT 0 

IF~ 0 OOOO~~cOOOOO 
FA C 00000 00000-' 

0000?~0000~8~j 
00000 00000 1 2 i-, 
I II n 

i\ 1 1----1.20 
2.75 

1.35 

Tr1"\' tzz:zzt;~:zzzTd 
.31 

1.40 VIEWA·A SECTIONB·B 

230682-7 

Figure 5. Plug-In Module Mechanical Specifications 

5-34 



intJ AP-156 

• The maximum Vee (+ 5VDC) current available is 
2.5 amps for iPDS plug-in modules or 1.0 amps for 
iUP plug-in modules. 

• Switched voltages of + 5.7VDC, + 8VDC to 
+ 27VDC, + 12VDC and -12VDC are available to 
circuitry on a plug-in module under program con­
trol Table 5 lists power specifications for the iPDX 
bus. 

• If a programmed voltage (positive only) is required 
by the plug-in module, an appropriate precision re­
sistor must be installed in the plug-in module. 

• All signals (except + VHSEL and + VLSEL) re­
turned by the plug-in module must be TTL levels. 

• Provisions must be made to sample the PDS/ signal 
on PROM programming plug-in modules that use 
iPPS software while connected to an iPDS system. 
(The PDS/signal is low when the module is connect­
ed to the iPDS system arid:floating when connected 
to the iUP system. Firmware can use the signal 1) to 
specify whether a power supply status port is avail­
able, 2) to specify whether E3H (iPDS) or 03H 
(iUP) is the correct port for turning on power sup­
plies, and 3) to compensate for differences in timing 
between the two systems.) 

• Direct memory access (DMA) transactions are not 
supported on the iPDX bus. 

Mechanical Considerations 

Plug-in modules for the iPDX bus must have an enclo­
sure that meets the mechanical specifications shown in 
Figure 5 for the first four inches (measured from the 
connector end) of the module. Intel has developed a 
prototyping kit (product code iPDS-PROTO) to simpli­
fy the mechanical and hardware portions of the design. 
This prototyping kit consists of the plug-in module en­
closure, a prototyping board, iPDX bus connector, a 
hardware kit, isolation capacitors, and wire-wrap pins. 
The iPDS-PROTO kit can accept up to 30 ICs and 
associated discrete components in the available board 
space. If a plug-in module designed around the iPDX 
bus goes to a production phase, use of the module tool­
ing can be licensed through Intel. 

Power Considerations 

The maximum power dissipation for an iPDS plug-in 
module is 20.5 watts with a maximum draw of 12.5 
watts from the Vee line. The maximum power dissipa­
tion for an iUP plug-in module is 32.5 watts with a 
maximum draw of 5.13 watts from the Vee line and 
8.625 watts from the + 5.7 VSW line. A maximum of 
7.5 watts can be dissipated within a plastic plug-in 
module (more power can be dissipated at the PROM 
socket). ' 

Vee (+ 5VDC) is the only voltage present at all times 
on the iPDX bus. If the plug-in module circuitry re­
quires other voltage levels for operation, the switched 
voltages must be turned on first by software. The Pro­
gramming Considerations section shows the iPDX bus 
set-up requirements for turning on/off each of the 
switched voltage signals. 

The variable switched voltages (+ VHSW on an iPDS 
plug-in module,' and + VHIGH and + VLOW on an 
iUP plug-in module) use one or more precision resistors 
on the plug-in module to determine their line voltage. 
The precision resistor on the plug-in module must be 
connected between the AGND line and the + VHSEL 
line of the iPDX bus. Plug-in modules for an iUP sys­
tem can also program the + VLOW line by connecting 
a precision resistor between the AGND line and the 
+ VLSEL line of the iPDX bus. Figure 6 shows a chart 
and two equations that indicate the precision resistor 
values corresponding to programmable voltages. Figure 
7 shows three kinds of circuits that allow the plug-in 
module to select more than one programming voltage 
level. 

PROGRAMMING CONSIDERATIONS 

PROM programming modules are normally controlled 
by iPPS software residing in either the iPDS or the iUP 

, system. User-designed plug-in modules (other than pro­
gramming plug-in modules) are controlled by user-sup­
plied driver programs. The iPPS Software Protocol sec­
tion explaiits the iPPS-iPDX bus interface. The 
Switched Voltage Programming section gives program­
ming requirements for accessing switched voltages in 
the iPDS/iPDX bus interface. The User-Written iPDX 
Bus Drivers section presents the programming require­
ments for user-supplied driver programs. 

5-35 

iPPS Software' Protocol 

PROM programming plug-in modules that run under 
control of iPPS software must contain firmware. The 
firmware in the PROM programming module is a pro­
gram that has routines for programming the device(s) 
that the plug-in module is designed to program. This 
firmware is uploaded into RAM in the controlling 
(iPDS or iUP) system the first time the TYPE com­
mand'in the iPPS command language is executed. After 
the module firmware is uploaded, the iPDS or the iUP 
system controls the programming operation. The iPPS 
software communicates with the plug-in module over 7 
of the 16 I/O ports allocated for iPDX bus communica­
tion. Table 9 lists the I/O port assignments recognized 
by iPPS software. ' 



inter AP-156 

100.0 

80.0 

80.0 

20.0 

10.0 

8.0 

8.0 

-VOLTAGE OUT 
(VOUT) 

39.90 
R (KO)= VOUT -7.995 

VOUT-~+7.995 

WHERE R (Kn) IS THE PRECISION 
RESISTANCE IN KILO OHMS, 

¢~~T~%f ~~~~~f.ESIRED 

EXAMPLE: 
DESIRED VOLTAGE OUTPUT m 

20 VOLTS 

R (KO) _ 39.90 
(20) -7.995 

= 3.32 KO 

230682-8 

Figure 6. Programmable Voltage Resistor Values 

The control words, corresponding to an I/O write to 
port addresses lOH, IIH and 12H, control various 
functions on the plug-in module. These functions may 
include voltage select and routing for the target PROM 
socket, the programming pulse, or chip selects,and set! 
clear the upload flag. The bit definitions for the control 
words are shown in Figure S. 

The status word,corresponding to an I/O readof port 
address lOH, contains information about the current 
state of monitored functions, on the plug-in module. 
The bit definitions for the status word are shown in 
Figure 9. 

The plug-in module firmware is read when the iPPS 
TYPE command is first executed. The iPPS software 
uploads plug-in module firmware by writing the plug-in 
module PROM location to I/O ports 13H (AO-A7) 
and 14H (AS-AI5), respectively, and then reading the 
data at I/O port IIH. The plug-in module firmware 
uploads to absolute address 7020H in the iPDS or iUP 
system. After the plug-in module firmware is uploaded 
to the iPDS or the iUP system, the upload flag (bit 1 of 

control word 0) is set by the controlling system. Setting 
" the. upload flag causes bit! of the status word to ~ndi­

cate that additional firmware uploads are not reqUIred. 

5-36 

PLUG-IN MODULE FIRMWARE 

Thefiimwafe (foi" plug-in modules running under con­
trol of iPPS software) controls all plug~in module oper­
ation, except the firmware upload operation itself. This 
firmware must be written in 80S5 code and formatted 
as shown in Table 10. 

The first two bytes of plug-in module firmware must 
contain the total number of bytes' to be uploaded (in­
cluding the two length bytes and the, two check-sum 
bytes). The third byte must contain the number of dif­
ferent devices thephlgcin module can read or program, 

The plug-in module firmware is divided into segments 
and a segment is required for each PROM type that the 
module can program. Each segment contains a descrip­
tor (first 14 bytes) and a code section. 



inter Ap·156 

Descriptor Section 

The first two descriptor bytes contain the address of the 
next segment of firmware. The last segment of the 

firmware must contain the address of the first segment. 
If there is only one segment, the segment must refer­
ence itself. 

FROM 
LATCHED 
DATA 
BUS 
STATUS 
INFO 

I/O Port 
Address 

10H 
11 H 
12H 
13H 
14H 
15H 
16H 

FROM 
LATCHED 
DATA 
BUS 
STATUS 
INFO 

FROM 
LATCHED 
DATA 
BUS 
STATUS 
INFO 

+VHSEL 0' +VLSEL 

+VHSEL 0' +VLSEL 

+5V 

+VHSELo,+VLSEL 

+5V 

-12V 

PRECISION 
RESISTOR 

SILICON IX 
VN10KM 
'd =311 

S S 

AGND 
230682-9 

PRECISION 
RESISTOR 
±1% 

D 
2N4392 
'd. =4011 

S 

AGND 
230682-10 

PRECISION 
RESISTOR 
±1% 

230682-11 

Figure 7. Three Precision Resistor Switching Circuits 

Table 9. 1/0 Port Assignments Used by iPPS Software 

1/0 Write Active 1/0 Read Active 

Write control word 0 Read module status 
Write control word 1 Read personality PROM data 
Write control word 2 Available 
Write address (AO-A7) Available 
Write address (A8-A 15) Available 
Write address (A16-A19) Available 
Write data (DO-D7) Read device data 

5-37 



PORT 
ADDRESS 
10H 

PORT 
ADDRESS 
11 H 

PORT 

7 

AVAILABLE FOR ANY 
CONTROL AND 
PROGRAMMING FUNCTIONS 

7 

Ap·156 

AVAILABLE FOR ANY CONTROL 
AND PROGRAMMING FUNCTIONS 

ADDRESS 7 
12H 

AVAILABLE (BUT 
DEVICE TYPE INTEGRITY 
MUST BE MAINTAINED) 

2 

AVAILABLE 

UPLOAD FLAG 

SBSS = DEVICE TYPE 1 

. . 
1111 = DEVICE TYPE 16 

230682-12 

Figure 8. iPPS Control Word Bit Definitions 

PO 
AD 
10 

RT I ~RESS 

All AILABLE 

7 6 

SOCKET PROM DEVICE MASTER 
O=INSTA 
1=NOTIN 

LLED PROPERLY 
STALLED OR 

INSTAL LED IMPROPERLY 

AVAILABLE 

STATUS WORD 

5 I 4 3 2 1 sJ 
MODULE 
0= INSTALLED 
1 = NOTINSTA LLED 

CODE 
ADED 

PERSONALITY 
O=NOTUPLO 
1 = UPLOADED 

PROM DEVICE 
0= INSTALLED PROPERLY 

LLED 1 =NOTINSTA 
OR INSTAL LEO 
INCORREC TLY 

O=MODULEIN STALLED 
STEM 
STALLED 
EM 

IN IPDS'SY 
1 =MODULE IN 

IN IUP SYST 

230682-13 

Figure 9. IPPS Status Word Bit Definitions 

5·38 



AP-156 

Table 10. Plug-In Module Firmware Format 

Personality Contents Prom Address 

0 8 LSBS of the length of the personality PROM. 
1 8 MSBS of the length of the personality PROM. 
2 Number of types the module can program. 

·3 8 LSBS of the address of the next segment in the table (U). 
D 4 8 MSBS of the address of the next segment in the table (U). 
E 5 1 st ASCII character of PROM type. 
S 6 2nd ASCII character of PROM type. 
C 7 3rd ASCII character of PROM type. 
R 8 4th ASCII character of PROM type. 
I 9 5th ASCII character of PROM type. 
P 10 6th ASCII character of PROM type. 
T 11 7th ASCII character of PROM type. 
a 12 8th ASCII character of PROM type. 
R 13 8 LSBS of PROM address range. 

14 8 MOBS of PROM address range. 
S 15 8 MSBS of PROM address range. 

16 Bits 0-5 indicate PROM word length. Bit 6 indicates the blank state of the PROM .. 
E Bit 7 is not used 

17 Jump to blankcheck routine (V). 
G 18 8 LSB of address of blankcheck routine. 

19 8 MSB of address of blankcheck routine. 
M 20 Jump to program routine (W). 

21 8 LSB of address of program routine. 
E 22 8 MSB of address of program routine. 

23 Jump to overlay check routine (X). 
N 24 8 LSB of address of overlay check routine. 

C 25 8 MSB of address of overlay check routine. 
T 26 Jump to reverse socket routine (Y). 

a 27 8 LSB of address of reverse socket routine. 
28 8 MSB of address of reverse socket routine. 

D 29 Jump to read routine (Z). 
30 8 LSB of address of read routine. 

E 31 8 MSB of·address of read routine. 
V Start blankcheck code. 

V+N "RETURN" 
W Start code for program routine. 

W+N "RETURN" 
X Start code for overlay check. 

X+N "RETURN" 
Y Start code for reverse socket routine. 

Y+N "RETURN" 
Z Start code for read routine. 

Z+N "RETURN" 

Next segment (U) 

Next two locations after 

I 
Checksum (LSB) 

last byte ·of last segment Checksum (MSB) 

5-39 



AP·156 

The next eight descriptor bytes contain the ASCII code 
for the device being programmed. Spaces (ASCII code 
20H) must be used to ftll any unused bytes of this 
ASCII code. 

The remaining four descriptor bytes contain specific 
PROM device information, with the first three bytes 
holding the available PROM address range and the fi­
nal byte holding PROM data information. Bits O:""S of 
,the PROM data information byte contain the word 
length (binary equivalent in bits) of the selected 
'PROM. Bit 6 ofthe PROM data information byte indi­
cates the unprogrammed state of each PROM bit (i.e., a 
o in the bit 6 location means a device bit is unpro­
grammed in the high state and programmed in the low 
state). Bit 7 of the PROM data information byte is not 
used. 

C,ode and Checksum Sections 

The code section is subdivided into a jump op code 
secti~n followed by blankcheck, program, overlay 
check, reverse socket detect, and read routines. 

The jump op code section contains the jump op codes 
and addresses of each programming routine for the de­
vice covered in this segment. The programming rou­
tines referenced in this section include read, blank­
check, program, overlay check, reverse socket detect, 
and read. The referenced routines may actually reside 
in other segments. 

The blankcheck, program, overlay check, reverse, sock­
et detect, and read programming routines must be in' 
SOSS code. These routines are hardware specific in­
structions for checking and programming the device., 
The following subsections describe relevant details of 
these routines and provide other information heeded to 
develop module firmware. 

The final two bytes of firmware following the last seg-, 
ment contain the checksum for the plug-in module 
firmware chip. The checksum is the 2's complement of 
the sum of the previous bytes in the plug-in module 
firmware chip. 

Memory Variable and Stack Locations-Memory loca­
tions6000H to 60FFH are reserved for variables and 
stack. Please note that this leaves space for a very small 
stack. The following is a list of variables that the user 
needs to know to interface to iPPS software. 

6000H Lowest address for SO bytes of input buffer. 

6OS0H Lowest address for SO bytes of output buffer; 
space is 8J.so used for variables when PROMs 
greater than 32K bytes are edited. 

5·40 

601AH Used to indicate on-line (DOH) or off-line 
(OlH) operation. 

6OA2H Used to pass the current status ofthe iUP pro­
grammer to the iPPS software. 

6OB4H- Both 6OB4H and 60BSH are general purpose 
60BSH locations for passing information. See infor­

mation in this section on creating firmware for 
displaying messages on the host. 

60B6H Used to indicate when powering down has fin­
ished, i.e., when an operation has been com­
pleted. The module firmware should set this 
location to OlH when power is turned on. 
This location is reset to DOH when the power 
is shut off. This information is needed by the 
iPDS system, since the iPDS system does not 
have a status port (such as 02H in the iUP 
programmer) to indicate whether power is on 
or off. 

60B7H For passing an address between module and 
iPPS software: contains LSB of address. 

60BSH For passing an address between module and 
iPPS software: contains MOB of address. , 

60B9H For passing an address between module and 
iPPS software: contains HOB of address. 

60BAH Contains data to be programmed from the 
iUP programmer to PROM. 

60BBH Contains data read from PROM to iUP pro­
grammer. 

60CCH Indicates operation in process. Used in off-line 
keyboard interrupts. See keyboard interrupt 
routine below. 

60CFH Used for the lock function. The iPPS software 
sets this location to OOH before calling the re­
verse socket check. The module firmware sets 
this location to FFH if a lock function is avail­
able or leaves it at DOH to indicate that no 
function is available; (This ensures backwards 
compatibility with older modules.Y;The iPPS 
software then sets this location to 01 before 
calling the programming routine. This ,value 
indicates to the module that lock (rather than 
programming) is requested. (If programming 
is requested, the value is DOH.) 

60DOH Used in the lock function. The module firm­
ware uses this location to indicate which pa­
rameter is being passed. On modules that just 
lock (like S7S1AH), the lock sequence will 
never go above 1. 



Ap·156 

On authenticated PROMs, the sequence num­
bers may be greater than 1. This allows the 
module, iPPS software, or user to edit the pa­
rameters. The parameters should be stored in a 
buffer and this location is used to index the 
buffer. If the user responds NO to the' EXE­
CUTE query, module firmware should reset 
this location to the beginning (0). The buffer 
values (instead of the PROM's actual values) 
are then sent back. These locations are pro­
grammed only when the user responds YES to 
the EXECUTE query. Module firmware 
should be set to 0 when finished. 

60D2H Indicates a PROM that is greater than 32K 
bytes has been edited. (OOH = NO; OIH = 
YES). 

60D3H Indicates whether the module should be using 
. the programming socket. There is a bug iIi. the 

initialization of this flag, so until iPPS-PDS 
software and the iUP programmer firmware 
are upgraded, the module firmware needs to 
set this location as follows:' . 

(1) For PROMs less than 32K bytes, set to 
00. 

(2) For all devices when on-line, set to 00. 

This covers the two conditions in' which the 
master socket will never be accessed. 

60FFH Top of the stack. 

Parameters for Major Subroutines-Unless otherwise 
noted, the module returns results using the f()llowing 
codes: 

OOH means "pass". . 
12H means "power supply failure". 
07H means "abort". 

Information on Code Section Routines-The following 
paragraphs provide information on routines included in 
the code section of the PROM programming firmware. 
Note that the meaning of "iUP programmer" in these 
paragraphs depends on the system being considered. 
"iUP programmer" can mean either iUP-200A/20IA 
firmware or iPPS-PDS software. 

Blank Check Routine-The iUP programmer passes no 
parameters to the module. The module firmware 
checks the entire PROM and passes back results in the 
B register. (Fail = OSH.) If the PROM fails the blank 
check test,. the actual value of, the PROM is passed 
back in 60BBH and the location in 60B7H, 60B8H, and 
60B9H. In the off-line mode, any undefined value in B 
defaults to abort. 

5-41 

Program Routine-The iUP programmer sends the lo­
cation to be programmed in 60B7H, 60B8H, and 
60B9H, and sends the data to be programmed in 
SOBAH. It also resets 60CFH to OOH. The module re­
turns results in the A register. (Fail = 01.) In.the off­
line mode, any undefined results default to abort. If the 
programming failed, the actual value of the PROM is 
passed back in 60BBH and the location in 60B7H, 
60B8H, and 60B9H. The off-line error message will 
show the address of the failure and user data XOR 
PROM data. In the on-line mode, the host console will 
the show failure address, user data, and PROM data. 

Overlay Check Routine-The iUP programmer passes 
no parameters. The iPPS software does not use the 
overlay check routine; it does its own overlay check on 
the portion of PROM to be programmed. 

In the off-line mode, data the user wants to program is 
in memory starting at 8000H, and the entire PROM is 
checked with results sent back in the B register. (Fail 
= 01.) The module firmware may also send back 03H 
in the B register to indicate that the iUP programmer 
should perform the overlay check (on edited PROMs 
greater than 32K, the iUP programmer automatically 
performs the overlay check). Any undefined result de­
faults to abort. 

The iUP programmer uses the following algorithms to 
determine whether the new user data can be pro­
grammed over a nonblank PROM location: 

1. For PROMs with FFH as a blank state: 

IF [(user data AND PROM data) XOR ~ser data, = 
0] THEN overlay is possible 

2. For PROMs with OOH as a blank state: 

IF [(user data XOR PROM data) AND PROM data 
= 0] THEN overlay is possible 

Reverse Socket Check Routine-The iUP programmer 
indicates in 60D3H which socket to check and initializ­
es 60CFH to OOH. The module sends back results in the 
A register. (Fail = 04H.) In the off-line mode, the iUP 
programmer only recognizes pass, abort, and will de­
fault to fail for any other unrecognized result. On chips 
which support the lock function, 60CFH is set to FFH; 
on old modules or for. chips that do not support the 
lock function, 60CFH is left at OOH. Addition of other 
initialization tests can be accomplished by adding these 
tests to the module reverse socket code. Then, if an 
error occurs, the !llodule can send a specific error mes­
sage and abort. 



inter AP-156 

Read Routine-The iUP programmer passes the loca­
tion to be read in 69B7H, 6OB8H, and 60B9H; a code 
for the (master or program) socket that is to be read 
from is passed in SKTFLG. The module passes the 
data read in 60BBH and the result in the A register. 

NOTE: 
There is no failed status, only pass, abort, or power 
supply failure, In the off-line mode, any undefmed re­
sult defaults to power supply failure. 

Lock Routine-The iUP programmer checks module 
installation, sets location 60CFH to OOH, and performs 
the reverse socket test. If 60CFH still equals OOH after 
the reverse socket check, then the lock function is not 
available for that module and/or chip. If, however, 
60CFH equals OIH after a reverse socket check, then 
the lock function is available; 60CFH will remain at 
OlH until the command is finished. 

Next (with 60CFH = 01 and 60DOH = OOH), the iUP 
programmer calls the program subroutin~. The module 
firmware can then communicate with the user by re­
turning (in the A register) one of the values shown in 
Table II. When needed, the HL register pair points to 
the text to be displayed (where the first byte of the 
message is the length of the message). Handshaking will 
continue until the result returned is OOH or one of the 
aborts occurs. (During this process, data sent by the 
user is contained in location 60BAH and data from the 
PROM or buffer is contained in 6OBBH.) If data values 
are required, the module stores these values in a buffer 
(in the module firmware) using 6ODOH as an index. No 
programming or locking is performed until the user has 
answered YES to the EXECUTE query. At this point, 
interrupts are disallowed. 

Table 11. A-Register Results 

Value , Meaning 

OOH Pass/done and 60DOH = OOH 
02H Continue and send message 

pointed to by HL registers 
04H Send execute query to user 
07H Abort (with message) 
09H Lock not available/illegal operation 
OAH Failed; send "PROM BLANK" 

OBH 
message 
Failed; send "LOCK FAILED;' 
message 

OCH Failed; send "LOCK FAILED AT" 
message 

ODH Illegal parameter value 
12H Power supply failure 
17H Abort (without abort message) 

5-42 

Verify-On-line verification is performed by iPPS soft­
ware using reads. Upon failure, the addresses, user 
data, and PROM data are displayed. Off-line verifica­
tion is done by the iUP programmer firmware. Upon 
failure, the address and user data or PROM data are 
displayed. The user then has the option of pressing the 
VERIFY key again to continue verification or pressing 
the CLEAR key to abort. 

Editing PROMS Larger than 32K Bytes-In the off­
line mode, editing of PROMs greater than 32K requires 
a master socket· and some special considerations. The 
iUP programmer has ouly 32K of image RAM; so, on 
PROMs greater than 32K, the iUP programmer ex­
pects a master PROM in the master socket. The iUP 
programmer uses this master PROM as the source for 
programming and overlay checks. (Note that for 
PROMs larger than 32K bytes, pressing the ROM-to­
RAM key does. not load data into the URAM. Thus, in 
using this method of expanding the editing features of 
the iUP programmer, it is no longer possible to load a 
27512 into URAM and then copy URAM to a 27256.) 

When the user wishes to edit (off-line) a PROM greater 
than 32K, data to be edited is copied in IK blocks to 
the URAM. (Each IK block copied always starts on a 
IK boundary.) Up to thirty-one IK blocks can be cop­
ied and edited; the last IK of URAM is not available 
because this space is needed to manage the editing. 

Power-Down Sequence--For current modules, there is 
an assumption that the module does not need to know 
when the iPPS software is going to shut off the power 
supplies; so, the module firmware cannot find this out. 
For modules that require a certain power-down se­
quence, there are two possibilities . 

• Plan the module to correspond to the iPPS software 
power-down sequence: 

1. Port IIH is set to O. 

2. 60B6H is set to O. 

3. All bits in port lOH are set to 0 except bit 1 (the 
. upload flag), which is not modified. 

4. All power supplies are shut off. 

• Module firmware shuts off selected controls in the 
appropriate order until there is no danger when the 
iPPS software decides to shut off power supplies. The 
one check that may be rieededis an off-line check. 
When off-line, the module always checks, reads, or 
programs the entire PROM-so that if the module is 
off-line and at the last address, then· the iUP pro­
grammer will be powering down. . 

Creating Firmware for Displaying Messages on the 
Host-To send messages to be displayed by the host, 
use the following algorithm. 



inter AP-156 

Check locations 60AIH to determine whether the 
host is the iUP programmer or iPDS system. 

If host is the iUP programmer 
Call 7oo6H to blank the display 
Set HL to 6050H (output buffer) 
Insert a carriage return as the first character 
Fill in the message in the output buffer 
Increase the byte count of the message by I (for 
the carriage return) and place the count in the B 
register 
SetHL=O 
Call 7003 

If the host is on-line (i.e., if the host is the iPDS 
system) 

Set 60B4H = 2lH to indicate message to iPPS 
software 
Fill in the message starting at 6054H (output buff­
er plus 3) 
Insert a carriage return and linefeed at the end of 
message 
Set B register = message length plus 6 
Call 7000H 

(7000H and 7003H are actually jump tables to the real 
address. The jump tables are generated by iPPS soft­
ware so that updates to iPPS software will be back­
wards compatible.) 

Power Supply Status-There is no status register (02H) 
to read to tell whether the power supplies have been 
turned on in the iPDS. Thus, module firmware must 
monitor 60B6H, if the host is an iPDS. 60B6H is set to 
o upon initialization and when power supplies are 
turned off. The module firmware must set it to I when 
the power supplies are turned on and set it to 0 when 
the power supplies are turned off. 

WAIT Routine Difference-The. 250 microsecond 
WAIT routines in the iUP programmer and iPDS firm­
ware are inaccurate for short periods of time and do not 
match each other exactly. (These routines were not re­
vised to ensure backwards compatibility.) For precise 
timing, the user should write a loop taking into account 
the differences between the iUP programmer and iPDS 
clocks. 

Use of the E Register-The E register is reserved for 
use in keyboard interrupts. The module may use the E 
register if interrupts are first disabled and a known val­
ue is restored before re-enabling interrupts. This use of 
the E register will cause no key presses to be serviced. It 
is much safer to leave the E register alone. 

5-43 

KeybOard Interrupt Logic-The keyboard interrupt 
logic is as follows. 

Save PSW and HL 
Save the character read in 60CIH 
If the iUP programmer is on-line 

then if key pressed is the on-line key 
then E register = 8lH . 
else ignore key pressed 

else if key pressed is clear display 
then E register = 88H 

if 60CCH < > 0 /"if operation is process' / 
E register = 80H /'value key press' / 

Restore PSW and HL 
Return 

Switched Voltage Programming 

There are four switched voltages on the iPDS bus that 
are turned on or off under program control. The iPDS 
and iUP systems use different I/O addresses for pro­
gramming the switched voltages. Under iPPS software, 
the plug-in module firmware controls the switched volt­
ages. Under user-prepared driver software, separate 
commands must be included to tum on or off the re­
quired switched voltages. 

IUP SWITCHED VOLTAGE PROGRAMMING 

The iUP system switches the +5.7 VSW, +VLOW, 
+ VHIGH, and -12 VSW supply lines on and off un­
der program control. The controlling program must 
write twice to I/O port 03H to set/clear and then clock 
(high to low transition) the switched voltage flip-flops. 
The first write to I/O port 03H must have bit 0 (clock) 
high and bits I through 4 set for the desired program 
voltages. The second write to I/O port 03H keeps bits I 
through 4 at the desired program voltage level while bit 
o goes low. The on/off status of each switched voltage 
line can be checked by reading I/O port 02H. The iUP 
system turns off a switched voltage supply line whenev­
er an overcurrent condition is sensed on that line. Fig­
ure 10 contains switched voltage control and status bit 
definitions for the iUP system. 

IPDSTM SWITCHED VOLTAGE PROGRAMMING 

The iPDS system switches the +5.7 VSW, +VLOW, 
+ VHIGH, and - 12 VSW supply lines on and off un­
der program control. The controlling program (either 
iPPS software or a user-written driver program) must 



inter AP-156 

write to I/O port E3H in order to tum on/ofi'the re­
quired switched voltages. Figure 11 shows the bit defi­
nitions for programming the iPDS switched voltage 
lines. 

U ..... Wrltt.n IPDXTM Bu. Driver •. 

User-written iPDX bus driver programs nomially ac­
cess plug-in modules designed for use .with the iPDS 
system. A user-designediPDX bus plug-in module can 
address a wide range of applications. The iPDX bus 
driver program for a user-des~gned plug-in module can 
range from simple (e.g., using a single 1/0 port to up­
load PROM data to the iPDS system), to complex (e.g., 
using nearly all the I/O ports to control a high-level 
instrumentation function). 

The I/O ports available to the iPDX bus occupy ad­
dresses IOH through IFH in the iPDS 1/0 space. Since 
both an 1/0 read and an 1/0 write are associated with 
each I/O address, the user has 32 I/O ports available 
for each driver program. Figure 12 is a blank chart that 
can be used to assign 1/0 addresses for a specific user 
driver program. Keep this chart for reference while 
writing the driver program. 

The'driver program must be written in 8085 code. Use 
no more than byte-wide transfers of address, data, and 
control information. The plug-in module can operate 
on information of virtually any bit length. The 8-bit 
width of the iPDX data bus imposes a byte-wide only 
requirement on all information transfers over the iPDX 
bus. 

IUP MODULE CONTROL SITS 

PORT 
ADDRESS 
!ISH 7 I 8 

NOT USED 

DACCLOCK 

PORT . 
ADDRESS 
02H 

! I 
NOT USED 

8 

5 4 S 2 

IUP MODULE SUPPLY STATUS SITS 

151 4 
S 2 

1 " 
.... 

CLOCK 

-UYSW 

+5.7YSW 

+YLOW 

+YHIGH 

1 " 
'-

-UYSW 

+5.75VSW 

+VLOW 

+YHIGH 

Flgur. 10.IUP Swltch.d Voltag. Control and Status Bit D.llnltlons 

5-44 

230682-14 



inter 

PORT 
ADDRESS 
E3H I 7 I 6 I 5 

AP-156 

4 3 2 1 III I 
C LOCK 

-
- VLSW 

+ VSW 

+ VLSW 

+ VHSW 

230682-15 

Figure 11. iPDSTM Switched Voltage Control Bit Definitions 

1/0 Port 110 Write 1/0 Read 
Address Active Active 

10H 
11H 
12H 
13H 
14H 
15H 
16H 
17H 
18H 
19H 
1AH 
1BH 
1CH 
1DH 
1EH 
1FH 

Figure 12. Chart of iPDX Bus 1/0 Address Assignments 

5·45 



inter APPLICATION. 
NOTE 

. ,. 

AP·245 

October 1986 

Using· Command Files to Speed 
Program Development , 

SRIVATS SAMPATH 
DSO APPLICATIONS ENGINEERING 

Order Number: 231481·001 
5·46 



inter Ap·245 

INTRODUCTION 
Recently, the computer industry has leaned toward 
providing a very friendly interface between human and 
machine:an interface that allows the user to be more 
productive in the least time possible, an interface that 
gives him or her the ability to use all of the computer's 
advanced features. Tools to assist the user include the 
command line interpreters (CLls), HELP texts, and 
command file capability. 

Recognizing the need for a sophisticated human inter­
face, Intel has provided the advanced command line 
interpreter and syntax driver, HELP texts, and submit 
file capabilities on the Series IV Microcomputer Devel­
opment System. This application note deals with the 
power and use of the Series IV command file capabili­
ties. These facilities, available only on the Series IV and 
the network resource manager (NRM), represent a ma­
jor improvement over the Series II and Series III sys­
tems. 

Command files are files that can be executed by the 
host system. They are not programs. Typically, the 
computer recognizes the keystrokes from the keyboard 
and executes the operation selected. However, this be­
comes time-consuming for repetitive tasks involving 
many keystrokes. Constant user interaction is needed 
during the whole execution cycle, i.e., as soon as one 
operation is. complete, the user has to type in the next 
command. If all these commands could be put in a file, 
and if the computer could read this file and execute all 
commands sequentially without any user interaction, 
we would have a system that drastically increases user 
productivity and reduces user fatigue. 

Command files may be executed using two 
commands:SUBMIT and EXPORT. SUBMIT executes 
the command file instantaneously, while EXPORT 
sends the command file for execution at another system 
at a time determined by the DJC manager. (Refer to 
Application Note, AP-244, "DJC - The Key to In­
creased Network Productivity"). 

For example, type this at the command line: 

The SUBMIT command on the Series IV allows the 
user to replace commands typed in from the keyboard 
with ommands from a file. The submit command redi­
rects console input to the specified file. The Series IV 
also has a utility editor called BATCH that helps the 
user in creating a submit file. BATCH is an editor that 
incorporates within it the Series IV syntax driver. The 
syntax driver is a human interface that keeps prompt­
ing the user for correct variables and options. With the 
BATCH utility, a user can create a submit file with no 
difficulty. 

Command files can also be described as pseudopro­
gramming languages. These files can execute and per­
form logical operations, file I/O, support memory vari­
ables, looping, repeat function, and parameter passing. 
These commands execute their functions in a simple 
but effective way. They should be used with all other 
commands for more effectiveness. Command files re­
semble a very functional interpretive language. This is a 
very powerful utility on the Series IV and can be used 
to perform a variety of applications without requiring 
long programs to be written. 

To illustrate these multiple features, this Application 
Note will describe a command file called MAILMAN, 
which is an internetwork mail utility. MAILMAN has 
the capability to mail across multiple networks using 
only existing software. The Series IV command file ca­
pability has been used extensively in this application. 

COMMAND FILES AND THEIR 
CONSTRUCTS 
This section describes all the command file operators, 
their functions and the interrelationships between 
them. 

The LOG Command 
One of the commands often used with a submit file is 
the LOG command. LOG copies all console output to 
the file specified. 

>LOG TEST.LOG ;also send console output to TEST.LOG 
>dir /APS1/USER.DIR expanded 
iNDX-W31 (V2.8) DIR V2.8 
DIRECTORY OF IAPS1/JSER.DIR 

FILE--NAME 
JOHN.DIR 
CHRIS.DIR 
SRIVAT.DIR 
NORI.DIR 
WAYNE.DIR 
WORLD.DIR 
SUPERUSER.DIR 

OWNER--NAMEFILE--LENGTH 
JOHN 2048 
CHRIS 4096 
SRIVAT 2048 
NORI 2048 
WAYNE 4096 
WORLD 2048 
BRIAN 2048 

44021 

TYPE 
DIR 
DIR 
DIR 
DIR 
DIR 
DIR 
DIR 

OWNER--ACCESS 
del dis add 
del dis add 
del dis add 
del dis add 
del dis add 
del dis add 
del dis add 

total bytes used: 
>log :bb: ;stop additional redirection to file 

5-47 



AP-245 

The LOG file will contain the exact output of the DIR 
command. We have selectively written specific data 
into a file that we will use later. This feature is very 
useful in command files and will be seen in MAIL­
MAN. 

In any system, the ability to pass parameters or vari­
ables from one program to another is very important. 
By passing parameters, a command file can be made to 
do a variety of tasks. The SerieS" IV command file struc­
ture allows the passing of up to 10 parameters from the 
command line. These are designated %0 through %9. 

For Example: 

#CC86 %0.0 debug %1 

IF %status = 0 THEN 

link86 %O.obj &: 
l/%l.li b, &: 
1/%2.lib, &: 
l/bvoslb.lib, &: 
1/87null.lib, &: 
to %0.86 &: 

bind &: 
ss(staok(+800h},memory(+2800h}} 
END 

The user 'locally invokes this command file by typing 
in: 
> SUBMIT 
COMPILE (CHECKEXIST, SMALL,SCLIB} 

For Example: 

On submitting a file TEST.CSD 

> SUBMIT TEST will yield 

When the command file is executed, it substitutes: 

CHECKEXIST for %0 

SMALL for %1 

SCLIB for %2 

The user can therefore, have one command file that can 
be used to compile and link different sources with dif­
ferent libraries just by specifying them at the command 
line level. This parameter-passing feature provides in­
creased command file versatility. Without this feature, 
the user would have numerous command files, each ex­
ecuting a specific operation. This feature gives the user 
substantial flexibility and helps reduce the time to de­
velop unique files for each application. 

Command Line Variables 

Command files also support the assignment of variables 
to alphanumericstrin gs through the SET command. 
SET assigns the value on the right to the variable name 
on the left. 

For example: 
SET NAME TO %0 

will set the contents of %0 passed in from the com­
mand line to the CLI variable, NAME. Any further 
reference to %NAME will yield the value of %0. 
%NAME will access the contents of the variable, 
NAME. The Series IV CLI has an undocumented built 
in command called "DUMP". DUMP aids iii debug" 
ging command files. It displays all the variables in a 
command file and their corresponding values. 

> SET NAMEl to ""WAYNE" 
> SET NAME2 to "" SRIVAT' , 
>SET NAME3 to ""JOHN" 
> DUMP 

;set namel to wayne 
;set name2 to srivat 
;set name3 to john 

NAME:" "STATUS' , VALUE:'"'O" 
NAME:" " NAME 1 " VALUE:" "WAYNE' , 
NAME:""NAME2" VALUE:""SRIVAT" 
NAME: " "NAME3' , VALUE:""JOHN" 

;show all variables and their values 

EXIT COMMAND FILE /APS1/USER.DIR/SRIVAT.DIR/APNOTE.DIR/TES.CS 

5-48 



inter Ap·245 

The system supports a predeclared variable called 
STATUS, which is set by the DQ$EXIT value of a 
previously executed program. For example, a successful 
termination will normally set STATUS to 0, while an 
error condition will return another value. For example, 
consider the UDI call DQ$EXIT(V ALUE). 

A dq$exit(O) will set STATUS to 0 

Example: 

cc86 %O.c debug 

A dq$exit(l) will set STATUS to 1 

The value of STATUS depends on the parameter 
passed by the existing program. This tool is very useful 
for conditional compiles and conditional links. The 
command file can link and locate by monitoring 
STATUS only if the program is compiled without any 
errors. 

if %status = 0 then ;link only if compile successful 
link86 %O.obj, & 
l/sqmain.obj, & 
l/sclib.lib, & 
l/small.lib, & 
l/bvcslb.lib, & 
1/87null.lib & 
to %0.86 & 
bind & 
ss(stack(+800h),memory(+2800h)) 

end 

/ 

The command file above will link the object files only if 
the compiles are successful. This will save the time of 
whole like cycle without having the correct objects. 

Most Intel-supplied software, especially the translators 
and utilities, use this concept. A successful program 
completion will exit with STATUS set to 0, and a pro­
gram abort or termination will exit with STATUS set 
to something other than O. 

LOG FILE.TMP 
DIR / 
LOG :BB: 

FLE. TMP will contain: 
>dir / 
iNDX-W41 (V2.8) DIR V2.8 
DIRECTORY OF / 
FILE--NAMELOCATION ACCESSIBILITY 
APS--WO remote 
Wl remote 
APSO remote 
APSl remote 
SYS local 
>log :bb: 

Accessing Data Files 

The file I/O capabilities of command files are very 
powerful. The commands for file I/O are OPEN and 
READ. For· example, consider the LOG file 
FILE.TMP, generated by the sequence: 

A command file is shown that accesses this LOG file to discover the volume root name for the network: 
OPEN file. tmp 
COUNT 14 

read skip ;skip over the first 14 words of the file 
end 

read root 
end 

5-49 



intJ AP-245 

In a DIR / command, the first me name is the volume 
root name. In this case, APS-WO is the system volume 
root name and has to be assigned to some variable for 
future use. The command me utility OPEN for me I/O 
is used to gain access to the me FILE.TMP. The 
COUNT command is 'used as a loop counter that will 
loop around the number of times specified. 

In this case, COUNT 14 will loop 14 times. Each time, 
it will set the variable SKIP from one word in the LOG 
me. A Word can be defined as a set of characters sepa­
rated by a white space. We effectively skip over one 
word at a time. In this case, APS-WO is the 14th word 
from the start of the me. So, the loop will skip 13 words 
and then read the system volume root name into the 
CLI variable ROOT. The COUNT, READ, OPEN and 
SKIP commands, built into the CLI, can be used only 
in submit meso The READ ROOT command will read 
the 14th word into the memory variable ROOT. 
%ROOT will contain the value of ROOT, which is, in 
this case, APS-WO. 

cc86 %O.c debug 
if %status 0 than 

REPORT Error in compile of %O.c 
else 

Only one file can be opened at a time. There is no 
explicit CLOSE function. Opening another me will 
close the previous one. To force the Close of a parame­
ter me, use the OPEN command on a nonexisting me. 
A combination of the LOG, OPEN, READ and SKIP 
commands help in doing very functional but effective 
me I/O 

Conditional Command File Execution 

Since the Series IV command me is like a pseudo-inter­
preter, it also supports logical operations such as IF, 
THEN, ELSE. The example below highlights how 
these constructs can be used within a command me. 

This command me compiles any C program and then 
checks for a successful compile .. If the compile is suc­
cessful, the command me proceeds with linking and 
binding. If the compile is not successful, the me is an 
error reporter. More information on REPORT can be 
obtained from AP-244, an application note on distrib­
uted job control. 

;Compile the program 
;If error in compile 
;Send message to user 

and exit. 
REPORT Successful Compile. Proceeding with LINK 

link86 %O.obj, & 
l/sqmain.obj, & 
l/sclib.lib, & 
l/small.lib, & 
1/87null.lib & 
to %0.86 & 
bind & 
ss(stack(+800h) ,memory(+2800h)) 

if %status = 0 then ;Check for error in link 

else 

end 

REPORT Successful Link. End of Job. ;If no error inform user 

REPORT Error while linking ••••• ;If error inform userand 
;and exit. 

5-50 



AP·245 

Command File Looping 

The COUNT construct is a looping control. REPEAT 
is an additional construct and works in conjunction 
with the WHILE and UNTIL commands. REPEAT 
will loop until the condition specified by the WHILE or 
UNTIL command is satisfied. 

REPEAT 

END 

UNTIL %STATUS = 2 
any operation 

OR 
REPEAT 

END 

WHILE %STATUS < > 2 
any operation 

These logical operators can be used in any combination 
as long as the syntax is correct. Each loop should have 
a: matching end statement. 

MAILMAN (A BRIEF EXPLANATION) 

MAILMAN is a command file that allows users on one 
network to send mail to users on another network over 
an Ethernet cable. The network users do not have to 
distinguish or remember the USERlNRM configura­
tion. MAIL is used as normal, and MAILMAN run­
ning as a background task knows the configuration and 
behaves accordingly. The MAILMAN utility uses ex­
isting software and the powerful constructs of the Series 
IV command file utility to illustrate that complex prob­
lems can be solved simply. 

In a typical multiple network environment, communi­
cation between users on one network with users on the 
other network is very important. Since electronic mail 
supports only one network, there was a need for a sys­
tem that supported mail over multiple networks. Writ­
ing a program in one of the high-level languages or 
assemblers using Ethernet protocols would require sub­
stantial time for designing, developing, and debugging. 

The MAILMAN utility is an example of how com­
mand files increase productivity and help solve complex 
applications. MAILMAN, which uses almost all the 
commands and constructs supported by command files, 
will help the reader understand how command files can 
be used for any particular application. 

5-51 

In this example two NRMs will send mail between each 
other by executing the MAILMAN utility on import 
stations at both ends. These import stations import 
from a utility queue called iNDXUTILITY.Q. For 
more information on queues and remote job execution, 
refer to Application Note AP-244 titled DJC:Key to 
Increasl:<l Network Productivity. 

MAILMAN generates several data files using the LOG 
command during execution to discover the various sys­
tem variables. It also depends on two data files called 
REMOTE.USERS and LOCAL.USERS. These files 
have the sameformat and are used to distinguish which 
NETWORK each user is Sysgenned onto. The format 
is: 
Line l:NRM root volume name 
Line 2:Username 
Line 3:Username 

Last line:blank <to signify the end of 
list> 

These data files should be placed in the directory: 
MAIL.DIR of each system. 

For example, the file LOCAL.USERS under /APS­
wO will look like: 
APS--WO 
SRIVAT 
WAYNE 
JOHN 
CHRIS 
<blank> 

And the file REMOTE. USERS will look like: 
PMO 
PAUL 
FRANCIS 
STU 
SUNIL 
<blank> 

Each of the REMOTE users have to be sysgenned onto . 
the local network as users but without a home directo­
ry. The user MAILMAN has to be sysgenned intothe 
network as a user with a home directory. 



inter AP-245 

MAILMAN (THE COMMAND FILE) 
. , 

1 :*~.~***~*******.****~*.***~.*,***.****.*~,*~*********~*~.~~*~.~~****~,***** •• *. 
2 :~ CHECKMAIL.CSD • This isa submit file .that allows multiple NRM mail. * 
3 :* A detailed explanation of the .ystem requiiementsis in the CHECKMAIL.DOC* 
4 :* file. CHECKMAIL allows users on one NRM'to mail messages .to users on.. * 
5 :* other NRMS. Th~re is no li~[t tb the number of NRM's, but you m~st read * 
6 :* the Toolbox manual or CHECKMAIL.DOC to.effect modifications for ,more than* 
7 :* two NRMs. This file is set up for two NRMs only. * 
8 : *1' •• ~* * **_**. *,* "!*. * **._ ••• ~ *** **.~ * **. * ** ••• * ** •••••• * *.*.* ** ** ••• ** * ** * *' *** *.* 
9 :*******~~******* •• **~*.*.****~**~***********.*******. ** •••••••.••••••••• * •••• 

10 : Need to know the root volume,name 
11 :**.*~*.*** ••• ******.*.*******.*.* •• **************.**** •••• ***~*****.**.***** 
12 log file. tmp 
13dir / 
14 log :bb: 
IS open file.tmp 
16 count 14 
17 read skip 
18 end 
19 read root 
20 open file2.tmp ; To close param.file 
21 : * ** ** * * ** •• * * ** ** * ** •• * **** * *** * ** * ** * •.•• * **; •.• -••• -•.••• '.* ***' •. **,*** *' ** *** * * •.• * 
22 : If the user did not supply a p,arameter use their USER .NAME 
23 ;***************************************************** *******~**.*****~***~** 
24 if %0 <) 1111 

25 set name to %0 
26 else 
27 log file.tmp Who .is currently using this command file 
28 id 
29 log :bb: 
30 open file,tmp 
31 read skip~skip.skip.skip,name 
32 end .. 
33 :****************************~***-*~*****~***'**~*'**********~**~*******~***'.* 
34 ; If the user is MAILMAN then weare in receive mode 
35 : else we are in transmit mode 
36 :******************************~*********,*************~********************* 
37 if %name <> MAILMAN then 
38 Can now check for mail 
39 delete message. found 
40 mail box %name 
41 save 1 message. found 
42 q 
43 Check to see if there was a message in the mailbox 
44 checkexist message. found 
45 if %status = 1 
46 set sent to false 
47 open /%root/mail.dir/remote.users 
48 Read the root volume of the remote network 

,49 read rroot 
50 repeat 
51 while '!;sent' false 

231481-1 

5·52 



inter AP-245 

52 Read one of the remote system user names 
53 read remote 
54 while %remote <> "" 
55 if %name = %remote then 
56 open file2. tmp 
57 log file.tmp 
58 time 
59 log :bb: 
60 open file.tmp 
61 count 11 
62 read skip 
63 end 
64 read time 
65 nncopy message.found to %rroot/mail.dir/%name/%time &, 
66 username (mailman) password (post) nrm (0) 
67 :*************************************************************************** 
68: The 'message has been forwarded to the other system, 
69 remove it from the local mailbox 
70 ;************.*************************************~************~*********** 
71 mail box %name 
72 delete 1 
73 e 
74 set sent to true 
75 end 
76 
77 if 
78 • 'This is a 
79 

end 

end 
'!;sent = false then 
local user message 
Report You have mail 
end 

in box %name 
80 
81 
82 
83 
84 

. * * * * * * * * ** '* * * * * * * * * * * * ** * * *** * * * '* * * '* '* * * *. * * .. * ** * •• '. * *. **.,; * * * * .. * ** * ;"'. '* .. * * * * * 
; The user MAILMAN, operate in receive mode 
~*************************************************.*************~*********** 

85 else 
86 set name to user 
87 repeat 
88 open /%root/mail.dir/local.users 
89 Ign'ore the root name 
90 read skip 
91 ~kip to the user name 
92 read %name 
93 while %user <> 
94 log file. tmp 
95 ;********.*****************************************~** ****.*.*************** 
96: Check for 'timed' mail delivery from another' system 
97 :***************************************************** ***.***************~** 
98 dir /%root/mail.dir/%user for ??:??:?? 
99 log :BB: 

100 open file. tmp 
101 count 16 
102 read skip 
103 end 
104 repeat 
105 read file 
106 while %file <> "" 

231481-2 

5-53 



AP-245 

107 
108 
109 
110 
111 

;*****************************************************kkwwwwkw*kwwkk_. _____ * 
; A 'timed' message has been found, MAIL it to the appropriate user 
~****************************.*~********~************* *wwwwwwwwwwwwk __ * ____ _ 

mail /'root/mail.dir/,user/%file' to 'user & 
subject(Arrived at 'FILE and forwarded by Mailman) 

112 delete /,root/mail.dir/,user/'file 
113 
114 
115 
116 end 

end 
set name to "skip"name" 
end 

i17 ;************************~**************************** wk.wwwkwww*kwk_.* ____ _ 
118 ; All done, reinvoke myself 
119 ;**********************************~*.**************** -_._._----------------
120 e'xport /irootichecikmai~(%~) to, iNDXutility.q nolog 

MAILMAN (AN IN-DEPTH LOOK) 

Many comments, included to help your understanding 
of the program. flow, could be edited out to speed exe­
cution. There are some concepts used in this program 
that need additional explanation. 

#65" 

We use the NRM to NRM communications package 
discussed in Application Note AP~241 (Multiple NRM 
Ethernet COIlUIlunications) to communicate between 
the NRMS.. If other NRMs were not on the same 
Ethernet cable, we could change this line only to incor­
porate autodialing to other NRMs. 

#114 

"SET NAME TO "SKIP", %NAME" 

As described earlier, the CLI can have only one file 
open at, any time. The opening ,of. any other file will 
close the previously opened file. In line #. 88, we open 
the file LOCAL. USERS and skip, to the first name. 
Once this user name has been established, we need to 
check for mail in his or her Mail directory. This opera­
tion is done inll.nes #99 to #114. However, we now 
need the name of the next user. Since we already closed 
the file LOCAL.USERS,the next time lines #83 
through #94 are executed, the file pointer will point to 
the same n~e and will repeat the loop. By settin.g 
NAME to "SKIP, %name", the next time the file is 
opened, it will automatically read the second name. 
The CLI variable %NAME will be "SKIP, %NAME" 
and the command READ will skip one word and read 
the next. The third time, NAME will be "SKIP,SKIP, 
%NAME", the fourth time, "SKIP, SKIP, SKIP, 
%NAME". Even though the file LOCAL.USERS is 
constantly opened and closed, our file pointer is still 
intact and points to the correct word. 

231481-3 

#120 

"Export l%root/CHECKMAIL(%O) to indxutility.q 
nolog" 

We need this file to be executing forever:checking the 
mail and sending' it to the right networks. This is an 
example of looping in export files, i.e., having a remote 
job run forever; For more information; refer to the Ap­
plication Note AP-244 DJC, Key to Increased Network 
Productivity, 

5-54 

#44 

CHECKEXIST.86 is a file checker. If the specified file 
exists, it will exit with STATUS set to 1. Otherwise; 
STATUS is set to o. This is· used to determine the exis­
tence of a file. This small utility was developed for use 
within the MAILMAN package. 

Example: 
CHE.CKEXIST TEST.FILE will 
set STATUS to 1 if TEST.FILE exists 
else 
set STATUS to 0 

Within the MAILMAN utility, CHECKEXIST is used 
to check if any mail messages exist for the user speci­
fied. Looking at the source of CHECKEXIST.C shown 
in Appendix A, the concept of STATUS becomes very 
clear. . 

CONCLUSION 

MAILMAN is an extensive example of the power of 
the Series IV command file capabilities. The complete 
file was developed and debugged in less than a week -
far shorter than writing an application program to talk 
over Ethernet. The Series IV command file capability 
enables you to build upon software you already have to 
reach higher heights more quickly. 



inter AP-245 

APPENDIX A 
(CHECKEXIST.86) 

/***********************************************************************/ 
/* CHECKEXIST.C Existence checker for files. */ 
/* CHECKEXIST will exit with an exit code of "0" if file is not found */ 
/* else it will return with an exit code of 1. This will be passed */ 
/* into %STATUS in a command file. */ 
/* Syntix for CHECKEXIST.86 */ 
/* CHECKEXIST < filename > */ 
/* */ 
/* Example: */ 
/* */ 
/* The batch file CHECK.CSD contains these statements. */ 
/* CHECKEXIST My.File */ 
/* */ 
/* Submitting this batch file will set %STATUS to 0 if file does not */ 
/* exist and 1 if file exists. */ 
/* */ 
/* For an example of the use of this CUSP see the Mailman example for */ 
/* multiple network mail. */ 
/***************************************************** ******************1 

#include <:f2:stdio.h> 
#include <:f2:ctype.h> 

/***************************************************** *********~********/ 
/* start of main routine */ 
/***********************************************************************/ 
main(argcl argv) 

int 
char 

argc; 
*argv[J; 

FILE *fpl *fopen(); 

if (argc == 1) 
{ 

} 
/* 
/* 
if 
{ 

} 

puts("Error •• Filename not specified."); 

Exit with return value 0 if file does not exist */ 
else exit with a 1 */ 
«fp = fopen(*++argvl Or"»~ == NULL) 

dq$exit (0): 

else 
{ 

fclose(fp); 
printf("FOUND FILE 
dq$exit (1) : 

%s\n",*argv); 

5·55 

231481-4 





System Design Kits 6 





SDK-86 
MCS®-86 SYSTEM DESIGN KIT 

II Complete Single Board Microcomputer II Interactive LED Display and Keyboard 
System Including CPU, Memory, and 

II Wire Wrap Area for Custom Interfaces 
1/0 

Easy to Assemble Kit Form 
II Extensive System Monitor Software In 

II ROM 
II High Performance 8086 16-Bit CPU 

II Comprehensive Design Library 
II Interfaces Directly with TTY or CRT Included 

The SDK-a6 MCS-a6 System Design Kit is a complete single board 8086 microcomputer system in kit form. It 
contains all necessary components to complete construction of the kit, including LED display, keyboard, 
resistors, caps, crystal, and miscellaneous hardware. Included are preprogrammed ROMs containing a system 
monitor for general software utilities and system diagnostics. The complete kit includes an a-digit LED display 
and a mnemonic 24-key keyboard for direct insertion, examination, and execution of a user's program. In 
addition, it can be directly interfaced with a teletype terminal, CRT terminal, or the serial port of an Intellec 
system. The SDK-a6 is a high performance prototype system with designed-in flexibility for simple interface to 
the user's application, 

6-1 

205945-1 

October 1986 
Order Number: 205945-002 



intJ SDK-S6 

FUNCTIONAL DESCRIPTION 

The SDK-86 is a complete MCS-86 microcomputer 
system on a. single board, in kit form. It contains all 
necessary components to build a useful, functional 
system. Such items as reSistors, caps, and sockets 
are included. Assembly time varies. from 4· to 10 
hours, depending on the skill of the user. The 
SDK-86 functional block diagram is shown in Figure 1. 

8086 Processor 

The SDK-86 is deSigned around Intel's 8086 micro· . 
processor. The Intel 8086 is a new generation, high 
performance microprocessor implemented in 
N·channel, depletion load, silicon gate technology 
(HMOS), and packaged in a 40·pinCERDIP pack· 
age. The processor features attributes of both 8-bit 
and 16-bit microprocessors in that it addresses 
memory as a sequence of 8-bit bytes, but has a 16-
bit wide physical path to memory for high perform· 
ance. Additional features of the 8086 include the fol· 
lowing: 

• Direct addressing capability to one megabyte of 
memory 

• Assembly language compatibility with 8080/8085 
• 14 word x 16-bit register set with symmetrical op· 

erations 
• 24 operand addressing modes 
• Bit, byte, word, and block operations 
• 8 and 16-byte signed and ,unsigned arithmetic in 

binary or decimal mode, including multiply and di· 
vide 

• 4 or 5 or 8 MHz clock rate 

A block diagram of the 8086 microprocessor is 
shown in Figure 2. 

System Monitor 

A compact but powerful system monitor is supplied 
with the SDK-86 to provide general software utilities 
and system diagnostiCS. It comes in preprogrammed 
read only memories (ROMs). 

Communications Interface 

The SDK-86 communicates with the outside world 
through either the on·board light emitting diode 
(LED) display/keyboard combination or the user's 
TIY or CRT terminal Oumper selectable), or by 
means of a special mode hi which an Intellec devel· 
opment system transports finished programs to and 
from the SDK-86. Memory may be easily expanded 
by Simply soldering in additional devices in locations 
provided for this purPose. A large area of the board 
(22 square inches) is laid out as general purpose 
wire·wrap for the user's custom interfaces. 

Assembly 

Only a few simple tools are required for assembly: 
soldering iron, cutters, screwdriver, etc. The SDK-86 
assembly manual contains step·by·step instructions 
for easy assembly with a minimum of mistakes. 
Once construction is complete, the user connects 
his kit to a power supply and the SDK-86 is ready to 
go. The monitor starts immediately upon power·on 
or reset. 

CONTROL 
LINES 

. CONNECTOR 

ADDRESS 
BUS EXPANSION 

CONNECTOR 

205945-2 

Figure 1. SDK·a6 System Design Kit Functional Block Diagram. 

6-2 



SDK-8S 

Commands-Keyboard mode commands, serial 
port commands, and Intellec slave mode commands 
are summarized in Table 1, Table 2, and Table 3, 
respectively. The SDK-86 keyboard is shown in Fig­
ure 3. 

EXECUTION UNIT 

REGISTER FILE 

DATA, 
POINTER, AND 
INDEX REGS 
(8 WORDS) 

16·BIT ALU 

FLAGS 

8US INTERFACE UNIT 

I .~~~~f:~'~~E I 
SEGMENT 

REQISTERS 
AND 

INSTRUCTION 
POINTER 

(5 WORDS) 

BUS 
INTERFACE 

UNIT 

6·BYTE 
INSTRUCTION 

QUEUE 

TE5T-_1"----.....;:,..::..-----, 
INT-_ 
NMI--

CONTROL I TIMING 

HOLD-­
HLDA.--t-.,.-_..,.-_-. __ .---:"""'" 

eLK RESET READY Vee 
GND 

IH!Is, 
A1~S. 

A,itS3 

ADWADo 

205945-3 

Figure 2. 8086 Microprocessor Block Diagram 

SYSTM INTR C 0 E F 
RESET liP IFL 

+ 8 9 A B 
IWICS OWIDS IISS IES 

REG 
4 5 6 7 

IBISP OBIBP MVISI EWIDI 

0 1 2 3 
EBIAX ERIBX GOICS STIDX 

205945-4 

Figure 3. SDK-86 Keyboard 

6-3 

Documentation 

In addition to detailed information on using the moni­
tors, the SDK-86 user's manual provides circuit dia­
grams, a monitor listing, and a description of how the 
system works. The complete design library for the 
SDK-86 is shown in Figure 4 and listed in the specifi­
cations section under Reference Manuals. 

205945-5 

Figure 4. SDK-86 Design Library 

Table 1. Keyboard Mode Commands 
Command Operation 

Reset Starts monitor. 

Go Allows user to execute user program, and causes it 
to halt at predetermined program stop. Useful for 
'debugging. 

Single Step Allows user to execute user program one 
instruction at a time. Useful for debugging. 

Substitute Allows user to examine and modify memory 
Memory locations in byte or word mode. 

Examine Allows user to examine and modify 8086 register 
Register contents, 

Block Move Allows user to relocate program and data portions 
in memory. 

Input or Allows direct control of SDK-86 110 
Output facilities in byte or mode. 

Table 2. Serial Mode Commands 
Command Operation 

Dump Memory Allows user to print or display large blocks of 
memory information in hex format than amount 
visible on terminal's CRT display. 

Start/Continue Allows user to display blocks of memory 
Display information larger than amount visible on 

terminal's CRT display. 

Punch/Read Allows user to transmit finished programs into 
Paper Tape and out of SDK-86 via TTY paper tape punch. 



inter SDK·a6 

8086 INSTRUCTION SET 

Table 3 contains a summary of processor instruc-
tions used for the 8086 microcprocessor. 

Table 3. 8086 Instruction Set Summary 

Mnemonic and Instruction Code Mnemonic and Instruction Code Description Description 
Oatalranlll' 
NOV" Mov.: 1UU2tO 7eBU2l0 71141210 7111411110 eMP- Cornpartl 11143210 71543210 781543210 7U43210 

RegI.ter/Memorylo"romRogilt. tDClOl0dw mot! reg rIm Register/Memory and Register OOt ItOdw modregr/m 

ImmtMlial,to Register/Memory 1100011w rnocIOOOr/m dm dataHw", Immedlatewtlh RegiaterlMlmory 1000001.,.. modi "rlm do. 

Imm&dllteIoRegl,ter 1011wrt; do. dataHw-l Imm&dlatewithAccumulalor 0011110w datlltw'" 

M.morytoAeeumulalor 1010000w ""'·1oW adcIr..tllgh AA8 .. ASCII Adllmllof Subtract 
~ AceurnulatortoMlmory 1010001w 1ltIdr·low .ddr-hlgh DAS .. Decimal Adjust lor Sublrac1 00101111 

Regitter/Memoryto Segment Register 10001110 modO reg rIm NUL .. Mul~ply (Unsigned) modtOOr/m 

Segment Regl,1et 10 Regilter/Memo!y '0001100 modO reg rim 1!lUI. .. Imegl!f MulUpl)' (S~nDd) rnodl01r/m 

PUSH" Puah: 
AAM .. ASCI! Adju"lcr Mulllply 00001010 

RtgilletfM8/TIOIY modllOr/m DIV- CiYlde(Unslgl'llld) 1III0llw modl10r/m 

R~ster 
IDlY -lntegerOlvlde(Slgned) IIIIOllw modlllr/m 

StgmentReglster AAD .. ASCII Adjust lor CiYlde 11 01 0101 I 00001010 I 
CBW .. COnvert Byte to Word ~ pop .. Pop: 
CWO - Convert Word to Double Word ~ Rtgitl.r/Memory modOOOr/m 

RSljl:lcr 

SilgmiintRegl1iter 

leCHQ ... bchangt: .... ,. 
Regiiter/Me!'l'lO!Ywitl Regl,ter mod reg r/m 

NOT-Invert '" 10111'1 I modOlOr/m I RelllsterwlttiAccumulator 
SHUSAL - Shffl Loglcal/,A,rithemtic Left I I 01 OOvw I mocIl00r/m I IN -Input 
SHR - Shift logical Right 110100vw I modl0lr/m I I FbcedPort 11100101'1 PO" 9AR .. St'jlt Arithmetic Right II0100vw I mocllllr/m I VarlabltPort ~ ROL"RotateLeft 1I0100vw I moclOOOr/m I 

OUT-""",", ROR .. Rotate Right 110100vw I modOOlr/m I 
""d"" I I I 100111'1 I port RCL. - Rotate Through Cerry Flag Left 110100vw modOIOr/m 

~ RCR - Rotate Through Carry Right 110l00vw modO I I rIm 

leLA T .. Transl~te Byte to AL 
AND .. And: 

LEA .. Load EA to Register 100011 01 modregr/m 
Rag./Memory and Register to Eltt1er 001000dw modregr/m 

LDS" Load PoInterto OS 11000'01 mod reg rIm 
Immediate to Register/Memory 10000001'1 modlOOrlm ... datalfw"l 

LES- Load PointertoES mod reg rIm 
Immedlate to Acoumulator I 00100101'1 I datellw-' 

LAHF .. Load AH with Flags 10011111 

SAHF .. store AH inlo Flags 100111\0 TEST .. And Function to Flap. No FI .. ult 

PUSHf .. Pustl Flags Reglster/Memorya!ldRegmter 10000lOW I modregr/m 

POPF" Po;IFlagS 100111 01 Immed~e Data and Reglstar/Memory 11110111'1 I modOOOr/m d •• 

Immediate Data and Accumulator 10101001'1 I d •• 

OR" Or. 
A.rlltlmetic Rag./Memory lind Regisl(II 10 EitMor OOOOIOdw I modregr/m 
ADD - Add: 

Reg.lMemorywlth Reglsterlo EHher OOOOOOdw modregr/m 
Immediate to Regi8ler/Memo.-y I 10000001'1 I d •• dataifw-I 

Immediate to Regl,ter/Memory 100000,w mo<lOOOr/m d'" 
ImmedietetoAccumula1Ol" I 00001101'1 I 

Immediete10 Aceumulalor 0000010w d •• da'ailw-I 
XOR- ElIe1ullvtcr. 

Reg./Memory ana Regl:sl9r 10 Either 001 lOOdw modregr/m 
ADC .. Add with carry: ImmedlateloRegister/MelTlOfY 10000001'1 mod110r/m "'. dalaifw" I 
Reg./Memorywlth Reglster~ Either 000100dw mod reg r/m ImmedlaletoAccumulator 
Immed"lIte 10 Reglsler/Memory 10000011'1 modOl0r/m "'. dataif,w"Ol 

Immediate 10 Accumulator 00010101'1 data dataHw- I 

INC -Incftment: 

Register/Memory modOOOr/m String Mantpul.tlon 

Register REP - Repeat 1111 001 ~ 

AM .. ASCIl Adjuvt lor Add MOVS - Move ayte/Word 

BAA - ~IAd)Jstfor Add CMps ... Compare BytelWord 

SUB - SUbtratt: SCAS .. Scan Byte/Word 

Reg./Memory Mel Regl,terlo E~er 001010dw mod r.g rIm LOOS - Load Byte/Wd 10 AL/AX 

Immldltte from Aegl1l9l'/Memory 100000lw modlOlr/m do. STOS" Stor Byte/WdfromAL/A 

Immediate fromAccumule1o' 00101 lOw d8tallw"1 

SSB .. SUbtract wtUI BorrOlll' 

Rtg./Memory and Regl'terlo Ellhr I 000110dw I mod reg rIm 
Control Trl"lltr 

Immediate from Flegl'ter/MtmorY IOOOO08w mod011 rIm d •• dataif,w-Ol CAL.L - ClII: 
Immedlale from AcoumlJlator 0001llw d •• datallw-I OlreclWlthlnSegmen! "'01000 I d_. dl1p-tllgh 

DEC - Deortmtnt: lndlfeclW~hlnStgment 111111" modOl0r/m 

Fleg!ater/memory modOOl <1m Olrtlclinterlll;meni 10011010 olfMt~ow ofll,t.hl;i"1 

AI;iater no-low .. g.tllgh 

NEB ... Change IIgn modOl I rIm Indr.C1lnl..-,egmlnt 11111111 modOl1r/m 

6-4 



SDK-a6 

Table 4. 8086 Instruction Set Summary (Continued) 

Mnemonic and 1 
Description Instruction Code 

JMP .. UncondttlQnal Jump: 

OIrec1;WithinSegmenl 

DirectWithinSegment-Short 

loolrectWithlnSegmanl 

Oirectlnlsr1Iegmanl 

11101001 I d,sp--Iow 

11101011 I diap 

modl00r/m 

oHaa!-1ow 

711U210 

dlap-hlgh 

looirectlnter$6gment 

leg-low I t&g-hlgh 

mod! 01 rim I 

RET .. Return from CALL: 

Wilhln5egmenl ~ 
W~hln Seg Adding Immad 10 SP 

Intersegmenl L 11001011~ 
Intersegment Adding Imm&dlals 10 SP 

JE/JZ" Jump on Equal/Zero 

JU'JNGE .. Jump on leu/Not Greatat' 
otEqual 

JLE/JNQ .. Jump on Leu/Not 
Greater 

JB/JNAE - Jumpon BelowfNotAlJove 
QrEqua! 

J8E1JNA .. Jumpon BelOw or Equall 
Not Above 

JP/JPE .. Jump on Parity/ParityEven 

JO .. Jump on Ovll'flow 

JB- JumponSiOn 

JHE/JNZ .. Jump on Not EqullllNotZero 

JNLlJGE - JumponNotLasl/Grsater 
or Equsl 

.JNW.Ja .. Jump en Net Len or Equall 
Graster 

JNQ/.JAE - Jump en Nel Belew/Abcve 
aE.., 

.JNBElJA - Jump en Net Selower 
Equal/Above 

JNP/JPO - Jumpon Net PIlI'/PIlTOdd 

JNO - Jump on Net Overflew 

JNS';' Jump en Net Sign 

NOTES: 
Al = 8·bit accumulator 
AX = 16-bit accumulator 
CX = Count register 
OS = Oata segment 
ES = Extra segment 

11001010 

01110100 I 
01111100 I 
01111"0 I 
01110010 I 
01110110 I 
01111010 I 
01111000 

01111011 

0'" 1 0001 

0111100' 

data-low 

di.p 

dis!, 

." 
dlsp 

disp 

"" 
dis? 

dill' 

djap 

disp 

disp 

dlsp 

disp 

dlsp 

disp 

dlsp 

Above/below refers to unsigned value 
Greater = more positive: 

data-high 

data-hlgh 

less = less positive (more negative) signed values 
if d = 1 then "to" reg; if d = 0 then "from" reg 
if w = 1 then word instruction; if w = 0 then byte instruc­
tion 
if mod = 11 then rIm is treated as a REG field 
if mod = 00 then OISP = 0·, disp-Iow and disp·high are 
absent 
if mod = 01 then DlSP = disp-Iow sign·extended to 
16 bits, disp-high is absent 
if mod = 10 then OISP = disp-high; disp-Iow 
if rIm = 000 then EA = (BX) + (SI) + OISP 
if rIm = 001 then EA = (BX) +. (01) + OISP 
if rIm = 010 then EA = (BP) + (SI) + OISP 
if rIm 011 then EA = (BX) + (01) + OISP 
if rIm 100 then EA = (SI) + OISP 
if rIm 101 then EA = (01) + OISP 
ifrlm 110thenEA = (BP) + OISp· 
if rIm = 111 then EA = (BX) + OISP 
OISP follows 2nd byte of instruction (before data if reo 
quired) 
"except if mod = 00 and rIm = then EA = disp-high: 
disp-Iow. . 

Mnemonic and 1 
Description Instruction Code 

70543210 711543210 

LOOP - Loop ex Tlmas 11100010 

11100001 

di$p 

dilP LooPztLOOPE -loopWhlleZero/EqUIII 

LOOPNztLooPNE - Loop While Net . ., 
Z(I{e/EquII 

JCXZ:- JumpenCXZero disp 

INT - IntHTUpt 

TypeSpecifilid 

,,,.3 
I 11001101 I Type 

~ 
~ 
~ 

INTO -lnlerruptonOvartlcw 

IRET - Inlllrrupt Return 

6-5 

if s w = 01 then 16 bits of immediate data form the oper­
and 
if s w = 11 then an immediate data byte is sign extended 
to form the 16-bit operand 
if v = 0 then "count" =1; if v = 0 then "count" in (Cl) 
x = don't care 
if v = 0 then "count" = 1; if v = 1 then "count" in (Cl) 
register 
z is used for string primitives for comparison with ZF FLAG 
SEGMENT OVERRIOE PREFIX 

001reg110 I 
REG is assigned according to the following table: 

16-Blt (w = 1) 8-Blt (w = 0) Segment 

000 AX 000 AL 00 E5 
001 CX 001 CL 01 C5 
010 OX 010 OL 10 55 
011 BX 011 BL 11 05 
100 5P 100 AH 
101 BP 101 CH 
110 51 110 OH 
111 01 111 BH 

Instructions which reference the flag register file as a 16·blt 
object use the symbol FLAGS to represent the file: 
FLAGS = 
X:X:X:X:(OF):(OF):(IF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF) 

Mnemonics © Intel, 1978 



SDK-SS 

SPECIFICATIONS 

Central Processor 

CPU-8086 (5 MHz clock rate) 

NOTE: 
May be operated at 2.5 MHz or 5 MHz, jumper se­
lectable, for use with 8086. 

Memory 

ROM: 8K bytes 2316/2716 

RAM: 2K bytes (expandable to 4K bytes) 2142 

Addressing 

ROM: FEOOO-FFFFF 

RAM: 0-7FF (800-FFF available with additional 
2142's) 

NOTE: 
The wire-wrap area of the SDK-86 PC board may 
be used for additional custom memory expansion. 

Input/Output 

Parallel: 48 lines (two 8255A's) 

Serial: RS232 or current loop (8251A) 

Baud Rate: selectable from 110 to 4800 baud 

Interfaces 

Bus: All signals TTL compatible 

Parallel 1/0: All signals TTL compatible 

Serial 1/0: 20 mA current loop TTY or RS232 

NOTE: 
The user has access to all bus signals which en­
able him to design custom system expansions into 
the kit's wire-wrap area. 

Interrupts (256 vectored) 

Maskable 

Non-maskable 

TRAP 

DMA 

Hold Request: Jumper selectable. TTL compatible 
input. 

Software 

System Monitor: Preprogrammed 2716 or 2316 
ROMs 

Addresses: FEOOO-FFFFF 

Monitor I/O: Keyboard/display or TTY or CRT (serial 
I/O) 

Physical Characteristics 

Width: 13.5 in. (34.3 cm) 
Height: 12 in. (30.5 cm) 
Depth: 1.75 in. (4.45 cm) 
Weight: approx. 24 oz. (3.3 kg) 

Electrical Characteristics 

DC Power Requirement 
(Power supply not included in kit) 

Voltage 

Vcc5V ±5% 
VTTY - 12V ± 10% 

Current 

3.5A 
0.3A 

(Vny required only if 
teletype is connected) 

Environmental Characteristics 

Operating Temperature: O°C_ + 50°C 

Reference Manuals 

9800697A-SDK-86 MCS-86 System Design Kit As-
sembly Manual . 

9800722-MCS-86 User's Manual 

9800640A-8086 Assembly Language Program­
ming Manual 

8086 Assembly Language Reference card 

Reference manuals are shipped with each product 
only if designated SUPPLIED (see above). Manuals 
may be ordered from any Intel sales representative, 
distributor office or from Intel Literature Department, 
3065 Bowers Avenue, Santa Clara, California 95051. 

ORDERING INFORMATION 
Part Number 

SDK-86 

Description 

MCS-86 System Design Kit 



PROM Programming 7 





iUP-200AliUP-201A UNIVERSAL 
PROM PROGRAMMERS 

MAJOR iUP-200AliUP-201A FEATURES: 

• Personality Module Plug-Ins Provide 
Industry First Support for Intel and 
Intel Compatible EPROMs, EEPROMs, 
KEPROM, Microcontrollers, and other 
Programmable Devices. 

• Powerful PROM Programming Software 
(iPPS) Makes Programming Easy with 
Intelle9@ Development System, iNDS-1i 
Networks, iPDS Personal Development 
System, IBM PIC, XIT, AlT, and PC 
DOS Compatibles. 

• New Modules Provide Industry-Fastest, 
Intelligent Programming Algorithms to 
Dramatically Shorten Programming 
Times. 

• iUP-200A Provides On-Line Operation 
with a Built-In Serial RS232 Interface 
and Software for a Growing List of 
Environments. 

• iUP-201A Provides Same On-Line 
Performance and Adds Keyboard and 
Display for Stand-Alone Use. 

• iUP-201A Stand-Alone Capability 
Includes Device Previewing, Editing, 
Duplication, and Download from any 
Source Over RS232C Port. 

• Regular Updates and Add-Ons Have 
Maintained Even the Earliest iUP-200 
and iUP-201 Users at the State-of-Art. 

The iUP-200A and iUP-201A universal programmers program and verify data in all the Intel and Intel compati­
ble, programmable devices (EPROMs and EEPROMs). They can also program the EPROM memory portions 
of Intel's single-chip microcomputer and peripheral devices. The iUP-200A and iUP-201A universal program­
mers provide on-line programming and verification in a growing variety of development environments using the 
Intel PROM programming software (iPPS). In addition, the iUP-201A universal programmer supports off-line, 
stand-alone program editing, EPROM duplication, and EPROM memory locking. The iUP-200A universal pro­
grammer is expandable to an iUP-201A model. 

7-1 

210319-1 

October 1986 
Order Number: 210319-004 



iUp·200A/iUP·201A 

FUNCTIONAL DESCRIPTION 

The iUP-200A universal programmer operates in on­
line mode. The iUP-201A universal programmer op­
erates in both on-line and off-line mode. 

On-Line System Hardware 

The iUP-200A and iUP-201A universal programmers 
are free-standing units that, when connected to a 
host computer with at least 64K bytes of memory, 
provide on-line EPROM programming and verifica­
tion of Intel programmable devices. In addition, the 
universal programmer can read the contents of the 
ROM versions of these devices. 

The universal programmer communicates with the 
host through a standard RS232C serial data link. Dif­
ferent versions of the iUP-200A and iUP-201A are 
equipped with different cables, including the cable 
most commonly used for interfacing to that host. 
Care should be taken that the version with the cor­
rect cable for your particular system is selected, as 
cable requirements can vary with your host configu­
ration. A serial converter is needed when using the 
MDS 800 as a host system. (Serial converters are 
available from other manufacturers). 

Each universal programmer contains the CPU, se­
lectable power supply, static RAM, programmable 
timer, interface for personality modules, RS232C in­
terface for the host system, and control firmware in 
EPROM. The iUP-201 A also has a keyboard and dis­
play. 

A personality module adapts the universal program­
mer to a family of EPROM devices; it contains all the 
hardware and firmware necessary to program either 
a family of Intel EPROMs or a single Intel device. 
The user inserts the personality module into the uni­
versal programmer front panel. 

Figure 1 shows the iUP-200A on-line system config­
urations, and Figure 2 shows the on-line system 
data flow. 

On-Line System Software 

The iUP-200A and iUP201A includes your choice of 
one copy of Intel's PROM Programming software 
iPPS, selected from a growing list of versions for 
different operating systems and hosts. Each version 
includes the software implementation designed for 
that host and 0.5. and the RS232C cable most com­
monly used. Additional versions may be purchased 
separately if you decide to change hosts at a later 
date. The iPPS software provides user control 

7-2 

through an easy-to-use interactive interface. The 
iPPS software performs the following functions to 
make EPROM programming quick and easy: 

• Reads EPROMs and ROMs 

• Programs EPROMs directly or from a file 

• Verifies EPROM data with buffer data 

• Locks EPROM memory from unauthorized ac­
cess (on devices which support this feature) 

• Prints EPROM contents on the network or devel­
opment system printer 

• Performs interactive formatting operations such 
as interleaving, nibble swapping, bit reversal, and 
block moves 

• Programs multiple EPROMs from the source file, 
prompting the user to insert new EPROMs 

• Uses a buffer to change EPROM contents 

All iPPS commands, as well as program address and 
data information, are entered through the host sys­
tem ASCII keyboard and displayed on the system 
CRT. Table 1 summarizes the iPPS commands. 

The iPPS software lets the user load programs into 
an EPROM from host system memory or directly 
from a disk file. Access to the disk lets the user cre­
ate and manipulate data in a virtual buffer with an 
address range up to 16M. This large block of data 
can be formatted into different EPROM word sizes 
for program storage into several different EPROM 
types. In addition, a program stored in the target 
EPROM, the host system memory, or a system disk 
file can be interleaved with a second program and 
entered into a specific target EPROM or EPROMs. 

The iPPS software supports data manipulation in 
any Intel format: 8080 hexadecimal ASCII, 8080 ab­
solute object, 8086 hexadecimal ASCII, 8086 abso­
lute object, and 80286 absolute object. Addresses 
and data can be displayed in binary, octal, decimal, 
or hexadecimal. The user can easily change default 
data formats as well as number bases. 

The user invokes the iPPS software from the operat­
ing system. Intellec and iPDS Development Systems 
running ISIS allow running the software under con­
trol of ISIS submit files freeing the operator from rep­
etitious command entry. 

System Expansion 

The iUP-200A universal programmer can be easily 
upgraded (by the user) to an iUP-201 A universal pro­
grammer for off-line operation. The upgrade kit (iUP­
PAK-A) is available from Intel or your local Intel dis­
tributor. 



inter 

MODEL 
NUMBER 

iUP200A211A 
OR 

iUP200A212B 

iUP200A213C 

iUP200A216D 

iUP200A217D 

iUP-200A/iUP-201A 

210319-2 

HOST 
SUPPORTED 

210319-6 

S/W 
OPERATING SYSTEM 

ENVIRONMENT 

ISIS II 

iNDX 

PC-DOS 

PC-DOC 

RS232C 
CABLE 

INCLUDED" 
I/O PORT 

USED 

INTELLEC-STYLE CH1 OR 2 

INTELLEC-STYLE CH1 OR 2 

PC OR XT STYLE COM 1 OR 2 

PC AT STYLE COM 1 OR 2 

*RS232C CABLES: INTELLEC STYLE-DB 25 PIN MALE TO DB 25 PIN MALE, NULL MODEM CABLE. 

PCXTSTYLE - DB 25 PIN FEMALE TO DB 25 PIN MALE, NULL MODEM 
CABLE. ' 

PC AT STYLE - DB 9 PIN FEMALE TO DB 25 PIN MALE CABLE. 

Figure 1. On-Line System Configurations 

7-3 



intJ iUP-200A/iUP-201A 

HOST DEVELOPMENT SYSTEM 

IPPS IPPS l- ISIS 
BUFFER ti SOFTWARE FILE 

\.. ;--

RS-232 INTERFACE 

·UNIVERSAL PROGRAMMER 
(lUP-200A OR IUP-201 Al 

PERSONALITY / ,-------, 
MODULE Q UNIVERSAL ). --I I 

I iUP-201A 

PROM ~ 
PROGRAMMER 

URAM I 
FIRMWARE l--~ I DEVICE(S) L ______ .J 

210319-7 

Figure 2. On-Line System Data Flow 

Off-Line System 

The iUP-201A universal programmer has all the on­
line features of the iUP-200A universal programmer 
plus off-line editing, EPROM duplication, program 
verifica:tion, and locking of EPROM memory inde­
pendent of the host system. The iUP-201 A universal 
programmer also accepts Intel hexadecimal pro­
grams developed on non-Intel development sys­
tems. Just a few keystrokes download the program 
into the iUP RAM for editing and loading into a 
EPROM. 

Off-line commands are entered using the off-line 
command keys summarized in Table 2. 

In addition to the hardware components included as 
part of the iUP-200A, the iUP-201 A contains a 24-
character alphanumeric display, full hexadecimal 12-
function keypad, and 32K bytes of iUP RAM. Figure 
3 illustrates the iUP-201A keyboard and display. 

The two logical devices accessible during off-line 
operation are the EPROM device and the iUP RAM. 
A typical operation is copying the data from an 
EPROM (or ROM) into the iUP RAM, modifying this 
data in iUP RAM, and programming the modified 
data back into a EPROM device. The address range 

7-4 

of the iUPRAM is automatically determined by the 
universal programmer when EPROM type selection 
is made. Figure 4 shows the off-line system data 
flow. 

SYSTEM DIAGNOSTICS 

Both the iUP-200A and iUP-201 A universal program­
mers include self-contained system diagnostics that 
verify system operation and aid the user in fault iso­
lation. Diagnostics are performed on the power sup­
ply, CPU internal firmware ROM, internal RAM, tim­
er, the iUP-201 A keyboard, and the iUP RAM. In ad­
dition, tests are made on any personality module in­
stalled in the programmer the first time the module is 
accessed. The personality module tests include the 
power select circuitry and module firmware. Straight­
forward messages are provided on the development 
system display in on-line mode and on the iUP-201A 
display in off-line mode. 

PERSONALITY MODULES 

A personality module is the interface between the 
iUP-200AliUP-201A universal programmer (or an 
iPDS system) and a selected EPROM (or ROM). 
Personality modules contain all the hardware and 



inter iUP·200AliUP·201A 

Table 1. iPPS Command Summary 

Command Description 

PROGRAM CONTROL GROUP CONTROLS EXECUTION OF THE iPPS SOFTWARE. 
EXIT Exits the iPPS software and returns control to the ISIS operating 

system. 
<ESC> Terminates the current command. 
REPEAT Repeats the previous command. 
ALTER Edits and re-executes the previous command. 

UTILITY GROUP DISPLAYS USER INFORMATION AND STATUS AND SETS DEFAULT 
VALUES. 

DISPLAY Displays EPROM, buffer, or file data on the console. 
PRINT Prints EPROM, buffer, or file data on the local printer. 
QUEUE Prints EPROM, buffer or file data on the network spooled printer. 
HELP Displays user assistance information. 
MAP Displays buffer structure and status. 
BLANKCHECK Checks for unprogrammed EPROMs. 
OVERLAY Checks whether non-blank EPROMs can be programmed. 
TYPE Selects the EPROM type. 
INITIALIZE Initializes the default number base and file type. 
WORKFILES Specifies the drive device for temporary work files. 

BUFFER GROUP EDITS, MODIFIES, AND VERIFIES DATA IN THE BUFFER. 
SUBSTITUTE Examines and modifies buffer data. 
LOAD DATA Loads a section of the buffer with a constant. 
VERIFY - Verifies data in the EPROM with buffer data. 

FORMATIING GROUP REARRANGES DATA FROM THE EPROM, BUFFER, OR FILE. 
FORMAT Formats and interleaves buffer, EPROM, or file data. 

COPY GROUP COPIES DATA FROM ONE DEVICE TO ANOTHER. 
COPY (file to PROM) Programs the EPROM with data in a file on disk. 
COPY (PROM to file) Saves EPROM data in a file on disk. 
COPY (buffer to PROM) Programs the EPROM with data from the buffer. 
COpy (PROM to buffer) Loads the buffer with data in the EPROM. 
COPY (buffer to file) Saves the contents of the buffer in a file on disk. 
COPY (file to buffer) Loads the buffer from a file on disk. 
COpy (file to URAM) Loads file data into the iUP RAM (iUP-201A model only). 
COpy (URAM to file) Saves iUP URAM data in a file on disk (iUP-201A model only). 
COPY (buffer to URAM) Loads the buffer into the iUP URAM (iUP-201A model only). 
COpy (URAM to buffer) Loads iUP URAM data into the buffer (iUP-201A model only). 

SECURITY GROUP LOCKS SELECTED DEVICES TO PREVENT UNAUTHORIZED 
ACCESS. 

KEY LOCK Locks the EPROM from unauthorized access. 

firmware for reading and programming a family of 
Intel devices. Each personality module is a single 
molded unit inserted into the front panel of the uni­
versal programmer. A wide variety of personality 
modules and adaptors are available for Intel pro­
grammable devices. New modules and adaptors al­
low you to keep abreast of the newest Intel devices, 
programming algorithms, and device packages while 
protecting your equipment investment. Refer to the 
data sheet on "PROM Programming Personality 
Modules" for a complete list of available support. 

Each personality module connects to the universal 
programmer through a 41-pin connector. Module 
firmware is uploaded into the iUP RAM and execut­
ed by the internal processor. The personality module 
firmware contains routines necessary to read and 
program a family of EPROMs. In addition, the per­
sonality module sends specific information about the 
selected EPROM to the universal programmer to 
help perform EPROM device integrity checks. 

7-5 



inter 

Key 

: DEVICE 
: SELECT 

B··VER 

~: 
....................... 

B 
~ 
~ 

8 
E 
N 
T 
E 
R 

8:· ffi: : SHIFT : ADDR · . 0 
~ ............ ~ ............ . 

8:· 13:]: 
: SHIFT : DATA · . 1 
~ ............. .~ ........... ,' 

8m : SHIFT : FILL · . 2 
~ ............. ~ ........... . 

8l.!] 
: :: LOCK 8ffi ... S.~I~~.. ::~ .. 

iUP·200A/iUp·201A 

Table 2. Off·Llne Command Keys Summary 

Function 

Selects either on-line or off-line operation. When on-line, all other function keys 
are disabled. 

Selects the EPROM type when using a personality module able to program 
multiple EPROM devices. 

Verifies the contents of the installed EPROM device with the contents of the 
iUP RAM. The universal programmer display indicates the address and the 
XOR of any mismatches. 

Performs a device blank check and then programs the target EPROM with data 
from the iUPRAM.lf the blank check fails, pressing PROG again peforms an 
overlay check to verify that non-blank EPROMs can be programmed. 

Loads the iUP RAM with the data from the EPROM device installed in the 
personality module. 

Terminates the current off-line function, clears a user entry, or restores the 
display after an error. 

Transfers information from the universal programmer display (addresses, data, 
or baud rate) into the iUP RAM. 

Selects an address field for display. 

Selects a data field for keypad editing and entry. 

Loads a contiguous section of iUP RAM locations with a constant. 

Downloads Intel hexadecimal data from any development system which has an 
RS232C port. 

Locks a EPROM from unauthorized access. 

210319-8 

7-6 



IUp·200AliUp·201A 

IUP READY 000000 55 

1-1 COMMAND I ADDRESS I DATA 

-.-/l~------------

--- ---------~~------------,,-----,-.-

B 

© POWER 

271234-9 

Figure 3. IUP·201A Keyboard and Display 

LEOs on each personality module indicate opera­
tional status. On some personality modules a col­
umn of LEOs indicate which EPROM device type the 
user has selected. On some personality modules an 
LED below the socket indicates which socket is to 
be used. A red indicator light tells the user when 
power is being supplied to the selected device. Fig­
ure 5 shows a selection fo some of the personality 
modules supported on the universal programmer. 

In addition to the testing done by the iUP system 
self-tests, each personality module contains diag­
nostic firmware that performs selected EPROM 
tests and indicates status. These tests are per­
formed in both on-line and off-line modes. The 

7-7 

EPROM installation test verifies that the device is 
installed in the module correctly and that the ZIF 
socket is closed. The EPROM blank check deter­
mines whether a device is blank. The universal pro­
grammer automatically determines whether the 
blank state is all zeros or all ones. The overlay 
check (performed when a EPROM is not blank) de­
termines which bits are programmed, compares 
those bits against the program to be loaded, and 
allows programming to continue if they match. As 
with the system self-tests, straight-forward mes­
sages are provided. The user can invoke all of the 
EPROM device integrity checks except the installa­
tion test (which occurs automatically any time an op­
eration is selected). 



intJ iUP-200AliUP-201A 

UNIVERSAL PROGRAMMER liUP.201 A) 

PERSONALITY 

=t 
UNIVERSAL r-MODULE PROGRAMMER iUP·201A 
FIRMWARE URAM 

PROM I (MANUAL FRONT J--DEVICE(S) PANEL CONTROL) 

R5-232 INTERFACE 

HOST 
SYSTEM 
(OPTIONAL) 

210319-10 

Figure 4. Off-Line System Data Flow 

210319-11 

Figure 5. Personality Modules 

7-8 



inter iUP-200A/iUP-201A 

iUP-200A/iUP201A SPECIFICATIONS 

Control Processor 

Intel 8085A microprocessor 
6.144 MHz clock rate 

Memory 

RAM-4.3 bytes static 
ROM-12K bytes EPROM 

Interfaces 

Keyboard: 16-character hexadecimal and 12-func­
tion keypad (iUP-201A model only) 

Display: 24-character alphanumeric (iUP-201 A 
model only) 

Software 

Monitor- system controller in pre-programmed 
EPROM 

iPPS - Intel PROM programming software on 
supplied diskette 

Physical Characteristics 

. Depth: 15 inches (38.1 cm) 

Width: 15 inches (38.1 cm) 

Height: 6 inches (15.2 cm) 

Weight: 15 pounds (6.9 kg) 

Electrical Characteristics 

Selectable 100,120,200, or 240 Vac ± 10%; 50-60 
Hz 

Maximum power consumption-80 watts 

Environmental Characteristics 

Reading Temperature: 10·C to 40·C 

Programming Temperature: 25·C ±5· 

Operating Humidity: 10% to 85% relative 
humidity 

Reference Material 

166041-001- iUP-200A/201A Universal Program­
mer User's Guide. 

7-9 

166042-001- Getting Started with the iUP-200A/ 
201A (For ISIS/iNDX Users). 

166043-001- Getting Started with the iUP-200A/ 
201A (For DOS Users). 

164853 - iUP-200A/20 1 A Universal Program-
mer Pocket Reference. 

ORDERING INFORMATION 
Product 
Order Code Description . 

iUP-200A 211 A On-Line PROM programmer with 
iPPS rei 1.4 on Single density ISIS 
II floppy 

iUP-200A 2128 On-Line PROM programmer with 
iPPS rei 1.4 on Double density 
ISIS II floppy 

iUP-200A 213C On-Line PROM programmer with 
iPPS rei 2.0 for Series IV, on mini­
floppy 

iUP-200A 2160 On-Line PROM programmer with 
iPPS rei 2.0 for PC/DOS, and ca­
ble for PC or XT 

iUP-200A 2170 On-Line. PROM programmer with 
iPPS rei 2.0 for PC/DOS, and ca­
ble for AT 

iUP-201 A 211 A Off-Line and on-line PROM pro­
grammer with iPPS rei 1.4 on Sin­
gle density ISIS II floppy 

iUP-201 A 2128 Off-Line and on-line PROM pro­
grammer with iPPS rei 1.4 on Dou­
ble density ISIS II floppy 

iUP-201A 213C Off-Line and on-line PROM pro­
grammer with iPPS rei 2.0 for Se­
ries IV on mini-floppy 

iUP-201A216D Off-Line and on-line PROM pro-
grammer with iPPS rei 2.0 for PC/ 
DOS, and cable for PC or XT 

iUP-201A 2170 Off-Line and on·line PROM pro­
grammer with iPPS rei 2.0 for PC/ 
DOS, and cable for AT 

iUP-200/201 U1* Upgrades an iUP-200/201 univer­
Upgrade Kit sal programmer to an iUP-200Al 

iUP-PAK-A 
Upgrade Kit 

201A universal programmer 

Upgrades an iUP-200/ A universal 
programmer to an iUP-201A uni­
versal programmer 

'Most personality modules can be used only with 
an iUP-200Al201A universal programmer or an 
iUP-200/iUP201 universal programmer upgraded to 
an A with the iUP-200/iUP-201 U1 upgrade kit. If 
used in an iPDS, most personality modules require 
version 1.4 of the iPPS software. 



iUP·200A/iUP·201A 

Product 
Order Code 

iUP-PAK-A 
Upgrade Kit 

. Description 
Upgrades an iUP-200A universal 
programmer to an iUP-201A uni­
versal programmer 

Software Sold Separately 
Product 
Order 
Code 
211A 

Description . 
PROM programming software rei 1.4 on 
Single density ISIS II floppy 

2128 PROM programming software rei 1.4 on 
Double density ISIS II floppy 

7-10 

Product 
Order 
Code 
213C 

2160 

2170 

219F 

Description 
PROM programming software rei 2.0 for 
Series IV on mini-floppy 

PROM programming software rei 2.0 for 
PC/DOS with cable for PC or PC XT 

PROM programming software rei 2.0 for 
PC/DOS with cable for PC AT 

PROM programming software for iPDS on 
mini-floppy 



iUP/iPDSTM 
PROGRAMMING MODULES 

MAJOR PERSONALITY MODULE 
FEATURES: 

• Fast Support for All Intel EPROM and 
EPLD Device Types 

• Adapts an iUP-200A/iUP-201A Universal 
Programmer or Intel Personal 
Development System (iPDSTM) to a 
Family of PROM Devices 

• The Fast 27/K-CON Kit Adds the Quick~ 
Pulse Programming™ Algorithm to the 
Fast 27/K-the Fastest in the Industry 

• Includes the iUP-GUPI Module with New 
Low-Cost Plug-In Adaptors for 
Programming Intel's Newest Devices 

• Program Intel or Intel-Compatible 
Devices, Including Microcontrollers, 
EPLDs, CMOS EPROMs, Latched 
EPROMs, and the New Page­
Programmable 27011 One Meg EPROM 

Personality modules custom-fit the iUP-200AliUP-201 A Universal Programmer or the iPDSTM system to a 
family of PROM devices. Each personality module comes ready to use-just plug it into a Universal Program­
mer or an iPDS system and begin reading or programming parts. The personality modules can be used off-line 
or controlled from a host or iPDS system using Intel's powerful PROM programming software (iPPS). Selected 
personality modules support the latest PROM programming features such as the inteligent Programming™ 
algorithms (reduce programming time up to a factor of 1 0), the inteligent Identifier™ (automatically selects the 
correct inteligent Programming algorithm), and the security bit function (protects PROM memory from unautho­
rized access). 

"IBM Personal Computer is a registered trademark of International Business Machines Corporation. 

7-11 

280003-1 

October 1986 
Order Number: 280003-003 



iUP/iPDSTM 

PROGRAMMING MODULE 
DESCRIPTION 

The personality module and GUPI module adapts 
the universal programmer or the iPOS system to a 
specific family of PROM devices; it contains all the 
hardware and firmware necessary to read and pro­
gram a family of Intel PROMs. The module comes 
ready to use; the user merely inserts the module into 
the universal programmer front panel or the side 
door of the iPOS chassis (refer to Figures 1 and 2). 

Each module connects to the universal program­
mer/iPOS system through a 41-pin connector. LEOs 
on the module indicate its operational status. A col­
umn of LEOs or a hexadecimal display indictes 
which PROM device type the user has selected. On 
some modules, an LED below the socket indicates 
which socket is to be used. A red indicator light tells 
the user when power is applied to the selected de­
vice. 

After specifying the PROM device type, the user in­
serts the PROM to be programmed or read in the 
socket on the module. The module checks for cor­
rect PROM installation. In addition, each module 
contains diagnostic firmware that performs the fol­
lowing selected PROM tests and indicates status. 

• The PROM installation test verifies that the de­
vice is installed in the module correctly and that 
the ZIF socket is closed. 

• The PROM blank check determines whether a 
device is blank. The universal programmer/iPOS 
system automatically determines whether the 
blank state is all zeros or all ones. 

• The overlay check (performed when a PROM is 
not blank) determines which bits are pro­
grammed, compares those bits with the program 
to be loaded, and allows programming to contin­
ue if they match. 

The user can invoke all the PROM device integrity 
checks except the installation test (which occurs au­
tomatically any time an operation is selected). 

iUP-GUPI* MODULE DESCRIPTION 

The iUP-GUPI is a generic module that enables the 
iUP-200Al201A Universal Programmer and the 
iPOS system to accept low-cost plug-in adaptors. 
These adaptors configure the system to support a 
wide variety· of programmable devices (EPROMs, 
microcontrollers, and EPLOs) and device package 
types (refer to Table 1). 

The iUP-GUPI module plugs into any compatible In­
tel PROM programmer (the iUP-200A/201A Univer­
sal Programmer or the iPOS system). An opening in 
the top of the iUP-GUPI is provided for easy plug-in 
installation of the GUPI adaptors (refer to Figure 3). 

"NOTE: 
Generic Universal Programmer Interface. 

280003-2 

Figure 1. iUP·201A Universal Programmer 

7-12 



iUP/iPDSTM 

280003-3 

Figure 2. iPDSTM System 

Table 1. GUPI Module Adaptors 

Device Type GUPI GUPI GUPI GUPI GUPI GUPI GUPI GUPI* 
Logic-09 Logic-12 Logic-18 27010 27011 27210 8742 8796 

EPLD 5C031 
5C060 
5C090 

5C121 
5C180 

EPROM 27010 
27011 

27210 

Microcontroller 8741AH 
8742AH 
8041AH 
8042AH 

8794 
8795 
8796 
8797 

'For Pin Grid Array (PGA) and CERDIP packages. 

7-13 



iUP/iPDSTM 

The iUP-GUPI offers all of the same programming 
performance as earlier personality modules, with the 
addition of employing Intel's latest, fastest program­
ming algorithms and providing support for several 
different device types. For example, the iUP-GUPI 
uses the new Quick-Pulse Programming™ algorithm 
to program the 1 Meg EPROM in seconds. The initial 
set of GUPI adaptors and devices supported are list­
ed in Table 1. More adaptors will be announced in 
the future supporting additional devices and pack­
age types. 

iUP-GUPI and GUPI LOGIC Adaptors 

The iUP-GUPI and assorted GUPI LOGIC adaptors 
provide an alternative programming solution for In­
tel's H-series and Altera EPLD devices, when pur­
chased with the iPLS, Intel's Programmable Logic 
Software. This complete set of software is available 
separately (Le., without the iLP programmer pod and 
IBM interface card). 

By selecting a system consisting of the iPLS soft­
ware, iUP-201A (with iPPS software for the IBM PC, 
PC XT, or PC AT), and iUP-GUPI, no expansion slots 
are used in your PC (since the iUP communicates via 
the PC's RS232 serial port), and a more versatile 
programming solution is obtained. Some of the add­
ed programming advantages are stand-alone opera­
tion when several duplicate EPLDs are needed, in­
creased device testing with checksum, verification, 
and optional programming of EPROMs and micro­
controllers with low cost adaptors. 

PROM PROGRAMMERS 

The modules are used with either the universal pro­
grammer or the iPDS system as illustrated in Figure 
4. Both the iUP-200A and iUP-201A models of the 
universal programmer program PROM devices in on­
line mode. The iPPS software which controls on-line 
programming, runs on a variety of host systems. The 
iUP-201A universal programmer adds an additional 
feature: off-line programming directly from the uni­
versal programmer's keyboard. Figure 1 shows an 
iUP-201A universal programmer with a module in­
serted. 

The iPDS system features stand-alone on-line pro­
gramming controlled by the iPDS-iPPS software 
which runs on the iPDS system. The iPDS system 
operates in on-line mode only. Figure 2 shows an 
iPDS system with a module inserted. 

Table 2 compares the features of the universal pro­
grammer with the features on the iPDS system. 

THE iPPS SOFTWARE 

The iPPS software, included with both the iUP-200A 
and iUP-201A models of the universal programmer 
and with the iPDS system, brings increased flexibility 
to PROM programming. The iPPS software provides 
user control through an easy-to-use interactive inter­
face and performs the following functions to make 
PROM programming quick and easy: 

• Reads PROMs and ROMs. 

• Programs PROMs directly or from Ii file. 

• Verifies PROM data with buffer data. 

280003-4 

Figure 3. System Configuration 

7-14 



IUP/IPDSTM 

Table 2. PROM Programmers 

Features IUP-200A Universal 
Programmer 

Function PROM Programmer 

Operating Mode . On-Line Mode 

Configuration Requires Host System 
Running iPPS Software 

Data Display On CRT of Host 
System Terminal 

Input Keyboard' From Host System 
Terminal 

• Locks EPROM memory from unauthorized ac­
cess (on devices which support this feature). 

• Prints PROM contents on the network printer 
(universal programmer only) or the development 
system printer. 

• Performs interactive formatting operations such 
as interleaving, nibble swapping, bit reversal, and 
blocks moves. 

• Programs multiple PROMs from the source file, 
prompting the user to insert new PROMs. 

• Uses a buffer to change PROM contents. 

With the iPPS software the user can load programs 
into a PROM from system memory or directly from a 
disk file. Access to the disk lets the user create and 
manipulate data in a virtual buffer. This block of data 
can be formatted into different PROM word sizes for 
program storage into several different PROM types. 
In addition, a program stored in the target PROM, 
the system memory, or a system disk file can be 
interleaved with a second program and entered into 
a specific target PROM or PROMs. 

The iPPS software supports data manipulation in the 
following Intel formats: 8080 hexadecimal ASCII, 
8080 absolute object, 8086 hexadecimal ASCII, 
8086 absolute object, 80286 absolute object, and 
80386 bootloadable object. Addresses and data can 
be displayed in binary, octal, decimal, or hexadeci­
mal. The user can easily change default data for­
mats as well as number bases. 

Versions of the iPPS software are available to run on 
a variety of host microcomputers and operating sys­
tems, including the Intel ISIS/iNDX and IBM PC-

IUP-201A Universal IPDSTM System Programmer 
PROM Programmer Development System 

and PROM Programmer 

On-Line Mode and On-Line Mode 
Off-Line Mode 

Requires Host System Stand-Alone Plugged 
in On-Line Mode; Into iPDS System 
Stand-Alone in Off-Line 
Mode 

On Built-In Single-Line On iPDS System CRT 
Display in Stand-Alone 
Mode 

Built-In Keyboard From iPDS System 

7-15 

Keyboard 

DOS operating systems. Contact your local field 
sales office for a complete list of compatible hosts. 

PERSONALITY MODULE FEATURES 

The personality modules described in the following 
sections enable a universal programmer/iPDS sys­
tem to program a wide range of PROM devices, 
each with its unique needs and requirements: 
PROMs, EPROMs, E2PROMs, microcontrollers, and 
microprocessor peripherals. Refer to Table 3 for a 
comparison of the devices supported by each mod­
ule. 

Note that the user needs one of the following config­
urations to use the Fast 27/K personality module or 
to use the security bit function on the iUP-F87/51A 
and iUP-F87/44A personality modules: 

• iPDS System 

- Intel PROM programming software (iPPS­
iPDS), version 1.4 or later 

- iPDS-140 EMV IPROM adapter option 

• universal programmer 

, -on-line 
Intel PROM programming 
software (IPPS), 
version 1.4 or later 
model 200A or 201 A 
model201A 

- off-line 

The user can easily update an earlier iUP-200/201 
universal programmer to an iUP-200Al201A univer­
sal programmer with the iUP-200/201 U1 upgrade 
kit. 



inter iUP/iPDSTM 

Table 3. iUP/PDSTMProgramming Modules 

PROM Type Fast 27/K ' Fast 27/K U2 
Module Kit 

EPLD 

2764 2764 
2764A 2764A 

27C64 
87C64 

27128 27128 
27128A 

27256 27256 
27C256 
27512 
27513 

KEPROM 27916 

E2PROM 

'., 2817A 

Microcontroller 

ONOTE: 
Quick-Pulse Programming algorithm. 

The iUP-Fast 27/K Personality Module" 

With the iUP-Fast 27 /Kpersonality module the user 
can program,read, and verify the contents of Intel's 
newest EPROMs, from the page-programmable 
(512K) 27513, to the keyed-access 27916, to the 
CMOS 27C64, 27C256, and 87C64 EPROMs. This 
personality module supports' the intaligent Program­
ming algorithms and the inteligent Identifier. The 
inteligent Identifier lets the personality module inter­
rogate the PROM device in the program/master 
socket. It determines whether the type selected 
matches the type of PROM device installed and 

Fast 27/K·CON* F27/128 F87/44A F87151A 
Kit Module Module Module 

2716 
2732 
2732A 

2764 2764 
2764A 
27C64 
87C64 
27128 27128 
27128A 
27256 
27C256 
27512 
27513 

2815 
2816 

2817A 

8041A 8748 ' 
8042 8748H 
8044AH 
8741A 8749H 
8.742 8751 
8744H 8751H 

8048 
8048H 
8049 
8049H 
8050H 
8051 

8755A 

then selects the proper inteligent Programming algo­
rithm. The inteligent Programming algorithms reduce 
programming time up to a factor of 10. 

7-16 

Low cost, plug-in upgrade kits allow addition ofsup­
port for Intel's latest EPROMs. The first upgrade kit 
added support for the 27512 and innovative page­
programmable 27513 plus the 27128A and 2817A. It 
has now been replaced by a second upgrade kit, 
iUp-Fast27/K-U2 adding support for Intel's new 
CMOS EPROMs and keyed-access KEPROM (refer 
to Table 3). 



inter iUP/iPDSTM 

PIN 1 -I--I4-+f!!rlell 

SOCKET 
POWER 
INDICATOR 

PROGRAM 
SOCKET 

o ACTIVE" 
SOCKET 

o -2784 ! 2764A 
1 27C84 

87C64 
2 - 27128 
3 - 27128A 

127256 
4 27C258 
5 - 27512 
6 '27513 
7 - 2817A 
8 - 27916 

PROM 
DEVICE 
TYPE 
HEXADECIMAL 
DISPLAY 

280003-5 

Figure 4_IUP·Fast 27/K Personality Module with U2 Upgrade 

As shown in Figure 4, the iUP-Fast 27/K personality 
module contains two 28-pin sockets, a hexadecimal 
display (0 through F), and a red LED that indicates 
when power is being applied to a socket. The pro­
gram socket holds the device being programmed. 
The master socket will be used in future upgrades. 
The hexadecimal display shows the PROM device 
type selected. 

The iUP-F27/128 Personality Module 

The iUP-F27/128 personality module lets the user 
program, read, and verify the contents of a wide vari- _ 
ety of PROM devices, including some of Intel's most" 
popular PROM devices (refer to Table 3). 

The iUP-F27/128 personality module contains two 
sockets: one for 24-pin PROM devices and the other 

7·17 

for 28-pin PROM devices. The user can use only 
one socket at a time. An LED below the socket indi­
cates the correct socket to use based on the PROM 
device type selected, and a row of green LEDs on 
the right side of the personality module indicate 
which PROM type is selected. The ACTIVE SOCK­
ET LED indicates when power is being applied to the 
PROM device and when the universal programmerl 
iPDS system is accessing the selected socket. 

The IUP-F87151A Personality Module 

The iUP-F87/51A personality module lets the user. 
program EPROM microcontrollers and read the 
memory contents of ROM microcontrollers. This per­
sonality module supports the security bit function on 
the 8751H mlcrocontroller. The KEYLOCK com· 
mand locks the 8751 H EPROM memory from unau· 



inter IUP/IPDSTM 

thorized access by setting the security bit (which 
cannot be unlocked without erasing the device). As 
a safety precaution, the KEY LOCK command reo 
quires user verification before locking the security bit 
(refer to Table 3). 

The iUp·F87 151 A personality module has two sock· 
ets for inserting applic/ible PROM devices: one for 
the MCS®·48 family of devices and the other for the 
MCS·51 family of PROM devices. An LED below the 
socket indicates the correct socket to use based on 
the PROM device type selected. One of the green 
LEDs on the right side of the personality module 
lights 'to indicate the PROM type selected. The AC· 
TIVE SOCKET LED lights when power is applied to 
the PROM device and when the universal program· 
mer/iPDS system is accessing the selected socket. 

The IUP-F87/44A Personality Module 

The iUP·F87/44A personality module lets the user 
program EPROM versions of the 8044 family of mi· 
crocontrollerlserial interface units and read the 
memory contents of ROM versions (refer to Table 
3). This personality module supports the security bit 
function on the 8744H microcontroller. The KEY· 
LOCK command locks the 8744H EPROM memory 
from unauthorized access by setting the security bit 
(which cannot be cleared without erasing the 
device). As a safety precaution, the KEYLOCK com· 
mand requires user verification before setting the se· 
curity bit. 

The iUp·F87 144A personality module has two sock· 
ets for inserting applicable PROM devices: one for 
the 8741 A, 8742, and 8755A PROM devices and the 
other for the 8744H PROM device. An LED below 
each socket indicates the correct socket to use 
based on' the, PROM device type selected. One of 
the green LEDs on the right Side of the personality 
module lights to indicate the PROM type selected. 
The ACTIVE SOCKET LED lights when power is ap 

plied to the PROM device and when the universal 
programmer/iPDS system is accessing the selected 
socket. 

PROM PROGRAMMING EXAMPLE 

The personality module is the interface that lets the 
user perform a wide variety of PROM programming, 
data display, and data editing operations. One of the 
most popular applications is copying data from a 
master PROM into a blank PROM. Table 4 outlines 
and compares the steps for both on·line and off· line 
copying. Notice the easy·to·use. Engllsh·language 
approach of the iPPS commands. which may be 
shortened to the first letter for faster entry. 

The on·line example assumes that the universal pro· 
grammer/iPDS system has been powered on and is 
under control of the ISIS software and that the iPPS 
software has been initialized. The off·line example 
assumes that the iUp·201A universal programmer 
has been powered on and initialized. 

PERSONALITY MODULE 
SPECIFICATIONS 

Physical Characteristics 

Width: 5.5 inches (1.4 cm) 
Height: 1.6 inches (4.1 cm) 
Depth: 7.0 inches (17.8 cm) 
Weight: 1 pound (0.45 kg) 

Electrical Characteristics 

Maximum power consumption (module): 7.5 watts 
Maximum power consumption (device): 2.5 watts 
Maximum power consumption (total from PROM 
programmer): 10 watts 

Table 4. Typical PROM Programming Sequence 

Action On-Line Off-Line 
Command Function Key 

1. ~elect PROM type. TYPE DEVICE 
SELECT 

2. Install the PROM to be copied (the master PROM) 
in the personality module. 

,3. Copy the contents of the master PROM to the COPY PROM ROM TO 
buffer. TO BUFFER RAM 

4. Verify that the copy was correct. VERIFY VER 

5. Remove the master PROM; install a blank PROM. 

6. Copy the buffer to the blank PROM. COPY BUFFER PROG 
TO PROM 

7·18 



inter iUP/iPDSTM 

Environmental Characteristics 

Reading temperature: 10°C to 40°C 
Programming temperature: 25°C ± 5° 
Operating humidity: 10%-85% relative humidity 

DOCUMENTATION 

Appropriate personality module user's guide: 

164376- iUP-FAST 27/K Personality Module Us-
er's Guide . 

165833- iUP-FAST 27/K-U2 Upgrade Kit Instal/a­
tion Manual 

162848- iUP-F27/128 Personality Module User's 
Guide 

164855- iUP-F87/51A Personality Module User's 
Guide 

164854-iUP-F87/44A Personality Module User's 
Guide 

166428- iUP-GUPI Module User's Guide 

ORDERING INFORMATION 
Part Number 
iUP-FAST 27K* 

iUP-FAST 27/K-U2 

iUP-F27 1128 

Description 
EPROM personality module 

Upgrade Kit 

EPROM and E2PROM per­
sonality modiJle 

7-19 

iUP-F87/51A" Microcontrolier personality 
module 

iUP-F87 I 44A' Peripheral person~lity mod-
ule 

iUP-FAST 27/K-CON Upgrade Kit 

iUP-GUPI Generic module interface 

GUPI LOGIC-09 Adaptor 

GUPI LOGIC-18 Adaptor 

GUPI-27010 Adaptor 

GUPI-27011 Adaptor 

GUPI-27210 Adaptor 

GUPI-8742 Adaptor 

GUPI-8796 Adaptor 

"NOTE: 
The iUP-FAST 27/K personality module and the se­
curity bit function on the iUP-F87151A and 
iUP-F87/44A personality modules can be used with 
an iUP-200Al201A universal programmer; or an 
iUP-200/iUP-201 universal programmer upgraded 
to an A with the .iUP-200/201 U1 upgrade kit; or an 
iPDS system, using version 1.4 or later of the 
iPPS-iPDS software (iPDS-140 units shipped after 
June 1984 contain this software). 



infef APPLICATION 
NOTE 

PROM PrOgramming 
with the 

AP-179 

October 1986 

Intel Personal Development 
System (iPDSTM) 

FRED MOSEDALE 
OSHO TECHNICAL PUBLICATIONS 

Order Number: 280015·001 
7·20 



inter AP·179 

• Need for simple operation-You want a program­
ming device that satisfies all of the following needs 
and is simple to operate. You do not want to have to 
refer to a manual every time you wish to program a 
PROM. 

• Need to program a wide variety of PROMs-For 
greatest flexibility, you want a programming device 
that can program the various kinds of PROMs that 
are available. For example, you will want to be able 
to program microcontrollers with EPROMs, and 
you will want to be able to program from the small 
inexpensive 16K and 32K PROMS to the latest 
256K PROMS with inteligent Programming™ al­
gorithms to speed programming. You will also want 
to be able to program those PROMs that use the 
new lower programming voltage (12.5V). 

• Need to be upgradeable-A PROM programming 
device should be designed so that it can be upgraded 
to program PROMs that will be available in the fu­
ture. Without upgradeability, the device will soon be 
out-of-date. 

• Need to check PROM contents before program­
ming-If the PROM you will be programming is 
blank, it can of course be programmed. Even if it 
has some bits set at the time of programming, if the 
same bits must also be set for the program, the 
PROM can be used. Thus, ideally, a PROM pro­
gramming device will determine whether the 
PROM is blank, and if not, determine whether the 
bits already set are compatible with the program to 
be loaded into the PROM. 

• Need to recognize file formats-When a PROM is 
programmed using an object file generated by a 
compiler or assembler, the PROM programming de­
vice must be able to extract the data that is to be 
loaded into the PROM from the larger file struc­
ture. For greatest flexibility, you will need a PROM 
programming device that recognizes the file struc­
tures generated by compilers and assemblers that 
you will use when developing program code for the 
PROMs. 

• Need to support a variety of source program op­
tions-There are three sources you may wish to use 
for PROM data: an already-programmed PROM, 

7-21 

a software development system, or a disk. For great~ 
est programming flexibility, you will want PROM 
programming device that makes all three kinds of 
sources available. 

• Need to support data manipulation and modifica­
tion-You may wish to modify a source file for your 
PROM program. For example, you may discover an 
error in the source file, or you may realize that for 
your new processor system, the PROM data must 
first be 2's complemented. For a variety of reasons, 
your PROM programming will be much more flex­
ible if the PROM programming device offers a buff­
er for temporary'storage and PROM programming 
software that can manipulate the source program 
data in a variety of ways. 

• Need for variety in loading program code into 
PROMs-If your product has a l6-bit microproces­
sor and you are using 8-bit PROMs to store the 
firmware, you will need to interleave the l6-bit code 
between two 8-bit PROMs. A PROM programming 
device with interleaving capability will speed such 
programming. You may want other kinds offlexibil­
ity when programming. 

• Need to transfer long programs that will not fit into 
one PROM-Long programs may exceed the stor­
age capacity of the PROMs chosen for your prod­
uct. You need a programming device that can for­
mat the program so that it can be stored in succes­
sive PROMs. 

• Need to verify programming-When programming 
is finished, you will want to check that the PROM is 
indeed correctly programmed. A defect in the 
PROM could corrupt the intended firmware. 
Checking would involve comparing the source with 
the programmed PROM. 

• Need to compare buffer with PROM-If you are 
interrupted when programming PROMs or if you 
have not labeled PROMs that you did program, you 
may forget whether a particular PROM was pro­
grammed. In such cases, you will want to compare 
the particular PROM with the program stored in 
the buffer of the programming device.· Comparison 
will prevent you from having to reprogram an al­
ready-programmed PROM. 



intJ Ap"179 

INTRODUCTION 

Programmable read-only memory (PROM) devices 
play a significant role in microprocessor-based prod­
ucts. How can PROM programming devices perform to 
best serve the needs of those who develop and service 
such products? 

This application'note first provides a general answer to 
this question; then, it proceeds to describe the features 
and uS,e of PROM programming hardware and soft­
ware available for. the Intel Personal Development Sys­
tem (iPDSTM). The description explains how the iPDS 
system provides the wide ,range of capabilities needed 
by those who use ,PROM' programmirig devices. The 
description also highlights the iPDS system's ability to 
program some of Intel's newest EPROMs. " . . . . , 

PROMS IN THE LIFE CYCLE OF A 
PRODUCT 

Memory Options: A Review 

Before PROM programming needs are discussed, it is 
important to briefly review memory options available to 
designers. 

Microprocessor-bascid products need memory to store 
instructions and', data used in controlling their opera­
tions. In,orderio maxiniize product operating speeds, 
designers must use memory that, can be accessed quick­
ly. Both random access memory (RAM) deuces' and 
read-only memory (ROM) devices offer designers quick 
access, but RAM devices are voiatile--their contents 
are erased when system power is turned off. ROM de­
vices, are nonvolatile; thus designers rise ROMs to store 
programs and data that will not change during the op-
eration of the product:" , 

After a product's program code data has' been de­
bugged, you can transfer the code to programmable 
ROMs (PROMs) or masked ROMs. (The most flexible 
PROMs are E2PROMs and EPROMs; E2PROMsare 
electrically erasable and EPROMs can be erased by ul-' 
traviolet light.) PROMs are programmed using a rela­
tively simple procedure; by contrast, masked ROMs 
can only be programmed in a manufacturing environ­
ment. Thus, masked ROMs provide less flexibility but 
are used because they may be more' cost-effective in 
large volumes. However, because the price of PROMs 
is falling and because inventories with erasable PROMs 
can be reprogrammed when product programs are 
changed, erasable PROMs are also attractive for large 
volumes. 

7-22 

Desirable PROM Programming 
Feature$ , , 

Once your product's software is debugged, you can 
load the software into the product's PROMs (so that it 
becomes the product's fl11Aware). However,usually in, 
the development of a product, the ,initial programming 
of PROM devices is not ,the last operation involving the 
PROMs. Even if the software is debugged, once it is 
loaded into the PROMs, you may discover new bugs in 
the program that you failed, to detect before the pro­
gram was committed to PROMs. So, there may soon be 
a need to erase the I'ROMs (if they are EPROMs or 
E2PROMs) and reprogram them. 

During product development and servicing, you ,will 
also som~times,need to acco~plish the follo~ing tasks: 

• ,Check the contents of a PROM. 

• Use one PROM to program other PROMS that will 
be used in, other prototype systems. 

• Update earlier firmware versions with later versions. 

Consider in more detail the (P)ROM-related needs that 
can arise for you during the product's life cycle, that is, 
between the time when the product's software has been 
loaded into PROMs and the time when the product is 
phased out. There are two basic' sets' of needs;, those 
having to do with displaying (P)ROM contents and 
those having to do with programming PROMS. 

DISPLAYING AND PRINTING NEEDS 

For a variety of reasons, you may need to examine what 
is stored in a (P)ROM. For example, you may suspect 
that a (P)ROM's'program is in error; or yoti may have 
incomplete documentation on what was programmed 
into a (P)ROM. Thus, you will want to be able to dis­
play the contents on a video display termirial and to 
have a printer print out the contents. You will want to 
be able to choose the display base (binary, oc~l, deci­
mal, or hexadecimal) and whether to display the con­
tents as ASCII characters. ' 

PROGRAMMING NEEDS 

When you program PROMs, you need a programming 
device that can program a vareity of PROMS and one 
that offers flexibility and ease of programming. The fol­
lowing list describes PROM programming needs. 



intJ AP-179 

• Need to lock microcontrollers from unauthorized 
access-Some advanced microcontrollers can be 
locked to prevent unauthorized access. To take ad­
vantage of this security features, you need to be able 
to control the locking of the microcontrollers. 

• Need to automate routine PROM programming 
tasks-To speed programming, you will want a pro­
gramming device that can automate routine pro­
gramming functions. Automation will not only 
speed programming, it will also release personnel for 
other work. 

DESIRABLE PROM PROGRAMMING 
FEATURES: A SUMMARY 

In summary, if PROMs (and ROMs) are incorporated 
in your product, you will have the greatest flexibility if 
your PROM programming device has the following 
features. (Of course, for ROMs only reading tasks are 
needed.) 

• Is easy-to-use. 
• Can program a wide variety of PROMs. 

• Is upgradeable. 
• Can display (P)ROM contents in ASCII characters 

and a variety of bases. 

• Can enable a printer to print out (P)ROM contents 
in ASCII characters and in a variety of bases. 

• Can check for blank PROMs. 

• If PROM is not blank, can check PROM contents 
for compatibility with program. 

• Can recognize fue formats of your development sys­
tem object files. 

• Supports transfers of program code from develop­
ment systems, disks, and other PROMs to the new 
PROM. 

• Provides temporary storage and software for manip­
ulating Programming data before loading it into the 
PROM. 

• Supports variety in how data is loaded into PROMs, 
e.g.: 

- Interleaving 16-bit data into 8-bit PROMs. 

- Segmenting long programs so that resulting pro-
gram segments fit into successive PROMs. 

• Can verify the accuracy of copying. 

• Can compare programming buffer with PROM con­
tents. 

• Can lock microcontrollers from unauthorized ac­
cess. 

• Can automate routine PROM programming tasks. 

The Intel Personal Development system (iPDS) with 
the PROM programming option meets these' needs. 
The following sections describe the iPDS PROM pro­
gramming hl1-rdware and software and show how this 
system can perform all of these tasks for a variety of 
PROMs. 

THE IPDSTM PROM PROGRAMMING 
SYSTEM . 

The iPDS system supports integrated hardware and 
software development; it provides a complete set of 
software development tools and in-circuit emulators for 
hardware debugging and hardware-software integra­
tion. With its optional PROM programming hardware 
and software, the iPDS system also supports PROM 
programming. 

Three components comprise the iPDS PROM pro­
gramming system: the iPDS system (with the ISIS-PDS 
operating system and the plug-in module adapter 
board), the PROM programming modules, and the 
prom programming software. Each of these compo-

, nents is described briefly in the following sections. 

7-23 

IPDSTM System 

To perform PROM programming tasks, the iPDS sys­
tem must use its ISIS-PDS operating system and the 
plug-in module adapter board. The PROM program­
ming softw;rre (iPPS-PDS) runs under the ISIS-PDS 
operating system. 

The adapter board allows you to use both the PROM 
programming personality modules and emulation mod. 
ules. It provides the interface between the modules and 
the iPDS system. 

Figure I shows the IPDS system with a PROM pro­
gramming personality module plugged into its side. 



inter AP-179 

Figure 1.IPDSTM System wlt.h PROM Programming Personality Module 

PROM Programming Personality 
Modules 

A personality module is the interface between the iPDS 
system and a selected PROM. Personality modules 
contain all the hardware and firmware for reading and 

programming a family of Intel devices. Each personali­
.tymodule is a single moided unit inserted into the side 
panel of the iPDS unit. No additional adapters or sock­
ets are needed. Table I lists the available personality 
modules, and Figure 2 shows the four modules. 

Table 1. PROM Programming Personality Modules 

Personality Module PROM Type PROMs and ROMs Supported Programmed 

iUP-Fast 27/K EPROM 2764, 2764A, 27128, 27256, and provisions 
for future PROMs.· 

iUP-F27/128 E2/EPROM 2716,2732,2832A,2764,27128,2815jand 
2816 

iUP-F87/51A Microcontroller 8748,8748H,8048,8749H,8048H,8049, 
8049H,8050H,8751,8751H,8051 

iUP-F87/44A Peripheral 8741A,8041A, 8742,8042,8744H,8044AH, 
8755A 

7-24 



intJ AP-179 

280015-2 

Figure 2. PROM Programming Personality Modules 

Each personality module connects to the iPDS system 
through a 4l-pin connector. Module firmware is up­
loaded into the iPDS system and executed by the IPDS 
system. The personality module firmware contains rou­
tines needed to read and program a family of PROMs. 
In addition, the personality module sends specific infor­
mation about the selected PROM to the iPDS system, 
such as information about the PROM size and its blank 
state. 

LEDs on each personality module indicate its opera­
tional status. On some personality modules a column of 
LEDs or a hexadecimal display indicates which PROM 
device type the user has selected. On some personality 
modules with more than one socket, an LED below 
each socket indicates the socket to be used. In addition, 
a red indicator light tells the user when power is being 
supplied to the selected device. 

The personality module firmware performs selected 
PROM tests and indicates status: 

7-25 

• The PROM installation test verifies that the device 
is installed in the module correctly and that the ZIF 
socket is closed. 

• The PROM blank check determines whether the de­
vice is blank. The iPDS system automatically deter­
mines whether the blank state for the particular de­
vice is dermed as all zeros or all ones. 

• The overlay check (performed when a PROM is not 
blank) determines which bits are programmed, com­
pares those bits against the program to be loaded, 
and allows programming to continue if they match. 

Easy-to-read status messages are also provided. The, 
user can invoke all of the PROM device integrity 
checks except the installation test (which occurs auto­
matically any time an operation is selected). The fol­
lowing, sections describe specific features of the three 
personality modules that program the, newer Intel 
PROMs. 



inter AP·179 

IUP-F87/44A AND IUP-F87/51A 
PERSONALITY MODULES: SPECIAL FEATURE 

Each of these personality modules supports the security 
bit function on one member of the microcontroller fam, 
ily it can program. The iUP-F87/44A module supports 
the function on the 8744H microcontroller, and the 
iUP-F87/51A supports the function on the 8751H mi­
crocontroller. The KEYLOCK command locks the 
8744H (or the 8751H) EPROM memory from unau­
thorized access by setting. the security bit; the micro­
controller cannot be unlocked without erasing the 
EPROM. As a safety precaution, the KEYLOCK com­
mand requires user verification before it sets the securi­
ty bit. 

The Inte1igent Programming™ Algorithm 

IUP-FAST 27/K PERSONALITY MODULE: 
SPECIAL FEATURES 

The iUP-Fast 27/K personality module supports the 
inteligent Identifier™ and the inte1igent Programming 
algorithms. The inte1igent Identifier is used to check 
the PROM installed in the personality module socket 
to determine whether it matches the type selected; then 
the inte1igent Identifier is used to select the proper 
inte1igent Programming algorithms. The inte1igent Pro­
gramming Algorithms reduce PROM programming 
time by as much as a factor of ten. This module has 
provision for support of future EPROMs and 
E2PROMs via simple plug-in updates. 

Using the capabilities of the IPDS PROM programming equipment and employing a new kind of algorithm that 
recognizes differences among EPROM cells, you can dramatically reduce programming time for the newest high­
density EPROMs. As a bonus, the technique helps ensure that EPROMs receive adequate programming-in 
terms of memory~cell charge-to maintain long-term reliability. 

Reducing programming time and costs for EPROMs has become increasingly important because the chips have 
become a cost-effective, easy-to-use alternative to masked ROM in high-volume applications requiring code 
flexibility or simplified inventory-a major switch from EPROMs' original'small-volume prototyping applica­
tions. And, volume usage makes EPROM programming a significant manufacturing consideration. 

The conventional programming procedure for most EPROMs uses a nominal 30-msec pUlse per EPROM byte, 
resulting in a total programming time of approximately 1.5 minutes for a 16K-bit chip. With the introduction of 
the 2764 (64K bits) and devices with even higher densities, however, programming times have increased. A 
256K-bit EPROM, for example, requires 24 minutes for programming using the conventional programming 
method. . 

Most EPROM cells program in less than 4S msec, however. In fact, empirical data shows that very few cells 
require longer than 8 msec for programming. Therefore, a procedure that takes into account the characteristics of 
individual EPROM cells can significantly reduce a device's programming time. 

Arbitrarily reducing programming time is risky, however, because a cell's ability to achieve and maintain its' 
programmed state is a function of this time. What is needed, therefore, is a way to verify the level to which 
individual cells have been programmed. Such a way exists. By determining the charge stored in a cell compared 
to the minimum charge needed to program the cell to a detectable level, you can check for a program margin that 
ensures reliable EPROM operation. 

Margin checking does not occur in conventional EPROM programming, however. Instead, each EPROM cell 
receives a 45- to 55-msec write pulse, and manufacturers attempts to ensure program margin by screening out 
EPROMs having bytes that do not program within 45 msec. This programming procedure is thus an open loop­
no actual verification of margin occurs. 

By contrast, the inte1igent Progrmaming algorithm guarantees reliability through the closed-loop technique of 
margin checking. This algorithm uses two different pulse types: initial and over-program. The algorithm first 
applies a I-msec initial pulse to an EPROM. After the pulse, it checks the EPROM's output for the desired 
programmed value. If the output is incorrect, the algorithm repeats the pulse-and-check operation. When the 
output is correct, the algorithm supplies an over-program pulse; the length of this pulse depends on how many 
initial pulses were used and varies with the EPROM being programmed. This longer pulse helps ensure that the 
EPROM cell has an adequate programming margin for reliable operation. . 

7-26 



.. 
AP~179 

Prom Programming Software (iPPS­
PDS) 

The iPPS-PDS software provides easy-to-use com­
mands that allow you to load programs into a target 
PROM from another PROM, from iPDS system mem­
ory, or directly from a disk file. 

The iPPS-PDS software also supports data manipula­
tion in the following Intel formats: 8080' hexadecimal 
ASCII, 8080 absolute object, 8086 hexadecimal ASCII, 
8086 absolute object, and 286 absolute object. Address­
es and data can be displayed in binary, octal, decimal, 
or hexadecimal. You can easily change default data for­
mat as well as number bases. 

You invoke the iPPS-PDS software from the ISIS oper­
ating system. (The software can be run und.er control of 
ISIS submit files, thereby freeing you from repetitious 
command entry.) 

An explanation of the iPPS-PDS software follows. It is 
divided into three main sections: the iPPS-PDS storage 
devices, iPPS-PDS commands, and invoking the iPPS­
PDS. Also see the Appendix for iPDS PROM pro­

. gramming examples. 

IPPS-PDS STORAGE DEVICES 

The iPPS·PDS software transfers data between any two 
of the three storage devices: PROM, buffer, and file. 
These devices are defmed in the following three sec-
tions. . 

PROM Device 

The PROM device is plugged into a socket on the per­
sonality module installed in the iPDS system. The 
iPPS-PDS software does not recognize the PROM de­
vice until you enter the TYPE command. The TYPE 
command automatically sets the appropriate buffer size 
according to the size of the PROM device specified. 

Buffer Device 

The buffer device is a section of development system 
memory that the iPPS-PDS software allocates and uses 
as a working area for temporary storage and for rear­
ranging data. Its boundaries can exist anywhere in a: 
virtual address range from 0 to 16777215 (0 to 224-1). 

When the iPPS-PDS software is initialized, the buffer 
starting address is set to 0, and the buffer ending ad· 
dress is set to 8K - 1, providing an initial buffer size of 
8K bytes (the default buffer size when no PROM type 
is sp~cified). During subsequent iPPS-PDS operations, 
the SIze and boundaries can vary. Specific iPPS·PDS 
commands determine these variations. The most 

7·27 

recent command that changed the lower boundary of 
the buffer determines the buffer starting address. The 
TYPE command affects both the size and location of 
the buffer. For example, the TYPE command always 
resets the buffer start address to o. The most recent 
TYPE command controls the size of the buffer. 

The iPDS system needs a virtual buffer when PROM 
size exceeds 8K. If the PROM size exceeds the 8K 
memory buffer space available on the development sys· 
tem, the iPPS-PDS software creates a virtual buffer 
area using temporary file space on disk. 

Two temporary work files are used to create the virtual 
buffer. During subsequent virtual buffer operations, the 
iPPS-PDS software automatically swaps data in and 
out of development system memory from and to work 
files. 

File Device 

The file device is an ISIS file on a disk. It is specified 
within iPPS-PDS commands. 

The data stored in the disk file is in one of the following 
Intel absoll1te formats: 8080 hexadecimal, 8080 object, 
8086· hexadecimal, 8086 object, or 80286 object. The 
iPPS,-PDS software can read any of these formats as 
input but writes data to a file in 8080 object, 8086 ob­
ject, or 80286 object formats only. Basically, these files 
contain representations of blocks of memory data. In· 
cluded with the data are addresses for the locations of 
the data. The data blocks are not necessarily in consec­
utive address order. The method used to create the file 
determines the order of the data. 

The iPPS-PDS file device has address boundaries that 
exist in the virtual range from 0 to 16777215 (0 to 
224 -1). These boundaries are determined as follows: 

• The file's lowest address is the lowest. address en­
. countered while reading the file. 

• The file's highest address is the highest address en-
countered while reading the file. . 

If the iPPS·PDS software creates the file (that is, if the 
file is a destination device in an iPPS·PDS command), 
the specific command issued determines these bounda-' 
ries. 

When you specify a particular address range to be read 
from a file, all sections in the address range that are not 
present in the file are written in a PROM destination 
device as the blank state of the currently selected 
PROM type. If the destination device is the buffer, the 
nonexistent sections in the file do not overwrite the cor­
responding sections in the buffer. 



inter AP-179 

During the' operation of commands that use the file 
device as a source, the iPPS-PDS software only reads 
the actual data from the file and ignores any other in­
formation in the file. For example, the file can contain 
special information used later for debugging. Since the 
iPPS-PDS software ignores this information, it will not 
appear in any new files generated. If the data is written 
back to the original file, the original file is deleted. 

iPPS·PDS COMMANDS 

Each iPPS-PDS command consists of a keyword that 
identifies the command, follo'Yed by other keywords 
and associated parameters that are the arguments of the 
command, You enter all iPPS-PDS commands, as well 
as program address and data information, through the 
development system ASCII keyboard; the commands 
are displayed on the system CRT. Table 2 summarizes 
the iPPS-PDS commands. 

Table 2. IPPS·PDS Command Summary 

Command Description 

Program Control Group Controls Execution of the IPPS-PDS Software. 
EXIT Exits the iPPS software and returns control to the ISIS operating 

system. 
<ESC> Terminates the currerit command. 
REPEAT Repeats the previous command 
ALTER Edits and re-executes the previous command. 

UJllityGroup Displays User Information and Status; Sets 
Default Values. 

DISPLAY Displays PROM, buffer, or file data on the console. 
, PRINT ., Prints PROM, buffer, or file data on the local printer. 
HELP Displays user assistance informatipn; 
MAP Displays buffer structure and status. 
BLANKCHECK Checks for unprogrammed PROMs. 
OVERLAY Checks whether non-blank PROMs can be programmed. 
TYPE Selects the PROM type. 
INITIALIZE Initializes default number ,base and file type. 
WORKFILES Specifies the drive device for temporary work files. 

Buffer Group Edits, Modifies, and Verifies Data In Buffer. 
SUBSTITUTE Examines and modifies buffer data. 
LOAD DATA Loads a section of buffer with a constant. 
VERIFY Verifies data in the PROM with buffer data. 

Formatting Group Rearranges Data from PROM, Buffer, or File. 
Format Formats and interleaves buffer, PROM, or file data. 

Copy Group Copies Data from One Device to Another. 
COPY (file to PROM) Programs PROM with data in a file on disk. ' 
COpy (PROM to file) Saves PROM data in a file on disk. 
COPY (buffer to PROM) Programs PROM with data from the buffer. 
COPY (PROM to buffer) Loads the buffer with data in the PROM. 
COpy (buffer to file) ,Saves the contents of buffer in a file on disk. 
COpy (file to buffer), Loads the buffer from a file on disk. 

Security Group Locks Selected Devices; Prevents ' 
Unauthorized Access. 

KEYLOCK Locks the PROM from unauthorized access. 

7·28 



inter AP-179 

Once entered, a command line is verified for correct 
syntax and executed. If a syntax error is detected, the 
following error message is dispalyed: 

--SYNTAX ERROR- -specific error. 

If you oII.lit a required keyword, the iPPS-PDS software 
prompts for the keyword and its associated parameters: 
If the keyword is entered but its parameters are omit­
ted, either a default value is assumed or an error mes­
sage is displayed if there is no default. In certain com­
mands, default keywords are also assumed. 

You can enter complete iPPS-PDS keywords or any 
unique abbreviation (only the first character is re­
quired). For example, command keywords of C, CO, 
COP, and COpy are all interpreted as the COPY com­
mand. 

The iPPS-PDS software accepts numeric entries in any 
one of four number bases: binary (y), octal (0 or Q), 
decimal (T), or hexadecimal (H). Numbers can be en­
tered in any of these bases by appending the appropri­
ate letter identifier to specify the base (e.g., 11111111 Y, 
377Q, 255T, FFH). An explicit number base identifier 
overrides the default number base, which is initially 
hexadecimal. 

INVOKING iPPS 

There are two methods of invoking the iPPS-PDS soft­
ware: command lines and submit files. 

The command line for invoking the iPPS-PDS software 
(under V1.0 and later versions of the ISIS.PDS operat­
ing system) uses the following syntax: 

[:Fn:]IPPS 

7-29 

The symbol ":Fn:" Specifies the drive on which the 
iPPS-PDS files are located. When you enter the iPPS­
PDS command, the ISIS operating system loads and 
executes the iPPS-PDS software. 

The iPPS-PDS software can also run under the control 
of a submit file. SUBMIT is an ISIS command that 
allows you to use a disk text file as input for further 
ISIS commands or as command inputs to utilities run­
ning under the ISIS operating system. Thus, a submit 
file can contain the ISIS command line to invoke the 
iPPS-PDS software and then a sequence of commands 
for the iPPS-PDS software itself. 

Summary: the iPDSTM System Meets 
PROM Programming Needs 

Table 3 describes briefly how the iPDS system meets 
each of the needs identified earlier in this application 
note. . 

The iPDS system can be a complete intelligent PROM 
programmer-and, because the iPDS system is also a 
development system, it can provide an excellent means 
to off-load PROM programming from your current de­
velopment system (just as the iPDS system allows you 
to off-load other 8-bit development tasks). In addition, 
with its state-of-the-art PROM programming capabili­
ty, the iPDS system becomes an attractive solution to 
your complete development system needs. 



inter AP-179 

Table 3. iPDSTM Features Meet PROM Programming Needs 

Need IPDSTM Feature 

Be easy-to-use. iPPS software and the PROM programming personality modules 
were designed to provide ease-ot-use. 

Program a wide variety of Personality modules each permit the programming of a family of 
PROMs. PROMs or microcontrollers. -
Be upgradeable. New personality modules will be released as new PROM families 

appear. 

Display (P)ROM contents in iPPS DISPLAY command displays (P)ROM (or buffer or file) 
ASCII characters or in a variety of contentli in ASCII characters and in binary, octal, decimal, or 
bases. hexadecimal. 

Enable a printer to print out iPPS PRINT command prints out (P)ROM (or file or buffer) contents 
(P)ROM contents in ASCII in ASCII characters and in binary, octal, decimill, or hexadecimal. 
characters and in a variety of 
bases. 

Check for blank PROMs. iPPS BLANKCHECK command chec~s tor blank PROMS. 

If PROM is not blank, check iPPS OVERLAY command checks PROM contents for compatibility 
PROM contents for compatibility with program. 
with program. 

Recognize file formats ot iPPS command file switch allows you to indicate to the iPDS system 
development system object files. which object file format is being used. 

Support transfers of program iPPS COpy commands allow you to copy in either direction 
code from development system, between the iPDS disk drive(s), PROMs, and the iPDS buffer 
disks, and other PROMs to the storage. 
new PROM. 

Provide temporary storage and iPDS buffer provides temporary storage and the iPPS SUBSTITUTE 
software for manipulating and LOADDAT A cO!l1mands allow you to manipulate programming 
programming data before loading data before you load it into a PROM. ' 
it into the PROM. 

Load data into PROMs in a iPPS FORMAT command allows you to format data in a variety of 
variety of formats, e.g.: ways so that it can be loaded into PROMs in various sequences 
-interleaving 16-bit data into two (including interleaving and segmenting). 

8-bitPROMs 
-segmenting long programs so 

that resulting program 
segments fit into successive 
PROMs 

Verify the accuracy of copying. iPPS software automatically checks the accuracy ot copying. 

Compare programming buffer iPPS VERIFY command compares buffer data with PROM data. 
with PROM contents 

Control the security feature of iPPS KEY LOCK command locks advanced microcontrollers. 
advanced microcontrollers for 
unauthorized access. 

Automate routine PROM ISIS SUBMIT files permit you to store frequently used command 
programming tasks. sequences. The files can then be activated with a single command. 



intJ AP·179 

APPENDIX A 
PROM PROGRAMMING EXAMPLES 

Displaying (P)ROM contents and programming 
PROMs are easy tasks with the iPDS system. The fol­
lowing four examples show typical uses of the iPDS 
system's PROM programming capabilities: 

EXAMPLES 

The examples assume that the iPDS system is under 
control of the iPPS-PDS software. The boldface charac­
ters shown on the iPDS screen displays indicate user 
entries. The key-in sequence below each screen display 
gives the actual entries that you must key in to obtain 
the screen display. 

• Examining the contents of a masked ROM 

• Duplicating a PROM 

• Interleaving a file between two PROMs 

• Locking a microcontroller 

Key-In Sequence 

DISPLAY PROM 

280015-4 

Examining the Contents of a Masked ROM 

The DISPLAY command lets you examine the con­
tents of a PROM or a masked ROM. 

PPS> DISPLAYPROM 
000000: C3 40 DO 20 20 44 20 2D 20 44 49 53 4B DO 20 20 • ij. D - DISK. 
000010: 4720 2D 20 47 45 4E 4552 U 4C DO 20 20 4B 20 G - GNENERAL. K 
000020: 2D 20 4B 45 59 42 4F U 52 44 2F 43 52 54 00 FF - KEYBOARDICRT •• 
000030: FF FF FF FF FF FF FF FF C3 3b lC FF FF FF FF FF ••.•••.••• b •••.•• 
000040: F3 DB 60 Eb 20 CA 03 06 3E DO D3 Dl DB 60 Eb 01 ••••••• > ••••••• 
000050: C2 bb DO 3E 4F D3 DO 3E 56 D3 DO 3E 69 D3 DO 3E • f. > O .• > x •• > ••• > 
OODDbO: 99 D3 DO C3 7b DO 3E 4F D3 DO 3E 96 D3 DO 3E 6A •••••• >0 •• > ••• >. 
00DD70:D3D03E9CD3DD21000Dll0006AF477BB2 •• > .•• / •••••. G{. 
000060: CA 6A DO 76 6b 23 lB C3 7D 00 76 FE 55 C2 6D 00' ••• x· * .. }. x· U ••• 
000090: 3E 34 D3 E3 3E IF D3 ED 3E DO D3 ED 0130 00 DB >4 •. > ••• > .••• 0 .. 
ODDDAD:6DEbD1C2A9DDD12CDD3E72D3E379D3El ••••••• '.>r •• y •• 
DDDDBD: 76 D3 El 3E B2 D3 E3 3E DO D3 E2 3E lb D3 E2 D3 x •• > ••• > ••• > •••• 
DDDDCD: 10 3E 22 D3 bD D3 50 D6 60 Eb 04 CA C7 DO DB 60 • > ' , • , • p ••••••••• 
DDDDDD: Eb 04 C2 CE DO AF D3 FD D3 FD D3 FD D3 Fl 3E Al •..••••••••••• >. 
DDDDED: D3 F6 3E 23 D3 bD 3E C6 D3 E2 3E DO D3 E2 D3 50 •• > /I. ,>. ' .• > •••• P 
DDDDFD: 21 Ef DO 2B 7C B5 C2 F3 DO DB 60 Eb 04 C2 fD DO I·. +1···.·.······ 
000100: 3E DO D3 E2 3E lb D3 E2 D3 50 DB 60 Eb 04 CA DA > ••• > •••• p .••••• 
DDDHD: lDDB6DEbD4C211D13E22D3bDD350DBaO •••.•••• > ... ,.P •• 
000120: Eb 04 CA 1E 01 DB 60 Eb 04 C2 25 01 21 DO 40 n •••••••••• %.'. a. 
ENTER <CR> TO CONTINUE. 
ABORTED 
PPS> 

Comments 

280015-3 

This example shows the data in the PROM in hexadecimal format, which is the default 
base in this example. Press the ESC key at any time to end the display. The "S" sign is 
the echo of the ESC key. You can also display the data in other number bases. Note 
the ASCII code displayed in the far right column. 

7-31 



inter AP-179 

Duplicating a PROM 

One frequently used application of iPDS PROM pro­
gramming is copying data from a PROM into a buffer 
or ftle, then copying it into another PROM. You can 
perform this operation using the iPPS-PDS buffer (or 
an iPDS ftle for intermediate storage) and the iPPS­
PDS COPY commands. 

P P S > COpy PROM TO BUFFER 
CHECK SUM = 4D4A 

PPS> 

Key-In Sequence 

COPY PROM TO BUFFER i RETURNij 

280015-6 

If you want to check the buffer to be sure the data now 
there matches the original data in the PROM, one com­
mand is all that is needed. Enter the VERIFY com-

PPS> VERIFY 
VERIFY TEST PASSED 
PPS> 

Key-In Sequence 

VERIFY i RETURN~ 
280015-6 

The following example illustrates a direct PROM-to­
buffer-to-PROM duplication. If you wish to perform 
these examples, place the PROM in the PROM socket 

. and reset the iPPS-PDS (using the TYPE command for 
your type of PROM). A 2716 EPROM that contains 
sample code is used in this example. 

280015-5 

Comments 

This command copies every memory location in the 
PROM to the buffer beginning at destination address 
OOH in the buffer. The check-sum is the 2's comple" 
ment of the 16-bit sum of all the bytes read. 

mand, and if the buffer and. PROM data match, you 
will be informed VERIFY TEST PASSED. 

280015-7 

Comments 

The data in the buffer matches the data in the PROM. 



AP-179 

Now that you have verified that the data in the buffer 
matches the data in the PROM, you are ready to copy 
the buffer to a blank PROM. Remove the master 

P P S > COPY BUFFER TO PROM 
CHECK SUM = 4D4A 

PPS> 

Key-In Sequence 

COpy BUFFER TO PROM 
~ RETURN~ 

280015-6 

Note that for copying from the buffer to a PROM, you 
do not need to use the VERIFY command. The iPPS­
PDS software automatically verifies the copying when 
you copy in this direction. 

Interleaving a File between Two PROMS 

It is often desirable to have code or data arranged in 16-
bit words and stored on a pair of 8-bit PROMs. This is 
the case, for example, when working with an 

7-33 

PROM from the PROM socket and insert the blank 
PROM. Then use COPY again to copy the contents of 
the iPPS-PDS buffer to the blank PROM. 

280015-8 

Comments 

The display of the check-sum and the return of the 
iPPS prompt indicate that the PROM was successfully 
programmed. 

8086 microprocessor that reads from and writes to 
memory on a l6-bit data bus. The data is interleaved 
between two PROMs, the odd (or low) bytes stored in 
one PROM and the even (or high) bytes stored in the 
other PROM. The FORMAT command handles this 
interleaving automatically. 

In the following example, a file written in Intel 8086 
hexadecimal format is interleaved into two PROM de­
vices. 



inter AP-179 

PPS > FORMAT DOUBLE.BYT (O,FFFH) 
LOGICAL UNIT (BIT=1,NIBBLE=2,BYTE=3,N-BYTE=4) 
LU = 3 
INPUT BLOCK SIZE (N BYTES) 
N = 2 
OUTPUT BLOCK SIZE (N BYTES) 
N = 1 
INPUT BLOCK STRUCTURE: 
NUMBER OF INPUT LOGICAL UNITS = 002 

LSB 

I 00 I 01 I 

NUMBER OF OUTPUT LOGICAL UNITS = 001 
OUTPUT SPECIFICATION «CR> TO EXIT): 

* 

280015-9 

Key·In Sequence Comments 

FORMAT DOUBLE. BYT (O,FFFH) 

nRETURN~ 
280015-6 

3IRETUR~~ 
280015-6 

2 nRETURNij 
280015-6 

1 n RETURNij 
280015-6 

7·34 

In this example, a file called DOUBLE.BYT is split 
into two files, with alternate bytes being loaded into 
alternate files. After establishing the FORMAT com· 
mand and the file name with the first entry, the iPPS 
software prompts for the size of the logical unit that is 
going to be manipulated. Byte is selected as the logical 
unit. You are then prompted to set up the input block 
size (in this case two bytes) and the output block size 
(one byte). A diagram of the input block is displayed 
with the logical units labeled. The least significant bit in 
the input block is displayed with the logical units lao 
beled. The least significant bit in the input block is 
shown on the left. The number of logical units in the 
output block is also displayed. You are then prompted 
with an asterisk (*) to enter the output specification. 



inter 

*0 TO LOWER.BYT 
OUTPUT STORED 
*1 TO UPPER.BYT 
OUTPUT STORED 

* 
PPS> 

Key-In Sequence 

o TO LOWER.BYT 

~RETURN~ 
280015-6 

1 TO UPPER,BYT 

n RETURNij 

280015-6 

IRETURN~ 
280015-6 

AP-179 

280015-10 

Comments 

Once the size of the logical unit, the input block size and the output block 
sizes have been established, you are prompted for the output specification 
(how you want the data in the file to be manipulated in terms of logical 
units). This example specified that the least significant byte in each input 
block be stored in a file titled LOWER.BYT in the default drive. The iPPS 
software then sorts through the DOUBLE-BYT file. Next it specifies that 
the most significant byte be stored in afile titled UPPER.BYT. The iPPS 
software then sorts through the DOUBLE-BYT file and copies every odd 
byte to the UPPER-BYT file. OUTPUT STORED is displayed after each 
output specification is implemented. You then have the option of entering 
another output specification. Pressing RETURN exits the FORMAT com­
mand and returns the iPPS prompt. 

You can use the two files created with this FORMAT 
operation to program two PROMs, which you can then 
install in parallel to provide 16-bit data words to a 

16-bit microprocessor. To copy the files the PROMs, 
use the COPY command as follows. 

Key-In Sequence 

P P S > COPY LOWER.BYT TO PRO". 
CHECK SUM = 5111 

PPS >COPY UPPER.BYTTO PROM 
CHECK SUM = 1I4AC 

PPS> 

COPY LOWER.BYT TO PROM 

COPY UPPER.BYT TO PROM 

n RETURNij 

280015-6 

nRETURN~ 
280015-6 

280015-11 

Comments 

, You must install a blank PROM in the personality 
module before entering each COPY command. 

7-35 



AP·179 

Locking a Microcontroller 

After programming a microcontroller, you can protect 
it from unauthorized access by locking it with 

the KEYLOCK command (the KEYLOCK command 
cannot be used with all EPROMs). The following ex­
ample locks an 8751H microcontroller, which then can­
not be unlocked without erasing it. 

PPS > KEYLOCK 
EXECUTE- -YIN? Y 
PPS> 

Key-In Sequence 

KEYLOCK iRETURN~ 
280015-6 

Y IRETURH~ 
280015-6 

-----------------------------------------------
280015-12 

Comments 

Entering Y locks the EPROM. If you enter N, the command terminates and 
EPROM remains unlocked. 



EPLD Development Tools 8 





• 

• 

• 

• 

iPLDS 
INTEL PROGRAMMABLE LOGIC 

DEVELOPMENT SYSTEM 
Provides the Necessary Hardware and • Supports a Variety of Input Methods: 
Software Tools to Quickly Turn Design - Schematic Capture (Optional) 
Concepts Into Programmed Erasable - Interactive Logic Builder 
Programmable Logic Devices (EPLD) - Boolean Equations 

Includes Comprehensive, Menu-driven - State Machine Entry (Optional) 

Software with Soft Key Input and On- - Design Files Via a Text Editor 

line Help Messages • Generates Output in the Standard 

A Variety of Programmable Options JEDEC File Format 

Available to Program, Read, and Verify • Interfaces with the IBM* PC, PC XT, 
EPLD Devices PC AT, and True Compatibles 

Includes a Logic Optimizing Compiler • Programming Tools to Obtain the Most 
That Automatically Minimizes Logic, Utilization of EPLD Resources 
and Produces the Best Design Fit for • Includes Sample Device 
the Device Selected 

OVERVIEW: The Intel Programmable Logic Development System (iPLDS) provides a powerful set of EPLD 
development tools. It is an easy to use hardware and software system for creating a logic design, optimizing 
and custom-fitting the design to a particular EPLD device, and then programming and verifying the EPLD 
device. 

"IBM Personal Computer is a registered trademark of International Business Machines Corporation. 

8-1 

280168-1 

October 1986 
Order Number: 280168-003 



inter iPLDS 

FUNCTIONAL DESCRIPTION 

The iPLDS simplifies using EPLD devices in circuit 
designs. The iPLDS provides all of the software, pro­
gramming hardware, and documentation needed to 
convert a designer's hardware logic concept into a 
fully optimized, tested, and documented device. The 
designer accomplishes the entire process at his/her 
desk. The iPLDS interfaces with and runs on an IBM 
PC or true compatible. 

The key to the ease of this process. is the compre­
hensive set of high-level software tools, derived ex­
tensively from the techniques used in higher cost 
CAE workstations and software development pro­
cesses. The system's software includes a wide 
choice of design input types, enabling designers to 
create and implement designs using the user inter­
face matching their application. 

As with most other programmable logic software 
systems, the designer can specify, test, and modify 
designs with advanced forms of Boolean equations. 
In addition, the iPLDS supports input from two pow­
erful optional schematic capture packages (PC­
CAPS· from P-CAD, and DASH-2* from Future-Net), 
input using the logic builder program (an easy-to-use 
interactive netlist entry package), optional state ma­
chine entry, and creation of an Advanced Design 
File (ADF) directly using the text editor, such as In­
tel's AEDITtext editor. 

Advances have been made in each stage of the 
EPLD design cycle. The software compiles and opti­
mizes the logic design, automatically determines the 
best way to fitthe design into the EPLD device, and 
graphically displays. the programmed device at the 
individual EPROM bit level. The software also pro­
grams, reads, and verifies the EPLD device using 
the system's programming hardware. 

The software is designed for ease of use. The entire 
software package is comprised of nested menus. 
The bottom of the screen displays helpful mes­
sages, suggesting what to do. A separate help func­
tion is always available when a further explanation of 
a function is needed. Errors are identified with de­
scriptive messages. The process is further simplified 
by the use of interactive graphics during design input 
and while viewing the design fit using the gate inter­
connect preview function. 

EPLD DESIGN PROCESS 

The iPLDS supports a complete design process 
from concept to programmed and tested compo-

• PC-CAPS is a registered trademark of P-CAD Corporation. 

*DASH-2 is a registered trademark of FutureNet Corporation. 

8-2 

nents. The Intel Programmable Logic Software 
(iPLS) controls the entire process (refer to Figure 1). 

Design Input 

The logic. design can be entered. using any of the 
following methods: 

LogiC Builder: The logic design can easily be en­
tered using the logic builder program, which uses a 
combination of questions and pictures to prompt the 
designer for inputs and outputs of logiC elements. 
The program guides the designer through the entire 
design entry process by prompting for necessary in­
formation and showing a screen display, one device 
at a time, with input signals on the left side, and 
output signals on the right (refer to Figure 2). 

The design entry process starts with ari output pin of 
the EPLD device. A device to drive the output pin is 
selected from a menu of available logic primitives. 
Then the system prompts the designer for the node 
names of each input to the primitive device;Primitive 
devices to drive each input node are then selected, 
and so on, until the entire logic circuit has been cre­
ated. The circuit can be edited during initial entry 
and also when down-loaded from disk storage or an 
EPLD device. Comments can also be added. The 
circuit is corrected-by-design from the start, as the 
logiC builder detects and identifies violations to basic 
design rules. If the design can be better described 
using a Boolean equation or a state machine specifi­
cation, these can be directly entered into the circuit, 
using built-in entry functions .. An Advanced DeSign 
File (ADF) is automatically created when the design 
input is complete. 

State Machines (optional): State·machinedesigns 
can be entered using the optional iSTATE software. 
iSTATE provides considerable flexibility in ways to 
specify state machine designs, supporting multiple 
syntaxes for state definition,· specification of state 
transitions, inputs, and outputs and provisions for in­
termixing state machine and Boolean equation de­
signs. 

Once a state machine design has been coded using 
iSTATE, the program is input to the iPLS software 
which optimizes the logic,determines a best fit of 
the state machine design to the EPLD selected 
(even including automatic selection of flip-flop 
types), compiles the program, and produces a 
JEDEC or Intel hex formatted object code file for 
programming using one of Intel's selection of pro­
gramming methods. 



inter iPLDS 

INTEl '''OORAMIIABLE LOGIC DEVElDPMENT SYSTEM (lPLOS) 

280168-2 

Figure 1. Intel Programmable Logic Development System (IPLDS) 

280168-3 

Figure 2. Logic Builder and Utilization Screen Samples 

8-3 



inter IPLDS 

Text Editor: The logic design can be entered using 
a text editor to create an ADF similar to most PLD 
design packages. The ADF provides a simple format 
for specifying design inputs, outputs, net lists, and 
Boolean logic equations. 

Schematic Capture (optional): The logic design 
can be entered using either of two powerful sche­
matic capture programs, PC-CAPS or DASH-2. With 
these schematic entry programs, specially config­
ured to work with Intel's logic symbol libraries, logic 
design schematics can be drawn on the host com­
puter's screen by interactively entering primitive log­
ic symbols using a menu of logic symbols and a 
mouse. The schematic can be easily edited. Chang­
ing a design from one EPLD size to another is ac­
complished by changing the device number on the 
drawing of the schematic. Hard-copy printout and 
plotting of the schematic is also supported. The pin 
list file ouput of the schematic capture programs can 
then be transferred directly to the Logic Optimizing 
Compiler (LOC). 

Boolean Equations: The logic design can be en­
tered using Boolean equations, inserting them di­
rectly into the Logic Builder design, schematic cap­
ture design ADF (using a text editor), or state ma-
chine file. . 

The logic symbol libraries are available separately 
as iSLlBFNET and iSLlBPCAD. These products in­
clude the full device libraries to support both Intel 
and Altera Corp. EPLD devices, and all necessary 
software interfacing between the schematic capture 
packages· and the iPLDS. 

Logic Optimizing Complier (LOC) 

The LOC accepts the design input from an ADF or a 
pin list file. Once the logic design is accepted, the 
LOC begins to compile the input code in three 
stages. . 

Logic Design Optimization: The LOe converts the 
input file to Boolean equations. At this time, logical 
and syntactical error checks are made. The Boolean 
equations are then combined into an expanded sum­
of-products form. The LOC then performs heuristi­
cally selected optimization algorithms (including De 
Morgan's theorem) to reduce the design to the mini­
mum number of terms. 

Automatic Chip Input and Output Pin Assign­
ment: After the optimization is complete, the compil- . 
er automatically fits the design into the specified 
EPLD device using device parameters read from the 
software parts library. If input and output pins have 

not been assigned by the designer, the compiler au­
tomatically assigns them to locations that provide 
the best fit of the design within the EPLD device. 

Automatic Chip Resource Allocation: This func­
tion determines the best possible fit of the design 
within the format structure of the chosen EPLD de­
vice. 

Resource Utilization Report 

Once the logic optimization is complete, a resource 
utilization report is created documenting which of a 
part's resources have been utilized and how the re­
sources have been used. The report is automatically 
stored as a disk file. A statement at the top of the 
report indicates whether or not the design has been 
successfully implemented. This is followed by a 
header section detailing the deSigner's name, date 
the design was entered, EPLD device number, and 
the title of the design. Next is a pictorial representa­
tion of the EPLD device, with all pins labeled. Then 
details of the input and output pins, and any buried 
registers are listed. The report also lists any unused 
device resources, and what percentage of the de­
vice was utilized. 

Logic Equation File 

At the completion of the logic optimization, a Logic 
Equation File (LEF) is also created. The LEF is a 
version of the ADF with all logic minimized. The LEF 
shows the result of the Logic Optimizing Compiler. 

JEDEC Design File 

. The LOC also produces a JEDEC design file of ob­
ject code, which can be programmed directly into an 
EPLD device using the Logic Programming Software 
(LPS) and the Intel logic programmer. The JEDEC 
(JOint Electron Device Engineering Council) file for­
mat is a standard data transfer format. 

8-4 

JEDEC to HEX Conversion 
The JEDEC file can be converted to an Intel Hex File 
Format using a simple conversion program. The Intel 
Hex File Format code can then be used to program 
EPLDs using Intel Universal Programmers with iUP­
GUPI modules. 

Logic Programmer Software (LPS) 

The LPS controls the programming, reading, and 
verifying of the EPLD device by the Intel logic pro­
grammer. The gate interconnect preview feature of 



inter IPLDS 

the LPS provides a windowed view into the structure 
of the EPLD device, graphically displaying how the 
design was implemented into the device (refer to 
Figure 3). The feature enables the designer to get a 
complete view of the EPLD device, showing the 
status of individual EPROM bits. The actual bit pat­
tern and 1/0 drivers can be checked, and individual 
bits may be altered. This feature can be used before 
the EPLD device has been programmed, or after 
reading a previously programmed EPLD device. 

Intel Logic Programmer 

Programming the EPLD is accomplished by use of 
the Intel logic programmer, which consists of an in­
terface card (installed in an IBM PC, or true compati­
ble) and a separate programmer (pod) that is con­
nected to the card by a ribbon cable. The Intel logic 
programmer uses a fast programming algorithm to 
program most designs in less than one minute. 

While programming, the Intel logic programmer also 
performs a double verification of the bit pattern. The 
programmer verifies each bit after it is programmed, 
and it verifies the bit pattern again after the entire 
EPLD device is programmed. 

The Intel logic programmer also programs the EPLD 
security and turbo bits. The security bit, once pro­
grammed, prevents programming, reading, and veri­
fying of the device. The turbo bit, once programmed, ' 
prevents the device from going into a stand-by 
mode. Although the device will consume more pow­
er in turbo mode, the propagation delay through the 
device is reduced. To be reprogrammed, the device 
must be erased with ultraviolet light. . 

NOTE: 
The iPLDS includes a programmer pod for the 300 
and 1200 gate equivalent devices. Other logic pro­
grammers are available for programming devices 
with different pin counts and package styles. 

IUP·GUPI 

. The iUP-GUPI is a generic module that enables the 
iUP-200Al201A Universal Programmer and the Intel 
Personal Development System (iPDSTM) to accept 
low-cost plug in adaptors that configure the system 
to support a wide variety of programmable devices 
(including EPLDs). Table 1 lists the EPLD devices 
supported by the iPLDS system, and the Intel Logic 
Programmer pods and GUPI adaptors that will pro­
gram them. 

8-5 

Table 1. Intel Programmer Logic Development 
System Programming Support 

Equivalent Intel Logic iUp·GUPI Device Gate Count Programmer Adaptor Pod 

5C031 300 included .in GUPI LOGIC-12 
iPLDS 

5C060 600 iLP900 GUPI LOGIC-9 

5C090 900 iLP900 GUPI LOGIC-9 

5C121 1200 included in GUPI LOGIC-12 
iPlDS 

5C180 1800 iLP1800 GUPI LOGIC-18 

NOTE: 
Intel Programmers also support programming of equivalent 
Altera Corp. second-source parts. 

iUP·GUPI and GUPI Logic Adaptors 

The IUP-GUPI and assorted GUPI LOGIC adaptors 
provides an alternative programming solution for In­
tel's H-series and Altera EPLD devices, when pur­
chased with the iPLS, Intel's Programmable Logic 
Software. This complete set of software is available 
separately (i.e., without the iLP programmer pod and 
IBM interface card). 

By selecting a system consisting of the iPLS soft­
ware, iUP-201A (with iPPS software for the IBM PC, 
PC XT, or PC AT), and iUP-GUPI, no expansion slots 
are used in your PC (since the iUP communicates via 
the PC's RS232 serial port), and a more versatile 
programming solution is obtained. Some of the add­
ed programming advantages are stand-alone opera­
tion when several duplicate EPLDs are needed, in­
creased device testing with checksum, verification, 
and optional programming of EPROMs and micro­
controllers with low cost adaptors. 

OPTIONAL PRODUCTS 
iPLS: The Intel Programmable LogiC Soft­

ware is available for users who do 
not require the logic programmer 
hardware. The product consists of 
the iPLS diskettes, sample EPLD de­
vice, and the iPLDS User Manual 
with slipcase and binder. 

iUPLDSKIT09 This kit bundles all the software and 
hardware needed to develop EPLD's 
for users that already have an iUP-
200A or 201 A programmer. The 
product includes the iPLS software, 
iUP-GUPI module, GUPI-LOGIC09 
adaptor, iPPS programming software 
for the IBM PC, and manuals. 



inter IPLDS 

Figure 3. Gate Interconnect Preview Screen Sample 

280168-5 

Figure 4. Programmer Pods 

8-6 



IPLDS 

Feature Benefit 

• Multiple input formats Choice of design input methods fits the designer's background, skill 
level and circumstances 

-Schematic capture Widely used design methodology, provides printout of the schematic 
-Logic builder Very fast to design (no syntax errors associated with text files), easy 

to use, accepts Boolean equations, lower cost for some users 
Boolean algebra Traditional methodology for programmable logic 
-State machine Support for users designing with state machines 
• Self contained, total system Total, low-cost EPLD design process (development and programming) 
• Logic Optimizing Compiler 

(LOC) 
-Automatic logic minimization Optimized device utilization (allowing larger equivalent gate counts 

and resource allocation per device) 
-Automatic pin assignment Design time saved, more efficient design fit within the EPLD device 
-Resource utilization report Automatic documentation (saves time) which provides feedback on 

the internal implementation of the design 
-JEDEC file output Industry standard, interfaces to third party programmers 
• Interactive menu driven Very easy to use for the novice, while the expert can quickly access 

software with help files and the most sophisticated features 
advanced control features 
for experts 

• IBM PC compatible Minimum host computer investment, widely available, runs on 
MS-DOS· and PC-DOS 

• Sample EPLD devices Immediate use of the system 

iSLlBFNET The FutureNet system library provides 
the full device library to support both In­
tel and Altera Corp. EPLD devices, and 
all . necessary software interfacing be­
tween the DASH-2 schematic capture 
package and iPLS. The product consists 
of the symbol library diskette. 

iSLlBPCAD The P-CAD system library provides the 
full device library to support both Intel 
and Altera Corp. EPLD devices, and all 
necessary software interfacing between 
the PC-CAPS schematic capture pack­
age and iPLS. The product consists of 
the symbol library diskette. . ' 

iLP900 The Intel Logic Programmer 900 pod is 
available for programming the Intel 
5C060 and 5C090 logiC devices (or 
equivalent Altera Corp. second-sourced 
parts). 

iLP1800 The Intel LogiC Programmer 1800 pod is 
available for programming the Intel 
5C180 logic device (or an equivalent 
Altera Corp. second-sourced part) .. 

iSTATE The Intel state machine entry software 
package is available for entering state 
machine deSigns by specifying the state 
variables and state transitions. 

8-7 

SUMMARY 

The Intel Programmable Logic Development System 
is a unique combination of power, versatility, and 
economics. It enables the logic designer to draw the 
schematic, check it for accuracy, compile and mini­
mize it, program it into an EPLD device, and then 
revise the design and reprogram the EPLD device, 
all at the designer's desk. 

SPECIFICATIONS 

RequIred Hardware 

The iPLDS software requires an IBM PC xl', PC AT, 
or other true compatible computer capabl!il of run­
ning MS-DOS· version 2.0 or later. The computer 
must have a 360 KB double-sided, double-density 
disk drive, a hard disk, and 512 KB of RAM. Addi­
tional memory is required for the optional schematic 
capture programs. A color monitor is recommended, 
as the color graphics available provide a better rep­
resentation of the data than a monochrome display. 

OMS-DOS is a registered trademark of Microsoft Corpora­
tion. 



inter IPLDS 

The programmer interface card requires one full-size 
card slot in the host computer. 

Operating Environment 

ELECTRICAL CHARACTERISTICS 

Interface card and programmer: 

Static: 5V @ 300 mA ± 50 mA 
12V @ 200 mA ±25 mA 

Dynamic: 5V @ 300 mA ± 50 mA 

(programming) 12V @ 250 mA ± 25 mA + device 
current' 

NOTE: 
'device current = Ipp + Icc of the device being 
programmed 

PHYSICAL CHARACTERISTICS 

Interface card: 
Width: 13.1 in. (33.7 cm) 
Height: 4.2 in. (10.8 cm) 

Programmer: 
Width: 4.8 in. (12.3 cm) 
Height: 1.9 in. (4.9 cm) 
Depth: 4.8 in. (12.3 cm) 

Shipping weight: 7 Ibs. 

ENVIRONMENTAL CHARACTERISTICS 

Operating Temperature: 10·C to 40·C . 
Relative Humidity: 8% to 80% 

Equipment Supplied 

HARDWARE 
- Intel Logic Programmer and cable 

- Logic programmer interface card 

- EPLD device 

SOFTWARE 
- Intel Programmable Logic Software (iPLS)-mas-

ter program diskette 

- Logic Builder (LB)-design entry diskette. 

- Logic Optimizing Compiler (LOC) diskette 

- Logic Programmer Software (LPS) diskette 
. - Installation (INSTALL) diskette 

8-8 

DOCUMENTATION: 
.,-- ;PLDS User Manual, order number 166612 

ORDERING INFORMATION 
Product 
Order 
Code 

iPLDS 

iPLS 

Description 

Intel Programmable Logic Development 
System (hardware, software, sample 
device, and documentation) . 

Intel Programmable Logic . Software 
(software, sample device, and docu­
mentation only) 

iSLlBFNET FutureNet symbol library for use with 
the DASH-2 schematic capture pack­
age 

iSLlBPCAD P-CAD symbol library for .use with the 
.. PC-CAPS schematic capture package 

iLP900 iLP pod for programming Intel 5C060 
and 5C090 logic devices 

iLP1800 iLP pod for programming Intel 5C180 
devices 

iSTATE iPLDS state machine entry software 
package 

NOTE: 
The DASH-2 schematic capture program is avail­
able from FutureNetCorporation, and the PC-CAPS 
schematic capture program is available from P-CAD 
Corporation. 



intJ APPLICATION 
NOTE 

AP-279 

May 1986 

Implementing an, EPLD Design 
Using Intel's Programmable 
Logic Development System 

LAKSHMI JAYANTHI 
DSO APPLICATIONS 

8·9 Order Number 28031()"OO1 



AP-279 

OVERVIEW 

Welcome to the fascinating world of ERASABLE PRO­
GRAMMABLE LOGIC DEVICES (EPLDs) and Intel's 
Programmable Logic Development System (iPLDS). This 
application note has been written for the newcomer to 
Intel's devices and design tools. It has been designed as a 
step-by-step guide through the tools but should also prove 
useful as a reference document for the experienced logic 
designer. 

By the end of this application note you will have 
designed/solved multiple logic problems and be in a posi­
tion to implement solutions to many of the digital design 
challenges you face today. It is anticipated that this appli­
cation note will be used in conjunction with Intel's iPLS 
software. To increase the usefulness of this application 
note, Intel will supply a PCB card for you to experiment 
on and a sample diskette (see Appendix E for details). 

This application note is divided into the following three 
sections: 

1. An introduction to Erasable Programmable Logic 
Devices (EPLD) 

2. An introduction to Intel's Programmable Logic De­
velopment System (iPLDS) 

3. Implementation of EPLD and iPLDS using detailed 
examples to implement a logic design. 

INTRODUCTION 

Programmable logic in the form of PALs have been availa~ 
ble for some time. They have' become more.complex as 
Large Scale Integration (LSI) techniques have been ap­
plied to this technology. 

The benefits of Large Scale Integration circuits are many 
fold. These circuits offer lower manufacturing costs, 
since the use of customized LSI circuits reduces required 
printed circuit board space, thereby significantly reducing 
board costs. These circuits also consume lower power so 
less expensive power supplies are required and cooling 
fans are also eliminated. LSI circuits also have higher reli­
ability than equivalent systems comprised of many low 
density standard components. 

As end users of semiconductors moved into higher and 
higher levels of integration, chip designers found it more 
and more difficult to define larger and larger blocks of 
logic. These difficulties led to the emergence of the 
user-defined Application Specific Integrated Circuit 
(ASIC). 

The options available for application specific logic are ex­
plained below and shown in Figure 1. 

8-10 

I n CUJTOM n 
PROGRAM- GATE STANDARD FULL 

MABLE ARRAY CELL CUSTOM 
LOGIC 

2442 

Figure 1. Logic Options 

Full Custom: These circuits can be tailored to give the 
best functional performance with the highest level of inte­
gration, the smallest silicon area, the lowest power use, 
and be produced for the least cost at high production 
volumes. 

Standard Cell Library: This approach represents an in­
tegrated circuit which is composed of predesigned and 
precharacterized cells chosen from a computer data base 
library of cells. 

Gate Arrays: These are integrated circuits that contain a 
regular, usually square, matrix of predefined logic gates. 

User Programmable Logic: The concept of user pro­
grammable logic is to provide the designer with the bene­
fits of custom LSI chips from standard products. 

A recent innovation in the programmable logic field has 
been Intel's introduction of an ERASABLE Program­
mable Logic Device. Using the same technology used in 
the manufacture of EPROMs, Intel now·offers increased 
flexibility to the logic designer. 

Intel has addressed the limitations of gate arrays and fuse 
programming logic with its EPLD products and develop­
ment system support tools. The benefits to the system de­
signer are: 

• Greatly reduced lead times 

• Low design costs 

• Ease of design changes 

• Low power dissipation from CHMOS technology 

• Multiple programming facility 

• Maximum flexibility in each chip and the ability to 
erase and reprogram 

• High density products that maximize function, integra­
tion, and quality 

• A self-contained, low-cost sophisticated development 
system based upon the industry standard IBM PC XT 
or AT. 



AP-279 

Table 1. Intels EPLDs 

EPLD Gates Pins 
Dedicated 

110 Inputs 

5C031 300 20 10 8 
5C060 600 24 4 16 
5C09,O 900 40 12 24 
5C121 1200 40 13 24 
5C180 1800 68 12 48 

EPLDs are now a cost-effective solution to the problem of 
large scale logic integration. EPLDs are the simplest form 
of high density application-specific logic to implement. 
At present, the following logic devices are available from 
Intel as shown in Table 1. 

Intel's EPLDs use the. "Sum Of Products" architecture 
with programmable AND and fixed OR gates to drive a 
combinatorial or registered output. Each of the devices 
listed in Table 1 has different attributes and resources tar­
geted at specific applications. 

In general each device contains multiple sets of program­
mable MACROCELLS as shown in Figure 2; 

Everything is programmable (and erasable if you need to 
make modifications). Product terms may be generated 
from any combination of input terms-any terms not used 
are considered a "don't-care" in the array. The output 
register is also programmable-you can choose D-type, 
Toggle, SR, or even JK FLIP-FLOPs; you can even 
choose no output register if you only require combinato­
rial outputs. The clock and output enables are also 
programmable. 

Intel EPLD devices are available in many configurations 
to fit most applications. A complete listing of data sheet 
availability is covered in Appendix E. 

DESIGN TECHNIQUES USING INTEL'S 
EPLDS 

Designing with EPLDs is similar to designing with stan­
dard TTL logic circuits. The focus moves from "how can 
I configure this design ~ith standard parts" to "what else 
could I replace using this EPLD". Remember, if you ever 
use all of an EPLDs resources you just move up the de­
vice chain to the next bigger component-all of the work 
you did is DIRECTLY PORTABLE to a larger device. 

Any network, either combinatorial or registered, has an 
equivalent two level form. Any logic circuit consisting of 
AND, OR, NOR, NAND, XOR Logic can easily be con­
verted into the corresponding truth table. Any Boolean 
expression, no matter how complex, may be written in 
Sum-Of-Products form. This Sum-Of-Products expres­
sion that has been derived from the truth table can be re­
duced until it has as few product terms as possible. This 
procedure can be repeated for any complex network. 

Let us consider a very simple network as shown in Figure 
3. This logic circuit consists of an AND gate, an OR gate 
and a NOT gate. The inputs are A, B, C, and the output 
is Y. 

For this simple .network, the truth table is shown in 
Table 2: 

A Boolean expression can easily be written from the truth 
table in a Sum-Of-Products form. This expression con­
tains the relationship between the inputs and the output. 



AP-279 

A 

B 

>---v 

2444 

Figure 3. Simple Network 

Note that the output Y is true in five cif these eight states 
(0,2,4,6, and 7) so expressing Y in the form 
"Sum-Of-Products" by writing the ones in terms of A, B, 
and C yields: 

Y = IA*/B*/C + IA*B*/C + A*/B*/C 
+ A*B*/C + A*B*C 

Hence, given any network, that network can be converted 
into its truth table. Next, a Sum-Of-Products expression 
that has the same truth table can be derived. If so desired, 
this Sum-Of-Products expression can be reduced using 
DeMorgan's theorem to simplify the circuit (you will see 
later that this will not be required), 

DEVELOPMENT SUPPORT 

Development tools are critical to the use of new technolo­
gies because tools allow you to control and use a new 
technology. Good tools help you, the designer, to work in 
familiar methods, then translate the design to the device; 

Good tools broaden the applications by making it easy to 
use new technology in designs. They are not a barrier to 
using the technology, but encourage its use and 
applications. 

Advanced and innovative technologies need similar ad­
vancements and innovations in the corresponding tools. 

Table 2. 

STATE INPUT OUTPUT 

A B C y 
0 0 0 0 1 
1 0 0 1 0 
2 0 1 0 1 
3 0 1 1 0 
4 1 0 0 1 
5 1 0 1 0 
6 1 1 0 1 
7 1 1 1 1 

8·12 

iPLDS, Intel's Programmable Logic Development Sys­
tern,. provides a fulL spectrum of ways to design and use a 
variety of design tools with fast, easy-to-use entry 
software. . 

The iPLDS contains all the software, hardware, documen­
tation and devices needed to program EPLDs. iPLDS are 
the most advanced PLD design tools available; It .provides 
better utilization of device resources (more gates per 
chip) than any other development software. These versa­
tile tools are for users with different skill levels and appli­
cations. iPLDS tools handle the details of converting your 
design to working silicon on the personal computer. 

The iPLDS contains the three fundamental modules 

• Logic Builder (LB) 

• Logic Optimizimg Compiler (LOC) 

• Logic Programmer Software (LPS) 

To implement the logic design we will use the iPLDS 
modules in the order listed above. 

The modules are essentially independant modules that use 
special data files to pass information as shown in Figure 
4. These data files are the ADF, RPf, LEF, and JED files. 

The Advanced Design File (* .ADF) is generated from 
the Logic Builder and contains the Inputs/outputs and all 
the primitive equations. 

The Logic Equation File (* .LEF) contains the primitive 
equations that have been minimized by the Logic Opti-
mizing Compiler. . 

The Utilization Report File (* .RPf) contains information 
on the macrocell and pin assignments. . 

The JEDEC File (* .JED) is the file generated by the 
Logic Optimizing Compiler used to program the device 
using the Logic Programmer. 

Before implementing the logic design using the iPLDS, 
let us briefly discuss the iPLDS family of parts to be fa­
miliar with the iPLDS modules. 

Logic Builder (LB) 

The Logic Builder module guides you through the entire 
process of design entry by prompting for necessary infor­
mation and showing a screen display (one primitive at a 
time) with input signals on the left side and output signals 
on the right side. The Logic Builder is used to generate an 
Advanced Design File (or ADF) by inputting the data in 
netlists or Boolean equations. 

After all required data are entered, the Logic Builder 
module indicates whether the circuit is complete and 
properly connected. If any changes need to be made, the 
module enables you to edit the circuit design either by 



AP-279 

1----
I 

1 LEF ANALYZER r--l 

LOGIC 
BUILDER 

(LB) 

I 
I 

DESIGN FILE 
TRANSLATOR 

TRANSLATOR! 
EXPANDER 

I 
I 

I 
I 

DESIGN 
REQUIREMENT 

FinER 

DEMANDER! 
FInERI 

ASSEMBLER 

LOGIC 
PROG. 

(LP) 

2445 

Figure 4. Block Diagram of iPLDS Modules 

systematically scanning through the primitives in the Ad­
vanced Design File (ADF) or by directly finding a primi­
tive by the name of a node connected to it. 

Any circuit may be edited. The Logic Builder reads in the 
ADF and prompts you for changes. The Logic Builder 
also allows two or more partially complete ADF files to 
be MELDED together to form a more complex function. 
This concept is not discussed in this application note but 
will be a topic of a future application note. 

Logic Optimizing Compiler (LOC) 

The Logic Optimizing Compiler provides an easy-to-use 
interface to the Logic User System software. Regardless 
of the type of .design entry method used, the LaC first 
translates an Advanced Design File (ADF) into internal 
logic equations; then it performs a Boolean reduction on 
the translated design, and finally produces a JEDEC Stan­
dard File, which is then used to program an Intel EPLD. 
In addition, you have the option of requesting an analysis 
of the Logic Equation File (LEF) as output by the 
Minimizer module. 

The LaC performs the following functions: 

• The TRANSLATOR translates the ADF into an inter­
mediate Logic Equation File (LEF). (Most errors are 
detected and corrected). 

• The EXPANDER expands the Boolean equations into 
Sum-Of-Products form, removes redundant factors 
from product terms, and produces another LEE 

• The MINIMIZER performs a sophisticated Boolean re­
duction on the translated design to maximize utilization 
of the EPLD . 

• The LEF Analyzer converts the LEF output by the 
MINIMIZER into a human readable file to allow you to 
see your design. (*.LEF) 

• The DEMANDER organizes the file output by the 
MINIMIZER. 

8-13 

• The FITTER matches your design requirements with 
the known resources of the Intel device. 

• The ASSEMBLER- converts the fitted requests into 
JEDEC file. 

Logic Programmer Software (LPS) 

The Logic Programmer Software provides a user inter­
face to the JEDEC Standard File output of the Logic Opti­
mizing Compiler and to the Logic Programmer Interface. 
You can use the Logic Programmer Software to view 
JEDEC files and to program your designs into EPLDs. 

The Logic Programmer Software is used 

• to program your designs into EPLDs 

• to verify the validity of data in the device 

• to read data from the device 

• io display JEDEC data graphically 

• to edit JEDEC data 

HARDWARE REQUIREMENTS 

The iPLDS requires an IBM PC XT, PC AT, or other 
compatible computer. A color monitor is preferred. The 
computer must have at . least one 360K double-sided 
double-density disk drive, a second 360K floppy disk or 
hard disk, and at least 512K bytes of RAM memory. 

The iPLDS consists of the Logic Programmer Interface 
card, and the programming unit needed to program and 
verify EPLDs. The Intel iUP 201 with a aUPI adapter 
may be used as an alternate system to program the EPLD 
devices. . 

SOFTWARE REQUIREMENTS 

The personal computer should be capable of running DOS 
V3.0 or a higher version. The Intel Programmable Logic 



AP-279 

Software (iPLS) that contains the software controlling the 
logic programmer interface and assisting in the design of 
Intel applications is shipped on floppy diskettes. 

PROBLEM DEFINITION 

We are going to use iPLDS to implement a medium com­
plexity logic function. As a vehicle to show the usage of 
the tools and design techniques we will design a circuit 
that will roll and spin a pair of dice. The design has been 
split into multiple stages for illustration purposes. 

This example has been chosen since it incorporates many 
of a typical logic design tradeoffs and also solves many of 
the typical problems a hardware logic designer will 
encounter. 

Appendix A contains some basic definitions that may be 
useful when reading through the design and its 
implementation. 

DESIGN SAMPLE 

Problem Set-up 

The circuit is designed to set both of the dice spinning 
when you push a switch and display a random set of num­
bers when you release the switch. The dice will spin at a 
rate that is visually pleasing and roll at the highest possi­
ble rate to ensure randonmess. 

You will implement the design in the following steps: 

A. One dice that will roll out a number. 

B. Add a s'witch that will control the roll/not roll action, 

C. Add a second dice to roll a number. 

D. Add a spinniI)g option to both dice. 

E. Retro-fit a power save feature to extend battery life. 

Hence, at the end of the five design steps you will have a 
pair of dice spinning and showing a pair of numbers be­
tween I and 6 in a very random manner. At the end of the 
five design steps, you will have added a very realistic and 
practical feature to your design and that is extending the 
battery life by a power saving option. It is important to 
note that the five steps mentioned above are sequential 
steps in that step C can be achieved only after steps A and 
B etc. Let us describe the sample circuit for the dice roll­
ing example. It is a very simple circuit allowing you to 
concentrate upon the design process. It illustrates the pos­
sible design stages and considerations in detail. 

8-14 

PART A 

Four Outputs-lA, IB, IC, ID are required to drive the 
LEDs arranged in a DICE pattern as shown in Figure 5. 

1B • 

10 • 

1C • 
• 1A 

• 1C 

• 10 

• 1B 

Figure 5. Dice Configuration 

2452 

Operating sequence-Rolling dice. from I to 6 and the 
block diagram of the circuit, both shown in Figure 6. 

The total number of states that are possible is 16 since the 
four LED pairs generate a permutation of (2**4) = 16. 
The LEDs should be lit up such that any number between 
I and 6 inclusive is shown. Hence, out of the 16 possible 
states, only six states are valid. This leaves ten invalid 
states. 

If the LEDs come up in a valid state upon power up, then a 
number between I and 6 will be displayed. 

However, if the LEDs come up in an invalid state upon 
power up, then you have to design the circuit such that any 
one of the ten invalid states will fall into a valid state. 

If the LEDs fall into anyone of the ten invalid states, then 
you have designed the circuit to move into a state where 
lA, IB, IC, ID have zero logic values respectively on the 
next clock edge. Every time a zero logic value appears in 
the invalid states, then at the next clock edge, LED IA 
gets lit up generating a valid state. Since I is a valid state, 
the numbers between I and 6 inclusive will be displayed 
at all subsequent clock edges. 

Listed below are the steps involved in designing the logic 
circuit. 

STEP I. Generate the state diagram to clearly show the 
operating sequence including the status of the outputs for 
each state and the influence of the inputs on the next state 
transitions as shown in Figure 7. We have arbitrarily cho­
sen that the states should count 1,2,3,4,5,6, and repeat. 
You could have implemented the design using any se­
quence but we chose the most obvious. Note how most of 
the invalid states move you to state 0 which then puts us 
into a valid state which then repeats forever. 

STEP 2. Generate a truth table with entries for all availa­
ble states and combinations of inputs, and use the next 
states resulting from these· as shown in Table 3. The 
bracketed numbers, (3) etc., show the number being 



intJ AP·279 

reel 
~ 
~ 
~ U· • • • • 

Figure 6. Rolling Sequence 

displayed on the dice and the 0, 1 values of 10, lC, lB, 
and lA indicate which LEOs should be OFF/ON to dis­
play the required dice pattern. 

STEP 3. Convert the truth table directly into 
Sum-Of-Products equations as shown below: 

OICEIA has four entries; 3 from the valid states and one 
to control the invalid states 

DICE1A ~ (/lM1B*/1C*/1D + 11M1B*/1C*I1D 
+ 11M1B*lC*lD + 11M/lB*/1C*/1D) 

DICEIB has five entries from valid states 

DICE1B ~ (1A*/1B*/1C*/1D + 11M1B*/1C*/1D 
+ lA*lB*/1C*/1D + 11A*lB*lC*/1D 
+ lA*lB*lC*/1D) 

OICEIC has three entries from valid states 

DICE1C ~ (lA*1B*/1C*/1D + 11A*lB*lC*/1D 
+ lA*lB*lC*/1D) 

2451 

.. I·-------�NVAL�D------..... ,~I .. ·-------VALID-------.j'1 

2453 

Figure 7. 

8-15 



AP-279 

Table 3. Truth Table for 0lCE1 

Input State Output State 

1A 18 1C 10 1A 18 1C 10 1A 18 1C 10 

Valid state Invalid state 

CHANGE TO THE NEXT VALID. STATE 

1 0 0 0(1) 0 0 0(2) 
0 0 0(2) 1 0 0(3) 
1 0 0(3) 0 0(4) 
0 0(4) 1 0(5) 
1 0(5) 0 1 1 1(6) 
0 1 (6) 0 0 0(1) 

CONTROL THE INVALID STATES 

0 0 0 
1 0 1 0 
0 0 0 
1 0 0 
0 1 0 
1 1 0 
0 0 

0 
1 1 1 

0 0 0 0 

DICElD has one valid entry 

DICE1D = (/lA*lB*lC*lD) 

Note that no attempt has been made to minimize these 
equations - the iPLS software that you will use later con­
tains reducing algorithms and other techniques to opti­
mize the design. This allows you to focus upon the 
problem and not on tasks such as Karnaugh map reduction 
which a computer can often do better anyway. 

Having designed part A of the circuit, you can now move 
on to tool usage to implement the. design. Refer to the 
Intel Programmable Logic Software Manual if you have 
not installed the iPLS software. 

In order to invoke iPLS type the following command 

C:\IPLS>IPLS <Enter> 

The iPLS menu will appear as shown in Screen I. 

The number to the left of each function allows you to se­
lect a function with a function key. Two kinds of function 
keys are available: toggle keys and field keys. < F3 > and 
< F4 > are toggle keys. All other keys are field keys. 
Functions beyond < FlO > are executed by pressing the 
< Shift> key together with the function key. Press 
< F3 > to invoke the Logic Builder and observe the Logic 
Builder menu as shown in Screen 2. 

8-16 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
1 0 0 0(1) 

The first prompt asks for the file name. If the file already 
exists, its header information and primary inputs and out­
puts are displayed. If you enter a new file name, the Logic 
Builder module prompts for all the functions remaining 
on the screen. 

Enter: DICE1 <Enter> 
Create New Netlist(Y/N):Y 

In this sample session, user entries are all in uppercase 
letters. Note: IPLS is case sensitive. 

When initially invoked, the Logic Builder module dis­
plays its configuration menu. The Logic Builder configu­
ration menu shows "5CI21" as the default Intel part and, 
on the right side of the menu, displays those primitives 
that are legal for use with the 5CI21. As soon as you enter 
another part (e.g. 5C060) the list of primitives changes to 
display the primitives applicable to that specific part. 

Press < F6 > and enter 5C060 when prompted for user 
entry. 

Screen 2 shows the Logic Builder Configuration Menu for 
the5C060. 

• The left side of the screen shows a menu of functions, 
each preceded by a function key number. 



inter 

iPLSl'I~nlJ 
F1 11.~lp 
F2 fi~it: 

F 3 .~ .••. O •....• 9 ... ... ! ......•. <: •....••.•.•...••.....•.. ~ ..•••• II .••.• ·.I.· ...•.• l ......•... d ..•...... iI ....... r ..•...•.. F4 Loe 
F 5 Lp9icPro.9l"amllllk 
F6 J)Jrecl;t\ry 
F7 i't Ill" OIme File 
F8C?p~File 
F9 ll.eletl! file 
F10J)OScommand 

AP-279 

Intel Programmable Logic Software 

iPLS Version 3.0, Copyright (C) 1985, Intel Corporation 
Copyright (C) 1985, Altera Corporation 

Select a function: 

Builder Config Menu: 

dice 1 
5C060 

Screen 1. 

Intel Programmable Logic System 

March 6, 1986 

<--

Designer: 

Screen 2. 

8·17 



AP-279 

Table 4. 

Prompt User Entrv 
F6 EPLD 5(060 
F7 Designer Your Name 
F8 Company Your Company 
F9 Date Present Date 
FLO Comment Our first design 
tF1 Part Number 0.1 
tF2 Revision 1.0 
tF3 Inputs CLOCKiill 
tF4 Outputs DICE1Aiill0,DICE1Biil9,DICE1Ciil8,DICE1Diil7 

• The right side of the screen shows the list of available 
primitives (these are discussed in detail later). 

• The two lines at the bottom of the screen are designated 
for comments (first line) and prompts (second line). 

• The center of the screen is used to show a representa­
tion of the primitive; name and pictorial representation 
are in the middle, input signals are to the left, and out­
put signals are to the right of the primitive. 

• The direction of the arrow located on the left side of the 
screen below the list of functions determines the start­
ing point and direction of design entry. If the arrow 
points to the left, entry is from output pins to input 
pins. If the arrow points to the right, entry is from input 
pins to output pins. 

N<YrE 

We have assigned pin numbers to pin names by 
using the "@" symbol within the name of the 
logic variable. Specific pin numbers need not 
be assigned if not desired. In that case, the 
Logic Builder will assign its pin numbers for 
you. 

Type in the· information as given in Table 4 in the Logic 
Builder Config Menu. The information is also shown in 
Screen 3. After entering all of this required information, 
iPLDS will automatically prompt you through defining 
the circuit, starting with a primitive to drive the last out­
put specified. 

Once in the Logic Builder main menu, you are guided 
with prompts to enter information as follows: 

Enter the name of the primitive to connect to the first 
node. The name may be entered by typing the name of the 
primitive, which highlights the appropriate primitive on 
the right side of the menu, then pressing < Enter>. 

Subsequently, a representation of the primitive is dis­
played in the center of the screen surrounded by input and 
output signals. You are prompted for names of nodes to 
connect to each of the signals. The Design Primitives li­
brary contains approximately 80 basic functional blocks 
needed for designing circuits in programmable logic 
products. 

8-18 

Design Primitives are divided into the following groups: 

• Input Primitives (INP,LINP) 

• Logic Priniitives 
(AND,GND,CLKB,Nar,VCC,OR,NAND,NOR,XOR) 

• Equation Primitives (EQN) 

• 110 Primitives (JOJF, NOJF, NORF, RORF, etc) 

Refer to Appendix A for an explanation of the Primi­
tives used in this example. 

The logic is based on input clock transitions. At the rising 
edge of the clock we want the LEDs to generate a particu­
lar state depending on the input state. You want the output 
of the LEDs to follow the input, which is basically a 
D-TYPE FLIP-FLOP. You also require the feedback to 
generate the next state, which means that you should use a 
D-TYPE FLIP-FLOP with FEEDBACK or RORF as 
shown in Screen 4. 

N<YrE 

The Logic Builder module starts with the last 
output entered. 

When you are prompted to select a primitive to drive 
DlCElD enter: 

Select a primitive to drive DICE1D@7: 
RORF <Enter> 

Now you are prompted for the remaining connections: 

For FBK: 1D <Enter> 

For OE, P, C: Press <Enter> (VCC, GND are 
the defaults). 

For D: IN1D <Enter> 

For ClK: CLOCK <Enter> 

Select a primitive to drive CLOCK: INP 
<Enter> 



inter 

<--

AP-279 

Intel Programmable Logic System 

Builder Config Menu: 

dice 1 
5C060 
Your name 
Your company 
March 6, 1986 
Our first design 
0.1 
1.0 
clockiill 
DICE1Aiill0,DICE1Biil9,DICE1Ciil8,DICE1DiiI? 

Outputs:DICE1Aiill0,DICE1Biil9,DICE1Ciil8,DICE1DiiI? 

Logic Builder Main Menu: 
FL· 
F2 
F3 
F4 
F5 
F6 
F? 
F8 
F9 

<-­
Pin=? 

Fbk:ld 

Screen 3. 

Intel Programmable Logic System 

Oe 
P 
C 
D 

Clk 

RORF 

Screen 4. 

8-19 

Out diceld 
Fbk 



AP-279 

In: CLOCI( <Enter> 

Select a primitive to,drive IN1D: EQN 
<Enter> 

To save the configuration and return to iPLS menu you 
must press < F6> (Save-Exit). 

After you are prompted for the equation, type it in as de­
rived in the Problem Set-up seCtion. Please note that" I" 
indicates a logical "Nor". "*" indicates a logical 
"AND", and" + " indicates a logical "OR". The equa­
tion is terminated by a ";" as shown in Screen s. 

Note that you are saving the Advanced Design File (ADF) 
that is generated by the Logic Builder. 

You can print the ADF file that has been created at the end 
of this session if you so desire. You can use <FlO> 
when in the iPLS main menu to print the ADF file for a 
listing. You can verify your file with the DICEI.ADF file 
given in Appendix D. If you desire a listing, while you are 
in the iPLS main menu, type the following: 

INU = (1A * 18 * lC * 11D) ~ <Enter> 

The following prompts and design entries, as shown in 
Thble 5, are needed to complete the design entries for 
DICEIC, DICEIB, and DICEIA respectively. 

<FlO> <Enter> 

PRINT »lCn. ADF <Enter> 
The Logic Builder will stop prompting for primitives once 
you have entered the complete design. 

Press < F8 > to show the design so far as shown in' 
Screen 6. 

Submitting the ADF to the LOe 

This ADF file is now compiled using the Logic Optimiz­
ing Compiler. To enter the ADF created with the Logic 
Builder module into the Logic Optimizing Compiler 
(LOC), press <F4> to access the LOC menu. 

Press < F2 > to exit. 

The Logic Builder main menu is cleared, replaced by the 
Logic Builder exit menu. 

TableS. 

, PROMPT USER ENTRY 

Select a primitive to drive 1C: ftOftf <Enter> 
Out: ])ICE1C <Enter> 
Oe: ' VCC<Enter> 
p: GN]) <Enter> 
C: GND <Enter> 
]): IN1C <Enter> 
Select a primitive to drive IN1C: EQN <Enter> 
IN1C: (1A*18*/1C*/1]»+(/1A*18*1C*/1]»+(1A*18*1C*/1]» \ 

<Enter> 
Select a primi tive to drive 18: ftOftF <Enter> 
Out: ])ICE18 <Enter> 
Oe: VCC <Enter> 
p: GN]) <Enter> 
C: GN]) <Enter> 
]): IN1B <Enter> 
Select a primi tive to drive IN:L8: EQN <Enter> 
IN:L8: (1A*/18*/:LC*/:L]»+(/:LA*18*/1C*/:L]»+(1A*18*/1C*/1]» 

+(/1A*18*1C*/1D)+(:LA*18*:LC*/1D);<Enter> 
Select a primitive todrive :LA: ftOftF <Enter> 
Out: ])ICE1A <Enter> 
Oe: VCC <Enter> 
p: GN]) <Enter> 
C: GN]) <Enter> 
]): IN1A <Enter> 
Select a primi tive to drive IN1A: EQN <Enter> 
IN1A: (/1A*18*/:LC*/1]»+(/1A*:L8*:LC*/:L]»+(/1A*18*1C*1]» 

+(/1A*/18*/1C*/1]»;<Enter> 

8-20 



AP-279 

Intel Programmable Logic System 

Logic Builder Main Menu: 
F1Hil 
F2 '.' 

F3 
F4· 
F5 'tii 
Fb~d 
F7 ' .. e.o. 

~~,;: 

<-­
Pin=7 

vee 
GND 
GND 

inld 
clock 

Oe 
P 
e 
D 

elk 

RORF 

Out diceld 
Fbk ld 

ScreenS. 

Once the LOC menu is displayed, you are prompted 
through the LOC menu functions as follows: 

The Input Format prompts you to specify your form of 
input: If input is in the form of a pinlist as output by 
DASH-2, enter P, if input is an Advanced Design File, 
enter an ADF or press < Enter> (ADF is the default). If 
output is a component list from PCAD, enter C. 

INPUT FORMAT: A <Enter> 

FILE NAME: DICE1 <Enter> 

MINIMIZATION: <Enter to select def aul t> 

INVERSION CONTROL: <Enter to select 
default> 

LEF ANAL YSIS: <Enter to se~ect def aul t> 

After you have answered all the prompts, you are asked if 
you wish to run under the above conditions as shown in 
Screen 7., 

DO YOU WISH TO RUN UNDER THE ABOVE CONDI­
TIONS [Y IN]? 

Enter: Y 

8-21 

Finally you are prompted with: 

WOULD YOU LIKE TO IMPLEMENT ANOTHER DE­
SIGN [YIN]? 

Enter: N 

Note that the LOC generates a synopsis of its progress as 
shown in Screen 8. You are returned to the iPLS menu. 

At the end of the LOC a JEDEC Standard File has been 
created which we will use in the Logic Programmer, 
DICEI.JED. 

Also at the end of the LOC a report file is created, 
DICEl.RPf, which gives the pin configuration menu of 
the device. The DICEI.RPf file is given in Appendix D. 

ProgrammIng the EPLD 

Finally, you submit your design to the Logic Programmer. 
In order for you to use the Logic Programmer, you must 
have the programming card plugged in. Please refer to the 
Intel Programmable Logic Software User Manual for in­

. stallation instructions. 

Alternatively you can use Intel's GUPI (Generic Universal 
Programmer Interface) to program your device. 



inter 

Lo 
flo 
f2 
f3 
f4 
f5 
flo 
f7 
fl! 
f'l 

<--

Main Menu: 
clockilL 
diceLailLD 
diceLbil'l 
diceLcill! 
diceLdil7 
vee 
GND 
lod 
inLd 
clock 
La 
lob 
Lc 
inLc 
inlob 
inloa 

Unconnected nodes are bold 
Press a function key: 

Loe Menu 
fL 
f2 
f3 
f4 
f5 
flo 
f7 

ADf 
dicd 
Yes 
No 
Yes 

AP·279 

Intel Programmable Logic ~ystem 

Screen 6. 

Intel Programmable Logic ,System 

Do you wish to run under the abo~e conditions [Y/Nl? 

'Screen 7. 

The iUP-GUPI and assorted GUPILOGIC adaptors pro­
vide an alternative programming solution for Intel's 
H-series and EPLD devices, when purchased with the 
iPLS. This complete set of software is available without 
the Logic Programmer pod and the mM interface card. ' 

8-22 

While you are still in the iPLS menu, press < FS > . This 
function allows you to access the Logic Programmer Soft­
ware, The Logic Programmer will now come up as shown 
in Screen 9. 



AP·279 

Intel Programmable Logic Software 

ADF Minimization LEF-Analysis 
dicel 

***INFO-LOC-Begin execution 
***INFO-LOC-ADF converted to LEF 
***INFO-LOC-S.O.p. LEF produced 
***INFO-LOC-LEF reduced 
***INFO-LOC-LEF analyzed 
***INFO-LOC-Resource demand determined 
***INFO-LOC-Design fitting complete 
***INFO-LOC-JEDEC file output 

LOC cycle successfully completed 

Would you like to implement another design [YIN]? 

Screen S. 

Use the cursor keys to select "Program Device" option. 

When you are prompted 

EnterJEDEC file name 

Enter: DICE1. JED <Enter> 

When you are prompted for: 

Select Device For Programming 

Enter: 5C060 <Enter> 

When you are prompted for: 

Do you wish to enable verify protection? [Y / N]? 

Enter: N 

When you are prompted for: 

Do you ~ish to enable turbo-bit? [Y / N ] ? 

Enter: N 

Once you have answered all the prompts, the device is 
programmed and ready to be used in an actual circuit, as 
shown in Screen 10. 

Exit from the Logic Programmer after saving the JEDEC 
file by using the "EXIT" option. 

8-23 

This completes part A of the design, which was to roll a 
single dice. The programmed device can be tested as de­
scribed in Appendix C. 

PARTB 

Now that you have a good understanding of the manner in 
which a circuit is designed and also a good understanding 
of how the programming tools are used to program the 
device, you can proceed to the next step in the five stages 
of the dice design. According to the truth table generated 
in part A, the dice will roll a number between I and 6 
inclusive as long as you supply a power source. When you 
disconnect the power source, all the LEDs will tum off. 
This will not be much help since you can only see the dice 
roll, but not actually see a number displayed. 

Let us include an additional feature into the rolling dice. 
Let us include a switch to control the rolling and display 
of the dice. 

You could choose to gate the clock of the dice or add the 
necessary inputs to the product terms to effect this design. 
If you were to stop after this step, then gating the clock 
would be a simpler choice, however, you will require the 
dice to roll during part D of the design; so we will choose 
to add product terms at this stage. This also results in a 
better engineering solution since gated clocks often cause 
problems in large systems, and it has been shown that 
synchronous systems are more reliable. 



intJ 

HELP 

Change Disk 

AP·279 

Program Device 
Enter JEDEC file name [·JED]: DICE1.JED 

ctory of .JED files for: C:\IPLS 

Screen 9. 

Designer: Your Name 
Company: Your Company 
Part I: 
Revision: 0.0 
EPLD: 5C060 
Device code: 

Comment: PART A: DICE ROLLING 
LB Version 3.0, Baseline 17x, 9/26/85 

the socket 

Screen 10. 

8·24 



AP-279 

Since you already have a proven design of a rolling dice 
from part A, we shall use the Logic Builder and edit that 
design. You may wish to save the original design at this 
stage. You can do this by using the <FlO> key in the 
Main Menu. Press <FlO> and issue the following com­
mand before re-entering the iPLS menu: 

COPYDICE1.* DICE1A.* 

The truth table is shown in Thble 6. 

Now you can use the iPLDS to design and program the 
device. 

Go through the same steps to program the device as in 
Part A of the design example. Use the Logic builder, the 
Logic Optimizing Compiler, and the Logic Programmer 
respectively. The Logic Optimizing Compiler and the 
Logic Programmer steps are identical to the correspond­
ing steps explained in part A of the design example. How­
ever, the Logic Builder will be used to edit the existing 
file, DICE I , to include the switch feature as follows: 

Invoke the Logic Builder Menu from the iPLS main menu 
by pressing the < F3 > key. Once you obtain the Logic 
Builder Configuration Menu, type in DlCEI as your input 
file name. 

Use (Shift)(F3) to get the Inputs option and then add 
switch at pin #2 to it. 

Inputs: CLOCK, SWITCH@2 <Enter> 

Now press < F2 > to exit to the Logic Builder Main 
Menu and answer the prompts as given in Table 7. 

All that is left to do now is to edit the four equations, 
INlA, INIB, INIC, INlD to add the SWITCH option to 
it. Edit the four equations as follows: 

Edit Function 

When you press the "Edit" function key, < F6 >, while 
in the main menu, the edit menu is displayed on the left 
side of the screen as shown in Screen II. If you wish to 
edit an EQN Primitive displayed on the screen, press 
< F6 >. Then the equation is moved to the prompt line 
where it can be edited. 

Hence, the Boolean expressions for this case would con­
sider the situations of when the switch was ON as well as 
OFF. The Boolean equations would contain the expres­
sion for the switch as follows. 

8-25 

DICE1A = ((lM/1B*/1C*/1D)+(lA**lB*11C*I1D) 
+(lA*lB*lC*I1D) 
+ (l1A*/1 B*/1 C*11 D))*ISWITCH 
+ ((11A* 1 B*11 C*/1 D) + (l1A* 1 B* 1 C*11 D) 
+(l1M1B*lC*1D) 
+ (l1A*'1 B*11 C*11 D))*SWITCH 

DICE1B = ((l1A*lB*11C*I1D)+(lA*lB*11C*I1D) 
+(l1A*lB*lC*11D)+(lA*lB*lC*/1D) 
+(/1A*lB*lC*lD))*/SWITCH 
+ ((1 MI1B*I1C*/1D) 
+(l1A*lB*I1C*/1D)+(lA*lB*11C*11D) 
+(l1A*lB*lC*11D) 
+(lA*lB*lC*I1D))*SWITCH 

DICE1C ((/1A*lB*lC*11D) 
+(lM1B*lC*/1D) 
+(l1A*lB*lC*lD))*ISWITCH 
+ ((lA*l B*11C*11 D) + (/1A*1 B*lC*11 D) 
+(lA*lB*lC*I1D))*SWITCH 

DICE1D (l1A*lB*lC*1D)*ISWITCH 
+(lM1B*lC*11D)*SWITCH 

The equation primitive must be displayed on the screen in 
order to edit that equation. In order to display the equa­
tion on the screen, use the "Find" command, < F5 >, to 
find it. 

The "Find" command prompts for a node name: then 
searches the design for that node and displays it. If the 
direction arrow points to the left, the primitive on the out­
put side of the node is shown. If the direction arrow points 
to the right, the first primitive on the input side is shown. 

After you have modified all four equations to include the 
SWITCH feature, return to the iPLDS main menu using 
the < F5 > key and save the design using the < F6 > key. 
You can verify your ADF file with the ADF file for part B 
given in Appendix D. 

The file is ready to be compiled using the LOC, and the 
device is ready to be programmed using the LP. 

The steps required to use the LOC and the LP are identi­
cal to the steps in part A. 

Now the device that has been programmed is ready to be 
tested. At this stage in the design, you have completed 
part B of the design which is to add a switch to give the 
roll/no-roll option. 

The programmed device can be tested as described in 
AppendixC. 

Let us summarize before moving on to the next part of the 
design. 



inter AP·279 

Table 6. Truth Table for 0lCE1 

Input State Output State 

SWITCH 1A 18 1C 10 1A 18 1C 10 1A 18 1C 10 

Valid state Invalid state 

REMAIN IN THE SAME STATE 

0 1 0 0 0 1 0 0 0(1) 
0 0 0 0 0 0 0(2) 
0 1 0 0 1 0 0(3) 
0 0 1 0 0 1 0(4) 
0 1 1 0 1 1 0(5) 
0 0 1 1 0 1 1 (6) 

CONTROL THE INVALID STATES 
0 0 0 0 0 0 0 0 
0 1 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 1 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 1 1 1 1. 0 0 0 0 
0 0 0 0 0 1 0 0 0(1 ) 

CHANGETO THE NEXT VALID STATE" 

1 0 0 0(1) 0 0 0(2) 
0 1 0 0(2) 1 0 .0(3) 
1 1 0 0(3) 0 1 0(4) 
0 0(4) 1 1 0(5) 
1 0(5) 0 1 1 1 (6) 
0 1 (6) 1 0 0 0(1) 

CONTROL THE INVALID STATES 

0 0 0 0 0 0 0 
1 0 1 0 0 0 0 .0 
0 0 0 0 0 0 0 
1 0 0 0 0 0 0 
0 1 0 0 0 0 0 
1 1 0 0 0 0 0 
0 0 0 0 0 0 
1 0 1 1 0 0 0 0 
1 1 1 1 0 0 0 0 
0 0 0 0 1 0 0 0(1) 

Note: This part of the truth table is identical to Table 3. 

We have briefly discussed the EPLD and the IPLDS fam- Builder, Logic Optimizing Compiler, and the Logic 
ily of parts. We have also defined the design problem. We Programmer. 
have implemented the design using the state equations and 
the truth table, edited an existing design to add features, Ourlogic in implementing the dice example is to use the 
~and actually programmed a· device using the Logic LED pairs in outputs lA, IB, IC, and ID respectively as 

8·26 



AP-279 

Table 7. 

Prompts UserEn~ 

Select a primitive for switchGl2 to drive: INP <Enter> 
Out: SWITCH<Enter> 
Select a primitive for switch to drive: EQN<Enter> 

shown in Figure 8. These LEDs are lit up to generate 
numbers between I and 6 inclusive. We are using a 
D-TYPE FLIP-FLOP to implement the truth table. The 
clock is a free running clock. A push button switch is also 
supplied to give the roll/no-roll option. Whenever the 
switch is ON, the LEDs roll, and when the switch is OFF, 
the LEDs display a number between I and 6, as long as 
the clock is supplied to the device. 

After seeing the dice roll and display a number, you can 
either quit or move onto parts C, D and E of the design 
process. The following three parts describe a versatile use 
of the EPLD concept. 

PARTe 

We are using an EPLD 5C060 which is a 24 pin, 600 gate 
device. It has four dedicated input pins and 16 
input/output pins. Up to this point you have used only one 
input pin which is the switch and only four input/output 
pins for the four LEDs lA, lB, IC, lD. 

Part C of the design is to include a second dice with the 
first dice. This is a step towards real-world application 
since dice are usually rolled in pairs. At the end of this 
section, you will have a pair of dice rolling and displaying 
a pair of numbers. All the conditions and truth tables and 
Boolean expressions that were designed for part B, hold 
good for DICE 1. The equations for DICE2 would change 
slightly as explained below. 

You have designed a 6 state counter and can define a carry 
out (fortunately you can use state 6 and do not require 
extra logic). You can use the carry out as an enable input 
to form two cascaded counters. 

The carry out of ID is used as an enable input to DICE2. 
Hence, ID performs the same function as the push button 
switch performed in dice 1. Therefore, whenever ID is 
enabled or logic high, DICE2 is enabled and rolls a num­
ber. DICE2 displays the number when ID is disabled or 
logic is low. This configuration is shown in Figure 9. 

Intel Programmable Logic System 

Logic Builder Main Menu 
Fl H~~P 
F2 e:1lIt 
F3 "IEiIl/ 
F4~pelJ 
F5 find 
F6 Edit 
F7CClnfl.~< 
F8 NOde.Ust 
F9 RedraW 

--> 

la 
lb IEQNI inld 
lc 
ld 

inld=(la*lb*lc*/ldl; 
inld=(/la*lb*lc*ldl*/switch+(/la*lb*lc*ldl*switch; 

Screen 11. 

8·27 



intJ AP-279 

Table 8. 

PROMPTS 
Find: 
(NolII use the <cursor left> key to obtain the EQN Primi tive.) 
Edit: 

IN1D= (/1A*lB*lC*lD)*ISWITCH+(lA*lB*lC*/1D)*SWITCH;<Enter> 

Find: 
(NolII use the !=cursor left> key to obtain theEQN Primitive.) 
Edit: 

INJ.C = «/1A*lB*lC*/1D)+(lA*lB*lC*/1D)+(/1A*lB*lC*lD»*ISWITCH' 
+«lA*lB*/1C*/1D)+(/1A*lB*lC*/1D)+(lA*lB*lC*/1D»*SWITCH; 
<Enter> 

Find: 
(NolII use the <cursor left> key to obtain the EQN Primi tive.) 

, , 

Edit: 
IN1B = «/1A*lB*/1C*/1D)+(lA*lB*/1C*/1D)+(/1A*lB*lC*lD)+(lA*1B*lC*/1D) 

+(/1A*lB*lC*lD»*ISWITCH 
+«lA*/1B*/1C*/1D)+(/1A*lB*/J.C*/J.D)+(J.A*J.B*/1C*/J.D)+ 
(/J.A*J.B*J.C*/1D)+(J.A*J.B*J.C*/J.D»*SWITCH;<Enter> 

Find: 
(NolII use the <cursor left> key to obtain the EQN Primitive.) 
Edit: 
INJ.A=«J.A*/J.B*/J.C*/1D)+(J.A*lB*/1C*/J.D)+(J.A*J.B*J.C*/J.D)+ 
(/1A*/1B*/1C*/1D»*ISWITCH+«/1A*lB*/1C*/1D)+(/1A*lB*1C*/1D) 
+(/1A*lB*lC*lD)+(/1A*/1B*/1C*/1D»*SWITCH;<Ente~> 

The two conditions obtained are as follows: 

When power is ON and 10 is enabled, DICE2 will roll .. 

When power is ON and 10 is disabled, DICE2 will dis­
play. 

For DICE!, the logic conditions remain the same as in 
partA. Just as you used the switch to enable and disable 

ENABLE IN 

CLOCK 

USER ENTRY 
INlD <Enter> 

IN1C <Enter> 

IN1B <Enter> 

INLA <Enter> 

1A 

1B 

1C 

10 

1A 

1B 

1C 

10 

CARRVOUT 

2A 
ClK 2B 

2 
2C 

CARRVOUT aD 
2447 

2446 

Figure 8. Figure 9. 

8-28 



inter AP-279 

DlCE1, you will use the switch as well as the output of 
LED ID to enable and disable DlCE2; because the num­
ber on DlCE2 is a function of both the switch and the 
present state of LED ID, as explained above. 

Now. write down the truth table since the state diagrams 
can easily be inferred from the truth table. Please note 
that the truth table is identical to the one for DlCEI ex­
cept for the switch input. For DlCE2, you will have the 
combination of the switch and the ID, as shown in 
Thble9. 

The Boolean expressions for part C will consider the situ­
ation when the switch is ON as well as OFF and also ID 
enabled or disabled respectively. The Boolean equations 
will contain the expression for the switch and LED lD, as 
shown below. 

DICE2A = «2A*/2B*/2C*/2Dj+(2A*2B*,2C*/2Dj 
+ (2A*2B*2C*/2Dj + (/2A*/2B*,2C*/2Djj 
*(/SWllCH*,lDj 
+ «/2A*2B*,2C*/2Dj + (/2A*2B*2C*/2Dj 
+ (/2A*2B*2C*2Dj + (/2A*/2B*/2C*/2D)) 
*(SWllCH*lDj 

DICE2B = «/2A*2B*,2C*/2Dj + (2A*2B*/2C*/2Dj 
+ (/2A*2B*2C*/2Dj + (2A*2B*2C*,2Dj 
+ (/2A*2B*2C*2D))*(/SWllCH*,1 Dj 
+ «2A*,2B*/2C*,2Dj 
+ (/2A*2B*/2C*,2Dj +(2A*2B*/2C*/2Dj 
+(/2A*2B*2C*/2Dj 
+(2A*2B*2C*/2D))*(SWllCH*lDj 

DICE2C = «/2A*2B*2C*/2Dj": (2A*2B*2C*/2Dj 
+(/2A*2B*2C*2Djj*(/SWllCH*/l Dj 
+ «2A*2B*/2C*,2Dj 
+ (/2A*2B*2C*/2Dj +(2A*2B*2C*/2Djj 
*(SWllCH*1Dj 

DICE2D = (/2A*2B*2C*2Dj*(/SWllCH*,lDj 
+ (2A*2B*2C*/2Dj*(SWllCH* 1 Dj 

Now you can use the iPLDS to program and test the de­
vice as explained in appendix C. At this stage in design, 
you have completed part C of the design which is to add a 
second DICE to the first one giving the the roll/no-roll 
option. 

In part C of the design process, you have used one dedi­
cated input which is the switch, and a total of eight output 
pins for the two pairs of LEDs, lA, IB,lC, 10 and 2A, 
2B, 2C, 2D respectively. You have also used the RORF 
primitive, since the design logic was the same for DlCE2 
as it was for DICE!. This leaves 3 dedicated inputs and 8 
1/0 pins on the 5C06O device. 

You can stop the design now or go onto part D which gives 
the next option, which is adding the spin. 

. PARTD 

This is the fourth step in our design process and adds the 
spin option to the two dice that are rolling when the switch 
is pushed and display a number when the switch is re­
leased. The logic used to implement the spin concept is as 
follows: 

When the power is ON and the switch is OFF, DlCEI and 
DlCE2 display a random number according to the logic 
defined in parts B and C respectively. 

But, when power is ON and the switch is ON, the two dice 
spin by lighting the LEDs B, C, and D. That is, DlCEl 
will light LEDs IB, lC, 10 while DlCE2 will light LEDs 
2B, 2C, and 2D. This pattern on the LEOs will generate 
the spinning pattern. The logic is shown in the truth table 
in Thble 10. The schematic is shown in Figure 10. 

As you can see from the truth table, when the present state 
is any of the three valid states, then the two dice will spin. 
The dice will also spin if the present state is an invalid 
state, because all the invalid states go to"O 0 0 0" in the 
next state. But from the truth table in Thble 10, you see 
that this particular state is a valid state lighting LED C. 

The spin frequency should be chosen to be visually ap­
pealing and should be high enough to ensure randomness 
of the dice. If we use the "carry out" state ofDICE2, then 
the spin pattern will only change once for every combina­
tion of the two dice. This will ensure randomness. The 
"carry out" of DICE2 is signal 2d; we do not need extra 
terms to derive it. 

Thus we have achieved our objective of adding the spin­
ning option to the two dice. 

The Boolean equations that are obtained from the above 
truth table are as follows: 

SPIN1B = (SWITCH*2d*/S1D*/S1C*/S1B*S1Aj. 

SPIN1C = (SWITCH*2d*/S1D*/S1C*/S1B*/S1Aj 

SPIN1D = (SWITCH*2d*/S1D*S1C*/S1B*/S1Aj 

SPIN2B = (SWITCH*2d*/S2D*/S2C*/S2B*S2Aj 

SPIN2C = (SWITCH*2d*/S2D*/S2C*/S2B*/S2Aj 

SPIN2D = (SWITCH*2d*/S2D*S2C*/S2B*/S2Aj 

Please note in the above equations that A, B, C, and D 
refer to both DICE 1 and DlCE2. For DlCEI the above set 
of equations would be lA, IB, lC, and 10. For DlCE2 
the above set of equations would be 2A, 2B, 2C, and 2D 
respectively. SD is the feedback obtained from IN D of 
both DlCEI and DlCE2 respectively. If the switch is not 
ON, the dice will not spin and a random pair of numbers 
will be displayed by the two dice; but, if the switch is ON, 
then the two dice will spin according to the truth table and 
Boolean expression given in Thble 10. 

8-29 



AP·279 

Table 9. li'uth Table for 0lCE2 

Input State Output State 
" 

(SWITCH * 1 0) 2A 28 1C 20 2A 28 2C 20 2A 28 2C 20 

Valid state Invalid state 

REMAIN IN THE SAME.STATE 

0 1 0 0 0 1 0 0 0(1) 
0 0 1 0 0 0 1 0 0(2) 
0 1 1 0 0 1 1 0 0(3) 
0 0 1 1 0 0 1 1 0(4) . 
0 1 1 1 0 1 . 1 1 0(5) 
0 0 1 1 1 0 1 1 1(6) 

CONTROL THE INVALID STATES 
0 0 0 1 0 0 0 0 0 
O. 1 0 1 0 0 0 0 0 
.0 0 0 0 1 0 0 0 0 
(j 1 0 0 1 0 0 0 0 

'0 0 1 0 1. 0 0 0 0 
0 1 1 0 i 0 0 0 0 
0 0 0 1 1 0 0 0 0 
0 1 1 1 1 0 0 0 0 
0 0 0 0 0 1 0 0 0(1) 

CHANGE TO THE NEXT VALID STATE" 

1 1 0 0 0(1) 0 1 0 0(2) 
1 0 1 0 0(2) 1 1 0 0(3) 
1 1 1 0 0(3) 0 1 1 0(4) 
1 0 1 1 0(4) 1 1 1 0(5) 

. 1 1 1 1 0(5) 0 1 1 1(6) 
1 0 1 1 1(6) 1 0 0 0(1) 

CONTROL THE INVALID STATES 

1 0 0 1 0 0 0 0 0 
1 1 0 1 0 0 0 0 0 
1 0 0 0 1 0 0 0 0 
1 1 0 0 1 0 0 0 0 
1 0 1 0 1 0 0 0 0 
1 1 1 0 1 0 0 0 0 
1 0 0 1 1 0 0 0 0 '. 

1 1 0 1 1 0 0 0 0 
:1 1 1 1 1 0 0 0 0 
1 0 0 0 0 1 0 0 0(1) 

Note the extreme similarity between this tr,uth table and the one given in Table 3 .. 

8·30 



inter AP-279 

Table 10. Truth Table to Spin Two Dice spinning when the switch is on and displaying a number 

Input State Output State 

SWITCH A B C 0 A B C 0 

CHANGE TO THE NEXT VALID STATE 

1 0 0 0 0 0 0 1 0 
1 0 0 0 1 0 1 0 0 
1 0 0 1 0 0 0 0 1 
1 0 1 0 0 0 0 0 0 

ROLLING INTO A VALID STATE 

1 1 0 0 0 0 0 0 0 
1 1 1 0 0 0 0 0 0 
1 1 0 1 0 0 0 0 0 
1 0 1 1 0 0 0 0 0 
1 1 1 1 0 0 0 0 0 
1 1 0 0 1 0 0 0 0 
1 0 1 0 1 0 0 0 0 
1 1 . 1 0 1 0 0 0 0 
1 0 0 1 1 0 0 0 0 
1 1 0 1 1 0 0 0 0 
1 0 1 1 1 0 0 0 0 
1 1 1 1 1 0 0 0 0 

We have chosen the following two primitives for part D: 

Registered Output Registered Feedback (RORF) 

No output IK Feedback (NOJF) 

For the dice spinning option you will use the RORF and 
for the dice not spinning option you will use the NaIF, 
while using the Logic Builder. 

When you add the spinning option to the pair of rolling 
dice, you obtain the following boolean equations. (These 
Boolean equations satisfy the requirements of the two dice 

ROLL 
REGIS· 
TERS 

SWITCH +---..L...._-f--'" 

ENABLE 

when the switch is off). 

SPIN1A = (/SWliCH*1A) 

SPIN1B = (/SWITCH*1B) 
+ (SWITCH*2d*/S1 0*/S1 C*/S1 B*S1 A) 

SPIN1C = (/SWITCH*1C) 
+ (SWITCH*2d*/S1 0*/S1 C*/S1 B*/S1A) 

SPIN1D = (/SWITCH*1D) 
+ (SWITCH*2d*/S1 0*S1C*/S1 B*/S1 A) 

SPIN2A = (/SWITCH*2A) 

SPIN2B = (/SWITCH*2B) 
. + (SWITCH*2d*/S20*/S2C*/S2B*S2A) 

SPIN2C = (/SWITCH*2C) 
+ (SWITCH*2d*/S20*/S2C*/S2B*/S2A) 

SPIN20 = (/SWITCH*20) 
+ (SWITCH*2d*/S20*S2C*/S2B*/S2A) 

At the end of the design step, you have completed all the 
design steps. You can now program the device using 
iPLDS. 

The correct ADF file is included in Appendix D for your 
reference. You can refer to it to verify the ADF file you 
have created. 

The programmed device can be tested on: 

• A PCB with slow clock 

For information on this board and on testing your design, 
please refer to Appendix C. 

It works! 

SPIN 
REGISTERS 1---,-- DISPLAY 

2448 

Figure 10 •. 

8·31 



intJ AP-279 .' ~. 

*LATE NEWS FLASH* 

The PCBs have been made and we have units in the field. 
Now Marketing wants the design updated! Field trials of 
the dice showed that the battery needed to last longer. A 
simple mod to the design, chop the drive to the LEDs, 
extends the battery life. 

This is very simple using the EPLDs. Reprogram the 
EPLD and test it. Imagine how difficult it would have 
been without using EPLDs. 

PARTE 

This step of the design process is to modify the existing 
circuit to add the power save feature which will extend the 
battery life. This can easily be done by chopping the drive 
to the LEDs. Chopping the drive.to the LEDs can be done 
as follows: 

When you designed the circuit and implemented it using 
the iPLS, you have set the output enable (Oe) to VCC 

8-32 

supply. This means that the LEOs are enabled 100% of 
the time. You can "chop" the drive to the LEDs with a 
conveniant high (above 50Hz) signal that will not be visi­
ble to the human eye. 

Next set Output enable (De) to the clock signal. Thus, 
depending on the clock input the LEDs will only be on 
50% of the time and battery life is extended as required. 
You can easily modify the ADF file to change the De input 
from VCC to CLOCK and then test the design using the 
PCB as ~xplained in Appendix C. 

CONCLUSION 

You should now have a comprehensive knowledge of 
Intel's EPLD and iPLDS family of devices. 

With this knowledge you will be able to implement de­
signs using the iPLDS tools. 

Good Luck! 



AP-279 

APPENDIX A: 
BASIC DEFINITIONS 

8-33 



AP-279 

BASIC DEFINITIONS 

Logic Design - A systematic procedure for realizing 
specified terminal characterisitics of digital networks, at 
either the device or system level. 

CLOCKED FLIP-FLOP - Output determined by the 
leading or trailing edge of clock pulse. 

T FLIP-FLOP - Output changes value with every input 
clock pulse. 

T FLIP-FLOP 

D FLIP-FLOP - Output determined by the input signal 
when clock pulse present. 

x~====-::~:~~~I:=====: 
o FLIP-FLOP 

S-R FLIP-FLOP - Output states synchronized with the 
clock pulse and controlled by the input signals, Sand R. 

----~IL·~ __ ~-----: 
S-R FLIP-FLOP 

J-K FLIP-FLOP - Output states synchronized with the 
clock pulse and controlled by the input signals, J and K. 

----r:k~t-__ A 

------IlK A 
~9~--

R 

J-K FLIP-FLOP 

COMBINATORIAL CIRCUIT - Output determined by 
current value of input signal. 

REGISTERED CIRCUIT - Output determined by se­
quence of input signals. 

Intel Schematic Primitive - One of the basic functional 
blocks needed to design circuits for Intel programmable 
logic products. 

Truth Table - A list of all the input-output possibilities of 
a logic circuit. 

Boolean Logic - Describes logic that obeys the theorems 
of Boolean algebra. The Boolean portion of a design is 
that portion which can be implemented in the AND-OR 
matrix. 

State Diagram - A diagram that shows the succession of 
output states through which the circuit passes as its input 
signals vary. 

INP- Input 

8-34. 

PIN-NAME c::=>-----­
INP 

Input Primitive 

GND - Ground. 

GND 

Ground Signal Name 



VCC,-: Signal 

Vee 

T 
Signal Name 

EQN - Equation 

o = ARBITRARY BOOLEAN EXPRESSION; 

EQN 

Equation Name 

Registered Output Registered Feedback (RORF) 

~--r'PIH-HAME 

F 

No Output Registered Feedback (NORF) 

HORI' 
F----J 

AP-279 

8-35 

No Output JK Feedback (NOJF) 

HOJI' 
F-----' 

JK Output JK Feedback (JOJF) 

JOJI' 

~--C:>PIH-NAME 

f----' 

Security Bit - A feature that prevents the device from 
being interrogated or being accidentally programmed. 

Thrbo-bit - A control bit that allows you to choose the 
speed and power characteristics of the device. If the in­
puts are static for approximately 50 ns and the Thrbo-bit 
is not programmed, the device will enter power down 
mode. When the input changes, the device will take an 
extra 3-5 ns to wake-up and react to the change. Program­
ming the Thrbo-bit inhibits the power down. 

Macrocell - A basic building block of Intel's program­
mable logic devices. A macrocell consists of two sections: 
combinatorial logic and output logic. The combinatorial 
logic allows a wide variety of logic functions. The output 
logic has two data paths: one leads to the other macrocells 
or feeds back to the macrocell itself: the other is confi­
gured as a pin configuration acting as input, output, or 
bi-directional 1/0 port on the chip. 

Node - A wire connecting two or more primitives in a 
schematic. 

Pin - A node that is connected to an input or 1/0 primi­
tive on one end and a pin of the 'chip on the other end. 

Product tern (P-Term) - Two or more factors in a boolean 
expression combined with the AND operator consitutes a 
logic product term. 



inter AP-279 

JEDEC Standard File - An industry-wide standard for 
the transfer of information between a data preparation 
system and a logic device programmer. 

EPLD PROGRAMMING TE:CtiNIQUES 

You can enter your design in the following ways 

1. BOOLEAN EQUATION - entering the design in 
BOOLEAN equations or expressions. 

8-36 

2. NETLiST CAPfURE - selecting components and 
specifying interconnections until all elements are 
specified. 

3. SCHEMATIC CAPrURE - using a mouse and 
menu driven enviroJunent. 

4. STATE MACHINE - specifying states and condi­
tional branches and also inputs/outputs to the state 
machines. 



AP-279 

APPENDIX B: 
COMPONENTS LIST 

8-37 



AP-279 

COMPONENTS USED IN DESIGN 

In order to implement the EPLD program, you should use 
the following: 

• An 5C060 EPLD 

• A pair of seven discrete LEDs (Dice I, Dice 2) 

• A timer to generate a clock signal (NE555) 

• A voltage regulator to generate a fixed voltage of 5 
volts (7805) 

8-38 

• A push button switch to control the spinning 
mechanism ' 

• A 9-Volt DC battery source to generate the power 
supply 

• Capacitors C1 = 0.1 MF, C2 = 0.01 MF 

• Resistors R1 = 390K, R2 = lOOK 

• A PCB as explained in Appendix C 



AP-279 

APPENDIX C: 
PCB DESCRIPTION 

8-39 



inter AP-279 

r---------------------------- ---j VOLTAGE 

I' ! REGULATOR 

+' ;IN 7805 OUT I' 

POWER: 

c 11-----=;~ 
T I' Rl 

1 ! 2 

1 
i 
I 2 2 

555 

I 6 U2 
: + L.:'---""T71--' I 

:' C1 ! 
~;-T--------------- ------;:iM~R 

T 

r------------
: 1 , , 
113 

DICE2 

2449 

Figure C-1 

You can test each part of your design using the PCB with a 
slow clock on it. -

The PCB is a board that is very specific to the dice exam­
ple. The PCB is portable, approximately 2" x 3". All 
the components except for the EPLD are easily available 
commercially. A complete list of all the components that 
are required for the PCB is given in Appendix B. The 
circuit can easily be connected and tested using the circuit 

8-40 

diagram given below. After the four steps of the design 
are completed, the PCB can be used to throw a pair of 
dice in any home games such as Monopoly etc. 

After the EPLD is programmed using the Logic Program­
mer, it can be inserted into the PCB. For design steps B, 
C, and D the push button switch can be used to generate 
the roll/no-roll or the spin/no spin option. 



AP-279 

Ul llU U10 11:. • .. 8 

~ .,,: I ~OO, , i . !", 8 : 

~~JDil'''i II ~ ~:18U': 
~ 1986 

INTEL Made In USA \::-I 
2450 

Figure C-2 

8-41 



inter AP·279 

APPENDIX 0 

8-42 



inter AP-279 

ADF FOR PART A: SINGLE DICE ROLLING 

Lakshmi Jayanthi 
DSO Applic: .. tions 
February 19, 1986 

5C060 

Part A: D ICE ROLLI NG 

LB Version 3.0, Baseline 17K, 9/26/85 
PART: 5C060 

INPUTS: c: le.c:k 1 

OUTPUTS, dic:ela~10,dic:elb@9,dic:elc:@8,dic:eld@7 

NETWORf<: 

dic:e1a,l .. 
dic:elb,lb 
dic:elc:,Ic: 
dic:eld,ld 

RORF (inla,c:loc:kl;GND,GND,VCC) 
RORF (inlb,c:loc:kl,GND,GND,VCC) 
RORF (inlc:,c:loc:kl,GND,GND,VCC) 
RORF (inld,c:loc:k1,GND,GND,VCC) 

c:lockl = INP (cloc:kl) 

EQUATIONS, 

inl. =(/la*lb*/lc:*/ldl 
+(/la*lb*Ic:*/1d) 
+( 11 .. *lb·"lc·"ld I 
+(/la*/lb*/lc:*/ld); 

inlb =(la*/lb*/lc:*/idl 
+(/la*lb*/lc:*/1dl 
+(la*lb*/lc:*/ld) 
+(/la*lb*lc:*/ld) 
+(la*lb*lc:*/ldl; 

inlc a(la*lb*/lc:*/ldl 
+(/la*lb*lc:*/ldl 
+(1a*lb*1c:*/ldl; 

inld =(la*lb*lc*/ldl; 

END$ 

8-43 



intJ AP-279 

RPT FUR PART A: SINGLE DICE ROLLI hlG 

Logic Optimizing Compiler Utilization Report 

***** Design implemented successfully 

Lakshmi Jayanthi 
DSO Appl ic:atic:orls 
February 19, 1986 

5C060 

Part A: !:lICE ROLLING 

LEi Ver's iClii 3.0, Eiaseline 17H, 9/26/85 

5C060 

clockl -I 1 241-' Vcc 
GND ~- I 2 23:- GNO 
GND -I 3 221-~ GND 
GND -. : 4 21: - GND 
GND -I 5 201- GND 
GND ._. I 6 1.91- GND 

dice1d _.J 7 18:- GND 
dicel.c _.J 8 1'7:- GND 
dice1b -: 9 16:- GND 
dicela -110 151- GND 

GND -Ill 14:- GI\lD 
GND -112 13:- GND 

**INPUTS** 

Name Pin Resource MCel1 # 

clc,ck1 INP 

Name Pin Resource MCel1 # 

dic:e1d '7 RORF 13 

dice1c: 8 RDRF 14 

dice1b 9 RDRF 15 

dic:ela 10 RDRF 16 

PTerms 

11 8 

2/ 8 

21 8 

2/ 8 

8·44 

Feeds: 
MCells DE Clear Clock 

eLKl 

Feeds: 
MCells DE Clear Clock 

13 
14 
15 
16 

13 
14 
1.5 
16 

13 
14 
15 
16 

13 
14 
15 
16 



AP-279 

**UNUSED RESOURCES** 

Name Pin ResDw-ce I'1Cell PTerms 

2 
3 9 8 
4 10 8 
5 11 8 
6 12 8 

11 
13 
14 
15 8 8 
16 7 8 
17 6 i3 
18 5 8 
19 4 8 
20 3 8 
21 2 8 
22 1 8 
23 

**PARf UTILIZATION** 

22X Pins 
25K MacrDCells 
5~ F:terms 

NOfE: Since part A is a simple design, the part utilization is very low. 

8-45 



AP·279 

ADF FUR PART B: SINGLE DICE ROLL/NOT ROLL 

Lakshmi Jayanthi 
DSO ?\pplicatic.ns 
February 19, 1986 

5C060 

PART B: DICE ROLL AND NOT ROLL 

LB Version 3.0, Baseline 17M, 9/26/85 
PART: 5C060 

I~PUTS: clockl,switch@2 

OUTPUTS: dicela@10,dicelb@9,dicelc@8,diceld@7 

NETWORK: 

diee1a,la 
dicelb,1b 
dicelc,lc 
diceld,ld 

RORF (inla,clockl,GND,GND,VCCI 
RORF (inlb,clockl,GND,GND,VCCI 
RORF (inlc,clockl,GND,GND,VCCI 
RORF (in1d,clockl,GND,GND,VCCI 

clock1 INP (elcock1 I 

switch II~P(switchl 

EQUATIONS: 

inla -(/la*/lb*/lc*/ld*/switchl 
+(la*/lb*/le*/ld*/switchl 
+(la*lb*/lc*/ld*/switchl 
+(la*lb*lc*/ld*/switchl 
+(/la*/lb*/lc*/ld*switchl 
+(/la*lb*/lc*/ld*switchl 
+(/la*lb*lc*/ld*switchl 
+(/la*lb*lc*ld*switchl; 

inlb =(/la*lb*/lc*/ld*/SW1T,CIlI 
+(la*lb*/lc*/ld*/switchl 
+(/la*lb*lc*/ld*/switchl 
+(la*lb*lc*/ld*/switehl 
+(/la*lb*lc*ld*/switchl 
+(la*/lb*/lc*/ld*switchl 
+(/la*lb*/lc*/ld*switchl 
+(la*lb*/lc*/ld*switchl 
+(/la*lb*lc*/ld*switchl 
+(la*lb*lc*/ld*switehl; 

inle =(/la*lb*lc*/ld*/switchl 
+(la*lb*lc*/ld*/switchl 
+(/la*lb*lc*ld*/switchl 
+(la*lb*/lc*/ld*switchl 
+(/la*1b*1c*/ld*switchl 
+(1a*1b*lc*/ld*switchl; 

inld =(/la*lb*le*1d*/switchl 
+(la*lb*lc*/ld*switchl; 

END$ 

8-46 



intJ AP-279 

RPT FOR PART B: SINGLE DICE ROLL/NOT ROLL 

Logic Optimizing Compiler Utilization Report 

***** Design implemented sLiccessfLllly 

Lakshmi Jayanthi 
DBO Applications 
FebrLlary 19, 1986 

5CC>60 

PART B: DICE ROLL AND NOT ROLL 

LB Version 3.0, Baseline 17>:, 9/26/85 

5C06Q 

clockl -: 24 - Vcc 
switch -: 2 23 - GND 

GND -: 3 22 - GND 
GND -: 4 21 GND 
GND -: 5 20 - GND 
GND -: 6 19 - GND 

diceld -: 7 18 - GND 
dicelc -: 8 17 - GND 
dicelb -: 9 16 .- GND 
dicela -: 10 1 ,,-_. - GND 

GND -: 11 14 - GND 
GND -: 12 13 - GND 

**INPUTS** 

Name Pin ResoLirce MCel1 # 

clockl INP 

switc:h 2 INP' 

Name Pi n ResoLtrc:e MCell # 

diceld '7 RORF 13 

dicelc 8 RCIRF 14 

PTerms 

PTer-Als 

2/ 8 

3/ 8 

8-47 

Feeds: 
Meells ClE Clear- Cloc:k 

13 
14 
15 
16 

Feeds: 

Cl.K1 

MCeils DE Clear· Clock 

13 
14 
15 
16 

13 
14 
15 
16 



inter 
dic:elb 9 RORF 

dic:ela 10 RORF 

**UNUSED RESOURCES** 

Name Pin Resourc:e 

3 
4 
5 
6 

11 
13 
1"4 
15 
16 
17 
18 
F~ 

20 
21 
22 
23 

**PART UTILIZATION** 

27Y. Pins . 
25Y. Mac:roCells· 
lOY. Pterms 

15 

16 

MCell 

9 
10 
11 
12 

8 
7 
6 
5 
4 
3 

·2 
1 

AP-279 

31 8 

51 8 

PTerms 

8 
8 
8 
8 

8 
8 
8 
8 
8 
8 
'8 
8 

13 
14 
15 
16 

13 
14 
15 
16 

NaTE: Part B of the design gets more complicated, hence the part utilization of the pins, 
macrocells and the Pterms is higher. 

8-48 



inter AP·279 

AUF FOR PART C: TWO DICE ROLLING 

Lakshmi Jiayan-thi 
DSO Applications 
February 19, 1986 

5C060 

PART C: TWO DICE ROLL AND NOT ROLL 

B Version 3.0, Baseline 17M, 9/26/85 
PART: 5C060 

INPUTS: clockl,clock2,switch82 

OUTPUTS: dicela810,dicelb89,dicelc88,diceld87,dice2a819,dice2b@20,dice2c@21,dicE 
2d822 

NETWORI<: 

dicela,la 
dicelb,lb 
dicelc,lc 
diceld,ld 

RORF (inla,clockl,GND,GND,VCC) 
RORF (inlb,clockl,GND,GND,VCC) 
RORF (inlc,clockl,GND,GND,VCC) 
RORF (inld,clockl,GND,GND,VCC) 

dice2a,2a 
dice2b,2b 
dice2c,2r.: 
dice2d,2d 

RORF (in2a,clock2,GND,GND,VCC) 
RORF (in2b,ciock2,GND,GND,VCC) 
RORF (in2c,clock2,GND,GND,VCC) 
RORF (in2d,clock2,GND,GND,VCC) 

c le.ckl 
clocl:2 

switch 

II\lP (clockl) 
INP (cic'ck2) 

INP (switch) 

EQUATIONS: 

inla =(/la*/lb*/lc*/ld*/switch) 
+(la*/lb*/lc*/ld*/switch) 
+(la*lb*/lc*/ld*/switch) 
+(la*lb*lc*/ld*/switch) 
+(/la*/lb*/lc*/ld*switch) 
+(/la*lb*/lc*/ld*switch) 
+(/la*lb*lc*/ld*switch)­
+(/la*lb*lc*ld*switch); 

lnlb =(/la*lb*/lc*/ld*/switch) 
+(la*lb*/lc*/ld*/switchl 
+(/la*lb*lc*/ld*/switch) 
+(la*lb*lc*/ld*/switch) 
+\/la*lb*lc*ld*/switchl 
T(la*/lb*/lc*/ld*switchl 
+(!la*lb*/lc*/ld*switch) 
+\la*lb*/lc*/ld*switchl 
+(/la*lb*lc*/ld*switchl 
T\la*lb*lc*/ld*switch); 

:nle =(;la*lb*lc*/ld*/switch) 
T\la*lb*lc*/ld*/switchl 
+(/la*lb*lc*ld*/switch) 
+(la*lb*/lc*/ld*switch) 
+1/la*lb*lc*/ld*switchl 
+lla.lb*lc*/ld*switch); 

lnld =l/la*lb*lc*ld*/swltchl 
+(la*lb*lc*/ld*swltch); 

8-49 



inter AP·279 

lG~. =1!2.~/2b~/2c~/2d~/(ld*switch» 

.!2.~!2b*!2c~/2d*/(ld*switch» 

~(2a*2b*/2c*/2d*/(ld*switch» 
.(2 •• 2b*2c*/2d~l(ld*switch» 
+(/2.*/2b*/2c*/2d*(ld*switch» 
+(/2.*2b*/2c*/2d*(ld*swltch» 
+(i2.*2b*2c~/2d*(ld*switch» 

+,/2 •• 2b~2c~2d*(ld*switch»; 
ln2c =(/2.*2b*/2c*/2d*/(ld*switch» 

+(2a*2b*/2c*/2d*/(ld*switch» 
+(/2a*2b*2c*/2d*/(ld*switch» 
+(2a*2b*2c*/2d*/(ld*s~itch» 
.,i2a*2b*2c*2d*/(ld*switch» 
+(2a*/2b*/2c*/2d*(ld*switch» 
+(/2a*2b*/2c*/2d*(ld*switch» 
+(2a*2b*/2c*/2d*(ld*switch» 
+(/2a*2b*2e*/2d*(ld*switch» 
+(2a*2b*2e*/2d*(ld*switch»; 

,n2e =(/2a*2b*2c*/2d*/(ld*switch» 
+(2a*2b*2e*/2d*/(ld*switch» 
+(/2a*2b*2e*2d*/(ld*switch» 
+(2a*2b*/2c*/2d*(ld*switch» 
+(/2a*2b*2c*/2d*(ld*switch» 
+(2a*2b*2e*/2d*lld*switch»; 

.n2d ='/2a*2b*2c*2d*/(ld*switch» 
+(2a*2b*2c*/2d*lld*switch»; 

8-50 



AP-279 

RPT F6R PART C: TWO DICE ROLLING 

LDgic Optimizing Compiler Utilization Report 

***** Design implemented successfully 

L"kshmi Jayanthi 
DSO Applications 
February 19, 1986 

5C060 

PART C: TWO DICE ROLL AND NOT ROLL 

B Version 3.0, Baseline 17K, 9/26/85 

5C060 

clockl -I 1 24:- Vcc 
switch -~ : 2 231- GND 

GND - 3 2'::)1 c.: I -- d i c:e2d 
GND -I 4 21: - dice2c 
GND -I 5 201- dice2b 
GND -I 6 191- dice2a 

diceld - 7 lSI- GND 
dicelc -I 8 1"-n -, . GND 
dicelb -I 9 16: -- GND 
dice1a -: 10 151- GND 

GND -: 11 14: .-. GND 
GND -: 12 131- clock2 

**INPUTS** 

Name Pin Resource MCel1 # 

INP 

switch 2 INP 

c 1 c.ck2 13 INP 

**OUTPUTS** 

Name Pin Resource MCel1 # 

diceld 7 RORF 13 

PTerms 

2/ 8 

8-51 

Feeds: 
MCells OE Clear Clock 

1 
2 
3 
4 

13 
14 
15 
16 

Feeds: 

CLKI 

CLK2 

MCells DE Clear Clock 

1 
2 
3 
4 

13 
14 
15 
16 



inter 
dice1c 8 ROf~F 

dice1b 9 RORF 

dice1a 10 RORF 

di.ce2a 19 RORF 

dice2b 20 ROF~F 

dice2c 21 RORF 

dice2d 22 RtJRF 

**UNUSED RESOURCESH' 

Name Pin Resource 

3 
4 
5 
6 

11 
1'_ 
15 
16 
17 
18 
23 

**PART UTILIZATION** 

50X Pins 
50% MacroCells 
24% Ptel-ms 

14 

16 

4 

3 

2 

MCeil 

9 
10 
11 
12 

8 
"1 
6 
5 

Ap·279 

3/ 8 

3/ 8 

!:j/ 8 

'71 8 

41 8 

41 8 

31 8 

PTerms 

8 
8 
8 
8 

8 
8 
8 
8 

1:3 
14 
15 
16 

1 ::1 
14 
15 
16 

13 
14 
15 
16 

1 
2 
3 
'f 

2 
3 
4 

2 
:-l 
4 

1 
2 
3 

'-

NafE: in part C of the design you have added the second dice. Hence you can see that fifty 
percent of the device has been used. 

8·52 



ADF FDf< PART D: TWO DICE SPINNING 

Lakshmi Jayanthi 
DSO Applications 
F.~bl-Llary 19, 1986 

5C060 

PART D: TWO DICE SPINNING 

B Version 3.0, Baseline 17x, 9/26/85 
PART: 5C060 

INPUTS: clockl,clock2,switch@2 

AP·279 

OUTPUTS: spinla@10,spinlb@9,spinlc@8,spinld@7,spin2a@19,spin2b@20,spin2c@21,spir 
2d;j)22 

NETWORK: 

la NOJF (inla,clockl,inlia,GND,GND) 
lb NOJF Cinlb,clockl,inllb,GND,GND) 
lc NOJF (inlc,cloc:kl,inllc,GND,GND) 
ld NOJF (inld,cloc:kl,inl1d,GND,GND) 

2a NOJF (in2a,clock2,in22a,GND,GND) 
2b NOJF (in2b,cl.ock2,in22b,GND,GND) 
2c NOJF (in2c,clock2,in22c,GND,GND) 
2d NOJF Cin2d,clock2,in22d,GND,GND) 

inl1a 
inl1b 
inlle: 
inl1d 

in22a 
in22b 
in22c 
in22d 

NOT( inial 
NOT(inlbl 
NOT(inlc) 
NOTe inld) 

NOT C i n2a) 
NOT ( i n2b) 
NUT ( i n2c) 
NUT ( i n2d) 

spinla,sia 
spinlb,slb 
spinlc,slc 
spinld,sld 

RURF (insla,clockl,GND,GND,VCC) 
RURF Cinslb,clockl,GND,GND,VCC) 
RURF (inslc,clockl,GND,GND,VCC) 
RORF (insld,c:lockl,GND,GND,VCC) 

sp i n2a , s;-3a 
spin2b,s2b 
spin2c,s2c 
spin2d,s;2d 

RORF eins2a,clock2,GND,GND,VCC) 
RORF (lns2b,clock2,GND,GND,VCC) 
RORF (ins2c:,c:lock2,GND,GND,VCC) 
RORF (lns2d,clock2,GND,GND,VCC) 

clock1 
clock:::! 

switch 

H,IP (clockl I 
INP (clock2) 

II\IF' (switch) 

EG1U1~TIC.il\lS : 

inla =(/la*/lb*/lc*/ld*/switch) 
+(la*/lb*/le:*/ld*/switch) 
+(la*lb*/lc*/ld*/switch) 
+(la*lb*lc*/ld*/switch) 

8-53 



AP-279 

+(/la*/lb*/lc*/ld*switch) 
+(/la*lb*/lc*/ld*switch) 
+(/la*lb*lc*/ld*switch) 
+(/la*lb*lc*ld*switch); 

inlb =(/la*lb*/lc*/ld*/switch) 
+(la*lb*/lc*/ld*/switch) 
+(/la*lb*lc*/ld*/switch) 
+(la*lb*lc*/ld*/switch) 
+(/la*lb*lc*ld*/switchl 
+(la*/lb*/lc*/ld*switchl 
+(/la*lb*/lc*/ld*switch) 
+(la*lb*/lc*/ld*switeh) 
+(/la*lb*le*/ld*switch) 
+(la*lb*lc*/ld*switeh); 

inle =(/la*lb*lc*/ld*/switch) 
+(la*lb*lc*/ld*/switeh) 
+(/la*lb*lc*ld*/switeh) 
+(la*lb*/le*/ld*switeh) 
+(/la*lb*lc*/ld*switchl 
+(la*lb*lc*/ld*switeh); 

inld =(/la*lb*lc*ld*/switch) 
+(la*lb*le*/ld*switeh); 

in2a =(/2a*/2b*/2e*/2d*/(ld*switeh» 
+(2a*/2b*/2e*/2d*/(ld*switeh)\ 
+(2a*2b*/2c*/2d*/(ld*switeh» 
+(~a*2b*2e*/2d./(ld.9witeh» 
+(/2a*/2b*/2e*/2d*(ld*switch» 
+(/2a*2b*/2e*/2d*(ld*switch» 
+(/2a*2b*2c*/2d*(ld*switch» 
+(/2a*2b*2c*2d*lld*switch»; 

in2b =1/2a*2b*/2e*/2d*/(ld*switch» 
+12a*2b*/2c*/2d*/lld*switeh» 
+(/2a*2b*2c*/2d*/(ld*switch» 
+(2a*2b*2c*/2d*/lld*switeh» 
+1/2a*2b*2c*2d*/(ld*switch» 
+(2a*/2b*/2c*/2d*(ld*switeh» 
+(/2a*2b*/2c*/2d*(ld*switch» 
+(2a*2b*/2c*/2d*(ld*switch» 
+(/2a*2b*2c*/2d*(ld*switeh» 
+(2a*2b*2e*/2d*(ld*switehl); 

in2e -1/2a*2b*2c*/2d*/(ld*switeh» 
+(2a*2b*2e*/2d*/(ld*switeh» 
+(/2a*2b*2e*2d*/(ld*switch» 
+(2a*2b*/2c*/2d*(ld*switch» 
+(/2a*2b*2c*/2d*(ld*switchll 
+(2a*2b*2c*/2d*(ld*switchl); 

in2d =(/2a*2b*2c*2d*/(ld*switch)I 
+(2a*2b*2c*/2d*(ld*switch)I; 

(iswitch*la) ; insla 
inslb 

inslc 

insld 

(/switch*lbl 
+1(2d*switch)*sid*isic*/sib*/sia); 
(/swi tc:h*·lc I 
+«2d*switeh)*/sla*/slb*/slc*/sld); 
(/switeh*ld) 
+112d*switchl*/sla*/slb*slc*/sld); 

i n=~2a 
ins2b 

i nsF-2c: 

ins2d 

I/switch*·2a) ; 
(/swltch*2bl 
+(12d*switch)*s2d*/s2c*/s2b*/s2a); 
(/switch*2c) 
+«2d*switchl*/s2a*/s2b*/s2c*/s2d); 
(/switch*2d) 
+1 (2d*switch)*/s2a*/s2b*s2c*/s2d); 

8-54 



LEF FOR PART 0: TWO DICE SPINNING 

Lakshmi :Jayanth i 
DSO ApplicatiDns 
February 19, 1986 

5C060 

PART: 
5C060 

INPUTS, 

clock1, clock2, switch@2 

UU'fPUTS: 

Ap·279 

spinla@10, spinlb@9, spinlc@8, spinld@7, spin2a@19, spin2b@20,. 
sp i n2c;j)21, 5p i n2d;j)22 

clockl 
clock2 

switch 

spinia, 
spinlb, 
spinic, 
spinld, 

spin2a, 
spin2b, 
spin2c, 
!5pin2d, 

x *** 

II'IP(clocki ) 
II'1P (c lock2) 

IN!'" (!.'~i tch) 

sla I:::ORF' ( i n51a, 
sib RORF( inslb, 
s1.c: HORF(ins1c, 
sId RORF(insld, 

s2a HOHF ( i rls2a, 
s2b r~()f,F ( i ns2b , 
sE~c RORF ( i ns2c , 
s2d RORF ( i ns2d , 

clc.ckl, GND, 
e:le.dd, 8ND, 
clockJ. , 81'1D, 
clc.ck1, I3ND, 

c lClckE~ ~ 8ND, 
clC1ck[~, GND, 
clDck2, GND, 
clc1ck2, GND, 

ResClLlrce, l'lOJF, was minimized 

2d = NOPF( •• SGOO7D, clock2, GND, GND) 

~~ **-JiI' Rescl\ .. lrce, NOJ"F , was minimized 

2c = NOTF( •• SGOO6D, clock2, GND, GND) 

~~ *** Resource, NOJF, was minimized 

E~b ... N[mF ( .. SG005D, clc1ck2, 8ND, GND) 

~~ ***. R€~sc,u)'"ce , NOJF, was minimized 

2a = NORF ( .• SG004D, clclckc!, GND, GND) 

% -H.** Resource, NOJF, was minimized 

1d = NORF( .• S800:3D, clockl, GIIlD, 8ND) 

% * ii:. * I~esc,u)-CE." , NOJF, WL~S minimized 

lc .- IIlORF ( .• 8130020, clc.ckl, I3ND, GND) 

8-55 

8ND, VCC) 
13ND, VC~) 

GND, VCC) 
131\10, vec) 

8NO, Vee) 
I3ND, vee) 
GND, VC:C) 
GND, VCC) 

tCI NOPF *** X 

te. NOTF -!E' i(. * ~{ 

to NORF ** .. l<- X 

te. NOm' 1E.*.JE. ~/~ 

to NORF *.~ .... X 

te. NORF '*~"IE' %. 



inter AP·279 

K *** Resource, NOJF, was minimized to NORF *** K 

Ib = NORF( •• SGOOID, clockl, GND, 8ND) 

K *** Rese.urce, NOJF, was minimized to NORF *** K 

1~ = NORFI •• 88000D, clockl, 8ND, 8ND) 

EQUATIONS: 

ins2d = switch' * 2d 
+ 2d * switch * s2a' * s2b' * s2c * s2d'; 

ins2c = switch' * 2c 
+ 2d * switch * s2a' * s2b' * s2c' * s2d'; 

ins2b = switch', * 2b 
+ 2d * switch * s2d * s2c' * s2b' * s2a'; 

ins2a = switch' * 2a 

ins1d = switch' * 1d 
+ 2d * switch * s1a' * s1b' * s1c * s1d'; 

ins1 c = switch' * 1 c 
+ 2d * switch * s1a' * s1b' * s1c' * s1d'; 

ins1b = switch' * 1b 
+ 2d * switch * s1d * s1c' * s1b' * s1a'; 

insla = switch' * la; 

•• S8000D la' * lb' * lc' * ld' 
+ la * Ic' * ld~ * switch' 
+ la' * lb * Id' * switch 
+ la * Ib * Id' * switch' 
+ la' * Ib * Ic * switch; 

•• 880010 lb * Id' 

•• 88002D 

• • 86003D 

+ lb * la' * Ic * switch' 
+ la * lc' * ld' * switch; 

Ic * Ib • Id' 
0t- Ic * la' ,M, Ib * swit'ch' 
+ la * lb • Id' • switch; 

ld • la' • lb * lc * switch' 
+ Id' • l:a • Ib * lc • switch; 

• .88004D 2a'. 2b ,. • 2c' • 2d' 
+ 2a • 2c' • 2d' • Id' 

• • 88005D 

+ 2a * 2c' • 2d' • switch' 
+ 2a • 2b • 2d' • Id' 
+ 2a * 2b • 2d',,* switc.h' 
+ 2a' • 2b * 2d' * Id * switch 
+ 2a' * 2b * 2c * Id * switch; 

2b * ,2d' 
+ 2b * 2a' * 2c. • Id' 
+ 2b * 2a' * 2c * switch' 
+ 2a * 2c' * 2d' * Id * switch; 

8·56 



inter AP·279 

END$ 

•. 8G0060 2c * 2b' 
+ 2c * 2" * 2d 
+ 2c * 2d * ld * switch 
+ 2c' * 2a * 2b * 2d' * ld * switch; 

•• 880070 2d * 2a' * 2b * 2c * switch' 
+ 2d * 2a' * 2b * 2c * ld' 
+ 2d' * 2a * 2b * 2c * ld * switch; 

NOfE: PLease note how the IPLS software has simplified the equations for you. You need not 
worry about minimization. The complicated Boolean expressions have been minimized to a 
great extent. 

8-57 



intJ AP-279 

RPT FOR PART D, TWO DICE SPINNING 

LDgic Optimizing ComplIer Utilization Report 

••• ** Design implemented successfully 

Lakshmi Jayanthi 
DBO Applications 
February 19, 1986 

5C060 

PART D: TWO DICE SPINNING 

B Version 3.0, Baseline 17x, 9/26/85 

5C060 

clock1 -: 24:- Vee 
S," itch -: " 2~-:J: - GI\ID '"-

RESERVED -: 3 22: -- spin2d 
RESERVED -: 4 211- spin2c 
HE SERVED - 5 20:·- sp i ni;ob 
PESERVED - 6 19: -. spin2a 

spinld -: "7 lB:- RESERVED 
spin1c -I 8 17: -- RESERVED 
spin1b .- 9 161- PESERVED 
spin1a -: 10 15:- RESEHVED 

GND -:-: 11 14:- GND 
GND -112 1.;31- clock2 

•• INPUTS."· 

Name Pin Resource 

clock1 INP 

switch 2 INP 

c Ic:.ck2 13 INP 

F'TI:2roms 

8-58 

Feeds: 
MCeils DE Clear Clock 

~) 

"7 
8 
9 

10 
11 
12 
13 
14 
1 ~:.) 
16 

CL..1<1 

CLKE! 



8-59 



15 NORF 

~I NORF 

NORF 

5 NORF 

6 NURF 

**UNUSED RESOURCES** 

Name Pin Resource 

11 
14 
23 

**PART UTILIZATION** 

86Y. 
100% 

Pins 
MacrDCells 
'Pter'ms 

8 

9 

10 

11 

1 '.0 
~, 

MCell 

AP-279 

71 8 

21 El 

3/ 8 

31 8 

5/ 8 

PTerms 

4 
5 
6 
'7, 
8 

5 
6 

''7 

8 
9 

10 
11 
12 
1:3 

9 
10 
II 
:lE! 
14 

9 
10 
1.1 
12 
is 

~; 

10 
11 
12 
16 

NaTE: Part D of the design example utilizes the device in a very optimum manner. You have 
utilized all the macrocells and also 86% of the pins but only 35% of the product terms. 

You have not used three of the input pins. 

Consider this: 

Make these three pins a mode select on this dice example - if all of these three additional 
inputs are high then the dice will function as described (this condition must be added to each 
product term). You now have seven other modes in which to operate this DICE. Anyone want 
to "load" the odds for "boxcars" or "snake-eyes"? You have 65 % more product terms to use 
so you can be very creative. What else could you add to this EPLD? 

8-60 



C2c::J:! 
R2 R1 r.1 

000 ~~ 
L...=::..--_-=:....I 

INTEL Made in USA LJ 

Order NOW! 
To order your PCB card and diskette with pre-entered design files, simply fill out the form 
below. Send a check, money order, or use your VISA or MasterCard, or call toll-free 
800-548-4725. 

Mail to: Intel Literature Sales, SC6-41 
P.o. Box 58130 
Santa Clara, CA 95052-8130 

555722 PCB card and diskette 

Must add local sales tax 

Quantity Price 

$12.00 each 

1DTAL 

Company __________________________________________ ___ 

Name _____________________________ Title ___________ _ 

Address ____________________________________________ __ 

City ______________________ State ________ Zip ____ _ 

Business Phone -----'-_________ )L---__________________________ __ 

If paying by check or money order, please make payable to Intel Literature Sales. 

o VISA o MasterCard 

AccountNumber ____________________________ ___ Exp. Date ______ __ 

Source: CB (Allow 4-6 weeks for delivery) 





LITERATURE 

1987 HANDBOOKS (European Prices) 
PrOduct line handbooks contain data sheets, application notes, article reprints and other design information. 

NAME 

MEMORY COMPONENTS HANDBOOK 

MICROCOMMUNICATIONS HANDBOOK 

EMBEDDED CONTROLLER HANDBOOK 
(includes Microcontrollers and 8085,.80186, 80188) 

MICROPROCESSOR AND PERIPHERAL HANDBOOK 
(2 Volume Set) 

DEVELOPMENT TOOLS HANDBOOK 

DQS DEVELOPMENT SOFI'WARE CATALOG 

OEM BOARDS AND SYSTEMS HANDBOOK 

MILITARY HANDBOOK 

COMPONENTS QUALITY jRELIABILITY HANDBOOK 

SYSTEMS QUALITY jRELIABILITY HANDBOOK 

PRODUCT GUIDE 
Overview of Intel's complete product lines 

LITERATURE GUIDE 
List of Intel Literature 

INTEL PACKAGING OUTLINES AND DIMENSIONS 
Packaging types, number of leads, etc. 

ORDER NUMBER 

210830 CATEGORY F 

231658 CATEGORYF 

210918 CATEGORYF 

230843 CATEGORYH 

210940 CATEGORYF 

280199 N/C 

280407·· CATEGORYF 

210461 CATEGORYF 

210997 CATEGORYF 

231762 CATEGORYF 

2101!46 N/C 

EOO029 N/C 

231369 N/C 

. The . 
PRICE Finland Norway Sweden Denmark Netherlands France U.K. Germany Switzerland Austria 
CODE FIM NKR SEK . DKR DFL FFR PDS OM SFR AS 

F 128.00 190.00 179.00 255.00 78.00 190.00 17.00 62.00 45.00 440.00 
H 201.00 294.00 281.00 349.00 115.00 300.00 25.00 98.00 75.00 696.00 

LOCAL TAX. NOT INCLUDED 



inter 

EUROPEAN LITERATURE ORDER FORM 
ORDER NUMBER TITLE QTY PRICE TOTAL 

__ X 
__ X 
__ X 

I-i-+-+--+--t--t -'I-+-+--I -....;...---------
__ ,X 
__ X 

----' X 
__ , X 
__ 'X 
__ X 

_,_X 
__ X 

PAYMENT 

Cheques should be made payable to your local Intel Sales Office (see inside 
SUB TOTAL 

back cover). ' LOCAL TAX ____ _ 
Other forms of payment may be available In your country. Please contact the 
Literature Co-ordinator at your local Intel Sales Office for details. 

The Completed form should be marked for the attention of the LITERATURE 
CO"ORDINATOR and returned to your local Intel Sales Office. 

NAME 

TOTAL ===:::::== 

COMPANY __ ~ ________________________ ___ 

ADDRESS __ ~ ______________ ~ ________ ~--_ 

PHONE NO. __________ ~~~-~-~-------------



ALABAMA 

Intel Corp. 
5015 Bradford Dfille 
Suite 2 
Huntsllille 35805 
Tel: (205) 830-4010 

ARIZONA 

Intel Corp. 
11225 N. 28th Dfille 
SUite 2140 
PhoBniK 85029 
T(;I: (602) 869-4980 

~nlt611 CN~r~i Dorado PI~ce 
Suite 301 
Tucson 85715 
Tel. (602) 299·6615 

CALIFORNIA 

Inlel Corp. 
21515 Vanowen Street 
Suite 116 

~:I~(31aBr~O~:815300g 
Intel Corp 
~~Tt~ ~l~mperial Highway 

~~~(a~£d54~~t~~0 
Intel Corp.

~~~~a~~~t~ ~~&i~uite·l01 
Tel: (916) 920·6096 

Inlel Corp. 
4350 EKecutill8 Drille 
Suite 105 

f:l~ (~I:~)o4~~~l~80 
Intel Corp." 
2000 East 4th Street 
Suite 100 
Santa Ana 92705 
Tel. (714) 635-9642 
TWX: 910-595-1114 

Intel Corp: 
San Tomas 4 
2700 San Tomas EKpressway 
Santa Clara, CA 95051 
Tel: (40!!l) 986-8086 
TWX: 910-338-0255 

COLORADO 

Intel Corp. 
3300 Mitchell Lane, SUile 210 
Boulder 80301 
Tel: (303) 442-8088 

Intel Corp. 
4445 Northpark Drille 
Suite 100 

~~i:o(':~3) ~~~~~~~~0907 
Intel Corp." 
650 S. Cherry Street 
SUite 915 
Den .... er 60222 
Tel: (303) 321-8086 
TWX: 910-931-2289 

CONNECTICUT 

Intel Corp. 
26 Mill Plain Road 
Danbury 06810 
Tel: (203) 748-3130 
lWX: 710·456-1199 

EMC Corp. 
222 Summer Street 
Stamford 06901 
Tel: (203) 327-2934 

FLORIDA 

~~~I ~o~estmonte [)rille 
Suite 105

~~I~(30~\e8~~~~"R8s8 32714

Intel Corp.

~f.6~a~d~~d6;~ ~3.r6:uite 100
Tel: (305) 771-0600
TWX: 510-.956-9407

DOMESTIC SALES OFFICES
FLORIDA (Conrd)

Intel Corp.
11300 4th Street North
SUite 170
SI. Petersburg 33702
Tel: (813) 577-2413

GEORGIA

Intel Corp
3280 POlOle Parkway
SUite 200
Norcross 30092
Tel: (404) 449-0541

ILLINOIS

Intel Co~" i

~~~a~.mb~71O~g\~~Oad, SUile 400 

Tel: (312) 3?O-B031 

INDIANA 

Intel Corp 
8777 Purduo Road 
Suite 125 
Indianapolis 4626B 
Tel: (317) B75·0623 

IOWA 

Inlel Corp 
SI. Andrews BUilding 
1930 St. Andrews Drive N.E 
Cedar Rapids 52402 
Tel: (319) 393-5510 

KANSAS 

inlel Corp 
8400 W. 11 Olh Slreet 
SUile 170 
O .... erland Park 66210 
Tel: (913) 345·2727 

MARVLAND 

Intel COIP." 
7321 Parkway Dfille South 
SUlle C 
Hanover 21076 
Tel: (301) 796-7500 
TWX: 710-862-1944 

Inlel Corp. 
7833 Walker Drille 
Greenbelt 20770 
Tel· (301) 441-1020 

MASSACHUSETTS 

100Iei Corp." 
Westford Corp Center 
3 Carlisle Road ' 
Westford 01886 
Tel: (617) 692-3222 
TWX; 710-343-6333 

MICHIGAN 

Intel Corp 
7071 Orchard Lake Road 
Suite 100 
West Bloomfield 48033 
Tel: (313) 851-8095 

MINNESOTA 

Intel Corp. 
3500 W. 80th Street 
SUite 360 
Bloomington 55431 
Tel: (612) 835-6722 
TWX: 910-576-2867 

MISSOURI 

Intel Corp. 
4203 Earth City Expressway 
Suite 131 
Earth City 63045 
Tel: (314) 291·1990 

NEW JERSEY 

Intel Corp." 
Parkway 109 Olfice Center 
328 Newman Springs Road 
Red Bank 07701 
Tel: (201) 747-2233 

Intel Corp. 
75 Livingston Allenue 
First Floor 
Roseland 07068 
Tel: (201) 740-0111 

NEW MEXICO 

Inlel Corp 
8500 Menual80ulellarrl N.E 
SUite B 295 
Albi.Jquerque 871 t2 
Tel: (505) 292·8086 

NEW YORK 

Intel Corp." 
300 Vanderbilt Motor Parkway 
Hauppauge 11788 
Tel (516) 231·3300 
TWX: 510·227-6236 

Intel Corp 
SUite 2B Hollowbrook Park 
15 Myers Corners Road 

fe~Fg~l}e;~ll~sl ~f590 
TWX· 510-248-0060 

Intel Corp.' 

~~e~~sls4~~Os Of lice Park 

Tel: (716) 425·2750 
TWX: 510-253-7391 

NORTH CAROLINA 

Intel Corp 
5700 EKecutilie Center Orl .... e 
Suote 213 
Charlotte 28212 
Tel: (704) 568-6966 

Intel Corp. 
2700 Wycliff Road 
SUite 102 

~:t'~;~~ 9r768~~8022 
OHIO 

Intel Corp." 
3401 Park COOiter DfI .... e 
Suite 220 
Dayton 45414 
Tel: (513) 890-5350 
TWX: 810-450-2528 

Intel Corp." 
25700 SCience Park Dri~e 
Beachwood 44122 
Tel: (216) 464-2736 
TWX: 810-427-9298 , 

OKLAHOMA 

Intel Corp 
6801 N. Broadway 
Suite 115 
Oklahoma City 73116 
Tel: (405) 848-8086 

OREGON 

·lntelCorp 
15254 NW. Greenbrier Parkway, Bldg. B 
Bea .... erton 97006 
Tel: (503) 645-8051 
TWX: 910-467-8741 

PENNSYLVANIA 

Intel Corp 
1513 Cedar Cliff on .... e 
Camphill 17011 
Tel: (717) 737-5035 

Intel Corp: 
455 Pennsyiliania A .... enue 
Fort Washington 19034 
Tel: (215) 641-1000 
TWX: 510-661-2077 

Intel Corp.' 
400 Penn Center Boulellard 
Suite 610 

~~~:s(~~r~t81~~:~70 
PUERTO RICO

Intel Microprocessor Corp.
South Industrial Park
P.O. Box 910
Las Piedras 00671
Tel: (B09) 733-3030

TEXAS

Intel Corp
313 E. Anderson Lane
Suite 314
Austin 78752
Tel: (512) 454-3628

Intel Corp.'
12300 Ford Road
Suite 380
Dallas 75234
Tel: (214/241-8087
TWX: 910·860-5617

Intel Corp."
73?2 SW. Freeway
SUite 1490
Houston 77074
Tel: (713) 988-8086
TWX: 910·881·2490

Industrial Digital Systems Corp.
5925 Sovereign
Suito 101
Houston 77036
Tei. (713) 988-9421

UTAH

Intel Corp.
5201 Green Street
Suite 290
Murray 84123
Tel: (801) 263-8051

VIRGINIA

Intel Corp.
1603 Santa Rosa Road
Suite 109
Richmond 23288
Tel: (804) 282·5668

WASHINGTON

Intel Corp.
155-108 Avenue N.E.
Suite 386
Bellellue 98004
Tel: (206) 453-8086
TWX: 910-443-3002

Intel Corp.
408 N. Mullan Road
Suite 102
Spokane 99206
Tel: (509) 928·8086

WISCONSIN

Intel Corp.
45~ N. Sunnys!ope Road
SUite 130
Chancellory Park 1
Brooklield 53005
Tel: (414) 764-8087

CANADA
BRITISH COLUMBIA

Intel Semiconductor 01 Canada, Ltd
301·2245 W. Broadway
Vancouver V6K 2E4
Tel: (604) 738-6522

ONTARIO

Intel Semiconductor 01 Canada, Ltd.
2650 Queensview Orille
Suite 250
Ottawa K2B 8H6

i~I~~~?6::f.~19[J4
Intel Semiconductor of Canada, Ltd
190 Attwell Dfille
Suite 500
Rexdale M9W 6H8

i~'~~'!)666~i3~~~5
QUEBEC

Intel Semiconductor of C1Inada, Lid.
620 SI. Jean Boulevard
Pointe Claire H9R 3K3
Tel: (514) 694-9130
TWX: 514·694-9134

"Field Application Location

CG-1116/66

intJ
ALABAMA

Arrow Electronics, Inc.
1015 Henderson Road
Huntsville 35805
Tel: (205) 837-6955

tHamliton/Avnet Electronics
4812 Commercial Drive N.W.
Huntsville 35805

~~g~b~16?ll~~
Pioneer/Technologles Group Inc.

~~~~s~~,~~~k~5Square 
Tel: (205) 837·9300 
TWX: 610-726-2197 

ARIZONA 

tHamilton/Avnet Electronics 
505 S. Madison Drive 
Tempe 85281 
Tel: (602) 231-5100 
TWX: 910-950-0077 

Kierulff Electronics 
4134 E. Wood Streel 
Phoenix 65040 
Tel: (602) 437-0750 
TWX: 910-951-1550 

~~5D~.lr~?~~~c~~~~R HiQhway 
Phoenix 85023 
Tef: (602) 666-2888 

CALIFORNIA 

Arrow Electronics, tnc. 
19748 Dearborn Street 
Chatsworth 91311 
Tel: (818) 701-7500 
TWX: 910-493-2086 

Arrow Electronics, Inc. 
1502 Crocker Avenue 
Hayward 94544 
Tel: (408) 487-4600 

Arrow Electronics 
9511 Ridgehaven Court 

~:17 (~~~)05:~~;:00 
TLX; 888064 

Arrow Electronics, Inc. 
2961 Dow Avenue 
Tustin 92680 
Tel: (714) 838-5422 
TWX: 910-595-2860 

tAvnet Electronics 
350 McCormick Avenue 
Costa Mesa 92626 
Tel: (714) 754·6051 
TWX: 910.595-1928 

Hamilton/Avne! Electronics 
1175 Bordeaux Drive 

~~I~(XOa~e7~~~g:OO 
TWX: 910·339-9332 

tHamil~on/Avnet Electronics 
4545 Vlewridge Avenue 

~:I~ (~~eN)05~~~;~OO 
TWX: 910-595-2638 

tHamilton/Avnet Electronics 
20501 Plummer Street 
Chatsworth 91311 
Tel: (818) 700·6271 
TWX: 910-494-2207 

~6~it:r~~~~tet Electronics 

Ontari091311 
Tel: (714) 989-9411 

Hamilton/Avnet Electronics 
19515 So. Vermont Avenue 
Torrance 90502 
Tel: (213) 615-3909 
TWX: 910-349-6263 

Hamilton Electro Sales 
9650 De Soto Avenue 
Chatsworth 91311 
Tel: (818) 700-6500 

tHamiiton Electro Sales 
10950 W. Washington Boulevard 
Culver Cit~ 90230 

iVJlJ~b_~~~~56~ 

DOMESTIC DISTRIBUTORS 
CALIFORNIA (Conl'd) 

Hamilton Electro Sales 
1361 B West 190th Street 
Gardena 90248 
Tel: (213) 558-2131 

!~:Q1~~::n;~~i::';tales 
Costa Mesa 92626 

~:gJ~ke:9~~~08 
KlerulH Electronics 

b~~:s~~:Jreet 
Tel: (714) 220-6300 

Kierulff Electronics, Inc. 
14101 Franklin Avenue 
Tustin 92680 

~:J(J~b?~'5~5~\ 
tKierullf Electronics. Inc. 
5650 Jillson Street 
Commerce 90040 
Tel: (213) 725·0325 
TWX: 910-580·3666 

Wyle Distributlol1 Group 
26560 Agoura Street 
Calabasas 91302 

~J~J~h~8l2:0020jl2 

l~l~~~~~~~u~?r~~roup 
i~~(~~3df2~~:i50 
TWX: 91b-348-7140 or 7111 

l~~~ g~~~~u~~~n~~oup 
Irvine 92714 
Tel: (714) 843-9953 
TWX: 9tO-595·1572 

tWyle Distribution Group 
l1t51 Sun Center Drive 
Rancho Cordova 95670 
Tel: (916) 638-5282 

tWyle Distribution Group 
9525 Chesapeake Drive 

~:I~ (~~e~)05~~!i~71 
TWX: 910·335-1590 

fWyle Distribution Group 
3000 Bowers Avenue 
Santa Clara 95051 
Tel: (408) 727·2500 
TWX: 910-338-0296 

WyleMilitary 
18910 Teller Avenue 
Irvine 92750 

~lJtb~3571;:9~5:7 
Wyle Systems 
7382 Lampson Avenue 
Garden Grove 92641 
Tel: (714) 851-9953 
TWX: 910-595-2642 

COLORADO 

Arrow Electronics, Inc. 
1390 S. Potomac Street 
Suite 136 
Aurora 80012 
Tel: (303) 696·1111 

~~~5~~OO{~;~rdt ~~~XOl1jCS 
Suite 708
Englewood 80111

~J~g~b?9~~_~071l7
tWyle Distribution Group
451 E. 124th Avenue
Thornton 80241

~J~g~b~5;6:09757~
CONNECTICUT

tArrow Electronics, Inc.
12 Beaumont Road

fe~:tI\~~mrg6~~~~ 1
TWX: 710-476-0162

tHamiitonjAvnet Electronics
Commerce Industrial Park
Commerce Drive

~:I~?20~)0::i_~800
TWX: 710-456-9974

CONNECTICUT (Conl'dl

tPloneer Northeast Electronics
112 Main Street
Norwalk 06851

~J~~~b~:6~'t3
FLORIDA

fArrow Electronics, Inc.
350 Fairway Drive
Deerfield Stlach 33441

~J~~b~~5~240s06
tArrow Electronics, Inc.
1001 N.W. 62nd Street
Suite 108
Ft. lauderdale 33309
Tel: (305) 776-7790
TWX: 510-955-9456

fArrow Electronics, Il1c.
50 Woodlake Drive W., Bldg. B

;:I~:5r ?::~~80
TWX: 510-959-6337

tHamllton/Avnet Electronics

~~0~a~d~;d~1!\;V3ad9
~i~g~b~5~~3~7
tHamiiton/Avnet Electronics
3197 Tech Drive North
St. Petersburg 33702
Tel: (813) 576-3930
TWX: 810·863-0374

!PiOl1eer Electronics
2t N. Lake Boulevard

Suite 412

~~~ (~8;t;:f.~~5 32701 
TWX: 81b-853-0284 
tPioneer Electronics 
674 S. Military Trail 
Deerfield Beach 33442 

~i3~n~2585~8ll3 
GEORGIA 

fArrow Electronics, Inc. 
3155 Northwoods Parkway, Suite A 
Norcross 30071 
Te!: (404) 449-8252 
TWX: 810-766-0439 

~:~I~nt~g~:r:~e~t~~~~;~ 
Norcross 30092 
Tel: (404) 447-7500 
TWX: 810-766·0432 

Pioneer Electronics 
5835B Peachtree Corners E 
Norcross 30092 
Te!: (404) 448-1711 
TWX: 810-766-4515 

ILLINOIS 

tHamilton/Avnet Electronics 
1130 Thorndale Avenue 
Bensenvllle 60106 
Te!: (312) 860-7780 
TWX: 910·227-0060 

MTI Systems Sales 
1100 West Thorndale 
lIasca60143 
Tel: (312) 773-2300 

tPioneer Electronics 
1551 Carmen Drive 
Elk Grove Vitlaee 60007 

~:J~J~b~3Ii.,~83~ 
INDIANA 

~:5~~~~:Or1!eElectronics 
Carmel 46032 

~J~Jn~66:3a::6 

INDIANA (Cont'd) 

~~~~~=~~v. 
IndlanafJlis 46250

~~Jlb~~,~
KANSAS

;~::~:'~:~~~lectron~
Overland Park 66215

~~~~~sn3:5 
KENTUCKY 

~~~iI~n~:::~~ E,!:,:onlcs 
Lexington 40511

MARYLAND

Arrow Electronics, Inc.
8300 Gullord Aoad #H
Rivers Center
Columbia 21046

~i~~~b~i6~5
~~:2"~~~{f'~r~~~~tronlcs
Columbia 21045
Tel: (301) 995-3500
TWX: 710-862-1861

MASSACHUSETTS

tArrow Electronics, Inc.
1 Arrow Drive
Woburn 01801

~J:6jfb~~~~j~~
tHamliton/Avnet Electronics
100 Centennial Drive

~:~~gf1) ~1~~g701
TWX: 710-393-0382

MTI Systems Sales
13 Fortune Drive
Billerica 01821

Pioneer Northeast Electronics

MICHIGAN

Arrow Electronics, Inc.
755 Phoenix Drive
Ann Arbor 48104

~J~Jn~12~~io~Oo
tHamillon/Avnet Electronics
32487 Schoolcraft Road
Uvol1ia 48150

~J~Jn~~~j[7~05

~2nil~~hAsfr:~r~,t~onlcs
Space AS
Grand Rapids 49506
Tel: (616) 243-8805
TWX: 810-273-6921

fPioneer Electronics
13485 Stamford
Livol1ia 48150

~:J~J~b~2~52.1~
MINNESOTA

fArrow Electrol1ics, Inc.
5230 W. 73rd Street
Edina 55435
Tel: (612) 830-1800
TWX: 910-578-3125

Hamilton/Avnet Electronics
10300 Bren Road East
Mil1netol1ka 55343
Tel: (612) 932-0600
TWX: (910) 576·2720

tPioneer Electronics
10203 Bren Road East
Minnetol1ka 55343

~J~J~b~:'56~24f3~
fMicrocomputer System Technical Demonstrator CMter'

CO-11/S/8S

intJ
MISSOURI

tArrow Electronics. Inc.
2380 Schuetz
SI. Louis 63141
Tel: (314) 567·6888
TWX: 910-764-0862

tHamillon/Avnet Electronics
13743 Shoreline Court
Earth City 63045

~;~~J:b~~t1~~
NEW HAMPSHIRE

JAp~~j~it~;~6~~S' tnc.
Manchester 03103
Tel: (603) 666-6968
TWX: 710-220-1664

Hamllton/Avnel Electronics
444 E. Industrial Drive
Manchester 03104
Tei: (603) 824·9400

NEW JERSEY

fArrow Electronics, Inc.
6000 Uncoln East
Marlton 06053
Tel: (609) 596-8000
TWX: 710·897·0829

tArrow Electronics, Inc.
:? Industrial Road
Fairfield 07006
Tel: (201) 575-5300
TWX: 710·998·2206

tHamillon/Avnet Electronics
1 Keystone Avenue
Bldg. 36

~~I~{~O~)II~g~?g131 0
TWX: 710-940-0262

tHamllton/Avnet Electronics
10lndustnal
Fairfield 07006
Tel: (201) 575-3390
TWX: 701-734-4388

tPloneer Northeast Electronics
45 Route 46
Pinebrook 07058
Tel: (201) 575-3510
TWX: 710-734-4382

tMTI Systems Sales
383 Route 46 W
Fairfield 07006
Tel: (201) 227-5552

NEW MEXICO

Alliance Electro~ics Inc.
11030 Cochiti S.E.

~~~:u(~05)~:2~JJ:g 
TWX: 910-989-1151 

Hamilton/Avnet Electronics 
2524 Baylor Drive S.E. 

*~:u~o5{~~35~IJ88 
TWX: 910-989-0614 

NEW YORK 

tArrow ElectrOnics. Inc. 
25 Hub Drive 
Melville 11747 
Te!; (516) 694-6800 
TWX: 510-224-6126 

tArrow ElectrOrllcs, Inc. 
3375 Brighton-Henrietta Townhne Road 
Rochester 14623 

~~:7J~b~2l3~37~06 

Arrow Electronics. Inc. 
20 Oser Avenue 

~:I~~~:6)g:31 ~ I8go 
TWX: 510-227-6623 

Hamilton/Avnet Electronics 
333 Metro Park 
Rochester 14623 

iV'JJ;Jn~5~?5~37~ 
Hamilton/Avnet Electronics 
103 Twin Oaks Drive 
Syracuse 13206 
Tel: (315) 437-2641 
TWX: 710-541-1560 

DOMESTIC DISTRIBUTORS 
NEW YORK (Conl'd) 

tHamiltonfAvnet ElectroniCS 
933 Motor Parkway 

~:I~~~,a6)g:3~~J:& 
TWX: 510·224-6166 

l~~~~~:~~~kSO:~v~ 
P.O. BOK 271 
Port Washln~ton 11050 

~:x(~J~b~l23~02:6 
tPionoor Northeast Electronics 
1806 Vestal Parkway East 
Vestal 13850 
Tel; (607) 748-8211 
TWX: 510-252-0893 

tPloneer Northeast Electronics 
60 Crossway Park West 

~~:o(~~~)Y9i,~~~Joland 11797 

TWX: 510·221-2184 

Pioneer Northeast Electronics 
840 Fairport Park 
Fairport 14450 
Tel: (716) 381-7070 
TWX: 510-253-7001 

NORTH CAROLINA 

Arrow Electronics. Inc 
5240 Greendalry Road 

~:Ij:e;§~ 917867~~3132 
TWX: 510·928-1856 

tHamiiton/Avnet Electronics 

~~1~ Sti217eo~orest Drive 

Tel: (§19) 878-0819 
TWX: 510-928-1836 

Pioneer ElectroniCs 
9801 A-Southern Pine Boulevard 
Charlotte 28210 
Tel: (704) 524-8188 
TWX' 810-621·0366 

OHIO 

Arrow ElectrOnics. Inc. 
7620 McEwen Road 
Centerville 45459 
Tel: (513) 435-5563 
TWX: 810-459-1611 

tArrow Electronics, Inc. 
6238 Cochran Road 
Solon 44139 
Tel (216) 248·3990 
TWX: 810-427-9409 

tHamilton/Avnel Electronics 
954 Senate Drive 
Dayton 45459 
Tel: (513) 433-0610 
TWX: 810-450-2531 

tHamilton/Avnet EI~ctronlcs 
4588 Emery Industrial Parkway 

~~~(216)i~l~j~0~S 44128 
TWX: 810-427-9452

tPione.er Ele~tronics
4433lnterp0lnt Boulevard

~:r(~~:)5:~:_9900
TWX: 810-459-1622

tPioneer Electronics
4800 E. 131st Street
Cleveland 44105
Tel: (216) 587-3600
TWX: 810-422·2211

OKLAHOMA

Arrow Electronics, Inc.
4719 S. Memorial Drive
Tulsa 74145
Tel: (918)665-7700

OREGON

tAlmac Electronics Corporation
1885 N.W. 169th Place
Beaverton 97006
Tel: (503) 629·8090
TWX: 910--467-8746

Hamilton/Avnet Electronics
6024 S.W. Jean Road
Bldg. C, Suite 10
Lake oswe~o 97034

~:~~~ib~:5?t,'7~

f~o ~~~t~~I~~~~~g~PparkWay
Suite 600
HlIIsboro 97124
Tel: (503) 640-6000
TWX: 910-460-2203

PENNSYLVANIA

Arrow Electronics, Inc.
650 Seco Road
Monroeville 15146
Tel: (412) 856-7000

Pioneer Electronics
259 Kappa Dr/ve
PitlSburt'5238

~ti,b:7~~~3~~2

!~;oG?~;a~~~cUg~dcs
Horsham 19044
Tel: (215) 674·4000
TWX: 510-665-6778

TEXAS

JAnow ElectrOrllCS, Inc.
220 Commander Drive

Carrollton 75006

~J~~~b~8~OO~5\6f7
tArrowElectronics, Inc.
10899 Klnghurst
Suite 100
Houston 77099

~:~.7Jfb~~o14C309
Arrow Electronics. Inc.
10125 Metropolitan
Austin 78758
Tel: (512) 835-4180
TWX: 910·874·1348

tHami!tonjAvnet Electronics
1807W. Braker Lane
Austin 78758
Tel: (512) 837-8911
TWX: 910-874-1319

tHamillon/Avnet Electronics
2111 W. Walnut Hill Lane
IrvlOg75062

~~~~~~b~85690~~209 
tHamiltonhAvnet Electronics 

~~~~t~~ih~~~ad #190 

Tel: (713) 780-1771
TWX: 910-881-5523

tPioneer Electronics
9901 Burnet Road
Austin 78758
Tel: (512) 835-4000
TWX: 910-874-1323

Pioneer Electronics

~~il!~ ?~~a Road
Tel: (214) 386-7300
TWX: 910-850-5563

Pioneer Electronics
5853 POInt West Drive
Houston 77036
Tel: (713) 988·5555
TWX: 910-881-1606

UTAH

tHamiitonjAvnet Electronics
1585 West 2100 South

¥:IJ Mo~) ~i~-::JJ 9
TWX: 910-925-4018

Wyle Distribution Group
1959 South 4130 West. Unit B

~:I~ (~O~) ~il_~;J84
WASHINGTON

tAlmac Electronics Corporation
14360 S.E. Eastgate Way
Bellevue 98007
Tel: (206) 643-9992
TWX: 910-444-2067

Arrow Electronics, Inc.
14320 N.E. 21st Street
Bellevue 98007

~:l~n~44f4~800,~
HamiitonjAvnet Electronics
14212 N.E. 21st Street
Bellevue 98005
Tel: (206) 453-5874
TWX: 910-443·2469

WISCONSIN

tArrow Electronics, Inc.
430 W. Rausson Avenue
Oakcreek 53154
Tel: (414) 764-6600
TWX: 910-262-1193

WISCONSIN (Cont'd)

Hamillon/Avnet Electronics
2975 Moorland Road
New Berlin 53151
Tel: (414)784-4510
TWX: 910-262-1182

CANADA
ALBERTA

Hamllton/Avnet ElectrOnics
6845 AeKwood Road Unit 6

¥~~s(~16)B~7~4~io L4V1R2

Zentronics

~~ON,04t~ Avenue N.E.

~:II?(~63j~2~~21
BRITISH COLUMBIA

Hamilt0"ejAvnet Electronics

~~;~;I~ ~~Mn3g3 Road
Tel: (604) 272-4242

Zentronics

~?~~I~g ~6~~Wrt Road
Tel: (604) 273-5575
TWX: 04-5077-89

MANITOBA

Zentronlcs
590 Berry Street

f~r(fQ.fj ~15~8~~1
ONTARIO

Arrow Electronics Inc.
24 Martin Ross Avenue
Downsview M3J 2K9

i~U;.r66~~180ll30
Arrow Electronics Inc.
148 Colonnade Road
Nepean K2E 7 J5
Tel: (613) 226-6903

tHamilton/Avnet Electronics
6845 AeKwood Road
UnitsG&:H
Mississau~a L4V lR2

tytjtJ1b.l:/8~3l7
tHamillonjAvnet Electronics
~1 0 Colonnade Road South
Nepean K2E 7L5
Tel: (613)226-1700
TWX: 05-349-71

tZentronics
8 Tilbury Court

~~t(f,t6) 4~~~9~~~
TWX: 06--976-78

Zentronics
564/10 Weber Street North
Waterloo N2L 5C6
Tel: (519) 884-5700

Zentronics
155 Colonnade Road
Unit 17
Nepean K2E 7Kl
Tel: (613) 225-8840
TWX: 06-976-78

QUEBEC

Arrow Electronics Inc.
4050 Jean Talon Quest
Montreal H4P 1 WI

i~IL~5i:~l~~t95~ 1

Arrow Electronics Inc.
909 Charest Blvd.
Quebec61N 269
Tel: (418) 687-4231
TLX: 05-13388

Hamilton/Avnet Electronics
2795 Rue Halpern
SI. Laurent H4S 1 P8

~:~:5J1~:'-_1°7~~

tMicrocomputer System Technical Demonstrator Centers

CG-11/6/88

BELGIUM

Intel Corporation S.A.

~~~c dsue~Oulin a Papiar 51 
BOite 1 
B-1160 Brussels 
Tel: (02) 661 07 11 
TELEX: 24B14 

DENMARK 

Intel Denmark AlS' 
Glentevej 6 I - 3rd Floor 
OK·2400 Copenhagen 

~~U~? 1~5g~·33 
FINLAND 

Intel Finland OY 
Auosllantie 2 
000390 Helsinki 

i~UO~:5,~\ 6:a~ 
FRANCE 

Intel Paris 
1 Rue Edison, BP 303 
78054 Saint-Quentin en YVEtlines 

+~U3i:) d9~g,5l7io 00 

EUROPEAN SALES OFFICES 
FRANCE (Cont'd) 

Intel Corporation, S.A.R.L 
Iml'l'l8uble BBC 
4 Quai des Etroi!s 
69005 'i.0n 

i~ILr~: 3~5i~:9 
WEST GERMANY 

Intel Semiconductor GmbH' 
7 

Intel Semiconductor GmbH" 
Mainzerstrasse 75 
0·6200 Wlesbaden 1 

fEIL~~:2Jllg8~~;tNiw 0 

Intel Semiconductor GmbH 
Bruckstrasse 61 
7012 Fellbach 

~~I:tt~~7 58 00 82 
TEL~X: 1254826 INTS 0 

Intel Semiconductor GmbH" 
Hohenzollernstrasse S' 
3000 Hannover 1 

t~U~: 'J23j6~g r~TH 0 

ISRAEL 

Intel Semiconductors Ud' 
Atidim Industrial Park 
Neve Sharet 
ovora Hanevia 
Bldg. No. 13. 4th Floor 
P.O. Box 43202 
Tel Aviv 61430 

+~I~~x~9i7~9i!: 
ITALY 

rn~al Corporation Italia Sps' 
Mllanofiorl, Palazzo E!3 

?~~962~~~a.(I~J~~lanO) 
TEL~X: 3151B31NTMIL 

NETHERLANDS 

Intal Semiconductor Nederland B,V.' 
Aleunderpoort Building 
Marten Meesweg 93 
3068 Rotterdam 

i~IL~~) :i2~~ 77 

NORWAY 

W~~ ~~~:l A!S 
Hvamveien 4 
N·2013 

~~i:e~)n742 420 
TELEX: 18018 

SPAIN 

Intel Iberia 
Calle Zurbaran 
28-1·IZQOA 
28010 Madrid 

i~t~a:) ~~~O 40 04 

SWEDEN 

Intel Sweden A,B.· 
Dalvagen 24 
5·171 36 Solna 

f~IL:~31~~~~O 
SWITZERLAND 
Intel Semiconductor A.a .. 
Ta!ackerstrasse 17 
8152 Glattbrugg postfach 
CH-8065 Zurich 

t:t~~? :i:8~~J~ CH 

UNITED KINGDOM 

~~~r~Wa0ratlon (U.K.) .Lt~.' 
Swlndon, ~lItshlre SN3 1 RJ

i~IL.f:3l:1464~~~T SWN

-Field Application Location

EUROPEAN DISTRIBUTORS/REPRESENTATIVES
AUSTRIA

Bacher Elektronische Ges.m.b,H.
~~if~~~~e~auPts\ra'3se 78

Tal; (222)83 56 46
TELEX: 11532 BASAT A

Moor Ges.m.b.H.

~:~;5~e~:~se 1/1/1

Tel: 222-85 86 46

BELGIUM

SA)nelco Belgium
Ave, des Croix de Guerre 94
B1120 Brussels
Tel; i02) 216 01 60
TELEX: 25441

In Electronic Components
rue Colonel Bourgstr. 105a (Bte
3)
B·t140 Brussels
Tel: (02) 735-7125

DENMARK

In MultiKomponent A!S
Naverland 29
0+<:·2600 Groskrup

i~~: r5W5~56 66 45

FINLAND

Oy Fintronlc AS
Melkonkalu 24 A
SF·00210 Helsinki 21

t~U~:619f4 6~2~2Ftron SF

FRANCE

Generim
Z.A. de Courtaboeuf
Allenue de la Baltlque
F-91943 Les Utis Cede)(-B.P. 88
Tel: (1) 69 07 78 76
TELEX: F691700

Jermyn
16, Avenue de Jean·Jaures
94600 ChoisY-Le.ROi

+~IL~~:16g sJ~ 00

Tekelec Ah1ronlc
Cite des Bruyeres
Rue Carle Vernet B.P. 2
92310 Sevre 5

i~U~:\5J;l25 35

WEST GERMANY

Electronic 2000 Vertriebs A.G.

~6~~t~~i~~6~ 12
Tel: (89) 42 00 10
TELEX: 522561 EEC D

Jermyn GmbH
Postfach 11 BO
Schulslrasse 84
6277 Bad Camberg
Tel: (06434) 231
TELEX: 484426 JERM 0

CES Computer Electronics Systems
GmbH
'AM Moosfeld 37
8000 Munich B2

i~UOx~9J,~g2~gO
Metrologie GmbH
Hansaslrasse 15
8000 Munich 21

i~t~8:) :l,~i:~
Proelectron Vertrlebs AG
Ma)(Planc~ Sirasse 1-3
6072 Oreieich
Tel: (6103)3040
TELEX: 417983

ITT·Mullikomponent
Bahnhofstrasse 44

~~no~~:?li~i;g
IRELAND

~li~~~g~:~eg~Pce Park
Glenageary
Co. Dublin

~Et~~: 8i, ~~488
ISRAEL

Eastronics Ltd.
11 Rozanis Street
P.O. Box 39300
Tel Aviv 61392

+~a~:\'3~1il
ITALY

Eledtra 3S S.P.A.
Via G. Watt, 37
I 20143 Milano
Tel: (2) 81 82 1
TELEX; 332332

ITALY (Cont'd)

Inles+
Mllanofiori E/5
20090 ASS~O

iEU~:B:f14,f~1
lasi Elel1ronica S.P.A.
V, Le Fulvio Testi, 126
20092 Cinisello Balsamo (Milano)
Tel: 02/2440012
TELEX: 352040 LASIMII
TELEFAX: 2487717

NETHERLANDS

~b.i~O~ ~:rmanElectrotechniek B.V.

2600 AC Delft
Tel: 15 609·906
TELEX: 31528

NORWAY

Nordisk Eleklrontc A/S
Post Office Box 130
N-,364 Hvalstad

i~IL~~;S:765~~0
PORTUGAL

Ditram
Avenida Miguel Bombarda, 133
P-l000 Lisboa

+~U~:"5441:~ ~~Ieks-p
SPAIN

ITT SESA

~~dr1a ~8g~~ 21·3

i~U~:~i4~1 00

Diode
Calle Gandesa 10-4
08028 Barcelona
Tel: (3)322·12-51
TELEX: 42148

SWEDEN

Nordisk Elactronlk AB
Huvudstagatan 1
Box 1409
5-171 27 Solna

+~U~?13tis~j 70

SWITZERLAND

Industrade AG
Hertlstrasse
CH·8304 Walllsellen

+~IL~O~/ ~i708t~~gEL CH

UNITED KINGDOM

Accent Electronic Components. Ltd.
Jubilee House
Jubilee Way
Letchworth
Hertfordshlre SG6 lQH

+~UO:6:J:28::6e

~~~~~~~iern Center 
Western Industrial Estate 
Bracknell 
Berkshire RG121RW 

+~IL~O:~~:l:'1 
Comway Microsystems Ltd. 
Market Street 
Bracknell 
Berkshire 

i~l~&~~:i:~l 
IBR Microcomputers Ltd. 
Unit 2 Western Center 
Western Industrial Estate 
Bracknell 
Berkshire RG121RW 

+~I~&~~l:::1555 
Jermyn Industries Vestry Estate 
Ox1ord Road 
Seven Oaks 
Kent TN 14 5EU 

+~U~3IJ1~~'44 
M.E.D.L 
East Lene Road 

~?~~e'Z:W~17pp 
nU~~~:,3?7 
Rapid Recall, Ltd. 
Rapid House/Denmark SI. 
High Wycombe 
Bucks HP11 2EA 

~~U~~~769~~1 
ISR 
2 The Western Center 
Western Road 
Brecknell, Berkshire 
Tel: (0344) 486-555 

co-n/e/Be 



intJ 
AUSTRALIA 

Inlel Australia Pty. Ltd: 

~gr=~~6m:~::~~ay 
Level 6 
Crows Nest, NSW, 2065 
Tel: 011·61·2·957·27404 
TELEX: 970-20097 
FAX: 011-61-2-957-2744 

CHINA 

Intel PRC Corporation 

j~~ G~~iMe~ ~i!iiC A~~~~e 
Beijing, PRC 

HONG KONQ 

Intel Semiconductor ltd.' 
1701·3 Connaught Centre 

+e9:°s,n,a.8~~~~~j~_311 
TWX: 60410 ITlHK 

INTERNATIONAL SALES OFFICES 
JAPAN 

Inlet Japan K.K. 
5·6 Takedal. Toyosato-machi 

~:r~2~~i~~~:raki-ken 300-26 
TELEX: 03656-160 

Inlel Japan K.K.· 
Komeshin Bldg. 
2-'-15 Naka-machi 

~~~:u8~6~~23_~~1~ 243 

Inlel Japan K.K,'
Ayokuchi-Station Bldg.
2-4-1 Terauchl

~~to6~~t~o9~a 560

JAPAN (Conl'd)

Intel Japan K.K.
Shinmaru Bldg.
'-5-1 Marunouchi
Chiyoda-ku, Tokyo 100
Tel: 03·201-3621

Inlel Japan K.K.'
Flower-Hill Shin-machi East Bldg
1-23-9 Shmmachl

~:~:a83!:2~~22T3~kyO 154

~!~~~~G:i~~i-~~sashi-KOSU9i Bldg.
915-20 Shinmaruko, Nakahara-ku
Kawasaki-Shi, Kanagawa 211
Tel: 044-733-7011

Intel Japan K.K.
Mishima Tokyo-Kaijo Bldg.
1-1 Shibahon-cho
Mishima-shi
Shizuoka-Ken 411
Tel: 0559-72-4121

KOREA

Intel Semiconductor Asia ltd.

~~~~s~;iao~~g~g~~~~ono~d:~~;PO_KU 
Seoul 150 
Tel: 011-82-2-784-8186 or 8286 
TELEX: K293121NTElKO 

SINGAPORE 

Intel Semiconductor Ltd. 
101 Thomson Aoad 
21-06 Goldhill Square 
Singapore 1130 
Tel: 011-65-250-7811 
TWX: AS 39921 

TAIWAN 

Intel Semiconductor Ltd. 

~.r6 ~i~' ~i~n~h~:~f~oad 
Taipei 
Tel: 011-886-2-716-9660 

'Field Application location 

INTERNATIONAL 
DISTRIBUTORS/ REPRESENTATIVES 

ARGENTINA 

VlC S.R.l. Bartalome Mitre 1711 
3 Piso 
1037 Buenos Aires 
Tel: 011-54-1-49-2092 
TELEX: 17575 EOARG-AR 

AUSTRALIA 

Total Electronics 
~Mailing AddreSs) 

B~~~~:8i~r~ria 3125 

~SA~ft..~?s~~:tess) 
Burwood 
Victoria 3125 
Tel: 011-61-3-288-4044 
TELEX: AA 31261 

Total Electronics 
P~O. Box 139 
Artemon, ~.S.w, 2064 
Tel: 011-61-02-438-1855 
TELEX: 26297 

BRAZIL 

Elebra Microelectronica S/A 
A. Florida, 1821-8 ander 
04571" - Sao Paulo-SP 
Tel: 011-55-11-533-9977 
TELEX: 1125957 

CHILE 

DIN Instruments 
Casilla 6055, Correo 22 

~:~~~~~8139 
TELEX: 440422 Rudy CZ 

(Shipping Address) 
Al02 Greenville Center 
3801 Kennett Pike 
Wilmington, Delaware 19807 

CHINA 

CHINA (Cont'd) 

Schmidt & Co. Ltd. 
18/F. Gr.eat Eagle Centre 
Wanchal 

~~tgt~~8~2-5.822-0222 
TWX: 74766 SCHMC HK 

HONG KONG 

Schmidt & Co. Ltd. 
18/F. Great Eagle Centre 
Wanchai 
Tet: 01' -852-5·822-0222 
TWX: 74766 SCHMC HK 

INDIA 

Micronic Devices 
65 Arun Complex 
DVGAoad 
Basavan Gudi 

~~~%1Ir!:, ~:~ 2~g~O-631 
TELEX: 011-5947 MDEV

Micronic Devices
104/109C Nirmallndustrial Estate
Sion(E)

~~1~81al_:~~g~l8_61_70
TELEX: 011-71447 MDEV IN

Micronlc DeviCes
A-694 New ASjinder Nager
New Delhi 110060

JAPAN

Asahi Electronics Co. Ltd.
KMM Bldg. Room 407
2-14·1 Asano, Kokurakita-Ku

~:~k~~r51~i!L~~2
TEl~X: AEC!<Y 7126-16

C. 1100 Micronics Corp.
OS 85 Bldg. 2-6-5 Suda-Cho

~:~d63T~~~~-'~u, Tokyo 101

TEl~X: (03) 252·3774

J~PAN (Cont'd)

Ayoyo Electric Corporallon
Shuwa Sakurabashi Bldg.
4-5-4 Hatchobori
Chuo-Ku. Tokyo 104
Tel: (03) 555-4811

Tokyo Electron Lid
Shinjuku. N<?mura. Bldg
1·26·2 Nlshl-Shlnluku
Shinjuku-Ku, Tokyo 160
Tel: (03) 343-4411
TELEX: 232·2220 LABTEL J

KOREA

J-TEK Corporation
2nd Floor, Government Pension Bldg

~~~3n~~~dnOggg_~u 
Seoul 150 
Tel: 011-82-2·782·8039 
TELEX; KODIGIT K25299 

~~~SttBong Bang Bldg 
t502-KA Taepyung-RU
Chung-Ku
Seoul

. Tel: 777-78
TELEX 27970 KORSST K

MEXICO

OICOPEl SA
Tochtli 368 Fracc. Ind. San Antonio

~~~~g2j6~~~exlco, D.F. 
Tel: 90115255613211 
TELEX: 1773790 DICOME 

NEW ZEALAND 

Northrup Instruments & Systems Lid. 

~~6.'tlg:9~g:: ~eo;~arket 
Auckland 1 . 
Tel: 011-64-9-501-2,9, 501-801, 587-037 
TELEX: NZ21570 THERMAL 

Northrup Instruments & Systems Ltd. 
P.O. Box 2406 

f~~~i:I~~~~~~58 

PAKISTAN 

computer Applications Ltd. 
70 Gizri Boulevard 
Defence 
Karachi·46 
Tel: 011-92-21-530-306 
TELEX: 24434 GAFAR PK 

Horizon Training Co., inc. (Agent) 
1 Lafayette Center 
1120 20th Street N.W. 
Suite 530 

~~~r~g~lo8~7~1~iJg0036 
TWX: 248890 HORN

SINGAPORE

General Engineers Corporation Ply. Ltd.
203 Henderson Road
1102 Henderson Industrial Park 0315
Tel: 011065-271-3163
TELEX: RS23987 GENERCO

SOUTH AFRICA

Electronic Building Elements, Ply. lid.
(Mailing Address)
P.O. Box 4609
Pretoria 0001
Tej: 011-27-12-469921
TELEX: 3·22786 SA

(Shipping Address)
Pine Square, t 8th Street
Hazelwood Pretoria

TAtWAN

Mitac Corporation
No. 585 Ming Sheng E. Road
Taipei
Tel: 011-96-2-501-8231
TELEX: 11942 TAIAUTO

VENEZUELA

P. Benavides CA
Arilanes a Rio
Resdencias Kamarata
local 4 a lZ
Caracas
Tel: (582) 571-0396

"Field Application location

CG-1116/86

ALABAMA

Intel Corp.
5015 Bradford Drive, #2
Huntsville 35805
Tel: (205) 830·4010

ARIZONA

Intel Corp.
11225 N. 28th Dr. #0214
Phoenix 85029
Tel: (602) 869·4980

Intel Corp.
500 E. Fry Blvd., Suite M·15
Sierra Vista 85635
Tel: (602) 459·5010

ARKANSAS

Intel Corp.
P.O. Box 206
Ulm 72170
Tel: (501) 241·3264

CALIFORNIA

Intel Corp.
21515 Vanowen
Suite 116

¥:r~af8r~~~8\300~
Intel Corp.
2250 E. Imperial Highway
Suite 218
EI Segundo 90245
Tel: 1·800·468·3548

Intel Corp.

~~?sOo~~j5~3~~~5~~'
Tel: (916) 351·6143

Inlel Corp
1350 Shorebird Way
Mt. View 94043
Tel: (415) 968·8211
TWX: 910·339·9279
910·338·0255

~nri6b Ctfih Street
Suite 110
Santa Ana 92705
Tel: 1·800·468·3548
TWX: 910·595-2475

Inlel Corp.
2700 San Tomas EKpressway
Sanla Clara 95051
Tel: (408) 970-1740

Intel Corp.
4350 Executive Drive
Suite 150

~:r (~~ea)04~~~~J80
COLORADO

Intel Corp.
650 South Cherry
Suite 915
Denver B0222
Tel: (303) 321-8086
TWX: 910-931·2289

CALIFORNIA

2700 San Tomas Expressway
Santa Clara 95051
Tel: (408) 970-1700

DOMESTIC SERVICE OFFICES
CONNECTICUT MICHIGAN

Intel Corp.
26 Mill Plain Road

Inlel Corp.
7071 Orchard Lake Road

~:r1~~)0::J_1'30 SuUe 100
West Bloomfield 48033

FLORIDA
Tel: (313) 851·8905

MISSOURI

~;~ ~~re: 6th Way Intel Corp.
SUite 100 4203 Earth City Expressway
Ft. L.auderdale 33309 Suite 143
Tel: (305) 771-0600
TWX: 510-956·9407

Earth City 63045
Tel: (314)291.2015

Intet Corp.
242 N. Westmonte Drive

NEW JERSEY

Suite 105 Intet Corp.

~~~(30~)e 8~~~~~l8 32714 
365 Sylvan Avenue 
Englewood Cliffs 07632 

~~:X(:2~~ b~9s:,'~885~~ GEORGIA 

Intel Corp. ~!~It~~~aza III 328U Pointe Parkway 
Suite 200 Raritan Canter 
Norcross 30092 Edison 08817 
Tel: (404) 441·1171 Tet: (201) 225·3000 

ILLINOIS NORTH CAROLINA 

knJ~I~O'%"rtingale Rd. 
Intel Corp. 
2306 W. Meadowview Road 

SUite 300 Suite 206 

~~r(3~~~~0~gJ5t Greensboro 27407 
Tel:.(919) 294·1541 

INDIANA OHIO 

Intel Corp. tntel Corp. 
8777 Purdue Rd., #125 Chagrin-Brainard Bldg. 
Indianapolis 46268 Suite 305 
Tet: (317) 875·0623 ~~~~:la~~a24;n2~.oulavard 
KANSAS ~:)t2Jn~S:i~~158 
Intel Corp. 
8400 W. 11 Oth Street Intel Corp. 
Suite 170 6500 Poe 
Overland Park 66210 Dayton 45414 
Tel: (913) 345-2727 Tel: (513) 890·5350 

KENTUCKY OREGON 

Intel Corp. 
3525 Tatescreek Road, ~~~~~~. Beaverton-Hillsdale 
#51 ~~~~w:l ~:~i(2cm) 2~02:g~45 Beaverton 97005 

~{ijx(:5gn:t6j~~~~ MARYlAND 

Intel Corp. ~nJ~h ~~W'Elam Young Parkway 4th Floor Product Service 
7833 Walker Drive Hillsboro 97123 
Greenbelt 20770 Tel: (503)681·8080 
Tei: (301)220-3313 

MASSACHUSETTS 

Intel Corp. 
3 Carlisle Road 
Westford 01886 
Tel: (617) 692-1060 

CUSTOMER TRAINING CENTERS 
ILLINOIS 

~~~~m~~~jngg~~l3OO 
Te', (312) 3¥O.5700

MASSACHUSEns

3 Carlisle Road
Westford 01886
Tel: (617) 692-1000

PENNSYLVANIA

Intel Corp.
201 Penn Center Boulevard
Suite 301 W

~~~:s~~r~t3~~~~0 
TEXAS 

Intel Corp. 
313 E. Anderson L.ane 
Suite 314 
Austin 16752 
Tel: (512)454-3628 
TWX: 910-874·1347 

Intel Corp. 
12300 Ford Road 
Suite 380 
Dallas 75234 
Tet: (214) 241·2820 
TWX: 910-860-5617 

Intel Corp. 
8815 Dyer St., Suite 225 
EI Paso 79904 
Tel: (915) 751-0186 

VIRGINIA 

Intel Corp. 
1603 Santa Rosa Rd., #109 
Richmond 23288 
Tel: (804) 262·5668 

WASHINGTON 

Intel Corp. 
110 110th Avenue N.E. 
Suite 510 
Bellevve 96004 
Tel: '·800·468-3548 
TWX: 910·443·3002 

WISCONSIN 

Intal Corp. 
450 N. Sunnyslope Road 
Suite 130 
Brookfield 53005 
Tel: (414) 784·8087 

CANADA 
Intel Corp. • 
190 Attwell Drive, Suite 103 
Rexdale, Ontario 
Canada M9W 6Ha 
Tel: (416)675.2105 

~~~I ~~Tean Blvd. 
Pointe Claire, Quebec
Canada H9R 3K2
Tel: (514) 694-9130

Intel Corp.
\ 2650 Queensvlew Drlva, #250

Ottawa, Ontario,
Canada K2B 8H6
Tel: (613)829-9714

MARYlAND

7833 Walker Or., 4th Roor
Greenbelt 20770
Tel: (301) 221)..3380

CG-1118/88

