Order Number: 210940-005

2

.

= d

=

5.,

(5]

Q

Jw =
.
i

vt
Q
2
E
<
»

Software,

el

LITERATURE
To order Intel literature write or call: ‘
Intel Literature Sales Intel Literature:
P.O. Box 58130 (800) 548-4725 l

Santa Clara, CA 95052-8130 {

Use the order blank on the facing page or call our Toll Free Number listed above to order literature.
Remember to add your local sales tax and a 10% postage charge for U.S. and Canada customers, 20% for
outside U.S. customers.

1287 HANDBOOKS

Product line handbooks contain data sheets, application notes, article reprints and other design information.

*PRICE IN

NANME ORDER NUMBER U.S. DOLLARS
COMPLETE SET OF 9 HANDBOOKS 231003 $125.00
Save $50.00 off the retail price of $175.00
MEMORY COMPONENTS HANDBOOK 210830 $18.00
MICROCOMMUNICATIONS HANDBOOK 231658 $20.00
EMBEDDED CONTROLLER HANDBOOK 210918 $18.00
(includes Microcontrollers and 8085, 80186, 80188)
MICROPROCESSOR AND PERIPHERAL HANDBOOK 230843 $25.00
(2 Volume Set)
DEVELOPMENT TOOLS HANDBOOK 210940 $18.00
DOS DEVELOPMENT SOFTWARE CATALOG 280199 N/C
OEM BOARDS AND SYSTEMS HANDBOOK 280407 $18.00
MILITARY HANDBOOK 210461 $18.00
COMPONENTS QUALITY/RELIABILITY HANDBOOK 210997 $20.00
SYSTEMS QUALITY/RELIABILITY HANDBOOK 231762 $20.00
PRODUCT GUIDE 210846 N/C
Overview of Intel’s complete product lines
LITERATURE PRICE LIST 210620 N/C
List of Intel Literature
INTEL PACKAGING OUTLINES AND DIMENSIONS 231369 N/C

Packaging types, number of leads, etc.

*These prices are for the U.S. and Canada only. In Europe and other international locations, please contact
your local Intel Sales Office or Distributor for literature prices.

intel

'LITERATURE SALES ORDER FORM

NAME:
COMPANY:
ADDRESS: _ _
CITY: _ STATE.________ ZIP:
COUNTRY: '
PHONE NO.: {)
'ORDER NO. - 3 TITLE . QTY. PRICE TOTAL
[TTTT71 X -
HEREN x -
HEEEE x -
LI L] x -
HERRN x =
HERRE X -
HEREER X -
LI x -
LL LTI x -
HERERN x -
Subtotal
Must Add Your

Local Sales Tax:

Must add appropriate postage to subtotal
(10% U.S. and Canada, 20% all other)

> Postage

Total

Pay by Visa, MasterCard Amencan Express, Check, Money Order, or company purchase order payable
to Intel Literature Sales. Allow 2-4 weeks for delivery.
O Visa [MasterCard [American.Express -Expiration Date

Account No.
Signature:
Mall To: Intel Literature Sales . . International Customers outside the U.S. and Canada
. P.O. Box 58130 . should contact their local Intel Sales Office or Distributor
Santa Clara, CA listed in the back of most Intel literature.
95052-8130 European Literature Order Form in back of book.

Call Toll Free: (800) 548-4725 for phone orders
Prices good until 12/31/87.
Source HB

We Bring
Our World
to Your Door

Intel’s New Product
Literature Subscription Service.

Each Literature Package Contains:

Newly published Data Sheets, Fact Sheets, Application Notes,
Reliability Reports, Errata Reports, Article Reprints,
Promotional Offers, Brochures, Flyers, Benchmark Reports,

Technical Papers and more...

In Addition, Each Individual
Package Contains:

i Microprocessors, etc.

Product Line Handbooks on Micropro-
cessors, Development Tools and
Embedded Controllers.

plus

Quality/Reliability Information, The
Product Guide, Literature Guide and
Packaging Information.

plus

Three Quarterly Updates containing all
new documentation on these products.
(Retail Value of Handbooks alone: $81)

Your price for the complete package with
quarterly updates: $70

Order Number 555100

Keeping up with today’s technology takes a lot of time
and effort. With Intel’s new Literature.Subscription
.\ Service you will receive a package of current literature
“d plus automatic quarterly updates on all the latest
product and service news from Intel. From micropro-
cessors — to peripherals and memories — to OEM

boards, systems and software, you can choose to receive
information from one, or all three, product categories
for an entire year at a low one-time cost.

Save Time and Money.
Subscribe Today.

Save 10% when ordering two or more packages. .

To order, use the literature order

handling costs only.
intel

Peripherals, Memories, etc.

Product Line Handbooks on Peripher-
- als, Microcommunications, Memories

and EPLD

plus

Quality/Reliability Information, The

Product Guide, The Literature Guide,
- Packaging Information and other

supporting information.

plus

Three Quarterly Updates containing all

new documentation on these products.

(Retail value of Handbooks alone: $83)

Your price for the corﬁplete package with
quarterly updates: $70

Order Number 555101

form provided in this book or
call TOLL FREE 800-548-4725

The charge for this service covers our printing, postage and

E OEM Boards, Systems and

Software

Produce Line Handbooks on OEM
Boards and Systems

plus

Quality/Reliability Information, The
Product Guide, The Literature Guide, and
other supporting information.

plus i
Three Quarterly Updates containing all
new documentation on these products.
(Retail Value of Handbooks alone: $38)

Your price for the complete package with
quarterly updates: $60

Order Number 555102

'ﬁ

Customers outside the U.S. and Canada should order directly from the U.S. on the US iiterature

order form.

Offer expires 12/31/87

FREE

DEVELOPMENT
. SOFTWARE
o CATALOG

Intel's DEVELOPMENT SOFTWARE CATALOG con-
tains a complete description of Intel's high level
languages, utilities, assembly languages, editors and
debuggers running on DOS, VMS, ISIS, and iNDX.

Call or write today for your FREE COPY.

Call TOLL-FREE 1-800-87-INTEL for your free copy, or fill out
the coupon below:

Clip and mail to:

Intel Corporation
PO. Box 58065
Santa Clara, CA 95052-8065

(H89) I YES! I want my free copy of
Intel's Development Software Catalog.

[0 Have an Intel Sales Representative Call Me.

Name Title
Company Mailstop
Address

Phone ()

City State ZIP

DTO-355B-BR-CP Expires 12/87

DEVELOPMENT TOOLS
HANDBOOK

1987

About Our Cover:

Intel’s open environment provides developers with a portable set of dedicated tools with
networking capabilities resulting in greatsr productivity, expandability, upgradeability and a shorter
time to market. Our powerful, dedicated and proven set of software development tools are
abstractly represented here as another familiar set of dedicated and proven tools.

Concept/Design: Hall Kelley, Concept/Photography: R. J. Muna

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors
which may appear in this document nor does it make a commitment to update the information contained
herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.
The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BITBUS COMMputer, CREDIT, Data Pnpelme FASTPATH,
GENIUS, i, 1, ICE, iCEL, iCS, iDBP, iDIS, I12ICE, iLBX, Inboard, im, iMDDX,
iMMX, Insite, Intel, intgl, intglBOS, Intelevision, intgligent Identifier,
intgligent Programming, Intellec, Intellink, iOSP, iPDS, iPSC, iRMX,
iSBC, iSBX, iSDM, iSXM, KEPROM, Library Manager, MAP-NET, MCS,
Megachassis, MICROMAINFRAME, MULTIBUS, MULTICHANNEL,
MULTIMODULE, MultiSERVER, ONCE, OpenNET, OTP, PC-BUBBLE,
Plug-A-Bubble, PROMPT, Promware, QUEST, QueX, Quick-Pulse
Programming, Ripplemode, RMX/80, RUPI; Seamless, SLD, UPI, and
VLSICEL, and the combination of ICE, iCS, iRMX, iSBC, iSBX, iSXM,
MCS, or UPI and a numerical suffix 4-SITE.

Ethernet is a trademark of Xerox.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered
trademark of Mohawk Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.
Additional copies of this manual or other Intel literature may be obtained from:
‘ A Intel Literature Department

SC6-59

P.O. Box 58065 }

Santa Clara, CA 95052-8065

© INTEL CORPORATION 1987 - T

Table of Contents

AlphanumeriC INeXovuntii i e i e e
Intel’s Development Environment—The Complete Solution

CHAPTER 1
Microcomputer Development Languages
DATA SHEETS
386 SOftWare TOOIS« v vttt ettt et e
80286 Software DevelopmentPackagecoovviiiiiiiiiiiiiiiiiennn,
PASCAL 286 ..ttt e e e e e e
PLIM 286 . ..ttt ettt e e e
(@2
8086/8088 Software Development Package for SeriesI/PDS
8086/8088/80186/80188 Software Packagesooiunian, .
FORTRAN 80 8080/8085 ANS FORTRAN 77 Intellec® Resident Compiler
Pascal 80 Software Packagec.couiiiiiiiiiiiiiiiiiienn, R
PL/M 80 High-Level ProgrammingLanguageovvviiiiineeinnnnn.
8087 'SUPPOrt Library e
80287 Support Library A
8051 Software Packagesot etenetti ittt ettt e
MCS®-48 Diskette Based Software Package............... ...l
X MCS®-96 Software Development Packagesoooiiiniaan .
VAX*7VMS* Resident Software Development Packages for 80286
VAX*/VMS* Resident 8086/8088/80186 Software Development Packages
PRODUCT BRIEFS
Ada 286 CompilationSystem ...ttt el
FACT SHEETS ’
Intel Microprocessor Languagesc..veeeiiiiiniiniiiiiiiiiieeeiinnnn,
ARTICLE REPRINTS
AR-59 Modular Programming in PL/M ... i
AR-136 PL/M 86 Combines Hardware Access with High-Level Language
Features . ..ot e e
AR-200 Compiler Organization Techniques,
AR-239 PL/M 51: A High Level Language for the 8051 Microcontroller Family
AR-377 Integrated Tools Accelerate Code Development
AR-388 Ada Task Synchronization in a Multiprocessor System with Shared
1Y 1= 03T o
AR-390 Ada Capabilities for Today’s Microprocessorsvoevuunnn
AR-501 .0BJLESSONS .. .iiitii it e o

CHAPTER 2

Microcomputer Software Development Tools
DATA SHEETS .
PSCOPE Monitor 386ES (P-MON BBBES) ...ttt e
PSCOPE-86 for DOS High-Level Application Program Debugger.................
PSCOPE High-Level Program Debugger for iRMX™, XENIX*, Series Il and
LT 1T
. Debug MONitor 386 (D-MON 386P)ccuvuiiiiiiieiiiiiininaneenenens
8086 Handyman, R
AEDIT Source Code and Text Editor forPC-DOSccoiiiiiiinii s,
iPAT™ Performance Analysis TOOIot eeees
PRODUCT BRIEFS - :
80386 Development Environmentcoviiiiiiniiiiiiiiiiet i
APPLICATION NOTES ’
AP-243 Debugging with Intelonthe VAX* ot

c\\

W

vi

Table Of Contents (continued)

AP-253 Adding Value to Intel’s NDS || Development System Network with

(0 T 2-56
ARTICLE REPRINTS ,
AR-225 Debugging Catches up with High- Level Programming 2-64
AR-319 Software Developmentottt iiiiiiiiiieeenn - 2-70
AR-352 Integrated Environment Speeds System Development 2-75
CHAPTER 3
In Circuit Emulators
DATA SHEETS :
—Z ISBE-96 Development Kit Single Board Emulatorcooviiin., 3-1
12ICE Integrated Instrumentation and In-Circuit Emulation System 39
\VLS|CETM -96P In-Circuit Emulator for the MCS®-96 Family of Microcontrollers 3-62
ICET™-386 In-Circuit Emulator forthe 80386cccoviiiiiiiiiiinn, 3-73
ICET-5100/044 In-Circuit Emulator for the RUPITM-44 Family 3-83
,;}l(f ICE™-5100/252 In-Circuit Emulator for MCS®-51 Family of Microcontrollers. 3-91
ICE™-5100/452 In-Circuit Emulator for the UPI™ 452 Family of Programmable
@ o (o To= T £ S 3-101
APPLICATION NOTES " .
AP-239 Customer Applications of the EMV-88 Emulation Vehicle P 3-110
AP-262 Using Procedures to Speed 12ICE™ System Debugging:.......... 3-123
AP-273 Developing MCS®-96 Applications Using the SBE- 96 B 3-174
CHAPTER 4 \
Network Development Systems
DATA SHEETS
OpenNET™ Network Resource Manager (NRM) iMDX460..................... 4-1
Compilengine IMDX 485CEovvttrttii i eeeeerienneaneneanenennans 4-6
OpenNET™ Personal Computer LinkKoooviiiiiiiiniiii it 4-11
NDS iI/VAX* Link Networking Software P U A S 4-17
iMDX 555 NDS-I| NRM OpenNET™ Upgradeovvvvevinnnninnnn P 4-20
iMDX 581 ISIS Cluster Board Packagescovvvuvnnnns . 4-24
Intel Asynchronous Communications Linkcoviiiiiiiiiiiiiiiiiinnnnns 4-28
NDS II/Series IV/OpenNET™ ToolboXccvvieiiiiiiiiiiini i, 4-31
PRODUCT BRIEFS S
VAX*/VMS*/0OpenNET™ Networking Softwarecoivieinnn .. 4-36
FACT SHEETS
Networking for the Development Environmentccooviiiiiii i, 4-39
APPLICATION NOTES
AP-240 Using Archive to Efficiently ControlaNetwork..................coovttt, 4-42
AP-242 Additional Printer Support for the NDS-Il System 4-54
AP-244 Distributed Job Control the Key to Increased Network Productivity 4-66
AP-246 Setting Up an Efficient Hierarchical File System 4-79
AP-247 Adding Capability to the NDS-11 System with Cluster Boards 4-93
AP-278 Integrating the PC AT into the Intel Development Environment 4-105
ARTICLE REPRINTS ‘
AR-204 Smartlink comes to the Rescue of Software-DeveIopment Managers 4-124
AR-425 Helping Computers Communicate............... N 4-129
CHAPTER 5 ‘ '
Microcomputer Development Systems
DATA SHEETS ‘
iMDX 430/431/440/441 Intellec® Series IV Microcomputer Development ;
£ =] 2 3 T 5-1
iPDS™ Personal Development Systemcccoviiiiiiiiiiiiiiiiiiin., 5-6

vii

Table of Contents (continued)

iPDSTM-130 Optional Flexible External Disk Drive for the iPDS™ Personal
Development Systemc.oviiiiii it et e
IPDSTM Proto Kitottt i it ettt eaiaannnnens
APPLICATION NOTES _
AP-156 Designing Modules for the iPDS™ and iUP Systems
AP-245 Using Command Files to Speed Program Development

CHAPTER 6
System Design Kits
DATA SHEETS
SDK-86 MCS®-86 System DesignKitooiiiiiiiiiiiiiiiiiiiiiii e,

CHAPTER 7
PROM Programming

DATA SHEETS
iUP-200A/iUP-201A Universal PROM Programmersc.ooviuuuiennn..
iUP/iPDS™ ProgrammingModules.coiiiiiiiiiiiiiiiiiiiii i,

APPLICATION NOTES
AP-179 PROM Programming with the Intel Personal Development System

(4 911 T

CHAPTER 8
EPLD Development Tools
DATA SHEETS ,
iPLDS Intel Programmable Logic Development System.........................
APPLICATION NOTES
AP-279 Implementing and EPLD Design Using Intel’'s Programmable Logic
Development Systemt e i i e i

viii

Alphanumeric Index

386 Software TOOISv'viii it s N P 1-1
80286 Software Development Package et ne e e e e e e 1-14
80287 Support Libraryttt e e 1-77
80386 Development ENvironmentvuievneinenenneeneenivnenn. e 2-44
8051 Software Packagesoivieiiniiiii i i Geoee. 1481
80B6 HANAYMAN\ttt et vt ve i e i i s e e enass SR e, 2-28
8086/8088/80186/80188 Software Packages 1-40
8086/8088 Software Development Package for Series I/PDS 1-30
8087 SUPPOrt LIDrarny .. ovvit ettt it e e (PP LY £
Ada 286 Compilation Systemttt ieeee.. 14113
- AEDIT Source Code and Text Editor for PC-DOS.. P e .. 2-28
Compilengine iIMDX 485CEccoovvvinnennn. A JR .46
Debug MONitor 386 (D-MON 386P)c.tiuriiitiiiiiiiiiii it co.e 2 2-20
FORTRAN 80 8080/8085 ANS FORTRAN 77 Intellec® Resident Compiler ve. 161
12ICE Integrated Instrumentation and In-Circuit Emulation System e e s 3-9
O T e 126
iMDX 430/431/440/441 Intellec® Series IV Microcomputer Deve|opment System........ . 5-1
iMDX 555 NDS-Il NRM OpenNET™ Upgrade.cooeevinuinnn. Cee e eeen. 4-20
iMDX 581 ISIS Cluster Board Packageso evirrieinnnninennnns - .. 4-24
iPAT™ Performance Analysis TOOI.uueiniiin et L. 231
iPDS™ Personal DevelopmentSystem e "' 5B
PDSTM Proto Kit. . .ottt ettt it it e < 522
iPDS™-130 Optional Flexible External Disk Drive for the iPDS™ Personal Development !

R (=T 1 PO A P SR 5-18
iPLDS Intel Programmable Logic Development System e FRAPEIRNN 8-1
iISBE-96 Development Kit Single Board Emulator.............. N . 3-1
iUP-200A/iUP-201A Universal PROM Programmers Siah e TR R 7-1
iUP/iPDS™ Programming Modulesccooiiiiniiiiiiiiiiiiiiiiiiiiiee e 7-11
Intel Asynchronous Communications Linkttt 4-28
Intel Microprocessor Languagesoovvtvinnitiinie ettt 1-115
ICET™-386 In-Circuit Emulator forthe 80386ccoviiiiiiiiiiiiiiiiiiiie 3-73
ICETM-5100/044 In-Circuit Emulator for the RUPITM-44 Family 3-83
ICET™-5100/252 In-Circuit Emulator for MCS®-51 Family of Microcontrollers 3-91
ICET™-5100/452 In-Circuit Emulator for the UPIT™M 452 Family of Programmable 1/0

PrOCESSOIS .ttt ittt e e e e e 3-101
MCS®-48 Diskette Based Software Packagecooiiiiiiiiiiiiiiiiin., 1-90
MCS®-96 Software Development Packagesouueiiriiinieiiiiiiiiineinnn.. 1-92
Networking for the Development Environmentcoiiiiiiiiiiiiiiennnnnnn. 4-39
NDS 11/Series IV/OpenNETT™ TOOIDOX . .t vt vnieeetneeii et iiiienie e nnaees 4-31
NDS 1I/VAX* Link Networking Softwareot 4-17
OpenNET™ Network Resource Manager (NRM) iMDX 460 e 4-1
OpenNET™ Personal Computer Link.ooeiiiiiiiiii it 4-11
Pascal 80 Software Package P 1-65
PAS C AL 286 . .. e ettt ettt e e e 1-19
PL/M 286 . . oottt e 1-22
PL/M 80 High-Level ProgramminglLanguagecoveiiiiiiiiiiiiiiiinnne, 1-70
PSCOPE High-Level Program Debugger for iRMX™, XENIX*, Series lll and Series IV 212
PSCOPE Monitor 386ES (P-MON 386ES)cviutiinieiiiiiiiiiinnneinninns 2-1
PSCOPE-86 for DOS High-Level Application Program Debugger 2-5
SDK-86 MCS®-86 System Design Kit........oooiiiiiiiiiiiiiiiiiii i 6-1
VAX*/VMS* Resident Software Development Packages for80286..................... 1-100
VAX*/VMS* Resident 8086/8088/80186 Software Development Packages............. 1-106
VAX*/VMS*/OpenNET™ Networking Software ..ot 4-36
VLSICETM-96P In-Circuit Emulator for the MCS®-96 Family of Microcontrollers........... 3-62

intel

CUSTOMER SUPPORT

CUSTOMER SUPPORT

Customer Support is Intel’s complete support service that provides Intel customers with hardware support, software
support, customer training, and consulting services. For more information contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major factors in
determining whether that product will continue to meet a customer’s expectations. Such support requires an interna-
tional support organization and a breadth of programs to meet a variety of customer needs. As you might expect,
Intel’s customer support is quite extensive. It includes factory repair services and worldwide field service offices
providing hardware repair services, software support services, customer training classes, and consulting services.

HARDWARE SUPPORT SERVICES

Intel is committed to providing an international service support package through a wide variety of service offerings
available from Intel Hardware Support.

SOFTWARE SUPPORT SERVICES

Intel’s software support consists of two levels of contracts. Standard support includes TIPS (Technical Information
Phone Service), updates and subscription service (product-specific troubleshooting guides and COMMENTS Maga-
zine). Basic support includes updates and the subscription service. Contracts are sold in environments which repre-
sent product groupings (i.e., iRMX environment).

CONSULTING SERVICES

Intel provides field systems engineering services for any phase of your development or support effort. You can use
our systems engineers in a variety of ways ranging from assistance in using a new product, developing an application,
personalizing training, and customizing or tailoring an Intel product to providing technical and management con-
sulting. Systems Engineers are well versed in technical areas such as microcommunications, real-time applications,
embedded microcontrollers, and network services. You know your application needs; we know our products. Work-
ing together we can help you get a successful product to market in the least possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementation. In
just three to ten days a limited number of individuals learn more in a single workshop than in weeks of self-study.
For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we can take our
workshops to you for on-site instruction. Covering a wide variety of topics, Intel’s major course categories include:
architecture and assembly language, programming and operating systems, bitbus and LAN applications.

INTRODUCTION

Intel recognizes that developing a product based on an
advanced microprocessor creates major challenges for
an engineering group. Intel helps you meet these chal-
lenges and keep your project under control with a set of
development tools tailored to the architecture you are
using. These tools help you get your product develop-
ment done with your schedule and budget targets by
solving problems that waste valuable engineering time.

The first key to productive development is to work on
your product instead of developing and integrating
tools. Intel has tools for each phase of your project, and
each of them works smoothly with the others to form
an effective, integrated tool set. And the tools work on
popular industry-standard systems, including the IBM
PC AT and PC XT and compatible personal computers
and Digital Equipment Corporation VAX/VMS* sys-
tems.

HIGH-LEVEL LANGUAGE SUPPORT

Each Intel microprocessor and microcontroller is sup-

ported by a set of high-level languages that have the .

three important elements of well-integrated tools:

The most important integration is between the tools
and the processor. Intel assemblers and compilers
are optimized around the architectures they sup-
port: that means better performance for your prod-
uct. And efficient compilers mean you can write
more of your code in high-level languages instead of
assembly language.

Effective coding generally requires a family of com-
patible translators so that you can draw on the most
appropriate language to implement. each part of a
design. PL/M, Pascal, C, FORTRAN, and assem-
bly language enjoy certain advantages over each
other, depending on the application. You can link
object modules from any of the Intel translators
without further modifications.

The symbolic debugging power of Intel’s debuggers
is enhanced by communication between the transla-
tors and debuggers.

Development Languages and Utilities

Assemblers ‘All Intel assemblers—and there’s one for
every major Intel component—provide
full macro support.

Xi

PL/M PL/M was the first high-level language
designed expressly for microprocessors. It
is a procedure-oriented language with data
structuring' facilities that gives the engi-
neer full control over microprocessor-de-
pendent architecture features. It is one of
the most widely used tools in the micro-
processor and microcontroller world.

C C-86 is a true implementation of the C
programming language defined by Kering-
han and Ritchie. C is known for its flexi-
bility and portability.

Pascal-86 and Pascal-286 are supersets of
ISO Pascal, with extensions for indepen-
dent compilation and port 1/0. They also
embody advanced code optimization tech-
niques to achieve extremely efficient pro-
grams.

FORTRAN FORTRAN-86 and FORTRAN-286 are
ANSI-77 standard compilers augmented
with full 8087/80287 support and the abil-
ity to handle very large arrays (over 64
KB).

Intel linkage utilities allow independent
assembly and compilation of program
modules. Library managers allow the
management of standard modules and
routines. In the case of the 80286, a sys-
tem builder is provided to allow easy con-
figuration of a complex, protected, memo-
ry-managed system.

Pascal

Utilities

HARDWARE AND SOFTWARE
DEBUGGERS

Most of the unpleasant surprises that can delay a proj-
ect attack in the debugging phase. Intel has made de-
buggers a part of each microprocessor family package,
beginning with ICE 80, the world’s original in-circuit
emulator. Intel’s debuggers have the power to let you
find bugs early, while they are still cheap and easy to
fix, and to find many bugs that would not otherwise be
fixed without a major waste of engineering time and
schedule time.

Intel’s popular ICET™ In-Circuit Emulators continue
their key role in development projects, with full-speed,
transparent debugging for Intel components. Intel ICE
debuggers feature symbolic debugging, the ability to
stop execution under user-determined conditions, trace
collection, and emulation memory for program execu-
tion.

intel

INTRODUCTION

DEBUGGERS FOR 8086, 80186, AND
80286 FAMILY MICROPROCESSOR
APPLICATIONS

Intel’s debugging product line for the 8086, 80186, and
80286 families of microprocessors features a pair of
powerful tools covering the full range of development
needs: :

Tool
PSCOPE

Debugging Task

Host-resident, high-level
software debugging

Full-Speed, transparent 12ICE™ Emulator
software-hardware

integration and debug

The tools share a common user interface and high-level
language debugging capability. Symbolic debugging au-
tomates a task that can eat up valuable development
time and introduce error into the debug process. Sym-
bolic debugging builds on the debug records loaded
from the output of Intel assemblers and compilers—yet
another example of the added debugging power gained
from integration of development tools. Using user-de-
fined names, the engineer has access to memory loca-
tions and program variables (including dynamic vari-
ables and high-level-language data structures).

PSCOPE High-Level Language
Debugger :

PSCORPE is a host-resident debugger that lets you exe-
cute and debug programs at the source code level. You
can set break and trace points, examine memory, or
simply follow program flow at the instruction, state-
ment or procedure level for programs written in PL/M,
Pascal, C, FORTRAN, 8086 assembly language, or
80286 assembly language. PSCOPE even lets you make
high-level language patches and store them for later use
in updating source files.

The PSCOPE syntax, including debug procedures, is
the same used by the I2ICE and TargetSCOPE sys-
tems, so that when you move from software develop-
ment to software-hardware integration, the user inter-
face stays the same. There’s no new learning curve to
ascend, no lag in the development cycle.

I2ICE™ Integrated Instrumentation
and In-Circuit Emulation System

I2ICE is unmatched in its ability to kill hardware and
software bugs across the entire development process. Of
course, I2ICE offers the high-level language symbolic

debugging expected of a software debugger. It also inte-
grates transparent emulation support for all members
of Intel’s 8086 and 80286 families of microprocessors.

A full I2ICE configuration can simultaneously ‘emulate
four separate processors, stopping execution on an indi-
vidual event, on an address range, on conditional events
and on inter-processor events. The system then displays
a trace of execution or bus activity. Full-speed execu-
tion is possible using either target system memory or up
to 288 K-bytes of emulator memory for each processor.

PERFORMANCE ‘ANALYSIS

The iPAT Performance Analysis Tool provides real-
time performance analysis and real-time coverage of
programs running on 8086/88, 80186/88, and 80286
microprocessors to help software engineers optimize
code and improve software reliability.

Object code generated by Intel assemblers and compil-

" ers (C, PL.M, Pascal, and FORTRAN) can be ana-

xii

lyzed symbolically to improve software efficiency and
to validate test coverage. Any object code that lacks
compiler information—but that can be run by Intel em-
ulators and for which an absolute program map is
available—can also be analyzed non-symbolically by
the iPAT analyst.

DEBUGGERS FOR 80386 FAMILY
MICROPROCESSOR APPLICATIONS

Users of Intel’s 80386 advanced, 32-bit microprocessor
have a compatible set of software and hardware debug-
ging tools available for their projects:

Debugging Task Tool
High-level software PSCOPE Monitor
debugging 386 (P-MON 386)
Software debugging Debug Monitor
monitor 386 (D-MON 386)
Full-speed, transparent ICE™ 386
software-hardware Emulator
integration and debug

PSCOPE Monitor (P-MON 386)

P-MON 386 is a high-level, hosted software debugger
for 80386-based systems. It can access and control all of
the 80386’s visible user hardware resources without any
assistance from the operating system. It can also be
used to debug applications running under the control of
an operating system.

intel

INTRODUCTION

P-MON 386 allows symbolic debugging of programs
written in high-level languages. With the help of this
debugger, a user can download an application program
into the target prototype memory, set hardware and
software breakpoints at symbolically specified address-
es, trace program execution, and write patches to the
program under development.

Debug Monitor 386 (D-MON 386)

D-MON 386 is an unhosted, EPROM-based software
debug monitor that provides system-level debug sup-
port for 80386 systems. Using D-MON 386, a user can
set hardware and software breakpoints, examine and
modify memory and registers, and control program ex-
ecution. This monitor can be configured to run on any
80386-based target board with a user-supplied commu-
nication driver and hardware initialization routine.

ICE 386™ In-Circuit Emulator

The ICE™ 386 In-Circuit Emulator provides hard-
ware and software debugging for 80386-based designs.
Its capabilities include emulation for the 80386 CPU
and the 80287 and 80387 numeric processors. With
ICE 386, programs can execute continuously at speeds
up to 16 MHz or in a single-step mode. And it includes
symbolic debugging to let users work in the context of
their original programs.

Intel designed the 80386 and ICE 386 interactively to
get the debugging power required of an advanced, 32-
bit microprocessor, including non-intrusive access to
internal processor activity. Breakpoints allow stopping
emulation on specified instruction execution addresses
or data addresses. Trace capability lets a user. record
program execution history prior to the break.

DEBUGGERS FOR =
MICROCONTROLLER APPLICATIONS

Microcontroller applications are typically characterized
by high performance requirements, a variety of asyn-
chronous events, and a lot of on-chip activity. All of
these characteristics add to the challenge of debugging
your product. Each Intel microcontroller family has in-
circuit debugging support to meet the challenges. The
ICE and VLSICE emulators share a user interface with
I2ICE and PSCOPE, which saves learning time for
projects with multiple processor types.

ICE™ 5100 In-Circuit Emulator

The ICE 5100 emulator gives its user, real-time, non-
obtrusive control over 8051-family system debugging at
clock speeds up to 16 MHz. It includes the ability to
view and modify system activity at a symbolic, high-

level language level. ICE 5100/252 debugs HMOS and
CHMOS versions of the 8051, the 8052, and the 80C52
including on-chip RAM and ROM. The ICE 5100/044
supports the 8044, including BITBUSTM systems.

VLSIiCET™-96 In-Circuit Emulator

VLSIiCE 96 provides real-time, non-obtrusive debug-
ging support for the MCS-96 family of 16-bit microcon-
troller components. It features full symbolic debugging;
64 K-bytes of mappable ICE memory; dynamic execu-
tion and data trace, including internal RAM accesses;
and a break/state machine which allows stopping emu-
lation or enabling trace on user specified combinations
of execution addresses, opcodes, data addresses and val-
ues, and selected PSW bits.

iSBE 96 8096 Emulator

The iSBE 96 debugger permits basic execution and de-
bug of programs written for the MCS 96 family of 16-
bit microcontrollers, within the emulator or in the us-
er’s target system. '

GENERAL TOOLS FOR ALL
COMPONENT FAMILIES

EPROM Programming Support

Intel offers a full line of EPROM programmers for
Intel devices. Through parallel development efforts,
Intel is able to provide the earliest programming sup-
port for new Intel EPROMs, EEPROMs, KEPROMs
and microcontrollers—with the fastest programming
algorithms in the industry. The modular architecture of
Intel EPROM programmers allows new support to be
added with low-cost add-ons, as they become available.

EPLD Development Tools
Intel’s iPLDS Programmable Logic Development Sys-

. tem makes it easy to use an erasable, programmable

xiii

logic device (EPLD) in your design. The iPLDS pro-
vides all of the software, programming hardware, and
documentation needed to convert random logic into a
fully optimized, tested, and document device.

AEDIT Text Editor .

AEDIT is a full-screen text editor that can be either
menu- or command-driven. It offers the ability to
switch easily between two files or to view two files
simultaneously through windows. Text entry and edit-
ing are further simplified through the use of macros,
which allow you to save command clusters for later
use.

NX

34OM]ON ealy 2907 LINuadQ uo poddng sjooy

DEVELOPMENT ON NDS Ii DEVELOPMENT ON INDUSTRY- ON-TARGET
STANDARD HOSTS WITH DEVELOPMENT ON
OpenNET CONNECTION - INTEL SYSTEM 286/310
==
1
i
----- I I
i 1
_ HnmHnn Tﬂ = k
: nmm — b
nmim
? g e -
[Hew | 2

280336-1

P

NOILONAOH.LNI

intel

INTRODUCTION

Development Host Selection

Intel’s development tools are available on a selection of
industry-standard host systems, giving users of Intel
microprocessors and microcontrollers the ability to ap-
ply a combination of valuable elements in their develop-
ment projects:

® design and debug tools built around the needs of the
specific microprocessor or microcontroller.

® host systems optimized around installed equipment

or the experience and needs of the development

team:
VAX/VMS

PC AT, PC XT (DOS)

Centralized development and

project

control

for large

teams, on an industry stan-

dard system.

Versatile, standard, high-per-
formance workstation.

o continued use of Intellec Series, II, III, and IV and
Model 800 dedicated development systems.

® an open network to link tools across the various host

Whether you run the Intel tools on a VAX minicom-
puter, a PC AT or XT, or an Intel system, the integra-
tion work is done before you install the tools on the
system—you don’t waste time getting the tools ready
for the project.

Network Connections

Your host workstations can be a part of a complete
development network using Intel’s OpenNETTM imple-
mentation of the high-performance Ethernet local area
network.

The OpenNET network is based on open, ISO OSI
standard protocols. In a development application it lets
your PC- and VAX-based development stations share
files resident on the VAX system. The OpenNET con-
nection also (1) lets PC users share files resident on
Intel’s NDS II Network Resource Manager and (2)
gives users doing on-target development on Intel
iRMX® and XENIX* systems access to files resident
on a VAX/VMS, iRMX, XENIX, or DOS system from
an iRMX, XENIX, or DOS system.

environments.
Component Support on Industry Standard Host Systems
Components Supported
Development 8086/80186 8044
Languages 8088/80188 80286 80386 8096 8051
Assembler PC PC PC PC PC
VAX/VMS VAX/VMS VAX/VMS Series IV Series Il
Series IV Series IV Series IV
PL/M PC PC PC PC PC
VAX/VMS VAX/VMS VAX/VMS Series IV Series Il
Series IV Series IV Series IV
Cc PC PC PC PC
VAX/VMS VAX/VMS VAX/VMS
Series IV Series IV
Pascal PC PC
VAX/VMS VAX/VMS
Series IV Series IV
FORTRAN PC
VAX/VMS
Series IV
Debuggers
PSCOPE PC Series IV
I12ICE™ PC Series IV PC Series IV
VLSICE™ PC Series IV
ICE™ PC PC
Series IV
NOTES:

Tools that run on Series IV or Series |I also run on Series lll.
Intel also offers versions of development languages that run on iRMX™- and Xenix-based systems for on-target develop-

ment.’

*VAX and VMS are trademarks of Digital Equipment Corporation.

*XENIX is a trademark of Microsoft Corporation.

XV

e
Microcomputer Development 1
Languages

intel

386 SOFTWARE TOOLS

PL/M 386 Software Package

m Systems Programming Language for
the Protected Virtual Address Mode
386 ’

m Upward Compatible with PL/M 286,
PL/M 86, and PL/M 80 Assuring
Software Portability

386 Relocation, Linkage and Library Tools

H Provides System Development
Capability for High-Performance 386
Applications ,

m Allows Creation of Multi-User Virtual
Memory, and Memory-Protected
Systems

C 386

| Implements Full C Language and New
Extensions

m Produces High Density Code Rivaling
Assembler

m Supports Intel Object Module Format
(OMF) '
ASM 386

m Instruction Set and Assembler
Mnemonics Are Upward Compatible
with ASM 286 and ASM 86

m Type-Checking at Assembly Time Helps
Reduce Errors at Run-Time

PROTECTED, MULTI=

a
ASM 386 MAP386 i TASK TEM
e3 /h\
PL/M 386 o > g I ’ \g
OMF & o 4
S| OPERATING SYSTEM A
¢ 386] SOFTWARE
© TARGET
] - AR -~ SYSTEM
FORTRAN 386 > Cg
APPLICATION /
SOFTWARE
ADA 386 LIB386 _
DEBUGGERS:
80287/387) ICE'Y MONITOR, ETC.
SUPPORT
LIBRARY

261637-1

Figure 1. Development Environment Tools for the 386

386 Software tools are available on industry standard hosts, including VAX/VMS, PC-DOS, and XENIX*

November 1986
Order Number: 231637-002

intel 386 Software Tools

ASM 386

m Instruction Set and Assembler m “High-Level” Assembler Mnemonics
Mnemonics Are Upward COmpathIe Simplify the Language L
with ASM 286 and ASM 86~ - m Supports Full Instruction Set of the

m Powerful and Flexible Text Macro 386, Including Memory Protectlon and
Facility Numerics

m Type-Checking at' Assembly Time Helps n Supports 286 Addressing Modes .
Reduce Errors at Run-Time o

m Structures and Records Provide
Powerful Data Representation

ASM 386 is the “high-level” macro assembler for the 386 assembly language. ASM 386 translates symbolic
assembly language mnemonics into relocatable object code. The assembler mnemonics are a superset of
ASM 286/86/88 mnemonics; new ones have also been added to support the new 386 instructions. The
segmentation directives have been greatly simplified.

The 386 assembly language includes approximately 275 instruction mnemonics. From these few mnemonics
the assembler can generate over 40,000 distinct machine instructions. Therefore, the software development
task is simplified, as the programmer need know only 275 mnemonics to generate all possible machine
instructions. ASM 386 will generate the shortest machine instruction possible (given explicit information as to
the characteristics of any forward referenced symbols).

The powerful macro facility in ASM 386 saves development and maintenance time by coding common pro-
gram sequences only once. A macro substitution is made each time the sequence is to be used. This facility
also allows for conditional assembly of certain program sequences.

ASM 386 offers many features normally found only in high-level languages. The assembly language is strongly
typed, which means it performs extensive checks on the usage of variables and labels. This means that many
programming errors will be detected when the program is assembled, long before it is being debugged.

ASM 386 object modules conform to a thorough, well-defined format used by all 386 high-level languages and
utilities. This means it is easy to call (and be called from) HLL object modules.

SUPPORT

Hotline Telephone Support, Software Performance Report (SPR), Software Update, Technical Reports, and
Monthly Technical Newsletters are available.

ORDERING INFORMATION

. . Operating
Part Number Description Environment
X286ASM386 :) 386 Assembler 286/310 XENIX* System
D86ASM386 386 Assembler ~ PC-DOS 3.0 or greater
Documentation Package'

ASM 386 Assembly Language Reference Manual
ASM 386 Macro Assembler Operating Instructions for XENIX* 286 Systems
ASM 386 Pocket Reference for XENIX 286 Systems

*XENIX™ is a trademark of Microsoft.

intel

386 Software Tools

386 RELOCATION, LINKAGE AND LIBRARY TOOLS

m System Development Capability for
High-Performance 386 Applications

m Allows creation of Multi-User, Virtual
Memory, and Memory-Protected

Systems

m System Utilities for Program Linkage
and System Building

m Package Supports Program
Development with ASM 386, PL/M 386,

C 386, Ada 386 and FORTRAN 386.

The 80386 is a 32-bit microprocessor system with 32-bit addressing, integrated memory protection, and
instruction pipelining for high performance. The 386 Relocation, Linkage, and Library Tools are a cohesive set
of software design aids for programming the 386 microprocessor system. The package enables system pro-
grammers to design protected, multi-user and multi-tasking operating system software, and enables applrca—
tion programmers to develop tasks to run on a protected operating system.

The 386 Relocation, Linkage and Library tools include a program binder (for linking separately compiled
modules together), a system builder (for configuring protected multiple-task systems), a cross reference map-
per, a program librarian, and the 287/387 support library.

ASM 386

PL/M 386

C 386

FORTRAN 386

ADA 386

/l MAP386

OMF

LIB386

80287/387
SUPPORT
LIBRARY

e

386 BINDER

— O —

PROTECTED, MULTI-
TASK SYSTEM

.
\J

386
SYSTEM BUILDER

OPERATING SYSTEM
SOFTWARE
TARGET
% SYSTEM
ENEN
APPLICATION
SOFTWARE :
DEBUGGERS:

ICE'}' MONITOR, ETC.

261637-2

Figure 1. Development Environment Tools for the 386

|nte[386 Software Tools

386 SYSTEM BUILDER

m Supports Complete Creation of m Creates a Memory Image of a 386
Protected, Multi-task Systems .~ System for Cold-start Execution
m Resolves PUBLIC/EXTERNAL m Target System may be Boot-loadable,
- Definitions (between protection levels) Programmed into ROM, or loaded from
m Supports Memory Protection by Mass-store.
Building System Tables, Initializing m Generates Print File with Command
Tasks, and Assigning Protection Rights Listing and System Map

to Segments

BLD 386 is the utility that lets system programmers configure multi-tasking, protected systems from an operat-
ing system and discrete tasks. The Builder generates a cold-start execution module, suitable for ROM-based
or disk-based systems.

The Builder accepts input modules from 386 translators or the 386 Binder. It also accepts a “Build File”
containing definitions and initial values for the 386 protection mechanism - descriptor tables, gates, segments,
and tasks. BLD 386 generates a Loadable or bootloadable output module, as well as a print file with a detailed
map of the memory-protected system.

Using the Builder command Language, system programmers may perform the following functions:

— Assign physical addresses to segments; also set — Create Task State Segments and Task Gates for
segment access rights and limits. multi-task applications.

— Create Call, Trap, and Interrupt “Gates” (entry- — Resolve inter-module and inter-level references,
points) for inter-level program transfers. and perform type-checking.

— Make gates available to tasks; this is an easier — Automatically select required modules from li-
way to define program interfaces than usmg in- braries.
terface libraries. . — Configure the memory image into partitions in

— Support Page tables for boot files. : the address space.

— Create Global (GDT), Interrupt (IDT), and any Lo- — Selectively generate an object file and various
cal (LDT) Descrlptor Tables. sections of the print file.

|“te[: 386 Software Tools

386 BINDER
m Links Separately Compiled Program m Resolves PUBLIC/EXTERNAL Code and
Modules Into an Executable Task Data References, and Performs
m Makes the 386 Protection Mechanism Intermodule Type-Checking
Invisible to Application Programmers m Provides Print File Showing Segment
m Works with PL/M 386, C 386, FORTRAN Map, Errors and Warnings
386 and ASM 386 Object Modules m Assigns Virtual Addresses to Tasks in
m Performs Incremental Linking with the 232 Address Space

Output of Binder and Builder m Generates Linkable or Loadable Module
for Debugging

The Binder is the only utility an application programmer needs to develop and debug an individual task. Users
of the Binder need not be concerned with the architecture of the target machine, making application program
development for the 386 very simple. C

BND 386 combines 386 object modules into executable tasks. In creéting a task, the Binder resolves Public
and External symbol references, combines segments, and performs address fix-ups on symbolic code and
data. B

The Binder takes object modules written in ASM 386, PL/M 386, C 386 and FORTRAN 386 and generates a
loadable module (for execution or debugging), or a linkable module (to be re-input to the Binder later; this is
called incremental binding). The binder accepts library modules as well, linking only those modules required to
resolve external references. BND 386 generates a print file displaying a segment map and error messages.

The Binder will be used by system programmers and application programmers. Since application programmers
need to develop software independent of any system architecture, the 386 memory protection mechanism is
“hidden” from users of the Binder. This allows application tasks to be fully debugged before becoming part of
a protected system. (A protected system may be debugged, as well.) System protection features are specified
later in the development cycle, using the 386 System Builder. It is possible to link operating system services
required by a task using either the Binder or the Builder. This flexibility adds to the ease of the 386 utilities.

1-5

|nter 386 Software Tools

80287 SUPPORT LIBRARY

m Library to support floating point’ m Common elementary function library

- arithmetic in C 386, PL/M 386, ADA 386, provides trigonometric, logarithmic and
ASM 386, and FORTRAN 386 other useful functions

m Decimal conversion module supports m Error-handler module simplifies floatmg
binary-decimal conversions . point error recovery

m Supports proposed IEEE Floating Point
Standard for high accuracy and
software portability :

The 80287 Support Library provides C 386, PL/M 386, ADA 386, ASM 386 and FORTRAN 386 users with
numeric data processmg capability. With the Library, it is easy for programs to do floating point arithmetic.
Programs can bind in library modules to do trigonometric, logarithmic and other numeric functions, and the
user is guaranteed accurate, reliable results for all appropriate inputs. Figure 1 below illustrates how the 80287
Support Library can be bound with PL/M 386 and ASM 386 user code to do this. The 80287 Support Library
supports the proposed IEEE Floating Point Standard. Consequently, by using this Library, the user not only
saves software development time, but is guaranteed that the numeric software meets industry’ standards and
is portable—the software investment is maintained.

The 80287 Support Library consists of the common elementary function library (CEL287.LIB), the decimal
conversion library (DC287.LIB), the error handler module (EH287.LIB) and mterface libraries (80287 LiB),
(NUL287.LIB).

B.PLM
‘A.PLM
maerTNH: PROCEDURE (THETA) REAL EXTERNAL: o B.0BJ
BECLARE THETA REAL:
. END mqerTNH:
DECLARE (INPUT VALUE, OUTPUT VALUE) REAL; . PL/M=386 . > A.OBJ .
INPUT VALUE=0.62;/*Test value®/ : :
QUTPUT VALUE=mqerTNH{INPUT VALUE);
{ow xih th testInput, OUTPUT VALUE s about COMPILED
55112803/ SOURCE MODULES
=

I D.ASM
[o8)
C.ASM »] LINK-386 | USER.LNK
;This EXTRN must oppear outside of oll SEGMENT-ENDS I
P ASM-386 » coms H m——
INPUT VALUE DQ(~0.62) !nlﬂalhaﬁun Is o test
o e B proy—— OBJECT MODULE
s '?Efl?%ﬁfmfm’ esep i LN REAL SOURCE MODULES
=

FLDINPUT VALUE iLoad the porometer into the 80287

CALL et Aok the hyperboli tongent
FSTP OUTPUT VALUE .ﬂel’. the ur.\‘:-u r and pop the

ith the tast input, OUTPUT VALUE s now about
055112

80287.LIB

CEL287.LIB

80287 SUPPORT
LIBRARY

231637-3
Figure 2. Use of 80287 Support Library with PL/M 386 and ASM 386.

1-6

lnl'el' 386 Software Tools

386 MAPPER

m Flexible Utility to Display Object File m Mapper Allows Users to Display:
Information Protection Debug

m MAP 386 Selectively Purges Symbols g‘ég’a‘gﬁ';’“ :\:g’[;ﬁ'fé““
from a Load Module ‘

» TABLES NAMES

m Provides Inter-Module Cross- GATE PROGRAM
Referencing for Modules Written in All TABLES SYMBOLS -
Languages PUBLIC LINE

m Supports OS Information ADDRESSES NUMBERS

The cross-reference map shows references between modules, simplifying debugging. The map also lists and

controls all symbolic information in one easy-to-read place.

386 LIBRARIAN

m Fast, Easy Manageinent of 386 Object m Librarian Allows Users to: Create
Module Libraries Libraries, Add Modules, Replace

m Only Required Modules Are Linked,

Modules, Delete Modules, Copy

Modules from Another Library, Save
When Using the Binder or Bullder Library Module to Object File, Create

Backup, Display Module Information
(creation date, publics, segments)

Program libraries improve management of program modules and reduce software administrative overhead.

(386 Librarian provides efficient use of program libraries.)

SUPPORT:

Hotline Telephone Support, Software Performance Report (SPR), Software Updates, Technical Reports, and

Monthly T_echnical Newsletters are availab[e.

ORDERING INFORMATION:

Part Number Description

X286RLL386 386 Relocation, Linkage and Library Tools
VVSRLL386 386 Relocation, Linkage, and Library Tools
D86RLL386 386 Relocation, Linkage, and Library Tools

Documentation Package
386 Utilities User’s Guide for Xenix* 286 System

386 System Builder User’s Guide for Xenix* 286 System
80287 Support Library Reference Manual

*XENIX is a trademark of Microsoft.

Operating
Environment
286/310 XENIX* System
VAX/VMS 4.3 and Later

PC-DOS 3.00r Greater

Intef 386 Software Tools

PL/M 386 SOFTWARE PACKAGE

B Systems programming language for the B Produces relocatable object code
protected virtual address mode 386 which is linkable to object modules

m Upward compatible with PL/M 286, generated by all other 386 Ianguage
PL/M 86 assuring software portability translators -

m Enchanced to support design of m Advanced, structured system ,
protected, mu|ti-3ger, multi-gtaskihg, |mplementat|on Ianguage for algorlthm

virtual memory operating system - development
software L H Supports Intel Object Module Format
k (OMF)

PL/M 386 is a powerful, structured, high-level system lmplementatlon language for the development of system
software for the protected virtual address mode 386. PL/M 386 has been enhanced to utilize 386 features—
‘memory management and protection—for the implementation of multi-user, multi-tasking virtual memory oper-
ating systems.

PL/M 386 is upward compatible with PL/M 286, PL/M 86 and PL/M 80. Existing systems software can be re-
compiled with PL/M 386 to execute in protected virtual address mode on the 80386.

PL/M 386 is the high-level alternative to assembly Ianguage programmmg on the 80386 For the majority of
386 system programs, PL/M 386 provudes the features needed to access and to control efficiently the underly-
ing 386 hardware and consequently it is the cost-effective approach to develop rehable, mamtamable system
software. . .

The PL/M 386 compiler has been designed to efficiently support all phases of software development. Fea-
tures such as a built-in syntax checker, multiple levels of optimization, virtual symbol table and four models of
program size and memory usage for efficient code generatnon provide the total program development support
needed.

FEATURES Language Compatibility
Maijor features of the Intel PL/M 386 compller and PL/M 386 object modules are compatible with ob-
programming language mclude ject modules generated by all other 386 translators.

This means that PL/M programs may be linked to
. programs written in any other 386 languages.
Structured Programming
Object modules are compatible with In-Circuit Emu-
PL/M source code is developed in a series of mod- lators; DEBUG compiler control provides the In-Cir-
ules, procedures, and blocks. Encouraging program cuit Emulators with full symbolic debugging capabili-
modularity in this manner makes programs more ties.
readable, and easier fo maintain and debug. The s : ,
language becomes more flexible by clearly defining PL/M 386 language is upward compatible with PL/M
the scope of user variables (local to a private proce- 286, PL/M 86 and PL/M 80 so that application. pro-
dure, for example). : grams may be easily ported to run on the protected
o -) mode 80386.
The use of modules and procedures to break down
a large problems leads to productive software devel-
opment. The PL/M 386 implementation of block
structure allows the use of REENTRANT proce-
dures, which are especially useful in system design.

1-8

intel

386 Software Tools

Supports Fourteen Data Types

PL/M makes use of fourteen data types for various
applications. These data types range from one to
eight bytes and facilitate various arithmetic, logic,
and addressing functions:

—BIT(n): 1 to 32 bit unsigned number
—BYTE: 8 bits unsigned number
—HWORD: 16 bits unsigned number
—WORD: 32 bits unsigned number
—DWORD: 64 bits unsigned number
—OFFSET: 32 bits memory address
—CHARINT: 8 bits signed number
—SHORTINT: 16 bits signed number
—INTEGER: 32 bits signed number
—LONGINT: 64 bits signed number
—REAL: 32 bits floating-point number
—SELECTOR: 16 bits segment name
—POINTER: 48 bits selector, offset
—LONGREAL: 64 bits floating-point number

Another powerful facility allows the use of BASED
variables which permit run-time mapping of variables
to memory locations. This is especially useful for
passing parameters, relative and absolute address-
ing, and dynamic memory allocation.

Data Type Compatibility

PL/M 286 programs may be recompiled and retar-
getted to the 386 by use of the WORD16 control.
With this control, PL/M 386 provides transparent ac-

cess to the seven data types provided by PL/M 286.

Two Data Structuring Facilities

In-addition to the 14 data types and based variables,
PL/M supports two powerful data structuring facili-
ties. These help the user organize data into logical
groups.

— Array: Indexed list of same type data elements

— Structure: Named collection of same or different
type data elements

— Combinations of both: Arrays of structures or
structures of arrays and structures within struc-
tures.

Numerics Support

PL/M programs that use 32-bit REAL data are exe-
cuted using the 80287 Numeric Data Processor for
high performance. All floating-point operations sup-
ported by PL/M are executed on the 80287 accord-
ing to the IEEE floating-point standard. PL/M 386
programs can use built-in functions and predefined
procedures—INITSREALSMATHSUNIT, SET$REAL
$MODE, GET$REALSERROR, SAVES$REAL$
STATUS, RESTORE$REAL$STATUS—to control
the operation of the 80287 within the scope of the
language.

Built-In Port I/0

PL/M 386 directly supports input and output from
the 386 ports for single BYTE, HWORD and WORD
transfers. For BLOCK transfers, PL/M 386 programs
can make calls to predefined procedures.

Interrupt Handling

PL/M 386 has the facility for generating and han-
dling interrupts.on the 386. A procedure may be de-
fined as an interrupt handler through use of the IN-
TERRUPT attribute. The compiler will then generate
code to save and restore the processor status on
each execution of the user-defined interrupt handler
routine. The PL/M statement CAUSESINTERRUPT
allows the user to trigger a software interrupt from
within the program. :

Protection Model -

PL/M 386 support the implementation of protected
operating system software by providing built-in pro-
cedures and variables to access the protection
mechanism of the 386. Predefined variables—
TASK$REGISTER, LOCAL$TABLE, MACHINES$
STATUS, CONTROLS$SREGISTER, etc.—allow direct
access and modification of the protection system.
Untyped procedures and functions—SAVES$
GLOBALSTABLE,. RESTORE$GLOBAL$TABLE,
SAVESINTERRUPT$TABLE, RESTORESINTER-
RUPT$TABLE, CLEAR$TASK$SWITCHEDSFLAG,
GET$ACCESS$RIGHTS, GET$SEGMENTSLIMIT,
SEGMENTS$READABLE, SEGMENT$WRITABLE,
ADJUST$RPL—provide all the facilities needed to
implement efficient operating system software.

intef

386 Software Tools

Compiler Controls

The PL/M 386 compiler offers controls that facilitate
such features as:

— Interface to other 386 Ianguages

— Optimization

— Conditional compilation

— The inclusion of addmonal PL/M source files
from disk

— Cross-reference of symbols

—_ ?Iptional assembly language code in the listing
ile

— The setting of overflow conditions for run-time
handling.

— WORD16/WORD32 .

— Interface to 286 languages

Addressing Control

The PL/M 386 compiler uses the SMALL and COM-
PACT controls to generate optimum addressing in-
structions for programs. Programs of any size can
be easily modularized into “subsystems” to exploit
the most efficient memory addressing schemes.
This lowers total memory requirements and im-
proves run-time execution of programs.

Code Optimization

The PL/M 386 compiler offers four levels of opti-
mization for S|gn|f|cantly reducing overall program
size.

— Combination or “folding” of constant expres-
sions; and short-circuit evaluation of Boolean ex-
pressions

— “Strength reductions”: a shift left rather than
multiply by 2; and elimination of common subex-
pressions within the same block

— Machine code optimizations; elimination of su-
perfluous branches; removal of ‘unreachable
code

— Optimal local register allocation

Error Checking

The PL/M 386 compiler has a very powerful feature
to speed up compilations. If a syntax or program er-
ror is detected, the compiler will skip the code gen-
eration and optimization passes. This usually yields
a 2X performance increase for compilation of pro-
grams with errors.

A fully detailed and helpful set of programming and
compilation error messages is provided by the com-
piler and user’s guide.

Cost-Effectlve Alternative to Assembly Language

PL/M 386 programs are code efficient. PL/M 386 combines aII of the benefits of a high-level language (ease
of use, high productivity) with the ability to access the 386 architecture. Consequently, for the development of
systems software, PL/M 386 is the cost-effective alternative to assembly language programming.

Support

Hotline Telephone Support, Software Performance Report (SPR), Software Updates, Technical Reports, and

Monthly Technical Newsletters are available.

ORDERING INFORMATION

Operating
Part Number Description Environment
X286PLM386 PL/M 386 Compiler XENIX* 286/310
D86PLM386 PL/M 386 Compiler PC-DOS 3.0 or Greater

Documentation Package
PL/M 386 User’s Guide for Xenix* 286 System

*XENIX is a trademark of Microsoft.

rnte[386 Software Tools

C 386
C COMPILER FOR THE 386

m Implements full C Language m Supports IEEE Floating Point Math with
m Produces High Density Code Rivaling 80287 Coprocessor
Assembler m Supports Bit Fields
m Supports Intel Object Module Format m Supports Full Standard 1/0 Library
(OMF) (STDIO)

m WritteninC

Intel C 386 brings the full power of the C programming language to the 386 microprocessor system. Intel C386
supports the full C language as described in the Kernighan and Ritchie book, “The C Programming Lan-
guage”, (Prentice-Hall, 1978). Also included are the latest enhancements to the C language: structure assign-
ments, functions taking structure arguments and returning structures, and the “void” and “enum’ data types.

Intel C 386 Compiler Description

The C 386 compiler operates in-several phases: preprocessor, parser and code generator. The preprocessor.
phase interprets directives in C source code, including conditional compilations (# define). The parser phase
converts the C program into an intermediate free form and does all syntactic and semantic error checking. The
code generator phase converts the parser’s output into an efficient intermediate binary code, performs con-
stant folding, and features an extremely efficient register allocator, ensuring high quality code. The code
generator outputs relocatable Intel Object Module Format (OMF) code, without creating an intermediate as-
sembly file. The C386 compiler eliminates common code, eliminates redundant loads and stores, and resolves
span dependencies (shortens branches) within a program. ‘

The C 386 runtime library consists of a number of functions which the C programmer can call. The runtime
system includes the standard 1/0 library (STDIO), conversion routines, routines for manipulating strings, and
(where appropriate) routines for interfacing with the operating system.

C 386 uses Intel’s Binder and Builder and generates debug records for symbols and Imes on request, permit-
ting access to Intel’s PSCOPE Monitor/ICE™ emulator to aid in program testing.

intel

386 Software Tools

FEATURES

Preprocessor Directives
#define—defines a macro

#mclude——rncludes code outsrde of the program
source file .

#if—conditionally includes or excludes code
Other preprocessor directives include #undef, #if-
def, #ifdef, #else, #endif, and #line.

Statements

The C language supports a variety of statements:
Conditionals: If, IF-ELSE
Loops: WHILE DO-WHILE, FOR
Selectlon of cases: SWITCH CASE, DEFAULT
Exrt from ‘a function: RETURN
Loop Control CONTINUE BREAK
‘Branching: GOTO

Expressions and Operators

Data Types and Storage Classes

Data in Cis deecribed‘by its type and storage class.
The type determines its representation and use, and
the storage class determines its lifetime, scope, and
storage allocation. The following data types are fully
supported by C 386.

char: an 8 bit signed integer

int: a 32 bit signed integer

short: a 16 bit signed integer
- ‘_Iong a-32 brt signed integer

-unsigned: a modifier for integer data types (char,

int, short, and long) which doubles the positive

range of values

float: a 32 bit ﬂoatlng pornt number WhICh utilizes
the 80287

"double: a 64 bit f_Ioatr'ng point number-

“void: a spemal type that cannot be used as an

’ operand in ‘expressions; normally used for func-
tions called only for effect (to prevent their use in
- contexts where a value is required).

"enum: an enumerated data type)

These fundamental data types may be used to cre-

_ate other data types including: arrays, functions,

The C language includes a rich set of expressrons :

and operators.

Primary expression: invoke functions, select ele-
ments from arrays, and extract fields from structures
or unions.

Arithmetic operators: add, subtract, multiply, divide,
modulus

Relational operators: greater than, greater than or
equal, less than, less than or equal, not equal

Unary operators: indirect through a pointer, compute
an address, logical negation, ones complement, pro-
vide the size in bytes of an operand.

Logical ooerators: AND, OR

Bitwise operators: AND, exclusive OR, inclusive OR,
bitwise complement

structures, pointers, and unions.
The storage classes available in C 386 include:

register: suggests that a variable be kept in a
machine register, often enhancing code density
and speed

extern: a variable defined outside of the function
where it is declared; retaining its value through-
out the entire program and accessible to other
modules

auto: a local variable, created when a block of
code is entered and discarded when the block is
exited

static: a local variable that retains its value until
the termination of the entire program

typedef: defines a new data type name from ex-
isting data types

intel

386 Software Tools

BENEFITS

Faster Compilation

Intel C 386 compiles C programs substantially faster
than standard C compilers because it produces Intel
OMF code directly, eliminating the traditional inter-
mediate process of generating an assembly file.

Portability of Code

Because Intel C 386 supports the STDIO and pro-
duces Intel OMF code, programs developed on a
variety of machines can easily be transported to the
386.

ORDERING INFORMATION

Part Number Description

X286C386PP C 386 Compiler
VVS386 C 386 Compiler
D86C386 C 386 Compiler

Documentation Package
C 386 User’s Guide for Xenix* 286 System

*XENIX is a trademark of Microsoft.

Full Manipulation of the 386

Intel C 386 enables the programmer to utilize fea-
tures of the C language to control bit fields, pointers,
addresses and register allocation, taking full advan-
tage of the fundamental concepts of the 386.

Support

Intel offers several levels of support for this product
which are explained in detail in the price list. Please
consult the price list for a description of the support
options available.

Operating
Environment
XENIX* 286/310 System
VAX/VMS 4.3 and later
PC-DOS 3.0 or greater

inu
286 SOFTWARE DEVELOPMENT TOOLS
AVAILABLE ON CHOICE OF INDUSTRY STANDARD

HOSTS |
INCLUDING PC-DOS AND VAX/VMS*
B 286 Software Development Package | PL/M 286 SOftware Package

— Complete System Development — Systems Programming Language for
Capability for High-Performance 286 the Protected Virtual Address Mode
Applications of the 286

— Allows Creation of Multi-User, Virtual — Advanced Structured System
Memory, and Memory-Protected Implementation Language for
Systems . . Algorithm Development

—_— racro Asslembler for Machine-Level m IC-286, C Compiler for the '80286 5
rogramming — Implements Full C Language

m Pascal-286 Software Package — Runs Under the Intel UDI, IBM PCs,
‘— High-Level Programming Language VAX/VMS*, and Intel Development
for the Protected Virtual Mode of the Systems
286

— Implements ISO Standard Pascal

ASM-286
programs @
' TARGET
. =
puM-286] 4 —J & SYSTEM
programs |~ Z OPERATING SYSTEM g P
o 8> ' DEBUGGER
8 g“z’ » (@) : ICE™ MONITOR, etc|
Pascal-286 N ;’f_ / g'u_J V
programs
i ~ < % 1 2| erorecten, muLn-
- J o TASK SYSTEM
/ .
FORTRAN-286
APPLICATION
programs // SOFTWARE
C286 ;
programs .

231665-1

The iAPX 286 Software DeVeIopment Package keeps the protection mechanism invisible to the application
programmer, yet easy to configure for the system programmer.

*VAX/VMS are trademarks of Digital Equipment Corporation.

October 1986
1-14 Order Number: 231665-002

lnfer 286 SOFTWARE DEVELOPMENT TOOLS

80286 MACRO ASSEMBLER

m Instruction Set and Assembler m Structures and RECORDS Provide
Mnemonics Are Upward Compatible Powerful Data Representation
with ASM-86/88 m “High-Level” Assembler Mnemonics

m Powerful and Flexible Text Macro Simplify the Language
Facllity m Supports Full instruction Set of the

m Type-Checking at Assembly Time Helps 80286/20, Including Memory Protection
Reduce Errors at Run-Time and Numerics

ASM-286 is the “high-level” macro assembler for the 80286 assembly language. ASM-286 translates symbolic
assembly language mnemonics into relocatable object code. The assembler mnemonics are a superset of
ASM-86/88 mnemonics; new ones have also been added to support the new 80286 instructions. The segmen-
tation directives have been greatly simplified.

The 80286 assembly language includes approximately 150 instruction mnemonics. From these few mnemon-
ics the assembler can generate over 4,000 distinct machine instructions. Therefore, the software development
task is simplified, as the programmer need know only 150 mnemonics to generate all possible machine
instructions. ASM-286 will generate the shortest machine instruction possible (given explicit information as to
the characteristics of any forward referenced symbols).

The powerful macro facility in ASM-286 saves development and maintenance time by coding common pro-
gram sequences only once. A macro substitution is made each time the sequence is to be used. This facility
also allows for conditional assembly of certain program sequences.

ASM-286 offers many features normally found only in high-level languages. The assembly language is sirongly
typed, which means it performs extensive checks on the usage of variables and labels. This allows many
programming errors to be detected when the program is asembled, long before it is being debugged.

ASM-286 object modules conform to a thorough, well-defined format used by all 286 high-level languages and
utilities. This makes it easy to call (and be called from) HLL object modules.

Key Benefit

For programmers who wish to use assembly language. ASM-286 provides many powerful “high-level”" capabil-
ities that simplify program development and maintenance.

Iﬂter 286 SOFTWARE DEVELOPMENT TOOLS

80286 BINDER

m Links Separately. Compiled Program m Resolves PUBLIC/EXTERNAL Code and
Modules Into an Executable Task Data References, and Performs

m Makes the 80286 Protection Mechanism Intermodule Type-Checking .
Invisible to Application Programmers m Provides Print File Showing Segment

m Works with PL/M-286, Pascal-286, Map, Errors and Warnings
FORTRAN-286, ASM-286 Object W Assigns Virtual Addresses to Tasks in
Modules and 1C-286 ‘the 232 Address Space

m Performs Incremental Linking with m Generates Linkable or Loadable Module
Output of Blnder and Bunlder a - for Debugglng

BND-286 is a utllnty that combmes 80286 object modules into executable: tasks In creatlng a task ‘the Binder
resolves Public and External symbol references, combines segments, and performs address fix-ups on sym-
bolic code and data.

The Binder takes object modules written in ASM-286, PL/M- 286 Pascal 286 FORTRAN-286 or |C-286 and
generates a loadable module (for execution or debugging), or a linkable module (to be re-input to the Binder
later; this is.called incremental binding). The binder accepts library modules as well, linking only those modules
required to resolve external references. BND-286 generates a print file displaying a segment map, and error
messages. ‘

The Binder is used by system programmers and application programmers. Since application programmers
need to develop software independent of any system architecture, the 286 memory protection mechanism:is
“hidden” from users of the Binder. This allows application tasks to be fully debugged before becoming part of
a protected system. (A protected system may be debugged as well.) System protection features are specified
later in the development cycle, using the 286 System Builder. It is possible to link operating system services
required by a task using either the Binder or the Builder. This flexibility- adds to the ease of use of the 286
utilities.

Key Benefits

The Binder is the only utility an application programmer needs to develop and debug an individual task. Users
of the Binder need not be concerned with the archltecture of the target machine, making apphcatlon program
development for the 286. very simple. ‘ } . ;

80286 MAPPER

m Flexible Utility to Display Object File B Mapper Allows Users to Display:
Information Protection Information:
m MAP-286 Selectively Purges Symbols Segment Tables
from a Load Module Gate_ Tables
Public Addresses
m Provides Inter-Module Cross- Debug Information:
Referencing for Modules Written in All Module Names
Languages Program Symbols

Line Numbers
Key Benefit

A cross-reference map showing references between modules simplifies debugging; the map also lists and
controls all symbolic information in one easy-to-read place.

1-16

ll‘lte[286 SOFTWARE DEVELOPMENT TOOLS

80286 LIBRARIAN

m Fast, Easy Managément‘ of 80286 m Librarian Allows User to:
Object Module Libraries ‘ Create Libraries
Add Modules
m Only Required Modules Are Linked
When Using the Binder or Builder Replace Modules

Delete Modules

Copy Modules from Another Library
Save Library Module to Object File
Create Backup »
Display Module Information
(Creation Date, Public, Segments)

Key Benefit

Program libraries improve management of program modules, and reduce software administrative overhead.

80286 SYSTEM BUILDER

m Supports Complete Creation of m Creates a Memory Image of a 286
Protected, Multi-Task Systems System for Cold-Start Execution

m Resolves PUBLIC/EXTERNAL m Target System may be Boot-Loadable,
Definitions (Between Protection Levels) Programmed into ROM, or Loaded

m Supports Memory Protection by From Mass-Store
Building System Tables, Initializing m Generates Print File with Command
Tasks, and Assigning Protection Rights Listing and System Map

to Segments

BLD-286 is the utility that lets system programmers configure mutli-tasking, protected systems from an operat-
ing system and discrete tasks. The Builder generates a cold-start execution module, suitable for ROM-based
or disk-based systems.

The Builder accepts input modules from 80286 translators or the 80286 Binder. It also accepts a “Build File”
containing definitions and initial values for the 286 protection mechanism—descriptor tables, gates, segments,
and tasks. BLD-286 generates a Loadable or bootloadable output module, as well as a print file with a detailed
map of the memory-protected system.

Using the Builder command Language, system programmers may perfrom the following functions:
— Assign physical addresses to segments; also set segment access rights and limits. -
— Create Call, Trap, and Interrupt “Gates” (entry-points) for inter-level program transfers.

— Make gates available to tasks; this is an easier way to define program interfaces than using interface
libraries.

— Create Global (GDT), Interrupt (IDT), and any Local (LDT) Descriptor Tables.
— Create Task State Segments and Task Gates for multi-task applications.

— Resolve inter-module and inter-level references, and perform type-checking.
— Automatically select required modules from libraries.

— Configure the memory image into partitions in the address space.

— Selectively generate an object file and various sections of the print file.

|ntel 286 SOFTWARE DEVELOPMENT TOOLS

Key Benefit . SUPPORT AVAILABLE

Allows a system programmer to define the configu- Hotline Telephone Support, Software Updates,
ration of a protected system in one place, with one Technical Reports
easy-to-use Utility. This specification may then be
adopted by all project members, using either the .
Builder or just the Binder. The flexibility simplifies ORDERING INFORMATION
program development for all users.
Product Code Operating Environment

186 ASM 286 Series lil/Series IV

SPECIFICATIONS ‘ D86 ASM 286 IBM PC XT/AT running PCDOS 3.0
Documentation or later
: iMDX 371 VX VAX, VMS

ASM 286 Language Reference Manual i
ASM 286 Macro Assembler Operating Instructions X286 ASM 286 Xenix for ntel 286/3)0(Systems
80286 Utilities User's Guide R286 ASM 286 RMX 286 for Intel 286/3XX Sys-
80286 System Builder User's Guide tems
Pocket Reference for all the above:)

ASM 286

Utilties

intel
PASCAL-286 SOFTWARE PACKAGE

m High-Level Programming Language for m Upward Compatible with Pascal-86 for

the Protected Virtual Mode iAPX 286 Software Portability

m Implements ISO Standard Pascal Many m Produces Relocatable Object Code
Useful Extensions may be Enabled vua : Which is Linkable to Object Modules
a Compiler Switch Generated by Other iAPX 286

m Choice of Industry Standard Hosts Translators

m Supports Full Symbolic Debugging with W Fully Supports the 80287 Numeric
iAPX 286 Software and ICE™ Processor using the IEEE Floating
Debuggers - Point Standard

Pascal-286 is a powerful, structured, applications: programming language for the protected virtual address
mode of the iIAPX 286. Pascal-286 is upward compatible with Pascal-86 so that 8086 Pascal source code can
be ported to the iAPX 286 in protected mode.

Pascal-286 implements strict ISO standard Pascal, but with many useful extensions. These include separate
compilation of modules, interrupt handling, port I/0, and 80287 numerics support. A control is provided in the
compiler to flag all non-ISO features used.

Pascal-286 produces relocatable object code which can be linked with object code produced by other iAPX
286 translators such as ASM-286 and PL/ M-286 Thus, a combination of translators can be used to provide
great programming flexibility.

Type and symbol information needed by software and in-circuit debuggers is added to the object code by the
Pascal-286 compiler. This information can be stripped off by the compiler or linker for the final production
version.

The Pascal-286 compiler runs on the Intel Microcomputer Development Systems (Series 1l1/Series V) as well
as the IBM PC XT/AT running PCDOS version 3.0 or later. .

230863-1

November 1986
1-19 Order Number: 230863-001

intel

286 SOFTWARE DEVELOPMENT TOOLS

FEATURES

Conforms to ISO Standard Pascal

Pascal has gained wide acceptance as a portable
language for microcomputer applications. However,
portability can result only if standards are adhered
to. Pascal-286 is a strict implementation of ISO stan-
dard Pascal. Extensions are provided to make the
language more powerful for microprocessor applica-
tions. All extensions are clearly highlighted in the
documentation. In addition, the compiler provides a
control to flag any non 1SO feature used. Pascal-286
will evolve to track future enhancements to standard
Pascal.

Upward Compatible with Pascal-86

The Pascal-286 compiler produces object code for
the protected virtual address mode of the iAPX 286
language. However, no 286 architecture specific
features have been added to the Pascal-286 lan-
guage. This makes Pascal-286 source code upward
compatible with Pascal-86, which allows for porting
of 8086 software to the protected 286 with relative
ease.

Compatible With Other iAPX 286
Translators

All Intel IAPX 286 translators output object code in a
standardized format. This allows 286 programs to be
written in a mixture of languages. Systems routines
which need access to architectural features can be
coded in PL/M-286 or ASM-286. Pascal-286 may be
better suited for the applications routines. The sys-
tems and application routines can then be combined
using the 286 linker (BIND-286).

Standardized Run Time Support

Programs compiled with Pascal-286 can be moved

Extensions for Microprocessor
Programming

Pascal-286 provides extensions that make it power-
ful for microprocessor applications. Built-in proce-
dures allow 1/0 directly from the ports of the iAPX
286. This speeds up 1/0 as it is done by direct

‘communication with the microprocessor. Interrupt

processing is also supported by built in procedures.
Examples are: ENABLEINTERRUPTS, DISABLE-
INTERRUPTS, CAUSEINTERRUPT. Many built in
procedures and variables are provided for communi-
cating with the 80287 for numeric computations.

Compiler Controls

The Pascal-286 compiler provides many controls
which can be used at invocation time to enhance
programming flexibility.' Examples are: CODE/NO-
CODE, DEBUG/NODEBUG, INCLUDE (file), LIST/
NOLIST, OPTIMIZE (n), EXTENSIONS/NOEXTEN-
SIONS. All controls have default values that are ac-
tive unless the opposite is specified during invoca-
tion. Thus, for most complles, no controls need be
specmed

Support for IEEE Standard Numerics

Pascal-286 provides full support for the 80287 nu-
merics co-processor. All. floating point operations:
are done according to the IEEE floating point stan-
dard. The benefits are predictable, accurate and
consistent results. Built-in procedures to support the
80287 include GET8087ERRORS and = MASK
8087ERRORS. A full set of 80287 library routines
are supplied with the compiler.

‘Optimizations

from the development host environment to the tar- .

get environment with ease. This is the result of stan-
dardizing run-time operating system interfaces re-
quired by the compiled program into a well defined
and well documented set of routines. After programs
are developed on a development host, they can
then be executed in the target using the same set.of
system interfaces. .

1-20

The Pascal-286 eompller produces h[ghly optlmlzed
code, both in size. and execution time. This is
achieved by:

— Use of powerful iAPX 286 instructions, in particu-
lar, for string handling, 80287 numerics and sub-
routine linkage

— Short circuit evaluation of boolean expressions,
constant folding and strength reduction of multi-
plications and additions

— Elimination of superfluous branches, opt|m|zat|on
of span dependent jumps

lﬂter 286 SOFTWARE DEVELOPMENT TOOLS

Support Available

Hotline service, Software Updates and technical
newsletters. '

ORDERING INFORMATION

Product Code Operating Environment Documentation Package

186 PAS 286 Intel Series lll/Series IV Pascal-286 User’s Guide

D86 PAS 286 IBM PC XT/AT running PCDOS version 3.0 Pascal-286 Pocket Reference
or later ‘

1-21

PL/M 286 SOFTWARE PACKAGE

m System Programming Language for the ® Advanced, Structured System

Protected Virtual Address Mode 80286 Implementation Language for Algorlthm
m Upward Compatible with PL/M 86 and Development
PL/M 80 Assuring Software Portability m Produces Relocatable Object Code
® Enhanced to Support Design of Which is Linkable to Object Modules
Protected, Multi-User, Multi-Tasking, Generated by all Other 80286 Language
Virtual Memory Operating System Translators
Software ' m Wide Choice of Industry Standard
m Multiple Levels of Optimization Hosts

PL/M 286 is a powerful, structured, high-level system |mplementat|on language for the development of system
software for the protected virtual address mode 80286. PL/M 286 has been enhanced to utilize 80286 fea-
tures—memory management and protection—for the implementation of multi-user, multi-tasking virtual memo-
ry operating systems.

PL/M 286 is upward compatible with PL/M 86 and PL/M 80. Existing systems software can be recompiled
with PL/M 286 to execute in protected virtual address mode on the 80286.

PL/M 286 is the high-level alternative to assembly language programming on the 80286. For the majority of
80286 systems programs, PL/M 286 provides the features needed to access and to control efficiently the
underlying 80286 hardware and consequently it is the cost-effective approach to develop reliable, maintaina-
ble system software.

The PL/M 286 compiler has been designed to efficiently support all phases of software development features
such as a built-in syntax checker, multiple levels of optimization, virtual symbol table and four models of
program size and memory usage for efficient code generation provide the total program development support
needed.

The PL/M 286 compiler runs on the Intel Microcomputer Development Systems (Series 11l/Series IV) as well
as the IBM PC XT/AT running PC DOS version 3.0 or later, Digital Equipment VAX/VMST Systems, and Intel
XENIX** 286 and RMX 286 based systems.

tVAX, VMS are trademarks of Digital Equipment Corporation. 280335-01
**XENIX is a trademark of Microsoft Corporation.

December 1986
1-22 Order Number: 280335-001

intel

PL/M 286 SOFTWARE PACKAGE

FEATURES

Major features of the Intel PL/M 286 compiler and
programming language include:

Structured Programming

PL/M source code is developed in a series of mod-
ules, procedures, and blocks. Encouraging program
modularity in this manner makes programs more
readable, and easier to maintain and debug. The
language becomes more flexible by clearly defining
the scope of user variables (local to a private proce-
dure, for example).

The use of modules and procedures to break down
a large problem leads to productive software devel-
opment. The PL/M 286 implementation of block
structure allows the use of REENTRANT proce-
dures, which are especially useful in system design.

Language Compatibility

PL/M 286 object modules are compatible with ob-
ject modules generated by all other 286 translators.
This means that PL/M programs may be linked to
programs written in any other 286 language.

Object modules are compatible with In-Circuit Emu-
lators; DEBUG compiler control provides the In-Cir-
cuit Emulators with fuII symbolic debugging capabili-
ties.

PL/M 286 language is upward compatible with PL/M
86 and PL/M 80 so that application programs may
be easily ported to run on the protected mode
80286.

Supports Seven Data Types

PL/M makes use of seven data types for various
applications. These data types range from one to
four bytes and facilitate various arithmetic, Ioglc, and
addressing functions:

— Byte: 8-bit unsigned number

— Word: 16-bit unsigned number
— Dword: 32-bit unsigned number
— Integer: 16-bit signed number

— Real: 32-bit floating-point number

— Pointer: 16-bit or 32-bit memory address
indicator

— Selector: 16-bit pointer base

Another powerful facility allows the use of BASED
variable which permit run-time mapping of variables

to memory locations. This is especially useful for
passing parameters, relative and absolute address-
ing, and dynamic memory allocation.

Two Data Structuring Facilities

In addition to the seven data types and based vari-
ables, PL/M supports two powerful data structuring
facilities. These help the user to organize data into
logical groups.

— Array: Indexed list of same type data elements

— Structure: Named collection of same or different
type data elements

— Combinations of both: Arrays of structures or
structures of arrays

Numerics Support

PL/M programs that use 32-bit REAL data are exe-
cuted using the 80287 Numeric Data Processor for
high performance. All floating-point operations sup-
ported by PL/M are executed on the 80287 accord-
ing to the IEEE floating-point standard. PL/M 286
programs can use built-in functions and predefined
procedures—INITSREALSMATHSUNIT, SETSREAL-
$MODE, GET$REALSERROR, SAVES$REALS- -
STATUS, RESTORE$REAL$STATUS,—to control
the operation of the 80287 within the scope of the
language.

Built-In String Handling Facilities

The PL/M 286 language contains built-in functions
for string manipulation. These byte and word func-
tions perform the following operations on character
strings: MOVE, COMPARE, TRANSLATE, SEARCH,
SKIP, and SET.

Built-In Port 1/0

PL/M 286 directly supports input and output from
the 80286 ports for single BYTE and WORD trans-
fers. For BLOCK transfers, PL/M 286 programs can
make calls to predefined procedures.

Interrupt Handling

PL/M 286 has the facility for generating and han-
dling interrupts on the 80286. A procedure may be
defined as an interrupt handler through use of the
INTERRUPT attribute. The compiler will then gener-
ate code to save and restore the processor status
on each execution of the user-defined interrupt han-

intef

PL/M 286 SOFTWARE PACKAGE

dler routine. The PL/M statement CAUSE$
INTERRUPT allows the user to trigger a software
interrupt from within the program. .

Protection Model

PL/M 286 supports the implementation of protected
operating system software by providing built-in pro-
cedures and variables to access the protection
mechanism of the 80286. Predefined variables—
TASK$REGISTER, LOCAL$TABLE, MACHINES-
STATUS, etc.—allow direct access and modification
of theé protection system. Untyped procedures and
functions—SAVE$SGLOBALSTABLE, RESTORES$-
GLOBALSTABLE, SAVESINTERRUPT$TABLE,
RESTORESINTERRUPT$TABLE, CLEAR$TASKS-
SWITCHEDS$FLAG, GET$ACCESSS$RIGHTS,
GET$SEGMENTSLIMIT, SEGMENT$READABLE,
SEGMENTSWRITEABLE, ADJUST$RPL—provide
all the facilities needed to implement efficient oper-
ating system software.

Compiler Controls

The PL/M 286 compiler offers controls that facilitate
such features as:

— Optimization

— Conditional compilation

— The inclusion of additional PL/M source flles
from disk

— Cross-reference of symbols

— Optional assembly language code in the listing
file

— The setting of overflow condltlons for run-time
handling

Addressing Control

The PL/M 286 compiler uses the SMALL, COM-
PACT, MEDIUM, and LARGE control to generate
optimum addressing instructions for programs. Pro-
grams of any size-can be easily modularized into
“subsystems” to exploit the most efficient memory
addressing schemes. This lowers total memory re-
quirements and improves run-time execution of pro-
grams.

Code Optimization
The PL/M 286 compiler offers four levels of opti-

mization for significantly reducing overall program

size.

1-24

— Combination or “folding” of constant -expres-
sions; and short-circuit evaluation of ‘Boolean ex-
pressions -

“Strength reductions”: a shift Ieft rather than
multiply by 2; and elimination of common sub-ex-
pressions within the same block ,
Machine code optimizations; elimination of su-
perfluous branches; reuse of duplicate code; re-
moval of unreachable code

‘Optimization of ‘based-variable operations and
cross-statement load/store

Error Checking

The PL/M 286 compiler has a very powerful feature
to speed up compilations. If a syntax or program er-
ror is detected, the compiler will skip the code gen-
eration and optimization passes. This usually yields
a 2X performance increase for compilation of pro-
grams with errors.

A fully detailed and helpful set of programming and
compilation error messages is provided by the com-
piler and user s guide.

BENEFITS

PL/M 286 is designed to be an efficient, cost-effec-
tive solution to the special requirements of protected
mode 80286 Microsystem Software Development,
as illustrated by the following benefits of PL/M use:

Low Learning Effort

PL/M 286 is easy to learn and use, even fdr the
novice programmer.

Earlier Project COmpIetlon ‘

Critical pro;ects are completed much earlier than
otherwise possible because PL/M 286, a structured
high-level language, increases programmer produc-
tivity. .

Lower Development Cost

Increases in programmer productivity translate im-
mediately into lower software development costs
because less: programming resources are requ1red
for a given programmed function.

intel

PL/M 286 SOFTWARE PACKAGE

Increased Reliability '

PL/M 286 is designed to aid in the development of
reliable software (PL/M 286 programs are simple
statements of the program algorithm). This substan-
tially reduces the risk of costly correction of errors in
systems.that have already reached full production
status, as the more simply stated the program is, the
more likely it is to perform its intended function.

Easier Enhancements and
Maintenance

Programs written in PL/M tend to be self-document-
ing, thus easier to read and understand. This means
it is easier to enhance and maintain PL/M programs
as the system capabilities expand and future prod-
ucts are developed.

Cost-Effective Alternatlve to Assembly
Language

PL/M 286 programs are code efficient. PL/M .286 -

combines all of the benéefits of a high-level language
(ease of use, high productivity) with the ability to ac-
cess the 80286 architecture. This includes language
features for control of the 80286 protection mecha-
nism. Consequently, for the development of systems
software, PL/M 286 is the cost-effective alternative
to assembly language programming.

1-256

SPECIFICATIONS

Support Available

90 Days:
Hotline Telephone Support, Software Updates,
Subscription Service

Documentation Package' ,

PL/M 286 User’s Guide
PL/M 286 Pocket Reference

ORDERING INFORMATION

Ordering Code Operating Environment

186PLM286 Intel Series llI/Series IV

D86PLM286 IBM PC XT/AT running PCDOS
version 3.0 or later

iMDX373VX 'VAX, VMS

X286PLM286 Xenix for Intel Systems 286/3XX

R286PLM286 iRMX™ 286 for Intel Systems

286/3XX

intel

iC-286
C COMPILER FOR THE 80286

m Implements Full C Language | Supports Both Small and Large Models
m Produces High Density Code Fllvallng of Computation

Assembler & Supporis PSCOPE and I2ICE™
m Supports Intel Object Module Format m Supports IEEE Floating Point Math with

(OMF) Intel Math Coprocessor
H Runs under the Intel UDI on Intel @ Supports Bit Fields

Development Systems and IRMX™ 286 g gypports Full Standard 1/0 Library
| Available for the VAX/VMS* Operating (STDIO)

System and for PCDOS @ Written in C

The C Programming Language was originally designed in 1972 and has become increasingly popular as a
systems development language. C is not a “‘very high level” language and is not tied to any specific application
area. Although it is used for writing operations systems, it has been used equally well to write numerical, text-
processing and data base programs. C combines the flexibility and programming speed of a higher level
language with the efficiency and control of assembly language. -

Intel iC-286 brings the full p'ov'ver_ of the C programming language to 80286 based microprocessor systems.

Intel iC-286 supports the full C language as described in the Kernighan and Ritchie book, “The C Programming
Language”, (Prentice-Hall, 1978). Also included are the latest enhancements to the C language; structure
assignments, functions taking structure arguments and returning structures, and the “void” and “‘enum” data
types.

C is rapidly becoming the standard microprocessor system |mplementat|on Ianguage because it provudes

1. the ability to manipulate the fundamental objects of the machlne (including machine addresses) as easnly as
assembly language.

2. the power and speed of a structured language supporting a large number of data types, storage classes,
expressions and statements.

3. processor independence (most programs developed for other processors can be easily transported to the
80286), and

4. code that rivals assembly language in efficiency.

assembly like file. The iC-286 optimizer eliminates
common code, eliminates redundant loads and
stores, and resolves span dependencies (shortens

INTEL iC-286 COMPILER
DESCRIPTION

The iC-286 compiler operates in four phases; pre-
processor, parser, code generator, and optimizer.
The preprocessor phase interprets directives in C
source code, including conditional compilations (#
define). The parser phase converts the C program
into an intermediate free form and does all syntactic
and semantic error checking. The code generator
phase converts the parser’s output into an efficient
intermediate binary code, performs constant folding,
and features an extremely efficient register allocator,
ensuring high quality code. The optimizer phase
converts the output of the code generator into relo-
catable Intel Object Module Format (OMF) code,
without creating an intermediate assembly file. Op-
tionally, the iC-286 compiler can produce a symbolic

branches) within a program.

The iC-286 runtime library consists of a number of
functions which the C programmer can call. The run-
time system includes the standard 1/0 library
(STDIO), conversion routines, routines for manipu-
lating strings, special routines to perform functions
not available on the 80286 (32-bit arithmetic and
emulated floating point), and (where appropriate)
routines for interfacing with the operating system.

iC-286 uses Intel's linker and locator and generates
debug records for symbols and lines on request, per-
mitting access to Intei’s PSCOPE and I2ICE to aid in
program testing.

November 1986
Order Number: 280334-001

intel

iC-286

FEATURES

Support for Small and Large Models

Intel iC-286 supports both the SMALL and LARGE
modes of segmentation. A SMALL model program
can have up to 64K bytes of code and 64K bytes of
data, with all pointers occupying two bytes. Because
two byte pointers permit the generation of highly
compact and efficient code, this model is recom-
mended for programs that can meet the size restric-
tions. The LARGE segmentation model is used by
programs that require access to the full addressing
space of the 80286 processors. In this model, each
source file generates a distinct pair of code and data
segments of up to 64K bytes in length. All pointers
are four bytes long.

Preprocessor Directives

#define—defines a macro

#include—includes code outside of the program
source file

#if—conditionally includes or excludes code

Other preprocessor directives include #undef, #if-
def, #ifndef, #else, #endif, and #line.

Statements

The C language Supports a variety of statements:

Conditionals; IF, IF-ELSE

Loops: WHILE, DO-WHILE, FOR

Selection of cases: SWITCH, CASE DEFAULT
Exit from a function: RETURN

Loop control: CONTINUE, BREAK

Branching: GOTO

Expressions and Operators

The C language includes a rich set of expressions
and operators.

Primary expression: invoke functions, select ele-
ments from arrays, and extract fields from structures
or unions

Arithmetic operators: add, subtract, multiply, divide,
modulus

Relational operators: greater than, greater than or
equal, less than, less than or equal, not equal

Unary operators: indirect through a pointer, compute
an address, Ioglcal negation, ones complement, pro-
vide the size in bytes of an operand.

Logical operators: AND, OR

Bitwise operators: AND, excluswe OR, mcluswe OR,
bitwise complement

1-27

Data Types and Storage Classes

Data in C is described by its type and storage class.
The type determines its representation and use, and
the storage class determines its lifetime, scope, and
storage allocation. The following data types are fully
supported by iC-286.

char
an 8-bit signed integer

int
a 16-bit signed integer

short
same as int (on the 80286)

long
a 32-bit integer

unsigned
a modifier for integer data types (char, int, short, and
long) which doubles the positive range of values

float)
a 32-bit floating point number which utilizes the
80287 or a software floating point library

double
a 64-bit floatlng pomt number

void -

a specnal type that cannot be used as an operand in
expressions; normally used for functions called only
for effect (to prevent their use in contexts where a
value is required).

enum
an enumerated data type

These fundamental data types may be used to cre-
ate other data types including: arrays, functions,
structures, pointers, and unions.

The storage classes available in iC-286 include:

register
suggests that a variable be kept in a machme regis-
ter, often enhancing code density and speed

extern

a variable defined outsude of the function where it is
declared; retaining its value throughout the entire
program and accessible to other modules

auto
a local variable, created when a block of code is
entered and discarded when the block is exited

static
a local variable that retains its value until the termi-
nation of the entire program

typedef
defines a new data type name from existing data

types

intgl iC-286

BENEFITS — System Console; CRT or Hardcopy Interactive
Device

Faster Compilation iRMX 286 version:

Intel iC-286 compiles C programs substantially fast-
er than standard C compilers because it produces
Intel OMF code directly, eliminating the traditional
intermediate process of generating an assembly file.

Portability of Code

Because Intel iC-286 supports the STDIO and pro-
duces Intel OMF code, programs developed.on a
variety of machines can easily be transported to the
80286.

Rapid Program Development

Intel iC-286 provides the programmer with detailed
error messages and access to PSCOPE and I12ICE
to speed program development.

Full Manipulation of the 80286

Intel iC-286 enables the programmer to utilize fea-
tures of the C language to control bit fields, pointers,
addresses and register allocation, taking full advan-
tage of the fundamental concepts of the 80286. -

SPECIFICATIONS

Operating Environrr\ent

The iC-286 compiler runs host resident on both the
Intel Series Il Microcomputer Development System
under ISIS-Il and on the System 286/310 under the

iRMX™ 286 operating system iC-286 can also-run '

as a cross compiler on a VAX 11/780 computer un-
der the VMS operating system 128K bytes of User
Memory is required on all versions. The PCDOS sys-
tem is also a supported envrronment Specrfy de-
sired version when ordering.

Required Hardware

Development System Version

— Intellec® Microcomputer Development System;
Series |ll or Series IV

— Dual Diskette Drives, Single or Double Dens%ity

— Any iAPX 286, iSBC® 286 or based system capa-
ble of running the iRMX 286 Operating System
VAX version:

— Digital Equipment Corporatron VAX 11/780 or
. compatible computer

PCDOS version:
— PC XT or AT usrng PCDOS V3.0 or Iater

Optional Hardware

ISIS-II version:
— ICE-86, |2ICE-86

iRMX-286 version:

— Numeric Data Processors for support of the
REALMATH standard

VAX version:
— None

Required Software

ISIS-II version:
— ISIS-Il Diskette Operating System
— Series Il or Series |V Operating

iRMX 286 version:
— iRMX 286 Realtime Multiprogramming Operation
— iRMX 286 Utilities Package

VAX version:
— VMS Operating System

Optional Software

Development System version:
— None-

iRMX 286 version:
— None

VAX version:

— MDS*-384 K|t-Ma|nframe Link for distributed de-
velopment, or iMDX-394 Asynchronous Commu-
nications Link.

— VAX iAPX 286 MACRO Assembler and utilities
package (iIMDX-371VX)

1-28

intel

iC-286

Shipping Media

Development System version:

— Two single and one double density ISIS-Il format
8" diskettes, one 5Y," Series |V Format

iRMX 286 version: .
— Double Density iRMX 286 format 54" diskette

VAX version:
— 1600 bpi, 9 track Magnetic tape

DOS version:
— Double Density PC-DOS format 5%," diskette

ORDERING INFORMATION
Order Code Description

i86C286 iC-286 Compiler for ISIS-Il, Series IV
R286C286 iC-286 Compiler for iRMX 86
iMDX-377 iC-286 Cross Compiler for VAX/VMS
D86C286 iC-286 Cross Compiler for PCDOS

Intel Software License required.

1-29

Documentation Package

The C Programming Language by Kernighan and
Ritchie (1978 Prentice-Hall)

iC-286 User Manual

SUPPORT

Intel offers several levels of support for this product
which are explained in detail in the price list. Please
consult the price list for a description of the support
options available.

*MDS is an ordering cods only and is not used as a product name or
trad k. MDS is a registered trademark of Mohawk Data Sciences

Corporation. VAX, VMS are trademarks of Digital Equipment Corpora-
tion. .

intel

8086 8088
SOFTWARE DEVELOPMENT PACKAGES
FOR SERIES 1I/PDS

m PL/M 86/88 High Level Programmmg‘ m CONV 86/88 Converter for Conversion

Language of 8080/8085 Assembly Language
m ASM 86/88 Macro Assembler for 8086, f°“’°° Code to 8086, d°°83 Assembly:

8088 Assembly Language Programming anguage Source Code
m LINK 86/88 and LOC 86/88 Linkage and m OH 86/88 Object-to-Hexadecimal

Relocation Utilities SRR Converter 7
SR ‘ m LIB 86/88 Library Manager

The 8086/8088 Software Development Packages for Series Il provide a set of software development tools for
the 8086, 8088 CPUs and the iSBC 86/12A single board computer. The packages operate under the ISIS-|I
operating system on Intel'Microcomputer Development Systems—Model 800, Series |i or the Personal Devel-
opment System (PDS)—thus minimizing requirements for additional hardware or training for Intel Microcom-
puter Deveiopment System users.

These packages permit 8080/8085 users to efficiently upgrade existing programs into 8086/8080 code from
either 8080/8085 assembly language source code or PL/M 80 source code.

For the new Intel Microcomputer Development System user, the packages operatirig on a PDS or an Intéileb
Series Il, such as a Model 235, provide total 8086, 8088 software development capability.

280380-1

December 1986
1-30 Order Number: 280380-002

intd 8086, 8088

PL/M 86/88 COMPILER
FOR SERIES 1I/PDS

m Language is Upward Compatible from m Produces Relocatable Object Code
PL/M 80, Assuring MCS-80/85 Design Which is Linkable to All Other 8086
Portability Object Modules

m Supports 16-bit Signed Integer and : m Supports Full Extended Addressing
32-bit Floating Point Arithmetic In Features of the 8086/10 and 8088/10
Accordance with IEEE Proposed Microprocessors (Up to 1 Mbyte)
Standard @ Code Optimization Assures Efficient

[] Easy-to-Learn, Block-Structured Code Generation and Minimum
Language Encourages Program Application Memory Utilization
Modularity .

Like its counterpart for MCS-80/85 program development, PL/M 86/88 is an advanced, structured high-level
programming language. The PL/M 86/88 compiler was created specifically for performing software develop-
ment for the Intel 8086, 8088 Microprocessors.

PL/M 86/88 has significant new capabilities over PL/M 80 that take advantage of the new facilities provided
by the 8086, 8088 microsystem, yet the PL/M 86/88 language remains compatiable with PL/M 80.

With the exception of hardware-dependent modules, such as interrupt handlers, PL/M 80 appllcatlons may be
recompiled with PL/M 86/88 with little need for modification. PL/M 86/88, like PL/M 80, is easy to learn,
facilitates rapid program development, and reduces program maintenance costs.

PL/M is a powerful, structured, high-level system implementation Ianguage in'which program statements can
naturally express the program algorithm. This frees the programmer to concentrate on the logic of the program
without concern for burdensome details of machine or asembly language programming (such as register
allocation, meanings of assembler mnemonics, stc.).

The PL/M 86/88 compiler efficiently converts free-form PL/M language statements into equivalent 86/88
machine instructions. Substantially fewer PL/M statements are necessary for a given application than if it were
programmed at the assembly language or machine code level.

The use of PL/M hlgh-level Iahguage for system programming, instead of assembly language, results in a hlgh
degree of engineering productivity during project development. This translates into significant reductions in
initial software development and follow-on maintenance costs for the user.

FEATURES structure allows the use of REENTRANT which is
especially useful in system design.

Major features of the Intel PL/M 86/88 compiler and

programming language include:

Language Compatibility

Block Structur ' PL/M 86/88 object modules are compatible with ob-
Stru e ject modules generated by all other 86/88 transla-
PL/M source code is developed in a series of mod- tors. This means that PL/M programs may be linked

ules, procedures, and blocks. Encouraging program to programs written in any other 86/88 language.
modularity in this manner makes programs more

readable, and easier to maintain and debug. The Object modules are compatible with ICE-88 and
language becomes more flexible by clearly defining ICE-86 units; DEBUG compiler control provides the
the scope of user variables (local to a private proce- In-Circuit Emulators with symbolic debugging capa-
dure, global to a public module, for example). bilities.

The use of procedures to break down a large prob- PL/M 86/88 Language is upward-compatible with
lem is paramount to productive software develop- PL/M 80, so that application programs may be easily
ment. The PL/M 86/88 implementation of a block ported to run on the 8086 or 8080.

1-31

intel

8086, 8088

Supports Five Data Types

PL/M makes use of five data types for various appli-

cations. These data types range from one to four
bytes, and facilitate various arithmetic, logic, and ad-
dressing functions: :

Byte: 8-bit unsugned number -
Word: 16-bit unsigned number
Integer: 16-bit signed number
Real: 32-bit floating-point number " ..

Pointer: 16-bit or 32-bit memory address
indicator-

Another powerful facility allows the use of BASED
variables that map more than one variable to the
same memory location. This is especially useful for
passung parameters, relative and absolute address-
ing, and memory allocation. .

Two Data Structuring Facilities

In addition to the five data types and based vari-
ables, PL/M supports two data structuring facilities.
These add flexibility to the referenclng of data stored
in large groups.

— Array: Indexed list of same type data elements

— Structure: Named collection of same or d|fferent‘

type data elements

— Combinations of Each: Arrays of structures or
structures of arrays .

8087 Numerics Support

PL/M programs that use 32-bit REAL data may be
executed using the Numeric Data Processor for im-
proved performance. All floating-point operations
supported by PL/M may be executed on the 8087
NDP, or the 8087 Emulator (a software module) pro-
vided with the package. Determination of use of the
chip or emulator takes place at link-time, allowing
compilations to be run-time independent.

Built-In String Handling Facilities

The PL/M .86/88 language contains built-in func-
tions for. string- manipulation. These byte and word
functions perform the following operations on char-
acter strings: . MOVE, COMPARE TRANSLATE
SEARCH SKIP and SET.

.Interrupt Handling

"PL/M has the facility for generating interrupts to the

8086 or 8088 via software. A procedure may be de-
fined with the INTERRUPT attribute, and the compil-
er will automatically initialize an. interrupt vector at
the appropriate memory location. The compiler will
also generate code to same and restore the proces-
sor status, for execution of the user-defined interrupt -
handler routine. The. procedure- SETSINTERRUPT,
the function retuning an INTERRUPT$PTR, and the
PL/M statement CAUSESINTERRUPT all add flexi-
bility to user programs involving interrupt handling.

Segmentation Control
The PL/M 86/88 compiler takes full advantage of

. program addressing with- the SMALL, COMPACT,

1-32

MEDIUM, and LARGE segmentation controls. Pro-
grams with less than 64 KB total code space can
exploit the .-most efficient memory addressing
schemes, which lowers total memory requirements.
Larger programs can exploit the flexibility of extend-
ed one-megabyte addressmg :

Code Optlmization

The PL/M 86/88 complier offers four levels of opti-

mization for significantly reducmg overall program
size.

— Combination or “folding” of constant expres-
sions; and short-circuit evaluatlon of Boolean ex—
pressions.

' “Strength reductions” (such as a shift left rather
than multiply by 2); and elimination of common
sub-expressmns within the same block.

Machine code optlmlzatlons, elimination of su-
perfluous branches; re-use of duplicate code; re-
moval of unreadable code.

Byte comparisons (rather than 20-bit address
. calculations) for pointer variables; optimization of -
based-variable operations.

Compiler Controls

The PL/M 86/88 compiler offers more than 25 con-
trols that facilitate such features as:_

— Conditional compilation -

— Intra- and Inter-module cross reference :

—_ Correspondmg assembly Ianguage code in the
listing file.

—_— Settmg overflow conditions for run-tnme handlmg

intel

8086, 8088

BENEFITS

PL/M 86/88 is designed to be an efficient, cost-ef-
fective solution to the special requirements of iIAPX
86 or 88 Microsystem Software Development, as il-
lustrated by the following benefits of PL/M use:

Low Learmng Effort

PL/M 86/88 is easy to learn and to use, even for the
novice programmer.

Earlier Project Completion '
Critical projects are completed much earlier than
otherwise possible because PL/M 86/88, a struc-

tured high-level language, increases programmer
productivity.

Lower Development Cost .
Increases in programmer productivity translate im-
mediately into lower software development costs

because less programming resources are required
for a given programmed function.

Increased Reliability

PL/M 86/88 is designed to aid in the development
of reliable software (PL/M 86/88 programs are sim-
ple statements of the program algorithm). This sub-
stantially reduces the risk of costly correction of er-
rors in systems that have already reached full pro-
duction status, as the more simply stated the pro-
gram is, the more likely it is to perform its intended
function.

Easier Enhancements and
Maintenance

Programs written in PL/M tend to be self-document-
ing, thus easier to read and understand. This means
it is easier to enhance and maintain PL/M programs
as the system capabilities expand and future prod-
ucts are developed.

8086, 8088 MACRO ASSEMBLER
FOR SERIES 11/PDS

| Powerful and Flexible Text Macro
Facility with Three Macro Listing
Options to Aid Debugging

® Highly Mnemonic and Compact -
- Language, Most Mnemonics Represent
" Several Dlstlnct Machine Instructions

m “Strongly Typed” Assembler Helps

m High-Level Data Structuring Facilities
Such as “STRUCTUREs” and
“RECORDs”

W Over 120 Detailed and Fully
Documented Error Messages

B Produces Relocatable and Linkable
. Object Code

Detect Errors at-Assembly Time:

ASM 86/88 is the “high-level” macro assembler for the 8086/88 assembly language. ASM 86/88 translates
symbolic 86/10, 88/10 assembly language mnemonics into 86/10, 88/10 relocatable object code.

ASM 86/88 should be used where maximum code efficiency and hardware control is needed. The 8086, 8088
assembly language includes approximately 100 instruction mnemonics. From these few mnemonics the as-
sembler can generate over 3,800 distinct machine instructions. Therefore, the software development task is
simplified, as the programmer need know only 100 mnemonics to generate all possible 86/10, 88/10 machine
instructions. ASM 86/88 will generate the shortest machine instruction possible given no forward referencing
or given explicit information as to the characterisitics of forward referenced symbols.

ASM 86/88 offers many features normally found only in high-level languages. The 8086, 8088 assembly
language is strongly typed. The assembler performs extensive checks on the usage of variables and labels.
The assembler uses the attributes which are derived explicitly when a variable or label is first defined, then
makes sure that each use of the symbol in later instructions conforms to the usage defined for that symbol.
This means that many programming errors will be detected when the program is assembled, long before it is
being debugged on hardware.

1-33

intel

8086, 8088

FEATURES -

Major features of the |ntel‘:8086/8688‘ assembler
and assembly language include:

Powerful and FIeX|bIe Test Macro
Facility " - :

— Macro calls may appear anywhere
— Allows user 1to define the syntax of each macro

— Built-in functions
conditional assembly (IF-THEN- ELSE WHILE)
repetition (REPEAT)
string processing functions (MATCH)
support of assembly time 1/0 to console (IN,
ouT)

Three Macro Listing Options include a GEN

mode which provides a complete trace of aII
macro calls and expansnons

High-'LeveI Data Structuring Capability

— STRUCTURES: Defined to be a template and
then used to allocate storage. The familiar dot
notation may be used to form instruction ad-
dresses with structure fields.

— ARRAYS: Indexed list of same type data ele-

ments.

— RECORDS:. Allows bit-templates to be defined
and used as instruction operands and/or to allo-
cate storage. .

Fully Supports 8086, 8088
Addressing Modes. - .

— Provides for complex address ’expr'essib’ns in-
volving base and indexing registers and (struc-
ture) field offsets.

— "Powerful EQU facility allows complicated expres-
sions to be named and the name can be used as

a synonym for the expression throughout the
" module.

Powerful STRING MANIPULATION
INSTRUCTIONS

— Permit direct transfers to or from memory or the
.accumulator. .

— Can be prefixed with a repeat operator for repeti-
tive execution with a count-down and condition
test. ,

Over 120 Detailed Error Messages
— Appear both in regular list file and error print file.

— User documentation fully .explains the . occur-
rence of each error and suggests a method to
-correct it. .

Support for ICE-86™ Emulatlon and
Symbolic Debugging =

— Debug" options for inclusion: of symbol.table in
object modules for In-Circuit Emulatlon wuth sym-
bolic debugging.

Generates Relocatable and Linkable
Object Code—Fully Compatible with -
LINK 86/88, LOC 86/88 and LIB 86/88

— Permits ASM 86/88 programs to be developed
and debugged in small modules. These modules
can be easily linked. with other ASM 86/88 or
PL7M 86/88 object modules and/or library rou-
tines to form a complete application system.

BENEFITS

The 8086/8088 macro assembler allows the exten-
sive capabilities of the 86/88 CPU'’s to, be fully ex-
ploited. In any application; time and space critical
routines can be effectively written in-ASM 86/88.
The 86/88 assembler outputs relocatable and link-
able object modules. These object modules may be
easily combined with object modules written in PL/M
86/88—Intel’'s structured, high-level programming
language. ASM 86/88 compliments PL/M 86/88 as

. the programmer may. choose to write each module in

1-34

the language most appropriate to the task and then
combine the modules into the complete applications
program using the 8086/8088 relocation and linkage
uulmes

intel

8086, 8088

CONV 86/88
MCS®-80/85 TO 8086, 8088 ASSEMBLY LANGUAGE
CONVERTER UTILITY PROGRAM

m Translates 8080/8085 Assembly
Language Source Code to 8086, 8088
Assembly Language Source Code

m Provides a Fast and Accurate Means to
Convert 8080/8085 Programs to the
8086, 8088 Facilitating Program
Portability

m Automatically Generates Proper ASM
86/88 Directives to Set Up a “Virtual
8080” Environment that is Compatible
with PL/M 86/88

In support of Intel's commitment to software portability, CONV 86/88 is offered as a tool to move 8080/8085
programs to the 8086, 8088. A comprehensive manual, “MCS-86 Assembly Language Coverter Operating
Instructons for ISIS-1l Users”, covers the entire conversion process. Detailed methodology of the conversion

process is fully described therein.

— CONV 86/88 will accept as input an error-free
8080/8085 assembly-language source file and
optional controls, and produce as output, option-
al PRINT and OUTPUT files.

— The PRINT file is a formatted copy of the -

8080/8085 source and the 86/88 source file
with embedded caution messages.

— The OUTPUT file' is an 86/88 source file. -

— CONV 86/88 issues a caution message when it
detects a potential problem in the converted
86/88 code.

— A transliteration of the 8080/8085 programs oc-
curs, with each 8080/8085 construct mapped to
its exact 86/88 counterpart

Registers

Condition flags
Instruction

Operands

Assembiler directives
Assembler control lines
Macros

1-35

Because CONV 86/88 is a transliteration process,
there is the possibility of as much as a 15%-20%
code expansion over the 8080/8085 code. For com-
pactness and efficiency it is recommended that crit-
ical portions of programs be re-coded in 8086, 8088
assembly language.

Also, as a consequence of the transliteration, some
manual ‘editing may be required for converting in-
struction sequences dependent. on:)

— instruction length, timing, or encodlng

— interrupt processing*

— PL/M parameter passing conventions*

*Mechanical editing procedures for these are sug-
gested in the converter manual.

The accompanying figure illustrates the flow of the
conversion process. Initially, the abstract program
may be represented in 8080/8085 or 8086, 8088
assembly language to execute on that respective
target machine. The conversion process is porting a
source destined for the 8080/8085 to the 86/88 via
CONYV 86/88.

intal 8086, 8088

SOURCE CODE : ABSTRACT PROGRAM| SOURCE CODE
IN 8080/8085 - : iN 86/10, 88/10
ASSEMBLY LANG . ALGORITHM ASSEMBLY LANG
ASSEMBLE . : * ASSEMBLE
- % CONV 86/88 : » FOR
8080/8085 . 86/10,88/10
)
EXecuTE EGUIVALENT . EXECUTE
8080/8085 FUNCTION 86/10,88/10 -
280380-2

Figure 1. Porting 8080/8085 Source Code to the 8086/10 and 8088/10

LINK 86/88
m Automatic Comblnat_ion of Separately m Automatic Generation of a Summary
Compiled or Assembled 8086, 8088 . Map Giving Results of the LINK 86/88
Programs Into a Relocatable Module - . . Process
B Automatic Selection of Required m Abbreviated Control Syntax

Modules from Specified Libraries to
. ® Relocatable Modules may be Merged
Satisfy Symbolic References into a Single Module Suitable for
m Extensive Debug Symbol Manipulation, Inclusion in a Library
Allowing Line Numbers, Local Symbols, m Supports “Incremental” Linking

and Public Symbols to be Purged and . 5 '
Listed Selectively ‘m Supports Type Checking of Public and

External Symbols

LINK 86/88 combines object modules specified in the LINK 86/88 input list into a single output module. LINK
86/88 combines segments from the input modules according to the order in which the modules are listed.

LINK 86/88 will accept libraries and object modules built from PL/M 86/88, ASM 86/88, or any other transla-
tor generating Intel’s 8086, 8088 Relocatable Object Modules.

Support for incremental linking is provided since an output module produced by LINK 86/88 can be an input to
another link. At each stage in the incremental linking process, unneeded public symbols may be purged.

LINK 86/88 supports type checking of PUBLIC and EXTERNAL symbols reporting an error if their types are
not consistent.

LINK 86/88 will link any valid set of input modules without any controls. However, controls are available to
control the output of diagnostic information in the LINK 86/88 process and to control the content of the output
module.

LINK 86/88 allows the user to create a large program as the combination of several smaller, separately
compiled modules. After development and debugging of these component modules the .user can link them
together, locate them using LOC 86/88 and enter final testing with much of the work accomplished.

1-36

lnter 8086, 8088

LIB 86/88
m LIB 86/88 is a Library Manager m Libraries Can be Used as Input to LINK
Program which Allows You to: 86/88 Which Will Automatically Link

Modules from the Library that Satisfy
External References in the Modules
Being Linked

H Abbreviated Control Syntax

Create Specially Formatted Files to
Contain Libraries of Object Modules

Maintain These Libraries by Adding or
Deleting Modules

Print a Listing of the Modules and
Public Symbols in a Library File

Libraries ald in the job of building programs. The Ilbrary manager program LiB 86/88 creates and maintains
files containing object modules. The operation of LIB 86/88 is controlled by commands to indicate which
operation LIB 86/88 is to perform. The commands are: ‘

CREATE: creates an empty library file

ADD: adds object modules to a library file

DELETE: deletes modules from a library file

LIST: lists the module directory of library files

EXIT: terminates the LIB 86 program and returns control to ISIS-II

When using object libraries, the linker will call only those object modules that are required to satisfy external
references, thus saving memory space.

LOC 86/88

B Automatic Generation of a Summary H Automatic and Independent Relocation
Map Giving Starting Address, Segment of Segments. Segments May Be
Addresses and Lengths, and Debug Relocated to Best Match Users Memory
Symbols and their Addresses Configuration

m Extensive Capability to Manipulate ther = m Extensive Debug Symbol Manipulation,
Order and Placement of Segments in Allowing Line Numbers, Local Symbols,
8086, 8088 Memory and Public Symbols to be Purged and

m Abbreviated Control Syntax Listed Selectively

Relocatability allows the programmer to code programs or sections of programs without having to know the
final arrangement of the object code in memory.

LOC 86/88 converts relative addresses in an input module to absolute addresses. LOC 86/88 orders the
segments in the input module and assigns absolute addresses to the segments. The sequence in which the
segments in the input module are assigned absolute addresses is determined by their order in the input
module and the controls supplied with the command.

LOC 86/88 will relocate any valid input module without any controls. However, controls are available to control
the output of diagnostic information in the LOC 86/88 process, to control the content of the output module, or
both.

The program you are developing will almost certainly use some mix of random access memory (RAM), read-
only memory (ROM), and/or programmable read-only memory (PROM). Therefors, the location of your pro-
gram affects both cost and performance in your application. The relocation feature allows you to develop your
program on the Intellec development system and then simply relocate the object code to suit your application.

1-37

intel

8086, 8088

m Converts an 8086, 8088 Absolute

OH 86/88

Object Module to Symbolic
Hexadecimal Format -

m Facilitates Preparing a File for Later
Loading by a Symbolic Hexadecimal
Loader, such as the iISBC™ Monitor
SDK-86 Loader, or Universal PROM

Mapper

“m Converts an Absolute Module to a More

Readable Format that can be Displayed
on a CRT or Printed for Debugging E

The OH 86/88 utility converts an 86/88 absolute object module to the hexademmal format. This conversion
may be necessary to format'a module for later loadmg by a hexadecimal loader such as the iSBC 86/12
monitor or Universal PROM Mapper. The conversion may also be made to put the module in a more readable
format than can be displayed or printed.

The module to be converted must be in absolute format; the output from LOC 86/88 is in absolute formaf.

1SIS-1i - PL/M 86/88
TEXT EDITOR SOURCE

PL/M 86/88 RELOCATABLE |
COMPILER/] OBJECT MODULE .

ASM 86/88

.__Isis-il
TEXTEDITOR [: SOURCE

RELOCATABLE
OBJECT MODULE

ASM 80/85
SOURCE

LIBRARIES

USER
SYSTEM SDK-08
LINK 86/88 "
ISBC 86/12"
AN OH 86/88
LOC 86/88 /8 ~ BOARD
|CE-86™
EMULATOR UPM
280380-3

Figure 2. 8086, 8088 Software Development Cycle

1:38

intel

8086, 8088

SPECIFICATIONS

Operating Environment

Intel Microcomputer Development Systems
Intel Personal Development System

Documentation
PL/M-86 Programming Manual

1S1S-1l PL/M-86 Compiler Operator’s Manual
MCS-86 User’s Manual

MCS-86 Software Development Utilities Operating
Instructions for ISIS-Il Users

MCS-86 Macro Assembly Language Reference
Manual

MCS-86 Macro Assembler Operating Instructions for
1S/S-1l Users

MCS-86 Assembly Language Converter Operating
Instructions for ISIS-/l Users

Universal PROM Programmer User’s Manual

1-39

ORDERING INFORMATION

8086, 8088 Software Developmeht
Packages for Series II:

Part No. Description

MDS-308* Assembler and Utilities Package

MDS-311* PL/M compiler, Assembler, and Utilities
Package

All Packages Require Software Licenses

SUPPORT:

Hotline Telephone Support, Software Performance
Reports (SPR), Software Updates, Technical Re-
ports, Monthly Newsletters are available.

*MDS is an ordering code only and is not used as a product
name or trademark. MDS® is a registered trademark of Mo-
hawk Data Sciences Corporation.

intal

8086/8088/80186/80188

SOFTWARE PACKAGES

8086 Software Development Package

Macro Assembler with Complete
System Development Capability for
8086 Designs

Complete Set of Utilities for Object
Module Management and Program
Linkage

FORTRAN 8086/8088/80186/80188
Software Package

Features High-Level Language Support
for Floating-Point Calculation,
Transcendentals, Interrupt Procedures,
and Run-Time Exception Handling

Meets ANSI FORTRAN 77 Subset
Language Specifications

Supports Complex Data Types

PASCAL 8086/8088/80186/80188
Software Package -~ -

Object Compatible and Linkable with
PL/M 8086/8088, ASM 8086/8088 and -
FORTRAN 86/88

Supports Large Array Operation

PL/M 8086/8088/80186/80188 SOftware
Package -

Advanced Structured System
Implementation Language for Algorithm
Development

Easy-to-Learn Block-Structured
Language Encourages Program
Modularity

iC-86 Compiler for-the 8086

Implements Full C Language

Produces High Density Code Rivaling
Assembler

Assembie with
ASM-88
—*i (@) >
Compile with
ic-8s
(@} >
Edit source Link code
with Compile with together with
AEDIT FORTRAN-88 LINK-86
O M »' (@) 2 O
0 0 0
1 3
Compile with
Pascel-88
> O 3 | ..
0 e
Coplowin - O
LIS il
O 4

© EXE file
under DOS

g%

Lol
-0 4

i

file
o
into

1

210689-6

Figure 1. Program modules compiled with any of the 8086 languages may
be linked together. Each language Is compatible with Intel’s debug tools
and Is avallable hosted on a selection of industry standard systems.

November 1986
Order Number: 210689-007

intel 8086 SOFTWARE DEVELOPMENT PACKAGE

8086 SOFTWARE DEVELOPMENT PACKAGE

m Complete System Development m System Utilities for Program Linkage
Capability for High-Performance 8086 and Relocation ’
Applications m Package Supports Program

m Macro Assembler for Machine-Level Development with PLM-86, Pascal-86,

Programming FORTAN 86, & iC 86
’ ' m Avallable on a Choice of Hosts

The 8086 Software Development package contains a macro assembler, a program linker (for Iinking separate-
ly compiled modules together, a system locator, library manager, an object to hex code converter, and a

conversion utility to create DOS executable files.

All the utilities in the Software Development Package run on the Intel Microcomputer Development Systems
(Series lll/Series IV) as well as the IBM PC XT/AT DEC VAXT Minicomputer under the VMST Operating

System, and Intel systems 86/3XX under iRMXTM86, and Intel System 286/3XX under_iFiMXTM286.

210689-7

TVAX, VMS are trademarks of Digital Equipment Corporation.

1:41

Inte[8086 SOFTWARE DEVELOPMENT PACKAGE

8086/8088/80186/80188 MACRO ASSEMBLER

m Produces Relocatable Object Code m “Strongly Typed’ Assembler Helps
Which is Linkable to All Other Intel Detect Errors at Assembly Time
8086/8088/80186/80188 Object . « ;
Modules, Generated by Intel 8086 W HlghL ey D Sy caring Facillties
Compilers ‘ “RECORDS”

B Powerful and Flexible Text Macro m Over 120 Detailed and Fully

Facility with Three Macro Listings
Options to Ald Debugging

® Highly Mnemonic and Compact
Language, Most Mnemonics Represent
Several Distinct Machine Instructions

Documented Error Messages

ASM-86 is the “high-level’” macro assembler for the 8086/8088/80186/80188 assembly language. ASM-86
translates symbolic 8086/8088/80186/80188 assembly language mnemonics into 8086/8088/80186/80188
relocatable object code.

ASM-86 should be used where maximum code efficiency and hardware control is needed. The
8086/8088/80186/80188 assembly language includes approximately 100 instruction mnemonics. From these
few mnemonics the assembler can generate over 3,800 distinct machine instructions. Therefore, the software
development task is simplified, as the programmer need know only 100 mnemonics to generate all possible
8086/8088/80186/80188 machine instructions. ASM-86 will generate the shortest machine instruction possi-
ble given no forward referencing or given explicit information as to the characteristics of forward referenced
symbols.

ASM-86 offers many features normally found only in high-level languages. The 8086/8088/80186/80188
assembly language is strongly typed. The assembler performs extensive checks on the usage of variables and
labels. The assembler uses the attributes which are derived explicitly when a variable or label is first defined,
then makes sure that each use of the symbol in later instructions conforms to the usage defined for that
symbol. This means that many programming errors will be detected when the program is assembled, long
before it is being debugged on hardware.

1-42

mter 8086 SOFTWARE DEVELOPMENT PACKAGE

LINK-86

m Automatic Combination of 8086 - m Automatic Generation of a Summary
Programs Separately Translated Using Map Giving Results of the LINK-86
Intel Compilers or Assemblers into Process

- Relocatable Object Module . m Abbreviated Control Syntax
m Automatic Selection of Required
h f m Relocatable Modules May Be Merged

glotghiless frolr)'n ?paci;ued Libraries to into a Single Module Suitable for
Eatls y V"'; :'c Se ell;eT:s ot Inclusion in a Library

m Extensive Debug Symbol Manipulation, “ 9 ;
allowing Line Numbers, Local Symbols, Supports Incrementa.l Linking
and Public Symbols to be Purged and m Supports Type Checking of Public and
Listed Selectively External Symbols

LINK-86 combines object modules specified in the LINK-86 input list into a single output module. LINK-86
combines segments. from the input modules according to the order in which the modules are listed.

LINK-86 will accept libraries and"object modules built from any Intel translator generating 8086 Relocatable
Object Modules.

Support for incremental linking is provided since an. output module produced by LINK-86 can be an input to
another link. At each stage in the incremental linking process, unneeded public symbols may be purged.

LINK-86 supports type checking of PUBLIC and EXTERNAL symbols reporting a warning if their types are not
consistant.

LINK-86 will link any valid set of input modules without any controls. However, controls are available to control
the output of diagnostic information in the LINK-86 process and to control the content of the output module.

LINK-86 allows the user to create a large program as the combination of several smaller, separately compiled

modules. After development and debugging of these component modules the user can link them together,
locate them using LOC-86 and enter final testing with much of the work accomplished.

1-43

intal 8086 SOFTWARE DEVELOPMENT PACKAGE

LOC-86
m Automatic Generation of a Summary m Segments May be Relocated to Best
Map Giving Starting Address, Segment . Match Users Memory Configuration

Addresses and Length, and Debug m Extensive Debug Symbol Manipulation
Symbols and Their Addresses Allowing Line Numbers, Local Symbols,
B Abbreviated Control Syntax , and Public Symbols to be Purged and
h . , Listed Selectively

Relocatability allows the programmer to code programs or sections of programs without having to know the
' final arrangement of the object code in memory.)

LOC-86 converts relative addresses in an input module in 8086/8088/80186/80188 object module format to
absolute addresses. LOC-86 orders the segments in the input module and assigns absolute addresses to the
segments. The sequence in which the segments in the input module are assigned absolute addresses is
determined by their -order in the input module and the controls supplied with the command.

LOC-86 will relocate any valid input module without any controls. However, controls are available to control the
output of diagnostic information in the LOC-86 process, to control the content of the output module, or both.

The program you are developing will almost certainly use some mix of random access memory (RAM), read-
only. memory (ROM), and/or programmable read-only memory (PROM). Therefore, the location of your pro-
gram affects both cost and performance in your application. The relocation feature allows you to develop your
program and then simply relocate the object code to suit your application.

1-44

mter 8086 SOFTWARE DEVELOPMENT PACKAGE

LIB-86
m LIB-86 is a Library Manager Program m Libraries Can be Used as Input to
which Allows You to: LINK-86 which Will Automatically Link
— Create Specifically Formatted Files Modules from the Library that Satisfy
to Contain Libraries of Object External References in the Modules
Modules Being Linked

— Maintain These Libraries by Adding m Abbreviated Control Syntax
or Deleting Modules -

— Print a Listing of the Modules and
Public Symbols in a Library File

Libraries aid in the job of building programs. The library manager program LIB-86 creates and maintains files
containing object modules. The operation of LIB-86 is controlled by commands to indicate which operation
LiB-86 is to perform. The commands are:

CREATE: creates an empty library file

ADD: adds object modules to a library file

DELETE: deletes modules from a library file

LIST: lists the module directory of library files

EXIT: terminates the LIB-86 program and returns control to VMS

When using object libraries, the linker will call only those objéect modules that are required to satisfy external
references, thus saving memory space.

OH-86
@ Converts an 8086/8088/80186/80188 m Converts an Absolute Module to a More
Absolute Object Module to Symbolic Readable Format that can be Displayed

Hexadecimal Format on a CRT or Printed for Debugging

m Facilitates Preparing a File for Loading
by Symbolic Hexadecimal Loader (e.g.
iSBC™ Monitor SDK-86 Loader), or
Universal PROM Mapper

The OH-86 utility converts an 8086/8088 absolute object module to the hexadecimal format. This conversion
may be necessary for later loading by a hexadecimal loader such as the iSBC 86/12 monitor or the Universal
PROM Mapper. The conversion may also be made to put the module in a more readable format that can be
displayed or printed.

The module to be converted must be in absolute form; the output from LOC-86 is in absolute format.

1-45

Inte[8086 SOFTWARE DEVELOPMENT PACKAGE

SPECIFICATIONS

Documentation Package
ASM-86 Assembly Language Reference Manual

8086/87/88 Macro Assembler Operating Instructions

iAPX 86 Family Utilities User’'s Guide

Support Available
Software Updates, Subscription Service, Hotline Support

ORDERING INFORMATION

Order Code Operating Environment

186ASM86 Intel Series Ili/Series IV /
D86ASMB86 : IBM PC XT/AT running PC DOS Version 3.0 or later
VVSASM86 VAXT/VMST ‘
MVVSASM86 MICROVAXTt/VMST

R86ASM86 ' Intel 86/3XX Systems running: iRMX™ 86
R286ASM286 ' Intel 286/3XX Systems running: iRMX™ 286

TMICROVAX, VAX, VMS are trademarks of Digital Equipment Corporation.
*IBM, AT are registered trademarks of International Business Machines Corporation.

1-46

intel

FORTRAN 8086/8088/80186/80188
SOFTWARE PACKAGE

Features High-Level Language Support
for Floating-Point Calculations, ;
Transcendentals, Interrupt Procedures,
and Run-Time Exception Handling
Meets ANSI FORTRAN 77 Subset
Language Specifications

Supports 8086/20, 8088/20 Numeric
Data Processor for Fast and Efficient
Execution of Numeric Instructions
Uses REALMATH Floating-Point
Standard for Consistent and Reliable
Results

Supports Arrays Larger Than 64K
Unlimited User Program Symbols

Offers Upward Compatibility with
FORTRAN 80

Provides FORTRAN Run-Time Support
for 8086, 8088, 80186, 80188-Based
Design

Provides Users Ability to do Formatted
and Unformatted 1/0 with Sequential or
Direct Access Methods

I2ICE™ Symbolic Debugging Fully
Supported

PSCOPE Source Level Debugging Fully
Supported

Supports Complex Data Types
Choice of Industry Standard Hosts

FORTRAN 8086/8088/80186/80188 meets the ANSI FORTRAN 77 Language Subset Specification and
includes many features of the full standard. Therefore, the user is assured of portability of most existing ANS
FORTRAN programs and of full portability from other computer systems with an ANS FORTRAN 77 Compiler.

FORTRAN 8086/8088/80186/80188 is available to run on the Intel Microcomputer Development Systems
(Series lll/Series 1V) as well as the IBM PC XT/AT running PC DOS Version 3.0 or later, Digital Equipment
VAXT/VMST and Intel System 86/3XX running iRMXT™ 86 operating system.

FORTRAN 86/88/186/188 is one of a complete family of compatible programming languages foi’ 8086, 8088,
80186, 80188 development: PL/M, Pascal, FORTRAN, C, and Assembler. Therefore, users may choose the
language best suited for a specific problem solution.

TVAX, VMS are trademarks of Digital Equipment Corporation.

*IBM, AT are registered trademarks of International Business Machines Corporation.

1-47

intef

FORTRAN 8086/8088/80186/80188 SOFTWARE PACKAGE

FEATURES

Extensive High-Level Language
Numeric Processing Support

Single (32-bit), double (64-bit), and double extended
precision (80-bit) complex (two 32-bit), and double
complex (two 64-bit) floating-point data types

REALMATH Proposed IEEE Floating-Point Stan-
dard) for consistent and reliable results

Full support for all other data types integer, logical,
character

Ability to use hardware (8086/20, 8088/20 Numeric
Data Processor) or software (simulator) floatlng-
point support chosen at link time

ANS FORTRAN 77 Standard

Intel® Microprocessor Support

FORTRAN 8086/8088/80186/80188 language fea-
tures support of 8086/20, 8088/20 Numeric Data
Processor

Compiler generates in-line iAPX 8086/20, 8088/20
Numeric Data Processor object code for floating-
point arithmetic (See Figure 2)

Intrinsics allow user to control iAPX 8086/20, 8088/
20 Numeric Data processor

8086, 8088, 80186, 80188 architectural advantages
used for indexing and character-string handling

Symbolic debugging of application using ICE emula-
tors

Source level debugging using PSCOPE

FLOATING-POINT-STATEMENT

TEMPER =

B (PRESS - VOLUM / QUEK) - 3.45 / (PRESS - VOLUM / QUEK
& - (PRESS - VOLUM / QUEK) * (PRESS = VOLUM / QUEK)

OBJECT CODE GENERATED

Intel FORTRAN 8086 Compiler

8086/20, 8088/20
MACHINE-CODE

ASSEMBLER MNEMONICS

; STATEMENT # 2

0013 9BD9060C00 FLD
0018 9BD8360000 FDIV
001D 9BD82E0800 FSUBR
0022 9BDDD1 FST
0025 9B2ED83E0000 FDIVR
002B 9BD9C9 FXCHG
002E 9BDDD2 FST
0031 9BDEE9 FSUBRP
0034 9BD9C1 FLD
0037 9BD8C8 FMUL
003A 9BDDC2 FFREE
003D 9BDEE1 FSUBP
0040 9BD91E0400 FSTP
0045 9B WAIT

VOLUM
QUEK
PRESS
TOS+ 1H
CS:@CONST
T0S+1H
T0S+2H

T0S+1H
T0S
TOS+2H

TEMPER

Figure 2. Object code generated by FORTRAN 8086/8088/80186/80188 for a floating-point
calculation using 8086/20, 8088/20 Numeric Processor.

1-48

intel

FORTRAN 8086/8088/80186/80188 SOFTWARE PACKAGE

Microprocessor Application Support
— Direct byte- or word-oriented port 1/0

— Reentrant procedures
— Interrupt procedures

BENEFITS

FORTRAN 8086/8088/80186/80188 provides a
means of developing application software for the In-
tel 8086/8088/80186/80188 products lines in a fa-
miliar, widely accepted, and industry-standard pro-
gramming language. FORTRAN 8086/8088/
80186/80188 will greatly enhance the user’s ability
to provide cost-effective software development for
Intel microprocessors as illustrated by the following:

Early Project Completion

FORTRAN is an industry-standard, high-level nu-
merics processing language. FORTRAN program-
mers can use FORTRAN 8086/8088/80186/80188
on microprocessor projects with little retraining. Ex-
isting FORTRAN software can be compiled with
FORTRAN 8086/8088/80186/80188 and programs
developed in FORTRAN 8086/8088/80186/80188
can run on other computers with ANS FORTRAN 77
with little or no change. Libraries of mathematical

programs using ANS 77 standards may be compiled

with FORTRAN 8086/8088/80186/80188.

Application Object Code
a Processor Family

FORTRAN ' 8086/8088/80186/80188 modules
“talk” to the resident Intellec development operating
system using Intel’s standard interface for all devel-
opment-system software. This allows an application
developed under the ISIS-Il operating system to exe-
cute on iRMX/86, or a user-supplied operating sys-
tem by linking in the iRMX/86 or other appropriate
interface library. A standard logical-record interface
enables communication with non-standard 1/0 de-
vices.

Portability for

1-49

Comprehensive, Reliable and Efficient
Numeric Processing

The unique combination of FORTRAN 8086/8088,
8086/20, 8088/20 Numeric Data processor, and
REALMATH (Proposed IEEE Floating-Point Stan-
dard) provide universal consistency in results of nu-
meric computations and efficient object code gener-
ation.

SPECIFICATIONS

Documentation Package
FORTRAN 86/88/186/188 User’s Guide

ORDERING INFORMATION

Order Code Operating Environment

186FOR86 Intel Series lIl/Series IV

D86FOR86 IBM PC XT/AT running PC. DOS
Version 3.0 or later

R86FOR86 Intel System 86/3XX running
iRMX 86

VVS

For 86 VAX/VMS 4.3 and later

SUPPORT AVAILABLE

Software updates, Subscription Service, Hotline
Support. ‘

intgl
PASCAL 8086/8088/80186/80188
SOFTWARE PACKAGE

m Choice of IndUStry Standard Hosts ® Unlimited User Program Symbols

L B Object Compatible and Linkable with . B Supports 8086/20, 8088/20 Numeric
PL/M 8086/8088, ASM 8086/8088, Data Processors
C8086/8088 and FORTRAN 8086/8088 m Strict Implementation of ISO Standard

® I2ICE™ Symbolic Debugging Fully Pascal
Supported m Useful Extensions Essential for

2 PSCOPE Source Level Dubugging Fully Microcomputer Applications ‘
Supported . . m Separate Compilation with Type-

m Implements REALMATH for Consistent Checking Enforced Between Pascal
and Reliable Results . Modules

m Supports Large Array Operation m Compiler Option to Support Full Run-

Time Range-Checking

PASCAL 8086/8088/80186/80188 conforms to and implements the ISO Draft Proposed PASCAL standard.
The language is enhanced to support microcomputer applications with special features, such as separate
compilation, interrupt handling and direct port |1/0. To assist the development of portable software, the compil-
er can be directed to flag all non-standard features.

The PASCAL 8086/8088/80186/80188 compiler runs on Series |l and Series IV Microcomputer Development
Systems, as well as the IBM* XT/AT* running PC DOS Version 3.0 or later, Digital Equipment VAX/VMST, and
Intel System 8086/3XX running iRMX™ 86.

A well-defined 1/0 interface is provided for run-time support. This allows a user-written operating system to
support application programs as an alternate to the development system environment. Program modules
compiled under PASCAL 8086/8088/80186/80188 are compatible and linkable with modules written in
PL/M 8086/8088/80186/80188, ASM 8086/8088/80186/80188, C86 or FORTRAN 8086/8088/
80186/80188. With a complete family of compatible programming languages for the iAPX 8086/8088/80186/
80188 one can implement each module in the language most appropriate to the task at hand.

PASCAL 8086/8088/80186/80188 object modules contain symbol and type information for program debug-
ging using ICE emulators and PSCOPE source language debugger. For final productlon version, the compiler
can remove this extra information and code.

TVAX, VMS are trademarks of Digital Equipment Corporation.

1-50

intel

PASCAL 8086/8088/80186/80188

FEATURES

Includes all the language features of Jensen & Wirth
Pascal as defined in the ISO Draft Proposed Pascal
~ Standard.

Supports required extensions for microcomputer ap-
plications.

— Interrupt handling

— Direct port 1/0

Separate compilation extensions allow:
— Modular decomposition of large programs

— Linkage with other Pascal modules as well as
PL/M 8086/8088/80186/80188, ASM 8086/
8088/80186/80188, C86 and FORTRAN
8086/8088/80186/80188

— Enforcement of type-checking at LINK-time

Supports numerous compiler options to control the
compilation process, to INCLUDE files, flag non-
standard Pascal statements and others to control
program listing and object modules.

Utilizes the IEEE standard for Floating-Point Arith-
metic (the Intel REALMATH standard) for arithmetic
operations.

Well-defined and documented run-time operating
system interfaces allow the user to execute the ap-
plications under user-designed operations systems.

Predefined type extensions allow:

— Create precision in read, integer, and unsigned

calculations.
— Means to check 8087 errors

— Circumvention of rigid type checking on calls to
non-Pascal routines

BENEFITS

Provides a standard Pascal
80186/80188 based applications.

— Pascal has gained wide acceptance as a porta-
ble application language for microcomputer ap-
plications .

— It is being taught in many colleges and universi-
ties around the world

— ltis easy to learn, originally intended as a vehicle
for teaching computer programming

for 8086/8088/

1-51

— Improves maintainability: Type mechanism is
both strictly enforced and user extendable

— Few machine specific language constructs

Strict implementation of the proposed ISO standard
for Pascal aids portability of application programs. A
compile time option checks conformance to the
standard making it easy to write conforming pro-
grams.

PASCAL 8086/8088/80186/80188 extensions via
predefined procedures. for interrupt handling and di-
rect port I/0 make it possible to code an entire ap-
plication in Pascal without compromising portability.

Standard Intel REALMATH is easy to use and pro-
vides reliable results, consistent with other Intel lan-
guages and other implementations of the IEEE pro-
posed Floating-Point standard.

Provides run-time support for co-processors. All
real-type arithmetic is performed on the 86/20 nu-
meric data processor unit or software emulator. Run-
time library routines, common between Pascal and
other Intel languages (such as FORTRAN), permit
efficient and consistently accurate results.

Extended relocation and linkage support allows the
user to link Pascal program modules with routines
written in other languages for certain parts of the
program. For example, real-time or hardware depen-
dent routines written in ASM 8086/8088/80186/
80188 or PL/M 8086/8088/80186/80188 can be
linked to Pascal routines, further extending the us-
er’s ability to write structured and modular programs.

PASCAL 8086/8088/80186/80188 programs “talk’”
to the resident operating system using Intel’s stan-
dard interface for translated programs. This allows
users to replace the development operating system
by their own operating systems in the final applica-
tion.

PASCAL 8086/8088 takes full advantage of
8086/8088/80186/80188 high level language archi-
tecture to generate efficient machine code.

Compiler options can be used to control the program
listings and object modules. While debugging, the
user may generate additional information such as
the symbol record information required and useful
for debugging using PSCOPE or ICE emulation. After
debugging, the production version may be stream-
lined by removing this additional information.

Inte[PASCAL 8086/8088/80186/80188

SPECIFICATIONS
ORDERING INFORMATION

Ordering Code Operating Environment

I86PAS86 Intel Series Ill/ Series IV

D86PAS86 IBM PC XT/AT running PC DOS Version 3.0 or later
R86PAS86 - Intel System 86/3XX running iRMXT™ 86
VVSPAS86 VAX/VMS

MVVPAS86 ‘MICROVAX/VMS

Documentation Package
PASCAL 86 User’'s Guide

SUPPORT

Hotline Telephone Suppért, Software Performance
Report (SPR), ‘Software Updates, Technical Re-

" ports, and Monthly Technical Newsletters are avail-

1-52

able.

intel
PL/M 8086/8088/80186/80188 Software Package

m Systems Programming Language for . 1 Improved Compiler Performance Now
the 8086/8088/80186/80188 Processors Supports More User Symbols and

m Language is Upward Compatible from Faster Compilation Speeds
PL/M 80, Assuring MCS®-80/85 Design m Produces Relocatable Object Code
Portability : Which Is Linkable to All Other 8086

m Advanced Structured System Object Modules
Implementation Language for Algorithm m Code Optimization Assures Efficient

Development Code Generation and I\{Iinim.um

m Supports 16-Bit Signed Integer and 32- Application Memory Utilization

. Bit Floating Point Arithmetic in m Built-In Syntax Checker Doubles

- Accordance with IEEE Proposed Performance for Compiling Programs

Standard Containing Errors

m Easy-to-Learn Block-Structured H Resident on Choice of Hosts
Language Encourages Program m 12ICE Symbolic Debugging Fully
Modularity Supported

m PSCOPE Source Level Debugging Fully
Supported

PL/M 8086 is an advanced, structured, high-level systems programming language. The PL/M 8086 compiler
was created specifically for performing software development for the Intel 8086, 8088, 80186 and 80188
Microprocessors. PL/M was designed so that program statements naturally express the program algorithm.
This frees the programmer to concentrate on the logic of the program without concern for burdensome details
of machine or assembly language programming (such as register allocation, meanings of assembler mnemon-
ics, etc.).

The PL/M 8086 compiler efficiently converts free-form PL/M language statements into machine instructions.
Substantially fewer PL/M statements are necessary for a given application than if it were programmed at the
assembly language or machine code level.

The use of PL/M high-level language for system programming, instead of assembly language, results in a high
degree of engineering productivity during project development. This translates into significant reductions in
initial software development and follow-up maintenance costs for the user.

PL/M 8086 is available to run on the Intellec® Microcomputer Development Systems (Series 11I/Series IV) as
well as the IBM PC XT/AT, DEC VAXT/VMST, and Intel System 8086/3XX running iRMX™ 86.

TVAX, VMS are trademarks of Digital Equipment Corporation.

1-53

intel

PL/M 8086/8088/80186/80188 SOFTWARE PACKAGE

FEATURES

Major features of the Intel PL/M 8086 compiler and
programming language include:

Block Structure

PL/M source code is developed in a series of mod-
ules, procedures, and blocks. Encouraging program
modularity 'in this manner makes programs more
readable, and easier to maintain and debug. The
language becomes more flexible, by clearly defining
the scope of user variables (local to a private proce-
dure).

The use of procedures to break down a large
problem is paramount to productive software
development. The PL/M 8086 implementation of a
block structure allows the use of REENTRANT (re-
cursive) procedures, which are especially useful in
system design.

Language Compatibility

PL/M 8086 object modules are compatible with ob-
ject modules generated by all other 8086 transla-
tors. This means that PL/M programs may be linked
to programs written in any other 8086 language.

Object modules are compatible-with In-Circuit Emu-
lators; DEBUG compiler control provides the In-Cir-
cuit Emulators with symbolic debugging capabilities.

PL/M 8086 Language is upward compatible with
PL/M 80, so that application programs may be easily
ported to run on the 8086.

Supports Seven Data Types

PL/M makes use of seven data types for various
applications. These data types range from one to
four bytes, and facilitate various arithmetic, logic,
and addressing functions:

Byte: 8-bit unsigned number
Word: 16-bit unsigned number
DWORD: 32-bit unsigned number
Integer: 16-bit signed number

— Read: 32-bit floating point number

Pointer: 16-bit or 32-bit memory address
indicator

Selector: 16-bit base portion of a pointer

1-54

Another powerful facility allows the use of BASED
variables that map more than one variable to the
same memory location. This is especially useful for
passmg parameters, relative and absolute address-
ing, and memory allocation.

Two Data Structuring Facilities

In addition to the five data types and based vari-
ables, PL/M supports two data structuring facilities.
These help the user to organize data into logical
groups.

— Array: Indexed list of same type of data elements

— Structure: Named collection -of same or different
type data elements

— Combinations of Each: Arrays of structures or
structures of arrays

8087 Numerics Support

PL/M programs that use 32-bit REAL data may be
executed using the Numeric Data Processor for im-
proved performance. All floating-point operations
supported by PL/M may be executed on the
8086/20 or 8088/20 NDP, or the 8087 Emulator (a
software module) provided with the package. Deter-
mination of use of the chip or Emulator takes place
at linktime, allowing compilations to be run-time in-
dependent.:

Built-In String Handling Facilities

The PL/M 8086 language contains built-in functions
for string manipulation. These byte and word func-
tions perform the following operations on character
strings: MOVE, COMPARE, TRANSLATE, SEARCH,
SKIP, and SET.

Interrupt Handling

PL/M has the facility for handling interrupts. A pro-
cedure may be defined with the INTERRUPT attri-
bute, and the compiler willl automatically initialize an
interrupt vector at the appropriate memory location.
The compiler will also generate code to save and
restore the processor status, for execution of the
user-defined interrupt handler routine. The proce-
dure SETSINTERRUPT, the function retuning an IN-
TERRUPTS$PTR, and the PL/M statement CAU-
SESINTERRUPT all add flexibility to user programs
involving interrupt and handling.

intel

PL/M 8086/8088/80186/80188 SOFTWARE PACKAGE

Compiler Controls

Including several that have been mentioned, the
PL/M 8086 compiler offers more than 25 controls
that facilitate such features as:

— Conditional compilation
— Including additional PL/M source files from disk

— Corresponding assembly language code in the
listing file

— Setting overflow conditions for run-time handling

Segmentation Control

The PL/M 8086 compiler takes full advantage of
program addressing with the SMALL, COMPACT,
MEDIUM, and LARGE segmentation controls. Pro-
grams with less than 64 KB total code space can
exploit the most efficient memory addressing
schemes, which lowers total memory requirements.
Larger programs can exploit the flexibility of extend-
ed one-megabyte addressing.

— Combination or “folding” of constant expres-
sions; and short-circuit evaluation of Boolean ex-
pressions

— “Strength reductions” (such as a shift left rather
than multiply by 2); and elimination of common
sub-expressions within the same block)

— Machine code optimizations; elimination of su-
perfluous branches; re-use of duplicate code; re-
moval of unreachable code

— Byte comparisons (rather than 20-bit address
calculations) for pointer variables; optimization of
based-variable operations

Error Checking

The PL/M 8086 compiler has a very powerful fea-
ture to speed up compilations. If a syntax or program
error is detected, the compiler will skip the code
generation and optimization passes. This usually
yields a 2X performance increase for compilation of
programs with errors.

A fully detailed set of programming and compilation

Code Optimization

The PL/M 8086 compiler offers four levels of opti-
mization for sngnmcantly reducing overall program
size.

errors is provided by the compiler.

M:DO; /* Beginning of module */

I* Parameters:
PTR is pointer to first record.
COUNT is number of records to be sorted.
RECSIZE is number of bytes in each record—max is 128.
KEYINDEX is byte position within each record of a BYTE scalar

SORTPROC: PROCEDURE (PTR, COUNT, RECSIZE, stmnsx)

DECLARE PTR POINTER, (COUNT, RECSIZE, KEYINDEX) INTEGER

PUBLIC and EXTERNAL attributes promote
program modularity.

"Bas,ed" Variables allow manipulation of external data by

to be used as sort key. */

DECLARE (RECORD BASED PTR)(1) BYTE,

CURRENT (128) BYTE,
(I, J) INTEGER:

SORT: 0O J=1TO COUNT-1;

1=d;

FIND: DO WHILE 1>0

CURRENT(KEYINDEX

CALL MOVB(@RECOHD((I 1)n CSIZE),
@RECORD(I'RECSIZE),
RECSIZE)

END FND,

CALL
END SORT;

CALL MOVB(@HECORD(J RECSIZE), (@CURRENT), RECSIZE);

AND RECORD((I-1)* RECSIZE»KEYINDEX)

RRENT. @RECORD(I'RECSIZE), RECSIZE):

the base of the data structure (a pointer). This
minimizes the STACK space used for parameter passing. and
the execution time to perform many STACK operations.

The "AT" operator returns the address of a
variable, instead of its contents. This is very useful
in passing pointers for based variables.

END SORTPROC;

END M; I'End of module*/

| One of several PL/M built-in procedures for string
manipulation.

210689-5

Figure 3. Sample PL/M 8086 Program

1-55

intef

PL/M 8086/8088/80186/80188 SOFTWARE PACKAGE

BENEFITS

PL/M 8086 is designed to be an efficient, cost-effec-
tive solution to the special requirements of 8086 Mi-
crosystem Software Development, as illustrated by
the following benefits of PL/M use:

Cost-Effective Alternative to Assembly
Language

PL/M 8086 programs are code efficient. PL/M 8086
combines all of the benefits of a high-level language
(ease of use, high productivity) with the ability to ac-
cess the 8086 architecture. Consequently, for the
development of systems software, PL/M 8086 is the
cost-effective alternative to assembly language pro-
gramming. ‘

Low Learning Effort

PL/M is easy to learn and to use, even for the nov-
ice programmer.

Earlier Project Completion

Critical projects are completed much earlier than
otherwise possible because PL/M 8086, a struc-
tured high-level language, increases programmer
productivity.

Lower Development Cost

Increases in programmer productivity translate im-
mediately into lower software development costs
because fewer programming resources are required
for a given programmed function.

Increased Reliability

PL/M 8086 is designed to aid in the development of
reliable software (PL/M 8086 programs are simple
statements of the program algorithm). This substan-
tially reduces the risk of costly correction of errors in
systems that have already reached full production
status, as the more simply stated the program is, the
more likely it is to perform its intended function.

Easier Enhancements and
Maintenance

Programs written in PL/M tend to be self-document-
ing, thus easier to read and understand. This means
it is easier to enhance and maintain PL/M programs
as the system capabilities expand and future prod-
ucts are developed.

. SPECIFICATIONS

Documentation Package
PL/M-8086 User’s Guide for 8086-based Develop-
ment Systems

SUPPORT:

. Hotline Telephone Support, Software Performance

1-56

Reporting (SPR), Software Updates, Technical Re-
ports, Monthly Newsletter available.

ORDERING INFORMATION

Order Code Operating Environment

186PLM86 Intel Series Ill/Series IV

D86PLM86 IBM PC XT/AT running PCDOS
Version 3.0 or later

R86PLM86 Intel System 8086/3XX running
iRMX™ 86

WSPLM86 VAX/VMS

MVVSPLM86

MICROVAX/VMS

intel
iC-86
C COMPILER FOR THE 8086

m Implements Full C Language ® Supports Both Small and Large Models
m Produces High Density Code Rivaling of Computation -
Assembler @ Supports IEEE Floating Point Math with
m Supports Intel Object Module Format 8087 Coprocessor
(OMF) @ Supports Bit Fields
m Runs under the Intel UDI on Intel Supports Full Standard 1/0 Library
Development Systems and iRMX™V 86 (STDIO)
m Available for the VAX/VMS* Operating @ WritteninC
System ‘

® Supports PSCOPE-86 and I2ICE™

The C Programming Language was originally designed in 1972 and has become increasingly popular as a
systems development language. C is not a “very high level” language and is not tied to any specific application
area. Although it is used for writing operation systems, it has been used equally well to write numerical, text-
processing and data base programs. C combines the flexibility and programming speed of a higher level
language with the efficiency and control of assembly language.

Intel iC-86 brings the full power of the C programming language to 8086 and 8088 based microprocessor
systems.

Intel iC-86 supports the full C language as described in the Kernighan and Ritchie book, “The C Programming
Language”, (Prentice-Hall, 1978). Also included are the latest enhancements to the C language: structure
assignments, functions taking structure arguments and returning structures, and the “void” and “enum” data

types.

C is rapidly becoming the standard microprocessor system implementation language because it provides:

1. the ability to manipulate the fundamental objects of the machine (including machine addresses) as easily as
assembly language.

2. the power and speed of a structured language supporting a large number of data types, storage classes,
expressions and statements,

3. processor independence (most programs developed for other processors can be easily transported to the
8086), and

4, code that rivals assembly language in efficiency

INTEL iC-86 COMPILER

DESCRIPTION syntactic and semantic error checking. The code

. . . generator phase converts the parser’s output into an
The iC-86 compiler operates in four phases: pre- efficient intermediate binary code, performs con-
processor, parser, code generator, and optimizer. stant folding, and features an extremely efficient reg-

The preprocessor phase interprets directives in G jster allocator, ensuring high quality code. The opti-
source code, including conditional compilations mizer phase converts the output of the code gener-
(# define). The parser phase converts the C pro-

gram into an intermediate free form and does all

1-57

intel

1C-86 C COMPILER FOR THE 8086

ator into relocatable Intel Object Module Format
(OMF) code, without creating an intermediate
assembly file. Optionally, the iC-86 compiler can
produce a symbolic assembly like file. The iC-86
optimizer eliminates common code, eliminates
redundant loads and stores, and resolves span de-
pendencies (shortens branches) within a program.

The iC-86 runtime library consists of a number of
functions which the C programmer can call. The run-
time system includes the standard 1/0 library

(STDIO), conversion routines, routines for manipu-

lating strings, special routines to perform functions
not available on the 8086 (32-bit arithmetic and em-
ulated floating point), and (where appropriate) rou-
tines for interfacing with the operating system.

iC-86 uses Intel's linker and locator and generates
debug records for symbols and lines on request, per-
mitting access to Intel's PSCOPE AND I2ICE™ to
aid in program testing.

FEATURES

Support for Small and Large Modelé .

Intel iC-86 supports both the SMALL and LARGE
modes of segmentation. A SMALL model program
can have up to 64K bytes of code and 64K bytes of
data, with all pointers occupying two bytes. Because
two byte pointers permit the generation of highly
compact and efficient code, this model is recom-
mended for programs that can meet the size restric-
tions. The LARGE segmentation model is used by
programs that require access to the full addressing
space of the 8086/8088 processors. In this model,
each source file generates a distinct pair of code
and data segments of up to 64K bytes in length. All
pointers are four bytes long.

Preprocessor Directives

#define—defines a macro

#include—includes code outside of the program
source file

#if—conditionally includes or excludes code

Other preprocessor directives include #undef,
#ifdef, #ifndef, #else, #endif, and #line.

Statements

The C language supports a variety of statements:
Conditionals: IF, IF-ELSE
Loops: WHILE, DO-WHILE, FOR
Selection of cases: SWITCH, CASE, DEFAULT

Exit from a function: RETURN
Loop control: CONTINUE, BREAK
Branching: GOTO

Expressions and Operators

The C language includes a rich set of expreésions
and operators.

Primary expression: invoke functions, select ele-
ments from arrays, and extract fields from structures
or unions

Arithmetic operators: add, subtract, multiply, divide,
modulus

Relational operators: greater than, greater than or
equal, less than, less than or equal, not equal
Unary operators: indirect through a pointer, compute
an address, logical negation, ones complement, pro-
vide the size in bytes of an operand.

~ Logical operators: AND, OR

1-58

Bitwise operators: AND, exclusive OR, inclusive OR,
bitwise complement

Data Types and Storage Classes

Data in C is described by its type and storage class.
The type determines its representation and use, and
the storage class determines its lifetime, scope, and
storage allocation. The following data types are fully
supported by iC-86.

char

an 8-bit signed integer
int

a 16-bit signed integer

short
same as int (on the 8086)

long
a 32-bit signed integer

unsigned

a modifier for integer data types (char, int, short,
and long) which doubles the positive range of
values

float

a 32-bit floating point number which utilizes the
8087 or a software floating point library

double
a 64-bit floating point number

intel

IC-86 C COMPILER FOR THE 8086

void

a special type that cannot be used as an oper-
and in expressions; normally used for functions
called only for effect (to prevent their use in con-
texts where a value is required).

enum
an enumerated data type

These fundamental data types may be used to
create other data types including: arrays, func-
. tions, structures, pointers, and unions.

The storage classes available in iC-86 include:

" register
suggests that a variable be kept in a machine
register, often enhancing code density and
speed

extern

a variable defined outside of the function where
it is declared; retaining its value throughout the
entire program and accessible to other modules

auto

a local variable, created when a block of code is
entered and discarded when the block is exited

static
a local variable that retains its value until the
termination of the entire program

typedef

defines a new data type name from existing data
types

BENEFITS

Faster Compilation

Intel iC-86 compiles C programs substantially faster
than standard C compilers because it produces Intel
OMF code directly, eliminating the traditional inter-
mediate process of generating an assembly file.

Portability of Code

Because Intel iC-86 supports the STDIO and pro-
duces Intel OMF code, programs developed on a
variety of machines can easily be transported to the
8086.

1-59

Rapid Program Development

Intel iC-86 provides the programmer with detailed er-
ror messages and access to PSCOPE-86 and I2ICE
to speed program development.

Full Manipulation of the 8086

Intel iC-86 enables the programmer to utilize fea-
tures of the C language to control bit fields, pointers,
addresses and register allocation, taking full advan-
tage of the fundamental concepts of the 8086.

SPECIFICATIONS

Operating Environment

The iC-86-compiler runs host resident on both the
Intel Series Ill Microcomputer Development System
under ISIS-Il and on the System 86/330 under the
iRMXT™ 86 operating system. iC-86 can also run as
a cross compiler on a VAX 11/780 computer under
the VMS operating system 128K bytes of User Mem-
ory is required on all versions. The PC DOS Operat-
ing Environment is also supported. Specify desired
version when ordering.

Required Hardware

Development System Version

— Intellec® Microcomputer Development System,
Series Il or Series IV

— Dual Diskette Drives, Single or Double Density

— System Console; CRT or Hardcopy Interactive
Device

iRMX 86 version:

— Any 8086/8088, iISBC® 86/88, iTPS 86/XXX, or
SYS 86/3XX based system capable of running
the iRMX 86 Operating System

VAX version:

— Digital Equipment Corporation VAX 11/780 or
compatible computer

PC DOS version:
— PC XT or AT using PC DOS 3.0 or later

intel

1C-86 C COMPILER FOR THE 8086

Optional Hardware

ISIS-II version:
— |CE-86, I2ICE-86"

iRMX 86 version:

— Numeric Data Processors for support of the
REALMATH standard

VAX version:
— None

Required Software

ISIS-II version:
— ISIS-II Diskette Operating System
— Series Il or Series IV Operating

iRMX 86 version:

— iRMX 86 Realtime Multlprogrammmg Operating
System

— iRMX 860 Utilities Package

VAX version:
— VMS Operating System

PC DOS version:
— PC DOS Release 3.0 or later Operating System

Optional Software

Development System Version:
— None

iRMX 86 version:
— None

VAX version:

— MDS*-384 Kit-Mainframe Link for distributed de-
velopment, or iMDX-394 Asynchronous Commu-
nications Link.

— VAX 8086/8088/80186 MACRO_Assembler and
utilities. package (iMDX-341VX)

Documentation Package

The C Programm/ng Language by Kernlghan and
Ritchie (1978 Prentice-Hall)

iC-86 User Manual

Shipping Media

Development System Version:

— Two single and one double density ISIS-Il format
8" diskettes, one 51" Series IV Format

iRMX 86 version:
— Double Density iRMX 86 format 8" diskette
— Double Density iRMX 86 format 51/" diskette

VAX version:
— 1600 bpi, 9 track Magnetic tape

PC DOS version:
— 51," PC DOS format diskette

ORDERING INFORMATION
Order Code Description

186C86 iC-86 Compiler for ISIS-II

R86C86 iC-86 Compiler for iRMX 86
iMDX-347 iC-86 Cross Compiler for VAX/VMS
D86C86 iC-86 Cross Compiler for PC DOS

Intel Software License required

SUPPORT

Intel offers several levels of support for this product
which are explained in detail in the price list. Please
consult the price list for a description of the support
options available.

*MDS is an ordering code only and is not used as a product
name or trademark. MDS is a registered trademark of Mo-
hawk Data Sciences Corporation.

VAX, VMS are registered trademarks of Digital Equipment
Corporation.

1-60

FORTRAN 80
8080/8085 ANS FORTRAN 77
INTELLEC® RESIDENT COMPILER

B Meets ANS FORTRAN 77 Subset B Supports Full Symbolic Debugging with
Language Specification Plus Adds ICE-80™ and ICE-85T™
Intel® Microcprocessor Extensions m Produces Relocatable and Linkable

B Supports Intel Floating Point Standard Object Code Compatible with Resident
with the FORTRAN 80 Software ~ PL/M 80 and 8080/8085 Macro
Routines, the iSBC-310™ ngh Speed Assembler ‘
Mat'r:elana:t!cs 3olard, or the iSBC-332™" m Provides Optional Run-Time Library to
Math Multimodule Execute in RMX-80T Environment

B Executes on iIntellect Microcomputer m Has Well Defined 170 Interface for

Development System, Intellec Series I
Microcomputer Development System
and Personal Development System

Configuration with User-Supplied
Drivers

FORTRAN 80 is a computer industry-standard, high-level programming language and compiler that translates
FORTRAN statements into relocatable object modules. When the object modules are linked together and
located into absolute program modules, they are suitable for execution on Intel 8080/8085 Microprocessors,
iSBC-80 OEM Computer Systems, Intellec Microcomputer Development Systems and Personal Development

Systems. FORTRAN 80 meets the ANS FORTRAN 77 Language Subset Specification.(1) In addition, exten-
sions designed specifically for microprocessor applications are included. The compiler operates on the Intellec
Microcomputer Development System and Personal Development System under the ISIS-Il Disk Operating
System and produces efficient relocatable object modules that are compatible for linkage with PL/M 80 and
8080/8085 Macro Assembler modules.

The ANS FORTRAN 77 language specification offers many powerful extensions to the FORTRAN language
that are especially well suited to Intel 8080/8085 Microprocessor software development. Because FORTRAN
80 conforms to the ANS FORTRAN 77 standard, the user is assured of compatibility with existing FORTRAN
software that meets the standard as well as a guarantee of upward compatibility to other computer systems
supporting an ANS FORTRAN 77 Compiler.))

(1) ANSI X3J3/90

s

400610-1 -

*MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation. :

November 1986
1-61 . Order Number: 400610-001

ntel

FORTRAN 80

FORTRAN 80 LANGUAGE FEATURES

Major ANS FORTRAN 77 features supported by the
Intel FORTRAN 80 Programming Language include:

e Structured Programming is supported with the IF
..THEN...ELSEIF ... ELSE... END IF con-
structs.

e CHARACTER data type permits alphanumeric
data to be handled as strings rather than charac-
ters stored in array elements.

e Full I/0 capabilities include:
— Sequential and Direct Access files
— Error handling facilities

— Formatted, Free-formatted, and Unformatted
data representation

— Internal (in-memory) file units provnde capability

to format and reformat data in internal memory

buffers
— List directed formatting
— Supports arrays of up to seven dimensions.

— Supports logical operators
.EQv. — Logical equivalence.
.NEQV. — Logical nonequivalence

Major extensions to FORTRAN 77 in Intel FOR-
TRAN-80 include:

® Direct 8080/8085 port I/0 supported by intrinsic
subroutines.

® Binary and Hexadecimal integer constants.

ments (READ, OPEN, etc.) allowing easy use of
user-supplied 1/0 drivers.

4 bytes.

User-defined LOGICAL storage Iengths of 1,2 or
4 bytes. -

REAL STORAGE lengths of 4 bytes.
' Bitwise Boolean operations using logical opera-
tors on integer values.
Hollerith data constants.
Implicit extension of the length of an integer or

logical expression to the length of the left-hand
side in an assignment statement.

A format descriptor to suppress carriage return
on a terminal output device at the end of the rec-
ord.

FORTRAN 80 COMPILER FEATURES

e Supports multiple compilation units in single
source file.

¢ Optional Assembly Language code Iisiing.

Well defined interface to FORTRAN-80 I/0 state-

User-defined INTEGER storage lengths of 1, 2 or

1-62

e Comprehensive cross-reference, symbol attribute
and error listing.

Compiler controls and directives are compatible
with other Intel language translators.

Optlonal Reentrancy.

User-defined default storage Iengths
Optional FORTRAN 66 Do Loop semantics.
Source files' may be prepared in free format.

The INCLUDE control permits specified source
files to be combined into a compllatlon unit at
compile time.

® Tranparent interface for software and hardware
floating point support, allowing either to be cho-
sen at time of linking.

FORTRAN 80 BENEFITS

FORTRAN 80 provides a means of developing appli-
cation software for Intel MCS-80/85 products in a
familiar, widely accepted, and computer industry-
standardized programming language. FORTRAN 80
will greatly enhance the user’s ability to provide
cost-effective solutions to software development for

Intel microcoprocessors as illustrated by the follow-

ing:

& Completely Complementary to Existing Intel Soft-
ware Design Tools — Object modules are link-
able with new or existing Assembly Language
and PL/M Modules. ‘

Incremental Runtime Library Support — Runtime
overhead is limited only to facilities required by
the program.

Low Learning Effort — FORTRAN 80, like PL/M,
is easy to learn and use. Existing FORTRAN soft-
ware can be ported to FORTRAN 80, and pro-
grams developed in FORTRAN 80 can be run on
any other computer with ANS FORTRAN 77.

Earlier Project Completion — Ciritical projects are
completed earlier than otherwise possible be-
cause FORTRAN 80 will substantially increase
programmer productivity, and is complementary
to PL/M Modules by providing comprehensive
arithmetic, 1/0 formatting, and data management
support in the language.

Lower Development Cost — Increases in pro-
grammer productivity translates into lower soft-
ware development costs because less program-
ming resources are required for a given function.

Increased Reliability — The nature of high-level
languages, including FORTRAN 80, is that they
lend themselves to simple statements of the pro-
gram algorithm. This substantially reduces the
risk of costly errors in systems that have already
reached production status.

ntel

FORTRAN 80

SAMPLE FORTRAN-80 SOURCE PROGRAM LISTING

-
*

(1]
*# CONVERTS TEMPERATURE BETWEEN CELSIUS AND FARENHEIT
PROGRAM CONVRT

CHARACTER®1 CHOICE, SCALE

PRINT 100

** ENTER CONVERSION SCALE (C OR F)
PRINT 200

READ (5,300) SCALE

IF (SCALE .EQ.
THEN
PRINT 400
ENTER THE NUMBER OF DEGREES FARENHELT
READ (5,%) DEGF
DEGC = 5./9.%(DEGF-32)
#* PRINT THE ANSWER
WRITE (6,500) DEGF,DEGC
*% RUN AGAIN?
PRINT 600
READ (5,300) CHOICE
IF (CHOICE .EQ.
THEN
GOTO 10
ELSE IF (CHOICE .EQ.
THEN
CALL EXIT

C)

+

Yr)

N*)

END IF
ELSE IF (SCALE .EQ.
THEN

*# CONVERT FROM FARENHEIT TO CELSIUS

PRINT 700

READ (5,%) DEGC

DEGF = 9./5.%DEGC+32.

*® PRINT THE ANSWER

WRITE (6,800) DEGC,DEGF

GOTO 20

'F

)

ELSE
#% NOT A VALID ENTRY FOR THE SCALE
WRITE (6,900) SCALE
GOTO 10
END IF
FORMAT(' TEMPERATURE CONVERSION PROGRAM',//,
+' TYPE C FOR FARENHEIT TO CELSIUS OR',/,
+' TYPE F FOR CELSIUS TO FARENHEIT',//)
FORMAT(/,' CONVERSION? *,$)
FORMAT (A1)
FORMAT(/, 'ENTER DEGREES FARENHEIT: ',$)
FORMAT(/,F7.2, DEGREES FARENHEIT = ',F7.2,' DEGREES C|
FORMAT(/,* AGAIN (Y OR N)? *,$)
FORMAT(/,' ENTER DEGREES CELSIUS: °,$)
FORMAT(/,F7.2, DEGREES CELSIUS = ',F7.2,* DEGREES FAR
FORMAT(/,1H ,A1,' NOT A VALID CHOICE - TRY AGAINI‘,/)
END

100

200
300
400
500
600
700
800
900

THIS PROGRAM IS AN EXAMPLE OF ISIS-II FORTRAN-80 THAT

ELSIUS-)

ENHEIT',/)

400610-2

® Fasier Enhancements and Maintenance — Like
PL/M, program modules written in FORTRAN 80
are easier to read and understand than assembly
language. This means it is easier to enhance and
maintain FORTRAN 80 programs as system ca-
pabilities expand and future products are devel-
oped.

Comprehensive, Yet Simple Project Development
— The Intellec Microcomputer Development Sys-
tem and Personal Development System, with the
8080/8085 Macro Assembler, PL/M 80 and
FORTRAN 80 are the most comprehensive soft-
ware design facilities available for the Intel MCS-
80/85 Microprocessor family. This reduces de-

1-63

velopment time and cost because expensive (and
remote) timesharing or large computers are not re-
quired.

The FORTRAN 80 Compiler is an efficient, multi-
phase compiler that accepts source programs,
transiates them into relocatable object code, and
produces requested listings. After compilation, the
object program may be linked to other modules, lo-
cated to a specific area of memory, then executed.
The diagram shown below illustrates a program de-
velopment cycle where the program consists of
modules created by FORTRAN 80, PL/M 80 and the
8080/8085 Macro Assembler.

intal FORTRAN 80

1sIS
| LoaDER
1sisl RELOCATABLE
TEXT |__.| Fonvranzo | [FORTRAN &0 OBJECT PROGRAM
EDITOR SOURCE COMPILER g LIBRARIES
DEBUG
I VIA
MONITOR
SIS RELOCATABLE
TEXT —] Soomer | commen OBJECT LINKER LOCATE |
EDITOR MODULE
OPTIONAL
ICE-80™™
—| ICE-85™
IN-CIRCUIT
EMULATOR
SIS
1sis ASSEMBLY RELOCATABLE
TEXT —={ LaNGUAGE || RELOCATING
EDITOR SOURCE ASeEMBCER MODULE
\ PROM
| PROGRAMMER
400610-3

OPERATING ENVIRONMENT

Required Hardware:
1. Intel Microcomputer Development Systems
2. Personal Development Systems

DOCUMENTATION PACKAGE
FORTRAN-80 Programming Manual

ISIS-Il FORTRAN-80 Compiler Operator’s Manual
FORTRAN-80 Programming Reference Card

1-64

Part Number Description

Model MDS-301 FORTRAN 80 Compiler for Intel-
lect Microcomputer Development
Systems.

Requires Software License.

SUPPORT

Intel offers several levels of support for this product
which are explained in detail in the price list. Please
consult the price list for a description of the support
options available.

PASCAL 80 SOFTWARE PACKAGE

m Offers a Superset of Standard Pascal m Provides a Utility to Produce
. ; Relocatable Object Modules
m Provides High Structured Language .
with Powerful Data Type Definitions to I(_:ompatible with Other Intel®
Suit Applications anguages
m Compiles Pascal Source Code into m Allows Modular Breakdown of_La_rge
Intermediate Code to Optimize Prqgl_'ams and Separate Compilation of
Execution Speed and Storage Individual Modules
: m Gives Application Control Over Run-
. E‘);Z::‘t:;;:'g‘g:’eer 3,',“}“'{‘:,‘,’;23"5 the Time Errors by Providing User-Declared
Microcomputer Development Systems Error Procedures

m Can Call Routines Written in PL/M 80,
FORTRAN 80, or 8080/8085 Macro
Assembler

PASCAL 80 Software Package consists of a compiler and an interactive Run-Time Systerh designed to provide
the Pascal programming language as a software development tool for Intellec Development System Users.

Pascal is a highly-structured, block-oriented programming language that is now gaining wide acceptance as a
powerful software development tool. Its rigid structure encourages and enforces good programming tech-
niques which, combined with a high level of readability, helps produce more reliable software.

Standard Intel development tools, such as CREDIT editor can be used to create and modify Pascal source
programs. The compiler compiles this source and creates a P-Code file. The Run-Time System executes this
P-Code in an interpretive manner under 1SIS-Il.

*Pascal language as defined in PASCAL User Manual and Report, Second Edition, Kathleen Jenson and Niklaus Wirth.

**MDS is an ordering code only and is not used as a product name or trademark. MDS@ is a registered trademark of Mohawk
Data Sciences Corporation.

i

'§

?
|

280379-1

November 1986
1-65 : Order Number: 280379-002

intel

PASCAL 80

LANGUAGE FEATURES

Data Structures

Pascal allows the user to define labels, constants,
data types, variables, procedures, and functions.

Variable Types

Variables can be defined according to the following
system-defined data types: boolean, integer, real,
character, array, record, string, set, file, and pointer.

User-Defined Types

New types can be defined by the user for added
flexibility.

File Handling Procedures

Pascal provides procedures to allow a user’s pro-
gram to interface with the ISIS-II file manager. Rou-
tines provided are: RESET, REWRITE CLOSE,
PUT, GET, SEEK, and PAGE.

input/Output Procedures

Routines are provided to interact with the console or
an ISIS file. These procedures are: READ, WRITE,
READLN, WRITELN, plus BUFFER and BLOCK
Read and Write.

Dynamic Memory Allocation
The procedures NEW, MARK, and RELEASE allow

the user to obtain and release memory space at run-

time for dynamically allocating variable storage.

String Handling

Pascal provides powerful tools for defining and ma-
nipulating strings and character arrays. These facili-
ties enable concatenation of strings, character and
pattern scans, insertion, deletion, and pointer manip-
ulation.

Recursion

Pascal allows a PROCEDURE defintion to include a
call to itself, a powerful construct in many mathemat-
ical algorithms.

PROGRAM TRACING FACILITY

The PASCAL 80 System incorporates a program
tracing facility which allows for selectively monitoring
the execution of a Pascal program. When the
TRACE flag is set, the line number of each program
statement being executed is output to the console.

The TRACE flag may be manipulated in two ways:

— The TRACEON command (of the Run-Time Sys-
tem) will set the flag, and the TRACEOFF com-
mand will reset the flag.

— Pressing the Interrupt 4 switch on the Intellec
System front panel will toggle the TRACE flag;
i.e., the flag will be set if it was reset, and vice-
versa.

COMPILER DIRECTIVES (PARTIAL
LIST)

Compiler Command Line Directives

NO LIST

No list file is produced; used for fast compilation of
“clean” programs.

NOCODE

No code file is: pfoduced; used for syntax error
checking.

ERRLIST

List file is limited to only those Pascal lines that con-
tain errors, along with the error messages produced.

LIST (file-name)

Spécifies the name of the list file.

CODE (file-name)

Specifies the name of the code file.

NOECHO

Error lines are echoed on the console unless this
directive is specified.

1-66 .

intel

PASCAL 80

Embedded Compiler Directives

$C text

Causes text to appear in code file (allows for com-
ments, copyrights, etc.).

$l+

Causes checking for I/O completion after each 1/0

transfer. Failure results in a run-time error. ($1—
causes no checking, and no errors on 1/0 failure.)

$R+

Causes Range Checking to occur, so that an out-of-
range value causes a run-time error. (JR— sup-
presses generation of code for Range Checking.)

$0+

Causes the compiler to operate in overlay. mode.
Overlays allows less source code to reside in memo-
ry. (30 — causes no overlays, which decreases com-
pile time, since there are fewer disk accesses.)

ST+

Causes the compiler to generate tracing instructions
to be used by the TRACE facility. (T — suppresses
tracing instructions.)

BENEFITS

Brings Pascal to Intellec Microcomputer Develop-
ment Systems:

— Pascal is a block-structured, highly-readable pro-
gramming language, suitable for a wide-range of
applications.

The source program is
created on diskette with
the ISIS-II text editor.

-PASCAL

...Loads the Run-Time System
which executes compiled PASCAL
programs.

‘COMP PROG...

...Loads the eompiler to convert
the source program into an
interpreted object form known
as intermediate code, or P-code.

>PROG...

..Loads the Run-Time System
which executes compiled Pascal
programs.

EDITOR

SOURCE
PROGRAM

PASCAL-80
COMPILER

INTERMEDIATE
CODE

LOADED
APPLICATION
PROGRAM

280379-2

Figure 1. Program Development Cycle

intel

PASCAL 80

— Pascal is being acclaimed as the programming
language of the future; it is being taught in many
colleges and universities around the country.

— PASCAL 80 Run-Time System provides great
ease in programming formatted I/O operations.

PASCAL 80 provides a portable language for appli-
cation programs running under ISIS-Il.

PASCAL 80 can be used to evaluate complicated
algorithms using a natural language.

PASCAL 80 cbmpiler generates intermediate Pseu-
do-code.

— P-code is optimized for speed and storage
space.)

— P-code is approximately 50% to 70% smaller
than corresponding machine code.

— P-code is machine independent, providing code
portability to any CPU.

Makes the Intellec Development System a more val-
uable tool. Extension of software support to include
Pascal makes software development and resource
management more flexible.

Table 1. Sampie Program Listing Showing Nesting Levels

3 { Example using‘ bufferread and bufferwrite with break characters }

s=bufferwrite (disk_storage, buffer[l],length(buffer)) ;

=bufferread(disk.storage ,buff_érray,len,ord(break))3

BUFFER.PAS Program Listing
Line Seg Proc Lev Disp ‘ :
1 1 1 1 program example;
2 1 1 3
3 1 1.
4 1 1 3
5 1 1 3 var buffer: string;
6 1 1 44 disk_storage: file;
7 1 1 64 break: char;
8 1 1 65 new.len, len: integer;
9 1 1 87 buff_.array: packed array[0..80]of char;
10 1 1 108
11 1 1 © 0 begin
12 1 1 1 0 rewrite (disk.storage, 'data');
13 1 1 1 27 writeIn('Input a line of text:');
14 1 1 1 68 readIn(buffer) ;
15 1 1 1 87 1len
16 1 1 1 109 repeat
17 1 1 2 109 reset (disk.storage) ;
18 1 1 2 116 writeIn;writeln;
19 1 1 2 132 write('Input break char [entrl Z to stop]:');
20 1 1 2 179 readIn(break) ;
21 1 1l 2 197 if not eof(input)then
22 1 1 3 208 begin
23 1 1 4 208 new_.len:
24 1 1 4 226 writeIn('The buffer read:');
25 1 1 4 262 writeIn(copy(buffer,l,abs(new.len))) ;
2 1 1 4 292 writeIn('Length:'
27 1 1 "4 331
28 1 1 3 378 end;
29 1 1 1 378 until eof(input) ;
30 1 1 O 388 end.

,abs(new.len) :0);
if new.len < O then writelIn('(Break char not found)');

1-68

Inte[PASCAL 80

SPECIFICATIONS ' Documentation Package
PASCAL 80 User's Guide (9801015-01)

Operating Environment
PASCAL User Manual and Report, Second Edition,

REQUIRED HARDWARE Kathleen Jensen and Niklaus Wirth

Intellec Microcomputer Development Systems
— Model 800 (Series Il, Series lll, Series IV)
— Intel Personal Development System Flexible Diskettes

— Single- and Double-Density

Shipping Media

REQUIRED SOFTWARE
ISIS-Il Diskette Operating System ORDERING INFORMATION

— Single-or Double-Density Part Number Description

MDS-381** PASCAL 80 Software Package
OPTIONAL SOFTWARE

Requires Software License
ISIS-Il CREDIT™ (CRT-Based Text Editor)

SUPPORT CATEGORY: Level D

1-69

PL/M 80
HIGH LEVEL PROGRAMMING LANGUAGE

m Provides Resident Operation on m Speeds Project Completion with
Intellec® Microcomputer Development Increased Programmer Productivity
System and intellec® Series ii m Cuts Software Development and
Microcomputer Development Systems Maintenance Costs

and Personal Development Systems . i
(PDS) m Improves Product Reliability with

Simplified Language and Consequent
Error Reduction

m Eases Enhancement as System
Capabilities Expand

m Produces Relocatable and Linkable
Object Code

m Sophisticated Code Optimization
Reduces Application Memory
Requirements '

The PL/M 80 High Level Programming Language Intellec Resident Compiler is an advanced, high level
programming language for Intel 8080 and 8085 microprocessors, iISBC-80 OEM computer systems, and Intel-
lec microcomputer development systems. PL/M has been substantially enhanced since its introduction in
1973 and has become one of the most effective and powerful microprocessor systems implementation tools
available. It is easy to learn, facilitates rapid program development and debugging, and significantly reduces
maintenance costs. PL/M is an algorithmic language in which program statements naturally express the
algorithm to be programmed, thus freeing programmers to concentrate on system development rather than
assembly language details (such as register allocation, meanings of assembler mnemonics, etc.). The PL/M
compiler efficiently converts free-form PL/M programs into equivalent 8080/8085 instructions. Substantially
fewer PL/M statements are necessary for a given application than would be using assembly language or
machine code. Since PL/M programs are problem oriented and thus more compact, programming in PL/M
results in a high degree of productivity during development efforts, resulting in significant cost reduction in
software development and maintenance for the user.

210327-1

MDST™™ is a registered trademark of Mohawk Data Sciences Corporation.

November 1986
1-70 Order Number: 210327-002

intel

PL/M 80

FUNCTIONAL DESCRIPTION

The PL/M compiler is an efficient multiphase compil-
er that accepts source programs, translates them
into object code, and produces requested listings.
After compilation, the object program may be first
linked to other modules, then located to a specific
area of memory, and finally executed. The diagram
shown in Figure 1 illustrates a program development
cycle where the program consists of three modules:
PL/M, FORTRAN, and assembly language. A typical
PL/M compiler procedure is shown in Table 1.

Features

Major features of the Intel PL/M 80 compiler and
programming language include:

Resident Operation—on Intellec microcomputer
development systems eliminates the need for a
large in-house computer or costly timesharing sys-
tem.)

Object Code Generation—of relocatable and link-
able object codes permits PL/M program develop-
ment and debugging in small modules, which may
be easily linked with other modules and/or library
routines to form a complete application.

Extensive Code Optimization—including compile
time arithmetic, constant subscript resolution, and
common subexpression elimination, results in gener-
ation of short, efficient CPU instruction sequences.

Symbolic Debugging—fully supported in the PL/M
compiler and ICE-85 in-circuit emulators.

Compile Time Options—includes general listing
format commands, symbol table listing, cross refer-
ence listing, and “innerlist” of generated assembly
language instructions.

Block Structure—aids in utilization of structured
programming techniques.

Access—provided by high level PL/M statements to
hardware resources (interrupt systems, absolute ad-
dresses, CPU input/output ports).

Data Definition—enables complex data structures
to be defined at a high level.

Re-entrant Procedures—may be specified as a
user option.

Benefits

" PL/M is designed to be an efficient, cost-effective

solution to the special requirements of microcomput-
er software development as illustrated by the follow-
ing benefits of PL/M use:

Low Learning Effort—even for the novice pro-
grammer, because PL/M is easier to learn.

Earlier Project Completion—on critical proiects
because PL/M substantially increases programmer
productivity while reducing program development
time.

1SIS-H
> LOADER
1SIS-1h
i FORTRAN-80 FORTRAN-80 RO ATABLE PROGRAM
EDITOR SOURCE COMPILER MODULE LIBRARIES
DEBUG
)-—b VIA
MONITOR
1sish RELOCATABLE
PLIM-80 PL/M-80
ELIET)(JR —>| sounce -—-. rggi'fu?s A<L|NKEI:>_A LOCATE |—»
OPTIONAL
ICE~80
ICE-85
INCIRCUIT
EMULATOR
1SiS41
151841 ASSEMBLY RELOCATING RELOCATABLE
TEXT |—»=| LANGUAGE [—={ MACRO OBJECT
EDITOR SOURCE ASSEMBLER, MODULE
PROM
> PROGRAMMER
210327-2

Figure 1. Program Development Cycle Block Diagram

1-71

ntel

PL/M 80

Lower Development Cost—because increased
programmer productivity requiring less programming
resources for a given function translates into lower
software development costs.

Increased Reliability—because of PL/M’s use of
simple statements in the program algorithm, which
are easier to correct and thus substantially reduce
the risk of costly errors in systems that have already
reached full production status.

Easier Enhancement and Maintenance—because
programs written in PL/M are easier to read and

Table 1. PL/M-80 Compiler Sample Factorial Generator Procedure

easier to understand than assembly language, and
thus are easier to enhance and maintain as system
capabilities expand and future products are devel-
oped.

Simpler Project Developmeni—because the Intel-
lect microcomputer development system with resi-
dent PL/M 80 is all that is needed for developing
and debugging software for 8080 and 8085 micro-
computers, and the use of expensive (and remote)
timesharing or large computers is consequently not
required.

$DEBUG
$XREF

FACT:
00;

N
-

ovsw
[SECNU

C=0;

ARBDLOWWNN

END;

DO;

ABBPDOW

END
END;

END;

SOBJECT(:F1:FACT.0B2)

$TITLE(FACTORIAL GENERATOR — PROCEDURE')
$PAGEWIDTH(80)

DECLARE NUMCH BYTE PUBLIC;

FACTORIAL: PROCEDURE (NUM,PTR) PUBLIC;
DECLARE NUM BYTE, PTR ADDRESS;
DECLARE DIGITS BASED PTR (161) BYTE;
DECLARE (I,C,M) BYTE;

NUMCH = 1; DIGITS(1)=1;
DO M=1TO NUM;

DO 1=1TO NUMCH;
DIGITS(l) = DIGITS())*M+ C;
C=DIGITS()10;

DIGITS(l) = DIGITS() — 10°C;

IF C<>0 THEN
NUMCH = NUMCH + 1; DIGITS(NUMCH)=C;

C=DIGITS(NUMCH)10;
DIGITS(NUMCH) = DIGITS(NUMCH) — 10°C;

END FACTORIAL;

210327-3

SPECIFICATIONS

OPERATING ENVIRONMENT

Intel Microcomputer Development Systems
(Series |l, Series lll, Series 1V)
Intel Personal Development System

DOCUMENTATION

PL/M 80 Programming Manual
ISIS-II PL/M 80 Compiler Operator’s Manual

1-72

ORDERING INFORMATION

Product Code Description

MDS*-PLM PL/M 80 High Level Language
Compiler. Needs Software License.

SUPPORT

Hotline Telephone Support, Software Performance
Report (SPR), Software Updates, Technical Re-
ports, and Monthly Technical Newsletters are avail-
able.

*NOTE:
MDS is an ordering code only and is not used as a
product or trademark.

intel

8087 SUPPORT LIBRARY

m Library to Support Floating Point m Common Elementary Function Library
Arithmetic in Pascal-86, Provides Trigonometric, Logarithmic
PL/M-86, FTN-86 and ASM-86 and Other Useful Functions

m Decimal Conversion Library Supports m Error-Handler Module Simplifies
Binary-Decimal Conversions Floating Point Error Recovery

M Supports Proposed IEEE Floating Point
Standard for High Accuracy and
Software Portability

The 8087 Support Library provides Pascal-86, FORTRAN-86, PL/M-86 and ASM-86 users with numeric data
processing capability. With the Library, it is easy for programs to do floating point arithmetic. Programs can
bind in library modules to do trigonometric, logarithmic and other numeric functions, and the user is guaranteed
accurate, reliable results for all appropriate inputs. Figure 1 below illustrates how the 8087 Support Library can
be bound with PL/M-86 and ASM-86 user code to do this. The 8087 Support Library supports the proposed
IEEE Floating Point Standard. Consequently, by using this Library, the user not only saves software develop-
ment time, but is guaranteed that the numeric software meets industry standards and is portable-the software
investment is maintained.

The 8087 Support Library consists of the common elementary function library (CEL87.LIB), the decimal con-
version library (DC87.LIB), the emulator interface library E8087.LIB, the error handler module (EH87.LIB) and
interface libraries (8087.LIB, NUL87.LIB).

I B.PLM
A.PLM

”3{6‘"'}("&"#"5‘& (THETA) REAL EXTERNAL: B.0BJ

€0 maerINRE

DECLARE (INPUT VALUE, OUTPUT VALUE) REAL; PL/M-BG > A.0BJ

INPUT VALUE=0.62;/*Test valus®/

OUTPUT VALUE=mqarTNH(INPUT VALUE);

e 3 o ot P AL COMPILED

0.55112803%/ SOURCE MODULES

l D.ASM _‘
' D.0BJ d N
C.ASM P LINK-86 P] USER.LNK
{This EXTRN must appeor outside of oll SEGMENT~ENDS .
Bt mawr ot ASM-88 i LINKED USER
INPUT VALUE DQ(~0.62) wuauxauen Is o test OBJECT MODULE
QUTPUT VALUE 0Q ? ASSEMBLED
D s SR SOURCE MODULES
mmhk
FLD INPUT VALUE .Loqdklhl poramater Into the 8087
AL et S «’:f- e nyp-mne fongant
8087 waek -

iWith the test input, OUTPUT VALUE Is now cbout
1035112803

8087.LIB

CEL87.LIB

8087 SUPPORT
LIBRARY

231613-1
Figure 1. Use of 8087 Support Library with PL/M-86 and ASM-86

August 1985
1-73 Order Number: 231613-001

intef

8087 SUPPORT LIBRARY

CEL87.LIB
THE COMMON ELEMENTARY FUNCTION LIBRARY

FUNCTIONS

CEL87.LIB contains commonly used floating point
functions. It is used along with the 8087 numeric co-
processor. It provides a complete package of ele-
mentary functions, giving valid results for all appro-
priate inputs. Following is a summary of CEL87 func-
tions, grouped by functionality.

Rounding and Truncation Functions:

mqerlEX, maerlE2, and mgeriE4. Round a real
number to the nearest integer; to the
even integer if there is a tie. The an-
swer returned is real, a 16-bit integer
or a 32-bit integer respectively.

mqerlA2, mgerlA4. Round a real num-
ber to the nearest integer, to the inte-
ger away from zero if there is a tie; the
answer returned is real, a 16-bit inte-
ger or a 32-bit integer, respectively.

mgeriC2, mgerlC4. Truncate the frac-

mqerlAX,

maeriCX,

mqgerSNH, magerCSH, maerTNH compute the
corresponding hyperbolic functions.
mqerAT2 is a special version of the arc tangent

function that accepts rectangular co-
ordinate inputs.

Other Functions (of real variables):

tional part of a real input; the answer

is real, a 16-bit integer or 32-bit inte-
ger, repectively.

Logarithmic and Exponentlal

Functions:

mgerLGD computes decimal (base 10) loga-
rithms.

maerLGE computes natural base (base e) loga-
rithms.

mqerEXP computes exponentials to the base e.

mgerY2X computes exponentials to any base.

mgerY12 raises an input real to a 16-bit integer
power.)

mgerY14 is as mgerY12, except to a 32-bit inte-
ger power.

maerYIS is as mgerY12, but it accommodafes

PL/M-286 users.

Trigonometric and Hyperbolic
Functions:

mqerSIN, mqerCOS, mgerTAN- compute sine,
cosine, and tangent.
mgerASN, mgerACS, mqerATN compute the

corresponding inverse functions.

1-74

mgerDIM is FORTRAN’s positive difference
function.

mgerMAX returns the maximum of two real in-
puts.

mgerMIN returns the minimum of two real in-
puts.

mqerSGH combines the sign of one input with
the magnitude of the other input.

mgerMOD computes a modulus, retaining the
sign of the dividend.

mgerRMD computes a modulus, giving the value

closest to zero.

Complex Number Functions:

mgercCMUL, and mgercCDIV perform complex
muitiplication and division of complex
numbers.

converts complex numbers from rec-
tangular to polar form. mqercCREC
converts complex numbers from polar
to rectangular form.

and mgercCABS compute the com-
plex square root and real absolute
value (magnitude) of a complex num-
ber.

and mgercCLGE compute the com-
plex value of e raised to a complex
power and the complex natural loga-
rithm (base e) of a complex number.

mqercCCOS, and mqercCTAN com-
pute the complex sine, cosine, and
tangent of a complex number.

mgercCACS, and mgercCATN com-
pute the complex inverse sine, co-
sine, and tangent of a complex num-
ber.

mgercCCSH, and mqercCTNH com-
pute the complex hyperbolic sine, co-
sine, and tangent of a complex num-
ber.

mgercCPOL

mgercCSQR,

magercCEXP,

maqercCSIN,

mgercCASN,

maqgercCSNH,

intel

8087 SUPPORT LIBRARY

mqercCACH, mgercCASH, and mqgercCATH com-
pute the comples inverse hyperbolic
sine, cosine, and tangent of a com-
plex number.

mqercCC2C, mgercCR2C,mgercCC2R,mgercCCl2,
mqercCCl4, and maqercCCIS return
complex values of complex (or real)
values raised to complex (real, short
integer, or long integer) values.

DC87.LIB
THE DECIMAL CONVERSION LIBRARY

DC87.LIB is a library of procedures which convert
binary representations of floating point numbers and
ASCll-encoded string of digits.

The binary-to-decimal procedure mqcBIN__DE-
CLOW accepts a binary number in any of the for-
mats used for the representation of floating point
numbers in the 8087. Because there are so many
output formats for floating point numbers, mqcBIN__

DECLOW does not attempt to provide a finished,
formatted text string. Instead, it provides the “build-
ing blocks” for you to use to construct the output
string which meets your exact format specification.

The decimal-to-binary procedure mqcDEC__BIN ac-
cepts a text string which consists of a decimal num-
ber with optional sign, decimal point, and/or power-
of-ten exponent. It translates the string into the call-
er's choice of binary formats.

Decimal-to-binary procedure mgcDECLOW__BIN is
provided for callers who have already broken the
decimal number into its constituent parts.

The procedures mqcLONG_TEMP, mqcSHORT__
TEMP, mqcTEMP__LONG, and mqcTEMP_SHORT
convert floating point numbers between the longest
binary format, TEMP_REAL, and the shorter for-
mats.

EH87.LIB
THE ERROR HANDLER LIBRARY

EH87.LIB is a library of five utility procedures for
writing trap handlers. Trap handlers are called when
an unmasked 8087 error occurs.

The 8087 error reporting mechanism can be used
not only to report error conditions, but also to let
software implement |EEE standard options not di-
rectly supported by the chip. The three such exten-
sions to the 8087 are: normalizing mode, non-trap-
ping not-a-number (NaN), and non-ordered compari-
son. The utility procedures support these extra fea-
tures.

DECODE is called near the beginning of the trap
handler. It preserves the complete state of the 8087,
and also identifies what function called the trap han-
dler, and returns available arguments and/or resuits.
DECODE eliminates much of the effort needed to
determine what error caused the trap handler to be
called.

NORMAL provides the “normalizing mode” capabili-
ty for handling the “D” exception. By calling NOR-

MAL in your trap handler, you eliminate the need to
write code in your application program which tests
for non-normal inputs.

SIEVE provides two capabilities for handling the “I”
exception. It implements non-trapping NaN’s and
non-ordered comparisons. These two IEEE standard
features are useful for diagnostic work.

ENCODE is called near the end of the trap handler.
It restores the state of the 8087 saved by DECODE,
and performs a choice of concluding actions, by ei-
ther retrying the offending function or returning a
specified result.

FILTER calls each of the above four procedures. If
your error handler does nothing more than detect
fatal errors and implement the features supported by
SIEVE and NORMAL, then your interface to
EH87.LIB can be accomplished with a single call to
FILTER.

1-76

mtel' 8087 SUPPORT LIBRARY

8087.LIB, NUL87.

LIB, E8087.LIB

INTERFACE LIBRARIES

E8087.LIB, 8087.LIB and NUL87.LIB libraries config-
ure a user's application program for his run-time

environment; running with the 8087 component or
without floating point arithmetic, respectively.

FULL 8087 EMULATOR

The Full 8087 Emulator is a 16-kilobyte object mod-
ule that is linked to the application program for float-
ing-point operations. Its functionality is identical to
the 8087 chip, and is ideal for prototyping and de-
bugging floating-point applications. The Emulator is
an alternative to the use of the 8087 chip, although
the latter executes floating-point applications up to
100 times faster than an 8086 with the 8087 Emula—
tor. Furthermore, since the 8087 is a “coprocessor,”
use of the chip will allow many operations to be per-
formed in parallel with the 8086.

SPECIFICATIONS

» Operating Environment

Intel Microcomputer Development Systems (Series
\ll, Series 1V)

Documentation Package
8087 Support Library Reference Manual

ORDERING INFORMATION

Part Number Description
iMDS 319 8087 Support Library

Requires Software License

SUPPORT

Intel offers several levels of support for this product
which are explained in detail in the price list. Please

consult the price list for a description of the support
options available.

1-76

intel

80287 SUPPORT LIBRARY

m Library to support floating point m Common elementary function library
arithmetic in Pascal 286, PL/M-286 and provides trigonometric, logarithmic and
ASM-286 other useful functions

m Decimal conversion library supports B Error-handler module simplifies floating
binary-decimal conversions point error recovery

W Supports proposed IEEE Floating Point
Standard for high accuracy and
software portability

The 80287 Support Library provides Pascal-286, PL/M-286 and ASM-286 users with numeric data processing
capability. With the Library, it is easy for programs to do floating point arithmetic. Programs can bind in library
modules to do trigonometric, logarithmic and other numeric functions, and the user is guaranteed accurate,
reliable results for all appropriate inputs. Figure 1 below illustrates how the 80287 Support Library can be
bound with'PL/M-286 and ASM-286 user code to do this. The 80287 Support Library supports the proposed
IEEE Floating Point Standard. Consequently, by using this Library, the user not only saves software develop-
ment time, but is guaranteed that the numeric software meets industry standards and is portable-the software
investment is maintained.

The 80287 Support Library consists of the common elementary function library (CEL287.LIB), the decimal
conversion. library (DC287.LIB), the error handler module (EH287.LIB) and interface libraries (80287.LIB,
NUL287.LIB).

B.PLM

. APLM . !

maarTNH: PROCEDURE (THETA) REAL EXTERNAL; I B.OBJ

oA ks

DECLARE (INPUT VALUE, OUTPUT VALUE) REAL; PLM-ZBG b A-OBJ

INPUT VALUE=0.62:/*Test value®/ v B

QUTPUT VALUE=mQerTNH(INPUT VALUE);

423573l tstInput, OUTPUT VALUE s bt sou gggmh%% LES

D.ASM
| YY) > R v
C.ASM P»1BIND~286 »| USER.LNK
é’:;'fxr:::"::: :;T:ar outside of all SEGMENT=ENDS ASM-286 : C'OBJ L _’ LlNKED USER .
INPUT VALUE 00(-0.62) inlalzaton s o test OBJECT MODULE
OUTPUT VALUE DQ ? ASSEMBLED
%Exéa".:?‘.”l2".12?.‘%.";?’."'.‘$S«‘2‘x1ﬁ°&§e’k L SOURCE MODULES
FLOINPUT VALUE iLoad the parameter Into the 80287
CALL maerTNH mk- the hypnrbnllu tangent
FSTP OUTPUT VALUE 110 ;7"! rer and pop the -
;With the test input, OUTPUT VALUE is now about
1-0.55112803
80287.LIB
CEL287.LIB
80287 SUPPORT
LIBRARY
231041-1
Figure 1. Use of 80287 Support Library with PL/M-286 and ASM-286
October 1986

1-77 Order Number: 231041-002

intel

80287 SUPPORT LIBRARY

CEL287.LIB |
THE COMMON ELEMENTARY FUNCTION LIBRARY

FUNCTIONS

CEL287.LIB contains commonly used floating point
functions. It is used along with the 80287 numeric
coprocessor. It provides a complete package of ele-
mentary functions, giving valid results for all appro-
priate inputs. Following is a summary of CEL287
functions, grouped by functionality.

Rounding and Truncation Functions:

mqerlEX, mqerlE2, and mgerlE4. Round a real
number to the nearest integer; to the
even integer if there is a tie. The an-
swer returned is real, a 16-bit integer
or a 32-bit integer respectively.

mgerlAX,
ber to the nearest integer, to the inte-
ger away from zero if there is a tie; the
answer returned is real, a 16-bit inte-
ger or a 32-bit integer, respectively.

mqerlC2, mqgerlC4. Truncate the frac-
tional part of a real input; the answer
is real, a 16-bit integer or 32-bit inte-
ger, repectively.

mgqerlCX,

Logarithmic and Exponential

Functions:

mqgerLGD = computes decimal (base 10) loga-
rithms.

mqerLGE computes natural base (base e) loga-
rithms.

mqgerEXP computes exponentials to the base e.

magerY2X computes exponentials to any base.

mgerY12 raises an input real to a 16-bit integer
power.

maerY14 is as mgerY12, except to a 32-bit inte-
ger power.

maerYIS is as mqgerY12, but it accommodates

PL/M-286 users.

Trigonometric and Hyperbolic
Functions:

mgqerSIN, mgerCOS, mqgerTAN compute sine,
cosine, and tangent.]
mgerASN, mqgerACS, mqerATN compute the

corresponding inverse functions.

mgerlA2, mgerlA4. Round a real num- '

mqgerSNH, mgerCSH, mqerTNH compute the
corresponding hyperbolic functions.
mgerAT2 is a special version of the arc tangent

function that accepts rectangular co-
ordinate inputs. :

Other Functions (of real.variables):

mgerDIM is FORTRAN's positive difference
function.

mgerMAX returns the maximum of two real in-

' puts.

‘mgerMIN returns the minimum of two real in-
puts.

mqgerSGH combines the sign of one input with
the magnitude of the other input.

mgerMOD computes a modulus, retaining the
sign of the dividend. :

magerRMD - computes a modulus, giving the value

1-78

closest to zero.

Complex Number Functions:

mgercCMUL, and mqercCDIV perform complex
multiplication and division of complex
numbers.

converts complex numbers from rec-
tangular to polar form. mgercCREC
converts complex numbers from polar
to rectangular form.

and mqgercCABS compute the com-
plex square root and real absolute
value (magnitude) of a complex num-
ber.

and mqercCLGE compute the com-
plex value of e raised to a complex
power and the complex natural loga-
rithm (base e) of a complex number.

mgercCCOS, and mqgercCTAN com-
pute the complex sine, cosine, and
tangent of a complex number.

mqercCACS, and mgercCATN com-
pute the complex inverse sine, co-
sine, and tangent of a complex num-
ber. '

mqercCCSH, and mqercCTNH com-
pute the complex hyperbolic sine, co-
sine, and tangent of a complex num-
ber.

mgercCPOL
mqercCSQR,
mgercCEXP,

mqercCSIN,

mqercCASN,

mgercCSNH,

intel

80287 SUPPORT LIBRARY

Complex Number Functions: (Continued)

mgercCACH, mgercCASH, and mgercCATH com-
pute the comples inverse hyperbolic
sine, cosine, and tangent of a com-
plex number.

mgercCC2C, mgercCR2C,mgercCC2R,mqgercCCI2,
maercCCl4, and mqercCCIS return
complex values of complex (or real)
values raised to complex (real, short
integer, or long integer) values.

DC287.LIB
THE DECIMAL CONVERSION LIBRARY

DC287.LIB is a library of procedures which convert
binary representations of floating point numbers and
ASCll-encoded string of digits.

The binary-to-decimal procedure mqcBIN__DE-
CLOW accepts a binary number in any of the for-
mats used for the representation of floating point
numbers in the 80287. Because there are so many
output formats for floating point numbers, mqcBIN_.
DECLOW does not attempt to provide a finished,
formatted text string. Instead, it provides the “build-
ing blocks” for you to use to construct the output
string which meets your exact format specification.

The decimal-to-binary procedure mqcDEC__BIN ac-
cepts a text string which consists of a decimal num-
ber with optional sign, decimal point, and/or power-
of-ten exponent. It translates the string into the call-
er's choice of binary formats.

Decimal-to-binary procedure mgcDECLOW__BIN is
provided for callers who have already broken the
decimal number into its constituent parts.

The procedures mqcLONG__TEMP, mqcSHORT_
TEMP, mqcTEMP__LONG, and mqcTEMP__SHORT
convert floating point numbers between the longest
binary format, TEMP_REAL, and the shorter for-
mats. o

EH287.LIB
THE ERROR HANDLER LIBRARY

EH287.LIB is a library of five utility procedures for
writing trap handlers. Trap handlers are called when
an unmasked 80287 error occurs.

The 80287 error reporting mechanism can be used
not only to report error conditions, but also to let
software implement IEEE standard options not di-
rectly supported by the chip. The three such exten-
sions to the 80287 are: normalizing mode, non-trap-
ping not-a-number (NaN), and non-ordered compari-
son. The utility procedures support these extra fea-
tures.

DECODE is called near the beginning of the trap
handler. It preserves the complete state of the
80287, and also identifies what function called the
trap handler, and returns available arguments
and/or results. DECODE eliminates much of the ef-
fort needed to determine what error caused the trap
handler to be called.

NORMAL provides the “normalizing mode” capabili-
ty for handling the “D" exception. By calling NOR-

MAL in your trap handler, you eliminate the need to
write code in your application program which tests
for non-normal inputs.

SIEVE provides two capabilities for handling the *I”
exception. It implements non-trapping NaN’s and
non-ordered comparisons. These two IEEE standard
features are useful for diagnostic work.

" ENCODE is called near the end of the trap handler.

It restores the state of the 80287 saved by DE-
CODE, and performs a choice of concluding actions,
by either retrying the offending function or returning
a specified result.

FILTER calls each of the above four procedures. If
your error handler does nothing more than detect
fatal errors and implement the features supported by
SIEVE and NORMAL, then your interface to
EH287.LIB can be accomplished with a single call to
FILTER.

1-79

intel

-80287 SUPPORT LIBRARY

80287.LIB, NUL287.LIB
INTERFACE LIBRARIES

80287.LIB and NUL287.LIB libraries configure a us-
er's appiication program for his run-time environ-

ment; running with the 80287 component or without
floating point arithmetic, respeciively.

SPECIFICATIONS

Operating Environment

Intel Microcomputer Development Systems (Series
lll, Series 1V) !

Documentation Package
80287 Support Library Reference Manual

Related Software

A 80287 software emulator is available as part of the
8086 software toolbox (iMDX364)

ORDERING INFORMATION

Part Number Description
iMDX329 80287 Support Library

Requires Software License

SUPPORT

Intel offers several levels of support for this product
which are explained in detail in the price list. Please
consult the price list for a description of‘the support

~ options available.

1-80

intel

8051
SOFTWARE PACKAGES
m Choice of hosts: 8051 Software Development Package
PCDOS 3.0 based IBM* PC XT/AT*, Contains the following:
g’ D§TM“S’ystem, Series II, Series Il and m 8051 Macro Assembler which gives
eries symbolic access to 8051 hardware
m Supports all members of the Intel features
MCS® -51 arghitecture m RL51 Linker and Relocator program
PL/M51 Software Package Contains the which links modules generated by the
following: assembler
m PL/M51 Compiler which is designed to W CONV51 which enables software
support all phpases of softwareg written for the MCS® -48 family to be
implementation upgraded to run on the 8051
m RL51 Linker and Relocator which W LIB51 Librarian which lets
enables programmers to develop programmers create and maintain
software in a modular fashion libraries of software object modules

® LIB51 Librarian which lets
programmers create and maintain
libraries of software object modules

'RELOCATABLE ALS1 ABSOLUTE RoM
OBJECT unkers |H OBJECT
MODULES LOCATOR MODULE MASK VERSION
PROM PROM
] VERSION
USER
ne i oBJECT ICE 252/
R - L
L
EMULATORS VERSION
LEGEND
SOK51
0BY HEX HEX
D INTEL DEVELOPMENT bl “cope oBJECT SYSTEM
TOOLS AND OTHER CONVERSION MODULE DESIGN
PRODUCTS L0

L) aeterns
O e
1627711
Figure 1. MCS® -51 Program Development Process

*IBM and AT are registered trademarks of International Business Machine Corporation.

October 1986
1-81 Order Number: 162771-004

II'Ite[8051 Software Packages

PL/M 51 SOFTWARE PACKAGE

m High-level programming language for ® Allows programmer to have complete
the Intel MCS® -51 single-chip control of microcomputer resources
microcomputer family ‘ = Extends high-level language

m Compatible with PL/M 80 assuring programming advantages to
MCS® -80/85 design portability microcontroller software development

m Enhanced to support boolean m Improved reliability, lower maintenance
processing costs, increased programmer o

m Tailored to provide an optimum productivity and software portability
balance among on-chip RAM usage, m Includes the linking and relocating
code size and code execution time utility and the library manager

m Produces relocatable object code m Supports all members of the Intel
which is linkable to object modules MCS® -51 architecture

generated by all other 8051 translators

PL/M 51 is a structured, high-level programming language for the Intel MCS-51 family of microcomputers. The
PL/M 51 language and compiler have been designed to support the unique software development require-
ments of the single-chip microcomputer environment. The PL/M language has been enhanced to support
Boolean processing and efficient access to the microcomputer functions. New compiler controls allow the
programmer complete control over what microcomputer resources are used by PL/M programs.

PL/M 51 is largely compatible with PL/M 80 and PL/M 86. A significant proportion of existing PL/M software
can be ported to the MCS-51 with modifications to support the MCS-51 architecture. Existing PL/M program-
mers can start programming for the MCS-51 with a small relearning effort.)

PL/M 51 is the high-level alternative to assembly language programming for the MCS-51. When code size and
code execution speed are not critical factors, PL/M 51 is the cost-effective approach to developing reliable,
maintainable software.

The PL/M 51 compiler has been designed to support efficiently all phases of software implementation with
features like a syntax checker, multiple levels of optimization, cross-reference generation and debug record
generation. :

ICE™ 5100, ICE 51, and EMV51 are available for on-target debugging.

Software available for PC DOS 3.0 based IBM* PC XT/AT* Systems, iPDS™, Series II, Series Ill and Series [V
Systems.

(]
oD; MCS® .51
H 1 SOFTWARE TOOLS

......

'RELOCATABLE RLE1 ABSOLUTE FACTORY ROM
OBJECT LINKER/ OBJECT MASK VERSION
MODULES LOCATOR MODULE
PLM 51 l.] Prom PROM
SOFTWARE VERSION
PACKAGE
LIB6Y ICE 252/
LIBRARIAN || icEstiemver RAM
IT
h-ciRcun VERSION
LEGEND
0BJ HEX
INTEL DEVELOPMENT . -1 CODE
D TOOLS AND OTHER CONVERSION
PRODUCTS .
162771

O USER-CODED
SOFTWARE -2
Figure 2. PL/M51 Software Package

1-82

ntel

8051 Software Packages

PL/M 51 COMPILER

FEATURES

Major features of the Intel .PL/M 51 compiler and
programming language include:

Structured Programming

PL/M source code is developed in a series of mod-
ules, procedures, and blocks. Encouraging program
modularity in this manner makes programs more
readable, and easier to maintain and debug. The
language becomes more flexible, by clearly defining
the scope of user variables (local to a private proce-
dure, for example).

Language Compatibility

PL/M 51 object modules are compatible with object
modules generated by all other MCS-51 translators.
This means that PL/M programs may be linked to
programs written in any other MCS-51 language.

Object modules are compatible with In-Circuit Emu-
lators and Emulation Vehicles for MCS-51 proces-
sors: the DEBUG compiler control provides these
tools with symbolic debugging capabilities.

Supports Three Data Types

PL/M makes use of three data types for various ap-
plications. These data types range from one to six-
teen bits and facilitate various arithmetic, logic, and
address functions:

— Bit: a binary digit
— Byte: 8-bit unsigned number or,
— Word: 16-bit unsigned number.

Another powerful facility allows the use of BASED
variables that map more than one variable to the
same memory location. This is especially useful for
passing parameters, relative and absolute address-
ing, and memory allocation.

Two Data Structuring Facilities

PL/M 51 supports two data structuring facilities.
These add flexibility to the referencing of data stored
in large groups.

— Array: Indexed list of same type data elements

— Structure: Named collection of same or different
type data elements

— Combinations of Both: Arrays of structures or
structures of arrays.

1-83

Interrupt Handling

A procedure may be defined with the INTERRUPT
attribute. The compiler will generate code to save
and restore the processor status, for execution of
the user-defined interrupt handler routines.

Compiler Controls

The PL/M 51 compiler offers controls that facilitate
such features as:

— Including additional PL/M 51 source files from
disk

— Cross-reference

— Corresponding assembly language code in the
listing file

Program Addressing Control

The PL/M 51 compiler takes full advantage of pro-
gram addressing with the ROM (SMALL/MEDIUM/
LARGE) control. Programs with less than 2 KB code
space can use the SMALL or MEDIUM option to
generate optimum addressing instructions. Larger
programs can address over the full 64 KB range.

Code Optimization

The PL/M 51 compiler offers four levels of optimiza-
tion for significantly reducing overall program size.

— Combination or “folding” of constant expres-
sions; “Strength reductions” (a shift left rather
than multiply by 2)

— Machine code optimizations; elimination of su-
perfluous branches

— Automatic overlaying of on-chip RAM variables

— Register history: an off-chip variable will not be
reloaded if its value is available in a register.

Error Checking

The PL/M 51 compiler has a very powerful feature
to speed up compilations. If a syntax or program er-
ror is detected, the compiler will skip the code gen-
eration and optimization passes. This usually yields
a 2X performance increase for compilation of pro-
grams with errors.

A fully detailed set of programming and compilation
error messages is provided by the compiler and us-
er's guide.

lnte[8051 Software Packages

BENEFITS Lower Development Cost

PL/M 51 is designed to be an efficient, cost-effec- Increases in programmer productivity translate im-
tive solution to the special requirements of MCS-51 mediately into lower software development costs
Microsystem Software Development, as illustrated because less programming resources are required
by the following benefits of PL/M use: for a given programmed function.

Low Learning Effort Increased Reliability

PL/M 51 is easy to learn and to use, even for the PL/M 51 is designed to aid in the development of
novice programmer. reliable software (PL/M programs are simple state-
' ments of the program algorithm). This substantially

reduces the risk of costly correction of errors in sys-

Earlier Project Completion tems that have already reached full production
status, as the more simply stated the program is, the

Critical projects are completed much earlier than more likely it is to perform its intended function.

otherwise possible because PL/M 51, a structured

high-level language, increases programmer produc-

tivity. Easier Enhancements and
Maintenance

Programs written in PL/M tend to be self-document-
ing, thus easier to read and understand. This means
it is easier to enhance and maintain PL/M programs
as the system capabilities expand and future prod-
ucts are developed.

'RL51 LINKER AND RELOCATOR

m Links modules generated by the m Enables modular programming of
assembler and the PL/M compiler software-efficient program

m Locates the linked object to absolute development
memory locations ®m Modular programs are easy to

understand, maintainable and reliable

The MCS-51 linker and relocator (RL51) is a utility which enables MCS-51 programmers to develop software in
a modular fashion. The utility resolves all references between modules and assigns absolute memory loca-
tions to all the relocatable segments, combining relocatable partial segments with the same name.

With this utility, software can be developed more quickly because small functional modules are easier to
understand, design and test than large programs.)

The total number of allowed symbols in user-developed software is very large because the assembler number
of symbols’ limit applies only per module, not to the entire program. Therefore programs can be more readable
and better documented. RL51 can be invoked either manually or through a batch file for improved productivity.

Modules can be saved and used on different programs. Therefore the software investment of the customer is
maintained.

RL51 producés two files. The absolute object module file can be directly executed by the MCS-51 family. The
listing file shows the results of the link/locate process.

1-84

intel

8051 Software Packages

LIB51 LIBRARIAN

The LIB51 utility enables MCS-51 programmers to
create and maintain libraries of software object mod-
ules. With this utility, the customer can develop stan-
dard software modules and place them in libraries,
which programs can access through a standard in-
terface. When using object libraries, the linker will

call only object modules that are required to satisfy
external references.

Consequently, the librarian enables the customer to
port and reuse software on different projects—there-
by maintaining the customer’s software investment.

ORDERING INFORMATION

PL/M51 Software for Intel 8-bit Development Systems (iPDS, Series II)

Order Code Operating Environment

D86PLM51 PL/M51 Software for PC DOS 3.0 Systems
iMDX352

186PLM51

PL/M51 Software for Intel 16-bit Development Systems (SERIES Ill, Series 1V)

Documentation Package
PL/M 51 User's Guide

MCS-51 Utilities User’s Guide

1-85

SUPPORT:

Hotline Telephone Support, Software Performance
Report (SPR), Software Updates, Technical Re-
ports, and monthly Technical Newsletters are avail-
able.

intef 8051 Software Packages
8051 SOFTWARE DEVELOPMENT PACKAGE

H Symbolic relocatable assembly - M Macro Assembler features conditional
language programming for 8051 assembly and macro capabilities
microcontrollers m CONV51 Converter for translation of

m Extends Intellec® Microcomputer 8048 assembly language source code
Development System to support 8051 to 8051 assembiy ianguage source
program development) code v)

B Produces Relocatable Object Code m Provides upward compatibility from the
which is linkable to other 8051 Object MCS-48T™ family of single-chip
Modules microcontrollers N

m Encourage modular program design for m Supports all members of the Intel
maintainability and reliability MCS® 51 architecture

The 8051 software development package provides development system support for the powerful 8051 family
of single chip microcomputers. The package contains a symbolic macro assembler and MCS-48 source code
converter.

The assembler produces relocatable object modules from 8051 macro assembly language mstruct_lons, The
object code modules can be linked and located to absolute memory locations. This absolute object code may
be used to program the 8751 EPROM version of the chip. The assembler output may also be debugged using
-the new family of ICE 5100 emulators or with the ICE-51T in-circuit emulator.

The converter translates 8048 assembly language instructions into 8051 source instructions to provide soft-
ware compatibility between the two families of microcontrollers.

Software available for PC DOS 3.0 based IBM* PC XT/AT Systems, iPDST™ Systems, Series |l, Series 1ll and
Series IV Intel Development Systems.

!
l

ASMST

O SRR AR

CONV51

B

SABRNRLY L ARCUSRE SO
ey pemn i
sney

HCSA RO i
muvumuwé
: gﬁéxnnﬁ»eawﬂﬁ ‘

-

162771-3

1-86

|nter 8051 Software Packages

8051 MACRO ASSEMBLER

m Supports 8051 family program m Object files are linkable and locatable

development on Intellec® m Provides software support for many
Microcomputer Development Systems addressing and data allocation

B Gives symbolic access to powerful capabilities

8051 hardware features m Symbolic Assembler supports symbol
m Produces object file, listing file and table, cross-reference, macro
error diagnostics capabilities, and conditional assembly

The 8051 Macro Assembler (ASM51) translates symbolic 8051 macro assembly language modules into link-
able and locatable object code modules. Assembly language mnemonics are easier to program and are more
readable than binary or hexadecimal machine instructions. By allowing the programmer to give symbolic
names to memory locations rather than absolute addresses, software design and debug are performed more
quickly and reliably. Furthermore, since modules are linkable and relocatable, the programmer can do his
software in modular fashion. This makes programs easy to understand, maintainable and reliable.

The assembler supports macro definitions and calls. This is a convenient way to program a frequently used
code sequence only once. The assembler also provides conditional assembly capabilities.

Cross referencing is provided in the symbol table listing, showing the user the lines in which each symbol was
defined and referenced.

ASM51 provides symbolic access to the many useful addressing features of the 8051 architecture. These
features include referencing for bit and byte locations, and for providing 4-bit operations for BCD arithmetic.
The assembiler also provides symbolic access to hardware registers, /0 ports, control bits, and RAM address-
es. ASM51 can support all members of the 8051 family.

Math routines are enhanced by the MULtiply and DIVide instructions.

If an 8051 program contains errors, the assembler provides a comprehensive set of error diagnostics, which
are included in the assembly listing or on another file. Program testing may be performed by using the iUP
Universal Programmer and iUP F87/51 personality module to program the 8751 EPROM version of the chip.

ICE 5100, ICE51 and EMV51 are available for program debugging.

RL51 LINKER AND RELOCATOR PROGRAM

B Links modules generated by the ® Enables modular programming of
assembler software for efficient program

m Locates the linked object to absolute development ‘
memory locations m Modular programs are easy to

understand, maintainable and reliable

The 8051 linker and relocator (RL51) is a utility which enables 8051 programmers to develop software in a
modular fashion. The linker resolves all references between modules and the relocator assigns absolute
memory locations to all the relocatable segments, combining relocatable partial segments with the same
name.

With this utility, software can be developed more quickly because small functional modules are easier to
understand, design and test than large programs.

The number of symbols in the software is very large because the assembler symbol limit applies only per
module not the entire program. Therefore programs can be more readable and better documented.

Modules can be saved and used on different programs. Therefore the software investment of the customer is
maintained.

1-87

Inte[8051 Software Packages

RL51 produces two files. The absolute object module file can be directly executed by the 8051 family. The
listing file shows the results of the link/locate process.

CONV51
8048 TO 8051 ASSEMBLY LANGUAGE
CONVERTER UTILITY PROGRAM

m Enables software written for the m Preserves comments; translates 8048
MCS-48™ family to be upgraded to macro definitions and calls
_run on the 8051 m Provides diagnostic information and
m Maps each 8048 instruction to a warning messages embedded in the
corresponding 8051 instruction output listing

The 8048 to 8051 Assembly Language Converter is a utility to help users of the MCS-48 family of microcom-
puters upgrade their designs with the high performance 8051 architecture. By converting 8048 source code to
8051 source code, the software investment developed for the 8048 is maintained when the system is
upgraded. ‘

The goal of the converter (CONV51) is to attain functional equivalence with the 8048 code by mapping each
8048 instruction to a corresponding 8051 instruction. In some cases a different instruction is produced be-
cause of the enhanced instruction set (e.g., bit CLR instead of ANL).

Although CONV51 tries to attain functional equivalence with each instruction, certain 8048 code sequences
cannot be automatically converted. For example, a delay routine which depends on 8048 execution speed
would require manual adjustment. A few instructions, in fact, have no 8051 equivalent (such as those involving
P4-P7). Finally, there are a few areas of possible intervention such as PSW manipulation and interrupt pro-
cessing, which at least require the user to confirm proper translation. The converter always warns the user
when it cannot guarantee complete conversuon

CONV51 produces two files. The output file contains the ASM51 source program produced from the 8048
instructions. The listing file produces correlated listings of the input and output files, with warning messages in
the output file to point out areas that may require users’ intervention in the conversion.

NOTE:
CONV51 is not available with DOS hosted versions.

LIB51 LIBRARIAN

The LIB51 utility enables MCS-51 programmers to create and maintain libraries of software object modules.
With this utility, the customer can develop standard software modules and place them in libraries, which
programs can access through a standard interface. When using object libraries, the linker will call only object
modules that are required to satisfy external references.

Consequently, the librarian enables the customer to port and reuse software on different projects—thereby
maintaining the customer’s software investment.

1-88

|nte[8051 Software Packages

ORDERING INFORMATION

Order Code Operating Environment

D86ASM51 8051 Assembler for PCDOS 3.0 Systems

MCI51ASM 8051 Assembler for 8-bit Intel Development Systems (iPDS™ Systems, Series)
186ASM51 8051 Assembler for 16-bit Intel Development Systems (SERIES lll, Series IV)

Documentation Package:
MCS-51 Macro Assembler User’s Guide

MCS-51 Utilities User's Guide for 8080/8085
Based Development System

MCS-51 8048-t0-8051 Assembly Language Con-
verter Operating Instructions for ISIS-Il Users

1-89

SUPPORT:

Hotline Telephone Support, Software Performance
Reporting (SPR), Software Updates, Technical Re-
ports, Monthly Newsletter available.

MCS®-48
DISKETTE-BASED SOFTWARE
SUPPORT PACKAGE

m Extends Intellec® Microcomputer m Takes Advantage of Powerful ISIS-lI

Development Systems to Support File Handling and Storage Capabilities

MCS®-48 Development B Provides Assembler Output in Standard
B MCS-48 Assembler Provides Intel Hex Format

Conditional Assembly and Macro

Capability

The MCS-48 assembler translates symbolic 8048 assembly language instructions into the appropriate ma-
chine operation codes, and provides both conditional and macroassembler programming. Output may be
loaded either to an ICE-49 module for debugging or into the iUP Universal PROM Programmer for 8748 PROM
programming. The MCS-48 assembler operates under the ISIS-Il operating system on Intel Development
systems. - . . :

Table '1. Sample MCS-48 Diskette-Based

IS1S-11 8048 MACROASSEMBLER, V1.0 PAGE 1
LOC o8BJ SEQ SOURCE STATEMENT\
1 :DECIMAL ADDITION ROUTINE. ADD BCD NUMBER
2 AT LOCATION "BETA' TO BCD NUMBER AT 'ALPHA’ WITH
3 RESULT IN 'ALPHA.' LENGTH OF NUMBER IS ‘COUNT' DIGIT
4 | PAIRS. (ASSUME BOTH BETA AND ALPHA ARE SAME LENGTH
§ AND HAVE EVEN NUMBER OF DIGITS OR MSD IS 0 IF
6 :00D)
7 INIT MACRO AUGND,ADDND.CNT
8 MoV RO, #AUGND
9 Lt MOV R1. #ADDND
10 MOV R2, #CNT
1" ENDM
12
0001E 13 ALPHA EQU 30
0028 14 BETA EQU 40
0032 15 COUNT EQU 5
0100 16 ORG 100H
17 INIT ALPHA, BETA, COUNT
0100 B81E 18+ MOV RO. #¥ALPHA
0102 B928 19+ L1 MOV R1. #BETA
0104 BA32 20+ MOV R2, #COUNT
0106 97 21 CLR o}
0107 FO 2 LP: MOV A. @R0O
0108 71 23 ADDC . A. @R1
0109 57 24 DA A
010A A1 25 MOV @RO. A
0108 18 26 INC RO
010C 19 27 INC R1
010D EAO7 28 DINZ R2, LP
END

USER SYMBOLS
ALPHA 0001E BETA 0028 COUNT 0005 LP 0107
8} 0102

ASSEMBLY COMPLETE. NO ERRORS

ISIS-Il ASSEMBLER SYMBOL CROSS REFERENCE. V1.0 PAGE 1
SYMBOL CROSS REFERENCE
ALPHA 138 17

BETA 14¢ 17
COUNT 15# 17

INIT ™17
L1 194
LP 20 28

280381-2

*MDS is an ordeiing code only and is not used as a product name or trademark. MDS is a registered trademark of Mohawk
Data Sciences Corporation.

October 1986
1-90 Order Number: 280381-002

intel

MCS®-48

FUNCTIONAL DESCRIPTION

The MCS-48 assembler translates symbolic 8048
assembly language instructions into the appropriate
machine operations codes. The ability to refer to
program addresses with symbolic names eliminates
the errors of hand translation and makes it easier to
modify programs when adding or deleting instruc-
tions. Conditional assembly permits the programmer
to specify which portions of the master source docu-
ment should be included or deleted in variations on
a basic system design, such as the code required to
handle optional external devices. Macro capability
allows the programmer use of a single label to de-
fine a routine. The MCS-48 assembler will assemble
the code required by the reserved routine whenever
the macro label is inserted in the text. Output from
the assembler is in standard Intel hex format. It may
be either loaded directly to. an in-circuit emulator
(ICE-49) module for integrated hardware/software
debugging, or loaded into the iUP Universal PROM
Programmer for 8748 PROM programming. A sam-
ple assembly listing is shown in Table 1.

The MCS-48 assembler supports the 8048, 8049,
8050, 8020, 8021, 8022, 8041 and 8042. The
MSC-48 assembler can also support CMOS ver-
sions of the 8048 family.

SPECIFICATIONS

Operating Environment

(All) Intel Microcomputer Development Systems
(Series Il, Series lll/Series V)

Intel Personal Development System

Documentation Package

Titles of: User Guides
Operating Instructions
Reference Manuals

. Ordering Information

1-91

Part Number Description
MDS-D48 MCS-48 Disk Based Assembler
Requires Software License

SUPPORT

Hotline Telephone Support, Software Performance
Reports (SPR), Software Updates, Technical Re-
ports, Monthly Newsletters are available.

intal

MCS®-96 SOFTWARE DEVELOPMENT PACKAGES

m Choice of Hosts [| Sup;?orts All Members of the MCS®-96
B MCS®-96 Software Support Package Family
m PL/M-96 Software Package
MCS®-96 SOFTWARE SUPPORT PACKAGE

m Symbolic relocatable assembly m Extends _Ihtellec® Microcomputer
language programming for the 8096 Development System to support MCS-
microcontroller family 96 program development

m System Utilities for Program Linking m Encourages modular program design
and Relocation for maintainability and reliability

The MCS®-96 Software Support Package provides development system support for the MCS-96 family of 16-
bit single chip microcomputers. The support package includes a macro assembler and system utilities.

The assembler produces relocatable object modules from MCS-96 macro assembly language instructions.
The object modules then are linked and located to absolute memory locations.

The assembler and utilities run on the Intellec® Series Il or equivalent Microcomputer Development System
and PC DOS 3.0 IBM* PC XT/AT* Systems.

AEDIT
TEXT
EDITOR

RL-96
LINKER/
LOCATOR

ABSOLUTE
OBJECT
MODULE

SOURCE
MODULES

FACTORY
MASK

]

RELOCATABLE
OBJECT

ASM-96
|ASSEMBLER

MODULES

PL/M-96
COMPILER PROM
PROGRAMMER

USER
OBJECT
LIBRARIES

VLSICE 96
SBE 96 RAM
EMULATORS

LiBRARIAN | [

i 10 [

L]

LecEND FPAL-96
FLOATING POINT 0BJ HEX HEX

INTEL DEVELOPMENT LIBRARY =] cobe 0BJECT
TOOLS AND OTHER CONVERSION MODULE
PRODUCTS

i)} wMcse-96

H D i SOFTWARE SUPPORT

=== ' PACKAGE

USER-CODED
SOFTWARE

230613-1

Figure 1. MCS®-96 Software Development Process

*IBM and AT are registered trademarks of International Business Machines Corporation.

October 1986
1-92 . Order Number: 230613-005

intal MCS®-96 SOFTWARE DEVELOPMENT PACKAGES

8096 MACRO ASSEMBLER

m Supports 8096 Family Program m Object Files are Linkable and Locatable
Development on Intellec® m Symbolic Assembler Supports Macro
.:\gllt\:nrg%o%g/u‘t\e_rr Development System or Capabilities, Cross Reference, Symbol

Table and Conditional Assembly

m Gives Symbolic Access to Powerful
8096 Hardware Features

ASM-96 is the macro assembler for the MCS family of microcontrollers. ASM-96 translates symbolic assembly
language mnemonics into relocatable object code. Since the object modules are linkable and locatable, ASM-
96 encourages modular programming practices.

The macro facility in ASM-96 allows programmers to save development and maintenance time since common
code sequences only have to be done once. The assembler also provides conditional assembly capabilities.

ASM-96 supports symbolic access to the many features of the 8096 architecture. An “include” file is provided
with all of the 8096 hardware registers defined. Alternatively, the user can define any subset of the 8096
hardware register set.

Math routines are supported with mnemonics for 16 X 16-bit multiply or 32/16-bit divide instructions.

The assembler runs on a Senes Ill/Series IV InteIIec Development System or on a PC-DOS 3.0 IBM PC
XT/AT.

RL96 LINKER AND RELOCATOR PROGRAM

m Links Modules Generated by m Encourages Modular Programming for
ASM-96 and PL/M-96 Faster Program Development

m Locates the Linked Object Module to m Automated Selection of Required.
Absolute Memory Locations Modules from Libraries to Satisfy

Symbolic References

RL96 is a utility that performs two functions useful in MCS-96 software development:
— The link function which combines a number of MCS-96 object modules into a single program.

— The locate functions which assigns an absolute address to all relocatable addresses in the MCS-96 object
module.

RL96 resolves all external symbol references between modules and will select object modules from library
files if necessary.

RL96 creates two files:
— The program or absolute object module file that can be executed by the targeted member of the MCS-96
family.

— The Ilstmg file that shows the results of link/locate, including a memory map symbol table and an optional
cross reference listing.

The relocator allows programmers to concentrate on software functionally and not worry about the absolute
addresses of the object code. RL96 promotes modular programming. The application can be broken down into
separate modules that are easier to design, test and maintain. Standard modules can be developed and used
in different applications thus saving software development time.

1-93

|ntel" MCS®-96 SOFTWARE DEVELOPMENT PACKAGES

FPAL96 FLOATING POINT ARITHMETIC LIBRARY

m . Implements IEEE Floating Point - m Supports Single Precision 32 Bit
. Arithmetic ‘ : Floating Point Variables
= Baszc.Arlthmetlc Operatlons : = Includes an Error Handler Library

+, —, X, /, Mod Plus Square Root

FPAL96 is a library of single precision 32-bit floating point arithmetic functions. All math adhéres to the
proposed IEEE floating point standard for accuracy and reliability. An error handler to handle exceptions (for
example, divide by zero) is included.

The following functions are included:

ADD NEGATE

" SUBTRACT = ABSOLUTE
MULTIPLY ~ SQUARE ROOT
DIVIDE - INTEGER
COMPARE ~ REMAINDER

LIB 96

The LIB 96 utility creates and maintains libraries of software object modules. The customer can develop
standard modules and place them in libraries. Application programs can then call these modules usmg prede-
fined interfaces.

LIB 96 uses the following set of commands:
—CREATE: Creates an empty library file.

—ADD: Adds object modules to a library file.
—DELETE: Deletes object modules from a library file.
—LIST: Lists the modules in the library file.
—EXIT: Terminates LIB 96 :

When using object Iibrarieé,.RL96 will include only those object modules that are required to satisfy external
references, thus saving memory space.

ORDERING INFORMATION

Order Code Operating Environment
D86ASM96 - 96 Assembler for PC DOS 3.0 Systems
186ASM96 96 Assembler for Intel Development Systems (Series Ill and Series 1V)

Documentation Package: SUPPORT:

MCS-96 Macro Assembler User’s Guide Hotline Telephone Support, Software Performance
MCS-96 Utilities User’s Guide “Report (SPR), Software Updates, Technical Re-
MCS-96 Assembler and Utilities Pocket ports, and Monthly Technical Newsletters are avail-
Reference Card _ able.

8096 FIoatlng Point Arithmetic L|brary

1-94

intef

MCS®-96 SOFTWARE DEVELOPMENT PACKAGES

m Choice of Hosts

m Block Structured Language Design
Encourages Module Programming

m Provides Access to MCS®-96 on Chip

Resources

m Produces Relocatable Object Code
which is Linkable to Object Modules
Generated by Other MCS®-96

Translators

PL/M-96 SOFTWARE PACKAGE

m Resident on IAPX-86 Intel

Microcomputer Development Systems
for Higher Performance

m Includes a Linking and Relocating

Utility and the Library Manager

| IEEE Floating Point Library included for

Numeric Support

m Compatible with PL/M-86 Assuring

Design Portability

PL/M-96 is a structured, high-level programming language useful for developing software for the Intel MCS-96
family of microcontrollers. PL/M-96 was designed to support the software requirements of advanced 16 bit
microcontrollers. Access to the on chip resources of the MCS-96 has been provided in PL/M-96.

PL/M-96 is compatible with PL/M-86. Programmers familiar with PL/M will find they can program in PL/M-96

with little relearning effort.

The PL/M-96 compiler translates PL/M-96 high level language statements into MCS-96 machine instructions.
By programming in PL/M an engineer can be more productive in the initial software development cycle of the
project. PL/M can also reduce future maintenance and support cost because PL/M programs are easier to
understand. PL/M-96 was designed to complement Intel's ASM-96.

PL/M-96 is available for Intel Series Ill and Series IV Development Systems and for PC DOS 3.0 based IBM*

PC XT/AT* Systems.

AEDIT
TEXT
EDITOR

PL/M-96

SOURCE
MODULES

RELOCATABLE

ASM-96
ER

OBJECT
MODULES

RL-98
LINKER/
LOCATOR

ABSOLUTE
OBJECT
MODULE

FACTORY
MASK

[
COMPILER

LiB-96
LIBRARIAN
|

USER
OBJECT

LIBRARIES

INTEL DEVELOPMENT
TOOLS AND OTHER
PRODUCTS

SOFTWARE PACKAGE

USER-CODED
SOFTWARE

FPAL

FLOATING POINT
LIBRARY

i

PROM
PROGRAMMER|

VLSICE 96
SBE 96
EMULATORS

¥

08J HEX HEX
OBJECT

CONVERSION MODULE

230613-2

Figure 2. PL/M-96 Software Package

1-95

intel

MCS®-96 SOFTWARE DEVELOPMENT PACKAGES

PL/M-96 COMPILER

FEATURES

Major features of the PL/M-96 compiler and pro-
gramming language include:

Structured Programming

Programs written in PL/M-96 are developed as a
collection of procedures, modules and blocks. Struc-
tured programs are easier to understand, maintain
and debug. PL/M-96 programs can be made more
reliable by clearly defining the scope of user vari-
ables (for example, local variables in a procedure).
REENTRANT procedures are also supported by
PL/M-96.

Language Compatibility

PL/M-96 object modules are compatible with all oth-
er object modules generated by Intel MCS-96 trans-
lators. Programmers may choose to link ASM-96
and PL/M-96 object modules together.

PL/M-96 object modules were designed to work
with other Intel support tools for the MCS-96. The
DEBUG comepiler control provides these tools with
symbolic information.

Data Types Supported

PL/M-96 supports seven data types for programmer
flexibility in various logical, arithmetic and address-
ing functions. The seven data types include:

—BYTE: 8-bit unsigned number
—WORD: 16-bit unsigned number
—DWORD: 32-bit unsigned number
—SHORTINT: 8-bit signed number
—INTEGER: 16-bit signed number
—LONGINT: 32-bit signed number
—REAL: 32-bit floating point number

Another powerful feature are BASED variables.
BASED variables allow the user to map more than
one variable to the same memory location. This is
especially useful for passing parameters, relative
and absolute addressing, and memory allocation.

Data Structures Supported

Two data structuring facilities are supported by
PL/M-96. The user can organize data into logical
groups. This adds flexibility in referencing data.

— Array: Indexed list of same type data elements

— Structure: Named collection of same or different
type data elements

— Combinations of Both: Arrays of structures or
structures of arrays

Interrupt Handling

Interrupts are supported in PL/M-96 by defining a
procedure with the INTERRUPT attribute. The com-
piler will generate code to save and restore the pro-
gram status word when handling hardware interrupts
of the MCS-96.

Compiler Controls

Compile time options increase the flexibility of the
PL/M-96 compiler. These controls include:

— Optimization

— Conditional compilation

— The inclusion of common PL/M-96 source files
from disk : :

— Cross reference of symbols

— Optional assembly language code in the listing
file

1-96

intel

MCS®-96 SOFTWARE DEVELOPMENT PACKAGES

Code Optimizations

The PL/M-96 compilers has four levels of optimiza-
tion for reducing program size.

— Combination of constant expressions; “Strength
reductions” (e.g.: a shift left rather than multiply
by two)

— Machine code optimizations; elimination of su-
perfluous branches; reuse of duplicate code, re-
moval of unreachable code

— Overlaying of on chip RAM variables
— Optimization of based variable operations
— Use of short jumps where possible

Built in Functions

An extensive list of built in functions has been sup-
plied as part of the PL/M-96 language. Besides
TYPE CONVERSION functions, there are built in
functions for STRING manipulations. Functions are
provided for interrogating the MCS-96 hardware
flags such as CARRY and OVERFLOW.

Error Checking

If the PL/M-96 compiler detects a programming or
compilation error, a fully detailed error message is
provided by the compiler. If a syntax or program er-
ror is detected, the compiler will skip the code gen-
eration and optimization passes. This powerful
PL/M-96 feature can yield a two times increase in
throughput when a user is in the initial program de-
velopment cycle. .

1-97

BENEFITS

PLM-96 is designed to be an efficient, cost-effective
solution to the special requirements of MCS-96 Mi-
crocontroller Software Development, as illustrated
by the following benefits of PL/M use:

Low Learning Effort

PL/M-96 is easy to learn and to use, even for the
novice programmer.

Earlier Project Completion

Critical projects are completed much earlier than
otherwise possible because PL/M-96, a structured
high-level language, increases programmer produc-
tivity.

Lower Development Cost

Increases in programmer productivity translate im-
mediately into lower software development costs
because less programming resources are required
for a given programmed function.

Increased Reliability

PL/M-96 is designed to aid in the development of
reliable software (PL/M programs are simple state-
ments of the program algorithm). This substantially
reduces the risk of costly correction of errors in sys-
tems that have already reached full' production
status. The more simply the program is stated, the
more likely it is to perform its intended function.

Easier Enhancements
and Maintainance

Programs written in PL/M tend to be self-document-
ing, thus easier to read and understand. This means
it is easier to enhance and maintain PL/M programs
as the system capabilities expand and future prod-
ucts are developed.

mtel MCS©®-96 SOFTWARE DEVELOPMENT PACKAGES

RL96 LINKER AND RELOCATOR PROGRAM

B Links Modules Generated by ASM-96 | Eneourages Me"dular Programming for
and PL/M-96 , Faster Program Development

B Locates the Linked Object Module to m Automated Selection of Required
Absolute Memory Locations Modules from Libraries to Satisfy

Symbolic References

RL96 is a utility that performs two functions useful in MCS software development:
— The link function which combines a number of MCS object modules into a single program.

— The locate function which assigns an obsolute address to all relocatable addresses in the MCS-96 object
module.

RL96 resolves all external symbol references between modules and will select object modules from library
files if necessary.

RL96 creates two files:

— The program or absolute object module file that can be executed by the targeted member of the MCS
family.

— The listing file that shows the results of link/locate, including a memory map symbol table and an optional
cross reference Ilstlng

The relocator allows programmers to concentrate on software functionality and not worry about the absolute
addresses of the object code. RL96 promotes modular programming. The application can be broken down into
separate modules that are easier to design, test and maintain. Standard modules can be developed and used
in different applications thus savmg software development time. .

FPAL96 FLOATING POINT'ARITHMETlc LIBRARY

B Implements IEEE Floatin'g Point | Supports Sinéle Precision 32 Bit
Arithmetic : Floating Point Variables
m Basic Arithmetic Operations " m Includes an Error Handler Library

+, —, X, /, Mod Plus Square Root

FPAL96 is a library of single precision 32-bit floating point arithmetic functions. All math adheres to the
proposed |IEEE floating point standard for accuracy and reliability. An error handler to handle exceptions (for
example, divide by zero) is included.

The following functions are included:

ADD NEGATE
SUBTRACT ABSOLUTE
MULTIPLY SQUARE ROOT
DIVIDE- INTEGER
COMPARE REMAINDER

1-98

Inte[MCS©®-96 SOFTWARE DEVELOPMENT PACKAGES

LIB 96

The LIB 96 utility creates and maintains libraries of software object modules. The customer can develop
standard modules and place them in libraries. Application programs can then call these modules using prede-
fined interfaces.

LIB 96 uses the following set of commands:
—CREATE: Creates an empty library file

—ADD: Adds object modules to a library file
—DELETE: Deletes object modules from a library file
—LIST: Lists the modules in the library file
—EXIT: - Terminates LIB 96

When using object libraries, RL96 will include only those object modules that are required to satisfy external
references, thus saving memory space.

ORDERING INFORMATION

Order Code Operating Environment
D86PLM96 PL/M-96 Compiler for PC DOS 3.0 based Systems
186PLM96 PL/M-96 Compiler for Intel Series Ili and Series IV Development Systems

Documentation Package: SUPPORT:

PL/M-96 User’'s Guide Hotline Telephone Support, Software Performance
MCS-96 Utilities User’s Guide Report (SPR), Software Updates, Technical Re-
MCS-96 Assembler and Utilities Pocket ports, and Monthly Technical Newsletters are avail-
Reference Card able.

8096 Floating Point Arithmetic Library

1-99

intgl
VAX*/VMS* RESIDENT SOFTWARE DEVELOPMENT
PACKAGES FOR 80286

m Hosted on DEC VAX*/MicroVAX . 'm Packages include PL/M-286, BUILD-286,
Minicomputers Under the VMS* BIND-286, LiB-286 and MAP-286
Operating System m Compatible with Corresponding Intel

@ Allows Development of System and Development System ReSIdent
Application Software for the Protected Products

Virtual Address Mode of the 80286

These packages provide the capability of developing software on a VAX*/VMS* host for the 80286 in protect-
ed virtual address mode. With these packages a user can assemble and compile 286 programs, configure
system and application software and create and manage 286 object libraries. Flgure 1 illustrates the process
of 286 software development on VAX*/VMS* hosts.

Two packages are available:
1. A PL/M-286 package which contains the PL/M-286 compiler and run time support hbrarles

2. An ASM-286 package which contains the 80286 Assembler (ASM-286) and programming utilities. These
utilities include the 80286 System Builder (BLD-286), the System Binder (BND-286) a Library Utility (LIB-
286) and an Object Map Utility (MAP-286).

These packages are compatible with correspondmg products which are hosted on Intel development systems.
Correspondence can be established via version numbers. For example, BND-286 V2.0 offers the same set of
features on VAX/VMS and Intel development systems :

Owing to this compatibility, 80286 software developed on VAX/VMS can be linked to 80286 software from
development systems. Moreover, 80286 programs developed on the VAX can then be downloaded to devel-
opment systems and debugged using 286 debuggers like the 12ICET™-286 system.

ASM-286 NG -
PROGRAMS OPERATING SYSTEM 8
SOFTWARE 2 DOWNLOAD
o E
@ DEVELOPMENT
rrocrams b & :> % SYSTEM OR
; 2 5 ' PROTECTED MULTI TASK TARGET SYSTEM
% © SYSTEM FOR EXECUTION
©] OR DEBUGGING
@« o
PascAL28s || & @
PROGRAMS |— e

AN

FORTRAN-286 G ?

PROGRAMS ¢

APPLICATION SOFTWARE

2310381
Figure 1. 286 Software Development on VAX*/VMS*

*VAX, VMS are trademarks of Digital Equipment Corporation

TCurrently Available on Intel Development Systems Only

October 1986
1-100 Order Number: 231038-002

lnter VAX*/VMS* RESIDENT SOFTWARE DEVELOPMENT PACKAGES

VAX*/VMS* RESIDENT PL/M-286

m Hosted on DEC VAX*/MicroVAX ® Provides Multiple Levels of
Minicomputers Under the VMS* Optimization to Produce Efficient Code
Operating System m Produces Relocatable Object Code

m Systems Programming Language for Linkable to Object Modules Generated
the Protected Virtual Address Mode by Other Intel 286 Language
80286 Translators

m Enhanced to Support Design of m Upward Compatible with PL/M-86 and
Protected, Multi-User, Multi-Tasking, PL/M-80 to Allow Software Portability
g'r#‘al Memory Operating System m Compatible with Development System

oftware Resident PL/M-286

PL/M-286 is a powerful, structured, high-level system implementation language for the development of system
software for the protected virtual address mode 80286. PL/M-286 has been enhanced to utilize 80286 fea-
tures-memory management and protection—for the implementation of multi- user, multi-tasking virtual memory
operating systems.

PL/M-286 is upward compatible with PL/M-86 and PL/M-80. Existing systems software can be re-compiled
with PL/M-286 to execute in protected virtual address mode on the 80286.

PL/M-286 is the high-level alternative to assembly language programming on the 80286. For the majority of
80286 system programs, PL/M-286 provides the features needed to access and to control efficiently the
underlying 80286 hardware, and consequently it is the cost-effective approach to develop reliable, maintaina-
ble system software.

The PL/M-286 compiler has been designed to efficiently support all phases of software development. Fea-
tures such as built-in syntax checker, multiple levels of optimization, virtual symbol table and four models of
program size and memory usage for efficient code generation provide the total program development support .
needed. The compiler also provides complete symbolic debug capability to the various 286 debuggers and
emulators.

VAX/VMS resident PL/M-286 is completely feature compatible with development system resident PL/M-286
with the same version number.

1-101

Iﬂter VAX*/VMS* RESIDENT SOFTWARE DEVELOPMENT PACKAGES

VAX*/VMS* RESIDENT 80286 MACRO ASSEMBLER

m Supports Full Instruction Set of the m Powerful and Flexible Text Macro
80286 including Memory Protection and Facility
‘Numerics (with 80287)

, ‘ m Upward Compatible with ASM-
m Structures and RECORDS Provide 86/88/186

Powerful Datav Representation m Compatible with Development System
m Type Checking at Assembly Time Helps Resident 80286 Macro Assembler
Reduce Errors at Run-Time '

ASM-286 is the “high-level” macro assembler for the 80286 assembly language. ASM-286 translates symbollc
assembly language mnemonics. into relocatable object code. The assembler mnemonics are a superset of
ASM-86/88 mnemonics; new ones have also been added to support the new 80286 instructions. The segmen-
tation directives have been greatly simplified.

The 80286 assembly language includes approximately 150 instruction mnemonics. From these few mnemon-
ics the assembler can generate over 4,000 distinct machine instructions. Therefore, the software development
task is simplified, as the programmer need know only 150 mnemonics to generate all possible machine
instructions. ASM-286 generates the shortest machine instruction possible (given explicit information as to the
characteristics of any forward referenced symbols).

The powerful macro facility in ASM-286 saves development and maintenance time by coding common pro-
gram sequences only-once. A macro substitution is made each time the sequence is to be used. This facility
also allows for conditional assembly of certain program sequences.

ASM-286 offers many features normally found only in high-level languages. The assembly language is strongly
typed, which means it performs extensive checks on the usage of variables and labels. This means that many
programming errors will be detected when the program is assembled, long before it is being debugged.

ASM-286 object modules conform to a thorough, well-defined format used by 286 high-level languages and
utilities. This makes it easy to call (and be called from) HLL object modules.

ASM-286 also provides support for the 80287 numerics co-processor. The complete instruction set of the
80287 is available through high-level mnemonics.

VAX/VMS resident ASM-286 is completely feature compatible with development system resident ASM-286
with the same version number.

1-102

intel vax:/vms: ResIDENT SOFTWARE DEVELOPMENT PACKAGES

VAX*/VMS* RESIDENT 80286 SYSTEM BUILDER

m A Tool for Configuring Multi-Tasking m Target System May Be Bootloadable,
Protected, Virtual Memory Systems Programmed into ROM or Loaded from
Software for the 80286 Mass Storage

B Links Separately Compiled Modules m Generates Print File with Command
Resolves EXTERNAL/PUBLIC Listing and System Map
Definitions . m Compatible with Development System

m Creates a Memory Image of a-286 Resident 80286 System Builder

System for Cold Start Execution

BLD-286 is the 80286 System Builder. It allows systems programmers to configure multi-tasking and memory
protected 80286 software. The configuration is specified by the user in a “Build file” using a symbolic meta-
language. BLD-286 thus provides the programmer a high-level symbolic interface to the multi-tasking and
/memory protection features of the 80286 architecture.

BLD-286 accepts as inputs object modules from the 80286 translators, the 80286 Binder and itself (for
incremental building). Using the programmer’s specifications in the Build File, it produces a bootloadable or
loadable module as well as a print file with a map of the configured module.

Using the builders command languége, system programmers may perform the following functions:

— Assign physical addresses to segments; also set-segment. access rights and limits.

— Create Call, Trap, and Interrupt “Gates” (entry-points) for inter-level program transfers.

— Make gates available to tasks; this is an easier way to define program interfaces than using interface
libraries. : ;

— Create Global (GDT), Interrupt (IDT), and any Local (LDT) Descriptor Tables.

— Create Task State Segments and Task Gates for multi-tasking applications.

— Resolve inter-module and inter-level references, and perform type-checking.

— Automatically select required modules from libraries.

— Configure the memory image into partitions in the address space.

— Selectively generate an object file and various sections of the print file.

VAX/VMS BLD-286 is completely feature compatible with development system resident BLD-286 with the
same version number.

1-103

Inte[VAX*/VMS* RESIDENT SOFTWARE DEVELOPMENT PACKAGES

VAX*/VMS* RESIDENT 80286 BINDER

m Links Separately Compiled Program H Resolves PUBLIC/EXTERNAL Code and
-Modules into an Executable Task Data References, and Performs
B Makes the 80286 Protection Méchanism Intermodule Type-Checking
Invisible to Application Programmers | Provides Print File Showing Segment

Map, Errors and Warnings

m Generates Linkable or Loadable Module
for Debugging

m Compatible with Development System
Resident 80286 Binder

B Assigns Virtual Addresses to Tasks

m Performs Incremental Linking with
Output of Binder and Builder

BND-286 is a utility that combines 80286 object modules into executable tasks. In creating a task, the Binder
resolves Public and External symbol references, combines segments, and performs address fix-ups on sym-
bolic code and data.

The Binder takes object modules, produced by the 286 translators, and generates a loadable module (for
execution or debugging), or a linkable module (to be re-input to the Binder later; this is called incremental
binding). The binder accepts library modules as well, linking only those modules required to resolve external
references. BND-286 generates a print file displaying a segment map, and error messages.

The Binder is useful for- system as well as application programmers. Since application programmers need to
develop software independent of any system architecture, the 286 memory protection mechanism is “hidden”
from users of the Binder. This allows application tasks to be fully debugged before becoming part of a
protected system. (A protected system may be debugged, as weII.) System protection features are specified
later in the development cycle, using the 286 System Builder. It is possible to link operating system services
required by a task using either the Binder or the Builder. This flexibility adds to the ease of use of the 286
utilities. -

VAX/VMS resident BND-286 is completely feature compaﬂb!e with development system resident BND-286
with the same version number.

'VAX*/VMS* RESIDENT 80286 LIBRARIAN

m Allows Creation and Management of ® Only Required Modules Linked in When
80286 Object Libraries Using Binder or Builder

@ Library Functions include Create, m Compatible with Development System
Delete, Add, Replace, Copy, Save, Resident 80286 Librarian

Backup and Display ,
LIB-286 is the 80286 Librarian. It can be used to create and manage 80286 Object Libraries. By placing often
used object modules into libraries, the administrative overhead of managing software modules can be re-
duced.

VAX/VMS based LIB-286 is completely feature compatible with development system resident LIB-286 with the
same version number.

1-104

intel

VAX*/VMS* RESIDENT SOFTWARE DEVELOPMENT PACKAGES

VAX*/VMS* RESIDENT 80286 MAPPER

m Flexible Utility to Display bbject File
I_nformation in Symbolic Form

m Compatible with Development System
Resident 80286 Mapper

MAP-286 is a cross reference utility for 80286 object modules. It provides a.symbolic listing of the
EXTERNAL and PUBLIC symbols in the specified object modules.

VAX/VMS resident MAP-286 is completely feature compatible with development system resident MAP-286

with the same version number.

SPECIFICATIONS

Operating Environment

DEC VAX* 11/780 or compatible model running
VMS?* operating system V3.4 (or upward compatible
versions)

Documentation

Installation guide and user’s manuals for the soft-
ware are supplied with the products.

*VAX/VMS are trademarks of Digital Equipment Corporation

SUPPORT

Hotline Telephone Support, Software, Performance
Report (SPR) Software Updates, Technical Reports
and Monthly Newsletters are available.

ORDERING INFORMATION

Product Code Description

iMDX-371VX ASM-286, BLD-286,
BND-286, LIB-286,
MAP-286

iMDX-373VX PL/M-286

1-105

i I |®
VAX*/VMS* RESIDENT
8086/88/186
SOFTWARE DEVELOPMENT PACKAGES

= Executes on DEC VAX* Minicomputer m Packages include Pascal-86; PL/M-86;

under VMS* Operating System to ASM-86; Link and Relocation Utilities;
translate PL/M-86, Pascal-86 and OH-86 Absolute Object Module to
ASM-86 Programs for 8086, 88 Hexadecimal Format Converter; and
and 186 Microprocessors. Library Manager Program.

m Output linkable with Code Generated
on Intellec® Development Systems.

The VAX/VMS Resident Software Development Packages contain software development tools for the 8086,
88, and 186 microprocessors. The package lets the user develop, compile, maintain libraries, and link and
locate programs on a VAX running the VMS operating system. The translator output is object module compati-
ble with programs translated by the corresponding version of the translator on an Intellec Development
System.

Four packages are available:

1. An ASM-86 Assembler Package which includes the Assembler, the Link Utility, the Locate Utility, the
absolute object to hexadecimal format conversion utility and the Library Manager Program.

2. A PL/M-86 Compiler Package which contains the PL/M-86 Compiler and Runtime Support Libraries.
3. A Pascal-86 Compiler Package which contains the Pascal-86 Compiler and Runtime Support Libraries.
4. A C-86 Compiler Package which contains the C-86 Compiler and Run-Time Libraries.

The VAX/VMS resident development packages and the Intellec Development System development packages
are built from the same technology base. Therefore, the VAX/VMS resident development packages and the
Intellec Development System development packages are very similar.

Version numbers can be used to identify features correspondence. The VAX/VMS resident development
packages will have the same features as the Intellec Development System product with the same version
number.

Support for the 80186 processor will be provided as an update to the 8086, 88 software.

The object modules produced by the translators contain symbol and type information for programming debug-

ging using ICE™ translators and/or the PSCOPE debugger. For final production version, the compiler can
remove this extra information and code.

*VAX, DEC, and VMS are trademarks of Digital Equipment Corporation.

October 1986
1-106 Order Number: 210643-003

lnte[VAX*/VMS* RESIDENT

VAX*-PL/M-86/88/186 SOFTWARE PACKAGE

m Executes on VAX*/MICROVAX m Code Optimization Assures Efficient
Minicomputers under the VMS* Code Generation and Minimum
Operating System Application Memory Utilization

m Supports 16-Bit Signed Integer and W Built-In Syntax Checker Doubles
32-Bit Floating Point Arithmetic in Performance for Compiling Programs
Accordance with IEEE Proposed Containing Errors
Standard m Source Input/Object Output COmpatlbIe

m Easy-To-Learn Block-Structured . with PL/M-86 Hosted on an Intellec®
Language Encourages Program Development System

. Modularity m ICE™, PSCOPE Symbolic Debugging

m Produces Relocatable Object Code Fully Supported

Which is Linkable to All Other Intel
8086 Object Modules, Generated on
Either a VAX*, a PC XT/AT running
PC-DOS Version 3.0 or Intellec®
Development Systems

Like its counterpart for MCS®-80/85 program development, and Intellec® hosted 8086 program development,
VAX-PL/M-86 is an advanced, structured high-level programming language. The VAX-PL/M-86 compiler was
created specifically for performing software development for the Intel 8086, 88 and 186 Microprocessors.

PL/M is a powerful, structured, high-level system implementation language in which program statements can
naturally express the program algorithm. This frees the programmer to concentrate on the logic of the program
without concern for burdensome details of machine or assembly language programming (such as register
allocation, meanings of assembler mnemonics, etc.).

The VAX-PL/M-86 compiler efficiently converts free-form PL/M language statements into equivalent
8086/88/186 machine instructions. Substantially fewer PL/M statements are necessary for a given applica-
tion than if it were programmed at the assembly language or machine code level.)

The use of PL/M high-level language for system programming, instead of assembly language, results in a high

degree of engineering productivity during project development. This translates into significant reductions in
initial software development and follow-on maintenance costs for the user.

*VAX, DEC, and VMS are trademarks of Digital Equipment Corporation.

1-107

Inter VAX*/VMS* RESIDENT

VAX*-PASCAL-86/88 SOFTWARE PACKAGE

m Executes VAX*/MICROVAX . m Strict Implementation of ISO Standard
Minicomputers under the VMS* Pascal
Operating System B Useful Extensions Essential for

m Produces Relocatable Object Code Microcomputer Applications

Which is Linkable to All Other Intel .

8086 Object Modules, Generated on m Separate Compilation with Type-

Checking Enforced between Pascal

Either a VAX*, a PC XT/AT running PC- Modules
DOS Version 3.0 or Intellec® .
Development Systems m Compiler Option to Support Full Run-
m ICE™, PSCOPE Symbolic Debugging Time Range-Chet':kmg .
Fully Supported ®m Source Input/Object Output Compatible
with Pascal-86 Hosted on a Intellec®
m Implements REALMATH for Consistent Development System

and Reliable Results

B Supports 8086/20, 88/20 Numeric Data
Processors

VAX-PASCAL-86 conforms to and implements the ISO Pascal standard. The language is enhanced to support
microcomputer applications with special features, such as separate compilation, interrupt handling and direct
port 1/0. Other extensions include additional data types not required by the standard and miscellaneous
enhancements such as an allowed underscore in names, an OTHERWISE clause in CASE construction and
so forth. To assist the deve|opment of portable software, the compiler can be directed to flag all non-standard
features.

The VAX-PASCAL-86 compiler runs on the Digital Equipment Corporation VAX under the VMS Operating
System. A well-defined 1/0 interface is provided for run-time support. This allows a user-written operating
system to support application programs on the target system as an alternate to the development system
environment. Program modules compiled under PASCAL-86 are compatible and linkable with modules written
in PL/M-86, and ASM-86. With a complete family of compatible programming languages for the 8086, 88, and
186 one can implement each module in the language most appropriate to the task at hand.

*VAX, DEC, and VMS are trademarks of Digital Equipment Corporation.

1-108

lntd VAX*/VMS* RESIDENT

VAX* 8086/88/186 MACRO ASSEMBLER

B Executes on VAX*/MICROVAX m “Strongly Typed” Assembler Helps
Minicomputers under The VMS* Detect Errors at Assembly Time
Operating System i m High-Level Data Structuring Facllities

W Produces Relocatable Object Code Such as “STRUCTURES” and
Which is Linkable to All Other Intel “RECORDS”

8086/88/186 Object Modules,
Generated on Either a VAX*, a PC
XT/AT running PC-DOS Version 3.0 or

m Over 120 Detailed and Fully
Documented Error Messages

Intellec® Development Systems m Produces Relocatable and Linkable
Object Code
m Powerful and Flexible Text Macro
Facility with Three Macro Listing m Source Input/Object Output Compatible
Options to Aid Debugging with ASM-86 hosted on an Intellec®

m Highly Mnemonic and Compact Development System

Language, Most Mnemonics Represent
Several Distinct Machine Instructions

VAX-ASM-86 is the “high-level” macro assembler for the 8086/88/186 assembly language. VAX-ASM-86
translates symbolic 8086/88/186 assembly language mnemonics into 8086/88/186 relocatable object code.

VAX-ASM-86 should be used where maximum code efficiency and hardware control is needed. The
8086/88/186 assembly language includes approximately 100 instruction mnemonics. From these few mne-
monics the assembler can generate over 3,800 distinct machine instructions. Therefore, the software develop-
ment task is simplified, as the programmer need know only 100 mnemonics to generate all possible 8086/88/
186 machine instructions. VAX-ASM-86 will generate the shortest machine instruction possible given no for-
ward referencing or given explicit information as to the characteristics of forward referenced symbols.

VAX-ASM-86 offers many features normally found only in high-level languages. The 8086/88/186 assembly
language is strongly typed. The assembler performs extensive checks on the usage of variable and labels. The
assembler uses the attributes which are derived explicity when a variable or label is first defined, then makes
sure that each use of the symbol in later instructions conforms to the usage defined for that symbol. This
means that many programming errors will be deteced when the program is assembled, long before it is being
debugged on hardware. : ;

*VAX, DEC, and VMS are trademarks of Digital Equipment Corporation.

1-109

mter | VAX*/VMS* RESIDENT

'VAX*-LIB-86
m Executes on VAX*/MICROVAX m Libraries Can be Used as Input to
Minicomputers under the VMS* VAX-LINK-86 Which Will Automatically
Operating Sysiem Link Modules from the Library that
; ; Satisfy External References in the
m VAX-LIB-86 is a Library Manager :
Program which Allows You to: Modules Being Linked
Create Specifically Formatted Files to m Abbreviated Control Syntax

Contain Libraries of Object Modules
Maintain These Libraries by Adding or
Deleting Modules

Print a Listing of the Modules: and
Public Symbols in a Library File

Libraries aid in the job of building programs. The library manager program VAX-LIB-86 creates and maintains
files containing object modules. The operation of VAX-LIB-86 is controlled by commands to indicate which
operation VAX-LIB-86 is to perform. The commands are: :

CREATE: creates an empty library file

ADD: adds object modules to a library file

DELETE: . deletes modules from.a library file

LIST: lists the module directory of library files

EXIT: terminates the LIB-86 program and returns control to VMS

When using object libraries, the linker will call only those object modules that are required to satisfy external
references, thus saving memory space.

VAX-OH-86
m Executes on VAX*/MICROVAX - - . m Facilitates Preparing a file for Loading
Minicomputers under the VMS* : by Symbolic Hexadecimal Loader (e.g.
Operating System iSBC® Monitor SDK-86 Loader), or
m Converts an 8086/88/186 Absolute Universal PROM Mapper
Object Module to Symbolic m Converts an Absolute Module to a More
Hexademical Format Readable Format that can be Displayed

on a CRT or Printed for Debugging

The VAX-OH-86 utility converts an 86/88 absolute object module to the hexadecimal format. This conversion
may be necessary for later loading by a hexadecimal loader such as the iSBC 86/12 monitor or the Universal
PROM Mapper. The conversion may also be made to put the module in a more readable format that can be
displayed or printed.

The module to be converted must be in absolute form; the output from VAX-LOC-86 is in absolute fon_'nat.

*VAX, VMS are trademarks of Digital Equipment Corporation.

1-110

mte[VAX*/VMS® RESIDENT

VAX*-LINK-86

m Executes on VAX*/MICROVAX ® Automatic Generation of a Summary
Minicomputers under the VMS* Map Giving Results of the LINK-86 :
Operating System Process

B Automatic Combination of Separately m Abbreviated Control Syntax -
Complled or Assembled 86/88/186 m Relocatable modules may be Merged
Programs into a Relocatable Module, into a Single Module Suitable for
Generated on Either a VAX, a PC . Inclusion in a Library

XT/AT running PC-DOS Version 3.0 or

an Intellec® Development System m Supports “lhcrementél” Linking
m Automatic Selection of Required m Supports Type Checking of Public and
Modules from Specified Libraries to External Symbols

Satisfy Symbolic References

m Extensive Debug Symbol Manipulation,
allowing Line Numbers, Local Symbols,
and Public Symbols to be Purged and
Listed Selectively

VAX-LINK-86 combines object modules specified in the VAX-LINK-86 input list into a single output module.
VAX-LINK-86 combines segments from the input modules accordmg to the order in WhICh the modules are
listed.

VAX-LINK-86 will accept libraries and object modules built from VAX-PL/M-86, VAX-PASCAL-86 VAX-ASM-
86, or any other Intel translator generating 8086 Relocatable Object Modules, such as the Series Il resident
translators.

Support for incremental linking is provided since an output module produced by VAX-LINK-86 can be an input
to another link. At each stage in the incremental linking process, unneeded public symbols may be purged.

VAX-LINK-86 supports type checking of PUBLIC and EXTERNAL symbols reporting a warning if their types are
not consistent.

VAX-LINK-86 will link any valid set of input modules without any controls. However, controls are available to
control the output of diagnostic information in the VAX-LINK-86 process and to control the content of the
output module.

VAX-LINK-86 allows the user to create a large program as the combination of several smaller, separately-

compiled modules. After development and debugging of these component modules the user can link them
together, locate them using VAX-LOC-86 and enter final testing with much of the work accompllshed

*VAX, DEC, and VMS are trademarks of Digital Equipment Corporation. .

1-111

intel

VAX*/VMS* RESIDENT

VAX*-LOC-86

m Executes on the VAX*/MICROVAX
Minicomputers under the VMS*
Operating System

m Automatic Generation of a Summary
Map Giving Starting Address, Segment
Addresses and Length, and Debug
Symbols and their Addresses . -

m Extensive Capability to Manipulate the
Order and Placement of Segments in
8086/8088 Memory

m Abbreviated Control Syntax

B Automatic and Independent Relocation
of independent Relocation of
Segments. Segments May be Relocated
to Best Match Users Memory
Configuration -

Extensive Debug Symbol Manipulation,
Allowing Line Numbers, Local Symbols,
and Public Symbols to be Purged and
Listed Selectively

Relocatability allows the programmer to code programs or sectlons of programs without having to know the
final arrangement of the object code in memory.

VAX-LOC-86 converts relative addresses in an input module in iAPX-86/88/186 object module format to
absolute addresses. VAX-LOC-86 orders the segments in the input module and assigns absolute addresses to
the segments. The sequence in which the segments in the input module are assigned absolute addresses is
determined by thelr order in the input module and the controls supplied with the command. ,
VAX-LOC-86 will relocate any vahd input module wnthout any controls. However, controls are avanlable to
control the output of diagnostic information in the VAX-LOC-86 process, to control the content of the output
module, or both.

The program you are developing will almost certainly use some mix of random access memory (RAM), read-
only memory (ROM), and/or programmable read-only memory (PROM). Therefore, the location of your pro-
gram affects both cost and performance in your application. The relocation feature allows you to develop your
program and then simply relocate the object code to suit your application.

Documentation Package

iAPX-86, 88 Development Software Installation Man-
ual and User's Guide for VAX/VMS, Order number
121950-001

SPECIFICATIONS
Opératihg Environment

Required Hardware

VAX* 11/780, 11/782, 11/750, or 11/730'9 Track
Magnetic Tape Drive, 1600 BPI

Required Software

VMS Operating System V3.0 or Later. All of the de-
velopment packages are delivered as unlinked VAX
object code which can be linked to VMS as de-
signed for the system where the development pack-
age is to be used. VMS command files to perform
the link are provided.

Shipping Media

" 9 Track Magnetic Tape 1600 bpi

ORDERING INFORMATION

Part Number Description
iMDC-341VX VAX-ASM-86, VAX-LINK-86, VAX-
' LOC-86, VAX-LIB-86, VAX-OH-86,
Package
iMDX-343VX VAX-PLM-86 Package

iMDX-344VX VAX-PASCAL-86 Package
REQUIRES SOFTWARE LICENSE

*VAX, DEC, and VMS are trademarks of Digital Equipment Corporation.

1112

intel

PRODUCT BRIEF

Ada* 286 Compilation System

The Ada* 286 compilation system is a full,
production-quality implementation of the Ada
language designed to generate compact, high-
quality code for embedded 80286 applications.
The compiler will be validated in accordance
with U.S. DoD validation requirements, to insure
a correct implementation. Two separate runtime
environments are provided, giving the flexibility
of developing for either bare 80286 or iRMX™
286 target systems. The Ada 286 development
support features full compatibility with existing
Intel linking utilities, languages, debuggers and
networking, as well as the 80287 coprocessor.

" Intel Ada* 286 Compilation System

VAX®-
HOSTED

ADA
-} COMPILER
PROGRAM

LIBRARY
MANAGER

1

MACRO
ASSEMBLER

INTEL
LINKER

OTHER INTEL
COMPILERS

TARGET
“BARE" 80286 OR
IRMX™ 286 ENVIRONMENT

Product Highlights

Product Description

— Ada* features directly supported by 30286
hardware wherever possible -

— Protected mode bare 80286 and iRMX™ 286
targets available

—Highly optimized for efficient 80286/80287 code
generation

— Configurable runtime environments can be
customized to the application

— Linkable with other Intel languages

— Completely compatible with existing Intel high-level
debuggers (I2ICE and PSCOPE)

—VAX*/VMS hosted

*Please note:
Ada is a trademark of the Dept. of Defense
VAX is a of Digital C

Ada 286 is a highly integrated compilation system designed
to provide both highly optimized target code and an
efficient software development environment.

The compilation system consists of an Ada 286 compiler,
program library manager, pre-linker, and 2 separate target
environments. All of the Ada 286 components use the
common 80286 Object Module Format (OMF) to permit
linking of Ada object modules with modules from other
translators, as well as on-line code debugging.

Additionally, the Ada 286 compiler and runtime environ-
ments map Ada language constructs onto 80286 hardware
features wherever possible, thus giving the performance
benefits that a direct hardware implementation allows. This
allows complex software systems to be built taking
advantage of Ada constructs such as built-in tasking and
interrupt handling with optimal performance.

Support is provided for real-time embedded systems
development by providing the runtime environments, one
for a bare 80286 (no target operating system) and one for
an iRMX286 target environment, which are modularly
constructed to be able to be reconfigured to support each
unique embedded configuration.

Ada 286 is directly integrated into the standard Intel 80286
software development environment as shown below.

1-113

ORDER NUMBER: 231672-001

80286 Software Development Environment

FORTRAN 286
PROGRAMS

PASCAL 286
PROGRAMS

PLM 286
PROGRAMS

ASM 286
PROGRAMS

ADA* 286
PROGRAMS

iAPX 286 BINDER

APPLICATION

OPERATING SYSTEM
SOFTWARE SOFTWARE

IAPX 286
SYSTEM BUILDER

PROTECTED, MULTI-
TASK SYSTEM

DEBUGGER
ICE™ MONITOR, ETC.

TARGET
SYSTEM

1-114

INTEL ¢ Wide choice of mature languages: ASM,

PL/M Pascal, FORTRAN
MICROPROCESSOR oo C’d e T8 .
timized for In microprocessor
LANGUAGES avhitectares P
® Available on industry-standard hosts:
VAX/MicroVAX-VMS* and PC-DOS

® Optimized for embedded software
development _

¢ High-level symbolic debugging with Intel
emulators

¢ Worldwide support

I
i

CTOBER 1986

O
1-115 ORDER NUMBER: 280330-001

A wide variety of mature,
professional languages

Intel supports each of its micro-
processors and microcontrollers with a
set of high-level languages specifically
designed to take advantage of that
component’s features and performance.
Whether you're designing with the
8086, the 80286, 80386, or a member
of the 8051 or 8096 families, there’s a
wide variety of language tools
available to you, from assembler to
PL/M, Pascal, FORTRAN or C.

What makes Intel languages so
special? They’ve been tuned for peak
performance on Intel microprocessors,
resulting in better code quality. No
other language vendor can claim that.
Also, they’ve been around for a long
time, used in thousands of software
development labs around the world.
They’re fully debugged, mature,
stable. And they’re supported by

one of the most reputable names in
the microprocessor development
business: Intel.

We're committed to making our
customers successful with our pro-
ducts, so we provide extensive train-
ing, on-site application support,
telephone hot-line support, user pro-
gram libraries and programming tips.

Optimized for embedded
software development

Intel languages are designed for the
professional software developer, par-
ticularly those doing embedded soft-
ware development: programming close
to the hardware, such as designing

operating systems, real-time factory
automation systems and other applica-
tions requiring extremely fast,
compact code. Intel compilers support
the special requirements of embedded
software development such as
ROMability, fast interrupt handling
and library reentrancy, and code
optimization.

Intel’s PL/M is particularly well suited
to microprocessor development. It was
the first high-level language designed
expressly for microprocessors and is
still one of the most widely used tools
in the microprocessor and micro-
controller world. It rivals assembly
language in efficiency, and is 25-50%
more efficient than C.

Because all Intel languages use the
same object module format, modules
written in different languages (such as
C or PL/M) can be linked together
into a single executable program. Or, -
modules written on a PC can be
linked with modules written on a .
VAX/VMS*

Also, all Intel languages provide full
symbolic information for use with
Intel debuggers and emulators, such as
FICE™, ICE™ 5100, VLSIiCE 96, and
PSCOPE. Intel's TYPDEF, DEBSYM
and LOCSYM records contain a
wealth of information about external
and public variables, code blocks,
local symbols and debugging symbols.
Such information allows symbolic and
high-level langauge debuggers to pro-
vide additional services to program-
mers, such as displaying local vari-
ables or producing structure dumps.

Compilers that fit your
environment

Intel compilers are not only powerful,
they’re flexible, too. Intel compilers
are available on the industry hosts of
choice: the VAX (including
MicroVAX), and the IBM PC and
compatibles, allowing you to better
allocate hardware resources. DOS
tools can be used for interactive pro-
gram development, and VMS tools for
batch compilation and source
management.

The VAX-hosted versions of Intel
compilers are tailored to the VMS
environment: they follow the DCL
command invocation style and use
“VMS Intall” installation procedures,
with thorough on-line help. All Intel
compilers have been optimized in
VMS environments for fast /O
performance.

Using Intel networking protocols

such as NDS II and OpenNET™, PCs
and VAXs can be linked together for
maximum productivity in the develop-
ment lab.

Hardware, software support
in one call '

There’s security in designing with
Intel microprocessors and languages:
you know that all your development
questions will be answered by Intel’s
worldwide staff of trained hardware
and software engineers. Our support -
includes maintenance, consulting and
training for both VMS and DOS-
hosted tools.

*VAX and VMS are of Digital C

OpenNET and Insite are trademarks of Intel Corporation.

1-116

intel

ARTICLE AR-59
REPRINT

June, 1978

280324-1
1-117

AR-59

Various methodologies have been used to control
the high—and rising—cost of developing software
products. Among these, one technique that has proved
effective entails constructing programs from small,
well-defined modules. This technique, called modular
programming, can be used in any programming lan-
guage; however, without language support to enforce
module boundaries, errors often occur.

The PL/M language and compiler are designed to
bring the advantages of modular programming to
microprocessor software systems. Since the funda-
mental PL/M language facility for organizing a pro-
gram is the module, software systems can be parti-
tioned into manageable units. The PL/M module can
hold data and procedures and, if properly used, pro-
vide encapsulation of programming abstractions. In
this way it is related to several other language
mechanisms that provide for grouping operations
logically related to a single data structure—for exam-
ple, the Simula“class,' the Alphard form,? the CLU
cluster,” and the Mesa module.*

Modularity

The basic motivation for modularizing a software
system is to divide the system into partitions
understandable to the implementer. There are many
techniques for designing a partitioning. The oldest
one applies a functional decomposition of the
system into subroutines or procedures, However,
in truly large systems, such decomposition usually
results in a large number of precedures which,
though easily understood, have complex inter-
dependencies.

Encapsulation. Another technique, suggested by
Parnas,® is based on encapsulation of ‘information.
A software system is partitioned in terms of the
* Adapted from a paper presented at COMPSAC 77, Chicago.

0018-9162/78/0300-0040800.75

Reprinted with permission from COMPUTER MAGAZINE. Copyright

1-11

Modular Programming

in PL/M*

William Brown
Intel Corporation

abstractions which make it most understandable.
Thus, a text editor might be expressed as manipula-
tions of strings or a logic simulation as a structure
of logic cells. By encapsulating, or hiding, the
implementation details of the abstraction, interde-
pendencies are limited to the properties of the
abstraction (for example, concatenate, find, etc.,
for strings, or inputs and outputs for logic cells).
Thus, the system is more understandable.

Hiding information also enhances the long-term
utility of the system by making programs easier
to maintain and modify. First, the source text
is encapsulated so that any program changes are
localized. Second, if the engineering requirements
of the system change, the implementation of the
abstraction can be replaced without affecting any
other part of the system. For example, the
implementation of logic cells might initially be
optimized for minimum memory-space requirements.
Later, if speed becomes important, the imple-
mentation can be replaced by one optimized
for speed.

PL/M modules share two aspects of encapsulation
with the facilities of Alphard, CLU, and Mesa.
First, the module localizes the source text which
implements the abstraction. Second, the module
hides implementation details. It thereby provides a
certain amount of protection.

The PL/IM system

This description of the PL/M language and the
software development environment concentrates on
those features important to modular programming.
It is intended to provide enough background so that
someone familiar with similar languages and sys-
tems can understand the examples. For further
information, Intel's PL/M-80 Programming Manual®
provides a complete description of the language,
and McCracken’ provides a tutorial introduction to

1978 IEEE COMPUTER

by the IEEE Computer Society
280324-2

8

ntel

AR-59

PL/M and the ISIS-II diskette operating system.
Intel's ISIS-11 System User's Guide* describes the
file management services and general facilities of
this operating system.

PL/M is a block-structured procedural language.
It is intended as a system implementation language
for the Intel 8080 microprocessor. Syntactically, it
closely resembles XPL*' or PL/I."* However, the
statement structure should be understandable to
anyone familiar with a block-structured language.

The data types which PL/M manipulates are pro-
bably not familiar to some readers. PL/M has only
two basic data types: BYTE and ADDRESS. A BYTE
is an 8-bit unsigned value. An ADDRESS is a 16-bit
unsigned value. In addition to these data types,
PL/M allows singly dimensioned arrays and single-
level data structures.

An example declaration for a BYTE variable
(cH) and two ADDRESS variables (Bl and B2) is
given below:

DECLARE CH BYTE.
(B1, B2) ADDRESS:

PL/M takes a primitive approach to the problems
presented by references to objects. A reference to
an object is simply the memory address of the ob-
ject. PL/M uses a dot to denote the operation *‘ad-
dress of.” Thus, *.cH" yields the address of ‘‘CH.”

PL/M also allows for accessing variables by their
references. This is provided by the BASED notation
in declarations. For example, with the declaration

DECLARE B ADDRESS,
CH BASED B BYTE,
N BYTE:

and the assignments

mou
o

CH

the value of N is 5.

The BASED variable concept is important to the
procedure mechanism. Only objects of type BYTE
or ADDRESS may be passed to a procedure and all
parameters are passed by value. Therefore, to pass
a large object like an array or to implement a return
parameter requires a BASED declaration. In this
fashion, PL/M implements call by reference.

The last facility to be discussed is the LITERALLY
declaration. A LITERALLY defines a parameterless
macro or string substitution in the source text.
Thus, with the declaration

DECLARE ZERO LITERALLY *0":

the appearance of the identifier zERO is equivalent
to writing the constant 0.

PL/M modules. A module is a labeled block which
is not enclosed in any other block. Data objects

March 1978

and procedures can be declared in the module, and
in one distinguished module (the main program mod-
ule) an executable statement sequence may appear.
Since a module is a block, names declared in it are’
normally limited to the extent of the block. Thus,
all objects are a priori hidden inside the module.
However, PL/M'’s PuBLIC and EXTERNAL attributes
provide mechanisms to make names in one module
explicitly visible in another. (This formulation paral-
lels the Mesa facilities.)

A procedure or data object in-a module may be
given the puBLIC attribute. This makes the name of
the object visible outside the module. Only objects
declared at the first nesting level may be declared
pUBLIC. This restriction, and the fact that modules
are statically allocated, assures that PUBLIC proce-
dures have a consistent environment for efficient
execution.)

A module may access PUBLIC information in
another module by including a matching EXTERNAL
declaration. For a procedure, the EXTERNAL decla-
ration appears as a procedure with only parameter
declarations in the body. The attribute EXTERNAL
appears as, the last item in the procedure head. For
data, PUBLIC or EXTERNAL appears as an attribute
in the declarations. For example, the declaration

DECLARE NAMEREC STRUCTURE(

LAST 125) BYTE,
FIRST . (25/BYTE,
ML . BYTE) PUBLIC:

declares a structure variable, NAMEREC, which has
three fields. The fields LAST and FIRST are arrays
of 25 BYTES. The field M1 is a. single BYTE. The
matching EXTERNAL declaration is

DECLARE NAMEREC STRUCTURE(

LAST (25) BYTE,
FIRST (25) BYTE,
MI BYTE) EXTERNAL:

The names of structure fields and procedure pa-
rameters in EXTERNAL declarations need not match
those in the puBLIC declaration. Only the types and
order must match.

The compiler and linkage system. The current
PL/M compiler has two features which are impor-
tant to implementing modular abstractions. First,
the module is the natural unit of compilation. Thus,
an implementation of an abstraction can be compiled
once and then used for many applications. Second,
the compiler supports a textual inclusion facility.
This facility is provided by a compiler control having
the following general form

SINCLUDE (filename)
The compiler will read the file given by the file-

name. The text read will be inserted into the source
program, replacing the INCLUDE control. The

280324-3

1-119

ntel

AR-59

EXTERNAL and LITERALLY declarations for a module
may be included this way. Thus, an abstraction
may be referenced by a single name. Textual inclu-
sion is the mechanism used by Mesa for static
binding of implementations of an abstraction to
users of the abstraction.

The linkage system is responsible for binding
modules together. It matches all EXTERNAL declara-
tions to the appropriate pUBLIC declarations. Un-
fortunately, this matchmg is done by name only.
No type checking is performed. .

Example abstraction—strings. The abstraction
to be implemented is that of variable-length charac-
ter strings. The abstraction has the following opera-
tions: LENGTH, COPY, CONCAT, FRONT, REST, FIND,
BLANKS, PUT, and GET. It is possible to define each
of these operations in precise mathematical terms.
However, for the purpose of this example, only
informal descriptions with a minimum’ of formal
notation are given. Where a functional notation is
necessary, S will represent a string and N will
represent a non-negative integer.

LENGTH returns the number of characters in the
argument string. The empty string has a length of
zero.

COPY returns a duplicate of the argument string.

CONCAT returns a string which is a concatenation
of its arguments. The order of concatenation is the
first argument string followed by the second. The
two argument strings are not affected.

FRONT returns a string which is a copy of the flrst
N characters of the argument string. The value of N
must be in the inclusive range from 0 to the length
of the string. If N is zero an empty string is returned.

REST returns a string such that CONCAT (FRONTS.N).
RESTIS.N) is a copy of the string S.

FIND locates a character in the argument string
and returns the length of the substring ended by
that character. If the character is not in the string,
zero is returned.

BLANKS returns a string of blanks of a specified
length. BLANKS (0) returns an empty string.

PUT outputs a string as a line on a specified file.

GET inputs a line from a specified file and converts
it to a string.

The implementation‘

Before implementing the string abstraction, con-
crete PL/M interfaces for the abstract operations
must be specified. Figure 1 contains the EXTERNAL
and LITERALLY declarations which define strings
to the user. These declarations correspond to a de-
finition module in Mesa or the specification part of
an Alphard form. To produce these declarations two
implementation details had to be fixed.

First, since PL/M allows only scalar parameters,
the concept of ‘“‘references to a string’ has been in-
troduced. The LITERALLY declaration defines
REFSSTRING ‘as ADDRESS. This does not imply,

Declare Ref$String Literally "Address’.
Character Literally ‘Byte":

Length:
Procedure (Ref) Address External.
Declare Ref Ref$String:
End Length:

Blanks:
Procedure (N) Ref$String External:
Declare N Address:
~ End Blanks:

Copy: . .

Procedure (Ref) Ref$String External:
Declare Ref Ref$String:

End Copy

Concat: .
Procedure (Ref1. Ref2) Ref$String External:
Declare (Ref1, Ref2) Ref$String:
End Concat;

Front:
Procedure.(Ref, Ind) Ref$String External:
Declare Ref Ret$String. -
Ind Address:
End Front;

Rest: ..
Procedure (Ref. Ind) Ref$String External:
Declare Ref Ref§String.
Ind Address:
~End Rest:
Find:
Procedure (Ref. Ch) Address External:
Declare Ref Ref$String.
Ch Character:
End Find:

Put:
Procedure (Ref. Fl) External:
Declare Ref Ref$String.
Fi Address:
End Put;

Get:
Procedure (FI) Ref$String External:
Declare FI Address:
End Get:

Delete:
Procedure (Ref) External:
Declare Ref Ref$String:
End Delete:

Figure 1. The user’s view of strings defined by external
declarations.

however, that a reference to a string is necessarily
the memory address of the representation. The ac-
tual representation of the object is hidden by the
module structure. This LITERALLY provides for
visually distinguishing declarations of string ref-
erences from other variables of type ADDRESS.
However, the language does not enforce any dis-
tinction.

Second, an additional operation, DELETE, has been
specified. The abstraction was not concerned with
the problem of dynamic storage management. It
is possible to implement strings with implicit

COMPUTER
280324-4

1-120

ntel

AR-59

storage management. However, that would compli-
cate the representation. Therefore, the user is re-
sponsible for deleting unused strings.

Representation. The user's view of strings is de-
fined by the declarations in Figure 1. These declara-
tions do not imply anything about the represeenta-
tions of strings or string references; the module
structure is used to hide these details. Several alter-
natives are possible. A string might be represented
as a linked list of characters or as a dynamically
allocated BYTE array. String references might be the
address of the string representation or an index into
a hidden array maintained by the module.

The representation chosen implements a string
reference as the address of a dynamically allocated
BYTE array. However, to illustrate encapsulation
and the effect of engineering decisions on an imple-
mentation, two forms of this representation are sup-
ported. For strings of less than 255 characters, the
first entry in the dynamic array is the length of the
string. Thus, short strings are handled efficiently in
minimum space. For strings of 255 or more charac-
ters, the first entry in the dynamic array is 255 and
the end of the string is indicated by another 255.
Thus, long strings pay a slight penalty in both
space and time. If a more efficient representation
for long strings is required, the representations can
be changed without impacting the user of the ab-
straction.

Completed module. The source text for the com-
pleted module to implement strings is in the appen-
dix. This module corresponds to a program module
in Mesa or the representation and implementation
parts of an Alphard form. The implementation is not
completely representative of good software develop-
ment in that the source text is not adequately
documented and it has been validated only to the
extent necessary to run the example.

Notice that the STRINGS module accesses two
other abstractions by INCLUDE. The first of these
provides EXTERNAL declarations for the ISIS-II in-
put/output facilities, described in the user’s guide.?
The second abstraction, referenced by the file name
MEMMAN.DEF, provides for dynamic storage manage-
ment. This module contains two operations, ALLOC
and DEALLOC, which allocate and deallocate contigu-
ous blocks of memory.

The module contains several useful LITERALLY
declarations. In addition to REFSSTRING and
CHARACTER declarations, the type STRING is declared
literally. Since this type is always applied to BASED
items, the array length specifier of 1 is only a
formality.

The procedure NEW is hidden inside the STRINGS
module. It takes as a parameter the length of a
string to be created and allocates space for the ap-
propriate representation type. It also initializes the
length or boundary markers.

The PUBLIC procedure LENGTH defines the length
operation. It is typical of the procedures imple-
menting the operations. The first line names the

March 1978

procedure and formal parameter, and the word
ADDRESS indicates this is a function returning an
ADDRESS value. The word puBLIC indicates the pro-
cedure is to be accessible outside the module. Next
comes the declaration of the parameter and two
local variables. The first is a STRING based on the
reference parameter. The second is a counter for a
loop. The body of the 1.:NGTH procedure follows.
The remaining procedures follow the same pattern.
However; two points should be mentioned. First,
several procedureq call MOVE, a built-in PL/M pro-
cedure for moving bytes from one memory area to
another. Second, the DELETE procedure does not
free all the storage for unused strings. The length
of the string is set to zero and the remaining storage
is freed. This action helps avoid problems arising
from inadvertently referencing a deleted string. It
is, of course, hidden from the user of the abstraction.

Example program. Figure 2 shows a program
using the string abstraction. The input to this pro-
gram is a text file, TEST.SRC, containing tab charac-
ters. Tabs are represented in the text by the char-
acter /'. The program processes the file and outputs
the text file TEsT.OUT. The output has the tab char-
acters replaced by enough blanks to implement tab
stops at columns 8, 16, 24, 32, étc.

The INCLUDES of the files 10.nEF and STRING.DEF
at the beginning of the program supply the Ex.
TERNAL declarations for the abstractions. The text
of STRING.DEF is exactly that given in Figure 1. The
text of 10.DEF is described in the discussion of the
module STRINGS.

Next is the procedure declaration: for CONCATD.
This declaration provides a local extension to the
string abstraction. It implements a concatenation
operation which deletes the argument strings. Note
that this extension is defined in terms of the opera-
tions of the string abstraction, and not in terms of
the actual represent.ation Thus, the encapsulation
of the implementation is preserved.

Following the procedure declaration are the de-
clarations for the variables used by the program.
The variables LINE and OUTLINFE are references to
the input .string and output string, respectively. The
rest of the variables are various. temporarles and
counters. -

The body of the algonthm is an xteratlon which
terminates when a null string is encountered. Each
LINE is processed in turn until all tabs have been
found. When a tab is found (by FIND), all the char-
acters in the line in front of the tab are concatenated
to the output string (referenced by OUTLINE).
Next, the length of this new string is determined
and the proper number of blanks to be inserted is
calculated (as LB). This number of blanks is conca-
tenated to the output string. Finally, the original
string LINE is replaced by the REST of the string and
a new tab is located.

When no more tabs are found, the remaining
part of the input string is concatenated to the out-
put string. This string is output. A new LINE is in-
put.and the outer iteration is repeated.

280324-5

1-121

intel AR-59

Tabs Do: ‘v Conclusion
Sinclude (String.Def) .. : . o As the example program shows, the PL/M module
Sinclude (lo.Def) . . is a simple, efficient encapsulation mechanism that
Concatd: can emulate many of the abstraction facilities of
Procedure (Ref1,Ref2) RefSStrlng S Alphard, Mesa, and CLU. Thus, a number of benefits
Declare (Ref1.Ref2, Retref) Ref$String: inherent in such languages, including better readi-
g;}{ 901 ot c°;°131' (Ref1,Ref2); ’ bility and maintainability, are available to the PL/M
Call D:|:tg :n:(2;~ : programmer. Discipline is required, however, since
Return Retref: : existing implementations of PL/M—unlike those of
End Concatd: . ° the other languages—do not check for consistent

) " use of abstractions. .
lDec ae z:' T:_g)u L{;’:,:s"s“” RefSSting. The language facilities and methodology exem-

(Infile, Outfile, Status) Address: : plified by the STRINGS module can be successfully
Declare Tab therall o applied to real software products. They have been
Y -used, for example, in constructing the foundation

Call Open o . , . .
. ; of Intel's RMX-80 realtime operating system
Cal(l ng: A'TEST.SRC ").1,256.. Status): which coordinates programs performing real-time
(.Outfile..('TEST.OUT *).2.0, Status) gontrol functions.” W
Line = Get(Infile):
Do While Length(Line) <> @: . .
Outline = Blanks(@): -
I'= Find(Line.Tab): » : : ... Acknowledgments
" Do While | <> @: . ; . 1 :
-Qutline = L. I wish to thank Kevin Kahn and John Doerr for
Concald(Outllne Fronl(Llne) . their many comments and suggestions during the
L = Length(Outline); . writing of this article.
Lb = (((L/8)+1)"8)-(L+1):
Outline = :
Concatd(Outline.Blanks(Lb)): -
Img = kg‘s‘:u_me i e Appendix. Source text for the completed
Call Deléte(Tmp): : : : module which implements the strings
| = Find(Line,Tab): * * * "~ example.
End:)
" Outline =" Concatd(Outline; Line): e Do:
Call Put(Outline. Outfile): : Strings:Do:
Call Delete(Outline): : . Sinclude (lo.Def)
Line = Get(Infile): $lnclude (Memman.Def)
End: . _ Declare Ref$String Literally *Address',
. : Strin Literally ‘(1) Byte'.
Call Exit: . . T ’ Ch;rgcler Lnerau; 'eyne'Y
End Tabs: . . Cr Literally *13',
N L Literally'10": .
Figure 2. Example program using the string.. New: -
| sbaon P e
Retref Reisélving.
. . . Str Based Retref String:
Figure 3 shows an input file and the corresponding o 235 thon bo: .
output file. The output was obtained by supplying ' : Str (8).Str(Ln +1) = 256
a reasonable implementation of the memory manage- End: Eise Do.)
. etref = Alloc(Ln+1):
ment module and executing the TABS program. Str (8) = Ln:
o End:
Refurn Retref:
. End New:
Length:
count/amount/total. .- v Procedure (Ret) Address Public:
25/$.25/86.25 . N ' Declare Ref Ref$String.
5/$.42/$2.10 . B . Str Based Ref String.
7/$3.20/$22.40) . . | Address:
) It Str (9) < 255 Then Return St (8):
.count amount - total ‘ o1
25 . $.25 $6.25 Do While Str (1) <> 255:
5 $.42 $2.10 : . I= 141
7 8320 $22.40 End;
' Return (1-1);
End Length;

Figure 3. Input file with the corresponding output file.

COMPUTER
280324-6

1-122

AR-59

intel

Blanks:
Procedure (N) Ref$String Public:
Declare (N.1) Address,
Retre! Ref§String.,
Str Based Retref String;

Retref = New(N):
1t N<>8 Then

Dol =1ToN:

Str(l) = " "

End:
Return Retrel:
End Blanks:

Copy:
Procedure (Ref) Ref§String Public:
Declare (Ref,Retref) Ret$String.
Ln Address:

Ln = Length(Ref);
Retref = New(Ln):
IFLN <> @ Then
Call Move(Ln,Ref+1,Retref+1);
Return Retref:
End Copy:

Concat:
Procedure (Ref1,Ref2) Ref$String Public:
Declare (Ret1,Ref2,Retref) Ref$String.
(Ln1,Ln2) Address:

Lnt1 = Length(Ref1);

Ln2 = Length(Ref2):

Retref = New(Lnt+Ln2);

1f Ln1 <> @ Then
Call Move(Ln1,Ref1 + 1,Retref +1);

1f Ln2 <> @ Then
Call Move(Ln2,Ref2 + 1,Retref +-Ln1+1);
Return Retref:

End Concat:

Front:
Procedure (Ref,Ind) Ref$String Public:
Declare (Ref.Retref) Ref$String,
Ind Address:

Retref = New(Ind);
If Ind <> @ Then
Call Move(Ind.Ref + 1,Retref +1):
Return Retref:
End Front:
Rest: *
Procedure (Ref.Ind) Ret§String Public:
Declare (Ref.Retref) Ref$String,
(Ln,Restln. Ind) Address:

Ln = Length(Ref);
Restin = Ln-Ind:
Retref = New(Restin):
If Restin <> @ Then
Call Move(RestIn,Ref + Ind + 1,Retref +1):
Return Retref:
End Rest:

Find:
Procedure (Ref.Ch) Address Public:
Declare Ret Ref$String.
Str Based Ref String.
Ch Character,
(Ln.l) Address.

Ln = Length(Ref):
HLn = @ Then Return @:
| =1;
Do White | <= Ln and Str (1) <> Ch:
=1+
€nd:
1f Str (1) = Ch Then Return |
Return @:
End Find:

Put:
Procedure (Ref.Fi) Public:
Declare Ref Ref$String.
(Fl.Ln.Status) Address:
Ln = Length(Ref).
It Ln <> @ Then
Call Write(Fl.Ref + 1.Ln..Status):
Call Write(FI..(Cr.Lf).2..Status):
End Put:

March 1978.

1-123

Get:
Procedure (FI) Ref$String Public:
Declare Retref Ref§String,
(Fl.Actual, Status) Address.
Buffer(128) Byte:

Call Read
(FI..Buffer. 128, Actual..Status);
If Actual = @ then Return New(9): -
Retrel = New(Actual-2);
Call Move(Actual-2..Bulfer.Retref + 1):
Return Retref;
End Get:

Delete:
Procedure (Ref) Public:
Declare Ref Ref$String,
Str Based Ref$String:

Call Dealloc(Ref + 1,Length(Ret));
Str (9) = @:
End Delete:

End Strings;

References

1. O. J. Dahl, B. Myhrhaug, and K. Nygaard The
SIMULA 67 Cc Base L
S-22, Norwegian Computing Center. Oslo. 1970.

2. A. Wulf, “"ALPHARD: Toward a Language to Sup-
port Structured Programming,” Carnegie-Mellon
University Tech Report AD-785417, April 1974.

3. B. Liskov and S. Zilles, “'Programming with Abstract
Data Types,” SIGPLAN Notices, Vol. 9, No. 4,
April 1974, pp. 50-59.

4. C. M. Geschke, J. H. Morris, Jr., and E. H. Satterth-
waite, “‘Early Experience with Mesa,” CACM, Vol.
20, No. 8, August 1977, pp. 540-552.

5. D. Parnas, A Technique for Software Module Speci-
fication,” CACM, Vol. 15, No. 5, May 1972, pp. 330-
336.

6. Intel Corp., PLMS0 P
No. 98-268B, 1977.

Manual, Dy

7. D. D. McCracken, A Gutde to PL/M Programming
for Mi Addison-Wesley
Publishing Co Readmg. Mass., 1978.

8. Intel Corporation, ISIS-II System User's Guide, .
Document No. 98-306A, 1976.

9. W. M. McKeeman, J. J. Horning, and D. B.
Wortmann, A Compiler Generator, Prentice-Hall,
Englewood Cliffs, New Jersey, 1970.

10. ANS Committee X3, Draft Proposed Standard Pro-
gramming Language PL/I, February 1975.

11. Kevin Kahn, “A Small-Scale Operating System
Foundation for Microprocessor Applications,” Proc.
IEEE, Vol. 66, No. 2, February 1978, pp. 75-89.

William L. Brown is a senior software
engineer in Intel's Microcomputer
¥ Systems Division in Aloha, Oregon.
His past work includes the revision
and enhancement of the PL/M lan-
guage and -the development support
software for Intel's bit slice proces-
sor. He received his MEE from Rice
University in 1974. He is currently
an active member of the ACM
and the 1EEE Computer Society.

280324-~7

ARTICLE
REPRINT

intel

"~ AR-136

June 1980

AN\ &
;’&90 '\Q ‘09 Q{@?
@ 0@ QO \0 @éis,es '
’\ @% (i\oé

1-124

451145-1

intel

AR-136

PL/M-86 combines hardware access
with high-level language features

L/M-86, a systems-implementation language, is
the first high-level language (HLL) designed spe-
cifically for the special requirements of micro-
computers. The user gets not only high-level access
to the uP hardware, and thus control over the proces-
sor and its peripheral components, but also such HLL
advantages as the ability to write code in English-like
statements, more efficient software design and easier
debugging and maintenance. Major features include:
» High-level constructs for machine control, espe-
cially interrupt handling, direct-port I/0 and access
to absolute memory locations

» Pointers and based variables

» String manipulation ‘

» LOCKSET, a procedure for multiprocessing en-
vironments.

Designed to be executed by Intel's 16-bit 8086
(ELECTRONIC DESIGN, March 1, 1980, p. 97), PL/M-86
is upward-compatible with PL/M-80. Except for inter-
rupts, hardware flags and time-critical code se-
quences, PL/M-80 programs may be recompiled under
PL/M-86 with little or no conversion.

Block-structured language

Both versions are block-structured, encouraging a
structured approach to programing with well-struc-
tured branching and control statements. They provide
a DO-END construct for simple block structures, as well
as DO WHILE, DO CASE, an iterative DO, binary decision
mechanisms IF-THEN-ELSE and nested IF-THEN-ELSE.

PL/M-86 procedures isolate well-defined tasks
where local variables, valid only within their pro-
cedure, can be used to avoid unwanted interactions
between procedures (Fig. 1). By making it easy to
divide the programming tasks into subtasks, PL/M-86
encourages top-down design and permits several soft-
ware designers to work in parallel. Since programs
under development tend to keep changing, modularity
also simplifies program maintenance. With PL/M-86,
programs can be designed in such a way that one
program function can be modified without unexpected
repercussions elsewhere in the program.

| [me

In addition, as an SIL, PL/M-86 includes special
features for writing systems software: I/0 handlers,
device drivers, system monitors—in short, any ex-
ecutive program that directly controls hardware, even
if imbedded in application software (for instance, in
machine or instrument control).

An SIL like PL/M-86 allows the system designer
to control hardware with HLL constructs rather than
error-prone assembly language. Specifically, the sys-
tem designer can write interrupt-handling routines
and routines to input or output data directly to CPU
ports. PL/M-86 also allows the programmer to access
memory locations directly and provides a flexible
means of manipulating data and procedure pointers.
Built-in procedures give access to the hardware stack
pointer and CPU flags.

Unlike application-oriented languages, PL/M-86

M: l DD:/*Beginning of madula®/

. “DEGLARE RECORD (128} STRUCTURE (KEY BYTE, INFO WORDY
. DECLARE CURRENT STRUCTURE (KEY BYTE: INFO WORD):
" DECLARE (J. f) INTEGER:
7 *Data are read:in to infilalize e tecords.”/
i SORTY DGI=1T0127;)
: i ¢ CURRENT KEY « AECORDIK). KEY;

C U CURRENTINFG = RECORDIJLINFO:
SR

DO WHILE 1>0 AND RECORD(I-1) KEY >CURRENT KEY:
RECORD(I).KEY = RECORD(I-1).KEY:
RECORD().INFO = RECORD(I-1).INFO:
=11

END FIND:

" RECORDO).KEY = CURRENT.KEY;

- RECORDULINFG = CURRENT.INFO;

END SORT:
U 1Data are wittien oot Trom 1he records. !

ENDME #Eng of maduie®/

1. Three nested blocks illustrate block hierarchy: Block
M includes the whole screened area; block Sort
includes all the code with medium and light screen;
block Find is outlined by the white area only.

451145-2

1-125

intel

AR-136

lets the programmer interface directly with the sys-
tem hardware, without having to bring additional

modules in at executiqn ‘time to interface with the -

.
.
o f
HITEMP: PROCEDURE ‘INTERRUPT(S)
DECLARE INTERRUPTSID BYTE.

INDEX, OUTDEX BYTE.
CURRENT$STATUS WORD:

.
.

INTERRUPTSID = INPUT(INDEX):

IF INTERRUPTSID = 0000000|B THEN

Do:
OUTPUT(OUTDEX) = 110000008 /°*ALARM AND SHUTDOWN®*/
OUTDEX = OUTDEX + 1
GOSFLAG + FALSE

END:

IF INTERRUPTSID + 000010008 =THEN

DO:

OUTPUT(OUTDEX) = 100000008 /*WARNING LIGHT*/
OUTDEX OUTDEX +1

ELSE DO:

END ¢

END HITEMP .

2. Although a high-level language, PL/M-86 provides
direct access to hardware. In this example, a peripheral
signals INTERRUPT(5)whenever a certain temperature
exceeds its limit. The shown interrupt procedure activates
warning signals and stops the process.

SORT: DO J =1 TO COUNT-1;
CALL MOVB (QRECORD{ITRECSIZE) @CURRENT RECSIZE):
I1=J,

FIND: DO WHILE 1 0
. AND RECORD (1-1)*RECSIZE + KEY
CURRENT(KEY):
CALLMOVB(@RECORD(V 1)"RECSIZE).
@RECORD(1°RECSIZE).
RECSIZE:,)
1=1-1:
END FIND:

CALL'MOVB(@CURRENT.@RECORD(1°RECSIZE).RECSIZE);
END SORT:

3. In this fragment from a sorTroutine, the predefined
procedure Movs is called several times. Being a built-in
procedure, it does not have to be declared. In the first

call (highlighted), the parameter @ RECORD(J*RECSIZE)
specifies the starting address of the byte sequence to be
copied; « CURRENT s the location to which the first byte

will be copied; Recsize is the number of bytes in the stream
of data to be transferred.

_ hardware. While Pascal or Fortran requires an operat-

ing system or run-time support to perform system-
level functions, PL/M-86’s “bare-machine” program-
ming saves memory, as the code overhead for an

- operating or run-time system is eliminated. This SIL

thus offers the best of two worlds—the memory
efficiency of system-level code and the programming
efficiency of an HLL.

Interrupts make it possﬂ)le to break into the execu-
tion sequence of a running program to carry out other
tasks and then resume execution of the interrupted
program. Sometimes, the external event is repetitive
—for instance, a clock pulse that only needs to be
counted before other processing resumes. At other
times, the external event can be a signal indicating
that data are ready to be input or that some process
has exceeded allowable limits.

Since pC applications involve processing of inter-
rupts to some degree, an SIL must include provisions
for interrupt-handling routines. In an 8086-based
system, an interrupt may be generated by some
peripheral device that sends an interrupt signal and
number to the 8086 CPU (Fig. 2).

The CPU processes an interrupt by:

“wCompleting the machine instruction currently
under execution
" Disabling the interrupt mechanism

= Activating an interrupt procedure corresponding
to the number sent by the peripheral device.

After executing a RETURN or END statement, the
interrupt procedure automatically reenables the inter-
rupt ‘mechanism and returns control to-the pomt
where the interrupt occurred.

For 170 operations, PL/M-86 provides built-in pro-
cedures that let the programmer access the CPU’s I/0
ports directly. This includes support for byte or word
I/C and constant or variable port numbers. To input
a byte from an 8086 1/0 port, use

INPUT (expression)
The value of “expression” specifies one of the input
ports of the 8086 CPU. The value returned by INPUT
is the byte value found in the specified mput port (see
Fig. 2).

“To access specific memory locations, PL/ M-86 pro-

vides the AT attribute:

AT (Iocatlon)

where “location” may be either a whole-number con-
stant in the range of 0 through 1,048,575 or a location
reference. The latter uses the “@ operator” to indicate
where a specific variable will reside at execution time.
For example, @ RESULT represents the run-time loca-
tion of the variable RESULT. The statement

DECLARE (CHAR$A, CHAR$B) BYTE AT (4096);
causes the BYTE variable CHAR$A to be stored at
location 4096. The variable CHARSB follows in the next
two bytes.

On the other hand, the construct

451145-3

1-126

ntel

AR-136

DECLARE DATUM WORD
DECLARE ITEM BYTE AT (@DATUM)

causes ITEM to be declared a BYTE variable, located at
the location of DATUM. PL/M-86’s ability to access
absolute memory locations is especially important for
memory-mapped I/0 or other hard-wired memory
locations.

What are based variables?

Sometimes a direct reference to a variable is either
impossible or inconvenient—for example, when the
location of a data element remains unknown until it
is computed at run time. It may then be necessary
to manipulate the locations of data elements rather

than the data elements themselves. PL/M-86 provides
this indirect form of reference with “based variables.”
The base of a based variable is another variable
pointing to the based variable. Both must be declared
separately, with the base coming first. For instance,
in

DECLARE ITEM$PTR POINTER;

DECLARE ITEM BASED ITEM$PTR BYTE;

ITEM$PTR is base and ITEM is the based variable. The
construct

ITEM$PTR=34AH.
ITEM = 77H;

loads the value 77 (hex) into.the memory location 34A

(hex). .
One variable name can refer to many different data

DECLARE BBYTE.CCBYTE.
TEST BYTE
A

WORD;
IF TEST THEN
DO;
OUTWARD (0F6H)-0FFFFH;

A=B
END;
ELSEA=C
1. MOV AL, TEST 1. MOV AL.TEST
2. RCR AL,1 2. RCR AL
3. JB @1 3. JB @1
4. JMP @2 4, JMP @?
5. @1: MoV AX,0FFFFH 5. @1 MOV AX.OFFFFH
6. outTw OF6H 6. ouTW OF6H
7 MoV AL.B
7. MoV AL,B 8. JMP @4
8. MOV - U AHLOH 9. S A
9. MoV SLLAAX 10.
10. JMP @3 1.
11. @2 12. @2
12 13. a4
13. 14.
14 @s3: 15. @3
(a) (b)
1, MoV AL,TEST 1. MOV AL.TEST
2. RCR AL,1 2. RCR AL1
3, J8 @1 3. JNB @?
4, IMP L @2
5. @t MOV AX,OFFFFH 4. MOV AX.OFFFFH
6. ouTw OF6H 5. ouTW OF6H
7. MOV AL,B 6 MOV AL.B
8. JMP @4 7. JMP. @4
9, @2 MoV AL,C 8. @2 MOV AL.C
10. @4 MOV AH,0H 9. @4 MOV AH.0H
1. Mov AAX 10. MOV A.AX
12 @3: 1 @3:
(c) (d)
4. An ASMB6 program—before optimization (a), after
cross-jumping (b), after elimination of unreachable code
(c) and after reversing a branch condition (d).
451145-4

1-127

intel

AR-136

itemé depending on the value of the base. For instance,
the loop .

TOTAL = O;

DO ITEM$PTR = 2100H to 2199H;
TOTAL = TOTAL + ITEM

END;

places in TOTAL the sum of the 256 bytes found in
memory locations 2100H: through 2199H.

Based variables are even more powerful when the
“@ operator” is used to supply values for bases. For
example, suppose there are three different real vari-
ables, ASERROR, BSERROR, and C$ERROR, which should
be accessible at different times via the single identifier
ERROR. This can be done as follows:

DECLARE (A$ERROR, B$ERROR, C$ERROR) REAL:
DECLARE ERROR$PTR POINTER;

DECLARE ERROR BASED ERROR$PTR REAL;
ERROR$PTR = @A$ERROR;

At this point, the value of ERRORSPTR is the location
of address ASERROR. A reference to ERROR is, in effect,
a reference to ASERROR. Later in the program, the
statement ERRORSPTR = @ CSERROR; turns a reference
to ERROR into a reference to CSERROR. This technique
is useful not only for manipulating complicated data
structures but also for passing locations to procedures
as parameters.

With strings attached

One of the key features built into the 8086 is the
ability to handle large-scale string-manipulation as-
signments far more easily than the 8080 and the 8085.
PL/M-86 exploits this feature, with very powerful
string-handling procedures to scan, translate or move
blocks of bytes or words in ascending or descending
order. The system designer thus has access to the
8086's string capabilities without having to worry
about absolute memory locations and register con-
tents, as an assembly-language programmer would
(Fig. 3).

Another feature designed into the 8086 architecture
is multiprocessing capability, accessible via the
LOCKSET procedure. Through it, the system designer
gains control over shared resources by locking other
processors out while, for instance, a memory black
is being updated. In a system where an 8086 processor
offloads its I/0 control tasks to an 8089 I/0 processor,

some memory locations may be used by both proces-
sors.

While the 8086 is accessing and updating that
memory location, the 8086 should not be outputting
data from that location or writing new data into that
location. So a flag is set or reset depending on whether
or not the processor seeking access to the critical

.resource can obtain that access.

An optimizer saves memory

Memory may be cheap, but in a large production run
every byte still counts. So, an optimizing compiler will
soon pay for itself. PL/M-86 uses a number of op-
timization techniques:

Folding of constant expressions

Calculating the value of constants in expressions at
compile time rather than generating code to calculate
it at run time saves both time and memory. In the
expression

A=6+3+4;

the compiler will add 6 and 3 first and produce code to
add 9to A.

Strength reduction -

This term applies to the replacement of certain
instructions with faster, shorter ones. For example,
performing a left-shift of one bit replaces a multi-
plication by two; n left-shifts correspond to a multi-
plication with 2",

Elimination of common expressions
If an expression appears more than once in the same

block, its value is saved rather than recomputed each
time. For example, in

A =B+ C*D/3

C=E+(C*D/3
the value of C*D/3 need not be computed a second
time.

Short-jump optimization
When there’s a choice of different jump-instruction
types, the compiler selects the smallest one possible.

Branch optimization
Branch chaining reduces a branch to another branch
to a single branch instruction:

BEFORE
JMP LAB1

AFTER
JMP LAB?

LABI: JMP LAB2 LAB1: JMP LAB2
LAB2: LAB2:

451145-5

1-128

intel

AR-136

Having defined a BYTE variable (called LOCK, for
example), the LOCKSET instruction sets that variable
to a value that denies memory access.

- If LOCK=1 means “access not available” and LOCK=0
means “access allowed,” and if all processors in the
system have been programmed to recognize that
convention, the following code segment gives access
to a critical memory location while preventing other
processors from doing so until the operation is fin-
ished:

/*BEGIN CRITICAL REGION*/

DO WHILE LOCKSET (@LOCK, 1);

END;

" LOCK=0;
/#END CRITICAL REGION*/

In this segment, the processor loops until memory
location LOCK is reset by another processor—i.e.,
LOCKSET returns ZERO until that processor sets LOCK
to prevent other processors from accessing the memo-
ry area. The processor carries out its program, then
unlocks the memory area (LOCK=0). The first ex-
ecutable line of the program segment (DO WHILE...)

references the variable LOCK and assigns the value 1
to that location.

If the value returned is 0, LOCK had not already been
set and the current processor has now set it. But if
the value returned is 1, the LOCK had already been
set and the processor must wait until the busy
processor releases the memory lock. Since the locking
mechanism uses a simple BYTE variable, there is no
practical limit to the number of locks available.

A language isn't enough

PL/M-86 is implemented as a compiler, not as an
interpreter, because in the normal uC design process
a debugged program is loaded into PROMs for the
prototype system. A compiler produces object modules
in a form that can be directly executed by the CPU.

The PL/M-86 compiler boasts many compile-time
options to help with coding and debugging. Most
important is conditional compilation, which permits
the compiler to skip over selected portions of the
source code if certain conditions are met. This feature
enables the designer to produce different object mod-
ules for different applications of the program. An
INCLUDE command, on the other hand, allows the user

8080/8085 8086
ASSEMBLY ASSEMBLY sen
LANGUAGE LANGUAGE A suses,
SOURCE CODE SOURCE CODE
SDK-86
SYSTEM
DESIGN KIT
]
T
1
8086
ASSEMBLY RELOCATABLE
LANGUAGE OBJECT MODULE iSBC 86/12
SOURCE CODE SINGLE-BOARD
COMPUTER
8086 UPP/UPM
PL/M AT L univERSAL PROM
SOURCE CODE PROGRAMMER
ICE-86
U in.Circuir
EMULATOR
LIBRARY

5. The PL/M-86 package (screen) contains, in addition
to the compiler, an 8086 assembler and many important

1-129

utilities. The final machine code can be loaded into a
number of optional hardware items.

451145-6

intel

AR-136

to include routines from a different source file as well.

Another compiler option, CODE/NOCODE, provides
listings of the generated object code in assembly-
language format, interleaved with the PL/M
statements for easier debugging. The PL/M-86 com-
piler -also provides a flexible cross-reference of pro-
gram symbols between PL/M-86 modules.

The PL/M-86 compiler also includes sophisticated
code-optimization techniques to produce efficient ob-
ject modules. A compile-time OPTIMIZE control pro-
vides three levels of optimization: Level 0 skips op-
timization for a quick compilation. Level-1 optimiza-
tion is the PL/M-86 default and provides constant-
folding, strength reduction and elimination of com-
mon expressions. Level 2 adds jump optimization,
branch chaining, cross-jumping and deletion of un-
reachable code (see “An Optimizer Saves Memory").

An example incorporating several optimization
techniques is shown in Fig. 4. The program determines
whether the byte variable TEST is true (i.e., the least
significant bit is 1). If it is, the hex value OFFFF will
be output to port O0F6H and the value of the BYTE
variable B will be assigned to the WORD variable A.
If the variable TEST is not true, variable A will be
assigned the value C. :

The assembly code produced by the short PL/M-86
module contains 57 bytes (Fig. 4a). Cross-jumping

inserts a JUMP (line 8, Fig. 4b) to combine the identical
code at the end of two converging paths (lines 8 and
9 and 12 and 13 in Fig. 4a) and diverts the program
flow to the second occurrence of the two lines. The
first occurrence is now unreachable and can be deleted
(Fig. 4c). Another line of code is saved by reversing
a branch condition, which produces line 3 of Fig. 4d.

The PL/M-86 compiler, which runs on Intel’s In-
tellec uC-development system, is not a “stand-alone”
design tool but part of an integrated set of design-
aid tools for the 8086 or 8088. These tools include an
assembler for ASM86, a high-level assembly language
that produces object modules compatible with those
from PL/M-86 (both can be combined using the
8086/8088 relocation and linkage tools).

ASMS86 complements PL/M-86 since it lets the
programmer choose the language most appropriate for
a task and then combine the modules. Commonly used
PL/M-86 and ASM86 object modules can be stored and
managed using LIB86, the 8086 object-module librar-
ian, PL/M-86 or ASM86 object modules may be loaded
by the ICE-86 in-circuit emulator, and the software
may then be debugged and integrated with the hard-
ware. After hex conversion, Intellec’s PROM program-
mer allows the debugged. object modules to be stored
in EPROMs (Fig. 5).am

451145-7

1-130

intel

SYSTEM DESIBN, SUFTAGE

AR-200

COMPILER OPTIMIZATION

TECHNIQUES

Techniques used within the PL/M-86 compiler make the
programmer’s job easier while supplying highly efficient code

by Armond Inselberg and
Stan Mazor

combined with continuing shortages of programming

personnel to create a crisis situation. Shortages of
skilled programmers can be partially relieved by careful
choice among available programming languages- and
their compilers. High level languages can make pro-
gramming easier. Compilers can reduce time spent
coding and make up for a shortage of experience by pro-
viding the techniques needed to optimize both size and
execution speed of machine level code.

lncreasing demands for software development have

What is a compiler?

Software implementation environments can be divided
into two levels, as shown in Fig 1: the program machine
level and the hardware machine level. Although actual
code execution takes place at the hardware machine
level, a software engineer cannot efficiently com-
municate directly with this level. Instead, a program-
ming language, such as PL/M-86, is used as the com-
munication link with the programming machine. The
compiler is responsible for translating language input to
the programming machine into the language of the
hardware machine. In this regard, the maturity of the
PL/M-86 compiler as a powerful tool for 8086 software
development is revealed.

The compilation process
During the compilation process, the compiler closely
binds the input program, determines its syntactic

Stanley Mazor is with Intel Corp, 1350 Bordeaux Dr,
Sunnyvale, CA 94086, where he has participated in
the designs of the MCS-, MCS-8, 8080, and several other
microcomputers. Prior to joining Intel in 1969, he was
assistant manager of the computer center at San
Francisco State College and a principal designer of the
Symbol computer at Fairchild. Mr Mazor has
published over 30 articles and papers on
microcomputers and shares patents on the 8080 and
McCS+4. He is a senior member of the IEEE.

‘T INTEL CORPORATION, 1982.

Reprinted with permission from Computer Design, November 1981 issue.
Copyright 1981 by Computer Design Publishing Company.

correctness, and- gen-
erates efficient hardware
machine code. Closely
binding a program
means to fix the types of
variables, the forms of
the expressions, and the
program’s structure. To
generate efficient hard-
ware machine code, EaalSEE
various optimization techniques are used.

The two major steps of the compilation process are
the parsing of the input source program and the genera-
tion of the output object code. (See Fig 2.) Parsing is
achieved by a lexical and syntactic analysis. Lexical
analysis separates individual components or tokens
making up the program’s symbols. These symbols in-
clude variable names, key words, and operators. Syn-
tactic analysis checks the program for any syntax errors
by determining the structure of the source program in
terms of its blocks, statements, and expressions. Results
of the parsing are an intermediate text string and a dic-
tionary of variables used in the program.

Generation of the dictionary, or symbol table, is cen-
tral to the compilation process as it provides a reference
for the variable names and their properties. Built during
examination of the data declarations, the symbol table
is continually referenced during the remainder of the
compilation.
" The second step of the compilation first performs
optimization over the intermediate text, independent of
the target hardware. Final object code is then generated,
with consideration for hardware machine dependent op-
timization.

Armond Inselberg is a senior consuitant at the
Institute for Software Engineering, Suite 200, 535
Middlefield Rd, Menlo Park, CA 94025. He is
involved in data processing capacity management for
workload analysis and forecasting. Previously, he
worked at Intel, Stanford University, and IBM. He has
a PhD in computer science from Washington
University and an MBA from the University of Santa
Clara.

MARCH 1982
ORDER NUMBER: 210397-001

210397-1

1-131

ntel

AR-200

PROGRAM
MACHINE
LEVEL

COMPILER

{omm
co&

HARDWARE
MACHINE
LEVEL

Optimintioﬁ philosophy

Efficiency of the gen-
erated object code is a
primary objective of
the compiler. Providing
correct code is, of
course, the primary ob-
jective, but it is never
stated explicitly. As with
most compilers, the
PL/M-86 compiler is
geared toward optimiz-
ing programs written us-
ing good programming
practices.

There is a tradeoff

ﬂ between the speed of

compilation and the op-

Fig 1 Software

implementation environment.

Programmer communicates
with program machine level,
while actual code execution
occurs at hardware machine
level. Compiler serves as
Interface between two levels

timization of the re-
sulting object code.
Although optimized
code is most desirable
for finalized production
software, the preference
during development is

for fast compilation.
Since a conflict exlsts between the speed of compilation
and code op_tlmlzauon, a compromise must be made.
With PL/M-86, the user can select the level of op-
timization. Level 0 is the most basic, and level 3, the
most advanced. Each successive level provides all op-
timization techniques of the lower levels, while addmg
further techniques. If an optimization level is not
specified at compile time, the system defaults to level 1.
Specific techniques used within the PL/M-86 compiler
serve to optimize the amount of code generated, the exe-
cution time of the code, or both the amount of code and

SOURCE
PROGRAM

LEXICAL
ANALYSIS

PARSER —*

SYMBOL
TABLE |-

SYNTACTIC
ANALYSIS

(INTERMEDIATE
BT
MACHINE
INDEPENDENT
OPTIMIZER
GENERATOR
1 cooe oBJECT
GENERATOR CODE

Fig 2 Compilation process. Parsing of source program
produces symbol table and intermediate text string. Text
string is then optimized, resulting in genention of object
code '

the execution time. Hardware machine independent and
machine dependent optimization techniques make up a
secondary classification of the techniques. Machine
independent techniques optimize object code, indepen-
dent of the target processor. Machine dependent op-
timization takes advantage of the architecture of the
target processor. A third classification is based on
whether the techniques optimize over a single program
statement or over a range of statements. Table 1 sum-
marizes PL/M-86 optimization techniques for these three
classifications. -

Amount of code generated
When only a limited amount of memory is available to
hold the program, optimizing the amount of code is par-
ticularly relevant. Three techniques within the compiler
work to reduce the amount of generated code.
Branching to duplicate code—Removing code which
occurs more than once, this technique can be used when
the paths through duplicate copies of code have the

PATHS PATHS

COMPILES 10

IDENTICAL |
CODE

® ')

Fig 3 Branching to duplicate code optimization. Both
copies of code have same termination point (a); during
compilation, second copy of code is replaced by jump to
first copy (b)

same termination point in the program. In this case, as
shown in Fig 3, the second copy of code is replaced with
a jump to the original copy. ‘

An example of two program paths that have portions
of identical code and terminate at the same pomt canbe
found in an IF-THEN-ELSE statement.

IF X>Y MOV AL.Y
THEN D03 . CMP . XaAL
X=Y3 compiles to JBE ' @)
X=X+13 i MOV XaAL
ENDs alL:

INC X

ELSE X=X+15 -

In the example, the common program statement
X =X + 11 is compiled to INC X and is used by both paths
through the compiled IF statement. If X is less than or
equal to ¥, the JBE (jump below or equal) instruction is
executed, causing a jump to the INC instruction. If X is
greater than Y. INCis reached even though the JBE is
not executed.

Removal of unreachable code—Thls technique causes
the compiler to skip those parts of the program that will
never be executed. For example, unlabeled program
statements that follow a GOTO statement cannot be
reached, and therefore will never be executed. Thus,

GOTO LABELZS ‘ '
not IF X>VY
compiled THEN X=X+13%

LABELZ: Y=Y+13

compilesto ymp LABELZ -

LABELZ: INCY

210397-2

1-132

ntel' AR-200
TABLE 1
PL/M-86 Optimization Techniques
Both Amount of Code
Amount of Code Execution Speed and Execution Speed
Hardware Hardware Hardware Hardware Hardware Hardware
Independent Dependent Independent Dependent Independent Dependent
Single Instruction Strength Folding of -
statement size reduction constants
Expression
arrangement
Short circuit
of Boolean
expressions
Function
evaluation
Range of Branching Address Elimination Peephole
is to dupli pointer of common
code comparison subexpressions
Removal of Elimination of Indeterminant
unreachable superfluous storage
code branches operations

‘ Although this optimization technique reduces the
amount of code generated, it is needed only when the
‘programmer is careless. :

Instruction size—The compiler in this case selects the
~ shortest encoding of the instruction. Instructions in-
volving a hardware register can be shortened by one
byte if the register is the accumulator. In addition,
jumps to locations within 127 bytes require shorter in-
structions because the increment rather than the target
address is specified. For example, if a JA conditional
jump instruction jumps to a label @2 that is 14 bytes
away, the distance of 14 bytes is stored in the instruc-
tion. Thus, the instruction uses one byte to specify an
offset rather than four bytes to indicate the target ad-
dress of @2.

JA @2 encoded as 2724,
opcode offset
GA:LIE
ADDRESS
. PA(
POINTER

VARIABLE .

f—2 BYTES o

s[z
ot BTEs ———=f W T

POINTER
VARIABLE

IM-BYTE

ADDRESS
SPACE
l

Fig 4 Instruction size optimization. If address space is
restricted to 64k (top), compiler allocates 2 bytes for type
pointer variable; otherwise, variables require 4 bytes
(bottom)

Another aspect of this optimization technique is that
the compiler will allocate two bytes to variables declared
to be of type pointer, if the address spaces for code and
data are restricted to 64k bytes each. Otherwise, as
shown in Fig 4, variables of type pointer require four
bytes. The programmer indicates the size of the address
space to the compiler through a compiler control switch.

Execution speed

Optimizing the execution speed can be critical for time-
dependent processing. Two optimization techniques
available for improving execution speed are strength
reduction and address pointer comparison.

Strength reduction—Execution is optimized by
replacing certain operations with faster executing opera-
tions. For example, the compiler replaces ‘‘multiply a
variable Y by two’’ with a shift left operation. The result
is the same, but a shift left executes faster than a mul-

tiply.

X = Yx2% compiles to MOV AL.Y
SHL ALs)
MOV X.AL

Address pointer comparison—This optimization
technique generates code to compare two 32-bit pointer
variables. Physical addresses are actually 20 bits, but are
stored as a 16-bit base and a 16-bit offset field. When
the base is shifted left by 4 bits and added to the offset,
it yields a 20-bit address (Fig 5). Execution speed is im-
proved because, instead of calculating the 20-bit address
to compare pointers, code is generated to first compare
the base parts. Only if the base parts are equal is it
necessary to compare the offset parts.

210397-3

1-133

AR-200

SEGMENT
BAS!

LOGICAL
ADDRESS

OFFSET

T0 MEMORY

Fig § Address pointer comparison. 32-bit pointer variables
are stored as 16-bit base and 16-bit offset. Shifting base left
4 bits and adding it to offset results in 20-bit address

For example, two variables, PTRL and PTR2, are
declared to be of type pointer. If PTRY is greater than
PTR2, then X is set equal to 0.

DECLARE (PTR1.PTR2) POINTERS
IF PTR1 > PTRe2

THEN X=03 compiles to LES AX.PTR}
. PUSH ES
LES DX.PTRZ
MoV DI.ES
POP SI
CMP SI.DI
JNE #+U4H
CMP. AXaDX
JBE a3l
Xa0H

) mov
a: :
In this example, the LES instruction loads the AX
register with the offset of PTR1. The base is loaded into
the ES register, then moved to the SI register by means
of the stack. The offset of PTR2 is loaded into the DX
register and the base is moved to the DI register. The
two base values in the SI and DI registers are compared
by the CMP instruction. If the results are not equal, the
JNE instruction (jump not equal) is executed, skipping
the code used to compare the offsets, and jumping to
the instruction that sets X to 0.

When only a limited amount of
memory is available to hold the
program, optimizing the amount of
code is particularly relevant.

Optimizing both amount of code

and execution speed

Most optimization techniques reduce the amount of

generatéd code and improve execution speed. Eight

techniques accomplish this within the PL/M-86 compiler.
Folding of constants—This technique causes the com-

piler to perform arithmetic operations at compile time

rather than at execution time. For example, a statement

with the expression b + 3 + W would be coded as 9 + u.

Thus, '

V = b+3+U3 compiles to MOV AL.U
ADD AL.9H
MOV V.AL

Expression arrangement—Code for expression
evaluation is generated such that the operations are per-
formed in that order which produces the most efficient
code. If expressions I times J and K times L are to be
calculated, and their results subtracted, then

Z = (IxJ) - (KxL)3 “compilesto MOV AL
‘ : MUL I
PUSH AX
MOV AL.L
ML K
POP (X
SUB CX.AX
mov zZ.CL

In this example, the result of I x J is pushed onto the
stack, freeing the accumulator for a second multiply.
After K x L is evaluated, the result of I * J is popped
into the CX register. The registers are then subtracted.
This process is much more efficient than having the
compiler first save the two multiplication results in tem-
porary variables, then move these results to registers,
and finally subtract the registers.

Short circuit of Boolean expressions—Generated
code terminates the evaluation of a Boolean expression
as soon as its outcome is established. For example, con-
sider the expression (V>X AND I>J). If V is not greater
than X, the expression will be false, regardless of the
results of the rest of the expression; therefore, the re-
mainder of the expression need not be evaluated. Thus,

IF (V > X AND I > J) compilesto MOV AL.V
THEN B=13% CMP ALWX
JBE 31
MOV ~ AL~I
CMP ALWJ
JBE 81
MOV B.lH
?l:

In this example, the generated code tests V for greater
than X. If this comparison is false, the JBE (jump on
below or equal) to label 31 is executed. This-label is
generated by the compiler to go around the IF state-
ment without executing the remaining code of the
Boolean expression. This technique not only saves exe-
cution time but reduces the number of generated in-
structions required to evaluate the expression.
Function evaluation—The compiler evaluates several
specific functions as they are encountered in the source
program at compile time. For example, for a 10-element
array named U, the LAST function obtains the value 9,
the last subscript of the array. Arrays are indexed
starting with O.
DECLARE W(20) BYTES
I=LAST ()35 MoV I.GH

By evaluating such functions, the compiler saves execu-
tion time and storage space, and makes the program-
mer’s job easier by permitting the functions to be
referenced.

compiles to

210397-4

1-134

intel

AR-200

Elimination of common subexpressions—The com-
piler recognizes multiple occurrences of an expression
and saves the value of the expression in a register or
stack so that it need not be recalculated. For example,
the expression J + I or I +J may occur several times but
will be evaluated only once.

X = dJ + I compiles to MOV ALY
Y =TI+ Js ADD AL-I
MOV XaAL
MOV Y.AL

By saving the result of J + I in the AL register, rather
than recalculating each time it is encountered, generated
object code and execution time are greatly reduced.

Optimizing the execution speed can be
critical for time-dependent processing.

Elimination of superfluous branches—Optimization
using this technique reduces the number of jumps that
must be executed. In the first example, jumping to a
LABELX that contains a jump to LABELZ transforms the
first jump into a branch directly to LABELZ.

IF X > Y compilesto MOV ALaX
THEN GOTO LABELXS CHP AL.Y
JA LABELZ
LABELX: GOTO LABELZS LABELX: JMP LABELZ
LABELZ: LABELZ:

Another example is the selection of a single condi-
tional jump instruction based on the result of a com-
parison. This optimization can occur frequently,
eliminating an unconditional JMP instruction each time
through the selection of the appropriate conditional
jump. Consider the IF statement that executes some
code only if X > Y.

IF X > Y
THEN DOS
Z=R3
R=R+1%
ENDS

nov
(d,]4
JBE

AL+X

ALY

31]
MOV AL.R
MOV Z.AL
INC R

al

compiles to

MOV AL.X
CMP ALY
comopiles to JA t+5H]
without use of JMP 31
optimization MOV AL.R
technique MOV Z.AL
INC R
al:

In this example, the JA (jump above) and JMP (uncondi-

tional jump) instructions are replaced by a single JBE
(jump below or equal) instruction.

Peephole—This optimization attempts to discard
redundant instructions. One such action might be
loading a register with a value that it contains already.
For example, if Y is set equal to X + 1, the value of Y is
currently in the accumulators since it was last used to
calculate X + 1. If Y is again used in the next statement,
there is no need to fetch the value of Y. Thus,

Y=X+13 compiles to MOV AL.X

2=UW+Yy INC AL
MOV YaAL
ADD AL.W
MOV Z.AL

Since the value of Y is currently in the accumulator as a
result of the calculation of X + 1, it need not be reloaded
into the accumulator for the calculation of W + Y.

Indeterminant storage operation—The compiler does
not reload the starting point of a based data structure
each time: that it is referenced. For example, consider
PART to be an array of structure elements based by the
pointer variable PARTPTR.

DECLARE PART BASED PARTPTR (10)
STRUCTURE (PARTNO WORD.
ANT BYTE.
COST WORD)3

PART(2) .PARTNO=hLCUHS
PART(b) - AMT=79H3

MOV BX.PARTPTR
MOV PARTEBX+0AHIAGCUH
MOV EBX+20HI,79H

compiles to

The first reference to the array structure places the base
of the array, contained in PARTPTR, in the BX register.
Further references to the array structure do not require
that the BX register be reloaded.

Evaluation examples

PL/M-86 offers four levels of optimization. Optimization
techniques provided at each of these levels are classified
in Table 2. To indicate how much storage is actually

TABLE 2

Optlmlutioﬁ Techniques Provided
in Each Compiler Level

Optimization Technig Optimization Level

01

Folding of constants X | X

Expression arrangement XX

['Short circuit of Boolean expression X1 X

Function X | X

Strength reduction X

Elimination of b ions X

Elimination of superfluous branches

Removal of unreachable code

Branching to dupli code

Instruction size

Peephole

Indeterminant storage operations

X[x| b X)X X | X[X] X| X| XN
X x| X< ¢} X<t x| X< > Xx<| X| X} x| X} w

Address pointer comparisons

210397-5

1-135

ntel

AR-200

TABLE 3

Object Code (bytes) Generated
For Each Optimization Level

Level O Level 1 Level 2 Level 3

Program A: Mastermind 1666 “1659 1450 1450
Program B: General sort 1963 1789 1503 - 1503
Program C: Frequency count 849 765 694 694
Program D: Process simulation 7955 7951 7083 7083
Program E: Service queue ‘289 250 212 185
Average % size reduction :

7.9% 12.28% 2.55%

from previous level

saved by these techniques, five sample- programs were

compiled at each level using version 2.1 of the compiler; -

Table 3 provides the size in bytes of resulting compila-
tions. The reduction in size obtained in going from one
level to the next higher level is due to the additional
optimization techniques used at the higher level.)
Programs used in this study demonstrate the com-
piler’s ability to optimize various types of instructions.
Program A plays the game of mastermind with the
operator performing a large amount of input/output
with the cathode ray tube. Program B performs a sort
on an array of 1000 records, making extensive use of
structures and pointers. Performing a frequency word
count on an arbitrary text file, Program C uses string

move instructions and pointers, Program D uses simple
coding with no structures or pointer addressing to per-
form a process simulation. Service queue simulation us-
ing linked data structures is done in Program E.

For each successive level.of. optimization, the in-
dividual percentages in size reduction of the programs
were averaged. From Table 3, it becomes apparent that
Level 3 optimization provides nearly a 25% reduction in
storage requirements.

Conclusion

As the demand for microprocessor software increases,.
the selection of the implementation language will receive
more attention. In choosing a language, users must con-
sider not only high level constructs of the language
itself, but also the capabilities of available compnlers to
translate the resulung programs.

210397-6

1-136

ntel RTICLE R-
l QEPRINT AR-2%9
\
K\
| '\,0 .\\A
NN
SO
o D8
R
NI
LAV
é\ oy
\ .é\bz:o‘sb
& «

Originally prep forand p
©INTEL CORPORATION, 1983,

d at Wescon/82

1-137

ORDER NUMBER:210808-001

210836-1

iﬂte[AR-239

PL/M-51: A HIGH-LEVEL LANGUAGE FOR THE 8051 MICROCONTROLLER FAMILY

High-level language advantages are fairly well recognized now. Developing software for embedded microcontrollers
using assembly language is labor intensive and therefore an expensive task. It is not easy to come up with a sequence of
well-defined stages to go from the system design stage to the system implementation software. The transformation of an
algorithm flowchart to the actual assembly-language code requires considerable intuitive guesses and inventiveness on the
part of the programmer. Also, assembly language is difficult to read and inspect. Because assembly language projects are
difficuit to manage, there has been a widespread movement towards using high-level languages. High-level languages
provide, in general, improved programmer productivity, and reliable, maintainable, portable software.

In the microcontroller environment, the major considerations for a high-level language are efficient code, close control
over hardware resources and optimum use of scarce on-chip data memory (RAM is very expensive in terms of silicon real
estate). Intel developed PL/M-51 for the 8051 single-chip microcontrollers with the specific goal of trying to meet these
criteria with minimal impact on the traditional high-level language benefits of reliability and maintainability.

OVERVIEW OF THE 8051 ARCHITECTURE

The 8051 is a stand-alone high-performance single-chip computer intended for use in sophisticated real-time applications
such as instrumentation, industrial control and intelligent computer peripherals. It provides the hardware features,
architectural enhancements and new instructions that make it a powerful and cost effective controller for applications
requiring up to 64K-bytes of program memory and/or up-to 64K-bytes of data storage. Figure 1 shows the 8051 Functional
Block Diagram.

The 805! microcomputer integrates on a single chip the CPU, 4K x 8 read-only program memory, 128 x 8 read/write data
memory, 32 I/O lines, two 16-bit timer/event counters, a five-source, two-priority level, nested interrupt structure, serial
1/0 port for either multi-processor communications, 1/0 expansion, or full duplex UART, and on-chip oscillator and clock
circuits.

The 8051 has four address spaces tailored to support a wide range of control applications efficiently—program memory,
on-chip and external data memory, and the bit memory space. This complex (but sophisticated) memory architecture is
supported by a rich (but unorthogonal) set of addressing modes for efficient memory access—register addressing, direct,
indirect, immediate and base-register plus index-register indirect addressing. To support this complex memory architec-
ture, a high-level language’s syntax must mirror the underlying microcontroller architecture. The challenge is to imple-
ment this without compromising the language’s readability and maintainability.

The popular 8051 architecture forms the core of the MCS-51™ microcontroller family. The need to base processors on a
popular, industry-standard architecture is dictated by the cost of developing processor support hardware and software
tools, as well as a desire to maintain the customer’s investment in engineering resources and capital equipment. The
upgradeability requirement has to be traded off against providing optimum functionality in the processor for the target
market segment. Consequently, the 8051 family consists of straight-line enhancements—RAM, ROM memories and
clock rates—as well as microcontrollers like the 8044 remote universal peripheral interface processor (RUPI), which has
the 8051 core architecture but supports an interrupt structure and I/O functions tailored to the distributed processing
environment. The cost of developing a new support environment for processors targeted to specific (and small) market
niches would make the processor an unviable product. Consequently, software tools for proliferation processors should be
configurable from the core processor support products.

210836-2

1-138

ntel

AR-239

I

L
PARITY
g cv lAc Ln l“:k'"l ov J °
§ acc
o [ROTATE coN'nﬂ‘—J
g a
£
i had INTERAUP! g
s 1€C CONTROL 3
o
£ suF @
13 SERIAL @
o PORT x
8 scon 8 i
H THY < NONE (8031)
H z ROM (80511
8 S| eprOM (8731
§ L(8] 5
2 3
. ™o TIMER g 3
g o CONTROL §
c
|3 T™OD g
TCON
oPH
orL
- {} N7
« PROGRAM CONTROL >
H
o 1268
o PCH
b RAM
-3 S pCL
H REGISTER BANK 3
o o - .
é REGISTER BANK 2 .
: REGISTER BANK 1 conTROL
- S PLA
& . REGISTER BANK 0 3
z CONTROL DRIVERS
DRIVERS g ENGINE]
o INSTRUCTION
DECODER
:]
osc
& A
TIMING
CIRCUITRY l P] l o —I l IS o]
x x € A P R v Vv
T T A L s s ¢ s
A A ! E € PORT 1 PORT 3 PORT 2 PORT 0 T C s
Iy Iy Vo N
1 2 o ¢ v
° 3 o
G

Figure 1. 8051 Functional Block Diagram

Copyright INTEL CORPORATION, 1981

1-139

210836-3

nter AR-239

PL/M-51

PL/M-51 was developed to facilitate the design of reliable, maintainable microcontroller systems. This goal translates into
a programming language which encourages and enforces good software engineering practices such as structured program-
ming, top-down design and implementation, step-wise refinement and software walk-throughs. However, this goal has to
be traded off against the exigencies of the microcontroller environment—high performance requirements, scarce memory
resources and control over the hardware facilities. PL/M-51 tries to satisfy these conflicting requirements by enforcing
block structured software design, providing control-flow statements for structures programming (if-then-else, do case, do

“while, . . .) as well as by supporting 8051 architecture specific attributes at the language level, for example—the
REGISTER and AUXILIARY variable attributes, and the specifics of interrupt handling.

SOFTWARE ORGANIZATION WITH PL/M-51

Most applications are decomposed into logically related functions which can be programmed more or less independently
of other functions. Interactions between functions are via a few well-defined data parameters and system level status
_blocks which are globally accessible to all functions at all times. PL/M-51 program structure maps very well into this
structured software organization. PL/M-51 programs consist of one “‘main’’ module and several functional modules which
are independently compilable units and consequently can be independently developed and debugged. Each module
consists of one or more procedures. A procedure contains variable declarations and a sequence of executable statements.
Variables have restricted scope to the block they are defined in, unless the scope has been extended by the
PUBLIC/EXTERNAL attribute. The advantage of block scoping of variables is that programming errors of duplicate
variable use are quickly identified. Figures 2 and 3 show the organization of PL/M-51 programs for heirarchical tree-
structured real-time software systems. PL/M-51 does not enforce a tree-structured organization, but it provides a modular
- organization facility for implementing it.

SYSTEM INTERRUPT 4
EXECUTIVE 'Z |

INTERRRUPT
0

-

Level 1 MODULE 3| « ¢ MODULE N

L

Leve1 2 [wobuLE A]...LMODULE.—F] - '

Figure 2. Hierarchical Real-time Software Systems
. 210836-4

1-140°

ntel

AR-239

MAIN$MODULE : NO;
(A system reset starts
software execution at

END MAINSMODULE

the first executahle statement of this module)

=

INTERRUPTSMODULE $4

[

+

MODULES1 : DO;

MODULESN |

| INTERRUPTSMODULE SO

e

PROCSA : PROCEDURE EXTERNAL;.veoloseess]sceeesaseeeasExternal procedures to

END PROCSA;

DECLARE VARSA BYTE EXTERNAL;....f.....

DECLARE VARSB BYTE ;. .uveerernnadiccnandanecanannens
PROC$1 : PROCEDURE;.......... B

DECLARE VARSC BYTE;.........

VARSC = VARSB;
END PROCS1;

EEEEEE O

MONULES?

vevesass o VARSA is a public symbol
...VARSB is known to all
procedures in MODULES$I

vvee....PROCST is procedure at
module level and can be
accessed from other
modules

ve....VARSC is private to
procedure PROCS?

B DY

IEERERRR

PROC$2 : PROCEDURE;.euveeunesn i R B R PROC$2 can he accessed
. by other modules
PROC2A: PROCENDURE;v.eveeeneeadecaeeedevueenneness . .PROCS2SA can only be

END PROCS2$N;
VARSB = 1;
CALL PROCS1;

END PROCS?2;

END MODULEST;

accessed within PROC$S2

MODULESP

[MODULES A

o]

Figure 3. Organization of PL/M-51 Programs

1-141

210836-5

Il'lter AR-239

DATA TYPES

8051 microcontroller software requires intimate knowledge of the machine representation of data variables because a
significant amount of processing is done at the bit level. Consequently, the basic types of data in PL/M-51 are BIT, BYTE
and WORD—as opposed to INTEGER, REAL . . . COMPLEX machine-independent data types in other high-level
languages. With the three basic data types of PL/M-51, the state of each variable is known to the programmer—at the bit
level. This is important, if PL/M-51. programs are to take advantage of the. powerful boolean instructions on the 8051.

BUILT-IN FUNCTIONS

The PL/M-51 language has been enhanced with a number of useful standard functions which provide information about
data representation at run-time to programs, do type conversions and provide machine level functions at a high-level
language.

The LENGTH and index of the LAST element in an array and the SIZE of a variable in bytes can be obtained by a
program at run-time. This facility permits the development of program libraries which can be reused on other projects.

System programs require the ability to manipulate data at the machine representation level as well as at the logical level.
Consequently, PL/M-51 provides type conversions BIT to BYTE to WORD as well as machine level instructions like
rotate and shift for variable manipulation.

The 8051 architecture has a powerful instruction repertoire for conditional execution on bit states. PL/M-51. provides a
TESTCLEAR function to support process synchronization primitives—for example, semaphores require uninterruptible
test-set atomic operations.

8051 ARCHITECTURE SPECIFIC ATTRIBUTES

‘The 8051 architecture is designed to provide optimum performance over a wide range of control applications. Conse-
quently, it has a sophisticated (and complex) memory organization, and four register banks in the central processing unit
(CPU) for rapid task switching during interrupts. PL/M-51 supports programming for this environment by embracing
architecture specific attributes within the language syntax.

Memory mapping of variables is done by specifying a suffix attribute during data declaration. The possible attributes are
CONSTANT, AUXILIARY, REGISTER AT (128-255), MAIN and IDATA. CONSTANT variables reside within the
code memory, while AUXILIARY variables are assigned to off-chip data memory. The default memory assignment or
MAIN variables reside within the directly-addressable on-chip data memory. IDATA variables are indirectly-addressable
over the entire on-chip data memory (0-255). The REGISTER attribute maps the variable to the pre-defined mapped
registers, I/O ports and functions on-chip. The compiler generates the appropriate addressing instructions to access these
variables. The key benefit of letting the compiler generate addresses (mechanically) is that when decisions to move
variables from one memory space to another are made, only the declaration attribute has to be modified, and the module
recompiled. The impact of such an action is an assembly language program.would require identifying all references to the
affected variable and changes in its code an error-prone and laborious job.

Rapid response to events are key to high performance in control applications. The 8051 architecture provides four register
banks and task-switching requires only the program counter, program status word, A, B and DPTR registers to be saved. °
PL/M-51 allows procedures to be associated with a particular register bank. Only the program counter, not the RO-R7
register bank, needs to be saved on the stack during a subroutine call, since they use the same register bank. Task
switching and the associated register bank switching is supported by the interrupt mechanism for external and internal
events.

Interrupt service routines are identified by associating the hardware INTERRUPT number attribute to a procedure. The
register bank too should be identified for the interrupt service routine. To prevent data corruption, interrupt service
routines should use different register banks than non-interrupt code. Also, low and high priority interrupts should not use
the same register bank. Since it is illegal to call procedures using different register banks, communication of information
from interrupt events have to be handled via shared global data areas.

210836-6

1-142.

"te[AR-239

A GENERIC COMPILER

The rapid development of silicon technology allows semiconductor houses to optimize processors to specific market
segments. For example, the 8044 slave processors provide intelligent peripheral control and are based on the 8051 CPU
architecture. PL/M-51 can be configured to support the 8044 by inputting to the compiler a processor definition file which
has information about register names and memory mapping of /O functions and bits. Configurable compilers provide an
optimum approach to managing the costs of maintaining system software, as well as supporting proliferation processors
based on successful CPU architectures.)

CONCLUSIONS

Software development for microcontroller applications can be executed in a planned methodical manner. PL/M-51
provides software engineers with a tool for promoting structured software design for the 8051 microcontroller family.
PL/M-51 provides an environment for controlled system development.

210836-7

1-143

SYSTEM DESIGN/

~AR-377

INTEGRATED TOOLS
ACCELERATE CODE
DEVELOPMENT

Integrated source and version control, electronic mail, and
standard interfaces for programming languages and operating
systems can move the software task faster than using

additional programmers.

by Dennis Carter

" If a project is running behind schedule, adding staff
members is not always the best tactic for getting it
back on schedule. As the saying goes, adding man-
power to a late software project makes it later. Often
the best solution is to coordinate programming
efforts and project management through an inte-
grated development environment. This type of sys-
tem stimulates greater efficiency by combining
management, programming, and debugging tools in
one environment. Productivity increases especially
for microprocessor systems with separate target and
host development systems. As a result, industries can

meet critical delivery schedules without needing

additional programmers.

System development is a complex process involv-
ing several different stages that continually pass
information between each other. The development
environment should be more than a collection of
assorted tools that are poorly linked. It must effi-

Dennis Carter is software product marketing manager
Sor Intel (Santa Clara, Calif). He holds an MBA
JSfrom Harvard University and an MS in electrical
engineering from Purdue University.

Reprinted with permission from Computer Design. January 1985 issue.

ciently coordinate the diverse stages of development
in a single environment, allowing information to
flow easily between different tiers of the project.

An efficient development cycle has two parts.
Managers must have a clear view of the project from
inception through test and implementation. Thus,
planning work schedules and anticipating design
bottlenecks are easier. Software engineers must share
their ideas, designs, and programs—passing infor-
mation throughout the different development stages.

Yet, in developing products for other target
machines, an integrated environment for the host
development system alone is not enough. Unless a
smooth transition to the final target environment

Order Number 231433001
231433-1

1-144

ntel

AR-377

DEVELOPMENT
T
oois DESIGN

MANAGEMENT
AND CONTROL

o5

CODING LOGICAL*
SOFTWARE 1=
DEBUG

LOGICAL
DESIGN IN-TARGET
DEBUG

AND
DOCUMENTATION TRANSLATION

HOST
ENVIRONMENT

An integrated development environment must do
more than act as a library for development tools.
It must ensure that information flows smoothly
between components. As organizations shift to new
development policies and expand development
hardware, the system must be able to migrate
smoothly to the new host environment.

is provided, the project will bog down during the
critical target system integration and test. The transi-
tion from host to target development environments
is one of the two major factors affecting the project
cost. According-to Randall W. Jensen, chief scien-
tist at Hughes Aircraft Co, changing environments
can increase costs as much as 122 percent.

Host hardware environments also change as the
company expands its development resources. Rather
than losing previous investments in tools or training,
the company must be able to shift the entire environ-
ment smoothly. Some workstations are built to make
this transition easy. For example, engineers using
Intel’s Intellec® Series IV workstation maintain the
same fundamental development environment when
they move to the NDS-II distributed development
environment.

With its multiple stages, system development can
turn into a-logistical headache for managers and
engineers alike. Managers supervising several pro-
gramming teams, each developing different versions
of programs, can easily lose the thread of revisions
to the source code. Similarly, programmers can find
themselves working at cross-purposes in their at-
tempts to generate and test the most recent versions
of code, rather than a hybrid of current and obso-
lete code versions.

An integrated system can help prevent these prob-
lems by combining different tools and making them
work well together. For example, Intel’s configura-
tion management tools, Source Version Control Sys-
tem (SVCS) and MAKE, manage multiple versions

of a program. The tools can automatically combine
the most current versions of several modules in larger
programs. Similarly, Intel’s debugging aids,
PSCOPE and Integrated Instrumentation and In-
Circuit Emulation (I2ICETM) package, use informa-
tion implanted by compilers to permit programmers
to debug during the integration process at the source
level. Such an integrated environment increases effi-
ciency through good allocation of available resources.

Management and control

Modular design helps software engineers break a
large complex problem into a set of small simple pro-
grams. Unfortunately, a modular design system re-
quires more overhead for managing a large number
of modules and different versions of the same
module. If the logistics become too troublesome,
programmers might even collapse several modules
into a single file to save themselves the trouble of
manipulating the separate modules. Project manage-
ment tools can free engineers from the housekeeping
chores associated with program development.

Programmers keep track of major changes in their
programs by either creating copies of the new version
or changing an older version. The result is a series
of similar programs that lack proper documentation
to indicate the change and reason for the change.
SVCS provides an automated approach to this
record keeping. It tracks changes to the baseline ver-
sion of a program, and demands that programmers
record their reasons.

When software engineers need a particular version
of a file, whether the current or some older copy,
SVCS automatically retrieves the correct version
from its data base of updates and baseline versions.
Similarly, after the programmers have added changes,
SVCS records the updates and the reasons for the

COMPILE
ENGINEER < = aon =] a0 —‘“;Cgtmn'n
i LINK ¢
v i A
NDS It
ELECTRONIC
MAIL l l
1
\ SVCS [l MAKE
MANAGER < 1~ E
DATA BASE
N
MANAGEMENT
1001

Besides controlling changes to the source files in

its dauta base. SVCS helps managers audit source
updates. Automatically generating the software for
the target system, MAKE reduces generation time by
about 30 percent, leaving engineers more time to
concentrate on development.

231433-2

1-145

ntel

AR-377

changes, adding as little as a 3 percent overhead. In
addition, SVCS helps project managers exercise pre-
cise control in large team projects by preventing cer-
tain engineers from making changes independently.

While programmers work directly with SVCS to
manage different program versions, MAKE works
closely with SVCS facilities to generate current ver-
sions of systems. While generating large systems
from several different modules, programmers often
find that one or two modules have been updated
since the last compilation. This problem is com-
pounded when modules depend on a series of other
submodules. MAKE automates the manual proce-
dures often resorted to by software engineers to track
current object modules.

Management tools can free engineers
from housekeeping chores.

Using templates that detail the modules’ interde-
pendence, MAKE ensures that only current versions
of modules are included in the system generation.
If it finds that a required object module is obsolete,
MAKE will automatically compile the appropriate
source module to produce the current version of the
object module. Furthermore, if source modules de-
pend on submodules, MAKE will continue search-
ing through its templates to ensure it recompiles
modules using the current submodules for these
source modules.

MAKE selectively compiles the needed modules.
Only if a module or one of its submodules is obsolete
does MAKE execute a recompilation. This cuts the
inefficient massive compilation procedures commonly
used to ensure that object modules are current.

In addition to the project management tools han-
dling version control and system generation, a com-
plete integrated development environment should
also facilitate communication among users. Acting
as an electronic central distribution center, the
NDS-II electronic mail facility maintains mailboxes
for individual users and groups of users on the net-
work, and an electronic bulletin board for all users.
In addition to supporting document distribution,
electronic mail manages a file transfer facility. Team
members can transmit both source and object mod-
ules to any other user on the network.

Another feature, NDS-II’s network resources
manager (NRM), provides extensive support for file
management and resource sharing. The NRM man-
ages files with a hierarchical structure that arranges
files into volumes and multiple subdirectories. The
NRM also improves allocation of resources through
its distributed job control (DJC) facility. DJC per-
mits users on private workstations to export a batch
job to the NRM for remote execution. The NRM

then moves the job to a free workstation for execu-
tion, returning the completed job status to the user’s
directory.

Logical design

An integral part of the software development envi-
ronment and its primary interface with the user is
the text editor. Because software engineers typically
spend 40-50 percent of their time using a system edi-
tor, it is a critical element in software development
and can greatly enhance productivity if used well.’
For example, programmers often need to work
simultaneously on two separate files, such as two
different source programs or a program and a speci-
fication document. Editors such as Intel’s AEDIT
permit them to edit two files of any size simulta-
neously and transfer text between them.

- AEDIT’s ability to store a sequence of edit com-
mands also simplifies the use of edit macros. With
AEDIT, programmers build macros simply by typing
in their commands. They can reexecute the command
series or save it on disk for later use. AEDIT also
helps software engineers with structured program-
ming techniques through its automatic text inden-
tation. Furthermore, AEDIT protects programmers’
efforts by optionally creating backup copies of files
being edited.

Although a text editor serves as the primary inter-
face between the development system and program-
mer, programming languages serve as the principal
interface between design concepts and the target
hardware. With the right set of programming lan-
guages and support tools, software professionals can
develop the optimal solution for a particular situa-
tion, without the design bias often seen when de-
signers plan projects with an eye on their eventual
implementation.

For example, different programming languages
like assembler, PL/M, C, Pascal, and Fortran enjoy
certain advantages over each other. Software devel-
opers should be able to draw on the most appropriate
language to implement the different facets of a
design. In order to support this kind of free choice,
however, the development environment must be able
to coordinate the use of a mix of programming lan-
guages, so that programmers can use different lan-
guages . without concern about how the different
modules will eventually be combined.

Like spoken languages, the virtue of programming
languages lies in their ability to represent abstract
ideas in concrete terms. Just as it may be easier to
express a certain idea with a particular spoken lan-
guage than another, programming languages vary
in their ability to represent certain design concepts.
For example, software engineers. find that Pascal
represents structured designs more faithfully than
a language like Fortran. Also, languages like PL/M

231433-3

1-146

ntel

AR-377

or C, which closely reflect the hardware base of a
design; or assembly language, which provides the
ultimate visibility into the hardware, are powerful
tools for developing realtime embedded systems.

Still, programming languages share another fea-
ture with natural languages—varying degrees of
popularity. For example, Fortran remains-one of the
most popular programming languages. Its continued
strong momentum translates into a large installed
base of software. For managers; this large installed
base provides a ready source of existing code. On
the other hand, managers must remain ready to
incorporate newer languages like Ada into designs
without starting from scratch.

In many software development projects, managers
often look for a way to juggle several programming
languages simultaneously. Software engineers can
usually adapt quickly to new programming lan-
guages—particularly when they are supported by
project management tools. On the other hand, the
development environment often acts as a bottleneck
in mixing several different languages in the same
target system because of its inability to match the
varying program and system interfaces of different
languages.

The Intel development environment integrates dif-
ferent languages through a common object module
format (OMF). A standard OMF works at several
levels. During link time, OMF presents a standard
method for indicating data type information, which
the linker uses to build its memory allocation tables.
Furthermore, debuggers exploit OMF’s standard
arrangement of symbolic information for handling
symbolic debugging.

Two other aspects of the standard development
environment include the definition of standard con-

APPLICATION
PROCRAM
T
| CALL DQSALLOCATE
Y
UNIVERSAL
DEVELOPMENT
ENVIRONMENT
i ALLOCATE MEMORY
TARGET
OPERATING
ENVIRONMENT
(RMX, XENIX, 1SIS)

Where application standards do not already exist, a
development system should follow some baseline. The
universal development interface sets a baseline for
interactions between application programs and
operating software. For example, an application that
réquires memory uses a UDI call (DQSALLOCATE),
which is later translated into the appropriate call for
the target operating environment.

ventions for passing parameters between different
programs—regardless of their implementation lan-
guage—and standard interfaces to the operating
environment. Besides accounting for critical imple-
mentation details another key measure of the effec-
tiveness of a development environment is its support
of application level standards like IEEE 754 for
floating point operations or IEEE 802 for Ethernet.

System-independent interface

For those areas currently without standards, the
development environment takes the initiative with
a baseline for the operating environment. Here,
Intel’s universal development interface (UDI) defines
a system-independent interface between application
programs and the operating environment. Rather
than write their programs with system-dependent
calls to operating system utilities, software devel-
opers use the same UDI call to allocate memory, for
example, regardless of the target operating system.
During link-time, the linker uses this UDI call to link
in the appropriate system utility in RMX, for exam-
ple. Consequently, programs that use the UDI can
be ported between ISIS, RMX, and Microsoft’s
Xenix simply by loading the modules into the new
environment. Thus, if the design calls for a realtime
operating environment like RMX, engineers can
develop the application under ISIS without fear that
their work will be lost when the system is transported
to the RMX environment.

For the manager trying to improve productivity,
no faster method exists than simply porting existing
code to a new environment: Besides IEEE standards,
which provide a common application environment,
the use of a OMF and UDI provide a:clear migra-
tion path between different operating environments.

In the kind of cross-development environments
commonly used for creating microprocessor-based
products, engineers work most effectively if they are
able to split debugging into two phases. In the first
phase, debugging occurs in parallel for the target
hardware system and for the software. Here, engi-.
neers use the host environment to debug the basic
logic of the software system. Once they are satisfied
both with the logic of the software and with the oper-
ation of the hardware, the engineers then load the
software into the target system for the second phase—
integration and test.

This in-target phase is the critical step where hard-
ware and software are finally integrated as a total
system. As noted earlier, differences between the
host and target environments can more than double
costs. Consequently, a key feature of an integrated
environment is a common debug interface between
host and target.

Intel’s PSCOPE debugger permns programmers
to check out programs at the source level both during
logic debug and during in-target test. Because

231433-4

1-147

AR-377

Debugger Command Language
‘" Command Action
Goi/Listed/Pstep Control program execution
Define Manipulate debugger
Display or program objects
Modify
‘Remove
- CalliReturn Execute debugger procedures
Call/Return Execute debugger procedures
Write/Cl Console input/output
Do/End ' Define command blocks
4 Repeat/Count Repetition of commands
. or command blocks
If/Then/Else Conditional execution
of commands or blocks
‘Input/Put/Append’ Save/restore to and from disk

PSCOPE shows up again as one of the three major
components of the I2ICE system, software engi-
neers are assured of a smooth transition between host
and target. Along with PSCOPE, the I2ICE and
the logic timing analyzer (LTA) give developers a
full view simultaneously into the hardware and soft-
ware components of their systems. Without this kind
of coordinated approach to system integration and
test, developers can never deal with the hardware
-and software as an integrated system, but are forced
to switch.continually between hardware testmg and
software debugging.

-Supporting system integration at the most funda-
mental level, in-circuit emulation provides a.trans-
parent, full speed emulation of the iAPX 86 and
iAPX 286 families of processors. Besides handling
multiple level breakpoints and traces in single micro-
processors, I2ICE extends its support to multipro-
cessor environments. Developers can emulate a
system of up to four microprocessors and examine
complex processor interactions like synchronization.
For example, I2ICE lets engineers define events like
breaks and traces conditionally, so that a micropro-
cessor will break when another defined event occurs
in a different microprocessor.

While I2ICE and PSCOPE provide the funda-
mental support for a system’s underlying hardware
and software, the LTA also serves as a key element
of the system’s integrated package. Displaying 16
channels of logic-and timing information, the LTA
helps isolate critical state and timing problems. In
order to speed the analysis process, this menu-
oriented system also permits engineers to save debug-
ging setups and waveforms on disk.

A key advantage of an integrated environment is
its ability to present information, through a consis-

tent command language, in a familiar form. With
I2ICE, this feature extends to logic and timing
analysis. Rather than present a morass of digits, the
LTA displays most information in easy to under-
stand waveform diagrams.

Source-level debugging

Just as the LTA has moved system integration and
test above the bit level, PSCOPE shortens software
debugging by permitting engineers to test programs
using their own symbols, rather than machine code.
With the traditional machine code debugger, if they
wanted to patch a section of machine code, program-
mers would spend hours converting machine code
between different formats, like binary and hex, and
calculating the machine code equivalents of assem-
bler instructions. Even somewhat more sophisticated
debuggers that disassemble machine code are little
help in retaining the sense of a program as expressed
through its use of symbols.

Instead, even though it helps software engineers
deal with machine code when necessary, PSCOPE
can handle debugging at the level of the original
source code. Consequently, programmers can set an
unlimited number of breakpoints by statement
number, step through a single source statement at
a time, and trace execution by statement number,

EDIT |—> COMPILE —f LINK }—| TEST F—=| ODEBUG
-a
Y
EOIT f—-] COMPILE LINK TEsT DEBUG
+ 1
) Y
SAVE
GRS U SOURCE-LEVEL
PATCHES

In the past, engineers have needed to iterate through
a lengthy development cycle in order to debug source
code in the target system (a). On the other hand,
PSCOPE. lets engineers use source-level code to
debug and patch the target system and continue
debugging. Then, after many bugs are found,
PSCOPE saves the source-level patches on disk for
later addition to the original source files (b).

231433-5

1-148

ntel

AR-377

procedure name, or label (regardless of whether they
are working with the host or target system).

From the user’s point of view, the utility of
PSCOPE lies in its built-in, CRT-oriented editor and
in its command language that resembles a high level
structured programming language. Using PSCOPE’s
editor, engineers can write extensive procedures
in the command language for testing code and even
for patching existing code with new or revised
source statements.

The many advantages of an integrated
environment include source-level
debugging tools, such as PSCOPE.

PSCOPE’s ability to handle source-level patches
avoids the conventional development scenario where
software developers go through a continual cycle of
edit-compile-link-test-debug. Source-level patching
short-circuits this loop; programmers can remain in
the debug phase—patching at the source-level and
even saving the source-level patch on disk for later
incorporation into the original source-code files
maintained under SVCS.

The advantages of an integrated environment
show up here dramatically. During compilation, the

compiler places symbolic information associated
with a program into the object modules it generates.
In turn, the linker carries this information along into
the runtime image. Both PSCOPE and I2ICE draw
on this symbolic information for their source-level
debugging. Consequently, during system debugging,
developers see familiar procedure and data names,
rather than a confusing series of machine codes or
disassembled mnemonics. Furthermore, because it
maintains this symbolic information in a virtual
table, PSCOPE is able to handle arbitrarily long
symbol tables—it just brings a new page of symbols
from disk, if necessary.

As a result of its ability to coordinate its tools for
the various stages of development, the Intel develop-
ment environment lets system engineers concentrate
on product development, rather than on administra-
tive chores. For the development manager, this trans-
lates into on-time product delivery, without the costs
of additional resources.

231433-6

1-149

- Ada Task - RR-366
- Synchronization in a
Multiprocessor System
with Shared Memory

Timothy E. Lindquist and Richard C. Joyce
Department of Cémputer Science, Virginia Tech, Blacksburg, VA 24061 _

Ada provides a means for concurrent processing
within a program through tasking. Several asyn-
chronously executing tasks may constitute a single
Ada program. Intertask communication and synchro-
nization is provided through a rendezvous mecha-
nism. This article presents an implementation of Ada
tasking for a multiprocessor system having a shared
memory. The INTEL 80286 processor is used as an
example basis for such a system. The code needed to
implement synchronization and communication
among tasks (rendezvous) executing on possibly dis-
tinct processors is presented. Intertask message pass-
ing is an important aspect of the applications for
which Ada will be used. This article addresses effi-
cient message transmittal in the context of shared
memory.

INTRODUCTION

The implications of using the Ada program-
ming language to produce software for a strict real-
time environment are largely unknown. This lack of
experience is compounded when the target system
has distributed or multiprocessing characteristics.

Since Ada will be the common high-order language -

for use in future Department of Defense embedded

Journal of Pascal, Ada, & Modula-2, Vol. 4, No. 1, pp. 9-19 (1985)

©1985 by John Wiley & Sons, Inc. Reprinted with permission.

- systems, efficient implementations of Ada facilitiées

on architectures critical to embedded applications
are important.

Architectures representing increased diffi-
culty of Ada implementations include single-proces-
sor - systems, multiprocessor systems with shared
memory, and multiprocessor systems without shared
memory. When matching these variations with the
possible levels of distribution of an Ada program,
several combinations of systems exist. The distribu-
tion of an Ada program may range from (1) no dis-
tribution—a single Ada main program together with
all its tasks run on a single processor, (2) fixed as-
signment of program parts to processors—for exam-
ple, on program initiation all tasks are assigned a
processor and that assignment remains throughout
program execution, (3) dynamic assignment of pro-
gram parts to processors—in this case the assign-
ment of a program part to a processor may change
during execution; for example, tasks may migrate
among processors.

For fixed and dynamic assignment, the Ada
object of distribution need not be the task. Based on
the programmer’s view of the application, assign-
ment may be done for packages or data structures.
For example, Cornhill [1] is considering program dis-
tribution based on programmer-defined names. Oth-
ers, such as Roberts [5], have examined the Ada task

CCC 0735-1232/85/010009-11$04.00
231543-1

1-150

intel

AR-388

as the object of distribution. In this article we ex-
amine efficient synchronization of tasks assuming
there is a fixed assignment of tasks to processors.
Our approach builds upon the ideas presented by
Habermann (2], in which scheduling points are min-
imized for task synchronization. While Habermann’s
solution is tuned to message-passing applications of
Ada in which replies are not expected, our solution is
not tuned to a specific application of tasking. We as-
sume a multiprocessor architecture based on the IN-
TEL 80286, with a shared memory. The shared
memory allows techniques used in single-processor
systems to be adapted, but presents efficiency prob-
lems in synchronizing and communicating among
processors.

ADA TASKING

An Ada program is made up of one or more
tasks each of which executes on its own logical pro-
cessor. Tasks are executed asynchronously except at
points of programmer-specified synchronization (and
communication). A task is declared and initiated in
an Ada program by (1) declaring a task type, (2) de-
tailing a task body for the type, (3) creating an object
of the task type.

A task type is declared through a task speci-
fication, which includes entries for the type. Entries
may be parameterized and called by other tasks in
much the same way as procedures are called. Below
is an example task specification for the task type
BUFFER with two entry points SEND and RE-
CEIVE. In this example, a BUFFER task synchro-
nizes transmittal of messages from a sending task to
a receiving task.

task type BUFFER is
entry SEND (CH : in MESSAGE);
entry RECEIVE (CH : out MESSAGE);
end BUFFER;

A task body is the section of code that is as-
sociated with a task type. The body details the ac-
tions that are to take place within instances of the
task. Accept statements are placed in the body to cor-
respond with entries. A rendezvous occurs between
two tasks when one executes an entry call and an-
other executes a corresponding accept statement.
The caller does not continue until the accept has
completed. The calling and called tasks stay syn-
chronized until the accept completes, after which
each continues asynchronously. Below is a task body
for BUFFER in which messages are obtained from

the sending task and relayed to the receiving task
one at a time (buffer_size = 1).

task body BUFFER is
MSG : MESSAGE;
begin
loop
accept SEND (CH : in MESSAGE);
MSG := CH;
end SEND;
accept RECEIVE (CH : out MESSAGE);
CH := MSG;
end RECEIVE;
end loop;
end BUFFER;

Figure 1 demonstrates one possible use of the
BUFFER task shown above. The MSG_HANDLER
task buffers a single message, the PRODUCER task
places messages in the buffer using SEND, and the
CONSUMER procedure, which runs as a separate
task, reads messages from the buffer using
RECEIVE.

A task body may contain more than one accept
statement for an entry, but all accept statements
within a task must be for its own entries. If an entry
is called before a corresponding accept statement is
encountered, the call is queued for the entry. When
an accept statement is executed before any entry call
is made, the accepting task suspends until a task
calls the entry.

Consider the following example execution of
Figure 1 that demonstrates an accept before an entry
call. CONSUMER is invoked, and the task objects

procedure CONSUMER is

MSG_HANDLER : BUFFER;
task PRODUCER:
task body PRODUCER is
MSG : MESSAGE:
begin
loop
-- build a message in MSG
MSG.HANDLER.SEND(MSG) ;
-=- exit when no more messages
end loop:
end PRODUCER;

MSG : MESSAGE;

begin
loop
MSG_HANDLER.RECEIVE(MSG) ;
== use the message in MSG
== exit when no more messages
end loop;
end CONSUMER:

Figurel. An exainple of Ada tasking.

Journal of Pascal, Ada, & Modula-2, January/February 1985

1-151

231543-2

ntel

AR-388

MSG_HANDLER and PRODUCER are elaborated.
These tasks are activated before execution of the first
statement of procedure CONSUMER. Assuming
that PRODUCER has not yet executed a call to
SEND, when MSG_HANDLER executes the accept
statement for SEND it will suspend. When PRO-
DUCER makes a call to MSG_HANDLER.SEND,
the accept body executes. MSG_HANDLER receives
the character CH and stores it in the local variable
MSG. After the accept statement concludes MSG_
HANDLER and PRODUCER continue execution.

Synchronization Constructs

Three different forms of the select statement
are available to control task synchronization. The
first is the selective-wait, which is used to coordinate

. among possibly several accepts for a task. The selec-
tive-wait provides the ability to conditionally accept
only when there is-a pending entry call or to wait for
an entry call for a prespecified amount of time.
Timed and conditional entry calls are the remaining
two forms of the select statement. These forms allow
for no waiting for a prespecified wait when issuing an
entry call.

The Selective-Wait

The selective-wait statement is made up of
one or more alternatives each specifying actions.
One alternative is selected and executed each time
the construct is encountered. Alternatives can be in-
cluded for conditionally/immediately accepting en-
try calls or for specifying contingency actions if an
entry call cannot be accepted.

One or more accepting alternatlves can exist
in a select. Accept alternatives may be guarded al-
lowing the programmer to specify the task conditions
needed to execute the accept. Statements may also be
placed following the accept body of a select alterna-
tive. These statements are executed after the ren-
dezvous has completed. ,

Contingency alternatives describe what to do
when an accept alternative cannot be executed. If
they are present, contingency alternatives may take
one (only) of the following forms: (1) an else, (2) one
or more delay alternatives, (3) a terminate alterna-
tive. As with accept alternatives, the delay and ter-
minate alternatives may be guarded by a
conditional. The delay and else may also include
statements to be executed when selected.

task body BUFFER is:
POOL_SIZE : constant INTEGER := 100:
POOL : array(l .. POOL_SI2E) of MESSAGE:
COUNT : INTEGER range 0 .. POOL_SIZE := 0;
FRONT, REAR : INTEGER rance 1 .. POOL_SIZE := 1;
begin !
loop
select
when COUNT < POOL_SIZ2E =>
* accept SEND(C : in MESSAGE) do
POOL(REAR) := C;
end;
. REAR := (REAR + 1) mod POOL_SIZE:
COUNT := COUNT + 1;
or when COUNT > 0 =>
accept RECEIVE(C : out MESSAGE) do
C := POOL(FRONT);
end: :
FRONT. := (FRONT + 1) mod POOL_SIZE:
COUNT := COUNT - 1;
end select!
end loop:
end BUFFER;

.

Figure 2. BUFFER using a selective wait to queue mes-
sages. ‘

~ Execution of a select begins by evaluating the
guards in an undetermined order. All alternatives
having a true guard and alternatives having no
guards are said to be open. If one or more accept al-
ternatives are open and also have queued entry calls
then one is arbitrarily selected and executed. If an
immediate rendezvous is not possible then selection
depends on the contingency alternative.

No (open) contingency alternative: If there are
open accepts then the task waits until an entry call
is made to one of the open entries. When there are no
open alternatives the exception PROGRAM_ERROR
is raised.

An else is present: The else part is executed if
no open accept alternative can be immediately se-
lected.

One or more delay alternatives are present: De-
lays specify a time to wait for an entry call and ac-
tions to be performed should the wait time expire.

" The open delay alternative with minimal time delay

is selected (arbitrarily if more than one have the
same delay) if no entry call is made to an open accept
beforehand.

Terminate: An open terminate is selected and
the task is terminated if the language-defined con-
ditions for termination are satisfied before an entry
call is made on an open accept.

Figure 2 shows how the BUFFER task pre-
sented previously can use the selective-wait to allow
messages to be queued as they are transmitted from
the PRODUCER to the CONSUMER. This example
is similar to that appearing in the Ada Language
Reference Manual [4). :

~ Journal of Pascal, Ada, & Modula-2, January/February 1985

231543-3

1-152

ntel

AR-388

Timed Entry Call Statement

This form of the select provides the program-
mer with the ability to specify, upon making an entry
call, the time to wait for a rendezvous to begin. The
syntax of the timed entry call is

TIMED_ENTRY_CALL ::=
select
ENTRY_CALL_STATEMENT
[SEQUENCE_OF_STATEMENTS]
or
DELAY_STATEMENT
[SEQUENCE_OF_STATEMENTS]
end select;

If possible, the rendezvous is initiated before the
time specified in the delay statement. If this is not
possible, the statements following the delay are ex-
ecuted and the entry call is canceled. Ada also pro-
vides a continental entry call as another form of the
select statement. The conditional entry call has the
same semantics as the timed entry call except that
no time delay is specified. If a rendezvous cannot im-
mediately begin then the else part is executed.

THE INTEL 80286

The iAPX286 from INTEL is an 8086 upward
compatible VLSI microprocessor system based on the
80286 CPU. The iAPX286 provides many hardware
features for today’s large multiuser and real-time
multitasking systems. Ha